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Résumé

Résumé
Cette thèse porte sur l’étude des cocycles quasi-périodiques à valeurs dans des groupes

de Lie compacts semi-simples. Nous nous restreindrons au cas des cocycles à une fréquence.
Nous démontrons que, pour un ensemble de mesure de Lebesgue pleine de fréquences,
l’ensemble des cocycles C∞ qui sont C∞-réductibles sont C∞-denses. Le premier pas sera
l’obtention de deux invariants de la dynamique, qu’on appellera énergie et degré, qui dis-
tinguent en particulier les cocycles réductibles des cocycles non-réductibles. On entamera
ensuite la démonstration du théorème principal. Nous démontrons dans un second temps
qu’un algorithme dit de renormalisation permet de ramener l’étude de tout cocycle à celle
des perturbations de modèles simples indexés par le degré. Nous analysons ensuite ces
perturbations par des méthodes inspirés de la théorie K.A.M.. En particulier, nous dé-
montrons qu’un cocycle C∞ mesurablement réductible à une constante diophantienne est
alors C∞-réductible.

Mots-clefs

Théorie K.A.M. , Renormalisation , Cocycles Quasi-périodiques , Groupes de Lie Com-
pacts Semi-simples

Global aspects of the reducibility of quasiperiodic cocycles
in semisimple compact Lie groups

Abstract
In this PhD thesis we study quasiperiodic cocycles in semi-simple compact Lie groups.

For the greatest part of our study, we will focus ourselves to one-frequency cocyles. We will
prove that C∞-reducible cocycles are dense in the C∞ topology, for a full measure set of
frequencies. We will firstly define two invariants of the dynamics, which we will call energy
and degree and which give a preliminary distinction between reducible and non-reducible
cocycles. We will then take up the proof of the density theorem. We will show that an
algorithm of renormalization converges to perturbations of simple models, indexed by the
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degree. Finally, we will analyse these perturbations using methods inspired by K.A.M.
theory. In this context we will prove that if a C∞ cocycle is measurably reducible to a
diophantine constant, it is actually C∞-reducible.

Keywords

K.A.M. theory , Renormalization , Quasiperiodic Cocycles , Compact Semisimple Lie
Groups
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Introduction

Cette thèse porte sur l’étude des cocycles quasi-périodiques à valeurs dans des groupes
de Lie compacts semisimples.

Les cocycles forment une grande classe de systèmes dynamiques, dont l’espace des
phases est un espace fibré, X × E → X. Une dynamique fibrée est donnée par l’itération
d’une application du type

(T, f) : X × E → X × E
(x, e) 7→ (Tx, f(x, e))

où T est une application de X dans lui-même, et f : X × E → E. En d’autres termes,
sous l’action du cocycle, la fibre {x} × E est envoyée sur la fibre {Tx} × E avec la règle
e 7→ f(x, e). On notera SW (X,E) l’ensemble de tels systèmes dynamiques. Si E est un
groupe, on appelle cette dynamique fibrée un cocycle sur X × E. Dans ce cas, cas auquel
on va se restreindre pour le reste de cette thèse, on note un cocycle par

(T, f) : X × E → X × E
(x, e) 7→ (Tx, f(x).e)

où f : X → E. On peut également considérer le cas où E est un espace sur lequel agit un
groupe G, et alors définir un cocycle sur X × E comme ci-dessus, mais avec f : X → G.

En général on suppose que (X,µ), la base de la dynamique, est un espace mesuré et
que T est ergodique par rapport à la mesure µ. Un cas particulier dans cette classe est
celui des cocycles quasi-périodiques qui correspond à X = Td = Rd/Zd et T : x 7→ x + α,
une translation minimale (et uniquement ergodique par rapport à la mesure de Haar).
Une classe encore plus générale que celle des cocycles quasi-périodiques, mais dont nous
ne parlerons pas dans cette thèse, est celle des cocycles presque périodiques.

Suivant la structure de E, les fibres, on peut parler de cocycles mesurables ou de classe
Ck, k ∈ N ∪ {∞, ω} (où ω signifie analytique réelle), suivant la régularité de f .

Le n-ième itéré du cocycle (T, f), n ≥ 1, s’écrit comme

(T, f)n.(x, e) = (Tnx, f(Tn−1x) ◦ · · · ◦ f(x).e)

Nous disons que deux cocycles ψi = (T, fi) ∈ SW (X,E), i = 1, 2, sont (semi-)conjugués
s’il existe g : X → E tel que

ψ1 ◦ (id, g) = (id, g) ◦ ψ2

Notons qu’il s’agit d’une notion plus fine que la (semi-)conjugaison dynamique par une
application h : X×E 	 satisfaisant ψ1 ◦h = h◦ψ2, car dans le premier cas la conjugaison
préserve la structure d’espace fibré de X × E.
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L’étude des cocycles apparaît naturellement dans la théorie des systèmes dynamiques.
Par exemple, si ϕ est un difféomorphisme du tore Td, sa différentielle définit de façon
naturelle un cocycle sur TTd ≈ Td × Rd par

(x, y) 7→ (ϕ(x), Dϕ(x).y)

Une autre classe d’exemples, plus proche de notre sujet, est celle des applications de
Poincaré des flots fibrés, et plus particulièrement des flots linéaires. Un tel flot est défini
par le système d’équations différentielles

X ′ = F (θ).X
θ′ = ω = (1, α) ∈ Td+1

où F : Td+1 → g, et g est une algèbre de matrices dans MN (R). L’application de premier
retour est alors un cocycle sur {0 × Td × RN}. Ce cocycle est quasi-périodique si ω est
une translation minimale sur Td+1.

Quand ω est rationnel, on retrouve la théorie de Floquet. Ces flots sont compris grâce
au théorème de Floquet qui montre que les solutions des équations du type

X ′ = U(θ).X (1)
θ′ = k ∈ Qd (2)

sont de la forme X(t) = B(kt + θ0).etU0(θ0).X0 avec B(·) une application 2Zd-périodique
à valeurs dans le groupe de matrices.

Ce théorème de forme normale n’est plus vrai si l’on remplace la dynamique périodique
dans la base par une dynamique quasi-périodique. Cela est dû à l’existence de phénomènes
de petits diviseurs. Le but que l’on se fixe alors est de déterminer à quel point et sous quelles
hypothèses il est possible de récupérer l’existence de solutions de type Floquet, c’est-à-
dire des solutions de la forme X(t) = B(ωt + θ0).etU0(θ0).X0, avec B(·) : DTd+1 → G
éventuellement de période D ≥ 1. Dans cette perspective, il est important de déterminer
de grandes classes de cocycles (au sens métrique et topologique) pour lesquelles une théorie
de type Floquet est disponible.

Une première étape dans ce programme est l’étude du cas où U(·) est proche d’une con-
stante. Cette étude nécessite d’utiliser des techniques à la K.A.M. (Kolmogorov-Arnol’d-
Moser) et est, donc, par nature très sensible à la nature perturbative du problème. Ensuite,
le cas global a été abordé, surtout dans le cas où E = sl(2,R), SL(2,R) ou SU(2). Nous
renvoyons le lecteur au chapitre 2 ainsi qu’à [Eli09] pour une présentation de cette théorie
dans sa forme actuelle.

Dans cette thèse, comme nous l’avons annoncé, nous allons nous restreindre à l’étude
des cocycles à valeurs dans des groupes de Lie compacts semi-simples, c’est-à-dire au cas où
g dans l’éq. (1) est une algèbre de Lie compacte semi-simple. Il s’agit de difféomorphismes
fibrés de l’espace fibré T × G dont la dynamique sur T est donnée par une translation
irrationnelle. Dorénavant, on appellera de tels difféomorphismes simplement cocycles. La
question principale que l’on se pose est celle de la densité des cocycles dont la dynamique
peut être rendue simple par une conjugaison dynamique. Les classes de cocycles de dy-
namique simple sont notamment les cocycles réductibles (c’est-à-dire ceux qui peuvent
être conjugués à des cocycles constants) et les cocycles tore-réductibles (c’est-à-dire ceux
qui peuvent être conjugués à des cocycles abéliens). Dans ce cadre, nous démontrerons le
théorème suivant.
Théorème 0.1. Soit G un groupe de Lie compact semi-simple et α ∈ RDC. Alors, il
existe χG ∈ N∗, une constante qui ne dépend que du groupe, telle que le χG-ième itéré de
tout cocycle sur T×G, (α,A(·)) soit accumulé en topologie C∞ par des cocycles réductibles.
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Nous qualifierons ce théorème de "global", car dans les hypothèses nous n’avons pas
besoin d’hypothèses perturbatives. En revanche, la démonstration de ce théorème repose
sur une analyse de certains modèles "locaux" auxquels on peut se ramener par un procédé
dit de renormalisation.

Nous commencerons notre étude avec des rappels de la théorie des groupes de Lie
compacts (Chapitre 1) et des cocycles (Chapitre 2), suivi d’une étude de la dynamique
des cocycles abéliens (Chapitre 3).

Pour étudier le cas global, d’abord nous définirons et utiliserons, suivant [Fra04], dans
le Chapitre 4, un invariant de la dynamique, qu’on appellera énergie. Il s’agit de la limite
des dérivées normalisées des itérés du cocyle, et donc de l’objet limite principal de la
dynamique. Par sa définition, et en utilisant la propriété de précompacité de la suite des
itérés des cocycles réductibles (montrée elle aussi dans [Kri99a]) l’on voit aussitôt qu’un
cocycle réductible est obligatoirement d’énergie nulle. En revanche, l’énergie d’un cocycle
défini par une géodésique périodique reparamétrisée de G au dessus de n’importe quelle
rotation irrationnelle est facilement trouvée égale à la vitesse de la géodésique. Ceci montre
l’existence des cocycles non-réductibles de nature différente de celle des cocycles ergodiques
comme dans [Eli02].

Ensuite, dans le Chapitre 5, on utilisera l’algorithme de la renormalisation de la dy-
namique (introduit dans [Kri01]), dont la fonction est de ramener les cocycles qui sont
loin des constantes à des cocycles proches des modèles locaux qui sont les obstructions à
la réductibilité, tout en préservant les propriétés d’approximation de la dynamique par les
dynamiques simples. On étudie la convergence de l’algorithme, et on démontre le théorème
suivant (pour l’énoncé précis voir théorème 5.1) sur la quantification de l’énergie.

Théorème 0.2. Soit (α,A(·)) un cocycle de régularité C1 à valeurs dans un groupe de
Lie compact semi-simple et w la dimension des tores maximaux de G. Alors, il existe un
vecteur r ∈ Nw tel que

en(α,A(·)) = 2π‖
∑

ρ∈∆̃
rρhρ‖

où (hρ)ρ∈∆̃ et une base de Weyl d’un tore maximal.

En ce qui concerne la dynamique du cocycle, on obtiendra le résultat suivant (théorème
5.3).

Théorème 0.3. Soit (α,A(·)) un cocycle de régularité C∞ et d’énergie positive. Alors,
il existe un entier l, avec 1 ≤ l ≤ χG, tel que le cocycle (α,A(·))l a des représentants de
renormalisation qui sont arbitrairement proches dans C∞ des cocycles de la forme Elr(·).A,
où r est le vecteur entier du théorème précédant. On dira que le cocycle est de degré r.

Nous avons noté par Er(·) la géodésique périodique de G partant de l’identité et par
r son degré topologique vue comme application de T dans un tore maximal contenant la
géodésique. La constante χG ne dépend que du groupe de G. Ces résultats généralisent
des résultats déjà obtenus dans [Kri01] et [Fra04] dans les groupes autres que SU(2) et en
régularité plus basse. En utilisant ce résultat, on peut affaiblir le condition pour l’invariance
mesurable du degré et obtenir le

Théorème 0.4. Soient (α,Ai(·)), i = 1, 2 deux cocycles de régularité C1 à valeurs dans
G qui sont mesurablement conjugués. Alors leurs degrés sont égaux.

Finalement, on prouve
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Théorème 0.5. Soit (α,A(·)) un cocycle de régularité C∞ et d’énergie nulle. Alors, le
χG-ième itéré de ce cocycle a des représentants de renormalisation qui sont arbitrairement
proches dans C∞ des cocycles constants.

Les théorèmes précédents montrent que les géodésiques périodiques de G sont les ob-
structions à la convergence de la renormalisation vers les cocycles proches des constantes.
Par conséquent, la démonstration d’un théorème de densité globale passe par l’étude locale
des géodésiques périodiques du groupe.

Avant d’entamer l’étude locale des obstructions, on distingue deux classes de dy-
namiques globales, suivant la nature de Er(·). Si cette géodesique appartient à un seul
tore maximal, on dira que le cocycle est régulier, et singulier sinon. Dans le premier cas,
l’action adjointe de Er(·) est non-triviale sur toute direction dans g autre que celles dans
le tore. Comme le modèle autour duquel on linéarise les équations cohomologiques agit
sur la conjugaison par l’action adjointe, la dynamique des géodésiques régulières est essen-
tiellement la même que celle des géodésique périodique dans SU(2), étudiées dans [Kri01].
Par contre, l’action adjointe d’une géodésique singulière est triviale sur certaines directions
dans g, et par conséquent la dynamique dans ces directions est de type local, au moins au
premier ordre.

Dans le Chapitre 6, nous nous restreignons à l’étude locale des géodésiques régulières.
Comme la renormalisation converge vers les géodésiques du groupe, on peut supposer
qu’un cocycle donné, perturbation d’une géodésique régulière, est du même degré que la
géodésique non-perturbée. Sous cette hypothèse, on obtient des estimés a priori sur les
basses fréquences de la perturbation.

En suite dans Chapitre 7, on décrit les formes normales des perturbations des géodésiques
régulières, en supposant que α vérifie une condition Diophantienne, et que le perturbation
est suffisamment petite. Une lecture attentive de la preuve du théorème de formes nor-
males dans [Kri01] montre que, si le cocycle (α,Er(·)eU(·)) ∈ SW∞(T, SU(2)), ou α ∈ DC
(voir définition 1.12), est de degré r, alors on peut le conjuguer à (α,Er(·+ θ)) avec une
conjugaison petite. La particularité de la dynamique des géodésiques régulières qui con-
siste en l’absence des phénomènes de petits diviseurs en dehors du tore maximal suggère
l’application du théorème d’inversion locale de Nash-Moser, et l’on obtient le théorème
suivant (théorème 7)

Théorème 0.6. Soient α une rotation Diophantienne et r ∈ Nw tel que la géodésique
Er(·) soit régulière. Alors, il existe un entier positif s0 et un ε0 = ε0(r, α) > 0, tels que si
le cocycle (α,A(·)) est de degré r et A(·) est ε0-proche de Er(·).A dans Cs0, alors il peut
être conjugué à Er(·).A′, où A et A′ commutent avec Er(·). Les cocycles dans ce voisinage
qui ne sont pas réductibles à Er(·).A sont d’énergie strictement plus petite que celle de
Er(·).

De plus, on montre que

Théorème 0.7. Soient α et r comme ci-dessus. La réductibilité aux géodésiques péri-
odiques de la forme Er(·).A est localement de codimension positive. La codimension dépend
seulement de r.

Comme toute géodésique périodique de SU(2) est régulière, vu que les tores maximaux
de SU(2) sont de dimension 1, on obtient par induction et en utilisant la théorème de
densité locale, le théorème suivant
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Théorème 0.8. Soit α ∈ RDC. Alors les cocycles réductibles sont denses dans SW∞α (T, SU(2))
en topologie C∞.

Pour la définition de l’ensemble RDC ⊂ T, voir définition 1.13.Ce théorème, qui affaib-
lit la condition diophantienne imposée dans [Kri01] avait déjà était obtenu dans [Fra04],
mais le théorème est moins précis.

Dans le Chapitre 8 on reprend la théorie locale, où on simplifie la preuve du théorème
de la densité locale et de la presque réductibilité locale, connues depuis [Kri99a]. Dans
ce chapitre, on suppose que le cocycle donné est de la forme (α,AeU(·)), où α ∈ DC,
A ∈ G est une constante et U(·) est supposé petit. Afin de obtenir les théorèmes, on
écrit et resout l’équation cohomologique au voisinage de (α,A) et la simplification est due
au lemme de conjugaison locale amélioré. Ceci permet de réduire la perturbation U(·)
à une perturbation de deuxième ordre (avec une perte des dérivées) sans passer à une
perturbation de période plus longue en présence des résonances. Les estimées permettent
l’utilisation du schéma K.A.M. dont la convergence est établie dans [FK09], afin d’obtenir
la presque réductibilité des cocycles au voisinage des constantes :

Théorème 0.9. Soit α ∈ DC(γ, τ). Alors il exist s0 ∈ N∗ et ε qui dépendent de α et
de G tels que si U ∈ C∞(Td, g) vérifie ‖U‖0 < ε et ‖U‖s0

< 1, et A ∈ G, alors le
cocycle (α,AeU(·)) peut être conjugué arbitrairement proche dans C∞(Td, G) des cocycles
constants.

ainsi que la densité des cocycles réductibles :

Théorème 0.10. Soit α ∈ DC(γ, τ). Alors il existent s0 ∈ N∗ et ε qui dépendent de α et
de G tels que si U ∈ C∞(Td, g) vérifie ‖U‖0 < ε et ‖U‖s0

< 1, et A ∈ G, alors le cocycle
(α,AeU(·)) est dans l’adhérence des cocycles réductibles en topologie C∞(Td, G).

Ces deux théorémes admettent des analogues dans le cadre non-perturbatif :

Théorème 0.11. Soit α ∈ RDC et (α,A(·)) ∈ SW∞(T, G) d’énergie nulle. Alors il existe
l ∈ N∗, avec 1 ≤ l ≤ χG, tel que le cocycle (α,A(·))l puisse être conjugué arbitrairement
proche dans C∞(lT, G) à des cocycles constants.

et, respectivement,

Théorème 0.12. Soit α ∈ RDC. Alors les cocycles réductibles sont denses en topologie
C∞(lT, G) dans chaqu’une des classes de cocycles d’energie nulle et tels que (α,A(·))l soit
homotope à l’identité.

La preuve de ces deux théorèmes et de leurs analogues permet, en fait, d’obtenir un
théorème de rigidité locale et globale :

Théorème 0.13. Soit α ∈ DC(γ, τ) et supposons que le cocycle (α,AeU(·)) vérifie les hy-
pothèses du théorème de presque réductibilité. Alors, s’il existe B(·) : Td → G, mesurable, et
une constante Ad ∈ DCα telles que (α,AeU(·)) = ConjB(·)(α,Ad), alors B(·) ∈ C∞(Td, G)
et le produit des conjugaisons données par le schéma K.A.M. converge.

et

Théorème 0.14. Soit α ∈ RDC et (α,A(·)) ∈ SW∞(T, G) d’énergie nulle et k ∈ N∗,
avec 1 ≤ k ≤ χG, tel que, le cocycle (α,A(·))k soit mesurablement conjugué à une constante
diophantienne. Alors la conjugaison est dans C∞(T, G).
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Finalement, nous conclurons notre étude dans le chapitre 9 avec l’étude locale des
géodésiques singulières. Il s’agit d’un cas intermédiaire entre les perturbations des géodésiques
régulières et les cocycles proches des constantes. La présence des phénomènes de petits
diviseurs, comme dans la théorie locale des cocycles constants, résulte en des théorèmes
moins précis que dans la théorie locale des géodésiques régulières. Plus précisément, nous
obtiendrons

Théorème 0.15. Soient α ∈ DC(γ, τ), r ∈ Nw tel que Er(·) soit une géodésique singulière
1-périodique, et A commutant à Er(·). Alors, si U(·) est suffisamment petit, la condition
ne dépendant que de α et de r et si le cocycle (α,Er(·)AeU(·)) est de degré r, alors il est
presque réductible à (α,Er(·)A′) où A′ commute à Er(·).

Nous démontrerons également le théorème de densité locale :

Théorème 0.16. Soient α ∈ DC(γ, τ) et r ∈ Nw comme ci-dessus. Alors, sous les
mêmes conditions de petitesse sur U(·), les cocycles réductibles à des cocycles de la forme
(α,Er(·)A′) (A′ commute à Er(·)) sont denses dans la classe des cocycles de la forme
(α,Er(·)AeU(·)) (A commute à Er(·)) qui sont de degré r.

Nous obtiendrons aussi leurs analogues globaux :

Théorème 0.17. Soient α ∈ RDC et (α,A(·)) ∈ SW∞(T, G) de degré r ∈ Nw, avec r
comme ci-dessus. Alors, il existe χ0 ∈ N, avec 1 ≤ χ0 ≤ χG tel que (α,A(·))χ0 puisse être
conjugué χ0 arbitrairement proche dans C∞ à des cocycles de la forme (α,Er(·)A) où A
commute à Er(·).

et

Théorème 0.18. Soient α et (α,A(·)) comme ci-dessus. Alors pour le même χ0 ∈ N∗,
(α,A(·))χ0 est accumulé dans C∞(χ0T, G) par des cocycles conjugués à (α,Er(·)A)χ0 où
A commute à Er(·).



Chapter 1

Basic definitions and tools from
Algebra and Analysis

1.1 Algebra

1.1.1 Compact Lie groups

For this section, we refer mainly to [Die75], whose notations we have adapted, and
[Hel62], as well as [Bum04], [DK00] and [Kri99a]. By G we will denote a real connected
compact semi-simple Lie group, and sometimes refer to it simply as a compact group, even
though some of the results presented below are true in a more general context.

Generalities

Let G be a real connected compact Lie group, furnished with a Haar measure, both
left- and right-invariant, inducing an invariant Riemannian metric d(·, ·). The following
theorem by Gleason-Montgomery-Zipplin supplies a sufficient condition of algebraic and
topological nature under which a topological group is a Lie group.

Theorem 1.1. Let G′ be a locally compact topological group satisfying the additional
hypothesis of non-existence of small subgroups. Then G′ is a Lie group.

The hypothesis of non-existence of small subgroups is the following: there exists a
neighborhood of the Id which contains only the trivial topological subgroup Id. The
study of real compact groups is capital in the theory of Lie groups, as explained in [Die75]
and their study is to a large extent reduced to that of semisimple ones 1. Under these
hypotheses, G admits a representation in a unitary group. For this reason, with the
exception of this first chapter, we will abuse the notation A∗ for the inverse of A ∈ G.

The tangent space to the identity of G, furnished with the linear antisymmetric com-
mutator [·, ·] : g × g → g, is by definition its Lie algebra g. The endomorphisms of g
preserving its structure as a Lie algebra are denoted by Aut(g), while the linear transfor-
mations of the vector space g are denoted by GL(g).

The exponential mapping

exp : g → G
h 7→ exp(h) = eh

1. Semisimplicity will be defined later on by means of a geometric criterion.
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is defined as the time one of the flow generated by the right-invariant vector field associated
to h. As a result of the compactness of the group, the exponential mapping is onto.

We can define the adjoint representation of the group into its algebra as the differential
at the Id of the mapping B 7→ A.B.A−1, for A ∈ G fixed. We thus obtain a linear
automorphism

AdA : h 7→ d
dtA.B(·).A−1|t=0

where B(·) is defined locally around 0 and such that d
dtB(·)|t=0 = hId and B(0) = Id. The

image of G in Aut(g) under its adjoint representation is noted by Inn(g) and called the
inner automorphisms of g. It is a subgroup of Aut(g) since [AdA.h, AdA.h′] = AdA.[h, h′]
holds for all h and h′ in g. We also have that A ∈ ZG, if, and only if, Ad(A) = Idg.
Therefore, Inn(g) is naturally isomorphic to G/ZG, which is the Lie group that has the
same Lie algebra as G, but its center is reduced to the Id.

We can also define the adjoint representation of g into itself via the commutator: for
h fixed, let adh : h′ 7−→ [h, h′] and the two representations are connected by Ad(eh).h′ =
ead(h).h′, for all h, h′ ∈ g. This representation induces a bilinear symmetric form on g,
called the Cartan-Killing form, by

〈
h, h′

〉
= −tr(adh ◦ adh′)

The group and the algebra are semi-simple if the Cartan-Killing form is non-degenerate,
and it can be proved that a semi-simple group is compact if it is positive definite, in
which case the algebra is said to be compact. The Riemannian structure induced by
a non-degenerate Cartan-Killing form is compatible with the one induced by the Haar
measure.

The center of G, denoted by ZG is finite and its cardinal will be denoted by cG.
The adjoint action of G is an isometry of g with respect to the Cartan-Killing form

and the latter satisfies 〈
[h, h′], h′′

〉
=
〈
h, [h′, h′′]

〉
We will use the following theorem, from [Die75] (21.6.9 ).

Theorem 1.2. Let G be a real connected Lie group, ZG its center and g its Lie algebra.
Then, the following conditions are equivalent:

1. The group G/ZG is compact

2. The group G is isomorphic to a product Rm ×G1, where G1 is compact

3. The group G̃, the universal covering of G, is isomorphic to a product Rn×K, where
K is a compact semi-simple simply connected Lie group.

4. The Lie algebra g is decomposed in c ⊕D(g), where c is its center and D(g) is the
derived algebra [g, g]. The restriction of the Cartan-Killing form to D(g) is positive
non-degenerate.
Under these assumptions, D(g) is isomorphic to the Lie algebra of K; its center ZK
is finite; G is isomorphic to G̃/D, where D is a discrete subroup of Rn × ZK , ZG
is isomorphic to (Rn × ZK)/D and if we call Ǧ = G/ZG, we have ZǦ = {Id}. The
groups Ad(G̃), Ad(G) and Ad(K), viewed as subroups of Aut(g) are all equal and
isomorphic to G/ZG = Inn(G).
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Tori and maximal tori

For this section, see [Die75], 21.7. From this section on, the group is supposed compact
semisimple, even though some of the results hold if we drop the semisimpleness assumption.

Let us consider a connected abelian subgroup H ⊂ G. Since G is compact, H is in
fact homomorphic to a torus Rd/Zd and for this reason we will call it a torus of G. Using
standard arguments, we can find T , a maximal abelian subgroup of G (called a maximal
torus 2), containing H. Maximality is understood in the sense of set-theoretical inclusion.
We have then

Proposition 1.3. 1. Let T be a maximal torus of G. Then, for any A ∈ G, there
exists S ∈ G such that S.A.S−1 ∈ T . In particular, G agrees set-theoretically with
the union of its maximal tori.

2. If T and T ′ are maximal tori of G, there exists S ∈ G such that S.T ′.S−1 = T .
3. The centralizer ZG(H) of a torus H ⊂ G is connected and, if S ∈ ZG(H), then
H∪{S} is contained in a maximal torus.

4. The neutral component Z0
G(S) of ZG(S) (the centralizer of S ∈ G) is equal to the

union of the maximal tori containing S.

By 2, the dimension of maximal tori of G is a constant depending only on the group.
It is called the rank of G and we will denote it by w.

We now give the following definition, concerning the number of maximal tori containing
an element of G.

Definition 1.4. An element in S ∈ G is called regular if it is contained in a unique
maximal torus, and generic if it generates it topologically, i.e. if the closure of {Sk}k∈Z is
the torus itself. It will be called singular if it is not regular.

Therefore, S is regular iff the neutral component of ZG(S) is a maximal torus and a
generic element is a fortiori regular. An example of a regular but not generic element can
be constructed by using any root of 1 in S1 other than −1. We refer the reader to section
1.1.2 for the canonical embedding S1 ↪→ SU(2) which gives an example of such an element
in a Lie group. More concretely, we consider elements of SU(2) of the type[

exp(2iπp/q) 0
0 exp(−2iπp/q)

]

with p, q ∈ Z, q 6= 0 and p
q
6= 1. It can be verified that is S is of this form it commutes only

with diagonal matrices (which are the maximal tori in SU(2), as we will see in subsection
1.1.2 ), but Sq = Id, so that S is not generic.

The normalizer of a maximal torus NG(T ) = {S ∈ G, S.T .S−1 ⊂ T } in general strictly
contains the torus. The factor group W (T ) = NG(T )/T is a finite group, called the Weyl
group with respect to T . Since any two tori are obtained by conjugation, all the groups
W (T ) are all isomorphic to one another and therefore isomorphic to the Weyl group of
G, noted W . For any torus H, the group WH = NG(H)/ZG(H) is a subgroup of W and
we have equality if H is maximal. In the particular case where a direction S ∈ G is given,
the intersection of all maximal tori containing S is a torus H of G, and the group WH is
isomorphic to W if, and only if, H is a maximal torus.

2. Since the maximal tori of matrix groups such as SU(w+ 1) are formed by diagonal matrices, we will
sometimes abuse the word diagonal and its derivatives.
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We also cite the following lemma, a proof of which using Algebraic Geometry techniques
can be found in [Kri99a] (lemma 2.3.14).
Lemma 1.5. Let G be a real compact semi-simple Lie group. Then, there exists a mini-
mal positive integer χG, depending only on the group G and smaller than #W ! with the
following property. If K, a subset of G, is abelian, then

KχG = {kχG , k ∈ K}

is a subset of a maximal torus of G. The integer χG is equal to 1 if G = SU(w + 1).
Proof. Let A,B ∈ G such that ABA−1B−1 = Id and suppose that there does not exist a
maximal torus passing by both A and B.

We can fix, therefore, a maximal torus TA containing A and call H the intersection of
all maximal tori passing by A. Since B /∈ TA, there exists C ∈ TA such that

CBC−1B−1 = C ′ 6= Id

where C ′ ∈ Z0
G(A). For this, one only need consider a path Φ(·) : [0, 1] → TA connecting

C to the Id and to verify that then Φ(·)BΦ(·)−1B−1 commutes with A at all times, while
it connects CBC−1B−1 with the Id.

In particular, there exists a generic such element C which we fix for the rest of the
proof. By the commutation relation ABA−1B−1 = Id we find directly that such a B
defines a whole class B Z0

G(A) of elements commuting with A but not on the same torus
as A.

Since C ′ ∈ Z0
G(A), point 2 of Proposition 1.3 applied to the group Z0

G(A) gives the
existence of an S ∈ Z0

G(A) such that S−1C−1C ′S ∈ TA, which implies that

SBCB−1S−1 ∈ TA
Since C is generic, this implies that

Ad(SB)TA ⊂ TA
Thus, the class Z0

G(A)B is mapped in a canonical way into WG and, since this last group
has finite cardinal #W , (SB)#W ∈ TA and thus B#W ∈ Z0

G(A).

For any given group G, the constant χG of this lemma is to be chosen optimal. We
can also prove
Lemma 1.6. If G̃ is a semi-simple compact group and G = G̃/K where K ⊂ ZG̃ is a
non-trivial subgroup, then χG̃ ≤ χG, and χG̃ divides χG.
Proof. For the first part, we use the fact that the commutator group of a semisimple
compact Lie group is the group itself, and we let Ã, B̃ ∈ G̃ such that Ã.B̃.Ã∗.B̃∗ = S ∈ K,
S 6= Id. From the commutation relation it follows that, if we call π the projection G̃→ G,
then π(Ã) 6= π(B̃). On the other hand, π(Ã) and π(B̃) commute in G.

Consider now TÃ ⊂ G̃, a maximal torus containing Ã. Then, TÃ.B̃ 6= TÃ, (TÃ.B̃)/K 6=
TÃ/K, π(TÃ.

˜̃A) and π(Ã) commute.
Therefore, there exist elements in G who commute, but whose preimages in G̃ do not.
The second statement follows from the fact that if Ã, B̃ ∈ G̃ do not commute, but

A = π(Ã) and B = π(B̃) do commute in G, then Ã.B̃.Ã∗.B̃∗ = S ∈ K. Consequently,
Ã#K and B̃#K commute.

This second lemma clarifies the relation of the constant χG with the homotopy of
a group, since any non-simply connected group is obtained by factorization of a simply
connected one as in the statement of the lemma.
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Toral algebras and root-space decomposition

Let us consider an abelian subalgebra h of g, i.e. a subalgebra for which the restriction
of the Lie bracket to h×h vanishes identically. It is the Lie algebra of a torus H of G, and
for this reason it will be called a toral algebra. If H is contained in T , a maximal torus
whose Lie algebra is t, then h ⊂ t. The Lie algebra t is a maximal toral algebra and its
dimension is w. The relations between different (maximal) toral algebras are analogous to
those between (maximal) tori. We also give the definition of regular and singular elements
of g.

Definition 1.7. An element s ∈ g will be called regular if it is contained in a unique
maximal toral algebra, and generic if exp(Rs) is dense in the maximal torus containing it.
If it is not regular, it will be called singular.

If s ∈ g is regular, then ZG(exp(Rs)) is a maximal torus of G.

A special case of Lie group is the n-dimensional torus Un = {(zi) ∈ (C∗)n, |zi| = 1}.
Its Lie algebra is iRn ⊂ Cn, where Cn is the Lie algebra of the ambient group (C∗)n. The
kernel of the group homomorphism exp : iRn → Un is 2iπZn and every character χ of Un

(i.e. a group homomorphism Un → S1) can be written as

χ(u) = eγ(iξ1,...,iξn)

if u = (eiξ1 , ..., eiξn), so that γ(2iπm1, ..., 2iπmn) ∈ 2iπZ if all mi ∈ Z. Therefore, if T is a
maximal torus and t its Lie algebra, we find that the restriction of exp in t defines a group
homomorphism, whose kernel is a lattice ΓT ⊂ t. If χ is a character of T and h ∈ t, then

χ(exp(h)) = e2iπρ(h)

for some ρ ∈ t∗, such that ρ(h) ∈ Z for all h ∈ ΓT . The set of such ρ is Γ∗T , the dual
lattice of ΓT . The elements of 2iπΓ∗T ⊂ t∗C (the dual space of the complexified Lie algebra
tC) are the weights of T . They are R-linear applications t → iR ⊂ C. The lattice 2iπΓ∗T
will be denoted by P (G, T ) or simply P (G), since the lattices corresponding to different
tori are obtained by the action of an inner endomorphism.

Let us now fix a maximal toral algebra t of g and the corresponding torus. We will
denote by tC and gC the corresponding complexified spaces and we introduce the involution
c(x+iy) = x−iy, where x, y ∈ g. The Cartan-Killing form extends to a complex symmetric
(and therefore not Hermitian) bilinear form.

The properties of the representation of T = exp(t) in gC imply the existence of a finite
subset ∆ of 2iπΓ∗T such that gC decomposes into the sum of tC and subspaces Eρ such
that, for all eρ ∈ Eρ and h ∈ t,

adh.eρ = 2iπρ(h)eρ

Such weights are called the roots of G with respect to T . We note that if ρ ∈ ∆, then
−ρ ∈ ∆ and E−ρ = c(Eρ). If ρ+ ρ′, ρ′ 6= −ρ, is a root, we have [Eρ, Eρ′ ] ⊂ Eρ+ρ′ and the
bracket is 0 otherwise. We will denote by Q(g) the lattice generated by the roots over Z.
We have clearly Q(g) ⊂ P (g).

A vector h ∈ t is regular if, and only if, ρ(h) 6= 0 for all roots ρ, or equivalently, if
exp(h) does not belong to any of the subgroups χ−1

ρ (1) ⊂ t, where χρ(exp(h)) = e2iπρ(h)

is the character whose weight is ρ.
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For any non-zero element eρ ∈ Eρ, the vector c(eρ) is in E−ρ, and the vectors

y′ρ = eρ + c(eρ) and z′ρ = i(eρ − c(eρ))

are in (Eρ ⊕ E−ρ) ∩ g. Moreover, they satisfy, for any h ∈ t, [h, yρ] = 2πρ(h).zρ and
[h, zρ] = −2πρ(h).yρ, so that

Ad(eh).y′ρ = cos(2πρ(h)).y′ρ + sin(2πρ(h)).z′ρ
Ad(eh).z′ρ = − sin(2πρ(h)).y′ρ + cos(2πρ(h)).z′ρ

Since G is supposed to be semisimple, the subspaces Eρ are one-dimensional, so that the
vectors yρ and zρ actually form a (real) basis of (Eρ ⊕ E−ρ) ∩ g, orthogonal with respect
to the Cartan-Killing form.

The vector h′ρ = [y′ρ, z′ρ] ∈ t satisfies

2πρ(h′ρ) = aρ > 0

Therefore, if we normalize y′ρ and z′ρ by (4/aρ)1/2 and call the new vectors y′′ρ and z′′ρ ,
respectively, and pose hρ = 2h′ρ/aρ, we have the following multiplication table:

[hρ, y′′ρ ] = 2z′′ρ
[hρ, z′′ρ ] = −2y′′ρ
[y′′ρ , z′′ρ ] = 2hρ

and hρ, y′′ρ and z′′ρ are pairwise orthogonal with respect to the Cartan-Killing form. From
the above it follows that the real subalgebra of gC defined by Rhρ ⊕ Ryρ ⊕ Rzρ can be
identified with Rihρ ⊕ Cjρ, where yρ and zρ are identified with jρ and ijρ, respectively.
We will write the elements of Rhρ ⊕ Cjρ as thρ + zjρ, with t ∈ R and z ∈ C, so that the
multiplication table and the orthogonality relations satisfied by hρ, yρ and zρ simplify to

[thρ, zjρ] = 2iztjρ,

[zjρ, wjρ] = 2Re(izw̄)
|hρ|

hρ, ∀z, w ∈ C

〈jρ, hρ〉 = 〈ijρ, hρ〉 = 〈jρ, ijρ〉 = 0
|zjρ| = |z| , and |ihρ| > 0

[jρ, jρ′ ] ∈ Eρ+ρ′

where we remind that Eρ+ρ′ = {0} if ρ + ρ′ is not a root. We stress that the complex
directions Cjρ complexify to 2-dimensional complex planes in gC.

Basis of the root system

Since the restriction of the Cartan-Killing form in tC is non-degenerate, there exists a
vector h0

ρ ∈ it such that, for all h ∈ tC,

ρ(h) = 〈h, h0
ρ〉

and by duality, it induces a scalar product on (tC)∗. Orthogonal reflection with respect to
the hyperplane ker(ρ) is written in the form

ρ′ 7−→ ρ′ − 2〈ρ
′, ρ〉
〈ρ, ρ〉

ρ

= ρ′ − 2n(ρ′, ρ)ρ
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where n(ρ′, ρ) are integers satisfying

0 ≤ n(ρ′, ρ)n(ρ, ρ′) ≤ 4

and n(ρ′, ρ)n(ρ, ρ′) = 4 if only if ρ′ = ±ρ. We have, therefore

ρ(h0
ρ′) = ρ′(h0

ρ) ∈ {0,±1,±2,±3}

and in particular ρ(h0
ρ′) = ±2 if, and only if, ρ = ±ρ′.

We can therefore find a basis ∆̃ of ∆ such that if

ρ′ =
∑
ρ∈∆̃

mρ′ρρ (1.1)

then the mρ′ρ are all integers of the same sign. This results in the existence of a partition
∆ = ∆+ ∪ (−∆+) such that ρ ∈ ∆+ (resp. ∈ −∆+) if, and only if, all the integers in the
above sum are positive (resp. negative).

Therefore, we have the following decomposition:

g = t⊕
⊕
ρ∈∆+

Cjρ

=
⊕
ρ∈∆̃

Rhρ ⊕
⊕
ρ∈∆+

Cjρ
(1.2)

The basis ∆̃ will be call a Weyl’s basis for the root system and the decomposition of g as
above the root system decomposition with respect to the maximal abelian algebra t. The
choice of such a basis is a simultaneous diagonalization of all operators adh : h′ 7→ [h, h′],
for h ∈ t. These operators therefore commute.

A special case of mappings T → G which will be of great importance in our study is
that of periodic geodesics of the group, which are one-parameter subgroups isomorphic to
S1. Since such mappings can be viewed as mappings T → T ⊂ G, where T is a maximal
torus of G, this geodesic admits a lift in t (the Lie algebra of T ). Since, additionally, any
basis of t can be obtained by the action of W (G) on a single one, we can consider a fixed
basis and introduce the notations

Er(·) = exp(
∑

ρ
(2πrρhρ·)) and (1.3)

Er,a(·) = exp(
∑

ρ
(2π(rρ ·+aρ)hρ) (1.4)

where r ∈ Zw and a ∈ Rw characterize the geodesic, modulo the action of W (G).

Finally, by duality, there exists a basis (Hρ)ρ∈∆̃ of t, such that ρ′(Hρ) = δρ,ρ′ . We then
have

Hρ =
∑
ρ∈∆̃

kρ′ρHρ′

with kρ′ρ rational numbers of the same sign. We can suppose that they are of the form

lρ′ρ
D

where D ∈ N∗ and |lρ′ρ| ≤ e, with e ∈ N∗. Clearly, #∆̃ = w, the rank of the group, while
q = #∆+ = 1

2(f − w), where f is the real dimension of g.
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1.1.2 Notation and algebra in SU(2) and SO(3)
Since a certain variety of the phenomena that we will describe are already present

when G is SU(2) or SO(3) we will construct some concrete examples in these cases and
we will compare the results obtained in this thesis with the ones already existing in the
literature. In order to do this, we need to describe explicitly the notions defined in the
previous section in this more concrete setting.

We bring to the attention of the reader the fact that in these concrete examples we
introduce a normalization of the Cartan-Killing form which is not compatible with the
one used in the abstract case.

The group SU(2)

Let us denote the matrix S ∈ SU(2), S =
[
t z
−z̄ t̄

]
, where (t, z) ∈ C2 and |t|2+|z|2 = 1,

by {t, z}SU(2). The subscript will be suppressed from the notation, unless necessary. The
manifold SU(2) is naturally identified with S3 ⊂ C2 through G 3 {t, z}SU(2) 7→ (t, z) ∈ S3.
The law of multiplication is pushed forward to the mapping of S3 × S3 → S3 given by
{t1, z1}.{t2, z2} = {t1t2 − z1z̄2, t1z2 + t̄2z1}. In particular, SU(2) is simply connected.
Inversion is pushed forward to the involution of S3 {t, z} 7→ {t̄,−z}. The circle S1 is
naturally embedded in G as the group of diagonal matrices, which is a maximal torus of
SU(2). In particular w = 1, the rank of SU(2).

The Lie algebra su(2) is naturally isomorphic to R3 ≈ R×C equipped with its vector

and scalar product. The element s =
[
it u
−ū −it

]
will be denoted by {t, u}su(2) ∈ R × C,

or {t,Ru, Iu}g ∈ R3. The scalar product will sometimes be denoted by

t1t2 +Re(u1ū2) = t1t2 +Reu1.Reu2 + Imu1.Imu2

Mappings with values in su(2) will be denoted by

U(·) = {Ut(·), Uz(·)}su(2)

in these coordinates, where Ut(·) is a real-valued and Uz(·) is a complex-valued function.
The adjoint action of h ∈ su(2) on itself is pushed-forward to twice the vector product:

ad{1,0}.{0, 1, 0} = 2{0, 0, 1}

plus cyclic permutations and the Cartan-Killing form, normalized by 〈h, h′〉 = −1
8 tr(ad(h)◦

ad(h′)) is pushed-forward to the scalar product of R3. The periodic geodesics of the
group for the induced Riemannian structure are of the form S. exp({2πr·, 0}su(2)).S−1,
S ∈ SU(2). Under this normalization, the minimal length for a geodesic leaving from the
Id and arriving at −Id is π, and the minimal length of a periodic geodesic is twice as
much, i.e. 2π. We also find directly that the preimages of the Id in the maximal toral
algebra of diagonal matrices are points of coordinates in the lattice 2πZ.

The adjoint action of the group on its algebra is pushed-forward to the action of SO(3)
on R × C. In particular, the diagonal matrices, of the form exp({t, 0}su(2)), fix the real
direction and act by multiplication by e2it in the complex direction.

Finally, the Weyl group of SU(2) is naturally isomorphic to the multiplicative group
{1,−1} and two representatives are the matrices

Id and
[

0 1
−1 0

]
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the action of the second one being a reflection with respect to the complex plane:

(−1)W .{t, 0}su(2) = {−t, 0}su(2)

The group SO(3)

Since SO(3) = SU(2)/{±Id}, we will identify the Lie algebras of the two groups
and keep the same normalization for the Cartan-Killing form. In particular, all non-zero
vectors in so(3) are regular. From the normalization of the Cartan-Killing form, it follows
that the minimal length of a periodic geodesic, typically cos(2π·) sin(2π·) 0

− sin(2π·) cos(2π·) 0
0 0 1


is π. This geodesic admits a lift in SU(2) to a geodesic connecting the Id with −Id,
exp({π·, 0}su(2)), and therefore is is not homotopic to a constant in SO(3). On the other
hand  cos(4π·) sin(4π·) 0

− sin(4π·) cos(4π·) 0
0 0 1


admits a lift to E1(·) = exp({2π·, 0}su(2)), and therefore it is a closed geodesic, homotopic
to a constant and with minimal length. For this reason we will use the notation E1/2(·)
for  cos(2π·) sin(2π·) 0

− sin(2π·) cos(2π·) 0
0 0 1


From the above, it follows that the preimages of the Id in the maximal toral algebra of
standard rotations are points of coordinates in the lattice πZ.

We also remark that χSO(3) = 2, and we investigate the relation of this fact with
the fact that SO(3) = SU(2)/{±Id}. It is a common fact that if two matrices A and
B in SU(2) commute, they can be simultaneously diagonalized, or in our terminology,
they belong to the same maximal torus. Since the torus of reference in this group is
that of diagonal matrices, we can rephrase this into the existence of S ∈ SU(2) such
that S.A.S∗ S.B.S∗ belong to T . On the other hand, not any two commuting matrices
in SO(3) can be conjugated to the torus of standard rotations. In order to see this, we
consider the torus T /{±Id} of standard rotations and an element π({eiθ, 0}) in it (π is the
canonical projection SU(2) → SO(3)). It commutes with all the matrices in T /{±Id},
and conversely, if (a preimage of) it commutes with a matrix in SU(2), this matrix is in
T . A simple calculation shows that

{eiθ, 0}.{a, b}.{e−iθ, 0}.{ā,−b} = {|a|+ e2iθ|b|, ab(1 + e2iθ)}

We see, therefore, that the equation

A.B.A∗.B∗ = −Id

admits the solutions

A = {±i, 0}
B = {0, b}
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with b ∈ S1. This family of solutions obviously does not intersect the standard torus, and
its projection to SO(3) gives the rotation−1 0 0

0 −1 0
0 0 1


which commutes with standard rotations, but also with the one parameter familycos θ sin θ 0

sin θ − cos θ 0
0 0 −1

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
1 0 0

0 −1 0
0 0 −1


for θ ∈ [0, 2π], which does not intersect the standard torus.

1.2 Calculus

1.2.1 Calculus in Lie groups

Let us now define the differential operator L : C∞(T, G)→ C∞(T, g), as

L(A)(·) = ∂A(·).A∗(·) (1.5)

This operator uses the structure of the group in order to simplify the expressions of
derivatives. Since a Lie group is a manifold, the derivative of a G-valued path is a section
of its tangent bundle. The fact that the tangent bundle is trivial (i.e. trivializable in a
canonical way) allows us to define the derivative of a path as a curve in a single vector
space, instead of a section of the tangent bundle. This is done by using the group structure
of the manifold and mapping canonically, for each x ∈ T, the tangent space TA(x)G ⊂ TG
at A(x) ∈ G to g = TIdG via the differential of left translation, S 7→ SA(x)∗. 3 If the
underlying group is simply R∗+, this is just a way of normalizing the derivative of the
exponential as

φ′(x) =
(
d

dx
eφ(x)

)
e−φ(x)

instead of letting it grow along with eφ(x). If the underlying group is S1, the tangent vector
turns when the base point is not 1 ∈ S1, and right multiplication rectifies it to a vertical
one.

The basic properties of this operator are as follows.

1. L(A(·).B(·)) = a(·) + Ad(A(·)).b(·), where we introduce a notational convention:
L(A(·)) = a(·), L(B(·)) = b(·) and similarly for any application T → G (eventually
R→ G).

2. Derivation of A∗(·).A(·) = Id gives a∗(·) = −Ad(A∗(·)).a(·) (notice the abuse of
notation)

3. If A(·) = exp(φ(·)), where φ : C∞(R, t), with t ⊂ g a toral algebra, then a(·) = φ′(·)
4. ∂L(A(·).B(·)) = ∂a(·) +Ad(A(·)).∂b(·) + [a(·), Ad(A(·)).b(·)]

3. In fact, since the action of G in the following chapter will be chosen to be left multiplication, the
choice of right multiplication in the definition of the operator L slightly complicates the calculations in
chapter 4.
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5. If A(·) = exp(U(·)) is C0-close to the identity, then

a(·) = exp(ad(U(·)))− Id
ad(U(·)) ∂U(·)

where exp(ad(U(·)))−Id
ad(U(·)) represents the operator

∑∞
0

1
(n+1)!ad(U(·))n.

Property 1 implies the following fact. Let K be a subgroup of ZG, G̃ = G/K and
π : G → G̃ the canonical projection. We remind that the Lie algebras of G and G̃ are
naturally isomorphic. Then, if A(·) : T → G is C1, Ã(·) = π(A(·)) : T → G is also C1-
smooth (possibly of period smaller than 1) and property 1 implies that ã(·) = a(·), with
a slight abuse of notation. If, keeping the same notations, we suppose that Ã(·) is given
and we choose a lift A(·) of Ã(·) to G (i.e. π(A(·)) = Ã(·)), then A(·) will be at most #K
periodic and A(·+ 1) = S.A(·), where S ∈ K. Then we find again that the derivatives of
A(·) and Ã(·) in g are equal. Or, equivalently, the derivative in g of a curve in G depends
on the isomorphism class of the Lie algebra, and not the group itself.

Finally, property 4 implies the following bounds for derivatives of products, which will
be useful in the estimates of iterates of cocycles.

Proposition 1.8. We have the following estimates concerning the derivatives.
1. Let Ai : T → G, i = 1, ..., n, be smooth enough, and let m0 = maxi ‖ai‖∞ and

ms = maxi,0≤σ≤s ‖∂sai‖∞. Then we have

‖∂s(a1...an)‖∞ ≤ Csms(1 +m0)sns+1

2. Let U ∈ C∞(T, g) be small enough in C0(T, g) and A : T→ G. Then

C−1
s (1− ‖U(·)‖0)s ‖U(·)‖s+1 ≤

∥∥∥∂sLeU(·)
∥∥∥
s
≤ Cs(1 + ‖U(·)‖0)s ‖U(·)‖s+1

and

‖Ad(A(·)).U(·)‖0 = ‖U(·)‖0
‖L(exp(Ad(A(·)).U(·))‖s ≤ Cs(1 + ‖U(·)‖0)s(1 + ‖a(·)‖0)s(1 + ‖a(·)‖s) ‖U(·)‖s+1

If we admit a uniform bound on the term ‖U(·)‖0,

‖L(exp(Ad(A(·)).U(·))‖s ≤ Cs(1 + ‖a(·)‖0)s(1 + ‖a(·)‖s) ‖U(·)‖s+1

Proof. 1. Since ∂(Ad(A(·)).b(·))) = Ad(A(·)).∂b(·) + [a(·), Ad(A(·)).b(·)], induction in
n, convexity inequalities and counting of the terms gives the result.

