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Oxydes au sein duquel j’ai effectué cette thèse, ainsi que tout les chercheurs du groupe
qui m’ont acceuilli chaleureusement et fait partagér leur expérience. J’ai pu aussi profiter
de l’ambiance si propice du SPEC et je tient à remercier son directeur, Eric Vincent, ainsi
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Je tient à souligner ici le grand professionnalisme et les qualités humaines de Gérald Le
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de si bon moments: merci Philippe (x2), Gilles, Pascal, Laurent, Marc (x2). Enfin, j’ai
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Chapter 1

Introduction

1.1 Motivation

Recent progress in the growth of high quality thin films of ferromagnetic materials com-
bined with progress in modern nano-lithography techniques has renewed interests in the
study of magnetisation dynamics. From a fundamental point of view, spin wave exci-
tations can now be studied in individual nanostructures with a complex spatially non-
uniform ground state. This progress also opens up the possibility to control and manip-
ulate the magnetisation of small objects.

These objects are of great interest for the data storage and information processing,
where one of the challenges is to be able to control efficiently the magnetisation state of
magnetic nanostructures. The reversal of the magnetic configuration implies a trade-off
between energy and speed. In this case resonant processes could be of great help as they
efficiently bring the system out-of -equilibrium [7, 1, 117]. The challenge here is to identify
the normal spin wave modes of the system in a complex ground state which govern the
magnetisation dynamics. More recently, it was demonstrated that information processing
and data storage could be achieved by using these spin waves themselves. The idea being
to transfer and manipulate the energy storage in each of the normal modes. The new
field of magnonics involves the study of the collective properties of periodic magnetic
nanostructures and tries to understand the spin waves propagation and interactions in
order to manipulate them in a controlled manner [81, 73].

In parallel to these developments, the idea to take advantage of the spin degree of
freedom in the transport properties has emerged. The ground breaking discovery of giant
magneto-resistance(GMR) [8, 14] in 1988 (Nobel Prize in Physics 2007 to Albert Fert and
Peter Grünberg) followed by tunnel magneto-resistance (TMR) [96] has launched the field
of spintronics [142]. These discoveries led to the development and commercialisation of
several applications, especially in the fields of magnetic data storage and field sensors [97,
3, 36, 103], bio-compatible sensors [45] and magnetic random access memories (MRAM)
[24]. In a conventional spintronic device, electrons pass through a polarising magnetic
layer with electronic transport properties that are anisotropic with respect to the direction
of the electron spin. The spin-polarised electrons are scattered by the free magnetic
layer, producing a spin torque on its magnetisation. Therefore, it becomes possible to
manipulate the magnetisation with a spin polarised current instead of magnetic fields.
The recent trends in spintronics are aimed at exploiting this transfer of spin angular
momentum from the conduction electrons to the magnetisation of a metallic magnetic
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nano-object [13, 123]. This momentum transfer results in a torque that is very efficient in
driving large amplitude magnetisation oscillations [75, 64] that generate microwave signals
in the frequency range of 0.28 to 65 GHz [38, 17]. The potential of these microwave
spintronic devices, or spin transfer nano-oscillators (STNOs), derives from their large
and fast frequency tuning, high modulation speed and very high level of integration.
Nevertheless, in order to exploit the potential of STNOs their spectral coherence and
emitting power have to be improved. This goal requires a precise understanding of their
spin wave spectra.

For nanostructures the ground state adopts a complex spatially non-uniform configu-
ration because of the inherent competition between exchange and dipolar energies. The
ground state depends on the nature of the magnetic material (mainly through the sponta-
neous magnetisationMs and the exchange constant A) and on the geometrical properties,
the dot radius R and the dot thickness L. A rich variety of nonuniform micromagnetic
states (vortex, onion, in-plane buckling, etc.) has been reported and their respective
stability area was delimited within a phase diagram in the plane (thickness, radius) [94].

From a dynamic point of view, the vortex state is particularly interesting. The vor-
tex state is the stable magnetic configuration of soft ferromagnetic platelets. It exists
in a certain range of dot sizes L > lex and R ≫ lex relative to the exchange length
lex =

√
A/M2

s of the magnetic material of which the dot is made [54, 29]. While the
magnetisation dynamics of most non-uniform states listed above usually leads to a very
complex spin wave spectrum [9], the dynamics of the vortex state, thanks to its high
symmetry, leads to a greatly simplified signature. In particular, the lowest energy mode,
isolated at low frequency, corresponds to the vortex core gyration around the disc centre.
The typical frequency of this mode can be several gigahertz below the frequency of the
other higher order normal modes of the system. It turns out that such a large energy
gap is very important for approaches, which aim at allowing a selective enhancement of
a single dynamical mode by current-induced spin transfer phenomena [109]. Moreover,
the linewidth of emission of vortex based STNOs was found to be narrow enough to be
considered for practical applications [86, 38]. Nevertheless, a lot of effort remains to be
done to understand and model the magnetisation dynamics of nano elements in the vortex
state.

Another promising way to improve the phase noise of STNOs is to coherently couple
them inside a large array [122]. Several mechanisms have been proposed to couple them
coherently: microwave current [46], spin pumping [143], spin wave propagation [70, 88]
and magneto-dipolar interaction [10]. The latter is the most straightforward because
it exists naturally, but it has hardly been studied in the case of complex ground state.
The simplest possible system to study this collective magnetisation dynamics under the
influence of the dipolar coupling is a pair of nano-discs in the saturated state. It is one of
the very few systems where the dynamical dipolar coupling can be calculated analytically
with high accuracy.

We shall emphasise that, since we are interested in resonant processes and that improv-
ing the linewidth of emission of STNOs is a crucial point towards practical applications,
we have concentrated our effort in this thesis on the magnetic materials having among
the lowest damping (or magnetic dissipation) among electric conductors. One is a half-
metallic ordered alloy NiMnSb. This composition belongs to the Heusler family. The
second material that we have extensively measured is another ordered alloy of FeV. Like
for the NiMnSb, its Gilbert damping constant is around α ≃ 2× 10−3. In both cases, the
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1.2 Experimental methods 11

spectroscopic studies were performed on patterned thin films grown by molecular beam
epitaxy.

1.2 Experimental methods

A relevant experimental technique has now to be found to measure the spin wave spec-
trum of such nano-discs. Several experimental techniques are available to measure the
magnetisation dynamics:

1. Recent progress in spintronics has allowed the magnetisation dynamics to be mea-
sured in metallic nanostructures using the magneto-resistance effect(GMR, TMR).
The sensitivity is very high and scales well with the sample size. In a STNO, the
mixing of a microwave current with the high frequency spin waves produces a de-
tectable dc voltage [115, 131]. At the opposite, the microwave resistance associated
with the auto-oscillation of spin waves in a STNO produces a microwave voltage
when mixed with a dc current [75]. This signal can be detected with a spectrum
analyser. It is now even possible to detect FMR with the spin Hall effect [40, 111].
Transport measurements have opened up new possibilities to measure the spin wave
dynamics in small objects. However, from a fundamental point of view, it is often
necessary to understand the dynamics in absence of charge currents since the latter
introduces a new interaction in the system.

2. Conventional inductive ferromagnetic resonance (FMR) techniques. The spin waves
are detected through their absorption of energy in a microwave cavity. The spectro-
scopic precision is very high, but the signal to noise ratio of the detector depends
critically on the filling factor, which is the ratio of the volume of the sample over
the volume of the cavity. It usually prevents to measure single nanostructures since
the cavity is sensitive to any spurious magnetic materials of similar volume present
within the cavity. The recent development of new FMR setup using micro antennas
and coils in order to increase the filling factor are now available to study nanostruc-
tures [138].

3. Optical methods: the interaction between light and matter can provide a lot of
physical information. Here, the properties of a light beam, for instance frequency
or polarisation, are modified after the interaction with a spin wave. Three main
methods will be briefly presented here.

Time-Resolved Magneto-Optical Kerr Microscopy (TRMOKE) involves a 3D vecto-
rial analysis of the time dependent magnetisation [1, 63]. It is thus phase sensitive.
It requires pulsed or harmonic field excitations since the measurement is done in
the time domain. By focusing the laser beam, a spatial resolution of 300 nm can
be achieved. TRMOKE is commonly used to study the transverse component of
the precessing magnetisation. The measurements are made in a pump-probe con-
figuration. The laser pulse is synchronised to either a pulse generator or microwave
synthesiser that generates a current waveform and hence a magnetic field within
a planar waveguide on which the sample is either fabricated or overlaid. The full
dynamics of the sample and all three spatial components of the dynamic magneti-
sation may be recorded simultaneously. By scanning the sample beneath the probe

Magnetic vortex dynamics in nanostructures
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beam at fixed time delays, time resolved images of the dynamic magnetisation are
obtained. Because this technique allows studying the dynamics in the time domain,
it is not very suited to study extremely low linewidth resonant process at low fre-
quency, such as the gyrotropic mode, since it leads to very long integration time.
Nevertheless, the vortex gyrotropic mode has already been successfully studied using
this method [105].

Micro Brillouin Light Scattering (µ-BLS) [106, 69] is a phase insensitive technique
for the investigation of propagating and standing spin wave modes. It can directly
map the spin wave modes in the wave vectors k-space. No external excitation is
required in many materials since BLS has the sensitivity to detect thermal spin
waves. The spatial resolution can be as high as few tens of nanometres using near
field optics [69]. One drawback of BLS is that it needs quite large difference in
scattering energy since it detects Stoke and Anti-Stoke processes. The gyrotropic
motion of the vortex core being mostly in the sub-GHz range is thus mostly out-of-
reach to this technique.

With the development of synchrotron radiation sources of increasing brilliance, x-ray
magnetic circular dichroism (XMCD) [2] has become a popular and powerful tool
for the study of magnetic thin film samples. It can also be coupled to photo-electron
emission microscopy (PEEM) [139]. Measurements are made near to an absorption
edge corresponding to an electronic transition between a filed core state and vacant
states close to the Fermi level. XMCD is element specific, since the core level energy
is specific to a particular atomic species, and is sensitive to the magnetic moment
parallel to the x-ray wave vector. Due to the spin-orbit splitting of the core levels,
the application of sum rules allows the spin and orbital moments of a particular
ion to be determined. Third generation synchrotrons typically deliver x-ray pulses
some tens of ps in duration, with a pulse separation of a few ns and are well suited
to pump-probe experiments analogous to those performed in the optical domain.
Also the damping time for precessional oscillations of a magnetic material of narrow
linewidth typically exceeds the time between successive x-ray pulses. Therefore x-ray
ferromagnetic resonance (XFMR) measurements are usually made with a harmonic
rather than a pulsed excitation.

One common advantage between these optical techniques is to perform a non per-
turbative measurement. Nevertheless, the drawback of all the optical techniques is
that they require that the structure is on the surface. It is thus not adapted to
buried structures underneath the contact electrode.

In this thesis, we decided to use a mechanical detection of the FMR with a ferro-
magnetic resonance force microscope (f-MRFM)[113, 150], which was constructed in the
laboratory. The basic idea is to couple a scan probe technique, the magnetic force mi-
croscopy (MFM), with a microwave excitation line. A magnetic nanoparticle attached
at the apex of an ultra soft cantilever is coupled to the stray field of the sample. The
FMR is excited in the sample by a broadband microwave antenna and the variations of
the longitudinal component of the magnetisation ∆Mz produce a force on the cantilever,
whose motion is measured optically.

This particular method has several advantages to realise the spectroscopic experiments
described above:
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1.3 Content of the thesis 13

1. First of all, this is a scan probe technique, which allow a local detection of the
FMR. Moreover, we can take advantage of the stray field generated by the magnetic
particle to create a strong local field gradient, which can continuously bias the
frequency tuning between nearby objects. This feature will be exploited in chapter
6

2. By choosing the size of the magnetic probe in the same range as the sample, we are
able to optimise the filling factor and work at optimal signal to noise ratio. The
force detection of the f-MRFM has been shown to be one of the most sensitive. With
our particular setup, a resolution of 100µB is easily achievable at room temperature
with a commercial cantilever. This room temperature sensitivity makes it sufficient
to detect the gyrotropic motion of the vortex core in a single dot.

3. The magnetisation dynamics is measured in the continuous wave (CW) configura-
tion. It allows spin wave spectra to be measured in the frequency domain with
arbitrary high accuracy. First this approach becomes more efficient for low fre-
quency modes (time domain would require very large windows). More importantly,
the energy resolution is here limited by the spectral purity of commercial microwave
sources, which is of the order of the Hertz range. Thus the CW approach is the
proper method to measure ultra-narrow lines at low frequency, such as the vortex
gyrotropic mode. This is also a good means in order to resolve resonances very close
in frequency.

4. We have access to the dynamics through the static measurement of ∆Mz. MRFM
detects the longitudinal part of the microwave susceptibility (it is thus phase insen-
sitive), which yields the T1 relaxation time directly. This ability gives a complemen-
tary view to all the methods mentioned above which are measuring the transverse
part of the magnetisation, and have therefore access to the T2 relaxation time.

5. The study of the normally magnetised saturated state requires a high polarising field
(up to 2 Tesla). Our home made f-MRFM is built with non-magnetic materials,
which allow to work under such high fields. MRFM is one of the best sensitive
method under large applied field.

1.3 Content of the thesis

In our road-map to characterise the nature of the spin wave modes in a nano-disc, we first
give in Chapter 2 the comprehensive theoretical framework used to index properly the
excitation spectra in a two-dimensional space with a general analytical formalism. We first
explain the identification of the spin wave eigen-modes in the simplest possible geometry:
the normally magnetised circular disc. Then in Chapter 3 we apply this analysis to the
vortex state. In particular, we develop a framework explaining the non-linear ingredients
which will become determinant. In chapter 4, we present the f-MRFM setup and the
experimental protocol used to perform spin wave spectroscopy in a nano-disc and the
means to calibrate the signal. In chapter 5, we perform unambiguous assignment of the
resonance peaks observed in the linear regime of a vortex state under a perpendicular
bias magnetic field. This vortex dynamics is also compared to the case where the device
is saturated with a large external magnetic field oriented perpendicular to the layers. We
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14 Introduction

also concentrate on the dynamical reversal of the vortex core through resonant switching.
In chapter 6, we study the role of the dipolar interaction between two discs in the saturated
state. The coupled dynamics is carefully analysed. This is of great interest for the practical
realisation of coupled arrays of STNOs, wich is a promising way to decrease the phase
noise of the auto-oscillating mode in STNO.
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Chapter 2

Perpendicularly magnetised soft

magnetic dots

In order to study the magnetisation dynamics in a ferromagnetic body, a general theory of
the spin wave excitations is presented in this chapter. This theoretical treatment is then
applied to the case of thin discs in a perpendicularly saturated state of the magnetisation.
This magnetic state is of particular importance since it simplifies the theoretical treatment
due to the preserved axial symmetry. It will be shown that the dipolar interaction is
integrable in this particular case. Finally, the theory of the collective dynamics of two
neighbouring saturated discs dipolarly coupled is presented.
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2.1 General theory of linear spin wave excitations

A convenient way to find the spin wave eigen modes of a normally magnetised thin disc
is to use the general theory of linear spin wave excitations. This theoretical framework is
very general and can be applied to many problems and geometry in magnetism. We are
very grateful to Vasyl Tyberkevich and Andrei Slavin for this very general formulation of
the problem [137, 99].

2.1.1 Equation of motion

The first step in the spin wave spectrum calculation is to define an equation of motion
for the magnetisation. Under the assumption that |M (r, t)| = Ms is a constant of the
motion, the magnetisation dynamics is described by the Landau-Lifshitz equation [82]
extended with a perturbation term:

∂M

∂t
= γHeff ×M + γh(t)×M (2.1)

where γ is the modulus of the gyromagnetic ratio. The last term includes the time depen-
dent perturbation field h which can be a function of the magnetisation distribution M .
This field is able to describe non-conservative perturbations such as the influence of the
Gilbert damping [44] using h = (−α/γMs)∂M/∂t, with α the Gilbert phenomenological
damping parameter.

The effective field Heff is the functional derivative with respect to the magnetisation
of the continuous magnetic energy density:

Heff = −δW(r)

δM
(2.2)

It is composed of the total external applied field Hext (including the contribution from
other sources such as neighbouring discs, f-MRFM magnetic probe..., and therefore possi-
bly spatially dependent) and the magnetic self-interactions which will be included in the

operator Ĝ:
Heff = Hext − 4πĜ ∗M (2.3)

In the equilibrium state, the effective field Heff is parallel (at every spatial point) to the
local magnetisation direction uM .

The linear tensor self-adjoint operator Ĝ describes the internal magnetic self-interactions.
This tensor is the sum of several physical components:

1. The magneto-dipolar interaction Ĝd, which is non-local and dominant at long range
in small/confined magnetic systems. Its calculation is a purely geometrical problem,
but is usually very complex and converges with difficulty in the general case. Some
analytical solutions are known in the case of very symmetric bodies such as spheres
or ellipsoids. Of particular interest for the following is the saturated state of the
magnetisation. If D(k) is the Fourier transform of the body shape function [12],
the magneto-dipolar interaction is given in the wave-vector representation by:

Ĝd(r) =

∫
D(k)

k
⊗

k

k2
expik.rd3k (2.4)

where the symbol
⊗

denotes direct product of vectors.
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2. The inhomogeneous exchange Ĝe dominant at short range, which is given in the
wave-vector representation by:

Ĝe = l2exk
2Î (2.5)

where the exchange length lex =
√
2J/(4πM2

s ) depends on the exchange stiffness

constant J of the considered material. Î is here the identity matrix.

3. A contribution from the magneto-crystalline anisotropy. It is related to the atomic
lattice symmetry of the considered magnetic material. For some cases, the crys-
talline symmetry can favour one or multiple preferential axis for the magnetisation,
which follow the crystal field. Any deviation from this or these preferred orienta-
tions will result in an energy cost. As we are using mostly soft magnetic materials,
these contributions will be neglected in the following treatment since it introduces
a negligible correction in the spin wave eigenmodes calculation.

4. The magneto-elastic interaction which tends to align the magnetisation along or
perpendicular to the the axis of mechanical strains. It will also be neglected in this
treatment.

5. A surface anisotropy term created by the magnetic discontinuities at the interfaces.
This small contribution is neglected as well in the following.

2.1.2 Linear spin wave spectrum

Having defined an equation of motion for the magnetisation, we shall find the dynamical
equations for the small (linear) magnetisation excitations. The following ansatz is used to
describe the time-dependent, or out-of-equilibrium component of the magnetisation m:

M (r, t) =Ms

(
uM +m(r, t)

)
+O(m2) (2.6)

Because we consider a ferromagnet, the norm of the magnetisation vector is a constant
of the motion, which implies the condition m.uM = 0. In other words, m is the small
component of the magnetisation (|m| ≪ 1) oscillating in the plane transverse to the local
uM . This is the key parameter to describe the spin wave eigenmodes.

Substituting m in the equation (2.1) and keeping only the linear terms, a linear
equation describing the transverse magnetisation precession at the Larmor frequency is
obtained:

∂m

∂t
= uM × Ω̂ ∗m (2.7)

where the sign ∗ denotes the convolution product. The self-adjoint tensor operator Ω̂

represents here the Larmor frequency:

Ω̂ = γ(HeffÎ + 4πMsĜ) (2.8)

Here, Î is the identity matrix and Heff is the norm of the effective field described in
equation (2.3):

Heff = uM .Hext − 4πMsuM .Ĝ ∗ uM (2.9)
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18 Perpendicularly magnetised soft magnetic dots

Considering only linear excitations of the spin system, m is developed in the general
eigen-basis representing the spin wave eigenmodes, labelled by ν:

m(r, t) ≈
∑

ν

cν(t)mν(r) + c.c. (2.10)

where c.c. stands for complex conjugates. In this formulation, cν(t) are the amplitudes of
the eigenmodes and mν(r) represents their spatial profile. This standard decomposition
must be an orthonormal basis, obeying the closure relation:

i〈mν .(uM ×mν′ )〉 = Nνδν,ν′ (2.11)

where m stands for the complex conjugate of m, δ is the Kronecker delta function and
the bracket denotes the spatial average over the volume of the magnetic body. Nν are
normalisation constants of the basis.

Assuming an oscillatory dependence of the spin wave magnetisation vector mν at the
eigen-frequencies ων , the eigen-modes, labelled by ν, are solutions of the equation (2.7):

−iωνmν = uM × Ω̂ ∗mν (2.12)

The main properties of spin wave excitations follow from the eigen-problem equation
(2.12) and the fact that the operator Ω̂ is self-adjoint and real. In particular, if the
equilibrium magnetisation along uM corresponds to a local minimum of the energy, the
operator Ω̂ is positive-definite. The ”physical” (positive) eigenfrequencies are then simply
given by the formula:

ων =
〈mν .Ω̂ ∗mν〉

Nν

(2.13)

The importance of this relation is that the frequencies ων calculated using equation (2.13)
are variationally stable with respect to perturbations of the mode profile mν . Thus,
injecting some trial vectors inside equation (2.13) allows one to get approximate values of
ων with high accuracy.

2.1.3 Practical calculation of the eigenfrequencies

A convenient basis m̃k in the space of vector functions m is introduced to describe the
spin wave modes. This basis should be complete, orthonormal (i.e. all m̃j are orthogonal
to uM) and should satisfy appropriate boundary conditions at the edges of magnetic body.
The dynamical part of the magnetisation is decomposed on this basis using the amplitudes
ak:

m =
∑

k

akm̃k (2.14)

This equation is substituted in equation (2.12), which is projected on the axis of the
magnetisation precession (m̃j ×uM) and averaged on the magnetic volume V . Equation
(2.13) simply means that the eigenfrequencies ων are given by the spatial average of the

Larmor operator Ω̂ weighted by the spatial pattern of the mode profile. In the following,
the curly bracket notation denotes the spatial averaging of a quantity weighted by the
profile of the spin wave mode:

{A}jk =
1

Cj,k

∫ ∫

V

m̃j(r)A(r − r
′

)m̃k(r
′

) d3r
′

d3r (2.15)
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where the normalisation constant is:

Cjk = i

∫

V

m̃j(r).
(
uM × m̃k(r)

)
d3r (2.16)

This yields the homogeneous system of equations (for different j) for the coefficients ak:

∑

k

(
ω − {Ω̂}jk

)
ak = 0 (2.17)

The eigenfrequencies ων can be found from the condition of vanishing determinant of the
previous system: det(ω − {Ω̂}jk) = 0. The stability of this method with respect to the
variation of the mode profile allows the calculation of the eigenfrequencies using typically
only a few appropriate basis functions m̃j.

In order to find the spin wave eigenfrequencies, the problem reduces to the calculation
of the average value of the Larmor operator along the diagonal:

{Ω̂}jj = γ

[(
{uM .Hext}jj − 4πMs{uM .Ĝ ∗ uM}jj

)
Î + 4πMs{Ĝ}jj

]
(2.18)

In case of elliptical precession of the magnetisation, one needs thus two separate equa-
tions (2.18) for the values of ω for each Cartesian [76] one proportional tom2

x/(mxmy), the
other to m2

y/(mxmy). The product of these two equations is independent of the ellipticity,
leading to a general Kittel like formula.

2.1.4 Spin wave damping

The spin wave decomposition of equation (2.10) can be introduced in the Landau-Lifshitz
equation, leading to the following linear differential equation for the spin wave amplitudes
cν :

dcν
dt

= −iωνcν (2.19)

In absence of damping, the mode spectrum is just a Dirac distribution centred at ων . The
actual amplitudes of the modes are in fact intrinsically linked to the magnetic dissipa-
tion, which induces a finite linewidth ∆ων in the measurements. The Gilbert damping
describing the intrinsic magnetic dissipation in the material can be introduced in the non-
conservative perturbation field h(t) of equation (2.1). It has the form of a linear operator,
allowing h(t) to depend on the magnetisation distribution:

h(t) = L̂ ∗m(t) (2.20)

where the influence of the Gilbert damping −(α/γMs)∂M/∂t is given by:

L̂ ∗m = i
α

γ

∑

ν

ων [cν(t)mν − c.c] (2.21)

Then, introducing the decomposition of the eigen-basis (equation 2.10) in the Landau
Lifshitz equation (2.1) and using the orthogonality relations, one can obtain the following
equation for the spin wave amplitude:

dcν
dt

= −iωνcν − Γνcν (2.22)
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20 Perpendicularly magnetised soft magnetic dots

Assuming that there are no degenerate modes, the spin wave damping rate is then given
by:

Γν = αων
〈mν .mν〉

Nν

(2.23)

The spin wave amplitude cν simply follow the equation of motion of a damped harmonic
oscillator.

From equation (2.23) the relaxation rate coincides exactly with the intrinsic damping
α only if the magnetisation precession is circular because in this case Nν = 〈mν .mν〉. It
will be shown in the following section that this is the case of the radial spin wave modes in
normally magnetised discs: the damping rate reduces to Γ = αω. Therefore, ∆ω/2ω = α
will be experimentally verified, where ∆ω is the measured linewidth.

2.2 Normally magnetised thin disc

The general theory developed in the previous section can now be applied to the particular
case of a normally magnetised thin ferromagnetic disc.

2.2.1 The proper eigen-basis

In order to solve this problem, a proper eigen-basis decomposition (equation (2.10)) has
to be found to describe the spin wave modes in a perpendicularly magnetised disc. Since
the frequencies calculated using equation (2.13) are variationally stable with respect to
perturbations of the mode profile mν , the real magnetisation profile of the modes will be
replaced by appropriate trial vectors mν in order to calculate the approximate eigenfre-
quencies accurately. The trial vectors should obey some simple properties:

1. They must form a complete basis in the space of vector functions m and obey the
closure relation equation (2.11).

2. The vectors of this orthonormal basis must be locally orthogonal to uM .

3. Because we consider a finite size system, the vectors should satisfy appropriate
boundary conditions at the edges of the magnetic body.

In practice, the spin wave eigen-basis will be imposed by the symmetry of the magnetic
system. A perpendicularly magnetised disc exhibits an axial symmetry. This symmetry is
described by the operator rotation around the z axis R̂z. It is assumed that the boundary
conditions follow this symmetry, i.e. the pinning at the edges of the disc is homogeneous.
The operator describing a rotation around the axis z at the Larmor frequency obviously
commutes with the rotation operator: [uz × Ω̂, R̂z] = 0. But this statement remains

valid when the precession is orthogonal to uM : [ueff × Ω̂, R̂z] = 0. Moreover, since the
disc is homogeneously saturated, the magnetisation is considered uniform across the disc
thickness and the problem reduces to a two-dimensional system.

The spin wave eigenmodes mν are then described in the disc plane (ρ, φ); they are

by definition also eigenfunctions of the operator R̂z corresponding to a certain integer
azimuthal number l. This defines their behaviour under the azimuthal rotation φ around
the axis z:

∂m

∂φ
− uz ×m = −i(l − 1)m (2.24)

Benjamin Pigeau



2.2 Normally magnetised thin disc 21

The radial profiles of the eigenmodes being described by the functions ψ
(1,2)
l (ρ), two classes

of solutions corresponding to counter-rotating waves in the azimuthal direction are found
for the equation (2.24):

m
(1)
l =

1

2
(ux + iuy)e

−ilφψ
(1)
l (ρ) (2.25a)

m
(2)
l =

1

2
(ux − iuy)e

−i(l−2)φψ
(2)
l (ρ) (2.25b)

Mathematically, the spin wave eigenmodes should be linear combinations of the two
solutions. Physically, the coupling mechanism between the two types of waves is the inho-
mogeneous dipolar interaction. If only the lowest energy modes are considered, this inter-
action can be neglected, and the right-polarised form of equation (2.25) will be our unique
solution. In practice, the error in the eigenfrequencies is of the order of 4πγMs(L/R)

2,
which is small compared to the lowest modes splitting induced by the constrained geom-
etry.

We now have to find an appropriate set of radial functions ψl(ρ) to calculate the spin
wave spectrum using equation (2.13). Until this point, the treatment is exact, but the
calculation of the real radial functions involves to solve complicated integro-differential
equations. Our approximation consists of using a reasonable set of known mathematical
trial functions.

The Bessel functions of the first kind Jl(x) correspond to our problem since they have
the appropriate radial and azimuthal symmetry. Moreover, they reproduce well the strong
pinning of the magnetisation at the lateral boundaries introduced by the magneto-dipolar
interaction [56].

Figure 2.1: a) Parametrisation of the ferromagnetic thin disc: the external magnetic field Hext

(including all contributions) is tilted by the angle θH , and the equilibrium magnetisation is along
the effective field unit vector uM . b) Spatial representation of the Bessel function Jl(kl,m) for
different values of the azimuthal mode index l (by row) and radial mode index m (by column).

Therefore, we use radial profiles of the form ψl(ρ) = Jl(kl,mρ). The eigenmodes wave
numbers kl,m are determined from the pinning conditions at the disc boundary. For very
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22 Perpendicularly magnetised soft magnetic dots

thin discs, this pinning is found to be almost complete [56], and this quantity is defined as
kl,m = κl,m/(R+L), where κl,m is themth root of the Bessel function of the lth order. The
integer radial number m is introduced to label the number of nodes in the radial profile
across the disc. The spatial profile of such functions is presented on the figure 2.1b, with
the rows corresponding to the azimuthal index l and the columns to the radial index m.
The phase (or direction) of the magnetisation precession φ = arg(mν) is displayed in
colour code using the hue, while the amplitude |mν |2 is given by the brightness.

One can easily identify the (l = 0,m = 0) mode as the “uniform” mode: the magneti-
sation precesses in-phase uniformly in the disc. The first azimuthal mode (l = +1,m = 0)
corresponds to a spin wave that is rotating around the disc in the same direction as the
Larmor precession. The corresponding phase is in quadrature between two orthogonal
positions and this mode has a node at the centre of the disc (the nodal positions are
marked in white). Then, increasing the index m results in an increase of the number of
nodes in the radial direction.

2.2.2 Calculation of the eigenfrequencies

Now that a convenient eigen-basis has been chosen to decompose the spin wave modes,
we can solve the equation (2.13) and find the eignfrequencies. The indices of the modes
ν are replaced by the set l,m. By replacing in the equation (2.25), the magnetisation of
the normal eigenmode (l,m) is given by:

ml,m(r, t) =
1

2
(ux + iuy)e

−ilφJl(kl,mρ) (2.26)

Equation (2.18) defining the eigenfrequencies spectrum can be solved using the adapted
spin wave profile of equation (2.26): this is the magneto-exchange approximation.

ωl,m = γ

[(
{uM .Hext}l,m−4πMs{uM .(Ĝ

d+Ĝe)∗uM}l,m
)
Î+4πMs{Ĝd+Ĝe}l,m

]
(2.27)

In this particular case, the curly bracket averaging reduces to:

{A}l,m =
1

Cl,m

∫

ρ<R

∫

ρ
′
<R

Jl(kl,mρ)A(r − r
′

)Jl(kl,mρ
′

) eil(φ
′

−φ) d2r
′

d2r (2.28)

where the normalisation constant is:

Cl,m =

∫

r<R

(
Jl(kl,mρ) cos(lφ)

)2

d2r (2.29)

The first term of equation (2.27) concerning the external field reduces to Hext.uM since
this polarising field is spatially homogeneous. If an extra non-homogeneous external field
is added to the disc, such as stray fields created by the f-MRFM probe or neighbouring
discs, it must be weighted by the mode profile and spatially averaged.

2.2.2.1 The static dipolar self-interaction

The second term of equation (2.27) represents the static magnetic self-interactions. In the
case of homogeneously magnetised body, the inhomogeneous exchange contribution to the
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2.2 Normally magnetised thin disc 23

static self-interaction is strictly zero and the second term of equation (2.18) reduces to
the magneto-dipolar contribution. The magneto-dipolar interaction can be expressed in
a more suitable form in terms of the demagnetising tensor N̂ (r). The two mathematical
formulations are linked by the following expression for the demagnetising tensor elements:

Ni,j(r) = ui(r).Ĝ
d ∗ uj (2.30)

where ui,j are unit vectors along the directions i, j. The calculation of this tensor is in
general non trivial because of the non-locality of the problem.

Nevertheless, the case of a ferromagnetic disc of radius R and thickness L, or more
generally a cylinder, whose magnetisation is fully saturated was solved analytically [126].

Because of the axial symmetry, the values of the tensor N̂ are better expressed in the
cylindrical coordinates (r, z) and we introduce the reduced units ζ = z/R, τ = t/(2R), ρ =
r/R:

Nzz(r, z) = +
1

2
{sζ,τI0(ρ, α−) + I0(ρ, α+)} (2.31a)

Nzr(r, z) =− 1

2
{I1(ρ, α−)− I1(ρ, α+)} (2.31b)

Nrr(r, z) = +
1

4
{sζ,τI2(ρ, α−) + I2(ρ, α+)− 2Hτ,ζI2(ρ, 0)}

− 1

4
{sζ,τI0(ρ, α−) + I0(ρ, α+)− 2Hτ,ζI0(ρ, 0)} (2.31c)

where the notations α− = |ζ − τ | and α+ = |ζ + τ | are respectively the distance (in
reduced units) with the bottom and top surface of the cylinder. The function s and H
design respectively the Sign and Heavisde functions:

sx,y =

{
+1 if x < y

−1 else

Hx,y =

{
1 if x > y

0 else

The integrals Ii have the following expressions:

I0(ρ, α) =s1,ρ
1

2
Λ0(β, κ)−

kα

2π
√
ρ
K(k) +H1,ρ (2.32a)

I1(ρ, α) =
1

πk
√
ρ
{(2−m)K(k)− 2E(k)} (2.32b)

I2(ρ, α) =
2α

πkρ3/2
E(k)− (α2 + ρ2 + 2)

αk

2πρ5/2
K(k)

− s1,ρ
1

2ρ2
Λ0(β, κ) +

H1,ρ

ρ2
(2.32c)

where

m =k2 = sin2 κ =
4ρ

(ρ+ 1)2 + α2
, (2.33a)

β = arcsin

(
α√

(ρ− 1)2 + α

)
. (2.33b)
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K(k) and E(k) are the complete elliptic integrals of the first and second kind and Λ0 is
the Heuman’s Lambda function.

The above expressions are valid everywhere in space. If the magnetisation is aligned
with the unit vector uM , the magnetic field induction at every point in space (inside or
outside the sample’s volume) simply obeys the formula:

B(r, z) = Hext + 4πMs

{
Θ(r, z)− N̂ (r, z).uM

}
, (2.34)

where Θ is a function equals to 1 inside the cylindrical volume and 0 otherwise:

Θ(r, z)x,y =

{
1 if r < R and |z| < t/2

0 else.

Therefore, the magneto-static contribution can be expressed in the form:

−4πMs{uM .Ĝ
d ∗ uM }l,m = −4πMs{uM .N̂ .uM}l,m (2.35)

This is the self-demagnetising field created by the static magnetisation.

2.2.2.2 The dynamic dipolar self-interaction

The last term of equation (2.27), except the exchange contribution that is straightforward,
contains the dynamic magneto-dipolar self-interaction, which represents the depolarisa-
tion field of the spin wave mode on itself. This term is really non local since it involves
also the non diagonal components of the dipolar Green operator Ĝd. No general expres-
sion of this term is available, but an analytical formula was derived for l = 0 modes in
the case of a strictly perpendicularly magnetised disc. It involves the Nxx component of
the demagnetising tensor because the oscillating part of the magnetisation is identified to
this term in the linear regime:

{Ĝd}0,0 = {N self
xx }0,0 =

1

C0,0

∫

Vi

d2ρdzJ0(k0,0ρ)

∫ R

0

du
∂Nxx[u,L](ρ, z)

∂u
J0(k0,0u) (2.36)

where the quantity in the second integral is the magnetic stray field produced at the spatial
position r by a cylindrical tube of width du, radius u, and thickness L, homogeneously
magnetised along ux by J0(k0u). This term should not be confused with the eventual
static contribution {Nxx}l,m which has the form of equation (2.28).

