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Résumé en français

1.1 Introduction générale

Les vidéos 3D sont considérées comme l’évolution de la télévision conventionnelle actuelle.
Le changement radical attendu est comparé à celui qu’occasionna l’introduction de la
couleur à la télévision. Dans le cas des vidéos 3D, l’innovation majeure vient de l’apport
de l’impression de profondeur générée soit par l’exploitation du phénomène de stéréopsie
(perception de la profondeur de champ relative de deux stimuli présentés dans le champ
visuel) soit par le phénomène de parallaxe grâce à la navigation libre dans la scène.

Ainsi, les représentations telles que les vidéos multi-vues ((Multi View Video en an-
glais, il s’agit de l’ensemble de vidéos de couleur uniquement, à différents points de vue
de la même scène, noté MVV) permettent la création de vidéos 3D. Il s’agit de plusieurs
séquences vidéo conventionnelles prises avec plusieurs caméras synchronisées et à des po-
sitions différentes dans la scène. Lorsque l’on associe ces vidéos à des vidéos dites de
profondeur on parle de données Multiview Video-plus Depth, MVD. La Figure 1.1 illustre
ce type de données constitué de séquences en couleur et de séquences de profondeur.

La connaissance de la géométrie de la scène (issue des vidéos de profondeur) facilite la
génération d’images virtuelles selon des points de vue différents de ceux réellement acquis
par les caméras. A partir d’au moins une vue de couleur et de sa profondeur associée, on
peut générer une vue virtuelle, c’est-à-dire non acquise par les caméras réelles, grâce aux
algorithmes de synthèse. Ces algorithmes sont désignés par l’abréviation DIBR[Feh04],
pour Depth-Image-Based-Rendering. Dans ce document, on désigne également par ”vues
synthétisées” les vues virtuelles générées par ces algorithmes.
Ces représentations de données permettent des applications telles que la télévision tridi-
mensionnelle (3DTV) et le libre choix du point de vue (Free viewpoint video, FVV). La
TV 3D donne une impression de profondeur ou de relief à la scène alors que la FVV offre
à l’utilisateur la possibilité de choisir interactivement un point de vue arbitraire.

Les données MVD [SMS+07] sont de taille considérable et leur compression constitue
un enjeu majeur pour les chercheurs s’intéressant à cette question. Cette thèse adresse cette
problématique de compression des vidéos multi-vues avec pour pilier un souci constant du
respect de la perception humaine du media. Les études et les choix portés durant cette
thèse se veulent orientés par la recherche de la meilleure qualité perçue possible des vues
synthétisées.

Puisque les MVD contiennent des informations de la même scène, à des points de vue

vii



viii Résumé en français

Figure 1.1 – Données MVD. Les données de type MVD comportent des séquences de couleur (C0,
C1 et C2) et de profondeur (P0, P1 et P2).

légèrement différents, l’idée émergente [MSMW07b] consiste à exploiter autant que pos-
sible les redondances de ces données, d’une vue à l’autre, voire entre la couleur et la
profondeur associée d’une même vue. A ce jour, il n’existe pas de méthode de compression
de référence pour les MVD. La plupart des méthodes proposées se veulent des extensions
du standard très connu H.264 AVC [MMSW06]. Les nombreuses propositions reposent
sur l’utilisation de ce standard soit pour la compression des séquences de couleur et de
profondeur séparément, soit uniquement des séquences de couleur. En effet, concernant
la compression des séquences de profondeur, des études récentes [MMS+09] ont révélé
que l’application de méthodes originellement conçues pour la compression de la couleur,
infligent des dégradations aux cartes de profondeur. Ces dégradations entrâınent des dis-
torsions perceptibles et gênantes à l’issue d’une synthèse de vue à partir de ces séquences
de profondeur décodées.

Tout l’enjeu des travaux que nous entreprenons réside dans l’investigation de nouvelles
techniques de compression des données MVD limitant autant que possible les dégradations
perceptibles sur les vues synthétisées à partir de ces données décodées. La difficulté vient
du fait que les sources de dégradations des vues synthétisées sont d’une part multiples et
d’autre part difficilement mesurables par les techniques actuelles d’évaluation de qualité
d’images. Pour cette raison, les travaux de cette thèse s’articulent autour de deux axes prin-
cipaux : l’évaluation de la qualité des vues synthétisées ainsi que les artefacts spécifiques
et l’étude de schémas de compression des données MVD aidée de critères perceptuels.

1.2 Contributions

1.2 Evaluation de la qualité des vues synthétisées par DIBR

La synthèse de nouveaux points de vue est incontournable dans les deux applications prin-
cipales de la vidéo 3D, que sont la TV 3D et la FVV. Or la qualité de cette synthèse
est un facteur essentiel du succès de la vidéo 3D. Ainsi l’évaluation des vues synthétisées
doit reposer sur des outils fiables et adaptés. Des expériences ont été réalisées dans le
but de déterminer l’adéquation des méthodes d’évaluation de qualité reconnues pour les
media conventionnels (subjectives et objectives) dans le cas des vues synthétisées par
DIBR. Ces expériences ont été menées dans des conditions de visualisation monoscopique
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et stéréoscopique.

Dans le cas des expériences en condition de vue monoscopique, les images fixes ainsi que
les séquences vidéo ont été l’objet des tests. Dans le cas des expériences en condition de
vue stéréoscopique, seules les images stéréoscopiques fixes ont été évaluées.

La plupart des méthodes proposées pour l’évaluation des media 3D reposent sur l’ex-
tension de métriques traditionnellement appliquées aux media 2D. De précédentes études
([YHFK08, TGSM08, HWD+09]) ont estimé la fiabilité de ses métriques objectives de qua-
lité d’images. Dans [YXPW10], You et al.ont étudié l’évaluation de la qualité des paires
stéréoscopiques en condition de vue stéréoscopique en utilisant des métriques 2D, mais les
paires testées n’incluaient pas de distorsions liées aux DIBR. Dans de nombreuses études
de ce type, les protocoles expérimentaux impliquent souvent à la fois des artefacts de com-
pression de la carte de profodeur et des artefacts de compression des images de couleur
associées, différents types d’écrans 3D, et différentes représentations de vidéos 3D (2D+Z,
stéréoscopique, MVD, etc...). Dans ces cas d’étude, les scores de qualité subjective obtenus
sont alors comparés aux scores de qualité objective, dans le but de trouver une corrélation
et de valider la pertinence de l’utilisation des métriques 2D testées. Cependant, les arte-
facts liés au processus de synthèse et ceux liés à la quantification des données de couleur
et de profondeur sont mesurés en même temps et sans distinction.

Les expériences réalisées dans cette étude concernent les vues synthétisées par différents
algorithmes DIBR, à partir de données n’ayant pas subi de compression. Ces vues sont ob-
servées en monoscopique (sur un écran conventionnel), et en stéréoscopique (sur un écran
stéréoscopique).

Protocoles expérimentaux

Trois séquences MVD ont été utilisées. Il s’agit de Book Arrival (1024x768, 16 caméras
espacées de 6.5 cm), Lovebird1 (1024x768, 12 caméras espacées de 3.5 cm) et Newspaper
(1024x768, 9 caméras espacées de 5 cm). Sept algorithmes DIBR ont chacun permis la
génération de quatre nouveaux points de vue, pour chaque séquence. On leur assigne une
étiquette allant de A1 à A7 :

� A1 : repose sur l’algorithme présenté dans Fehn [Feh04], la carte de profondeur est
pré-traitée par un filtre passe-bas. Les bords de l’image sont coupés et une méthode
d’interpolation permet d’atteindre la taille originale de l’image.

� A2 : repose sur l’algorithme présenté dans Fehn [Feh04]. Les bords de l’image sont
extrapolés par inpainting avec la méthode de [Tel04].

� A3 : Tanimoto et al. [MFY+09], est la méthode utilisée en tant que software de
référence dans les expériences du groupe 3DV de MPEG.

� A4 : Müller et al.[MSD+08], propose une méthode de remplissage aidée de l’infor-
mation de profondeur.

� A5 : Ndjiki-Nya et al [NNKD+10], propose une méthode de remplissage basée sur
des patchs de synthèse.



x Résumé en français

� A6 : Köppel et al.[KNND+10], utilise l’information de profondeur dans le domaine
temporel pour améliorer la synthèse des zones découvertes.

� A7 : correspond aux séquences pour lesquelles les zones découvertes ne sont pas
remplies (donc avec des trous).

Les tests ont été conduits suivant les recommandations de l’ITU. Pour les évaluations
de qualité subjective en condition monoscopique, les stimuli ont été présentés sur l’écran
TVLogic LVM401W, selon ITU-T BT.500 [BT.93]. Pour les évaluations de qualité subjec-
tive en condition stéréoscopique, les stimuli ont été présentés sur l’écran Acer GD245HQ
screen, avec NVIDIA 3D Vision Controller. Dans la suite, les méthodes d’évaluation sub-
jective sont présentées puis les métriques objectives sont définies. Les mesures objectives
de qualité ont été obtenues grâce à l’outil MetriX MuX Visual Quality Assessment Package
[Mux].

Méthodologies d’évaluation subjective de qualité d’images

En l’absence de méthode d’évaluation adaptée aux conditions particulières de la 3D,
l’évaluation des vues synthétisées repose sur des méthodes reconnues d’évaluation de media
2D. Le tableau 1.1 répertorie les méthodologies couramment utilisées pour l’évaluation des
media 2D. Nos expériences remettent en cause la fiabilité de deux méthodes sélectionnées
selon des études comparatives de la litérature, dans un cas d’utilisation différent, c’est-à-
dire celui des vues synthétisées par DIBR. Cette sélection a été motivée par leur fiabilité,
leur précision, leur efficacité ainsi que leur facilité de mise en œuvre.

Abbrev. Dénomination complète Ref.

DSIS Double Stimulus Impairment Scale [BT.93]

DSCQS Double Stimulus Continuous Quality Scale [BT.93]

SSNCS Single Stimulus Numerical Categorical Scale [BT.93]

SSCQE Single Stimulus Continuous Quality Evaluation [BT.93]

SDSCE Simultaneous Double Stimulus for Continuous Evaluation [BT.93]

ACR Absolute Category Rating [ITU08]

ACR-HR Absolute Category Rating with Hidden Reference removal [ITU08]

DCR Degradation Category Rating [ITU08]

PC Pair Comparison [ITU08]

SAMVIQ Subjective assessment Methodology for Video Quality [ITU08]

Table 1.1 – Méthodes d’évaluation subjective de la qualité pour les media 2D.

Brotherton et al.[BHHB06] ont étudié la pertinence des méthodes ACR et SAMVIQ pour
l’évaluation des méthodes 2D. Les résultats ont montré que la méthode ACR permet de
présenter plus de stimuli que la méthode SAMVIQ. Dans l’étude [HGS+11], les résultats
ont montré que la méthode ACR rend des scores fiables, peu importe l’échelle (5 points
discrets, 5 points continus, 11 points discrets, onze points continus).

Dans notre étude, nous considérons les méthodes ACR-HR et Paired Comparisons (PC)
pour leur précision.

Absolute Categorical Rating with Hidden Reference Removal (ACR-HR). Cette
méthode consiste à présenter un seul stimulus à la fois aux observateurs. Les objets sont
notés indépendamment selon une échelle de catégories. L’image de référence de chaque
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5 Excellent
4 Bon
3 Moyen
2 Médiocre
1 Mauvais

Table 1.2 – Echelle des catégoris pour la méthode ACR-HR

stimulus est inclue dans la série de stimuli à noter, mais l’observateur n’en a pas connais-
sance. D’oú le terme anglais de hidden reference (référence cachée litéralement). A partir
des scores obtenus par tous les observateurs, on peut calculer le score moyen MOS (mean
opinion score) et le score différentiel DMOS (Differential Mean Opinion Score qui est une
différence entre le MOS pour un stimulus et le score obtenu pour sa référence). L’échelle
à 5 catégories recommandée par ITU est représentée dans le Tableau 1.2.

La méthode ACR requiert un nombre suffisant d’observateurs pour minimiser l’effet contex-
tuel (les stimuli précédemment visionnés influencent le jugement de la qualité des stimuli
suivants, l’ordre de présentation des stimuli influence le jugement des observateurs). La
précision des résultats augmente avec le nombre de participants.

Paired Comparisons (PC). Dans cette méthode, les stimuli sont présentés par paires
à l’observateur. L’observateur sélectionne le stimulus de la paire qui satisfait le mieux le
critère de jugement demandé (par l’exemple la meilleure qualité d’image). Les résultats
des comparaisons par paires sont stockés dans une matrice : chaque élément correspond à
la fréquence à laquelle un stimulus est préféré à un autre. Ces données sont ensuite conver-
ties vers une échelle de valeurs en utilisant le modèle Thurstone-Mosteller ou le modèle
Bradley-Terry’s [Han01]. On obtient un continuum perceptuel hypothétique de valeurs de
MOS.
Dans nos expériences, on utilise le modèle Thurstone-Mosteller et on demande aux obser-
vateurs de choisir le stimulus qu’il préfèrent dans chaque paire présentée. Bien que cette
méthode soit reconnue pour sa précision, elle est chronophage puisque le nombre de com-
paraisons à effectuer augmente avec le nombre de stimuli à évaluer.

Les métriques objectives utilisées dans ces expériences ont été choisies pour leur popu-
larité et pour leur dispponibilité. Elles sont répertoriées dans le Tableau 1.3 avec une
croix. Les métriques choisies comportent à la fois des méthodes strictement basées ”si-
gnal”, des méthodes basées sur des principes de la perception humaine des images, des
méthodes basées sur l’analyse de la structure des images, des méthodes reposant sur des
modélisations du système visuel humain (HVS pour human visual system). La Figure 1.2
illustre cette classification. Les expériences en condition monoscopique ont été menées avec
43 observateurs pour les images fixes et 32 pour les séquences vidéo. Le Tableau 1.4 résume
les informations relatives aux expériences en condition monoscopique. On désigne par key
frames les images fixes arbitrairement choisies dans la séquence vidéo. Les expériences en
condition stéréoscopique ont été menées avec 25 observateurs. Le Tableau 1.5 résume les
informations relatives aux expériences en condition stéréoscopique.
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Objective metric Abbrev. Tested

Signal Peak Signal to Noise Ratio PSNR X

Perception humaine

Universal Quality Index UQI X
Information Fidelity Criterion IFC X
Video Quality Metric VQM X
Perceptual Video Quality Measure PVQM

Structure

Single-scale Structural SIMilarity SSIM X
Multi-scale SSIM MSSIM X
Video Structural Similarity Measure V-SSIM X
Motion-based Video Integrity Evaluation MOVIE

HVS

PSNR- Human Visual System PSNR-HVS X
PSNR-Human Visual System Masking model PSNR-HVSM X
Visual Signal to Noise Ratio VSNR X
Weighted Signal to Noise Ratio WSNR X
Visual Information Fidelity VIF X
Noise Quality Measure NQM X
Moving Pictures Quality Metric MPQM

Table 1.3 – Liste de méthodes d’évaluation de qualité objective d’images et de vidéos couramment
utilisées.

Figure 1.2 – Classification possible des métriques de qualité selon la proposition de [P0́8].
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Expérience
1(images fixes)

Expérience
2 (séquences
vidéo)

Stimuli Key frames
de chaque vue
synthétisée

Séquence de la vue
synthétisée

Tests subjectifs
Nb. de par-
ticipants

43 32

Méthodes ACR-HR, PC ACR-HR
Mesures objectives Toutes les

métriques dis-
ponibles de MetriX
MuX

VQM, VSSIM,
ET les métiques
d’images fixes

Table 1.4 – Présentation des expériences en condition monoscopique.

Expérience 3(images fixes
stéréoscopiques)

Stimuli Les paires stéréoscopiques sont
composées des key frames de
chaque vue synthétisée (à droite
ou à gauche) , et de la vue origi-
nale droite ou gauche correspon-
dante

Tests subjectifs
Nb. de par-
ticipants

25

Méthodes ACR-HR
Mesures objectives Toutes les métriques disponibles

de MetriX MuX

Table 1.5 – Présentation des expériences en condition stéréoscopique.
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Résultats

Les résultats obtenus en condition monoscopique avec les images fixes sont illustrés dans
le Tableau 1.6 et ceux obtenus avec les séquences vidéo sont répertoriés dans le Tableau 1.7.

Dans le tableau 1.6, on donne les scores obtenus à partir des méthodes d’évaluation de
qualité objective et subjective ainsi que le classement des algorithmes DIBR selon les
scores de qualité obtenus. Dans le cas de la vidéo comme des images fixes, on constate
que les métriques objectives sont cohérentes entre elles. Les classements obtenus par les
méthodes d’évaluation de la qualité subjective (DMOS et PC) - dans le cas des images fixes
- sont également cohérents entre eux. En revanche, on remarque que les classements issus
des méthodes d’évaluation de la qualité subjective sont sensiblement différents des classe-
ments obtenus à partir des métriques objectives. En particulier, l’algorithme A1 est classé
par les métriques objectives comme étant l’algorithme donnant les pires dégradations.
Pourtant les méthodes d’évaluation de qualité subjective le classent comme étant celui
donnant les dégradations les moins gênantes. Ceci peut s’expliquer par le fait que l’algo-
rithme A1 réalise la syntèse de la vue en coupant les bords de l’image puis en interpolant
l’image pour atteindre la taille originale. Ceci induit des déplacements d’objets, des chan-
gement de taille d’objets. Bien que les objets de la scène semblent de qualité correcte aux
observateurs, les métriques objectives, basées sur le signal, pénalisent ces déplacements
d’objets.

A1 A2 A3 A4 A5 A6 A7
DMOS 3.572 3.308 3.145 3.401 3.496 3.320 2.277

Classement 1 5 6 3 2 4 7
PC 1.776 0.779 0.338 0.825 1.745 0.610 -2.943

Classement 1 4 6 3 2 5 7
PSNR 18.752 24.998 23.180 26.117 26.171 26.177 20.307

Classement 7 4 5 3 2 1 6
SSIM 0.638 0.843 0.786 0.859 0.859 0.858 0.821

Classement 7 4 6 1 2 3 5
MSSIM 0.648 0.932 0.826 0.950 0.949 0.949 0.883

Classement 7 4 6 1 2 3 5
VSNR 13.135 20.530 18.901 22.004 22.247 22.195 21.055

Classement 7 5 6 3 1 2 4
VIF 0.124 0.394 0.314 0.425 0.425 0.426 0.397

Classement 7 5 6 2 3 1 4
VIFP 0.147 0.416 0.344 0.448 0.448 0.448 0.420

Classement 7 5 6 2 3 1 4
UQI 0.352 0.672 0.589 0.606 0.605 0.606 0.673

Classement 7 2 6 3 5 4 1
IFC 0.757 2.420 1.959 2.587 2.586 2.591 2.423

Classement 7 5 6 2 3 1 4
NQM 8.713 16.334 13.645 17.074 17.198 17.201 10.291

Classement 7 4 5 3 2 1 6
WSNR 13.817 20.593 18.517 21.597 21.697 21.716 15.588

Classement 7 4 5 3 2 1 6
PSNR HSVM 13.772 19.959 18.362 21.428 21.458 21.491 15.714
Classement 7 4 5 3 2 1 6
PSNR HSV 13.530 19.512 17.953 20.938 20.958 20.987 15.407
Classement 7 4 5 3 2 1 6

Table 1.6 – Classement des algorithmes selon les mesures de qualité (images fixes).

Les résultats obtenus en condition stéréoscopique avec les images fixes sont illustrés
dans le Tableau 1.8. La remarque essentielle qui découle de l’analyse de ces résultats
concerne la différence de classement des algorithmes par les méthodes d’évaluation de la
qualité subjective entre les conditions monoscopique et stéréoscopique. En particulier, les
algorithmes les moins bien classés par ces méthodes en monoscopique, se retrouvent mieux
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A1 A2 A3 A4 A5 A6 A7
DMOS 3.523 3.237 2.966 2.865 2.789 2.956 2.104

Classement 1 2 3 5 6 4 7
PSNR 19.02 24.99 23.227 25.994 26.035 26.04 20.89

Classement 7 4 5 3 2 1 6
SSIM 0.648 0.844 0.786 0.859 0.859 0.859 0.824

Classement 7 4 6 1 1 1 5
MSSIM 0.664 0.932 0.825 0.948 0.948 0.948 0.888

Classement 7 4 6 1 1 1 5
VSNR 13.14 20.41 18.75 21.786 21.965 21.968 20.73

Classement 7 5 6 3 2 1 4
VIF 0.129 0.393 0.313 0.423 0.423 0.424 0.396

Classement 7 5 6 2 2 1 4
VIFP 0.153 0.415 0.342 0.446 0.446 0.446 0.419

Classement 7 5 6 1 1 1 4
UQI 0.359 0.664 0.58 0.598 0.598 0.598 0.667

Classement 7 5 6 3 3 3 1
IFC 0.779 2.399 1.926 2.562 2.562 2.564 2.404

Classement 7 5 6 2 2 1 4
NQM 8.66 15.933 13.415 16.635 16.739 16.739 10.63

Classement 7 4 5 3 1 1 6
WSNR 14.41 20.85 18.853 21.76 21.839 21.844 16.46

Classement 7 4 5 3 2 1 6
PSNR HSVM 13.99 19.37 18.361 21.278 21.318 21.326 16.23
Classement 7 4 5 3 2 1 6
PSNR HSV 13.74 19.52 17.958 20.795 20.823 20.833 15.91
Classement 7 4 5 3 2 1 6

VSSIM 0.662 0.879 0.809 0.899 0.898 0.893 0.854
Classement 7 4 6 1 2 3 5

VQM 0.888 0.623 0.581 0.572 0.556 0.557 0.652
Classement 7 5 4 3 1 2 6

Table 1.7 – Classement des algorithmes selon les mesures de qualité (séquences vidéo)

classés en stéréoscopique. On suppose que les artefacts gênants en monoscopique peuvent
être masqués en stéréoscopique. Une autre hypothèse possible concerne les informations
stéréoscopiques contradictoires qui peuvent causer une gêne visuelle et conduire à des
scores plus faibles. En effet, dans le cas de l’algorithme A1, les vues synthétisées impliquant
un déplacement relatif ou un changement de taille relatif des objets, les correspondances
stéréoscopiques sont difficilement gérées par le système visuel humain.

Des analyses supplémentaires ont été menées pour estimer la fiabilité des méthodes
utilisées (pour la qualité subjective et la qualité objective). Les tableaux 1.9, 1.10 et 1.11
concernent l’étude de la fiabilité des méthodes d’évaluation de la qualité subjective. Les
tableaux 1.12, 1.13 et 1.14 concernent l’étude de la fiabilité des méthodes d’évaluation de
la qualité objective.

Dans les tableaux 1.9, 1.10 et 1.11, les nombres entre parenthèse indiquent le nombre
minimum d’obsevateurs requis pour atteindre une distinction statistique entre deux dis-
tributions données (en sachant que VQEG recommande un minimum de 24 participants
dans le Multimedia Test Plan [Gro], on note en gras les valeurs supérieurs à 24) . Ces
tableaux montrent que dans la plupart des cas, plus de 24 observateurs sont requis pour
obtenir une distinction statistique entre deux distributions (relatives à deux algorithmes
de synthèse).

Dans les tableaux 1.12, 1.13 et 1.14 les coefficients de corrélation de Pearson entre les scores
subjectifs et les scores objectifs sont présentés. On constate que les métriques objectives
ne sont pas corrélées avec les notes subjectives. Ces résultats suggèrent que les métriques
objectives ne sont pas adaptées à l’évaluation des media incluant des artefacts liés au pro-
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A1 A2 A3 A4 A5 A6 A7
DMOS 3.647 3.637 3.660 3.678 3.658 3.662 3.548

Classement 5 6 3 1 4 2 7
PSNR 18.752 24.998 23.180 26.117 26.171 26.177 20.307

Classement 7 4 5 3 2 1 6
SSIM 0.638 0.843 0.786 0.859 0.859 0.858 0.821

Classement 7 4 6 1 2 3 5
MSSIM 0.648 0.932 0.826 0.950 0.949 0.949 0.883

Classement 7 4 6 1 2 3 5
VSNR 13.135 20.530 18.901 22.004 22.247 22.195 21.055

Classement 7 5 6 3 1 2 4
VIF 0.124 0.394 0.314 0.425 0.425 0.426 0.397

Classement 7 5 6 2 3 1 4
VIFP 0.147 0.416 0.344 0.448 0.448 0.448 0.420

Classement 7 5 6 2 3 1 4
UQI 0.352 0.672 0.589 0.606 0.605 0.606 0.673

Classement 7 2 6 3 5 4 1
IFC 0.757 2.420 1.959 2.587 2.586 2.591 2.423

Classement 7 5 6 2 3 1 4
NQM 8.713 16.334 13.645 17.074 17.198 17.201 10.291

Classement 7 4 5 3 2 1 6
WSNR 13.817 20.593 18.517 21.597 21.697 21.716 15.588

Classement 7 4 5 3 2 1 6
PSNR HSVM 13.772 19.959 18.362 21.428 21.458 21.491 15.714
Classement 7 4 5 3 2 1 6
PSNR HSV 13.530 19.512 17.953 20.938 20.958 20.987 15.407
Classement 7 4 5 3 2 1 6

Table 1.8 – Classement des algorithmes selon les mesures de qualité (images fixes stéréoscopiques).

cessus de synthése DIBR. La difficulté vient du fait que les sources de dégradation des
vues synthétisées sont d’une part multiples (dans le sens où les types d’artefacts varient
selon les stratégies) et localisées le long des bords des objets de la scène.

A1 A2 A3 A4 A5 A6 A7
A1 ↑(32) ↑(<24) ↑(32) o (>43) ↑(30) ↑(<24)
A2 ↓(32) ↑(<24)o (>43)o (>43)o (>43) ↑(<24)
A3 ↓(<24) ↓(<24) ↓(<24) ↓(<24) ↓(<24) ↑(<24)
A4 ↓(32) o(>43)↑(<24) o(>43) o(>43) ↑(<24)
A5o(>43)o(>43)↑(<24) o(>43) ↑(28) ↑(<24)
A6 ↓(30) o(>43)↑(<24)o (>43) ↓(28) ↑(<24)
A7 ↓(<24) ↓(<24) ↓(<24) ↓ (<24) ↓(<24) ↓(<24)

Table 1.9 – Résultats du test de Student avec les résultats de l’ACR-HR (images fixes). Légende :↑ :
supérieur, ↓ : inférieur, o : statistiquement équivalent. Lecture : Ligne”1” est statistiquement supérieur à colonne
”2”. La distinction est stable quand ”32” observateurs participent.

A1 A2 A3 A4 A5 A6 A7
A1 ↑(<24) ↑(<24) ↑(<24) ↑(<24) ↑(<24) ↑(<24)
A2↓(<24) ↑(28) o(<24) ↓(<24)o(>43)↑(<24)
A3↓(<24) ↓(28) ↓(<24) ↓(<24) ↓(<24) ↑(<24)
A4↓(<24)o(>43)↑(<24) ↓(<24) ↑(43) ↑(<24)
A5↓(<24) ↑(<24) ↑(<24) ↑(<24) ↑(<24) ↑(<24)
A6↓(<24)o(>43)↑(<24)↓(<43)↓(<24) ↑(<24)
A7↓(<24) ↓(<24) ↓(<24) ↓(<24) ↓(<24) ↓(<24)

Table 1.10 – Résultats du test de Student avec les résultats des ?Paired comparisons? (images
fixes). Légende :↑ : supérieur, ↓ : inférieur, o : statistiquement équivalent. Lecture : Ligne”1” est statistiquement
supérieur à colonne ”2”. La distinction est stable quand ”32” observateurs participent.
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A1 A2 A3 A4 A5 A6 A7
A1 ↑(7) ↑(3) ↑(3) 2 ↑(3) ↑(1)
A2↓(7) ↑(2) ↑(2) ↑(1) ↑(2) ↑(1)
A3↓(3)↓(2) o(>32) ↑(9) o(>32) ↑(1)
A4↓(3)↓(2)o(>32) o(>32)o(>32) ↑(1)
A5↓(2)↓(1) ↓(9) o(>32) ↑(15) ↑(1)
A6↓(3)↓(2)o(>32)o(>32) ↑(15) ↑(1)
A7↓(1)↓(1) ↓(1) ↓ (1) ↓(1) ↓(1)

Table 1.11 – Résultats du test de Student avec les résultats de l’ACR-HR (séquences video).
Légende :↑ : supérieur, ↓ : inférieur, o : statistiquement équivalent. Lecture : Ligne”1” est statistiquement inférieure
á la colonne”2”. La distinction est stable quand ”32” observateurs participent.

PSNR SSIM MSSIM VSNR VIF VIFP UQI IFC NQM WSNR PSNRHV SM PSNRHV S
CCDMOS 50.0 40.4 57.4 35.0 31.3 22.2 19.1 22.3 57.2 47.7 44.3 42.7
CCPC 36.4 23.1 43.2 16.8 18.2 18.3 24.8 17.7 37.9 33.9 37.5 36.6

Table 1.12 – Coefficients de corrélation de Pearson entre les scores DMOS et les scores objectifs
en pourcentage (images fixes).

PSNR SSIM MSSIM VSNR VIF VIFP UQI
CCDMOS 33.80 40.84 49.95 38.87 27.01 20.00 28.70

IFC NQM WSNR PSNRHV SM PSNRHV S VSSIM VQM
CCDMOS 21.68 41.15 27.98 31.47 29.76 39.37 43.41

Table 1.13 – Coefficients de corrélation de Pearson entre les scores DMOS et les scores objectifs
en pourcentage (séquences video).

PSNR SSIM MSSIM VSNR VIF VIFP
CCDMOS 46.98 45.06 60.86 26.44 38.46 42.96

UQI IFC NQM WSNR PSNRHV SM PSNRHV S
CCDMOS 31.72 40.96 52.66 51.58 46.59 46.13

Table 1.14 – Coefficients de corrélation de Pearson entre les scores DMOS et les scores objectifs
en pourcentage (images fixes stéréoscopiques).

Conclusion

Les études présentées dans cette sous-section cherchaient à déterminer la pertinence de
l’utilisation des méthodes d’évaluation de qualité d’images/vidéo, généralement employées
en imagerie 2D, pour le cas spécifique des vues synthétisées. Les résultats ont montrés que
les métriques objectives de qualité ne parviennent pas à prédire de façcon fiable la qualité
perçue par des observateurs. Il s’est également avéré que les artéfacts non gênants en
visualisation monoscopique pouvaient l’être en visualisation stéréoscopique. Par ailleurs,
le nombre de participants aux tests d’évaluation subjective de qualité s’est révélé supérieur
aux recommandations de VQEG, d’après nos analyses statistiques.

1.2 Compression des cartes de profondeur basée sur la méthode LAR

En l’absence de méthode de compression normalisée pour les données MVD, on se pro-
pose dans ces travaux de thèse d’adresser le problème de la compression des cartes de
profondeur. La plupart des méthodes proposées dans la litérature reposent sur des ex-
tensions de codecs de l’état de l’art pour les images ou vidéos 2D. La plus populaire est
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H264/AVC [STL04] dont l’extension 3D ( H.264/MVC pour Multi-view Video Coding)
pour les données MVV a fait l’objet de nombreuses adaptations [MMSW06] pour la com-
pression des données MVD [MSD+09] sans réaliser un gain suffisant. Actuellement, l’orga-
nisme de standardisation MPEG considére la normalisation d’un nouveau standard pour les
MVD : 3DVC. De récentes études ont montré que les méthodes de codage couramment uti-
lisées pour les medias 2D, appliquées aux cartes de profondeur, induisent des dégradations
gênantes à l’issue de la synthèse de vue. En effet la difficulté de conception d’une méthode
robuste réside essentiellement dans le fait que l’impact des dégradations de compression
sur les données de profondeur peut être fatal à la qualité de la vue synthétisée, comme
cela a été montré dans de récentes études [MMS+09]. Dans ces travaux de thèse, nous pro-
posons deux extensions d’une méthode de compression dont l’efficacité a été prouvée pour
le cas des images fixes conventionnelles. Nous y apportons des modifications permettant
son adaptation à l’encodage des cartes de profondeur. les deux méthodes proposées ont été
baptisées Z-LAR et Z-LAR-RP. Elles sont nées de l’étude méticuleuse des performances
de la méthode de base pour l’encodage des cartes de profondeur.

Les deux méthodes proposées sont basées sur une représentation de l’image par un quad-
tree noté Quad-tree[Nmax...Nmin]. La décomposition du quad-tree repose sur un critére de
d’homogénéité. Soit Quad-tree[Nmax...Nmin] le quad-tree, où Nmax et Nmin sont les tailles
maximum et minimum permises pour les blocs du quad-tree, respectivement. Soit I(x, y)
le pixel de coordonnées (x, y) dans l’image I et I(bN (i, j)) est le bloc bN (i, j) dans l’image
I, comme décrit ci-dessous :

bN (i, j) = {(x, y) ∈ Nx ×Ny | N × (i+ 1), et N × j ≤ y ≤ N × (j + 1)} (1.1)

La décomposition du quad-tree repose sur la détection de l’activité locale. On considère
un support, la différence entre la valeur de luminance maximale et la valeur de luminance
minimale de ce support est calculée. Pour une partition donnée Quad-tree[Nmax...Nmin] de
l’image I, pour tout pixel I(x, y), la taille du bloc auquel un pixel appartient est exprimée
par :

Size(x, y) =


N ∈ [Nmax . . . Nmin[ if
|max

(
I(bN (b xN c, b

y
N c))

)
−min

(
I(bN (b xN c, b

y
N c))

)
≤ Y

et si ∃(k,m) ∈ {0, 1}2
|max

(
I(bN (bx+k

N/2 c, b
y+m
N/2 c))

)
−min

(
I(bN (b xN c, b

y
N c))

)
> Y

Nmin sinon.

(1.2)

où min
(
I(bN (i, j))

)
et max

(
I(bN (i, j))

)
sont les valeurs minimales et maximales du bloc

I(bN (i, j)) respectivement, et Y est le seuil d’homogénéité. La valeur du seuil utilisée
pour réaliser la décomposition du quad-tree détermine la représentation finale de l’image.
Dans la méthode LAR, l’image étant considérée comme composée d’une image de basse
résolution et d’une image contenant les détails, l’image de basse résolution de l’image I
(i.e., notée l’image flat) est obtenue en affectant à chaque bloc du quad-tree la valeur
moyenne de ses pixels. Soit LR l’image de basse résolution, chacun de ses pixels LR(x, y)
est défini par :

LR(x, y) =
l

N2

N−1∑
k=0

N−1∑
m=0

I(b x
N
c ×N + k, b y

N
c ×N +m) (1.3)

où N = Size(x, y). Le schéma de base de la méthode LAR a donné suite à de nombreux
travaux d’extension parmi lesquels le profil pyramidal. Il a été conu̧ pour augmenter les
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Algorithm 1.1: Prediction of lowest level of the pyramidal decomposition

Require: L̃l is the estimated representation of the image at the decoder side, for level l,
Quad-tree[Nmax...Nmin] is the quad-tree partition.
for l = lmax . . . l1 do

Estimate L̃l as in the LAR method
end for
for each block of Quad-tree[Nmax...Nmin] such as N = Nmax . . . Nmin do

Given Quad-tree[Nmax...Nmin] , then L̃0(bN (i, j)) = L̃1

end for
for each block of Quad-tree[Nmax...Nmin] such as N = Nmin do
L̃0(b(Nmin)(i, j)) = Mean value of the closest block bN of Quad-tree[Nmax...Nmin]

such as N > Nmin

end for
return L̃0

capacités de scalabilité et adresser la compression sans pertes. On connâıt ses extensions
sous le nom de Interleaved S+P [BDR05, PBD+08] et RWHaT+P [DBBC08]. Dans la
suite, nous utiliserons le profil dit Interleaved S+P.

Les deux méthodes que nous proposons dans ces travaux remettent en cause la stratégie de
distribution du débit et sont basées sur la même approche pour adresser le problème. En
effet, dans les travaux précédents de Pasteau et al. [PBD+10], la stratégie recommandée
consiste à appliquer un pas de quantification dépendant de la taille des blocs du quad-tree,
pour les images conventionnelles. Bien que cette méthode ait montré son efficacité pour
les images conventionnelles, nos études ont montré que cette approche n’est pas adaptée
à l’encodage des cartes de profondeur. En effet, cette méthode, basée sur des observations
des propriétés du système visuel humain, inflige des quantifications grossières aux plus
petits blocs. Or les petits blocs de la carte de profondeur correspondent aux frontières de
discontinuité très importantes pour la phase de synthèse de point de vue virtuel. Pour cette
raison, nous proposons de modifier cette stratégie pour privilégier une représentation de
l’image variable en fonction du débit cible. En effet, en augmentant la valeur du seuil d’ho-
mogénéité Y , on peut réaliser un gain de débit tout en conservant les éléments essentiels
la structure de la carte de profondeur.

Z-LAR : une nouvelle méthode pour l’encodage des cartes de profondeur

L’approche dite Z-LAR propose d’utiliser le profil pyramidal de la méthode LAR et d’enco-
der la pyramide jusqu’au niveau directement supérieur à la pleine résolution. L’Algorithme
1.1 rappelle les étapes fondamentales de l’approche pour atteindre la pleine résolution.
Un filtre est ensuite appliqué pour éliminer l’effet de bloc au niveau des plus petits blocs
décodés. Ce filtre multilatéral prend en compte l’information de la couleur décodée associée
à la profondeur. la couleur peut être encodée via toute méthode d’encodage d’images de
l’état de l’art. Le filtre utilisé est défini par l’équation Eq. 1.5. L’image de couleur décodée
est notée C̃ L’image filtrée est notée L̃0r et chaque pixel est noté L̃0r (x, y). On définit
également Ω l’ensemble de pixels tels que :

Ω = L̃0(x, y)
∣∣∣L̃0 (x, y) ∈ L̃0

(
bN (i, j)

)
, N ∈ [Nmin . . . 4] (1.4)
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Figure 1.3 – Schéma global de la schéma proposée.