2. If we let h ∈ g, we calculate

∂Ad(B(·)).h = [b(·), Ad(B(·)).h]

so that the derivative in the Lie algebra of Inn(G) ≈ G/ZG (which is a subalgebra
of gl(g) naturally isomorphic to g) reads

(∂Ad(B(·)).Ad(B∗(·)).h = [b(·), h]

and
C−1 ‖B‖s ≤ ‖Ad(B(·))‖s ≤ C ‖B‖s
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where the constant is universal since it depends only on the adjoint representation
of g into itself 4.
If we call Ũ(·) = Ad(A(·)).U(·), we have

LeŨ(·) = Ad(A(·)).LeU(·) + (Id−Ad(eŨ(·)))a(·)

Therefore,

‖LeŨ(·)‖s ≤ ‖Ad(A(·)).LeU(·)‖s + ‖(Id−Ad(eŨ(·)))a(·)‖s
. ‖LeU(·)‖s + ‖Ad(A(·))‖s‖LeU(·)‖0 + ‖U(·)‖0‖a(·)‖s + ‖Ad(eŨ(·))‖s‖a(·)‖0
. ‖eU(·)‖s + (1 + ‖a(·)‖s−1)‖eU(·)‖1 + ‖U(·)‖0‖a(·)‖s + ‖eŨ(·)‖s‖a(·)‖0

In particular, for s = 1,

‖LeŨ(·)‖0 ≤ ‖eU(·)‖1 + ‖A(·)‖0‖eU(·)‖1 + ‖U(·)‖0‖A(·)‖1
≤ ‖eU(·)‖1 + ‖U(·)‖0(1 + ‖a(·)‖0)

and the announced estimates follow from these expressions.

For X ∈ g small enough, let K(X).∆X = (D(eX).∆X).e−X . Then, K(X) is in GL(g),
since the exponential is a local diffeomorphism. This operator can be calculated by

K(X).∆X = ead(X) − Id
ad(X) .∆X

= ∆X + 1
2[X,∆X] + 1

3! [X, [X,∆X]] + ...

In particular, L exp(U(·)) = K(U(·)).∂U(·), and

K(−X).∆X = Ad(e−X).K(X).∆X

The transposed operator with respect to the Cartan-Killing form is found by

K(X)T = K(−X)

as shows the expansion of the operator. Since K(X) is invertible for small enough X, we
will sometimes use the notational convention

∆̃X = K(X).∆X

In fact, for X small enough, K(X) is close to being an isometry, since

K(−X).K(X) = Id+ 1
12ad

2
X +O(|X|4)

as shows a direct calculation.

4. This expression is in fact not totally accurate, since in the C0 norm we should replace the Riemannian
distance from B(·) to the Id with the min(d(B(·), S), S ∈ ZG). We keep this fact implicit in order to keep
notation simpler.
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1.2.2 Functional spaces

We will consider the space C∞(Td, g) equipped with the standard maximum norms

‖U‖s = max
T
|∂sU(·)|

‖U‖max
s = max

0≤σ≤s
‖U‖σ

for s ≥ 0, and the Sobolev norms

‖U‖2Hs =
∑
k∈Zd

(1 + |k|2)s|Û(k)|2

where Û(k) =
∫
U(·)e−2iπkx are the Fourier coefficients of U(·). The fact that the injections

Cs(Td, g) ↪→ Hs+d/2(Td, g) and Hs(Td, g) ↪→ Cs(Td, g) for all s ≥ 0 are continuous is
classical.

For applications R ⊃ I → g we will use the norms

‖U(·)‖max
s,I = max

0≤σ≤s
‖∂σU(·)‖L∞(I)

where I ⊂ R is an interval. If I = [0, T ], we will replace I by T in these notations.
The space C∞(Td, G) is equipped with the following norms (we remind the convention

LA(·) = a(·))

‖A‖0 = max
T

d(A(·), Id)

‖A‖s = max
T

∣∣∣∂s−1a(·)
∣∣∣

‖A‖max
s = max

1≤σ≤s
‖a‖σ

‖A(·)‖max
s,I = max

1≤σ≤s
‖A‖s

for s ≥ 1. We note that in the ‖·‖max norms we omit the C0 norm, irrelevant for the
majority of the arguments since G is supposed to be compact.

We will also use the convexity or Hadamard-Kolmogorov inequalities (see [Kol49])
(U ∈ C∞(Td, g)):

‖U(·)‖σ ≤ Cstσ ‖U‖
1−σ/s
0 ‖U‖σ/ss (1.6)

for 0 ≤ σ ≤ s, and the inequalities concerning the composition (see [Kri99a]) of functions:

‖φ ◦ (f + u)− φ ◦ f‖s ≤ Csts ‖φ‖s+1 (1 + ‖f‖0)s(1 + ‖f‖s) ‖u‖s (1.7)

which hold for Cs, as well as for Hs norms.
We will use the truncation operators

TNf(·) =
∑
|k|≤N

f̂(k)e2iπk·

ṪNf(·) = TNf(·)− f̂(0)
RNf(·) =

∑
|k|>N

f̂(k)e2iπk· and

Ṫ f(·) = Tf(·)− f̂(0)
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These operators satisfy the estimates

‖TNf(·)‖Cs ≤ Cs,s′N
(d+1)/2 ‖f(·)‖Cs

‖RNf(·)‖Cs ≤ Cs
‖f(·)‖Cs′
N s′−s−d−1

The Fourier spectrum of a function will be denoted by

σ̂(f) = {k ∈ Zd, f̂(k) 6= 0}

We will also use the norm

‖f‖2Ḣ1 =
∑

k2|f̂(k)|2

called the homogeneous H1 norm.

1.2.3 The Nash-Moser inverse function theorem

This theorem, stated and proved in [Ham82], will be used in the proof of a normal form
theorem in chapter 7. The theorem is stated in the context of tame applications between
Fréchet spaces, for which the model is, say, E = C∞(X,R) spaces with X a compact
manifold. Since the Nash-Moser theorem will be used in exactly such a context, we will
restrict the generality and slightly simplify the statement. In our discussion, we give an
overview of section 4.2 of [Kri99a], rather than referring directly to the R. Hamilton’s
article.

In what follows, E denotes a Fréchet space and ‖·‖s, s ∈ N the family of its seminorms
defining the usual topology of E by the system of neighborhoods of 0 ∈ E

Ui,j = x ∈ E , ‖x‖s < (j + 1)−1, 0 ≤ s ≤ i

where i, j ∈ N∗
The absence of a norm defining the topology of the space E makes the definition

of a differential more difficult than in Banach spaces, but directional derivation (Gâteaux
derivative) is nonetheless well defined. Let U ⊂ E be an open subset and E and F be topo-
logical vector spaces. A continuous mapping f : U → F is called Gâteaux-differentiable if
there exists a mapping

Df : U × E → F
(x, h) 7→ Df(x).h

continuous jointly in (x, h) and linear in h, and such that the following limit exists and
verifies

lim
t→0

f(x+ th)− f(x)
t

= Df(x).h

Higher order differentiability is defined inductively.
A Fréchet space is called graded if the semi-norms defining its topology are increasing

in strength. In the context of C∞(T, g), this amounts to

‖·‖max
s ≤ ‖·‖max

s+1

which is verified by the definition of the norms. In fact, any Fréchet space can be made
into a graded one, by a simple change in the definition of its seminorms. A graded Fréchet
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space is called tame if there exists a family of continuous operators TN , indexed by N ∈ N∗,
satisfying the properties of the truncation operators introduced just above:

‖TNe‖s ≤ Cs.s′N
s−s′+r ‖e‖s

‖RNe‖s ≤ Cs,s′N
s′−s−r ‖e‖s′

for all 0 ≤ s ≤ s′, for a uniform choice of r ∈ N and positive constants Cs.s′ , and where
RN = Id − TN . In general contexts, such operators TN are called smoothing operators,
following the properties of truncation in the usual concrete examples.

A linear application T between graded Fréchet spaces E and F will be called tame if
there exists l ∈ N and a family of positive constants Cs such that

‖Te‖s ≤ Cs ‖e‖s+l , ∀s ∈ N, ∀e ∈ E

where we have used the same notation for seminorms in both spaces.
If E and F are graded Fréchet spaces, U ⊂ E is a neighborhood of 0 and P : (U, 0)→

(F , 0) is a mapping, we will say that it is tame if there exists l ∈ N and a family of positive
constants Cs such that

‖Pf‖s ≤ Cs(1 + ‖f‖s+l), ∀s ∈ N

The following proposition of [Ham82] shows that the basic properties of differential
calculus in Banach spaces survive in this context.

Proposition 1.9. Let X be a compact manifold, E and F two finite-dimensional vector
spaces. Then

1. The spaces C∞(X,E) and C∞(E,F ), furnished with the Cs norms are tame Fréchet
spaces

2. Composition
C∞(X,E)× C∞(E,F ) → C∞(X,F )

(f, g) 7→ g ◦ f
is a tame mapping.

3. If g ∈ C∞(E,F ) is fixed, then

βg : C∞(X,E) → C∞(X,F )
f 7→ g ◦ f

is C∞-tame, and its differential is given by

Dβg : C∞(X,E) → C∞(X,F )
∆f 7→ Dβg(f).∆f

where Dβg(f).∆f represents the mapping x 7→ Dg(f(x)).∆f(x).
4. If g ∈ C∞(E,F ) is fixed, then

βg : C∞(X,F ) → C∞(X,E)
f 7→ f ◦ g

is C∞-tame, and its differential is given by

Dβg : C∞(X,E) → C∞(X,F )
∆f 7→ (x 7→ ∆f(g(x)).g′(x))
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5. if f ∈ C∞(E,E) is invertible, then there exists U , a neighborhood of f , such that

U → C∞(E,E)
g 7→ g−1

is C∞-tame, where g−1 is the inverse function of g in the usual sense.

Finally, we introduce some notation before stating the version of Hamilton’s theorem,
proved in [Kri99a], that we will use.

Let E and F be two tame Fréchet spaces, U ⊂ E a neigborhood of 0, r ∈ N∗ and (Cs)s
a family of positive constants indexed by N. We denote by A(r, (Cs)s, U) the set of tame
mappings f : U → F such that f(0) = 0 and

‖f(x)‖s ≤ Cs(1 + ‖x‖s+r), ∀s ∈ N

The set Ak(r, (Cs)s, U), k ∈ N∪{∞}, is formed by functions f such thatDlf ∈ A(r, (Cs)s, U),
for 0 ≤ l ≤ k. If there exists a tame continuous mapping L : U × F → E, linear in the
second variable, such that for all x ∈ U , Df(x) is invertible and of inverse L(x), we will
write, by abuse of notation, f ∈ A−1(r, (Cs)s, U). If f is both in Ak(r, (Cs)s, U) and
A−1(r, (Cs)s, U), we will write f ∈ Ak,−1(r, (Cs)s, U).

With this notation, we have

Theorem 1.10. Let f ∈ A2,−1(r, (Cs)s, U). Then, there exist r1, ε1, depending only on
r, U and the family Cs, such that f−1, the inverse of f , exists and is well defined in V1,
the neighborhood of 0 ∈ F defined by {‖y‖r1 ≤ ε1}. Moreover, for y ∈ V1, ‖f−1(y)‖s ≤
cs(1 + ‖y‖s+r1).

The following version is a uniform one, and allows estimates on the size of the neigh-
borhood where inversion takes place.

Theorem 1.11. Let f ∈ A2,−1(r, (Cs)s, U), whose derivative Df admits a tame inverse
in U , and M > 0 such that (Df)−1 ∈ A(r, (MCs)s, U). Then, there exists ν > 0 (one
can chose ν = 2), r1 and ε1, depending only on r, U and the family Cs, such that f−1

exists and is well defined in a neighborhood of 0 ∈ F of the form {‖y‖r1 ≤ M−νε1}. In
this neighborhood, f−1 ∈ A2(r1, (M−νCs)s)

1.3 Arithmetics, continued fraction expansion

A deep introduction into arithmetics and continued fraction expansion can be found
in [Khi63]. A geometric interpretation of the algorithm, followed by an introduction to
K.A.M. theory can be found in [Arn83].

Let us introduce some notation:
– |||α||| = |α|Z = dist(α,Z) = minZ |α− l|
– [α] the integer part of α
– {α} the fractional part of α
– G(α) = {α−1}, the Gauss map.
where α is a real number.

Consider α ∈ T \Q fixed, and let p−2 = q−1 = 0 and p−1 = q−2 = 1. Then (pn/qn)n≥0
is the sequence of best rational approximations of α defined recursively as follows. Let



1.3. Arithmetics, continued fraction expansion 33

αn = Gn(α) = G(αn−1), an = [α−1
n−1], 5 and βn =

n∏
0
αk. Then the Euclidean division of

βn−2 by βn−1 reads
βn−2 = anβn−1 + βn

and

qn = anqn−1 + qn−2

pn = anpn−1 + pn−2

pn and qn are strictly positive for n ≥ 1 and βn = (−1)n(qnα− pn). We have

1
qn + qn+1

< βn <
1

qn+1
|||qn−1α||| < |||kα|||, ∀ 0 < k < qn

Moreover, for all n,
αnαn−1 <

1
2

and consequently
βn < 2−n/2

The following notion is essential in K.A.M. theory. It is related with the quantification
of the closeness of rational numbers to certain classes of irrational numbers.

Definition 1.12. We will denote by DC(γ, τ) the set of numbers α in T \Q such that for
any k 6= 0, |||αk||| ≥ γ−1

|k|1+τ . Such numbers are called Diophantine. The set DC(γ, τ), for
τ > 1 fixed and γ ∈ R∗+ is of positive Haar measure in T. If we fix τ and let γ run through
the positive real numbers, we obtain ∪γ>0DC(γ, τ) which is of full Haar measure.

The numbers that do not satisfy any Diophantine condition are called Liouvillean.
They form a residual set of 0 Lebesgue measure.

This last following definition concerns the relation of the approximation of an irrational
number with its continued fractions representation.

Definition 1.13. We will denote by RDC(γ, τ) is the set of recurrent Diophantine num-
bers, i.e. the α in T \ Q such that Gn(α) ∈ DC(γ, τ) for infinitely many n and is also of
full measure, since the Gauss map is ergodic with respect to a smooth measure.

In contexts where the parameters γ and τ are not significant, they will be omitted in
the notation of both sets.

5. We hope that the reader will not confuse the natural numbers an introduced in the continued fractions
expansion with the mappings an(·) used in the renormalization scheme (cf. the corresponding section).





Chapter 2

Cocycles in Td ×G

2.1 Definitions and general properties

Let α = (α1, ..., αd) ∈ Td, d ∈ N∗, be a topologically minimal translation. This
property is, by Kronecker’s theorem, equivalent to (α1, ..., αd, 1) ∈ Rd+1 being linearly
independent over Z. The translation Td 	 will sometimes be denoted by Rα : x 7→ x+ α
mod (Zd). In the greatest part of our study we will limit ourselves to the case d = 1,
where minimality is equivalent α being an irrational.

If we also let A(·) ∈ Cs(Td, G), s ∈ N ∪ ∞. Then, the couple (α,A(·)) acts on the
fibered space Td ×G→ Td defining a diffeomorphism by

(α,A(·)).(x, S) = (x+ α,A(x).S)

for any (x, S) ∈ Td × G. We will call such an action a quasiperiodic cocycle over Rα (or
simply a cocycle). The space of such actions is denoted by SW s

α(Td, G) ⊂ Diff s(Td×G)
and d is the number of frequencies of the cocycle. When d and G are clearly defined
by the context, we will abbreviate the notation to SW s

α. Cocycles are a class of fibered
diffeomorphisms, since fibers of Td×G are mapped into fibers, and the mapping from one
fiber to another in general depends on the base point.

The space
⋃
α SW

s
α(Td, G), where the union is over minimal translations, will be de-

noted by SW s(Td, G). The space SW s
α(Td, G) inherits the topology of Cs(Td, G), and

SW s(Td, G) has the standard product topology of Td × Cs(Td, G). The space SW s is
consequently not a complete metric space, something which makes reasoning more deli-
cate when one wishes to vary the frequency. We note that cocycles are defined over more
general maps and in more general contexts of regularity and structure of the basis and
fibers, including Lie groups such as GL(n,R), GL(n,C), SL(n,R), SL(n,C).

If we consider a representation of G on Cw′ , the action of the cocycle can be also defined
on Td×Cw′ , simply by replacing S by a complex vector. A particular case of representation
of a group G is its adjoint representation in g, which is in fact a homomorphism of the
group into Aut(g) with discrete kernel ZG and image Inn(g).

We can define two projections

π1 : SW s(Td, G) → Td
(α,A(·)) 7→ α

and
π2 : SW s(Td, G) → Cs(Td, G)

(α,A(·)) 7→ A(·)
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and we can identify Cs(Td, G) with π−1
1 (0). This identification set aside, α is to be

considered minimal.
The n-th iterate of the action is given by

(α,A(·))n.(x, S) = (nα,An(·)).(x, S) = (x+ nα,An(x).S)

where An(·) represents the quasiperiodic product of matrices equal to

An(·) = A(·+ (n− 1)α)...A(·)

for positive iterates. Negative iterates are found as inverses of positive ones:

(α,A(·))−n = ((α,A(·))n)−1

= (−nα,A∗(· − nα)...A∗(· − α))

The regularity needed for the main results is in fact C∞, but some of the results that will
be used are proved in very small regularity.

We will also need to consider the case where Gj ↪→ G, j = 1, 2, and G1 ∩G2 = Id. If
(α,Aj(·)) are cocycles in Td×Gj over the same rotation in the basis, then we can define a
cocycle in Td×G by their product and we have SW s

α(Td, G1)×SW s
α(Td, G2) ↪→ SW s

α(T, G).
We will denote this cocycle by (α,A1 × A2(·)). Clearly, the subgroup G1 × G2 ⊂ G and
its subgroups are invariant under the action of the product cocycle.

2.2 Classes of cocycles with simple dynamics, conjugation
The cocycle (α,A(·)) is called a constant cocycle if A(·) = A ∈ G is a constant mapping.

In that case, the quasiperiodic product reduces to a simple product of matrices

(α,A)n = (nα,An)

and the dynamics become easy to describe.
Another, more general, distinct class of cocycles having relatively simple dynamics is

given by the applications A(·) taking values in a maximal torus of G. Such a cocycle will
be called abelian. The interest of abelian cocycles lies in the the existence of a discrete
invariant that distinguishes the qualitatively different types of dynamics (c.f. chapter 3),
as well as in the fact that it is the most complex case in which iteration can be made
explicit. More precisely, let (α,A(·)) be an abelian cocycle, and call T a maximal torus
in which A(·) takes its values. Let us also fix a basis (hρ) of t, the Lie algebra of T . With
these choices, there exists a vector r = (rρ) ∈ Zw, periodic functions of zero mean value
φρ(·) and a =

∑
ρ aρhρ ∈ t, such that

A(·) = exp(
∑

ρ
(2πrρ ·+φρ(·) + aρ)hρ) (2.1)

The iterates of such a cocycle can be calculated explicitly, namely

(α,A(·))n = (nα, exp(
∑

ρ
(2πrρn(·+ (n− 1)

2 α) + Sαnφρ(·) + naρ)hρ))

where Sαnφ(·) stands for the Birkhoff sum of the function φ(·) over the translation by α

Sαnφ(·) =
n−1∑
k=0

φ(·+ kα)



2.2. Classes of cocycles with simple dynamics, conjugation 37

Clearly, non-commutativity of the values of the mapping over some fibers x and x + α
ruins the calculation.

The group Cs(Td, G) ⊂ SW s(Td, G) acts by dynamical conjugation: Let B(·) ∈
Cs(Td, G) and (α,A(·)) ∈ SW s(Td, G). Then we define

ConjB(·).(α,A(·)) = (α,B(·+ α).A(·).B−1(·))
= (0, B(·)) ◦ (α,A(·)) ◦ (0, B(·))−1

which is in fact a change of variables within each fiber of the product Td×G. The dynamics
of ConjB(·).(α,A(·)) and (α,A(·)) are essentially the same, since

(ConjB(·).(α,A(·)))n = (nα,B(·+ nα).An(·).B(·))−1

Definition 2.1. Two cocycles (α,A(·)) and (α, Ã(·)) in SW s
α(Td, G) are called Cs-conjugate

modulo m ∈ N∗ iff there exists B(·) ∈ Cs(mT, G) such that (α, Ã(·)) = ConjB(·).(α,A(·)).
We will use the notation

(α,A(·)) ∼ (α, Ã(·))

to state that the two cocycles are conjugate to each other.

We remark that it is indeed possible for cocycles in SW s
α(Td, G) to be conjugate modulo

m with m ≥ 2. We will encounter such examples later on.
Since the dynamics is determined up to a conjugation, we are interested in the density

properties of the orbits of the classes described above and this motivates the following
definition:

Definition 2.2. A cocycle will be called Cs-reducible (modulo m) iff it is Cs-conjugate
(modulo m) to a constant, and Cs-torus-reducible (modulo m) iff it is Cs-conjugate (mod-
ulo m) to an abelian cocycle.

In these definitions the conjugacy is implicitly supposed to take its values in G. If we
fix a unitary representation of G ↪→ U(w′), we can define a somewhat weaker notion of
(torus-)reducibility, namely reducibility in the ambient group U(w′), which we will refer
to as U(w′) (torus-)reducibility.

Finally, since it is known that not all cocycles are reducible (e.g. generic abelian
cocycles over Liouvillean rotations, but also cocycles over Diophantine rotations, even
though this result is hard to obtain, see [Eli02]) we also need the following concept.

Definition 2.3. A cocycle (α,A(.)) is said to be almost reducible mod m, m ∈ N∗, if
there exists sequence of conjugations Bn(·) ∈ C∞(mTd, G), such that ConjBn(·).(α,A(·))
becomes arbitrarily close to constants in the C∞ topology, i.e. iff there exists (An), a
sequence in G, such that

A∗nBn(·+ α)A(·)B∗n(·)→ Id

in C∞(mTd, G).

The last and weakest notion of reducibility is that of quasi-reducibility. It is a version
of almost reducibility where we allow Bn(·) ∈ C∞(PnTd, G) and Pn →∞ and we demand
that

A∗nBn(Pn ·+α)A(Pn·)B∗n(Pn·)→ Id

in C∞(Td, G). This notion is better adapted to cases where construction of a conjugation
is not possible without a loss of periodicity.
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2.3 Some considerations and results on reducibility of cocy-
cles

Let us now study the construction of conjugacies in some cases which have come to be
considered simple. For this reason, we will allow G to be a more general Lie group than
in the rest of the work.

The simplest case of cocycles occurs when the group G is abelian. Cocycles in T× R
where studied for example in [Yoc95] in the resolution of the linearized equation satisfied
by commuting diffeomorphisms of S1. We also refer to [Arn83] and [KH96]. A cocycle in
this setting has the form (α, φ(·)) and the dynamics are given by

(x, y) 7→ (x+ α, φ(x) + y)

Suppose now that two cocycles over the same rotation α are given, (α, φ1(·)) and (α, φ2(·)).
These cocycles are conjugate to each other iff there exists ψ(·) : T→ R such that

ψ(·+ α) + φ1(·)− ψ(·) = φ2(·)

or
ψ(·+ α)− ψ(·) = φ2(·)− φ1(·)

Since R is abelian, conjugating (α, φ1(·)) to (α, φ2(·)) is equivalent to conjugating (α, φ(·))
to (α, 0), where φ(·) = φ1(·)− φ2(·), so that this last equation reads

ψ(·+ α)− ψ(·) = φ(·) (2.2)

This equation, whose unknown is the conjugant ψ is called a linear cohomological equation.
Periodicity of the functions implies that φ̂(0) = 0 (or equivalently φ̂1(0) = φ̂2(0)) is

a necessary condition for the existence of such a ψ. For this reason φ̂(0) is called the
obstruction of such an equation. If φ̂(0) 6= 0, we can only solve the equation

ψ(·+ α)− ψ(·) = φ(·)− φ̂(0)
= Ṫ φ(·)

Application of the Fourier transform shows that such a ψ must satisfy, for k 6= 0,

ψ̂(k) = 1
e2iπkα − 1 φ̂(k)

Since α is irrational (the equivalent to minimality of Rα for one-frequency cocycles),
e2iπkα − 1 is never 0, and therefore eq. 2.2 admits as a solution at least a "formal Fourier
series", so long as φ(·) is, say, in L2. The convergence of the Fourier series of such a
solution is related to small denominator phenomena, since e2iπkα is arbitrarily close to 1
for an infinite number of k (e.g. for k equal to some qn, the denominators of continued
fractions approximations).

The convergence of
∑
ψ̂(k)e2iπk· is guaranteed under some smoothness conditions on φ

and/or some arithmetic conditions on α. For example, if φ is a trigonometric polynomial,

φ(·) =
∑

0<|k|≤N
φ̂(k)e2iπkα

then the Fourier series of ψ is finite and thus converges, for any irrational α, and

‖ψ‖s ≤ C(α,N) ‖φ‖s
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Unfortunately, for a fixed α, the constant C(α,N) goes to infinity as N grows, and it
cannot be chosen uniform with respect to N .

Another rather gentle case is when φ(·) is real analytic and admits an analytic extension
to the complex band |=(z)| ≤ δ. In this case, if we denote by ‖φ‖δ = sup|=(z)|≤δ(|φ(z)|),
Cauchy’s formula implies that

|φ̂(k)| ≤ ‖φ‖δ e
−2iπ|k|δ

The converse is not exactly true, meaning that if the Fourier coefficients of a real function
decay like e−2iπ|k|δ, then the function admits an analytic extension only to the open band
|=(z)| < δ. Under these assumptions, the series

∑
ψ̂(k)e2iπk· converges provided that

there exists 0 < δ′ < δ and a positive constant C such that for all k

|e2iπkα − 1| ≥ Ce−2iπ|k|δ′

The solution ψ is then real analytic, but admits an extension to a smaller complex band
|=(z)| ≤ δ′′ < δ − δ′. However, convergence in this case is not a robust phenomenon, as
the arithmetic condition on α is related to the analyticity properties of φ.

If we pass on to lower regularity and suppose that φ is smooth, it is a classical fact
that its Fourier coefficients decay subexponentially:

|P (k)φ̂(k)| → 0

for any polynomial function P (k). Therefore, if inf |k|≤N |e2iπkα− 1| degenerates not faster
than some negative power of k as N →∞, the solution will be well defined. This property
is satisfied by the class of Diophantine numbers, i.e. those for which there exist τ > 1 and
γ > 0 such that

|kα|Z ≥
γ−1

|k|τ

For such an α, the constant C(α,N) can be chosen to grow at a rate O(N τ+1/2) as N →∞.
As a consequence, ‖ψ‖s is not controled by ‖φ‖s, but the polynomial growth results in a
loss of τ + 1/2 derivatives:
Lemma 2.4. Let α ∈ DC(γ, τ) and φ(·) ∈ C∞(T,R). Then, there exists ψ ∈ C∞(T,R)
such that

ψ(x+ α)− ψ(x) = φ(x)− φ̂(0)
The solution ψ satisfies the estimate ‖ψ‖s . γ ‖φ‖s+τ+1/2, where the constant is uni-

versal and depends only on s, and is unique modulo additive constants.
We remind the reader that Diophantine numbers are defined in definition 1.12.

Proof. Using the diophantine condition on α, we find that for k 6= 0

|ψ̂(k)| ≤ γ|k|τ |φ̂(k)|

Therefore,

‖ψ‖2s ≤
∑
k∈Z

(1 + |k|)2s+1|ψ̂(k)|2

. γ2 ∑
k∈Z

(1 + |k|)2s+1|k|2τ |φ̂(k)|2

. γ2 ∑
k∈Z

(1 + |k|)2s+2τ+1|φ̂(k)|2

. γ2‖φ‖2s+τ+1/2

where the constant may change from one line to another.
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We remark that in the general case where d ≥ 1, the same result holds if we replace
the estimate by

‖ψ‖s . γ ‖φ‖s+τ+d/2

On the other hand, if α is Liouvillean, then
∑
ψ̂(k)e2iπk· should be expected to diverge,

and this is so for generic C∞ functions. In the case where the inequality

|e2iπkα − 1| ≥ C.e−2iπ|k|δ′

is violated for an infinite set of k and arbitrarily small δ′ > 0, convergence fails even for
generic real analytic functions and the "formal Fourier series" is not even the Fourier series
of a distribution. We can conclude that this kind of arithmetic obstructions to reducibility
is already present in the simplest of algebraic settings.

A second kind of obstructions to reducibility is the one related to homotopy. Cocy-
cles conjugate to each other are always homotopic to each other, independently of the
arithmetic properties of the rotation in the basis. In order to be precise, let us suppose
that (α,Ai(·)). i = 1, 2, are continuous and conjugate to each other, and that B(·) is
continuous. The path in C0(Td, G)

B(·+ (1− t)α)A2(·)B−1(·)

deforms continuously A1(·) to B(·)A2(·)B−1(·). Since the homotopy group of a compact
Lie group G is that of T ↪→ G, where T is a maximal torus, we can deform continuously
A2(·) to Ã(·) and B(·) to B̃(·) which they take values in T . As a consequence, both
A1(·) and A2(·) are homotopic to Ã(·). In particular, a reducible cocycle is homotopic to
constants, and so are almost reducible cocycles.

An example of a cocycle which is not reducible and not almost reducible for this exact
reason is

(α,R2π·) ∈ SW∞(Td, SO(3))

for any minimal α. This cocycle, as well as C0-small perurbations of it, are not reducible.
Its second iterate,

(2α,R4π(·+α))

admits a lift in SW∞(Td, SU(2)), which is (2α,E1(·+α/2)) in the notation that we have
adopted. Since SU(2) is simply connected, there is no topological obstruction to the
reducibility of this cocycle, but it is in fact not reducible. The reason is a non-trivial
theorem by R. Krikorian (cf. theorem 2.8) which is still of topological nature, but this
time the topological space is C∞(Td, SU(2)) and not the group SU(2) itself. Since the
reason for the non-reducibility of (2α,E1(· + α)) is not a discrete invariant, one could
expect (and it is in fact true, cf. theorem 2.9 ) that arbitrarily small perturbations of this
cocycle become almost reducible.

One could call such obstructions geometric ones, since one of the results of this thesis
is that, at least for one-frequency coycles, cocycles which are not conjugate in any way
close to constant ones are those whose dynamics are close to the geodesics of G.

The third type of obstructions is of purely dynamical nature and they were constructed
in [Eli02]. The obstruction in this case is unique ergodicity of the dynamics in Td×SO(3),
where the preserved measure is the product of the Haar measures on the basis and the
fibers. A constant cocycle (α,Rϑ) admits many invariant measures, such as the uniform
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measure on the closure of any orbit {RkϑA}k∈Z ⊂ SO(3). Since {Rkϑ}k∈Z is not dense
in SO(3), this gives more than one ergodic measures: consider, e.g., the orbit of the Id
(which is precicely {Rkϑ}k∈Z) and that of1 0 0

0 0 −1
0 1 0


which consists of the points cos(kϑ) 0 sin(kϑ)

sin(kϑ) 0 − cos(kϑ)
0 1 0


for k ∈ Z. Since conjugation preserves the fibers, any reducible cocycle has similar ergodic
measures.

The construction of these cocycles by a K.A.M. scheme shows in fact that non-reducible
cocycles are not exotic objects that live far from the well understood constant cocycles,
since they are in fact almost reducible.

We close this chapter by stating some results in the existing litterature concerning
the reducibility of quasiperiofic skew-systems in compact Lie groups. These theorems are
stated in the continuous-time case, but their proofs work equally well in the discrete time
case.

Firstly, let us give two positive results in the local setting, by R. Krikorian, the first
one being on the density of reducible cocycles in the neighborhood of constants, proved in
[Kri99a].

Theorem 2.5. Let G be a compact semisimple Lie group ω ∈ DCd(γ, σ), i.e. such that

|(k, ω)− l| ≥ γ−1

|k|σ
, k ∈ Zd\{0}, l ∈ Z

Then, there exist ε0, s0 > 0 and a natural number χG, depending only on the group G,
such that, for all A ∈ g and F ∈ C∞(Td, g) satisfying ‖F‖s0

≤ ε0 and every ε, s > 0, there
exists F ′ ∈ C∞(χGTd, g) such that (ω/2π,A + F ′(·)) is reducible mod χG and satisfies
‖F − F ′‖s ≤ ε. If G = SO(3), or SU(w + 1), one can take χG = 1. In other words,
reducible systems are dense in

{A+ F (·), A ∈ g, F ∈ C∞(Td, g), ‖F‖s0
≤ ε0}, g = so(3), su(w + 1)

A corollary of the proof of the theorem is the quasi-reducibility of systems satisfying
the same smallness condition.

Since the density properties are quite delicate and (as shows the proof) reducibility
cannot be concluded, at least in the K.A.M. constructive sense, for an individual system,
such theorems are in general coupled with prevalence theorems, where one embeds an
individual system or cocycle in a family of such systems depending on parameters, and
then studies the measure-theoretic abundance of reducible systems with respect to the
parameters. The first such theorems, proofs of which are in the scope of classical K.A.M.
theory, asserted that for generic one-parameter families there is reducibility for a set of
positive measure in the parameter space, and the measure tends to be full as the size of
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the perturbation goes to 0 (the "K.A.M. tongues"). For this part of the theory, one can
consult [Eli88] and [Kri99a].

These theorems have been improved to prevalence theorems, i.e. theorems asserting
reducibility in full measure for generic one-parameter families. This improvement has been
possible only for analytic cocycles, in contrast with positive measure theorems who have
also been proved in the C∞ case ([Kri99a]).

The prevalence theorem that we cite next was proved in [Kri99b].

Theorem 2.6. Let G and ω as above, h > 0, Λ ⊂ R an interval and A ∈ g, generic.
Then, there exists ε0, depending on Λ, A, ω, h, such that, if F (·) ∈ Cωh (Td, G) satisfies
|F |h < ε0, then for a.e. λ ∈ Λ, (ω/2π, λA + F (·)) is reducible mod χG. If G = SO(3),
or SU(w + 1), one can take χG = 1

The local picture as we know it is completed by H. Eliasson’s theorem, which we have
already discussed.

Theorem 2.7. Let ω as above and let h > 0. Then, there exists a constant C = C(h, σ)
such that the set of F (·) ∈ Cωh (Td, so(3)) for which the system (ω/2π, F (·)) has a unique
invariant measure is a Gδ-dense set.

We also cite the following theorem of qualitative nature, proved in [Kri99a] (theorem
2.2.3 )

Theorem 2.8. Let G be a compact connected semisimple Lie group, ω ∈ Td a mini-
mal translation and (α,A(·)) ∈ SW∞(Td, G), such that {(α,A(·))n}n∈Z be precompact in
SW∞(Td, G) for the C∞ topology. Then, there exists A0 ∈ G and B(·) ∈ C∞(Rd/χ̃GZd, G)
such that

A(·) = B(·+ α)A0B
∗(·)

The integer χ̃G can be chosen equal to cGχG, and if χG = 1 it can be chosen equal to 1.

where we remind that χG is a constant depending only on G.
We remark that the inverse is trivially true, and we give the immediate corollary

Corollary 2.9. A cocycle (α,A(·)) ∈ SW∞(Td, G) is reducible, possibly modulo χ̃G, if,
and only if, there exists q ∈ Z∗ such that (α,A(·))q is reducible.

As for the problem of reducibility in an ambient group and intrinsic reducibility, C.
Chavaudret has shown in [Cha11] that the two notions actually coincide for the classical
subroups ofGL(m,R) andGL(m,C) (such as symplectic, orthogonal and unitary), modulo
a loss of periodicity in the transfer function, depending only on the group. Consequently, if
we consider the embeddings G ↪→ U(w′) ↪→ GL(w′,C), U(w′)-reducibility and reducibility
under the weaker algebraic constraints in GL(w′,C) coincide, while the equivalence of
U(w′)- and G-reducibility is an open question.

Finally, we conclude with the results obtained more recently in the global setting, i.e.
where there is no assumption of closeness to constants for the studied system. Although it
was preceded by some preliminary results by K. Fraczek ([Fra00]), the first general result
of global density is due to R. Krikorian ([Kri01]):

Theorem 2.10. There exists Σ ⊂ T, of full measure such that, for α ∈ Σ, reducible
cocycles are dense in SW∞α (T, SU(2)) in the C∞ topology.
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The set Σ as it is defined is slightly thinner than RDC (see definition 1.13). The
proof of the theorem relies in the renormalization of dynamics, which consists roughly in
iterating the cocycle qn times, where qn is given by the continued fractions algorithm, and
then using the fact that the scale q−1

n of the qn-th iterate caracterizes the dynamics of the
cocycle itself in the original scale.

Then, two cases are distinguished. Either the rescaled iterate is close to constants,
in which case the cocycle itself can be conjugated to a perturbation of a constant, or all
rescaled iterates remain bounded away from constants. In the latter case, the rescaled
iterates are found to converge towards periodic geodesics of the group, which for this
reason are called obstructions to reducibility. The local theory of obstructions shows that,
under the arithmeric condition imposed, a cocycle whose rescaled iterates converge to a
certain obstruction is actually conjugate to the obstruction.

Since the obstructions are shown to be accumulated by cocycles whose rescaled iterates
are closer to constants, a finite induction concludes the proof.

Therefore, a corollary of the proof of the theorem is the quantization of the length of
such rescaled iterates, for cocycles over rotations in Σ and of regularity C2. This result
was generalized by K. Fraczek in [Fra04]

Theorem 2.11. For every (α,A(·)) ∈ SW 1(T, SU(2)), there exists a measurable and
bounded function ψ : T→ su(2) such that

1
n
LAn(·) = 1

n
an(·)→ ψ(·)

Lebesgue a.e.. Moreover, ψ is invariant by the dynamics of the cocycle,

Ad(A(·))ψ(·) = ψ(·+ α)

and therefore |ψ(·)| is a.e. a constant.

This constant was defined to be the degree of the cocycle and in the same paper it was
shown that

Theorem 2.12. If (α,A(·)) ∈ SW 2(T, SU(2)), then its degree is in 2πN.

We remark that no arithmetic conditions, other than irrationality, are assumed for α,
and that from the proof (which uses renormalization) it follows that the degree as defined
by K. Fraczek generalizes the length of rescaled iterates as used by R. Krikorian in his
proof.

Subsequently, K.Fraczek showed that

Theorem 2.13. If (α,Ai(·)) ∈ SW 2(T, SU(2)), i = 1, 2, are measurably conjugate to
each other then their degrees are equal.

Finally, K.Fraczek refined the local study of obstructions and showed that if the rota-
tion in the basis is RDC and the cocycle is of degree r, it is conjugate to the obstruction,
thus obtaining

Theorem 2.14. Reducible cocycles are dense in SW∞α (T, SU(2)) in the C∞ topology if
α ∈ RDC.
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2.4 Statement of the main theorem and plan of the proof

After having established the basic vocabulary, we can state the main theorem of this
thesis.

Theorem 2.15. Let α ∈ RDC and (α,A(·)) ∈ SW∞(T, G). Then, (α,A(·))χG is accu-
mulated by reducible cocycles in SW∞χGα(χGT, G).

In other words, for such α, any cocycle (α,A(·)) in T × G has an iterate which is
accumulated by reducible cocycles and the maximal number of iterations needed in order
to satisfy this property depends only on the group G. We remind that the definition of
the constant χG is found in lemma 1.5.

The proof of this theorem, based on intermediate results some of which have an interest
on their own, occupies the remaining of this thesis. It combines techniques used in the
proof of theorems 2.10, 2.14 and 2.5, which nonetheless have had to be adapted in order to
be applicable in this more general context. An example of the procedure described in full
generality by the proof can be found in the following section, and some complementary
examples are found in sections 3.1.2 and 6.7. Let us give a general plan of the proof.

Abelian cocycles Firstly, in chapter 3, we study briefly the basic examples of non-
reducible cocycles obtained directly from theorem 2.8. These are cocycles C∞-conjugate
to ones of the form (α,Er(·)), where Er(·) is a 1-periodic geodesic of G (for the notation,
see subsection 1.1.1). If (α,A(·)) is such a cocycle, we find that by

lim 1
qn
LAqn(·) (2.3)

with qn as in section 1.3, we can define a smooth curve a(·) : T→ g\{0} which is invariant
under the dynamics:

Ad(A(·)).a(·) = a(·+ α)

The invariance of the curve and the minimality of α imply that the class of the vectors a(·)
in g mod Inn(g) is well defined, and that the curve is in fact traced in a sphere in g (since
the adjoint action of G is an isometry). For such cocycles, in fact, this class is essentially
the degree r ∈ Zw of the geodesic Er(·). Conversely, the existence of such an invariant
curve a(·) implies that, given any vector s ∈ g in the class of a(·), we can conjugate the
dynamics to a cocycle (α, Ã(·)) commuting with s. Two cases are possible : either the
vector s is regular (in the algebraic sense of the first chapter), or it is singular. In the fist
case, since only one maximal torus T passes by s, Ad(Ã(·)).s = s implies that Ã(·) takes
values in T , i.e. (α,A(·)) is torus-reducible. However, if s is singular, torus-reducibility
cannot be concluded by an algebraic reasoning. Such arguments produce only what we will
call a splitting of the dynamics in proposition 3.5. The splitting consists of two subgroups,
G+ and G0, with G+ abelian, the intersection of all maximal tori passing by s, and G0 the
largest subgroup of G commuting with G+ and intersecting with G+ only on the Id. If
the vector s is singular, the cocycle (α,A(·)) can be conjugated to a cocycle taking values
in G0×G+ ↪→ G, which is not abelian. If the invariant curve is obtained as in eq. 2.3, we
can additionally conclude that the part of the dynamics in G+ carries all the linear growth
of the derivatives of the cocycle, and the derivatives in the G0-part grow sublinearly.

The energy of a cocycle In chapter 4 we begin the general study of cocycles. We
drop the assumption that the cocycle (α,A(·)) is torus-reducible, but we define, following
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K. Fraczek, an invariant curve of regularity only L2(T, g). Due to the curve’s low regularity,
we cannot derive conclusions finer than the fact that if it is not degenerate (i.e. if it is
not equal to 0 for a.e. x ∈ T), the cocycle is not reducible. On the other hand, since the
invariance relation holds a.e., we can still define the type of a.e. vector in the image of a(·)
as the degree of the cocycle. The length of these vectors is an invariant of the dynamics
(just as the degree), which we will call energy. There is a shift in terminology with respect
to K. Fraczek’s work, where the degree of a cocycle in T×SU(2) is defined as a numerical
quantity (which corresponds to our energy), as classes of vectors in su(2) ≈ R3 modulo
Inn(su(2)) ≈ SO(3) are spheres centered in the origin, thus completely determined by
their radius. In more general groups, however, the length of vectors in the image of
a(·) is an insufficient invariant, and therefore we need to keep the term degree for their
type. Subsequently, we show that higher derivatives (if they exist) contain no additional
information, since 1

nσ+1∂
σLAn(·)→ 0 in L2, provided that ∂σLA(·) ∈ L2.

The most important properties of the energy are those proven in Proposition 4.3 : the
energy of the n-th iterate is none other than n times the energy of the cocycle, and the
energy of the cocycle (α,A(·)) is not bigger than the energy of the path A(·) : T→ G (i.e.
the L2 norm of its derivative), or its length (i.e. the L1 norm of its derivative). These L2

and L1 norms decrease as n increases due to two causes. One is the averaging, already
present in abelian groups : if φ : T → R, then its Birkhoff sums converge to its mean
value, φ̂(0), which is certainly smaller than ‖φ‖Li , i = 1, 2. The other is the non-alignment
of Ad(A(·)).an−1(·+ α) with a(·) (compare with the invariance relation satisfied by a(·)),
which results in a slower growth of lengths, due to the triangle inequality.

Renormalization The low regularity of the limit object of the dynamics, the curve
a(·), calls for a more sophisticated means of study of the dynamics, known as the renor-
malization scheme, which we present and apply in chapter 5, following R. Krikorian. In
this context, renormalization could be motivated by the observation that, thanks to the
invariance of the curve,

Ad(A(−1)nqn(·)).a(·) = a(·+ βn)

where the quantities qn and βn are given by the continued fractions algorithm (see section
1.3). This fact, together with the fact that the passage in the limit in eq. 2.3 is still
justified in L2, shows that for large n, and around every point ν of Lebesgue continuity of
a(·), A(−1)nqn(·) looks like a piece of geodesic of speed a(ν). Let us fix 0 as such a point
for definiteness. However, since we have iterated qn times, we have lost information, and
we cannot conclude that the dynamics of the original cocycle look like the geodesic.

The lost information is recovered if we do not consider A(−1)nqn(·) separately, but also
the preceding iterate in the continued fractions algorithm, A−(−1)nqn−1(·), which, for n
large enough keeps the same characteristics. The couple of cocycles (βn−1, A−(−1)nqn−1(·))
and (βn, A(−1)nqn(·)) is to be considered as a linearly independent couple of commuting
cocycles which completely describes the dynamics of the original cocycle. Indeed, it is
obtained by lifting the continued fractions algorithm and interpreting division at each
step as iteration of the commuting pair (1, Id) and (α,A(·)). Here, 1 codes the initial
scale of the dynamics, α the dynamics in the basis, A(·) the dynamics in the fibers, and
Id the 1-periodicity of the mapping A(·), as well as the fact that the space in which the
dynamics takes place is T×G, i.e. that all fibers {x} ×G "look the same".

In this spirit, after n steps, in a scale reduced to βn−1, the dynamics of the cocycle
look like the dynamics of (βn, A(−1)nqn(·)), but when the fiber {x} × G is "distorted" by
Dx =

∫
γx
L, where L(S) : G 3 S′ 7→ L(S).S′ = S.S′ ∈ G is the left translation in G and

γx is the path {A−(−1)nqn−1(t)}t∈[0,x]. Since D(0) = Id, the fiber over the base point of
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our study is undistorted. We remark that the distortion of the fibers accumulates as x
increases, so that x in this context is more naturally considered as a real-valued variable.
Since, however, locally around 0 this distortion of the fibers looks like the dynamics, only
with the opposite direction (the sign − in A−(−1)nqn−1(·) accounts for this, echoing the
change of orientation of the Z2 module at each step of the continued fractions algorithm),
restoring the distortion of the fibers along a(0) yields the commuting couple (βn−1, C̃

(n)(·))
and (βn, Ã(n)(·)). Up to a small error, C̃(n)

0 (·) is constant and commutes with the privileged
direction of the dynamics, a(0), and Ã(n)(·) looks like a piece of the geodesic

e(−1)nβ−1
n−1a(0)·Ã

(n)
0 (2.4)

shooting from a point Ã(n)
0 ∈ G which commutes with a(0). Let us write Ã(n)(·) =

e(−1)nβ−1
n−1a(ν)·Ã

(n)
0 (·), where Ã(n)

0 (·) is close to Ã(n)
0 . Commutation of the pair, i.e. the

periodicity of the dynamics in the scale βn−1, yields the quantization of the degree (theorem
5.1):

ea(ν) = Id, a.e. ν ∈ T

If, now, we wish to completely restore the fibers and code the dynamics of (α,A(·)) in
this new scale (theorem 5.3) by a cocycle over the rotation βn, the type of the vector a(ν)
becomes important. Both Ã(n)

0 (·) and C̃(n)
0 (·) are approximately constants commuting with

a(ν). Therefore, if this vector is regular, the constant Ã(n)
0 commutes with the distortion

of the fibers caused by the constant C̃(n)
0 , given by

Dx = exc̃
(n)
0

with c̃(n)
0 a preimage of C̃(n)

0 in g. Therefore, restoration of the fibers does not interfere
with the dynamics, and we obtain a commuting pair of the form

(βn−1, Id) and (βn, eβ
−1
n−1a(0)·Ã

(n)
0 (·))

where again Ã(n)
0 (·) is close to a constant. If, on the other hand, a(ν) is singular, this kind of

non-interference is guaranteed only if we replace the commuting pair with (βn−1, C̃
(n)
ν (·))χ0

and (βn, Ã(n)
ν (·))χ0 . The subscript 0 here stands for the G0 component of the splitting asso-

ciated to the vector a(ν). This remaining non-commutativity within G0 is a manifestation
of the homotopy class of (α,A(·)), as shows lemma 1.5, in which the constant χ0 = χG0 is
defined.

For uniformity in estimates, it is more convenient to rescale the last commuting pair,
so that the new scale of dynamics is normalized to 1. With such a rescaling, we obtain
the commuting pair

(χ, Id) and (χαn, e(−1)nχa(ν)·Ã
(n)
0 (.))

where χ is equal to 1 or χ0 depending on the case. The cocycle (αn, e(−1)nχa(ν)·Ã
(n)
0 (.))

is called a renormalization representative of (α,A(·)) modulo χ, since it represents the
dynamics of the cocycle in a smaller scale (and in a distorted phase space).

If the invariant curve is degenerate to 0 ∈ g, then the same arguments show that the
cocycle has renormalization representatives modulo χ arbitrarily close (χGαn, Ã(n)

0 ), where
Ã

(n)
0 ∈ G is a constant (just follow the preceding arguments with a(0) = 0).
The preceding arguments sum up essentially to saying that the ergodicity of the dynam-

ics in the basis results in the cancellation of non-commutativity in the fibers. Moreover,



2.4. Statement of the main theorem and plan of the proof 47

they interpret the energy (α,A(·)) as the length of the path coding the dynamics of the
qn-th iterate of (α,A(·)) in the scale βn−1. Moreover, they show how commutativity ap-
pears robustly when the lengths in the proper scale are in accordance with the asymptotic
characteristics of the dynamics : initially, non-commutativity makes this lengths decrease,
until the ergodic theorem cancels the non-commutativity. Finally, let us remark that this
derivation shows that the fact that the group G is not commutative does not affect the
asymptotic properties of the dynamics and only marginally (appearing through homotopy)
the models of the dynamics : quantization of the asymptotic length is the same as for co-
cyles in T× Tw and the models of dynamics are (non-abelian) perturbations of geodesics
in Tw ↪→ G.

Finally, the observation that conjugation between cocycles acts on the limit curve by
algebraic conjugation (see the proof of proposition 4.3), can serve as a motivation for
K. Fraczek’s theorem on the measurable invariance of the degree, which we generalize
and strengthen in terms of regularity assumptions (theorem 5.6). Since the invariant
curve defining the degree of a C1 cocycle is measurable, it is reasonable to expect that
measurable conjugation of C1 cocycles, which preserves the properties of their limit curves,
should preserve the degree. We do not know, however a proof of this fact not using
renormalization, although this property is not related to it.

A priori estimates for perturbations of regular cocycles The effect of non-
commutativity is exploited in chapter 6. At this point, we suppose that renormalization
of a given cocycle is not bound to simplify its dynamics, i.e. that the cocycle (α,A(·)) is
given as a perturbation of a geodesic (α,Er,a(·)) whose derivative is equal to the degree of
(α,A(·)) and we obtain some necessary conditions satisfied by the perturbation, summed
up in lemma 6.1.

In order to motivate these estimates, let us restrain ourselves to the case where G =
SU(2) and consider a cocycle whose dynamics in the fibers are given by a perturbation of
Er(·) = exp({2πr·, 0}su(2)), with r ∈ N∗ (for the notation, see subsection 1.1.2). Moreover,
since a perturbation in the diagonal direction (i.e. in the direction commuting with the
privileged direction of the dynamics) dies out thanks to the additive ergodic theorem, let us
suppose that the perturbation is non-zero only in the complex direction of su(2) ≈ R×C,
and write the perturbation in the form U(·) : x 7→ {0, Uz(·)}su(2), with Uz(·) : T → C
small enough. Therefore, we consider a cocycle of the form (α,Er,a(·)eU(·)), with such a
mapping U(·), restrained in the plain orthogonal to er.