To derive this formula, we have taken advantage of the axial symmetry of the l =
0,m = 0 mode, which leads to {N self

xx }0,0 = {N self
yy }0,0. This is no longer the case for higher

order modes having azimuthal indices different from zero: they present an ellipticity.
Nevertheless, the previous expression can be extended to the general case using:

{N self
xx }l,m = {N self

xx }0,0
√
kl,m
k0,0

(2.37)

Notice that an approximate expression has been derived by Kalinikos and Slavin [71]
for the lowest spin wave branch of platelet shape bodies with uniform magnetisation across
the film thickness [76]:

{Ĝd}l,m = G⊥
l,muzuz + (1−G⊥

l,m)(qluxux + (1− ql)uyuy) (2.38)
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where:

G⊥
l,m =

2πR2Λl

Cl,m

∫ ∞

0

(
kJl−1(kR)Jl(kl,mR)− kl,mJl−1(kl,mR)Jl(kR)

k2 − k2l,m

)2(
1− e−kt

kt

)
kdk

(2.39)
Here Λl = 1/2 for anti-symmetrical modes and Λl = (1 + ∆l,0)/2 for symmetrical modes.
ql = 1/2 ±∆l,1/4 for symmetrical/anti-symmetrical modes, respectively. The term ∆l,m

represents the ellipticity of the mode l,m.

2.2.2.3 Equilibrium configuration

The equilibrium configuration of the magnetisation vector M (r) has to be defined pre-
cisely. From an experimental point of view, it is very difficult to align precisely the
applied field Hext with the normal of the disc plane uz. In the real experiments a slight
misalignment is always present, which needs to be taken into account in the model.

The first basic principle to understand any equilibrium state is the following: the
magnetisation unit vector uM is always aligned with the local effective field Heff in the
magnetic sample. This field can be locally very different from the applied field Hext, as
sketched on the figure 2.1a.

In this model, the static magnetisation is considered fully saturated and homogeneous
in the disc volume. The equilibrium orientation of the magnetisation M (r) = MsuM is
given by the condition that the volume averaged effective field 〈Heff〉 = 〈Hext+Hex+Hd〉
is aligned with the direction uM . If θH is the angle between the applied field and the disc
normal uz, the equilibrium angle θM for the magnetisation is given by the positive root
of the equation:

Hext sin(θM − θH) + 2πMs sin(2θM)

[
〈Nxx〉 − 〈Nzz〉

]
= 0 (2.40)

where 〈Nxx〉, 〈Nzz〉 are the averages over the dot volume of the demagnetising tensor
elements. This result is illustrated by the sketch of figure 2.1a.

Solving numerically the previous equation leads to the equilibrium configuration of
the magnetisation, once the precise geometry of the dot and the field angle are known.
The starting point for the dynamical spin waves spectrum calculation is a uniform state
of the magnetisation oriented along uM . Namely: M (r) = Ms(1, θM , φ) in a spherical
frame. The azimuthal angle φ is determined by the external field orientation. But there
is no explicit dependence on φ in this model because of the axial symmetry of the discs
considered here. For instance, φ = 0 in the figure 2.1a.

Notice that all the spatial mode profiles introduced in the previous section preserve
the rotation invariance symmetry for a perfectly perpendicularly magnetised disc. If the
magnetisation is tilted by θM , the actual radial profiles of the modes are distorted. We
make the assumption that the decomposition on the Bessel functions remains a good
approximation for the mode profiles if this angle is small. It was shown [76] that the
discrepancy between a realistic simulation and the calculation becomes too important if
the angle of the applied field is larger than θH = 5Â◦. In that sense, the validity of the
following calculation of the spin wave eigenfrequencies is restricted to small deviation of
the applied field from the perpendicular.
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26 Perpendicularly magnetised soft magnetic dots

2.2.2.4 The Kittel like formula

Taking into account the tilt of the external field and using the previous notations, the
following terms are defined:

1. The total internal field:

{Heff}l,m = Hext cos(θM − θH) + {Hinh.uM} − 4πMs{uM .N̂ .uM}l,m (2.41)

where Hext is the norm of the external polarising field and Hinh is a spatially in-
homogeneous field, created for instance by the f-MRFM probe. The demagnetising
field is projected in the local frame of the magnetisation:

{uM .N̂ .uM}l,m =
1

2
[{Nzz}l,m(cos 2θM + 1)− {Nxx}l,m(cos 2θM − 1)] (2.42)

2. The total exchange field:

{Hex}l,m = 4πMsl
2
exk

2
l,m (2.43)

In order to take into account the tilt of the magnetic field, an equation for the eigenfre-
quencies has to be written for each Cartesian axis, because the magnetisation precession
of all the modes become elliptical (in practice {N self

xx }l,m 6= {N self
yy }l,m). This leads to the

general expression for the eigenvalue of arbitrary index:

ω2
l,m

γ2
=

(
{Heff}l,m + {Hex}l,m + 4πMs{N self

x
′
x
′}l,m

)
×

(
{Heff}l,m + {Hex}l,m + 4πMs{N self

y
′
y
′}l,m

) (2.44)

Notice that in this equation, the contributions from the dynamical dipolar self-interaction
{N self

x′x′/y′y′
}l,m have to be projected on the new axis x

′

, y
′

(see figure 2.1a).

The finite-size effects due to the restriction of the magnetic volume are clearly seen
in this calculation. The magneto-dipolar interaction becomes dominant in such discs
and the magnetostatic spin wave modes are quantised due to the boundary conditions.
Compared to a continuous film, the degeneracy between the eigenfrequencies is lifted.
The splitting between eigenmodes increases when the geometrical dimensions are reduced.
Experimentally, it is very interesting to measure discs with sub-micron radii, to avoid the
non linear coupling between modes when their frequencies are too close [34].

2.2.3 Amplitude and linewidth of the eigenmodes

It was shown in equation (2.22) that the intrinsic amplitude of the spin wave modes
depends on the damping rate Γ. Experimentally, the spin waves will be excited with a
microwave magnetic field. Therefore, the measured amplitude depends on the overlap
between the perturbation field and the symmetry of the mode.
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2.2.3.1 Overlap integral with the excitation

Because we are interested in measuring the eigenmode amplitude when excited by an
external perturbation field, we should define this field first. The microwave field created
by the antenna (see chapter 4 for details) is linearly polarised and spatially homogeneous,
at least at the scale of the disc:

hrf(t) = hrf cos(ω0t)ux (2.45)

This field has to be added to the perturbation term equation:

h(t) = hrf(t) + L̂ ∗m(t) (2.46)

An extra term appears in the equation of motion of the oscillator:

dcl,m
dt

= −iωl,mcl,m − Γl,mcl,m + iγhl,m (2.47)

In this equation, the last new term is very important: this is the driving term relating the
coupling efficiency of the microwave field. Assuming that there is no degenerate modes,
it is given by the overlap integral between the excitation field symmetry and the excited
mode profile:

hl,m =
〈ml,m.hrf〉

Nl,m

(2.48)

In a sense, the symmetry of the microwave field imposes the selection rules for the excited
modes in the linear regime. It can be easily shown that the uniform microwave magnetic
field we are using can only excite (l = 0,m) spin wave modes. In order to excite azimuthal
(l 6= 0,m 6= 0) spin wave modes, a field with an orthoradial symmetry should be used,
as it was demonstrated in reference [99] with an rf current flowing vertically through the
disc.

2.2.3.2 Relationship with the f-MRFM measurement

The resolution of equation (2.47) is straightforward and we shall concentrate on the physi-
cal parameter measured by the f-MRFM. Here, the probe couples to the stray field created
by the longitudinal part of the magnetisation, and the signal is given by the variation of
this quantity averaged on the disc volume, 4π〈∆M .uz〉. One can derive an approximate
expression of this quantity, for an arbitrary microwave pulsation frequency ω0, under the
approximation that the only relevant coefficients in the damping matrix are the diagonal
terms,

4π〈∆M .uz〉 ≈ 4πMs

∑

l,m

γ2|hl,m|2
(ω0 − ωl,m)2 + Γ2

l,m

Nl,m (2.49)

The force detected by the f-MRFM cantilever is then proportional to the product
〈∆m.uz〉 = ∆Mz with the probe field gradient gzz, as will be explained in chapter 4.

In conclusion, the theoretical calculation of the spin wave eigenmodes in a perpendic-
ularly magnetised disc provides access to the set “frequency, amplitude, linewidthâ for
the full spectrum. This allows the spectrum measured by our f-MRFM methods to be
reproduced analytically. Quantitative information about the material parameters as well
as the physics of the system can be extracted from this comparison [76, 99].
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2.3 Coupled dynamics of two neighbouring discs

Once the dynamical behaviour of a single disc is well described, we can consider the
interesting case of a pair of them. This is a first step toward the study of the collective
dynamics of wide arrays of magnetic discs. Notice that the case of two magnetic discs
saturated in the plane and separated by a metallic spacer was already treated [37]. In the
problem we will study here, the two discs saturated out-of-plane can be placed either on
top of each other or closely packed laterally. The most important point is their magnetic
mutual isolation: even if they stand close from each other, they are clearly separated by
a non magnetic layer or by vacuum.

Therefore, the only coupling mechanism allowed between the discs is mediated by
the magneto-dipolar energy. If the two discs are close enough, the overlap between their
dipolar stray field can lead to a collective dynamics of the magnetisation.

The geometry of the problem is defined as follows: the two discs of identical radius R
and thickness L, labelled by 1 and 2, are separated by s edge to edge (lateral configuration)
or z0 centre to centre (vertical arrangement). The individual, or uncoupled, spin wave
eigenfrequencies ωl,m of each disc are now defined as ω1 and ω2 . Initially, the discs will
be considered magnetised fully out-of-plane (i.e. θH = θM = 0). The influence of a tilted
magnetisation in the collective dynamics will be discussed at the end.

2.3.1 Influence of the magneto-dipolar coupling

The static magnetic interaction in equation (2.18) now comprises cross terms. To avoid
any confusion, the different terms will be labelled by indices corresponding to both discs
(i, j) = 1, 2.

In a first time, we shall consider the effect of the static dipolar coupling. The cal-
culation of the eigenfrequencies ω1,2 will be modified by the static dipolar field radiated
by the neighbouring disc. The dipolar self-interaction for the disc i, already taken into
account, can now be noted {N i→i

zz }l,m. The new cross term, corresponding to the static
dipolar field from one disc j averaged on the precession profile of the other one i is:

{N j→i
zz }l,m =

1

Cl,m

∫

Vi

Nzz(rj→i)

(
Jl(kl,mρ) cos(lφ)

)2

d2r (2.50)

where the term rj→i depends on the geometry. For two discs on top of each other, rj→i =

(ρ, z+z0) while for the lateral configuration, rj→i = (
√

(2R + s)2 + ρ2 − (2R + s)ρ sin θ, z).
This term must be added to the total internal field of equation (2.41).

A new cross term also appears in the dynamic magneto-dipolar interaction. This pa-
rameter is very important since it is responsible for the dynamic dipolar coupling between
discs. Even though the calculation of this term is in general non trivial, an analytical
formula has been derived for the l = 0 modes:

{N cross,ji
xx } =

1

C0,0

∫

Vi

d3rJ0(k0,0ρ)

∫ R

0

du
∂Nxx[u,L](rj→i)

∂u
J0(k0,0u) (2.51)

The general form of this term is similar to the self term of equation (2.36), except the
position rj→i of the second disc.

With these additional contributions arising from the magneto-dipolar coupling, the
individual frequencies ω1,2 of each discs can be renormalised to find the coupled frequen-
cies.
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2.3.2 Coupled equation of motion and collective dynamics

In both geometries, the dominant coupling mechanism is the magnetic dipolar interaction
since there is no “magnetic” contact between discs. The possibility to couple the discs
through spin currents [143, 98] is neglected here. The perturbation theory leading to the
dynamical equation (2.19) can be extended to the case of coupled discs by adding the
coupling cross terms described in equation (2.51). Denoting the spin wave amplitude in
both discs by c1,2, and neglecting the damping term in a first approximation, one can get:

dc1
dt

= −iω1c1 + iγh2→1c2 (2.52a)

dc2
dt

= −iω2c2 + iγh1→2c1 (2.52b)

The cross terms that couple these equations are given by:

hi→j =
4πMs

Nj

〈mj.Ĝd ∗mi〉Vj
(2.53)

and its symmetric form, inverting the discs labels (i, j) = 1, 2.
Thus, hi→j is the demagnetising stray field produced by the dynamic magnetisation of

the jth disk projected along the local dynamical magnetisation vector inside the ith disk
and averaged over its volume. The overlap defined in this equation is maximum if one
consider modes having the same wave number in each disc [47]; in the following only the
coupling between similar modes will be considered. In that sense mj and mi correspond
to the dynamical magnetisation in each discs but with the same set of mode indices (l,m).
This dynamical field, which drives the coupling, is of course an in-plane rotating field that
is able to couple to the magnetisation’s dynamical part. Therefore, it is easily related to
the cross terms of the dynamic magneto-dipolar self-interaction. In the case of two discs
on top of each other, this field is isotropic since Nxx = Nyy, and

hi→j = 4πMs{N cross,ij
xx } (2.54)

But in the case of two discs placed side by side, the axial symmetry is broken and:

hi→j = 2πMs

(
{N cross,ij

xx }+ {N cross,ij
yy }

)
(2.55)

In order to be solved, this simple system of linear ordinary differential equations can
be written in matrix form:

d

dt

(
c1
c2

)
= −iÂ

(
c1
c2

)
where Â =

(
ω1 −γh2→1

−γh1→2 ω2

)
(2.56)

The eigenvalues ωA,B are found by diagonalising the central matrix Â in equation (2.56)

using the identity: det(Â − ωÎ) = 0. The eigenfrequencies, corresponding to the anti-
binding (A) and binding (B) modes are then given by:

ωA,B =
ω1 + ω2

2
±
√(

ω1 − ω2

2

)2

+

(
Ω

2

)2

(2.57)
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where the coupling strength is:
Ω2 = γ2h1→2h2→1 (2.58)

Because the coupled system is composed of two magnetic oscillators, two coupled modes
diagonalise the problem. The magnetisation precession occurs in both discs during the
coupled modes with the main following characteristics: equal frequency ωA,B and fixed
phase difference. An interesting analogy is done on figure 2.2 with the energy diagram of
a two levels molecules having a bounding and an anti-bounding state.

Figure 2.2: Analogy between a two level molecule and the effect of the dipolar coupling on two
magnetic oscillators. The magneto dipolar interaction hybridises the system in two binding and
anti-binding coupled modes separated in frequency by the dynamical splitting Ω.

In the case of lateral neighbouring discs, the mode with the lowest frequency is the
binding mode B, which corresponds to an in-phase precession in both discs: this is an
acoustic mode. In the second, or anti-binding mode A, the magnetisation is precessing
with a π phase difference between discs: this is an optical mode. The modes frequencies
experience an anti-crossing, and the coupling strength Ω (which is a frequency), is simply
the frequency splitting between coupled modes at the exact tuning (ω1 = ω2).

Considering two discs on top of each other, this hierarchy is inverted: the anti-binding
mode A has the lowest frequency. Indeed, the sign of the dynamical magneto-dipolar
interaction is negative. This results from the symmetry of the disc stray field, which forms
closed loops of iso-fields. Therefore, the field hi→j, that was positive for neighbouring
discs, is now negative. Consequently, the out-of-phase precession of the magnetisation is
favoured by the cross dipolar interaction.

The amplitudes CA,B of the coupled modes corresponds to the eigenvectors x of the

matrix Â, calculated with the equation: (Â− ωA,BÎ)XA,B = 0. These amplitudes are of
course linear combinations of the uncoupled amplitudes, the weight corresponding to the
hybridisation of the coupled modes:

CA = c1 +
ω1 − ωA

γh2→1

c2 (2.59a)

CB =
ω2 − ωB

γh1→2

c1 + c2 (2.59b)

From an experimental point of view, the critical parameter is the ratio of hybridisation
in the two coupled discs. This parameter can easily be related to the force acting on the
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f-MRFM cantilever (see chapter 6), for instance. For each coupled mode, this ratio is
given by:

ci
cj

∣∣∣∣
ωA,B

=

(
(ωi − ωj)∓

√
(ωi − ωj)2 + Ω2

Ω

)∓1

(2.60)

This equation allows to confirm the symmetry of the coupled modes. For clarity, it will
be assumed that the system is placed at the anti-crossing (ω1 = ω2).

In the case of lateral neighbouring discs, in equation (2.60) ,the anti-binding A mode
has ci = −cj, a precession with equal hybridisation weight between the two discs but
precessing with a π phase difference. At the opposite, the binding mode B has ci = +cj
which denotes an in-phase precession. As explained previously, this symmetry is inverted
in the case of stacked discs.

2.4 Conclusion

In this chapter, a very general theoretical calculation of the linear spin wave spectrum in
a ferromagnetic body was developed. Assuming a conservative dynamics of the magneti-
sation, its motion was described by the Landau-Lifshitz equation. Taking carefully into
account the magnetic interactions (magneto-dipolar, exchange, crystalline anisotropy...),
a general expression for the spin wave eigenfrequencies was derived. Moreover, the dissi-
pative phenomena could be introduced in order to calculate the spin wave amplitude and
relaxation rate.

This general framework was then applied to the case of a nano disc perpendicularly
magnetised to the film plane, which corresponds to the geometry chosen in this thesis.
The first important point of this calculation was to treat properly the magneto-dipolar
and exchange interactions which becomes dominant in such small magnetic volume. It
was done thanks to the demagnetising tensor formulation, which provides an analytical
solution of the problem for saturated magnetic bodies. The second point was to find a
relevant eigen-basis on which to decompose the spin wave modes. This basis is discrete
and the quantised wave vectors are given by the boundary conditions. Moreover, the axial
symmetry of the disc has imposed the Bessel functions for describing the radial profiles of
these modes. Finally, the key for the calculation of the eigenfrequencies was to average the
effective field over the dot volume taking into account the mode profile. It led to a Kittel-
like equation for the spin wave frequency. As a result of the magnetic confinement in such
discs, the spin wave spectrum is quantised, which will be verified experimentally in chapter
5. Experimental studies of a normally magnetised configuration allows quantitative access
to fundamental parameters such as saturation magnetisationMs, actual radius of the disc,
gyromagnetic ratio γ and damping α.

Once the spectrum of a single disc was calculated, we have addressed the problem
of the collective magnetisation dynamics in multiple neighbouring discs coupled by the
dipolar interaction. For instance the collective dynamics of similar modes excited in
neighbouring discs is very interesting. The case of two discs was treated here, revealing
the dominant role of the dynamical dipolar interaction in the apparition of two coupled
modes. The striking feature of the collective dynamics, the dynamical splitting between
coupled modes, was calculated. This theoretical description will be verified experimentally
in the chapter 6.
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With the problem of the saturated state treated, we can focus our study on unsaturated
states, and in particular the vortex state. The general theory developed in the beginning
is still valid in this case, the challenge being to take properly into account the dipolar
interaction. Indeed the static magnetisation now depends strongly on the spatial position.
But it will be shown in chapter 3 that the global axial symmetry is conserved which allows
interesting analogies in the treatment of the spin wave spectrum compared to the saturated
state.
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Chapter 3

The magnetic vortex: static

properties and dynamics

In this chapter, a detailed theoretical description of the vortex state will be given. In
a first part, different models of this particular spatial distribution of the magnetisation
are reviewed. The static magnetic properties of vortices in nanostructures are explored,
in particular the stability as a function of the geometry of the dot and versus external
applied fields. The second part will be focused on the dynamical excitations in the vortex
state. The gyrotropic mode and higher order spin wave modes will be modelled as well
as their mutual interactions.
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3.1 Introduction to the vortex state

The vortex structure is widespread in nature. This is usually a configuration of the matter
that allows an efficient dissipation of energies. It involves various physical parameters such
as wind or water velocity in turbulent flows (Von Karmann alley), superconducting order
parameter in superconductor of type II, electrical charges in eddy currents, matter density
in black holes...and magnetisation in two dimensional ferromagnets.

All these phenomena have in common a structure where the involved physical param-
eter is curling around a central singularity. The energy should diverge at this point, but
the centre of the vortex, the so-called core, regularises this divergence by its particular
structure.

Two-dimensional ferromagnets are of particular interest for us, this thesis being fo-
cused on the study of very thin ferromagnetic nano-structures, such as discs. The first
study on magnetic vortices was done by E. Feldtkeller and H. Thomas who calculated
their micromagnetic structure [42]. Magnetic vortices have been intensively studied by
Kosterlitz, Berezinsky and Thouless in the 70’s as a particular topological solution of the
phase transition in the XY model [78]. This general model describes the interactions of
classical magnetic moments confined in a plane; it can be applied either to ferro/antiferro-
magnetism or any spin physics such as helium 3 and polymers. Vortices can be formed
to reduce the energy of the system, interacting in pairs of vortex-antivortex for example.
They can be seen as topological defects whose structure cannot be reduced to a uniform
or continuous state by any finite transformation. They are stable under certain conditions
that are reviewed in the following.

3.1.1 Vortices in two dimensional ferromagnets

In ferromagnets, the magnetic moments responsible for the magnetism are strongly cou-
pled by the exchange interaction. The spin system presents a phase transition and exhibits
an ordered state below the Curie temperature. The vortex structure is a soliton exhibiting
a curling spin structure in the XY plane around a central region where magnetic moments
are pointing out of plane to avoid creating a singularity. This two dimensional topological
defect is characterised by three ”topological charges”.

• The Vorticity q: This is a very general quantity related to the topology of the
magnetic moments curling in the XY plane. If S(r) is the spin field of the 2D
ferromagnet, the vorticity measures the total angle with respect to a given direction
through which the vector S(r) turns in a circular contour around the a core [91].
The quantity q, an integer multiple of 2π, it is also known as the winding number.
As can be seen in figure 3.1, positive q are related to vortex structures and negative
q to anti-vortices. In this thesis, only vortices with vorticity equal to ± 1 will be
considered.

• The Polarity p: It defines the relative orientation of the magnetic moments inside
the vortex core with respect to the plane of the ferromagnet. This quantity can only
be p = ± 1.

• The Chirality C: This quantity completes the vorticity by giving the sense of ro-
tation of the spin vector S(r) in a circular contour around the vortex. It can be
clockwise or counterclockwise, so C = ± 1.
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To describe the properties of ferromagnetic thin films, the easy-plane ferromagnet
model has been introduced. This is the classical two dimensional model of Heisenberg
magnetic moments with an in-plane magnetic anisotropy which tends to maintain the
magnetic moments in the plane. The vortex state is a particular unstable solution of this
model [67] corresponding to a magnetic defect in the spin texture. This model has given a
first insight on magnetic vortices, but it will be shown in the following that this structure
can be stabilised in laterally confined structures, such as dots.

Figure 3.1: Topological ”charges” of a ferromagnetic vortex: Vorticity (or winding number, from
Mermin [91]), Polarity and Chirality.

3.1.2 Vortices in cylindrical soft magnetic dots

The samples studied in this thesis are discs of few tens of nanometres of thickness and be-
low 1 micron in diameter. The materials considered are soft ferromagnets, i.e., without or
with a small magneto-crystalline anisotropy. The remanent magnetisation arrangement
in a soft sample depends on the interplay between the magneto-dipolar and exchange
energies. If the lateral size of the magnetic object is reduced, the role of exchange energy
becomes more important and the magnetisation tends to be uniform. But for larger par-
ticle sizes, some non uniform states, or domains of the magnetisation can appear, such
as the vortex state. The magnetic anisotropy is dominated by the shape anisotropy cre-
ated by the demagnetising field. The exchange length, giving the range of the exchange
interaction between ferromagnetic magnetic moments, is typically 10 nanometres for fer-
romagnetic materials. The two dimensional approximation is valid for these samples since
no magnetic inhomogeneity can form at this thickness scale. But the radius being larger
than this typical length, the magnetic remanent ground state of such discs is a vortex for
a wide range of size.

In such discs, the vortex state stability can be roughly understood as follows: the
magnetisation curls in the plane of the disc to minimise the dipolar energy by reducing
the surface charges. At the centre, few magnetic moments point out-of-plane in a radius
comparable to the exchange length to minimise the exchange and dipolar energies. Using
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these simple considerations, the diagram of stability of the vortex state with respect to
the aspect ratio (radius over thickness) of the disc can be calculated (see figure 3.3).

3.2 Static properties of a confined magnetic vortex

In this section, different ways to describe the magnetic vortex are presented. Using these
models, the vortex stability in soft ferromagnetic discs can be calculated. The influence
on the vortex state reversal of external magnetic fields, applied either in or out of the disc
plane, is described.

3.2.1 Review of vortex modelisation

Let us consider a vector M describing the magnetisation of the vortex. The thickness
dependence of M is neglected, and the reduced magnetisation in the disc plane ρ = (x, y)
is defined as:

m(ρ, t) =
M (ρ, t)

Ms

, |m| = 1 and Ms is the saturation magnetisation. (3.1)

This vector is parametrised locally by the polar angles Θ(ρ) and Φ(ρ) which are solutions
of the Landau-Lifshitz equation of motion for the magnetisation. The three components
of the magnetisation can be written using the circular symmetry of the system:

mx + imy = sinΘ(ρ)eiΦ(ρ), mz = p cosΘ(ρ) (3.2)

The position ρ of the vector m in the disc plane is given in cylindrical units by the
coordinates (χ, ρ).

The curling state of the magnetisation around the vortex core is modelled by intro-
ducing a constraint on the polar angle Φ, which is always orthogonal to the angle χ:

Φ(χ, ρ) = q χ+ C
π

2
(3.3)

where q and C are the vortex winding number and chirality defined previously. This
formula is given for any position in the disc plane and remains valid if the vortex structure
is deformed by any applied field. An expression for the polar angle Θ is less obvious
because of the non uniformity of the vortex core structure.

The simplest description of the vortex core has been given by Belavin and Poliakov
[11] for extended 2D films, i.e. considering only the exchange energy with respect to the
edges of the system. The core structure, described as a soliton, with a radius Rc is given
by:

tan

(
Θ

2

)
=

(
Rc

ρ

)|q|

(3.4)

In the discs we are considering here, the edge magneto-static energy may become
important due to the lateral confinement. Taking this parameter into account, a first
ansatz was proposed by Usov [133] describing a rigid vortex core at the centre of the disc:

sinΘ(ρ) =
2ρRc

R2
c + ρ2

if ρ < Rc and Θ(ρ) =
π

2
if ρ > Rc (3.5)
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Figure 3.2: Three components of the vortex magnetisation M along calculated within the ”two
vortex” ansatz. The model is able to take properly into account a shift of the vortex core from
its equilibrium position.

The vortex core, which has an out of plane Lorentzian shape, is separated from the rest of
the disc. Its radius Rc can be calculated by minimising the exchange and magneto-static
energies in the dot.

For further description of the static and dynamical properties of the vortex, a more
detailed description of the core is needed. To perform calculations, the model should be
able to describe the vortex shifted from its equilibrium position in a continuous manner.
The disc plane is here parametrised by the Cartesian coordinates x and y, while the vortex
core position is given by the set (X, Y ). Taking into account the axial symmetry and two
dimensionality of the problem, we introduce dimensionless variables, following [54].

ζ =
x+ iy

R
, ζ̄ =

x− iy

R
(3.6)

The reduced vortex core position is given by:

s =
X + iY

R
, s̄ =

X − iY

R
(3.7)

with R the radius of the disc. The magnetisation of equation (3.2) can be rewritten as:

mx + imy =
2w(ζ, ζ̄)

1 + w(ζ, ζ̄)w̄(ζ, ζ̄)
, mz =

1− w(ζ, ζ̄)w̄(ζ, ζ̄)

1 + w(ζ, ζ̄)w̄(ζ, ζ̄)
, m2 = 1 (3.8)

The zeros of the complex function w(ζ, ζ̄) give the position of the soliton’s centres. This
function should take into account the magnetic charges created on the disc’s sides when
the vortex core is shifted. It is convenient to express it as follows:

w(ζ, ζ̄) = f(ζ) if |f(ζ)| < 1 (3.9)

w(ζ, ζ̄) =
f(ζ)

|f(ζ)| if |f(ζ)| > 1 (3.10)
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3. The “Rigid vortex model” describes the shifted vortex without any deformation of
the core. It satisfies the exchange boundary conditions and allows therefore magnetic
charges to form on the dot surfaces when the core is shifted. Introducing the relative
core radius c = Rc/R and core centre displacement in the dot s =

√
X2 + Y 2/R,

the model, equivalent to the equation (3.5) from Usov for s = 0, is given by:

f(ζ) =
i

c
(ζ − s) (3.11)

The model allows simple analytical calculations of the vortex energy, in particu-
lar when a magnetic field is applied in the plane of the disk, moving the core and
therefore inducing surface magnetic charges. This model has two disadvantages: the
core boundary at r = Rc is abrupt leading to a underestimation of the magnetic
energies. Because the modelled core remains rigid when it is shifted from the centre
of the disc, this model is not suitable for dynamical calculations which involves core
deformations.

4. The “double vortex” model allows the deformation of the vortex core. This function
involves two vortices, one of them being a virtual one outside of the disc. It satisfies
the magnetostatic boundary conditions M .n = 0 (with n the vector normal to the
surface) on the disc side borders: no magnetic charges are taken into account. The
ansatz is the following:

f(ζ) =
1

c

[
iCζ +

a− āζ2

2

]
(3.12)

where the parameter a is related to the core displacement as a = −2is/C.

This model takes into account the ingredient of the core deformation that is neces-
sary to describe the vortex low frequency dynamics. It will also be used to under-
stand the stability of the vortex state when varying the dot aspect ratio.

3.2.2 The vortex magnetic energies

Using the previous models of the vortex structure, it is possible to calculate the total
magnetic energy of this system.

Following the notation of section 3.2.1, the vortex magnetic energies can be expressed
with a 2D continuous model for the magnetisation [58]. Three types of energies are taken
into account.

1. The exchange energy, arising from the non-uniformity of the vortex structure.

The exchange energy is given by the general expansion:

Wex = A

∫

dot

d3rΣα(∇mα)
2 (3.13)

where A is the exchange constant of the material. Using the cylindrical symmetry of the
discs considered here, this equation can be expressed normalised in unit of M2

s V :

wex =
Wex

M2
s V

=
1

2π

(
R0

R

)2 ∫
d2ρ

[(
dΘ

dρ

)2

+
sin2 Θ

ρ2

]
(3.14)
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Figure 3.3: Diagram of stability of the vortex state (from [54]) when varying the dot radius R
and thickness L (LE is the material exchange length). The red area is a region of bi-stability.

where R0 =
√
2A/Ms is the exchange length and V the volume of the dot.

2. Then, because we consider confined structures, the magneto-static (or dipolar) en-
ergy needs to be taken into account.

The magneto-static energy includes the non local dipolar interactions. This energy is
usually introduced as a Zeeman term Wm = 1

2
M .Hm created by the magneto-static or

demagnetising field Hm. If the long range dipolar interactions are introduced by the
dipolar Green’s tensor Ĝd(r) already introduced in the chapter 2, this field is given by:

Hm(t, r) = −4π

∫
Ĝd(r − r

′

).M (t, r
′

) d2r
′

(3.15)

where the integral is taken over the disc surface. Ĝd is difficult to calculate in the partic-
ular case of the vortex.

An alternative way to formulate the problem is through the demagnetising tensor.
The magnetisation, composed of magnetic ”dipoles” interacting together, produces a self
demagnetising stray field. The geometry of the dot and its magnetisation configura-
tion are modelled in a demagnetising tensor N̂ , and the dipolar field is then Hm(r) =
−4πMsN̂ (r). The calculation of the demagnetising tensor in the vortex state is still a
complicated problem.

Finally, the magnetic inhomogeneities can be modelled as magnetic ”charges” σ(r),
in the volume, the faces and the side of the dot. The volume charges are neglected in this
two dimensional model. The magneto-static energy is the energy of interaction between
these charges over the sample upper and bottom surfaces:

Wm =
1

2

∫
dS

∫
dS

′ σ(r)σ(r
′

)

|r − r
′ | (3.16)
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3. The Zeeman energy if an external field is applied. In particular, an in plane field
along the X direction will displace the vortex core in the Y direction because of the
orthogonality between the core magnetisation and the field direction. Taking this
property into account, all the magnetic energies are also calculated as a function of
the reduced core position s.

The Zeeman energy is simply the interaction between the magnetisation and any external
magnetic field Hext:

WZ = −
∫

V

M (r).Hextd
3r (3.17)

Only discs made of soft magnetic materials are considered here, they have no or little
magnetocrystalline anisotropy and therefore the anisotropy energy can be neglected.

3.2.2.1 Vortex stability diagram at remanence

When the lateral size of a thin disc is comparable to the exchange length, there is a
competition between the vortex state and the saturated state with the magnetisation
in the dot’s plane. At the opposite, if the disc thickness is increased, the out-of-plane
saturated state will be favoured. When the radius and thickness of the dot are varied,
the boundaries between these three states correspond to lines of equal magnetic energy.
Nevertheless, a metastable state can continue to exist even when its configuration is not
favourable, and regions of bi-stability can be defined.

For each dot aspect ratio L/R, the total vortex magnetic energy is compared to the
energy of the other uniformly magnetised states (in-plane and out-of-plane). Assuming
that the lowest energy configuration is preferred, the diagram of stability of the vortex
state can be calculated.

Without any applied field, the Zeeman energy plays no role and the vortex core remains
at the centre of the disc. Therefore, the magneto-static energy is related to the magnetic
charges located on the dot faces (σ(r) = (M .n)faces). There are no charges on the dot
sides since the axial symmetry is not broken.

The problem reduces to an Euler equation which minimises the total magnetic energy
[133, 52] (W = Wex + Wm). This complicated equation can be reduced in a simpler
form considering dots of small aspect ratio β = L/R, but it is still difficult to solve it
analytically. However, the Usov’s ansatz, corresponding to the centred vortex core is a
good approximation if the radius of the core is smaller than the dot radius. This model
allows to calculate the iso-energy lines between the three possible magnetic states. They
correspond to the black solid lines in the figure 3.3.

The calculation of the bi-stability regions, corresponding to the red area in the figure
3.3, is more complicated, because their boundaries are lines where the vortex state becomes
really unstable. When this stability threshold is crossed, a mode of the vortex develops
leading to the apparition of a saturated state. It is possible to identify this mode, for
both transitions (vortex to out-of-plane [52] and vortex to in-plane magnetisation [90]).

Qualitatively, at remanence the vortex state is stable in soft thin magnetic cylinder
with lateral size greater than the exchange length. If the the cylinder is too flat, i.e the
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aspect ratio is too small and if the radius is larger than the core radius, the magnetisation
is saturated in the plane. If the dot is too thick, the magnetisation is saturated along the
cylinder axis. Finally, if the lateral size becomes too large, several multi-domains may
appear.

3.2.2.2 Vortex stability under applied magnetic field

By choosing discs with aspect ratios β compatible with the vortex state, the influence
of both in-plane and out-of-plane dc magnetic fields is investigated. The main effect of
a magnetic field is to deform the vortex structure, eventually leading to its annihilation.
The in-plane field basically breaks the axial symmetry of the static vortex resulting in the
formation of magnetic charges on the disc sides. The selected model should take those
charges into account. To understand this phenomenon, two ingredients are needed: a
model of the vortex allowing the core to be displaced and vortex energies written as a
function of the core position in the dot.