∀ L̃0 (x, y) ∈ Ω,

L̃0r (x, y) = L̃0r (p) =
1

K

∑
q∈Γ

L̃0 (p)e
− ‖p−q‖

2σd e−
‖L̃0(p)−L̃0(q)‖

2σs e−
‖Luma(p)−Luma(q)‖

2σc

(1.5)

avec

K =
∑
q∈Γ

e
− ‖p−q‖

2σd e−
‖L̃0(p)−L̃0(q)‖

2σs e−
‖Luma(p)−Luma(q)‖

2σc (1.6)

où Γ est le support utilisé pour le calcul ; Luma est la luminance de la couleur décodée ;
Luma(p) et Luma(q) sont les pixels de luminance de la couleur décodée ; σd, σs, σc sont les
écart-type relatifs au domaine spatial, au domaine des valeurs de la profondeur (similarité
des valeurs de profondeur), et le domaine des valeurs de la couleur, respectivement. La
figure 1.3 donne un schéma global de la méhode proposée. Dans cette figure, à l’étape
d’encodage, les blocs noirs correspondent aux blocs non-encodés.

La méthode a été comparée à la méthode H.264/AVC en intra et a donné de meilleurs
résultats en termes de qualité visuelle. Les métriques objectives (PSNR et VIF) ont donné
des résultats contradictoires puisque le PSNR juge la méthode proposée moins acceptable
que la méthode H.264 ; alors que le VIF donne la méthode proposée comme étant meilleure.
En particulier cette étude a prouvé que notre méthode élimine les artefacts de crénelage
le long des discontinuités des objets.
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Z-LAR-RP : la prédiction hiérarchique basée région dans Z-LAR

Dans cette nouvelle approche, nous cherchons à la fois à permettre la multirésolution en
tirant parti de l’encodage des niveaux de la pyramide et à augmenter les performances en
termes de qualité de vue synthétisée et de gain en simplicité de traitement. On peut donc,
avec la méthode proposée, encoder des niveaux de la pyramide LAR supérieurs à la pleine
résolution et réaliser des économies de débit. La taille originelle de l’image est atteinte
grâce à une méthode basée sur la connaissance des régions de l’image. La figure 1.4 donne
un schéma global de la méthode employée.

encoded LAR stream Decode LAR stream according to 
LAR pyramidal profile

Quad-tree Ll

~

Region segmentation

Region map filttering

Region based prediction of lowest pyramid levels
until full resolution is reached

R

R
~

L0
~

decoded color information

Figure 1.4 – Schéma global de la schéma proposée.

La méthode de segmentation de régions utilisée dans cette approche se base sur les
travaux de Strauss [Str11]. Elle est appliquée au quad-tree décodé de la profondeur. La
particularité de cet algorithme tient du fait qu’il ne requiert que l’information structurelle
de l’image, qui est contenue dans le quad-tree. Or ce quad-tree est un composant du flux
LAR encodé. Au décodeur on peut donc décoder le quad-tree et appliquer cet algorithme
pour obtenir une carte de régions R. Nous utilisons cette carte de régions pour décoder
les niveaux successifs de la pyramide de la carte de profondeur. Nous réalisons ensuite un
raffinement de cette carte de régions R en utilisant la couleur décodée associée à la carte
de profondeur couramment décodée zfin de mettre en cohérence les contours de la carte
de profondeur et ceux de l’image d écodée de couleur associée. Notons chaque pixel de R
comme R(i, j) ou bien comme R(p). La carte de régions filtrée est notée R̃.
Pour chaque pixel, un support Γp est considéré, qui est une fenêtre de pixels centrée sur le
pixel couramment traité. La composante de la luminance Luma de la couleur décodée est
utilisée pour estimer la similarité des pixels voisins. L’algorithme 1.2 a pour but d’affecter
à chaque pixel de la carte de régions l’étiquette de région la plus probable selon la région
d’appartenance des voisins. La distance au pixel central et la similarité de la couleur des
voisins sont pris en compte. Cette contrainte est exprimée par les facteurs σc and σd
respectivement.

Les niveaux lmax à lmin de la pyramide sont encodés et transmis. Le niveau lmin peut
être choisi librement entre 1 et lmax − 1. Le décodage de la pleine résolution de la carte
de profondeur est possible grâce à la carte des régions filtrée. Tout pixel de coordonnées
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Algorithm 1.2: Filtrage de la carte de régions en fonction de la couleur décodée

Require: R the region map with Nregions labels ;
W [Nregions] the array of region weights ;
Luma the associated decoded texture image
Initializations
Temp(p) = Temp(i, j) = R(p) = R(i, j) | {(i, j) ∈ Nx ×Ny}
W [k] = 0|{k ∈ [1 . . . Nregions]}
for all p ∈ R do

for all q ∈ Γp do
r = R(q)

W [r] = W [r] + e
− ‖p−q‖

2σd e−
‖Luma(p)−Luma(q)‖

2σc

end for
Find r̃ | r̃ = argmax

k∈[1...Nregions]
W [k]

Temp(p) = r̃
Reset tous les éléments de W à 0

end for
R̃(i, j) = Temp(i, j) | {(i, j) ∈ Nx ×Ny}
return R̃

(i, j) est noté p. L̃lmin le niveau le plus bas de la pyramide réllement encodé et transmis,
avec lmin ≥ 1, l = 0 étant la pleine résolution. Le bloc bN (i, j) est décrit par l’équation 1.1
et N est la taille du bloc définie par l’équation 1.2. Pour chaque pixel,un support Γp est
considéré, qui est une fenêtre de pixels centrée sur le pixel couramment traité. K est un
facteur de normalisation :

K =
∑
q∈Γ2

δp(q)e
− ‖p−q‖

2σ1 e
−‖L̃l(p)−L̃l(q)‖

2σ2 , (1.7)

où δp(q) la fonction d’existance définie par :

δp(q) =

{
1 if R̃(p) = R̃(q)
0 sinon

(1.8)

La reconstruction du niveau le plus bas est donc une somme pondérée de la valeur
de profondeur des pixels voisins. Les pixels voisins ne contribuent à cette somme que s’ils
appartiennent à la même étiquette de région dans l’image de pleine résolution.

1.2 Relations entre la couleur et la profondeur pour l’allocation de débit

Dans ces travaux de thèse, nous nous sommes également intéressés à la répartition du
débit entre la texture et la profondeur lors de la compression de séquences MVD. Les
effets de la quantification sur les deux types de données ont été étudiés. La distorsion
est mesurée sur les images synthétisées à partir des séquences MVD encodées et décodées
par la méthode H.264/MVC dans un premier cas d’étude, et HEVC dans un second cas.
Nous avons considéré l’étude de deux méthodes de compression différentes dans le but
de contrôler l’influence du choix de la stratégie d’encodage dans la répartition du débit
optimisant la qualité de la vue synthétisée. Bien que la profondeur soit codée sur une seule
composante (contre trois pour la texture), allouer 25% du débit à la profondeur n’est pas
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Algorithm 1.3: Prédiction basée sur la carte des régions filtrée

Require: L̃l the lowest decoded level image of the pyramid ;
Quad-tree[Nmax...Nmin] the quad-tree partition ;
R̃ the filtered region map.
repeat

for all p ∈ L̃l−1 do
if L̃l−1 ∈ bN | N < 2l then

L̃l−1(p) = 1
K

∑
q∈Γ2

δp(q)e
− ‖p−q‖

2σ1 e
−‖L̃l(p)−L̃l(q)‖

2σ2

else
L̃l−1(p) = L̃l(p)

end if
end for

until l = 0

le choix optimal. Les résultats de nos expeérimentations ont montré que plus de la moitié
du débit peut être réservée aux données de profondeur pour favoriser la qualité de la vue
synthétisée (dans le cas de l’utilisation de H264/MVC). Dans le premier cas d’ étude, en
prenant en entrée des vidéos MVD, nous avons utilisé le codeur MVC pour compresser
les textures d’un coté, et les cartes de profondeur de l’autre. Dans le deuxième cas, nous
avons utilisé HEVC pour compresser les deux types de données également.
En faisant varier les pas de quantification, on observe l’évolution du PSNR lors de la
synthèse de vue par VSRS, l’algorithme de syntése de vues de référence de MPEG(View
Synthesis Reference Software[TFS+08]). La compression des textures fait apparaitre des
zones floues, et la compression des cartes de profondeur entrâıne des distorsions géométriques.
A débit total fixé, nous avons constaté il existe un rapport idéal entre le débit alloué à la
texture et celui alloué à la profondeur, maximisant la qualité visuelle de l’image générée.
Pour assurer la meilleure qualité d’image lors de la synthèse de vue avec VSRS, nous
avons montré qu’il est nécessaire d’attribuer aux cartes de profondeur de 30% à 60% du
débit total en fonction de la méthode de compression utilisée. La figure 1.5 et la figure
1.6 illustrent les résultats obtenus dans le cas de l’utilisation de H.264/MVC et de HEVC
respectivement.

Nos travaux ont mis en évidence les raisons des différences de distributions requises d’une
séquence à l’autre. En particulier, la distance entre les caméra, et la surface des zones
découvertes influencent le ratio nécessaire entre la couleur et la profondeur. L’entropie de
l’information de profondeur joue également un rôle important : plus la structure de la
scène est complexe, plus la part de la profondeur nécessaire pour optimiser la qualité de
la synthèse sera importante.

1.3 Conclusion

Cette thèse s’est intéressée aux questions de compression de données MVD et de qualité
visuelle de vues reconstruites à partir d’informations décompressées ou non. Tout au long
de ces travaux de thèse les préoccupations ont concerné la qualité visuelle, et l’optimisation
des choix de codage s’est basée sur la perception humaine des vues synthétisées.

Des études ont été réalisées pour caractériser les artefacts liés aux algorithmes DIBR,
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(a) PSNR (dB) des vues synthétisées en fonction du débit attribué à la profondeur en pourcen-
tage par rapport au débit total pour Ballet

(b) PSNR (dB) des vues synthétisées en fonction du débit attribué à la profondeur en pourcentage
par rapport au débit total pour Book Arrival

Figure 1.5 – Courbes débit/distorsion interpolées des vues synthétisées, en utilisant des données
encodées avec H.264/MVC.
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(a) PSNR (dB) des vues synthétisées en fonction du débit attribué à la profondeur en pourcentage par rapport
au débit total pour Ballet

(b) PSNR (dB) des vues synthétisées en fonction du débit attribué à la profondeur en pourcentage par rapport
au débit total pour Book Arrival

Figure 1.6 – Courbes débit/distorsion interpolées des vues synthétisées, en utilisant des données
encodées avec HEVC.
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ainsi que pour déterminer l’adéquation des méthodes d’évaluation de qualité (subjective
et objective) dans le cas des vues synthétisées par DIBR. Les expérimentations ont montré
d’une part que les sources des dégradations sont multiples : la précision des séquences de
profondeur (acquises ou estimées), le processus de synthèse lui-même (soumis à des arron-
dis de position des pixels), ainsi que les stratégies de remplissage (inpainting) choisies pour
remplir les zones découvertes par le changement de point de vue, sont autant de facteurs
influant sur la qualité d’une vue synthétisée.

Concernant l’évaluation de la qualité des vues synthétisées, le principe même du DIBR
implique des cas d’utilisation (et donc d’évaluation) chevauchant à la fois les contextes 2D,
conventionnels, et les contextes 3D (avec stéréovision). Les DIBR sont des méthodes uti-
lisées en 3D pour réaliser des images 2D, mais ces images sont également utilisables pour
des applications de stéréovision. Cette caractéristique particulière est probablement une
des causes de la difficulté de mise en place de protocoles d’évaluation de qualité subjective
ainsi que de techniques d’évaluation objective.

D’autre part, les résultats obtenus ont aussi montré que, dans un contexte d’utilisation en
2D, les techniques d’évaluation subjective et objective ne sont pas suffisamment adaptées
pour évaluer correctement la qualité des vues synthétisées à partir d’algorithmes DIBR.
Les mêmes vues synthétisées observées en condition de vue stéréoscopique n’ont pas abouti
aux mêmes résultats. En particulier, les artefacts influant le moins la qualité des images
en condition monoscopique se sont révélés gênants en condition stéréoscopique.

En ce qui concerne les études sur la compression des cartes de profondeur, nous avons
proposé deux méthodes dérivées pour le codage des cartes de profondeur et basées sur un
schéma de compression connu pour les images fixes conventionnelles. En nous appuyant
sur nos observations, nous avons proposé une stratégie de représentation et de codage
adaptée au besoin de préserver les discontinuités de la carte tout en réalisant des taux de
compression importants. L’originalité des méthodes que nous proposons réside dans le fait
que, grâce à la quantification spatiale que nous effectuons, lors de faibles débits requis, la
carte de profondeur décodée est uniforme. En d’autres termes, pour les faibles débits, nous
privilégions la qualité des contours des objets rendus au prix d’une profondeur de scène
réduite. Nous renonçons aux choix de quantification grossière le long des discontinuités de
profondeur, qui, bien que permettant des économies drastiques sur le débit, induisent des
artefacts visuellement très gênants le long des bords des objets rendus.

Nous avons également réalisé des études sur la répartition du débit entre la texture et
la profondeur lors de la compression de séquences MVD. Les résultats de nos expériences
ont montré que cette répartition dépend de plusieurs facteurs. La méthode de compression
utilisée pour encoder les données avant la synthèse de vue semble influencer la répartition
du débit nécessaire pour une bonne qualité visuelle. Les propriétés du contenu (entro-
pie des données, importance des zones découvertes) jouent également un rôle dans cette
répartition.

Les résultats de cette thèse peuvent être utilisés pour aider à la conception de nouveaux
protocoles d’évaluation de qualité de données de synthése, dans le contexte des données
MVD ; pour la conception de nouvelles métriques de qualité ; pour améliorer les schémas
de codage pour les données MVD, notamment grâce aux approches originales proposées ;
pour optimiser les schémas de codage de données MVD, à partir de nos études sur les rela-



xxvii

tions entre la texture et la profondeur. Nous espérons, dans l’avenir, susciter de nouvelles
contributions s’intéressant à ces problématiques.
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CHAPTER 1

Introduction

1.1 Objectives of the thesis and Contributions

Despite its long history, three dimensional video has gained a growing interest in research
activities for the last decade. Improvement of hardware solutions has enabled the progress
of three-dimensional (3D) video technologies. However, the success of the two main ap-
plications referred to as “3D Video” (namely 3D Television (3D TV) that provides depth
to the scene, and Free Viewpoint Video (FVV) that enables interactive navigation inside
the scene) relies on their ability to provide an added value (depth or immersion) coupled
with high-quality visual content.
3D video requires the acquisition of multiple video streams. 3D scene representations such
as Multi View Video (MVV) data, that consists of a set of conventional video streams,
provide video sequences of the same scene at slightly different viewpoints. When asso-
ciated to depth video streams, the scene representation is called Multi View plus Depth
(MVD) data. Efficient compression schemes are expected to handle this huge amount of
data.

All along the processing chain of 3D video, artifacts may be induced. In particular,
the essential Depth-Image-Based-Rendering (DIBR) techniques in 3D Video, used for the
generation of new virtual viewpoints, induce new types of artifacts. Since 3D Video suc-
cess depends on the ability to provide high quality contents, determining the influence
of the different sources of distortion in the synthesized views and their combined effect
is primordial. This raises the issue of the deployed means addressing the assessment of
three-dimensional media. Many studies already tackled the problem of compression of 3D
video data, but few of them focused on the perceptual quality of the rendered virtual views
as a mainstay of their coding strategies. Most of the proposed coding methods are based
on 2D codecs. However, their efficiency regarding depth map compression is uncertain
since they are generally optimized for enhancing human perception of color. Yet, depth
maps are not natural images and erroneous depth values can lead to annoying distortions
in the synthesized views.

Our research is supported by the PERSEE project, a French national research project
(ANR), whose scientific work is in the direction of a content-based and perceptually driven

1



2 Introduction

representation and coding paradigm using a clever combination of perceptual models and
a rate-visual quality optimization framework among others.
This thesis is meant to investigate new MVD coding frameworks limiting as much as
possible the perceptible distortions occurring in the views synthesized from decompressed
data. Our objectives thus particularly concern the development of perceptually driven
tools in the context of MVD coding. This is quite trendy since Ndjiki-Nya et al. also
recently directed their efforts for proposing a 2D perceptual oriented video coding method
in [NDK+12]. In our case, the difficulties we tackle lie in the fact that not only the distor-
tions sources are multiple but there is no dedicated quality assessment tool for this specific
type of data. Our research activities focused on the issues mentioned below and led to the
following scientific contributions:

� View synthesis related artifacts and Assessment of synthesized views We conducted
extensive tests over views synthesized from several synthesis algorithms. Each syn-
thesis strategy induces specific types of artifacts that are evaluated through subjec-
tive evaluation tests and through objective quality metrics.

� Impact of depth quantization and Design of a perception-oriented depth compression
scheme Our analyses of depth quantization through different coding methods helped
in the understanding of the essential requirements for a depth compression scheme.
Based on our observations, we proposed depth compression method adapted to the
need for an edge-preserving method with efficient compression ratio. The originality
and the distinctiveness of our proposed method lies in the fact that due to the
spatial quantization, as the bit rate decreases, the reconstructed depth map tends
to be flat. In other words, at low bit-rate, we give priority to edges quality with less
depth feeling instead of coarse quantization around the edges leading to projection
errors in the synthesized views, or visual discomfort in stereoscopic conditions. Two
different encoding methods are proposed.

� Bit-rate allocation between texture and depth data and the influencing parameters We
have conducted studies on the question of bit-rate allocation between texture and
depth data, in the context of MVD compression. The analysis of the relationships
between texture and depth data in the context of bit allocation is essential because
they contribute to the visual quality of the synthesized view. The features of the
sequences are also studied in order to find a relationship with the best compromise
for the bit-allocation between texture and depth data.

1.2 Outline of the thesis

The layout of this thesis divided in four parts. The first part gives the required fundamen-
tals of 3D video. It addresses some basics of human vision, and how the need for depth
feeling led to 3D video. The second part addresses the problem of the assessment of virtual
rendered views and the specific degradations induced by the synthesis process. The third
part proposes two depth map compression approaches, whose main concern is based on
the previous observations on the sources of distortions in the rendered views. Finally, the
fourth and last part relates the analyses we ran in order to study the relationships between
texture and depth data in the context of bit allocation.

Part I - State-of-the-art of 3D Video Communications
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Chapter 2 This chapter addresses the origins of the use of illusion of depth together
with the fundamentals of human vision. 3D media generation and its display are also
discussed. This chapter is motivated by the fact that the knowledge of stereovision and of
the many possible display technologies are essential for the understanding of the aim and
of the work of this thesis because both elements of the processing chain are dependent on
the final quality experienced by the user, thus on the strategic technology choices.

Chapter 3 This chapter is devoted to the issue of 3D video coding. The chapter gives an
overview of the coding algorithms for a variety of 3D data representations but it focuses
on the compression of MVD data since our research activities concern MVD data.

Chapter 4 In this chapter, the issue of quality assessment when dealing with 3D content
is addressed. State-of-the-art subjective and the objective assessment of 3D content qual-
ity are discussed.

Part II - Visual quality assessment of synthesized views

Chapter 5 This chapter addresses the principles of view synthesis in the context of MVD
and the sources of artifacts related to this process.

Chapter 6 In this chapter, the issue of quality assessment when dealing with 3D content
is addressed. In particular, the problem of the evaluation of visual quality of the rendered
views is studied through three experiments involving different synthesis algorithms, dif-
ferent objective quality metrics and different subjective evaluation methodologies. The
experiments include monoscopic and stereoscopic viewing conditions. This chapter also
proposes a hint for the objective quality assessment of synthesized views, based on the
results of the experiments.

Part III - LAR-based MVD coding solutions

Chapter 7 This chapter presents the basics of the Locally Adapted Resolution coding
method, a still image encoding method whose potential for depth map coding is analyzed
in this chapter.

Chapter 8 This chapter presents the novel option we propose for compression of MVD
data, based on the studies previously presented on LAR codec performances. The method
is meant to preserve edges and to ensure consistent localization of color edges and depth
edges. The compression of depth maps is based on the LAR method. The quad-tree rep-
resentation contributes in the preservation of edges in both the color and depth data. The
adopted strategy is meant to be more perceptually driven than state-of-the-art methods.

Chapter 9 This chapter presents a second LAR-based approach for depth maps com-
pression. This method is meant to be more reliable and scalable because it exploits multi-
resolution repreentation of the depth maps. The prediction technique is based on region
segmentation relying on the quad-tree decoded from the LAR stream.

Part IV - Relationships between color and depth data

Chapter 10 This chapter questions bit rate allocation between texture and depth data for
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encoding MVD data sequences. The study presented in this chapter includes the compres-
sion of MVD data sequences with H.264/MVC in a first case study, and the compression of
MVD data with HEVC in a second case study, at different bit-rates in order to determine
the best bit rate distribution between depth and texture, according to PSNR measures
of the synthesized view. Based on the obtained results, an analysis of different sequence
features is proposed to highlight correlations with the best bit-rate allocation.
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Every step of the 3D Video processing chain can have an impact on end user visual quality
of experience (QoE). Since this thesis aims at providing tools enabling enhanced QoE,
the identification of sources of distortions is a primary phase of our research. This step
requires the knowledge of the whole 3D Video processing chain. For this reason, this part
is devoted to the presentation of 3D Video fundamentals.
In this part, we first address some basics of 3D imaging in Chapter 2. This chapter comes
back to the history of the use of illusion of depth and addresses the fundamentals of human
vision. A discussion on 3D display and 3D media generation is proposed in this chapter.
The next chapter, Chapter 3, concerns an overview of the coding algorithms for different
3D data representations. However, since this thesis focused on Multi-View-plus-Depth
data, an emphasis is proposed for the compression of this specific 3D scene representation.
Finally, Chapter 4 introduces the basics of our major concern that is the issue of quality
assessment of 3D media. Indeed, since our goal is the conception of new tools enhancing
the quality of such media, the understanding of the complexity of the assessment task
is essential. The chapter discusses the subjective quality assessment methods and the
objective quality assessment method, considering the 2D-based approaches and the new
trends for 3D media.
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CHAPTER 2

3D imaging basics

The final quality experienced by the 3D medium user is dependent on both elements of
the processing chain and consequently on the strategic technology choices. This chapter is
motivated by the fact that the knowledge of stereovision and of the many possible display
technologies are essential for the understanding of the aim and of the work of this thesis.
In this chapter, we propose a retrospective glance at the origins of stereoscopy and use
of illusion of depth, in a first section. A brief introduction to the fundamentals of human
vision is also discussed. The second section focuses on the 3D media generation and its
display.

2.1 Principles of Stereoscopic Vision

In this section, we come back to the origins of the use of illusion of depth. Afterwards,
we introduce the basics of human vision. Finally, the depth cues that allow human to
perceive their three-dimensional environment are discussed.

2.1.1 A brief history of illusion of depth

It is believed that the story of illusion of depth dates back to the Ancient Greece, when
Euclid found out that humans perceive the depth thanks to the two different images that
we get from the eyes.

At a later time, during the Renaissance, drawing and painting techniques were used to
ensure the illusion of depth. Painters such as Leonardo Da Vinci took benefit from the
knowledge of human perception to ensure the illusion of depth by using pictorial depth
cues, later defined in this chapter.

Later, in 1838, Charles Wheastone [Whe38] patented the Stereoscope device (Fig. 2.1).
This system of mirrors allows the simultaneous observation of two slightly different draw-
ings by each eye and the impressive illusion of depth. It is worth noting that this work in
stereoscopic visualization was made prior to the invention of photography. With the start
of photography, drawings were substituted for photographs.

9
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Afterwards, the first anaglyph images and glasses appeared in the 1850’s (the use of two
different color filters enables the illusion of depth, see Fig. 2.2). First anaglyph stereo 3D
movies appeared in the 1890’s. Ever since, the 3D industry has grown up thanks to the
advances in 3D graphics for gaming, the advances in display technology, and in 3D content
generation.

Nowadays, the term “3D” is often used instead of “stereoscopic image” and this is con-
fusing because the computer graphics community also uses the term “3D” but it then
refers to a rendering image of a synthetic scene model. Stereoscopic images are widely
studied and used nowadays to provide the illusion of depth, but other technologies such
as holography, also known as “true 3D”, are still under development.

Figure 2.1: Wheastone stereoscope. Angled mirror A reflects the stereoscopic drawings E toward
the viewer’s eyes. (Drawing from Bill Gamber and Ken Withers [GW]

Figure 2.2: Anaglyph image generated with Book Arrival sequence

2.1.2 Anatomy

Human vision refers to the very complex neural process that enables the perception of
our spatial surroundings. It arouses the interests of researchers because the mechanisms
are not clearly understood. The eye is the first organ identified as responsible for vision
(Fig. 2.3). The light enters the eye through the cornea, a transparent area, then passes
through the aqueous humor to the lens. Then the light goes through the vitreous humor.
The retina is sensitive to light. Cells sensitive to strong light, namely cones, are located
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at the center of the eye, in a small area called fovea. Cones are responsible for detection
of fine details and color vision. Cells sensitive to poor light, namely rods, are located at
the outer edges of the retina. Rods are responsible for dark-light vision, and peripheral
vision.
At this stage, the light entering cones and rods is converted to an electrical signal, trans-
mitted to the brain through the optical nerves. This signal corresponds to an inverted
image of what we see. The visual system is able to correct many errors of the retinal
image. The final mental image is sharper thanks to mechanisms defined later in this
section, namely vergence and accommodation. Scientists have identified different “visual
pathways” that are responsible for different abilities such as the detection of motion, the
recognition of objects, etc. For more details on human anatomy, one can refer to [Wan95].

Figure 2.3: Horizontal section through Human right eye[Per10]

2.1.3 Human perception of depth

In daily life, we comprehend our three-dimensional surrounding through the use of the
complex mechanisms of the human vision system (HVS) [Kau74]. We perceive depth
thanks to the two retinal images, but one two-dimensional image already contains a great
amount of visual cues for the perception of depth. Artists have understood this for ages,
and have taken benefit from these abilities to offer us new representations of the world.
The many depth cues are used in various degrees, but stereopsis might be the most im-
pressive and fascinating as it has caught the attention of scientists and of the public since
the 1840’s [Whe38].

The sources of depth information are generally distinguished in four categories [Pal99]:
ocular information, dynamic information, pictorial information and stereoscopic informa-
tion. These depth cues are discussed in the following.

Ocular information

Ocular cues refer to accommodation and vergence. Both of these phenomena are re-
lated to the state of the eye. Accommodation of the eye refers to the act of physiologically
adjusting the lens to alter the refractive power and bring objects that are closer to the
eye into sharp focus. Vergence is defined as the movement of the two eyes in opposite
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direction to enable the fixation to a point or region of interest. These two mechanisms
share close links and are interactively solicited [Sch99, PJ90]. Wallach et al. [WF71] stated
that accommodation and vergence are useful source of depth information to make direct
judgment about distance as well as to evaluate the size of objects.

Dynamic information

The dynamic cues refer to depth information from motion. Motion parallax is a dynamic
depth cue provided by our motion. As an example, as we move in a car, objects that are
close to us seem to go by quicker than objects that are further away. Consequently, motion
parallax gives relative information about the distance to an object; it expresses how close
an object is from the fixated one. Motion parallax is linked to a visual process, namely
the optic flow [Gib50]. It refers to the apparent motion of objects caused by the relative
motion between the observer and the scene. Motion can come from moving observed ob-
jects or from a moving observer.

Pictorial information

Pictorial depth cues have been applied in visual arts for centuries. They are monocu-
lar cues. It means that these cues can be extracted from a sole two-dimensional image
(flat image): when closing one eye, you can still perceive the depth of your surroundings.
Pictorial depth information includes various cues.

Light and shadow distributions provide knowledge on the shape of the object thanks
to the analysis of the reflection of light of its surface (Fig. 2.4(a)).

The interposition or occlusion occurs when a part of the observed object is hidden by
another object. In such a situation, the HVS considers the partly hidden object as further
away (Fig. 2.4(b)).

Aerial perspective refers to the fact that the air contains more microscopic particles
and moisture, scattering more light when the distance between two object increases (Fig.
2.4(c)).

Relative and known size refers to the fact that a priori knowing the size of objects, objects
of similar size seem smaller when placed further away (Fig. 2.4(d)).

Linear perspective is related to vanishing lines or points. It refers to the fact that parallel
lines in 3D space converge in the image into a vanishing point (Fig. 2.4(e)). Texture gra-
dient refers to the fact that the size of texture pattern, their density or their orientation
provide knowledge on the shape of the object: with distance the texture patterns seem
smaller, and their density increases.

Stereoscopic vision

Human eyes are separated by 6.3 cm on average. Due to this lateral displacement, we
get two slightly different images of the same scene (disparate images) from each eye. This
is known as binocular disparity. The brain processes these two images to render a depth
appreciation. This phenomenon is a binocular depth cue and is referred to as stereopsis.
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(a) Light and shadow (b) Occlusion (c) Aerial perspective

(d) Relative size (e) Vanishing lines

Figure 2.4: Depth information from monocular cues.

The word stereopsis comes from the Greek “stereos”, solid or firm, and “oyis”, look or
appearance.

Fusion refers to the neural process that forms one single image out of the retinal im-
ages coming from the two eyes. If there are matching features in both images, fusion is
possible. Otherwise, phenomena such as binocular rivalry, suppression or superimposition
may occur. Binocular rivalry [Bla89] refers to the alternating perception of the two images.
Suppression refers to the elimination of one image. Superimposition refers to the fact that
one image overlaps the other.

The distance, in horizontal direction, between the corresponding points of the two im-
ages is referred to as retinal disparity. If the eyes converge on an object, the resulting
corresponding points of the retinal images will have “zero disparity”. In this case, these
points lie in an area called horopter (see Fig. 2.5). Points lying in an area close to the
horopter called Panum’s fusional area, are fused perceptually into a single experienced
image. In that case we see two slightly different images but you do not experience double
vision as illustrated on Fig. 2.5. The interpretation of retinal images to produce stereopsis
is entirely mental, and must be learned: the stereoscopic ability is not present at birth.
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Figure 2.5: Basics of stereoscopic viewing [Pat07]

Ocular cues, dynamic cues and pictorial cues can be defined as monocular cues. Stereo-
scopic cues are defined as binocular cues because they require the two eyes. Depth percep-
tion is the result of the use of many cues with various degrees, as shown by Cutting and
Vishton [CV95] and on Fig. 2.6. Besides, in this study ([CV95]), the authors showed that
occlusion is dominant over all other cues, and is only approached by binocular disparity, as
well as the small effect of accommodation and convergence. Although the complex mecha-
nisms of human vision are not clearly understood, the use of monocular and binocular cues
already enable creators and artists to impress the public by illusion of depth. The next
section provides an illustration of this use of illusion of depth, in the case of 3D Video,
through 3D contents and displays.

Figure 2.6: Cues effects on depth perception [CV95].
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2.2 3D content generation and display

Many solutions have been found in order to emulate depth through media. The expected
depth effect is obtained thanks to prepared 3D contents and adapted displays. In this
section, the generation of 3D video sequences is first addressed. Then, the display tech-
nologies and their limitations are introduced before presenting the different possible 3D
scene representations from the acquired videos.

2.2.1 Content generation

The stereoscopic visualization of a 3D media requires the use of, at least, two slightly
different images, namely a stereopair. This stereopair is either originally acquired by two
different acquisition devices or it is artificially generated from a previously acquired view-
point. The generation of a new color image is possible thanks to the use of extrapolation
or interpolation algorithms, from color data, or thanks to Depth-Image-Based-Rendering
(DIBR) algorithms [Feh04]. This newly generated color view is also referred to as the
virtual view, or the synthesized view. DIBR algorithms require a depth map of the scene.
A depth map is a monochromatic image whose pixels indicate the distance of the corre-
sponding color pixel to the acquiring camera.

Most of the 3D sequences are shot through multiple cameras, two cameras being a mini-
mum. However, due to recent needs, 2D conventional sequences can be converted to multi-
ple view sequences thanks to the development of 2D-3D conversion algorithms [OMT+96].
These algorithms usually include a segmentation step in order to generate a depth map
from the 2D color image [YYED11].

When the 3D media is acquired by multiple cameras, two configurations of acquisition
are possible [Yam06]: the parallel camera configuration and the convergent camera config-
uration, also called toed-in camera configuration (Fig. 2.7). In the parallel configuration,
the zero-disparity point is at infinity. Objects near the camera cause visual discomfort
because their binocular disparities can be large. In a convergent configuration, the zero-
disparity point is at a finite distance. Although, the absolute disparities can be smaller
in this configuration, it may lead to distortions such as keystone and vertical disparities
[WDK93]. The choices result in a trade-off taking into account all possible distortions
[Yam97]. In [CFBLC11], the authors recommend new shooting rules considering both
stereoscopic distortion and comfortable viewing zone. They state that the most important
point is to guarantee the perceived scene range is within the comfortable viewing zone by
adapting the scene parameters or camera parameters.

As said above, a typical depth map is a monochromatic, luminance-only video signal. It
is a grey scale image with smooth areas and sharp edges. The depth range goes from
Znear to Zfar and is quantized with 8 bits. The lighter the pixel (value 255), the closer to
the optical center of the camera. Depth maps can be acquired through several methods
either from monocular videos, either from multi-view videos or from specific cameras. One
method relies on the measure of the real 3D properties of the scene objects by using a
range finder such as LIDAR system (Light Detection and Ranging) [Sch10]. Depth maps
can also be estimated by using stereo-correspondence-based algorithms when two adjacent
color views are available ([SS02, KAF+07, WZ08, YWY+06]). Another way for generat-
ing depth maps consists in extracting the motion vector information, or the optical flow
[Sou10]. Other methods are based on image classification and vanishing lines or feature
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Figure 2.7: Camera configurations for 3D media shooting. Toed-in camera configuration (left)
and parallel camera configuration (right).

points detection [BCCLC04]. Specific cameras, called “Z-cameras”, are able to capture
the per pixel depth with the video, but the quality of the obtained depth is limited. Depth
data is usually useful in 3D visualization because it allows manipulations on the parallax
baseline. The parallax baseline refers to the shift or the movement directly dependent on
the distance between two adjacent viewing cameras. However, although powerful solutions
are available for depth estimation, estimation errors remain. Such errors induce artifacts
in the virtual synthesized view. A smooth, accurate and reliable depth system is still
under investigation and the impact of this source of distortions has to be studied.

2.2.2 3D imaging displays

Among the possible so-called 3D applications, the following may be targeted: 3D-TV for
home entertainment, providing the user with a feeling of immersion; video games; training
for junior professionals ([IPLW07] in the medical field, for instance); free-viewpoint video
(FVV) which allows the user to freely navigate inside the scene by selecting the viewpoint
of the video scene; special video effects (such as the effects used in “The Matrix” when
freezing time while moving around objects). These applications are achievable thanks
to the display technology and thanks to an adequate choice for the data representation.
Many representations exist, both have their advantages and drawbacks that are discussed
in this and the following section. As mentioned in 2.1.1, the concept 3D display has a long
history and there exists many different methods to allow 3D viewing [BWS+07, RHFL10].
The technologies have been divided as follows: multi-view displays with fixed viewing
zone, multi-view displays, integral imaging displays, volumetric displays and holographic
displays.

Binocular displays with fixed viewing zone

Multi-view displays with fixed viewing zone are so called because they provide a fixed
viewing zone for each eye. Consequently this device allows only one user to experience
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depth. It is the simplest type of display since a single stereopair is provided. Different
types of multiplexing methods can be used to produce the viewing zone of each eye:
lenticular type, parallax-barrier type, wavelength-division (anaglyph type), time-division,
polarization-division type or combinations of it. Glasses may be needed to experience
the illusion depth (passive glasses: anaglyph or polarization; active glasses: LCD-shutter
glasses). In that case, the device is described as stereoscopic. Otherwise, when there is no
need for glasses, the device is described as autostereoscopic.

Multi-view displays

Multi-view displays provide viewing zones for several users contrary to multi-image displays
with fixed viewing zone. The device provides a set of perspective views in the viewing field,
and allows a certain range of motion parallax when the users move to adjacent viewing
zones. However, the depth range available in such devices is limited [CFBLC10], and
the image resolution is reduced according to the number of views rendered by the device.
Multi-view displays are already marketed despite their limitations in the quality of the
stereo effect.

Volumetric displays

Volumetric displays create an image in which each point of a scene reaches its actual
position in space. The scene is reproduced within a volume of space that allows a wide
range of viewing angles for the observers. This technology calls a more natural viewing
than binocular displays because the eye can focus at a real point. Volumetric displays
can employ focused or intersecting laser beams to create voxels, or laser beams or layered
images on moving screens. Although these devices provide a wide range of viewing their
main drawback comes from their image transparency. This technology is not available for
mass market yet but several companies are involved in its improvement.

Integral imaging

Integral imaging displays are autostereoscopic. They use an array of small lenses that are
either spherical or cylindrical in front of an image. This produces a light field that makes
a lens looking different depending on the viewing angle. Not only stereopairs are available,
but it allows motion parallax as the observer moves. This technology is expected to be
the subject for mass commercialization in the future years.

Holographic displays

Holographic displays rely on diffraction-based coherent imaging methods. They can re-
produce the wave field of a 3D scene in space by modulating coherent light. Holographic
display is often called as “true 3D”. However, due to the numerous issues to overcome,
this technology is not mature yet, and is not ready for mass market.

2.2.3 Limitations of the 3D display

A 3D media can be experienced through various types of displays as discussed above. Over
the past decades, research efforts focused on the development of stereoscopic imaging sys-
tems but some fundamental issues remain unsolved, like the conflict of accommodation
and vergence.
As defined in 2.1.3, vergence refers to the convergence of the fixation axes of the two eyes.
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Figure 2.8: Natural viewing (left) and stereoscopic viewing with a 3D stereo display (right).
Normal viewing and also holographic displays provide correct vergence and accommodation stimuli
when fixing on an object. A stereogram fails in providing correct vergence and accommodation
stimuli unless the fixed object is at the focal distance, on the display surface.

Focal distance is the distance to which the eyes are focused, this refers to the accommo-
dation. In natural conditions, vergence and focal distance are the same. When viewing an
object through a stereoscopic display, the display surface is nearer than the object, so focal
and vergence distance mismatch, as illustrated in Fig. 2.8. Studies [BAHG08] highlighted
that this phenomenon causes visual discomfort and eyestrain.

In addition to the vergence-accommodation conflict, there are other unsolved issues [LIH07,
WDK93]. Crosstalk can occur when the images are not perfectly separated. This term
designate the ghosting effect experienced when left and right views are not correctly sep-
arated and seem superimposed. Its effect varies depending on the position of the observer
and on the quality of the optical filter.
The depth rendering ability is also another limitation of the 3D displays. In [CFBLC10],
Chen et al. point out the issue: perception of stereoscopic depth is dependent on the 3D
content, on the viewing distance and on the display characteristics. In [CFBLC10], Chen
et al. propose an analysis of depth rendering abilities of different displays according to
their characteristics. In [Pat07], recommendations for 3D display design are stated and the
authors include, among others, concerns regarding the interocular crosstalk (to limit the
chromatic aberration), the spatio-temporal properties of the display (to enable a sufficient
depth range), the frame rate (to avoid the perception of flicker), the viewing distance (to
enable the depth perception).