Then again, in a simplified context, two possibilities can be distinguished. Either
0 ∈ C is in the bounded component of the complement of the curve Uz(·), or in the
unbounded one, depending on the significance of the constant part of the perturbation
over its non-constant part.

For the first case, let us suppose moreover that the perturbation has only one frequency,
and thus is of the form Uz(·) = εe2iπk· with k 6= 0, so that U(·) = {0, εe2iπk·}. 1 In this
case, ∂U(·) = {0, 2iπεke2iπk·} is orthogonal to U(·), and thus does not commute with
it. Transfer of ∂eU(·) to g = TId gives the first order term ∂U(·) and the second order
term 1

2 [U(·), ∂U(·)]. This second term is, by elementary vector algebra in R3, parallel to
er = LEr,a(·), i.e. in the real line of R× C, and its value is {2πε2k, 0}.

A simple geometric consideration shows that if k > 0 (i.e. if the circle of radius ε

1. The coefficient ε should in fact be chosen in C∗, but its module is the significant part, as the imaginary
part only introduces a phase in the perturbation, which by the geometric argument given below should
se easily seen to be irrelevant. The parameter ε remains, nonetheless a 2-dimensional real parameter for
considerations concening the dimension of obstructions.
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in C is traversed in the direction of er) all terms contribute positively in the calculation
of the L2 norm of the derivative. If, however, k < 0, the bracket {2πε2k, 0} is in the
opposite direction than er : the path A(·) is traversed with a speed equal to 2π(r− ε2|k|),
constantly smaller than 2πr at least in the diagonal direction. On the other hand, the
term in the complex direction, ∂U(·), contributes to the L2 norm by (2πkε)2. Therefore,
if k ≤ −2r, this drift in the real direction is compensated by the movement within the
complex one. On the other hand, for −2r+ 1 ≤ k < 0, the contribution remains negative.
The same calculation when all Fourier modes are authorized in the perturbation shows
that, at least in the order of ε2, the frequencies are not mixed, so that the conclusion
remains valid : if the perturbation rotates clockwise in {0}×C around R sufficiently fast,
the counter-clockwise rotation of the geodesic does not compensate it, and the cocycle
cannot be of degree r.

Up to now there is no dynamics in the estimates, but it comes into effect when the
perturbation is of the second type, i.e. if 0 is in the unbounded component of the comple-
ment of Uz(·). In this case, the constant part is the principal part of the perturbation, so
let us suppose that the perturbation is actually constant :

A(·) = Er(·)e{0,z}

where z ∈ C∗ is small. The path is merely a (right) translate of the geodesic Er(·), so that
is length is that of the geodesic. Surprisingly enough, in the second iterate of this cocycle
the previous phenomenon appears:

A(·+ α).A(·) = Er(·+ α)e{0,z}.Er(·)e{0,z}

= E2r(·)Er(α)e{0,z e−4iπr·}.e{0,z}

The constants Er(α) and e{0,z} are insignificant, and the previous reasoning applies with
r replaced by 2r. In both cases, the fact that estimation of the length is continuous in the
C1 topology completes the picture when G = SU(2). For definiteness and comparability
with the general case, we remind that not r, but 2r corresponds to rρ in the notation for
general Lie groups.

Finally, since su(2) is embedded in any semi-simple compact Lie algebra, and since
the interaction of different such subalgebras is of higher order, the result remains true for
any compact algebra g.

These estimates allow a preliminary description of the configuration in SW∞α (T, G)
of the conjugacy classes of periodic geodesics (section 6.7), for any α ∈ T \ Q. From the
estimates, we obtain directly that periodic geodesics are accumulated by open sets (in
the C1 topology) of cocycles of energy strictly smaller than the energy of the geodesic.
Since any cocycle (α,A(·)) has renormalization representatives mod χ arbitrarily close
such a geodesic, we can perturb such a renormalization representative and obtain a co-
cycle of smaller energy. This perturbed cocycle is the renormalization representative of
a cocycle (χα,A′(·)) ∈ SW∞(χT, G). However, due to the distortion-restoration of the
fibers and the rescaling, we cannot relate the smallness of the perturbation of the renor-
malization representatives to the distance of the cocycles (α,A(·))χ and (χα,A′(·)). We
can say, nonetheless, that Aχ(·) can be continuously deformed to A′(·), and that, if we
go deep enough into renormalization, we can make the perturbation of the representative
arbitrarily small.

As a conclusion, we can say that the different conjugacy classes are not too far from
each other, unlike their discrete repartition in SW∞(T,Tw), and that it is precisely the
non-commutativity of G which destroys this structure. On the other hand, this argument
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cannot be pushed any further, and a more precise conclusion demands a study of the
renormalization representatives as cocycles : if some renormalization representative can
be conjugated arbitrarily close to the limit object, since the distortion of the fibers and
the rescaling factor have been kept constant, the same follows for the cocycle (α,A(·)).
Likewise, if the renormalization representative is accumulated by cocycles reducible to the
limit object, we can conclude that the propertt of accumulation by lower energy cocycles
holds equally for the cocycle (α,A(·))itself.

Perturbations of regular geodesics The local study of the limit objects starts
in chapter 7 with the local study of regular geodesics. From this chapter on, unlike with
the previous ones, we suppose that the rotation α satisfies some recurrent Diophantine
condition (see definition 1.13), so that K.A.M. and K.A.M.-like methods are applicable.

In this chapter we suppose that the cocycle (αn, Er,an(·).eUn(·)) is given, where αn ∈
DC, Un(·) : T → g satisfies some smallness condition in C∞ and Er,an(·) is a regular
geodesic. The hypothesis that αn ∈ DC is satisfied by the definition of RDC if we
consider a subsequence in the renormalization scheme. Moreover, we suppose that the
degree of the renormalization representative of some cocycle is r, equal to the degree of
(αn, Er,an(·)).

These assumptions pose the problem as that of the study of perturbations of regular
geodesics over Diophantine rotations, the perturbations being of the same degree as the
geodesics. In order to simplify the notation and since we have established the connection
of this setting with the global problem, we suppose that the cocycle is given in the form
(α,Er,a(·).eU(·)) is given, where α ∈ DC.

The regularity of Er,a(·) implies that for every embedding su(2) ↪→ g corresponding to
a root ρ, there exists an integer rρ 6= 0 such that Ad(Er,a(·)).jρ = 2iπrρjρ. So, we suppose,
with no serious loss of generality 2 that G = SU(2), and that Er,a(·) = {e2iπr(·+a), 0}SU(2).

The a priori estimates obtained in the preceding chapter and described just above
indicate that only a part of the spectrum of the perturbation is significant, since the non-
commutativity of a perturbation spectrally supported in this part of the spectrum with
the limit object cannot be evened out by the ergodic theorem.

Before connecting this fact with the local theory of regular geodesic, let us state a more
general remark on the local theory of models of cocycles. Let us suppose that the cocycle

(α,A(·))

is a model of dynamics in which we are interested, and let us consider a small perturbation
of it in the form

(α,A(·)eU(·))
where U(·) : T → g is small. What one would wish in the context of the local theory
of (α,A(·)) would be to find a conjugation, hopefully of the order of U(·), conjugating
the perturbed cocycle to the exact model. The conjugant is supposed to be of the form
exp(Y (·)), where again Y (·) is supposed to be small. The equation satisfied by such a Y (·)
is a non-linear one, namely

eY (·+α).A(·).eU(·).e−Y (·) = A(·)

or
eAd(A∗(·)).Y (·+α).eU(·).e−Y (·) = Id

2. The only loss is that we are forced to consider only rρ ∈ 2Z∗ rather than in Z∗, but this does not
affect our discussion. The discussion remains true of one formally substitutes r = 1/2, so the remaining
case can be obtained.
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The exact model acts on the conjugant by algebraic conjugation along the translation by
α. Since this equation is non-linear, we opt for the solution of the linearized one, which
reads

Ad(A∗(·)).Y (·+ α)− Y (·) = −U(·) (2.5)

and therefore renounce in single-handedly conjugating the perturbed cocycle to the exact
model, but only reducing it to

eY (·+α).A(·).eU(·).e−Y (·) = A(·)eU ′(·)

with U ′(·) much smaller ("of second order") than the initial pertrubation U(·). This will
hopefully (i.e. under some relevant assumptions) give rise to an iterative scheme which
will settle the question. Unfortunately, even this is not possible, at least not in general,
as, for a given A(·), the closure of the image of the operator

Y (·) 7→ Ad(A∗(·)).Y (·+ α)− Y (·) (2.6)

in C∞(T, g) may not fill the space. This implies that the first order phenomena in the
complementary space cannot be reduced, and as we will see later on, this fact admits a
dynamical interpretation, and is not a failure of our method. The space complementary
to the image of the operator constitutes the dynamical obstructions to reducibility to the
exact model, which may not have the same dynamics as the model. The obstructions can
roughly be described as the part of the dynamics on which the adjoint action of the exact
model resembles to the dynamics in the basis, as the part of the dynamics that the exact
model does not see. In fact, we will in some cases interpret the exact model perturbed by
the obstructions as the actual model around which the linearization takes place.

Let us now return to the special case under consideration. The conjugation equation,
studied in section 7.3, then reads

Ad(E∗r,a(x)).Y (x+ α)− Y (x) = −U(x)

which, if we note Y (·) = {Yt(·), Yz(·)}su(2), decomposes into

Yt(·+ α)− Yt(·) = −Ut(·)
e−4iπr(·+a).Yz(·+ α)− Yz(·) = −Uz(·)

In the first equation, small divisor phenomena appear, but they are related only to α,
so that the assumption that α ∈ DC settles this part of the perturbation (see lemma 2.4).
We remind that the only topological obstruction to the solution of the equation concerns
the mean value of the rhs function, which is an abelian constant, so that its dynamics are
of the same type as those of (α,Er,a(·)), only with a different a.

The second equation reads, in the space of frequencies,

e2iπ((k+2r)α−2a)Ŷz(k + 2r)− Ŷz(k) = Ûz(k) (2.7)

for all k ∈ Z. It is a difference equation of step 2r in the space of rapidly decaying
sequences, so that its free parameters are 2r terms of the sequence. Since these parameters,
which are in fact the obstructions whose dynamics are of a different type than those of the
model, are freely chosen, we can place them in the interval {−2r+ 1, · · · , 0}. The picture
then becomes clear: if these obstructions are strong enough, the a priori estimates show
that the cocycle cannot be of degree r. This observation gives rise to the K.A.M. scheme
of [Kri01], a variant of which we use in chapter 9. This method, sufficient for the proof
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of the density theorem, shows that if the cocycle (α,A(·)) is a small enough perturbation
of (α,Er,a(·)), the smallness depending on α ∈ DC, and if (α,A(·)) is of degree r, then
it is smoothly conjugate to (α,Er,a′(·)). A fundamental reason for the convergence of
the scheme (apart from the legitimate assumption on the degree) is the absence of small
divisor phenomena due to the dynamics in the fibers: there are no such phenomena in eq.
2.7 and as a consequence the conjugation not only always exists, but it also is of the order
of the perturbation.

This last observation triggers a more general question. Since the core of the difficulties
of K.A.M. theory is absent in this context, can we say more? This is done by dropping
the assumption on the degree of (α,A(·)), thus authorizing non-zero obstructions.

The answer could be seen to be affirmative in the following way. Let us assume that
(α,Er,a(·)eU(·)) is given, and let us write U(·) = Ucob(·) + Uob(·), where Ucob(·) is in the
image 3 of the operator introduced in eq. 2.6, and UOb(·) is in a complementary space, and
it is spectrally supported in {−2r + 1, · · · , 0}. Then, there exists Y (·) ∈ C∞(T, g) such
that

Ad(E−r,−a(x)).Y (x+ α)− Y (x) = −Ucob(x)

Moreover, as we will see in section 7.2, they satisfy good estimates with respect to U(·),
where the constants and the loss of derivatives depend only on α, and therefore are constant
throughout the procedure that we will describe. Consequently, we can write

Er,a(·)eU(·) = Er,a(·)eUcob(·)+U
′(·)eUob(·)

= e−Y (·+α)Er,a′(·)eU
′(·)eUob(·)eY (·)

In these equations, U ′(·) may change from one line to another, but it is quadratic with
respect to U(·) and Y (·), and a′ = a + Ût(0). The next step, however, has to be differ-
ent, since, in general, Uob(·) will be of the order of U(·). This takes us to the study of
perturbations of models of the type

(α,Er,a(·).eP (·))

where P (·) takes values in the space of obstructions 4 and satisfies some fixed a priori
bound, and U(·) is at least quadratic with respect to P (·). Then, conjugation in the
neighborhood of this model reads

eY (·+α).Er,a(·).eU(·).eP (·).e−Y (·) = Er,a′(·).eU
′(·).eP

′(·)

where Y (·) is of the order of U(·), U ′(·) is quadratic with respect to U(·), and P ′(·) is close
to P (·) up to a correction of the order of U(·).

Given the a priori bounds on P (·), and anticipating that Y (·) be of the order of U(·),
we find that, up to quadratic terms, the preceeding equation is equivalent to

eY (·+α).Er,a(·).eU(·).e−Y (·).eP (·) = Er,a′(·).eU
′(·).eP

′(·)

where we have used the fact that the operator Id − Ad(exp(Y (·))) is of the order of
Y (·) (by the estimates on the Hausdorff-Campbell formula of section A.3), and thus

3. Cob stands for coboundary and Ob for obstructions
4. We keep implicit the dependence of the obstructions with respect to the abelian constant a, since

for a′ close to a the space of obstructions of (α,Er,a′ (·)) is a finite-dimensional vector space, canonically
isomorphic to the obstructions of (α,Er,a(·)). In order to see this, is suffices to check that, in the case
where G = SU(2) we can, by introducing a translation x 7→ x+ λ normalize a to 0, and then verify that,
in proposition 7.6, the obstructions Γ behave well under such translations for λ seen now as a parameter
close to 0. Finally, the dimension depends only on r.
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Ad(exp(Y (·))).P (·) = P (·), plus terms of the order of U(·) which we have incorporated in
U(·). 5 Rewriting this last equation in a more familiar form gives

eY (·+α).Er,a(·).eU(·).e−Y (·) = Er,a′(·).eU
′(·).eP

′(·)−P (·)

which is exactly the case treated previously:

eY (·+α).Er,a(·).eU(·).e−Y (·) = Er,a′(·).eU
′(·).eUOb(·)

and the step is concluded if we call P ′(·) = P (·) + U ′Ob(·), a′ = a + Ût(0), and U ′(·) the
quadratic term. Iteration is possible, since if the a priori bounds are satisfied with some
margin by P (·), then they are equally satisfied with some margin by P ′(·), and the abelian
constant a′ is not too far from a. Therefore, the scheme whose iterative step we just
described should converge and produce a conjugation Ỹ (·) satisfying

eỸ (·+α).Er,a(·).eU(·).e−Ỹ (·).eP (·) = Er,a′(·).eP̃ (·)

where P̃ (·) takes its values in the space of obstructions.
The scheme in the way we presented it looks more than a classical fixed-point argu-

ment than a K.A.M. scheme, and this is true in a way, since the loss of derivatives and
the constants entering the estimates depend only on r and α, which are kept constant
throughout the scheme, and small divisors are only a secondary phenomenon. The actual
proof, however, is a convergent classical K.A.M. scheme, or its equivalent, the Hamilton
inverse function theorem (theorem 1.10). The exactness of the statement of theorems
7.1 and 7.4 are precisely due to the secondary effect of small divisor phenomena in this
context.

Perturbations of singular geodesics Since the natural place of chapter 9, at
least from the dynamical point of view, is actually before chapter 8, let us try to motivate
the need for a more accurate local theory of constant cocycles, which made chapter 8
necessary. We also hope that it will serve the reader as an introduction for the difficulties
of the K.A.M. scheme finally applied in chapter 9.

Singular cocycles stand in the middle between regular ones and cocycles of 0 energy, in
the sense that their obstruction to reducibility, the invariant curve a(·) is non-degenerate,
but in the same time weaker than the obstruction of a regular cocycle. The first mani-
festation of this fact is already present in renormalization, since a singular cocycle can be
renormalized to a commuting pair of the type

(1, C̃(n)
0 (·)) and (αn, Er(·)Ã(n)

0 (·))

where Ã(n)
0 (·) and C̃(n)

0 (·) are close to constants commuting with er = LEr = a(0). How-
ever, in general we cannot bring this pair to the canonical form, as for regular cocycles

(1, Id) and (αn, Er(·)Ã(n)
0 (·))

unless we iterate χ0 times first, where χ0 is the constant χG0 related to G0, the largest
semisimple subgroup of G not commuting with a(0). We can, nonetheless, always obtain
a commuting pair of the type

(χ0, Id) and (χ0αn, Eχ0rÃ
(n)
0 (·))

5. There is a hidden classical fixed point argument here. In the final proof that we give it does not
appear in this way, but at this point the reader can think of this trick as a trial-and-error procedure, where
the terms coming from [Id − Ad(exp(Y (·)))].P (·) are gradually incorporated in U(·) until equilibrium is
reached. The absence of small divisors guarantees convergence.
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with Ã(n)
0 (·) close to a constant Ã(n)

0 belonging to the same maximal torus as Er(·). By
rescaling by a factor of χ0 and introducing some obvious notation, we can bring ourselves
to the case where the 1-periodic coycle (αn, Er(·)Ã(n)

0 eUn(·)) is given. The RDC condition
on α allows us to assume that αn ∈ DC, so by still simplifying the notation we obtain the
cocycle (α,Er(·)AeU(·)) with U(·) ∈ C∞(T, g) arbitrarily small and α ∈ DC.

A second manifestation of the intermediate character of singular cocycles is the fact
that they can be obtained as renormalization representatives of positive energy perturba-
tions of regular cocycles. For a more concrete illustration of this fact, we refer the reader
to the next section.

This intermediate character makes itself clearer in their local theory, i.e. in the re-
duction of cocycles of the form (α,Er(·)AeU(·)) of degree r, with er ∈ g a singular vector.
In this case, the exact model that we consider is the normal form (α,Er(·)A), and the
conjugation equation 2.5 then reads

Ad(A∗E∗r (·)).Y (·+ α)− Y (·) = −U(·)

We can directly partition roots into two sets. The roots ρ ∈ ∆+ such that [er, jρ] 6= 0
called I(+), and the roots satisfying [er, jρ] = 0, called I(0). The fact that the geodesic
is singular implies that both sets are not empty. The emptiness of I(+) corresponds to a
degenerate curve a(·), while the emptiness of I(0) corresponds to a regular geodesic. The
fact that Er(·) and A belong to the same maximal torus allows us to write the equations
separately in each eigenspace. The equation for the coordinates in the torus is the same
as the one for Yt(·) in 2.7, while the one in the direction ρ ∈ I(+) is of the same type as
that for Yz(·). If, however, ρ ∈ I(0), then the direction jρ commutes with the privileged
direction of the dynamics, so that only the constant part of the normal form acts on the
conjugation via the operator associated to the cocycle (α,Er(·)A) as in eq. 2.6. This is
the characteristic of the perturbation theory of constant cocycles and the source of small
divisor phenomena in the fibers.

The same observation holds in fact for perturbations of the normal form in the direc-
tions jρ. If ρ ∈ I(+), the positive energy part of the dynamics, any perturbation of the
normal form (α,Er(·)A) in the direction jρ with suitably chosen frequencies has energy
strictly smaller than |er|. On the other hand, any small enough perturbation in jρ with
ρ ∈ I(0), the 0 energy part of the dynamics, does not affect the energy, since it is evened
out by the Ergodic theorem. Continuity of such estimates with respect to the C1 norm
allows us to conclude that if U(·) is ε-small in C1 with ε small enough, then a perturbation
of the order of ε is sufficient in order to obtain a cocycle of smaller energy. One only needs
to chose

(α,Er(·)AeU(·)ezjρ)
with |z| big enough, but of the order of ε, and ρ ∈ I(+). In other words, the theorem that
allows us to conclude is the almost reducibility to normal forms, but with a controllable
growth of the conjugations with respect to the decay of perturbations. Let us state what
we need more clearly. Suppose that for (α,Er(·)AeU(·)) of degree r and with U(·) small
enough, there exists a sequence of conjugations Bn(·) : T→ G such that

ConjBn(α,Er(·)AeU(·)) = (α,Er(·)AneUn(·))

with An some sequence of constants commuting with Er(·), and Un(·)→ 0 in C∞. Then,
conjugation is equivalent to

Er(·)AeU(·) = B∗n(·+ α)Er(·)AneUn(·)Bn(·)
= B∗n(·+ α)Er(·)AnBn(·)eAd(B∗n(·)).Un(·)
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Dynamical conjugation acts on perturbations by algebraic conjugation.
Therefore, if Ad(B∗n(·)).Un(·) → 0 in C∞, the previous argument applies and we can

conclude that (α,Er(·)AeU(·)) is accumulated by cocycles of smaller energy, which is a
necessary condition for the density of reducible cocycles.

The independence of positive and 0-energy phenomena, at least in the first order,
motivates a scheme where the initial cocycle (α,Er(·)AeU(·)) is supposed to be of degree
r, and the perturbation is small enough. Then, at each step the conjugation in the
positive and 0-energy parts are applied separately for the linearized problem, so that
(α,Er(·)AneUn(·)) is conjugated to

(α,Er(·)AneObUn(·)eUn+1(·))

where ObUn(·) are the positive energy obstructions of Un(·), as defined in the study of
regular geodesics. Then, since Un+1(·) is quadratic with respect to Un(·), ObUn(·) must
also be quadratic, otherwise the cocycle (α,Er(·)AneObUn(·)eUn+1(·)), which is conjugate
to (α,Er(·)AneUn(·)) would not be of degree r, a contradiction. The scheme is therefore
ready to be iterated.

Such a strategy, however, would demand the almost reducibility theorem for pertur-
bations of constants, which was not available. Its weaker equivalent, the almost quasi-
reducibility theorem, is sufficient for the proof of the local density theorem by the following
trick, used by R. Krikorian 6. The 1-periodic cocycle (α,AeU(·))), sufficiently close to the
constant (α,A), after n steps of the K.A.M. scheme is conjugated by Bn(·) ∈ C∞(cDnT, G)
to a Dn-periodic cocycle (α,AneUn(·))), where Un(Dn·) → 0 in C∞ exponentially fast.
Then, the mapping Un(·) is proved to be increasingly well approximated by 1-periodic
mappings U ′n(·), something with is used in order to obtain a new sequence of conjugations
B′n(·) ∈ C∞(χGT, G), reducing the cocycle (α,AeU(·))) to (α,AneŨn(·))), where still Ũn(·)
goes to 0 ∈ C∞(χGT, g) exponentially fast, while conjugations grow polynomially. Then,
embedding of the cocycle (α,AneŨn(·))) in a suitably chosen one-parameter family and
use of the reducibility in positive measure guarantees that there exists a parturbation of
(α,AneŨn(·))) of the order of Ũn(·) which is reducible. The conjugation reducing this last
cocycle is of the order of the perturbation.

A relevant observation is that in general there exist ρ ∈ I(+) and ρ′ ∈ I(0) such that
[jρ, jρ′ ] 6= 0, for example the vectors j1 and j2 in the example of a singular cocycle in the
next section. As a result, the independence of the reduction in the positive (I(+)) and 0
(I(0)) energy parts of the dynamics holds only in the first order, and the loss of periodicity
in conjugation within the G0 propagates in the rest of the perturbation. This makes the
procedure of regaining periodicity more delicate. Suppose that we have obtained the Dn-
periodic cocycle (α,Er(·)AneUn(·)), with Un(·) very small. Imitation of R. Krikorian’s trick
for regaining periodicity would amount to writing the mapping in the form

Er(·)AneUn(·) = Er(·)AneU
(0)
n (·)eU

(+)
n (·)

where U (0)
n (·) ≈ πg0Un(·) and U (+)

n (·) has a 0 projection in g0. By the local theory, there
exists a perturbation of the cocycle (α,AneU

(0)
n (·)) of the order of Un(·) such that the new

cocycle, (α,AneŨ
(0)
n (·)) is reducible and the conjugation Ỹ (0)

n (·) is of the order of Ũ (0)
n (·).

The cocyle
(α,Er(·)AneŨ

(0)
n (·)eU

(+)
n (·))

6. We present a simplified version of it, for the sake of comprehension of the exposition
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can then be conjugated to the one defined by the mapping

Er(·)A′neAd(Ỹ (0)
n (·)).U(+)

n (·))

The non-commutativity of the positive and 0-energy parts, however, results in the per-
turbation being quadratic, but non-zero, in the 0-energy part. Therefore, only one step
of reduction can be made without having to deal with small divisor phenomena. This
procedure should by iterated to a fixed point argument, but it is obviously a complication
in the proof.

We think that all problems coming from the loss of periodicity in the local theory
of constant cocycles are not impossible to overcome. Neverthelesss, the complications
in the proof of the global density theorem, such us the need for a priori estimates on
perturbations of singular geodesics, where the perturbations have arbitrarily long periods,
or the adaptation of the argument using the reducibility in positive measure would make
the argument very complicated. Finally, the existent local theory does not fit into, and
we were not able to make it fit into, the point of view that we have taken up concerning
the role of obstructions in the dynamics. These reasons motivated the content of chapter
8, which we will resume now.

Revisiting the local theory We now treat the case which, with respect to the
dynamics of the initial cocycle, corresponds to the curve a(·) being degenerate to 0 ∈ g,
i.e. the case of 0 energy. Under this assumption, the initial cocycle (α,A(·)) can be
renormalized to commuting pairs of the form

(βn−1, C̃
(n)) and (βn, Ã(n))

up to an arbitrarily small error, and therefore has renormalization representatives modulo
χG arbitrarily close (χGαn, Ã(n)

0 ), where Ã(n)
0 ∈ G is a constant. These cocycles are

χG-periodic, but we can rescale the torus T and see them as 1-periodic cocycles over
the rotation αn. Again, the RDC condition on α implies that for a subsequence of such
renormalization representatives, αn is in DC, which we will suppose from now on. Finally,
we simplify the notation and suppose that we are given the cocycle (α,AeU(·)), with
α ∈ DC, A ∈ G, and U(·) : T→ g satisfying some smallness condition.

The reason for the differences between the theory of perturbations of periodic geodesics
and that of constants is in the core of the local theory, the importance of small divisor
phenomena, and is not a failure of the methods. The proof of theorem 2.5 relies on a
generalized K.A.M. scheme, following the results of H. Eliasson (see theorem 2.7). In this
context a cocycle of the form (α,AeU(·)) is given, with U(·) : T→ g small enough. Then,
the local conjugation equation 2.5 reads

Ad(A∗).Y (·+ α)− Y (·) = −U(·)

The operator associated the constant cocycle (α,A) always has a positive codimension
image in C∞(T, g). This codimension is bounded by f , the real dimension of g, equal to
w+ 2q, where w is the rank and q is the number of positive roots. The first w constraints,
always present, come from the toral coordinates, where the reduction equation is as for
Yt(·) in eq. 2.7. These obstructions, just as in the local study of regular geodesics, are not
important, since they are always constants, and thus of the same type as the exact model.
The rest 2q constraints come from the complex directions in g. For the direction jρ the
equation reads

e−2iπaρ .Yρ(·+ α)− Yρ(·) = −Uρ(·)
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or, in the frequency space,

(e−2iπ(aρ−kα) − 1).Ŷρ(k) = −Uρ(k) (2.8)

Clearly, this equation is not solvable for the mode kρ ∈ Z if it satisfies

aρ − kρα ∈ Z (2.9)

These obstructions are not always are present, since such a kρ not always exists. If the
kρ satisfying eq. 2.9 (which is automatically unique, since α /∈ Q)) is equal to 0, the
obstruction is of the same type as the constant model around which we have linearized.
Therefore, in this case the obstruction is not important. On the other hand, if kρ 6= 0,
then the corresponding obstruction is a non-constant perturbation and thus of a different
type than (α,A). For this reason, we distinguish this case and call such a root ρ a resonant
root. A constant in G is resonant if it has a resonant root.

The first results in the direction of theorem 2.6 were obtained by systematically ignor-
ing resonant constants, and this approach allowed the proof of reducibility for a positive
measure set in the parameter space. It is based on classical K.A.M. theory which in this
context amounts to supposing that up to a rapidly growing truncation order Nn, the roots
aρ are Kn-away from resonances, with Kn comparable to Nn. Then, for frequencies up
to Nn the equation 2.8 can be solved with good estimates, while if some Cs0 norm (s0
is fixed throughout the scheme) is small enough with respect to Nn, the frequencies not
eliminated form a quadratic term. In this procedure, one needs at each step, by imposing
transversality conditions to the one-parameter family, to assure that the non-resonance
conditions are satisfied for a sufficiently large set of parameters.

If the cocycle is not embedded in such a family, in order to make reduction possible, one
has to be able to cope with resonant constants. In this part, we follow and adapt the proof
of theorem 2.5, a corollary of the proof of which is local quasi-reducibility (see definition
2.3), which in turn was directly based on the approach taken up by H. Eliasson. In section
8.4 we reinterpret H. Eliasson’s reduction of resonances as a reduction of obstructions.
More precisely, at the n-th step of the algorithm we have obtained a cocycle (α,AneUn(·)) by
successive conjugations acting on (α,A.eU(·)). Then, either the constant An is sufficiently
away (i.e. Kn-away) from resonances up to the order of truncation Nn, or not. In the
first case, a all obstructions are constant, so the preceding procedure works, or not. In
the second case, we partition the roots into three categories. The ones for which the
obstruction is constant, called I0 in lemma 8.9, those for which the obstruction is non-
constant, Ir, and those for which there is no obstruction, Id. In the corollary (cor. 8.11)
to this lemma, we prove that if the perturbation Un(·) of the constant cocycle (α,An)
were spectrally supported in the obstructions, then the cocycle (α,An.eUn(·)) would be
reducible, but by a conjugation far from the identity. Our interpretation of the role of the
obstructions calls us to rewrite the cocycle in the form

(α,An.eUn(·)) = (α,An.eObnUn(·).eU
′
n(·))

where ObnUn(·) stands for the obstructions of Un(·) with respect to conjugation in the
neighborhood of (α,An) (i.e. to the operator 2.6), and U ′n(·) has only second order terms
in the space of obstructions. Corollary 8.11 suggests that (α,An.eObnUn(·)) is a good can-
didate for the model around which we linearize, and the technical part of the scheme
confirms it: if we center the truncation on the obstructions by means of the operator
T

(k)
Nn

defined in section 8.5 (see eq. 8.10 and 8.5) conjugation works like in the presence
of only constant obstructions. In this way, we can conjugate (α,An.eObnUn(·).eU

′
n(·)) to
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(α,An.eObnUn(·).eŨn+1(·)) with a close-to-the-identity conjugation, where Ũn+1(·) is quadratic
with respect to Un(·). The estimates show that reduction of the principal part of the new
perturbation, ObnUn(·), does not destroy the quadratic character of Ũn+1(·), so that, by
conjugating with the reduction of obstructions, we obtain the cocycle (α,An.eUn+1(·)) with
Un+1(·) much smaller than Un(·), and iteration is possible. The iteration of this K.A.M.
scheme proves directly the almost reducibility of any cocycle sufficiently close to a con-
stant one, and the comparison of the (polynomial) rate of growth of conjugants versus the
(exponential) decay of the norms of perturbations proves the local density of reducible
cocycles. This is the content of corollary 8.16, which is the conjugation lemma used in the
iteration. Convergence of the scheme (which immediately proves local almost reducibility,
i.e. theorem 8.2) is proved in section 8.6, and the section is concluded with the proof of
the (already known) local density theorem (thm. 8.1).

In fact, we could skip the reduction of the obstructions at each step and construct a
K.A.M. scheme for the reduction of any given cocycle (satisfying the smallness conditions)
arbitrarily close to reducible ones by a product of converging conjugations. This is another
natural concept of almost reducibility. Then, comparison of the norm of the conjugant
reducing the limit cocycles to constants with the decay of the perturbation would yield
the same results. This would be in fact more faithful to our interpretation of the role of
obstructions, but the construction of such a scheme is needlessly complicated.

The convergence of the K.A.M. scheme is used in the proof of theorem 8.6, which
asserts that if a cocycle sufficiently close to constants is measurably reducible to a suffi-
ciently non-resonant constant, then it is actually smoothly reducible to it, and the proof
shows that the K.A.M. scheme finds the conjugation. The theorem has a rather striking
counterpart, namely that if a cocycle is smoothly reducible to a constant which is very
close to resonances, then the scheme fails to converge and produce the conjugation, even
though this conjugation exists.

2.5 A concrete example
In order to make clear the proof of global density theorem, we will take up the study

of an example in T× SU(3). It is a simply connected group, for which χSU(3) = 1, so we
avoid problems related to homotopy, which will be coped with in section 6.7. For SU(3)
we have w = 2, q = 3 and f = 8, for the rank, the number of roots and the real dimension
of su(3).

Let us introduce the notations

j1 =

 0 1 0
−1 0 0
0 0 0

 , j2 =

0 0 0
0 0 1
0 −1 0

 , j3 =

 0 0 1
0 0 0
−1 0 0


h1 =

i 0 0
0 −i 0
0 0 0

 , h2 =

0 0 0
0 i 0
0 0 −i


We also note that [jl, ijl] = 2hl, for l = 1, 2, 3, and normalize the Cartan-Killing norm
so that the norma of all vectors are equal to 1. Finally, we introduce the corresponding
numbering of roots,

ρ1 : h 7→ (t1 − t2)
ρ2 : h 7→ (t2 − t3)
ρ3 : h 7→ (t1 − t3)
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for

h = 2iπ

t1 0 0
0 t2 0
0 0 t3


with t1 + t1 + t3 = 0. Then, {ρ1, ρ2} form the Weyl’s basis, ρ3 = ρ1 + ρ2 and {ρ1, ρ2, ρ3}
are the positive roots. For a mapping U(·) : T→ su(3) we will use the coordinates

U(·) =
∑

i=1,2
U t
i (·)hi +

∑
i=1,2,3

Ui(·)ji

Let, now, A(·) : T→ SU(3) be such that ‖LA(·)‖L1 ≥ |e(1,3)|, where

e(1,3) =

2iπ 0 0
0 4iπ 0
0 0 −6iπ

 = 2πh1 + 6πh2

For this vector, ρ1(e(1,3)) = −1, ρ2(e(1,3)) = 5, ρ3(e(1,3)) = 4. Since all these integers are
non-zero, the vector is regular.

By proposition 4.3, the condition on the length of the path A(·) : T → SU(3)
is necessary for the cocycle (α,A(·)) to be of degree e(1,3), and it is satisfied if, say,
‖LA(·)‖L1 ≥ 200π.

The energy of the cocycle Let us suppose that the sequence an(·) = LAn(·)
converges to a non-degenerate curve a(·) ∈ L2(T, g), and suppose moreover that a.e. vector
in the image of a(·) is a regular vector in su(3). At this point, the results proved in chapter
4, namely corollary 4.7 and lemma 4.10 allow us to make some preliminary conclusions.
The corollary shows that the cocycle can be measurably diagonalized. Finally, the lemma
shows that ∂sLAn(·) goes to 0 in L2 like ns+1. Estimation of the decay of norms in L2

uses the fact that ‖∂sLAn(·)‖∞ grow no faster than ns+1, by lemma 4.9.

Renormalization of a regular cocycle The next step in the study of the dynamics
of the cocycle is renormalization of the dynamics, which we will follow under the assump-
tion that (α,A(·)) is a regular cocycle. The convergence of the scheme (theorem 5.3) shows
that, for almost every ν ∈ T, the cocycle (α,A(·)) can be renormalized to commuting pairs

(1, C̃(n)
ν (·))

(αn, Ã(n)
ν (·))

(notice that we have already incorporated the rescaling of the dynamics) satisfying the
following property. Both mappings C̃(n)

ν (·) (which codes the distortion of the fibers) and
Ã

(n)
ν (·) (which codes the rescaled dynamics in the distorted phase space) approach a(ν):

Ã(n)
ν (x) = Ã(n)

ν (0). exp((−1)nqnβn−1a(ν)x+O(εn(ν)))
C̃(n)
ν (x) = C̃(n)

ν (0). exp(−(−1)nqn−1βn−1a(ν)x+O(εn(ν)))

where both constants C̃(n)
ν (0) and Ã

(n)
ν (0) commute with exp(Ra(ν)). Since we assume

that a(ν) is a regular vector, we have that ρi(a(ν)) 6= 0, for i = 1, 2, 3, which is clearly
equivalent to the three diagonal entries being distinct. Elementary linear algebra the
shows that both constants C̃(n)

ν (0) and Ã(n)
ν (0) have to be diagonal.
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The distortion of the fiber {x} ×G caused by exp(−(−1)nqn−1βn−1a(ν)·) is

−(−1)nqn−1βn−1

∫ x

0
L(exp(−(−1)nqn−1βn−1a(ν)t)).a(ν).dt

so that the accumulated distortion is given by left multiplication by

Dn,ν(x) = exp(−(−1)nqn−1βn−1a(ν)x2/2)

Restoration of the fibers sums up to conjugation of the commuting pair by the inverse of
the distortion, i.e, with a slight abuse of notation and omitting the error terms,

D∗n,ν(x+ 1).C̃(n)
ν (x)).Dn,ν(x) = C̃(n)

ν (0). exp(−(−1)nqn−1βn−1a(ν)/2) = C̃(n)
ν (0)

D∗n,ν(x+ αn).Ã(n)
ν (x)).Dn,ν(x) = Ã(n)

ν (0). exp(a(ν)x)

where we have used the fact that both constants C̃(n)
ν (0) and Ã

(n)
ν (0) commute with

exp(Ra(ν)) and qnβn−1 + qn−1βn = (−1)n. Using the fact that the dynamics commute
with the distortion of the fibers, we obtain that

C̃(n)
ν (0).Ã(n)

ν (0) exp(a(ν)x) = Ã(n)
ν (0) exp(a(ν)(x+ 1).C̃(n)

ν (0)

and inserting the commutation of the constants with a(ν), we find that

C̃(n)
ν (0).Ã(n)

ν (0) exp(a(ν)) = Ã(n)
ν (0).C̃(n)

ν (0)

up to an arbitrarily small error. Since both constants are diagonal, the above equation
implies that exp(a(ν)) = Id, in accordance with theorem 5.1.

The accumulated distortion of the fibers caused by the constant C̃(n)
ν (0) is given by

exp(c̃(n)
ν (0)x)

where c̃(n)
ν (0) is a preimage of C̃(n)

ν (0) in the maximal toral algebra of diagonal matrices,
so that distortion commutes with the dynamics. This restoration of the fibers yields a
renormalization representative of (α,A(·)) which is arbitrarily close to

(αn, Ã(n)
ν (0)ea(ν)x)

only with a different constant Ã(n)
ν (0), which still commutes with a(ν). This is the content

of theorem 5.3 in the case G = SU(3) and with the additional hypothesis that a(ν) is
regular.

Perturbations of regular geodesics In order to be able to illustrate the local
study of regular geodesics more clearly, we reintroduce the assumption that the degree of
(α,A(·)) is e(1,3), so that the renormalization representatives have the form

(αn, E(1,3),an(·)eU(·)))

where

E(1,3),an(·) =

e2iπ· 0 0
0 e4iπ· 0
0 0 e−6iπ·

 .
e2iπa1,n 0 0

0 e2iπ(a2,n−a1,n) 0
0 0 e−2iπa2,n
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And we also suppose that n is such that αn ∈ DC.
There are exactly three embeddings of su(2) in su(3) sending the positive root of

su(2) to a positive one in su(3), corresponding to the three positive roots of su(3). Since
[e(1,3), j1] = −2iπj1, [e(1,3), j2] = 10iπj2 and [e(1,3), j3] = 8iπj3, theorem 7.1 implies that
any small enough perturbation of this periodic geodesic can be conjugated to a cocycle of
the form

(αnE(1,3),an+a′n(·).eP (·))

with P (·) of the form

exp
(
P̂1(0)j1 +

∑0
−9
P̂2(k)e2iπk·j2 +

∑0
−7
P̂k(k)e2iπk·j3

)
where the P̂i(k) are small complex numbers, and a′n is close to 0. Then, the a priori
estimates of the chapter 6 show that the cocycle is of degree (1, 3) if, and only if, all the
P̂i(k) in this previous expression are 0.

Moreover, they show that if these coefficients are non-zero, the cocycle is of energy
strictly less than |e(1,3)|. Even though it is possible to perturb this cocycle to a regular
one (if we perturb it by P̂1(0) 6= 0), we will examine the perturbation by P̂2(0) 6= 0.
This perturbation is in the subalgebra associated to the root ρ2, so that is will lead
renormalization a cocycle of degree e(1,l), with l equal to 0, 1 or 2. Let us suppose that
the perturbed cocycle is in fact of degree e(1,2), where

e(1,2) =

2iπ 0 0
0 2iπ 0
0 0 −4iπ

 = 2πh1 + 4πh2

We remark that the complex direction Cj1 commutes with this vector, unlike the other
two complex directions.

Renormalization of a singular cocycle The hypothesis that the degree of the new
perturbed cocycle (αn, A1(·)) is e(1,2) implies that it can be renormalized to commuting
pairs of the form (m > n)

Ã
(m)
1,ν (x) = Ã

(m)
1,ν (0). exp((−1)mqnβm−1a1(ν)x+O(εm(ν)))

C̃
(m)
1ν (x) = C̃

(m)
1,ν (0). exp(−(−1)mqn−1βm−1a1(ν)x+O(εm(ν)))

where both constants C̃(m)
ν (0) and Ã(m)

ν (0) commute with exp(Ra1(ν)) and we have called
a1(·) the invariant curve of the cocycle (α,A1(·)).

Clearly, commutation of the two constants with a1(ν) ≈ e(1,2) no longer implies that
the constants are diagonal. They are constrained, however, in the subgroup(

SU(2) 0
0 1

)
× exp(Re(1,2)) = G0 ×G+

which is the splitting (cf. definition 3.7 and theorem 3.5 ) associated to e(1,2).
Then, as in the case of a regular cocycle, we can conjugate the pair to

(1, C̃(m)
ν (0))

(αm, Ã(m)
ν (0). exp(a1(ν)x))
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plus error terms. Since this is still a commuting pair, we have, as in the regular case,

C̃(m)
ν (0).Ã(m)

ν (0) exp(a1(ν)) = Ã(m)
ν (0).C̃(m)

ν (0)

Since both constants take values in the splitting G0 × G+ and the factor G+ is abelian,
the commutator of the constants is in SU(2). Therefore we obtain that a1(ν) has to be a
preimage of the Id. Then, the preceding equation simplifies to

C̃(m)
ν (0).Ã(m)

ν (0) = Ã(m)
ν (0).C̃(m)

ν (0)

up to an arbitrarily small error. Since, now, the semisimple factor G0 of the splitting is
in fact SU(2), we obtain once again that the constants are both diagonal. For general
groups, though, this is not true and in order to gain this property we may need to consider
powers of the constants, a complication explained in the proof of theorem 5.3.

Following the procedure already described, we obtain the renormalization representa-
tive

(αm, Ã(n)
1,ν (0)ea1(ν)x)

only with a different constant Ã(m)
1,ν (0), which is on the same torus as a1(ν). This is the

content of theorem 5.3 in the case G = SU(3) and for a singular a1(ν).

Perturbations of singular geodesics This leads us to the local study of singular
geodesics. Here, we suppose that the given cocycle is of the form

(αm, E(1,2)(·)AeU(·))

with A ∈ G on the same torus as E(1,2)(·), and U(·) ∈ C∞(T, g) satisfying some smallness
condition depending on αm ∈ DC. We also suppose that the cocycle is of degree (1, 2).
Then, the iterative procedure described in chapter 9 allows us to conjugate this cocycle
arbitrarily close to cocycles in normal form:

(αm, E(1,2)(·)AkeUk(·))

with Ak ∈ G on the same torus as E(1,2)(·), and Uk(·) converging exponentially fast to
0 ∈ C∞(T, g), while the conjugations grow only polynomially. Then, we need only to
perturb the cocycle like

(αn, E(1,2)(·)AkeUk(·)ezkji)
where zk ∈ C∗ is of the order of Uk(·) and i = 2, 3, in order to obtain a cocycle of smaller
enery.

We remark that by perturbing this cocycle we may obtain a regular cocycle. We also
remark that, since in general we cannot hope to conjugate the cocycle to the normal form
(αn, E(1,2)(·)Ak), we cannot control the way in which the energy will decrease : all models
E(j,k) with j = 0, 1 and k = 0, 1, 2 are possible, with the exception of (1, 2).

Renormalization of 0 energy cocycles After a finite number of perturbations (the
maximal number of perturbations is bounded by a number depending only on the degree
of the cocyle) (α,A(·))), all of which can be made arbitrarily small, and renormalization of
the perturbed cocycles and conjugation of renormalization representatives, we will obtain
a cocycle of 0 energy. This cocyle can be renormalized to commuting pairs of the type
(l > m)

(1, C̃(l)
ν (0))

(αl, Ã(l)
ν (0))
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plus error terms. Then, commutation of the pair shows that the two constants commute,
up to an arbitrarily small error. In SU(3) this implies that they are both diagonal, so
that we can obtain the renormalization representative of the form

(αl, AeU(·))

In general groups, however, commutativity is gained after iteration.

Perturbations of constant cocycles This is the last step in our study, at least
from the dynamical point of view and it is described in chapter 8. Here, we suppose
that αl ∈ DC, and theorem 8.1 allows us to perturb the renormalization representative
(αl, AeU(·)) to (αl, AeU

′(·)), which is reducible.
Since the induction was finite and the perturbations at each step could be made arbi-

trarily small, the global density theorem follows.



Chapter 3

Dynamics of abelian cocycles

Throughout this chapter, we suppose that the regularity of the mappings is C∞, but
most of the proofs use very low regularity. The results will be extended in weaker regularity
in the following chapters, where the results will be stated precisely, but in the proofs we
will use the notions, techniques and observations that arise naturally in this naive study
of the dynamics of abelian cocycles. The regularity typically needed in the proofs is C1

for the cocycles and for conjugations.
Since, in particular, minimal translations on the torus are also (uniquely) ergodic, some

of the proofs work also in the measurable case, with the necessary modifications of the
proofs and of the statements of the results.

Finally, since not all proofs work when d ≥ 2 (e.g. those using the Denjoy-Koksma
inequality, see below), and since the conclusions are significant precisely in the case d = 1,
we suppose, as for the greatest part of the remaining of this thesis, that the cocycle has
only one frequency.

3.1 Dynamics of torus-reducible cocycles

3.1.1 A first definition of the degree

Let (α,A(·)) be a C∞-torus-reducible cocycle in SW∞(T, G), T a maximal torus and
(hρ)ρ∈∆̃ a basis of t. Therefore, A(·) is of the type

A(x) = B(x+ α). exp(
∑

ρ∈∆̃
2π(rρx+ φρ(x) + aρ)hρ).B−1(x) (3.1)

with φρ(·) : T→ R of mean value 0, aρ ∈ T, r ∈ Zw and B(·) : T→ G.
After reminding the notation an(·) = LAn(·), where the operator L is defined in section

1.2.1, we can readily prove

Proposition 3.1. Let (α,A(·)) ∈ SW 1 be C1 torus-reducible. Then the length of the n-th
iterate normalized by n is quantized:

1
n
|an(·)| → |

∑
ρ

2πrρhρ|

uniformly and rρ ∈ Z,∀ρ ∈ ∆̃. The limit does not depent on the conjugation B(·) and is
therefore an invariant under C1 conjugation.

The definition of this quantity will be extended to all C1 cocycles and called "energy"
in the next chapter. The important point will be that the quantization does not change
when we consider non-abelian cocycles.
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Proof. Taking the derivative of the formula for the n-th iterate gives

an(x) = b(x+ nα) +Ad(B(x+ nα)).
∑

ρ
2πrρ(n+ Sαnφ

′
ρ(x))hρ −Ad(An(x)).b(x)

(we remind the notational convention following which an(·) = LAn(·) and b(·) = LB(·)).
If r = 0, we find that

an(x) = b(x+ nα) +Ad(B(x+ nα)).
∑

ρ
Sαnφ

′
ρ(x)hρ −Ad(An(x)).b(x)

so that 1
nan(·) tends uniformly to 0 by unique ergodicity of Rα with respect to the Haar

measure on T.
If, now, r ∈ Zd \ {0}, we find that

an(x) = Ad(B(x+ nα)).
∑

ρ
2πrρ(n+ Sαnφ

′
ρ(x))hρ + cn(x) (3.2)

where‖cn(·)‖L∞ ≤ 2 ‖b(·)‖L∞ , so that

‖an(x)−Ad(B(x+ nα)).
∑

ρ
2πrρnhρ‖L∞ = o(n)

which implies the statement since the adjoint action is an isometry of g.

A special class of (torus-)reducible cocycles in the case r = 0 is the one consisting
of those reducible to a constant in ZG. If we let (α,A(·)) = (α,B(· + α).C.B∗(·)), with
C ∈ ZG be such a cocycle, we have

an(·) = b(·+ nα)−Ad(B(·+ nα).B∗(·)).b(·)

and therefore
|∂saqn(·)| = O(βn) (3.3)

where the constant depends on s and B(·).
Calculation of higher order derivatives (still in the case r = 0) and a similar calculation

show that higher derivatives share the same property:

1
n
∂san(x) → 0, and (3.4)

|∂saqn(·)| ≤ Cs, ∀ s ≥ 0 (3.5)

In the special case where n = qk, a denominator of a best rational approximation,
the Denjoy-Koksma inequality (see [Her79]), gives estimates on the speed of convergence.
According to this inequality, for any function ϕ(·) : T→ R of bounded variation,

|Sαqkϕ(·)− qk
∫
T
ϕ(·)| ≤ V ar(ϕ)

where V ar(ϕ) stands for the total variation of ϕ(·). Application of this inequality in our
case and use of the fact that

∫
T φ
′
ρ = 0 gives

|aqn(·)| ≤ C max ‖φρ‖1

Similar estimations in the case where r 6= 0 give only

1
n2∂

san(·)→ 0
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uniformly.

Examination of the proof of the previous proposition shows that C1 torus-reducibility
implies in fact more than the existence of a discrete invariant when r 6= 0: for large n,

an(·) = 1
n
an(·) (3.6)

is uniformly bounded away from 0. It follows from eq. (3.2) that if nkα→ 0 in T, then

ank(·)→ a(·) = Ad(B(·)).
∑

ρ
2πrρhρ

uniformly. Moreover, whenever nkα→ γ in T, ank(·)→ Ad(B(·+ γ)).
∑
ρ 2πrρhρ, that is

to a(·+ γ).
Therefore, B(·) satisfies

Ad(B∗(·)).a(·) =
∑

ρ
2πrρhρ (3.7)

but this equation in general does not determine B(·), nor the dynamics of the cocycle, as
we will see later on.

