
HAL Id: tel-00777541
https://theses.hal.science/tel-00777541

Submitted on 17 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Post’s embedding problem and the complexity of
lossy channels
Pierre Chambart

To cite this version:
Pierre Chambart. On Post’s embedding problem and the complexity of lossy channels. Other [cs.OH].
École normale supérieure de Cachan - ENS Cachan, 2011. English. �NNT : 2011DENS0036�. �tel-
00777541�

https://theses.hal.science/tel-00777541
https://hal.archives-ouvertes.fr


������������������� �
���������	ABC�C	

�

�

�

��������������	A��

���BC���B��D�	EAB���F��	��F	������A��AD�

�

�

����������	A��

�

BC��D�E���D�����F�A��A���

��

�������������������������

�����F	����BC���B��D�	EAB���F��	��F	������A��AD�

�

�C�AD�����

����� ���!���

�

��"����������#$%��&�

Du problème de sous mot de Post et de la complexité des canaux non fiables 

������	�������������CE���E����FA��A������������������ A������!E�"��C�	C��������

�

#�����$CEA!!A�D� ��C%����E�� ����D����&��A		C���E��

'C���(EA)�D��� ��C%����E�� *A		C���E��

Olivier Serre� Chargé de recherches� +,A�D�A��E��

Grégoire Sutre�� Chargé de recherches� +,A�D�A��D���

��D�D		��-���C������� �D�����E���������������� �D�����D������������

�

�

.C���E�/A�C�A�CD���/-0�

+.-�F#F1#.�F.*-�2B*�3456�

4�&�A ��E���E�����D�����7D��C�&��5�68�F#F1#.�F+�+9��:;�A���<�

�

�

�



On Post’s Embedding Problem and the complexity

of lossy channels

Pierre Chambart

29/09/2011



Chapter 1

Introduction

1



CHAPTER 1. INTRODUCTION 2

1.1 The paradox of lossy communications

Channel Systems (CS), also called Finite-State communicating Machines,
are systems of finite-state automata that communicate via unbounded FIFO
channels. Lossy Channel Systems (LCS) are a variant model permitting
more behaviours than Channel Systems. They also allow to directly model
protocols assuming communication unreliability.

CS are long known to be equivalent to Turing Machines. It was a real
surprise when Abdulla and Jonsson [AJ93] showed that LCS analysis were
easier, by proving that reachability, safety and inevitability problems were
decidable. Simultaneously Finkel [Fin94] showed the decidability of ter-
mination. The right propreties allowing decidability were summarised in
Well Structured Transition Systems. They were introduced independently
by both Abdulla and Finkel. Meanwhile these algorithms also started to be
implemented in tools [ABJ98]. Destipe the accessibility of reachability and
termination, LCS are not a trivial model : indeed some problems on LCS are
undecidable, such as liveness, finiteness and bisimulation [AJ96a],[AK95].
Once the most natural decidability questions were answered, studies started
to focus on probabilistic versions and efficient algorithms.

1.2 The mystery of complexity

In the 90s, many decidability questions on LCS were solved, but no progress
was made on the question of assessing the complexity of the decidability
problems. It was argued that the non-constructiveness of termination proofs,
based on well quasi ordering theory, could not bring any bounds. As stated
by Abdulla and Jonsson in [AJ93] “The analysis is difficult since in general
there is no bound on the length of sequences in Higman’s theorem”. But
this was not a hindrance to development of tools that could even implement
non-terminating algorithms like [ACBJ04]. Nobody knew the order of mag-
nitude of the complexity before the first step by Schnoebelen [Sch02] on the
nonprimitive recursive lower bounds. Indeed, using the right encoding, LCS
seemed to be able to subsume every classical complexity class. It seems that
the problem was more with guessing the right complexity class than proving
LCS would live there. The right class came from the world of proof theory.

More precisely, we show below that verifying LCS is exactly at level Fωω

of the Extended Grzegorczyk Hierarchy. This hierarchy is very rarely visited
in the verification community. We can still mention a few examples : Petri
net equivalences [MM81, McA84, Clo86, Jan01] and upper bounds on the
size of Karp-Miller trees [Mül85].

Mayr and Meyer [MM81] used some unusual technique, relating their
problem to a bounded version of Hilbert’s 10th problem. Jancar gave a sim-
pler version of this result, based on a direct simulation of Turing Machines



CHAPTER 1. INTRODUCTION 3

in space bounded by the Ackermann function in [Jan01], and applied it to
different Petri net problems. The proof on LCS was inspired by this work.
Accessibility on LCS was the second problem in verification known to be
decidable but nonprimitive recursive.

These more classical reductions made those results more accessible to
the verification community, which found in it the base for more lower bound
results on many other models such as metric temporal logic [OW07], alter-
nating one-clock timed automata [ADO+08, LW08], leftist grammars [Jur08,
CS10], products of modal logics [GKWZ06], data nets [LNO+08], weak mem-
ory models [ABBM10]. We suppose that those results are reductions from
LCS rather than from Petri nets because there is a broader choice of source
problem on LCS. Indeed almost any non trivial problem is nonprimitive
recursive on LCS whereas only some problems are on Petri nets. This, de
facto, led to the reachability problem on LCS (ReachLcs) becoming a central
problem of its own complexity class.

This was the state of the art when we started to work on this problem.
Our results improve the knowledge on the complexity of ReachLcs in two
directions.

Firstly, we explored proof theory literature searching for results indicat-
ing how far we could push the lower bound. We found an article from Cichon
and Tahhan Bittar[CT98] giving limits on length of sequences obtained by
Higman’s lemma. With this result, we could show that the algorithm solv-
ing ReachLcs is in a class of functions called Fωω . Then, we showed that
this could not be solved in any smaller class by building sequences follow-
ing LCS behaviours that could reach the upper bound. Here, we define a
classical complexity class Fωω , closely linked to Fωω , such that ReachLcs is
Fωω -complete.

The second evolution was to develop the regular Post Embedding Prob-
lem (PEPreg) as another base Fωω -complete problem. Its definition is much
simpler and its manipulation requires less coding artifacts than ReachLcs.
We think that PEPreg is, in many cases, better suited as a base problem
for the class Fωω . It could be used the same way the Post Correspondence
Problem (PCP) is for undecidable problems.

1.3 Complementary notes

1.3.1 The way it happened

PEPreg did not came out of the blue, we were not looking for those results
when I started this thesis. I first studied the limit between decidability and
undecidability on systems allowing both reliable and unreliable communica-
tions, as presented in chapter 5. We first looked at the Post’s Correspon-
dence Problem with equality replaced by embedding, hoping that the PCP
community already proved its undecidability, to show that some base case



CHAPTER 1. INTRODUCTION 4

was undecidable. It appeared that nobody ever looked at it. We still chose
to continue and defined PEPreg since its manipulation was easier than our
channel systems. It later appeared to be decidable and equivalent to Reach-
Lcs. We realized that PEPreg was a promising candidate, as a base problem,
and decided to investigate it further.

1.3.2 More related work

The study of the complexity of Higman’s Lemma was initiated by de Jongh
and Parikh [dJP77] who measured the maximum order-type compatible with
the subword ordering. Constructive proofs of Higman’s Lemma provide re-
cursive upper bounds that are inherited from the computational power of the
underlying logical framework, and are thus exaggeratedly high. Using clever
combinatorial reasoning, Cichon and Tahhan Bittar [CT98] were the firsts
to provide tight upper bounds for the length of bad sequences with relation
to the subword ordering. An earlier Fω upper bound for bad sequences in
Nk (Dickson’s Lemma) was provided by McAloon [McA84]. From a proof
theory point of view, the part of our results on lower bound of ReachLcs,
where it is shown that LCS can compute the Fωω function, can be seen
as a characterization of multiply recursive functions with Higman’s lemma.
Such a work was already done by Touzet [Tou02] using different rewriting
systems.

On the practical side of LCS, it quickly appeared that the backwards
algorithms were not ideal. In practical cases, the forward algorithms, even
if they have no termination guaranty [FG09a], seem to be far more effi-
cient [ABJ98] [ACBJ04]. In fact, given such a high complexity, the practical
difference between terminating and non terminating algorithm does not re-
ally matter. But in the case of verification of human made protocols, the
forward analysis seams to better match the way they were designed. More-
over it also gives liveness information. The TReX tool was designed on this
principle [ABS01].

Another approach to tackle the limitations of the liveness analysis taken
by Bertrand and Schnoebelen et al. is to consider probabilistic loss rather
than non-deterministic [BS03],[ABRS05],[BBS07].

Atig and Bouajjani also studied systems connected by lossy channels.
They looked at more powerful systems, pushdown ones, but no reliable con-
nections [AB09].

The first definitions of Well Structured Transition System (WSTS) comes
from Finkel [Fin87], it was first inspired by Petri nets. Then it grew well and
what seems to be now a stable definition and set of classical results can be
found in [FS01]. In recent years the studies followed the same path as LCS
and the results on forward analysis were generalized to WSTS on [FG09a]
and [FG09b].



CHAPTER 1. INTRODUCTION 5

1.4 Short summary

In chapter 3 we prove the aforementioned lower and upper bounds on Reach-
Lcs. Chapter 4 is dedicated to the equivalence between PEPreg and ReachLcs.
Chapter 5 describes our results on mixing lossy and reliable channels.

The second part focuses on PEPreg and its variants. Chapter 6 gives
variants justifying our definition of PEPreg and some infinitary extensions.
Chapter 7 gives a direct decidability proof of PEPreg. Chapter 8 studies what
we call blockers PEP languages, technical elements introduced to prove the
decidability of PEPreg, which turned out to have interesting composabil-
ity properties and Fωω -complete problems. Chapter 9 will show results on
languages of PEP-solutions.



Contents

1 Introduction 1
1.1 The paradox of lossy communications . . . . . . . . . . . . . 2
1.2 The mystery of complexity . . . . . . . . . . . . . . . . . . . 2
1.3 Complementary notes . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 The way it happened . . . . . . . . . . . . . . . . . . . 3
1.3.2 More related work . . . . . . . . . . . . . . . . . . . . 4

1.4 Short summary . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminary 10
2.1 Words, languages and subword ordering . . . . . . . . . . . . 11

2.1.1 Word morphisms . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Syntactic congruence. . . . . . . . . . . . . . . . . . . 11
2.1.3 Subword ordering . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Well quasi ordering. . . . . . . . . . . . . . . . . . . . 11
2.1.5 Higman’s Lemma. . . . . . . . . . . . . . . . . . . . . 12

2.2 Channel Systems . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Perfect Channel Systems . . . . . . . . . . . . . . . . 14
2.2.2 Lossy Channel Systems . . . . . . . . . . . . . . . . . 14
2.2.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Compatibility . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Fωω , Fωω and Fωω hierarchies . . . . . . . . . . . . . . . . . . 19
2.3.1 Primitive recursive and multiply recursive functions . 19
2.3.2 Fast growing functions Fωω . . . . . . . . . . . . . . . 20
2.3.3 Extended Grzegorczyk Hierarchy Fωω . . . . . . . . . 21
2.3.4 Fωω complexity classes . . . . . . . . . . . . . . . . . . 21
2.3.5 Fωω and Higman’s lemma . . . . . . . . . . . . . . . . 22

I Equivalences 23

3 Fast-growing functions 24
3.1 The Fast-Growing Hierarchy . . . . . . . . . . . . . . . . . . 24
3.2 Stacking ordinals . . . . . . . . . . . . . . . . . . . . . . . . . 26

6



CONTENTS 7

3.3 A differential encoding of stacks . . . . . . . . . . . . . . . . 28
3.4 Fast-growing functions via lossy channels . . . . . . . . . . . 30

3.4.1 A channel system that computes fast-growing func-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Lower bounds for LCS’s . . . . . . . . . . . . . . . . . 33
3.5 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.1 Channel systems that implement stack rewriting . . . 36

4 Post Embedding Problem 41
4.1 The directed Post embedding problem . . . . . . . . . . . . . 42

4.1.1 PEP
reg
≤1 and PEP

reg
dir,≤1 . . . . . . . . . . . . . . . . . . 43

4.1.2 From PEP
reg
dir to PEPreg . . . . . . . . . . . . . . . . . 43

4.1.3 From PEPreg to PEP
reg
dir . . . . . . . . . . . . . . . . . 45

5 Generalised channel systems 47
5.1 Systems with reliable and lossy channels . . . . . . . . . . . 47

5.1.1 Network topologies . . . . . . . . . . . . . . . . . . . 47
5.1.2 Mixed channel systems and their operational seman-

tics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 The reachability problem for network topologies . . . 49

5.2 Reachability for basic topologies . . . . . . . . . . . . . . . . 50
5.2.1 Unidirectional Channel Systems . . . . . . . . . . . . 50
5.2.2 Other basic topologies . . . . . . . . . . . . . . . . . . 51

5.3 Fusion for essential channels . . . . . . . . . . . . . . . . . . 54
5.3.1 Essential channels are existentially 1-bounded . . . . 55
5.3.2 Decidability by fusion . . . . . . . . . . . . . . . . . . 57

5.4 Splitting along lossy channels . . . . . . . . . . . . . . . . . . 59
5.5 A complete classification . . . . . . . . . . . . . . . . . . . . 60
5.6 A classification algorithm . . . . . . . . . . . . . . . . . . . . 62
5.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 62
5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.8.1 Proofs for Section 5.4 . . . . . . . . . . . . . . . . . . 64
5.8.2 Some additional transformations . . . . . . . . . . . . 66

II More on PEP 68

6 PEP variants 69
6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Infinitary version of PEP, PEPω . . . . . . . . . . . . 69
6.2 Too simple cases . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 PEP, PEPdir, PEPcodir and PEPω
dir . . . . . . . . . . . 70

6.2.2 PEPω and PEPω
codir . . . . . . . . . . . . . . . . . . . 70



CONTENTS 8

6.3 Non trivial infinite PEP . . . . . . . . . . . . . . . . . . . . . 73
6.3.1 PEPω-reg and PEP

ω-reg
codir . . . . . . . . . . . . . . . . . . 73

6.3.2 PEP
ω-reg
dir undecidable . . . . . . . . . . . . . . . . . . 75

6.4 Varying constraint . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.1 Constraining uσ and vσ . . . . . . . . . . . . . . . . . 77
6.4.2 Context-free and Presburger constraints on solutions 78

6.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.1 PEPreg is equivalent to ReachUcs and PEPω-reg is equiv-

alent to RecReachUcs . . . . . . . . . . . . . . . . . . 79

7 Direct PEPreg algorithm 83
7.1 Blocking and stable families . . . . . . . . . . . . . . . . . . 83
7.2 Computability . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Languages of PEP blockers 88
8.1 Blockers and coblockers . . . . . . . . . . . . . . . . . . . . . 89
8.2 Upper bound results . . . . . . . . . . . . . . . . . . . . . . . 91

8.2.1 On blockers sets . . . . . . . . . . . . . . . . . . . . . 91
8.2.2 On coblockers sets . . . . . . . . . . . . . . . . . . . . 92

8.3 Blocker sets are not computable . . . . . . . . . . . . . . . . 93
8.4 Lossy counter machines . . . . . . . . . . . . . . . . . . . . . 93

8.4.1 From lossy counters to Post-embedding . . . . . . . . 95
8.4.2 Reducing LCM Infinite and LCM Unbounded Counter

to blockers problems . . . . . . . . . . . . . . . . . . 96
8.5 Regularity of Post-embedding languages is undecidable . . . 98
8.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9 Languages of PEP solutions 101
9.1 Composing, decomposing, and iterating words and subwords 102

9.1.1 Available suffixes . . . . . . . . . . . . . . . . . . . . . 102
9.1.2 Unmatched suffixes . . . . . . . . . . . . . . . . . . . . 102
9.1.3 Iterating factors . . . . . . . . . . . . . . . . . . . . . 103

9.2 Regular properties of sets of PEP solutions . . . . . . . . . . 103
9.3 Pumpable solutions and antisolutions . . . . . . . . . . . . . 106
9.4 Quasi-regular properties and counting properties . . . . . . . 107
9.5 Pumping in long solutions . . . . . . . . . . . . . . . . . . . . 108
9.6 Pumping in long antisolutions . . . . . . . . . . . . . . . . . 109
9.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 110

10 Conclusion 112

A Combinatorics on subwords 121
A.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.2 Available suffixes . . . . . . . . . . . . . . . . . . . . . . . . 123



CONTENTS 9

A.3 Unmatched suffixes . . . . . . . . . . . . . . . . . . . . . . . 123
A.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.5 Iterating factors . . . . . . . . . . . . . . . . . . . . . . . . . 125



Chapter 2

Preliminary

10



CHAPTER 2. PRELIMINARY 11

2.1 Words, languages and subword ordering

We write x, y, w, t, σ, ρ, α, β, . . . for words, i.e., finite sequences of letters
such as a, b, i, j, . . . from alphabets Σ,Γ, . . .. With x.y, or xy, we denote the
concatenation of x and y. With ǫ we denote the empty word. The length of
x is written |x|.. A language L ⊂ Σ∗ is a set of words. The mirror image of

a word x is denoted x̃, e.g., ãbc = bca. The mirror image of a language L is

L̃
def
= {x̃ | x ∈ L}.

2.1.1 Word morphisms

A morphism from Σ∗ to Γ∗ is a map u : Σ∗ → Γ∗ that respects the monoidal
structure, i.e., with u(ǫ) = ǫ and u(x.y) = u(x).u(y). A morphism u is
completely defined by its image u(a), u(b), . . . , on Σ = {a, b, . . .}. Most
of the time, we shall write ua, ub, . . ., and ux, instead of u(a), u(b), . . ., and
u(x).

2.1.2 Syntactic congruence.

For a language L, we let ∼L denote the syntactic congruence induced by L:

x ∼L y
def
⇔ ∀w,w′(wxw′ ∈ L ⇔ wyw′ ∈ L). The Myhill-Nerode Theorem

states that ∼L has finite index iff L is a regular language. For a regular L,
we let nL denote the number of equivalence classes w.r.t. ∼L.

1

2.1.3 Subword ordering

Given two words x and y, we write x ⊑ y when x is a subword of y, i.e.,
when x can be obtained by erasing some letters (possibly none) from y. For
example, abba ⊑ abracadabra. The subword relation, aka embedding, is a
partial ordering on words. It is compatible with the monoidal structure:

ǫ ⊑ x, (x ⊑ y ∧ x′ ⊑ y′) ⇒ xx ⊑ yy′.

2.1.4 Well quasi ordering.

A well quasi ordering (wqo) is a quasi ordering (S,≤) such that for any
infinite sequence s0s1s2 · · · of S

ω there exist i < j in N such that si ≤ sj.
Equivalently, there does not exist any strictly descending chain s0 > s1 >
· · · > si > · · · , and any antichain, i.e. set of pairwise incomparable elements,
is finite. A well partial order (wpo) is an antisymmetric wqo

Remark 2.1.1 If X is finite set (X,=) is a wpo. (N,≤) is a wpo. (Nk,≤)
the set of vectors of k natural numbers with component-wise ordering is a

1If the minimal complete DFA that accepts L has q states, then nL can be bounded
by qq.



CHAPTER 2. PRELIMINARY 12

wpo ( Dickson’s lemma ), and more generaly, if (X1,≤1), . . . , (Xk,≤k) are
wqos then (X1×X2×. . .×Xk,≤1,...,k) the tuples of elements from X1, . . . ,Xk

with component-wise ordering is a wqo.

Bad sequences.

We say that a sequence x1, . . . , xl, . . . of words in Σ∗ is n-good if there
exists indexes i1 < i2 < . . . < in such that xi1 ⊑ xi2 ⊑ . . . ⊑ xin , i.e.,
if the sequence contains a subsequence of length n that is increasing w.r.t.
embedding. It is n-bad otherwise. On wqo’s every infinite sequence is 2-
good, and even n-good for any n ∈ N. Hence n-bad sequences are finite.

2.1.5 Higman’s Lemma.

Lemma 2.1.2 (Higman’s Lemma [Hig52]) The subword ordering (Σ∗,⊑)
is a well partial order if Σ is finite.

Upward-closed and downward-closed languages.

A language L ⊆ Γ∗ is upward-closed if x ∈ L and x ⊑ y imply y ∈ L. It is
downward-closed if x ∈ L and y ⊑ x imply y ∈ L (equivalently, if its comple-
ment is upward-closed). Higman’s Lemma entails that any antichain is finite,
thus that any upward-closed set has a finite set of minimal elements. This di-
rectly implies that upward-closed and downward-closed languages are regu-
lar (See also [Hai69]). Upward-closed languages can naturally be denoted by
very simple regular expressions. Downward-closed languages also have a con-
venient respresentation called simple regular expression [FG09a, ACBJ04].
We write ↑ w (↑ L) for the smallest upward-closed language containing a
word w (language L) and ↓ w (↓ L) for downward-closed languages.

Simple regular expressions. ∗-products are concatenations of atoms
that are either of the form a + ǫ for some a ∈ Γ, or of the form A∗ for
some sub-alphabet A ⊆ Γ. A simple regular expressions (SRE) is a finite
union of ∗-products. For example, with Γ = {a, b, c}, the set of subwords of
abac is (a + ǫ).(b + ǫ).(a + ǫ).(c + ǫ) and the set of words that do not have
ab as a subword is {b, c}∗.{a, c}∗.

Theorem 2.1.3 (Abdulla, Collomb-Annichini, Bouajjani, Jonsson)
The downward closed languages are the languages recognizable by SRE’s

Remark 2.1.4 Another equivalent definition of well quasi ordering, is an
ordering such that every increasing sequence of upward closed set (Ui)i∈N, Ui ⊂
Ui+1 eventually stabilize, i.e. there exists j such that ∀k ≥ j, Uk = Uj

(See [Kru72]).



CHAPTER 2. PRELIMINARY 13

Higman’s Lemma on tuples of words. Higman’s Lemma also holds
on the component-wise extension ((Σ∗)p,⊑p) of ⊑ to p-tuples of words.
i.e. (x1, . . . , xp) ⊑p (y1, . . . , yp) if x1 ⊑ y1, . . . xp ⊑ yp. Indeed, if we
add a new letter # to the alphabet Σ, with x1, . . . , xp, y1, . . . , yp ∈ Σ∗,
x1#x2# . . .#xp ⊑ y1#y2# . . .#yp iff (x1, . . . , xp) ⊑p (y1, . . . , yp).

From Now on, we will only use the notation ⊑ to denote both orders.

Miniaturisation

Higman’s Lemma is often described as being “non-effective” in that it does
not give any information on the length of bad sequences. Indeed, arbitrar-
ily long bad sequences exist. However, upper bounds on the length of bad
sequences can certainly be given when one restricts to “simple” sequences.
Such finitary versions of well-quasi-ordering properties are called “miniatur-
isations” in proof-theoretical circles.

We will consider a very simple miniaturisation that applies to “con-
trolled” sequences [CT98]. Formally, given n ∈ N and an increasing func-
tion g : N −→ N, we say that a sequence x1,x2, . . . is controlled by (g, n)
when for each i, |xi| ≤ gi(n). For a p-tuples x = (x1, . . . , xp), the size |x|
is max1≤i≤p(x

i). In our setting, we will only use linear control functions g.
We say that a sequence is k-controlled when it is controled by (Succk, 0),
i.e. xi ≤ i× k.

Lemma 2.1.5 There exists a bounding function H : N4 → N such that, for
any n, k, p ∈ N and l ≥ H(n, k, p, |Σ|), any k-controlled sequence of p-tuples
of words of length l in Σ∗ is n-good.

The lemma states that if a k-controlled sequence is long enough, it is n-
good. Equivalently, n-bad sequences are shorter that H(n, k, p, |Σ|) or are
not k-controlled.
Proof. Fix n > 0, k, p,Σ and consider the set B of all k-controlled n-bad
finite sequences. Every subsequence of a bad sequence is bad hence B is
prefix-closed and the sequences can be naturally arranged in a tree, with
the empty sequence at its root. The tree is finitely branching because the
sequences are k-controlled (and Σ is finite). If B is infinite, the tree has an
infinite branch (Kőnig’s Lemma), that is, there exists an infinite sequence
x1, x2, . . . for which all finite prefixes are n-bad. Hence the infinite sequence
itself is n-bad, which is impossible by Higman’s Lemma. Finally, B must
be finite and taking H(n, k, p, |Σ|) as the length of the longest sequence in
B will fulfill the requirements. �

H(n, k, p, |Σ|) is our notation for what Cichon and Tahhan Bittar denote
Hig(ω|Σ|.p, n,Succk)(k).



CHAPTER 2. PRELIMINARY 14

2.2 Channel Systems

Channel Systems (CS) are systems of automata communication through
unbounded FIFO channels [BZ83]. A CS is a tuple S = (Q, M, C,∆) where
Q = {q1, q2, . . .} is a finite set of (control) state, M = {a1, a2, . . . , ak} is a
finite message alphabet, C = {c1, c2, . . . , cl} is a finite set of channels, and
∆ ⊆ Q×C×{!, ?}×M×Q is a finite set of transition rules, with typical elements
denoted δ. A rule of the form (q, c, !, a, q′) (respectively, (q, c, ?, a, q′)) is
called a writing rule (resp., a reading rule). Rules are often also denoted

q
!ca−→q′ for a writing rule (q, c, !, a, q′) and q

?ca−→q′ for a reading rule (q, c,′′ , a, q′).
Assume that S = (Q, M, C,∆) is a CS with l channels. A configuration of

S is a pair (q,u), where q ∈ Q is the current control state and u ∈ (M∗)l, is
the contents of the channels. (q,u) is sometimes written (q, u1, . . . , ul) where
ui ∈ M∗ is the sequence of messages contained in channel ci (by convention,
reading occurs at the head of ui and writing at its tail). We write Conf =
{σ, ρ, . . .} for the set Q × (M∗)l of configurations (of S). Configurations of
CSs are compared via the subword ordering:

(q,u) ⊑ (q′,u′)
def
⇔ q = q′ ∧ u ⊑ u

′.

Observe that, since Q and M are finite, (Conf ,⊑) is a well partial order as a
consequence of Higman’s Lemma and remark 2.1.1.

On this basis, we will define two kinds of channel systems, reliable and
lossy ones. The only difference is the operational semantics associated with
the system.

2.2.1 Perfect Channel Systems

The operational semantics of reliable or perfect S is given under the form of
a transition system T perfS = (Conf ,−→perf). Assume that σ = (q, u1, . . . , ul)
and σ′ = (q′, u′1, . . . , u

′
l) are two configurations. There is a step from σ to σ′

via rule δ, denoted σ
δ
−→perfσ

′, when:

— case 1: δ ∈ ∆ is a reading rule of the form (q, ci, ?, a, q
′) and ui = au′i

while uj = u′j for j 6= i, or
— case 2: δ is a writing rule (q, ci, !, a, q

′) and u′i = uia while uj = u′j for
j 6= i

2.2.2 Lossy Channel Systems

A lossy channel systems (LCS) is a channel system with an extended op-
erational semantics. Several different notions of message losses were pro-
posed in the literature. We choose to present two of them, the standard
semantics T std

S = (Conf ,−→sl) [AJ93] and the write-lossy semantics T wlS =



CHAPTER 2. PRELIMINARY 15

(Conf ,−→wl). As we focus on problems where the choice between those se-
mantics doesn’t matter, we will chose one or the other when it is more
convenient. We will usualy use the standard semantics, but in chapter 3
and 5 we use the write-lossy one.

The standard semantics, T std
S , assumes that any messages can be lost

before and after any perfect step. That is, it puts

−→sl
def
= ⊒ ◦ −→perf ◦ ⊒ (2.1)

The write-lossy semantics, T wlS , only allow to loose message that were
just written. Formaly assume that σ = (q, u1, . . . , ul) and σ

′ = (q′, u′1, . . . , u
′
l)

are two configurations. There is a step from σ to σ′ via rule δ, denoted

σ
δ
−→wlσ

′, when there is such a step in perfect channel system semantics as

above, i.e. σ
δ
−→perfσ

′, or when:

— case 3: δ is a writing rule (q, ci, !, a, q
′) and uj = u′j for all j = 1, ..., l.

Hence a message can be lost during a step that attempts to write it in
the channels. Once in the channels, messages cannot be lost, they can only
be removed by reading steps.

2.2.3 Notations

When writing steps, we usually omit the δ superscript when it is not use-
ful. We also often don’t specify the semantics, when it is unambiguous

from the context. We use the standard notations “
n
−→”, “

+
−→” and “

∗
−→” for,

respectively, the n-fold composition, the transitive closure and the reflexive-
transitive closure of a transition relation “−→”. When it is ambiguous, we
can write “−→S” to specify the system from which the transition belong to.

When there is a writing rule δ = (q, ci, !, a, q
′) such that σ

δ
−→σ′, we also

write σ
!ca−→σ′, and σ

?ca−→σ′ for a reading rule δ = (q, ci, ?, a, q
′)

For clarity reasons, when w = a1, . . . , an is a word, we often write σ
!cw−→σ′

when we want to say that there are configurations σ1, . . . , σn−1 such that

σ
!ca1−→σ1

!ca2−→σ2 . . . σn−1
!can−→σ′.

We also use this notation to denote rules writing or reading words. When
the system has only one channel, we usually don’t specify the channel name,

denoting rules as q
!a
−→q′.

2.2.4 Compatibility

Definition 2.2.1 An ordering ≤ is compatible with a transition system

TS = (Conf ,−→)
def
⇔ if there are σ, σ′, δ and ρ ∈ Conf such that σ ⊑ σ′ and

and σ
δ
−→ρ, then there is ρ′ such that ρ ≤ ρ′ and σ′

δ
−→ρ′.



CHAPTER 2. PRELIMINARY 16

Lemma 2.2.2 ⊑ is compatible with T std
S

From a configuration σ′ bigger than σ, it is always possible to lose some
message during −→sl to simulate any transition that can be done from σ.
Indeed (⊒ ◦ ⊒ ◦ −→perf ◦ ⊒) = (⊒ ◦ −→perf ◦ ⊒) = −→sl

Compatibility and ⊑ being a wqo are the key properties for T std
S to be

Well Structured Transition Systems, giving many decision algorithms, but
⊑ is not compatible with T wl

S . However the write-lossy semantics is close
enouth for their difference not being an hindrance.

Lemma 2.2.3 Assume σ has the form (q, ǫ, . . . , ǫ). Then
1. σ′ is reachable from σ in T wl

S iff it is reachable from σ in T stdS , and
2. there is an infinite run from σ in T wl

S iff there is one in T std
S .

Thanks to this lemma, our results will apply on both semantics.

Lemma 2.2.4 For all n > 0,
n
−→sl =

n
−→wl ◦ ⊒.

Proof. Note that the only difference between −→sl and −→perf ◦ ⊒ is that
−→sl can lose a message that has just been written by the −→perf part in (2.1).
Since this can be done by write-lossy steps −→wl, −→sl and −→wl ◦ ⊒ coincide.

By induction on n. As we just observed, the base case n = 1 holds. For
the inductive step, we use

n+1
−→sl =

n
−→sl ◦ −→sl =

n
−→wl ◦ ⊒ ◦ −→sl by ind. hyp.

=
n
−→wl ◦ −→sl using (2.1)

=
n
−→wl ◦ −→wl ◦ ⊒ using case “n = 1”

=
n+1
−→wl ◦ ⊒ .

�

Proof.[lemma 2.2.3] Since −→wl ⊆ −→sl, we only have to prove the “⇐”
implications.
1. Since σ

∗
−→slσ

′ then from Lemma 2.2.4: there is ρ, σ ⊒ ρ
∗
−→wlσ

′. When σ
has empty channels, ρ ⊑ σ requires ρ = σ.
2. The sets of runs of T std

S and T wlS starting from σ can be arranged in
trees with the length 0 run at their roots. They are finitely branching,
hence, using König’s Lemma, they are infinite iff they have an infinite
branch. A consequence of 1. is that ∀n,∃m,∃σ′,m ≥ n, σ

m
−→slσ

′ ⇐⇒
∀n,∃m,∃σ′,m ≥ n, σ

m
−→wlσ

′, which complete the proof. �

Therefore, when the initial configuration has empty channels, a LCS
satisfy exactly the same reachability and termination properties under the
standard semantics, or under the write-lossy semantics. In particular, ex-
actly the same algorithms can be used.



CHAPTER 2. PRELIMINARY 17

Remark 2.2.5 In the general case where the initial configuration is not
necessarily empty, it is easy to reduce reachability and termination from one
semantics to the other: one simply encodes the initial channel contents (and
its residuals) in the control states, and adds transition rules for these extra
states, encoding the original semantics.

Problems on LCS

The two problems we will consider on LCSs will be reachability and ter-
mination. Reachability is the historical decidability result. It was also the
first problem on LCS to be proved nonprimitive recursive and was reduced
many times to show hardness on other problems. Termination was the first
problem on LCS solved by a different kind of algorithm than reachabil-
ity. Those problems exhibits the two kinds of algorithms existing on LCSs.
Reachability is solved by backward exploration, i.e. computing Pre∗(s), the
set of configuration reaching a set s. Termination use forward search, i.e.
computing the set of bad sequences of configurations.

Reachability

Theorem 2.2.6 (Abdulla, Jonsson [AJ93]) Let U be an upward closed
set of configurations of an LCS S, Pre∗(U) is computable.

Proof.[Sketch] The main ideas are that
— 1: the set Pre(U) of predecessor in one step of an upward closed set of
configuration U is computable and is upward closed.
— 2: the sequence (Pre i(U))i∈N of sets of configuration reaching an upward
closed set U in at most i steps is an increasing sequence of upward closed
sets, then it stabilizes (Remark 2.1.4). �

LCS reachability problem, ReachLcs

Instance: An LCS S and two configurations σ ρ of S.

Question: Does σ
∗
−→Sρ ?

Theorem 2.2.7 (Abdulla, Jonsson [AJ93]) ReachLcs is decidable.

Proof. By definition of Pre and ↑, σ ∈ Pre∗(↑ ρ) iff. ∃ρ′ ⊒ ρ, σ
∗
−→ρ′. On

standard semantics ∃ρ′ ⊒ ρ, σ
∗
−→slρ

′ ⇐⇒ σ
∗
−→slρ

′. Pre∗ being computable
(Lemma 2.2.6), reachability is decidable on T stdS = (Conf ,−→sl).

Thanks to Lemma 2.2.3 and Remark 2.2.5 this also holds on write-lossy
semantics. �



CHAPTER 2. PRELIMINARY 18

Termination

Theorem 2.2.8 Let σ be a configuration of an LCS S, the set of bad run
(runs that are bad sequences) starting from σ is finite and computable.

