
HAL Id: tel-00779309
https://theses.hal.science/tel-00779309v1

Submitted on 22 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmes de traitement de flux XML : masses de
données, mémoire externe et performances extensibles

Muath Alrammal

To cite this version:
Muath Alrammal. Algorithmes de traitement de flux XML : masses de données, mémoire externe et
performances extensibles. Other [cs.OH]. Université Paris-Est, 2011. English. �NNT : 2011PEST1002�.
�tel-00779309�

https://theses.hal.science/tel-00779309v1
https://hal.archives-ouvertes.fr


UNIVERSITÉ PARIS-EST

ÉCOLE DOCTORALE
MSTIC: Mathématiques et Sciences et Technologies de l’Information et de la

Communication

Thèse de doctorat

Informatique

Muath ALRAMMAL

Algorithms for XML Stream Processing: Massive Data,

External Memory and Scalable Performance.

Thèse dirigée par: Professeur Gaétan HAINS

Soutenance le 16 mai, 2011

Composition du jury:

Rapporteurs:
Rada CHIRKOVA North Carolina State University USA
Véronique BENZAKEN Université Paris-Sud 11 France

Examinateurs:
Mohamed ZERGAOUI Innovimax SARL France
Mostafa BAMHA Université d’Orléans France

Directeur:
Gaétan HAINS Université Paris-Est, Créteil France





Acknowledgments
I would like to express my gratitude, appreciation and sincere thanks to my
supervisor Pr. Gaétan HAINS for his excellent guidance, helpful and useful
discussions, and continuous encouragement which made this work possible. He
always helped me with pleasure in the problems that I faced during this work.

I also express my thanks to the CIO of the Innovimax company, Mr. Mohamed
ZERGAOUI. He provided valuable XML expertise and technical scrutiny at many
points of our project.

I am deeply indebted to all members of my research laboratory LACL for
their support. I am especially grateful to Régine LALEAU, Frédéric GAVA, Flore
TSILA, Tristan CROLARD, Frank POMMEREAU, Serghei VERLAN, Marie
Duflot for their support both in terms of resources and encouragement.

Deep thanks to my fellow doctoral students from Palestine, Jordan, Tunisia,
Morocco, Algeria, France, Italy, China, India, Greece. I have always benefited
from them through discussion both technically and socially.

I cannot forget the constant encouragement and support of my whole family
including my sisters.

Last but certainly not the least, I am proud to acknowledge the generous and
enduring support of my wife who supported me through all the tough times.
I dedicate this work to the spirits of my beloved parents and my father in law
whose constant support and prayers were gospel of encouragement for me to keep
struggling for ambitions.



ii

Résumé
Plusieurs applications modernes nécessitent un traitement de flux massifs de
données XML, et cela crée des défis techniques. Parmi ces derniers, il y a la
conception et la mise en ouvre d’outils pour optimiser le traitement des requêtes
XPath. Il s’agit alors de fournir une estimation précise des coûts de ces requêtes
traitées sur un flux massif de données XML.

Dans cette thèse, nous proposons un nouveau modèle de prévision de perfor-
mance qui estime à priori le coût (en terme d’espace utilisé et de temps écoulé)
pour les requêtes structurelles du fragment de langage Forward XPath.
Ce faisant, nous réalisons une étude expérimentale pour confirmer la relation
linéaire entre le traitement de flux et les ressources d’accès aux données. Ce qui
nous permet de construire un modèle mathématique (utilisant des régressions
linéaires) pour prévoir le coût d’une requête XPath.
En outre, nous présentons une technique nouvelle d’estimation de la sélectivité.
Elle constituée de deux éléments. Le premier est le résumé path tree ou arbre des
chemins: une présentation concise et précise de la structure d’un document XML.
Le second est l’algorithme d’estimation de sélectivité: un algorithme efficace de
flux pour traverser l’arbre des chemins afin d’estimer les valeurs des paramètres de
coût. Ces paramètres sont utilisés par le modèle mathématique pour déterminer le
coût d’une requête XPath.
Nous comparons les performances de notre modèle avec les approches existantes.
De plus, nous présentons un cas d’utilisation de celui-ci dans un système en
ligne de traitement en flux des requêtes. Le système utilise notre modèle de
prévision de performance pour estimer le coût (en terme de temps / mémoire)
d’une requête XPath. En outre, il fournit une estimation précise à l’auteur de
la requête relativement au coût et au volume de sa requête. Ce cas d’utilisation
illustre les avantages pratiques de la gestion de performance avec nos techniques.

Mots clés: Traitement de flux, données XML, requêtes XPath, estimation de
sélectivité, Modèle de performance, optimisation de requêtes.



iii

Summary
Many modern applications require processing of massive streams of XML data,
creating difficult technical challenges. Among these, there is the design and
implementation of applications to optimize the processing of XPath queries and to
provide an accurate cost estimation for these queries processed on a massive steam
of XML data.
In this thesis, we propose a novel performance prediction model which a priori
estimates the cost (in terms of space used and time spent) for any structural query
belonging to Forward XPath.
In doing so, we perform an experimental study to confirm the linear relationship
between stream-processing and data-access resources. Therefore, we introduce a
mathematical model (linear regression functions) to predict the cost for a given
XPath query. Moreover, we introduce a new selectivity estimation technique.
It consists of two elements. The first one is the path tree structure synopsis: a
concise, accurate, and convenient summary of the structure of an XML document.
The second one is the selectivity estimation algorithm: an efficient stream-
querying algorithm to traverse the path tree synopsis for estimating the values
of cost-parameters. Those parameters are used by the mathematical model to
determine the cost of a given XPath query.
We compare the performance of our model with existing approaches.
Furthermore, we present a use case for an online stream-querying system. The
system uses our performance predicate model to estimate the cost for a given
XPath query in terms of time/memory. Moreover, it provides an accurate answer
for the query’s sender. This use case illustrates the practical advantages of
performance management with our techniques.

Keywords: Streaming processing, XML data, XPath queries, query opti-
mization, selectivity estimation, performance prediction model.





Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1.1 Data Model of XML Document . . . . . . . . . 3
1.1.1.2 XPath . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1.3 Recursion in XML Document . . . . . . . . . . 5
1.1.1.4 Document Depth . . . . . . . . . . . . . . . . . 6
1.1.1.5 Stream-querying Process . . . . . . . . . . . . 6
1.1.1.6 Stream-filtering Process . . . . . . . . . . . . . 6
1.1.1.7 Synopsis . . . . . . . . . . . . . . . . . . . . . 6
1.1.1.8 Selectivity Estimation Technique . . . . . . . . 6
1.1.1.9 Performance Prediction Model . . . . . . . . . 7

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 The Expressiveness of XPath . . . . . . . . . . . . . . . . 8
1.2.2 Structure of XML Data Set . . . . . . . . . . . . . . . . 9
1.2.3 Query Evaluation Strategy . . . . . . . . . . . . . . . . . 10
1.2.4 Evolution and Data Set Updating . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 The Dependency of Thesis’s Chapters . . . . . . . . . . . 13

2 State of the Art 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Selectivity Estimation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Properties of Selectivity Estimation Techniques . . . . . . 16
2.2.2 Path/Twig Selectivity Estimation Techniques . . . . . . . 17

2.2.2.1 Synopsis-Based Estimation Techniques . . . . . 18
2.2.2.2 Histogram-Based Estimation Techniques . . . . 26

2.2.3 Summary - The Choice of the Path tree Synopsis . . . . . 30
2.3 Stream-processing Approaches . . . . . . . . . . . . . . . . . . . 32

2.3.1 Stream-filtering Algorithms . . . . . . . . . . . . . . . . 32
2.3.2 Stream-querying Algorithms . . . . . . . . . . . . . . . 38
2.3.3 Summary - Lazy Stream-querying Algorithm LQ . . . . . 43

3 Path tree: Definition, Construction, and Updating 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 The XML Data Model . . . . . . . . . . . . . . . . . . . 46
3.2 Path tree Definition . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Path tree Construction: Automata Technique . . . . . . . . . . . 48



vi Contents

3.3.1 Automaton Definition A . . . . . . . . . . . . . . . . . . 49
3.3.2 Automata Transformation into a Graph Doc(A) . . . . . 52
3.3.3 Automata Minimization AMin . . . . . . . . . . . . . . . 53
3.3.4 Example of Path tree Construction: Automata Technique 54

3.4 Path tree Construction: Streaming Technique . . . . . . . . . . . 58
3.4.1 Path tree Construction . . . . . . . . . . . . . . . . . . . 58
3.4.2 Path tree Updating . . . . . . . . . . . . . . . . . . . . . 61

4 Selectivity Estimation Techniques 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Lazy Stream-querying Algorithm . . . . . . . . . . . . . . . . . . 65

4.2.1 Query Preprocessing . . . . . . . . . . . . . . . . . . . . 66
4.2.2 LQ - Blocks Extension . . . . . . . . . . . . . . . . . . . 68
4.2.3 Examples of Query Processing Using LQ-Extended . . . 73

4.2.3.1 Query Processing - Simple Path . . . . . . . . . 73
4.2.3.2 Query Processing - Twig Path . . . . . . . . . . 77

4.3 Selectivity Estimation Algorithm . . . . . . . . . . . . . . . . . 81
4.3.1 Examples of the Selectivity Estimation Process . . . . . . 82

4.3.1.1 Selectivity Estimation - Simple Path . . . . . . 85
4.3.1.2 Selectivity Estimation - Twig Path . . . . . . . 89

4.3.2 Accuracy of the Selectivity Estimation Technique . . . . . 92

5 Performance Prediction Model 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Performance Prediction Model- Preliminaries . . . . . . . . . . . 95

5.2.1 Performance Prediction Model - Motivations . . . . . . . 95
5.2.2 Performance Measurements Towards the Optimization of

Stream-processing for XML Data . . . . . . . . . . . . . 96
5.2.2.1 Prototype O-Search . . . . . . . . . . . . . . 96
5.2.2.2 Experimental Results . . . . . . . . . . . . . . 99
5.2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . 110

5.2.3 Performance Prediction Model - General Structure . . . . 112
5.3 Performance Prediction Model - Simple Path . . . . . . . . . . . 113

5.3.1 Lazy Stream-querying Algorithm (LQ) . . . . . . . . . . 115
5.3.2 Building the Mathematical Model . . . . . . . . . . . . . 116
5.3.3 Building the Prediction Model . . . . . . . . . . . . . . . 117

5.3.3.1 Prediction Rules . . . . . . . . . . . . . . . . . 118
5.3.4 User Protocol . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.5 Experimental Results . . . . . . . . . . . . . . . . . . . 126

5.3.5.1 Experimental Setup . . . . . . . . . . . . . . . 126
5.3.5.2 Quality of Model Prediction . . . . . . . . . . . 126
5.3.5.3 Impact of Using Metadata in our Model on the

Performance . . . . . . . . . . . . . . . . . . . 129



Contents vii

5.3.5.4 Model Portability on Other Machines . . . . . . 132
5.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Performance Prediction Model - Twig Path . . . . . . . . . . . . 133
5.4.1 Lazy Stream-querying Algorithm (LQ) . . . . . . . . . . 134
5.4.2 Building the Mathematical Model . . . . . . . . . . . . . 135
5.4.3 Building the Prediction Model . . . . . . . . . . . . . . . 136

5.4.3.1 Example of the Selectivity Estimation Process . 137
5.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . 138

5.4.4.1 Experimental Setup . . . . . . . . . . . . . . . 138
5.4.4.2 Accuracy of the Selectivity Estimation . . . . . 139
5.4.4.3 Efficiency of the Selectivity Estimation Algorithm 139
5.4.4.4 Comparing our Approach with the other Ap-

proaches . . . . . . . . . . . . . . . . . . . . . 139
5.4.5 Use Case: Online Stream-querying System . . . . . . . . 141

5.4.5.1 Online Stream-querying System . . . . . . . . . 141
5.4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . 142

6 Conclusion and Perspectives 145
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.1 Stream-processing . . . . . . . . . . . . . . . . . . . . . 147
6.2.2 Selectivity Estimation Technique . . . . . . . . . . . . . . 148
6.2.3 Parallel Processing . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151





CHAPTER 1

Introduction

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1.1 Data Model of XML Document . . . . . . . . . . 3

1.1.1.2 XPath . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1.3 Recursion in XML Document . . . . . . . . . . . 5

1.1.1.4 Document Depth . . . . . . . . . . . . . . . . . . 6

1.1.1.5 Stream-querying Process . . . . . . . . . . . . . 6

1.1.1.6 Stream-filtering Process . . . . . . . . . . . . . . 6

1.1.1.7 Synopsis . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1.8 Selectivity Estimation Technique . . . . . . . . . 6

1.1.1.9 Performance Prediction Model . . . . . . . . . . 7

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 The Expressiveness of XPath . . . . . . . . . . . . . . . . . 8

1.2.2 Structure of XML Data Set . . . . . . . . . . . . . . . . . 9

1.2.3 Query Evaluation Strategy . . . . . . . . . . . . . . . . . . 10

1.2.4 Evolution and Data Set Updating . . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 The Dependency of Thesis’s Chapters . . . . . . . . . . . . 13

1.1 Introduction
Extensible markup language (XML) [Bray 2008] is a simple, very flexible text
format derived from SGML, the standard generalized markup language (ISO
8879). Originally designed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly important role in the exchange of
a wide variety of data on the Web and elsewhere.



2 Chapter 1. Introduction

The most salient difference between HTML [Hickson 2011] and XML is that
HTML describes presentation and XML describes content. An HTML document
rendered in a web browser is human readable. XML is aimed toward being both
human and machine readable.

XML has gone from the latest buzzword to an entrenched e-business tech-
nology in record time. XML is currently being heavily pushed by the industry
and community as the lingua franca for data representation and exchange on the
Internet. The popularity of XML has created several important applications like
information dissemination, processing of the scientific data, and real time news.
Query languages like XPath [Berglund 2010] and XQuery [Boag 2010] have been
proposed for accessing XML data. They provide a syntax for specifying which
elements and attributes are sought to retrieve specific pieces of a document.

Despite a logically clean structure, the computational complexity of XPath,
or XQuery queries can vary dramatically [TenCate 2009] [Gottlob 2005] and the
unconstrained use of XPath leads to unpredictable space and time costs.

Furthermore, often, data sets are too large to fit into limited internal memory
and/or need to be processed in real time during a single forward sequential scan.
In addition, sometimes query results should be output as soon as they are found.

One proposed approach to combine the simplicity of XML data, the declarative
nature of XPath queries and reasonable performance on large data sets is to impose
their processing by purely streaming algorithms. The result is that queries must be
restricted to a fragment of XPath but on the other hand processing space can be
limited and very large documents can be accessed efficiently. This is the approach
we describe and investigate in this thesis.

A stream of XML data is the depth-first, left-to-right traversal of an XML doc-
ument [Bray 2008]. In the streaming model queries must be known before any data
arrives, so queries can be preprocessed by building machines for query evaluation.
Figure 1.1 illustrates a data stream processor.

Figure 1.1: Data Stream Processor.

Query evaluation of a stream of XML data raises many challenges compared
to a non streaming environment: the recursive nature of XML document, the



1.1. Introduction 3

single sequential forward scan of a stream of XML data, also the presence of
descendant axes and predicates in the XPath query. An explanation for some of
these challenges follows:
• During the evaluation process of XPath queries which include predicates, we
may encounter potential answers nodes (solutions) before we reach the required
data and evaluate the predicates to decide their satisfaction. Based on that, we need
to record information about the potential answer nodes, as well as, their associated
pattern matches to the query until the relevant data is encountered, so we can
determine the predicate satisfaction. In the worst case, the size of the buffer (the
size of the potentials answers nodes) reaches the document’s size.
• The descendant axis traversal in a query and the recursive structure of the XML
document may cause an exponential number of pattern matches of sub-queries
from a single initial node.

The author of a query may have no immediate idea of what to expect in memory
consumption and delay before collecting all the resulting sub-documents. This
unpredictability can diminish the practical use of XPath stream-processing.

To alleviate this situation we need an accurate performance prediction (cost)
model for stream-processing of XPath queries.

The remainder of the chapter is structured as follows: section 1.1.1 presents
some terminology used in the chapters of this thesis. Section 1.2 summarizes some
of the challenges which should be considered by any performance prediction model
developed for query optimization in streaming mode. Section 1.3 describes the
main contributions of this thesis. Finally, section 1.4 illustrates the organisation of
the thesis and explains the relations and dependencies between the chapters of this
thesis.

1.1.1 Preliminaries
In this section, we present and define some terminology used in this thesis.

1.1.1.1 Data Model of XML Document

An XML document is modeled as a rooted, ordered, labelled tree, where each node
corresponds to an element, attribute or a value, and the edges represent (direct)
element-subelement or element-value relationships. An XML document, when
passed through a SAX [Brownell 2002] parser, will generate a sequence of events.
A streaming algorithm processes the SAX events, which are: startElement(X , l)
and endElement(X). They are produced respectively when the opening or closing
tag of a element is encountered and accept the name of the element X as input pa-
rameter. When a text value is encountered, the event Text(value) is activated. The
list l for StartElement(X , l) represents the list of attributes for the element name
X .



4 Chapter 1. Introduction

Our stream-querying algorithm presented in chapter 4 processes attributes.
While our selectivity estimation algorithm presented in the same chapter does not
treat explicitly the attribute ′@′, since it can be handled in a way similar to the
child.

1.1.1.2 XPath

XPath [Berglund 2010] is a language that describes how to locate specific elements
(and attributes, processing instructions, etc.) in a document. It operates on the
abstract, logical structure of an XML document, rather than its surface syntax. This
logical structure is known as the data model (that we defined in 1.1.1.1). XPath has
a particular importance for XML applications since it is a core component of many
XML processing standards such as XSLT [Kay 2007] or XQuery [Boag 2010].
XPath can be classified based on its fragment as follows:

• XPath 2.0: it is the largest fragment of XPath, for precise information about
its grammar see [Berglund 2010].

• XPath 1.0: it is a sub fragment of XPath 2.0, for precise information about
its grammar see [Clark 1999].

In this thesis, we define Forward XPath as below:

• Forward XPath: a sub fragment of XPath 1.0 consisting of queries that have:
child, descendant axis. NodeTest which is either element, wildchard, ′text()′.
Predicate with (′or′, ′not ′, ′and′), and arithmetic operations.

For a precise understanding of Forward XPath, we illustrate its grammar in
figure 1.2. A location path is a structural pattern composed of sub expressions
called steps. Each step consists of an axis (defines the tree-relationship between
the selected nodes and the current node), a node-test (identifies a node within an
axis), and zero or more predicates (to further refine the selected node-set). An
absolute location path starts with a ′/′ or ′//′ and a relative location path starts with
a ′./′ or ′.//′.

Our restriction to the downward axes in our XPath fragment is not absolute,
we could cover more general axes than ′/′, ′//′ by using rewrite rules as shown
in [Olteanu 2002] to reduce more general axis operations to forward ones when
possible.

A Simple path is any query which belongs to the fragment Forward XPath,
but does not contain predicates. A Twig path is any query which belongs to the
fragment Forward XPath and which contains predicates



1.1. Introduction 5

Figure 1.2: Grammar of Forward XPath

1.1.1.3 Recursion in XML Document

So-called recursion occurs frequently in XML data [Choi 2002]: some elements
with the same node-labels are nested on the same path in the data tree. In
[Bar-Yossef 2004], the authors define the recursion depth of an XML data tree D
with respect to the query node q in Q, denoted by rq as: the length of the longest
sequence of nodes e1, ...,er in D, such that 1) all the nodes lie on the same path
(root-to-leaf), and 2) all the nodes match structurally the sub-pattern q. To facili-
tate and clarify the meaning of recursion, figure 1.3 illustrates the recursion depth
of document D with respect to the query Q: //A//B[.//C]/K.

Figure 1.3: Recursion depth of D w.r.t Q.

The single line edges represents child (′/′), the double line edges represents
descendant(′//′), single dashed line represents [./node()], double dashed line rep-



6 Chapter 1. Introduction

Matching Nbr. Nodes of Structural Matching
1 A1 B7 C8 K8

2 A2 B7 C8 K8

3 A4 B8 C8 K8

Table 1.1: Nodes of Structural Matching of Q in D

resents [.//node()] and the result node which is in this example the shaded node K.
It is obvious from figure 1.3 that node C is not on the main path, this is why we
do not consider it as a rC. If we have a look at table 1.1, both nodes A and B are
applied to the definition of rq. Actually, rA = 3 is represented by (A1,A2,A4), while
rB = 2 is represented by (B7,B8).

1.1.1.4 Document Depth

Let dD be the length of the longest root to leaf path in the tree. In our example in
figure 1.3, document depth is the length of the path from root node A1 to the leaf
node K8.

1.1.1.5 Stream-querying Process

The process of stream-querying consists in outputting all nodes in an XML data set
D (answer nodes) that satisfy a specified XPath query Q at its result node.

1.1.1.6 Stream-filtering Process

The process of stream-querying consists in determining whether there exists at least
one match of a query Q in an XML data set D.

1.1.1.7 Synopsis

A synopsis data structure is a succinct description of the original data set with
low computational overhead and high accuracy for processing tasks like selectivity
estimation and query answer approximation.

1.1.1.8 Selectivity Estimation Technique

Selectivity estimation is an estimate of the number of matches for a query Q evalu-
ated on an XML document D. It is desirable in interactive and internet applications.
With it, the system could warn the end user that his/her query is so coarse that the
amount of results will be overwhelming.

However, this selectivity does not measure the size of these matches. Further-
more, it measures neither the total amount of memory allocated by the program to
find these matches (space used) nor the processor time used by the program to find
the matches (time spent). As a result, selectivity estimation appears necessary but



1.2. Challenges 7

incomplete as a technique for managing queries on large documents accessed as
streams and it is not sufficient to model the query cost.

1.1.1.9 Performance Prediction Model

The performance prediction model is a mathematical model which estimates the
cost (in terms of space used and time spent) of an XPath query before actually ex-
ecuting it. A precise performance prediction model requires an efficient selectivity
estimation technique, but selectivity alone is not sufficient to model the cost for a
given query as we explain in more details in chapter 5.

1.2 Challenges
Developing performance prediction models for query optimization is significantly
harder for XML queries than for traditional relational queries. The reason is that
XPath query operators are more complex than relational operators such as table
scans and joins. Moreover, the query evaluation process of a stream of XML data
raises extra challenges compared to non-streaming environments: the recursive
nature of XML documents, the single sequential forward scan of a stream of XML
data, also the presence of descendant axes and the predicates in the XPath query.

The basic idea is to identify the parameters that determine the cost for a given
query on an XML document, such as:

1. NumberOfMatches: is the number of answer elements found during process-
ing of the query Q on the XML document D.

2. Cache: is the number of elements cached in the run-time stacks during pro-
cessing of the query Q on the XML document D. They correspond to the
axis nodes of Q.

3. Buffer: is the number of potential answer elements buffered during process-
ing of the query Q on the XML document D.

4. OutputSize: is the total size in MiB of the number of answer elements found
during processing of the query Q on the XML document D.

5. WorkingSpace: is the total size in MiB for the number of elements cached
in the run-time stacks and the number of potential answer elements buffered
during processing of the query Q on the XML document D.

6. NumberOfPredEvaluation: is the number of times the query’s predicates are
evaluated (their values are changed or passed from an element to another).

The above mentioned parameters are interrelated (we can not ignore any of them)
and necessary to estimate the cost for a given twig. Below, we explain the need for



8 Chapter 1. Introduction

this set of parameters:

the value of NumberOfMatches is insufficient for estimating the cost for a given
query Q evaluated on an XML document D. For example: the cost for a given query
Q1 with NumberOfMatches =5 might be higher than the cost for a given query Q2
with NumberOfMatches =7, because the value of OutputSize for Q1 is larger than
the same value for Q2. Therefore, we need to know the size of the answers (i.e.
OutputSize. Increasing the value of OutputSize increases the cost of Q.

However, the values of NumberOfMatches and OutputSize are still insufficient
to determine the cost of Q precisely. Because during the processing of Q, we
may need to buffer some potential answers elements (i.e. Buffer) and to cache the
intermediate answers (i.e. Cache). The values of Cache and Buffer affect the cost
of Q. Increasing their values increases the cost of Q, because it increases the time
needed for buffering and caching. But still they are insufficient to determine the
cost of Q precisely. For example: the cost for a given query Q1 with Buffer =5 and
Cache) = 8 might be higher than the cost for a given query Q2 with Buffer =7 and
Cache) =10, because the value of WorkingSpace for Q1 is large than the value of
WorkingSpace for Q2.

During the processing of Q, there is another parameter which affects it cost that
is NumberOfPredEvaluation. Increasing the value of NumberOfPredEvaluation
increases the cost of Q, because it increases the evaluation time of Q.

The performance prediction model should estimate accurately these parameters
in order to estimate the cost of Q.

Below, we summarize some of the challenges which should be considered by
any performance prediction model developed for query optimization in streaming
mode.

1.2.1 The Expressiveness of XPath
The existence of the descendant axis ′//′, the wildcard node (′∗′), predicates
and the same node-labels in the XPath query evaluated on a deep and recursive
XML document increase the buffering, caching sizes and the processing time enor-
mously. This is because the stream-querying algorithm will be forced to buffer
and cache a large number of nodes. An example of a complex XPath query is
//A[./B//∗]//∗ [./A]/K (see figure 1.4).

Figure 1.4: Complex XPath Query.

The standard query language for XML [Bray 2008] namely XPath



1.2. Challenges 9

XMark Book TreeBank
Structure Wide Semi deep+ narrow deep

and Shallow and recursive and recursive
Data Size 113MiB 12MiB 82MiB
Max./Avg Depth 12/5.5 22/19.4 36/7.6

Table 1.2: Different Data set Structures.

[Berglund 2010] is a very rich and expressive language, therefore, the performance
prediction model should be strongly capable to model the cost for simple and com-
plex queries. In this thesis, we are interested in modeling and estimating the cost
for any structural query which belongs to the fragment of Forward XPath.

1.2.2 Structure of XML Data Set

Data sets may have varied structures, for instance, shallow XML data sets (wide)
that do not include recursive elements (figure 1.5). In this case the caching space
costs of the stream-querying algorithm might be negligible. An example for this
type of XML data set is XMark [Schmidt 2001] which is a well known benchmark
data set that allows users and developers to gain insights into the characteristics of
their XML repositories. Table 5.11 indicates that the depth of this data set reaches
12 (not deep), and has a size of 113MiB1.

Other data sets are semi-deep and recursive e.g. the Book data set [Diaz 1999],
actually a synthetic data set generated using IBM’s XML generator, based on a
real DTD from an W3C XQuery use case. As we can see from table 5.11, it has
a size of 12 MiB which is not enormous and a maximum depth that reaches 22
which is quite deep compared to its size. It includes only one recursive element
named section. In fact, different sections node can be nested on the same path in
the data set, therefore this kind of data set (semi-deep and recursive) increases the
buffering space, caching space and processing time.

We can find also data sets with a narrow deep structure, e.g. the TreeBank
data set [Suciu 1992]. Here one can recognize the structure of the data set from it
maximum depth in table 5.11 that is 36, moreover, its average depth is 7.8. The
existence of these properties in the data set is strongly related to the algorithmic
complexity of stream-processing.

The performance prediction model should be able to model the cost for a given
query on any data set (structure/size).

1The mebibyte (MiB) is a multiple of the unit byte for digital information. One mebibyte (MiB)
is 220 (i.e., 1024 x 1024) bytes [ICE 2007]



10 Chapter 1. Introduction

1.2.3 Query Evaluation Strategy

The strategy used to evaluate the XPath query may affect the size of the buffering
space B and the processing time. B might reach document size |D| in the worst
case. For example, let us consider that we have the document D and the query Q:
//A[./F ]/C as it is shown in figure 1.5. In the so-called lazy approach, B = n or in
other words B = |D| since the predicate of A is not evaluated until < /Ai > arrives.
In this case all nodes starting from C1 to Cn have to be buffered, which will increase
the buffering size remarkably. In the so-called eager approach B = 0 because the
predicates of A is evaluated to be true the moment element < F > arrives. Thus,
each <Ci > can be flushed as a query result the moment it arrives and does not need
to be buffered at all. Obviously this will improve the buffering space performance.

F F

A

C (n)

A (1)

F (1)

Query Q: XML Document D:
 Summary of D:

The Lazy Approach B=|D|

The Eager Approach B=0

The Lazy Approach B=|C(n)|

The Eager Approach B=0

//A[./F]/C

Figure 1.5: Lazy and Eager Approaches.

Note that figure 1.5 is an example of a wide data set.

The performance prediction model should be time and space efficient no matter
what query evaluation technique is used. In the example of figure 1.5, a possible
solution to reduce the buffering space of the lazy approach is to evaluate Q on
the summary of D. The number in the bracket to the right of the each element
(in the summary of D) represents its frequency. Therefore, by applying the the
lazy approach we buffer only one element C with it frequency (n) and we get the
number of matches that is the value of n.

1.2.4 Evolution and Data Set Updating

When the underlying XML document (data set) D is updated, i.e. some elements
are added or deleted, the performance prediction model should be able to model
precisely the change in the cost for a given query Q on D (without the need to
rebuild its "tables").

All the above challenges to performance prediction will be addressed in later
chapters.



1.3. Contributions 11

1.3 Contributions
We first present two surveys on selectivity estimation techniques for XML queries
and on stream-processing for XML data. Following this, the technical develop-
ments are described, with main contributions as follows:

• We study in detail the path tree, a synopsis structure for XML documents
that is used for accurate selectivity estimates. We formally define it and we
introduce two algorithms to construct it. To the best of our knowledge, the
path tree was not formally defined in the literature, but was used before in
more limited ways.

• We extend and optimize the lazy stream-querying algorithm LQ which was
introduced by [Gou 2007]. The current version of the algorithm processes
any query belonging to the fragment of Forward XPath (that is explained in
section 1.1.1.2).

• We present a new selectivity estimation algorithm which was inspired from
our extended stream-querying algorithm LQ. Our estimation algorithm is ef-
ficient for traversing the path tree structure synopsis to calculate the esti-
mates. The algorithm is well suited to be embedded in a cost-based opti-
mizer.

• We present a study we performed to confirm the linear relationship between
the stream-processing and the data-access. As we will see later (section 5.3
and section 5.4), this linear relationship has an important role in our perfor-
mance prediction models.

• We present the performance prediction model - simple path, an accurate
model for stream-processing of simple path queries. Our model collects
static information about the XML document and predicts a priori the mem-
ory consumption of a query to within a few percent. This allows a user to
either modify the query if predicted consumption is too high, or to allow the
algorithm to execute normally. The model is portable: its prediction is also
correct to within a small error on a different machine. Moreover, the error
rate is stable from small documents to documents on the order of 1GiB and
nothing prevents application to much larger documents.

• We present the performance prediction model - twig path, an accurate model
for stream-processing of any structural query which belongs to the fragment
of Forward XPath. The model is able to estimate the cost for a given query
in terms of time spent /memory used.

• We present a use case called an on-line stream-querying system. The system
of the use case uses the performance predicate model - twig path to estimate
the cost for a given query in term of time/memory. Moreover, it provides an
accurate answer for the query’s sender.



12 Chapter 1. Introduction

1.4 Thesis Organisation

This thesis is organized as follows: after the brief introduction in this chapter,
chapter 2 reviews the state of the art and pinpoints two critical areas where we
develop our research work: (1) selectivity estimation techniques for XML queries,
where we justify the need of a new selectivity estimation technique that is based on
the streaming technique. (2) stream-processing for XML data, where we explain
the raison of choosing the lazy stream-querying algorithm LQ in our work.

Chapter 3 defines the path tree structure synopsis that is used for accurate
selectivity estimates. The path tree is used by our selectivity estimation technique
that is introduced in chapter 4. Moreover, this chapter introduces two techniques to
built the path tree, they are: (1) the automata-based algorithm and (2) the streaming
-based algorithm with examples on the incremental updates for the path tree.

Chapter 4 presents our selectivity estimation technique. This chapter starts
by explaining the extension process for the stream-querying algorithm which
was introduced by [Gou 2007]. After that, it presents the selectivity estimation
algorithm which was inspired from our extend stream-querying algorithm LQ.
Our estimation algorithm is efficient for traversing the path tree structure synopsis
to calculate the estimates. The algorithm is well suited to be embedded in a cost-
based optimizer. The path tree and the selectivity estimation technique represent
our selectivity estimation algorithm. Then, the chapter continues by presenting
several examples on the selectivity estimation for path/twig expressions. Finally, it
ends by showing the accuracy of our selectivity estimation technique.

Chapter 5 presents the performance prediction model. It starts by a preliminary
study we performed to confirm the linear relationship between stream-processing
and data-access. Then, it proceeds by explaining the main idea and the general
structure of the performance prediction model. After that, it presents the "per-
formance prediction model - simple path" where extensive experiments were
performed to show the accuracy of the estimation and the portability of the model.
The chapter continues by introducing the "performance prediction model - twig
path" which estimates the cost for any given query belong to the fragment of
Forward XPath. The model uses our selectivity estimation technique (the path tree
synopsis plus the selectivity estimation algorithm) that is presented in chapter 4 to
estimate the selectivity for a given query. Extensive experiments were performed.
We considered the accuracy of the estimations, the types of queries and data
sets that this synopsis can cover, the cost of the synopsis to be created and the
estimated vs measured time/memory. The chapter ends by introducing an online
stream-querying system (a use case). The system uses the "performance predicate
model - twig path" to estimate the cost for a given query in term of time/memory.
Moreover, it provides an accurate answer for the query’s sender.



1.4. Thesis Organisation 13

Chapter 6 concludes our work and presents our perspectives for future research.

1.4.1 The Dependency of Thesis’s Chapters
Figure 1.6 illustrates the dependencies between thesis’s chapters.

Chapter 1

Introduction

Chapter 2 State of the Art
Selectivity Estimation Techniques

Stream-processing Approaches

Chapter 3
Path tree structure 

Synopsis

Chapter 4
Selectivity Estimation 

Technique

Chapter  5

Performance Prediction Model

Chapter  6

Conclusion and Perspectives 

Figure 1.6: The Dependency of Thesis’s Chapters





CHAPTER 2

State of the Art

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Selectivity Estimation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Properties of Selectivity Estimation Techniques . . . . . . . 16

2.2.2 Path/Twig Selectivity Estimation Techniques . . . . . . . . 17

2.2.2.1 Synopsis-Based Estimation Techniques . . . . . . 18

2.2.2.2 Histogram-Based Estimation Techniques . . . . . 26

2.2.3 Summary - The Choice of the Path tree Synopsis . . . . . . 30

2.3 Stream-processing Approaches . . . . . . . . . . . . . . . . . . . 32

2.3.1 Stream-filtering Algorithms . . . . . . . . . . . . . . . . . 32

2.3.2 Stream-querying Algorithms . . . . . . . . . . . . . . . . 38

2.3.3 Summary - Lazy Stream-querying Algorithm LQ . . . . . . 43

2.1 Introduction

This chapter surveys the existing work on stream processing for XML data and on
selectivity estimation techniques for XPath queries. We start by presenting the
important properties needed for the selectivity estimation techniques before we
explain them. After that, we categorize the stream processing approaches, then
we explain several techniques or algorithms for each one.

2.2 Selectivity Estimation

In this section, we start by introducing some of the important properties of selectiv-
ity estimation techniques. After that, we give an overview of the literature related
to this domain, as of 1Q 2011.



16 Chapter 2. State of the Art

2.2.1 Properties of Selectivity Estimation Techniques
The design and the choice of a particular selectivity estimation technique depends
on the problem being solved with it. Therefore, the technique needs to be
constructed in a way related to the needs of the particular problem being solved
[Aggarwal 2007].

In general, we would like to construct the synopsis structure in such a way
that it has wide applicability across broad classes of problems. In our work, the
applicability to streams of XML data makes the space and time efficiency issue of
construction critical.

When looking for an efficient, capable (general enough) and accurate selectivity
estimation technique for XPath queries, there are several issues that need to be
addressed. Some of these issues can be summarized as follows:

• It must be practical: in general, one of the main usages of the selectivity es-
timation techniques is to accelerate the performance of the query evaluation
process. Thus, while theoretical guarantees are important for any proposed
approach, practical considerations are much more important. The perfor-
mance characteristics of the selectivity estimation process are a crucial as-
pect of any approach. The selectivity estimation process of any query or
sub-query must be much faster than the real evaluation process. In other
words, the cost savings on the query evaluation process using the selectivity
information must be higher than the cost of performing the selectivity esti-
mation process. In addition, the required summary structure(s) for achieving
the selectivity estimation process must be efficient in terms of memory con-
sumption.

• It should support structural and data value queries: in principal, all XML
query languages can involve structural conditions in addition to the value-
based conditions. Therefore, any complete selectivity estimation system for
the XML queries requires maintaining statistical summary information about
both the structure and the data values of the underlying XML documents. A
recommended way of doing this is to apply the XMill approach [Liefke 2000]
in separating the structural part of the XML document from the data part and
then group the related data values according to their path and data types into
homogeneous sets. A suitable summary structure for each set can then be
easily selected. For example, the most common approaches in summarizing
the numerical data values is by using histograms or wavelets while several
tree synopses could be used to summarize the structural part.

• One pass constraint: for streaming applications or techniques, the streams
of XML data typically contain a large number of points, the contents of the
stream cannot be examined more than once during the course of computation.



2.2. Selectivity Estimation 17

Therefore, all summary structure/data values construction algorithms should
be designed under a one pass constraint.