1. The magnetic field is applied in the plane of the dot.

The effect of such a field is to displace the vortex core in the perpendicular direction
to minimise the Zeeman energy of the in-plane curling domain. The process is driven
by the growth of the in-plane domain parallel to the applied field. This produces
magnetic charges located on the disks sides whereas the surfaces charges remain
unchanged. The ”rigid vortex” model is well adapted because it reproduces this
behaviour. The total vortex energy is then calculated with this model taking into
account the core position s in the dot. The core equilibrium position s0 is obtained
by minimising this energy [58, 51]. The core position is related to the static in-plane
magnetic susceptibility χs:

s0 = χs(β,R)
Hext

Ms

where: χs =

[
2πF1(β)−

1

2

(
Rc

R

)2]−1

(3.18)

With, Jn(x) being the Bessel function of the first first kind:

Fn(β) =

∫ ∞

0

dt

t
f(βt)J2

n(t) and: f(x) = 1− 1− e−x

x
(3.19)

Using the same method, the dot averaged magnetisation can be calculated:

〈M〉V = χs(β,R).Hext (3.20)

The hysteresis loop of the vortex versus the in-plane field can be calculated within
this model. Of particular interest are the nucleation Hn and annihilation Han fields
of the vortex. Displaced by the field, the vortex core is finally expelled from the
disc and replaced firstly by a so-called ”C” state and then by the in-plane saturated
state for high field values. The annihilation field is approximately defined as the
field for which the core is located at the disc boundary (or s0 = 1): Han(β,R) =
Ms/χs(β,R). This is a good approximation, even if the real annihilation process
involves some instability. The nucleation field case is more complicated: the process
is incoherent, and the polarity of the nucleated core is random. In a real disc,
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the nucleation will occur on a defect at the boundary, whose magnetisation will
most likely define the core polarity. The nucleation fied Hn will be defined as
the field where the in-plane saturated state becomes unstable. This gives a good
approximation of the real value, even if in reality the nucleation of the vortex core
occurs preferentially in defects of the disc sides, which can slightly vary the real Hn

value. The calculation follows the reasoning developed to define the boundary of
the vortex state stability at remanence. The magnetic field replaces the lateral dot
size as an adjustable parameter, and the threshold is defined as the apparition of
the lowest vortex mode that destabilises the magnetisation of the ”C” state. The
proposed nucleation field is [58]: Hn(β,R) =Ms 4π[F1(β)− F2(β)− 1

π
(R0

R
)2].

Figure 3.4: a) Sketch of the vortex magnetisation under a perpendicular bias field. The magneti-
sation in the disc plane follows the field direction, lifting the degeneracy of the two core polarity
p = ±1. b) Numerically calculated field dependence of the static magnetisation of a NiMnSb disc
(thickness t = 44 nm, radius R = 100 nm). The solid lines show the averaged magnetisation over
the core only (a cylinder of about 15nm in diameter). The insets show the spatial distribution
of Mz at four progressively decreasing values of H [32].

2. The magnetic field is applied perpendicular to the dot plane.

The main effect of an out-of-plane magnetic field is to cant the curling in-plane
structure of the vortex. In the so-called ”cone state”, the magnetic moments lying
in the plane at remanence are tilted out-of-plane in the direction of the field by the
Zeeman interaction, as sketched on the figure 3.4a. The curling state is conserved
(keeping Φ = q χ + C π

2
valid and the axial symmetry) but the symmetry with

respect ot the disc plane is broken by the core polarity. Two cases have to be
considered:

• The field is parallel to the core polarity. This case is referred as the parallel
state (P) or p = +1 state in the following.

• The field is anti-parallel to the core polarity. This case is referred as the anti-
parallel state (AP) or p = −1 state.

When the perpendicular field exceeds the saturation field Hs ≃ 4πMs〈Nzz〉 (〈Nzz〉 is
the out-of-plane demagnetising tensor component averaged on the dot volume), the
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magnetisation is fully saturated out-of-plane. In a first approximation, the angle
Θ(ρ) =Mz(ρ)/Ms which parametrises the magnetic moments out of the core (Θ = 0
at remanence) is evaluated as cos(Θ) = Hz/Hs using the standard electromagnetic
boundary conditions. It varies linearly with the bias field.

Two particularities have to be considered to have a more realistic description of the
perpendicular field action on the vortex. First of all, the lateral size of the core
Rc depends on the field strength. At remanence, the expression for the vortex core
radius evaluated by Konstantin Guslienko from the vortex energies minimisation is
the following [53]:

Rc(0) = 0.68R

(
L

R

)1/3

(3.21)

From the calculations made by B.A. Ivanov [67], it seems that the size of the vortex
core is linear with Hz. When the field is applied parallel to the core polarity, its
lateral size is increased as Hz reaches the saturation Hs. At the opposite, when
the field is applied anti-parallel to the core, its volume is narrowed until it is ener-
getically more favourable for the polarity to be reversed. The core and out-of-core
magnetisation have indeed an opposite orientation which represents an exchange
and Zeeman energy cost. When the energy cost of this strongly localised inhomo-
geneity equals the energy of a Bloch point, a Bloch point is created and reverses
the core polarity by passing across the disc thickness. This process occurs at a
given perpendicular field strength, defined as the static core reversal field Hr. The
so-called Bloch point is defined by the following property: for any closed surface
surrounding the point, the magnetisation vectors on this surface cover the surface
of the unit sphere exactly once [127] .

Figure 3.4b summarises the influence of a perpendicular field. The field dependence
of the magnetisation is simulated for a NiMnSb magnetic disc of 200 nm in diameter
and 44 nm thick using a micromagnetic code developed by F. Boust and N. Vukadi-
novic [18]. Both the total magnetisation (dashed lines) and the magnetisation of the
core (solid lines) present an hysteretic behaviour. First of all, the transition between
the vortex and the saturated state at Hs is continuous while at the opposite, since
there is no symmetry breaking. At the opposite, the vortex nucleation is abrupt and
occurs at a lower field Hk. This is the sign of a mechanism driven by an instability.
In a strictly two dimensional model, this hysteresis should not occurs, again because
of the preserved axial symmetry. Taking the thickness into account may favour the
perpendicularly saturated state. Finally, the vortex is nucleated from the disc side,
in a process comparable to the in-plane nucleation.

The core magnetisation presents a strong hysteresis because of the stability of the
polarity until the static reversal at Hr. It should be noticed that the hysteresis due
to the core has a small influence on the total magnetisation, dominated by the tilted
in plane magnetic moments.

In the case where a combination of in and out-of-plane magnetic fields is applied on
the dot, the total magnetic energy including both deformations of the vortex have to
be calculated to define the core equilibrium position s0 and the nucleation/annihilation
fields, which still has to be done.
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3.3 Spin wave excitations of the vortex state in soft

micron sized discs

The vortex is a ground state with a rich excitation spectrum. As in any magnetic system,
high frequency spin waves can be excited, but dots in the vortex state present two interest-
ing characteristics. The magnetic structure is confined, which leads to the discretisation
of the spin wave spectrum (or eigen-modes), already seen in the saturated state in chapter
2. Moreover, the peculiarity of the vortex state, especially the presence of the core, allows
the appearance of an unconventional dynamics at low frequency.

3.3.1 Equation of motion

Similarly to the saturated state, the dynamical properties of the magnetisation are solu-
tions of the Landau-Lifshitz equation [82] extended with a non-conservative perturbation
term presented equation (2.1) in chapter 2.

The early calculations on the vortex state excitations have been done using the classical
2D Heisenberg hamiltonian with an in-plane anisotropy [144, 66] to model the energy. This
hamiltonian neglects the dipolar interaction, which is well adapted for continuous thin
film. This is no longer valid in restricted geometry, like dots, since the dipolar energy
is dominating over the other energies. This part of the hamiltonian is more complicated
to treat since it involves the non local magneto-dipolar interactions. Approximations are
developed in the following to model this contribution to the total energy in the vortex
state.

The linear excitations are modelled as small deviations of the static vortex magneti-
sation, obtained by a linearisation of the equation of motion. Due to the axial symmetry
of the system, trial functions composed of Bessel functions are introduced to describe
the behaviour of the polar angle Θ(ρ, t) and Φ(ρ, t) of the magnetisation. Solving these
equation gives a set of eigen-modes corresponding to radial and azimuthal spin waves
rotating in the plane around the vortex core. These excitations are the continuation of
the saturated state eigenmodes, but their dynamics is disturbed by the presence of the
vortex core.

But another low frequency mode, corresponding to a motion of the whole vortex also
exists. This mode is of particular interest in the micron sized discs we are considering.

3.3.2 The gyrotropic mode

In laterally confined structures such as discs, the vortex core can be seen as ”trapped” in a
potential that forces it to stay at the centre. If the core is moved away from its equilibrium
position, for example by a magnetic field, it will experience a restoring force against this
motion. As a result, when the field is turned off, the core gyrates at a given frequency
in an iso-energy orbit around the disc centre. This is the so-called gyrotropic mode.
Actually, when the field is turned off, because of damping process (magnetic relaxation
in the material), the core goes back to its equilibrium position in a spiral motion.

To describe this mode, the vortex core is considered as a ”soliton” or domain wall,
propagating in the disc. Assuming this approximation, the motion of the core can be
described by the Thiele equation [65].
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Figure 3.5: Sketch of the magnetic forces driving the gyrotropic mode in a disc (the core is
represented by the red dot).

3.3.2.1 The Thiele equation

The main idea introduced by Thiele is to treat the vortex core motion as the one of a
domain wall by introducing a set of collective variables for the core position in the disc
plane X(ρ, t) = (X, Y ) [128]. It is assumed that equation (3.3.1) is applicable and that
the core structure can be deformed during the motion. Therefore, the shifted vortex is
described in a first approximation by the following travelling wave ansatz [92]:

M (ρ, t) = M

(
ρ−X(t), Ẋ(t)

)
(3.22)

The equation (3.3.1) can be linearised and rewritten with this ansatz leading to the Thiele
equation of motion:

¯̄MẌ −G× Ẋ − ¯̄DẊ + F = 0 (3.23)

The first ”mass” term is an inertial like term taking into account the out-of-equilibrium
core deformation induced by the interactions with higher order spin waves. The shape of
the core depends explicitly on its velocity. The mass tensor has the components:

Mi,j =
1

γ2

∫
d2ρ

(
∂Θ

∂Xi

∂Φ

∂Ẋj

− ∂Θ

∂Ẋj

∂Φ

∂Xi

)
(3.24)

This tensor is symmetric for cylindrical dots and its value can be evaluated to M ≃
(3/2)L/γ2 [55]. A numerical apllication using the typical parameter of the materials used
in this thesis gives M ≃ 10−20g. This term gives a relatively small contribution to the
gyrotropic mode frequency and is usually neglected in calculations.

The second term is a force arising from the vortex non uniform magnetisation. The
gyrovector, which is a topological charge G = −G.ez, directed perpendicular to the disc
plane, is responsible for the vortex core oscillation:

G =
Ms

γ
L

∫
d2r sinΘ(∇Φ×∇Θ) (3.25)
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It can be calculated by integration over the core profile; using any model of the vortex,
it is evaluated as G = 2πqpLMs/γ (L is the dot thickness). The sign of the gyrovector is
imposed by the vortex core polarity p. Therefore the sense of rotation of the core during
the gyrotropic motion follows a right-hand rule relatively to the polarity. It is completely
independent of the vortex chirality C.

The third term is a damping force opposed to the gyroforce, responsible for the return
to equilibrium of the shifted vortex core. The tensor ¯̄D models the magnetic relaxation:

Di,j = −α
∫
d2ρ

(
∂Θ

∂xi

∂Θ

∂xj
+ sin2Θ

∂Φ

∂xi

∂Φ

∂xj

)
(3.26)

This tensor is diagonal for a cylindrical dot and can be calculated with the rigid vortex
model [53]:

D = −απMsL

γ

[
2 + ln

R

Rc

]
(3.27)

The last term F corresponds to the other internal and external forces acting on the
vortex core. The main intrinsic force is a restoring force created by the magneto-static
charges formed by the shifted core. This force is equivalent to an energy potential confining
the core in the middle of the disc. The force exerted by the external spatially uniform
applied field (continuous Hext and microwave hrf) can also be taken into account. This
last term can be expressed with the potential energy as: F = −∂W (X)/∂X.

The two vortex model, which describes well the core shifted in the disc, is used to
calculate the total potential energy. The magneto-static energy is modelled as an harmonic
potential with the stiffness constant κ and the Zeeman energy is calculated using the
averaged in-plane projection of the magnetisation 〈M〉v. The potential energy, normalised
by M2

s V is given by [58]:

w(〈M〉v) =
W

M2
s V

= w(0) +
〈M〉2v
2χs

− 〈M〉v.
Hext

Ms

+O(〈M〉4v) (3.28)

where w(0) is the vortex potential energy when the core is at the centre of the disc. The
static susceptibility, already calculated in section 3.2.2.2 with the rigid vortex has to be
evaluated within the double vortex model [50]:

χs =

[
9

(
4πFv

(L
R

)
−
(R0

R

)2
)]−1

where: Fv(x) =

∫
dt

t

(
1− 1− e−x

x

)[∫ 1

0

dρρJ1(ρt)

]2

(3.29)
The energy of the shifted vortex can then be written as:

W (X) = W (0) +
κX2

2
+ µ[uz × (Hext + hrf )].X +O(X4) (3.30)

where µ = (V ξCMs)/R. The parameter ξ takes the value 2/3 for the two vortex model.
All the forces contributing to the gyrotropic motion of the vortex core are sketched in

the figure 3.5. The vortex core, represented as a red dot, gyrates around an equilibrium
orbit, defined by the balance between all the magnetic applied forces.

The linear dynamical part of the magnetisation m during the gyrotropic motion is
plotted in the figure 3.6. This is the spatial profile of the magnetisation precession in the
gyrotropic mode corresponding to a particular position of the core around the disc centre.
It can be noticed that even though the precession is mainly concentrated around the core,
all the vortex structure is involved in the gyrotropic mode.
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Figure 3.6: Dynamical part of the magnetisation m(t) − m(0) for the gyrotropic mode in the
linear regime (first row) compared to the static magnetisation of the vortex M (second row). The
effect of the core displacement affect the magnetisation in the whole disc (Notice the difference
of scale between the two rows).

3.3.2.2 Different approximations for the eigen-frequency

The resolution of the Thiele equation can be done using various methods [49]; one par-
ticular case is presented in Appendix A. Solving the Thiele equation as presented gives
access to the gyrotropic mode frequency in the linear regime. In the first calculation done
by Konstantin Guslienko, only the gyroforce and the confining potential are taken into
account as the main contributions to the mode dynamics. Equation (3.23) becomes rather
simple, and the gyrotropic frequency at zero field is given by the ratio ωG(0) = κ/G, which
leads to [50]:

ωG(0) =
1

2
γMs

ξ2

χs

≃ 20

9
γMs

L

R
(3.31)

The last expression is a good approximation for thin enough discs with radius larger than
the exchange length.

The first correction to this frequency is given by the magnetic dissipation. As devel-
oped in appendix A, the gyrotropic frequency is then given by:

ωG(0) =
κ|G|

G2 +D2
(3.32)

Taking into account the deformation of the vortex core during its motion is equivalent
to consider an effective mass of the vortex [92]. More precisely, this vortex mass arises
from the interaction of the core with the azimuthal spin waves modes [55]. The Thiele
equation is extended to the second order with an inertial term. This introduce a second
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correction to the frequency given by:

ω
′

G(0) = ωG(0)

[
1− 3 ωG(0)

4πγMs

]
(3.33)

3.3.2.3 Influence of a perpendicular field

The case of a magnetic field applied perpendicular to the vortex plane is of fundamental
importance for the present work since the experimental setup used in this thesis imposes
such a field. A new Zeeman term has to be added to the energy of the system in the
Thiele equation.

The static structure of the vortex is distorted, as described previously in section 3.2.2.2.
The in-plane magnetisation of the vortex follows the perpendicular field and is tilted out-
of-plane. The gyrotropic frequency which is strongly dependent on the magnetisation
configuration will therefore depend on the field Hz.

Using a continuous approach, and solving the resultant equations numerically, B.A.
Ivanov found the dependence of the gyrotropic mode with the perpendicular field as well
as the static reversal field [67]. But a fully analytical method can be developed using
simple arguments.

The dependence of ωG can be calculated in a first approximation, assuming that the
variation of the core size can be neglected. The gyrotropic frequency is given by ωG(Hz) =
κ(Hz)/G(Hz), with the field dependent vortex stiffness and gyrovector. Outside of the
core, the magnetisation is tilted out-of-plane by the polar angle defined by cos θ = Hz/Hs.
The gyrovector, defined equation (3.25) at remanence, is then given by:

G(Hz) = G(0)

(
1− p cos θ

)
(3.34)

Geometrically speaking, this is the solid angle covered by the magnetisation on the unit
sphere [127]. The main contribution to the energy is given by the dipolar interaction.
The demagnetising tensor is modified compared to the remanent case which modifies the
vortex confining potential. It can be seen as magnetic charges created by the out-of-plane
magnetic moments. The field dependent vortex stiffness is then:

κ(Hz) = κ(0) sin2 θ (3.35)

Using the formulation of equations (3.35) and (3.34), the field dependant gyrotropic fre-
quency can be derived [32]:

ωG(Hz) = ωG(0)

[
1 + p

Hz

Hs

]
(3.36)

In the case of core polarity p = −1 opposed to the applied field, this formula is valid only
if the perpendicular field is lower than the static reversal field: Hz < Hr. Indeed, for
perpendicular field higher than Hr the anti-parallel polarity is unstable.

3.3.2.4 The Dynamical reversal

One of the main and outstanding non linear effects of the gyrotropic motion is the dy-
namical vortex core reversal. This effect has a very different origin compared to the static

Benjamin Pigeau



3.3 Spin wave excitations of the vortex state in soft micron sized discs 49

core reversal described in section 3.2.2.2. After an early theoretical prediction by Y. Gai-
didei [43], it was first shown by the team of B. Van Waeyenberge that a short burst of
in-plane microwave field at the gyrotropic frequency could reverse the core polarity at
remanence [134]. This new core reversal phenomenon was also achieved applying a spin
polarised current [145, 146] and was observed in micromagnetic simulations [62]. The core
reversal was also achieved by exciting higher order spin wave modes, strongly coupled to
the gyrotropic mode [72, 149, 21, 147, 72].

Figure 3.7: Calculations showing the dynamical gyrofield created by the core motion and its effect
on the longitudinal magnetisation: the formation of a negative dip next to the core. The core
position (related to its velocity) is close to the centre in the upper row and shifted at ≈ R/2 for
the lower row.

The mechanism of this reversal can be understood by a detailed analysis of the core
deformation during the gyrotropic motion. The vortex mass introduced in the Thiele
equation is a way to understand it phenomenologically. But it is possible to describe the
physical origin of this deformation by writing the equivalent field created by the gyrotropic
motion [145].

During the core gyrotropic motion, the magnetisation included within the core orbit
rotates by 360Â◦ at every turns. Along the line between the core and the dot centre,
the time derivative of the magnetisation is very strong. Moreover, this term increases
with the vortex velocity v = Ẋ as ṁ = −(v.∇)m. The magnetisation moving rapidly
near the core produces an effective internal field, the gyrofield hz, directed along uz and
opposed to the core polarity [57]:

hz = −1

γ

(m× ṁ)z
(mz + p)2

= −
[
tan(Θ

2
)
]2p

Φ̇

γ
(3.37)
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This field of dynamical origin, concentrated near the core toward the dot centre, deforms
the magnetisation and is responsible for the core dynamical profile mz(r, t). As a conse-
quence, a negative dip in the magnetisation is created near the core and its size depends
on the core velocity. The effect of this gyrofield is calculated on the figure 3.7, presenting
the field of equation (3.37) and its Zeeman influence on the magnetisation for two increas-
ing core velocities, i.e. core position or gyration raduis. This dynamical deformation of
the core was already observed experimentally, as shown on the figure 3.8a. At Hext = 0,
it is possible to estimate the maximal value taken by the gyrofield, near the core, as
max(hz) ≃ (ωG(0)/γ)|X|/Rc. The magnetic core profile becomes unstable roughly when
max(hz) is sufficient to form a dip of magnetisation mz(dip) ≃ −1 opposed to the core.
The dip is a pair vortex/anti-vortex of equal amplitude and opposed to the core [134, 62].
The anti-vortex is instantaneously annihilated with the vortex core because of topological
reasons. The only structure that remains is the negative dip with mz = −1, which is a
vortex core of opposed polarity. This scenario is summarised in figure 3.8b.

Figure 3.8: a) Three-dimensional representation of the experimentally observed vortex core dy-
namical profile by high-resolution time-resolved X-ray microscopy (from reference [135]). The
core is in red while the dynamical deformation is in blue. b) Schematic description of the core
reversal mechanism: the arrows represent the in plane magnetisation, the red dot is the vortex
core while the blue dot is the dynamical dip opposed to the core (from reference [134]).

The phenomenon is driven by the core velocity during the gyrotropic motion, and the
position of the core when max(hz) reaches −1 actually corresponds to a critical speed
of the vortex. This critical speed at which the dynamical reversal occurs is the radial
velocity of the core vc = ω × Xc, with Xc the solution of the equation max(hz) = −1.
An evaluation of this quantity at zero field gives [85]:

vc(0) ≃ η γ
√
Aex (3.38)

The gyrofield responsible for the reversal mostly arises from the short range exchange
interaction inside the core structure, which is insensitive to the dot geometry and mag-
netisation. Here η = 1.66 is a universal constant independent from the (soft and thin)
material parameters. A material with easy plane plane magnetic anisotropy K can be
considered, leading to a renormalised critical velocity [74]:

vc(0) ≃ η γMs

√
2πAex

2πM2
s +K

(3.39)

Once the critical speed, typically a few hundreds of meters per second, is reached, the
core reversal occurs in a few picoseconds followed by an intense emission of spin waves
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that relax the energy stored in the vortex-antivortex system. The core is then damped
and comes back to its equilibrium position in a spiral motion [15].

This formulation of the critical speed is only valid at remanence and should be modified
to include the influence of a perpendicular field. The velocity vc depends on the magnetic
structure of the vortex and simulations have shown a quasi linear dependence with Hz

[74, 148]. The core becomes unstable with an opposite field and is statically reversed at
Hz = Hr. Assuming that the critical velocity reaches 0 at the static reversal field, its
dependence can be described as:

vc(Hz) = vc(0)

[
1− Hz

Hr

]
(3.40)

3.3.2.5 Non linear gyrotropic motion

All the frequencies for the gyrotropic mode were calculated in the linear regime, i.e. as
a response to a small microwave perturbation. But the last section on the dynamical
reversal has shown the importance of the non linearities to explain the core deformation.
To understand properly the core reversal, the non linear mechanism has to be understood.

The non linearity is an intrinsic property of magnetic systems, since the LLG equa-
tion governing their dynamics is essentially non linear [4]. The physical reason for the
apparition of non linearities when the excitation strength is increased is the interaction
between different spin waves modes. For the particular case of the gyrotropic motion, the
mode involving the vortex core strongly interacts with the azimuthal spin waves modes
[68, 60]. Taking into account in details these complicated scattering mechanism is im-
possible, nevertheless the main physics can be captured by introducing some reasonable
non-linearities in key parameters [49, 39].

For the case of a disc, the first non linearity is introduced in the vortex confining
potential, mainly defined by the magneto-static energy term. The Zeeman contribution
needs to be extended as well since the vortex is driven by an external microwave field.
The last energy term defined in equation (3.30) can be split in two. The magneto-static
energy term is extended to the second order:

Wm(X) = W (0) +
κX2

2
+
βX4

4
+O(X6) (3.41)

and the Zeeman term is modified as well to take into account a non linear response to the
excitation field:

WZ(X) = [uz × (Hext + hmw)].X[µ− δ|X|2] +O(X3) (3.42)

The non linearity of the gyrotropic mode appears to be essential when the core orbit
exceeds |X| > 0.13R [19]. If the driving field is increased, three stationary orbits can
be found, and the shape of the resonance line becomes asymmetric: this is the foldover
bifurcation [49]. This foldover experienced by the resonance peak is due to the non linear
frequency shift of the gyrotropic resonance. A shift toward low frequency is supported by
many experimental measurements [26, 136], including ours (see figure 5.6 of chapter 5);
but taking only into account the previous non linear terms leads to a positive frequency
shift. The system should be dominated by an other source of damping. Our experimental
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results, presented in the chapter 5, suggest that the damping term is itself non linear
[107]. It was then proposed to extend the damping term as follows [118]:

D′ = D +D1|Ẋ|2 (3.43)

with D being the linear damping term previously introduced. A non linear red shift of the
gyrotropic resonance frequency can be explained within this model by choosing a proper
phenomenological parameter D1. Nevertheless, more investigations have to be done on
this topic in order to validate this scenario.

An interesting phenomenon arising from this non linear coupling between the gy-
rotropic mode and higher order spin waves is the possibility to reverse the core. Indeed,
it has been shown that the core polarity can be reversed by exciting particular spin wave
modes in the non linear regime. For instance, a non linear coupling between azimuthal
spin wave modes and the gyrotropic mode can reverse the core [72, 80]. Moreover, radi-
ally symmetric spin wave modes excited by an ou-of-plane microwave field could lead to
a polarity switching [149, 21, 147, 72].

3.3.3 Higher order modes in the vortex state

At higher frequency, other modes exist, consisting of spin waves over the vortex ground
state [59, 68]. The symmetry of the dots considered here is reflected on the spin wave
dynamics. Similarly to the perpendicularly saturated case, the boundary conditions in-
duces a quantisation of the spin wave spectrum. The theoretical treatment is very similar
to the chapter 2. The spectrum is composed of radial and azimuthal modes developing
in the vortex plane. The main difference being the vortex core located at the disc centre
and the static azimuthal symmetry of the magnetisation.

3.3.3.1 Radial spin waves

Let first consider the spin excitations having only a radial symmetry: (l = 0,m). Similarly
to the case of a dot saturated out-of-plane, which have the same symmetry, radial spin
waves develop in the disc plane, consisting on a radially varying angle of precession [21,
140]. In the limit of thin dots (small aspect ratio β), the amplitude of the dynamic part
of the magnetisation is well described by Bessel functions [59, 140]. The presence of the
vortex core doesn’t break the symmetry, but imposes the angle of precession to be null
at the centre of the dot. Therefore, instead of the J0(ρ) function used in the saturated
state, the J1(ρ) function is appropriate since it vanishes for ρ = 0.

The wave vector κm of the radial spin wave (l = 0,m) is given by the mth root αm of
the equation J1(ρ) = 0, where J1 is the Bessel function of the first kind with index 1. The
spatial component of the eigen-functions modelling the dynamical magnetisation are:

mm(ρ) = CmJ1(κmρ) where: κm =
αm

R
(3.44)

where Cm is the eigen-basis normalisation constant. This is the asymptotic limit for
small aspect ratio β ≪ 1, it corresponds to the strong pinning regime. Within this
approximation, the set of eigen-frequencies is at remanence given by:

ω0,m = 4πγMs

√
1− 1− e−βαm

βαm

(3.45)
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The frequency of the radial modes increases with increasing indices m. Indeed, the wave
vector is perpendicular to the local magnetisation: the magnetic energy increases for
smaller wave vector, or higher m. Moreover, the frequency dependence under a perpen-
dicular applied field is the same as for the gyrotropic mode [149].

This approximation doesn’t take into account the real dipolar pinning conditions for
the magnetisation, especially if β > 0.1. The real intermediate pinning regime deforms the
mode profiles. It can be taken into account by defining a new wave vector [54]: κ

′

m = α
′

m/R
where α

′

m is is the nth root of the boundary equation R∂mm(ρ = R)/∂ρ+ηmm(ρ = R) = 0
where:

η(β, L) =
2π

β

[
4(ln 8

β
− 1

2
) + ( lex

L
)2
] (3.46)

Compared to the saturated state, the symmetry of the magnetisation background in
which the spin wave modes develop is inverted. Out of the core, the magnetisation follows
an azimuthal symmetry, while it was axial in the saturated case. Therefore, the selection
rules for the excitations of these spin waves are also inverted. To be coupled to the
radial modes in the vortex state, the excitation has to follow an azimuthal symmetry. For
instance, a microwave field or pulse applied perpendicularly to the plane of the disc would
be effective [140].

Figure 3.9: From reference [22]: Amplitude (first row) and phase (second row) of the spin wave
modes dynamical magnetisation in the vortex state. The modal maps are composed from two
half-images: the left from the micromagnetic simulation; the right from a TR-Moke experiment.
a), b) and c) correspond to the radial modes (l = 0,m = 1, 2, 3); d) and e) correspond to the
azimuthal modes (l = 1, 2,m = 0).

3.3.3.2 Azimuthal spin waves

Another type of spin wave can be excited, consisting in waves travelling around the vortex
core: (l,m = 0). The spatial component of the dynamical part of the magnetisation is now
proportional to ≃ ml(ρ) cos(mφ+ωl,0t). In a saturated dot the azimuthal spin waves with
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indices ±l, travelling in the opposite direction, are degenerated in energy. The presence
of the vortex core lifts the degeneracy, and also imposes ml(ρ = 0) to be zero.

The gyrotropic mode strongly interacts with the azimuthal modes by dynamic dipolar
coupling [60]. The rotational invariance is broken by the gyrovector and therefore, for a
given core polarity, this interaction has a different energy for each travelling spin wave
±l. Following this statement, the waves travelling in the same sense of rotation as the
gyrotropic mode have a lower frequency than the phase symmetric one. This coupling
is responsible for the apparition of an effective mass of the vortex core in the equation
(3.23). At the lowest order (considering only the coupling with the mode (l = ±1, 0)) this
mass is evaluated as M ≃ 3L/2γ2 [49].

The equation (3.23) has then two solutions: the first one gives the gyrotropic frequency
(equation(3.31)) and the second one leads to the l = 1 degenerated frequency. The
analytical frequencies of the azimuthal modes are more complicated to calculate than the
radial ones. The frequency of the first mode, with l±1, has been widely investigated, and
is found to be proportional to the dot aspect ratio, ωn,1 ∝

√
β [5]. The splitting between

these two modes due to the interaction with the core is then proportional to ∆ωn,±1 ∝ β
[104]. More generally, the frequency of these azimuthal modes decreases with increasing
indices l. At the opposite of the radial modes, the wave vector is now parallel to the local
magnetisation and the magnetic energy decreases while the wave vector drecreases. This
is of course valid only for magneto-static spin waves.

The selection rules for these modes is also reversed compared to the saturated state
and they could be excited only by a spatially homogeneous in-plane microwave field or
pulse.

These spin wave modes have been measured by TR-MOKE [22] and the spatial profile
and phase of the dynamical magnetisation are displayed for the few first modes in the
figure 3.9. This experimental measurement confirms the analytical model developed to
model the spin wave in the vortex state.

3.4 Conclusion

The vortex state is found to be the stable ground state of a wide range of unsaturated
magnetic nanostructures, such as nano-discs. Even if most of the unsaturated magneti-
sation states are complicated to tackle, the symmetry of the vortex state is of great help
toward a precise description of its properties. Compared to the saturated state in nano-
discs described previously, the axial symmetry is conserved, the new ingredient being
given by the presence of the vortex core.

This magnetic structure appears to be very stable with respect to the application of
static bias fields either in or out-of-plane. Moreover, the precise deformations induced by
these perturbation can be calculated analytically.

But the real interest of the vortex state lies in its dynamics. The spin wave spectrum
is composed of an atypical low frequency mode, or gyrotropic mode, well separated in
energy from higher order modes having a symmetry similar to the saturated case. Its
eigenfrequency, only dependent on the geometry of the dot, was calculated as well as its
evolution under a perpendicular bias field. The validity of the theoretical description,
based on the Thiele equation, will be demonstrated experimentally in chapter 5.

The non linear dynamics of the vortex state is of particular interest. First of all,
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the gyrotropic motion driven at high amplitude leads to the dynamical core reversal.
The ability to reverse resonantly the vortex core between two stable polarities is very
promising for applications in the data storage, as will be shown in the chapter 5. But a
strong non linear coupling exists also between the gyrotropic mode and higher order spin
wave modes. It is even possible to reverse the core by exciting either azimuthal or radial
vortex modes at high amplitude.

This dynamics, and especially the gyrotropic mode, is also promising in realising vortex
based STNO’s. The collective motion of arrays of vortices dipolarly coupled becomes then
a key problem in the optimisation of such devices. The precise theoretical description of
this coupled dynamics is maybe one of the challenge in the field and the preliminary
results are already promising [124, 125].

It is now important to test the model of the vortex experimentally. The measurable
signals, in particular for the gyrotropic mode, are expected to be very small regarding
the few amount of magnetisation involved in the dynamics. This requires a sensitive
experimental techniques, the f-MRFM, that will be presented in the next chapter.
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Chapter 4

Magnetic Resonance Force

Microscopy

The sensitivity of magnetic resonance will be used for measuring the spin wave dispersion
of our magnetic nano structures. As mentioned in the introduction, the force detection
of the ferromagnetic resonance is well adapted to the constraints of our experiments. In
this chapter, after an introduction to the idea of force detection of the magnetisation
dynamics, the particular setup developed and used in this thesis is presented. Emphasis
will be placed on the quantitative link between the measurement and the investigated
physical parameters.
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4.1 Introduction

In paramagnetic systems, nuclear or electronic spins, the main idea of magnetic resonance
is to determine the local spin splitting (or Zeeman) energy of the magnetic moments. The
magnetisation is brought out of equilibrium using a small time varying magnetic field,
whose frequency is tuned to match energy difference ~ω. The Fermi golden rule, calculated
with the theory of perturbation dependent on time allows to calculate the resonance
frequency ω. For paramagnetic systems, the resonance frequencies are in radio frequency
range which leads to very narrow linewidths, since few relaxation channel are available
at this frequency. The accuracy of the measurement of the local field is therefore very
high. This is a powerful technique to analyse spectroscopically the chemical or magnetic
environment of a solid or a liquid. Moreover dealing with narrow linewidths allows to
localise the resonance in space and perform three dimensional images. This is the basis
of magnetic resonance imaging (MRI), which is now widely used in medicine.

NMR (Nuclear Magnetic Resonance), ESR (Electron Spin Resonance) or FMR (Ferro-
Magnetic Resonance) are usually detected via inductive means by a set of tuned coils for
low frequencies or microwave resonators coupled to diodes for high frequencies. The small
amount of microwave energy that is absorbed by the spin system is proportional to the
transverse part of the precessing magnetic moments. But this detection is very sensitive
to the filling factor, i.e., the ratio between the volume of the sample and the effective field
volume captured by the detectors. This prevents individual or non homogeneous objects
to be studied, such as magnetic nanostructures or biological molecules. The idea to use
a mechanical detection of the resonance then emerged, the force sensors available being
very accurate and possibly adapted to a local detection.

After a first attempt using a mechanical detection by Evans in the 60’s [41], the
idea of performing Magnetic Resonance Force Microscopy (MRFM) was proposed in the
early 90’s by John Sidles [120]. He was searching for a reliable and precise technique to
determine the molecular structure of biological objects. For this purpose, he wanted a
spectroscopic signature to understand the atomic structure of unknown objects. In order
to achieve this goal, the atomic resolution is needed with the ability to study individual
objects in the three spatial dimensions. The studied objects being fragile and sensible to
external conditions, a non-destructive and non-invasive technique was also needed [121].
The development in the 80’s of the scanning surface probe techniques such as Scanning
Tunnelling Microscopy (STM), Atomic and Magnetic Force Microscopy (AFM/MFM)
gives access to a high spatial resolution. The idea is to couple a highly sensitive force sensor
like a micrometre sized cantilever to the longitudinal component of magnetic moments,
either nuclear or electronic spins. Following the principles of MRI techniques developed for
medical applications, the spins precession excited by a microwave field could be localised
spatially in a “resonant slice” of the sample by an appropriate field gradient. The force
exerted on the cantilever being also proportional to the field gradient, the spatial resolution
could be increased by keeping the same signal-to-noise ratio. The sensitivity then becomes
independent of the spatial resolution.

