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L’UNIVERSITÉ PARIS VII DIDEROT
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10 CONTENTS



11 CONTENTS

Résumé

On propose un traitement quantitatif de différentes problématiques du trading haute fréquence.

On s’intéresse à plusieurs aspects de cette pratique, allant de la minimisation des frais in-

directs de trading, jusqu’à la tenue de marché, et plus généralement des stratégies de

maximisation du profit sur un horizon de temps fini. On établit un cadre de travail original

qui permet de refléter les spécificités du trading haute fréquence, notamment la distinction

entre le trading passif et le trading actif, à l’aide de méthodes de contrôle stochastique

mixte. On porte un soin particulier à la modélisation des phénomènes de marché en haute

fréquence, et on propose pour chacun des méthodes de calibration compatibles avec les

contraintes pratiques du trading algorithmique.

Dans le chapitre 3, on passe en revue la littérature sur les méthodes quantitatives

appliquées au trading haute fréquence. En particulier, on s’intéresse en premier lieu aux

travaux de modélisation des problèmes d’exécution optimale d’ordres. Dans un deuxième

temps, on fait un tour d’horizon des stratégies déjà documentés de trading haute fréquence.

Dans le chapitre 4, on propose un modèle simple d’impact de marché non linéaire,

qui permet de refléter les caractéristiques des frais indirects de trading. On étudie la

situation d’un investisseur qui souhaite vendre son portefeuille, et on propose une stratégie

qui optimise le revenu de cette vente. On résout numériquement le problème de contrôle

impusionnel correspondant, à l’aide d’un schéma numérique dont on montre la convergence,

et on étudie la performance de cette stratégie.

Dans le chapitre 5, on construit un modèle pour une microstructure de marché standard,

correspondant aux actions européennes, et on développe les outils statistiques qui permet-

tent sa calibration. Dans ce cadre, on s’intéresse à une stratégie de tenue de marché mixte

ordres limites/ordres au marché. On formalise le problème de maximisation du profit sous

la forme d’un problème de contrôle stochastique mixte, que l’on résout numériquement, à

l’aide d’un schéma numérique dont on montre la convergence, et l’on procède à une analyse

de performance détaillée.

Dans le chapitre 6, on construit un modèle pour une microstructure de marché exotique,

correspondant par exemple aux futures de taux d’intérets, et on montre comment calibrer ce

modèle. Ici encore, on étudie une stratégie de tenue de marché mixte, à l’aide de méthodes

de contrôle mixte régulier/impulsionnel, que l’on résout numériquement. Dans ce cadre,

on introduit un outil important en pratique qui nous permet d’utiliser une information

prédictive sur l’évolution à court terme du prix dans la stratégie. Enfin, on étudie la

performance de cette stratégie, et on développe d’autres exemples d’application de cette

stratégie.
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Abstract

We propose a quantitative approach to some high frequency trading problematics. We are

interested in several aspects of this field, from minimizing indirect trading costs to market

making, and more generally in profit maximization strategies over a finite time horizon.

We build an original framework that reflects specificities of high frequency trading, and

especially the distinction between passive and active trading, thanks to mixed stochastic

control methods. We carefully model high fequency market phenomena, and for each of

them we propose calibration methods that are compatible with practical constraints of

algorithmic trading.

In chapter 3, we review the litterature on quantitative methods for high frequency

trading. Firstly, we are interested in market impact and best execution problems mod-

elling. Secondly, we provide an overview of profit-seeking high frequency trading strategies

documented in academic litterature.

In chapter 4, we propose a simple model for non-linear market impact, which reflects

general properties of indirect trading costs. We study the case of an investor that wants

to unwind their portfolio, and provide a strategy that maximizes the revenue of this sale.

We numerically solve the corresponding impulse control problem, using a numerical whose

convergence is proven, and we study the behaviour and performance of the strategy.

In chapter 5, we build a model for a standard market microstructure, as encountered

on european stocks for example, and we develop the statistical methods to calibrate the

model. In this context, we consider a mixed market making strategy, where the investor

can both provide and take liquidity in the market. We solve the problem of maximizing the

profit using mixed stochastic control methods, that we solve numerically with a numerical

scheme whose convergence is proven. We also provide a detailled performance analysis.

In chapter 6, we build a model for an exotic market microstructure, as encountered on

interest rates for example, and we show how this model can be calibrated. In this case

again, we consider a mixed market making strategy, that we study by means of mixed

stochastic control, and that we solve numerically. In this context, we introduce a central

tool for industrial application of high frequency trading that allows us to use predictive

information on short term evolution of price. Finally, we provide a performance analysis

for this strategy, and we show how to modify the model to cover the costs optimization

problem as well.



14 CONTENTS



Chapter 1

Introduction générale

1.1 Objectifs et motivations

L’objectif de cette thèse est de présenter une approche mathématique rigoureuse des aspects

les plus communs du trading haute fréquence.

Du point de vue de l’ingénierie financière, nous contribuons au traitement quantitatif

des enjeux suivants: minimisation des frais indirects de trading, tenue de marché, stratégie

mixte de trading haute fréquence. Nous modélisons et étudions à la fois la microstruc-

ture standard à priorité prix/date et la microstructure exotique à priorité pro-rata. Nous

cherchons à fournir un traitement complet de chaque situation, depuis la modélisation

des phénomènes de marché, la résolution mathématique, jusqu’à la calibration et aux

expériences numériques a posteriori, qui contiennent des résultats sur données réelles lorsque

celles-ci sont disponibles.

Du point de vue mathématique, nous étendons des cadres de travail qui ont été récemment

développés en mathématiques financières. Nous proposons la résolution détaillée de problèmes

de contrôle stochastique mixte réguliers/impulsionnels. Nous construisons des schémas

numériques originaux pour la résolution d’inégalités variationnelles de la programmation

dynamique, qui correspondent aux contraintes pratiques du trading haute fréquence: nous

mettons en place des méthodes de réduction de la dimension, ainsi que des algorithmes

de calcul explicites, qui nous permettent d’accélerer la résolution de tels problèmes, donc

d’utiliser ces algorithmes en temps réel. Nous montrons la convergence de chacun de ces

schémas et disposons d’exemples numériques.

Dans le chapitre 4, nous examinons la situation d’un investisseur souhaitant vendre un

grand portefeuille au meilleur prix. Nous fournissons la solution numérique au problème de

contrôle impulsionnel correspondant à la modélisation de cette situation, et nous prenons

notamment en compte les effets des frais indirects de trading et de l’impact de marché qui

pénalisent les transactions trop rapides ou trop volumineuses. L’équation de la program-
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mation dynamique correspondante est une quasi-inégalité aux variations avec une fonction

de valeur satisfaisant une contrainte de solvalibilité au sens des solutions de viscosité con-

traintes. Nous proposons une solution numérique fondé sur un schéma numérique explicite

rétrograde pour l’équation. La convergence de ce schéma est montrée par des arguments

de solutions de viscosité. Nous proposons ensuite des résultats numériques illustrant le

comportement du schéma numérique, la forme de la stratégie optimale, et une analyse de

performance comparée.

Dans le chapitre 5, nous proposons un cadre de travail pour étudier les stratégies op-

timales de trading haute fréquence dans la microstructure standard à priorité prix/date,

et nous proposons une application au trading d’actions européennes. Nous examinons la

situation d’un investisseur dont l’objectif est de maximiser l’utilité espérée de son revenu

sur un horizon de temps court, sachant que celui-ci est capable de traiter avec des ordres

limites ou des ordres de marché, tout en controllant son niveau d’inventaire. Ceci est for-

mulé comme un problème de contrôle mixte régulier/impulsionnel à changement de régime

que nous caractérisons en termes de système quasi-variationnel par des méthodes de la

programmation dynamique. Les procédures de calibration sont explicitées, de même que

les exemples pratiques d’ajustement sur des données réelles. Nous construisons un schéma

numérique explicite rétrograde par séparation pour résoudre ce problème, et montrons com-

ment réduire le nombre des variables d’état jusqu’à un système où n’interviennent que les

niveau de fourchette bid/ask et d’inventaire. Nous procédons ensuite à des expériences

numériques sur données simulées et réelles, et nous fournissons une analyse de performance

comparée pour la stratégie qui en résulte.

Dans le chapitre 6, nous proposons un cadre de travail pour étudier les strategies op-

timales de trading haute fréquence dans une microstructure exotique, la microstructure

au pro-rata, avec application au trading de futures de taux courts. Ici encore, le trader

haute fréquence est capable de traiter avec des ordres au marché ou avec des ordres lim-

ites, qui sont respectivement modélisés par des contrôles impulsionnels et réguliers. Nous

modélisons et discutons les principaux risques caractéristiques de cette microstructure, qui

sont liés aux fait que la taille des transactions n’est pas controllée. Nous nous intéressons

à leur conséquences dans le cadre de l’exécution optimale. Le problème de trading opti-

mal est étudié par des méthodes de contrôle stochastique et de programmation dynamique,

ce qui conduit à la caractérisation de la fonction de valeur dans les termes d’une quasi-

inégalité integro-variationnelle. Nous fournissons la procédure de résolution numérique qui

y est associée, et sa convergence est prouvée. Nous proposons aussi des simplications de

cet algorithme dans des cas particuliers à l’intérêt pratique: nous faisons en particulier

la démonstration d’une stratégie de trading haute fréquence dans le cas où un indicateur

prédictif sur le prix est disponible au trader. Chacun des exemples est illustré par des

mesures de performance empirique.

Introduisons maintenant le contexte financier qui a conduit à ces modèles, ainsi que
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les objets et mécanismes financiers qui sont au coeur du trading haute fréquence. Dans

1.2.1, nous proposons une vue d’ensemble du contexte du trading haute fréquence. Dans

1.2.2, nous présentons le vocabulaire général que nous allons utiliser au cours de cette

thèse, et nous rappelons aussi des résultats généraux et des observations qualitatives sur la

microstructure des marchés. Dans 1.2.3, nous résumons les principaux enjeux de l’industrie

financière où une solution impliquant le trading haute fréquence est disponible. Enfin, nous

ferons une synthèse des principaux résultats de cette thèse à la partie .

1.2 Observations qualitatives et contexte

1.2.1 Présentation générale

Le trading haute fréquence (HFT) est l’utilisation de stratégies automatisées pour réaliser

des transactions sur des instruments financiers tels que les actions au comptant, les devises

ou les produits dérivés, avec la caractéristique que les positions ne sont maintenues que pour

une très courte période, allant de quelques secondes à quelques heures. Le terme recouvre

plusieurs techniques de trading distinctes, qui sont souvent associées à l’usage de méthodes

de décision purement quantitatives ou faisant un usage intense de données de marché, une

infrastructure technologique lourde, ainsi qu’une exposition nulle en fin de journée.

Pourtant, grâce à l’essor des technologies de trading électronique, et à des évolutions

règlementaires, de nombreux types d’investisseurs sont à présents capables de mettre en

place des stratégies de trading haute fréquence. Les principales règlementations concernant

le trading haute fréquence sont la MiFID en Europe (Markets in Financials Instruments

Directive, directive sur les marchés d’instruments financiers, 1er novembre 2007) et la Reg-

NMS aux Etats-Unis (Regulation National Market System, régulation du système du marché

national, 2007). Toutes les deux visent à favoriser la compétition entre les places de marché,

et promouvoir un mécanisme de formation des prix non-biaisé. Les résultats pratiques de

ces cadres règlementaires sont le développement de places de marché alternatives, comme

BATS ou Chi-X par exemple, et cöıncidemment de nouveaux besoins en terme de fourniture

de liquidité, acheminement des ordres de transactions et d’arbitrage.

Dans la plupart des marchés d’instruments financiers, le processus de formation des prix,

ou de découverte du prix, résulte de la concurrence entre différents agents de marché qui

prennent part à une enchère publique. En particulier, les sessions journalières de trading, ou

phases de trading continu, consistent en des enchères doubles continues. Le trading haute

fréquence est installé dans cette phase de trading continu, et ainsi l’étude des mécanismes

précis qui réalisent cette double enchère continue est d’une importante centrale lors de la

construction d’une stratégie. Ceci est précisement le sujet de la théorie de la microstructure

des marchés : dans [56], la théorie de la microstructure des marchés est “l’étude des pro-

cessus et des résultats de l’échange de biens sous un certain ensemble de règles. Alors que
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la plupart de la théorie économique s’abstrait de la mécanique du trading, la théorie de la

microstructure des marchés se concentre sur la question de savoir les effets de mécanismes

spécifiques de trading sur le processus de formation des prix.” Dans la section suivante,

nous présentons les principaux mécanismes impliqués dans la formation des prix.

1.2.2 Les différents types de carnets d’ordres limites

Dans cette sous-section, nous présentons les mécanismes d’appariemment des ordres de

transaction lors de la phase de trading continu, avec le vocabulaire que nous allons utiliser

dans le reste de cette thèse.

La phase de trading continu est réalisée par un dispositif d’enchères doubles contin-

ues. Ceci signifie que la place de marché (par exemple la bourse Euronext Paris) diffuse

publiquement de l’information au moins partielle sur les prix offerts pour la vente ou pour

l’achat de produits financiers. Les fournisseurs de liquidité sont des agents de marché qui

offrent ces prix, attendant qu’une contrepartie saisisse leur offre et crée ainsi une transac-

tion. Ces fournisseurs de liquidité sont en concurrence dans une enchère à la fois l’achat

(appelé le côté bid) et à la vente (appelé le côté ask). Les praticiens distinguent parfois

entre les marchés conduits par les prix, et les marchés conduits par les ordres. Bien que la

définition de ces termes puissent varier selon l’auteur, la distinction générale est la suivante:

• Les marchés conduits par les prix sont des marchés où les fournisseurs de liquidité (i.e.

teneurs de marché) proposent un prix pour n’importe quel volume de transaction.

En général, il y a dans ce cas un nombre réduit de teneurs de marché dédiés qui

ont l’exclusivité de la fourniture de liquidité. Dans les marchés réels pourtant, par

exemple les marchés de devises, le prix proposé par les teneurs de marché va dépendre

du volume de transaction demandé par la contrepartie. Cette microstructure peut

aussi se rencontrer sur des marchés plus rudimentaires, tels que les marchés de paris

en ligne, où un teneur de marché monopolistique maintient des quotations de telle

sorte que les parieurs soient approximativement au même nombre sur toutes les pattes

du jeu.

• Les marchés conduits par les ordres sont des marchés où les fournisseurs de liquidité

offrent une quantité donnée à un prix donné, soit à la vente, soit à l’achat, d’un ac-

tif financier. Contrairement à l’organisation précédente, tout participant du marché

peut agir en tant que fournisseur de liquidité, grâce à l’usage d’ordres limites (voir

ci-après). Ce mécanisme est la microstructure la plus commune sur les marchés fi-

nanciers électroniques, elle peut être rencontrée par exemple sur les actions au comp-

tant européennes, les matières premières, les taux d’intérets et les produits dérivés.

Cette microstructure est réalisé par l’opération d’un carnet d’ordres limites, un objet

que nous décrirons dans les paragraphes qui suivent.
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Dans cette thèse, nous nous concentrons sur les marchés conduits par les ordres, puisque

c’est l’organisation la plus courante. Définissons à présent ce qu’est un carnet d’ordres

limites, et examinons deux règles différentes d’appariemment.

Nous mentionnons la revue de littérature complète [33] à propos du carnet d’ordres

limites, de laquelle nous avons adapté les définitions qui suivent. Le rôle d’une place

de marché est de rassembler et d’apparier les ordres de transaction, qui proviennent des

participants de marché et peuvent êtres soumis à n’importe quel instant de la journée

pendant la phase de trading continu. Ils sont de deux types:

Définition. Un ordre au marché de taille m est un ordre d’acheter (de vendre) m unités

du bien que l’on traite au plus bas (haut) prix disponible sur le marché.

Définition. Un ordre limite de taille ℓ au prix p est un ordre d’acheter (de vendre) ℓ unités

du bien que l’on traite au prix spécifié p.

Un ordre limite peut être soumis au marché, mis à jour en prix ou en quantité, ou encore

annulé à tout instant, et ainsi on appelle:

Définition. Un ordre limite actif à l’instant t est un ordre limite qui a été soumis à t0 < t,

mais qui n’a pas été encore rempli ou annulé à la date t.

C’est précisemment l’ensemble des ordres limites actifs sur un marché qui font le carnet

d’ordres limites:

Définition. Le carnet d’ordres limites (LOB), pour un actif financier spécifié, est l’ensemble

des ordres limites actifs sur le marché à la date t pour cet actif.

Par ailleurs, chaque place de marché suit sa propre politique de diffusion publique

de l’information sur les carnets d’ordres. Par exemple, les places de marchés les plus

transparentes (lit microstructure) diffusent les volumes aggrégés offerts pour chaque prix,

et usuellement ces donnés se présentent comme ceci 1.1:

Ask Bid

Prix Quantité Prix Quantité

Level 1 50.01 80 49.98 120

Level 2 50.02 53 49.97 89

Level 3 50.03 81 49.96 64

Level 4 50.04 112 49.95 163

Level 5 50.05 44 49.94 101

Table 1.1: Représentation schématique à une certaine date t d’un carnet d’ordres limite.

Dans cet exemple, à la date t, la taille du tick est 0.01 le prix ask est 50.01, le prix bid est

49.98, et la fourchette bid/ask est 0.03

Les marchés autorisent seulement un ensemble discret de prix possibles, et alors l’incrément



20 Introduction générale

minimum entre deux prix possibles est appelé la taille du tick. Nous pouvons donc intro-

duire les définitions suivantes:

Définition. Le prix bid à la date t est le prix le plus haut parmi tous les ordres limites

d’achat actifs à la date t.

Définition. Le prix ask à la date t est le prix le plus bas parmi tous les ordres limites de

vente actifs à la date t.

Définition. La fourchette bid/ask t est la différence entre le prix ask à la date t et le prix

bid à la date t.

De plus, des notions plus complexes sont parfois associés au comportement dynamique

du LOB. Parmi eux, le concept d’impact de marché fait référence au fait que le prix ask

(resp. bid) soit détérioré, i.e. soit plus haut (resp. bas), après qu’un ordre au marché

d’achat (resp. de vente) ait consommé plusieurs niveaux du LOB d’un coup. Le concept

opposé à celui-ci est la résilience du carnet d’ordres, qui représente le fait que les niveaux

du LOB ont tendance à se repeupler après avoir subi un impact de marché.

Finalement, donnons deux exemples pratiques de tels carnets d’ordres. D’abord, l’implémentation

la plus commune du LOB est la microstructure prix/date. Cette microstructure est la plus

fréquente sur les marchés modernes. Elle peut être rencontrée par exemple sur les actions

européennes, avec différents niveaux de confidentialité des données selon le marché. Son

principe est très simple: un ordre au marché entrant est apparié avec l’ordre limite actif au

meilleur prix, le plus ancien dans le LOB. Une description détaillée de cette microstructure

est fournie dans [21] et [37].

Une autre microstructure importante, quoique plus exotique, est la microstructure au

pro rata. La microstructure au pro rata (voir [43] pour une présentation complète) peut

être schématiquement décrite comme suit: lorsqu’un ordre au marché arrive dans le LOB

au pro rata, son volume est réparti sur tous les ordres limites actifs au meilleur prix, propor-

tionnellement au volume de chaque ordre, et ainsi est à l’origine de plusieurs transactions

(voir figure 1.1

Cette microstructure est utilisée sur certains marchés de produits dérivés (par exemple

le London International Financials Futures and options Exchange, ou Chicago Mercantile

Exchange), et sera le sujet d’un chapitre entier de cette thèse.

1.2.3 Les enjeux rencontrés dans l’industrie du trading haute fréquence

Dans cette sous-partie, nous résumons les principaux enjeux industriels où l’on connait

une solution impliquant le trading haute fréquence. Nous nous concentrons sur les enjeux

stratégiques, et mettons de côté les enjeux technologiques, tels que les accès directs aux

marchés ou l’optimisation de la vitesse du matériel de trading, quoiqu’ils soient pourtant

des aspects cruciaux de cette pratique.
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Figure 1.1: Schematic view of the pro-rata Limit Order Book.

Minimisation des coûts indirects de trading

La minimisation des coûts indirect de trading consiste à obtenir le prix le plus élevé

possible pour une vente, ou obtenir le prix le moins élevé pour un achat.

Ce problème se présente naturellement lorsque le volume traité est grand, en raison des

quantités finies de liquidité offerte dans le LOB (voir la section ci-dessus): en effet, une

unique transaction de grand volume peut déséquilibrer le LOB en consommant plusieurs

de ses niveaux d’un coup. Par exemple, si un investisseurs envoie un ordre au marché pour

acheter 200 unités dans le carnet représenté à la table 1.1, le résultat de cette transaction

est:

• 80 unités à 50.01

• 53 unités à 50.02

• 67 unités à 50.03

donc le prix ask à la fin de cette transaction est 50.03 avec un volume offert de 14. Ainsi,

le prix moyen pondéré par les volumes de cette opération est: (80 × 50.01 + 53 × 50.02 +

67 × 50.03)/200 = 50.0193, ce qui est à peu près un tick au-dessus du meilleur ask avant

la transaction, ce qui fait une perte de 2bp. Cet effet s’appelle l’impact de marché. Afin

de donner un point de comparaison, une stratégie traitant une fois par jour, et donc la

performance attendu sur un an est de 5%, a un rendement journalier moyen d’environ 2bp,
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lequel est balayé par l’impact de marché. Ainsi on voit que cet impact a une importance

cruciale pour les gestionnaires de portefeuilles.

Les acteurs impliqués dans l’optimisation des coûts de trading sont à la fois des in-

vestisseurs comme les hedge funds ou les banques d’investissement, qui développent leur

solutions propriétaires à ce problème, et les brokers, qui typiquement exécutent de grands

volumes journaliers pour le compte de leurs clients. Les brokers sont, de plus, tenus par les

règles MiFID et RegNMS d’utiliser des algorithmes d’exécution optimale. Certaines esti-

mations annoncent que 70% − 80% des transactions sur les actions comptant européennes

sont réalisés par de tels algorithmes [34].

Les solutions classiques à ce problème se rangent autour de deux idées centrales: les

méthodes d’optimisation temporelles et les méthodes d’optimisation spatiales.

Les procédures d’optimisation spatiales ont été relativement peu documentées dans la

littérature académique, quoique certains travaux soit disponible à ce sujet, par exemple

[48]. L’idée soutenant cette méthode est de profiter du fait qu’un actif peut être traité

sur plusieurs places de marché différentes. Ainsi, en découpant un ordre parent de grand

volume en plusieurs petits ordres enfants, et en répartissant ceux-ci sur plusieurs places

de marché différentes, l’investisseurs est en mesure de prendre plus de liquidité au même

instant. Cette technique s’appelle Smart Order Routing (SOR), et est très populaire chez

les brokers. La procédure d’optimisation dans de tels outils fait intervenir des outils de

HFT de sorte à pouvoir rapidement mettre à jour l’agenda de trading.

Au contraire, les procédures d’optimisation temporelles ont reçu un traitement académique

extensif, par exemple [3], [31] ou [35]. L’idée soutenant cette méthode est de découper un

ordre parent de grand volume en plusieurs ordres enfants de plus petit volume, et de passer

ceux-ci sur une periode de temps plus étendue. On peut voir la procédure d’optimisation

ici comme un un équilibre à rechercher entre traiter rapidement, et alors être exposé à des

risques d’impacter le marché, mais avoir moins de risque que le prix fluctue; ou traiter

lentement, et avoir peu d’impact sur le marché, mais risquer que le prix fluctue pendant

l’opération. Plusieurs solutions à ce problème ont été proposées, avec différents modèles de

marché, mais la technique générale est de suivre un agenda de trading prédéfini (schéma

de trading optimal) qui provient de cette procédure d’optimisation avec des hypothèses

simplificatrices. Nous donnerons plus de détails sur ce sujet dans les sections suivantes.

Finalement, d’un point de vue industriel, plusieurs enjeux restent ouverts autour de

ce sujet. D’abord, la détectabilité des algorithmes d’exécution est un enjeu central pour

les brokers et les gestionnaires de portefeuille. En effet, l’utilisation massive d’algorithmes

d’exécution est prise pour être à la source de l’autocorrélation dans les signes des trans-

actions (voir [18]) et aussi de correlation retardée entre les données de transactions sur le

même actif sur des marchés différents. Ainsi, de tels algorithmes sont très sensibles à la

réponse du marché sur lesquels ils sont déployés, et moins efficaces lorsqu’ils sont facilement

détectables par les concurrents. Ensuite, les stratégies mixtes ordres limites/marchés ont
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jusqu’à présent reçu un traitement de moindre ampleur dans la littératures académique

(voir [67] ou [37]), bien que les ordres limites soient beaucoup moins chers et dès lors

massivement utilisés dans l’industrie.

Les stratégies ”pure alpha”

Concentrons-nous maintenant sur les strategies ”pure alpha”, un terme de jargon qui

fait référence aux stratégies de maximisation du profit qui sont largement indépendantes

des conditions de marché. Cette catégorie inclus les stratégies suivantes:

• Les stratégies de tenue de marché. Cette classe de stratégie est fondée sur l’idée

qu’en utilisant des ordres limites, on peut acheter au prix bid, revendre au prix ask,

et ainsi gagner la fourchette bid/ask dans l’opération. De telles stratégies impliquent

en général de fournir continuellement des cotations au bid et à l’ask, et de choisir

de manière optimale les prix et les quantités de ces cotations. Le teneur de marché

cherche alors à équilibrer son inventaire, c’est à dire à conserver une position sur

l’actif risqué proche de zéro à toute date, et ainsi réduire son risque de marché.

• Les stratégies d’arbitrage statistique. Cette classe de stratégies est fondée sur l’idée

que l’on peut exploiter les relations statistiques entre les prix des actifs (par exemple

la structure de cointegration d’un certain secteur de marché, ou alors la relation entre

un indice et ses composants) pour profiter d’inefficiences transitoires sur le marché.

Ces stratégies font typiquement un usage intensif de données, elles sont directionnelles

sur un horizon de temps court et répètent un grand nombre de fois le même pari afin

de réduire la variance du résultat (d’où le nom d’arbitrage statistique). Souvent, ces

stratégies sont agressives, dans le sens où elles prennent de la liquidité dans le LOB

(hit orders). Elles sont aussi très dépendantes de la vitesse de l’infrastructure de

trading, à cause de la concurrence d’autres acteurs utilisant une stratégie similaire.

• Les stratégies mixtes, qui sont une combinaison des deux classes ci-dessus.

Les acteurs impliqués dans de telles stratégies sont les banques d’investissement, les

hedge funds, les firmes de trading propriétaire et les teneurs de marché spécialistes. Les

avantages à conduire des stratégies pure alpha est que leur performance est très stable

quelles que soient les conditions de marché, et ainsi l’investisseur est peu exposé au risque

de marché au sens large. Au contraire, les inconvénients à conduire ces stratégies sont de

deux types: d’abord, la performance totale est bornée la plupart du temps, dû au fait que

les opportunités d’arbitrage sont rares, et ensuite, le risque opérationnel est élevé, puisque

la performance technologique est d’une importance cruciale dans cette activité.

Cette classe de stratégie a été étudiée dans la littérature académique, avec une attention

particulière pour les stratégies de tenue de marché.

D’abord, les stratégies de tenue de marché ont été présentées comme un problème de

gestion d’inventaire depuis le travail pionnier d’Amihud et Mendelsohn en 1980 [5], et cette
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approche a été modernisé par le travail d’Avellaneda et Stoikov en 2008 [7]. L’idée sous-

jacente ici est d’adopter une approche profit/risque: l’objectif du teneur de marché est

de ”faire le spread”, ce qui signifie acheter au bid et revendre à l’ask, et ainsi gagner la

fourchette bid/ask. Alors qu’il fait cette opération, le teneur de marché est exposé au

risque de marché, c’est à dire le risque de détenir une position non nulle en actif, sujet à

des changements de prix. Ainsi, le teneur de marché a deux objectifs divergents: d’un côté,

il souhaite participer au plus grand nombre de transactions possibles, afin de tirer profit

de la fourchette bid/ask, et d’un autre côté, il doit maintenir son inventaire proche de zéro

à toute date, afin de maintenir le risque de marché bas. Ceci à été l’objet de nombreux

travaux récemment [16], [35] et [37].

Ensuite, les stratégies d’arbitrage statistique ont reçu moins de couverture de la littérature

académique, malgré leur grande popularité parmi les traders haute fréquence. L’idée

générale de telles stratégies est de construire un indicateur prédictif sur le prix de l’actif

fondé sur l’observation de certains phénomènes de marché, et de traiter selon lui. Citons

trois exemples pour illustrer ce principe. Dans l’article [6], l’auteur développe un approche

généralisée du trading de paires: il pratique une analyse en composantes principales des

rendements de plusieurs actifs d’un marché, et ainsi obtient un portefeuille de marché qui

explique les rendement des actifs. A partir de là, l’hypothèse de trading est que le résidu

entre chaque actif et le portefeuille de marché doit osciller autour de sa moyenne, et donc

on traite en fonction de ce principe. Un autre exemple est disponible dans l’article [21], où

les auteurs proposent une stratégie d’arbitrage très simple pour illustrer la pertinence d’un

indicateur prédictif de prix fondé sur un modèle de la dynamique du LOB. Conditionnelle-

ment à l’état actuel du LOB, les auteurs sont capables de calculer la probabilité pour que

le prix monte ou baisse dans les prochaines millisecondes, et proposent une stratégie qui

exploite cette information. Enfin, dans le chapitre 6, nous proposons une manière d’inclure

un tel indicateur prédictif de prix dans une stratégie mixte.

La prochaine section est consacrée à la synthèse des principaux résultats de cette thèse.

1.3 Synthèse des principaux résultats

1.3.1 Le problème de l’exécution optimale

Dans le chapitre 4, nous examinons le problème d’un investisseur qui souhaite fermer une

grande position sur un actif risqué. Cette situation est présentée comme un équilibre à

trouver entre le risque de marché et le risque d’impact. En effet, exécuter l’ordre lentement

conduit à avoir un faible impact, mais beaucoup de risque de marché, et inversement,

exécuter l’ordre rapidement conduit à avoir beaucoup d’impact, mais un faible risque de

marché.

Plus précisemment, on vise à contrôler la différence entre la valeur marked to market
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(ou valeur faciale) du portefeuille et le revenu réellement retiré de la vente de celui-ci. Cette

différence, en défaveur de l’investisseur, est dûe à des effets d’illiquidité de l’actif qui incluent

la fourchette bid/ask, les frais de broker et l’impact de marché. Nous discutons de la notion

d’impact de marché, que l’on présente comme une réaction adverse du marché résultant de la

finitude de la liquidité offerte sur le marché. Ce modèle a été inspiré des travaux précurseurs

[10] et [3] qui ont les premiers introduit la notion d’impact dans un modèle à temps discret.

Appliquer une approche de contrôle optimal au problème de l’exécution optimale d’ordre

a été déjà documenté dans [63] et [28] avec des contrôles continus (l’approximation du

trading continu), et dans [44] avec une approche de contrôle optimal impusionnel. Nous

utilisons cette dernière approche car elle permet un modèle plus réaliste. Notre objectif est

de trouver un agenda de trading optimal.

On propose ici une vue d’ensemble du modèle et de nos contributions.

Modèle de marché et stratégies de trading

On considère un marché où un investisseur veut vendre y > 0 unité d’un actif risqué

avant la date T . On introduit les processus suivants:

• (Pt)t∈[0,T ] le prix de l’actif

• (Xt)t∈[0,T ] le montant de cash dans le portefeuille

• (Yt)t∈[0,T ] le nombre d’unités d’actif risqué dans le portefeuille ou inventaire

• (Θt)t∈[0,T ] le temps écoulé entre t et le dernier trade avant t

Les stratégies de trading sont une suite de contrôles impulsionnels:

α = (τn, ξn)n∈N

où (τn), représentant les dates de trading, sont des F-temps d’arrêt et (ξn), représentant

les quantités traitées, sont des variables Fτn-mesurable à valeurs dans R. La dynamique de

l’inventaire et du cash sont, sous α:

Θt = t− τn, τn ≤ t < τn+1

Θτn+1 = 0, n ≥ 0.

Ys = Yτn , τn ≤ s < τn+1

Yτn+1 = Yτn + ξn+1 n ≥ 0.

On suppose que le prix est un Brownien géométrique:

dPt = Pt(bdt+ σdWt)
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Supposons que l’investisseur veuille traiter e. Si le prix actuel de l’actif est p, que le délai

depuis le dernier trade est θ, alors le prix qu’il obtient réellement pour e est:

Q(e, p, θ) = pf(e, θ)

Nous pouvons utiliser de nombreuses fonctions f , mais nous prenons l’exemple suivant:

f(e, θ) = exp
(

λ|e
θ
|βsgn(e)

)

.
(

κa1e>0 + 1e=0 + κb1e<0

)

,

Dans cette expression, κa > 1 et κb < 1 et ainsi
(

κa1e>0 + 1e=0 + κb1e<0

)

représente l’effet

de traverser le spread. La partie exponentielle exp
(

λ| eθ |βsgn(e)
)

représente l’impact de

marché, i.e. l’effet de la finitude de l’offre de liquidité. Des discussions sur le choix de f

sont disponibles dans [50].

Le cash a la dynamique suivante:

Xt = Xτn , τn ≤ t < τn+1, n ≥ 0.

Xτn+1 = Xτ−
n+1

− ξn+1Pτn+1f(ξn+1,Θτ−
n+1

) − ǫ, n ≥ 0.

Caractérisation par PDE

Nous choisissons une fonction d’utilité CRRA U(x) = xγ avec γ ∈ (0, 1) et notons

UL(.) = U(L(.)), où L(.) est la fonction de liquidation, c’est à dire le revenu obtenu pour

la liquidation du portefeuille. La fonction de valeur est définie par (on écrit z = (x, y, p)):

v(t, z, θ) = sup
α∈A(t,z,θ)

E
[

UL(ZT )
]

, (t, z, θ) ∈ [0, T ] × S

où A(t, z, θ) est un ensemble de contrôles approprié et S ⊂ R
3 la zone de solvabilité où

vivent les variables d’état.

Selon [44] v est la solution de viscosité à l’HJBQVI:

min

[

− ∂

∂t
v − Lv , v −Hv

]

= 0, on [0, T ) × S,

min [v − UL, v −Hv] = 0, on {T} × S.

où L est le générateur infinitésimal du processus (X,Y, P,Θ) dans une période sans

trading:

Lϕ =
∂

∂θ
ϕ+ bp

∂

∂p
ϕ+

1

2
σ2p2 ∂

2

∂p2
ϕ

et H est l’opérateur impulsionnel:

Hϕ(t, z, θ) = sup
e∈C(t,z,θ)

ϕ(t,Γ(z, θ, e), 0)
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avec

Γ(z, θ, e) = (x− epf(e, θ) − ǫ, y + e, p), z = (x, y, p) ∈ S, e ∈ R

en effet, pendant une période où on ne traite pas, le processus d’état évolue avec le prix P

et la variable délai Θ d’une manière diffusive. Lorsqu’un contrôle impulsionnel apparâıt,

les variables sautent sous l’effet d’une transaction, avec une perte stricte de valeur faciale,

ceci à cause des frais indirects de trading.

A présent, nous résolvons cette HJBQVI numériquement.

Schéma numérique explicite

Le choix du schéma numérique est important puisqu’il impacte le temps de calcul de

la stratégie optimale. Nous choisissons un schéma rétrograde explicite en utilisant une

propriété spécifique de notre problème. On considère le schéma de discrétisation en temps

standard:

Sh(t, z, θ, vh(t, z, θ), vh) = 0, (t, z, θ) ∈ [0, T ] × S̄,

avec

Sh(t, z, θ, r, ϕ)

:=



















min
[

r − E
[

ϕ(t+ h, Z0,t,z
t+h ,Θ

0,t,θ
t+h )

]

, r −Hϕ(t, z, θ)
]

if t ∈ [0, T − h]

min
[

r − E
[

ϕ(T,Z0,t,z
T ,Θ0,t,θ

T )
]

, r −Hϕ(t, z, θ)
]

if t ∈ (T − h, T )

min
[

r − UL(z, θ) , r −Hϕ(t, z, θ)
]

if t = T.

qui peut se formuler de manière équivalente sous forme de schéma implicite rétrograde:

vh(T, z, θ) = max
[

UL(z, θ) , Hvh(T, z, θ)
]

,

vh(t, z, θ) = max
[

E
[

vh(t+ h, Z0,t,z
t+h , θ + h)

]

,Hvh(t, z, θ)
]

, 0 ≤ t ≤ T − h,

et vh(t, z, θ) = vh(T − h, z, θ) for T − h < t < T .

La manière usuelle de traiter de tels schéma est d’utiliser la récurrence:

vh,n+1(T, z, θ) = max
[

UL(z, θ) , Hvh,n(T, z, θ)
]

,

vh,n+1(t, z, θ) = max
[

E
[

vh,n+1(t+ h, Z0,t,z
t+h , θ + h)

]

,Hvh,n(t, z, θ)
]

,

depuis vh,0 = E[UL(Z0,t,z
T ,Θ0,t,θ

T )]. Grâce à l’effet de la variable délai Θt dans l’impact de

marché, ce n’est pas optimal de traiter immédiatement après une transaction. Dès lors, on

se ramène au schéma explicite rétrograde suivant:

vh(T, z, θ) = max
[

UL(z, θ) , HUL(z, θ)
]

,

vh(t, z, θ) = max
[

E
[

vh(t+ h, Z0,t,z
t+h , θ + h)

]

, sup
e∈Cε(z,θ)

E
[

vh(t+ h, Z
0,t,ze

θ

t+h , h)
]

]

,
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où ze
θ = Γ(z, θ, e)

Convergence du schéma numérique

Nous prouvons la stabilité, la monotonicité et la cohérence du schéma numérique, et

ainsi qu’il est convergent, suivant un argument adapté de Barles-Souganidis [8].

Analyse de performance

Nous fournisssons des résultats numériques obtenus avec notre implémentation. Nous

proposons une analyse de performance comparée. Par exemple, nous illustrons le rendement

de cette stratégie par sa performance finale 2.2, avec le détail de la méthodologie et des

commentaires.

Figure 1.2: Optimal strategy perfrmance empirical distribution.

1.3.2 Trading haute fréquence optimal avec des ordres limites et au

marché

Dans le chapitre 5, nous passons à un autre aspect important du trading haute fréquence, les

stratégies de tenue de marché. La tenue de marché est l’action de fournir en permanence

de la liquidité sur le marché en traiter avec des ordres limites. Dans ce travail, nous
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examinons la situation d’un investisseur qui est capable de traiter avec des ordres limites,

mais aussi avec des ordres au marché, et ainsi nous considérons une stratégie de type mixte.

L’objectif de l’investisseur est de maximiser l’utilité de son profit sur un horizon de temps

fini. Notre but est d’obtenir un modèle simple et facile à manier, toute en gardant une

modélisation précise de la microstructure sous-jacente. Nous choisissons le contexte de la

microstructure à priorité prix/date, qui est la plus standard, et peut être rencontrée par

exemple sur les actions au comptant. Nous proposons un modèle facile à calibrer qui reflète

les éléments centraux de la microstructure prix/date: en particulier, le modèle permet

de reproduire des comportements divers pour le spread, et nous prenons notamment en

compte le fait que le marché peut réagir aux actions de l’investisseur. Nous représentons

cette situation comme un problème de contrôle stochastique mixte, que l’on étudie par des

méthodes de programmation dynamique, et nous fournissons un schéma numérique rapide,

grâce une méthode de réduction de la dimension des variables d’état. Nous prouvons que

ce schéma est convergent, et proposons des illustrations numériques ainsi qu’une analyse

de performance comparée.

Nous proposons d’examiner les risques suivants

• Risque d’inventaire: risque de détenir une position non nulle d’un actif dont le prix

fluctue

• Risque d’exécution: incertitude que les ordres limites seront exécutés

• Risque de sélection adverse: le marché réagit de manière adverse aux action de

l’investisseur

Notre objectif est de prendre en compte ces trois risques dans notre stratégie de tenue

de marché. Nous adoptons l’approche de gestion d’inventaire qui a été développé par le

travail Avellaneda et Stoikov [7]: le teneur de marché peut soumettre des cotations au bid

et à l’ask avec une taille unitaire, à n’importe quel prix autour d’un prix mid, et l’arrivé

d’ordre au marché de contrepartie est modélisée par un processus de Poisson donc l’intensité

dépend de la distance avec le prix price. Ce modèle conduit à conserver l’inventaire proche

de zéro à toute date. D’autres articles récents proposent des approches suivant cette même

ligne [35] et [16].

Modèle de marché et stratégies de trading

On suppose que le prix mid est un processus de Markov P avec générateur P à valeurs

dans P. Le nombre de mise à jour du prix, l’horloge du tick-time est un processus ponctuel

(Nt)t avec une intensité déterministe λ(t). Sous l’horloge tick-time, la fourchette bid/ask

est supposée être une châıne de Markov stationnaire (Ŝn)n∈N à valeurs dans S = δIm, Im

= {1, . . . ,m}, où δ est la taille du tick. On défini aussi sa matrice de transition (ρij)ij : ρij

= P[Ŝn+1 = jδ|Ŝn = iδ], i, j ∈ Im, ρii = 0. En temps calendaire, le spread est donc: St =
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ŜNt , supposé indépendant de P . Puis les prix bid et ask sont définis par:

P b
t = Pt −

St

2
, P a

t = Pt +
St

2
.

Décrivons maintenant les stratégies de trading. D’abord les ordres limites (make strat-

egy) sont modélisés comme des contrôles continus:

αmake
t = {(Qb

t , L
b
t), (Q

a
t , L

a
t )}

où Qb
t représente la cotation au bid Qb = {Bb,Bb+}, ce qui signifie:

• Bb: meilleur prix bid, et Bb+: meilleur prix bid + un tick (pour gagner la priorité

d’exécution)

• Lb: taille de l’ordre limite d’achat dans [0, ℓ̄]

et Qa
t représente la cotation à l’ask Qa = {Ba,Ba−}, ce qui signifie:

• Ba: meilleur prix ask, et Ba−: meilleur prix ask − un tick (pour gagner la priorité

d’exécution)

• La: taille de l’ordre limite de vente dans [0, ℓ̄]

Dans ce contexte, on décrit la dynamique des variables d’états qui représentent le porte-

feuille. Lorsque l’on conduit une stratégie aux ordres limites αmake
t = {(Qb

t , L
b
t), (Q

a
t , L

a
t )},

l’inventaire Y et le cash X évoluent selon:

dYt = Lb
tdN

b
t − La

t dN
a
t ,

dXt = πa(Qa
t , Pt− , St−)La

t dN
a
t − πb(Qb

t , Pt− , St−)Lb
tdN

b
t .

où

πa(qa, p, s) = p+
s

2
− δ1qb=Ba−

πb(qb, p, s) = p− s

2
+ δ1qb=Bb+ ,

et où nous avons introduit les processus de trade Na et N b, qui comptent les transaction

apparaissant à l’ask et au bid, qui sont, plus précisément:

• Na
t : arrivée d’un ordre au marché d’achat rencontrant un ordre limite de vente ∼

Cox(λa(Qa
t , St)): λ

a(Ba, s) < λa(Ba−, s)

• N b
t : arrivée d’un ordre au marché de vente rencontrant un ordre limite d’achat ∼

Cox(λb(Qb
t , St)): λ

b(Bb, s) < λb(Bb+, s)
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Notons que l’intensité des processus de trade dépend des ordres limites de l’investisseur

(Qa
t , Q

b
t), ce qui est pertinent pour modéliser une réaction adverse du marché, ou comme

ici une dépendance au spread actuel.

La stratégie d’ordres au marché est modélisée par les contrôles impulsionnels αtake =

(τn, ζn)n≥0 où (τn)n est une suite croissante de temps d’arrêts représentants les temps de

décisions et ζn sont Fτn-mesurables, représentant les quantités achetées à l’ask (si ζn ≥
0), ou vendues au bid (si ζn < 0). Ces ordres au marché sont exécutés immédiatement,

conduisant aux sauts suivants:

Yτn = Yτ−
n

+ ζn

Xτn = Xτ−
n
− c(ζn, Pτn , Sτn),

où

c(e, p, s) = ep+ |e|s
2

+ ε,

avec ε > 0 représentant un frais fixe.

Estimation

La section suivante est consacrée à l’estimation des paramètres du modèle. Nous nous

intéressons d’abord à calibrer le modèle de spread. Nous supposons que (St) est observable.

Et nous recontruisons:

• Les ticks times (θn)n définis par:

θn+1 = inf
{

t > θn : St 6= St−
}

, θ0 = 0.

• Le processus ponctuel qui lui est associé:

Nt = # {θj > 0 : θj ≤ t} , t ≥ 0,

• Le spread selon l’horloge tick-time:

Ŝn = Sθn
, n ≥ 0.

Puis, la probabilité de transition ρij = P[Ŝn+1 = jδ|Ŝn = iδ] de la châıne de Markov

stationnaire (Ŝn) est estimée à partir de K échantillons Ŝn, n = 1, . . . ,K suivant un esti-

mateur standard. L’intensité de l’horloge tick-time est elle aussi estimée avec un estimateur

standard, sous des hypothèses simplificatrices valides en haute fréquence.

Nous présentons ensuite une méthode pour estimer les intensités de Na et N b. Con-

centrons nous sur N b par exemple, ce processus représentant l’arrivée de transactions au
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bid. En supposant que nous puissions observer (Qb
t , N

b
t , St), t ≥ 0, nous voulons estimer

les intensités suivantes pour N b:

λb
i(q

b) := λb(qb, s), qb ∈ {Bb,Bb+}, s = iδ, i = 1, . . . ,m.

L’estimation de cette intensité revient à estimer 2m scalaires, ce qui apporte de la flexibilité

au modèle, mais qui requiert une méthode spécifique, on définit:

N b,qb,i
t =

∫ t

0
1{Qb

u=qb,Su−=iδ}dN
b
u,

T b,qb,i
t =

∫ t

0
1{Qb

u=qb,Su−=iδ}du.

et on propose l’estimateur suivant pour λb
i(q

b):

λ̂b
i(q

b) =
N b,qb,i

T

T b,qb,i
T

qui est consistent lorsque T b,qb,i
T >> 1/λb

i(q
b). En effet, N b,qb,i

t a pour intensité λb
i(q

b)1{Qb
t=qb,S

t−=iδ}
et on applique la loi des grands nombres pour sa martingale compensée. La figure 1.3 illustre

cette procédure sur données réelles.

Figure 1.3: Intensités d’exécution sur SOGN.PA le 18 avril, 2011,en s−1 (interpolation

affine) comme fonction du spread.