Proof.[Sketch] Runs are controlled, indeed a transition rule can only add
one letter to a channel. It then suffice to remember that controlled bad
sequence have a length bounded by H(|Q|, 1, |C|, |M|) and that H is com-
putable (Lemma 2.1.5) to conclude that we can exhaustively search bad
sequences. �

LCS termination problem

Instance: An LCS S and a configuration σ from S.

Question: Are all runs of S starting from σ finite ?

Theorem 2.2.9 (Finkel [Fin94]) Termination is decidable.

Proof. With standard semantics, all runs from a terminating LCS are bad.

If that were not the case, there would be an good run, i.e. some σ0
∗
−→slσi

δ1−→sl

· · ·
δn−→slσi+n with σi ⊑ σi+n. Then, ⊑ compatibility tells us that the sequence

of transition δ1, . . . , δn could be fired from σi+n leading to a configuration
greater than σi+n, and that could be repeated indefinitely, giving an infinite
run.

The set of bad sequences being finite and computable (Theorem 2.2.8),
it is possible to check that there is no other runs, i.e. good runs, which
conclude the proof.

As for reachability, here also, thanks to Lemma 2.2.3 and Remark 2.2.5
termination is decidable on write-lossy semantics. �

One channel suffice

A classic assumption is to restrict to LCSs with only one channel. In fact,
systems with multiples channels can always be encoded in systems with
only one channel and an alphabet extended with a separation message #.
A configuration (q, u1, u2, . . . , un) is encoded to (q, u1#u2# . . .#un). The
loss of # characters can easily be detected by the structure of the system.
Although this encoding permit to consider decidability question only on
one channel LCSs, for complexity questions we can’t. Indeed as shown in
chapter 3, the key factor to complexity is the size of the alphabet, not the
number of channels.



CHAPTER 2. PRELIMINARY 19

2.3 Fωω, Fωω and Fωω hierarchies

We will now introduce these three different but related notions. The fast
growing hierarchy, which is an ordinal-indexed family of rapidly increasing
functions Fα : N −→ N; Fα the class of functions “elementary” in Fα and
Fα the complexity class of problems in time or space bounded by Fα and
closed by primitive recursive reductions.

2.3.1 Primitive recursive and multiply recursive functions

The primitive recursive functions are the integer functions definable using
only:

• for every n the n-ary constant function: 0n : N
n −→ N.

• the 1-ary successor and predecessor functions: Succ,Pred : N −→ N.

• for every n ≥ 1, for each i with 1 ≤ i ≤ n the n-ary projection P i
n

which returns the i-th component, i.e. P i
n(a1, . . . , an) = ai.

• composition of primitive recursive functions.

• primitive recursion.

The primitive recursion being a restricted recursion such that, for primitive
recursive functions f , g and k respectively k, k + 2 and 1-ary, the function
h is defined by primitive recursion from f , g and p, if p is decreasing and

h(n, x1, . . . , xk) =

{
f(x1, . . . , xk) if n = 0

g(p(y), h(p(y), x1 , . . . , xk), x1, . . . , xk) if n > 0.

For instance, addition, Add is primitive recursive and can be defined with
f = P 2

2 and g(x, y, z) = Succ(P 2
3 (x, y, z)) which is more clearly stated as

Add(n, x) =

{
P 2
2 (n, x) if n = 0

Succ(P 2
3 (Pred(n),Add(Pred(n), x), x)) if n > 0.

The important fact is that the Ackermann function, usually defined by

Ack(m,n) =





n+ 1 if m = 0

Ack(m− 1, 1) if m > 0 and n = 0

Ack(m− 1,Ack(m,n− 1)) if m > 0 and n > 0.

is not primitive recursive2. This function is a diagonalization of the class
of primitive recursive function, i.e. each Ackm(n) = Ack(m,n) is definable
using m primitive recursion, but can’t be defined with less.

2This result and following one are classical ones can find for instance in [Odi92]



CHAPTER 2. PRELIMINARY 20

The classes of Péter’s k-recursive functions [P3́5, Odi92] are extensions of
primitive recursive ones where a more powerful recursion is authorized. The
function p can be k-ary and needs to decrease following the lexicographic
ordering on Nk. We can see for instance that primitive recursive functions
are 1-recursives and Ack is 2-recursive. The union of k-recursive functions
classes is the class of multiply recursive functions [P3́5].

Ordinals below ωω. We use Ω to denote the ordinal ωω. We shall work
with set-theoretical ordinals less than Ω, written in Cantor’s Normal Form.

We say that a given ordinal 0 < α < Ω has degree d ∈ N, written
deg(α) = d, if ωd+1 > α ≥ ωd. In that case, α can be decomposed in a
unique way under the form α = ωd.a + α′ with 0 < a ∈ N and α′ < ωd.
(We further let deg(0) = 0.) For any p ≥ deg(α), α < Ω can be written in a
unique way under the form α = ωp.ap+ωp−1.ap−1+· · ·+ω1.a1+ω0.a0, shortly
written

∑
i≤p ω

i.ai, with a0, . . . , ap ∈ N. The set of limit ordinals ≤ Ω is
denoted Lim. Each λ ∈ Lim comes with its canonical fundamental sequence
(λn)n∈N satisfying λ0 < λ1 < · · · < λn < λn+1 < · · · and λ = supn λn. For
limit ordinals below Ω, the fundamental sequence is given by

(∑

i≤p

ωi.ai

)
n

def
= ωp.ap + · · ·+ ωr+1.ar+1 + ωr(ar − 1) + ωr−1.n

assuming ar is the last nonzero coefficient, i.e., 0 = a0 = a1 = . . . = ar−1 <
ar. Equivalently,

(
(α+ 1).ωi+1

)
n
= α.ωi+1 + ωi.n for all α < Ω and i ∈ N.

For example, if λ = ω9.2+ω3.6, then λn = ω9.2+ω3.5+ω2.n. Observe that,
for all λ ∈ Lim, λn ⊑

o λn+1 and |λn| = |λ| + n − 1. This scheme extends

canonically up to ǫ0 (and beyond) with (ω
λ)n

def
= ωλn etc. [Ros84, FW98].

2.3.2 Fast growing functions Fωω

The functions Fα : N→ N are defined by induction over α:

F0(n)
def
= n+ 1, (D1)

Fα+1(n)
def
= Fn+1

α (n) =

n+1 times︷ ︸︸ ︷
Fα(Fα(. . . Fα(n) . . .)), (D2)

Fλ(n)
def
= Fλn

(n) if λ ∈ Lim. (D3)

This induces F1(n) = 2n + 1 and F2(n) = (n + 1)2n+1 − 1. Expanding
F3(n) needs a tower of n exponents. Fω(n) = Fn(n), so that Fω is a variant
of Ackermann’s function and is the first Fα that is not primitive-recursive.
Notice that Fωω (n) = Fωn(n).



CHAPTER 2. PRELIMINARY 21

Since we later construct a channel system that evaluates the Fα functions
for α < Ω, it is a good exercise for the reader to try and get some intuition
of what would Fω+1(n), Fω+2(n), Fω.2(n) and Fω2(n) look like. For example

Fω2.3(5) = Fω2.2+ω.5(5)

= Fω2.2+ω.4+5(5)

= Fω2.2+ω.4+4(. . . (Fω2.2+ω.4+4︸ ︷︷ ︸
6 times

(5)) . . .).

2.3.3 Extended Grzegorczyk Hierarchy Fωω

Our exposition is based on [Ros84, FW98, CT98] where more details can be
found.

It is possible to define an ad-hoc primitive recursion on any data-structures
equiped with a well order, but it is more convenient to have a general def-
inition where the data-structure does not matter. This was achieved by
defining hierarchies indexed by ordinals. Indeed, every well order corre-
sponds to an ordinal. Kreisel [Kre52] developed such an extension, called
ordinal recursive functions using the same kind of definition, but allowing
more powerful well orders on integers. His definition gives rise to a hierarchy
indexed by ordinal, where level α is defined with recursions using a function
p decreasing according to an order ≤α of ordinal α

3.
Weiner [Wai70, Wai72] defined an equivalent, but more convenient hi-

erarchy, the Extended Grzegorczyk Hierarchy, a class (Fα)α of functions in-
dexed by (an initial segment of the) ordinals4. Fα is the class of functions
“elementary” in Fα, i.e. containing Fα, addition, zero, projections, and
closed under compositions and limited recursion.

Write F<α for
⋃

β<α Fβ: It is known that F<ω is exactly the set of
primitive-recursive functions. That F<ωk is the set of Péter’s k-recursive
functions for k ∈ N [Rob65], that F<ωω is the set of multiply-recursive func-
tions, and that F<ǫ0 is the set of functions provably total in first-order Peano
arithmetic [Wai72].

2.3.4 Fωω complexity classes

Our purpose here needs a complexity class in the classical meaning of sets
of problems computable by some time or space bounded Turing machine.
The classes of functions here, does not fits our needs, first because those are
function classes. Completeness for such kind of classes are tricky to express.
For instance ReachLcs is computable by a function in Fωω not in F<ωω .
Furthermore, we can obtain results tighter than that using more classical

3i.e. there is a bijection between (N,≤α) and ({γ|γ ≤ α},≤) preserving the well order.
4below ǫ0



CHAPTER 2. PRELIMINARY 22

notions of reduction. And finally the verification community is more used
to classical complexity classes.

We define our new classes Fα as the problems solvable in time or space
Fα ◦p for some p primitive recursive. We will always use primitive recursive
reduction to show Fα-hardness. From the strictness of Fα hierarchy, we
directly know that the Fα hierarchy is also strict.

The fact that p can be non elementary allow us to indistinguishably
consider time or space bounds. Indeed, going from space to time bound
only adds an exponential to the bound and Fωω ◦exp ◦p ≥ exp ◦Fωω ◦p (See
section 3.1). exp ◦ p is of course primitive recursive if p is.

2.3.5 Fωω and Higman’s lemma

The result from Cichon and Tahhan Bittar on which we will base our upper
bound is a concrete value to the H function defined in lemma 2.1.5.

Theorem 2.3.1 (Cichon, Tahhan Bittar [CT98, Cic07]) There exists
a primitive-recursive function f such that, for n, k, p ∈ N, and Σ a finite
alphabet, H(n, k, p, |Σ|) ≤ Fωf(|Σ|)(max(n, k, p))

the function f is left implicit in [CT98], for more informations see [Tou97].



Part I

Equivalences

23



Chapter 3

Fast-growing functions

This chapter is devoted to show

Theorem 3.0.2 ReachLcs is Fωω -complete.

To this end we will first prove that the longest controled bad sequences that
are also valid LCS’s runs are not significantly shorter than the overall longest
controled bad sequences ( given an alphabet and a first word ).

3.1 The Fast-Growing Hierarchy

Fast-growing functions and monotonicity. We state some standard
monotonicity properties in the form that will be convenient for our later
developments. The size |α| of α =

∑
i≤p ω

i.ai is
∑

i≤p ai.

Lemma 3.1.1 (Monotonicity) For every α < Ω and n ∈ N:

n < Fα(n), (3.1.1.a)

Fα(n) ≤ Fα(n+ 1), (3.1.1.b)

|α| < Fα(n) if n > 0. (3.1.1.c)

In general, β < α does not entail Fβ(n) ≤ Fα(n), e.g., Fm(n) > Fω(n) when
0 < n < m < ω. What is true is that, for all β < α, Fβ is eventually
dominated by Fα, i.e., Fβ(n) < Fα(n) for n large enough.

The next lemma provides more precise information on this issue.

Definition 3.1.2 (Embedding over ω) Assume than, in normal form,
α =

∑
i≤p ω

i.ai and β =
∑

i≤p ω
i.bi are two ordinals below Ω. We say

that α embeds in β, written α ⊑o β, when ai ≤ bi for all i = 0, . . . , p.

Observe that embedding between ordinals is only a partial order (in
which, e.g., ω and 1 are incomparable), compatible with the usual linear
ordering of ordinals (α ⊑o β implies α ≤ β).

24



CHAPTER 3. FAST-GROWING FUNCTIONS 25

Lemma 3.1.3 (Monotonicity w.r.t. α) For every α, β, γ < Ω and n, p ∈
N:

Fβ(n) ≤ Fα(n) if β ⊑o α, (3.1.3.a)

Fγ+α(n) ≤ Fγ+ωp+α(n) if n > |γ|. (3.1.3.b)

Observe that (3.1.3.b) is not a special case of (3.1.3.a) since γ + α ⊑o γ +
ωp + α does not hold in general ( e.g. 1 + 1 6⊑o 1 + ω + 1 = ω + 1 ) .

We now prove lemmas 3.1.1 and 3.1.3. The first four inequalities are
proved by induction over α. We sometimes use simultaneous induction as
when proving (3.1.1.b) and (3.1.3.a). Proving (3.1.3.b) requires the intro-
duction of extra notations and tools, and is done in a later step.

3.1.1.a. Fα(n) > n:
An easy induction over α. This directly entails

F i
α(n) ≥ n+ i. (3.1.1.a’)

3.1.1.b. We actually prove Fα(n+ i) ≥ Fα(n) for all i ∈ N:
If α = 0, we are done with n+ i+ 1 ≥ n+ 1.
If α = α′ + 1 is a successor ordinal, then Fα(n+ i) = Fn+i+1

α′ (n+ i) (by
D2) ≥ Fn+1

α′ (n+ i) (by 3.1.1.a) ≥ Fn+1
α′ (n) (by ind. hyp.) = Fα(n).

If α ∈ Lim , we rely on αn ⊑
o αn+i: Fα(n + i) = Fαn+i

(n + i) (by D3)
≥ Fαn+i

(n) (by ind. hyp.) ≥ Fαn(n) (by 3.1.3.a and ind. hyp.) = Fα(n).

3.1.1.c. Fα(n) > |α| if n > 0:
If α = 0, then Fα(n) = n+ 1 > 0 = |α|.
If α = α′ + 1 is a successor ordinal, then Fα(n) = Fn+1

α′ (n) (by D2)
> |α′| + n (by ind. hyp. and using 3.1.1.a’) ≥ |α| since |α| = |α′| + 1 and
n > 0.

If α ∈ Lim, we rely on Fα(n) = Fαn(n) > |αn| (by ind. hyp.) =
|α| − 1 + n ≥ |α| since n > 0.

3.1.3.a. Fβ(n) ≤ Fα(n) if β ⊑
o α:

If α = 0, then necessarily β = α and we are done.
If α = α′+1 is a successor ordinal, we consider two cases. If β = β′+1 is

a successor, then β′ ⊑o α′ so that Fβ′(n) ≤ Fα′(n) by ind. hyp. Now, using
3.1.1.b we deduce Fn+1

β′ (n) ≤ Fn+1
α′ (n), i.e., Fβ(n) ≤ Fα(n) as required. If

β is a limit, then β ⊑o α′ and Fβ(n) ≤ Fα′(n) (by ind. hyp) ≤ Fn+1
α′ (n) (by

3.1.1.a) = Fα(n).
If α ∈ Lim, then β ∈ Lim too and there are two cases: either β ⊑o αn

or βn ⊑
o αn. In both cases the induction hypothesis concludes immediately.



CHAPTER 3. FAST-GROWING FUNCTIONS 26

Proof of (3.1.3.b). Recall that, for any p ∈ N, an ordinal α can be decom-
posed in a unique way under the form α = α1.ω

p + α2 such that α2 < ωp.
This decomposition satisfies both α1.ω

p ⊑o α and α2 ⊑
o α. Also note that

α+ ωp = α1.ω
p + ωp = (α1 + 1).ωp.

3.1.3.b. Fγ+α(n) ≤ Fγ+ωp+α(n) if n > |γ|: The proof is by induction over
α. There are three cases.
1. α = 0: we must prove that Fγ(n) ≤ Fγ+ωp(n). When p = 0, i.e.,
ωp = 1, we note that γ ⊑o γ + ωp so that (3.1.3.a) concludes. When p > 0,
γ + ωp ∈ Lim. Decomposing γ as γ1.ω

p + γ2 we obtain

Fγ+ωp(n) = F(γ1+1).ωp(n)

= Fγ1.ωp+ωp−1.n(n) (by D3)

= Fγ1.ωp+ωp−1.(n−1)+ωp−2.n(n) (D3 again)

= Fγ1.ωp+ωp−1.(n−1)+ωp−2.(n−1)+ωp−3.n(n)

· · ·

= Fγ1.ωp+[
∑

i<p ωi.(n−1)]+1(n) (written Fγ1.ωp+γ′(n)).

Now γ2 ⊑
o γ′ since n > |γ|. Hence γ ⊑o γ1.ω

p + γ′ and (3.1.3.a) concludes.
2. α = α′ + 1: then Fγ+α′(n) ≤ Fγ+ωp+α′(n) by ind. hyp. One deduces
that F k

γ+α′(n) ≤ F k
γ+ωp+α′(n) for all k ∈ N using 3.1.1.b (and also 3.1.1.a

to guarantee that all arguments are > |γ|). Putting k = n+ 1, one obtains
Fγ+α(n) ≤ Fγ+ωp+α(n) as required.
3. α ∈ Lim: Let d = deg(α). If d = p then γ + α ⊑o γ + ωp + α so that
(3.1.3.a) concludes. If d > p, then γ + α = γ + ωp + α which is even more
direct.

If now d < p then (ωp+α)n is ω
p+αn. Decompose γ both as γ1.ω

p+ γ2
and as γ′1.ω

d + γ′2. Note that γ1 + ωp = γ′1 + ωp since d < p. Finally

Fγ+ωp+α(n) = F(γ+ωp+α)n(n) by D3

= Fγ1+ωp+αn(n)

= Fγ′1+ωp+αn
(n)

≤ Fγ′1+αn
(n) by ind. hyp., noting that |γ′1| ≤ |γ|

= F(γ+α)n(n)

= Fγ+α(n) by D3.

3.2 Stacking ordinals

We use “stacks” to define a small-steps semantics for the Fα’s that will be
easier to simulate in channel systems.



CHAPTER 3. FAST-GROWING FUNCTIONS 27

Definition 3.2.1 A stack (of length k ∈ N) is a finite sequence
π = α1, α2, . . . , αk of increasing ordinals < Ω, i.e., α1 ≤ α2 ≤ · · · ≤ αk < Ω.
We denote the empty stack ǫ and α, π the stack with α on top and continued
by the stack π.

Since a stack must list its elements in increasing order, there is a natural
bijection between stacks and finite multisets over Ω. Hence we let Mf (Ω)
denote the set of stacks, and write π <ms π

′ when π is strictly smaller than
π′ in the multiset ordering inherited from the ordering of ordinals below Ω.
This is a well-founded linear ordering with ǫ as minimal element [DM79].

We now extend the (Fα)α family with fast-growing functions indexed by
stacks, denoted Fπ : N→ N, and defined with:

Fǫ(n)
def
= n, Fα,π(n)

def
= Fπ(Fα(n)).

Note that Fα is the same when we see α as an ordinal or as a stack of length
one, hence we will not disambiguate.

The evaluation of some Fπ(n) can be expressed as a transformation sys-
tem, where the manipulated objects are pairs 〈〈π ; n〉〉 of a stack π and a
natural number n. Formally, we define a relation overMf (Ω)×N, denoted
−→R, and defined by the three following “rewrite” rules:

〈〈0, π ; n〉〉 −→R 〈〈π ; n+ 1〉〉 (R1)

〈〈α+ 1, π ; n〉〉 −→R 〈〈

n+ 1 times︷ ︸︸ ︷
α,α, ..., α, π ; n〉〉 (R2)

〈〈λ, π ; n〉〉 −→R 〈〈λn, π ; n〉〉 if λ ∈ Lim. (R3)

Observe that if π is a stack and 〈〈π ; n〉〉−→R〈〈π
′ ; n′〉〉 then π′ is indeed a

stack ( i.e. ordinals are still ordered in π′), π′ <ms π and n′ ≥ n. Note that
−→R is deterministic.

Corollary 3.2.2 −→R is terminating and convergent.

The normal forms are the pairs 〈〈π ; n〉〉 with π = ǫ.
Since rules R1–3 merely reformulate definitions D1–3 in terms of stacks,

it follows that 〈〈π ; n〉〉−→R〈〈π
′ ; n′〉〉 implies Fπ(n) = Fπ′(n

′). With
Cor. 3.2.2, one deduces 〈〈π ; n〉〉−→∗

R〈〈ǫ ; Fπ(n)〉〉.

Write ↔R for −→R ∪ −→
−1
R . The previous observations entail

Lemma 3.2.3 〈〈π ; n〉〉↔∗
R〈〈π

′ ; n′〉〉 iff Fπ(n) = Fπ′(n
′).

Notation 3.2.4 When dealing with ↔R, it is convenient to decompose it as
the union −→R1 ∪−→R2 ∪−→R3 ∪−→S1∪−→S2∪−→S3 of the six relations defined
by rules R1 to R3 and by inverse rules denoted S1 to S3, and defined such
that −→Si = −→

−1
Ri .



CHAPTER 3. FAST-GROWING FUNCTIONS 28

〈〈π ; n+ 1〉〉 −→S 〈〈0, π ; n〉〉 (S1)

〈〈

n+ 1 times︷ ︸︸ ︷
α,α, ..., α, π ; n〉〉 −→S 〈〈α+ 1, π ; n〉〉 (S2)

〈〈λn, π ; n〉〉 −→S 〈〈λ, π ; n〉〉 if π = α, π′ with α 6< λ. (S3)

3.3 A differential encoding of stacks

For K ∈ N, we let ΣK
def
= {ω0, ω1, ω2, . . . , ωK−1} ∪ {I} be an alphabet with

K + 1 symbols, that we use to encode stacks (restricted to ordinals < ωK).
The symbols “ωp” denote the corresponding finite powers of the ordinal ω.
In particular, “ω0” and “ω1” denote, respectively, the ordinals 1 and ω.

We first explain the encoding informally. Consider the following word
u ∈ Σ∗K :

u = ω0ω0Iω3ω1IIω1ω0I.

One reads u from left to right. While reading u, all the encountered ordinal
symbols are added up, giving rise to a notion of current sum, or height. A
tally symbol “I” codes for an ordinal in the stack: each I stands for one copy
of the current sum. In our example, the stack of length 4 associated with u,
is

Π(u) = 2, ω3 + ω, ω3 + ω, ω3 + ω.2 + 1.

(Indeed ω0 + ω0 = 2 and ω0 + ω0 + ω3 + ω1 = ω3 + ω. Furthermore, Π(u)
contains two occurrences of ω3 + ω because u contains two tally symbols
immediately after the first occurrence of ω1.)

Formally, the correspondence Π : Σ∗K →Mf (Ω) and the height function
h : Σ∗K → Ω are defined by induction over u:

h(ǫ)
def
= 0; h(uI)

def
= h(u); h(uωi)

def
= h(u) + ωi;

Π(ǫ)
def
= ǫ; Π(uI)

def
= Π(u), h(u); Π(uωi)

def
= Π(u).

Observe that Π(u) is indeed a stack, i.e., Π(u) lists increasing ordinals, since
h(u.v) ≥ h(u) for all u, v.

Remark 3.3.1 We call this encoding differential since the ωp symbols in
ΣK are not used to directly represent an αj in a stack π = α1, . . . , αk.
Rather they represent the “difference” αj − αj−1 that must be added to the
previous ordinal in order to obtain αj.

Any u ∈ Σ∗K encodes a stack, and any stack below ωK can be encoded
with some u ∈ Σ∗K . Such an encoding is not unique. However, there is a
unique shortest one, called a pure encoding.



CHAPTER 3. FAST-GROWING FUNCTIONS 29

Definition 3.3.2 (Pure encodings) An encoding u ∈ Σ∗K is pure if (1)
it does not end with an ωi symbol, and (2) it does not contain a factor of
the form ωiωj with i < j.

Note that the pure encodings are a regular subset of Σ∗K .
The idea behind purity is to forbid useless symbols in an encoding. If u

is not pure, this is witnessed by some occurrence of some ωi. Removing that
occurrence yields some shorter u′ with Π(u′) = Π(u). Hence any impure u
can be replaced by a shorter equivalent encoding. Reciprocally, if u is pure
and u′ is shorter than u, then Π(u′) 6= Π(u).

Purity allows transferring the monotonicity lemmas from stacks to their
encodings. The rest of this section proves the following proposition.

Proposition 3.3.3 Let u, v ∈ Σ∗K and n > 0. If u ⊑ v and v is pure, then
FΠ(u)(n) ≤ FΠ(v)(n).

The crux of the proof is the case where u and v only differ by one ordinal
symbol:

Lemma 3.3.4 FΠ(v1v2)(n) ≤ FΠ(v1ωpv2)(n) when v1ω
pv2 is pure and n > 0.

Proof. Write π = α1, . . . , αk for Π(v1ω
pv2) and π′ = α′1, . . . , α

′
k for Π(v1v2)

(clearly, π and π′ have same length). Write l ∈ {0, . . . , k− 1} for the length
of Π(v1). Then α′i = αi for i = 1, . . . , l and, for i = l+1, . . . , k, we can write
αi and α′i under the following form:

αi = h(v1) + ωp + βi, α′i = h(v1) + βi,

where βl+1, . . . , βk is simply Π(v2). There are now two cases:
(1) If v1 ends with some “I” symbol (or v1 = ǫ), then h(v1) = αl−1, putting
α0 = 0 by convention. Observe that Fα′1,...,α

′
l
(n) > |αl| as a consequence

of (3.1.1.c) and (3.1.1.a). Thus (3.1.3.b) applies and we can prove that
Fα′1,...,α

′
i
(n) ≤ Fα1,...,αi

(n) for all i = l + 1, . . . , k by induction over i.
(2) Otherwise v1 ends with some ωr symbol. Observe that r ≥ p since
v1ω

pv2 is pure. This implies that α
′
i ⊑

o αi for i ≥ l (and hence for all i’s).
We conclude with (3.1.3.a) and the other monotonicity properties. �

The case where u and v differ by one tally symbol is easier.

Lemma 3.3.5 FΠ(v1v2)(n) ≤ FΠ(v1Iv2)(n).

Proof. [Sketch] Π(v1v2) is obtained by removing one ordinal somewhere in
Π(v1Iv2). Hence we can conclude with (3.1.1.a) and the other monotonicity
properties. �

There remains to deal with the case where u and v differ by more than
one symbol. Write u ⊑k v when u ⊑ v and |v| = |u|+k. Write u ≡Π v when
Π(u) = Π(v).



CHAPTER 3. FAST-GROWING FUNCTIONS 30

Lemma 3.3.6 If u ⊑ v and v is pure then there is a sequence

u ≡Π u1 ⊑1 u2 ⊑1 · · · ⊑1 un = v

where all ui’s, i = 1, . . . , n, are pure.

Proof. We let u1 be the pure encoding of Π(u): this is a subword of u,
hence of v too. The sequence u1 ⊑1 u2 ⊑1 · · · ⊑1 un is obtained by inserting
in u1, one by one, all the (occurrences of) symbols that are in v but missing
in u1. One first inserts all the missing tally symbols (in no particular order)
and then, in a second phase, all the missing ordinal symbols (in no partic-
ular order). This ensures that all the ui’s are pure: In the first phase, a ui
inherits purity from ui−1, starting with u1, since xIy is pure when xy is. In
the second phase, a ui inherits purity from ui+1, starting from un = v, since
xy is pure when xωjy is. �

With Lemma 3.3.6 one can reduce Prop. 3.3.3 to repetitive applications
of Lemmas 3.3.4 and 3.3.5, which concludes the proof of Proposition 3.3.3.

3.4 Fast-growing functions via lossy channels

3.4.1 A channel system that computes fast-growing func-

tions

In this section, we construct a LCS, called WK , that weakly computes the
Fα functions for all α < ωK . It can also weakly compute their inverses F−1α

as we explain later.
WK uses two channels. The first channel, p, stores a word u ∈ Σ∗K that

encodes a stack of ordinals as in Section 3.3. The second channel, d, stores
a number n > 0 in unary (using n times the tally symbol, or In). Thus
a pair 〈〈π ; n〉〉 is stored in two channels. An extra marker symbol # is
written at the end of these encodings to recognize their extremity during
the manipulations.

The overall structure of WK is illustrated in Fig. 3.1 (see Appendix 3.6.1
for the details of the components). When explaining its behaviour, we call
“single-pass run” any run that does not visit the state loop. In state beg,
WK will traverse one of six possible “components” where it transforms the
pair 〈〈π ; n〉〉 (more precisely, its encoding) stored in the channels by one
application of the rewriting rules R1 to R3 (from section 3.1), or the inverse
rules S1 to S3. With our encodings of pairs, each of these rules can be seen
as a finite-state transduction. The LCS’s that implement these components
are described in Appendix 3.6.1. Implementing one rewriting step, WK will
replace 〈〈π ; n〉〉 with the resulting 〈〈π′ ; n′〉〉, that is, unless message losses
corrupt the result. Then WK reaches state wrap where it reads the end



CHAPTER 3. FAST-GROWING FUNCTIONS 31

beg wrap

loop end

p?#

p!#

d?#

d!#

· · · apply R1 · · ·

· · · apply R2 · · ·

· · · apply R3 · · ·

· · · apply S1 · · ·

· · · apply S2 · · ·

· · · apply S3 · · ·

channel p

channel d

ω1 I ω0 I I #

I I I I #

Figure 3.1: A schematic view of WK .

markers and writes them back after 〈〈π′ ; n′〉〉. In state end WK can termi-
nate and exit, or loop back to beg and transform 〈〈π′ ; n′〉〉 again, therefore
computing the transitive closure of ↔R.

The construction ensures the following features:

sanity check: The rule components assume that each channel contain a
ΣK-word followed by at most one marker symbol #. With this as-
sumption, the components check that the channels contain proper in-
puts. Formally, there is a single-pass run from (beg, u#, v#) to state
end only if u is some pure encoding, and v is some In for some n > 0.
If this is not the case, on impure u or incorrect v, WK will stop in a
deadlock. If a final # is missing, WK will loop without reaching end.

one-pass transduction: If the channels contain proper inputs, a single-
pass run from (beg, u#, v#) to some (wrap, w,w′) reads u and v com-
pletely, write some new data u′ and v′, and does not touch the end
markers. Hence w = #u′ and w′ = #v′.

rule applicability: When going from beg to end, WK chooses non-deter-
ministically what rule component will be traversed. It may be the case
that the corresponding rule is not applicable to the current channel
contents: this is checked by WK and it will stop in a deadlock if the
rule is not applicable.

We can now state formally how WK implements ↔R.

Lemma 3.4.1 (Single-pass perfect runs in WK) Assume that u, u′ ∈
Σ∗K are the pure encodings of two stacks π and π′. Assume n, n′ > 0. Then
〈〈π ; n〉〉↔R〈〈π

′ ; n′〉〉 if, and only if, WK has a single-pass perfect run of
the form

(beg, u#, In#)
∗
−→perf(end, u

′#, In
′
#).



CHAPTER 3. FAST-GROWING FUNCTIONS 32

Proof. [Idea] The “⇒” direction is obvious since WK implements exactly
the six rules that define ↔R (see Appendix 3.6.1). Reciprocally, the rule-
applicability features ensure that end is only reached by one proper step
of rewriting. Hence the “⇐” direction. �

The corollary is:

Theorem 3.4.2 (WK weakly computes the Fα’s) Assume that u, u′ ∈
Σ∗K are the pure encodings of two stacks π and π′. Assume n, n′ > 0. Then
Fπ(n) ≥ Fπ′(n

′) if, and only if, WK has a lossy run of the form

(beg, u#, In#)
∗
−→(end, u′#, In

′
#).

Proof. (⇒): Write a for Fπ(n) and b for Fπ′(n
′). By Lemma 3.2.3, there are

rewriting sequences of the form 〈〈π; n〉〉↔∗
R〈〈ǫ; a〉〉 and 〈〈ǫ; b〉〉↔

∗
R〈〈π

′; n′〉〉,
and it is even possible to ensure 〈〈π ; n〉〉↔+

R〈〈ǫ ; a〉〉 by inserting extra
rewriting steps. These rewriting steps entail the existence of corresponding
single-pass perfect runs (Lemma 3.4.1). Concatenating these, we deduce

that WK has two perfect runs of the form (beg, u#, In#)
∗
−→perf(end,#, Ia#)

and (beg,#, Ib#)
∗
−→perf(end, u

′#, In
′
#). Since a ≥ b, there also exists a lossy

run (beg, u#, In#)
∗
−→(end,#, Ib#) obtained by losing a− b tally symbols in

d during the last single-pass of the first run. Concatenating with the second
run we obtain the required lossy run (beg, u#, In#)

∗
−→perf(end, u

′#, In
′
#).

(⇐): Write k for the number of times the run (end, u#, In#)
∗
−→(end, u′#, In

′
#)

visits state loop. We prove the implication by induction over k. If k = 0,
then the run has length zero, u = u′, n = n′ and we are done. Now assume
k > 0. The run has the form

(end, u#, In#)−→(loop, u#, In#)−→

single-pass︷ ︸︸ ︷
(beg, u#, In#)

∗
−→(end, w,w′)

∗
−→(end, u′#, In

′
#)︸ ︷︷ ︸

k − 1 remaining visits

.

After two steps, the first single-pass reaches (end, w,w′) by traversing one
of the six components of WK . Traversing the same component, WK has a
perfect single-pass run (beg, u#, In#)

∗
−→(end, v#, Im#) satisfying

FΠ(u)(n) = FΠ(v)(m) (3.1)

thanks to Lemma 3.4.1. With our write-lossy semantics, the one-pass
transduction features ensure that w and w′ are subwords of, respectively,
v# and Im#. Observe that w and w′ are proper inputs, i.e., w is some
v′# for some pure v, and w′ is some Im

′
# for some m′ > 0. Indeed, either



CHAPTER 3. FAST-GROWING FUNCTIONS 33

k > 1 and the sanity check features require a proper input (otherwise the
next single-pass would not succeed), or k = 1, implying that w = u′# and
w′ = In

′
#. Therefore, the induction hypothesis applies, yielding

FΠ(v′)(m
′) ≥ FΠ(u′)(n

′). (3.2)

Now, since v′# ⊑ v# and Im
′
⊑ Im#, i.e., v′ ⊑ v and m′ ≤ m, since v is

pure and m′ > 0, Lemmas 3.1.1.b and 3.3.3 imply

FΠ(v′)(m
′) ≤ FΠ(v)(m). (3.3)

Combining (3.1–3.3) provides the required FΠ(u)(n) ≥ FΠ(u′)(n
′). �

3.4.2 Lower bounds for LCS’s

WK can be used to check that a possibly lossy run is actually perfect in
space-bounded LCS’s. Formally, a space-bounded LCS is a LCS operating
on one channel and whose transition rules write exactly as many messages
as they read (see [Sch02]). Hence the number of messages in the channel
remains constant during perfect runs, and it can only decrease during lossy
runs. Given a space-bounded S, and some K ∈ N, we build the LCS SK

WK

beg

end

Space-bounded LCS S

init final

WK

beg′

end′

by inserting two copies of WK , one before and one after S, as schematically
depicted above. S does not use p, only d. The idea is that the first WK will
be started with a pair 〈〈ωK−1 ; 1〉〉 in the channels, will write some large
In# in d, that will be used by S, that will return Im# to be fed to the second
WK :

channel p: ωK−1# # # u#
WK−→

S
−→

WK−→
channel d: I# In# Im# I#

The construction of SK has some simple sanity checks (not depicted) be-
tween the WK ’s and the S part, ensuring that the # markers are not lost,
etc.