As for a(·), we can prove, in fact, something more:

Lemma 3.2. Let (α,A(·)) ∈ SW 1 be C1 torus-reducible, and let r 6= 0. Then, 1
qn
aqn(·)

converges uniformly (in C0) to a C1 curve a(·) : T→ g.
The curve a(·) satisfies the invariance relation

Ad(A(·)).a(·) = a(·+ α) (3.8)

Proof. We need only to prove the invariance relation. Let n ∈ N. The cocycles (α,A(·))
and (α,A(·))qn commute, since they are iterates of the same diffeomorphism. We have,
therefore, A(·+ qnα).Aqn(·) = Aqn(·+α).A(·). Taking the derivative of this formula gives

Ad(A(x+ qnα)).aqn(x)− aqn(x+ α) = Ad(Aqn(x+ α)).a(x)− a(x+ qnα)

If we divide both sides by qn and let n go to infinity, we obtain the announced formula by
uniform convergence.

We can immediately prove

Corollary 3.3. The modulus of a(·) is constant. Moreover, the image of a(θ) under
Inn(g) is a constant subset of g, not depending on θ.

Proof. Using the invariance relation (3.8) we find

|a(·+ α)| = |Ad(A(·)).a(·)| = |a(·)|

Since Rα is minimal on the torus and |a(·)| is invariant under Rα, it is constant. The
relation (3.8) itself shows that, for a fixed h ∈ g, the set

{θ ∈ T, ∃ B ∈ G s.t. Ad(B).a(θ) = h}

is invariant under Rα. If for h, h′ the corresponding sets intersect, the two vectors can be
conjugated in Inn(g), so that minimality of Rα allows us to conclude.
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We remark that the fist statement of the corollary is exactly the definition of the energy
of the cocycle given in 3.1, but its proof in this context gives an additional reason (the
invariance of the curve under the dynamics) which is the property that we will use when
we examine the inverse problem of determining the dynamics under the assumption of the
existence of a(·).

Finally, let us suppose that (α,Ai(·)) ∈ SW 1, i = 1, 2, are conjugate by B̃(·) ∈ C1

and that (α,A1(·)) satisfying the hypotheses of the previous lemma. Then, (α,A2(·)) also
satisfies these hypotheses, and the curves ai(·) associated to (α,Ai(·)) as in the lemma
satisfy

a1(·) = Ad(B̃(·))a2(·)

as shows a direct calculation. Therefore, the class of a(·) in g modulo Inn(g) is in fact
a second quantized invariant under C1 conjugation. This invariant takes values in the
lattice of preimages of the Id in g, modulo the action of Inn(g). The definition of this
invariant will be extended to what we will call the degree in the next chapter.

The conclusion of chapter 5 is, in fact, that the two quantized invariants defined in this
section keep the same quantization in their values when aptly extended to all C1 cocycles.
Chapter 6 already implies that, unlike for cocycles in T × Tw, the conjugacy classes of
abelian models for cocycles in T × G should not be expected to form a space of discrete
classes in SW 1.

3.1.2 The failure of the converse derivation

We have seen that C1 torus reducibility implies the existence of some nice objects,
which are invariant under conjugation of the dynamics.

Let us now suppose that a cocycle (α,A(·)) is given such that the normalized sequence
aqn(·) = 1

qn
aqn(·) tends uniformly to a Cσ curve a(·), with σ ≥ 1. Inspection of the proof

of lemma 3.2 shows that in fact the curve a(·) satisfies automatically the conclusions of
the lemma, and in particular |aqn(·)| tends to a positive constant C. Let us suppose that
C > 0, in which case we say that a(·) is non-degenerate.

Lemma 3.2 and its corollary allow us to transform algebraic conjugations acting on
the invariant curve into dynamic conjugations acting on the cocycle in the following way.

Lemma 3.4. If there exists a (non-degenerate) curve a(·) in g satisfying eq. 3.8, there ex-
ists h ∈ g a vector in the Lie algebra and a cG-periodic mapping B(·) such that (α, Ã(·)) =
ConjB(·)(α,A(·)) is such that

Ad(Ã(·)).h = h

Proof. Let us consider Ia = {a(θ), θ ∈ T} and h ∈ g such that Ad(B)a(θ) = h for some
θ ∈ T and B ∈ G. The set of vectors of g that can be conjugated to h is given by Ad(Ǧ).h,
where Ǧ = G/ZG and the Lie algebra of Ǧ is naturally isomorphic to g. Moreover, if
h′ = Ad(B).h for some B ∈ Ǧ, then for any B′ ∈ Zh = {S ∈ G,Ad(S).h = h},

h′ = Ad(B.B′).h

and, if B1 and B2 are such that h′ = Ad(Bi).h, i = 1, 2, then B = B1B
∗
2 satisfies

Ad(B).h = h

so that B ∈ Zh. Therefore, Ad(Ǧ).h is naturally isomorphic to G/Zh.
The set Zh = ZG(exp(Rh)) is a subgroup of Ǧ. Let us call g̃ the Lie algebra of

Zh. We remark that the manifold G/Zh has, at each point, a tangent space canonically
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isomorphic to g/g̃ (the quotient is taken in the category of vector spaces): this is true at
the image of Id under the projection π : Ǧ → G/Zh, and any other coset is obtained by
left multiplication in Ǧ, as S.Zh = S.(Id.Zh). The projection is locally a submersion in
the neighborhood of the Id, as for all s ∈ g,

dπId(s) = s− πg̃s

where πg̃ is the orthogonal projection on g̃ with respect to the Cartan-Killing form. There-
fore, the kernel of dπId is g̃. It follows that π is globally a sumbersion and the kernel of
the differential at S ∈ Ǧ is (RS)∗g̃, where RS : H 7→ SH is the right multiplication in Ǧ.

Consequenlty, since the curve a(·) : T→ g takes values in Ad(Ǧ).h ≈ G/Zh, it admits
a lift B̌ : R→ Ǧ of regularity Cσ

a(·) = Ad(B̌(·)).h

Since a(·) is periodic,
Ad(B̌∗(·+ 1)B̌(·)).h = h

and therefore D(·) = B̌∗(·+ 1)B̌(·) takes values in Zh.
Anticipating lemma 5.11 (for the proof of which the semisimplicity of G is irrelevant),

we write D(·) = Ď(·+ 1)Ď∗(·), with Ď(·) ∈ Cσ(R,Zh). The mapping

B̃(·) = B̌(·)Ď(·)

is in Cσ(T, Ǧ), since

B̃(·+ 1) = B̌(·+ 1)Ď(·+ 1)
= B̌(·+ 1)D(·)Ď(·)
= B̌(·)Ď(·)

Since Ad(Ď(·)).h = h, we have
a(·) = Ad(B̃(·)).h

and, B̃(·) admits a cG-periodic lift B(·) ∈ Cσ(cGT, G) satisfying the same equation owing
to the fact that

B∗(·+ 1)B(·) ∈ ZG
Using, now the invariance relation satisfied by a(·), we see that

Ad(A(·))a(·) = a(·+ α)
Ad(A(·)B(·)).h = Ad(B(·+ α)).h

Ad(B∗(·+ α)A(·)B(·)).h = h

Therefore, the lemma is proved.

The description of the dynamics of the cocycle (α, Ã(·)) is given by the following
proposition.

Proposition 3.5. Let (α,A(·)) be a cocycle in SW (T, G) satisfying the hypothesis of
lemma 3.4. Then, there exists an abelian subgroup G+ = Th, and a semisimple subgroup
G0 (G0 may be trivial) commuting with G+ and such that G0 ∩ G+ = Id satisfying the
following properties. The cocycle (α,A(·)) can be conjugated mod cG to a cocycle of the
form

(α, Ã(·)) = (α, Ã0(·)× Ã+(·))
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The cocycle (α, Ã+(·)) ∈ SW (T, G+) is abelian and
1
n
ã+,n(·)→ h

and the cocycle (α, Ã0(·)) ∈ SW (T, G0) is such that
1
n
ã0,n(·)→ 0

The conjugation can be chosen of the same regularity as the invariant curve.

Corollary 3.6. If G = SU(2), any cocycle satisfying the hypothesis of lemma 3.4 can be
conjugated to an abelian one by a 2-periodic transfer function.

Proof of the Corollary. Since every torus in SU(2) is a maximal torus, and since the hy-
pothesis of lemma implies that G+ is non-trivial, we obtain that G0 = {Id}. Therefore,
in the notation of the theorem, (α, Ã(·)) is abelian.

This proposition motivates the following definition.

Definition 3.7. Let (α,A(·)) ∈ SW (T, G) and suppose that there exist G0 and G+ as in
theorem 3.5 and B(·) such that (α, Ã(·)) = ConjB(·)(α,A(·)) takes values in G0×G+ ↪→ G.
We will then say that (α,A(·)) admits a splitting of the dynamics

Proof of Proposition 3.5. Let h and B(·) as in the proof of the previous lemma.
If h is a regular element of the algebra, the condition Ad(Ã(·)).h = h is equivalent to

Ã(·) taking values on the unique maximal torus passing by h. Therefore, in this case G+
is a maximal torus and G0 = Id.

Let us now suppose that h is singular. Since Ad(Ã(·)) fixes h, Ã(·) takes values in
Zh = ZG(exp(Rh)). As g is the Lie algebra of a compact group, it follows from Theorem
1.2 that Zh is a Lie group whose Lie algebra g̃ = ker(adh) splits in the direct sum of
g+, the intersection of all toral algebras containing h, and g0 = [g̃, g̃], the Lie algebra of
Zh/ exp(g+). By construction, g+ and g0 commute.

A concrete description of the decomposition can be obtained via a root space decom-
position of g associated to a torus containing g+. Then, g0 is generated by the vectors
hρ and jρ corresponding to roots ρ such that ρ(h) = 0, and therefore by constuction g0 is
semi-simple. Then, g+ is g⊥0 ∩ g̃.

Finally, G0 ∩G+ = Id where G0 = exp(g0) and G+ = exp(g+). If w0 and w+ are the
respective ranks of G0 and G+, we have w0 + w+ = w and G+ is a torus of dimension
0 < w+ ≤ w and equality holds iff h is regular.

Since (α, Ã(·)) ∈ SW s(T, G̃), and g̃ = g0⊕g+, we can easily verify that the normalized
derivatives of (α, Ã+(·)) converge to h, and those of (α, Ã0(·)) converge to 0:

LÃqn(·) = b∗(·+ qnα) +Ad(B∗(·+ qnα)).aqn(·) +Ad(B∗(·+ qnα)Aqn(·))b(·)
= qnAd(B∗(·))a(·) + o(qn)
= qnh+ o(qn)

Since LÃ(·) = a+(·)+a0(·), and the two components are iterated separately thanks to the
commutativity of G+ and G0, we obtain that

1
qn

(a+)qn(·)→ h

1
qn

(a0)qn(·)→ 0
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Heuristically, the existence of an invariant curve obtained as the limit of normalized
derivatives allows us to abelianize only a part of the dynamics. The fact that the part of
the dynamics controlled by the invariant curve is exactly the part where there is linear
growth of the derivatives allows us to conclude that in the remaining part derivatives
grow sublinearly. Sublinear growth of the derivatives is true for almost reducible cocycles,
and, as we will see in chapter 5, the converse is true, in the sense that sublinear growth
characterizes dynamics of close-to-constant cocycles. On the other hand, it is already clear
that linear growth of the derivatives is the characteristic of non-local dynamics.

A concrete example of a curve a(·) for which we cannot conclude torus-reducibility can
be seen in SU(4). If the points of the curve belong to Inn(g).h, where

h =


λi 0 0 0
0 −λi 0 0
0 0 0 0
0 0 0 0


then commutation with h, which is the only exploitable information, does not provide
anything on the dynamics within the subgroup[

Id2 0
0 SU(2)

]
which is the G0 factor of the corresponding decomposition. The factor G+ is given by the
subgroup image of 

(λ1 + 2λ2)i 0 0 0
0 −λ1i 0 0
0 0 −λ2i 0
0 0 0 −λ2i


under the exponential mapping, where λ1, λ2 ∈ R. We remark that the only diagonal
vector in g0 of the Weyl basis of su(4) is

0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i


while the vectors 

0 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 0

 and


i 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −i


are neither in g0 nor in g+. The only vector of the Weyl’s basis which is in g+ is the
remaining one, 

i 0 0 0
0 −i 0 0
0 0 0 0
0 0 0 0


which accounts for the fact that the corresponding complex direction

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0
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is the only one in the root-space decomposition commuting with g0.
Concrete examples exist, in fact, in any group of dimension higher than SU(2), namely

in SU(3), where vectors of the type2λi 0 0
0 −λi 0
0 0 −λi


commute with the subgroup [

1 0
0 SU(2)

]
and the corresponding abelian algebra g+ is generated by the vector2λi 0 0

0 −λi 0
0 0 −λi


itself.

If we anticipate proposition 3.9, we find directly that (α,A(·)) is torus-reducible if, and
only if, (α, Ã0(·)) is torus-reducible in G0.

Since Ã+(·) takes its values in a torus and it is periodic, it is of the form

Ã+(·) =
∑

ρ
2πhρ(rρ ·+φρ(·))

where the φρ(·) are periodic. By resolving a linear cohomological equation in G+, we find
that if α is Diophantine, (α, Ã(·)) can be conjugated to a cocycle of the form(

α, Ã0(·)× (Er(·).A)
)

where Er(·) = exp(
∑
ρ 2πrρhρ·) and A ∈ G+. In the particular case where Ã0(·) = A0 ∈

G0, such a splitting will be called a normal form.
The construction of the splitting of the dynamics shows that in general we cannot

expect to avoid phenomena of coexistence of close-to constants cocycles with far-from-
constants cocycles. The two cases where this does not occur is either when iteration and
normalization converge to constants, or when the vector obtained by the construction is
regular, and it should be expected that this dichotomy is generic under some reasonable
Diophantine conditions. Since every non-zero vector in su(2) is regular, the result in SU(2)
assumes a more elegant form, which however cannot be generalized to every compact Lie
group, namely that the existence of an invariant curve implies the existence of a 2-periodic
conjugation to an abelian cocycle.

3.2 Conjugation of abelian cocycles
The action of conjugacies on the class of constant cocycles has been exhaustively

described in [Kri99a] (Prop. 2.5.9 ):

Proposition 3.8. Let (α,Ai), i = 1, 2 be two constant cocycles, conjugate by B(·) ∈
C∞(mTd, G), where B(0) = Id andm ∈ N∗. Then, for any character χρ, χρ(A1).χρ(A−1

2 ) ∈
exp(2iπ/mZ), and B(·) is a group homomorphism mTd → G.
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Since conjugation between abelian cocycles is less restrictive, the result is less precise.
On the other hand it is somewhat more elegant, since it is related to the action of Weyl’s
group, which is a finite group.

Proposition 3.9. Let (α, Ã(·)) and (α,A(·)) in SW (T, T ) ↪→ SW (T, G) such that

(α, Ã(·)) = ConjB(·)(α,A(·))

and consider the corresponding splittings G̃0 × G̃+ ↪→ G and G0 ×G+ ↪→ G. Then

(α, Ã+(·)) = ConjB(·)(α,A+(·))
(α, Ã0(·)) = ConjB(·)(α,A0(·))

The action of B(·) on G+ → G̃+ projects naturally to the action of a representative of
W (G+) ⊂W (G).

The following corollary is immediate.

Corollary 3.10. The integer vector r which distinguishes qualitatively different models of
dynamics of abelian cocycles is determined up to the action of W (G).

Before passing on to the proof of the proposition, we remark that the hypothesis that
Ã(·) and A(·) take values on the same torus is not restrictive, since any two tori in G are
obtained by a (constant algebraic) conjugation acting on a standard one.

Proof of Proposition 3.9. Let us suppose that

(α, Ã(·)) = ConjB(·)(α,A(·))

holds, for a certain B(·) ∈ C0(T, G).
The mappings (α,A(·)) and (α, Ã(·)) take values in the same maximal torus T , whose

toral algebra is t. In this case, B(·) is determined up to left and right multiplication with
a constant in T , as shows the formula

Ã(·) = B(·+ α).A(·).B−1(·)

Let, now, h, h′ ∈ t be any two vectors. Then, the same formula, together with the fact
that the restriction of the adjoint action of both A(·) and Ã(·) in t is the identity, gives
directly

〈Ad(B(·+ α)).h, h′〉 = 〈Ad(B(·)).h, h′〉

In particular, if we let these two vectors run through a basis of t, we see by the minimality
of Rα that the restriction of Ad(B(·)) in t is in fact a constant.

If we denote by Bρ,h(·)jρ the projection of the image of Ad(B(·)).h on the plane Cjρ,
and also use the notation Ad(Ã(·)).jρ = exp(ãρ(·)).jρ, we find that

Bρ,h(·+ α) = exp(−ãρ(·))Bρ,h(·)

In particular, for all ρ and h, we have |Bρ,h(·)| = C, a constant. Therefore, if C 6= 0,
Bρ,h(·) : T→ CS1 admits a lift C exp(bρ,h(·)) which satisfies

bρ,h(·+ α)− bρ,h(·) = ãρ(·) mod 2iπZ

We now disinguish two cases. If ãρ(·) : R→ iR is of the form 2iπ(r̃ρ ·+ϕρ(·)) with rρ ∈ Z∗
(i.e. if hρ /∈ g0) and ϕρ(·) periodic, then bρ,h(·) cannot be a lift of a periodic function,
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unless it is constant and therefore Bρ,h(·) must be equal to 0. On the other hand, if
r̃ρ = 0, the equation may or not admit smooth or even continuous solutions depending
on the arithmetic properties of α, but in the particular case where ϕ̂ρ(0) ∈ αZ∗ (such
constants are called resonant) it may also admit solutions of the form

bρ,h(·) = 2iπr·

which correspond to mappings cGT→ G If we admit that the conjugant bem-periodic, the
resonant constants can belong to α 1

mZ∗, and then the equation admits non-local solutions
of the form

bρ,h(·) = 2iπ r
m
·

a phenomenon already observed in [Kri99a]. We remark that there is no loss of periodicity
apart from the phenomena observed in conjugation between constant cocycles.

Therefore, 〈Ad(B(·))hρ′ , jρ〉 can be non-zero only if Ad(Ã(·))jρ = C exp(2iπ(ϕρ′(·)))
with C > 0. Since the roles of Ã(·) and A(·) are symmetric, the same holds for A(·).

If we now turn to the study of Bρ,ρ′(·) = 〈Ad(B(·))jρ, jρ′〉, we find that

Bρ,ρ′(·+ α) = exp(ãρ′(·)− aρ(·))Bρ,ρ′(·)

Consequently, Bρ,ρ′(·) can be non-zero only if ãρ′(·) − aρ(·) is a periodic function, which
amounts to r̃ρ′ = rρ.

We conclude that the class of conjugant B(·) is well defined in W (G+) ≈ W (G̃+) ⊂
W (G), where G0 × G+ ↪→ G and G̃0 × G̃+ ↪→ G are the splittings corresponding to
(α,A(·)) and (α, Ã(·)). Since any two different maximal tori are obtained by an algebraic
conjugation in G and all the groups W (T ) are naturally isomorphic to W , independently
of such conjugations, we have proved the proposition

Therefore, the additional symmetries of the torus, owing to the fact that it is embedded
in a Lie group G, result in the existence of conjugations between models which are not
conjugate otherwise. The action of Weyl’s group reduces the number of abelian models of
dynamics, by taking into account the symmetries of T induced by the action of G.

If the rotation in the basis is Diophantine, the vectors r and (aρ)ρ∈∆̃ completely de-
scribe the dynamics of an abelian cocycle up to conjugation (cf. eq. (2.1) for the notation),
as shows the resolution of a classical linear cohomological equation. If the rotation is Liou-
villean, we cannot conclude anything more than the density in C∞ topology in the space
of abelian cocycles of the orbits of models of the type

(α, exp(
∑

ρ
(2π(rρ ·+aρ)hρ)

Since any basis of a maximal torus of G can be obtained by the action ofW (G) on a single
one, we can consider a fixed basis and use the notations

Er(·) = exp(
∑

ρ
(2πrρhρ·)) and

Er,a(·) = exp(
∑

ρ
(2π(rρ ·+aρ)hρ)

In the particular case where G = SU(2), the possible abelian models are exhausted by

(α, exp({2πr ·+φ(·) + a, 0})

where r ∈ Z. The action of Weyl’s group identifies r with −r (and φ(·) and a with −φ(·)
and −a) in the space of abelian cocycles, so that we need only consider r ∈ N in the
description of the abelian models.



Chapter 4

The energy of a cocycle in T×G

4.1 Introduction

In the previous chapter (proposition 3.1), we observed the phenomenon of quantization
of the asymptotic normalized length of torus-reducible cocycles in T×G over any irrational
rotation. This phenomenon was first observed in [Kri01] in his study of cocycles in T ×
SU(2) (cf. also [Fra00] for a similar result for cocycles over the golden ratio). In this more
restricted algebraic context, R. Krikorian proved the quantification of this same quantity
for cocycles over rotations in the set Σ of theorem 2.10 as an intermediate result of the
proof of the global density of reducible cocycles in the non-local case. The proof uses
the local density theorem, theorem 2.5, and the renormalization scheme that we will be
presented and use in chapter 5. Under some arithmetic conditions, somewhat stricter than
a simple recurrent Diophantine one, renormalization was proved to converge towards either
constant cocycles, or the normal forms (αn, Er(·+θ)), where Er(·) = exp(2iπrh·) and θ ∈ T
is a constant and r ∈ N∗, which are geodesics of SU(2) and thus a special case of abelian
cocycles. These normal forms, called obstructions since they are not reducible by virtue
of theorem 2.8, are proved to be C∞-accumulated by reducible cocycles by establishing
a dichotomy: if a cocycle in the neighborhood of a normal form is not reducible to it,
renormalization converges to a normal form of smaller length, and cocycles of the latter
type form a dense set in the neighborhood of normal forms. Induction and use of the local
version of the theorem concludes the proof, and the quantization of the asymptotic length
of C2 cocycles has been proved under the arithmetic condition imposed.

This result was generalized in [Fra04] (cf. theorems 2.12 and 2.14). There, it was proved
that the conjugation to the obstructions under the condition defining Σ implies conjugation
under a simple recurrent Diophantine condition 1. Moreover, it was proved by K. Fraczek
with the use of ergodic theorems and renormalization that the quantization phenomenon is
observed for C2 cocycles independently of any arithmetic conditions, and the asymptotic
normalized length, or energy, of the cocycle was defined to be its degree. Additionally, it
was proved, using a technique similar to the one used in order to obtain formula 3.5, that
every cocycle in T × SU(2) of positive degree is measurably torus-reducible. This result
cannot be generalized in more general groups, as it is based essentially on the fact that the
tori of SU(2) are of dimension 1, or, in other terms, the fact that phenomena of positive
degree cannot be observed in coupling with local phenomena.

1. This result can be strengthened by establishing a normal form theorem in the neighbourhood of
(α,Er(.)) with a Diophantine α, which asserts that reducibility to (α,Er(.)) is of codimension 2r, and that
the dichotomy proved by R. Krikorian persists under the weaker artithmetic condition. This will be the
object of chapter 7
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Here, we extend these results to cocycles in compact groups, where the complexity of
the geometry forces a change in terminology. The fact that a maximal toral algebra in
su(2) is the real line in R× C, results in the classification of the different abelian models
by an invariant in 2πN, as already discussed, equal to the mean speed of a reparametrized
periodic geodesic. However, this invariant is insufficient for more general groups. For
example, the cocycles obtained by the geodesics Eri(·) for r1 = (3, 0, 4) and r2 = (5, 0, 0),
i.e. 

e6iπ· 0 0 0
0 e−6iπ· 0 0
0 0 e8iπ· 0
0 0 0 e−8iπ·

 and


e10iπ· 0 0 0

0 e−10iπ· 0 0
0 0 1 0
0 0 0 1


in SU(4), who have the same speed (or degree, according to K. Fraczek’s terminology),
cannot be conjugated over any irrational rotation as shows Proposition 3.9. Therefore, we
keep the term degree for the vector in 2πZw, defined modulo the action of Weyl’s group,
i.e. modulo permutations of its coordinates and changes of sign, and call its length energy.

4.2 Definition and basic properties of the energy
Let (α,A(·)) ∈ SW s, with α ∈ T\Q, s ≥ 1, and

a(·) = LA(·) = ∂A(·).A∗(·) ∈ Cs−1(T, g)

(see section 1.2.1). Since the n-th iterate of the cocycle for n ≥ 1 is given by (nα,An(·)) =
(nα,A(·+ (n− 1)α)...A(·)), the derivative of its inverse reads

a∗n(·) = LA∗n(·) = a∗(·) +Ad(A∗(·)).a∗n−1(·+ α)

as imply the properties of the differential operator L (see section 1.2.1). Therefore, if we
define the unitary operator

U : L2(T, g) → L2(T, g)
b(·) 7→ Ad(A∗(·)).b(·+ α)

we have a∗n(·) =
∑n−1

0 Uka∗(·). We note that this operator is in fact associated to the
cocycle (α,A(·)) and should be noted by U(α,A(·)), but the simplified notation will be used,
since the cocycle is to be considered fixed.

By the von Neumann ergodic theorem, there exists a∗+(·) ∈ L2(T, g), U-invariant, such
that

a∗+(·) = lim
n→∞

1
n
a∗n(·)

in L2 and Lebesgue a.e. U -invariance implies that |a∗+(·)| is constant a.e., since

|a∗+(·)| = |Ad(A∗(·)).a∗+(·+ α)| = |a∗+(·+ α)|

and α is an ergodic translation on the torus.
In the same way we define a∗−(·) as

a∗−(·) = − lim
n→∞

1
n
a∗−n(·)

Since A−n(·+ nα)An(·) = Id, we have

a∗n(·) = −Ad(A∗n(·)).a∗−n(·+ nα)
= −Un.a∗−n(·)
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and consequently we find that

‖ 1
n
a∗n(·)− a∗+(·)‖L2 = ‖ − 1

n
a∗−n(·)− a∗+(·)‖L2

which implies that
a∗(·) = a∗+(·) = a∗−(·)

is unambiguously defined.
In a similar way, the fact that A∗n(·)An(·) = Id, and therefore a∗n(·) = −Un.an(· −nα),

implies that
1
n
an(·)→ −a∗(·)

in L2 when n→ ±∞, and we are justified to define

a(·) = lim
n→±∞

1
n
an(·) = −a∗(·)

As before, a(·) satisfies the invariance equation 3.8

Ad(A(·)).a(·) = a(·+ α)

and |a(·)| is constant a.e.. The invariance equation implies that the measurable families of
subalgebras g+(·) and g0(·), associated to a(·) as in section 3.1, satisfy the same invariant
relations a.e.. The proofs are obtained as in the afore-mentioned section just by replacing
minimality and continuity by ergodicity and measurability, respectively.

Definition 4.1. Let (α,A(·)) be a C1 cocycle. The number

‖a(·)‖L2 = lim
n→±∞

1
n
‖an(·)‖L2 = |a(·)| a.e.

will be called the energy of (α,A(·)) and denoted by en(α,A(·)). The set where |a(·)| =
en(α,A(·)) is invariant by Rα and thus of full measure.

We remark that the derivative of A(·) in g and the inner endomorphism Ad(A∗(·))
(and therefore the operator U) depend only on the Lie algebra g and not on the topology
of the group G having g as its Lie algebra. Theorem 2.8 implies directly that a cocycle of
positive energy is not reducible. There exist however cocycles of 0 energy which are not
reducible, as we will see in section 6.7.

Since the invariance of the curve gives directly that Ad(Aqn(·)).a(·) = a(·+ (−1)nβn),
the following corollary is immediate

Corollary 4.2. a(·) and Aqn(·) asymptotically commute:

Ad(Aqn(·)).a(·)→ a(·) in L2

We observe that the mapping a(·) generalizes the one defined for C1-torus-reducible
cocycles, with uniform convergence replaced by convergence in L2, and the invariance of
the degree in the latter case persists in this more general setting:

Proposition 4.3. The energy of a cocycle is invariant under conjugation in C1(T, G).
Moreover,

en (α,A(·))n = |n|.en (α,A(·)) ,∀n ∈ Z
en (α,A(·)) ≤ ‖a(·)‖Li , i = 1, 2,∞
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Proof. Let B(·) ∈ C1(T, G). Then, calling (α, Ã(·)) = ConjB(·)(α,A(·)),

ãn(·)−Ad(B(·+ nα)).an(·) = b(·+ nα) +Ad(B(.+ nα).An(·)).b∗(·)

so that
||ãn(·)| − |an(·)|| ≤ Cst

and en(α, Ã(·)) = en(α,A(·)).
The second relation follows directly from the fact that

(α,An(·))k = (α,A(·))nk

and the third from the triangle inequality.

Corollary 4.4. The ergodic cocycles in T×SO(3) constructed in [Eli02] are of zero energy.

In fact, we can prove that all cocycles in the regime of the local theory as in [Kri95]
and [Kri99a] are of zero energy, despite the eventual loss of periodicity.

We also note the following simple fact.

Lemma 4.5. Let (α,A(·)) = (α,A1(·)×A2(·)). Then,

en((α,A(·))) = en((α,A1(·))) + en((α,A2(·)))

In view of these properties of the invariant curve and the discussion in section 3.1.2,
we are motivated to give the following definition

Definition 4.6. A cocycle will be called regular if, and only if, the curve a(·) consists a.e.
of regular vectors, and singular otherwise. This property is invariant by C1-conjugation.

We remind that a vector in g is called regular if, and only if, it is contained in a single
maximal torus, so that a cocycle being regular or singular is an algebraic property of its
dynamics, and should not be confused with the regularity of the cocycle, i.e. the regularity
of the mapping T→ G defining the dynamics in the fibers.

The following corollary of Proposition 3.5 is immediate:

Corollary 4.7. If the cocycle (α,A(·)) is regular and of positive energy, then it can be
measurably conjugated to an abelian cocycle. In particular, all cocycles in T × SU(2) of
positive energy have this property.

The hypothesis of the corollary is optimal as shows the following example. Let α ∈ DC,
Er(·) be a periodic geodesic in SU(2) and (α,A exp(F (·)) be a non-reducible cocycle in
SU(2). It is well known that such cocycles exist, and they are even abundant in the
neighborhoods of constants (see, e.g., [Eli02]). The hypothesis that α ∈ DC implies that
such a cocycle is not torus-reducible, since for a Diophantine rotations reducibility and
torus-reducibility coincide. Finally, we consider SU(2) × SU(2) ↪→ SU(4) and define
(α,A(·)) = (α,Er(·) × A exp(F (·)), which is a cocycle in T × SU(4). This cocycle is of
positive energy, but not regular, and clearly not C∞-torus-reducible, by virtue of theorem
3.9.

This is, in fact the best possible generalization of K. Fraczek’s theorem which states
that all cocycles of positive energy in T×SU(2) can be measurably conjugated to abelian
ones, obtained as a corollary of theorem 2.11 of the same paper.

If we try to adapt the arguments in section 3.1 in the measurable context, which is, in
fact, imitating K. Fraczek’s proof of the afore-mentioned result, but for a singular invariant
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curve, we obtain a void statement. We cannot conclude anything more than the existence
of a measurable conjugacy and the corresponding (measurable) splitting

G̃0 × G̃+ ↪→ G

(α, Ã(·)) = (α, Ã0(·)× Ã+(·))

where (α, Ã+(·)) is "of positive energy" and (α, Ã0(·)) is in general non-abelian and "of
zero energy".

The definition of the energy can be extended in a rather awkward way to some measur-
able abelian cocycles by using Birkhoff’s ergodic theorem. More precisely, let us consider
the case where G = SU(2) and a measurable abelian cocycle (α,A(·)). If the mapping
A(·) admits a lift in g of the form exp(2iπ(r · +φ(·))h) with r ∈ Z∗ and φ(·) : T → R
an integrable function such that

∫
φ(·) = 0, 2 then the n-th iterate is calculated as in the

abelian case:
An(·) = exp((2πr(n ·+n(n− 1)

2 α+ Sαnφ(·))h))

Clearly, normalization by n of the lift of An(·) in g and passage to the limit gives 2πr,
which is what we would want to define as the degree of (α,A(·)). In fact this generalization
is cyclic in the sense that it supposes that the degree can be defined, as the existence of a
lift of this form is not guaranteed in the measurable context.

This generalization cannot in general be applied to (α, Ã+(·)), which is abelian by
construction, and thus we do not know if the cocycle (α, Ã+(·)) remains a cocycle of
positive energy under this extended definition. On the other hand, there is no known
extension to (non-abelian) cocycles of regularity lower than H1, and it is highly probable
that there does not exist any, so that the statement that en(α, Ã0(·)) = 0 is devoid of any
meaning, unless (α, Ã0(·)) is found to be at least measurably torus-reducible. However,
since in SU(2) exactly one of the factors of the splitting is non-trivial, (which is not always
the case, even if it should be so "generically", in all compact groups), and the problem of
the impossibility of a good definition of the energy of measurable cocycles is concealed by
the the fact that all non-local dynamics can be measurably conjugate to abelian ones.

Finally, let us revisit the expression

a∗n(·) =
n−1∑

0
Uka∗(·)

and using the triangle inequality, as well as the fact that U is a unitary operator, we find
that

‖a∗n(·)‖L2 ≤ n ‖a∗(·)‖L2

It is a classical fact that equality holds if, and only if, all the vectors composing the sum
are colinear. In this particular case, this amounts to the existence of a positive constant
λ such that

Ua∗(·) = λa∗(·)

Since |λ| = ‖Ua∗(·)‖L2 / ‖a∗(·)‖L2 (we assume that ‖a∗(·)‖L2 6= 0), we find that λ = 1,
and the ergodic sum reduces to

a∗n(·) = na∗(·)

2. This is in fact not any more restrictive than the existence of such a lift, since if we consider A(·+ γ)
(such a choice of γ is possible since r 6= 0) instead of A(·) we can eliminate

∫
φ(·) without affecting the

dynamics.
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Therefore, in the case of maximal growth of the derivatives of the iterates of (α,A(·)),
a∗(·) = a∗(·), and en(α,A(·)) = ‖a∗(·)‖L2 . Reinserting the expression for the operator U
we obtain the relation

a∗(·) = Ad(A∗(·)).a∗(·+ α)

or
a∗(·+ α) = −a(·)

Thus,

a2(·) = a(·+ α) +Ad(A(·+ α)).a(·)
= 2a(·+ α)

and inductively
an(·) = na(·+ nα)

Since
1
n
an(·) = a(·+ nα)→ a(·)

and α is minimal, this can be true only if a(·) is constant and equal to, say, h. The
assumption that A(·) is H1 implies, therefore, that it is of the form

exp(h·).A0

The condition that Ua(·) = a(·) and the periodicity of A(·) imply respectively that

Ad(A0).h = h

exp(h) = Id

and we have proved

Theorem 4.8. The operator U associated to a cocycle (α,A(·)) of regularity H1 admits
a(·) as an eigenvector with positive eigenvalue if, and only if, the cocycle is a periodic
geodesic, and therefore C∞. The eigenvalue is equal to 1.

It seems reasonable to speculate that the attractors of the dynamics in SW 1(T, G)
should be the periodic geodesics of the group, which is in fact proved to be true in the
next chapter.

Another distinct case of the action of the operator U(α,A(·)) is the one associated to
abelian cocycles, which is slightly more general than that of the periodic geodesics. For
such a cocycle, we have

Ad(A(·)).a(·+ α) = a(·+ α)

Supposing that this relation is verified, we find that the sum defining a(·) is reduced to
a simple ergodic sum over Rα, so that a(·) = â(0), a constant. This constant is fixed by
Ad(A(·)), as we have seen in the previous chapter.

4.3 Higher-order derivatives

Let us start by stating and proving a lemma on the growth of Cs norms of the iterates
of a smooth cocycle:
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Lemma 4.9. The n-th iterate of the cocycle (α,A(.)) ∈ SW s satisfies the estimates

‖∂σan(·)‖0 ≤ Cσn
σ+1(1 + ‖a(·)‖σ) ‖a(·)‖σ+1

0 , or
‖An(·)‖max

s ≤ Csn
s(1 + ‖a(·)‖s) ‖a(·)‖s0

where the constant Cσ depends only on σ, and 0 ≤ σ ≤ s − 1. Therefore, the normalized
derivatives 1

nσ+1∂
σan(·) are bounded uniformly for n.

Proof. The proof is obtained by applying Proposition 1.8 and using the translation invari-
ance of the norms.

The result given above can be considerably refined:

Lemma 4.10. Let 1 ≤ σ ≤ s− 2. Then 1
nσ+1∂

σan(·)→ 0 in L2, as n→ ±∞.

Proof. The estimates of Lemma 4.9 and convexity inequalities imply that it is sufficient
to prove the lemma for σ = 1, and the fact that a(·) = −a∗(·) implies that it is sufficient
to prove the result for 1

n2∂a
∗
n(·).

The properties of the differential operator L imply that

∂a∗n(·) =
n−1∑

0
Uk−1∂a∗(·) +

n−2∑
k=0

n−1∑
l=k+1

[Uka∗(·),U la∗(·)]

As has already been proved, 1
n

∑n−1
0 Uk−1∂a∗(·) converges in L2, and therefore

1
n2
∑n−1

0 Uk−1∂a∗(·) tends to 0 as n → ∞, and, since [·, ·] is antisymmetric, we have to
prove that

1
n2

n∑
k=0

k∑
l=0

[Uka∗(·),U la∗(·)]→ 0 in L1(T, g)

which is the object of lemma A.1 in Appendix A.
Since the sequence ( 1

n2∂a
∗
n(·))n is uniformly bounded in L∞, we obtain the convergence

in L2, and thus we can prove the same result for higher derivatives. The case n→ −∞ is
treated analogously.

The two lemmas of this section imply that all information on the energy of a cocycle
should be contained in at most the first derivative, since the mere existence in L2 of a
derivative of a higher order implies that, after rescaling, it converges to 0 in the same
space. This is the object of the next chapter.





Chapter 5

Z2 actions on R×G and the
renormalization scheme

In this chapter, we present and apply the main tool used in the study of non-local
phenomena of the dynamics of cocycles in T×G, where G is typically SL(2,R) or SU(2).
It can be described essentially as a division algorithm, since it is the outcome of the lift of
the euclidean division algorithm for the continued fractions expansion to the dynamics of
a cocycle over an irrational rotation. The lift of this algorithm divides the limit object of
the dynamics obtained in the previous chapter, i.e. the invariant curve a(·), by the group
of iterates of the cocycle. Since, however, the limit object lives in a low-regularity space
(L2), the algorithm should be expected to diverge (at least a priori) in C∞.

Another interpretation of the function of renormalization in the study of quasiperiodic
cocycles could be the reduction of the study of general global objects to the local study
of perturbations of normal forms, obtained as the basins of attraction of renormalization.
The property used in the reduction of the global study to the different local ones is the
preservation of the quality of dynamics under renormalization, and it is precicely due to
the fact that renormalization divides the limit object of the dynamics by the group of
iterates of the cocycle.

An application of a weaker, yet renormalization-like, algorithm to the study of cocycles
in T×SU(2) dates back to [Ryc92], with some interesting results and questions for research,
but the application is restricted to the golden ratio, and it is based on the very fact that,
for the golden ratio ϕ, iteration of Rϕ coincides with the continued fractions algorithm.
This scheme was used also in [Fra00], where it was used in the proof of the quantization
of the degree of a cocycle, as it is defined in the same paper.

Renormalization was introduced in the study of cocycles in the same product space in
[Kri01], under a form which is applicable to any irrational rotation, and the convergence
results where proved for a full measure set of frequencies, strictly contained in RDC. The
algorithm was proved to converge for C2 cocycles over such rotations, and then the local
study of the normal forms towards which the renormalization converges gave the first
global density result for C∞ cocycles in T × SU(2). In the study of the convergence of
renormalization, two functionals where introduced. The one based on L2 norms (called
J (2)) was used to measure the convergence and the second, the length functional (called
J (1)), was proved to take discrete values in a way that generalizes the result of K. Fraczek,
obtained for cocycles over the golden ratio.

These results where generalized in manifold directions in [Fra04]. In a first time,
the algorithm was proved to converge independently of any arithmetic conditions on the
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(irrational) rotation, for C1 regularity. The two functionals introduced by R. Krikorian
where proved to be alternative definitions of the degree, a quantity that can be defined
without the use of renormalization and for C1 cocycles over any irrational rotation. In
particular, the regularity needed for the equivalence was only C1 for J (2), but C2 for
J (1). Since it is J (1) that is used in the identification of the normal forms towards which
renormalization converges, the quantization of the degree was proved in regularity C2. Re-
examination and improvement of the local study made in [Kri01] loosened the arithmetic
condition for the global density of reducible cocycles to a RDC. Finally, it was proved
that C2 cocycles that are measurably conjugate have the same degree.

In the presentation of the algorithm, we have adapted the one in [FK09], used for the
study of cocycles in T × SL(2,R). The proof of the convergence of renormalization is
based on K. Fraczek’s approach as it is given in [Fra04], but the notation is adapted to
that used in [Kri01].

The generalizations of the results are essentially two-fold, the first direction being of
algebraic nature and the second one concerning regularity. By its definition, the algorithm
does not depend on the group G of the product space, but only on the fact that the cocycle
has only one frequency, since continued fractions algorithms are less efficient when more
frequencies are involved. The tool is therefore ready to be applied to the study of cocycles
in any compact Lie group, where the complexity of the observable phenomena outside
the case studied so far is revealed (see the discussion on the splitting of the dynamics,
cf. section 3.1.2). The second direction is based on a rather simple observation, which
establishes the equivalence of the three different possible definitions of the degree of a
cocycle for C1 cocycles, and this allows us to prove the quantization of the degree for
cocycles of such regularity. In fact, observation of the proof shows that the real regularity
needed is H1 and we speculate that this regularity represents the threshold under which
the degree of a cocycle cannot be defined.

Summing up, in this chapter we prove that the degree of a cocycle in SW 1(T, G),
for any compact Lie group G, admits a definition in a way that naturally extends the
degree as defined for cocycles in SW 1(T, SU(2)). This degree is the topological degree of
a periodic geodesic, viewed as a mapping of T into a maximal torus of G, and therefore
takes discrete values. The periodic geodesics of the group are the normal forms which
arise as topological obstructions to reducibility, thus marking the passage from local to
global. Finally, the measurable invariance of the degree is proved to be true in regularity
C1 and persists in this more general algebraic setting.

5.1 Synopsis of the chapter
After having introduced the notion of Z2 actions and defined the renormalization

algorithm for such actions, we generalize the definition of the energy of a cocycle to actions
and subsequently study the convergence of the algorithm in order to obtain the following
key theorems to the proof of the global density theorem.

The first one concerns the quantization of the length of the vectors belonging to the
invariant curve a(·) (see section 4.2 for the notation), which is the same as for abelian
cocycles:

Theorem 5.1. Let (α,A(·)) ∈ SW 1(T, G), with G a semisimple compact Lie group and
w the dimension of its maximal tori. Then, the energy of the cocycle satisfies

en(α,A(·)) = 2π‖
∑

ρ∈∆̃
rρhρ‖, r ∈ Nw
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where the vector h = 2π
∑
ρ∈∆̃ rρhρ ∈ g is a preimage of the Id and a(ν) ∈ Inn(g).h for

a.e. ν ∈ T.

This theorem, whose proof is in p. 95, motivates the following definition

Definition 5.2. The vector r ∈ Nw, defined modulo the action of Weyl’s group and
invariant under C1 conjugation, is the degree of (α,A(·)). It is denoted by deg((α,A(·)))
and it satisfies

exp(2π
∑

ρ∈∆̃
rρ.hρ) = Id

The degree of an abelian cocycle coincides with the topological degree of the application
A(·) : T→ T , which justifies the terminology.

The two following theorems concern the convergence of renormalization per se. For
the definition of the unknown quantities in their statements (mostly the operators (Λχ0)∗
and R̃nν acting on Φ), we address the reader to section 5.3.

The first theorem asserts that renormalization of a positive energy cocycle (α,A(·))
converges towards geodesics of speed equal to the degree of (α,A(·)), modulo iteration by
χG0 times, where G0 is the 0-energy component in the splitting corresponding to (α,A(·)):

Theorem 5.3. Let (α,A(·)) ∈ SW s(T, G), 2 ≤ s ≤ ∞ and en(α,A(·) > 0. Then, there
exist a positive integer χ0 with 1 ≤ χ0 ≤ χG depending on the degree of the cocycle
r ∈ Zw, and a sequence of conjugations Dn,ν(·) ∈ Hs−1(R, G), defined for a.e. ν ∈ T,
satisfying the following properties: ConjDn,ν(·)(Λχ0)∗R̃nνΦ is normalized modulo χ0 and
ConjDn,ν(·)(Λχ0)∗R̃nΦ(e2)(·) is arbitrarily close to

A(n)
ν . exp(χ0a(ν)·)

in Hs−1(T, G), with A(n)
ν ∈ Zν and θn,ν ∈ T. The set of such ν ∈ T is invariant under Rα.

Finally, the constant χ0 is the constant of lemma 1.5 corresponding to G0, the 0-energy
component of the splitting associated to (α,A(·)). This constant is taken equal to 1 if
G0 = {Id}.

where we have called Zν = ZG(exp(Ra(ν))).
The second one concerns the cocycles of 0-energy, and asserts that renormalization of

0-energy cocycles converges toward constant cocycles, again modulo iteration by χG times:

Theorem 5.4. Let (α,A(·)) ∈ SW s(T, G), 2 ≤ s ≤ ∞ and en(α,A(·) = 0. Then,
for every ν ∈ T, there exists a sequence of conjugations Dn,ν(·) ∈ Hs−1(R, G) such that
ConjDn,ν(·)(ΛχG)∗R̃nΦ is normalized and ConjDn,ν(·)(ΛχG)∗R̃nΦ(e2)(·) is arbitrarily close
to a constant.

We then proceed to a brief discussion on the preservation of the homotopy under
renormalization before coming back to a loss of information in the proof of its convergence.
As seen in the statement of theorem 5.3, it may be possible to conjugate the dynamics
close to an abelian model only after iteration. The following theorem asserts that the
limits of renormalization before iteration are the only cocycles which, iterated, give the
limits of renormalization after iteration.

Proposition 5.5. Let (α,A(·)) ∈ SW∞(T, G) and m ∈ N∗ such that (α,A(·))m =
(mαn, Emr,a(·).A0), and consider the splitting G0 × G+ ↪→ G associated to Er(·). Then,
(α,A(·)) preserves the splitting and is (conjugate to a cocycle) of the form

(α,Er,a(·)A0(·))

where A0(·) is G0-valued.
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The section 5.7 is devoted to the proof of this proposition.
Subsequently, we extend a result known since [Fra04], namely the dependence of the

degree of the cocycle (now defined as a vector and not as a numerical quantity) on the
rotation in the basis to this more general context.

The degree of a C1-cocycle can be well defined, we have seen that it results immediately
from the definitions that C1 conjugations leave the degree invariant. However, using the
convergence of renormalization, we can prove a looser proposition:

Proposition 5.6. Let (α,Ai(·)) ∈ SW 1(T, G), i = 1, 2, be conjugate by B(·) : T→ G and
let us suppose that B(·) is measurable. Then

deg(α,A1(·)) = deg(α,A2(·))

whose proof occupies section 5.8.

5.2 Z2 actions

In order to cope with the expected divergence of the approximation of the limit object
a(·), we will have to examine the dynamics in finer scales, which sums up to considering tori
γ−1T = R/γ−1Z, where γ goes to infinity in a controlled way, related to the arithmetic
properties of α. In order to avoid such non-uniform objects, we consider cocycles in
SW s(R, G) and express periodicity in a more abstract way, which nonetheless proves to
be practical for the study of the dynamics.

Let, therefore, (α,A(·)) and (β,B(·)) be commuting cocycles in SW s(R, G), with α, β ∈
(0, 1], not necessarily irrational. Commutation of these cocycles sums up to the following
relation satisfied by the mappings A(·) and B(·)

B(·+ α).A(·) = A(·+ β).B(·)

We can then define an abelian action of Z2 on R×G 1 by

Φ (k, l) . (x, S) = (α,A(·))k ◦ (β,B(·))l. (x, S)

The space of such actions will be denoted by Λs(R, G) and we will say that the action Φ
is generated by (α,A(·)) and (β,B(·)). We will denote by e1 = (1, 0) and e2 = (0, 1) the
standard basis of the module Z2. We will also use the notation(

(α,A(·))
(β,B(·))

)

for such an action Φ.

Definition 5.7. An action will be called constant if Φ (k, l) is a constant cocycle for
every (k, l) ∈ Z2. It will be called normalized if Φ(e1) = (1, Id), in which case π2(Φ(e2))
is automatically 1-periodic. A cocycle (α,A(·)) with A(·) 1-periodic is thus naturally
identified with the action generated by (1, Id) and (α,A(·)). We will say that this action
is associated to the cocycle (α,A(·)).

We remark however that the same property holds if we replace the Id by any other S ∈
ZG, and an action such that Φ(e1) = (1, S) with such an S will be called quasi-normalized.

1. and likewise on the product of R with any space on which G acts.
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The relation between normalized and quasi-normalized actions will be investigated later
on.

The space Cs(R, G) acts on Λs by the generalization of conjugation in SW s(T, G): if
B(·) ∈ Cs(R, G), then Φ′ = ConjB(·)Φ is given by

Φ′(k, l) = ConjB(·)(Φ(k, l)), ∀ (k, l) ∈ Z2

and this gives rise to the following natural definitions

Definition 5.8. Two actions will be called conjugate if they belong to the same orbit
under the action of conjugacies.

An action will be called reducible if it is conjugate to a normalized constant action,
and torus-reducible if it is conjugate to a normalized action such that π2(Φ(e2)) takes its
values on a torus of G, which with no loss of generality can be assumed to be a fixed torus
T .

Since B(·) ∈ Cs(R, G) is 1-periodic if ConjB(·)(1, Id) = (1, Id), the following lemma is
an immediate consequence of the definitions

Lemma 5.9. A cocycle is (torus-)reducible if, and only if, the Z2 action associated to it
is (torus-)reducible. Likewise, it is accumulated by (torus-)reducible cocycles if, and only
if, the corresponding action is.

We also remind that the same holds for a quasi-normalized action associated to the
given cocycle. The relation between such actions is non-canonical, but it encapsulates
phenomena already observed in the K.A.M. context:

Lemma 5.10. Let (α,A(·)) be a C1 cocycle and Φ a quasi-normalized action associated
to it. If Φ′ is another quasi-normalized action conjugate to Φ, then Φ(e2) and Φ′(e2) are
cocycles conjugate to each other, modulo cG.

Proof. Let B(·) such that B(· + 1)S1 = S2B(·) or B(· + 1) = B(·)S∗1S2 = B(·)S, where
S ∈ ZG. Then there exists cS ∈ N∗, depending on S but not bigger than cG = #ZG,
such that B(·+ cS) = B(·). It is a classical fact that such a conjugant can be chosen as a
group homomorphism from T into a periodic geodesic of G. The definition of conjugation
of actions concludes the proof.