The first ESR MRFM signal was detected in Diphenylpycrilhydrazil (DPPH) by Dan
Rugar’s team in 1992 [113], followed in 1993 by an MRFM image of this molecule [151]
and the first NMR MRFM signal in 1994 [114]. The team of Chris Hammel and Phil
Wigen has then applied this technique to FMR by measuring resonances of YIG films in
1996 [150].
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Figure 4.1: Basic principle of the MRFM detection, from J.Sidles [121].

4.2 Magnetic resonance with MRFM

4.2.1 Basic principles

The basic features of the MRFM detection, as proposed by J. Sidles and developed by
D. Rugar are sketched in figure 4.1. The sample to be studied is placed at the end of
a very soft cantilever. A local field gradient, which can be created by a ferromagnetic
nanoparticle or a nanostructured magnetic dot, couples to the longitudinal component
of the magnetic moments of the sample. If the field gradient source is fixed, a force
proportional to this gradient is applied on the sample and a resultant force is exerted on
the clamped cantilever. With B the non homogeneous stray field from the magnetic field
gradient source, the force applied on the magnetic moment m of the sample is:

F = (m.∇)B (4.1)

The dynamics of the magnetic moments, either precession or cyclic inversion, is then
excited with a radio-frequency coil. The resulting variation of the longitudinal component
of the magnetic moments will change the static force between the magnetic probe and the
sample, and the equilibrium position of the cantilever will change. The relative position
of the cantilever is measured at the picometre scale with an interferometric detection.

4.2.2 NMR and EPR

This technique can be applied to the measurement of any kind of magnetic moment. Let
us consider the case of nuclear or paramagnetic electron spins, which have only weak self
interactions. When these spins are excited by an RF field, because of the static field
gradient, only few of them will meet the resonance condition ω = γH. The precession,
which gives the MRFM signal, will be spatially localised in a ”resonant slice” of the sample,
corresponding to an iso-field region. By combining the spatial distribution of the field
gradient and the ability to displace the cantilever with an accuracy of a few Angströms,

Magnetic vortex dynamics in nanostructures



60 Magnetic Resonance Force Microscopy

three dimensional images of the spins distribution can be reconstructed [87, 33]. The
amazing sensitivity of force detection was demonstrated in 2004 by the team of Dan
Rugar with the detection of a single electronic spin resonance, at low temperature (200
mK) [112]. A better NMR experiment allows to reach a spatial resolution of 4 nanometres
with a sensitivity of ≃ 50 nuclear spins [33].

4.2.3 Ferromagnetic resonance

The samples that will be considered in this thesis are ferromagnets. The electrons inside
these materials are strongly correlated by the exchange interaction. They respond to an
excitation as a coupled ensemble, and the concept of local excitation (resonant slice) is
no longer valid. This will modify our approach of MRFM, as this was first described in
the thesis of Melissa Midzor [93].

4.3 Ferromagnetic resonance with MRFM

In this section, I will describe step by step how the microscope used in this thesis was
developed and built. Each important part will be presented with its own characteristics
and its role in the measurement process. This is in a way the basic ”recipe” to construct
an f-MRFM.

4.3.1 The force sensor: a cantilever

The basic idea of the MRFM is to detect the spin resonance phenomenon with a force
sensor. The recent progress of micro-fabrication allows to develop very accurate mechan-
ical resonators with reduced dimensions. This gives access to resonators with relatively
high reference frequency that keep high quality factors. The case of the cantilever, a
simple beam clamped in one side, is of great interest because of its simplicity and its
incredible sensitivity. We can define an idealised cantilever as sketched in figure 4.2a),
which is approaching the real design of the cantilever that has been used in this thesis
(figure 4.2b).

4.3.1.1 Static response

If a static perpendicular force F is applied at the free end perpendicular to the beam, the
cantilever will be bent. At this location, the displacement Dend of the cantilever is simply
[130]:

Dend =
F

k
(4.2)

where k is the cantilever spring constant.

4.3.1.2 The cantilever as a natural amplifier: Dynamical properties

In the measurement process, the cantilever acts as a force-displacement transformer. But
the cantilever is also a resonator that can be used to increase the signal to noise ratio.
In the f-MRFM experiment, a homodyne detection of the of the FMR is performed at
the cantilever frequency to gain a factor Q in the signal amplitude, in order to be able to
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Figure 4.2: a) Modelisation of a simple cantilever, from J.Sidles [121]. b) Set of four cantilevers
used in this thesis: Biolever series from Olympus, Asylum research.

measure tiny forces. Another advantage of using the cantilever as a resonator is that the
signal can be localised in a narrow frequency range where no other physical process could
disturb the measurement, especially mechanical resonances arising from the body of the
microscope or noise sources in the detection.

The cantilever is excited with a piezoelectric crystal that is placed under its holder.
Excited at its resonance frequency, the amplitude of vibration A(ω = ωc) of the first
flexural mode is related to the force applied at the free end of the cantilever as:

A(ωc) =
Q

k
Force (4.3)

The main parameters of this micro-resonator are its resonance frequency ωc and quality
factor Q. Considering the dimensions and the design of figure 4.2a, the frequency of the
lowest energy flexural mode is given by [89]:

ωc = 3.516
t

l2
( E
12ρ

)1/2
(4.4)

with E the Young modulus and ρ the density of the cantilever’s material. This frequency
can be calculated using more accessible physical parameters such as an effective mass
m∗ = η ×m, where η depends on the mode indices, and the stiffness constant k:

ωc =

√
k

m∗
(4.5)

The dissipative phenomena involved in the cantilever dynamics, dominated by surface
effects, are not fully understood yet and are phenomenologically modelled by the qual-
ity factor Q. We can then define the resonance frequency ω

′

c taking into account this
dissipation, in the form of a damped oscillator [25]:

ω
′

c = ω0

√√√√1− 1
4Q2

1 + 1
4Q2

(4.6)
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The intrinsic limitation of this force sensor will be given by its thermally activated
motion. The phonon modes that propagate in the cantilever due to temperature T can
be modelled as a Langevin random force, with the spectral density[121, 25]:

SF =
k

Qωc

4kBT (4.7)

where kB is the Boltzmann constant. The thermal noise σx(ω = ωc) in the amplitude of
vibration x corresponding to the spectral density SF (see equation (4.7)) is given by:

σx(ωc) =
Q

k
.S

1/2
F .

√
B =

√
4kBTQB

ωck
(4.8)

Taking into account these thermal fluctuations in the equation of motion of the cantilever,
we can calculate the minimum detectable force with this sensor, in a detection bandwidth
B:

Fmin =

√
4kBTkB

ωcQ
(4.9)

If the measurement is operated at the cantilever resonance frequency, the amplitude of
the signal is increased by a factor Q. There are several ways to increase the sensitivity or
the ”gain” of our cantilever:

• To decrease the minimum detectable force, one needs to decrease the spring con-
stant k and increase the resonance frequency ωc. But these two parameters are not
independent. Experimentally lowering the spring constant is achieved by using a
very thin cantilever, but it also reduces its eigenfrequency (see equation 4.4). By
lowering the mass of the cantilever, the team of Dan Rugar fabricated an ultra
sensitive cantilever with a spring of k = 0.11 × 10−3 N.m−1 and a frequency of
about 5 kHz [112]. A promising way to decrease the spring constant while keeping
very high frequencies is to use Silicon nanowires [100]. These resonators could have
frequencies in the megahertz range with a spring constant in the µN.m−1 range.

• Increasing the quality factor Q of the resonator. For a mechanical cantilever with the
shape we are considering, the thickness seems to be the key parameter. Moreover,
the whole microscope is placed under a vacuum of 10−6 mbar to avoid the mechanical
dissipation due to air viscosity. The quality factor of our cantilever is increased by
a factor 200 under vacuum and reaches Q ≥ 2000.

• Decreasing the working temperature. The microscope can be cooled down to 1.5
K if necessary, which reduces the thermo-mechanical noise. However, most of the
experiments of this thesis have been done at room temperature, because the signal
to noise ratio is high enough for the FRM signals we are considering.

For our particular setup, we have chosen the commercial cantilever having the lowest
spring constant, the Biolever from Olympus. The longest cantilever of the figure 4.2b has
been used. It is made of crystalline Silicon Nitride (Si3N4) coated by 30 nanometres of
gold, and its dimensions are l = 100 µm, w = 30 µm and t = 160 nm. The spring constant
is as low as k = 6.10−3 N.m−1, and we are working under vacuum to increase the quality
factor to about Q ≃ 2000. A simple calculation using equation (4.4) gives a frequency

Benjamin Pigeau



4.3 Ferromagnetic resonance with MRFM 63

Figure 4.3: a) Resonance curve of the 100 µm Biolever cantilever as a function of the ac voltage
frequency applied on the piezo excitation. b) Thermo-mechanical noise of the same cantilever.
The eigenfrequency, quality factor and stiffness constant of the cantilever are extracted from the
Lorentzian fitting curves (in red). All measurements are done under vacuum (2.10−6 mbar) at
room temperature (300 K).

around 14 kHz, which gives a minimum detectable force of 0.7 femto-newtons in a one
second bandwidth.

A typical resonance curve of the cantilever excited by applying an ac voltage on a
piezo actuator is presented on figure 4.3a. The measured resonance frequency (13.3 kHz)
is in good agreement with the expected one from equation (4.4) and the Lorentzian shape
of the resonance confirms the quality of the oscillator. The thermo-mechanical noise of
this cantilever can also be monitored without external excitation around its resonance
frequency (figure 4.3b). This corresponds to a thermally activated vibration amplitude of
about 200 picometres, which is in good agreement with the noise expected from equation
4.8.

4.3.2 The interferometric detection

4.3.2.1 Generalities

To detect the motion of the cantilever, a very sensitive and local technique is needed.
Optical methods are indicated for three reasons:

• Using laser light, the detection beam can be easily focalised on the cantilever free
end (i.e a few µm2), and nearly totally reflected by the gold coating.

• The coupling between the detection and the force sensor is small because the laser
beam carries very few energy: the measurement is done without disturbing the
motion of the cantilever.

• The intrinsic noise of these methods is always small compared to the cantilever
thermo-mechanical noise. Therefore, the total signal to noise ratio is always limited
by the cantilever noise.

In our experiment, an interferometric detection has been chosen, because this method
gives the highest sensitivity to measure distances, down to the picometre range. The light
source is an infrared laser of wavelength λ = 830 nm which is guided to the cantilever by
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a mono-mode optical fibre of 125 µm in diameter. The beam passes through a directional
coupler that splits it into two parts. The reference part is directed on a photo-diode, and
the other part is focused on the cantilever. The cavity of the interferometer is composed
of the cantilever plane and the cleaved end of the fibre. Its mean length, set between 20
and 50 µm, can be tuned. Indeed, the end of the fibre is clamped on a piezo actuator and
the cavity length can be varied to obtain interferences in a range of 10 µm. The reflected
beam is recombined with the reference in the coupler and a photo-diode monitors the
resultant intensity.

The interference fringes are observed in the diode signal by varying the cavity length
d. The amplitude of the voltage delivered by the photo-diode can be modelled with the
simple formula:

A(d) = A0 sin

(
4πd

λ

)
(4.10)

where A0 is the dc offset given by the diode and λ is the laser wavelength. The cavity
length is then fixed to be at the maximum of slope in the interference curve, which gives
the best sensitivity. A variation of the output amplitude δA is related to a change of the
cavity length ∆d as:

∆d =
λ δA

4πA0 cos

(
4πd
λ

) (4.11)

This distance corresponds to two times the cantilever displacement. The intrinsic noise of
this interferometer is given by the shot noise of the photon source. The photon flux exerts
a force on the cantilever and the fluctuations of this flux increase the measured cantilever
noise [121]. This noise is also related to a ”virtual” cantilever fluctuation with equation
(4.11) because a fluctuation of δA in the photon source will be interpreted as a cantilever
displacement δd in our measurement. This noise is also increased by the extrinsic noise
of the photo-diode, which is maintained at constant temperature to avoid fluctuations.
In the figure 4.3b), this noise source, given by the baseline of the curve, can be evaluated
around the cantilever frequency to ≃ 15 pico-metres. It is important to notice that this
noise is about ten times weaker than the cantilever thermo-mechanical noise. The overall
noise of the detection setup is limited by the intrinsic noise of the detector.

4.3.2.2 Coupling to the micro-resonator

Exciting the cantilever at its resonance frequency is needed to use it as a resonator. Apart
the fact that the amplitude would be too small, a dc measurement is difficult because the
cavity length is drifting with time due to thermal expansion of mechanical pieces and
relaxation of the piezoelectric crystal. The excitation source will be the actuator that
holds the optical fibre. A dc voltage is applied on this piezoelectric crystal to tune the
cavity length, and an ac voltage at the cantilever eigenfrequency is superimposed. The
whole system vibrates mechanically and the cantilever is excited at resonance.

The eigenfrequency of the cantilever can vary with time during a measurement due
to various effects, such as: variation in the heating from the laser beam, variations of the
static force applied, eddy current due to the strong magnetic field... To keep a maximum
sensitivity, a phase lock loop (PLL) coupled with a lock-in detection is used to maintain
the excitation at the cantilever eigenfrequency. The amplitude and phase of the signal
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Figure 4.4: Basic scheme of the interferometer used for the cantilever motion measurements.
The picture on the right shows the optical fibre (glass tube) placed perpendicularly to the cantilever
to form a cavity of length about 25 µm.

from the interferometer diode are demodulated at the cantilever frequency with a lock-in
and introduced in the PLL. Three options are then possible to measure an MRFM signal:

• The MRFM signal is given by the amplitude at the cantilever frequency. The ac
voltage applied on the piezoelectric crystal is kept constant and the PLL adjusts
continuously the frequency of this excitation to maintain the cantilever phase in
quadrature, which corresponds to the resonance.

• To improve the stability of the measurement, it can be useful to maintain the am-
plitude of the cantilever constant. This prevents uncontrolled back-action on the
sample dynamics and non linear effects at high amplitude. The PLL will adjust
the frequency and the strength of the ac excitation on the piezo crystal to maintain
the amplitude at a defined value (a few nanometres in most of the experiments pre-
sented here). The f-MRFM signal is then given by the strength of the excitation,
i.e amplitude of the ac voltage.

• Finally, the frequency shift of the cantilever can be measured at constant excitation
strength.

4.3.3 The field gradient

As equation (4.1) shows, a force is created if the magnetic moments of the sample are
coupled to a field gradient. A magnetic particle has been chosen as a field gradient, this
particle is attached at the apex of the cantilever and placed over the magnetic sample to
be studied. Once placed in stray field of the sample, the magnetic particle will experience
the force F of equation (4.1), which will be transmitted to the cantilever and transformed
into a measurable displacement.

A spherical magnetic particle has been chosen as f-MRFM probe for several reasons.
First of all, it preserves the axial symmetry of the magnetic discs studied in this thesis.
Then, the filling factor, which gives the coupling efficiency between the sample and the
magnetic particle, can be easily optimised within this symmetry. To maximise this pa-
rameter, the sphere should have about the same diameter as the sample [31]. Finally,
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a magnetic sphere has no shape anisotropy and its magnetisation follows the local mag-
netic field. It prevents parasitic torques to develop, which may disturb the motion of the
cantilever. As a result of the spherical symmetry, the particle is identified to a magnetic
dipole msphere = m.usphere located at the centre of the sphere, with the magnetic moment
m = 4

3
πR3

sphereMs where Ms is the saturation magnetisation of material. The stray field
of the probe is then given by:

Hsphere = ∇
(msphere.r)

r3
(4.12)

The advantage of this geometry is to minimise the perturbation from the sphere in the
measurement process. In order to be non invasive, the inhomogeneity of the stray field
arising from the sphere at the sample location has to be small compared to the internal
field of the sample. Practically, for typical spectroscopic studies, the probe is placed at
the vertical of the disc to be studied, between 1 and 2 microns above the disc.

Figure 4.5: a) Scanning electron microscope images of the FeSi magnetic sphere (of diameter
φ ≃ 800 nm) glued on the Olympus Biolever’s tip. b) Calibration of the magnetic moment of the
probe. c) Frequency shift of the cantilever when the probe is placed in the residual field gradient
of the perpendicular field. The saturation observed after 6.5 kOe gives an experimental value of
the probe saturation field.

4.3.3.1 Nanoparticle fabrication

The choice of the material for the f-MRFM probe was motivated by two arguments. First,
to maximise the field gradient to increase the force F . For this purpose, iron was chosen
to get the highest possible magnetisation Ms. But crystalline iron has a non negligible
crystalline anisotropy. In the same way as the shape anisotropy, it could induce parasitic
torques, which we wanted to avoid. To fulfil these conditions, the chosen material is an
amorphous alloy FeSi with 3% in mass of silicon. The synthesis is done by spraying the
melted alloy into a neutral nitrogen gas beam. Droplets are cooled down very rapidly
forming sub-micron particles with a weak crystalline anisotropy. These particles have
been studied by the team of Anne-Lise Adenot-Engelvin at the CEA Le Ripault, France.
They have evaluated their averaged magnetisation to Ms = 1.43× 106 A.m−1.

Among these soft particles, a sphere of 800 nm in diameter has been selected. A special
procedure has been developed to attach the nanoparticle at the apex of the cantilever. The
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powder of particles is spread on a silicon wafer and the tip of the cantilever is covered by
a tiny amount of epoxy glue. Under an optical microscope, the cantilever can be scanned
over the wafer with a micro-manipulator and the proper sphere is simply “fished”. The
result can be seen on the figure 4.5. The key point is to attach the particle at the very
end of the tip to be able to approach it as close as possible from the sample.

4.3.3.2 Calibration of the probe magnetic moment

In order to perform further quantitative measurements, it is important to calibrate the
actual magnetic moment of the FeSi particle once it is glued at the end of the cantilever
inside the microscope. To do so, we have measured the ferromagnetic resonance of a single
FeV disc of 600 nm in diameter perpendicularly saturated (this sample is presented in
detail in chapter 6). The measurement is done with the f-MRFM probe placed above the
disc centre. The resonance field of the uniform mode (l = 0,m = 0, see chapter 2) is
given by ω = γHres. For an excitation at constant microwave frequency, the resonance
condition is fulfilled when the sum of the bias field and the probe stray field along the disc
normal equals the resonance field Hz +Hsphere.uz = Hres. The experimental procedure is
the following:

1. The magnetic probe is placed 1.2 µm above the centre of the FeV disc.

2. The resonance field of the FeV disc is measured at constant frequency for different
increasing probe-sample distances.

3. The spherical magnetic probe is identified with a punctual magnetic dipole msphere

placed at its centre. The stray field along the disc normal produced by the probe
at the disc location is then simply Hsphere,z.uz = 2msphere/z

3, with z the distance
between the sample and the middle of the sphere.

4. In order to evaluate msphere, the curve of the resonance field versus the probe sample
distance, presented figure 4.5b, can be fitted with the formula:

Hres = Hz +
2msphere

(z − z0)3
(4.13)

The result of the fit, the green curve in the figure 4.5b, leads to an evaluated moment for
the sphere of msphere ≃ 4× 10−10 emu.

The SEM image of the particle on the figure 4.5 gives an approximate diameter of 800
nm, which is coherent with the previous magnetisation values.

The saturation field of the sphere can be measured as follows: the frequency shift of
the cantilever is measured as a function of the perpendicular field. Mainly because of
the residual field gradient in the magnet, a tiny force is exerted on the cantilever. Even
if this force is not well understood and calibrated it can be seen on the figure 4.5 that
the cantilever frequency saturates. The only physical parameter able to vary with the
field in the system is the probe magnetisation. Therefore, the observed saturation gives a
measurement of the sphere saturation field, around Hs ≃ 6.5 kOe. This is consistent with
the expected value for the saturation field of the sphere, which is about Hs ≃ 4πMs/3 ≃ 6
kOe. Indeed, the demagnetising factor of a sphere is Nzz = 1/3. Notice that the choice
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of a soft spherical particle implies the impossibility to work without external field and to
lose some magnetic moment under its saturation field.

Notice that the probe magnetic moment could be calibrated using a well known field
gradient, for instance a coil. This procedure was not performed with the particle used in
this thesis, but the results of previous calibrations on bigger spheres of the same material
are consistent with the values given above.

4.3.3.3 Quantitative measurement of ∆Mz

In our experiments, the dc external applied field Bext is directed perpendicular to the
sample plane along uz. Therefore, the magnetic sphere is saturated in this direction
and is coupled to the longitudinal component of the sample magnetisation Mz. The
variation of the force applied on the cantilever is directly related to the variation of this
quantity, averaged on the sample volume: 〈∆M .uz〉. The f-MRFM gives a quantitative
measurement of 〈∆M .uz〉 in the sample.

The equation (4.1) can be rewritten as a function of ∆Mz and taking the probe
symmetry into account. If the field gradient of the magnetic probe along uz is given by
gzz(r), the force applied on the cantilever is:

F.uz
′ =

∫

Vs

∆Mz(r)gzz′ (r, z + s)d2rdz (4.14)

where Vs is the volume of the sample and s is the probe-sample separation. In the real
f-MRFM setup, the cantilever is tilted by 15Â◦ with respect to the xy plane to be sure
that the tip is the closest part from the sample. Therefore, the force has to be projected
on the axis of vibration of the cantilever uz

′ .

Figure 4.6: Deformation of the resonance lines towards low fields at high microwave power in the
non linear regime. The Foldover threshold (red curve) gives a direct calibration of the measured
amplitude.

We shall describe below the methodology so that 〈∆M .uz〉 can be calibrated. This is
done by measuring the uniform mode of a perpendicularly magnetised thin disc. In the
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non-linear regime, i.e. at high microwave power, the field-sweep line shapes are distorted
toward low fields. This is due to the renormalisation of the demagnetising field when the
angle of precession of the magnetisation becomes non negligible. The amplitude of the
uniform mode is a solution of the equation [(x+ βy)2 + 1]y = 1 where the linewidth and
the amplitude are normalised to one [116]. The coefficient β takes the non linearity into
account. The figure 4.6 displays normalised resonance curves plotted with this equation
for increasing values of β, which models the increasing microwave power. If the non
linear coefficient β = 0, the resonance shape is the pure Lorentzian curve measured in the
linear regime. With increasing β, the resonance starts to be deformed towards low fields.
There is a critical strength of the rf magnetic field for which the slope of the resonance
curve becomes infinite on the low field side of the resonance: this is the foldover threshold,
corresponding to the red curve of figure 4.6. It can be seen that at this point, the maximal
amplitude of the resonance, which equals the longitudinal change of the magnetisation is
[4]:

4π〈∆M .uz〉 =
4

3
√
3
∆H (4.15)

where ∆H is the FWHM linewidth measured in the linear regime. Experimentally, we
determine ∆H in the linear regime and we increase the microwave field strength until the
vertical tangent in the low field side is measured. Then the maximum of the signal is
given by equation (4.15).

4.3.4 The microwave excitation circuit

The MRFM is a powerful tool to detect any change in the magnetisation of a ferromagnetic
sample. We now need a reliable and integrated way to excite the magnetisation dynamics
and perform spectroscopy. Since the resonances we want to study are in the gigahertz
range, a microwave field at these frequencies has to be created in the near field of the
sample. The simplest way would be to build a microwave cavity that resonates at a given
frequency ω. The external field is then swept to perform the spectroscopy.

4.3.4.1 The micro-stripline

But it is interesting to be able to sweep the microwave frequency. For instance, the struc-
ture of the vortex state is very sensitive to magnetic fields and performing the spectroscopy
at fixed bias field prevents the static magnetisation to evolve during the measurement. For
this purpose, a microwave broadband micro-stripline antenna has been chosen. The idea
is to pass a microwave current in a metallic stripline to create an orthoradial microwave
field in its surrounding, following Ampere’s law.

The constraints for the design are the following:

• Reduced dimensions. The microwave field has to be homogeneous at the samples
scale (i.e. a few microns) but its source should be as close as possible from the sam-
ples to get the maximum of amplitude and maximise the filling factor. This implies
that the antenna implementation should be integrated in the sample fabrication
process.

• The standard for electronic systems is to be impedance matched at 50 Ω. The
design of the contact pads should approximately follow this standard to minimise
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Figure 4.7: a) Design of the microwave stripline antenna; all dimensions are in microns. b)
SEM image of the same antenna (with artificial colours). The samples will be located in the
shorted end (surrounded in red) where the microwave field is maximum. The microwave lines,
connected to the high frequency source are bonded in each electrodes.

the parasitic reflections.

• The microwave end is a short circuit (magnetic field anti-node). It leads to a total
reflection at the end.

To fulfil those conditions, the design presented in figure 4.7 has been created. The
antenna is defined by lift-off and patterned by e-beam lithography from a 300 nanometres
thick gold film, deposited by evaporation. The two electrodes are separated by 30 µm
which ensures the 50 Ω matching of the antenna. The flared shape of the electrodes
prevents the microwave current to be reflected to the source before the constriction. This
microwave current, created by a broadband source (Anritsu synthesiser, 100 kHz to 20
GHz), flows through a constriction that short-circuits the two electrodes of the antenna,
as shown in the red square of figure 4.7b. An anti-node of current is created at this
location. The constriction is 5 µm wide and 25 µm long and creates an orthoradial
microwave field h that is linearly polarised in the direction perpendicular to the stripe.
Simulations performed with the Sonnet microwave software have validated the properties
of the antenna.

Two locations are possible to place the samples, which are flat discs in this thesis.
Over or under the constriction after a thin insulating layer to avoid electrical contact: the
sample will experience a linearly polarised in-plane field. Next to the constriction, the
sample would be submitted to an out-of-plane microwave field.

Particular attention has been focused on the microwave circuit to avoid losses and
resonances in the system. Indeed, to perform experiments where the frequency of the
microwave field is swept, the microwave field intensity |h(ω0)| delivered by the antenna
has to be as constant as possible. We used rigid and semi-rigid coaxial cables adapted
to high frequencies and low temperatures; they are connected with SMA connectors.
Moreover, the antenna was connected to the coaxial cables through parallel wire bonding.
To evaluate the residual losses, the whole microwave line has been characterised with a
vector network analyser to quantify the response of the circuit up to 20 GHz.

At the same time, any variation of the microwave intensity has also an influence on the
cantilever response. The cantilever used in this thesis is covered by gold to improve the
reflection of the laser light for interferometry. Placed in a microwave field, eddy currents
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can develop in the gold layer and disturb the cantilever motion. Moreover this gold
layer is heated by the absorption of microwave energy. The attenuation of the microwave
power in the cables when the frequency increases does not affect the cantilever amplitude,
but strong resonances at low frequency interferes with the motion, as seen in figure 4.8.
Measuring the cantilever amplitude over the gold antenna without any sample results in
a baseline when the microwave frequency is swept. The frequencies of these phenomena
corresponding to wavelength in the tens of centimetres, they are attributed to standing
wave phenomena inside the semi-rigid cables, between the SMA connectors which are
slightly impedance mismatched.

Figure 4.8: Baseline of the amplitude of vibration for the Olympus cantilever over the antenna,
without any magnetic sample. The microwave power in -15 dBm and the magnetic sphere is
saturated perpendicularly. The resonances are associated to reflections in the microwave circuit.

This baseline arising from the coupling between the f-MRFM detection and the exci-
tation part has to be precisely known and is scalable with the microwave power. It has
to be subtracted from the measured signal to obtain the real physical signal from the
sample.

4.3.4.2 Modulation of the microwave source

To detect FMR resonances, the variation of the longitudinal component of the magneti-
sation ∆Mz in the sample is detected via the interaction of the magnetic probe which
drives the motion of the cantilever. As explained before, the measurement is done at the
cantilever frequency to gain the quality factor Q.

The way to detect resonances is to modulate the microwave excitation field at the
resonance frequency of the cantilever. In other words, the microwave source is turned on
and off at the cantilever frequency. During the half period when the cantilever is far from
the sample, the microwave is turned off, no resonance are excited. Then during the other
period, the microwave is turned on and the resonance produces a ∆Mz that will deflect
the cantilever. The signal is given by the total amplitude of vibration of the cantilever.

In practice, the Phase Lock-Loop that tracks the cantilever frequency sends a square
wave signal in-phase with the cantilever motion to the microwave synthesiser. The mi-
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crowave current I(t) delivered by the source is the convolution of a continuous microwave
emission with this square wave:

I(t) = I0e
iω0tsgn[sin(ωct)] (4.16)

Here I0 is the microwave intensity, ω0/2π is the microwave frequency and ωc/2π is the
cantilever frequency.

The cantilever frequency ωc, around 10 kHz, is far from the Larmor frequency, which
lies in the gigahertz range. Notice also that the modulation period 2π/ωc is large compared
to the relaxation time T1 and T2. Therefore, the f-MRFM measurement is always a static
measurement of the magnetisation dynamics.

4.3.4.3 Calibration of the microwave field

Following the calibration of ∆Mz, the amplitude of the uniform rf magnetic field can
be calibrated by studying the power dependence of the uniform mode line shape of a
perpendicularly magnetised disc. It was pointed out by Anderson and Suhl [4] that
the resonance curve at high power should be skewed, due to the static change of the
magnetisation Mz, which also shifts the resonance frequency: this is the foldover effect.
There is a critical strength of the rf magnetic field hc (linearly polarised amplitude)
for which the slope of the resonance curve becomes infinite on the low field side of the
resonance:

hc = 2∆H

√
2∆H

3
√
3[{Nzz} − {Nxx}]4πMs

(4.17)

where ∆H is the linewidth measured in the linear regime and {N} are the demagnetising
factors defined in chapter 2. Experimentally, the conversion between the microwave cur-
rent power and the rf field amplitude is measured at the foldover threshold, which gives
for our antenna: hrf = 1.05 mTesla for Prf = 0 dBm.

The linear amplitude of hrf at the sample location (just below the antenna) can also
be estimated from Maxwell-Ampere law:

hrf =
µ0

w

√
Prf

2Z
(4.18)

where w is the width of the constriction and Z = 50Ω is the impedance matched to
the synthesiser. The estimation given by this method is hrf = 0.8 mTesla for Prf = 0
dBm. The agreement between the two methods is within 75%, which is already quite good
regarding to approximations (losses in cables, frequency dependence, geometry, matching,
current density homogeneity, etc...).

4.4 Practical realisation

The main components needed to perform MRFM have been detailed. In this section the
scheme to assemble them in a proper manner is explicited.
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4.4.1 The static magnetic field

All the samples studied in this thesis are flat magnetic discs. The magnetisation dynamics
in these discs have been studied in the perpendicularly magnetised configuration.

To produce the static magnetic field, a superconducting axial magnet, with a room
temperature bore access has been used. It consists of a coil of Niobium-Titanium cooled
down to 4 kelvin in liquid helium that produces ± 70 kOe in the axis of the bore. An addi-
tional shim coil can add ± 1 kOe in the same direction, to perform experiments where the
field is swept. The advantage of this setup is to decouple the cryogeny of the microscope
and the cryogeny of the magnet, which has then a very low helium consumption.

4.4.2 Cryogeny

The whole microscope sits in a vacuum chamber (see figure 4.9b), which is placed in a
helium flow cryostat. The cryostat is introduced in the bore of the superconducting mag-
net, inside the axial static magnetic field (see figure 4.9a) . As can be seen in figure 4.9b),
the vacuum chamber is equipped with windows. The cryostat, from Oxford instruments,
has also windows aligned with the vacuum chamber. This allows an optical access to
the sample stage, even at low temperatures and high field. A special borescope, which
displays the images to a screen, is introduced in front of the cryostat windows inside the
bore of the superconducting magnet. The final approach of the cantilever toward the
sample, which is a delicate action, can be done once the microscope is closed and cooled
down with the help of the borescope.

To cool down the sample, depending on the desired temperature, a helium gas flow is
passed around the vacuum chamber at a given pressure. To reach 4 K, liquid helium is
introduced, and it is also possible to reach 1.5 K by pumping in the cryostat on the liquid
helium. The sample, which is under vacuum, has to be thermalised. The titanium piece
(that has a good thermal conductivity) holding the microscope head is connected with
copper wire braids to the bottom piece closing the vacuum chamber. This copper piece,
selected for its high thermal conductivity, makes the thermal contact between the helium
flow chamber and the inner chamber. Finally, the sample temperature can be controlled
by resistor elements. With this setup, the working temperature range is between 2 and
300 K.

4.4.3 Piezoelectric displacement stages

The aim of MRFM is to perform images, or at least spectroscopy of individual nano-
objects. All the components presented before must be mounted on displacement stages
having accuracy better than a nanometre. Two kinds of system are implemented, using
piezoelectric crystals. The choice of piezoelectric systems is preferred because of their
accuracy and ability to work without large deformation at low temperature. All the
specifications given here are valid at room temperature.

• The sample, with the microwave antenna, is placed on a piezoelectric tube, whose
Z axis is parallel to the static field. The tube has a nanometre accuracy and can be
distorted in the three axis of space. The accessible range is about 25x25 µm in the
XY plane and 2 µm in the Z direction. The piezoelectric crystal motion are driven
by applying high voltages on its electrodes.
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Figure 4.9: Pictures of the MRFM setup used during this thesis. a) The helium flow cryostat
is introduced in the superconducting magnet. The vacuum chamber b) that contains the body of
the microscope c) sits at the end of the cryostat, in the middle of the magnet’s bore.

• The piezoelectric tube holding the sample is mounted on a coarse positioner moving
in the Z direction. This is a piezo stack system where an ac voltage is applied
between two piezoelectric crystals making them sliding on each other. The accuracy
is lower, in the micron range, but the displacement can be as large as 1 centimetre.

• The cantilever holder and the optical fibre are placed upside down with respect to
the sample. The cantilever is nearly perpendicular to the static field. This stage of
the microscope is suspended on two piezo stacks that displace the cantilever in the
X and Y plane.

With this system, the cantilever can be roughly placed over the sample using the three
piezo stacks in XYZ. The cantilever and the sample are placed on special holders whose
base can be tuned in three points to align them perpendicularly to the static magnetic
field. Then a fine tuning is performed with the piezo tube holding the sample. To perform
images, the piezo tube is scanned in the proper directions.

To fit in the vacuum chamber, all these pieces are assembled in the body of the
microscope, at the bottom of the cryostat (see figure 4.9c). Titanium has been chosen for
this piece, because of its strong rigidity. The microwave antenna and the electrodes that
drive the piezo stages are connected by cables coming from the top of the cryostat.

4.4.4 Isolation from noise sources

To minimise sources of noise, the whole microscope is well isolated.

• The feet of the aluminium structure that holds the whole microscope are placed in
containers filled with fine sand. Those containers are based on the real ground of
the building. This avoid low frequency vibration from the surroundings.

• The cryostat, and also the vacuum chamber, are placed on a active anti-vibration
system that compensates efficiently vibrations in the tens of Hertz range.
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Figure 4.10: Details of the MRFM microscope head presented in figure 4.9 c). The sample holder
and the reversed cantilever-fibre holder can be seen on the left, mounted on their piezolelectric
positioners. On the right, two detailed views show the position of the fibre over the cantilever
with respect to the sample (only the gold microwave antenna can be seen here at this scale).

• The microscope is suspended as a pendulum in the cryostat to be damped by Fou-
cault current when the perpendicular field is turned on.

• The temperature of the laboratory is maintained constant at 21± 1Â◦C with an air
conditioning system. Moreover, the body of the microscope is placed under vacuum
in the cryostat and inside the bore of the superconducting magnet. The temperature
of the microscope is then very stable. Observed temperature fluctuations are lower
than 0.1 K.