Now, assume SK has a run of the form

(beg, ωK−1#, I#)
∗
−→(end, u#, In#)

−→(init, u#, In#)
∗
−→(final, u#, Im#) (†)

−→(beg′, u#, Im#)
∗
−→(end′, ωK−1#, I#)



CHAPTER 3. FAST-GROWING FUNCTIONS 34

Then the construction of WK ensures that n ≤ FωK−1(1) and FωK−1(1) ≤
m (by Theorem 3.4.2). Since S is space-bounded, n ≥ m. Hence in

a run like (†), for the sub-run (init, u#, In#)
∗
−→(final, u#, Im#) to be

perfect, n needs to be equal to m (= FωK−1(1)). Reciprocally, a run

(beg, ωK−1#, I#)
∗
−→(end′, ωK−1#, I#) in S′K must be decomposable under

the form of (†).

Corollary 3.4.3 SK has a run from (beg, ωK−1#, I#) to (end′, ωK−1#, I#)
if, and only if, S has an accepting perfect run using space FωK−1(1).

Theorem 3.4.4 ReachLcs is Fωω -hard.

Proof. Let P be a Fωω problem, i.e. in space Fωω ◦ p for some primi-
tive recursive p and x be an input to that problem. First recall that per-
fect space-bounded CS’s have the same computational power than space-
bounded Turing machines and are in fact equivalent modulo LogSpace re-
duction. Then we can consider, without loss of generality, that P is given as
a space-bounded CS SP . Using SK , it is possible to reduce the problem of
whether a space-bounded LCS S has an accepting perfect run using space
≤ FωK−1(1) to a LCS-reachability question of size polynomial in K and
|S|. Then, using this construction which is obviously primitive recursive,
we can build in primitive recursive time a system S′P of polynomial size in
p(|x|) and SP that simulates Sp on space bounded by Fωp(|x|)+1(1). Since
Fωω (p(|x|)) = Fωp(|x|)(p(|x|)) ≤ Fωp(|x|)(|ωp(|x|)|) ≤ F 2

ωp(|x|)(1) = Fωp(|x|)+1(1)
from lemma 3.1.1.c, S′P has enough space to effectively simulate SP . �

There exists a similar construction, again using WK , that reduces the
existence of perfect space-bounded runs to termination of LCS’s, rather than
reachability (along the lines of [Sch02, section 4.2]). The consequences are
similar:

Theorem 3.4.5 Termination for lossy channel systems is Fωω -hard.

3.5 Upper bounds

In this section, we explain how Cichon’s and Tahhan Bittar’s analysis of
Higman’s Lemma 2.1.5 leads to:

Observation 3.5.1 Reachability and termination for lossy channel systems
are computable in time Fωω ◦ p with p primitive recursive.

Since we showed that these problems are Fωω -hard, this concludes the proof
of our main result 3.0.2.



CHAPTER 3. FAST-GROWING FUNCTIONS 35

Bounding termination and reachability. When configurations of a
LCS are compared with ⊑, there are similar notions of a bad, and of an
r-bad, run σ0−→σ1−→ . . .−→σn. With such a run, we associate its sequence of
channel contents u0, . . . ,un, obtained by forgetting the control state part
of a configuration σi = (qi,ui). Observe that if the run is bad then the se-
quence (ui)i=0,...,n is (|Q| − 1)-bad (by the pigeonhole principle, in a system
with |Q| states). Hence thanks to 2.3.1, bad runs in systems with |Q| states,
|C| channels, starting and with σ0 with alphabet of size |M|, have length
bounded in Fωf(|M|)(max(|Q|, |C|, |σ0|))
Now, since deciding termination can be done by checking that all runs from
σ0 are bad (this is the classic algorithm, see [Fin94, AJ96b, FS01]), termina-
tion of LCS is in primitive recursive time in Fωf(|M|)(max(|Q|, |C|, |σ0|)), hence
in Fωf(|M|) , thus in Fωω .
Regarding reachability, the backward-chaining algorithm [AJ96b, FS01] also
builds a bad sequence of configurations: the minimal elements of Pre∗(Goal )
for some upward-closed Goal ⊆ Conf defined by its minimal elements. By
construction, this sequence is controlled (even though it is not a run per se).
Hence the running time of the algorithm is bounded by some Fωf(|M|) ◦p too.

We observe that these two algorithms handle equally well the different
lossy semantics (see Section 2.2.4).

Variants and restrictions. From the above observations, one concludes
that termination and reachability are in Fωf(p)(|S|) if we restrict ourselves
to LCS’s S having a message alphabet of cardinal at most p. This indicates
that the cardinal of M, not the number of channels, or the number of control
states, or the size of the initial configuration, is the key parameter affecting
complexity. (Note that, in section 3.4, we used an alphabet of size K + 2
to build LCS’s whose complexity was not in FωK−1 .) Since the cumulative
hierarchy (Fα)ω≤α<ωω is strict, we deduce that increasing the alphabet size
of LCS’s gives rise to a strict hierarchy of verification problems (more pre-
cisely, a hierarchy that contains a strict sub-hierarchy). This further even
“allows to prove” why LCS’s with large message alphabets cannot be sim-
ulated by LCS’s with a fixed alphabet (more exactly, not via a primitive
recursive reduction) unlike the way Turing machines can be restricted to al-
phabets of size 2. Contrast this with the fact that LCS’s with l channels can
be simulated (via a many-one polynomial-time reduction) by LCS’s with a
single channel and an alphabet enlarged with a single extra symbol.

In the same spirit, let us observe that Lossy Counter Machines [May03a],
which can be seen as LCS’s where the alphabet has size 1, can be verified
in Fl, where l is the number of counters. This is a direct consequence
of McAloon’s bounds on the length of bad sequences in Nl ordered by
the component-wise ordering [FFSS10] (see also [McA84]). When l is not



CHAPTER 3. FAST-GROWING FUNCTIONS 36

fixed, reachability and termination for these Lossy Counter Machines is Fω-
complete [Sch02].

3.6 Appendix

3.6.1 Channel systems that implement stack rewriting

Rule R1 is “〈〈0, π ; n〉〉 −→R 〈〈π ; n + 1〉〉”. With our differential encoding
of stacks, this requires the following transformation:

channel p: I u # u #
∗
−−→

channel d: In # In+1 #

where u is pure. This transformation is performed by the LCS depicted in

beg

copy

wrap end
p?# p!#

d?# d!#

p?I d!I

p?x

p!x d?x

d!x

Figure 3.2: LCS component that implements rule R1 (assuming purity)

Fig. 3.2. Here, and in the rest of this section, two simplifying conventions
are assumed:

Purity check: the system depicted in Fig. 3.2 does not check that p con-
tains a pure encoding. This is for improving the clarity of the diagram
but, of course, it is easy to check purity (a simple regular property)
while performing the transformation. We assume our system deadlocks
before reaching state end when purity is not satisfied.

Abbreviated rules: our pictures for LCS uses implicit variables or pat-
terns in order to describe several similar rules at once. For example,

the loop copy
p?x
−→

p!x
−→copy in Fig. 3.2 uses x as a variable standing for

any messagem ∈ M so that, letting k = |M|, it abbreviates k loops (each
with a different intermediary state). Other examples are i in Fig. 3.3,
a in Fig. 3.4, and so on. For these variables, the allowed instantiations
are sometimes constrained, as with “(i > 0)” or “(i > a)” in Fig. 3.3
and 3.4.



CHAPTER 3. FAST-GROWING FUNCTIONS 37

Rule R2 is “〈〈α+1, π ; n〉〉 −→R 〈〈

n+ 1 times︷ ︸︸ ︷
α,α, ..., α, π ; n〉〉”. With our differential

encoding of stacks, this requires the following transformation:

p: ωa1 . . . ωapω0Iu # ωa1 . . . ωap In+1ω0u #
∗
−−→

d: In # In #

where we assume that ω0u is pure, otherwise the ω0 is not copied to the
right-hand side, as is done in state ∗ (Fig. 3.3).

copy beg

copy u

∗

end

p?ω0

p?I p!I

p?I

p?ω0

p?ωi (i>0)

p!ω0

p!ω0

p!I

p!ω0

p!ωi

d?I

d!I

p!I

p?ωi

p!ωi

p?x

p!x

d?#

d!#

p?#

p!#

Figure 3.3: LCS component that implements rule R2 (assuming purity)

Our channel system is actually more complex than depicted in Fig. 3.3
since it only accepts pure encodings. For example, it will check that K >
a1 ≥ a2 ≥ · · · ap−1 ≥ ap = 0 while performing the first copy loop (in state
copy beg).

Rule R3 is “〈〈λ, π ; n〉〉 −→R 〈〈λn, π ; n〉〉”. With our differential encoding
of stacks, this requires the following transformation:

p: ωa1 . . . ωap Iu # ωa1 . . . ωap−1(ωap−1)nIωapu #
∗
−→

d: In # In #

where it is assumed that ωapu is pure, otherwise the ωap is not copied to the
right-hand side (see state ∗ in Fig. 3.4). On top of the usual implicit check
for purity “a1 ≥ a2 ≥ · · · ≥ ap”, the system depicted in Fig. 3.4 checks that
(a =)ap > 0 so that α1 ∈ Lim.

Rule S1 is “〈〈π ; n + 1〉〉 −→S 〈〈0, π ; n〉〉”. With our differential encoding
of stacks, this requires the following transformation:



CHAPTER 3. FAST-GROWING FUNCTIONS 38

copy beg

copy u

∗

end

p?ωa

(a>0)

p?I p!I

p?I

p?ωi (i≤a)

p?ωi (i>a)

p!ωa

p!ωa

p!I

p!ωi

p!ωi

d?I

d!I

p!ωa−1

p?ωi

p!ωi

p?x

p!x

d?#

d!#

p?#

p!#

Figure 3.4: LCS component that implements rule R3 (assuming purity)

p: u # I u #
∗
−−→

d: In+1 # In #

The component that implements S1 behaves like the component for R1, only
backwards.

beg

copy

wrap end
p?# p!#

d?# d!#

p!I d?I

p?x

p!x d?x

d!x

Figure 3.5: LCS component that implements rule S1 (assuming purity)

Rule S2 is “〈〈

n + 1 times︷ ︸︸ ︷
α,α, ..., α, π ; n〉〉 −→S 〈〈α+ 1, π ; n〉〉” assuming that α does

not occur in π.
With our differential encoding of stacks, this requires the following trans-

formation:

p: ωa1 . . . ωap In+1u # ωa1 . . . ωapω0Iu #
∗
−−→

d: In # In #



CHAPTER 3. FAST-GROWING FUNCTIONS 39

copy beg

copy u

wrap

end

p?I

p!ω0

p!I

p?ωi

p!ωi

d?I

d!I

p?I

p?ωi

p!ωi
p?xp!x

p?#

p!#

d?#

d!#

Figure 3.6: LCS component that implements rule S2 (assuming purity)

where it is now checked that u does not start with I. The component that
implements S2 is depicted in Fig. 3.6. An important feature is the ability to
check that the number n+1 of tally symbols after the first ordinal symbols
in p matches the number in In in d. If there is a mismatch, our system will
never reach end.

Rule S3 is “〈〈λn, π ; n〉〉 −→S 〈〈λ, π ; n〉〉” assuming that π does not start
with some α2 < λ.

With our differential encoding of stacks, this requires the following trans-
formation:

p: ωa1 . . . ωap(ωa)nIu # ωa1 . . . ωapωa+1Iv #
∗
−−→

d: In # In #

where it is required that ap > a, and where v is obtained from u. More
precisely, if u is ǫ then v = ǫ, while if u is some ωbu′, then v = u if b > a+1
and v = u′ if b = a+1. The rule does not apply if b ≤ a or if u starts with I,
indicating that α2 < λ. Here again, the component has to perform a crucial
comparison: the number n that is encoded in d must match the number of
ωa symbols in the encoding of the first ordinal in the stack. (As before, the
depiction in Fig. 3.7 does not feature the implicit purity check.)



CHAPTER 3. FAST-GROWING FUNCTIONS 40

copy beg

copy u

wrap

∗

end

p?ωa

(a>0)

d?I

d!I
p?I

p!ωa+1

p!I

p?ωb

(b>a+1)

p?ωa+1

p!ωb

d?I

d!I

p?ωa

p?ωi

p!ωi
p?xp!x

p?#

p!#

d?#

d!#

Figure 3.7: LCS component that implements rule S3 (assuming purity)



Chapter 4

Post Embedding Problem

Problem PEPreg

Instance: Two finite alphabets Σ and Γ, two morphisms u, v : Σ∗ → Γ∗,
and a regular language R ⊆ Σ∗.

Question: Does there exists a σ ∈ R such that uσ ⊑ vσ?

Even if PEPreg is to be our central problem, the base completeness result
for Fωω is on ReachLcs. The reason for this is the same that lead PCP to be
shown undecidable through Turing machine termination and not the con-
trary. LCSs where here first. We now need to show that they are equivalent,
to give PEPreg its rightful place.

In the above definition, the regular constraint applies to σ but this is
inessential and our results still hold when the constraint applies to uσ, or
vσ, or both (see Section 6.4).

For complexity issues, we assume that the constraint R in a PEPreg

instance is given as a nondeterministic finite-state automaton (NFA) AR.
PEP is the special case of PEPreg where R is Σ+, i.e., where there are no

constraints over the form of a non-trivial solution. As far as we know, PEP
and PEPreg have never been considered in the literature and this is probably
because PEP is trivial : 6.2.2

reduction ideas Our journey from ReachLcs to PEPreg is not direct. Even
if there is the same order limiting the exploration of solutions on both prob-
lems, LCS configuration have a natural order guiding the exploration: the
transition rules. following it, searching backward always terminate on LCS.
Indeed, we know that it is not needed to continue exploration when we find
a sequence that is not bad. On PEPreg there seems to be no such convenient
way to explore words to find solutions. The subword constraint only applies
when we have the full word, where it applies at each step on an LCS. The

41



CHAPTER 4. POST EMBEDDING PROBLEM 42

fact that, for a word w, uw ⊑ vw tells us nothing on words where w is a
factor. The direct algorithm presented in chapter 7 tells us that the explo-
ration instead of words, should take place on families indexed by residual of
R.

We will need a few steps to tackle those differences. The First step is
a small one, it is to only consider morphisms u and v such that images of
letters are of size 1. The interest of this limitation is to control precisely
the point where for a word w.a its image embeds, i.e. uw.a ⊑ vw.a but its
prefix w does not, uw 6⊑ vw. Then we will cut PEP

reg solutions exactly at
those points. Those sub parts are all solutions to a bit different problem,
PEP

reg
dir . In this problem, we recover the good property from LCS runs: the

⊑ constraint apply also on all prefixes of solutions. We could give a direct
algorithm to PEP

reg
dir , but it is quicker to see that it is exactly ReachLcs.

4.1 The directed Post embedding problem

Let u, v,R be a PEPreg instance and σ ∈ R be a solution. We say that σ is a
direct solution if uρ ⊑ vρ for every prefix ρ of σ. Hence, in a direct solution,
vρ is always ahead of uρ when ρ grows from ǫ to σ.

An equivalent formulation is: σ = i1 . . . im is a direct solution iff there
are words v′1, . . . , v

′
m such that:

1. v′k ⊑ vik for all k = 1, . . . ,m,
2. ui1 . . . uim = v′1 . . . v

′
m,

3. |ui1 . . . uik | ≤ |v
′
1 . . . v

′
k| for all k = 1, . . . ,m.

A codirect solution is defined in a similar way, with the difference that
we now require |ui1 . . . uik | ≥ |v

′
1 . . . v

′
k| for all k = 1, . . . ,m (i.e., the ui’s are

ahead of the v′i’s instead of lagging behind).
We let PEPregdir and PEP

reg
codir denote the questions whether a PEPreg in-

stance has a direct (resp. codirect) solution. Obviously, PEPregdir and PEP
reg
codir

are equivalent problems since an instance u, v,R has a codirect solution iff
the mirror instance ũ, ṽ, R̃ has a direct solution.

Let first note that:

Remark 4.1.1 PEP
reg
dir and ReachLcs are equivalent.

In fact PEPregdir is only a reformulation of ReachLcs when the system has
only one component and one channel. Suppose the language R of an instance
I = (u, v,R) is given by an NFA A = (Σ, Q, T, qinit, F ) with u, v : Σ∗ −→
Γ∗. We can define an LCS with the same structure as A and one canal
S = (Q,Γ,∆). The effects of the transitions ∆ are directly given by the

morphisms u and v. More formally ∆ = {q
!va,?ua
−−−→q′|q

a
−→q′ ∈ T}. qinit and F

comes from the reachability question on S.
A solution of x of I is a trace of a valid run from qinit to a state of F in

S. The validity, i.e. that a letter cannot be consumed before being written,



CHAPTER 4. POST EMBEDDING PROBLEM 43

is ensured by x being a direct solution; a prefix y of x correspond to the
beginning of the run reaching a configuration where vy was written to the
canal and uy read. What remains in the canal is at most ( if there is no loss
in that part ) the “available suffix” vy ⊘ uy.

In the remaining of this section we show that PEP
reg
dir and PEPreg are

equivalent.

4.1.1 PEP
reg
≤1 and PEP

reg
dir,≤1

PEP
reg
≤1 and PEP

reg
dir,≤1 are versions of PEP

reg and PEP
reg
dir restricted to short

morphisms, i.e., morphisms u, v : Σ∗ → Γ∗ such that |ui| + |vi| ≤ 1 for all
i ∈ Σ. In other words, for every i, at least one of ui and vi is ǫ and the other
is either ǫ or a letter from Γ.

Their only interest is technical, it helps separate cases during following
proofs.

Proposition 4.1.2 1. PEPreg reduces to PEP
reg
≤1 .

2. PEPregdir reduces to PEP
reg
dir,≤1.

Proof.[Sketch] 1. Let u, v,R be a PEPreg instance. For all i ∈ Σ, write ui in
the form a1i . . . a

li
i and vi in the form b1i . . . b

mi

i . Let k = max{li,mi | i ∈ Σ}.

One builds a PEP
reg
≤1 instance u′, v′, R′ by letting Σ′

def
= Σ × {1, 2, . . . , 2k},

u′(i, p)
def
= api if 1 ≤ p ≤ li, and u′(i, p)

def
= ǫ otherwise. Similarly, v′(i, k + p)

is vpi , the p-th letter in vi, when 1 ≤ p ≤ mi, and it is ǫ otherwise. Clearly

u′, v′ are short morphisms. We now let R′
def
= h(R) where h : Σ → Σ′ is

the morphism defined by h(i) = (i, 1)(i, 2) . . . (i, 2k). Finally u′, v′, R′ is a
PEP

reg
≤1 instance that is positive iff u, v,R is positive.
2. Exactly the same construction reduces from PEP

reg
codir to PEP

reg
codir,≤1.

Reducing from PEP
reg
dir to PEP

reg
dir,≤1 can be done by simply modifying R′,

this time using h(i) = (1, k + 1)(i, k + 2) . . . (i, 2k)(i, 1) . . . (i, k). �

4.1.2 From PEP
reg
dir to PEP

reg

Let u, v,R be a fixed PEP
reg
dir instance with u, v : Σ∗ → Γ∗. With u, v,R

we associate a PEPreg instance u, v,R′ with extended alphabets Σ′
def
= Σ ∪

{0, 1, 2} and Γ′
def
= Γ ∪ {#}, and where u, v are extended with

u0 = ǫ, u1 = #, u2 = #,

v0 = #, v1 = #, v2 = ǫ.

Finally, R′ is 0(R ‖ 1∗)2rΣ′∗11Σ′∗ where “‖” and “r” denote, respectively,
the shuffle product and the set difference, of two languages (two regularity-
preserving operations). Intuitively, a word of R′ is obtained from a word of



CHAPTER 4. POST EMBEDDING PROBLEM 44

R by inserting 1’s as long as they remain separated by Σ-letters from the
original word, and wrapping with a 0 in front and a 2 at the end.

The next two lemmas show that this reduction is correct.

Lemma 4.1.3 If u, v,R′ admits a solution, then u, v,R admits a direct so-
lution.

Proof. Assume x ∈ R′ is a solution: ux ⊑ vx. Since R
′ = 0(R ‖ 1∗)2, x can

be written (uniquely) under the form 0.x1.1.x2 · · · 1.xm.2 with x′
def
= x1 · · · xm

belonging to R. Observe that ux = ux1# · · · uxm# and vx = #vx1 · · ·#vxm.
Both contain exactly n occurrences of the # symbol, thus these occurrences
must be matched exactly in the embedding ux ⊑ vx. Hence ux1 = ǫ and, for
1 ≤ i < m, uxi+1 ⊑ vxi

. Finally x′ is a direct solution (of u, v,R). �

A reciprocal of Lemma 4.1.3 holds when u and v are short morphisms.

Lemma 4.1.4 If u, v are short morphisms and x ∈ Σ+ is a direct solution
of u, v,R, then there exists a factorization x = x1 · · · xm of x (with no xi = ǫ)
such that ux1 = ǫ and, for 1 ≤ i < m, uxi+1 ⊑ vxi

.

Proof. Let x ∈ Σ+ be a direct solution. We define a sequence y0, y1, y2, . . .

of Σ-words by letting y0
def
= ǫ and, for i > 0, letting yi be the longest prefix

of x such that uyi ⊑ vyi−1 . The sequence is well-defined and we can see,
by induction on i, that every yi is a prefix of yi+1, hence yi can be written
uniquely as yi = yi−1xi and we take this as our definition of the xi’s.

We now show that yi 6= x implies xi+1 6= ǫ. Indeed let a ∈ Σ be the
letter that follows yi in x. We know that uyi ⊑ vyi−1 and vyi = vyi−1vxi

. If
ua 6⊑ vxi

then ua 6= ǫ, hence va = ǫ since the morphisms are short. Finally
uyia 6⊑ vyi = vyia, contradicting the assumption that x is a directed solution.
We conclude that necessarily ua ⊑ vxi

and then a will occur in xi+1. Finally,
when eventually ym+1 = ym for somem, we deduce that ym = x = x1 . . . xm.

That ux1 = ǫ is a consequence of uy1 ⊑ vy0 .
For i > 0, from uyi ⊑ vyi−1 and uyiuxi+1 = uyi+1 ⊑ vyi = vyi−1vxi

, we de-

duce that uxi+1 ⊑ r.vxi
for r

def
= [vyi ]uyi−1 (Lemma 7.1.4). But if a is the first

letter of xi+1, ua 6⊑ r (otherwise yi would not be longest s.t. uyi ⊑ vyi−1).
Hence uxi+1 ⊑ vxi

(since |ua| ≤ 1). �

Lemma 4.1.5 If u, v,R admits a direct solution and u, v are short mor-
phisms, then u, v,R′ admits a (direct) solution.

Proof. Let x ∈ R be a direct solution. Since u, v are short, x has a factor-
ization x = x1 · · · xm as in Lemma 4.1.4. From ux1 = ǫ and uxi

⊑ vxi−1 we
deduce that 0.x1.1.x2.1 . . . 1.xm.2 is a (direct) solution in R′. �

Combining Lemmas 4.1.3 and 4.1.5, we see that in the case of short mor-
phisms, u, v,R has a direct solution iff u, v,R′ has a solution.



CHAPTER 4. POST EMBEDDING PROBLEM 45

Corollary 4.1.6 PEP
reg
dir,≤1 (and then PEP

reg
codir,≤1) reduce to PEPreg.

Now, since PEPregdir reduces to PEP
reg
dir,≤1, we conclude with:

Proposition 4.1.7 PEP
reg
dir (and then PEP

reg
codir) reduce to PEPreg.

4.1.3 From PEP
reg to PEP

reg
dir

If we now look at a general solution to a PEPreg instance (more precisely a
PEP

reg
≤1 instance) it can be decomposed as a succession of alternating direct

and codirect solutions to sub-problems that are constrained by residuals
of R. For denoting these residuals, we assume that R is given by a NFA
A = (Σ, Q, T, qinit, F ) and write Lq,q′ for the regular language accepted by
A between states q and q′ (so that R =

∑
q′∈F Lqinit,q′).

Assume that u, v,R is a PEP
reg
≤1 instance and σ = i1 . . . im is a solution.

Then there are words v′1, . . . , v
′
m with v′k ⊑ vik for k = 1, . . . ,m, and such

that ui1 . . . uim = v′1 . . . v
′
m. Now, for 0 ≤ k ≤ m, define dk

def
= |ui1 . . . uik | −

|v′1 . . . v
′
k|. Thus, for ρ a length-k prefix of σ, dk measures how much uρ is

ahead of vρ (assuming a fixed embedding of uσ into vσ given by the v
′
i’s).

Since σ is a solution, obviously d0 = dm = 0. σ is a direct solution if
dk ≤ 0 for all k. It is codirect if dk ≥ 0 for all k. In general, dk may oscillate
between positive and negative values. But since all ui’s and vi’s have length
≤ 1, the difference dk+1 − dk is in {−1, 0, 1}. Hence dk cannot change sign
without being zero.
In conclusion, the following holds:

Lemma 4.1.8 A PEP
reg
≤1 instance u, v,R is positive iff there are states q0,

q1, . . . , q2m in A with q0 = qinit, q2m ∈ F , and such that, for all 0 ≤ i < m,
u, v, Lq2i,q2i+1 is a positive PEP

reg
dir instance and u, v, Lq2i+1,q2i+2 is a positive

PEP
reg
codir instance.

Now, if A has m states, there are only m2 Lq,q′ residuals, hence the PEP
reg
≤1

instance can be reduced to a positive Boolean combination φ of a quadratic
number of PEPregdir instances (the PEP

reg
codir instances are turned into PEP

reg
dir

instances by taking their mirror images).

Boolean combinations

With B(PEPreg) we denote the problem of solving Boolean combinations of
PEP instances. An instance of B(PEPreg) is some 〈I1, . . . ,In, φ(x1, . . . , xn)〉
where each Ii is some PEP

reg instance u, v,R, and where φ : {0, 1}n → {0, 1}
is a Boolean function with free variables in {x1, . . . , xn}. The instance is
positive iff φ evaluates to 1 when each xi is replaced by 0 or 1 depending on
whether Ii is negative or positive.



CHAPTER 4. POST EMBEDDING PROBLEM 46

B+(PEPreg) is the restriction of B(PEPreg) where φ is a positive Boolean
function, while B(PEPregdir ) and B

+(PEPregdir ) are the same problems based on
directed instances.

Proposition 4.1.9 B+(PEPregdir ) and B
+(PEPreg) reduce to PEP

reg
dir (and to

PEPreg).

Proof.[Sketch] Assume I = (u, v,R) and I ′ = (u′, v′, R′) are two PEP
reg
dir

instances. We can ensure that they use disjoint alphabets, using renamings
if necessary. Then the disjunction I∨I ′ is equivalent to 〈u+u′, v+v′, R∪R′〉
while the conjunction I∧I ′ is equivalent to 〈u+u′, v+v′, R.R′〉. This many-
one reduction also works for PEPreg. It extends directly to any positive φ
and can be made polynomial-space when φ is given under the form of a
positive Boolean circuit and the regular constraints Ri as NFAs. �

Now, with proposition 4.1.7, 4.1.8 and remark 4.1.1 this concludes the
proof of:

Theorem 4.1.10 PEPreg and ReachLcs are equivalents.



Chapter 5

Generalised channel systems

This chapter present the first problem we studied, the classification of mixed
channel systems (with reliable and lossy channels) according to their com-
putationnal power. That study leaded to the definition of PEPreg. It turns
out that only two classes of topologies of systems remained, one equivalent
to LCS, and the other to CS.

5.1 Systems with reliable and lossy channels

We classify channel systems according to their network topology, which is a
graph describing who are the participant processes and what channels they
are connected to.

5.1.1 Network topologies

Formally, a network topology, or shortly a topology, is a tuple T = 〈N,R,L, s, d〉
where N , R and L are three mutually disjoint finite sets of, respectively,

nodes, reliable channels, and lossy channels, and where, writing C
def
= R ∪L

for the set of channels, s, d : C → N are two mappings that associate a
source and a destination node to each channel. We do not distinguish be-
tween isomorphic topologies since N , R and L simply contain “names” for
nodes and channels: these are irrelevant here and only the directed graph
structure with two types of edges matters.

Graphical examples of simple topologies will be found below: we use
dashed arrows to single out the lossy channels (reliable channels are depicted
with full arrows).

5.1.2 Mixed channel systems and their operational semantics

Assume T = 〈N,R,L, s, d〉 is a topology with n nodes, i.e., with N =
{P1, P2, ..., Pn}. Write C = R ∪ L for the set of channels. A mixed channel
system (MCS) having topology T is a tuple S = 〈T, M, Q1,∆1, ..., Qn,∆n〉

47



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 48

where M = {a, b, ...} is a finitemessage alphabet and where, for i = 1, ..., n, Qi

is the finite set of (control) states of a process (also denoted Pi) that will be
located at node Pi ∈ N , and ∆i is the finite set of transition rules, or shortly
“rules”, governing the behaviour of Pi. A rule δ ∈ ∆i is either a writing rule

of the form (q, c, !, a, q′), usually denoted “q
c!a
−→q′”, with q, q′ ∈ Qi, s(c) = Pi

and a ∈ M, or it is a reading rule (q, c, ?, a, q′), usually denoted “q
c?a
−→q′”,

with this time d(c) = Pi. Hence the way a topology T is respected by a
channel system is via restrictions upon the set of channels to which a given
participant may read from, or write to.

Our terminology “mixed channel system” is meant to emphasize the fact
that we allow systems where lossy channels coexist with reliable channels.

The behaviour of some S = 〈T, M, Q1,∆1, ..., Qn,∆n〉 is given under the
form of a transition system. Assume C = {c1, ..., ck} contains k channels. A
configuration of S is a tuple σ = 〈q1, ..., qn, ui, ..., uk〉 where, for i = 1, ..., n,
qi ∈ Qi is the current state of Pi, and where, for i = 1, ..., k, ui ∈ M∗ is the
current contents of channel ci.

Assume σ = 〈q1, ..., qn, ui, ..., uk〉 and σ′ = 〈q′1, ..., q
′
n, u

′
i, ..., u

′
k〉 are two

configurations of some system S as above, and δ ∈ ∆i is a rule of participant
Pi. Then δ witnesses a transition between σ and σ′, also called a step, and

denoted σ
δ
−→σ′, if and only if

• the control states agree with, and are modified according to δ, i.e.,
qi = q, q′i = q′, qj = q′j for all j 6= i;

• the channel contents agree with, and are modified according to δ, i.e.,
either

– δ = (q, cl, ?, a, q
′) is a reading rule, and ul = a.u′l, or

– δ = (q, cl, !, a, q
′) is a writing rule, and u′l = ul.a, or cl ∈ L is a

lossy channel and u′l = ul;

in both cases, the other channels are untouched: u′j = uj for all j 6= l.

Such a step is called “a step by Pi” and we say that its effect is “reading
a on c”, or “writing a to c”, or “losing a”. A run (from σ0 to σp) is a

sequence of steps of the form r = σ0
δ1−→σ1

δ2−→σ2 · · ·
δp
−→σp, sometimes shortly

written σ0
∗
−→σp. A run is perfect if none of its steps loses a message.

Remark 5.1.1 This semantics is write-lossy. In this chapter, where we
only consider reachability problems, the semantic doesn’t matter, but this
one makes some proofs significantly simpler.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 49

5.1.3 The reachability problem for network topologies

The reachability problem for mixed channel systems asks, for a given S and
two configurations σinit = 〈q1, . . . , qn, ǫ, . . . , ǫ〉 and σfinal = 〈q

′
1, . . . , q

′
n, ǫ, . . . , ǫ〉

in which the channels are empty, whether S has a run from σinit to σfinal.
That we restrict reachability questions to configurations with empty chan-
nels (ǫ denotes the empty word in M∗) is technically convenient, but it is no
real loss of generality.

The reachability problem for a topology T is the restriction of the reach-
ability problem to mixed systems having topology T .

Clearly, if T ′ is a subgraph of T and reachability is decidable for T , then
it is for T ′ too.

T
ring
1

P1

P2

P3

P4

P5

P6

c1

c3 c4

c5

c6

c2 (lossy)

Figure 5.1: Unidirec-
tional ring topology
with a lossy channel

In this chapter, our goal is to determine for
which topologies reachability is decidable. Let us
illustrate the question with T ring

1 a topology de-
scribing a directed ring of processes, where each
participant sends to its right-hand neighbour, and
receives from its left-hand neighbour. A folk claim
is that such cyclic networks have decidable reach-
ability as soon as one channel is lossy (as here
with c2). The proof ideas behind this claim have
not been formally published and they do not eas-
ily adapt to related questions like “what about
T ring
2 ?”, where a lossy channel in the other direc-

tion is added, or about T ring
3 where more channels

are lossy in the ring.

T
ring
2

P1

P2

P3

P4

P5

P6

c1

c3 c4

c5

c6

c2 (lossy)
c′2 (lossy)

T
ring
3

P1

P2

P3

P4

P5

P6

c1

c3 c4

c6

c2 (lossy)
c′2 (lossy)

c5 (lossy)

Figure 5.2: Ring-like network topologies

Our techniques answer all three questions uniformly. One of our results
states that all channels along the path c3 to c4 to c5 to c6 to c1 can be fused
into a single channel going from P3 to P2 without affecting the decidability
of reachability. The transformations are modular (we fuse one channel at a
time). Depending on the starting topology, we end up with different two-
node topologies, from which we deduce that T ring

1 and T ring
3 have decidable



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 50

reachability, while T ring
2 does not (see Corollary 5.3.6 below).