Optimisation

On se propose d’optimiser l’utilité terminale du profit du teneur de marché, sur un hori-

zon de temps fini, avec deux exmaple de fonction d’utilité: la fonction d’utilité exponentielle
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et la fonction d’utilité moyenne-variance. Dans cette synthèse, pour être plus concis, on se

focalise sur le critère moyenne-variance.

maximiser E
[

XT − γ

∫ T

0
Y 2

t d < P >t

]

sur toutes les stratégies α = (αmake, αtake) ∈ A telles que YT = 0. Notre objectif est donc

de maximiser le cash terminal, sachant que l’on ne détient aucune position sur l’actif risqué

à la date T , et l’on pénalise la détention d’un inventaire non nul pendant [0;T ] à l’aide

de la variance intégrée du portefeuille. γ > 0 est l’aversion au risque quadratique lié à

la détention de Y unités de l’actif P . On peut aisément retirer la contrainte YT = 0 en

introduisant:

L(x, y, p, s) = x− c(−y, p, s) = x+ yp− |y|s
2
− ε.

et nous définissons la fonction de valeur:

v(t, x, y, p, s) = sup
α∈A

Et,x,y,p,s

[

L(XT , YT , PT , ST ) − γ

∫ T

t
Y 2

u ̺(Yu)du
]

,

où l’on a supposé d < P >t = ̺(Pt)dt.

Comme le spread prend des valeurs discrètes, s = iδ, i ∈ Im, nous notons

vi(t, x, y, p) = v(t, x, y, p, iδ)

et identifions v avec (vi)i=1,...,m: une fonction à valeur vecteur dans R
m de [0, T ]×R×R×P.

On utilise des notations similaires pour Li, ci, π
a
i , πb

i , λ
a
i , λ

b
i .

Et nous caractérisons vi comme unique solution d’un QVI tridimensionnelle, que l’on

va simplifier.

Réduction de la dimension

Pour améliorer la vitesse de résolution numérique de la HJBQVI, nous nous intéressons

à réduire la dimension de l’espace d’état. Si l’on suppose que P est un processus de Lévy,

nous avons:

PIP = cP , d < P >t = ̺dt,

où IP est l’identité, pour des constantes cP , ̺. On a alors la réduction de v = (vi)i=1,...,m

sous la forme:

vi(t, x, y, p) = Li(x, y, p) + φi(t, y).

De plus, il existe une constante κ t.q.

0 ≤ φi(t, y) ≤ (T − t)κ,
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pour tous (t, y, i) ∈ [0, T ] × R × Im.

Au final, le problème simplifié devient une QVI unidimensionnelle:

min
[

− ∂φi

∂t
− ycP + γ̺y2 − λ(t)

m
∑

j=1

ρij

[

φj − φi + |y|(j − i)
δ

2

]

− sup
(qb,ℓb)∈Qb

i×[0,ℓ̄]

λb
i(q

b)
[

φi(t, y + ℓb) − φi(t, y) +
iδ

2
(|y| + ℓb − |y + ℓb|) − δℓb1qb=Bb+

]

− sup
(qa,ℓa)∈Qa

i ×[0,ℓ̄]

λa
i (q

a)
[

φi(t, y − ℓa) − φi(t, y) +
iδ

2
(|y| + ℓa − |y − ℓa|) − δℓa1qa=Ba−

]

;

φi(t, y) − sup
e∈R

[

φi(t, y + e) − iδ

2
(|y + e| + |e| − |y|) − ε

]

= 0,

pour (t, y, i) ∈ [0, T ) × R × {1, . . . ,m}, avec la condition terminale:

φi(T, y) = 0, ∀y ∈ R, i = 1, . . . ,m.

Schéma numérique et résultats

Nous résolvons la QVI numériquement en fournissant un schéma numérique explicite

rétrograde. Nous discrétisons d’abord le temps sur une grille régulière [0, T ]: Tn = {tk =

kh, k = 0, . . . , n}, h = T/n. Puis nous discrétisons et localisons les variables d’espace:

YR,M = {ℓ R
M , ℓ = −M, . . . ,M}.

(φi)i=1,...,m approchée par (φh,R,M
i )i=1,...,m, avec la condition terminale: φh,R,M

i (tn, y)

= 0, et nous obtenons le schéma numérique Sh,R,M en remplaçant les quantités suivantes

dans la QVI:

∂φi

∂t
(tk, y) ∼ φh,R,M

i (tk + h, y) − φh,R,M
i (tk, y)

h

les termes non-locaux (tk, z, i) calculés à l’instant tk + h avec:

φi(tk, z) ∼ φh,R,M
i (tk + h,Proj[−R,R](z))

Et nous écrivons le schéma numérique:

φh,R,M
i (tk, y)

= Sh,R,M
(

tk, y, φ
h,R,M
i (tk + h, .),

(

φh,R,M
j (tk + h, y)

)

j=1,...,m

)

,

nous prouvons que Sh,R,M est stable et monotone dès lors que:
[

max
i∈Im,qb∈Qb

i

λb
i(q

b) + max
i∈Im,qa∈Qa

i

λa
i (q

a) + sup
t∈[0,T ]

λ(t)
]

h < 1,
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De plus Sh,R,M est cohérent (lorsque h → 0, M,N → ∞), et donc convergent en utilisant

un argument de Barles-Souganidis [8].

Enfin, nous proposons des tests numériques détaillés, assortis d’une analyse de per-

formance comparée, dont nous reproduisons ici les figures principales: 1.4, 1.2, 1.3.2 et

1.6.
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Figure 1.4: Forme stylisée de la politique optimal dans le plan YS.

optimal α⋆ WoMO αw constant αc random αr

Terminal wealth m(XT )/σ(XT ) 2.117 1.999 0.472 0.376

m(XT ) 26.759 25.19 24.314 24.022

σ(XT ) 12.634 12.599 51.482 63.849

Num. of exec. at bid m(N b
T ) 18.770 18.766 13.758 21.545

σ(N b
T ) 3.660 3.581 3.682 4.591

Num. of exec. at ask m(Na
T ) 18.770 18.769 13.76 21.543

σ(Na
T ) 3.666 3.573 3.692 4.602

Num. of exec. at market m(Nmarket
T ) 6.336 0 0 0

σ(Nmarket
T ) 2.457 0 0 0

Maximum Inventory m(sups∈[0;T ] |Ys|) 241.019 176.204 607.913 772.361

σ(sups∈[0;T ] |Ys|) 53.452 23.675 272.631 337.403

Table 1.2: Synthèse de l’analyse de performance (5.105 simulations).
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Figure 1.5: Distribution empirique de la performance terminale XT (spline interpolation).
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Figure 1.6: Efficient frontier plot
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1.3.3 Trading haute fréquence optimal dans une microstructure au pro-

rata avec information prédictive

Dans le chapitre 6 nous étudions une stratégie mixte de tenue de marché dans une mi-

crostructure exotique appelée la microstructure pro rata. Cette microstructure peut être

rencontrée par example sur les futures de taux d’intérets courts. Ici encore, on examine

la situation d’un investisseur qui souhaite maximiser son profit sur un horizon de temps

fini, et qui est capable de traiter avec des ordres limites et des ordres de marché. Nous

prenons la perspective de la gestion d’inventaire, ce qui signifie que l’objectif premier du

teneur de marché est de maintenir une position sur l’actif risqué proche de zéro à toute date,

de sorte à éviter d’avoir une exposition au risque de marché. Dans cette microstructure

particulière, on peut introduire et prendre en compte dans notre stratégie deux sorte de

risques supplémentaires: le risque d’overtrading, qui est le risque de variation brutale de

l’inventaire du teneur de marché, dû au fait qu’il ne contrôle pas la quantité traitée avec

des ordres limites; et le risque de sélection adverse, qui est le risque que le marché réagisse

de manière adverse aux actions de l’investisseur. Suivant cette dernière problématique, on

introduit une variable d’état supplémentaire, que l’on interprète comme une information

prédictive sur le prix, qui nous permet d’équilibrer notre inventaire lorsque qu’on prévoit

un changement de prix. Cette propriété nous permet également d’avoir une performance

supérieure dans nos backtests.

Nous nous intéressons à la microstructure appelé ”vanilla pro rata”, qui peut être décrite

succintement de la manière suivante: chaque ordre de marché est réparti sur tous les ordres

limites actifs dans le LOB au meilleur prix, proportionnellement au volume de chaque ordre

limite. La figure 1.7 décrit l’appariemment d’un ordre au marché avec des ordres limites

actifs du LOB.

Ce type de microstructure, avec la taille du tick caractéristique, amène deux partic-

ularités, ainsi qu’illustré par la figure 1.8 (instruments en haut à gauche), reproduite de

[25].

• D’abord la fourchette bid/ask est égale la plupart du temps à 1 tick

• Ensuite, la liquidité offerte aux meilleurs prix est largement surdimensionnée par

rapport à la taille moyenne d’une transaction.

Notre travail est fondé sur l’approche de gestion d’inventaire ainsi que présenté dans

Avelaneda et Stoikov (2008) [7]. Nous utilisons aussi des méthodes développées dans [35],

[37] ou [68]. De plus, l’idée d’utiliser un indicateur prédictif de prix vient de [21]. Enfin,

nous avons comparé nos résultats empiriques à ceux de [25].

Modèle de marché

Soit un espace de probabilités (Ω,F ,P) équipé d’une filtration F = (Ft)t≥0, satisfaisant

les conditions usuelles. Nous utilisons le modèle simple de prix:
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Figure 1.7: Transactions simultanées déclenchées par un ordre au marché

• P le prix mid (observable: lit microstructure ): un processus de Markov de générateur

P à valeurs dans P. On suppose que c’est une semi-martingale spéciale.

• δ la taille du tick, en général sur les STIR 12.5 EUR par contrat

• P a (resp. P b) le prix ask (resp. bid) (one-tick microstructure):

P a := P + δ/2 , P b := P − δ/2

Maintenant, nous considérons des stratégies de trading mixtes, c’est à dire faites d’ordres

limites et d’ordres au marché, qui sont modélisés respectivement comme des contrôles con-

tinus et des contrôles impulsionnels. En effet, la soumission d’ordres limites, leur mise à

jour ou leur annulation est gratuite, ainsi il est judicieux de considérer comme des contrôles

continus. Au contraire, les exécutions sont coûteuses, et ainsi les ordres au marché, con-

duisant à une exécution immédiate, sont modélisés comme des contrôles impulsionnels.

Plus précisemment, une stratégie de trading est une paire α := (αmake, αtake) de contrôles

réguliers/impulsionnels:

αmake := (La
t , L

b
t)t≥0 , α

take := (τn, ξn)n∈N
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Figure 1.8: Exploration du marché

où La et Lb sont des processus prévisibles, à valeurs dans {0, 1}, représentant les régimes

make. La = 1 (resp. Lb = 1) signifie que l’investisseur a des ordres limite actifs à l’ask

(resp. bid). Aussi, (τn) est une suite croissante de temps d’arrêts, et ξn est une variable

Fτn-mesurable à valeurs dans [−ē, ē], representant la quantité achetée (si ξn > 0) ou vendue

(si ξn < 0) par l’investisseur. L’ensemble de telles stratégies est noté A.

Décrivons maintenant notre modèle de processus de trade. En raison de la règle du

pro rata, les fournisseurs de liquidité doivent exagérer le volume de leurs ordres limites:

ils postent des ordres avec un volume bien plus élevé que ce qu’ils n’entendent réellement

traiter. Donc, ils ne contrôlent pas la quantité des transactions auxquelles ils participent,

et ceci est le risque d’overtrading. Cela diffère de la microstructure prix/date. Le volume

entrant à l’ask (resp. bid), reçu par l’investisseur, est modélisé par une mesure de Poisson

aléatoire νa (resp. νb) d’intensité λdt× µ(dz) sur R
+ ×R

+. λ > 0 représente l’intensité de

trading et µ est la distribution du volume d’une transaction. On définit:

• Le nombre de transactions auxquelles à participé le HFT:

Na
t :=

∫ t

0

∫

z≥0
νa(dt, dz) , N b

t :=

∫ t

0

∫

z≥0
νb(dt, dz)
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• Le volume cumulé exécuté par le HFT:

ϑa
t :=

∫ t

0

∫

z≥0
zνa(dt, dz) , ϑb

t :=

∫ t

0

∫

z≥0
zνb(dt, dz)

Dans cette sitation, décrivons l’évolution des variables du portefeuille. L’inventaire Y

et le cash X ont la dynamique suivante sous le contrôle α:

dYt = Lb
tdϑ

b
t − La

t dϑ
a
t , τn ≤ t < τn+1

dXt = La
t (Pt +

δ

2
)dϑa

t − Lb
t(Pt −

δ

2
)dϑb

t , τn ≤ t < τn+1

Yτn − Yτn− = ξn

Xτn −Xτn− = −ξnPτn − |ξn|(
δ

2
+ ǫ) − ε0

où ǫ > 0 est un frais par unité et ε0 > 0 est un frais fixe. Remarquons que la valeur

liquidative du portefeuille, V := X + Y P a la dynamique suivante:

dVt =
δ

2
(La

t dϑ
a
t + Lb

tdϑ
b
t) + Yt−dPt

Vτn − Vτn− = −(
δ

2
+ ǫ)|ξn| − ε0

Optimisation

Le système est entièrement déterminé par les variables d’état (X,Y, P ) controllées par

α ∈ A. Soit T > 0 un horizon de temps fini. Nous voulons :

maximiser E
[

XT − γ
∫ T
0 Y 2

t d < P >t

]

over all α ∈ A s.t. YT = 0

où γ > 0 est un paramètre de pénalisation. Ceci est équivalent à:

maximiser E
[

L(XT , YT , PT ) − γ
∫ T
0 Y 2

t ̺(Pt)dt
]

over all α ∈ A

où l’on suppose d < P >t= ̺(Pt)dt, avec ̺ positif, continu sur R. La fonction de liquidation

L est:

L(x, y, p) = x+ yp− |y|(δ
2

+ ǫ) − ε0

Définissons maintenant la fonction de valeur:

v(t, x, y, p) := sup
α∈A

Et,x,y,p

[

L(XT , YT , PT ) − γ

∫ T

0
Y 2

t ̺(Pt)dt

]

et nous avons des bornes sur cette fonction de valeur (Proposition 6.3.1): il existe une

constante KP ∈ R t.q. L(x, y, p) ≤ v(t, x, y, p) ≤ x + yp + δλµ̄(T − t) + KP où µ̄ est la

moyenne de µ.
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Introduisons les opérateurs apparaissant dans le DPP. Pour tous (ℓa, ℓb) ∈ {0, 1}2 nous

définissons l’opérateur non-local associé avec le contrôle de l’ordre limite:

Lℓa,ℓb

:= P + ℓaΓa + ℓbΓb

où

Γaφ(t, x, y, p) := λ

∫ ∞

0
[φ(t, x+ z(p+ δ/2), y − z, p) − φ(t, x, y, p)]µ(dz)

Γbφ(t, x, y, p) := λ

∫ ∞

0
[φ(t, x− z(p− δ/2), y + z, p) − φ(t, x, y, p)]µ(dz)

Nous définissons aussi l’opérateur non-local associé au contrôle d’ordre au marché:

Mφ(t, x, y, p) := sup
e∈[−ē;ē]

φ(t, x− ep− |e|(δ/2 + ǫ) − ε0, y + e, p)

L’équation de la programmation dynamique associée à ce problème est une QVI:

min

{

−∂v
∂t

− sup
(ℓa,ℓb)∈{0,1}2

Lℓa,ℓb

v + γg ; v −Mv

}

= 0 , on [0, T ) × R
2 × P

avec la condition terminale:

v(T, .) = L , on R
2 × P

où nous notons g(y, p) = y2̺(p). Cette expression peut être écrite explicitement (voir

chapitre 5).

Réduction de la dimension

Nous pouvons simplifier cette QVI dans le cas où le prix mid est un processus de Lévy:

PIP = cP et ̺ est constant.

où IP est l’identité sur P i.e. IP(p) = p et cP est une constante dépendant du triplet

caractéristique de P .

Dans ce contexte, v se décompose en:

v(t, x, y, p) = L(x, y, p) + w(t, y)

nous voyons dans cette décomposition la fonction de liquidation. Avec cette simplification,

w est solution de l’inégalité variationnelle unidimensionnelle:

min
[

− ∂w

∂t
− yc

P
+ γ̺y2 − Iaw − Ibw , w − M̃w

]

= 0, on [0, T ) × R,

avec condition terminale:

w(T, y) = 0, ∀y ∈ R,
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où Ia et Ib sont des opérateurs intégraux non-locaux:

Iaw(t, y) = λa
(

∫ ∞

0

[

w(t, y − z) − w(t, y) + z
δ

2
+ (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

+

Ibw(t, y) = λb
(

∫ ∞

0

[

w(t, y + z) − w(t, y) + z
δ

2
+ (

δ

2
+ ε)(|y| − |y + z|)

]

µb(dz)
)

+
,

et M̃ est l’opérateur non-local:

M̃w(t, y) = sup
e∈[−|y|,|y|]

[

w(t, y + e) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε0

]

.

Enfin, nous avons des bornes et une propriété de symétrie pour w.

• Les bornes suivantes sont vérifiées (principe de comparaison):

0 ≤ w(t, y) ≤ (T − t)
[ c2P
4γρ

+ λa(δ + ǫ)µ̄a + λb(δ + ǫ)µ̄b
]

,

• Explicitant la dépendance en cP , on a que:

w(t, y, cP ) = w(t,−y,−cP )

Schéma numérique

Nous étudions un schéma numérique explicite rétrograde pour cette QVI. On définit

une grille de temps régulière:

TN := {tk = kh , k = 0, . . . , N}

et une discrétisation/troncation usuelle pour l’espace d’état:

YM =
{

yi = i∆Y , i = −NY , . . . , NY

}

.

Enfin, on écrit ProjM (y) := −M ∨ (y ∧M), et on considère les approximations de µa et µb,

définies par:

µ̂a =
∑

i∈Z+

µa([i∆Y ; (i+ 1)∆Y ))δi∆Y
, µ̂b =

∑

i∈Z+

µb([i∆Y ; (i+ 1)∆Y ))δi∆Y
,

avec δx le Dirac en x. Pour toute ϕ sur [0, T ] × R, t ∈ [0, T ], et y ∈ R, nous définissons:

Sh,∆Y ,M (t, y, ϕ) = max
[

T h,∆Y ,M (t, y, ϕ) ; M̃h,∆Y ,M (t, y, ϕ)
]

,
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où

T h,∆Y ,M (t, y, ϕ) =

ϕ(t, y) − hγ̺y2 + hycP

+ λah
(

∫ ∞

0

[

ϕ(t,ProjM (y − z)) − ϕ(t, y)
]

µ̂a(dz) +
[δ

2
z + (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

+

+ λbh
(

∫ ∞

0

[

ϕ(t,ProjM (y + z)) − ϕ(t, y)
]

µ̂b(dz) +
[δ

2
z + (

δ

2
+ ε)(|y| − |y + z|)

]

µb(dz)
)

+
,

et

M̃h,∆Y ,M (t, y, ϕ)

= sup
e∈YM∩[−|y|,|y|]

[

ϕ(t,ProjM (y + e)) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε0

]

.

Enfin, nous montrons que ce schéma est monotone, stable et cohérent (Proposition

6.4.1-6.4.2-6.4.3) et donc sa solution wh,∆Y ,M converge localement uniformément vers w

sur [0, T ) × R, lorsque (h,∆Y ,M) va en (0, 0,∞) (Theorème 6.4.1).

Application: HFT avec information prédictive sur le prix

Enfin, nous avons conduits des tests numériques en supposant que le prix mid est un

processus de Lévy, sur lequel nous avons une information prédictive. Plus précisement, on

suppose que:

• Le prix mid P est un processus de saut pur δZ.

• On a:

P (Pt+h − Pt = δ |Ft) = π+h+ o(h)

P (Pt+h − Pt = −δ |Ft) = π−h+ o(h)

P (|Pt+h − Pt| > δ |Ft) = o(h)

avec π+, π− > 0 et on note ̟ := π+ − π−

Donc PIP = cP = ̟δ et ̺(.) ≡ (π+ + π−)δ2.

Dans ce contexte on peut calculer la politique optimale (figure 1.9).

Comme illustration numérique, nous avons réalisé une analyse de performance comparée

détaillée sur des données simulées, et nous reproduisons les résultats principaux à la table

1.10.
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Figure 1.9: Politique optimale α⋆ à la date t = 0.

Quantity Definition α⋆ αWoMO αcst

Info ratio over T m(V̂ .
T )/σ(V̂ .

T ) 3.67 0.89 0.18

Profit per trade m(V̂ .
T )/m(Q̂total,.) 8.06 16.31 5.57

Risk per trade σ(V̂ .
T )/m(Q̂total,.) 2.19 18.31 29.56

Mean performance m(V̂ .
T ) 31446.4 28246.3 21737.2

Standard deviation of perf σ(V̂ .
T ) 8555.46 31701.2 115312

Skew of perf skew(V̂ .
T ) 0.64 0.16 -0.007

Kurtosis of perf kurt(V̂ .
T ) 3.82 3.31 7.02

Mean total executed volume m(Q̂total,.) 3900.68 1730.82 3900.61

Mean at market volume m(Q̂market,.) 1932.29 0 0

Ratio market over total exec m(Q̂market,.)/m(Q̂total,.) 0.495 0 0

Figure 1.10: Synthèse des résultats de backtest.



Chapter 2

Introduction

2.1 General objectives and motivations

This thesis’ objective is to provide a mathematically rigourous approach to some of the

most common aspects of high frequency trading.

From a financial point of view, we contribute to the quantitative coverage of the follow-

ing issues: indirect trading costs minimization, market-making, and mixed passive/active

high frequency trading strategies. We model and study both the standard price/time mi-

crostructure and the more exotic pro-rata market microstructure. We attempt to provide

a complete treatment of each situation, from modelling and mathematical resolution, to

calibration and a posteriori numerical experiments, including simulation and real-data tests

when available.

From a mathematical perspective, we extend the frameworks that were recently devel-

oped in the mathematical finance litterature. We propose detailled numerical resolution

of mixed regular/impulse optimal stochastic control problems. We design original numer-

ical schemes for solving dynamic programming variationnal inequalities, that match the

constraints of their high frequency purpose: we provide dimension reduction techniques,

along with explicit computationnal algorithms that allows us to fasten the resolution of

such problems, and therefore allow us to use the algorithms in real time. We prove the

convergence of each specific scheme and provide numerical examples and illustrations.

In chapter 4, we consider the situation of an investor willing to sell a large portfolio

at best price. We provide numerical solutions to an impulse control problem arising from

the modelling of this problem, and we are able to take into account the effects of the bid-

ask spread and market price impact penalizing speedy or large trades. The corresponding

dynamic programming (DP) equation is a quasi-variational inequality (QVI) with solvency

constraint satisfied by the value function in the sense of constrained viscosity solutions. We

propose a tractable numerical solution based on an explicit backward numerical scheme for
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the DPQVI. The convergence of this discrete-time scheme is shown by viscosity solutions

arguments. We also provide numerical results both that show the behavior of the numerical

scheme, the typical shape of the optimal strategy, and comparative performance analysis

with respect to some benchmark execution strategies.

In chapter 5, we propose a framework for studying optimal high frequency trading

strategies in the standard price/time microstructure, and we propose an application to

european cash equities. We consider an (high-frequency) investor whose objective is to

maximize her expected utility from revenue over a short term horizon, given that they are

able to trade both with limit and market orders, while controlling their inventory position.

This is formulated as a mixed regime switching regular/impulse control problem that we

characterize in terms of quasi-variational system by dynamic programming methods. Cal-

ibration procedures are derived for the model, along with practical example for real-data

fitting. We provide an explicit backward splitting scheme for solving the problem, and show

how dimension can be reduced to a system of simple equations involving only the inventory

and spread variables. Several computational tests are performed both on simulated and

real data, and we perform detailled benchmarked performance analysis for the resulting

algorithm.

In chapter 6, we propose a framework to study optimal high frequency trading (HFT)

strategy in an exotic market microstructure, the so-called pro-rata microstructure, and

propose an application to HFT on short-term interest rate futures contracts. Here again,

the high-frequency trader has the choice to trade via market orders or limit orders, which

are represented respectively by impulse controls and regular controls. We discuss and model

the main risks specific to this microstructure, which are linked to the fact the size of the

HF trades is not controlled. We assess the consequences of this specific fact in the context

of optimal liquidation. The optimal trading problem is studied by stochastic control and

dynamic programming methods, which lead to a characterization of the value function in

terms of an integro quasi-variational inequality. We then provide the associated numerical

resolution procedure, and convergence of this computational scheme is proved. We also

propose algorithm simplifications for specific cases of practical interest: in particular we

demonstrate a high frequency trading strategy in the case where a (predictive) directional

information on the price is available. Each of the resulting strategies are illustrated by

performance tests.

Let us now introduce the financial context that led to such models, along with a qual-

itative presentation of the financial objects and mechanisms that are at the core of high

frequency trading. In 2.2.1 we propose an overview of the context of high frequency trading.

In 2.2.2, we present the general vocabulary that we will use throughout this thesis, and we

recall general results and qualitatives observations about market microstructure. In 2.2.3

we propose to sum up the different issues faced in the financial industry, where a solution

involving high-frequency trading is available. Finally, we provide an outline of this thesis,
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along with the summary of our main results in section .

2.2 Qualitative observations and context

2.2.1 General presentation

High-frequency trading is the use of automated strategies to trade securities such as cash

equities, currencies or derivatives, with the distinguishing feature that positions are held

for a very short period of time, ranging from a few seconds to a few hours. The term

encompass several distinct trading techniques, that are often associated with the use of

highly quantitative or data-intensive decision methods, heavy technology infrastructure,

and no overnight position.

However, due to the recent increased availability of electronic trading technologies, as

well as regulatory changes, a large range of investors are now able to implement high

frequency trading strategies. The main regulatory frameworks that recently impacted

high-frequency trading are MiFID in Europe (Market in Financials Instruments Directive,

implemented 1 November 2007) and RegNMS in the United States (Regulation National

Market System, 2007). They both aim at fostering competition between marketplaces,

and promoting fair price formation processes. The practical results of these framework is

the development of alternatives marketplaces (such as BATS or Chi-X, for example), and

coincidently new needs in liquidity provision, orders routing and arbitrage.

In most of modern public security markets, the price formation process, or price dis-

covery, results from competition between several market agents that take part in a public

auction. In particular, day trading sessions, which are also called continuous trading phases,

consist of continuous double auctions. High-frequency trading takes place in the continuous

trading sessions, and therefore the precise study and modelling of actual mechanisms im-

plementing this continuous double auction is of central importance when designing a high

frequency trading strategy. This is precisely the subject of market microstructure: from

[56], market microstructure theory is “the study of the process and outcomes of exchanging

assets under a specific set of rules. While much of economics abstracts from the mechanics

of trading, microstructure theory focuses on how specific trading mechanisms affect the

price formation process.” In the next subsection, we present the main mechanisms involved

in price formation process.

2.2.2 The different types of limit order books

In this subsection, we present the mechanisms for order peering in the continuous trading

phase, along with the general vocabulary that we will be using throughout this thesis.

The continuous trading phase is implemented in the general setup of continuous dou-
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ble auctions. This means that the marketplace (for example the London Stock Exchange)

displays publicly at least partial information about offered selling and buying prices. The

liquidity providers are market agents that offers those prices, waiting for a counterpart mar-

ket agent to take their offer, therefore leading to a trade. Liquidity providers compete in an

auction on both buy side (called the bid side) and sell side (called the ask side). Praction-

ners often distinguish between price-driven markets and order-driven markets. Although

the definition of those notions may vary depending on the author, the general distinction

consist in the following:

• Price-driven markets are markets where liquidity providers offer a price for any trans-

action volume. Generally speaking, there is a small number of dedicated market

agents that act as liquidity providers. In actual markets however, e.g. FX markets,

the price offered by the liquidity providers often depends on the volume wanted by

their counterparts. This microstructure can also be encountered on more rudimen-

tary markets, as for example real-time online betting markets, where a monopolistic

market-maker set prices for a bet game so that the number of bets is balanced on

both side of the game.

• Order-driven markets are markets where liquidity providers offer a given quantity at

a given price, either to buy or to sell. Contrary to the previous organization, any

market participant is able to act as a liquidity provider, thanks to the use of limit

order trading (see below). This mechanism is the most common microstructure on

electronic financial markets, for example it can be found on European cash equities,

commodities or interest rates derivatives. This is implemented by the use of a limit

order book (LOB), an object that we will describe in the following paragraphs.

In this thesis, we will focus on order-driven markets, since this is the mainstream market

organization. Let us now define what is a limit order book, and examine two different

orders peering rules.

We mention the complete survey article [33] about the limit order book, from where

we adapted the following definitions. The role of a marketplace is to gather and to match

the order to trade, originated from market participants, that can be submitted at any time

during the continuous trading phase. They are of two types:

Definition. A market order of size m is an order to buy (sell) m units of the asset being

traded at the lowest (highest) available price in the market.

Definition. A limit order of size ℓ at price p is an order to buy (sell) ℓ units of the asset

being traded at the specified price p.

A limit order can be submitted to the market, updated in price or quantity or cancelled

at any time, and therefore we call:

Definition. An active limit order at time t is a limit order that has been submitted at
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some time t0 < t, but has not been fully filled or cancelled by time t.

It is precisely the active limit orders in a market that make up the limit order book:

Definition. The limit order book (LOB), for a given asset, is the set of all active limit

orders in the market at time t for this asset.

In addition to that, each marketplace follow its own policy about what information is

publicly displayed. For example, the most transparent marketplaces (lit microstructure)

display the aggregated volumes offered at each prices, and the usual data presentation looks

as follows 2.1:

Ask Bid

Price Quantity Price Quantity

Level 1 50.01 80 49.98 120

Level 2 50.02 53 49.97 89

Level 3 50.03 81 49.96 64

Level 4 50.04 112 49.95 163

Level 5 50.05 44 49.94 101

Table 2.1: Schematic representation of a snapshot at time t of a lit limit order book. In

this example, at time t, the tick size is 0.01 the ask price is 50.01, the bid price is 49.98,

and the spread is 0.03

Every electronic market allows only a discrete set of possible limit prices, where the tick

size is the minimum increment between two possible prices. Therefore, we are able to use

the definition of best prices, and the bid/ask spread:

Definition. The bid price at time t is equal to the highest stated price among buy limit

orders in the limit order book.

Definition. The ask price at time t is equal to the lowest stated price among sell limit

orders in the limit order book.

Definition. The bid-ask spread at time t is the difference between the ask price at time t

and the bid price at time t.

Moreover, some more complex notions are often associated with the LOB, in particular

some concepts coming from dynamic models of the LOB. Among them, the concept of

market impact refers to the phenomenon of the ask (bid) price being deteriorated, i.e.

being higher (lower), after a market order to buy (sell) has consumed several levels of the

LOB at once. The opposite concept is the order book resilience, which stands for the fact

that after a market order causing market impact, the emptied levels tends to re-populate

with new limit orders.

Finally, let us give two practical examples of such limit order books. First, the most
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common implementation of the LOB is the price/time microstructure. This microstructure

is the most common microstructure in modern exchanges. It can be found e.g. on all Eu-

ropean cash equities, with varying level of data confidentiality depending on the exchange.

Its principle is very straightforward: an incoming market order is matched with the oldest

active limit order among the best priced limit orders in the LOB. A detailled description

of this microstructure can be found e.g. in [21] and [37].

Another important microstructure, however more exotic, is the pro-rata microstructure.

The pro-rata microstructure (see [43] for extensive presentation and discussion) can be

schematically described as follows: when a market order comes in the pro-rata limit order

book, its volume is dispatched among all active limit orders at best prices, proportionnally

to each limit orders volumes, and therefore create several transactions (see Figure 2.1).

���

����

����

����

����

����

�
�
��
�
�

����	AB	CADE�BF
������	�� ���������� ��	���	

�� ��	�����

!����

!����

!����

!����

!���

�

"#$� "#$��� "#$�� "#$��� "#$�� "#$��� "#$�� "#$��� "#$�% "#$�%� "#$�� "#$��� "#$�& "#$�&� "#$�' "#$�'� "#$�# "#$�#� "#$�" "#$�"�

�
�
��

��	A�

Figure 2.1: Schematic view of the pro-rata Limit Order Book.

This pro-rata microstructure is in use in some derivatives markets (e.g. London Inter-

national Financial Futures and options Exchange, or Chicago Mercantile Exchange), and

will be the subject of a whole chapter of this thesis.

2.2.3 Issues faced in high-frequency trading industry

In this subsection, we sum up the main industrial issues where high-frequency trading

applies. We focus on the strategic stakes of high-frequency trading, and we put aside the

technology issues such as latency minimization, direct market access or hardware speed

improvement, which are however crucial aspects of the high frequency trading practice.
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Indeed, our aim in to provide coverage for several distinct use of high frequency trading

strategies, which are listed and summarized below.

Indirect trading costs minimization

Indirect trading costs minimization consists in obtaining the highest possible price from

a sell trade, or obtaining the lowest possible price for a buy trade.

This problem naturally arises when the traded volume is large, due to finite liquidity

offering in the LOB (see the above section) : indeed, a large single transaction at market

price can desequilibrate the LOB by consuming several levels at once. For example, if an

investor sends a market order to buy e.g. 200 shares in the book represented in table 2.1,

the result of that transaction is:

• 80 shares at 50.01

• 53 shares at 50.02

• 67 shares at 50.03

therefore, the ask price at the end of this transaction is 50.03 with a volume offered of 14.

Then, the Volume Weighted Average Price of this single transaction is (80 × 50.01 + 53 ×
50.02+67×50.03)/200 = 50.0193 which is about one tick greater than the ask price before

the transaction, which leads to a loss of 2 bp. This effect is known as market impact. To

give a comparison point, a strategy that trades on a daily basis, and that is expected to

make a 5% return a year, have a daily expected return of 2 bp, and this is wiped out by

the market impact. Moreover, several other costs, as the cost of crossing the spread, the

brokers’ fee or latency-related issues can penalize a single trade. Therefore we see that it is

of crucial importance for portfolios managers to ensure the best possible execution of their

trades.

Actors involved in the indirect trading costs optimization are both investors such as large

hedge funds or investment banks, that develops their proprietary solution to this problem,

and brokers, that typically have a large daily volume to trade on behalf of their clients.

The brokers are moreover bound by the MIFiD regulations in Europe, and RegNMS act in

the US, that force them to operate best execution algorithms. Some estimates that about

70% − 80% of the european equities [34] traded volume is done by execution algorithms,

and other algorithmic trading.

Classical solutions to this problem can be classified around two central ideas: the space-

optimization methods, and the time-optimization methods.

The space optimization procedure has received little focus from from academic litera-

ture, but some works are available, e.g. [48]. The idea underlying this method is to profit

from the fact that an asset can often be traded on several distincts marketplaces. There-

fore, by splitting a large parent order into smaller children orders, and dispatching them on

several marketplaces, the investor is able to take more liquidity at the same time, hence to
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be less exposed market impact. This technique is known as smart order routing (SOR), and

is extensively implemented by numerous brokers in the industry. The optimization proce-

dure in such tools typically involve latency considerations [49], along with high-frequency

trading tools to be able to update quickly the trade schedule.

On the contrary, the time optimization procedure received extensive academic coverage,

for example [3], [31] or [35]. The idea underlying this method is to split a large parent order

into smaller children orders, and to pass the children orders on a extended time period.

One can see the optimization procedure here as finding a balance in the following trade-off:

if the investor trades quickly, they will face no market risk, but will have a large market

impact ; on the contrary, if they trade slowly, they will face a large market risk, due to price

movements, but will have reduced market impact. Several solutions to this problem have

been proposed, with different assumptions, and the general technique is to trade according

to a predefined schedule (optimal trading pattern) that arises when balancing the above

mentionned trade-off under simplifying assumptions. We will give a lot more precisions on

this topic in the following sections.

Finally, from an industrial perspective, some issues remains in that topic. Firstly, the

detectability of trade optimization techniques is central to brokers and portfolio managers.

Indeed, the massive use of execution algorithms is know to be at the source of autocorre-

lation in trade signs (see [18]) or lagged correlation in the trade data of the same asset on

two distinct marketplaces. Therefore, such algorithms are very sensitive to the response

of the LOB they trade onto, and therefore are less efficient when easily detected by com-

petitors. Secondly, mixed market/limit orders execution strategies have so far received less

focus from academical literature (see [67] or [37]), although the use of limit order trading

is much cheaper than market order trading, and therefore extensively used in the industry

in optimal execution strategies.

Pure alpha strategies

Now, let us focus on pure alpha strategies, which is a jargon term that refers to profit

maximisation strategies that are largely irrespective of market conditions. This category

includes the following strategies:

• Market-making strategies. This class of strategies are based on the idea that using

limit orders trading, one can buy at the bid price, and sell at the ask price, and

therefore gain the bid/ask spread. Such a strategy typically involve continuously

providing bid and ask quotes, along with optimally chosing the prices and quantities

of these quotes. The market maker will aim at balancing their inventory, i.e. keeping

their position on the risky asset close to zero at all times, and therefore reducing their

market risk.

• Statistical arbitrage strategies. This class of strategies are based on the idea that one

can exploit the statistical relationship between asset prices (e.g. the cointegration
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structure of a market sector, or the relationship between an index and its components)

to profit from transient inefficiencies. Such strategies are typically data-intensive, they

are directionnal over a short-term horizon and repeat a large number of times the

same bet in order to reduce the variance of the outcome. Very often, such strategies

are aggressive strategies, meaning that they take liquidity in the LOB (hit orders).

They are also critically dependent on the latency of the trading infrastructure, due

to competition between actors running the same strategy.

• Mixed strategies, that are the combination of the two above strategies classes.

Actors involved in such strategies include investment banks, hedge funds, proprietary

trading firms and dedicated market-makers. The advantages of running these types of

strategies is that their performance is very stable accross market conditions, and therefore

the investor is not exposed to market risk. On the contrary, shortcomings of running pure

alpha strategies is of two kinds: first, the absolute performance of the strategy is bounded

most of the time, due to the fact that arbitrage opportunities are rare, and second, the

operational risk is high, since technological performance is of crucial importance in this

activity.

This class of strategies was studied in academic litterature, with an emphasis on market-

making strategies.

Firstly, the market-making strategies have been succesfully presented as an inventory

management problem since the pionner works of Amihud and Mendelsohn in 1980 [5] and

Ho and Stoll in 1981 [42], and this approach was modernised in the work of Avellaneda and

Stoikov in 2008 [7]. The underlying idea in this approach is take a risk/reward approach:

the market-maker objective is to make the spread, i.e. to buy an asset at the bid, and sell

it at the ask price, and therefore gain the bid/ask spread as a revenue. When doing this,

the market-maker is subject to the market risk, i.e. the risk of holding a non-zero position

in the risky asset, subject to price change. Therefore, the limit orders trading operated

by the market-maker has two opposite goals: on one hand, they seek at maximizing the

number of trades in which they participate, in order to maximize revenue from making the

spread, and on the other hand, they need to keep their position on the risky asset close to

zero at all time, in order to keep the market risk low, and this constraint leads to offering a

more aggressive price at ask when they hold a long inventory, and conversely. This subject

recently received sustained interest in academic works, with for example the works [16],

[35] and [37].

Secondly, statistical arbitrage strategies have received less academic interest despite of

their wide popularity among high frequency traders. The general idea of such strategies

is to build a predictive price indicator based on market phenomena observation, and then

trade accordingly. Let us illustrate this principle with two examples. In the work [6], the

authors developed a generalized pairs trading approach: they perform a principal compo-
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nent analysis on stocks returns, and then obtain a market portfolio that explains the stocks

returns. Then, the main idea is to assume that the residual between one single stock and

the market portfolio should revert to its mean, and trade accordingly. Another example

is in the work [21], where the authors propose a simple statistical arbitrage strategy to

illustrate the relevance of a predictive price indicator based on a poissonian model for a

LOB. Based on the current state of the LOB, they are able to compute the probability of

price going up or down in the next milliseconds, and they propose a HF strategy to exploit

this information. Finally, in chapter 6, we propose a way to include such predictive price

indicator to a mixed limit/market orders strategy.

The next section is devoted to outlining the main results of this thesis.

2.3 Thesis outline and main results

2.3.1 Optimal execution problem

In chapter 4, we consider the problem of an investor willing to unwind a large position on

a risky asset. This situation is presented as a trade-off between market risk and market

impact. Indeed, trading slowly has a small impact on the market price, but the investor

keeps a non-zero position for a longer time, therefore bears more market risk. On the

contrary, trading quickly has a large impact on the market price, but reduces market risk.

More precisely, we aim at controlling the difference between the marked to market

value (or book value) of a portfolio, and the realized revenue when actually selling this

portfolio. This shortfall is due to illiquidity effects including the bid/ask spread, the broker’s

fees and the market impact. We discuss the notion of market impact, presented as an

adverse market reaction, actually resulting from finite liquidity offering in the market. This

modelling was suggested by the seminal papers [10] and [3] that first introduced the concept

of market impact in a discrete-time model. Applying an optimal control approach to the

order execution problem was already documented in [63] and [28] with continuous controls

(approximation of continuous trading), and in [44] with an impulse control approach. We

use this last approach since it provides a more realistic modelling and still leads to tractable

solutions. Our goal is to find optimal trading schedule and associated quantities.

Let us provide a brief overview of the model and our contributions.

Market model and trading strategies

We consider a financial market where an investor has to liquidate an initial position of

y > 0 shares of risky asset by time T . We consider the following processes:

• (Pt)t∈[0,T ] the market price of the risky asset

• (Xt)t∈[0,T ] the cash holdings
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• (Yt)t∈[0,T ] the number of stock shares held by the investor

• (Θt)t∈[0,T ] the time interval between t and the last trade before t

Trading strategies are considered to be made of impulse controls, in the form:

α = (τn, ξn)n∈N

where (τn), representing the trading dates, are F-stopping times and (ξn), representing the

traded quantities, are Fτn-measurable R-valued variables. Dynamics for the shares and lag

processes are under α:

Θt = t− τn, τn ≤ t < τn+1

Θτn+1 = 0, n ≥ 0.

Ys = Yτn , τn ≤ s < τn+1

Yτn+1 = Yτn + ξn+1 n ≥ 0.

We assume that market price of risky asset process follows a geometric Brownian motion:

dPt = Pt(bdt+ σdWt)

Suppose now that the investor decides to trade the quantity e. If the current market price

is p, and the time lag from the last order is θ, then the price they actually get for the order

e is:

Q(e, p, θ) = pf(e, θ)

we do allow a large set of admissible functions f , but we take the following example for our

impact function:

f(e, θ) = exp
(

λ|e
θ
|βsgn(e)

)

.
(

κa1e>0 + 1e=0 + κb1e<0

)

,

In this expression, κa > 1 and κb < 1 so that
(

κa1e>0 + 1e=0 + κb1e<0

)

represents the

effect of crossing the bid/ask spread. The exponential part exp
(

λ| eθ |βsgn(e)
)

represents

the non-linear effect of finite liquidity offering, i.e. the fact that a large market order will

consume several slices of the order book at the same time. Reflexions about the shape of

such function can be found for example in [50].

Then cash holdings have the following dynamics:

Xt = Xτn , τn ≤ t < τn+1, n ≥ 0.

Xτn+1 = Xτ−
n+1

− ξn+1Pτn+1f(ξn+1,Θτ−
n+1

) − ǫ, n ≥ 0.

PDE characterization



56 Introduction

We choose a constant relative risk aversion utility function U(x) = xγ with γ ∈ (0, 1)

and denote UL(.) = U(L(.)), where L(.) is the liquidation function, which is the revenue

obtained for selling the portfolio. The value function is defined by (we denoted z = (x, y, p)):

v(t, z, θ) = sup
α∈A(t,z,θ)

E
[

UL(ZT )
]

, (t, z, θ) ∈ [0, T ] × S

where A(t, z, θ) is a suitable set of admissible controls and S ⊂ R
3 the solvency region

where the state variables lives.

From [44] v is a unique viscosity solution to a quasi-variational inequality (QVI) written

as:

min

[

− ∂

∂t
v − Lv , v −Hv

]

= 0, on [0, T ) × S,

min [v − UL, v −Hv] = 0, on {T} × S.
where L is the infinitesimal generator associated to the process (X,Y, P,Θ) in a no

trading period:

Lϕ =
∂

∂θ
ϕ+ bp

∂

∂p
ϕ+

1

2
σ2p2 ∂

2

∂p2
ϕ

and H is the impulse operator:

Hϕ(t, z, θ) = sup
e∈C(t,z,θ)

ϕ(t,Γ(z, θ, e), 0)

with

Γ(z, θ, e) = (x− epf(e, θ) − ǫ, y + e, p), z = (x, y, p) ∈ S, e ∈ R

indeed, during a no-trading period, the state process evolve only with the price P and lag

Θ variables, in a diffusive fashion. When an impulse control occurs, the state variables

jumps under the effect of a transaction, with a net loss of marked-to-market value (or book

value), due to the presence of indirect trading costs.

From now, our goal is to solve numerically this HJBQVI.

Explicit numerical scheme

The choice of the numerical scheme is of crucial importance since it will impact the

computing time. We choosed to use an explicit backward scheme by using a specific property

of our problem. We start by considering the standard time discretization scheme:

Sh(t, z, θ, vh(t, z, θ), vh) = 0, (t, z, θ) ∈ [0, T ] × S̄,
with

Sh(t, z, θ, r, ϕ)

:=



















min
[

r − E
[

ϕ(t+ h, Z0,t,z
t+h ,Θ

0,t,θ
t+h )

]

, r −Hϕ(t, z, θ)
]

if t ∈ [0, T − h]

min
[

r − E
[

ϕ(T,Z0,t,z
T ,Θ0,t,θ

T )
]

, r −Hϕ(t, z, θ)
]

if t ∈ (T − h, T )

min
[

r − UL(z, θ) , r −Hϕ(t, z, θ)
]

if t = T.
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which can be formulated equivalently as an implicit backward scheme:

vh(T, z, θ) = max
[

UL(z, θ) , Hvh(T, z, θ)
]

,

vh(t, z, θ) = max
[

E
[

vh(t+ h, Z0,t,z
t+h , θ + h)

]

,Hvh(t, z, θ)
]

, 0 ≤ t ≤ T − h,

and vh(t, z, θ) = vh(T − h, z, θ) for T − h < t < T .