2.2.4 3D data representation

Various 3D scene representation formats exist in different 3D video systems and applica-
tions. These formats involve various types of data, such as multiview video, and geometry
data in the form of depth or 3D meshes. The main requirements for a typical 3D scene
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representation are its ability to provide an exhaustive and reliable description of the 3D
scene, in preparation for the rendering of any viewpoint within this scene; its resilience
to compression degradations; its low storage capacity or its easiness of compression. In
this document, only image-based formats are discussed, i.e., only methods that rely on a
set of two-dimensional images representing the 3D scene. Fig. 2.9 illustrates the different
formats of 3D data.

Stereoscopic video

The stereoscopic video consists in a pair of 2D conventional video sequences, one acquired
for the left eye and the other one acquired for the right eye. Although it might be the
simplest type of acquisition method for a 3D media, it contains many drawbacks: as the
baseline depends on the acquisition configuration, the depth effect can hardly be modified.
Even by estimating a disparity map from the two views, the parallax is limited. Thus,
applications such as FVV are not feasible in this case. As for the 3D display, the most
appropriate is the multi-view displays with fixed viewing zone, in this case.

Video-plus-depth data

Video-plus-depth, also denoted as 2D+Z, data representation consists in a conventional
2D video and its associated depth video.The conventional 2D video is generally referred
to as color or texture video. It is an alternative to stereoscopic video because an artificial
stereopair can be rendered by DIBR techniques [Feh04] from the video and depth informa-
tion. However, since only one color view is available, occlusions can be hardly handled by
the synthesis process when the baseline increases: when the distance between two view-
points increases, objects that were not visible in the base viewpoint become visible in the
novel viewpoint. Since only the color information from the base viewpoint is available,
discovered areas to be fulfilled are prone to errors. So, the baseline range is limited with
such data representation and applications such as FVV is not feasible.

Multi-view video data

Multi-view video (MVV) is considered as an extension of stereoscopic video since the
number of conventional video sequences is generally higher than two in this case. Since
multiple views are available, special devices can display multiple views simultaneously.
This allows head motion parallax viewing. However, the amount of data to be processed
increases compared to conventional stereo video sequences. Moreover, if the generation of
a novel viewpoint is required, the quality of the synthesis is limited since only the color in-
formation is available. However, depth maps can be generated from MVV data. As for the
display, multi-view displays are appropriate, providing the images are adapted or adjusted
to the display characteristics. Application such as integral imaging or autostereoscopic
experience for multiple users are possible with this 3D scene representation.

Multi-view video-plus-depth data

Multi-view video-plus-depth (MVD) data is considered as an extension of the video-plus-
depth data representation because it consists in a set of conventional 2D video sequences
and a set of corresponding depth sequences. It was created to overcome the limitations of
the previous 3D data representations, when MPEG started an activity related to this issue
[SMM+06]. Since depth information is available for multiple viewpoints, the distance range
from the virtual viewpoints to base viewpoints is larger. This 3D scene representation
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allows FVV applications. However, as it will be discussed later in this document, both the
amount of data to be processed and the complexity increase.

Layered depth video data

Layered depth video data (LDV) is an alternative to MVD data representation. The
layered depth image (LDI) [SGHS98] data representation is the base component which
LDV is temporally extended from. Instead of storing an image, thus a 2D array of depth
information, the LDI stores a 2D array of set of pixels along viewing lines, sorted from
foreground to background. So the front samples represent the first surface seen along that
viewing line; the next pixels represent the next surface seen along that viewing line, etc.
Compared to MVD, LDV is meant to reduce the inter-view redundancies and carry a lower
amount of data. However, the quality of the synthesized view in the case of use of LDV, is
widely dependent on the space sampling used for creating the LDV. As for the display and
applications, LDV can target the same as MVD, since depth data is available at various
viewpoints.

Figure 2.9: 3D data representations.
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2.3 Conclusion

In this chapter we presented some basics of 3D imaging. The understanding of stereoscopic
vision is essential both for the design of subjective quality assessment tests and for the
conception of coding frameworks. The use of tools to mimic depth feeling has been known
for years. Nowadays, with the improvements of hardware, emerging 3D display solutions
have arisen. They still suffer some limitations, that shall be overcome for the sake of 3D
Video success. In addition, 3D contents have to be created and store. This brings the
issue of 3D scene representations. Various representations have been considered in this
chapter. The choice for the appropriate 3D scene representation widely depends on the
expected case of use. Considering the advantages and the drawbacks of the presented 3D
scene representations, we chose to focus on MVD data. As explained, in that case, the
amount of data to process is significant and the need for adapted coding method must be
addressed. The next chapter presents basics of 3D video coding in the following, with an
emphasis on MVD coding because our contributions are in line with this field.
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CHAPTER 3

3D video coding

This chapter is devoted to the issue of 3D video coding. In the first part, an overview
of the coding algorithms for the aforementioned 3D data representations is presented,
as an introduction. The rest of the chapter focuses on the compression of MVD data.
Since there is no standardized framework up to now for this 3D data representation, this
chapter reviews the most commonly used methods in the two following parts. Afterwards,
the methods proposed in the 3DV Group of MPEG call for proposals are addressed.

3.1 Overview of coding algorithms for 3D contents

The previous chapter presented different types of 3D data representations, with a focus on
image-based representations. 3DTV systems are numerous and can rely on various types of
data. This huge amount of data needs to be compressed and most of the proposed coding
methods rely on the extension of available classical video coding frameworks. For most of
the presented 3D data representations, encoding methods have already been standardized
by the Moving Picture Experts Group (MPEG). MPEG is an international standardization
committee. Its role involves the assessment of proposals with a view to adopt standardized
frameworks in the field of digital media. MPEG was formed by the ISO (International
Organization for Standardization) in 1988.
The main concern of the committee is to ensure backward compatibility with existing
systems. This section reviews the available standards for the different 3D representations.

Stereoscopic video

Because of their redundancies, it seems natural to predict one of the two views through
the other. Numerous standards have been developed for stereoscopic video. The most
commonly used is known as the Multiview Profile (MVP)[BT.98], defined in ITU-T Rec
H.262/ISO/IEC 13818-2 MPEG-2 [HPN97]. The efficiency of the method relies on the
exploitation of inter-view and temporal redundancies thanks to prediction tools. The left
eye view is encoded with temporal prediction only, using standard MPEG-2. The right
view is encoded through temporal prediction and also from the left view available data. So,
inter-view prediction is used relying on the base layer (the left view) to encode the second
layer (the right view), as illustrated in Figure 3.1. This fulfills the backward compatibility
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constraint with the Main Profile of H.262/MPEG-2 Video because it is possible to decode
only the left view from the bit stream and display a conventional 2D video.

Figure 3.1: Prediction structure in H.262/MPEG-2 MVP.

Inter-view prediction is based on the same principles as motion estimation and com-
pensation in MPEG-2. This is justified by the fact that the disparity between each view
is considered as equivalent to a dense motion field in between two consecutive images of
a video sequence. However, it should be noted that there are differences between motion
compensation and disparity compensation. First, the disparity vector fields are different
from the motion vector fields, because disparities are relatively large, depending on how
close a 3D point is to the camera. Second, views of the stereopair are generally less similar
than temporally adjacent frames of a video sequence, because of the importance of the
discovered areas. In other words, the higher the baseline distance between two views the
lower the gain from inter-view prediction.

Video-plus-depth data

In the ATTEST project[FKDB+02], a method ensuring backward compatibility with re-
spect to DVB enables the compression of 2D+Z data representation. It is based on the
assumption that only 10%–20% of the bit rate which is necessary to encode the texture
video is sufficient to encode the depth at good quality. The texture video sequence is
the base layer, encoded with standard MPEG-2 to ensure the backward compatibility.
The additional layer contains the encoded depth data. Then, MPEG specified a similar
format “ISO/IEC 23002-3 Representation of Auxiliary Video and Supplemental Informa-
tion,” known as MPEG-C Part 3[JTC07], for 2D+Z data representation. Compared to
stereoscopic video data, the total bandwidth for 2D+Z data transmission is reduced.

Multi-view video data

As presented in section 2.2.4, MVV data refers to multiple views of the same scene.
The Multi-view Video Coding (MVC) standard already addresses the compression of
such data representation. Exhaustive experiments were conducted within ISO MPEG
standardization working groups to define the framework having the best performances
[MSMW07c, FMG07, MMSW06]. MVC exploits combined temporal/interview predic-
tion. Prediction of images is performed from temporal neighbor images and from adjacent
neighbor images at the same instant of time. MVC is based on a state-of-the-art video
codec H.264/AVC[WSBL03] that supports hierarchical B-prediction, as illustrated in Fig-
ure 3.2. In this figure, “camera 0” is the base view. In [SMS+07], the authors state that
although the exploitation of temporal/interview redundancies outperforms the simple in-
dependent encoding of multiple streams, the gain is dependent on the content and on the
acquisition configuration (baseline distance of acquiring cameras, motion, texture, etc).
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In this paper, the authors state that the gain in terms of peak-signal-to-noise ratio was
0.5dB and below.
For the interview prediction, MVC supports the definition of views dependencies through
the sequence parameter sets (SPS) syntax.
To ensure backward compatibility, a base view is defined and is independently coded.
Thus, it can be decoded without the use of the adjacent neighbor views, since only tem-
poral prediction is used in that case.
Note that MVC can also be used to encode the Stereoscopic Video sequences since stereo-
scopic video is a special case of MVV with two views only.

Figure 3.2: Prediction structure in MVC, using temporal and inter-view predictions.

Emerging standards for other 3D data representations

Other compression frameworks dedicated to 3D data representations are still under inves-
tigation. As for an example, there is no standardized coding method for LDV, presented in
section 2.2.4, the alternative representation of MVD. Most of the proposed approaches for
this data representation, are based on MVC. Compared to MVD, the amount of data to be
encoded is lower because of the properties of LDV. The difficulty consists in encoding the
holed images, typically, the back layers of LDV. In [YH07], the color, the depth and the
image of a number of layers per pixels are encoded. The authors tested two alternatives:
the first one consists in filling the holes with the pixels of the first layer and then eliminate
them automatically, knowing the number of layers per pixel; the second one consists in
aggregating the pixels horizontally and then aggregate both layers. LDV representation
has not reached yet the same interest as MVD has, considering the expended energy of
standardization activities dedicated to the latter. LDV has actually been considered by
MPEG, but due to the results of the core experiments, the efforts have been oriented to
MVD. Encoding methods are still to be proposed.
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3.2 MVD coding

This section is dedicated to MVD coding. This emphasis is justified by the fact that this
thesis focused on MVD coding.
Currently, a compression framework for MVD is under standardization within ISO MPEG.
This section will review pioneering studies in this area, in a first part. Then, a second part
will present the tools that are currently evaluated in the MPEG standardization context.

3.2.1 Pioneering studies

A first attempt of coding design is based on the assumption that depth maps can be con-
sidered as conventional monochromatic images. This assumption allows the use of MVC
standard for both texture and depth data, separately[MSMW07b]. However, since MVC
is the video coding standard for MVV data, it does not originally involve the transmis-
sion of depth sequences. Thus, redundancies between texture and depth data, as well as
interactions between texture and depth data artifacts are not taken into consideration.
When using MVC for encoding texture and depth data, separately, Merkle et al. observe
in [MSMW07a] that depth data coding quality has a strong influence on the quality of the
rendered intermediate view. In particular, distortions occur around depth discontinuities,
located at borders of objects. In this study, the ratio between rates for depth and texture
is kept constant: 75% of the total rate is dedicated to texture and 25% is dedicated to
depth data. It is worth noting that this choice is questionable since the influence of depth
quality on the visual quality of rendered views was not previously studied. This choice is
motivated by the assumption that being monochromatic, depth requires a budget about
three times lower than that of the texture.

The observation of the quality of the rendered views from compressed texture and depth
data[MFdW07], rather than the quality of texture only or depth only has led to the con-
sideration of the relationships between texture and depth in preparation for the synthesis
process. It appears that depth maps need to be considered as non-natural images since
depth values represent geometrical 3D positions of scene points. Extending the applica-
tion of 2D conventional codecs on depth data leads to artifacts that may be imperceptible
when visualizing the depth map, but they produce distortions on the synthesized view.
Indeed, when performing a synthesis, the warping process relies on wrong depth values,
because of the unadapted quantization. The impact of depth compression on visual qual-
ity of synthesized views can be explained by the fact that 2D codecs are optimized for
human visual perception of color images. Consequently, the pioneering studies on MVD
compression led to the observation that depth data require a specific compression method.
This method should ideally 1) exploit the redundancies between texture and depth, and
2) be optimized for the enhancement of the visual quality of the synthesized view.

Efforts have been directed in order to propose depth compression methods more adapted
to the special features of depth maps. Depth maps contain smooth areas and sharp
edges. This observation has motivated the choice for content-adapted methods. Morvan
et al.[MdWF06] have proposed to represent the depth map thanks to platelets (piecewise
linear functions). The depth map is first divided through quad-tree decomposition and
each block is approximated by a platelet. The platelet-based compression outperforms
JPEG2000 in the study. However, in this study, the gain is evaluated with respect to
the depth distortion (in PSNR). This protocol of validation is questionable because since
the artifacts in the two compared methods are different, their impact on the synthesis
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may also be different. Yet, the quality of the synthesized views generated from the de-
coded depth maps is not presented. Graziosi et al.[GRP+10] have also proposed a block
partitioning method associated to least-square prediction for depth map compression. In
this method, the validation is also achieved by comparing the depth map distortion for
different compression scheme (JPEG2000 and H.264 intra). The method includes the use
of a dictionary, containing concatenations of scaled versions of previously encoded image
blocks.

The exploitation of redundancies between texture and depth maps has also been the object
of various research activities. In [DTP09], Daribo et al. questioned the principle of fixed
bit-rate distribution between texture and depth. The authors have proposed an H.264-
based algorithm that uses a joint estimation of the motion vector field for texture motion
information and for the depth map sequence. The proposed bit-rate allocation method is
based on a rate-distortion criterion, relying on the distortion of depth and on the distor-
tion of texture, but not on the distortion of the resulting synthesized view. Though, as
mentioned before, since depth maps are not natural images, the independent analysis of
depth maps distortion and of texture distortion may not be sufficient.

For that matter, encoding algorithms supporting rate allocation between depth and tex-
ture have been studied, with a focus on the optimization of the synthesized view quality.
In [MFdW07], Morvan et al. proposed a bit-rate allocation method based on the analysis
of the synthesized view quality. However, the quality criterion is the Mean Squared Error
(MSE), which is known for its limited ability to express visual quality. In that study, the
coding method is H.264/AVC and the proposed algorithm selects the quantization param-
eter for texture and that for the depth map according to the MSE score of the resulting
synthesized view.

3.2.2 Tools under standardization

ISO/IEC JTC1/SC29/WG11 (MPEG) issued a Call for Proposals on 3D Video Coding
in March 2011. Considering the influence of depth estimation and view synthesis on the
quality of the reconstructed views, MPEG called for contributions in such areas in addition
to the definition of a 3D data format and its compression method. The Call for Proposals
includes two different tests categories:

� AVC compatible: the proposed method should include forward compatibility with
AVC.

� HEVC compatible: the proposed method should include forward compatibility with
HEVC, or no constraints.

Among the 22 proposals (submitted in November 2011), only one used LDV and only one
used MVV. All other proposals were designed for MVD data.
This section will focus on tools meeting the requirements mentioned above regarding the
exploitation of texture/depth redundancies, and the optimization of visual quality of the
synthesized view.
However, some terms need to be defined first. An access unit is defined as the group
of images consisting of texture and depth view components at time t, as illustrated in
Figure 3.3. To enable AVC-compatibility, or HEVC-compatibility (depending on the test
category), one texture view component is defined as the AVC-compatible base view (re-
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spectively HEVC-compatible base view). Other views are called enhanced views. The
following tools are mentioned in [1112].

Figure 3.3: Definition of an Access Unit.

View Synthesis Prediction (VSP)

View Synthesis Prediction (VSP) is used for coding both texture and depth map data.
The current view (an enhanced view) can be encoded using view synthesis prediction
from previously coded texture and depth view components of the same access unit. A
predicted picture is synthesized by warping the image signals of the reference pictures into
the target viewpoint, corresponding to the predicted picture viewpoint. While block-wise
disparity compensated prediction was already present in MVC with a limited accuracy,
VSP provides improved predicted frames. This can be explained by the fact that VSP takes
scene geometry into consideration, by using DIBR algorithms. Details on the principles
of VSP can be found in [YV09]
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Adaptive Depth Quantization

Adaptive Depth Quantization is proposed to enable the adjustment of depth quantization
according to the corresponding texture information. The choice for the adaptive depth
quantization parameter is computed through an objective quality metric and the analysis
of the texture complexity of the blocks. The objective metric relies on the sum of squared
distance of the reconstructed depth map and on the analysis of the view warping through
the knowledge of the reconstructed texture, the reconstructed depth map and Znear and
Zfar values. The smoother the texture, the coarser the quantization step size.

In-loop joint inter-view depth filtering (JVDF)

JVDF allows depth filtering by a weighted average of two depth maps: the first depth
map contains the original depth value at a given viewpoint, say viewpoint 2; the second
depth map is the result of the projection of the depth map from another viewpoint, say
viewpoint 1, to the target viewpoint, that is to say viewpoint 2. This is expressed as follows:

ẑ2 = w1.z1→2 + w2.z2 (3.1)

where, ẑ2 is the filtered depth map, z2 is the original depth map, z1→2 is the depth map
warped from viewpoint 1 to viewpoint 2, and w1 and w2 are the weighting coefficients.
The latter are described by:

If|z1→2 − z2| < Th,w1 = w2 = 0.5
Otherwise, w1 = 0, w2 = 1

(3.2)

where Th is a threshold value that has to be transmitted to the decoder.

Depth-based motion vectors

Depth-based motion vectors use available depth map data and utilize it for coding and
decoding of associated texture data. This coding tool is enabled for enhanced texture
coding and requires depth map data to be coded prior to the texture data.

Reduced resolution coding

Proposed tools for MVD data compression consider the coding of the original data (both
texture and depth) at different spatial resolutions. As for an example, one of the proposals
suggests the following. It considers three different possible spatial resolutions: full resolu-
tion, half resolution and three quarter resolution in horizontal and vertical directions. For
a given target bit-rate, the first Access Unit of the input test sequence is coded for each of
the three possible resolutions. The resolution giving the lowest mean squared error (MSE)
is selected and the input test sequence is rescaled prior to coding. Rescaling is performed
at the decoder side, thanks to the provided dimension information from the encoder.

Compression of camera parameters

Since view synthesis prediction is planned to be included in the MVD coding framework,
camera parameters and depth range ([Znear, Zfar] have to be encoded. Each view has its
own camera parameters and its own depth range. When cameras move along the sequence,
camera parameters and depth range change. Proposals cover this issue by using flags to
indicate the updated components, and encoding only the latter.
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3.3 Conclusion

Research on coding of 3D contents (stereoscopic video, multi-view video, etc.) has led
to international standards, some of which have been reviewed in this chapter. Despite
the efforts and the good level already reached in 3D coding, improvements are still under
study. Concerning the MVD data representation, a compression framework is still under
normalization, and should be released by early 2013. In line with this research thematic,
the issue of depth maps compression will also be addressed in the remaining of this the-
sis. Since any method needs to be validated by assessment tools, the following chapter
introduces principles of quality evaluation of 3D video sequences.



CHAPTER 4

Quality assessment of 3D video sequences

This chapter aims at highlighting the issue of quality assessment when dealing with 3D
content. As an introduction, the first section gives an overview of the most common
issues. The second section addresses subjective assessment of 3D content quality. Finally,
the third section discusses objective assessment of 3D content quality.

4.1 The peculiar task of assessing 3D contents

3D video applications have encouraged numerous investigations for various applications
(see 2.2.4). The most popular applications can be considered as 3D-TV and FVV. 3DTV
provides a depth feeling thanks to an appropriate 3D display. FVV interactively allows the
user to control the viewpoint in the scene. Considering the demand for high-quality visual
content, the success of 3D video applications is closely related to its ability to provide
viewers with a high quality level of visual experience. While many efforts have been
dedicated to visual quality assessment in the last twenty years, some issues still remain
unsolved in the case of 3D video. The assessment of 3D contents arises different issues:

� Evaluation of the synthesized views. 3D-TV as well as FVV require view
synthesis. This process is known as DIBR and can induce new types of artifacts,
that will be discussed later in this document. Since view synthesis is fundamental
for both 3D-TV and FVV, the evaluation of the synthesized views quality is crucial.

� Specific distortions in DIBR. Artifacts in DIBR are mainly geometric distor-
tions. These distortions are different from those commonly encountered in video
compression, and that are assessed by usual evaluation methods: most video cod-
ing standards rely on DCT (Discrete Cosine Transform [ANR74]), and the resulting
artifacts are specific (some of them are described in [YW98]). These artifacts are
often scattered over the whole image, whereas DIBR related artifacts are mostly
located around the disoccluded regions. Thus, since most of the usual objective
quality metrics were initially created to address usual specific distortions, they may
be unsuitable to the problem of DIBR evaluation.

� Case of use and visualization. The evaluation of DIBR systems is a difficult
task because the type of evaluation differs depending on the context of use. It is not
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the same factors that are involved in all of the 3D imaging applications. A major
discriminatory factor is the stereopsis phenomenon (fusion of left and right views in
the human visual system, as defined in 2.1.3). This is used by 3D-TV and this re-
produces stereoscopic vision. This includes psycho-physiological mechanisms which
are not completely understood. A FVV application is not necessarily used in the
context of stereoscopic display. FVV can be applied in a 2D context. Consequently,
the quality assessment protocols differ as they address the quality of the synthesized
view in two different contexts (2D visualization and stereoscopic visualization): it is
obvious that stereoscopic impairments (such as cardboard effect, crosstalk, keystone,
flickering depth, picket-fence, etc., as described in [MIS04]and [BHG08]), which oc-
cur in stereoscopic conditions, are not assessed in 2D conditions. Also, distortions
detected in 2D conditions may not be perceptible in a stereoscopic context.

� Assessed factors. Also, depending on the case of use, except for the conventional
image quality, new factors can be considered such as comfort, naturalness, depth
rendering.

� Clear definition of factors Even though observers’ acuity, stereo-acuity and color
vision are measured before the tests, and even though experimental trials are included
before the sessions, observers are generally non-expert. In addition, they may not be
familiar with simulated stereoscopic viewing. There is a risk for erroneous results,
due to the novelty of the media display, which may not always be taken into account
in these subjective quality assessment methodologies, regarding the asked tasks.
The measured factors need to be clearly defined to avoid confusion when rating the
different measured factors.

� Need for no-reference metric. Another limitation of usual objective metrics
concerns the need for non-reference quality metrics. In particular cases of use, like
FVV, references are unavailable because the generated viewpoint is virtual. In other
words, there is no ground truth allowing a full comparison with the distorted view.
Though, assessment tools are required to evaluate the quality of the synthesized
views.

The following sections discuss state-of-the-art methods for 3D content subjective and ob-
jective assessment.

4.2 Subjective assessment

3D contents and as a consequence virtual views synthesized either from decoded and dis-
torted data, or from original data, need to be assessed. The best assessment tool remains
human judgment as long as the right protocol is used. Subjective quality assessment is
still delicate while addressing new types of conditions because one has to define the best
way to obtain reliable data. Tests are time-consuming and consequently one should issue
precise guidelines on how to conduct such experiments to save time and to bound the
number of observers. Since stereoscopic vision and DIBR introduce new parameters, the
right protocol to assess visual quality with observers is still an open question. The ade-
quate assessment protocol might vary according to the targeted objective that researchers
focus on (impact of compression, DIBR techniques comparison, etc.) and the context of
use (viewing conditions: 2D or stereoscopic).
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In this section, subjective assessment of 3D content is addressed. Since most of the methods
proposed for assessing 3D contents rely on methods used for the assessment of conventional
2D images/video sequences, this latter is first discussed. Then, a discussion on the latest
proposed assessment methods for 3D content is proposed.

4.2.1 Subjective assessment methodologies

Subjective tests are used to measure image or video quality. The International Telecom-
munications Union (ITU)[ITU08] is in charge for the recommendations of the most com-
monly used subjective assessment methods. Several methods exist but there is no 3D-
dedicated protocol, because the technology is not mature yet. In the absence of any better
3D-adapted subjective quality assessment methodologies, the evaluation of 3D content is
mostly obtained through 2D validated assessment protocols. The available protocols both
have drawbacks and advantages and they are usually chosen according to the desired task.
The choice for the use of a particular protocols is determined by the distortion range to
assess and by the question and the answer targeted by the researcher [Bar09]. The avail-
able methodologies differ according to the type of pattern presentation (single-stimulus,
double-stimulus, multi-stimulus), the type of voting (quality, impairment, or preference),
the voting scale (discrete or continuous), the number of rating points or categories. Fig.
4.1 depicts the proposed classification of subjective methods in [Bar09]. The abbreviations
of the methods classified in 4.1 are referenced in Table 4.2.

4.2.2 2D-based subjective quality assessment methodologies for 3D con-
tents

As explained earlier, in the absence of any 3D-adapted methodology, the evaluation of 3D
contents mostly relies on 2D validated assessment protocols. Numerous examples can be
found in the literature. However, the main criticism of the following examples is that they
often assess image quality only.

In [KCF07], Kalva et al. have studied the impact of eye dominance and autostereoscopic
displays on the quality of 3D video experiences, by using an ACR-like methodology. The
participants of these experiences were asked to rate the overall quality of asymmetrically
coded stereoscopic video sequences using a subjective evaluation scale from 1 (unaccept-
able) to 5 (excellent).

In [WYYJ09], Wang et al. have built a database of 400 distorted stereoscopic still images
assessed by twenty observers using the DSCQS method, with polarized glasses. References
are hidden. This term indicates that the original images are presented and assessed by
the observer but the stimuli are not explicitly identified as the reference images. However,
in these experiments, only the right view is distorted while the left view remains original;
eye dominance is thus not taken into account in this work.
In [OS10], Olsson et al. have also used the DSCQS method to investigate the relationship
between compression schemes and perceived 3D image quality. Two different compres-
sion methods are tested (JPEG 2000 and H.264/AVC) and an autostereoscopic display is
used for the assessments. From a pair of images (the uncompressed original one and the
compressed image) the observers are asked to rate the absolute quality only of both images.

In [CLCM07], Campisi et al. have proposed a methodology for subjective assessment
of stereoscopic images. These experiments include various compression ratios on stereo-
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Figure 4.1: Commonly used subjective test methods, as depicted in [Bar09].

Abbrev. Full meaning Ref.

DSIS Double Stimulus Impairment Scale [BT.93]

DSCQS Double Stimulus Continuous Quality Scale [BT.93]

SSNCS Single Stimulus Numerical Categorical Scale [BT.93]

SSCQE Single Stimulus Continuous Quality Evaluation [BT.93]

SDSCE Simultaneous Double Stimulus for Continuous Evaluation [BT.93]

ACR Absolute Category Rating [ITU08]

ACR-HR Absolute Category Rating with Hidden Reference removal [ITU08]

DCR Degradation Category Rating [ITU08]

PC Pair Comparison [ITU08]

SAMVIQ Subjective assessment Methodology for Video Quality [ITU08]

Figure 4.2: Overview of subjective test methods.
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scopic still images. The tests follow SAMVIQ protocol, with active liquid crystal shutter
glasses. SAMVIQ method is known for its ability to discriminate similar levels of quality.
Moreover, with a random access process to display the contents, observers are allowed to
start and stop the evaluation, to modify their vote or to repeat the display of a media. In
this case, references are also hidden and rated by the observers. In spite of its accuracy,
it is a time-consuming method.

In [ZW09], Zhu et al. used a DSIS method in order to validate the reliability of their
proposed perceptual metric for stereoscopic video sequences. Similarly, in the Call for
Proposals on 3D Video Coding (3DVC) technology of MPEG [MPE11], the testing method
is also DSIS, and with naive observers. In this method, observers are presented two stim-
uli sequentially. Afterwards, the observers are allowed to rate the impairments for a few
seconds only. In [ZW09], the observers rate the quality by answering the question “how
close it visually resembles the original reference”.

4.2.3 Trends (towards 3D adapted protocols)

Defining a new subjective video quality assessment framework is a tough task, given the
new complexity involved in 3D media. The difficulty of 3D-image quality evaluation, com-
pared to 2D conventional images, is now better considered. Seuntiens [Seu06] introduced
new parameters to be assessed in addition to image quality: naturalness, presence and
visual experience. Thus, a multi-dimensional quality indicator may allow a reliable assess-
ment of 3D-TV media. Yamagashi et al. recently studied the relationships between image
quality, naturalness and depth in [YKOH11]. ITU-R BT. 1438 recommendation [ITU00]
describes subjective assessment of stereoscopic television pictures and the methods are
described in [BT.93]. New protocols are under investigation and the relevant trends are
discussed hereby.

Chen et al.[CFBLC10] revisited the question of subjective video quality assessment pro-
tocols for 3D-TV. This work points out the complexity of 3D media quality assessment.
Chen et al. proposed to reconsider several conditions in this context, such as the view-
ing conditions (viewing distance, monitor resolution), the test material (depth rendering
according to the chosen 3D display), viewing duration, etc. In the following, some of the
requirements proposed by Chen et al. in [CFBLC10] are mentioned:

� General viewing conditions: first the luminance and contrast ratio is considered,
because of the crosstalk involved by 3D-TV screens, and because of the used glasses
(both active and polarized glasses cause reduction of luminance). Second, the reso-
lution of depth has to be defined. Third, the viewing distance recommended by ITU
standards may differ according to the used 3D display. Moreover, as the authors
of the study claim, depth perception should be considered as a new parameter to
evaluate the Preferred Viewing Distance, such as human visual acuity or picture
resolution.

� Source signals: the video format issue is mentioned. It refers to the numerous 3D
representations (namely LDV, MVD, or 2D+Z) whose reconstruction or conversion
lead to different types of artifacts.

� Test methods: as mentioned previously, new aspects have to be considered such as
naturalness, presence, visual experience and visual comfort as well. The latter refers
to the visual fatigue that should be measured to help in a standardization process.
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� Observers: first an adapted protocol should involve the measurement of viewers’
stereopsis ability. Second, the authors of [CFBLC10] mention that the required
number of participants may differ in 2D and in 3D. So, further experiments should
define this number.

� Test duration and results analysis: the duration of the test is still to be determined,
taking into account visual comfort. Analysis of the results refers to the definition of
a criterion for the rejection of incoherent viewer votes and also to the analysis of the
assessed parameters (depth, image quality, etc.)

In [AHH+10], Aflaki et al. have included the separate evaluation of three criteria: general
image quality, naturalness and perceived depth. The discrete quality scale was ranged
from -3 to 3 (-3 meant “very bad” or “not natural”, 0 meant “mediocre” and 3 was “very
good” or “very natural”). In this attempt to measure multi-modes brought by stereoscopic
vision, naive participants with no experience on stereoscopic video rate asymmetrically
coded video sequences through a polarizing screen. The originality of this work come from
the fact that the proposed methodology includes the evaluation of three different factors,
and not only the image quality. However, in the paper, the analysis of the separate con-
tribution of these three criteria is unclear.

In [OEK11], Ozbek et al. have proposed an interactive quality assessment method for
stereoscopic video sequences, namely the Subjective Evaluation of Stereo VIdeo Quality
(SESVIQ). It is based on the SAMVIQ method. Observers vote with a slider whose values
ranging from 0 to 100 are grouped in five qualitative categories (bad, poor, fair, good and
excellent). In this methodology, it is worth noting that three modes are assessed simulta-
neously, within the same score: the observers are ask to vote considering perceived depth,
sharpness and naturalness. As in the SAMVIQ method, observers can repeat the display
and compare the impaired sequences as long as they need. The main criticism regarding
the proposed protocol is that the separate contribution of these three criteria is not clear.
Moreover, as SAMVIQ method, in spite of its accuracy, SESVIQ is time-consuming. In
[CJB+12], Chen et al. have also used a SAMVIQ methodology. In that paper, the authors
consider the visual experience as a linear combination of visual comfort, perceived depth
and image quality experienced by the observer. The different factors are separately rated:
depth quantity is estimated by the observer through a numerical scale ranging from 0 to
100. The other criteria were estimated through a qualitative scale (“excellent, good, fair,
poor, bad”. This study revealed the contributions of the considered factors and led to the
conclusion that visual experience is a combination of image quality (34%), depth rendering
(27%) and visual comfort (40%).

These studies show the need for the consideration of new modes when assessing 3D con-
tents. In consequence, objective metrics also require to be addressed in the context of 3D
contents assessment, since they are meant to predict human judgment whose complexity
in 3D seem to be different than in 2D. This is the subject of the next section.

4.3 Objective assessment

The need for better adapted tools to correctly assess the quality of 3D contents is cru-
cial. Indeed, the performances of any new system, such as synthesis algorithms or coding
methods, need to be determined in order to make the best technology choices. The latest
proposed metrics in the literature, do not always consider the same viewing conditions.
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For instance, among the proposed metrics, many of them target stereoscopic video, but
only a few of them target views synthesized from DIBR in 2D viewing conditions.

Most of the proposed metrics assessing 3D media, are inspired from 2D quality metrics. It
should be noted that experimental protocols validating the proposed metrics often involve
depth and/or color compression, different 3D displays, and different 3D representations
(2D+Z, stereoscopic video, MVD, etc.). Experimental protocols often assess at the same
time both compression distortion and synthesis distortion, without distinction. This is
problematic because there may be a combination of artifacts from various sources (com-
pression and synthesis) whose effects are not clearly specified and assessed.

The objective metrics can be classified in three different categories of methods accord-
ing to the availability of the reference image [CSRK11]: full reference methods (FR),
reduced reference (RR), and no-reference (NR). Most of the existing metrics rely on FR
methods which require references images. RR methods require only elements of the refer-
ence images. NR methods do not require any reference images. NR methods mostly rely
on Human Visual System (HVS) models to predict the human opinion of the quality. Also,
a prior knowledge on the expected artifacts highly improves the design of such methods.

In the following, we present the current trends regarding new objective metrics for 3D
media assessment, by distinguishing whether or not they make use of depth data in the
quality score computation .

4.3.1 2D-like metrics

In this section, we mention recent studies addressing the issue of objectively assessing 3D
contents, and relying on 2D-like metrics. Before presenting these studies, two famous 2D
objective tools need to be presented, because of their popularity. These two metrics are
known as the Peak-Signal-to-Noise-Ratio (PSNR) and the Single-scale Structural SIMilar-
ity (SSIM) [WBSS04]. They are often used for image quality assessment because of their
easiness of implementation.

PSNR measures the signal fidelity of a distorted image compared to a reference. It is
based on the measure of the Mean Squared Error (MSE). The MSE between two pictures
I and Ĩ is defined as follows:

MSE =
1

XY

∑
l

∑
c

[I(l, c)− Ĩ(l, c)]2 (4.1)

where X × Y is the size of one image, I(l, c) is the value of one pixel in I. The PSNR in
decibels is defined as:

PSNR = 10log10(
m2

MSE
) (4.2)

where m is the maximum value that a pixel can take (255 for 8-bit images). Because of
the pixel-based approach of such a method, the amount of distorted pixels is summed, but
their perceptual impact on the quality is not considered: PSNR does not take into account
the visual masking phenomenon. Thus, even if an error is not perceptible, it contributes
to the decrease of the quality score. Studies showed that in the case of synthesized views,
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PSNR is not reliable, especially when comparing two images with low PSNR scores. PSNR
cannot be used in very different scenarios as explained in [ECW04].

SSIM combines image structural information: mean, variance, covariance of pixels, for
a single local patch. The block size depends on the viewer’s distance from the screen. The
SSIM score between two signals x and y is defined as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.3)

where, if the two signals x and y contain N samples, the statistical features are:

� µx = x̄ = 1
N

∑N
i=1 xi

� µy = ȳ = 1
N

∑N
i=1 yi

� σ2
x = 1

N−1

∑N
i=1(xi − x̄)2

� σ2
y = 1

N−1

∑N
i=1(yi − ȳ)2

� σxy = 1
N−1

∑N
i=1(xi − x̄)(yi − ȳ)

� and the constants: C1 = (K1L)2, C2 = (K2L)2. L is the dynamic range of the pixel
values (for 8-bit images, L=255), K1 = 0.01, and K2 = 0.03.

A low variation of the SSIM measure can lead to an important error of MOS prediction.
Because of the block based approach of SSIM, it may not be appropriate for the case of
3D content, depending on the case of use.

Despite their limitations, PSNR and SSIM are widely known and used for the assessment
of the synthesized views. In the following, recent studies targeting the assessment of 3D
contents are presented. Some of them rely or are meant to be extensions of PSNR or SSIM.

The method proposed in [BGE+06] is a full-reference stereoscopic video quality metric
combining the evaluation of the monoscopic quality, and the stereoscopic quality of the
pair. Inputs are the two views of the stereopair. So-called cyclopean images (combination
of the two views into a single global image) are formed from the reference pair, and from
the distorted pair. Then, their perceptual similarity is assessed relying on SSIM. Dispar-
ities of each pair are analyzed through a block matching algorithm. Correlations with
human quality scores (with DSCQS method) are not provided in this paper. However,
it is observed that the proposed measure follow the subjective opinion better than SNR
(Signal to Noise Ratio), when assessing encoded sequences, or blurred or noised images.
This metric does not target the DIBR-related artifacts, but the stereoscopic viewing case
only.

Perceptual Quality Metric (PQM) [JMFK10] was proposed by Joveluro et al.. Although
the authors assess the quality of decoded 3D data (2D+Z), the metric is applied on left
and right views synthesized with a DIBR algorithm (namely [Feh04]). Thus, this method
may also be applied for synthesized views. The quality score is a weighted function of
the contrast distortion and the luminance difference between both reference and distorted
color views. The method can thus be classified as HVS-based. The method is sensitive to
slight changes in image degradation and error quantification. In [JMFK10] PQM method
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performances are validated by evaluating views synthesized from compressed data (both
color and depth data are encoded at different bit-rates). Subjective scores are obtained by
a SAMVIQ test, on a 3D 42-inch Philips multi-view auto-stereoscopic display. Note that
compression, synthesis and factors inherent to the display are assessed at the same time
without distinction in the experiments.