5.2 Reachability for basic topologies

This section is concerned with the basic topologies to which we will later
reduce all larger cases.

5.2.1 Unidirectional Channel Systems

P2 P1

c1 (reliable)

c2 (lossy)

Figure 5.3: UCS

We start by introducing Unidirectional Channel
Systems (UCS) an important topology, closely re-
lated to PEPreg, the same way PEP

reg
dir is to LCS’s.

It is the topology described by figure 5.3. We will
show that ReachUcs, the reachability problem in
systems having an UCS topology, is decidable and
equivalent to PEPreg. To this end, we will intro-
duce 2PCEPreg, an intermediate problem between
ReachUcs and PEPreg.

Definition 5.2.1 (2PCEPreg)
a. The 2-dimensional correspondence plus embedding problem asks, given
two pairs of morphisms f1, g1 : Σ∗1 → Γ∗ and f2, g2 : Σ∗2 → Γ∗, to find
words σ1 and σ2 s.t. f1(σ1) = f2(σ2) (correspondence) and g1(σ1) ⊑ g2(σ2)
(embedding).
b. 2PCEPreg is the decision problem, where given f1, g1, f2, g2 and two regular
languages R1 ⊆ Σ∗1 and R2 ⊆ Σ∗2, one asks whether there is a solution with
σ1 ∈ R1 and σ2 ∈ R2.

A solution (σ1, σ2) of an instance 2PCEPreg is essentially a run on an
UCS, where σ1 is the trace of the P1 (reading) automaton and σ2 of the
P2 (writing) automaton. We can see the given functions f1, f2, g1, g2 as
projections from the labeling of steps to what is written or read by that
step. For instance f2(σ2) is what writes P2 to the channel c1 (reliable), it

is projecting q
!1a−→q′ to a, and the steps that don’t write are projected to ǫ.

The same way g2 correspond to what is written on c2 (lossy), f1 to reads on
c1 and g1 to reads on c2. The constraints f1(σ1) = f2(σ2) ensures that the
communication is perfect. What is read correspond to what is written. The
constraints g1(σ1) ⊑ g2(σ2) ensures that what is read have been written, but
don’t ensure that every message reach P1.

Lemma 5.2.2 ReachUcs and 2PCEPreg are equivalent.

The complete proof of this lemma is available in section6.5.1, where an
infinitary version is also proved.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 51

2PCEPreg and PEPreg are equivalent.

Lemma 5.2.3 2PCEPreg and PEPreg are equivalent.

Proof. We consider a 2PCEPreg instance f1, g1, f2, g2 where we assume
that the morphisms are short, i.e., fi and gi can be seen as having type
(Σi ∪ {ǫ}) → (Γ∪{ǫ}). Thanks to the possibility offered by the regular
constraints, this assumption is no loss of generality.

Let Σ
def
= (Σ1 ∪ {ǫ})× (Σ2 ∪ {ǫ}) and define X ⊆ Σ by

(i, j) ∈ X if and only if f1(i) = f2(j).

Then (i1, j1).(i2, j2) . . . (in, jn) ∈ X∗ implies that f1(i1.i2 . . . in) = f2(j1.j2 . . . jn).
Reciprocally, if f1(σ1) = f2(σ2), then σ1 and σ2 can be decomposed under
the form σ1 = i1.i2 . . . in and σ2 = j1.j2 . . . jn such that (ik, jk) ∈ X for
k = 1, . . . , n. Observe that in this decomposition, n ≥ |σi| is possible since
ik = ǫ or jk = ǫ (or both) is allowed.

Now define projection morphisms h1 : Σ
∗ → Σ∗1 and h2 : Σ

∗ → Σ∗2 in the

obvious way, and let u, v : Σ∗ → Γ∗ be two morphisms given by u
def
= g1 ◦ h1

and v
def
= g2 ◦ h2. Then u(i1,j1).(i2,j2)...(in,jn) ⊑ v(i1,j1).(i2,j2)...(in,jn) if and only

if g1(i1.i2 . . . in) ⊑ g2(j1.j2 . . . jn).
Finally, the 2PCEPreg instance with regular constraints R1, R2 translates

into an equivalent PEPreg instance, with morphisms u and v as above, and
with constraint

R
def
= X∗ ∩ h1

−1(R1) ∩ h2
−1(R2),

which is regular.
Obviously the other direction holds since an instance of PEPreg it is an

instance of 2PCEPreg having f1 = f2 = Id . �

Corollary 5.2.4 PEPreg and ReachUcs are equivalent.

5.2.2 Other basic topologies

Theorem 5.2.5 (Basic topologies) Reachability is decidable for the net-
work topologies T d

1 and T d
2 (see Fig. 5.4). It is not decidable for the topologies

T u
1 , T

u
2 , T

u
3 , T

u
4 , T

u
5 , and T u

6 (see Fig. 5.5).

We start with the decidable cases:
P1T d

1 : c1 (lossy)

P1 P2T
d
2 :

c1 (reliable)

c2 (lossy)

Figure 5.4: Basic decidable
topologies

That T d
1 , and more generally all topolo-

gies with only lossy channels (aka LCS’s),
leads to decidable problems is the classic re-
sult from [AJ96b].
Now to the undecidable cases:



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 52

P1T
u
1 :

c1 (reliable)

P1 P2T
u
2 :

c1 (reliable)

c2 (reliable)

P1 P2T u
3 :

c1 (reliable)

c2 (lossy)
c3 (lossy)

P1 P2T u
4 :

c1 (reliable)

c2 (lossy)
c3 (lossy)

P1 P2T u
5 :

c1 (reliable)

c2 (lossy)

c3 (lossy)

P1 P2T u
6 :

c1 (reliable)

c2 (lossy)

c3 (lossy)

Figure 5.5: Basic topologies with undecidable reachability

It is well-known that T u
1 may lead to undecidable problems [BZ83], and

this is also known, though less well, for T u
2 (restated, e.g., as the non-

emptiness problem for the intersection of two rational transductions). The
other four results mix lossy and reliable channels and are new. We actu-
ally prove all six cases in a uniform framework, by reduction from Post’s
Correspondence Problem, aka PCP, or its directed variant, PCPdir.

Recall that an instance of PCP is a family x1, y1, x2, y2, . . . , xn, yn of
2n words over some alphabet. The question is whether there is a non-
empty sequence (a solution) i1, . . . , ik of indexes such that xi1xi2 . . . xik =
yi1yi2 . . . yik . PCPdir asks whether there is a directed solution i1, . . . , ik, i.e.,
a solution such that, in addition, yi1yi2 . . . yih is a prefix of xi1xi2 . . . xih for
all h = 1, . . . , k. It is well-known that PCP and PCPdir are undecidable, and
more precisely Σ10-complete.

Reducing PCP to T u
2 -networks. With a PCP instance (xi, yi)i=1,...,n, we

associate a process P1 having a single state p1 and n loops1 p1
c1!xi c2!yi−−−−−−→p1,

one for each index i = 1, ..., n. Process P1 guesses a solution i1i2i3 . . . and
sends the concatenations xi1xi2xi3 . . . and yi1yi2yi3 . . . on, respectively, c1
and c2. Process P2 checks that the two channels c1 and c2 have the same

contents, using reading loops p2
c1?a c2?a−−−−−→p2, one for each symbol a, b, . . . in the

alphabet. An extra control state, for example p′1 with rules p
′
1
c1!xi c2!yi−−−−−−→p1, is

1Transition rules like “p1
c1!xi c2!yi−−−−−−→p1” above, where several reads and writes are com-

bined in a same rule, and where one writes or reads words rather than just one message
at a time, are standard short-hand notations for sequences of rules using intermediary
states that are left implicit. We avoid using this notation in situations where the specific
ordering of the combined actions is important as, e.g., in (∗) below.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 53

required to check that P1 picks a non-empty solution. Then, in the resulting
T u
2 -network, 〈p

′
1, p2, ǫ, ǫ〉

∗
−→〈p1, p2, ǫ, ǫ〉 if and only if the PCP instance has a

solution.

Reducing PCP to T u
3 -networks. For T u

3 , the same idea is adapted to
a situation with three channels, two of which are lossy. Here P1 has rules

p1
c2!xi c3!yi c1!1|xiyi|
−−−−−−−−−−−−→p1. Thus P1 sends xi and yi on lossy channels and simul-

taneously sends the number of letters in unary (1 is a special tally symbol)
on c1, the perfect channel. P2 matches these with reading loops of the form

p2
c1?11 c2?a c3?a−−−−−−−−−→p2 for each letter a. If P2 can consume all 1’s out of c1, this

means that no message has been lost on the lossy channels, and then P2
really witnessed a solution the PCP instance.

Reducing PCPdir to T u
1 -networks. For T u

1 , we consider the directed

PCPdir. P1 has n loops p1
c1!xi c1?yi−−−−−−→p1 where the guessing and the matching

is done by a single process. Since at any step h = 1, ..., k the concatenation
xi1xi2 ...xih is (partly) consumed while matching for yi1yi2 ...yih , only directed
solutions will be accepted.

Reducing PCPdir to T u
5 -networks. For T u

5 too, we start from PCPdir and
use a variant of the previous counting mechanism to detect whether some

messages have been lost. P1 has rules of the form p1
c3!1|xi| c1!xi c3?1|yi| c2!yi−−−−−−−−−−−−−−−−→p1,

i.e., it sends xi on c1 (the reliable channel) and yi on c2 (unreliable) while

P2 checks the match with loops p2
c1?a c2?a−−−−−→p2. In addition, P1 also maintains

in c3 a count of the number of symbols written to c1 minus the number

of symbols written to c2, or #h
def
= |xi1 . . . xih | − |yi1 . . . yih |. The counting

scheme forbids partial sequences yi1 . . . yih that would be longer than the
corresponding xi1 . . . xih , but this is right since we look for directed solutions.
If tally symbols on c3 are lost, or if part of the yi’s on c2 are lost, then it
will never be possible for P2 to consume all messages from c1. Finally a run
from 〈p′1, p2, ǫ, ǫ, ǫ〉 to 〈p1, p2, ǫ, ǫ, ǫ〉 must be perfect and witness a directed
solution.

Reducing PCPdir to T u
6 -networks. For T u

6 , we adapt the same idea, this

time having P2 monitoring the count #h on c3. P1 has loops p1
c1!xi1

|yi| c2!yi1|xi|
−−−−−−−−−−−→p1

where a guessed solution is sent on c1 and c2 with interspersed tally symbols.

The guessed solution is checked with the usual loops p2
c1?a c2?a−−−−−→p2. The 1’s

on c2 are stored to c3 and matched (later) with the 1’s on c1 via two loops:

p2
c2?1 c3!1−−−−−→p2 and p2

c3?1 c1?1−−−−−→p2. In a perfect run, there are always as many
messages on c1 as there are on c2 and c3 together, and strictly more if a
message is lost. Hence a run from 〈p′1, p2, ǫ, ǫ, ǫ〉 to 〈p1, p2, ǫ, ǫ, ǫ〉 must be



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 54

perfect and witness a solution. Only direct solutions can be accepted since
the tally symbols in c3 count #h that cannot be negative.

Reducing PCPdir to T u
4 -networks. For T u

4 , we further adapt the idea,
again with the count #h stored on c3 but now sent from P2 to P1. The loops
in P1 now are

p1
c1!xi c2!yi1|xi|−−−−−−−−→qi

c3?1|yi|−−−→p1. (∗)

The 1’s on c2 are sent back via c3 to be matched later by P1, thanks to a

loop p2
c2?1 c3!1−−−−−→p2. Again a message loss will leave strictly more messages in

c1 than in c2 and c3 together, and cannot be recovered from. Only direct
solutions can be accepted since the tally symbols in c3 count #h.

5.3 Fusion for essential channels

Sections 5.3 and 5.4 develop techniques for “simplifying” topologies while
preserving the decidability status of reachability problems. We start with a
reduction called “fusion”.

Let T = 〈N,R,L, s, d〉 be a network topology. For any channel c ∈ C,
T − c denotes the topology obtained from T by deleting c. For any two
distinct nodes P1, P2 ∈ N , T [P1 = P2] denotes the topology obtained from T
by merging P1 and P2 in the obvious way: channel extremities are redirected
accordingly.

Clearly, any MCS with topology T − c can be seen as having topology
T . Thus T − c has decidable reachability when T has, but the converse is
not true in general.

Similarly, any MCS having topology T can be transformed into an equiv-
alent MCS having topology T [P1 = P2] (using the asynchronous product of
two control automata). Thus T has decidable reachability when T [P1 = P2]
has, but the converse is not true in general.

For any channel c such that s(c) 6= d(c), we let T/c denote T [s(c) =
d(c)]− c and say that T/c is “obtained from T by contracting c”. Hence T/c
is obtained by merging c’s source and destination, and then removing c.

Since T/c is obtained via a combination of merging and channel removal,
there is, in general, no connection between the decidability of reachability for
T and for T/c. However, there is a strong connection for so-called “essential”
channels, as stated in Theorem 5.3.5 below.

Before we can get to that point, we need to explain what are essential
channels and how they can be used.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 55

5.3.1 Essential channels are existentially 1-bounded

In this section, we assume a given MCS S = 〈T, M, Q1,∆1, . . .〉 with T =
〈N,R,L, s, d〉.

Definition 5.3.1 A channel c ∈ C is essential if s(c) 6= d(c) and all directed
paths from s(c) to d(c) in T go through c.

In other words, removing c modifies the connectivity of the directed graph
underlying T .

The crucial feature of an essential channel c is that causality between
the actions of s(c) and the actions of d(c) is constrained. As a consequence,
it is always possible to reorder the actions in a run so that reading from c
occurs immediately after the corresponding writing to c. As a consequence,
bounding the number of messages that can be stored in c does not really
restrict the system behaviour.

Formally, for b ∈ N, we say a channel c is b-bounded along a run π =

σ0
δ1−→ . . .

δn−→σn if |σi(c)| ≤ b for i = 0, . . . , n. We say c is synchronous in π if
it is 1-bounded and at least one of σi(c) and σi+1(c) is ǫ for all 0 ≤ i < n.
Hence a synchronous channel only stores at most one message at a time,
and the message is read immediately after it has been written to c.

Proposition 5.3.2 If c is essential and π = σ0
δ1−→ . . .

δn−→σn is a run with
σ0(c) = σn(c) = ǫ, then S has a run π′ from σ0 to σn in which c is syn-
chronous.

This notion is similar to the existentially-bounded systems of [LM04] but is
applies to a single channel, not to the whole system.

We prove Proposition 5.3.2 using techniques and concepts from true
concurrency theory and message flow graphs (see, e.g., [HMK+05]). With

a run π = σ0
δ1−→ . . .

δn−→σn as above, we associate a set E = {1, . . . , n} of n
events, that can be thought of the actions performed by the n steps of π:
firing a transition and reading or writing or losing a message. Observe that
different occurrences of a same transition with same effect are two different
events. We simply identify the events with indexes from 1 to n. We write
e, e′, . . . to denote events, and also use the letters r and w for reading and
writing events.

Any e ∈ E is an event of some process N(e) ∈ N and we write E =⋃
P∈N EP the corresponding partition. There exist several (standard) causal-

ity relations between events. For every process P ∈ N , the events of P are
linearly ordered by <P : i <P j iff i, j ∈ EP and i < j. For every chan-
nel c ∈ C, the events that write to or read from c are related by <c with
i <c j iff i is an event that writes some m to c, and j is the event that reads
that (occurrence of) m. (Here, events that lose messages are considered as
internal actions where no channel is involved.) We let ≺ (and �) denote



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 56

the transitive (resp. reflexive-transitive) closure of
⋃

P∈N <P ∪
⋃

c∈C <c.
(E,�) is then a poset, and � is called the visual order (also causality order,
or dependency order) in the literature. For e ∈ E, we let ↓ e denote the past
of e, i.e., the set {e′ ∈ E | e′ � e}.

It is well-known that any linear extension e1, . . . , en of (E,�) is causally

consistent and can be transformed into a run π′ = σ0
e1−→

e2−→· · · starting from
σ0. This run ends in σn like π, though it may go through different interme-
diary configurations. All the runs obtained by considering different linear
extensions are causally equivalent to π, denoted π ≈ π′, and they all give
rise to the same poset (E,�).

We now state properties enjoyed by (E,�) in our context that are useful
for proving Proposition 5.3.2. First, observe that, since the channels are
FIFO, and since only one process, namely d(c) (resp. s(c)), is allowed to
read from (resp. write to) a channel c:

(w1 <c r1 and w2 <c r2) imply (w1 <s(c) w2 iff r1 <d(c) r2). (†)

(†) is sometimes taken as a definition of FIFO communication.
Another important observation is the following: assume e � e′. Then,

and since � is defined as a reflexive-transitive closure, there must be a chain
of the form

θ : e = e0 ≤P0 e
′
0 <c1 e1 ≤P1 e

′
1 <c2 . . . <cl el ≤Pl

e′l = e′

where, for 1 ≤ i ≤ l, s(ci) = Pi−1 and d(ci) = Pi. Hence T has a path
c1, . . . , cl going from P0 to Pl.

Lemma 5.3.3 If e1 ≺ e2 ≺ e3 and c is essential, then e1 6<c e3.

Proof. By contradiction. Assume e1 ≺ e2 ≺ e3 and e1 <c e3 for an essential
c. Since all paths from P = N(e1) = s(c) to P ′ = N(e3) = d(c) go through
c (by essentiality), there must exist a pair w, r ∈ E with e1 � w <c r � e2
or, symmetrically, e2 � w <c r � e3, depending on whether the w <c r pair
occurs before or after e2 in the chain from e1 to e2 to e3. If e1 � w <c r �
e2 ≺ e3, then r <P ′ e3, hence w <P e1 using (†). If e1 ≺ e2 � w <c r � e3,
then e1 <P w, hence e3 <P ′ r using (†). In both cases we obtain a contra-
diction. �

We now assume that c is essential and that π has σ0(c) = σn(c) = ǫ
(hence E has the same number, say m, of events reading from c and writing
to it). Write P for s(c) and P ′ for d(c). Let w1 <P w2 . . . <P wm be the
m events that write to c, listed in causal order. Let r1 <P ′ e2 . . . <P ′ rm be
the m events that read from c listed in causal order.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 57

Lemma 5.3.4 There exists a linear extension of (E,�) where, for i =
1, . . . ,m, wi occurs just before ri.

Proof. The linear extension is constructed incrementally. Formally, for

i = 1, . . . ,m, let Ei
def
=↓ ri and Fi

def
= Ei r {wi, ri}. Observe that F1 ( E1 ⊆

F2 · · ·Fi ( Ei ⊆ Fi+1, with the convention that Fm+1 = E. Every Ei is a
�-closed subset of E, also called a down-cut of (E,�). Furthermore, Fi is a
down-cut of Ei by Lemma 5.3.3. Hence a linear extension of Fi followed by
wi.ri gives a linear extension of Ei, and following it with a linear extension of
Fi+1rEi gives a linear extension of Fi+1. Any linear extension of Fi+1rEi

can be chosen since this subset does not contain reads from, or writes to, c.
�

The linear extension we just built gives rise to a run π′ in which c is syn-
chronous. This concludes the proof of Proposition 5.3.2.

Observe that when several channels are essential in T , it is in general not
possible to replace a run π with an equivalent π′ where all essential channels
are simultaneously synchronous.

5.3.2 Decidability by fusion

We call “fusion” the transformation of T to T/c where c is essential, and
“reliable fusion” the special case where c is also a reliable channel.

Theorem 5.3.5 (Decidability by fusion) Let c be an essential channel
in T :
1. T has decidable reachability if T/c has.
2. If c is a reliable channel, then T/c has decidable reachability if T has.

Proof. 1. Let S be a T -MCS. We replace it by a system S′ where c has
been removed and where the processes at nodes P1 = s(c) and P2 = d(c)
have been replaced by a larger process that simulate both P1 and P2 and
where communication along c is replaced by synchronizing the sends in P1
with the reads in P2 (message losses are simulated even more simply by the
P1 part). S

′ has topology T/c and simulates S restricted to runs where c is
synchronous. By Proposition 5.3.2, this is sufficient to reach any reachable
configuration. Since reachability in S′ is decidable, we conclude that reach-
ability in S is decidable.

2. We now also assume that c is reliable and consider a (T/c)-MCS S. With
S we associate a T -MCS S′ that simulates S. S′ has two nodes P1 and P2
where S only had a merged P node.

The construction is illustrated in Fig. 5.6. Informally, P1 inherits states
from P and all rules that read from channels c1 with d(c1) = P1 in T ,
or write to channels c2 with s(c2) = P1. Regarding the other rules, the
communication action (reading from some c3 or writing to some c4) is sent



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 58

P

c1

c2

c3

c4

∆P =





p1
c1?a1−−→p′1

p2
c2!a2−−→p′2

p3
c3?a3−−→p′3

p4
c4!a4−−→p′4
· · ·





⇒

P1 P2
c

c1

c2

c3

c4

∆P1 =





p1
c1?a1−−→p′1

p2
c2!a2−−→p′2

p3
c!〈c3,?,a3〉
−−−−−→p′3

p4
c!〈c4,!,a4〉
−−−−−→p′4
· · ·





∆P2 =





∗
c?〈c3,?,a3〉 c3?a3
−−−−−−−−−−→∗

∗
c?〈c4,?,a4〉 c4?a4
−−−−−−−−−−→∗

· · ·





Figure 5.6: Associating a T -MCS with a T/c-MCS

to P2 via c. S′ uses an extended alphabet M′ that extends the message

alphabet M from S via M′
def
= M ∪ (C × {?, !} × M). P2 only has simple loops

around a central state ∗ that read communication instructions from P1 via
c and carry them out.

S′ simulates S in a strong way. Any step in S can be simulated in
S′, perhaps by two consecutive steps if a communication operation has to
transit from P1 to P2 via c. In the other direction, there are some runs in
S′ that cannot be simulated directly by S, e.g., when P2 does not carry out
the instructions sent by P1 (or carries them out with a delay). But all runs
in S′ in which c is synchronous are simulated by S.

Since runs in which c is synchronous are sufficient to reach any config-
uration reachable in S′ (Proposition 5.3.2), the two-way simulation reduces
reachability in S to reachability in S′, which is decidable if T has decidable
reachability. �

The usefulness of Theorem 5.3.5 is illustrated by the following two corol-
laries.

Corollary 5.3.6 T ring
1 and T ring

3 (from Section 5.1.1) have decidable reach-

ability. T ring
2 does not.

Proof. Building T ring
1 /c3/c4/c5/c6/c1 only fuses essential channels and ends

up with a decidable topology (only lossy channels).
Starting with T ring

2 , we can build T = T ring
2 /c3/c4/c5/c6 but have to stop

there (c1 is not essential). The resulting T , isomorphic to T u
4 from Fig. 5.5,

does not have decidable reachability. Hence T ring
2 does not have decidable

reachability since we fused reliable channels only.
With T ring

3 , it is better to build T ring
3 /c3/c4/c6/c1. Here too we cannot fuse

any more because of c′2, but the end result is a topology with decidable



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 59

reachability since c5 is lossy. Hence T
ring
3 has decidable reachability. �

Corollary 5.3.7 A topology in the form of an undirected forest has decid-
able reachability.

Proof.[Sketch] If T is a forest, every channel c is essential, and every T/c
is still a forest. Hence T reduces to a topology with lossy channels only. �

5.4 Splitting along lossy channels

P1 P2
c1 (reliable)

c2 (lossy)
P3 P4

c3 (reliable)

c4 (lossy)

P5 P6
c5 (reliable)

c6 (lossy)

c7 (lossy)

c8 (lossy)

c9 (lossy)

Figure 5.7: A topology that splits in three

Let T1 = 〈N1, R1, L1, s1, d1〉 and T2 = 〈N2, R2, L2, s2, d2〉 be two disjoint
topologies. We say that T = 〈N,R,L, s, d〉 is a (lossy) gluing of T1 on T2 if
T is a juxtaposition of T1 and T2 (hence N = N1∪N2) with an additional set
L3 of lossy channels (hence R = R1 ∪R2 and L = L1 ∪L2 ∪L3) connecting
from T1 to T2 in a unidirectional way: s(L3) ⊆ N1 and d(L3) ⊆ N2.

This situation is written informally “T = T1 ⊲ T2”, omitting details on
L3 and its connections. In practice this notion is used to split a large T into
subparts rather than build larger topologies out of T1 and T2.

Theorem 5.4.1 (Decidability by splitting) Reachability is decidable for
T1 ⊲ T2 if, and only if, it is for both T1 and T2.

The proof of Theorem 5.4.1 (see Appendix 5.8.1) uses techniques that are
standard for LCS’s but that have to be adapted to the more general setting
of MCS’s.

We can apply Theorem 5.4.1 to prove that the topology in Fig. 5.7 has
decidable reachability. Indeed, this topology can be split along lossy chan-
nels (first {c8, c9}, then c7), giving rise to two copies of T

d
2 (from Fig. 5.4)

and a two-node ring that can be reduced to T d
1 by fusion.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 60

5.5 A complete classification

In this section, we prove that the results from the previous sections provide
a complete classification.

Theorem 5.5.1 (Completeness) A network topology T has decidable reach-
ability if, and only if, it can be reduced to T d

2 (from Fig. 5.4) and LCS’s using
fusion and splitting only.2

Note that, via splitting, the reduction above usually transforms T into sev-
eral topologies. All of them must be T d

2 or LCS’s for T to have decidable
reachability.

The “⇐” direction is immediate in view of Theorems 5.3.5.1 and 5.4.1,
For the “⇒” direction, we can assume w.l.o.g. that T is reduced, i.e., it

cannot be split as some T1⊲T2, and it does not contain any reliable essential
channel (that could be fused).

We now assume, by way of contradiction, that T cannot be transformed,
via general fusions, to T d

2 or to a LCS. From this we show that reachability
is not decidable for T . When showing this, we sometimes mention three
additional transformations (“simplification”, “doubling of loops” and “non-
essential fusion”) that are described in Appendix 5.8.2. We now start an
involved case analysis.

1. Since T cannot be transformed to a LCS, it contains a reliable channel
cr, linking node A = s(cr) to node B = d(cr). We can assume A 6= B,
otherwise T contains T u

1 (from Fig. 5.5) and we conclude immediately with
undecidability.

2. T must contain a path θ of the form A = P0, c1, P1, c2, . . . , cn, Pn =
B that links A to B without using cr, otherwise cr would be essential,
contradicting the assumption that T is reduced. We pick the shortest such
θ (it is a simple path) and we call T ′ the subgraph of T that only contains
θ, cr, and the nodes to which they connect.

3. If all ci’s along θ are reliable, T ′ can be transformed to T u
2 (from

Fig. 5.5) by reliable fusions, hence T ′, and then T itself, have undecidable
reachability. Therefore we can assume that at least one ci along θ is lossy.

4. Assume that there exist two nodes Pi, Pj along θ that are connected
via a third path θ′ disjoint from cr and θ. We put no restrictions on the
relative positions of Pi and Pj but we assume that θ

′ is not a trivial empty
path if i = j. In that case, let T ′′ be the subgraph of T that contains cr,
θ, and θ′, and where all channels except cr are downgraded to lossy if they
were reliable. Using simplification and doubling of lossy loops, T ′′ can be
transformed to an undecidable topology among {T u

3 , T
u
4 , T

u
5 , T

u
6 }. Hence T

′′

2As is well-known, it is possible to further reduce any LCS into T d
1 . However, we

preferred a statement for Theorem 5.5.1 where only our two main transformations are
involved.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 61

does not have decidable reachability. Neither has T since taking subgraphs
and downgrading channels can only improve decidability.

5. If we are not in case 4, the nodes along θ do not admit a third path
like θ′. Therefore all channels along θ must be lossy, since we assumed T
is reduced. Thus T ′ can be transformed to T d

2 by general fusion. Since we
assumed T cannot be transformed to T d

2 , T must contain extra nodes or
channels beyond those of T ′. In particular, this must include extra nodes
since we just assumed that T has no third path θ′ between the T ′ nodes.
Furthermore these extra nodes must be connected to the T ′ part otherwise
splitting T would be possible. There are now several cases.

6. We first consider the case of an extra node C with a reliable channel
c from C to T ′. Since T is reduced, c is not essential and there must be a
second path θ′ from C to T ′. Call T ′′ the subgraph of T that only contains
T ′, C, c and θ′. Applying non-essential fusion on c, θ′ becomes a path
between some Pi, Pj and we are back to case 4. Hence undecidability.

7. Next is the case of an extra node C with a reliable channel c from T ′

to C. Again, since c is not essential, there must be a second path θ′ from
T ′ to C. Again, the induced subgraph T ′′ can be shown undecidable as in
case 6, reducing to case 4.

8. If there is no extra node linked to T ′ via a reliable c, the extra nodes
must be linked to T ′ via lossy channels. Now the connection must go both
ways, otherwise splitting would be possible. The simplest case is an extra
node C with a lossy c from C to T ′ and a lossy c′ from T ′ to C. But this
would have been covered in case 4.

9. Finally there must be at least two extra nodes C and C ′, with a lossy
channel c from C to T ′ and a lossy c′ from T ′ to C ′. We can assume that
all paths between T ′ and C,C ′ go through c and c′, otherwise we would be
in one of the cases we already considered. Furthermore C and C ′ must be
connected otherwise T could be split. There are several possibilities here.

10. If there is a path from C ′ to C we are back to case 4. Hence unde-
cidability.

11. Thus all paths connecting C and C ′ go from C to C ′. If one such
path is made of reliable channels only, reliable fusion can be applied on the
induced subgraph, merging C and C ′ and leading to case 8 where undecid-
ability has been shown. If they all contain one lossy channel, T can be split,
contradicting our assumption. that it is reduced.

We have now covered all possibilities when T is reduced but cannot be
transformed to a LCS or to T d

2 . In all cases is has been shown that reacha-
bility is not decidable for T . This concludes the proof of Theorem 5.5.1.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 62

5.6 A classification algorithm

Theorem 5.6.1 (Polynomial-time classification) There exists a poly-
nomial-time algorithm that classifies topologies according to whether they
have decidable reachability.

The algorithm relies on Theorem 5.5.1:

Stage 1: Starting from a topology T , apply splitting and reliable fusion as
much as possible. When several transformations are possible, pick any
of them nondeterministically. At any step, the transformation reduces
the size of the topologies at hand, hence termination is guaranteed in
a linear number of steps. At this stage we preserved decidability in
both directions, hence T has decidability iff all the reduced topologies
T1, . . . , Tn have.

Stage 2: Each Ti is now simplified using general fusion (not just reliable
fusion). If this ends with a LCS or with T d

2 , decidability for Ti has
been proved. When fusion can be applied in several ways, we pick one
nondeterministically: a consequence of Theorem 5.5.1’s proof is that
these choices lead to the same conclusion when starting from a system
that cannot be reduced with splitting or reliable fusion. Thus stage
2 terminates in a linear number of steps. When it terminates, either
every Ti has been transformed into a LCS or T

d
2 , and we conclude that

reachability is decidable for T , or one Ti remains unsimplified and we
conclude that reachability is not decidable for T .

We observe that when stage 1 finishes, there will never be any new oppor-
tunity for reliable fusion or for splitting since stage 2, i.e., general fusion,
does not create or destroy any path between nodes.

5.7 Concluding remarks

Summary. We introduced mixed channel systems, i.e., FIFO channel sys-
tems where both lossy and reliable channels can be combined in arbitrary
topologies. These systems are a generalization of the lossy channel system
model (where all channels are lossy and where reachability is decidable)
and of the standard model (with unbounded reliable FIFO channels, where
reachability is undecidable).

For mixed systems, we provide a complete classification of the network
topologies according to whether they lead to decidable reachability problems
or not. Our main tool are reductions methods that transform a topology into
simpler topologies with an equivalent decidability status. These reductions
produce small basic topologies for which the decidability status is established
in Section 5.2.



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 63

Directions for future work. The two main avenues for future work are
extending the MCS model (e.g., by considering other kinds of unreliability in
the style of [CFP96], or by allowing guards in the style of [BBS06], etc.) and
considering questions beyond just reachability and safety (e.g., termination
and liveness).



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 64

5.8 Appendix

5.8.1 Proofs for Section 5.4

This section proves Theorem 5.4.1, i.e., “T1⊲T2 has decidable reachability iff
T1 and T2 have”, where T1⊲T2 is a juxtaposition of T1 and T2 with additional
glue in the form of lossy channels with source in T1 and destination in T2.

First observe that the “⇒” direction is immediate since T1 and T2 are
subgraphs of T .

For the “⇐” direction, we assume T = T1 ⊲ T2 with T , T1 and T2 as in
Section 5.4. We consider a MCS S with topology T . From S we extract two
subsystems S1 and S2 with topologies T

′
1 and T ′2 that are slight augmenta-

tions of T1 and T2. More precisely, T
′
1 is T1 augmented with the interface

channels c1, . . . , ck from L3, and with dummy extra processes D1, . . . ,Dk,
one for each ci ∈ L3, so that d(ci) = Di is not left undefined. T ′2 is T2
augmented in a similar way, this time with s(ci) = Di. The MCS’s S1 and
S2 are the restrictions of S to T ′1 and T ′2 assuming that the extra processes
D1, . . . ,Dk are inactive.

Observe that, for i = 1, 2, the channels in L3 are essential in T ′i (also note
that T ′i is in general not a subgraph of T since different interface channels in
L3 may share a common source or a common destination). Since applying
fusion on L3-channels gives exactly Ti, and since we assumed reachability is
decidable for Ti, we conclude it is for T

′
i too by Theorem 5.3.5.

We now show how to decide reachability for S assuming that reachability
is decidable for topologies T ′1 and T ′2, hence for MCS’s S1 and S2.

A configuration σ of S can be written under the form 〈σ1, σ2, u1, . . . , uk〉
where σ1 is the restriction of σ to T1, σ2 is the restriction to T2, and
u1, . . . , uk are the contents of the extra channels from L3. (In particular,
the contents of channels in Ri ∪ Li are part of σ

i).

Lemma 5.8.1 Let σinit = 〈σ
1
init, σ

2
init, ǫ, . . . , ǫ〉 and σfinal = 〈σ

1
final, σ

2
final, ǫ, . . .