The usual way to treat implicit backward scheme is to solve by iterations a sequence of

optimal stopping problems:

vh,n+1(T, z, θ) = max
[

UL(z, θ) , Hvh,n(T, z, θ)
]

,

vh,n+1(t, z, θ) = max
[

E
[

vh,n+1(t+ h, Z0,t,z
t+h , θ + h)

]

,Hvh,n(t, z, θ)
]

,

starting from vh,0 = E[UL(Z0,t,z
T ,Θ0,t,θ

T )]. Due to the effect of the lag variable Θt in the

market impact function, it is not optimal to trade immediately after a trade. Therefore we

are able to write equivalently this scheme as an explicit backward scheme:

vh(T, z, θ) = max
[

UL(z, θ) , HUL(z, θ)
]

,

vh(t, z, θ) = max
[

E
[

vh(t+ h, Z0,t,z
t+h , θ + h)

]

, sup
e∈Cε(z,θ)

E
[

vh(t+ h, Z
0,t,ze

θ

t+h , h)
]

]

,

where ze
θ = Γ(z, θ, e)

Convergence of the numerical scheme

We prove the stability, monotonicity and consistency properties for the numerical scheme,

and therefore it is convergent, thanks to an argument adapted from Barles-Souganidis [8].

Performance analysis

We provide some numerical results that we obtain from our implementation. We tested

the optimal strategy against a benchmark of two other strategies. We test several aspect

of the optimal strategy, as for example the terminal performance, as shown in figure 2.2,

with detailled methodology and comments.

2.3.2 Optimal high-frequency trading with limit and market orders

In chapter 5, we move to another important aspect of high-frequency trading, the market-

making strategies. Market-making is the action of continuously providing liquidity to the

market by trading with limit orders. In this work, we consider an investor who is able to

trade with limit orders, but also with market orders, and therefore we consider a slightly

larger class of strategies than strict market-making. The investor’s objective is to maximize

the utility of their profit over a finite time horizon. Our goal is to obtain a simple and

tractable market model, with a precise modelling of the underlying microstructure. We

chose the context of the price/time microstructure, which is the most standard market
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Figure 2.2: Optimal strategy perfrmance empirical distribution.

microstructure, and can be encountered on most cash equities, for example. We propose an

easy to calibrate model that reflects some crucial elements of the price/time microstructure:

in particular, we are able to fit very general behaviour for the bid/ask spread, and we also

take into account the fact that the market can react the investor’s actions, thanks to a

control-dependent modelisation of the trades intensities. We represent this situation as a

mixed stochastic control problem, that we study by dynamic programming means, and we

provide a fast numerical scheme to solve it, thanks to a dimension reduction technique. We

prove that this scheme is convergent, and we provide detailled numerical results along with

precise performance analysis.

Most of modern equities exchanges are organized through a mechanism of Limit Order

Book (LOB) which is the central element in market microstructure. In such mechanism,

quoted prices are discrete, separated by the tick size which is typically of order 0.01 EUR

per share. Market makers are liquidity providers in the LOB in the sense that they trade

with limit orders sending buying orders at the bid, selling orders at the ask. Limit orders

strategies are usually referred to as passive trading, since they are executed only when they

meet incoming counterpart market orders. This uncertainty in execution is compensated
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by the profit one can do by making the bid-ask spread (i.e. selling at the ask price, and

buying at the bid price). Yet, passive trading is subject to a series of strategic risks:

• Inventory risk: risk exposure for holding a position in the stock due to price fluctua-

tions also called market risk or volatility risk

• Execution risk: uncertainty in limit orders execution. For example in the price/time

microstructure (FIFO rule):

– an incoming market order is executed against the best priced, first arrived limit

order (queuing system)

– a market maker must be fast enough to profit from this priority rule for catching

the market order flow.

• Adverse selection risk: market reacts adversely to the investor’s quotes

Our objective is to address these three strategic risks in our market-making strategy.

We adopt the inventory management perspective that have been successfully developped

by the seminal paper by Avellaneda and Stoikov [7]: the market maker can submit bid

and ask quotes with unit orders anywhere around a mid price, and the arrival of incoming

counterpart market orders is modelled by a Poisson process with intensity depending on

the distance of the quote to the mid price. This model leads to keeping the position in the

risky asset close to zero at all times. Other recent litterature in line with this approach

includes e.g. [35] and [16] .

Market model and trading strategies

We assume that the stock (mid)-price is a Markov process P with generator P and

state space P. The number of price updates, the so-called tick time clock is assumed to be

a Poisson process (Nt)t with deterministic intensity λ(t). Now under this tick time clock,

the spread is assumed to be a stationary Markov chain (Ŝn)n∈N valued in S = δIm, Im

= {1, . . . ,m}, where δ is the tick size. We also define its transition matrix (ρij)ij : ρij =

P[Ŝn+1 = jδ|Ŝn = iδ], i, j ∈ Im, ρii = 0. In regular time, i.e. calendar time, the spread is

therefore: St = ŜNt and assumed to be independent of P . Then the best bid and best ask

prices are simply defined by:

P b
t = Pt −

St

2
, P a

t = Pt +
St

2
.

Let us turn now to the trading strategies. First, limit orders (make strategy) are

modelled as continuous-time predictable control process:

αmake
t = {(Qb

t , L
b
t), (Q

a
t , L

a
t )}

where Qb
t represents the bid quote valued in Qb = {Bb,Bb+}, which means:
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• Bb: Best bid price, and Bb+: Best bid price + one tick (to get priority in order

execution)

• Lb: size of the limit buy order valued in [0, ℓ̄]

and Qa
t represents the ask quote valued in Qa = {Ba,Ba−}, which means:

• Ba: Best ask price, and Ba−: Best ask price − one tick (to get priority in order

execution)

• La: size of the limit sell order valued in [0, ℓ̄]

In this context, we can write how variables describing the investor’s portfolio evolve.

By applying a limit order strategy αmake
t = {(Qb

t , L
b
t), (Q

a
t , L

a
t )}, inventory Y and cash X

evolve as:

dYt = Lb
tdN

b
t − La

t dN
a
t ,

dXt = πa(Qa
t , Pt− , St−)La

t dN
a
t − πb(Qb

t , Pt− , St−)Lb
tdN

b
t .

where

πa(qa, p, s) = p+
s

2
− δ1qb=Ba−

πb(qb, p, s) = p− s

2
+ δ1qb=Bb+ ,

and where we introduced the trade processes Na and N b, counting the trades occurring at

ask and bid sides respectively, which are, more precisely:

• Na
t : arrival of market buy orders matching the limit sell orders ∼ Cox(λa(Qa

t , St)):

λa(Ba, s) < λa(Ba−, s)

• N b
t : arrival of market sell orders matching the limit buy orders ∼ Cox(λb(Qb

t , St)):

λb(Bb, s) < λb(Bb+, s)

Note that the intensity of these trade processes depends on the investor’s limit orders

controls (Qa
t , Q

b
t), which is relevant to model a market reaction to the investor actions, but

also on other market variable, in our case the bid/ask spread.

Now, market orders strategy is modelled as impulse controls αtake = (τn, ζn)n≥0 where

(τn)n is an increasing sequence of stopping times representing market order decision times

and ζn are Fτn-measurable, representing the number of stocks bought at best ask (if ζn ≥
0), and sold at best bid (if ζn < 0). Thos market orders are immediately executed, are

therefore their effect on portfolio variables is:

Yτn = Yτ−
n

+ ζn

Xτn = Xτ−
n
− c(ζn, Pτn , Sτn),
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where

c(e, p, s) = ep+ |e|s
2

+ ε,

with ε > 0 denotes a fixed fee.

Estimation

The next section is devoted to model calibration. First, we show how to estimate the

parameters involved in spread dynamics. We assume that the continuous-time Markov

chain spread (St) is observable. We observe the following quantities:

• The tick times (θn)n defined by:

θn+1 = inf
{

t > θn : St 6= St−
}

, θ0 = 0.

• The associated Point process:

Nt = # {θj > 0 : θj ≤ t} , t ≥ 0,

• The spread in tick time:

Ŝn = Sθn
, n ≥ 0.

Then, the transition probability ρij = P[Ŝn+1 = jδ|Ŝn = iδ] of the stationary Markov

chain (Ŝn) is estimated from K samples of Ŝn, n = 1, . . . ,K with the standard estimator.

For estimating the intensity of the tick time clock (which is a proxy for market activity)

we propose a straightforward method, based on simplifying assumptions, valid for high-

frequency data.

We go on presenting a method to fit the Cox processes Na and N b intensities. If we

focus on N b for example, this process represent arrivals of markets orders matching bid

quote. Assuming that we can observe the following triplet: (Qb
t , N

b
t , St), t ≥ 0, we aim at

estimating the intensity function of the Cox process N b:

λb
i(q

b) := λb(qb, s), qb ∈ {Bb,Bb+}, s = iδ, i = 1, . . . ,m.

Estimating this execution intensity is equivalent to estimating 2m scalars, which provides

flexibility for model fitting, but requires a specific method. Let us define:

N b,qb,i
t =

∫ t

0
1{Qb

u=qb,Su−=iδ}dN
b
u,

T b,qb,i
t =

∫ t

0
1{Qb

u=qb,Su−=iδ}du.
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here, N b,qb,i
t counts the number of bid market orders that arrives when the spread is iδ,

and T b,qb,i is the time spent in the state iδ and then we propose the following estimator of

λb
i(q

b):

λ̂b
i(q

b) =
N b,qb,i

T

T b,qb,i
T

which is a consistent estimator once T b,qb,i
T >> 1/λb

i(q
b). Indeed N b,qb,i

t has intensity

λb
i(q

b)1{Qb
t=qb,S

t−=iδ} and we apply law of large numbers for the compensated martingale.

Figure 2.3 illustrate this estimation procedure on real data.

Figure 2.3: Plot of execution intensities for the stock SOGN.PA on April 18, 2011, expressed

in s−1 (affine interpolation) as a function of the spread.

Optimization

We propose to optimize the terminal utility of profit of the market-maker, over a finite

time horizon, with two example of utility function: the exponential utility and mean-

variance utility. In this outline, for conciseness, we focus on the mean-variance criterion:

maximize E
[

XT − γ

∫ T

0
Y 2

t d < P >t

]

over all limit/market order strategies α = (αmake, αtake) ∈ A such that YT = 0. Therefore,

our objective is to maximize the terminal cash, given that we hold no risky position by

time T , and we penalize holding a large inventory during [0;T ] by penalizing the integrated

variance of the investor’s portfolio. γ > 0 penalizes the quadratic risk of holding an inven-

tory of Y shares in stock P . We can easily get rid of the terminal constraint YT = 0 by
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introducing the liquidation function:

L(x, y, p, s) = x− c(−y, p, s) = x+ yp− |y|s
2
− ε.

and now we define the value function:

v(t, x, y, p, s) = sup
α∈A

Et,x,y,p,s

[

L(XT , YT , PT , ST ) − γ

∫ T

t
Y 2

u ̺(Yu)du
]

,

where we assumed d < P >t = ̺(Pt)dt.

Since the spread takes discrete values, s = iδ, i ∈ Im, we denote

vi(t, x, y, p) = v(t, x, y, p, iδ)

and we identify v with (vi)i=1,...,m: R
m-vector valued function on [0, T ] × R × R × P. We

use similar notations Li, ci, π
a
i , πb

i , λ
a
i , λ

b
i .

And we characterize vi as the unique viscosity solution of a 3-dimensional QVI, that we

will simplify.

Dimension reduction

In order to fasten numerical resolution of the HJB-QVI, we are now interested in re-

ducing the dimensions of the state space. If we assume that P is a Lévy process, we have:

PIP = cP , d < P >t = ̺dt,

where IP is the identity, for some constants cP , ̺. In this case, we obtain the following

reduction. The value function v = (vi)i=1,...,m is in the form:

vi(t, x, y, p) = Li(x, y, p) + φi(t, y).

Moreover, there exists some constant κ s.t.

0 ≤ φi(t, y) ≤ (T − t)κ,

for all (t, y, i) ∈ [0, T ] × R × Im.

Finally, the simplified problem reads as a system of unidimensionnal QVI:

min
[

− ∂φi

∂t
− ycP + γ̺y2 − λ(t)

m
∑

j=1

ρij

[

φj − φi + |y|(j − i)
δ

2

]

− sup
(qb,ℓb)∈Qb

i×[0,ℓ̄]

λb
i(q

b)
[

φi(t, y + ℓb) − φi(t, y) +
iδ

2
(|y| + ℓb − |y + ℓb|) − δℓb1qb=Bb+

]

− sup
(qa,ℓa)∈Qa

i ×[0,ℓ̄]

λa
i (q

a)
[

φi(t, y − ℓa) − φi(t, y) +
iδ

2
(|y| + ℓa − |y − ℓa|) − δℓa1qa=Ba−

]

;

φi(t, y) − sup
e∈R

[

φi(t, y + e) − iδ

2
(|y + e| + |e| − |y|) − ε

]

= 0,
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for (t, y, i) ∈ [0, T ) × R × {1, . . . ,m}, together with the terminal condition:

φi(T, y) = 0, ∀y ∈ R, i = 1, . . . ,m.

Numerical scheme and results

We solve the QVI numerically, by providing an explicit backward numerical scheme.

We first discretize the time line, by introducing a simple time grid on [0, T ]: Tn = {tk =

kh, k = 0, . . . , n}, h = T/n. Then, we discretize and localize the inventory domain: YR,M

= {ℓ R
M , ℓ = −M, . . . ,M}. On the boundaries, ℓ = ±M , orders are place on only one side

of the book.

(φi)i=1,...,m approximated by (φh,R,M
i )i=1,...,m, starting from the terminal condition:

φh,R,M
i (tn, y) = 0, and we obtain the numerical scheme Sh,R,M by replacing the follow-

ing quantities in the system of non local differential equations:

∂φi

∂t
(tk, y) ∼ φh,R,M

i (tk + h, y) − φh,R,M
i (tk, y)

h

the non local terms at (tk, z, i) computed at time tk + h with:

φi(tk, z) ∼ φh,R,M
i (tk + h,Proj[−R,R](z))

So that we can write the explicit backward scheme:

φh,R,M
i (tk, y)

= Sh,R,M
(

tk, y, φ
h,R,M
i (tk + h, .),

(

φh,R,M
j (tk + h, y)

)

j=1,...,m

)

,

and we prove that Sh,R,M is stable, and monotone provided that:

[

max
i∈Im,qb∈Qb

i

λb
i(q

b) + max
i∈Im,qa∈Qa

i

λa
i (q

a) + sup
t∈[0,T ]

λ(t)
]

h < 1,

Moreover Sh,R,M is consistent (when h → 0, M,N → ∞), hence convergent by using

Barles-Souganidis [8] arguments.

Finally, we provide detailled numerical tests, along with a backtest and performance

analysis on simulated data, and we produce here the main figures: figure 2.4 represents

two views of the optimal policy, at two different dates, and table 2.2 is a synthesis our

benchmarked performance analysis. We also plotted here the empirical distribution of the

performance in figure 2.3.2 and the efficient frontier, obtained by varying the arbitrary

parameter γ, in figure 2.6
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Figure 2.4: Stylized shape of the optimal policy sliced in YS.

optimal α⋆ WoMO αw constant αc random αr

Terminal wealth m(XT )/σ(XT ) 2.117 1.999 0.472 0.376

m(XT ) 26.759 25.19 24.314 24.022

σ(XT ) 12.634 12.599 51.482 63.849

Num. of exec. at bid m(N b
T ) 18.770 18.766 13.758 21.545

σ(N b
T ) 3.660 3.581 3.682 4.591

Num. of exec. at ask m(Na
T ) 18.770 18.769 13.76 21.543

σ(Na
T ) 3.666 3.573 3.692 4.602

Num. of exec. at market m(Nmarket
T ) 6.336 0 0 0

σ(Nmarket
T ) 2.457 0 0 0

Maximum Inventory m(sups∈[0;T ] |Ys|) 241.019 176.204 607.913 772.361

σ(sups∈[0;T ] |Ys|) 53.452 23.675 272.631 337.403

Table 2.2: Performance analysis: synthesis of benchmarked backtest (105 simulations).

2.3.3 Optimal high-frequency trading in a pro-rata microstructure with

predictive information

In chapter 6, we investigate a mixed market-making strategy in a exotic microstructure,

called the pro-rata microstructure. This microstructure can be encountered for example

on short-term interest rates futures. Here again, we consider the situation of an investor

willing to maximize their terminal profit over a finite time horizon, who is able to trade

with limit and market orders. We adopt the perspective of inventory management, which
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Figure 2.5: Empirical distribution of terminal wealth XT (spline interpolation).
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Figure 2.6: Efficient frontier plot

means that the investor primary objective is to keep their position on the risky asset close

to zero at all times, in order to avoid being exposed to market risk. In this particular

microstructure, we are able to define and address two other types of risk: the overtrading

risk, which is the risk of large variations in the investor inventory, due to the fact that they
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do not control the quantity they trade at limit ; and the adverse selection risk, which is

the risk of market reacting unfavorably to the investor quotes. For this last purpose, we

introduce a new state variable, that we interpret as a predictive price indicator, that allows

us to balance our position before the price changes. This last feature also provides an extra

performance on our empirical tests.

We are interested in the so-called ”vanilla Pro-Rata microstructure”, which can be

described succintly the following way: each incoming market order is dispatched on all

active limit orders on the best priced slice of the LOB, proportionnally to each limit order’s

volume. Figures 2.7 describes the peering of a market order with pre-existing limit orders

in the LOB.

500

400

100

100

BEST BID

INCOMING 

SELL 

MARKET 

ORDER

PRO-RATA MATCHING OF 

3 ACTIVE LIMIT ORDERS ON BEST BID

WITH

1 INCOMING SELL MARKET ORDER:

3 SIMULTANEOUS TRADES

TRADE 1:

10

TRADE 2:

40

TRADE 3:

50

TOTAL LIQUIDITY DISPLAYED: 1000

Figure 2.7: Simultaneous trades triggered by a market order.

This type of microstructure, along with characteristic tick size leads to 2 particularities,

as shown on figure 2.8 (top left instruments), reproduced from [25]:

• First, the bid/ask spread is most of the time equal to 1 tick

• Second, the liquidity offered on the best priced slices of the LOB is largely oversized

compared to the average transaction size.
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Figure 2.8: Market exploration

Our work is based on the inventory management approach as developped by Avelaneda

and Stoikov (2008) [7]. We also used some methods from [35], [37] or [68]. Moreover, the

idea of using a predictive price indicator comes from [21]. Finally, we matched our empirical

results with the work [25] that is among the few that are dedicated to such market.

Market model

We use the following simple price model:

• P the mid-price (observable: lit microstructure ): a Markov process of generator P
valued in P. It is assumed to be a special semimartingale.

• δ the tick size, generally on STIR: 12.5 EUR per contract

• P a (resp. P b) the ask (resp. bid) price (one-tick microstructure):

P a := P + δ/2 , P b := P − δ/2

Now, we consider mixed trading strategies, i.e. made of limit orders and market orders,

that are modelled respectively as continuous controls and impulse controls. Indeed, limit

order submission, update or cancel is free of charge, therefore limit orders are modelled

as time-continuous controls. On the contrary, execution is costly, therefore market orders,
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leading to immediate execution, are modelled as impulse controls. More precisely, a trading

strategy is a pair α := (αmake, αtake) of regular/impulse controls:

αmake := (La
t , L

b
t)t≥0 , α

take := (τn, ξn)n∈N

where La and Lb are predictable process, valued in {0, 1}, representing the make regimes.

La = 1 (resp. Lb = 1) means that the high frequency trader has active limit order on

ask (resp. bid) side. Also, (τn) is sequence of non-decreasing stopping times, and ξn is

a Fτn-measurable random variable, valued in [−ē, ē], representing the quantity purchased

(if ξn > 0) or sold (if ξn < 0) by the high frequency trader. The set of such strategies is

denoted by A.

Let us now describe our model for trade processes. Due to pro-rata rule, liquidity

providers must oversize their limit orders: they post orders with much higher volume than

they really intend to trade. This is a way to catch a larger incoming market order volume.

Therefore they do not control the size of trades in which they participate: this is the

overtrading risk. This differs from the price-time microstructure. The incoming market

volume at ask (resp. bid), in which the high frequency trader participate, will be modelled

by a random Poisson measure νa (resp. νb) of intensity λdt × µ(dz) on R
+ × R

+. λ > 0

represent the trade clock intensity and µ is a finite measure representing the distribution

of a single trade’s volume. We also define:

• The number of trades in which the HFT participated:

Na
t :=

∫ t

0

∫

z≥0
νa(dt, dz) , N b

t :=

∫ t

0

∫

z≥0
νb(dt, dz)

• The cumulative volume executed by the HFT:

ϑa
t :=

∫ t

0

∫

z≥0
zνa(dt, dz) , ϑb

t :=

∫ t

0

∫

z≥0
zνb(dt, dz)

In this situation, we are able to describe the evolution of variables describing our port-

folio. Inventory Y and cash X evolve under the following dynamics under control α:

dYt = Lb
tdϑ

b
t − La

t dϑ
a
t , τn ≤ t < τn+1

dXt = La
t (Pt +

δ

2
)dϑa

t − Lb
t(Pt −

δ

2
)dϑb

t , τn ≤ t < τn+1

Yτn − Yτn− = ξn

Xτn −Xτn− = −ξnPτn − |ξn|(
δ

2
+ ǫ) − ε0

where ǫ > 0 is a per share trading cost and ε0 > 0 is a fixed trading cost. Remark that

the marked to market value of portfolio (or book value, liquidative value) evaluated at
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mid-price, V := X + Y P evolve under the following dynamics:

dVt =
δ

2
(La

t dϑ
a
t + Lb

tdϑ
b
t) + Yt−dPt

Vτn − Vτn− = −(
δ

2
+ ǫ)|ξn| − ε0

Optimization

The system is completely determined by the state variables (X,Y, P ) controlled by the

limit/market orders strategy α ∈ A. Let T > 0 be a finite time horizon. We choose to :

maximize E
[

XT − γ
∫ T
0 Y 2

t d < P >t

]

over all α ∈ A s.t. YT = 0

where γ > 0 is a penalization parameter. This is equivalent to:

maximize E
[

L(XT , YT , PT ) − γ
∫ T
0 Y 2

t ̺(Pt)dt
]

over all α ∈ A

where it is assumed that d < P >t= ̺(Pt)dt, with ̺ positive, continuous on R. The

liquidation function L is equal to:

L(x, y, p) = x+ yp− |y|(δ
2

+ ǫ) − ε0

We now define the value function:

v(t, x, y, p) := sup
α∈A

Et,x,y,p

[

L(XT , YT , PT ) − γ

∫ T

t
Y 2

s ̺(Ps)ds

]

and we have some bounds on the value function (Proposition 6.3.1): there exist a constant

KP ∈ R s.t.: L(x, y, p) ≤ v(t, x, y, p) ≤ x+ yp+ δλµ̄(T − t) +KP where µ̄ is the mean of µ.

Now we introduce the operators involved in the DPP. For any (ℓa, ℓb) ∈ {0, 1}2 we define

the non-local operator associated with the limit order control:

Lℓa,ℓb

:= P + ℓaΓa + ℓbΓb

where

Γaφ(t, x, y, p) := λ

∫ ∞

0
[φ(t, x+ z(p+ δ/2), y − z, p) − φ(t, x, y, p)]µ(dz)

Γbφ(t, x, y, p) := λ

∫ ∞

0
[φ(t, x− z(p− δ/2), y + z, p) − φ(t, x, y, p)]µ(dz)

We also define the impulse operator (obstacle) associated with the market order control:

Mφ(t, x, y, p) := sup
e∈[−ē;ē]

φ(t, x− ep− |e|(δ/2 + ǫ) − ε0, y + e, p)
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The dynamic programming equation associated to this problem is a QVI:

min

{

−∂v
∂t

− sup
(ℓa,ℓb)∈{0,1}2

Lℓa,ℓb

v + γg ; v −Mv

}

= 0 , on [0, T ) × R
2 × P

together with terminal condition:

v(T, .) = L , on R
2 × P

where we denoted g(y, p) = y2̺(p). This last equation can be expressed explicitly (see

chapter 5).

Dimension reduction

We are able to simplify this last QVI in the case where the mid-price is a Lévy process

so that:

PIP = cP and ̺ is constant.

where IP is the identity function on P i.e. IP(p) = p and cP is a constant depending only

on the characteristic triplet of P .

In this Lévy context, the value function v is decomposed into the form:

v(t, x, y, p) = L(x, y, p) + w(t, y)

so we see this decomposition makes the liquidative value of the portfolio apparent. With

this simplification, we have w is solution to the integral variational inequality:

min
[

− ∂w

∂t
− yc

P
+ γ̺y2 − Iaw − Ibw , w − M̃w

]

= 0, on [0, T ) × R,

together with the terminal condition:

w(T, y) = 0, ∀y ∈ R,

where Ia and Ib are the nonlocal integral operators:

Iaw(t, y) = λa
(

∫ ∞

0

[

w(t, y − z) − w(t, y) + z
δ

2
+ (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

+

Ibw(t, y) = λb
(

∫ ∞

0

[

w(t, y + z) − w(t, y) + z
δ

2
+ (

δ

2
+ ε)(|y| − |y + z|)

]

µb(dz)
)

+
,

and M̃ is the nonlocal operator:

M̃w(t, y) = sup
e∈[−|y|,|y|]

[

w(t, y + e) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε0

]

.

Finally, we have bounds and symmetry properties for w.
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• We have the bounds (comparison principle):

0 ≤ w(t, y) ≤ (T − t)
[ c2P
4γρ

+ λa(δ + ǫ)µ̄a + λb(δ + ǫ)µ̄b
]

,

• Stressing the dependence in cP , we have that

w(t, y, cP ) = w(t,−y,−cP )

Numerical scheme

We provide an explicit backward computational scheme for the integral variational

inequality. Let us define a regular time grid:

TN := {tk = kh , k = 0, . . . , N}

and a regular discretization/truncation of the state space:

YM =
{

yi = i∆Y , i = −NY , . . . , NY

}

.

Finally, we denote by ProjM (y) := −M ∨ (y∧M), and consider the discrete approximating

distribution of µa and µb, defined by:

µ̂a =
∑

i∈Z+

µa([i∆Y ; (i+ 1)∆Y ))δi∆Y
, µ̂b =

∑

i∈Z+

µb([i∆Y ; (i+ 1)∆Y ))δi∆Y
,

with δx the Dirac measure at x. For any real-valued function ϕ on [0, T ] × R, t ∈ [0, T ],

and y ∈ R, we define:

Sh,∆Y ,M (t, y, ϕ) = max
[

T h,∆Y ,M (t, y, ϕ) ; M̃h,∆Y ,M (t, y, ϕ)
]

,

where

T h,∆Y ,M (t, y, ϕ) =

ϕ(t, y) − hγ̺y2 + hycP

+ λah
(

∫ ∞

0

[

ϕ(t,ProjM (y − z)) − ϕ(t, y)
]

µ̂a(dz) +
[δ

2
z + (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

+

+ λbh
(

∫ ∞

0

[

ϕ(t,ProjM (y + z)) − ϕ(t, y)
]

µ̂b(dz) +
[δ

2
z + (

δ

2
+ ε)(|y| − |y + z|)

]

µb(dz)
)

+
,

and

M̃h,∆Y ,M (t, y, ϕ)

= sup
e∈YM∩[−|y|,|y|]

[

ϕ(t,ProjM (y + e)) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε0

]

.
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Finally, we prove that this numerical scheme is monotonous, stable and consistent

(Proposition 6.4.1-6.4.2-6.4.3) and therefore the solution wh,∆Y ,M to the numerical scheme

converges locally uniformly to w on [0, T ) × R, as (h,∆Y ,M) goes to (0, 0,∞) (Theorem

6.4.1).

Application: HFT with information on price trend

Finally, we made numerical tests with the mid price assumed to be a Lévy process, on

which we have directionnal information. More precisely, we assume that:

• The mid-price P is a pure jump process valued in the discrete grid δZ.

• We have:

P (Pt+h − Pt = δ |Ft) = π+h+ o(h)

P (Pt+h − Pt = −δ |Ft) = π−h+ o(h)

P (|Pt+h − Pt| > δ |Ft) = o(h)

with fixed π+, π− > 0 and we denote ̟ := π+ − π−

Therefore PIP = cP = ̟δ and ̺(.) ≡ (π+ + π−)δ2.

In this context we are able to compute the value function and the optimal policy (figure

2.9).

Figure 2.9: Policy α⋆ at date t = 0 for the trend information case.
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As a numerical illustration, we performed a detailled performance analysis on simu-

lated data, against a benchmark strategy made of constant controls. The main results are

gathered in table 2.10.

Quantity Definition α⋆ αWoMO αcst

Info ratio over T m(V̂ .
T )/σ(V̂ .

T ) 3.67 0.89 0.18

Profit per trade m(V̂ .
T )/m(Q̂total,.) 8.06 16.31 5.57

Risk per trade σ(V̂ .
T )/m(Q̂total,.) 2.19 18.31 29.56

Mean performance m(V̂ .
T ) 31446.4 28246.3 21737.2

Standard deviation of perf σ(V̂ .
T ) 8555.46 31701.2 115312

Skew of perf skew(V̂ .
T ) 0.64 0.16 -0.007

Kurtosis of perf kurt(V̂ .
T ) 3.82 3.31 7.02

Mean total executed volume m(Q̂total,.) 3900.68 1730.82 3900.61

Mean at market volume m(Q̂market,.) 1932.29 0 0

Ratio market over total exec m(Q̂market,.)/m(Q̂total,.) 0.495 0 0

Figure 2.10: Synthetis table for backtest. Categories are, from top to bottom: relative

performance metrics, period-adjusted performance metrics, absolute performance metrics

and absolute activity metrics.
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Chapter 3

Literature survey: quantitative

methods in high-frequency trading

This chapter surveys the current literature on quantitative methods in high-frequency trad-

ing. In a first part, we review some recent developments in market impact and execution

costs modelling. We sum up the original linear impact framework, then we describe the

limit order book resilience-based optimization frameworks. We also review continuous-time

trading models and impulse control models, and finally we expose a recent work on Smart

Order Routing.

Then, in a second part, we survey the literature on market-making and mixed trading

strategies. We expose the classical inventory management framework with the associated

linear market-making strategies. Then, we review recent market model enhancements,

including mixed strategies, and high-dimensional modelling of the trades processes. We

conclude by presenting a recent work on a Poissonian model for the limit order book dy-

namics.
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3.1 Introduction

In this chapter, we propose an overview of quantitative literature on high frequency trading.

From the modelling perspective, our objective is to compare and to expose the contribu-

tions of several models for each topic. From the financial application perspective, we are

interested in the two main application of high-frequency trading: trading costs optimiza-

tion, and market-making. Many of the topics that we present in that section will be further

detailled in the rest of that thesis, and we present the context and motivations for some of

our modelling choices.

On one hand, an extensive literature is devoted to optimizing the trading costs at the

scale of a single transaction, since the seminal work of Almgren and Chriss [3]. Indeed, a

genuine application of high-frequency trading is to systematically improve the outcome of

an order sent by a human investor, by minimizing direct and indirect trading costs. The

general mechanism of such costs minimization strategy is to split the original transaction,

ordered by the investor, in multiple children transactions and dispatch them on an extended

time period and on several trading venues.

We present several distinct approaches that solves a time optimization problem, where

the goal is to reduce market impact while dynamically managing market risk. Market

impact is a key factor when executing large orders. It is the difference between the reference

price and the realized transaction price: due to finite liquidity available in the limit order

book, large transactions induce a change in the quoted price that is unfavourable to the

investor. Therefore, the investor faces a trade-off between trading quickly and being exposed

to market impact, and trading gradually during a certain time period and being exposed

to price fluctuation, i.e. market risk. We also mention approaches that solves a space

optimization problem, where the goal is to find the best available price among several

trading venues, usually including displayed and hidden liquidity, the so-called Smart Order

Routing (SOR) strategies.

On the other hand, market-making strategies, and mixed passive/active high-frequency

strategies received large academic interest, since the reference work of [7], that modernized

the framework of [5]. Such papers examine a direct application of high-frequency trading:

an investor who continuously submit bid and ask quotes in a limit order book wants to

control its exposure to market risk, by keeping its position on the risky asset close to zero

at all time. The standard approach is to present this problem as an inventory management

problem, where the investor seeks at maximizing their terminal profit over a short-term

horizon, while balancing their inventory by choosing their position in the limit order book.

We first detail the inventory management framework, along with the main concepts

associated to market-making strategies, in the context of pure passive strategies, and with

a very simple market model. We describe the concepts of uncertain execution, and of

inventory risk, and we recall the main steps in the Avellaneda and Stoikov solution. We
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also present the main results of the recent extension of this framework in [35].

Then, we present recent developments in market-making strategies and richer market

models, and especially two specific tools: the use of both market and limit orders in such

strategies, and the use of predictive information as an input of the market-making strategy.

We detail the mixed stochastic control approach to the market/limit order strategies with

recent example of application. We describe the main evolutions in market models underlying

such strategies, with a specific focus on trades flows modelling with point processes. We

also present recent models for the limit order book dynamics.

This chapter is organized as follows. In the first section 3.2, we propose an overview

of indirect trading costs minimizations strategies. We sum up the original Almgren and

Chriss framework, then go on explaining optimization framework that are based on the

resilience of the limit order book. We also review continuous-time trading models and

impulse control models, and finally we expose a recent work on Smart Order Routing. Then,

in 3.3, we survey the literature on market-making and mixed trading strategies. We expose

the classical Avellaneda and Stoikov framework with the associated linear market-making

strategies. Then, we review recent market model enhancements, including mixed strategies,

and high-dimensional modelling of the trades processes. We conclude by presenting a recent

work on a Poissonian model for the limit order book dynamics.

3.2 Costs optimization strategies

In this first section, we propose an overview of model-based costs minimization strategies.

Almgren and Chriss framework

The two seminal papers [3] and [10] first provided a framework to manage market

impact. In a discrete-time setup, the goal of their work is to minimize the expected costs

of trading for an execution strategy: in [10], sole the expectation of the costs are subject to

minimization, whereas in [3], the authors take into account a variance criterion in addition

to costs minimization. More precisely, [3] considers the following scheme: the investor has

X units of a risky asset at time 0 and wants to liquidate the whole portfolio before time

T by trading at regularly spaced discrete dates tk = kτ = k
T

N
the quantities nk with the

conditions:

xk = X −
k

∑

i=0

ni , x0 = X , xN = 0,

and the asset price is a random walk with volatility σ:

Sk = Sk−1 + σ
√
τξk − τg(

nk

τ
).

In this last expression, (ξk) are i.i.d standard normal random variables, and the last term
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τg(
nk

τ
) represents the permanent impact from the investor’s trading on market price. Here,

nk

τ
is the rate of trading. Moreover, the investor is also penalized by a temporary impact,

that other agents in the market do not face, modelled by :

S̄k = Sk − h(
nk

τ
).

In this setup, the cash obtained for the selling operation is:

N
∑

k=1

nkS̄k = XS0 +

N
∑

k=1

(

στ
1
2 ξk − τg(

nk

τ
)
)

xk −
N

∑

k=1

nkh(
nk

τ
).

The authors define thus the following quantities:

costs due to market impact E(x) =

N
∑

k=1

τg(
nk

τ
)xk +

N
∑

k=1

nkh(
nk

τ
),

risk due to price variations V (x) = σ2
N

∑

k=1

τξ2k,

and propose the following mean-variance criterion (using the Lagrange multipliers tech-

nique, where λ represents the risk aversion parameter):

Cλ = min
x
E(x) + λV (x).

By solving the first order conditions, the authors are able to provide a closed form for the

optimal strategy, which is static in the sense that it does not depends on the price path:

xj =
sinh(κ(T − tj))

sinh(κT )
X , j = 0...N,

where κ depends on λ , η and σ. By varying the λ, they are able to provide the efficient

frontier.

This method is quite simple to implement and can be easily extended to the case of

multiple correlated assets. Moreover, the tractability of computations allows to have a

complete numerical description of the strategy behaviour in terms of return/risk ratio,

which is useful for the financial intuition. Yet, the optimal solution is static and does not

take as an input the price of a risky asset during the liquidation period. This last point

is counter-intuitive since one would expect the optimal strategy to sell quickly when the

price is high, and more slowly when the asset price is low. The optimal strategy, due to

the choice of price dynamics and risk measure, is here a fixed pattern.

Limit Order Book dynamics based framework
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Another type of modelling appears in the papers [2],[55], [64], [30], [61] and [31] where

the form of the impact is directly inferred from a stylized dynamics of the limit order book

(LOB). We will present here the general mechanics of this type of models, irrespective to

the particular features of each work. For this purpose and for sake of simplicity, we follow

the presentation of [2], that is set up in discrete time framework. A continuous time version

of this model is studied in [30].

In these models, the asset’s market price is assumed to be a martingale process (or risk-

neutral process) (S0
t ) in absence of any trading. When the investor trades, the market price

is a perturbation of this martingale price due to the resilience of the order book. Indeed,

when the investor decides to buy (resp. sell) a quantity ξ of the risky asset at time t, he will

consume the liquidity offered at the bid (resp. ask) side of the LOB, and therefore this will

shift down (resp. shift up) the best bid (resp. best ask) quotes, according to the volume

traded and the shape of the order book at time t. After time t, the LOB will regenerate by

the effect of incoming limit orders that provide liquidity. This regeneration is viewed as a

resilience of the LOB around the price (S0
t ). In this type of models, the resulting strategy

typically consists in a large trade at first date, a large trade at terminal date, and constant

trading in-between.

More precisely, trading strategies are represented on a discrete (regular) time grid tk =

k T
N , k = 0...N and, as is Almgren and Chriss framework we have:

N
∑

n=0

ξtn = X0.

Here the trade is a purchase of X0 shares, and the quantity traded at date tn is ξtn . The

market price of asset evolves under the following dynamics:

St = S0
t +

∑

tn<t

ξtnG(t− tn),

where S0 is the reference price, assumed to be a continuous martingale, and the function G

is the resilience function or resilience kernel, and is non-increasing on [0,∞). This kernel

describes the time structure of the impact, indeed:

• The instantaneous impact is ξtn(G(0)−G(0+)), where G(0+) denotes the righthand

limit of G at t = 0. It only affects the execution cost of ξtn and not any subsequent

orders.

• The permanent impact is ξtnG(∞). It affects all current and future trades equally

and vanishes eventually.

• The remaining part, ξtn(G(0+) −G(∞)), is called the transient impact. Its effect on

future trades decays over time.
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After setting this model, the authors prove that the expected execution costs for the strategy

ξ can be expressed as follows, in the case where the liquidity supply has a constant shape:

C(ξ) := X0S0 + E(C(ξ)),

where C is the quadratic form:

C(x) =
∑

i,j

xixjG(|ti − tj |).

Notice that this form comes from the fact that the reference price S0 is a martingale. The

optimality criterion is defined by these expected execution costs, and an optimal solution

exists and is unique if C is strictly definite positive. In this case, the authors provide a

closed form for the optimal solution (which is static):

ξ∗ =
X0

1∗M−11
M−11,

where M := (G(|ti−tj |))ij . For the case when C is not strictly definite positive, the authors

introduce and discuss the concept of price manipulation strategies, with several numerical

examples.

The advantages of this approach is to start from a natural modelling of the order book,

and to derive a closed-form optimal strategy. Moreover, it gives an intuitive interpretation

and insights about dynamic arbitrage of the LOB. The optimal strategy has several typical

patterns that vary with the shape of the resilience kernel. Yet, in this case again, due to

the choice of the dynamics for the reference price, the optimal strategy does not depend on

the price path, i.e. it is static and so induces a fixed pattern for all price realizations.

Dynamic strategies

In a recent paper [61], the authors propose an extension of the LOB-based model where

the order book can have a general shape, and they analyze the optimal strategy both in

discrete time and continuous time. In this paper, the optimality criterion is again the total

expected costs of trading, expressed as:

C(X) = E(C(X)),

where X denotes the (continuous-time) strategy and

C(X) := C̃(X) +

∫ T

0
S0

t dXt,

with S0 the reference price as defined in the above section, and C̃(X) is a function repre-

senting costs of trading due to market impact, and independent on S0. The integral term
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represents the costs of trading due to price variations. Using the integration by parts for-

mula on this integral term, the authors show, under the assumption that martingale price

process S0, that C(X) does not anymore depend on S0, so that there is no more source of

randomness in the minimization problem of the total expected trading costs. Therefore,

the authors deduce that they can restrict their search for optimal strategy to non-random

functions of time. This argument can also be formulated in the following way: in this setup,

the statically optimal strategy is also dynamically optimal.

We then see that the both the shape (pattern of execution) and the nature (static or

dynamic) of the optimal strategy is fundamentally related to the choice of the setup, and

in particular is determined by those two elements:

• Dynamics of the reference price (i.e. price without intervention of the big investor)

• Choice of the optimality criterion.

In the following section, we will present frameworks where the choice of this two elements

makes dynamic the optimal strategies.

Continuous-time models

A recent paper by Forsyth [28] proposes to solve the optimal execution problem in a

continuous-time framework, formulating the problem as a mean-variance problem leading

to an optimal stochastic control problem. The market impact is linear in the trading rate.

The resulting optimal strategy is dynamic in the sense that it depends both on the time,

the price of the risky asset, the cash amount and the quantity of shares in the portfolio.

The computation of the optimal strategy in terms of trading rate involves the numerical

resolution of an Hamilton Jacobi Bellman PDE. More precisely, the market model is set up

as follows:

Market price of risky asset : dS = (η + g(v))Sdt+ σSdW

Number of shares of underlying asset : α

Rate of trading : v =
dα

dt
Cash amount : dB = (rB − vSf(v)) dt,

where W is a standard Brownian motion. We see that the market price of risky asset is

assumed to be a geometrical Brownian motion with drift η and volatility σ, but penalized

by a permanent impact function g that is linear with slope κp. The cash amount of the

investor evolves under a risk free return r and the cash obtained from trading is penalized

by a temporary impact function f which is non-linear. In the paper [28], they assume an

exponential form for f but the general methodology of this article still work under more

general assumptions on f .

Informally, the execution problem is to reach a fixed number of shares αT at time T ,

starting from α0 at time 0. Therefore, a trading strategy is viewed as a function of state
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variables S, B, α and t ∈ [0, T ]. It is denoted v(S,B, α, t) and the expected gain from

the strategy v(.) is denoted E
t=0
v(.)(BT ), with associated variance V

t=0
v(.)(BT ). The optimality

criterion is chosen to be, for a given expectation d:
{

min V
t=0
v(.)(BT )

subject to E
t=0
v(.)(BT ) = d,

together with additionnal admissibility constraints. By using Lagrange multipliers tech-

nique, and interpreting γ as the risk aversion of the investor, the problem is reduced to:

min
v(.)

E
t=0
v(.)((BT − γ

2
)2).

Therefore, by solving this last problem for all γ the author is able to provide the efficient

frontier for this setup. At this point, the rest of the paper consists in reducing the dimension

of the problem, and describing a numerical procedure to solve it. The minimization problem

is expressed by means of the dynamic programming principle under the form of an HJB

equation: denote by BT = BT − γ
2 , τ = T − t and LV =

σ2S2

2
VSS + ηSVS , so that:

{

Vτ = LV + rBVB + minv(.) [−V Sf(v)VB + vVα + g(v)SVS ]

V (S,B, α, τ = 0) = B2
T .

There is no closed-form solution to the HJB, but it is possible to map the space of the state

variables (S,B, α, t) to the optimal control in terms of rate of trading by solving numerically

a PDE associated to the HJB on a discretized grid. The method presented in this paper

is the finite difference method, with improvements on the differentiation approximations

and on complexity of the computation. This finite difference method is well-suited for

solving PDE on domain that have a simple shape, but it is not suitable for complex-shaped

domains.

The advantages of this method is that the optimal solution is dynamic and takes into

account both market price of the risky asset and cash amount in the portfolio. Moreover, the

problem can be reduced to a two-dimensionnal problem, which is quite useful for computing

the optimal strategy. This numerical tractability allows the author to obtain a whole risk-

return characterization of the optimal strategy by computing the efficient frontier. Yet,

one can consider that is not realistic to assume that the investor can trade continuously,

in particular if the overall problem is to schedule trading decisions. To address this last

scheduling issue, a suitable formulation to the execution problem is provided by impulse

control approach as described in the next section.

Impulse control formulation

As seen in previous sections, there exists both continuous-time models and discrete time

model to solve an optimal liquidation problem. The principal advantage of a continuous-

time model is the use of the powerful stochastic calculus theory, which provides tractable
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computations. Yet, it may not be realistic to assume continuous-time trading, especially in

presence of transaction costs and illiquidity effects. On the other hand, discrete time models

are more readily implementable, but suffer from two shortfalls: first, it may be less easy

to have a complete computational treatment of the problem because of the need of ad-hoc

resolution method for complex discrete systems; second, the time discretization structure

if often chosen exogenously or even, in many cases, arbitrarily. Therefore, a discrete model

may not be suitable for building a trading agenda since in this case, the goal of the investor

is to endogenously determine the optimal trading times.

The approach of the best execution problem by means of impulse control combines the

advantages of both continuous-time and discrete-time framework. In this setup, the investor

is able to choose discrete-time controls in a continuous-time system: typically, a trading

strategy will be the choice of a discrete number of dates τn associated with trade quantities

ξn, which control a state process Z evolving in some diffusive regime. This approach has the

advantage of the tractability of stochastic calculus, together with the possibility of a direct

implementation. Moreover, the computation of the optimal strategy provides endogenously

both the dates and the quantities to trade. This formulation can be seen as a sequence of

optimal stopping problems. Therefore, it is possible to use classical optimal stopping theory

as the main ingredient for the resolution method. Finally, we will show in later sections

that the optimal strategy is dynamic, in the sense that it depends both on the market price

but also on a set of variables describing entirely the investor portfolio. We mention the

papers [39], [51], [12], which address the optimal liquidation problem in terms of impulse

control formulation. In chapter 4 we use this last approach, and we detail its resolution.

Smart order routing techniques

Finally, let us conclude this section by mentionning the work [48], that are concerned

with the situation of an investor (or actually a broker) that wants to trade an asset on several

distincts venues. These works are original in the sense that most of existing solutions to

this routing problem (known as Smart Order Routing) are technology based, and does not

rely on precise mathematical modelling.

The difficulty of such situation is that the liquidity offered on each marketplace is

not publicly displayed, indeed, those works tackle the problem of trading simultaneously

on multiple dark trading venues, and illustrate the results on dark pools. Therefore, the

investor does not know if an order sent to the venue i will be executed or not. Moreover,

the fees structure (i.e. the amount of money paid by the investor to the marketplace to

place an order) differs from one venue to another, and must be taken into account in the

optimization. This is the general setup of dark pools, where the trade price is stuck to the

market mid-price, but liquidity available is not known pre-trade.

In [48], the goal of the investor is to dispatch a large order to several of such market-

places, with the objective of minimizing the trading costs. The proposed approach involves
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the use of recursive stochastic algorithms, and the authors proves the optimality of the

resulting strategy.