If d(·) is a (semi)metric on a space of applications taking values in G, then it induces
a (semi)metric on Λs defined by

max
i=1,2

d(π2(Φ1(ei)), π2(Φ2(ei)))

i.e. the max of the distances of their generators. In the special case of the Cs(I) topology,
where I ⊂ R or T and s ≥ 0, we will use the notations

‖Φ‖s,I = max
i=1,2

‖π2(Φ(ji))‖s,I
ds,I(Φ1,Φ2) = max

i=1,2
‖π2(Φ1(ji))− π2(Φ2(ji))‖s,I

and

‖Φ‖max
s,I = max

1≤σ≤s
‖Φ‖σ,I

dmax
s,I (Φ1,Φ2) = max

1≤σ≤s
dσ,I(Φ1,Φ2)

We can now prove
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Lemma 5.11. i)Let Φ ∈ Λs(R, G) such that π1(Φ(1, 0)) = 1. Then there exists B(·) ∈
Cs(R, G) such that ConjB(·)Φ is normalized. B(·) satisfies, for 1 ≤ σ ≤ s−1 and T ∈ N∗,
the estimates

‖B(·)‖max
σ,T ≤ CσT σ(1 + ‖π2(Φ(e1)‖max

σ,T ) ‖π2(Φ(e1))‖0,T

and the normalized action satisfies∥∥∥ConjB(·)Φ(e2)
∥∥∥max

s,1
. (1 + ‖π2(Φ(e1))‖1,2) ‖π2(Φ(e2)‖max

s,1 + ‖π2(Φ(e1)‖max
σ,2 ‖π2(Φ(e1))‖1,1

Proof. In order to prove the first part, we need to solve the equation

B(·+ 1) = B(·).C∗(·) (5.1)

where C(·) = π2(Φ(1, 0)). Let us fix B0(·) ∈ Cs([0, 1], G) such that

B0(0) = Id and ∂σB0(0) = 0, 1 ≤ σ ≤ s
∂σB0(·)|t=1 = ∂σ(B0(·).C∗(·))|t=0, 0 ≤ σ ≤ s
‖B0(·)‖σ,1 ≤ Cσ ‖C(·)‖σ,1 , 1 ≤ σ ≤ s− 1

Then, define for all j ∈ Z
B(·+ j) = B0(·).C∗j (·)

It can be verified inductively that B(·) is Cs(R, G) and by its very definition it solves the
equation (5.1). Moreover, if σ, T ∈ N, it satisfies

‖B(·)‖σ,[T,T+1] = ‖B0(·).CT (·)‖σ,1

and the estimate can be proved by imitating the proof of lemma 4.9.

We remark that, in view of the proof of the previous lemma, an action is torus-reducible
if it is conjugate to an action Φ′ such that π2(Φ′(e1)) and π2(Φ′(e2)) take their values on
the same torus, and π1(Φ′(e1)) = 1.

However, unlike actions associated to cocycles in, say T×SU(w+1), we cannot always
normalize a constant action to another constant one for the following reason. If

Φ =
(

(1, C)
(α,A)

)

is a constant action, then C and A commute. However, if none of the constants is regular,
then they need not belong to the same maximal torus. A natural conjugation normalizing
the cocycle is B(·) = exp(−H·), where exp(H) = C. But, unless Ad(A).H = H,

Φ′ =
(

(1, Id)
(α, exp(−H(·+ α)).A. exp(H·))

)

is not constant. This problem can be resolved using the fact that CχG and AχG are on
the same torus (see lemma 1.5), which gives the following

Lemma 5.12. If Φ is a constant action such that π1(Φ(e1)) = 1, then the action generated
by Φ(χGe1) and Φ(χGe2) can be conjugated to a constant one.

This action is (ΛχG)∗Φ in the notation of the next section.
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5.3 Renormalization of actions

We now present the basic tool for the study of the iterates of cocycles via their iden-
tification with the corresponding Z2-action. Given the irrational number α, we generate
an infinity of base-changes of the module Z2, and these base-changes are pulled back
to changes of generators of the Z2- action corresponding to (α,A(·)). These successive
base-changes, given by the continued fractions algorithm applied to α, provide us with
a subsequence of iterates of (α,A(·)), which, being adapted to α, reflects its arithmetic
properties, and whose derivatives converge to a(·).

We now define the actions that are used in the renormalization:
– GL(2,Z) acts on Λs by change of basis of the module Z2. If Φ ∈ Λs and P ∈
GL (2,Z), then P∗Φ(k, l) = Φ(P−1.(k, l)), ∀ (k, l) ∈ Z2, i.e. P∗Φ is generated by
P−1.e1 and P−1.e2

– R acts by translations in the basis: for θ ∈ R:

π2(TθΦ(k, l)) = π2(Φ((k, l))(.+ θ), ∀ (k, l) ∈ Z2

– R∗+ acts by dilatations of the basis: if λ ∈ R∗+, then

π1(MλΦ(k, l)) = λ−1π1(Φ((k, l))(·)
π2(MλΦ(k, l)) = π2(Φ((k, l))(λ·), ∀ (k, l) ∈ Z2

– We also define the action of the semigroup N∗ by the action of the diagonal matrix
(Λm)∗Φ(k, l), where Λm = m−1Id. We remark that Λm is not in SL(2,Z) unless
m = 1, but (Λm)∗Φ defines a Z2-action generated by (Φ(e1))m and (Φ(e2))m. In the
particular case of an action associated to a cocycle, (Λm)∗Φ is the action associated
to (mα,Am(·)), seen as a m-periodic cocycle. Since Λm is diagonal, it commutes
with the actions defined above.

We note that the first three actions commute with each other, since dilatations and
translations commute with iteration. Conjugation commutes with base changes, while it
satisfies the following invariance properties

Tθ ◦ ConjB(·) = ConjB(·+θ) ◦ Tθ
Mλ ◦ ConjB(λ·) = ConjB(·) ◦Mλ

Since the loss of information described by lemmma 5.12 is unavoidable, we give the
following definition

Definition 5.13. Given a Z2 action Φ and m ∈ N∗, the action (Λm)∗Φ will be called the
m-lattice of Φ. An action Φ′ such that Φ′(e1) = (m, Id) will be called normalized modulo
m.

The equalities
‖MλΦ‖s,T = λs ‖MλΦ‖s,λT

follow directly from the definitions.
It can be seen directly that the action Φ is (torus-)reducible (resp. accumulated by

reducible actions) iff MλP∗Φ is (torus-)reducible (resp. accumulated by reducible actions)
for some (and thus for all) P ∈ GL(2,Z), and λ = π1(P∗Φ(1, 0)), and the same holds
for Tθ. We can therefore generalize the different notions of reducibility of Z2-actions as
defined and used above to
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Definition 5.14. An action Φ will be called reducible if it is conjugate to a constant
action Φ′ such that π2(Φ′(e1)) = Id, and torus-reducible if it is conjugate to an action Φ′
such that π2(Φ′(e1)) and π2(Φ′(e2)) take their values on the same maximal torus T ⊂ G.

It will be called (torus-)reducible modulo m ∈ N∗ iff (Λm)∗Φ is (torus-)reducible.

Given an action Φ such that π1(Φ(e1)) = 1, the n-th renormalized action can now be
defined as

RnΦ = Mβn−1 ◦ (Qn)∗Φ

where, following the notations introduced in section 1.3,

Qn =
(
pn pn−1
qn qn−1

)

is in GL(2,Z) and the Qn satisfy the recursive relation

Qn = Qn−1

(
an 1
1 0

)
= Qn−1An

so that
R̃nΦ = Mαn−1 ◦ (An)∗Rn−1Φ

For the action Φ associated to the cocycle (α,A(·)),

(βn, A(n)(·)) = (βn−1, A
(n−1)(·))−an ◦ (βn−2, A

(n−2)(·))
R̃nΦ(e1) = (1, A(−1)nqn−1(βn−1·)) = (1, A(n−1)(βn−1·)) = (1, C̃(n)(·))
R̃nΦ(e2) = (αn, A(−1)nqn(βn−1·)) = (αn, A(n)(βn−1·)) = (αn, Ã(n)(·))

We will also use the notations

R̃nθΦ = T−θR̃n(TθΦ)
RnθΦ = T−θ(Qn)∗(TθΦ)

and omit the subscript when θ = 0.
The actions R̃nθΦ can be normalized in a non canonical way: there exists B(·) =

Bn,θ(·) ∈ C∞(R, G) such that ConjB(·)R̃nθΦ is normalized.

Definition 5.15. For an action Φ associated to the cocycle (α,A(·)), we will call such a
ConjB(·)R̃nθΦ(e2) a renormalization representative of (α,A(·)).

The choice of a renormalization representative is non-canonical, since it depends on the
choice of B(·), but since different renormalization representatives are cocycles conjugate
to each other (cf. proof of lemma 5.20), the indeterminacy is not important for the results
that we seek to obtain.

Similarly, we call a renormalization representative mod m the cocycle ConjB(·)(Λ)∗R̃nθΦ(e2),
when this last action is normalized mod m.

From the above, it follows that

Proposition 5.16. The cocycle (α,A(·)) is (torus-)reducible (resp. accumulated by
(torus-)reducible cocycles) if there exist n and θ such that RnθΦ is (torus-)reducible (resp.
accumulated by (torus-)reducible cocycles), where Φ is the action associated to (α,A(·)).
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We remark that the action associated to a cocycle is (torus-)reducible mod m, iff the
m-th iterate of the cocycle is reducible mod m. We hope that this problem in terminology
will not confuse the reader.

Using lemmas 4.9 and 4.10, we can prove the a priori estimates

Proposition 5.17. For the action Φ associated to the cocycle (α,A(·)), we have∥∥∥R̃nΦ
∥∥∥max

σ,R
. Kσ∥∥∥∂σ c̃(n)(·)

∥∥∥
L2(I)

→ 0∥∥∥∂σã(n)(·)
∥∥∥
L2(I)

→ 0

for all 1 ≤ σ ≤ s− 1 and any compact interval I.

Proof. As we have seen, for any n ∈ Z∗, the derivative of An(·) satisfies

‖an(·)‖0 ≤ n ‖a(·)‖0
In particular, ‖a(n)(·)‖0‖LA(n)(·)‖0 ≤ qn ‖a(·)‖0, and since

ã(n)(·) = βn−1a
(n)(βn−1·)

and qnβn−1 < 1, the result is proved for the C0 norms of the first derivatives. Similarly,

‖∂an(·)‖0 . n ‖∂a(·)‖0 + n2 ‖a(·)‖20
Since, now, ∂ã(n)(·) = β2

n−1∂a
(n)(βn−1·), the estimate follows as before.

Finally, the convergence to 0 in L2(I) for ∂σã(n)(·), σ ≥ 1, follows from the fact that

∂ã(n)(·) = β2
n−1∂a

(n)(βn−1·)
= q2

nβ
2
n−1∂a(n)(βn−1·)

and ∂a(n)(·)→ 0 in L2(T), so that ∂a(n)(βn−1·) in L2(I), for any compact interval I.
The estimates on c̃(n)(·) and its derivatives are obtained in exactly the same way, and

we just remark that the numerical factor that gains convergence for c̃(n)(·) (as does qnβn−1
for ã(n)(·)) is now qn−1βn−1 = αn−1qn−1βn−2, which is in a sense more than what is needed
in order to establish convergence. The factor αn−1 will be interpreted as a scaling factor
in the proof of the convergence of the scheme.

A remark

By using A. Avila’s theory of SL(2,C) cocycles (cf. [Avi09]), we can immediately obtain
the following quantization theorem for analytic cocycles in T × SU(2). Before stating it,
we remind that SU(2) complexifies to SL(2,C) and remark that, if A(·) ∈ Cωδ (T, SU(2)),
i.e. if A(·) is analytic and admits a holomorphic extension to the band |<(z)| < δ, then

d

dε
‖A(x0 + εi)‖ |ε=0+ = |πt(a(x0))|

where t is a maximal torus 2 passing by A(x0) and ‖·‖ stands for the operator norm
associated to the Hermitian norm on C2. This relation holds for the following simple
reason. If we assume that

A(0) = {At(0), 0}

2. In fact in the case where A(x0) = ±Id one should consider the maximum of such projections on all
maximal tori, which is equal to the norm of the derivative
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is diagonal and At(0) = exp(is0 + is1x + O(x2)), then the increment of the norm as we
pass to the complex plane is given by the increment of the real part of At(0 + iε) which is
precisely s1. The general case follows.

Theorem 5.18. The energy of analytic cocycles in T× SU(2) is quantized in 2πN.

Proof. Suppose that the curve a(·) is non-degenerate, so that the cocycle is measurably
diagonalizable. Moreover, for a.e. point x0,

1
qn

d

dε
‖Aqn(x0 + εi)‖ |ε=0+ →

n→∞
|a(x0))|

This fact implies that the acceleration of a cocycle, as defined in [Avi09], is equal to its
energy as has been defined herein. In the same paper by A. Avila, it is shown that this
quantity is quantized in 2πN.

As we will see later on, this fact persists in more general contexts and in lower regu-
larity.

5.4 Energy of actions

Using lemma 5.11, we can define the energy of a Z2 action, in a way that generalizes
the definition given for cocycles:

Definition 5.19. The energy of a normalized action Φ equals the energy of Φ(e2), i.e.

en(Φ) = en(Φ(e2))

If MλΦ is normalized, then

en(Φ) = λ−1.en(MλΦ(e2))

The pertinence of the definition is established by the following lemma.

Lemma 5.20. The definition of the energy does not depend on the choice of the conjugacy
that normalizes the action, provided that it is C1.

Proof. Let Bi(·) ∈ C1(R, G), i = 1, 2 be such that Φ′i = ConjBi(·)Φ be normalized. Then,
if we let B(·) = B1(·).B∗2(·), it satisfies ConjB(·)(1, Id) = (1, Id), and therefore it is 1-
periodic. Since Φ′1 = ConjB(·)Φ′2, which implies that Φ′1(e2) = ConjB(·)Φ′2(e2), and the
energy of a cocycle is invariant under the action of C1 periodic conjugations (by proposition
4.3), the result has been proved.

The following corollary is immediate.

Corollary 5.21. The energy of an action is invariant under C1 conjugation of actions.

The energy of an action is related with the renormalization scheme in the following
way (notice that we need only consider renormalization of normalized actions):

Lemma 5.22. The sequences din given by

din = βn‖a(n−1)(·)‖Li(T) + βn−1‖a(n)(·)‖Li(T)
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for i = 1, 2 are decreasing and converge to en(Φ). As a consequence, the energy of an
action is invariant under renormalization:

en(Φ) = en(R̃nθΦ)

for all n ∈ N∗ and θ ∈ T. Moreover, the energy of a cocycle is equal to the energy of any
of its renormalization representatives.

Proof. By virtue of the recurrence relation satisfied by RnΦ and the triangle inequality,
we find that

‖a(n)(·)‖Li ≤ ‖a(n−2)(·)‖Li + an‖a(n−1)(·)‖Li

Since βn−2 = anβn−1 + βn, we find

βn−1‖a(n)(·)‖Li + βn‖a(n−1)(·)‖Li ≤ βn−1‖a(n−2)(·)‖Li + βn−2‖a(n−1)(·)‖Li

and the sequences din are decreasing. Since 1
qn
‖a(n)(·)‖Li → en(Φ) for i = 1, 2, and since

βn−1qn + βnqn−1 = 1, we immediately obtain the proof of the first part of the lemma.
The second part follows from the first and the invariance of the energy under smooth

enough conjugation.

This quantity was introduced in [Kri01] and was used in the proof of the convergence
of the renormalization scheme. The observation that this quantity equals the degree is
due to K. Fraczek. Another important quantity used in the calculation of the energy of
an action is its original definition by R. Krikorian as the length functional J1 defined as
follows. Let us consider the sequence

J1
n(ν) =

∫ ν+βn−1

ν
|a(n)(·)|+

∫ ν+βn

ν
|a(n−1)(·)|

=
∫ 1

0
|ã(n)
ν (·)|+

∫ αn

0
|ã(n−1)
ν (·)|

We can prove immediately

Lemma 5.23. For ν ∈ T fixed, (J1
n(ν))n is decreasing, and (J1

n(ν))n converges uniformly
to the energy of the action.

Proof. We calculate

J1
n(ν) =

∫ ν+βn−1

ν
|a(n)(·)|+

∫ ν+βn

ν
|a(n−1)(·)|

≤
∫ ν+βn−1

ν

ak∑
1
|a(n−1)(·+ βn−2 − jβn−1)|+

∫ ν+βn−1

ν
|a(n−2)(·)|+

∫ ν+βn

ν

∣∣∣a(n−1)(·)
∣∣∣

≤
∫ ν+βn−2

ν
|a(n−1)(·)|+

∫ ν+βn−1

ν
|a(n−2)(·)| = J1

n−1(ν)

which proves the first part.
We call

J1(ν) = lim
n→∞

J1
n(ν)

which is defined for all ν ∈ T.
Let us now observe that A∗(·+ (−1)nqnα).A(n)(·) = A(n)(· − α).A∗(·), so that∣∣∣|a(n)(·)| − |a(n)(· − α)|

∣∣∣ ≤ |a∗(·)|+ |a∗(·+ (−1)nqnα)| ≤ 2 ‖a∗(·)‖L∞
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and we find

|J1
n(ν)− J1

n(ν + α)| ≤
∣∣∣∣∣
∫ ν+βn−1

ν
|a(n)(·)| − |a(n)(· − α)|

∣∣∣∣∣+
∣∣∣∣∣
∫ ν+βn

ν
|a(n−1)(·)| − |a(n−1)(· − α)|

∣∣∣∣∣
≤ 2 ‖a∗(·)‖L∞ (βn−1 + βn)

and, by the definition of J1(ν), J1(ν + α) = J1(ν), for all ν ∈ T. Since J1(·) is defined
as a pointwise limit of a decreasing sequence of continuous functions, and the invariance
relation holds everywhere, J1(·) = J1, a constant. We now find that

‖J1
n(·)‖L1 =

∫
T
J1
n(ν)dν

= βn−1‖a(n)(·)‖L1 + βn‖a(n−1)(·)‖L1

by Fubini’s theorem and the invariance of the Haar-Lebesgue measure on the torus. The
Lebesgue monotone convergence theorem and the previous lemma conclude the proof
of convergence of J1

n(·) in L1. Since (J1
n(·)) is a sequence of continuous functions on a

compact space converging pointwise to a continuous function, the convergence is in fact
uniform.

The proof of this lemma is essentially as in [Fra04], except for this last observation,
which is the reason for the improvement of our results in terms of regularity. The functional
J1(·) is the quantity used in the proof of the convergence of the renormalization scheme,
where it appears as the length of the path of RnνΦ after the natural normalization, and by
this observation we relate it a priori to the energy of the cocycle, whereas in K. Fraczek’s
article they were related a posteriori.

The factors in the definition of J1
n(·) in this last lemma, are exactly the respective

lengths of the curves R̃nν .e1(·) and R̃nν .e2(·) for times in [0, αn] and [0, 1] respectively. The
factor αn appears as the rescaling factor which we encountered in the proof of 5.17. For
these reasons, the argument ν is to be considered as the base point of renormalization, i.e.
the point around which we can rescale and obtain a good image of the global dynamics.
The fact that the choice of the point is irrelevant is justified by the integration in the
proof, which connects the pointwise information of the functional J1

n(·) with the global (in
T) information of d1

n.

5.5 Convergence of the scheme
As indicates the conclusion of the previous section, the sequence

un(ν) = (−1)n
∫ ν+βn−1

ν
a(n)(·)− (−1)n

∫ ν+βn

ν
a(n−1)(·)

should be expected to converge to a(ν). The study of this fact, which in other words is
the invariance of the limit object of the dynamics under renormalization, is the object of
the section. We begin by the following proposition.

Proposition 5.24. The sequence (un(·)) converges to a(·) in Li, i = 1, 2.

Proof. Using the notation 1
qn
a(n)(·) = a(n)(·), we have

|
∫ ν+βn−1

ν
a(n)(·)| ≤ qn

∫ ν+βn−1

ν
|a(n)(·)|

≤ qnβn−1 sup
n
‖a(n)(·)‖L∞
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which is finite, as has already been proved. Thus, (un(·)) is uniformly bounded in L∞.
Using the fact that qnβn−1 + qn−1βn = 1, we find

un(ν)− a(ν) = (−1)n
∫ ν+βn−1

ν
a(n)(·)− qnβn−1a(ν)− (−1)n

∫ ν+βn

ν
a(n−1)(·)− qn−1βna(ν)

Let us assume for simplicity that n is even. Then

|
∫ ν+βn−1

ν
a(n)(y)dy − qnβn−1a(ν)| ≤ qn

∫ ν+βn−1

ν
|a(n)(y)− a(ν)|dy

≤ qn

∫ ν+βn−1

ν
|a(n)(y)− a(n)(ν)|+ |a(n)(ν)− a(ν)|dy

≤ 1
βn−1

∫ ν+βn−1

ν
|a(n)(y)− a(n)(ν)|+ |a(n)(ν)− a(ν)|

and, since a(n)(·) → a(·) a.e., we need only to prove the same thing for the first term.
This done in lemma A.2 in Appendix A.

The other term can be estimated in the same way in both arguments, and likewise the
case of an odd n in the second one and therefore, (un(·)) converges almost everywhere to
a(·). The bounded convergence theorem concludes the proof of convergence in L1, and
the uniform boundedness of the sequence grants automatically convergence in L2.

Corollary 5.25. For a.e. ν ∈ T,∫ ν+βn−1

ν
a(n)(·)− (−1)nqnβn−1a(ν)→ 0

and the set where there is convergence, denoted by E, is invariant by Rα.

Let us point out that for all ν ∈ T,

|un(ν)| = |
∫ ν+βn−1

ν
a(n)(·)−

∫ ν+βn

ν
a(n−1)(·)|

≤
∫ ν+βn−1

ν
|a(n)(·)|+

∫ ν+βn

ν
|a(n−1)(·)|

= J1
n(ν)

This inequality implies directly that

lim sup |un(ν)| ≤ en(α,A(·)), ∀ ν ∈ T

and, if the energy of the cocycle is 0, un(ν) converges to 0 in C0 topology.

We now use the asymptotic commutation of the renormalization representatives. We
remark that in the general case where γ(·) is a curve defined locally around 0 and taking
values in g, the integral of the ODE

LΓ(·) = γ(·)
Γ(0) = Γ0

does not satisfy
Γ(ν) = exp(

∫ ν

0
γ(·)).Γ0
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unless
∫ x

0 γ(·), or Γ(x), and γ(x) commute for all x ∈ [0, ν]. Such a relation is verified up
to an error in L1 by a(n)(·) and A(n)(·):

Ad(A(n)(·)).a(n)(·) = a(n)(·) + εn(·) (5.2)

where εn(·) ∈ L1 is of the order of ‖a(n)(·)−(−1)na(·)‖L1 +‖a(·+βn)−a(·)‖L1 . This fact,
along with the continuous dependence of solutions of ODE’s and the fact that an(·) =
LAn(·), implies that

Ã(n)(ν + x) = Ã(n)(ν). exp(
∫ ν+βn−1x

ν
a(n)(·) +O(εn(ν)))

C̃(n)(ν + x) = C̃(n)(ν). exp(
∫ ν+βn−1x

ν
a(n−1)(·) +O(εn(ν)))

for x ∈ [0, 1]. In particular,

Ã(n)(ν + 1) = Ã(n)(ν). exp(
∫ ν+βn−1

ν
a(n)(·) +O(εn(ν))) (5.3a)

C̃(n)(ν + αn) = C̃(n)(ν). exp(
∫ ν+βn

ν
a(n−1)(·) +O(εn(ν))) (5.3b)

and, using the preceding calculations (proposition 5.24 and its corollary), we find

Ã(n)(ν + 1) = Ã(n)(ν). exp((−1)nqnβn−1a(ν) +O(εn(ν)))
C̃(n)(ν + αn) = C̃(n)(ν). exp(−(−1)nqn−1βna(ν) +O(εn(ν)))

These formulas can be written as

Ã(n)(ν + 1) = = Ã(n)(ν). exp(Kn(ν) +O(εn(ν)))
C̃(n)(ν + αn) = = C̃(n)(ν). exp(Ln(ν) +O(εn(ν)))

where we call

Kn(ν) = (−1)nqnβn−1a(ν)
Ln(ν) = −(−1)nqn−1βna(ν)

If the cocycle is smoother, we can sharpen the convergence result using the following
lemma

Lemma 5.26. Let (α,A(·)) ∈ SW s(T, G), 2 ≤ s ≤ ∞. If en(α,A(·)) > 0, there exists a
full measure set Es ⊂ T such that for each x ∈ Es,

ã(n)(·)− (−1)nqn−1βna(ν) → 0 uniformly in [ν − 1, ν + 1]
|a(ν)| = en(α,A(·))

∂σã(n)(·) → 0 uniformly in [ν − 1, ν + 1], 1 ≤ σ ≤ s− 2
1

βn−1

∫ ν+1

ν−1
|∂s−1ã(n)(·)| → 0

We stress that there is no uniformity in ν or σ, but only in each interval [ν − 1, ν + 1].
The sets Es are invariant under Rα.

If en(α,A(·)) = 0, we have

∂σã(n)(·)→ 0 uniformly in [ν − 1, ν + 1], 0 ≤ σ ≤ s− 2

for all ν ∈ T.
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Proof. We can apply lemma A.2 of appendix A to 1
qsn
∂s−1a(n)(·), which has been proved

to converge to 0 in L2 and obtain a full measure set of in T for which

1
βn−1qsn

∫ ν+βn−1

ν−βn−1
|∂s−1a(n)(·)| → 0

holds. If Es is the intersection of such sets for 0 ≤ σ ≤ s with the set where |a(·)| =
en(α,A(·)), it is of full measure and the rest of the properties follow from the convergence
results already proved. The invariance of the sets Es follows from the U-invariance of the
limit curve a(·).

Under these assumptions, the mismatch function εn(·) in eq. (5.3) is in fact in Cs−1

and tends to 0 in Hs−1, with the same local convergence properties as in the previous
lemma.

We can now prove the quantization theorem:

Proof of theorem 5.1. Let us suppose for the moment that 0 ∈ Es, for simplicity in nota-
tion. For n even and big enough,

C̃(n)(x) = C̃(n)(0). exp(Ln(0).(x) +O(εn))

uniformly around 0, with C̃(n)(0) ∈ Z0 = ZG(exp(Ra(0))) up to a small error, i.e.
Ad(C̃(n)

0 ).a(0) = a(0) +O(εn) and the same holds for Ã(n)
0 . The conjugation

D̃n(x) = exp(−Ln(0)x(x− 1)
2 )

taking values in exp(Ra(0)) reduces the action R̃nΦ to the one generated by

(1, C̃(n)(0). exp(O(εn)))
(αn, Ã(n)(0). exp(a(0)(·) +O(εn)))

where again Ã(n)(0) ∈ Z0 is a different constant and we have used the fact that Ln(0)
and Kn(0) are collinear with a(0), as well as the commutation relation 5.2. Let us recall
the splitting Z0 = G0 × G+ ↪→ G (cf. section 3.1) which corresponds to a(0). We can
decompose, up to a small error, C̃(n)(0) into C+.C0, where C0 ∈ G0 and C+ ∈ G+. Then,
if H+ ∈ g+ is a preimage of C+, the conjugant exp(−H+·) reduces the action to

(1, C0. exp(O(εn))) (5.4)
(αn, Ã(n)(0). exp(a(0)(·) +O(εn))) (5.5)

with Ã(n)(0) replaced by Ã(n)(0) exp(−H+αn). We remark that the first generator is a
perturbation of a cocycle in T×G0.

Let us now split Ã(n)(0) into A+.A0, as we have done with C̃
(n)
0 . The commutation

of the cocycles generating the action, along with the fact that both C0, A0 ∈ G0 and
A+ ∈ G+, imply that

exp(a(0) +O(εn)))A0.C0 = C0.A0

Since a(0) ∈ g+ and G0 ∩G+ = Id, we have proved theorem 5.1
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In order to normalize the action, we have to reduce the constant C0 to the Id, and the
natural conjugant is exp(−H0·), where H0 ∈ g0 is a preimage of C0. If, however, C0 and
A0 are not on the same maximal torus of G0, then the resulting action will not be close
to Ã(n)(0). exp(a(0)(·) +O(εn)) with Ã(n)(0) ∈ Z0. Like in lemma 5.12, this becomes true
if we replace the given action by the one generated by

(1, C0. exp(O(εn)))χ0

(αn, A0. exp(a(0)(·) +O(εn)))χ0

where χ0 = χG0 ≤ χG is the constant of lemma 1.5 for the group G0 ↪→ G (cf. def. 5.13).
We can now conclude the proof of theorems 5.3 and 5.4 :

Proof of Theorems 5.3 et 5.4. If we denote by

(χ0, C
′
0. exp(O(εn)))

(χ0αn, A
′
0. exp(χ0a(0)(·) +O(εn)))

the generators of the χ0-lattice of Φ and H ′0 ∈ g0 a preimage of C ′0, we find that there
exists a conjugacy exp(−H ′0·) + O(εn) which normalizes this action to the one generated
by

(χ0, Id)
(χ0αn, A

′
0. exp(χ0a(0)(·) +O(εn)))

and therefore the cocycle (χ0αn, A
′
0. exp(χ0a(0)(·) +O(εn))) is χ0-periodic.

If n is odd, we obtain the same result modulo a change of sign in a(0).
Translating this construction by ν, composing with the algebraic conjugation D(ν)

that diagonalizes a(ν), and modifying accordingly the notation, we can obtain the same
result for any ν ∈ Es. This proves theorem 5.3 in its full generality.

Repeating the arguments in the 0 energy case, and remembering that under this as-
sumption J1

n(·)→ 0 uniformly proves theorem 5.4.

We close this section with the following remark.

Remark 5.27. We stress that if the cocycle is regular, the constant χG is irrelevant,
as follows from the proof. In particular, if G = SO(3), this constant equals 2, but all
non-zero vectors in g = so(3) ≈ su(2) are regular. We will examine the consequences of
this phenomenon in section 6.7.

5.6 Renormalization and homotopy
From the above arguments we can draw the rather surprising conclusion that, in the

global as in the local theory, the greatest part of the analysis of the dynamics of a cocycle
is made in the isomorphism class of the Lie algebra of the group. In particular, for a given
cocycle (α,A(·)) ∈ SW s(T, G), the definition of the energy and the invariant curve do not
depend directly on the group, but only on a(·) (which however should be the derivative of
a closed path T → G) and Ad(A(·)) ∈ Cs(T, Inn(g)), which both remain the same if we
replace G by G/K, where K ⊂ ZG and (α,A(·)) by (α, π(A(·))) ∈ SW s(T, G/K), where
π : G → G/K is the canonical projection. In particular, since the functionals measuring
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the convergence of the renormalization are calculated in the same way, they depend only
in the same indirect way on the group. These properties are not necessarily conserved
when we pass to a covering of G, and we will examine how this affects the study of the
dynamics.

The difference between the groups becomes important in the solution of the equation

exp(h) = Id

As a consequence, when we renormalize cocycles in T × (G/K), a finer lattice in Zw is
admissible than the one admissible for cocycles in T × G, and this is the case even for
regular cocycles. In the case of close-to-a-constant and singular cocycles, the constant χG
becomes important. Since in general the constants χG and χG/K are different, we have to
iterate a different number of times in order to obtain the necessary commutativity for the
normalization of the renormalized action.

A manifestation of the first phenomenon is the quantization of Er(·) in SU(2), where
the levels of energy allowed are in 2πZ, whereas the quantization in SO(3) is in πZ. The
factor 1/2 is clearly due to the cardinal of the center of SU(2), equal to {±Id}. In the
section 6.7 we will examine the effect of the fact that χSU(2) = 1, while χSO(3) = 2.

It is nonetheless possible to renormalize a cocycle without losing track of its homotopy
class, but this seems to be obtained in a more natural, but still not canonical, way by
passing on to a group with simpler homotopy 3.

Let, therefore, (α,A(·)) ∈ SW s(T, G) and G̃ be a group such that G = G̃/K, where
K ⊂ ZG̃. Then, A(·) admits a lift Ã(·) in G̃ which is #K-periodic. There exists, however,
S ∈ K such that Ã(· + 1) = S.Ã(·). The choice of S depends on the chosen lift, but the
smallest integer m such that Sm = Id is in fact a characteristic of the homotopy class
A(·) and the eventual simplification of the homotopy of its lift in G̃. Therefore, even
though the couple ((1, Id), (α, Ã(·))) does not define a Z2- action on T× G̃, it satisfies the
commutativity relation

(1, Id) ◦ (α, Ã(·)) = (0, S) ◦ (α, Ã(·)) ◦ (1, Id) (5.6)

Let us firstly study cocycles satisfying this weaker commutation relation, and let two
cocycles U, V ∈ SW s(T, G̃) commute modulo S ∈ ZG̃:

U ◦ V = (0, S) ◦ V ◦ U

These cocycles do not define a Z2 action, but we can always define a function

Φl : Z2 → SW s(T, G̃)
(m,n) 7−→ Um ◦ V n

or
Φr : Z2 → SW s(T, G̃)

(m,n) 7−→ V n ◦ Um

3. A similar way to the one we have chosen is to associate a symbol to the action associated to the
cocycle. The symbol codes the homotopy class of the path in G. It is invariant by the all the actions used
in renormalization, except for the action of N∗, which accounts for the fact that composition of a path
with itself simplifies its homotopy. However, we find this presentation needlessly abstract, and we prefer
the one given in the text.
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which is not a group homomorphism. This property can be regained if we factorize G̃
modulo K, or if we restrict it to the submodule (#K.Z)2. It is equally regained if we
consider the adjoint action of G̃ on g and the induced Z2 action.

Let us examine Φl. A matrix in GL(2,Z) does not act on it in a canonical way. It can
be nonetheless verified that the change of basis of Z2 by a matrix in GL(2,Z) preserves
the relation modulo an inversion of S which is not significant, as it corresponds to the
change of orientation of the path induced by renormalization. If(

a b
c d

)
∈ GL(2,Z)

and Ũ = Ua ◦ V c and Ṽ = Ud ◦ V d, then

Ũ ◦ Ṽ = (0, S±1) ◦ Ũ ◦ Ṽ

according to the sign of the determinant. Therefore, if P ∈ GL(2,Z), the function Φ̃ =
P∗Φl is well defined and

Φ̃l(e1) ◦ Φ̃l(e2) = (0, S±1) ◦ Φ̃l(e2) ◦ Φ̃l(e1)

so that the commutation relation is preserved, and the only reason for which it is non-
canonical is the original choice of Φl instead of Φr. Additionally, it can be verified di-
rectly that the renormalization and normalization of the action Φ̃ associated to the couple
((1, Id), (α, Ã(·))) as if it were a Z2 action preserve this relation, in view of the fact that
S ∈ ZG̃:

R̃nν Φ̃(e1) ◦ R̃nν Φ̃(e2) = (0, S(−1)n) ◦ R̃nν Φ̃(e2) ◦ R̃nν Φ̃(e1)

and this property persists after conjugation of actions. For example, if (1, C(·)) and
(α,A(·)) satisfy

C(·+ α).A(·) = S.A(·+ 1).C(·)

and B : R→ G normalizes (1, C(·)) to (1, Id), then Ã(·) = B(·+ α)A(·)B∗(·) satisfies

Ã(·+ 1) = S.Ã(·)

Since S codes the homotopy class of the cocycle, we find that the renormalization in
fact preserves homotopy, in contrast with simple iteration of the cocycle.

Finally, since all the estimates concerning the measurement of the convergence of the
scheme depend only on the isomorphism class of g, this renormalization of non-abelian
actions has the same characteristics as the renormalization of the action associated to
(α,A(·)) ∈ SW s(T, G).

5.7 Proof of proposition 5.5
In this section we focus on the effect of some characteristics of the global geometry of

G on the dynamics. These are the existence of singular vectors in g, and the existence
of commuting pairs in G, which nonetheless are never on the same maximal torus. This
discussion concerns, therefore, compact semisimple groups other than SU(2) and SO(3),
which are excluded since any non-zero vector in su(2) ≈ so(3) is regular. Moreover, special
unitary groups of higher dimension, SU(w+1) with w ≥ 2, are equally excluded, since, by
classical linear algebra, any two commuting matrices in SU(w+ 1) can be simultaneously
diagonalized in SU(w + 1), and therefore are on the same maximal torus.
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We have seen that in groups other than SU(w + 1) and SO(3) it is possible that, in
the case of singular cocycles, the dynamics of some m-lattice of the action associated to
the cocycle can be identified, and not directly that of the action associated to the cocycle.
Since the action of the matrix Λm, even though it commutes with the renormalization, is
not invertible, this poses the problem of divisibility of the dynamics of periodic geodesics.

More explicitly, let us suppose that the m-covering of the n-th renormalized ac-
tion of a cocycle is in fact conjugated exactly to the action generated by (m, Id) and
(mαn, Emr(·).A), where we use the notation of the previous section. Inversion of the
renormalization can be made explicit in this case and shows that this last action is con-
jugate to the action generated by (m, Id) and (mα,Emr(·).A), with a different constant
part. Since this case is interesting only when er is singular, we consider the splitting
G0 × G+ ↪→ G, where none of the factors is trivial. We also write A = A0.A+ where
A0 ∈ G0 and A+ = exp(

∑
aρhρ) ∈ G+ and the summation is over the roots such that

hρ ∈ g+, the Lie algebra of G+. If we fix a maximal torus T of G containing G+, T ∩G0
is a torus of G0, and therefore we can suppose that A0 ∈ T ∩G0. We can therefore write

(mαn, Emr(·).A) = (mαn, Emr,a(·).A0)

and we are interested in identifying the 1-periodic cocycles 4 (α,A(·)) such that (α,A(·))m =
(mα,Emr,a(·).A0). Such a cocycle satisfies

A(·+mα)Emr,a(·).A0 = Emr,a(·+ α).A0.A(·)

or equivalently

A∗0.E
∗
mr,a(·).A(·+mα)Emr,a(·).A0 = Emr,a(α).A(·)
A(·+mα)Emr,a(·).A0.A

∗(·) = Emr,a(·+ α).A0

Let us, therefore solve the equation

A∗0.E
∗
mr,a(·).A(·+mα)Emr,a(·).A0 = Emr,a(α).A(·)

where m ∈ Z and α ∈ T \Q.
The second form of the equation is none other than the fact that ConjA(·)(mα,Er(·).A) =

(mα,Er(·+α).A), which means that A(·) ∈ C∞(T, G) is well defined in the group of Weyl
of the torus G+ (see also proposition 3.9).

If s and s′ are any vectors in g, then we have

〈Ad(A(·+mα).Er,a(·).A0).s, Ad(Er,a(·).A0).s′〉 = 〈Ad(A(·)).s, Ad(E∗r,a(α).A0).s′〉

Clearly, Ad(A(·) ∈ C∞(T, Inn(g)) is determined if we determineAd(A(·).hρ andAd(A(·).jρ
for all roots of the root-space decomposition with respect to T . We can equally consider
only vectors s′ in (hρ)∆̃ and (jρ)∆+ .

We refer to the proof of proposition 3.9 for showing that this commutation relation
implies that the adjoint action of A(·) preserves the splitting g+ ⊕ g0 of g, associated to
the normal form (mα,Er(·).A). This amounts to proving that, if s ∈ g+ ⊕ g0 and jρ is
such that [er, jρ] = 2iπjρ 6= 0, then 〈Ad(A(·)).s, jρ〉 = 0.

Therefore, the mapping can be written in the form

A(·) = A+(·)×A0(·)

4. From now on we ommit the subscript n in αn for simplicity in notation.
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Since G0 and G+ commute, it follows directly that

(α,A+(·))m = (mα,Emr(·).A+)
(α,A0(·))m = (mα,A0)

where we have decomposed the constant A = A+.A0. It is now easy to see that

A+(·) = Er,m−1a+(·)

As for the 0-energy component, it is a cocycle in SW∞(T, G0) whose m-th iterate, 1 ≤
m ≤ χ0 is constant. The cocycle (α,A0(·)) is therefore, by virtue of theorem 2.8, is G0)
reducible mod χ0. An inspection of the proof of the cited theorem, or even of the proof
of proposition 3.9, will show that, since (α,A0(·))m is actually constant, A0(·) has to be of
the form B(·+ α).A0.B

∗(·) where B(·) is a homomorphism T→ G0 not commuting with
the constant A0 ∈ G0. This is exactly the type of a cocycle obtained by normalization of
the action

(1, C̃(n)
0 )

(αn, Ã(n)
0 . exp(a(0)(·))

in the case where the constants C̃(n)
0 and Ã(n)

0 are not on the same maximal torus.

5.8 Dependence of the degree on the frequency
In this section we simplify and generalize an argument given in [Fra04]. It was used in

the construction of two cocycles (αi, A(·)) ∈ SW∞(T, SU(2)), i = 1, 2, given by the same
mapping A(·) : T → SU(2), but different rotations in the basis satisfying α1 − α2 6= 1/2,
and such that en(α1, A(·)) 6= en(α2, A(·)). Since any compact group contains subgroups
locally isomoprhic to SU(2), we present the argument in the context of SU(2), and use
the fact that it is of perturbative nature in order to obtain the same result in any compact
group.

From the results so far, it is clear that if ‖a(·)‖L1 < 2π then en(α,A(·)) = 0, inde-
pendently of α. Moreover, a simple calculation shows that, for Er(·) = {e2iπr·, 0}SU(2),
r ∈ N∗, then en(α,Er(· + θ)) = 2πr, again independently of α, and of θ ∈ R. However,
if A(·) = Er(·)A0, where A0 is a non-diagonal constant, then ‖a2(·)‖L1 < 4πr, so that
en(α1, A(·)) < 2πr (see [Kri01] or the following chapter). Thus, our goal should be the
construction of a mapping A(·) : T→ SU(2) such that (α1, A(·)) is conjugate to (α1, Er(·))
whereas (α2, A(·)) is conjugate to (α2, Er(·)A0), with A0 as before.

Let us therefore consider A(·) = Φ(· + α1).Er(·).Φ(−·), where Φ(·) : T → T ′ is a
(non-trivial) homomorphism (T ′ is a maximal torus, not necessarily the standard one).
By construction, (α1, A(·)) ∼ (α1, Er(·)), and therefore en(α1, A(·)) = 2πr. On the other
hand,

ConjΦ(·)(α2, A(·)) = Φ(·+ α2).A0.Er(·).Φ(−·)
where A0 = Φ(α1 − α2), so that (α2, A(·)) ∼ (α2, A0Er(·)), and en(α2, A(·)) < 2πr,
provided that A0 is non-diagonal. This last property is satisfied, say, if Φ(α1 − α2) 6∈
G+ ×G0.

In particular, we see that the property that the cocycle (α,A(·)) be torus-reducible
should be expected to depend both on the rotation and the mapping defining the cocycle.

Following the remark in the beginning of the section, similar constructions can be
carried out with SU(2) replaced by any compact Lie group giving
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Theorem 5.28. Let α1, α2 ∈ T\Q be such for any torus homomorphism Φ : cGT → G,
Φ(α1 − α2) 6∈ ZG. Then, there exists a mapping A(·) : T → G such that en(α1, A(·)) 6=
en(α2, A(·)).

The condition on the αi is satisfied if α1 −α2 6∈ 1
cGχG

Z where cG is the cardinal of ZG
and χG is a constant in N∗ depending only on the group G.

5.9 Proof of measurable invariance of the degree (prop. 5.6)
In this section, we prove proposition 5.6. There is a similar proof in [Fra04], but for

cocycles of regularity C2. The improvement of the result in terms of regularity is granted
by the improved results for the convergence of renormalization. There is also the slight
complication due to the fact that for general compact groups the degree is a vector and
not a number as in SU(2).

Let us call Φi, i = 1, 2 the actions associated to the cocycles (α,Ai(·)). If we use the
fact that R̃nνΦ2 = ConjB̃ν(·)R̃nνΦ1, we find that

B̃ν(·+ αn)Ã(n)
ν,1 (·+ 1)C̃(n)

ν,1 (·)∗B̃∗ν(·) = Ã
(n)
ν,2 (·+ 1)C̃(n)

ν,2 (·)∗, a.e.

We have seen (cf. formula 5.3 and those that follow it) that for almost every ν we have

A
(n)
ν,1 (·+ 1)C(n)

ν,1 (·)∗ → A
(n)
ν,1 exp((−1)na1(ν)·)(C(n)

ν,1 )∗

uniformly in [−1, 1], where A(n)
ν,1 and C(n)

ν,1 are constants, and similarly for Ã(n)
ν,2 (·)C̃(n)

ν,2 (·)∗.
The set of ν such that both B̃ν(x+αn) and B̃ν(x+1) tend to B̃ν(0) for a.e. x ∈ [−1, 1]

is of full measure. Therefore, a1(ν) and a2(ν) are a.e. algebraically conjugate and thus

deg((α,A1(·))) = deg((α,A2(·)))





Chapter 6

A priori estimates on
perturbations of regular geodesics

As has been shown in the previous chapter, the renormalization scheme converges, in-
dependently of any arithmetical conditions, to a model of dynamics given by (α,Er(·).A),
where r ∈ Zw and A ∈ G commutes with Er(·). However, convergence is gained by the
introduction of the scaling factors β−1

n−1, since otherwise convergence is possible only in
L2, where lives a(·), the limit object of the dynamics. This is actually the way lemma 5.9
becomes useful in the study of the dynamics, since it shows the limitations of renormaliza-
tion. We cannot conclude the desired density properties, unless we stop renormalization
after a finite number of steps, and then take up the local study of the limit cocycles, but
viewed as cocycles and not as actions any more. Therefore, the local theory of geodesics
is the next natural step in our study.

The non-triviality of G+ implies the existence of an obstruction to the reducibility of
the cocycle and is the core of the passage from local to global phenomena. In this chapter
we begin the study of the case where this obstruction is maximal. By maximal we mean
that er = L(Er(·)) is a regular vector in g, i.e. it belongs to a unique maximal torus which
we will call t. Since the property of a cocycle being regular is invariant under conjugation
and renormalization, fact that follows directly from the invariance of the degree under
renormalization (cf. Proposition 5.24), we can study the dynamics of perturbations of
periodic geodesics whose derivative is a regular vector in g, without loss of generality.
Another characterization of regular cocycles is the triviality of the zero-energy component
G0 for the splitting associated to a positive energy cocycle.

The convergence of the renormalization and the invariance of the degree under renor-
malization allow us to pose the problem in the following perturbative setting. We can
suppose that the cocycle (α,A(·)) is of degree r, with |r| > 0, and a C∞ perturbation of a
regular periodic geodesic of degree r. In other words, we suppose that A(·) can be written
in the form

Er(·).A. exp(U(·))

where er = L(Er(·)) and A ∈ G commute (i.e. Ad(A).er = er), and U(·) is small. A
smallness condition of the type ‖U(·)‖H1 ≤ C, where 0 < C < 1 is some fixed constant
will in fact be sufficient. The fact that er is regular implies that Er(·) and A take values
on the same maximal torus T. Then, the choice of ∆̃ ⊂ ∆+, a basis for the roots of g, with
respect to the maximal abelian algebra t, the Lie algebra of T allows us to write Er(·) in
the form exp(

∑
2πrρhρ·) and A in the form exp(

∑
2πaρhρ) and use the notation

Er,a(·) = Er(·).A
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as in eq. 1.3. Therefore, the models of cocycles which we are interested in are written in
the form

(α,Er,a(·) exp(U(·)))

with U(·) =
∑
ρ∈∆̃ U

t
ρ(·)hρ +

∑
ρ∈∆+ Uρ(·)jρ, small enough in C∞(T, g).

It turns out that some estimates on the perturbation can be deduced, under the as-
sumption that (α,Er,a(·) exp(U(·))) is of degree r. It has already been proved (cf. Propo-
sition 4.3) that ‖an(·)‖Li ≥ en(α,A(·)), for i = 1, 2 and for all n ∈ N∗. In particular,
‖a(·)‖L1 ≥ en(α,A(·)), and this gives a first estimate, which is however inadequate for the
following reason. Let (a,Er(·).e{0,z}) be a constant perturbation of a periodic geodesic
in SU(2). We find directly that ‖L(Er(·).e{0,z})‖Li = 2πr. However, it is known since
[Kri01] that such a cocycle, and even small enough perturbations in C1 (the smallness
depending on |z| and α−1) can be of energy strictly smaller than 2πr. The reason for
this is the non-commutativity of e{0,z} and Er(·), which results in the second iterate being
of energy strictly smaller than 4πr. We point out that, since the invariant curve a(·)
has been defined by simple iteration, and not renormalization, we can obtain the needed
estimates using the derivative of (2α,A2(·)), and not by estimating the functional J (1) on
R2Φ, where again Φ is the Z2 action associated to the cocycle (α,A(·)). This is one of the
drawbacks of the techniques used in [Kri01], since it results in an implicit dependence of
the smallness condition on the frequency. The lack of uniformity results in the set Σ of
theorem 2.10 being a strict subset of RDC.

Further iteration gives expressions that are too complicated for the estimates, so we
will restrict the estimations in those of the first two iterates. They prove to be sufficient,
since the influence of the first order terms is already important after two iterations, and
higher-order phenomena are outside the scope of reduction schemes.

6.1 Notation
As mentioned before, the perturbation

U(·) =
∑

ρ∈∆̃
U t
ρ(·)hρ +

∑
ρ∈∆+

Uρ(·)jρ

is supposed to be small in a topology to be made precise. We will mostly use is expression
in Fourier coefficients

U(·) =
∑

ρ∈∆̃

∑
k∈Z

Û t
ρ(k)e2iπk·hρ +

∑
ρ∈∆+

∑
k∈Z

Ûρ(k)e2iπk·jρ

so that

∂U(·) =
∑

ρ∈∆̃

∑
k∈Z

2iπkÛ t
ρ(k)e2iπk·hρ +

∑
ρ∈∆+

∑
k∈Z

2iπkÛρ(k)e2iπk·jρ

Since U(·) is to be seen as a perturbation of Er,a(·), it is reasonable to impose that∑
ρ∈∆̃ Û

t
ρ(0)hρ = 0, i.e. that there is no constant part in the perturbation in the torus t.

This can be obtained by using the following fact. We can write

exp(U(·)) = exp(
∑

ρ∈∆̃
Û t
ρ(0)hρ). exp(Ũ(·)−

∑
ρ∈∆̃

Û t
ρ(0)hρ)

where Ũ(·)− ṪU(·) is of second order. The mapping

h 7−→
∫
πt(exp−1(eh.eŨ(·)))
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is a local diffeomorphism for Ũ(·) taking values in a neighborhood of 0 in t, which gives
the result.

Finally if Er,a is a regular geodesic (see 1.3) and er = LEr,a(·), for any ρ ∈ ∆+ there
exist r̃ρ ∈ Z∗ such that

[er, jρ] = 2iπr̃ρ.jρ
and ‖r̃‖ ≤ C.en(α,A(·)), where the constant depends only on the group G and we call
r̃ = (rρ)ρ∈∆+ ∈ Zq.

6.2 Synopsis of the chapter
In this chapter, we obtain an estimate similar to the one used in [Kri01] in the control of

the low frequencies of a perturbation of the normal form of degree r, under the assumption
that the perturbed cocycle is still of the same degree r.

In the context of this thesis, the estimates are valid if the cocycle is a perturbation
of a regular geodesic. As can be seen if one follows the calculations, the result remains
true if the normal form is a singular geodesic coupled with a constant in G0 and the
perturbation is 0 in g0. Let us, however, state the main result of the chapter in the first,
more transparent context.