• It should be strongly capable: the standard query languages for XML
[Bray 2008] namely XPath [Berglund 2010] and XQuery [Boag 2010] are
very rich languages. They provide rich sets of functions and features. These
features include structure and content-based search, join, and aggregation
operations. Thus, a good selectivity estimation approach should be able to
provide accurate estimates for a wide range of these features. In addition,
it should maintain a set of special summary information about the underly-
ing source XML documents. For example: a universal assumption about a
uniform distribution of the elements structure and the data values may lead
to many potential estimation errors because of the irregular nature of many
XML documents.

• It must be accurate: providing an accurate estimation for the query optimizer
can effectively accelerate the evaluation process of any query. However, on
the other hand, providing the query optimizer with incorrect selectivity in-
formation will lead it to incorrect decisions and consequently to inefficient
execution plans.

• It must evolve and be incremental: when the underlying XML document is
updated, i.e. some elements are added or deleted, the selectivity estimation
technique should be updated (without the need of rebuilding it) as well to
provide an accurate selectivity estimation for a given query.

• It should be independent: it is recommended that the selectivity estimation
process be independent of the actual evaluation process which facilitates its
use with different query engines that apply different evaluation mechanisms.
This property is an advantage for software engineering of the corresponding
module(s).

• Time and Space Efficiency: In many traditional synopsis methods on
static data sets (such as histograms), the underlying dynamic programming
methodologies require super-linear space and time. This is not acceptable
for a data stream [Aggarwal 2007]. For the case of space efficiency, it is not
desirable to have a complexity which is more than linear in the size of the
stream.

2.2.2 Path/Twig Selectivity Estimation Techniques

In this section, we give an overview of the literature related to the selectivity esti-
mation approaches in the XML domain. Estimation techniques can be classified in
terms of the structure used for collecting the summary information into two main
classes:



18 Chapter 2. State of the Art

1. Synopsis-based estimation techniques: this class of the estimation techniques
uses tree or graph structures for representing the summary information of the
source XML documents.

2. Histogram-based estimation techniques: this class of the estimation tech-
niques uses the statistical histograms for capturing the summary information
of the source XML documents.

2.2.2.1 Synopsis-Based Estimation Techniques

[Aboulnaga 2001] have presented two different techniques for capturing the
structure of the XML documents and for providing accurate cardinality estimations
for the path expressions. The presented techniques only support the cardinality
estimations of simple path expressions without predicates and so-called recursive
axes (repeated node-labels in the expression). Moreover, the models cannot be
applied to twigs.

The first technique presented in this paper is a summarizing tree structure called
a path tree. A path tree is a tree containing each distinct rooted path in the database
(or data set) where the nodes are labeled by the tag name of the nodes.

To estimate the selectivity of a given path expression p in the form of
s1/s2/.../sn, the path tree is scanned by looking for all nodes with tags that match
the first tag of the path expression. From every such node, downward navigation is
done over the tree following child pointers and matching tags in the path expression
with tags in the path tree. This will lead to a set of path tree nodes which all corre-
spond to the query path expression. The selectivity of the query path expression is
the total frequency of these nodes.

The problem is the size of the path tree constructed form a large XML
document, it is larger than the available memory size for processing. To solve this
problem, the authors described different summarization techniques based on the
deletion of low frequency nodes, and on their replacement by means of ∗−nodes
(star nodes). Each ∗−node, denoted by a special tag name ”∗ ”, denotes a set of
deleted nodes, and inherits their structural properties as well as their frequencies.
Unfortunately, the path tree is not formally defined in this work, and to the best of
our knowledge, it is not defined in the literature.

The second technique presented in this paper is a statistical structure called
Markov table (MT). This table, implemented as an ordinary hash table, contains
any distinct path of a length up to m and its selectivity. Thus, the frequency of
a path of length n can be directly retrieved from the table if n ≤ m, or it can
be computed by using a formula that correlates the frequency of a tag to the
frequencies of its m− 1 predecessors if n > m. Since the size of a Markov table
may exceed the total amount of available main memory, the authors present
different summarization techniques which work as in the case of a path tree and



2.2. Selectivity Estimation 19

delete low frequency paths and replace them with ∗− paths.

<A>

</A>

<B> </B>

<B>
<D></D>

</B>

<C>

</C>

<D></D>

<E> </E>

<D></D>

<E> </E>

<E> </E>

(a) XML doc-
ument D

A

B C

D D E

1

1

31 2

2

(b) path tree of D

Path Freq.

A

B

C

D

E

AB

AC

BD

CD

CE 3

2

1

1

2

3

3

1

2

1

(c) MT of D

Figure 2.1: An XML document D and its both path tree and markov table

Figure 2.1(a) illustrates an example of XML document D and the representa-
tion of its both corresponding path tree 2.1(b) and Markov table 2.1(c).

XPATHLEARNER [Lim 2002] is an on-line learning method for estimating
the selectivity of XML path expressions by means of statistical summaries used
to build a Markov histogram on path selectivities gathered from the target XML
engine. It employs the same summarization and estimation techniques as presented
in [Aboulnaga 2001].

The novelty of XPATHLEARNER is represented by the fact that it collects the
required statistics from the query feedback in an on-line manner, without accessing
and scanning the original XML data, which is in general resource-consuming.

These statistics are used to learn both tag and value distributions of input
queries, and, when needed, to change the actual configuration of the underly-
ing Markov histogram in order to improve the accuracy of approximate answers.
From this point of view, XPATHLEARNER can be intended as a workload-aware
method.

An important difference between XPATHLEARNER and the MT of
[Aboulnaga 2001] is that the XPATHLEARNER supports the handling of
predicates (to further refine the selected node-set) by storing statistical information
for each distinct tag-value pair in the source XML document.

[Zhang 2005] have presented a similar technique called Comet (Cost Modeling



20 Chapter 2. State of the Art

Evolution by Training) for cost modeling of complex XML operators. It exploits a
set of system catalogue statistics that summarizes the XML data, the set of simple
path statistics and a statistical learning technique called transform regression
instead of detailed analytical models to estimate the selectivity of path expressions.
The technique used to store the statistics is the path tree of [Aboulnaga 2001].
This work is more oriented toward XML repositories consisting of a large corpus
of relatively small XML documents. Their initial focus is only on the CPU cost
model. To do that, they developed a CPU cost model for XNAV operator which
is an adaptation of TurboXPATH [Josifovski 2005]. Their idea was taking from
previous works in which statistical learning method are used to develop cost
models of complex user-defined functions [He 2004] and [Lee 2004].
The system can automatically adapt to changes over time in the query workload
and in the system environment. The optimizer estimates the cost of each operator
in the query plan (navigation operator, join operator) and then combines their costs
using an appropriate formula.
The statistical model can be updated either at a periodic intervals or when the
cost-estimation error exceeds a specified threshold. Updating a statistical model
involves either re-computing the model from scratch or using an incremental
update method.

The authors of [Chen 2001] proposed a correlated sub-path tree (CST), which is
a pruned suffix tree (PST) with set hashing signatures that helps determine the cor-
relation between branching paths when estimating the selectivity of twig queries.
The CST method is off-line, handles twig queries, and supports substring queries
on the leaf values. The CST is usually large in size and has been outperformed by
[Aboulnaga 2001] for simple path expressions.

Described in [Polyzotis 2004b] the Twig-Xsketch is a complex synopsis data
structure based on XSketch synopsis [Polyzotis 2002a] augmented with edge dis-
tribution information. It was shown in [Polyzotis 2004b] that Twig-Xsketch yields
selectivity estimates with significantly smaller errors than correlated sub-path tree
(CST). For the data set XMark [Schmidt 2001] the ratio of error for CST is 26%
vs. 3% for Twig-Xsketch.
TreeSketch [Polyzotis 2004a] is found on a partitioned representation of nodes of
the input graph-structured XML database. It extends the capabilities of XSketch
[Polyzotis 2002a] and Twig-Xsketch [Polyzotis 2004b] . It introduces a novel
concept of count-stability (C-stability) which is a refinement of the previous
F-stability of [Polyzotis 2002a]. This refinement leads to a better performance
in the compression of the input graph-structured XML database. TreeSketch
builds its synopsis in two steps. First, it creates an intermediate count-stability
(C-stability) synopsis that preserves all the information of the original XML data
set in a compact format. After that, the Tree-Sketch synopsis is built on top of the
C-stability synopsis by merging similar structures.



2.2. Selectivity Estimation 21

The construction time of TreeSktech for the complex data set TreeBank 86MiB
(depth 36) took more than 4 days, this result was confirmed in [Luo 2009].
Moreover, the TreeSketch synopsis does support the recursion in the data set as it
is explained in [Zhang 2006b].

[Zhang 2006b] have addressed the problem of deriving cardinality estimation
(selectivity) of XPath expressions. In this work, the authors are mainly focusing
on the handling of XPath expressions that involve only structural conditions. The
main idea of their paper is to provide an efficient treatment of recursive XML doc-
uments and an accurate estimation of recursive queries. An XML document is said
to be recursive if it contains an element directly or indirectly nested in an element
with the same name. In other words, if it contains rooted paths which have multiple
occurrences of the same element labels. A path expression is said to be recursive
with respect to an XML document if an element in the document could be matched
to more than one NodeTest in the expression (it contains same node-labels). There-
fore, in order to derive an efficient and accurate estimation for a recursive path
expression, the authors introduce a new notion named as recursion levels. Given
a rooted path in the XML tree, they define the path recursion level (PRL) by the
maximum number of occurrences of any label minus 1. The recursion level of a
node in the XML tree is defined by the PRL of the path from root to this node. The
document recursion level (DRL) is defined to be the maximum PRL over all rooted
paths in the XML tree.

The authors define a summary structure for summarizing the source XML doc-
uments into a compact graph structure called XSeed. The XSeed structure is
constructed by starting with a very small kernel which captures the basic struc-
tural information (the uniform information) as well as the recursion information of
the source XML document. The kernel information is then incrementally updated
through the feedback of queries.

The XSeed kernel is represented in the form of a label- split graph summary
structure proposed by [Polyzotis 2002b]. In this graph, each edge e = (u;v) is
labeled with a vector of integer pairs (p0 : c0, p1 : c1, ..., pn : cn). The ith integer
pair (pi : ci) indicates that at recursion level i, there are a total of pi elements
mapped to the synopsis vertex u and ci elements mapped to the synopsis vertex v.

Figure 2.2 illustrates an example of XML document D and its corresponding
XSeed kernel

The high compression ratio of the kernel can lead to a situation where informa-
tion is lost. This loss of information results in the occurrence of significant errors in
the estimation of some cases. To solve this problem, the authors introduce another
layer of information, called hyper-edge table (HET), on top of the kernel. This HET
captures the special cases that are not addressed by original assumptions made by
the kernel (irregular information). For example, it may store the actual cardinalities
of specific path expressions when there are large errors in their estimations.

Relying on the defined statistic graph structure and its supporting layer, the



22 Chapter 2. State of the Art

<A>

</A>

<B> </B>

<D></D>

<C>

</F>

<D></D>

<D></D>

<E> </E>

<D></D>

</C>

<E>

</E>

<F>
<E> </E>

<E> </E>

(a) XML D

A

FECB

D

(1:1)(1:1)

(1:2)(1:1)

(1:1)(1:1)

(1:2)(1:1)(1:1)

(b) XSeed Kernel of D

Figure 2.2: An XML Document D and its XSeed kernel

authors propose an algorithm for the cardinality estimation of the structural XPath
expressions. The main contribution of this work is the novel and accurate way of
dealing with recursive documents and recursive queries.

By treating the structural information in a multi-layer manner, the XSeed
synopsis is simpler and more accurate than the TreeSketch synopsis. However,
although the construction of XSeed is generally faster than that of TreeSketch, it is
still time-consuming for complex datasets.

Paper [Polyzotis 2006] introduced XCLUSTER, which computes a synopsis
for a given XML document by summarizing both the structure and the content of
document. XCLUSTER is considered to be a generalized form of the XSketch tree
synopses which is a previous work of the authors presented in [Polyzotis 2002b].

On the structure content side, an XCLUSTER tree synopsis is a node-labeled
graph where each node represents a sub-set of elements with the same tag, and an
edge connects two nodes if an element of the source node is the parent of elements
of the target node. Each node in the graph records the count of elements that it
represents while each edge records the average child count between source and
target elements.
On the value content side, XCLUSTER has borrowed the idea of the XMill
XML compressor [Liefke 2000] which is based on forming structure-value
clusters which groups together data values into homogeneous and semantically
related containers according to their path and data type. Then, it employs the
well-known histogram techniques for numeric and string values [Chaudhuri 2004]
[Poosala 1996] and introduces the class of end-biased term histograms for summa-
rizing the distribution of unique terms within textual XML content.



2.2. Selectivity Estimation 23

The XCLUSTER estimation algorithm relies on the key concept of a query
embedding, that is, a mapping from query nodes to synopsis nodes that satisfies
the structural and value-based constraints specified in the query. To estimate the
selectivity of an embedding, the XCluster algorithm employs the stored statistical
information coupled with a generalized path-value independence assumption that
essentially de-correlates path distribution from the distribution of value-content.
This approach can support twig queries with predicates on numeric content, string
content, and textual content.

(a) XML D (b) XCLUSTER of D

Figure 2.3: An XML document D and its XCLUSTER synopsis

Figure 2.3 illustrates an example of XML document D and its corresponding
XCLUSTER.

However, though XCLUSTER address the summarization problem for struc-
tured XML content, but its construction time is unknown. Furthermore, as it
is mentioned in [Sakr 2010] it does not process a nested expressions (nested
predicates).

[Fisher 2007] have proposed the SLT (Straight line tree) XML tree synopsis.
The idea of this work is based on the fact that the repetitive nature of tags in the
XML documents makes tag mark-ups re-appears many times in a document.

Hence, the authors use the well-known idea of removing repeated patterns in
a tree by removing multiple occurrences of equal subtrees and replacing them by
pointers to a single occurrence of the subtree. The synopsis is constructed by using
a tree compression algorithm to generate the minimal unique directed acyclic graph
(DAG) of the XML tree and then representing the resulting DAG structures using
a special form of grammars called an straight line tree grammar (SLT grammar).

Figure 2.4 illustrates an example of an XML document D and the representation



24 Chapter 2. State of the Art

(a) An XML D (b) The bin(D)

(c) SLT grammar for bin(D)

Figure 2.4: An XML document D, the binary tree representation bin(D) and SLT of bin(D)

of its corresponding binary tree bin(D) and SLT grammar for bin(D). Additionally,
the size of this grammar is further reduced by removing and replacing certain parts
of it, according to a statistical measure of multiplicity of tree patterns. This results
in a new grammar which contains size and height information about the removed
patterns.
The authors have described an algorithm for a tree automaton which is designed to
run over the generated lossy SLT grammars to estimate the selectivity of queries
containing all XPath axes, including the order-sensitive ones. This algorithm
converts each XPath query into its equivalent tree automaton and describes how
to evaluate this tree automaton over a document to test whether the query has at
least one match in the document and returns the size of the result of the query
on a document. The proposed synopsis of this work has the ability to support
the estimation of all XPath axes using an efficient memory space, however, it
unfortunately can deal only with structural XPath queries. Furthermore, as it is
mentioned in [Sakr 2010], this approach does not support any form of predicate
queries.

Some work also has been conducted to estimate the selectivity for XQuery.
The design and implementation of a relational algebraic framework for estimating
the selectivity of XQuery expressions was described in [Saker 2007], [Saker 2008],



2.2. Selectivity Estimation 25

and [Teubner 2008]. In this approach (Relational algebraic), XML queries are
translated into relational algebraic plans [Grust 2004]. A peephole-style analysis
of these relational plans is performed to annotate each operator with a set of
special properties [Grust 2005]. These annotations are produced during a single
pass over the relational plan and use a set of light-weight inference rules which are
local in the sense that they only depend on the operator’s immediate plan inputs.
Summary information about the structure and the data values of the underlying
XML documents are kept separately. Then by using all these pieces together
with a set of inference rules, the relational estimation approach is able to provide
accurate selectivity estimations in the context of XML and XQuery domains. The
estimation procedure is defined in terms of a set of inference rules for each operator
which uses all of the available information to estimate the selectivity of not only
the whole XQuery expression but also of each sub-expression (operator) as well
as the selectivity of each iteration in the context of FLWOR expressions. The
framework enjoys the flexibility of integrating any XPath or predicate selectivity
estimation technique and supports the selectivity estimation of a large subset of
the powerful XML query language XQuery.

Recently, [Luo 2009] proposed a sampling method named subtree sampling
to build a representative sample of XML which preserves the tree structure and
relationships of nodes.

They examine the number of data nodes for each tag name starting from the
root level. If the number of data nodes for a tag is large enough, a desired fraction
of the data nodes are randomly selected using simple random sampling without
replacement and then the entire subtrees rooted at these selected data nodes are
included, as sampling units, in the sample. They call each such set of subtrees to
which random sampling is applied a subtree group. If a tag has too few data nodes
at the level under study, then all the data nodes for that tag at that level are kept and
they move down to check the next level in the tree.

The paths from the root to the selected subtrees are also included in the sample
to preserve the relationships among the sample subtrees. This sampling scheme
assumes that the sizes of the subtrees in the same subtree group are similar. This is
because the root nodes of these subtrees have the same tag name, i.e. they are nodes
of the same type. These root nodes reside in the same level. Consequently, subtrees
in the same subtree group tend to have similar structures, thus similar sizes. Based
on this observation, the sampling fraction of the subtree groups f ′i , where fi is the
sampling fraction of the ith subtree group, can be simply set to ft , which is the
sampling fraction of the whole data set.

If the number of nodes n for a tag satisfies the minimum requirements n∗ f t >=

1, they consider it large enough. In figure 2.5 the subtree sampling is applied to the
DBLP data set [Ley 2011]. In the second level (directly after the root), there are
10000 ”book” nodes and 20000 ”article” nodes. By assuming that the sampling



26 Chapter 2. State of the Art

Figure 2.5: Subtree Sampling for DBLP

fraction is 1%, we conclude that both tags have sufficient large numbers of nodes
10000* 1% = 100 and 20000* 1% = 200. Based on that, they randomly select
100 "book" nodes and 200 "article" nodes from the second level and include their
subtrees as the sample. Also, they include the paths from the root to the subtrees to
preserve the hierarchy.

The sample trees are just a portion of the original XML data tree. These sample
trees differ only in magnitude from the original XML data tree. Therefore, ordinary
twig query evaluation methods, such as TwigStack [Bruno 2002] can be applied
directly to the sample trees synopsis to derive approximate answers.

Though a subtree sampling synopsis can be applied to aggregations functions
such as SUM, AVG, etc., this approach is based on an essential assumption that
nodes of the same type and at the same level have similar subtrees. Moreover, it is
shown in [Luo 2009] that XSeed [Zhang 2006b] outperforms subtree sampling for
queries with Parent/Child or Ancestor/Descendant on simple data set e.g. XMarK
[Schmidt 2001], while it is the inverse for recursive data sets.

2.2.2.2 Histogram-Based Estimation Techniques

As we mentioned before, this class of the estimation techniques uses the statistical
histograms for capturing the summary information of the source XML documents.
Below, we give a survey on the existing work.

[Freire 2002] have presented an XML Schema-based statistics collection
technique called StatiX. This technique leverages the available information in
the XML Schema to capture both structural and value statistics about the source
XML documents. These structural and value statistics are collected in the form
of histograms. The StatiX system is employed in LegoDB [Bohannon 2002].
LegoDB is a cost-based XML-to-relational storage mapping engine, which tries to
generate efficient relational configurations for the XML documents.
The StatiX system consists of two main components. The first component is the



2.2. Selectivity Estimation 27

XML schema validator which simultaneously validates the document against its
associated schema and gathers the associated statistics. It assigns globally unique
identifiers (IDs) to all instances of the types defined in the schema. Using these
assigned IDs, structural histograms are constructed to summarize information
about the connected edges. Value histograms are constructed for types that are
defined in terms of base types such as integers. The storage of the gathered
statistics is done using equi-depth histograms (wherein the frequency assigned
to each bucket of the histogram is the same). The second component is the
XML schema transformer which enables statistics collection at different levels of
granularity. Although, StatiX is used in the context of the LegoDB system and
the presented experimental results indicate highly accurate query estimates, the
technique can only be applied to documents described by XML schemas with
no clear view as to how it can be extended to deal with schema-less documents.
Moreover, the paper [Freire 2002] does not show a clear algorithm for estimating
the cardinality of the XQuery expression and there is no clear definition of the
supported features and expressions of the language.

[Wu 2002] have presented an approach for mapping XML data into 2D space
and maintaining certain statistics for data which fall into each pre-defined grid
over the workspace. In this approach, each node x in an XML document D is
associated with a pair of numbers, start(x) and end(x), numeric labels representing
the pre-order and post-order ranks of the node in the XML document D. Each
descendant node has an interval that is strictly included in its ancestors interval.
For each basic predicate P a two-dimensional histogram summary data structure
is built and collectively named as position histograms. In the position histograms
data structure, the start values are represented by the x−axis while the end values
are represented the y− axis. Each grid cell in the histogram represents a range of
start position values and a range of end position values. The histogram maintains
a count of the number of nodes satisfying the conditions of predicate P and has
start and end positions within the specified ranges of the grid cell. Since the start
position and end position of a node always satisfies the formula start <= end,
none of the nodes can fall into the area below the diagonal of the matrix. So, only
the grid cells that reside on the upper left of the diagonal can have a count of more
than zero.
Given a predicate P1 associated with the position histograms H1 and a predicate
P2 associated with the position histograms H2, estimating the number of pair of
nodes u,v where u satisfies P1 and v satisfies P2 and u is an ancestor of v is done
either in an ancestor− based fashion or in a descendant − based fashion. The
ancestor− based estimation is done by finding the number of descendants that
joins with each ancestor grid cell. The descendant− based estimation is done by
finding the number of ancestors that are joined with each descendant grid cell.
The authors presented another type of histograms named coverage histogram to
increase the accuracy of the estimation in cases where the schema information is



28 Chapter 2. State of the Art

available. For a given predicate P, using the schema information it can be known
if the two nodes satisfying the predicate do not have any ancestor-descendant
relationship. To deal with this no-overlap situation, additional information is stored
in the form of a coverage histogram. The coverage histogram for a predicate P
Cvgp[i][ j][m][n] represents the number of nodes in cell (i, j) that are descendants
of nodes in cell (m,n) satisfying P. Although, the model handles the estimation of
twig queries well, it is very limited to the ancestor and descendant paths and has
no clear way for extension to the other paths. Moreover, the number of constructed
position histograms is proportional to the number of the interested predicates
which is considered to be relatively high.

Follow-up work has improved on the ideas of interval histograms by leveraging
adaptive sampling techniques [Wang 2003]. In this work, the proposed technique
treats every element in a node set as an interval, when the node set acts as the
ancestor set in the join or a point or when the node set acts as the descendant set.
Two auxiliary tables are then constructed for each element set. One table records
the coverage information when the element set acts as the ancestor set, while the
other captures the start position information of each element when the element
set acts as the descendant set. To improve the accuracy of the estimated results,
sampling-based algorithms are used instead of the two-dimensional uniform
distribution assumption as used in [Wu 2002].

[Wang 2004] have proposed a framework for XML path selectivity estimation
in a dynamic context using a special histogram structure named bloom histogram
(BH). BH keeps a count of the statistics for paths in XML data. Given an XML
Document D, the path-count table T (path,count) is constructed such that for each
pathi in D, there is a tuple ti in T with ti.path = pathi and ti.count = counti where
counti is the number of occurrences of pathi. Using T , a bloom histogram H is
constructed by sorting the frequency values and then grouping the paths with sim-
ilar frequency values into buckets. Bloom filters are used to represent the set of
paths in each bucket so that queried paths can be quickly located.

Path Count CountBloom Filter

/a/b

/a/d

999

1001

BF (/a/d, /a/b) 1000

Figure 2.6: An example path-count table and its bloom histogram. BF(P) is a bloom filter for a set of paths



2.2. Selectivity Estimation 29

Figure 2.6 illustrates an example of path-count table and its corresponding
bloom histogram.

To deal with XML data updates and the dynamic context, the authors proposed
a dynamic summary component which is an intermediate data structure from which
the bloom histogram can be recomputed periodically. When data updates arrive,
not only the XML data is updated but the updated paths are also extracted, grouped
and propagated to the dynamic summaries. Although, the bloom histogram is
designed to deal with data updates and the estimation error is theoretically bounded
by its size, it is very limited as it deals only with simple path expressions of the
form /p1/p2/.../pn and //p1/p2/.../pn.

[Li 2006] have described a framework for estimating the selectivity of XPath
expressions with a main focus on the order-based axes (following, preceding,
following-sibling, and preceding-sibling). They used a path encoding scheme to
aggregate the path and order information of XML data. The proposed encoding
scheme uses an integer to encode each distinct root-to-leaf path in the source XML
document and stores them in an encoding table. Each node in the source XML
document is then associated with a path id that indicates the type of path where
the node occurs. Additionally, they designed a PathId-Frequency table where each
tuple represents a distinct element tag and aggregates all of its associated element
tags with path ids and their frequency. To capture the order information, they used
the Path-order table associated to each distinct element tag name to capture the
sibling-order information based on the path ids. Figure 2.7 illustrates an example
of XML document and its corresponding path encoding scheme.

(a) An XML D (b) Encoding Table (c) Path Id Table

Figure 2.7: An XML document D and its path encoding scheme

For estimating the cardinality of XPath expressions, the authors introduced the
Path Join algorithm. Given an XPath query Q, the path join retrieves a set of path
ids and the corresponding frequencies for each element tag in Q from the PathId-
Frequency table. For each pair of adjacent element tags in Q, they use a nested
loop to determine the containment of the path ids in their sets. Path IDs that clearly



30 Chapter 2. State of the Art

do not contribute to the query result will be removed. The frequency values of the
remaining path ids will be used to estimate the query size. The algorithm uses the
information of the path-order table to compute the selectivity of the (following-
sibling, preceding-sibling) axes that may occur in Q. The XPath expression which
involves the preceding or following axes is converted into a set of XPath expres-
sions involving only preceding-sibling or following-sibling axes according to the
path ids of the nodes associated with preceding or following axes after the path ID
join. Then, the estimation result is given by the selectivity sum of the set of path
expressions. The authors introduced two compact summary structures called p-
histogram and o-histogram, to summarize the path and order information of XML
data respectively. A p-histogram is built for each distinct element tag to summarize
the pathId-frequency information. In this histogram, each bucket contains a set of
path ids and their average frequency value. Based on the observation that the path-
order table is very sparse and the frequencies in the majority of the cells are zero,
the o-histogram is designed to summarize the path-order information where only
the cells with non-zero values are stored. Although, the proposed model is the first
work to address the problem of cardinality estimation of XPath expression with
order-based axes, it is unfortunately not clear how an extension can be introduced
to support predicates.

2.2.3 Summary - The Choice of the Path tree Synopsis
Some of the main usages of selectivity estimation techniques are to accelerate
the performance of the query evaluation process and to estimate the cost for a
given query. Furthermore, a good technique should be able to provide accurate
estimates for a large fragment of XPath. These techniques should also support
structural and data value queries. The synopsis of the estimation technique should
be constructed rapidly (one pass on the XML Data) for the different types (deep,
large, recursive,..etc.) of XML data sets. In addition, the required summary
structure(s) for achieving the selectivity estimation process must be efficient in
terms of memory and space consumption.
Our main objective is to build an estimation selectivity technique for the fragment
of Forward XPath (defined in 1.1.1.2) with the above mentioned features.

Below, we summary and compare the related work based on the following cri-
teria:

• The Fragment of XPath: Some techniques estimate the selectivity for only
path expressions and they do not support twigs, e.g., [Aboulnaga 2001],
[Wang 2004], [Li 2006], and [Fisher 2007]. Others, support twigs with struc-
tural queries only, so can not support twigs with text(), e.g., [Zhang 2006b]
and [Polyzotis 2004a].

The XSeed technique [Zhang 2006b] can not process a nested expres-
sions (nested predicates) [Sakr 2010]. While the TreeSktech technique



2.2. Selectivity Estimation 31

[Polyzotis 2004a] does not support queries with Ancestor-Descendant rela-
tionships neither queries with ′text()′ [Luo 2009].

The XCLUSTER [Polyzotis 2006] addresses the summarization problem for
structured XML content, but its construction time is unknown. Furthermore,
as it is mentioned in [Sakr 2010] it does not process a nested expressions
(nested predicates).

Some work has been conducted to estimate the selectivity for XQuery.
The design and implementation of a relational algebraic based framework
for estimating the selectivity of XQuery expressions was described in
[Saker 2007], [Saker 2008].

• The construction time of the Synopsis: few papers present the time needed
to construct their synopses (summaries). The construction time of TreeSk-
tech [Polyzotis 2004a] for the complex data set TreeBank 86MiB (depth 36)
took more than 4 days, this result was confirmed in [Luo 2009]. XSeed treats
the structural information in a multi-layer manner, the XSeed synopsis is sim-
pler and more accurate than the TreeSketch synopsis. However, although the
construction of XSeed is generally faster than that of TreeSketch, it is still
time-consuming for complex datasets.

Other techniques, do not present the construction time for their synopses
(summaries), for example: XCLUSTER [Polyzotis 2006].

• Recursion in the data set : the XSeed and the XCLUSTER synopses
are more general than the TreeSketch synopsis because the latter does not
support the recursion in the data sets as it is explained in [Zhang 2006b].

• Selectivity of structural queries and synopsis size: several structure
synopses, such as Correlated Suffix Trees [Chen 2001], Twig-Xsketch
[Polyzotis 2004b], TreeSketch [Polyzotis 2004a], and XSeed [Zhang 2006b]
store some form of compressed tree structures and simple statistics such
as node counts, child node counts, etc. Due to the loss of information (in
particularly the structure of the original data set), selectivity estimation
heavily relies on the statistical assumptions of independence and uniformity.
Consequently, they can suffer from poor accuracy when these assumptions
are not valid. The above proposed structures synopses can not be evaluated
by ordinary query evaluation algorithms, they require specialized estimation
algorithms.

• Incremental update: minimal synopsis size seems desirable but won′t be the
best because incremental maintenance would be difficult [Goldman 1997].



32 Chapter 2. State of the Art

This is the case of many selectivity estimation techniques such as: Correlated
Suffix Trees [Chen 2001], TreeSketch and XSeed.

The path tree structure synopsis was introduced by [Aboulnaga 2001] to es-
timate the selectivity for path expression only. This structure was used by
[Zhang 2005]. But to the best our knowledge, this structure was not formally de-
fined in the literature. It has overall advantages like complete structural information
and the possibility of being evaluated by streaming algorithms. This synopsis cap-
tures the structure of the XML document and permits by using an efficient stream-
querying algorithm to estimate efficiently the selectivity for any query belongs to
the fragment of Forward XPath.

We propose to use a stream-querying algorithm and an adapted path tree syn-
opsis to optimize and improve the space consumption of the selectivity estimation
process.

In the next section 2.3, we present several stream-processing approaches, we
then compare them to find the best approach that can be used to traverse the path
tree structure synopsis and to estimate efficiently the selectivity for any query which
belongs to the fragment of Forward XPath.
Then the next chapter 3, we formally define the path tree synopsis. Furthermore,
we give different algorithms to construct and update it.

2.3 Stream-processing Approaches
Much research has been conducted to study the processing of XML documents in
streaming fashion. The different approaches to evaluate XPath queries on streams
of XML data can be categorized as follows (1) stream-filtering: determining
whether there exists at least one match of the query Q in the XML document D,
yielding a boolean output, for example XTrie [Chan 2002]. (2) Stream-querying:
finding which parts of D match the query Q. This implies outputting all answer
nodes in a XML document D i.e. nodes that satisfy a query Q. An example of
stream-querying research is XSQ [Peng 2003].

Below, we present some existing algorithms for each category.

2.3.1 Stream-filtering Algorithms

A filtering system delivers documents to users based on their expressed interests
(queries). Figure 2.8 shows the context in which a filtering system operates. There
are two main sets of inputs to the system: user profiles (queries) and the stream
of documents. User profiles describe the information preferences of individual
users. These profiles may be created by the users themselves, e.g., by choosing
items in a Graphical User Interface, or may be created automatically by the system



2.3. Stream-processing Approaches 33

using machine learning techniques. The user profiles are converted into a format
that can be efficiently stored and evaluated by the filtering system. These profiles
are effectively standing queries which are applied to all incoming documents.
Hereafter, profiles and queries are used interchangeably.

Figure 2.8: Overview of a filtering system

The other key inputs to a filtering system are the document streams containing
continuously arriving documents from data sources. These documents are to be
filtered and delivered to users or systems in a timely fashion. Filtering is performed
by matching each arriving document against all of the user profiles to determine the
set of interested users. The document is then delivered to this set of users. In our
system, documents are processed one-at-a-time. That is, incoming documents are
placed in a queue, a document is removed from the queue and processed in its
entirety (i.e., matched with all relevant queries) before processing is initiated for
the next document. As filtering systems are deployed on the internet, the number
of users for such systems can easily grow into the millions. A key challenge in such
an environment is to efficiently and quickly search the huge set of user profiles to
find those for which the document is relevant.

Various stream-filtering systems have been proposed. Below we explain some
of them.

XFilter [Altinel 2002] is the first filtering system that addresses the processing
of streaming XML data. It was proposed for for selective dissemination of infor-
mation (SDI). For structure matching, XFilter adopts some form of Finite State
Machine (FSM) to represent path expressions in which location steps of path ex-
pressions are mapped to machine states. Arriving XML documents are then parsed
with an event-based parser, the events raised during parsing are used to drive the
FSMs through their various transitions. A query is said to match a document if
during parsing, an accepting state for that query is reached.

In the filtering context, large numbers of queries representing the interests of
the user community are stored and must be checked upon the arrival of a new
document. In order to process these queries efficiently, XFilter employs a dynamic



34 Chapter 2. State of the Art

index over the states of the query FSMs and includes optimizations that reduce
the number of path expressions that must be checked for a given document. In
large-scale systems there is likely to be significant commonality among user
interests, which could result in redundant processing in XFilter.

YFilter [Diao 2002] is an XML filtering system aimed at providing efficient
filtering for large numbers (e.g., 10′s or 100′s of thousands) of queries. The key
innovation in YFilter is an Nondeterministic Finite Automaton (NFA)-based rep-
resentation of path expressions which combines all queries into a single machine.
Figure 2.9 illustrates an examples of this NFA, where all common prefixes of the
paths are represented only once in the NFA.

Figure 2.9: XPath queries and a corresponding NFA

A basic path matching engine of YFilter is designed to handle query that
are written in a subset of XPath. YFilter focuses on two common axes: the
parent-child axis ′/′, and the ancestor-descendant axis ′//′. It support node tests
that are specified by either an element name or the wildcard ′∗′ (which matches
any element name). Predicates can be applied to address contents of elements or
to reference other elements in the document.

In [Böttcher 2007] a SAX Based approach is introduced to evaluate the XPath
queries that support all axes of Core XPath. Each input query is translated into an
automaton that consists of four different types of transitions. The small size of the
generated automata allows for a fast evaluation of the input stream of XML data
within a small amount of memory. The authors implemented a prototype called
XPA. The query processor decomposes and normalizes each XPath query, such
that the resulting path queries contain only three different types of axes, and then
converts them into lean XPath automata for which a stack of active states is stored.
The input SAX event stream is converted into a binary SAX event stream that
serves as input of the XPath automata.
In [Böttcher 2007], it is shown that XPA consumes far less main memory than



2.3. Stream-processing Approaches 35

YFilter [Diao 2002]. XPA consumes from 20% of the document size on average
for simples XPath queries without predicate filters up to 50 % of the document
size on average for paths with predicate filters.

The XTrie [Chan 2002] technique is built on top of the XFilter approach and
claims 2-4 times improvement in speed over the XFilter [Altinel 2002] system.
Its authors proposed a trie-based index structure, which decomposes the XPath
expressions (XPEs) to substrings that only contain parent-child axis. As a result,
the processing of these common substrings among XPath expressions (XPEs) can
be shared.

The three key prominent features of XTrie can be summarized as follows: (1)
it can filter based on complex and multiple path expressions, (2) it supports both
ordered and un-ordered matching of XML documents, (3) since XTrie uses sub-
strings, instead of elements names to index, the authors claim that XTrie can reduce
both the number of unnecessary index probes and avoid redundant matching.
Figure 2.10 illustrates an example of XTrie. First, the XPath queries are decom-
posed into substrings, then, in the substring-table ST a row is created for each
substring of each indexed XPE. Finally, the trie T is created. T is a rooted tree con-
structed from the set of distinct substrings S, where each edge in T is labeled with
some element name. Each node N in T has two special pointers: (1) the substring
pointer points to some row in ST (2) The Max-suffix pointer points to some internal
node in T and its purpose is to ensure the correctness of the matching algorithm.
The substring-table ST contains one row for each substring of each indexed XPE.

Figure 2.10: XTrie example.

XTrie is designed to support online filtering of streaming XML data and is
based on the SAX event-based interface that reports parsing events, the search
procedure for the XTrie, which accepts as input an XML document D and an



36 Chapter 2. State of the Art

XTrie index (ST,T ), processes the parsing events generated by D, and returns the
identifiers of all the matching XPEs in the index. XTrie outperformed XFilter
[Altinel 2002]. But YFilter [Diao 2002] has demonstrated a better performance
than XTrie on certain workloads.