3.3 Market-making and mixed strategies

In this section, we are interested in describing both standard approach to the market-

maker problem, and recent extensions of this framework. In a first part, we put aside

market modelling issues, and focus and the optimization framework developped in [5] and

[7], and further extensions and observations in recent studies. In a second part, we propose

an overview of some rich features recently developped in order to make this optimization

framework more suitable to industrial needs, along with popular limit order books models.

The standard inventory management approach and the linear market-making

strategy

Pricing strategies of market-makers have received extensive coverage in the microstruc-

ture litterature, while quantitative approaches were taken more recently. Survey of such

results in microstructure theory can be found in [11] or [56]. Historically, quantitative

approaches to market-making policies aimed to address the inventory risk, which is the

market risk associated with holding a non-zero portfolio.

The pionnering work in developping “automated” market-making strategies was made

in 1980 by Amihud and Mendelsohn [5] and another related work is [42]. They propose to

examine a monopolistic market-maker that sets bid and ask prices for some asset. The in-

coming market order flow (i.e. counterparts of the monopolistic market-maker) is modelled

as a price-dependent Poisson process, so that the aggregated buying flow is greater when

price in low, and conversely, aggregated selling flow is greater when price is high. In this

setup, they show that the bid and ask prices provided by the monopolistic market-maker

depends on their inventory, i.e. their position on the risky asset.

More precisely, they study the optimal market-making policy in this context, where the

objective of the market-maker is to maximize their average profit per unit-time. They prove

(Theorem 3.2 of [5]) that the optimal bid and ask quotes resulting from this optimization are

monotone decreasing functions of the inventory held by the market-maker. They establish

(Theorem 3.7 of [5]) that “the market-maker adopts a pricing policy which produces a

preffered inventory position”, in the sense that the optimal strategy consists in choosing

bid and ask price in order to favor sell trades when the inventory is positive, and conversely

to favor buy trades when the inventory is negative. The rest of the paper is concerned with

finer results about this market dynamics.

The idea of presenting market-making as an inventory management problem have been

made successful in the more recent work of Avellaneda and Stoikov [7]. In this work, the

market-maker pricing is influenced not only by the price-dependent nature of counterpart
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order flows (although presented in a slightly different way), but also by market risk. Indeed,

in this work, the market-maker is no more monopolistic, and therefore cannot choose the

price of the risky asset based on their own objective. Another risk factor is added to the

market model that drives the price.

Let us have a brief explanation of this model. They consider the situation of an in-

vestor trading with limit orders only, on an asset whose mid-price S is a Brownian motion

(Bachelier model) with volatility σ > 0:

dSu = σdWu

Then, the agent continuously quotes the bid price pb and the ask price pa (continuous

controls), which means that they are committed to respectively buy and sell one share of

stock at these prices when a market order comes in. Then the cash X and the inventory q

of the market-maker evolve according to the following dynamics:

dXt = pa
t dN

a
t − pb

tdN
b
t

qt = N b
t −Na

t

where Na and N b are Cox processes, whose jumps represent respectively trades at ask

and bid, and whose intensity depends respectively on (decrease with) δa
t := pa

t − St and

δb
t := St − pb

t . This decreasing dependence on the distance to mid-price is the modern

equivalent of the price-dependent Poisson process appearing in Amihud and Mendelsohn

and is chosen to exponential:

Na ∼ Cox (λ(δa
t )) , N b ∼ Cox

(

λ(δb
t )

)

λ(d) := A exp(−kd)

Where A and k are constants to be fitted, representing characteristics of execution proba-

bility. Based on that simple dynamics, the objective of the market-maker is to maximize

their profit utility over a finite time-horizon. More precisely, the value function is defined

by:

u(s, x, q, t) = sup
pa,pb

Et [− exp (−γ (XT + qTST ))]

here, T > 0 is a finite time horizon, γ is an arbitrary risk aversion parameter, the utility is

chosen to be exponential (for tractability) and XT +qTST is the terminal marked-to-market

value (or book value) of the investor’s portfolio.

Applying the dynamic programming principle, the authors obtain the Hamilton-Jacobi-
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Bellman equation:

0 = ut +
1

2
σ2uss

+ max
δb

λ(δb)
[

u(s, x− s+ δb, q + 1, t) − u(s, x, q, t)
]

+ max
δa

λ(δa) [u(s, x+ s+ δa, q − 1, t) − u(s, x, q, t)]

u(s, x, q, T ) = − exp(−γ(x+ qs))

In the second and third lines, one can identify the infinitesimal generators of N b and Na

respectively, applied to u, which make such equation non-local. Thanks to a variable change,

the authors are able to obtain explicit approximating formulas for the optimal quotes, and

they perform numerical tests. The paper [35] provides detailled analytical resolution and

experiments, along with several observations about that model that we present in what

follows. Indeed, using the same model, authors of [35] show with a variable change that the

HJB equation of [7] can be reduced to a system of linear ordinary differential equations.

In these conditions, they are able to provide a close-form approximation formula to the

optimal quotes.

Indeed, they observe numerically that the behavior of the optimal quotes is almost

time-independent when far from the terminal date T , and they argue that this steady-state

market-making policy is more relevant than the time-varying one, because of the arbitrary

nature of T . In figure 3.1, that we reproduced from [35], representing optimal bid quote as a

function of inventory and time, one can see that this optimal quote is mainly time-invariant

and linear when far from T .

The authors go on proposing a linear approximation (actually an asymptotics as T →
∞) for the optimal bid and ask quotes in the Avellaneda and Stoikov model. They read

(Theorem 2 and proposition 3 of [35] ):

δb⋆(q) = Cq + d

δa⋆(q) = −Cq − d

where C and d are constants which are explicitly given in [35], exhibiting dependence on

market volatility, execution probability and risk aversion.

To sum up, this type of model is easily tractable and allows us to obtain closed form

linear solutions for optimal quotes, and is parsimonous, since very few market effects are

specifically taken into account, and therefore can be fitted to a large class of real-world

data. Indeed, a direct data-oriented approach can use such a results to look for the best-

performing linear market-making strategy based on backtests results.

Mixed market/limit orders strategies
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Figure 3.1: Optimal bid quote as a function of inventory and time in the Avellaneda and

Stoikov model.

A natural extension of this framework is presented in [67], [68], [37] and [38], and the

two last references are adapted in chapter 5 and 6 of this thesis. The idea in these paper

is to consider a market orders strategy that will superpose to the limit order placement

strategy explained in Avellaneda and Stoikov. The market orders used in these works are

“hit orders”, which means that they are actually marketable limit orders, i.e. limit orders

that hits the opposite side of the LOB, therefore leading to an immediate execution.

Let us propose a brief recall of the approach that we use in this thesis, along with impact

of this new perspective on the HJB equation. Mixed strategies are represented as a pair:

α := (αmake, αtake)

where, on one hand, αmake, represents the limit order strategy, directly corresponding to

the Avellaneda and Stoikov model. For simplicity sake, let us assume here that it is the

pair (pa, pb) of limit orders prices as explained in the previous paragraph, represented as

predictible continuous-time process. On the other hand, αtake has the following structure:

αtake := (τn, ξn)n∈N

where τn is a stopping time in the underlying stochastic basis, representing the date where

the investor decides to send a market order of size ξn (which a mesurable variable at date

τn). ξn > 0 represents a buy market order, and ξn < 0 represents a sell market order.
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Now let us show the effect of such extension on the corresponding HJB equation. If we

re-write the Avellaneda and Stoikov equation in a less explicit form, in order to abstract

from the specific features of the model, in can be written in the following way:

0 = ut + Pu+ N au+ N bu

along with some terminal condition at date T . Here P is the infinitesimal generator of the

price process, N a is the infinitesimal generator of the trade process at ask (here chosen to

be a Cox process), and N b the infinitesimal generator of the trade process at bid. Now, if we

had the possibility to trade with market orders in addition to the limit orders strategy, this

“diffusive part” is embedded in a quasi-variationnal inequality (QVI), where the obstacle

part correspond to the market order optimization:

0 = min
{

−ut − Pu−N au−N bu ; u−Mu
}

Here the the operator M represents the variation of the state variables when trading via

market orders. Typically, it will include the costs of crossing the spread, and a propor-

tionnal, per share or fixed fee. For practical example of such operators, we refer to [37] for

example.

To sum up, adding a market orders strategy in addition to the limit orders strategy leads

to adding an obstacle part the resulting HJB equation. The resulting optimal strategy will

be represented as a mapping that associate the optimal control to the current state variable

process, including an obstacle region, where it is optimal to trade via a market order.

Enriching the market model

Recent developments ([38], [16], [27]) or in high-frequency trading strategies included

building up richer market models. The objective of such work is to take into account in the

HF trading strategy such features as: partial execution of the investor’s limit orders, more

precise dynamics for the trade process, or predictive information on the price trend. Indeed,

in practice, the performance of a high-frequency trading strategy depends on the accuracy

of the investor’s views on short-term evolution of the market, which in turn depends on the

accuracy of their market model.

These short-term predictions on the market evolution usually come from three distinct

types of arguments. The first and most commonly used type of argument are the so-

called statistical arbitrage arguments, that are typically cross-assets. For example, in [6],

the authors propose an extension of the pairs trading technique, which means that they

exploit the covariance structure of a market sector to trade one stock against the sector.

Other famous techniques includes trading one index against sectors ETF (Exchange Traded

Funds). The second type of argument comes from limit order books models, as the one
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presented in [21]. In such works, the objective is to infer the evolution of price at a very

short timescale, typically a few ticks, from the current state of the limit order book. Indeed,

by analyzing limit orders data, one is able to compute such quantity as the probability that

the price will go up or down at the next tick. Finally, the third type of argument comes

from trade processes models, as for example presented in [13], [41], [54] and [16]. These

works typically use superior information coming from the detection of autocorrelations, or

cross-correlation in trades occuring on a given market, and they use spot estimation of

time-varying buying and selling intensities for a given stock. In such models, the market-

maker will adapt their quotes not only to control their inventory, but also in function of

a dynamic supply/demand process estimated dynamically on the market. In this part, we

describe the general framework of such strategy, based on the presentation of [16].

The framework presented by Cartea, Jaimungal and Ricci [16] is very similar to the one

of Avellaneda and Stoikov regarding the optimization procedure, but it differs largely when

it comes to the market model. Ou goal is to present the modelling ingredients, and how

they impact the resulting strategy. First of all, the authors assume that the mid-price of

the risky asset is an arithmetic Brownian motion with an adverse selection term:

dSt = αtdt+ σdWt

Where αt, representing a predictive information on short-term reward, has known dy-

namics derived from market variables. From this point, they observe that market activity,

i.e. the number of trades per second, exhibit burst periods (also called the trade clustering

effect). This means that there are short time period where market activity is intense, and

this effects quickly reverts to a normal behavior (in a few seconds timescale). We reproduce

in figure 3.2 their observation on the stock IBM for a time period of 3 minutes.

Their goal is therefore to provide a point process model, whose jumps will represent

trades, and whose intensity will fit such historical process. To do so, they introduce a

qualitative distinction between market orders. The first kind are influential orders which

excite the state of the market and induce other traders to increase their trading activity.

The second type of orders are non-influential orders which are viewed as arising from

players who do not excite the state of the market. The proportion of influential market

orders is ρ ∈ [0; 1]. Such a distinction is to compare with the asymmetric information

model as developped in [56]. In this last model, a certain proportion of the trades come

from informed traders, who have more information than the market maker, and therefore

induces an adverse selection risk from the market maker point of view.

They propose the following “piece-wise exponential” dynamics for the intensities of

trades process (i.e. overall market orders counting process) respectively for sell and buy
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(a) Number of BUY orders per second (b) Number of SELL orders per second

Figure 3.2: IBM market orders. Historical running intensity using a 1 second sliding window

for IBM for a 3 minute period, between 3.30 and 3.33 pm, February 1 2008. Reproduced

from [16].

market orders:

dλ−t = β(θ − λ−t )dt+ η ¯dM−
t + ν ¯dM+

t + η̃dZ−
t + ν̃dZ+

t

dλ+
t = β(θ − λ+

t )dt+ η ¯dM+
t + ν ¯dM−

t + η̃dZ+
t + ν̃dZ−

t

where Z+ and Z− are independent Poisson processes with constant intensity, which repre-

sent news events, and M+
t and M−

t are the total number of influential buy and sell orders

up until time t. Moreover, η, ν, η̃, ν̃, β, θ are non-negative constants satisfying some

constraint.

This choice is a simple version of the (symmetric) Hawkes process model as presented

in [41] or [54]. It has the advantadge of providing a tractable SDE while still exhibiting

auto- and cross-excitation effects of the trades. We also mention the recent work [24] for

useful insights on modelling with self-exciting point processes. We reproduce in figure 3.3

their simulation of the resulting (λ+, λ−).

Now, the high-frequency trader only participates in a fraction of trades occuring in

the market. Indeed, processes counting the number of trades in which the high-frequency

trader participated are denoted N+ and N− and their intensities are expressed as functions

of λ+ and λ−. In [16], they allow a several form for these function, but let us focus on the

exponential form, which is closest to the Avellaneda and Stoikov model:

N+ ∼ Cox(Λ+) , N− ∼ Cox(Λ−)

Λ+ := λ+ exp(−κ+
t δ

+) , Λ− := λ− exp(−κ−t δ−)
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Figure 3.3: Sample path for (λ+, λ−). Reproduced from [16].

where δ+ and δ− are the distance of the market maker (ask and bid respectively) quotes to

the mid-price (continuous controls), and κ+ and κ− are the so-called execution intensities at

ask and bid respectively. Note that the processes κ+ and κ− are the time-varying equivalent

of the parameter k in the Avellaneda and Stoikov model. They parametrize the probability

that the market maker receive an execution on their bid or ask limit order. They have their

own (piecewise exponential) dynamics that reads as follows:

dκ−t = βκ(θκ − κ−t )dt+ ηκ
¯dM−

t + νκ
¯dM+

t

dκ−t = βκ(θκ − κ+
t )dt+ ηκ

¯dM+
t + νκ

¯dM−
t

The final elements of the model are the dynamics of the portfolios variables, that are exactly

similar those of Avellaneda and Stoikov:

qt = N−
t −N+

t

dXt = (St + δ+t )dN+
t − (St − δ−t )dN−

t

where q is the inventory process, and X is the cash process. Now the market-maker faces a

6-dimensional optimization problem. Indeed, the value function associated to the market-

maker problem reads:

Φ(t, x, S, λ+, λ−, κ+, κ−) = sup
δ+,δ−

Et

(

XT + qT (ST + αqT ) − φσ2

∫ T

t
q2sds

)
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The rest of the paper is devoted to the resolution of this control problem. The associated

HJB equation is a non-local variationnal equality, somewhat similar as the one observed in

Avellaneda and Stoikov, however more sophisticated due to the presence of varying market

orders intensities and execution probabilities. The authors are able to provide an explicit

form for the optimal controls as function of the state variables. They also provide a brief

procedure for model calibration.

To sum up, in this setup, the author performs a 6-dimensional optimization procedure,

in which they input rich information about trade process and execution probabilities. This

model is strongly related to self-exciting point process models of trades, similar to those

that appears in [54] and [41] for example. This type of model have been proved to perform

better than the Poisson model in empirical studies.

Limit order book models

Finally, let us mention the papers [21]. In this work, the authors build up a simple

stochastic model for the dynamics of a limit order book, in which arrivals of market order,

limit orders and order cancellations occurs at jump times of a Poisson process. Although

it has been shown (e.g.[54]) that this Poissonian framework performs poorly when it comes

to fitting real-world trades processes, the tractability of this model allows the authors to

compute analytically various quantities related to the LOB such as the distribution of the

duration between price changes, the distribution and autocorrelation of price changes, and

the probability of an upward move in the price, conditional on the state of the order book.

Another objective of this work is to study the relationship between the price volatility,

as defined on a macro timescale, and micro characteristics (arrival intensities) of the order

flow in this model by studying the diffusion limit of the resulting price process. For example,

the authors show that the volatility of the macro price process can be expressed:

σ2 =
δ2λ

D(f)

where δ is the tick size, λ is the intensity of orders arrival and D(f) is some measure of

market depth.

This stylized model is an example of what can be done to assess future prices movements

at the high-frequency timescale, based on the current state of the order book. It is further

developed in the work [22], where the authors can apply their results to wide class of

stochastic models proposed for order book dynamics, including models based on Poisson

point processes, self-exciting point processes.
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Chapter 4

Numerical methods for an optimal

order execution problem

This chapter deals with numerical solutions to an impulse control problem arising from op-

timal portfolio liquidation with bid-ask spread and market price impact penalizing speedy

execution trades. The corresponding dynamic programming (DP) equation is a quasi-

variational inequality (QVI) with solvency constraint satisfied by the value function in the

sense of constrained viscosity solutions. By taking advantage of the lag variable tracking the

time interval between trades, we can provide an explicit backward numerical scheme for the

time discretization of the DPQVI. The convergence of this discrete-time scheme is shown

by viscosity solutions arguments. An optimal quantization method is used for computing

the (conditional) expectations arising in this scheme. Numerical results are presented by

examining the behaviour of optimal liquidation strategies, and comparative performance

analysis with respect to some benchmark execution strategies. We also illustrate our op-

timal liquidation algorithm on real data, and observe various interesting patterns of order

execution strategies. Finally, we provide some numerical tests of sensitivity with respect to

the bid/ask spread and market impact parameters.

Note: this chapter is adapted from the article: [36] Guilbaud F., Mnif M. and H. Pham

(2010): “Numerical methods for an optimal order execution problem”, to appear in Journal

of Computational Finance.
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4.1 Introduction

Portfolios managers define “implementation shortfall” as the difference in performance bet-

ween a theoretical trading strategy and the implemented portfolio. In a theoretical strategy,

the investor observes price displayed by the market and assumes that trades will actually be

executed at this price. Implementation shortfall measures the distance between the realized

transaction price and the pre-trade decision price. Indeed, the investor has to face several

adverse effects when executing a trading strategy, usually referred to as trading costs. Let

us describe the three main components of these illiquidity effects: the bid/ask spread, the

broker’s fees and the market impact. The best bid (resp. best ask) price is the best offer

to buy (resp. to sell) the asset, and the bid/ask spread is the difference (always positive in

the continuous trading session) between the best ask price and best bid price. The broker’s

fees are the amount paid to the broker for executing the order. The market impact refers

to the following phenomenon: any buy or sell market order passed by an investor induces

an adverse market reaction that will penalize quoted price from the investor point of view.

Market impact is a key factor when executing large orders since price impact may

noticeably affect a trading strategy. On April 29, 2010, Reuters agency reports that Citadel

Investment Group sold 170M shares of the E*Trade stock, and raised about 301M$: this

operation led to a price fall of 7.1%. These example explain why measurement and efficient

management of market impact is a key issue for financial institutions, and the research of

low-touch trading strategies has found a great interest among academics.

Most of market places and brokers offer several common tools to reduce market impact.

We can cite as an example the simple time slicing (we will refer to this example later as the

uniform strategy): a large order is split up in multiple children orders of the same size, and

these children orders are sent to the market at regular time intervals. Brokers also propose

more sophisticated tools as smart order routing (SOR) or volume weighted average price

(VWAP) based algorithmic strategies. Indeed, one basic observation is that market impact

can be reduced by splitting up a large order into several children orders. Then the investor

has to face the following trade-off: if he chooses to trade immediately, he will penalize his

performance due to market impact; if he trades gradually, he is exposed to price variation

on the period of the operation. Our goal in this article is to provide a numerical method

to find optimal schedule and associated quantities for the children orders.

Recently, there has been considerable interest for this problem in the academic lite-

rature. The seminal papers [10] and [3] first provided a framework for managing market

impact in a discrete-time model. The optimality is determined according to a mean-variance

criterion, and this leads to a static strategy, in the sense that it is independent of the stock

price. Models of market impact based on stylized order book dynamics were proposed in

[55], [64] and [31]. There also has been several optimal control approaches to the order

execution problem, using a penalizing function to model price impact: the papers [63] and
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[28] assume continuous-time trading, and use an Hamilton-Jacobi-Bellman approach for

the mean-variance criterion, while [39], [51], and [44] consider real trading taking place

in discrete-time by using an impulse control approach. This last approach combines the

advantages of realistic modelling of portfolio liquidation and the tractability of continuous-

time stochastic calculus. In these papers, the optimal liquidation strategies are price-

dependent in contrast with static strategies.

In this article, we adopt the model investigated in [44]. Let us describe the main features

of this model. The stock price process is assumed to follow a geometrical Brownian motion.

The price impact is modelled via a nonlinear transaction costs function, that depends

both on the quantity traded, and on a lag variable θ tracking the time spent since the

investor’s last trade. This lag variable will penalize rapid execution trades, and ensures

in particular that trading times are strictly increasing, which is consistent with market

practice in limit order books. In this context, we consider the problem of an investor

seeking to unwind an initial position in stock shares over a finite horizon. Risk aversion of

the investor is modelled through a utility function, and we use an impulse control approach

for the optimal order execution problem, which consists in maximizing the expected utility

from terminal liquidation wealth, under a natural economic solvency constraint involving

the liquidation value of portfolio. The theoretical part of this impulse control problem is

studied in [44], and the solution is characterized through dynamic programming by means

of a quasi-variational inequality (QVI) satisfied by the value function in the (constrained)

viscosity sense. The aim of this paper is to solve numerically this optimal order execution

problem. There are actually few papers dealing with a complete numerical treatment of

impulse control problems, see [19], [52], or [20]. In these papers, the domain has a simple

shape, typically rectangular, and a finite-difference method is used. In contrast, our domain

is rather complex due to the solvency constraint naturally imposed by the liquidation value

under market impact, and we propose a suitable probabilistic numerical method for solving

the associated impulse control problem. Our main contributions are the following:

• We provide a numerical scheme for the QVI associated to the impulse control problem

and prove that this method is monotone, consistent and stable, hence converges to

the viscosity solution of the QVI. For this purpose, we adapt a proof from [8].

• We take advantage of the lag variable θ to provide an explicit backward scheme

and then simplify the computation of the solution. This contrasts with the classical

approach by iterative sequence of optimal stopping problems, see e.g. [19].

• We provide the detailed computational probabilistic algorithm with an optimal quan-

tization method for the approximation of conditional expectations arising in the back-

ward scheme.

• We provide several numerical tests and statistics, both on simulated and real data,
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and compare the optimal strategy to a benchmark of two other strategies: the uniform

strategy and the naive one consisting in the liquidation of all shares in one block at

the terminal date. We also provide some sensitivity numerical analysis with respect

to the bid/ask spread and market impact parameters.

This paper is organized as follows: Section 2 recalls the problem formulation and main

properties of the model, in particular the PDE characterization of the impulse control

problem by means of constrained viscosity solutions to the QVI, as stated in [44]. Section 3

is devoted to the time discretization and the proof of convergence of the numerical scheme.

Section 4 provides the numerical algorithm and numerical methods to solve the DPQVI.

We also address the convergence of the numerical scheme when approximating the exact

expectation by the quantized expectation, discuss the complexity of the algorithm, and

compare with the finite-difference scheme methods. Section 5 presents the results obtained

with our implementation, both on simulated and historical data.

4.2 Problem formulation

4.2.1 The model of portfolio liquidation

We consider a financial market where an investor has to liquidate an initial position of y

> 0 shares of risky asset by time T . He faces the following risk/cost tradeoff: if he trades

rapidly, this results in higher costs due to market impact; if he splits the order into several

smaller blocks, he is exposed to the risk of price depreciation during the trading horizon.

We adopt the recent continuous-time framework of [44], who proposed a modeling where

trading takes place at discrete random times through an impulse control formulation, and

with a temporary price impact depending on the time interval between trades, and including

a bid-ask spread.

Let us recall the details of the model. We set a probability space (Ω,F ,P) equipped

with a filtration F = (Ft)0≤t≤T supporting a one-dimensional Brownian motion W on a

finite horizon [0, T ], T < ∞. We denote by Pt the market price of the risky asset, by Xt

the cash holdings, by Yt the number of stock shares held by the investor at time t and by

Θt the time interval between t and the last trade before t.

Trading strategies. We assume that the investor can only trade at discrete time on

[0, T ]. This is modelled through an impulse control strategy α = (τn, ζn)n≥1 where τ1 ≤
. . . τn ≤ . . . ≤ T are stopping times representing the trading times and ζn, n ≥ 1, are

Fτn-measurable random variables valued in R and giving the quantity of stocks purchased

if ζn ≥ 0 or selled if ζn < 0 at these times. A priori, the sequence (τn, ζn) may be finite

or infinite. We introduce the lag variable tracking the time interval between trades, which
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evolves according to

Θt = t− τn, τn ≤ t < τn+1, Θτn+1 = 0, n ≥ 0. (4.2.1)

The dynamics of the number of stock shares Y is then given by :

Yt = Yτn , τn ≤ t < τn+1, Yτn+1 = Yτn + ζn+1, n ≥ 0. (4.2.2)

Cost of illiquidity. The market price of the risky asset process follows a geometric

Brownian motion:

dPt = Pt(bdt+ σdWt), (4.2.3)

with constant b and σ > 0. We focus here on the temporary price impact that penalizes

the price at which an investor will trade the asset. Suppose now that the investor decides

at time t to trade the quantity e. If the current market price is p, and the time lag from

the last order is θ, then the price he actually gets for the order e is:

Q(e, p, θ) = pf(e, θ), (4.2.4)

where f is a temporary price impact function from R × [0, T ] into R+ ∪ {∞}. Actually, in

the rest of the paper, we consider a function f in the form

f(e, θ) = exp
(

λ|e
θ
|βsgn(e)

)

.
(

κa1e>0 + 1e=0 + κb1e<0

)

, (4.2.5)

where β > 0 is the price impact exponent, λ > 0 is the temporary price impact factor, κb

< 1, and κa > 1 are the bid and ask spread parameters. The impact of liquidity modelled

in (4.2.4) is like a transaction cost combining nonlinearity and proportionality effects. The

nonlinear costs come from the dependence of the function f on e, but also on θ. On the

other hand, this transaction cost function f can be determined implicitly from the impact

of a market order placed by a large trader in a limit order book, as explained in [55], [64]

or [63]. Moreover, the dependence of f in θ in (4.2.5) means that rapid trading has a larger

temporary price impact than slower trading. Such kind of assumption is also made in the

seminal paper [3], and reflects stylized facts on limit order books. The form (4.2.5) was

suggested in several empirical studies, see [50], [60], [4], and used also in [28], [44].

Remark 4.2.1 We could consider a permanent price impact, i.e. the lasting effect of large

trade, in our modelling by introducing a jump in the market price P at a trading time

(as in [39] or [51]), which depends on the order size and time lag from the last order size.

Alternatively, one can introduce a permanent price impact in the spirit of [3], [28] or [2]

by modelling the rate of return b = (bt) of the market price as a state variable process

following the dynamics:

dbt = ρ(θt)(b̄− bt)dt, τn ≤ t < τn+1, bτn+1 = bτ−
n+1

+ g
( ζn+1

τn+1 − τn

)

,
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where g is the permanent price impact function, e.g. in the linear form g(η) = κpη, with a

factor κp > 0, and ρ is an increasing positive resilience function, e.g. in the linear form ρ(θ)

= κrθ, κr > 0, measuring the reversion rate of the return process to a reference constant

value b̄.

Cash holdings. We assume a zero risk-free return, so that the cash holdings are constant

between two trading times:

Xt = Xτn , τn ≤ t < τn+1, n ≥ 0. (4.2.6)

When a discrete trading ∆Yt = ζn+1 occurs at time t = τn+1, this results in a variation of

the cash amount given by ∆Xt := Xt −Xt− = −∆Yt.Q(∆Yt, Pt,Θt−) due to the illiquidity

effects. Moreover, there is a fixed cost ε ≥ 0 to be paid at each transaction. In other words,

we have

Xτn+1 = Xτ−
n+1

− ζn+1Pτn+1f(ζn+1, τn+1 − τn) − ε, n ≥ 0. (4.2.7)

Remark 4.2.2 Notice that since f(e, 0) = 0 if e < 0 and f(e, 0) = ∞ if e > 0, an

immediate sale does not increase the cash holdings, i.e. Xτn+1 = Xτ−
n+1

= Xτn , while an

immediate purchase leads to a bankruptcy i.e. Xτn+1 = −∞.

Liquidation value and solvency constraint. The solvency constraint is a key issue in

portfolio choice problem. The point is to define in an economically meaningful way what

is the portfolio value of a position in cash and stocks. In our context, we first impose a

no-short selling constraint on the trading strategies, i.e.

Yt ≥ 0, 0 ≤ t ≤ T.

Next, we introduce the liquidation function Lε(x, y, p, θ) representing the value that an

investor would obtain by liquidating immediately his stock position y by a single block

trade, when the pre-trade price is p and the time lag from the last order is θ. It is defined

on R × R+ × (0,∞) × [0, T ] by

Lε(x, y, p, θ) = max[x, x+ ypf(−y, θ) − ε].

The interpretation of this liquidation function is the following. Due to the presence of the

transaction fee at each trading, it may be advantageous for the investor not to liquidate his

position in stock shares (which would give him x+ypf(−y, θ)−ε), and rather bin his stock

shares, by keeping only his cash amount (which would give him x). Hence, the investor

chooses the best of these two possibilities, which induces a liquidation value Lε(z, θ).

We thus constrain the portfolio’s liquidative value to satisfy the solvency criterion:

Lε(Xt, Yt, Pt,Θt) ≥ 0, 0 ≤ t ≤ T.
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We then naturally introduce the solvency region:

Sε = {(z, θ) = (x, y, p, θ) ∈ R × R+ × (0,∞) × [0, T ] : Lε(z, θ) > 0} .

and we denote its boundary and its closure by

∂Sε = ∂ySε ∪ ∂LSε and S̄ε = Sε ∪ ∂Sε.

where

∂ySε = {(z, θ) = (x, y, p, θ) ∈ R × R+ × (0,∞) × [0, T ] : y = 0 and x = Lε(z, θ) ≥ 0} ,
∂LSε = {(z, θ) = (x, y, p, θ) ∈ R × R+ × (0,∞) × [0, T ] : Lε(z, θ) = 0} .

In the sequel, we also introduce the corner lines in ∂Sε :

D0 = {(0, 0)} × (0,∞) × [0, T ] = ∂ySε ∩ ∂LSε.

Admissible trading strategies. Given (t, z, θ) ∈ [0, T ]×S̄ε, we say that the impulse control

strategy α = (τn, ζn)n≥0 is admissible, denoted by α ∈ Aε(t, z, θ), if τ0 = t− θ, τn ≥ t, n ≥
1, and the process {(Zs,Θs) = (Xs,Ys, Ps,Θs), t ≤ s ≤ T} solution to (4.2.1)-(6.2.5)-(4.2.3)-

(4.2.6)-(4.2.7), with an initial state (Zt− ,Θt−) = (z, θ) (and the convention that (Zt,Θt)

= (z, θ) if τ1 > t), satisfies (Zs,Θs) ∈ [0, T ] × S̄ for all s ∈ [t, T ]. As usual, to alleviate

notations, we omit the dependence of (Z,Θ) in (t, z, θ, α), when there is no ambiguity.

Portfolio liquidation problem. We consider a utility function U from R+ into R, strictly

increasing, concave and w.l.o.g. U(0) = 0, and s.t. there exists K ≥ 0, γ ∈ [0, 1) :

U(w) ≤ Kwγ , ∀w ≥ 0.

The problem of optimal portfolio liquidation is formulated as

vε(t, z, θ) = sup
α∈Aε(t,z,θ)

E
[

ULε(ZT ,ΘT )
]

, (t, z, θ) ∈ [0, T ] × S̄ε, (4.2.8)

where ULε(z, θ) = U(Lε(z, θ)) is the terminal liquidation utility function.

Remark 4.2.3 The function z → vε(t, z, 0) is strictly increasing in the argument of cash

holdings x, for (z = (x, y, p), 0) ∈ S̄ε, and fixed t ∈ [0, T ]. Indeed, for x < x′, and z

= (x, y, p), z′ = (x′, y, p), any strategy α ∈ Aε(t, z, θ) with corresponding state process

(Zs = (Xs, Ys, Ps),Θs)s≥t, is also in Aε(t, z
′, θ), and leads to an associated state process

(Z ′
s = (Xs + x′ − x, Ys, Ps),Θs)s≥t. Using the fact that the utility function is strictly

increasing, we deduce that vε(t, x, y, p, 0) < vε(t, x
′, y, p, 0). Moreover, the function z →

vε(t, z, 0) is nondecreasing in the argument of number of shares y. Indeed, fix z = (x, y, p),

and z′ = (x, y′, p) with y ≤ y′. Given any arbitrary α = (τn, ζn)n ∈ Aε(t, z, 0), consider
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the strategy α′ = (τ ′n, ζ
′
n), starting from (x, y′, p) at time t, which consists in trading again

immediately at time t by selling y′−y shares (which does not change the cash holdings, see

Remark 4.2.2), and then follow the same strategy than α. The corresponding state process

satisfies (Z ′
s,Θ

′
s) = (Zs,Θs) a.s. for s ≥ t, and in particular α′ ∈ Aε(t, z

′, 0), together with

E[ULε(Z
′
T ,Θ

′
T )] = E[ULε(ZT ,ΘT )] ≤ v(t, z′, θ). Since α is arbitrary in Aε(t, z, 0), this shows

that v(t, x, y, p, 0) ≤ v(t, x, y′, p, 0).

We recall from [44] that vε is in the set G([0, T ]× S̄ǫ) of functions satisfying the growth

condition:

G([0, T ] × S̄ǫ) =
{

ϕ : [0, T ] × S̄ǫ −→ R s.t. sup
[0,T ]×S̄ǫ

|ϕ(t, z, θ)|
(

1 + (x+ yp)γ
) <∞

}

.

In the sequel, we shall denote by G+([0, T ]×S̄ε) the set of functions ϕ in G([0, T ]×S̄ε) such

that ϕ(t, x, y, p, 0) is strictly increasing in x and nondecreasing in y.

4.2.2 PDE characterization

The dynamic programming Hamilton-Jacobi-Bellman (HJB) equation corresponding to the

stochastic control problem (4.2.8) is a quasi-variational inequality written as

min
[

− ∂v

∂t
− Lv , v −Hεv

]

= 0, on [0, T ) × S̄ε, (4.2.9)

together with the relaxed terminal condition

min [v − ULε , v −Hεv] = 0, on {T} × S̄ε. (4.2.10)

Here, L is the infinitesimal generator associated to the process (Z = (X,Y, P ),Θ) in a

no-trading period:

Lϕ =
∂ϕ

∂θ
+ bp

∂ϕ

∂p
+

1

2
σ2p2∂

2ϕ

∂p2
,

Hε is the impulse operator defined by

Hεϕ(t, z, θ) = sup
e∈Cε(z,θ)

ϕ(t,Γε(z, θ, e), 0), (t, z, θ) ∈ [0, T ] × S̄ε,

Γε is the impulse transaction function defined from S̄ε × R into R × R × (0,∞):

Γε(z, θ, e) = (x− epf(e, θ) − ε, y + e, p), z = (x, y, p) ∈ S̄ε, e ∈ R,

and Cε(z, θ) the set of admissible transactions :

Cε(z, θ) =
{

e ∈ R :
(

Γε(z, θ, e), 0
)

∈ S̄ε

}

.
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Remark 4.2.4 Fix t ∈ [0, T ]. For θ = 0, and z = (x, y, p) s.t. (z, 0) ∈ S̄ε, the set of

admissible transactions Cε(z, 0) = [−y, 0] (and Γε(z, 0, e) = (x− ε, y+ e, p) for e ∈ Cε(z, 0))

if x ≥ ε, and is empty otherwise. Thus, Hεw(t, z, 0) = supe∈[−y,0]w(t, x− ε, y+ e, p, 0) if x

≥ ε, and is equal to −∞ otherwise. This implies in particular that

Hεw(t, z, 0) < w(t, z, 0), (4.2.11)

for any w ∈ G+([0, T ] × S̄ε), which is the case of vε (see Remark 4.2.3). Therefore, due

to the market impact function f in (4.2.5) penalizing rapid trades, it is not optimal to

trade again immediately right after some trade, i.e. the optimal trading times are strictly

increasing.

A main result in [44] is to provide a unique PDE characterization of the value functions

vε, ε > 0, and to prove that the sequence (vε)ε converges, as ε goes to zero, to the value

function v0 in the model without transaction fee, i.e. when ε = 0.

Theorem 4.2.1 (1) The sequence (vε)ε is nonincreasing, and converges pointwise on [0, T ]×
(S̄0 \ ∂L0S0) towards v0 as ε goes to zero, with vε ≤ v0.

(2) For any ε > 0, the value function vε is continuous on [0, T )×Sε, and is the unique (in

[0, T )×Sε) constrained viscosity solution to (4.2.9)-(4.2.10), satisfying the growth condition

in G([0, T ] × S̄ε), and the boundary condition:

lim
(t′,z′,θ′)→(t,z,θ)

vε(t
′, z′, θ′) = vǫ(t, z, θ)

= U(0), ∀(t, z = (0, 0, p), θ) ∈ [0, T ] ×D0. (4.2.12)

The rest of this paper is devoted to the numerical analysis and resolution of the QVI

(4.2.9)-(4.2.10) characterizing the optimal portfolio liquidation problem with fixed transac-

tion fee. On the other hand, this also provide an ε-approximation of the optimal portfolio

liquidation problem without fixed transaction fee.

4.3 Time discretization and convergence analysis

In this section, we fix ε > 0, and we study time discretization of the QVI (4.2.9)-(4.2.10)

characterizing the value function vε. For a time discretization step h > 0 on the interval

[0, T ], let us consider the following approximation scheme:

Sh(t, z, θ, vh(t, z, θ), vh) = 0, (t, z, θ) ∈ [0, T ] × S̄ε, (4.3.1)
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where Sh : [0, T ] × S̄ε × R × G+([0, T ] × S̄ε) → R is defined by

Sh(t, z, θ, r, ϕ) (4.3.2)

:=



















min
[

r − E
[

ϕ(t+ h, Z0,t,z
t+h ,Θ

0,t,θ
t+h )

]

, r −Hǫϕ(t, z, θ)
]

if t ∈ [0, T − h]

min
[

r − E
[

ϕ(T,Z0,t,z
T ,Θ0,t,θ

T )
]

, r −Hǫϕ(t, z, θ)
]

if t ∈ (T − h, T )

min
[

r − ULǫ(z, θ) , r −Hǫϕ(t, z, θ)
]

if t = T.

Here, (Z0,t,z,Θ0,t,θ) denotes the state process starting from (z, θ) at time t, and without

any impulse control strategy: it is given by
(

Z0,t,z
s ,Θ0,t,θ

s

)

= (x, y, P t,p
s , θ + s− t), s ≥ t,

with P t,p the solution to (4.2.3) starting from p at time t. Notice that (4.3.1) is formulated

as a backward scheme for the solution vh through:

vh(T, z, θ) = max
[

ULǫ(z, θ) , Hǫv
h(T, z, θ)

]

, (4.3.3)

vh(t, z, θ) = max
[

E
[

vh(t+ h, Z0,t,z
t+h , θ + h)

]

,Hǫv
h(t, z, θ)

]

, 0 ≤ t ≤ T − h,(4.3.4)

and vh(t, z, θ) = vh(T − h, z, θ) for T − h < t < T . This approximation scheme seems a

priori implicit due to the nonlocal obstacle term Hε. This is typically the case in impulse

control problems, and the usual way (see e.g. [19], [52]) to circumvent this problem is to

iterate the scheme by considering a sequence of optimal stopping problems:

vh,n+1(T, z, θ) = max
[

ULǫ(z, θ) , Hǫv
h,n(T, z, θ)

]

,

vh,n+1(t, z, θ) = max
[

E
[

vh,n+1(t+ h, Z0,t,z
t+h , θ + h)

]

,Hǫv
h,n(t, z, θ)

]

,

starting from vh,0 = E[ULε(Z
0,t,z
T ,Θ0,t,θ

T )]. Here, we shall make the numerical scheme (4.3.1)

explicit, i.e. without iteration, by taking effect of the state variable θ in our model. Recall

indeed from Remark 4.2.4 that it is not optimal to trade again immediately right after

some trade. Thus, for vh ∈ G+([0, T ]× S̄ε), and any (z′, 0) ∈ S̄ε, we have from (4.2.11) and

(4.3.3)-(4.3.4):

vh(T, z′, 0) = ULǫ(z
′, 0)

vh(t, z′, 0) = E
[

vh(t+ h, Z0,t,z′

t+h , h)
]

.

Therefore, by using again the definition of Hε in the relations (4.3.3)-(4.3.4), we see that

the scheme (4.3.1) is written equivalently as an explicit backward scheme:

vh(T, z, θ) = max
[

ULǫ(z, θ) , HǫULǫ(z, θ)
]

, (4.3.5)

vh(t, z, θ) = max
[

E
[

vh(t+ h, Z0,t,z
t+h , θ + h)

]

, sup
e∈Cε(z,θ)

E
[

vh(t+ h, Z
0,t,ze

θ

t+h , h)
]

]

,(4.3.6)
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for 0 ≤ t ≤ T − h, and vh(t, z, θ) = vh(T − h, z, θ) for T − h < t < T , where we denote ze
θ

= Γε(z, θ, e) in (4.3.6) to alleviate notations. Notice that at this stage, this approximation

scheme is not yet fully implementable since it requires an approximation method for the

expectations arising in (4.3.6). This is the concern of the next section.

We focus now on the convergence (when h goes to zero) of the solution vh to (4.3.1)

towards the value function vε solution to (4.2.9)-(4.2.10). Following [8], we have to show

that the scheme Sh in (4.3.2) satisfies monotonicity, stability and consistency properties. As

usual, the monotonicity property follows directly from the definition (4.3.2) of the scheme.

Proposition 4.3.1 (Monotonicity)

For all h > 0, (t, z, θ) ∈ [0, T ]× S̄ǫ, r ∈ R, and ϕ, ψ ∈ G+([0, T ]× S̄ǫ) s.t. ϕ ≤ ψ, we have

Sh(t, z, θ, r, ϕ) ≥ Sh(t, z, θ, r, ψ).

We next prove the stability property.

Proposition 4.3.2 (Stability)

For all h > 0, there exists a unique solution vh ∈ G+([0, T ]×S̄ε) to (4.3.1), and the sequence

(vh)h is uniformly bounded in G([0, T ]× S̄ε): there exists w ∈ G([0, T ]× S̄ε) s.t. |vh| ≤ |w|
for all h > 0.

Proof. The uniqueness of a solution ∈ G+([0, T ] × S̄ε) to (4.3.1) follows from the explicit

backward scheme (4.3.5)-(4.3.6). For t ∈ [0, T ], denote by Nt,h the integer part of (T −t)/h,
and Tt,h = {tk = t+ kh, k = 0, . . . , Nt,h} the partition of the interval [t, T ] with time step

h. For (t, z, θ) ∈ [0, T ] × S̄ε, we denote by Ah
ε (t, z, θ) the subset of elements α = (τn, ζn)n

in Aε(t, z, θ) such that the trading times τn are valued in Tt,h. Let us then consider the

impulse control problem

vh(t, z, θ) = sup
α∈Ah

ε (t,z,θ)

E
[

ULε(Z
ε
T ,ΘT )

]

, (t, z, θ) ∈ [0, T ] × S̄ε. (4.3.7)

It is clear from the representation (4.3.7) that for all h > 0, 0 ≤ vh ≤ vε, which shows that

the sequence (vh)h is uniformly bounded in G([0, T ]×S̄ε). Moreover, similarly as for vε, and

by the same arguments as in Remark 4.2.3, we see that vh(t, z, 0) is strictly increasing in x

and nondecreasing in y for (z, 0) = (x, y, p, 0) ∈ S̄ε. Finally, we observe that the numerical

scheme (4.3.1) is the dynamic programming equation satisfied by the value function vh.

This proves the required stability result. 2

We now move on the consistency property.

Proposition 4.3.3 (Consistency)
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(i) For all (t, z, θ) ∈ [0, T ) × S̄ǫ and φ ∈ C1,2([0, T ) × S̄ǫ), we have

lim sup
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t′ ,z′ ,θ′ )∈[0,T )×Sǫ

min











φ(t
′
, z

′
, θ

′
) − E

[

φ(t
′
+ h, Z0,t

′
,z

′

t′+h
,Θ0,t

′
,θ

′

t′+h
)
]

h
,
(

φ−Hǫφ
)

(t
′
, z

′
, θ

′
)











≤ min
{(

− ∂φ

∂t
− Lφ

)

(t, z, θ),
(

φ−Hǫφ
)

(t, z, θ)
}

(4.3.8)

and

lim inf
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t
′
,z

′
,θ

′
)∈[0,T )×Sǫ

min











φ(t
′
, z

′
, θ

′
) − E

[

φ(t
′
+ h, Z0,t

′
,z

′

t′+h
,Θ0,t

′
,z

′

t′+h
)
]

h
,
(

φ−Hǫφ
)

(t
′
, z

′
, θ

′
)











≥ min
{(

− ∂φ

∂t
− Lφ

)

(t, z, θ),
(

φ−Hǫφ
)

(t, z, θ)
}

(4.3.9)

(ii) For all (z, θ) ∈ S̄ǫ and φ ∈ C1,2([0, T ] × S̄ǫ), we have

lim sup
(t
′
,z

′
,θ

′
)→(T,z,θ)

(t′ ,z′ ,θ′ )∈[0,T )×Sǫ

min
{

φ(t
′
, z

′
, θ

′
) − ULǫ(z

′
, θ

′
),

(

φ−Hǫφ
)

(t
′
, z

′
, θ

′
)
}

≤ min
{

φ(T, z, θ) − ULǫ(z, θ),
(

φ−Hǫφ
)

(T, z, θ)
}

(4.3.10)

and

lim inf
(t
′
,z

′
,θ

′
)→(T,z,θ)

(t
′
,z

′
,θ

′
)∈[0,T )×Sǫ

min
{

φ(t
′
, z

′
, θ

′
) − ULǫ(z

′
, θ

′
),

(

φ−Hǫφ
)

(t
′
, z

′
, θ

′
)
}

≥ min
{(

φ(T, z, θ) − ULǫ(z, θ)),
(

φ−Hǫφ
)

(T, z, θ)
}

(4.3.11)

Proof. The arguments are standard, and can be adapted e.g. from [19] or [20]. We sketch

the proof, and only show the inequality (4.3.8) since the other ones are derived similarly.