Lemma 6.1. There exists a positive constant C, depending only on r, such that if
(α,Er,a(·).eU(·)) is of degree r, where U(·) is small enough in H1, then it satisfies

‖Λ0
r̃U(·)‖L2 ≤ C ‖(Id− Λr̃)∂U(·)‖L2

The truncation operator Λ0
r̃ is defined in def. 6.3. It is a truncation in low frequencies,

corresponding to the phenomenon that we described in the plan of the proof (p. 47),
only in a more complicated geometry. Firstly, we use the fact that interactions between
the different subalgebras isomporphic to su(2) are of higher order, in order to break the
estimates into a superposition of estimates in simpler geometry. In this context, we can
say that if in (su(2))ρ, the subalgebra corresponding to the root ρ, the perturbation is too
eccentric (i.e. the non-abelian constant part is dominant), or if the perturbation spins too
in the negative around 〈er, hρ〉hρ direction, then the perturbation in (su(2))ρ contributes
negatively to the energy of the cocycle. And this is exactly the description of the part of
Λ0
r̃ concerning (su(2))ρ. If, now, the perturbed cocycle is assumed to be of degree r, then

the contributions of the different parts of the perturbation must sum up to a non-negative
contribution, and this grants the a priori estimate of the lemma.

Using these estimates, we can obtain a first theorem describing (with an inadequate
precision) the configuration of the conjugacy classes of periodic geodesics. Let us introduce
some notation before stating the theorem proved above. Let (α,A(·)) ∈ SW s(T, G), s ≥ 1,
and let 1 ≤ m ≤ χG be the smallest positive integer such that Am(·) is homotopic to
constants. Let also Φ be the Z2 action associated to (α,A(·)). Then, we have

Theorem 6.2. Let G be a compact semi-simple Lie group and (α,A(·)) ∈ SW s(T, G),
s ≥ 1, and let 1 ≤ m ≤ χG as above. Then, if en(α,A(·)) > 0, (α,A(·)) has renomalization
representatives mod m which are arbitrarily close to cocycles of smaller energy. All
cocycles of zero energy in the homotopy class of (α,A(·)) satisfy the following property:
renormalization of the m-lattice associated to such cocycles converges to constant actions.

The proof of this theorem occupies section 6.7. Since the proof relies heavily on
the phenomenon of non-commutativity exploited in section 6.4, it makes clear that this
property is due to the fact that G is non-commutative.
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This theorem is a density theorem for 0-energy cocycles, and a density theorem for
close-to constant actions modulo a finite covering of the torus. However, it does not
assert that reducible and almost-reducible cocycles are dense in SW∞(T, G) modulo χG,
for the following reason. Let (α,A(·)) be a cocycle as in the theorem and Φ be the
associated action. The theorem only asserts that for a.e. ν ∈ T, R̃(n)

ν Φ converges to
models accumulated by lower energy cocycles. If we wish to obtain a density theorem, we
have to be able to normalize R̃(n)

ν Φ to Φ′ and to prove that Φ′(e2) is accumulated by lower
energy cocycles, and then apply lemma 5.9. This, however, is a stronger assertion.

The theorem, which holds for all irrational rotations, only allows us to construct per-
turbations of R̃(n)

ν Φ which are of smaller energy, but cannot be made arbitrarily small
unless we allow n to grow. It allows us, nonetheless, to conclude a fundamental differ-
ence between cocycles in SW∞(T,Tw), which is abelian and clearly not semi-simple, and
SW∞(T, G), with G compact semisimple. We saw in the introductory study of abelian
cocycles (chapter 3) that these cocycles are classified by homotopy, and therefore form
discrete classes, and iteration of a path T → Tw non-homotopic to constants will not
make it homotopic to constants. On the other hand, when we study abelian cocycles in
G, and therefore consider SW∞(T,Tw) ↪→ SW∞(T, G), with w the rank of G, we find
that the limit object of the dynamics is quantized in the same lattice as in SW∞(T,Tw),
but the classes are no longer discrete (eventually modulo iteration).

The situation is intermediate in compact groups which are not semi-simple. Let us
consider, for example, the cocycle in T× U(2) defined by

A(·) =
[
e2iπk· 0

0 e2iπk·

]

over any irrational, with k ∈ Z∗. This cocycle admits a non-trivial limit curve in u(2)
consisting of the sole vector [

2iπk 0
0 2iπk

]
We remark that A(·) takes values in the center of U(2), which is naturally isomorphic to
S1. Since, now, U(2) locally around the Id is isomorphic to a neigborhood of (1, Id) in
S1 × SU(2), we can readily see that all small enough perturbations of (α,A(·)) have the
same limit curve. Clearly, the reason for this is that the limit object of the dynamics of
(α,A(·)) lives in the direction in which the semisimplicity criterion fails for u(2).

6.3 Estimation of the energy of the path A(·)
A direct calculation shows that

a(·) = L(A(·)) = er +Ad(Er,a(·)).u(·)

where u(·) = L exp(U(·)), so that the estimates of the energy of the path A(·) in G are
significant only when U(·) is non-constant. The remaining case will be studied later in
this section. Using the Ad-invariance of the Cartan-Killing form we find

‖a(·)‖2L2 = en2 + 2
∫
T
〈er, u(·)〉+ ‖u(·)‖2L2

and the assumption that the cocycle is of degree r implies

2
∫
T
〈er, u(·)〉+ ‖u(·)‖2L2 ≥ 0
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Using the expansion of the operator L and the fact that U(·) is to be considered small,
we have the estimate

u(·) = LeU(·) = ∂U(·) + 1
2[U(·), ∂U(·)] +O(|U(·)|2 |∂U(·)|)

= ũ(·) +O(|U(·)|2 |∂U(·)|)

We now find that

2 〈er, ũ(·)〉 = 2 〈er, ∂U(·)〉+ 〈er, [U(·), ∂U(·)]〉
= 2 〈er, πt∂U(·)〉+ 〈er, [U(·), ∂U(·)]〉
= 2 〈er, πt∂U(·)〉+ 〈[er, U(·)], ∂U(·)〉
= 2 〈er, πt∂U(·)〉+

∑
ρ∈∆+

Re(2iπr̃ρUρ(·)∂Ūρ(·))

and therefore
2
∫
〈er, ũ(·)〉 =

∫
Re(

∑
ρ∈∆+

4π2r̃ρ
∑

k∈Z
k|Ûρ(k)|2)

The error term can be bounded by∫
|U(·)|2 |∂U(·)| ≤ ‖U‖L∞

∫
|U(·)| |∂U(·)|

≤ ‖U‖L∞ ‖U‖L2 ‖∂U‖L2

. ‖U‖3H1

since H1 is continuously embedded in L∞. Consequently,

2
∫
〈er, u(·)〉 =

∑
ρ∈∆+

4π2r̃ρ
∑

k∈Z
k|Ûρ(k)|2 +O(‖U‖3H1)

We also have

‖ũ‖2L2 = ‖∂U(·)‖2L2 + ‖[U(·), ∂U(·)]‖2L2

= ‖∂πtU(·)‖2L2 +
∑
ρ∈∆+

‖∂Uρ(·)‖2L2 +O(‖U‖4H1)

Therefore,

2
∫
〈u(·), er〉+‖u‖2L2 ≤

∑
ρ∈∆+

4π2r̃ρ
∑
k∈Z

k|Ûρ(k)|2+‖∂πtU(·)‖2L2+
∑
ρ∈∆+

‖∂Uρ(·)‖2L2+O(‖U‖3H1)

Since ∑
ρ∈∆+

‖∂Uρ(·)‖2L2 =
∑
ρ∈∆+

∑
k∈Z

4π2k2|Ûρ(k)|2

and ∑
ρ∈∆

4π2r̃ρ
∑
k∈Z

k|Ûρ(k)|2 +
∑
ρ∈∆+

‖∂Uρ(·)‖2L2 = 4π2 ∑
ρ∈∆+

∑
k∈Z

(r̃ρ + k)k|Ûρ(k)|2

we find that

2
∫
〈u(·), er〉+ ‖u‖2L2 ≤ 4π2 ∑

ρ∈∆+

∑
k∈Z

(r̃ρ + k)k|Ûρ(k)|2 + ‖∂πtU(·)‖2L2 +O(‖U‖3H1)

The fact that (r̃ρ + k)k < 0 for k between 0 and −r̃ρ motivates the following definition.
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Definition 6.3. Let r̃ρ ∈ Z∗, ρ ∈ ∆+. We will call Iρ = {1, 2, ...− r̃ρ − 1} if r̃ρ < 0, and
Iρ = {−1,−2, ..,−r̃ρ + 1} if r̃ρ > 0. We also let Λr̃ and Λρ be the truncation operators

Λr̃U(·) =
∑

ρ∈∆+
ΛρUρ(·)jρ

=
∑

ρ∈∆+

∑
k∈Iρ

Ûρ(k)e2iπk·jρ

We will also use the non-homogeneous truncation operator

Λ0
r̃U(·) =

∑
ρ∈∆+

Λ0
ρUρ(·)jρ

= Λr̃U(·) +
∑

ρ∈∆+
Ûρ(0)jρ

The image of the operator Λ0
r̃ in L2 will be denoted by Pr̃.

Using these notations, we have

2
∫
〈u(·), er〉+ ‖u‖2L2 ≤ −4π2 ‖Λr̃U(·)‖2L2 +

∑
ρ∈∆

(r̃ρ + 1)2 ‖(Id− Λρ)∂Uρ(·)‖2L2

+ ‖∂πtU(·)‖2L2 +O(‖U‖3H1)

The condition that the cocycle is of degree r implies that

4π2 ‖ΛrU(·)‖2L2 ≤
∑

ρ∈∆
(r̃ρ + 1)2 ‖(Id− Λρ)∂Uρ(·)‖2L2 + ‖∂πtU(·)‖2L2 +O(‖U‖3H1) (6.1)

or, in a more compact form

Lemma 6.4. Let (α,Er,a(·) exp(U(·))) be of degree r. Then, there exists a positive con-
stant such that if ‖U‖H1 is small enough

‖Λr̃U(·)‖L2 . ‖(Id− Λr̃)∂U(·)‖L2

The constant depends only on the degree.

We remark that this inequality does not give any information on Û(0).

6.4 Estimation of the energy of the second iterate

For the second iterate of (α,A(·)) = (α,Er,a(·).eU(·)), we have

(2α,A2(·)) = (2α,Er,a(·+ α).eU(·+α).Er,a(·).eU(·))

and therefore
a2(·) = a(·+ α) +Ad(A(·+ α)).a(·)

so that
‖a2(·)‖2L2 = 2 ‖a(·)‖2L2 − 2

∫
〈a∗(·+ α), a(·)〉

We have already seen that

a(·) = er +Ad(Er,a(·)).(∂U(·) + 1
2[U(·), ∂U(·)]) +O(|U(·)|2.|∂U(·)|)
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and in the same way we find

−a∗(·) = ∂U(·)−1
2[U(·), ∂U(·)]+er+[er, U(·)]−1

2[U(·), [er, U(·)]]+O(|U(·)|3+|U(·)|2.|∂U(·)|)

Since we have already estimates on ‖ṪU‖L2 , we will split U(·) in Û(0)+ ṪU(·) = U0 + U̇(·)
where U0 = Û(0) is orthogonal to er. With these notations, we find that

‖a2(·)‖2L2 ≤ 2 ‖a(·)‖2L2 + 2en2 − ‖[er, U(·)]‖2L2 + 2
∫ 〈

[er, U0], Ad(Er,a(·)).∂U̇(·)
〉

+

2
∫ 〈

∂U̇(·+ α) + [er, U̇(·+ α)], Ad(Er,a(·)).∂U̇(·)
〉

+O(‖U‖3H1)

so that

‖a2(·)‖2L2 ≤ 4en2 + 2
∫ 〈

∂U̇(·) + [er, U̇(·)], ∂U̇(·)
〉
− ‖[er, U(·)]‖2L2 +

2
∫ 〈

∂U̇(·+ α) + [er, U(·+ α)], Ad(Er,a(·)).∂U̇(·)
〉

+O(‖U‖3H1)

≤ 4en2 + C1‖∂U̇(·)‖2L2 − |[er, U0]| (|[er, U0]| − ‖∂U̇(·)‖L2) +O(‖U‖3H1)
≤ 4en2 + C1‖∂U̇(·)‖2L2 − C2 |[er, U0]| (|[er, U0]| − ‖∂U̇(·)‖L2)

if ‖U‖H1 is small enough. We find, therefore, that

Lemma 6.5. Let (α,Er,a(·).eU(·)+U0) be a perturbation (small enough in H1) of the cocycle
(α,Er,a(·)). Let also, without loss of generality, Û(0) = 0 and U0 6= 0. Then, there exists
a constant C0 depending only on r such that if

‖∂U‖L2 ≤ C0|U0|

then (α,Er,a(·).eU0eU(·)) is of energy strictly smaller than that of (α,Er,a(·)).

This was first proved in [Kri01], but the constant implicitly depended on α.

6.5 End of the proof of lemma 6.1

Using the estimates obtained so far, we can prove, lemma 6.1:

Démonstration du lemme 6.1. The estimate on the L2 norm of the derivative of the first
iterate implies that

‖ΛrU(·)‖L2 ≤ C ′ ‖(Id− Λr)∂U(·)‖L2

for some constant C ′. Since

‖Λ0
rU(·)‖2L2 = ‖ΛrU(·)‖2L2 + |Û(0)|2

∥∥Λ0
rU(·)

∥∥
L2 ≥ M

∥∥(Id− Λ0
r)∂U(·)

∥∥
L2 for M big enough would imply that ‖∂U‖H1 ≤

C0|U0|, which contradicts the hypothesis.
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6.6 Further estimates
Use of the invariance of the degree under C1 conjugation allows us in fact to control

all the "low" frequencies in the spectrum of the perturbation. It follows immediately from
the definitions that, for B(·) = exp(U(·)),

ConjB(·)(α,Er,a(·).eU(·)) = (α, eU(·+α).Er,a(·))
= (α,Er,a(·).eV (·))

with V (·) = Ad(E∗r,a(·)).eU(·+α), so that

V̂ρ(k) = e2iπkαÛρ(k + 2rρ)

Inserting this relation in the estimates obtained in the previous sections gives the estimate

‖Λ0
−r̃U‖L2 . ‖(Id− Λ0

−r̃)∂U‖L2

More generally, since conjugation by a periodic geodesic Er′ acts by translation on the
frequencies of U(·) 1, we can see conjugation as an action on the truncation operator. If,
now, Λ is a translate of Λ0

r̃ under this action, then we have the same type of estimate,
with Λ in the place of Λ0

−r̃.

Finally, the conjugation D(·) = exp(U(·)/2) imitates the effects of two iterations and
normalization of the derivative, since

ConjD(·)(α,Er,a(·).eU(·)) = (α, eU(·+α)/2.Er,a(·).eU(·)/2)
= (α,Er,a(·).eV (·)/2.eU(·)/2)

with V (·) as previously, since

(α,Er,a(·).eU(·))2 = (2α,Er,a(·+ α).eU(·+α).Er,a(·).eU(·))
= (2α,Er,a(2 ·+α).eV (·)eU(·))

A calculation shows, however, that the effect of non-commutativity of er with the constant
part of the perturbation is not seen in L(Er,a(·).eV (·)/2.eU(·)/2). As a result, estimation of
the energy of the path of Er,a(·).eV (·)/2.eU(·)/2 gives only the trivial estimate

‖u(·)‖2L2 ≥ |
∫
〈u∗(·+ α), Ad(Er,a(·)).u(·)〉|

which, nonetheless, justifies the use of Cauchy-Schwartz inequality in the estimation of
the energy of the path of the second iterate.

6.7 Proof of theorem 6.2
Let Er,a(·) be a periodic geodesic in G, not necessarily regular, and the corresponding

splitting G0 × G+ ↪→ G. If the zero energy component is not trivial, and A0e
U0(·) ∈

C∞(T, G0) is a perturbation of a constant A0 ∈ G0, it is clear that (α,Er,a(·)A0e
U0(·)) is

of the same degree, for an irrational α, since renormalization of the perturbed cocycle will

1. It also changes the constant A, by it is not important since the constant does not enter in the
estimates.
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converge to some Er,a′(·). On the other hand, the preceding estimates show that a small
perturbation spectrally supported in some Iρ with ρ(er) 6= 0, and therefore not commuting
with Er,a(·), decreases the energy of the cocycle. We also point out that the perturbed
cocycle is in the same homotopy class as Er,a(·).

Therefore, the picture is the following. If we renormalize a cocycle in a given class of
homotopy, the scheme converges towards an action within the same class, which can be of
positive or zero energy. Let us begin the study with the two simplest non-abelian groups,
SU(2) and SO(3), where all geodesics are regular, but SO(3) is not simply connected and
χSO(3) = 2, while SU(2) is simply connected and χSU(2) = 1.

Cocycles in SU(2) and SO(3)

The positive energy abelian models in SU(2), all of them regular, are given by the
periodic geodesics Er(·), r ∈ N∗ (

e2iπr· 0
0 e−2iπr·

)

These models, after projection to SO(3), become the positive energy models which are
homotopic to the identity:  cos(4πr·) sin(4πr·) 0

− sin(4πr·) cos(4πr·) 0
0 0 1


Perturbation of such a model, say by a small constant in non-standard configuration (which
we will note by A throughout this paragraph) reduces the energy. In the special case of
E1(·), such a perturbation will yield a cocycle which, after renormalization, will converge
to close-to-constant dynamics. Consideration of its homotopy class (or, equivalently, the
fact that it admits a 1-periodic lift to SU(2)),implies that in SO(3) as in SU(2), it can
be normalized modulo 1, and passage to a 2-lattice is not necessary. Therefore, in both
groups, such models are accumulated by cocycles of 0 energy modulo 1.

In SO(3), however, we also have the class of geodesics non-homotopic to constants.
given by the periodic geodesics Er+1/2(·), r ∈ N: cos(2π(2r + 1)·) sin(2π(2r + 1)·) 0

− sin(2π(2r + 1)·) cos(2π(2r + 1)·) 0
0 0 1


Such geodesics, seen in SU(2), emanate from the Id, and after having passed r times by the
Id end in −Id. Clearly, the second iterate of such a cocycle is homotopic to constants. The
same calculations as before show that a perturbation of Er+1/2(·) with r > 0 by A drives
the renormalization towards some Er′+1/2(·), with r′ < r. A remarkable phenomenon is
encountered when we reach the normal form E1/2(·), which is the minimal energy model of
dynamics simultaneously non-reducible and non-homotopic to constants. Once again, the
estimations show that renormalization of E1/2(·).A will converge towards local dynamics,
or equivalently that for n big enough R̃nΦ (the action associated to a (α,E1/2(·).A)) will
be close to a constant action. The consideration of its homotopy class shows that in
this case we will have to iterate R̃nΦ before normalizing it. Therefore, (Λ2)∗R̃nΦ, and
consequently the second iterate of E1/2(·).A, is in the class of local dynamics mod 2,
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whereas E1/2(·).A itself cannot be. In fact, Φ is expected to converge towards constants
like, say

π2(R̃n(e1)) =

−1 0 0
0 −1 0
0 0 1


π2(R̃n(e2)) =

1 0 0
0 −1 0
0 0 −1


who commute, but are not on the same maximal torus. Normalization of the action itself
drives it back to the neighborhood of E1/2(·), since the natural choice is the conjugant
E1/2(1

2 ·), and

E1/2(1
2(·+ α)).

1 0 0
0 −1 0
0 0 −1

 .E1/2(1
2 ·)

T = E1/2(1
2α)

cos(2π·) sin(2π·) 0
sin(2π·) − cos(2π·) 0

0 0 −1


On the other hand, the square of both constants is the Id, so that (Λ2)∗R̃nΦ can be
normalized without any problem. The factor 2 in Λ2 in this case is due to the fact that
χSO(3) = 2. In fact, this very example shows that there exist cocycles in T×SO(3) which
become reducible after iteration, since, if we call

A(·) =

cos(2π·) sin(2π·) 0
sin(2π·) − cos(2π·) 0

0 0 −1


=

cos(2π·) − sin(2π·) 0
sin(2π·) cos(2π·) 0

0 0 1

 .
1 0 0

0 −1 0
0 0 −1


then, for any irrational α, π2(2α,A2(·)) is equal tocos(2πα) − sin(2πα) 0

sin(2πα) cos(2πα) 0
0 0 1


However, (α,A(·)) itself is not reducible for any α, since A(·) is non-homotopic to the Id.

Schematically, we can say that renormalization of E1/2(·).A converges towards constant
actions, but normalization without iteration drives us back in the neighborhood of E1/2(·).
Iteration before normalizing allows us to conjugate the dynamics to a local model. We
can say that, if we do not authorize iteration and loss of periodicity, the geodesic E1/2(·)
takes up the role of constants in its homotopy class.

Cocycles of smaller energy in the neighborhood of regular geodesics

In this case, the value of χG is irrelevant with the normalization of the action, since we
can conjugate the action to a normalized one and arbitrarily close to some (αn, Er,a(·)),
without iterating. Any small enough constant non-abelian perturbation of such a model



6.7. Proof of theorem 6.2 113

reduces the energy, but in general it will lead renormalization to singular dynamics and
not directly to constants. For example, renormalization ofe2iπ· 0 0

0 e4iπ· 0
0 0 e−6iπ·

 . exp

0 0 0
0 0 z
0 −z̄ 0



in SU(3), with z ∈ C small, may converge to

e2iπ· 0 0
0 e2iπ· 0
0 0 e−4iπ·

, which is singular. In

the neighborhood of a singular geodesic χG becomes relevant, since normalization without
iteration may, as in SO(3), drive the algorithm back to the initial geodesic. Therefore, in
general the local picture in the neighborhood of regular geodesics is that such models are
accumulated by cocycles of smaller energy, which however may be conjugate (close) to the
corresponding geodesics or (close) to constant actions only modulo 1 ≤ m ≤ χG.

The picture is simpler in groups like SU(w + 1) where the constant equals one, and
therefore all cocycles of positive energy are accumulated by cocycles of smaller energy,
which can be conjugated (close) to the corresponding geodesics or (close) to constant
actions modulo 1.

Cocycles of smaller energy in the neighborhood of singular geodesics

In the case of a singular cocycle of positive energy, renormalization and conjugation of
actions is not affected until it reaches the form of eq. 5.5, which is (after some simplification
of the notation) (

(1, C0. exp(O(εn)))
(αn, A0. exp(er ·+O(εn)))

)
with C0 ∈ G0. We also recall the corresponding splitting G0×G+ ↪→ G, and suppose that
there are no error terms, i.e. that

R̃(n)Φ =
(

(1, C0)
(αn, A0. exp(er·))

)

Since a(0) is singular, depending on the homotopy of the cocycle in G0, we may not
be able to conjugate C0 to the Id with a conjugant commuting with A0, but this can
be assured by iterating at most χ0 = χG0 times. This fact is a more general case of the
phenomenon observed in perturbations of E1/2(·)-like models in SO(3). An action like
the one we are studying may be associated to a cocycle non-homotopic to the Id, and
renormalization may converge to constants for a part of the non-triviality of its homotopy
class while the rest is still close to a geodesic in the same homotopy class. At this step,
we can iterate χ0 times and obtain a cocycle of singular dynamics, but whose homotopy
within the 0 energy component allows conjugation of the action to the actual geodesic.
This action, (Λχ0)∗R̃(n)Φ, can thus be conjugated to(

(χ0, Id)
(χ0αn, A0. exp(χ0er·))

)

with a different A0, but still commuting with a(0). A constant non-abelian perturbation of
A0. exp(χ0a(0)·) in a complex direction jρ such that [er, jρ] 6= 0 will drive renormalization
to a lower energy model.
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We can, nonetheless, perturb R̃(n)Φ to a lower energy cocycle without iterating. Let
H0 ∈ g0 be a preimage of C0. Then, conjugation by exp(−H0·) gives the action(

(1, Id)
(αn, exp(er·).A0(·))

)

where the zero-energy component A0(·) = exp(−H0(· + αn)).A0. exp(H0·) may not be
constant. If we chose a root ρ such that hρ ∈ g+, then jρ commutes with all vectors in g0,
so that the action (

(1, Id)
(αn, exp(er·).A0(·). exp(zjρ)

)
will be of smaller energy. Iteration of this procedure, and renormalization and normal-
ization of the resulting actions will eventually give a cocycle of minimal energy in the
homotopy class of the initial cocycle and the associated action(

(1, Id)
(αn, exp(er′ ·).A0)

)

where A0 is a different constant and er′ will be 0 iff the cocycle were homotopic to con-
stants. If we renormalize a m-lattice of such an action, with 1 ≤ m ≤ χG depending only
on the homotopy class of the cocycle, renormalization will converge to constants.



Chapter 7

Perturbations of regular geodesics

Based on the a priori estimates obtained in the previous chapter and on techniques
developed in [Kri99a] (chapter 4) and in [Kri01], we begin the local study of regular
obstructions by proving that under a Diophantine condition on the rotation in the basis
and a smallness condition (related to the Diophantine condition) on the perturbation, the
cocycle (α,Er,a(·).eU(·)) can be reduced to (α,Er,a′(·).eP (·)), where a′ is a constant in the
torus, and P (·) is a Fourier polynomial spectrally supported in Ir̃. Already, the estimates
and the discussion of the previous chapter show that such a (α,Er,b(·).eP (·)) is not of
degree r, which gives a good description of the local structure of the conjugacy class of
(α,Er,a(·)), where in fact the abelian constant a is irrelevant.

The motivation of the result becomes easier after the study of the linearized equation,
at the end of section 7.2, but let us briefly describe the procedure. Since, in the previous
section, we saw that some low frequencies in the spectrum of the perturbation of a regular
geodesic do not allow, if they are dominant, the perturbed cocycle to be of energy |er|, it
is reasonable to think of them as obstructions to reducibility to Er,a(·). The first reaction
to this observation was that of R. Krikorian in [Kri01], where he supposed that a given
cocycle in T × SU(2), perturbation of a periodic geodesic of the group (automatically
regular), is actually of the same degree as the geodesic. Then, he showed that if the
rotation is Diophantine, a convergent K.A.M. scheme can be defined which constructs a
conjugation reducing the cocycle to the periodic geodesic. At each step, the obstructions to
reducibility were shown to die out along with the perturbation because of the assumption
on the degree.

A careful study of the procedure shows that a K.A.M. scheme (and not a fixed-point
argument) is needed because there is a loss of derivatives in the estimates, which, however,
is not due to small divisor phenomena. Therefore, it is possible that a more accurate result
can be obtained, and this is done by dropping the assumption that the given cocycle is of
the same degree as the geodesic, but retaining only the assumption that the perturbation
is small. Then, the Nash-Moser inverse function theorem (which cannot be replaced by
a fixed-point theorem) is used in order to show the following. We can split any given
perturbation, at least in the level of linear terms, into the obstructions plus a coboundary.
The obstructions cannot be eliminated, but we can consider them as part of the model
around which linearize. Then, the coboundary can still be eliminated, thanks to the
absence of small divisors. The fact that this procedure can be carried out with uniform
estimates provided that the obstructions are small enough, allows the use of the inverse
function theorem, which guarantees that the exact problem can be solved. In other words,
we can split any perturbation into two parts. The first one P (·) is the one that we cannot
hope to eliminate. But if we consider the model (α,Er,a(·)eP (·)) as the model of the
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dynamics, then the remaining part of the perturbation can be eliminated by conjugation.
Finally, the a priori estimates show that the cocycle is of degree r if, and only if, this
principal part is 0.

7.1 Synopsis of the chapter
In this section we apply Hamilton’s inverse function theorem in order to obtain a

normal form theorem for cocycles in the neighborhood of a regular geodesic. We remind
that Pr was introduced in the previous chapter (def. 6.3). We denote by E0 the space
of mappings in C∞(T, g) of 0 mean value. This tame Fréchet space inherits its topology
from E = C∞(T, g), which in turn is the topology induced by the family of seminorms

‖U‖s = max
0≤σ≤s

(‖∂σU‖∞)

for U ∈ E . We bring to the attention of the reader that these norms correspond to the
norms ‖U‖max

s in the notation of the first chapter. Finally, t denotes the unique maximal
toral algebra of g containing er.

With these notations, the normal form theorem reads

Theorem 7.1. Let α ∈ DC(γ, τ), r ∈ Zw such that er ∈ t be regular, and a ∈ t. Then
there exists W =W(α, r), a neighborhood of 0 in E, such that for any U(·) ∈ W, there
exists a unique (λ,B, P ) ∈ t× E0 × Pr such that

Er,a(·).eU(·) = eB(·+α).Er,a+λ(·).eP (·).e−B(·)

The triple (λ,B, P ) satisfies tame estimates with respect to U and λ depends continuously
on it.

We remark that the important characteristic of Pr is not its support in the space of
frequencies, but rather the fact that Pr and Ad(Er,a(·)).Pr have disjoint supports, for all
a ∈ t, as we have seen in the previous chapter.

We also have the following corollary.

Corollary 7.2. The orbits of (α,Er,a(·)), with a ∈ t and α ∈ DC(γ, τ), under the ad-
joint action of E0 form locally a tame Fréchet manifold of codimension 2

∑
ρ∈∆+ |r̃ρ| + w

in SW∞(T, G). Or, more importantly, reducibility to a normal form is a property with
codimension 2

∑
ρ∈∆+ |r̃ρ| in the neighborhood of (α,Er,a(·)) in SW∞α (T, G).

A direct application in this particular case of the a priori estimates on perturbations
of regular geodesics shows that a such cocycle in normal form is of energy smaller than
that of (α,Er,a(·)), unless P (·) = 0. We thus obtain

Theorem 7.3. Reducibility to a regular periodic geodesic over a Diophantine rotation
(α,Er,a(·)) is locally of codimension 2

∑
ρ∈∆ |r̃ρ|. All cocycles of degree r in this neighbor-

hood of Er,a(·) are reducible to a normal form.

Combining this theorem with the renormalization scheme, we obtain the following
result.

Theorem 7.4. If α ∈ RDC and the cocycle (α,A(·)) is regular of degree r, then (α,A(·))
is C∞-conjugate to (α,Er,a(·)) for some a ∈ t.
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Proof. If the cocycle (α,A(·)) is regular, then, by theorem 5.3, renormalization converges
towards models of the type (αn, Er,a(·)). We remind that under the assumption that the
cocycle is regular, the constant χG becomes irrelevant, and therefore there exist renormal-
ization representatives (αn, Ãn(·)) arbitrary close in the C∞ topology to cocycles of the
type (αn, Er,a(·)).

Since α ∈ RDC(γ, τ), αn ∈ DC(γ, τ) infinitely many times. Therefore, the αn can
be chosen uniformly Diophantine and the normal form theorem can be applied to some
(αn, Ãn(·)). The hypothesis that (αn, Ãn(·)) is of degree r allows us to conclude.

Finally, for cocycles in T× SU(2) we have the following result.

Theorem 7.5. If α ∈ RDC and (α,A(·)) ∈ SW∞(T, SU(2)) is of non-zero degree, then
it is C∞-conjugate to (α,Er(·+ θ)) for some θ ∈ T. Reducible cocycles in T× SU(2) are
dense in the total space, if the rotation satisfies an RDC.

Proof. Every non-zero vector in su(2) is regular, so that all positive energy cocycles are
regular too. Therefore, as in the proof of theorem 7.4, we find that all cocycles of positive
energy are conjugate to the corresponding periodic geodesic.

Since every such cocycle is accumulated by cocycles of lower energy, after a finite
number of arbitrarily small perturbations we can obtain a cocycle of 0 energy. Then,
renormalization of such a cocycle converges to constants (we remind that χSU(2) = 1), and
the local density theorem 2.5 allows us to conclude.

This density result was first obtained in [Kri01] under a somewhat stricter (and easily
recognizable as an artefact of the method) arithmetic condition of full measure in T. The
calculations in the proofs already indicate the existence of a local Fréchet manifold of
cocycles reducible to the normal form (α,Er(· + θ)) and show that cocycles of smaller
energy form an open dense set in the neighborhood of normal forms. The arithmetic
condition imposed was loosened to a simple RDC in [Fra04], but without the stronger
result on the codimension and the local description of the conjugacy classes.

7.2 Local reduction lemmas

Let us firstly write and solve the linearized cohomological equation of reduction of
the perturbation to a second-order one. We suppose that conjugation by a small B(·) ∈
C∞(T, g) reduces the perturbation U(·) to a smaller one, noted by V (·)

exp(B(x+ α)).Er,a(x). exp(U(x)). exp(−B(x)) = Er,a(x). exp(V (x))

Linearization of this equation, under the assumption that U(·), D(·) and V (·) are small
in C0 and V (·)� U(·), i.e. is of second order with respect to U(·), gives

Ad(E−r,−a(x)).B(x+ α)−B(x) = −U(x)

Introducing the coordinates B(·) =
∑
ρ∈∆̃B

t
ρ(·).hρ +

∑
ρ∈∆+ Bρ(·).jρ, as for U(·), we have

the equations

Bt
ρ(·+ α)−Bt

ρ(·) = −U t
ρ(·), ρ ∈ ∆̃ (7.1)

e−2iπ(r̃ρ·+aρ).Bρ(·+ α)−Bρ(·) = −Uρ(·), ρ ∈ ∆+ (7.2)

where 2πr̃ρ = 〈er, hρ〉 6= 0 and rρ ∈ N∗ for all ρ ∈ ∆̃ (but in general, rρ ∈ Z∗, for ρ ∈ ∆+).
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The set of equations involving the coordinates on the torus (eq. (7.1)) are classical
linear cohomological equations for which we refer to lemma 2.4. We remind that the only
topological obstruction to the solution of the equation concerns the mean value of the rhs
function, which must be 0.

Solving the equation (7.2) is less classical, so let us consider its general form,

e2iπ(mx+c)f(x+ α)− f(x) = g(x)

with m ∈ Z∗ and c ∈ T. The constant c can easily be seen to be irrelevant, since
composition by a translation x 7→ x− c/m gives the equation the form

e2iπmxf(x+ α)− f(x) = g(x)

where we have kept the same notation for f(·) and f(· − c/m), similarly for g(·).
Application of the Fourier transform to this last form of the equation gives

e2iπ(k−m)αf̂(k −m)− f̂(k) = ĝ(k) (7.3)

for all k ∈ Z.
Let us suppose for simplicity that m is positive, the remaining case being treated

similarly. The forward solution of the equation is then found by forward iteration of the
following formula:

f̂(k) = e−2iπkα(ĝ(k +m) + f̂(k +m))

This gives

f̂+(k) =
∞∑
j=1

e−2iπj(k+ j−1
2 m)αĝ(k + jm) (7.4)

Backward iteration of the formula

f̂(k) = ĝ(k) + e2iπ(k−m)αf̂(k −m)

gives the backward solution

f̂−(k) =
∞∑
j=0

e2iπj(k− (j+1)
2 m)αĝ((k − j)m) (7.5)

The forward and the backward solution are constructed independently, and f+(·) =∑
k f̂+(k)e2iπk· (resp. f+(·)

∑
k f̂+(k)e2iπk·) is in C∞(T, g) only if the summation is for

k ≥ l (rep. k ≤ l′) where l ∈ Z (resp. l′) is to be fixed. Clearly, determination of all the
Fourier coefficients of the solution imposes that l′ = l− 1. If, now we define f̂ : Z→ C by

f̂(k) =
{
f̂+(k), k > l

f̂−(k), k ≤ l

Then, f̂(·) is the Fourier series of a function f : T → C which solves the eq. 7.3 for
k 6∈ {l + 1, ..., l + m}, as shows the form of the equation. For the remaining values of k,
we find that

e2iπ(k−m)αf̂(k −m)− f̂(k) = e2iπ(k−m)αf̂−(k −m)− f̂+(k)



7.2. Local reduction lemmas 119

The a priori estimates obtained in the previous chapter suggest that we chose l = −m,
since, with this choice, the set of frequencies in {l+1, ..., l+m} is equal to the set Iρ of def.
6.3 if m = rρ. In other words, the frequencies in {l + 1, ..., l + m} are, for a given choice
of l, the obstruction to the solution of eq. 7.3 and we use the arbitrariness of the choice
of l so as to place the obstructions in the frequencies controlled by the a priori estimates.

For this reason, we will abuse the notation of Iρ and denote the set {−m+ 1, ..., 0} by
Im.

For the given choice of l, depending on m, we define f̂ : Z→ C by

f̂(k) =
{
f̂+(k), k > m

f̂−(k), k ≤,m

and f : T→ C is the inverse Fourier transform of f̂(·).
Since, for any p ∈ N, |k|p|ĝ(k)| → 0 as |k| → ∞, we obtain the estimate

‖f‖s ≤ Cs ‖g‖s+3

and for truncations up to an arbitrary order N , we find that

‖TNf‖s ≤ CsN
2 ‖g‖s

‖RNf‖s ≤ Cs,s′N
s−s′+3 ‖g‖s′

with s ≥ s′ ≥ 0. Clearly, if for any given m we choose l = −m, the constants in the
estimates depend only on m.

We have therefore proved

Proposition 7.6. The function f = F−1(f̂) as defined above solves the equation

f(x+ α)− e2iπmxf(x) = g(x)− Γmg(x)

where F{Γmg}(k) = ĝ(k) − (e2iπ(k−m)αf̂−(k −m) − f̂+(k)) for k ∈ {−m + 1, .., 0} and 0
otherwise, is a trigonometric polynomial of order at most m− 1. The following estimates
hold for all s ≥ 0:

‖f‖s . ‖g‖s+3
‖Γmg‖s . ‖g‖s

where the constants depend only on m and s.
The mapping Φ : g 7→ (f,Γmg) is an invertible continuous linear application from

Hs+3(T,R) to Hs(T,R)× {F−1(
∑
Im ake

2iπk·), ak ∈ C}.

Summing up what we have proved, we can state the following proposition.

Proposition 7.7. Let Er,a(·) = exp(
∑
ρ∈∆̃ 2iπhρ(rρ ·+aρ)) be a regular periodic geodesic,

U(·) =
∑
ρ∈∆̃ U

t
ρ(·).hρ +

∑
ρ∈∆+ Uρ(·).jρ be small enough in Cτ+2(T, g) and α ∈ DC(γ, τ).

Then, there exist B(·) and Γr̃U(·) (notice the abuse in the notation) in C∞(T, g), where

B(·) =
∑
ρ∈∆̃

Bt
ρ(·).hρ +

∑
ρ∈∆+

Bρ(·).jρ

Γr̃U(·) =
∑
ρ∈∆+

ΓρUρ(·).jρ =
∑
ρ∈∆+

∑
k∈Iρ

pρ(k)e2iπk·.jρ
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solving the equation

Ad(Er,a(·)∗).B(·+ α)−B(·) = −U(·) + Γr̃U(·) +
∑
ρ∈∆̃

Û t
ρ(0).hρ

with the following estimates:

‖B(·)‖s ≤ γCs ‖U(·)‖s+τ+2
‖Γr̃U(·)‖s ≤ Cs ‖U(·)‖s

where the constants depend only on r, but not on a or α.
The Bt

ρ(·) are unique up to an additive constant in R (thus unique if we impose that
their constant Fourier coefficient be 0). The rest ΓrU(·) is uniquely determined by U(·)
and the choice of its spectral support.

Let us also define the spaces in which the obstructions take values

Definition 7.8. We will denote by Pr̃ the image of the mapping Γr̃ in C∞(T, g) and by
P0
r̃ the space t⊕ Pr̃.

This proposition indicates that a K.A.M.-like scheme can be used, just as in [Kri01].
The scheme is defined by replacing the perturbation U(·) by a Fourier-truncation of a
sufficiently high order N , and solving the linearized equation for the low frequencies. This
reduces the perturbation to the sum of a term of order CsNa ‖U‖0 ‖U‖s and the rest
ΓhU(·). The hypothesis that the cocycle is of degree r gives the estimate

‖Λ0
r̃U(·)‖s . ‖(Id− Λ0

r̃)U(·)‖s

This estimate implies that the rest is in fact of second order with respect to the original
perturbation, and the reduction can be iterated. The congergence of the scheme shows
that all small enough perturbations of (α,Er,a(·)) of degree r are C∞ conjugate to a
(α,Er,a′(·)). The reason for which this is a purely local theorem, i.e. if the conjugation
exists it can be chosen small, is the fact that the arithmetic properties of the abelian
constant in Er,a(·) are irrelevant and the only small denominator phenomena are those
appearing in the reduction of the toral coordinates. Since, however, they are related only
to α, and not on a, they are uniform throughout the K.A.M. scheme and do not pose any
problems to the convergence of the scheme.

This fact enables us to choose a Nash-Moser inverse function theorem approach (see
[Ham82]). The proof of such a theorem consist essentially in the construction of a con-
vergent classical K.A.M. scheme which replaces the fixed point argument in the standard
inverse function theorem for Banach spaces. Heuristically, the theorem states that if the
equation of reduction to the normal form has can be uniquely solved in all the tangent
spaces in a neighborhood of 0 and with uniform estimates and uniform loss of derivatives,
then the K.A.M. scheme converges. In other words, if we can make one step of the scheme
(i.e. solve the linearized equation) in each tangent space, but with uniform estimates and
loss of derivatives, then the inversion of the mapping by the Nash-Moser theorem does the
rest of the convergent scheme.

Nonetheless, K.A.M. theory is not made obsolete by the Nash-Moser theorem, since
the latter is, as all such theorems, of purely local nature. As a consequence, an inverse
function approach can only construct conjugations of the same order as the perturbation
of the normal form. On the other hand, one can construct reducible cocycles for which
the hypothesis (apart from regularity assumptions) of the theorem (i.e. the resolution of
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the linearized equation with good estimates) fails. Consider, eg, α ∈ T \ Q and k ∈ Z∗.
Then, the cocycles in T× SU(2) of the form

(α,AeU(·))

with A = {eiπkα, 0}SU(2) and U(·) = {0, εe2iπk·}su(2) (ε ∈ R∗ is small) can be reduced by
the 2-periodic conjugation E−k/2(·) = {e−iπk·, 0}SU(2) to the constant cocycle

(α,E−k/2(α)A exp({0, ε}su(2)))

as shows a direct calculation. The conjugation, however is of order one, while the pertur-
bation is of order ε. We refer the reader who is unfamiliar with this kind of problems to
Chapter 8 for the proof that the linearized equation cannot be solved for this cocycle due
to the fact that the constant A is "resonant". As a consequence, there is no good candidate
for a conjugation of the same order as the perturbation, and the inverse function theorem
approach fails, even though the cocycle is reducible. On the other hand, conjugation by
E−k/2(·) can be integrated in a K.A.M. scheme as a process of reduction of resonances (as
in, say, [Eli01]), if we renounce in the convergence of the conjugations.

After this digression, let us return to the subject of this chapter and point out that the
phenomena that obstruct the existence of a conjugation of the order of the perturbation
are absent, as indicates proposition 7.7. This fact results in the exactness of theorem 7.3.

In order to establish the contrast between theorem 7.3 and the phenomena observed in
the local theory, we present, somewhat prematurely, the equivalent to our theorem in the
local case, as obtained by R. Krikorian in [Kri99a], after having introduced some notation.
Let u ∈ G, then call Γu a space complementary to Im(Id−Adu) in g and

lu : g → ker(Id−Adu)

be the projection with respect to the Cartan-Killing form. The Fréchet space of smooth
mappings Td → g such that lu(B(0)) = 0 will be denoted by Eu. An element u of G is
called Diophantine with respect to α ∈ T if the eigenvalues of its adjoint action have this
property, i.e. if

|uρ − kα|Z ≥
γ−1

|k|τ

for all k ∈ Zd \ {0}. We can now state

Theorem 7.9 (R. Krikorian). Let u0 ∈ G be in DCα(γ, τ) and let Γ = Γu0 and E = Eu0.
Let also α be Diophantine. Then, there exist an ε > 0 and s > 0 such that if u ∈ C∞(Td, G)
and ‖u− u0‖s < ε, there exists a unique couple (B,C) ∈ E × Γ such that

u(·) = eC .eB(·+α).u0e
−B(·)

The smallness condition ε is given by c.γc′, where the constants c and c′ do not depend on
γ.

The contrast between the two theorems resides in the factor eC of eq. 7.9, which
measures the failure of the inverse function theorem to obtain reducibility. As will be
made clear in chapter 8 (and as has been made clear in [Kri99a]) the factor eC is precisely
due to phenomena of the nature of eq. 7.2.

The local normal form theorem can be used in the proof of a theorem for the reducibility
in positive measure in the parameter space for generic one-parameter families. However,
the stronger theorem of reducibility in full measure is true, but cannot be obtained by the
inverse function theorem, since it is based on the reduction of resonances.
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7.3 Preliminary transformations and notation
Let us denote by exp−1 the inverse of the exponential mapping, defined in a neighbor-

hood of the Id, and taking values in a neighborhood of 0 ∈ g. The space orthogonal to t for
the Cartan-Killing form, t⊥, is the complex space spanned by the vectors jρ, ρ ∈ ∆+. The
orthogonal projection on t will be denoted by πt. Finally, we will denote by V = C∞(T, g)
and call W a neighborhood of 0 ∈ V.

We can easily eliminate the obstruction to the solution of eq. (7.1) using the following
fact. The mapping

h 7−→
∫
πt(exp−1(eh.eU(·)))

is a local diffeomorphism in a neighborhood of 0 in t, called N+ (cf. also Corollary 8.1
of [Kri01]). We can therefore introduce a fibration of W into W0 × N , where W0={U ∈
W, πt(Û(0)) = 0}.

Therefore, if ‖U(·)‖0 ∈ W is small enough, there exists a unique couple (h, U0(·)) ∈
N ×W0 such that

Er,a(·).A.eU(·) = Er,a(·).eh.eU0(·)

= Er,a+h(·)eU0(·)

where U0(·) ∈ W0 and the mapping U(·) 7→ U0(·) is continuous from Cs into itself, for all
s. The smallness condition on the perturbation can be weakened to a smallness condition
on ‖U(·)− πt(Û(0))‖0. Finally, we can chose W0 so that Ad(T ).W0 =W0.

Since the rest C ∈ Γ in the local normal form theorem is needed in order to absorb
the topological obstruction to the resolution of the linearized cohomological equation, we
are lead to replace it by a more general mapping, since the topological obstruction for the
solution of (7.2) is no longer a constant.

Essentially, the normal form theorem should measure the failure to solve the equation

Conjexp(B(·)).(α,Er,a(·).eU(·)) = (α,Er,a(·))

This failure will be represented by the additional terms eλ and eD(·) in the following
formula:

Er,a(·).eU(·) = e−B(·+α).Er,a+λ(·).eB(·).eD(·)

This equation, solved for the perturbation term, gives

eU(·) = Er,a(−·).e−B(·+α).Er,a+λ(·).eB(·).eD(·) (7.6)

The formula that we seek to obtain is

Er,a(·).eU(·) = e−B(·+α).Er,a′(·).eP (·).eB(·)

with P (·) a Fourier polynomial taking values in t⊥.

We remind that for X ∈ g small enough and ∆X in the tangent space at X, we call

∆̃X = K(X).∆X = (D(eX).∆X).e−X

We shall write ∆B =
∑

∆B(k).e2iπkx for a variation of B(·) ∈ V, where ∆B(k) =∑
ρ∈∆̃ ∆Bt

ρ(k).hρ +
∑
ρ∈∆+ ∆Bρ(k).jρ are the Fourier coefficients. Mappings will not be

denoted by B(·), but simply by B, in order to avoid confusion with the notation ∆B(k).
We also recall the notation Rα : x 7→ x+ α for the translation of T into itself.
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7.4 Proof of the normal form theorem
Let us therefore consider the smooth mapping Ψ̃ : ((t, 0)× (g, 0)3 ;T, t)→ ((g, 0) ;T, t)

(λ,X, Y, Z; x, a) 7→ exp−1(Er,a(−x).e−X .Er,a+λ(x).eY .eZ)

where x and a are presently seen as parameters.
We remark that (7.6) can be solved by inverting the mapping

Ψ(λ,B,D) = Ψ̃(λ,B ◦R]a, B,D; a)

and, therefore, the next step is to prove the differentiability properties required by Hamil-
ton’s theorem and choose the functional spaces so that the mapping will be invertible.

The rest of this section is thus occupied by the proof of

Proposition 7.10. Suppose that α ∈ DC(γ, τ), r ∈ Zw is such that er ∈ g is regular and
let a ∈ t, the unique maximal torus passing by er. Then there exists W̃, a neighborhood of
0 in the local Fréchet manifold

Vr = {(λ,B,D) ∈ t× E0 × E , D ∈ Ad(e−B).Pr̃}

such that the mapping

Ψ : W̃ → E
(λ,B,D) 7→ exp−1(E∗r,a(·).eB◦Rα .Er,a+λ(·).e−B.e−D))

satisfies the conditions of Hamilton’s theorem (theorem 1.10) for all (λ,B,D) ∈ W̃. More-
over, W̃ can be chosen so that (λ,B,D) ∈ W̃ if and only if (λ,B ◦ Rθ, D ◦ Rθ) ∈ W̃, for
all θ ∈ T. The size of the neighborhood in E is bounded by

‖u‖l ≤ Cst.max(γ, 1)−2

where l ∈ N and the constants depend on l, but not on γ.

Regularity of the mapping

Let us begin by proving

Proposition 7.11. Ψ is a C∞-tame application N ×W2→ V defined in a neighborhood
of 0 ∈ t× V2.

Proof. Let us call U = Ψ̃(λ,X, Y, Z). A direct calculation shows that

K(U).∆U = Ad(Er,a(−·)e−X)(−∆̃X + ∆λ+Ad(Er,a+λ(·)).∆̃Y +Ad(Er,a+λ(·).eY ).∆̃Z

We can now define Ψ : N ×W2→ E by

Ψ(λ,B,D) = Ψ̃(λ,B ◦Rα, B,D;A)

If we pose now U = Ψ(λ,B,D) ∈ E and ∆U = (∆λ,∆B,∆D) (we remind that ∆̃U =
K(U).∆U) we see that

Ad(eB◦RαEr,a(·)).∆̃U = −∆̃B ◦Rα + ∆λ+Ad(Er,a+λ(·)).∆̃B +Ad(Er,a+λ(·).eB).∆̃D

which proves the proposition.
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Construction of the inverse

We now try to restrict the space on which Ψ is defined, in order to obtain inversibility
for the restricted mapping. More precisely, we will define Vr, the local Fréchet manifold
of proposition 7.10 so that, if we still denote by Ψ the mapping Vr → E , DΨ is bijective
at each point of Vr, and the inverse satisfies tame estimates.

We thus solve the equation

∆U ′ = −∆̃B ◦Rα +Ad(Er,a+λ(·)).∆̃B + ∆λ+Ad(Er,a+λ(·).eB).∆̃D

for any ∆U ′ ∈ E , thus establishing the surjectivity of DΨ in the tangent space at
(λ,B,D) ∈ N ×W2. We will solve the equation in the following equivalent form

∆U ′′ = Ad(E∗r,a+λ(·)).∆̃B ◦Rα − ∆̃B −∆λ−Ad(eB).∆̃D (7.7)

where
‖∆U ′′‖s ≤ Cs(1 + ‖B‖s)‖∆̃U‖s

It can be seen directly that πt(∆̃B(0)) is not determined by the equation, so, in order to
gain uniqueness for ∆B(0)) ∈ W0, we will use πt(∆̃B(0)) as free parameters.