. . . , ǫ〉 be two configurations of S with empty channels. There is a run

σinit
∗
−→σfinal in S if, and only if, there is a tuple 〈u1, . . . , uk〉 such that S1

has a run 〈σ1init, ǫ, . . . , ǫ〉
∗
−→〈σ1final, u1, . . . , uk〉 and S2 has a run 〈σ2init, u1, . . .

. . . , uk〉
∗
−→〈σ2final, ǫ, . . . , ǫ〉.

Proof.[Sketch] Indeed, since the steps in the S1 part of S never depend on
the steps in the S2 part (interface channels in L3 only go from S1 to S2), it
is always possible to use all the S1 steps first and the S2 steps later. �

Lemma 5.8.2 The following problems are decidable:
(1) Given some 〈u1, . . . , uk〉 ∈ (M

∗)k, does S1 have a run

〈σ1init, ǫ, . . . , ǫ〉
∗
−→〈σ1final, u1, . . . , uk〉?



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 65

(2) Given some 〈u1, . . . , uk〉 ∈ (M
∗)k, does S2 have a run

〈σ2init, u1, . . . , uk〉
∗
−→〈σ2final, ǫ, . . . , ǫ〉?

(3) Given some regular languages R1, . . . , Rk ⊆ M∗, does there exists a tuple
〈u1, . . . , uk〉 ∈ R1 × · · · ×Rk such that S2 has a run

〈σ2init, u1, . . . , uk〉
∗
−→〈σ2final, ǫ, . . . , ǫ〉?

Proof. (1) is almost immediate since reachability is decidable in T ′1. Since
we insist on asking reachability questions with empty channels in the ini-
tial and final configurations, we have to program the extra components
D1, . . . ,Dk so that they empty the ci and check that they contained ui
and only accept if this is the case. The resulting system is still a T ′1 system.

For (2), the same idea applies but this time the Di’s fill the interface
channels with the ui. Ensuring that ui is really inserted in ci is done by
upgrading the interface channels from lossy to reliable channels. This does
not impact the decidability of reachability since it is established by fusing
essential channels and reducing to T2.

For (3) we program the Di’s so that they nondeterministically write one
ui ∈ Ri in ci. Since Ri is regular, a finite-state Di can do the generation.
Hence we reduced (3) to a reachability question on a decidable topology (T ′2
with reliable interface channels). �

Lemma 5.8.3 The set R ⊆ (M∗)k of all minimal (w.r.t. the subword order-

ing) tuples 〈u1, . . . , uk〉 allowing 〈σ
2
init, u1, . . . , uk〉

∗
−→〈σ2final, ǫ, . . . , ǫ〉 is finite

and can be computed effectively.

Proof. R is finite since the subword ordering is a well-quasi-order (Higman’s
Lemma).

Regarding its computation, we cannot apply the backward reachability
algorithm for LCS’s since T ′2 may contain reliable channels. However, by
Lemma 5.8.2.(2), we can check any candidate tuple. Therefore it is possible
to build R incrementally by enumerating all candidate tuples. Enumerating
them in order of increasing length ensures that only minimal tuples are
retained.

This procedure is bound to eventually build R (since it is finite) and
there only remains to ensure termination by detecting when the current R
is complete. This can be done using Lemma 5.8.2.(3): the set R′ of all tuples
that do not contain a tuple from R as subword is a regular language, being
the complement of the upward-closure of a finite set. Thus we can decide
whether R′ contains some tuple that is not yet accounted for in R. One
detail is that R′, though regular, is not in general a product R′1×· · ·×R′k of
regular languages, one for each part of the tuple. However it is well-known
that such sets are a finite union

∑
iR

′
1,i × · · · × R′k,i of products of regular

languages. �



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 66

We now have enough tools to implement Lemma 5.8.1 and thereby decide
reachability for S. We compute R and check, using Lemma 5.8.2.1, that one
of the tuples in R is reachable with S1. Observe that restricting to minimal
tuples does not invalidate the algorithm: c1, . . . , ck being lossy, the set of
tuples that S1 can write there is downward-closed.

5.8.2 Some additional transformations

This section describes additional transformations and how they preserve
decidability of reachability. The correctness proofs are only sketched in
this extended abstract, but the missing parts are easy to fill in since the
transformations are similar to existing ones.

We list these transformations for the sake of completeness (they are
used in the proof of Theorem 5.5.1) but the reader should understand that
they do not occur in the classification algorithm, or in the statement of the
classification theorem, where only essential fusion and splitting are needed.

1. Double lossy loops. We say that T has a double lossy loop if there are
distinct c, c′ ∈ L with s(c) = d(c) = s(c′) = d(c′).

Lemma 5.8.4 If c and c′ are a double lossy loop in T then reachability
is decidable for T if, and only if, it is for T − c′.

Proof.[Idea] A single loop can simulate two loops the way a single
lossy loop can simulate an arbitrary LCS: we concatenate the contents
of the two original channels in the remaining one, using special markers
to separate the two contents (see, e.g., [Sch02, Section 5]). Acting on
one part of the contents requires rotating the contents of the channels,
and this can be achieved with the help of the markers. The markers
are inserted at the start of the run, and removed at the end. If they
are lost during the simulation, correct simulation cannot be guaran-
teed, but it will be impossible to reach an accepting state. Hence the
simulation is correct for reachability questions. The new observation
is that it remains correct with an arbitrary mixed topology around the
two loops under consideration. �

Remark 5.8.5 Paradoxically, we do not use Lemma 5.8.4 for simpli-
fying systems. Rather we use it for doubling loops, which may prove
useful when we try to obtain basic topologies from Fig. 5.5 via simpli-
fication (see below). Hence it is important that Lemma 5.8.4 preserves
decidability in both directions.

2. Simplification. Let T be a topology with a lossy channel system c be-
tween two nodes P1 and P2. The simplification of T by c is a topology



CHAPTER 5. GENERALISED CHANNEL SYSTEMS 67

T ′ where c has been removed and where all channels c′ with s(c′) = P2
in T are redirected and have s(c′) = P1 in T ′.

Lemma 5.8.6 Reachability is decidable for T ′ if it is for T .

Proof.[Idea] T ′ misses many features of T , which only improves de-
cidability. The features of T ′ that T misses are the channels c′ from
P1 to some P that go from P2 to P in T . In T , these can be simulated
by a standard multiplexing trick going through P2 via c. �

3. Non-essential fusion. Let c be a reliable channel from P1 to P2 (P1 6=
P2) in some topology T . Assume that there is an additional path from
P1 to P2 that does not use c (hence c is not essential). Further assume
that this path only contains lossy channels, and that there is no other
path from P1 to P2.

Lemma 5.8.7 Reachability is decidable for T/c if it is for T .

Proving Lemma 5.8.7 is quite different from proving Theorem 5.3.5. It
uses the same simulation we use in section 5.2.1 to link T d

2 and T d
1 , but

this time in a more general context since extra channels and processes
may occur in T .



Part II

More on PEP

68



Chapter 6

PEP variants

In this chapter, we introduce multiples PEP variants. In section 6.2 are
the versions with no regular constraints. Some are trivial (LogSpace), but
some infinite version are PTime-complete. Section 6.3 has the non trivial
infinitary versions, both decidable and undecidable. And in section 6.4 we
will present versions with differences on the constraints. When we use a
regular constraint on different words than the input, we always have the
same problem. This is mainly a justification of our definition of PEPreg. But
if we use constraints stronger than regulars, we have undecidable problems.

6.1 Definitions

6.1.1 Infinitary version of PEP, PEPω

u ⊑ v when there exists an order-preserving injective map h : {1, . . . , n} →
{1, . . . ,m} such that ai = bh(i) for all i = 1, . . . , n. Embeddings between
ω-words are defined similarly, with a strictly increasing h : N r 0 → N r 0.
We explicitly allow the embedding of finite words into infinite ones.

Then using that version of embedding PEPω-reg is just PEPreg where the
constraint language is chosen ω-regular.

Problem PEPω-reg

Instance: Two finite alphabets Σ and Γ, two morphisms u, v : Σ∗ → Γ∗,
and an ω-regular language R ⊆ Σω.

Question: Does there exists a σ ∈ R such that uσ ⊑ vσ?

PEPω is the special case where R is Σω.
Similarly to the finite case, we say that σ is a direct solution if uρ ⊑ vρ

for every prefix ρ of σ. It is a codirect solution if uρ ⊑ vρ for every suffix ρ
of σ.

69



CHAPTER 6. PEP VARIANTS 70

The problem PEP
ω-reg
dir ( PEPω-reg

codir ) asks furthermore that the solution is
direct (resp. codirect ).

Note that in the finite case, the difference between directness and codi-
rectness was meaningless since a codirect solution is just a direct solution
of the mirror instance. It doesn’t hold in the infinite case, the prefix of a
solution being a finite word and the suffix an infinite one.

6.2 Too simple cases

We thinks that the following variants are responsible for embedding prob-
lems never being studied. Their solutions are too easy to be interesting.

In this section, we will state that Σ and Γ are two alphabets and u, v :
Σ∗ → Γ∗ are two morphisms defining a Post embedding problem.

6.2.1 PEP, PEPdir, PEPcodir and PEP
ω
dir

Fact 6.2.1 (proof in appendix A.1)
1. If xy ⊑ z, then there exists a factorization z = z1z2 of z such that x ⊑ z1
and y ⊑ z2.
2. If x ⊑ yz, then there exists a factorization x = x1x2 of x such that x1 ⊑ y
and x2 ⊑ z.

Corollary 6.2.2 There is a σ ∈ Σ+ such that uσ ⊑ vσ if and only if there
is some i ∈ Σ such that ui ⊑ vi.

For PEPdir, PEPcodir and PEPω
dir, this is even simpler. By definition, the

first prefix ( suffix ) embeds. So those case are all LogSpace.

6.2.2 PEP
ω and PEP

ω
codir

Observe that, between ω-words, embedding is only a (partial) quasi -ordering:
u ⊑ v and v ⊑ u together do not imply u = v. For example, (ab)ω ⊑
(bba)ω ⊑ (ab)ω . We write u ≡ v when u ⊑ v and v ⊑ u.

Halving ω-words. For some u ∈ Σω, let inf(u) ⊆ Σ denote the set of
letters that occur infinitely many times in u. The word u can be decomposed
under the form u′.u′′ where u′ is a finite prefix and the corresponding suffix
u′′ ∈ Σω, only contains letters from inf(u). Such a decomposition is called a
halving of u. There exists several (in fact, infinitely many) halvings of any
u ∈ Σω: the canonical halving is obtained by selecting the shortest possible
prefix u′.
For some u ∈ Σω or u ∈ Σ∗ the set alph(u) is the set of letters (a subset of
Σ) that occur in u.

The following lemma is a classic tool when considering embeddings be-
tween ω-words (see, e.g., [Fin85]).



CHAPTER 6. PEP VARIANTS 71

Lemma 6.2.3 Let u, v ∈ Σω be two ω-words with u′.u′′ and v′.v′′ two arbi-
trary halvings of u and v. Then

u ⊑ v iff

{
alph(u′′) ⊆ alph(v′′), and
there exists x ∈ alph(v′′)∗ such that u′ ⊑ v′x.

Furthermore, when u ⊑ v, then x can be chosen with |x| ≤ |u′|, and for any
halving u = u′.u′′ there exists a halving v = v′.v′′ such that u′ ⊑ v′.

Corollary 6.2.4 Let u1, u2 be two ω-words such that inf(u1) = alph(u1) =
alph(u2) = inf(u2). Then u.u1 ≡ u.u2 for all u ∈ Σ∗.

Proposition 6.2.5 There is an ω-solution in Σω if and only if there is there
is a codirect ω-solution if and only if there exists a non-empty subset Σ′ of
Σ s.t. alph(u(Σ′)) ⊆ alph(v(Σ′)).

Proof. Obviously, if alph(u(Σ′)) ⊆ alph(v(Σ′)) for some non-empty Σ′ =
{i1, . . . , im}, then (i1 . . . im)

ω is an ω-solution, and even a codirect one. Con-

versely, given an ω-solution σ, Lemma 6.2.3 entails that, letting Σ′
def
= inf(σ),

one has alph(u(Σ′)) ⊆ alph(v(Σ′)). �

From here we know that PEPω and PEPω
codir are the same problems. We

will then show that it is PTime-complete.

PTime-hardness

We reduce CircuitValue to PEPω. Let C = (G∨, G∧, G⊤, G⊥, f1, f2, n0) be an
instance of CircuitValue, as illustrated in Fig 6.1. We assume, without loss of

⊥ ⊤ ⊥ ⊥

∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧

∨ ∨

∧n0:

n1: n2:

n3: n4: n5: n6:

n7: n8: n9: n10: n11:

n12: n13: n14: n15:layer 0:

layer 1:

layer 2:

layer 3:

layer 4:

Figure 6.1: An instance of CircuitValue.

generality [GHR95, problem A.1.6], that gates are arranged in layers, that
layer 0 contains “constants” gates from G⊤ ∪G⊥, that, for any, k ∈ N layer



CHAPTER 6. PEP VARIANTS 72

2k + 1 (resp. 2k + 2) contains OR-gates (resp. AND-gates) from G∨ (resp.
G∧), that any gate n in some layer k > 0 has exactly two inputs, f1(n) and
f2(n), that belong to layer k− 1 (NB: f1(n) = f2(n) is allowed). Finally, we
assume that the output n0 of C belongs to G∧.

Given a circuit C, we define in the obvious way the value val(n) ∈ {0, 1}

of gate n ∈ G, where G
def
= G∨ ∪ G∧ ∪ G⊤ ∪ G⊥ is the set of gates. Let

G=1
def
= {n ∈ G | val(n) = 1}. In our example, G=1 = {n1, n3, n7, n8, n13}.

With C we associate two morphisms u, v : Σ∗ → Γ∗ as follows. Let

Σ
def
= G∧ ∪ (G∨ × {1, 2}) ∪G⊤ and Γ

def
= G.

u(n)
def
= f1(n).f2(n).n0 v(n)

def
= n for n ∈ G∧, (C1)

u(n, i)
def
= fi(n).n0 v(n, i)

def
= n for n ∈ G∨ × {1, 2}, (C2)

u(n)
def
= n0 v(n)

def
= n for n ∈ G⊤. (C3)

The reduction is clearly LogSpace. Its correctness is established by the
following two lemmas.

Lemma 6.2.6 If val(n0) = 1, then there is a non-empty Σ′ with alph(u(Σ′)) ⊆
alph(v(Σ′)).

Proof. Let

Σ′
def
=

{n ∈ G∧ ∪G⊤ | val(n) = 1}
∪ {(n, i) ∈ G∨ × {1, 2} | val(fi(n)) = 1}.

Σ′ is not empty since it contains n0. Observe that alph(v(Σ′)) is exactly
G=1. It remains to check, by inspecting (C1–3), that x ∈ Σ′ implies
alph(u(x)) ⊆ G=1. �

Lemma 6.2.7 Assume that alph(u(Σ′)) ⊆ alph(v(Σ′)) for some non-empty
Σ′ ⊆ Σ. Then val(n0) = 1.

Proof. Since necessarily n0 appears in alph(u(Σ′)), hence in alph(v(Σ′)),
it is enough to show that alph(v(Σ′)) ⊆ G=1. We do this by induction on
layers. Let x ∈ Σ′ and consider three cases. If x ∈ G⊤, then x ∈ G=1

obviously. If x ∈ G∧, then alph(u(x)) ⊆ alph(v(Σ′)) implies that both
f1(x) and f2(x) belong to alph(v(Σ′)), hence evaluate to 1 by ind. hyp.,
so that val(x) = 1. Finally, if x is some (n, i) ∈ G∨ × {1, 2}, then from
fi(n) = u(x) ∈ alph(v(Σ′)), we deduce that fi(n) ∈ G=1 by ind. hyp., hence
val(n) = 1, proving v(x) ∈ G=1. �

Theorem 6.2.8 PEPω and PEPω
codir coincide, and are PTime-complete.



CHAPTER 6. PEP VARIANTS 73

Proof. The previous lemmas showed the hardness part. There exists a sim-
ple polynomial-time decision procedure for PEPω. It computes the largest
Σ′ satisfying alph(u(Σ′)) ⊆ alph(v(Σ′)) and then checks that this Σ′ is not
empty. This largest Σ′ is obtained by starting with Σ′:=Σ and then remov-
ing from Σ′ every i for which alph(ui) is not included in the current Σ

′, until
eventual stabilization. �

6.3 Non trivial infinite PEP

6.3.1 PEP
ω-reg and PEP

ω-reg
codir

Theorem 6.3.1 PEPω-reg and PEPreg are equivalent (modulo elementary
reductions).

Corollary 6.3.2 PEPω-reg is Fωω -complete.

An application of this result is to explore the link between channel sys-
tems and PEP back.

RecReachUcs, the recurrent reachability problem for UCS’s, is the ques-
tion whether the system S, having an UCS (def. at section 5.2.1) topology,
has an infinite run 〈qinit, q

′
init, ǫ, ǫ〉−→〈q1, q

′
1, v1, v

′
1〉−→〈q2, q

′
2, v2, v

′
2〉−→ · · · with

qk, q
′
k ∈ F for infinitely many k ∈ N.

Lemma 6.3.3 PEPω-reg and RecReachUcs are equivalent.

This is essentially the same idea as PEPreg equivalent to ReachUcs, the main
difference is the use of Büchi automata instead of FSA.

Corollary 6.3.4 RecReachUcs is Fωω -complete.

proof of PEPω-reg and PEPreg equivalence

One direction of Theorem 6.3.1 is obvious: any PEPreg instance u, v,R can
be seen as a PEPω-reg instance by adding an extra symbol ⊥ to Σ and Γ,
replacing R with R.⊥ω, and letting u(⊥) = v(⊥) = ⊥.

For the other direction, we consider a PEPω-reg instance given by two
morphisms u, v : Σ∗ → Γ∗ and an ω-regular language R ⊆ Σω.

Lemma 6.3.5 There exists σ ∈ R such that uσ ⊑ vσ if and only if there
exists two finite words ρ1 and ρ2 in Σ∗ such that

(a) ρ1.ρ
ω
2 ∈ R,

(b) uρ1 ⊑ vρ1.ρ2 , and

(c) alph(uρ2) ⊆ alph(vρ2).



CHAPTER 6. PEP VARIANTS 74

Proof. The “⇐” direction is easy since taking σ = ρ1.ρ
ω
2 is sufficient. For

the “⇒” direction, we assume that σ = a1a2a3 . . . ∈ R satisfies uσ ⊑ vσ and
show how to build ρ1 and ρ2.

LetAR = (Q,Σ, q0, F, δ) be a Büchi automaton forR, and π = q0
a1−→q1

a2−→· · ·
be an accepting run of AR over σ. This run is an ω-sequence of transitions
“qi−1

ai−→qi”, so that π ∈ δω can be halved under the form π = π′.π′′. This
gives rise to two halvings u′.u′′ and v′.v′′ of, respectively, uσ and vσ.

Let us pick a finite prefix θ of π′′ that uses every transition from inf(π)
at least once, and that ends on the starting state of π′′. Hence θ is some

qn
an+1
−−→qn+1

an+2
−−→· · ·

an+k
−−→qn+k with n = |π

′|, qn = qn+k, and inf(σ) = {an+1, an+2,

. . . , an+k}. Let now ρ1
def
= a1a2 . . . an and ρ

def
= an+1an+2 . . . an+k. Clearly

ρ1.ρ
ω ∈ R as witnessed by the ultimately periodic run π′.θω. Furthermore,

from u′ = uρ1 and inf(u′′) = alph(u′′) = alph(uρ), we deduce uσ = u′.u′′ ≡
uρ1.ρω using Corollary 6.2.4. Similarly, vσ ≡ vρ1.ρω . Hence uσ ⊑ vσ entails
uρ1.ρω ⊑ vρ1.ρω . Using Lemma 6.2.3, we conclude that uρ1 ⊑ vρ1.ρ2 can be

obtained by picking for ρ2 a large enough power ρ2
def
= ρ.ρ . . . ρ of ρ. Such a

ρ2 further ensures ρ
ω
2 = ρω, so that requirements (a) and (c) are inherited

from ρ. �

For the next step, we show how to state the existence of two finite ρ1
and ρ2 as in Lemma 6.3.5 under the form of a PEPreg problem.

Let AR = (Q,Σ, q0, F, δ) be the Büchi automaton defining R. As is
standard, for q, q′ ∈ Q, we let Lq,q′ ⊆ Σ∗ denote the (regular) language
accepted by starting AR in q and stopping in q′.

Let Σ′ = {1′, 2′, . . .} be a copy of Σ = {1, 2, . . .} where letters have been
primed: for x ∈ Σ∗ and L ⊆ Σ∗, we let x′ ∈ Σ′∗ and L′ ⊆ Σ′∗ denote primed
versions of x and L.

We can now express condition (a) as a regularity constraint on ρ1.ρ
′
2:

by definition, ρ1.ρ
ω
2 belongs to R iff for some q ∈ Q, ρ1 ∈ Lq0,q and ρ2 ∈

(Lq,q r ǫ). That is, if and only if ρ1.ρ
′
2 ∈ R1 with

R1
def
=

⋃

q∈Q

Lq0,q.(L
′
q,q r ǫ).

Condition (b) can be stated as an embedding property on ρ1.ρ
′
2: let u

′, v′ :

(Σ ∪ Σ′)∗ → Γ∗ be the extensions of u and v given by u′i′
def
= ǫ and v′i′

def
= vi.

Then
uρ1 ⊑ vρ1.ρ2 if and only if u

′
ρ1.ρ

′
2
⊑ v′ρ1.ρ′2

.

Finally, condition (c) can be expressed as another regularity constraint. In-
deed, for X ⊆ Γ, alph(uρ2) ⊆ X and alph(vρ2) ⊆ X require ρ2 ∈ u−1(X∗)
and, respectively, ρ2 ∈ v−1(X∗). These are regular conditions on ρ2 since



CHAPTER 6. PEP VARIANTS 75

inverse morphisms preserve regularity. Let now

R2
def
=

⋃

X⊆Γ

(
u−1(X∗) ∩ v−1(X∗) ∩

⋂

a∈X

a∈alph(vρ2 )︷ ︸︸ ︷
Σ∗{i ∈ Σ | a ∈ alph(vi)}Σ

∗
)
.

Clearly, alph(uρ2) ⊆ alph(vρ2) if and only if ρ2 ∈ R2. Hence alph(uρ2) ⊆
alph(vρ2) if, and only if, ρ1.ρ

′
2 ∈ Σ∗.(R2)

′ where we observe that R2, hence
Σ∗.(R2)

′ too, are regular.
Finally, u, v has an ω-solution in R iff u′, v′ has a finite solution in R1 ∩

(R2)
′, which provides the reduction from PEPω-reg to PEPreg.

Remark 6.3.6 The automaton for R1 has size linear in |AR|. The automa-
ton for R2 has size exponential in |Σ|: this is because we consider all subsets
X ⊆ Σ. Hence the reduction from PEPω-reg to PEPreg is not LogSpacewhen
the constraint R is given by a non-deterministic FSA. It is polynomial-space,
which is certainly fine enough to state “equivalence” by inter-reducibility be-
tween problems that are not primitive-recursive.

There exists other possible choices for the precise finitary way with which
R is supposed to be provided in a PEP instance: for many of these choices,
from various logical formalisms (e.g., MSO) to various automata-based frame-
work (e.g., alternating automata), LogSpacereductions from PEPω-reg to PEPreg

exist.

We conclude this section with the following observation:

Theorem 6.3.7 PEP
ω-reg
codir and PEP

reg
codir are equivalent (inter-reducible).

This can be proved using the same techniques we used in this section, in
particular one can state a version of Lemma 6.3.5 that accounts for codirect
solutions (while this is not possible for direct solutions). Then a codirect
infinite solution σ induces the existence of a codirect ρ1.ρ

ω
2 , and the existence

of such an infinite ρ1.ρ
ω
2 can be witnessed by a finite ρ1.ρ

′
2 that solves a

derived PEP
reg
codir instance.

6.3.2 PEP
ω-reg
dir undecidable

As we have seen, ReachLcs is closely coupled to PEP
reg
dir and ReachUcs to

PEPreg. On the infinitary case those links still hold since RecReachUcs and
PEPω-reg are equivalent and decidable whereas, as we will see RecReachLcs

and PEP
ω-reg
dir are both undecidable.

RecReachLcs, the recurrent reachability problem for LCS’s, is the ques-
tion whether S has an infinite run 〈qinit, ǫ〉−→〈q1, v1〉−→〈q2, v2〉−→ · · · with
qk ∈ F for infinitely many k ∈ N. RecReachLcs is undecidable [AJ96a]
(albeit r.e.).



CHAPTER 6. PEP VARIANTS 76

Lemma 6.3.8 The following are equivalent:
(a). σ is a direct solution,
(b). For all k ∈ N, there exists an embedding hk : {1, 2, . . . , lk} → {1, 2, . . . , l′k}
that witnesses ui1i2...ik ⊑ vi1i2...ik ,
(c). There exists a general embedding h : N→ N that witnesses uσ ⊑ vσ and
such that its restriction to {1, 2, . . . , lk} witnesses ui1i2...ik ⊑ vi1i2...ik .

Proof.[Sketch] (a) and (b) are equivalent by definition of being a direct
solution. (c) obviously implies (b). We prove (c) from (b) by defining

h(i)
def
= mink=1,2,... hk(i). �

Lemma 6.3.9 PEP
ω-reg
dir reduces to RecReachLcs.

Proof. The reduction from PEP
ω-reg
dir to RecReachLcs is illustrated in Fig. 6.2,

where the “rules” of the form q
c!x c?y
−−−→q′ are just a shorthand description for

two consecutive rules q
c!x
−→q? and q?

c?y
−→q′ that traverse an anonymous inter-

mediary state q?. Simply put, the LCS Su,v,R mimics the Büchi automaton

qinit

q2q3

i1

i2

i3

i2

From AR

⇒

qinit

q2q3

c!v1

c?u1

c!v2c?u2

c!v3

c?u3

c!v2 c?u2

To an LCS Su,v,R

c

Figure 6.2: Reductions between PEP
ω-reg
dir and RecReachLcs

AR that defines the constraint R ⊆ Σω. A run of the LCS that visits F
infinitely often will performs steps 1, 2, 3, . . ., writing to the channel some
v′1, v

′
2, v

′
3, . . . , that are subwords (because of message losses) of vi1 , vi2 , vi3 ,

. . . (the writes prescribed by the rules). During these same steps, it reads
ui1 , ui2 , ui3 , . . . , from the channel. These read letters must have been writ-
ten earlier, hence for k = 1, 2, 3, . . ., ui1 . . . uik is a prefix of v

′
1 . . . v

′
k, hence

a subword of vi1 . . . vik . Finally, σ
def
= i1.i2.i3 . . . is a direct solution.

Reciprocally, given a direct solution σ = i1.i2.i3 . . ., it is possible (using
the general embedding provided by Lemma 6.3.8) to find subwords v′1, v

′
2,

v′3, . . . of vi1 , vi2 , vi3 , . . . s.t., for all k = 1, 2, . . ., ui1 . . . uik is a prefix of
v′1 . . . v

′
k. Using these v′k, one easily obtains an infinite run of the LCS that

shows the associated RecReachLcs is positive. �



CHAPTER 6. PEP VARIANTS 77

Lemma 6.3.10 RecReachLcs reduces to PEP
ω-reg
dir .

Proof. Consider a RecReachLcs instance S = (Q, M, {c},∆) with given qinit
and F . With it, we associate a PEP

ω-reg
dir instance where Σ = ∆ and where

R ⊆ Σω is given by the Büchi automaton that is exactly like S, with the
difference that any rule δ between some states q and q′ is now a transition

q
δ
−→q′ in AR. The morphisms u, v are defined by u(δ)

def
= “what rule δ reads

in channel c”, v(δ)
def
= “what δ writes in c”. Since u(δ) = ǫ or v(δ) = ǫ for

every rule (LCS’s rules either read or write to c, not both), S (essentially)
coincides with Su,v,R (Fig. 6.2). Hence the proof of Lemma 6.3.9 shows that
u, v,R is a positive PEPω-reg instance iff the original RecReachUcs instance
is positive. �

Directly from these two lemmas PEP
ω-reg
dir is equivalent to RecReachLcs

and

Theorem 6.3.11 PEP
ω-reg
dir is (r.e. but) undecidable.

6.4 Varying constraint

Here are first presented the different methods to place the regular constraint
that make sense we could think of. They are all essentially equivalent. This
section is a justification of our choice of PEPreg as our central problem.

The next variants are stronger versions where the constraint has some
counting capacity. It turns out that every kind of constraint that are stronger
than regular languages turns out to make the problem undecidable.

6.4.1 Constraining uσ and vσ

PEPu reg is like PEPreg except that the constraint R ⊆ Γ∗ now applies to uσ:
a solution is some σ ∈ Σ∗ with uσ ∈ R (and uσ ⊑ vσ). Similarly, PEP

v reg has
the constraint apply to vσ, while PEP

uv reg has two constraints, R1, R2 ⊆ Γ∗,
that apply to, respectively and simultaneously, uσ and vσ. These problems
also have directed versions.

Proposition 6.4.1 1. PEPuv reg reduces to PEPreg.
2. PEPuv regdir reduces to PEP

reg
dir .

Proof. Let u, v,R1, R2 be a PEP
uv reg instance. Let R

def
= u−1(R1)∩v

−1(R2).
(Recall that the image of a regular R by an inverse morphism is regular and
can easily be constructed from R.) By definition σ ∈ R iff uσ ∈ R1 and
vσ ∈ R2. Thus the PEPreg instance u, v,R is positive iff u, v,R1, R2 is. We
further note that the directness of σ is untouched by the transformation. �
Reductions exist in the other direction, as the next two propositions show.



CHAPTER 6. PEP VARIANTS 78

Proposition 6.4.2 1. PEPreg reduces to PEPv reg.
2. PEPregdir reduces to PEP

v reg
dir .

Proof.[Sketch] Let u, v,R be a PEPreg instance. W.l.o.g., we may as-
sume that Σ ∩ Γ = ∅. Define a PEPv reg instance u′, v′, R′ by letting

v′ : Σ∗ → (Γ ∪ Σ)∗ be given by v′i
def
= i.vi and keeping u′ = u unchanged.

Let R′
def
= h−1(R) where h : (Γ ∪ Σ)∗ → Γ∗ is the erasing morphism that

suppresses letters from Σ. Note that v′σ ∈ R′ iff σ = h(v′σ) ∈ R, so that
u′, v′, R′ is a positive PEPv reg instance iff u, v,R is a positive PEPreg in-
stance. Finally, this reduction preserves the directness of solutions. �

Proposition 6.4.3 1. PEPreg≤1 reduces to PEPu reg.
2. PEPreg≤1 reduces to PEPu reg.

Proof.[Sketch] Let u, v,R be a PEP
reg
≤1 instance. W.l.o.g., we assume Σ =

{1, 2, . . . , k} and let Σ′
def
= {0} ∪ Σ with g : Σ′∗ → Σ∗ the associated erasing

morphism. We also assume Γ∩Σ′ = ∅ and let Γ′
def
= Γ∪Σ′, with h : Γ′∗ → Σ∗

as erasing morphism.
With u, v,R, we associate a PEPu reg instance u′, v′, R′ based on Σ′ and

Γ′, and defined by u′0
def
= ǫ, v′0

def
= 1.2 . . . k, and, for i ∈ Σ, u′i

def
= i.ui and

v′i
def
= vi. Letting R′ = h−1(R) ensures that u′σ ∈ R′ iff g(σ) ∈ R. Clearly, if

u′σ ⊑ v′σ, then ug(σ) ⊑ vg(σ). Conversely, if uσ′ ⊑ vσ′ , it is possible to find a
σ ∈ g−1(σ′) that satisfies u′σ ⊑ v′σ: this is just a matter of inserting enough
0’s at the appropriate places (and this is where we use the assumption that
all vi’s have length ≤ 1).

Finally, this reduction preserves the directness of solutions. �

Now, since PEPu reg and PEPv reg are special cases of PEPuv reg, and since
PEP

reg
≤1 is a special case of PEP

reg, Propositions 4.1.2, 6.4.1, 6.4.2 and 6.4.3
entail the following.

Theorem 6.4.4 PEPreg, PEPreg≤1 , PEP
u reg, PEPv reg and PEPuv reg are inter-

reducible. Furthermore, they are also inter-reducible with their directed ver-
sions.

6.4.2 Context-free and Presburger constraints on solutions

Write PEPcf for the extension of PEPreg where R can be any context-free
language (say, given in the form of a context-free grammar) and PEPdcf

for PEPcf restricted to deterministic context-free constraints. Further write
PEPPres for the extension where R ⊆ Σ∗ can be any language defined by a
Presburger constraint over the number of occurrences of each letter from Σ



CHAPTER 6. PEP VARIANTS 79

(or, equivalently, the commutative image of R is a semilinear subset of the
commutative monoid NΣ).

Theorem 6.4.5 PEPdcf , PEPcf and PEPPres are undecidable.

Proof. The (classic) PCP problem reduces to PEPdcf or PEPPres by asso-
ciating, with an instance u, v : Σ∗ → Γ∗, the constraint R≥ ⊆ Σ+ defined
by

σ ∈ R≥
def
⇔ |uσ| ≥ |vσ| and σ 6= ǫ.

Obviously, uσ ⊑ vσ and σ ∈ R≥ iff uσ = vσ. Observe that R≥ is easily
defined in the quantifier-free fragment of Presburger logic. Furthermore,
since R≥ can be recognized by a counter machine with a single counter, it
is indeed deterministic context-free. �

6.5 Appendix

6.5.1 PEP
reg is equivalent to ReachUcs and PEP

ω-reg is equiva-

lent to RecReachUcs

In this section we will prove the link between UCS and PEP for both fi-
nite and infinite case. To this end, we will use 2PCEPreg, an intermediate
problem closer to the behaviour of UCS’s than PEP. It uses correspondence
and embedding between two words to mimic the behaviour of both parts
of an UCS. The first step, from ReachUcs to 2PCEPreg is essentially a de-
tailed explanation of why this abstraction is correct. The second part, from
2PCEPreg to PEP

reg
dir relies on the fact that two languages which must match

through two morphisms can be seen as the intersection of those languages.

Lemma 6.5.1 1. ReachUcs and 2PCEPreg are equivalent.
2. RecReachUcs and 2PCEPω-reg are equivalent.