Fix t ∈ [0, T ). Since the minimum of two upper-semicontinous (usc) functions is also usc
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and using the caracterization of usc functions, we have

lim sup
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t′ ,z′ ,θ′ )∈[0,T )×Sǫ

min
{(

φ−Hǫφ
)

(t
′
, z

′
, θ

′
),
φ(t

′
, z

′
, θ

′
) − E

[

φ(t
′
+ h, Z0,t

′
,z

′

t
′
+h

,Θ0,t
′
,θ

′

t
′
+h

)
]

h

}

≤ lim sup
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t
′
,z

′
,θ

′
)∈[0,T )×Sǫ

min
{

lim sup
(h,t

′′
,z

′′
,θ

′′
)→(0,t

′
,z

′
,θ

′
)

(t
′′

,z
′′

,θ
′′
)∈[0,T )×Sǫ

(

φ−Hǫφ
)

(t
′′
, z

′′
, θ

′′
),

lim sup
(h,t

′′
,z

′′
,θ

′′
)→(0,t

′
,z

′
,θ

′
)

(t′′ ,z′′ ,θ′′ )∈[0,T )×Sǫ

φ(t
′′
, z

′′
, θ

′′
) − E

[

φ(t
′′

+ h, Z0,t
′′

,z
′′

t
′′
+h

,Θ0,t
′′

,θ
′′

t
′′
+h

)
]

h

}

≤ min
{

lim sup
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t
′
,z

′
,θ

′
)∈[0,T )×Sǫ

(

φ−Hǫφ
)

(t
′
, z

′
, θ

′
),

lim sup
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t
′
,z

′
,θ

′
)∈[0,T )×Sǫ

φ(t
′
, z

′
, θ

′
) − E

[

φ(t
′
+ h, Z0,t

′
,z

′

t
′
+h

,Θ0,t
′
,θ

′

t
′
+h

)
]

h

}

≤ min
{

φ(t, z, θ) −Hǫφ(t, z, θ)

lim sup
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t
′
,z

′
,θ

′
)∈[0,T )×Sǫ

φ(t
′
, z

′
, θ

′
) − E

[

φ(t
′
+ h, Z0,t

′
,z

′

t
′
+h

,Θ0,t
′
,θ

′

t
′
+h

)
]

h

}

, (4.3.12)

where the last inequality follows from the continuity of φ and the lower semicontinuity of

Hε. Moreover, by Itô’s formula applied to φ(s, Z0,t′,z′
s ,Θ0,t′,θ′

s ), and standard arguments of

localization to remove in expectation the stochastic integral, we get

lim sup
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t′ ,z′ ,θ′ )∈[0,T )×Sǫ

φ(t
′
, z

′
, θ

′
) − E

[

φ(t
′
+ h, Z0,t

′
,z

′

t
′
+h

,Θ0,t
′
,θ

′

t
′
+h

)
]

h
= −

(∂φ

∂t
+ Lφ

)

(t, z, θ)

Substituting into (4.3.12), we obtain the desired inequality (4.3.8). 2

Since the numerical scheme (4.3.1) is monotone, stable and consistent, we can follow the

viscosity solutions arguments as in [8] to prove the convergence of vh to vε, by relying on

the PDE characterization of vε in Theorem 4.2.1 (2), and the strong comparison principle

for (4.2.9)-(4.2.10) proven in [44].

Theorem 4.3.1 (Convergence) The solution vh of the numerical scheme (4.3.1) converges

locally uniformly to vε on [0, T ) × Sǫ.
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Proof. Let vǫ and vǫ be defined on [0, T ] × S̄ε by

vǫ(t, z, θ) = lim sup
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t′ ,z′ ,θ′ )∈[0,T )×Sǫ

vh(t
′
, z

′
, θ

′
)

vǫ(t, z, θ) = lim inf
(h,t

′
,z

′
,θ

′
)→(0,t,z,θ)

(t
′
,z

′
,θ

′
)∈[0,T )×Sǫ

vh(t
′
, z

′
, θ

′
)

We first see that vǫ and vǫ are respectively viscosity subsolution and supersolution of (4.2.9)-

(4.2.10). These viscosity properties follow indeed, by standard arguments as in [8] (see also

[19] or [20] for impulse control problems), from the monotonicity, stability and consistency

properties. Details can be obtained upon request to the authors. Moreover, from (4.3.7),

we have the inequality: U(0) ≤ vh ≤ vε, which implies by (4.2.12):

lim inf
(t
′
,z

′
,θ

′
)→(t,z,θ)

(t
′
,z

′
,θ

′
)∈[0,T )×Sǫ

vǫ(t
′
, z

′
, θ

′
) = U(0) = vǫ(t, z, θ), ∀ (t, z, θ) ∈ [0, T ] ×D0(4.3.13)

Thus, by using the strong comparison principle for (4.2.9)-(4.2.10) stated in Theorem 5.2

[44], we deduce that vǫ ≤ vǫ on [0, T ] × Sǫ and so vǫ = vǫ = vǫ on [0, T ] × Sǫ. This proves

the required convergence result. 2

4.4 Numerical Algorithm

Let us consider a time step h = T/m, m ∈ N \ {0}, and denote by Tm = {ti = ih, i =

0, . . . ,m} the regular grid over the interval [0, T ]. We recall from the previous section that

the time discretization of step h for the QVI (4.2.9)-(4.2.10) leads to the convergent explicit

backward scheme:

vh(tm, z, θ) =



















ULε(z, θ) if θ = 0

max
[

ULǫ(z, θ) ,

sup
e∈Cε(z,θ)

vh(tm,Γε(z, θ, e), 0)
]

, if θ > 0,

(4.4.1)

vh(ti, z, θ) =



















E
[

vh(ti+1, Z
0,ti,z
ti+1

, θ + h)
]

if θ = 0

max
[

E
[

vh(ti+1, Z
0,ti,z
ti+1

, θ + h)
]

,

sup
e∈Cε(z,θ)

vh(ti,Γε(z, θ, e), 0)
]

]

, if θ > 0

(4.4.2)

for i = 0, . . . ,m − 1, (z = (x, y, p), θ) ∈ S̄ε. Recall that the variable θ represents the time

lag between the current time t and the last trade. Thus, it suffices to consider at each time

step ti of Tm, a discretization for θ valued in the time grid

Ti =
{

θj = jh, j = 0, . . . , i}, i = 0, . . . ,m.
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On the other hand, the above scheme involves nonlocal terms in the variable z for the

solution vh in relation with the supremum over e ∈ Cε(z, θ) and the expectations in (4.4.1)-

(4.4.2), and thus the practical implementation requires a discretization of the set of admis-

sible transactions Cε(z, θ) and a computational approximation for the above expectations.

Moreover, since the state space S̄ε is unbounded, we also need to localize the domain on

which computations are done. For any θj ∈ Ti, let us denote by

Zj =
{

z = (x, y, p) ∈ R × R+ × R+ : (z, θj) ∈ S̄ε

}

,

Zj
loc = Zj ∩

(

[xmin, xmax] × [0, ymax] × [0, pmax]
)

,

where xmin < xmax in R, 0 < ymax, 0 < pmax are fixed constants.

Let us first discretize the set of admissible transactions Cε(z, θj) over which the supre-

mum in (4.4.2) is taken, for any θj ∈ Ti, z ∈ Zj
loc. Recall from [44] that Cε(z, θj) is compact

in the form [e(z, θj), ē(z, θj)]. We then consider the discrete set of admissible transactions

of size M :

CM,loc
ε (z, θj) =

{

e = e(z, θj) +
i

M
(ē(z, θj) − e(z, θj , e)), i = 0, . . . ,M : Γε(z, θj) ∈ Z0

loc

}

,

and define the associated discrete impulse operator:

HM,loc
ε vh(ti, z, θj) = sup

e∈CM,loc
ε (z,θj)

vh(ti,Γε(z, θj , e), 0).

Optimal quantization method and truncation. Let us now describe the numeri-

cal procedure for computing the expectations arising in (4.4.2). Recalling that Z0,t,z =

(x, y, P t,p), this involves only the expectation with respect to the price process, assumed

here to follow a Black-Scholes model (4.2.3). We shall then use an optimal quantization for

the standard normal random variable U , which consists in approximating the distribution

of U by the discrete law of a random variable Û of support (uk)1≤k≤N ∈ R
N , and defined

as the projection of U on the grid (uk)1≤k≤N according to the closest neighbour. The grid

(uk)1≤k≤N is optimized in order to minimize the distorsion error, i.e. the quadratic norm

between U and Û . This optimal grid and the associated weights (πk)1≤k≤N are downloaded

from the website: “http://www.quantize.maths-fi.com/downloads”. We refer to the survey

article [58] for more details on the theoretical and computational aspects of optimal quan-

tization methods. From (4.4.2), we have to compute at any time step ti ∈ Tm, and for any

θj ∈ Ti, z = (x, y, p) ∈ Zj
loc, expectations in the form:

E
[

vh(ti + h, Z0,ti,z
ti+h , θj + h)

]

= E
[

vh(ti + h, x, y, p exp
(

b̄h+ σ
√
h U

)

, θj + h)
]

.

where we set b̄ = (b− σ2

2 ). The optimal quantization method consists then in approximating
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the above exact expectation by the discrete expectation operator:

EN
[

vh(ti + h, Z0,ti,z
ti+h , θj + h)

]

:=
N

∑

k=1

πk v
h(ti + h, x, y, p exp

(

b̄h+ σ
√
huk

)

, θj + h)

= E
[

vh(ti + h, Ẑ0,ti,z
ti+h , θj + h)

]

,

where Ẑ0,ti,z
ti+h = (x, y, P̂ ti,p

ti+h), and P̂ ti,p
ti+h = p exp

(

b̄h+σ
√
h Û

)

is the discrete random variable

valued in P̂ ti,p,uk

ti+h = p exp
(

b̄h + σ
√
h uk

)

, with weights πk, k = 1, . . . , N . Actually, since

for 0 ≤ p ≤ pmax, the discrete positive random variable P̂ ti,p
ti+h can take values above pmax,

we truncate to the nearest neighbour of pmax, and consider the approximate expectation

operator:

EN
loc

[

vh(ti + h, Z0,ti,z
ti+h , θj + h)

]

:=
N

∑

k=1

πk v
h(ti + h, x, y,Proj[0,pmax](P

ti,p,uk

ti+h ), θj + h)

= E
[

vh(ti + h, x, y, P̂ loc,ti,p
ti+h , θj + h)

]

, (4.4.3)

where Proj[0,pmax](p) = p1p≤pmax +pmax1p>pmax for p ≥ 0, and P̂ loc,ti,p
ti+h = Proj[0,pmax](P̂

ti,p
ti+h).

We may then rewrite the actual numerical scheme used as:

Sh,M,N
loc (ti, z, θj , v

h(t, z, θj), v
h) = 0, ti ∈ Tm, θj ∈ Ti, z ∈ Zj

loc, (4.4.4)

for i = 0, . . . ,m, j = 0, . . . , i, where Sh,M,N
loc is defined by

Sh,M,N
loc (ti, z, θj , r, ϕ) (4.4.5)

:=







min
[

r − EN
loc

[

ϕ(ti + h, Z0,ti,z
ti+h , θj + h)

]

, r −HM,loc
ǫ ϕ(ti, z, θ)

]

for i = 0, . . . ,m− 1

min
[

r − ULǫ(z, θj) , r −HM,loc
ǫ ϕ(T, z, θj)

]

for i = m.

Let us now address the convergence proofs of this computational scheme by adapting the

arguments in Section 4.3. The monotonicity in the sense of Proposition 4.3.1 easily follows

since the weights (πk)k=1,...,N appearing in the definition of EN
loc are nonnegative. In order

to get the stability, we notice that the numerical scheme (4.4.4) is actually the dynamic

programming equation for the following discrete impulse control problem:

vh,N,M
loc (ti, z, θj) = sup

α∈Ah,M,loc
ε (ti,z,θj)

E
[

ULε(Ẑ
loc
tm , Θ̂tm)

]

,

where Ah,M,loc
ε (ti, z, θj) is the set of elements α = (τn, ζn)n s.t. the trading times τn are F̂

= (F̂tℓ)-stopping times, valued in Ti,m = {tℓ = ℓh, ℓ = i, . . . ,m}, and ζn is F̂τn-measurable,
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valued in the discrete set of admissible transactions CM,loc
ε (Ẑ loc

τn
, τn − τn−1), where the dis-

crete time controlled process {Ẑ loc
tℓ

= (X̂tℓ , Ŷtk , P̂
loc
tℓ

), Θ̂tℓ , ℓ = i, . . . ,m} is governed by Ẑ loc
ti

= z, and

X̂tℓ = X̂τn , Ŷtℓ = Ŷτn , Θ̂tℓ = tℓ − τn, τn ≤ tℓ < τn+1,

P̂ loc
tℓ

= Proj[pmin,pmax]

(

P̂ loc
tℓ−1

exp
(

(b− σ2

2
)h+ σ

√
hUℓ

)

)

,

(Ẑ loc
τn+1

, Θ̂τn+1) =
(

Γε

(

Ẑ loc
τn
, τn+1 − τn, ζn+1

)

, 0
)

,

where Uℓ, ℓ = i + 1, . . . ,m are i.i.d. discrete random variables with support (uk)k=1,...,N

and weights (πk)k=1,...,N , and F̂tℓ is the σ-algebra generated by Uj , j ≤ ℓ. Assuming for

simplicity that the utility function U is bounded, we then see that the solution vh,N,M
loc

to the numerical scheme is pointwise bounded uniformly in (h,N,M) and the localization

parameters (xmin, xmax, ymax, pmax). For proving the (pointwise) consistency in the line of

Proposition 4.3.3, we have to estimate, for any fixed ti ∈ Tm, θj ∈ Ti, z ∈ Zj , any smooth

test function φ, the accuracy of the approximate expectation EN
loc

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

with respect to the exact expectation E
[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

, when h goes to zero, N

goes to infinity, and R := min[|xmin|, |xmax|, ymax, pmax] goes to infinity. Assuming that

the smooth test function is uniformly Lipschitz in p, we have:
∣

∣

∣
E

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

− EN
loc

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

∣

∣

∣

=
∣

∣

∣
E

[

φ(ti + h, x, y, P ti,p
ti+h, θj + h)

]

− E
[

φ(ti + h, x, y, P̂ loc,ti,p
ti+h , θj + h)

]

∣

∣

∣

=
∣

∣

∣
E

[

φ(ti + h, x, y, peb̄h+σ
√

h U , θj + h)]

− E
[

φ(ti + h, x, y,Proj[0,pmax]

(

peb̄h+σ
√

h Û )
)

, θj + h)]
∣

∣

∣

≤ CE
∣

∣peb̄h+σ
√

h U − Proj[0,pmax]

(

peb̄h+σ
√

h Û)
∣

∣

≤ CE
∣

∣peb̄h+σ
√

h U − Proj[0,pmax]

(

peb̄h+σ
√

hU)∣

∣ + Cp E
∣

∣eb̄h+σ
√

h U − eb̄h+σ
√

h Û ∣

∣

≤ Cp E

[

eb̄h+σ
√

h U1
peb̄h+σ

√
h U>pmax

]

+ Cp
√
hE

[(

eb̄h+σ
√

hU + eb̄h+σ
√

hÛ
)

|U − Û|
]

,

where C denotes a generic constant independent of h,N,R, and we used in the second

inequality the fact that the projection on [0, pmax] is a Lipschitz function, and in the third

inequality the relation: |ex − ey| ≤ ex+ey

2 |x− y|. Then, by Cauchy-Schwarz inequality, we

obtain:
∣

∣

∣
E

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

− EN
loc

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

∣

∣

∣

≤ Cp

√

E
[

e2b̄h+2σ
√

h U
]

√

P
[

peb̄h+σ
√

h U > pmax

]

+ Cp
√
h

√

E

[

e2b̄h+2σ
√

h U
]

+ E

[

e2b̄h+2σ
√

h Û
]

√

E|U − Û|2.
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Now, since Û is an optimal quantization of U , we have the stationary property, meaning

that E[U|Û ] = Û (see [58]), which implies from Jensen’s inequality applied to the convex

function u → e2b̄h+2σ
√

hu, and the law of iterated conditional expectations:

E

[

e2b̄h+2σ
√

h Û
]

≤ E

[

e2b̄h+2σ
√

h U
]

= e(2b+σ2)h.

Denoting by Φ the distribution function of U , we then have:
∣

∣

∣
E

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

− EN
loc

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

∣

∣

∣

≤ Cpe(b+
σ2

2
)h

{

√

1 − Φ
( ln

(pmax

peb̄h

)

σ
√
h

)

+
√
h

√

E|U − Û|2
}

.

From Zador’s theorem (see [58]), the asymptotic distorsion error for the optimal quantiza-

tion satisfies: limN→∞N

√

E|U − Û|2 ∈ (0,∞), and so

√

E|U − Û|2 = O(1/N). Recalling

the well known estimate: 1 − Φ(d) ∼ ϕ(d)/d, as d goes to infinity, where ϕ = Φ′ is the

density of U , we obtain by taking N s.t. N
√
h → ∞, e.g. N = O(1/h

1
2
+ε), with ε > 0,

and pmax > p, the pointwise estimation:

EN
loc

[

φ(ti + h, Z0,ti,z
ti+h , θj + h) = E

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

+ o(h),

where the notation o(h) means that o(h)/h goes to zero as h goes to zero. This yields

lim
h → 0

N
√

h, R → ∞

φ(ti, z, θj) − EN
loc

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

h

= lim
h→0

φ(ti, z, θj) − E
[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

h
. (4.4.6)

On the other hand, for fixed ti ∈ Tm, θj ∈ Ti, z ∈ Zj , we notice that ∪∞
M,R=1C

M,loc
ε (z, θj)

is dense in Cε(z, θj). Hence, by continuity of φ, Γε, and compacity of Cε(z, θj), we deduce

that

lim
M,R→∞

HM,loc
ε φ(ti, z, θj) = Hεφ(ti, z, θj).

Together with (4.4.6), we then obtain similarly as in Proposition 4.3.3:

lim
h → 0

N
√

h, M, R → ∞

min
{φ(ti, z, θj) − EN

loc

[

φ(ti + h, Z0,ti,z
ti+h , θj + h)

]

h
, (φ−HM,loc

ε φ)(ti, z, θj)
}

= min
{

−
(∂φ

∂t
+ Lφ)(ti, z, θj) , (φ−Hεφ)(ti, z, θj)

}

,

which then proves the convergence of the numerical scheme Sh,M,N
loc .



113 Numerical methods for an optimal order execution problem

Algorithm description. In summary, our numerical scheme provides an algorithm for

computing approximations vh of the value function, and ζh of the optimal trading strategy

at each time step ti ∈ Tm, and each point (z, θ) of the grid (Xn×Yn×Pn×Ti) ∩ S̄ε, where

Xn is the uniform grid with n nodes on [xmin, xmax], i.e. of step (xmax − xmin)/n, and

similarly for Yn, Pn. Let us also denote by Z
j
n = {z ∈ Zn : (z, θj) ∈ S̄ε}. The parameters

in the algorithm are:

- T the maturity

- b and σ the Black and Scholes parameters of the stock price

- λ the impact parameter, β the impact exponent in the market impact function (4.2.5)

- κa, κb the spread parameters in percent, ε the transactions costs fee

- We take by default a CRRA utility function: U(x) = xγ

- xmin, xmax ∈ R, 0 ≤ ymin < ymax, 0 ≤ pmin < pmax, the boundaries of the localized

domain

- m number of steps in time discretization, n the number of steps in space discretization

- N number of points for optimal quantization of the normal law, M number of points used

in the static supremum in e

The algorithm is described explicitly in backward induction as follows:

◮ Initialization step at time tm = T :

• (s:0) For j = 0, set vh(tm, z, 0) = ULε(z, 0), ζh(tm, z, 0) = 0 on Z
0
n, and interpolate

vh(tm, z, 0) on Z0
loc.

• (s:j) For j = 1, . . . ,m,

– for z ∈ Z
j
n, compute v := sup

e∈CM,loc
ε (z,θj)

ULε(Γε(z, θj , e), 0) and denote by ê the

argument maximum:

– if v > ULǫ(z, θj), then set vh(tm, z, θj) = v and ζh(tm, z, θj) = ê,

– else set vh(tm, z, θj) = ULε(z, θj), and ζh(tm, z, θj) = 0.

– Interpolate z → vh(tm, z, θj) on Zj
loc.

◮ From time step ti+1 to ti, i = m− 1, . . . , 0:

• (s:0) For j = 0, compute EN
loc

[

vh(ti + h, Z0,ti,z
ti+h , θj + h)

]

from (4.4.3) and (s:1) of time

step ti+1, and set vh(ti, z, 0) = EN
loc

[

vh(ti + h, Z0,ti,z
ti+h , θj + h)

]

, ζh(ti, z, 0) = 0 on Z
0
n;

interpolate vh(ti, z, 0) on Z0
loc.

• (s:j) For j = 1, . . . , i,
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– for z ∈ Z
j
n, compute EN

loc

[

vh(ti + h, Z0,ti,z
ti+h , θj + h)

]

from (4.4.3) and (s:j+1) of

time step ti+1, v := sup
e∈CM,loc

ε (z,θj)

vh(ti,Γε(z, θj , e), 0) from (s:0), and denote by ê

the argument maximum:

– if v > EN
loc

[

vh(ti + h, Z0,ti,z
ti+h , θj + h)

]

, then set vh(ti, z, θj) = v, ζh(ti, z, θj) = ê,

– else set vh(ti, z, θj) = EN
loc

[

vh(ti + h, Z0,ti,z
ti+h , θj + h)

]

, and ζh(ti, z, θj) = 0.

– Interpolate z → vh(ti, z, θj) on Zj
loc.

Complexity of the algorithm. Due to the high dimension of the grid

S = Tm ×
⋃

i=1...m

(

(Xn × Yn × Pn × Ti) ∩ S̄ε

)

,

the computation of the optimal policy on the entire grid has an expensive computational

cost. Indeed, this grid contains O(m2n3) points, and at each point (ti, z, θj) ∈ S, one has

to compute:

• The approximation of conditional expectation EN
loc

[

vh(ti +h, Z
0,ti,z
ti+h , θj +h)

]

that costs

O(N) unitary operations.

• The approximation of the static supremum sup
e∈CM,loc

ε (z,θj)

vh(ti,Γε(z, θj , e), 0) , together

with its argument maximum, that costs O(M) unitary operations when using linear

search1.

• The localization procedure and the interpolation procedure has constant computa-

tional cost O(1).

Therefore, we obtain a complexity of:

Complexity = O(m2n3 max(N,M)).

Actually, denoting by K = max(n,m,N,M), the complexity of the algorithm is O(K6).

Yet, practical implementation of the algorithm can achieve quite better performance. First,

in the optimal quantization for the computation of the expectations in the numerical al-

gorithm, we can choose N = O(m1/2+ε) for all ǫ > 0. Assuming that we are able to

use a dichotomy-based method for computing the static supremum, which has logarithmic

complexity, the main computational costs are due to the computation of the approximate

1Note that the supremum computation can be improved by the use of dichotomy-based search instead

of linear search if we are able to use a concavity argument on e 7→ v(t, Γ(x, y, p, θ, e), 0) which would lead to

a complexity of O(ln(M)). From numerical experiments, this dichotomy search method leads to acceptable

results.
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conditional expectation, and we can neglect the cost of computing the static supremum. In

this case, the complexity is reduced to:

Complexity = O(m5/2+εn3) , ∀ε > 0,

which is satisfactory when considering that there is O(m2n3) points to compute in the grid.

Second, the grid computation algorithm can be parallelized easily, which is a very desirable

property when targeting an industrial application. Indeed, at each date ti the computation

of EN
loc

[

vh(ti + h, x, y, P 0,ti,p
ti+h , θj + h)

]

and sup
e∈CM,loc

ε (z,θj)

vh(ti,Γε(x, y, p, θj , e), 0) can be done

independently for each quadruplet (x, y, p, θj) provided that θj > 0.

Finally, the complexity displayed above represents the amount of computations needed

to build up the optimal policy. When targeting a live trading application, one can compute

off-line and store optimal policies for a given set of market parameters, and when actually

trading, one does only need to read (with constant cost) the optimal policy corresponding

to current market state.

Comparison with finite difference scheme. In order to motivate our numerical scheme

proposal, let us compare it with usual finite difference scheme. Let us briefly introduce the

class of theta-schemes. We refer to [47] for complete discussion about this class of schemes.

We will assume that the value function is sufficiently smooth, and we focus in this paragraph

on the diffusive part of the QVI, so that our target equation to solve is:

∂

∂t
+ Lv = 0 on S̄ε × [0, T ),

together with a terminal condition on S̄ε × {T}. To solve numerically this Kolmogorov

parabolic equation with finite time horizon, we can discretize it using a theta-scheme of

parameter a according to [47]. This approximation consists in the following:
(

∂

∂t
v + Lv

)

(t, z, θ) ≃ Pa
h,δv(t, z, θ)

where

Pa
h,δv(t, z, θ) =

v(t+ h, z, θ + h) − v(t, z, θ)

h
+ aLδv(t, z, θ) + (1 − a)Lδv(t+ h, z, θ + h)

and Lδ is the finite difference approximation of L̃ := bp
∂

∂p
+ 1

2σ
2p2 ∂

2

∂p2
of (space) step δ

and a ∈ [0, 1]. The discretized equation is:

Pa
h,δv(t, z, θ) = 0 on Oδ ∩ S̄ × [0, T ),

where Oδ is a suitable regular grid of (space) step δ. From the finite differences approxi-

mation, we have the following precision:
(

∂

∂t
v + Lv

)

(t, z, θ) = Pa
h,δv(t, z, θ) + o(hp + δq),
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where p and q depends on the choice of a: if a 6= 1/2 we obtain that p = 1, and if a = 1/2

we obtain that p = 2, which corresponds to the Crank-Nicholson scheme. Due to the second

order derivative in L, and by using standard finite difference approximation, the rate of

convergence for the spatial approximation is q = 1, ∀a ∈ [0, 1]. Therefore, in our case, we

see that theta-schemes have order 1 in time and order 1 in space, except for the Crank-

Nicholson scheme, which gives an order 2 in time and order 1 in space. For comparison

purpose, the optimally quantized scheme that we use has order 1 in time provided that

N = O(h−(1/2+ε)) where N is the number of points in the optimal quantization grid:
(

∂

∂t
v + Lv

)

(t, z, θ) = 0 , N = O(h−(1/2+ε)) =⇒ vh(t, z, θ) = EN
loc

[

vh(t+h, Z0,t,z
t+h , θ+h)

]

+o(h).

This raises two comments. First, we see that in contrast with finite difference scheme, the

precision of the optimally quantized scheme is controlled by the number of points N of

the optimal quantization grid, and not by the space step δ, provided that interpolation

procedure is sufficiently efficient. Therefore, one can improve the precision by increasing

N and without increasing the size of the grid, which is very interesting when dealing with

high-dimension state space. Second, the above result allows us to choose n = O(m1/2),

while keeping a precision of o(1/m), whereas if using a finite-difference scheme, the preci-

sion would be o(1/m1/2) due to spatial approximation. Therefore, by using an optimally

quantized scheme, we can obtain a satisfactory precision, while managing efficiently the size

of the grid, and subsequently the memory needed to achieve computation, which is quite

relevant when dealing with high-dimensional state space.

Yet, two other theta-schemes may be good candidates for solving numerically our QVI,

the Crank-Nicholson scheme due to its higher order in time, and the fully-implicit scheme,

corresponding to a = 1 because it has the property of being stable without restriction on

the choice of time step versus space step.

4.5 Numerical Results

4.5.1 Procedure

For each of the numerical tests, we used the same procedure consisting in the following

steps:

(1) Set the parameters according to the parameter table described in the first subsection

of each test

(2) Compute and save the grids representing value function and optimal policy according

to the optimal liquidation algorithm

(3) Generate Q paths for the stock price process following a geometrical Brownian motion:

we choose parameters b and σ that allows us to observe several empirical facts on the
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performance and the behavior of optimal liquidation strategy. These parameters can also

be estimated from historical observations on real data by standard statistical methods.

(4) Consider the portfolio made of X0 dollars and Y0 shares of risky asset

(5) For each price path realization, update the portfolio along time and price path accord-

ingly to the policy computed in the second step

(6) Save each optimal liquidation realization

(7) Compute statistics

In the sequel, we shall use the following quantities as descriptive statistics:

• The performance of the i-th realization of the optimal strategy is defined by

L
(i)
opt =

Lǫ(Z
(i),αopt

T ,Θ
(i),αopt

T )

X0 + Y0P0

where (Z
(i),αopt

T ,Θ
(i),αopt

T ) is the state process, starting at date 0 at (X0, Y0, P0, 0), evolving

under the i-th price realization and the optimal control αopt. This quantity can be inter-

preted as the ratio between the cash obtained from the optimal liquidation strategy and

the ideal Merton liquidation. We define in the same way the quantities L
(i)
naive and L

(i)
uniform

respectively associated with the controls αnaive and αuniform of the naive and uniform

strategy, referred to as benchmark strategies. Recall that the naive strategy consists in

liquidating the whole portfolio in one block at the last date, and the uniform strategy con-

sists in liquidating the same quantity of asset at each predefined date until the last date.

Notice that the score 1 corresponds to the strategy, which consists in liquidating the whole

portfolio immediately in an ideal Merton market.

When denoting by Q the number of paths of our simulation, we define:

• The mean utility V̂. =
1

Q

Q
∑

i=1

U(L(i)
. )

• The mean performance L̂. =
1

Q

Q
∑

i=1

L(i)
.

• The standard deviation of the strategy σ̂. =

√

√

√

√

1

Q

Q
∑

i=1

(L(i)
. )2 − L̂.

2

Here the dot . stands for opt, naive or uniform. We will also compute the third and fourth

standardized moments for the series (L(i)
. )i.
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4.5.2 Test 0: Convergence of the numerical scheme

In order to experiment numerically the convergence of the scheme, we performed two series

of convergence tests. First, we computed a reference value function with a fine discretization

grid, and computed for various sizes of grids the difference to this reference result. Second,

we backtested the optimal policy obtained with various discretization grid sizes, using the

the procedure described in 5.1, and compared the results.

Due to the high dimension of the problem, we restricted our convergence analysis to

reasonably sized discretization grids, except for the reference computation, and therefore

missing values in tables 4.3 and 4.4 corresponds either to grids that required too much

memory space or too much time to compute. When targeting industrial applications, one

can avoid these restrictions by using a suitable parallel algorithm, as we did for computing

the reference value function. Yet, with a reasonable size of grid, for example (m = 64, n =

32) one can achieve satisfactory results (see table 4.3).

Convergence of the value function First, we computed a reference value function that

we will denote v∞ using a parallelized version of our algorithm with parameters shown in

table 4.1. We ran the computations on two SGI Altix ICE 8200EX supercomputers made

of 256 computing cores 64-bit at 2.83 GHz with 512 GB of distributed RAM. Computations

took 11 hours and 36 minutes to complete and size of computer representation of v∞ was

0.991 TB.

Parameter Value Parameter Value

Maturity 1 day m 256

λ 0.02 n 128

β 0.2 N 30

γ 0.5

κA 1.001

κB 0.999

ǫ 0.001

Table 4.1: Test 0: parameters for the reference computation v∞

Second, we computed value functions for different values of n and m, (see parameters in

table 4.2) that we will denote vn,m, and we computed the relative error we made compared

to v∞, i.e.
‖v∞ − vn,m‖2

‖v∞‖2
. The results are reported on table 4.3.

As a consequence of this convergence test, we will use in the following tests the following

values: m ∈ [|30...60|] and n ∈ [|20...60|]. Indeed these sizes of grid are a good compromise

between computational complexity and precision.
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Parameter Value Parameter Value

Maturity 1 day X0 20

λ 0.02 Y0 250

β 0.2 P0 1.0

γ 0.5 N
√
m

κA 1.001 Q 105

κB 0.999

ǫ 0.001

Table 4.2: Test 0: parameters

n 4 8 16 32 64

m

16 0.2251 0.1043 0.0668 0.0582 0.0563

32 0.2231 0.0997 0.0567 0.0445 0.0416

64 0.2210 0.0970 0.0501 0.0343

128 0.2207 0.0968 0.0498

256 0.2204 0.0967 0.0498

Table 4.3: Test 0: convergence of the value function. Quantity displayed is
‖v∞ − vn,m‖2

‖v∞‖2
.

Backtesting the optimal strategy We compared the fully implicit scheme to our opti-

mally quantized scheme, following the procedure described in section 5.1. The fully implicit

scheme corresponds to a theta-scheme with parameter a = 1, and has the property of in-

ducing no restriction on the choice of timestep. Therefore we use it as a benchmark for our

optimally quantized scheme. Parameters are reported in table 4.2 and results in table 4.4.

In table 4.5 we display the same convergence test measured in terms of the statistics
L̂Quantized − L̂Implicit

σ̂Quantized
where L̂Quantized (resp. L̂Implicit) is the estimate of performance

for the initial portfolio (X0, Y0, P0) using the optimally quantized scheme (resp. the fully

implicit scheme) for computing the optimal policy and σ̂Quantized its standard deviation.

This quantity is more intuitive from the financial point of view, and can be interpreted

as the gain in mean performance when using the optimally quantized scheme compared to

using the fully implicit scheme, measured with the standard deviation as unit. We remark

that the optimally quantized scheme performs better for most values of (m,n), especially

for small-sized time grids. When increasing the size of the time grid, the difference of

performance for these two scheme seems to vanish, in terms of the above statistics, but we
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n 4 8 16 32 64

scheme m

Quantized 16 0.5238 0.8603 0.8667 0.8752 0.8749

Implicit 0.5410 0.8478 0.8574 0.8574 0.8593

Quantized 32 0.5420 0.8486 0.8676 0.8747 0.8743

Implicit 0.5411 0.8458 0.8589 0.8607 0.8619

Quantized 64 0.5411 0.8465 0.8578 0.8601

Implicit 0.5410 0.8465 0.8609 0.8603

Quantized 128 0.5405 0.8417

Implicit 0.5411 0.8456

Quantized 256 0.5193

Implicit 0.5278

Table 4.4: Test 0: Convergence of the numerical algorithm: table of value function esti-

mated by Monte-Carlo simulation V̂ with initial portfolio (X0, Y0, P0) when varying grid

size (m is number of time steps, n the number of space steps, with boundaries fixed). We

display results for the optimally quantized scheme (referred to as ”Quantized” scheme in

the table) against the benchmark made of the theta-scheme of parameter a = 1 and usual

finite difference approximation (referred to as ”Implicit” scheme in the table).

need more precise tests to conclude.

n 4 8 16 32 64

m

16 0.1191 0.1179 0.1085 0.1662 0.1482

32 0.0890 0.0612 0.0902 0.1175 0.1065

64 0.0109 0.0367 0.0328 0.0521

128 -0.0439 0.0127

256 -0.3437

Table 4.5: Test 0: Convergence of the numerical algorithm: table for the statistics

(L̂Quantized − L̂Implicit)/σ̂Quantized when varying grid size.

4.5.3 Test 1: A toy example

The goal of this test is to show the main characteristics of our results. We choose a set

of parameters that is unrealistic but that has the advantage of emphasizing the typical
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behavior of the optimal liquidation strategy.

Parameters We choose the set of parameters shown in table 4.6.

Parameter Value Parameter Value

Maturity 1 year X0 2000

λ 5.00E-07 Y0 2500

β 0.5 P0 5.0

γ 0.5 xmin -30000

κA 1.01 xmax 80000

κB 0.99 ymin 0

ǫ 0.001 ymax 5000

b 0.1 pmin 0

σ 0.5 pmax 20

m 40

n 20

N 100

Q 105

Table 4.6: Test 1: parameters

Execution statistics The results were computed using Intelr Core 2 Duo at 2.93Ghz

CPU with 2.98 Go of RAM. Statistics are shown in table 4.7.

Quantity Evaluation

Time Elapsed for grid computation in seconds 7520

Number Of Available Processors 2

Estimated Memory Used (Upper bound) 953MB

Time Elapsed for statistics Computation in seconds 21

Table 4.7: Test 1: Execution statistics

Shape of policy In this paragraph we plotted the shape of the policy sliced in the plane

(x, y), i.e. the (cash, shares) plane, for a fixed (t, θ, p) (figure 4.1). The color of the map

at (x0, y0) on the graph represents the action one has to take when reaching the state

(t, θ, x0, y0, p). We can see three zones: a buy zone (denoted BUY on the graph), a sell
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zone (denoted SELL on the graph) and a no trade zone (denoted NT on the graph). Note

that the bottom left zone on the graph is outside the domain S̄. These results have the

intuitive financial interpretation: when x is big and y is small, the investor has enough cash

to buy shares of the risky asset and tries to profit from an increased exposure. When y is

large and x is small, the investor has to reduce exposure to match the terminal liquidation

constraint.

����

����

����

����

����

����

����

����

����

����

�
�
�
�
�
�

���	ABCD�	AEFC	�C��EC�A�D��D���ED�C����E

��		

AB

�

���

���

���

C���

C���

C���

C���

����

����

����

�
�
�
�
�
�

����

DEF

AB

�EB���������A

Figure 4.1: Test 1: Typical shape of the policy sliced in XY near date 0

We also plotted the shape of the policy sliced in the plane (y, p), i.e. the (shares,price)

plane, for a fixed (t, θ, x) (figure 4.2). As before, the color of the map at (y0, p0) on the

graph represents the action one has to take when reaching the state (t, θ, x, y0, p0). Again,

we can distinguish the three zones: buy, sell and no trade.

Remark 4.5.1 In our modelling, we allow buying to occur during liquidation. This may

be a priori undesirable in practice, and one could easily enforce a no-buying constraint in

our model by requiring that the strategies (ζn) should be nonpositive, so that the shape

policy is reduced to two zones instead of three zones as above: a no-trade and a sell zone.

However, by giving more flexibility to the investor, we allow him to take advantage of a

drop of the asset price, as illustrated in Figure 4.7, and so to realize a better performance.



123 Numerical methods for an optimal order execution problem

Figure 4.2: Test 1: Typical shape of the policy sliced in YP

Shape of value function Figure 4.3 shows the value function sliced in the (x, y) plane.

This figure is a typical pattern of the value function. Recall from Proposition 3.1 in [44]

the following Merton theoretical bound for the value function:

v(t, z, θ) ≤ vM (t, x, y, p) = eρ(T−t)(x+ yp)γ , with ρ =
γ

1 − γ

b2

2σ2
.

In the figure 4.4 we plotted the difference between the value function and this theoretical

bound. We observe that this difference is increasing with the number of shares, and de-

creasing with the cash. This result is interpreted as follows: the price impact increases with

the number of shares, but this can be reduced by the liquidation strategy whose efficiency

is greater if the investor can sustain bigger cash variations.

4.5.4 Test 2: Short term liquidation

The goal of this test is to show the behavior of the algorithm on a realistic set of parameters

and real data. We used Reuters data fed by OneTick TimeSeries Database. We used the

spot prices (Best Bid and Best Ask) for the week starting 04/19/2010 on BNP.PA. We
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Figure 4.3: Test 1: Typical shape of the value function sliced in XY

computed mid-price that is the middle between best bid and best ask price. We choose the

impact parameter λ in order to penalize by approximately 1% the immediate liquidation

of the whole portfolio compared to Merton liquidation. In other words, we take λ so that:

λ|Y0

T
|β ≃ 0.01.

Parameters We computed the strategy with parameters shown in table 4.8.

Execution statistics We obtained the results using Intelr Core 2 Duo at 2.93Ghz CPU

with 2.98 Go of RAM, the computations statistics are gathered in table 4.9.

Performance Analysis We computed the mean utility and the first four moments of the

optimal strategy and the two benchmark strategies in table 4.10 and plotted the empirical

distribution of performance in figure 4.5. It is remarkable that the optimal strategy gives

an empirical performance that is above the immediate liquidation at date 0 in the Merton

ideal market (represented by performance L̂ = 1, and usually refered to as reference price

benchmark). This is due to the fact that the optimal strategy has an ”opportunistic”

behavior: indeed, an optimal trading strategy is embedded with the liquidation constraint:

in this example, this feature not only compensates the trading costs, but also provides an
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Figure 4.4: Test 1: Difference between value function and Merton theoretical bound

extra performance compared to an ideal immediate liquidation at date 0. Still, the Merton

case is a theoretical upper bound in the following sense: the optimal value function with

trading costs is below the optimal value function without trading costs, recall the figure

4.4. As expected, the empirical distribution is between the distributions of the two other

benchmark strategies. We also notice that the optimal strategy outperforms the two others

by approximatively 0.25% in utility and in performance. We also computed other statistics

in table 4.11.

Behavior Analysis In this paragraph, we analyze the behaviour of the strategy as fol-

lows: first, we plotted in figure 4.6 the empirical distribution of the number of trades for

one trading session. Secondly, we plotted trades realizations for three days of the BNPP.PA

stock for the week starting on 04/19/2010.

The three following graphs represent three days of market data for which we computed

the mid-price (lines) with associated trades realizations for the optimal strategy (vertical

bars). A positive quantity for the vertical bar means a buying operation, while a negative

quantity means a selling operation.

Figure 4.7 shows the trade realizations of the optimal strategy for the day 04/19/2010
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Parameter Value Parameter Value

Maturity 1 Day X0 20000

λ 5.00E-04 Y0 2500

β 0.2 P0 52.0

γ 0.5 xmin -30000

κA 1.0001 xmax 200000

κB 0.9999 ymin 0

ǫ 0.001 ymax 5000

b 0.005 pmin 50.0

σ 0.25 pmax 54.0

m 30

n 40

N 100

Q 105

Table 4.8: Test 2: Parameters

Quantity Evaluation

Time Elapsed for grid computation in seconds 8123

Number Of Available Processors 2

Estimated Memory Used (Upper bound) 573MB

Table 4.9: Test 2: Execution statistics

Strategy Utility V̂ Mean L̂ Standard Dev. Skewness Kurtosis

Naive 0.99993 0.99986 0.00429 0.94584 4.68592

Uniform 0.99994 0.99988 0.00240 0.42788 3.34397

Optimal 1.00116 1.00233 0.00436 1.03892 4.89161

Table 4.10: Test 2: Utility and first four moments for the optimal strategy and the two

benchmark strategies

on the BNPP.PA stock. The interesting feature in this first graph is that we see two buying

decisions when the price goes down through the 54.5 EUR barrier, and which corresponds

roughly to a daily minimum. The following selling decision can be viewed as a failure. On

the contrary, the two last selling decisions correspond quite precisely to local maxima.

Figure 4.8 (resp.4.9) shows the trade realizations of the optimal strategy for the day
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Quantity Formula Value

Winning percentage
1

Q

Q
∑

i=1

1{L(i)
opt>max(L

(i)
naive,L

(i)
uniform

)} 58.8%

Relative Optimal Utility
V̂opt − max(V̂naive, V̂uniform)

V̂opt

0.00238

Relative Optimal Performance
L̂opt − max(L̂naive, L̂uniform)

L̂opt

0.00244

Utility Sharpe Ratio
V̂opt − max(V̂naive, V̂uniform)

σ̂opt
0.28017

Performance Sharpe Ratio
L̂opt − max(L̂naive, L̂uniform)

σ̂opt
0.56140

VaR 95% Naive Strategy sup

{

x | 1

Q

Q
∑

i=1

1{L(i)
naive>x} ≥ 0.95

}

0.994

VaR 95% Uniform Strategy sup

{

x | 1

Q

Q
∑

i=1

1{L(i)
uniform

>x} ≥ 0.95

}

0.996

VaR 95% Optimal Strategy sup

{

x | 1

Q

Q
∑

i=1

1{L(i)
opt>x} ≥ 0.95

}

0.997

VaR 90% Naive Strategy sup

{

x | 1

Q

Q
∑

i=1

1{L(i)
naive>x} ≥ 0.90

}

0.995

VaR 90% Uniform Strategy sup

{

x | 1

Q

Q
∑

i=1

1{L(i)
uniform

>x} ≥ 0.90

}

0.997

VaR 90% Optimal Strategy sup

{

x | 1

Q

Q
∑

i=1

1{L(i)
opt>x} ≥ 0.90

}

0.998

Table 4.11: Test 2: Other statistics on performance of optimal strategy

04/22/2010 (resp. 04/23/2010) on the BNPP.PA stock.on. Note that in figure 4.9, the naive

strategy was overperforming the optimal strategy, due to an unexpected price increase.

Despite this, it is satisfactory to see that there are only three trades, which is less than on

April 19 and 22, 2010, and that trading occurs when price conditions are favourable.

4.5.5 Test 3: Sensitivity to Bid/Ask spread

In this last section, we are interested in the sensitivity of the results to the bid/ask spread,

determined here by the two parameters κa and κb. More precisely, we look at the dominant

effect between the spread and the multiplicative price impact through the parameter λ.
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Figure 4.5: Test 2: Strategy empirical distribution

We proceeded to two tests here: one without bid/ask spread, i.e. κa = κb = 1 and with

λ = 5.10−4 as before, and one with a spread of 0.2% and a price impact parameter λ = 0.

Parameters The table 4.12 shows the parameters of the two tests. We only changed the

impact and spread parameters and let the others be identical.

Performance Analysis In table 4.13 we computed several statistics on the results. In

figure 4.10 we plotted the empirical distribution of performance in the two tests, with

the test 2 distribution (Cf. figure 4.5) serving as a reference. In figure 4.11 we plotted

the empirical distribution of the number of trades in the two tests, which is helpful for

interpreting the results. Indeed, we observe from figure 4.11 that increasing the spread

reduces the number of trades of the optimal strategy. Intuitively, the more frequently a

strategy trades, the smaller its standard deviation: for example, the limiting case of the

uniform strategy achieve the smallest standard deviation in our benchmark, and the naive

strategy, that trades only once, the biggest. Qualitatively speaking, the standard deviation

increases when the number of trades decreases: this help us explain qualitatively why the
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Figure 4.6: Test 2: Empirical distribution of the number of trades

standard deviation is higher in the case of a large spread (we used κa − κb = 20 bps, which

is much larger than usually observed in equity markets). Now, to provide an interpretation

of why the optimal strategy trades less frequently when the spread is large, we can note two

facts. First, in the large spread test, we considered that λ = 0, in other words that there

is no market impact. Therefore, any trading rate ξ/θ will lead to same transaction price:

this explain the clustering effect: the optimal strategy tends to trade a bigger quantity of

assets at the same time to match terminal liquidation constraint. Second, a large spread

will penalize strategies that can both buy and sell, and in particular the optimal strategy.

Indeed, let us consider the typical scale of quantities involved in our optimization: we

expect the optimal strategy to profit from price variation at the scale of 1 EUR in our

example; if the spread is about 0.1 EUR, like in our last example, and if we usually do

about 10 trades on the liquidation period, the effect of the spread (10× 0.1 EUR= 1 EUR)

is at the same scale as the price fluctuation. Therefore, the larger the spread, the more the

optimal strategy tends to be one-sided, i.e. trading quantities (ξn) tends to be negative.