Zhao and Yu [ZY10] proposed an FR metric, Peak Signal to Perceptible Temporal Noise
Ratio. This metric evaluates the quality of synthesized sequences by measuring the per-
ceptible temporal noise within these impaired sequences.

Conze et al.[CRM12] proposed a full-reference objective quality assessment metric that
targets artifacts related to view synthesis. More precisely, their method relies on the ob-
servation that thin objects, object borders, transparency, variations of illumination or color
differences between left and right views, periodic objects are the most critical elements
to be rendered through DIBR. Their method is known as the View Synthesis Quality
Assessment (VSQA) and is defined as an extension of any existing 2D image quality. In
[CRM12], VSQA is used as an extension of SSIM [WBSS04]. VSQA considers features of
the spatial environment and the complexity in terms of textures, the diversity of gradient
orientations and the presence of high contrast of the synthesized views.

4.3.2 Depth-aided methods

In this section, we present recent studies relying on depth information for the assessment
of 3D contents.

Sazzad et al. [SYKH09] have proposed a no-reference perceptual quality metric for stereo-
scopic images based on segmented local features of artifacts and disparity. Detection of
local features such as edges, flat and texture blocks, planar and non-planar blocks are
included in the method. Disparities are also taken into account in the analysis. The re-
sults show that the model performs quite well over a wide range of stereo image contents
and distortion levels. However the main criticism to address regards the fact that only
JPEG-related artifacts (DCT and blockiness) are targeted by this method.

In [BLCCC09], Benoit et al. proposed a quality metric for the assessment of stereopairs
using fusion of 2D quality metrics and depth information. Well-known 2D metrics, either
SSIM[WBSS04] or C4[CLCB03], are applied separately on each image (left and right view)
and the scores are combined to obtain one overall score for the given stereopair. By taking
into account the stereo-disparity in their measure, Benoit et al. point out the fact that
2D metrics have limitations when assessing stereoscopic image quality, since SSIM is en-
hanced when adding the disparity distortion contribution. You et al., in [YXPW10] reach
the same conclusion regarding the use of disparity in the quality score of stereoscopic data.

Ekmekcioglu et al.[EWDS+10] have proposed a depth-based perceptual quality metric.
It is a tool that can be applied to PSNR or SSIM. The method uses a weighting function
based on depth data at the target viewpoint, and a temporal consistency function to take
the motion activity into account. The final score includes a factor that considers non-
moving background objects during view synthesis. Inputs of the method are the original
depth map (uncompressed), the original color view (originally acquired, uncompressed)
and the synthesized view. Validation of the performances is achieved by synthesizing
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different viewpoints from distorted data: color views suffer two levels of quantization dis-
tortion; depth data suffer four different types of distortion (quantization, low pass filtering,
borders shifting, and artificial local spot errors in certain regions). The study [EWDS+10]
shows that the proposed method enhances the correlation of PSNR and SSIM to subjective
scores.

Yasakethu et al.[YWDS+11] proposed an adapted VQM for measuring 3D Video quality.
It combines 2D color information quality and depth information quality. Depth quality
measurement includes an analysis of the depth planes. The final depth quality measure
combines 1) the measure of distortion of the relative distance within each depth plane,
2) the measure of the consistency of each depth plane, and 3) the structural error of the
depth. The color quality is based on the VQM score. In [YWDS+11], the metric is eval-
uated through left and right views (rendered from 2D+Z encoded data), and compared
to subjective scores obtained by using an auto-stereoscopic display. Results show higher
correlation scores with MOS than simple VQM.

Solh et al.[SAB11] have introduced the 3D Video Quality Measure (3VQM) to predict
the quality of views synthesized from DIBR algorithms. The method analyses the quality
of the depth map against an ideal depth map. Three different analyses lead to three dis-
tortion measures: spatial outliers, temporal outliers, and temporal inconsistencies. These
measures are combined to provide the final quality score. To validate the method, subjec-
tive tests were run in stereoscopic conditions. Stereoscopic pairs include views synthesized
from depth map and colored video compression, depth from stereo matching, depth from
2D to 3D conversion. Results show accurate and consistent scores compared to subjective
assessments.

In [JQL09], Jiangbo et al. have proposed an interpolation quality metric including a
image interpolation algorithm to detect color “bleeding artifacts”, related to discovered
areas. Depth discontinuities are also detected to predict the disparity jumps greater than
a threshold. The results are encouraging but the paper does not include comparisons with
other known metrics.

4.4 Conclusion

This chapter proposed a review on both subjective quality assessment protocols and ob-
jective quality assessment methods used in the context of MVD. This analysis showed
that subjective and objective methods tend to take the added-value of depth more into
consideration. This makes the evaluation of depth an additional feature to assess, just like
the image quality. Most of the proposed objective metrics still rely on 2D usual methods.
New tools focus either on depth structure, or on depth accuracy. Temporal consistency is
also taken into account. These new aspects need to be consider in view to the conception
of 3D Video processing chain. At the time of writing, the Video Quality Experts Group
(VQEG) was investigating a new subjective assessment method for 3D services, within the
3DTV project and the studies on an objective metric for 3D video quality was under way.
The discussion of the next part of this thesis will remain on quality assessment, in order
to investigate a particular aspect regarding the tools evaluating the quality of synthesized
views.
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Probable causes of distortions have been presented in the previous part through the
examination of the 3D Video processing chain steps. We can now focus on a specific phase
generating visual distortions in the end user 3D media: the view synthesis process. This
choice is motivated by the fact that both 3DTV and FTV require the reconstruction of
novel virtual viewpoints. Since the virtual viewpoints are actually observed by the users,
the quality assessment of these generated views is meaningful. In addition, considering,
the fact that the processing chain head end systems also require their performances to be
rated, it is primordial to ensure the availability of assessment tools for virtual views. This
part addresses this issue.
Chapter 5 explains the principles of view synthesis, through the example of the reference
algorithm used in this thesis. This chapter also presents the synthesis process related
distortions. Chapter 6 illustrates the complexity of synthesized views assessment thanks to
three experiments questioning the reliability of subjective quality evaluation and objective
quality evaluation methods commonly used for 2D images/video sequences, in the case of
the synthesized views assessment. The experiments include both 2D viewing conditions
and stereoscopic viewing conditions. Finally, this chapter also proposes a preliminary
study for the objective quality assessment of synthesized views, based on the results of the
previous experiments.
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CHAPTER 5

View synthesis in 3D video

In the context of this thesis, view synthesis refers to the process using depth maps to
generate novel viewpoints of the same scene. This warping process involves issues related
to geometry. It induces new artifacts in the reconstructed virtual view. The goal of this
chapter is to present the possible sources of distortion deriving from the synthesis process.
There is a need for new tools such as objective quality metrics or MVD coding methods
whose design can be guided based on the knowledge of these sources of distortion. The
chapter is organized in two sections: the introduction of the synthesis principles through
the example of a synthesis algorithm, namely View Synthesis Reference Software (VSRS)
is presented in a first section (Sec. 5.1) and a discussion on the related artifacts is proposed
in a second section (Sec. 5.2).

5.1 View synthesis principles

In order to show a good understanding of the artifacts related to the synthesis process, we
describe the principles of this technique in this section. Both 3D-TV and FVV applications
require the generation of novel viewpoints. The transmitted texture and depth video se-
quences are used to generate virtual views with the help of Depth-Image-Based Rendering
(DIBR) techniques. The generated views can then be rendered on a conventional display,
or a stereoscopic or an autosterescopic display.

Generating a “virtual” view consists in synthesizing a novel view of the scene, from a
viewpoint which differs from those captured by the actual cameras, by relying on the
available texture and depth data. The conventional 2D color sequences provide the color
information, also called texture. The depth data is defined by gray-scales images and is
considered as a monochromatic signal. Each pixel of a depth map, gives the distance of the
corresponding 3D point from the camera, as explained in section 2.2. Based on projective
geometry [HZ03], the 3D representation of a scene can be retrieved from a depth map.

Figure 5.1 illustrates the relationship between a real 3D point of the scene, defined as
X and its projections x1 and x2 in camera planes of C1 and C2 respectively. Points x1

and x2 are said to be “correspondent pixels” because they are the projection of the same
real 3D point X. Given the depth of X and the cameras’ parameters, x1 and x2 can be
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Figure 5.1: Relationship between image points and real world [LH08].

determined using projective geometry principles: the geometric transformation from 3D
world to the camera plane can be easily performed from depth data, and both intrinsic
and extrinsic parameters of known cameras [HZ03].

Along the same principle, 3D points of the real world can be projected onto the image
plane of a virtual camera from an arbitrary viewpoint. Since we will use the View Synthesis
Reference Software (VSRS) [TFS+08] (version 3.5 is provided by MPEG) as the synthesis
algorithm in this thesis, we propose to illustrate the principles of DIBR relying of the
fundamentals of this method. The choice for VSRS here and in the rest of this thesis, is
motivated by the fact that it is the reference software in MPEG and the proposed coding
systems need to be compared based on a common reference. Providing the parameters
related to the virtual camera Cv and texture and depth information from two adjacent
known views, VSRS is able to generate a novel viewpoint.

Figure 5.2 shows synthesis principles used in VSRS. Let To1 and To2 be the two original
texture adjacent views, left and right respectively. Let do1 and do2 be the depth maps of
the two adjacent views, To1 and To2 respectively. Depth maps do1 and do2 are warped
into the virtual view resulting in two new depth maps referring to the virtual viewpoint:
dp1 and dp2 respectively. Those new maps contain non-valued areas, called holes. They
correspond to occluded areas in the reference viewpoint (left or right respectively). The
left and right texture images To1 and To2 are projected in the virtual viewpoint according
to the new depth maps dp1 and dp2, they also contain non-valued areas. The resulting
texture images can be denoted as Tp1 and Tp2. The non-valued areas, also called holes,
are then filled in by available information from both new texture images. Then the two
texture images Tp1 and Tp2 are fused into one single image denoted as Tv.
The described process assigns each pixel of the new texture image Tv, a color value ac-
cording to its corresponding depth. Three cases are considered:

- both depth values for the considered pixel are null: this is a non visible area.
- only one of the two pixels has a depth value: this is an occluded area in one of the

reference viewpoints.
- depth values of the pixels in the adjacent views are not null.

This is expressed by:

Tv =



0, if (u, v) is not visible
Tp1(u, v), if dp1(u, v) 6= 0

and dp2(u, v) = 0
Tp2(u, v), if dp1(u, v) = 0

and dp2(u, v) 6= 0
(1− α)Tp1(u, v) + αTp2(u, v),

if dp1(u, v) 6= 0
and dp2(u, v) 6= 0
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where (u, v) refers to the coordinates of a pixel of the synthesized view, dp1(u, v) is the
depth value of this pixel calculated from camera C1, dp2(u, v) is the depth value of this
pixel calculated from camera C2, and α is a factor depending on the distance to the virtual
viewpoint (α < 1). To be more precise, the factor is calculated in a way that the view
closer to the virtual view position has a higher weight.

The synthesis process already raises some issues. First, in terms of geometry: regions
occluded in both input views and visible in the target view lead to non-valued areas in
the texture image. Secondly, errors can occur because pixel coordinates do not locate at
an integer position and are usually either interpolated or rounded to the nearest integer
position. Inpainting methods [NNKD+10, KNND+10, MSD+08] as well as interpolation
filters were developed in order to reduce these synthesis artifacts. However, using such
processes lead to new artifacts. This will be discussed in the next section.

5.2 New artifacts

In this section, we first discuss the sources of distortions in synthesized views. Then, we
present a classification of commonly observed distortions.

5.2.1 Sources of distortion

The major issue in DIBR consists in filling in the disoccluded regions of the novel view-
point: when generating a new viewpoint, regions that were not visible in the previous
viewpoints, become visible in the new one [Feh04]. However, the appropriate color in-
formation related to these discovered regions is often unknown. Inpainting methods that
are either extrapolation or interpolation techniques, are meant to fill in the disoccluded
regions. Evaluating the impact of such processes on the visual quality is difficult. Dis-
tortions from inpainting are specific and dependent on a given hole-filling technique, as
observed in [BPLC+11b].

Another noticeable problem with respect to visual quality assessment refers to the nu-
merical rounding of pixel positions when projecting the color information in the target
viewpoint (3D warping process): the pixels mapped in the target viewpoint may not be
located at an integer position. In this case the position is either rounded to the nearest
integer or interpolated. Finally, another source of distortion relies on the depth map uncer-
tainties. Errors in depth maps estimation cause visual distortion in the synthesized views
because the color pixels are not correctly mapped onto the new texture image. Similar
artifacts occur when depth maps suffer important quantization from compression methods
[DSFW10].

5.2.2 Examples of distortions

As explained above, the sources of distortions are various and their visual effects on the
synthesized views are perceptible as well in the spatial domain as in the temporal domain.
The following statements are based on our observations. In most cases, these artifacts
are located around large depth discontinuities, and they are more noticeable in case of
high texture contrast between background and foreground. The artifacts are perceptible
in monoscopic viewing condition. In stereoscopic viewing condition, depending on the
importance of the distortion, either binocular suppression or binocular rivalry can occur,



48 View synthesis in 3D video

Figure 5.2: View synthesis with VSRS.
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Figure 5.3: Shifting/Resizing artifacts. The
shape of the leaves, in this figure, is slightly mod-
ified (thinner or bigger). The vase is also moved.

Figure 5.4: Incorrect rendering of textured ar-
eas. An example of texture stretching.

making the artifacts imperceptible or perceptible, respectively. In this subsection, these
different artifacts observed at the end of the synthesis step are addressed. The resulting
typical DIBR artifacts are first described. Then, the artifacts observed when synthesizing
a novel view from compressed depth data are discussed.

Artifacts related to the synthesis process

Object shifting: a region may be slightly translated or resized, depending on the cho-
sen extrapolation method (if the method chooses to assign the background values to the
missing areas, object may be resized), or on the encoding method (in depth data blocking
artifacts result in object shifting in the synthesis). Figure 5.3 depicts this type of artifact.

Incorrect rendering of textured areas: inpainting (or hole-filling) methods may fail
to fill in complex textured areas. Figure 5.4 depicts this type of artifact.

Blurry regions: This may be due to the inpainting method used to fill in the disoc-
ccluded areas. It is more visible around the background/foreground transitions. These
remarks are confirmed on Figure 5.5 around the disoccluded areas. Behind the head and
around the arms of the chair, thin blurry regions are perceptible.

Flickering: errors occurring randomly in depth data along the sequence imply that color
pixels are projected into an erroneous location: some pixels suffer slight changes of depth
at successive time instants, which appears as flickers in the resulting synthesized pixels.
This can thus be observed when watching a video sequence.

Tiny distortions: in synthesized sequences, a large number of tiny geometric distor-
tions and illumination differences are temporally constant and perceptually invisible. Due
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Original frame Synthesized frame

Figure 5.5: Blurry artifacts (Book Arrival).

to the rounding decimal point problem mentioned in Section 5.1 and to depth inaccuracy,
slight errors may occur when assigning a color value to a pixel in the target viewpoint.
This leads to tiny illumination errors, or tiny geometric shifts that may not be perceptible
to the human eye. However, pixel-based metrics may penalize these distorted zones.

Artifacts related to the synthesis from compressed depth data

When encoding either depth data or color sequences before performing the synthesis,
compression-related artifacts are combined with synthesis artifacts. Artifacts from data
compression are generally scattered over the whole image (as described in [YW98]), while
artifacts inherent to the synthesis process are mainly located around the disoccluded ar-
eas. The combination of both types of distortion, depending on the compression method,
relatively degrade the synthesized view. Actually, most of the used compression methods
are based on 2D video coding methods, and are thus optimized for the human perception
of color. As a result, artifacts occurring especially in depth data induce severe distortions
in the synthesized views. In the following, a few examples of such distortions are presented.

Shifting effect: this shifting effect is due to staircase effect or blocking effect in the
quantized depth map. This occurs when the DCT based compression method deals with
diagonal edges and features. Coarse quantization of blocks containing a diagonal edge re-
sults in either a horizontal or vertical reconstruction, depending on its original orientation.
In the synthesized views, whole blocks of color image seem to be translated. Figure 5.6
illustrates the distortion. Staircase effect is perceptible in the depth map and it results in
geometric distortions of the projected objects: the face and the arms have distorted shapes.
The diagonal line in the background is also degraded. The staircase effect modifies the
depth plane values of the color pixels, thus objects are consequently wrongly projected
during the synthesis.
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(a) Original depth
frame

(b) Original texture
frame

(c) Distorted depth
frame

(d) Synthesized view

Figure 5.6: Shifting effect from depth data compression results in distorted synthesized views
(Breakdancers).

“Crumbling”: when artifacts occur in depth data around strong discontinuities, ap-
pearing like erosion, the edges of objects appear distorted in the synthesized view. This
typically occurs when applying wavelet-based compression on depth data. Figure 5.7 de-
picts this artifact. It is perceptible around the arms of the chair.

5.3 Conclusion

In this chapter, the principles of view synthesis based on depth images have been intro-
duced, thanks to the example of the DIBR algorithm used in our following experiments,
namely VSRS. The presentation of this process highlighted the origins of distortions in
synthesized views. This chapter provided examples of typical DIBR related distortions.
We observed that visual distortions could be not only the result of the very synthesis
process itself (in particular because of the hole filling issue), but as well the result of the
combination of compression related artifacts and synthesis related ones. New types of
distortions have arisen. Based on these observations, we need to question the reliability of
usual quality metrics and usual subjective quality assessment protocols. This will be the
subject of the next chapter.
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(a) Original depth frame (b) Distorted depth frame

(c) Original texture frame (d) Synthesized view

Figure 5.7: Crumbling effect in depth data leads to distortions in the synthesized views (Book
Arrival).



CHAPTER 6

Assessment of synthesized views

The previous chapter highlighted the fact that new types of distortion have to be consid-
ered due to the synthesis process. This observation justifies the need for the confirmation
that usual quality assessment methods are still reliable in the specific case of use of DIBR
algorithms.
In this chapter, experiments addressing this verification are presented. They target the
quality evaluation of still images and video sequences in the presence of synthesis related
artifacts only (i. e. there is no compression related artifacts). Generated virtual views
are assessed in monoscopic conditions and in stereoscopic conditions. This study has been
conducted with the collaboration of IRCCyN laboratory, at University of Nantes, France,
and Fraunhofer Institut for Telecommunications, HHI, Berlin, Germany. It led to the
publication of three international conferences papers [BPLC+11a, BKP+11, BMP12b],
one journal paper [BPLC+11b] and one book chapter [BLCMP12].
In this chapter, Sec. 6.1 details the motivation for our contribution, through these exper-
iments. The next two sections are dedicated to the presentation and the justification for
the choice of the tested subjective quality assessment methodologies (Sec. 6.2) and the
objective quality metrics (Sec. 6.3). Then, Sec. 6.4 describes the experimental conditions.
The results of each experiments are presented in three different sections (Sec 6.5, Sec. 6.6
and Sec. 6.7) depending on the viewing conditions and on the assessed media.

6.1 Goal of the study

Most of the proposed metrics for assessing 3D media are based on 2D quality metrics.
Previous studies ([YHFK08, TGSM08, HWD+09]) already considered the reliability of
usual objective metrics. In [YXPW10], You et al. studied the assessment of stereoscopic
images in stereoscopic conditions with usual 2D image quality metrics, but the distorted
pairs did not include any DIBR-related artifacts. In such studies, experimental protocols
often involve depth and/or color compression, different 3D displays, and different 3D rep-
resentations (2D+Z, stereoscopic video, MVD, etc...). In these cases, the quality scores
obtained from subjective assessments are compared to the quality scores obtained through
objective measurements, in order to find a correlation and validate the objective metric.
The experimental protocols often assess both compression distortion and synthesis distor-
tion, at the same time without distinction. This is problematic because there may be a
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combination of artifacts from various sources (compression and synthesis) whose effects
are neither understood nor assessed.

The experiments presented in this chapter question the reliability of subjective and objec-
tive assessment methods when evaluating the quality of synthesized views. Since the goal
of these experiments is to question the performances of commonly used quality assess-
ment methods regarding the synthesis related artifacts only, compression related artifacts
must not be introduced in the reference data. In other words, the proposed verification
protocol will include the evaluation of synthesized views generated from original texture
and depth data only, to avoid the mixed assessment of synthesis and compression related
artifacts. These experiments involve the use of seven different DIBR algorithms, in order
to consider various types of artifacts. Several commonly used objective quality metrics and
subjective quality assessment methodologies will evaluate the quality of the synthesized
views. A first step consists in determining the reliability of usual methods in monoscopic
conditions, because it is a plausible case of use (FVV applications for instance). Then,
the stereoscopic conditions are addressed in a second step. In the next sections, we will
justify the choice for the selected subjective and objective quality assessment methods.
Then, after the detailed presentation of the experimental protocols, the results of different
experiments will be discussed.

6.2 Tested subjective assessment methodologies

Based on the review of subjective assessment methodologies proposed in Chapter 4.2.1,
we select two subjective quality assessment methodologies. As explained, in the absence
of any better 3D-adapted subjective quality assessment methodologies, the evaluation of
synthesized views is often obtained through 2D validated assessment protocols. The aim
of our experiments is to question the suitability of a selection of subjective quality assess-
ment methods. This selection is based on the comparison of methods in the literature.
Considering the aim of the experiments that we proposed, the choice of a subjective qual-
ity assessment method should be based on consideration of reliability, accuracy, efficiency
and easiness of implementation of the available methods. This section justifies the choice
for the subjective quality assessment protocols used in the following experiments.

Brotherton et al.[BHHB06] investigated the suitability of ACR and SAMVIQ methods
when assessing 2D media. The study showed that ACR method allows more test sequences
(at least twice as many) to be presented for assessment compared to the SAMVIQ method.
ACR method also proved to be reliable in the test conditions. Rouse et al. also studied
the trade off of these two methods in [RPLCH10], in the context of high definition still
images and video sequences. They concluded that the suitability of the two methods could
depend on specific applications.
A study was conducted by Huynh-Thu et al. in [HGS+11] to compare different meth-
ods according to their different voting scales (5-point discrete, 9-point discrete, 5-point
continuous, 11-point continuous scales). The tests were carried out in the context of high-
definition video. The results showed that the ACR method produced reliable subjective
results, even across different scales.
Considering these analyses of the methods in the literature, we selected the single-stimulus
pattern presentation, ACR-HR (with 5 quality categories) and the double-stimulus pat-
tern presentation PC for its accuracy. Both are described and commented in the following.
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5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Table 6.1: Comparison scale for ACR-HR

Absolute Categorical Rating with Hidden Reference Removal (ACR-HR) method-
ology consists in presenting test objects (i.e., images or sequences) to observers, one at
a time. The objects are rated independently on a category scale. The reference version
of each object must be included in the test procedure and rated like any other stimulus.
This explains the term used of “hidden reference”. From the obtained scores , a differential
score (DMOS for Differential Mean Opinion Score) is computed between the mean opinion
scores (MOS) of each test object and its associated hidden reference. ITU recommends
the 5-level quality scale depicted in Table 6.1. ACR-HR requires many observers to mini-
mize the contextual effects (previously presented stimuli influence the observer’s opinion,
i.e., presentation order influences opinion ratings). Accuracy increases with the number
of participants.

Paired Comparisons (PC) methodology is an assessment protocol in which stimuli are
presented by pairs to the observers: it is a double-stimulus method. The observer selects
the one out of the pair that best satisfies the specified judgment criterion, i.e. image
quality. The results of a paired comparison test are recorded in a matrix: each element
corresponds to the frequencies a stimulus is preferred over another stimulus. This data
is then converted to scale values using Thurstone-Mosteller’s model or Bradley-Terry’s
[Han01]. It leads to a hypothetical perceptual continuum.
The presented experiments follow Thurstone-Mosteller’s model where naive observers are
asked to choose the preferred item from one pair. Although the method is known to be
highly accurate, it is time consuming since the number of comparisons grows considerably
when the number of images to be compared increases.

Discussion on the two methodologies

The differences between ACR-HR and PC are of different types. First, with ACR-HR,
even though they may be included in the stimuli, the reference sequences are not identified
as such by the observers. Observers assign an absolute grade without any reference. In
PC, observers only need to indicate their preference out of a pair of stimuli. Therefore the
requested task is different: while observers assess the quality of the stimuli in ACR-HR,
they just give their preference in PC.

The quality scale is another issue. ACR-HR scores provide knowledge on the perceived
quality level of the stimuli. However, the voting scale is coarse, and because of the single
stimulus presentation, observers cannot remember previous stimuli and precisely evaluate
small impairments. PC scores (i.e. “preference matrices”) are scaled to a hypothetical
perceptual continuum. However, it does not provide knowledge on the quality level of the
stimuli, but on the order of preference. On the other hand, PC is very well suited for small
impairments, thanks to the fact that only two conditions are compared each time. This is
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why PC tests are often coupled with ACR-HR tests.

Another aspect concerns the complexity and the feasibility of the test: PC is simple
because observers only need to provide preference in each double stimulus. However, when
the number of stimuli increase, the test becomes difficult to carry out since the number of
comparisons grows according to N(N−1)

2 , where N is the number of stimuli. In the case of
video sequence assessment, a double-stimulus method such as PC involves the use of either
one split-screen environment (or two full screens), with the risk of distracting the observer
(as explained in [PW03]), or one screen but the length of the test increases as sequences
are displayed one after the other. On the other hand, the ease of handling of ACR-HR
allows the assessment of a larger number of stimuli but, the results of this assessment are
reliable as long as the group of participants is large enough.

6.3 Tested objective metrics

As presented in Chapter 4.3, proposed metrics for 3D media often rely on 2D metrics.
Considering the fact that the synthesis process induces artifacts whose influence on objec-
tive metrics performances has not been addressed so far, we propose to include a selection
of commonly used 2D metrics in our experiments and to validate their reliability in the
context of use of DIBR.
The choice of the objective metrics used in these experiments is motivated by their avail-
ability. This section presents an overview of the selected metrics. Still-images and video
sequences metrics are presented in the following.

All the objective metrics, FR, RR or NR, can be classified according to a different criterion
than the requirement of the reference image. As proposed in [P0́8], we use a classification
relying on tools used in the methods presented hereafter. Table 6.2 lists a selection of
commonly used objective metrics and Figure 6.1 depicts the proposed classification.

Signal-Based methods:

In this category, only PSNR will be mentioned because it is the most widely used
method, due to its simplicity. This FR metric has been presented in Chapter 4.3.

Perception-oriented methods:

Considering that signal-based methods are unable to correctly predict the perceived qual-
ity, perception-oriented metrics have been introduced. They make use of perceptual criteria
such as luminance or contrast distortion.

UQI [WB02] is an FR perception-oriented metric. The quality score is the product of
the correlation between the original and the degraded image, a term defining the lumi-
nance distortion and a term defining the contrast distortion. The quality score is computed
within a sliding window and the final score is defined as the average of all local scores.

IFC [SBdV05] uses a distortion model to evaluate the information shared between the
reference image and the degraded image. IFC indicates the image fidelity rather than the
distortion. IFC is based on the hypothesis that, given a source channel and a distortion
channel, an image is made of multiple independently distorted subbands. The quality
score is the sum of the mutual information between the source and the distorted images
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Objective metric Abbrev. Tested

Signal-based Peak Signal to Noise Ratio PSNR X

Perception-oriented

Universal Quality Index UQI X
Information Fidelity Criterion IFC X
Video Quality Metric VQM X
Perceptual Video Quality Measure PVQM

Structure-based

Single-scale Structural SIMilarity SSIM X
Multi-scale SSIM MSSIM X
Video Structural Similarity Measure V-SSIM X
Motion-based Video Integrity Evaluation MOVIE

HVS-based

PSNR- Human Visual System PSNR-HVS X
PSNR-Human Visual System Masking model PSNR-HVSM X
Visual Signal to Noise Ratio VSNR X
Weighted Signal to Noise Ratio WSNR X
Visual Information Fidelity VIF X
Noise Quality Measure NQM X
Moving Pictures Quality Metric MPQM

Table 6.2: Overview of commonly used objective quality metrics

Figure 6.1: Overview of quality metrics as proposed in [P0́8].
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for all the subbands. It is an FR image quality assessment metric.

VQM was proposed by Pinson and Wolf in [PW04]. It is a RR video metric that measures
the perceptual effects of numerous video distortions. It includes a calibration step (to
correct spatial/temporal shift, contrast, and brightness according to the reference video
sequence) and an analysis of perceptual features. VQM score combines all the perceptual
calculated parameters. VQM method is complex but its correlation to subjective scores is
good according to [Wan06]. The method is validated in video display conditions.

Perceptual Video Quality Measure (PVQM) [HBL+02] is meant to detect perceptible dis-
tortions in video sequences. Various indicators are used. First, an edge-based indicator
allows the detection of distorted edges in the images. Second, a motion-based indicator
analyzes two successive frames. Third, a color-based indicator detects non-saturated col-
ors. Each indicator is pooled separately across the video and incorporated in a weighting
function to obtain the final score. As this FR method was not available, it was not tested
in our experiments.

Structure-based methods:

Structure-based methods are perception-oriented metrics that rely on the assumption that
human perception is based on the extraction of structural information. Thus, they mea-
sure the structural information degradation.

SSIM [WBSS04] was the first method among those of this category. It is considered as an
extension of UQI. This FR image quality metric has been presented in Section 4.3. There-
fore, many improvements to SSIM were proposed, and adaptations to video assessment
were introduced. MSSIM is the average SSIM scores of all patches of the image. V-SSIM
[WLB04] is an FR video quality metric which uses structural distortion as an estimate of
perceived visual distortion. At patch level, the score is a weighted function of SSIM for the
different color components of the image (i.e. luminance and chrominance). At frame level,
the score is a weighted function of patches’ SSIM scores (the weights depend on the mean
value of the luminance in the patch [WLB04]). Finally, at sequence level, VSSIM score is
a weighted function of frames’ SSIM scores (based on motion). The choice of the weights
relies on the assumption that dark regions are less salient. However, this is questionable
because the relative luminance may depend on the used screen.

MOVIE[SB10] is an FR video metric that uses several steps before computing the quality
score. It includes the decomposition of both reference and distorted video by using a multi-
scale spatio-temporal Gabor filter-bank. An SSIM-like method is used for spatial quality
analysis. An optical flow calculation is used for motion analysis. Spatial and temporal
quality indicators determine the final score.

Human-Visual-System (HVS)-based methods:

HVS-based methods rely on human visual system modeling from psychophysics experi-
ments. Due to the complexity of the human vision, studies are still in progress. HVS-based
models are the result of trade-offs between computational feasibility and accuracy of the
model. HVS-based models can be classified into two categories: neurobiological models
and models based on the psychophysical properties of human vision. The models based on
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neurobiology estimate the actual low-level process in human visual system including retina
and optical nerve. However, these models are not widely used because of their complex-
ity [BPGA]. Psychophysical HVS-based models are implemented in a sequential process
that includes luminance masking, color perception analysis, frequency selection, contrast
sensitivity implementation (based on the contrast sensitivity function CSF [YM94]) and
modeling of masking and facilitation effects [Win05].

PSNR-HVS [EAP+06], based on PSNR and UQI, takes into account the Human Visual
System (HVS) properties such as its sensitivity to contrast change and to low frequency
distortions. In [EAP+06], this FR method proved to be correlated to subjective scores, but
the performances of the PSNR-HVS method are tested on a variety of distortions specific
to 2D image compression which are different from distortions related to DIBR.

PSNR-HVSM [PSE+07] is based on PSNR but takes into account Contrast Sensitivity
Function (CSF) and “between-coefficient contrast masking of DCT basis functions”. The
performances of this FR method are validated considering a set of images containing Gaus-
sian noise or spatially correlated additive Gaussian noise, at different locations (uniformly
through the entire image, mostly in regions with a high masking effect or, with a low
masking effect).

VSNR [CH07] is also an FR perception-oriented metric: it is based on a visual detec-
tion of the distortion criterion, helped by the CSF. VSNR metric is sensitive to geometric
distortions such as spatial shifting and rotations, transformations which are typical in
DIBR applications.

WSNR that uses a weighting function adapted to HVS denotes a Weighted Signal to
Noise Ratio, as applied in [DKG+02]. It is an improvement on PSNR that uses a CSF-
based weighting function. So it is also an FR quality metric. However, although WSNR
is more accurate by taking into account perceptual properties, the problem remains the
accumulation of degradations errors even in non-perceptible areas, like with PSNR method.

NQM was proposed in [DKG+02] as a nonlinear noise quality measure. NQM is an FR
quality metric. The appearance of the original and restored images are simulated and the
SNR is computed for their difference. The simulation of the appearance of the images as
observed by a user is obtained through a nonlinear space-frequency processing based on a
modified Peli’s contrast pyramid. In particular the CSF is included in the model.

IFC has been improved by the introduction of an HVS model. The FR method is called
VIF[SB06]. VIFP is a pixel-based version of VIF. It uses wavelet decomposition and
computes the parameters of the distortion models, which enhance the computational com-
plexity. In [SB06], five distortion types are used to validate the performances of the method
(JPEG and JPEG 2000 related distortions, white and Gaussian noise over the entire im-
age), which are quite different from the DIBR related artifacts.

MPQM [VLV96] uses an HVS model. In particular it takes into account the masking
phenomenon and contrast sensitivity. It has high complexity and its correlation to sub-
jective scores varies according to [Wan]. Since the method is not available, it is not tested
in our experiments.
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To evaluate the presented metrics, experiments were carried out in monoscopic and stereo-
scopic viewing conditions. Table 6.2 mentions the metrics actually tested in third column.
The next sections will describe the protocols in details and the results of the experiments.

6.4 Experimental framework

In this section, the common experimental framework of this study is presented. A first
subsection presents the tested material and a second subsection addresses the experimental
protocols. As expressed previously, the goal of the studies is to evaluate the performances of
the objective quality metrics and subjective quality assessment methods that are commonly
for 2D media, when dealing with DIBR related artifacts only.

6.4.1 Experimental material

Three different MVD sequences are used in the two studies. The sequences are Book
Arrival (1024× 768, 16 cameras with 6.5cm spacing), Lovebird1 (1024× 768, 12 cameras
with 3.5 cm spacing) and Newspaper (1024× 768, 9 cameras with 5 cm spacing).
Seven DIBR algorithms processed the three sequences to generate four different viewpoints
per sequence. These seven DIBR algorithms are labeled from A1 to A7:

� A1: based on Fehn [Feh04], where the depth map is pre-processed by a low-pass
filter. Borders are cropped, and then an interpolation is processed to reach the
original size.

� A2: based on Fehn [Feh04]. Borders are inpainted by the method proposed by Telea
[Tel04].

� A3: Tanimoto et al. [MFY+09]. It is the recently adopted reference software for the
experiments in the 3D Video group of MPEG.

� A4: Müller et al.[MSD+08] proposed a hole-filling method aided by depth informa-
tion.

� A5: Ndjiki-Nya et al. [NNKD+10]. The hole-filling method is a patch-based texture
synthesis.

� A6: Köppel et al.[KNND+10] uses depth temporal information to improve the syn-
thesis in the disoccluded areas.

� A7: corresponds to the unfilled sequences (i.e. with holes).

Figure 6.2 gives snapshots of some of the resulted synthesized views.
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(a) Original
frame

(b) Original
depth map

(c) Blurred depth
map

(d) Warped
depth map

(e) Fehn [Feh04]
(A1)

(f) Fehn [Feh04]
(A2)

(g) Tanimoto
et al.[MFY+09]
(A3)

(h) Müller et
al.[MSD+08]
(A4)

(i) Ndjiki-Nya et
al.[NNKD+10]
(A5)

(j) Köppel et
al.[KNND+10]
(A6)

(k) Warped frame
(A7)

Figure 6.2: DIBR results for frame 141 of the “Lovebird1” sequence. A baseline of 7cm is used.
Camera 8 is used to render camera 6. (a) Original view. (b) Corresponding depth map. (c)
Gaussian filtered depth map. (d) Warped original depth map with disocclusions (marked white).(e)
“Virtual” camera view obtained with the method proposed by Fehn [Feh04] using the Gaussian
filtered depth map shown in (c). (f) based on Fehn [Feh04], borders are inpainted. (g) Result of
the hole filling method proposed by Tanimoto et al.[MFY+09]. (h) Result of the hole filling method
proposed by Müller et al.[MSD+08]. (i) Result of the hole filling method proposed by Ndjiki-Nya
et al.[NNKD+10]. (j) Result of the hole filling method proposed by Köppel et al.[KNND+10]. (k)
Corresponding projected “virtual” view with disocclusions (marked black) using the original depth
map (b).

6.4.2 Experimental protocols

Our study can be divided into three different experiments:

� Experiment 1 concerns still synthesized images in monoscopic conditions;

� Experiment 2 concerns synthesized video sequences in monoscopic viewing condi-
tions;

� Experiment 3 concerns still synthesized images in stereoscopic viewing conditions.
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Figure 6.3: Experimental protocol in monoscopic viewing conditions.

At the moment of writting this thesis, an experiment regarding the assessment of synthe-
sized video sequences in stereoscopic viewing conditions was expected to be carried. The
experimental conditions of each experiment are described in the following.

Experiment 1 and Experiment 2: monoscopic viewing conditions

These two experiments target monoscopic viewing conditions. This viewing case is con-
sidered because 2D visualization of synthesized views is possible in FVV applications. A
scenario worth studying is when watching a video, the user presses the “pause” button; or
the case of 3D display advertisings is also imaginable. These very likely cases are interest-
ing since the image can be subject to meticulous observation. Experiment 1 addresses this
scenario. Experiment 2 addresses the evaluation of video sequences. Figure 6.3 depicts
the overview of the two experiments.