Lemma 6.5.2 1. 2PCEPreg reduces to PEPreg.
2. 2PCEPω-reg reduces to PEPω-reg.

Commuting UCS steps

We first state a trivial but important property about runs of unidirectional
systems. Let S = (Q1, Q2, M, {r, l},∆1,∆2) be some UCS, and

〈q1, q2, x, y〉
δ2−→〈q1, q

′
2, x

′, y′〉
δ1−→〈q′1, q

′
2, x

′′, y′′〉 be two consecutive steps with δ1 ∈
∆1 and δ2 ∈ ∆2, i.e., where the receiver performs the first step, and the
sender the second step. Then it is possible to fire δ1 before δ2 and reach the
same configuration. More precisely, there exists x′′′ and y′′′ with



CHAPTER 6. PEP VARIANTS 80

〈q1, q2, x, y〉
δ1−→〈q′1, q2, x

′′′, y′′′〉
δ1−→〈q′1, q

′
2, x

′′, y′′〉.

The corollaries are

Lemma 6.5.3 If S has a run 〈q1, q2, x, y〉
∆1∪∆2−−−→∗〈q′1, q

′
2, x

′, y′〉 then it has
one such run of the form

〈q1, q2, x, y〉
∆1−→∗〈q′1, q2, x

′′, y′′〉
∆2−→∗〈q′1, q

′
2, x

′, y′〉.

Lemma 6.5.4 If S has an infinite run from 〈q10 , q
2
0, x0, y0〉 of the form

〈q10, q
2
0 , x0, y0〉−→〈q

1
1 , q

2
1 , x1, y1〉−→〈q

1
2 , q

2
2, x2, y2〉−→ · · ·

with q1 = q1i for infinitely many i’s, and q2 = q2i for infinitely many i’s (not
necessarily the same), then it has one such run with (q1, q2) = (q1i , q

2
i ) for

infinitely many i’s.

from ReachUcs to 2PCEPreg

Lemma 6.5.5 2PCEPreg is equivalent to ReachUcs, and 2PCEPω-reg is equiv-
alent to RecReachUcs.

The proof rely on the two following lemmas

Lemma 6.5.6 2PCEPreg reduces to ReachUcs, and 2PCEPω-reg to RecReach-
Ucs.

Proof. For this, consider a 2PCEPreg instance f1, g1, f2, g2, R1, R2 as in
Definition 5.2.1. Further assume that, for i = 1, 2, Ri is given by some FSA
Ai = (Qi,Σi, q

i
init, Fi, δi).

With this instance, we associate an UCS where the the sender is obtained

from A2 by replacing transitions q
i
−→q′ ∈ δ2 with rules q

r!f2(i) l!g2(i)
−−−−−−−→q′, and

the receiver is obtained from A1 by replacing transitions q
i
−→q′ ∈ δ1 with

rules q
r?f1(i) l?g1(i)
−−−−−−−−→q′.

If the 2PCEPreg instance is positive, then a solution σ1, σ2 can be used
in a straightforward way to build, out of σ2, a run in the UCS that will
start from 〈q2init, q

1
init, ǫ, ǫ〉, will reach some 〈q2final, q

1
init, f2(σ2), x〉 for some

q2final ∈ F2, and where, using message losses, we can choose to reach any
x ⊑ g2(σ2). By picking x = g1(σ1), we can now continue the run, using σ1,
and reach 〈q1final, q

2
final, ǫ, ǫ〉 for some q

1
final ∈ F1.

Reciprocally, using Lemma 6.5.3, a run from 〈q2init, q
1
init, ǫ, ǫ〉 to some

〈q1final, q
2
final, ǫ, ǫ〉 can be reordered into some

〈q2init, q
1
init, ǫ, ǫ〉

r1−→
r2−→· · ·

rn−→︸ ︷︷ ︸
rules from ∆1

〈q2final, q
1
init, x, y〉

r′1−→
r′2−→ · · ·

r′m−→︸ ︷︷ ︸
rules from ∆2

〈q1final, q
2
final, ǫ, ǫ〉



CHAPTER 6. PEP VARIANTS 81

where all sender’s steps occur first, followed by the receiver steps. This
translates into a path q2init

σ2−→q2final inA2, and q1init
σ1−→q1final in A1 where f2(σ2) =

x = f1(σ1), and where g2(σ2) ⊒ y = g1(σ1), solving the 2PCEP
reg instance.

Finally, the 2PCEPreg instance is positive iff the associated ReachUcs in-
stance is. Hence 2PCEPreg reduces to ReachUcs.

The same association of an UCS with f1, g1, f2, g2,A1,A2 shows that
2PCEPω-reg reduces to RecReachUcs.

Indeed, an infinite solution σ1, σ2 in some ω-regular languages R1 andR2,
can be used to build an infinite run of the UCS that visit infinitely many
configurations 〈q2final, q

1
i , xi, yi〉 with some q2final ∈ F2, and infinitely many

configurations 〈q2i , q
1
final, x

′
i, y

′
i〉 with some q1final ∈ F1. Using Lemma 6.5.4,

this run can be reordered into a run visiting infinitely many configurations
〈q2final, q

1
final, x

′′
i , y

′′
i 〉, showing the RecReachUcs instance is positive.

Reciprocally, from an infinite run of the UCS that visits infinitely many
configurations of the form 〈q2final, q

1
final, x

′′
i , y

′′
i 〉, one extracts two solutions

σ1, σ2 that show that the 2PCEPω-reg instance is positive.
�

Lemma 6.5.7 ReachUcs reduces to 2PCEPreg, and RecReachUcs to 2PCEPω-reg.

Proof. Consider an ReachUcs instance with some UCS
S = (Q1, Q2, M, {r, l},∆1,∆2), some initial states q1init, q

2
init, and some sets

of final states F1, F2.

With this instance, we associate a 2PCEPreg instance where Σ1
def
= ∆2

and Σ2
def
= ∆1 are the set of rules. Automata A1 and A2 for R1 and R2

are obtained from the control graph of the receiver (resp., the sender) in
the obvious way. (Note that we extract FSA’s from an ReachUcs instance,
and Büchi automata from an RecReachUcs instance.) The morphisms are
defined in the obvious way:

f1(δ)
def
= x and g1(δ)

def
= y for δ = q

r?x l?y
−−−→r in ∆2,

f2(δ)
def
= x and g2(δ)

def
= y for δ = q

r!x l!y
−−−→r in ∆1.

�

from 2PCEPreg to PEP
reg
dir

We consider a 2PCEP instance f1, g1, f2, g2 where we assume that the mor-
phisms are short, i.e., fi and gi can be seen as having type (Σi ∪ {ǫ}) →
(Γ∪{ǫ}). For 2PCEP

reg and 2PCEPω-reg, and thanks to the possibility offered



CHAPTER 6. PEP VARIANTS 82

by the regular constraints, this assumption is no loss of generality, as can
be easily proved using the techniques from section 4.1.1.

Let Σ
def
= (Σ1 ∪ {ǫ})× (Σ2 ∪ {ǫ}) and define X ⊆ Σ by

(i, j) ∈ X if and only if f1(i) = f2(j).

Then (i1, j1).(i2, j2) . . . (in, jn) ∈ X∗ implies that f1(i1.i2 . . . in) = f2(j1.j2 . . . jn).
Reciprocally, if f1(σ1) = f2(σ2), then σ1 and σ2 can be decomposed under
the form σ1 = i1.i2 . . . in and σ2 = j1.j2 . . . jn such that (ik, jk) ∈ X for
k = 1, . . . , n. Observe that in this decomposition, n ≥ |σi| is possible since
ik = ǫ or jk = ǫ (or both) is allowed.

Now define projection morphisms h1 : Σ
∗ → Σ∗1 and h2 : Σ

∗ → Σ∗2 in the

obvious way, and let u, v : Σ∗ → Γ∗ be two morphisms given by u
def
= g1 ◦ h1

and v
def
= g2 ◦ h2. Then u(i1,j1).(i2,j2)...(in,jn) ⊑ v(i1,j1).(i2,j2)...(in,jn) if and only

if g1(i1.i2 . . . in) ⊑ g2(j1.j2 . . . jn).
Finally, the 2PCEPreg instance with regular constraints R1, R2 translates

into an equivalent PEPreg instance, with morphisms u and v as above, and
with constraint

R
def
= X∗ ∩ h1

−1(R1) ∩ h2
−1(R2),

which is regular. Similarly, the 2PCEPω-reg instance with ω-regular con-
straints R1, R2 translates into an equivalent PEPω-reg instance, with same
morphisms u and v, and with constraint

R
def
= Xω ∩ h1

−1(R1) ∩ h2
−1(R2),

which is ω-regular.



Chapter 7

Direct PEP
reg algorithm

In this chapter, we give a direct proof of decidability of PEPreg. For sake
of simplicity, no complexity result is shown: this result does not rely on the
complex miniaturisation results.

However, the main interest of presenting this proof is to introduce block-
ers languages. This turned out to be an useful notion with many good
properties, which are the subject of the next chapter.

Theorem 7.0.8 PEPreg is decidable.

7.1 Blocking and stable families

In the rest of this section, we assume a given PEPreg instance made of
u, v : Σ∗ → Γ∗ and R ⊆ Σ∗. Let L(R) be the residual languages of R. We
consider some L(R)-indexed families of languages in Γ∗:

Definition 7.1.1 (Blocking family) An L(R)-indexed family (AL, BL)L∈L(R)
of languages in Γ∗ is a blocking family if for all L ∈ L(R):

σ ∈ L and α ∈ AL imply αuσ 6⊑ vσ, (B1)

σ ∈ L and β ∈ BL imply uσ 6⊑ βvσ. (B2)

The terminology “blocking” comes from the fact that the α prefix “blocks”
solutions in L to α.uσ ⊑ vσ. For BL, the situation is dual: adding β ∈ BL

is not enough to allow solutions in L to uσ ⊑ β.vσ .
There is a largest blocking family, called the blocker languages, or blocker

family, (XL, YL)L∈L(R), given by:

XL
def
= {α ∈ Γ∗ | ∀σ ∈ L,αuσ 6⊑ vσ}, (B3)

YL
def
= {β ∈ Γ∗ | ∀σ ∈ L, uσ 6⊑ βvσ}. (B4)

83



CHAPTER 7. DIRECT PEPREG ALGORITHM 84

A blocking family provides information about the absence of solutions
to several variants of our PEPreg instance. For example, the u, v,R instance
itself is positive iff ǫ 6∈ XR iff ǫ 6∈ YR.

For proving that a given family is blocking, we use a criterion called
“stability”.

Before defining stability, we need some new subword combinatorics no-
tions.

When x 6⊑ y, we decompose x as a concatenation x = x1x2 such that x1
is the longest prefix of x with x1 ⊑ y. We call x1 the “matched prefix” and
x2 the “unmatched suffix”. We use x⊖ y to denote the unmatched suffix.
For example aabcabc⊖ baca = bcabc. Note that x⊖ y is only defined when
x 6⊑ y (hence x⊖ y 6= ǫ).

When x ⊑ y, we decompose y as a concatenation y = y1y2 such that y1
is the shortest prefix of y with x ⊑ y1. We call y1 the “used prefix” and
y2 the “available suffix”. We use y ⊘ x to denote the available suffix. For
example, abcabc⊘ ba = bc. Note that y ⊘ x is only defined when x ⊑ y.

Definition 7.1.2 (Stable family) An L(R)-indexed family (AL, BL)L∈L(R)
of languages is stable iff, for all L ∈ L(R):

1. AL ⊆ Γ∗ is upward-closed and BL ⊆ Γ∗ is downward-closed,

2. if ǫ ∈ L, then ǫ 6∈ AL ∪BL,

3. for all i ∈ Σ and α ∈ AL:

(a) if α.ui ⊑ vi then vi ⊘ α.ui ∈ BL−1i,

(b) if α.ui 6⊑ vi then (α.ui)⊖ vi ∈ AL−1i,

4. for all i ∈ Σ and β ∈ BL:

(a) if ui ⊑ β.vi then (β.vi)⊘ ui ∈ BL−1i,

(b) if ui 6⊑ β.vi then ui ⊖ β.vi ∈ AL−1i.

Recall that AL and BL, being respectively upward- and downward-closed,
must be regular languages. Observe also that ǫ ∈ BL iff BL 6= ∅, while
ǫ ∈ AL iff AL = Γ∗.

First recall this simple fact frequently used when studying PEPreg.

Fact 7.1.3 (proof in appendix A.1) 1. If xy ⊑ z, then there exists a
factorization z = z1z2 of z such that x ⊑ z1 and y ⊑ z2.
2. If x ⊑ yz, then there exists a factorization x = x1x2 of x such that x1 ⊑ y
and x2 ⊑ z.

However, this fact only works one way. For deeper analyses, we shall need
the following more powerful tool.



CHAPTER 7. DIRECT PEPREG ALGORITHM 85

Lemma 7.1.4 (Decomposition Lemma, proof in appendix A.4)

u.w ⊑ v.t if and only if

{
u ⊑ v and w ⊑ v ⊘ u.t

or u 6⊑ v and u⊖ v.w ⊑ t.

Proposition 7.1.5 (Soundness) A stable family is a blocking family.

Proof. Assume that (AL, BL)L∈L(R) is stable. We prove that it satisfies
(B1) and (B2) by induction on the length of σ.

Base case: σ = ǫ. Hence uσ = vσ = ǫ. Assuming αuσ ⊑ vσ requires α = ǫ
but if σ ∈ L, stability implies that ǫ 6∈ AL. σ ∈ L also implies that BL

is empty so that uσ 6⊑ βvσ is vacuously true.

Inductive case: assume that σ is some i.ρ with i ∈ Σ and ρ ∈ Σ∗. Recall
that σ ∈ L iff ρ ∈ L−1i.

Let α ∈ AL. If αui ⊑ vi, then vi ⊘ αui ∈ BL−1i by stability. Hence
uρ 6⊑ (vi ⊘ αui)vρ by ind. hyp. Then αuσ = αuiuρ 6⊑ vivρ = vσ by
Lemma 7.1.4. If, on the other hand, αui 6⊑ vi, then (αui)⊖ vi ∈ AL−1i

by stability, hence (αui)⊖ viuρ 6⊑ vρ by ind. hyp., entailing αuσ 6⊑ vσ
by Lemma 7.1.4.

For β ∈ BL the reasoning is similar. If ui ⊑ βvi, then (βvi)⊘ ui ∈
BL−1i by stability, hence uρ 6⊑ (βvi)⊘ uivρ by ind. hyp., hence uσ =
uiuρ 6⊑ βvivρ = βvσ by Lemma 7.1.4. If, on the other hand, ui 6⊑ βvi,
then ui ⊖ βvi ∈ AL−1i by stability, hence ui ⊖ βviuρ 6⊑ vρ by ind. hyp.,
hence uσ 6⊑ βvσ.

�

The criterion is also sufficient:

Proposition 7.1.6 (Completeness) The blocker family (XL, YL)L∈L(R) is
stable.

Proof. Clearly, as defined by (B3) and (B4) and for any L ∈ L(R), XL is
upward-closed and YL is downward-closed. Similarly, ǫ 6∈ XL and ǫ 6∈ YL

when ǫ ∈ L.
It remains to check conditions 3 and 4 for stability. We consider four

cases:

3a Assume that αui ⊑ vi for some i in Σ and some α in some XL. If, by
way of contradiction, we assume that vi ⊘ α.ui 6∈ YL−1i then, by (B4),
there is some ρ ∈ L−1i such that uρ ⊑ vi ⊘ α.uivρ. Thus αuiuρ ⊑ vivρ
by Lemma 7.1.4, i.e., αuσ ⊑ vσ writing σ for i.ρ. But, since σ ∈ L,
this contradicts α ∈ XL.



CHAPTER 7. DIRECT PEPREG ALGORITHM 86

4a A similar reasoning applies if we assume that ui ⊑ βvi for some i in
Σ and some β in some YL while (βvi)⊘ ui 6∈ YL−1i: we derive from
(B4) that uρ ⊑ (βvi)⊘ uivρ for some ρ ∈ L−1i. Hence uiuρ ⊑ βvivρ
by Lemma 7.1.4, a contradiction since i.ρ ∈ L.

3b If we assume that αui 6⊑ vi for α ∈ XL and (αui)⊖ vi 6∈ XL−1i then, by
(B3), there is some ρ ∈ L−1i s.t. (αui)⊖ viuρ ⊑ vρ. Then αuiuρ ⊑ vivρ
by Lemma 7.1.4, a contradiction since i.ρ ∈ L.

4b Similarly, assuming that ui 6⊑ βvi while ui ⊖ βvi 6∈ AL−1i, we derive
(ui ⊖ βvi)uρ ⊑ vivρ, i.e., uiuρ ⊑ βvivρ, another contradiction.

�

7.2 Computability

Lemma 7.2.1 Let v ∈ Γ∗ be a word, and A a NFA recognizing some regular

language L ⊆ Γ∗. Then L⊖ v
def
= {u⊖ v | u ∈ L} is regular and a NFA for

it can be built from A.

Proof.[Sketch] For some u of the form u1u2, u⊖ v = u2 (= u−1u1) if u1 ⊑ v
and either u2 = ǫ or u2 is some au3 and u1a 6⊑ v. Hence L⊖ v contains all
L−1u1 for u1 ⊑ v such that v ⊘ u1 = ǫ, and all (L ∩ u1aΓ

∗)−1u1 for u1 ⊑ v
and a such that u1a 6⊑ v. This is a finite union of languages derived from L
by regularity-preserving operations like quotient or intersection. �

Lemma 7.2.2 Let v ∈ Γ∗ be a word, and A a NFA recognizing some regular

language L ⊆ Γ∗. Then L⊘ v
def
= {u⊘ v | u ∈ L and v ⊑ u} is regular and

a NFA for it can be built from A.

Proof.[Sketch] Assume that v is some a1.a2 . . . an and u = u1u2. Then
u⊘ v = u2 (= u−1u1) iff u1 ∈ V for V defined by the following regular
expression:

(Γr {a1})
∗a1(Γr {a1, a2})

∗a2(Γr {a2, a3})
∗ . . . an−1(Γr {an−1, an})

∗an.

Hence L⊘ v = L−1V can be obtained by right-quotienting L with a regular
language. �

Proposition 7.2.3 (Stability is decidable) It is decidable whether an L(R)-
indexed family (AL, BL)L∈L(R) of regular languages is a stable family.



CHAPTER 7. DIRECT PEPREG ALGORITHM 87

Proof. We can assume that the AL and BL are given by DFA’s. Conditions
1 and 2 of stability are easy to check.

For a given i ∈ Σ and L ∈ L(R), checking condition 3a needs only
consider α’s that are shorter than vi, which is easily done.

Checking condition 3b is trickier. One way to do it is to consider the
set of all α’s such that αui 6⊑ vi. This is a regular set that can be obtained
effectively. Then the set of all corresponding (αui)⊖ vi is also regular and
effective (Lemma 7.2.1) so that we can check that it is included in AL−1i.

For condition 4a, and given some L ∈ L(R) and some i ∈ Σ, the set of
all β’s such that ui ⊑ βvi is regular and effective. One can then com-
pute the corresponding set of all (βvi)⊘ ui, again regular and effective
(Lemma 7.2.2), and check inclusion in BL−1i. The complement set of all
β’s such that ui 6⊑ βvi is also regular and effective, and one easily derives
the corresponding ui ⊖ βvi’s (a finite set of suffixes of ui), hence checking
condition 4b. �

Proof.[of Theorem 7.0.8] Since PEPreg is r.e., it is sufficient to prove that
it is also co-r.e. For this we observe that, by Propositions 7.1.5 and 7.1.6,
a PEPreg instance is negative if, and only if, there exists a stable family
(AL, BL)L∈L(R) satisfying ǫ ∈ AR. One can effectively enumerate all fami-
lies (AL, BL)L∈L(R) of regular languages and check whether they are stable
(Proposition 7.2.3) and have ǫ ∈ AR. If the PEPreg instance is negative,
this procedure will eventually terminate, e.g., when it considers the blocker
family. �

We remark that, when the above procedure terminates in the case of a neg-
ative instance, it is not guaranteed that the stable family it has found is
indeed the blocker family. In fact, there is no way to tell that a stable
family is the blocker family as will be seen in section 8.3.



Chapter 8

Languages of PEP blockers

From the direct algorithm to PEPreg, we will principally remember the notion
of blockers and coblockers as they open a whole range of possible problems.
We will now explore some of the immediate ones on blocker/coblockers set
or their complements: comparisons with regular languages and finiteness.

In this chapter, we will always consider a generic PEP instance given by
some u, v : Σ∗ → Γ∗.

Blockers and coblockers. Recall the definition of blocker and coblocker
sets as defined in the previous chapter.

Write SolL for the set {σ ∈ L | uσ ⊑ vσ} of solutions in some constraint
language L ⊆ Σ∗ and define:

XL
def
={α ∈ Γ∗ | ∀σ ∈ L,α.uσ 6⊑ vσ}, (left L-blockers)

X ′
L
def
={α ∈ Γ∗ | ∀σ ∈ L, uσ.α 6⊑ vσ}, (right L-blockers)

YL
def
={β ∈ Γ∗ | ∀σ ∈ L, uσ 6⊑ β.vσ}, (left L-coblockers)

Y ′L
def
={β ∈ Γ∗ | ∀σ ∈ L, uσ 6⊑ vσ.β}. (right L-coblockers)

Right blockers and coblockers are defined for sake of completeness. We
will not elaborate on those, it is equivalent to consider left blockers on mirror
problems.

A key observation is that, in order to decide whether SolL is empty or
not, it is simpler to reason about blocker and coblocker sets. Rather than
considering what are the solutions, the blocker and coblocker sets provide
information on what latitude is allowed/required by the solutions, in par-
ticular by the most permissive ones. The decision algorithm presented in
chapter 7 elaborate on the particular case where we asks for the presence of
ǫ in blockers languages.

SolL = ∅ iff ǫ ∈ XL iff ǫ ∈ X ′
L iff ǫ ∈ YL iff ǫ ∈ Y ′L. (8.1)

88



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 89

Working with blocker sets rather than solutions sets has two main advan-
tages:

• First, blocker and coblocker sets behave smoothly as a function of the
constraint set L. This allows compositional reasoning w.r.t. L. For
instance, assume L is the product (concatenation) of two languages:
L = L1.L2. Clearly SolL contains SolL1 .SolL2 . However the contain-
ment is strict in general, and it is not possible to express SolL as a
function of SolL1 and SolL2 . By contrast, ( see App. 8.6 )

XL1.L2 = Γ∗ iff
(
X ′

L1
∪ YL2

)
∩
(
Y ′L1 ∪XL2

)
= Γ∗. (8.2)

• Second, blocker and coblocker sets are always regular languages, un-
like the SolL sets (illustrated in the next chapter). This makes them
easier to handle algorithmically, representing them via FSA’s or regu-
lar expressions. In particular, compositional reasoning as exemplified
in Equation (8.2) can easily be turned into simple and effective algo-
rithms.

We will consider the computability of the blocker and coblocker sets XR

and YR for R a regular constraint language. We prove that blocker sets are
not computable1 while, quite unexpectedly, coblocker sets are computable.
Concerning blocker sets, and since they cannot be computed, we consider de-
cision problems that are weaker than computability, e.g., whether a blocker
set is empty, infinite, whether is it contained in (“safety”), or contains
(“cosafety”), a given set. A summary of the results of this chapter will
be found in Fig. 8.1.

Outline of the chapter. Section 8.1 formally introduces the problems
we address. Then Section 8.2 shows how to compute coblocker sets, while
Section 8.3 considers what can be computed on blocker sets. The undecid-
ability results in that section are proved by a reduction from lossy counter
machines described in Section 8.4.

8.1 Blockers and coblockers

Recall that, for a regular constraint set R ⊆ Σ∗, XR is upward-closed and
YR is downward-closed. Hence both are regular.

For blocker and coblocker sets, we consider questions that range in gen-
erality from just checking one α for membership, to computing the whole
set.

1Here, and in the rest of the chapter, we say informally that regular sets like XL are
“computable’” when we really mean that an index for them can be computed uniformly
from an index for L.



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 90

Definition 8.1.1 (Decision problems for blocker and coblocker sets)
We consider questions where one is given two morphisms u, v : Σ∗ → Γ∗ and
a regular language R ⊆ Σ∗ as inputs, with possibly some additional input in
the form of a word α ∈ Γ∗, or a regular “safe” set S ⊆ Γ∗.
• Blockers Membership: does α ∈ XR?
• Blockers Emptiness: does XR = ∅?
• Blockers Universality: does XR = Γ∗?
• Blockers Safety: does XR ⊆ S?
• Blockers Cosafety: does S ⊆ XR?
• Blockers Finiteness: is XR finite?
• Blockers Cofiniteness: is XR cofinite?, i.e., is Γ∗ rXR finite?

The same decision problems CoBlockers Membership, CoBlockers Safety,
. . . , are defined for coblocker sets.

Finally, Blockers Computable and CoBlockers Computable ask one to com-
pute a representation of XR (resp., YR) under the form of a regular expres-
sion or a FSA. (These are not decision problems).

Remark 8.1.2 The restriction to regular safe sets S is a natural assump-
tion that is both expressive and tractable. However, in our setting where
blocker and coblocker sets are upward-closed (resp., downward-closed), the
expressive power is even larger. Indeed, for any L, XR ⊆ L iff XR ⊆ S
where S is the upward-closure of L. Thus, and since the upward-closure
of L is always regular, our positive results automatically apply to any class
of safe sets for which the upward and downward closures can be effectively
computed (e.g., context-free languages [Lee78]).

Remark 8.1.3 (Relations among problems) Safety is a general prob-
lem that subsumes Emptiness and Membership. Cosafety subsumes Universa-
lity and (non-)Membership. Blockers Universality reduces to Blockers Mem-
bership since XR = Γ∗ iff ǫ ∈ XR. CoBlockers Universality is trivial since
YR = Γ∗ iff R = ∅. Finiteness and Cofiniteness are natural counting ques-
tions. Finiteness coincides with Emptiness for blocker sets (assuming Γ is
not empty) and more generally for all upward-closed sets (Cofiniteness and
Universality coincide for downward-closed sets in general, and coblocker sets
in particular).

There are no other obvious reductions between the above decision prob-
lems (e.g., Finiteness and Cofiniteness are in general unrelated).

Regarding computability of the blocker and coblocker sets, observe that
since these sets are regular, the decidability of Safety and Cosafety would
entail their computability (see also Section 8.2). Conversely, all the decision
problems listed above can easily be answered from an FSA description of the
sets. Hence our decision problems can be seen as different special cases of
the general Blockers Computable and CoBlockers Computable problems.



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 91

Blockers Coblockers

Membership Fωω -complete (Coro. 8.2.2) Fωω -complete (Coro. 8.2.6)

Safety undecidable (Theo. 8.3.3) Fωω -complete (Coro. 8.2.6)

Cosafety Fωω -complete (Coro. 8.2.2) Fωω -complete (Coro. 8.2.6)

Emptiness undecidable (Theo. 8.3.3) Fωω -complete (Coro. 8.2.6)

Universality Fωω -complete (Coro. 8.2.2) trivial

Finiteness undecidable (Theo. 8.3.3) Fωω -complete (Coro. 8.2.6)

Cofiniteness undecidable (Theo. 8.3.2) trivial

Computable no yes (Coro. 8.2.6)

Figure 8.1: Computability for blocker and coblocker sets. See Remark 8.1.4
about complexity.

Remark 8.1.4 (On lower bound of blocker and coblocker problems)
All the non-trivial problems listed in Def. 8.1.1 are more general than PEPreg.
This was made precise in Remark 8.1.3 except for CoBlockers Finiteness, but
it is easy to provide a reduction from CoBlockers Emptiness to CoBlockers Fi-
niteness: add one extra symbol to Γ, ensuring that YR is finite iff it is empty.
Hence all the above problems are at least as hard as PEPreg, i.e. Fωω -hard.

8.2 Upper bound results

8.2.1 On blockers sets

We start with the computability results. They can be obtained via reduc-
tions to PEPreg:

Lemma 8.2.1 Blockers Cosafety many-one reduce to (the complement of)
PEPreg.

Proof. with u, v, R and S we associate a PEPreg instance u′, v′ : Σ′∗ → Γ∗

and a regular constraint R′ ⊆ Σ′∗. Assume w.l.o.g. that Σ and Γ are disjoint

alphabets and let Σ′
def
= Σ ∪ Γ. u′ and v′ are extensions of u and v with

u′(γ) = γ and v′(γ) = ǫ for all γ ∈ Γ. Finally let R′
def
= S.R, this is indeed a

regular subset of Σ′∗.
Now, u′, v′, R′ is a positive PEPreg instance iff u′x ⊑ v′x for some x ∈ R′,

iff u′αy ⊑ v′αy for some α ∈ S and some y ∈ R, iff u′α.u
′
y ⊑ v′α.v

′
y, iff α.uy ⊑ vy

for some α ∈ S and y, i.e., iff some α ∈ S is not in XR, i.e., S 6⊆ XR. �

Since PEPreg is decidable, and thanks to Remark 8.1.4, Lemma 8.2.1
entails:



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 92

Corollary 8.2.2 Blockers Cosafety, Blockers Universality and Blockers Mem-
bership are Fωω -complete.

8.2.2 On coblockers sets

Lemma 8.2.3 (Elimination Lemma, proof in App. A.1) If xw ⊑ y
and x′ ⊑ wy′ then xx′ ⊑ yy′.

Lemma 8.2.4 (proof in App. A.3) x 6⊑ y and xx′ ⊑ yy′ imply (x⊖ y)x′ ⊑
y′.

let be s = maxi∈Σ(|ui|, |vi|) and n be the size of the syntactic congruence
∼R of R, r = s.n.

Lemma 8.2.5 The size of the biggest element of the basis of Γ∗ r Y ′R is
bounded by Fωω(f(|Γ|, r)), for some primitive recursive function f .

We choose to look at Y ′R instead of YR only to allow us to use our results
on ⊖ . The result is naturally also valid for YR. Let write B(|Γ|, r) for the
bound Fωω (f(|Γ|, r)).
Proof. Let β be an element of the basis of Γ∗ r Y ′R. then there is some
shortest σ ∈ R such that uσ ⊑ vσ.β. β being an element of the basis it is
the smallest such word, so β = uσ ⊖ vσ.

Let σi be the prefix of σ such that uσi
6⊑ vσi

and let wi = uσi
⊖ vσi

.
Notice that (wi)i is controlled by Succs.

To exhibit a contradiction, suppose that |β| > B(|Γ|, r). Then, (wi)i is a
long enough controlled sequence of words such that it is n-bad. Hence there
are i < j such that σi ∼R σj and wi ⊑ wj .

Let x be the prefix of σ such that σ = σj.x. Knowing that uσj
6⊑ vσj

and uσj
.ux ⊑ vσj

.vx.β, we can apply Lemma 8.2.4, which gives us that
uσj

⊖ vσj
.ux ⊑ vy.β. Then wi.ux ⊑ vy.β and by Lemma 8.2.3, we obtain

that uσi
.ux ⊑ vσi

.vx.β and σi.x ∈ R, which contradict the assumption of
minimality of σ. �

Corollary 8.2.6 1. YR and Y ′R are computable in time Fωω (g(|Γ|, r)) for
some primitive recursive function g.
2. CoBlockers Membership, CoBlockers Emptiness, CoBlockers Safety, CoBlo-
ckers Cosafety, CoBlockers Finiteness are Fωω -complete.

Proof. 1. Lemma 8.2.5 tells us that in order to compute a finite basis of
YR, it is sufficient to do this on words smaller than B(|Γ|, r). A simple

brute force algorithm can do this in time O(2|Γ|
B(|Γ|,r)

), hence there is some
g primitive recursive such that YR is computable in time Fωω (g(|Γ|, r)).
2. Knowing a finite representation of YR as a FSA yields directly an algo-
rithm to those problems in time at worst exponential in the sizes of the



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 93

automatons of YR and S. The completeness comes from all those problems
being more general than PEPreg (See Remark 8.1.4). �

8.3 Blocker sets are not computable

It is not possible to effectively compute the blocker sets XR from given
u, v,R, even thoughXR is known to be regular. This is shown with Lemma 8.3.1,
our main negative result (proved in Section 8.4):

Lemma 8.3.1 Blockers Cofiniteness is Σ01-hard and Blockers Emptiness is
Π01-hard.

With Lemma 8.3.1, we are in a position to prove all the undecidability results
in Fig. 8.1:

Theorem 8.3.2 Blockers Cofiniteness is Σ01-complete.

Proof.[Sketch] Membership in Σ01 can be seen by writing the cofiniteness of
XR under the form ∃n ∈ N,Γ≥n ⊆ XR and relying on the decidability of
Blockers Cosafety (Coro. 8.2.2). � �

Theorem 8.3.3 Blockers Safety, Blockers Emptiness and Blockers Finiteness

are Π01-complete.

Proof. The Π01-hardness of Blockers Emptiness (Lemma 8.3.1) also applies
to Blockers Finiteness (since the two problems coincide) and Blockers Safety

(a more general problem), see Remark 8.1.3.
For upper bounds, we observe that Blockers Safety (hence also Blockers -

Emptiness) is in Π01 since it can be written under the form ∀α ∈ Γ∗, (α ∈
S ∨ α 6∈ XR) (recall that α 6∈ XR is decidable). � �

8.4 Lossy counter machines

Lossy counter machines or, for short, LCM ’s, were introduced by R. Mayr [May03b].
They are a variant of Minsky counter machines (with zero-test, increments
and decrements) where counters are lossy, i.e., they may decrease non-
deterministically. We only give a streamlined presentation of LCM’s here
and refer to [May03b, Sch10] for more details.

Let M = (Q,C,∆, qinit) be a Minsky counter machine with finite set of
control states Q ∋ qinit, finite set of counters C, and finite set of tran-
sitions rules ∆. Four counters are sufficient for our purposes so we fix
C = {c1, c2, c3, c4}. A configuration of M is some τ = (q, n1, n2, n3, n4) ∈



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 94

Conf (M)
def
= Q × N4, with size, denoted |τ |, being n1 + n2 + n3 + n4. We

(partially) order Conf (M) with

(q, n1, n2, n3, n4) ≤ (q′, n′1, n
′
2, n

′
3, n

′
4)

def
⇔ q = q′ ∧ n1 ≤ n′1 ∧ · · · ∧ n4 ≤ n′4.