Direct application of Proposition 7.7 grants the existence of (∆b,∆p) ∈ V0 × P0
r̃ such

that
∆U ′′ = Ad(E∗r,a+λ(·)).∆b ◦Rα −∆b+ ∆p

and (∆b,∆p) satisfy tame estimates with respect to ∆U , uniformly for a and λ:

‖∆b‖s ≤ C ′s
∥∥∆U ′′∥∥s+τ+2 ≤ C

′
s+τ+2(1 + ‖B‖s+τ+2)‖∆̃U‖s+τ+2

‖∆p‖s ≤ C ′s
∥∥∆U ′′∥∥s ≤ C ′s(1 + ‖B‖s)‖∆̃U‖s

where C ′s = max(1, γ)C ′′s (r). We will omit the prime in the notation of this constant.
We can therefore rewrite eq. 7.7 in the form

Ad(E∗r,a+λ(·)).∆b ◦Rα −∆b+ ∆p = Ad(E∗r,a+λ(·)).∆̃B ◦Rα − ∆̃B −∆λ− ∆̃P (7.8)

We have called ∆̃P = Ad(eB).∆̃D, which by convexity inequalities satisfies

‖∆̃P‖s ≤ Cs(1 + ‖B‖s)‖∆̃D‖s

The situation for the inversion of ∆D → ∆̃P and the decomposition of ∆̃P into a
coboundary plus an obstruction, however, is slightly more complicated. Observation of
the formula that we seek to prove indicates that we should seek D in Ad(e−B).Pr̃. For
such a D, we have ∆̃D = Ad(e−B).∆̃P , where ∆̃P = K(P ).∆P for P,∆P ∈ Pr̃, which
justifies the notation ∆̃P . For a given such P and ∆P , Proposition 7.7 gives the existence
of ∆Dcob and a Fourier polynomial Γr.∆̃P such that

∆̃P = Ad(E∗r,a+λ(·)).∆Dcob ◦Rα −∆Dcob + Γr.∆̃P

The family of mappings P̃r 	

∆P 7→ Γ̃r̃(P ).∆P = Γr̃ ◦K(P ).∆P
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is a family of linear applications of between vector spaces of the same finite dimension,
depending on the parameter P ∈ Pr. For P = 0, Γ̃r̃(0) = Id, and the estimates in
Proposition 7.7 imply that the family depends continuously on P , so that ∆Dcob and
Γ̃r∆P satisfy uniform estimates with respect to ∆P , for all P sufficiently small in C0:

‖∆Dcob‖s ≤ Cs+τ+2(1 + ‖P‖s+τ+2)‖∆P‖s+τ+2

‖Γ̃r̃(P ).∆P‖s ≤ Cs(1 + ‖P‖s)‖∆P‖s
Similar estimates are also satisfied with respect to the original variable ∆D

‖∆Dcob‖s ≤ Cs+τ+2(1 + ‖B‖s+τ+2 + ‖P‖s+τ+2)‖∆D‖s+τ+2

‖Γ̃r̃(P ).∆P‖s ≤ Cs(1 + ‖B‖s + ‖P‖s)‖∆D‖s
so long as ‖B‖s+τ+2, ‖P‖s+τ+2 ≤ 1.

We can therefore solve the equation

Γ̃r.∆P = πt⊥∆p

with good estimates and write the equation for the remaining terms in the form

Ad(E∗r,a+λ(·)).∆b′ ◦Rα −∆b′ + πt∆p = Ad(E∗r,a+λ(·)).∆B̃ ◦Rα − ∆̃B −∆λ

where ∆b′ = ∆b −∆Dcob. Projection on t gives ∆λ = −πt∆p, and finally we find ∆̃B =
∆b′ + ∆c, where ∆c ∈ t is to be determined.

Let us now study the inversion of the change of variables ∆B 7→ ∆̃B.
Lemma 7.12. Let ∆̃B ∈ V0 satisfy 7.8 (it is then automatically unique, by virtue of
Proposition 7.7). Then there exists a unique ∆c ∈ t such that ∆B = K−1(B).(∆̃B+∆c) ∈
V0. Moreover, the mapping ∆̃B → ∆B is tame.
Proof. Let us call ∆B′ = K(B)−1.∆̃B. Since B is to be considered small,

∫
K−1(B) is

invertible as for ‖B‖0 small enough

‖
∫
K−1(B)− Id‖ ≤ C‖B‖0

in operator norm. Therefore, we can find a unique ∆c ∈ t such that πt
∫
K−1(B).∆c =

πt∆B′t(0). Let, now,
∆B = ∆B′ −K−1(B).b

Then,
∫
πt(∆B) = 0 and thus ∆B ∈ E0. Additionally, K(B).∆B′ and K(B).∆B differ

only by a constant diagonal matrix, so that eq. 7.8 is satisfied with K(B).∆B in the place
of ∆̃B. Finally,

‖∆B‖s . ‖∆B′‖s + (1 + ‖B‖s)|∆c|
. (1 + ‖B‖s)

(
‖∆̃B‖s + (1 + ‖B‖0)‖∆̃B‖s

)
Admitting a uniform bound, say ‖B‖0 < 1, gives the desired estimate

‖∆B‖s ≤ Cs(1 + ‖B‖s)‖∆̃B‖s

We remark that, thanks to the local nature of the setting, the changes of variables
are continuous applications from Cs(T,R) into itself, with norms bounded by constants
depending only on N and W, for each s. Therefore, the loss of derivatives is only due to
the inversion of the operator involved in the linearized equation studied in the previous
section.





Chapter 8

Revisiting the local theory

The next natural step in our study should be to treat the case where the obstruction
to reducibility is intermediate, i.e. the perturbations of singular geodesics. As we will see
in the next chapter, the study of singular geodesics is reduced to a parallel application of
the local reduction lemmas of the local theory as we will develop it in this chapter with
the K.A.M. scheme used in [Kri01].

For this reason, we will present the local theory, for which the main reference is [Kri99a].
We will adapt and simplify the proof of theorem 2.5 found therein, and additionally
improve the local almost quasi-reducibility theorem obtained as a corollary of the proof
of theorem 2.5 to a local almost reducibility theorem (see chapter 2 for the definitions of
these notions).

The proof of the local density theorem by R. Krikorian works in the context of a
unitary representation of G. If one reads carefully the proofs, they can recognize that the
adjoint representation of G on g works just as well. It is not a faithful representation, but
since its kernel ZG is discrete, it does not interfere significantly in the theory. In order to
be able to use the Fourier transform, the unitary group in which G was embedded, was in
turn embedded in a space of matrices with complex coefficients. In our context, the role
of the ambient matrix vector space is taken up by the linear transformations of the real
vector space g, an object which is again defined intrinsically.

Summing up, we re-obtain in a slightly more general context the well known theorem
of the density of reducible cocycles in the neighborhood of constants. We also prove the
local almost-reducibility theorem, which strengthens the almost quasireducibility theorem
of R. Krikorian. In addition, the proof of the density theorem is significantly simpler,
since it does not use the reducibility in positive measure for 1-parameter families. This
last element becomes important in the study of perturbations of singular geodesics that
we will take up in the next chapter, and allows an elegant proof of a slightly sharper and
more natural global density theorem.

8.1 Notation
Throughout this chapter, we suppose that a 1-periodic perturbation of a constant

cocycle is given
(α,A.eU(·))

We also suppose that α ∈ DC(γ, τ), i.e.

|kα|Z = dist(kα,Z) ≥ γ−1

|k|τ
, k ∈ Z∗
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We remind that we denote by w the rank of G, by q the number of positive roots
of G, and by f the dimension of the real vector space g and by t = ta a maximal toral
algebra passing by a, a preimage of A in g by exp. If ∆̃ are the roots in a basis of Weyl
with respect to t, we denote by (Hρ)ρ∈∆̃ the dual basis of t. The choice of a Weyl’s basis
induces a decomposition of g into a direct sum of subspaces

g = (⊕ρ∈∆̃RHρ)⊕ (⊕ρ∈∆+Cjρ)

where the (Hρ) span t and the (jρ) ∪ (ijρ), where i =
√
−1, form an orthonormal basis of

the space othogonal to t with respect to the Cartan-Killing form. We remind the reader
that if s ∈ t, then

[s, jρ] = 2iπρ(s)jρ = 2iπsρjρ

in the notations that we have adopted. For mappings U(·) : T→ g we use the notation

U(·) =
∑

ρ∈∆̃
U t
ρ(·)Hρ +

∑
ρ∈∆+

Uρ(·)jρ

= U t(·) +
∑

ρ∈∆+
Uρ(·)jρ

Since if ρ′ ∈ ∆+, there exist positive integers mρ′,ρ such that

ρ′ =
∑
∆̃

mρ′,ρρ

there exist rational numbers pρ′,ρ = lρ′,ρ/D with |lρ′,ρ| ≤ e, such that

Hρ′ =
∑
∆̃

pρ′,ρHρ

where D, b ∈ N∗ are considered fixed.
We also call c = cG, the cardinal of ZG.
Finally, a real number β will be called Diophantine with respect to α if it satisfies

|β − kα|Z =≥ γ−1

|k|τ

The set of such numbers will be denoted by DCα(γ, τ).

8.2 Synopsis of the chapter

In this chapter, we revisit, simplify and sharpen the local theory, as known since
[Kri99a], namely theorem 2.5, and obtain

Theorem 8.1. Let α ∈ DC(γ, τ). Then, there exist ε > 0 and s0 ∈ N∗ such that,
if U(·) ∈ C∞(T, g) satisfies ‖U(·)‖s0

< 1, ‖U(·)‖0 < ε and A ∈ G, then the cocycle
(α,AeU(·)) is accumulated in the C∞ topology by reducible cocycles.

This theorem was in fact already known in a slightly weaker form, as a comparison
with theorem 2.5 can show. Its proof was based on a local quasi-reducibility theorem
(see definition 2.3 and the discussion below), and obtained from it in a slightly more
complicated way than we derive it from the following local almost reducibility theorem,
which in turn was not known.
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Theorem 8.2. Let α ∈ DC(γ, τ). Then, there exist ε > 0 and s0 ∈ N∗ such that, if
‖U(·)|s0 < 1, ‖U(·)‖0 < ε and A ∈ G, then the cocycle (α,AeU(·)) is almost reducible.

The proof of this theorem is accompanied with a control of the growth of the conju-
gants, which is polynomial, versus an exponential decay of the perturbations. This fact
grants the preceding density theorem. It is with the same argument that R. Krikorian
obtained his local density theorem from his almost quasi-reducibility, but with a compli-
cation. The problem of of longer periods (the difference between almost reducibility and
quasi-reducibility) made it necessary to use the classical K.A.M. theory and reducibility
in positive measure in the parameter space. We managed to overcome this difficulty and
rid the argument of this complication by reinterpreting H. Eliasson’s generalized K.A.M.
scheme. We followed the adapted version of it for compact Lie groups as in [Kri99a],
but interpreted the reduction of resonances (see section 8.4), as the reduction of the good
linear model in the presence of resonances. This fact allowed us a better control of the
procedure and the recovery of the loss of periodicity (inherent in the theory in general
compact groups) to be recovered at each step of the K.A.M scheme, which gives almost
reducibility, instead of quasi-reducibility.

These last two theorems admit global analogues. Since we use the convergence of
renormalization, we strengthen the arithmetic condition to a recurrent Diophantine one
and obtain

Theorem 8.3. Let α ∈ RDC and (α,A(·)) ∈ SW∞α (T, G) be of degree 0. Then, there
exists l ∈ N∗, 1 ≤ l ≤ χG such that the cocycle (α,A(·))l is almost reducible mod l.

The global analogue of the local density theorem is as follows

Theorem 8.4. Let α ∈ RDC. Then, reducible cocycles are dense in the class of 0-degree
cocycles in SW∞α (T, G) that are homotopic to constants.

Since we have already seen that positive energy cocycles in SW∞(T, SU(2)) are accu-
mulated by cocycles of smaller energy, by a simple induction argument we can obtain the
following theorem.

Theorem 8.5. Let α ∈ RDC. Then, reducible cocycles are dense in SW∞α (T, SU(2)).
The same holds for cocycles in SW∞α (T, SO(3)), by allowing a doubling of the period for
cocycles non-homotopic to constants.

Subsequently, we use the K.A.M. scheme of the proof of theorem 8.2 in order to obtain
a local differentiable rigidity theorem:

Theorem 8.6. Let α ∈ DC(γ, τ) and (α,AeU(·)) be a perturbation of a constant cocy-
cle, where U(·) ∈ C∞(T, g) satisfies the smallness condition of the local almost reducibil-
ity theorem. We also suppose that there exists B(·) : T → G, measurable, such that
ConjB(·)(α,AeF (·)) = (α,Ad), where Ad ∈ DCα(γ′, τ ′) is a Diophantine constant in G.

Under these assumptions, there exists B̃(·) ∈ C∞(T, G) such that ConjB̃(·)(α,AeF (·)) =
(α,Ad), and B̃(·) = B(·) a.e.. The smallness condition on U(·) depends only on (the
Diophantine properties of) α and G.

The condition that Ad be a diophantine constant is, for a fixed α, a full Haar measure
condition in G. For the definition, see def. 8.19.

Such a theorem was obtained in [HY09], but the smallness condition on the perturba-
tion was related with the measurable conjugation (the conjugation B(·) in our statement
above).
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The theorems in the purely local case are of course valid for cocycles with more than
one frequency, but in the case of one-frequency cocycles we can also obtain a non-local
version.

Theorem 8.7. Let α ∈ RDC(γ, τ) and (α,A(·)) ∈ SW∞(T, G) and suppose that there
exists B(·) : T → G, measurable, such that ConjB(·)(α,A(·)) = (α,Ad), where Ad ∈ DCα
is a Diophantine constant in G.

Under these assumptions, there exists B̃(·) ∈ C∞(T, G) such that ConjB̃(·)(α,A(·)) =
(α,Ad), and B̃(·) = B(·) a.e..

The proof uses the measurable invariance of the degree in order to reduce the study to
the local case, and the recurrent diophantine property of α allows to conclude by applying
the local version of the theorem.

8.3 Strategy of the proof of theorem 8.2
The proof of the local almost reducibility theorem is reduced at a first time to writing

and solving with good estimates the reduction of a perturbation of a constant cocycle to a
perturbation of order two, and then iterating the procedure by means of a K.A.M. scheme.

The convergence of the scheme needed for the second part has been taken from [FK09],
so for the time being we focus on the first part, the linear problem.

Let us assume that a Y (·) : T → g, small enough, can reduce the perturbation U(·)
to V (·), with V (·) of order two with respect to U(·). The equation satisfied by such a
conjugant is

eY (·+α).A.eU(·).e−Y (·) = A′.eV (·)

or
eAd(A∗).Y (·+α).eU(·).e−Y (·) = A∗A′.eV (·)

Linearization of this equation under the smallness assumptions implies that such a Y (·)
must satisfy the equation

Ad(A∗).Y (·+ α)− Y (·) = −U(·) (8.1)

We introduce the coordinates

U(·) =
∑

ρ∈∆̃
U t
ρ(·)Hρ +

∑
ρ∈∆+

Uρ(·)jρ

where U t
ρ(·) are real and Uρ(·) complex 1-periodic functions. We will write Y (·) in an anal-

ogous way. The linearized equation then decomposes into two different types of equations
as follows.

The simpler case is that of the abelian part, which reads

Y t
ρ(·+ α)− Y t

ρ(·) = −U t
ρ(·)

for which we refer the reader to lemma 2.4.
The second type of equation is the one that characterizes the reduction of perturbations

of constants. It reads
e−2iπρ(a)Yρ(·+ α)− Yρ(·) = −Uρ(·) (8.2)

for ρ ∈ ∆+. Application of the Fourier transform gives

(e2iπ(kα−ρ(a)) − 1)Ŷρ(k) = −Ûρ(k), k ∈ Z (8.3)
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Therefore, the Fourier coefficient Ŷρ(k), k ∈ Z, is not determined by the equation if

kα− ρ(a) ∈ Z

or equivalently if
a ∈ P (G) + αP (G)

For the definition of P (G), see section 1.1.1. If a /∈ P (G) + αP (G), but is close to it,
reduction of the corresponding Fourier coefficients deteriorates the estimates.

In order to avoid the loss of derivatives, a problem already encountered in Lemma
2.4, we solve the eq. 8.3 for only a finite number of coefficients, which we will determine
depending on the arithmetic properties of a.

For this equation, we can distinguish three different possibilities.
The first one, which gives rise to a classical K.A.M. scheme as in [Kri99a], occurs when

ρ(a) is far from kα,
|ρ(a)− kα|Z ≥ K−1 (8.4)

for all 0 < |k| ≤ N and some K > 0, comparable with N . Unlike with classical K.A.M.,
we suppose explicitly that the inequality 8.4 is violated for k = 0. Let us denote by I0
the roots ρ ∈ ∆+ for which aρ satisfies this property. Then, we can solve eq. 8.2 for
0 < |k| ≤ N , i.e. we solve eq. 8.1 with Uρ(·) replaced by the homogeneous truncaction
ṪNUρ(·), and obtain a solution to the equation

e−2iπρ(a)Yρ(·+ α)− Yρ(·) = −TNUρ(·) + Ûρ(0)

with Yρ(·) of the order of Uρ(·).
The second one, the most gentle in fact, occurs when ρ(a) is far from kα,

|ρ(a)− kα|Z ≥ K−1

for all 0 ≤ |k| ≤ N , in which case we will say that it is Diophantine with respect to α.
Let us denote by Inr the roots ρ ∈ ∆+ for which aρ satisfies this property. Then, we can
solve eq. 8.3 for 0 ≤ |k| ≤ N , i.e. we solve eq. 8.2 with Uρ(·) replaced by the truncaction
TNUρ(·), and obtain a solution Yρ(·) of the order of Uρ(·).

The third and last case occurs when the inequality 8.4 is violated by some kρ with
0 < |kρ| ≤ N . We will show that with no loss of generality we can restrict our study to
the case where |kρ| ≤ N ′, with N ′ < N , but with N − N ′ of the order of N . Moreover,
with a good choice of the parameters K and N , we can ensure that if such a kρ exists,
then it is unique, and, additionally, that the inequality 8.4 is verified for 0 < |k−kρ| ≤ N .
Finally, we will ensure that, if Ir is the set of such roots, then I0 ∪ Id ∪ Ir = ∆+. For the
roots in Ir we can only solve the equation

e−2iπρ(a)Yρ(·+ α)− Yρ(·) = −Ṫ (kρ)
N

where
Ṫ

(kρ)
N =

∑
0<|k−kρ|≤N

Ûρ(k)e2iπk· (8.5)

when again Yρ(·) is of the order of Uρ(·).
Therefore, we have solved the equation 8.1, but with U(·) on the rhs replaced by

ṪNU
t(·) +

∑
ρ∈Id

TNUρ(·)jρ +
∑
ρ∈Ir

Ṫ
(kρ)
N Uρ(·)jρ +

∑
ρ∈I0

ṪNUρ(·)jρ
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If we call
ObU(·) = Û t(0) +

∑
ρ∈Ir

Uρ(kρ)e2iπkρ·jρ +
∑
ρ∈I0

Ûρ(0)jρ

the equation that we have solved reaches the form

Ad(A∗).Y (·+ α) + U(·)− Y (·) = ObU(·) + Rest

where the term "Rest" represents the rests of the truncation operators Ṫ (kρ)
N , ṪN and TN ,

accordingly with the subspace of g. The corresponding result for the non-linear problem
is the conjugaction of (α,AeU(·)) to (α,AeObU(·)eU

′(·)), with U ′(·) of second order with
respect to U(·).

We remark that, since we have solved a linearized equation, where second order terms
are neglected, linearization of the equation

Conjexp(Y (·))(α,AeObU(·)eŨ(·)) = (α,AeObU(·)eU
′(·))

with Ũ(·) = U(·) − ObU(·) + O(ε2) and U ′(·) of second order, gives exactly the same
equation, solution and estimates,

Iteration of such a conjugation lemma is not possible, since the term ObU(·) is of the
order of U(·). Moreover, since ObU(·) has non-zero Fourier coefficients exactly where the
linear theory fails, a different approach has to be taken.

This approach resembles to, without being identical with, the reduction of resonances
of [Eli92] and [Kri99a], and in this context it consists in constructing a conjugation of a
controlled norm that reduces the exact model around which we linearize, (α,AeObU(·)), to
a constant. A good candidate for such a conjugation is a periodic geodesic e−H· : T→ TA,
with TA a maximal torus passing by A. We have, then,

Conjexp(−H·)(α,AeObU(·)) = (α, e−HαA exp(Ad(e−H·).ObU(·)))

so that the only possibly non-constant term is Ad(e−H·).ObU(·). Given the form of
ObU(·) : T→ g, we calculate

Ad(e−H·).ObU(·) = Û t(0) +Ad(e−H·)(
∑
ρ∈Ir

Uρ(kρ)e2iπkρ·jρ +
∑
ρ∈I0

Ûρ(0)jρ)

= Û t(0) + (
∑
ρ∈Ir

Uρ(kρ)e2iπ(kρ−ρ(H))·jρ +
∑
ρ∈I0

Ûρ(0)e−2iπρ(H)·jρ

Consequently, ObU(·) can be made constant after such a conjugation if we can solve the
equations ρ(H) = kρ for ρ ∈ Ir, and ρ(H) = 0 for ρ ∈ I0. This is done in section 8.4,
where it is shown also that such an H can be constructed so as to satisfy |H| . N ′, where
we remind that |kρ| ≤ N ′.

With such an H, we have

Conjexp(−H·)(α,AeObU(·)eŨ(·)) = (α, Ã exp(Ad(e−H·).U ′(·)))

where U ′(·) is quadratic with respect to U(·), and therefore we can iterate the procedure.
Heuristically speaking, the second part of the reduction, the construction of the con-

jugation exp(−H·), shows that the obstructions to the solution of the linear equation are
reducible cocycles.

There is in fact a slight complication due to the fact that e−H· is not in general 1-
periodic, but this is resolved by post-conjugating with another periodic geodesic.
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8.4 Resonances and reduction of resonant modes
The preceding section has shown the importance of the relation of ρ(a) mod Z, for

ρ ∈ ∆+, with kα mod Z. More precisely, if ρ(a) = kρα mod Z for some kρ ∈ Z, then
the corresponding Fourier coefficient Ûρ(kρ) of Uρ(·) cannot be eliminated in the linear
equation. In the perturbative setting, if this equality is approximate and ρ(a)−kρ mod Z
is small with respect to N−1, then reduction of the corresponding Fourier coefficient de-
teriorates the estimates. This motivates the following definition.

Definition 8.8. A constant β ∈ R such that

kα− β ∈ Z

for some k ∈ Z∗ is called (α-)resonant. The set of such constants is denoted by Res(α)
and its complement, the set of non-resonant roots, NR(α).

Let I ⊂ Z∗. If there exists k ∈ I such that

|β − kα|Z = dist(β − kα,Z) ≤ K−1

we will say that β is in RS(α,K) in I. In the case where I = {k ∈ Z, 0 < |k| ≤ N}, the
sets of such constants will be denoted by RS(α,N,K) and DS(α,N,K) respectively. We
will then say that β is K-resonant to the order N .

A constant a ∈ g is in RS(α,K) in I (resp. in RS(α,N,K)) if there exists a root in
ρ ∈ ∆+ such that ρ(a) is in RS(α,K) in I (resp. in RS(α,N,K)). If no such root exists,
a ∈ DS(α,K) in I (resp. in DS(α,N,K)).

We remark that we consider 0 as non-resonant, i.e. we do not authorise k = 0 in the
definition of Res and that of RS.

With this notation, for any given a ∈ g and t = ta, a maximal toral algebra passing by
a, we can introduce a partition of the roots in ∆+ in

Ir = {ρ ∈ ∆+, ρ(a) = kρα+ lρ ∈ αZ∗ + Z}
I0 = {ρ ∈ ∆+, ρ(a) = lρ ∈ Z} (8.6)
Id = {ρ ∈ ∆+, ρ(a) 6∈ αZ + Z} = ∆+\(Ir ∪ I0)

Let us also associate to each ρ ∈ Ir the (unique) kρ satisfying ρ(a) = kρα + lρ. This
notation is to be fixed throughout the chapter. We can now state

Lemma 8.9. Let a ∈ t ⊂ g, call (aρ)ρ∈∆+ = (ρ(a))ρ∈∆+ ∈ Cq and define the corresponding
partition of the roots in ∆+, as in eq. 8.6. Then, there exists H ∈ t such that, for all
ρ ∈ Ir, we have ρ(H) = kρ, and for all ρ ∈ I0, ρ(H) = 0. The vector H is of the form∑ k′ρ
D
Hρ, where the summation is over a subset of (Ir ∪ Id) ∩ ∆̃, and k′ρ ∈ Z.

We remind that q = #∆+ denotes the number of positive roots, which are not lin-
early independent. We also recall that any root ρ′ in ∆+\∆̃ can be written in the form∑
ρ∈∆̃mρ′,ρρ where the mρ′,ρ are positive integers. The entries of inverses of invertible

submatrices of (mρ′,ρ) are rational numbers of the form lρ,ρ′/D, where |lρ,ρ′ | ≤ e is an
integer and D ∈ N∗ and lρ,ρ′ and D are not necessarily coprime.

Proof. Let us now call

Ĩr = Ir ∩ ∆̃
Ĩ0 = I0 ∩ ∆̃
Ĩd = Id ∩ ∆̃
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It is then clear that
Ir ⊂ vect(Ĩr, Ĩd) ∩∆+

so that we can chose I lr a linearly independent subset of Ir, and complete it with I l0, a
maximal set of linearly independent roots in I0 \ vect(Ĩ0) in order to obtain a maximal
linearly independent subset of roots in Ĩr ∪ Ĩd. Then, we can solve the linear system∑

ρ∈Ĩr∪Ĩd

mρ′,ρuρ = kρ′ , ρ
′ ∈ I lr

∑
ρ∈Ĩr∪Ĩd

mρ′,ρuρ = 0, if ρ′ ∈ I l0

and the uρ are rational numbers of the form k′ρ/D, and k′ρ = Dkρ if ρ ∈ Ĩr. The vector

∑
ρ∈Ĩr∪Ĩd

k′ρ
D
Hρ

by construction satisfies the conclusions of the lemma, since the resonance of a linear com-
bination of resonant roots is the linear combination of the resonances: if ρ′ =

∑
ρ∈Ĩr mρ′,ρ,

then ρ′ is resonant and kρ′ =
∑
ρ∈Ĩr mρ′,ρ, kρ.

Remark 8.10. If we suppose that |kρ| ≤ N , for all ρ ∈ Ir, then there exists a constant b
depending only on G such that |k′ρ| ≤ bDN , for all ρ ∈ Ĩr ∪ Ĩd. This follows from the fact
that the resonances kρ for the roots in Ir and the integers k′ρ defined for roots in Ĩr ∪ Ĩd
are related by submatrices of the Cartan matrix of the group.

The notation for the integers k′ρ as solutions to the linear system of the proof of lemma
8.9 is also to be considered fixed throughout the chapter.

Before stating a direct corollary, we remind that for a function f : T → K, where
K = R,C, we call σ(f) = {k ∈ Z, f̂(k) 6= 0}.

Corollary 8.11. Let A ∈ G, U(·) ∈ C∞(T, g) and H constructed as in lemma 8.9. Then,
if U(·) is spectrally supported in the obstructions and the resonances,

σ(U t
ρ(·)) ⊂ {0}

σ(Uρ(·)) ⊂ {0} if ρ ∈ I0

σ(Uρ(·)) ⊂ {kρ} if ρ ∈ Ires
σ(Uρ(·)) = ∅ otherwise

the cocycle (α,AeU(·)) is reducible mod 1.

Proof. If U(·) satisfies the hypothesis of the corollary, then it has the form

U(·) = Û t(0) +
∑
ρ∈Ir

Uρ(kρ)e2iπkρ·jρ +
∑
ρ∈I0

Ûρ(0)jρ (8.7)

If, now, the vector H satisfies the conclusions of lemma 8.9, we find directly that

e−H(·+α)AeU(·)eH· = e−HαA exp(Ad(e−H·).U(·)) (8.8)
= e−HαA exp(Ad(e−H·).(U t(0) +

∑
Uρ(·)jρ) (8.9)
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and we calculate

Ad(e−H·).(U t(0) +
∑

Uρ(·)jρ) = U t(0) +Ad(e−H·).(
∑
ρ∈Ir

e2iπkρ·Ûρ(kρ)jρ +
∑
ρ∈I0

Ûρ(0)jρ)

= U t(0) +
∑
ρ∈Ir

e2iπ(kρ−k′ρ/D)·Ûρ(kρ)jρ +
∑
ρ∈I0

Ûρ(0)jρ

Since, by construction of the vector H, k′ρ = Dkρ, we find that

Ad(e−H·).U(·) = s ∈ g

This shows that
Conjexp(−H·)(α,AeU(·)) = (α, Ã)

i.e. that (α,AeU(·)) is reducible mod cD via the torus morphism e−H·.
Since e−H(·+1)eH· is constant, we can imitate the last part of the proof of proposition

2.2.4 in [Kri99a] and regain periodicity.
Firstly, we show that there exists a maximal torus passing both by e−H and Ã, where

Ã = e−HαA exp(s)

We initially show that s ∈ g commutes with eH :

Ad(e−H).s = U t(0) +Ad(e−H).(
∑
ρ∈Ir

Ûρ(kρ)jρ +
∑
ρ∈I0

Ûρ(0)jρ)

= U t(0) + (
∑
ρ∈Ir

Ûρ(kρ)e−2iπρ(H)jρ +
∑
ρ∈I0

Ûρ(0)e−2iπρ(H)jρ)

= s

since for ρ ∈ Ir ∩ I0, ρ(H) ∈ Z. Therefore, e−H and e−HαA exp(λs) commute for λ ∈
[0, 1]. Since e−HαA and e−H· are on the same maximal torus TA ⊂ Z0

G(e−H) (the neutral
component of ZG(e−H)), this implies that Ã ∈ Z0

G(e−H), and consequently there exists
TÃ, a maximal torus passing both by e−H and Ã.

Therefore, there exists a group morphism C(·) : R → TÃ such that C(1) = e−H , so
that

AeU(·) = e−H(·+α)ÃeH·

= e−H(·+α)C(·+ α).C(−α)ÃC∗(·)eH·

= e−H(·+α)C(·+ α).A′.C∗(·)eH·

Therefore, AeU(·) is reducible by C∗(·)e−H· which is 1-periodic since

C∗(·+ 1)e−H(·+1) = C∗(·)C∗(1)e−He−H·

= C∗(·)e−H·

This corollary concludes what we need to prove in the linear algebraic context before
passing on to the regime of perturbation theory. The connection of these results with
K.A.M. theory is made with the following lemma. It is a generalization (already found
in [Kri99a]) of a rather simple observation, which constitutes the basis of L. H. Eliasson’s
results for quasiperiodic skew-systems in Td × SO(3) (see [Eli88]) and those based upon
them. It asserts that for a suitably chosen K, big enough with respect to N , there can be
at most one resonant mode.
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Lemma 8.12. Let α ∈ DC(γ, τ), N ′, N,∈ N∗, and K > 0 such that K ≥ 2τ+1γN τ .
Then,

1. If β ∈ RS(α,N,K), there exists a unique k0, for which

|β − kα|Z < K−1, 0 < |k| ≤ N

Moreover,
|β − kα|Z ≥ K−1, 0 < |k − k0| ≤ N ′

for any N ′ such that K ≥ 2γN ′ τ and

|β − kα|Z ≥ K−1, 0 < |k − k0| ≤ N ′

for any N ′ such that K ≥ 2γN ′ τ . In particular, |β|Z ≥ K−1.
2. If β ∈ RS(α,N,K), then β is non-resonant (in the linear-algebraic sense, i.e β −

kα 6∈ Z) to the order Nnr < (γ−1K)1/τ for k ∈ Z∗ with 0 < |k − k0| ≤ Nnr.

Proof. Let k1, k2 ∈ Z with 0 < |ki| ≤ N and k1 6= k2, such that |β − kiα|Z ≤ K−1, for
i = 1, 2, i.e.

|β − kiα− li| ≤ K−1

for some li ∈ Z. We have therefore, with k = k1−k2, so that 0 < |k| ≤ 2N , and l = l1− l2

|kα− l| ≤ 2K−1

Since α ∈ DC(γ, σ), k 6= 0 implies

|kα|Z ≥
γ−1

|k|τ
≥ γ−1

(2N)τ

This is possible only if
γ−1

(2N)τ < 2K−1

which contradicts the choice of K and N .
For the second part, we need only to remark that

|β − kα|Z = |β − k0α+ k − k0α|Z
≥ |k − k0α|Z − |β − k0α|Z

≥ γ−1

|k − k0|τ
−K−1

≥ K−1

provided that
K ≥ 2γ|k − k0|τ

Finally, since
|β − k0α− l0| ≤ K−1

we have

|β|Z ≥ |k0α|Z −K−1

≥ γ−1

|k0|τ
−K−1

≥ 2τ+1P τK−1 −K−1

≥ K−1
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If we fix K and N ′ satisfying K ≥ 2γP τ+1N ′ τ and we assume that resonances occur
only to the order N < N ′, we have the following corollary.

Corollary 8.13. 1. If β ∈ RS(α,N,K), then |β|Z ≥ (2(N ′N )τ − 1)K−1.
2. If |β|Z < K−1, then β ∈ DS(α,N ′,K).

This lemma and its corollary are necessary in order to apply the linear-algebraic re-
duction of resonances to a K.A.M. scheme, since in the latter case constants are only
approximately Diophantine or resonant. A resonant constant can have only one resonant
mode, but, if the constants are not chosen suitably, they may be more than one when we
allow closeness to resonances up to K−1. On the other hand, we need to be able to solve
exactly the linear system that reduces the resonant modes to constants.

8.5 The local conjugation lemma
Before stating and proving the proposition which will be used in the K.A.M. scheme,

we will fix some notation. We let b be the maximum of the operator norms of (inverses
of) square submatrices of (mρ′,ρ), D as before and b̃ = 2b. For a given N ∈ N∗ we let
N0 = N , Ni = b̃Ni−1, i = 1, ..., q + 1. To every order of truncation we associate the sets
of roots

I(i)
r = Res(K,Ni)
I

(i)
0 = {ρ ∈ ∆+, |aρ| < K−1}

DS(i) = DS(K,Ni)
I

(i)
d = DS(i)\I(i)

0

We also define the kρ ∈ Z equal to 0 for all roots in I(i)
0 , and kρ if ρ ∈ I(i)

r , and we will
sometimes omit the superscript (i) for simplicity in notation. We remark that if we fix
a constant A in G and a maximal torus passing by it, the root-space decomposition of g
results in the canonical definition of the Fourier modes of mappings in C∞(T, g) in

Z = (
⊔
ρ∈∆̃

Zt
ρ)
⊔

(
⊔

ρ∈∆+

Zρ)

where the first factor accounts for the coordinates in the maximal torus (and therefore for
real functions) and the second for C-valued functions in the directions jρ. The spectrum
σ of a mapping U(·) ∈ C∞(T, g) is viewed in a canonical way as a subset of Z as

σ(U) = (
⊔
ρ∈∆̃

σ(U t
ρ))
⊔

(
⊔

ρ∈∆+

σ(Uρ))

In this notation, we can define k = ka ⊂ Z such that (k)ρ = {kρ} if ρ ∈ I0 ∪ Ir and
(k)ρ = ø otherwise, so that the hypothesis of lemma 8.11 amounts to σ(ObU(·)) ⊂ kA.

Clearly, the frequencies of mappings in C∞(DT, g) belong to the finer set

ZD = (
⊔
ρ∈∆̃

1
D
Zt
ρ)
⊔

(
⊔

ρ∈∆+

1
D
Zρ)

and Z ↪→ ZD in a canonical way. Even though Z is not a lattice, the structure of additive
group within each components remains of interest, since the adjoint action of a cD-periodic
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geodesic translates the frequencies within each component of Z without mixing them:

σ(Ad(eH·).U(·)) = (
⊔
ρ∈∆̃

σ(U(·)tρ)ρ)
⊔

(
⊔

ρ∈∆+

σ(Uρ(·)−
k′ρ
D

)ρ

if H is of the form
∑ k′ρ
D
Hρ.

To such a partition of the roots, we associate the truncation operators

T
(k)
Ni+1

U(·) = ṪNi+1U
t(·) +

∑
ρ∈Id

TNi+1Uρ(·)jρ +
∑
ρ∈Ir

Ṫ
(kρ)
Ni+1

Uρ(·)jρ +
∑
ρ∈I0

ṪNi+1Uρ(·)jρ(8.10)

ObU(·) = Û t(0) +
∑
ρ∈Ir

Uρ(kρ)e2iπkρ·jρ +
∑
ρ∈I0

Ûρ(0)jρ (8.11)

R
(k)
Ni+1

U(·) = U(·)− T (k)
Ni+1

U(·)−ObU(·) (8.12)

and we refer the reader to eq. 8.5 for the definition of the less familiar quantities. Finally,
we define the pierced box

Ḃ(k, Ni+1) ⊂ (
⊔
ρ∈∆̃

Zρ)
⊔

(
⊔

ρ∈∆+

Zρ)

to be the spectral support of mappings in the image of T (k)
Ni+1

, and the box B(k, Ni+1) as
the spectral support of mappings in the image of T (k)

Ni+1
+Ob.

Proposition 8.14. Let α ∈ DC(γ, τ), N ∈ N∗, and K > 0 such that K ≥ 2τ+1γb̃q+1N τ .
Then for any A ∈ G, there exists 0 ≤ i ≤ q and k = kA ∈ Z with |kA| ≤ Ni, such that

1. Ad(A) ∈ DS(α,K) in Ḃ(kA, Ni+1) and is non-resonant in Ḃ(kA, 2Ni+1) ⊂ Z.
2. If σ(U(·)) ⊂ k, then there exists a cD -periodic torus morphism B(·) = exp(−HA·) :

cDT→ TA with σ(Ad(B(·))) included in B(ø, bDNi)×{0} ⊂ ZD, reducing (α,AeU(·))
to a constant (α,A′).

We remind that in fact (α,AeU(·)) is reducible modulo c.

Proof. Let A ∈ G, TA a maximal torus passing by A, and (e2iπaρ) the eigenvalues of the
adjoint action of A. For 0 ≤ i ≤ q we observe that, since I(i)

r ⊂ I
(i+1)
r , DS(i+1) ⊂ DS(i)

and DS(i) ∪ I(i)
r = ∆+, there exists such an i for which I(i)

r = I
(i+1)
r , so that

∆+ = DS(i+1) ∪ I(i)
r

is a partition of the root system. Immitating the proof of the previous lemma, we define
Ĩr = I

(i)
r ∩ ∆̃, Ĩd = I

(i)
d ∩ ∆̃ and Ĩ0 = I

(i)
0 ∩ ∆̃.

It follows directly from the definitions that if ρ ∈ span(Ĩ0), then |aρ| ≤ bK−1. On
the other hand, if ρ ∈ I

(i)
r , then |aρ| ≥ (2b̃ − 1)K−1 > bK−1, so that I(i)

r 6⊂ span(Ĩ0).
As a consequence, it remains true in the perturbative setting that the resonance of a
linear combination of resonant roots is the linear combination of the resonances: if ρ′ =∑
ρ∈Ĩr mρ′,ρ, and ρ′I

(i)
r , then kρ′ =

∑
ρ∈Ĩr mρ′,ρ, kρ.

We can therefore adapt the proof of the lemma 8.9 to this setting and obtain a vector
H of the form

∑
ρ∈∆̃

k′ρ
DHρ satisfying

ρ(H) = kρ, if ρ ∈ I(i)
r

ρ(H) = 0, if ρ ∈ I0

|k′ρ| ≤ bDNi, k
′
ρ ∈ Z
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Therefore, if σ(U(·)) is contained in the resonant modes of the directions in I(i)
r and the

constant terms in I0, the cocycle (α,AeU(·)) is reducible by exp(−H·).

Since the set of frequencies described in the second point of the previous proposition
is exactly the set of obstructions to resolving the linear cohomological equation with good
estimates, we can now prove the following proposition, after having introduced the notation

N
(u)
i = Ni +Ni+1

N
(l)
i = Ni −Ni−1

for 1 ≤ i ≤ q

Proposition 8.15. Let α ∈ DC(γ, τ) and K ≥ 2τ+1γb̃q+1N τ . Let, also, (α,AeU(·)) ∈
SW∞(T, G) with

c1,0K(N (u)
q )2ε0 < 1

where εs = ‖U‖s. Then, there exists 0 ≤ i ≤ q and a conjugation Y (·) ∈ C∞(T, g) such
that

eY (·+α).A.eU(·).e−Y (·) = AeObU(·)eU
′(·)

The cocycle (α,AeObU(·)) is reducible by a cD-periodic torus morphism B(·) : cDT → TA
with σ(Ad(B(·))) included in B(ø, bDNi)× {0} ∈ ZD. The mapping B(·) is exp(−H·) as
constructed in lemma 8.9 .

Finally, the following estimates hold:

‖Y (·)‖s ≤ c1,sK(N (u)
i )s+1/2ε0

‖Ob(U(·))‖s ≤ c1,sN
s+1/2
i ε0

and U ′(·) ∈ C∞(T, g) is such that

ε′s ≤ c2,sK
2(N (u)

i )2((N (u)
i )sε0 + εs)ε0 + Cs,s′(N

(l)
i+1)s−s′+2εs′

Proof. Let us write the cohomological equation in the neighborhood of (α,A):

eY (·+α)AeU(·)e−Y (·) = A′(·)eU ′(·)

where A′(·) is not too far from A and U ′(·) is supposed to be much smaller than U(·).
We remark that since we want to obtain a purely local conjugation proposition we allow
A′(·) to be non-constant and to incorporate the obstructions to the solution of the linear
equation. The following form of the equation is therefore more adapted to the problem

eAd(A∗)Y (·+α)eU(·)e−Y (·) = A∗A′(·)eU ′(·)

Since A∗A′(·) = exp(V (·)) is of the same order as U(·), we can linearize the preceeding
equation to

Ad(A∗)Y (·+ α) + U(·)− Y (·) = V (·)

For the constant A ∈ G, we fix the the index i constructed in the previous proposition
and use the partition ∆+ = Ir ∪ Id ∪ I0 and k = kA ∈ Z. We have the following estimates

‖T (kA)
Ni+1

U(·)‖s ≤ Cs(Nu
i )s+1/2ε0

‖R(kA)
Ni+1

U(·)‖s ≤ Cs,s′(N l
i+1)s−s′+2εs′

‖ObU(·)‖s ≤ Cs(Ni)s+1/2ε0
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concerning the corresponding truncation operators.
The definition of the partition Ir ∪ Id ∪ I0 implies that the equation

Ad(A∗)Y (·+ α) + U(·)− Y (·) = ObU(·) +R
(kA)
Ni+1

U(·)

can be solved, with the estimate

‖Y (·)‖s ≤ CsKP
s(Nu

i )s+1/2ε0

Coming back to the non-linear problem (see also section A.3 of the appendix), we find
that

eY (·+α).A.eU(·).e−Y (·) = AeObU(·)eU
′(·)

where U ′(·) is of second order with respect to Y (·) and U(·) (and ObU(·)), so that

ε′s ≤ c2,sK(N (u)
i )2((N (u)

i )sε0 + εs)ε0 + Cs,s′(N
(l)
i+1)s−s′+2εs′

Finally, by the construction of the mapping ObU(·) and the vector kA, it follows that
the cocycle (α,AeObU(·)) is reducible by the torus morphism constructed in the previous
proposition, and therefore reducible modulo cD.

Corollary 8.16. Let α ∈ DC(γ, τ) and K ≥ 2τ+1γb̃q+1N τ . Let, also, (α,AeU(·)) ∈
SW∞(T, G) with

c1,0K(N (u)
q )2ε0 < 1

where εs = ‖U‖s. Then, there exists 0 ≤ i ≤ q and a conjugation G(·) ∈ C∞(T, G) such
that

G(·+ α).A.eU(·).G∗(·) = A′eU
′(·)

The mapping U ′(·) is 1-periodic, and G(·) and U(·) satisfy the following estimates

‖G(·)‖s ≤ c1,sN
s
i + c1,sK(N (u)

i )s+1/2ε0

ε′s ≤ c2,sK
2(N (u)

i )2((N (u)
i )sε0 + εs)ε0 + Cs,s′(N

(l)
i+1)s−s′+2εs′

Proof. We only need to apply successively the conjugations constructed in the proof of
corollary 8.11. By the corollary we have

Conjexp(Y (·))(α,AeU(·)) = (α,AeObU(·)eŨ(·))

where Ũ(·) is quadratic with respect to U(·) and Y (·). We observe that

σ(Ad(e−H·)) ⊂ B(ø, bDNi)

so that
σ(Ad(e−H·)Rk

NU(·) ⊂ B(ø, bDN l)c

which implies
‖(Ad(e−H·)Rk

NU(·)‖s ≤ Cs,s′(N l
i+1)s−s′+2εs′

By construction, the conjugation by e−H· satisfies

Conjexp(−H·)(α,AeObU(·)eŨ(·)) = (α,AeseU ′(·))

where s ∈ g and U ′(·) = Ad(e−H·)Ũ(·).
Finally, we can choose the torus morphism C(·) constructed in the corollary for the

reduction of the period of the conjugation to be of minimal length, so that the adjoint
action of C(·) affects the norms only by constants depending on G. Since the mapping
G(·) = C(·)e−H·eY (·) is 1-periodic, it satisfies the conclusions of the corollary.

The proof of this corollary concludes the preparation for the K.A.M. scheme.
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8.6 The iteration

In this section, we will follow [FK09] since the scheme needed in order to conclude is
only a special case of Theorem 10, proved in the appendix C of the paper. For the sake of
completeness, we present the context and the statement of the theorem.

Let a > 0, 0 < σ0 ≤ 1, M,m,µ, µ > 0 such that

M

m
< 1 + σ0,

m

µ
< 1, 0 ≤ 2µ < µ

We point out that µ is taken positive in the paper, but inspection of the proof shows that
µ = 0 is admissible.

For such choices of parameters, there exists g > 0

1
µ− µ

< g < min(1 + σ0
M

,
1
m
,

1
µ

)

and 0 < σ < σ0 such that
1 + σ < µ− µg

that is
1 + σ

µ− µ
< g < min(1 + σ0

M
,

1
m
,

1
µ

)

For s, s , let Cs,s : [0,∞) → [1,∞) be a family of continuous functions on [0, 2] such
that Cs,s(t) = 1 if t > 2, increasing with respect to s, s ≥ 0 and let Cs = max0≤t≤2Cs,s(t).

With these assumptions we have

Theorem 8.17. There exist s0 > 0 such that if εp,s is a double sequence satisfying for
any s, s, p ∈ N

εp+1,s ≤ Cs,s(1 + λapεp,0)(λa+Ms
p ε1+σ0

p,0 + λa+ms
p εp,0εp,s + λa−(s−s)µ

p (εp,s + λs µp εp,0))

where λp = L(1+σ)p, L = Cs0 and if

ε0,0 ≤ (Cs0)−
s0
g , ε0,s0 ≤ 1

then, for any s ∈ N εp,s = O(λ−∞p ). Also, s0 does not depend on the sequence (Cs)s and
can be taken of the form (a+ 1)ξ(σ0,M,m, µ, µ).

Remark 8.18. A small comment on the theorem and its proof is due. In its statement, the
theorem asserts that, provided that the smallness conditions are satisfied and the inductive
estimates hold for all positive integers p, then the K.A.M. scheme converges exponentially
fast. In practice, however, the inductive estimates hold under certain smallness conditions
which have to be verified at each step. In our case, the smallness conditions (in the notation
of the theorem) are of the type CLapεp,0 < 1, which are related to the applicability of the
Hausdorff-Campbell formula.

This problem is resolved by the very first lemma in the proof of the theorem 8.17
which asserts that if γ0 is big enough (the largeness depending on the parameters of the
theorem), s0 = gγ0 and b = κγ0 where κ > 0 is such that

1 + σ + κ

µ− µ
< g
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and if the smallness assumptions of the theorem for p = 0 are satisfied, then we have
inductively

εp,0 < λ−γ0
p

εp,s0 < λbp

which justifies the use of the inductive estimates.

We note that we have omitted the constants in the expressions for the sake of simplicity.

8.6.1 Choice of constants

In order to apply theorem 8.17, we begin by fixing some notation.. We call

εn,s = ‖Un(·)‖s

We also define the sequence of orders of truncation Nn and the diophantine constants Kn

and we need to have

Kn ≥ 2τ+1γb̃q+1N τ
n

Nn,i = b̃iNn

N l
n,i ≥ Nn

Nu
n,i ≤ 2b̃q+1Nn

If we also take into account the customary definition of Nn = N1+σ
n−1 = N

(1+σ)n−1

1 , where
N = N1 and σ are to be fixed, we may also chose Kn to grow as a power of Nn, so that
we have

Nn = N (1+σ)n−1

Kn = N τ+ν
n ≥ 2τ+1γb̃q+1N τ

n

where for ν > 0 fixed, the last inequality holds if N is big enough.

8.6.2 Estimates

In view of corollary 8.16, we have the following situation. A cocycle (α,AeU(·)) =
(α,A1e

U1(·)) ∈ SW∞(T, G) is given, and we want to construct inductively a sequence of
1-periodic conjugations

Ln(·) = Gn(·)...G1(·)
= Cn(·)e−Hn·eYn(·)...C1(·)e−H1·eY1(·)

such that
(α,A1e

U1(·)) = ConjLn(·)(α,AneUn(·))

At each step, Yn(·) is to be given by the local conjugation lemma 8.15, the cD-periodic
torus morphism e−Hn· reduces the obstructions of Un(·) seen as a perturbation of the
constant cocycle (α,An), and Cn(·) commutes with

An+1 = e−HnαAn exp(Ad(e−H·).ObnUn(·))

and Cn(1) = e−Hn , so that Gn(·) and consequently Ad(Gn(·)) are 1-periodic.
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Let us now express the inductive estimates at the n-th step as a function of Nn. The
corollary 8.16 is applicable at the step n if

c1,0Kn(Nu
n,q)2εn,0 < 1

or, with a different constant c1,0,

c′1,0N
2τ+2ν+2
n εn,0 ≤ 1 (8.13)

We find that

εn+1,s ≤ c2,sN
2τ+2ν+2
n (N s

nεn,0 + εn,s)εn,0 + Cs,s′N
s−s′+2
n εn,s′

‖Gn(·)‖s ≤ c1,sN
τ+ν+s+1/2
n εn,0 + c3,sN

s+1/2
n

or, in the form of the estimates as they appear in theorem 8.17

εn+1,s ≤ Cs,s(N2τ+2ν+2+s
n ε2

n,0 +N2τ+2ν
n εn,0εn,s +N2−(s−s)

n εp,s) (8.14)

Therefore, the estimates satisfy the hypotheses of theorem 8.17 with

a = 2τ + 2ν + 2
M = 1
σ0 = 1
m = 0
µ = 1
µ = 0

and with these choices, we can determine σ as in theorem 8.17.

8.6.3 Iteration and convergence

A choice of a big enough N ≥ Cs0 implies that the smallness condition 8.13 is satisfied
provided that ε0,0leqN

− s0
g . Therefore, the scheme can be initiated, and the remark follow-

ing theorem 8.17 justifies the application of corollary 8.16 at each step, and consequently
the inductive estimates in eq. 8.14 are valid.

Therefore, 8.17 is applicable and gives that, for all s ∈ N,

εn,s = O(N−∞n )

i.e. that for any s ∈ N and for any σ ∈ N , there exists a positive constant C = C(s, σ)
such that

εn,s ≤ CN−σn )

For shortness, we will write ‖Un(·)‖ = OC∞(N6∞
n ).