In both experiments, the suitability of subjective quality assessment methods and the
reliability of objective metrics are addressed. Concerning the subjective tests, two sessions
were conducted. Forty-three naive observers participated in Experiment 1. The second
session addressed the assessment of video sequences: thirty-two naive observers partici-
pated in Experiment 2. In both experiments, the subjects were screened for visual acuity.
Both ACR-HR and PC were carried out for the still-image context (Experiment 1), but in
the case of video sequences (Experiment 2), only an ACR-HR test was conducted. A PC
test with video sequences would have required either two screens, or switching between
items. In the case of the use of two screens, it involves the risk of missing frames of the
tested sequences because one cannot watch two different video sequences simultaneously.
In the case of the switch, it would have considerably increased the length of the test.
Table 6.3 summarizes the experimental framework.
The material for both experiments comes from the same set of synthesized views as de-
scribed in Section 6.4.1. However, in the case of Experiment 1, on still-images, the test
images are “key” frames (“keys” were randomly chosen) from the same set of synthesized
views. That is to say that for each of the three reference sequences, only one frame was
selected out of each synthesized viewpoint, for the tests assessing still-images.
The objective measurements were realized over 84 synthesized views by the means of
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Experiment 1(still-
images)

Experiment 2
(video sequences)

Stimuli Key frames of each
synthesized view

Synthesized video se-
quences

Subjective tests
No. of par-
ticipants

43 32

Methods ACR-HR, PC ACR-HR
Objective measures All available metrics of

MetriX MuX
VQM, VSSIM, Still-
image metrics

Table 6.3: Overview of the experiments

MetriX MuX Visual Quality Assessment Package [Mux] software, except for two metrics:
VQM and VSSIM. VQM was available at [Res]; VSSIM was implemented by our means,
with Matlab, according to [WLB04]. The reference was the original acquired image. It
should be noted that still image quality metrics used in the study with still images, are
also used to assess the visual video sequences quality by applying these metrics on each
frame separately and averaging the frames scores.
The subjective evaluations were conducted in an ITU conforming test environment. The
stimuli were displayed on a TVLogic LVM401W, and according to ITU-T BT.500 [BT.93].
The stimuli sequences were displayed at the sequence resolution (1024x768) with a grey
surrounding to fit the Full HD screen. Objective measurements were obtained by using
MetriX MuX Visual Quality Assessment Package [Mux].

Experiment 3: stereoscopic viewing conditions

Only one experiment was conducted in stereoscopic viewing conditions and it targeted
the evaluation of still-images. Figure 6.4 depicts the overview of the experimental proto-
col.
The material comes from the same set of synthesized views as described in Section 6.4.1.

The stereopairs consist of two stereo-compliant views. One view is the original acquired
frame and the other is a synthesized frame. All the synthesized frames used in this ex-
periments are exactly the same as those used in Experiment 1 (in monoscopic viewing
conditions, with still-images).
As in Experiment 1 and Experiment 2, the suitability of subjective quality assessment
methods and the reliability of objective metrics are addressed in Experiment 3.
Only one session was conducted using ACR-HR methodology with 25 naive observers. The
observers were screnned for visual acuity and for stereo depth perception. The stimuli were
displayed on an Acer GD245HQ screen, with NVIDIA 3D Vision Controller. The stimuli
sequences were displayed at the sequence resolution (1024x768) with a grey surrounding
to fit the Full HD screen.

The objective measurements were realized over 84 synthesized views of the 84 tested stere-
opairs by the means of MetriX MuX Visual Quality Assessment Package [Mux] software.
The reference was the original acquired image.
Table 6.4 summarizes the experimental framework.
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Figure 6.4: Experimental protocol in stereoscopic viewing conditions.

Experiment 3 (stereoscopic
still-images)

Stimuli Stereopairs made up of key
frames of each synthesized view
for left or right view, and original
acquired frame for left or right
view

Subjective tests
No. of par-
ticipants

25

Method ACR-HR
Objective measures All available metrics of MetriX

MuX

Table 6.4: Overview of the experiments in stereoscopic viewing
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6.5 Experiment 1: still images in monoscopic conditions

This section addresses the context of still images. These experiments are meant to deter-
mine:

� whether the subjective protocols are appropriate for the assessment of different
DIBR;

� the number of participants required in such a subjective assessment test;

� whether the results of the subjective assessments are consistent with the objective
evaluations.

The following subsections describe the results of Experiment 1. The first part addresses
the results of the subjective assessments and the second part presents the results of the
objective evaluations.

6.5.1 Subjective tests

The seven DIBR algorithms are ranked according to the obtained ACR-HR and PC scores,
as depicted in Table 6.5. For the ACR-HR test, the first line gives the DMOS scores
obtained through the MOS scores. For the PC test, the first line gives the hypothetical
MOS scores obtained through the comparisons. For both tests, the second line gives the
ranking of the algorithms, obtained through the first line. This table indicates that the
rankings obtained by both testing methods are consistent except for the ranking of A2
and A6.

A1 A2 A3 A4 A5 A6 A7
ACR-HR 3.572 3.308 3.145 3.401 3.496 3.32 2.277

Rank order 1 5 6 3 2 4 7
PC 1.776 0.779 0.338 0.825 1.745 0.61 -2.943

Rank order 1 4 6 3 2 5 7

Table 6.5: Rankings of algorithms according to subjective scores (still images).

In Table 6.5, although the algorithms can be ranked from the scaled scores, there is no
information concerning the statistical significance of the quality difference of two stimuli
(one preferred to another one). Therefore statistical analyses were conducted over the sub-
jective measurements: a Student’s t-test was performed over ACR-HR scores, and over PC
scores, for each algorithm. This provides knowledge on the statistical equivalence of the
algorithms. Table 6.6 and Table 6.7 show the results of the statistical tests over ACR-HR
and PC values respectively. In both tables, the number in parentheses indicates the mini-
mum required number of observers that allows statistical distinction (VQEG recommends
24 participants as a minimum in the Multimedia test Plan [Gro], values in bold are higher
than 24 in the table).

A first analysis of these two tables indicates that the PC method leads to clear-cut
decisions, compared to the ACR-HR method: indeed, the distributions of the algorithms
are statistically distinguished with less than 24 participants in 17 cases with PC (only
11 cases with ACR-HR). In one case (between A2 and A5), less than 24 participants are
required with PC whereas more than 43 participants are required to establish the sta-
tistical difference with ACR-HR. The latter case can be explained by the fact that the
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A1 A2 A3 A4 A5 A6 A7
A1 ↑(32) ↑(<24) ↑(32) o (>43) ↑(30) ↑(<24)
A2 ↓(32) ↑(<24)o (>43)o (>43)o (>43) ↑(<24)
A3 ↓(<24) ↓(<24) ↓(<24) ↓(<24) ↓(<24) ↑(<24)
A4 ↓(32) o(>43)↑(<24) o(>43) o(>43) ↑(<24)
A5o(>43)o(>43)↑(<24) o(>43) ↑(28) ↑(<24)
A6 ↓(30) o(>43)↑(<24)o (>43) ↓(28) ↑(<24)
A7 ↓(<24) ↓(<24) ↓(<24) ↓ (<24) ↓(<24) ↓(<24)

Table 6.6: Results of Student’s t-test with ACR-HR results (still images). Legend:↑: superior, ↓:
inferior, o: statistically equivalent. Reading: Line”1” is statistically superior to column ”2”. Distinction is stable
when ”32” observers participate.

A1 A2 A3 A4 A5 A6 A7
A1 ↑(<24) ↑(<24) ↑(<24) ↑(<24) ↑(<24) ↑(<24)
A2↓(<24) ↑(28) o(<24) ↓(<24)o(>43)↑(<24)
A3↓(<24) ↓(28) ↓(<24) ↓(<24) ↓(<24) ↑(<24)
A4↓(<24)o(>43)↑(<24) ↓(<24) ↑(43) ↑(<24)
A5↓(<24) ↑(<24) ↑(<24) ↑(<24) ↑(<24) ↑(<24)
A6↓(<24)o(>43)↑(<24)↓(<43)↓(<24) ↑(<24)
A7↓(<24) ↓(<24) ↓(<24) ↓(<24) ↓(<24) ↓(<24)

Table 6.7: Results of Student’s t-test with Paired comparisons results (still images). Legend:↑: su-
perior, ↓: inferior, o: statistically equivalent. Reading: Line”1” is statistically superior to column ”2”. Distinction
is stable when ”less than 24” observers participate.

visual quality of the synthesized images may be perceived very similar for non-expert ob-
servers. That is to say that the distortions, though different from an algorithm to another,
are difficult to assess. The absolute rating task is more delicate for observers than the
comparison task. These results indicate that it seems more difficult to assess the quality
of synthesized views than to assess the quality of degraded images in other contexts (for
instance, quality assessment of images distorted through compression). The results with
the ACR-HR method, in Table 6, confirm this observation: in most of the cases, more
than 24 participants (or even more than 43) are required to distinguish the classes (Note
that A7 is the synthesis with holes around the disoccluded areas).
However, as seen with rankings results above, methodologies give consistent results: when
the distinction between algorithms is clear, the ranking is the same with either methodol-
ogy.
Finally, these experiments show that fewer participants are required for a PC test than
for an ACR-HR test. However, as stated before, PC tests, while efficient, are feasible only
with a limited number of items to be compared. Another problem, pointed out by these
experiments, concerns the assessment of similar items: with both methods, 43 participants
were not always sufficient to obtain a clear and reliable decision. Results suggest that ob-
servers had difficulties assessing the different types of artifacts.
As a conclusion, this first analysis reveals that more than 24 participants may be nec-
essary for still image quality assessment. Regarding the evaluation of PC and ACR-HR
methods, PC gives clear-cut decisions, due to the mode of assessment (preference) while
algorithm’s statistical distinction with ACR-HR is slightly less accurate. With ACR-HR,
the task is not easy for the observers because the impairments among the tested images
are small, though each DIBR induces specific artifacts. Thus, this aspect should be taken
into account when evaluating the performances of different DIBR algorithms with this
methodology.
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However, ACR-HR and PC are complementary: when assessing similar items, like in this
case study, PC can provide a ranking, while ACR-HR gives the overall perceptual quality
of the stimuli.

6.5.2 Objective measurements

The results of this subsection concern the measurements conducted over the same selected
“key” frames as those in the previously described subjective test. The objective is to de-
termine the consistency between the subjective assessments and the objective evaluations,
and the most consistent objective metric.
The first step consists in comparing the objective scores with the subjective scores (previ-
ously presented). The consistency between objective and subjective measures is evaluated
by calculating the Pearson linear correlation coefficients (PLCC) for the whole fitted mea-
sured points.
The fitting is computed according to the subjective scores using the logistic function rec-
ommended by the Video Quality Expert Group (VQEG) Phase I FR-TV [G+00]. The
logistic function we used allows the computation of the predicted mean opinion score of a
stimuli and it is defined as follows:

DMOSp = a.score3 + b.score2 + c.score+ d (6.1)

where score is the obtained score from the objective metric and {a, b, c, d} are the param-
eters of the cubic function. They are obtained through the regression step to minimize
the difference between DMOS and DMOSp. The Pearson linear correlation coefficients
are then computed though:

PLCC =

∑N
i=1

(
DMOSi −DMOS

) (
DMOSpi −DMOSp

)√∑N
i=1

(
DMOSi −DMOS

)2√(
DMOSpi −DMOSp

)2 (6.2)

where DMOS and DMOSp are the average of DMOS and DMOSp over the N stimuli.

The coefficients are presented in Table 6.8. In the results of our test, the tested metrics
were not correlated to human judgment. This reveals that the objective tested metrics
do not reliably predict human appreciation in the case of synthesized views, even though
efficiency has been shown for the quality assessment of 2D conventional media.
The whole set of objective metrics gives the same trends. Table 6.10 provides correlation
coefficients between obtained objective scores. It reveals that they are highly correlated.
This table shows that the behavior of the tested metrics is the same when assessing im-
ages containing DIBR related artifacts. Thus, they have the same response when assessing
DIBR related artifacts. Note the high correlation scores between pixel-based and more
perception-oriented metrics such as PSNR and SSIM (83.9%).
Since it is established in [EPLC+11, HB06] that correlation is different from agreement
(as illustrated in Figure 6.5), we check the agreement of the tested metrics by comparing
the ranks assigned to the algorithms. Table 6.9 presents the rankings of the algorithms
obtained from the objective scores. Rankings from subjective scores are mentioned for
comparison. They present a noticeable difference concerning the ranking order of A1:
ranked as the best algorithm out of the seven by the subjective scores, it is ranked as
the worst by the objective metrics. Another comment refers to the assessment of A6:
often regarded as the best algorithm with the objective metrics, it is not the case with
the subjective tests. The ensuing assumption is that objective metrics detect and penalize
non-annoying artifacts.
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PSNR SSIM MSSIMVSNR VIF VIFP UQI IFC NQM WSNR PSNR HVSM PSNR
HVS

CCDMOS 50.0 40.4 57.4 35.0 31.3 22.2 19.1 22.3 57.2 47.7 44.3 42.7
CCPC 36.4 23.1 43.2 16.8 18.2 18.3 24.8 17.7 37.9 33.9 37.5 36.6

Table 6.8: Pearson correlation coefficients between DMOS and objective scores in percentage (still
images).

A1 A2 A3 A4 A5 A6 A7
DMOS 3.572 3.308 3.145 3.401 3.496 3.320 2.277

Rank order 1 5 6 3 2 4 7
PC 1.776 0.779 0.338 0.825 1.745 0.610 -2.943

Rank order 1 4 6 3 2 5 7
PSNR 18.752 24.998 23.180 26.117 26.171 26.177 20.307

Rank order 7 4 5 3 2 1 6
SSIM 0.638 0.843 0.786 0.859 0.859 0.858 0.821

Rank order 7 4 6 1 2 3 5
MSSIM 0.648 0.932 0.826 0.950 0.949 0.949 0.883

Rank order 7 4 6 1 2 3 5
VSNR 13.135 20.530 18.901 22.004 22.247 22.195 21.055

Rank order 7 5 6 3 1 2 4
VIF 0.124 0.394 0.314 0.425 0.425 0.426 0.397

Rank order 7 5 6 2 3 1 4
VIFP 0.147 0.416 0.344 0.448 0.448 0.448 0.420

Rank order 7 5 6 2 3 1 4
UQI 0.352 0.672 0.589 0.606 0.605 0.606 0.673

Rank order 7 2 6 3 5 4 1
IFC 0.757 2.420 1.959 2.587 2.586 2.591 2.423

Rank order 7 5 6 2 3 1 4
NQM 8.713 16.334 13.645 17.074 17.198 17.201 10.291

Rank order 7 4 5 3 2 1 6
WSNR 13.817 20.593 18.517 21.597 21.697 21.716 15.588

Rank order 7 4 5 3 2 1 6
PSNR HSVM 13.772 19.959 18.362 21.428 21.458 21.491 15.714
Rank order 7 4 5 3 2 1 6
PSNR HSV 13.530 19.512 17.953 20.938 20.958 20.987 15.407
Rank order 7 4 5 3 2 1 6

Table 6.9: Rankings according to measurements (still images).

Figure 6.5: Difference between correlation and agreement [EPLC+11].

6.5.3 Conclusion

This experiment, involving the assessment of still synthesized images in monoscopic view-
ing conditions, showed that Paired comparisons and ACR results highly correlate. But
statistical analyses showed that fewer observers were required for Paired comparisons tests
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PSNRSSIM MSSIMVSNRVIF VIFPUQIIFCNQMWSNRPSNR hsvmPSNR hsv

PSNR 83.9 79.6 87.3 77.0 70.6 53.671.6 95.2 98.2 99.2 99.0
SSIM 83.9 96.7 93.9 93.4 92.4 81.592.9 84.9 83.7 83.2 83.5

MSSIM 79.6 96.7 89.7 88.8 90.2 86.389.4 85.6 81.1 77.9 78.3
VSNR 87.3 93.9 89.7 87.9 83.3 71.984.0 85.3 85.5 86.1 85.8
VIF 77.0 93.4 88.8 87.9 97.5 75.298.7 74.4 78.1 79.4 80.2

VIFP 70.6 92.4 90.2 83.3 97.5 85.999.2 73.6 75.0 72.2 72.9
UQI 53.6 81.5 86.3 71.9 75.2 85.9 81.9 70.2 61.8 50.9 50.8
IFC 71.6 92.9 89.4 84.0 98.7 99.2 81.9 72.8 74.4 73.5 74.4

NQM 95.2 84.9 85.6 85.3 74.4 73.6 70.272.8 97.1 92.3 91.8
WSNR 98.2 83.7 81.1 85.5 78.1 75.0 61.874.4 97.1 97.4 97.1

PSNR hsvm 99.2 83.2 77.9 86.1 79.4 72.2 50.973.5 92.3 97.4 99.9
PSNR hsv 99.0 83.5 78.3 85.8 80.2 72.9 50.874.4 91.8 97.1 99.9

Table 6.10: Correlation coefficients between objective metrics in percentage (still images).

to establish the algorithms distinctions. However, this is a time-consuming method, often
avoided by researchers. Moreover, when the number of items to be compared is high, the
test is hardly feasible. Concerning the objective metrics, the results showed that usual ob-
jective assessments do not correlate with subjective assessments. Rankings of algorithms
from objective metrics are not reliable, considering the differences with the obtained sub-
jective results. The presented experiments revealed that using only the objective metrics
seems not sufficient for assessing virtual synthesized views, though they give information
on the presence of errors.

6.6 Experiment 2: video sequences in monoscopic condi-
tions

This section addresses the evaluation of video sequences in monoscopic viewing conditions.
In this experiment, the objective and subjective methods are now evaluated with the
temporal domain. In these conditions, the objective is to determine:

� whether ACR-HR is appropriate for the assessment of different DIBR;

� the required number of participants for such a subjective assessment test;

� whether the results of the subjective assessments are consistent with the objective
evaluations.

The following subsections describe the results of Experiment 2. The first part addresses
the results of the subjective assessments and the second part presents the results of the
objective evaluations.

6.6.1 Subjective tests

In the case of video sequences, only the ACR-HR test was conducted, as explained in
Section 6.4. Table 6.11 shows the algorithms’ ranking from the obtained subjective scores.
The ranking order differs from the one obtained with ACR-HR test in the still image case.

A1 A2 A3 A4 A5 A6 A7
ACR-HR 3.523 3.237 2.966 2.865 2.789 2.956 2.104

Rank order 1 2 3 5 6 4 7

Table 6.11: Rankings of algorithms according to subjective scores (video sequences)
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Although the values allow the ranking of the algorithms, they do not directly provide
knowledge on the statistical equivalence of the results. Table 6.12 depicts the results of
the Student’s t-test processed with the values. Compared to the ACR-HR test with still
images detailed in Table 6.6, distinctions between algorithms seem to be more obvious.
The statistical significance of the difference between the algorithms, based on the ACR-
HR scores, exists and seems clearer for video sequences than for still images. This can
be explained by the exhibition time of the video sequences: watching the whole video,
observers can refine their judgment, contrary to still images. Note that the same algorithms
were not statistically differentiated: A4, A3, A5 and A6. As a conclusion, though more

A1 A2 A3 A4 A5 A6 A7
A1 ↑(7) ↑(3) ↑(3) 2 ↑(3) ↑(1)
A2↓(7) ↑(2) ↑(2) ↑(1) ↑(2) ↑(1)
A3↓(3)↓(2) o(>32) ↑(9) o(>32) ↑(1)
A4↓(3)↓(2)o(>32) o(>32)o(>32) ↑(1)
A5↓(2)↓(1) ↓(9) o(>32) ↑(15) ↑(1)
A6↓(3)↓(2)o(>32)o(>32) ↑(15) ↑(1)
A7↓(1)↓(1) ↓(1) ↓ (1) ↓(1) ↓(1)

Table 6.12: Results of Student’s t-test with ACR-HR results (video sequences). Legend:↑: superior,
↓: inferior, o: statistically equivalent. Reading: Line”1” is statistically superior to column ”2”. Distinction is
stable when ”32” observers participate.

than 32 participants are required to perform all the distinctions in the tested conditions,
the ACR-HR test with video sequences gives clearer statistical differences between the
algorithms than the ACR-HR test with still images. This suggests that new elements
allow the observers to make a decision: existence of flickering, exhibition time, etc.

6.6.2 Objective measurements

The results of this subsection concern the measurements conducted over the entire syn-
thesized sequences. The objective is to determine the consistency between the subjective
assessments and the objective evaluations, and the most consistent objective metric, in
the context of video sequences.
As in the case of still images studied in the previous section, the rankings given by the
objective metrics in Table 6.13 are consistent with each other. Besides, the correlation
coefficients between objective metrics are very close to the figures depicted in Table 6.10,
and so they are not presented here. As with still images, the difference between the sub-
jective test based ranking and the ranking from the objective scores is noticeable. Again,
the algorithm given as the worst (A1) by the objective measurements, is the one observers
preferred. This can be explained by the fact that A1 performs the synthesis on a cropped
image, and then enlarges it to reach the original size. Consequently, signal-based metrics
penalize it though it gives good perceptual results.
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A1 A2 A3 A4 A5 A6 A7
DMOS 3.523 3.237 2.966 2.865 2.789 2.956 2.104

Rank order 1 2 3 5 6 4 7
PSNR 19.02 24.99 23.227 25.994 26.035 26.04 20.89

Rank order 7 4 5 3 2 1 6
SSIM 0.648 0.844 0.786 0.859 0.859 0.859 0.824

Rank order 7 4 6 1 1 1 5
MSSIM 0.664 0.932 0.825 0.948 0.948 0.948 0.888

Rank order 7 4 6 1 1 1 5
VSNR 13.14 20.41 18.75 21.786 21.965 21.968 20.73

Rank order 7 5 6 3 2 1 4
VIF 0.129 0.393 0.313 0.423 0.423 0.424 0.396

Rank order 7 5 6 2 2 1 4
VIFP 0.153 0.415 0.342 0.446 0.446 0.446 0.419

Rank order 7 5 6 1 1 1 4
UQI 0.359 0.664 0.58 0.598 0.598 0.598 0.667

Rank order 7 5 6 3 3 3 1
IFC 0.779 2.399 1.926 2.562 2.562 2.564 2.404

Rank order 7 5 6 2 2 1 4
NQM 8.66 15.933 13.415 16.635 16.739 16.739 10.63

Rank order 7 4 5 3 1 1 6
WSNR 14.41 20.85 18.853 21.76 21.839 21.844 16.46

Rank order 7 4 5 3 2 1 6
PSNR HSVM 13.99 19.37 18.361 21.278 21.318 21.326 16.23
Rank order 7 4 5 3 2 1 6
PSNR HSV 13.74 19.52 17.958 20.795 20.823 20.833 15.91
Rank order 7 4 5 3 2 1 6

VSSIM 0.662 0.879 0.809 0.899 0.898 0.893 0.854
Rank order 7 4 6 1 2 3 5

VQM 0.888 0.623 0.581 0.572 0.556 0.557 0.652
Rank order 7 5 4 3 1 2 6

Table 6.13: Rankings according to measurements (video sequences)

Table 6.14 presents the correlation coefficients between objective scores and subjective
scores, based on the whole set of measured points.

PSNR SSIM MSSIM VSNR VIF VIFP UQI
CCDMOS 33.80 40.84 49.95 38.87 27.01 20.00 28.70

IFC NQM WSNR PSNRHV SM PSNRHV S VSSIM VQM
CCDMOS 21.68 41.15 27.98 31.47 29.76 39.37 43.41

Table 6.14: Pearson correlation coefficients between DMOS and objective scores in percentage
(video sequences).

6.6.3 Conclusion

To conclude, when assessing views synthesized from DIBR in monoscopic viewing condi-
tions, performances of objective metrics are different for video sequences and for of still
images, in terms of correlation with subjective scores. Correlation coefficients between
objective and subjective scores were higher in the case of video sequences, when compar-
ing Table 6.14 with Table 6.8. However, human opinion also differed in the case of video
sequences. For video sequences, perception-oriented metrics were the most correlated to
subjective scores (also in video conditions). However, in either context, the tested metrics
hardly reached substantial correlation with human judgment.The next section investigate
the performances of the methods in stereoscopic viewing context.
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6.7 Experiment 3: still images in stereoscopic conditions

In this experiment, still synthesized images quality is evaluated in stereoscopic conditions,
as described in Sec. 6.4.2. In these conditions, the objective is to determine:

� whether ACR-HR is appropriate for the assessment of contents synthesized from
different DIBR algorithms;

� the required number of participants for such a subjective assessment test;

� whether the results of the subjective assessments are consistent with the objective
evaluations;

� whether the results are similar to the monoscopic conditions results.

The following subsections describe the results of Experiment 3. The first part addresses
the results of the subjective assessments and the second part presents the results of the
objective evaluations.

6.7.1 Subjective tests

The seven DIBR algorithms are ranked according to the obtained ACR-HR, as depicted
in Table 6.15. The first line gives the DMOS scores obtained through the MOS scores.
The second line gives the ranking of the algorithms, obtained through the first line.

A1 A2 A3 A4 A5 A6 A7
ACR-HR 3.647 3.637 3.660 3.678 3.658 3.662 3.548

Rank order 5 6 3 1 4 2 7

Table 6.15: Rankings of algorithms according to subjective scores (stereoscopic still images).

The first comment regarding the results in Table 6.15 refers to the fact that the rank-
ings of the algorithm, according to the subjective scores, are completely different from the
rankings obtained in monoscopic conditions, in Table 6.5 from Experiment 1. In partic-
ular, A1 was always ranked as the best algorithm in monoscopic conditions. It is ranked
as 5th in stereoscopic conditions. This can be explained by the discomfort produced by
the proposed stereopairs. Indeed the stereopairs presented to the observers were made
up of one original acquired view and its stereo-compliant synthesized view. Considering
the interpolation strategy used in A1 (the borders of the image are cropped and then an
interpolation allows to reach the original size of the image), we can observe that objects
are shifted. This shift is assumed to be the cause of discomfort(Sec. 2.1.3), since corre-
sponding objects will have too large disparity values. On the other hand, algorithms that
were not ranked as the best in monoscopic conditions are better ranked in stereoscopic
conditions. For instance, A6 or A3 that were ranked 4th and 6th respectively by the sub-
jective scores in monoscopic conditions, are ranked 2nd and 3rd in stereoscopic conditions.
The assumption is that the artifacts generated by these algorithms are more easily masked
through human vision in stereoscopic conditions. They do not induce difficult-to-deal-with
artifacts (in stereovision) such as shifts of objects.

Table 6.16 give the results of the Student’s test from the ACR-HR scores for stereoscopic
still images. The statistical significance of the differences between the algorithms are quite



Experiment 3: still images in stereoscopic conditions 73

different in the stereoscopic case than in the monoscopic case. In particular, the signs of the
statistical differences are often opposite to those obtained in the monoscopic case, except
for the case of A7. Considering the rankings of algorithms, observed above, this was ex-
pected. However, algorithms whose statistical significance was equivalent remain the same:
this is observed for A4, A5 and A6. This suggests that these algorithms induced artifacts
that were equivalent in both stereoscopic and monoscopic viewing conditions. Concerning
the number of participants that allow a clear distinction between the algorithms, in most
of the cases, less than 24 observers give clear distinctions. This is very different from the
results obtained in Experiment 1, in monoscopic viewing conditions. Our assumption is
that artifacts are differently perceived in stereoscopic viewing and in monsocopic viewing
conditions. Artifacts that are not annoying in monoscopic viewing conditions, may be
disturbing in stereoscopic conditions which explains the clear distinctions.

A1 A2 A3 A4 A5 A6 A7

A1 o(>25) o(>25) ↓(<24) ↓(<24) ↓(<24) ↑(<24)

A2 o(>25) ↓(<24) ↓ (<24) ↓(<24) ↓(<24) ↑(<24)

A3 o(>25) ↑(<24) ↓(<24) ↓(<24) ↓(<24) ↑(<24)

A4 ↑(<24) ↑(<24) ↑(<24) o(>25) o(>25) ↑(<24)

A5 ↑(<24) ↑(<24) ↑(14) o(>25) o(>25) ↑(<24)

A6 ↑(<24) ↑(<24) ↑(18) o(>25) o(>25) ↑(<24)

A7 ↓(<24) ↓(<24) ↓(<24) ↓ (<24) ↓(<24) ↓(<24)

Table 6.16: Results of Student’s t-test with ACR-HR results (stereo still images).

6.7.2 Objective measurements

The results of this subsection concern the measurements conducted over the same selected
“key” frames as those in Section 6.5. The objective is to determine the consistency be-
tween the subjective assessments and the objective evaluations, and the most consistent
objective metric.
The first step consists in comparing the objective scores with the subjective scores (previ-
ously presented). The consistency between objective and subjective measures is evaluated
by calculating the PLCC, as described in Eq. 6.2 for the whole fitted measured points
(Eq. 6.1).
The coefficients are depicted in Table 6.17. Compared to Experiment 1 in monoscopic
viewing conditions, the metrics are still not highly correlated to human judgment. Fig.
6.6 illustrates the differences between the PLCC obtained in monoscopic conditions and
those obtained in stereoscopic conditions and confirms the previous comment. Depending
on the objective metric, we observe that the PLCC is slightly improved.
Table 6.18 depicts the rankings of the algorithms obtained from the objective scores. The
first line recalls the previously commented subjective results. In stereoscopic conditions,
we observe that the rankings from the objective metrics are slightly closer to human judg-
ment than in monoscopic conditions.

6.7.3 Conclusion

To conclude, the experiments in stereoscopic viewing conditions highlighted different ob-
servations:
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� non-annoying artifacts in monoscopic conditions may not be assessed with the same
quality especially in the case of shifting artifacts.

� correlation of objective metrics with subjective scores is not proved. The results
suggest that the tested objective metrics are not sufficient to predict the quality of
stereoscopic images.

The next section proposes a tool addressing the assessment of synthesized views.

PSNR SSIM MSSIMVSNR VIF VIFP UQI IFC NQM WSNR PSNR HVSM PSNR
HVS

CCDMOS 46.98 45.06 60.86 26.44 38.46 42.96 31.72 40.96 52.66 51.58 46.59 46.13

Table 6.17: Pearson correlation coefficients between DMOS and objective scores in percentage
(stereoscopic still images).

Figure 6.6: Comparison of Pearson linear correlation coefficients in monoscopic and stereoscopic
conditions.
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A1 A2 A3 A4 A5 A6 A7
DMOS 3.647 3.637 3.660 3.678 3.658 3.662 3.548

Rank order 5 6 3 1 4 2 7
PSNR 18.752 24.998 23.180 26.117 26.171 26.177 20.307

Rank order 7 4 5 3 2 1 6
SSIM 0.638 0.843 0.786 0.859 0.859 0.858 0.821

Rank order 7 4 6 1 2 3 5
MSSIM 0.648 0.932 0.826 0.950 0.949 0.949 0.883

Rank order 7 4 6 1 2 3 5
VSNR 13.135 20.530 18.901 22.004 22.247 22.195 21.055

Rank order 7 5 6 3 1 2 4
VIF 0.124 0.394 0.314 0.425 0.425 0.426 0.397

Rank order 7 5 6 2 3 1 4
VIFP 0.147 0.416 0.344 0.448 0.448 0.448 0.420

Rank order 7 5 6 2 3 1 4
UQI 0.352 0.672 0.589 0.606 0.605 0.606 0.673

Rank order 7 2 6 3 5 4 1
IFC 0.757 2.420 1.959 2.587 2.586 2.591 2.423

Rank order 7 5 6 2 3 1 4
NQM 8.713 16.334 13.645 17.074 17.198 17.201 10.291

Rank order 7 4 5 3 2 1 6
WSNR 13.817 20.593 18.517 21.597 21.697 21.716 15.588

Rank order 7 4 5 3 2 1 6
PSNR HSVM 13.772 19.959 18.362 21.428 21.458 21.491 15.714
Rank order 7 4 5 3 2 1 6
PSNR HSV 13.530 19.512 17.953 20.938 20.958 20.987 15.407
Rank order 7 4 5 3 2 1 6

Table 6.18: Rankings according to measurements (stereoscopic still images).

Figure 6.7: Synthesized views - Frame 45 - view 10 - Book Arrival.

6.8 Our proposal: an edge-based structural distortion indi-
cator

Most of the proposed metrics are inspired from 2D commonly used quality metrics. Yet, the
latter were originally designed to address 2D compression distortions which are different
from the distortions related to DIBR processes, as depicted in Fig. 6.7 and Fig. 6.8.
Fig. 6.7 and Fig. 6.8 give examples of distortions. The synthesized views depicted in
these figures were obtained through different DIBR algorithms. As it can be observed, the
distortions are located around the edges of the arms for Fig. 6.7 and around the edges
of the face for Fig. 6.8. This corresponds to strong depth discontinuities. Thus, artifacts
related to DIBR systems are mostly located in specific areas that are the disoccluded
regions. They are not scattered in the entire image such as specific 2-D video compression
distortions.

2D commonly used quality metrics indicate the presence of errors but not necessarily
the degree of visual annoyance. The previous study showed that they are not sufficient
to assess the visual quality of synthesized views. We propose an edge-based method that
indicates the level of structural degradation in the synthesized image.
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Figure 6.8: Synthesized views - Frame 112 - view 6 - Lovebird1.
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Figure 6.9: Overview of the proposed method.

Our proposed method is based on the analysis of the synthesized view edges compared to
the edges of the original acquired view.

6.8.1 Proposed indicator

Our proposed method is based on the observation of the nature and of the location of the
artifacts, as pointed out in the previous study. The method relies on the analysis of the
synthesized view edges in comparison to the original image edges. More than a quality
measure, it is an indicator of structural distortion. Let Io be the original view, Iv is the
virtual synthesized view. As depicted in Fig. 6.9, first step consists in extracting the
luminance component of Io and Iv, referred as Yo and Yv respectively. At the second step
a Canny edge detector is applied on Yo and Yv. Let Co and Cv be the resulting extracted
contours. At the third step a displacement vector estimation is performed between Co

and Cv. The resulting displacement vectors map is processed at the fourth step. Three
parameters are computed: the mean ratio of inconsistent displacement vectors per contour
pixel that is denoted as Γ, the ratio of pixels in the contour Cv having at least one
inconsistent displacement vector that is denoted as ∆, the ratio of new pixels in the
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contour Cv that is denoted as Ω. They are defined as follows:

Γ =
1

|Cv|

|Cv |∑
c=1

γc (6.3)

where γc is the ratio of inconsistent displacement vectors for the pixel Cv(c). It is defined
as:

γc =
1

K

N∑
n

δ(i, n) (6.4)

with N the size of the slide window, i and n are such as Ys(i) ∈ Cv and Yv(n) ∈ Cv, K is
a normalizing factor, and

δ(i, n) =

{
1, if

−̂→
Mi
−→
Mn >Th

0, otherwise
(6.5)

Mi and Mn are the displacement vectors of Yv(i) and Ys(n),
−̂→
Mi
−→
Mn is the angle formed

between Mi and Mn, and Th is a threshold.
Let N DV be the number of pixels having at least one inconsistent displacement vector.
This is expressed as:

N DV =

|Cv |∑
c=1

φ(c) (6.6)

with

φ(c) =

{
1, if γc 6= 0
0, otherwise

(6.7)

The ratio of pixels in the contour Cv having at least one inconsistent displacement vector,
denoted as ∆ is then expressed by:

∆ =
N DV

|Cv|
(6.8)

Ω, the ratio of new pixels in the contour Cv is expressed by:

Ω =
|Cv| − |Co|
|Cv|+ |Co|

(6.9)

The final score is a weighting sum of the three parameters:

Indicator = 1− (α1Γ + α2∆ + α3Ω) (6.10)

In the experiments we used the combination{Th = 45◦, α1 = 0.25, α2 = 0.25, α3 =
0.5}. The closer to 1 the final score, the less distorted the contours of the image.

6.8.2 Experimental results and discussion

The quality of the set of synthesized views used the previous section (Sec. 6.4.1) is assessed
through commonly used metrics and through the proposed indicator. The obtained scores
are fitted and scaled into a common MOS scale. Fig. 6.10, 6.11, 6.12 and 6.13 depict
the quality scores of four synthesized views containing different type of distortions (color
leak, blurry regions, and geometric distortions). In each figure, a bar plot gives the Mean
Opinion Score (MOS), the PSNR fitted score, the fitted score the closest to the MOS
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Figure 6.10: Quality evaluation of a synthesized view (Frame 112 - view 6 - Lovebird1 rendered
with [MSD+08])

Figure 6.11: Quality evaluation of a synthesized view ( Frame 112 - view 6 - Lovebird1 rendered
with [TFS+08])

score among the objective metrics fitted scores, and the proposed indicator fitted score.
The objective metric whose fitted score was closest to the MOS was not the same for
all the figure, but we provide it for both figure. For example, in Fig. 6.10 the objective
metric whose fitted score is the closest to the MOS is VIF, but in Fig. 6.12 it is PSNR-
HVS. Also, particular regions of the synthesized views are provided in each figure. In the
presented cases, PSNR shows the highest gap with the MOS score: even if a distortion is
not perceptible, it contributes to the decrease of the quality score because its perceptual
impact on the quality is not considered. The objective score that is the closest to the
MOS is also provided. Although the closest objective score is different depending on the
figure, it can be observed that it is a Human Visual System (HVS) based metric in both
of the presented cases (Visual Information Fidelity (VIF) [SB06], PSNR-HVS [EAP+06]
and Universal Quality Index [WB02] (UQI)). Contrary to the tested objective metrics, in
both of the presented cases, our proposed indicator was close to the MOS or to the closest.

However, the proposed method does not assess the image quality, but it is able to detect
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Figure 6.12: Quality evaluation of a synthesized view ( Frame 54 - view 10 - Book Arrival rendered
with [TFS+08])

Figure 6.13: Quality evaluation of a synthesized view ( Frame 54 - view 9 - Book Arrival rendered
with [Feh04])
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the structural distortions in this context. These results are very encouraging because at
this stage the proposed method can only assess structural distortions. To be considered
as a quality metric, the color consistency should also be analyzed and assessed. Moreover,
the influence of weights αi in Eq. (6.10) must be studied in future works.

6.9 Conclusion

The previous part showed that the synthesis process and the inpainting strategies induce
specific distortions that are different from the commonly encountered artifacts in 2D imag-
ing system. In this chapter, we thus questioned the relevance of the use of 2D usual quality
assessment methods when addressing the quality of DIBR synthesized views.
We have presented our studies to investigate the reliability of usual methods of subjec-
tive and objective image/video quality assessment, in both monoscopic and stereoscopic
viewing conditions. The results of these studies showed that non-annoying artifacts in
monoscopic viewing conditions may be assessed with a worse quality when observed in
stereoscopic viewing conditions, especially when corresponding objects in the stereopair
lead to inconsistent and contradictory stereoscopic cues. These studies also showed that
the required number of observers may be higher than the number recommended by VQEG
(24).
The tested objective metrics obtained poor to medium correlation scores with human judg-
ment in both monoscopic and stereoscopic viewing conditions.

Then, in this chapter, we also proposed a tool addressing the assessment of synthesized
views, allowing the detection of DIBR-related distortions. This tool showed good abilities
to predict human judgment in the presence of DIBR related artifacts. However, this is
not a quality metrics yet, since several aspects such as color changes are not taken into
account. This distortion indicator requires additional improvements that should be con-
sidered in future work.