Due to this phenomenon, the profit from optimal trading reduces with the spread, and

the optimization becomes less efficient in this one-sided setup. This is consistent with the
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Figure 4.7: Test 2: Strategy realization on the BNP.PA stock the 04/19/2010.

Figure 4.8: Test 2: Strategy realization on the BNP.PA stock the 04/22/2010.



131 Numerical methods for an optimal order execution problem

Figure 4.9: Test 2: Strategy realization on the BNP.PA stock the 04/23/2010.

Parameter No spread test No impact test Parameter No spread test No impact test

Maturity 1 Day 1 Day X0 20000 20000

λ 5.00E-04 0 Y0 2500 2500

β 0.2 0 P0 51 51

γ 0.5 0.5 xmin -20000 -20000

κa 1 1.001 xmax 200000 200000

κb 1 0.999 ymin 0 0

ǫ 0.001 0.001 ymax 5000 5000

b 0.01 0.01 pmin 49 49

σ 0.25 0.25 pmax 53 53

n 30 30

m 40 40

N 100 100

Q 105 105

Table 4.12: Test 3: Parameters

financial viewpoint: an investor that can both buy and sell have opportunities to profit

from price fluctuations, whereas an investor that can only sell may only have opportunities
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to sell at high price; therefore the number of trades decreases as the optimal strategy tends

to be one-sided. Finally, we observe that both spread and non-linear impact influence

the trading schedule. We also expect that the optimal quantity ξn to trade at date τn is

influenced directly by the non-linear impact parameter λ.

Quantity No spread test No impact test No spread vs. T2 No impact vs. T2

Mean Utility 1.00113 1.00025 −3.00.10−5 −9.08.10−4

Mean Performance 1.00227 1.00053 −5.98.10−5 −1.80.10−3

Standard Deviation 0.00432 0.00906 −9.17.10−3 1.078

Table 4.13: Test 3: Statistics. In the two last columns ”No spread vs. T2” (resp.”No

impact vs. T2”) are shown the relative values of ”No spread” test (resp. ”No impact” test)

against the values of test 2 of the preceding section.
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Figure 4.10: Test 3: Empirical distributions of performance

(a) No spread (b) No impact

Figure 4.11: Test 3: Empirical distributions of number of trades
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Chapter 5

Optimal high frequency trading

with limit and market orders

We propose a framework for studying optimal market making policies in a limit order book

(LOB). The bid-ask spread of the LOB is modelled by a tick-valued continuous time Markov

chain. We consider an agent who continuously submits limit buy/sell orders at best bid/ask

quotes, and may also set limit orders at best bid (resp. ask) plus (resp. minus) a tick for

getting the execution priority. The agent faces an execution risk since her limit orders

are executed only when they meet counterpart market orders. She is also subject to the

inventory risk due to price volatility when holding the risky asset. Then the agent can also

choose to trade with market orders, and therefore get immediate execution, but at a less

favorable price.

The objective of the market maker is to maximize her expected utility from revenue

over a finite horizon, while controlling her inventory position. This is formulated as a

mixed regime switching regular/impulse control problem that we characterize in terms of

quasi-variational system by dynamic programming methods.

Calibration procedures are derived for fitting the market model. We provide an explicit

backward splitting scheme for solving the problem, and show how it can be reduced to

a system of simple equations involving only the inventory and spread variables. Several

computational tests are performed both on simulated and real data.

Note: This chapter is adapted from the article [37] Guilbaud F. and H. Pham (2011):

“Optimal high frequency trading with limit and market orders”, to appear in Quantitative

Finance.
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5.1 Introduction

Most of modern equity exchanges are organized as order driven markets. In such type of

markets, the price formation exclusively results from operating a limit order book (LOB), an

order crossing mechanism where limit orders are accumulated while waiting to be matched

with incoming market orders. Any market participant is able to interact with the LOB by

posting either market orders or limit orders1.

In this context, market making is a class of strategies that consists in simultaneously

posting limit orders to buy and sell during the continuous trading session. By doing so,

market makers provide counterpart to any incoming market orders: suppose that an investor

A wants to sell one share of a given security at time t and that an investor B wants to buy

one share of this security at time t′ > t; if both use market orders, the economic role of

the market maker C is to buy the stock as the counterpart of A at time t, and carry until

date t′ when she will sell the stock as a counterpart of B. The revenue that C obtains for

providing this service to final investors is the difference between the two quoted prices at

ask (limit order to sell) and bid (limit order to buy), also called the market maker’s spread.

This role was traditionally fulfilled by specialist firms, but, due to widespread adoption of

electronic trading systems, any market participant is now able to compete for providing

liquidity. Moreover, as pointed out by empirical studies (e.g. [53],[40]) and in a recent

review [34] from AMF, the French regulator, this renewed competition among liquidity

providers causes reduced effective market spreads, and therefore reduced indirect costs for

final investors.

Empirical studies (e.g. [53]) also described stylized features of market making strategies.

First, market making is typically not directional, in the sense that it does not profit from

security price going up or down. Second, market makers keep almost no overnight position,

and are unwilling to hold any risky asset at the end of the trading day. Finally, they manage

to maintain their inventory, i.e. their position on the risky asset close to zero during the

trading day, and often equilibrate their position on several distinct marketplaces, thanks to

the use of high-frequency order sending algorithms. Estimations of total annual profit for

this class of strategy over all U.S. equity market were around 10 G$ in 2009 [34]. Another

important aspect of empirical litterature is high-frequency data modelling and estimation,

a field surveyed in the forthcoming volume [26]. Typically, this literature investigates such

topics as designing methodologies to discover elasticity and plasticity of price evolution [14],

1A market order of size m is an order to buy (sell) m units of the asset being traded at the lowest

(highest) available price in the market, its execution is immediate; a limit order of size ℓ at price q is an

order to buy (sell) ℓ units of the asset being traded at the specified price q, its execution is uncertain and

achieved only when it meets a counterpart market order. Given a security, the best bid (resp. ask) price

is the highest (resp. lowest) price among limit orders to buy (resp. to sell) that are active in the LOB.

The spread is the difference, expressed in numéraire per share, of the best ask price and the best bid price,

positive during the continuous trading session (see [33]).
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and therefore allowing HFT to use persistence of some price properties; risk management in

a high frequency setup; but also constructing microstructure simulation models [66], which

are relevant for HFT strategies design or backtesting.

Popular models of market making strategies were set up using a risk-reward approach.

Two distinct sources of risk are usually identified: the inventory risk, and the execution risk.

In the early 1980’s, the paper [5] contributes to electronic market design, attempting to

allow the marketplace to provide liquidity automatically, and suggests that market-making

can be seen as an inventory management problem. The inventory risk [7] is comparable to

the market risk, i.e. the risk of holding a long or short position on a risky asset. Moreover,

due to the uncertain execution of limit orders, market makers only have partial control on

their inventory, and therefore the inventory has a stochastic behavior. The execution risk is

the risk that limit orders may not be executed, or be partially executed [45]. Indeed, given

an incoming market order, the matching algorithm of LOB determines which limit orders

are to be executed according to a price/time priority2, and this structure fundamentally

impacts the dynamics of executions. We also mention a third type of risk, the so-called

adverse selection risk, popular in economic and econometric litterature. This is the risk

that market price unfavourably deviates for a short time period, from the market maker

point of view, after their quote was taken. This type of risk appears naturally in models

where the market orders flow contains information about the fundamental asset value (e.g.

[29]).

Some of these risks were studied in previous works. The seminal work [7] provided

a framework to manage inventory risk in a stylized LOB. The market maker objective

is to maximize the expected utility of her terminal profit, in the context of limit orders

executions occurring at jump times of Poisson processes. This model shows its efficiency to

reduce inventory risk, measured via the variance of terminal wealth, against the symmetric

strategy. Several extensions and refinement of this setup can be found in recent litterature:

[35] provides simplified solution to the backward optimization, an in-depth discussion of its

characteristics and an application to the liquidation problem. In [9], the authors develop a

closely related model to solve a liquidation problem, and study continuous limit case. The

paper [16] provides a way to include more precise empirical features to this framework by

embedding a hidden Markov model for high frequency dynamics of LOB. Some aspects of

the execution risk were also studied previously, mainly by considering the trade-off between

passive and aggressive execution strategies. In [45], the authors solve the Merton’s portfolio

optimization problem in the case where the investor can choose between market orders or

limit orders; in [67], [68], the possibility to use market orders in addition to limit orders is

also taken into account, in the context of market making in the foreign exchange market.

2A different type of LOB operates under pro-rata priority, e.g. for some futures on interest rates. In this

paper, we do not consider this case and focus on the main mechanism used in equity market.
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Yet the relation between execution risk and the microstructure of the LOB, and especially

the price/time priority is, so far, poorly investigated.

In this paper we develop a new model to address the execution and inventory risks in

market making. The stock mid-price is driven by a general Markov process, and we model

the market spread as a discrete Markov chain that jumps according to a stochastic clock.

Therefore, the spread takes discrete values in the price grid, multiple of the tick size. We

allow the market maker to trade both via limit orders, whose execution is uncertain, and

via market orders, whose execution is immediate but costly. The market maker can post

limit orders at best quote or improve this quote by one tick. In this last case, she hopes

to capture market order flow of agents who are not yet ready to trade at the best bid/ask

quote. Therefore, she faces a trade off between waiting to be executed at the current best

price, or improve this best price, and then be more rapidly executed but at a less favorable

price. We model the limit orders strategy as continuous controls, due to the fact that these

orders can be updated at high frequency at no cost. On the contrary, we model the market

orders strategy as impulse controls that can only occur at discrete dates. We also include

fixed, per share or proportional fees or rebates coming with each execution. Execution

processes, counting the number of executed limit orders, are modelled as Cox processes

with intensity depending both on the market maker’s controls and on the bid/ask spread:

therefore, we consider that execution intensities are conditional to the state of the LOB,

in the same vein as in [21], and we assume that the main variable of interest is the spread.

In this context, we optimize the expected utility from profit over a finite time horizon,

by choosing optimally between limit and market orders, while controlling the inventory

position. We study in detail classical frameworks including mean-variance criterion and

exponential utility criterion.

The outline of this paper is as follows. In section 2, we detail the model, and comment

its features. We also provide direct calibration methods for all quantities involved in our

model. We formulate in Section 3 the optimal market making control problem and derive

the associated Hamilton-Jacobi-Bellman quasi variational inequality (HJBQVI) from dy-

namic programming principle. Section 4 is devoted to the numerical scheme for solving the

HJBQVI and computing the optimal policy. We also examine several situations, where we

are able simplify this algorithm by reducing the number of state variables to the inventory

and spread. In section 5, we provide some numerical results and an empirical performance

analysis for our computational scheme.
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5.2 A market-making model

5.2.1 Mid price and spread process

Let us fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0 satisfying

the usual conditions. It is assumed that all random variables and stochastic processes are

defined on the stochastic basis (Ω,F ,F,P).

The mid-price of the stock is an exogenous Markov process P , with infinitesimal ge-

nerator L
P

and state space P. For example, P is a Lévy process or an exponential of

Lévy process (including Black-Scholes-Merton model with jumps). In the limit order book

(LOB) for this stock, we consider a stochastic bid-ask spread resulting from the behaviour

of market participants, taking discrete values, which are finite multiple of the tick size δ >

0, and jumping at random times. This is modelled as follows: we first consider the tick time

clock associated to a Poisson process (Nt)t with deterministic intensity λ(t), for taking into

account intra-day seasonnality, and representing the random times where the buy and sell

orders of participants in the market affect the bid-ask spread. We next define a discrete-time

stationary Markov chain (Ŝn)n∈N, valued in the finite state space S = δIm, Im := {1, . . . ,m},
m ∈ N \ {0}, with probability transition matrix (ρij)1≤i,j≤M , i.e. P[Ŝn+1 = jδ|Ŝn = iδ] =

ρij , s.t. ρii = 0, independent of N , and representing the random spread in tick time. The

spread process (St)t in calendar time is then defined as the time-change of Ŝ by N , i.e.

St = ŜNt , t ≥ 0. (5.2.1)

Hence, (St)t is a continuous time (inhomogeneous) Markov chain with intensity matrix R(t)

= (rij(t))1≤i,j≤m, where rij(t) = λ(t)ρij for i 6= j, and rii(t) = −∑

j 6=i rij(t). We assume

that S and P are independent. The best-bid and best-ask prices are defined by: P b
t =

Pt − St

2 , P a
t = Pt + St

2 .

5.2.2 Trading strategies in the limit order book

We consider an agent (market maker), who trades the stock using either limit orders or

market orders. She may submit limit buy (resp. sell) orders specifying the quantity and

the price she is willing to pay (resp. receive) per share, but will be executed only when

an incoming sell (resp. buy) market order is matching her limit order. Otherwise, she can

post market buy (resp. sell) orders for an immediate execution, but, in this case obtain

the opposite best quote, i.e. trades at the best-ask (resp. best bid) price, which is less

favorable.

Limit orders strategies. The agent may submit at any time limit buy/sell orders at the

current best bid/ask prices (and then has to wait an incoming counterpart market order

matching her limit), but also control her own bid and ask price quotes by placing buy (resp.

sell) orders at a marginal higher (resp. lower) price than the current best bid (resp. ask),
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i.e. at P
b+
t := P b

t + δ (resp. P
a−
t := P a

t − δ). Such an alternative choice is used in practice

by a market maker to capture market orders flow of undecided traders at the best quotes,

hence to get priority in the order execution w.r.t. limit order at current best/ask quotes,

and can be taken into account in our modelling with discrete spread of tick size δ.

There is then a tradeoff between a larger performance for a quote at the current best

bid (resp. ask) price, and a smaller performance for a quote at a higher bid price, but

with faster execution. The submission and cancellation of limit orders are for free, as they

provide liquidity to the market, and are thus stimulated. Actually, market makers receive

some fixed rebate once their limit orders are executed. The agent is assumed to be small

in the sense that she does not influence the bid-ask spread. The limit order strategies are

then modelled by a continuous time predictable control process:

αmake
t = (Qb

t , Q
a
t , L

b
t , L

a
t ), t ≥ 0,

where L = (Lb, La) valued in [0, ℓ̄]2, ℓ̄ > 0, represents the size of the limit buy/sell order,

and Q = (Qb, Qa) represent the possible choices of the bid/ask quotes either at best or

at marginally improved prices, and valued in Q = Qb × Qa, with Qb = {Bb,Bb+}, Qa =

{Ba,Ba−}:

• Bb: best-bid quote, and Bb+: bid quote at best price plus the tick

• Ba: best-ask quote, and Ba−: ask quote at best price minus the tick

Notice that when the spread is equal to one tick δ, a bid quote at best price plus the tick is

actually equal to the best ask, and will then be considered as a buy market order. Similarly,

an ask quote at best price minus the tick becomes a best bid, and is then viewed as a sell

market order. In other words, the limit orders Qt = (Qb
t , Q

a
t ) take values in Q(St−), where

Q(s) = Qb ×Qa when s > δ, Q(s) = {Bb} × {Ba} when s = δ. We shall denote by Qb
i =

Qb for i > 1, and Qb
i = {Bb} for i = 1, and similarly for Qa

i for i ∈ Im.

We denote at any time t by πb(Qb
t , Pt, St) and πa(Qa

t , Pt, St) the bid and ask prices of

the market maker, where the functions πb (resp. πa) are defined on Qb × P × S (resp.

Qa × P × S) by:

πb(qb, p, s) =

{

p− s
2 , for qb = Bb

p− s
2 + δ for qb = Bb+.

πa(qa, p, s) =

{

p+ s
2 , for qa = Ba

p+ s
2 − δ for qa = Ba−.

We shall denote by πb
i (q

b, p) = πb(qb, p, s), πa
i (qa, p) = πa(qa, p, s) for s = iδ, i ∈ Im.

Remark 5.2.1 One can take into account proportional rebates received by the market

makers, by considering; πb(qb, p, s) = (p − s
2 + δ1qb=Bb+)(1 − ρ), πa(qa, p, s) = (p + s

2 −
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δ1qa=Ba−)(1 + ρ), for some ρ ∈ [0, 1), or per share rebates with: πb(qb, p, s) = p − s
2 +

δ1qb=Bb+ − ρ, πa(qa, p, s) = p+ s
2 − δ1qa=Ba− + ρ, for some ρ > 0.

The limit orders of the agent are executed when they meet incoming counterpart market

orders. Let us then consider the arrivals of market buy and market sell orders, which

completely match the limit sell and limit buy orders of the small agent, and modelled by

independent Cox processes Na and N b. The intensity rate of Na
t is given by λa(Qa

t , St)

where λa is a deterministic function of the limit quote sell order, and of the spread, satisfying

λa(Ba, s) < λa(Ba−, s). This natural condition conveys the price/priority in the order

execution in the sense that an agent quoting a limit sell order at ask price P a− will be

executed before traders at the higher ask price P a, and hence receive more often market buy

orders. Typically, one would also expect that λa is nonincreasing w.r.t. the spread, which

means that the larger is the spread, the less often the market buy orders arrive. Likewise,

we assume that the intensity rate of N b
t is given by λb(Qb

t , St) where λb is a deterministic

function of the spread, and λb(Bb, s) < λb(Bb+, s). We shall denote by λa
i (q

a) = λa(qa, s),

λb
i(q

b) = λb(qb, s) for s = iδ, i ∈ Im.

For a limit order strategy αmake = (Qb, Qa, Lb, La), the cash holdings X and the number

of shares Y hold by the agent (also called inventory) follow the dynamics

dYt = Lb
tdN

b
t − La

t dN
a
t , (5.2.2)

dXt = −πb(Qb
t , Pt− , St−)Lb

tdN
b
t + πa(Qa

t , Pt− , St−)La
t dN

a
t . (5.2.3)

Market order strategies. In addition to market making strategies, the investor may

place market orders for an immediate execution reducing her inventory. The submissions

of market orders, in contrast to limit orders, take liquidity in the market, and are usually

subject to fees. We model market order strategies by an impulse control:

αtake = (τn, ζn)n≥0,

where (τn) is an increasing sequence of stopping times representing the market order decision

times of the investor, and ζn, n ≥ 1, are Fτn-measurable random variables valued in [−ē, ē],
ē > 0, and giving the number of stocks purchased at the best-ask price if ζn ≥ 0, or selled

at the best-bid price if ζn < 0 at these times. Again, we assumed that the agent is small

so that her total market order will be executed immediately at the best bid or best ask

price. In other words, we only consider a linear market impact, which does not depend on

the order size. When posting a market order strategy, the cash holdings and the inventory

jump at times τn by:

Yτn = Yτ−
n

+ ζn, (5.2.4)

Xτn = Xτ−
n
− c(ζn, Pτn , Sτn) (5.2.5)
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where

c(e, p, s) = ep+ |e|s
2

+ ε

represents the (algebraic) cost function indicating the amount to be paid immediately when

passing a market order of size e, given the mid price p, a spread s, and a fixed fee ε > 0.

We shall denote by ci(e, p) = c(e, p, s) for s = iδ, i ∈ Im.

Remark 5.2.2 One can also include proportional fees ρ ∈ [0, 1) paid at each market order

trading by considering a cost function in the form: c(e, p, s) = (e+ ε|e|)p+ (|e|+ ρe) s
2 + ε,

or fixed fees per share with c(e, p, s) = ep+ |e|( s
2 + ρ) + ε.

In the sequel, we shall denote by A the set of all limit/market order trading strategies

α = (αmake, αtake).

5.2.3 Market making problem

The objective of the market maker is the following. She wants to maximize over a finite

horizon T the profit from her transactions in the LOB, while keeping under control her

inventory (usually starting from zero), and getting rid of her inventory at the terminal

date:

maximize E
[

U(XT ) − γ

∫ T

0
g(Yt)dt

]

(5.2.6)

over all limit/market order trading strategies α = (αmake, αtake) in A such that YT = 0.

Here U is an increasing reward function, γ is a nonnegative constant, and g is a nonnegative

convex function, so that the last integral term
∫ T
0 g(Yt)dt penalizes the variations of the

inventory. Typical frameworks include the two following cases:

Mean-quadratic criterion: U(x) = x, γ > 0, g(y) = y2.

Exponential utility maximization: U(x) = − exp(−ηx), γ = 0.

We shall investigate in more detail these two important cases, which lead to nice simplifi-

cations for the numerical resolution.

5.2.4 Parameters estimation

In most order-driven markets, available data are made up of Level 1 data that contain

transaction prices and quantities at best quotes, and of Level 2 data containing the volume

updates for the liquidity offered at the L first order book slices (L usually ranges from 5

to 10). In this section, we propose some direct methods for estimating the intensity of the

spread Markov chain, and of the execution point processes, based only on the observation
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of Level 1 data. This has the advantage of low computational cost, since we do not have to

deal with the whole volume of Level 2 data.

Estimation of spread parameters. Assuming that the spread S is observable, let us

define the jump times of the spread process:

θ0 = 0, θn+1 = inf {t > θn : St 6= St−} , ∀n ≥ 1.

From these observable quantities, one can reconstruct the processes:

Nt = # {θj > 0 : θj ≤ t} , t ≥ 0,

Ŝn = Sθn
, n ≥ 0.

Then, our goal is to estimate the deterministic intensity of the Poisson process (Nt)t, and

the transition matrix of the Markov chain (Ŝn)n from a path realization with high frequency

data of the tick-time clock and spread in tick time over a finite trading time horizon T ,

typically of one day. From the observations of K samples of Ŝn, n = 1, . . . ,K, and since the

Markov chain (Ŝn) is stationary, we have a consistent estimator (whenK goes to infinity) for

the transition probability ρij := P[Ŝn+1 = jδ|Ŝn = iδ] = P[(Ŝn+1, Ŝn) = (jδ, iδ)]/P[Ŝn =

iδ] given by:

ρ̂ij =

K
∑

n=1

1{(Ŝn+1,Ŝn)=(jδ,iδ)}

K
∑

n=1

1{Ŝn=iδ}

(5.2.7)

For the estimation of the deterministic intensity function λ(t) of the (non)homogeneous

Poisson process (Nt), we shall assume in a first approximation a simple natural parametric

form. For example, we may assume that λ is constant over a trading day, and more

realistically for taking into account intra-day seasonality effects, we consider that the tick

time clock intensity jumps e.g. every hour of a trading day. We then assume that λ is in

the form:

λ(t) =
∑

λk1{tk≤t<tk+1}

where (tk)k is a fixed and known increasing finite sequence of R+ with t0 = 0, and (λk)k is

an unknown finite sequence of (0,∞). In other words, the intensity is constant equal to λk

over each period [tk, tk+1], and by assuming that the interval length tk+1 − tk is large w.r.t.

the intensity λk (which is the case for high frequency data), we have a consistent estimator

of λk, for all k, and then of λ(t) given by:

λ̂k =
Ntk+1

−Ntk

tk+1 − tk
. (5.2.8)
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We performed these two estimation procedures (5.2.7) and (5.2.8) on Société Générale

(SOGN.PA) stock on April 18, 2011 between 9:30 and 16:30 in Paris local time. We

used tick-by-tick level 1 data provided by Quanthouse, and fed via a OneTick Timeseries

database. Number of data point were roughly 105.

In table 5.1, we display the estimated transition matrix: first row and column indicate

the spread value s = iδ and the cell ij shows ρ̂ij . For this stock and at this date, the tick

size was δ = 0.005 euros, and we restricted our analysis to the first 6 values of the spread

(m = 6) due to the small number of data outside this range: indeed, in our set, less than

1% of datapoints corresponded to a spread above 0.03. Note that this observation is valid,

on Euronext Paris, only for stocks priced less than 50 EUR, since the tick size doubles (to

0.01 EUR) for stocks priced higher than 50 EUR. After truncating to m ≤ 6 we performed

a re-normalization in order to obtain a transition matrix.

spread 0.005 0.01 0.015 0.02 0.025 0.03

0.005 0 0.410 0.220 0.160 0.142 0.065

0.01 0.201 0 0.435 0.192 0.103 0.067

0.015 0.113 0.221 0 0.4582 0.147 0.059

0.02 0.070 0.085 0.275 0 0.465 0.102

0.025 0.068 0.049 0.073 0.363 0 0.446

0.03 0.077 0.057 0.059 0.112 0.692 0

Table 5.1: Estimation of the transition matrix (ρij) for the underlying spread of the stock

SOGN.PA on April 18, 2011.

In figure 5.1, we plot the tick time clock intensity by using an affine interpolation,

and observed a typical U-pattern. This is consistent with the empirical observation that

trading activity is more important in the beginning and at the end of the day trading

session, and less active around noon, see [18]. A further step for the estimation of the

intensity could be to specify a parametric form for the intensity function fitting U pattern,

e.g. parabolic functions in time, and then use a maximum likelihood method for estimating

the parameters.

Estimation of execution parameters. When performing a limit order strategy αmake,

we suppose that the market maker permanently monitors her execution point processes

Na and N b, representing respectively the number of arrivals of market buy and sell orders

matching the limit orders for quote ask Qa and quote bid Qb. We also assume that there

is no latency so that the observation of the execution processes is not noisy. Therefore,

observable variables include the quintuplet:

(Na
t , N

b
t , Q

a
t , Q

b
t , St) ∈ R

+ × R
+ ×Qa ×Qb × S , t ∈ [0, T ]

Moreover, since Na and N b are assumed to be independent, and both sides of the order
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Figure 5.1: Plot of tick time clock intensity estimate for the stock SOGN.PA on April 18,

2011 expressed in second−1 (affine interpolation).

book can be estimated using the same procedure, we shall focus on the estimation for the

intensity function λb(qb, s), qb ∈ Qb = {Bb,Bb+}, s ∈ S = δIm, of the Cox process N b.

The estimation procedure for λb(qb, s) basically matchs the intuition that one must count

the number of executions at bid when the system was in the state (qb, s) and normalize this

quantity by the time spent in the state (qb, s). This is justified mathematically as follows.

For any (qb, s = iδ) ∈ Qb × S, let us define the point process

N b,qb,i
t =

∫ t

0
1{Qb

u=q,Su−=iδ}dN
b
u, t ≥ 0,

which counts the number of jumps of N b when (Qb, S) was in state (qb, s = iδ). Then, for

any nonnegative predictable process (Ht), we have

E
[

∫ ∞

0
HtdN

b,qb,i
t

]

= E
[

∫ ∞

0
Ht1{Qb

t=qb,St−=iδ}dN
b
t

]

= E
[

∫ ∞

0
Ht1{Qb

t=qb,St−=iδ}λ
b(Qb

t , St)dt
]

= E
[

∫ ∞

0
Ht1{Qb

t=qb,St−=iδ}λ
b
i(q

b)dt
]

, (5.2.9)
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where we used in the second equality the fact that λb(Qb
t , St) is the intensity of N b. The re-

lation (5.2.9) means that the point process N b,qb,i admits for intensity λb
i(q

b)1{Qb
t=qb,St−=iδ}.

By defining

T b,qb,i
t =

∫ t

0
1{Qb

u=q,Su−=iδ}du

as the time that (Qb, S) spent in the state (qb, s = iδ), this means equivalently that the

process M b,qb,i
t = N b,qb,i

Ab,qb,i
t

, where Ab,qb,i
t = inf{u ≥ 0 : T b,qb,i

u ≥ t} is the càd-làg inverse of

T b,qb,i, is a Poisson process with intensity λi(q
b). By assuming that T b,qb,i

T is large w.r.t.

λi(q
b), which is the case when (Ŝn) is irreducible (hence recurrent), and for high-frequency

data over [0, T ], we have a consistent estimator of λb
i(q

b) given by:

λ̂b
i(q

b) =
N b,qb,i

T

T b,qb,i
T

. (5.2.10)

Similarly, we have a consistent estimator for λa
i (q

a) given by:

λ̂a
i (q

a) =
Na,qa,i

T

T a,qa,i
T

, (5.2.11)

where Na,qa,i
T counts the number of executions at ask quote qa and for a spread iδ, and

T a,qa,i
T is the time that (Qa, S) spent in the state (qa, s = iδ) over [0, T ].

Let us now illustrate this estimation procedure on real data, with the same market data

as above, i.e. tick-by-tick level 1 for SOGN.PA on April 18, 2011, provided by Quanthouse

via OneTick timeseries database. Actually, since we did not perform the strategy on this

real-world order book, we could not observe the real execution processes N b and Na. We

built thus simple proxies Ñ b,qb,i and Ña,qa,i, for qb = Bb,Bb+, qa = Ba,Ba−, i = 1, . . . ,m,

based on the following rules. Let us also assume that in addition to (Sθn
)n, we observe at

jump times θn of the spread, the volumes (V a
θn
, V b

θn
) offered at the best ask and best bid

price in the LOB together with the cumulated market order quantities ϑBUY
θn+1

and ϑSELL
θn+1

arriving between two consecutive jump times θn and θn+1 of the spread, respectively at

best ask price and best bid price. We finally fix an arbitrarily typical volume V0, e.g. V0 =

100 of our limit orders, and define the proxys Ñ b,qb,i and Ña,qa,i at times θn by:

Ñ
b,Bb+,i
θn+1

= Ñ
b,Bb+,i
θn

+ 1n

V0<ϑSELL
θn+1

,Sθn=iδ
o , Ñ

b,Bb+,i
0 = 0

Ñ b,Bb,i
θn+1

= Ñ b,Bb,i
θn

+ 1n

V0+V b
θn

<ϑSELL
θn+1

,Sθn=iδ
o , Ñ b,Bb,i

0 = 0

Ñ
a,Aa−,i
θn+1

= Ñ
a,Aa−,i
θn

+ 1n

V0<ϑBUY
θn+1

,Sθn=iδ
o , Ñ

a,Aa−,i
0 = 0

Ña,Aa,i
θn+1

= Ñ b,Aa,i
θn

+ 1n

V0+V a
θn

<ϑBUY
θn+1

,Sθn=iδ
o , Ña,Aa,i

0 = 0,
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together with a proxy for the time spent in spread iδ:

T̃ i
θn+1

= T̃ i
θn

+ (θn+1 − θn)1{Sθn=iδ}, T̃ i
0 = 0.

The interpretation of these proxies is the following: we consider the case where the (small)

market maker instantaneously updates her quote Qb (resp. Qa) and volume Lb ≤ V0 (resp.

La ≤ V0) only when the spread changes exogenously, i.e. at dates (θn), so that the spread

remains constant between her updates, not considering her own quotes. If she chooses to

improve best price i.e Qb
θn

= Bb+ (resp. Qa
θn

= Ba−) she will be in top priority in the

LOB and therefore captures all incoming market order flow to sell (resp. buy). Therefore,

an unfavourable way for (under)-estimating her number of executions is to increment Ñ b

(resp. Ña) only when total traded volume at bid ξSELL
θn+1

(resp. total volume traded at ask

ξBUY
θn+1

) was greater than V0. If the market maker chooses to add liquidity to the best prices

i.e. Qb
θn

= Bb (resp. Qa
θn

= Ba), she will be ranked behind V b
θn

(resp. V a
θn

) in LOB priority

queue. Therefore, we increment Ñ b (resp. Ña) only when the total traded volume at bid

ϑSELL
θn+1

(resp. total volume traded at ask ϑBUY
θn+1

) was greater than V0 +V b
θn

(resp. V0 +V a
θn

).

We then provide a proxy estimate for λb
i(q

b), λa
i (q

a) by:

λ̃b
i(q

b) =
Ñ b,qb,i

θn

T̃ i
θn

, λ̃a
i (q

a) =
Ña,qa,i

θn

T̃ i
θn

. (5.2.12)

We performed the estimation procedure (5.2.12), by computing λ̃a
i (q

a) and λ̃b
i(q

b), for

i = 1, . . . , 6, and limit order quotes qb = Bb+, Bb, q
a = Ba,Ba−. Due to the lack of

data, estimate for large values of the spread are less robust. In figure 5.2, we plotted this

estimated intensity as a function of the spread, i.e. s = iδ → λ̃b
i(q

b), λ̃a
i (q

a) for qb ∈ Qb,

and qa ∈ Qa. As one would expect, (λ̃a
i (.), λ̃

b
i(.)) are decreasing functions of i for the small

values of i which matches the intuition that the higher are the (indirect) costs, the smaller

is market order flow. Surprisingly, for large values of i this function becomes increasing,

which can be due either to an estimation error, caused by the lack of data for this spread

range, or a “gaming” effect, in other word liquidity providers increasing their spread when

large or autocorrelated market orders come in.

5.3 Optimal limit/market order strategies

5.3.1 Value function

We shall study the market making problem (5.2.6) by stochastic control methods. This

problem is determined by the state variables (X,Y, P, S) controlled by the limit/marker

order trading strategies α ∈ A. Let us first remove mathematically the terminal constraint
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Figure 5.2: Plot of execution intensities estimate as a function of the spread for the stock

SOGN.PA on the 18/04/2011, expressed in s−1 (affine interpolation).

on the inventory: YT = 0, by introducing the liquidation function L(x, y, p, s) defined on

R
2 × P × S by:

L(x, y, p, s) = x− c(−y, p, s) = x+ yp− |y|s
2
− ε.

This represents the value that an investor would obtained by liquidating immediately by a

market order her inventory position y in stock, given a cash holdings x, a mid-price p and

a spread s. Then, problem (5.2.6) is formulated equivalently as

maximize E
[

U(L(XT , YT , PT , ST )) − γ

∫ T

0
g(Yt)dt

]

(5.3.1)

over all limit/market order trading strategies α = (αmake, αtake) in A. Indeed, the maximal

value of problem (5.2.6) is clearly smaller than the one of problem (5.3.1) since for any α

∈ A s.t. YT = 0, we have L(XT , YT , PT , ST ) = XT . Conversely, given an arbitrary α ∈
A, let us consider the control α̃ ∈ A, coinciding with α up to time T , and to which one

add at the terminal date T the market order consisting in liquidating all the inventory YT .
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The associated state process (X̃, Ỹ , P, S) satisfies: X̃t = Xt, Ỹt = Yt for t < T , and X̃T

= L(XT , YT , PT , ST ), ỸT = 0. This shows that the maximal value of problem (5.3.1) is

smaller and then equal to the maximal value of problem (5.2.6).

We then define the value function for problem (5.3.1) (or (5.2.6)):

v(t, z, s) = sup
α∈A

Et,z,s

[

U(L(ZT , ST )) − γ

∫ T

t
g(Yu)du

]

(5.3.2)

for t ∈ [0, T ], z = (x, y, p) ∈ R
2×P, s ∈ S. Here, given α ∈ A, Et,z,s denotes the expectation

operator under which the process (Z, S) = (X,Y, P, S) solution to (5.2.1)-(6.2.5)-(6.2.4)-

(6.2.7)-(6.2.6), with initial state (Zt− , St−) = (z, s), is taken. Problem (5.3.2) is a mixed

regular/impulse control problem in a regime switching jump-diffusion model, that we shall

study by dynamic programming methods. Since the spread takes finite values in S = δIm,

it will be convenient to denote for i ∈ Im, by vi(t, z) = v(t, z, iδ). By misuse of notation,

we shall often identify the value function with the R
m-valued function v = (vi)i∈Im

defined

on [0, T ] × R
2 × P.

5.3.2 Dynamic programming equation

For any q = (qb, qa) ∈ Q, ℓ = (ℓb, ℓa) ∈ [0, ℓ̄]2, we consider the second-order nonlocal

operator:

Lq,ℓϕ(t, x, y, p, s) = L
P
ϕ(t, x, y, p, s) +R(t)ϕ(t, x, y, p, s)

+ λb(qb, s)
[

ϕ(t,Γb(x, y, p, s, qb, ℓb), p, s) − ϕ(t, x, y, p, s)
]

+ λa(qa, s)
[

ϕ(t,Γa(x, y, p, s, qa, ℓa), p, s) − ϕ(t, x, y, p, s)
]

,(5.3.3)

for (t, x, y, p, s) ∈ [0, T ] × R
2 × P × S, where

R(t)ϕ(t, x, y, p, s) =
m

∑

j=1

rij(t)
[

ϕ(t, x, y, p, jδ) − ϕ(t, x, y, p, iδ)
]

, for s = iδ, i ∈ Im,

and Γb (resp. Γa) is defined from R
2 × P × S ×Qb × R+ (resp. R

2 × P × S ×Qa × R+ into

R
2) by

Γb(x, y, p, s, qb, ℓb) = (x− πb(qb, p, s)ℓb, y + ℓb)

Γa(x, y, p, s, qa, ℓa) = (x+ πa(qa, p, s)ℓa, y − ℓa).

The first term of Lq,ℓ in (5.3.3) corresponds to the infinitesimal generator of the diffusion

mid-price process P , the second one is the generator of the continuous-time spread Markov

chain S, and the two last terms correspond to the nonlocal operator induced by the jumps

of the cash process X and inventory process Y when applying an instantaneous limit order

control (Qt, Lt) = (q, ℓ).



150 Optimal high frequency trading with limit and market orders

Let us also consider the impulse operator associated to market order control, and defined

by

Mϕ(t, x, y, p, s) = sup
e∈[−ē,ē]

ϕ(t,Γtake(x, y, p, s, e), p, s),

where Γtake is the impulse transaction function defined from R
2 × P × S × R into R

2 by:

Γtake(x, y, p, s, e) =
(

x− c(e, p, s), y + e
)

,

The dynamic programming equation (DPE) associated to the control problem (5.3.2)

is the quasi-variational inequality (QVI):

min
[

− ∂v

∂t
− sup

(q,ℓ)∈Q(s)×[0,ℓ̄]2
Lq,ℓv + γg , v −Mv

]

= 0, (5.3.4)

on [0, T ) × R
2 × P × S, together with the terminal condition:

v(T, x, y, p, s) = U(L(x, y, p, s)), ∀(x, y, p) ∈ R
2 × P × S. (5.3.5)

This is also written explicitly in terms of system of QVIs for the functions vi, i ∈ Im:

min
[

− ∂vi

∂t
− L

P
vi −

m
∑

j=1

rij(t)[vj(t, x, y, p) − vi(t, x, y, p)]

− sup
(qb,ℓb)∈Qb

i×[0,ℓ̄]

λb
i(q

b)[vi(t, x− πb
i (q

b, p)ℓb, y + ℓb, p) − vi(t, x, y, p)]

− sup
(qa,ℓa)∈Qa

i ×[0,ℓ̄]

λa
i (q

a)[vi(t, x+ πa
i (qa, p)ℓa, y − ℓa, p) − vi(t, x, y, p)] + γg(y) ;

vi(t, x, y, p) − sup
e∈[−ē,ē]

vi(t, x− ci(e, p), y + e, p)
]

= 0,

for (t, x, y, p) ∈ [0, T ) × R
2 × P, together with the terminal condition:

vi(T, x, y, p) = U(Li(x, y, p)), ∀(x, y, p) ∈ R
2 × P,

where we set Li(x, y, p) = L(x, y, p, iδ).

By the dynamic programming principle, one can show by standard arguments that the

value function v is a viscosity solution to the QVI (6.3.7)-(6.3.8), see e.g. Chapter 4, sec.

3 in [59] or Chap. 9, sec. 3 in [57]. Uniqueness of viscosity solution to (6.3.7)-(6.3.8)

can also be proved by standard arguments as presented in the seminal reference [23] (see

also [44] for an impulse control problem arising in optimal liquidation), and are stated

within a class of functions depending on the growth conditions on the utility function U

and penalty function g. The next section is devoted to numerical schemes for the resolution

of the dynamic programming equation DPE (6.3.7)-(6.3.8), and to some particular cases of

interest for reducing remarkably the number of states variables in the DPE.
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5.4 Numerical scheme

We study a time discretization of the QVI (6.3.7)-(6.3.8). For a time step h = T/n, and

a regular time grid Tn = {tk = kh, k = 0, . . . , n} over the interval [0, T ], we consider the

following operators: for any real-valued function ϕ on [0, T ] × R
2 × P × S, identified with

the R
m-valued function (ϕi)i=1,...,m on [0, T ]×R

2×P through ϕi(t, x, y, p) = ϕ(t, x, y, p, iδ),

we define

Dh
i (t, x, y, p, ϕ) = max

[

T h
i (t, x, y, p, ϕ),Mh

i (t, x, y, p, ϕ)
]

,

where

T h
i (t, x, y, p, ϕ) = −hγg(y) +

1

4

{

E
[

ϕi(t+ h, x, y, P t,p
t+4h)] + E[ϕ(t+ h, x, y, p, St,iδ

t+4h)
]

+ sup
(qb,ℓb)∈Qb

i×[0,ℓ̄]

E
[

ϕi(t+ h, x− πb
i (q

b, p)ℓb∆N i,qb

4h , y + ℓb∆N i,qb

4h , p)
]

+ sup
(qa,ℓa)∈Qa

i ×[0,ℓ̄]

E
[

ϕi(t+ h, x+ πa
i (qa, p)ℓa∆N i,qa

4h , y − ℓa∆N i,qa

4h , p)
]

}

,

and

Mh
i (t, x, y, p, ϕ) = sup

e∈[−ē,ē]
ϕi(tk+1, x− ci(e, p), y + e, p),

for t ∈ [0, T ], (x, y, p) ∈ R
2 × P, i ∈ Im. Here, P t,p denotes the Markov price process of

generator L
P

starting from p at time t, St,iδ is the Markov chain of generator R starting

from iδ at time t, ∆N i,qb

h is the increment over a period h of a Poisson process with intensity

λi(q
b), and similarly for ∆N i,qa

h .

We then consider an approximation of the value function v = (vi)i∈Im
by vh = (vh

i )i∈Im

through the explicit backward scheme:

vh
i (tn, x, y, p) = U(Li(x, y, p)), i ∈ Im, (x, y, p) ∈ R

2 × P,

vh
i (tk, x, y, p) = Dh

i (tk, x, y, p, v
h), k = 0, . . . , n− 1, i ∈ Im, (x, y, p) ∈ R

2 × P.(5.4.1)

Here, we identified again the real-valued function vh on Tn×R
2×P×S with the R

m-valued

function (vh
i )i∈Im

on Tn × R
2 × P via vh

i (t, x, y, p) = vh(t, x, y, p, iδ).

Remark 5.4.1 The convergence of the above numerical scheme can be shown formally

as follows. First, it is monotone in the sense that the operator Dh
i is nondecreasing in

ϕ, i.e. for any t ∈ [0, T ], (x, y, p) ∈ R
2 × P, i ∈ Im, and real-valued functions ϕ, ψ on

[0, T ] × R
2 × P × S s.t. ϕ ≤ ψ:

Dh
i (t, x, y, p, ϕ) ≤ Dh

i (t, x, y, p, ψ).



152 Optimal high frequency trading with limit and market orders

Secondly, by observing that the scheme (5.4.1) can be written as:

min
[vh

i (t, x, y, p) − T h
i (t, x, y, p, vh)

h
, vh

i (t, x, y, p) −Mh
i (t, x, y, p, vh)

]

= 0,

it is consistent in the sense that

lim
h→0

min
[ϕi(t, x, y, p) − T h

i (t, x, y, p, ϕ)

h
, ϕi(t, x, y, p) −Mh

i (t, x, y, p, ϕ)
]

= min
[

− ∂ϕi

∂t
− sup

(q,ℓ)∈Q(s)×[0,ℓ̄]2
Lq,ℓϕi + γg , ϕi −Mϕi

]

,

which is the DPE (6.3.7) satisfied by the value function v. Thus, by the viscosity solutions

arguments of [8], we obtain the convergence of vh to v.

Remark 5.4.2 The approximation scheme (5.4.1) can be compared with another approx-

imation of the value function v = (vi)i∈Im
by ṽh = (ṽh

i )i∈Im
given by the standard explicit

backward scheme:

ṽh
i (tn, x, y, p) = U(Li(x, y, p)), i ∈ Im, (x, y, p) ∈ R

2 × P,

ṽh
i (tk, x, y, p) = D̃h

i (tk, x, y, p, v
h), k = 0, . . . , n− 1, i ∈ Im, (x, y, p) ∈ R

2 × P,

where D̃h
i (t, x, y, p, ϕ) = max

[

T̃ h
i (t, x, y, p, ϕ),Mh

i (t, x, y, p, ϕ)
]

with

T̃ h
i (t, x, y, p, ϕ)

= sup
(qb,qa,ℓb,ℓa)∈Qb

i×Qa
i ×[0,ℓ̄]2

E
[

vh(t+ h, x− πb
i (q

b, p)ℓb∆N i,qb

h + πa
i (qa, p)ℓa∆N i,qa

h ,

y + ℓb∆N i,qb

h − ℓa∆N i,qa

h , P tk,p
t+h , S

tk,iδ
t+h )

]

− hγg(y).

The practical computation of the expectations in T̃ h
i (tk, x, y, p, ϕ) would involve approxima-

tions of P tk,p
tk+1

by a discrete random variable taking, say M values, approximations of Stk,iδ
tk+1

by a discrete random variable taking value jδ, j = 1, . . . ,m, with probability rij(tk)h for

j 6= i, and 1−∑

j 6=i rij(tk)h for j = i, and approximations of ∆N i,qb

h (resp. ∆N i,qb

h ) by the

discrete variable taking value 1 with probability λi(q
b)h (resp. λi(q

a)h) and 0 with proba-

bility 1−λi(q
b)h (resp. 1−λi(q

a)h). Therefore, the global computation in T̃ h
i (tk, x, y, p, ϕ),

for each (tk, x, y, p, i), would require a complexity of order 4× ℓ̄2 ×M ×m. Instead, we use

in (5.4.1) a splitting scheme for computing separately the expectations in T h
i (tk, x, y, p, ϕ)

w.r.t. the independent random variables P tk,p
tk+1

, Stk,iδ
tk+1

, and ∆N i,qb

h , ∆N i,qa

h . This allows us

to reduce the complexity to an order M +m+ 2ℓ̄.

In the two next paragraphs, we present two important cases leading to simplifications

in the above explicit backward splitting scheme, actually by removing the cash and stock

price variables.
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5.4.1 Mean criterion with penalty on inventory

In this paragraph, we consider the case as in [65] where:

U(x) = x, x ∈ R, and (Pt)t is a martingale. (5.4.2)

The martingale assumption of the stock price under the historical measure under which the

market maker performs her criterion, reflects the idea that she has no information on the

future direction of the stock price. Moreover, by starting typically from zero endowment

in stock, and by introducing a penalty function on inventory, the market maker wants to

keep an inventory that fluctuates around zero.