4.5 Conclusion

The f-MRFM combines the spectroscopic accuracy of ferromagnetic resonance with a
force sensor capable to detect tiny signals. This sensor, being a micro cantilever, is also a
scanning probe technique, allowing images of the resonance field in a ferromagnetic sample
to be obtained. Moreover, the nature of the measured signal, a field gradient, decouples
the sensitivity from the probed magnetic volume. The signal to noise ratio then becomes
independent of the spatial resolution. These specifications allow a precise measurement
of the FMR in a single nanostructure

The force captured by the couple cantilever-magnetic probe measures directly and
quantitatively the variation of the longitudinal component of the magnetisation in the
sample. Therefore, with appropriate microwave excitations, an f-MRFM measurement
can give access to the whole spin wave spectrum of a magnetic body: frequency and
linewidth of the modes, as well as their amplitude.

The stray field created by the magnetic probe could be turned into an advantage: it
can be used as a strong and local field gradient. For instance, the spin wave modes of a
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magnetic film can be localised in an internal field well created locally by the probe [83, 27].
The practical realisation of this microscope in our laboratory allowed us to adapt it

to few particular interesting experimental conditions. The material chosen for its body
are non-magnetic, which allow to work with high magnetic fields. The whole design has
been oriented to isolate the microscope from all noise sources, such as temperature varia-
tion, mechanical vibrations or microwave radiations. Finally, the f-MRFM microscope is
included in a helium flow cryostat, which opens up the low temperature regime for FMR
experiments.
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Chapter 5

Experimental results I: the vortex

state

The f-MRFM technique presented in the previous chapter is used to measure the spin wave
excitation in the vortex state described in the chapter 3. In particular, the gyrotropic
mode is studied as well as the vortex core dynamical reversal. Moreover, the influence of
a perpendicular bias field on the vortex dynamics will be highlighted. Finally, the higher
order spin wave modes developing in the presence of the vortex core will be measured and
labelled.
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5.1 Introduction

The magnetic vortex state, previously introduced theoretically as a soliton solution in thin
films, and described as a stable configuration in soft ferromagnetic dots of micron radii,
has been widely studied experimentally. The first experimental signature of the vortex
state has been given by magneto-optical measurements of hysteresis loops on Permal-
loy (NiFe) discs with applied magnetic fields in the disc plane [29, 94]. This work was
followed by a direct observation of the vortex state in Permalloy discs using Magnetic
Force Microscopy (MFM) [119], and the core structure was spatially resolved by Scanning
Tunnelling Microscopy (STM) [141] as well as its polarity.

During this thesis, two magnetic materials have been investigated: NiMnSb and FeV.
Thin films of these ferromagnets have been deposited and later patterned in discs of various
diameters, between 1 and 0.1 microns. The dimensions of our dots have been chosen to
stabilise a magnetic vortex at remanence, whereas the axial symmetry is well adapted to
the f-MRFM detection scheme and simplifies the calculations. The materials chosen are
adapted both to vortex dynamics experiments because of their crystalline structure with
a low anisotropy and to the ferromagnetic resonance detection with their damping among
the lowest reported for metallic ferromagnetic thin films.

The great advantage of our f-MRFM detection will be to study the dynamical proper-
ties of single discs, eventually buried under non magnetic electrodes. We have access to a
precise spectroscopic measurement of the vortex eigen-modes, without any averaging on
an array of discs. Using this peculiarity, the effects of an external magnetic field applied
perpendicularly to the discs plane is widely investigated.

In this section, the sample fabrication process is detailed, as well as the intrinsic prop-
erties of the materials and the vortex state. The vortex static and dynamical properties
are then investigated at room temperature, focusing on the gyrotropic motion and the
dynamical reversal under an applied field. Finally, a detailed analysis of the magnetic
dissipation in the vortex state is presented.

5.2 Samples preparation

The NiMnSb samples used to study the vortex state were designed in our team, but
the whole fabrication was done in Würzburg University in the group of Professor L. W.
Molenkamp. For this major contribution to this thesis, I would like to thank Andreas
Riegler, Florian Lochner and Georg Schmidt.

The NiMnSb has been chosen to study the vortex state. This is a ferromagnetic half-
Heusler alloy, which is metallic. It is supposed to be half-metallic, or hundred percent
spin polarised at the Fermi level when grown along a particular crystalline axis [79]. It
is therefore a potential candidate as spin filter/injector in future spintronics applications.
Moreover its high Curie temperature (730 K) and very low magnetic losses are very
interesting for our room temperature f-MRFM experiments.

5.2.1 Thin film growth

The NiMnSb crystallises in a C1b cubic structure, composed of three superimposed face
centred cubic (fcc) latices corresponding to the sites Ni = A(0,0,0), Mn = B(1

4
, 1
4
, 1
4
),
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Sb = C(3
4
, 3
4
, 3
4
) [6]. The NiMnSb lattice constant is a = 5.903 Å, and the films are

grown on a InP wafer which minimises the lattice mismatch, and a 200 nm buffer layer
of (In0.53Ga0.47)As oriented in the (001) direction.

The growth is realised under ultra high vacuum by molecular beam epitaxy (MBE)
in the crystallographic direction (001) [6]. Nickel, manganese and antimony were co-
evaporated in the wafer heated at 300Â◦C. An in-situ characterisation technique, the
reflection high-energy electron diffraction (RHEED), was used to monitor the growth.
For this thesis, two different thicknesses of 44 and 20 nanometres were deposited.

5.2.2 Nanostructuring

The nano-structuring of the sample was done by standard e-beam lithography techniques
using special resists followed by a dry etching realised by ion-milling. The NiMnSb film is
patterned into several discs: the geometry is chosen to ensure a magnetic vortex ground
state, as well as for its interesting axial symmetry. The f-MRFM detection, described in
the previous section, uses a spherical magnetic probe which does not break the sample
symmetry.

Figure 5.1: NiMnSb sample used to study the vortex state. In a), a scanning electron microscope
(SEM) image of the 20 nm thick film patterned in discs of several diameters is presented, while
the 44 nm thick film is nanostructured in discs of 0.2 and 1 microns shown in b) and c).
The microwave antenna and its constriction under which the discs are located (red square) are
presented in d).

As presented in the figure 5.1b and c, the thickest film of 44 nm is patterned in two
discs of diameters 1.04 µm and 260 nm. The 20 nm thick film presented in the figure 5.1a
is patterned in a series of isolated discs with the nominal diameters 700, 500, 400, 250, 200
175 and 150 nanometres separated from each other by 5 µm. A special design with three
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closely packed discs, shown in the left, was produced for a study of the dipolar coupling
between neighbouring discs. This study is presented in the chapter 6. This variety of
thicknesses and diameters will allow a precise study of the vortex dynamics dependence
on the geometry of the dots.

The discs are then covered by a 50 nm thick isolating layer of Si3N4, and the microwave
antenna, consisting of 300 nm thick gold film patterned by UV lithography, is deposited
on top. It can be seen in yellow on the figure 5.1d and figure 5.1a is a zoom of the
constriction.

The electrodes of the antenna are finally connected by wire bonding to the microwave
source (an Anritsu synthesiser) through adapted coaxial cables. The sample is then
introduced in the f-MRFMmicroscope previously described in chapter 4, and the magnetic
tip is placed approximately ≃ 1.5 µm above the disc to be studied.

5.3 Sample characterisation

In this section, the general properties of the samples presented below are investigated
at room temperature, especially the magnetisation dynamics in both the saturated and
vortex states.

5.3.1 Basic magnetic properties

First of all, the magnetic properties of the NiMnSb films have to be determined. A
precise characterisation of the saturation magnetisation Ms, the crystalline anisotropy
field Ha, the damping parameter α (related to the magnetic relaxation) and the effective
gyromagnetic ratio γ is given by cavity FMR measurements. This study was realised on
unpatterned thin films, identical to those used for our samples, by Hervé Hurdequint at
the Laboratoire de Physique des Solides in Orsay, France.

An analysis of the films in the saturated state is performed to study the resonant
field of the uniform spin wave mode versus the angle of the applied field. The results are
summarised in the table 5.1.

Ms(emu.cm−3) Ha(G) α γ(rad.s−1.G−1) lex(nm)
550 -1850 2.3×10−3 1.8×107 11.7

Table 5.1: Fundamental magnetic parameters of the NiMnSb thin films: saturation magnetisa-
tion, anisotropy field, damping, effective gyromagnetic ratio and exchange length (from literature
[110]).

5.3.2 Eigenmodes in the saturated state

As presented theoretically in the chapter 2, studying the perpendicularly magnetised
uniform state is a first step in the understanding of the discs intrinsic properties. This
analysis is compared to the study realised on thin films, to confirm that the magnetic
properties are conserved in the nanostructures. The difference between the two analysis
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being the magnetic confinement inside the discs, the precise diameter of the samples can
be evaluated as well.

Typical results are shown in the figure 5.2 for the two different thicknesses and various
diameters. On the left, the disc of 1 µm in diameter and 44 nmthick is measured. The
spin wave spectrum is acquired by varying the perpendicular field while the magnetisation
is excited by an in plane and linearly polarised microwave field. Several modes can
be detected and then labelled using the theoretical approach developed in the chapter
2. These modes are described by Bessel functions and labelled with two indices (l,m)
corresponding to the number of nodes of the precessing magnetisation in the radial and
azimuthal directions, as sketched on the left in colour plots. The most intense mode on
the right corresponds to the uniform mode (l = 0,m = 0), and the following modes are
radial spin waves (l = 0,m = 1, 2, 3...), whose resonant fields are calculated and shown by
ticks under each peak. Only radial modes are excited because there is no overlap between
the uniform in plane microwave field and the azimuthal symmetry of the l ≥ 1 modes.

Figure 5.2: MRFM spectrum of NiMnSb discs in the saturated state. On the left, the spectrum
at constant frequency is shown for the disc of 1 µm in diameter. The black ticks under each peak
correspond to the calculated resonant field of each (l = 0,m) modes. On the right, the spectra at
constant field of the series of discs with the thickness 20 nm is shown to highlight the effect of
the confinement on the spin waves dispersion.

On the right of the figure 5.2, the four biggest discs of thicknesses 20 nanometres
are measured. Here, the spectrum is recorded at constant field by varying the microwave
frequency (the offset between the spectra is set for clarity). The same spin wave modes can
be seen in the frequency domain. The difference of confinement changes the boundary
conditions, resulting in two main effects: the resonance frequencies are increased for
smaller radius and the splitting between modes increases as well.

The comparison between these spectra and analytical calculations allows to extract
magnetic constants (Ms, γ, α, Hs) for the nanostructures in good agreement with the
table 5.1. Moreover, the diameter of the two thickest discs (44 nm) have been found
larger than the nominal diameter due to lithography imperfections: 1.04 and 0.26 µm
instead of 1 and 0.2 µm respectively. This is consistent with the diameters evaluated on
the SEM images.
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5.3.3 The vortex state

We display in figure 5.3 the effect of the perpendicular applied field on the magnetisation
dynamics. The field goes from +9 kG to -9 kG in order to explore the unsaturated state
of the nano discs.

The magnetic probe is placed at 1.4 µm above the disc of 260 nm in diameter and 44 nm
thick. The cantilever frequency is directly proportional to the static dipolar force between
the sample magnetisation and the sphere. Indeed, the cantilever resonance frequency is
proportional to ωc ∝

√
k(z)/m, where the effective sping constant depends on the force

gradient along z at the altitude z0: k(z) = k − ∂zFz0 . Panel a of the figure 5.3 shows the
frequency of the f-MRFM cantilever when the perpendicular field is varied.

The signal, which is flat until the saturation field at ± 6 kOe, starts to increase for
lower field values meaning that the static force applied on the cantilever decreases. This is
the signature of a new, unsaturated, magnetic state identified as a magnetic vortex. This
statement is confirmed by a standard magnetic force microscopy (MFM) measurement
of the 1 µm disc at remanence, shown in the figure 5.5c. This image was done with a
standard MFM whose sharp tip was coated with a magnetic layer and scanned ≃ 30 nm
above the sample. The magnetisation is in plane, except at the centre where the vortex
core, with an out of plane magnetisation, is seen as a black dot.

Evidence for a vortex state are also given by the dynamical measurements of the figure
5.3, panel b and c. The variation of the longitudinal component of the magnetisation
is measured at constant microwave frequency by varying the perpendicular field (the
baseline is shifted for each frequency for clarity). At high frequency, panel b, the standard
saturated modes already described in the chapter 2 are seen and labelled. But below the
saturation field, a new mode appear at low frequency on the panel c, which is attributed
to the gyrotropic motion of the core around its equilibrium position. This mode can be
measured in all the discs already presented, and its frequency range is consistent with the
gyrotropic frequencies calculated in the chapter 3.

5.4 Gyrotropic motion of the vortex core

This section is dedicated to the analysis of the gyrotropic mode in the NiMnSb discs and
the consequences of a perpendicular bias field on its dynamics.

Our MRFM technique is well adapted for these experiments for several reasons. First
of all, it has ability to measure a single nanostructure with a great spectroscopic accu-
racy. The symmetry of the gyrotropic mode is also well adapted to our detection, which
introduces an axially symmetric perturbation field. It has already been shown [28] that
the in plane microwave field generated by our antenna has the good symmetry to excite
the gyrotropic mode. A MRFM signal will then be measured if the excited mode pro-
file produces a detectable variation of the longitudinal component of the magnetisation
longitudinal component ∆Mz. This is indeed the case for the gyrotropic mode since the
dynamical deformation of the vortex core produces a Mz dip opposed to the core polarity
proportional to the velocity (see chapter 3, section 3.3.2.4). Finally, the perpendicular
applied field keeps a good symmetry for the measurement since it is needed to magnetise
the magnetic probe in the z direction.
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Figure 5.3: a) Cantilever frequency, proportional to the static Mz component over the NiMnSb
disc of 260 nm in diameter while varying the perpendicular field. The spin wave spectrum at
constant frequency are shown in the saturated (b) and the vortex state (c). The three labelled
regions corresponds to the magnetic configurations described in the figure 5.4.

5.4.1 The gyrotropic mode under a perpendicular field

The gyrotropic mode, already presented in the section 3.3.2 of chapter 3, is the lowest
energy mode of the vortex dynamics. It consists of a low frequency gyration of the vortex
core around the disc centre, that has been observed experimentally [28, 105, 101, 20] and
is well described theoretically. All the previous experimental studies on the gyrotopic
mode were done at remanence or under a small in-plane field. This study will focus
on the effect of a perpendicular magnetic field on the vortex dynamics. As described
previously, the vortex structure is deformed by a magnetic field (see figure 3.4 of chapter
3), adding Zeeman energy, modifying the magneto-static energy and therefore the spin
waves frequencies.

Let us first describe more precisely the panel c of figure 5.3. All the spectra were
measured by saturating the disc above Hs and then by decreasing the field; in that sense,
the nucleated vortex core is parallel to the applied field. By following the dynamics when
the field is decreased below Hs, a first peak (labelled with a blue dot) appears around
4 kOe for a microwave frequency of 1.2 GHz: this is the gyrotropic mode. It is well
separated in frequency from the rest of the spin wave spectrum because of the lateral
boundary conditions. Therefore, the measured resonance can only be attributed to the
gyrotropic mode.

The resonance frequency of this mode decreases with the applied field until remanence,
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which is the first interesting point: the gyrotropic frequency depends linearly on the
perpendicular bias field. Then the frequency continues to decrease until Hr ≃ 2.5 kOe.
The same mode can be followed at negative field, meaning that the vortex core polarity
remains stable, but anti-parallel to the field orientation. For lower anti-parallel field values,
the gyrotropic frequency jumps on another branch having the opposed field dependence
as the previous one, which is the signature of the static core reversal at Hr.

Figure 5.4: Sketch of the magnetisation configuration of the vortex gyrotropic mode coupled to
the f-MRFM probe for the three regions labelled in the figure 5.3 (the size of the dynamical dip is
exagerated for clarity). The sign and amplitude of the resonance peaks can be understood from
these sketches.

The amplitude and sign of the resonance peaks also confirm this scenario. The sign
of the peaks is given by the product of the signal ∆Mz and the magnetisation of the
MRFM probe. We recall that its magnetisation follows exactly the applied field since it
is a sphere without coercivity. Concerning the gyrotropic mode, the measured ∆Mz has
two origins:

1. The main contribution is indeed the dynamical dip that forms close to the core
during the gyrotropic motion. Its sign is always opposed to the core polarity. This
is illustrated by the sketch of the figure 5.4. The f-MRFM measures the difference
between the magnetisation of the core at the centre of the disc and the magnetisation
of the couple vortex-dip during the gyrotropic motion.

2. Since the f-MRFM measurement is the time average over several precession periods,
another contribution to ∆Mz is given by the difference between the configuration
with the core at the center and the gyrotropic motion where the core magnetic
moment is diluted over a circular orbit. This part is actually small and represents
only ≃ 10 % of the signal.

In the region labelled 3© on figure 5.3, the magnetisation has the arrangement of the
third panel of figure 5.4. The probe magnetisation is parallel to the applied field. The
∆Mz created by the gyrotropic mode having a polarity p = +1 parallel to the field is
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opposed to the probe magnetisation. The force applied on the cantilever is lowered which
increases the amplitude of vibration. Therefore, the signal is positive.

In the region labelled 2© on figure 5.3, the magnetisation of the probe is reversed, since
the perpendicular field is now negative. But as sketched on the second panel of figure
5.4, the ∆Mz contribution from the gyrotropic mode is unchanged since it has the same
polarity. The measured signal is then negative.

Finally, in the region labelled 1© on figure 5.3, the probe magnetisation is unchanged.
But the vortex polarity has been reversed and the ∆Mz contribution from the gyrotropic
mode is again opposed to the probe magnetisation. A positive signal is recovered.

Two main conclusions arise from the perpendicular field dependence of the gyrotropic
mode:

• The gyrotropic frequency ωG varies linearly with the bias field Hz, following two
opposite branches depending on the core polarity p. This behaviour was calculated
theoretically in the section 3.3.2.3 of chapter 3 as:

ωG(Hz) = ωG(0)

[
1 + p

Hz

Hs

]
(5.1)

where ωG(0) ≃ (20/9)γMsL/R is the gyrotropic frequency at remanence.

• The vortex core polarity is stable under an anti-parallel bias field until a threshold
field Hr. This value corresponds to the static core reversal described in the section
3.2.2.2 of chapter 3. If the opposite experiment is performed starting from the
negative saturation field −Hs, a symmetric behaviour is observed, and the core is
reversed at Hr ≃ +2.5 kOe, as shown on figure 5.5. As can be seen on the figure
5.5, the static reversal field seems to be independent of the disc diameter, even if the
saturation field Hs is different. This is confirmed by all the measurements done in
the other NiMnSb discs presented previously. As explained in the theoretical part,
the static reversal is influenced mostly by the energy stored in the vortex core. In
that sense, the disc thickness should be the key parameter that controls Hr [127].

Panels a and b of figure 5.5 compare the experimental values (dots) measured on the
NiMnSb discs of 1.04 and 0.26 µm in diameter and the calculations (solid lines) given
by the equation 5.1. For each disc, the Kittel mode is measured above the saturation
field Hs. Below, a transition occurs indicated by an abrupt change of slope: this is the
gyrotropic mode, appearing because of vortex nucleation. The mode can be followed, for
example with the blue dots, until the core polarity is reversed at Hr. The frequency then
jumps onto the symmetric branch with the opposite slope. The result of the calculation,
using the theory of the saturated state, above Hs, and the formula 5.1 above, shown in
dashed lines, reproduces well the experimental data.

Performing the same experiment but from the opposite saturation field, with the
orange dots, reveals an hysteresis, arising from the asymmetry associated with the core
polarity. The vortex structure is deformed by the perpendicular field and the two polarities
of the core are no more equivalent. The core polarities symmetric and anti-symmetric to
the field have different energies, which is reflected on the gyrotropic frequency. This effect
can be seen as an equivalent Zeeman splitting of the gyrotropic frequency. The splitting
between the two polarities is then simply proportional to the field Hz:

∆ωG,↑↓(Hz) = 2ωG(0)
Hz

Hs

(5.2)
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Figure 5.5: Experimental (dots) and calculated (lines) gyrotropic frequency versus applied field
for the two discs of 1 µm a) and 0.26 µm b) in diameters and 44 nm thick. The inset c) is a
standard MFM image at remanence of the 1 micron disc, revealing the presence of a vortex.

To emphasise this phenomenon, the “Zeeman” diagram of the gyrotropic mode is
presented in the figure 5.6. The spectra have been recorded at constant perpendicular field
by varying the microwave frequency, for each core polarity. Two examples are shown for
the perpendicular fields 0.6 and 1.5 kOe. For the blue curves, the polarity is anti-parallel
to the field (p = −1), the peaks are negative and therefore the gyrotropic frequency is
lower than the value at remanence. In the opposite, for the red curves, the polarity is
parallel to the field (p = +1) and the gyrotropic frequency is increased. The theoretical
frequencies calculated with the formula 5.1 are plotted as the red and blue lines.

To confirm the universality of this phenomenon, the same experiment was done on
the NiMnSb sample with the thickness 20 nm. The gyrotropic spectra were recorded
at constant perpendicular field. On the figure 5.7, the spectra corresponding to the
parallel polarity of the core are shown for each disc with the diameters between 500 and
175 nanometres for different bias fields. The calculated frequencies are superimposed
(coloured lines) for comparison.

Two main observations arise from this diagram:

• The gyrotropic frequency is determined by the magnetic confinement, i.e. the as-
pect ratio of the disc. The smaller the disc, the larger the gyrotropic frequency.
This is the evidence that the magneto-static energy plays a dominant role in the
“quantisation” of the gyrotropic mode in confined geometries. We emphasise the
fact that the gyrotropic motion can be observed in discs with diameters smaller than
200 nanometres.

• The same Zeeman like splitting is observed, the slope of which is mainly determined
by the saturation field of the considered disc. The saturation field Hs can be eval-
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Figure 5.6: Frequency splitting induced by a perpendicular magnetic field between the gyrotropic
modes corresponding to the two opposite core polarities p = ±1. Two spectra, recorded at fixed
field by varying the microwave frequency, are presented for each core polarity.

uated as the intersection between the gyrotropic and saturated dispersions, as seen
in the figure 5.5a.

Figure 5.7: Dispersion relation for the gyrotropic mode as a function of the disc diameter for
the NiMnSb discs of thicknesses 20 nm with the core polarity parallel to the perpendicular field.
The coloured lines are the frequencies calculated using equation (5.1).
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5.4.2 The dynamical core reversal

The previous study of the vortex gyrotropic mode was done in the linear regime with a
small microwave field which never exceed ≃ 1 mT. It is now very important to focus on
the most interesting effect of the core non linear dynamics: its dynamical reversal. As
already explained in the chapter 3 section 3.3.2.4, when the radius r of the core orbit
increases, a distortion of the core profile characterised by the appearance of a tail having
the magnetisation direction opposite to that of the original core polarity occurs. The
magnitude of this tail depends solely on the linear velocity V = ωg(0)r of the vortex
core. When the latter reaches the critical speed Vc ≃ 1.66γ

√
Aex at remanence, the core

polarity suddenly reverses.

5.4.2.1 Experimental evidences

To begin with, it is crucial to understand the signature of the dynamical reversal in our
experiment. The first experimental evidence [134] of this phenomenon was given by time-
resolved scanning transmission X-ray microscopy at remanence. After a short and intense
microwave pulse, the polarity of the core was determined by the sense of rotation of the
core. The f-MRFM technique produces a measurement averaged in time and does not
allow this determination. Nevertheless it possible to distinguish the polarity before and
after a reversal event using the Zeeman like splitting of the gyrotropic mode, as explained
in the previous section (figure 5.6).

To be able to discriminate the core polarity deterministically, it is necessary to choose
the static perpendicular magnetic field Hz in such a way that the field-induced gyrotropic
frequency splitting exceeds the intrinsic linewidth ∆f of the gyrotropic mode. Obviously,
Hz should be lower than Hr to avoid a static core reversal. The gyrotropic mode linewidth
will be discussed in detail in the section 5.5, but to fulfil this criterion, a field of 1.5 kOe
is chosen.

A typical core dynamical reversal experiment is shown in figure 5.8 for the NiMnSb disc
of 1 µm in diameter and 44 nm in thickness, with which all this study will be performed.
The protocol is the following:

1. The core polarity anti-parallel to the perpendicular field is nucleated at high negative
perpendicular field. The field is then decreased and reversed to be +1.5 kOe, where
the polarity p = −1 is still stable. The first upper spectrum is recorded at low
microwave power (-16 dBm), displaying the frequency of the lower gyrotropic mode
(p = −1 branch).

2. For the second spectrum (in red), the microwave power is increased to -14 dBm
and the frequency is scanned from 150 to 350 MHz. The beginning of the p = −1
resonance line appears, but the critical speed is reached by the core and its polarity
is reversed. Therefore, the frequency of the upper gyrotropic mode (p = +1 branch)
appears.

3. The same spectrum is repeated with a low microwave power (-16 dBm), to confirm
the stability of the p = +1 gyrotropic resonance.

4. Finally, the microwave power is increased again and the frequency sweep is done
from 350 to 250 MHz. The beginning of the p = +1 resonance can be seen, but an
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abrupt jump denotes the core reversal. The sweep is performed backward, and the
p = +1 resonance has disappeared. The spectrum of the first step is then recovered.

Figure 5.8: Experimental evidence of the dynamical core reversal with the NiMnSb disc of 1
µm in diameter. In this experiment, the perpendicular field is set constant at 1.5 kOe and a
continuous microwave excitation is shined on the sample.

In this experiment, we were able to demonstrate the “bi-stability” of the gyrotropic
dynamics for p = ±1, as well as the dynamical reversal of the core polarity. This was
achieved by sending a continuous microwave excitation whose power was increased to
drive the vortex core over its critical speed.

5.4.2.2 Optimisation of the vortex core reversal

It is clear from this experiment that the reversal process is resonant. Therefore, instead
of shining the microwave excitation continuously, a single microwave field pulse applied
at the proper (p = +1 or p = −1) gyrotropic frequency should be sufficient to reverse the
polarity. In this section, the design of such efficient microwave pulses is investigated.

The efficiency of a microwave pulse to reverse the core polarity is a function of its
frequency, duration and amplitude. To optimise these parameters, a typical reversal
diagram is constructed. First of all, a perpendicular bias field of µ0Hz = 65 mT is
chosen to be able to discriminate the two gyrotropic polarities. Using the same kind of
experiment as in the figure 5.8, the resonant gyrotropic frequencies corresponding to the
polarity p = ±1 are measured: f− = 217 MHz and f+ = 254 MHz (see figure 5.6). This

Magnetic vortex dynamics in nanostructures



90 Experimental results I: the vortex state

enables a single-shot and deterministic readout of the initial and final core polarity. At
the same time the field Hz is low enough to minimise the asymmetry between the two
polarities.

The efficiency of both single pulses, from p = −1 anti-parallel to Hz to p = +1 and
from p = +1 to p = −1 is then investigated. By analogy with the NMR π pulses used to
reverse the magnetisation, the microwave pulse that reverse the core polarity p = −1 → 1
(p = +1 → −1) is called a Π− (Π+)pulse. The chosen protocol is the following:

1. For studies of the reversal Π− (Π+) pulses, the initial p = −1 (p = +1) state is first
reset using an initialisation pulse whose result is known to be fully deterministic.

2. A single Π− (Π+) pulse of given duration w = 100 ns, frequency f and power P is
applied through the microwave antenna.

3. The final polarity state is read by a single measurement of the MRFM amplitude
at the frequency f+ (f−).

4. The result is averaged over 16 Π− (Π+) attempts and displayed in colour code at
the position (f ,P ): a pixel coloured in red(blue) marks a successful reversal while
the transparency gives the switching probability.

5. The same experiment is repeated for the pulse duration w = 50 (orange, light blue)
and 20 (yellow, green) nano-seconds, and the resulting diagrams are superimposed.

The result is shown in the panel a of the figure 5.9. One can first notice the clear
signature of the frequency splitting introduced by the field Hz: the two symmetric reversal
events are well separated in frequency. Nevertheless, the shape of the two reversal areas
is very similar because the splitting is too small to create a real asymmetry in the static
magnetisation. The resonant character of the reversal process is then revealed by the
position of the minimum power needed to reverse the core, marked by red squares in the
figure 5.9. It corresponds to a Π− (Π+) pulse at the gyrotropic frequency f− (f+). If the
microwave pulse is detuned from the resonant frequency, its power has to be increased
to reach the reversal, since the dynamic susceptibility of the vortex core is lower at this
frequency. Finally, if the pulse duration is reduced, more microwave power is needed to
reverse the core. This is because the critical velocity, which is the key parameter of the
reversal process, has to be reached sooner.

Notice that the presented diagrams have been restricted in purpose to power lower
than -4 dBm, while the experiments were performed until higher microwave power. If
the strength of the microwave excitation is high enough, the opposite reversal areas start
to overlap and the core can be reversed more than once. The shape of the reversal
areas becomes very complicated, exhibiting stripes of increasing number of consecutive
reversals. The analysis of this region is difficult and we have concentrated our efforts on
the low power region of the diagram.

To have a deeper understanding of the reversal mechanism, calculations were per-
formed. The vortex core motion during the gyrotropic mode is well described by the
Thiele equation, which allows to calculate the eigenfrequency. But a more detailed anal-
ysis is needed to have access to the transient motion of the core before it reaches a steady
state orbit. In the reversal mechanism, the core is indeed reversed before reaching a
steady orbit. Following the appendix A, the time dependent position of the vortex core
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Z(t) = X + iY can be calculated at remanence. Assuming that the asymmetry created
by the perpendicular field is negligible, the asymmetry between the core instantaneous
velocity V (t) = ωGr(t) only depends on the frequency associated to each polarity. Excited
by a microwave field of frequency f and power P , it is given by the time derivative of
Z(t) [85]:

V (t) =
1

3
γRh

√
Ω2 + F (Ω, t)√

(1− Ω)2 + d2Ω2
(5.3)

where Ω = 2πf/ωG and:

F (Ω, t) = e−2dωGt − 2Ωe−dωGt

[
cos[(1− Ω)ωGt]− d sin[(1− Ω)ωGt]

]
(5.4)

The term d is the damping in the vortex state that will be calculated in the section 5.5.
Using this result, a simple numerical simulation is performed to reproduce the exper-

imental diagram of the figure 5.9a with a similar protocol:

1. For each pixel (f , P ), the corresponding core velocity at the end of the microwave
pulse of duration w is calculated as V (w) with equation 5.3.

2. The reversal threshold is defined by the critical speed calculated by Guslienko,
transformed to take the effect of the perpendicular field into account [74]. The
vortex core is considered reversed dynamically if:

V (w) ≥ 1.66γ
√
Aex

[
1 + p

Hz

Hs

]
(5.5)

3. Following the same colour code, if the core is reversed after the pulse, the pixel (f ,
P ) has a colour corresponding to the pulse duration w, otherwise it is blanked.

The result of this simulation is shown in the panel b of the figure 5.9. To be in
quantitative agreement with the experiment, the damping parameter d introduced in the
calculation has to be adjusted to dforced, because the experimental value measured in the
linear regime is too small. This is due to the strongly non linear dynamics experienced by
the vortex core near the reversal threshold, that will be discussed in detail in the section
5.5. Within this adjustment, a reasonable agreement is found between the experiment
and the calculation.

We shall now analyse in detail the efficiency of the microwave pulses in order to
optimise them. The optimal power needed to switch the core is defined as P ∗ ∝ hc(f, w)

2,
where hc(f, w) is the microwave field amplitude. For each reversal diagram, this optimal
power was materialised by red squares in the figure 5.9. If a long resonant microwave pulse
is obviously efficient to reverse the core with the minimum power, it is more interesting
to define the pulse that costs a minimum of energy. The optimal energy of a pulse is then
E∗ = P ∗w∗, where w∗ is the optimal pulse duration.

In the figure 5.10b the energy E = Pw released by the microwave pulse is plotted as
a function of the pulse duration w using experimental points obtained from the analysis
of data sets similar to those presented figure 5.9a. There is a clear minimum in the
optimal pulse energy that occurs around w = 50 ns. The position of this minimum yields
an estimation of the characteristic decay time of the vortex core back to equilibrium.
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Figure 5.9: a) Diagram comparing the efficiency of microwave pulses of various frequency,
duration and power to reverse dynamically the core polarity, performed on the NiMnSb disc of 1
micron in diameter with a bias field of 65 mT. A coloured dot means a successful core reversal
event while the transparency gives the switching probability averaged over 16 events. The panel
b) is the result of a calculation using the Thiele equation and the critical speed for the core
reversal.

The microwave power is concentrated within the linewidth of the mode, which is the
most efficient. If the pulse duration exceeds this characteristic time, the vortex-core
dynamics reaches steady state before the end of the pulse; that is, the pulse duration is
unnecessarily long. In contrast, if the pulse duration is shorter than this characteristic
time, some energy is wasted outside the resonance line. In other words, the linewidth of
the microwave emission ∆f is broadened by the finite temporal size of the pulse w, which
is a property of the Fourier transform ∆f ∝ 1/w.

This effect can also be seen in the of the optimal frequency f ∗ plotted in figure 5.10a.
The optimal frequency f ∗ for each pulse duration corresponds to the point of lower power
(red squares on figure 5.9a) and should be the gyrotropic frequency. This is true if the
pulse length w is longer than this estimated decay time of 50 ns. If the vortex is forced
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on a shorter length scale, the optimal frequency shifts toward higher frequencies, as can
be seen on the figure 5.10a. This behaviour is a well known characteristic of damped
harmonic oscillators.

In order to model this behaviour, the optimal energy is calculated with E ∝ whc(f, w)
2,

where hc(f, w) is calculated with equation (5.3) at V = vc. Minimisation of the energy
E with respect to the pulse frequency f yields the dependence on w of the optimal pulse
energy E∗ plotted in figure 5.10b. With a defined as an experimental conversion factor
between the input power in the antenna and the microwave field power h2, the optimal
energy can be written as:

E∗(w) = w
h2c
a

=

(
6dvc
aγR

)2
w

1 + e−2dωGw − 2e−dωGw
(5.6)

Two independent parameters are used to adjust this calculation with the data in 5.10b:
the damping ratio d to fit the overall shape (position of the minimum) and the critical
velocity Vc to fit the absolute value of the energy. The critical velocity fitted in this
calculations is vc ≈ 190 ms−1. This value is in good agreement with the expected value of
225 ms−1 predicted by the Guslienko’s criterion for our NiMnSb disc (see equation (3.38))
of chapter 3).

The continuous lines in figure 5.10b show the dependence of the Energy (from equation
(5.6)) with the damping term d. The black curve corresponds to the linear vortex damping
(see figure 5.15). The blue curves, for which the best agreement is found with the data,
was plotted with a damping parameter dforced = 0.018. This value ”non linear” was
already introduced in the previous calculation of the reversal diagrams.

Within these adjustments, the optimal pulse duration wmin corresponding to the min-
imum energy Emin follows from equation (5.6): wmin = 1.26/(dforced)ωG = 1.26 τforced.
For the blue solid line in figure 5.10b, dforced = 0.018, τforced =35 ns, hence Emin is reached
for wmin = 44 ns.

Minimising the energy E with respect to the frequency also allows to deduce the
dependence of the optimal frequency f ∗ with the pulse duration. Using the previous
parameters of the damping, the shift of the optimal frequency towards high frequencies
observed on figure 5.10b can be well reproduced.

This analysis allows to define an optimal microwave pulse Π+/− of duration w ≃ 44 ns
and frequency f ∗ that is able to reverse the core, consuming only few pJ. At this optimal
point, the corresponding microwave field strength can be evaluated following the analysis
of the section 4.3.4 of chapter 4: only ≃ 2 Oe of rf field are needed to achieve the core
reversal. This has to be compared to the 0.3 kOe needed to reach the static reversal.

This dynamical mechanism allows an efficient and extremely rapid vortex core reversal
with a very low energy consumption, because of its resonant nature.