In [Bar-Yossef 2004] the authors initialized a systematic and theoretical study
of lower bounds on the amount of memory required to evaluate XPath queries over
streams of XML data. They present a general lower bound technique, which given
a query, specifies the minimum amount of memory that any algorithm evaluating
the query on a stream would need to incur.
The first memory lower bound is the query frontier size. When a query Q is
represented as a tree, the frontier size at a node of this tree is the number of siblings
of this nodes, and its ancestors′ siblings. The query frontier size of Q is the largest
frontier over all nodes of Q. The second lower bound is the document recursion
depth. The recursion depth of a tree t with respect to a query Q is the maximal
number of nested nodes matching a same node in Q. The third lower bound is the
logarithmic value log(d), where d is the depth of the document t.
Based on these bounds a stream-filtering algorithm was proposed to optimize
the space complexity, it deviates from some paradigms that use automata or
transducers. The algorithm transforms the query into NFA and uses different
arrays for matching the stream of XML data. For queries in the fragment of
Univariate XPath, the space complexity of the algorithm is O(|Q|. r. (log|Q|+ log
d + log r)), where |Q| is the query size, r is the document recursion depth, and
d is the document depth. The time complexity is O(|D|.|Q|.r), where |D| is the
document size.

XPush machine [Gupta 2003] was proposed to improve the performance of
stream-filtering. It processes a large number of XPath expressions, each with
many predicates, on a stream of XML data. The XPush machine is constructed
lazily by creating an AFA (Alternating Finite Automaton) for each expression, and
then transforming the set of AFAs into a single DPDA (Deterministic Pushdown
Automaton). This is similar to the algorithm for converting an NFA to a DFA as
described in the standard textbook on automata where stack automata are defined
[Hopcroft 1979].
Existing systems (e.g. YFilter [Diao 2002]) can identify and eliminate common
subexpressions in the structure navigation part of XPath queries. This technique
focuses on eliminating redundant work in predicate evaluation part. For examples,
given the following two path expression
P1 = //a[./b/text() = 1 and .//a[@c > 2]] and
P2 = //a[@c > 2 and ./b/text() = 1], previous techniques cannot exploit the fact
that the predicate [./b/text() = 1] is common.



2.3. Stream-processing Approaches 37

Since inherently the XPush machine cannot be partially updated, addition of a
single expression necessitates recalculation (i.e., reconstruction) of the XPush
machine as a whole. In other words, the cost of updating an automaton depends on
the total number of AFAs (or expression).To solve this problem [Takekawa 2007]
proposed an integrated XPush machine, which enables incremental update by
constructing the whole machine from a set of sub-XPush machines. The evaluation
result positively demonstrates that efficient partial change of the AFAs is possible
without significantly affecting all of the state transition tables.

Recently, SFilter [Nizar 2009b] was proposed. SFilter indexes the queries com-
pactly using a query guide and uses simple integer stacks to efficiently process the
stream of XML data.
A query guide G is an ordered tree representation of all the path expressions that
exploits the prefix commonality between the path expressions such that (i) the root
of G is the same as the dummy root ′r′ of the path path expressions and (ii) the
root-to-result node path of each path expression appears in G as a path that starts at
node ′r′ and ends at a descendant node and the path has the same node labels and
edge constraints (i.e., P-C or A-D edge) of the path expression.
The basic idea of this approach is to process the streaming XML data one tag at
a time using the query guide representing the given path expressions. At any time
during execution, the algorithm maintains a sequence of elements S in the stream
whose open-tags have been seen but close-tags are yet to arrive. It maintains an
integer stack at every query guide node to keep track of the current sequence of
tags S in the stream. Each value in the stack represents the depth of an element in
the stream that matches with the query guide node to which the stack is associated.
Note that this number can uniquely identify a node in the stream as there will be ex-
actly one node at a given depth in the current (or active) path in the document tree,
represented by S. The input stream of XML data is first parsed by a SAX parser
that generates a stream of SAX events, which is input to the query processor. The
algorithm starts by pushing a depth value 0 into the stack for the root node r of the
query guide. It then proceeds by responding to the open-tag and close-tag events
generated by the SAX parser.
One problem with the basic query guide and the corresponding algorithmic ap-
proach mentioned above is the overhead associated with wildcard node processing.
Note that, since wildcard matches any tag, the query guide nodes with wild card
label are to be processed for every element in the stream. This overhead can be
partly overcome by what it is called the vertical compression of the query guide
and slight modifications of the event processors.

Figure 2.11 (b) illustrates the query guide of the path queries of figure 2.11 (a).
Note that, figure 2.11 (c) is a representation of the query guide of (b) where the
query edges are labeled with the expected depth. While figure 2.11 (c) is the ver-



38 Chapter 2. State of the Art

Figure 2.11: A data guide and its vertical compression.

tical compression, they vertically collapse paths in the query guide by eliminating
wildcard nodes. For example: consider a path a ∗ b in the query guide. This
path can be collapsed into a path without the wild card node. While doing so, the
expected depth labels in paths a b and ∗ b are combined.

Thought that SFilter outperforms YFilter [Diao 2002] in term of time and
space for path expressions, this approach does not support predicates.

Stream-filtering approaches deliver whole XML documents which satisfy the
filtering condition to the interested users. Thus, the burden of selecting the inter-
esting parts from the delivered XML documents is left upon the users. We therefore
concentrate on stream-querying as more general and useful approach for our per-
formance prediction (cost) model.

2.3.2 Stream-querying Algorithms
Holistic XML matching algorithms are prevalent for matching pattern queries
over stored XML data. They demonstrate good performance due to their ability to
minimize unnecessary intermediate results. In particular, [Bruno 2002] proposed
the first merge-based algorithm, which scans input data lists sequentially to match
twig patterns. Such merge-based algorithms can be further improved by structure
indexes that can reduce sizes of input lists [Chen 2005]. Index-based holistic joins
[Jiang 2003] were also proposed to speedup the matching of selective queries, as
an improvement over merge-based algorithms. In contrast, streaming algorithms
assume that XML documents are not parsed in advance and they come in the
form of SAX events. Sometimes even ad-hoc XML documents can be regarded as
streams of XML data if using a SAX parser is the best way to access them.



2.3. Stream-processing Approaches 39

A large amount of work has been conducted to process XML documents in
streaming fashion. The different stream-querying approaches to evaluate XPath
queries on XML data streams can be categorized by the processing approach they
use. Most of them are automata based, for example: XPush [Gupta 2003], XSQ
[Peng 2003], SPEX [Olteanu 2007] or Parse tree based, for example: [Chen 2006],
[Barton 2003], [Gou 2007]. We highlight below some of the existing work .

In [Peng 2003], authors proposed XSQ a method for evaluating XPath queries
over streams of XML data to handle closures, aggregation and multiple predicates.
Their method is designed based on hierarchical arrangement of pushdown trans-
ducers augmented with buffers. Automata is extended by actions attached to states,
extended by a buffer to evaluate XPath queries.
The basic idea of XSQ is to use a pushdown transducer (PDT) to process the events
that are generated by a SAX parser when it parses XML streams. A PDT is a push-
down automaton (PDA) with actions defined along with the transition arcs of the
automaton. A PDT is initialized in the start state. At each step, based on the next
input symbol and the symbols in the stack, it changes state and operates the stack
according to the transition functions. The PDT also defines an output operation
which could generate output during the transition. In the XSQ system, the PDT
is augmented with a buffer so that the output operation could also be the buffer
operation.
Notice that the PDT generated for each location step of an XPath expression is
called a basic pushdown automaton (BPDT). The BPDTs are combined into one
Hierarchical PDT (HPDT).

Figure 2.12 illustrates the HPDT of the query
//pub[./year > 2000]//book[./author]//name/text(). The figure shows how
BPDTs are combined into one HPDT.
As it is shown in [Gou 2007] XSQ does not support the AND operator. Further,
XSQ does not support same node-labels in a query, and requires that each axis
node have at most one (′/′) predicate node child.

[Chen 2006] proposed a lazy stream-querying algorithm, TwigM, to avoid
the exponential time and space complexity incurred by XSQ. TwigM extends
the multi-stack framework of the TwigStack algorithm [Bruno 2002]. It uses
a compact data structure to encode patterns matches rather than storing them
explicitly which is a memory advantage. After that, it computes query solution
by probing the compact data structure in Lazy fashion without computing pattern
matches. The output consists of XML fragments.
In [Chen 2006], it is shown that TwigM can evaluate Univariate XPath in poly-
nomial time and space in the streaming environment. Specifically, TwigM works
in O(|D|.|Q|(|Q|+ dD.B)) time and uses O(|Q|.r) caching space. Where r is the



40 Chapter 2. State of the Art

Figure 2.12: HPDT of //pub[./year > 2000]//book[./author]//name/text()

recursion in D and dD is the maximum depth of D. However, like XSQ, TwigM
might have to buffer multiple physical copies of a potential answer node at a time,
which is a space problem for recursive documents or data sets.

The SPEX [Bry 2005] [Olteanu 2007] system processes XPath expressions
with forward axes by mapping it to a network of transducers. Query re-writing
methods [Olteanu 2002] are used to transform expressions with backward axes
to ones containing only forward axes. Most transducers used are single-state
pushdown automata with output tape. For path expressions without predicates, the
transducer network is a linear path; otherwise, it is a directed acyclic graph. Each
transducer in the network processes, in stepwise fashion, the stream of XML data
it receives and transmits it unchanged or annotated with conditions to its successor
transducers.
The transducer for the result node holds potential answers, to be output when
conditions specified by the query are found to be true by the corresponding
transducers. Due to the absence of built-in order information, the system processes
and caches large number of stream elements which will be found useless later.

TurboXPath [Josifovski 2005] is an XML stream processor evaluating XPath
expressions with downward and upward axis, together with a restricted form
of for-let-where (FLOWR in XQuery) expressions. Hence, TurboXPath returns



2.3. Stream-processing Approaches 41

tuples of nodes instead of nodes.
In TurboXPath [Josifovski 2005] the input query is translated into a set of parse
trees. Whenever a matching of a parse tree is found within the stream of XML,
the relevant data is stored in form of a tuple that is afterward evaluated to check
whether predicate and join conditions are fulfilled. The output is constructed out
of those tuples of which have been evaluated to true.

In [Han 2008] the authors studied the problem of extracting flattened tuple data
from streaming, hierarchical XML data. For this goal, they proposed StreamTX,
in this approach they adapt the holistic twig joins for tuple-extraction queries
on streaming XML with two novel features: first, they use the block-and-trigger
technique to consume streaming XML data in a best-effort fashion without com-
promising the optimality of holistic matching; second, to reduce peak buffer sizes
and overall running times, they apply query-path pruning and existential-match
pruning techniques to aggressively filter irrelevant incoming data.According to
their experiments, StreamTX has demonstrated superior performance advantage
over TurboXPath [Josifovski 2005], both for positive queries and negative queries.
The advantage is particularly significant for negative queries.

Some stream-querying systems for evaluating XQuery queries have been
developed, such as BEA/XQRL [Florescu 2003], Flux [Koch 2004], and XSM
[Ludascher 2002].

[Zhang 2006a] introduced a streaming XPath algorithm (QuickXScan). It
is based on the principles similar to that of attribute grammars. There is a nice
solution of using compact stacks to represent a possibly combinatorial explosive
number of matching path instantiations with linear complexity like [Jiang 2003],
therefore, QuickXScan extends the idea of compact stacks in a technique called
matching grid, which is used also in [Ramanan 2005]. QuickXScan represents
queries using a query tree, together with a set of variables and evaluation rules
associated with each query node. In this approach, there is a set of interrelated
stacks, one for each query node to keep XML data nodes that match with the query
node. Active query nodes can be precisely tracked with maximum up to the query
size.
Though, this approach handles queries containing child and descendant axes with
complex predicates, it is not clear whether it supports queries with wildcard.
The time complexity of this QuickXScan O(|Q|.r.|D|) while the space complexity
is O(|Q|.r), where |Q| is the query size, |D| is the document size, and r is the
recursion in the document.



42 Chapter 2. State of the Art

The authors of [Chen 2004] presented a model of data processing for informa-
tion system exchange environment. It consists of a simple and general encoding
scheme for servers, and algorithms of streaming query processing on encoded
stream of XML data for data receivers with constrained computing abilities
"binary encoding". The EXPedite query processor takes an encoded stream
of XML data and an encoded XPath query as input, and outputs the encoded
fragment in the stream of XML data that matches the query. The idea of the query
processing algorithm is taken from different proposed techniques [DeHaan 2003],
[Grust 2002] for efficient query evaluation based on XML node labels for XML
data stored in the database.

In [Gou 2007] authors proposed two algorithms to evaluate XPath over streams
of XML data, they are (1) Lazy streaming algorithm (LQ). (2) Eager streaming al-
gorithm (EQ). Algorithms accept XML document as a stream of SAX events. The
fragment of XPath used is called Univariate XPath. The goal of both algorithms is
to prove that Univariate XPath can be efficiently evaluated in O(|D|.|Q|) time in
the streaming environment and to show that algorithms are not only time-efficient
but also space-efficient.
These algorithms take two input parameters. The first one is the XPath expression
(which respects Univariate XPath to allow stream-processing) that will be trans-
formed to a query table throughout stream processing and statically stored on the
memory . After that, the main function is called. It reads the second parameter
(XML in SAX events syntax) line by line repeatedly, each time generating a tag.
Based on that tag a corresponding startBlock or endBlock function is called to
process it. Finally, the main function generates as output the result of the XPath
query.
Both algorithms were proposed to handle two challenges of stream-querying that
were not solved by XSQ [Peng 2003] and TwigM [Chen 2006]. These challenges
are: recursion in the XML document and the existence of same node-labels in the
XPath expression.
Based on their experiments, both LQ and EQ algorithms show very similar time
performance in practice. In non-recursive (there are no nodes of a certain type can
be nested in another nodes of the same type) cases, LQ and TwigM [Chen 2006]
has the same buffering space costs, as well as, EQ and XSQ [Peng 2003] has the
same cost.

In [Nizar 2008] the authors other proposed an approach for encoding and
matching XPath queries with forward (child, descendant, following, following-
sibling) axes against streaming XML data. For this purpose, they propose an
Order-aware Twig (OaT) that is a tree structure rooted at a node labeled ′r′ known
as the root of the OaT. There are three types of relationship edges P-C edge, A-D



2.3. Stream-processing Approaches 43

edge and closure edge (it is used to handle XPath expressions containing an axis
step with f ollowing− sibling). Moreover, OaT has two types of constraint edges
LR edge and SLR edge.
The match of an OaT against an XML document is a mapping from nodes in the
OaT to nodes in the document satisfying the node labels and relationships and
constraints between the nodes of the OaT.
The algorithm processes branches of the twig in left-to-right order. A branch is
never processed unless constraints specified in the preceding branches are satisfied
by the stream. Also, the algorithm avoids repeated processing of branches whose
constraints have already been satisfied by the stream. The complexity of this
algorithm is not given, and only experimentally studied. Recently, the authors also
investigate the streaming evaluation of backward axes [Nizar 2009a].

2.3.3 Summary - Lazy Stream-querying Algorithm LQ

In this section, we highlight some important features required in the stream-
querying algorithm that we seek, then, we justify our choice for the the lazy stream-
querying algorithm LQ.

1. It is well known that XPath can be efficiently evaluated in O(|D|.|Q|) time
in a non-streaming environment, where |D| is the XML data size and |Q| is
the XPath query size. However, it has been an open problem whether such
O(|D|.|Q|) time performance could be achieved in a streaming environment.
In fact, many existing streaming algorithms incur much higher time costs
than O(|D|.|Q|). Therefore we need an algorithm which processes the frag-
ment of Forward XPath in O(|D|.|Q|) time.

2. We note that XPath features such as (multiple and nested) predicates, clo-
sures (descendant axis ′//′), same node-labels, and aggregations are impor-
tant usability advantages, especially if the data is semi-structured or has a
structure unknown to the query formulator. It is difficult to write a useful
query on data whose structure is (partly) unknown without using closure.
Similarly, predicates permit a more accurate delineation of the data of in-
terest, leading to smaller, and more usable results. The challenges posed by
these features are exacerbated by data that has a recursive structure. A survey
of 60 real datasets found 35 to be recursive [Choi 2002]. Therefore, We need
and efficient algorithm which handles these features of XPath.

Some XPath or XQuery stream-querying systems, such as BEA/XQRL
[Florescu 2003], TurboXPath [Josifovski 2005], and XSM [Ludascher 2002] are
not publicly available at this time, while some publicly available XPath or XQuery
querying systems, such as Galax [Fernández 2010], XMLTaskForce [Gottlob 2002]



44 Chapter 2. State of the Art

and Saxon [Kay 2010], use non-streaming algorithms. XSQ is an open-source sys-
tem [Peng 2003], while TwigM [Chen 2006] is not publicly available at this time.

The XMLT K system [Green 2003] does not support predicates in XPath
expressions. Therefore, whenever it encounters an element that matches the path
expression in a query, it can write it to output. In contrast, if the query includes
predicates, the membership of an element in the query result cannot be decided
immediately in general. The XSM system [Ludascher 2002] handles predicates
in the query but it does not handle closures and aggregations (it assumes that the
query does not contain the axis ′//′ ). As it is explain in [Gou 2007], both XSQ
and TwigM do not handle efficiently the recursive structure of the documents
XML, neither the existence of the same node-labels in the XPath expression. XSQ
and TwigM might have to buffer multiple physical copies of a potential answer
node at a time.
Other approaches handle the complete fragment of Forward XPath, for example
[Nizar 2008], unfortunately the complexity of this approach is unknown.

In [Gou 2007], authors proved that Univariate XPath can be efficiently evalu-
ated in O(|D|.|Q|) time. Moreover, the proposed algorithms handle recursion in
the XML document and existence of the same node-labels in the XPath expression
efficiently. Furthermore, their algorithm is clearly explained and can be extended
to process the fragment of Froward XPath without changing its complexity.

For these reasons, we chose the Lazy stream-querying algorithm (LQ) of
[Gou 2007] as basis of our work. As we will explain later ( chapter 4), this
algorithm will be extend to handle: ′text()′, attributes, predicates with (′and′, ′or′,
′not ′), and nested predicates. Then, our selectivity estimation algorithm will be
based on the extended LQ algorithm.

In the next chapter 3, we present the path tree, a structure for XML-
summarization that is used for accurate selectivity estimates, which was informally
introduced by [Aboulnaga 2001] and used by [Zhang 2005]. Furthermore, we in-
troduce two techniques to construct this synopsis structure. Finally, we explain the
incremental construction process and the updating of the path tree.
In chapter 4, we present our selectivity estimation technique which uses the path
tree structure synopsis and our selectivity estimation algorithm (that is inspired
from the lazy stream-querying algorithm LQ [Gou 2007] ) to estimate the selectiv-
ity for any query which belongs to the fragment of Forward XPath.



CHAPTER 3

Path tree: Definition, Construction,
and Updating

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 The XML Data Model . . . . . . . . . . . . . . . . . . . . 46

3.2 Path tree Definition . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Path tree Construction: Automata Technique . . . . . . . . . . 48

3.3.1 Automaton Definition A . . . . . . . . . . . . . . . . . . . 49

3.3.2 Automata Transformation into a Graph Doc(A) . . . . . . 52

3.3.3 Automata Minimization AMin . . . . . . . . . . . . . . . . 53

3.3.4 Example of Path tree Construction: Automata Technique . 54

3.4 Path tree Construction: Streaming Technique . . . . . . . . . . 58

3.4.1 Path tree Construction . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Path tree Updating . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Introduction
Querying a large stream of XML data poses a challenge to many stream-querying
algorithms or applications because of the computational costs associated with
this large volume. In many cases, synopsis data structures and statistics can be
constructed from streams of XML data to summarize their structure and content,
which are useful for a variety of applications. An important example application is
query cost estimation: the problem is to provide accurate and efficient estimations
of the query’s cost in terms of space used and time spent.
Moreover, estimation is useful in itself to judge on the relevance of a query before
running it, and is necessary for query optimization.

XML queries are often expressed as XPath expressions because of the tree-
structured nature of XML data. Cost-based optimization for querying XML data
streams requires calculating the cost of query operators. Usually the cost of an
operator for a given XPath query depends heavily on the number of the final



46 Chapter 3. Path tree: Definition, Construction, and Updating

results returned by the query in question, and the number of temporary results
that are buffered for its sub-queries [Zhang 2005]. Therefore accurate selectivity
estimation is crucial for cost-based optimization.

Selectivity is a count of the number of matches for a query Q evaluated on an
XML document D. This selectivity does not measure the size of these matches.
Furthermore, it measures neither the total amount of memory allocated by the
program to find these matches (space used) nor the processor time used by the
program to find the matches (time spent). In addition, there are many parameters
that influence streaming computational costs (as explained in chapter 1): the lazy
vs eager strategy of the stack-automaton, the size and quantity of XPath query
results which depend on the XPath query operator, the size and structure of the
document etc. The author of an XPath query may have no immediate idea of what
to expect in memory consumption and delay before collecting all the resulting
sub-documents.

As a result, selectivity estimation appears necessary but incomplete as a
technique for managing queries on large documents accessed as streams. We will
therefore compute a synopsis data structure from the input XML document D.
The purpose is to obtain a small but full structure summary that is traversed by an
efficient streaming algorithm to accurately estimate the selectivity and/or to reduce
the computational overhead of complex XPath queries on D.

In this chapter, we present the path tree, a structure for XML-summarization
that is used for accurate selectivity estimates, which was informally introduced
by [Aboulnaga 2001] and used by [Zhang 2005]. To the best of our knowledge the
path tree was not formally defined in the literature. We therefore, formally define it.
Furthermore, we introduce two techniques to construct this synopsis structure, they
are: one automaton technique and one streaming technique. Finally, we explain the
incremental construction process and updating of the path tree.

3.1.1 The XML Data Model

Before defining the path tree we start by defining the XML document.
An XML document is modeled as a rooted, ordered, labeled tree, where each node
corresponds to an element, attribute or a value, and the edges represent (direct)
element-subelement or element-value relationships. An XML document, when
passed through a SAX [Brownell 2002] parser, will generate a sequence of events.
A streaming algorithm processes the SAX events, which are: startElement(X , l)
and endElement(X). They are produced respectively when the opening or closing
tag of a element is encountered and accept the name of the element X as input pa-
rameter. When a text value is encountered, the event Text(value) is activated. The
list l for StartElement(X , l) represents the list of attributes for the element name



3.2. Path tree Definition 47

X .
Figure 3.1 illustrates an example of an XML document D and a snapshot of its

SAX parser events.

A

B

A E A C

text 150KiB B

C E

text 140KiB B C B

E C D C E

(a) The XML Document D

- - - -

- - - -

- - - -

- - - -

Text("text.....")

(b) A snapshot for the SAX parser events of D

Figure 3.1: The XML Document D and a snapshot of its SAX parser events

Remarks:

• Unlike some (abstract syntax) trees, the number of subtrees at an XML node
is not a priori bounded.

• The sequence of SAX events amounts to a leftmost depth-first traversal of
the XML tree.

3.2 Path tree Definition
The path tree is a concise, accurate, and convenient summary of the structure
of the XML document. To achieve conciseness, a path tree describes every
distinct simple node-labeled path from the root of a source XML exactly once
with its frequency (the number of times it appears). To ensure accuracy, the path
tree does not contain node-labeled paths that do not appear in the source XML
document. The structure is convenient because it can be processed by ordinary
query evaluation algorithms (stream-querying/stream-filtering algorithms) in place
of the actual document.

Given an XML document D, the path tree is (a tree with node labels taken from
D) defined as follows:
Let paths(D) = {p = A1, A2, ...Ak ∈ Σ∗(D) | p is a node-labeled path starting from



48 Chapter 3. Path tree: Definition, Construction, and Updating

the root of D i.e. A1 is the root}.
Remark: all node-label paths in path(D) have A1 as a prefix.

Definition 1. PathTree(D) is a graph whose nodes are p ∈ paths(D) and edges are
the immediate prefix relation: (path(D), {(p1, p2) | ∃A ∈ Σ(D) such that p2 = p1A
and pi ∈ PathTree(D)} ).

Proposition 1. PathTree(D) is a tree rooted in root (D).

Proof. Tpre f ix = (Σ∗(D),{(p1, p2) | ∃A ∈ Σ(D) such that p2 = p1A}) is the Hasse-
diagram of the prefix relation on Σ∗(D) and has a tree structure. By construction
PathTree(D) is a subgraph of Tpre f ix that is connected. Therefore, PathTree(D) is
also a tree.

Remarks:

• The root of D is the root of the path tree.

• Every path 1 in D also occurs in the path tree.

• Each node in the path tree is uniquely identified by its node-labeled path
from the root. They can therefore be renamed with shorter identifiers than
the paths p themselves.

Figure 3.2 illustrates an example of an XML document D and its path tree. We
use node numbering in the path tree to show the order of nodes, e.g., the nodes A1
and A2 have the same node-labels A, but A1 appears before A2. Also, in the path
tree, the number in the bracket exist to the right of each node’s label represents its
frequency, e.g., A2(2) indicates that the frequency of A2 is 2.

3.3 Path tree Construction: Automata Technique

To create a path tree from an XML document D, we consider that D is equivalent
to a DFA that we call A and its path tree is equal to a minimized DFA that we call
AMin. For this purpose we use the automata minimizing algorithm (table-filling
algorithm) [Hopcroft 1979].

Below, we explain in details the transformation process of an XML document
D into its unique path tree.

1In this theory a path is a sequence of node labels, not to be confused with Dewey paths which
are edge-label paths



3.3. Path tree Construction: Automata Technique 49

A

B

A E A C

text 150KiB B

C E

text 140KiB B C B

E C D C E

(a) The XML Document D

A1 (1)

B1 (1)

A2 (2) E2 (1) C3 (1)

text (2) B2 (3) C2 (1)

C1 (3) E1 (3) D1 (1)

(b) The path tree of D

Figure 3.2: The XML Document D and its path tree

3.3.1 Automaton Definition A
We define the automaton associated with the XML document D as
A= (Q, Σ, δ , Q0, f ) where:

• Q: the finite set of states. Their names are defined in the recursive definition
below.

• Σ: the finite set of input symbols. Transition labels in the automaton are
taken from node labels in D.

• δ : Q∗Σ→ Q. The transition function.

• start(D): without loss of generality we assume many initial or start states,
start(D) ⊆ Q.

• f : a final or accepting state, f ∈ Q.

For a document D consisting of one node, we construct its associated automaton
A by using the function Aut() defined recursively on the tree strucutre of D as
follows.

Aut(D) = (Q(D), δ(D), Σ(D), start(D), f(D)), where (see figure 3.3):

• Q(D) = {up(D), down(D), err(D)}

• Σ(D) = {root(D)}

• δ(D)(q,root(D)) =


up(D) | q = down(D)

err(D) | q = err(D) or q = up(D)





50 Chapter 3. Path tree: Definition, Construction, and Updating

• f(D) = up(D)

• start(D) = down(D)

Here root(D) is the label of D’s (unique, root) node.

Start

F Err

E

up(D)

down(D)

root(D)

err(D)

root(D)
root(D)

Figure 3.3: The associated automaton A of a one-node document D

By construction, the language L(A) = {root(D)} the only node-labelled path in
D. See below for the value of L in general.

Based on the above base case, we define the automaton associated to a general
XML D (see figure 3.4) as follows:

A

1 D2 kD D

ED

Figure 3.4: XML document D

Aut(D) = (Q(D), δ(D), Σ(D), start(D), f(D)), where:

• Σ(D) = (∪k
i=1Σ(Di))∪{root(D)}

• Q(D) = (∪k
i=1Q(Di))− (∪k

i=1{up(Di), err(Di)}) ∪{up(D), down(D), err(D)}

• δ(D)(q,a) =


up(D) | q = down(D) ∧ a = root(D)

δ(Di)(q,a) | q ∈ Q(Di) ∧ δ(Di)(q,a) /∈ {up(Di),err(Di)}
down(D) | q ∈ Q(Di) ∧ δ(Di)(q,a) = up(Di)

err(D) | q = err(D) or q = up(D)


• f(D) = up(D)



3.3. Path tree Construction: Automata Technique 51

• start(D) = ∪k
i=1 start(Di)

Figure 3.5 shows an example of the transformation process of XML document
D into its associated automaton A by using the function Aut(D).

Aut( ) is applied recursively on the XML document D as follows: Aut(A),
calls Aut(D1) and Aut(D2). The dashed arrows coming out from states down(D1)
and down(D2) indicate that these states and transitions belong to Q(D).

Start

FErr

Start

F Err

BB

up(D)

down(D)

err(D)

D

A

up(D1)

down(D1)

err(D1) up(D2) err(D2)

down(D2)

BB

A

B B

subtree 

D2

subtree 

D1

XML document D

Aut(D1) Aut(D2)

Aut(D)

root (D) root (D)

root (D1)root (D1)
root (D2) root (D2)

Figure 3.5: An XML document D and the construction process of its associated automaton A

The final automaton associated to the XML document D is illustrated in figure
3.6.
The language of the automaton A is the union of all node-labeled paths from start
states (start(D)) to f , i.e. L(A) = {w ∈ Σ∗(D) | δ

∗
(D)(q0,w) = f ∧ q0 ∈ start(D)}

Applying the function Aut( ) on the document D requires removing specific
states and their transitions (of the figure 3.5) from the final automaton of the
document D that is illustrated in the figure 3.6. For example: states err(D1),
err(D2) and their transitions were removed.

Another more general and complete example of this transformation process is
explained in section 3.3.4.



52 Chapter 3. Path tree: Definition, Construction, and Updating

-{E}
Start

up(D)

down(D)

err(D)

D

A

down(D1) down(D2)

BB

A

B B

subtree 

D2

subtree 

D1

XML document D The automata of XML document D

root (D) root (D)

Aut(D)

Figure 3.6: An XML document D and its associated automaton A

3.3.2 Automata Transformation into a Graph Doc(A)
The edge graph [Harary 1960] associated with a given graph is defined as follows.
Given a graph G, its edge graph L(G) is a graph such that:

• each vertex of L(G) represents an edge of G; and

• two vertices of L(G) are adjacent if and only if their corresponding edges
share a common endpoint ("are adjacent") in G.

We now define the function Doc which inverts our DFA to an edge labeled
graph like the original document.
Given the automaton associated to the XML document D as A (see figure 3.7), we
transform A into D using the function Doc( ) as follows:

Doc(A) = (Nodes(A),Edges(A)), where:

• Nodes(A) = {(q,E) | δ (q,E) ̸= err(D) ∧ q ∈ Q(D)∧ E ∈ Σ(D)}.

• Edges(A) = {((q2,E2),(q1,E1)) | δ (q1,E1) = q2∧ q1,q2 ∈Q(D)∧ E1,E2 ∈
Σ(D)}.

As illustrated by figure 3.7, Nodes(A) are:
(down(D),A), (down(D1),B) and (down(D2),B). For simplicity we name them n1,
n2 and n3 respectively.



3.3. Path tree Construction: Automata Technique 53

The edges of Edges(A) are:(
(down(D),A), (down(D1),B)

)
and

(
(down(D),A), (down(D2),B)

)
, that is equal

to (n1,n2) and (n1,n3). For simplicity we call them E1 and E2 respectively.

-{E}

Start

up(D)

down(D)

err(D)

D

A

down(D1) down(D2)

BB

n1

n2 n3

XML document DThe automata of XML document D: A(D)

root (D) root (D)

Doc(A)

E1 E2

Figure 3.7: The transformation process of A into D

The result of Doc(A) is the XML document illustrated in figure 3.7.

3.3.3 Automata Minimization AMin

Automata theory defines that two states q and p are equivalent if: for all input
words w, δ (q,w) is an accepting state if and only if δ (p,w) is an accepting state.
Otherwise, the they are called distinguishable [Hopcroft 1979].

To compute states that are equivalent, we find pairs of states that are distin-
guishable. Any pairs of states that we do not find distinguishable are equivalent
according to the table-filling algorithm. It attempts discovery of distinguishable
pairs in the automaton until none are found.

Below, we explain how to minimize the automaton associated with the XML
document D by using the automata minimizing algorithm [Hopcroft 1979].

The minimization algorithm for a given A= (Q(D),δ(D),Σ(D),start(D), f(D)) de-
noted by Min(A) is:

1. Initialize a boolean matrix of all unordered pairs of states of A by setting all
entries to false. This table represents pairs of states known to be distinguish-
able. The initialization is M[p,q] = f alse, ∀(p,q), i.e the algorithm initially



54 Chapter 3. Path tree: Definition, Construction, and Updating

assumes that all states are equivalent (or non-distinguishable). The algorithm
proceeds by accumulating evidence that proves certain pairs of states to be
distinguishable.

2. For every pair (p, f(D)) where p ̸= f(D), mark (p, f(D)) to be distinguishable
(and vice versa). These are states which can not be equivalent.
M[p, f(D)] = true.

3. For each unmarked pair (p,q) and a ∈ Σ(D) i f (δ(D)(p,a),δ(D)(q,a)) is
marked, then mark (p,q). M[p,q] = true.

4. Repeat 3 until there are no changes.

5. Combine states: for each unmarked (p,q) such that p ̸= q which means
(M[p,q] = f alse) then

• For any state s ∈ Q(D) such that q = δ(D)(s,a) then
remove q = δ(D)(s,a).
add p = δ(D)(s,a)

• For any state s ∈ Q(D) such that s = δ(D)(q,a) then
remove s = δ(D)(q,a)
( for all p∈Q(D) and a∈ Σ(D) i.e. remove q and all transactions leading
to and from q).

6. The algorithm’s output is the minimized Automaton AMin

If A is a DFA and Min(A) constructed from A by the automata minimiz-
ing algorithm, then Min(A) has as few states as any DFA equivalent to A
[Hopcroft 1979], and moreover L(Min(A)) = L(A).

The complexity of this DFA minimizing algorithm is quadratic O(n2). An O(n
log n) algorithm for DFA minimizing was introduced in [Hopcroft 1971]. But to
the best of our knowledge, there is no a streaming algorithm which minimizes the
DFA in O(n). Therefore, in the section 3.4, we present a streaming algorithm to
create the path tree synopsis in linear time.

3.3.4 Example of Path tree Construction: Automata Technique

The construction process of the path tree from an XML document D is summa-
rized as follows (see figure 3.8): (1) transforming D into its associated automaton
A by using Aut(D). (2) minimizing A by using the automata minimization algo-
rithm Min(A). (3) transforming the minimized automaton AMin into its path tree
PathTree by using Doc(AMin).

Below we present and explain a complete example of this process.



3.3. Path tree Construction: Automata Technique 55

D A

Min( ) 

A
Min

Aut ( )

Doc ( )
PathTree

Figure 3.8: The construction steps of the path tree - automata technique

1. Transforming D into its associated automaton A:

Figure 3.9 represents the XML document D.

A

B

A E A C

B

C E

B C B

E C D C E

Figure 3.9: The XML document D

With respect to the automaton definition in section 3.3.1, we recursively
transform D into its associated automaton A by using the function Aut(D).
A hash table is used to store A. Figure 3.10 represents the automaton
associated to D and part of its hash table.
We start by explaining the structure of this hash table. nName: is the label of
the node, where nName ∈ Σ(D). nDown and nU p: are counters for naming
the states in the automaton (e.g. 1, 2, ...etc.). Their initialized values = 0.
Note that δ (nDown,nName) = nU p. nSize: is the size in byte of nName.
These fields are illustrated in figure 3.14.

In figure 3.10(a), the state 0 is by default the final state of A, it is the final
state for the node-label A which is the root of D (see figure 3.9).
As it is mentioned in section 3.3.1: without loss of generality we assume
many initial or start states for A. These states are nDown states for the leaf
nodes in D.



56 Chapter 3. Path tree: Definition, Construction, and Updating

1

2

B

0

A

3
A

7

E

8

A

17

C

4

B

5

C

6

E

9

B

13

C

14

B

10

E

11

C

12

D

15

C

16

E

(D) (D)err(D)

(a) A: the associated automaton of D

1

2

3

15

16

(( A , 22) , 0)

(( B , 22) , 1)

(( A , 22) , 2)

(( C , 22) , 14)

(( E , 22) , 14)

" "

" "

" "

" "

" "

nDown ( (nName, nSize) , nUp)

(b) A part of the hash table of A

Figure 3.10: A(D) and its hash table

Next, we show how to minimize A by using the automata minimization al-
gorithm (Min(A)).

2. Minimizing A by using the automata minimization algorithm (Min(A)):

Minimizing A requires finding all its final equivalent states, then combining
them. To achieve this purpose, we use the automata minimizing algorithm
that is explained in details in section 3.3.3. The algorithm’s output is the
minimized automaton AMin.

1

2

B

0

A

3,8

A

7

E

17

C

4,9,14

B

13

C

5,11,15

C

6,10,16

E

12

D

err(D)(D) (D)

Figure 3.11: The minimized automaton AMin of A in figure 3.10(a)

Figure 3.11 illustrates the minimized automaton computed from figure
3.10(a). In this figure, we see the combined equivalent states, for example:



3.3. Path tree Construction: Automata Technique 57

stares 3 and 8 are combined together because they are equivalent.

3. Transforming the minimized automaton AMin into its path tree by using
Doc(AMin):

The path tree is a graph (as we defined in section 3.2), and the minimized
automaton has the form of an inverted graph. Therefore the transformation
process of the minimized automaton into its path tree is straightforward by
using the function Doc (defined in section 3.3.2). In our example, figure
3.12(a) illustrates the result of this transformation process (Doc(AMin))
which generates the path tree of AMin. The number to the right of each
node-label represents its frequency.

A (1)

B (1)

A (2) E (1) C (1)

B (3) C (1)

C (3) E (3) D (1)

(a) The path tree of AMin (b) The SAX parser events of the path tree

Figure 3.12: The path tree of AMin and its SAX parser events.