In this case, similarly as in [9], the solution vh to the above approximation scheme is

reduced into the form:

vh
i (t, x, y, p) = x+ yp+ φh

i (t, y) (5.4.3)

where (φh
i )i∈Im

is solution to the backward scheme:

φh
i (tn, y) = −|y| iδ

2
− ε (5.4.4)

φ̃i(tk, y) =
1

4

{

φh
i (tk+1, y) + E

[

φh
(

tk+1, y, S
tk,iδ
tk+4

)]

+ sup
(qb,ℓb)∈Qb

i×[0,ℓ̄]

E
[

( iδ

2
− δ1qb=Bb+

)

ℓb∆N i,qb

4h + φi(tk+1, y + ℓb∆N i,qb

4h )
]

+ sup
(qa,ℓa)∈Qa

i ×[0,ℓ̄]

E
[

( iδ

2
− δ1qa=Ba−

)

ℓa∆N i,qa

4h + φi(tk+1, y − ℓa∆N i,qa

4h )
]

− hγg(y)
}

(5.4.5)

φi(tk, y) = max
[

φ̃h
i (tk, y) , sup

e∈[−ē,ē]

[

− iδ

2
|e| − ε+ φh

i (tk+1, y + e)
]

]

(5.4.6)

for k = 0, . . . , n− 1, i ∈ Im, y ∈ R. By misuse of notation, we have set φh(t, y, s) = φh
i (t, y)

for s = iδ.

The reduced form (5.4.3) shows that the optimal market making strategies are price

independent, and depend only on the level of inventory and of the spread, which is consistent

with stylized features in the market.

Remark 5.4.3 The scheme for (φh
i ) is the time discretization of the system of one-dimensional
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integro-differential equations (IDEs):

min
[

− ∂φi

∂t
−

m
∑

j=1

rij(t)[φj(t, y) − φi(t, y)]

− sup
(qb,ℓb)∈Qb

i×[0,ℓ̄]

λb
i(q

b)[φi(t, y + ℓb) − φi(t, y) +
( iδ

2
− δ1qb=Bb+

)

ℓb]

− sup
(qa,ℓa)∈Qa

i ×[0,ℓ̄]

λa
i (q

a)[φi(t, y − ℓa) − φi(t, y) +
( iδ

2
− δ1qa=Ba−

)

ℓa] + γg(y) ;

φi(t, y) − sup
e∈[−ē,ē]

[φi(t, y + e) − iδ

2
|e| − ε]

]

= 0,

together with the terminal condition:

φi(T, y) = −|y| iδ
2
− ε,

which can be also derived from the dynamic programming system (6.3.7)-(6.3.8) for v =

(vi)i∈Im
reduced into the form: vi(t, x, y, p) = x + yp + φi(t, y). This system of IDEs also

show that optimal policies do not depend on the martingale modeling of the stock price.

5.4.2 Exponential utility criterion

In this paragraph, we consider as in [7] a risk averse market marker:

U(x) = − exp(−ηx), x ∈ R, η > 0, γ = 0, (5.4.7)

and assume that P is a Lévy process so that

P t,p
t+h = p+ Eh

where Eh is a random variable, which does not depend on p. In this case, similarly as in

[35], the solution vh to the above approximation scheme is reduced into the form

vh
i (t, x, y, p) = U(x+ yp)ϕh

i (t, y), (5.4.8)

where (ϕh
i )i∈Im

is solution to the backward scheme:

ϕh
i (tn, y) = exp(η|y| iδ

2
) (5.4.9)

ϕ̃h
i (tk, y) =

1

4

{

E
[

exp
(

− ηyEh

)]

ϕh
i (tk+1, y) + E

[

ϕh(tk+1, y, S
tk,iδ
tk+1

)
]

(5.4.10)

+ inf
(qb,ℓb)∈Qb

i×[0,ℓ̄]
E

[

exp
(

− η
( iδ

2
− δ1qb=Bb+

)

ℓb∆N i,qb

h

)

ϕh
i (tk+1, y + ℓb∆N i,qb

h )
]

+ inf
(qa,ℓa)∈Qa

i ×[0,ℓ̄]
E

[

exp
(

− η
( iδ

2
− δ1qa=Ba−

)

ℓa∆N i,qa

h

)

ϕh
i (tk+1, y − ℓa∆N i,qa

h )
]

}

ϕh
i (tk, y) = min

[

ϕ̃h
i (tk, y) , inf

e∈[−ē,ē]

[

exp
(

η|e| iδ
2

+ ηε
)

ϕh
i (tk+1, y + e)

]

]

(5.4.11)
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for k = 0, . . . , n− 1, i ∈ Im, y ∈ R. Here, we set ϕh(t, y, s) = ϕh
i (t, y) for s = iδ.

As in the case (5.4.2), the reduced form (5.4.8) shows that the optimal market making

strategies are price independent, and depend only on the level of inventory and of the

spread. However, it depends on the model (typically the volatility) for the stock price

through the term Eh.

Remark 5.4.4 Let us consider the example of Lévy process: dPt = bdt+σdWt +κ(dMt −
µdt), where b, σ > 0, κ are real constants, W is a Brownian motion, andM is an independent

Poisson process of intensity µ. Thus, Eh = bh+σWh+κ(Mh−µh), and the above scheme for

(ϕh
i )i∈Im

corresponds to the time discretization of the system of one-dimensional integro-

differential equations:

max
[

− ∂ϕi

∂t
+

(

bηy − 1

2
σ2(ηy)2 + µ(1 − κηy − e−ηκy)

)

ϕi −
m

∑

j=1

rij(t)[ϕj(t, y) − ϕi(t, y)]

− inf
(qb,ℓb)∈Qb

i×[0,ℓ̄]
λb

i(q
b)[exp

(

− η
( iδ

2
− δ1qb=Bb+

)

ℓb
)

ϕi(t, y + ℓb) − ϕi(t, y)]

− inf
(qa,ℓa)∈Qa

i ×[0,ℓ̄]
λa

i (q
a)[exp

(

− η
( iδ

2
− δ1qa=Ba−

)

ℓa
)

ϕi(t, y − ℓa) − ϕi(t, y)]

ϕi(t, y) − inf
e∈[−ē,ē]

[exp
(

η|e| iδ
2

+ ηε
)

ϕi(t, y + e)]
]

= 0,

together with the terminal condition:

ϕi(T, y) = exp(η|y| iδ
2

),

which can be also derived from the dynamic programming system (6.3.7)-(6.3.8) for v =

(vi)i∈Im
reduced into the form: vi(t, x, y, p) = x+ yp+ ϕi(t, y).

Remark 5.4.5 We observe that numerical scheme simplifications are due to the specific

form of the value function. In the case of a general utility function U (e.g. CRRA utility

function, see [44]), such simplifications as (5.4.8) or (5.4.3) may not exist, and therefore the

optimization is performed on a 4-dimensionnal model (plus time). From the computational

point of view, this requires to solve a 4 dimensions numerical scheme, which may lead to

much heavier computations, with sometimes untractable memory and time requirements,

and less precise numerical results.

The main difference between the case of mean-variance criterion and exponential crite-

rion is that the price model parameters, as the volatility σ, appears naturally in the case of

exponential criterion. Indeed, the two main objects of interest in our model are the price

model and the trade processes model. This last feature can be used to favour the depen-

dence of the resulting strategy on price parameters, against the trades processes models.
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When the high-frequency trader has no information on the price behavior, or when the

volatility is not relevant for the timescale of trading, one may want to take greater care of

characteristics of the trade processes than of the price.

In the case of the mean-variance criterion, choice of the risk aversion parameter γ is

left to the decision of the high-frequency trader. As shown in figure 5.4, this parameter

can be fitted a posteriori, upon results of the backtest/calibration procedure, in order to

choose the relationship between the variance and the average profit of the optimal strategy.

For example, the high frequency trader may want to choose γ in order to maximize the

information ratio (or Sharpe ratio) against a benchmark, the example that we chose to

illustrate graphically in figure 5.4. The equivalent parameter in the case of exponential

criterion is η, that is also left to the HFT’s choice. Note that in this last case, there is no

explicit constraint on the inventory since we take γ = 0.

5.5 Computational results

In this section, we provide numerical results obtained with the optimal strategy computed

with our implementation of the simplified scheme (5.4.4)-(5.4.6) in the case of a mean

criterion with penalty on inventory, that we will denote within this section by α⋆. We used

parameters shown in table 5.2 together with transition probabilities (ρij)1≤i,j≤M calibrated

in table 5.1 and execution intensities calibrated in Figure 5.2, slightly modified to make the

bid and ask sides symmetric.

Parameter Signification Value

δ Tick size 0.005

ρ Per share rebate 0.0008

ǫ Per share fee 0.0012

ǫ0 Fixed fee 10−6

λ(t) Tick time intensity ≡ 1s−1

(a) Market parameters

Parameter Signification Value

U(x) Utility function x

g(x) Penalty function x2

γ Inventory penalization 5

ℓ̄ Max. volume make 100

ē Max. volume take 100

(b) Optimization parameters

Parameter Signification Value

T Length in seconds 300 s

ymin Lower bound shares -1000

ymax Upper bound shares 1000

n Number of time steps 100

m Number of spreads 6

(c) Discretization/localization parameters

Parameter Signification Value

NMC Number of paths for MC simul. 105

∆t Euler scheme time step 0.3 s

ℓ̄0 B/A qty for bench. strat. 100

x0 Initial cash 0

y0 Initial shares 0

p0 Initial price 45

(d) Backtest parameters

Table 5.2: Parameters
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Shape of the optimal policy. The reduced form (5.4.3) shows that the optimal policy

α⋆ does only depend on time t, inventory y and spread level s. One can represent α⋆ as

a mapping α⋆ : R
+ × R × S → A with α⋆ = (α⋆,make, α⋆,take) thus it divides the space

R
+ × R × S in two zones M and T so that α⋆

|M = (α⋆,make, 0) and α⋆
|T = (0, α⋆,take).

Therefore we plot the optimal policy in one plane, distinguishing the two zones by a color

scale. For the zone M, due to the complex nature of the control, which is made of four

scalars, we only represent the prices regimes.
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Figure 5.3: Stylized shape of the optimal policy sliced in YS.

Figure 5.3 describes the optimal policy as a function of inventory and spread. Qualita-

tively, we can explain this strategy by thinking of a risk/reward trade-off. One can interpret

the market order zones M, located on the extreme right and left parts of the graph, as

zones where the inventory becomes too large, and the inventory risk unsustainable. There-

fore, the HF trader will need to unwind her portfolio at market, and therefore pay direct

and indirect (“crossing the spread”) costs. Otherwise, when spread becomes large, thus

allowing more potential profit from the market-maker point of view, or when the inventory

is low, the HF trader has a better bet trading passively with limit orders. In this last case,

depending on the sign of her inventory, the market-maker may want to trade with asymetric

limit orders, i.e. cancel the bid (resp. ask) side and keep an active limit order only on the

ask (resp. bid) side.

Moreover, when using constant tick time intensity λ(t) ≡ λ and in the case where T ≫ 1
λ

we can observe on numerical results that the optimal policy is mainly time invariant near

date 0; on the contrary, close to the terminal date T the optimal policy has a transitory

regime, in the sense that it critically depends on the time variable t. This matches the

intuition that to ensure the terminal constraint YT = 0, the optimal policy tends to get

rid of the inventory more aggressively when close to maturity. In figure 5.3, we plotted a
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stylized view of the optimal policy, in the plane (y, s), to illustrate this phenomenon.

Benchmarked empirical performance analysis. We made a backtest of the optimal

strategy α⋆, on simulated data, and benchmarked the results with the three following

strategies:

Optimal strategy without market orders (WoMO), that we denote by αw: this strategy

is computed using the same algorithm (5.4.4)-(5.4.6), but in the case where the investor is

not allowed to use market orders, which is equivalent to setting ē = 0.

Constant strategy, that we denote by αc: this strategy is the symmetric best bid, best

ask strategy with constant quantity ℓ̄0 on both sides, or more precisely αc := (αc,make, 0)

with αc,make
t ≡ (Bb,Ba, ℓ̄0, ℓ̄0).

Random strategy, that we denote by αr: this strategy consists in choosing randomly

the price of the limit orders and using constant quantities on both sides, or more precisely

αr := (αr,make, 0) with αr,make
t = (ςbt , ς

a
t , ℓ̄0, ℓ̄0) where (ςb. , ς

a
. ) is s.t. ∀t ∈ [0;T ] , P(ςbt =

Bb) = P(ςbt = Bb+) = P(ςat = Ba) = P(ςat = Ba−) = 1
2 .

Our backtest procedure is described as follows. For each strategy α ∈ {α⋆, αw, αc, αr},
we simulated NMC paths of the tuple (Xα, Y α, P, S,Na,α, N b,α) on [0, T ], according to

eq. (5.2.1)-(6.2.5)-(6.2.4)-(6.2.7)-(6.2.6), using a standard Euler scheme with time-step ∆t.

Therefore we can compute the empirical mean (resp. empirical standard deviation), that

we denote by m(.) (resp. σ(.)), for several quantities shown in table 5.3.

optimal α⋆ WoMO αw constant αc random αr

Terminal wealth m(XT )/σ(XT ) 2.117 1.999 0.472 0.376

m(XT ) 26.759 25.19 24.314 24.022

σ(XT ) 12.634 12.599 51.482 63.849

Num. of exec. at bid m(Nb
T ) 18.770 18.766 13.758 21.545

σ(Nb
T ) 3.660 3.581 3.682 4.591

Num. of exec. at ask m(Na
T ) 18.770 18.769 13.76 21.543

σ(Na
T ) 3.666 3.573 3.692 4.602

Num. of exec. at market m(Nmarket
T ) 6.336 0 0 0

σ(Nmarket
T ) 2.457 0 0 0

Maximum Inventory m(sups∈[0;T ] |Ys|) 241.019 176.204 607.913 772.361

σ(sups∈[0;T ] |Ys|) 53.452 23.675 272.631 337.403

Table 5.3: Performance analysis: synthesis of benchmarked backtest (105 simulations).

Optimal strategy α⋆ demonstrates significant improvement of the information ratio

IR(XT ) := m(XT )/σ(XT ) compared to the benchmark, which is confirmed by the plot of

the whole empirical distribution of XT (see figure 5.4).

Even if absolute values of m(XT ) are not representative of what would be the real-world

performance of such strategies, these results prove that the different layers of optimization



159 Optimal high frequency trading with limit and market orders

Figure 5.4: Empirical distribution of terminal wealth XT (spline interpolation).

are relevant. Indeed, one can compute the ratios
[

m(Xα⋆

T ) −m(Xαc

T )
]

/σ(Xα⋆

T ) = 0.194 and
[

m(Xα⋆

T ) −m(Xαw

T )
]

/σ(Xα⋆

T ) = 0.124 that can be interpreted as the performance gain,

measured in number of standard deviations, of the optimal strategy α⋆ compared respec-

tively to the constant strategy αc and the WoMO strategy αw. Another interesting statistics

is the surplus profit per trade
[

m(Xα⋆

T ) −m(Xαc

T )
]

/
[

m(N b,α⋆

T ) +m(Na,α⋆

T ) +m(Nmarket,α⋆

T )
]

=

0.056 euros per trade, recalling that the maximum volume we trade is ℓ̄ = ē = 100. Note

that for this last statistics, the profitable effects of the per share rebates ρ are partially

neutralized because the number of executions is comparable between α⋆ and αc; therefore

the surplus profit per trade is mainly due to the revenue obtained from making the spread.

To give a comparison point, typical clearing fee per execution is 0.03 euros on multilateral

trading facilities, therefore, in this backtest, the surplus profit per trade was roughly twice

the clearing fees.

We observe in the synthesis table that the number of executions at bid and ask are

symmetric, which is also confirmed by the plots of their empirical distributions in figure

5.5. This is due to the symmetry in the execution intensities λb and λa, which is reflected

by the symmetry around y = 0 in the optimal policy.

Moreover, notice that the maximum absolute inventory is efficiently kept close to zero

in α⋆ and αw, whereas in αc and αr it can reach much higher values. The maximum

absolute inventory is higher in the case of α⋆ than in the case αw due to the fact that

α⋆ can unwind any position immediately by using market orders, and therefore one may

post higher volume for limit orders between two trading at market, profiting from reduced
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(a) N Bid empirical distribution (b) N Ask empirical distribution

Figure 5.5: Empirical distribution of the number of executions on both sides.

execution risk.

Efficient frontier. An important feature of our algorithm is that the market maker can

choose the inventory penalization parameter γ. To illustrate its influence, we varied the

inventory penalization γ from 50 to 6.10−2, and then build the efficient frontier for both

the optimal strategy α⋆ and for the WoMO strategy αw. Numerical results are provided in

table 5.4 and a plot of this data is in figure 5.6.

We display both the “gross” information ratio IR(Xα⋆

T ) := m(Xα⋆

T )/σ(Xα⋆

T ) and the

“net” information ratio NIR(Xα⋆

T ) :=
(

m(Xα⋆

T ) −m(Xαc

T )
)

/σ(Xα⋆

T ) to have more precise

interpretation of the results. Indeed, m(Xα
T ) seems largely overestimated in this sim-

ulated data backtest compared to what would be real-world performance, for all α ∈
{α⋆, αw, αc, αr}. Then, to ease interpretation, we assume that αc has zero mean per-

formance in real-world conditions, and therefore offset the mean performance m(Xα⋆

T ) by

the constant −m(Xαc

T ) when computing the NIR. This has simple visual interpretation as

shown in figure 5.6.

Observe that highest (net) information ratio is reached for γ ≃ 0.8 for this set of

parameters. At this point γ ≃ 0.8, the annualized value of the NIR (obtained by simple

extrapolation) is 47, but this simulated data backtest must be completed by a backtest

on real data. Qualitatively speaking, the effect of increasing the inventory penalization

parameter γ is to increase the zone T where we trade at market. This induces smaller
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γ σ(Xα⋆

T ) m(Xα⋆

T ) σ(Xαw

T ) σ(Xαw

T ) IR(Xα⋆

T ) NIR(Xα⋆

T )

50.000 5.283 12.448 4.064 9.165 2.356 -2.246

25.000 7.562 18.421 7.210 16.466 2.436 -0.779

12.500 9.812 22.984 9.531 20.971 2.343 -0.135

6.250 11.852 25.932 11.749 24.232 2.188 0.136

3.125 14.546 28.153 14.485 26.752 1.935 0.263

1.563 15.819 28.901 16.830 28.234 1.827 0.289

0.781 19.088 29.952 19.593 29.145 1.569 0.295

0.391 20.898 30.372 20.927 29.728 1.453 0.289

0.195 23.342 30.811 23.247 30.076 1.320 0.278

0.098 25.232 30.901 24.075 30.236 1.225 0.261

0.049 26.495 31.020 24.668 30.434 1.171 0.253

0.024 27.124 30.901 25.060 30.393 1.139 0.242

0.012 27.697 31.053 25.246 30.498 1.121 0.243

0.006 28.065 30.998 25.457 30.434 1.105 0.238

Table 5.4: Efficient frontier data
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Figure 5.6: Efficient frontier plot

inventory risk, due to the fact that we unwind our position when reaching relatively small

values for |y|. This feature can be used to enforce a soft maximum inventory constraint

directly by choosing γ.
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Appendix A: pseudo-code

In this appendix, we provide the pseudo-code for solving the simplified numerical schemes

((5.4.4)-5.4.6) and ((5.4.9)-(5.4.11)). In this section, given C > 0 and ∆Y > 0 we use the

notation:

YC := {−C ∨ k∆Y ∧ C, k ∈ Z}

the regular grid on R truncated at C.

Pseudo-code for the numerical scheme in the case of mean criterion with

penalty on inventory.

This algorithm is described explicitly in backward induction by the following pseudo-

code:

• Timestep tN = T : for each y ∈ YC , for each i ∈ Im, set φh
i (tn, y) = −|y| iδ2 − ε

according to eq. (5.4.4).

• For k = N − 1 . . . 0, from timestep tk+1 to timestep tk, for each y ∈ YC , and for each

i ∈ Im:

– Compute φ̃i(tk, y) from 5.4.10, and store (qb, ℓb)⋆ , (qa, ℓa)⋆ the argmax

– Compute φ̂i(tk, y) := sup
e∈[−ē,ē]

[

− iδ

2
|e| − ε + φh

i (tk+1, y + e)
]

, and store e⋆ the

argmax

– If φ̃i(tk, y) ≥ φ̂i(tk, y) then set

φi(tk, y) := φ̃i(tk, y)

and the policy is make (qb, ℓb)⋆ , (qa, ℓa)⋆. Otherwise, set

φi(tk, y) := φ̂i(tk, y)

and the policy is take e⋆.

Pseudo-code for the numerical scheme in the case of exponential utility crite-

rion.

This algorithm is described explicitly in backward induction by the following pseudo-

code:

• Timestep tN = T : for each y ∈ YC , for each i ∈ Im, set ϕh
i (tn, y) = exp(η|y| iδ2 )

according to eq. 5.4.9.
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• For k = N − 1 . . . 0, from timestep tk+1 to timestep tk, for each y ∈ YC , and for each

i ∈ Im:

– Compute ϕ̃i(tk, y) from 5.4.5, and store (qb, ℓb)⋆ , (qa, ℓa)⋆ the argmax

– Compute ϕ̂i(tk, y) := inf
e∈[−ē,ē]

[

exp
(

η|e| iδ
2

+ ηε
)

ϕh
i (tk+1, y+ e)

]

, and store e⋆ the

argmax

– If ϕ̃i(tk, y) ≥ ϕ̂i(tk, y) then set

ϕi(tk, y) := ϕ̃i(tk, y)

and the policy is make (qb, ℓb)⋆ , (qa, ℓa)⋆. Otherwise, set

ϕi(tk, y) := ϕ̂i(tk, y)

and the policy is take e⋆.
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Chapter 6

Optimal HF trading in a pro-rata

microstructure with predictive

information

We propose a framework to study optimal trading policies in a one-tick pro-rata limit

order book, as typically arises in short-term interest rate futures contracts. The high-

frequency trader chooses to post either market orders or limit orders, which are represented

respectively by impulse controls and regular controls. We discuss the consequences of the

two main features of this microstructure: first, the limit orders are only partially executed,

and therefore she has no control on the executed quantity. Second, the high frequency

trader faces the overtrading risk, which is the risk of brutal variations in her inventory. The

consequences of this risk are investigated in the context of optimal liquidation. The optimal

trading problem is studied by stochastic control and dynamic programming methods, and

we provide the associated numerical resolution procedure and prove its convergence. We

propose dimension reduction techniques in several cases of practical interest. We also detail

a high frequency trading strategy in the case where a (predictive) directional information

on the price is available. Each of the resulting strategies are illustrated by numerical tests.

Note: This chapter is adapted from the article : [38] Guilbaud F. and H. Pham (2012):

“Optimal high frequency trading in a pro-rata microstructure with predictive information”,

available at SSRN: http://ssrn.com/abstract=2040867.

http://ssrn.com/abstract=2040867
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6.1 Introduction

In most of modern public security markets, the price formation process, or price discovery,

results from competition between several market agents that take part in a public auction.

In particular, day trading sessions, which are also called continuous trading phases, consist

of continuous double auctions. In these situations, liquidity providers1 continuously set bid

and ask prices for the considered security, and the marketplace publicly displays a (possibly

partial) information about these bid and ask prices, along with transactions prices. The

action of continuously providing bid and ask quotes during day trading sessions is called

market making, and this role was tradionnally performed by specialist firms. However, due

to the recent increased availability of electronic trading technologies, as well as regulatory

changes, a large range of investors are now able to implement such market making strategies.

These strategies are part of the broader category of high frequency trading (HFT) strategies,

which are characterized by the fact that they facilitate a larger number of orders being sent

to the market per unit of time. HFT takes place in the continuous trading phase, and

therefore in the double continuous auction context, but actual mechanisms that implement

this general continuous double auction set-up directly influence the price formation process

and, as a consequence, HFT strategies.

In this work, we shall focus on the case where the continuous double auction is imple-

mented by a limit order book (LOB), operated under the pro-rata microstructure, see [43]

and [1]. This microstructure can be encountered on some derivatives markets, and espe-

cially in short-term interest rate (STIR) futures markets, also known as financial futures,

traded e.g. on LIFFE (London International Financial Futures and options Exchange) or

on CME (Chicago Mercantile Exchange). This differs from the usual price/time microstruc-

ture found on most cash equity markets, and governed by the FIFO (first in first out) rule

where limit orders are executed according to the first arrival at the best price. We will

describe in detail the prorata microstructure in Section 2, but the general mechanism of

this microstructure is as follows: an incoming market order is dispatched on all active limit

orders at the best price, with each limit order contributing to execution in proportion to

its volume. In particular, we will discuss the two main consequences of this microstructure

on HFT strategies which are the oversizing of the best priced slices of the LOB and the

overtrading risk.

Our main goal is to construct an HFT strategy, by means of optimal stochastic control,

that targets the pro-rata microstructure. We allow both limit orders and market orders

in this HFT strategy, modelled respectively as continuous and impulse controls, due to

considerations about direct trading costs. From a modelling point of view, the key nov-

elty is that we take into account partial execution for limit orders, which is crucial in the

pro-rata case. For this purpose we introduce a compound Poisson model for trades pro-

1In this paper, we call liquidity provider any investor that currently trades with limit orders
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cesses, that can be fitted to a large class of real-world execution processes, since we make

few assumptions about the distributions of execution volumes. From a practical trading

point of view, we allow the HFT to input predictive information about price evolution into

the strategy, so that our algorithm can be seen as an information-driven HFT strategy

(this situation is sometimes called HFT with superior information, see [16]). We derive

the dynamic programming equation corresponding to this mixed impulse/regular control

problem. Moreover, we are able to reduce the number of relevant state variables to one in

two situations of practical interest: first, in the simple case where the mid-price is a martin-

gale, and second, in the case where the mid-price is a Lévy process, in particular when the

HFT has predictive information on price trend, in line with recent studies [21]. We provide

a computational algorithm for the resolution of the dynamic programming equation, and

prove the convergence of this scheme. We illustrate numerically the behavior of the strategy

and perform a simulated data benchmarked backtest.

High-frequency trading has recently received sustained academic interest, mostly in a

price/time microstructure model. The reference work for inventory-based high frequency

trading is Avellaneda and Stoikov (2008) [7] following early work by Ho and Stoll [42].

The authors present the HFT problem as an inventory management problem and define

inventory risk as the risk of holding a non-zero position in a risky asset. They also pro-

vide a closed-form approximate solution in a stylized market model where the controls are

continuous. Several works are available that describe optimal strategies for HFT on cash

equities or foreign exchange, e.g. [45], [15], [35], [37] or [68]. Guéant, Tapia and Lehalle

([35]) provide extensive analytical treatment of the Avellaneda and Stoikov model. Veraart

([68]) includes market orders (that are modelled as impulse controls) as well as limit order

in the context of FX trading. Guilbaud and Pham ([37]) study market/limit orders HFT

strategies on stocks with a focus on the price/time priority microstructure and the bid/ask

spread modelling. Cartea, Jaimungal and Ricci ([16]) consider a HFT strategy that takes

into account influence of trades on the LOB, and give the HFT superior information about

the security price evolution. A growing literature is dedicated to modelling the dynamics of

the limit order book itself, and its consequences for the price formation process. A popular

approach is the Poisson Limit Order Book model as in Cont and de Larrard ([21]). These

authors are able to retrieve a predictive information on price behavior (together with other

LOB features) based on the current state of the order book. Finally, in empirical litera-

ture, much work is available for cash equities e.g. [33], but very few is dedicated to markets

operating under pro-rata microstructure. We would like to mention the work by Field and

Large ([25]), which provides a detailed empirical description of such microstructure.

This paper is organized as follows: in Section 2, we detail the prorata microstructure

model and explain the high frequency trading strategy in this context. In Section 3, we

formulate the control problem, derive the corresponding dynamic programming equation

(DPE) for the value function, and state some bounds and symmetry properties. We also
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simplify the DPE in two cases of practical interest, namely the case where the price is

a martingale, and the case where the investor has predictive information on price trend

available. In Section 4, we provide the numerical algorithm to solve the DPE, and we

study the convergence of the numerical scheme, by proving the monotonicity, stability and

consistency for this scheme. We also provide numerical tests including computations of the

optimal policies and performance analysis on a simulated data backtest. Finally, in Section

5, we show how to extend our model in the optimal liquidation case, i.e. when the investor’s

objective is to minimize the trading costs for unwinding her portfolio.

6.2 Market model

Let us fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)0≤t≤T satisfying

the usual conditions. It is assumed that all random variables and stochastic processes are

defined on the stochastic basis (Ω,F ,F,P).

Prices in a one-tick microstructure. We denote by P the midprice, defined as a Markov

process with generator P valued in P. We shall assume that P is a special semimartingale

with locally integrable quadratic variation process [P ], so that its dual predictable pro-

jection (also called sharp bracket) < P > exists (see [62]). We assume that < P >T is

integrable, and that the predictable finite variation term A of the special semimartingale

P satisfies the canonical structure: dAt ≪ d < P >t, with a bounded density process:

θt =
dAt

d < P >t
, (6.2.1)

and the sharp bracket process < P > is absolutely continuous with respect to the Lebesgue

measure:

d < P >t = ̺(Pt)dt, (6.2.2)

for some positive continuous function ̺ on P . We denote by δ > 0 the tick size, and we

shall assume that the spread is constantly equal to δ, i.e. the best ask (resp. bid) price is

P a := P + δ
2 (resp. P b := P − δ

2). This assumption corresponds to the case of the so-called

one-tick microstructure [25], which can be encountered e.g. on short term interest rates

futures contracts.

Trading strategies. For most of investors, the brokerage costs are paid when a transaction

occurs, but new limit order submission, update or cancel are free of charge. Therefore,

the investor can submit or update her quotes at any time, with no costs associated to

this operation: it is then natural to model the limit order strategy (make strategy) as

a continuous time predictable control process. On the contrary, market orders lead to

immediate execution, and are costly, so that continuous submission of market orders would
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lead to bankruptcy. Therefore, we choose to model the market order strategy (take strategy)

as impulse controls. More precisely, we model trading strategies by a pair α = (αmake, αtake)

in the form:

αmake =
(

La
t , L

b
t

)

t≥0
, αtake =

(

τn, ξn
)

n∈N
.

The predictable processes La and Lb, valued in {0, 1} represent the possible make regimes:

when La
t = 1 (resp. Lb

t = 1) this means that the investor has active limit orders at the

best ask price (resp. best bid price) at time t, else, if La
t = 0 (resp. Lb

t = 0) this means

that the investor has no active order at the best ask price (resp. best bid price) at time

t. Practical implementation of such rule would be, for example, to send a limit order with

a fixed quantity, when the corresponding control is 1, and cancel it when it turns to 0.

Another practical implementation of the rule would be to post a constant proportion of the

available volume at best prices: for example, if V a
M (t) is the current offered volume at best

ask, and if La
t = 1, the practical action in this situation is to post a limit order of volume

va(t) s.t.
va(t)

va(t) + V a
M (t)

= const at the best ask price. Choice of practical implementation

of the limit order controls will impact the outcome of the high frequency trader’s strategy

in term of executed volumes, and therefore we propose at the next paragraph an approach

suitable in both cases. On the other hand, (τn)n∈N is an increasing sequence of stopping

times, representing the times when the investor chooses to trade at market, and ξn, n ≥ 0

are Fτn-measurable random variables valued in R, representing the quantity purchased if

ξn ≥ 0 or sold if ξn < 0.

Execution processes in a pro-rata microstructure. The pro-rata microstructure (see

[43] for extensive presentation and discussion) can be schematically described as follows2:

when a market order comes in the pro-rata limit order book, its volume is dispatched

among all active limit orders at best prices, proportionally to each limit orders volumes,

and therefore create several transactions (see Figure 6.1).

This pro-rata microstructure fundamentally differs from price-time microstructure [37]

for two reasons: first, several limit orders at the best prices receive incoming market order

flow, regardless of the time priority, and second, market makers tend to oversize their

liquidity offering (that is, posting limit order with much higher volume than they actually

want to trade) in order to increase their transaction volume. For example, on the three-

months EURIBOR futures contracts, the liquidity available at the best prices is 200 times

higher than the average transaction size.

Let us examine more precisely the outcomes of the two practical implementations of

limit orders posting mentionned in the last paragraph. We consider the two cases where

2For a detailled description of actual trading rules, and a general overview of STIR futures trading, we

refer to [1] and references therein.
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Figure 6.1: Schematic view of the pro-rata market microstructure.

the high frequency trader posts 1) limit orders with a fixed volume, say V0 = 100 contracts,

and 2) limits orders with volumes:

va(t) s.t.
va(t)

va(t) + V a
M (t)

= 10% ; vb(t) s.t.
vb(t)

vb(t) + V b
M (t)

= 10%

where V a
M (t) (resp. V b

M (t)) is the volume available at best ask (resp. bid) at time t.

Considering an incoming market order of size V on the ask side, the high frequency trader

receives:

• in case 1) min (V, V0 + V a
M (t))

V0

V0 + V a
M (t)

≤ V0

• and in case 2) 10% min (V, va(t) + V a
M (t)) ≤ va(t).

Note that in these two cases, the volume offered by the market maker is fully executed if

and only if the market order’s volume V is greater or equal to the total volume offered at

ask V0 + V a
M (t), resp. va(t) + V a

M (t). Therefore, the probability that the high frequency

trader volume is fully executed is equal to the probability that the market order consume

the first slice of the LOB in integrality. In other words, the volume
V0

V0 + V a
M (t)

, resp.

va(t)

va(t) + V a
M (t)

, that the HFT receives, never reaches the bound V0, resp. va(t), unless the

market order consume the first slice of the LOB in integrality.
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For illustration purposes, and in this discussion only, we assume that the volume of

incoming market orders has a gamma distribution with shape 4 and scale 7.5 (which makes

an average market order volume of 30 contracts, consistent with observations on the front

3-M EURIBOR contract, see [25]). In figure 6.2 we plot the probability of the HFT’s limit

order to be fully executed as a function of V0 + V a
M (t), resp. va(t) + V a

M (t).

0 50 100 150 200 250 300
0.0
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0.6
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Figure 6.2: Probability of the HFT ask limit order V0, resp. va(t), to be fully executed as

a function of total offered volume V0 + V a
M (t), resp. va(t) + V a

M (t), when a market order of

size V ∼ Gamma(4, 7.5) comes in the LOB at time t.

In this example, we see that the probability of the HFT limit order to be fully executed

drops to negligible values once the total offered volume is greater than 100, which is about

3 times the average transaction size. Yet, in actual market, the average offered volume

at the best priced slice is about 200 times larger than the average transaction size [25],

and therefore, the probability that the HFT limit orders are fully executed is negligible.

For example, if we use the average volume offered on best prices on the front EURIBOR

future, 6000 contracts, the probability of such a market order consuming the first slice is

3 × 10−340.

Therefore, our approach is to assume that the HFT’s limit orders are never fully exe-

cuted, and instead we model the executed volume as a random variable on which the market

maker has no control. Indeed, the distribution of the volume of a single trade can be fitted

directly on market data resulting from running our strategy. This approach combines the

advantages of abstracting from practical details of the strategy implementation while keep-

ing precise information on executed volumes. In other words, we assume that the outcome

of the practical implementation of the strategy, in terms of executed volume distribution,

is known and can be measured in market data, and especially in post-production data, i.e.
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by examinating the real outcomes of trading with a given implementation of the strategy.

More precisely, let Na (resp. N b) be a Poisson process of intensity λa > 0 (resp. λb),

whose jump times represent the times when execution by a market order flow occurs at best

ask (resp. best bid), and we assume that Na and N b are independent. Let (ζa
n)n∈N∗ and

(ζb
n)n∈N∗ be two independent sequences of i.i.d integrable random variables valued in (0,∞),

of distribution laws µa and µb, which represent the transacted volume of the nth execution

at best ask and best bid. We denote by νa(dt, dz) (resp. νb(dt, dz)) the Poisson random

measure associated to the marked point process (Na, (ζa
n)n∈N∗) (resp. (N b, (ζb

n)n∈N∗)) of in-

tensity measure λaµa(dz)dt (resp. λbµb(dz)dt), which is often identified with the compound

Poisson processes

ϑa
t =

Na
t

∑

n=1

ζa
n =

∫ t

0

∫ ∞

0
z νa(dt, dz), ϑb

t =

Nb
t

∑

n=1

ζb
n =

∫ t

0

∫ ∞

0
z νb(dt, dz).(6.2.3)

representing the cumulative volume of transaction at ask, and bid, assumed to be inde-

pendent of the mid-price process P . Notice that these processes model only the trades in

which the investor has participated.

Cash holdings and inventory. The cash holdings process X and the cumulated number

of stocks Y (also called inventory) hold by the investor evolve according to the following

dynamics:

dXt = La
t

(

Pt− +
δ

2

)

dϑa
t − Lb

t

(

Pt− − δ

2

)

dϑb
t , τn ≤ t < τn+1 (6.2.4)

dYt = Lb
tdϑ

b
t − La

t dϑ
a
t , τn ≤ t < τn+1 (6.2.5)

Xτn −Xτn− = −ξnPτn − |ξn|
(δ

2
+ ε

)

− ε01ξn 6=0, (6.2.6)

Yτn − Yτn− = ξn. (6.2.7)

The equations (6.2.4)-(6.2.5) model the evolution of the cash holdings and inventory under

a limit order (make) strategy, while equations (6.2.6)-(6.2.7) describe the jump on the cash

holdings and inventory when posting a market order (take) strategy, subject to a per share

fee ε > 0 and a fixed fee ε0 > 0. In the sequel, we impose the admissibility condition that

the inventory should remain within a bounded interval [−M
Y
,M

Y
], M

Y
> 0, after the trade

at market, i.e. ξn ∈ [−M
Y
− Yτn−,MY

− Yτn−], n ≥ 0, and we shall denote by A the set of

all admissible make and take strategies α = (αmake, αtake).

Remark 6.2.1 Let us define the process Vt = Xt + YtPt, which represents at time t the

marked-to-market value of the portfolio (or book value of the portfolio). From (6.2.4)-
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(6.2.5)-(6.2.6)-(6.2.7), we see that its dynamics is governed by:

dVt =
δ

2
(Lb

tdϑ
b
t + La

t dϑ
a
t ) + Yt−dPt, (6.2.8)

Vτn − Vτn− = −|ξn|(
δ

2
+ ε) − ε01ξn 6=0, . (6.2.9)

In equation (6.2.9), we notice that a trade at market will always diminish the marked to

market value of our portfolio, due to the fact that we have to “cross the spread”, hence trade

at a least favorable price. On the other hand, in equation (6.2.8), the term
∫

δ
2(Lb

tdϑ
b
t +

La
t dϑ

a
t ) is always positive, and represents the profit obtained from a limit order execution,

while the term
∫

Yt−dPt represents the portfolio value when holding shares in the stock,

hence inducing an inventory risk, which one wants to reduce its variance.

6.3 Market making optimization procedure

6.3.1 Control problem formulation

The market model in the previous section is fully determined by the state variables (X,Y, P )

controlled by the limit/market orders strategies α = (αmake, αtake) ∈ A. The market maker

wants to optimize her profit over a finite time horizon T (typically short term), while keeping

control of her inventory risk, and to get rid of any risky asset by time T . We choose a mean-

variance optimization criterion, and the goal is to

maximize E
[

XT − γ

∫ T

0
Y 2

t−d < P >t

]

over all strategies α ∈ A, s.t YT = 0, (6.3.1)

with the convention that ∞−∞ = −∞, as usually done in expected utility maximization.

The integral
∫ T
0 Y 2

t−d < P >t is a quadratic penalization term for holding a non zero

inventory in the stock, and γ > 0 is a risk aversion parameter chosen by the investor. The

penalty term γE
[ ∫ T

0 Y 2
t−d < P >t

]

can further be motivated by noting that the variance

of the total value of the investor’s inventory in the case where P is a martingale is by the

Itô isometry:

Var
(

∫ T

0
Yt−dPt

)

= E
[

∫ T

0
Y 2

t−d < P >t

]

,

which is our penalty term, up to the scale factor γ. As pointed out by Cartea and Jaimungal

[17], this running penalty is much more effective than the terminal inventory constraint.

Let us now rewrite problem (6.3.1) in a more standard formulation where the constraint

YT = 0 on the inventory control is removed. For this, let us introduce the liquidation

function:

L(x, y, p) = x+ yp− |y|
(δ

2
+ ε

)

− ε01y 6=0,
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which represents the cash obtained after an immediate liquidation of the inventory via a

(non zero) market order. Then, problem (6.3.1) is formulated equivalently as

maximize E
[

L(XT , YT , PT ) − γ

∫ T

0
Y 2

t−d < P >t

]

over all strategies α ∈ A, (6.3.2)

Indeed, the maximal value of problem (6.3.1) is clearly smaller than the one of problem

(6.3.2) since for any α ∈ A s.t. YT = 0, we have L(XT , YT , PT , ST ) = XT . Conversely,

given an arbitrary α ∈ A, let us consider the control α̃ ∈ A, coinciding with α up to time

T , and to which one add at the terminal date T the admissible market order consisting in

liquidating all the inventory YT if it is nonzero. The associated state process (X̃, Ỹ , P, S)

satisfies: X̃t = Xt, Ỹt = Yt for t < T , and X̃T = L(XT , YT , PT , ST ), ỸT = 0. This shows

that the maximal value of problem (6.3.2) is smaller and then equal to the maximal value

of problem (6.3.1).

Recalling (6.2.2), let us then define the value function for the problem (6.3.2):

v(t, x, y, p) = sup
α∈A

Et,x,y,p

[

L(XT , YT , PT ) − γ

∫ T

t
Y 2

s ̺(Ps)ds
]

, (6.3.3)

for t ∈ [0, T ], (x, y, p) ∈ R
2 × P. Here, given α ∈ A, Et,x,y,p denotes the expectation

operator under which the process (X,Y, P ) solution to (6.2.4)-(6.2.5)-(6.2.6)-(6.2.7) with

initial state (Xt− , Yt− , Pt−) = (x, y, p), is taken. Problem (6.3.3) is a mixed impulse/regular

control problem in Markov model with jumps that we shall study by dynamic programming

methods.

First, we state some bounds on the value function, which shows in particular that the

value function is finite and locally bounded.

Proposition 6.3.1 There exists some constant KP (depending only on the price process

and γ) such that for all (t, x, y, p) ∈ [0, T ] × R
2 × P,

L(x, y, p) ≤ v(t, x, y, p) ≤ x+ yp+
δ

2

(

λaµ̄a + λbµ̄b)(T − t) +KP , (6.3.4)

where µ̄a =
∫ ∞
0 zµa(dz), µ̄b =

∫ ∞
0 zµb(dz) are the mean of the distribution laws µa and µb.

Proof. The lower bound in (6.3.4) is derived easily by considering the particular strategy,

which consists of liquidating immediately all the current inventory (if non zero) via a market

order, and then doing nothing else until the final horizon. Let us now focus on the upper

bound. Observe that in the definition of the value function in (6.3.3), we can restrict

obviously to controls α ∈ A s.t.

E
[

∫ T

0
Y 2

t−d < P >t

]

< ∞. (6.3.5)
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For such strategies, we have:

Et,x,y,p

[

L(XT , YT , PT ) − γ

∫ T

t
Y 2

s−d < P >s

]

≤ Et,x,y,p

[

VT − γ

∫ T

t
Y 2

s d < P >s

]

≤ x+ yp+ Et,x,y,p

[δ

2

(

ϑa
T−t + ϑb

T−t

)

+

∫ T

t
Ys−dPs − γ

∫ T

t
Y 2

s−d < P >s

]

= x+ yp+ Et,x,y,p

[δ

2

(

ϑa
T−t + ϑb

T−t

)

+

∫ T

t

(

Ys−θs − γY 2
s−

)

d < P >s

]

.

Here, the second inequality follows from the relation (6.2.8), together with the fact that

La, Lb ≤ 1, ϑa, ϑb are increasing processes, and also that jumps of V are negative by

(6.2.9). The last equality holds true by (6.2.1) and the fact that
∫

Y−dM is a square-

integrable martingale from (6.3.5), where M is the martingale part of the semimartingale

P . Since θ is bounded and γ > 0, this shows that for all strategies α satisfying (6.3.5), we

have:

Et,x,y,p

[

L(XT , YT , PT ) − γ

∫ T

t
Y 2

s−d < P >s

]

≤ x+ yp+
δ

2
E

[

ϑa
T−t + ϑb

T−t] +KE[< P >T ],

for some positive constant K, which proves the required result by recalling the character-

istics of the compound Poisson processes ϑa and ϑb, and since < P >T is assumed to be

integrable. 2

Remark 6.3.1 The terms of the upper bound in (6.3.4) has a financial interpretation. The

term x+ yp represents the marked-to-market value of the portfolio evaluated at mid-price,

whereas the term KP stands for a bound on profit for any directional frictionless strategy

on the fictive asset that is priced P . The term δ
2

(

λaµ̄a + λbµ̄b)(T − t), always positive,

represents the upper bound on profit due to market making, i.e. the profit of the strategy

participating in every trade, but with no costs associated to managing its inventory.

6.3.2 Dynamic programming equation

For any (ℓa, ℓb) ∈ {0, 1}2, we introduce the non-local operator associated with the limit

order control:

Lℓa,ℓb

= P + ℓaΓa + ℓbΓb, (6.3.6)
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where

Γaφ(t, x, y, p) = λa

∫ ∞

0

[

φ
(

t, x+ z(p+
δ

2
), y − z, p

)

− φ(t, x, y, p)
]

µa(dz)

Γbφ(t, x, y, p) = λb

∫ ∞

0

[

φ
(

t, x− z(p− δ

2
), y + z, p

)

− φ(t, x, y, p)
]

µb(dz),

for (t, x, y, p) [0, T ]×R×R× P. Let us also consider the impulse operator associated with

admissible market order controls, and defined by:

Mφ(t, x, y, p) = sup
e∈[−M

Y
−y,M

Y
−y]

φ
(

t, x− ep− |e|(δ
2

+ ε) − ε01e6=0, y + e, p
)

.

The dynamic programming equation (DPE) associated to the control problem (6.3.3)

is a quasi-variational inequality (QVI) in the form:

min
[

− ∂v

∂t
− sup

(ℓa,ℓb)∈{0,1}2

Lℓa,ℓb

v + γg , v −Mv
]

= 0, on [0, T ) × R
2 × P,(6.3.7)

together with the terminal condition:

v(T, .) = L, on R
2 × P, (6.3.8)

where we denoted by g the function: g(y, p) = y2̺(p). By standard methods of dynamic

programming, one can show that the value function in (6.3.3) is the unique viscosity solution

under growth conditions determined by (6.3.4) to the DPE (6.3.7)-(6.3.8) of dimension 3

(in addition to the time variable), see e.g. Chap. 9 in [57].

6.3.3 Dimension reduction in the Lévy case

We now consider a special case on the mid-price process where the market making control

problem can be reduced to the resolution of a one-dimensional variational inequality invol-

ving only the inventory state variable. We shall suppose actually that P is a Lévy process

so that

PIP = c
P
, and ̺ is a constant, (6.3.9)

where IP is the identity function on P, i.e. IP(p) = p, and ̺ > 0, c
P

are real constants

depending on the characteristics triplet of P . Two practical examples are:

• Martingale case: The mid-price process P is a martingale, so that PIP = 0. This

martingale assumption in a high-frequency context reflects the idea that the market maker

has no information on the future direction of the stock price.