The studies presented in this chapter helped understanding particular issues regarding the
quality of reconstructed views in the context of use of DIBR. More precisely, understand-
ing the origins of the distortions in synthesized views led us to devise more perceptually
driven coding tools: the vocation of these coding tools is to deliver decompressed data
that preserve the synthesized views visual quality. This is the subject of the next part of
this thesis.
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Various steps of the 3D Video processing chain can reduce the visual quality of the
end user media, according to the previous parts of this thesis. These previous results
showed that even if they are generated from original data, virtual viewpoints are impacted
by different distortions depending on the inpainting strategy. In this part, we propose
new tools for MVD coding whose aim is to enhance the visual quality of the synthesized
views, based on the analysis of the sources of distortion at the synthesis process. The
proposed tools rely on a 2D still image codec that is meant to preserve the essential depth
information for a good quality of reconstructed virtual view.
Chapter 7 introduces the basics of this coding framework in the case of still image compres-
sion and investigates the performances of the method for depth maps compression. Then,
Chapter 8 proposes a first depth-adapted coding solution that uses the associated decoded
texture image for improving the prediction process. Finally, Chapter 9 proposes a second
depth-adapted coding solution that enables scalable decoding thanks to its region-based
prediction process.
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CHAPTER 7

LAR codec

Before presenting our contributions to MVD coding, the method we based our solutions
on has to be introduced. This is the goal of this chapter. The basics of Locally Adapted
Resolution coding method are then presented in this chapter. Moreover, the second objec-
tive of this chapter is to explain the choice for this method as our basis. This is achieved
through evaluations of LAR when encoding depth data. This chapter is organized as fol-
lows: the first section introduces the fundamentals of LAR method. The second section
presents the evaluations of LAR method in the case of depth map coding.

7.1 Principles of LAR codec

The LAR compression method [DR99a, DR99b, DBBR07] was firstly designed for lossy
gray scale images coding. It is based on the simple idea that an image can be considered
as composed by a low resolution component and a component containing the details (see
Fig. 7.1). For this reason, it is a two-layer codec : a spatial codec (also called flat codec)
and a complementary spectral one, as depicted in Fig. 7.2. The spatial coder provides a
low bit rate compressed image whereas the spectral one encodes the details. This basic
scheme has been improved with numerous extensions. In this section, we first address the
two coders (flat coder and spectral coder) before presenting the extension we will rely on
in our contributions.

Figure 7.1: Principle of LAR method.
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Figure 7.2: General scheme of basic LAR codec.

Original frame Variable block sizes representation

Figure 7.3: Variable block sizes representation in LAR.

7.1.1 Flat coder

The flat coder is based on the principle that local resolution should depend on local
activity. It provides a flat representation of the original image: the image is segmented
into blocks of various sizes (from 16×16 to 2×2) and each block is assigned the mean value
of its pixels. The segmentation is driven by a quad-tree decomposition, dependent on a
local gradient estimation. Consequently, small blocks of the representation are located on
contours and large ones suit homogeneous areas, as illustrated on Figure 7.3. Perceptible
blocks artifacts in homogeneous areas are easily removed by an efficient post-processing.
This coder is dedicated to low bit-rate image coding. The following descriptions rely on
the explanations provided in [Bab05]. An overview of the Flat coder is illustrated in Fig.
7.4.

Figure 7.4: General scheme of Flat codec layer.
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Quad-tree partioning

The quad-tree decomposition relies on a homogeneity criterion. Let Quad-tree[Nmax...Nmin]

be the quad-tree partition, where Nmax and Nmin are the maximum and minimum al-
lowed block sizes respectively. Let I(x, y) be the pixel of coordinates (x, y) in image I and
I(bN (i, j)) is the block bN (i, j) of size N ×N in image I, described as follows:

bN (i, j) = {(x, y) ∈ N ×N | N × (i+ 1), and N × j ≤ y ≤ N × (j + 1)} (7.1)

The quad-tree decomposition is based on the detection of local activity. Considering a
support, the difference between its maximal luminance value and its minimal luminance
value is computed. For a given partition Quad-tree[Nmax...Nmin] of image I, for any pixel
I(x, y), the size of the block it belongs to in the partition is expressed as follows:

Size(x, y) =


N ∈ [Nmax . . . Nmin[ if
|max

(
I(bN (b xN c, b

y
N c))

)
−min

(
I(bN (b xN c, b

y
N c))

)
≤ Y

and if ∃(k,m) ∈ {0, 1}2
|max

(
I(bN (bx+k

N/2 c, b
y+m
N/2 c))

)
−min

(
I(bN (b xN c, b

y
N c))

)
> Y

Nmin otherwise.

(7.2)

where min
(
I(bN (i, j))

)
and max

(
I(bN (i, j))

)
are the minimal and the maximal values of

block I(bN (i, j)) respectively, and Y is the homogeneity threshold. The threshold value
used to perform the quad-tree decomposition influences the final representation. It directly
influences the sensitivity of the detection of homogeneous areas.

Averaging of blocks

The low resolution component of image I (i.e. the flat image) is obtained by averaging
luminance values of each block of the quad-tree. Let LR be the low resolution image, each
pixel LR(x, y) is expressed as:

LR(x, y) =
l

N2

N−1∑
k=0

N−1∑
m=0

I(b x
N
c ×N + k, b y

N
c ×N +m) (7.3)

where N = Size(x, y).

7.1.2 Spectral coder

The encoding scheme used in the spectral coder relies on the implementation of a DCT
adapted to the partition Quad-tree[Nmax...Nmin]. Fig. 7.5 depicts the principles of this
codec layer. The coefficient coding is computed through intra-block zigzag scanning, then
non zero values are encoded through “run length” (RLC), including specific tags for max-
imal run length. Finally, the quantization matrix is adapted to block size, as explained in
the next paragraph.

Quantization

In the basic LAR framework, the quad-tree partition Quad-tree[Nmax...Nmin] controls the
quantization. That is to say that it is based on the assumption that large blocks require fine
quantization (in uniform areas, human vision is highly sensitive to brightness variations)
while coarse quantization (low sensitivity) is sufficient for small blocks. Block values are
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Figure 7.5: General scheme of Spectral codec layer.

encoded through a DPCM scheme. More precisely, the quantization step is calculated
considering the fact that visual degradations related to a block are inversely proportional
to the size of this block [BSB97]. For this reason, a relationship is defined between blocks
of size N ×N and blocks of size N/2 ×N/2: the quantization step qN , for blocks of size
N ×N is defined as follows:

qN =
qN/2

2
(7.4)

7.1.3 Pyramidal profile

The basic scheme of LAR method has led to many extensions. One of them is the pyra-
midal profile. Originally built to both increase scalability capacity and address loss-
less compression, multi-resolution extensions of the basic LAR called Interleaved S+P
[BDR05, PBD+08] and RWHaT+P [DBBC08] were proposed. Since our contributions
will rely on Interleaved S+P extension, in the following, the term “pyramidal profile” will
refer to Interleaved S+P. To fit the Quadtree partition, dyadic decomposition is carried
out. The first and second layers of the basic LAR are replaced by two successive pyrami-
dal decomposition processes. However the image representation content is preserved. One
pyramid is dedicated to the representation of the low resolution image and the second is
dedicated to that of the details component. Fig. 7.6 shows an overview of the pyramidal
decomposition. In the following, we first describe a typical pyramid construction. Then
its representation using the S transform is presented. The typical pyramid reconstruction
at the decoder side is then addressed.

Pyramid construction

The S+P transform (S transform + Prediction) is used in order to allow the decorrelation of
the picture. It is briefly presented here because we assume it can help in the understanding
of the coding artifacts, in our next studies. S+P transform is meant to allow lossless
representation of images and scalable transmission of compressed data. The pyramid,
built from image I, consists of a set of images, noted as {Ll}lmaxl=0 , as a multi-resolution
representation of the image, where lmax is the top of the pyramid and l = 0 is the lowest
level, i.e. the full resolution image. At each level, the image is expressed by:{

l = 0, L0(i, j) = I(i, j),

l > 0, Ll(i, j) = bLl−1(2i,2j)+Ll−1(2i+1,2j+1)
2 c,

(7.5)
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Figure 7.6: LAR pyramidal decomposition.

S-transformed pyramid

The S-transform is applied on the vectors formed by the two diagonally adjacent pixels
in a 2x2 block as expressed in Eq. 7.6. The term “interleaved” of the method refers to
the fact that the transformation of the second diagonal can be seen as a second S-pyramid.{

z0 = b(u0 + u1)/2c,
z1 = (u1 − u0).

(7.6)

Figure 7.7: S-transform scheme.

Fig. 7.7 depicts an overview of the S-transform.There are three passes that are repre-
sented as exponent of the coefficients. First, the S-transform is applied on pixels Ll(2i, 2j)
and Ll(2i+ 1, 2j + 1) following the expression:

zl,10 (2i, 2j) = bLl(2i,2j)+Ll(2i+1,2j+1
2 c = Ll+1(i, j),

zl,21 (2i+ 1, 2j + 1) = Ll(2i, 2j)− Ll(2i+ 1, 2j + 1).
(7.7)
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Then, the transform is applied on the pixels from the second diagonal of blocks such as:

zl,30 (2i+ 1, 2j) = bLl(2i,2j+1)+Ll(2i+1,2j
2 c,

zl,31 (2i, 2j + 1) = Ll(2i+ 1, 2j)− Ll(2i, 2j + 1).
(7.8)

The pyramid already stores the zl,10 coefficient which is an average value of the diagonal
of one 2×2 block. This value is obtained in the upper level of the pyramid, Ll+1. For this
reason, only three types of coefficients have to be estimated for each level: zl,21 , zl,30 , zl,31 .
The first layer coder (Flat layer) builds the first pass of the pyramid used by the Interleaved
S+P. It decomposes each pixel of a given layer into a 2×2 block into a lower level according
to the information given by the quad-tree. To perform a lossless compression, the second
layer coding (Details) performs a second pass on this pyramid. It decomposes every pixels
that have not been decomposed previously.

Pyramid reconstruction at the decoder side

From the top of the pyramid, the reconstruction of the lower levels only requires the
gradient values, by prediction. On the highest level of the pyramid, the first pass is
applied so that the Llmax(i, j) = zlmax−1,1

0 (2i, 2j) coefficient values are predicted.
The flat image is reconstructed according to the following principle: for a given level of
the pyramid, a block is processed (i. e. decomposed) only if the corresponding block
size is lower or equal to the level size, that is to say when Size(i × l, j × l) ≤ 2l. If
Size(i× l, j × l) > 2l, the values of the block are copied according to:

Ll(2i, 2j) = Ll(2i+ 1, 2j) = Ll(2i, 2j + 1) = Ll(2i+ 1, 2j + 1) = Ll+1(i, j) (7.9)

Recovering the low resolution image requires the prediction and decoding of S coefficients
that have been actually transmitted to the decoder. Considering the decomposition of
the first S-pyramid, as said before, zl,10 is known from the upper level of the pyramid.

Coefficient zl,21 is predicted by z̃l,21 according to [BDR05]:

z̃l,21 (2i+ 1, 2j + 1) = 2.1
[
0.9Ll+1(i, j) + 1

6

(
Ll(2i+ 1, 2j − 1)

+Ll(2i− 1, 2j − 1) + Ll(2i− 1, 2j + 1)
)

−0.05
(
Ll(2i, 2j − 2) + Ll(2i− 2, 2j)

)
−0.15

(
Ll+1(i, j + 1) + Ll+1(i+ 1, j)

)
− Ll+1(i, j))

] (7.10)

Considering the decomposition of the second S-pyramid, the Wu predictor[Wu97] is used.

The predicted values of zl,30 , zl,31 are respectively z̃l,30 , z̃l,31 :

z̃l,30 (2i+ 1, 2j) = α0
1
4

(
Ll(2i− 1, 2j + 1) + Ll(2i, 2j + 2)

+Ll(2i+ 2, 2j) + Ll(2i+ 1, 2j − 1)
)

+β0ẑ
l,1
0 (2i, 2j),

(7.11)

where ẑl,10 is the reconstructed value of zl,10 , α0 = 0.25 and β0 = 0.75; and:

z̃l,31 (2i, 2j + 1) = α1

(
Ll(2i− 1, 2j + 1) + Ll(2i, 2j + 2)

+Ll(2i+ 1, 2j − 1) + Y l(2i+ 2, 2j)
)

−β1

(
Ll(2i− 1, 2j) + Ll(2i− 1, 2j + 2)

−Ll(2i, 2j − 1)− L̂l(2i, 2j + 1).

(7.12)

where L̂l(2i, 2j+1) is the Wu predictor [Wu97] for third pass applied to the pixel Ll(2i, 2j+
1), α1 = 3

8 , and β1 = 1
8 .
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Construction of the pyramid Decomposition: extraction of LAR block image data

Figure 7.8: Construction and decomposition of the pyramid.

This presentation of the prediction step, as part of the reconstruction of the low resolu-
tion image, mainly aimed at highlighting the sources of distortions of the decoded image.
Fig. 7.8 illustrates the construction and the decomposition of the pyramid.

This section has presented the basic profile of LAR codec and its pyramidal profile.
The next section addresses the performances of this method when applied to depth map
compression.

7.2 Depth coding with LAR codec

Considering LAR coding framework, we assumed that this method was appropriate for
depth map coding. This was based on the observation that depth maps contains sharp
edges and smooth areas that could be well represented through the LAR quad-tree de-
composition. To validate our assumption, we first evaluated LAR codec performances in
its original version, without any contributions.

The goal of this section is to present this evaluation of LAR codec performances when
applied on depth maps. Thus, only depth maps are encoded, while texture images remain
as original. As explained in Chapter 6, since accurate depth data is essential for a good
rendering quality of synthesized views and since the latter are destined to be actually
observed by the users, it is essential to assess the quality of the synthesized views. In
this section, a first part addresses the experimental protocols, then a study on specific
parameters of LAR codec is presented (threshold Y in Sec. 7.2.3 and the quantization
steps in Sec. 7.2.4). Indeed, LAR parameters are numerous and we only focused on the
most appropriate for depth map coding in this study.

7.2.1 Global Protocol

The scheme presented in Fig. 7.9 defines the protocol: given two viewpoints (left and right)
are used, with color images and associated depth maps for each viewpoint. Only depth
maps go through the compression process, because the experiments aim at evaluating
coding artifacts caused by depth compression. Depth maps are encoded. Then they are
decoded and they are used to perform the intermediate view synthesis, together with the
color images that remained original. As explained before, the virtual view synthesis is
necessary in the evaluation of depth compression, because accurate depth data is essential
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Figure 7.9: Overview of the basic experimental protocol.

for a good rendering quality of the synthesized view. View Synthesis Reference Software
(VSRS, version 3.5) [TFS+08], provided by MPEG, is used for the view synthesis step;
hence, decompressed depth maps are used for the virtual view synthesis. Three video
sequences, namely Breakdancers, Ballet, Book Arrival are used in these experiments. In
the case of Breakdancers and Ballet sequences, decoded depth maps of views 2 and 4
are used to synthesize view 3. In the case of Book Arrival sequence, decoded depth map
of views 8 and 10 are used to synthesize view 9. Considering the results of the studies
questioning the reliability of the objective metrics, PSNR score will be mentioned as an
indicator of error rate for the evaluation of the reconstructed depth maps and synthesized
views. Since this is not sufficient, visual observation is required: snapshots of reconstructed
depth maps and synthesized views will be provided. Three different experiments were
conducted in order to question:

� the usefulness of the details pyramid for depth map coding in Sec. 7.2.2,

� the influence of threshold Y on the synthesized views quality in Sec. 7.2.3,

� the impact of the LAR quantization strategy on the synthesized views quality in Sec.
7.2.4.

These three experiments are discussed in the following subsections.

7.2.2 Flat and enhanced representations

This study questions the usefulness of the details pyramid for depth map coding. The
assumption is that the essential depth information is already contained in the flat image,
given the special features of depth maps (sharp edges and smooth areas). So, we compare
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the coding performances when using only the flat coder and when using the flat coder
and the texture coder together using the LAR pyramidal profile. In both cases, we use
a quad-tree decomposition with threshold Y = 1. Quantization steps vary from 0 to 28.
Breakdancers, Ballet are used in this experiment. Fig. 7.10 depicts the objective results.

(a) Distortion of depth maps. (b) Distortion of synthesized views with respect to original frame.

Figure 7.10: Distortion according to the use or the details component.

The curves showing the depth distortion (Fig. 7.10(a) as well as that of the synthe-
sized distortion (Fig. 7.10(b)) lead to the same conclusion. The “LAR Flat pyramid only”
curves are shifted on the left from the “LAR Flat + Details” curves, in both depth and
synthesized view distortion cases. It appears that encoding the details pyramid is costly
in terms of bit-rate but does not lead to a serious gain in terms of quality. Y = 1 is how-
ever a particular case, so tests also included other threshold values. Similar results were
obtained for Y = 11, Y = 21 and Y = 31. Note that lossless compression can be reached
with “LAR Flat pyramid only”, Y = 1 and QP = 0. In this case, PSNR is infinite. These
results prove that, based on the LAR conception of an image, the essential depth informa-
tion is already contained in the low resolution component of the image. This was expected
because depth maps represent smooth areas with sharp edges and few high frequency areas.

Fig. 7.11 depicts snapshots of the synthesized frames. In the particular case of Y = 1
and QP = 0, there was no difference between “LAR Flat pyramid only” and “LAR Flat +
Details”. However, when quantization is coarser, the synthesized views are more distorted
in the case of “LAR Flat + Details” because the prediction errors are propagated in both
pyramids. For this reason and also because of the bit-rate cost, we conclude that “LAR
Flat pyramid only” is preferable to “LAR Flat + Details” for depth maps coding. In the
following experiments “LAR Flat pyramid only” will be used as the reference.

Depth map bit rate can be controlled through two parameters that are the quantiza-
tion step and threshold Y . Their impact on the synthesized views quality is studied in the
next subsections.
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Ballet Breakdancers

Original
(a) (b)

Synthesis
from un-
compressed
data

(c) (d)

PSNR: 37.42dB PSNR: 37.08dB

Flat LAR
(e) (f)

PSNR: 37.42dB PSNR: 37.08dB
1.39bpp 1.31bpp
QP = 0 QP = 0
Y = 1 Y = 1

Flat LAR +
Texture

(g) (h)

PSNR: 37.42dB PSNR: 37.08dB
1.92bpp 1.81bpp
QP = 0 QP = 0
Y = 1 Y = 1

Figure 7.11: Synthesized frames.
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(a) Y = 1

Nb levels: 7

(b) Y = 21

Nb levels: 7
Blocks 2× 2: 47664 Blocks 2× 2: 12448
Blocks 4× 4: 10684 Blocks 4× 4: 6268
Blocks 8× 8: 2362 Blocks 8× 8: 3083
Blocks 16× 16: 457 Blocks 16× 16: 607
Blocks 32× 32: 93 Blocks 32× 32: 137
Blocks 64× 64: 7 Blocks 64× 64: 27
Blocks 128× 128: 2 Blocks 128× 128: 2

(c) Y = 31

Nb levels: 7

(d) Y = 60

Nb levels: 7
Blocks 2× 2: 10232 Blocs 2× 2: 5592
Blocks 4× 4: 4738 Blocs 4× 4: 2102
Blocks 8× 8: 2420 Blocs 8× 8: 1001
Blocks 16× 16: 635 Blocs 16× 16: 811
Blocks 32× 32: 144 Blocs 32× 32: 168
Blocks 64× 64: 34 Blocs 64× 64: 38
Blocks 128× 128: 4 Blocs 128× 128: 8

Figure 7.12: Quad-tree decomposition for four different threshold values - Book Arrival.

7.2.3 Threshold Y

The threshold value Y directly determines the quad-tree decomposition and thus the
final image representation. Because the previous experiments confirmed that the use of
“LAR Flat pyramid only” is more judicious than “LAR Flat + Details”, the choice of the
threshold is even more critical, considering the image representation. In this experiment,
we use “LAR Flat pyramid only” to encode Book Arrival and Breakdancers depth maps,
with Y = 1, Y = 11, Y = 21 and Y = 31. The quantization step varies from 0 to 28.
Fig. 7.12, 7.13 and 7.14 show the quad-trees obtained for different threshold values. It
can be observed that for a large range of Y values (from 1 to 60 in this example), the
main contours are preserved by the quad-tree representation. As illustrated by those
figures, the lower the threshold value Y , the more sensitive the quad-tree is regarding the
discontinuities of the depth maps: more discontinuities are detected since the number of
small blocks is higher for low Y values. Consequently, a low threshold value leads to a
large amount of small blocks, located around the boundaries.

Fig. 7.15 and 7.16 depict the rate-distortion curves for Breakdancers and Book Arrival
sequences, respectively. For both sequences, we observe that the bit rate decreases when Y
increases. This can be explained by the fact that high values of Y lead to more numerous
large blocks and less erroneous small blocks. This is less costly because the total number of
blocks decreases. Also, due to the averaging of blocks, the entropy decreases. Snapshots of
depth maps (Fig. 7.17 and 7.19) show the influence of Y value on the depth map represen-
tation. Because of blocks averaging, depth values in smooth areas are modified. In other
words, although the main contours of the scene objects are preserved by the quad-tree
representation, for a large range of Y values, the depth structure of the scene is modified
according to the block averaging. Since the pixels are thus assigned incorrect depth values,
this will cause projection errors in the synthesis process. This assumption is confirmed in
Fig. 7.18 and 7.20 that depict snapshots of the synthesized frames. In Fig. 7.18 it can
be observed that the arms of the chair are exactly distorted according to the degradation
of the corresponding depth maps of Fig. 7.17. One black piece of chair is slightly shifted
in Fig. 7.18 with Y = 60, according the averaged depth block of corresponding pixels
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(a) Y = 1

Nb levels: 5

(b) Y = 21

Nb levels: 7
Blocks 2× 2:
100400

Blocks 2× 2: 10496

Blocks 4× 4: 13184 Blocks 4× 4: 3184
Blocks 8× 8: 1965 Blocks 8× 8: 1804
Blocks 16× 16: 152 Blocks 16× 16: 702
Blocks 32× 32: 9 Blocks 32× 32: 209
Blocks 64× 64: 0 Blocks 64× 64: 41
Blocks 128× 128: 0 Blocks 128× 128: 1

(c) Y = 31

Nb levels: 7

(d) Y = 60

Nb levels: 7
Blocks 2× 2: 9244 Blocs 2× 2 : 6732
Blocks 4× 4: 2717 Blocs 4× 4 : 1897
Blocks 8× 8: 1395 Blocs 8× 8 : 961
Blocks 16× 16: 669 Blocs 16× 16 : 528
Blocks 32× 32: 199 Blocs 32× 32 : 256
Blocks 64× 64: 43 Blocs 64× 64 : 42
Blocks 128× 128: 4 Blocs 128× 128 : 6

Figure 7.13: Quad-tree decomposition for four different threshold values - Ballet.

(a) Y = 1

Nb levels: 5

(b) Y = 21

Nb levels: 7
Blocks 2× 2:
103716

Blocks 2× 2: 9832

Blocks 4× 4: 12327 Blocks 4× 4: 3034
Blocks 8× 8: 1836 Blocks 8× 8: 1879
Blocks 16× 16: 190 Blocks 16× 16: 767
Blocks 32× 32: 8 Blocks 32× 32: 201
Blocks 64× 64: 0 Blocks 64× 64: 39
Blocks 128× 128: 0 Blocks 128× 128: 1

(c) Y = 31

Nb levels: 7

(d) Y = 60

Nb levels: 7
Blocks 2× 2: 8884 Blocs 2× 2: 4404
Blocks 4× 4: 2555 Blocs 4× 4: 1255
Blocks 8× 8: 1402 Blocs 8× 8: 727
Blocks 16× 16: 683 Blocs 16× 16: 479
Blocks 32× 32: 207 Blocs 32× 32: 198
Blocks 64× 64: 49 Blocs 64× 64: 64
Blocks 128× 128: 2 Blocs 128× 128: 7

Figure 7.14: Quad-tree decomposition for four different threshold values - Breakdancers.
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in 7.17 with Y = 60. Because of the block averaging, the corresponding depth pixels are
wrong. Then, after the warping process, color pixels are wrongly projected, which explains
the shifting. In Fig. 7.20, the distortions are perceptible around the feet of the dancer
when Y increases. For the same reasons, color pixels are wrongly projected because of the
incorrect depth values.

In conclusion, threshold Y determines the quad-tree decomposition and thus the represen-
tation of the scene depth. For a large range of Y values, the main contours of the image
are preserved by the quad-tree decomposition. Moreover, although increasing threshold Y
value can impact on the synthesized views quality, due to incorrect depth values in smooth
areas, it allows bit rate savings.

(a) Distortion of depth maps. (b) Distortion of synthesized views with respect to orig-
inal frame.

Figure 7.15: Distortion depending on Y - Breakdancers.

(a) Distortion of depth maps. (b) Distortion of synthesized views with respect to orig-
inal frame.

Figure 7.16: Distortion depending on Y - Book Arrival.
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(a) Original (view
3, frame 0)

(b) Y=1 (c) Y=21

PSNR ∞ 40.78dB
1.06bpp 0.43bpp

(d) Y=31 (e) Y=60

37.77dB 34.08dB
0.37bpp 0.23bpp

Figure 7.17: Decoded depth maps - Book Arrival

(a) Original (view
9, frame 0)

(b) Synthesis from
original data

(c) Y=1

35.98dB 35.98dB
1.06bpp

(d) Y=21 (e) Y=31 (f) Y=60

35.81dB 35.65dB 35.28dB
0.43bpp 0.37bpp 0.23bpp

Figure 7.18: Synthesized images - Book Arrival
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(a) Original (view 3,
frame 0)

(b) Y=1 (c) Y=21

PSNR ∞ 44.69dB
1.31bpp 0.33bpp

(d) Y=31 (e) Y=60

42.35dB 35.83dB
0.30bpp 0.19bpp

Figure 7.19: Decoded depth maps - Breakdancers

(a) Original (view 3,
frame 0)

(b) Synthesis from origi-
nal data

(c) Y=1

37.08dB 37.08dB
1.31bpp

(d) Y=21 (e) Y=31 (f) Y=60

36.47dB 36.15dB 35.64dB
0.33bpp 0.30bpp 0.19bpp

Figure 7.20: Synthesized images - Breakdancers

7.2.4 Quantization

In this experiment the effects of quantization on the rendered view quality are studied. The
quantization parameter of LAR compression varies between 0 and 28, where 0 means the
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highest quality and 28 corresponds to the lowest. The sequences used in this experiment
are Book Arrival and Breakdancers. “LAR Flat pyramid only” is used to encode the depth
maps, with Y = 1 and with Y = 60 and varying the quantization step from 0 to 28. Fig.
7.15 and 7.16 can be referred for the observation of PSNR when the quantization step
varies. As expected, when the quantization step increases, the bit rate and PSNR scores
decrease.

Figures 7.21 and 7.22 show a particular area of the decoded depth map for different
threshold values (Y = 1 and Y = 60) and different quantization steps (noted QP ) (5 and
25). The graphs show the depth values along the line number 395 of the image (arbitrarily
chosen). It should be mentioned that for a quantization step equal to 0 and threshold
Y = 1, the values of the decoded map fit exactly the original. The graphs show that
the quantization adds a random noise around high discontinuities, no matter the value
of the threshold Y . This is also noticeable on the snapshots of decoded depth maps. In
particular, in Fig. 7.21, for Y = 1 and QP = 25 the contours of the chair appear noisy,
because of wrong small block values. This leads to distortions in the synthesized view: the
arms of the chair seem trimmed. The same occurrence can be observed in Fig. 7.22 for
Y = 1 and QP = 25: in the synthesis, the dancer looks trimmed, or “crumbled” because
of the wrong depth block values around its contour. The origin of this noise is assumed
to be the result of prediction errors, from Eq. 7.10, Eq. 7.11 and Eq. 7.12. From top
to bottom, the prediction of S coefficients may induce propagation of errors. However,
it seems that for a fixed given quantization parameter, if the threshold value is low, the
random noise is widely spread. This is due to the fact that the used quantization table
in LAR method, that follows the principles described in Eq. 7.4: the higher is QP , the
coarser is the quantization on little blocks. As low threshold value leads to large amount of
little blocks, the decoded images in those cases seem more deteriorated and lead to more
distortions in the synthesized views. Indeed, when Y = 60 and QP = 25 in both Fig.
7.21 and Fig. 7.22, in the synthesized views, the objects’ contours are better rendered
than the case of Y = 1 and QP = 25 because depth values around the edges are better
preserved by the quad-tree decomposition. This explains also the density of the errors and
its localization on little blocks, as can be seen on the images of the figures 7.21 and 7.22.

To conclude, this study on the influence of the quantization step on synthesized views
quality revealed that this bit rate control method can induce noticeable and annoying
artifacts on the synthesized views. This effect is enhanced when threshold value Y is low,
i. e. when the quad-tree representation contains numerous small blocks.
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Depth values along line 395 Decoded depth map Synthesized view

Y=1, QP=5, Rate= 0.64bpp PSNR=50.7dB PSNR=36dB

Y=1, QP=25, Rate =0.33bpp PSNR=36.3dB PSNR=35.6dB

Y=60, QP=5,Rate = 0.17bpp PSNR=34.1dB PSNR=35.3dB

Y=60, QP=25, Rate= 0.068bpp PSNR=32.9dB PSNR=35dB

Figure 7.21: Effect of compression on depth maps and on synthesized views. The first column
gives a comparison of values of original and decoded depth maps Book Arrival. The graphs show the
depth values along the line number 395 of the image (arbitrarily chosen). The values of the original
depth map along the line 395 is depicted in blue and the values of the decompressed depth map along
the same line is depicted in pink. The second column gives a snapshot of the decompressed depth
map. The third column gives a snapshot of the resulting synthesized frame.
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Decoded depth map Synthesized view

Y=1, QP=5, Rate= 0.81bpp PSNR=49.7dB PSNR=37.1dB

Y=1, QP=25,Rate=0.62bpp PSNR=67.6dB PSNR=36.1dB

Y=60, QP=5, Rate= 0.17bpp PSNR=34.1dB PSNR=35.6dB

Y=60, QP=25, Rate= 0.068bpp PSNR=32.9dB PSNR=35.3dB

Figure 7.22: Effect of compression on depth maps and on synthesized views. The first column
gives a comparison of values of original and decoded depth maps Breakdancers. The graphs show the
depth values along the line number 395 of the image (arbitrarily chosen). The values of the original
depth map along the line 395 is depicted in blue and the values of the decompressed depth map along
the same line is depicted in pink. The second column gives a snapshot of the decompressed depth
map. The third column gives a snapshot of the resulting synthesized frame.
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7.3 Conclusion

This chapter presented the basics of Locally Adapted Resolution coding method and its
pyramidal profile extension. Our assumption was that being a content-based encoding
method, LAR codec provides tools enabling the respect of depth specificities that contain
smooth areas with sharp edges.
The chapter presented studies that investigate the reliability of the first assumption. First,
the results showed that the Flat layer of the coder was sufficient for the encoding of depth
maps, since the “Flat + details” profile induced an additional coding cost without visual
quality gain. Second, it appeared that the threshold value Y influences the depth map
representation and thus the quality of the rendered view. Although lowering the threshold
value Y allows bit-rate savings, this is offset by the fall of visual quality of the synthesized
view. Finally, the quantization strategy used in LAR codec seem to be unadapted to depth
maps compression. Although the assumption expressed by Eq. 7.4 regarding the influence
of block distortion on visual quality is proved for color images, it is not the case for depth
maps compression, since small blocks correspond to edges. Yet, edges have to be preserve
as most as possible in priority to enable a correct rendered view visual quality.

LAR codec encoding strategies are optimized for color images compression. The next
chapters propose new depth maps coding method based on LAR codec and taking into
account the conclusions of this first study.
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CHAPTER 8

Z-LAR: a new depth map encoding method

The previous chapter evaluated the performances of a 2D codec, namely LAR, in the
case of depth map coding. Advantages and drawbacks were discussed thanks to different
studies. In particular, the results confirmed our assumption that being a content-based
encoding method, LAR codec provides tools enabling the respect of depth specificities that
contain smooth areas with sharp edges. Based on these preliminary studies on LAR codec
performances, we propose a novel scheme for depth map compression that we call Z-LAR,
in this chapter. This study led to the publication of one international conference paper
[BMP12a].
The chapter is divided as follows: Sec. 8.1 reminds our goal in the context of MVD coding;
Sec. 8.2 describes our main contributions through the design of this new depth coding
tool; Sec. 8.3 presents the performances of the proposed scheme by a validation protocol.

8.1 Motivations

Our goal is to achieve depth maps compression because up to now, there is no standardized
compression method for MVD sequences. However, MPEG is currently standardizing a
novel MVD encoding framework, namely 3DVC, that was previously discussed in Chapter
3. Most of the proposed compression methods rely on the extension of state-of-the-art
2D codecs. The most popular is H264/AVC [STL04] whose 3D extension (standardized
for Multi-View-Video representation, MVV), namely H.264/MVC for Multi-view Video
Coding [MMSW06], has been the subject of many adaptations for MVD compression
[MSD+09]. Previous studies already pointed out the impact of depth encoding on the syn-
thesized frames. Compression-related artifacts that may be imperceptible in depth maps
cause important distortion during the synthesis process [MMS+09]. Many methods have
been proposed recently in order to address the aforementioned issues. Various encoding
strategies are possible to achieve depth map compression. Several studies have proposed
bit-rate control methods [MFdW07, DTP09] relying on the objective quality of the re-
sulting synthesized views, or on a distortion model [LHM+09]. A popular and efficient
strategy is the post-processing of depth maps after decoding [DSFK+11]. Depth-adapted
encoding methods [MdWF06, GRP+10, SD09] have also been proposed. Our work is in
line with the depth-adapted encoding strategy since the method proposed in this chapter
relies on the content-based representation of the depth map of LAR codec.
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Based on the results presented in Chapter 7, we believe that depth map compression
can be achieved with LAR codec tools by means of several changes in order to adapt the
strategy according to depth maps specificities. The main purpose of this novel framework
is to preserve the consistency between color and depth data. Our strategy is motivated
by previous studies[MMS+09] of artifacts occurring in synthesized views: most annoying
distortions are located around strong depth discontinuities (Chapter 6) and these distor-
tions can be due to misalignment of depth and color edges in decoded images. Thus the
method is meant to preserve edges and to ensure consistent localization of color edges
and depth edges. The LAR codec is based on a quad-tree representation of the images.
In this quad-tree, the smaller the blocks, the higher the probability of the presence of a
depth discontinuity. Analogously, big blocks correspond to smooth areas. The quad-tree
representation contributes in the preservation of depth transitions when target bit-rate
decreases. Another original contribution of the proposed method relies on the use of the
decoded color data as an anchor for the enhancement of the associated decoded depth,
together with information provided by the quad-tree structure. This is meant to ensure
consistency in both types of data after decoding. We also propose to change the quanti-
zation strategy so that the artifacts occurring in the rendered view are less perceptible or
less annoying.

8.2 Depth map encoding method

Based on the previous results, since depth maps do not contain high frequency areas, the
details are not essential and represent an avoidable additional cost of compression. Thus,
only the flat image is considered and encoded in the method we propose, i. e. we use
“LAR Flat pyramid only” profile.

8.2.1 Quad-tree resolution

The quad-tree decomposition is dependent on the local gradient of the depth image. Given
a threshold Y for the local gradient, the image is split into blocks: the higher the local
activity, the more splits. This leads to small blocks around object edges and bigger ones
in continuous areas. In the original LAR method, the minimal size of the blocks, Nmin is
equal 2×2. In previous experiments, we observed that using Nmin = 1 instead of Nmin = 2
provides better visual results on the synthesized view, but increases the bit rate. Since
our priority is to enhance the visual quality, we first opt for Nmin = 1.

Pasteau et al. [PBD+10] suggested applying a quantization step depending on the block
sizes, in the case of conventional images. Our experiments revealed that in the case of
depth map compression, this was not an adequate strategy because the smaller the blocks,
the coarser was the quantization (this allowed bit rate savings because small block are
costly). Yet, small blocks correspond to strong depth discontinuities and errors occurring
in these areas may have disastrous effect at the synthesis step. Figure 8.1a) shows the
impact of the quantization as suggested in Pasteau et al.[PBD+10] (first column) at 0.06
bpp and using Nmin = 1. Depth transitions are highly degraded and will result in errors
in the synthesized frame (third column, crumbling artifacts around the head and around
the legs of the chair). The synthesized frames obtained in Figure 8.1c) are generated from
original color data and decoded depth maps in order to visually assess only the impact
of depth quantization (i.e. not the combined effect of both color and depth compression)
using Pasteau et al. quantization.
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a) Decoded depth when
applying quantization
suggested in Pasteau et
al.

b) Decoded depth when
applying our proposed
strategy.

c) Frame synthesized
from decoded depth
when applying quan-
tization suggested in
Pasteau et al.

d) Frame synthesized
from decoded depth
when applying our
proposed strategy.

Figure 8.1: Comparison of two decoded depth maps at 0.06bpp, using the LAR method or the
proposed method of rate control.
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Our priority is to preserve the quality of the objects’ contours rather than the actual
scene depth values. For this reason, we use Nmin = 1 as the minimal size of block in
the quad-tree, in order to fit as most as possible the actual contours of the image. Since
smallest block of the quad-tree representation are located around the edges, we opt for a
spatial prediction of this specific area: the lowest level of LAR pyramid is not encoded
to avoid the error propagation and crumbling artifacts observed in the previous chapter.
Instead, values of small blocks are predicted according to their neighbor blocks. We thus
propose to partly replace hierarchical prediction by spatial prediction. In the following
the subsections, we will explain our strategy for bit rate savings.

8.2.2 Truncated pyramid and spatial prediction

The compression scheme in LAR method is based on a pyramidal decomposition [BDR05],
previously referred as “LAR Flat pyramid only”. The pyramid, built from I, consists of a
set of images, noted as {Ll}l=lmax

l=0 , as a multi-resolution representation of the image, where
lmax is the top of the pyramid and l = 0 is the lowest level, i.e. the full resolution image.
At each level, the image is obtained by averaging the principal diagonal of each block at
previous level, as expressed by Eq. 7.5.