Figure 3.12(b) represents the SAX parser events of the path tree. The list
of attributes l for each StartElement(nName, l) contains two attributes: f
which is the frequency of nName and s which is the size in byte of nName.

The SAX parser events of the path tree are used by our selectivity estimation
algorithm to predict the computation cost (time/memory) for a given XPath
query. Detailed explanation about the selectivity estimation can be found in
the coming chapter (chapter 4).



58 Chapter 3. Path tree: Definition, Construction, and Updating

3.4 Path tree Construction: Streaming Technique
Creating a path tree using the automata technique (as we explained in previous sec-
tion 3.3) can be done by creating the DFA completely then applying the automata
minimizing algorithm (table-filling algorithm) [Hopcroft 1979]. This approach is
practical for small XML documents, while it might cause a memory bottleneck
once it is used to generate a path tree for a large XML document, because the
whole document should be buffered to generate the automaton associated to the
XML document.
An elegant solution for this problem is to generate the minimized automaton asso-
ciated to the XML document directly while streaming through it .
In this section, we propose a streaming algorithm to construct the path tree for very
large XML documents. Moreover, we explain how to cover update transitions with
the updating process of the path tree.

3.4.1 Path tree Construction

We propose a streaming algorithm which takes as input the SAX parser events of
D and creates directly its minimized automaton. Figure 3.13 show the steps for
constructing the path tree using the streaming approach.

D Aut_Min ( )

A
Min

Doc ( )
PathTree

Figure 3.13: The construction steps of the path tree- Streaming technique

We explain our algorithm through the example below.

Example of path tree construction: the minimized automaton is illustrated in
figure 3.14 (autoTable). We start by explaining the structure of this table. nName:
is the label of the node, where nName ∈ Σ(D). depth: is the node’s depth in D.
nDown and nUp: are counters for naming the states in the automaton (e.g. 1, 2,
...etc.). Their initialized values = 0. Note that δ (nDown,nName) = nU p. nFreq:
is the frequency of nName in D which have the same node-labeled path. nSize: is
the size in byte of nName in D which have the same node-labeled path.

In our algorithm, a stack named pathStack is used to store the node-labeled
path during the construction process of the path tree. At each SAX event



3.4. Path tree Construction: Streaming Technique 59

StartElement(nName), pathStack is pushed with (nName, nDown), and at each
EndElement(nName), the top of pathStack is popped out.

nName depth

A

B

A

B

C

C

C

E

E

D

1

2

3

4

5

5

3

5

4

3

nDown

1

2

3

4

5

6

7

8

9

10

nDown

1

2

3

4

5

6

7

8

9

10

( (( ( ( (nName, depth( ,nSize ( nUp, nFreq,( (( ( ( (nName, depth( ,nSize ( nUp, n,( (( ( ( (nName, depth( ,nSize ( nUp, n,( (( ( ( (nName, depth( ,nSize ( nUp, n,( (( ( ( (nName, depth( ,nSize ( nUp,,( (( ( ( (nName, depth( ,nSize ( nUp,,

( (( ( ("A" , 1( , 22 ( 0 , 1,( , ,( , ,( , ,( , ,(( , ,

( (( ( ("B " , 2 22 ( 1 , 1(( , ,

( (( ( ("A" , 3 44 ( 2 , 2(( , ,

( (( ( ("B" , 4 66 ( 3 , 3(( , ,

( (( ( ("C " , 5 66 ( 4 , 3(( , ,

( (( ( ("E" , 5 66 ( 4 , 3(( , ,

( (( ( ("E" , 3 22 ( 2 , 1(( , ,

( (( ( ("D" , 5 22 ( 4 , 1(( , ,

( (( ( ("C" , 4 22 ( 3 , 1(( , ,

( (( ( ("C" , 3 22 ( 2 , 1(( , ,

accessAutoTable autoTable

Path tree of D

XML document D
3L 1 11 (

Generating the path tree(A ,1) (B ,2) (A ,3) (B ,4)

a snapshot for pathStack during the processing of 

the second <B> at depth 4 in the XML document D 

PathStack

updated node L1

<add sel="A/B"><L></L></add>

Updating patch operation

( (( ( ("L1" , 3 22 ( 2 , 1( ,

A

B

A E A C L

B

C E

B C B

E C D C E

A (1)

B (1)

A (2) E (1) C (1) L (1)

B (3) C (1)

C (3) E (3) D (1)

Figure 3.14: Path tree: construction and updating

When < A > the root of D is read, depth = 1 (algorithm 1 line 1) then, we add
A with its information to accessAutoTable, autoTable and pathStack (algorithm 1
lines 2−6).

Note that nUp of A=0. When < B > with depth = 2 is read, the function
checkSameNodePath is called (algorithm 1 line 9). As long as B is not yet
a member of accessAutoTable (algorithm 2 line 1), then we add B with its in-
formation to accessAutoTable, autoTable and pathStack (algorithm 2 lines 21−27).



60 Chapter 3. Path tree: Definition, Construction, and Updating

Algorithm 1: createAutoTable (depth, nName, nSize)

1 if (depth=1) then
2 nDown← nDown+1 nFreqStack = [1]//initializethearraywithnFreq = 1
3 nSizeStack= [nSize]// initialize the array with nSize (node Size)
4 addNodeKey (depth, nName, nDown) // add a new node to accessAutoTable
5 addNode (nDown, nName, depth, nSizeStack, nUp, nFreqStack) // add a new node to autoTable. Note that

nUp=0 ;
6 pushPathStack (depth, nName, nDown) //update the pathStack;
7 else
8 checkSameNodePath (depth, nName, nSize) ;

Algorithm 2: checkSameNodePath (depth, nName, nSize)

1 if (isMemeber accessAutoTable (depth, nName)) then
2 l= get the list of all nDown in accessAutoTable which have the same key (depth,nName) ;
3 let nodePathExist = false ;
4 foreach nDown ∈ l do
5 nodenUp= get nUp of nDown from autoTable ;
6 nodenDownPathStack=get nDown of (depth-1) from pathStack ;
7 if (nodenUp= nodenDownPathStack) then
8 nodePathExist= true ;
9 augmentFrequeny (nFreqStack) // augment the nFreq of nName by 1 ;

10 augmentSize (nSizeStack, nSize) // augment the value in nSizeStack by nSize ;
11 pushPathStack(depth, nName, nDown) //update the pathStack ;

12 if (isNodePathExist = false) then
13 nDown← (nDown)+1
14 nDownPathStack=get nDown of (depth-1) from pathStack ;
15 nFreqStack= [1] // initialize the array with nFreq =1 ;
16 nSizeStack= [nSize]// initialize the array with nSize (node Size);
17 addNodeKey (depth, nName, nDown) // add a new node to accessAutoTable;
18 addNode (nDown, nName, depth, nSizeStack, nDownPathStack, nFreqStack) // add a new node to

autoTable. Note that nUp=nDownPathStack ;
19 pushPathStack (depth, nName, nDown) //update the pathStack ;

20 else
21 nDown← (nDown)+1
22 nDownPathStack=get nDown of (depth-1) from pathStack ;
23 nFreqStack= [1] // initialize the array with nFreq =1 ;
24 nSizeStack= [nSize]// initialize the array with nSize (node Size);
25 addNodeKey (depth, nName, nDown) // add a new node to accessAutoTable;
26 addNode (nDown, nName, depth, nSizeStack, nDownPathStack, nFreqStack) // add a new node to autoTable.

Note that nUp=nDownPathStack ;
27 pushPathStack (depth, nName, nDown) //update the pathStack ;

When the second < B > with depth = 4 is read, B is already a member of ac-
cessAutoTable (algorithm 2 line 1), therefore, we check whether the node-labeled
path of the received B exists or not in autoTable (algorithm 2 lines 2− 19). The
value of nUp for B with depth = 4 (which is already exist in autoTable) is 3 (see
algorithm 2 line 5 and autoTable of figure 3.14). Also, in pathStach the value
nDown for the parent (depth−1) of the received B is 3 (see algorithm 2 line 6
and pathStack of figure 3.14), both values are equals because the parents of both
nName B have the same node-labeled path, which mean both nName B also have
the same node-labeled path. Therefore, we increment the frequency and size of
B (see algorithm 2 lines 8− 11). If the node-labeled path of B was not exist in
autoTable (see algorithm 2 line 12), then node B with its information is added
(see algorithm 2 lines 13− 19). The moment < /A > (EndElement of the root)



3.4. Path tree Construction: Streaming Technique 61

is processed, the complete path tree can be generated and output in SAX events
syntax.

The construction process of the path tree is incremental, it allows constructing
different incomplete path trees before the construction of the complete one. An in-
complete path tree is a partial path tree constructed for a part of an XML document.

Subtree

1
Subtree

2

root
traversing XML docment and 

constructing its path tree

The hash table which 

sotres the path tree

possibility of constructing 

incomplete path tree output  the path tree 

of  the subtree 1 in  the 

SAX parser events format

AutoTable:

Figure 3.15: Example on the incremental construction of the path tree

Figure 3.15 illustrates an example on the incremental construction process
of the path tree. As it is shown in the figure, the XML document is received
in streaming mode and the path tree is incremental built and stored in the hash
table AutoTable. The moment we finish of streaming the first subtree (i.e. we
encountered the closing tag of the root of the subtree 1), it is possible to output the
incomplete path tree of this subtree in the SAX parser events based on the needs of
the application concerned.

Our streaming algorithm has time complexity O(|depth(D)|.|D|) and space
complexity O(|depth(D)|.|pathTree(D)|) because the minimized automaton is
buffered in the RAM.

3.4.2 Path tree Updating

When the underlying XML document is updated, i.e. some elements are added or
deleted, the path tree can be incrementally updated using XML patch operations
[Urpalainen 2008].

We explain this procedure by a short example below:



62 Chapter 3. Path tree: Definition, Construction, and Updating

• Adding an element: Figure 3.14 shown an example of a patch operation to
update the XML document D. This operation adds an empty element L as
a last child under ”A/B” where element A is the root of D. The same patch
will be sent to the path tree (accessAutoTable and autoTable) for updating.
Thus, we check whether the node-labeled path of L that is ABL exists or not
in autoTable.

In this example, it is not, therefore, we add the new node L with its in-
formation to accessAutoTable and autoTable (see figure 3.14). Otherwise
(node-labeled path of L is exist), the frequency and the size of node L will be
updated as we shown in algorithm 2 (lines 7-11).

In this section, we provided a general idea about the possibility of updating
our path tree synopsis. The information about the path tree structure facilitates its
updating process. Actually, minimal synopsis size seems desirable but won′t be the
best because incremental maintenance would be difficult [Goldman 1997]. This is
the case of both TreeSketch [Polyzotis 2004a] and XSeed [Zhang 2006b]. While
in our approach, incremental update is possible by using the patch operations as
we explained above.

A complete updating algorithm is under study. Our first impression that the
updating algorithm resembles the path tree creation algorithm with slight modifi-
cation. This point was already confirmed in [Goldman 1997]. Their incremental
algorithm turns out to be only a slightly modified version of their DataGuide
creation algorithm.

In this chapter, we presented the path tree, a structure for XML-summarization
that is used for accurate selectivity estimates. To the best of our knowledge the
path tree was not formally defined in the literature. We therefore, formally defined
it. Furthermore, we introduced two techniques to construct this synopsis structure,
they are: one automaton technique and one streaming technique. Finally, we
explained the incremental construction process and updating of the path tree.

In the next chapter 4, we present our selectivity estimation technique which
uses the path tree structure synopsis and our selectivity estimation algorithm (that
is inspired from the lazy stream-querying algorithm LQ [Gou 2007]) to estimate the
selectivity for any XPath query which belongs to the fragment of Forward XPath.



CHAPTER 4

Selectivity Estimation Techniques

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Lazy Stream-querying Algorithm . . . . . . . . . . . . . . . . . 65

4.2.1 Query Preprocessing . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 LQ - Blocks Extension . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Examples of Query Processing Using LQ-Extended . . . . 73

4.2.3.1 Query Processing - Simple Path . . . . . . . . . . 73

4.2.3.2 Query Processing - Twig Path . . . . . . . . . . . 77

4.3 Selectivity Estimation Algorithm . . . . . . . . . . . . . . . . . 81

4.3.1 Examples of the Selectivity Estimation Process . . . . . . . 82

4.3.1.1 Selectivity Estimation - Simple Path . . . . . . . 85

4.3.1.2 Selectivity Estimation - Twig Path . . . . . . . . 89

4.3.2 Accuracy of the Selectivity Estimation Technique . . . . . . 92

4.1 Introduction
Developing performance prediction models for query optimization is significantly
harder for XML queries than for traditional relational queries. The reason is that
XML query operators are more complex than relational operators such as table
scans and joins. Moreover, the query evaluation process of XML data streams
raises extra challenges compared to non-streaming environments: the recursive
nature of XML documents, the single sequential forward scan of a stream of XML
data, also the presence of descendant axes, the predicates, and the wildcard nodes
in the XPath query.

Selectivity estimation is an estimate of the number of matches for a query Q
evaluated on an XML document D. It is desirable in interactive and internet appli-
cations. With it, the system could warn the end user for example that his/her query
is so coarse that the amount of results will be overwhelming.

This selectivity does not measure the size of these matches. Furthermore, it
measures neither the total amount of memory allocated by the program to find



64 Chapter 4. Selectivity Estimation Techniques

these matches (space used) nor the processor time used by the program to find
the matches (time spent). As a result, selectivity estimation appears necessary but
incomplete as a technique for managing queries on large documents accessed as
streams and it is not sufficient to model the query cost.

To estimate the cost for a given XPath query Q evaluated (in streaming mode)
on an XML document D, we need to estimate precisely the parameters which de-
termine the cost of Q. The parameters we use are as the following:

1. NumberOfMatches: is the number of answer elements found during process-
ing of the XPath query Q on the XML document D.

2. Cache: is the number of elements cached in the run-time stacks during pro-
cessing of the XPath query Q on the XML document D. They correspond to
the axis nodes of Q.

3. Buffer: is the number of potential answer elements buffered during process-
ing of the XPath query Q on the XML document D.

4. OutputSize: is the total size in MiB of the number of answer elements found
during processing of the XPath query Q on the XML document D.

5. WorkingSpace: is the total size in MiB for the number of elements cached
in the run-time stacks and the number of potential answer elements buffered
during processing of the XPath query Q on the XML document D.

6. NumberOfPredEvaluation: is the number of times the query’s predicates are
evaluated (their values are changed or passed from an element to another).

A precise performance prediction model needs a selectivity estimation tech-
nique to measure accurately the values of the parameters above mentioned in order
to estimate/predict the cost for a given query.

In chapter 2 (state of the art), we presented the different techniques of selectivity
estimation. Moreover, we justified the need for a new technique. In this chapter,
we present our selectivity estimation technique that is used to estimate the values
of the parameters that determine the cost for a given XPath query. More precisely,
these parameters are above six.

The selectivity estimation technique consists of:

1. The path tree structure synopsis (which we defined in detail in chapter 3):
a concise, accurate, and convenient summary of the structure of the XML
document.

2. Selectivity estimation algorithm: an efficient streaming algorithm used to
traverse the path tree synopsis for estimating the values of the parameters
which determine the cost of a given XPath query.



4.2. Lazy Stream-querying Algorithm 65

The remainder of the chapter is structured as follows.
In section 4.2, we explain our extension for the lazy stream-querying algorithm

LQ which was introduced by [Gou 2007]. The extended algorithm processes the
fragment of Forward XPath (we defined this fragment in section 1.1.1.2). Further-
more, in the same section, we present several examples (by using several XPath
queries) on the stream-querying process to explain the behavior of our extended
algorithm LQ. All examples use the same XML document D, but in each example
we use a different XPath query Q and we measure the values of the parameters that
determine the cost for Q.

In section 4.3, we present our selectivity estimation algorithm which we in-
spired from our extended lazy stream-querying algorithm LQ (of section 4.2). This
algorithm is used to traverse the path tree synopsis for estimating the values of the
cost parameters. In the same section, we explain how our selectivity estimation
technique (the path tree synopsis plus the selectivity estimation algorithm) func-
tions. We explain that through several examples. All examples use the path tree
synopsis of the XML D above mentioned (used in the examples of the stream-
querying process). Moreover, the queries used in these examples are the same
queries used in the examples of the stream-querying process (of section 4.2). In
each example, we estimate the values of the parameters that determine the cost of
the given XPath query.
Finally, we measure the accuracy of our selectivity estimation technique. We com-
pare the values measured of the stream-querying process with the estimated ones
on examples of the selectivity estimation technique.

4.2 Lazy Stream-querying Algorithm
The lazy stream-querying algorithm LQ was introduced by [Gou 2007] to prove
that univariate XPath can be efficiently evaluated in O(|D|.|Q|) time in the stream-
ing environment. This algorithm does not process XPath queries that contain
the following: attributes, ′text()′, nested predicates, and predicates with (′and′,
′or′, ′not ′). Therefore, we extended LQ to processes the Forward XPath fragment
(defined in chapter 1) with the same complexity.

The current extended version of LQ processes queries that belong to the
fragment of Forward XPath. Our algorithm was implemented using the functional
language OCaml release 3.11 [Leroy 2010b] which combines relatively high
performance with strong typing and ML-language constructs for tree processing.

Our extended LQ takes two input parameters (see figure 4.1). The first one is
the XPath query (which belongs to Forward XPath to allow stream-processing)
that will be transformed to a query table statically using our Forward XPath
Parser. After that, the main function is called. It reads the second parameter (XML
document in SAX parser events) line by line repeatedly, each time generating a



66 Chapter 4. Selectivity Estimation Techniques

Query result

startBlock endBlock

Figure 4.1: Extended LQ (Lazy stream-querying)

tag. Based on that tag a corresponding startBlock or endBlock function is called
to process it. Finally, the main function generates as output the result for the sent
XPath query. The result is the measured values of the cost parameters already
defined in section 4.1.

We begin this section by introducing the extension process of the query-
preprocessing phase (section 4.2.1). In section 4.2.2 we explain our extension of
the LQ algorithm (the main functions startBlock and endBlock ). Then, in section
4.2.3, we present several examples on stream-querying process by using our LQ
extended.

4.2.1 Query Preprocessing
The query table illustrated in figure 4.2(b) is statically stored in the memory
throughout stream processing. Each column in the table of the XPath query Q
corresponds to a node of Q. A virtual node represents the column number 0, this
node is the parent of the XPath query’s root node.

To access any column of the XPath query table we implemented a hash table
over all (nName, nNumber) pairs, thus we can retrieve the nNumber of any query
node by giving the nName of that node.

Each node in the XPath query table has specific fields. Our contribu-
tion is adding new fields which allow the processing of more complex queries,
for example queries which contain predicates with ′not ′ operator. The new
fields are p_Children_List, att_Name_List, att_Value_List, bool_Op_List, and
arith_Op_List. The fields of each node in the XPath query table are explained
below:



4.2. Lazy Stream-querying Algorithm 67

A

B

not @

C=1

@ 

D

E F G

H J

I

(a) XPath query

axis

type

parent

host

p

att

att

b

a

l

hash table (nName, nNumber)

nName

nNumber

(b) Query Table

Figure 4.2: XPath transformation into a query table

1. axis: represents the axis of the node. It can be a child ′/′ or a descendant ′//′.

2. type: represents the node types which are: Axis, Predicate, Result.

3. parent: represent the nNumber of the parent node of the cn (context node).

4. host: in stream-querying we partition the main path of the XPath query into
multiple segments by removing all descendant axes. For each segment there
is a host node that is at the tail of that segment. Notice that (1) only axis
nodes can be host nodes, (2) the segment which include the result node has
no host node. For example: the main path of the XPath query in figure 4.2(b)
is //A/D//G//J. We partition the main path into three segments //A/D,
//G and //J. In this case the host of node A is the node D (host[A] = D), the
host node of D is the node D itself (host[D] = D), the host node of G is the
node G itself (host[G] = G), while for the segment //J, node J has no host
node because it is the result node.

5. p_Children_List: represents the list of all predicate nodes (with axis ′/′ or
′//′) children of the cn.

6. att_Name_List: represents the list of all attribute names of the cn. In figure
4.2(b), the attributes names of node A are B and C.

7. att_Value_List: represents the list of all attributes values of the cn. The values
order in this list corresponds to the attribute names order in att_Name_List.
For example: in figure 4.2(b), the attribute B is not associated with any value,



68 Chapter 4. Selectivity Estimation Techniques

this why we associate to the value (Null), while attribute C is associated with
the value 1.

8. bool_Op_List: represents the list of all boolean operators associated
with p_Children_List and att_Name_List of the cn. For example: the
bool_Op_List of A is [and;not,non]. The first element of this list is ′and′,
it indicates that A has two conditions. It returns a value of true if both its
operands (conditions) are true, and false otherwise. The second element is
′not ′, it is a negation of the first condition of A, which is not(@B). The third
element is ′non′, it indicates that the second condition is not associated with
a boolean operator, that is @C in our example.

9. arith_Op_List: represents the list of all arithmetic operators associated
with att_Name_List of the cn. In our example: the arith_Op_List of A is
[Null;Null;Equal]. The third element of this list is ′Equal′, it indicates that
the value of the third element of att_Name_List is associated with the value
of the third element of att_Value_List, which in our example C = 1.

10. Leaf: to know whether cn is a leaf node or not. This field is a boolean value.

11. stack: for each non-leaf query node, a run-time stack is created. The OCaml
structure of this stack is typed:
(token*int*(string*bool)list*token list)list

An example of stack’s content of the node D in figure 4.2(b) is:[ (
StartElement("D",[("Order","1")]), 3, [("E",false); ("F", false)], []

) ]
.

In this example, StartElement(”D”, [(”Order”,”1”)]) is an element name D
which has the attribute ”Order” with the value ”1”. The integer 3 represents
the depth of the element D in the XML document. The list [(”E”, f alse);(”F”, f alse)]

is the predicate list of the node D. The f alse value means that so far there is
no match between the parent node D and its predicate nodes E and F . The
moment a match for a predicate node (e.g., the node C) is found, its f alse
value will be changed to true. The last list that is called potential answers
list is to buffer or append the potential answer nodes during the evaluation
process of the XPath query.

4.2.2 LQ - Blocks Extension

After the transformation of the XPath query into a query table (query preprocess-
ing) as we explained in section 4.2.1, the main function in LQ will be called. It
reads the XML document (in SAX parser events) line by line repeatedly, each
time generating a tag. Based on that tag a corresponding startBlock or endBlock
function is called to process it.



4.2. Lazy Stream-querying Algorithm 69

Algorithm 3: startBlock ((nName,l), nNumber, depth )
1 if (parent stack of the node is not empty) then
2 if (node type ̸= Predicate) or (Predicate’s value is still false) then
3 if (node axis =Descendant) or (node axis = Child) then
4 if (node = leaf) then
5 if node type = Predicate) then
6 evaluate the predicate node ;
7 else
8 if (node type =Result) then
9 if (node is the query’s root) then

10 output answers ;
11 else
12 buffer and append the node ;

13 else
14 push stack: (nName,l) , depth, list of the predicates, an empty list for potential answers /*l

in (nName, l) indicates the list of attributes of the context node. */

;

The algorithms 3, 4, 5 and 6 represent the pseudo code of the main functions
(startBlock and endBlock) of our extended LQ (Lazy stream-querying algorithm).
These algorithms will be explained through different examples in section 4.2.3.



70 Chapter 4. Selectivity Estimation Techniques

Algorithm 4: endBlock (nName, nNumber, depth)
1 if (node ̸= lea f ) || (node’s stack is empty) then
2 let s =get the top of the node’s stack ;
3 if (node’s depth = current depth) then
4 pop out the node from its stack;
5 if (node’s stack is not empty) then
6 check and update the predicates with descendant axis;

7 let bool_Op_List= get the boolean operators associated with predicate children of the node
8 match (head bool_Op_List ) with
9 | Not→ if(the negation is true )then

10 processNodeType nNumber s ;
/*the algorithm 5 */

11 else
12 appendOrDestroy nNumber s ;

/*the algorithm 6 */

13 | And→ if(all predicates are matched)then
14 processNodeType nNumber s ;

/*if the predicate does not contain a boolean operator, it will be

processed as And. */

15 else
16 appendOrDestroy nNumber s

17 | Or→ if(one predicate is matched )then
18 processNodeType nNumber s
19 else
20 appendOrDestroy nNumber s

21 | Non→ if(node has no predicate )then
22 processNodeType nNumber s

Algorithm 5: processNodeType (nNumber, s)
1 if (node type = Axis) then
2 if (node is the query’s root) then
3 let potential_answers_list = the list of the potential answers nodes of the current node
4 if (potential_answers_list of the current node is not empty) then
5 output the content of potential_answers_list: answers ;

6 else
7 if (potential_answers_list of the current node is not empty) then
8 append potential_answers_list to the same list of the parent of the current node

9 else
10 if (node type =Predicate) then
11 check and update the predicate
12 if (node axis = Descendant) then
13 clear the predicate’s stack

14 else
15 if (node type =Result) then
16 if (node is the query’s root) then
17 output answers
18 else
19 append node to the potential answers list of the node’s parent



4.2. Lazy Stream-querying Algorithm 71

Algorithm 6: appendOrDestroy (nNumber, s)
1 if (node type = Axis) then
2 if the stack of the host node of the current node is empty then
3 destroy s ;
4 else
5 append the list of the potential answers of the current node to the same list of the top node of the host

stack (the host stack of the current node) ;

Before presenting several examples on XPath query processing by using LQ,
we will explain how LQ calls the functions startBlock and endBlock to process
efficiently the wildcard nodes and the same node-labels. After that, we explain
how the attributes are processed eagerly by LQ.

• The processing of the wildcard nodes and same node-labels

To process queries with wildcard nodes and the same node-labels, the XPath
query preprocessing (query table) still creates one column for each query
node. But each nName in the hash table corresponds to a sequence of col-
umn numbers (nNumber) whose corresponding query nodes either have that
nName or are wildcard nodes, see figure 4.3.

C

*

B

*

B DD

(6)

(2) (5)

(1) (3) (4)

hash table (nName, nNumber)

nName

nNumber

..... ..... ..... ..... ..... ..... ..... .....
B * *C B D

* 1, 5 3, 4

1, 3, 5, 6 3, 5, 4,1B

C

D

1, 2, 5 3, 2, 4

1, 4, 5 3, 6, 4

* 1, 5 4, 3

6, 1, 5,3 1, 3, 4, 5B

C

D

2, 1, 5 2, 3, 4

1, 5, 4 3, 4, 6

Q: //B[./C//*]//*[.//B]//D

nName

Post order 

sequence of 

nName

nNumber 

sequence of 

nName

Open tag: the order of calling

 the function startBlock

nName

Pre order 

sequence of 

the post order  

nNumber 

sequence of 

nName

Close tag: the order of calling

 the function endBlock

The number to the right of each 

node label is its post order in Q

Figure 4.3: The XPath query Q, and the sequence of calling startBlock and endBlock

A special sequence for the column numbers (nNumber) of all wildcard nodes
is also created. All nodes in column sequences follow a special order (post-
order), such that each node must not have any of its ancestor nodes in front
of itself.

During reception of the stream of XML data, for each open tag (where the el-
ement name belongs to the query’s nodes) , for example: < B >, the function
startBlock is called iteratively according to the post-order of nName B in Q,
that is 1, 3, 5, 6. The equivalent nNumber order of B is 3, 5, 4, 1 (see the
hash table). And, for each close tag < /B >, the function endBlock is called



72 Chapter 4. Selectivity Estimation Techniques

A 

B

A E C 

B C 

C E D

(a) XML document D

- - - -

- - - -

- - - -

- - - -

- - - -

(b) A snapshot of the SAX parser

events of D

Figure 4.4: The XML D and a snapshot of its SAX parser events

iteratively in the pre-order of nName B in Q, that is 6, 1, 5, 3. The equivalent
nNumber order of B is 1, 3, 4, 5 (see the hash table).

Further explanation of the processing of the wildcard nodes and the same
node-labels can be found in [Gou 2007].

• Attributes processing

After the transformation of the XPath query into a query table (query
preprocessing) as we explained in section 4.2.1, the main function in LQ will
be called. It reads the XML document (in SAX parser events) line by line
repeatedly, each time generating a tag. Based on that tag a corresponding
startBlock or endBlock function is called to process it. Figure 4.4 illustrates
an XML document D and a snapshot of its SAX parser events.

In our lazy stream-querying algorithm, we process attributes eagerly. This
means, the moment the main function generates StartElement(e, l) (where e
is the element name and l is the list of attributes of the element), attributes (if
needed) will be evaluated first, and according to the result of this evaluation,
the function startBlock might be called, or the main function will generate
a new tag. The advantage of processing the attributes eagerly is to avoid
buffering or caching unnecessary elements as we explain in the example
below.
Given the XPath query Q as //A[@ f and @kk]//B and the XML
document D as in figure 4.4, the moment we receive the event
StartElement(”A”, [(” f ”,”1”);(”s”,”22”)] (see the SAX parser event
of D), we evaluate first the predicate of node A in Q, as long as the predicate
condition is not satisfied, the function startBlock will not be called, this
means that the element A will not be pushed in its corresponding stack.



4.2. Lazy Stream-querying Algorithm 73

In the next section, we present several examples on the stream-querying process
by using our LQ extended.

4.2.3 Examples of Query Processing Using LQ-Extended
In this section, we present several examples on the XPath query evaluation process
by using our lazy stream-querying algorithm.
We first present examples on the XPath query processing by using simple path,
then by using twig path (simple path and twig path are defined in chapter 1). The
results for each example are important and will be used in the next section 4.3
(Selectivity Estimation Algorithm) to compare the measured and estimated results
for each examples.
We number the nodes of the XML document that is used to explain the examples
of this section. The purpose of this numbering is to show the node order in the
XML document. For example: for a given document D which has two nodes A1
and A2, both nodes have the same node-labels, but node A2 appears after the node
A1 according to the pre-order traversal of D.

4.2.3.1 Query Processing - Simple Path

We first start by showing how LQ processes a simple path p, where p does not
contain same node-labels neither wildcard nodes. After that, we adapt to cases
where p contains same node-labels and wildcard nodes.

• Simple path without wildcard nodes or same node-labels:

Figure 4.5 illustrates the XML document D and snapshots of the run-time
stacks for the evaluation process of D on the simple path //B/A//C which
returns the sequences C1, C2 ,C3 and C4 as answers. For each non-leaf node,
the algorithm creates a stack. Therefore, in this example, a stack is created
for the root node B and another one for the node A.

When < A1 > is read, the parent stack (stack B) of A1 is empty, therefore,
A1 is discarded (algorithm 3 line 1). When < B1 > is read, it is pushed in its
corresponding stack B (algorithm 3 line 14). When < A2 > is read, its parent
stack (stack B) is not empty, therefore, A2 is pushed in its corresponding
stack B (algorithm 3 line 14).

When <C1 > is read, as long as its parent stack is not empty, C1 is buffered
to the potential answers list of its parent node A2 (algorithm 3 line 12). Note
that node B2 was already pushed in its corresponding stack.

When < /C1 > is read, C1 is a leaf node, this is why LQ proceed by process-
ing the next SAX event (algorithm 4 line 1). When < E1 > is read, E1 is not
a member of the query’s nodes, therefore, it will be discarded immediately.



74 Chapter 4. Selectivity Estimation Techniques

A1

B1

A2 E2 A3 C5

B2

C1 E1

B3 C3 B4

E3 C2 D1 C4 E4

(a) XML document D

//B /A

B1 

//B /A

B1 

read <B1> read < >

A2 

A2 C1

/A2 C2 C3

C4 /A3 /B1

//B /A

B1 

read < >

A2 
B2 

//B  /A

B1 

//B /A

read < >  

A3 

read < >

A3 

//B

B1 

read < >

B1 

C1 

C1 C1 C2 

B3 
C2 

C3 
C1 

C2 

C3 
C1 

C4 

C2 

C3 

C1 

C4 

C2 

C3 

C1 

C4 

/A

//B

B1 

read < >

B4 
A3 

/A //B

B1 

read < >

/A //B

B1 

read < >

/A

(b) Snapshots of the run-time stacks for the evaluation of D on Q

Figure 4.5: Snapshots of the run-time stacks for the evaluation of D on Q (//B/A//C)

When < /A2 > is read, it is popped out from its stack and its potential an-
swers list is appended to the list of B1 (algorithm 4 lines 21-22 then algorithm
5 lines 7-8).

When < C2 > is read, note that nodes B3 and A3 were already pushed in
their corresponding stacks. As long as the parent stack of C2 is not empty,
C2 is buffered to the potential answers list of its parent node A3. Same thing
for <C3 > and <C4 >.

When < /A3 > is read, it is popped out from its stack and its potential
answers list is appended to the list of B1. When < /B1 > is read, B1 is the
root node of the query, therefore, the content of its potential answers list
is flushed as answers (algorithm 4 lines 21-22 then algorithm 5 lines 2-5).
Finally, when < C5 > is read, thought C5 is a potential answer, but it is
discarded because its parent stack (stack A) is empty.

The result of the XPath query evaluation is as follows (measured values):
NumberO f Matches: the value is 4, they are: C1, C2, C3 and C4. Bu f f er:
for any simple path, the value of Bu f f er is the same as the value of
NumberO f Matches. Cache: the value is 6, they are: B1, B2, B3, B4 and A2,
A3. WoringSpace: its size was measured to 0.0002MiB. Out putSize: its size
was measured to 0.00008MiB.

• Simple path with same node-labels:

Figure 4.6 illustrates different snapshots for the evaluation process of D on
the simple path //A/B//A, which returns A2 and A3 as results nodes.
For each non-leaf node, the algorithm creates a stack. Therefore, in this
example, a stack is created for the root node A and another one for the node
B.

When < A1 > is read, the function startBlock is called in the post order of



4.2. Lazy Stream-querying Algorithm 75

A1

B1

A2 E2 A3 C5

B2

C1 E1

B3 C3 B4

E3 C2 D1 C4 E4

(a) XML document D

//A //B

A1 

read <A1> read <B1>

B1 

read <A2>

A2 

A2 

read < > read < > read </ >A3

read </B1> read </A1>

A3

//A //B //A //B

A1 B1 A1 

A1 B1 A2 

/A2

B1 A2 

A3 

A1 
A3 

B1 A2 A1 
A3 

A2 A1 
A3 

//A //B 

//A //B //A //B //A //B 

A2 A1 
A3 

//A //B 

(b) A snapshot of the run-time stacks for the evaluation of D on Q

Figure 4.6: Snapshots of the run-time stacks for the evaluation of D on Q (//A//B//A)

A in Q, that is 3,1. The node A1 with order 3 is not buffered because its
parent stack (stack B) is empty (algorithm 3 line 1). While A1 with order 1
is pushed in its corresponding stack A (algorithm 3 line 14). When < B1 >

is read, it is pushed in its corresponding stack B (algorithm 3 line 14).

When < A2 > is read, the function startBlock is called in the post-order of
A in Q, that is 3,1. The A2 with order 3 is buffered to the potential answers
list of node B1 (algorithm 3 line 12). While A1 with order 1 is pushed in its
corresponding stack A.

When < /A2 > is read, the function endBlock is called in the pre-order of A
in Q that is 1, 3. A2 with order 1 is popped out from its stack (algorithm 4
line 4 then algorithm 5 lines 6-8). While for A2 with order 3, the algorithm
will proceed by processing the next SAX event of D, because A2 is a leaf
node (algorithm 4 line 1).

When < A3 > is read, the function startBlock is called in the post-order of A
in Q, that is 3,1. The node A3 with order 3 is buffered to the potential answers
list of node B1 (algorithm 3 line 12). While A1 with order 1 is pushed in its
corresponding stack A (algorithm 3 line 14).

When < /A3 > is read, it is processed in the same manner as < /A2 >.
When < /B1 > is read, it is popped out from its stack and its potential
answers list is appended to the same list of its parent node A1 (algorithm 4
lines 21-22 then algorithm 5 lines 7-8). Finally when < /A1 > is read, A1
is the root node of the query, therefore, the content of its potential answers
list is flushed as answers (algorithm 4 lines 21-22 then algorithm 5 lines 2-5).

The result of the XPath query evaluation is as follows (measured values):
NumberO f Matches: the value is 2, they are: A2 and A3. Bu f f er:
for any simple path, the value of Bu f f er is the same as the value of
NumberO f Matches. Cache: the value is 7, they are: B1, B2, B3, B4 and A1,
A2, A3. WoringSpace: its size was measured to 0.0002MiB. Out putSize: its
size was measured to 0.00004MiB.



76 Chapter 4. Selectivity Estimation Techniques

A1

B1

A2 E2 A3 C5

B2

C1 E1

B3 C3 B4

E3 C2 D1 C4 E4

(a) XML document D

//A //*

A1 

read < > read < >A1 B1
//A //*

A1 B1

//A //*

A1 B1

read <C1>

A2A2

C1
B2

//A //*

A1 B1

read </A2>

//A //*

A1 B1

read <D1>

A3 A3 
B3 

D1
D1

//A    //*
A1 B1

read </B3>

A3 A3 
D1

//A    //*
A1 B1

read </A3>

A3 
D1

(b) Snapshots of the run-time stacks for the evaluation of D on Q

Figure 4.7: Snapshots of the run-time stacks for the evaluation of D on Q (//A//∗//D)

• Simple path with a wildcard:

Figure 4.7(b) illustrates different snapshots of the evaluation process of D on
the simple path //A//∗//D which returns D1 returns as a result node. For
each non-leaf node, the algorithm creates a stack. Therefore, in this example,
a stack is created for the root node A and another one for the node ∗.