• Trend information: To remove the martingale assumption, one can introduce some

knowledge about the price trend. A typical simple example is when P follows an arithmetic
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Brownian motion (Bachelier model). A more relevant example is described by a pure jump

process P valued in the discrete grid δZ with tick δ > 0, and such that

P
(

Pt+h − Pt = δ |Ft

)

= π+h+ o(h)

P
(

Pt+h − Pt = −δ |Ft

)

= π−h+ o(h)

P
(

|Pt+h − Pt| > δ |Ft

)

= o(h),

where π+, π− > 0, and o(h) is the usual notation meaning that limh→0 o(h)/h = 0. Relation

(6.3.9) then holds with c
P

= ̟δ, where ̟ = π+ − π− represents a constant information

about price direction, and ̺ = (π+ + π−)δ2. In a high-frequency context, this model is

of practical interest as it provides a way to include a (predictive) information about price

direction. For example, work have been done in [21] to infer the future prices movements

(at the scale of a few seconds) from the current state of the limit order book in a Poisson

framework. In this work, as well as in our real data tests, the main quantities of interest are

the volume offered at the best prices in the limit order book, also known as the imbalance.

In this Lévy context, we can decompose the value function v is decomposed into the

form:

v(t, x, y, p) = L0(x, y, p) + w(t, y), (6.3.10)

where L0(x, y, p) = x+ yp− |y|
(

δ
2 + ε

)

= L(x, y, p) + ε01y 6=0 is the liquidation function up

to the fixed fee, and where w is solution to the integral variational inequality:

min
[

− ∂w

∂t
− yc

P
+ γ̺y2 − Iaw − Ibw , w − M̃w

]

= 0, on [0, T ) × R,(6.3.11)

together with the terminal condition:

w(T, y) = −ε01y 6=0, ∀y ∈ R, (6.3.12)

with Ia and Ib, the nonlocal integral operators:

Iaw(t, y) = λa
(

∫ ∞

0

[

w(t, y − z) − w(t, y) + z
δ

2
+ (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

+

Ibw(t, y) = λb
(

∫ ∞

0

[

w(t, y + z) − w(t, y) + z
δ

2
+ (

δ

2
+ ε)(|y| − |y + z|)

]

µb(dz)
)

+
,

and M̃, the nonlocal operator:

M̃w(t, y) = sup
e∈[−M

Y
−y,M

Y
−y]

[

w(t, y + e) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε01e6=0

]

.

The interpretation of the decomposition (6.3.10) is the following. The term L0(x, y, p)

represents the book value that the investor would obtain by liquidating immediately with
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a market order (up to the fixed fee), and w is an additional correction term taking into

account the illiquidity effects induced by the bid-ask spread and the fees, as well as the

execution risk when submitting limit orders. Moreover, in the Lévy case, this correction

function w depends only on time and inventory. From (6.3.4), we have the following bounds

on the function w:

−ε01y 6=0 ≤ w(t, y) ≤ (
δ

2
+ ε)|y| + δ

2

(

λaµ̄a + λbµ̄b)(T − t) +KP , ∀(t, y) ∈ [0, T ] × R.

Actually, we have a sharper upper bound in the Lévy context.

Proposition 6.3.2 Under (6.3.9), we have:

− ε01y 6=0 ≤ w(t, y) ≤ (T − t)
[ c2P
4γρ

+ λa(δ + ǫ)µ̄a + λb(δ + ǫ)µ̄b
]

, (6.3.13)

for all (t, x, y, p) ∈ [0, T ] × R
2 × P.

Proof. For any (x, y, p) ∈ R
2 × P, we notice that

L0(x, y, p) − sup
e∈[−M

Y
−y,M

Y
−y]

L0(x− ep− |e|(δ
2

+ ε) − ε01e6=0, y + e, p)

= inf
e∈[−M

Y
−y,M

Y
−y]

[

(
δ

2
+ ε)

(

|e| + |y + e| − |y|
)

+ ε01e6=0

]

≥ 0. (6.3.14)

We also observe that for all z ≥ 0:

L0(x+ z(p+
δ

2
), y − z, p) − L0(x, y, p) = z

δ

2
+ (

δ

2
+ ε)

(

|y| − |y − z|
)

≤ (δ + ε)z, (6.3.15)

and similarly:

L0(x− z(p− δ

2
), y + z, p) − L0(x, y, p) ≤ (δ + ε)z. (6.3.16)

Let us then consider the function φ(t, x, y, p) = L0(x, y, p)+(T − t)u, for some real constant

u to be determined later. Then, φ(T, .) = L0, and by (6.3.15)-(6.3.16), we easily check that:

−∂φ
∂t

− sup
(ℓa,ℓb)∈{0,1}2

Lℓa,ℓb

φ + γg

≥ u− λa(δ + ε)µ̄a − λb(δ + ε)µ̄b − ycP + γy2ρ.

The r.h.s. of this last inequality is a second order polynomial in y and therefore it is always

nonnegative iff:

c2P − 4γρ(u− λa(δ + ε)µ̄a − λb(δ + ε)µ̄b) ≤ 0,
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which is satisfied once the constant u is large enough, namely:

u ≥ û :=
c2P
4γρ

+ λa(δ + ǫ)µ̄a + λb(δ + ǫ)µ̄b.

For such choice of u = û, and denoting by φ̂ the associated function: φ̂(t, x, y, p) =

L0(x, y, p) + (T − t)û we have

−∂φ̂
∂t

− sup
(ℓa,ℓb)∈{0,1}2

Lℓa,ℓb

φ̂+ γg ≥ 0,

which shows, together with (6.3.14), that φ̂ is a supersolution of (6.3.7)-(6.3.8). From

comparison principle for this variational inequality, we deduce that

v ≤ φ̂ on [0, T ] × R
2 × P,

which shows the required upper bound for w = v − L0. 2

Finally, from (6.3.11)-(6.3.12), and in the case where λa = λb, µa = µb, and by stressing

the dependence of w in c
P
, we see that w satisfies the symmetry relation:

w(t, y, c
P
) = w(t,−y,−c

P
), ∀(t, y) ∈ [0, T ] × R. (6.3.17)

6.4 Numerical resolution

In this section, we focus on the numerical resolution of the integral variational inequal-

ity (6.3.11)-(6.3.12), which characterizes the reduced value function of the market-making

problem in the Lévy case.

6.4.1 Numerical scheme

We provide a computational scheme for the integral variational inequality (6.3.11). We first

consider a time discretization of the interval [0, T ] with time step h = T/N and a regular

time grid TN = {tk = kh , k = 0, . . . , N}. Next, we discretize and localize the inventory

state space on a finite regular grid: for any M > 0 (in practice we choose M = MY ) and

NY ∈ N, and denoting by ∆Y =
M

NY
, we set:

YM =
{

yi = i∆Y , i = −NY , . . . , NY

}

.

We denote by ProjM (y) := −M ∨ (y ∧M), and consider the discrete approximating distri-

bution of µa and µb, defined by:

µ̂a =
∑

i∈Z+

µa([i∆Y ; (i+ 1)∆Y ))δi∆Y
, µ̂b =

∑

i∈Z+

µb([i∆Y ; (i+ 1)∆Y ))δi∆Y
,
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with δx the Dirac measure at x. We then introduce the operator associated to the explicit

time-space discretization of the integral variational inequality (6.3.11): for any real-valued

function ϕ on [0, T ] × R, t ∈ [0, T ], and y ∈ R, we define:

Sh,∆Y ,M (t, y, ϕ) = max
[

T h,∆Y ,M (t, y, ϕ) ; M̃h,∆Y ,M (t, y, ϕ)
]

,

where

T h,∆Y ,M (t, y, ϕ) = ϕ(t, y) − hγ̺y2 + hycP

+ λah
(

∫ ∞

0

[

ϕ(t,ProjM (y − z)) − ϕ(t, y)
]

µ̂a(dz)

+

∫ ∞

0

[δ

2
z + (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

+

+ λbh
(

∫ ∞

0

[

ϕ(t,ProjM (y + z)) − ϕ(t, y)
]

µ̂b(dz)

+

∫ ∞

0

[δ

2
z + (

δ

2
+ ε)(|y| − |y + z|)

]

µb(dz)
)

+
,

and

M̃h,∆Y ,M (t, y, ϕ)

= sup
e∈YM∩[−M

Y
−y,M

Y
−y]

[

ϕ(t,ProjM (y + e)) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε01e6=0

]

.(6.4.1)

By recalling that x+ = maxℓ∈{0,1} ℓx, we see that the operator T h,∆Y ,M may be written

also as:

T h,∆Y ,M (t, y, ϕ) = −hγ̺y2 + hycP + max
ℓa,ℓb∈{0,1}

[

ϕ(t, y)(1 − λahℓa − λbhℓb) (6.4.2)

+ λahℓa
(

∫ ∞

0
ϕ(t,ProjM (y − z))µ̂a(dz)

+

∫ ∞

0

[δ

2
z + (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

+ λbhℓb
(

∫ ∞

0
ϕ(t,ProjM (y + z))µ̂b(dz)

+

∫ ∞

0

[δ

2
z + (

δ

2
+ ε)(|y| − |y + z|)

]

µb(dz)
)]

.

Notice that on the boundary y = MY (resp. y = −MY ) the set of admissible market

orders is [−2y, 0] (resp. [0,−2y]) which implies that we only allow sell (resp. buy) market

orders. Limit orders controls can be of any type on the boundary, since we do not set a

global constraint on the inventory.
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We then approximate the solution w to (6.3.11)-(6.3.12) by the function wh,∆Y ,M on

TN × YM solution to the computational scheme:

wh,∆Y ,M (tN , y) = −ε01y 6=0, y ∈ YM , (6.4.3)

wh,∆Y ,M (tk, y) = Sh,∆Y ,M (tk+1, y, w
h,∆Y ,M ) , k = 0, . . . , N − 1 , y ∈ YM . (6.4.4)

This algorithm is described explicitly in backward induction by the following pseudo-code:

• Timestep tN = T : for each y ∈ YM , set wh,∆Y ,M (tn, y) := −ε01y 6=0

• For k = N − 1 . . . 0, from timestep tk+1 to timestep tk, and for each y ∈ YM :

– Compute T h,∆Y ,M (tk+1, y, w
h,∆Y ,M ) from (6.4.2), and store ℓa,⋆ , ℓb,⋆ the argmax

– Compute M̃h,∆Y ,M (tk+1, y, w
h,∆Y ,M ) from (6.4.1), and store e⋆ the argmax

– If T h,∆Y ,M (tk+1, y, w
h,∆Y ,M ) ≥ M̃h,∆Y ,M (tk+1, y, w

h,∆Y ,M ) then set

wh,∆Y ,M (tk, y) := T h,∆Y ,M (tk+1, y, w
h,∆Y ,M )

and the policy is make (ℓa,⋆, ℓb,⋆). Otherwise, set

wh,∆Y ,M (tk, y) := M̃h,∆Y ,M (tk+1, y, w
h,∆Y ,M )

and the policy is take e⋆.

6.4.2 Convergence of the numerical scheme

In this section, we study the convergence of the numerical scheme (6.4.3)-(6.4.4) by show-

ing the monotonicity, stability and consistency properties of this scheme. We denote by

C1
b ([0, T ] × R) the set of bounded continuously differentiable functions on [0, T ] × R, with

bounded derivatives.

Proposition 6.4.1 (Monotonicity)

For any h > 0 s.t. h <
1

λa + λb
the operator Sh,∆Y ,M is non-decreasing in ϕ, i.e. for any

(t, y) ∈ [0, T ] × R and any ϕ,ψ ∈ C1
b ([0, T ] × R) , s.t. ϕ ≤ ψ :

Sh,∆Y ,M (t, y, ϕ) ≤ Sh,∆Y ,M (t, y, ψ)

Proof. From the expression (6.4.2), it is clear that T h,∆Y ,M (t, y, ϕ), and then also Sh,∆Y ,M (t, y, ϕ)

is monotone in ϕ once 1 − λah− λbh > 0. 2
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Proposition 6.4.2 (Stability)

For any h,∆Y ,M > 0 there exists a unique solution wh,∆Y ,M to (6.4.3)-(6.4.4), and the

sequence (wh,∆Y ,M ) is uniformly bounded: for any (t, y) ∈ TN × YM ,

−ε01y 6=0 ≤ wh,∆Y ,M (t, y) ≤ (T − t)
[ c2P
4γρ

+ λa(δ + ǫ)µ̄a + λb(δ + ǫ)µ̄b
]

.

Proof. Existence and uniqueness of wh,∆Y ,M follows from the explicit backward scheme

(6.4.3)-(6.4.4). Let us now prove the uniform bounds. We consider the function

Ψ⋆(t) = (T − t)

[

c2P
4γρ

+ λa(δ + ǫ)µ̄a + λb(δ + ǫ)µ̄b

]

and notice that Ψ⋆(t) ≥ Sh,∆Y ,M (t + h, y,Ψ⋆) by the same arguments as in Proposition

6.3.2. Moreover, we have, by definition, wh,∆Y ,M (T, y) = −ε01y 6=0 ≤ Ψ⋆(T ) = 0, and

therefore, a direct recurrence from (6.4.3)-(6.4.4) shows that wh,∆Y ,M (t, y) ≤ Ψ⋆(t) for all

(t, y) ∈ Tn × YM , which is the required upper bound for wh,∆Y ,M .

On the other hand, we notice that Sh,∆Y ,M (t, 0, ϕ) ≥ ϕ(t, 0) for any function ϕ on

[0, T ] × R, and t ∈ [0, T ], by considering the“diffusive” part of the numerical scheme with

the particular controls ℓa = ℓb = 0. Therefore, since wh,∆Y ,M (T, 0) = 0, we obtain by

induction on (6.4.3)-(6.4.4) that wh,∆Y ,M (t, 0) ≥ 0 for any t ∈ TN . Finally, considering

the obstacle part of the numerical scheme, with the particular control e = −y, shows that

wh,∆Y ,M (t, y) ≥ wh,∆Y ,M (t, 0) − ε01y 6=0 ≥ −ε01y 6=0 for any (t, y) ∈ TN × YM , which proves

the required lower bound for wh,∆Y ,M . 2

Proposition 6.4.3 (Consistency)

For all (t, y) ∈ [0, T ) × R and ϕ ∈ C1
b ([0, T ] × R), we have

lim
(h, ∆Y , M) → (0, 0, ∞)

(t′, y′) → (t, y)

1

h

[

ϕ(t′, y′) − T h,∆Y ,M (t′ + h, y′, ϕ)
]

(6.4.5)

= −∂ϕ
∂t

(t, y) − yc
P

+ γ̺y2 − Iaϕ(t, y) − Ibϕ(t, y)

and

lim
(h, ∆Y , M) → (0, 0, ∞)

(t′, y′) → (t, y)

M̃h,∆Y ,M (t′ + h, y′, ϕ) = M̃ϕ(t, y) (6.4.6)

Proof. The consistency relation (6.4.6) follows from the continuity of the function (t, y, e)

→ ϕ(t, y + e) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε0. On the other hand, we have for all (t′, y′)

∈ [0, T ) × R,

1

h

[

ϕ(t′, y′) − T h,∆Y ,M (t′ + h, y′, ϕ)
]

=
1

h

[

ϕ(t′, y′) − ϕ(t′ + h, y′)
]

− y′c
P

+ γρy′2 (6.4.7)

− Ih,∆Y ,M
a (t′ + h, y′, ϕ) − Ih,∆Y ,M

b (t′ + h, y′, ϕ),
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where

Ih,∆Y ,M
a (t, y, ϕ) = λa

(

∫ ∞

0

[

ϕ(t,ProjM (y − z)) − ϕ(t, y)
]

µ̂a(dz)

+

∫ ∞

0

[δ

2
z + (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

+

Ih,∆Y ,M
a (t, y, ϕ) = λb

(

∫ ∞

0

[

ϕ(t,ProjM (y + z)) − ϕ(t, y)
]

µ̂b(dz)

+

∫ ∞

0

[δ

2
z + (

δ

2
+ ε)(|y| − |y + z|)

]

µb(dz)
)

+
.

The three first terms of (6.4.7) converge trivially to −∂ϕ
∂t

(t, y) − yc
P

+ γ̺y2 as h goes to

zero and (t′, y′) goes to (t, y). Hence, in order to get the consistency relation, it remains to

prove the convergence of Ih,∆Y ,M
a (t′ + h, y′, ϕ) to Iaϕ(t, y) as (h,∆Y ,M) goes to (0, 0,∞),

and (t′, y′) goes to (t, y) (an identical argument holds for Ih,∆Y ,M
b (t′ +h, y′, ϕ)). By writing

that |x+ − x′+| ≤ |x− x′|, we have
∣

∣

∣
Ih,∆Y ,M

a (t′ + h, y′, ϕ) − Iaϕ(t, y)
∣

∣

∣

≤ λa
∣

∣ϕ(t′ + h, y′) − ϕ(t, y)
∣

∣

+ λa
∣

∣

∣

∫ ∞

0
ϕ(t′ + h,ProjM (y′ − z))µ̂a(dz) −

∫ ∞

0
ϕ(t, y − z)µa(dz)

∣

∣

∣

≤ λa
∣

∣ϕ(t′ + h, y′) − ϕ(t, y)
∣

∣

+ λa
∣

∣

∣

∫ M+y′

0
ϕ(t′ + h, y′ − z)µ̂a(dz) −

∫ M+y′

0
ϕ(t, y − z)µa(dz)

∣

∣

∣

+ λa
∣

∣

∣

∫ ∞

M+y′
ϕ(t′ + h,−M)µ̂a(dz) −

∫ ∞

M+y′
ϕ(t, y − z)µa(dz)

∣

∣

∣

≤ λa
∣

∣ϕ(t′ + h, y′) − ϕ(t, y)
∣

∣

+ λa

∫ ∞

0

∣

∣ϕ(t′ + h, y′ − κ(z)) − ϕ(t, y − z)
∣

∣µa(dz)

+ 2λa‖ϕ‖∞µa
(

[M + y′,∞)
)

,

where we denote by κ(z) = ⌊ z

∆Y
⌋∆Y . Since the smooth function ϕ has bounded derivatives,

say bounded by ‖ϕ(1)‖∞, it follows that
∣

∣

∣
Ih,∆Y ,M

a (t′ + h, y′, ϕ) − Iaϕ(t, y)
∣

∣

∣
≤ λa‖ϕ(1)‖∞

(

h+ 2|y′ − y| + ∆Y

)

+ 2λa‖ϕ‖∞µa
(

[M + y′,∞)
)

,

which proves that

lim
(h, ∆Y , M) → (0, 0, ∞)

(t′, y′) → (t, y)

Ih,∆Y ,M
a (t′ + h, y′, ϕ) = Iaϕ(t, y),
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hence completing the consistency relation (6.4.5). 2

Theorem 6.4.1 (Convergence)

The solution wh,∆Y ,M to the numerical scheme ((6.4.3)-(6.4.4)) converges locally uniformly

to w on [0, T ) × R, as (h,∆Y ,M) goes to (0, 0,∞).

Proof. Given the above monotonicity, stability and consistency properties, the convergence

of the sequence (wh,∆Y ,M ) towards w, which is the unique bounded viscosity solution to

(6.3.11)-(6.3.12), follows from [8]. We report the arguments for sake of completeness. From

the stability property, the semi-relaxed limits:

w∗(t, y) = lim inf
(h, ∆Y , M) → (0, 0, ∞)

(t′, y′) → (t, y)

wh,∆Y ,M (t′, y′),

w∗(t, y) = lim sup
(h, ∆Y , M) → (0, 0, ∞)

(t′, y′) → (t, y)

wh,∆Y ,M (t′, y′),

are finite lower-semicontinuous and upper-semicontinuous functions on [0, T ]×R, and inherit

the boundedness of (wh,∆Y ,M ). We claim that w∗ are w∗ are respectively viscosity super

and subsolution of (6.3.11)-(6.3.12). Assuming for the moment that this claim is true, we

obtain by the strong comparison principle for (6.3.11)-(6.3.12) that w∗ ≤ w∗. Since the

converse inequality is obvious by the very definition of w∗ and w∗, this shows that w∗
= w∗ = w is the unique bounded continuous viscosity solution to (6.3.11)-(6.3.12), hence

completing the proof of convergence.

In the sequel, we prove the viscosity supersolution property of w∗ (a symmetric argument

for the viscosity subsolution property of w∗ holds true). Let (t̄, ȳ) ∈ [0, T )×R and ϕ a test

function in C1
b ([0, T ] × R) s.t. (t̄, ȳ) is a strict global minimimum point of w∗ − ϕ. Then,

one can find a sequence (t′n, y
′
n) in [0, T ) × R, and a sequence (hn,∆

n
Y ,Mn) such that:

(t′n, y
′
n) → (t̄, ȳ), (hn,∆

n
Y ,Mn) → (0, 0,∞), whn,∆n

Y ,Mn → w∗(t̄, ȳ),

(t′n, y
′
n) is a global minimum point of whn,∆n

Y ,Mn − ϕ.

Denoting by ζn = (whn,∆n
Y ,Mn−ϕ)(t′n, y

′
n), we have whn,∆n

Y ,Mn ≥ ϕ+ζn. From the definition

of the numerical scheme Shn,∆n
Y ,Mn , and its monotonicity, we then get:

ζn + ϕ(t′n, y
′
n) = whn,∆n

Y ,Mn(t′n, y
′
n)

= Shn,∆n
Y ,Mn(t′n + hn, y

′
n, w

hn,∆n
Y ,Mn)

≥ Shn,∆n
Y ,Mn(t′n + hn, y

′
n, ϕ+ ζn) = Shn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ) + ζn

= max
[

T hn,∆n
Y ,Mn(t′n + hn, y

′
n, ϕ) , M̃hn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ)

]

+ ζn,
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which implies

min
[ϕ(t′n, y

′
n) − T hn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ)

hn
, ϕ(t′n, y

′
n) − M̃hn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ)

]

≥ 0.

By the consistency properties (6.4.5)-(6.4.6), and by sending n to infinity in the above

inequality, we obtain the required viscosity supersolution property:

min
[

− ∂ϕ

∂t
(t̄, ȳ) − ȳc

P
+ γ̺ȳ2 − Iaϕ(t̄, ȳ) − Ibϕ(t̄, ȳ) , ϕ(t̄, ȳ) − M̃ϕ(t̄, ȳ)

]

≥ 0.

2

6.4.3 Numerical tests

In this section, we provide numerical results for the (reduced-form) value function and

optimal policies in the martingale case and the trend information case, and a backtest on

simulated data for the trend information case.

Within this section, we will denote by wh the value function and by α⋆ the make/take

strategy associated with the backward numerical scheme (6.4.3)-(6.4.4). Given a generic

controlled process Z and a control α ∈ A, we will denote Zα the process controlled by

α. Unless specified otherwise, such processes will be supposed to start at zero: typically,

we assume that the investor starts from zero cash and zero inventory at date t = 0 in

the following numerical tests. Finally, we will write indifferently wh(t, y, cP ) or wh(t, y) :=

wh(t, y, 0) to either stress or omit the dependence in cP .

• The martingale case: in the martingale case, we performed the algorithm (6.4.3)-(6.4.4)

with parameters shown in Table 6.1. This set of parameters are chosen to be consistent

with calibration data on the front maturity for 3-months EURIBOR future, see for example

[25].

Figure 6.3 displayed the reduced-form value function wh on [0, T ] × [−NY ;NY ]. This

result illustrates the linear bound (6.3.13) as noticed in proposition 6.3.2, and also the

symmetry of wh as pointed out in (6.3.17). We also observe the monotonicity over R+ and

R− of the value function wh(t, .).

In Figure 6.4, we display the optimal make and take policies. The optimal take policy

(on the left side) is represented as the volume to buy or sell with a market order, as a

function of the time and inventory (t, y) ∈ [0, T ] × [−NY ;NY ]. We notice that a market

order only occurs when the inventory becomes to large, and therefore, the take policy can

be interpreted as a “stop-loss” constraint, i.e. an emergency rebalancing of the portfolio

when the inventory risk is too large.

The optimal make policy is represented as the regime of limit orders posting as a function

of the time and inventory (t, y) ∈ [0, T ]× [−NY ;NY ]. For sake of simplicity, we represented

the sum of ℓa and ℓb on the map. The meaning of this surface is as follows: 0 means that
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Parameter Value

δ 12.5 EUR/contract

ε 1.05 EUR/contract

ε0 0

λ 0.05s−1

µ exp(1/µ̄)

µ̄ 20 contracts

γ 2.5.10−5

T 100 s

(a) Market and risk parameters

Parameter Value

NY 100

NT 500

(b) Discretization parame-

ters

Table 6.1: Parameters for numerical results in the martingale case.

Figure 6.3: Reduced form value function wh.

there is no active limit orders on either sides, 2 means that there is active limit orders on

both bid and ask sides, and 1 means that there is only one active limit order either on

the bid or the ask side, depending on the sign of y (if y < 0 only the bid side is active,

and if y > 0 only the ask side is active). We notice that when close to maturity T , the

optimal strategy tends to be more agressive, in the sense that it will seek to get rid of any

positive or negative inventory, to match the terminal liquidation constraint. Moreover, we
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(a) Optimal take policy. (b) Optimal make policy

Figure 6.4: Numerical results for the martingale case: representation of optimal make and

take policies α⋆. In the take policy, we represent the signed volume of the market order, in

the make policy, 2 represent two-sided limit order posting, and 1 is one-sided order posting.

notice that close to date 0, the dependence in t seems to be negligible, which indicates that

a“stationary regime” may be attained for large T . Figure 6.5 plots the cross-section of the

optimal strategy when we are close to the initial date, i.e. far from the horizon T .

(a) Optimal take policy. (b) Optimal make policy

Figure 6.5: Cross section of α⋆ close to t = 0.

• The trend information case: in this case, we provide a backtest of the optimal

strategy on simulated data in addition to the plot of the optimal policy α⋆. We kept the



188 Optimal HF trading in a pro-rata microstructure with predictive information

same parameters for execution intensity and volume, price characteristics and costs, but we

choosed a wider time period in order to observe multiple trade event, see Table 6.2. With

this set of parameters, we expect to observe about 100 trade events of average volume 20.

Note that the execution intensity λ = 0.05, a value consistent with market activity of the

front quaterly EURIBOR future, is independent in our model to the trend information ̟

that we will describe below.

Parameter Value

δ 12.5 EUR/contract

ε 1.05 EUR/contract

ε0 0

λ 0.05s−1

µ exp(1/µ̄)

µ̄ 20 contracts

γ 2.5.10−5

T 2000 s

(a) Market and risk parameters

Parameter Value

NY 100

NT 500

N̟ 50

(b) Discretization parame-

ters

Table 6.2: Parameters for numerical results in the trend information case.

Figure 6.6 displays the optimal policy at date t = 0, in the plane (y, cP ). The policy

has central symmetry properties as expected in (6.3.17), and should be read as follows:

dark green zones represent situation where a market order to buy must be sent, light green

means that a limit order is active only at bid, white means that limit orders are active on

both sides, light red means that a limit order is active only at ask, and dark red means that

a market order to sell must be sent. Let us provide a qualitative example: assume that

after the high frequency trader acquired a positive inventory, the adverse selection effect

implies that price should go down; therefore, using the fact that in this case we should have

cP < 0, the optimal strategy will be either to cancel the bid limit order (light red zone)

and keep ask limit order active, or depending on the value of |cP |, send a market order to

get rid of our positive inventory (dark red zone).

We performed a benchmarked backtest on simulated data and a performance analysis

in this case. The first benchmark strategy αWoMO = (αmake , WoMO, 0) correspond to the

case where we do not allow the high-frequency trader to use market orders. It is computed

using the backward numerical scheme (6.4.3)-(6.4.4), but without taking into account the

obstacle part, which is equivalent to setting ε0 = ∞. The second benchmark strategy is

made of constant controls (a.k.a symmetric or constant strategy):

αcst := (αmake , cst, 0)

αmake , cst := (1, 1)
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Figure 6.6: Optimal policy α⋆ at date t = 0.

In order to make our simulated data backtest closer to the reality, we chosed to slightly

deviate from the original price model, and use a varying price trend. We simulate a price

process model given by

P̂t = P̂0 + δ(N+
t −N−

t ),

where N+ and N− are the Euler scheme simulation of Cox processes of respective intensities

π+ and π− defined as follows

π+ + π− ≡ K = ̺/δ2

dπ+
t − dπ−t := d̟t = −θ̟tdt+ σdBt

where K > 0, θ > 0 and σ > 0 are positive constants, and B is an independent Brownian

motion. Note that we choosed the sum π++π− to be the constant K, for simplicity sake: it

means that, disregarding the direction of price variation, the mean number of price change
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per second is assumed to be constant P (|Pt+h − Pt| = δ) = Kh+ o(h), which provides an

easy way to calibrate the parameter K while reducing the dimension of the simulation. The

interpretation of this simulation model is as follows: we add an exogenous risk factor B,

which drives the price trend information ̟ as an Ornstein-Uhlenbeck process. Notice that

this supplementary risk factor B is not taken into account in our optimization procedure

and thus has a penalizing impact on the strategy’s performance: therefore it does not spoil

the backtest. This model choice for the process (̟t) is an convenient way to simulate the

real-world situation, where the high-frequency trader continuously updates her predictive

information about short-term price movements, based e.g. on the current state of the limit

order book.

Therefore, qualitatively speaking, our optimization procedure is consistent with this

simulation model if we choose θ and σ s.t. the variation of the (reduced-form) value

function w due to predictive information is very small compared to the variation of the

value function due to other market events (e.g. an execution event).

This assumption is consistent with HFT practice since the HF trader is able to adapt

very quickly to a modification of this predictive information. Backtest parameters involved

in this simulation are shown in Table 6.3.

Parameter Value

K 0.2

θ 0.2s−1

σ 0.2s−1

NMC 50000

Table 6.3: Backtest parameters

The interpretation of the trend information parameters is the following: independently

from the trade intensity λ = 0.05, we consider the price trend, which is interpreted as

the expected return of the midprice over the next few milliseconds, and is directed by the

state variable ̟. In the stationnary regime, this variable ̟ has a marginal distribution

L(̟t) which is essentially a centered normal law of standard deviation σ/
√

2θ ≃ 0.32 with

this set of parameters. Qualitatively speaking, using the 2-sigma rule, this means that the

process ̟ spends most of the time in the range −0.6 to 0.6. The value ̟t = 0.6 (resp.

̟t = −0.6) represents qualitatively a 60% probability of an uptick (resp. a downtick) in

the next second. Such signal can be computed for example using the methods developed

in [21]. Moreover, ̟ is a mean reverting process, of reversion speed 0.2s−1, which can be

qualitatively interpreted as the timescale during which a prediction remains valid, in this

case
1

θ̟
= 5s. This can be viewed as the timescale on which the high-frequency trader will

update her prediction about the price trend. Note that in the case of STIR futures trading,
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this choice of reversion speed is consistent with other market activity statistics: indeed, this

reversion speed is greater than mid-price update intensity (of order 0.01 s−1) and smaller

than order book update intensity (of order 1 to 10 s−1), see [25] for precise statistics.

Let us denote by ϑ̂a and ϑ̂b the Euler scheme simulation of the compound poisson

processes ϑa and ϑb, with dynamics (6.2.3). Therefore, for α ∈ {α⋆, αWoMO, αcst}, we were

able to compute the Euler scheme simulation X̂α (resp. Ŷ α) of Xα (resp. Y α), starting at

0 at t = 0, by replacing ϑa (resp. ϑb) by ϑ̂a (resp. ϑ̂b) in equation (6.2.4) (resp. (6.2.5)).

We performed NMC simulation of the above processes. For each simulation ω ∈
[1...NMC ] and for α ∈ {α⋆, αWoMO, αcst}, we stored the following quantities: the terminal

wealth after terminal liquidation V̂ α
T (ω) := L(X̂α(ω), Ŷ α(ω), P̂ (ω)), called “performance”

in what follows ; the total executed volume Q̂total,α(ω) :=
∑

[0,T ] |Ŷ α
t (ω) − Ŷ α

t−(ω)| ; and

the volume executed at market Q̂market,α(ω) :=
∑

[0,T ] |ξn(ω)α|. Finally, we denote by m(.)

the empirical mean, by σ(.) the empirical standard deviation, by skew(.) the empirical

skewness, and by kurt(.) the empirical kurtosis, taken over ω ∈ [1...NMC ].

Quantity Definition α⋆ αWoMO αcst

Info ratio over T m(V̂ .
T )/σ(V̂ .

T ) 3.67 0.89 0.18

Profit per trade m(V̂ .
T )/m(Q̂total,.) 8.06 16.31 5.57

Risk per trade σ(V̂ .
T )/m(Q̂total,.) 2.19 18.31 29.56

Mean performance m(V̂ .
T ) 31446.4 28246.3 21737.2

Standard deviation of perf σ(V̂ .
T ) 8555.46 31701.2 115312

Skew of perf skew(V̂ .
T ) 0.64 0.16 -0.007

Kurtosis of perf kurt(V̂ .
T ) 3.82 3.31 7.02

Mean total executed volume m(Q̂total,.) 3900.68 1730.82 3900.61

Mean at market volume m(Q̂market,.) 1932.29 0 0

Ratio market over total exec m(Q̂market,.)/m(Q̂total,.) 0.495 0 0

Table 6.4: Synthetis table for backtest. Categories are, from top to bottom: relative

performance metrics, period-adjusted performance metrics, absolute performance metrics

and absolute activity metrics.

Table 6.4 displayed a synthesis of descriptive statistics for this backtest. We first notice

that the information ratio over T of α⋆ is more than 4 times that of αWoMO, which itself

is about 4 times that of αcst. Second, the per trade metrics can be compared to the half-

spread
δ

2
= 6.25 EUR/contract, and we see that although the mean profit per trade is

smaller for the optimal strategy, the risk associated to each trade is dramatically reduced

compared to the benchmark.

This is confirmed by the empirical distribution of performance, also shown in Figure 6.7,

where the dark blue represents the performance distribution of the optimal strategy, the
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Figure 6.7: Empirical distribution of performance V̂ .
T . The graph shows the number of

occurences for each bin on NMC = 50000 simulations.

light yellow represents the performance distribution of the WoMO strategy and the light

purple represents the performance distribution of the benchmark strategy. We see that not

only benchmark has higher standard deviation, but also higher excess kurtosis and heavy

tails: this is due to the fact that inventory can be very large for the constant strategy,

and therefore it bears a non-negligible market risk (or inventory risk). Finally, we see that

about 49% of the trades are done with market orders.

Our last numerical test is devoted to displaying the influence of the risk aversion para-

meter γ. All other parameters remaining the same, we tested several values of γ (as

indicated in Table 6.5), and characterized the performance of the corresponding strategy

by the pair (σ(V̂ .
T ),m(V̂ .

T )), which gives the efficient frontier plot displayed in Figure 6.8.

We measure the performance of each strategy empirically, both α⋆ and αWoMO, by running

NMC simulations of our market model, and therefore we can observe a slight measurement

error on the points (σ(V̂ .
T ),m(V̂ .

T )). As expected, a reduction of γ increases the standard

deviation of the strategy: this is due to the fact that a small γ allows for large open position

i.e. large inventory, and therefore the market risk is greater. For small γ, performance is

also better since the investor can sustain large inventories, and therefore is less impatient

to get rid of it: in particular, the proportion of volume executed at market is increasing

in γ. In real trading condition, the value of γ should be tuned to attain the desired ratio

of mean / volatility of PnL. The paper [17] observes similar behavior and determine these

frontiers analytically when market-orders are absent. We also display in figure 6.8 the plot

for αWoMO, that clearly exhibits a larger risk, which indicates that the market orders in

our optimal strategy are not only used to gain an extra performance, but also cut part of
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γ α⋆ : σ(V̂ .
T ) α⋆ : m(V̂ .

T ) αWoMO : σ(V̂ .
T ) αWoMO : m(V̂ .

T )

0,00000 8585,66 31619,86 32095,72 28161,49

0,00002 8556,70 31594,73 31861,96 28201,85

0,00004 8545,42 31593,76 31591,41 28214,79

0,00006 8534,72 31625,64 31404,14 28132,71

0,00008 8498,87 31559,85 30971,55 28123,92

0,00010 8427,40 31492,04 30613,55 27903,22

0,00012 8407,00 31547,71 30337,09 27919,02

0,00014 8331,14 31482,38 29934,89 27768,66

0,00016 8223,93 31399,91 29814,76 27731,23

0,00018 8193,31 31324,68 29380,58 27530,12

0,00020 8152,06 31185,16 29043,01 27319,45

0,00022 8139,15 31145,02 28595,55 27272,89

0,00024 8054,56 30856,74 28456,77 27482,97

0,00026 7965,48 30778,70 28082,26 27128,46

0,00028 7961,17 30658,60 27749,49 27274,58

0,00030 7880,11 30550,28 27322,27 26857,24

0,00032 7845,00 30463,95 27035,09 26905,98

0,00034 7748,16 30260,12 26839,15 26683,35

0,00036 7663,32 30049,39 26440,91 26606,25

0,00038 7661,55 29974,39 25993,18 26367,21

0,00040 7594,45 29783,59 25752,06 26287,87

0,00042 7551,23 29687,68 25338,63 26227,97

0,00044 7473,28 29479,14 24985,62 26072,39

0,00046 7416,75 29404,31 24743,03 25947,35

0,00048 7347,36 29128,09 24425,99 25807,40

0,00050 7252,69 29041,66 24300,78 25742,08

Table 6.5: Varying risk aversion parameter γ: data.

the risk of holding a non-zero position, especially when we expect the mid-price to move

adversely.

6.5 Best execution problem and overtrading risk

In this section, we apply our market model framework to a best execution problem. The

trading objective of the investor is to liquidate Y0 > 0 assets over the finite time interval

[0, T ]. She is not allowed to purchase stock during the liquidation period, and may only
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buy back the asset in case of short position. In this context, the investor posts continuously

a limit sell order (with a volume much larger that the required quantity Y0) at the best

ask price, and also runs market (sell) orders strategy until she reaches either a negative

inventory or the terminal date. By doing so, she hopes to trade as much as possible at the

ask price, and therefore avoiding to cross the spread.

Mathematically, this means that the investor uses a subset Aℓ of strategies α = (αmake =

(La, Lb), αtake) in A such that:

(La
t , L

b
t) =

{

(1, 0) for t ≤ τ,

(0, 0) for t > τ

αtake = (τn, ζn)n ∪ (τ,−Yτ ), with τn < τ, ζn < 0,

where τ = inf{t ≥ 0 : Yt ≤ 0} ∧ T . The value function associated to this liquidation

problem is then defined by

vℓ(t, x, y, p) = sup
α∈Aℓ

Et,x,y,p

[

L(XT , YT , PT ) − γ

∫ T

t
Y 2

s ̺(Ps)ds
]

, (6.5.1)

for (t, x, y, p) ∈ [0, T ] × R
2 × P. With the notation in (6.3.6), the operator corresponding

to the limit order in Aℓ is given by L1,0 = P + Γa, while the impulse operator associated

to the market order in Aℓ is defined by:

Mℓ ϕ(t, x, y, p) = sup
e∈[−M

Y
−y,−(M

Y
−y)−]

ϕ
(

t, x− ep− |e|(δ
2

+ ε) − ε01e6=0, y + e, p
)

,

where m− = max(−m, 0). The dynamic programming equation associated to (6.5.1) takes

the form:

min
[

− ∂vℓ

∂t
− Pvℓ − Γavℓ + γg , vℓ −Mℓvℓ

]

= 0, on [0, T ) × R × (0,∞) × P,

together with the terminal and boundary conditions:

vℓ = L, on
(

{T} × R × R × P
)

∪
(

[0, T ) × R × R− × P
)

.

The above boundary condition for nonpositive inventory is related to the overtrading risk,

which is the risk that the investor sold too much assets via the (oversized) limit order at

the best ask price. This risk occurs typically in execution problems on pro-rata limit order

book, see [25].

Again, in the Lévy case (6.3.9), the value function vℓ is reduced into:

vℓ(t, x, y, p) = L0(x, y, p) + wℓ(t, y),
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where wℓ is solution to the integro-variational inequality:

min
{

− ∂wℓ

∂t
− yc

P
+ γ̺y2

−λa

∫ ∞

0

[

wℓ(t, y − z) − wℓ(t, y) + z
δ

2
+ (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz) ;

wℓ(t, y) − sup
e∈[−M

Y
−y,−(M

Y
−y)−]

[

wℓ(t, y + e) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε0

]}

= 0,

for (t, y) ∈ [0, T ) × (0,∞), together with the terminal and boundary conditions:

wℓ(t, y) = −ε01y 6=0, ∀(t, y) ∈
(

{T} × R
)

∪
(

[0, T ) × R−
)

.

The associated numerical scheme reads now as follows:

wh
ℓ (tN , y) = −ε01y 6=0, y ∈ R,

wh
ℓ (tk, y) = 0, k = 0, . . . , N − 1, y ≤ 0,

wh
ℓ (tk, y) = max

[

T h,∆Y ,M
ℓ (t, y, ϕ) ; Mh,∆Y ,M

ℓ (t, y, ϕ)
]

, k = 0, . . . , N − 1 , y ∈ Y
+
M ,

where Y
+
M = YM ∩ R+,

T h,∆Y ,M
ℓ (t, y, ϕ) = ϕ(t, y) − hγ̺y2 + hycP

+ λah
(

∫ ∞

0

[

ϕ(t,ProjM (y − z)) − ϕ(t, y)
]

µ̂a(dz)

+

∫ ∞

0

[δ

2
z + (

δ

2
+ ε)(|y| − |y − z|)

]

µa(dz)
)

and

Mh,∆Y ,M
ℓ (t, y, ϕ)

= sup
e∈YM∩[−M

Y
−y,−(M

Y
−y)−]

[

ϕ(t,ProjM (y + e)) − (
δ

2
+ ε)(|y + e| + |e| − |y|) − ε0

]

.

In this case, the optimal policy shown in Figure 6.9 is simple to describe. The state

space is delimited in two zones: when the inventory is small, the HFT must wait for her

limit sell order to be executed; and when the inventory is large, the HFT must send a

market sell order to avoid the market risk related to holding a large position.

The frontier between the two zones (indicated in bold red in Figure 6.9) can be inter-

preted as an optimal trading curve, a concept that is extensively documented (see e.g. [35])

in the optimal execution literature. The optimal trading curve is the inventory that the

investor should hold, seen as a function of time, in order to minimize overall trading costs.

Therefore, in the typical setting, the execution strategy consists in trading via market or-

ders to get as close as possible to the optimal trading curve. Similarly, in our case, we can
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see on Figure 6.9 that the optimal strategy will behave similarly for large inventories (i.e.

when above the trading curve): indeed, we observe that the quantities to sell are such that

the market orders strategy would keep the inventory close to the optimal trading curve,

if no limit orders were allowed. Now, in our case, we observe two specific features of the

optimal strategy: 1) the optimal trading curve does not reach 0 at maturity, and therefore

the HFT has to get rid of her inventory at market at final date to match the constraint

YT = 0. This is due to the fact that a supplemental gain is always achievable when the

limit order is executed. Therefore, this features leads to an execution strategy where the

final trade is bigger than intermediary trades; 2) below the optimal trading curve, i.e. in

the region where the HFT trades via limit orders only, the sell limit order is always active,

and can lead to an execution. Therefore, the inventory is always below the optimal trad-

ing curve, and the distance between the current inventory and the optimal trading curve

equals the volume executed via limit orders. This differs from classic pattern-based best

execution strategies, for example the U-shaped execution strategy that consists in trading

a large quantity at the beginning and at the end of the liquidation, and trade regularly

small quantities in between. Indeed, the optimal strategy does not provide a fixed pattern

for every execution, but provide the optimal action to take given the observation of the

inventory that is still to be sold and the market characteristics as e.g. the mean traded

volume at ask per second λaµ̄a, or trades volume distributions at ask µa.

Finally, let us notice that this strategy can be interpreted as a convenient way to avoid

the cost of crossing the spread during the liquidation of a portfolio, but we did not take into

account the impact of the market order on the transaction price. In the case of a pro-rata

microstructure, available volumes offered at best prices are usually about 200 times larger

than the mean volume of market orders (see [25]), and therefore it is consistent to consider

that there is no impact on the price for our market orders. Yet, the model can easily be

modified by adding an impact component in the obstacle operator Mℓ to take care of this

effect. We also did not model the possibility that the intensities λa and λb of execution

processes may vary, and postpone this investigation for future research.

6.6 Conclusion

In this paper, we investigate a framework to build up mixed high-frequency trading strate-

gies in an exotic microstructure, the pro-rata microstructure. This microstructure can be

encountered for example on short-term interest rates futures. We consider the situation of

an investor willing to maximize her terminal profit over a finite time horizon, and able to

trade with limit and market orders. We adopt the perspective of inventory management,

which means that the investor primary objective is to keep her position on the risky asset

close to zero at all times, in order to avoid being exposed to market risk.
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We provide a tractable market model that mimics the major features of our target

microstructure, while being parsimonious enough to fit a large range of products. We

detail the optimization procedure, by means of stochastic control, as well as the numerical

scheme used to solve the resulting HJB equation. Dimension reduction techniques as well

as interpretable decomposition of the profit’s dynamics are described. We also discuss the

practical implementation of such strategy.

In this particular microstructure, we are able to define and address two specific types

of risk: the overtrading risk, which is the risk of brutal variations in the investor inventory,

due to the fact that she does not control the quantity traded at limit; and the adverse

selection risk, which is the risk of market reacting unfavorably to the investor quotes.

For this last purpose, we introduce a new state variable, that we interpret as a predictive

price indicator, that allows us to balance our position before the price changes. This last

feature also provides an extra performance on our empirical tests. We provide several

examples of application of our framework, including a mixed limit/market strategy when no

information is available on price, a mixed strategy with superior information on price, and a

liquidation strategy without information on price. Moreover, we point out the advantages of

using market orders in this setup by benchmarking the performance of our strategy against

a pure limit order strategy, and we find that the mean/volatility ratio is much smaller in

this last case.
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Figure 6.8: Varying parameter γ for α⋆ and αWoMO. The X-axis represent the standard

deviation of performance σ(V̂T ) and the Y-axis the average performance m(V̂T ) estimated

on NMC = 50000 simulations of the model.
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(a) Value Function wℓ (b) Optimal policy (take)

Figure 6.9: Numerical results for the simple liquidation problem (for cP = 0). On the left

side, level lines are indicated for the value function wℓ. On the right side, numbers indicated

on the figure represent the quantity to sell in the optimal market order control.
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