LAR method uses hierarchical prediction that is the prediction of each level of the
pyramid, from top to bottom. For each level, the associated image of errors, also relying
on the quad-tree decomposition, can be transmitted to compensate the prediction errors.
At the decoder side, from the top to the bottom, the image is reconstructed.

Compression cost is mainly due to the encoding of small blocks. As explained, small
blocks are not transmitted (those are blocks whose size is such as N = Nmin). This is
achievable thanks to the pyramidal decomposition. The encoding of small blocks is related
to the image of errors corresponding to the lowest level, i.e. L0. The lowest level is not
encoded in the method we propose, and the image will be refined at the decoder side
thanks to the analysis of the values of the nearest neighbor blocks whose size is such as
N > Nmin: they will be predicted, depending on the values of their closest larger blocks.
This allows bit-rate savings. The pseudo code of this prediction is given in Algorithm 8.1.

8.2.3 Spatial quantization of depth

As explained in the previous subsections, we opt for a quad-tree decomposition such as the
minimal block size is N = Nmin. Although we believe that this choice allows better visual
performances on the synthesized views, small blocks are costly and we need a bit rate
control strategy. We propose a quantization achieved through the evolution of the quad-
tree representation of the image. Small blocks are costly and a way to reduce the bit-rate
is to reduce the number of small blocks. This implies that the quad-tree representation
can change according to the target bit-rate. The number of small blocks is directly related
to the value of the threshold Y . Thus, an increasing threshold Y decreases the bit-rate,
so that the representation of the image contains larger blocks. This corresponds to a
spatial quantization that concerns depth values. It results in assigning the same depth
value to objects that were not formerly in the same depth plane. The dynamic range of
depth is thus reduced but the global structure is preserved. Fig. 8.2 gives the quad-tree
representations and the resulting depth maps using two different thresholds for the quad-
tree decomposition. It shows that the semantic information of the image is preserved. Fig.
8.1b) shows that the proposed method (second column) renders sharp depth transitions.
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Algorithm 8.1: Prediction of full resolution image from truncated pyramid

Require: L̃l is the estimated representation of the image at the decoder side, for level l,
Quad-tree[Nmax...Nmin] is the quad-tree partition.
Decoding of truncated pyramid:
for l = lmax . . . l1 do

Estimate L̃l as in the LAR method
end for
for each block of Quad-tree[Nmax...Nmin] such as N = Nmax . . . Nmin do

Given Quad-tree[Nmax...Nmin] , then L̃0(bN (i, j)) = L̃1

end for
Decoding of full resolution image:
for each block of Quad-tree[Nmax...Nmin] such as N = Nmin do
L̃0(b(Nmin)(i, j)) = Mean value of the closest block bN of Quad-tree[Nmax...Nmin]

such as N > Nmin

end for
return L̃0

The synthesized frame in Fig. 8.1d), fourth column, shows improvements compared to the
previous strategy, third column (Fig. 8.1c)).

8.2.4 Smooth depth reduction with rate

The threshold value Y can vary from 1 to 254. This leads to a specificity of this depth
coding strategy. The higher the threshold value Y , the more the depth structure is modified
and diminished. Indeed, the higher the threshold value Y , the more large blocks in the
quad-tree partition. The final reconstructed depth map corresponds to the average values
of each block of the partition. Thus this coding strategy results in a uniform depth map
for Y ' 254 (very low bit-rate). Then, at the synthesis step, such a uniform depth map
leads to the projection of every color pixel to the same depth. In other words, the resulting
synthesized view, observed in monoscopic conditions, is a 2D image. So the lower the bit-
rate, the less depth in the scene. So a new type of artifact is introduced by the proposed
method: reduction of depth. This is illustrated by Fig. 8.3. This figure shows the depth
values of pixels belonging to a considered line of the depth map (line 250, in red on Fig.
8.3(a)). The depth structure of the scene decreases while Y increases, until it is completely
flat. So for Y = 201 in this example, all color pixels are assigned to the same depth.

8.2.5 Depth reconstruction at decoder side

On main requirement for visual quality is the consistency between color and depth edges.
A reconstruction step is included at the depth map decoder side, right after the first
estimation of the smallest blocks. To enforce the color/depth edges consistency, a second
pass of depth reconstruction was introduced. The proposed feature consists of a multi-
lateral filtering aided by the quad-tree representation whose principles are partially based
on the literature. Numerous studies already addressed the issue of depth map accuracy
by depth filtering processes [MLD12, DSFK+11, LTL10]. Min et al. [MLD12] proposed
a weighted filtering based on the analysis of a color-aided joint histogram. De Silva et
al. [DSFK+11] also proposed an analysis of the decompressed depth maps’ histograms
for the filtering stage. Lai et al. [LTL10] apply a multi-lateral filter on the whole depth
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Figure 8.2: Quantization of the depth map.

(a) (b)

Line considered Y = 1

(c) (d)

Y = 61 Y = 201

Figure 8.3: Depth values along line 250 of frame 33, Book Arrival sequence, view 6.
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map, relying on the associated original color image. In our proposed method, the decoded
associated color image is used to enhance only the blocks smaller or equal to 4 × 4 in
the depth map. This color image can be encoded by any state-of-the-art color codec
method since our contribution targets depth coding only. Thanks to the decoded quad-
tree decomposition from the decoded LAR stream, the location of small blocks is already
known. Small blocks are likely to be located around depth discontinuities. Thus, it is
believed that improving the accuracy in these regions, according to the decoded associated
color, will ensure consistency between color and depth edges. Our filter is thus only applied
on small blocks. Let C̃ be the decoded associated color image, and L̃0 the lowest level
image of the depth pyramidal decomposition. Let Ω be the set of pixels of the quad-tree
partition Quad-tree[Nmax...Nmin] whose size N lies in N ∈ [Nmin . . . 4], such as:

Ω = L̃0(x, y)
∣∣∣L̃0 (x, y) ∈ L̃0

(
bN (i, j)

)
, N ∈ [Nmin . . . 4] (8.1)

Ω thus represent the set of so-called small blocks.
The reconstruction, noted L̃0r (x, y), of any pixel belonging to Ω is expressed as:

∀ L̃0 (x, y) ∈ Ω,

L̃0r (x, y) = L̃0r (p) =
1

K

∑
q∈Γ

L̃0 (p)e
− ‖p−q‖

2σd e−
‖L̃0(p)−L̃0(q)‖

2σs e−
‖Luma(p)−Luma(q)‖

2σc

(8.2)

K =
∑
q∈Γ

e
− ‖p−q‖

2σd e−
‖L̃0(p)−L̃0(q)‖

2σs e−
‖Luma(p)−Luma(q)‖

2σc (8.3)

Γ is the pixel window used for the calculation; Luma is the luminance component of the
decoded color image; Luma(p) and Luma(q) are pixels of the luminance component of the
decoded color image; σd, σs, σc are standard deviations related to the spatial domain, the
depth range domain (similarity of depth values), and the color range domain, respectively.

Figure 8.4 gives the overview of the proposed method. In this figure, at the encoding
step, black blocks correspond to non transmitted blocks.

8.3 Experiments

8.3.1 Protocol

The proposed method is compared to state-of-the-art codec H.264 in intra mode. The
choice for this method in this experiment is motivated by the fact that it is a reference
method which is usually used as anchor in standardization process. As preliminary studies,
experiments concern only still images. First frames of views 6 and 10 from Book Arrival
were encoded through both encoding methods. Afterwards, decoded color and depth maps
were used to compute the intermediate view 8, through the reference software, VSRS 3.5
[TFS+08]. Since view 8 is among the originally acquired views, it is considered as a ground
truth for quality assessment. In this paper, the quad-tree decomposition parameters are
Nmin = 1 and Nmax = 12. In Equation 8.2, σd = 4, σs = 10, σc = 3. The color images
are encoded with H.264, QP varying from 0 to 50. Figure 8.5 gives an overview of the
experimental protocol.
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Figure 8.4: Overview of Z-LAR method.

Figure 8.5: Overview of the experimental protocol
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8.3.2 Results

For the performance comparisons, we ran the objective evaluations with the same set of
metrics as those tested in Chapter 6. Since the results output by the objective metrics were
higly correlated, we only display here a pixel-based metric (PSNR) and a more perception-
oriented metric VIF (Visual Information Fidelity [SB06]) are considered (note that PSNR
HVS, VIFP and SNR metrics gave results similar to that of VIF in this experiment). Figure
8.6 depicts the rate-distortion curve obtained by computing PSNR scores and VIF scores of
the synthesized views, with respect to the original acquired view. At high bit-rates (higher
than 2bpp), the proposed method obtains better PSNR scores (the maximum difference
in PSNR is 0.043dB at high bit-rate). However, under 2bpp, H.264 obtains better PSNR
scores (the maximum difference in PSNR is 0.37dB at high bit-rate).

The curve based on VIF scores shows that H.264 and the proposed method give similar
results at high bit-rates (higher than 2bpp). However, contrary to the curve based on
PSNR, the curve based on the perception-oriented VIF shows that the proposed method
performs better at low bit-rates (the maximum improvement reaches 5.68%).

Figure 8.6: Performance comparisons, in terms of PSNR and VIF, between the original view and
the synthesized view.

A visual appreciation is thus useful to evaluate the methods. Figure 8.7 gives snapshots
of the obtained synthesized views for 0.1bpp and 0.9bpp. Ghosting effect is perceptible
with both methods behind the head of the man for 0.1bpp. Z-LAR method preserves
better the vertical edges: the vertical dark lines of the posters are better rendered with
the data encoded with Z-LAR method. At low bit-rate (0.1bpp), Figure 8.7 gives snapshots
of the synthesized views. Although, PSNR score shows lower performances for Z-LAR at
low bit-rate, the observation of Figure 8.7 shows improvements around the edges of the
synthesized objects. The ghosting effect around the head of the man is less perceptible
with Z-LAR method. The crumbling artifacts occurring around the leg of the chair at
0.1bpp with H.264 are no longer perceptible with the proposed method.

8.4 Conclusion

We proposed a novel depth map coding framework called Z-LAR whose main purpose is
to preserve consistency between color and depth edges to improve the synthesized views
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Figure 8.7: Snapshots of synthesized views from data encoded with H.264 and from data encoded
with the proposed method.

quality. Depth encoding is based on LAR codec. It consists in a quad-tree representation
of the images. The quad-tree representation contributes in the preservation of edges in
depth data. Our contributions can be listed as follows:

� we opted for a higher quad-tree resolution (smallest block size is Nmin = 1 instead
of Nmin = 2), in order to preserve as most as possible the contours and to improve
the rendering of the virtual views,

� we proposed a depth spatial quantization: the actual depth structure of the scene is
modified but the objects’ contours are better rendered than state-of-the-art methods
such as H.264. This depth quantization strategy gets rid of “crumbling” artifacts
because it does not target the quantization of critical areas corresponding to depth
discontinuities.

� we included a second pass for depth reconstruction that makes use of decoded color
data as an anchor for the associated depth enhancement at the decoder side.

The originality of our contribution lies on the possibility to obtain a 2D image for very low
bit rates, thanks to the spatial quantization we proposed. Our choices were also motivated
by the fact that recent studies showed that observers prefer not to have depth rather
than quantization artifacts [BCLC09]. The proposed method showed visual performances
similar to H.264 at high bit-rates and some improvements at lower bit-rates because it
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better preserves object edges. The next chapter will present a second extension of this
depth map coding method.
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CHAPTER 9

Z-LAR-RP: hierarchical region-based prediction in Z-LAR

In this chapter, we propose a second LAR-based approach for depth maps compression
called Z-LAR-RP. This method is meant to be more reliable and scalable because it exploits
the pyramidal images to allow multiple depth maps resolution. The prediction technique
is based on the region segmentation relying on the decoded quad-tree only, as extracted
from the LAR stream. Sec. 9.1 gives an overview of this second contribution to depth
map coding. Sec. 9.2 details the tools included in Z-LAR-RP. Sec. 9.3 discusses the
performances through quality assessment measurements of synthesized views.

9.1 Overview

Compared to Z-LAR method, the method that will be presented in the following, namely
Z-LAR-RP, differs on the prediction step. The minimal quad-tree block size is kept as
1× 1.
The associated texture view can be encoded by any state-of-the-art color codec. The
Z-LAR-RP uses the decompressed texture information to improve the prediction step in-
volved in depth maps decoding. The compression scheme still relies on the pyramidal
profile of LAR, previously referred as “LAR Flat pyramid only”. In the previous pro-
posed approach, the selection of the lowest level to be transmitted and decoded from the
pyramid construction was not allowed. Yet, this option is available in the pyramidal profile
of LAR codec for 2D color images. The method that will be presented is meant to over-
come this limitation and to allow the selection of depth resolution and mainly to increase
the performances of the depth map coding framework (in terms of visual quality of the
synthesized views and in terms of complexity).
Any level of the pyramid can be chosen as the lowest to be transmitted and the actual
depth map size is reached thanks to a region-based prediction method, that will be pre-
sented in the following. Regarding rate control strategy and quantization, this method
follows the same principle as Z-LAR, in Sec. 8.2.3: the actual depth structure of the scene
is modified when the bit-rate decreases. Fig. 9.1 gives an overview of the method.
In the following section, we show that the basic region-based segmentation method can
be jointly used with decoded color data in order to improve the prediction step by propa-
gating the decoded depth values in the smallest blocks of the quad-tree. Then, validation
experiments show the performances of the proposed Z-LAR-RP method.
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Figure 9.1: Overview of the Z-LAR-RP

9.2 Depth map encoding method

9.2.1 Region segmentation from decoded quad-tree

The region segmentation algorithm employed in this method, relies on previous work by
C. Strauss presented in [Str11]. The specificity of this segmentation algorithm is that it
only requires the knowledge of the image structure, that is contained in the quad-tree
partioning of the image as input data. This quad-tree partioning is embedded in the very
beginning of the LAR codec bitstream and can be extracted at the decoder side. Algorithm
9.1 gives the details of the segmentation algorithm as described in [Str11].

After creating the seeds from the larger blocks, adjacent regions are agglomerated
by region growing. The process is reiterated iter(CurrentSurf times. The number of
growing iterations increases with the decrease of the size threshold CurrentSurf . Along
the merging process, the number of regions should thus decrease. Fig. 9.2 depicts an
example of the segmentation result. Fig. 9.2(a) is the quad-tree partition obtained from
the first frame of Breakdancers depth map of camera 0, with Y = 5. Fig. 9.2(b) gives the
first seeds, from the larger blocks. Fig. 9.2(c) gives the final region segmentation, with
370 regions.

9.2.2 Color-consistent region edge refinement

In order to enhance segmentation results, we introduce the color information of the cor-
responding decoded color view. A discrete bilateral filter is applied on the region map
obtained from the region segmentation process in order to refine the location of decoded
depth map edges to be consistent with color map edges. Algorithm 9.2 gives the details
of the method. The region map is denoted R. Any pixel p at location (i, j) belongs to
labeled region R(p) = R(i, j) in region map. The filtered region map is noted as R̃.
For each pixel p, a support Γp is considered, that is the neighborhood ofp, centered on p.
The filter proceeds in way that Pixel p will be given the most likely region label according
to the importance of its neighbors. This importance (or weight) of each neighbor is eval-
uated regarding its color similarity with p in the corresponding location in the decoded
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Algorithm 9.1: Region segmentation algorithm from [Str11]

Require: Quad-tree[Nmax...Nmin] the dyadic quad-tree partition containing P square
blocks bi, i ∈ {1 . . . P} where each block bi has a surface of 2S × 2S pixels,
S ∈ {1 . . . Nmax;
∆k is the region map after k merging steps;
Rk

i in ∆k is the k non overlapping region label;
surf(Rk

i ) is the surface in pixels of Rk
i ;

Ak
i is the set of adjacent regions of Rk

i in ∆k.
Initializations
k = 0
∆k = Quad-tree[Nmax...Nmin]

CurrentSurf = 2Nmax × 2Nmax

repeat
Seeds creation
while ∃Rk

i |surf(Rk
i ) = CurrentSurf do

while ∃Rk
j ∈ Ak

i and surf(Rk
j ) = CurrentSurf do

Merge Rk
j and Rk

i into ∆k+1

k = k + 1
Update Ak

i

end while
end while
CurrentSurf = bCurrentSurf/4c {Region growing}
while ∃Rk

i |surf(Rk
i ) = CurrentSurf do

for iter=1 to iter(CurrentSurf) do
Let A’ = {R0

j |R0
j ∈ Ak

i and surf(R0
j ) = CurrentSurf

Let Z = card(A’)
Merge Rk

i and A’ into ∆k+Z

k = k + Z
Update Ak

i

end for
end while

until CurrentSurf = 0

color image, and regarding its distance to p. Finally p is allocated the same region label
as the neighbor having the highest importance (or weight)
The luminance component Luma of the decoded texture view is used to estimate the color
similarity of the considered neighborhood. The algorithm 9.2 aims at assigning each pixel
of the region map the more likely region label according to the criterion described earlier.
These constraints are are expressed by the factors σc and σd respectively.
Fig. 9.3 depicts a snapshot of the result of this process over the region map, obtained
with a neighborhood of 7× 7 pixels, centered on the processed pixel, σc = 30 and σd = 3.
The region frontiers in white are superimposed on the original corresponding color view.
It can be observed that the segmentation is more consistent to color data.

9.2.3 Pyramid truncation

Any level l of the pyramid can be chosen as the lowest to be transmitted and the actual
depth map size is reached thanks to the region-based prediction method described by
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(a) (b) (c)

Quad-tree partition, Y = 5 First seeds Region segmentation result with 370 regions

Figure 9.2: Region segmentation using [Str11]

Algorithm 9.2: Region segmentation enhancement of the depth map based on the
decoded color information

Require: R the region map of the depth image with Nregions labels;
W [Nregions] the array of region weights;
Luma the associated decoded texture image
Initializations
Temp(p) = Temp(i, j) = R(p) = R(i, j) | {p = (i, j) ∈ Nx ×Ny}
W [k] = 0|{k ∈ [1 . . . Nregions]}
for all p ∈ R do

for all q ∈ Γp do
r = R(q)

W [r] = W [r] + e
− ‖p−q‖

2σd e−
‖Luma(p)−Luma(q)‖

2σc

end for
Find r̃ | r̃ = argmax

k∈[1...Nregions]
W [k]

Temp(p) = r̃
Reset all elements of W to 0

end for
R̃(i, j) = Temp(i, j) | {(i, j) ∈ Nx ×Ny}
return R̃

Algorithm 9.3. Any pixel of coordinates (i, j) is denoted as p. L̃lmin is the lowest encoded
level image of the pyramid, with lmin ≥ 1. The block bN (i, j) is as described in Eq. 7.1:
bN (i, j) is a block of size N , located at (i, j) in the quad-tree partition.N is the block
size as described in Eq. 7.2.For each predicted pixel p in the magnified level, a support
Γb p

2
c is considered, that is the pixel neighborhood in L̃lmin , the lowest decoded level image,

centered on the corresponding processed pixel bp2c. K is a normalizing factor defined as:

K =
∑

q∈Γb p2 c

δp(q) · e
−‖b

p
2 c−q‖
2σ1 · e−

‖L̃l(b p2 c)−L̃l(q)‖
2σ2 , (9.1)

where δp(q) is the existence function defined as:

δp(q) =

{
1 if R̃(p) = R̃(q)
0 otherwise

(9.2)
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(a) (b)

(c) (d)

Result of region seg-
mentation

Region segmentation
after enhancement
process

Figure 9.3: Region segmentation after applying enhancement process

The reconstruction of depth lowest level images is based on a weighting sum of the cor-
responding neighbors in the direct upper level of the pyramid. The neighbors contribute
into this weighting sum only if the belong to the same region in the full image resolution.
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Algorithm 9.3: Region-based depth map prediction

Require: ˜Llmin the depth lowest decoded level image of the depth map LAR pyramid
with lmin ≥ 1;
Quad-tree[Nmax...Nmin] the quad-tree partition;
R̃ the filtered region map.

repeat
for all p ∈ L̃l−1 do

if L̃l−1 ∈ bN | N < 2l then

L̃l−1(p) = 1
K

∑
q∈Γb p2 c

L̃l(q) · δp(q) · e
−‖b

p
2 c−q‖
2σ1 · e−

‖L̃l(b p2 c)−L̃l(q)‖
2σ2

else
L̃l−1(p) = L̃l(bp2c)

end if
end for

until l = 0

9.3 Experiment 1: objective quality assessment

9.3.1 Experimental protocol

The goal of these experiments is the validation of the Z-LAR-RP as an alternative to depth
map coding. So only depth maps are encoded in order to highlight the impact of depth
quantization strategies. Fig. 9.13 depicts the general scheme followed in these experiments.
Depth coder under tests include the Z-LAR-RP, HEVC 6.1 and H.264 (JM 18) both in intra
coding mode. The choice for these methods in this experiment is motivated by the fact that
they are reference methods which are usually used as anchors in standardization process.
Table 9.4 gives the details of the quantization parameters used in these experiments. Six
MVD sequences are used in these experiments: Book Arrival, Newspaper, Kendo, Balloons
are real scenes; and GT Fly and Undo Dancer are synthetic scenes. Table 9.1 summarizes
the sequences’ features. The sequences were selected for their availability and amount
of depth. The key frames were selected for their amount of depth. Table 9.5 gives the
details of the encoded viewpoints and the target viewpoint for the synthesis. The synthesis
process is performed throught the very last release of VSRS, that is the version used in
MPEG 3DV group of standardization at the time of writing this thesis.

Left view

Right view

Texture

Depth
Depth codec
(under test)

View synthesis
of an intermediate viewpoint

Texture

Depth Synthesized view

Figure 9.4: Overview of the experimental protocol.
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Sequence Name Resolution No. of frames Camera Arrangement

Book Arrival 1024× 768 100 16 cameras with 6.5cm spacing
Newspaper 1024× 768 300 9 cameras with 5 cm spacing
Balloons 1024× 768 300 7 cameras with 5 cm spacing, moving camera

array
Kendo 1024× 768 300 7 cameras with 5 cm spacing, moving camera

array
GT Fly 1920× 1080 250 Computer generated imagery with ground

truth depth data
Undo Dancer 1920× 1080 250 Computer generated imagery with ground

truth depth data

Table 9.1: Six MVD sequences used in the experiments.

Sequence Name Encoded view points View to synthesize Frame no.

Book Arrival 10− 6 8 33
Newspaper 2− 6 4 1
Balloons 1− 5 3 1
Kendo 1− 5 3 1
GT Fly 1− 9 5 157

Undo Dancer 1− 9 5 250

Table 9.2: Input and output views of the experiment.

Depth codec Quantization parameter

H.264 (JM18) Qp = [25, 27, 30, 33, 35, 37, 40, 42, 45, 47]
HEVC 6.1 Qp = [34, 36, 39, 41, 42, 43, 45, 46, 48, 50]
Z-LAR-RP Y = {1 to 241 }, step by 10

Table 9.3: Input and output views of the experiment.
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9.3.2 Results

Fig. 9.5 and Fig. 9.6 depict the results of objective assessments through the widely used
PSNR and MSSIM. However, since it has be shown in Chapter 6, the objective metrics are
not sufficient to predict human perception of synthesized views quality, though MSSIM
was one of the objective metrics giving the best results out of the tested set of metrics.
Moreover, in the case of our proposed coding scheme, objective measurements based on the
fidelity such as PSNR and MSSIM are inappropriate. Indeed, our coding method modifies
the depth structure of the scene. Thus objects may be shifted. Since objective metrics
are mostly FR, they measure the fidelity between two images and it is expected that our
method obtain bad scores while having good visual quality performances. So we provide
the PSNR of depth maps (average between the two views), the PSNR of the synthesized
view, with the original acquired view as the reference and the MSSIM of the synthesized
view, with the original acquired view as the reference, in Fig. 9.5 (for Balloons, Kendo
and Book Arrival) and Fig. 9.6 (for Newspaper, GT Fly and Undo Dancer), both as a
rough guide. Snapshots of the corresponding views are provided in Fig. 9.7, 9.8, 9.9, 9.10,
9.11 and 9.12. Note that it can be observed a slight shift for Z-LAR-RP snapshots. The
same viewpoint is always generated but at very low bit-rates, Z-LAR-RP tends to deliver
a uniform depth map which results in a slight shift of the scene in the synthesized view.
As expected the objective measures rate the Z-LAR-RP as worst than the two state-of-
the-art codecs. This was expected because of the reasons mentioned above. However,
visual analysis of all the synthesized views proves that the quality is often similar (Fig.
9.11) or even superior than that of state-of-the-art methods (Fig. 9.7, 9.8, 9.9, 9.10, 9.12).
Moreover the proposed scheme allows very low bit-rates (around 0.003bpp). In these
cases, the proposed scheme automatically transmit a flat depth map, which results in a
good visual rendered view quality.
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(a) H.264

(b) HEVC

(c) Z-LAR-RP

Figure 9.7: Snapshot of synthesized frame - Undo Dancer, 0.01bpp.

(a) H.264 (b) HEVC (c) Z-LAR-RP

Figure 9.8: Snapshot of synthesized frame - GT Fly, 0.01bpp.
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(a) H.264 (b) HEVC (c) Z-LAR-RP

Figure 9.9: Snapshot of synthesized frame - Book Arrival, 0.02bpp.

(a) H.264 (b) HEVC (c) Z-LAR-RP

Figure 9.10: Snapshot of synthesized frame - Newspaper, 0.017bpp.

(a) H.264 (b) HEVC (c) Z-LAR-RP

Figure 9.11: Snapshot of synthesized frame - Kendo, 0.01bpp.
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Figure 9.13: Overview of the experimental protocol.

(a) H.264

(b) HEVC

(c) Z-LAR-RP

Figure 9.12: Snapshot of synthesized frame - Balloons, 0.01bpp.

9.4 Experiment 2: subjective quality assessment

The experimental protocol presented in this section aims at evaluating the impact of
depth-compression-related artifacts on the visual quality of the synthesized views. The
subjective image quality evaluation test includes the assessment of state-of-the-art codecs.
A first subsection presents the experimental protocol used for assessing the compression
methods. A second subsection presents and discusses the results.

9.4.1 Experimental protocol

The goal of this experiment is to determine the performances of the Z-LAR-RP coding
method, in terms of subjective quality of the resulting synthesized views. So, we consider
the impact of depth compression on the quality of views synthesized from the decoded
depth maps quality in a FVV context of use. Only depth maps are encoded in order
to highlight the impact of depth quantization strategies. Fig. 9.13 depicts the general
scheme followed in this experiment. From a given MVD sequence, we consider two different
viewpoints and one time t (also referred to as key frames in the following). The associated
depth maps are encoded through the depth map codecs under test. From the decoded
depth maps, fifty intermediate viewpoints (equally separated) are generated in-between
the two considered viewpoints. A sequence of 100 frames (and 10fps) is built from the 50
intermediate virtual frames that simulate a smooth camera motion from left to right and
from right to left. This experimental protocol is expected to reveal each coding strategy’s
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Depth codec Quantization parameters

H.264 (JM18) Qp = [{Book Arrival, Balloons,
Kendo, Newspaper}{25, 33, 47}, Undo
Dancer{25,40,47}, Gt Fly{30,40,47}]

HEVC 6.1 Qp = [{All of the sequences}{34, 45, 50}]
3D-HTM Qp = [{All of the sequences}{25, 35, 47}]

JPEG2000 0.05bpp, 0.009bpp and 0.005bpp

Z-LAR-RP Y = {20, 60, 240 }

Table 9.4: Quantization parameters used in the experiment.

distortion specificity. Depth coders under test include the Z-LAR-RP, HEVC 6.1 and
H.264 (JM 18), 3D-HTM 0.4 (provided by MPEG) and JPEG2000, all in intra coding
mode. For H.264, we used the JM 18.4 (Joint Multiview Video Model) software for the
Multiview Video Coding (MVC) project of the Joint Video Team (JVT) of the ISO/IEC
Moving Pictures Experts Group (MPEG) [jm12]. For JPEG2000, a C++ implementation
of the JPEG2000 standard was used [kak12]. In the case of 3D-HTM, inter-view prediction
and VSO (View Synthesis Optimization) parameters were enabled. The choice for these
methods in this experiment is motivated by the fact that they are reference methods
which are usually used as anchors in standardization process. Three test quantization
parameters were selected for each depth codec under test according to the visual quality
of the rendered views. This procedure was motivated by the need to cover a wide range
of categories in the visual quality scale in order to properly define each codec under test.
Table 9.4 gives the details of the quantization parameters used in these experiments. Six
MVD sequences are used in these experiments: Book Arrival, Newspaper, Kendo and
Balloons are real scenes; and GT Fly and Undo Dancer are synthetic scenes. Table 9.1
summarizes the features of the sequences. The sequences and the key frames were selected
for their availability and amount of depth. Table 9.5 gives the details of the encoded
viewpoints and the target viewpoint for the synthesis. The synthesis process is performed
through the 3D-HTM 0.4 renderer, that is the view synthesis algorithm used in MPEG
3DV group of standardization at the time of writing this paper. We set the Blended Mode
parameter of the synthesis algorithm for using the right view only for hole filling instead
of carrying out a weigthed average of samples extrapolated from both sides (as done in
the MPEG evaluations).

Twenty-seven naive observers participated in the subjective quality evaluation test
into two 30-minute sessions. ACR-HR [ITU08] methodology was used to assess 288 FVV
sequences, among which were the 96 hereby considered. ACR-HR methodology [ITU08]
consists in presenting each stimulus only once to the observers, who are asked to rate the
quality of the stimuli relying on a five-level quality scale (5: Excellent ; 4: Good ; 3: Fair ;
2: Poor ; 1: Bad). The reference version of each stimulus is included in the test procedure
and rated like any other stimulus. This is reffered to as a “hidden reference condition”.The
subjective evaluations were conducted in an ITU conforming test environment. The stim-
uli were displayed on a Panasonic BT-3DL2550 screen (1920×1080p), and according to
ITU-T BT.500 [BT.93]. The stimuli sequences with lower resolution (1024x768) were dis-
played at the sequence resolution with a grey surrounding to fit the Full HD screen.
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Sequence Name Encoded viewpoints Frame no.

Book Arrival 10− 6 33
Newspaper 2− 6 1
Balloons 1− 5 1
Kendo 1− 5 1
GT Fly 1− 9 157

Undo Dancer 1− 9 250

Table 9.5: Input and output views of the experiment.

9.4.2 Results

From the subjective scores obtained with the ACR-HR method, Mean Opinion Scores
(MOS) and Differential Mean Opinion Score (DMOS) are computed between each stimulus
and its corresponding (hidden) reference. As recommended in VQEG multimedia Test Plan
[VQE08], the DMOS are calculated on a per subject per processed stimulus (PS) basis.
The corresponding reference version of the stimulus (SRC) was used to calculate an off-set
version of the DMOS value for each PS following the expression:

DMOS(PS) = MOS(PS)−MOS(SRC) + 5 (9.3)

In such conditions, the higher the DMOS, the better the quality of the tested stimulus.
The lowest bound is 1 as for MOS values but the highest bound can be higher than 5. If
the DMOS value is greater than 5, this means that the stimulus is rated better than its
corresponding hidden reference. Such values are considered valid by VQEG [VQE08].
Fig. 9.14 plots the DMOS scores obtained for Undo Dancer sequence. In this experimen-
tal protocol, the stimuli were not classically selected relying on a list of bit-rates to be
evaluated. The stimuli were previously selected by experts based on their subjective visual
quality evaluations. For each coding method, the subjective visual quality of the views
synthesized from decompressed depth data, at different bit-rates, were first considered by
the experts. Then, for each coding method, the experts selected three stimuli correspond-
ing to the categories Good, Fair, Poor. This explains that the obtained curves do not lie in
the same bit-rate range. For any coding method, we refer to the highest, the middle and
the lowest bit-rates evaluated as R0, R1 and R2 respectively. Fig. 9.14 shows that in two
cases (for Z-LAR-RP and for HEVC coding methods), the observers rated the R2 better
than R1 while the visual quality is expected to fall down when the bit-rate decreases.
In the case of Z-LAR-RP, for R2, the depth maps used to generate the FVV are almost
uniform depth maps. This suggests that a uniform depth map, at low bit-rate, induces
less annoying artifacts in the FVV sequence. In the case of HEVC, the depth maps for
R2 contain smooth edges but the structure of the scene is still perceptible. This suggests
that some coding strategies induce coding artifacts whose impact on the visual quality of
the synthesized views is reduced and preferable, at low bit-rate.

Fig. 9.15 shows the DMOS scores obtained for Balloons sequence. For three coding
methods, DMOS values are higher than 5 (bold black line in the Figure). Since the ref-
erence is rated 5 by definition, this means that the processed sequence is rated with a
better quality than its associated hidden reference sequence. This can be explained by the
fact that depth estimation errors may be smoothed when processed by some compression
methods. This is typically the case around object edges, where depth estimation is prone
to errors. Some compression methods for some bit-rates may thus smooth inaccurate es-
timated depth areas, leading to a better visual quality of synthesis. So, we assume that
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Figure 9.14: Subjective DMOS over bit-rate - Undo Dancer.

this phenomenon comes from the impact of coding strategies on inaccurately estimated
depth maps. This is a particular phenomenon that can be observed in the context of
DIBR-synthesized views.
In Fig. 9.15, the visual quality of R2 is also rated better than that of R1 with the Z-LAR-
RP and the HEVC coding method.

Figure 9.15: Subjective DMOS over bit-rate - Balloons.

Figures 9.16, 9.17 plot the DMOS scores for Book Arrival and Newspaper (the plots
for the other sequences are not presented since the results were similar). In these two
figures (9.16, 9.17), the Z-LAR-RP coding method also obtains good results in terms of
subjective visual quality, at very low bit-rate. These results strengthen the idea that a
depth map coding strategy inducing depth fading at low bit rate can enhance the subjective
visual quality of the synthesized views. Concerning the performances of the compression
methods, they seem to vary according to the video content. This is in accordance with
the previous comment regarding the impact of the depth estimation accuracy and of the
coding strategy on the visual quality of the synthesized views.

3D-HTM includes VSO which modifies the bit-rate distortion trade-off for encoding
side depth maps, considering the impact on a synthesized view. The latter is located on
the middle view point between the reference view and the current side view. However,
FVV requires to synthesize many in-between views with decoded depth optimized for a
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Figure 9.16: Subjective DMOS over bit-rate - Book Arrival.

unique view point. This may explain the low performance on Figures 9.16 and 9.17. HEVC
outperforms H.264 for all the contents except in the case of Newspaper, considering the
same range of bit-rate. Similarly, Z-LAR-RP is always rated with the best quality for the
considered bit-rate range, except for the cases of Book Arrival and Newspaper. These
examples suggest that a given compression strategy leads to a typical type of distortion
that is not perceived or equally accepted depending on the video content. To validate
this assumption, an important study on the influence of video contents on compression
methods performances is required. We also assume the existence of an impact of MVD
sequences features on compression performances.
Finally, an important comment regards the plotted performances of Z-LAR. Except for the
cases of Book Arrival and Newspaper, as previously mentioned, Z-LAR-RP is always rated
with the best subjective quality scores. It should be recalled that this compression method
relies on a specific strategy which consists in modifying the depth structure of the scene for
saving bit-rate. In other words, the lower the bit-rate, the lower the amount of depth in the
represented scene. Indeed, in this experiment, the lowest bit-rate corresponds to an almost
uniform depth map. And yet, using uniform depth maps for synthesizing new frames
amounts to projecting all the reference-colored pixels into the same depth plane. This
reduces the errors generally occurring around strong depth discontinuities. Consequently,
parallax is significantly reduced in the considered FVV sequences synthesized from these
low rate Z-LAR-RP encoded depth maps. For the same reason (uniform depth map),
the views rendered from low-bit-rate-Z-LAR-RP encoded depth maps are slightly shifted
from the targeted virtual viewpoint, as previously observed in Fig. 9.7, 9.8, 9.9, 9.10, 9.11
and 9.12. As a matter of fact, since Z-LAR-RP tends to shift the scene because of the
uniform depth maps, the usual full reference quality metrics penalize the method.Yet, the
observers rated the subsequent Z-LAR-RP-sequences with the best scores. The observers
may have preferred Z-LAR-RP distortions, that is to say, the lack of parallax, over the
compression errors that generally appear around object edges as ringing or “crumbling”
artifacts. However, the observers have rated one factor of the 3D QoE: image quality.

9.5 Conclusion

In this chapter, we presented a novel approach for depth coding, relying on LAR method.
It takes benefit from a pyramidal profile and allows the encoding of multi-resolution depth
maps. The enhancement of low resolution depth maps is performed through the help of a
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Figure 9.17: Subjective DMOS over bit-rate - Newspaper.

region segmentation map obtained from the quad-tree only and improved by the decoded
color information. The rate control strategy and the quantization consist in spatially
quantizing the depth: the actual depth structure of the scene is modified when the bit-rate
decreases, by increasing the homogeneity threshold of the quad-tree partition. The depth
map tends to be uniform at very low bit-rates (until 0.003bpp). Altough state-of-the-art
coding methods ouperform this novel approach, according to the objective measurements,
psycho-visual tests proved that the strategy of Z-LAR-RP enhances the visual quality of
the synthesized views, in a FVV context of use. The visual performances achieved thanks
to the quantization strategy of Z-LAR-RP show that it may be preferable to transmit less
depth depth values than erroneous depth data. The results show that such a depth fading
strategy can improve the visual image quality.
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Based on the results of the previous parts and on the literature, we investigated
the relationship between texture and depth data. Indeed, when designing a novel coding
framework for MVD data, the question of bit rate allocation between the two types of data
often raises. This part addresses the analyses we ran in order to study this issue presented
in two chapters.
Chapter 10 first investigates bit rate allocation when using H.264/MVC coding method
and when relying on PSNR of synthesized frames as a distortion criterion. Then, HEVC
coding method is considered using the same experimental protocol. Finally, in Chapter
11, further analyses on sequences’ features are proposed in order to explain the variability
of the budget allocated to depth according to the sequence.
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CHAPTER 10

Bit rate allocation in Multi-view Video Coding

The previous chapters showed that the synthesized views can be distorted by different pro-
cesses, in particular by the synthesis process and the compression step. Since the quality
of the synthesized views is dependent on the accuracy of both texture and depth data, the
issue of bit rate allocation between these two types of data must be addressed when de-
signing an MVD coding framework. This chapter questions the bit rate allocation between
texture and depth data for encoding MVD data sequences. This question has not been
solved yet because not all surveys reckon on a shared framework. The study presented
in this chapter includes the compression of MVD data sequences with H.264/MVC and
HEVC in intra mode at different bit-rates in order to determine the best bit rate distribu-
tion between depth and texture, when based on PSNR measures of the synthesized view.
The chapter is organized as follows: Sec. 10.1 presents the reasons that motivated our
study on bit-rate allocation in MVD coding context. Sec. 10.2 details the experimental
protocol of the study. Sec. 10.3 discusses the results of the study when using H.264/MVC
as a MVD coding framework. Sec. 10.4 addresses the results of the study when using
HEVC as a MVD coding framework. Finally Sec. 10.5 concludes the chapter.