5.4.2.3 Effect of the perpendicular field induced asymmetry

In the previous exploration of the dynamical reversal properties, the bias perpendicular
field was only used to create a slight splitting between the p = +1 and p = −1 states, in
order to read unambiguously the vortex core polarity.

The dc bias field is now increased to investigate its effect on the core reversal. The
static structure of the vortex is significantly deformed, creating a real asymmetry. The
magnetisation that was in-plane at remanence is now uniformly tilted out-of-plane through
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Figure 5.10: a) Optimal frequency of the microwave pulse to reverse the core polarity as a
function of the pulse duration. b) Energy carried by the pulse as a function of the pulse duration.
The minimum observed corresponds to the vortex characteristic decay time.

an angle cos(Θ) = Hz/Hs. If the core polarity is parallel to the bias field, the core size is
broadened and for the polarity opposed to the field, the core size is narrowed.

This asymmetry should have an effect on the dynamical reversal mechanism since
the initial and final states are different. The reversal between the core anti-parallel and
parallel to the applied field (p = −1 to p = +1) is of course energetically favoured,
since it is helped by the static field: this is the ”easy” reversal. On the contrary, the
opposite reversal (p = +1 to p = −1) ending with an anti-parallel polarity is energetically
unfavoured: this is the ”hard” reversal.

An analogy with the microwave assisted reversal of the magnetisation (for instance in
a nanoparticle) could be done [129]. The polarities of the vortex core form the ground
states of a double potential well. To pass from one to the other polarity, the energy barrier
has to be overcome by the dynamical reversal process. At remanence, the two ground
states are degenerated, but this degeneracy is lifted by the perpendicular field, giving a
higher energy to the parallel state p = +1. If the energy provided by the bias field equals
the barrier, the static reversal occurs.

Following this analogy, the ”easy” reversal will always favoured by the bias field, and
no significant variations are expected, as will be shown on figure 5.13. We will then focus
the study on the hard reversal.

An experiment similar to the previous one presented on figure 5.9 was performed. Only
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Figure 5.11: Evolution of the core hard reversal diagram of the figure 5.9 (from polarity parallel
to anti-parallel to the bias perpendicular field) as a function of the applied perpendicular field.
No averaging was performed.

the effect of Π+ pulses was investigated, but the experiment was repeated with increasing
perpendicular fields.

The result is presented in the figure 5.11, where the upper row corresponds to pulse
duration w = 100 ns, the middle row to w = 50 ns and the lower row to w = 20 ns. The
left column corresponds to a perpendicular field of Hz = 60 mT, and the field is increased
by 30 mT steps from left to right. In these diagrams, the reversal events are displayed
with the same colour code as in the figure 5.9. Notice that the first column corresponds to
the right part (Π+ pulses) of the figure 5.9. In this experiment the pixel size (power and
frequency steps) was increased and no averaging were performed, therefore the reversal
events looks scattered. However, it is clear that:

• For all three pulse durations, the minimal power needed to reverse the core seems
to be independent from the perpendicular bias field Hz (around -13, -11 and -6 dBm
respectively for each pulse duration).

• The reversal events seem more and more scattered as Hz is increased. The evalu-
ated ”switching probability” (there is only one event per pixel) roughly decreases as
Hz, opposed to the initial polarity, increases. In other words, the global shape of
the reversal region is conserved, but the number of reversal events recorded inside
decreases whileHz increases, even if their positions seem to be randomly distributed.

To emphasise this phenomenon, the raw experiment of the extreme case is shown on
the figure 5.12. The perpendicular field, Hz = 2.7 kOe, is chosen to be very close to the
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static reversal field (from polarity anti-parallel to parallel) which is Hr ≃ 2.8 kOe. The
microwave pulse duration chosen here is w = 100 ns, and the reversal events are displayed
in red/blue.

First of all, the “easy” reversal shown on the panel a, which is greatly favoured by the
perpendicular field, does not seem to be affected. The shape of the reversal events area
is indeed very similar to the experiment done at lower field, for instance at 65 mT in the
left part of figure 5.9. A more quantitative analysis confirms that the ”easy” reversal is
independent from the perpendicular field. In other words, the deformation of the vortex
structure does not affect the ”energy scale” of this ”easy” switching. This remains true
up to the static reversal threshold. From a microscopic point of view, it means that the
transient motion of the vortex core, driven by the microwave field, before the reversal is
not affected by the bias field Hz.

Figure 5.12: Comparison between the ”easy” (a) and ”hard” (b) reversal diagrams under a bias
perpendicular field of 2.7 kOe. The microwave pulse duration w is a) 100 ns and b) 100 µs.

At the opposite, the panel b of the figure 5.12 demonstrates that the hard reversal
(leading to a core polarity opposed to Hz) could be achieved, even very close to the static
reversal field. To achieve this reversal, the microwave pulse duration was increased up to
w = 100 µs. Nevertheless, the conclusions from the figure 5.11 remain the same:

• The “hard” reversal presents the same “energy scale” as the ”easy” reversal: the
shape of the switching events area and the corresponding energy minimum required
for the dynamical core reversal are not affected by the increase of the perpendicular
field.

• But while switching events are deterministic for the “easy” reversal, these events
become probabilistic for the “hard” reversal events.

To illustrate this asymmetric behaviour, we have measured the switching probability
by averaging over typically 500 events in the region close to minimal power using the
results of experiments similar to those presented in Fig.5.11. The Figure 5.13 shows
the evolution of the switching probability of both ”easy” and ”hard” reversals versus

Benjamin Pigeau



5.4 Gyrotropic motion of the vortex core 97

perpendicular field for different values of the pulse duration (ranging from 20 ns up to
100 µs). The orange-red-brown colour symbols correspond to the ”easy” reversal, for
which the switching probability is always equal to 1. The deterministic character of these
reversal events is thus confirmed. The green-blue-violet symbols correspond to the ”hard”
reversal, with increasing pulse duration w. The continuous lines are guides to the eye:
they are plotted using a Fermi-Dirac like function:

P (Hz) =
1

1 + e(Hz−H0)/σ
(5.7)

with the fitting parameters H0 and σ that depend on w, plotted figure 5.13. The main
observation is the following: the shorter the pulse, the lower the critical perpendicular field
above which the ”hard” reversal probability drops below 1. This can be seen in figure
5.13 on the dependence of the parameter H0, which gives the field where the probability
is reduced by a half. Moreover, the slope of the transition tends to increase for longer
pulse, as modelled by the parameter σ.

Figure 5.13: Dynamical reversal probability versus the applied perpendicular field for increasing
microwave pulse duration. The “easy” switching is represented by orange-red-brown colour sym-
bols while the ”hard” reversal are the green-blue-violet symbols. The curves are plotted with a
Fermi-Dirac like distribution function, whose adjustable parameters H0 and σ are plotted on the
rigth.

To explain these results, a preliminary phenomenological approach is developed here.
The core gyration radius in the gyrotropic mode depends linearly on the microwave field
strength h. When the microwave field is increased, the gyration radius increases and a
negative dip develops in the surroundings of the core. Roughly, when the out-of-plane
magnetisation of this dip reaches −Ms, the vortex core reversal occurs. More precisely,
this phenomenon happens at a critical core velocity vc which is universal at remanence
[85]. Practically, reaching the reversal means that the vortex core has exceeded a certain
critical radius corresponding to Rc(Hz) = Vc(Hz)/ωG(Hz). The key here is the dependence
of the critical velocity with the bias field [74]. This could explain the fact that the
minimum microwave pulse power required to reverse the vortex core is independent of the
perpendicular field. It is indeed realistic that the field dependence of Vc(Hz) and ωG(Hz)
compensate, leaving the critical radius Rc independent from the field Hz. For a given
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microwave pulse shape, if the critical radius needed to reverse the core does not depend
on the bias field, the strength of the pulse should be the same for all fields.

Figure 5.14: Schematic view of the vortex core deformation when the core reaches the critical
radius Rc for different perpendicular fields and polarities. The ”hard” reversal is sketched in red
while the ”easy” reversal is in blue.

This result is also supported from the point of view of magnetic energies. In the
very simple description of Figure 5.14, the magnetisation of the vortex is sketched at
the reversal threshold for different perpendicular field and core polarities. Even if more
realistic calculations are needed, it is noticeable that the total exchange energy cost of
both the vortex core and the dynamical dip close to the reversal is nearly independent
from the field. Therefore, the amount of microwave energy absorbed by the system (the
gyrotropic mode) to deform the magnetisation until the reversal should be independent
from the initial magnetic configuration induced by the perpendicular field.

Nevertheless, the origin of the probabilistic character for the ”hard” reversal remains
unknown, and more investigations are needed.

5.5 Magnetic damping in the vortex state

Magnetic dissipation, or damping, is a very important parameter to understand ferro-
magnetic resonance. The mostly used form was introduced by Gilbert [44] as a damping
torque Γd with the dimensionless phenomenological parameter α in the Landau-Lifschitz
equation of the magnetisation dynamics:

Γd =
α

Ms

M × dM

dt
(5.8)

This term is responsible for the return to equilibrium of the precessing magnetisation to-
ward the internal. Despite a lot of research efforts, the microscopic mechanism responsible
for the dissipation in magnetic metals remain are not well described yet.
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5.5.1 Linewidth in the linear regime

Nevertheless, it is very important to understand at least experimentally the behaviour
of the magnetic dissipation in the vortex state. This is a key parameter that gives a lot
of information, for example about the non-linear processes involved in the vortex core
reversal.

To begin with, it is important to notice that, contrarily to time resolved experiments,
the damping d is not directly accessible in our f-MRFM experiment. It is measured
through the linewidth, and more precisely the quality factor, of the concerned resonance:
d = ∆f/2f . The damping is equal to the intrinsic Gilbert damping α of the material
only in the case of the uniform mode in a perpendicularly magnetised thin film (or disc)
excited in the linear regime (small oscillation amplitude). In this case, the magnetisation
precession is perfectly circular and homogeneous, and one can write: α = dsat. For
all other magnetic configurations, the precession is no longer circular and the measured
linewidth of the resonance can differ significantly from α.

Figure 5.15: a) Resonance field versus microwave frequency for the NiMnSb disc of 1 micron.
The abrupt change of slope around 0.8 T marks the boundary between the vortex and the sat-
urated state. b) Comparison between the linewidth of the saturated state and the vortex state
corresponding to the points of the panel a). The inset shows a typical resonance line of the vortex
gyrotropic mode in the linear regime.

The figure 5.15 presents the different linewidths (actually ∆f/2f , the damping or
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inverse quality factor) measured on the NiMnSb disc of 1 micron in diameter. At high
frequency (materialised by the dashed line) the linewidth of the perpendicularly saturated
state is measured. The value dsat = ∆f/2f = 2.3 10−3 = α, constant versus field is found,
which confirms the theoretical prediction.

At low frequency (in the blue area) the linewidth of the gyrotropic mode is measured.
The gyrotropic resonance line, presented on the inset, is fitted with a Lorentzian function
and the linewith at half maximum is extracted, for different perpendicular fields. Because
of the complex magnetic structure of the vortex state, the quality factor can be multiplied
by a factor 3 at remanence compared to the intrinsic α. The damping term D involved
in the Thiele equation of motion was calculated in section 3.3.2.1 of the chapter 3. The
effective damping of the gyrotropic mode (in the sense of Gilbert) is related to the Thiele
damping by using the rigid vortex model at remanence as follows [53]:

dvortex = −D
G

= α

[
1 +

1

2
ln
R

Rc

]
(5.9)

From a mathematical point of view, the factor that multiplies α is a renormalisation due
to the non homogeneous vortex structure, taken into account by the Thiele equation.
Physically, the particular geometry of the core gyrotropic motion broadens the resonance
line. A simple numerical application using a disc radius of R = 500 nm and a core radius
of Rc = 10 nm allows to recover the factor 3 between α and d, observed experimentally.
The variation of d with the frequency/perpendicular field is due to the evolution of the
core radius, calculated in the section 3.2.2.2 of chapter 3, when the vortex structure is
deformed by the bias field. Since the variation of the in-plane magnetisation as well as the
size of the core are linear with respect to the perpendicular field, the damping variation
should also be linear with Hz. The effect of the variation of the damping parameter on the
gyrotropic mode is about 5% for Hz = Hr compared to Hz = 0 (whereas the gyrotropic
frequency changes by 30%).

In conclusion, the effective linear damping d of the vortex gyrotropic mode, measured
through its linewidth, is three times larger than the intrinsic damping α of the NiMnSb
at remanence. This renormalisation can be calculated analytically taking into account
the non homogeneous structure of the vortex. Finally, the dependence of d on the per-
pendicular field can be evaluated.

5.5.2 Relaxation time close to the reversal threshold

The analysis of the reversal diagram of figure 5.9, and in particular the calculation of the
minimal microwave pulse power E∗

min to reverse the vortex core, has provided evidence for
a strongly non linear dynamics close to the core reversal. An effective damping dforced has
to be introduced to reproduce the experimental data, which is almost 3 times larger than
the linear damping d. In this reversal experiment, the gyrotropic core motion is indeed
probed with a high microwave excitation field, corresponding to high gyration radius. The
magnetisation dynamics is no longer linear at these amplitudes, and this could affect the
damping of the gyrotropic mode.

To support the previous measurement and analysis of dforced = 0.018, a new experi-
ment, presented on the figure 5.16, was performed in order to really probe the gyrotropic
mode decay time close to the reversal threshold. The same perpendicular field of 65
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mT is applied on the NiMnSb disc of 1 micron to split the two gyrotropic frequencies
corresponding to the core polarity p = ±1. The experimental procedure is the following:

1. The core polarity is initialised with p = +1 (p = −1) with a deterministic microwave
pulse.

2. A first Π+ (Π−) microwave pulse of duration w = 9 ns and power P = −1.8 dBm
is applied with a given frequency f between 160 and 310 MHz. The pulse power
is slightly below the minimum power P ∗ = −1 dBm required to reverse the core
polarity p for such a short pulse. In practice, the core is driven close to the reversal
radius and the microwave is turned off.

3. After a delay τ , which is varied between 0 and 120 ns, a second microwave pulse
Π+ (Π−) identical to the first one (panels a and b), or with a π phase shift (panels
c and d) is applied. In contrast to a single pulse, two pulses separated by a delay
can reverse p.

4. The procedure is repeated 10 times for each pixel (f ,τ) of the diagrams and the
averaged value of the switching events is presented in a blue (red) colour code.
Here, a blank pixel means no reversal event.

The striking oscillatory dependence on the pulse carrier frequency and on the delay
τ observed in figure 5.16a,b elucidates the phase coherent coupling between the vortex
gyrotropic motion and the microwave excitation. During the pulse, the core gyrotropic
motion is forced at the microwave frequency. Whereas during the delay τ , the core is
damped toward the equilibrium position at its natural gyrotropic eigenfrequency. The
core then acquires a phase shift relative to the second microwave pulse. As a result, the
efficiency of the second pulse to drive the vortex core to the reversal threshold depends on
the microwave frequency and on the delay between pulses in an oscillatory manner (the
oscillation period scales as the inverse frequency detuning).

This effect is emphasised by the experiment of the panel c and d where a π phase
shift was introduced between the two pulses. The switching regions in the panel a (b)
are complementary to these of the panel c (d). Thus, phase control of the microwave
excitation can trigger vortex-core switching.

To be more accurate, lets have a closer view to the panels a and b of figure 5.16. When
the two microwave pulses are generated at the gyrotropic eigenfrequency ωG corresponding
to the field Hz (≃ 215 and 250 MHz respectively), the core is always switched for τ < 80
ns. Indeed, there is no phase difference between the core damped motion and the second
pulse, which is always efficient. If the pulse frequency is shifted by 15 MHz, a region of
low switching probability is observed . The core has roughly acquired a π phase shift with
respect to the second pulse, which is less efficient. A region of high switching probability
is then recovered when the pulses frequency shift corresponds to a second π phase shift
of the core free motion. The opposite effect is observed in the panels c and d, where
the phase of the second pulse is artificially shifted by π. Actually, the fringes that are
observed are hyperbolas corresponding to ωτ =cst.

To extract more details from this experiment, a simple simulation was performed.
The philosophy of the calculation is the same as in the figure 5.9b. Using the vortex core
position (X, Y ) during its transient motion, calculated in the appendix A, the trajectory
of the core during the microwave pulse and its decay can be calculated.

Magnetic vortex dynamics in nanostructures



102 Experimental results I: the vortex state

Figure 5.16: Oscillatory dependence of the vortex-core reversal efficiency on frequency and delay
between two consecutive pulses. a)-d) Number of switching events out of ten attempts as a
function of the delay τ separating the two pulses and of the carrier microwave frequency. The
bias magnetic field is µ0Hz = 65 mT. The initial polarity state is p = +1 in the left-hand graphs
(a,c) and p = −1 in the right-hand graphs (b,d). As depicted in the right-hand panels, the phase
difference between the two microwave pulses is zero in the upper graphs (a,b) and π in the lower
graphs (c,d).

The panel b of figure 5.17 presents such trajectories in the disc plane (x, y) after two Π+

pulses at the gyrotropic f+. frequency (253 MHz) separated by a 60 ns delay τ . The first
microwave pulse drives the core from the centre to the top of the disc, close to the reversal
orbit (purple dashed circle): this is the black trajectory. The microwave is turned off and
during the delay τ , the core relaxes in a spiral motion back to its equilibrium position, at
the gyrotropic eigenfrequency: this is the yellow trajectory. We have then two cases:

1. In the upper graph, the second pulse is applied with the same phase as the first
one. Because the microwave frequency is equal here to the gyrotropic frequency,
the core motion has the same phase as the second pulse. The coupling to the
microwave excitation is therefore in phase and efficient. Then, because the core is
not returned to the disc centre during the transient decay, the second pulse amplifies
the gyrotropic motion and brings the vortex core over the limit circle (when the
second black trajectory crosses the purple star). Consequently, the core is switched
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Figure 5.17: a) Numerical calculation of the double-pulse sequences presented in figure 5.16. The
best agreement is obtained for a characteristic decay time τfree = 53±6 ns in the free regime. b)
Associated vortex-core trajectory (left) and velocity (right) versus time plotted for two Π+ pulses
with settings τ = 60 ns and f = 253 MHz (corresponding to the yellow squares in a). For these
settings, the vortex core is reversed when the phase difference between the pulses is equal to zero
(top, see star) and not reversed when it is equal to π (bottom).

after the second pulse.

2. In the lower graph, the second pulse is applied with a π phase shift with respect
to the first one. When the second pulse is applied, the core first experiences a
complicated forced trajectory (in white) to compensate this phase difference. As a
result, the core is over-damped before to be accelerated again, and the limit circle
could not be reached by the end of the pulse. Consequently, the core is not switched
after the second pulse.
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By taking the derivative with respect to time, the core trajectories can be converted
into speed. The core speed, normalised by the critical speed Vc, is presented during the
two pulses process on the right panels of the figure 5.17b. The first pulse brings the
core close to the critical speed. The core speed is then slowly decreased during the free
decay. Finally, if the second pulse is in phase with the core trajectory, the critical speed
is reached and the core is reversed. At the opposite, for the out-of-phase pulse, the core
speed is damped in a first time before to be accelerated, and the threshold speed could
not be reached.

To perform the simulations presented in the figure 5.17a, the core polarity was ini-
tialised to p = −1 (on the left) and p = +1 (on the right). For both initial polarities, the
numerical experiment of the panel b was performed for each pixel (f ,τ) and the core was
considered reversed if the critical speed was reached by the end of the second pulse.

To be able to reproduce quantitatively the experimental reversal diagrams of the figure
5.16, a non linear damping has to be introduced. A slight asymmetry can be noticed on the
four experimental diagrams, which bends the reversal stripes toward the high frequencies.
This is again the sign of a non linear dynamics of the core gyrotropic motion close to the
reversal threshold. This asymmetry could be reproduced in the simulations with the best
agreement by introducing the effective damping dfree = 0.012.

We recall that in the first reversal experiment of the figure 5.9, the non linear core
motion was probed close to the critical speed forced by the microwave field, and a param-
eter dforced = 0.018 was introduced to reproduce the data. Here, the gyrotropic motion
is again probed close to the reversal but in the free decay regime when the core oscillates
toward its equilibrium position. This is why the damping fitted here is called dfree.

The damping values extracted from the experiments can be converted into decay
times that are more physically meaningful: τ = 1/d ωG. The results are summarised in
the following table:

τlinear τfree τforced
80±4 ns 53±6 ns 35±2 ns

Table 5.2: Values of the characteristic gyrotropic mode decay time, calculated from the damping
in the linear regime (figure 5.15), in the non linear free regime (figure 5.17) and in the non
linear forced regime (figure 5.9).

The analysis of the difference between these values sheds some light on the precise
nonlinear nature of magnetic dissipation close to the reversal threshold and on its de-
pendence on the amplitude of the vortex-core motion. This precise measurement of the
vortex magnetic damping is actually done for three different core positions (and speed,
which is connected) during its gyrotropic motion. In the linear regime, the core is very
close from its equilibrium position, the disc centre, and its speed is low. At the opposite,
in the forced regime the core is close to its maximal speed Vc and far from the disc centre.
Finally, during the free regime the core is probed in between and the fitted damping is
somehow the mean of the explored region.

This could be an argument to support the scenario proposed by C.Serpico, presented
in the section 3.3.2.5 of chapter 3 and developed in reference [39]. The effective magnetic
damping in the vortex state could be a function of the core velocity as d′ = dlinear+dnl|Ẋ|2.
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It is likely that this assumption could explain part of the non linear red-shift of the
gyrotropic resonance line as well.

5.6 The vortex core as a magnetic memory

The magnetic vortex state is a very interesting candidate for designing non-volatile random
access memories (MRAM) [30, 84]. We could take advantage of the novel properties
described in this chapter to build and optimise such applications [108, 77].

The key idea of such memory is to use the two vortex core polarities p = ±1 as a
magnetic bit, that can be easily read spectroscopically and written via the dynamical
reversal. The specific design of an efficient MRAM must satisfy several technical points,
which are fulfilled by a vortex based memory.

1. Non volatility : The numerical information must be stored as bits and kept in a
physical system that is stable in time and versus any perturbations, such as tem-
perature, magnetic fields, chocks... Moreover, the information should be stored in
a passive device. The magnetic vortex is the remanent and extremely stable state
of micro-discs made of magnetic materials, for example NiMnSb. The core polarity
used as a bit is stable over temperature (the Curie temperature of NiMnSb is Tc =
730 K) and magnetic fields, since the static reversal field of the core polarity is
typically in the tesla range. The core can be expelled from the disc by a smaller
in-plane field (≃ 0.1− 0.2 kOe), but smaller disc’s radius stabilise the core since the
static susceptibility decreases.

2. Low energy consumption: The main advantage of the vortex based memory is the
small magnetic volume involved in the data storage. The unit cell is a disc of
hundred nanometres in diameter, but the relevant part is the vortex core that is
only 10 nanometres in diameter. The writing process, which is the limiting process
in terms of energy consumption, only involves the reversal of the core volume, which
is very small. The resonant character of the switching reduces the energy cost as
well, since a microwave field of only a few Gauss is needed to reverse the polarity of
the core. Moreover, it will be shown that the reading process only requires a bias
field of the order of the linewidth, that is to say few tens of Gauss.

3. Integrated fabrication process : This magnetic memory can easily be realised us-
ing the standard planar micro and nano fabrication process: thin film growth and
lithography techniques are now well implemented in the industry.

4. Fast operation time: A crucial point is to be able to read and write the solid state bits
as fast as possible. This is a key advantage of the vortex. The reading process can
consist in measuring spectroscopically the core polarity via its gyrotropic frequency.
Moreover, the writing is done by flipping the core polarity taking advantage of
the resonant dynamical reversal. As shown previously, microwaves pulses at the
gyrotropic frequency can switch the polarity in less than 50 ns. This is of course
slow, and studies have demonstrated the core reversal with 100 ps pulses [134, 84],
the price to pay being more energy consumption.

The proof of concept of our vortex based MRAM will be made with the NiMnSb disc
of 1 µm in diameter and 44 nm thick. The disc, which is in the vortex state at remanence,
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represents a binary information coded with its core polarity: for example p = +1 is the 0
and p = −1 is the 1.

Taking advantage of the high dynamical susceptibility of the vortex state, the ”read/write”
process will be done resonantly using the gyrotropic core motion. Circularly polarised mi-
crowave fields could be used to discriminate between the two core polarities, but this field
geometry is rather complicated to create. The key idea is to produce a controlled splitting
of the gyrotropic frequencies, depending on the core polarity, with a perpendicular bias
field. The mechanism of this frequency splitting was explained in detail in the previous
section and its value can be evaluated using equation (5.2). To design a practical memory
cell it is necessary to choose the static magnetic field Hz in such a way that the field-
induced gyrotropic frequency splitting exceeds the linewidth ∆f of the gyrotropic mode,
which can be approximately expressed as ∆f = dωG/2π. Here, d is the damping in the
vortex state studied in the section 5.5. Thus, the minimum perpendicular bias field is
given by the expression:

Hz ≥
1

2
dHs (5.10)

It is crucial to select a magnetic material with a low damping to minimise the perpen-
dicular field strength. The NiMnSb is well suited with its intrinsic damping α = 2 10−3.
The aspect ratio β = L/R could also be increased as this leads to the decrease in the
saturation field Hs.

For this specific experiment, the perpendicular field is set to 65 mT. The splitting of
the gyrotropic frequencies is presented in the figure 5.18a. The spectra were recorded by
the f-MRFM for each core polarity, revealing a splitting of about 40 MHz between f+ and
f−. It is then very easy, using a simple linearly polarised microwave field, to discriminate
between the two core polarities.

The ”reading” procedure is illustrated on the figure 5.18c. A weak microwave field
is applied to the sample at the frequency f+, which excites the gyrotropic motion in the
linear regime. The microwave frequency chosen corresponds to the p = +1 gyrotropic
eigen-frequency: f+ = 254 MHz. The signal being given by the f-MRFM cantilever
amplitude, the microwave field is here modulated at the cantilever frequency. The result
is the following: if a cantilever deflection is measured, the gyrotropic mode with the
frequency f+ is excited and therefore the core polarity is +1 (red dots). At the opposite,
if no signal is detected, the gyrotropic motion is not excited at the frequency f+ and
therefore the core polarity is −1 (blue dots).

The writing process in a dot with initial core polarity equal to p = +1 is illustrated
by figure 5.18b. A strong Π+ pulse of duration w = 50 ns, frequency f+ and power
P = 100 µW (corresponding to a microwave magnetic field of µ0h = 3 mT), is able to
reverse, or ”write”, the core dynamically, as explained previously. The core reversal is
confirmed on the panel b by the change of the MRFM signal after the pulse. A second Π−

pulse at the frequency f− with the same characteristics reverses the core back to p = +1.
The process can be repeated without any error since it was shown that the core reversal
is deterministic after such pulses. To emphasise the robustness of the procedure, a Π−

(Π+) reversal pulse is applied to the opposite polarity p = +1 (p = −1) . As shown in the
right part of the figure 5.18b and 5.18c, the polarity remains unchanged after a ”wrong”
pulse.

The first step towards a real application is to build a dense array of these magnetic
discs. To avoid the crosstalk during the ”read/write” process of a particular cell, the
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Figure 5.18: a) MRFM spectra of the gyrotropic mode performed by varying the microwave
frequency at a fixed perpendicular field of 65 mT. A resulting splitting of 40 MHz is observed
between the opposite core polarities. b) and c) ”Write” and ”read” schemes of the vortex MRAM.
The polarity is determined by the f-MRFM amplitude while the core reversal is achieved with
short microwave pulses.

Figure 5.19: Proposed solid state design of the frequency controlled magnetic memory.

discs are placed on a square lattice separated by 10 µm. Moving the MRFM probe to the
neighbouring dots during the reading sequence allows one to check that the core polarity
in adjacent dots (situated 10 µm away) is unaffected by the core reversal process in the
selected dot. This is because the stray field produced by the f-MRFM probe is able
to localise the resonance in the dot placed underneath. Thus, it demonstrates that the
frequency-selective deterministic manipulation of the binary information can be achieved
locally.

Although the 1 µm NiMnSb device can be used as a prototype for the development
of a frequency-controlled magnetic memory, a series of improvements can be imagined to
make a more practical solid-state variant, presented in figure 5.19. First of all, it would
be useful to increase the dot aspect ratio to β = 1 in order to reduce the dot saturation
field Hs, and, therefore, the minimum perpendicular bias magnetic field to µ0Hz = 5
mT. In this case, a permanent magnet pinned perpendicularly and placed underneath
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the substrate could produce a static field of about 20 mT, sufficient to ensure reliable
operation of the memory.

The magnetic discs, arranged in a square lattice, have to be addressed separately.
This could be achieved using a combination of dc and microwave current lines (Irf and
±IW in the figure 5.19) intersecting on each dots. A dc current of only 5 mA could
produce an additional static Oersted field of 10 mT on the discs next to the current line
and the gyrotropic frequency inside these discs will experience an additional splitting.
The microwave line placed at 90 degrees can then address a single bit with the proper
frequency.

The f-MRFM reading and writing process have of course to be replaced by a full solid
state method. The reading could be done by local electrical detectors of the absorbed
power.

5.7 Higher order spin wave modes in the vortex state

5.7.1 Micromagnetic simulations

The spin wave spectrum of the vortex state is also composed of higher order modes
having azimuthal and radial symmetries, as explained in the last section of chapter 3.
Interestingly, the gyrotropic mode is coupled to their dynamics. The core reversal can
even be achieved by exciting these modes at high amplitude. Therefore, understanding
their dynamics is very important.

The transition between the saturated state, described in chapter 2, and the vortex
state is well illustrated by the micromagnetic simulations performed in reference [23].
The dynamic susceptibility tensor χi,j(r, ω) (i, j = x, y, z) of a permalloy disc (L = 50
nm, R = 500 nm) in the vortex state is calculated using a home made software. Due
to the rotational symmetry of the element, the in-plane susceptibility is expressed using
the circular polarisation basis resulting in two elements χ± defined as χ± = 1/2[(χxx +
χyy) ± (χyx − χxy)]. The choice of the in-plane components allows the modes excited to
be reproduced with an in-plane uniform microwave field linearly polarised. This quantity
is calculated versus the perpendicular field from the saturated state to the vortex state
having a polarity p = +1. The result is displayed on the figure 5.20.

Above the saturation field (around Hs = 9 kOe), the radial modes (l = 0,m) described
in the chapter 2 are seen in the χ− component. The azimuthal modes (l,m = 0) are not
seen since their symmetry doesn’t couple to a spatially homogeneous in-plane microwave
field. BelowHs, the low frequency gyrotropic mode is identified as 0−. It has the expected
dependence versus field and couples only to χ− because of the particular sense of rotation
of the core.

At higher frequency, several spin wave modes can be seen in the vortex state. They
exhibit an opposite dependence with the perpendicular field. In contrast to the saturated
state, they correspond to azimuthal modes. The magnetisation of the vortex is curling in-
plane and an in-plane excitation field could not couple to the radial modes. The azimuthal
modes can travel either clockwise or counter-clockwise around the disc, this is reason why
they can be seen in both χ− and χ+. Interestingly, the modes having indices l = ±1, 2...
are not degenerate in energy, as shown on the figure 5.20 for the modes 1± and 2±.
This is the signature of the non linear interaction with the vortex core, described in the
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Figure 5.20: In plane dynamical susceptibilities a) χ− and b) χ+ for a downward field sweep and
a positive field branch (p = +1). The high values are in black and the low ones in light gray.

previous section.

5.7.2 Experiments

These modes were experimentally studied by f-MRFM on the NiMnSb disc of 1 µm in
diameter and 44 nm thick. As explained in the theoretical section, the spatially uniform
microwave field delivered by our antenna has a non zero overlap only with the vortex
azimuthal spin wave modes. Only these modes could be investigated in this study, but
the f-MRFM gives access to their dependence upon a perpendicular applied field.

Following the numerical simulation presented on the figure 5.20, spectra at constant
frequency have been performed by sweeping the perpendicular bias field 10 kOe down
to zero field. The raw spectra are presented on figure 5.21a. The saturation field of the
NiMnSb disc being Hs ≃ 8.1 kOe, we have access to the spin wave spectrum in both
saturated and vortex states.

In the saturated state, the microwave excitation only couples to the radial spin wave
modes described in chapter 2. The first bright mode is the uniform mode (l = 0,m = 0)
and the following are the modes (l = 0,m = 1, 2, 3...). In the vortex state, the shape and
behaviour of the modes are completely different. Their dispersion relation is plotted on
figure 5.21b. The lowest frequency mode is the gyrotropic mode, which field evolution
follows the predicted dependence. Then, four well resolved higher order modes are seen in
the spectrum. The frequency of these modes decreases with the applied field, and goes to
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Figure 5.21: a) Resonance spectra on the individual disc of NiMnSb of 1 micron in diameter.
The dotted vertical line displays the saturation field Hs = 8.1 kOe of the NiMnSb disc, separat-
ing the vortex state from the saturated state. b) Dispersion relation of the different spin-wave
modes observed experimentally. Solid symbols have been obtained from field-sweep spectra at fixed
frequency. Open symbols have been obtained from other frequency-sweep spectra at fixed mag-
netic field. Solid lines in the saturated and vortex states (Hz < Hs) are theoretical predictions,
respectively. Dashed lines are guides to the eye.

zero at the saturation field. This negative slope of the frequency-field dispersion relation is
related to the decrease of the effective field probed by these modes in the unsaturated state
as Hz increases. It should be noted that the f-MRFM signal corresponding to these modes
in the vortex state is negative, meaning that the averaged component of magnetisationMz

along the applied field Hz increases at resonance, in contrast to the standard case observed
in the saturated state. These modes are identified with the azimuthal spin waves l = ±1
and ±2. Contrarily to the simulation presented figure 5.20, the two chirality are excited
at the same time. This is because the experimental microwave field, which is linearly
polarised, is the sum of two contra-rotating circularly polarised fields.

Even if the frequency of these modes are not well understood yet, there is a clear
continuity between the spin wave modes of the saturated state and the vortex state. The
static behaviour of the vortex structure under a perpendicular field induces a reversal of
the slope ω = f(Hz) of the modes. Moreover, as predicted by the theoretical analysis
and the numerical simulations, the degeneracy of the azimuthal modes is lifted by the
presence of the core in the vortex state.

5.8 Conclusion

The experimental results presented in this chapter echo the theoretical description given
in the previous chapters. Using the f-MRFM spectroscopy presented in the chapter 4, the
spin wave spectrum of isolated NiMnSb discs in the saturated state were measured. The
sets of eigenfrequencies could be well reproduced by the theory developed in chapter 2,
which allowed us to extract some of the physical parameters of the sample such as discs
real diameters, magnetisation, damping...
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Switching to the vortex state, the gyrotropic frequency was measured and its simple
dependence versus the disc diameter was confirmed. Then we have shown the striking
effect of a perpendicular bias field on the gyrotropic dynamics. The degeneracy in fre-
quency between the two polarities p = ±1 is lifted by the deformation of the vortex and a
Zeeman like splitting is observed. It is well explained by the calculation made in chapter
3.

Particular attention was then focused on the non linear dynamics of the gyrotropic
mode, leading to dynamical core reversal. After verifying the universality of the critical
speed Vc needed to reverse the core, we have demonstrated the ability to switch the core
resonantly with a single microwave pulse optimised in energy. The interest of combining
the Zeeman like splitting introduced by a bias field and the bi-stability of the core was
shown for the future realisation of vortex based magnetic memories. Nevertheless, open
questions remains about the evolution of the core reversal under a strong perpendicular
field. If the dependence of the critical speed is now understood, the physical origin of the
asymmetry between the “hard” and “easy” reversal has to be clarified.