An initial state qinit ∈ Q is fixed, and the initial configuration is τinit
def
=

(qinit, 0, 0, 0, 0). Observe that the only way to have τ ≤ τinit is with τ = τinit.
A transition rule δ is a directed edge between states of M , labeled by an

operation op ∈ OP
def
= C × {++, --, =0?}, and denoted (q, op, q′). The rules

in ∆ give rise to two different transition relations between configurations.

First, steps τ
δ
−→τ ′ are defined in the expected way. Formally, with δ =

(q1, op, q2), there is a step (q, n1, n2, n3, n4)
δ
−→(q′, n′1, n

′
2, n

′
3, n

′
4) if, and only

if, the following three conditions are satisfied:
1. q1 = q and q2 = q′;
2. op is some ck++ or ck-- or ck=0?, and n′i = ni for all i 6= k;
3. if op is ck++ then n′k = nk + 1; if op is ck-- then n′k = nk − 1; if op is
ck=0? then 0 = nk = n′k.

These so-called perfect steps describe the operational semantics of M
when its counters are not assumed to be lossy. Then a second operational

semantics, with transitions denoted τ
δ
−→slτ

′, is derived2 in the following way:

τ
δ
−→slτ

′ def
⇔ τ

δ
−→τ ′′ for some τ ′′ ≥ τ ′. (8.3)

These lossy steps describe the behavior of M when its counters are assumed
to be lossy. In the usual way, the δ superscript on transitions is omitted when
irrelevant. Lossy runs, denoted τ0

∗
−→slτn, are sequences of chained lossy steps

τ0−→slτ1−→sl · · · τn. We write Reach lossy(M) for the set of configurations that
can be reached via lossy runs of M , starting from τinit.

We rely on known undecidability results on LCM’s and use the following
two problems:

LCM Infinite: the question whether Reach lossy(M) is infinite, for a given
LCM M ;

LCM Unbounded Counter: the question whether Reach lossy(M) contains con-
figurations with arbitrarily large values for the first counter c1.

These two problems are a variant of one another, and they are easily seen
to be inter-reducible. The following theorem is from [May03b, Sch10]:

Theorem 8.4.1 LCM Infinite and LCM Unbounded Counter are Π01-complete.

2Lossy steps could also be defined directly without deriving them from perfect steps,
but the indirect definition is very convenient as it permits reasoning simultaneously on
both kinds of steps for the same counter machine.



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 95

8.4.1 From lossy counters to Post-embedding

With a LCMM = (Q,C,∆, qinit) we associate a PEP instance u, v : Σ
∗ → Γ∗

that will be used in three different reductions (with different constraint lan-

guages R1, R2, R3 ⊆ Σ∗). Here Γ
def
= Q ∪ C is used to encode the configu-

rations of M : a configuration τ = (q, n1, n2, n3, n4) is encoded by the word
cn11 cn22 cn33 cn44 q, denoted ⌈τ⌉. Observe that ⌈τ⌉ ⊑ ⌈τ ′⌉ iff τ ≤ τ ′.

We further let Σ
def
= Γ ∪ ∆ ∪ OP ∪ Q ∪ C where Q = {q | q ∈ Q}

and C = {c1, c2, c3, c4} are copies of Q and C, with new symbols obtained
by overlining the original symbols from Q ∪ C. We define two morphisms
u, v : Σ∗ → Γ∗ with

u((q, op, q′))
def
= q, v((q, op, q′))

def
= q′, u(ci)

def
= ci, v(ci)

def
= ci,

u(ci++)
def
= ǫ, v(ci++)

def
= ci, u(ci--)

def
= ci, v(ci--)

def
= ǫ.

How u and v evaluate on the rest of Σ will be defined later when it becomes
relevant.

With every transition rule δ = (q, op, q′) in ∆, we associate a language
Rδ ⊆ Σ∗ given via the following regular expressions:

Rδ
def
=

{
c1
∗ · · · ck−1

∗ · op · ck
∗ · · · c4

∗ · δ if op is ck++ or ck--,
c1
∗ · · · ck−1

∗ · ck+1
∗ · · · c4

∗ · δ if op is ck=0?.

These definitions ensure that, when x ∈ Rδ, ux and vx are the encodings
of related configurations. We let the reader check that the following more
precise statement holds:

Lemma 8.4.2
1. If x ∈ Rδ, then ux = ⌈τ⌉ and vx = ⌈τ

′⌉ for some configurations τ, τ ′ such

that τ
δ
−→τ ′.

2. Reciprocally, if τ
δ
−→τ ′, then ⌈τ⌉ = ux and ⌈τ ′⌉ = vx for some (unique)

x ∈ Rδ.

We further define R∆
def
=

⋃
δ∈∆Rδ and RM

def
= (R∆)

∗: these languages are
regular.

Lemma 8.4.3 Let α ∈ Γ∗. If ux.α ⊑ ⌈τinit⌉.vx for some x ∈ RM , then
α ⊑ ⌈τ⌉ for some τ ∈ Reach lossy(M).

Proof. We assume α 6= ǫ and x 6= ǫ, otherwise α ⊑ ⌈τinit⌉ trivially. Thus
x ∈ RM must be of the form x = x1 . . . xn with n > 0 and xi ∈ R∆ for all
i = 1, . . . , n. By Lemma 8.4.2, ux is some ⌈τ0⌉.⌈τ1⌉ . . . ⌈τn−1⌉ and vx is some
⌈τ ′1⌉.⌈τ

′
2⌉ . . . ⌈τ

′
n⌉ such that, for all i = 1, . . . , n, τi−1−→τ ′i is a perfect step of

M .



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 96

We now use the assumption that ux.α ⊑ ⌈τinit⌉.vx. Since α 6= ǫ, ux
embeds into a strict prefix, denoted w, of ⌈τinit⌉.vx. Note that ux contains
n > 0 symbols from Q and ends with one of them, while w has at most n (it
is shorter than ⌈τinit⌉.vx that has n+1 symbols from Q and ends with one of
them). Hence w necessarily has n symbols from Q and ux.α ⊑ ⌈τinit⌉.vx can
be decomposed as ⌈τi⌉ ⊑ ⌈τ ′i⌉ (i.e., τi ≤ τ ′i) for all i = 1, . . . , n− 1, with also
⌈τ0⌉ ⊑ ⌈τinit⌉ (hence τ0 = τinit) and α ⊑ ⌈τ ′n⌉. Combining with τi−1−→τ ′i we
deduce τi−1−→slτi for i = 1, . . . , n−1. Finally τinit = τ0−→slτ1 · · · −→slτn−1−→τ ′n
is a lossy run of M , so that τ ′n ∈ Reach lossy(M). � �

There is a converse to Lemma 8.4.3:

Lemma 8.4.4 If τ ∈ Reach lossy(M), there exists some x ∈ RM such that
ux.⌈τ⌉ ⊑ ⌈τinit⌉.vx.

Proof. Since τ ∈ Reach lossy(M) there exists a lossy run τinit = τ0−→slτ1−→sl · · · τn =
τ . We show, by induction on i = 0, 1, . . . , n, that uxi

.⌈τi⌉ ⊑ ⌈τinit⌉.vxi
for

some xi ∈ RM .
The base case, i = 0, is dealt with x0 = ǫ since τ0 = τinit.
For the case i > 0, we know by ind. hyp. that there is some xi−1 ∈ RM

with

uxi−1 .⌈τi−1⌉ ⊑ ⌈τinit⌉.vxi−1 . (8.4)

The lossy step τi−1−→slτi implies the existence of a perfect step τi−1−→τ ′ with
τ ′ ≥ τi (Equation (8.3)). Thus ⌈τi−1⌉ = uy and ⌈τ

′⌉ = vy for some y ∈ R∆

(Lemma 8.4.2).
From τi ≤ τ ′, we deduce

uy.⌈τi⌉ ⊑ ⌈τi−1⌉.vy. (8.5)

We now put together Equations (8.4) and (8.5). The Elimination Lemma
yields

uxi−1 .uy.⌈τi⌉ ⊑ ⌈τinit⌉.vxi−1 .vy, (8.6)

so that setting xi
def
= xi−1.y concludes our proof. We observe that xi ∈ RM

since xi−1 ∈ RM and y ∈ R∆. � �

8.4.2 Reducing LCM Infinite and LCM Unbounded Counter to block-

ers problems

For the next step in the reduction, we extend u and v on Q ∪C (= Γ) with

u(γ)
def
= π1(γ) =

{
c1 if γ = c1,

ǫ if γ ∈ Γr {c1},
v(γ)

def
= γ for all γ ∈ Γ.



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 97

When α ∈ Γ∗, we shall write π1(α) rather than uα to emphasize the fact
that u only retains the c1 symbols of α and erases the rest. Below, we rely
on a few obvious properties of this erasing morphism, such as π1(α) ⊑ α, or
π1(αβ) = π1(βα), and in particular the following:

Fact 8.4.5 For all β ∈ Γ∗ and x, y ∈ Σ∗, x.c1.π1(β) ⊑ y.β implies x.c1 ⊑ y.

Finally, we let R1
def
= qinit.RM and R2

def
= R1.Γ

∗. This provides two
different reductions, with properties captured by Lemmas 8.4.6 and 8.4.8.

Lemma 8.4.6 Let α ∈ Γ∗. The following are equivalent:
(1) α 6∈ X ′

R1
,

(2) there exists x ∈ R1 such that ux.α ⊑ vx,
(3) there exists τ ∈ Reach lossy(M) such that α ⊑ ⌈τ⌉.

Proof.[Sketch] (1) ⇔ (2) by definition of X ′
R1
. Then, given the definitions

of R1, u and v, Lemma 8.4.3 shows “(2) ⇒ (3)” (note that u(qinit) = ǫ and
v(qinit) = qinit = ⌈τinit⌉). Finally, Lemma 8.4.4 shows “(3) ⇒ (2)”. � �

In particular, X ′
R1

is cofinite iff M does not satisfy LCM Infinite.

Corollary 8.4.7 Blockers Cofiniteness is Σ01-hard.

Lemma 8.4.8 Let α ∈ Γ∗. The following are equivalent:
(1) α 6∈ X ′

R2
,

(2) there exists y ∈ R2 such that uy.α ⊑ vy,
(3) there exists τ ∈ Reach lossy(M) such that π1(α) ⊑ π1(⌈τ⌉).

Proof. (1) ⇔ (2) by definition of X ′
R2
.

(3) ⇒ (2): Assume π1(α) ⊑ π1(⌈τ⌉) for some τ ∈ Reach lossy(M). Then,
π1(α) ⊑ ⌈τ⌉ so that, by Lemma 8.4.6, there exists some x ∈ R1 with
ux.π1(α) ⊑ vx. Appending α to the right yields ux.π1(α).α = ux.uα.α ⊑

vx.α = vx.vα. Letting y
def
= x.α (∈ R2) proves (2).

(2) ⇒ (3): Assume uy.α ⊑ vy for some y ∈ R2 of the form x.β with x ∈ R1

and β ∈ Γ∗. We assume π1(α) 6= ǫ since otherwise π1(α) ⊑ π1(⌈τinit⌉) holds
trivially. From uy.α ⊑ vy, we deduce

ux.π1(α).π1(β) = ux.π1(β).π1(α) = uy.π1(α) ⊑ uy.α ⊑ vy = vx.vβ = vx.β.

From ux.π1(α).π1(β) ⊑ vx.β, one deduces ux.π1(α) ⊑ vx (using Fact 8.4.5
and the assumption that π1(α) 6= ǫ). Thus there exists a τ ∈ Reach lossy(M)
with π1(α) ⊑ ⌈τ⌉ (Lemma 8.4.3), hence π1(α) ⊑ π1(⌈τ⌉). � �

In other words, α 6∈ X ′
R2

iff there is a reachable configuration where the c1
counter is larger than, or equal to, the number of c1 symbols in α. Thus
X ′

R2
= ∅ iff M satisfies LCM Unbounded Counter.

Corollary 8.4.9 Blockers Emptiness is Π01-hard.



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 98

8.5 Regularity of Post-embedding languages is un-

decidable

As an aside, the reduction from LCM’s can be used to prove Theo. 8.5.2
below. The regularity problem for Post-embedding languages is a natural
question since SolR is not always regular and, as will be shown in next
chapter, since comparisons with a regular S are possible:

Theorem 8.5.1 (Proof at 9.2.2) The questions, for S ⊆ Σ∗ a regular
language, whether S ⊆ SolR, and whether SolR ⊆ S, are decidable.

Theorem 8.5.2 The question whether, for u, v : Σ∗ → Γ∗ and a regular
R ⊆ Σ∗, SolR is a regular language, is Σ01-complete.

In this section we prove one half of Theorem 8.5.2, i.e., that the regular-
ity of SolR is Σ01-hard. The other half, membership in Σ

0
1, is a consequence

of Theorem 8.5.1.

We consider the reduction from LCM Infinite to PEP built in Section 8.4.1
and further extend u and v on Q with u(q) = q and v(q) = ǫ for each q ∈ Q.
We further define R3 = qinit.RM .Q. In this framework, the following holds:

Lemma 8.5.3 If Reach lossy(M) is finite, then SolR3 is regular.

Proof.[Sketch] Any x ∈ R3 has the form qinit.x1.x2 . . . xn.q for some q ∈ Q
and some x1, x2, . . . , xn ∈ R∆. As seen in the proof of Lemma 8.4.3, such
an x belongs to SolR3 if, and only if, there exists a lossy run

(τinit =)τ0
δ1−→slτ1

δ2−→sl · · ·
δn−→slτn (*)

with xi ∈ Rδi , uxi
= ⌈τi−1⌉ (and where the control state of τn is q). The

assumption that Reach lossy(M) is finite implies that the set of lossy runs
in (*), when viewed as sequences σ of the form (τ0, δ1) . . . (τn−1, δn) over the
(finite!) alphabet Reach lossy(M) ×∆, is a regular language, as is the set of
paths of any finite graph. Since there is a bijective correspondence between
the xi’s and the pairs (τi−1, δi) (see Lemma 8.4.2), the set of all x1 . . . xn
that correspond to lossy runs is regular too, hence also SolR3 . � �

We can prove a reciprocal of Lemma 8.5.3 if we restrict ourselves to
deflatable counter machines. Formally, a counter machine M is deflatable if

it contains among its transition rules, the so-called “deflating” rules q
ci--−→q

for all states q ∈ Q and counters ci ∈ C.

Lemma 8.5.4 If Reach lossy(M) is infinite and M is deflatable, then SolR3
is not regular.



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 99

Proof.[Sketch] For the proof, we use the projection morphism π∆ : Σ∗ → ∆∗

that erases all symbols not in ∆ (recall that, in our reduction from LCM’s to
PEP, the set of rules ∆ is a sub-alphabet of Σ) and we show that π∆(SolR3)
is not regular, which is sufficient since morphisms preserve regularity.

Now, since Reach lossy(M) is infinite, for every N ∈ N there exists a
reachable configuration τN having size N . From τN , N deflating steps are
possible and not more. Thus, for each N ∈ N, there is a lossy run of the
form

τ0
δN,1
−−→sl · · ·

δN,kN−−−→slτN
defl
−→sl · · ·

defl
−→sl︸ ︷︷ ︸

N deflating steps

τ ′N .

With this lossy run one associates a word yN ∈ R3, exactly as in the proof of
Lemma 8.5.3. Now π∆(yN ) is δN,1 . . . δN,kN (defl)

N , i.e., some YN (defl)
N (for

simplifying purposes, we assume π∆ further projects all different deflating
rules to a single one called just “defl”).

If π∆(SolR3) is regular, the pumping lemma for regular language implies
that, for N large enough, if π∆(SolR3) contains YN (defl)

N , it also contains
YN (defl)

N (deflm)∗ for some m > 0. But this is clearly impossible since it
would imply the existence of lossy runs starting with the same kN steps and
ending with arbitrarily many deflating steps.

Hence neither π∆(SolR3), nor SolR3 , are regular. � �

We conclude by observing that the restriction to deflatable counter ma-
chines is no loss of generality. Deflating rules mimic losses in counters, hence
any counter machine can be turned into a deflatable one that has essentially
the same behavior as long as one only considers the lossy semantics. In
particular, the original machine and its deflatable version have exactly the
same reachable configurations (via lossy runs).

Therefore, Lemmas 8.5.3 and 8.5.4 show that LCM Infinite reduces to the
question whether the solutions of a PEPreg instance is a regular language.
Hence the regularity of SolR is Σ01-hard as announced.

8.6 Appendix

XL1.L2 = Γ∗ iff
(
X ′

L1
∪ YL2

)
∩
(
Y ′L1 ∪XL2

)
= Γ∗. (8.7)

The proof is clearer if the equation is written contrapositionally, under the
form:

XL1.L2 6= Γ∗ iff
[
X ′

L1
∪ YL2 6= Γ∗ or Y ′L1 ∪XL2 6= Γ∗

]
. (8.2’)

Proof. (⇐:) assume that there exists some α ∈ Γ∗ that does not belong
to X ′

L1
∪ YL2 (the case α 6∈ Y ′L1 ∪XL2 is symmetric). Hence α 6∈ X ′

L1
and

α 6∈ YL2 . Therefore ux1 .α ⊑ vx1 for some x1 ∈ L1, and ux2 ⊑ α.vx2 for some



CHAPTER 8. LANGUAGES OF PEP BLOCKERS 100

x2 ∈ L2. We deduce ux1ux2 ⊑ vx1vx2 (by the Elimination Lemma A.1.2).
Hence taking x = x1x2 shows ǫ 6∈ XL1.L2 and then XL1.L2 6= Γ∗.

(⇒:) If XL1.L2 6= Γ∗ then, in particular, ǫ 6∈ XL1.L2 (since blocker sets
are upward-closed) and there exists some x ∈ L1.L2 with ux ⊑ vx. Writ-
ing x under the form x = x1x2 with x1 ∈ L1 and x2 ∈ L2, we deduce
ux1 .ux2 ⊑ vx1 .vx2 . Thus, by Lemma 7.1.4 (Decomposition Lemma), there
exists w ∈ Γ∗ such that either ux1 .w ⊑ vx1 and ux2 ⊑ w.vx2 , or ux1 ⊑ vx1 .w
and w.ux2 ⊑ vx2 . In the first case, w 6∈ X ′

L1
and w 6∈ YL2 . In the second

case w 6∈ Y ′L1 and w 6∈ XL2 . Thus X
′
L1
∪ YL2 6= Γ∗ or Y ′L1 ∪XL2 6= Γ∗. �



Chapter 9

Languages of PEP solutions

In this chapter, we will study PE (u, v)
def
= {x ∈ Σ∗ | u(x) ⊑ v(x)}, the Post

Embedding language.

Regular constraints and the set of PEP-solutions. The decidability
of PEPreg can be restated under the following form: it is decidable, given
two morphisms u, v : Σ∗ → Γ∗ and a regular language R ⊆ Σ∗, whether the
following holds:

∃x ∈ R : u(x) ⊑ v(x). (Existence)

In other words, one can decide whether R ∩ PE(u, v) 6= ∅. However, this
problem has very high complexity.

In this chapter, we prove the decidability of the following questions:

∀x ∈ R : u(x) ⊑ v(x), (Universality)

∃∞x ∈ R : u(x) ⊑ v(x), (Infinity)

¬∃∞x ∈ R : u(x) 6⊑ v(x). (Cofiniteness)

“Universality” asks whether all words in R are solutions. “Infinity” asks
whether R contains infinitely many solutions x, while dually “Cofiniteness”
asks whether all but finitely many x ∈ R are solutions. Equivalently, these
questions ask whether R ⊆ PE(u, v), whether R ∩ PE(u, v) =a ∅, and
whether Rr PE(u, v) =a ∅, writing S =a S′ to denote the “quasi-equality”
of two sets, i.e., equality up to a finite subset. As a consequence of these
decidability results we can compute the number of words in R that are
(respectively, that are not) solutions.

These results are obtained with the help of two pumping lemmas, one
for sets of solutions and one for sets of “antisolutions”, i.e., words x such
that u(x) 6⊑ v(x). These pumping lemmas are the more technically involved
developments of this chapter. Proving them relies on two kinds of techniques:
(1) combinatorics of words in presence of the subword relation and associated

101



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 102

operations, and (2) a miniaturisation of Higman’s Lemma that gives effective
bounds on the length of bad sequences.

On complexity. Aiming at simplicity, our main decidability proofs do
not come with explicit statements regarding the computational complexity
of the associated problems. The decidability proofs can be turned into de-
terministic algorithms with complexity in Fωω . Regarding lower bounds, it
is clear that “Infinity” is at least as hard as PEPreg. We do not know if the
same lower bound holds for “Universality” and “Cofiniteness”.

Outline of the chapter. Section 9.1 deals with combinatorics on words
with subwords. Section 9.2 proves the decidability of comparisons with
regular sets. Then our pumping lemma is stated in Section 9.3 and used
in Section 9.4 for deciding finiteness, counting, and quasi-regular questions.
Sections 9.5 and 9.6 prove the two halves of the pumping lemma.

9.1 Composing, decomposing, and iterating words

and subwords

This section is devoted to the subword ordering and the way it interacts
with concatenations and factorizations. It proves a few basic results, e.g.,
Lemma 9.1.7, that we have been unable to find in the technical litera-
ture [Lot83, Lot02]. All missing proofs can be found in App. A.

9.1.1 Available suffixes

Recall that, when x ⊑ y, the “used prefix” is the shortest prefix y1 of y such
that x ⊑ y1. Then, writing y = y1y2, what remains, i.e., y2, is called the
“available suffix” and denoted y ⊘ x. For example, abcabc⊘ ba = bc. Note
that y ⊘ x is only defined when x ⊑ y.

Lemma 9.1.1 x ⊑ y and x′ ⊑ (y ⊘ x)y′ imply xx′ ⊑ yy′.

Corollary 9.1.2 x ⊑ y implies x(y ⊘ x) ⊑ y.

Lemma 9.1.3 x ⊑ y and xx′ ⊑ yy′ imply x′ ⊑ (y ⊘ x)y′.

9.1.2 Unmatched suffixes

Recall that, when x 6⊑ y, the “matched prefix” is the longest prefix x1 of x
s.t. x1 ⊑ y. Then, writing x = x1x2, what remains, i.e., x2, is called the
“unmatched suffix” and denoted x⊖ y. For example aabcabc⊖ baca = bcabc.
Note that x⊖ y is only defined when x 6⊑ y (hence x⊖ y 6= ǫ).



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 103

Lemma 9.1.4 x 6⊑ y and xx′ 6⊑ yy′ imply [(x⊖ y)x′]⊖ y′ = xx′ ⊖ yy′.

Corollary 9.1.5 x 6⊑ y and xx′ 6⊑ yy′ imply (x⊖ y)x′ 6⊑ y′.

Lemma 9.1.6 x 6⊑ y and xx′ ⊑ yy′ imply (x⊖ y)x′ ⊑ y′.

9.1.3 Iterating factors

Lemma 9.1.7 xy ⊑ yz if, and only if, xky ⊑ yzk for all k ∈ N.

Lemma 9.1.8 Assume x 6⊑ y, xz 6⊑ yt, and x⊖ y ⊑ xz ⊖ yt. Then for all
k ∈ N:

xzk 6⊑ ytk. (Zk)

Furthermore, if we let rk
def
= xzk ⊖ ytk, then for all k ∈ N:

r0 ⊑ rk ⊑ rk+1. (Rk)

9.2 Regular properties of sets of PEP solutions

Given two morphisms u, v : Σ∗ → Γ∗, a word x ∈ Σ∗ is called a “solution”
(of Post’s Embedding Problem) when ux ⊑ vx. Otherwise it is an “antisolu-
tion”. We let PE(u, v) denote the set of solutions (for given u and v). Note
that ǫ is always a solution.

We consider questions where we are given a PEP instance u, v with u, v :
Σ∗ → Γ∗ and a regular language R ⊆ Σ∗. The considered problems are
PEP Inclusion: does PE(u, v) ⊆ R?
PEP Containment: does PE(u, v) ⊇ R?
PEP Equality: does PE(u, v) = R?

It is tempting to compare PE(u, v) with another Post-embedding set,
however:

Theorem 9.2.1 The questions “does PE (u, v) ∩ PE (u′, v′) = {ǫ}?” and
“does PE (u, v) ⊆ PE (u′, v′)?” are Π01-complete.

Proof. Π01-hardness can be shown directly by reduction from PCP. For the
first question, simply let u′ = v and v′ = u. Then a common solution has
ux ⊑ vx = u′x ⊑ v′x = ux, i.e., ux = vx.

For the second question we use a more subtle encoding: assume w.l.o.g.
that Γ contains two distinct symbols a, b and that ux 6= ǫ when x 6= ǫ. Let

now u′x
def
= (ab)|ux| and v′x

def
= (ba)|vx|. Thus u′x ⊑ v′x if, and only if, x = ǫ

or |ux| < |vx|. Finally, PE(u, v) r PE (u′, v′) contains the non-trivial PCP
solutions. � �



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 104

Theorem 9.2.2 PEP Inclusion, PEP Containment and PEP Equality are de-
cidable.

Note that, while comparisons with a regular language are decidable, regu-
larity itself is undecidable, at least in the more general form stated here:

Proposition 9.2.3 (Regularity is undecidable 8.5) The question “is R∩
PE(u, v) a regular language?” is Σ01-complete.

The remainder of this section proves Theorem 9.2.2.
We first observe that PEP Inclusion and PEPreg are inter-reducible since

(u, v,R) is a positive instance for PEP Inclusion if, and only if, (u, v,Σ∗rR)
is a negative instance for PEPreg. Hence the decidability of PEP Inclusion

follows from the decidability of PEPreg.
For the decidability of PEP Containment (and then of PEP Equality), we

fix an instance (u, v,R).
For a word x ∈ Σ∗, we say that x is good if ux ⊑ vx and then we let

wx
def
= vx ⊘ ux, otherwise it is bad and then we let rx

def
= ux ⊖ vx. We say

that x is alive if xy ∈ R for some y, otherwise it is dead. Finally, we write

|R| for the number of states of a FSA for R, and let L
def
= Kv × |R| be a size

threshold (more details in the proof of Lemma 9.2.5).
A word x is a cut-off if, and only if, one of the following conditions holds:

dead cut-off: x is dead;

subsumption cut-off: there exists a strict prefix x′ of x such that x′ ∼R x,
and either

1. both x and x′ are good, with wx′ ⊑ wx,

2. or both x and x′ are bad, with rx ⊑ rx′ ;

big cut-off: x is alive, bad and |rx| > L.

Let T ⊆ Σ∗ be the set of all words that do not have a cut-off as a (strict)
prefix. T is prefix-closed and can be seen as a tree.

Lemma 9.2.4 T is finite.

Proof. We show that T , seen as a tree, has no infinite branch. Hence, and
since it is finitely branching, it is finite (Kőnig’s Lemma).

Assume, by way of contradiction, that T has an infinite branch labeled by
some x0, x1, x2, . . . (and recall that every xi is a prefix of all the xi+k’s). We
show that one of the xi must be a cut-off, which contradicts the assumption.

Since the syntactic congruence ∼R has finite index, there exists an infi-
nite subsequence x0, x1, x2, . . . (renumbered for convenience) of∼R-equivalent
xi’s. If infinitely many of the xi’s are good, one of them must be a subsump-
tion cut-off since, by Higman’s Lemma, the infinite sequence of the wxi

’s (for



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 105

good xi’s) must have some wx′ ⊑ wx. If only finitely many of the xi’s are
good, then infinitely many of them are bad and either some rxi

has size
larger than L (hence xi is a big cut-off), or all rxi

’s have size at most L,
hence belong to a finite set Γ≤L, and two of them must be equal (hence
there must be a subsumption cut-off). �

With the next two lemmas, we show that T contains enough information to
decide whether R ⊆ PE (u, v).

Lemma 9.2.5 If T contains a big cut-off, then R 6⊆ PE(u, v).

Proof. Assume x is a big cut-off (i.e., is alive, bad, and with |rx| > L) in
T . It is alive so xy ∈ R for some y. We pick the smallest such y, ensuring
that |y| < |R| (the number of states of an FSA for R). Since x is bad, we
know that ux 6⊑ vx. Note that |vy| ≤ Kv × |y| ≤ Kv× |R| ≤ L so that |vy| <
|rx| and, consequently, rx 6⊑ vy. Thus, and since rx = ux ⊖ vx, applying
Lemma 9.1.6 contrapositively gives ux 6⊑ vxvy and, a fortiori, uxy 6⊑ vxy.
Finally xy 6∈ PE(u, v). Since xy ∈ R, we conclude R 6⊆ PE(u, v). �

There is a reciprocal.

Lemma 9.2.6 Assume that T has no big cut-offs and that (R ∩ T ) ⊆
PE(u, v). Then R ⊆ PE (u, v).

Proof. Consider some x ∈ R: we show that ux ⊑ vx by induction on the
size of x. If x ∈ T then x ∈ (R ∩ T ) ⊆ PE (u, v) and we are done. If x 6∈ T ,
then a prefix of x is a cut-off. This cannot be a big cut-off (we assumed T
has none) or a dead cut-off (the prefix is alive since x ∈ R). Hence this is a
subsumption cut-off, caused by one of its prefixes. Finally, x can be written
under the form x = x1x2x3 with x1x2 the subsumption cut-off, and x1 the
prefix justifying the subsumption. We know x2 6= ǫ (x1 is a strict prefix
of the cut-off) and x1 ∼R x1x2. Hence x1x3 ∈ R (since x1x2x3 ∈ R) and
ux1x3 ⊑ vx1x3 by induction hypothesis.

There are now two cases, depending on what kind of subsumption is at
hand.
1. If x1 is good then ux1 ⊑ vx1 . Combining with ux1x3 ⊑ vx1x3 entails
ux3 ⊑ wx1vx3 (Lemma 9.1.3). From wx1 ⊑ wx1x2 (condition for subsump-
tion) we deduce ux3 ⊑ wx1x2vx3 . Combining with ux1x2 ⊑ vx1x2 (x1x2 too is
good), Lemma 9.1.1 yields ux1x2ux3 ⊑ vx1x2vx3 .
2. If x1 is bad, then ux1x3 ⊑ vx1x3 and ux1 6⊑ vx1 entail rx1ux3 ⊑ vx3
(Lemma 9.1.6). From rx1x2 ⊑ rx1 (condition for subsumption) we deduce
rx1x2ux3 ⊑ vx3 . Combined with ux1x2 6⊑ vx1x2 (x1x2 too is bad), applying
Coro. 9.1.5 contrapositively yields ux1x2ux3 ⊑ vx1x2vx3 .
In both cases we proved that x1x2x3 ∈ PE (u, v) as requested. �

We can now prove the decidability of PEP Containment: the tree T can
be built effectively starting from the root since it is easy to see whether a



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 106

word is a cut-off. The construction terminates thanks to Lemma 9.2.4. Once
T is at hand, Lemmas 9.2.5 and 9.2.6 gives an effective criterion for deciding
whether R ⊆ PE(u, v): it is enough to check that T has no big cut-off and
that all the words x ∈ T satisfy ux ⊑ vx or do not belong to R.

9.3 Pumpable solutions and antisolutions

Let u, v : Σ∗ → Γ∗ be a given PEP instance.

Definition 9.3.1 A triple of words (x, y, z) ∈ Σ∗ with y 6= ǫ is a pumpable
solution if xykz ∈ PE(u, v) for all k ∈ N.
It is a pumpable antisolution if xykz 6∈ PE(u, v) for all k ∈ N.

In other words, a pumpable solution denotes an infinite subset of PE(u, v)
of the form xy∗z, while a pumpable antisolution denotes an infinite subset of
its complement. Our interest in pumpable solutions and antisolutions is that
they provide simple witnesses proving that PE(u, v) (or its complement) is
infinite.

We observe that these witnesses are effective:

Proposition 9.3.2 (Decidability of pumpability) It is decidable whether
(x, y, z) is a pumpable solution, and also whether it is a pumpable antisolu-
tion.

Proof. Checking that (x, y, z) is a pumpable solution reduces to the PEP Con-
tainment problem, while checking that it is not a pumpable antisolution re-
duces to the PEPreg problem (or, equivalently, PEP Inclusion). � �

We can now state our main technical result. Here (and below) we speak
loosely of “a pumpable solution”, when we mean “the language denoted by
a pumpable solution”.

Lemma 9.3.3 (Pumping Lemma) Let R ⊆ Σ∗ be a regular language.
1. If R ∩ PE(u, v) is infinite, it contains a pumpable solution.
2. If Rr PE(u, v) is infinite, it contains a pumpable antisolution.

Section 9.5 is devoted to a proof of the Pumping Lemma for solutions, while
Section 9.6 proves the Pumping Lemma for antisolutions. Without waiting
for that, we list the main consequences on our questions.



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 107

9.4 Quasi-regular properties and counting proper-

ties

For two languages L,L, we say that L is quasi-included in L′, written L ⊆a

L′, when L r L′ is finite, and that they are quasi-equal, written L =a L′,
when L ⊆a L′ and L′ ⊆a L.

We consider the following questions, where we are given a PEP instance
u, v and a regular R ⊆ Σ∗:
PEP Quasi Inclusion: does PE(u, v) ⊆a R?
PEP Quasi Containment: does PE(u, v) ⊇a R?
PEP Quasi Equality: does PE (u, v) =a R?

Theorem 9.4.1 PEP Quasi Inclusion, PEP Quasi Containment and PEP Quasi -
Equality are decidable.

Proof. We start with PEP Quasi Inclusion. This problem is co-r.e. since
when PE(u, v) r R is infinite, there is a pumpable solution in Σ∗ r R
(Pumping Lemma) that can be guessed and checked (Prop. 9.3.2). It is
also r.e. since PE (u, v) ⊆a R iff there is a finite language F ⊆ Σ∗ s.t.
PE(u, v) ⊆ R∪F , which can be checked (Theo. 9.2.2) since R∪F is a regu-
lar language. Thus PEP Quasi Inclusion, being r.e. and co-r.e., is decidable.

We use the same reasoning to show that PEP Quasi Containment is de-
cidable. Then PEP Quasi Equality is obviously decidable as well. � �

We also consider counting questions where the answer is a number in
N ∪ {ω}:
PEP NbSol: what is the cardinality of R ∩ PE(u, v)?
PEP NbAntisol: what is the cardinality Rr PE(u, v)?

Theorem 9.4.2 PEP NbSol and PEP NbAntisol are decidable (more pre-
cisely, the associated counting functions are recursive).