10.1 Motivations

Since texture and depth information are required for view synthesis in both FTV and 3D-
TV, an efficient coding framework should ensure the preservation of essential data. Indeed,
previous studies ([MSMW07a],[VYS08]) have shown that coding artifacts on depth data
can dramatically influence the quality of the synthesized view. This has been discussed
previously in Chapter 5 Chapter 8 and Chapter 9. Depth maps are not natural images.
Most of state-of-the-art codecs used for depth maps are based on 2D video codecs that
are optimized for human visual perception of color images. Yet, a straightforward idea
suggests that being a monochrome signal, depth maps require low bit-rate compared to
texture data. Actually, because of its capital role in the view synthesis processing, com-
pression artifact of such data may lead to fatal synthesis errors when generating virtual
views. Consequently, a simple but essential question refers to the bit allocation ratio be-
tween texture and depth. This rate ratio depends on the targeted application.

Here, we address this question by measuring the Peak Signal to Noise Ratio (PSNR)
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scores of intermediate views which need to be generated in contexts of 3D-TV (for ren-
dering on autostereoscopic displays) or of FTV for rendering view points different from
those captured by the cameras. In most of the studies, the use of this objective metric
is justified by its simplicity and mathematical easiness to deal with such purposes. We
investigate the bit-rate allocation issue when based on such a metric.

The appropriate rate ratio that should be used is not clearly stated in the literature:
most of the studies do not rely on the same framework. Fehn et al. [Feh04] show that
being a gray-scale signal, the depth video can be compressed more efficiently than the
texture video and recommend using less than 20% of the texture bit-rate for video-plus-
depth data format. This recommendation is based on the fact that “the per-pixel depth
information doesn’t contain a lot of high frequency components”[Feh04]. In [LHM+09], the
authors proposed an efficient joint texture/depth rate allocation method based on a view
synthesis model distortion, for the compression of MVD data. According the the band-
width constraints, the method delivers the best quantization parameters combination for
depth/texture sets that maximizes the rendering quality of a synthesized view in terms of
MSE. The proposed model finds optimal ratio between depth bit-rate and texture bit-rate
in this paper. However, the optimization depends on the target virtual viewpoint.

Our experiments tried to quantify the appropriate rate ratio between depth and texture
data, and then analyze the relationship with the encoded sequence. This study led to the
publication of one national [BJM+10] and one international [BJP+11] conference papers
in collaboration with INRIA laboratory, in Rennes.

10.2 Protocol

We aim at evaluating the required ratio between depth and texture data relying on the
quality of a reconstructed view, in terms of PSNR. In a first case study, H.264/MVC
reference software, JMVM 8.0 (Joint Multiview Video Model) is used to encode three
views, as a realistic simulation of a 3D-TV use. In a second case study, HEVC 6.1 is used
to encode the left and right views. The choice for these methods in this experiment is
motivated by the fact that they are reference methods which are usually used as anchor in
standardization process. To vary the bit-rate ratio and the total bit-rate, the quantization
parameter QP varies from 20 to 44 for both depth and texture coding. The central
view predicts the two other views. Then, from the decompressed views, we computed
the intermediate view between the central view and the right one, by using the reference
software: VSRS, version 3.5, provided by MPEG.

Figure 10.1 illustrates the described protocol. In this figure, “MVC codec” thus refers
to either H.264/MVC or HEVC 6.1 depending on the case study. We used two different
types of sequences to answer our question: Ballet from Microsoft Research, and Book
Arrival from Fraunhoffer HHI (1024 × 768). This last sequence is a 3DV test material in
MPEG. It was acquired through cameras arranged equidistantly along a straight line with
a rectified configuration (no gap in-between the cameras and the interaxial distance is 65
mm). On the other hand, Ballet was acquired with converging cameras. The considered
views are 2, 4 and 6 for Ballet, and 6, 8 and 10 for Book Arrival. Viewpoint 3 is generated
from decoded viewpoints 2 and 4 in the case of Ballet. Viewpoint 9 is generated from
decoded viewpoints 8 and 10 in the case of Ballet. For each couple (QPtexture, QPdepth),
the average PSNR score of the synthesized sequence is evaluated, compared to the original
acquired view.
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Texture sequences Depth sequences

Left view Central view Right view

MVC codec

VSRS

Intermediate
 Synthesized view

QP[20-44]

Left view Central view Right view

Left view Central view Right view

MVC codec QP[20-44]

Left view Central view Right view

Figure 10.1: Experimental protocol.

10.3 Bit-rate allocation with H.264/MVC

Figure 10.2 presents the results. Total bit-rate (color+depth) is indicated by colored
points. Points with same color belong to same bit-rate range interval. The average PSNR
of the synthesized sequence are plotted over the bit-rate percentage assigned to depth.
The different curves correspond to interpolation of the measured points for each range
of bit-rate. We observe that for a given sequence, no matter the bit-rate, the ratio that
provides the best quality is the same: it seems to be around 60% for Ballet, and around
40% for Book Arrival. This suggests that the required depth information that enables a
good reconstruction quality (in terms of PSNR) depends on the content. More precisely,
we assume that this percentage depends on the acquisition configuration of the sequence,
i.e. the camera baseline. The synthesized sequence from Book Arrival may require less
elements of depth for the reconstruction because of the linear configuration of the three
used cameras. On the contrary, the synthesized sequence from Ballet, seems to require an
important amount of depth information to ensure a good quality of reconstruction. Cor-
rect reconstruction around disoccluded areas may require more reliable depth information
depending on the reference camera position. These results are consistent with [LHM+09]:
although the authors do not state clearly the appropriate ratio for those two sequences,
their rate/distortion curves show that, for example, the bit-rate pair (962kbps for texture,
647kbps for depth), i.e. a percentage of 40% for depth, gives better synthesis quality (in
terms of PSNR) for Book Arrival. The synthesis conditions are similar to our experiments.
On the other hand, in [Feh04], the synthesis conditions involves one single video-plus-depth
data: in this case, a very little continuum is supported around the available original view.
Since synthesis distortion increases with the distance of the virtual viewpoint, this explains
the significant difference with our results.

Figure 10.3 shows particular areas of the synthesized views from the presented experi-
ment. Figures 10.3(a), 10.3(d) and 10.3(g) show that allocating less than 10% of the total
bit-rate to depth data induces important damages along the edges. The location of the
depth map discontinuities is deeply compromised which leads to errors in the synthesized
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(a) PSNR (dB) of synthesized views as a function of rate allocated to depth in
percentage of total rate for Ballet

(b) PSNR (dB) of synthesized views as a function of rate allocated to depth in
percentage of total rate for Book Arrival

Figure 10.2: Interpolated rate-distortion curves of synthesized views.

view. PSNR scores fall down because of the numerous errors along the contours of ob-
jects. Figures 10.3(c), 10.3(f) and 10.3(i) suggest that assigning more than 80% of the
total bit-rate to depth data preserves the edges of some objects but texture information
is lost because of the coarse quantization. Assigning between 40% and 60% of the total
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bit-rate to depth data seems to be a good trade-off for the tested sequences, as it can
be observed in Figure 10.3(b), 10.3(e) and 10.3(h). PSNR scores and visual quality are
both improved compared with the two other presented cases. The depth maps are ac-
curate enough to ensure correct projections and decompressed texture images are good
enough to avoid drastic artifacts. The obtained results showed that the best quality of
reconstruction by using VSRS may require to assign between 40% and 60% of the to-
tal bit-rate to depth data, depending on the available MVD data. The inflection points
of the curves obtained in Fig. 10.2 give the percentage of bit-rate allocated to depth
data leading to the maximum PSNR. In average, the percentage of bit-rate allocated to
depth data leading to the maximum PSNR is 60.5% for Ballet and 36.1% for Book Arrival.

Those observations are related to H.264/MVC encoding. Using a different encoding
framework may lead to a different ratio for depth. The following section proposes a study
regarding this issue and will use HEVC coding method instead of H.264/MVC.
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(a) PSNR = 30.0dB; Depth =
3% of bit-rate;

(b) PSNR = 33.8dB; Depth =
60% of bit-rate;

(c) PSNR = 30.8dB; Depth =
95% of bit-rate;

(d) PSNR = 36.96dB; Depth =
6% of bit-rate;

(e) PSNR = 39.38dB; Depth =
38% of bit-rate;

(f) PSNR = 34.17dB; Depth =
88% of bit-rate;

(g) PSNR = 36.96dB; Depth =
6% of bit-rate;

(h) PSNR = 39.38dB; Depth =
38% of bit-rate;

(i) PSNR = 34.17dB; Depth =
88% of bit-rate;

Figure 10.3: Synthesized images from MVD data, with different bit-rate ratios between texture
and depth.
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10.4 Bit-rate allocation with HEVC

In the previous section, the obtained results showed that the best quality of reconstruc-
tion by using VSRS may require to assign between 40% and 60% of the total bit-rate
to depth data. Those observations are related to H.264/MVC encoding. In this section,
we investigate the bit-rate trade-off using a different coding method: HEVC in intra mode.

Fig. 10.4 depicts the obtained PSNR curves as a function of the rate allocated to depth
in percentage for Ballet and Book Arrival. In average, the percentage of bit-rate allocated
to depth data leading to the maximum PSNR is 27.5% for Ballet and 12.2% for Book
Arrival. Those results are related to HEVC encoding. The obtained ratios are different
from those obtained from H.264/MVC encoding, presented in the previous section. These
experiments prove that the ratio of bit-rate allocated to depth data in MVD is dependent
on the coding strategy.

Fig. 10.5 gives selected snapshots of the resulting synthesized views. This figure can be
compared to Fig. 10.3 from the previous experiment. For similar ratios, the visual quality
of the synthesized views is different depending on the used encoding method. When 10%
of the total bit-rate were not sufficient to render the virtual view of Book Arrival properly,
when using H.264/MVC. However, it seems to be the best compromise when using HEVC.
Fig. 10.5(a), 10.5(b) and 10.5(c) prove that the best compromise, in terms of visual quality
lies between 3% and 60%. Fig. 10.5 confirms the objective results in Fig. 10.4.
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(a) PSNR (dB) of synthesized views as a function of rate allocated to depth in percentage of total rate for
Ballet

(b) PSNR (dB) of synthesized views as a function of rate allocated to depth in percentage of total rate for Book
Arrival

Figure 10.4: Interpolated rate-distortion curves of synthesized views.
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(a) PSNR = 36.22dB; Depth =
3% of bit-rate;

(b) PSNR = 37.36dB; Depth =
60% of bit-rate;

(c) PSNR = 36.3dB; Depth =
89% of bit-rate;

(d) PSNR = 38.99dB; Depth =
6% of bit-rate;

(e) PSNR = 38.02dB; Depth =
38% of bit-rate;

(f) PSNR = 35.63dB; Depth =
88% of bit-rate;

(g) PSNR = 38.99dB; Depth =
6% of bit-rate;

(h) PSNR = 38.02dB; Depth =
38% of bit-rate;

(i) PSNR = 35.63dB; Depth =
88% of bit-rate;

Figure 10.5: Synthesized images from MVD data, with different bit-rate ratios between texture
and depth.
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10.5 Conclusion

This chapter presented two studies which aimed at determining the appropriate ratio for
joint depth/texture compression, in the MVD framework. The experiments consisted in
encoding both texture and depth data by the same compression scheme, varying the ratio
between texture and depth information and analyzing the quality of the rendered virtual
view.The two experiments aimed at determining the appropriate ratio for joint depth/tex-
ture compression, using the H.264/MVC coder in the first case of use, and HEVC in the
second case of use. The attributed depth ratio was varied from 2% to nearly 95% and the
synthesis of an intermediate view was performed.
A relevant remark regards the observation that for a given sequence (or content) the op-
timal depth/texture ratio is the same for any total bit-rate; however, the optimal ratio is
different depending on the sequence.
The obtained results showed that the best quality of reconstruction by using VSRS require
different depth/texture ratios depending both on the content and on the encoding method.

In the next chapter, we propose an analysis of the MVD data and related parameters
such as video contents and camera settings to investigate their influence on the best trade-
off for the bit-rate allocation between texture and depth data. This next study is meant
to help in the conception of tools for automatic bit-rate allocation between texture and
depth data.
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CHAPTER 11

Impact of features of sequences and bit-rate allocation

The determination of relationships between texture and depth data is useful for the con-
ception of bit-rate allocation strategies, in the context of MVD coding. Based on the
previous results, an analysis of different sequence features is proposed to highlight corre-
lations with the best bit-rate allocation. This chapter addresses this question.
Sec. 11.1 reminds the experimental protocol and presents the additional data used for the
study of this chapter. Three different aspects are investigated: the entropy of texture and
depth data in Sec. 11.2, the discovered areas in the synthesized view in Sec. 11.3 and the
color contrast around depth transitions in Sec. 11.4.

11.1 Overview

In this chapter, based on the previous results, we aim at investigating the relationships
between texture and depth data. In particular, we assume that the video content, the
complexity of depth and the camera settings are related to the bit allocation between
depth and texture. The following experiments are in line with this concern.

In total, 11 sequences were included in these tests. For each sequence, we encoded
different frames. Then we generated the virtual viewpoints with various baseline distances
between the reference viewpoints. Table 11.1 gives the summary of the used material.
Table 11.2 summarizes the tested sequences features. The encodings follow the same
protocol as described in Chapter 10.2: left and right views (textures and depth maps)
are encoded through MVC reference software (JMVM 8.0). Based on the same protocol,
the optimal ratio between depth and texture are calculated, with PSNR of the central
synthesized viewpoint as an indicator of distortion. Table 11.3 summarizes these results.
This table confirms the assumptions raised by the previous experiments since the ratios
vary from 16% to 52%: there is a relationship between the content and the required
ratio. So the axes to be investigated are the features which differ from one content to
another: accuracy of depth map, complexity of depth structure, baseline distance between
the reference cameras, features of discovered areas. These aspects are addressed by three
analyses in the following: depth maps entropy, baseline distance between the reference
cameras, high contrast between background and foreground around the discovered areas.
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Sequence Name Frame no. Left and Right views Central view

Ballet
1 0-2 1

100 0-2 1

Balloons

1
1-3 2
1-5 3
3-5 4

10 1-5 3
50 1-5 3

300
1-3 2
1-5 3
3-5 4

Book Arrival
1 8-10 9
99 8-10 9

Breakdancers
1

0-2 1

0-4
1
2
3

0-6
1
3
5

0-7
1
4

1-4 3
2-6 4
4-6 5
4-7 6

100 0-2 1

Cafe
1 2-4 3

300 2-4 3

Champagne
1 37-41 39

300 37-41 39

Kendo 1

1-3 2

1-5
2
3
4

3-5 4
300 3-5 4

Pantomime
1 37-41 39

500 37-41 39

Mobile

1
3-5 4
3-7 5
3-7 6

100
3-5 4
3-7 5
3-7 6

200
3-5 4
3-7 5
3-7 6

Lovebird 1 4-8 6

Newspaper

1

2-4 3

2-6
3
4
5

4-6 5
2

2-6 4
10
50
300

Table 11.1: Test material.
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Sequence
Name

Characteristics Depth struc-
ture com-
plexity

Camera spacing

Ballet natural scene, high detail high varying, toed-in configuration
Balloons natural scene, moving cameras, high detail high stereo distance, parallel configuration
Book Arrival natural scene, high detail high stereo distance, parallel configuration
Breakdancers natural scene, high detail high varying, toed-in configuration
Cafe natural scene, medium detail medium stereo distance, parallel configuration
Champagne natural scene, high detail medium stereo distance, parallel configuration
Kendo natural scene, moving cameras, high detail high stereo distance, parallel configuration
Lovebirds1 natural scene, natural light, high detail medium stereo distance, parallel configuration
Mobile animation, high detail simple stereo distance, parallel configuration
Newspaper natural scene, high detail medium stereo distance, parallel configuration
Pantomime natural scene, medium detail high stereo distance, parallel configuration

Table 11.2: Features of the tested sequences.

Sequence Name Ratio Depth/Texture in %
Ballet 51.6

Balloons 28.21
Book Arrival 31.97
Breakdancers 46.27

Cafe 38.38
Champagne 52.11

Kendo 27.6
Lovebirds 23.58

Mobile 16.57
Newspaper 30.97
Pantomime 19.48

Table 11.3: Ratio between texture and depth information allowing the minimal distortion in terms
of PSNR.

11.2 Depth maps entropy and texture images entropy

We assume that the ratio that rules the optimal synthesized views in terms of PSNR,
is related to the amount of information contained in the original data. In other words,
the entropy of depth against the entropy of texture is expected to influence the optimal
allocation between depth and texture. Let ed be the average entropy of the encoded depth
maps, for a given content. Let et be the average entropy of the encoded texture frames,
for the same content. For each tested content, we computed the following ratio:

Re =
ed

ed + et
(11.1)

Fig. 11.1 plots the computed mean Re of per sequence against the “optimal” percent-
age of bit-rate allocated to depth data according to our previous experimental protocol.
There is relationship between Re and the “optimal” percentage of bit-rate allocated to
depth data. The correlation coefficient between Re and the “optimal” percentage of bit-
rate allocated to depth data reached 76.95%. These results are understandable because a
high entropy value for the depth implies a highly detailed depth structure. If the level of
details of depth is higher than that of the texture, the synthesis quality mostly relies on
the accuracy of the depth map.
In conclusion, these results suggest that a preliminary analysis of texture and depth en-
tropies can be used as an indicator for automatic bit-rate allocation between these two
types of data.
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Figure 11.1: Ratio of entropy between texture and depth data against optimal percentage of bit-rate
allocated to depth data according to our previous experimental protocol, in terms of PSNR

11.3 Baseline distance between cameras and discovered ar-
eas

We assume that there is a relationship between the structure of the scene depth and the
“optimal” percentage of bit-rate allocated to depth data in MVC. According to the depth
structure complexity and the baseline distance between the reference cameras, discovered
areas in the novel virtual viewpoints are relatively large and difficult to fill-in by the
synthesis process. Since the discovered areas are filled in with in-painting methods whose
texture estimation quality differs according the used strategy, these areas are prone to
perceptible synthesis errors. We aim at evaluating the influence of the discovered areas on
the “optimal” percentage of bit-rate allocated to depth data. Let Vr and Vl be the original
right and left view, respectively and Dr and Dl be the original right and left depth maps
respectively. Let Vr→v the projection of Vr into the target virtual viewpoint, and Vl→v the
projection of Vl into the target virtual viewpoint. Vr→v and Vl→v contain undetermined
areas that correspond to the discovered areas. Vr→v and Vl→v are used to create logical
masks Mr→v and Ml→v defined as:

Mr→v(x, y) =

{
0 , if Vr→v(x, y) is determined
1 , if Vr→v(x, y) is not determined

(11.2)

Ml→v(x, y) =

{
0 , if Vl→v(x, y) is determined
1 , if Vl→v(x, y) is not determined

(11.3)

Then we consider the importance I of the discovered areas according to its depth by
applying the masks on the respective depth maps as follows:

I =
1

2×M ×N

N∑
x=1

M∑
y=1

(
Dr(x, y)×Mr→v(x, y) +Dl(x, y)×Ml→v(x, y)

)
(11.4)

whereN andM are the width and height of the original image. The score I is computed
for each piece of the tested material. In each case, the target virtual point is as indicated in
Table 11.1. The results are plotted in Fig. 11.2. This figure shows a linear relation between



High contrast background/foreground areas 155

the computed importance score I and the “optimal” percentage of bit-rate allocated to
depth data. Although the results suggest a relationship between the discovered areas and
the “optimal ratio”, the virtual viewpoint is not always known at the encoder side. This
limits the use of such an indicator for automatic bit-rate control strategies.

Figure 11.2: Importance of discovered area against optimal percentage of bit-rate allocated to
depth data according to our previous experimental protocol, in terms of PSNR

11.4 High contrast background/foreground areas

We assume that errors occurring after the synthesis process are not only more noticeable
when the contrast between background objects and foreground objects is high, but also
more penalized by signal-based objective metrics. To investigate this assumption, we
consider the strong depth discontinuities (highlighted by an edge detection algorithm) and
evaluate the standard deviation of the texture image around these discontinuities. Fig.
11.3 gives an overview of the protocol. This process is applied on right and left views
and the final score is the mean of the two obtained measures. Fig. 11.4 gives the plotted
scores.

Unexpectedly, the results show that the higher the contrast, the less bit-rate allocated
to depth: two main point clouds are distinguishable. The point cloud corresponding to
40-55% of bit-rate allocated to depth belongs to the two toed-in camera configuration
sequences. The second cloud corresponds to the parallel camera configuration sequences.
So, our assumption is that despite the high contrast around objects contours, the camera
configuration (and thus the distance to the virtual view) might reduce the impact of the
synthesis distortions.

11.5 Conclusion

This chapter studied the correlation between MVD sequences particular features and opti-
mal bit-rate ratios between texture and depth data as calculated in the previous chapter.
This study was meant to provide indicators for designing automatic bit-rate allocation
strategies.
The analysis of the MVD data features and related parameters such as video contents and
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Depth map Texture image

Gradient image computation

For each pixel p,
if gradient value Dg(p)> 0

Standard deviation computation
of T(p) neighborhood (5x5 window)

Dg

Average of computed standard deviation scores

D T

Final score

Figure 11.3: Protocol for the study of the correlation of bit-rate with noticeability of errors in
high contrast background/foreground areas.

Figure 11.4: Influence of high contrast background/foreground areas: Average of computed stan-
dard deviation scores around gradient pixels of depth maps against optimal percentage of bit-rate
allocated to depth data according to our previous experimental protocol, in terms of PSNR

camera settings revealed the existence of their impact on the best trade-off for the bit-rate
allocation between texture and depth data. Three different aspects has been investigated
in this chapter:

� the relationship between depth maps and texture images entropy and the optimal
texture/depth bit-rate ratio,

� the relationship between the discovered areas and the optimal texture/depth bit-rate
ratio,

� the relationship between the color contrast around depth transitions and the optimal
texture/depth bit-rate ratio.

The results of this study are encouraging because they revealed a relationship with the op-
timal texture/depth bit-rate ratio and thus the possibility to develop a priori texture/depth
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bit-rate allocation methods based on the tested aspects. They also suggest relation be-
tween bit-rate allocation and camera configuration of the scene.

Despite its limitations concerning the choice of the distortion indicator (PSNR) that is
not perceptually oriented and the media assessment targeting monoscopic viewing, this
study highlighted cues for the conception of a priori bit-rate allocation strategies. The
new bit-rate allocation strategies might consider a weighted combination of the indicators
presented in our study, depending of the used coded.
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CHAPTER 12

Conclusion and perspectives

3D Video applications will prosper if we meet the need for high quality content. This
requirement is dependent on the ability of 3D systems to provide acceptable synthesized
views. DIBR synthesized views are essential for 3D applications such as 3D TV or FTV,
so their perceived quality is expected to be at least acceptable for users.
However, there is no adapted tools for evaluating the synthesized views quality. The as-
sessment of such media is not trivial because it involves many human vision factors that
are not controlled yet nor understood. The quality evaluation of synthesized views is yet
required for the improvement or the performance rating of MVD data compression meth-
ods.
This thesis focused on these issues through the analysis of causes of degradations in synthe-
sized views with a view to proposing new tools for 3D Video applications. In the following,
we will discuss the contributions and the perspectives regarding each of the three main
studied topics: view synthesis related artifacts and the assessment of synthesized views
are first addressed; the design of the perception-oriented depth compression scheme is
then discussed; finally, we discuss the results and the perspectives following our study on
bit-rate allocation between texture and depth data.

Summary of the contributions and perspectives

View synthesis related artifacts and Assessment of synthesized views

Contributions

In this thesis, we investigated the reliability of usual 2D quality assessment methods for
the evaluation of synthesized views. Through various DIBR algorithms, novel viewpoints
were generated. We highlighted the sources of distortions of the synthesized views. Exper-
imental results showed that the tested subjective methodologies require some adaptations
for the assessment of synthesized views, in particular regarding the number of participants.

After studying the assessment methodology of synthesized views, we focused on the related
artifacts. First, our analysis showed that they may occur depending on the synthesis strat-
egy. However, we also found out that the artifacts always occurred at specific locations,
that is to say around the discovered areas unlike usual distortions such as coding related
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artifacts that are scattered over the whole image.

With respect to the measurement of synthesized views with such artifacts, our experi-
ments showed that usual objective metrics fail in rendering higher subjective-correlated
quality scores. Our explanation is that most of the usual objective metrics are optimized
for coding-related artifacts and thus they do not target the evaluation of the visual ren-
dering quality of objects’ edges for example.

We then proposed a new distortion indicator for synthesized frames. The performances
of this tool are encouraging but it still needs improvements to be considered as a quality
metric.

Perspectives

Following these studies, the design of new objective quality assessment metrics need to be
considered. The attempt we proposed for a new objective tool addressing the detection of
inconsistent edges is not sufficient. Our observations led us to the assumption that new
objective tools evaluating DIBR generated views should involve a registration step, since
objects are prone to displacements at the end of the synthesis process. At the moment of
writing this thesis, this aspect is investigated in collaboration with IRCCyN (University
of Nantes) and University of Roma. The new objective quality assessment tool for syn-
thesized views should be thereafter integrated in coding frameworks for Rate/Distortion
optimization strategies and used for evaluating MVD codecs’ performances.

It seems of paramount importance to also investigate and standardize a reliable subjective
quality assessment protocol for the case of 3D media. However, this will require consider-
able task forces. So, in the meantime, it can be considered to investigate the reliability of
recent 3D-adapted proposed subjective quality assessment protocols through batteries of
statistical analyses.

Another challenging effort is that of developing a new subjective quality assessment method-
ology. Both aspects regarding the presence of new types of artifacts in synthesized views
and the new modes brought by simulated stereoscopic viewing conditions should be con-
sidered. In particular, from the preliminary experiments conducted during this thesis
regarding the stereoscopic viewing conditions, it appeared that relying on the perceived
quality of independent views is not sufficient since acceptable artifacts in monoscopic
viewing may be annoying in stereoscopic viewing conditions. As well, a new methodology
should integrate new requirements, at least for the number of participants. Based on the
recent studies recommending the inclusion of new aspects for 3D media assessment, new
protocols for the subjective evaluation of 3D media should be studied.

However, the design of new objective metrics and new subjective quality assessment
methodologies will require further efforts and important task forces. At the moment of
writing this thesis, VQEG is planning activities in order to address these two issues.



163

Design of a perception-oriented depth compression scheme

Contributions

We studied the impact of depth quantization on the quality of rendered virtual views. A
major concern during this thesis was the improvement of the perceived quality of synthe-
sized views. Indeed, based on our previous results, we did not rely on objective metrics
for the evaluations of the coding performances, which were only kept as a rough guide.

We proposed two different coding methods, both relying on LAR codec basics. We opted
for LAR perception-oriented technique that was basically designed for the compression
of still images. Its quad-tree representation allowed a reliable description of the depth
structure in the scene. The two extensions we proposed (namely Z-LAR and Z-LAR-RP)
only differ at the decoding stage. They both rely on spatial subsampling of the depth map
for rate control strategy, by changing the quad-tree representation according to the target
bit-rate, instead of quantizing depth values. This is original because at very low bit-rate,
the reconstructed depth map is uniform. This method gives priority to the objects’ edges
quality at the expense of depth feeling: the depth map tends to be uniform while rate
decreases. This choice was selected in order to avoid coarse quantization of depth val-
ues around the objects’ edges, which is known to save bit-rate but increases the artifacts
around the rendered objects’ edges. At the decoding stage, the first proposed method
simply uses neighboring depth information for the prediction of smallest blocks. This pre-
diction is then enhanced through a multi-lateral filter involving the contribution of the
corresponding decoded texture image, for preserving the consistency between depth and
texture information. The second proposed approach uses a region segmentation method
to take benefit from the scalability of the encoding method. In particular, since the re-
gion segmentation only requires the decoded quad-tree partition and the corresponding
decoded texture view, each level of the pyramidal profile is enhanced based on the knowl-
edge of blocks’ belonging to a region. With these two methods, objects may be shifted
but no “crumbling” distortions are introduced. As expected the objective metrics rated
the proposed schemes as worse than state-of-the-art codecs. This was predictable because
our methods change the scene depth structure, because of the evolving quad-tree parti-
tion, and because of the averaging of the quad-tree’s blocks. However, both the proposed
compression schemes showed improvements in terms of visual quality when compared to
state-of-the-art codecs such as H.264/AVC and HEVC in intra mode (from our observa-
tions).

Perspectives

The exploitation of temporal and inter-view redundancies still needs to be integrated in
the proposed LAR extensions. At the moment of writing this thesis, the two proposed
depth map compression schemes did not include the exploitation of temporal neither inter
view redundancies. They only target still image compression of MVD data. Our first
observations also highlighted the importance of depth inter-view coherence when using
interpolation-based synthesis algorithms. This suggests to ensure that adjacent decoded
depth maps are coherent. These aspects have be treated to enhance the quality of the
synthesized video sequences.

As well, another aspect to consider shortly is the evaluation of MVD codec’s performances.
At the moment of writing this thesis, in the framework of PERSEE project, we are setting
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experiments up to evaluate MVD codecs’ performances (including Z-LAR-RP’s). Based on
our preliminary observations, it appears that coding methods that include optimizations
based on the quality of the synthesized frames are favored if the coding method includes
optimization tools based on the same synthesis algorithm as that used for the final evalu-
ation of codecs. An interesting study would be that of investigating the performances of
different coding methods coupled with various synthesis strategies in order to validate our
assumptions.

Considering the preliminary observations of MVD codec’s performances, the future work
for the conception of MVD coding methods should consider the coding/decoding step and
the virtual view generation step as closely dependent steps. In particular, the knowledge
and the perfect control of the artifacts induced by the encoding method may help for
the choice of a synthesis process enabling the best synthesized view perceived quality.
This very concern could be presented to MPEG that currently assesses and ranks MVD
codecs’ performances based on the quality of views synthesized with VSRS, the MPEG
view synthesis reference software.

Bit-rate allocation between texture and depth data

Contributions

When designing a novel coding framework for MVD data, the question of bit rate allo-
cation between the two types of data often raises. We thus studied the issue of bit-rate
allocation between texture and depth data. Our experiments included the compression
of texture views and depth maps at various bit-rates. We combined each texture target
bit-rate with each depth map target bit-rate to analyze the relationship between the ratio
texture/depth and the objective quality score of synthesized views. Our first study relies
on the use of H.264/MVC method. Our second study relies on the use of HEVC. Our
results showed that the optimal ratio between depth and texture may differ depending on
the encoding method and on the sequence features. An noticeable observation from this
study is the following: for a given sequence, the optimal ratio between texture and depth
data remains the same for any total target bit-rate, which suggests a relationship between
the ratio and the sequence features.

For this reason, a third experiment addressed the role of the sequence features in this
ratio, in order to provide cues for a method for a priori setting the ratio without the
need for on-line Rate/Distortion optimization. Although the studies investigated several
sequences’ features that may influence the required ratio between texture and depth in-
formation, for allowing the less distortions on the synthesized views, they do not included
experiments in the temporal domain. Yet, the amount of movement in the scene, and the
depth of the moving objects might have an impact that has not been studied in this work.

Perspectives

New strategies need to be developed including the aspects discussed in this thesis to im-
prove the perceived quality of the synthesized views. Besides, for this very reason, this
study should be extended by using more perceptual oriented assessment tools, to increase
the robustness of sub-consequent designed a priori bit-rate allocation methods. An inter-
esting aspect that can be explored easily is the appropriateness of the proposed sequence
features with respect to subjective quality instead of PSNR (as proposed in this thesis).
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Based on this contribution, new coding tools evaluating the sequence features in order
to optimize the bit-allocation can be developed shortly.

As for a conclusion, 3D Video involves many challenging issues. This thesis tackled
some of them and numerous open questions remain. Important task forces still have to be
mobilized in order to improve 3D Video technologies. This thesis meant to highlight the
fact that there is a serious need for tools addressing the perceived quality of 3D media and
that the success of 3D Video technologies will highly depend on the availability of such
tools.
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APPENDIX A

Test MVD sequences

This annex lists the MVD sequences used in the tests of this thesis. This is also one
opportunity to thanks all the sequences providers (Microsoft Research, Nagoya University,
HHI, GIST, Nokia, ETRI/MPEG Korea Forum).

Ballet

Ballet is a natural scene acquired in a toed-in camera configuration and provided by Mi-
crosoft Research. Eight sequences of 100 images are provided together with their associated
depth sequences. Each sequence corresponds to a different viewpoint. Depth maps are
computed from stereo vision algorithm. The resolution is 1024×768 pixels and the frame
rate is 15 frames per second.

(a) Texture view - Camera 0 (b) Depth view - Camera 0

Figure A.1: Ballet sequence.

Balloons

Balloons is a natural scene acquired in a parallel camera configuration and provided by
Nagoya University. Seven sequences of 300 images are provided together with their asso-
ciated depth sequences. Each sequence corresponds to a different viewpoint. Acquiring
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cameras are 5 cm spaced. The resolution is 1024×768 pixels and the frame rate is 30
frames per second.

(a) Texture view - Camera 1 (b) Depth view - Camera 1

Figure A.2: Balloons sequence.

Breakdancers

Breakdancers is a natural scene acquired in a toed-in camera configuration and provided
by Microsoft Research. Eight sequences of 100 images are provided together with their
associated depth sequences. Each sequence corresponds to a different viewpoint. Depth
maps are computed from stereo vision algorithm. The resolution is 1024 × 768 pixels and
the frame rate is 15 frames per second.

(a) Texture view - Camera 0 (b) Depth view - Camera 0

Figure A.3: Breakdancers sequence.

Book Arrival

Book Arrival is a natural scene acquired in a parallel camera configuration and provided
by HHI. Sixteen sequences of 300 images are provided together with their associated depth
sequences. Each sequence corresponds to a different viewpoint. Acquiring cameras are 6.5
cm spaced. The resolution is 1024×768 pixels and the frame rate is 16.67 frames per
second.



171

(a) Texture view - Camera 8 (b) Depth view - Camera 8

Figure A.4: Book Arrival sequence.

Cafe

Cafe is a natural scene acquired in a parallel camera configuration and provided by GIST.
Five sequences of 200 images are provided together with their associated depth sequences.
Each sequence corresponds to a different viewpoint. Acquiring cameras are 6.5 cm spaced.
The resolution is 1920×1080 pixels and the frame rate is 30 frames per second.

(a) Texture view - Camera 1 (b) Depth view - Camera 1

Figure A.5: Cafe sequence.

Champagne

Champagne is a natural scene acquired in a parallel camera configuration and provided
by Nagoya University. Eighty sequences of 300 images are provided together with their
associated depth sequences. Each sequence corresponds to a different viewpoint. Acquiring
cameras are 5 cm spaced. The resolution is 1280×960 pixels and the frame rate is 30 frames
per second.
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(a) Texture view - Camera 1 (b) Depth view - Camera 1

Figure A.6: Champagne sequence.

Undo dancer

Undo dancer is a synthetic scene computer generated in a parallel camera configuration
and provided by Nokia. Nine sequences of 250 images are provided together with their
associated ground truth depth sequences. Each sequence corresponds to a different view-
point. The resolution is 1920×1088 pixels and the frame rate is 25 frames per second.

(a) Texture view - Camera 1 (b) Depth view - Camera 1

Figure A.7: Undo Dancer sequence.

GT Fly

GT Fly is a synthetic scene computer generated in a parallel camera configuration and
provided by Nokia. Nine sequences of 250 images are provided together with their associ-
ated ground truth depth sequences. Each sequence corresponds to a different viewpoint.
The resolution is 1920×1088 pixels and the frame rate is 25 frames per second.
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(a) Texture view - Camera 1 (b) Depth view - Camera 1

Figure A.8: GT Fly sequence.

Kendo

Kendo is a natural scene acquired in a parallel camera configuration and provided by
Nagoya University. Seven sequences of 300 images are provided together with their asso-
ciated depth sequences. Each sequence corresponds to a different viewpoint. Acquiring
cameras are 5 cm spaced. The resolution is 1024×768 pixels and the frame rate is 30
frames per second.

(a) Texture view - Camera 1 (b) Depth view - Camera 1

Figure A.9: Kendo sequence.

Lovebirds

Lovebirds is a natural scene acquired in a parallel camera configuration and provided by
ETRI/MPEG Korea Forum. Twelve sequences of 300 images are provided together with
their associated depth sequences. Each sequence corresponds to a different viewpoint.
Acquiring cameras are 3.5 cm spaced. The resolution is 1024×768 pixels and the frame
rate is 30 frames per second.
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(a) Texture view - Camera 4 (b) Depth view - Camera 4

Figure A.10: Lovebird sequence.

Mobile

Mobile is a synthetic scene acquired in a parallel camera configuration and provided by
Philips. Three sequences of 200 images are provided together with their associated ground
truth depth sequences. Each sequence corresponds to a different viewpoint. Acquiring
cameras are 5 cm spaced. The resolution is 720×540 pixels and the frame rate is 25
frames per second.

(a) Texture view - Camera 1 (b) Depth view - Camera 1

Figure A.11: Mobile sequence.

Newspaper

Newspaper is a natural scene acquired in a parallel camera configuration and provided by
GIST. Nine sequences of 300 images are provided together with their associated depth
sequences. Each sequence corresponds to a different viewpoint. Acquiring cameras are 5
cm spaced. The resolution is 1024×768 pixels and the frame rate is 30 frames per second.
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(a) Texture view - Camera 2 (b) Depth view - Camera 2

Figure A.12: Newspaper sequence.

Pantomime

Pantomime is a natural scene acquired in a parallel camera configuration and provided
by Nagoya University. Eighty sequences of 300 images are provided together with their
associated depth sequences. Each sequence corresponds to a different viewpoint. Acquiring
cameras are 5 cm spaced. The resolution is 1280×960 pixels and the frame rate is 30 frames
per second.

(a) Texture view - Camera 37 (b) Depth view - Camera 37

Figure A.13: Pantomime sequence.



176 Test MVD sequences



List of Figures

1.1 Données MVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1.2 Overview of quality metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
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