When < A1 > is read, the function startBlock will is called in the post-order
of A in Q, that is 2,1. The node A1 with order 2 is not cached because its
parent stack (stack A) is empty (algorithm 3 line 1). While A1 with order 1
is pushed in its corresponding stack A (algorithm 3 line 14).

When < B1 > is read, it is pushed in its corresponding stack ∗ (algorithm
3 line 14). When < C1 > is read, it is pushed in its corresponding stack ∗
(algorithm 3 line 14).

When < /A2 > is read, the function endBlock is called in the pre-order of A
in Q that is 1, 2. A2 with order 1 is popped out from its stack (algorithm 4
line 4 then algorithm 5 lines 6-8). The same thing for A2 with order 2, A2 is
popped out from stack ∗.

When < D1 > is read, the function startBlock is called in the post-order of
A in Q, that is 3, 2. The node D1 with order 3 is buffered to the potential
answers list of its parent node B3 (algorithm 3 line 12). While D1 with order
2 is pushed in its corresponding stack ∗ (algorithm 3 line 14).

When < /B3 > is read, it is popped out from its stack (stack ∗) and its poten-
tial answers list is appended to the same list of its parent node A3 (algorithm
4 lines 21-22 then algorithm 5 lines 7-8 ).

When </A3> is read, A3 is the root node of the query, therefore, the content
of its potential answers list is flushed as answers (algorithm 4 lines 21-22 then
algorithm 5 lines 2-5).



4.2. Lazy Stream-querying Algorithm 77

A1

B1

A2 E2 A3 C5

B2

C1 E1

B3 C3 B4

E3 C2 D1 C4 E4

(a) XML document D

//A //C/ //D //A //C/ //D//A //C //A //C //D

//A //C //D //A //C //D //A //C //D

//A //C //D //A //C //D //A //C //D

//A //C//D //D//A//C

A1 

read <B1>

/B /B /B

/B /B /B

/B

/B /B

/B

/B

B1 A1 

read <E1>

B1 
A2 B2 E1

A1 

read </A2>

B1 E1

A1 

read <E2>

B1 E1
E2

A1 

read <E3>

B1 E1

E3
A3 B3 E2

A1 

read <D1>

B1 E1

E3
A3 B3 E2

A1 

read <E4>

B1 E1

E3
A3 

E2
B4 E4

A1 

read </B4>

B1 E1

E3
A3 

E2
E4

A1 

read </A3>

B1 E1

E3
A3 

E2
E4

A1 

read <B1> read <A1>

E1
E2
E4

A1 E1
E2
E4

(b) Snapshots of the run-time stacks for the evaluation of D on Q

Figure 4.8: Snapshots of the run-time stacks for the evaluation of D on Q (//A[.//C]/B[.//D]//E)

The result of the XPath query evaluation is as follows (measured values):
NumberO f Matches: the value is 1, it is D1. Bu f f er: for any simple path,
the value of Bu f f er is the same as the value of NumberO f Matches. Cache:
the value is 19, we present them based on their stacks as follows: stack A
contains A1, A2, and A3. While stack ∗ contains B1, A2, B2, C1, E1, E2,
A3, B3, E3, C2, D1, C3, B4, C4, E4 and C5. WoringSpace: its size was
measured to 0.0004MiB. Out putSize: its size was measured to 0.00002MiB.

In the next section, we present several examples on the stream-querying process
by using our LQ extended and twig paths.

4.2.3.2 Query Processing - Twig Path

Below, we present two examples on twig path processing by using our stream-
querying algorithm LQ.

• Twig path with multi predicates:

Figure 4.8(b) illustrates different snapshots of the evaluation process of D on
the twig path //A[.//C]/B[.//D]//E which returns E1, E2, E3 and E4 as
result nodes. For each non-leaf node, the algorithm creates a stack. There-
fore, in this example, a stack is created for the root node A and another one
for the node B.

When < B1 > is read, it is pushed in its corresponding stack B (algorithm
3 line 14). Note that, the node A1 was already pushed in its corresponding
stack.

When < E1 > is read, the node A2 and B2 were read and already pushed
in their corresponding stacks. Moreover, the node C1 was read, it is a
descendant of A2, so the value of the predicate C for A2 was changed from



78 Chapter 4. Selectivity Estimation Techniques

false to true (the black rectangle in the figure for this event) (algorithm 3
lines 4-6). Concerning E1, it is buffered to the potential answers list of its
parent node B2 (algorithm 3 line 12).

When < /A2 > is read, the node B2 was already popped out from its stack,
as long as the predicate of B2 (that is D) was not satisfied (algorithm 4 lines
5-6), the function appendOrDestroy was called (algorithm 4 line 16). The
host stack of B is the stack B itself (host[B] = B, for further information
see our definition of the host node in section 4.2.1), as long as this stack
was not empty (it contained node B1), the potential answers list of B2 was
appended to the same list of B1. Concerning the node A2, it is popped out
from its stack, but as long as its predicate condition (node C) is satisfied and
this predicate node has a descendant axis, then, the predicate value of A1 is
changed from false to true (algorithm 4 line 5-6). Note that A1 is an ancestor
of A2 with the same node-labels.

When < E2 > is read, it is buffered to the potential answers list of its parent
B1 (algorithm 3 line 2).

When < E3 > is read, the nodes A3 and B3 were read and already pushed
in their corresponding stacks. Concerning E3, it is buffered to the potential
answers list of its parent node B3 (algorithm 3 line 12).

When < D1 > is read, the node C1 was read, it is a descendant of A3, so the
value of the predicate C for A3 was changed from false to true (algorithm 3
lines 4-6). Concerning D1, it is descendant node of B3, therefore, the value
of the predicate D for B3 is changed from false to true.

When < E4 > is read, the node B3 was popped out from its stack, and
as long as its predicate condition was satisfied, then, its potential answers
list was appended to the same list of its parent node A3. In addition, B3′s
predicate condition (node C) was satisfied and this predicate node has a
descendant axis, therefore, the predicate value of B1 was changed from false
to true (algorithm 4 line 5-6). The node B4 was pushed in its corresponding
stack. Concerning E4, it is buffered to the potential answers list of its parent
node B4.

When < /B4 > is read, node B4 is popped out from its stack, as long as the
predicate of B4 (that is D) is not satisfied (algorithm 4 lines 5-6), the function
appendOrDestroy is called (algorithm 4 line 16), as long as this stack is not
empty (it contains node B1), the potential answers list of B4 is appended to
the same list of B1.



4.2. Lazy Stream-querying Algorithm 79

A1

B1

A2 E2 A3 C5

B2

C1 E1

B3 C3 B4

E3 C2 D1 C4 E4

(a) XML document D

//A //A/B //A/B //A/B //A/B //A/B //A/B

//A/B//A//A/B//A

//A/B

//A/B//A //A/B//A

A1 

read <A1>

//A //A

A1 

read <B1>

A1 

read <A2>

A2 

A1 

read <E1>

A2 

//A

E1

A1 

read </A2>

//A

E1 A1 

read <E2>

//A

E1E2

A1 

read <E3>

A3 

E1E2 A1 

read <E4>

A3 E3

E1E2

E3

E1E2

E3

A1 E1
E3

E4

E2
E4

read </A3>

A1 E1
E3

E2
E4

read </A1>

(b) Snapshots of the run-time stacks for the evaluation of D on Q

Figure 4.9: Snapshots of the run-time stacks for the evaluation of D on Q (//A[./B and .//A]//E)

When </A3> is read, A3 is the root node of the query, therefore, the content
of its potential answers list is flushed as answers (algorithm 4 lines 21-22 then
algorithm 5 lines 2-5).

When < /B1 > is read, it is popped out from its stack and its potential an-
swers list is appended to the list of A1 (algorithm 4 lines 21-22 then algorithm
5 lines 7-8 ).

Finally When < /A1 > is read, A1 is the root node of the query, therefore,
the content of its potential answers list is flushed as answers (algorithm 4
lines 21-22 then algorithm 5 lines 2-5).

The result of the XPath query evaluation is as follows (measured values):
NumberO f Matches: the value is 4, they are: E1, E2, E3 and E4.
Bu f f er: in this example, the value of Bu f f er is the same as the value of
NumberO f Matches. Cache: the value is 7, we present them based on their
stack as follows: stack A contains A1, A2, and A3. While stack B contains
B1, B2, B3 and B4,

WoringSpace: its size was measured to 0.0002MiB. Out putSize: its size
was measured to 0.00008MiB. NumberO f PredEvaluation: its value is 6.
This value represents the number of times the values of the predicate nodes
(C and D) were changed or passed from an element to another during the
query evaluation process.

• Twig path with and operator and same node-labels:

Figure 4.9(b) illustrates different snapshots of the evaluation process of D on
the twig path //A[./B and .//A]//E which returns E1, E2, E3 and E4 as re-
sult nodes. For each non-leaf node, the algorithm creates a stack. Therefore,
in this example, a stack is created for the root node A.

When < A1 > is read, the function startBlock is called in the post-order



80 Chapter 4. Selectivity Estimation Techniques

of A in Q, that is 3,1. The predicate node A1 with order 3 is not evaluated
because its parent stack (stack A) is empty (algorithm 3 line 1). While A1
with order 1 is pushed in its corresponding stack A with false values for its
both predicate nodes B and A (algorithm 3 line 14).

When < B1 > is read, B1 is a direct child for the node A1, therefore its value
is changed from false to true.

When < A2 > is read, the function startBlock is called in the post-order of
A in Q, that is 3,1. The value of the predicate node A with order 3 for A1 is
changed to true because its parent stack (stack A) is not empty, it contains
the node A1 (algorithm 3 line 6). While A2 with order 1 is pushed in its
corresponding stack A with false values for its both predicate nodes B and A
(algorithm 3 line 14).

When < E1 > is read, the node B2 was already read, therefore, the value of
the predicate node B of A2 was changed from false to true. Concerning E1,
as long as it is a descendant of A2, so it is buffered to the potential answers
list of A2.

When < /A2 > is read, it is popped out from its stack. A2 is the root node,
but its predicate node A is not satisfied (algorithm 4 line 13), therefore, the
function appendOrDestroy is called (algorithm 4 line 16). The host stack
of A is the stack A itself (host[A] = A), as long as this stack is not empty (it
contains node A1), the potential answers list of A2 is appended to the same
list of A1.

When < E2 > is read, E2 is a descendant of A1, therefore E2 is buffered to
the potential answers list of A1.

When < E3 > is read, the node A3 was read and processed in the same
manner of the node A2. Concerning E3, it is a descendant of A3, therefore
E3 is buffered to the potential answers list of A3. Same thing for the node
E4, it is buffered to the potential answers list of A3.

When < /A3 > is read, it is popped out from its stack. A3 is the root node,
but its predicate node A is not satisfied (algorithm 4 line 13), therefore, the
function appendOrDestroy is called (algorithm 4 line 16). The host stack
of A is the stack A itself (host[A] = A), as long as this stack is not empty (it
contains node A1), the potential answers list of A3 is appended to the same
list of A1.



4.3. Selectivity Estimation Algorithm 81

Finally, when < /A1 > is read, it is popped out from the stack. A1 is the
root node, as long as the values of its predicates B and A are true, then, the
content of its potential answers list (E1, E2, E3 and E4) is flushed as a final
answer.

The result of the XPath query evaluation is as follows (measured values):
NumberO f Matches: the value is 4, they are E1, E2, E3 and E4. Bu f f er the
value is 4 , they are E1, E2, E3 and E4. Cache: the value is 3, they are A1,
A2, A3. WoringSpace: its size was calculated to 0.0001 MiB. Out putSize:
its size was calculated to 0.00008 MiB. NumberO f PredEvaluation: its
value is 4. This value represents the number of times the values of the
predicate nodes (B and A) were changed or passed from an element to
another during the query evaluation process.

In the next section, we introduce our selectivity estimation technique, To mea-
sure the accuracy of this technique, we estimate the selectivity for same XPath
queries which were used in the section 4.2.3. Then, we compare the measured and
the estimated values for these queries.

4.3 Selectivity Estimation Algorithm
Selectivity estimation predicts the values of cost parameters that we defined
in section 4.1. These parameters are: NumberOfMatches, Buffer, OutputSize,
WorkingSpace, and NumberOfPredEvaluation.

To enable the selectivity estimation process, we inspired our selectivity
estimation algorithm from the extended LQ (lazy stream-querying algorithm) that
we defined in section 4.2.
The current version of our estimation algorithm processes queries which belong to
the fragment of Forward XPath.

The estimation algorithm takes two input parameters. The first one is the
XPath query (which respects Forward XPath [Alrammal 2009a] to allow stream-
processing) that will be transformed to a query table statically using our Forward
XPath Parser. After that, the main function is called. It reads the second parameter
(the path tree that is defined in chapter 2) line by line repeatedly, each time
generating a tag. Based on that tag a corresponding startBlock or endBlock
function is called to process it. Finally, the main function generates as output the
selectivity estimation result (estimated values) for the sent XPath query.

The algorithms 7, 8, 9 and 10 represent the pseudo code of the main functions
(startBlock and endBlock) of our selectivity estimation algorithm. The pseudo



82 Chapter 4. Selectivity Estimation Techniques

Algorithm 7: startBlock (nName, nFreq, nSize, depth)
1 if (parent stack of nNumber is not empty) then
2 if (node type ̸= Predicate) or (Predicate’s value is still false) then
3 if (node axis =Descendant) or (node axis = Child) then
4 if (node = leaf) then
5 if node type = Predicate) then
6 evaluate the predicate node and increase the predicate evaluation’s counter

(predCounter) by the value of nFreq ;
7 else
8 if (node type =Result) then
9 if (node is the query’s root) then

10 if (nName= text()) then
11 calculate: NumberO f Matches, Out putSize /*Here we do not

output the real value of the text node, in stead, we

output its real nSize and its nFreq */

12 output answers
13 else
14 calculate: Bu f f er, WorkingSpace
15 buffer and append the node to the potential answers list of parent of

the current node

16 else
17 calculate: Cache, WorkingSpace ;
18 push stack: nName, depth, list of the predicates, an empty list for the potential answers,

nFreq, nSize /*the size and the frequency of nName are pushed as well.

*/ ;

code and the selectivity estimation process are explained through several examples
in section 4.3.1.

4.3.1 Examples of the Selectivity Estimation Process

In this section, we present several examples on the selectivity estimation process
by using our selectivity estimation algorithm.
We first present examples on the selectivity estimation by using simple paths, then
by using twig paths. The results (estimated values) of the examples are important
and will be compared with the result (measured values) of the same examples
which we introduced in section 4.2.3.

Figure 4.10, illustrates the XML document D, the path tree of D and the SAX
parser events of the path tree. We use node numbering in the path tree to show
the order of nodes, e.g., the nodes A1 and A2 have the same node-labels A, but A1
appears before A2. Also, in the path tree, the number in the bracket exist to the right
of each node’s label represents its frequency (nFreq), e.g., A2(2) indicates that the
frequency of A2 is 2. In the SAX parser events of the path tree, the list of attributes
l for each StartElement(e, l) contains two attributes: nFreq which is the frequency
of e and nSize which is the size in byte of e. These attributes are important for the
selectivity estimation process.



4.3. Selectivity Estimation Algorithm 83

Algorithm 8: endBlock (nName, nNumber, depth)
1 if (node ̸= lea f ) || (node’s stack is empty) then
2 let s =get the top of the node’s stack ;
3 if (node’s depth = current depth) then
4 pop out the node ;
5 if (node’s stack is not empty) then
6 check and update the predicates with descendant axis. If predicate node has a descendant axis,

then increase predCounter by 1;

7 let bool_Op_List= get the boolean operators associated with predicate children of the node ;
8 match (head bool_Op_List ) with
9 | Not→ if(the negation is true )then

10 processNodeType nNumber s ;
/*the algorithm 5 */

11 else
12 appendOrDestroy nNumber s ;

/*the algorithm 6 */

13 | And→ if(all predicates are matched)then
14 processNodeType nNumber s ;

/*if the predicate does not contain a boolean operator, it will be

processed as And. */

15 else
16 appendOrDestroy nNumber s

17 | Or→ if(one predicate is matched )then
18 processNodeType nNumber s
19 else
20 appendOrDestroy nNumber s

21 | Non→ if(node has no predicate )then
22 processNodeType nNumber s

Algorithm 9: processNodeType (nNumber, s)
1 if (node type = Axis) then
2 if (node is the query’s root) then
3 let potential_answer_list = the list of the potential answers nodes of the current node
4 if (potential_answers_list of the current node is not empty) then
5 calculate: NumberO f Matches, Out putSize ;
6 output the content of potential_answers_list: answers ;

7 else
8 if (potential_answers_list of the current node is not empty) then
9 append potential_answers_list to the same list of the parent of the current node

10 else
11 if (node type =Predicate) then
12 check and update the predicate and increase predCounter by 1
13 if (node axis = Descendant) then
14 clear the predicate’s stack

15 else
16 if (node type =Result) then
17 if (node is the query’s root) then
18 calculate: NumberO f Matches, Out putSize ;
19 output answers ;
20 else
21 append node to the potential answers list of the node’s parent



84 Chapter 4. Selectivity Estimation Techniques

Algorithm 10: appendOrDestroy (nNumber, s)
1 if (node type = Axis) then
2 if the stack of the host node of the current node is empty then
3 destroy s ;
4 else
5 append the list of the potential answers of the current node to the same list of the top node of the host

stack (the host stack of the current node) ;

A

B

A E A C

B

C E

B C B

E C D C E

(a) XML D

A1 (1)

B1 (1)

A2 (2) E2 (1) C3 (1)

B2 (3) C2 (1)

C1 (3) E1 (3) D1 (1)

(b) path tree of D

nFreq nSize

nFreq nSize

nFreq nSize

nFreq nSize

nFreq nSize

nFreq nSize

nFreq nSize

nFreq nSize

nFreq nSize

nFreq nSize

(c) SAX parser events of the path tree

Figure 4.10: The XML document D, its path tree, and the SAX parser events of the path tree.



4.3. Selectivity Estimation Algorithm 85

4.3.1.1 Selectivity Estimation - Simple Path

We first start by showing how our algorithm estimates the selectivity of a simple
path p, where p does not contain same node-labels or wildcard nodes. After that,
we explain this estimation once p contains same node-labels and a wildcard node.

• Simple Path without wildcard nodes or same node-labels:

Figure 4.11(b) illustrates different snapshots of the evaluation process of the
path tree of D on the simple path //B/A//C, which returns sequence C1(3),
C2(1) as estimated answer nodes. For each non-leaf node, the algorithm
creates a stack. Therefore, in this example, a stack is created for the root
node B and another one for the node A.

A1 (1)

B1 (1)

A2 (2) E2 (1) C3 (1)

B2 (3) C2 (1)

C1 (3) E1 (3) D1 (1)

(a) path tree of D

//B /A

B1 (1) B1 (1)

read <B1> read <A >

A2 (2)

2

B1 (1)

read <B2>

A2 (2)
B2 (3)

B1 (1)
B2 (3)

read <C1>  

A2 (2)

read <C2>

///B

B1 (1)

read </B >

A2 (2)

1

C1 (3) B1 (1) C1 (3)

C2 (1)

C1 (3)

C2 (1)

/A

//B /A //B /A

//B /A //B /A

(b) SAX parser events of the path tree

Figure 4.11: Snapshots of the run-time stacks for the evaluation of the path tree of D on Q (//B/A//C)

When < A1 > is read, the parent stack (stack B) of A1 is empty, therefore, A1
is discarded (algorithm 7 line 1). When < B1 > is read, B1 is pushed (with
its information, e.g. nSize and nFreq) in its corresponding stack B. Same
thing for < A2 > and < B2 > (algorithm 7 lines 16-17), Note that the values
of Cache and WorkingSpace are updated.

When <C1 > is read, C1 is a descendant of the node A2, as long as its parent
stack is not empty, C1 is buffered (with its information) to the potential an-
swers list of its parent node A2, also the values of Bu f f er and WorkingSpace
are updated (algorithm 7 lines 13-14).

When < C2 > is read, the node B2 was already popped out from its stack.
Concerning C2, it is a descendant of the node A2. As long as its parent stack
is not empty, C2 is buffered (with its information) to the potential answers
list of its parent node A2, also the values of Bu f f er and WorkingSpace are
updated (algorithm 7 lines 13-14).

When < /B1 > is read, the node A2 was popped out from its stack and its
potential answers list was appended to the same list of its parent node B1



86 Chapter 4. Selectivity Estimation Techniques

(algorithm 8 lines 21-22 then algorithm 9 line 8-9). The node B1 is the root
node of the query, therefore, the content of its potential answers list is flushed
as answers (algorithm 8 lines 21-22 then algorithm 9 lines 2-6).

Before, we show the estimated values, we remind that in the SAX parser
events of the path tree, the list of attributes l for each StartElement(e, l)
contains two attributes: nFreq which is the frequency of e and nSize which
is the size in byte of e.
The result of the XPath query estimation is as follows (estimated values):
NumberO f Matches: the value is 4, they are: C1(3)+C2(1) = 3+ 1 = 4.
Bu f f er: for any simple path, the value of Bu f f er is the same as the value
of NumberO f Matches. Cache: the value is 6, they are: B1(1), A2(2) and
B2(3). Based on this, the value of Cache is 1+2+3 = 6 WoringSpace: its
size was estimated to (88+ 132) = 220 byte = 0.0002MiB. Out putSize:its
size was estimated to 88 byte = 0.00008MiB.

• Simple path with same node-labels:

Figure 4.12(b) illustrates different snapshots of the evaluation process of the
path tree of D on the simple path //A//B//A , which returns A2(2) as esti-
mated answer. For each non-leaf node, the algorithm creates a stack. There-
fore, in this example, a stack is created for the root node A and another one
for the node B.

A1 (1)

B1 (1)

A2 (2) E2 (1) C3 (1)

B2 (3) C2 (1)

C1 (3) E1 (3) D1 (1)

(a) path tree of D

//A //B

A1 (1)

read <A1> read <B1>

B1 (1)

read <A2>

A2 (2)

A2 (2)

read <B2> read </A2> read </A1>

B1 (1)

//A //B //A //B

A1 (1) B1 (1) A1 (1)

A2 (2)
A1 (1) B1 (1) A2 (2)

B2 (3)
2 (2)A2 (2)A1 (1) A1 (1)

//A //B //A //B //A      //B

A

(b) SAX parser events of the path tree

Figure 4.12: Snapshots of the run-time stacks for the evaluation of the path tree of D on Q (//A//B//A)

When < A1 > is read, the function startBlock is called in the post-order of
A in Q, that is 3,1. The node A1 with order 3 is not buffered because its
parent stack (stack B) is empty (algorithm 7 line 1). While A1 with order 1
is pushed (with its information, e.g. nSize and nFreq) in its corresponding
stack A and the values of Cache and WorkingSpace are updated (algorithm 7
lines 16-17).



4.3. Selectivity Estimation Algorithm 87

When <B1> is read, it is pushed (with its information, e.g. nSize and nFreq)
in its corresponding stack B and the values of Cache and WorkingSpace are
updated (algorithm 7 lines 16-17).

When < A2 > is read, the function startBlock is called in the post-order of
A in Q, that is 3,1. The node A2 with order 3 is buffered (with its informa-
tion) to the potential answers list of node B1 and the values of Bu f f er and
WorkingSpace are updated (algorithm 7 lines 13-14). While A1 with order 1
is pushed (with its information) in its corresponding stack A, and the values
of Cache and WorkingSpace are updated (algorithm 7 lines 16-17).

When < /B1 > is read, it is popped out from its stack and its potential an-
swers list is appended to the same list of its parent node A1 (algorithm 8 lines
21-22 then algorithm 9 lines 8-9 ).

Finally, when < /A1 > is read, A1 is the root node of the query, therefore,
the content of its potential answers list is flushed as answers (algorithm 8
lines 21-22 then algorithm 9 lines 2-6).

The result of the XPath query estimation is as follows (estimated values):
NumberO f Matches: the value is 2, they are: A2(2) = 2. Bu f f er:
for any simple path, the value of Bu f f er is the same as the value of
NumberO f Matches. Cache: the value is 7, they are: A1(1), A2(2)
and B1(1), B2(3). Based on this, the value of Cache is 1+ 2+ 1+ 3 = 7.
WoringSpace: its size was estimated to (44+154) = 198 byte = 0.0002MiB.
Out putSize: it size was estimated to 44 byte = 0.00004MiB.

• Simple path with a wildcard:

Figure 4.13(b) illustrates different snapshots of the evaluation process of the
path tree of D on the simple path //A//∗//D which returns D1(1) as a result
node. For each non-leaf node, the algorithm creates a stack. Therefore, in
this example, a stack is created for the root node A and another one for the
node ∗.

When < A1 > is read, the function startBlock will is called in the post-order
of A in Q, that is 2,1. The node A1 with order 2 is not pushed in its stack
(stack ∗) because its parent stack (stack A) is empty (algorithm 3 line 1).
While A1 with order 1 is pushed (with its information, e.g. nSize and nFreq)
in its corresponding stack A and the values of Cache and WorkingSpace are
updated (algorithm 7 lines 16-17).

When < B1 > is read, it is pushed in its corresponding stack ∗ (algorithm 3
line 14).



88 Chapter 4. Selectivity Estimation Techniques

A1

B1

A2 E2 A3 C5

B2

C1 E1

B3 C3 B4

E3 C2 D1 C4 E4

(a) XML document D

//A //*

//A

A1 (1)

read <B1> read <A2>

B1 (1)

read < >

A2 (2)

//* // //*

read < > read </A2>

A2 (2)

B1 (1)

//A // //A //*

A1 (1) B1 (1) A1 (1)

A1 (1)

B1 (1)
A2 (2)A2 (2)

D1 (1)

A2 (2)
B2 (3) 

D1 (1)

D1

/B2

D1 (1) 

A2 (2)
D1 (1)

B1 (1)

A2 (2)

A

/*

A1 (1)

A2 (2)

(b) Snapshots of the run-time stacks for the evaluation of D on Q

Figure 4.13: Snapshots of the run-time stacks for the evaluation of the path tree of D on Q (//A//∗//D)

When < A2 > is read, the function startBlock is called in the post-order of
A in Q, that is 2,1. The A2 with order 2 is pushed (with its information)
in its corresponding stack ∗ and the values of Cache and WorkingSpace are
updated (algorithm 7 lines 16-17). While A2 with order 1 is pushed (with
its information) in its corresponding stack A and the values of Cache and
WorkingSpace are updated (algorithm 7 lines 16-17).

When < D1 > is read, the function startBlock is called in the post-order
of A in Q, that is 3, 2. Note that the node B2 was read and pushed (with
its information) to its corresponding stack ∗, therefore, the node D1 with
order 3 is buffered (with its information) to the potential answers list of its
parent node B3, and the values of Bu f f er and WorkingSpace are updated
(algorithm 7 lines 13-14). While the node D1 with order 2 is pushed in its
corresponding stack ∗.
When < /B2 > is read, B2 is popped out from its stack, and its potential
answers list is appended to the same list of its parent node A2 (algorithm 8
lines 21-22 then algorithm 9 lines 8-9).

Finally, when < /A2 > is read, the function endBlock is called in the pre-
order of A in Q, that is 2, 3. The node A1 with order 1 is the root node of the
query, therefore, the content of its potential answers list is flushed as answers
(algorithm 8 lines 21-22 then algorithm 9 lines 2-6). While for the node A2
with order 2, it is popped out from its corresponding stack ∗.
The result of the XPath query estimation is as follows (estimated values):
NumberO f Matches: the value is 1, it isD1(1) = 1. Bu f f er: for any simple
path, the value of Bu f f er is the same as the value of NumberO f Matches.
Cache: the value is 19, we present them based on their stacks as follows:
stack A contains A1(1), A2(2) = 1+ 2 = 3. While stack ∗ contains A1(1),
A2(2), B1(1), B2(3), C1(3), C2(1), C3(1), E1(3), E2(1) = 1+2+1+3+
3+1+1+3+1 = 16. So the estimated value is 3+16 = 19.

WoringSpace: its size was estimated to (22+418) = 440 byte = 0.0004MiB.
Out putSize: it size was estimated to 22 byte = 0.00002MiB.



4.3. Selectivity Estimation Algorithm 89

A1 (1)

B1 (1)

A2 (2) E2 (1) C3 (1)

B2 (3) C2 (1)

C1 (3) E1 (3) D1 (1)

(a) path tree of D

//A //C/ //D //A //C/ //D //A //C/ //D

//A //C/ //D //A //C/ //D //A //C/ //D

A1(1) 

read <B1>

/B

A2(2) 

B1(1) 

B2(3) 

A1(1) 

read < 1>D

A2(2) 

B1(1) 

B2(3) E1(3)

A1(1) 

read </A2>

A2(2) 

B1(1) 

E1(3)

A1(1) 

read < 2>E

B1(1) E2(1) A1(1) 

read </B1>

E2(1)
A1(1) 

read </A1>

E2(1)

/B /B

/B /B /B

(b) Snapshots of the run-time stacks for the evaluation process

Figure 4.14: Snapshots of the run-time stacks for the evaluation of the path tree of D on Q (//A[.//C]/B[.//D]//E)

In the next section, we present several examples on th selectivity estimation by
using our selectivity estimation technique with twigs.

4.3.1.2 Selectivity Estimation - Twig Path

Below, we present two examples on the selectivity estimation of twig paths.

• Twig path with multi predicates:

Figure 4.14 illustrates different snapshots of the evaluation process of the
path tree of D on the twig path //A[.//C]/B[.//D]//E which returns E1(3),
E2(1) as result nodes. For each non-leaf node, the algorithm creates a stack.
Therefore, in this example, a stack is created for the root node A and another
one for the node B.

When < B2 > is read, the nodes A(1), B1(1), and A2(1) were read and
pushed (with their information) in their stacks. Concerning the node B2, it is
also pushed (with its information) in its stack B. Note that for each pushed
node, the values of Cache and WorkingSpace are updated. (algorithm 7 lines
16-17).

When < D1 > is read, the node C1 was read, therefore, the value
of the predicate C of A2 was changed to true, and the value of
NumberO f PredEvaluation was updated. The node E1 was read, therefore,
E1 was buffered (with its information) to the potential answers list of its par-
ent node B2, and the values of Bu f f er and WorkingSpace were updated (al-
gorithm 7 lines 13-14). Moreover, by reading D1, the value of the predicate
D of B2 was changed to true and the value of NumberO f PredEvaluation
was updated.

When < /A2 > is read, the node B2 was popped out from its stack, and the
true value of its predicate C was passed to its ancestor B1, and the value of



90 Chapter 4. Selectivity Estimation Techniques

NumberO f PredEvaluation was updated (algorithm 8 line 6). Furthermore,
the potential answers list of B2 was appended to the same list of its parent
node A2 (algorithm 9 lines 8-9). Concerning A2, it is popped out of its stack,
and as long as it is the root node, the content of its potential answers list is
flushed as answers (algorithm 8 lines 13-14 then algorithm 9 lines 2-6).

When E2 is read, it is buffered (with its information) to the potential answers
list of its parent node B2, and the values of Bu f f er and WorkingSpace are
updated (algorithm 7 lines 13-14).

When < /B1 > is read, it is popped out from its stack and its potential
answers list is appended to the same list of its parent node A1. Finally,
when < /A1 > is read, it is popped out from its stack, A1 is the root node,
therefore, the content of its potential answers list is flushed as answers
(algorithm 8 lines 13-14 then algorithm 9 lines 2-6).

The result of the XPath query estimation is as follows (estimated values):
NumberO f Matches: the value is 4, they are: E1(3), E2(1) = 3 + 1 =

4. Bu f f er: in this example, the value of Bu f f er is the same as
NumberO f Matches.

Cache: the value is 7, we present them based on their stacks as follows: stack
A contains A1(1), A2(2), while stack B contains B1(1), B2(3). The value
then 1+2+1+3 = 7. WoringSpace: its size was estimated to 0.0002MiB.
Out putSize: its size was estimated to 0.00008MiB.
NumberO f PredEvaluation: its estimated value is 6, that is C1(3) + D1(1)
+ two times the predicate values were passed between elements= 6.

• Twig path with and operator and same node-labels:

Figure 4.15 illustrates different snapshots of the evaluation process of the
path tree of D on the twig path //A[./B and .//A]//E which returns E1(3),
E2(1) as result nodes. For each non-leaf node, the algorithm creates a stack.
Therefore, in this example, a stack is created for the root node A.

When < A1 > is read, the function startBlock is called in the post-order
of A in Q, that is 3,1. The predicate node A1 with order 3 is not evaluated
because its parent stack (stack A) is empty (algorithm 7 line 1). While A1
with order 1 is pushed (with its information) in its corresponding stack A
with false values for its both predicate nodes B and A, moreover, the values
of Cache and WorkingSpace are updated (algorithm 7 lines 16-17).

When < B1 > is read, B1 is a direct child for node A1, therefore the value of
the predicate B of the node A1 is changed from false to true. Moreover, the
value of NumberO f PredEvaluation is updated (algorithm 7 lines 5-6).



4.3. Selectivity Estimation Algorithm 91

A1 (1)

B1 (1)

A2 (2) E2 (1) C3 (1)

B2 (3) C2 (1)

C1 (3) E1 (3) D1 (1)

(a) path tree of D

//A //A/B //A/B //A/B //A/B

//A/B//A //A/B//A

//A //A/B

//A/B//A

A1 

read <A1>

//A

A1 

read <A2>

A2 

A1 

read <E1>

A2 

//A

E1

A1 

read </A2>

E1

(1) A1 

read <B1>

(1) (1)

(2) (2)

(1)
(3)

(1)
(3)

A1 

read <E2>

E1(1)
(3) E2(1)

A1 

read </A1>

E1(1)
(3) E2(1)

(b) Snapshots of the run-time stacks for the evaluation process

Figure 4.15: Snapshots of the run-time stacks for the evaluation of the path tree of D on Q (//A[./B and .//A]//E)

When < A2 > is read, the function startBlock is called in the post-order of
A in Q, that is 3, 1. The value of the predicate node A with order 3 for A1 is
changed from false to true because its parent stack (stack A) is not empty, it
contains the node A1. Furthermore, the value of NumberO f PredEvaluation
is updated (algorithm 7 line 5-6). While A2 with order 1 is pushed (with
its information) in its corresponding stack A with false values for its both
predicate nodes B and A, moreover, the values of Cache and WorkingSpace
are updated (algorithm 7 line 14).

When < E1 > is read, as long as it is a descendant of A2, the node E1 is
buffered (with it information) to the potential answers list of its parent node
A2.

When < /A2 > is read, it is popped out from its stack. A2 is the root node,
but its predicate node A is not satisfied (algorithm 8 line 13), therefore, the
function appendOrDestroy is called (algorithm 8 line 16). The host stack
of A is the stack A itself (host[A] = A), as long as this stack is not empty (it
contains node A1), the potential answers list of A2 is appended to the same
list of A1.

When < E2 > is read, as long as it is a descendant of A1, E2 is buffered
(with it information) to the potential answers list of its parent node A1.

Finally, when < /A1 > is read, it is popped out from its stack. A1 is the
root node, as long as the values of its predicates B and A are true, then, the
content of its potential answers list (E1(3) and E2(1)) is flushed as a final
answer.

The result of the XPath query estimation is as follows (estimated values):
NumberO f Matches: the value is 4 , they E1(3), E2(1) = 3 + 1 = 4.



92 Chapter 4. Selectivity Estimation Techniques

Bu f f er is this example, the Bu f f er has the same value as the the value of
NumberO f Matches that is 4. Cache: the value is 3, they are A1(1), A2(2)
= 1+ 2 = 3. WoringSpace: its size was estimated to = (22+ 44)+ (66+
22) = 154 byte = 0.0001MiB. Out putSize: its size was estimated to 88 byte
= 0.00008MiB. NumberO f PredEvaluation: its estimated value is 6, that is
B1(1) + A2(2) +B2(3) = 6.

4.3.2 Accuracy of the Selectivity Estimation Technique
The average relative error was used to measure the accuracy of our approach, it
is defined as follows: 1

n ∑n
i=1 |

Mi−Pi
Mi
|, where Mi is the measured value of the i−th

query in the workload and Pi is its predicted one.
Table 4.1 summarizes the measured and the estimated values of the five XPath

queries used in our precedent examples. As it can be seen, the measured and the
estimated values are equal which is an indication for the accuracy of our selectivity
estimation technique.

XPath query Measured values-LQ Estimated values-Estimation algorithm

N
um

be
rO

fM
at

ch
es

B
u

ff
er

C
ac

he

W
or

ki
ng

Sp
ac

e

O
ut

pu
tS

iz
e

N
um

be
rO

fP
re

dE
va

lu
at

io
n

N
um

be
rO

fM
at

ch
es

B
u

ff
er

C
ac

he

W
or

ki
ng

Sp
ac

e

O
ut

pu
tS

iz
e

N
um

be
rO

fP
re

dE
va

lu
at

io
n

//A/A//C 4 4 6 0.0002 0.00008 - 4 4 6 0.0002 0.00008 -
//A//B//A 2 2 7 0.0002 0.00004 - 2 2 7 0.0002 0.00004 -
//A//∗//D 1 1 19 0.0004 0.00002 - 1 1 19 0.0004 0.00002 -
//A[.//C]/B[.//D]//E 4 4 7 0.0002 0.00008 4 4 4 7 0.0002 0.00008 6
//A[./B and .//D]//E 4 4 3 0.0001 0.00008 6 4 4 3 0.0001 0.00008 6

Table 4.1: Measures to show the accuracy of the selectivity estimation technique

After an exhaustive testing on real and synthetic data sets (e.g., TreeBank
[Suciu 1992] and XMark [Schmidt 2001]), we noticed that the selectivity estima-
tion of our technique for any simple path p is 100% correct due to the complete
structure of the path tree synopsis. Moreover, the selectivity estimation for twig
paths of our technique is very accurate due to the complete structure of the path
tree synopsis and the efficiency of our selectivity estimation algorithm.

In this chapter, we introduced our selectivity estimation technique. The result
of the selectivity estimation process (estimated values) of our technique, makes it
well suited to be embedded in a cost model for XPath query evaluation.
In the next chapter, we present our performance prediction (cost) model. More-
over, we show the important rule of our selectivity technique in the performance
prediction model.



CHAPTER 5

Performance Prediction Model

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Performance Prediction Model- Preliminaries . . . . . . . . . . 95

5.2.1 Performance Prediction Model - Motivations . . . . . . . . 95

5.2.2 Performance Measurements Towards the Optimization of
Stream-processing for XML Data . . . . . . . . . . . . . . 96

5.2.2.1 Prototype O-Search . . . . . . . . . . . . . . . 96

5.2.2.2 Experimental Results . . . . . . . . . . . . . . . 99

5.2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . 110

5.2.3 Performance Prediction Model - General Structure . . . . . 112

5.3 Performance Prediction Model - Simple Path . . . . . . . . . . . 113

5.3.1 Lazy Stream-querying Algorithm (LQ) . . . . . . . . . . . 115

5.3.2 Building the Mathematical Model . . . . . . . . . . . . . . 116

5.3.3 Building the Prediction Model . . . . . . . . . . . . . . . . 117

5.3.3.1 Prediction Rules . . . . . . . . . . . . . . . . . . 118

5.3.4 User Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . 126

5.3.5.1 Experimental Setup . . . . . . . . . . . . . . . . 126

5.3.5.2 Quality of Model Prediction . . . . . . . . . . . . 126

5.3.5.3 Impact of Using Metadata in our Model on the
Performance . . . . . . . . . . . . . . . . . . . . 129

5.3.5.4 Model Portability on Other Machines . . . . . . . 132

5.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Performance Prediction Model - Twig Path . . . . . . . . . . . . 133

5.4.1 Lazy Stream-querying Algorithm (LQ) . . . . . . . . . . . 134

5.4.2 Building the Mathematical Model . . . . . . . . . . . . . . 135

5.4.3 Building the Prediction Model . . . . . . . . . . . . . . . . 136

5.4.3.1 Example of the Selectivity Estimation Process . . 137

5.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 138

5.4.4.1 Experimental Setup . . . . . . . . . . . . . . . . 138



94 Chapter 5. Performance Prediction Model

5.4.4.2 Accuracy of the Selectivity Estimation . . . . . . 139

5.4.4.3 Efficiency of the Selectivity Estimation Algorithm 139

5.4.4.4 Comparing our Approach with the other Ap-
proaches . . . . . . . . . . . . . . . . . . . . . . 139

5.4.5 Use Case: Online Stream-querying System . . . . . . . . . 141

5.4.5.1 Online Stream-querying System . . . . . . . . . . 141

5.4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . 142

5.1 Introduction

XML [Bray 2008] is one of the most important standards for document storage
and interchange, and its convenient syntax improves the interoperability of many
applications. Yet the format is intrinsically costly in space and efficient access
to XML data requires careful processing of XPath queries. Despite a logically
clean structure, the computational complexity of XPath [Berglund 2010], XQuery
[Boag 2010] queries can vary dramatically [TenCate 2009] [Gottlob 2005] and the
unconstrained use of XPath leads to unpredictable space and time costs.

One proposed approach to combine the simplicity of XML data, the declarative
nature of XPath queries and reasonable performance on large data sets is to impose
their processing by purely streaming algorithms. The result is that queries must be
restricted to a fragment of XPath but on the other hand processing space can be
limited and very large documents can be accessed efficiently.

There are many parameters that influence processing space and time (as we
explained in chapter 1): the lazy vs eager strategy of the stack-automaton, the size
and quantity of query results, the size and structure of the document etc.
The author of an XPath query may have no immediate idea of what to expect in
memory consumption and delay before collecting all the resulting sub-documents.
This unpredictability can diminish the practical use of XPath stream-processing.

In chapter 4 (Selectivity Estimation Techniques) we explained that selectivity
estimations is desirable in interactive and internet applications. The system could
warn the end user that for example his/her query is so coarse that the amount
of results will be overwhelming. But is not sufficient to model the query cost.
Moreover, it measures neither the total amount of memory allocated by the
program to find these matches (space used) nor the processor time used by the
program to find the matches (time spent).



5.2. Performance Prediction Model- Preliminaries 95

In this chapter, we start by explaining the main idea and the general structure
of the performance prediction model. This model provides us in advance with
expected time/space for a sent XPath query Q on a document D. After that, we
present in details two performance prediction models, they are: (1) Performance
Prediction Model - Simple Path, and (2) Performance Prediction Model - Twig
Path.

5.2 Performance Prediction Model- Preliminaries

Our Performance Prediction Model is a cost model which estimates the cost (in
terms of space used and time spent) of an XPath query before actually executing it.

There are many parameters that influence processing space and time: the lazy
vs eager strategy of the stack-automaton, the size and quantity of XPath query
results, the size and structure of the document etc. The author of an XPath query
may have no immediate idea of what to expect in memory consumption and
delay before collecting all the resulting sub-documents. This unpredictability can
diminish the practical use of XPath stream-processing. Therefore, to estimate the
cost for a given XPath query, we need to determine these parameters and to decide
their relations with time and space.

A stream of XML data is the depth-first, left-to-right traversal of an XML doc-
ument [Bray 2008]. By definition stream-processing linearizes data-access and as-
sumes limited temporary storage (heap or stack size). Moreover, bounded-memory
processing is abstractly equivalent to efficient parallel processing [Parberry 1987]
and XPath must be restricted to have a parallel-efficient [Gottlob 2005] or even
decidable [TenCate 2009] querying problem. We are thus forced to consider a
fragment of XPath but work remains to make even this limited problem efficient
and predictable.

In this section, we start by presenting our motivations for a performance pre-
diction (cost) model (section 5.2.1). After that, we present a preliminary study we
performed to confirm the linear relationship between the stream-processing and the
data-access resources (section 5.2.2). Finally, we present the general structure for
the performance prediction model (5.2.3).

5.2.1 Performance Prediction Model - Motivations

We summarize our motivations for improving stream-querying and cost prediction
as follows:

• In certain situations processing the XML document occurs through portable



96 Chapter 5. Performance Prediction Model

devices with small memory sizes, hence the need to minimize space or pre-
dict its overflow.

• Developing cost models for query optimization is significantly harder for
XML queries than for traditional relational queries. The reason is that XPath
query operators are much more complex than relational operators such as
table scans and joins.

• Selectivity estimations are highly desirable in interactive and internet appli-
cations. The system could warn the end user that his/her query is so coarse
that the amount of results will be overwhelming.

• Selectivity is necessary but not sufficient to model costs: for example the
existence of 5 matches somewhere at the beginning of a very large XML
document, might cost less than finding one match somewhere at the end of it.
Hence the need to model match-position distribution and match-tree sizes.

• A 2005 study [Teevan 2005] of Yahoo’s query logs revealed that 33% of the
queries from the same user were repeated and that 87% of the time the user
would click on the same result as earlier: repeat queries are used to revisit
information. This suggests that systems learn from past queries and make
performance repeatable if not gradually improving. Indeed, tabulation can
be seen as an extreme case of a performance model: it contains so much
information about performance that it converges to the actual query results.

In the next section, we study the relationship between stream-processing and
data-access resources.

5.2.2 Performance Measurements Towards the Optimization of
Stream-processing for XML Data

In this section, we present a study we performed to confirm the linear relation-
ship between the stream-processing and data-access resources [Alrammal 2009b].
As we will see later (section 5.3 and section 5.4), this linear relationship has an
important role in our performance prediction models.

5.2.2.1 Prototype O-Search

We developed the core of a prototype called O-Search to have better understand-
ing for the complexity of stream-querying algorithms in practice, with respect to
different structures of XML documents (wide, depth, various size). The evalua-
tion technique used in our prototype is Lazy. Figure 5.1 shows the structure of
O-Search.
O-Search will become our intermediate prototype for stream-querying of XML



5.2. Performance Prediction Model- Preliminaries 97

Figure 5.1: Architecture of O-Search.

Data. It is implemented using the functional language OCaml 1 [Leroy 2010b]. We
have implemented the basic search functions necessary for realizing XPath queries.
To explain figure 5.1 we start in the input that is a simplified XML file which has
the abstract syntax as in figure 5.2.

type token =

StartDocument of string

| StartElement of string * (string * string) list

| EndElement of string

| Text of string

| EndDocument of string ;;

Figure 5.2: Abstract Syntax

An example of the concrete syntax for figure 5.2 is figure 5.3(a). Notice that
5.3(b) is its XML tree model. There are basically two types of nodes in the XML
tree model:

• Element nodes: these correspond to tags in XML documents, and
correspond to StartElement token in our concrete syntax, for ex-
ample StartElement("A",[]). An attribute list is associated (op-
tionally) with tags in the XML document, therefore it is associ-
ated with StartElement tokens in our concrete syntax, for example

1Ocaml is a language of the ML family developed by INRIA since the early 1980’s.
It is well adapted to tree processing and its optimizing compiler ocamlopt produces fast
executables



98 Chapter 5. Performance Prediction Model

StartDocument("Doc1")

EndDocument("Doc1")

StartElement("A",[])
StartElement("B",[])
EndElement("B")
StartElement("C",[])
Text("Any text")
EndElement("C")
EndElement("A")

"Any text"

A

B C

Figure 5.3: XML Tree Model.

StartElement("B",[("attr","2")]). Note that, the attribute list is not
nested (an attribute can not have any sub-elements), not repeatable (tow
same-name attributes can not occur under one element) and unordered (at-
tributes of an element can freely interchange their occurrences location under
element). These constraints are standard to XML.

• Text nodes: these correspond to data values in XML document, and cor-
respond to Text token in our concrete syntax, for example Text("Any
text").

To read the input file (input_channel), we implemented a lexer named
tokenOfCharStream. It reads the input file line by line as a stream of charac-
ters and generates a token for each line, see the function below:

val tokenOfCharStream:
char Stream.t -> token Stream.t

The token generated by the lexer will be used by the processing function for
matching and processing purposes. After each match the lexer is called repeatedly
to generate another token. An example of this function is:

val getSubStreamsForElement:
string ->in_channel -> string -> unit

were the input arguments are:

• string: our query.

• in_channel: the input file.

• string: the name of the output file.

getSubStreamsForElement calls recursively many other internals functions to
generate the result as stream of tokens then call recursively the function:

val stringOfToken:
token -> string

to convert each token in the stream to string and sent it to the output_channel.



5.2. Performance Prediction Model- Preliminaries 99

5.2.2.2 Experimental Results

Experimental Setup

In this section we explain the experimental setup needed for the performance
measurements by using our prototype.

Data sets: to conduct the performance measurements, we implemented two
types of synthetic data sets. These data sets are described below:

1. Wide tree data set: it has a shallow structure that does not include recursive
elements. To generate the wide tree data set, we use the following function:

val generateWideTree:
string -> int -> in_channel

where:

• string: is the output file name which will contain the wide tree data set.

• int: is the number of the shallow subtrees in the wide tree data set.
Queries will refer to each subtree’s "token rank" (see figure 5.4).

To know the total number of the tokens generated in our wide tree data set
that was used for the performance tests, we use the following equation:

Tree/Data set size(tokens)= (n∗10)+4

where:

• n: is the loop number. It is proportional to the tree data set width

• 10: is the number of tokens generated in each subtree.

• 4: is a constant number that represents:

1- StartDocument ("Doc 1")

2- StartElement("root", [])

3- EndElement("root")

4- EndDocument("Doc1")

Figure 5.4 is an example of wide tree data with the following size:

Tree/Data set size(tokens)= (100000∗10)+4

2. Deep tree data set: it has a narrow deep structure. To generate the deep tree
data set, we use the following function:



100 Chapter 5. Performance Prediction Model

Figure 5.4: Wide tree data set



5.2. Performance Prediction Model- Preliminaries 101

Processor name Intel Core 2 Duo
Processor speed 2.4 GHz
Memory 4 GB.
OS Mac OSX Version 10.5.5.

Table 5.1: Specifications of the test machine

val generateDeepTree:
string -> int -> in_channel

where:

• string: is the output file name which will contain the deep tree data set.

• int: is the loop depth of the deep tree data set. Queries will refer to
"token rank" in this tree data set (see figure 5.5).

To know the total number of tokens generated in our deep tree data set that
was used for the performance tests, we use the following equation:

Tree/Data set size(tokens)= ((n∗6)+(n∗4))+4

where:

• n: is the loop number. It is proportional to the depth tree data set.

• 6: is the number of tokens (StartElement and Text) that are gener-
ated in each recursion.

• 4: is the number of tokens (EndElement) that are generated in each
recursion.

• 4: is a constant number that represents:

1- StartDocument ("Doc 1")

2- StartElement("root", [])

3- EndElement("root")

4- EndDocument("Doc1")

Figure 5.5 is an example of deep tree data set with the following size:

Tree/Data set size(tokens)= ((100000∗6)+(100000∗4))+4

Test machine: experiments were performed using a MacBook machine with
the following technical specifications:



102 Chapter 5. Performance Prediction Model

Figure 5.5: Deep tree data set

Test measurements:

• Time: to measure execution time, we use the following function
Sys.time();;. This function exists in the module Sys2 of OCaml. It
has a type: unit -> float, and it returns the processor time (in seconds)
used by the program since the beginning of execution. To return the time of
generating (for example) a wide tree data set, we use the following code:

let temp=ref (Sys.time()) ;;
generateWideTree "inputFile.txt" n ;;
print_float (Sys.time()-. !temp);;

print_string " Second\n"; temp:=Sys.time();;

To return the total time of a specific test, for example:
getSubStreamsForElement, we use the following code:

let temp=ref (Sys.time());;
getSubStreamsForElement <token name>

(generateDeepTree "inputFile.txt" <Data set token rank>)

2Sys: portable system calls.



5.2. Performance Prediction Model- Preliminaries 103

"outputFile.txt" ;;
print_float (Sys.time()-. !temp);;
print_string " Second\n"; temp:=Sys.time();;

• Memory:

We measure the maximum depth of the running time stack (caching) using
the following function:

val getMaxDepth: unit -> int
getMaxDepth();;

this function returns an integer which indicates the maximum instantaneous
number of tokens in the stack.

Queries: we used the following processing function:
getSubStreamsForElement. Our tests have the following form:

getSubStreamsForElement<Token name>
(generateWideTree "inputFile,txt"<data set token rank>)
"outputFile,txt";;

where Token name can have the following values:

• A1: return the subtree of the element which exists at the beginning of the tree
data set.

• A<token rank/2>: return the subtree of the element which exists in the
middle of the tree data set.

• A<Data set token rank>: return the subtree of the element which exists
at the end of the tree data set.

Furthermore, we use Positive and Negative queries, where:

• Positive: is a query that does not return an empty result.

• Negative: is a query which return an empty result. We use negative queries
with the two types of the tree data sets (Wide and Deep) as a reference for
the performance measurement.

Note that, O-Search support other processing functions, for example:



104 Chapter 5. Performance Prediction Model

getSubStreamsForAttributeName<Token name>
(generateWideTree "inputFile,txt" <Data set token rank>)
"outputFile,txt" ;;

getSubStreamsForAttributeValue<Token name>
(generateWideTree "inputFile,txt"<Data set token rank>)
"outputFile,txt";;

getSubStreamsForTextEqual<Token name >
(generateWideTree "inputFile,txt"<Data set token rank>)
"outputFile,txt" ;;

Compiler: to test the execution time, we compile the ML file using ocam-
lopt: the Objective Caml high-performance native-code compiler. Generated code
is almost 10 times faster than generated code by ocamlc.
To test the memory consumption, we use ocamlc which compiles CAML source
files to byte-code object files and links these object files to produce standalone
bytecode executable files. These executable files are then run by the bytecode in-
terpreter ocamlrun. For memory tests, it is recommended to use ocamlc because it
is more accurate than ocamlopt [Leroy 2010a].

Results

This section details our measurements for (time/space) for the following data
sets (Wide tree/Deep tree) for positive queries. Those tests are then repeated for
negative queries.

Wide tree data set (Positive queries): we performed two tests using this data
set, they are:

1. Time test
To explain this test, we start in explaining table 5.2 which include all the
information needed:

• Query:
getSubStreamsForElement

<Token name>

(generateWideTree "inputFile,txt" <Data set token rank> "outputFile,txt");;

• Test type: table 5.2 contains three tests, they are: y1, y2, and y3. We
change the value of Token query rank with each test.

• Token name: the token name we search.

• Data set token rank: the rank of token of subtree, for better under-
standing see figure 5.4.

• Input tree size (tokens): the total number of tokens generated in our
wide tree data set.



5.2. Performance Prediction Model- Preliminaries 105

Test type Token name Data set Input tree T(total) T(data set) T(total-data set) Stack max. depth
token rank size(tokens) In seconds In seconds In seconds In (tokens)

y1 A1 100000 1000004 2,42 0,61 1,81 3
y1 A50000 100000 1000004 2,41 0,61 1,8 3
y1 A100000 100000 1000004 2,42 0,61 1,81 3
y2 A1 500000 5000004 12,42 3,12 9,3 3
y2 A250000 500000 5000004 12,41 3,12 9,29 3
y2 A500000 500000 5000004 12,49 3,12 9,36 3
y3 A1 1000000 10000004 24,89 6,24 18,65 3
y3 A500000 1000000 10000004 24,92 6,24 18,67 3
y3 A1000000 1000000 10000004 26,17 6,24 19,92 3

Table 5.2: Wide tree data set - time and memory tests

• T(total): the processor time in seconds since the beginning of the exe-
cution to generate the tree data set and to answer the query.

• T(data set): the processor time in seconds since the beginning of the
execution to generate the tree data set.

• T(total-data set): the processor time in seconds since the beginning of
the execution to answer the query.

• Stack max. depth (token): is the maximum depth of the running time
stack.

Figure 5.6: Wide tree data set - Time

Figure 5.6 represents three tests to measure the execution time in the wide
tree data set. Test y1 uses a 1MiB token document, y2 a 5MiB token doc-
ument and y3 a 10MiB token document. We noticed that test y1 is steady
linear at 1,81 seconds irrespective of the data set token rank. Also, test y2 is
almost steady linear at 9,3 seconds. While test y3 is almost steady linear at
18,7 seconds with a slight increasing particularly at the point (A1000000 -



106 Chapter 5. Performance Prediction Model

1000000). Therefore, we conclude that execution time is independent of the
data set token rank in the wide tree data set. We observe directly proportional
to the input tree size: curves y2, y3 are multiples of y1 in this proportion.

2. Memory test
Table 5.2 contains all the information needed. The query used:

• Query:
getSubStreamsForElement

<Token name>

(generateWideTree "inputFile,txt" <Data set token rank> "outputFile,txt");;

Figure 5.7: Wide tree data set - Memory.

Figure 5.7 represents three tests to measure the memory allocated to answer
our query in the wide tree data set. Tests y1, y2 and y3 have the same value
for the maximum number of tokens in the running stack which is 3 due to the
symmetry of all subtrees in the wide tree data set. Therefore, we conclude
that the stack max. depth (tokens) is independent of the data set token rank
in the wide tree data set.

Deep tree data set (Positive queries): we performed two tests using this data
set, they are:

1. Time
The terms used in table 5.3 are the same as in table 5.2.

Figure 5.8 represents three tests to measure the execution time in the deep
tree data set. We noticed that execution time increases with the increasing of
the data set token rank and the decreasing of the token name’s value (see sec-
tion 5.2.2.2) due to the increasing of the tokens those correspond the query.



5.2. Performance Prediction Model- Preliminaries 107

Test type Token name Data set Input tree T(total) T(data set) T(total-data set) Stack max. depth
token rank size(tokens) In seconds In seconds In seconds In (tokens)

y1 A1 1000 10004 5,73 0,01 5,72 3999
y1 A500 1000 10004 0,82 0,01 0,81 2003
y1 A1000 1000 10004 0,03 0,01 0,02 3
y2 A1 5000 50004 223,37 0,04 223,33 19999
y2 A2500 5000 50004 41,47 1 0,04 41,43 10003
y2 A5000 5000 50004 0,12 0,04 0,08 3
y3 A1 10000 100004 1193,32 0,07 1193,26 39999
y3 A5000 10000 100004 232,42 0,07 232,35 20003
y3 A10000 10000 100004 0,23 0,07 0,16 3

Table 5.3: Deep tree data set - time and memory tests

Figure 5.8: Deep tree data set - Time.

More precisely, in test y1 the relationship between the execution time (y)
and data set token rank (x) is y = (2.3−0.002∗x)2. In test y2 the relation is:
y = (14.5− 0.03 ∗ x)2. While for the test y3 it is: y = (33.8− 0.003 ∗ x)2.
Therefore, we conclude that execution time is negative-quadratic propor-
tional to the data set token rank in the deep tree data set. The time-rank
relationship should normally be negative-linear and its quadratic behavior in
our tests is due to a naive list implementation of one primitive. This problem
was solved in our new implementation for the stream-querying algorithm in
section 5.3.1.

2. Memory
The terms used in table 5.3 are the same as table 5.2.

Figure 5.9 represents three tests to measure the memory allocated to answer
our query in the deep tree data set. We noticed that increasing the data set
token rank and decreasing the value of query name will increase the value
of stack max. depth (tokens). Furthermore, our evaluation technique is lazy,



108 Chapter 5. Performance Prediction Model

Figure 5.9: Deep tree data set - Memory.

Test type Token name Data set Input tree T(total) T(data set) T(total-data set) Stack max. depth
token rank size(tokens) In seconds In seconds In seconds In (tokens)

y1 A1000001 1000000 10000004 25,16 6,69 18,47 0
y1 A5000001 5000000 50000004 131,87 34,84 97,02 0
y1 A10000001 10000000 100000004 263,97 67,68 196,29 0

Table 5.4: Wide tree data set - time and memory tests (negative queries)

therefore we are obliged to buffer the whole subtree. In test y1 the rela-
tionship between the memory usage (y) and data set token rank (x) is as the
following y = −4 ∗ x+ 4003. In test y2 the relation is: y = −4 ∗ x+ 20003.
While for the test y3 it is: y = −4∗ x+40003. Therefore, we conclude that
stack max. depth (tokens) is inverse-linearly related to the data set token rank
in the wide tree data set, and linear proportional to the document size.

Wide tree data set (Negative queries): we performed two tests using this
data set, they are:

1. Time
Terms in table 5.4 have the same meaning as in table 5.2.

Figure 5.10 represents a test to measure the execution time in the wide tree
data set for negative queries. We noticed that execution time increases with
the increasing of the data set token rank due to the increasing of matching
processes. More precisely, in test y1 the relationship between the execution
time (y) and data set token rank (x) is as the following y= 0,00002∗x−1.82.
The importance of this test is to compare the measurements between the wide
tree data set and the deep tree data set by using negative queries.



5.2. Performance Prediction Model- Preliminaries 109

Figure 5.10: Wide tree data set - Time (negative queries).

Test type Token name Data set Input tree T(total) T(data set) T(total-data set) Stack max. depth
token rank size(tokens) In second In second In second In(tokens)

y1 A1000001 1000000 10000004 24,79 6,73 18,06 0
y1 A5000001 5000000 50000004 129,17 34,66 94,51 0
y1 A10000001 10000000 100000004 260,4 68,69 191,71 0

Table 5.5: Deep tree data set - time and memory tests (negative queries)

2. Memory
Terms in table 5.4 have the same meaning as table 5.2.

Figure 5.11 represents a test to measure the maximum depth of the running
stack (in tokens) to answer our negative query in the wide tree data set. We
notice that the increasing the data set token rank does not affect the stack
max. depth because our query is negative so we do not need to cache any
element. We conclude that stack max. depth (tokens) is independent of the
data set token rank in the wide tree data set.

Deep tree data set (Negative queries): we performed two tests using this
data set, they are:

1. Time
Terms in table 5.5 have the same meaning as in table 5.2.
Figure 5.12 represents a test to measure the execution time in the deep tree

data set using negative queries. We noticed that execution time increases with
the increasing of the data set token rank due to the increasing of matching
processes. More precisely, in test y1 the relationship between the execution
time (y) and data set token rank (x) y = 0.00002 ∗ x− 1.56. Comparing the
two linear equations to measure the execution time between both deep/Wide



110 Chapter 5. Performance Prediction Model

Figure 5.11: Wide tree data set - Memory (negative queries).

tree data sets using negative query indicates that deep tree data set has a better
time performance than wide tree data set.

2. Memory
Terms in table 5.5 have the same meaning as in table 5.2.

Figure 5.13 represents a test to measure the maximum depth of the running
stack (in tokens) to answer our negative query in the deep tree data set. We
notice that the increasing the data set token rank does not affect the stack
max. depth because our query is negative so we do not need to cache any
element. We conclude that stack max. depth (tokens) is independent of the
data set token rank in the deep tree data set.

5.2.2.3 Conclusion

The study performed above confirmed the linear relationship between the stream-
processing and data-access resources. This relationship indicates the following:

1. The stream-querying algorithm used for stream-processing should not have a
complexity more than linear. Notice that the complexity of our lazy stream-
querying algorithm LQ (introduced in chapter 4) which processes the frag-
ment of Forward XPath is linear.

2. The complexity of the selectivity estimation algorithm used in a performance
prediction model should not have a complexity more than linear. Note that,
our selectivity estimation algorithm (introduced in chapter 4) has a linear
complexity



5.2. Performance Prediction Model- Preliminaries 111

Figure 5.12: Deep tree data set - Time (negative queries).

Figure 5.13: Deep tree data set - Memory (negative queries).



112 Chapter 5. Performance Prediction Model

3. A linear regression approach can be used (in the performance prediction
model) to model the cost for a given query over stream of XML data.

In sections 5.3 and 5.4 we explain the importance of the linear regression
approach in our performance prediction models.

In the next section, we present the general structure for the performance pre-
diction model.

5.2.3 Performance Prediction Model - General Structure

The performance prediction model consists of a large number of input (XPath,
XML, Machine) - response (Statistics) pairs, used to construct an estimate of the
input-performance relationship by capturing the underlying trends and extracting
them from the noise. Then, a part of the information is discarded and the resulting
model is used to predict the responses of the new input.

Figure 5.14 illustrates our performance prediction (cost) model.

)

Stream-querying Algorithm

Figure 5.14: General structure - Performance Prediction Model

To built this model, we need a stream-querying algorithm to send training
queries (a set of XPath queries) on the target XML document in order to get on the
statistics needed (layer 1 of figure 5.14). After that, statistics are used to build a
mathematical model which consists of a set of linear regression functions that will
be used to estimate the cost for a given XPath query (layer 2 of figure 5.14). Then,
the moment the end user send an XPath query, the function estimator analyses
it and estimates the values of the input parameters of the mathematical model by
using certain prediction technique (layer 3 of figure 5.14). estimator provides the
end user with the estimated cost for his XPath query (which was calculated by the
mathematical model).

In the next section, we present the performance prediction model - simple path.
We will explain in details the whole process: how to get on the statistics needed,
how to build the mathematical model, what are the prediction rules or technique



5.3. Performance Prediction Model - Simple Path 113

used and how to optimize the stream-querying process if the cost estimated does
not fit the end user needs and resources.

5.3 Performance Prediction Model - Simple Path
The performance prediction model -simple path is a cost model which estimates
the cost (in terms of space used and time spent) for a simple path before actually
executing it.

It consists of a large number of input (XPath, XML, Machine) - response (statis-
tics) pairs, used to construct an estimate of the input-performance relationship by
capturing the underlying trends and extracting them from the noise. Then, a part of
the information is discarded and the resulting model is used to predict the responses
of the new input. More precisely, the resulting cost model contains two functions,
they are:

estimator: XPath*SearchingRange*XML*Machine → Cost
Estimated (space used/time pent)

The function estimator respects the syntax of the functional language OCaml
[Leroy 2010b]. It takes as input four parameters and gives as output the cost esti-
mated for the given XPath query. The input parameters are:

• XPath: is a sub fragment of XPath [Berglund 2010] where the used XPath
is a structural pattern composed of sub expressions called steps. Each step
consists of child or descendant axis (defines the tree-relationship between
the selected nodes and the current node), a name nodeTest (identifies a node
within an axis), and zero or one predicates (to further refine the selected
node-set) at the last step of XPath. e.g. //A/B/C[.//D].

• SearchingRange: is a part of the statistics used to construct the cost model.
It is augmented implicitly to XPath to orient the searching process. In this
syntax, we search over a subset of the XML document as specified by the
searching range (an interval of search as will see later). Notice that, the end
user will get a complete answer for his XPath query.

• XML document: is the XML document used to construct the cost model and
we query it to find answers for the input parameter XPath.

• Machine: is the machine used to construct the cost model.

If the cost estimated by estimator do not fit the end user needs, in this case, we
use the second function of the cost model optimizer which is described below.

optimizer: XPath*ImposedValues*XML*Machine → Cost Estimated
(space used/time spent)

To conduct further optimization, we propose optimizer, it is estimator
augmented with the input parameter ImposedValues: which are values imposed



114 Chapter 5. Performance Prediction Model

by the end user based on his needs and resources. For example: the end user
can impose the total amount of memory allocated by the program to process an
XPath query Q. optimizer performs implicitly several mathematical estimations to
adapt (recalculate the searching range) the stream-querying process with the value
imposed by the end user.

Figure 5.15 illustrates our performance prediction (cost) model - simple path.
The number to the right of each layer of the model corresponds to the number of
the section where this layer is explained in details. To built this model, we need

5.

5.

5.

5.

Figure 5.15: Layers of our performance prediction model - simple path

a stream-querying algorithm to send training queries (set of XPath queries) on the
target XML document in order to get on the statistics needed. For this purpose,
we adapted and used the stream-querying algorithm LQ [Gou 2007] (layer 1 of
figure 5.15). After that, statistics are used to build a mathematical model which
consists of a set of linear regression functions that will be used to estimate the cost
for a given XPath query (layer 2 of figure 5.15). Then, the moment the end user
send an XPath query, the function estimator analyses it and estimates the values of
the input parameters of the mathematical model by using certain prediction rules
(layer 3 of figure 5.15) and a part of the statistics (e.g. searching range). estimator
provides the end user with the estimated cost for his XPath query (which was calcu-
lated by the mathematical model). If the estimated cost fits the end user needs and
resources, then, the stream-querying algorithms LQ is used to process the XPath
query. If not, we use the second function of the cost model optimizer to allow fur-
ther optimization for the XPath query processing as we mentioned above (layer 4
of figure 5.15).

Next, we will explain in details the whole process: how to get on the statistics
needed, how to build the mathematical model, what are the prediction rules used
and how to optimize the stream-querying process if the cost estimated does not fit
the end user needs and resources.



5.3. Performance Prediction Model - Simple Path 115

5.3.1 Lazy Stream-querying Algorithm (LQ)
To enable our experimental study we implemented the stream-query algorithm LQ
of [Gou 2007]. We chose to use it because LQ handles recursion in the XML doc-
ument and repetition of node labels (same node-labels) in the XPath query, neither
of which can be done using [Peng 2003] and [Chen 2006]. LQ was implemented
by using the functional language OCaml release 3.11 [Leroy 2010b] which com-
bines relatively high performance with strong typing and ML-language constructs
for tree processing. The current version of LQ (figure 5.16) functions as follows:
it takes two input parameters. The first one is the XPath query that will be trans-

Figure 5.16: LQ (Lazy stream-querying algorithm)

formed to a query table statically using our Forward XPath Parser. After that, the
main function is called. It reads the data set line by line repeatedly, each time gen-
erating a tag. Based on that tag a corresponding startBlock (SB) or endBlock (EB)
function is called to process it. Finally, the main function generates as output the
statistics needed.
Statistics consist of the following:

• Cache: is the number of elements cached in the running-time stacks during
the processing of the XPath query Q on the XML document D. They corre-
spond to the axis nodes of Q.

• Buffer: is the number of potential answer elements which are buffered dur-
ing the processing of the XPath query Q on the XML document D. They
correspond to the answer nodes of the XPath query Q.

• NumberOfMatches: is the number of answer elements found during the pro-
cessing of the XPath query Q on the XML document D.

• StartLT: the location of the Start-Tag of the first element X in the XML doc-
ument order that corresponds to the root node of the XPath query Q.



116 Chapter 5. Performance Prediction Model

• EndLT: the location of the End-Tag of the last element Y in the XML docu-
ment order that corresponds to the result node of the XPath query Q.

• MinTime: returns the processor time used by the program since the beginning
of execution till finding the first answer.

• AvgTime: (sum (time for each match))/total NumberOfMatches.

• MaxTime: the processor time used by the program since the beginning of
execution till the end of XML document processing.

• MinMemory: the total amount of memory allocated by the program since the
beginning of execution till finding the first answer.

• AvgMemory: (sum (memory size for each match))/total NumberOfMatches.

• MaxMemory: the total amount of memory allocated by the program since the
beginning of execution till the end of XML document processing.

5.3.2 Building the Mathematical Model
As illustrated in figure 5.17, the first step is to send training queries to collect the
information needed (statistics) by using the stream-querying algorithm LQ. These
statistics will be stored in a hash table. We call our technique for sending training
queries and collecting the statistics by exhaustive testing: a comprehensive process
to test all possible not repeated XPath queries existing in the data set and having
the following forms: //A/B, where A and B can be any element name in the data
set, and A is a parent of B.
The moment we have this information, we use them to build the mathematical
model. Our mathematical model consists of a set of linear regressions, they are:

• MinTime vs (Buffer, Cache, StartLT, EndLT).

• AvgTime vs (Buffer, Cache, StartLT, EndLT).

• MaxTime vs (Buffer, Cache, StartLT, EndLT).

• MinMemory vs (Buffer, Cache, StartLT, EndLT).

• AvgMemory vs (Buffer, Cache, StartLT, EndLT).

• MaxMemory vs (Buffer, Cache, StartLT, EndLT).

To build a part of the mathematical model (the linear function) which will
be used to estimate the value of MaxMemory, we linearize the MaxMemory vs
(Buffer, Cache, StartLT, EndLT) relation i.e.we perform a linear regression on
our initial measurements. The same process is applied on (MinTime, AvgTime,
MaxTime, MinMemory, AvgMemory) to obtain the complete mathematical model.



5.3. Performance Prediction Model - Simple Path 117

Figure 5.17: Building the Mathematical Model

For example: to linearize MaxMemory vs Buffer, we calculate the slope and
intercept of this relation.

In the next section 5.3.3, we explain how the prediction rules use these linear
regressions to predict the XPath query cost.

Once our mathematical model is built, all data (statistics) in the hash table will
be discarded to free the memory. Then, we apply exhaustive testing, this time we
use //A instead of //A/B, where A can be any element name in the data set. The
advantage of the this process is to store the frequent element names and a part of
their statistics (Buffer, Cache, NumberOfMatches, StartLT, EndLT) in a hash table.
This information is our metadata which helps us to estimate the cost for the queries
sent by the end user.

The number of frequent element names of the data set TreeBank 64KiB is 32,
where frequent element name means element name exists 3 times or more in the
data set.

5.3.3 Building the Prediction Model

As illustrated in figure 5.18, the end user sends his/her XPath query to the func-
tion estimator. This function analyses the query and uses metadata in additional to
certain prediction rules to estimate the values of the input parameters of the mathe-
matical model. These input parameters are: (Buffer, Cache, StartLT, EndLT). Each
value of an input parameter will be used by its corresponding linear regression
function in the mathematical model. The average of the linear regressions results
is calculated to estimate the cost for a given XPath query. The cost estimated for
a given XPath query is: MinTime, AvgTime, MaxTime, MinMemory, AvgMemory,
MaxMemory.

In certain cases, we need to send partial queries to enrich the metadata if some
parameters values are missing.

Below we present the prediction rules of our performance prediction (cost)



118 Chapter 5. Performance Prediction Model

Figure 5.18: Building the Prediction Model

model.

5.3.3.1 Prediction Rules

We classify the prediction process into many cases. Each case may have several
prediction rules. The purpose of these rules is to estimate the values of the input
parameters of the mathematical model. For simplicity, we provide explaining ex-
amples for three cases. A detailed explanation of the prediction rules can be found
at [Alrammal 2010].

Case (1) positive node tests of the end user query:
Table 5.6 represents our metadata (frequent element names and their statistics).

Note that these element names are distinct e.g. A <> B <>C.

Element Cache Buffer NumberOfMatches StartLT EndLT
name

A 0 0 20 500 1500
B 0 0 15 700 2000
C 0 0 10 1000 2500

Table 5.6: Frequent element names and their metadata for Case (1)

The end user query is //A/B/C. According to the content of table 5.6, the node
tests of the query are positive. In this case, the prediction rule is as follows:

• NumberOfMatches for element name A plus those for B will be the upper
bound estimated value of Cache for XPath //A/B/C.

• NumberOfMatches for element name C will be the upper bound estimated
value of Buffer for XPath //A/B/C.

• StartLT for element name A will be the lower bound value of StartLT for
XPath //A/B/C.

• EndLT of element name C will be the upper bound value of EndLT for XPath
//A/B/C.



5.3. Performance Prediction Model - Simple Path 119

XPath Cache Buffer StartLT EndLT
//A/B/C 35 10 500 2500

Table 5.7: Result of prediction rules for Case (1)

Table 5.7 shows the learning process from metadata for this case. The values of
the parameters (Buffer, Cache, StartLT, EndLT) will be used by the mathematical
model to estimate the cost of //A/B/C.
By symmetry this case is also valid for the following XPath: //A/C/B, //B/A/C,
//B/C/A, //C/A/B, //C/B/A.

Case (2) metadata contains negative element name:

A negative element name in metadata table is an element name that does not
belong to the XML data set. In certain cases, it can be a frequent one because its
name has the same name of node tests which belong to repeated queries sent by the
end users. In this case we add it to the hash table of metadata. (in a certain period,
this node test was used in several queries more than 3 times).
Below, we provide an example with respect to metadata in table 5.8.

Element Cache Buffer NumberOfMatches StartLT EndLT
name

A 0 0 20 500 1500
B 0 0 0 0 0
C 0 0 10 1000 2500

Table 5.8: Frequent element names and their metadata for Case (2)

The query of the end user is //A/C/B. In this case, the prediction rules is as
follows:

• NumberOfMatches for element name A plus those for C will be the upper
bound estimated value of Cache for XPath //A/C/B.

• NumberOfMatches for element name B will be the upper bound estimated
value of Buffer for XPath //A/C/B, unless NumberOfMatches for element
name B is zero (as in table 5.8), then a message will be sent to the end user
informing him in advance that this query is negative. This case is also valid
for the following XPath: //C/A/B by symmetry.

Case (3) no information about an element name in metadata:
As explained at the beginning of this document, It may be impractical to store

information about all the element names. Here we suggest possible solution to this
absence of information.
Below, we provide an example with respect to metadata in table 5.9 (we do not
have any information about the element name C neither positive nor negative).

The end user query is //A/B/C. In this case, the prediction rule is as follows:



120 Chapter 5. Performance Prediction Model

Element Cache Buffer NumberOfMatches StartLT EndLT
name

A 0 0 20 500 1500
B 0 0 15 700 2000

Table 5.9: Frequent element names and their metadata for Case (3)

• NumberOfMatches for element name A plus those for B will be the upper
bound estimated value of Cache for XPath //A/B/C. We obtain the meta-
data of element name C as follows:
We implicitly send the query //C to get its metadata (in this case we ob-
tained: NumberOfMatches = 7 and EndLT = 1900), then:

• NumberOfMatches for element name //C will be the upper bound estimated
value of Buffer for XPath //A/B/C.

• StartLT for element name A will be the lower bound estimated value of
StartLT for XPath //A/B/C.

• EndLT for element name C will be the upper bound estimated value of EndLT
for XPath //A/B/C.

XPath Cache Buffer StartLT EndLT
//A/B/C 35 7 500 1900

Table 5.10: Result of prediction rules for Case (3)

Table 5.10 shows the learning process from metadata for this case. Sending
implicitly the XPath query //C is recommended because we send it only once to
help us to predict the cost of the following XPath: //A/C/B, //B/A/C, //B/C/A,
//C/A/B, //C/B/A, //A/C, //B/C, //C/A, //C/B and to know in advance
whether the above mentioned queries are negative or not.

5.3.4 User Protocol

The user protocol is an interactive mode, it is used with our performance model to
optimize the stream-querying process based on the end user needs and resources.
For example, the end user can impose the total amount of memory allocated by
the program to process an XPath query Q. Thus, our model performs implicitly
several mathematical estimations to adapt the stream-querying process with the
value imposed by the end users.

The interaction of the end user with our model can be summarized as follows:

• Imposing the maximum time: he can impose the value of the processor’s time
in seconds, used by the program to process an XPath query Q. For example:
the time imposed by the end user to process query Q is 10s.



5.3. Performance Prediction Model - Simple Path 121

• Imposing the maximum memory: he can impose the value of the total amount
of memory allocated by the program in KiB to process an XPath query Q.
For example: the memory imposed by the end user to process query Q is
2048KiB.

• Imposing the maximum time and memory: he can impose the value of time
and the value of memory allocated by the program to process an XPath query
Q. For example: the time imposed by the end user to process query Q is 10s,
and he memory imposed by the end user to process query Q is 2048KiB.

As mentioned above, the purpose of user protocol is to optimize the stream-
querying process based on the needs and the resources of the end user. In this case,
we search over a subset of the XML document as specified by the search range
(an interval consists of StartLT and EndLT). This process yields a stream-querying
semi-algorithm which is an algorithm returning correct but possibly incomplete
results. In other words sub-documents outside the search range are only scanned
but not processed as an attempt to improve performance. This strategy is based
on our earlier measurements [Alrammal 2009c] showing important gains when
replacing stream-querying with stream-scanning.

To optimize the stream-querying process based on the resources (values of
time/memory) imposed by the end user, we need to determine the values of the
searching range (StartLT, EndLT).

Deciding the searching range (StartLT, EndLT)

As we mentioned before, our mathematical model consists of many linear re-
gression functions, y = ax + b. The terms used in this section StartLT, EndLT,
Buffer, Cache, MaxTime, and MaxMemory were already defined in section 5.3.1.

To determine the searching range (StartLT, EndLT) based on the imposed value
by the end user, we present the following scenarios:

1. Time: the end user imposes a limited time, e.g. the value of MaxTime is 15s.
In this case, we calculate the values of StartLT and EndLT of the searching
range as follows:

• EndLT: in our mathematical model, the value of MaxTime is the abso-
lute average value obtained from the following relations:

ValueOfMaxTimeVsStartLT=((slopeMaxTimeVsStarLT)*.(StartLT)+.
(interceptMaxTimeVsStartLT))
ValueOfMaxTimeVsEndLT=((slopeMaxTimeVsEndLT)*.(EndLT)+.
(interceptMaxTimeVsEndLT))
ValueOfMaxTimeVsBuffer=((slopeMaxTimeVsBuffer)*.(Buffer)+.
(interceptMaxTimeVsBuffer))



122 Chapter 5. Performance Prediction Model

ValueOfMaxTimeVsCache=((slopeMaxTimeVsCache)*.(Cache)+.
(interceptMaxTimeVsCache))

Therefore, the value of EndLT is the absolute average integer value
obtained from the following relations:

StartLT=(ValueOfMaxTimeVsStartLT/. slopeMaxTimeVsStartLT)-.
(interceptMaxTimeVsStartLT)
EndLT=(ValueOfMaxTimeVsEndLT/. slopeMaxTimeVsEndLT)-.
(interceptMaxTimeVsEndLT)
Buffer=(ValueOfMaxTimeVsBuffer/. slopeMaxTimeVsBuffer)-.
(interceptMaxTimeVsBuffer)
Cache=(ValueOfMaxTimeVsCache/. slopeMaxTimeVsCache)-.
(interceptMaxTimeVsCache)

• StartLT: to make sure that stream-querying process will start from the
right position in the XML document, we get the value of StartLT from
our metadata based on the XPath query sent by the end user.

val getStartLT->string->float

Once we have the values of searching range (StartLT, EndLT), we augment
them to the end user’s query to optimize the stream-querying process.

2. Memory: the end user imposes a limited memory, e.g. the value of
MaxMemory is 15000KiB. In this case, we calculate the values of StartLT
and EndLT of the searching range as follows:

• EndLT: in our mathematical model, the value of MaxMemory is the
absolute average value obtained from the following relations:

ValueOfMaxMemoryVsStartLT=((slopeMaxMemoryVsStarLT)*.(StartLT)+.
(interceptMaxMemoryVsStartLT))
ValueOfMaxMemoryVsEndLT=((slopeMaxMemoryVsEndLT)*.(EndLT)+.
(interceptMaxMemoryVsEndLT))
ValueOfMaxMemoryVsBuffer=((slopeMaxMemoryVsBuffer)*.(Buffer)+.
(interceptMaxMemoryVsBuffer))
ValueOfMaxMemoryVsCache=((slopeMaxMemoryVsCache)*.(Cache)+.
(interceptMaxMemoryVsCache))

Therefore, the value of EndLT is the absolute average integer value
obtained from the following relations:

StartLT= (ValueOfMaxMemoryVsStartLT/. slopeMaxMemoryVsStartLT)-.
(interceptMaxMemoryVsStartLT)
EndLT= (ValueOfMaxMemoryVsEndLT/. slopeMaxMemoryVsEndLT)-.
(interceptMaxMemoryVsEndLT)



5.3. Performance Prediction Model - Simple Path 123

Buffer= (ValueOfMaxMemoryVsBuffer/. slopeMaxMemoryVsBuffer)-.
(interceptMaxMemoryVsBuffer)
Cache= (ValueOfMaxMemoryVsCache/. slopeMaxMemoryVsCache)-.
(interceptMaxMemoryVsCache)

• StartLT: to make sure that stream-querying process will start from the
right position in the XML document, we get the value of StartLT from
our metadata based on the XPath query sent by the end user.

val getStartLT->string->float

Once we have the values of searching range (StartLT, EndLT), we add them
as metadata to the end user’s query to optimize the stream-querying process.

3. Time and Memory: the end user imposes a limited time, e.g. MaxTime is
15s, and he imposes a limited memory e.g. MaxMemory is 15000KiB. In
this case, we calculate the values of StartLT and EndLT of the searching
range as follows:

• EndLT: to find a solution for this case, we calculate the values of
MaxTime and MaxTime in the same way that we explained before.
Then, the new value of EndLT will the min value of EndLT (MaxTime)
and EndLT (MaxMemory)

EndLT= min (EndLT(MaxTime)) ( EndLT(MaxMemory))

• StartLT: to make sure that stream-querying process will start from the
right position in the XML document, we get the value of StartLT from
our metadata based on the XPath query sent by the end user.

val getStartLT->string->float

Below, we present the interactive mode with the end user.

Interactive mode with the end user

Once the mathematical model is built and the metadata is stored, the end user



124 Chapter 5. Performance Prediction Model

can interact with our model as it is explained in algorithm 11.

Algorithm 11: User Protocol (Interactive Mode)
1 while (true) do
2 Enter: the XPath expression (query) and the name of the data set
3 if (The predicted time/memory satisfy the end user) then
4 The stream-querying algorithm will be used to process the query and to return a complete answer for

the end user
5 else
6 Optimize you query by imposing further constraints
7 if (Constrain = Time) then
8 Press 1, then, enter the value of MaxTime in second. /*Calculating the value of the

searching range*/

9 if (Constrain = Memory) then
10 Press 2, then, enter the value of MaxMemory in KiB. /*Calculating the value of the

searching range*/

11 if (Constrain = Time and Memory) then
12 Press 3, then, enter the value of MaxMemory in KiB, and enter the value of MaxTime in second

/*Calculating the value of the searching range*/

13 The value of the searching range (StartLT and EndLT ) is calculated, and it is augmented to the end
user’s query which will be processed by the stream-querying semi-algorithm.

An example of using our user protocol is as follows:

1. The end user inserts the name of data set to construct the mathematical model
and to store the metadata, see figure 5.19 (this process occurs only one time).

Figure 5.19: Building the mathematical Model

2. Then, he is asked to insert the name of data set and the XPath query con-
cerned to execute his search. He will receive a massage from the system
in the expected time/ space to process the XPath. He has the option to ac-
cept/refuse this cost, see figure 5.20.

3. In our case, we suppose that the end user did not accept this cost, therefore
he chose the option No to optimize his search, see figure 5.21.

4. The end user decided to optimize the time, therefore he pressed 1, then he
imposed a new value for the maximum time, see figure 5.22.

The value of maximum time imposed by the end user is 0.004s. As we see in
the figure above, the value of MaxTime was reduced from 0.009s to 0.004s.
Also, NumberOfMatches reduced from 9 matches to 5 matches.



5.3. Performance Prediction Model - Simple Path 125

Figure 5.20: Predicting the cost of the XPath query sent

Figure 5.21: Refusing the predicted query cost

Figure 5.22: Optimizing the query by imposing constraints



126 Chapter 5. Performance Prediction Model

5.3.5 Experimental Results
In this section, we demonstrate the accuracy of our model by using variety of XML
data sets. In addition, we examine its efficiency and the size of the training set and
metadata that it requires. For example: the latter should not be too large in practice
and we observe that our model behaves favorably in this respect. Metadata build
from frequent (repeated 3 times or more) element names in the document occupies
only 1/2000th of the document size, and this is confirmed for tests on documents
differing in content, structure and size.

5.3.5.1 Experimental Setup

We performed experiments on a MacBook with the following technical specifica-
tions: Intel Core 2 Duo, 2.4 GHz, 4 GB RAM. Then, we checked the portability of
the model to Red hat Linux with the following specifications: Intel Xeon 2.6 GHz,
8 GB RAM.
We used synthetically generated data sets and data sets from a real-world applica-
tion [Suciu 1992]. See table 5.11. The functional language OCaml version 3.11
was used on both machines.

Synthetic Synthetic TreeBank TreeBank
Structure wide wide narrow deep narrow deep

and shallow and shallow and recursive and recursive
Data Size 43MiB 1GiB 64KiB 146MiB
Max./Avg 10/4.5 10/4.5 36/7.6 36/7.6

Depth

Table 5.11: Characteristics of the experimental data sets.

The average relative error was used to measure the quality of the model
prediction, it is defined as follows: 1

n ∑n
i |

Mi−Pi
Mi
|, where Mi is the measured value of

the i−th query in the workload and Pi is its predicted one.

In the first part of our experiments, we measured the quality of the model pre-
diction (section 5.3.5.2). While in the second part (section 5.3.5.3), we presented
the impact of using metadata in our model on the performance. Then we checked
the portability (section 5.3.5.4).

5.3.5.2 Quality of Model Prediction

To test the quality of the model prediction we performed several experiments
for measuring space prediction. We measured the space prediction of the model
without the interaction of the end user, in this syntax, the end user accepts the
predicted query evaluation cost (predicted allocated memory) and does not impose
any constraint. Then, the quality of space prediction was measured once the end
user imposes memory constraints to optimize his search.



5.3. Performance Prediction Model - Simple Path 127

Though the purpose of our model is to measure the space prediction, we also
presented an attempt to measure the time prediction for an XPath given query.

Space Prediction

1. No interaction between the end user and the model:

The quality of prediction (error percentage) of our model was measured for
both real and synthetic data sets which have different sizes and structures
(see table 5.11).

(a) TreeBank 64KiB (b) TreeBank 146MiB

(c) Synthetic 1GiB

Figure 5.23: Percentage error for space prediction

In figure 5.23(a), we tested our model by using the real data set TreeBank
which has a narrow and deep structure and a size of 64KiB. As can be seen,
the error average for space is 3.80%. Our motivating scenario is to process
large XML documents and considering the memory allocated to model the
cost for a given XPath query. Therefore, in figure 5.23(b), we tested our
model with the data set TreeBank which has the size of 146MiB. The error
average of space is 9.87%. In addition, in figure 5.23(c) the model was
tested by using a synthetic data set which is wide, shallow and it has a size
of 1GiB. The error average of space is 7.44%.



128 Chapter 5. Performance Prediction Model

2. Interaction between the end user and the model:

As we mentioned above, the end user can impose certain constraints to op-
timize his queries by using the user protocol. We measured the quality of
prediction of user protocol by using the data set TreeBank 146MiB.

(a) TreeBank 146MiB (b) Synthetic 1GiB

Figure 5.24: User Protocol -
Percentage error for space prediction

Figure 5.24(a) illustrates the percentage of error between the values imposed
by the end user and the measured ones by the model for certain queries. As
can be seen, the error average for space is 18.48%.

We also tested the user protocol by using the synthetic data set 1GiB. Figure
5.24(b) illustrates the percentage of error for this test. The error average of
space is 8.2%.

Time Prediction

To test the time prediction of our model, we used the same real data sets which
we used in the previous experiments for space prediction. We first measured the

(a) TreeBank 64KiB (b) TreeBank 146MiB

Figure 5.25: Percentage error for time prediction

quality of prediction by using the real data set TreeBank which has a narrow and
deep structure and a size of 64KiB.



5.3. Performance Prediction Model - Simple Path 129

Figure 5.25(a) illustrates the percentage error for time prediction by using the
data set TreeBank 64KiB. The error average of time for this experiment is 4.45%.
In figure 5.25(b) we measured the error percentage for time prediction by using the
data set TreeBank 146MiB. As can be seen, the error average of time is 69.64%.

5.3.5.3 Impact of Using Metadata in our Model on the Performance

Improving the Performance by Using Searching range

To show the efficiency of a restricted searching range compared to the existing
exhaustive stream-querying algorithm LQ, we performed two type of tests on the
data set TreeBank 146MiB, these tests are:
– T1: queries were sent without searching range.
– T1′: same queries were sent with searching range obtained from T1 to demon-
strate the time/memory gain possible.

Figure 5.26(a) shows the query evaluation costs (time spent) of T1 and T1′.
The MinTime of T1 is 2.07s while for T1′ it is 1.75s. The 15% gain in time is due
to stream-scanning: 3 until reaching the StartLT point, thus avoiding unnecessary
buffering and caching processes. The AvgTime of T1 is 5.57s while for T1′ is
5.22s, the slight gain of time occurred because the gain of time of MinTime affects
positively the value of AvgTime. The MaxTime for T1 is 13.05s while for T1′ it
is 8.46s. The gain of 37% in time is due to both StartLT and EndLT restricting
the searching range so that stream-querying process stops the moment EndLT is
reached. This is correct because we know that there will be no any further possible
matches in the XML document.

(a) T1 and T1′ -Time (b) T1 and T1′-Memory

Figure 5.26: Query evaluation cost for T1 and T1′

Figure 5.26(b) shows the query evaluation cost (memory used) of T1 and T1′.
The MinMemory of T1 is 635MiB while for T1′ it is 512MiB the gain of memory
which is 20% was obtained because of the stream-scanning technique which scans

3 to process the XML data stream with minimal resources, this process simply searches the
position of a specific element in D without caching nor buffering.



130 Chapter 5. Performance Prediction Model

the XML document until StartLT is reached. The AvgMemory of T1 is 2035MiB
while for T1′ it is 1703MiB, a gain of 17% in memory is obtained because the
gain on MinMemory affects positively the value of AvgMemory. The MaxMemory
value for T1 is 4115MiB while for T1′ it is 2584MiB. The gain of 38% in memory
is due to the use of both StartLT and EndLT to delimit the searching range. Thus
we stop the stream-querying process the moment EndLT is reached because we
know that there will be no any further possible matches in the document.

Negative Queries

In this section, we present the impact of using metadata on the measured
time/memory for the negative queries. As we mentioned in 5.3.3.1 (prediction
rules), frequent negative element names help us to decide in advance that certain
queries are negative. This property which exists in the model improves the
performance.

To show the efficiency of our model compared to the existing exhaustive
stream-querying algorithm LQ, we performed two type of tests on the data set
TreeBank 146MiB, these tests are:
– T2: negative queries were sent without metadata.
– T2′: same queries were sent with metadata obtained from T2 to demonstrate the
possible gain of time/memory for negative queries.

Figure 5.27 shows the query evaluation costs (time spent) of T2 and T2′. The
values of MaxTime of T2 and T2′ for the first 5 queries are equal 69.5s, because
the model still did not detect any frequent negative element name. The values of
MaxTime of T2 for the first 10 queries is 134.12s while for T2′ is 122s, the time
improvement of T2′ occurred because the model detected in advance that one query
is negative. The values of MaxTime of T2 for the first 15 queries is 207.5s while for
T2′ is 160.2s, the time improvement of T2′ occurred because the model detected
in advance that three queries are negative. The values of MaxTime of T2 for the
all queries is 268.35s while for T2′ is 187s, the time improvement of T2′ which is
30% occurred because the model detected in advance that six queries are negative.

Figure 5.28 shows the query evaluation costs (memory used) of T2 and T2′. The
values of MaxMemory of T2 and T2′ for the first 5 queries are equal 20.11GiB,
because the model still did not detect any frequent negative element name. The
values of MaxMemory of T2 for the first 10 queries is 40.13GiB while for T2′ is
36.13GiB, the memory improvement of T2′ occurred because the model detected
in advance that one query is negative. The values of MaxMemory of T2 for the first
15 queries is 60.31GiB while for T2′ is 48.14GiB, the memory improvement of
T2′ occurred because the model detected in advance that three queries are negative.
The values of MaxMemory of T2 for the all queries is 80.42GiB while for T2′ is
56.21GiB, the memory improvement of T2′ which is 30% occurred because the
model detected in advance that six queries are negative.



5.3. Performance Prediction Model - Simple Path 131

Figure 5.27: Impact of metadata on time for T2 and T2′

Figure 5.28: Impact of metadata on memory for T2 and T2′



132 Chapter 5. Performance Prediction Model

5.3.5.4 Model Portability on Other Machines

To check the portability of our model, we rebuilt it on another machine: Red hat
Linux with the following specifications: Intel Xeon 2.6 GHz, 8 GiB RAM.

We used the same byte-code object file, the data set TreeBank 64KiB and the
same queries which we already used in the test of figure 5.23(a).

Figure 5.29 illustrates the error average for space that is 3.79%, it is the same
result as the test in figure 5.23(a).
Hence:
–Memorylinux = Memorymac
– Timelinux = Timemac/1.18

which is a stable factor for porting our model on another machine without re-
building it.

Figure 5.29: Percentage error- TreeBank 64KiB(Linux)

5.3.6 Conclusion
In this section we presented our performance prediction model - simple path. The
model allows static a priori prediction of time-space parameters on a given (vari-
able) query for a given (fixed) XML data set. It proceeds by accumulating informa-
tion from training queries whose node tests are those frequently found in the target
document. Two specific objectives for our model were:

1. to obtain reliable and portable cost predictions for random queries on a fixed
data set, while storing a small amount of metadata.

2. to use the predictions to improve performance and/or resource management.

Our objectives are attained for any structure/size of XML documents and over
both time/memory. Two improvements over the computing approach COMET
[Zhang 2005] have been achieved. However our current system covers a smaller
fragment of XPath.

Our optimizations are also novel: they are obtained by using searching ranges
to alternate between stream-scanning and stream-querying. The gain of MaxTime



5.4. Performance Prediction Model - Twig Path 133

reached up to 38%, while the gain of MaxMemory reached 37%.

Our current non optimized model building processes from 100 to 1000
elements by second which is maybe slow for very large XML documents.

As future work, we aim to extend and improve the performance model by
considering a larger fragment of XPath to include all of the Forward XPath defined
in 1. To ensure accurate XML path selectivity estimation, our mathematical model
and metadata must be updated once the underlying XML data change. To avoid
reconstructing the mathematical model by using the off-line periodic scan, we
will investigate how to automatically adapts to changing XML data by using the
queries feedback (online algorithm for model construction). All these points are
processed in the next section 5.4 which explains the performance prediction model
- twig path.

5.4 Performance Prediction Model - Twig Path

The performance prediction model - twig path is a cost model which estimates the
cost (in terms of space used and time spent) for any structural XPath query belongs
to Forward XPath (defined in section 1.1.1.2).

Figure 5.15 illustrates our performance prediction (cost) model - twig path.

Path tree
Selectivity estimation

algorithm

Estimator

XML

End user query

Figure 5.30: Layers of our performance prediction model - twig path

To built this model, we need a stream-querying algorithm to send training
queries (a set of XPath queries) on the target XML document in order to get on
the statistics needed. We therefore used our extended lazy stream-querying algo-
rithm that is defined in chapter 4.2 (layer 1 of figure 5.30). After that, statistics
are used to build a mathematical model which consists of a set of linear regression
functions that will be used to estimate the cost for a given XPath query (layer 2 of
figure 5.30).



134 Chapter 5. Performance Prediction Model

The path tree is built for the target XML document by using our streaming al-
gorithm (the details of the construction process of the path tree are explained in
chapter 3). After that, the moment the end user send an XPath query, the function
estimator analyses it and estimates the values of the input parameters of the math-
ematical model by using the path tree and the selectivity estimation algorithm that
is defined in chapter 4.3 (layer 3 of figure 5.30). estimator provides the end user
with the estimated cost for his query (which was calculated by the mathematical
model).

Next, we will explain in details each layer of the model.

5.4.1 Lazy Stream-querying Algorithm (LQ)

We used our stream-querying algorithm that is defined in chapter 4.2 to get on the
statistics needed to build the mathematical model.

The current extended version of LQ processes queries which belong to the
fragment of Forward XPath. Our algorithm was implemented using the functional
language OCaml release 3.11 [Leroy 2010b] which combines relatively high
performance with strong typing and ML-language constructs for tree processing.

Statistics

startBlock endBlock

Figure 5.31: Extended LQ (Lazy stream-querying algorithm)

Our extended LQ takes two input parameters (see figure 5.31). The first one
is the XPath query (which belongs to Forward XPath to allow stream-processing)
that will be transformed to a query table statically using our Forward XPath Parser.
After that, the main function is called. It reads the second parameter (XML doc-
ument in SAX events syntax) line by line repeatedly, each time generating a tag.
Based on that tag a corresponding startBlock or endBlock function is called to pro-
cess it. Finally, the main function generates as output the result for the sent XPath
(statistics).



5.4. Performance Prediction Model - Twig Path 135

Statistics consist of:

1. NumberOfMatches: is the number of answer elements found during process-
ing of the XPath query Q on the XML document D.

2. Cache: is the number of elements cached in the run-time stacks during pro-
cessing of the XPath query Q on the XML document D. They correspond to
the axis nodes of Q.

3. Buffer: is the number of potential answer elements buffered during process-
ing of the XPath query Q on the XML document D.

4. OutputSize: is the total size in MiB of the number of answer elements found
during processing of the XPath query Q on the XML document D.

5. WorkingSpace: is the total size in MiB for the number of elements cached
in the run-time stacks and the number of potential answer elements buffered
during processing of the XPath query Q on the XML document D.

6. NumberOfPredEvaluation: is the number of times the query’s predicates are
evaluated (their values are changed or passed from an element to another).

In the next section, we explain the construction process of the mathematical
model.

5.4.2 Building the Mathematical Model

As illustrated in figure 5.32, the first step is to send training queries to collect the
information needed (statistics) by using our extended stream-querying algorithm
LQ. These statistics will be stored in a hash table.

We call our technique for sending training queries and collecting the statistics
by partial testing: a process to test some not-repeated XPath queries existing in the
data set. In our model, the number of the training queries = p2, where p is the num-
ber of the input parameters of the mathematical model which is 6. These parameters
are: NumberOfMatches,Cache, Buffer, OutputSize, WorkingSpace, WorkingSpace,
NumberOfPredEvaluation.

The moment we have this information, we use them to build the mathematical
model. The model consists of a set of linear regressions, they are:

• MaxTime vs (Buffer, Cache, NumberOfMatches, OutputSize, WorkingSpace,
NumberOfPredEvlaution).

• MaxMemory vs (Buffer, Cache, NumberOfMatches, OutputSize, Work-
ingSpace,NumberOfPredEvlaution).



136 Chapter 5. Performance Prediction Model

Figure 5.32: Building the Mathematical Model

To build a part of the mathematical model (the linear function) which will be
used to estimate the value of MaxMemory, we linearize the MaxMemory vs (Buffer,
Cache, NumberOfMatches, OutputSize, WorkingSpace, NumberOfPredEvlaution).
The same process is applied on MaxMemory to obtain the complete mathematical
model. For example: to linearize MaxMemory vs Buffer, we calculate the slope
and intercept of this relation.

In the next section 5.4.3, we explain how the prediction model uses these linear
functions to estimate the cost for a given XPath query.

5.4.3 Building the Prediction Model
As illustrated in figure 5.33, the end user sends his/her XPath query to the
prediction model which was constructed for the XML document D. The estimator
analyses the XPath query and uses the path tree of D (that is introduced in chapter
3) and the selectivity estimation algorithm (that is introduced in chapter 4) to
estimate the values of the input parameters of the mathematical model. These input
parameters are: Buffer, Cache, NumberOfMatches, OutputSize, WorkingSpace and
NumberOfPredEvlaution. The last parameter used if the XPath query contains any
predicates.

Path tree
Selectivity estimation

algorithm

Estimator

End user query

Figure 5.33: Building the Prediction Model

Each value of an input parameter will be used by its corresponding linear re-
gression function in the mathematical model. The average of the linear regressions



5.4. Performance Prediction Model - Twig Path 137

A1 (1)

B1 (1)

A2 (2) E2 (1) C3 (1)

B2 (3) C2 (1)

C1 (3) E1 (3) D1 (1)

(a) path tree of D

//A //A/B //A/B //A/B //A/B

//A/B//A //A/B//A

//A //A/B

//A/B//A

A1 

read <A1>

//A

A1 

read <A2>

A2 

A1 

read <E1>

A2 

//A

E1

A1 

read </A2>

E1

(1) A1 

read <B1>

(1) (1)

(2) (2)

(1)
(3)

(1)
(3)

A1 

read <E2>

E1(1)
(3) E2(1)

A1 

read </A1>

E1(1)
(3) E2(1)

(b) Snapshots of the run-time stacks for the evaluation process

Figure 5.34: Snapshots of the run-time stacks for the evaluation of the path tree of D on Q (//A[./B and .//A]//E)

results is calculated to estimate the cost for a given XPath query. The cost estimated
for a given XPath query is: MaxTime and MaxMemory.

Though we explained in details the selectivity estimation process in chapter 4),
below we introduce an example which explains how to get the values of the input
parameters for the mathematical model.

5.4.3.1 Example of the Selectivity Estimation Process

Figure 5.34(b) illustrates different snapshots of the evaluation process of the path
tree of D on the twig path //A[./B and .//A]//E which returns E1(3), E2(1) as
result nodes. For each non-leaf node, the algorithm creates a stack. Therefore, in
this example, a stack is created for the root node A.

When < A1 > is read, the function startBlock is called in the post order of
A in Q, that is 3,1. The predicate node A1 with order 3 is not evaluated because
its parent stack (stack A) is empty. While A1 with order 1 is pushed (with its
information) in its corresponding stack A with false values for its both predi-
cate nodes B and A. Moreover, the values of Cache and WorkingSpace are updated.

When < B1 > is read, B1 is a direct child for node A1, therefore the value of
the predicate B of the node A1 is changed from false to true. The value of the
NumberOfPredEvlaution is updated.

When < A2 > is read, the function startBlock is called in the post order
of A in Q, that is 3, 1. The value of the predicate node A with order 3 for A1
is changed from false to true because its parent stack (stack A) is not empty, it
contains the node A1. While A2 with order 1 is pushed (with its information) in
its corresponding stack A with false values for its both predicate nodes B and A.
Moreover, the values of Cache, WorkingSpace and NumberOfPredEvlaution are
updated.



138 Chapter 5. Performance Prediction Model

When < E1 > is read, as long as it is a descendant of A2, the node E1 is
buffered (with it information) to the potential answers list of its parent node A2.

When < /A2 > is read, it is popped out from its stack. A2 is the root node, but
its predicate node A is not satisfied, therefore, the function appendOrDestroy is
called. The host stack of A is the stack A itself (host[A] = A), as long as this stack
is not empty (it contains node A1), the potential answers list of A2 is appended to
the same list of A1.

When < E2 > is read, as long as it is a descendant of A1, E2 is buffered (with
it information) to the potential answers list of its parent node A1.

Finally, when < /A1 > is read, it is popped out from its stack. A1 is the root
node, as long as the values of its predicates B and A are true, then, the content of
its potential answers list (E1(3) and E2(1)) is flushed as a final answer.

The result of the XPath query estimation is as follows (estimated values):
NumberO f Matches: the value is 4 , they are E1(3), E2(1) = 3 + 1 = 4.
Bu f f er is this example, the Bu f f er has the same value as the the value of
NumberO f Matches that is 4. Cache: the value is 3, they are A1(1), A2(2)
= 1+2= 3. WoringSpace: its size was estimated to = (22+44)+(66+22) = 154
byte= 0.0001MiB. Out putSize: its size was estimated to 88 byte = 0.00008
MiB. NumberO f PredEvlaution: the value is 6, they are B1(1), A2(2), B2(3)
= 1+2+3 = 6.
Each value of an input parameter (an estimated value) will be used by its corre-
sponding linear regression function in the mathematical model to estimate the cost
for a given XPath query. The cost estimated for a given XPath query is: MaxTime
and MaxMemory.

5.4.4 Experimental Results

In this section, we demonstrate the accuracy of our system by using variety of
XML data sets and complex queries. Furthermore, we show the efficiency of our
modified LQ algorithm. Finally, we compare our approach with other approaches.

5.4.4.1 Experimental Setup

We performed experiments on a MacBook with the following technical specifica-
tions: Intel Core 2 Duo, 2.4 GHz, 4 GB RAM. The well known XML data sets
XMark [Schmidt 2001] and TreeBank [Suciu 1992] were selected for the experi-
ments. XMark is a wide and shallow data set, its size is 116MiB and its maximum
depth is 12. TreeBank is a deep and recursive data set, its size is 86MiB and its
maximum depth is 36. The average relative error was used to measure the accuracy
of our approach, it is defined as follows: 1

n ∑n
i=1 |

Mi−Pi
Mi
|, where Mi is the measured

value of the i−th query in the workload and Pi is its predicted one.



5.4. Performance Prediction Model - Twig Path 139

Extensive testing and complex queries were used in our experiments. Queries in-
clude: ′/′, ′//′, ′∗′, same node-labels, ′text()′, predicates with and, or, not and
nested predicates. An example for a complex XPath query taken from XMark
//item[.//payment or .//shipping]//mailbox//mail[./date]/to and from TreeBank //EMPTY [./S//NP[./∗]

and .//V P]//∗/NNS.

5.4.4.2 Accuracy of the Selectivity Estimation

Data set NumberOfMatches Buffer Cache OutputSize WorkingSpace MaxTime
XMark 2.6% 0% 0% 2.5% 0% 7%

TreeBank 9.8% 8.5% 3% 9.5% 8% 19.8%

Table 5.12: Average relative error

Table 5.12 shows the estimation accuracy of path tree for complex queries.
The estimation accuracy on both data sets XMark and TreeBank is remarkable
(see table 5.12) due to the structure of the path tree which captures the recursions
in the data set and due to the efficiency our modified LQ algorithm which supports
the complete Forward XPath fragment.

5.4.4.3 Efficiency of the Selectivity Estimation Algorithm

To evaluate the efficiency of our modified LQ algorithm, we calculated the average
time spent on estimating the selectivity and the average time spent on actually
evaluating the XPath queries. The average ratio of the estimation time to the actual
querying time on TreeBank (86MiB) and XMark (116MiB) are 13% and 0.00007%
respectively.

5.4.4.4 Comparing our Approach with the other Approaches

Criteria Synopsis
TreeSketch XSeed Path tree

Construction Time XMark(116MiB) 681min 1min 1min
TreeBank(86MiB) > 4 > 4 244Min

Download Bandwidth XMark(116MiB) 0.003MiB/s 1.93MiB/s 1.93MiB/s
TreeBank(86MiB) 0.00004MiB/s 0.00004MiB/s 0.006MiB/s

Recursion in XML No Yes Yes
Incremental Update No No Possible

Table 5.13: Comparison of the selectivity estimation techniques

• Construction time: TreeSketch builds its synopsis in two steps. First, It
creates an intermediate count-stability (C-stability) synopsis that preserves
all the information of the original XML data set in a compact format. After
that, the Tree-Sketch synopsis is built on top of the C-stability synopsis by
merging similar structures.
The XSeed synopsis consists of two parts, an XSeed kernel and a hyper-edge
table (HET). The construction of HET is performed by gradually extracting



140 Chapter 5. Performance Prediction Model

irregular structures out of the data set. The HET construction stops when it
determines that no further improvement can be made. On the contrary of the
above structural synopses, path tree is built in one step by one pass of the data
set (in streaming). Table 5.13 shows the total construction time of TreeSk-
tech, XSeed and path tree synopses. We do not show the construction time
of the Subtree sampling synopsis because it is not a structural one, while for
XCLUSTER it is unknown. The construction time of the structural synopses
largely depends on the structure of the data set. Our streaming algorithm for
building path tree outperforms considerably the other approaches. The con-
struction time for each of TreeSktech and XSeed for TreeBank 86MiB (depth
36) took more than 4 days, this result was confirmed in [Luo 2009]. While
for path tree, the construction time for the same data set took 244 minutes.

• Selectivity of structural queries and synopsis size: TreeSketch and XSeed
can estimate the accuracy for the number of matches (NumberOfMatches),
while our approach estimates the accuracy for: NumberOfMatches, Buffer,
Cache, OutputSize, WorkingSpace and MaxTime. The accuracy of our ap-
proach outperforms the accuracy of TreeSketch and XSeed due to the struc-
ture of the path tree which captures the recursions in the data set and due to
the efficiency our modified LQ algorithm which supports the complete For-
ward XPath fragment. The size of the path tree varies according to structure
of the data set. It is a 10% of the size of TreeBank and a 0.00006% of the size
of XMark. In all cases, an efficient streaming algorithm is used to traverse
the path tree to avoid any computational overhead. Note that to control the
space budget (synopsis size), it is possible to use a very partial, hence small,
path tree, to use no more space than competing approaches, but the accuracy
of selectivity estimation will then be much lower.

• Recursion in the data set : the path tree and the XSeed synopses are more
general than the TreeSketch synopsis because the latter does not support the
recursion in the data sets as it is explained in [Zhang 2006b].

• The fragment of XPath: the XPath fragment covered by our approach is
more general than the one used by XSeed and TreeSketch. The TreeSketch
does not support queries with Ancestor-Descendant relationships neither
queries with ′text()′ [Luo 2009]. While the XSeed does not support queries
with ′text()′ neither queries with nested predicates.

• Download bandwidth: for the XMark data set which has a light degree
of recursion the download bandwidth (size of data set/construction time) of
both XSeed and path tree outperform TreeSktech. As a data set become
more complex, the path tree outperforms XSeed. For the data set TreeBank,
the download bandwidth of path tree is 150 times faster than XSeed (see
table 5.13). A study was performed in 2009 by FH SARL [FH 2009] shows
that the average bandwidth for download in France is 1MiB/s. By using this



5.4. Performance Prediction Model - Twig Path 141

average, the expected time to download the data set XMark (116MiB) is 1.93
minutes. While the expected time for the same process by using our approach
is 1 minute. This means that the download bandwidth of our approach can
be up to twice the average download bandwidth in France.

• Incremental update: minimal synopsis size seems desirable but won′t be the
best because incremental maintenance would be difficult [Goldman 1997].
This is the case of both TreeSketch and XSeed. While in our approach, in-
cremental update is possible by using the patch operations as we explained
in section 3.4.1.

5.4.5 Use Case: Online Stream-querying System
In this section, we introduce the structure of the online stream-querying system
through a use case.

5.4.5.1 Online Stream-querying System

Figure 5.35 illustrates the structure of the stream-querying system. Innov-Lacl: is
an intermediate company between the publishers of XML data (documents) and
its clients. It uses its online stream-querying system to satisfy the queries of its
clients. Clients: are the clients of Innov-lacl which search for specific informa-
tion. Publishers: are the providers of XML data (documents) which cooperate with
Innovi-Lacl to sell access to their data.

Figure 5.35: Use case - stream-querying system

The stream-querying system receives different XML documents from its pub-
lishers in streaming mode. It constructs incrementally a path tree for each XML
document. It stores XPath queries from the clients of the company. It matches
each stored XPath query Q with each complete/incomplete path tree using the
stream-querying (for path tree) algorithm. If any matches are found in a com-
plete/incomplete path tree with an XPath query, metadata is sent to the query’s



142 Chapter 5. Performance Prediction Model

sender informing him in: the number of matches found, the size of the output, the
expected time to get the answer, and whether he accepts of refuses to get the re-
sult. In case of acceptance, our system binds the right XML document and uses our
stream-querying algorithm (for XML) to provide the client in the final answers that
are ready to be downloaded.
If our system is provided with the model of the XML document received, the par-
tition process of the document to construct incomplete path trees will be more
precise.

Our stream-querying system supports three scenarios for the matching process:

1. Scenario-1 matching Q with a complete path tree:
in this syntax, if any matches are found, the metadata sent to the query’s
sender will contain complete information about the answer.

2. Scenario-2 matching Q with incomplete path tree:
if any matches are found, the metadata sent to the query’s sender will contain
information about the partial answer found. e.g. if the number of matches
found is 2, then, the number of matches in metadata will have the form 2+
which means that there are two matches or more.

3. Scenario-3 path tree not yet built (worst case for our pre-processing method
i.e. pre-processing is part of the actual XPath query processing):
in this scenario, a message will be sent to the query’s sender informing
him that: – the path tree is not yet constructed – the approximated time
to construct it – and whether he would to like to continue (wait for the
construction process) or not.

To construct a path tree for a document D, the whole document is received
(downloaded) in streaming mode and the path tree is incrementally built until the
end of the stream (end of D). During the contraction process of the path tree of D, if
any updates occurs on D, these updates are received as a stream of patch operations
[Urpalainen 2008] and a buffer is allocated to store them. Once the construction
process finishes, the updates are applied on D as we explained in section 3.4.1.

5.4.6 Conclusion and Future Work
In this section, we presented our performance prediction model - twig path. The
model uses the path tree synopsis structure and the selectivity estimation algorithm
for accurate XPath query selectivity estimates. Furthermore, we proposed an
online stream-querying system through a use case. The system estimates the cost
for a given XPath query time/memory and provides an accurate answer. Extensive
experiments were performed. We considered the accuracy of the estimations,
the types of queries and data sets that this synopsis can cover, the cost of the
synopsis to be created, and the estimated vs measured time/memory. Experiments



5.4. Performance Prediction Model - Twig Path 143

demonstrated that our performance prediction model is both accurate and efficient.

Probabilistic guarantees are an open problem mentioned in [Bonifati 2007]. In
the future we will consider a probabilistic version of our performance prediction
model.

In the next, chapter we conclude our work and present our perspectives for
future research.





CHAPTER 6

Conclusion and Perspectives

Contents
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.1 Stream-processing . . . . . . . . . . . . . . . . . . . . . . 147

6.2.2 Selectivity Estimation Technique . . . . . . . . . . . . . . . 148

6.2.3 Parallel Processing . . . . . . . . . . . . . . . . . . . . . . 148

6.1 Conclusion
In this thesis, we reviewed the literature and pinpointed the critical areas where
we developed our research work. We justified the need for and use of a new se-
lectivity estimation technique that is based on streaming, then, its application to
performance (cost) prediction. We have identified factors that can make this pro-
cess inaccurate or inefficient.

To obtain such a performance model which estimates the cost for any XPath
query belonging to the fragment of Forward XPath:

• We performed an experimental study to confirm the linear rela-
tionship between the stream-processing and the data-access resources
[Alrammal 2009b]. We concluded that (1) a linear regression approach can
be used (in the performance prediction model) to model the cost for a given
XPath query over a stream of XML data. (2) the complexity of the selectivity
estimation algorithm used in a performance prediction model should not be
more than linear in the size of the XML data set. Our selectivity estimation
algorithm (introduced in chapter 4) does have a linear complexity.

• Then, we searched for an efficient, capable and accurate selectivity estima-
tion technique for XPath queries, and having the following advantages: (1)
fast construction for the structure synopsis, (2) to function with any data set
(Size/Structure), (3) to allow the incremental update and maintenance for the
structure synopsis, (4) well suited for a cost-based model, (5) and finally, ac-
curate and time/space efficient.
In doing so we:



146 Chapter 6. Conclusion and Perspectives

1. Studied in detail the path tree, a synopsis structure for XML documents
that is used for accurate selectivity estimates. To the best of our knowl-
edge, the path tree was not formally defined in the literature, but was
used before in more limited ways. We formally defined it and intro-
duced two algorithms to construct it.

2. Extended and optimized the lazy stream-querying algorithm LQ which
was introduced by [Gou 2007]. The current version of the algorithm
processes any XPath query belonging to the fragment of Forward XPath
(that is explained in section 1.1.1.2).

3. Presented a new selectivity estimation algorithm which was inspired by
our extended stream-querying algorithm LQ. Our estimation algorithm
is efficient for traversing the path tree structure synopsis to calculate the
estimates. The algorithm is well suited to be embedded in a cost-based
optimizer, and it has a linear time cost.
After exhaustive testing on real and synthetic data sets (e.g., TreeBank
[Suciu 1992] and XMark [Schmidt 2001]), we noticed that the accu-
racy of our selectivity estimation technique for any path expression p
is 100% correct due to the complete structure (information) of the path
tree synopsis. Moreover, the selectivity estimation for twig expressions
with our technique is very accurate due to the complete structure of
the path tree synopsis and the efficiency of our selectivity estimation
algorithm. This property is new compared to previous work.

• We presented the performance prediction model - twig path, an accurate
model for stream-processing of any structural XPath query which belongs
to Forward XPath. The model uses our selectivity estimation technique to
measure the values of the cost-parameters which determine the cost for a
given XPath query. These values are used by a mathematical model (linear
regression functions) to estimate the cost for a given XPath query in terms of
time spent /memory used.
Extensive experiments were performed to evaluate our model. We considered
the accuracy of estimations, the types of queries and data sets that the selec-
tivity estimation technique can cover, the cost of the synopsis to be created,
and the estimated vs measured time/memory. Experiments demonstrated that
our technique is accurate.

• Finally, we presented a use case for an online stream-querying system. The
system uses our performance predicate model - twig path to estimate the cost
for a given XPath query in terms of time/memory. Moreover, it provides an
accurate answer for the query’s sender. This use case illustrates the practical
advantages of performance management with our techniques.

The novel aspects of our work are:



6.2. Future Work 147

• Construction time: the construction time of the structural synopses largely
depends on the structure of the data set. Our streaming algorithm for building
path tree outperforms considerably the other approaches. The construction
time for each of TreeSktech and XSeed for TreeBank 86MiB (depth 36) took
more than 4 days, this result was confirmed in [Luo 2009]. While for path
tree, the construction time for the same data set took 4 hours.

• Selectivity of structural queries and synopsis size: some approaches as
TreeSketch and XSeed can only estimate the accuracy for the number of
matches (NumberOfMatches), while our approach estimates the accuracy for:
NumberOfMatches, Buffer, Cache, OutputSize, WorkingSpace and MaxTime.
The accuracy of our approach outperforms the accuracy of TreeSketch and
XSeed due to the structure of the path tree which captures the recursions
in the data set and due to the efficiency our modified LQ algorithm which
supports the complete Forward XPath fragment.

• Recursion in the data set : the path tree and the XSeed synopses are more
general than the TreeSketch synopsis because the latter does not support re-
cursion in the data sets as explained in [Zhang 2006b].

• XPath fragment: the XPath fragment covered by our approach is more gen-
eral than the one used by XSeed and TreeSketch. The TreeSketch system
does not support queries with Ancestor-Descendant relationships nor queries
with ′text()′ [Luo 2009]. While the XSeed does not support queries with
′text()′ nor queries with nested predicates.

• Incremental update:[Goldman 1997] estimates that minimal synopsis size
seems desirable but won′t be the best because incremental maintenance
would be difficult. This is the case of both TreeSketch and XSeed. While
in our approach, incremental update is possible by using the patch operations
as we explained in section 3.4.1.

6.2 Future Work
There is much research to be conducted that can enhance the applicability and
efficiency of the methods described in this thesis. We classify it into the following
domains: stream-processing, selectivity estimation and parallel processing.

6.2.1 Stream-processing
In this domain, we would like to study the following:

• Proposing an algorithm to process a fragment of XPath larger than Forward
XPath in (|D|.|Q|) time. Then comparing this algorithm with some existing
work like [Nizar 2009a] which handles backward XPath axes in streaming.



148 Chapter 6. Conclusion and Perspectives

The approach presented in [Nizar 2009a] processes an XPath fragment that
is larger than our fragment of Forward XPath, but its complexity is unknown.
We could cover more general axes than ′/′, ′//′ by using rewrite rules as
shown in [Olteanu 2002] to reduce more general axes to forward ones when
possible.

6.2.2 Selectivity Estimation Technique
In this domain, we would like to study the following:

• Compute a synopsis for a given XML document by summarizing both the
structure and the content of document: a recommended way of doing this is
to apply the XMill approach [Liefke 2000] in separating the structural part
of the XML document from the data part and then group the related data
values according to their path and data types into homogeneous sets. Then,
introducing an efficient stream-querying algorithm to traverse this synopsis
to obtain the measures or the estimates needed efficiently.

The XMill approach was used in XCLUSTER [Polyzotis 2006]. Unfortu-
nately, different questions about its efficiency still have no answers, for ex-
ample: what is the construction time needed for the summary (structure and
content of document)? what is the size/structure of the XML document that
can be summarized? In XCLUSTER [Polyzotis 2006], the maximum size of
XML document used was 10MiB.

• Interval arithmetic guarantees: a new goal of our research will be obtaining
a priori interval of error for the time needed to answer a given XPath query.
To obtain this goal, we should have accurate intervals for the values of the
cost-parameters of our performance prediction mode, and propagate them by
interval arithmetic [Hickey 2001] or some method specific to our mathemat-
ical model.

6.2.3 Parallel Processing
Another complementary technique for processing XPath queries on very large data
sets is parallel processing. Speeding-up multi-query processing by treating each
one in parallel is practically useful and requires sharing/copying of the data set, but
it poses no fundamental algorithmic problem: duplication of stream-processing
algorithms can support it. Its speed-up factor is also limited to the number of
independent queries.

Genuine data-parallel processing of a single XPath query, on the other hand,
holds the promise of unlimited speedups proportional to the size of the data set and



6.2. Future Work 149

number of processing units. But this poses real complexity- and algorithm-design
problems. The former have been identified [Gottlob 2005] and many research
groups have studied practical methods since. A modest set of experiments has
been started in our group of [ANDRIESCU 2010] and we will study its improve-
ments and generalization. A deeper study will come from ANR project CODEX
(2009-2011) and its results will be applied in our group at LACL (Laboratoire
d’Algorithmique, Complexité et Logique).

The goal is to have parallel systems on cloud-computing platforms to store and
process in parallel, data sets that have been pre-processed on pre-filtered by more
economical and pervasive system-processing methods.





Bibliography

[Aboulnaga 2001] A. Aboulnaga, A. R. Alameldeen and J. F. Naughton. Estimat-
ing the Selectivity of XML Path Expressions for Internet Scale Applica-
tions. In Proceedings of the 27th International Conference on Very Large
Data Bases (VLDB), pages 591 – 600, 2001. 18, 19, 20, 30, 32, 44, 46

[Aggarwal 2007] C. C. Aggarwal and P. S. Yu. Data Streams Models and Algo-
rithms. Chapter 9: A Survey of Synopsis Construction in Data Streams.
Springer, January 2007. 16, 17

[Alrammal 2009a] M. Alrammal, G. Hains and M. Zergaoui. Intelligent Ordered
XPath for Processing Data Streams. In the Spring Symposium (SSS’09) of
the AAAI: Event Processing Stream, Stanford-USA, pages 6–13, 2009. 81

[Alrammal 2009b] M. Alrammal, G. Hains and M. Zergaoui. Performance Mea-
surements towards the Optimization of Stream Processing for XML Data.
In Proceedings of the 2009 International Conference on Internet Comput-
ing (ICOMP’09), July 2009. 96, 145

[Alrammal 2009c] M. Alrammal, G. Hains and M. Zergaoui. Realistic Perfor-
mance Gain Measurements for XML Data Streaming with Meta Data.
Technical report, Université Paris-Est. Laboratoire d’Algorithmique, Com-
plexité et Logique., 2009. http://lacl.univ-paris12.fr/Rapports/TR/TR-
LACL-2009-4.pdf. 121

[Alrammal 2010] M. Alrammal, G. Hains and M. Zergaoui. A Portable and Exten-
sible Performance Model for Stream-processing of XPath Queries. Tech-
nical report, Université Paris-Est. Laboratoire d’Algorithmique, Complex-
ité et Logique., 2010. http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-
2010-4.pdf. 118

[Altinel 2002] M. Altinel and M. J. Franklin. Efficient Filtering of XML Docu-
ments for Selective Dissemination of Information. In Proceedings of 26th
International Conference on Very Large Data Bases (VLDB), pages 53–64,
2002. 33, 35, 36

[ANDRIESCU 2010] E-M. ANDRIESCU, A. AZZABI and G. Hains. Par-
allel processing of Forward XPath queries: an experiment with
BSML. Technical report TR-LACL-2010-11, Université Paris-
Est. Laboratoire d’Algorithmique, Complexité et Logique., 2010.
http://lacl.fr/Rapports/TR/TR-LACL-2010-11.pdf. 149

[Bar-Yossef 2004] Z. Bar-Yossef, M. Fontoura and V. Josifovski. On the Mem-
ory Requirements XPath Evaluation over XML Streams. In Proceedings of



152 Bibliography

the 23rd ACM SIGMOD Symposium on Principles of Database Systems,
pages 177–188, June 2004. 5, 36

[Barton 2003] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura and
V. Josifovski. Streaming XPath Processing with Forward and Backward
Axes. In Proceedings of the International Conference on Data Engineering
(ICDE), pages 455–466, 2003. 39

[Berglund 2010] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay,
J. Robie and J. Siméon. XML Path Language (XPath) 2.0. 14 December
2010. http://www.w3.org/TR/2010/REC-xpath20-20101214/. 2, 4, 9, 17,
94, 113

[Boag 2010] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie and
J. Siméon. XQuery 1.0: An XML Query Language (Second Edition). 14
December 2010. http://www.w3.org/TR/2010/REC-xquery-20101214/. 2,
4, 17, 94

[Bohannon 2002] P. Bohannon, J. Freire, P. Roy and J. Siméon. From XML
Schema to Relations: A Cost-based Approach to XML Storage. In Pro-
ceedings of the 18th International Conference on Data Engineering (ICDE),
pages 64–75, 2002. 26

[Bonifati 2007] A. Bonifati and A. Cuzzocrea. Synopsis Data Structures for XML
Databases: Models, Issues, and Research Perspectives. 18th International
Workshop on Database and Expert Systems Applications., pages 20–24,
2007. 143

[Böttcher 2007] S. Böttcher and R. Steinmetz. Evaluating XPath Queries on XML
Data Streams. In Proceedings of the 24th British Inational Conference on
Databases (BNCOD), pages 101–113, 2007. 34

[Bray 2008] T. Bray, J. Paoli, C. M. Sperberg-McQueen and F. Yergeau. Exten-
sible Markup Language (XML) 1.0 (Fifth Edition). 26 November 2008.
http://www.w3.org/TR/REC-xml/. 1, 2, 8, 17, 94, 95

[Brownell 2002] D. Brownell. SAX2. O’Reilly Media, January 2002. 3, 46

[Bruno 2002] N. Bruno, N. Koudas and D. Srivastava. Holistic Twig Joins: Op-
timal XML Pattern Matching. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 310–321, 2002.
26, 38, 39

[Bry 2005] F. Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu and M. Spannagel.
The XML Stream Query Processor SPEX. Proceedings of the International
Conference on Data Engineering (ICDE), pages 1120 –1121, 2005. 40



Bibliography 153

[Chan 2002] C. Chan, P. Felber, M. Garofalakis and R. Rastogi. Efficient Filtering
of XML Documents with XPath Expressions. In Proceedings of the 18th
International Conference on Data Engineering, pages 235 – 244, 2002. 32,
35

[Chaudhuri 2004] S. Chaudhuri, V. Ganti and L. Gravano. Selectivity Estimation
for String Predicates: Overcoming the Underestimation Problem. In Pro-
ceedings of the 20th International Conference on Data Engineering (ICDE),
page 227, 2004. 22

[Chen 2001] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. T.
Ng and D. Srivastava. Counting Twig Matches in a Tree. In Proceedings of
the 17th International Conference on Data Engineering (ICDE), pages 595
– 604, 2001. 20, 31, 32

[Chen 2004] Y. Chen, S. B. Davidson, G. A. Mihaila and S. Padmanabhan. Ex-
pedite: A System for Encoded XML Processing. In Proceedings of the
thirteenth ACM international conference on Information and knowledge
management (CIKM), pages 108–117, 2004. 42

[Chen 2005] T. Chen, J. Lu and T. W. Ling. On Boosting Holism in XML Twig
Pattern Matching using Structural Indexing Techniques. In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of
Data, 2005. 38

[Chen 2006] Y. Chen, S. B. Davidson and Y. Zheng. An Efficient XPath Query
Processor for XML Streams. In Proceedings of the 22nd International Con-
ference on Data Engineering (ICDE), 2006. 39, 42, 44, 115

[Choi 2002] B. Choi. What are real DTDs like? In Proceedings of the 5th Interna-
tional Workshop on the Web and Databases (WebDB), pages 43–48, 2002.
5, 43

[Clark 1999] J. Clark and S. DeRose. XML Path Language (XPath),
http://www.w3.org/TR/xpath . November 1999. 4

[DeHaan 2003] D. DeHaan, D. Toman, M. P. Consens and M. T. Ozsu. A Com-
prehensive XQuery to SQL Translation using Dynamic Interval Encoding.
In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pages 623–634, 2003. 42

[Diao 2002] Y. Diao, M. Altinel, M. Franklin, H. Zhang and P. Fischer. Efficient
and Scalable Filtering of XML Documents. In Proceedings of the 18th
International Conference on Data Engineering, pages 341 – 342, 2002. 34,
35, 36, 38



154 Bibliography

[Diaz 1999] A. L. Diaz and D. Lovell. Book :IBM’s XML Generator, 1999.
http://www.alphaworks.ibm.com/tech/xmlgenerator. 9

[Fernández 2010] M. Fernández, J. Siméon, C. Chen, B. Choi, V. Gapeyev,
A. Marian, P. Michiels, N. Onose, D. Petkanics, C. Rath, C. Ré, M. Stark,
G. Sur, A. Vyas and P. Wadler. Galax:An Implementation of XQuery. 2010.
http://www.galaxquery.org/ . 43

[FH 2009] FH. FH SARL: Barometer of Fixed and Mobile Connections. 2009.
http://www.freenews.fr/spip.php?article8044. 140

[Fisher 2007] D. K. Fisher and S. Maneth. Structural Selectivity Estimation for
XML Documents. In Proceedings of the 23rd International Conference on
Data Engineering (ICDE), pages 626–635, 2007. 23, 30

[Florescu 2003] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan and G. Agrawal. The
BEA/XQRL Streaming XQuery Processor. In Proceedings of the 2003 Inter-
national Conference on Very Large Data Bases (VLDB), pages 997–1008,
2003. 41, 43

[Freire 2002] J. Freire, J.R. Haritsa, M. Ramanath, P. Roy and J. Siméon. StatiX:
Making XML Count. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 181–191, 2002. 26, 27

[Goldman 1997] R. Goldman and J. Widom. DataGuides: Enabling Query For-
mulation and Optimization in Semistructured Databases. In Proceedings
of the 23rd International Conference on Very Large Data Bases (VLDB),
pages 436–445, August 1997. 31, 62, 141, 147

[Gottlob 2002] G. Gottlob, C. Koch and R. Pichler. Efficient Algorithms for Pro-
cessing XPath Queries. In Proceedings of the 2002 International Confer-
ence on Very Large Data Bases (VLDB), pages 95–106, 2002. 43

[Gottlob 2005] G. Gottlob, Ch. Koch, R. Pichler and L. Segoufin. The Parallel
Complexity of XML Typing and XPath Query Evaluation. Journal of the
ACM, vol. 52, no. 2, pages 284–335, 2005. 2, 94, 95, 149

[Gou 2007] G. Gou and R. Chirkova. Efficient Algorithms for Evaluating XPath
over Streams. In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pages 269–280, 2007. 11, 12, 39, 42,
44, 62, 65, 72, 114, 115, 146

[Green 2003] T. J. Green, G. Miklau, M. Onizuka and D. Suciu. Processing XML
Streams with Deterministic Automata. In Proceedings of the 9th Interna-
tional Conference on Database Theory (ICDT), pages 173–189, 2003. 44



Bibliography 155

[Grust 2002] T. Grust. Accelerating XPath Location Steps. In Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data,
pages 109 –120, 2002. 42

[Grust 2004] T. Grust, S. Sakr and J. Teubner. XQuery on SQL Hosts. In Pro-
ceedings of the 29th International Conference on Very Large Data Bases
(VLDB), pages 252–263, 2004. 25

[Grust 2005] T. Grust. Purely Relational FLWORs. In Proceedings of the 2nd
International Workshop on XQuery Implementation, Experience and Per-
spectives (XIME-P), in cooperation with ACM SIGMOD, 2005. 25

[Gupta 2003] A. Gupta and D. Suciu. Stream Processing of XPath Queries with
Predicates. In Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Ddata, pages 219 – 430, 2003. 36, 39

[Han 2008] W-S. Han, H. Jiang, H. Ho, and Q. Li. StreamTX: Extracting Tu-
ples from Streaming XML Data. In Proceedings of the VLDB Endowment,
pages 289–300, 2008. 41

[Harary 1960] F. Harary and R.Z. Norman. Some Properties of Line Graphs.
Wikipedia, 1960. http://en.wikipedia.org/wiki/Linegraph.52

[He 2004] Z. He, B. Lee and R. Snapp. Self-tuning UDF Cost Modeling using the
Memory-Limited Quadtree. In Proceedings of the 9th International Confer-
ence on Extending Database Technology (EDBT), 2004. 20

[Hickey 2001] T. Hickey, Q. Ju and M. H. V. Emden. Interval Arithmetic: From
Principles to Implementation. In Journal of the ACM, vol. 48, pages 1038
– 1068, 2001. 148

[Hickson 2011] I. Hickson. HTML5 (W3C Editor’s Draft). January 2011.
http://dev.w3.org/html5/spec/Overview.html. 2

[Hopcroft 1971] J. E. Hopcroft. An n log n Algorithm for Minimizing the States
in a Finite Automaton. In The Theory of Machines and Computations -
Academic Press, pages 189 –196, 1971. 54

[Hopcroft 1979] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Language, and Computation. 1979. 36, 48, 53, 54, 58

[ICE 2007] ICE. Prefixes for Binary Multiples. 2007.
http://en.wikipedia.org/wiki/Mebibyte. 9

[Jiang 2003] H. Jiang, W. Wang, H. Lu and J. X. Yu. Holistic Twig Joins on
Indexed XML Documents. In Proceedings of the 29th International Con-
ference on Very Large Data Bases (VLDB), vol. 29, pages 273–284, 2003.
38, 41



156 Bibliography

[Josifovski 2005] V. Josifovski, M. Fontoura and A. Barta. Querying XML
Streams. VLDB Journal, vol. 14, pages 197 – 210, 2005. 20, 40, 41,
43

[Kay 2007] M. Kay. XSL Transformations XSLT Version 2.0. 23 January 2007.
http://www.w3.org/TR/xslt20/. 4

[Kay 2010] M. Kay. Saxon: the XSLT and XQuery Processors. October 2010.
http://saxon.sourceforge.net/ . 44

[Koch 2004] C. Koch, S. Scherzinger, N. Schweikardt and B. Stegmaier. Schema-
based Scheduling of Event Processors and Buffer Minimization for Queries
on Structured Data Streams. In Proceedings of the 2004 International Con-
ference on Very Large Data Bases (VLDB), pages 228–239, 2004. 41

[Lee 2004] B. Lee, L. Chen, J. Buzas and V. Kannoth. Regression-based Self-
tuning Modeling of Smooth User-defined Function Costs for an Object-
Relational Database Management System Query Optimizer. The Computer
Journal, pages 673–693, 2004. 20

[Leroy 2010a] X. Leroy, D. Doligez, J. Garrigue, D. Rémy and J. Vouillon.
Module Gc. Institute National de Recherche en Informatique et en
Automatique (INRIA), June 2010. http://caml.inria.fr/pub/docs/manual-
ocaml/libref/Gc.html. 104

[Leroy 2010b] X. Leroy, D. Doligez, J. Garrigue, D. Rémy and J. Vouil-
lon. Objective Caml Language - release 3.12. Institute National
de Recherche en Informatique et en Automatique (INRIA), June 2010.
http://caml.inria.fr/pub/distrib/ocaml-3.12/. 65, 97, 113, 115, 134

[Ley 2011] M. Ley. DBLP bibliography. January 2011. http://dblp.uni-
trier.de/xml/. 25

[Li 2006] H. Li, M. L. Lee, W. Hsu and G. Cong. An Estimation System for XPath
Expressions. In Proceedings of the 22nd International Conference on Data
Engineering (ICDE), page 54, 2006. 29, 30

[Liefke 2000] H. Liefke and D. Suciu. XMILL: An Efficient Compressor for XML
Data. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 153–164, 2000. 16, 22, 148

[Lim 2002] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter and R. Parr. XPath-
Learner: An On-line Self-tuning Markov Histogram for XML Path Selec-
tivity Estimation. In Proceedings of 28th International Conference on Very
Large Data Bases (VLDB), pages 442 – 453, 2002. 19



Bibliography 157

[Ludascher 2002] B. Ludascher, P. Mukhopadhyay and Y. Papakonstantinou. A
Transducer-based XML Query Processor. In Proceedings of the 2002 In-
ternational Conference on Very Large Data Bases (VLDB), pages 227–238,
2002. 41, 43, 44

[Luo 2009] C. Luo, Z. Jiang, W-C Hou, F. Yu and Q. Zhu. A Sampling Approach
for XML Query Selectivity Estimation. In Proceedings of the International
Conference on Extending Database Technology (EDBT), pages 335–344,
2009. 21, 25, 26, 31, 140, 147

[Nizar 2008] A. Nizar and S. Kumar. Efficient Evaluation of Forward XPath Axes
over XML Streams. In Proceedings of the 14th International Conference on
Management of Data (COMAD), pages 222–233, 2008. 42, 44

[Nizar 2009a] A. Nizar and S. Kumar. Ordered Backward XPath Axis Processing
against XML Streams. Proceedings of the 6th International XML Database
Symposium (XSym), pages 1–16, 2009. 43, 147, 148

[Nizar 2009b] M. A. Nizar, G. S. Babu and P. S. Kumar. SFilter: A Simple and
Scalable Filter for XML Streams. In Proceedings of the 15th International
Conference on Management of Data (COMAD), 2009. 37

[Olteanu 2002] D. Olteanu, H. Meuss, T. Furche and F. Bry. XPath: Looking
Forward. In Proceedings of the 2002 XML-Based Data Management and
Multimedia Engineering (EDBT) Workshops, pages 109–127, 2002. 4, 40,
148

[Olteanu 2007] D. Olteanu. SPEX: Streamed and Progressive Evaluation of XPath.
IEEE Transactions on Knowledge and Data Engineering, pages 934–949,
2007. 39, 40

[Parberry 1987] I. Parberry. Parallel Complexity Theory. 1987. 95

[Peng 2003] F. Peng and S. S. Chawathe. XPath Queries on Streaming Data. In
Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, pages 431–442, 2003. 32, 39, 42, 44, 115

[Polyzotis 2002a] N. Polyzotis and M. Garofalakis. Statistical Synopses for
Graph-structured XML Databases. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data, pages 358–369,
2002. 20

[Polyzotis 2002b] N. Polyzotis and M. Garofalakis. Structure and Value Synopses
for XML Data Graphs. In Proceedings of the 28th international conference
on Very Large Data Bases (VLDB), pages 466–477, 2002. 21, 22



158 Bibliography

[Polyzotis 2004a] N. Polyzotis, M. N. Garofalakis and Y. Ioannidis. Approximate
XML Query Answers. In Proceedings of the 2004 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 263–274, 2004. 20, 30,
31, 62

[Polyzotis 2004b] N. Polyzotis, M. N. Garofalakis and Y. Ioannidis. Selectivity
Estimation for XML Twigs. In Proceedings of the International Conference
on Data Engineering (ICDE), 2004. 20, 31

[Polyzotis 2006] N. Polyzotis and M. N. Garofalakis. XCluster Synopses for Struc-
tured XML Content. In Proceedings of the International Conference on
Data Engineering (ICDE), 2006. 22, 31, 148

[Poosala 1996] V. Poosala, Y. E. Ioannidis, P. J. Haas and E. J. Shekita. Improved
Histograms for Selectivity Estimation of Range Predicates. In Proceedings
of the ACM SIGMOD International Conference on Management of Data,
pages 294–305, 1996. 22

[Ramanan 2005] P. Ramanan. Evaluating an XPath Query on a Streaming XML
Document. International Conference on Management of Data (COMAD),
2005. 41

[Saker 2007] S. Saker. Cardinality-aware and Purely Relational Implementation
of an XQuery Processor. PhD thesis-University of Konstanz, pages 58–82,
2007. 24, 31

[Saker 2008] S. Saker. Algebra-based XQuery Cardinality Estimation. Interna-
tional Journal of Web Information Systems, pages 7–46, 2008. 24, 31

[Sakr 2010] S. Sakr. Towards a Comprehensive Assessment for Selectivity Esti-
mation Approaches of XML Queries. In Proceedings of the International
Journal of Web Engineering and Technology, vol. 6, pages 58–82, 2010.
23, 24, 30, 31

[Schmidt 2001] A. Schmidt, R. Busse, M. Carey, M. Kersten D. Florescu,
I. Manolescu and F. Waas. XMark: An XML Benchmark Project. Tech-
nical report, 2001. http://www.xml-benchmark.org/. 9, 20, 26, 92, 138,
146

[Suciu 1992] D. Suciu. TreeBank: XML Data Repository. Rapport tech-
nique, University of Pennsylvania Treebank Project, Novmber 1992.
http://www.cs.washington.edu/research/xmldatasets. 9, 92, 126, 138, 146

[Takekawa 2007] H. Takekawa and H. Ishikawa. Incrementally-Updatable Stream
Processors for XPath Queries based on Merging Automata via Ordered
Hash-keys. In Proceedings of the 18th International Conference on
Database and Expert Systems Applications (DEXA), pages 40–44, 2007.
37



Bibliography 159

[Teevan 2005] J. Teevan, E. Adar, R. Jones and M. Potts. History Repeats Itself:
Repeat Queries in Yahoo’s Query Logs. In Proceedings of the 29th Annual
ACM Conference on Research and Development in Information Retrieval
(SIGIR), pages 703–704, 2005. 96

[TenCate 2009] B. TenCate and M. Marx. Axiomatizing the Logical Core of XPath
2.0. Theoretical Computer Science, vol. 44, pages 561–589, 2009. 2, 94,
95

[Teubner 2008] J. Teubner, T. Grust, S. Maneth and S. Sakr. Dependable Car-
dinality Forecasts for XQuery. In Proceedings of the VLDB Endowment
(PVLDB), pages 463–477, 2008. 25

[Urpalainen 2008] J. Urpalainen. XML Patch Operations Framework
Utilizing XPath Selectors. Network Working Group, 2008.
http://datatracker.ietf.org/doc/rfc5261/. 61, 142

[Wang 2003] W. Wang, H. Jiang, H. Lu and J. X.Yu. Containment Join Size Esti-
mation: Models and Methods. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 145–156, 2003.
28

[Wang 2004] W. Wang, H. Jiang, H. Lu and J. X. Yu. Bloom Histogram: Path
Selectivity Estimation for XML Data with Updates. In Proceedings of the
13th International Conference on Very Large Data Bases (VLDB), pages
240 – 251, 2004. 28, 30

[Wu 2002] Y. Wu, J.M. Patel and H.V. Jagadish. Estimating Answer Sizes for XML
Queries. In Proceedings of the 8th International Conference on Extending
Database Technology (EDBT), pages 590–608, 2002. 27, 28

[Zhang 2005] N. Zhang, P. Haas, V. Josifovski, G. Lohman and C. Zhang. Statis-
tical Learning Techniques for Costing XML Queries. In Proceedings of the
31st VLDB Conference on Very Large Data Bases (VLDB), pages 289–
300, 2005. 19, 32, 44, 46, 132

[Zhang 2006a] G. Zhang and Q. Zou. QuickXScan: Efficient Streaming XPath
Evaluation. In Proceedings of the International Conference on Internet
Computing, pages 249–255, 2006. 41

[Zhang 2006b] N. Zhang, M. T. Ozsu, A. Aboulnaga and I. F. Ilyas. XSeed: Accu-
rate and Fast Cardinality Estimation for XPath Queries. In Proceedings of
the 20th International Conference on Data Engineering, 2006. 21, 26, 30,
31, 62, 140, 147


	 Introduction
	Introduction
	Preliminaries
	Data Model of XML Document
	XPath
	Recursion in XML Document
	Document Depth
	Stream-querying Process
	Stream-filtering Process
	Synopsis
	Selectivity Estimation Technique
	Performance Prediction Model


	Challenges
	The Expressiveness of XPath
	 Structure of XML Data Set
	Query Evaluation Strategy
	 Evolution and Data Set Updating

	Contributions
	Thesis Organisation
	 The Dependency of Thesis's Chapters


	 State of the Art
	Introduction
	Selectivity Estimation
	Properties of Selectivity Estimation Techniques
	Path/Twig Selectivity Estimation Techniques
	Synopsis-Based Estimation Techniques
	Histogram-Based Estimation Techniques

	Summary - The Choice of the Path tree Synopsis

	Stream-processing Approaches
	 Stream-filtering Algorithms
	 Stream-querying Algorithms
	Summary - Lazy Stream-querying Algorithm LQ


	Path tree: Definition, Construction, and Updating
	Introduction
	The XML Data Model

	 Path tree Definition
	Path tree Construction: Automata Technique 
	Automaton Definition  A
	Automata Transformation into a Graph Doc (A) 
	Automata Minimization AMin 
	Example of Path tree Construction: Automata Technique 

	Path tree Construction: Streaming Technique 
	Path tree Construction
	Path tree Updating


	 Selectivity Estimation Techniques
	Introduction
	Lazy Stream-querying Algorithm
	Query Preprocessing
	LQ - Blocks Extension
	Examples of Query Processing Using LQ-Extended 
	Query Processing - Simple Path
	Query Processing - Twig Path


	Selectivity Estimation Algorithm 
	Examples of the Selectivity Estimation Process 
	Selectivity Estimation - Simple Path
	Selectivity Estimation - Twig Path

	Accuracy of the Selectivity Estimation Technique


	 Performance Prediction Model
	Introduction
	Performance Prediction Model- Preliminaries
	Performance Prediction Model - Motivations
	Performance Measurements Towards the Optimization of Stream-processing for XML Data
	 Prototype O-Search 
	Experimental Results 
	Conclusion 

	Performance Prediction Model - General Structure

	Performance Prediction Model - Simple Path 
	Lazy Stream-querying Algorithm (LQ) 
	Building the Mathematical Model
	Building the Prediction Model
	Prediction Rules

	User Protocol
	Experimental Results 
	Experimental Setup
	Quality of Model Prediction
	Impact of Using Metadata in our Model on the Performance
	Model Portability on Other Machines

	Conclusion

	Performance Prediction Model - Twig Path
	Lazy Stream-querying Algorithm (LQ) 
	Building the Mathematical Model
	Building the Prediction Model
	Example of the Selectivity Estimation Process

	Experimental Results
	Experimental Setup
	Accuracy of the Selectivity Estimation
	Efficiency of the Selectivity Estimation Algorithm
	Comparing our Approach with the other Approaches

	Use Case: Online Stream-querying System
	Online Stream-querying System

	Conclusion and Future Work


	 Conclusion and Perspectives
	Conclusion
	Future Work
	Stream-processing
	Selectivity Estimation Technique
	Parallel Processing


	Bibliography