8.6.4 Proof of theorem 8.1

A direct consequence of the application of the generalized K.A.M. scheme of theorem
8.17 is the proof of theorem 8.2, since the convergence of every εn,s with s fixed and n→∞
is precisely the definition of almost reducibility.

The fact that εn,s converges exponentially fast to 0 becomes important in the proof of
the local density theorem:
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Proof of theorem 8.1. In the previous section, we obtained that, if U1(·) satisfies the small-
ness conditions of theorem 8.17, we can construct a sequence of conjugations Ln(·) ∈
C∞(cT, G) such that

‖Ln(·)‖s . nN s
n

(α,A1e
U1(·)) = ConjLn(·)(α,AneUn(·))

‖Un(·)‖s = O(N−∞n )

We have constructed the sequence of conjugations Ln(·) satisfying

A1e
U1(·) = Ln(·+ α)AneUn(·)L∗n(·)

= Ln(·+ α)AnL∗n(·)eŨn(·)

where Ũn(·) = Ad(Ln(·))Un(·). Since∥∥∥Ũn(·)
∥∥∥
s
. εn,s + nN s

nεn,0

we obtain directly that Ũn(·) → 0 in the C∞ topology. Therefore, Ln(· + α)AnL∗n(·) →
A1e

U1(·), and by construction the cocycles

(α,Ln(·+ α)AnL∗n(·))

are reducible.

The proof of the global analogues of the theorems are obtained in the same way as
theorem 7.4 from theorem 7.3, and we only point out that the local theorems are true
for cocycles in SW (Td, G) for any d ∈ N∗, the only difference being that the loss of
derivatives in the local conjugation lemmas is s+ d/2 in place of s+ 1/2 and the resulting
non-significant changes in the choice of constants in the K.A.M. scheme.

8.7 A digression: local differentiable rigidity
In this section, we use the K.A.M. scheme used in the proof of the density of reducible

cocycles in the neighborhood of constants and the almost reducibility of such cocycles. The
theorem asserts that if a cocycle close enough to a constant is reducible to a diophantine
constant by a measurable conjugant, then the conjugant is actually smooth. We begin by
a brief study of the rigidity of the conjugation between constant cocycles, which is to be
compared with section 2.5.e of [Kri99a].

Let B : T→ G be a measurable mapping, α ∈ T\Q and C1, C2 ∈ G such that

B(·+ α)C1B
∗(·) = C2

By composing B with a constant if necessary, we can suppose that C1 and C2 are in the
same maximal torus. If, for simplicity in notation we identify G and Inn(g), even though
this is not accurate, we find that

e2iπkαB̂(k)C1 = C2B̂(k)

so that, if e2ißc(i)
ρ are the eigenvalues of the adjoint action of Ci, the equation

〈e2iπ(kα+c(1)
ρ )B̂(k)jρ, jρ′〉 = 〈B̂(k)jρ, e2iπc(2)

ρ jρ′〉
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has at most one non-zero solution in k for each pair of roots ρ and ρ′ for which there exists
Z ∈ G such that ρ′ = Z.ρ. Using a similar argument for directions in the torus, we find
that B : T → Inn(g), and therefore B : T → G, has a finite support in the frequency
space, and therefore it is C∞. As in the argument by R. Krikorian, we can suppose, by
composing B(·) with a torus morphism and changing C2 with B∗(0)C2B(0) that C2 is
non-resonnant and that B(0) = Id. Derivation of the conjugation equality gives

b(·+ α) = C2b(·)

so that, under these new assumptions b(·) is constant, and therefore B(·) is a D-periodic
torus morphism commuting with C2. Therefore,

C1 = B∗(α)C2

This partial result suggests that the situation should be similar under some arithmetic
assumptions, if we allow one of the cocycles to be only close to a constant one.

Proof of theorem 8.6

In order to simplify the proof and to avoid the phenomena related to loss of periodicity,
we consider a unitary representation of G and we suppose firstly that

B(·+ α)A1e
U1(·)B∗(·) = Ad

with B(·) : T → G ↪→ U(w) is a measurable mapping and U1(·) small enough so that
the reduction of the previous section can be applied. The K.A.M. scheme of the previous
section, applied in the simpler algebraic context of U(w), produces the following sequence
of conjugations

Ln(·) = e−Hn·eYn(·)...e−H1·eY1(·)

=
∏

e−Hk·
∏

eỸk(·)

= Dn(·)Fn(·)

where we call

Ỹn(·) = Ad(
n−1∏

1
e−Hk·)Yn(·)

Since

Yn(·) = OC∞(N−∞n ) and (8.15)

σ(Ad(
n−1∏

1
e−Hk·)) ⊂ B(ø,

∑
Nk,q) = B(ø, Ñn) (8.16)

we find that
∏
eỸk(·) converges in C∞ toward Y (·), even if

∏
e−Hk· diverges. This last

product converges if, and only if, it is finite. This conjugation satisfies

B(·+ α)L∗n(·+ α)AneUn(·)Ln(·)B∗(·) = Ad

or, by introducing some obvious notation

Kn(·+ α)D∗n(·+ α)AneUn(·)Dn(·)K∗n(·) = Ad

or Bn(·+ α)AneUn(·)B∗n(·) = Ad
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where the sequence Kn(·) converges exponentially fast towards a measurable mapping
K(·) in L2

‖Kn(·)K∗(·)‖L2 = O(N−∞n )

Finally, by post-conjugating with a constant (and extracting a subsequence so that Kn(·)
still converges), we can assume that An and Ad are in the same maximal torus.

Let us firstly examine the simpler case where G = SU(2), and suppose that Ln(·) di-
verges. Then, the divergence of Dn(·) implies that there exists a subsequence (whose nota-
tion we omit for the sake of simplicity) such that |an|Z ≤ K−1

n , whereAn = {exp(2iπan), 0}SU(2).
This implies that

〈e2iπ(kα+an)B̂n(k)j, j〉 = 〈B̂n(k)j, e−2iπadj〉+O(εn,0)
〈(e2iπ(kα+an−ad) − 1)e2iπadB̂n(k)j, j〉 = O(εn,0)

where O(εn) is bounded independently of k. Since |a(n)
ρ |Z ≤ K−1

n = N
−(τ+ν)
n , we find that

for 0 < k ≤ (2γ̃−1)1/τN
(τ+ν)/τ
n = N ′n,

|kα+ an − ad|Z ≥ Kn

provided that

|kα− ad|Z ≥
γ̃−1

|k|τ

for k ∈ Z∗, i.e. if ad ∈ DCα(γ̃, τ). This motivates the following definition.

Definition 8.19. A constant A = exp(a) ∈ G is diophantine with respect to α iff for
all roots of a root-space decomposition with respect to a torus passing by A we have
ρ(a) ∈ DCα(γ̃, τ). By abuse of notation we will write A ∈ DCα(γ̃, τ).

Since τ + ν > τ , we find that N ′n/Nn goes to infinity, and therefore, for n big enough
the spectral support of Ln(·) = Bn(·)B∗(·) (i.e. of the diverging sequence of conjugations)
is contained in B(ø, N ′n). In a similar way we find that

〈e2iπ(kα+ad)B̂n(k)h, j〉 = 〈B̂n(k)h, j〉+O(εn,0)
〈(e2iπ(kα+ad) − 1)B̂n(k)h, j〉 = O(εn,0)

Consequently,
ṪN ′nBn(·) = OL2(εn,0)

On the other hand,

TN ′n/2B(·) = TN ′n/2[Bn(·)B∗n(·)B(·)]
= TN ′n/2[TN ′n(Bn(·)) L∗n(·)]
= CnL

∗
n(·) +OL2(εn,0)

thanks to formula 8.16, and the fact that Ñn =
∑

1≤i≤nNi is of the order of Nn � N ′n.
Since for n big enough

∥∥B(·)− TN ′nB(·)
∥∥
L2 is small and B∗n(·)B(·) takes values in

Inn(su(2)) ≈ SO(3), we can assume that Cn ∈ L(su(2)) is bounded away from 0, say

|Cn| >
1
2

in operator norm. Since L∗n(·) diverges in L2, we reach a contradiction.
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The case of a general compact group is hardly more complicated. If the sequence of
conjugations diverges, there exists a root ρ such that |a(n)

ρ |Z ≤ K−1
n . If we fix such a root

ρ, we find that for any other positive root ρ′,

〈(e2iπ(kα+a(n)
ρ −a

(d)
ρ ) − 1)e2iπa(d)

ρ B̂n(k)jρ, jρ′〉 = O(εn,0)
〈(e2iπ(kα+ad) − 1)B̂n(k)Hρ′ , jρ〉 = O(εn,0)

As a consequence, in view of formula 8.16,

ṪN ′nBn(·).jρ = OL2(εn,0)

and since

TN ′nB(·).jρ = TN ′n [Bn(·)B∗n(·)B(·).jρ]
= TN ′n [T2N ′n(Bn(·)) B∗n(·)B(·).jρ]
= CnB

∗
n(·)B(·).jρ +OL2(εn)

Since B(·) is an isometry, we find that Cn ∈ L(g) is bounded away from 0, say

|Cn| >
1
2

in operator norm. Now, B∗n(·)B(·).jρ diverges in L2 as jρ does not commute with the
reduction of resonant modes. This is due to the fact that, by construction of Hn and by
the choice of the root ρ

[Hn, jρ] = 2iπ
k′ρ
D

infinitely often, with k′ρ → ∞. Thus, the hypothesis that the product of conjugation
diverges leads us to a contradiction.

Finally, we observe that if U(·) is small enough so that the K.A.M. scheme can be
applied, the diophantine condition on Ad becomes irrelevant. If we suppose that Ad ∈
DCα(γ̃, τ ′) with τ ′ > τ , then, after a finite number of iterations of the scheme, Un(·)
is small enough so that the scheme can be initiated if we place α in DC(γ, τ ′), and the
argument presented above remains valid, and this concludes the proof of the theorem in
its full generality.

Some consequences

A corollary of this proof is, in fact, the optimality of the scheme in the orbits of
Diophantine constant cocycles. By its construction, the scheme converges in the smooth
category if, and only if, it converges in L2, and the proof implies that if a measurable
conjugation to such a constant exists, then the scheme converges toward it, eventually
modulo a conjugation between constant cocycles.

On the other hand, the transposed argument shows that the K.A.M. scheme is highly
non-optimal if the dynamics in the fibres are Liouvillean. More precisely, we let (α,AeU(·)) ∈
SW∞(T, SU(2)) be measurably conjugate to (α,AL), where AL is a Liouvillean constant
in SU(2). Application of the scheme produces a sequence of conjugations Gn(·) and a
sequence of cocycles (α,AneUn(·)) such that

AeU(·) = Gn(·+ α)AneUn(·)G∗n(·)
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where Un(·) → 0 exponentially fast. If we suppose that the sequence of conjugations
converges, we find that in the limit

AL = G̃(·+ α)A∞G̃∗(·)

where A∞ (which we suppose diagonal, just as AL) is the limit of An. Since AL is non-
resonant, G̃(·) is a torus morphism 1, so that A∞ is Liouvillean itself. Since, now, Un(·)→ 0
exponentially fast and, for n big enough, An+1 = An exp(Ûn(0)), we can rewrite AneUn(·)

as A∞eŨn(·) where still Ũn(·) → 0 exponentially fast. Since A∞ is Liouvillean, for any
l ∈ N, there exists kl such that

|a∞ − klα| <
1
|kl|l

Therefore the Fourier mode kl is a resonance for the scheme at the n-th step provided that

1
|kl|l

< N−(τ+ν)
n

|kl| < Nn

or equivalently
Nν/l
n < |kl| < Nn

Therefore, since for l big enough Nν/l
n < Nn−1, a reduction of resonances must take place,

which contradicts the hypothesis that Gn(·) converges.

1. For the proof of this fact, see the proof of Proposition 3.8 in [Kri99a], or, for the proof of a similar
fact, see the discussion about the rigidity of conjugation of constant cocycles in the beginning of the proof
of theorem 8.6.



Chapter 9

Perturbations of singular geodesics

We now return to the study of the non-local problem. More specifically, we take up
the local study the remaining case of singular geodesics, which is the final step for the
proof of a theorem on the global density of reducible cocycles.

In this setting, we suppose that er is a singular vector in g, so that neither of the
factors in the splitting G0 × G+ is trivial. The models toward which renormalization
converges, modulo an iteration at most χG times, are of the form Er(·)A, where Er(·) and
A commute.

We fix t, a maximal toral algebra in g and T the corresponding torus passing by A.
We can therefore, write such a cocycle in the form

(α,Er(·).A.eU(·))

where A ∈ T and U(·) is small in the C∞ topology.
The particularity of the local study of singular geodesics is the coexistence of local and

global phenomena, which demands a posteriori estimates on the rest, as in the study of
regular geodesics, together with a reduction scheme as in the local case. The independence
of the two parts of the dynamics in the first order allows us, however, to apply separately
the reduction within G0 and within the directions that do not commute with G+.

9.1 Notation

Throughout this chapter, we suppose given a χ0-periodic perturbation of a 1-periodic
geodesic of the form

(χ0α,Eχ0r(·)A exp(U(·)))

where Er(·) and A commute. By rescaling by χ0, we can re-write the cocycle in the form

(α,Er(·)A exp(Ũ(·))) = Mχ0(χ0α,Eχ0r(·).A. exp(U(·)))

and we suppose that the cocycle is given directly in this form, i.e we suppose that the
cocycle

(α,Er(·)A expU(·)))

is given where U(·) is 1-periodic.
We also suppose that α ∈ DC(γ, τ), i.e.

|kα|Z = dist(kα,Z) ≥ γ−1

|k|τ
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and that er is singular, so that the corresponding splitting G0×G+ has no trivial factors.
We remind that we denote by w (w0) the rank of G (resp. G0), by q (resp. q0) the

number of positive roots of G (resp. G0), and by f (resp. f0) the dimension of the real
vector space g (resp. g0). If ∆̃ are the roots in a basis of Weyl, we denote by ∆̃0 the roots
in the corresponding basis of the root system of t0 = t ∩ g0, by I(0) the positive roots of
G0 and I(+) = ∆+ \ I(0). In other terms,

I(+) = {ρ ∈ ∆+, ρ(er) 6= 0}
I(0) = {ρ ∈ ∆+, ρ(er) = 0}

We remind that for ρ′ ∈ I(0), there exist positive integers (mρ′,ρ)ρ, ρ′ ∈ I(0) such that

ρ′ =
∑
∆̃0

mρ′,ρρ

there exist rational numbers pρ′,ρ = qρ′,ρ/D0 with |qρ′,ρ| ≤ b0, such that

Hρ′ =
∑
∆̃0

pρ′,ρHρ

where D0, b0 ∈ N∗ are considered fixed. The matrices in these relations are submatrices
of the matrices satisfying the same relations in g, and consequently D0 ≤ D and b0 ≤ b.

We also define the orthogonal projections π0 : g → g0 and π+ = id− π0.
As we have already seen in the concrete examples in chapter 3.1, the vectors Hρ

corresponding to roots in ∆̃ \ ∆̃0 do not form a basis of g+. This fact is nonetheless not
significant, so we complete the basis (Hρ)ρ∈∆̃0

to (Hρ)ρ∈∆̃, a basis of g, with a set of
orthonormal vectors in g+, indexed by roots in ∆+ \ ∆̃0, even though the completion of
the basis is non-canonical.

On the other hand, wherever the properties of the vector er are important, the reader
should rather think in terms of the dual of the Weyl’s basis of t extending that of t0, even
though this basis is not used explicitly. The complex directions jρ ∈ g, ρ ∈ ∆̃ are those
associated to such a Weyl’s basis of t.

We also use the notations χ0 = χG0 , the constant of lemma 1.5 and c0 = cG0 .

9.2 Synopsis of the chapter
In a first time, as in the previous chapters, we prove the local almost reducibility to

normal forms in the case of singular geodesics:

Theorem 9.1. Let α ∈ DC(γ, τ) and r ∈ Nw such that Er(·) be a 1-periodic singular
geodesic and A ∈ ZG(exp(Rer)). Then, there exist ε > 0 and s0 ∈ N∗ such that if

‖U(·)‖0 = ε0 < ε

‖U(·)‖s0
= εs0 < 1

and the cocycle (α,Er(·)AeU(·)) is of degree r, then it is almost reducible to (α,Er(·)A′)
where also A′ ∈ ZG(er): There exists a sequence of conjugations Bn(·) ∈ C∞(T, G) and a
sequence of constants An ∈ ZG(exp(Rer)), such that

((Er(·)An)∗
(
Bn(·+ α).Er(·)AeU(·).B∗n(·)

)
→ Id

in C∞(T, G).
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We point out that the failure of exact reducibility to the normal form is due to small
divisor phenomena in G0. All the complications in this part of the theory, in comparison
with the theory of regular geodesics, are due to the presence of the non-trivial factor
G0. Consequently, all the proofs and the statements of the theorems stand between the
simplicity and the sharpness of those in Chapter 7 and the complications of the local
theory of the previous chapter.

Besides almost reducibility to periodic geodesics, we can also obtain the local density
of cocycles reducible to periodic geodesics in the class of cocycles of degree r:

Theorem 9.2. Let α ∈ DC(γ, τ) and r ∈ Nw such that Er(·) be a 1-periodic sin-
gular geodesic and A ∈ ZG(er). Then, cocycles reducible to (α,Er(·)A′) where A′ ∈
ZG((exp(Rer)) are dense in the class of cocycles of the form (α,Er(·)AeU(·)) which are
of degree r and U(·) satisfies the smallness conditions of the previous theorem. More
formally, The closure of

{ConjB(·)(α,Er(·)A′), B(·) ∈ C∞(T, G), A′ ∈ ZG(eRer)}

in SW∞α containes all cocycles in

{(α,Er(·)A).eU(·)), A ∈ ZG(eRer), U(·) ∈ C∞(T, G), ε0 < ε, εs0 < 1, deg(α,Er(·)A).eU(·)) = r}

The proof of this theorem is obtained by the comparison of the rate of convergence of
the scheme with the explosion of the norms of the reducing conjugations, exactly as in the
local theory.

As previously, if we relax the arithmetic condition on the frequency to an RDC, we
obtain the global analogues of these theorems, namely

Theorem 9.3. Let α ∈ RDC and (α,A(·)) ∈ SW∞(T, G) be of degree r ∈ Nw such that
Er(·) be a 1 -periodic singular geodesic. Then, there exists χ0 ∈ N, with 1 ≤ χ0 ≤ χG
such that (α,A(·))χ0 can be conjugated modulo χ0 arbitrarily close in the C∞ topology to
cocycles of the form (α,Er(·)A) where A ∈ ZG(exp(Rer)).

and

Theorem 9.4. Let α and (α,A(·)) as in the previous theorem. Then, for the same χ0 ∈
N∗, (α,A(·))χ0 is accumulated in SW∞α (χ0T, G) by cocycles conjugate to (α,Er(·)A)χ0 in
SW∞α (χ0T, G), where A ∈ ZG(exp(Rer)).

Finally, we state the following corollary

Corollary 9.5. Let α ∈ RDC and (α,A(·)) ∈ SW∞(T, G) be of positive energy. Then,
there exists χ0 ∈ N, with 1 ≤ χ0 ≤ χG such that (α,A(·))χ0 is accumulated in C∞(χ0T, G)
by cocycles of smaller energy.

Proof. Since (α,A(·))χ0 is almost reducible to a cocycle of the form (α,Er(·)A) where A
commutes with Er(·) and (α,Er(·)Aea)χ0 is of smaller energy than (α,A(·))χ0 for all a ∈ g
small enough and such that [a, er] 6= 0, the result follows.

Finally, we can now obtain the main theorem of this thesis, the theorem of global
density of reducible cocycles.
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9.3 The global density theorem
The proof of theorem 2.15 is in fact a simple finite induction argument and uses the

yet unproven theorems of this chapter, as well as the theorems proved in chapters 7 and
8.

Theorem. 2.15 Let α ∈ RDC and (α,A(·)) ∈ SW∞(T, G). Then, (α,A(·))χG is accu-
mulated by reducible cocycles in SW∞χGα(χGT, G).

Proof. Let (α,A(·)) ∈ SW∞(T, G). If the cocycle is of energy 0, the conclusion of the
theorem is true by the theorems proved in the study of the local case, see the synopsis of
chapter 8, and more specifically theorem 8.3.

If the cocycle is of degree r 6= 0, then, by corollary 9.5, there exists 1 ≤ χ0 ≤ χG such
that (α,A(·))χ0 is accumulated by cocycles of smaller energy. Let us consider (α,A′(·)),
a perturbation of (α,A(·)) and assume that en(α,A′(·)) > 0, since if en(α,A′(·)) = 0 the
proof is concluded.

If to (α,A(·)) we associate the splitting of the dynamics G0×G+ ↪→ G, and to (α,A′(·))
the splitting G′0 × G′+ ↪→ G, we find that G0 ↪→ G′0 in a canonical way. This is due to
the fact that the splitting is preserved by renormalization, since the degree is preserved.
Therefore, if r′ is the degree of (α,A′(·)), G′0 (or rather g′0) is characterized by the equation
[er′ , s] = 0 for s ∈ g. This equation is satisfied for all s ∈ g such that [er, s] = 0, since the
perturbations that decrease the energy of the cocycle (α,A(·)) do not commute with er.
More informally, such perturbations shrink G+ and and consequently make G0 grow.

Therefore, χ0 divides χ′0 and thus

(α,A(·))χ′0 = (χ0α,Aχ0(·))χ′0/χ0

is accumulated in SW∞α (χ′0T, G) by cocycles of energy smaller than en(α,A′(·)).
Since the perturbations can be chosen arbitrarily small, we can repeat this step a finite

number of times, until G+ = {Id}, or equivalently, until G0 = G.

9.4 Strategy of the proof of theorem 9.1
As announced in the previous chapter, the proof local almost reducibility to singular

geodesics consists essentially in a parallel reduction of the positive and 0-energy parts of the
perturbation. The linear equation corresponding to the first part is the one encountered
in chapter 7, while the one corresponding to the latter is that of the local theory.

This coexistence of local and non-local dynamics does not allow the use of an inverse
function theorem as in the case of regular geodesics, since the reduction of resonant modes
in G0 has to be treated with non-converging conjugations. We also need to adapt the a
priori estimates obtained for perturbations of regular geodesics (see chapter 6) in order to
control the obstructions in the positive-energy regime.

In order to cope with these problems, we use the K.A.M. scheme of the previous chapter
combined with the one described in [Kri01], after having proved that the local reduction
lemmas for local and non-local dynamics can actually be combined.

Let us, therefore consider (α,A(·)) = (α,Er(·)A exp(U(·))), a 1-periodic perturbation
of a singular geodesic, and assume that a Y (·) : T → g, small enough, can reduce the
perturbation U(·) to V (·), with V (·) of order two with respect to U(·). The equation
satisfied by such a conjugant is

eY (·+α).Er(·)A.eU(·).e−Y (·) = Er(·)A′.eV (·)
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Linearization of this equation under the smallness assumptions implies that such a Y (·)
must satisfy the equation

Ad(E∗r (·)A∗).Y (·+ α)− Y (·) = −U(·) (9.1)

The linearized equation then decomposes into two different types of equations (and a third
for the toral coordinates) as follows.

Projection of the equation on g0 and introduction of some obvious notation gives

Ad(A∗)Y (0)(·+ α) + U (0)(·)− Y (0)(·) = Ob0U(·) +R
0,(kA)
Ni+1

U(·)

where Y (·) satisfies good estimates and the cocycle (α,A, eOb0U(·)) is reducible by B(·) :
D0T→ G0 ↪→ G.

Projection of the equation on the positive energy component gives

Ad(Er(·)∗.A∗).Y (+)(·+ α) + U (+)(·)− Y (+)(·) = Γr̃U (+)(·) +
∑
∆++

Û t
ρ(0).Hρ +

∑
∆++

RNi+1Uρ(·)jρ

= Ob+U(·) +
∑
∆++

RNi+1Uρ(·)jρ

If, now, we call ObU(·) = Ob0U(·) +Ob+U(·), we find that

Conjexp(Y (·))(α,Er(·)AeU(·)) = (α,Er(·)A′eObU(·)eV (·))

where ObU(·) is of the order of U(·), and V (·) is of second order. Since, however,
π0ObU(·) = Ob0U(·) may not be constant, the length of the paths A(·) and A2(·) will
be greater than |er|, and therefore the a priori estimates cannot give any additional infor-
mation.

This fact shows that, before applying the a priori estimates, we have to reduce the
0-energy part of the obstruction. This reduction may translate the positive energy part
of the obstruction, since ρ(H) may be non-zero also for roots in ∆++. This fact forces a
modification in the definition of the operator Γr̃, so that, the frequencies of Ad(e−H·).Γr̃
belong to the standard intervals [0,−rρ− 1]∩Z or [−rρ + 1, 0]∩Z, depending on the sign
of rρ (see def. 6.3).

9.5 A priori estimates
In this section we adapt the apriori estimates obtained for perturbations of regular

geodesics in the case of perturbations of singular geodesics, and we prove a similar lemma.
The differences are in fact due to the different definition of the truncation operator, taking
into account the fact that er is singular, and to the fact that perturbations of longer periods
need to be considered. Therefore, in what follows we let U(·) : PT→ g, where P ∈ N∗.

Estimates on the energy of the path

If U(·) is small and P -periodic, then the path A(·) = EPr(·).A.eŨ(·), where Ũ(·) =
U(P ·) is 1-periodic. We remind that, since

U(·) =
∑

ρ∈∆̃

∑
k∈Z

Û t
ρ(k)e2iπP−1k·Hρ +

∑
ρ∈∆

∑
k∈Z

Ûρ(k)e2iπP−1k·jρ

where
Û (t)
ρ (k) =

∫ 1

0
U (t)
ρ (P ·)e−2iπk·
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we find immediately that

Ũ(·) =
∑

ρ∈∆̃

∑
k∈Z

Û t
ρ(k)e2iπk·hρ +

∑
ρ∈∆+

∑
k∈Z

Ûρ(k)e2iπk·jρ

Estimation of its energy gives

‖a(·)‖2L2 = P 2en2 + 2
∫
〈ePr, ũ(·)〉+ ‖ũ(·)‖2L2

This last equation implies that, in the first order, the projection of u(·) on g0 contributes
only (positively) in the term ‖u(·)‖2L2 , and not in

∫
〈er, u(·)〉, which justifies the notation

I(+) = {ρ ∈ ∆+, ρ(er) 6= 0}
I(0) = {ρ ∈ ∆+, ρ(er) = 0}

We also modify the definition of the truncation operators:

Definition 9.6. Let r̃ρ ∈ Z∗ for ρ ∈ I(+), and P ∈ N∗. We will call IP,ρ = {1, 2, ...− (r̃ρ+
1)P} if r̃ρ < 0, and IP,ρ = {−1,−2, ..,−(r̃ρ − 1)P} if r̃ρ > 0. We also let ΛP r̃ and ΛP,ρ be
the truncation operators

ΛP r̃U(·) =
∑

ρ∈I(+) ΛP,ρUρ(·)jρ

=
∑

ρ∈I(+)

∑
k∈IP,ρ

Ûρ(k)e2iπk·jρ

We will also use the non-homogeneous truncation operator

Λ0
P r̃U(·) =

∑
ρ∈I(+) Λ0

P,ρUρ(·)jρ

= ΛP r̃U(·) +
∑

ρ∈I(+) Ûρ(0)jρ

A calculation similar to the one made in the regular case gives

‖a(·)‖2L2 = P 2en2+
∑

ρ∈I(+)

4π2P r̃ρ
∑

k∈Z
k|Ûρ(k)|2)+

∑
ρ∈∆+

∑
k∈Z

4π2k2|Ûρ(k)|2+‖∂πtŨ(·)‖2L2+O(‖Ũ‖3H1)

and the resulting bound

‖a(·)‖2L2 ≤ P 2en2 −
∑

ρ∈I(+)

4π2‖ΛPrŨ(·)‖2L2 + ‖∂(Id− ΛP r̃)Ũ(·)‖2L2 +O(‖Ũ‖3H1)

so that the following lemma is true

Lemma 9.7. Let (α,Er(·)A exp(U(·))) be of degree r and U(·) ∈ C∞(PT, g) be such that
U(P ·) is small enough in H1. Then, there exists a positive constant, not depending on P ,
such that

‖ΛP r̃U(P ·)‖L2 . ‖∂(Id− ΛP r̃)U(P ·)‖L2

Estimation of the energy of the second iterate

We use the bound on the L2 norm of the derivative, obtained in the regular case

‖a2(·)‖2L2 ≤ 4P 2en2 + C1‖∂Ũ(·)‖2L2 − C2‖[er, Ũˆ(0)]‖(
∣∣∣[er, Ũˆ(0)]

∣∣∣− ∥∥∥∂Ũ(·)
∥∥∥
L2

)

Since
∣∣∣[er, Ũˆ(0)]

∣∣∣2 =
∑
ρ∈∆++ 4π2r̃2

ρ|Ûρ(0)|2, the following lemma holds.
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Lemma 9.8. Let (α,Er(·)AeŨ(·)) be a P -periodic perturbation (small enough in H1) of
the cocycle (α,Er(·)A). Let also, without loss of generality, Û(0) be orthogonal to er and∑
ρ∈∆++ |Ûρ(0)|2 6= 0. Then, there exists a constant C0 depending only on r such that if

‖∂Ũ‖2L2 ≤ C0
∑

ρ∈∆++

|Ûρ(0)|2

then (α,Er(·)AeU(·)) is of energy strictly smaller than that of (α,Er(·)A).

Conclusion

In the same way, we conclude that the following a priori estimate holds for perturba-
tions of singular geodesics, which is to be compared with lemma 6.1.

Lemma 9.9. There exists a positive constant C, depending only on r, such that if (α,Er(·)AeU(·))
is of degree r, where U(·) is P -periodic and small enough in H1, then it satisfies∥∥∥Λ0

P r̃U(P ·)
∥∥∥
L2
≤ C ‖(Id− ΛP r̃)∂U(P ·)‖L2

We remark that the only difference with the estimates obtained previously is in the
fact that the perturbation within g0 contributes only in increasing the energy of the path.
This is expressed in the estimates by the fact that functions in g0 are in the kernel of the
truncation operator ΛP r̃. Since these estimates give no information on the pertrubation
if the order of the perturbation in g0 is bigger than the one not commuting with g+, we
need to reduce both parts.

9.6 Local conjugation lemma
Let us assume that a Y (·) : T→ g, small enough, can reduce the perturbation U(·) to

V (·) with V (·)� U(·). The equation satisfied by such a conjugant is

eY (·+α).Er(·).A.eU(·).e−Y (·) = Er(·).A′.eV (·)

or
(Ad(E∗r (·)A∗)eY (·+α)).eU(·).e−Y (·) = A∗A′.eV (·)

Linearization of this equation under smallness assumtions implies that such a Y (·) must
satisfy the equation

Ad(E∗r (·)A∗).Y (·+ α)− Y (·) = −U(·)
Let us introduce the coordinates

U(·) =
∑

ρ∈∆̃
U t
ρ(·)Hρ

∑
ρ∈∆+

Uρ(·)jρ

where as usual U t
ρ(·) are real and Uρ(·) complex periodic functions. We will write Y (·)

in an analogous way. The linearized equation then decomposes in three different types of
equations as follows.

The simpler case is that of the diagonal part, which reads

Y t
ρ(·+ α)− Y t

ρ(·) = −U t
ρ(·)

for which we refer the reader to lemma 2.4. In a similar way, if ρ ∈ I(+), i.e. if ρ(er) 6= 0,
then the equation in the direction jρ is of the type of the lemma 7.6. Finally, for roots in
I(0), we refer to proposition 8.15.

Putting all the corresponding estimates together gives the following lemma concerning
the solution of the linearized equation.
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Lemma 9.10. Let α ∈ DC(γ, τ) and (α,Er(·).A.eU(·)) ∈ SW∞(T, G) and K ≥ 2τ+1γb̃q0+1
0 N τ .

We remind that we call εs = ‖U‖s. Then, there exists 0 ≤ i ≤ q0 and a mapping
Y (·) ∈ C∞(T, g) such that

Ad(E∗r (·).A∗)Y (·+ α) + U(·)− Y (·) = ObU(·) + R̃nU(·)

The conjugant Y (·) satisfies the estimates

‖Y (·)‖s ≤ c1,sK(Nu
i )s+1/2ε0

The mapping ObU(·) satisfies the property that there exists a torus morphism B(·) :
c0D0T→ G0 ↪→ G such that

πg0(Ad(B(·))ObU(·)) = U0 ∈ g0 ⊕ g+

Λ0
D0r̃(Ad(B(·))ObU(·)) = Ad(B(·))ObU(·)− U0

We have the following estimates

‖ObU(·)‖s ≤ CsN
s+1/2
i ε0

‖R̃NU(·)‖s ≤ Cs,s′(N l
i+1)s−s′+2εs′

ε′s ≤ c2,sK
2(Nu

i )2((Nu
i )sε0 + εs)ε0

+Cs,s′(N l
i+1)s−s′+2εs′

Proof. The coordinates Y t
ρ(·), ρ ∈ ∆̃, as has been shown, satisfy the equation

Y t
ρ(·+ α) + U t

ρ(·)− Y t
ρ(·) = Û t

ρ(0) +RNiU
t
ρ(·)

for which the estimates follow directly.
We now focus on the roots in I(0). Following the solution of the linear equation in

the close-to-constants case, we chose a suitable i between 0 and q0 and partition the roots
in I(0) into I(0)

res ∪ I(0)
nr , the resonant and the non-resonant ones. We also define Ob0, the

projection operator on C∞(T, g0) which projects to the resonant modes k = (kρ)I(0) and
the constant ones for roots close to 0. Finally, we use the truncation operator R(k)

Ni+1
on

C∞(T, g0). With these notations, we have∑
ρ∈I(0)

[Ad(A∗)Yρ(·+ α) + Uρ(·)− Yρ(·)]jρ = Ob0U(·) +R
(k)
Ni+1

U(·)

As in the local case (see proposition 8.15), there exists a torus morphism B(·) : c0D0T→
G0 satisfying

|LB(·)| ≤ b0D0Ni

and such that
Ad(B(·))Ob0U(·) = U0

a constant in g0. The announced estimates on ε′s, Ob0U(·) = π0ObU(·) and the conjugation
are obtained in the same way as in the proposition treating the purely local case.

Finally, we consider the roots in I(+) and define the integers k′ρ for such roots by the
relation

[LB(·), jρ] = 2iπ
k′ρ
D0

jρ

Clearly, if k′ρ is non-zero, the reduction of resonant modes in G0 translates the Fourier
coefficients of the rest of the linear cohomological equation for roots in I(+). The a priori
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estimates of lemma 9.9, however, give us information only on a part of the spectrum of
the perturbation determined by r. In order to take this effect into account, we need to
translate the rest of the equation by − k′ρ

D0
in each direction, which amounts in fact to

resolving the auxiliary equation∑
ρ∈I(+) [Ad(A∗E∗r (·))Ỹρ(·+ α) + Uρ(·)− Ỹρ(·)]jρ =

Ad(B(·))
∑

ρ∈I(+) Uρ(·)jρ + ΓD0r[Ad(B(·))
∑

ρ∈I(+) Uρ(·)jρ]

and conjugating back by Ad(B∗(·)) in order to obtain Yρ(·) by∑
ρ∈I(+) Yρ(·)jρ = Ad(B∗(·)

∑
ρ∈I(+) Ỹρ(·)jρ

This translation deteriorates the estimates for the rest obtained in proposition 7.6 for Cs
norms by a factor (b0Ni)s+1/2, while the rest of the estimates remain as in the proposition.
This is proved in lemma A.3 in the appendix. The periodicity is regained in the same way
as in the local case, since the mapping Ỹρ(·) is obtained by simple operations on the Fourier
coefficients of

Ad(B(·))
∑

ρ∈I(+) Uρ(·)jρ

which commute with algebraic conjugation by Ad(B(·)).
Finally, the rest of the properties follow from the construction of the solution.

We remark that, by using smallness assumptions on the C1 norm of the perturba-
tion, we can show that the significant part of the obstruction is its projection on g0,
i.e. that ObU(·) − Ob0U(·) is of the order of U ′(·). Therefore, the non-constant part of
the rest in the complement of g0 can be incorporated to U ′(·), thus giving the cocycle
(α,Er(·).A.eOb0U(·)eU

′(·)) where

(α,Er(·).A.eOb0U(·)) = ConjB(·)(α,Er(·).B(α)A. exp( 1
D0

∫ D0

0
Ad(B(·))Ob0U(·)))

so that the following corollary is true, for which we remind the reader the notation

N
(u)
i = Ni +Ni+1

N
(l)
i = Ni −Ni−1

for 1 ≤ i ≤ q.

Corollary 9.11. Let α ∈ DC(γ, τ), some fixed big enough s0 ∈ N∗, (α,Er(·).A.eU(·)) ∈
SW∞(T, G) be of degree r, and K ≥ 2τ+1γb̃q0+1

0 N τ . Let, also,

c1,0K(Nu
q0)3ε1 < 1

where εs = ‖U‖s. Then, there exists 0 ≤ i ≤ q0 and a conjugation G(·) = C(·)B(·)eY (·) ∈
C∞(cT, g) such that

G(·+ α)Er(·)AeU(·)G∗(·) = Er(·)A′eU
′(·)

The conjugant G(·) satisfies the estimates

‖G(·)‖s ≤ c1,s(K(Nu
i )s+1/2ε0 +N

s+1/2
i )
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Finally, if we call
ε̃s = ‖∂U(·)‖s and ε̃′s = ‖∂U ′(·)‖s

we have the following estimate:

ε̃′s ≤ c2,sK
2(Nu

i )2((Nu
i )sε̃0 + ε̃s)ε̃0 + Cs,s′(N l

i+1)s−s′+2ε̃s′

ε′0 ≤ C2ε̃
′
0

Proof. We need only to show that the positive energy part of the obstruction π+ObU(·)
is of second order with respect to U(·). By construction of the mappings,

B(·+ α)eY (·+α)Er(·)AeU(·)e−Y (·)B∗(·) = Er(·)AeAd(B(·))ObU(·)eŨ
′(·)

where ε′s = ‖Ũ ′(·)‖s satisfies

ε′s ≤ c2,sK
2(Nu

i )2((Nu
i )sε0 + εs)ε0 + Cs,s′(N l

i+1)s−s′+2εs′

Under the assumption that ε1 +ε′1 ≤ C, where C � 1 is a fixed positive number, condition
which reduces to the smallness assumption of the statement, c1,0K(Nu

q0)3ε1 < 1, the a
priori estimates (lemma 9.9) are applicable and they give

‖Λ0
D0rAd(B(·))ObU(·)‖0 ≤ C1‖∂Ũ ′(·)‖0

Therefore, if we call
U ′(·) = exp−1(eAd(B(·))ObU(·)eŨ

′(·))
and

ε̃s = ‖∂U(·)‖s and ε̃′s = ‖∂U ′(·)‖s
we have

ε̃′s ≤ c2,sK
2(Nu

i )2((Nu
i )sε̃0 + ε̃s)ε̃0 + Cs,s′(N l

i+1)s−s′+2ε̃s′

ε′0 ≤ C2ε̃
′
0

where we have used the a priori bound for ε0.
Finally, conjugation by C(·) deteriorates the estimations by multiplicative constants

and regains periodicity.

9.7 Iteration and conclusion
We suppose that a cocycle

(α,Er(·)AeU(·)) = (α,Er(·)A1e
U1(·))

is given, and such that

ε1,0 ≤ C

ε̃1,0 ≤ N−λ

ε̃1,s0 < 1

whereN and s0 are to be fixed by Theorem 8.17 in accordance with the recursive estimates,
and C is a positive constant allowing the use of the a priori estimates. Then, automat-
ically, ε1,0 ≤ C2ε̃1,0. The local conjugation lemma is applicable under these smallness
assumptions, and at the n-th step gives the recursive estimates

ε̃n+1,s ≤ c2,sK
2(Nu

n,q0)2((Nu
n,q0)sε̃n,0 + ε̃n,s)ε̃0 + Cs,s′(N l

n,q0+1)s−s′+2ε̃n,s′

εn+1,0 ≤ C2ε̃n+1,0
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Therefore, the K.A.M. scheme is applicable to the double sequence ε̃n,s, exactly as in the
local theory, since only the constants are affected. We thus obtain that

ε̃n,s = O(N−∞n )

and the second inequality shows that

εn,0 = O(N−∞n )

as well. In total,
εn,s = O(N−∞n )

for all s.
Finally, as the norm of the conjugant grows no faster than a polynomial in Nn,

‖Gn‖s = O(N s+1/2
n )

the almost reducibility and density theorems are obtained again as in the local case.





Chapter 10

Epilogue

Cette thèse de doctorat règle dans un premier temps la question de la réductibilité
des cocycles quasi-périodiques à valeurs dans des groupes compacts autres que SU(2) (où
SO(3), si l’on veut pousser les techniques introduites dans [Kri01], sur lesquelles d’ailleurs
nous nous sommes fortement basés).

Le théorème principal de cette thèse, le théorème de densité globale des cocycles ré-
ductibles dans SW∞α (T, G), où G est un groupe de Lie compact semi-simple et α ∈ RDC
est l’analogue naturel du théorème montré dans le 5ème chapitre de [Kri99a], ouvrage avec
lequel débute l’étude des cocycles quasi-périodiques dans ce cadre algébrique plus général.

L’affaiblissement de la condition diophantienne sur la rotation d’une condition RDC à
uneDC tout court dans la théorie globale serait couplé avec son analogue local, c’est-à-dire
avec un théorème de nature semilocale, où les conditions de proximité à des constantes
ne dépendent pas des constantes diophantiennes de la rotation, mais l’on exige seulement
qu’une telle condition soit satisfaite. Vu que la théorie locale est marquée par l’absence
(au moins à notre connaissance) d’un invariant tel que le nombre de rotation fibrée pour
les cocycles à valeurs dans SL(2,R), cela est probablement faux, même dans SU(2), à
moins que l’on ne se restreigne à la classe des cocycles analytiques.

Si l’on souhaite aller encore plus loin dans l’étude de la dépendance de la densité
des cocycles réductibles aux propriétés arithmétiques de la rotation, on entre alors dans
l’univers Liouvillien, où les complications sont déjà présentes quand le groupe est abélien.
Nous avons essayé d’adapter le schéma K.A.M. généralisé de [FK09] aux perturbations des
formes normales dans SU(2) en classe C∞, mais jusqu’à présent nous n’avons pas abouti.

Si l’on revient à la description de la situation perturbative, on voit que le théorème de
densité locale a été complété par un théorème de prévalence, le théorème 2.6, démontré
dans [Kri99b]. Le paysage de la théorie locale est complet si l’on tient compte du théorème
de H. Eliasson, théorème 2.7, qui montre l’abondance des cocycles non-réductibles dans
SO(3). La démonstration d’un théorème de prévalence dans le cadre non-perturbatif
passe par l’étude des propriétés d’hyperbolicité de l’opérateur de renormalisation, et nous
croyons que, sous des hypothèses arithmétiques raisonnables (disons α ∈ RDC), nous
devrions être capables de montrer le résultat.

Finalement, vu que l’image de la théorie des cocycles quasi-périodiques à valeurs dans
des groupes compacts commence à prendre une forme, nous croyons pouvoir répondre à une
question implicitement posée dans [Kri99a] concernant le centralisateur d’un cocycle donné
dans SW∞. Dans l’ouvrage cité, la question est réglée pour les cocycles constants, donc
pour les cocycles réductibles, comme le centralisateur est covariant avec la conjugaison
dynamique. La même question pour les formes normales dans SU(2) est un exercice
facile, mais dès que l’on sort des ces deux classes, rien n’est connu.





Appendix A

Appendix

A.1 Lemmas for the convergence of renormalization

We now give the missing proofs of some lemmas. We begin by the lemma on Lie
brackets of Birkhoff sums used in the proof of lemma 4.10:

Lemma A.1. Let u ∈ L2(T,Rd), U a unitary operator in L2(T,Rd), and [·, ·] a bilinear
antisymmetric application on Rd × Rd, invariant by U : [U·,U·] = U .[·, ·]. Then,

1
n2

n∑
k=0

k∑
l=0

[Uku,U lu]→ 0 in L1(T,Rd)

Proof. Let

φ = lim 1
n

n∑
k=0
Uku

which is the projection of u on the subspace of U -invariant functions, and call ψ = u− φ.
We have immediately

lim 1
n

n∑
k=0
Ukψ = 0

in L2. By the antisymmetry of the bracket,

n∑
k=0

k∑
l=0

[Uku,U lu] =
n∑
k=0

k[Ukψ, φ] +
n∑
k=0

(n− k)[φ,Ukψ] +
n∑
k=0

k∑
l=0

[Ukψ,U lψ] (A.1)

If we call sn = ‖
n∑
k=0
Ukψ‖L2 , we can rearrange the terms in

n∑
k=0

(n− k)Ukψ and obtain

‖
n∑
k=0

(n− k)Ukψ‖L2 ≤
n∑
k=0

sk

If, for ε > 0 we let N > 1 such that for n ≥ N , sn ≤ nε, then we have

n∑
k=0

sk =
N∑
k=0

sk +
n∑

k=N
sk

≤ 1
2N(N + 1) ‖ψ‖L2 + ε

2n(n+ 1)
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Choosing n big enough (n� N), we can make 1
n2

n∑
k=0

sk smaller than ε.

Since
n∑
k=0

kUkψ+
n∑
k=0

(n− k)Ukψ = n
n∑
k=0
Ukψ, we find that 1

n2

n∑
k=0

kUkψ also converges

to 0. Consequently, the first two sums in eq. (A.1) converge to 0 in L1.

Now, we estimate, with a similar choice of ε and N , 1
(nN)2

nN∑
k=0

k∑
l=0

[Ukψ,U lψ] in L1. The

summation can be decomposed into summation over 1
2n(n− 1) squares of the type

(j+1)N−1∑
k=jN

(i+1)N−1∑
l=iN

[Ukψ,U lψ] = [
∑
k

Ukψ,
∑
l

U lψ], 1 ≤ i, j ≤ n− 1

which, by invariance of the norms by U , we can bound by

‖
(j+1)N−1∑
k=jN

(i+1)N−1∑
l=iN

[Ukψ,U lψ]‖L1 . N2ε

and n triangles of the type

U jN
N∑
k=0

k∑
l=0

[Ukψ,U lψ], 1 ≤ j ≤ n− 1

which can be bounded by

‖
N∑
k=0

k∑
l=0

[Ukψ,U lψ]‖L1 .
1
2N(N − 1) ‖ψ‖L2

so that
1

(nN)2 ‖
nN∑
k=0

k∑
l=0

[Ukψ,U lψ]‖L1 .
‖ψ‖L2

2n + ε

2

and an appropriate choice of n gives the desired estimate.

The following, used in the proof of proposition 5.24, can be also found in [Fra04]
(lemma 2.4).

Lemma A.2. Let (fn(·)) be a sequence of non-negative, uniformly bounded measurable
functions, such that fn(·)→ 0 almost surely with respect to the lebesgue measure µ. Then,
if (cn) is a sequence of positive numbers converging to 0, we have

1
cn

∫ x+cn

x
fn(·)→ 0, a.s.(x)

Proof. By the Egorov theorem, for any k ∈ N∗, there exists a closed set Bk of Lebesgue
measure at least 1− 1

k such that

lim sup
x∈Bk

fn(x) = 0

We denote by Ak the Lebesgue density points of Bk, i.e. the points x ∈ Bk for which

lim meas([x− ε, x+ ε])
2ε = 1
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This property is true for a.e. point of Bk. Then, we find that for x ∈ Ak,
1
cn

∫ x+cn

x
fn(·) = 1

cn

∫
[x,x+cn]∩Ak

fn(·) + 1
cn

∫
[x,x+cn]\Ak

fn(·)

≤ lim sup
x∈Ak

fn(x) +M
µ([x, x+ cn]\Ak)

cn

whereM is a uniform bound for fn(·). Since the right hand side converges to 0, the lemma
is proved.

A.2 Lemma on conjugation close to singular geodesics
Finally, we state and prove the lemma needed in lemma 9.10 in order to quantify the

influence of the translation of Γm in the space of frequencies on the solution of 7.3. More
precisely,

Lemma A.3. Let m ∈ Z∗ and g(·) ∈ C∞(T,C). Then, there exist positive constants Cs
such that, for any N,N ′ ∈ N with 0 ≤ N ′ < N , there exists f(·), a solution to eq.

TNf(·+ α)− e2iπmx·TNf(·) = g(·)− ΓN ′,mg(·) + rN (·)

with σ(ΓN ′,mg(·)) ⊂ {−m+ 1−N ′, ..,−N ′} satisfying the estimates

‖TNf‖s ≤ Cs(N (u))s+3‖g‖s+3

‖rN‖s ≤ Cs(N (l))s′−s+3‖g‖s
‖ΓN ′,mg‖s ≤ Cs(N ′)s+1/2‖g‖0

where N (u) = N +N ′ and N (l) = N −N ′.

Proof. Let us revisit the formulas (7.4) and (7.5) for the forward and backward solution,
respectively. The solution of the auxiliary equation

f̃(·+ α)− e2iπm·f̃(·) = e−2iN ′π·g(·)− Γm(e−2iN ′π·g(·)

gives the formulas

f̃ˆ
+(k) =

∞∑
j=1

e−2iπj(k+N ′+ j−1
2 m)αĝ(k + jm+N ′)

f̃ˆ
−(k) =

∞∑
j=0

e2iπj(k+N ′− (j+1)
2 m)αĝ((k − j)m+N ′)

respectively for the Fourier coefficients of the forward and backward solution. If we call
f = e2iN ′π·f̃ , then it satisfies

f(·+ α)− e2iπm·f(·) = g(·)− ΓN ′,mg(·)

with
ΓN ′,mg(·) = e2iN ′π·Γm(e−2iN ′π·g(·)

The forward and backward sums for f(·) become

f̂+(k) =
∞∑
j=1

e−2iπj(k+N ′+ j−1
2 m)αĝ(k + jm)

f̂−(k) =
∞∑
j=0

e2iπj(k+N ′− (j+1)
2 m)αĝ((k − j)m)
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which implies the estimates of the lemma.

A.3 Estimate on the Hausdorff-Campbell formula without
linear terms

The following estimate is useful in K.A.M. theory, since the latter passes by the solution
of liearized equations coming from non-linear problems. When we use these approximate
solutions to attack the inital problem ,we have to estimate the series of the Hausdorff-
Campbell formula (see [Hel62]) without constant and linear terms. This is done in the
appendix of [Kri99a], or in [FK09] (eq. 6.1 and 6.2) as follows.

If Q is quadratic in (f, g), i.e. if Q is C2, Q(0, 0) = 0 and DQ(0, 0) = 0, we have

‖Q(f, g)‖s ≤ Cs(1 + ‖f‖0 + ‖g‖0)s+1(‖f‖0 + ‖g‖0)‖f‖s + ‖g‖s)

which simplifes to
‖Q(f, g)‖s ≤ Cs(‖f‖0 + ‖g‖0)‖f‖s + ‖g‖s)

if we admir a priori bounds for ‖f‖0 and ‖g‖0.
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