Proof. We start with PEP NbSol. We can first check whether the cardinal-
ity of R∩PE(u, v) is finite by deciding whether PE(u, v) ⊆a (Σ

∗rR) (using
the decidability of PEP Quasi Inclusion). If we find that the cardinality is
infinite, we are done. Otherwise we can enumerate all words in R and check
whether they are solutions. At any given stage during this enumeration,
we can check whether the current set F of already found solutions is com-
plete by deciding whether PE(u, v) ∩ (R r F ) = ∅ (using the decidability
of PEP Inclusion). We are bound to eventually find a complete set since we
only started enumerating solutions in R knowing there are finitely many of
them.

The same method works for PEP NbAntisol, this times using the decid-
ability of PEP Containment and PEP Quasi Containment. � �



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 108

9.5 Pumping in long solutions

We start with a sufficient condition for pumpability of solutions.

Definition 9.5.1 A triple x, y, z ∈ Σ∗ with y 6= ǫ is positive if the following
four conditions are satisfied:

ux ⊑ vx, (C1) uxuy ⊑ vxvy, (C2)

uxuyuz ⊑ vxvyvz, (C3) (vx ⊘ ux) ⊑ (vxvy ⊘ uxuy). (C4)

Lemma 9.5.2 If (x, y, z) is positive then (x, y, yz) is a pumpable solution.

Proof. Assume that (x, y, z) is positive, so that (C1–4) hold. Write shortly
w for vx ⊘ ux and w′ for vxy ⊘ uxy. From (C1) and the definition of w,
Coro. 9.1.2 yields:

uxw ⊑ vx. (C5)

From (C2), it further yields uxuyw
′ ⊑ vxvy, from which (C4) entails:

uxuyw ⊑ vxvy. (C6)

Applying Lemma 9.1.3 on (C1) and (C3) (respectively on (C1) and (C6))
yields:

uyuz ⊑ wvyvz, (C7) uyw ⊑ wvy. (C7′)

Applying Lemma 9.1.7 on (C7’) gives

uykw = (uy)
kw ⊑ w(vy)

k = wvyk for all k ∈ N. (C8)

With (C5) and (C8), Lemma 9.1.1 entails

uxuykw ⊑ vxvyk for all k ∈ N. (C9)

With (C7) and (C9), it then entails

uxuykuyz ⊑ vxvykvyz for all k ∈ N, (C10)

which just states that (x, y, yz) is a pumpable solution. � �

We now let nR denote the number of equivalence classes induced by
∼R (Section 2.1.2). Finally, we let Hu and Hv denote, respectively, H(nR+
1,Ku, |Γ|) andH(nR+1,Kv , |Γ|). Recall that, by definition of theH function
(Lemma 2.1.5), any Ku-controlled sequence of at least Hu Γ-words is (nR+
1)-good.

Lemma 9.5.3 If R contains a solution σ ∈ PE(u, v) of length |σ| ≥ 2Hv

then it contains a pumpable solution.



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 109

(Observe that this will entail, as a corollary, the first half of the Pumping
Lemma since, if R∩PE(u, v) is infinite, it contains solutions σ of arbitrarily
large length.)
Proof. Let σ ∈ PE(u, v) be a solution of length L: σ has L + 1 prefixes
x0, x1, . . . , xL. We consider the subsequence xi1 , xi2 , . . . xil of all prefixes of
σ that satisfy uxij

⊑ vxij
(called good prefixes) and split the proof in three

main steps.
1. We show, by induction over j, that the sequence

(
vxij

⊘ uxij

)
j=1,..,l

is

Kv-controlled, i.e., writing wj for vxij
⊘ uxij

, that |wj | ≤ j ×Kv for all j =
1, . . . , l. The base case is obvious since i1 = 0 and w1 = ǫ. For the inductive
case, we consider j > 0 so that xij = xij−1.a for some a ∈ Σ (the ij-th
letter in σ). If uxij−1

⊑ vxij−1
(hence i(j−1) = (ij)−1) then wj = vxij

⊘ uxij

is (vxij−1
.va)⊘ (uxij−1

.ua) which cannot be longer than (vxij−1
.va)⊘ uxij−1

,

itself not longer than (vxij−1
⊘ uxij−1

).va. Thus |wj| ≤ |wj−1| +Kv and we
conclude with the induction hypothesis. If on the other hand uxij−1

6⊑ vxij−1
,

then wj is a suffix of va hence |wj| ≤ Kv.
2a. Assume now that l ≥ Hv. Then, using Lemma 2.1.5, we conclude

that there is a further subsequence (xijr )r=0,...,nR
of nR+1 prefixes of σ such

that wj0 ⊑ wj1 ⊑ · · · ⊑ wjnR
. Since nR is the index of ∼R, we deduce that

there exists two such prefixes xijp (shortly, x) and xij
p′
(shortly, x′) with

x ∼R x′. If we write x′ under the form xy (NB: y 6= ǫ) and σ under the form
xyz, we have found a positive triple (x, y, z). Then Lemma 9.5.2 applies and
shows that xy∗yz is a pumpable solution. Finally, since x ∼R xy, we know
that xy∗yz is a subset of R.

2b. Observe that if a prefix xi of σ = xi.yi is not good, then ỹi is a good
prefix of the solution σ̃ ∈ PE(ũ, ṽ) of the mirror PEP problem. Hence if σ
has l < Hv good prefixes, σ̃ has l

′ ≥ 2Hv− l > Hv good ones. Then the mir-
ror problem falls in case 2a above (we note that ∼R, nR, and Kv do not have
to be adjusted when mirroring). We deduce that there is a pumpable solu-
tion in R̃∩PE(ũ, ṽ), whose mirror is a pumpable solution in R∩PE(u, v). �

9.6 Pumping in long antisolutions

As with pumpable solutions, there is a sufficient condition for pumpability
of antisolutions.

Definition 9.6.1 A triple x, y, z ∈ Σ∗ with y 6= ǫ is negative if the following
four conditions are satisfied:

ux 6⊑ vx, (D1) uxuy 6⊑ vxvy, (D2)

uxuz 6⊑ vxvz (D3) ux ⊖ vx ⊑ uxy ⊖ vxy (D4)



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 110

Lemma 9.6.2 If (x, y, z) is negative then (x, y, z) is a pumpable antisolu-
tion.

Proof. Assume that (x, y, z) is negative, so that (D1–4) hold. Write shortly
r for ux ⊖ vx and r′ for uxy ⊖ vxy. With (D1), (D2) and (D4), Lemma 9.1.8
applies and yields

uxyk 6⊑ vxyk for all k ∈ N, (D5)

with furthermore

uxyk ⊖ vxyk ⊑ uxyk+1 ⊖ vxyk+1 . (D6)

On the other hand, (D1) and (D3) entail ruz 6⊑ vz by Coro. 9.1.5, hence
(uxyk ⊖ vxyk)uz 6⊑ vz by (D6). We deduce that uxykz 6⊑ vxykz. � �

Lemma 9.6.3 If R contains an antisolution σ 6∈ PE (u, v) of length |σ| ≥
2Hu then it contains a pumpable antisolution.

(As a corollary, we obtain the second half of the Pumping Lemma.)
Proof.[Sketch] We proceed as with Lemma 9.5.3. Write L for |σ|, and
x0, x1, . . . , xL for the prefixes of σ. Consider the subsequence xi1 , xi2 , . . . xil
of all bad prefixes of σ, i.e., such that uxij

6⊑ vxij
and define rj = uxij

⊖ vxij
.

The sequence (rj)j=1,...,l is Ku-controlled.
If l ≥ Hu, we find two positions 1 ≤ p < p′ ≤ l such that xijp ∼R xij

p′

and rjp ⊑ rjp′ , so that, writing x for xijp , x
′ for xij

p′
, writing x′ under the

form xy, and σ under the form xyz, we can apply Lemma 9.6.2 and deduce
that (x, y, z) is a pumpable antisolution. Furthermore xy∗z is a subset of R
since xyz = σ ∈ R and xy ∼R x.

Observe that if a prefix xi is not bad, then, writing σ under the form xiyi,
ỹi is a bad prefix of the antisolution σ̃ 6∈ PE(ũ, ṽ) of the mirror problem.
Thus, if l < Hu, then σ̃ has ≥ Hu bad prefixes in the mirror problem. Hence
R̃rPE(ũ.ṽ) contains a pumpable antisolution, whose mirror is a pumpable
antisolution in R ∩ PE(u, v). � �

Remark 9.6.4 Lemmas 9.5.3 and 9.6.3 show that one can strengthen the
statement of the Pumping Lemma. Rather than assuming that R∩PE(u, v)
(respectively, R r PE(u, v)) is infinite, we only need to assume that they
contain a large enough element. �

9.7 Concluding remarks

The decidability of the Regular Post Embedding Problem means that one
can find out whether the inequation u(x) ⊑ v(x) has a solution in a given



CHAPTER 9. LANGUAGES OF PEP SOLUTIONS 111

regular R. In this chapter, we investigated more general questions pertaining
to the set of solutions PE(u, v). We developed new techniques showing how
one can decide regular questions (does PE(u, v) contain, or is it included in,
a given R?), finiteness and quasi-regular questions (does PE(u, v) satisfy a
regular constraint except perhaps for finitely many elements?), and counting
questions (how many elements in some R are — or are not — solutions?).

It is not clear how to go beyond these positive results. One direction is
suggested by the pumping lemmas we developed here. These lemmas have
applications beyond the finiteness problems we considered. For example,
they are useful in the study of the expressive power of PEPreg-languages,
i.e., languages of the form R ∩ PE(u, v) for some R,u, v. For example,

using the pumping lemma we can show that L0
def
= {anbn | n ∈ N} is not

a PEPreg-language. Now, and since L1
def
= {anbn+m | n,m ∈ N} and L2

def
=

{an+mbn | n,m ∈ N} clearly are PEPreg-languages, we conclude that PEPreg-
languages are not closed under intersection!



Chapter 10

Conclusion

112



CHAPTER 10. CONCLUSION 113

We tackled the study of the complexity class of lossy channel system
problems (Fωω) and obtained two main results.
— 1: we give a precise characterization of the reachability problem on
LCS’s as bounded Turing machine. The main obstacle to solve that problem
opened for more that 10 years was to find the right bound from proof theory
folklore. We wish that our presentation make the bridge between the two
domains natural to the verification community.
— 2: We defined the Regular Post Embedding Problem (PEPreg), an ab-
stract problem complete for Fωω . It’s simple definition only rely on basic
notion of language theory and summarize the essential properties that make
a problem complete for Fωω . It is suitable for easy definition of variants as
shown by our exploration of the more natural ones.
With these result, we think that we obtained a solid basis for the study of
that complexity class.

further

• As we now start to understand PEPreg, its link and difference with
ReachLcs, we now have new possibilities. We looked at some natu-
ral extensions and variants of PEPreg, but many other versions are
possible.

– For instance PEPreg is the question, whether ∃x ∈ R : u(x) ⊑
v(x). There could be an interesting decidable logic summarizing
and extending all our results on languages of solutions.

– Are there languages classes that could be used as constraint to
have simpler problems ?

LCS’s have been used as a base problem to show that problems are not
primitive recursive. We think that PEPreg or PEPregdir are better for that
role. Such reduction should be written to emphasis it. Moreover, since
there was no upper bound on ReachLcs, only lower bound were shown
using those reductions. Some of the problems harder that ReachLcs

could be shown equivalent. That would need new reductions where
PEPreg could prove useful.

• Cichon and Tahhan Bittar’s proof on Higman’s lemma could be made
more precise. Indeed, the function bounding the length of bad se-
quence is Fωω ◦p for some p left implicit but primitive recursive, which
is very loose. We can suppose, from some results of de Jongh and
Parikh [dJP77], showing the order type of ⊑, that the function p could
be the identity. There is an undergoing similar work on the Dickson’s
lemma, which from simplifying the proof went to make it more pre-
cise. It would be also interesting to have such a proof that don’t need
background in proof theory to understand.



CHAPTER 10. CONCLUSION 114

• Our work on LCS can be seen as a link between the word data structure
ordered with subword and the ordinal ωω. Such a correspondence could
be made on other data type, like multiset, or extend the results to be
able to compose data-types. For instance this would allow to directly
characterize systems working on words of tuples of integers.



Bibliography

[AB09] Mohamed Faouzi Atig and Ahmed Bouajjani. On the reach-
ability problem for dynamic networks of concurrent pushdown
systems. In RP, pages 1–2, 2009.

[ABBM10] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burck-
hardt, and Madanlal Musuvathi. On the verification problem
for weak memory models. In POPL, pages 7–18, 2010.

[ABJ98] P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis
of systems with unbounded, lossy FIFO channels. In Proc. 10th
Int. Conf. Computer Aided Verification (CAV ’98), Vancouver,
BC, Canada, June-July 1998, volume 1427 of Lecture Notes in
Computer Science, pages 305–318. Springer, 1998.

[ABRS05] P. A. Abdulla, N. Bertrand, A. Rabinovich, and Ph Schnoebelen.
Verification of probabilistic systems with faulty communication.
Information and Computation, 202(2):141–165, 2005.

[ABS01] Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu.
Trex: A tool for reachability analysis of complex systems. In
CAV, pages 368–372, 2001.

[ACBJ04] P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jon-
sson. Using forward reachability analysis for verification of lossy
channel systems. Formal Methods in System Design, 25(1):39–
65, 2004.

[ADO+08] P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas, and J. Wor-
rell. Universality analysis for one-clock timed automata. Fun-
damenta Informaticae, 89(4):419–450, 2008.

[AJ93] P. A. Abdulla and B. Jonsson. Verifying programs with unre-
liable channels. In Proc. 8th IEEE Symp. Logic in Computer
Science (LICS ’93), Montreal, Canada, June 1993, pages 160–
170. IEEE Comp. Soc. Press, 1993.

115



BIBLIOGRAPHY 116

[AJ96a] P. A. Abdulla and B. Jonsson. Undecidable verification prob-
lems for programs with unreliable channels. Information and
Computation, 130(1):71–90, 1996.

[AJ96b] P. A. Abdulla and B. Jonsson. Verifying programs with unre-
liable channels. Information and Computation, 127(2):91–101,
1996.

[AK95] Parosh Aziz Abdulla and Mats Kindahl. Decidability of simula-
tion and bisimulation between lossy channel systems and finite
state systems (extended abstract). In CONCUR, pages 333–347,
1995.

[BBS06] C. Baier, N. Bertrand, and Ph. Schnoebelen. On computing
fixpoints in well-structured regular model checking, with appli-
cations to lossy channel systems. In Proc. LPAR 2006, volume
4246 of Lecture Notes in Artificial Intelligence, pages 347–361.
Springer, 2006.

[BBS07] C. Baier, N. Bertrand, and Ph. Schnoebelen. Verifying nondeter-
ministic probabilistic channel systems against ω-regular linear-
time properties. ACM Transactions on Computational Logic,
9(1), 2007.

[BS03] N. Bertrand and Ph. Schnoebelen. Model checking lossy chan-
nels systems is probably decidable. In Proc. 6th Int. Conf. Foun-
dations of Software Science and Computation Structures (FOS-
SACS 2003), Warsaw, Poland, Apr. 2003, volume 2620 of Lec-
ture Notes in Computer Science, pages 120–135. Springer, 2003.

[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state ma-
chines. Journal of the ACM, 30(2):323–342, 1983.

[CFP96] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable
channels are easier to verify than perfect channels. Information
and Computation, 124(1):20–31, 1996.

[Cic07] E. A. Cichon. Personal communication, December 2007.

[Clo86] P. Clote. On the finite containment problem for Petri nets.
Theoretical Computer Science, 43(1):99–105, 1986.

[CS10] P. Chambart and Ph. Schnoebelen. Toward a compositional the-
ory of leftist grammars and transformations. In Proc. FOSSACS
2010, volume 6014 of Lecture Notes in Computer Science, pages
237–251. Springer, 2010.



BIBLIOGRAPHY 117

[CT98] E. A. Cichon and E. Tahhan Bittar. Ordinal recursive bounds
for Higman’s theorem. Theoretical Computer Science, 201(1–
2):63–84, 1998.

[dJP77] D. H. J. de Jongh and R. Parikh. Well-partial orderings and
hierarchies. Indag. Math., 39(3):195–207, 1977.

[DM79] N. Dershowitz and Z. Manna. Proving termination with multiset
orderings. Communications of the ACM, 22(8):465–476, 1979.

[FFSS10] Diego Figueira, Santiago Figueira, Sylvain Schmitz,
and Philippe Schnoebelen. Ackermann and primitive-
recursive bounds with Dickson’s lemma. Research Report
cs.LO/1007.2989, Computing Research Repository, July 2010.

[FG09a] Alain Finkel and Jean Goubault-Larrecq. Forward analysis
for WSTS, part I: Completions. In Susanne Albers and Jean-
Yves Marion, editors, Proceedings of the 26th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS’09),
volume 3 of Leibniz International Proceedings in Informatics,
pages 433–444, Freiburg, Germany, February 2009. Leibniz-
Zentrum für Informatik.

[FG09b] Alain Finkel and Jean Goubault-Larrecq. Forward analysis for
WSTS, part II: Complete WSTS. In Susanne Albers, Alberto
Marchetti-Spaccamela, Yossi Matias, and Wolfgang Thomas, ed-
itors, Proceedings of the 36th International Colloquium on Au-
tomata, Languages and Programming (ICALP’09), volume 5556
of Lecture Notes in Computer Science, pages 188–199, Rhodes,
Greece, July 2009. Springer.

[Fin85] A. Finkel. Une généralisation des théorèmes de Higman et de Si-
mon aux mots infinis. Theoretical Computer Science, 38(1):137–
142, 1985.

[Fin87] Alain Finkel. A generalization of the procedure of Karp and
Miller to well structured transition system. In Thomas Ottmann,
editor, Proceedings of the 14th International Colloquium on Au-
tomata, Languages and Programming (ICALP’87), volume 267
of Lecture Notes in Computer Science, pages 499–508, Karl-
sruhe, Germany, July 1987. Springer-Verlag.

[Fin94] A. Finkel. Decidability of the termination problem for com-
pletely specificied protocols. Distributed Computing, 7(3):129–
135, 1994.



BIBLIOGRAPHY 118

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition sys-
tems everywhere! Theoretical Computer Science, 256(1–2):63–
92, 2001.

[FW98] M. V. Fairtlough and S. S. Wainer. Hierarchies of provably re-
cursive functions. In S. Buss, editor, Handbook of Proof Theory,
volume 137 of Studies in Logic, chapter 3, pages 149–207. North-
Holland, 1998.

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Paral-
lel Computation: P-Completeness Theory. Oxford Univ. Press,
1995.

[GKWZ06] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-
primitive recursive decidability of products of modal logics with
expanding domains. Annals of Pure and Applied Logic, 142(1–
3):245–268, 2006.

[Hai69] L. H. Haines. On free monoids partially ordered by embedding.
J. Combinatorial Theory, 76:94–98, 1969.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. In
London Math. Soc., pages 2:326–336, 1952.

[HMK+05] J. G. Henriksen, M. Mukund, K. N. Kumar, M. A. Sohoni, and
P. S. Thiagarajan. A theory of regular MSC languages. Infor-
mation and Computation, 202(1):1–38, 2005.

[Jan01] Petr Jancar. Nonprimitive recursive complexity and undecid-
ability for petri net equivalences. Theor. Comput. Sci., 256(1-
2):23–30, 2001.

[Jur08] T. Jurdziński. Leftist grammars are nonprimitive recursive. In
Proc. ICALP 2008, volume 5126 of Lecture Notes in Computer
Science, pages 51–62. Springer, 2008.

[Kre52] G. Kreisel. On the interpretation of the nonfinitist proofs, ii.
The Journal of Symbolic Logic, 17:43–58, 1952.

[Kru72] Joseph B. Kruskal. The theory of well-quasi-ordering: A fre-
quently discovered concept. J. Comb. Theory, Ser. A, 13(3):297–
305, 1972.

[Lee78] J. van Leeuwen. Effective constructions in well-partially-ordered
free monoids. Discrete Mathematics, 21(3):237–252, 1978.

[LM04] M. Lohrey and A. Muscholl. Bounded MSC communication.
Information and Computation, 189(2):160–181, 2004.



BIBLIOGRAPHY 119

[LNO+08] R. Lazić, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Wor-
rell. Nets with tokens which carry data. Fundamenta Informat-
icae, 88(3):251–274, 2008.

[Lot83] M. Lothaire, editor. Combinatorics on words, volume 17 of
Encyclopedia of Mathematics and Its Applications. Cambridge
Univ. Press, 1983.

[Lot02] M. Lothaire, editor. Algebraic combinatorics on words, vol-
ume 90 of Encyclopedia of Mathematics and Its Applications.
Cambridge Univ. Press, 2002.

[LW08] S. Lasota and I. Walukiewicz. Alternating timed automata.
ACM Trans. Computational Logic, 9(2), 2008. To appear.

[May03a] R. Mayr. Undecidable problems in unreliable computations.
Theoretical Computer Science, 297(1–3):337–354, 2003.

[May03b] R. Mayr. Undecidable problems in unreliable computations.
Theoretical Computer Science, 297(1–3):337–354, 2003.

[McA84] K. McAloon. Petri nets and large finite sets. Theoretical Com-
puter Science, 32(1–2):173–183, 1984.

[MM81] Ernst W. Mayr and Albert R. Meyer. The complexity of the
finite containment problem for petri nets. J. ACM, 28(3):561–
576, 1981.

[Mül85] H. Müller. Weak Petri net computers for Ackermann func-
tions. Elektronische Informationsverarbeitung und Kybernetik,
21(4/5):236–246, 1985.

[Odi92] P. Odifreddi. Classical Recursion Theory: The Theory of Func-
tions and Sets of Natural Numbers (Studies in Logic and the
Foundations of Mathematics). North Holland, new ed edition,
February 1992.

[OW07] J. Ouaknine and J. Worrell. On the decidability and complexity
of Metric Temporal Logic over finite words. Logical Methods in
Comp. Science, 3(1):1–27, 2007.

[P3́5] R. Péter. Konstruktion nichtrekursiver funktionen. Math. Ann.,
111:42–60, 1935.

[Rob65] J.W. Robbin. Subrecursive hierarchies. Ph.d. thesis, Princeton
University, 1965.

[Ros84] H. E. Rose. Subrecursion: Functions and Hierarchies, volume 9
of Oxford Logic Guides. Oxford Univ. Press, 1984.



BIBLIOGRAPHY 120

[Sch02] Ph. Schnoebelen. Verifying lossy channel systems has non-
primitive recursive complexity. Information Processing Letters,
83(5):251–261, 2002.

[Sch10] Ph. Schnoebelen. Lossy counter machines: A survey. In Proc.
RP 2010, Lecture Notes in Computer Science. Springer, 2010.

[Tou97] H. Touzet. Propriétés combinatoires pour la terminaison de
systèmes des réécriture. Thèse de doctorat, Université de Nancy
1, France, September 1997.

[Tou02] H. Touzet. A characterisation of multiply recursive functions
with higman’s lemma. Information and Computation, 178:534–
544, 2002.

[Wai70] S. S. Wainer. A classification of the ordinal recursive functions.
Arch. math. Logik Grundlag., 13(3–4):136–153, 1970.

[Wai72] S. S. Wainer. Ordinal recursion, and a refinement of the ex-
tended grzegorczyk hierarchy. The Journal of Symbolic Logic,
37(2):281–292, 1972.



Appendix A

Combinatorics on subwords

121



APPENDIX A. COMBINATORICS ON SUBWORDS 122

Here are gathered all proofs of subword combinatorics results we use in
the document.

A.1 Basics

It will be convenient to recall the following obvious facts:

Fact A.1.1 (Splitting)
1. If xy ⊑ z then there exists a factorization z = z′z′′ of z such that x ⊑ z′

and y ⊑ z′′.
2. If x ⊑ yz then there exists a factorization x = x′x′′ of x such that x′ ⊑ y
and x′′ ⊑ z.

Proof. To prove this simple result, we need to use the definition of ⊑ given
in section 6.1.1.
1. If xy ⊑ z then there exists an order-preserving injective map h : {1, . . . , |xy|} →
{1, . . . , |z|} such that xyi = zh(i) for all i = 1, . . . , |xy|. If x or y is empty,
then that holds trivially, so suppose it is not the case. Then h′ = h
is an order-preserving injective map on {1, . . . , |x|} → {1, . . . , h(|x|)} and
h′′ = λa.(h(|x|+ a)) is one on {|x|+1, . . . , |xy|} → {h(|x|)+ 1, . . . , |z|} such
that xi = zh′(i) and yi = zh′′(i). To conclude, we just need to take z′ as the
prefix of length h(|x|) of z and z′′ as the remaining suffix.
2. If x ⊑ yz then there exists an order-preserving injective map h : {1, . . . , |x|} →
{1, . . . , |yz|} such that xi = yzh(i) for all i = 1, . . . , |x|. If h(|x|) ≤ |y| or
h(1) > |y| then that holds trivially, so suppose it is not the case. Then
there exists n such that h(n) ≤ |y| and h(n + 1) > |y|. Then h′ = h
is an order-preserving injective map on {1, . . . , n} → {1, . . . , h(|y|)} and
h′′ = λa.(h(a) − h(n)) is one on {n + 1, . . . , |x|} → {|y| + 1, . . . , |yz|} such
that xi = yh′(i) and xi = zh′′(i) when defined. To conclude, we just need to
take x′ as the prefix of length n of x and x′′ as the remaining suffix.

�

Now, we won’t have to use that kind of order-preserving injective map,
the other lemmas only rely on Fact A.1.1.

Lemma A.1.2 (Elimination Lemma) If xw ⊑ y and x′ ⊑ wy′ then
xx′ ⊑ yy′.

Proof. By Fact A.1.1 there exist factorizations y = y1.y2 and x′ = x′1.x
′
2

such that x ⊑ y1, w ⊑ y2, x′1 ⊑ w and x′2 ⊑ y′. One concludes with
xx′ = xx′1x

′
2 ⊑ y1wy

′ ⊑ y1y2y
′ = yy′. �

Lemma A.1.3 (Mirror Elimination Lemma) If x ⊑ yw and wx′ ⊑ y′

then xx′ ⊑ yy′.



APPENDIX A. COMBINATORICS ON SUBWORDS 123

Proof. Mirroring the assumptions gives x̃ ⊑ w̃ỹ and x̃′w̃ ⊑ ỹ′. Then
Lemma A.1.2 applies, yielding x̃′x̃ ⊑ ỹ′ỹ. Mirroring again gives xx′ ⊑ yy′.
�

A.2 Available suffixes

Recall that, when x ⊑ y, the “used prefix” is the shortest prefix y1 of y such
that x ⊑ y1. Then, writing y = y1y2, what remains, i.e., y2, is called the
“available suffix” and denoted y ⊘ x.

Fact A.2.1 (Monotonicity)
1. If x ⊑ y, then (yz)⊘ x = (y ⊘ x)z.
2. If xx′ ⊑ y, then y ⊘ (xx′) = (y ⊘ x)⊘ x′.

Lemma A.2.2 xz ⊑ y implies z ⊑ y ⊘ x.

Proof. If xz ⊑ y then x ⊑ y′ and z ⊑ y′′ for a factorization y′y′′ of y
(Fact A.1.1). Since y1 is the shortest prefix with x ⊑ y1, it is a prefix of y

′,
hence y′′ is a suffix of y2. Hence z ⊑ y2 = y ⊘ x. �

Lemma A.2.3 x ⊑ y and x′ ⊑ (y ⊘ x)y′ imply xx′ ⊑ yy′.

Proof. Let x′ = x′1x
′
2 be a factorization with x′1 ⊑ y ⊘ x and x′2 ⊑ y′.

Lemma A.2.2 gives xx′1 ⊑ y. Concatenating with x′2 ⊑ y′ concludes since
xx′ = (xx′1)x

′
2. �

Corollary A.2.4 x ⊑ y implies x(y ⊘ x) ⊑ y.

Lemma A.2.5 x ⊑ y and xx′ ⊑ yy′ imply x′ ⊑ (y ⊘ x)y′.

Proof. From xx′ ⊑ yy′, Lemma A.2.2 gives x′ ⊑ yy′ ⊘ x. But yy′ ⊘ x =
(y ⊘ x)y′ since x ⊑ y (Fact A.2.1). �

A.3 Unmatched suffixes

Recall that, when x 6⊑ y, the “matched prefix” is the longest prefix x1 of x
s.t. x1 ⊑ y. Then, writing x = x1x2, what remains, i.e., x2, is called the
“unmatched suffix” and denoted x⊖ y.

The following is immediate from the definition:

Fact A.3.1 If x 6⊑ yz then x⊖ (yz) = (x⊖ y)⊖ z.



APPENDIX A. COMBINATORICS ON SUBWORDS 124

Lemma A.3.2 Assume x 6⊑ y. Then x⊖ y ⊑ z implies x ⊑ yz.

Proof. In other words, assume x1 ⊑ y and x2 ⊑ z and conclude x = x1x2 ⊑
yz. �

Reciprocally:

Lemma A.3.3 Assume x 6⊑ y. Then x ⊑ yz implies x⊖ y ⊑ z.

Proof. If x ⊑ yz then x′ ⊑ y and x′′ ⊑ z for a factorization x′x′′ of x
(Fact A.1.1). However, if x 6⊑ y, then x = x1x2 where x2 = x⊖ y and x1
is is the longest prefix of x with x1 ⊑ z, ensuring that x′ is a prefix of x1,
hence that x2 is a suffix of x

′′. Finally, x⊖ y = x2 ⊑ x′′ ⊑ z. �

Lemma A.3.4 x 6⊑ y implies (xx′)⊖ y = (x⊖ y)x′.

Proof. Since x 6⊑ y, the prefixes of x that embed in y are exactly the pre-
fixes of xx′ that embed in y, hence their longest matched prefixes coincide.
The unmatched suffixes are x2 for x⊖ y and x2x

′ for (xx′)⊖ y. �

Lemma A.3.5 x 6⊑ y and xx′ 6⊑ yy′ imply [(x⊖ y)x′]⊖ y′ = xx′ ⊖ yy′.

Proof. By applying Lemma A.3.4: (x⊖ y)x′ = (xx′)⊖ y and Fact A.3.1:
[(xx′)⊖ y]⊖ y′ = (xx′)⊖ (yy′). �

Corollary A.3.6 x 6⊑ y and xx′ 6⊑ yy′ imply (x⊖ y)x′ 6⊑ y′.

Lemma A.3.7 x 6⊑ y and xx′ ⊑ yy′ imply (x⊖ y)x′ ⊑ y′.

Proof. If x 6⊑ y then x = x1x2 with x1 ⊑ y the matched prefix and
x2 = x⊖ y. If xx′ ⊑ yy′ then there is a factorisation xx′ = zz′ with z ⊑ y
and z′ ⊑ y′ (Fact A.1.1). Hence z is a prefix of x1 (Lemma A.3.4) so that
x2x

′ is a suffix of z′. We conclude since x2x
′ = (x⊖ y)x′. �

A.4 Decomposition

Lemma A.4.1

u.w ⊑ v.t if and only if

{
u ⊑ v and w ⊑ v ⊘ u.t

or u 6⊑ v and u⊖ v.w ⊑ t.



APPENDIX A. COMBINATORICS ON SUBWORDS 125

Proof. Assume xx′ ⊑ yy′. Then there exists a factorization yy′ = zz′ of
yy′ such that x ⊑ z and x′ ⊑ z′ (Fact A.1.1). Since yy′ = zz′, either z is a
prefix of y or z′ is a suffix of y′. In the first case, we let the interpolant w
be given by writing y = zw, so that z′ = wy′. Now, from x ⊑ z and x′ ⊑ z′,
we deduce the required xw ⊑ y and x′ ⊑ wy′. In the second case, a mirror
reasoning gives x ⊑ yw and wx′ ⊑ y′ for w obtained by writing y′ = wz′. �

A.5 Iterating factors

Lemma A.5.1 For all words x, y, z:

xy ⊑ yz if, and only if, xky ⊑ yzk for all k ∈ N.

Proof. We only need to prove the “⇒” direction. This is done by induction
on the length of y. The cases where y = ǫ or x = ǫ or k = 0 are obvious, so
we assume that |y|, |x| and k are strictly positive. There are now two cases:
1. If x ⊑ y, we consider a factorization y = y1y2 (e.g., y2 = y ⊘ x is conve-
nient) with x ⊑ y1 (hence xk ⊑ yk1) and y ⊑ y2z. Since |y2| < |y| (because
x 6= ǫ and hence y1 6= ǫ), the induction hypothesis applies and from y1y2 =
y ⊑ y2z one gets y

k
1y2 ⊑ y2z

k. Now xky ⊑ yk1y = y1y
k
1y2 ⊑ y1y2z

k = yzk.
2. If x 6⊑ y, we write x = x1x2 with x2 = x⊖ y. Thus x1 ⊑ y and x2y ⊑ z.
Thus there exists a factorization z = z1z2 s.t. x2 ⊑ z1 (entailing x ⊑ yz1)
and y ⊑ z2. Now xky ⊑ (yz1)

kz2 = yz1(yz1)
k−1z2 ⊑ yz1(z2z1)

k−1z2 = yzk.
�

Lemma A.5.2 Assume x 6⊑ y, xz 6⊑ yt, and x⊖ y ⊑ xz ⊖ yt. Then for all
k ∈ N:

xzk 6⊑ ytk. (Zk)

Furthermore, if we let rk
def
= xzk ⊖ ytk, then for all k ∈ N:

r0 ⊑ rk ⊑ rk+1. (Rk)

Proof. The hypothesis for the Lemma are that (Z0), (Z1) and (R0) hold.
We prove, by induction on k, that (Zk) and (Rk−1) imply (Zk+1) and (Rk).

Proof of (Zk+1): applying Coro. A.3.6 on (Z0) and (Z1) yields r0z 6⊑ t,
hence a fortiori rkz 6⊑ t using (Rk−1). Combining with (Zk) and applying
Lemma A.3.7 contrapositively entails xzkz 6⊑ ytkt, i.e., (Zk+1).

Proof of (Rk): rk+1 is xz
k+1 ⊖ ytk+1. By Lemma A.3.5, this is [(xzk ⊖ ytk)z]⊖ t,

i.e., rkz ⊖ t. From (Rk−1) we get rk−1z ⊖ t ⊑ rkz ⊖ t. However rk−1z ⊖ t =
rk (Lemma A.3.5). Finally rk ⊑ rk+1. �


