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Synthèse en français

Introduction

Nous vivons dans une époque où l'informatique a pris une importance majeure
dans notre société. Non seulement les ordinateurs ont modi�é nos modes de travail
et de vie, mais ils ont également largement contribué à l'émergence de la science
dite des systèmes complexes grâce à la construction d'immenses bases de données
et à la démultiplication des puissances de calcul. L'étude des réseaux complexes en
est une sous-branche. Le paradigme de la complexité est d'étudier comment des
relations individuelles, microscopiques, peuvent créer des phénomènes et structures
macroscopiques qui ne répondent pas à une conception globale préalable. Dans le
domaine des réseaux, la littérature s'est considérablement accrue depuis la �n des
années 1990, à la suite de deux articles fondateurs [Watts 1998, Barabási 1999].
Ils mettent tous deux l'accent sur l'existence de structures semblables entre des
réseaux très divers, et que l'on peut interpréter comme la trace de mécanismes
simples, génériques au niveau microscopique. Un sujet d'étude important au sein
de cette littérature concerne les processus dynamiques évoluant sur des réseaux.
La topologie de ces réseaux est particulièrement importante pour le comportement
général de ces processus. Par exemple, la sur-représentation de n÷uds avec un
nombre de voisins très élevé peut conduire à la disparition de transitions de
phases. C'est par exemple le cas pour un modèle de di�usion très utilisé en
épidémiologie, appelé modèle SIR, et dont l'existence d'une transition de phase
rendaient les mesures de vaccinations particulièrement e�caces. Plus récemment,
la problématique de la dynamique des réseaux en elle-même s'est invitée à la table.
En e�et, on étudiait généralement des réseaux statiques, comme si les objets qu'ils
représentent avaient des relations immuables, alors que généralement, ces relations
évoluent dans le temps. Par exemple, considérer un réseau de transport aérien
comme statique revient à ignorer les changements saisonniers de routes, les créations
d'aéroports, la fermeture d'autres, sous l'e�et de la vétusté des équipements ou bien
d'autres événements comme les éruptions volcaniques, les intempéries. Lorsque
l'on étudie des processus dynamiques, cette dynamique du réseau lui-même peut
revêtir une importance particulière, notamment lorsque les échelles d'évolution sont
comparables. C'est dans cette perspective que je me suis intéressée lors de mon
doctorat au réseau dynamique des proximités physiques.

Mon travail de thèse s'articule autour des mesures collectées dans le cadre de la
collaboration SocioPatterns. Cette dernière avait mis en place peu avant le début
de mon doctorat une infrastructure permettant d'enregistrer avec une très grande
résolution temporelle la proximité humaine face-à-face entre individus volontaires
sur des échelles de temps de l'ordre de plusieurs jours. Le dispositif repose sur
l'utilisation de badges � dits RFID pour Radio Frequency Identi�cation Devices �
qui communiquent entre eux en émission et réception, ainsi qu'avec des antennes, par
des signaux radio de faible puissance. Cette puissance peut être calibrée de manière
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à ce que le rayon d'émission du signal entre les badges soit de l'ordre de un à deux
mètres, et que le signal soit écranté par le corps humain. Ainsi, lorsque ces badges
sont portés sur la poitrine des personnes volontaires, un signal n'est enregistré entre
deux personnes que si elles sont proches l'une de l'autre, dans le rayon d'émission
des badges, et si elles se font plus ou moins face. En e�et, si une partie du corps
humain se trouve entre les deux badges, par exemple si une personne tourne le
dos à l'autre, alors le signal sera écranté. La fréquence d'émission et réception
des badges est de quelques secondes. Ensuite, ces badges transmettent avec une
autre amplitude l'information à des antennes branchées sur un réseau physique et
celles-ci envoient le �ux d'informations à un serveur central. On enregistre donc
avec une résolution temporelle la séquence d'échange de signaux entre les badges.
Cette séquence est ensuite agrégée par fenêtres de 20 secondes. On dit que deux
personnes sont en contact sur la fenêtre de temps t si leurs badges se sont transmis
au moins une fois des informations pendant l'intervalle de temps de 20 secondes
correspondant. La durée d'un contact correspond au nombre de fenêtres de 20

secondes consécutives pendant lesquelles les personnes sont en contact. La durée
a donc une valeur minimale de 20 secondes et incrémente par pas de 20 secondes.
Compte tenu de l'infrastructure actuelle et plus précisément du fonctionnement des
antennes, ce type de déploiement est restreint à des enceintes géographiquement peu
étalées, dans un seul bâtiment, et n'est pas possible en plein air ou à l'échelle d'une
ville.

L'infrastructure a été déployée dans des environnements très divers, tels que
lors de conférences scienti�ques, comme expérience interactive dans un musée sci-
enti�que, dans une école primaire ou encore dans une pépinière d'entreprises. La
durée des déploiements varie entre 2 jours et 6 semaines, et le nombre de participants
de 80 à presque 12000 personnes dans le cas du musée. Le taux de participation
dépasse généralement les 80% lorsque toute la population d'étude peut être équipée
d'un badge, et atteint fréquemment plus de 95%, ce qui est tout à fait remarquable
en comparaison des enquêtes traditionnelles qui demandent un investissement plus
important de la part des participants.

Analyse statistiques des données de proximité

La première étape de la thèse est de caractériser de manière descriptive les données.
Le point le plus remarquable est certainement la dynamique très hétérogène des
durées des contacts, des durées entre contacts et des durées des groupes (la durée
d'un groupe de taille p, de manière analogue à la durée d'un contact, est égale au
nombre de fenêtres de 20 secondes pendant lesquelles un groupe de p personnes sont
en contact). Cette hétérogénéité se traduit quantitativement par des distributions
larges, c'est-à-dire qui décroissent en loi de puissance P (x) ∼ x−α. Cela signi�e
d'une part que les durées des contacts sont généralement courtes, mais parfois très
longues, et d'autre part que l'on ne peut pas identi�er de durée caractéristique,
comme on peut le faire avec des distributions gaussiennes par exemple. Ce résultat
a été observé quel que soit le contexte, et qui plus est, les distributions sont très
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similaires entre les di�érents contextes. Une telle observation avait été faite concer-
nant les temps d'inactivité dans les correspondances humaines. Plus précisément, la
littérature scienti�que montrait que la distribution des temps écoulés entre deux en-
vois de mails, deux appels téléphoniques ou des envois de courrier suivaient des lois
de puissance [Rybski 2009]. Quant à la proximité humaine, d'autres mesures faites
avec des infrastructures di�érentes tendent à con�rmer actuellement le caractère
général de ces hétérogénéités [Hui 2005, Salathé 2010].
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Figure 1: Distribution Pp(τ) des durées en secondes des groupes de taille p+ 1 lors
d'une conférence scienti�que (un groupe de taille 1 correspondant à une personne
seule, donc sans contact avec aucune autre personne). L'échelle logarithmique en
abscisse et ordonnée permet de mettre en évidence le caractère très hétérogène des
durées des groupes.

D'autre part, pour analyser la structure des interactions, je me suis également
servi du cadre formel des réseaux statiques. Un réseau est une représentation
théorique d'interactions relativement homogènes entre entités homogènes. Les en-
tités, dans notre cas les personnes, sont représentées par des n÷uds, d'un ou plusieurs
types (par exemple homme ou femme), et les interactions sont symbolisées par des
liens entre une paire de n÷uds. Lors de ma thèse, je me suis intéressée le plus
souvent à des réseaux dit agrégés,pour lesquels on considère qu'un lien existe entre
deux personnes si elles ont eu au moins un contact sur une certaine durée, souvent
sur quelques minutes ou une journée. À chaque lien est associé un poids, dé�nit
généralement comme la durée cumulée des interactions sur l'échelle de temps sur
laquelle on agrège les contacts. Ensuite, la boite à outils traditionnelle des réseaux
sert à caractériser la structure des relations, avec des grandeurs dé�nies pour chaque
n÷ud, comme le degré, i.e. le nombre de n÷uds avec lesquels le n÷ud en question
est directement relié, et des grandeurs dé�nies de façon globale, comme le diamètre,
i.e. la plus grande distance géodésique entre les n÷uds d'une composante connexe.

On retrouve dans ces observations des traces caractéristiques du contexte de
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l'événement. Par exemple, le diamètre du réseau agrégé à l'échelle d'une journée
pour une conférence scienti�que est bien plus petit que celui que l'on mesure pour
un musée. En e�et, un des objectifs principaux d'une conférence est de faire se
rencontrer les scienti�ques. Il est assez heureux que les interactions qui se font alors
n'isolent pas un ou plusieurs groupes de chercheurs. En revanche, un musée n'est pas
fait pour qu'une communauté de personnes se rencontre. De plus, un visiteur aura
peu de chance de rencontrer les visiteurs qui arrivent même une heure plus tard,
créant ainsi un réseau agrégé allongé, dont la structure est liée à la temporalité des
visites. Quantitativement, le diamètre passe par des n÷uds correspondant à des
personnes dont les heures d'arrivée sont chronologiquement assez ordonnées.

Un autre exemple de l'impact du contexte de l'événement sur la structure des
réseaux agrégés est donné par les interactions collectées dans une école primaire.
Dans ce cas, les enfants interagissent avant tout avec les enfants de leur classe et
à moindre échelle avec les enfants de même niveau scolaire, y compris pendant les
récréations et le déjeuner, qui sont les périodes d'activité sociale les plus intenses.
L'infrastructure pour mesurer les interactions trouve alors une importance partic-
ulière pour les enjeux épidémiologiques. En e�et, il est assez di�cile de quanti�er les
contacts susceptibles de transmettre une maladie transmissible telle que la grippe
dans une population. En général, les mesures que l'on trouve dans la littérature
scienti�que reposent sur des questionnaires auto-administrés, où l'on demande aux
personnes de détailler les contacts qu'ils ont eu au cours d'une journée typique. Les
données alors recueillies sont particulièrement sensibles aux biais de mémoire des
individus qui se souviennent assez mal des rencontres qu'ils font, surtout lorsque
celles-ci durent peu de temps [Smieszek 2011]. Avec les badges RFID, nous pouvons
quanti�er de manière très détaillée les interactions entre enfants de la même classe
et entre di�érentes classes. En particulier, on observe que les enfants ont rencontré
individuellement la majorité des enfants de leur classe en moins deux heures, alors
que les pauses et le déjeuner leur permettent d'interagir avec les enfants des autres
classes mais de manière assez réduite puisqu'au bout de deux jours, un enfant n'a
eu de contacts qu'avec, en moyenne, moins d'un tiers de l'école. Il est à noter que
cette proportion tendrait à augmenter encore mais relativement lentement sur une
troisième journée. Ces données détaillées sont très importantes pour estimer l'impact
de stratégies de fermeture de classes dans le cas d'épidémies, ce qui peut constituer
une stratégie de santé publique plus intéressante que la fermeture d'écoles entières,
sachant d'autant plus que les écoles sont des lieux privilégiés pour la transmission
de maladies au sein de la population entière.

Tester des théories socio-psychologiques

Le contexte est un élément important pour contraindre la structure des interactions
humaines, mais d'autres mécanismes entrent également en jeu. La littérature des
réseaux sociaux est à ce propos particulièrement riche. Un mécanisme important
sur lequel j'ai travaillé lors de ma thèse est l'homophilie, mécanisme qui correspond
à la tendance des individus à entretenir des relations sociales avec des individus
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Figure 2: Réseau de contacts dans une école primaire, agrégé à l'échelle d'une
journée. Les liens entre les individus ayant interagi moins de deux minutes ont
été retirés par soucis de lisibilité. La largeur des liens correspond à la durée cumulée
des interactions et les n÷uds ayant un degré plus important sont plus gros. Les
couleurs correspondent aux classes, les enseignants étant en gris.

qui leur ressemblent, que ce soit sur le plan des opinions, de la catégorie sociale,
de l'âge, ou de beaucoup d'autres choses. D'autres mécanismes comportementaux,
tels que la fermeture triadique, la réciprocité, le prestige, la balance structurelle
contribuent également à la structure. Généralement ces mécanismes sont étudiés
sur des réseaux dits sociaux, c'est-à-dire reposant sur les déclarations de relations
par les individus. Par exemple, on demande à chaque individu de donner la liste
de ses amis, des personnes auprès desquelles il demanderait des conseils, etc. Ces
relations déclarées ont donc une signi�cation pour les individus en termes de liens
a�ectifs ou professionnels, ils s'agit de personnes qui comptent. Dans ce sens, la
proximité physique entre individus est très éloignée de ce que l'on considère comme
un lien social et est généralement considérée comme un indicateur assez pauvre des
relations sociales. Il est cependant assez évident qu'un lien social se construit autour
et se nourrit d'interactions réelles, généralement liées à la proximité physique, au
moins à un moment donné de la relation. Il est donc assez légitime de se demander si
les mécanismes déterminant la structure des réseaux sociaux sont également présents
pour les interactions instantanées, comportementales.

Je me suis intéressée à l'homophilie de genre entre enfants d'une école primaire.
On peut dé�nir une homophilie à l'échelle mésoscopique et une homophilie à l'échelle
individuelle. Dans le premier cas, la question est de savoir si à l'échelle d'un groupe,
d'une classe par exemple, les interactions ont lieu préférentiellement entre personnes
du même sexe. Pour tester l'hypothèse selon laquelle la structure du réseau social
n'est pas corrélée au sexe des personnes, on construit un modèle statistique simple,
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dans lequel la probabilité qu'un lien existe entre deux n÷uds est indépendante du
sexe des n÷uds. Ce modèle permet de déterminer la loi du nombre de liens entre
personnes du même sexe, avec relativement peu d'hypothèses. On compare ensuite
le nombre observé de liens entre personnes du même sexe avec la distribution de
probabilité que l'on obtiendrait si le modèle d'indépendance était vrai. On trouve
alors que, de manière signi�cative, les �lles ont collectivement tendance à interagir
davantage entre elles qu'avec les garçons dans 6 classes sur 10, et inversement, les
garçons ont tendance à interagir davantage entre eux qu'avec les �lles dans 8 classes
sur 10.

Au niveau individuel, on dé�nit l'homophilie d'un individu comme le ratio entre
le nombre d'enfants du même sexe que lui avec lesquels il interagit plus de cinq
minutes pendant les pauses déjeuner et les récréations sur deux journées, divisé
par le nombre total d'enfants avec lesquels il interagit plus de cinq minutes. Ce
ratio est nul si l'enfant n'interagit qu'avec des enfants du sexe opposé et vaut 1 si
inversement, l'enfant n'interagit qu'avec que des enfants du même sexe. On obtient
ainsi un indice d'homophilie pour chaque enfant de l'école, ce qui permet de faire
des analyses statistiques plus �nes qu'au niveau de la classe. En résumé, les analyses
montrent que l'homophilie est plus importante chez les garçons que chez les �lles
et qu'elle augmente avec l'âge. Ces résultats sont en accord avec la littérature dans
le domaine. Nous pouvons donc conclure sur le fait que la mesure de la proximité
physique donne des résultats similaires à l'étude des relations sociales concernant
l'homophilie de genre. Par ailleurs, on montre que la proportion d'interactions de
très courtes durées (moins de trois minutes) faites avec le sexe opposé augmente
avec l'âge pour les �lles alors qu'elle diminue pour les garçons. Des évolutions sont
donc très di�érentes entre les deux sexes concernant les relations de courtes durées,
ce qui n'avait jamais été mentionné auparavant, certainement parce qu'il est très
di�cile de quanti�er les relations avec des personnes qui comptent moins ou peu
avec les méthodes traditionnelles en sciences sociales.

Un autre aspect que j'ai étudié dans ma thèse concerne le lien entre la prox-
imité physique et les réseaux sociaux sur internet, tels que Facebook, Flickr, Deli-
cious et LastFM. Pour ce travail, nous nous sommes appuyés sur une articulation
entre la plate-forme Live-Social Semantics qui permet d'étudier le comportement
d'internautes sur le web 2.0 et l'infrastructure de mesure de la proximité physique
par les badges radio. Une mesure groupée lors d'une conférence a permis de col-
lecter des informations sur les deux aspects qui nous intéressent. En comparant
la structure des réseaux en ligne et celle du réseau agrégé sur la durée du dé-
ploiement, nous avons pu mettre en évidence que les contacts entre participants
sont plus fréquents et durent plus longtemps entre personnes qui partagent un lien
virtuel (par exemple une amitié sur Facebook) qu'entre ceux qui n'en partagent
pas. Ces personnes liées virtuellement se comportent de manière plus semblable
que si elles ne l'étaient pas. Ces résultats permettent d'a�rmer que les relations de
proximité physique lors d'une conférence contiennent de l'information sur l'existence
de liens virtuels, ce que nous quanti�ons en terme de prédiction de liens virtuels.
Si des résultats antérieurs montraient que les relations virtuelles existaient davan-
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tage entre personnes géographiquement proches (au mieux à l'échelle d'une ville)
[Liben-Nowell 2005, Takhteyev 2012], c'est à notre connaissance la première étude
faite à l'échelle de la proximité physique de l'ordre du mètre.

Modéliser la dynamique des rencontres

Comme évoqué précédemment, les distributions des temps de contacts et en-
tre plusieurs contacts sont très similaires d'un contexte à l'autre. On aurait pu
s'attendre intuitivement à des distributions d'allures bien di�érentes entre les don-
nées collectées dans un musée et celles des conférences scienti�ques. De même,
il est relativement surprenant que les durées des contacts entre enfants dans une
école primaire soient distribuées de manière analogue. C'est pourquoi, avec Gines-
tra Bianconi et Kun Zhao de la Northeastern University et mon directeur de thèse,
nous avons travaillé à un modèle proposant une piste d'explication à cette obser-
vation. Le modèle que nous avons construit est dit individu-centré puisque nous
dé�nissons au niveau individuel des règles d'interaction et d'évolution. Ces règles
peuvent reproduire au niveau collectif la phénoménologie observée dans les don-
nées empiriques. Une autre manière de construire un modèle reproduisant cette
phénoménologie aurait été de donner comme ingrédient d'entrée la distribution que
l'on souhaite obtenir. Plus précisément, si l'on souhaite obtenir une distribution
des temps de contacts qui suive une loi quelconque, alors on peut reproduire cette
phénoménologie en construisant des temps de contacts comme des variables aléa-
toires tirées dans cette loi. Cette méthode a par exemple été retenue par Rocha
et al. qui s'intéressaient à l'in�uence de la distribution des temps de contact pour
la propagation de maladies contagieuses [Rocha 2012]. Un tel modèle ne cherche
pas à expliquer mais seulement à reproduire la phénoménologie. Notre modèle, en
revanche, par ses règles d'interactions au niveau individuel a vocation à donner une
interprétation plausible à cette phénoménologie. Il s'inscrit dans la même veine que
le modèle de Barabàsi de 2005 de �les d'attente dans les communications humaines
[Barabási 2005] et plus généralement des modèles provenant de la littérature des
réseaux complexes [Boccaletti 2006].

Le modèle est le suivant. On considère un ensemble de N agents qui peuvent être
soit isolés, soit interagir sous forme de groupes. Il vise à décrire une population dans
une enceinte relativement petite (il n'y a pas d'e�et de distance entre les individus) et
sur une échelle de temps de quelques jours (les e�ets de réseaux sociaux à proprement
parler sont négligés, n'importe qui interagit avec n'importe qui d'autre). Les groupes
représenteraient le type de petits groupes de discussion que l'on observe dans les
données empiriques. Un agent peut, au cours de l'évolution dynamique du modèle,
rester seul, quitter un groupe ou bien en rejoindre un. Les groupes ne peuvent
pas fusionner entre eux, ni se scinder ; ils grossissent ou diminuent uniquement de
manière incrémentale par l'introduction d'un nouveau membre ou bien par la sortie
d'un autre. Plus précisément, chaque agent i est décrit par une variable d'état pi qui
varie dans le temps et qui vaut 0 si l'agent est isolé, ou le nombre de personnes du
groupe dans lequel il est, excepté lui-même. La dynamique est discrète. À chaque
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pas de temps t, un agent i est sélectionné complètement aléatoirement.

• Si cet agent est isolé, i.e. pi = 0, alors avec une probabilité b0f(t, ti) il choisit
un autre agent isolé j pour former une paire. Cette probabilité dépend à la
fois du temps t mais aussi du temps ti de la dernière fois que l'agent i a changé
d'état. L'autre agent isolé j est choisit parmi les agents isolés avec une prob-
abilité Pi(t, tj), dépendant également du temps t et du dernier changement
d'état de j.

• Si l'agent est dans un groupe, alors avec une probabilité b1f(t, ti), son état
change. Dans ce cas, avec une probabilité λ, l'agent quitte le groupe et devient
isolé, et sa variable pi devient nulle alors que celles des autres membres du
groupe diminue d'une unité. Sinon, l'agent i introduit dans le groupe un
agent isolé j, choisit parmi les agents isolés avec une probabilité Π(t, tj). La
variable de chacun devient alors égale à la taille du groupe diminué d'une
unité.

Le modèle est donc décrit par trois paramètres, b0, b1 et λ qui contrôlent la probabil-
ité de rester isolé, de garder la taille d'un groupe constante et la tendance à quitter
un groupe plutôt que d'introduire un nouveau membre, et par deux fonctions f et
Π.

Sous certaines approximations et pour certaines valeurs des paramètres b0 b1 et
λ, on peut résoudre analytiquement le modèle et obtenir la distribution Pp(t) du
temps passé dans l'état p. Par exemple, dans le cas où f et Π sont constants, alors
ces distributions décroissent exponentiellement avec t, alors qu'avec f(t) = Π(t) =

(1 + t/N)−1, on obtient des distributions larges :
{
P0(τ) = (1 + τ)−1−b0

3λ−1

2λ−1

Pp(τ) = (1 + τ)−1−(p+1)b1 pour p ≥ 1.
(1)

Ces distributions sont particulièrement intéressantes puisqu'elles correspondent à
notre phénoménologie empirique.

Le modèle se prête particulièrement bien aux simulations numériques. Nous
avons pu véri�er le bon accord entre celles-ci et les résultats analytiques, justi�ant
ainsi les approximations faites. Nous avons également pu explorer grâce aux simula-
tions numériques le comportement du modèle en lui apportant de légères modi�ca-
tions, comme l'introduction d'une hétérogénéité entre les agents (ils n'auraient dans
ce cas pas tous les mêmes propensions à rester inactifs, ou à maintenir la taille du
groupe stable dans temps) ou bien considérer un nombre d'agents N qui varierait
dans le temps. Si la résolution analytique est encore possible, bien que plus ardue,
dans le premier cas, nous ne l'avons pas tentée dans le second. Les distributions
de durées de vie des groupes et des temps d'inactivité restent distribuées selon des
lois larges, malgré ces modi�cations. Dans le deuxième cas, on peut reproduire une
phénoménologie encore plus proche de celle observée empiriquement, avec par ex-
emple une dynamique circadienne caractérisée une activité intense le jour et plus
faible la nuit.
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Figure 3: Distribution Pp(τ) des temps passés dans un état p. Les simulations
numériques sont faites avec N = 1000, b0 = b1 = 0.7, λ = 0.8 et pour une durée
de simulation totale de T = 106N pas de temps. Les lignes représentent le résultat
analytique.

Même si le modèle ne propose pas une explication complète à cette distribution
des durées de contacts entre les di�érents contextes, il suggère une piste. En e�et, la
présence de mécanismes de renforcement semble être déterminante. Ceux-ci peuvent
être résumés de la manière suivante : plus un agent est seul, moins il a de chances
d'engager une interaction ou d'être invité à rejoindre un groupe, et plus longtemps
un agent reste dans un groupe, moins il a de chance de le quitter. Ce principe est
su�samment générique pour exister dans des contextes bien di�érents. Cependant,
sans une étude de type cognitive, il est di�cile d'aller plus loin dans l'origine de tels
mécanismes de renforcement. Une piste pourrait être l'existence d'un compromis
coût à changer d'état/béné�ce à ne rien changer, qui, au �l du temps, tendrait à
voir le béné�ce l'emporter sur le coût.

Propagation de maladies

La dynamique des contacts a de profondes conséquences pour les processus dy-
namiques faisant intervenir les contacts entre personnes. Ces processus peuvent,
par exemple, décrire la synchronisation d'opinions, les e�ets de mode, la di�u-
sion d'information ou la transmission de maladies contagieuses. C'est à ce dernier
type de processus dynamique que je me suis intéressée. La question que nous nous
sommes posée est de savoir si la dynamique des contacts pouvait modi�er les ré-
sultats des modèles épidémiologiques classiques qui font généralement l'hypothèse
d'une structure de contact �xe dans le temps. Plus généralement, on s'intéresse à
la coévolution d'un processus dynamique et d'un réseau dynamique, sachant que le
processus a pour support ce réseau. On peut comprendre que si les temps carac-
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téristiques d'évolution sont bien di�érents, l'approximation d'un support constant
dans le temps peut être pertinente. En revanche, plus les échelles de temps sont
proches, moins l'approximation est satisfaisante.

Nous avons étudié les e�ets de la prise en compte de di�érents niveaux
d'informations sur la structure des contacts pour l'évolution d'un modèle de conta-
gion, dit SEIR. Dans un tel modèle, très courant en épidémiologie, chaque individu
est soit sain (S), soit dans un état latent (E), c'est-à-dire qu'il a été contaminé mais
qu'il n'est pas encore infectieux, soit infectieux (I) et dans ce cas, il peut infecter un
individu sain avec lequel il est en contact, soit guéri (R). Les paramètres de tran-
sition entre des di�érents états permettent de caractériser le modèle. Nous avons
considéré dans notre cas que le passage d'un état latent à un état infectieux, la
contamination d'un individu sain par un infectieux avec lequel il est en contact et
la guérison sont décrits respectivement par des processus de Poisson de taux σ, β
et ν. Nous considérons deux scénarios de maladie, l'un très rapide (σ−1 = 1 jour,
β = 30.10−5s−1 et ν−1 = 2 jours) et un deuxième moins rapide (σ−1 = 2 jours,
β = 15.10−5s−1 et ν−1 = 4 jours), compatible avec une grippe très virulente.

À partir de données de contacts collectées dans une conférence scienti�que, nous
construisons trois modèles de structure des contacts, contenant di�érents niveaux
d'information sur la dynamique.

• Le premier modèle, contenant le moins d'information, est appelé HOM. Il
consiste en l'alternance de réseaux quotidiens non pondérés, dans lequel les
n÷uds, qui représentent des individus, sont connectés si au moins un contact
a été enregistré entre les personnes correspondantes pendant la journée en
question.

• Le second modèle, appelé HET contient l'information de HOM et l'information
sur l'hétérogénéité des durées cumulées d'interaction. En e�et, HET consiste
en un réseau pondéré, similaire au réseau précédant, à l'exception faite qu'à
chaque lien correspond un poids représentant la durée cumulée des interactions
de la journée en question. Dans ce modèle, le taux de contamination β est
proportionnel à cette durée cumulée.

• Le troisième modèle et le plus riche, est appelé DYN. Il s'agit de la succes-
sion temporelle des contacts enregistrés avec une résolution de 20 secondes.
L'information sur l'hétérogénéité des contacts est bien entendue contenue dans
un tel modèle, mais ce dernier contient en surcroît la temporalité des interac-
tions, de sorte que si A et B ont un contact puis B et C, alors une maladie ne
peut pas être transmise de C à A alors que c'était le cas dans le modèle HET.

Malheureusement, les données sur les contacts de la conférence scienti�que sont éten-
dues sur une durée de deux jours seulement. Étant donnée la gamme de paramètres
épidémiologiques considérée, deux jours de simulation est une durée bien trop courte
pour voir l'évolution de la contagion dans son ensemble. Pour pallier à cette limite,
nous avons étudié trois méthodes d'extension temporelle des données de contact.
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La première et la plus simple consiste à simplement répéter le �lm des interactions
tous les deux jours sur plus de 100 jours. Une seconde méthode, à l'inverse, consiste
à échanger de façon complètement aléatoire l'identité des n÷uds tous les deux jours
et à rejouer la même séquence d'interactions. Une troisième méthode se situe à
l'intermédiaire entre la réplication pure et simple et le mélange complètement aléa-
toire. Il est important de noter que ces méthodes de réplications changent certes
les niveaux et la vitesse de contagion, mais ne modi�ent pas les di�érences assez
générales que l'on observe entre les trois modèles de contact.

Un raisonnement sur le nombre moyen d'individus infectés au bout d'une journée
permet d'établir des équivalences entre les paramètres σ, β et ν pour les di�érents
modèles de contacts. Cette équivalence est nécessaire pour pouvoir faire des com-
paraisons entre les modèles de contacts à modèle épidémiologique donné. Le tout est
simulé numériquement, en sélectionnant de manière complètement aléatoire un seul
individu infectieux que l'on appelle la graine et qui est à l'origine de la contagion
pour chaque tour de simulation. On s'arrête uniquement lorsque plus aucun indi-
vidu n'est susceptible d'être contaminé, c'est-à-dire lorsque le nombre d'infectieux
et de latents est nul. Les comparaisons sont faites pour 5000 simulations.

La première quantité que l'on considère est le taux de reproduction de base.
Cette quantité est dé�nie comme le nombre moyen d'individus infectés par la graine.
Il s'agit d'une quantité très souvent regardée en épidémiologie puisque dans les
modèles épidémiologiques les plus simples, elle dé�nit un seuil entre une maladie
qui tendrait à s'éteindre très rapidement et une maladie susceptible de contaminer
une fraction importante de la population. Dans notre cas, la distribution du nom-
bre moyen d'individus infectés est exponentielle, avec une valeur moyenne pour le
modèle HOM sensiblement supérieure à celles obtenues pour HET et DYN, très
semblables entre elles. La taille �nale de l'épidémie, dé�nie comme le nombre total
d'individus qui ont été infectés, est quant à elle bimodale. En e�et, une proportion
non négligeable de simulations donne peu de cas, généralement parce que la con-
tagion s'est éteinte après peu de transmissions. En revanche, lorsque la contagion
atteint une proportion considérable de la population, le modèle HOM donne des
valeurs à nouveau sensiblement supérieures à celles obtenues pour HET et DYN
qui restent très semblables. Ces deux résultats suggèrent que l'hétérogénéité des
durées cumulées de contacts donne une moindre transmission, suggérant ainsi que
le partage non équitable du temps passé avec les autres diminuerait les canaux de
transmission. En revanche, la temporalité des contacts ne semble pas avoir d'e�et
à cette échelle.

Malgré ces di�érences de niveau, l'évolution temporelle est bien similaire entre
les trois modèles. Le pic épidémique, c'est-à-dire l'instant où le nombre d'infectieux
atteint son maximum, est tout à fait comparable dans les trois cas. Ceci suggère que
l'estimation de ce pic se fait assez bien avec un modèle très pauvre en information
sur l'hétérogénéité des durées des contacts. Il est néanmoins nécessaire pour sa
construction de connaître de manière assez �able la durée moyennes des interactions
cumulées ainsi que leur structure dans la population.

Cette analyse a permis de mettre en évidence que si la temporalité des contacts
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Figure 4: Evolution temporelle du processus de propagation pour le scenario com-
patible avec une grippe. Le graphique de gauche donne la prévalence, c'est-à-dire le
nombre d'individus infectieux, et le graphique de droite donne le nombre d'individus
guéris. Seules les simulations dans lesquels plus de 10% de la population a été con-
taminée sont considérés. Les symboles donnent les valeurs médianes et les lignes
donnent les 5e et 95e percentiles du nombre d'infectieux et d'individus guéris.

n'est pas nécessaires à cette échelle, l'hétérogénéité des durées cumulées d'interaction
est nécessaire pour correctement estimer l'ampleur de la propagation épidémique.
En revanche, il est su�sant de savoir simplement de qui a été en contact avec qui et
de connaître la durée moyenne des interactions pour correctement estimer l'instant
du pic épidémique. Dans cette mesure, nous apportons une contribution nouvelle
à la littérature puisque l'hétérogénéité des durées entre deux contacts avait certes
été étudiée mais ce n'était pas le cas des hétérogénéités des durées de contacts. Les
résultats que nous obtenons restent à nuancer. L'échelle de temps du processus
de contagion que nous avons considérée reste réduite. Il est possible par exemple
que des di�érences entre la dynamique de HET et DYN apparaissent lorsque l'on
considère une dynamique bien plus rapide (et alors peu réaliste pour une propa-
gation de maladie). Dans le futur, il serait intéressant de considérer des modèles
théoriques de contact, comme celui que j'ai présenté dans la section précédente.
Ainsi, l'existence de paramètres permettant de contrôler �nement la structure des
contacts permettrait d'analyser l'e�et des hétérogénéités des durées de contacts et
entre contacts sur la propagation de maladie, et de voir si l'un e�et domine l'autre
ou non. Plus généralement, ce type d'étude devient actuellement important puisque
l'accès à des données de plus en plus détaillées sur les contacts dans une population
devient possible. Il est dorénavant nécessaire de pouvoir estimer l'apport d'un e�ort
supplémentaire, puisque un niveau de détail extrême n'est pas forcément nécessaire
pour les estimations que l'on souhaite obtenir ou pour établir des stratégies de santé
publiques sophistiquées, telles que la fermeture de classe ou les vaccinations ciblées.
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Conclusion

Cette thèse s'articule autour de l'étude de la dynamique de proximité humaine,
mesurée par des badges radio. Cette méthode de collecte non-supervisée permet
d'obtenir de manière très détaillée des informations sur les interactions humaines.
Mes travaux présentent la caractérisation statistique de la dynamique de proximité
physique, mise en relation avec le contexte et les autres métadonnées disponibles,
telles que l'âge, le sexe des individus, ou bien la structure de leurs réseaux sociaux
virtuels. On retiendra que si la structure des contacts di�ère considérablement selon
le contexte, les distributions empiriques des durées des interactions et entre inter-
actions sont très similaires. A�n d'interpréter cette similarité, j'ai travaillé sur un
modèle individu-centré qui propose des règles d'interactions microscopiques simples
susceptibles de donner lieu à cette structure macroscopique complexe des temps
d'interaction. En�n, la caractérisation de la dynamique des contacts entre individus
constitue une étape cruciale pour comprendre les mécanismes de propagation de
maladies telles que la grippe dans une population. Les données de proximité hu-
maine ont permis d'étudier la quantité d'informations nécessaires sur la dynamique
des contacts pour la construction de modèles épidémiologiques de contagion.

Deux types de prolongement peuvent être envisagés suite à ces travaux. D'une
part, les travaux sur la propagation de maladies demandent à être poursuivis, avec
la quanti�cation pure et simple des contacts entre les di�érentes strates d'une pop-
ulation, et l'étude des di�érentes approximations de modélisation et l'impact de
degrés de détails supplémentaires sur la pertinence des estimations. D'autre part,
en sciences sociales, les travaux de comparaison entre la proximité physique et les
relations sociales pourraient être étendus à d'autres mécanismes, d'autres sources
d'homophilie, mais surtout, cette méthodologie pourrait faciliter l'étude de la dy-
namique de changement des relations, mise en liens avec les comportements des
individus. Plus précisément, l'étude quantitative de la coévolution des réseaux soci-
aux et des comportements des individus est un domaine encore peu étudié et qui est
confronté à la di�culté majeure de collecte de données. Quitte à perdre éventuelle-
ment en qualité de l'indicateur de proximité sociale, ce qui reste à démontrer, la
mesure non supervisée de relations de proximité physique, couplées à d'autres infor-
mations, pourrait être une piste intéressante pour pallier la di�culté.
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1.1 A biased overview of the network science landscape

Network is a vast research object studied in many �elds, ranging from the so called
exact sciences, such as mathematics, statistics and physics, to social sciences, with
organizational theory, economics and sociology. The common feature among sci-
entists of these very di�erent �elds is that network science provides them with a
framework to describe relationships between objects. The latter can be as varied as
cells, human beings, computers or cities, that can be linked to each other with very
di�erent relationships. Behind the variety of these objects which would naturally re-
quire the use of di�erent methodologies, the description of systems in network terms
relies on the simple assumption � or simpli�cation� that all these objects are similar
enough to be described as one or few types of nodes, equivalent to each other, and
that the relationships between all of them can be summarized to one or few types of
relationships. This may sound rather vague, but in a nutshell, a network description
is a way to look at a system, that gives the priority to the relationships between
objects rather than to their individual variety or to their intrinsic speci�city.

As this network science is too vast to be described adequately in all the speci-
�cities of each �eld, I can not do better than giving my personal overview of this
research area, which will only cover a partial set of works, and discard many very
interesting results I have not found a suitable place to recount these. The bias of
this section comes from my background in physics, which made me enter network
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science via the door of complex systems. Along the course of my doctorate, I have
had the opportunity to learn more about economics, statistics and sociology and
the works done in these domains on networks, but even so, my thesis lies within the
framework of complex systems, which will be discussed in this chapter.

1.1.1 The complex network paradigm

Network science has been initiated in two disciplines: graph theory in mathematics
and social networks in sociology. Graph theory dates back to the seminal problem of
Leonhard Euler presented in 1735 and published in 1741, called the Seven Bridges of
Königsberg problem [Euler 1741]. This problem consisted in �nding a walk through
the city of Königsberg, whose simpli�ed map is given in �gure 1.1 (left), that would
cross each bridge once and only once. Given the con�guration of the bridges, Euler
showed that there was no solution. The second father of graph theory is Paul Erdös,
who was the �rst with Alfréd Rényi to introduce probabilistic models and whose
work started the branch of random graph theory [Erd®s 1959]. In sociology, net-
work concepts were �rst introduced by Jacob Moreno who introduced sociograms to
describe relationships among children [Moreno 1953]. These sociograms are draw-
ings of relationships with people represented as circles and relationships as an edges
between two circles (see right panel of �gure 1.1).

Figure 1.1: Left: the Seven Bridges of Königsberg problem from Euler (�gure
from [Euler 1741]). Right: an acquaintance sociogram of Moreno (�gure from
[Moreno 1953]).

At the end of the 90's (see a timeline on complex system modeling in �gure 1.2),
two fundamental articles started a new literature [Watts 1998, Barabási 1999], that
grew very rapidly to the point that in a couple of years, articles from this branch
became more numerous that those of the traditional branches. This new literature
�nds its roots in complex systems modeling and for its physics components, in sta-
tistical physics. The paradigm of complexity is to study how relationships between
parts of a system can give rise to the collective emerging behaviors. These emergent
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phenomenon are those that cannot be explained with the separate analysis of each
components, which is generally summed up as a system which is not the sum of its
parts. In statistical physics, this �nds an echo in the study of critical phenomena,
which describes the power-law divergence of some quantities of a system under very
speci�c conditions. These critical phenomena can only be understood when tak-
ing interactions between components into account. It has been found that many
systems share a similar behavior near the critical point, i.e., the set of parameter
values that determine the very speci�c conditions in which some quantities of the
system diverge. In particular, the set of critical exponents of di�erent chemical
compounds at various phase transitions (for example the ferromagnetic phase tran-
sition or the liquid gas critical point) may be the same. This observation de�nes
so called universality classes. Theoretical models and methods that ignore all of
the chemical nature of compounds but that take the physical interactions between
the parts into account, are used to describe these mechanisms and can even predict
the values of the critical exponents in some cases. This paradigm largely explains
why physicists such as Duncan Watts and Albert-László Barabási were intrigued by
some apparently generic properties of networks. For example, the model introduced
by Barabási and Albert [Barabási 1999] suggests a possible explanation for the fre-
quent presence of scale-free distribution of degrees in various kinds of networks,
originally in the World Wide Web network and in scienti�c citation network. Later
on, many other networks were found to share this scale-free behavior, for example
email networks [Ebel 2002] and even sexual contacts [Liljeros 2001]. Similarly, the
Watts and Strogatz model aimed at giving an explanation of how large networks
can be small-worlds.

The second explanation of this recent branch of literature on complex networks
is due to the development of computing tools and of the increasing use of huge
databases [Lazer 2009, Watts 2007]. Some are specialized databases, such as gene
banks, DNA banks, �nancial trades, and are not life intrusive, but at present, most
of our daily acts are systematically recorded in huge databases too. Our journeys
are registered via our RFID transport badges, our email exchanges via our email
services, our phone calls via our telecommunication subsidiaries, our credit card pur-
chases via our banks, our commercial transactions via the client cards we are kindly
o�ered � or not �, our contacts via Facebook. These multiplication of datasets
allows present-day researchers to do quantitative analysis on millions of data, on
several temporal and spatial scales and resolutions, which was not even conceivable
50 years ago. Likewise, it changes the scienti�c approach because it often happens
that researchers obtain a dataset before even precisely constructing scienti�c ques-
tions. The problematics become gradually more clear when playing with a dataset,
i.e., when computing various quantities without having a prede�ned methodology.

This literature on complex networks that focuses on common non-trivial
properties of diverse networks is reviewed thoroughly in [Newman 2003] and
[Boccaletti 2006].
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Figure 1.2: Chronology of the main domains of complex systems (�gure from Wikipedia).
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1.1.2 Dynamical processes on complex networks

Not long after the �eld of complex networks has been initiated by the Barabási-
Albert's and Watts and Strogatz's articles, the research line went on dynamical
processes evolving on networks, thus bridging the gap between complex networks and
another domain of complex system modeling dealing with dynamical processes. I will
brie�y mention some of the main dynamical processes that take place on networks,
but the interested reader will �nd much more in [Barrat 2008, Dorogovtsev 2008].

One of the favorite models of statistical physicists is the Ising model, in which
particles have a spin that can take only two values, +1 or −1. Interaction exists
between particles, and an external magnetic �eld can be introduced and in�uence
spins to be in a speci�c direction. This model has been considered in the case in
which the spins are located on the nodes of a network and analytically solved in
equilibrium in some cases. In the case of a scale-free network, it has been shown
that the phase transition, that is characteristic of the Ising model (except in the one-
dimensional case) and that divides the phase space into an ordered and a disordered
behavior, depends on the exponent of the degree distribution [Bianconi 2002]. A
slightly modi�ed version of this model is also used to represent social in�uence,
and then goes by the name of the voter model. Other ingredients may be added
to improve the phenomenology of social in�uence, for example when one considers
that only individuals having opinions that are not too opposite can in�uence each
other [Holme 2006, Vazquez 2008, Nardini 2008, Kozma 2008]. Similar models that
de�ne ordered and disordered phases have been studied. The synchronization of
linearly coupled oscillators is, for instance, shown to be more e�ective in small
world-networks than in standard deterministic graphs and purely random graphs
[Barahona 2002].

This dependence of phase transition on topology is not speci�c of the Ising
model. For example, the resilience and robustness of networks has been shown to
depend on the topology of the network as well [Albert 2000]. This has considerable
consequences for technological networks, such as the Internet, which have heavy-
tailed degree distributions and thus are very sensitive to targeted attacks. Analogous
results are obtained for simple epidemic models. The epidemic threshold of these
models, that separates the phase space in a phase in which a disease spreading
vanishes after few transmissions, and another phase in which the disease reaches
a sizable amount of persons, vanishes in case of highly heterogeneous scale-free
networks [Pastor-Satorras 2001]. Another example of model is the random walk on
networks. In such a discrete system, a random walker hops from node to node if
those are connected by an edge. In the case of an uncorrelated network (where there
is no correlation between a node degree and its neighbors' degrees) and a random
walker that selects any neighbor with the same probability, the probability that this
walker lies, at a given time (when there is no dependence on the starting node),
on a node of degree k is proportional to the degree [Noh 2004]. This feature has
huge consequences for web search algorithms, such as PageRank, which much rely
on such a random walk model.
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The main interest of these dynamic process models is to investigate the e�ect of
stylized features of networks on the general evolution of such processes. It generally
seems that the topology on the network a�ects critical phenomenon, by shifting
the phase transition, or making it disappear. Most results have been obtained on
static networks, and it is likely that the network dynamics could a�ect these critical
phenomenon, as we will see in chapter 5.

1.1.3 Network dynamics

Until fairly recently, networks were mostly considered as static objects with a �xed
topology, but most of the time, the system they represent evolves, with the entrance
and exit of entities and transformation of relationships between these entities. For
example in the case of the airport transportation network, new airports are built,
others are closed, tra�c connections change with time, with seasons. It also happens
that a set of airports becomes inactive in the sense that their tra�c is interrupted,
as it was the case because of the Eyjafjallajökull eruption in Spring 2010. Because
of these changes in the system, one would like to allow a network to evolve, with the
creation and disappearance of links and nodes. Such networks are called dynamic
networks, evolving networks or temporal networks or graphs.

Since the last few years, a growing body of literature focuses on the statistical
analysis and phenomenology of dynamic networks. A �rst category would be
related to digital and communication technologies, such as Facebook [Golder 2007],
the Messenger instant-messaging service [Leskovec 2008] or e-mail exchanges
[Kossinets 2006, Malmgren 2009]. As said above, the systematic record of digital
traces gives researchers massive datasets to analyze. Similarly, phone records
[Onnela 2007], mobility traces such as airport �uxes [Gautreau 2009] and individual
human travels recorded by mobile phone companies [González 2008] are now ana-
lyzed as dynamic networks. More speci�cally, these works focus on temporal activity
patterns, on the relation of one node's temporal rhythm and the one of its neighbors,
on temporal characteristics of interactions and on the evolution of network-level
properties, may they be scalars or distributions. Some formalization has been pro-
posed in a couple of papers, de�ning quantities speci�c to dynamics networks, such
as the temporal proximity or the reachability, in the case of directed and undirected
networks [Kossinets 2008, Kostakos 2009, Tang 2010, Holme 2012, Pan 2011].
This dynamic perspective makes us understand that many networks that were
previously treated as static are in fact the temporal aggregation of temporal
sequences of interactions over a certain period of time. In the case of the phone
call networks, events are aggregated over typically one year, whilst it is also possi-
ble to consider a daily or weekly aggregated network that would evolve over one year.

In parallel to this empirical literature, di�erent theoretical models have been
developed. The nature of these models di�ers in the purposes they serve. A �rst
family of models, sometimes called minimalist models, are aimed at studying how
basic interaction rules may induce emerging dynamic patterns. This literature is a
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follow-up of complex system models. One example of these models would be the one
proposed in [Hill 2010] that suggests simple interaction rules to explain how a system
can have a stable power law degree distribution but no continuity in the degree
centrality of nodes over time. Another example is described in [Davidsen 2002] that
gives local mechanisms of acquaintance creation and deletion producing a network
with a small-world structure and triadic closure, characteristic of social networks.
The realism of these models is only contained in the plausibility of the pertinent
interaction mechanisms in order to reproduce empirical observations.

A second family of models is more related to the statistical core of literature.
Their objective is to test on empirical data whether some dynamic mechanisms are
statistically signi�cant and to quantify their relative magnitude, as panel regressions
do in the econometric literature. For example, is triadic closure likely to exist in an
empirical dynamic network? Is it more important among girls than among boys?
These models are theoretically designed to estimate empirical data. They include
the most plausible mechanisms, and the statistical estimation must display which
of those mechanisms are likely to exist. This family of models is older than the
previous one [Holland 1977] but experience a new revival (see [Goldenberg 2009] for
a review).

In these two categories of models, interaction rules are more or less based on
rational choices. For example, in [Gräser 2009], a model that belongs to the family
of minimalistic models relies on individual actions determined by choice-payo� and
expectations. In the second family of statistical models, the model developed in
[Snijders 2007] relies on individual preferences that a�ect the creation or deletion of
ties.

A small third category of model of dynamic networks aims at reproducing as
many realistic quantities as possible, such as contact / inter contact durations,
degree distribution, subgraph structures, etc. To the best of my knowledge, I only
know of one model in this category, described in [Scherrer 2008]. The main use
of this model would be to simulate realistic dynamic networks, as the statistical
models are also able to do. It would then be possible to examine, on a wide range
of dynamic networks, the evolution of dynamic processes, and to alleviate the lack
of empirical data.

A fourth category of models consists in randomization models. They consist of
reference null models to compare empirical data with, in order to identify whether
a topological or temporal feature is over- or underrepresented. It is the dynamic
extension of con�guration models that are used in the case of static networks. The
realism of their psychological foundations is not a stake.

The interested reader will �nd in [Holme 2012] a recent review of the literature on
dynamic networks, going through real-world examples, de�nitions of measures, the-
oretical models and some examples of dynamical processes on dynamical networks.
A less recent book develops rational models within a game theoretic approach, which
are omitted in the review [Gross 2009].
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1.2 Mining human interactions

During my PhD, I worked on a speci�c human interaction, namely face-to-face
proximity. Various methodologies have been used to record human interactions. It
is possible to classify them into two main categories. First, I review the most used
pen-and-paper approaches: surveys and self-reported diaries. Second, I will shortly
describe the automatic ways of recording interaction proxies, based on a dedicated
technological design1. Third, the methodology that was used to create the datasets
I worked on during my thesis, will be presented. Last but not least, the pros and
the cons of this protocol with respect to more traditional approaches are discussed.

1.2.1 Before the technological era

The predominant and, likely, the oldest (dating back to Moreno seminal book
[Moreno 1953]) method to investigate interactions among persons relies on surveys
and questionnaires. Generally, it consists on one or more name generators followed
by name interpreters. Name generators are questions asking for a list of persons, such
as "Who would you ask for advice in case of a personal problem". It may be limited
in numbers (name up to X persons) or not. The name interpreters are questions to
add speci�c information on the named persons (age, gender) and/or on the nature
of the tie (duration of acquaintance, frequency of contacts), on the relationships be-
tween named persons (do they know each other...). Without considering direct costs
(to hire interviewers, recruit participants) this method is time-consuming. The time
to pass such a questionnaire ranges from a dozen of minutes to an hour, in case of
multiple name generators and name interpreters, to which we need to add the time
to �x appointments with the participants. This constraint is particularly important
in the case of longitudinal data and limits considerably the number of persons that
can be followed in time (see [Lubbers 2010] for recent questionnaire based longitudi-
nal analysis on the integration of 25 Argentinians in Spain). While this was mostly
a pen-and-paper approach, computers have been progressively introduced to facil-
itate the interviews (generally computer assisted personal interviewing, which still
requires the presence of interviewers). Progressively, softwares providing a visual
representation of networks are used, and increase both the participation ratio and
the quality of answers [Hogan 2007].

A second method consists in studying archives. The time-cost of this method
greatly depends on the fact that archives are digitalized or not. For example, we
can cite the remarkable work on the Medici social network based on thorough work
of historians on the Florence family [Padgett 1993]. Some �elds mostly rely on
archive analysis, such as the study of interlocking directorate (see [Mizruchi 1996]
for a review).

Third, direct observation of a small set of people provides an alternative way to
study interactions, in a complementary perspective, or when the set of persons can

1I do not include studies done on phone calls, mail and e-mail exchanges, that infer social

proximity by non-physical interactions.
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not be studied via surveys or archive, as it is the case for infants [La Freniere 1984,
Martin 2001].

A fourth technique that is similar to survey/questionnaires relies on self-reported
diaries. This technique, that is more common in epidemiology than in sociology, is
described in more details in a separated paragraph (see paragraph 5.1.4 in chapter 5).

While the survey and questionnaire based studies focus mostly on perceived
social ties, the three other methods analyze actual exchanges. Other di�erences
exist, especially concerning the issue of the limited recall of participants that is
characteristic of surveys and diaries. The interested reader will �nd more details on
these methods in [Wasserman 1994, Marsden 1990, Marsden 2011].

1.2.2 Using Bluetooth, WiFi and RFID devices

It has been a couple of years since, technological devices have been used in order
to measure on a unsupervised manner human proximity. These devices, worn by
individuals, are actively emitting and receiving data packets in a limited spatial
range. This data exchange is then considered as a proxy of human proximity. I
brie�y list the datasets I am aware of, with the technology they used. This list is
limited to direct device-to-device contact datasets. It excludes access-point based
datasets, such as WiFi logs [Henderson 2004, McNett 2005] and records of visible
GSM cell towers [Eagle 2006]. The fact that two devices send information to a
common antenna e�ectively means that these devices are in the same area, but
given the size of the area, it only corresponds to a physical copresence in the same
room/place. Table 1.1 summarizes the main characteristics of the datasets relying
on direct device-to-device interaction.

The �rst technology relies on the Bluetooth proprietary open signal exchange.
Some studies have used existing support that enable Bluetooth communication,
such as PDA or mobile phones, on which a dedicated software allows this spe-
ci�c use of Bluetooth [Eagle 2006]. Other studies use small wireless portable
radio devices, called iMotes, that are lighter than PDA and mobile phones
[Chaintreau 2007, Hui 2005, Yoneki 2008, Kostakos 2010, O'Neill 2006]. The tem-
poral resolution on interactions recorded by Bluetooth signals is generally over 2

minutes, except for the Cityware project where it said to reach 5s. The spatial res-
olution, although not informed systematically in articles, is around 10 meters which
should lead to an overestimation of interactions (discussion, physical contact).

A second technology used to record physical proximity relies on Radio-Frequency
IDenti�cation (RFID). Only dedicated sensors are used in studies [Salathé 2010,
Kazandjieva 2010, Friggeri 2011, Fraboulet 2007]. The time granularity is �ner than
with Bluetooth motes and varies between 5 seconds and 1 minute. The physical
range is also narrower, ranging between 2 and 3 meters. A main advantage of
these motes is that it allows one to work with frequencies and power such that the
radio signal is shielded by human bodies2. Researchers can then capture physical
proximity on a non-isotropic fashion, and if motes are carried on the chest for

2This advantage has obviously not been exploited in [Friggeri 2011].
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Data set Device Duration Granularity Distance Number of
(days) (seconds) (meters) participants

MIT [Eagle 2006] Phone (Bluetooth) 246 300 5-10 97
Toronto a PDA (Bluetooth) M.I. 120 M.I. 23
CAM [Leguay 2006] iMote (Bluetooth) 11 120 M.I. 36
Cambridge [Chaintreau 2007] iMote (Bluetooth) 3 120 M.I. 12
Hong-Kong [Chaintreau 2007] iMote (Bluetooth) 5 120 M.I. 37
INFC05 [Chaintreau 2007] iMote (Bluetooth) 4 120 M.I. 41
INFC06 [Yoneki 2008] iMote (Bluetooth) 3 120 M.I. 78
BATH [Kostakos 2010] PC (Bluetooth) 5.5 Continuous 10 743
D1 [Takaguchi 2011] Infrared 73 60 2 163
D2 [Takaguchi 2011] Infrared 120 60 2 211
Secondary school [Salathé 2010] Radio motes 1 60 3 788
HCWs [Friggeri 2011] Radio motes 98 5 M.I. 56

Table 1.1: Some characteristics on the main types of infrastructures to collect human proximity data at the individual scale (M.I.
stands for missing information).

aDataset described in [Chaintreau 2007] without any reference.
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example, to detect only face-to-face proximity. Other motes use higher frequencies,
i.e., infrared radiation and the characteristics of the datasets is very close to those
obtain with standard radio emission [Wakisaka 2009, Takaguchi 2011].

These infrastructures relying on direct device-to-device communication have
been deployed in conference [Chaintreau 2007, Yoneki 2008], in school and univer-
sity [Salathé 2010, Eagle 2006], in an hospital [Friggeri 2011], in a city [Leguay 2006,
Kostakos 2010], in o�ces [Takaguchi 2011]. The interest of studies varies from orga-
nizational theory, peer-to-peer device communication, epidemiology and sociology.
It is though rare that datasets are analyzed in di�erent perspectives, involving dif-
ferent scienti�c communities, which would further reduce the time and organization
these deployments require.

1.2.3 The SocioPatterns collaboration

In 2008, a collaboration called SocioPatterns started, between researchers and de-
velopers from the following institutions:

• the Institute for Scienti�c Interchange (ISI) in Turin, Italy,

• the Center of Theoretical Physics (CPT) in Marseilles, France,

• the Physics Laboratory of the École Normale Supérieure (ENS) in Lyon,
France,

• and Bitmanufaktur in Berlin, Germany.

They developed a protocol to detect physical face-to-face proximity with wearable
sensors, based on RFID technology.

The setup, described in details in [Cattuto 2010] is the following. Small RFID
badges are worn by individuals on their chest (see �gure 1.3 on the left). These
badges exchange low power radio packets at close range (about 1 to 1.5m), containing
information about the badge identity. They do so by alternating listening and
emitting phases, during which they either scan their environment for signal or emit
a radio signal. The power of the signal can be tuned in order to control the radius of
interaction. As the human body acts as a radio shield because of the water contained
in the tissues, no signal is exchanged between badges if individuals are not facing
each other. Higher power data packets are then emitted by the badges to RFID
antennas located in the premises (see �gure 1.3 on the right). Because the radio
range of this signal is much higher, only few RFID antennas are needed to cover
an entire building. For example, only 15 antennas were used for a deployment in a
primary school of 232 children and 10 teachers. These antennas are connected to a
Local Area Network and a central computer collects and stores the information sent
by antennas. This information consists in the identity of the badge who has sent the
information about its neighborhood, the identity of the badges in this neighborhood,
the identity of the antenna and the time at which the information has been sent
from the badge to the antenna.
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Figure 1.3: RFID badge and antenna used in the infrastructure developed in the
SocioPatterns collaboration.

By this protocol, an information stream is collected, which can be considered
as a good proxy for the evolving face-to-face proximities between the individuals
wearing the badges. The low-power radio range of 1 to 1.5 meters is small enough to
correspond to a close social interaction, and the strong anisotropy of the signal that is
shielded by human bodies allows to consider almost only face-to-face proximity. For
example in [Cattuto 2010], a measurement during a conference session is described.
While many attendees were present, very few interactions were collected because
people were facing the speaker. Finally, the rate at which badges alternate listening
and emitting phases is tuned in order to assess a face-to-face proximity between 2
individuals with a probability in excess of 99% over a time interval of 20 seconds.

From the signal recorded by the central computer, one can de�ne a dynamic

network by aggregating contact signal over a sliding time window of 20 seconds.
This duration is long enough to be almost certain that a contact occurs but still
short enough to observe a very rich dynamic over an hour. The construction of the
dynamic network, de�ned by its adjacency matrix (Aij) is the following. If badges
worn by individuals i and j have exchanged at least one data packet during the
time interval [t, t + ∆t] where ∆t = 20 seconds, then Aij(t) = 1 and i and j are
said to be in contact. Otherwise, if no radio packet has been exchanged, Aij(t) = 0.
A contact is de�ned between i and j as an uninterrupted sequence of 20-second
intervals during which Aij(t) = 1. More precisely, a contact between i and j exists
during the time interval [t1, t2] if





Aij(t1 −∆t) = 0

Aij(t) = 1 ∀t ∈ [t1, t1 +∆t, t1 + 2∆t, . . . , t2]

Aij(t2 +∆t) = 0

(1.1)

with possibly t1 = t2. This precise contact de�nition allows us to statistically
characterize the dynamics of encounters (see section 2).
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Figure 1.4: Temporal aggregation process by which the radio signal exchanged by
badges is transformed into a dynamic network. (Figure from [Cattuto 2010])

The setup has been deployed in di�erent types of social contexts such as an
hospital, a primary school, scienti�c conferences, a museum or in o�ces. Some
characteristics of these deployments are summarized in table 1.2. The participa-
tion ratio (i.e. the proportion of volunteers in the population) is in general very
good, except for the SFHH conference in Nice, for which only a third of the audi-
ence participated to the deployment because of the limited number of devices. This
overall good acceptance of wearing technological devices when the purpose of the
deployments is explained is encouraging for future work. A relatively lower partic-
ipation ratio could have been expected from experienced audience such as those of
web related conferences (HT and ESWC) because they are highly aware of the issue
of digital �ngerprint collects, or from less or non-experienced audience because of
technological fear (whether the radio signal would be harmful to health or not).

During some deployments, other informations may have been collected on par-
ticipants. For example, the simultaneous use of the Live-Social Semantic platform,
described in more details in section 3.3.1, allowed to cross face-to-face physical prox-
imity with online social networks such as Facebook, Flickr and LastFM. During the
school deployment in October 2009, gender, age and class information were provided
for a majority of children (more details can be found in section 3.2.2). Last but not
least, during the H-Farm deployment which took place in a startup incubator, many
information on the structure of the companies (organizational charts, activities) and
on each participant (e.g. age, gender, birth place, occupation) has been matched
with the badge IDs.

The infrastructure described above is relatively light-weight and once installed,
does not need much human supervision (there are still non-avoidable problems, such
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as lost badges, badge exchange, discharged batteries). RFID badges are relatively
cheaper than bluetooth devices, and require smaller batteries. The infrastructure
imposes deployments in relatively small premises, in which antennas must be plugged
in a way to cover the entire geographical space. A technological improvement that
consists in having embarked memories inside badges is examined. It would allow to
avoid the use of antennas and to deploy the infrastructure in open-space areas, but
technical synchronization di�culties must be overcome.

1.2.4 Self-reported data vs behavioral data

As with any data collection method, the use of such technologies has advantages and
limitations that can be examined with respect to the issues raised by [Marsden 1990]
in the context of data collected through questionnaires and surveys. First, while tra-
ditional methods are often limited in terms of population size or time of study (at
most few waves of few weeks), wearable sensors have already been used to monitor
populations of several hundreds of individuals over several weeks [Isella 2010]. This
method presents the important advantages of being unsupervised and of relying on
unobtrusive wearable badges [Cattuto 2010]. While the direct monitoring of behav-
iors requires the continuous presence of observers, and questionnaire-based studies
require the participation of subjects, once the wearable devices are distributed, no
additional human intervention is needed during the data collection. Thirdly, the de-
ployment of the sensing infrastructure is light-weight and does not require training
of the investigators. The non-supervised and automatic recording of interactions
avoids the di�culty of semantic ambiguity that systematically exists with surveys:
there is no unique de�nition of what a friend is, it depends on many factors such
as the culture or the age. For these reasons, re-test studies and comparisons need
to be carried out in order to validate trends or to determine which features are
context-speci�c. Finally, the problem of recall bias and cognitive limits is avoided.
This advantage is especially important for the study of weak ties [Granovetter 1973].
In [Smieszek 2011], it is shown that the probability that someone forgets a contact
lasting less than 5 min exceeds 50% and that this recall probability depends on the
total number of persons met during the considered time period.

It is important to note that data collection relying on wearable sensors gives ac-
cess, from a methodological point of view, to behavioral networks de�ned in terms of
spatial proximity, and not to social networks. The behavioral proxy we use enables
the precise de�nition of a tie in terms of location and body posture: a tie at time t

between a pair of individuals exists if they face each other in close proximity. While
in the case of friendship networks it is quite common that a declared friendship is
not reciprocated, the behavioral ties we use are by construction reciprocal3 and ac-
curately time-stamped. These networks, however, are not completely disconnected:

3A non reciprocate tie obtained with a multiple name generator may be considered as a di�erent

perception of the relationship between the individuals, which can be interesting per se, but it can

also result from an informant bias (see [Knoke 2008] for a chapter on informant bias) leading to

measurement errors.
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Date Venue Context Participants Duration

Number Ratio

Jun 2008 ISI, Torino, IT O�ces 25 ∼ 100% 3 weeks
Oct 2008 ISI, Torino, IT Workshop 51 ∼ 100% 3 days
Dec 2008 25C3 , Berlin, DE Conference 575 30-40% 4 days
Apr-Jun 2009 Science Gallery, Dublin, IE Museum 11537 ∼ 100% 3 months
Jun 2009 ESWC09, Crete, GR Conference 187 ∼ 60% 4 days
Jun 2009 SFHH, Nice, FR Conference 405 34% 2 days
Jul 2009 HT2009, Torino, IT Conference 120 75% 3 days
Oct 2009 Primary school, Lyon, FR School 251 96.4% 2 days
Nov 2009 Bambino Gesù, Rome, IT Hospital 188 96.4% 10 days
Jun 2010 ESWC10, Crete, GR Conference 175 ∼ 55% 4 days
Apr 2010 Practice Mapping, Gijon, ES Workshop 100 100% 10 days
Jun-Jul 2010 H-Farm, Treviso, IT O�ces 141 86% 6 weeks
Dec 2010 Hédouard Herriot Hospital, Lyon, FR Hospital 79 97.5% 5 days
Nov 2011 APS conference, Salt Lake City, US Conference 320 15% 5 days
Dec 2011 Post secondary classes, Marseilles, FR School 120 100%a 5 days

Table 1.2: Deployments of the SocioPatterns setup with the number of participants, the participation ratio, the type of context and
the duration.

aFull participation of three classes, which represent only a small part of the entire school.
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in particular, it has been shown that children interact four times more with members
of their friendship group (identi�ed with the social-cognitive map procedure) than
with non-members [Gest 2003]. In this respect, studies that allow to make accurate
comparisons between the various ways of capturing social interactions would be of
great interest.

1.3 Structure of the following chapters

This thesis hinges on the datasets obtained with the protocol developed in the So-
cioPatterns collaboration and described above. After a short summary of the main
network concepts I use throughout the thesis, the next chapter gives the quantita-
tive description of datasets obtained in a museum, in conferences and in a school.
The similarities and dissimilarities between these datasets are considered. A third
chapter presents two sociologically oriented studies, one concerns gender homophily
among children, the other looks at the relation between physical proximity and the
existence of virtual ties on online networking websites. The fourth chapter consists
in the presentation of a model that could explain the origin of temporal similarities
in contact/intercontact durations. In a �fth chapter, the consequences of contact
dynamics on simple epidemiological di�usion models is investigated.
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2.1 Some useful network concepts

In this section, I brie�y expose the de�nitions of the concepts I use in the rest of
the thesis. Those are particularly common in the �eld. For more de�nitions and
details on their speci�c uses, the reader can refer to the book written by Barrat,
Barthélemy and Vespignani [Barrat 2008].

An unweighted network (or graph) is usually noted G(V,E), where V is the
set of nodes (also called vertices) and E is the set of links (or edges) connecting
pairs of nodes. The two simplest quantities to describe a network are the number of
nodes |V | and the number of edges |E|. They provide information on the network
sparsity because the number of possible links is limited by the number of nodes. This
maximum bound is reached when all nodes are connected and |E| = |V |(|V | − 1)/2.
However, these quantities generally o�er a poor description of the network: two
networks with the same number of edges and vertices can be very di�erent.

Two important concepts borne by the degree and the clustering coe�cient pro-
vide local informations on the network topology. First, the degree ki of a node i
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corresponds to its number of adjacent edges, i.e., the number of directly connected
nodes (often called neighbors):

ki =
∑

j∈V

aij = |V(i)| (2.1)

where A = (aij) is the adjacency matrix (aij = 1 if an edge exists between i and
j, and aij = 0 otherwise) and V(i) is the set of neighbors of node i. The degree
distribution Pk is often used to characterize the network:

Pk(k) =

∑
i 1{ki = k}

|V |
for k ∈ N. (2.2)

For example, the degree distribution of a regular lattice is a Dirac mass function
because the number of neighbors is always the same1. In an Erd®s-Rényi net-
work [Erd®s 1959], i.e., a random network G(E, V ) in which each pair of nodes has
the same probability p to be connected, the degree distribution follows a binomial
distribution2. The degree distribution is so looked at that it is used to de�ne classes
of networks. For example, when node degrees are broadly distributed, the network
is often said to be scale-free.

Second, the clustering coe�cient ci of a node i characterizes the intercon-
nectedness of its neighbors. It is de�ned as the ratio between the e�ective number
of ties connecting i's neighbors and the possible number of such ties:

ci =

∑
{j1∈V(i), j2∈V(i)}

aj1j2

ki(ki − 1)/2
. (2.3)

It ranges from 0 if no tie exists between i's neighbors, to 1 if those are all connected
to each other.

Two point correlation functions can be de�ned to compare local structures. For
example, the cosine similarity quanti�es the similarity between the direct neigh-
borhoods of two nodes, i and j. It is de�ned as the normalized scalar product of
their adjacency vectors ai• = (ai1, ai2, . . . , ai|V |):

simi,j =
∑

k∈V

aikajk√
kikj

. (2.4)

If these two nodes share exactly the same set of neighbors, this quantity is equal
to 1. If they have no common neighbor, then it is equal to 0.

1This regular lattice has to be �nite with periodic boundary conditions. Otherwise, the Dirac

mass function is only a large size limit of the degree distribution.
2A network model is often confounded with its realizations in notations and in the terminology

I use. More precisely, a random network model is a collection {Pθ(G), G ∈ G : θ ∈ Θ} where G is an

ensemble of possible graphs, Pθ is a probability distribution on G, and θ is a vector of parameters,

ranging over possible values in Θ. More details on random graph models can be found in the sixth

chapter of [Kolaczyk 2009].
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The former quantities can be used for any kind of network, especially when the
presence or absence of relation between nodes is the sole information and yet it often
occurs that edges are characterized by an attribute, called weight (we note wij the
weight between nodes i and j). For example in a social network, the weight can
indicate the level of intimacy in the relationship. In that case, the weight is directly
imputed from questionnaires containing a rating scale (called Likert-type scale in
psychometry): from 0 to 4, how much do you know this person? (0 for I do not
know this person, and 4 for I know him/her very well. However it can describe
very di�erent things: in the cases that I have studied in my thesis, the weight was
generally de�ned as the cumulated duration of contacts between two persons over a
limited period of time. In the airport transportation network, it often corresponds
to the yearly number of passenger traveling from one airport to the other.

The weighted equivalent of the degree in a weighted network is the strength.
For node i, it is de�ned as the sum of adjacent edge weights

si =
∑

j∈V(i)

wij (2.5)

In an aggregated contact network de�ned as below in section 2.2.2, the strength gives
the cumulated duration of interactions of the individual corresponding to node i.

Analogously, the cosine similarity in a weighted network is the scalar product of
the normalized weight vectors wi• = (wi1, wi2, . . . , wi|V |) with the convention that
wij = 0 if no edge exists between i and j:

simi,j =
∑

k∈V

wikwjk√∑
l w

2
il

∑
l w

2
jl

. (2.6)

It is equal to 1 if nodes i and j have the same set of neighbors and with the same
weights.

The participation ratio Y2(i) of a node i, also called the Her�ndahl-Hirschman
index [Her�ndahl 1959, Hirschman 1964], characterizes the repartition of weights
among its neighbors. It is an index of the local heterogeneity of weights around a
node.

Y2(i) =
∑

j∈V(i)

(
wij

si

)2

(2.7)

The two limit situations are the following: if all adjacent edges have the same
weight, Y2(i) is equal to k−1

i and if one edge weight is much larger than the others,
Y2(i) tends to 1.

All these quantities are often compared between groups of nodes. A rather
natural way is to de�ne groups according to the degree, and to compute a node
quantity, such as the strength, over all nodes with the same degree. For instance,
we can de�ne the average strength of nodes of degree k as

〈s(k)〉 =

∑
i s(i)1{ki = k}∑

i 1{ki = k}
(2.8)
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If weights are uniformly distributed across nodes, the average strength grows
approximately linearly with the degree, i.e., 〈s(k)〉 ∼ k〈w〉. If stronger ties are more
frequently linked to highly connected nodes, a superlinear behavior is observed
[Barrat 2004].

The topology of a network is commonly described in terms of distances. The
geodesic distance between two nodes i and j, generally noted dist(i, j), is de�ned
as the minimum number of intermediate edges that need to be traversed in order
to go from i to j on the network. It is equal to 1 if an edge exists between i and j,
to 2 if no edge exists between i and j but if at least one node k exists at distance
1 from both i and j, and so on. The list of edges between two connected nodes is
called a path. If no path exists between two nodes, the distance is in�nite. In that
case, these nodes are in two di�erent connected components (CC). A connected

component is the set of nodes that are at a �nite distance of each other. The size
(in terms of distance) of a connected component is generally characterized by its
diameter, which is the highest geodesic distance among all pairs of nodes.

The very popular six degrees of separation concept is related to these topological
notions. When the average distance in a network is very small compared with the
number of nodes, the network is said to be a small-world. In 1963, Stanley Milgram
experimented this idea in the United States and concluded that every pair of persons
in the US is, on average, a few intermediate apart [Milgram 1967, Travers 1969]. His
experiment consisted in asking a randomly selected set of individuals to transmit a
document to a target person in Massachusetts, whom they did not necessary knew.
To do so, they were given some information about the target person in addition to
its name, and they had to mail the document to a �rst-name acquaintance in the
purpose that the document would arrive to the target person. Given the experiment
design, the conclusions are to be taken carefully. First, the experiment measures
the size of a social search chain rather than the smallest social distance between
two persons, because people have only an ego-centered view of the social network
and they are not aware of the shortest social paths, especially when its real size
in larger than 3. Second, the attrition, which is known to be rather high (only 64

out of 296 chains arrived at destination in the original Milgram's experiment), may
increase with the path length and lead to an underestimation of the real social search
distance. Nevertheless, a recent global-scale experiment with emails instead of mails
tends to con�rm the numbers given by Milgram when the attrition is taken into
account (still with some hypothesis) [Dodds 2003], and the measure of the average
distance in large social networks gives a similar order of magnitude [Leskovec 2008].

Little has been done concerning dynamic network measures. Generally the ap-
proach is to de�ne a time window over which an aggregated network is constructed.
One is generally interested in the time evolution of the quantities de�ned above.
Other quantities such as the temporal distance de�ned in [Pan 2011] are speci�c of
dynamic networks (see [Holme 2012] for a review).



2.2. Interactions in di�erent environments: museum and conferences21

2.2 Interactions in di�erent environments: museum and

conferences

The protocol developed in the SocioPatterns collaboration and described in para-
graph 1.2.3 has been deployed in various environments (see table 1.2). In this
section, we focus on the deployments at the Science Gallery in Dublin (http:
//www.sciencegallery.com/infectious) (referred hereafter as SG), at the HT09
conference in Turin (http://www.ht2009.org/) and at the ESWC09 conference in
Heraklion (http://www.eswc2009.org/). The two di�erent types of venues (mu-
seum and conferences) are compared in order to outline di�erences and similarities
in the interaction patterns, and the possible universality of these results will be
discussed.

These venues were chosen for their very di�erence of nature and characteris-
tics. First they involved vastly di�erent numbers of individuals and stretched along
di�erent time scales. The SG venue lasted for about three months and recorded
the interactions of more than 14, 000 visitors (more than 230, 000 face-to-face con-
tacts recorded), whereas the HT09 took place over the course of three days and
involved about 100 conference participants (about 10, 000 contacts) and ESWC09
involved 175 voluntary participants over the same time period (about 15, 000 con-
tacts). Behaviors are also very di�erent: in a museum, visitors typically spend a
limited amount of time on site, well below the maximum duration permitted by
the museum opening hours, they are not likely to return, and they follow a rather
pre-de�ned path, touching di�erent locations that host the exhibits. In a conference
setting, on the other hand, most attendees stay on-site for the entire duration of the
conference (a few days), and move at will between di�erent areas such as conference
room, areas for co�ee breaks and so on.

The present section describes work done in collaboration with Lorenzo Isella,
Ciro Cattuto and Wouter Van den Broeck of the ISI Foundation, my advisor Alain
Barrat and Jean-François Pinton from the ENS Lyon. Some parts of this work have
been published in [Isella 2010] and in [Zhao 2011].

2.2.1 Dynamical burstiness

A very robust observation on contact dynamics measured by wearable sensors
concerns their temporal heterogeneities. In this section, results are presented for
ESWC09 only, but the same behavior was observed in all other datasets.

Contact durations The �rst heterogeneity is given by contact durations. Those
are de�ned as the time interval elapsed between the beginning and the end of a
continuous sequence of radio packet exchange, at the 20 second temporal resolu-
tion. The duration is then a multiple of 20 seconds, and the minimal value is 20

seconds. These contact durations are broadly distributed. Figure 2.1 (left) shows
the distribution of contact durations measured at the ESWC09 conference. We use
a partially log-binned representation that is very common way to represent distri-

http://www.sciencegallery.com/infectious
http://www.sciencegallery.com/infectious
http://www.ht2009.org/
http://www.eswc2009.org/
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butions over several orders of magnitudes (the interested reader can �nd technical
details in the appendix of [Pastor-Satorras 2004]). This distribution is heavy-tailed,
spanning over 2 orders of magnitude on the x-axis but almost 6 orders of magnitude
on the y-axis. It means that even if a contact lasts on average 46s, this average
quantity does not summarize adequately the distribution because many other con-
tacts may last several times longer. Neither the average nor any other time scale
(like the standard deviation) emerge from the distribution because of its shape: it
is said to have no characteristic scale.

Relay time intervals In [Miritello 2011], relay time intervals are de�ned for in-
stantaneous interactions (they study mobile phone calls and do not consider their
durations). A relay time interval is de�ned as the time interval between the start
of two consecutive contacts of a given individual A with two distinct persons B and
C. If A starts a contact with B at time tAB and starts a successive contact with C

at time tAC , then the relay time is τ = tAC − tAB, independently of the fact that
the �rst contact with B has ended or not. This quantity is relevant for di�usion
processes such as information di�usion or infectious disease spreading because it
constrains the temporal evolution. At the ESWC09 conference (see right panel of
�gure 2.1) as in other environments (not shown), relay time intervals are broadly
distributed. A peak at 12 hours gives a characteristic time scale that corresponds
to the time interval between the end of one conference day and the beginning of
the sessions on the consecutive day. As the setup does not allow to register inter-
actions occurring outside of the conference premise, each participant contributes to
this peak once if s/he stays two days at the conference, and twice if s/he stays three
days.

Group durations Unlike phone calls which generally happen between two per-
sons, more persons may interact at the same time. We de�ne the duration of a
group of of size p + 1 (p = 0 for isolated individuals, p = 1 for a pair . . . ) as the
time interval elapsed between the time a group of this size is formed and the time
a person leaves or joins it. Figure 2.2 shows the distribution of group durations.
Again, broad distributions are observed. The slopes of the distributions plotted
with a logarithmic scale increase with p, meaning that larger groups have a shorter
average lifetime.

2.2.2 Network static characteristics

We face a dynamic system of interacting individuals, with generally an entrance
and exit of persons. Such a system can be considered as a dynamic network, in
which individuals are represented by nodes, and an edge connects two nodes at a
given time if the corresponding persons are in contact. The network is said to be
dynamic, because edges appear and disappear with time, and, because all individuals
are not necessarily present during the entire deployment, nodes enter and leave the
network over time. At the temporal resolution scale of 20 seconds, the network
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Figure 2.1: Distribution of contact durations (a) and of relay times (b) at ESWC09.
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consists mostly in isolated nodes and dyads (pairs of connected nodes), occasionally
of larger groups of people. Unlike for static networks, few typical observables are
commonly de�ned for this kind of system. A solution is to aggregate interactions
over a time window to construct a weighted network and use usual metrics. Weights
are generally de�ned as the cumulated duration of contacts between two persons
over the time window, but other quantities could be used, such as the number of
distinct contacts.

In this section, we focus on the analysis of daily aggregated networks. The choice
of daily time window is rather natural in our settings. This time scale is common for
constructing networks of interacting people based on declarative data. For example,
each participant would declare who s/he has encountered during the course of the
day. Longer aggregation periods such as weeks or months would be interesting to
investigate the stationarity of the collected data. Shorter aggregation times of the
order of a few minutes are also useful, for instance, to distinguish the daily rhythm
in various environments, such as the succession of breaks and lunch during a school
day.

Connected components and diameter Figure 2.3 displays the aggregated con-
tact networks for June 30th at the HT09 conference (top left), and for three rep-
resentative days for the museum deployment. Despite the large variation in the
number of daily museum visitors, ranging from about 60 to 400, the chosen days
illustrate the topology of the museum aggregated networks, in particular the pres-
ence of either a single or two large connected components in the network. Days
with smaller numbers of visitors can also give rise to aggregated networks made of
a larger number of small isolated clusters. As shown in �gure 2.4, depending on
the number of visitors, the number of connected components can in fact vary sub-
stantially. For a large number of visitors, typically only one connected component
is observed. For a low number of visitors, on the other hand, many clusters are
formed. In the case of conferences, only one connected component is observed. This
has to be related to the fact that the main purpose of conferences is the meeting of
scientists. The presence of several connected components would be rather worrying
otherwise. Because of the behavioral di�erences between a museum visitor and a
conference attendant, the topological di�erence between the aggregated networks is
outlined by the network diameters (highlighted in all the plots of �gure 2.3), which
is considerably larger for SG than for HT09 aggregated networks. This is mainly
due to the fact that visitors stay in the museum only for a rather small duration and
two visitors interact with each other at least if they are in the museum at the same
time. The correlation between the diameter and the time of the visit is analyzed
below in section 2.2.3.

Degree distribution An extensively reported result in the literature of complex
networks concerns the degree distribution. For several social networks, for example
for sexual networks in [Liljeros 2001], for scienti�c collaboration in [Newman 2001]
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Figure 2.3: Daily aggregated networks in the HT09 and museum deployments.
Nodes represent individuals and edges are drawn between nodes if at least one
contact event was detected during the aggregation interval. Clockwise from top:
aggregated network for one day of the HT09 conference, and for three representative
days at the museum deployment. In each case, the network diameter is highlighted.
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and for phone calls in [Onnela 2007] to name a few, the degree distribution is found
to be heavy-tailed, meaning that some people have a far larger number of neighbors
than the average. This feature was found in networks that are very di�erent from
each other and Barabási and Albert proposed a simple model that gives a generic
mechanism that would explain such degree distributions [Barabási 1999]. In the
daily aggregated contact networks, this feature is not observed. The degree distri-
bution, given by �gure 2.5 for the ESWC09 conference (left), is narrowly distributed.
Compared to the social networks given as examples above which are de�ned over
a large period of time (more than a year), the contact networks we study are de-
�ned on a much smaller timescale and on a small population size. If we change the
aggregation window from half a day to the entire conference duration (three days),
the average degree increases and higher degree values are reached (see �gure 2.5,
left panel) but the time scale is still too small to exhibit a heavy tailed behavior.
It is possible that if contacts were recorded over a long time period such as a year
and on a large population (at least 1000 persons) the degree distribution of the
corresponding yearly aggregated network would be heavy tailed.

Weight distribution It is not possible to identify broad distributions for degrees
because there are too few participants in the deployments. In the case of ESWC09,
there are 175 nodes and degrees are integers between 1 and 174 by de�nition and
a rule of thumb is to consider at least 3 orders of magnitude over the x- or the y-
axis to identify broad distributions. In the case of distributions de�ned over edges,
the number of participants does not limit that much the identi�cation of broad
distributions (there are at most N(N − 1)/2 edges in a network with N nodes,
which exceed 30.000 in the case of ESWC09 although the majority of these edges
do not exist). In all settings, the weight distribution of daily aggregated networks
is indeed broadly distributed (it can be objected that the span of the distribution
is still rather small, but the logbinning of data helps to deal with the trumpet like
outlook of the tail and logbinned data generally span over one to two additional
orders of magnitude). Furthermore, as illustrated by the right panel of �gure 2.5 for
ESWC09, the shape of the weight distribution is independent of the time window
over which the aggregated network is constructed. This result is reminiscent of the
distribution of contact durations, which are broadly distributed as well, but is not
a direct consequence of it. If contacts happened only between the same pairs of
persons, the weight distribution could have had almost no contribution on small
weights.

Strength and participation ratio When we average measures on nodes that
have the same degree (see section 2.1 for more details), the results o�er some insight
into correlations between nodes and edges. Here, the linear or slightly faster behav-
ior of the average strength 〈s(k)〉 of nodes of degree k versus k highlights a weak
correlation between weights and degree (see left panel of �gure 2.6 for ESWC09).
The more neighbors these nodes have, the longer the corresponding persons interact.
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The correlation does not obviously change with the span of the aggregation window.
Moreover, the positive correlation between the degree and the average participation
ratio (average over nodes of same degree) multiplied by the degree 〈kY2(k)〉 shows
that the heterogeneity of weights connecting a node to its neighbors (see right panel
of �gure 2.6 for ESWC09) increases with the degree. Again, this correlation is not
deeply modi�ed by a change of the aggregation window size.
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Figure 2.6: Average strength of nodes of degree k vs k (left), and average participa-
tion ratio of nodes of degree k multiplied by k vs k (right) for aggregated networks
on various time windows at ESWC09.

2.2.3 Distances network

Small-world nature of the aggregated networks The small-world nature �
or lack thereof � of these aggregated networks can be investigated statistically by
introducing a proper null model. To this end, we construct a randomized network
using the rewiring procedure described by [Maslov 2004]. The procedure consists in
taking random pairs of links (i − j) and (l −m) involving four distinct nodes, and
rewiring them as (i − m) and (j − l) (or as (i − l) and (j − m)) if none of these
links already exist. This procedure preserves the degree of each node and the de-
gree distribution P (k), while destroying the degree correlations between neighboring
nodes, as well as any other correlations linked to node properties. The procedure is
carried out so that initially distinct connected components do not get merged. Since
the rewiring procedure cannot be implemented for the rare connected components
with less than four nodes, these small connected components are removed from the
aggregated networks before rewiring. The rewired version of the aggregated HT09
network is very similar in terms of distances to the original version, whereas the null
model for the aggregated network of the SG data on July 14th is more compact than
the original network and exhibits a much shorter diameter. Similar considerations
hold for the other aggregated networks of the SG deployment.
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More quantitatively, we measure the mean number of nodes one can reach from a
randomly chosen node by making l steps on the network, a quantity hereafter called
M(l). For a network consisting of a single connected component, the de�nition of
M(l) implies that

M(1) = 〈k〉+ 1

M(∞) = N (2.9)

where 〈k〉 is the average node degree, N is the total number of nodes in the network
and M(∞) the saturation value of M on the network. The saturation value M(∞)

is reached when l is equal to the length of the network diameter, and may vary for
di�erent realizations of the random networks. For a network consisting of several
connected components, one has to take into account the probability Ni/N that the
chosen node belongs to a given connected component, whose node number is noted
Ni. As a consequence, the previous equations generalize to

M(1) =
1

N

∑

i

Ni (〈k〉i + 1)

M(∞) =
1

N

∑

i

N2
i (2.10)

where 〈k〉i is the average node degree on the i-th connected component. This ensures
that the quantity M(l)/M(∞), regardless of the number of connected components,
assumes the same value when l = 1, and saturates to unity for both the aggregated
and rewired network.

Figure 2.7 displays M(l)/M(∞) for the aggregated networks of HT09 and of the
museum deployment on July 14, as well as its value averaged on 100 randomized
networks (the average value of M(l) converges rapidly already when calculated on
a few tens of randomized networks). We notice the striking similarity between the
results for the HT09 original and randomized networks, where about 90% of the
individuals lie, in both cases, within two degrees of separation. In the museum case,
conversely, the same 90% is reached with six degrees of separation for the original
network, but with only three degrees of separation on the corresponding randomized
networks. The same calculation, performed on other days of the museum deploy-
ment, yields qualitatively similar results, always exposing a dramatic di�erence from
the null model.

Diameter As mentioned above, the elongated aspect of the aggregated networks
of visitor interactions (see �gure 2.3) is related to the existence of a limited visit
duration. Indeed museum visitors are unlikely to interact directly with other visitors
entering the venue more than one hour after them, thus preventing the aggregated
network from exhibiting small-world properties. Figure 2.8 reports the museum ag-
gregated networks for two di�erent days, where the network diameter is highlighted
and each node is colored according to the arrival time of the corresponding visitor
(this information is given by the �rst time an antenna detects a new RFID). This
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Figure 2.7: Average number of nodes reachable from a randomly chosen node by
making l steps on the network, M(l), divided by its saturation limit M(∞), for
daily aggregated networks (circles) and their randomized versions (triangles). For
the randomized case, data are averaged on 100 realizations. 90%-con�dence intervals
give intervals smaller than symbol size. Left: network aggregated on June 30th for
the HT09 case. Right: museum deployment, July 14th. The solid lines are only
guides for the eye.
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Figure 2.8: Aggregated networks for two di�erent days of the SG museum deploy-
ment. Nodes are colored according to the corresponding visitor's entry time slot.
The network diameter is highlighted in each case.
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�gure clearly shows that interactions among visitors entering the museum at dif-
ferent times are very limited. Besides, the network diameter clearly de�nes a path
connecting visitors that enter the venue at subsequent times, mirroring the longi-
tudinal dimension of the network. These �ndings show that aggregated network
topology and longitudinal/temporal properties are deeply interwoven.

2.2.4 Discussion

The analysis of time-resolved data on face-to-face interactions can be carried out
within a network perspective. The two types of considered data, i.e., a museum and
conferences, are chosen here for their important di�erence of nature: a conference is
a closed system in which scientists gather and interact in a repeated fashion, while
a museum is an open environment in which visitors enter and leave, as a �ux of
individuals through the premises.

As expected, the di�erence between these two types of venues has observable con-
sequences in the results of our analysis. The daily aggregated conference networks
are rather dense small worlds, while the museum networks have a larger diameter
and are possibly made of several connected components, mainly because individuals
enter the museum at di�erent times and remain visiting only for a limited duration.
The deep intricacy between the topology and the temporal properties may be im-
portant for di�usion processes evolving at a temporal scale close to the temporal
scale of contacts. This hypothesis motivates a chapter of this thesis on the study of
how spreading processes occur on dynamical networks (see chapter 5).

In spite of these unsurprising results, our analysis shows that the behavior of
individuals in conference and in a museum setting exhibits unexpected similarities.
The distribution of the contact event durations, of the time intervals between two
contacts, of the duration of groups, of the total time spent in face-to-face interac-
tion by two individuals are very similar. The broad nature of these distributions is
not intuitive as well. It has been observed in other contexts such as for emails, in-
stant messaging exchanges, phone calls [Eckmann 2004, Rybski 2009, Onnela 2007,
Leskovec 2008]) that inter-event times are broadly distributed. This is the case too
for face-to-face interactions measured by our setup, and furthermore we show that
interaction durations exhibit the same behavior. This �nding motivates a model
presented in chapter 4.

A possible critic to this analysis would be that the types of datasets given as
examples here (a museum and scienti�c conferences) are of limited scienti�c inter-
est. The environments in which contacts are recorded are very structured and do
not allow to learn much on the social drivers of interactions. The most important
result concerns the shape of duration distributions, because most of the other mea-
sures only quantify patterns that are rather expected in these speci�c contexts. In
my opinion, this is only partially true, because the main interest of this work is
to present methods to analyze time-resolved contact networks. Today, the setup
is limited to register contacts in prede�ned premises (because of antennas) but a
next infrastructure is under current development, in which the wearable sensors will
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record directly the information on contacts on a memory card. With this new gener-
ation of sensors, it will be possible to measure contacts among a de�ned set of people
in any environment. In that case, the methods we propose will give some results
that can not be known in advance. For example, can anyone characterize the topol-
ogy of a daily aggregated contact network in a residential building? on a university
campus? in a �rm? among family members? I dare believe that these questions will
interest a larger community of researchers, ranging from organizational scientists to
epidemiologists.

2.3 Interactions among individuals of de�ned categories:

the case of a primary school

The protocol developed in the SocioPatterns collaboration has been deployed in Fall
2009 in a primary school. From a scienti�c perspective, schools are more interesting
than conferences and museums and the analysis of this dataset highlights the rich
potential of the methodology. First, schools are of deep interest for epidemiologists.
Because of the numerous close contacts occurring among children and because chil-
dren are the �rst to be infected and transmit the disease to the households, schools
are crucial for the spreading of diseases (see [Longini 1982, Viboud 2004]). The
collaboration with epidemiologists of the Hospital Edouard Herriot has indeed mo-
tivated the study and they have largely contributed to the deployment and to the
analysis of results. Second, sociologists and developmental psychologists are inter-
ested too in the behavior of children at school. These scientists are mainly interested
in understanding how di�erent variables such as the gender, the socio-economic sta-
tus of their family, the ethno-racial markers shape the behavior and the structure
of social groups of children. One of these aspects related to gender homophily is
developed in chapter 3.

The present analysis focuses on the analysis of a time-resolved contact network in
which categories of nodes are explicitly de�ned: grade, class, children vs teachers,
boys vs girls. This has been done in di�erent contexts with di�erent categories.
For example in [Isella 2011], contacts are analyzed in a pediatric hospital. In their
situation, these categories correspond to di�erent roles (nurses, medical doctors,
family, children).

Most of the present section corresponds to a published work in PlosOne
[Stehlé 2011b]. This work was done in collaboration with Nicolas Voirin, Corinne
Régis, Bruno Lina and Philippe Vanhems from the University Claude Bernard of
Lyon (and from the Hospital Edouard Herriot), with Ciro Cattuto, Lorenzo Isella,
Marco Quaggiotto and Wouter Van den Broeck from the ISI Foundation in Turin,
with my advisor Alain Barrat and with Jean-François Pinton from the Ecole Nor-
male Supérieure in Lyon.
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2.3.1 School composition and category structure

The primary school is composed of 10 classes, divided in 5 grades, labeled 1A, 1B,. . . ,
5A, 5B (two classes for each grade). The age of children ranges between 6 and 12
years. The data were collected over two school days, from 8:30am to 5:15pm. Only
interactions taking place on the school grounds were recorded. It is worth noting
that slightly more than one child in three leaves the school premises for lunch, which
leads to a relative drop of activity during the lunch break. All of the 10 teachers
and 96% of the children (232 out of 241) took part in the data collection. The 9

remaining children were either missing on both days or received a badge that was
defective and had to be removed from the dataset.

Each individual is uniquely associated with one wearable badge and, through
that, to a unique numeric identi�er. The identi�er is only associated with anonymous
metadata for each individual: school class, gender, year and month of birth. All the
statistical treatment of the data is performed in an anonymous way. The metadata
was collected for 227 out of 232 participating students. The di�erence is accounted
for by participants whose badge was accidentally replaced during the deployment,
breaking the connection between the badge identi�er and the participant metadata.
The sample is restricted to this subpopulation of 227 children (94% of the children
in the school). We can reasonably assume the absence of any selection bias, as the
exclusion from the studied population is not related to gender or behavior.

Class Number of Participants
individuals Day 1 Day 2

1A 24 22 (B: 10, G: 11, U: 1) 23 (B: 10, G: 11, U: 2)
1B 25 25 (B: 12, G: 13) 25 (B: 12, G: 13)
2A 25 22 (B: 8, G: 14) 23 (B: 9, G: 14)
2B 26 25 (B: 11, G: 14) 26 (B: 11, G: 15)
3A 24 23 (B: 14, G: 9) 23 (B: 14, G: 9)
3B 22 21 (B: 10, G: 11) 21 (B: 10, G: 11)
4A 23 21 (B: 11, G: 8, U: 2) 21 (B: 11, G: 8, U: 2)
4B 24 22 (B: 13, G: 9) 22 (B: 12, G: 10)
5A 24 22 (B: 11, G: 10, U: 1) 21 (B: 10, G: 10, U: 1)
5B 24 23 (B: 12, G: 11) 23 (B: 12, G: 11)
Teachers 10 10 10

Table 2.1: Participant repartition among class and gender (B for boys, G for girls
and U when the gender metadata is not available).

2.3.2 Results

We present here the results of our quantitative analysis. As averaged values do
not re�ect adequately dispersed data, the coe�cient of variation squared (CV2)
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is systematically reported with averages. It is de�ned as the square of the ratio
between the standard deviation σ and the mean µ.

We recorded a total of 77, 602 contact events involving 242 individuals (37, 414
contacts on day 1 and 40, 188 on day 2), with an average of about 317 contacts per
individual on the �rst day (CV2 ∼ 0.22) and 338 contacts per individual on the
second day (CV2 ∼ 0.27).

2.3.2.1 Temporal evolution

The school day runs from 8.30am to 4.30pm, with a lunch break from 12pm to 2pm,
and two breaks of 20�25 min around 10.30am and 3.30pm. Lunches are served in
a common canteen, and a shared playground is located outside the main building.
As the playground and the canteen do not have enough capacity to host all the
students at the same time, only two or three classes have breaks at the same time,
and lunches are taken in two consecutive turns.

Figure 2.9 shows the time evolution of the 20-minute aggregated networks for
each day of the study. The number of individuals is stable during teaching hours,
morning and afternoon breaks, and drops during the lunch time as some children
were going back home to have lunch (the school is located in an urban area and
many children actually live nearby and can go home for lunch). The average degree
of the network displays a more interesting behavior, as it peaks at various moments,
each corresponding to a break or the beginning or end of the lunch of a series of
classes.

Thanks to the information on classes, we distinguish the degree and the strength
between contacts with children in the same class (kini , sini ) and with children of
di�erent classes (kouti , souti ). Figure 2.10 displays the time evolution of the quantities
ki , kini and kouti , averaged over all children, since the beginning of the deployment.
The average number of distinct persons contacted grows initially rapidly, mostly
because of contacts occurring within each class. The average kini however saturates
at the average class size after a few hours, meaning that each child has been in
contact with all members of his/her own class, while new contacts across classes
occur only during the breaks, leading to plateaus in the evolution of the cumulated
average degree. In the second day, contacts within each class are the same as in the
�rst day, and the average of ki continues to evolve only during the breaks due to
contacts involving children of di�erent classes that had not occurred on the �rst day.
At the end of each day, each individual, on average, has been in contact with 50

distinct individuals (CV2 ∼ 0.14) in day 1 and with 46.5 individuals (CV2 ∼ 0.18)
in day 2.

Figure 2.11 gives more insight into the evolution of the contacts of the children
by taking into account the cumulated time spent in contact. It shows the time
evolution of si , sini and souti , averaged over all children. The average contact time
spent by a child with other children grows regularly with time, in a similar way in
both days. While the time spent with other children of the same class also has a
regular increase (only slightly faster during morning and afternoon breaks), the time
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Figure 2.9: Degree of individuals in the contact networks aggregated over sliding
time windows of 20 minutes during the �rst day (left) and the second day (right)
of data collection. The median value is represented with a black line, the 95%
con�dence interval is shown in gray and the number of individuals over which the
statistics are calculated is shown in red dashes. Breaks and beginning and end of
lunch are characterized by a sudden increase of the degree, showing the occurrence
of large numbers of contact events.
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Figure 2.10: Time evolution of the average number of distinct children with whom
a child has been in contact. The average total number is displayed in black, the
average number of children of the same class in red, and the average number of
children of other classes in blue.
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spent with children of a di�erent class evolves signi�cantly only during the lunch
break (the evolution occurring during the morning and afternoon breaks are much
smaller). Overall, at the end of each day, a child has spent on average three times
more time in face-to-face proximity with children of his/her class than with children
of other classes.

2.3.2.2 Aggregated network

Figure 2.12 displays the daily aggregated contact network for the �rst day of the
study. For ease of interpretation, edges between individuals who spent together a
cumulated time smaller than 2 minutes during the day have been removed. This
corresponds to keeping only the strongest 33.2% of all edges. The �gure highlights
the mixing patterns between children of di�erent classes and how children preferen-
tially mix within the same class or age group. Classes within the same grade tend
indeed to be more connected than classes belonging to di�erent grades.

2.3.2.3 Comparison between day 1 and day 2

A comparison between the characteristics of the overall face-to-face contact patterns
in the two days of the deployment is reported in table 2.2. Statistical quantities
such as the average total number and durations of contacts, the number of di�erent
persons contacted, or the contact durations are extremely close across the two days.

Network characteristics Day 1 Day 2

Number of individuals 236 238

Average number of contacts of an individual (CV2) 317 (0.22) 338 (0.27)

Average total time in contact of an individual, in minutes (CV2) 172 (0.25) 183 (0.33)

Average number of distinct persons contacted (CV2) 50.0 (0.14) 46.5 (0.18)

Average cumulated time spent in contact by two persons, in

seconds (CV2)

207 (5.4) 236 (4.7)

Average duration of a contact, in seconds (CV2) 32.6 (1.2) 32.6 (1.1)

Average clustering coe�cient 0.50 0.56

Table 2.2: Comparison of some characteristics of the networks of day 1 and 2.

At a more detailed level, the Pearson correlation coe�cients between the number
of contacts of an individual in the �rst and second day is 0.53; for the time spent
in contact, it is 0.54; for the number of distinct persons contacted it is 0.53. These
values show an overall strong correlation between the behavior of individuals from
one day to the next.

Moreover, each child, on average, has 26 repeated contacts on the second day
with children met during the �rst day (19 in the same class and 7 in a di�erent class),
and new contacts with 20 other children (1.4 in the same class, 18.4 in a di�erent
class). The average cosine similarity between his/her neighborhoods across the two
days is 0.67 (0.74 for the neighborhood restricted to his/her own class, 0.2 for the
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Figure 2.11: Time evolution of the average cumulated time spent by a child in
contact with other children. Colors and lines are the same as in the previous �gure.

Figure 2.12: Network of contacts aggregated over the �rst day. Edges between indi-
viduals having interacted less than 2 minutes have been removed, thus keeping only
the strongest links. The width of links corresponds to the cumulative duration of
contacts, and nodes with higher number of edges have larger size. Colors correspond
to classes, teachers are shown in grey. (Figure created using the Gephi software,
http://www.gephi.org/)

http://www.gephi.org/
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neighborhood restricted to children in a di�erent class). This indicates a repetitive
pattern inside each class but a non negligible renewal of the contacts between classes
across consecutive days.

2.3.2.4 Contact matrices

The school environment gives a natural way to categorize individuals, with the
structure of classes and grades. Aggregated measures are de�ned to characterize
contacts inside and among classes.

The total number of contacts between children of classes A and B is de�ned as
the sum of the number of times nij that a contact event between i and j is recorded,
for all i in class A and j in class B:

nAB =
∑

i∈A,j∈B

nij for A 6= B

nAA =
∑

i,j∈A

nij = 2
∑

(i−j)|i,j∈A

nij . (2.11)

In the case of A = B, as each child of the class is counted twice, one as i and the
a second time as j, nAA is twice the total number of contacts between children of
class A. Another convention could have been taken for nAA but the advantage here,
is that the average number of contacts of a child of class A with children of class B
is given by the ratio nAB/NA , where NA is the number of children in class A, even
when A = B.

Similarly, the total time spent in contact between children of classes A and B

is de�ned as the sum of the cumulated duration of contacts wij between all children
i in A and j in B:

wAB =
∑

i∈A,j∈B

wij for A 6= B

wAA =
∑

i,j∈A

wij = 2
∑

(i−j)|i,j∈A

wij , (2.12)

and the average contact time of a child of class A with children of class B is given
by the ratio wAB/NA.

Figure 2.13 displays grayscale-coded matrices giving, at the intersection of row A

and column B, respectively the total number of contacts (nAB) and the total du-
ration of contacts (wAB) occurring between individuals of classes A and B during
the two-day study. A clear hierarchical structure can be observed. Most contacts
involve children of the same class, as shown by the whitish diagonal. Two-by-two
light blocks around the diagonal also show that larger numbers and durations of
contacts are observed between children of the same grade rather than with other
grades, consistently with reports in [Conlan 2011]. A separation between smaller
grades (1st to 3rd) and upper grades (4th and 5th) grades is also apparent, mainly
because of the lunch break schedule. Finally, teachers have sparse contacts with one
another because they spend most of the time in class with children.
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Figure 2.13: Grayscale-coded contact matrix between classes. The matrix entry for
row A and column B gives the number of contacts nAB (top) and the cumulated
duration of contacts wAB (down) measured between individuals of classes A and B

over the two days of data collection. A logarithmic grayscale is used to compress
the dynamic range of the matrix entries and enhance the o�-diagonal hierarchical
structure.
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2.3.2.5 Number and duration of contacts

Figure 2.14 reports the total number nA· =
∑

B nAB and cumulated duration
wA· =

∑
B wAB of contacts involving children of a speci�c class A or teachers.

Figure 2.15 displays boxplots of the distributions of the individual contact numbers
and cumulated durations, for each class and for each day. Figure 2.14 shows that the
total number and duration of contacts involving teachers are smaller compared to
those involving children, but �gure 2.15 indicates that this is mostly a consequence
of the number of teachers being smaller than the number of children in a class. The
latter �gure indeed shows the boxplots of the sum for each individual i in class A

of its daily contacts ni· =
∑

j nij and of the cumulated durations wi· =
∑

j wij of
these contacts, a quantity already referred to as the strength s(i). Both the number
and the duration of contacts show a limited degree of heterogeneity across classes as
well as across days. This is partly due to di�erent class schedules (e.g., a class being
absent during half a day because of sport activities) or to di�erent school activities
(e.g., group vs individual activities).

2.3.3 Discussion

To our knowledge, this was the �rst study presenting detailed measures of close (face-
to-face) proximity interactions between children in a primary school (see however
[Salathé 2010] for the case of a high school). These descriptive results on contact
patterns are of interest for modeling the spread of various infectious diseases, and
possibly for investigating the role of speci�c control measures, such as closure of
classes or immunization strategies, as discussed in chapter 5.

A number of other studies that rely on di�erent methodologies (mostly surveys
and direct observations) describe or estimate social contact numbers and durations.
Comparison with previous results is clearly important but is made di�cult by dif-
ferences in the de�nitions of interaction/contact as well as by di�erences in the
measurement techniques. As the present study considers the unsupervised detec-
tion of face-to-face proximity, it does not rely on surveys nor on the memories of
participants. It is thus expected that larger total number and durations of contacts
will be obtained, in comparison with survey-based methods.

Table 2.3 reports the comparison of the number and duration of contacts between
previous studies and the present one. As expected, when all contacts are taken into
account, we obtain larger values than the studies cited above, with the exception of
[Salathé 2010]: as the infrastructure they described considers a broader detection
range (3 meters proximity) than in the present case, it is not surprising that our
study detects less numerous and shorter contacts. We report that each child has on
average 323 contacts lasting 33 seconds per day with other children, corresponding
to contacts with an average of 47 distinct other children, for an average daily total
interaction time of 176 minutes.

To allow a more informed comparison between studies based on di�erent method-
ologies, we compute for each child or for each pair of individuals the number
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Figure 2.14: Total number of contacts nA· (left) and total cumulated duration wA·

(right, in hours) involving individuals of each class and teachers (T ) for each day.
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Figure 2.15: Boxplots of the distributions of the number of contacts ni· (left) and of
their cumulated duration wi· (right, in minutes) involving an individual i, for each
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Setting Contact de�nition Results

[Mikolajczyk 2008] Survey in a primary school; 6�10

year-old children.

A person with whom the child spoke or played

with in a day

25.1 contacts per day per child

[Wallinga 2006] General population survey,

divided into 6 age classes.

Number of di�erent conversation partners the

participant encountered during a typical week

by age classes

23.77 conversations per week (3.40 per day)

held with di�erent persons for 6�12 year-old

children with other 6�12 year-old children

[Glass 2008] High, middle and elementary

schools survey, divided in 6 age

classes (10 to 18 years old).

An interaction during which in�uenza could

be passed. It must be within 3 feet and for a

recognizable length of time

4.43 contacts per day for a 10�12 year-old child

with other 10�12 year-old children. About 1

hour per day between 10�12 year-old children.

[Zagheni 2008] School survey, divided in 3 age

classes (5 to 19 year-old per-

sons).

Estimation through time-use data, under the

assumption of proportionate time mixing, of

the co-presence of people in the same location.

98 min per day between 5�9 year-old children

and 113 min per day between 10�14 year-old

children.

[Del Valle 2007] General population, divided into

9 age classes. Data are obtained

from the EpiSimS agent-based

simulation of a city, based on US

census statistics.

Co-presence in the same sub-location. The

duration is de�ned as the total length that

two people spent together in the same sub-

location. The durations of multiple encounters

between two persons are added up and the to-

tal aggregated length gives the �nal contact

duration.

227 min between children at school (not de-

tailed for age groups).

[Mossong 2008] General population in 8 Euro-

pean countries, divided into 10

age-classes.

Either skin-to-skin contact such as a kiss or

handshake (a physical contact), or a two-way

conversation with three or more words in the

physical presence of another person but no

skin-to-skin contact (a nonphysical contact)

From 2.25 to 11.88 contacts per day between

5�9 year-old children ; from 3.58 to 14.56 con-

tacts per day between 10�14 year-old children.

These numbers depend on the country

[Salathé 2010] US high school. Students, teach-

ers and sta�.

Electronic devices (motes). A contact is de-

�ned as a continuous sequence of close prox-

imity records (≤ 3meters) between two motes.

1900 contacts per student per day, lasting on

average about 1 minute. Each individual has

contact with an average of 300 distinct other

individuals.

[Stehlé 2011b]

(present study)

Primary school with 6�12 year-

old children and teachers.

RFID devices that exchange radio packets

only when the individuals wearing them face

each other at close range (about 1 to 1.5 m).

323 contacts per child per day, lasting on aver-

age 33 seconds, with on average 47 other dis-

tinct individuals. Averaged cumulated contact

time of each individual of 176 min per day.

Table 2.3: Comparison of the measured average numbers and durations of contacts across several studies.
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and total duration of contacts lasting longer than a given threshold. The re-
sults are summarized in Table 2.4. For instance, when restricting to cumulated
contact durations of at least one minute, the number of di�erent children with
whom a child has interacted drops to 21, and the corresponding total interac-
tion time drop to 163 minutes. Moreover, numbers close to those reported by
[Glass 2008, Zagheni 2008, Del Valle 2007] are obtained when one takes into ac-
count only pairs of children having interacted for at least 10�12 minutes per day.
Overall, our results are therefore quantitatively di�erent from other studies, as can
be expected from the strong methodological di�erences, but become compatible with
previous studies when applying �ltering procedures which retain only the longest
contacts.

Filtering procedure: only

contacts of duration at

least T

Average daily number of

distinct other children in

contact

Average daily cumulated

duration of contacts with

other children, in minutes

T = 0 47.4 176
T = 40 s 20.8 100
T = 1 mn 11.8 65
T = 2 mn 4.1 28
T = 3 mn 2.2 19

Filtering procedure: only

cumulated contacts at

least W

Average daily number of

distinct other children in

contact

Average daily cumulated

duration of contacts with

other children, in minutes

W = 0 47.4 176
W = 1 mn 21.4 163
W = 2 mn 15.2 153
W = 5 mn 8.1 129
W = 7 mn 6.1 117
W = 10 mn 4.3 102
W = 12 mn 3.5 93
W = 15 mn 2.7 81

Table 2.4: Average number of children with whom a child was in contact, computed
over one day, and average total time spent daily in contact with other children. Two
�ltering procedures are considered. Top: only contacts with duration at least equal
to T are considered (T = 0 or 20 s corresponds to taking all contacts into account,
given the available 20 s time resolution). Bottom: only links between children who
have spent an amount of time at least equal to W in face-to-face proximity (W = 0

or 20 s corresponds to taking all links into account).

The study shows that children mix preferentially with children within their age
group, mainly because they have more opportunity to interact with mates of the
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same class than with children of other classes and grades, whom they see only dur-
ing breaks and lunch. Nonetheless, these contacts between di�erent classes and
age groups exist. This information may help to advise public decision-makers on
interventions aimed at containing or mitigating the propagation of communicable
diseases at the level of schools, in particular in case of an epidemic or a pandemic.
School closure has been proposed as an e�ective physical intervention to reduce
transmission of respiratory pathogens, especially in�uenza [Cauchemez 2009]. How-
ever, it is not well understood how the bene�t of closing entire schools, in terms
of reducing cases, morbidity and mortality, compares to the economic costs of such
interventions. In addition, the e�ectiveness of school closure depends on the e�ec-
tiveness of other measures such as vaccination or antiviral drugs. Our results could
be of interest in this context, especially if combined with other sources of information
on the contact patterns of children [Salathé 2010, Mikolajczyk 2008, Conlan 2011].
The fact that a child spends three times more time in contact with classmates than
with children of other classes suggests for instance that closing selected classes in-
stead of the whole school could be a viable alternative. Additional intermediate
steps between class and school closures could be devised through the analysis of
aggregated contact networks, such as the one depicted in Figure 2.12, and expo-
sure matrices such as the ones of Figure 2.13: classes most strongly linked to the
class of the �rst detected case could for instance be closed in order to reduce the
risk of propagation to the remaining classes. It would be interesting to assess by
means of numerical simulation whether the closure of a single class or of a group
of classes could e�ciently mitigate the propagation of a disease at the school level.
Finally, preventive measures such as shifts of the class schedules could substantially
reduce contacts between classes, which could be particularly relevant for preventing
transmission events from asymptomatic cases.

2.4 Partial conclusion and perspectives

In this chapter, I have presented various statistics to describe face-to-face interac-
tions in three very di�erent environments: in scienti�c conferences, in a museum and
in a primary school. The variety of situations is mirrored in the variety of observed
structures.

On the one side, the existing network toolbox is used to characterize time-
aggregated networks, mainly on the scale of one day. Typical network measures,
such as the degree and strength distributions, the analysis in terms of groups, of
distances and the number of connected components, quantify the interaction pat-
terns of each event, and are generally well explained by the knowledge of the contexts
in which these interactions take place.

On the other hand, measures on the dynamic of interactions, such as the dis-
tribution of the contact durations, of the cumulated contact durations, of the time
elapsed between two contacts, are revealed to be robust across contexts. These prop-
erties appear to be rather general in human interactions because similar results have
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been obtained in other settings [Salathé 2010, Hui 2005, Cattuto 2010, Isella 2011]
and with other types of interactions [Eckmann 2004, Rybski 2009, Onnela 2007,
Leskovec 2008], although the generalization of such results should be carried out
with caution.

Last but not least, the raw statistics on contact patterns are crucial for inform-
ing mathematical models that aim at describing the spread of infectious diseases
and its prevention. Epidemiological models of disease transmissions in structured
populations depend heavily on the knowledge of the amount and duration of
contacts between individuals of di�erent age groups. Here, the methodology allows
to accurately estimate contact patterns, as we did for example in the case of the
school dataset with the construction of contact matrices, which are widely used in
epidemiology [Anderson 1991].

This methodology presents some limitations. First of all, the deployed infras-
tructure only measured contacts in a close environment, in the school building or in
the playground for the school, in the museum premises or in the conference build-
ing. Contacts outside with the rest of the community are not recorded, and are of
great importance for spreading dynamics (virus, rumors, fads). Moreover, badges
were not worn during sport activities in the school deployment, which often in-
volve close proximity situations and physical contacts. It would be interesting to
use the data collection infrastructure to combine these sensor-recorded contact in-
formation with household data and data on contact patterns during school closure
[Jackson 2011, Eames 2011]. Coupling the dynamical contact patterns at school
and at home would allow to improve our understanding of the role of children as a
reservoir during the spread of infections in a larger community.

Another potential issue concerns the possibility that individuals changed their
behavior because they were wearing badges and knew they were participating in a
scienti�c measure. This is especially important for children who are known to behave
di�erently when adults are nearby (see [Maccoby 1990] reports on [Greeno 1989]).
According to observers familiar with the environment (teachers and sta�), however,
no signi�cant change could be detected in the children's behavior, and the children
seemed to rapidly forget about the badges. In addition, while detailed explanations
were given to the parents about the study and the badges, details on the role of the
RFID badges (e.g., their detection range) were not given to the children.

From a public health perspective, it has to be emphasized that the collected
data provide information on the mutual proximity of badges (and therefore of the
persons wearing the badges), but not on the occurrence of physical contacts. Our
measurements may thus be used in the context of, e.g., respiratory-spread pathogens
but not for infectious agents transmitted by skin contact. Note however that phys-
ical contact can only occur between persons who are already in spatial proximity.
Therefore, it would be very interesting to study the fraction of close encounters that
result in a physical contact.
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3.1 Motivations

3.1.1 Drivers of social networks

In sociology and in psychology, the network structure is often de�ned as the set of
principles driving its unfolding and its reproduction [Ferrand 1997]. Various mecha-
nisms have been identi�ed thus far. I shall brie�y list the most important of them.

The most known of these principles is given by the preference of individuals to
interact and build friendships with peers they consider to be alike, is a well known
feature of human behavior and is referred to as homophily (see [McPherson 2001]
for a review). The �eld of traits that may in�uence human relationships is very
broad, ranging from physical attributes to tastes or political opinions. The question
of which kinds of similarities matter the most is rather open, and indeed the answer
seems to depend on age and on the nature of the considered social ties. The out-
comes related to gender or socio-ethnic homophily may vary over the lifespan of an
individual and, for example, sharing similar working methods may have a stronger
impact among coworkers than among friends.
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A second important principle is what we call triadic closure, i.e., the fact that
a friend of a friend is likely to be a friend too. In [Schaefer 2010], this e�ect is shown
to be very important among children, as well as reciprocity, the fact of recognizing
each other personal value in a friendship.

The structural balance is a principle that exists when both positive (e.g.
a friendship) and negative (e.g. an enmity) interactions are considered. Let us
consider three persons, A, B and C. The situation in which A is friend with B and
C, but B and C hate each other, and the other situation in which A, B and C hate
each other are not very stable. For example, the tension in the �rst situation can
be solved with B befriending C or with one of A's friendships turning to enmity.
In the second situation, an alliance against a shared enemy is much more stable.
An interesting test of the structural balance theory is given in [Brandes 2009], in
the case of a geopolitical dataset (which is not a social network) where political
actors such as countries, international organizations or ethnic groups and events are
assigned a weight ranging between −10 for the most hostile interaction and +8.3

for the most cooperative. (accusations, threat, military aid,. . . ).
All these principles shape social relationships and can be a factor in�uencing

the formation and the stability of groups. Nevertheless, it is often di�cult to assess
quantitatively to which amount any of these principles contribute to social struc-
tures, for the reason that they often occur simultaneously and that many of the
traits that are considered to be important are changeable [Manski 1993]. In the
case of homophily, peer in�uence and peer selection are very di�cult to assess sepa-
rately [Steglich 2010]. For example, similar smoking habits may be important among
teenagers for the formation of new friendships but an individual having only smokers
as friends might be in�uenced and become a smoker as well. Unless successive snap-
shots of social relationships and individual traits are available (panel network pro-
cedures), it is impossible to disentangle both e�ects [Kossinets 2009, Shalizi 2010],
with the exception of almost immutable traits such as gender.

3.1.2 Socio-psychological theories on virtual networks

Technological networks and especially online networks have generated a vast litera-
ture in social network studies. This can be partly attributed to the lower economic
and time cost compared to traditional survey for obtaining data. The theories and
facts described in the previous section are often considered on online networks. The
main hypothesis behind these studies is that relations between individuals on web
sites re�ect social interactions individuals have in the real world. Unfortunately to
the best of my knowledge, its truthfulness has not been much studied.

First analysis concern homophily and community structure. Di�erent virtual
networks have been considered so far. In [Adamic 2003], a social network of uni-
versity members is constructed by considering hyperlinks among personal web-
pages. In [Lewis 2008], Facebook activity shows that homophily based on gen-
der, race/ethnicity, and socioeconomic status is present in cultural preferences. In
[Takhteyev 2012], the geographic based, nationality and language based homophily
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is assessed in the networking activity of Twitter. Very recently, in [Traud 2012],
homophily and community structure of the Facebook network of 100 American col-
leges and universities di�er noticeably among these institutions. For example, the
e�ect of dormitory residences in Caltech universities which was expected to be more
important than in other universities is quanti�ed.

The structural balance theory has been tested too in the case of an online massive
multiplayer game dataset in [Szell 2010]. The reciprocity among individuals has
been studied with mobile phone calls [Kovanen 2011], which do not constitute a
virtual network nor a social network. Triangle closure (together with homophily and
reciprocity) has been examined in aNobii, a social bookmarking system [Aiello 2010].

Other famous theories often have a counterpart in the virtual world. For ex-
ample, in [Leskovec 2008], the authors examine distances in an instant messaging
network (Microsoft Messenger) and they show its small-world nature at a planetary-
scale. It provides a mirror example of Milgram's experiment in a virtual network
[Milgram 1967]. In [Kumar 2010], a dynamic version of the Barabàsi-Albert model
[Barabási 1999] is tested on two virtual networks (Flickr and Yahoo! 360) to analyze
the e�ect of preferential attachment among users.

The following studies are positioned within the above framework of measuring
these socio-psychological theories shaping human interaction patterns in space by
means of technological proxies or novel sensing techniques.

3.2 Gender homophily among children

We investigate gender homophily in the spatial proximity of children (6 to 12 years
old) in a French primary school, using time-resolved data on face-to-face proximity
recorded by means of wearable sensors, as described in 1.2.3. The deployment was
initially designed for epidemiological purposes (results with this direction are pre-
sented in section 2.3 and published in [Stehlé 2012]). Unfortunately, no additional
information on the socio-economic category of parents, socio-ethnic origins, school
performances and extrascolar activities/interests were provided. Nevertheless, it is
not the �rst time that a study on contact patterns designed for epidemiological
purposes gives results on gender homophily. Indeed, Conlan et al. led a study in
11 primary schools and conclude on the existence of gender segregation, considered
as the absence of reciprocate nomination between both genders inside the same
class [Conlan 2011].

Measuring children's interaction patterns by means of wearable sensors is an
interesting way to analyze children's behavior, which are known to present some
particularities not presented in section 1.2.4. For example, Greeno analyzed how
much children change their behavior when adults are nearby ([Greeno 1989] as re-
ported in [Maccoby 1990]) . This is an important problem with direct observations,
which are the main survey technique for very young children. With this respect,
RFID tags provide a reliable way to access child behavior, but the reaction to the
study and these sensors, which is not obvious given �eld experience, has not been
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studied.
This study has been done in collaboration with my advisor Alain Barrat, Ciro

Cattuto of the ISI Foundation and two other ENSAE students, François Charbonnier
and Tristan Picard. A manuscript was submitted to the journal Social Networks.

3.2.1 Background about gender homophily among children

Quantitative analyses on gender preferences date back to Moreno's seminal work on
sociometry [Moreno 1953], in which he introduces network terminology to describe
relations between children from kindergarten through eighth grade1. His study relies
on direct observations and interviews with children, and makes inferences about the
variables that a�ect friendships. He shows that although young children up to the
second grade prefer same gender mates, some of them also name friends of the
opposite gender. This gender mixing then almost disappears, very few children
making any mixed friendship up to the sixth grade.

Several studies have since con�rmed and extended these results. A recent re-
view [Mehta 2009] shows in particular a consensus about the fact that gender ho-
mophily exists along the entire life span: it is already present in infants' behaviors,
increases up to a peak between 8 and 11 years [Maccoby 2003], in agreement with
Moreno's study, and decreases afterwards, mainly because of the development of so-
called romantic relationships. It reaches a rather stable level among adults, although
studies on this life period remain scarce.

More recently, some di�erences of interaction styles between boys and girls have
been brought to light. The �rst and widely reported di�erence is that boys tend
to have a broader social network than girls (more network neighbors), who instead
tend to make deeper and stronger relationships [Vigil 2007, Lee 2007]. In particular,
when children are asked to list their friends with no limitation on the number, boys
name more friends than girls but most of the reciprocate nominations occur between
girls. The evolution of interaction styles is moreover di�erent for both genders. La
Frenière et al. conclude from the direct observation of 193 children aged between
1 and 6 years that gender preferences increase earlier for girls than for boys, but
later on they become stronger for boys than for girls [La Freniere 1984]. On the
other hand, a study of Martin et al. present a more moderate result [Martin 2001].
In a direct observation of 61 children between 39 and 74 months of age, they do
not observe a signi�cant correlation between age and the proportion of same sex
playmates for the entire sample, but the correlation reaches a signi�cant level when
they consider boys only (this does not happen for girls). Indeed boys and girls
behave di�erently, and di�erences in the amplitude of same gender preference have
been also observed. Hayden-Thomson et al. asked 186 children about their positive,
neutral or negative attitude toward all their classmates. While in the fourth grade
girls are more positive towards boys than boys towards girls, the situation is reversed

1The paternity of Social Network Analysis is generally attributed to Moreno who published a

extensive book in 1934, but previous works in educational and developmental psychology show

that the fundamental concepts already existed [Freeman 1996].
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in the sixth grade [Hayden-Thomson 1987]. Shrum et al. reach similar conclusions
from questionnaires identifying friendships [Shrum 1988].

During adolescence and the beginning of romantic relationships, girls show an
earlier evolution in their attitude toward other sex mates than boys. Richards et al.
report that girls declare to have frequent thoughts about the opposite sex one grade
earlier than boys (but more moderately) [Richards 1998]. They also declare to spend
nearly twice as much time with boys as boys do with girls. This asymmetry may be
explained by the fact that girls often have an older boy as second best friend outside
school, while boys rarely report having girls as second best friends [Poulin 2007].

Finally, stability of relationships, i.e. the maintenance of ties over time, is a
facet of friendship that has recently drawn some interest (see [Poulin 2010] for a
review). It is known to increase during the primary school, which may be inter-
preted by the fact that concepts such as reciprocity, loyalty and ability of solving
di�culties become more and more important in friendships at that age. Relation-
ships between same sex peers are also more stable than mixed relationships but the
empirical literature is still too shallow to conclude about gender di�erences in terms
of stability.

3.2.2 Results

We use for this study the dataset on the face-to-face spatial proximity of more than
200 school children described in section 2.3. The metadata on age, class and gender
is available for 227 out of 232 participating students. No information is provided
on whether children are subjected to pre-de�ned seating arrangements during class
time, nor whether teachers control or in�uence the seating patterns within classes.
In order to remove possible biases due to such factors, the spatial proximity of
children is studied only when they have maximum freedom of associating with one
another: the analysis is limited to contacts recorded in the playground and canteen
of the school, which overall account for 32 027 contact events (41% of the recorded
contacts).

A �rst clue of the presence of homophily is given by the contact share with
respect to the gender of both pair members. Figure 3.1 shows that there is a
smaller proportion of mixed contacts in the 5th grade than in the 1st grade. Further
conclusions from this kind of �gure are limited because the boy/girl share is not the
same between these two grades and because the total number of contacts is not the
same.

3.2.2.1 Structure of the aggregated contact network

From the 2 day long contact sequence, an aggregated network is built following the
method described in section 2.2.2. This aggregated network is made up of 227 nodes
and 7070 weighted edges.

The cumulative edge weight histogram, which behaves similarly to those de-
scribed in section 2.2.2 can be broken down according to the gender of the connected
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Figure 3.1: Pie chart of the contact number with respect to the gender of both pair
members in the �rst grade (left) and in the 5th grade (right).
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Figure 3.2: Cumulative histograms of edge weights of the contact network aggre-
gated over two days. Edges are divided into three categories according to the gender
of the connected nodes (boy�boy, boy�girl or girl�girl).
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nodes and provides a �rst indication of gender-related di�erences, as shown in �g-
ure 3.2. Edges between boys are more frequent than contacts between girls (2223
vs 1573) whilst there are almost as many girls as boys (Ng = 112 girls vs Nb = 115

boys). There are more than twice as many mixed edges than edges between girls
(3274 vs 1573), but far less than twice the number of edges between boys. The three
cumulative histograms shown in �gure 3.2 indicate that mixed-gender edges tend to
correspond to shorter cumulated interactions relative to edges linking same-gender
individuals: the mean weights of mixed-gender and same-gender edges are 118 s and
242 s, respectively. Moreover, edges between girls have on average higher weights
than edges between boys, with mean weights of 265 s and 225 s, respectively.

In this behavioral aggregated network the average degree is equal to 62.3, and has
a higher value for boys than for girls (67.1 and 57.3, respectively). This di�erence is
signi�cant at the 10% threshold (tested with a one-sided Wilcoxon test, p = 0.06).
When considering the subgraph de�ned by edges with weight of at least 5 min, the
average degree is 8.0, with a signi�cantly higher value for boys than for girls (9.0 vs
7.0, p = 0.07).

These two observations are in agreement with the literature about di�erences
on group size and level of intimacy, as reviewed by [Vigil 2007]. They support the
hypothesis that men and women (here, boys and girls) arbitrate di�erently between
maintaining a large social group and having more intimate and secure relationships.

3.2.2.2 Statistical evidence of gender homophily

In this section, the aim is to test statistically the evidence of gender homophily.
A �rst approach consists in comparing the aggregated contact network with random
graphs in which the probability that an edge connects two nodes is independent of
node genders, to assess the probability that the observed contact network arises
from a random arrangement of contacts between individuals.

We �rst restrict the study to contacts occurring within each class: the school
schedule constrains contacts between classes, hence we cannot assume that children
have the same opportunity to make strong ties within and across classes. Moreover,
we only consider edges with weight of at least 5 minutes, i.e. whose contacts have a
cumulated duration of at least 5 minutes over the two days of data. The aggregated
contact network has 531 such edges, and in the following we will indicate them
as strong ties, in reference to Granovetter's terminology [Granovetter 1973]. The
threshold of 5minutes is arbitrary: it has been chosen to be large enough to eliminate
weak ties that will be shown later (Section 3.2.2.5) to have di�erent properties with
respect to gender homophily, and small enough to retain a su�cient number of
edges for statistical analysis. We have checked that all of our results are robust with
respect to changes in the 5 minutes threshold.

The number of strong ties involving at least one girl (denoted by Eg⋆), and the
number of strong ties involving at least one boy (denoted by Eb⋆) are di�erent.
Moreover, boys have on average a larger degree than girls in the aggregated contact
network. Since this di�erence could be explained by a unilateral preference for same-
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sex peers, we test the evidence of same-gender preference separately for boys and
for girls, �xing the number of strong ties between children of the other gender.

Let us �rst consider the possibility that strong ties including at least one girl
are compatible with a model in which ties with boys and ties with another girl are
equiprobable. This can be interpreted as an equal propensity of a girl to have a
strong tie with all other boys and girls in her class. To this aim, we consider the
null hypothesis H0g of a random graph in which nodes are labeled by gender (boy
or girl), the total number of edges between boys is �xed, denoted by Ebb, the total
number of edges involving at least one girl is also �xed, denoted by Eg⋆, and edges
between a girl and a boy or between two girls have the same probability to exist
and are all independent. Therefore we want to compute the con�dence interval of
the number of same-gender edges Egg under the assumption of validity of the null
hypothesis H0g.

In order to compute the probability mass function of Egg under the null hy-
pothesis, we note that the problem is analogous to a Bernoulli urn with A balls,
where A = Ng(Ng − 1)/2 +NgNb is the total number of possible edges involving at
least one of the Ng girls, partitioned into Ng(Ng − 1)/2 white balls representing the
possible ties between girls and NgNb black balls representing the mixed-gender ties.
We want to extract n = Eg⋆ balls from this urn, with no replacement. The statistics
of the number of white balls extracted (i.e., of the number of girl-girl ties Egg) is
thus given by a hypergeometric distribution of parameters n, p = Ng(Ng − 1)/(2A)

and A. We compute the region W in which the null hypothesis is accepted at the
5% threshold, PrH0g(Egg ∈ W ) = 95%. We follow the same reasoning for testing
the possible indi�erence of boys to establish strong ties with boys or girls (null hy-
pothesis H0b). Figure 3.3 shows for each class the region of acceptance of the null
hypotheses at the 5% threshold, H0g for girls (in red), and H0b for boys (in blue).
For girls, the empirical values are compatible with the null hypothesis H0g for 4

classes (2 classes of the 1st grade, 1 in 2nd grade, and 1 in fourth grade). For boys,
the data are compatible with the null hypothesis H0b for 2 classes (1 in 1st grade
and 1 in 4th grade). In a majority of cases (6 classes for girls and 8 for boys) we
�nd evidence of gender homophily, as the empirical values of Egg and Ebb are above
the corresponding 95% con�dence interval and the null hypothesis can be rejected2.

It is important to remark some limitations of the approach described above.
The null hypothesis H0g disregards all knowledge about the speci�c structure of
the network (distribution of the number of neighbors, size of friendship clusters,
etc.), except for the number of links involving at least one girl, Eg⋆. In particular,
edges are considered as independent variables, which means that a strong tie may
exist between two children independently from the fact that they may share a lot of
contacts. It is on the contrary known that many triangles exist in the aggregated
contact network, just like in many social networks.

To overcome this limitation, we design a di�erent null hypothesis: we consider

2The number of classes for which the null hypothesis is accepted depends slightly on the thresh-

old used for the de�nition of strong ties, and is of at most 5 classes for boys and 5 classes for girls,

for thresholds values ranging from 40 seconds to 10 minutes.
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Figure 3.3: Statistical test of gender homophily for contacts within each class, re-
stricted to contacts of cumulated duration of at least 5 minutes over two days. Error
bars indicate the 95% con�dence interval of acceptance of the null hypotheses of gen-
der indi�erence. Symbols indicate the empirical numbers of girl-girl and boy-boy
contacts.

the network of strong ties as �xed, and we randomly assign the gender of each node,
preserving the total numbers of girls and boys in each class. Under such a null
hypothesis genders are interchangeable and the network formed by the strong ties is
independent from the gender attributes. As previously discussed, we need to control
the number of ties between boys when testing the possibility that the part of the
network to which girls take part is independent from gender allocation. To this aim,
we �x the network structure and we consider all possible allocations of genders to
nodes in which not only the number of girls and boys are equal to their empirical
values, but also the number of links joining two boys is exactly equal to the empirical
value Ebb. With such constraints, it is impossible to obtain an analytical formula
for the distribution of the numbers of girl�girl and girl�boy ties, nor is it feasible
in general to exhaustively list all the possible gender assignments that respect the
constraints. Therefore, to estimate the 95% con�dence interval for the number of
girl�girl ties we resort to Monte-Carlo simulations3. This allows us to test at the 5%
threshold the hypothesis that our data are compatible with the gender-shu�ed null
hypothesis. Overall, the results obtained with this method are exactly the same as
with the previous null hypothesis: we have statistical evidence for same-gender peer

3For some classes, there are very few gender assignments that respect both the condition on the

total numbers of boys and girls and that on the number of strong ties between boys. For 5 classes

out of 10, less than 1000 possible allocations are found, and for 3 of them, less than 100 are found.

The constraint on Ebb is hard to ful�ll because its large value with respect to the total number of

edges allows few gender assignments that are di�erent from the real one.
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preference in the same 6 classes for girls, and in the same 8 classes for boys.

3.2.2.3 Stronger same-gender homophily for boys than for girls

While the analysis of the previous paragraph was based on a global measure (the
number of same-gender ties inside a group), heterogeneity between individuals can
also be investigated through an individual index.

We consider here the network composed of strong ties (cumulated durations of
contacts of at least 5 minutes, as above) linking children belonging to either the
same class or di�erent classes, for a total of 795 ties4. For each node i with at least
one neighbor in this strong-tie network (215 children out of the previous 227), we
compute the proportion of same gender peers among its ki neighbors. We call this
index the individual same-gender preference index, and we denote it by P sg

k (i). This
index is equal to 1 if the considered child has only same-sex neighbors and equal to
0 if all the neighbors are of the opposite sex. A value of 0.5 indicates a perfectly
gender-balanced neighborhood.

This index is close to the one introduced by [Criswell 1939], which is equal to
the above ratio divided by its expected value in a random graph in which a tie exists
between two nodes with a constant probability, independently from the existence of
any other tie and from gender. [Criswell 1939] argues that a value close to 1 would
indicate the absence of preference for same-gender peers, and values much higher
than 1 would indicate the opposite. We have chosen not to consider this index
because the null model Criswell is implicitly referring to might not be adequate
here, as we know that the network structure is far from random: the opportunities
for strong ties with classmates are not the same as with children from other classes,
and the actual contact network has properties similar to those of social networks,
such as triadic closure.

Figure 3.4 gives for each class the boxplot of the individual same-gender prefer-
ence index, computed separately for boys and for girls. The dispersion of the index
distribution is large, as indicated by the size of the box and the whiskers. While
it happens that a child has no ties with other children of the same gender, most
values of the index are rather high: same-gender homophily is present in all grades,
for both genders. Moreover, the �gure seems to indicate that boys tend to have a
higher same-gender preference index than girls, and that this index increases with
grades (we will examine this point in section 3.2.2.5).

The statistical di�erence between boys and girls can be estimated through a
one-sided Wilcoxon test. This non-parametric test is preferred to a parametric one
(such as ANOVA) because it does not require any assumption on the form of the
distribution of the underlying random variable that generates the heterogeneity of
same-gender preference index. We test the null hypothesis that the averages of the
same-gender preference index are the same for boys and girls, against the one-sided

4In this case, children leaving the building for lunch will be less connected than others because

they have a reduced opportunity to interact. Assuming that gender is independent from the

behavior of eating at home, this does not bias our analysis.
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Figure 3.4: Boxplots for the di�erent classes of the same gender preference index
P sg
k , computed separately for boys (blue) and girls (red). The center of the box
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alternative hypothesis that the average is higher for boys than for girls. For the 4th
and the 5th grades the null hypothesis is rejected at the 10% threshold, meaning
that same-gender preference is statistically higher for boys than for girls only for
the two highest grades.

Interestingly, and despite the distributions shown in �gure 3.4 are mostly above
1/2, some children have most of their strong ties with children of the opposite
sex. The interpretation proposed by Snijders5 is that this situation could be so-
cially allowed under the condition that the neighbors have, as well, many contacts
with individuals of the other sex. To check this hypothesis, we de�ne a two-step
homophily index for each node i, slightly modifying the de�nition of the alters'

covariate-average de�ned by [Ripley 2011]: P sg
k2 (i) = 1

ki

∑
j∈V(i)

kj(genderi)
kj

. This
expression yields the average over the nodes j belonging to the neighborhood V(i)

of node i, of the proportion of j's neighbors who have the same gender as node i.
Figure 3.5 provides the scatter plot of this two-step homophily index with respect
to the previous same-gender preference index P sg

k (i). Boys have on average a higher
two-step homophily index than girls (p-value < 5 · 10−3 with a one-sided Wilcoxon
test). Moreover, if we consider egos having a majority of neighbors of the opposite
sex (P sg

k < 0.5), the neighbors themselves have on average more ties with children
of the same sex as ego than ego her/himself (P sg

k2 (i) > P sg
k ).

3.2.2.4 Stability of neighborhoods

As noted above, the gathered data correspond to a behavioral network of face-to-
face proximity, and not to a self-reported social network. Since our dataset covers
two successive days of school activity, the behavior of children from one day to the
next can be compared, in particular to understand the interplay between gender
homophily and the repetition of contact patterns.

To this aim, we quantify the similarity between the neighborhood of each indi-
vidual i in day 1 and day 2 through the cosine similarity

σ(i) =

∑
j wij,1wij,2√

(
∑

j w
2
ij,1)(

∑
j w

2
ij,2)

, (3.1)

where the weight wij,1 is the cumulated time spent in face-to-face interaction between
i and j during day 1, and wij,2 is the corresponding time during day 2.

We also consider two di�erent similarity de�nitions that separately measure the
similarities of the same-gender and of the opposite-gender neighborhoods across
days (σsg(i) and σog(i), respectively). To this aim, we restrict the sums in Eq. 3.1
to neighbors j who have the same (or the opposite) gender as i:

σsg(i) =

∑
j∈Vsg(i)

wij,1wij,2√
(
∑

j∈Vsg(i)
w2
ij,1)(

∑
j∈Vsg(i)

w2
ij,2)

, (3.2)

5Tom Snijders addressed this issue during the presentation he gave at the Université Paris-

Dauphine when receiving his honorary doctorate on December 16, 2011.
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where the sums over j are restricted to the same-gender neighborhood Vsg(i) of i,
and

σog(i) =

∑
j∈Vog(i)

wij,1wij,2√
(
∑

j∈Vog(i)
w2
ij,1)(

∑
j∈Vog(i)

w2
ij,2)

, (3.3)

where the sums over j are restricted to the opposite-sex neighborhood Vog(i) of i.
Figure 3.6 displays the boxplots of the distributions of σsg and σog for each class.

We test the null hypothesis that the averages of σsg and σog are the same against
the one-sided alternative hypothesis that the average is higher for σsg than for σog.
Through a Wilcoxon test, the null hypothesis is rejected at the 5% threshold for 6
classes (one in the 2nd grade, one in the 5th grade, and all classes of the 3rd and
4th grades), and with a p-value of 0.125 for the other class of the 2nd grade. This
shows that the same-gender part of the neighborhood of an individual is statistically
more stable from day 1 to day 2 than the opposite-gender part of the neighborhood,
in agreement with the literature reviewed by [Poulin 2010]. On the other hand, the
stability of a child's neighborhood is not signi�cantly dependent on her/his gender:
a Wilcoxon test of the null hypothesis that the averages of σ are di�erent for boys
and girls leads to p-values larger than 0.3 except for one class of the 3d grade with
p = 0.06.

3.2.2.5 Evolution of same-gender preferences with age

In the previous subsection, we noted in �gure 3.4 a positive correlation between the
same-preference index and grade. This would mean that as children become older
during primary school they tend to interact more and more with same-gender mates,
in agreement with previous studies [Mehta 2009, Maccoby 2003, Moreno 1953]. The
information we have about the age of children allows us to investigate quantitatively
the correlation between age and same-gender preference index, separately for boys
and girls. Figure 3.7 shows the Pearson correlation coe�cient between age and same-
gender preference index, as a function of the threshold on the cumulated contact
duration (5 minutes in the analysis above): when this threshold is equal to 20

seconds (the minimum duration of a contact) we retain all ties, while on increasing
in less and less edges are kept (the strongest ones).

For both boys and girls, when we consider edges that correspond to a cumulated
interaction time of at least 100 seconds (over 2 days), the correlation between the
same-gender preference index and age is positive, and it is higher for boys than for
girls. However, when weaker ties are retained (i.e., edges corresponding to shorter
cumulated times), the correlation is instead negative for girls. This means that the
evolution of homophilous behavior with age is di�erent for weak and strong ties, and
between boys and girls. A closer inspection reveals that for interactions of cumulated
duration shorter than 3 minutes the number of same-gender mates decreases with
age for both genders, and that the number of opposite-gender neighbors decreases
even faster for boys, while it increases for girls. For contacts of cumulated duration
larger than 5minutes, on the other hand, the number of same-gender mates decreases
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Figure 3.6: Distributions of cosine similarities between the neighborhoods of the
individuals of each class in days 1 and 2, restricted to same gender neighborhood
σsg and to opposite gender neighborhood σog.
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Figure 3.7: Pearson correlation coe�cients between age and same-gender homophily
index P sg

k , as a function of the threshold on edge weights. The correlation is com-
puted separately for boys (blue squares) and for girls (red circles). Error bars
indicate the bootstrap 90% con�dence interval, computed with 2000 resamples.
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for boys and stays almost constant for girls, while the number of opposite-gender
neighbors decreases for both genders. The increase in the number of short encounters
that girls have with boys may be related to their earlier evolution in their attitude
towards the other sex, as pointed out by [Richards 1998] and [Poulin 2007]. The
same overall picture emerges when analyzing the correlation of the same-gender
preference index with school grade rather than age, with a slightly weaker correlation
of same-gender preference index and grade for boys.

It may be noted that for high enough values of the threshold some children
become isolated in the network, meaning that they have no interactions with other
children that account for a longer time than the threshold. This isolation does
not a�ect equally children who are on time with the schooling schedule (N = 204)
and children who are either in advance or late, i.e., who are younger (or older)
than other children of the same class (N = 15 and N = 8, respectively). At the
5 minute threshold, 5 children out of these 23 become isolated, compared to 7 for
those who have the same age as their classmates. The relative risk for these children
to become socially isolated, compared to children who are on time is equal to 6.33

(a corresponding odds ratio of 7.8), indicating that children who are in advance or
late might be more exposed to social exclusion.

3.2.3 Discussion

The use of wearable sensors represents a new tool in the study and description of
child behavior. With respect to the previous literature, mainly based on direct obser-
vations and name-generator questionnaires, we recover here several known features
with statistical signi�cance:

1. gender homophily is present in all grades of the primary school,

2. same-gender preference reaches a higher level for boys than for girls in the 4th
and 5th grades,

3. same-gender ties are more stable than mixed-gender ties across days, and

4. same-gender preference tends to increase with age for strong ties, at a higher
rate for boys than for girls.

Thanks to the presented methodology, we are able to construct a complete network
of face-to-face interactions of the school population over two days, which allows
us to weight ties according to behavioral (who spends time with whom) rather
than sociological proximity. In particular, we investigate how much boys and girls
di�er in their homophilous behavior when we consider their weak ties. It may be
underlined that this method, even if relying on a behavioral proxy rather than on
real information about social interactions (e.g., the di�erent types of relationships
are disregarded), may become an interesting tool for the study of the structure and
evolution of weak ties, because it avoids informant biases such as the limited recall
of individuals about their acquaintances.
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3.3 Physical interactions versus online social networks

A second aspect related to socio-psychological theories that we have studied by
mean of our wearable sensor design is called multiplexity. Social ties are not ade-
quately described as an unidimensional relation between pairs of persons. People
are linked by di�erent types of relationships, such as kinship, friendship or work
relationship. Even relationships of the same type can di�er in what Granovetter
called the strength [Granovetter 1973], i.e., a (probably a linear) combination of the
amount of time, the emotional intensity, the intimacy (mutual con�ding), and the
reciprocal services which characterize the tie. The study of the relation between
these di�erent ingredients of a social tie is not trivial. A way to tackle the problem
is to consider a network with di�erent types of ties, i.e., a multiplex network. A new
kind of tie that was not envisaged by in Granovetter's paper because the web did not
exist at the time of this seminal article, is given by ties on the Web. The existence of
these ties has been widely promoted by the Web 2.0, i.e., the set of websites centered
on interaction and communication between users instead of the previous generation
of static webpages. The most famous example of a Web 2.0 site is Facebook. This
social networking website counted on May 2012 more than 900 million active users
over the world. Originally focused on relationships between university students, it
has reached all age brackets and it is very common now that colleagues or rela-
tives share a Facebook friendship, i.e., an individual access to personal information
published by the friend on his/her wall.

The sensor-based infrastructure has been coupled several times to a a web plat-
form designed for the analysis of users' activity on the Web 2.0, called the Live-Social
Semantics platform. The major interest was to investigate the relationship between
the amount of time spent together and the existence of virtual ties, in Facebook but
also in di�erent web 2.0 networking websites such as Flickr (mainly based on im-
age and video hosting), Delicious (a social bookmarking service for storing, sharing,
and discovering web bookmarks) and LastFM (a music website with a recommender
system).

This association between the Live-Social Semantics platform and the RFID-
based proximity analysis of face-to-face proximity has led to three deployments.
The �rst was at the European Semantic Web Conference 2009 that took place in
Heraklion from May, 31 to June, 6, the second time was at the ACM Hypertext
2009 in Torino (June 29-July 2) and it was deployed for a third time one year later
at the Extended Semantic Web Conference 2010 in Heraklion (June 1-4).

We analyzed only the �rst two deployments (ESWC09 and HT09) whose charac-
teristics are summarized in table 3.1. This work has been done in collaboration with
Lorenzo Isella, Alain Barrat, Ciro Cattuto, Harith Alani, Gianluca Correndo, Marco
Quaggiotto, Martin Szomszor and Wouter Van den Broeck. It is still in progress.
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ESWC09 HT09

Duration of the experiment 4 days 3 days
Number of conference attendants 305 ∼150
Number of LSS participants 187 (139) 113 (97)

Table 3.1: Duration, number of participants to the conference and to the Live Social
Semantic (LSS) experiment.

3.3.1 The Live-Social Semantics platform

The Live-Social Semantics platform, which will be referred as LSS hereafter, is
dedicated to the study of people's activity on the web 2.0. More precisely, it is
designed to register user's tagging activity and their social online social ties such
as Facebook's friendships. The key assumption is that people mostly tag on topics,
places, events or people they are interested in. The purpose of the LSS experiments is
mainly to relate these tagging activities with those of people they are virtually linked
with and to quantify the similarities and dissimilarities of activity. The general
architecture and purposes of LSS are presented in details elsewhere in [Alani 2009,
Van der Broeck 2010, Szomszor 2010, Barrat 2010].

During the coupled deployments between the LSS platform and the RFID-based
infrastructure developed by the SocioPatterns collaboration, voluntary participants
had the possibility to register on a dedicated website where they could:

• enter their RFID identi�cation number
• indicate their account names on a collection of social networking websites such
as Delicious, Flickr and LastFM,

• activate a Facebook application that collects their Facebook friendships.

Not all of the conference participants provided all of these informations. Table 3.2
gives the number of participants who registered on the website and the number of
them who have provided an account information on the set of social networking
websites.

Interestingly, after the conferences, some users did register on the LSS website
but did not enter any social networking accounts. They were emailed a short ques-
tionnaire investigating their reasons. Table 3.3 lists the 36 received answers, which
represents 43% of those participants. Out of the variety of reasons that were put
forward, the reluctance to provide personal information on its web activity occurred
rather seldom. The inadequacy or limited list of networking websites was a more
frequent explanation for the people who subscribed to the LSS site but who did not
entered any social networking website. Nevertheless, the conference participants
who did not take part to the LSS experiment were not asked for the reason of their
refusal. For those, the privacy issue may have been much more important.
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ESWC09 HT09 Total

LSS participants 187 113 300
Website registered users 139 97 236
Facebook 78 48 126 (53%)
Delicious 59 28 87 (37%)
LastFM 57 26 83 (35%)
Flickr 52 23 75 (32%)
Haven't entered any social network 49 35 84 (36%)

Table 3.2: Number of participants to the LSS experiment and number of them who
have provided an account name on various social networking websites.

Reason Number of users Percentage

Do not have those accounts (or rarely use them) 16 44%
Use di�erent networking sites 10 27%
Do not like to share them 3 9%
Did not get a chance to share them (e.g., no
computer, slow internet)⋆

6 17%

Other 1 3%

Total 36 100%

Table 3.3: Reasons why some users did not enter any social network accounts to
the LSS application website. The person who picked other argued that he was too
busy during the ESWC09 conference. ⋆At ESWC09, these attendants often blamed
the unreliable Internet connection at the venue for their inactive participation. This
was not an issue for HT09.

3.3.2 Results

As Facebook is the most widely used networking site, we will restrict the analysis
to this online network and refer to it as FB. A FB network is constructed from the
data collected through the LSS application: nodes represent participants and an edge
exists between two nodes if the corresponding persons are friends on Facebook. One
can consider a multiplex network in which edges can be of two types: a FB friendship
(non-weighted tie) or a conference network tie (weighted tie in which the weight
corresponds to the cumulated duration of the contact between the corresponding
persons). The aggregated conference contact network will be referred as the ACC
network.
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3.3.2.1 Number of shared edges

A �rst evidence of the correlation between the FB and the ACC networks is given
by the examination of the number of shared edges, compared with their number of
nodes and edges. These quantities are given in Table 3.4. In the ACC network,

Conference network (ACC) FB Network ACC ∩ FB

ESWC09 NACC = 175 nodes NFB = 63 nodes n = 63 nodes
EACC = 4724 links EFB = 229 links e = 152 links

HT09 NACC = 113 nodes NFB = 29 nodes n = 29 nodes
EACC = 2121 links EFB = 54 links e = 49 links

Table 3.4: Number of nodes and edges in the aggregated conference contact network
(ACC), in the Facebook network and number of shared nodes and edges.

the proportion of existing links is given by the ratio between the actual number of
links divided by the number of possible ties, i.e., 2EACC/NACC(NACC − 1). If the
FB and the ACC networks were totally uncorrelated, the proportion of shared links
would on average be given by the proportion of links existing in the ACC network,
multiplied by the number of edges in the Facebook network:

E[number of common links] =
2EACCEFB

NACC(NACC − 1)
(3.4)

This quantity is equal to 71 for ESWC09 conference and to 18 for HT09. They
must be respectively compared with 152 and 49, which shows how much larger the
e�ective number of shared links is. Would it be, however, possible by pure chance
to reach such high numbers? The answer is very unlikely. Less than 1 out of 10000
purely random allocations of ACC and FB edges over n common nodes would give
such numbers. This is a �rst clear indication that the two considered networks are
strongly interrelated.

3.3.2.2 Weight distribution

A second evidence of this correlation is that friends on FB interact longer with each
other than two people who are not FB friends. Figure 3.8 shows the cumulative
weight distribution for the network aggregated on the whole ESWC09 conference
and for links of this conference network between participants who are also friends
on FB. The same distribution shape as in other contexts described in section 2.2.2 is
observed. The di�erence between these two curves clearly highlights that the average
time spent in face-to-face interaction in a conference by FB friends is several folds
larger than if the two participants did not share this virtual friendship (respectively
904 seconds versus 159 seconds, signi�cance tests: p < 0.1). Interestingly however,
not all edges that have large weights correspond to virtual friends who have met
during the conference, but the distribution of the latter is broader than the whole
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work corresponding to the whole duration of the ESWC09 conference (black circles),
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duration (right), for pairs of conference participants who have met (black circles) and
for pairs who are also friends in the online social network Facebook (red diamonds).
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weight distribution. For any value of ω, the cumulative distribution P (wij ≥ ω),
giving the probability that a randomly chosen link has weight larger than ω, is
larger, for any ω, when only links between FB friends are considered.

This relation between the time spent together and the fact of being friends
on FB is not speci�c of the cumulated duration of interactions. It is also true
that FB friends have met more often and that the longest interaction lasted longer
than between people who do not share a FB friendship, as shown by Figure 3.9
that displays the cumulated distribution of the number of interactions nij and the
maximum duration of these interaction ∆T+

ij .

3.3.2.3 Behavioral similarity

To compare networks and uncover their interplay, it is interesting to go beyond the
links and their weights, and to investigate and compare local structures. We focus
here on the distribution of cosine similarities between nodes to investigate whether
FB friends tend to have more similar behavioral patterns that in general. The cosine
similarity of two nodes i and j (simi,j) previously described in section 2.1, yields in-
deed a simple and natural way to measure the similarity between the neighborhoods
of these nodes.

In Figure 3.10, we compare the cumulative distributions of similarities simi,j

measured on the ACC network for the ESWC09 conference in the following cases:

1. all possible pairs (i, j);
2. pairs (i, j) of participants who are neighbors in the ACC network; and
3. pairs (i, j) of participants who share a tie in both the ACC and the FB net-

works.

The average similarity increases from case (1) to (3) (respectively 0.10, 0.13 and
0.20), and the proportion of pairs with zero similarity decreases (respectively 8.7%,
2.8% and 0%). Moreover, Figure 3.10 clearly shows that the value of the cumulative
distribution P (simi,j > σ) increases from case (1) to (3): for any similarity value
σ, the proportion of conference participants pairs having similarity larger than σ

in the ACC network increases if they are also friends on FB. The result is similar
for the HT09 conference. This result is particularly striking: indeed, the weight
of a link is related to the amount of interaction taking place between individuals,
and it could be argued that it is somehow expected that individuals who already
know each other will spend more time together. However, similarity measures go
much beyond by showing that the social behaviors of individuals in a real-life social
gathering are more similar if they share an online friendship.

For each tag i, we can also build at each instant t a �ngerprint given by the
vector nr(i, t) of the number of packets received by reader r in the time interval
[t, t − ∆t], where we choose ∆t = 20s. This �ngerprint can be used to obtain a
rough idea of the localization of each tag. We de�ne the �ngerprint similarity of
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two tags the time-averaged cosine similarity of their �ngerprints:

sim-fpi,j =
∫

dt
∑

r

nr(i, t)nr(j, t)√∑
r′ nr′(i, t)2

∑
r′ nr′(j, t)2

(3.5)

This quantity gives therefore a proxy for the similarity of the physical trajectories
of the tags i and j. Note that if nr(i, t) is exactly the same as nr(j, t) but with
a time shift of more that ∆t, the �ngerprint similarity will in general be smaller
than the presence duration at the event (if nr(i, t) is not constant). Other measures
of similarities could have been envisaged, such as the Hamming distance, but the
�ngerprint similarity emphasizes the cost of temporal translations.

In Figure 3.11, we compare the cumulative distributions of �ngerprint similar-
ities sim-fpi,j measured on the ACC network for the ESWC09 conference for the
three groups de�ned above. As for the previous similarity, the average �ngerprint
similarity increases from case (1) to (3) (respectively 285, 379 and 512). Again,
Figure 3.10 shows that the value of the cumulative distribution P (simi,j > σ) in-
creases from case (1) to (3): for any �ngerprint similarity value σ, the proportion
of conference participants pairs having �ngerprint similarity larger than σ in the
ACC network increases if they are also friends on FB. This result means that people
sharing a FB friendship tend be more often at the same place at the same time than
people who do not share this kind of virtual friendship.

3.3.2.4 Link prediction

We now turn to the issue of link prediction, formulated as follows: is it possible
to predict virtual friendships given any information on the aggregated interaction
network?

A natural piece of information is given by the links weights: for any value wth,
one can construct a predicted online social network F̂B(wth) by retaining all the links
in the ACC network with weight larger than wth, given the individuals corresponding
to the connected nodes have provided their information on FB. Each pair of nodes in
the ACC network can then be linked or not in the F̂B(wth) and in the FB network,
making inference right or wrong. There are two ways to be right6:

• links both belong to F̂B(wth) and to FB (called True Positives TP) or
• links are both absent from F̂B(wth) and from FB (True Negatives TN).

There are two ways to be wrong too:

• links belong to F̂B(wth) but not to FB (False Positives FP) or
• links are absent from F̂B(wth) but exists in FB (False Negatives FN).

This is summarized in table 3.5.
6Note that this terminology comes from information retrieval theory. An equivalent exists in

statistics, where FN and FP are respectively called type-I and type-II errors if TP is considered as

the null hypothesis.
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Link exists on FB Link does not exist on FB

ACC link with weight ≥ wth True positive (TP) False positive (FP)
ACC link with weight < wth False negative (FN) True negative (TN)

Table 3.5: Terminology of the link prediction.

By changing the threshold value wth, we can construct precision-recall or receiver
operating characteristic (ROC) curves, showing the recall, given by the true positive
rate (ratio of true positives to the sum of true positives and false negatives)

Recall =
TP

TP + FN
(3.6)

as a function of the false positive rate (FPR, ratio of false positive to the sum of
false positives and true negatives)

FPR =
FP

FP + TN
. (3.7)

In a perfect test, one wants to have all cases being either TN or TP. Thus, the
larger the Recall, the better, meaning that one correctly identi�es edges that are
in FB. Similarly, the smaller the FPR, the better, because one correctly identi�es
edges that are not in FB. These two quantities should ideally tend to their limit
values (1 for the Recall and 0 for the FRP), because a test refusing everything
would give the ideal null value for the FPR, but the Recall would be null as well,
and inversely, a test accepting everything would give a perfect Recall but a FPR
equal to 1. The denominator of these two quantities is always constant and does not
depend of the test. Random prediction would lead to an equal growth of these two
rates when wth decreases, and a diagonal straight line in the ROC plot. The quality
of the prediction is measured by the area under the ROC curve (AUC). As shown
in �gure 3.12, large values are obtained: our classi�er performs much better than
random guess. Interestingly, �gure 3.12 displays ROC curves using observed social
interaction networks aggregated over di�erent time windows. The best results are
obtained when considering the whole conference duration, but even the observation
of one single day gives a signi�cant improvement over random prediction. This
implies that the social interactions taking place during one conference day carry
already a large amount of information on the existence or not of other social links
between participants.

A third quantity, known as the Precision, is often used to quantify the accuracy
of a test. The precision is de�ned as the ratio of true positives to the sum of true
and false positives:

Precision =
TP

TP + FP
(3.8)

A precision quanti�es the proportion of correct identi�cation among the positives.
The higher the precision, the better. Figure 3.13 shows the precision with respect
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Figure 3.12: ROC curve for the prediction of FB links, given a ACC network either
aggregated over one conference day (June 2, 2009) in open black circles or over
the whole conference duration in red triangles. The Area Under Curve (AUC) is
respectively of 0.61 and 0.71. A random prediction of pairs of nodes would follow
the diagonal line, with an AUC of 0.5.
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Figure 3.13: Precision-recall curve for the prediction of FB links, given as ACC
network either aggregated over one conference day (June 2, 2009) in open black
circles or over the whole conference duration in red triangles.



72 Chapter 3. Testing socio-psychological theories

to the recall for the ESWC09 conference. This alternative visualization shows again
that social interactions already give information about the presence or not of friend-
ship ties on FB. The increased precision when taking the set of three days instead
of one outlines the information carried by longer timescales.

3.3.3 Discussion

The sensor-based infrastructure developed by the SocioPatterns collaboration cou-
pled with the Live Social Semantics platform has allowed us to get more insights
into the relation between virtual ties on social networking websites provided by the
web 2.0 and the amount of time spent together at conferences. This is a origi-
nal contribution toward the study of social multiplexity. The non-supervised tools
(i.e., the RFID sensors and the LSS website with its applications to collect virtual
ties) provide a very modern way to investigate the relationships between conference
attendees.

More precisely, we highlighted that

• face-to-face contacts between attendees who have provided information on
their Facebook accounts, as recorded by RFID sensors, are more frequent and
last longer if these attendees are friends on Facebook than if they were not,

• these Facebook friends also share a higher behavioral similarity (they inter-
act more similarly with the rest of the population) and a higher trajectory
similarity (they move from place to place in a similar manner),

• and face-to-face interactions provide relevant information on the existence of
Facebook friendships, as shown by the very good results of the link prediction.

These results shed light on the interrelation between face-to-face proximity and vir-
tual ties. Though the relation between geographic proximity at the city scale and the
existence of virtual ties as already been described elsewhere (e.g. [Takhteyev 2012]
for Twitter, a social networking and micro-blogging website that allows users to post
and read 140 characters limited messages and [Liben-Nowell 2005] for LiveJournal,
an other blogging website), to the best of our knowledge, this is the �rst analysis
showing this interrelation at the individual scale.

3.4 Partial conclusion and perspectives

The empirical study of social interactions, and in particular the in�uence of peer
behaviors on individual outcomes is of major interest in a broad range of social
sciences, such as human behavior, sociology, economics or education economics, and
organizational science [Manski 1993]. The collection of empirical social network data
represents however a major barrier for the understanding of social in�uences, espe-
cially in the context of models such as those introduced by [Doreian 1980] or more
recently by [Steglich 2010]. The development of unsupervised methodologies that
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allow researchers to collect large-scale, high-resolution dynamical data on human
behavior in a reproducible manner is a valuable asset. In order to develop this per-
spective, detailed comparisons between automated and supervised data collection
methods, such as surveys or direct observations, will be highly desirable and crucially
important to assess the speci�c limitations and potentials of the methodology.

With the analysis of homophily among children and the relation between virtual
friendships and face-to-face proximity presented previously in this chapter, we have
proposed a sociological angle to our datasets. Not only are we able to recover features
already described in the literature, we also present some new results, thanks to the
particularities of the protocol designed by the SocioPatterns collaboration, especially
in what regards weak relationships.

Several perspectives can be envisioned at this step. First the study of the sta-
bility of encounters on longer timescales, with possibly separate waves and more
individual characteristics is required to assess the robustness of our results which
are obtained on a very short timescale of few days. Longer datasets are needed as
well to investigate the temporal evolution of social ties and its e�ect on face-to-face
proximities. The analysis in [Schaefer 2010] on the relative importance of reciprocity,
popularity and triad closure is an a good example of what kind of analysis would
be allowed by extended datasets. Second, social homophily is generally considered
to be mainly the outcome of two mechanisms: peer in�uence and peer selection. In
[Steglich 2010] is shown that their relative importance can di�er considerably among
social contagion processes (they study the case of drug and alcohol consumption).
The type of face-to-face dynamic contact data with individual, possibly changing,
characteristics is likely to provide interesting results with the methodology devel-
oped by Steglich et al. Thirdly, the question of behavioral or virtual friendships
prediction can be further investigated with larger dataset. The question of human
predictability has already been tackled in [González 2008] and [Song 2010] in the
�eld of human trajectories, in [Takaguchi 2011] in the choice of conversation part-
ners and in [Wang 2012] for the user behavior on two websites (a who-trust-who
consumer review site and a location based social network). The kind of datasets
on face-to-face proximities would be adequate to quantify how deterministic this
behavior is, given the information available on individuals and past interaction pat-
terns.
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4.1 Motivations

In section 2.2.1 we have seen that the dynamics of face-to-face encounters exhibit
long-time correlations and memory e�ects in agreement with what has been found
elsewhere [Hui 2005]. This is not a peculiar feature of face-to-face encounters, similar
properties have been observed in other contexts related to human interactions. For
example, Eckmann et al. have shown using a dataset of emails exchanged in one of
their universities that the distribution of interval times ∆t between an email and its
answer can be approximated by a power law with an exponent close to 1 on about
5 orders of magnitude [Eckmann 2004]. Rybski and al. with a statistical analysis
of electronic messages in two Internet communities (the �rst is mainly composed of
men having sex with men and the other one of teenagers) found that the number of
messages users send to each other show long term correlations [Rybski 2009]. Onnela
et al. analyzed a mobile phone call network of a mobile provider that contains a
�fth of the population of an anonymous European country [Onnela 2007]. In this
network, nodes correspond to phone numbers and an edge exists between two nodes
if there has been at least one call between the corresponding phone numbers. A
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weight, giving the total number of calls over the temporal span of the dataset, is
associated to each edge, They noticed that the weight distribution is fat-tailed with
an exponent close to 2 and showed that this weight distribution is responsible for a
higher vulnerability to targeted removal of edges.

This repeated occurrence of broad distributions of activity in social systems
has raised a considerable interest, especially in the physics community because it
was reminiscent of the behavior of order parameters in phase transitions. Inter-
estingly, many phase transitions of physical systems (such as alloys, super�uids
and ferromagnets) can be classi�ed into universality classes, characterized by the
same set of critical exponents. This common behavior of very di�erent physical
systems was explained by renormalization group theory, which showed that simple
mechanisms could drive the dynamics of the system and be more important than
speci�c microscopic chemical or physical properties for the macroscopic behavior.
By analogy, similar organizing principles have been looked for in social systems.
For broad distributions, mainly two kinds of explanations have been invoked: the
�rst being a rich-get-richer e�ect, introduced �rst by Simon in 1955 and the sec-
ond one coming from optimization processes as proposed by Mandelbrot in 1953
[Simon 1955, Mandelbrot 1953]1.

In the context of temporal dynamics, Barabási proposed in 2005 a model based
on queuing processes to explain why interevent time distribution for electronic com-
munications such as emails or phone calls is often heavy tailed [Barabási 2005].
Previously in the literature of computer science that deals with managing tra�cs,
queuing times were basically considered as Poisson processes which can not account
for the presence of the non-markovian dynamics. In Barabási's model, individuals
face a set of tasks to which they assign a perceived priority. Most tasks will be
executed shortly while a few will wait very long to be done, so that the waiting
time of the various tasks will be Pareto distributed. This simple mechanism can
explain why in a situation in which an individual is presented with multiple tasks
and chooses among them based on some perceived priority, the dynamics may not
be Poissonian. From this model, it is possible to sort di�erent types of queuing
systems into universality classes depending on the exponent of the waiting time
distribution [Vázquez 2006]. This model belongs to the category of rich-get-richer
e�ect explanation, because a task with a very low priority will wait very long to
be done and other tasks with an average medium priority will arrive in the list of
things to do and be executed before the low priority one.

In collaboration with Ginestra Bianconi and Kun Zhao from the Northeastern
University and my advisor Alain Barrat, I have worked on a similar kind of model
to explain the dynamics of groups. Two articles have been published in Physi-

1In his article in 1953, Mandelbrot suggests an explanation about the long-tailed distribution

of word occurrences in books. The basic idea is to consider a language as an information coding

system: writing corresponds to the coding of information, while reading corresponds to the decoding

step. The e�ciency of a language, in this information encoding perspective, could rely on an

implicitly optimizing strategy. Di�erent criterion of optimality are tested and they would all lead

to the same distribution family of word occurrences.
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cal Review E on the subject [Stehlé 2010, Zhao 2011]. Previously, various types
of models have been introduced to analyze the clustering and splitting of groups
(see [Morgan 1976] for a classi�cation of these models), but to the best of our knowl-
edge, no work ever took the large temporal correlations into account. We introduce
this aspect by means of a microscopic self-reinforcement mechanism that generates
broad distributions such as those observed in the SocioPatterns deployments. Re-
latedly but with a perspective closer to the rational action theory [Hechter 1997],
Johnson et al. proposed a model based on microscopic or individual-based mecha-
nisms to explain the formation of groups on longer temporal scales. The meaning of
group they consider is closer to the one used by sociologists, which includes a tem-
poral persistence of the group or a repeated interaction, and they use their model
to analyze empirical groups with data collected about guilds in World of Warcraft
and urban street gangs in Long Beach, California [Johnson 2009]. Moreover, their
model focuses on group size distributions and not on the dynamics.

4.2 Model of interactions in a homogeneous population

The model developed with G. Bianconi, K. Zhao and A. Barrat belongs to the frame-
work of parsimonious modeling adopted within physics [Castellano 2009]. The prin-
ciple is to develop simple, generic and easily implementable models that reproduce
the empirical facts in order to distinguish explanatory mechanisms. In a second
step, this kind of model can be used as benchmark to analyze how these bursty
mechanisms could a�ect other dynamical properties. In the case of group dynamics,
we are in the �rst place interested in mechanisms that generate heavy-tailed distri-
butions for temporal quantities, but after having successfully confronted our model
with empirical data, one might be interested in investigating how these properties
a�ect the way information or infectious diseases di�use in a population. It can be
done either with empirical data (see the following chapter 5) for more realism, but
for correctly assessing the e�ect of any network characteristic such as the weight
distribution, a tunable model such as the one we propose may be more appropriate.

Most parts of this chapter are excerpts from published work [Stehlé 2010,
Zhao 2011].

4.2.1 Description of the model

The model proposes a description of a dynamic network formed by disconnected
groups of agents which evolve by splitting and merging. It aims at describing the
dynamics of human social interactions in the context of small discussion groups, at
short time scale and can reproduce features observed in empirical datasets such as
the distributions of contact durations and of the time interval between two contacts.
The mechanism is relatively simple, which allows for both analytical investigations
and numerical simulations.

The model is composed of N agents that can interact with each other. It could
represent people in a closed area, such as a conference hall, or a building, or social
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animals in a relatively small environment. In this �rst assumption, we neglect spatial
dispersion of agents and assume a well mixing dynamics. Each agent can either be
isolated or interacting in a clique. During the evolution of the system, he can either
stay alone, leave a group or be introduced to a group, depending on its state. We
exclude the possibility of group merging or group splitting. More precisely, agents
are de�ned by two variables: pi the number of individuals an agent i is interacting
with (also called coordination number) and ti the last time the variable pi evolved.
At each time step t, an agent i is chosen at random. Two situations are possible,
depending on the state of this agent.

• If i is isolated (pi = 0), then with a probability b0 f(t, ti) it chooses a com-
panion j to form a pair. This companion j is chosen among all other isolated
agents, with a probability proportional to Π(t, tj). Then both pi and pj are
set to 1 and ti and tj are updated to t.

• If i is interacting in a group of size p+1, a change can occur with probability
b1 f(t, ti). With probability λ this agent leaves its group to become isolated
(pi → 0 and ti → t and for all other members of the group pj → p−1, tj → t),
and with probability 1−λ it introduces to the group an isolated agent k chosen
with probability proportional to Π(t, tk) among isolated agents (for i, k and
all members of the group, pi → p+ 1 and ti → t).

The parameters b0 and b1 control respectively the probability to stay isolated or to
keep the group constant, and λ controls the tendency to leave groups rather than
make them increase in size. In the limit λ = 0, groups can only grow while on the
contrary, if λ = 1, then only pairs are allowed as groups. The model dynamical
behavior also depends on the functions f and Π.

In order to test the model against empirical data, the main quantities of interest
are the times spent by agents in each state. To compute it analytically in the approx-
imation of continuous time and number of individuals, we write the rate equation of
the number of agents in each state. At time t, the evolution of the number Np(t, t

′)
of agents that are in state p since t′ is in the mean-�eld approximation:





∂tN0(t, t
′) = −

N0(t, t
′)

N
b0 [f(t, t

′) + Π(t, t′)(r(t) + (1− λ)α(t)] +
∑

p≥1

πp,0(t)δt,t′

∂tN1(t, t
′) = −2

N1(t, t
′)

N
b1f(t, t

′) + [π0,1(t) + π2,1(t)] δt,t′

∂tNp(t, t
′) = −(p+ 1)

Np(t, t
′)

N
b1f(t, t

′) + [πp−1,p(t)

+πp+1,p(t) + π0,p(t)] δt,t′ for p > 1

(4.1)

where δt,t′ is a Dirac delta function, equal to 0 everywhere except when t = t′, πp,q(t)
is the average number of agents going from state p to state q at time t, and

r(t) =

∑
t′ N0(t, t

′)f(t, t′)∑
t′ N0(t, t′)Π(t, t′)

(4.2)

α(t) =

∑
p≥1,t′ Np(t, t

′)b1f(t, t
′)∑

t′ N0(t, t′)b0Π(t, t′)
(4.3)
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where in the sums t′ < t. In this equation, α(t) indicates the rate at which isolated
agents are introduced by others in already existing groups of interacting agents.

If we consider functions f and Π that depend only on t − t′, then a stationary
solution (if it exists) would be, by de�nition, invariant by time translation. The
variables α, r and {πp,q}p,q which depend only on t would remain constant and the
time dependency of {Np}p∈N would be reduced to one time variable, for example
τ = (t− t′)/N , which is the normalized duration since the last state change.

The average number of agents going from state p to state q at time t, namely
πp,q, can be written explicitly:





π0,1 = 2b0
∑

τ

f(τ)N0(τ)

π1,0 = 2b1λ
∑

τ

f(τ)N1(τ)

πp,0 = b1λ
∑

τ

f(τ)Np(τ) for p > 1

πp+1,p = pb1λ
∑

τ

f(τ)Np+1(τ) for p ≥ 1

π0,p = b1(1− λ)
∑

τ

f(τ)Np−1(τ) for p > 1

πp,p+1 = pb1(1− λ)
∑

τ

f(τ)Np(τ) for p ≥ 1

(4.4)

4.2.2 Analytical solution with constant transition probabilities

In the case where f is a constant and equal to Π (f(τ) = Π(τ) = f), it is easy to
see that a stationary solution {Np}p∈N decays exponentially with τ . We have





N0(τ) =
∑

p≥1

πp,0 exp(−(2 + (1− λ)α)b0fτ)

N1(τ) = (π0,1 + π2,1) exp(−2b1fτ)

Np(τ) = (πp−1,p + πp+1,p + π0,p) exp(−(p+ 1)b1fτ)

(4.5)

In the limit N → ∞, we approximate sums by integrals to integrate Np(τ) over τ

for p ≥ 1 and obtain relations between the number of agent in each state:





N0 =
λ

2 + (1− λ)α

b1
b0


∑

p>1

Np + 2N1




N1 =
b0
b1
N0 +

λ

2
N2

Np =
1

p+ 1
(p(1− λ)Np−1 + pλNp+1) for p > 1

(4.6)

where Np =
∑

τ Np(τ) for p ≥ 0.
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The distribution Pp(τ) of the time spent in a given state p, follows an exponential
decay, with parameter (p+ 1)b1f if p ≥ 1. In the case where p = 0, the parameter
is slightly more complicated analytically because it involves the ratio α. It can be
analytically solved with the previous equations. Using the equation set 4.6, the
following relation is obtained:

− λN1 +
b0
b1
N0 = 2λ

∞∑

p=2

Np. (4.7)

This relation introduced in the de�nition of α given in 4.3 induces that α = λ−1.
Consequently, the distributions Pp(τ) of the time spent in a given state p behaves
exponentially as:





P0(τ) ∝ exp

(
−(2 +

1− λ

λ
)b0fτ

)

Pp(τ) ∝ exp (−(p+ 1)b1fτ) for p ≥ 1

(4.8)

where ∝ means proportional to. One observe that the distribution P0 decays faster
when λ is close to 0, i.e., when the probability to leave a group is much larger than
the probability to introduce an isolated person to a group.

4.2.3 Analytical solution with a rich-get-richer e�ect

The more interesting case where f and Π are decaying functions of τ corresponds
to a situation with a rich-get-richer e�ect because the more an individual stays in
a given state, the less likely its state will change. More precisely it implies that the
longer an agent is interacting in a group, the smaller is the probability that he/she
will leave the group; the longer an agent is isolated, the smaller is the probability
that he/she will form a new group. For the sake of simplicity, we focus on the
situation f = Π so that r = 1 in equation (4.2), which permits some simpli�cations.

For some functions of f , calculations can be carried out completely. For example,
a choice that is relevant for modeling interactions such as those collected through
the SocioPatterns collaboration, is to consider f(τ) = Π(τ) = (1 + τ)−1. In that
situation, a stationary solution is characterized by Np(τ) for p ≥ 1 scaling as a
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shifted power law with exponent (p+ 1)b1
2:





N0(τ) =
∑

p≥1

πp,0(1 + τ)−b0(2+(1−λ)α)

N1(τ) = (π0,1 + π2,1)(1 + τ)−2b1

Np(τ) = (πp−1,p + πp+1,p + π0,p)(1 + τ)−(p+1)b1 for p ≥ 2

(4.10)

More calculations are needed to obtain the analytical expression of other quantities,
but with the expression of {πp,q}, given in equation (4.4), as functions of {Np}p∈N
and f , we can obtain the relations





π1,0 = λπ0,1 + 2λπ2,0

π2,0 =
1− λ

2
π1,0 + λπ3,0

πp,0 = (1− λ)πp−1,0 + λπp+1,0 for p ≥ 2

(4.11)

These relations de�ne a linear recurrence relation on the πp,0 and solving this relation
in πp,0 allows one to �nd the analytical expression of α.

Consequently, under the conditions that b1 > 1/2, λ > 1/2 and b0 > (2λ −

1)/(3λ − 1), the distribution functions Pp(τ) of the time spent in a given state p

behave as {
P0(τ) = (1 + τ)−1−b0

3λ−1

2λ−1

Pp(τ) = (1 + τ)−1−(p+1)b1 for p ≥ 1
(4.12)

The conditions on the parameters b0, b1 and λ de�ne a phase diagram of the
model and outside these boundaries, the hypothesis of stationarity is violated. The
�gure 4.1 gives a three-dimensional view of the phase diagram.

In the stationary region (λ > 1/2, b0 > (2λ−1)/(3λ−1), b1 > 1/2), the average
state of an individual 〈p〉 is, by de�nition:

〈p〉 =

∞∑

p=0

p
∑

τ

Np(τ)

N
(4.13)

Using the conservation of the number of agents, N =
∑∞

p=0

∑
τ Np(τ), and the

expressions of the Np(τ), one �nds:

〈p〉 =
π1,0
2λ

∑

p≥1

p(p+ 1)

(p+ 1)b1 − 1

(
1− λ

λ

)p−1

(4.14)

2 Of course, any decreasing functions f and Π can be used. For example we can show analytically

that for f(τ) = Π(τ) = (1+τ)−ν with ν positive and di�erent from 1, if the stationarity hypothesis

holds, {Pp(τ)}p∈N become stretched (ν < 1) or compressed exponentials (ν > 1). In the case of

λ = 1, the number of individuals in state 0 or 1 for τ is given by














N0(τ) = exp

(

−
2b0
1− ν

(1 + τ)1−ν

)

N1(τ) = exp

(

−
2b1
1− ν

(1 + τ)1−ν

) (4.9)
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Figure 4.1: Phase diagram of the model with f(τ) = Π(τ) = (1+ τ)−1. Boundaries
are de�ned by b1 > 1/2, λ > 1/2 and b0 > (2λ − 1)/(3λ − 1). Outside these
boundaries, the stationarity hypothesis does not hold anymore.

where

π1,0 =


 1

2
(
b0 −

2λ−1
3λ−1

) +
1

2λ

∑

p≥2

p

pb1 − 1

(
1− λ

λ

)p−2


−1

(4.15)

For λ → 0.5+, the average state 〈p〉 diverges indicating that in this limit, the non-
stationary state is governed by the presence of a large cluster of size O(N). This
dynamical transition has not been observed among human beings, but it may be
present in some animal behaviors, even though empirical measurements are limited
[Morgan 1976, Gueron 1995, Bisson 2012].

Analytical results can also be obtained outside the stationary region. If
α(t) given in equation (4.3) converges to a time-independent variable, that is
limt→∞ α(t) = α̂, a scaling assumption on the transition rates πm,n(t) allows to
analyze situations where these quantities evolve with t. This is done in the follow-
ing manner.

First we make the assumption that transition rates are either constant or decay-
ing with time according to power-laws, that is

πm,n(t) = π̃m,n

(
t

N

)−βm,n

. (4.16)

To check this assumption, we insert these expressions in equations (4.4) and in the



4.2. Model of interactions in a homogeneous population 83

following equations that give the large time limit expression of {Np}p≥0

N0(t, t
′) =

∑

p≥1

πp,0(t
′)

(
1 +

t− t′

N

)−b0[2+(1−λ)α̂]

(4.17)

N1(t, t
′) =

(
π0,1(t

′) + π2,1(t
′)
)(

1 +
t− t′

N

)−2b1

(4.18)

Np(t, t
′) =

(
πp−1,p(t

′) + πp+1,p(t
′) + π0,p(t

′)
)(

1 +
t− t′

N

)−(p+1)b1

(4.19)

For largeN , the approximation of sums by integrals allows to obtain that for λ > 0.5,
the transition rate exponents are all equal to

βm,n = max

(
0, 1− b0

3λ− 1

2λ− 1
, 1− 2b1

)
∀m,n. (4.20)

For λ ≤ 0.5, the self-consistent assumption breaks down and we will resort to nu-
merical simulations.

The non-stationary region breaks down in two parts:

• for (λ > 1/2, b0 < (2λ − 1)/(3λ − 1) and/or b1 < 0.5), the transition rate is
decaying with time as a power-law but the distributions of lifetimes of groups
Pp(τ) and of intercontact times P0(τ) remain stationary. The coordination
number in the limit t/N ≫ 1 remains small, even as λ → 1/2. In particular,
the theoretical solution of the model predicts that for λ > 1/2 and t → ∞,

〈p〉 =





1 if b1 < b0
3λ− 1

2(2λ− 1)

0 otherwise

• for (λ < 0.5), the dynamics strongly depends on the number of agents N . The
self-consistent assumption on the transition rates breaks down and we �nd
numerically that the average coordination number 〈p〉 depends on the number
of agents and on time.

4.2.4 Numerical simulations

We have performed numerical simulations to validate the analytical results for var-
ious f and Π and values of the parameters b0, b1 and λ, and with di�erent system
sizes N .

In the stationary region (b0 > (2λ− 1)/(3λ− 1), b1 > 1/2 and λ > 1/2), up to
10N to 100N time steps are needed until transition rates remain constant, as shown
in Figure 4.2 displaying the time evolution of π1,0 with di�erent parameter values.
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Figure 4.2: Evolution of the transition rate π10(t) in the di�erent parameter regions
for λ = 0.7. Numerical simulations are performed with N = 1000 agents for a
number of time steps Tmax = 104N and averaged over 10 realizations. The parameter
set for the green circles (b0 = b1 = 0.8) lies inside the stationary region, and the red
squares (b0 = 0.3, b1 = 0.7) and blue triangles (b0 = 0.7, b1 = 0.3) are outside the
stationary region. The lines indicate the analytical predictions.
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tions are done with N = 1000, b0 = b1 = 0.7, λ = 0.8 and the simulation is run for
T = 106N time steps. The lines are the analytical predictions.
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4.2.4.1 In the stationary phase region

In the situation where f(τ) = Π(τ) = (1+ τ)−1, we compute the distribution Pp(τ)

of time spent in a given state p. Figure 4.3 shows those distributions for p ∈ J0, 4K,
computed numerically and logbinned (see appendix in [Pastor-Satorras 2004] for
more details on plotting heavy-tailed distributions). This �gure suggests a good
agreement with analytical results predicting shifted power laws.

Figure 4.4 shows the average state 〈p〉 for di�erent parameter sets. We recover
the results predicted in equation (4.14). When approaching the boundaries de�ned
by the parameters b0 and b1, points obtained with longer computations (Tmax =

104N) are slightly closer to the analytical line than those obtained with Tmax =

103N . It can be due to a longer convergence time to the stationary state. For
λ → 0.5+, the divergence of the average state is observed numerically.

In �gure 4.5, we show in the left panel the distribution of contact durations
between two agents, which di�ers from P1(τ) when λ 6= 1 because a state p = 1 can
be left either by splitting the pair or by introducing an other agent to the group,
making the state variable change while the contact goes on. In the middle panel,
we have represented the distribution of time elapsed between the beginnings of
successive contacts of an agent A with possibly two di�erent other agents B and C.
This quantity is of great interest in the context of contagion processes because it is
fully related to the time scale of the di�usion. In the right panel, the distribution
of triads durations is plotted, which is again di�erent from P2(τ) because triads
exist as well in larger cliques. All these quantities exhibit heavy tailed distributions,
similarly to empirical observations as noticed in section 2.2.1.

4.2.4.2 Out of the stationary phase region

The system exhibits two di�erent non-stationary behaviors depending on the value
of λ.

For (λ > 1/2, b0 < (2λ − 1)/(3λ − 1) and/or b1 < 0.5), transition rates decay
with time as power-laws as shown in Figure 4.2.

Figure 4.6 displays the distributions of lifetimes of groups Pp(τ) and of intercon-
tact times P0(τ) given by numerical simulations. These remain stationary and are
in agreement with theoretical results. The average coordination number remains
small. Theoretical analysis indeed predicted it to reach a limit of 0 or 1 in the limit
t → ∞, depending on the maximum value between 1 − 2b1 and 1 − b0

3λ−1
2λ−1 (see

equation (4.21)). Figure 4.7 shows the agreement of this predicted behavior with
simulation results for several parameter values in this nonstationary region.

If λ < 0.5, i.e., if a group size is more likely to increase than to decrease, a large
cluster appears with a size of O(N), lasting on a diverging time scale. Interestingly,
it seems that the distributions of {Pp(τ)}p∈N remain stationary. This might be
an interesting feature because most empirical data are obtained in non-stationary
environments but exhibit stationary distribution.
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Figure 4.8: Average coordination number 〈n〉 as a function of time, for λ = 0.2,
b0 = b1 = 0.7. Simulations are performed with N = 250 (open circles) and N = 500

(�lled squares) agents for a number of time steps Tmax = 105N .

4.2.5 Aggregated networks

In the previous paragraphs we have shown how our modeling framework produces
dynamical properties of the interactions between agents that yield broad distribu-
tions of contact and intercontact times. In order to understand the structure of
the resulting interaction networks at coarser temporal resolutions, it is as well in-
teresting to investigate the properties of the aggregated networks constructed as in
Chapter 2.

Given a starting time t0 and a temporal window ∆T the nodes of these networks
are the agents and a link is drawn between two agents whenever they have been in
contact between t0 and t0 +∆T , with a link weight given by the total time during
which they have interacted in [t0, t0 + ∆T ]. As in Chapter 2, the degree ki of an
agent i is given by the number of distinct agents with whom i has been in contact
in [t0, t0 +∆T ], while its strength si is the sum of the interaction times with other
agents, and the participation ratio Y2(i) quanti�es the heterogeneity of the times
spent by i with these other agents.

As an exhaustive exploration of the aggregated networks and of how their prop-
erties depend on the model's parameter would be tedious, we simply report in Fig-
ure 4.9 the properties of aggregated networks for increasing window lengths ∆T

and for two sets of parameters. Some properties are qualitatively similar to the
empirically observed networks. In particular, the degree distributions are peaked
around an average value that increases with ∆T . As time passes each agent en-
counters more and more distinct other agents, and the distribution P (k) globally
shifts towards larger degrees. The links weights distributions are broad and extend
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to larger values as ∆T increases. Some other properties seem to depend strongly
on the model's parameters. In particular, the average strength of nodes of degree
k, and the average participation ratio of nodes of degree k, can have shapes rather
di�erent from the empirical ones. Moreover, the time window lengths ∆T on which
the aggregated network remains sparse are rather restricted.

4.3 Variation on the model

To illustrate the model's versatility, two examples of realistic extension of the model
are provided here. In the �rst, agents can have heterogeneous propensities to form
groups, in the second, the population is allowed to vary with time for example to
account for entrance and exit �uxes.

4.3.1 Heterogeneous population

In the previous section, agents were considered to have the same tendency to form a
group or to leave a group. Real social systems display however additional complexity
since the social behavior of individuals may signi�cantly vary across the population.

A natural extension of the model presented above consists therefore in making
the probabilities to form or to leave groups dependent on the agent who is updating
its state. For that purpose, we assign to each agent i a parameter ηi that character-
izes its propensity to form social interactions. In real networks this propensity will
depend on the features of the agents. In the model we assume that this propensity,
that we call sociability, is a quenched random variable, which is assigned to each
agent at the start of the dynamical evolution and remains constant, and we assume
for simplicity that it is uniformly distributed in [0, 1]. In this modi�ed model, the
probability pip(t, t

′) that an agent i with coordination number p since time t′ changes
his/her coordination number at time t is given by





pi0(t, t
′) =

ηi
1 + (t− t′)/N

pip(t, t
′) =

1− ηi
1 + (t− t′)/N

, for p ≥ 1.
(4.21)

In this setup, the parameters (b0, b1), which did not depend on i in the original
version of the model, are replaced for each agent i by the values (ηi, 1 − ηi): a
large ηi corresponds to an agent who prefers not to be isolated.

The agents' heterogeneity adds a signi�cant amount of complexity to the prob-
lem, and we have reached an analytical solution of the evolution equations only in
the case of pairwise interactions (λ = 1).

Let us denote by N0(t, t
′, η) the number of isolated agents with parameter ηi ∈

[η, η + ∆η] who have not changed their state since time t′. Similarly, we indicate
by N1(t, t

′, η, η′) the number of agents in a pair joining two agents i and j with
ηi ∈ [η, η + ∆η], ηj ∈ [η′, η′ + ∆η], who have been interacting since time t′. The
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Figure 4.9: Aggregated networks' characteristics for the model with constant number
of agents (N = 250) for time windows of increasing lengths ∆T and two parameter
sets.
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mean-�eld equations for the model are then given by




∂N0(t, t
′, η)

∂t
= −2

N0(t, t
′, η)

N
p0(t, t

′, η) + πη
10(t)δtt′

∂N1(t, t
′, η, η′)

∂t
= −

N1(t, t
′, η, η′)

N

[
p1(t, t

′, η) + p1(t, t
′, η′)

]
+ πηη′

01 (t)δtt′

(4.22)

With the expression for pn(t, t′, η) given by equations (4.21) we �nd




N0(t, t
′, η) = πη

10(t
′)
(
1 +

t− t′

N

)−2η

N1(t, t
′, η, η′) = πηη′

01 (t′)
(
1 +

t− t′

N

)−2+η+η′

.

(4.23)

The transition rate πη
10 gives the rate at which agents with ηi ∈ [η, η +∆η] become

isolated, and πηη′

01 is the rate at which pairs ij with ηi ∈ [η, η + ∆η], ηj ∈ [η′, η′ +

∆η] are formed. These rates can be expressed as a function of N0(t, t
′, η) and

N1(t, t
′, η, η′) according to





πη
10(t) =

∑

t′,η′

N1(t, t
′, η, η′)

N

[
p1(t, t

′, η) + p1(t, t
′, η′)

]

πηη′

01 (t) = 2
∑

t′,t′′

N0(t, t
′, η)N0(t, t

′′, η′)

C(t)N
p0(t, t

′, η)p0(t, t
′′, η′)

(4.24)

where C(t) is a normalization factor given by

C(t) =
t∑

t′=1

∑

η

N0(t, t
′, η)p0(t, t

′, η). (4.25)

To solve this problem with the same strategy used for the model without hetero-
geneity we make the self-consistent assumption that the transition rates are either
constant or decaying as a power-law with time:

πη
10(t) = ∆ηπ̃η

10

( t

N

)−β(η)
(4.26)

πηη′

01 (t) = ∆η∆η′π̃ηη′

01

( t

N

)−β(η,η′)
. (4.27)

By using these expressions in equations (4.23) and (4.24), we �nd the following
analytical prediction

β(η) = max(1− 2η, η − 1/2)

β(η, η′) = β(η) + β(η′) (4.28)

and the value of π̃η
10 is given by

π̃η
10 =





∆η

B(1− 2η, 2η)
if η ≤ 1/2

∆η

B(η − 1/2, 1)
if η ≥ 1/2

(4.29)
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In order to check the validity of the mean-�eld calculation, we study the probabil-
ity distribution P0(τ) of the durations of inter-contact periods and the distribution
P1(τ) of the durations of pairwise contacts, which are given, when averaged for a
total simulation time Tmax, by

P0(τ) ∝

∫ Tmax−Nτ

0
dt

∫ 1

0
dη πη

10(t) η (1 + τ)−2η−1 (4.30)

P1(τ) ∝

∫ Tmax−Nτ

0
dt

∫ 1

0
dη

∫ 1

0
dη′(2− η − η′)(1 + τ)η+η′−3 (4.31)

In Figure 4.10 we compare the probabilities of intercontact time P0(τ) and contact
time P1(τ) averaged over the full population together with the numerical solution
of the stochastic model, showing a perfect agreement. In Figure 4.11, moreover, we
show the distributions P η

1 (τ) of the contact durations of agents with ηi ∈ (η, η+∆η).
Power-law behaviors are obtained even at �xed sociability, and the broadness of the
contact duration distribution of an agent increases with the sociability of the agent
under consideration.

As previously mentioned, the model can be extended by allowing the formation
of large groups, by setting λ < 1. Power law distributions of the lifetime of groups
are again found and, as in the basic model without heterogeneity of the agents,
larger groups are more unstable than smaller groups, as Pn(τ) decays faster if the
coordination number n is larger. As the parameter λ → 0.5 there is a phase tran-
sition and the average coordination number diverges. Overall, the main features of
the model are therefore robust with respect to the introduction of heterogeneity in
the agents' individual behavior.

4.3.2 Fluxes in the population

A second realistic extension of the model consists in considering a time-varying
population size. In real situations, the number of individuals present on a premise
�uctuates, re�ecting activity patterns (e.g. co�ee breaks in conferences, breaks in
playground and lunch in a school), circadian rhythm (e.g. day/night alternation)
and simply entrances and exits on a premise (e.g. visit �ux in a museum). This
population �uctuation is for instance well captured by the protocol measuring face-
to-face proximity, as presented in chapter 2.

In the model, time-variation of the population size can be adequately modeled
by a supplementary individual variable, that can take two values: present or absent.
In the former case, the interaction dynamics of this individual would be the same as
described previously. In the latter case, the individual would simply be considered
as isolated, initiating no interaction and being forbidden to join any group. Instead
of considering a �xed number of agents N , the system is composed at a given time t
of N(t) present agents. There are mainly two approaches to model a �uctuating
population size:

• in a supervised manner, we can impose a time series for the number of present
individuals, for example by taking an empirical time series in a dataset, and
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then each time the number N(t) changes, randomly selecting (or with any
other criterion) present agents become absent (and stop all their interactions)
or conversely, absent agents become present,

• or in a rather unsupervised way, an additional evolution rule can be added,
for example with random rates of entrance and exit of individuals, inducing
random �uctuations in the population size.

The present agents becoming absent can either become present again, or not, de-
pending on the modeler wishes. It is then possible to obtain by numerical simulations
the temporal statistics described previously, such as the time spent by an agent in a
given state, or of the duration of contact and inter-contact times, by now considering
only present agents.

I will brie�y report hereafter the implementation of this extension to the model.
The followed approach is to impose the number of agents present in the system at
each time according to the empirical ESWC09 time series, described in section 2.2.
Given the temporal resolution of the dataset of 20s, and considering that agents act
independently, and make choices in a simultaneous way, the empirical time step is
identi�ed with the model time step τ , with on average one attempted status update
per present agent. After each series of N(t) attempted status updates corresponding
to a duration τ in the model description, the manipulation of the number of present
agents is considered. If N(t+1) > N(t), some random agents are removed (i.e., put
in the absent state) in order to match the desired N(t + 1). If N(t + 1) < N(t),
absent agents are introduced into the system, and put into the isolated state. The
system evolves in this way for the number of time steps of the empirical dataset.

Figure 4.12 compares the resulting activity patterns between the empirical
dataset ESWC09 and the numerical simulations of the model, for two values of
the parameter set (b0, b1, λ), when N(t) is taken from the empirical ESWC time
series. Although only N(t) is imposed to be exactly the same in the model and in
the data, the model parameters can be tuned so that other measures (number of iso-
lated nodes, of links, of triangles) remain simultaneously similar to real data. Their
highly non-stationary dynamics, similar to those empirically observed, are highly
correlated to the node number's. However, distributions of contact durations and
of time spent by agents in each state, obtained with the numerical simulation of the
model, remain much more stationary, as observed empirically (see section 2.2.1).
These distributions are broad, as in the original model with constant number of
agents, do not depend strongly on the imposed N(t), and can be superimposed
from one time window to the next. Similarly, basic quantities constructed on ag-
gregated contact networks over di�erent time windows, such as node degrees k, the
average strength 〈s(k)〉 and the average participation ratio 〈kY2(k)〉 of the nodes of
degree k, behave comparably to empirical quantities (confront �gures 4.13 and 4.14
to �gures 2.5 and 2.6 of chapter 2).

Finally, the versatility of the modeling framework is illustrated by considering
the case in which a present becoming absent agent cannot become present anymore.
This can adequately model an environment with a stream of coming and leaving



4.3. Variation on the model 95

0 5000 10000 15000
0

50

100

N
o

d
es

 N
 

 L
in

k
s 

E

0 5000 10000 15000
0

50

100 N
E

0 5000 10000 15000
0

50

100

n
 =

 0

0 5000 10000 15000
0

50

100

0 5000 10000 15000
0

10

20

30

n
 =

 2

0 5000 10000 15000
0

10

20

0 5000 10000 15000
time steps

0

2

4

6

8

n
 =

 3

0 5000 10000 15000
time steps (x 20s)

0

2

4

6

8

Figure 4.12: Timelines of the number of (from top to bottom): nodes and links
in the instantaneous network (top), isolated nodes, groups of 2 nodes, groups of
3 nodes. The left column corresponds to the model with N(t) imposed from the
ESWC09 dataset and two sets of parameters, namely (b0, b1, λ) = (0.55, 0.8, 0.9)

(black curves) and (0.7, 0.7, 0.8) (red curves), the right column to the real ESWC09
dataset.

0 50 100 150 200
k

0

0,01

0,02

0,03

0,04

P
(k

)

∆T = 900
∆T = 1800
∆T = 3600
∆T = 9000

10
0

10
1

10
2

w

10
-4

10
-3

10
-2

10
-1

10
0

P
(w

)

(a) (b)

Figure 4.13: Distribution of (a) degree and (b) weight on aggregated networks on
various time windows, given by the ESWC09 time series, and b0 = b1 = 0.7, λ = 0.8.



96 Chapter 4. Modeling the dynamics of encounters

10
0

10
1

10
2

k

10
0

10
1

10
2

10
3

〈s
(k

)〉

∆T = 900
∆T = 1800
∆T = 3600
∆T = 9000

10
0

10
1

10
2

k

10
0

10
1

〈k
Y

2
(k

)〉

Figure 4.14: Distribution of the average strength of nodes of degree k versus k (left)
and (b) average participation ratio of nodes of degree k vs k for aggregated networks
on various time windows , given by the ESWC09 time series, and b0 = b1 = 0.7,
λ = 0.8.

Figure 4.15: Example of aggregated network of 157 nodes obtained by imposing
the timeline of the number of agents present at each time during a given day of
data gathered during a SocioPatterns deployment at the Science gallery in Dublin
described in chapter 2. Here (b0, b1, λ) = (0.55, 0.8, 0.9), and an agent who leaves
the network cannot re-enter it. The nodes are colored according to the entry time
of the corresponding visitor, as in chapter 2 (from red to green to blue to violet).
The elongated shape of the network is similar to the one observed empirically.
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persons, such as a museum. Considering this assumption and the time series of
the number of persons in the museum dataset over one day, the model is able to
reproduce the elongated shape of the aggregated network whose topology is dictated
by the timeline of the visits described in chapter 2 (see �gure 4.15).

4.4 Partial conclusions and perspectives

We have presented a model framework of interacting agents that is �exible enough to
reproduce the dynamics phenomenology observed during social gatherings collected
with wearable sensors presented in chapter 2. The model is treated both analytically
and numerically. Its major interest is to propose micro-mechanisms that are able
to produce the macroscopic phenomenology of contact dynamics. More precisely,
broad distributions in contact durations and intercontact times are explained here
with self-reinforcement rules that increase the propensity of agents to remain in the
same state (same coordination number) with the time already spent in this state.
These rules, which are reminiscent of the preferential attachment model introduced
by Barabási and Albert [Barabási 1999] already applied to dynamical processes in
[Barabási 2005], exhibit a rich behavior with nonequilibrium transitions between
stationary and nonstationary phases. Conversely to some network models such
as in [Scherrer 2008, Rocha 2012] in which the distribution of contact durations is
determined a priori, distributions are here an output of the micro-rules of the model
and therefore, these rules can be considered as a plausible explanation of the contact
duration features.

We have also shown the versatility of the model. First, rules are �exible enough
to produce di�erent kinds of contact and intercontact distributions, such as simple,
compressed and stretched exponentials. Second, heterogeneity among agent rules
can be easily implemented, and in the case we studied, it does not change the
overall phenomenology of the model (broad distributions of contact, intercontact
times, lifetimes of groups, nonequilibrium transitions). Third, the model assumes a
�xed population size but it can be modi�ed to model more realistic environments
in which the population size may �uctuate with time. In this case, the population
size can be taken as an input of the model, as given by an empirical time series. We
have then shown that the model produces nonstationary dynamical networks whose
features are close to the empirically observed ones.

Several research directions can be envisioned at this point. Microscopic rules
may be thought of and implemented in order to model more realistically social in-
teractions in various contexts or even animal interactions. For example, merging
and splitting of groups such as those exposed in [Johnson 2009] could easily be in-
troduced. It would also be possible to impose individual characteristics, for example
the time intervals an agent is present. Although this would happen at the cost of a
large input of empirical information, it would produce dynamic networks that retain
the details of the presence properties of empirical data set at an individual level.
Another interesting outcome of the model with varying population size is that it
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makes it possible, starting from an empirical data set that is by de�nition limited
in time, to create a dynamical network on arbitrarily long timescales, with the same
properties as the real one, by simply repeating the time-series N(t) as many times
as required. This corresponds to an interesting way of creating a non-stationary
dynamical network, without having to repeat the real sequence of contacts: on each
new repetition of N(t), the model will generate a new sequence of contacts.

The most interesting perspective of such a model would be to use it as a
support for the simulation of dynamical processes such as information or in-
fectious spreading or synchronizations. The possibility to tune dynamics net-
work properties allows one to investigate �nely the e�ect of these characteris-
tics on dynamic processes, instead of using reshu�ing techniques that are dif-
�cult to manipulate without any risk of spurious inference due to correlations
[Vázquez 2007, Miritello 2011, Rocha 2011, Karsai 2011]. Generating arti�cial data
sets that are based on empirical ones, preserve a certain number of their properties,
modify others in a tunable way, and can be extended to large sizes and long times,
represent a very important step in such studies.
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5.1 Motivation

In this chapter, we investigate a dynamical process unfolding on a human proximity
network. The dynamic process we consider can represent viral or bacterial infections
transmitted through close proximity and physical contacts, such as an in�uenza. In
this section, the perspective of dynamical process from a physicist point of view will
be outlined. Some historical insight on mathematical modeling of disease spreading
is provided and the need of data and more precisely of dynamical data on human
contacts that motivates our study is discussed.

5.1.1 Dynamic processes on networks

A dynamical process is given by a system and a set of �xed rules that determines
its temporal evolution. Probably one of the most natural spaces in which physicists
have studied dynamical processes is the ordinary 3-dimensional Euclidean space and
dynamical processes were mainly given by Newtonian mechanics. Di�erent spaces
and di�erent dynamical processes can be considered. For example, in electronics,
the geometrical space in which the system dynamics is described is often a complex
1-dimensional space ; regular lattices are often used for studying synchronization of
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a collection of oscillators. In this perspective, networks too can be considered as a
support of dynamic processes : signal may only pass from node to node through
edges. The book written by Barrat, Barthélémy and Vespignani presents some
dynamic processes that have been studied extensively on networks [Barrat 2008].
A famous example of dynamic process that has been transposed onto networks is
the Kuramoto model, describing synchronization between oscillators. In this model,
nodes are harmonic oscillators of various pulsation coupled with each others through
edges. Depending on the model parameters, the system may either be synchronized
or completely unsynchronized. This full dependence of the global behavior on local
mechanisms is what characterizes many of the beloved phase transitions of physicists.

An other kind of dynamic processes that have been widely investigated on net-
works are di�usive processes such as random walks, or reaction-di�usion models.
These models are widely studied, principally because they o�er a way to analyze
real processes such as the propagation of diseases, the spreading of fads, of computer
viruses or viral marketing.

Simple disease spreading models such as the SIR model in which individuals
are either susceptible, infectious or recovered and in which an infectious individual
may transmit a disease to susceptible individuals which whom he/she is in contact
with, and recover, can be viewed as reaction-di�usion models. Originally, reaction-
di�usion models describe the evolution of a chemical system in which a local chemical
reaction such as a spontaneous chemical transformation and a spatial di�usion allow-
ing a substance to spread co-evolve. In a similar manner, the fact that individuals
become infected and recover can be considered as local reactions and their moves as
a di�usion, as the peer-to-peer interactions make the direct transmission channels
change. Such a model is often characterized by the existence of a threshold sepa-
rating a phase in which epidemics can reach a sizable proportion of the population
and an other in which an infection almost surely fades out after few transmission
steps without contaminating a signi�cant part of the system.

The importance of the network's topology on the system behavior must be out-
lined. It happens that for some network models the threshold separating two very
di�erent macroscopic behaviors vanishes, as it is the case in scale-free network mod-
els. In [Pastor-Satorras 2001] the authors give an analytical argument for this fea-
ture, and point out the relevance of such a result for the internet and the web,
both networks having a scale-free like distribution of degree. As outlined by Lloyd
and May, this feature is less likely to occur in social networks because the degree
distribution is expected to be much narrower [Lloyd 2001], with the exception of
sexual networks. Those have been found to have an heavy tailed degree distribu-
tion [Liljeros 2001].

5.1.2 Modeling disease spreading

According to Ser�ing and Anderson [Ser�ing 1952, Anderson 1991], the mathemati-
cal description of epidemics dates back to Daniel Bernoulli. In 1760, he published a
study of variolation techniques against smallpox [Bernoulli 1760], i.e., the deliberate
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inoculation of the virus to prevent epidemics. Mathematical epidemiology has then
seen a second development with William Farr in the 19th century. He was indeed
amongst the �rst to think that regularities of epidemic patterns can be described by
a mathematical approach and more precisely, as it was the case in other sciences,
that a mechanistic explanation could account for observed regularities. Farr thought
that this was supported by his analysis in 1840 of the English smallpox epidemic
of 1837-1839, in which he showed that the epidemic curve (i.e., the number of new
cases versus time) could be well �tted by a Gaussian function. Two decades later, in
1866, he even attempted to forecast the spread of the rinderpest that struck English
cattle severely at that time. He thus �tted again the past and actual number of
cases versus time (with only 4 records of the monthly number of cases), and made
predictions for the successive months. This statistical analysis of historical dataset
is recognized as a major step towards the modern mathematical epidemiology.

Whilst Farr's point of view was clearly based on the study of empirical dataset
with only the underlying idea that some mechanistic rules were responsible for the
observed regularity, the increasing knowledge on bacteriology and epidemiology be-
came gradually incorporated into mathematical epidemiology. This led to two major
developments. In 1906, W. H. Hamer introduced the �rst elements of the well known
mass action principle. He assumed that the number of new cases would be propor-
tional to the number of infectious individuals, the number of people susceptible to
contract the disease and to some constant depending on factors in�uencing the con-
tagion from an infectious carrier to a susceptible. In 1911, Sir Ronald Ross presented
the �rst di�erential equation to describe the evolution of a malaria outbreak. This
equation takes into account the proportion of infected carriers, the ratio between the
number of mosquitoes carrying the malaria, the proportion of mosquito bites leading
to an infection and the recovery rate. Ross developed his model in 1915 for more
general situations and built a theory of happenings relying on a set of di�erential
equations. It is interesting to note that the models developed for contagious diseases
were already applied in other scienti�c �elds such as economics and sociology, as it
was the case later on.

The third major development of mathematical epidemiology is the introduction
of probabilities. In 1928, Lowell J. Reed and Wade H. Frost presented, but never
published, a model that includes the possibility for a susceptible person to have
contacts with infective persons and not to necessarily become infected. This was
the beginning of the stochastic approach. More precisely, in the version of the Reed-
Frost model exposed by Helen Abbey [Abbey 1952], the dynamics is discrete. At
each time interval, each individual has a �xed probability p of coming into adequate
contact with any other speci�ed individual in the group [. . . ], and this probability is
the same for every member of the group. A so called adequate contact would be
named an infectious contact today. In the simplest version of the Reed-Frost model,
where individuals can only be susceptible or infective, the dynamic equation is given
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by {
St+1 ∼ Bin(St, (1− p)It)

It+1 = N − St+1

(5.1)

where St and It are respectively the number of susceptible and infective individuals
at time t, N is the total number of individuals and Bin(a, b) is the binomial law
with parameters a and b.

This discrete time model has later been extended to a continuous time version, in
which the contamination of a susceptible individual is described by a Poisson process
of rate proportional to the number of infectious carriers (often called the standard
SI model). Moreover, discrete time models can be used as an approximation of
continuous time models, when time steps become in�nitely small, or more precisely,
very small compared to the typical time scales of the spreading dynamics. Some
links can be made between deterministic and stochastic models. For example in
[Andersson 2000], a demonstration shows that, in the case of large populations,
the expected course of a standard SIR stochastic model (in continuous time) may
be approximated by the deterministic model presented in [Kermack 1927] as given
below in equation (5.2). The �nite size case is studied in [Fierro 2010].

The �eld of epidemiology faces two major di�culties that have been long rec-
ognized and relentlessly outlined. The �rst is concerned with the quality of data
to test and estimate models. In 1952, Ser�ing expressed the following wish, that is
very illustrative for a physicist [Ser�ing 1952]: he wished an epidemiological Tycho
Brahe who would collect data of unquestionable accuracy. The second di�culty is
to �nd an adequate representation of reality. Can one be satis�ed with the over-
simpli�cation of contact patterns by a single parameter? What about cultural and
social varieties? Seasonal e�ects? Varying environmental conditions? The pure un-
derstanding of mechanisms is clearly not the �rst objective in the �eld. The main
one is to be able to make predictions and to design e�ective public health policies.

One can distinguish three rather separate groups in the literature of mathemati-
cal epidemiology that deals with three separate stages in the scienti�c approach. The
�rst is model design, often based on phenomenology. The second is more theoretical
and deals with the understanding of mathematical properties of models. The third
kind of literature concerns estimation of models and is composed of sophisticated
statistical methods to evaluate various models and make predictions.

5.1.2.1 Compartmental models

Most of the epidemiological models are compartmental models, i.e. they rely on
the assumption that the epidemiological status of individuals can be classi�ed in a
�nite set of categories, called compartments. These categories exchange incoming
and outgoing �uxes with each other and in the case of births, deaths and travels,
incoming and outgoing �uxes can feed the system.

In general, at least two categories exist. One is the infectious category that
comprises of individuals able to transmit the disease. The other is the susceptible
category and comprises of individuals susceptible to contract the disease. Because
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Figure 5.1: Schematic view of the di�erence between the symptoms (above) and
the infectious state (below). Note that the infectious period and the symptomatic
period are not necessarily synchronous.

one may want to include heterogeneity in the population concerning the immune
system for example depending on age, these two categories may be split into subcat-
egories. Besides, when one is interested in the statistical estimation of epidemiolog-
ical parameters of speci�c diseases, it may be worth splitting the infectious category
into symptomatic carriers, that can be detected, and asymptomatic carriers, that
cannot be detected at �rst sight. In general, data based on reports of medical doc-
tors (sentinel surveillance data) and self reported data cannot unveil the prevalence
of asymptomatic cases. Only so called serosurveys, that consists in measuring the
antibodies of a speci�c infection, can be used to estimate the overall prevalence,
and a fortiori the prevalence of asymptomatic. As pointed out in [Dowse 2011],
the clinical attack rates extracted from sentinel surveillance data and the overall
prevalence measured by serosurveys di�er considerably in the case of the H1N1 in-
�uenza. It indicates that there is a substantial proportion of asymptomatic cases
or mild infections. Some experiments have been run in order to estimate properly
the asymptomatic prevalence [Carrat 2008]. Moreover, the infectious period and
the symptomatic period are not necessarily synchronous, as illustrated by the �gure
5.1, that represents the di�erence between the infectious state and the symptoms.
A well-known example is the case of HIV-AIDS: while individuals may become in-
fectious rapidly after the infection, it can take years for symptoms to appear. The
table 5.1 gives some estimation of these di�erent periods for various infectious dis-
eases. For most of them, the incubation period lasts longer than the latent period,
indicating that an infectious person can contaminate whilst symptoms are not al-
ready visible. In some instances such as the whooping cough and the diphtheria,
the opposite occurs.

5.1.2.2 Quantities of interest

Three major quantities are often looked at when analyzing empirical, simulated or
theoretical outbreaks.
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Infectious disease Incubation period Latent period Infectious period

Measles 8�13 6�9 6�7
Mumps 12�26 12�18 4�8
Whooping cough 6�10 21�23 7�10
Rubella 14�21 7�14 11�12
Diphtheria 2�5 14�21 2�5
Chicken pox 13�17 8�12 10�11
Hepatitis B 30�80 13�17 19�22
Poliomyelitis 7�12 1�3 14�20
In�uenza 1�3 1�3 2�3
Smallpox 10�15 8�11 2�3
Scarlet fever 2�3 1�2 14�21

Table 5.1: Incubation, latent and infectious periods for various infectious diseases.
Table from [Anderson 1991].

The �rst is the basic reproductive number (also called the basic reproduc-
tive rate). It is de�ned as the average number of individuals a single infectious
individual would directly infect in a fully susceptible population before recovering
[Anderson 1991]. Intuitively, this quantity, denoted by R0, gives an idea of the ca-
pacity of a disease to spread. For example if this quantity is much larger than 1,
then from a single initially infected individual, a generation of R0 new infected per-
sons is expected on average. If the neighborhood (whose precise de�nition depends
on the model, but can be understood in general as the set of persons an individual
can directly infect) of this second generation is still composed of a high proportion
of susceptible persons, then the third generation will be on average larger than the
second (and on average equal to R2

0 if the number of susceptible neighbors of each
member of the second generation is larger than R0 + 1 and if these neighborhoods
do not overlap with each others). On the contrary, if R0 is much lower than 1, it
is rather unlikely that the �rst infected person will contaminate anyone else, and
may it be the case, the probability that a second generation of infective exists and
contaminates itself a third generation is even lower. In that case, the spreading will
stop very rapidly. This basic reproductive number is of major interest for epidemiol-
ogists because it is a synthetic indicator of the virulence of an outbreak and in some
models, it de�nes two regions in the phase space in which the system behaves very
di�erently. Two diseases, one that is very contagious but from which one recovers
very fast and an other that is not very contagious but whose period of infectiousness
lasts longer, may have the same basic reproductive number value, meaning that they
propagate with a similar amplitude (but not the same pace).

A second quantity of interest is the size of the outbreak which corresponds
to the �nal number of cases when the outbreak is over. The proportion given by
the �nal number of cases divided by the population size is called the attack rate



5.1. Motivation 105

(AR). For a past epidemics, it is given by the proportion of persons who have
caught the disease. In a disease model, which does not necessarily have an empirical
counterpart, it is generally given by a random variable, whose distribution and
average measure its risk. For example, Dowse et al. have estimated that about
25% of preschool children and 40% of school-aged children have been infected by
the (H1N1) in�uenza in Western Australia during winter 2009. If the mortality
had been comparable to the one of the 1918-1920 pandemic, the number of mortal
cases would have been much higher. Some researchers have estimated that the 1918-
1920 in�uenza virus would have killed approximately 62 millions of people in 2004
[Murray 2007].

The last major quantity of interest is the time of the epidemic peak, i.e.,
the instant the number of new cases reaches its maximum. It gives an indication on
the temporal scale of the spread and may be of interest for planning public health
policies. For example, it may be worth trying to delay the peak time in order to
implement a mass vaccination. Balcan et al. have investigated the e�ect of antivirals
on the peak time for the A(H1N1) in�uenza outbreak in 2009. For instance, they
estimated that 5 and 10 millions of antivirals could respectively delay the peak time
of about 4 weeks for Spain and Germany [Balcan 2009].

Empirically, these quantities are estimated from data and according to an under-
lying spreading model, but technically, the task is far from trivial [Anderson 1991,
Andersson 2000, Diekmann 1990, He�ernan 2005, Breban 2007]. For example the
estimation of the basic reproductive number can be determined in the early stage
from the growth rate of the number of infected individuals (see subsection 5.1.3.1
for more details). On the contrary, in numerical simulations, these quantities of
interest can be directly computed with successive Monte Carlo runs.

5.1.3 Toward more realism in contact patterns

According to the terminology Abbey used in the description of the Reed-Frost model,
infectious diseases propagate through adequate contacts [Abbey 1952]. The precise
de�nition of an adequate contact depends on the studied disease. It may be a sexual
intercourse (e.g. HIV/AIDS, hepatitis B or syphilis), a direct physical contact (e.g.
syphilis, chickenpox) or simply a physical proximity, as many diseases are transmit-
ted by droplets emitted while coughing, sneezing or even speaking (e.g. mumps, in-
�uenza, smallpox, chickenpox, rubella, tuberculosis, SARS, measles, common cold).
Some other ways may exist, such as oral transmission (for example through kiss-
ing), fecal oral transmission usually through contaminated water, by injection or
transplantation of contaminated material, or trough vectors such as some types of
mosquitoes (e.g. malaria, chikungunya). Models applied to a particular type of
disease must take the speci�city of the transmission route(s) into account.

As the reader may have noticed in the de�nition of the basic reproductive num-
ber (see previous subsection 5.1.2.2), contact structure is crucial for the spreading
of infectious diseases, but the variety of situations makes the modeling task di�cult.
On the one hand, the modeling procedure consists in making appropriate simpli�-
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cations in order to extract relevant mechanisms but on the other hand, too much
simpli�cation may over-reduce the natural variety of situations and create a gap
between theory and reality which prevents the models to have predictive properties.
This explains why a wide range of models of contact patterns exist in epidemiology,
from the simplest to the more realistic, as illustrated by �gure 5.2. The families
of models are presented hereafter. They can adequately describe the dynamics, de-
pending on the geographic scale and the type of disease that is considered, as shown
in Riley's review on the large-scale models for four di�erent diseases [Riley 2007].

5.1.3.1 Homogeneous mixing

The simplest way to model contacts in a population is to consider that any individ-
ual is in permanent contact with all others and that the transmission between an
infectious individual and a susceptible one is described by a unique and independent
process. In other words, any individual can potentially be infected by any infectious
individual, with the same strength. This hypothesis is known under the name of
homogeneous mixing [Anderson 1991].

This assumption has been widely used and allows to obtain informative results
on the behavior of spreading with very few parameters. For example with a simple
SIR Reed-Frost model in continuous time, in which the contamination of a sus-
ceptible individual by an infectious individual is described by a Poisson process of
rate β and the transition from susceptible to recovered is described by a Poisson
process of rate ν, Williams has shown that in the large population limit, the behav-
ior of the system is determined by the value of the basic reproductive number R0

[Williams 1971]. If N is the number of initially susceptible individuals in this model
and a is the number of initially infected individuals, R0 has a simple expression
R0 = βN/ν. In the limit of N → ∞, if R0 ≤ 1 the probability that a true epidemic
occur is null but if R0 > 1, a true epidemic occurs with probability 1 − R−a

0 . A
true epidemic is for Williams an outbreak in which the number of infected people
becomes in�nitely large (in this in�nitely large population). The value of the ba-

Figure 5.2: Di�erent models of contact patterns, with various levels of realism.
Individuals are represented by circles of di�erent colors depending on their epidemi-
ological state. This �gure comes from [Colizza 2007b].
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sic reproductive number de�nes an epidemic threshold. The reader can �nd more
details on stochastic epidemiological models in [Andersson 2000].

Interestingly, the same result on the existence of this epidemic threshold remains
true for deterministic models. If S(t), I(t) and R(t) are respectively the number
of susceptible, infectious and recovered individuals, a deterministic continuous time
model, under the homogeneous mixing hypothesis, is described by the following set
of di�erential equations [Anderson 1991, Kermack 1927]:





dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t) −νI(t)

dR(t)

dt
= νI(t)

(5.2)

In this model, it can be shown that if R0 = βN/ν < 1, the infection dies out, but
if R0 > 1, a spread occurs, infecting a sizable proportion of the population, and
that the early stages are approximately described by an exponential increase of the
number of infectious individuals at rate ν(R0 − 1). This result is sometimes used
in order to estimate the basic reproductive number, even if the number of cases
must be high enough to make inference on the proportion (the discrepancy due to
individual �uctuations is often a di�culty) and low enough to be in the early stages
of the spread where the exponential growth approximation holds [He�ernan 2005].

5.1.3.2 Social structure

The evident limitation in the homogeneous mixing hypothesis assumption for con-
tact patterns is to consider that any pair of persons in the population can be in
contact and have the same probability to transmit a disease. No heterogeneity in
the population is considered: probabilities of being contaminated and recovering
could depend on age for example, and the probability of di�erent persons having
an adequate contact could depend on individual characteristics such as their age or
their occupation.

These heterogeneities are empirically observed. For example, the �rst evidence
of an age structure in contact patterns is reported in a preliminary questionnaire-
based study of Edmunds et al. with 92 adults [Edmunds 1997]. This was validated
in a further study with 7 290 participants of eight European countries who answered
surveys about their face-to-face and physical contacts in everyday life: people in-
teract most with other individuals of similar age, especially for children and young
adults [Mossong 2008].

A common way to include structure between groups in contact patterns is to
use who acquires infection from whom matrix (noted after WAIFW matrix). For
example in [Anderson 1991], an age structure can be de�ned with n age groups and
the WAIFW matrix is an n × n matrix (βij) where βij is the rate of infection of a
susceptible in age class i by an infective in class j. Generally this WAIFW matrix
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is symmetric. This model of contact structure can induce di�erent vaccination
strategies according to the risk of each group. This method can be applied to
various contact structures. For example in the case of sexually transmitted diseases,
it may be a way to distinguish between people having no sexual activity, people
with a moderate activity and people with a very-high activity, because they do
not face the same risk. Similarly the distinction between homosexual, bisexual and
heterosexual patients is quite common in the study of HIV/AIDS.

5.1.3.3 Network-based models

The WAIFW matrix method can be applied to de�ne heterogeneities due to geo-
graphical constraints or groups inside the population, but it assumes that inside
a group, all individuals have homogeneous contact patterns. This is a simplifying
assumption, because in reality, such groups are not homogeneous. Some members
may have very few contacts while others may have many contacts, even if they share
the same category attribute (age, origin, gender, sexual orientation). The number
of groups can be increased in order to reduce the heterogeneity inside each group,
but this does not solve the methodological drawback.

One way to deal with heterogeneities in the duration and frequency of contacts
is to adopt a network perspective. Unlike the homogeneous mixing model assum-
ing that everyone has the same probability to catch the disease if there is at least
one infected person in the population, the contact matrix approach in which this
probability depends only on the categories, the network approach assumes that an
individual can be infected only if one of its neighbors (persons it has an adequate
contact with) has the disease [Keeling 1999]. The network structure is de�ned a pri-
ori, before considering any disease transmission (the reconstruction a posteriori of
the infection path between infected persons is known as the contact tracing method).
This constrains a disease to propagate from individual to individual only through
links corresponding to the existence of an adequate contact between these two spe-
ci�c individuals. Heterogeneities in the number of adequate contacts can then be
introduced in the degree distribution of the network. This source of heterogeneity
is known to be important for the course of an epidemic. For example, Eames and
Keeling [Eames 2002] showed that a theoretic static network model which contains
degree heterogeneity and small world features can not be reducible to a WAIFW
contact matrix with degree categories. The degree heterogeneity is such an im-
portant quantity that even the existence of an epidemic threshold depends on it.
Theoretically, if a SIR spreading occurs on a network with a degree distribution
following a power-law of exponent between 2 and 3, the epidemic threshold van-
ishes [Pastor-Satorras 2001]. Networks with degrees following such a distribution
are found in sexual networks [Liljeros 2001] even though the statistical estimation
is subject to criticisms [Clauset 2009, Jones 2003, Stumpf 2012].

Degree heterogeneity is not the only feature that makes the network assump-
tion relevant for contact patterns (see [Keeling 2005] for a review). The clustering
and presence of well-identi�ed communities of individuals is also known to impact
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the course of an epidemic, as it reduces the number of susceptible from which an
individual can acquire directly the disease [Rocha 2011, Yoneki 2008, Zaric 2002,
Szendr®i 2004, Smieszek 2009b, Eames 2008].

5.1.3.4 Mixed multi-scale models

The relevance of taking air transportation into account for studying large-scale
pandemics has motivated mixed multi-scale model [Rvachev 1985, Hufnagel 2004,
Colizza 2006b, Colizza 2006a]. In these models, the world is divided into small cells
of a given population size, given by census data. In each of these cells, a homoge-
neous random mixing models gives the local evolution of the disease spreading. In
some recent models, the population of each cell can travel in neighboring cells, mim-
icking commuting travels, and produce an infection from one region to the adjacent
ones. Infection between non adjacent regions is allowed by the air transportation
network. This modeling approach allows scientists to test the potential e�ectiveness
of public policies, such as a reduction of air transportation �ows or speci�c allo-
cations of antivirals. These mitigation strategies have such economic and human
consequences that a global trial is of course not feasible. On the other hand, numer-
ical simulations allow for these tests and it was shown that for example, reduction
of air transportation �ows is not very e�cient [Colizza 2007a, Bajardi 2011].

5.1.3.5 Agent based models

More and more details can be incorporated in models. The most informed way is to
introduce all knowledge on human contacts at the individual level. This method is
called agent based modeling. It is not speci�c of epidemiology and has been widely
used in other disciplines, such as in social sciences [Schelling 1971]. In the context of
disease spreading, each individual is simulated separately, and its behavior is de�ned
according to its individual characteristics (e.g. age, gender).

At the most detailed level, the behavior consists in a time schedule of places to
visit (school, o�ce, household). A disease can spread from an infectious individual
to a susceptible, only if they both visit the same place at the same time. In gen-
eral, behavioral rules speci�c to each individual de�ne the contact patterns in the
population. These models are often simulated with a synthetic population whose
demographic characteristics re�ect census data. They sometimes describe a wide
geographical area with a possibly varying population density, including commuting
information relying on air travel data. Even though they can include very detailed
information on age structure mixing, on school sizes or on workplaces, some in-
formed approximation still needs to be done (for example for the school allocation,
the individual workplace choices).

This type of modeling for disease spreading has been applied at the scale of cities
[Eubank 2004], countries [Cio� degli Atti 2008, Germann 2006, Ferguson 2006] or
even at a more global scale [Longini 2005, Merler 2010]. At a global scale, a re-
cent side-by-side comparison between this type of approach and a global multi-scale
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model showed an excellent agreement between these two methods [Ajelli 2010]. This
is relevant for policy makers, because very sophisticated models do not necessarily
add a signi�cant amount of precision compared to simpler models, provided that
the latter still incorporate all key elements.

5.1.4 The need of data on contact patterns

As Ser�ing advocated for an epidemiological Tycho Brahe [Ser�ing 1952], he pointed
out to one of the major di�culties in the modeling of disease spreading, i.e. the
lack of knowledge on contact patterns. This requires knowing about the interac-
tions of any individual, the variations between individuals, the correlations with
individual characteristics such as gender or age, with the type of location where the
interaction takes place (e.g. o�ce, household). As Keeling and Eames underline in
their review on networks in epidemiology, this is an impractically time-consuming
task [Keeling 2005].

Epidemiologists designed indirect and direct methods to tackle this issue. The
former are generally based on the estimation of each element of the WAIFW matrix
using observed seroprevalence data [Anderson 1991]. So called time-use data anal-
ysis as in [Zagheni 2008] would be classi�ed as an indirect method as well because
it consists in asking respondents about the chronological sequence and duration of
their daily activities and to ask how many participants take part to these activ-
ities. From this information, a co-presence matrix can be inferred, which can be
considered as a fair approximation of the WAIFW matrix.

Direct methods cover mainly three techniques: infection tracing, complete con-
tact tracing and diary-based studies. Infection tracing consists in identifying for
each case the person who transmitted the disease [Haydon 2003, Riley 2003]. From
all possible contacts, only those who lead to an infection are identi�ed. All others
contacts that may have been able to transmit a disease are left out. This method is
very helpful to estimate relevant quantities such as the basic reproductive number
for observed outbreaks.

Complete contact tracing methods are common for sexually transmitted diseases.
For example in [Liljeros 2001], volunteers declared the number of sexual partners
up to the time of the interview. Some studies have also investigated on the type
of sexual intercourse and on individual characteristics on the partner(s). As sexual
intercourses are a sensitive subject, these studies may su�er from a bias in volun-
teering. It can be pointed out that this contact tracing method may be a powerful
health-care policy: it is used in Cuba for decades against HIV/AIDS and among
other factors, it may explain the relatively lower prevalence of disease in this country
[Hsieh 2002, Hsieh 2010].

In the context of airborne transmitted diseases, the diary based method is cer-
tainly the most used [Read 2008, Mossong 2008, Wallinga 2006, Edmunds 1997,
Beutels 2006, Hens 2009]. It consists in asking people on the contacts they
had on a limited number of snapshots in time, usually 1 day or typical week
[Wallinga 2006, Beutels 2006]. Contacts are often very precisely de�ned: skin to
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skin contact such as a kiss or a handshake, or a two-way conversation with three
words or more in the physical presence of another person but no skin-to-skin contact.
Additional information may be asked such as the age, the sex of each partner, the
location of the contact, the total duration spent together or the frequency of con-
tacts with some individuals (daily or almost daily, about once or twice a week, about
once or twice a month, less than once a month or for the �rst time) [Mossong 2008].
Generally, as these informations are provided via self-reported diaries and are time-
consuming, they are subject to an uncontrolled bias and a lack of representativeness
due to cognitive limits (see a dedicated chapter on this subject in [Knoke 2008]).
This problem starts being quanti�ed through the comparison of declarations of both
members of the interactions [Smieszek 2011] but it would require an entire cross-
method study to accurately identify the di�erence between what individuals declare
and what happens. This is especially important because even random contacts of
very short duration (for example in public transportation) may transmit an infec-
tion. Other limits of these self-reported studies include the often limited number of
participants, except few large-scale studies such as in [Mossong 2008] to which 7290

participants across di�erent European countries took part, the absence of longitu-
dinal analysis and the relative short period on which respondents are interviewed.
For example, Eames et al. showed how di�erent mixing patterns are for children
between school time and holidays [Eames 2011].

New technologies such as those described in section 1.2.2 are promising with
respect to the limits described above. Some studies have been designed with epi-
demiological objectives for tracking proximity between individuals [Salathé 2010,
Isella 2011, Stehlé 2011b]. Not only they are not as limited as diary-based studies
in terms of the number of participants and do not su�er the cognitive problem of
recalling past interactions, but they also allow to analyze with a high temporal and
spatial resolution the dynamics of encounters, such as the variations in the dura-
tions and frequencies of the contacts and the existence of causality constraints in
the possible chains of transmission.

5.1.5 Why does contact dynamics matter?

As pointed out in [Smieszek 2009a], who used numerical simulation of disease
spreading on diary-based data on contact patterns, and in a theoretical study in
[Smieszek 2009b], variations in the durations and frequencies of the contacts may
a�ect the course of epidemic spreading. These heterogeneities, even if clustering
may dampen the e�ects, may create preferential contagion paths, while others may
less likely exist, which can produce di�erences in the prevalence compared to a sit-
uation where encounters are considered as equal (which is often the only possible
way to consider encounters in self-reported analysis that do not provide information
on the duration and the frequency of contacts).

Beside the contact duration heterogeneity, Vazquez et al. pointed out that an-
other type of dynamic heterogeneity may a�ect spreading processes [Vázquez 2007].
They showed with randomization procedures that the long-tailed distribution of in-
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tervals between contacts induces a prevalence decay time signi�cantly larger than
predicted with standard Poisson distribution. In [Miritello 2011], it was shown with
a similar randomization procedure that the burstiness of relay time intervals (time
elapsed between two successive contacts with di�erent partners) and interevent time
intervals may produce larger or smaller outbreaks than if they followed an expo-
nential distribution, depending on the transmission parameter value. Rocha et al.
showed that temporal correlations in their sexual intercourse dataset generally in-
creased outbreak sizes [Rocha 2011]. Karsai et al. [Karsai 2011] pointed out with
sophisticated randomization methods but in the case of a simpli�ed deterministic
disease model (with an infection occurring systematically at any contact between an
infective and a susceptible), that burstiness in interevent time intervals slows down
the propagation while all other correlations accelerate the spreading. These random-
ization methods are tricky because many correlations may be lost in a the reshu�ing
process and inferring which one of those is responsible of a faster or slower spread-
ing requires to have two randomization procedures di�ering only for this speci�c
correlation. Nonetheless, they outline the possible impact of temporal correlations
on contagious process via the dynamics and the prevalence amplitude. An online
large-scale experiment described in [Iribarren 2009] indeed showed the role played
by the large heterogeneity found in the response time for the information spread-
ing pace, and in some aspects, information spreading shares many similarities with
disease spreading (it can be argued that information spreading di�ers from disease
spreading in the intentionality of agents).

A last aspect of contact dynamics is the existence of temporal constraints that
may prevent propagation paths which would be allowed in static aggregated net-
works. The following example with three nodes may illustrate this issue. Consider
the following sequence of events: an individual A interacts �rst with an individual
B who then interacts with a third individual C who never interacts back with A.
In that case, a disease initially infecting A can spread from A to B and from B

to C. Here we consider a disease, but it may be a piece of information such as a
gossip. If on the contrary, individuals B and C interact �rst, and then A interacts
with B, then the disease infecting A cannot reach C. If one considers a time aggre-
gated contact network which disregards the information on the contact order, the
transmission from A to C is always possible because B is in contact with both A

and C.
We have examined this feature in [Isella 2010] within a deterministic snowball

SI model on daily networks collected in a museum and at a conference (this dataset
is described in detail in section 2.2) and taking into account, or not, the time order
of contacts (with a daily aggregated contact network versus a 20 sec time resolved
contact network). All individuals are considered as susceptible at the beginning. An
infected seed is chosen at random. Every contact between a susceptible individual
and an infected one, no matter how short, results in a transmission event in which
the susceptible becomes infected and never recovers. By varying the choice of the
seed over individuals, a distribution of the number of infected individuals is obtained
at the end of each day. The transmission events can be used to de�ne the network
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along which the infection spreads (i.e. the network whose edges are those who have
led to an infection), also called the transmission network.

Due to causality, the infection can only reach individuals present at the venue
after the entry of the seed. As a consequence, in the following we will use the term
partially aggregated network to indicate the network aggregated from the time the
seed enters the museum/conference to the end of the day. We note that the partially
aggregated network de�ned in this way can be dramatically di�erent from (much
smaller than) the network aggregated along the whole day.
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Figure 5.3: Distribution of the path length nd from the seed to all the infected
individuals calculated over the transmission network (circles) and the partially ag-
gregated networks (triangles) for 3 days of the museum dataset and one day of the
HT conference. The distribution are computed, for each day, by varying the choice
of the seed over the individuals.

E�ects of causality constraints are examined through the comparison between
snowball SI spreading along the transmission network and on the partially aggre-
gated network. Figure 5.3 reports the distribution of the network distances nd
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between the seed and every other infected individual. When calculated on the par-
tially aggregated network, nd measures the length of the shortest seed-to-infected-
individual path, whereas it yields the length of the fastest seed-to-infected-individual
path when calculated on the transmission network. We observe that the length dis-
tribution of fastest paths, i.e., the P (nd) distribution for the transmission network,
always turns out to be broader and shifted toward higher values of nd than the
corresponding shortest path distribution, i.e., P (nd) for the partially aggregated
network. The di�erence is particularly noticeable in the case of May 20th and July
14th for the SG deployment, and June 30th for the HT09 conference, where the
longest paths on the transmission network are about twice as long as the longest
paths along the partially aggregated network.

This result underlines that in order to understand realistic dynamical processes
on contact networks, information about the time ordering of the contact events may
in some cases be essential: the information carried by the aggregated network may
lead to erroneous conclusions on the spreading paths.

5.2 Simulation of an SEIR model on empirical data

A crucial point in the mathematical modeling of disease spreading concerns the level
of detail that should be incorporated in models. The trade-o� between very simple
contact models, such as the homogeneous mixing model, and very detailed models
such as in agent-based models depends on the studied question. Very detailed models
often lack transparency and this prevents discrimination between di�erent e�ects,
while on the other hand, too simple models may not capture relevant features.

In [Stehle 2011a] we have looked at the role of temporal aspects (heterogeneities
and temporal constraints) with a 2-day conference dataset obtained with the proto-
col described in section 1.2.3. Three contact models that capture di�erent amounts
of available knowledge on the dynamics allow one to assess the e�ect of hetero-
geneities in contact durations and of temporal constraints on the prevalence and
on the spreading dynamics, for a rapidly spreading but realistic disease model.
This may be relevant for identifying the level of detail needed for contact data to
adequately and realistically inform modeling approaches applied to public health
problems, as underlined in a commentary on our study [Blower 2011].

5.2.1 Data collection

Contact data for this study was recorded following the protocol described above in
section 1.2.3 at a French conference about Hospital Hygiene in Nice (France), called
the SFHH conference. 405 volunteers out of roughly 1200 conference attendees
participated to the deployment. An ethic committee of Lyon University Hospital
approved the protocol and volunteers signed an informed consent when accepting to
carry the sensors. Data was treated anonymously. The radio range of the order of
1.5 to 2 meters corresponds to adequate contacts for airborne transmitted diseases
such as in�uenza or whooping cough.
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The deployment lasted 2 days, from 9 am to 9 pm the �rst day and from 8:30 pm
to 4:30 pm the second day. Contacts outside these time periods (denoted as nights
hereafter) and outside the conference premises were not recorded.

The dataset consists of 28, 540 contacts of an average duration of 49 seconds
and a standard deviation of 112 seconds. As the ratio between the average du-
ration and the standard deviation already seem to indicate, �gure 5.4 shows that
contact durations are broadly distributed, without any typical scale emerging from
the distribution. This feature is observed in all other datasets (see section 2.2.1).

5.2.2 Description of the model

From the contact sequence between individuals that includes temporal information,
three di�erent contact pattern models are de�ned and described in detail below.
They correspond to di�erent levels of information. On top of each of these contact
pattern models, a compartmental SEIR model is simulated. A so-called compart-
mental model is analogous to a SIR model, described in paragraph 5.1.3.1, with the
exception that susceptible individuals contaminated by infectious ones enter in an
exposed state in which it stays for a time period before becoming infectious and be
able to transmit the disease. This exposed state corresponds to the latent period
illustrated in �gure 5.1. Such a model is preferred to SI, SIR or SIS models because
it gives a realistic but simple enough description of an in�uenza-like disease. The
objective is to study very general properties of contact pattern models and not to
provide predictions for real diseases: the inclusion of more compartments, such as
asymptomatic individuals, is then not necessary. The three stages of the epidemic
process are stochastic. First the infection process of a susceptible by an infective is
described by a Poisson process of rate β. After being infected, the susceptible enters
a latency period of an exponentially distributed duration, of parameter σ. It then
becomes infectious during another exponentially distributed duration of parameter
ν. This compartmental model is sketched in �gure 5.5.

5.2.2.1 Homogeneous network model

With the method described in subsection 2.2.2, we construct a daily aggregated
network of behavioral relations from the contact sequence. Nodes of this network
represent individuals, and pairs of nodes are connected by an edge if the corre-
sponding participants have been in face-to-face proximity at least once over the day.
No information is retained on the time order and the duration of these contacts.
This de�nes an homogeneous network in which a disease can be transmitted from a
node to its neighbors, at a constant rate βHOM during the time period contacts are
considered as active. It is denoted as HOM hereafter.

Some standard statistics are summarized hereafter (de�nitions of quantities are
given in 2.1). On average, a node has 30 neighbors with a distribution decaying
exponentially for large numbers. The average clustering coe�cient is 0.28 to be
compared to an average value of 0.07 in a random Erdös Rényi graph of the same
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Figure 5.4: Distribution of the contact duration between any two individuals on a
log-log scale.

Figure 5.5: Schematic view of the SEIR compartment model. The transmission
from an infective to a susceptible is described by a Poisson process of rate β, the
latent period and infectious period follow respectively exponential laws of average
duration σ−1 and ν−1.
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size (i.e. same number of edges and of nodes). This di�erence indicates a clustered
network, as generally observed in behavioral interactions [Rocha 2011, Yoneki 2008].
The network also exhibits a small-world feature as the average shortest path is equal
to 2.2.

As the deployment lasted two days, two daily aggregated networks are con-
structed. While the quantities described above are very similar between both days,
these two networks di�er considerably, as the fraction of repeated contacts in the
second day with respect to the �rst reaches only 12%. The Pearson correlation of
degree between the �rst and the second days is equal to 0.37 which is signi�cantly
positive at the 1% threshold, indicating that people interact with a large number of
participants the �rst day are likely to do the same the second day, and conversely
people interacting with very few persons are likely to do the same the second day,
but not exactly in the same proportion (which would give a Pearson correlation
of 1).

The contact model entailed by this non-weighted aggregated network contains
individual information about who has met whom, but it neglects all knowledge about
contact duration heterogeneity. All pairs of individuals are only considered to be
connected or not, as a binary variable. It disregards whether pairs have spent or
not most of their time together or met very brie�y once, in contrast with the next
two contact models.

5.2.2.2 Heterogeneous network model

The second model incorporates the information on contact durations. The same
network structure as in HOM is considered, but a weight is associated to each
edge. This weight is equal to the cumulated duration of contacts between the cor-
responding pair of individuals. By this method, we de�ne two daily aggregated
and weighted networks which are referred to as the HET model. In this model, a
disease can spread from one node to its neighbors, but at a rate that is proportional
to the weight. More precisely, a disease spread from an infective node i to a sus-
ceptible node j is described by a Poisson process of rate βHETWij/〈W 〉, where Wij

is the weight between nodes i and j and 〈W 〉 is the average weight (averaged over
connected pairs, i.e. when Wij 6= 0).

As already observed in other deployments and described in section 2.2.2, weights
are broadly distributed with an average duration of interaction of 2 minutes per day
and a standard deviation of 7 minutes. The average strength is equal to 75 minutes
and corresponds in the epidemiological terminology to the daily exposure duration.
The Pearson correlation of strength between the �rst and the second day is equal to
0.52, which is much higher than the Pearson correlation of degree (0.37), indicating
that strength is a more stable quantity than degree between both days.

Both HOM and HET could have been constructed from daily diaries of contacts,
in which individuals report with whom they have been in contact during the day. In
the HET case, the cumulated duration of contacts has to be given for each pair of in-
dividuals, while in the HOM case, as it will be explained below in subsection 5.2.2.5,
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only the average duration of contacts has to be estimated.

5.2.2.3 Dynamic network model

The third model of contact patterns consists of the dynamic sequence of contacts
directly collected by the SocioPatterns setup and is referred to as DYN. The dynamic
network is given at each time step of 20 seconds from the beginning to the end of the
deployment, by the list of interacting pairs of badges, which de�ne the instantaneous
list of adequate contacts. A disease can spread between two connected nodes at a
constant rate βDYN.

The very simple example of a deterministic SI model, presented in paragraph
5.1.5, informed us that the time constraints, that a dynamic network induces, can
not be captured by the weighted aggregated network. Comparing simulations on
this dynamic contact model to simulations on the weighted static networks can allow
us to assess the possible importance of these dynamical constraints.

5.2.2.4 Extension to longer timescales

As the dataset lasts only two days and two days are too short for studying the
spreading of any real disease, we replicate the dataset several times to obtain the
desired duration (ca 50 times for the slower scenario that will be described bellow).

The simplest procedure, called REP, consists of the simple repetition of the
same dataset. In the case of the DYN model, the sequence of contacts is exactly the
same, individuals meeting each other at precisely the same time. For the aggregated
networks, HOM and HET, the �rst and second networks model alternately uneven
and even days, with the assumption that no contact is possible during nights, i.e.
from 9 pm to 8:30 am then from 4:30 pm to 9 am. This is represented in �gure 5.6.
The assumption that contacts are inactive during these periods is made in order to
respect the circadian rhythm of the conference dynamics.

Figure 5.6: Schematic view of the extension to longer time scales for aggregated
networks. Contacts are assumed to be inactive during nights in order to keep the
circadian rhythm of the conference dynamics.

As this repetition procedure is relatively arbitrary and may a�ect the outcome,
two other methods are introduced to check the robustness of the results. The second
procedure, called RAND-SH, consists in the repetition of the contact pattern as
well but node labels (i.e. tag IDs) are completely randomly reshu�ed. In the case
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of DYN, the contact sequence remains the same, but the identities are randomly
reassigned.

On the one hand, the �rst method yields a total correlation of contacts between
day couples. On the other hand, the second method erases all correlations. From
one day to the next, the people met by one individual are not exactly the same,
but they are not completely di�erent either. A third repetition procedure, called
CONSTR-SH, lies in between. We generate random reshu�ing of tag IDs that
preserve the fraction of repeated contacts during successive days and the attendees'
social activity. A simulated annealing method is used to �nd a permutation of node
labels that respect the fraction of repeated contacts in the second day with respect
to the �rst day femp (i.e. 12 %). Permutations are generated by a succession of
node label reversals. A reversal that creates a new fraction of repeated contacts f
is accepted with a probability decreasing with b (f −femp)

2, where b is a parameter.
As analyzed theoretically in [Smieszek 2009b], even if clustering should dampen

this e�ect, the highest outbreak size is expected in the RAND-SH method because
more direct connections between individuals are introduced by the reshu�ing. The
more repeated the contacts, the smaller the outbreak size.

5.2.2.5 Parameter equivalence between the di�erent models

A compartmental SEIR model is simulated on top of each contact model. The only
di�erence between the three models relies in the infection process. In order to make
comparisons, the following scaling between the infectious parameters β is performed.

The relation between βHOM and βHET is given by the following constraint: the
rate of infection averaged over all edges is the same in both models. It can be
translated in the mathematical constraint:

∑

(i−j)∈E

βHOM =
∑

(i−j)∈E

WijβHET/〈W 〉 (5.3)

where E is the set of edges. It gives the following relation: βHOM = βHET.
The relation between the DYN and the HET models is given by the second

constraint: the probability of a disease transmission over one day from an infective
node i to a susceptible node j, given that node i has not recovered by the end of
the day, should be the same. In mathematical terms, it corresponds to the following
relation:

∀(i− j) ∈ E 1− exp (−βDYNWij) = 1− exp

(
−βHET

Wij

〈W 〉
∆T

)

i.e. βHET
Wij

〈W 〉
= βDYN

Wij

∆T
(5.4)

These two constraints give the needed relations between the rates to make com-
parisons and assess the e�ect of the various contact model assumptions. They are
summarized in table 5.2, taking βDYN = β as a reference.

Two scenarios are considered.
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Network model Homogeneous Heterogeneous Dynamic

S + I → E + I β〈W 〉/∆T βWij/∆T β

E → I σ σ σ

I → R ν ν ν

Table 5.2: Rate of the transmission, latency and recovery Poisson processes for each
contact pattern model. Wij corresponds to the cumulative duration of the contacts
between nodes i and j, 〈W 〉 is the average cumulative duration over all edges (i, j)
and ∆T is the total duration during which the links of the static networks are
considered as active.

• a rapid scenario: σ−1 = 1 day, ν−1 = 2 days, β = 3.10−4s−1,

• a slower scenario: σ−1 = 2 day, ν−1 = 4 days, β = 15.10−5s−1.

These parameter values are chosen in order to keep the ratio β/ν constant between
the two situations, which means that the biological factors responsible for the rate
of increase of cases are the same in both cases, but dynamics is di�erent. These
two scenarios are still rather too fast to be realistic, even though the slower scenario
could correspond to a very virulent in�uenza outbreak, but they were chosen in
order to limit the e�ect of the time extension procedure.

Numerical simulations are performed in the following manner. First, the per-
mutations used to extend the duration of the contact models are computed once for
all for the RAND-SH and the CONSTR-SH methods. This gives a unique version
of each of the extended contact models. Then 5000 simulations runs are performed,
each of them with a uniformly selected individual among the total population to be
the �rst infectious individual, also called the seed. The dynamics is computed under
a discrete time approximation: at each time step of length δt, a Poisson event of
rate α (possibly equal to β, ν or σ) occurs with probability αδt. This approximation
holds if δt is small enough. I took δt = 20 s for the dynamic contact network and
δt = 1800 s for the aggregated networks. In spite of this di�erence, as the number of
neighbors is much higher in the aggregated networks than in the dynamic network,
the computing time is longer in the former case. A more e�cient way would have
been to sample the recovering period from an exponential distribution each time
a new infection occurred, and to sample the time of infection for each neighbor of
the newly infected individual. If the time of infection precedes the recovering time,
then the infection should occur. This way, initial draws are made only once for
each infectious individual and not at each time step. Results on the basic reproduc-
tive number, the prevalence and the temporal evolution are analyzed on the 5000

trajectories obtained with 5000 random selection of seeds and one realization for
each.
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5.2.3 Results

5.2.3.1 Basic reproductive number

Several methods can be used to compute the basic reproductive number R0

[Diekmann 1990, He�ernan 2005], possibly yielding di�erent results [Breban 2007].
We estimate its value as the mean over di�erent realizations of the number of sec-
ondary cases infected by the single randomly chosen initial infectious individual.

Figure 5.7 reports the distributions of R0 for the three network models, for the
REP time extension procedure. In all cases, the number of secondary cases from
the initial seed of the single infectious individual ranges from 0, corresponding to
the most probable event of no outbreak, to around 20-25 individuals.

Figure 5.8 gives the boxplot representation of the estimated distribution of R0

depending on the scenarios (slow and fast), the network models (HOM, HET and
DYN) and the time extension procedure (REP, RAND-CONSTR and RAND-SH).
In all scenarios and all time extension procedures, higher values of R0, together with
larger variances, are observed in the HOM network compared to the HET and DYN
network models, which both give very similar distributions.

5.2.3.2 Final size of the epidemic

Figure 5.9 shows the distribution of the �nal number of cases for the three net-
work models and the REP data extension procedure. A high probability of rapid
extinction of the pathogen spread is observed, corresponding to a small number of
individuals who become infected. This is slightly smaller in the HOM case compared
to the HET and DYN networks. On the contrary, when the epidemic starts, the
�nal number of cases is high, and it is larger in the HOM case with respect to the
HET and DYN networks. Intermediate cases with limited propagation are rare.

Table 5.3 summarizes the distribution of the �nal number of cases for the three
networks for the various parameters of the SEIR model and in the various data
extension scenarios. For all cases, and independently from the procedure adopted for
extending the two-days data set, the probability of extinction is lower for the HOM
cases with respect to the HET and DYN networks. In case of large outbreaks, the
�nal size is higher in the HOM network compared to the HET and DYN networks.
Propagation over HET and DYN networks leads to similar extinction probability
and �nal number of cases. The �nal number of cases for both disease scenarios (i.e.
slow and fast spreading parameter sets) are also fairly close.

This result implies that heterogeneity in the contact durations between individ-
uals is associated with a lower spread of transmission, suggesting that the unequal
sharing of time spent by an individual with its contact partners e�ectively reduces
the routes of disease spread. Disregarding the heterogeneity of contact durations
can lead to large di�erences in the estimated number of cases, suggesting that in-
formation on the daily cumulated contact time between individuals gives crucial
information for correct modeling of disease spread.
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Figure 5.7: Distribution of the basic reproductive number R0 for the homogeneous
(HOM), heterogeneous (HET) and dynamic (DYN) contact pattern models in the
repetition (REP) procedure.
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Scenario Parameters Network Runs % run % Mean 90% % Mean 90% % Mean 90%
run cases CI run cases CI run cases CI

REP

Very short latency σ−1 = 1 day DYN 5000 47.3 18.2 2.3 [1,6] 0.7 15.9 [11,22] 33.8 208 [169,242]
Very short infectiousness ν−1 = 2 day HET 5000 46.4 17.7 2.4 [1,7] 0.8 17.9 [11,32] 35.2 210 [171,243]
Transmission rate β = 3.10−4s−1 HOM 5000 41.7 11.7 2.2 [1,6] 0.2 16.6 [11,30] 46.3 285 [257,310]

Short latency σ−1 = 2 day DYN 5000 45.3 17.0 2.2 [1,7] 0.4 18.3 [11,38] 37.3 214 [178,246]
Short infectiousness ν−1 = 4 day HET 5000 44.4 16.4 2.2 [1,6] 0.6 16.8 [11,27] 38.6 216 [178,248]
Transmission rate β = 15.10−5s−1 HOM 5000 38.7 13.2 2.1 [1,6] 0.1 13.2 [11,15] 48.1 288 [262,310]

RAND-SH

Very short latency σ−1 = 1 day DYN 5000 44.8 19.4 2.8 [1,8] 2.2 17.9 [11,31] 33.6 278 [223,319]
Very short infectiousness ν−1 = 2 day HET 5000 45.4 18.5 2.6 [1,7] 1.6 17.6 [11,30] 34.5 284 [241,322]
Transmission rate β = 3.10−4s−1 HOM 5000 39.9 14.3 2.6 [1,7] 0.8 15.7 [11,28] 45.0 324 [291,350]

Short latency σ−1 = 2 day DYN 5000 40.6 18.6 2.7 [1,8] 1.4 19.2 [11,31] 39.4 297 [254,331]
Short infectiousness ν−1 = 4 day HET 5000 39.5 18.0 2.7 [1,8] 1.3 16.7 [11,30] 41.2 300 [259,333]
Transmission rate β = 15.10−5s−1 HOM 5000 35.9 15.7 2.5 [1,7] 0.9 17.0 [11,31] 47.5 325 [293,352]

CONSTR-SH

Very short latency σ−1 = 1 day DYN 5000 45.4 17.7 2.4 [1,7] 1.0 17.0 [11,28] 35.8 240 [194,278]
Very short infectiousness ν−1 = 2 day HET 5000 46.8 16.5 2.4 [1,7] 0.8 19.0 [11,33] 35.9 245 [202,282]
Transmission rate β = 3.10−4s−1 HOM 5000 39.8 13.3 2.3 [1,6] 0.7 15.4 [11,21] 46.2 308 [278,334]

Short latency σ−1 = 2 day DYN 5000 40.9 18.2 2.3 [1,6] 0.8 16.8 [11,34] 40.2 258 [215,292]
Short infectiousness ν−1 = 4 day HET 5000 41.3 16.8 2.3 [1,7] 0.5 14.0 [11,25] 41.4 257 [213,292]
Transmission rate β = 15.10−5s−1 HOM 5000 35.7 14.8 2.4 [1,7] 0.4 15.2 [11,21] 49.2 314 [284,339]

Table 5.3: Final number of cases for the three network models (DYN, HET and HOM) according to the di�erent methods to extend
to longer timescales (REP, CONSTR-SH and RAND-SH) and for a slow and a rapid scenario. The attack rate (AR) gives the
proportion of �nal cases in the population.
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5.2.3.3 Temporal evolution

Regarding the peak times of disease spread in the various cases (see �gure 5.10), we
found that in most cases, the peak of the epidemic was reached �rst on average within
the HOM network model. However, the di�erences between the peak times were
small, and even the simulations on the network model with the least information
(i.e. the HOM model) gave a good estimate of the peak time obtained when the full
information on the contact patterns was included (i.e. the DYN network model).
Interestingly, while the HOM network model yielded a much higher prevalence,
the peak time is, however, only slightly changed, showing that even rather limited
information can yield good estimates of the epidemic timescales.
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Figure 5.10: Boxplot of the distribution of the prevalence peak time tpeak according
to the di�erent methods to extend to longer timescales (REP, CONSTR-SH and
RAND-SH), the di�erent network models (DYN, HET and HOM) and for a slow
and a rapid scenario. Boxplot conventions are the same as in �gure 5.8. Only runs
with an attack rate over 10% are taken into account.

Using the evolution in time of the number of infectious and recovered individuals
for the di�erent data-extension procedures and for the two sets of SEIR parameters,
the temporal behavior of disease spread was analyzed (see �gures 5.11 and 5.12).
Symbols represent the median values, and lines represent the �fth and ninety-�fth
percentiles of the number of infectious and recovered individuals. In all cases, disease
spread on the HOM network evolved slightly faster and reached a signi�cantly larger
number of individuals, compared with the HET and DYN, which had very similar
characteristics to each other. The comparison between disease spread in the HET
and DYN networks provides insights into whether temporal constraints due to the
precise sequence of the contacts might a�ect the propagation of disease. The time
constraints on the paths that the infectious agent can follow between individuals may
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slow down disease spread on the DYN network compared with the HET network.
However, this slowing down of infection and the di�erences in the �nal number of
cases between the HET and DYN networks are too small to be relevant for the
simulations investigated here. The similarity between the spreading behaviors in
the HET and DYN networks are independent of the di�erent procedures used to
extend the initial 2-day dataset. The robustness of the comparison between HET
and DYN therefore indicates that the observed similarity between the spreading
on the HET and DYN networks is due to the discrepancy between the timescales
considered for propagation (of the order of days), and the temporal resolution and
the contact durations (of 20 seconds and of the order of minutes up to a few hours,
respectively). The total time spent in contact by each pair of individuals is in this
context su�cient to describe precisely the propagation pattern, as shown by the peak
time and the �nal number of cases. Therefore, for the simulation of diseases such
as those considered in this study, contact information at a daily resolution might be
enough to characterize disease spreading, and the precise order of the sequence of
contacts might not be needed. A similar result was found with a di�erent setting in a
primary school [Potter 2012]. However, this would not be the case for extremely fast-
spreading processes, as shown in [Isella 2010]. This implies that there is a crossover
between the two regimes, which could be the subject of future investigations.

Interesting di�erences were seen in the results of simulations on datasets ex-
tended with di�erent procedures (see �gures 5.10, 5.11 and 5.12). The spread was
slightly slower in the RAND-SH case, but lasted longer, and consequently the �-
nal number of cases R∞ was larger. In fact, we systematically found R∞(REP) <
R∞(CONSTR-SH) < R∞(RAND-SH), and the more the identities of the tags were
shu�ed, the more e�cient was the spread. Repeated encounters favor propagation,
so that the REP procedure led to an initially faster spread, but contacts between
di�erent individuals from one day to the next favor propagation across the network,
so that the RAND-SH procedure led in the end to a larger attack rate. This lies in
agreement with other studies [Smieszek 2009b, Smieszek 2009a, Read 2008] showing
the importance of knowledge of the respective fractions of repeated and new contacts
between successive days. In [Smieszek 2009b] it is shown that, keeping constant the
daily number of encounters, the �nal size of the outbreak is higher in the case of
a fully random repetition of contacts than in the case where the same contacts
are repeated over several days. It is worth noting that the fully random repetition
of contacts does not exactly correspond to the uniform randomization of node la-
bels used in the RAND-SH time extension procedure, because we keep the contact
network constant while no network structure is assumed in [Smieszek 2009b].

5.2.4 Limitations

This study based on numerical simulations on data collected with RFID sensors
carry some caveats that need to be discussed. First, as already pointed out in the
protocol description in section 1.2.3, individuals are not followed outside of the zone
covered by RFID readers, so that contacts between participants that occur during
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(c) RAND-SH
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Figure 5.11: Temporal evolution of the spreading process for the three network
models and for the three time extension procedures in the fast scenario. Left is
the prevalence (i.e. the number of infectious individuals) and right is the number
of recovered individuals. Only runs with an attack rate over 10% are taken into
account. Symbols represent the median values and lines represent the �fth and
ninety-�fth percentiles of the number of infectious and recovered individuals.
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(b) CONSTR-SH
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(c) RAND-SH
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Figure 5.12: Temporal evolution of the spreading process for the three network
models and for the three time extension procedures in the slow scenario. Left is
the prevalence (i.e. the number of infectious individuals) and right is the number
of recovered individuals. Only runs with an attack rate over 10% are taken into
account. Notations are the same as in the previous �gure.
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the day outside of the area covered by the RFID readers are not monitored. This
results in an underestimation of the number of contacts, and therefore of the possi-
bilities for disease spread. Moreover, in this study, the periods of nights represented
a proportion of 56% of the 24-hour period, during which individuals were assumed
to be isolated. This may arti�cially increase the probability of extinction if the infec-
tious period of an infected individual ends during these periods, precluding further
transmission. This issue may be solved by upcoming technological improvements
that will allow operation of the RFID sensing layer in a fully distributed fashion with
on-board storage on the devices themselves; that is, such RFID tags will register
and store contacts even if they are not close to RFID readers.

Another issue, well known in the �eld of social networks, is due to the partial
sampling of the population [Handcock 2010]. Of the 1, 200 attendees at this con-
ference, 405 (34%) participated in the data collection. Consequently, only these
attendees were taken into account in the model of disease spread, whereas they were
in fact also in contact with the non-participating attendees. The analysis presented
in chapter 2 showed that for a wide variety of real-world deployments of the RFID
proximity-sensing platform used in this study, the behavior of the statistical distri-
butions of quantities such as contact durations is not altered by unbiased sampling of
individuals. However, paths of disease spread between sampled attendees that also
involved unsampled attendees may have existed, but were not taken into account.
This e�ect may lead to an underestimation of disease spread. In addition, it is pos-
sible that the volunteering participants themselves introduced a systematic bias into
the sampled population concerning their interaction behavior, as they self-selected
to participate to the experiment.

Finally, the limited period (2 days) of data collection made it necessary to gen-
erate arti�cially longer datasets by di�erent procedures in order to model the spread
of pathogens on realistic timescales. Deployment of the measuring infrastructure on
much longer timescales would be needed to validate such generation procedures and
to measure their e�ect.

5.3 Partial conclusion and perspectives

We used data collected in a 2-day conference involving 405 volunteers to compare
the simulated spread of communicable diseases on the dynamic network of contacts
(DYN) and on two other networks, one heterogeneous (HET) and one homogeneous
(HOM), obtained by aggregating the dynamic network at two distinct levels of
precision. To compensate for the relatively short duration of the observation period
(2 days), we designed three di�erent models to construct dynamical contact networks
spanning an extended time period during which the spread of an infectious disease
could be simulated. In the three networks, disease extinction occurred as frequently
as large outbreaks and these latter tended to be explosive.

Despite the limitations described above, this study emphasizes the e�ects of con-
tact duration heterogeneity on the dynamics of communicable diseases. On the one
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hand, the small di�erences between simulated spread on both the HET and DYN
networks shows that taking into account the very detailed actual time ordering of
the contacts between individuals, with a time resolution of minutes, does not seem
to be essential to describe disease spread on a timescale of several days or weeks.
On the other hand, the large di�erences in disease spread in the HOM network em-
phasize the need to include detailed information about the heterogeneity of contact
duration (compared with an assumption of homogeneity) to model disease spread, as
also found previously [Read 2008, Smieszek 2009a] for simulations of disease spread
dynamics based on diary-based survey data. Results from the di�erent procedures
for data extension also showed how the rate of new contacts is a very important
parameter [Smieszek 2009b, Read 2008]. Overall, the combined comparison of the
spreading processes simulated on the HET, DYN and HOM networks and using the
di�erent data-extension procedures gave an important assessment of the level of de-
tail concerning the contact patterns of individuals that is needed to inform modeling
frameworks of epidemic spread.

In this context, a data collection infrastructure such as the one developed
in the SocioPatterns collaboration seems to be very e�ective, as it gives access
to the level of information needed, and also allows the simulation of very fast-
spreading processes characterized by timescales comparable with those intrinsic to
social dynamics, where even the precise ordering of contact events becomes cru-
cial. These measurements should be also extended to other contexts in which
individuals interact closely in di�erent ways, such as workplaces, schools or hos-
pitals [Polgreen 2010, Isella 2011]. More experimental work is needed to collect
data over longer time periods, on various populations and in various locations.
This would help to better understand how to arti�cially extend datasets limited
in time in order to yield realistic datasets. The results of these approaches could
be helpful to anticipate the e�ect of preventive measures, and contribute to deci-
sions about the best strategies to control the spread of known or emerging infections
[Polgreen 2010, Masuda 2009, Kitsak 2010].



Chapter 6

Conclusion

This thesis hinges on the study of behavioral dynamic networks collected by means
of wearable sensors. These sensors, based on radio communication, allow one to
measure face-to-face proximity between individuals in a closed environment with
an unprecedented time resolution of 20 seconds.

Compared to classic pen-and-paper approaches, this methodology allows re-
searchers to collect detailed information while avoiding di�culties due to cognitive
limits. Indeed, the systematic record of encounters over several days, especially
if they last less than 1 minute, is not easily obtained by classical methods such
as personal interviewing and self-reported diaries. The use of a technological
infrastructure overcomes this limitation, at the cost of the reduction of interactions
to one dimension, i.e. face-to-face proximity. To be more speci�c, only highly
resolved behavioral data is obtained, whilst oral or written information provided
by participants, that could help us to contextualize social interactions, are not
available. This has consequences for the interpretation of results, because we
can not allege any intentionality in the interaction patterns. In the same manner
network survey data are likely to su�er from technical problems (interviewer e�ect,
misinterpretation, lost and incomplete forms, interruption of interviews, answer
inconsistencies, non-response bias), these sensor based network datasets have their
share of problems: defective badges or antennas, lost badges, unloaded batteries,
badge swaps between participants, mishandling of badges (gathering of switched-on
badges in a box at the beginning or end of the day). While some of these problems
can be automatically treated (for example, the mishandling of badges is easily
removed with an upper �lter on the instantaneous degree), others are, likely
only partially, solved by a careful postprocessing of the data (for instance, the
reallocation of the badge identi�cation numbers).

The relatively new nature of such datasets led me to think on the appropriateness
of analytical tools and measures. The formalism to process highly resolved temporal
networks is not an old established basis on which I could have relied on to build a
systematic descriptive analysis of proximity. I had during my thesis to think always
twice (or more) on the quantities to compute, and I found a balance between an
analysis in terms of dynamical networks and the construction of weighted static
networks based on the aggregation of contact durations over the entire span of the
deployments.
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I analyzed various datasets in diverse contexts, namely in scienti�c conferences,
in a primary school and in a museum, showing di�erences and similarities by specif-
ically designed quantities and distributions. Typical network measures, such as
the degree and strength distributions, the analysis in terms of groups, of distances
and the number of connected components, quantify the interaction patterns of each
event, and are generally well explained by the knowledge of the contexts in which
these interactions take place. On the other hand, measures on the dynamic of inter-
actions, such as the distribution of the contact durations, of the cumulated contact
durations, of the time elapsed between two contacts, are revealed to be robust across
the studied contexts. These similarities have awaken our interest for generic mech-
anisms that could produce such patterns.

The model developed in this thesis takes place within this framework. Treated
both analytically and numerically, it successfully produces the same generic
interaction patterns based on simple micro-mechanisms, while remaining �exible
enough to be implemented with additional features. More precisely, broad dis-
tributions in contact durations and intercontact times take their origin here in
self-reinforcement rules that increase the propensity of agents to remain in the
same state (same coordination number) with the time already spent in this state.
The versatility of the model is exempli�ed �rst with its ability to produce di�erent
kinds of contact and intercontact distributions, such as simple, compressed and
stretched exponentials. Second, heterogeneity among individuals' behaviors can
be implemented in the micro-rules, and in the case we studied, it does not change
the overall phenomenology of the model. Third, a �uctuating population size can
be introduced to model more realistic environments in which individuals enter and
leave through time. An interesting perspective for this model would be to use for
the simulation of dynamical processes such as information or infectious spreading or
synchronizations, to investigate the e�ect of its tunable parameters on the temporal
evolution of the studied dynamical process.

I presented two main lines for the use of such datasets. First, the epidemio-
logical community working on infectious diseases is directly interested in highly
detailed data on contacts. On a ground level, the simple quanti�cation of contact
rates between the various population stratas is needed to inform epidemiological
models. These models may then be used to assess the e�ciency of di�erent public
policies, on the basis of numerical simulations. On a more theoretical level, it is
desirable to know which details on contact dynamics are needed for these models.
In terms of cost/bene�t ratio, how much does 20 second resolved data stream
on interactions improve the quality of predictions compared to other data that
would be obtained at a lower cost, for example with mobility traces obtained with
mobile phone data? The analysis I presented on di�erent contact pattern models,
including di�erent levels of information, is only a small step in this direction,
which could be further explored. More precisely, I compared the simulated spread
of communicable diseases on the dynamic network of contacts and on two other
networks, one heterogeneous and one homogeneous, obtained by aggregating the
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dynamic network at two distinct levels of precision. This comparison emphasized
the e�ects of contact duration heterogeneity on the dynamics of communicable
diseases. On the one hand, the small di�erences between simulated spread on both
the heterogeneous and dynamic networks shows that taking into account the very
detailed actual time ordering of the contacts between individuals, with a time
resolution of minutes, does not seem to be essential to describe disease spread
on a timescale of several days or weeks. On the other hand, the large di�erences
in disease spread in the homogeneous network emphasize the need to include
detailed information about the heterogeneity of contact duration (compared with
an assumption of homogeneity) to model disease spread. Additional measurement
campaigns in di�erent settings and covering di�erent schools, countries, and age
groups, on longer timescales, are much needed to, �rst, validate our preliminary
results on the need of information on the heterogeneity of contact durations but
not necessarily on the contact sequence order and, second, to obtain datasets which
could be compared with other datasets obtain by di�erent means.

The second direction line is oriented toward social studies. This methodology
allows to access to very detailed information on behavior ties between persons.
While these ties do not inform us on intrinsic preferences, which would be known
by directly asking people on their social relationships, they provide us a detailed
picture on what they actually do. Interestingly, the development of unsupervised
methodologies, such as the one I worked on, allows social scientists to collect large-
scale, high-resolution dynamical data on human behavior in a reproducible manner.
Because of this valuable asset, such methodologies are likely to further develop.

In this thesis, I presented a study of gender homophily among children in primary
school. Based on behavioral ties (who people interact with), we recover results that
are generally obtained with social ties (who people are friend with), namely that, (1)
gender homophily is statistically present in all grades, (2) same-gender preference
reaches a higher level for boys than for girls in middle grades, (3) same-gender ties
are more stable than mixed-gender ties, and (4) same-gender preference tends to
increase with age for strong ties, at a higher rate for boys than for girls. I also
brought an additional stone in the literature of gender homophily, with the analysis
of the di�erence between boys and girls in their homophilous behavior when we
consider their weak ties, i.e., the mates they spend little time with.

I also presented a study bridging the gap between social relationships, or more
precisely virtual social ties, and face-to-face interaction. The coupling between the
sensor-based infrastructure with the Live Social Semantics platform during a scien-
ti�c conference highlights that (1) face-to-face contacts between attendees are more
frequent and last longer if they share a virtual tie, such as a Facebook friendship,
than if they do not, (2) these virtual friends also share a higher behavioral similarity
(they interact more similarly with the rest of the population) and a higher trajectory
similarity (they move from place to place in a similar manner), and (3) face-to-face
interactions provide relevant information on the existence of virtual friendships, in
terms of the link prediction. While these results shed light on the interrelation
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between face-to-face proximity and virtual ties, it remains an open problem for
classical social ties. While Mark Granovetter de�ned the amount of time spent
together as an ingredient of tie strength [Granovetter 1973], Marsden and Camp-
bell objected that interaction frequencies would poorly measure social a�liation (an
unobservable concept), re�ecting rather the e�ect of contingencies than being the
outcome of a personal preference or choice [Marsden 1984]. Their analysis would
bene�t from being conducted again with data on contact frequencies and durations
that are correctly recorded without the problem of the respondent limited recall.
Furthermore, it would be interesting to know whether friendship closeness is a more
relevant variable than contact duration depending on the sociological question that
is addressed.

As outlined in the thesis, this methodology would provide an interesting alter-
native to repeated panel network surveys. The study of the coevolution of network
and behavior is a hot topic in social sciences [Steglich 2010]. Longitudinal data are
necessary for measuring peer e�ects, which are known to play a crucial role in ed-
ucation, in alcohol and drug consumption, in sexual risk behavior and more widely
for any social behavior susceptible to be in�uenced by others' behaviors. Among
other ingredients, peer in�uence and peer selection are the two principal mechanisms
shaping the correlated behaviors of peers. The relative importance of these mecha-
nisms can in�uence the e�ciency of various public policies, when an organizational
authority considers the concerned behavior as noxious or bene�cial for the society.

A last opened problem concerns the e�ect of missing data and incomplete
sampling on the properties of dynamical processes unfolding on networks. Whilst
it is generally di�cult to de�ne the network boundaries for a speci�c question,
it is even more di�cult to obtain data on all nodes and ties. Generally, we only
have at our disposal a node and tie sample. Usual statistical models such as
ERGM, that rely on a complete network data assumption, are then used to analyze
these sampled datasets. The bias and/or inaccuracy it generates is not su�ciently
assessed, even though some recent works have been done to tackle the problem.
The same di�culty exists for dynamical processes such as disease spreading. The
imprecision done when ignoring unobserved ties that would play a role in real
processes, is not well controlled. I hope that these simple and interesting questions
will awake some interest in the statistician community.

To conclude, this thesis lies in a highly interdisciplinary context, at the frontiers
between statistical physics, epidemiology and sociology. This fruitful con�uence of
approaches has stimulated my interest, which I hope to have shown in the diversity
of my contributions. At present I am bifurcating toward the disjoint �eld of the
monetary redistribution but I hope that the time I am allowed to dedicate to research
activity will allow me to pursue in the �eld of network dynamics. This �eld is still
in a growing phase and much remains to be done.
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Pk Degree distribution 18
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FB Facebook 63
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SFHH Conference of the French society for hospital hy-
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Résumé

Les technologies modernes permettent d'avoir des renseignements toujours plus précis sur

les interactions entre individus. Dans ce contexte, la collaboration SocioPatterns a permis

de développer une infrastructure mesurant, avec une très grande résolution temporelle, la

proximité face-à-face d'individus volontaires, portant des badges de radio-identi�cation.

Cette infrastructure a été déployée dans divers contextes, tels que des conférences scien-

ti�ques, un musée, une école ou encore un service hospitalier. La simple analyse de ces

données représente un enjeu majeur pour l'étude de la dynamique humaine et soulève des

questions aussi fondamentales que la recherche d'outils et de techniques d'analyse adap-

tés. Cette thèse présente la caractérisation statistique de la dynamique de proximité

physique, mise en relation avec le contexte et les autres métadonnées disponibles, telles

que l'âge, le sexe des individus, ou bien la structure de leurs réseaux sociaux virtuels.

Si la structure des contacts di�ère considérablement selon le contexte, les distributions

empiriques des durées des interactions et entre interactions sont très similaires. Un modèle

individu-centré, présenté dans cette thèse, propose des règles d'interactions microscopiques

simples susceptibles de donner lieu à cette structure macroscopique complexe des temps

d'interaction. En�n, la caractérisation de la dynamique des contacts entre individus

constitue une étape cruciale pour comprendre les mécanismes de propagation de maladies

telles que la grippe dans une population. Les données de proximité humaine ont permis

d'étudier la quantité d'informations nécessaires sur la dynamique des contacts pour la con-

struction de modèles épidémiologiques de contagion. De tels modèles permettent de mieux

estimer a priori l'impact de stratégies de santé publique telles que la fermeture de classes

et les vaccinations ciblées.

Abstract

Modern technologies allow to access to more and more detailed information on human

interactions. In this context, the SocioPatterns collaboration has allowed to develop an

infrastructure based on radio-identi�cation devices, that records human proximity patterns

at a �ne grained resolution, among voluntary individuals. This infrastructure has been

deployed in diverse contexts, such as scienti�c conferences, a museum, a primary school,

or a hospital department. The mere analysis of these data represents a high stake for the

study of human dynamics and raises fundamental issues such as the need of adequate tools

and analysis techniques. This thesis presents the statistical characterization of physical

proximity dynamics, put into relation with the context and other available metadata such

as the age, the gender of participants or the structure of their virtual social networks.

Although contact patterns considerably di�er amongst the various contexts, the empiri-

cal distributions of interaction durations and of inter-contact times are very similar. An

agent-based model, presented in this thesis, suggests simple microscopic interaction rules

able to produce the complex macrostructure of interaction durations. In the last place,

the characterization of contact dynamics constitutes a determining step for understanding

spreading mechanisms of diseases such as the in�uenza. The human proximity data have

allowed to analyze the level of information needed on contact dynamics for the elaboration

of epidemiological models of contagion. Such models allow to better estimate the impact

of public health strategies, e.g. the closure of school classes and targeted vaccinations.
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