This study of the core reversal was also an opportunity to study in a controlled manner
the non linear dynamics of the gyrotropic mode at high amplitude. Using two independent
experiments, we have shown that the relaxation time of the mode is increased by a factor
2-3 when it is probed close to the reversal threshold. This feature could attributed to
the coupling between the gyrotropic mode and the azimuthal spin wave developing in the
vortex plane.

This is why we have finally characterised the the spin waves of higher order in the
vortex state. Unfortunately, the symmetry of our microwave excitation can only couple
to the azimuthal modes. But we were able to measure the splitting of the modes having
opposite indices (l = ±1,±2...), which is the experimental signature of the coupling with
the gyrotropic mode.
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Chapter 6

Experimental results II: coupled

dynamics of magnetic dots

In this chapter, the role of the dynamical magneto-dipolar interaction in the collective
dynamics of coupled magnetic discs is investigated. Pairs of identical FeV nano discs
with various separation will be measured by f-MRFM. Evidences of the collective mag-
netisation dynamics in these nano structures are presented. The role of the geometry in
the dynamics of these dipolarly coupled pairs is particularly highlighted. Finally, this
analysis is extended to more complicated systems: four neighbouring FeV discs and an
asymmetric pair of NiMnSb discs.
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6.1 Introduction

The fundamental role of the magneto-dipolar interaction in describing the magnetisation
dynamics of magnetic systems was already emphasised in both the saturated and the
vortex cases. Its dominant contribution to the calculation of the spin wave spectra of
nano objects was introduced in the case of a single disc in the chapter 2 and 3.

But to improve the fundamental understanding of the magnetisation dynamics as well
as to realise practical applications, it turns out to be crucial to study arrays of these mag-
netic nanostructures [137]. By engineering their design, the properties of such arrays do
not reduce to the sum of the individual behaviours. The elements are strongly interacting
and collective properties are generated. This is, for instance, the purpose of magnonics
[81]. The aim of this emerging field of magnetism is to understand and control the spin
wave properties in periodically nanostructured magnetic materials. With these structures
it becomes possible to control spin waves in order to use them for information processing
or data storage applications. Moreover, in the field of spintronics, the synchronisation of
spin transfer nano-oscillators closely packed in arrays is also a promising way to improve
their spectral characteristics [46, 10].

Among all the coupling mechanisms (spin pumping, spin waves, magneto-exchange...),
the magneto-dipolar interaction is a key element to understand interacting magnetic el-
ements since it is a long range interaction. Moreover, regarding the nanometric size and
the shape of the elements of the arrays as well as the large magnetisation of the magnetic
material commonly used, this interaction becomes dominant.

The static dipolar interaction between each elements of the array obviously shapes
the static configuration of the magnetisation in the whole array. But the role of the
dynamic interaction is more striking: it allows a collective dynamics to appear in the
array. Studying this tiny component is usually difficult from an experimental point of
view since it requires to reach a regime where it is dominant. In order to be measured,
the strength of the dynamical coupling should exceed both the deviation range of eigen-
frequencies between coupled objects and the resonance linewidth.

6.2 Dynamical dipolar coupling in a pair of magnetic

nano-disks

The main questions to be addressed would be: how the static interaction modifies the
magnetisation of the system and in particular how the dynamical part of the magnetisation
of each structure can be coupled to give rise to a collective dynamics.

This problem being non trivial, we decided to perform a preliminary study using only
one pair of magnetic discs (single ferromagnetic layer) placed nearby laterally. Moreover,
this model system will be first studied in the perpendicularly magnetised state before
moving to the vortex state. As explained at the beginning of the chapter 5, the saturated
state of one nano-disc is well controlled. The main physics of the dipolar coupling will be
explored within this state before exploring more complicated magnetisation arrangement.

As detailed in the chapter 2, the problem of the magnetisation dynamics in two ferro-
magnetic discs placed in the vicinity of each other was solved analytically. If the frequen-
cies of the magneto-static modes excited in each discs are ω1,2, the collective dynamics is

Benjamin Pigeau



6.2 Dynamical dipolar coupling in a pair of magnetic nano-disks 115

composed of an anti-binding A and a binding B mode, whose eigenfrequencies are:

ωA,B =
ω1 + ω2

2
±
√(

ω1 − ω2

2

)2

+

(
Ω

2

)2

(6.1)

where Ω2 = 4γ2h1→2h2→1 is the coupling strength, corresponding to the frequency splitting
at the coupled mode anti-crossing. The cross term hi→j represents the demagnetising stray
field produced by the oscillating component of the magnetisation in the i-th disk projected
along the local deviation vector inside the j-th disk and averaged over its volume.

The key point is to measure accurately the coupling strength Ω between discs, which
is the key parameter of the coupled dynamics. Experimentally, this value corresponds
exactly to the coupled modes splitting ωA − ωB at the maximum of the coupling, i.e.
when ω1 = ω2.

To realise this measurement, two essential points are needed:

1. Ω has to be maximised and measured. We have to choose a ferromagnetic material
for the sample that maximise Ms while keeping a low damping α which produces
narrow linewidth. Moreover, the geometry should bring the sample in the strong
coupling regime.

2. To find a way to continuously tune and detune the relative resonance frequencies
between two nano-discs. As in any standard quantum mechanical experiment on
a coupled two levels system, a parameter has to be varied to reach the coupling
maximum. Moreover, for long wavelengths, the spin wave eigen-frequencies of our
oscillators are very sensitive to small imperfections in the confinement geometry
inherently linked to uncertainties of the nano-fabrication process. These frequency
differences have to be compensated to perform an accurate measurement.

6.2.1 Magnetic sample

In order to perform this study on dipolar coupling, a new sample was prepared. For
this purpose, the dipolar field radiated by the ferromagnetic discs should be increased to
maximise the investigated effect: the coupling strength Ω has to be maximised to exceed
the resonance linewidth as well as the the deviation range of eigen-frequencies between
coupled objects. The demagnetising field Hd of a disc is proportional to its saturation
magnetisation Ms and demagnetising tensor N̂ : Hd(r) = −4πMsN̂ (r). First of all, we
could play on the saturation magnetisation Ms.

The chosen material is a ferromagnetic alloy of Iron with 10% of Vanadium (Fe-V). Its
saturation magnetisation is very large, around 4πMs = 18 kG, but the intrinsic magnetic
damping is still in the same order of magnitude as the NiMnSb. This is very important
for our spectroscopic f-MRFM detection: to be detected, the dynamical coupling Ω has
to be larger than the resonance linewidth.

The geometry of the samples can be adapted to maximise the dipolar interaction as
well. The dipolar field strength, modelled in the demagnetising tensor, is a pure function
of the sample geometry: it only depends on the relative size. In particular, the coupling
strength remains unchanged if all the dimensions of the sample are scaled up or down
with the same geometrical factor. For instance, the demagnetising tensor of a magnetic
disc only depends on its aspect ratio L/R thickness over radius.
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Nevertheless, before choosing the final dimensions, intrinsic constraints have to be
considered. First, the degeneracy between spin wave eigenmodes must be lifted. It has
been shown in the theoretical description of chapter 2 and experimentally in the chapter 5
that the frequency splitting between spin wave modes is strongly dependent on the lateral
confinement. In that sense, the lateral size of the discs should be in the micron range to
get a sufficient splitting (see for instance the spectrum of figure 6.4). Higher order modes
(harmonics of the fundamental mode either along the diameter or the thickness) have
weaker dipolar cross-coupling, because their averaged transverse dynamic magnetisation is
smaller. As the dimensions of the disc increase, the splitting produced by the confinement
between higher order modes decreases. Once this splitting becomes of the order of Ω of
the uniform mode, the anti-crossing effect washes out, as the higher order modes will start
to cross in the gap region.

Moreover, the measurement of the dynamical coupling requires a magnetic material
with a low damping, which means a crystalline material. From a technical point of view,
it is very difficult to grow thick Fe-V films with a high crystalline quality. Therefore, the
thickness of the discs will be limited to a few tens of nanometres.

Figure 6.1: Dependence of the dynamical splitting Ω on the geometrical parameters of a discs
pair. a) The thickness and the separation are kept constant while the discs diameter is varied.
b) The thickness is varied at fixed radius and separation. c) The separation s and radius R are
varied with a constant s/R ratio.

Using the theory of the chapter 2 (see equation (2.58)) the geometrical dependence of
the dynamical splitting Ω for a disc pair can be calculated for the lowest spin wave mode.
First of all the diameter of the discs is fixed at 2 × R = 600 nm as well as their edge to
edge separation s = 200 nm, while the thickness is varied. The figure 6.1b shows that
the thickest disc pair has the highest Ω. Nevertheless, we have seen that this parameter
is constrained by the material quality required for this experiment. In practice, the Fe-V
films we have used are 26.7 nm thick.

We can also play on the disc diameter within a certain range while the disc separation
remains fixed at s = 200 nm. The figure 6.1a shows that, choosing the previous thickness,
there is an optimum in the disc diameter around 2 × R = 400 nm. Finally, in the figure
6.1c the ratio separation over radius is kept constant which highlights that, by keeping
the thickness constant, Ω is increased if the lateral dimensions are decreased.

One has to keep in mind that the intrinsic frequencies of the two discs must be very
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close to be able to see a collective dynamics. In that sense, if the diameter is too small,
the intrinsic frequencies ω1,2 could be too dependent of the imperfection of the fabrication
process. It is also very important to avoid magnetic contacts between discs, and for
lithography reasons, the separation should not be smaller than 100 nm.

Finally a good compromise is met with discs of diameter 600 nm and thickness 26.7
nm, while the pair separation is in the hundreds of nanometres range. As evidenced by the
figure 6.1, it ensure a dynamical splitting around 55 MHz, which can be easily measured
experimentally.

6.2.1.1 Nano-fabrication

The Fe-V samples were prepared at the University of Nancy and we are greatly indebted
to K. Mitsuzuka, D. Lacour, M. Hehn, S. Andrieu and F. Montaigne for this beautiful
and very precise work [16, 61, 95].

A 26.7 nm film of Fe-V (10% of V) was deposited by co-evaporation of Fe and V on an
MgO(001) substrate by molecular beam epitaxy operating with a base pressure of 8x10−9

Pa.

Figure 6.2: Iron Vanadium pairs of discs. The thickness is 26.7 nm for a diameter of 600 nm.
Three different edge-to-edge separation s are chosen. The four disc arranged in square are a
trial toward more complicated geometry. The yellow stripe is the constriction of the microwave
antenna grown on top, as seen on the top inset.

The film is patterned into discs by e-beam lithography and ion milling techniques. As
shown on figure 6.2, the geometrical pattern consists in three sets of nearby disks pairs
having the same nominal diameter 600 nm but different edge-to-edge separations: s = 200
nm, 400 nm and 800 nm. An empty interval of 3 microns separates each set to avoid cross
coupling phenomena. On the right, a single disc of 600 nm in diameter was patterned as
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a reference oscillator. Finally, as a trial towards more complicated arrays, four discs with
the same diameter arranged in square were prepared on the left.

The discs were then capped with a 50 nm layer of an insulating resist (SiO2) and the
300 nm thick gold microwave antenna, described in the section 4.3.4 of chapter 4 and
shown in the inset of figure 6.2, was patterned on top. This sample, connected to the
microwave source, is introduced in the f-MRFM and the magnetic probe is placed above
at an altitude of 1.8 microns.

The discs are perpendicularly magnetised (along the uz-axis) by an external field
of 17.2 kOe. This field is sufficient to magnetise all the discs in the saturated state.
Unfortunately, the external field is slightly tilted in the x direction by the polar angle
θH ≃ 2Â◦. Our current setup does not allow in-situ correction of this small misalignment.
This parameter will be taken into account in the theoretical description of our experiments.

6.2.1.2 Magnetic properties

The magnetic properties of the Fe-V film were studied by cavity FMR, with the same
procedure as for the NiMnSb film of the previous chapter. The results are summarised in
the following table 6.2.1.2:

Ms(emu.cm−3) Ha(G) α γ(rad.s−1.G−1)
1353 -500 2×10−3 1.76×107

Table 6.1: Fundamental magnetic parameters of the Fe-V thin film: saturation magnetisation,
fourfold anisotropy field, damping and effective gyromagnetic ratio.

A complete standard MFM study was performed at zero field to investigate the vortex
state in these discs [95]. The same Fe-V film was used, but patterned in larger discs of
diameter 3.15 microns. An MFM image from this study is presented on the figure 6.3.
The vortex structure is well identified in these image while no evident magnetic defects

Figure 6.3: Standard MFM image at remanence of Fe-V discs of diameter 3.15 microns and
thickness 26.7 nm from reference [95]. The easy (E.A.) and hard (H.A.) axis of the fourfold
crystalline anisotropy of Fe-V are shown.

or impurities can be seen. Notice that the crystalline anisotropy of Fe-V is cubic, with
two easy axes (E.A) at ninety degrees in the plane of the film. This is illustrated by the
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deformation of the vortex structure in these images, showing four Landau domain walls
aligned with the anisotropy hard axis. These walls are magnetic features of vortices in
square elements and vanishes in soft magnetic discs because of the symmetry.

6.2.2 Single oscillator properties

In order to calibrate the properties of our magnetic oscillators, the individual 600 nm
disc is first investigated as a reference. Its magnetisation is saturated out of the disc
plane and a spectrum at a constant frequency (ω/2π = 7 GHz), shown on the figure
6.4, was performed. Because of the magnetic confinement, magneto-static modes well
separated in frequency are seen. The first bright mode, of fundamental importance in the
following, is identified as the uniform spin wave mode (l = 0,m = 0). The other modes
seen at higher energies are difficult to label. The microwave field is spatially uniform and
should only couple to the radial spin wave modes. But the slight misalignment of the
external perpendicular field could promote the excitation of combinations of azimuthal
modes. Moreover, the fourfold anisotropy of the Fe-V should be taken into account in the
calculation of the spin wave spectrum presented chapter 2.

Figure 6.4: Spectrum of the Fe-V disc of 600 nm in diameter, perpendicularly magnetised. The
field was varied at a constant frequency of f = 7 GHz. The first and bright mode corresponds to
the uniform precession of the magnetisation.

Nevertheless, this spectrum confirms that the lateral confinement in discs of 600 nm
in diameter is enough to achieve a significant separation of the spin wave modes energies.

6.2.2.1 A uniform spin-wave mode based oscillator

The lowest spin-wave mode (l = 0,m = 0) at ≃17.8 kOe, corresponding to the uniform
precession of the magnetisation, will be the base of our oscillator. The uniform modes
of each disc constitute our oscillators and their coupled dynamics will be investigated
experimentally.
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This particular mode is chosen because of its simple geometry. Moreover, because in
this mode all the magnetisation is precessing in-phase around the equilibrium field, the
dipolar stray field radiated by the dynamical part of the magnetisation is enhanced. As
explained earlier, this dynamical dipolar stray field is the driving force of the coupled
dynamics.

The frequency of this mode, around 5 GHz for the fixed field of 17.2 kOe is ideally
situated regarding the efficiency of our broadband microwave excitation. Furthermore,
the theoretical description of the uniform mode, developed in the chapter 2, allows us
to understand and calculate with high accuracy its eigen-frequency in any environment.
In particular an analytical formula is available for the dynamical cross term hi→j in this
geometry.

6.2.2.2 Continuous tuning of the oscillator eigen-frequency

A crucial point is to find an external knob to couple and uncouple our pairs of oscillators,
i.e., to be able to tune continuously, and differentially, the frequency of the uniform
mode in each disc of the pair. This is even more important since the eigen-frequency of
the uniform oscillation depends strongly on the disc diameter. From the nano-fabrication
point of view, it is rather impossible to reach a nanometre precision for the discs diameter,
and the ability to tune the frequency externally is very important.

Figure 6.5: a) The MRFM probe (green sphere) is sketched over the Fe-V sample. The probe
produces a stray field on the discs that is inhomogeneous in the radial direction x. b) Dipolar
field maps of the z-component of the probe stray field, few tens of nanometres over over two
discs, calculated considering the iron sphere as a magnetic dipole. Three probe radial x positions
are considered.

In Magnetic Resonance Imaging (MRI), the physical information is spatially coded by
localising the resonance frequency in space using a strong field gradient. The key idea is
to take advantage from our scanning probe measurement technique, sketched on the figure
6.5a, to copy the MRI method [83]. The f-MRFM probe, placed 1.8 µm over the discs,
produces its own stray field Hsph(r) since this is a magnetic iron particle, perpendicularly
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magnetised and saturated as well, see figure 6.5a. We will consider in the following that
the stray field of the tip approximately reduces to the dipolar field created by a punctual
magnetic moment msph = 4× 10−10 emu placed at its centre. This approximation is valid
since the global shape of the iron magnetic particle is spherical, as confirmed by the SEM
image of the figure 4.5a. Moreover, its magnetisation is well saturated at 17.2 kOe. The
saturation field of a magnetic sphere is indeed 4πMs/3 which gives approximately 6.5 kOe
for iron with 3 % of silicon.

Following this assumption, the stray field from the probe at the position r is given by:

Hsph(r) =
3(msph.ur)ur −msph

r3
(6.2)

where the norm of the distance between the sphere centre (Xs, Ys, Zs) and r is r and
ur = r/r is the unit vector in the same direction.

This dipolar field is added to the external uniform field Hz at the sample, but it is
strongly non-uniform in the radial direction. As in the MRI setup, the role of the sphere
is to create a lateral field gradient gzx = ∂Hsph.uz/∂x on the sample. By scanning the
cantilever/tip at constant height over the sample, the total magnetic field applied on each
disc can be modulated differentially, while providing a local MRFM detection.

In the figure 6.5b, a calculation of the z-component of the probe stray field over the
discs for three cantilever lateral positions demonstrates that the total external magnetic
field Hz +Hsph(r) applied on each disc can be varied and even continuously and differen-
tially tuned.

Using this procedure allows us to spatially code the oscillation frequency. Indeed, the
uniform mode frequency is given by ω0,0 = γHeff where the effective field Heff explicitly
contains Hsph.

To confirm the role of the f-MRFM probe as a field gradient, the following experiment
is performed. The tip is scanned in the x direction (with 100 nm steps) at an altitude
h = 1.7 µm over the the isolated 600 nm disc, placed at (x = 0, y = 0, z = 0). At each
probe position, a spectrum is acquired by sweeping the microwave field frequency ωrf

produced by the antenna. The frequency and relative amplitude of the uniform mode are
then measured by the f-MRFM. The result is shown on the figure 6.6a in a density plot,
the f-MRFM amplitude being displayed in colour code.

Two main observations can be made:

1. The frequency shift is maximum when the probe is at the vertical of the disc cen-
tre and then decreases. The slope is proportional to the lateral field gradient gzx
produced by the sphere. For h ≫ 2R, it is maximum at about x ≈ 0.39h. At this
location, the gradient is about gzx ≈ 2.7msph/h

4. For our settings, this corresponds
to a slope of about 0.3 GHz/µm. The total shift produced by the tip stray field is
about 0.5 GHz, which is enough to compensate the nano-fabrications imperfections.
For comparison, a 0.3 GHz variation of the eigen-frequency is equivalent to a change
by 10% of the disc diameter.

2. The f-MRFM amplitude, in colour code, depends on the probe position as well. The
sensitivity of the measurement is indeed a function of the probe-sample absolute
distance r. If ∆Mz is the variation of the sample magnetisation induced by the
FMR resonance, the force acting on the cantilever is given by: gzz(r)∆Mz. Thus
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Figure 6.6: a) Uniform spin-wave mode frequency of the single disc of 600 nanometres in di-
ameter as a function of the f-MRFM probe lateral position. The mode amplitude is displayed
in colour code. The probe, of magnetic moment msph = 4× 10−10 emu, is placed at an altitude
of 1.7 µm. b) Calculation using the theory of chapter 2 performed with the same experimental
parameters. The angle of the perpendicular field was set to θH = 1.7Â◦ to reproduce the data c)
Result of the same calculation without field angle.

the maximum of the amplitude is also found when the probe is just over the disc.
The gradient gzz decays as the power 1/x5 for large lateral displacement x, and the
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measured amplitude decreases as well. Experimentally, the signal decreases by one
order of magnitude when the probe is displaced by 1.2 µm laterally. The 3 µm
gaps let between pairs of discs can then be considered sufficient to avoid parasite
cross-talks between different sets of discs.

Nevertheless, these preliminary observations are incomplete regarding the real exper-
iment of the figure 6.6a. The observed behaviour of the uniform spin wave frequency
is more complicated. In particular, the bell shape of the curve is not symmetric and
the maximum frequency shift is not aligned with the sample location. Moreover, the
maximum of the f-MRFM amplitude does not coincides with the maximum frequency
shift.

Experimentally, the disc is nearly perfectly cylindrical (see the SEM image of figure
6.2) and the tip is scanned symmetrically at constant height over the disc, passing exactly
over its centre. Indeed, the f-MRFM acts also as a standard MFM and the cantilever
frequency shift allows to find precisely the centre of the disc.

The asymmetry observed experimentally is then attributed to the slight misalignment
of the external field with the disc normal uz. In order to confirm this assumption, we
have performed calculations of the uniform mode frequency shift under the influence of the
magnetic probe. For the single 600 nm disc placed in x = 0, the uniform mode frequency
taking into account the f-MRFM probe placed in the position (x = (Xs, Ys, Zs) is given
by [102]:

ω0,0(x) = ωFMR + γ{Hsph(x).uz} (6.3)

where the first term is the resonance frequency in the absence of the sphere and the second
term is the gyromagnetic ratio γ times the spatial average of the z-component of the stray
field of the sphere over the disc volume:

γ{Hsph(x).uz} = γ
〈J2

0 (k0
√
x2 + y2/R)Hsph(r).uz〉V
V J2

1 (k0R)
(6.4)

Here k0 = 2.4048/R is the uniform mode wave vector, R is the disc radius and J are
the zero-th and first-th order Bessel functions of the first kind. In this formula, the field
produced by the f-MRFM probe is averaged over the disc volume V taking into account
the uniform mode profile (see chapter 2).

Because the probe is spherical, it has no shape anisotropy and we will consider that
its magnetisation follows the external field. The external field is tilted from the normal
by the polar angle θH . Even if the single disc experiment presents an axial symmetry, an
azimuthal angle φH has to be introduced because the direction of the probe scan breaks
that symmetry. Therefore, the probe magnetisation is given by:

msph = msph

∣∣∣∣∣∣

cosφH sin θH
sinφH sin θH
cos θH

(6.5)

For each probe lateral position x = Xs, the equilibrium configuration of the disc
magnetisation is calculated. The norm Htot = ||Hext + Hsph|| and orientation θtot =
cos−1[Htot/((Hext +Hsph).uz)] of the total external field are used to calculate the equi-
librium angle θM of the magnetisation. The uniform spin wave frequency f0,0 = ω0,0/2π
is then calculated using the formula (2.44) of chapter 2.
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The amplitude A(x) is proportional to the force acting on the f-MRFM cantilever.
This force is proportional to the field gradient created by the precessing magnetisation in
the disc at the probe centre [76]:

A(x) ∝ Fz =

∫

V

∆Mz(r)gzz(r)d
3r (6.6)

where ∆Mz is the dynamical variation of the longitudinal component of the magnetisation.
This equation also allows a better understanding of the f-MRFM amplitude. The variation
with the probe position is given by the radial profile of the field gradient gzz(x). It becomes
eventually negative which leads to the negative amplitude measured on the figure 6.6a far
from the disc, and reproduced in the calculation figure 6.6b.

In our case, we are interested in the variation of this amplitude with the radial probe
position. The spin wave amplitude, proportional ∆Mz, is constant since the microwave
excitation is constant. Therefore the amplitude is simply proportional to:

A(x) ∝ ∂(N̂ .M (x))

∂z
.u⊥cant (6.7)

where N̂ is the demagnetising tensor of the single 600 nm disc projected along the
magnetisation equilibrium position M at the probe position x. To be more realistic,
the force is also projected perpendicular to the cantilever beam u⊥cant, which is tilted
by 15Â◦ with respect to the xy plane. In the figure 6.6b, the spectra are simply dis-
played using Lorentzian functions of frequency fo,o(x), amplitude A(x) and linewidth
∆f0,0 = 2αFeV f0,0.

In this calculation, all the experimental parameters were used: probe magnetisation
and altitude, disc diameter and magnetic properties from the table 6.2.1.2. The only
free parameters were the two polar angle (θH , φH) describing the external field. The best
agreement with the experiment was found with θH = 1.7Â◦, φH ≃ 0Â◦: the external field
is tilted by 1.7 degrees in the direction of the scan.

All the characteristic features of the experimental diagram are well reproduced by the
calculation: the asymmetry in frequency and amplitude as well as the position of the
maximum frequency shift. Thus the ingredient introduced by the external field angle
seems to be sufficient to explain the experimental behaviour. To support this statement,
the result of the symmetric calculation (θH = 0Â◦, φH ≃ 0Â◦) is plotted figure 6.6c. The
asymmetry disappears and the frequency of the spin wave mode could not be reproduced
quantitatively.

Moreover, the frequency shift calculated with the formula (6.3) corresponds to an
averaged additional field from the probe of 14 mT at the maximum. Such variation is
small compared to the static perpendicular field of 1.72 T, thus the tuning of the spin
wave frequency is done without significant deformation of the uniform mode profile.

6.2.3 Experimental results on a pair of discs

All the ingredients for the experiment, field gradient and sensitivity, have been calibrated
on the single disc. The experiment of the figure 6.6a can now be performed with a pair
of discs.
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Figure 6.7: Frequencies of the uniform/coupled spin wave modes for pairs of discs of 600 nm in
diameter as a function of the f-MRFM probe radial position. The tip is 1.7 µm above the discs
and the edge-to-edge separation is a) 800 nm, b) 400 nm and c) 200 nm.

6.2.3.1 Measurement of Ω

Let us first begin with the pair of discs separated by s = 800 nanometres edge-to-edge.
Since the dipolar interaction decays rapidly in the radial direction, the strong coupling
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regime is not achieved for such large separation. Nevertheless, the experiment, presented
in figure 6.7a provides an interesting result. The field gradient gzx(x) created by the tip is
able to tune the uniform mode frequency, as seen for a single disc, but differentially in each
discs depending on their relative positions. This diagram is simply the superposition of two
bell-shaped curves from a single disc (see figure 6.6a), shifted radially by x = s+2R = 1400
nm. The difference between the two maxima in frequencies is attributed to the differences
of nominal diameter between the two discs. This point will be discussed in detail in a
following section.

Moreover, these frequencies eventually cross when the probe is close to the middle
of the pair (x = 0 here). We demonstrate here the ability to continuously tune and
detune the frequencies of our coupled oscillators as well as the possibility to reach the
compensation point ω1 = ω2.

Once this crucial demonstration is done, the strong coupling regime can be investigated
with the pair separated by only s = 200 nm. The resulting diagram, shown on the figure
6.7c, also presents two frequency maxima at xi,j = ±400 nm, whose spatial separation
corresponds to the centre-to-centre distance between disc i and disc j. But unlike in the
figure 6.7a, the two bell shape curve do not cross but instead anti-cross. This is the first
evidence of a coupled dynamics. The two modes observed here could not be attributed
any more to individual uniform modes in each discs. They correspond to the coupled
modes of this system, whose frequencies are given by the formula (B.1).

The upper branch, with the highest frequency ωA, is the anti-binding mode. The
magnetisation is precessing uniformly in both discs but with a π phase difference: this is
an optical mode. The lower branch, with the lowest frequency ωB, is the binding mode.
The magnetisation is also precessing uniformly but in phase in both discs: this is an
acoustic mode.

Figure 6.8: Procedure to measure the experimental dynamical splitting Ω, in the case of the pair
separated by s = 200 nm.

At the expected crossing between ωi and ωj, the experimental splitting ωA−ωB exactly
measures Ω:

ωA − ωB = 2

√(
ω1 − ω2

2

)2

+

(
Ω

2

)2

reduces to Ω if ω1 = ω2 (6.8)
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For each pair separation s, the coupling strength is accurately measured with the pro-
cedure illustrated in the figure 6.8. The frequencies of the coupled modes are extracted
from the experiment by fitting the spectra with Lorentzian functions. Their difference
ωA−ωB, plotted as green dots on figure 6.8, is then fitted with the equation (6.8) with Ω
as an adjustable parameter. In this experiment, only the frequency shift ∆ω1,2 induced
by the tip field gradient is relevant. The individual frequencies ω1,2 are calculated using
the same analytical expression as in equation (6.3): ω1,2 = ω(x−x1,2). The result of such
fitting procedure for the pair with s = 200 nm is shown by the blue curve in the figure
6.8. The fitted values are the data points of figure 6.13.

6.2.3.2 The mode amplitudes: a signature of the collective dynamics

The other striking effect revealed in the figure 6.7c is the strong variation of the signal
amplitude near the optimum coupling. In order to perform a more quantitative analysis
of this phenomenon, we have plotted the f-MRFM amplitude (for the pair s = 200 nm)
measured for both coupled modes as a function of the tip position on the figure 6.9d. Close
to the region of optimal coupling, the anti-binding mode (A) amplitude nearly vanishes,
while the amplitude of the binding mode (B) is strongly enhanced.

Figure 6.9: a) Stray field gzz at the probe location from two uncoupled discs separated by 200
nm. b) and c) Coupled spin wave amplitude in each discs of the pair s = 200 nm versus probe
position for the binding B and anti-binding A coupled modes. d) Amplitude of the coupled modes
measured by f-MRFM (dots) and calculated (solid lines) as a function of the tip position for the
pair separated by s = 200 nm. A corresponds to the optical mode while B is the acoustic mode.

First of all, the behaviour of the intrinsic coupled modes amplitudes has to be un-
derstood. If the two discs were uncoupled, a force proportional to the field gradient Gzz

created by both discs at the probe centre would be applied on the cantilever. This force
was calculated for one disc by the equations (6.6) and (6.7). In the figure 6.9a, the field
gradients arising from two uncoupled discs separated by 200 nanometres are plotted ver-
sus the probe lateral position. The resultant measured amplitude would be proportional
to the sum of these two contributions.

In our case, the two discs experience a coupled dynamics, which modifies the f-MRFM
amplitude. In the case of a single disc, the real spin wave amplitude had no dependence on
the probe position and was only a function of the microwave excitation strength, the signal
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being only given by the f-MRFM sensitivity at the position x. For the coupled modes,
the spin wave amplitudes are given by the eigen-vectors of the coupled system presented
equation (2.59) of chapter 2. The amplitude is distributed with a certain weight between
both discs, while the magnetisation precesses in or out-of-phase for each modes. We recall
that the ratio of this hybridisation in each disc is given for both coupled modes by:

c1
c2

∣∣∣∣
ωA,B

=

(
(ω1 − ω2)∓

√
(ω1 − ω2)2 + Ω2

Ω

)∓1

(6.9)

where c1(2) is the amplitude of the magnetisation precession in the disc 1(2). Notice that
the ratio depends on the intrinsic frequencies of each discs ω1,2(x). These frequencies are
a function of the probe position. Consequently, the ration of hybridisation of the coupled
modes amplitudes will depend on the probe lateral position.

The spin wave amplitude in each disc corresponding to the coupled modes are plot-
ted on the figure 6.9b and c for the anti-binding and binding modes. These curves are
calculated with the equation (6.9) using a normalisation imposed by the phase of the
precession: (c1 + c2) = 1 for the binding mode (B) and (c1 − c2) = 1 for the anti-binding
mode (A).

Taking into account the ratio of hybridisation of the coupled modes in the two discs,
we have:

A(x) ∝ h2rf |c1 + c2|2[c21Gzz(x− x1) + c2jGzz(x− x2)] (6.10)

By using explicitly this equation, the dependence of the amplitude versus the tip position
x can be calculated. The result (solid lines) is compared to the experimental values (dots)
in the figure 6.9a.

The overlap of the uniform microwave field with the coupled mode is determined by the
the selection rule |c1+ c2| . The curve B of the binding mode is easily understandable: at
the optimum of the coupling, equation (6.9) leads to c1 = +c2. The binding amplitudes
presented on the figure 6.9c highlight this fact: at the anti-crossing the precession is
equally distributed in the two discs with the same phase. Therefore, this coherent coupling
represents and enhancement of the amplitude by a factor of 4 compared to the single disc
amplitude.

In the opposite, at the anti-crossing, the anti-binding mode A has c1 = −c2. The
precession has also the same weight in both discs, but occurs out-of-phase, as can be seen
on figure 6.9b. The vector sum of the precessing magnetisation in the two disks vanishes
at this point and the overlap integral between the rf excitation field and this collective
mode is zero. In other words, the spatial symmetry of the rf field is not appropriate to
couple to this spin wave symmetry: the mode is not physically excited. Therefore, the
amplitude of this optical mode vanishes.

In conclusion, the behaviour of the mode amplitudes measured by f-MRFM and pre-
sented on the figure 6.9d is a strong evidence of the collective dynamics of our pair of
discs.

6.2.3.3 Effect on the mode linewidth

One of the goal of building arrays of spin transfer oscillators is to reduce the linewidth
of the microwave emission. In the case of STNOs, the magnetisation auto-oscillation is
the result of a strongly non linear process, which usually increases the linewidth of the
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modes by enhancing the thermal noise [122]. As pointed out in the introduction, the
phase locked emission of an STNOs array is a promising way to reduce the noise, thanks
to improved coherence.

Figure 6.10: Effect of the dipolar coupling on the modes linewidths. The uniform mode in the
single disc b) and the acoustic mode at the coupling maximum in the s = 200 nm pair a) are
compared.

In our experiment, we are looking to the coupled eigen-modes of the system, using a
small linear rf excitation. Therefore, the measured linewidth should not differ too much
from the intrinsic Gilbert damping α: ∆f/2f ≃ α.

Nevertheless, the comparison between the linewidths of the coupled mode of a pair
and the uniform mode of the single disc reveals some differences. In the figure 6.10a,
the linewidth of the binding mode in the pair s = 200 at the optimal tuning is found to
be ∆f = 22.3 ± 0.5 MHz. It becomes even slightly larger ∆f = 23.1 ± 0.5 MHz at the
maximum detuning x = x1,2. In figure 6.10b, the linewidth of the single disc uniform
mode is ∆f = 21.4± 0.5 MHz.

A small increase of the ratio ∆f/2f is thus observed. It is expected for the dynamically
coupled modes. As explained previously about the dissipation in the vortex state (see
chapter 5, section 5.5) the quality factor of a resonance equals the damping α in the
case of the uniform spin wave mode in a perpendicularly magnetised thin disc, where
the magnetisation precession is circular. This is the case of the single disc, for which we
recover ∆f/2f ≃ 2× 10−3 = α. Any deviation from the circularity causes an increase of
the linewidth, since the minimum is found for a circular precession.

In the case of the collective modes in a pair of discs, the driving field of the coupling is
the dynamical dipolar field hi,j = 2πMs

(
{N i,j

xx}+{N i,j
yy }
)
. The key point is the asymmetry

β = {N i,j
xx}/{N i,j

yy } = −2 that reveals a ratio of two between the demagnetising tensor cross
elements. This formula reflects that the magneto-dipolar cross interaction is anisotropic
and thus, it induces an elliptical precession in the two discs. An analogy can be done
between the binding mode in a pair of dipolarly coupled discs and the uniform mode in
an ellipsoidal ferromagnet. In this case, two asymmetric stiffness fields Hx and Hy are
introduced, characterising the torque exerted on the magnetisation when it is tipped along
the x- or y-axis. The inverse quality factor of the resonance is given by [48]:

∆f/f = α
(Hx +Hy)√

HxHy

(6.11)
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For the collective acoustic mode B, measured in the figure 6.10a, the induced ellipticity
E is maximum at the anti-crossing and directed along the long axis x of the pair. To put
numbers, the ellipticity, given by E = β−1

β+1
Ω
ωB

, is about 3%. An increase of ellipticity
induces an increase of the linewdith, a behaviour which is consistent with the small
additional broadening measured in our experiment.

6.2.4 Theoretical analysis

Using the theory of the collective dynamics developed in the chapter 2, the calculation
performed for a single disc on the figure 6.6b can be extended to the case of a pair of discs.
Performing such calculation will allow a precise understanding of the coupled diagrams
presented figure 6.7. Indeed they present different kinds of asymmetries that must be
interpreted physically.

The frequencies ωA,B of the coupled modes is simply given by the equation (B.1). The
individual frequencies of each oscillators ω1,2 must take into account the static demag-
netising field created by the neighbouring disc, as explained in the last section of chapter
2. The same external field tilt of θH = 1.7Â◦ is considered here and the magnetic parame-
ters remains unchanged compared to the single disc calculation. The only free parameters
are the diameters of the discs that are adjusted to fit the asymmetries present in the data.

The new ingredients are the dynamical cross demagnetising fields responsible for the
dipolar coupling. Because the correction is very small, the calculation of the dynamical
splitting Ω does not take into account the deviation of the field from the perpendicular.
With {N i→j

xx,yy} the cross demagnetising tensor elements, it reduces to:

Ω = 4πγMs

√
({N1→2

xx }+ {N1→2
yy })({N2→1

xx }+ {N2→1
yy }) (6.12)

Aside from the saturation magnetisation Ms and gyromagnetic ratio γ, this is a pure
geometrical factor, only dependent on the discs aspect ratio L/R and the pair separation
s. This factor was calculated for the three disc separations considered in the experiment. It
was introduced with the intrinsic frequencies in the equation (B.1) to calculate the coupled
frequencies. In order to have a better understanding of the influence of the geometry, the
coupling strength was also calculated for a pair of discs of 600 nm in diameter versus the
edge-to-edge separation s. The obtained values are reported on the red line in the figure
6.13.

The amplitude of the coupled modes AA,B(x) are calculated with equations (6.10) and
(6.9), the factor of proportionality being given by the microwave excitation strength.

Finally, the diagrams presented on the figure 6.11 are displayed using using double-
Lorentzian functions for each probe lateral positions, with the frequencies ωA and ωB ,
amplitudes AA(x) and AB(x) and linewidths corresponding to the damping α of the Fe-V.

A good agreement is found with the experimental diagrams by taking into account:

1. The tilt (θH = 1.7Â◦, φH = 0Â◦) of the external field with respect to the normal of
the disc plane. It reproduces the asymmetries already presented for the single disc:
maximum of the frequencies not aligned with the maximum of the amplitudes and
optimal coupling shifted from x = 0.

2. Small differences between the nominal diameters in a pair of discs. A difference of
at most 4% between the diameters in a pair is able to explain the difference between
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Figure 6.11: Calculation of the collective modes frequency and amplitude for the three pairs of
discs presented figure 6.7. The separation is s = 800 a) 400 b) and 200 nm c). The radius of
each discs used in the model are indicated. For each diagram, the probe altitude is h = 1.8µm
and the angle of the bias field is (θH = 1.7Â◦, φH = 0Â◦)

the two frequency maxima. The nominal diameters used in the calculations are
given for each pair in the figure 6.11.
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6.2.5 Numerical simulations

The analytical model used above to analyse the data assumes a uniform magnetisation
throughout the magnetic body and does not take the elliptic precession of the magnetisa-
tion into account. Moreover, it is assumed that the mode profiles are not affected by the
coupling, which is not exact in the strong coupling regime. To take more precisely into
account the 3D texture of the magnetisation, as well as the real influence of the magnetic
probe, micromagnetic simulations have been performed.

Figure 6.12: a) Simulation of the collective mode frequency as a function of tip position x for
the pair separated by s = 200 nm. The amplitude is displayed in colour code. The calculation for
two uncoupled discs is shown in dashed lines for comparison. The in-phase A and out-of-phase
B modes dynamical magnetisation configuration is shown at the anti-crossing.

We have used the software SpinFlow3D, a finite element solver developed by In Sili-
cio [132]. The discs are discretised with a mesh size of 10 nm using a Delaunay mesh
construction. This mesh size allows to take adequately the dipolar pinning and the
static/dynamical deformation of the magnetisation into account. At each position of
the probe, we first calculate the magnetisation equilibrium configuration in the discs,
which is in reality slightly distorted by the static dipolar interaction between the two
discs and the real probe stray field. The Arnoldi algorithm is then used to compute the
lowest eigen-values of the problem as well as the associated eigen-vectors, corresponding
to the collective dynamics.

The experimental parameters, such as Fe-V magnetic constants, probe magnetisation
and altitude, disc geometry... are introduced in the simulation. The result for the discs
pair separated by s = 200 nm is shown on the figure 6.12, to be compared with the figure
6.7c. The frequencies and amplitude of the binding and anti-binding modes are well
reproduced as well as their frequency splitting Ω. Notice that the field angle θH = 1.7Â◦

was not taken into account in this simulation.
For comparison, the frequencies of the single discs are shown as dashed lines. The

two analytical frequencies ωi,j, calculated using the spin wave theory of the chapter 2, are
superimposed on the simulated coupled modes frequencies. It highlight the anti-crossing
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of the coupled modes.

Within this simulation, it is possible to extract the phase of the magnetisation preces-
sion as well as the mode profile in each disc. In the figure 6.12, these profile are presented
for both optical A and acoustical B modes at the anti-crossing. As expected, the phase
between discs is π and 0, while the amplitude is equally distributed.

If the tip is shifted from x = 0, the discs are in a partial hybridisation state but the
phase between discs in each modes remains unchanged: this ”rigidity” is the signature
of the collective motion. However, as the individual frequencies ωi,j are different, the
amplitude is distributed in each disc with a different weight.

Finally, the same simulation is reproduced by varying the disc separation s and the
simulated coupling strength Ω is reported on the simulated curve of the figure 6.13.

6.2.6 Geometrical influence

The measurement and calculations of the dynamical coupling strength Ω as a function
of the separation s between the nano-oscillators is presented in the figure 6.13. The
experimental values (black dots) corresponding to the three pairs of disc of the figure
6.2 are compared with values predicted by both simulations (blue dashed curve) and
analytical calculations (red curve). The linewidth of the binding coupled mode ∆f at 5
GHz is shown to highlight the experimental ”visibility” of Ω.

The general agreement between our three different analysis of the problem is rather
good. The similar decay with s shown by the three sets of results supports this statement.
Nevertheless, the slight discrepancies that remains can be explained qualitatively:

1. For small disc separation s, the simulation and the analytical theory deviate from
each other, while showing a perfect agreement at larger s. At such small separa-
tion, the dipolar interaction between discs changes the static configuration of the
magnetisation which is no longer perfectly uniform throughout the magnetic body.
Moreover, the spin wave modes profiles are significantly distorted: they can no
longer be modelled by Bessel functions. These effects are not taken into account in
the analytical calculations, leading to an underestimated value of Ω.

2. The experimental values are systematically slightly below the predicted ones. The
horizontal error bars illustrate the assumption that the disc could be slightly smaller
than their nominal diameter, leading to an increase of the separation s. This is con-
firmed by the calculation of figure 6.11 where the diameters used in the calculations
are always below 300 nm. This could be explained by some oxidation at the periph-
ery of the discs.

In conclusion, the main result is that, within our experimental parameters, s needs to
be less than the diameter of the discs in order to have Ω larger than the linewidth ∆f . The
geometry chosen is of course very simple, but this result showing the clear evidence of a
collective dynamics is promising in order to realise more complicated arrays of oscillators.
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Figure 6.13: Coupling strength Ω as a function of the separation s between two discs. The
experimental measurements (black points), are compared with the analytical calculations (red
curve) and the micro-magnetic simulations (dashed blue curve).

6.3 Dipolar coupling: towards more complex geome-

tries

Now that the possibility to couple two magnetic nano-oscillators through the dipolar
interaction has been demonstrated, more complicated geometries can be investigated.
Two preliminary experiments have been performed. The first one with a set of four
identical discs placed in a square lattice. The second is with a pair of discs placed nearby
but with very different diameters.

6.3.1 Four discs test

It is of course natural to try the same experiment with more oscillators, since our goal
is to study wide arrays of them. The Fe-V sample, presented on the figure 6.2, contains
a set of four discs arranged in square, on the left. The diameter of the discs is the same
(600 nanometres) and they are separated by 200 nanometres edge-to-edge, on the sides
of the square (283 nm for the diagonal).

The figure 6.14a displays the four coupled eigen-modes of this system at the exact
tuning. The phase of the precession in each discs was extracted from SpinFlow3D simu-
lations, performed in the same way as for the pairs of discs. The lowest energy mode is
an acoustic mode: it exhibits a uniform in-phase precession of the magnetisation in the
four discs. In the three other modes, the precession phase varies from disc to disc around
the square. The highest energy mode is composed of two discs precessing with a π phase
difference with respect to the two others. In between, two degenerated modes exhibit a
phase varying by π/2 between each disc. Interestingly this mode arrangement follows the
same hierarchy as the azimuthal modes of a single disc. We can introduce the inter-discs

Benjamin Pigeau



6.3 Dipolar coupling: towards more complex geometries 135

indices (L,M) in analogy with the intra-discs indices (l,m). The mode corresponds to the
uniform mode (L = 0,M = 0), the degenerated ones have the symmetry of the azimuthal
mode (L = ±1, L = 0) and finally, the last mode is similar to (L = 2, L = 0). Regarding
the dynamical splitting Ω, values as high as 90 MHz could be achieved in this strongly
coupled geometry.

An experiment similar to the previous one is performed in order to measure the collec-
tive dynamics, and the coupling strength, of this system. The experimental parameters,
external field, probe composition and altitude, are kept the same. The resulting diagram,
shown on the figure 6.14b, is expected to be more complex. The f-MRFM probe is scanned
over the discs parallel to the square edges (x direction, see yellow arrows on the sketch),
starting from the middle (y=0). By performing several scans at different position y, we
tried to find the compensation point, were the four frequencies may cross.

Figure 6.14: a) Phase symmetry of the magnetisation precession of the four collective modes,
corresponding to the exact tuning of the four discs shown in the inset. b) Experimental frequen-
cies of the coupled modes of this system while the probe position is varied along x.

Unfortunately, the geometrical problem is experimentally slightly more complex than
before. With two discs, it is always possible to find a probe/field gradient position that
compensates the uniform mode frequencies ω1,2 of both discs, even if their diameter are
slightly different. In the case of four discs, it would have worked if the discs were perfectly
identical, the compensation point being at the centre of the square.

The diagram presented on the figure 6.14b is the best we could achieve experimentally.
At high detuning, the four different uniform modes can be seen, but we managed to make
cross only three of them. We believe that at this point, three modes are really coupled,
since the amplitude of the in-phase mode increases drastically while the amplitudes of the
two others vanish. Indeed, all the excited collective modes doesn’t couple to the uniform
microwave field, because of their wrong ”azimuthal” symmetry.

As a conclusion, because the strong coupling regime was reached with such small
inter-disc separations, a collective dynamics was observed in this geometry. However,
the slight difference of diameter between the discs prevents us two reach the exact tuning
point of the four discs. Therefore, it was difficult to extract quantitative information from
this experiment. For further development, it could be interesting to try the same with
only three discs placed on a equilateral triangle, for which it should be easier to find the
compensation point.
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6.3.2 Coupled dynamics of a strongly asymmetric pair of discs

This particular study is a good way to confirm the ability of our technique to compensate
the fabrication imperfections with the tip field gradient. Here, the diameters of the discs
have been chosen to be very different on purpose. We have used the 20 nanometres
thick NiMnSb sample presented in the section 5.2 of chapter 5. Indeed, the left of the
sample, reproduced on the figure 6.15a, is composed of three discs of nominal diameter
700, 500 and 400 nanometres, separated by 800 nanometres centre-to-centre. The discs
are saturated by a perpendicular field of 10 kOe.

Figure 6.15: a) Set of 3 NiMnSb discs of 700, 500 and 400 nm in diameter and 20 nm thick.
They are separated by 800 nm centre-to-centre. b) Diagram of the uniform mode frequencies in
each disc as a function of the f-MRFM tip position. The tip was scanned 1.6 microns above the
sample.

By using the measurement technique used previously, we will try to see the signature
of the uniform modes collective dynamics of the two largest discs. The f-MRFM probe is
scanned 1.6 microns above the sample and the uniform spin wave mode frequencies are
measured. The resulting diagram is presented on the figure 6.15b.

A rapid comparison with the two discs diagram of figure 6.7 reveals two main dif-
ferences. First of all, three bell-shaped curves are detected whose frequency maxima
corresponds to the three discs locations, as sketched at the bottom: these frequencies
are very different, which is the signature of the differences in diameter (the larger the
diameter, the lower the frequency).

Nevertheless, the gradient gzx introduced by the tip is able to overcome these frequency
differences, and make them cross three times in the diagram (see the white dots on the
figure). Notice that to compensate the frequency difference, the total magnetic field has
to be very different in each disc and the crossing point is no longer in between a pair. In
the following, we will concentrate on the second crossing, which happens when the tip is
just over the largest disc.
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Figure 6.16: a) Coupled mode amplitudes corresponding to the two largest NiMnSb discs around
the compensation point. b) Zoom of the figure 6.15 showing the region of maximum coupling
above the 700 nm disc. c) Calculation of the coupled frequencies corresponding to figure 6.15.

The figure 6.16b displays a zoom of this interesting crossing region. The anti-crossing
is difficult to identify at this point, because the coupling strength is smaller than in the
case of Fe-V. The dynamical splitting depends strongly on the saturation magnetisation
Ms, which is here three times smaller than Fe-V. Using the formula for Ω developed in the
previous section, a value of Ω ≃ 10.5 MHz is found in the case of the two largest discs. This
is well below the linewidth of the resonance, corresponding roughly to ∆f = 2αf ≈ 30
MHz. The anti-crossing of the coupled frequencies is therefore ”buried” into the linewidth

Nevertheless, the measured amplitudes of the coupled modes, presented as coloured
dots on the figure 6.16a, provide the signature of a collective dynamics. As depicted in
the figure 6.9 for the Fe-V sample, the binding mode B amplitude increases drastically
at the anti-crossing, while the anti-binding mode A amplitude is decreased. Notice that
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the latter does not vanish completely. This is due to the fact that the hybridisation
state of the collective modes is here partial at the anti-crossing, the compensation point
being displaced from the middle of the discs due to the difference of diameters. The
two magnetic oscillators are different in volume, and the magnetisation precession has a
different weight in each one, even at the anti-crossing.

Following the analysis of the coupled discs of Fe-V, the behaviour of the coupled
modes was calculated for the two largest NiMnSb discs. The diagram of the coupling is
presented figure 6.16c with the fitting parameters used, while the calculated amplitudes
are superimposed to the data points on the figure 6.16a. The qualitative agreement
found with the experiment allows to validate the occurrence of a coupled dynamics in this
asymmetric system.

Even if the collective dynamics of this asymmetric oscillator pair has been demon-
strated, the interest for potential applications is limited. An array of identical discs is
indeed more simple to realise and control because of the well defined hybridisation state
at the anti-crossing. Moreover, the maximum of the coupling should be reached without
any external field or gradient sources.

6.4 Conclusion

The problem of the collective dynamics of two neighbouring discs dipolarly coupled, mod-
elled in chapter 2, was explored experimentally. It was first shown that the f-MRFM is
a relevant tool in order to measure such tiny signal. We demonstrated how to take ad-
vantage of the slight perturbation introduced by the probe stray field to tune and detune
continuously the frequencies of our coupled oscillators. This experimental trick allowed
us to measure accurately the dynamical splitting between the two collective modes, which
gives the strength of the dipolar coupling in the system. The influence of the geometry
was demonstrated, firstly by varying the edge to edge separation between disc in a pair.
And then by varying the shape of the discs, as well as their numbers. In particular the
hybridisation of the collective dynamics in each oscillator was discussed.

This study is rather interesting in the way to demonstrate the ability of the f-MRFM
to measure accurately the coupling strength Ω of any kind of coupled magnetic systems.
This interesting advantage could be for instance very useful to the field of magnonics.
The aim of this field is to engineer magnetic materials at the nanoscale in order to use
spin waves for data storage applications and information processing [81, 35]. For this
purpose, the spin wave dispersion of periodic magnetic nanostructures are studied and
a particular attention is focused on the band gaps that forms due to the collective spin
wave dynamics.

Once this precise analysis done on a well characterised magnetic state, we should try to
apply the same method to the vortex state. Indeed, the vortex state is also a promising
candidate as a microwave generator in new kinds of spin transfer torque devices [109].
The choice of the magnetic state of the two magnetic layers in an STNO is crucial for the
efficiency of the spin transfer torque, and it was recently demonstrated that the vortex
state has a lot of advantages [86, 38]. In particular, if one or both layers are in the vortex
state, the linewidth of the microwave emission is substantially reduced.

Nevertheless, the emitted power of such an individual pillar is very small taken in-
dividually, typically in the nano-watt range. To overcome this difficulty, the concept of
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coupled spin torque oscillators arranged in array and emitting in phase was proposed
[46, 10]. In such an ideal array, the emitted power goes like N2, where N is the number
of coupled oscillators. Moreover, the linewidth of the emission is improved.

The goal of a future study is indeed to be able to couple the gyrotropic modes of several
discs in the vortex state through the dipolar interaction. Even if the expected strength
of the dipolar interaction is similar to the saturated case, our preliminary experiments
revealed the real complexity of this unsaturated state. Experiments similar to these
presented here in the saturated state have been performed in the vortex state with the
same sample and clear evidences of a collective dynamics have been seen. But the f-
MRFM probe is now in a strongly perturbative regime which affect the static and dynamic
structure of the vortex. This regime has now to be controlled to explore the coupling
between vortices.
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Conclusion

The main goal of this thesis was to contribute to a better understanding of the spin wave
spectra of magnetic nano-discs, involved in spintronic devices like STNOs. The study was
particularly focused on the vortex state that has been found to be the stable remanent
ground state of these nanostructures.

Our first original contribution was to study the dependence of the vortex dynamics
versus a perpendicular bias field. In particular, the low-frequency gyrotropic mode expe-
rienced by the vortex core was found to be bi-stable. The degeneracy in frequency of this
mode between the two core polarities is lifted by the bias field in a Zeeman like effect.
The frequency of the mode increases linearly with the field if the core polarity is oriented
in the same direction and decreases for the opposite polarity. This splitting could be
properly explained using simple theoretical arguments to describe the deformation of the
vortex structure by the bias field.

The gyrotropic mode driven in the non linear regime leads to the dynamical core
reversal, which was extensively studied. The way to optimise the resonant core switching
in an individual disc using a single microwave pulse was shown. The f-MRFM was of great
interest for this study since we could perform accurate statistics of the reversal events in
a reasonable acquisition time. The influence of the perpendicular field on the reversal
statistics was also investigated. Interestingly, the minimal pulse power needed to reverse
the core was found to be independent of the bias field. We used the analogy with the
microwave assisted switching of a nanoparticle to describe the phenomenon. But we could
only give simple assumption and further work is needed to have a better understanding
of the physics involved.

We have taken advantage of the non linear dynamics experienced by the vortex core
near the reversal threshold to study the relaxation of the gyrotropic mode far from equi-
librium. It was found that the relaxation time, linked with the magnetic damping, could
be increased by a factor of three in this non linear regime. The physical origin of this
effect is the non linear coupling between the gyrotropic mode and the higher order spin
wave modes, in particular the azimuthal modes. Nevertheless, a full microscopic and even
phenomenological description of this phenomenon is missing at this time.

On this purpose, we have studied the azimuthal spin waves developing in the plane of
the vortex. The predicted splitting between modes of opposite indices (l = ±1,±2...) due
to the dynamical interaction with the core was observed. With our f-MRFM setup, we
could even measure their frequency dispersion under a perpendicular field. But the inter-
pretation, done by comparison with numerical simulations is incomplete since a reliable
theoretical description is missing.

From a practical point of view, it was demonstrated that the stability of the vortex
state as well as its core polarity could be exploited in a full solid-state magnetic memory.
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The combination of the resonant core switching and the bi-stability of the gyrotropic
mode under a perpendicular field led to a proposal for an efficient read/write process for
this future memory.

The second main achievement of this thesis is the demonstration of the collective
dynamics inside nano-discs coupled by the dipolar interaction. Before addressing the
problem of coupled vortices, for which no complete theoretical description is available, we
have studied the case of perpendicularly saturated disc pair placed nearby laterally. The
f-MRFM probe was used to provide a local field gradient needed to tune differentially
the frequency of the spin wave modes in each disc. It also provides a local detection of
the dynamics. This experimental control of the system at the nanoscale allowed us to
measure accurately the coupling strength, or dynamical splitting, which is the frequency
splitting between the two coupled modes. The influence of the geometry on the dipolar
interaction has also been investigated. In particular the influence of the pair separation
as well as the asymmetry between discs was measured. Moreover, the theoretical analysis
and the numerical simulations developed here could explained satisfactorily the collective
modes frequencies as well as their relative amplitude.

We would like to emphasise that these studies were possible thanks to new high quality
ferromagnetic materials having ultra low damping: NiMnSb and FeV. The search for novel
materials with improved properties is of course of fundamental importance in designing
new spintronic devices. In that sense, we participated in the evaluation of these materials
towards their integration in real STNOs.

As perspectives, two main directions can be given to extend this thesis work. As the
samples are already available, the study of the collective dynamics should be continued
and understood in the vortex state. This is of fundamental importance for the promising
vortex based STNO. The problem is much more complicated since this is an unsaturated
state. The vortex is easily deformable by applied field of any kind and new idea are needed
to be able to control the gyrotropic frequency of each disc in a pair.

Then the problem of the coupled dynamics, restricted to the dipolar interaction, could
be open to other coupling mechanism. For instance, the discs of a pair can be linked by
a metallic stripes, which will allow the transfer of angular momentum between discs by
conduction electrons. An interesting insight in the spin pumping phenomena could be
given by such experiments.
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Appendix A

Calculation of the gyrotropic

frequency

A.1 The Thiele equation

The gyrotropic mode, wich is a circular motion of the vortex core around its equilibrium
position, is well described by the Thiele equation:

¯̄MẌ −G× Ẋ − ¯̄DẊ +
∂W (X)

∂X
= 0 (A.1)

Here X is the position of the vortex core, ¯̄M is a mass term that can be neglected,
G = −G.uz is the gyrofield created by the shifted vortex and ¯̄D = −d.G is a diagonal
tensor describing the damping.

The vortex potential energy, in the linear approximation has an harmonic form:
W (X) = W (0)− κX2

2
. The Zeeman energy has to be added, which lead to the form:

W (X) = W (0) +
κX2

2
+ µ(uz × h).X (A.2)

The Thiele equation then becomes:

−G× Ẋ − ¯̄DẊ + κX + µ(uz × h) = 0 (A.3)

Let expand it: G

∣∣∣∣∣∣

−Ẏ
Ẋ
0

- D

∣∣∣∣∣∣

Ẋ

Ẏ
0

+ κ

∣∣∣∣∣∣

X
Y
0

+ µ
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−hy
hx
0

=0

The convenient complex coordinates Z = X + iY is introduced. Then by adding line
1 plus i times line 2, we get:

iGŻ(t)−DŻ(t) + κZ(t) + iµ(hx + ihy) = 0 (A.4)

The more convenient is to use the Green’s function formalism, in order to consider any
kind of excitation field h. We first make a Fourier transform on the equation:

Z(ω) =
−iµ

κ− ω(G+ iD)
.

∫ +∞

−∞

(hx(t) + ihy(t))e
iωtdt (A.5)
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The Green function of the ”Thiele operator” is then:

G(w) = 1

κ− ω(G+ iD)
(A.6)

To get the Green’s function in the real space, we do another Fourrier transformation:

G(t) = 1

2π

∫ +∞

−∞

e−iωt

κ− ω(G+ iD)
dω =

1

2π

∫ +∞

−∞

e−iωt

( κ
G+iD

+ ω)(G+ iD)
dω (A.7)

This function has a singularity at ω = κ
G+iD

. Using Jordan’s and the residues theorems,
we calculate:

G(t) = 2iπ

2π
.Res(

e−iωt

κ+ ω(G+ iD)
,

κ

G+ iD
) =

i

G+ iD
ei(

κ
G+iD

)t (A.8)

The singularity can be decomposed in real and imaginary part as: ω = κG
G2+D2 − iκD

G2+D2 .

The real part then corresponds to the gyrotropic frequency: ωG(0) = κG
G2+D2 . We have

now the Green’s fonction in time domain:

G(t) = i

G+ iD
eiωGte−dωGt (A.9)

A.2 Response to a circularly polarized excitation

We consider here a microwave excitation field circularly polarized: h = h0[cos(ω0t).ux +
sin(ω0t).uy]. By definition of the Green’s function:

Z(t) =

∫ +∞

−∞

G(t− t
′

).[hx(t
′

) + ihy(t
′

)] dt
′

+ homogeneous solution (A.10)

The excitation goes from 0 to t and [hx(t) + ihy(t)] = cos(ω0t) + i sin(ω0t) = eiω0t, so
that:

Z(t) =
µh0

G+ iD
ei(

κ
G+iD

)t

∫ t

0

e−i( κ
G+iD

)t
′

eiω0t
′

dt
′

=
µh0

G+ iD
ei(

κ
G+iD

)t

[
e−i( κ

G+iD
−ω0)t

′

−i( κ
G+iD

− ω0)

]t

0

(A.11)

Z(t) =
iµh0

κ− ω0G− iω0D

(
eiω0t − eiωGte−dωGt

)
(A.12)

As the homogeneous solution only gives:

Z(t) = Z(0)eiωGte−dωGt (A.13)

We have the entire solution in the form:

Z(t) = (Z(0)−Z(∞))eiωGte−dωGt +Z(∞)eiω0t with : Z(∞)) =
iµh0

κ− ω0G− iω0D
(A.14)
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Appendix B

Résumé substantiel en Français

B.1 Introduction

Les récents progès réalisés dans la croissance de couche minces de matériaux ferromagnétiques
de haute qualité, ainsi que les progrès des techniques de nano-lithographie modernes ont
renouvelé l’intéret porté à la dynamique de l’aimantation. D’un point de vue fondamental,
la dynamiques des ondes de spin d’états de base magnétique non uniforme spatiallement
peut maintenant être étudiée. Ces progrès rendent aussi possible le contrôle et la manip-
ulation de l’aimantation dans des objets microscopiques.

Ces petits objets sont d’un grand intérêt pour le stockage de données et le traite-
ment d’informations binaires, applications pour lesquelles il est crucial de contrÃ´ler
efficacement l’état magnétique de nano-structures. Le problème du retournement de
l’aimantation implique un compromis entre consommation d’énergie et vitesse. C’est
pourquoi la mise à profit de processus résonants peut être intŕessante pour amener effi-
cacement l’aimantation hors d’équilibre [7, 1, 117]. Il est alors essentiel d’identifier les
modes propres d’onde de spin du système qui gouvernent la dynamique de l’aimantation.
Plus récemment, il a été démontré que les ondes de spins elles-mêmes peuvent être utilisées
pour manipuler l’information. L’idée est alors de transférer et manipuler l’énergie stockée
dans chaque modes propres du système. Ce nouveau champ d’étude, appelé “Magnon-
ics”, étudie les propriétées collectives de nanostructure magnétique périodique et tente
de comprendre la propagation et les intéractions entre ondes de spin, de manière a les
manipuler de façon controllée [81, 73].

parallélement à ces dévellopements, l’idée d’utiliser le degré de liberté de spin dans
les propriétées de transport à émergée. La découverte de l’effet de magnéto-résistance
géante [8, 14] en 1988 (Nobelisée en 2007 avec Albert Fert et Peter Grünberg) suivie de
la découverte de la magnéto-résistance tunnel a lancé la “Spintronique”. Ces dćouvertes
ont motivées le dévellopement puis la commercialisation de nombreuses applications, par-
ticulierement pour le stockage d’informations et les capteurs de champ [97, 3, 36, 103],
les capteurs bio-compatible [45], et plus recemment les MRAM (magnetic random access
memories) [24]. Dans un dispositif typique de la spintronique, les éléctrons sont polarisés
en passant au travers d’une couche magnétique dont les propriétées de transport sont
anisotropes par rapport à la direction des spins éléctronique. Le éléctrons ainsi polarisés
sont diffusés par une seconde couche éléctronique, dite “couche libre”, produisant un cou-
ple sur son aimantation. Au lieu d’utiliser des champs magnétiques, il devient possible
de manipuler l’aimantation avec un courant polarisé en spin. La tendance actuelle est
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d’exploiter ce transfert du moment angulaire de spin des éléctrons de conduction vers
l’aimantation de nano-objets magnétiques metalliques [13, 123]. Ce transfert de moment
angulaire induit un couple qui excite efficacement des auto-oscillations de grande ampli-
tude de l’aimantation [75, 64] pouvant générer des signaux mico-onde dans la gamme de
fréquence 0.28 à 65 GHz [38, 17]. Ces nano-oscillateurs à transfert de spin sont promet-
teurs en terme d’applications grâce à leur large spectre d’emission et leur vitesse de
balayage en fréquence ainsi que leur intégration facile dans les processus de fabrication en
couches minces. Pour exploiter le potentiel de ces oscillateurs, leur cohérence spéctrale
doit être améliorée ainsi que leur puissance d’émission. Dans ce but, leur spectre d’onde
de spin doit être précisement compris.

Dans le cas de nanostructures, l’état magnétique de base est souvent non uniforme
spatiallement à cause de la compétition entre énergies d’échange et dipolaire. L’état
magnétique dépend de la nature du matériau utilisé (principalement au travers de l’aimantation
à saturation Ms et de la constante d’échange A) et de facteurs géométriques: rayon R et
épaisseur L de la nanostructure. Une grande variété d’états magnétiques ont été décrit
ainsi que leur stabilité gómétrique dans le plan épaisseur/rayon.

Du point de vue de la dynamique, l’état vortex est particulièrement intéressant. L’état
vortex est la configuration magnétique stable de structures en fines plaquettes ou disques
de matériaux doux. Il existe pour une certaine gamme de tailles, avec L > lex et R ≫ lex
relativement à la longueur d’échange lex du matériau dont le disque est fait [54, 29].
La dynamique de l’aimantation de la plupart des états non uniformes est généralement
très compliquée [9], mais la dynamique de l’état vortex est grandement simplifié par les
symmétries du système. En particulier, le mode de plus basse énergie, isolé à basse
fréquence, correspond à une rotation du coeur de vortex autour de sa position d’équilibre
au centre du disque. La fréquence typique de ce mode peut être infrérieure de plusieurs
gigahertz à celle des autres modes d’ondes de spin. Cette large séparation en énergie
s’avère importante lorsque l’on considère l’excitation ou l’amplification d’un mode unique
par transfert de spin [109]. De plus, les oscillateurs à transfert de spin basés sur l’état
vortex présentent une largeur de raie d’émission sufisamment faible pour envisager de po-
tentielle applications. Malgré tout, un effort important est encore à faire pour comprendre
et modéliser la dynamique de l’aimantation de nano-disques dans l’état vortex.

Une autre approche prometteuse pour améliorer la cohérence de phase des oscillateurs
à transfert de spin est de les coupler de manière cohérente lorsqu’ils sont arrangés en
large réseaux [122]. Plusieurs méchanismes ont été proposés pour les coupler: un courant
micro-onde [46], la propagation d’ondes de spin [70, 88], l’effet de pompage de spin [143]
ou encore l’intéraction magnéto-dipolaire [10]. Cette dernière est la plus simple car elle
elle est toujours présente naturellemnt, mais elle a été peu étudiée dans le cas d’états
magnétiques complexes. L’état le plus simple pour cette étude de la dynamique collective
de l’aimantation sous l’influence du couplage dipolaire est une paire de nano-disques
dans l’état saturé. C’est en effet un des rares systèmes pour lequel le couplage dipolaire
dynamique peut être calculé analytiquement.

Enfin nous mettons l’accent sur le point suivant: cette é’tude s’interesse à des processus
résonant, de plus, améliorer la largeur de raie d’émission des oscillateurs à transfert de
spin est crucial pour réaliser des applications pratiques. A cet effet nous avons utilisé des
matériaux ferromagnétiques ayant les ammortissements magnétiques les plus bas parmis
les métaux. Le premier est semi métal, alliage ordonné de NiMnSb: c’est un composé de
la famille des Heusler. Le second matériau utilié est un alliage ordonné de FeV. Comme
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Figure B.1: Echantillons utilisés pendant cette thèse. Ils sont constitués de disques de NiMnSb
a) et de FeV b) de différentes tailles sur lesquels est déposés une antenne micro-onde, après une
fine couche isolante.

pour le NiMnSb, son ammortissement de Gilbert se situe autour de α ≃ 2× 10−3. Dans
chaque cas, les études sont réalisées sur des films minces nanostructurés, dont la croissance
est faite par épitaxie par jet moléculaire.

B.2 Méthode expérimentale

Une technique expérimentale appropriée doit maintenant être choisie pour mesurer le spec-
tre d’onde de spin de ces nano-disques. Plusieurs options sont actuellement disponibles:

1. Dans des hétéro-structures métalliques, il est possible de mesurer la dynamiqe de
l’aimantation grace aux effets GMR/TMR. Dans un oscillateur à transfert de spin,
le produit d’un courant micro-onde avec les ondes de spin à hautes fréquences pro-
duit une tension continue [115, 131]. De manière compl’ementaire, la réistance
micro-onde associée aux auto-oscillations d’ondes de spin produit une tension haute
fréquence si elle est mixée avec un courant continu [75]. Il es même maintenant
possible de détćter la dynamiqe grâce à l’effet Hall de spin [40, 111]. La sensibilité
de ces techniques est grande et adaptée aux nano-structures. Mais d’un point de vue
fondamental, il est toujours intéressant de comprendre la dynamique en l’abscence
de courant de charges, qui introduit une nouvelle intéraction.

2. Les techniques inductives calssiques de résonance férromagnétique. Les ondes de
spin sont détéctées grace à l’énergie micro-onde qu’elle absorbent dans une cavité
résonnante. La précision spéctroscopique est grande, mais le rapport signal sur bruit
dépend de manière critique du facteur de remplissage, qui est le rapport du volume
de l’échantillon sur celui de la cavité. Cela restreint généralement cette technique
à des échantillons macroscopiques, même si il est à noter que le développement de
micro-antennes ouvre la voie à l’étude de nanostructures.

3. Les méthodes optiques. Les propriétées d’un faisceau lumineux cohérent, fréquence
ou polarisation, sont modifiées aprés l’intéraction avec une onde de spin.
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La premiére méthode est la microscopie kerr résolue en temps qui réalise une analyse
vectorielle tridimentionnelle de la partie transverse de l’aimantation dynamique [1,
63]. La seconde méthode est la diffusion Brillouin [106, 69], qui mesure directement
les modes d’onde de spin dans l’éspace des vecteurs d’ondes. En balayant le faisceau
lumineux, ces deux techniques peuvent atteindre une résolution de spatiale de l’ordre
de la centaine de nanomètres. Une troisième méthode est le dichroisme circulaire
des rayons X sur la matière magétique [2]. Le faisceau de rayons x monochromatique
pulsés d’un synchrotron est utilisé pour mesurer l’aimantation hors d’équilibre. Les
méthodes optiques sont intéressantes car non perturbatives, mais elles requièrent
un accès optique à l’échantillon. De plus, la mesure temporelle de l’aimantation
transverse réduit la précision spéctroscopique, particulirement dans le cas de modes
à basse fréquence et faible largeur de raie.

Pour ces travaux de thèse, nous avons choisi d’utiliser une détéction mécanique de
la résonance férromagnétique [113, 150, 76]. Un microscope/spéctromètre de force à
résonance magnétique a été construit au laboratoire. L’idée de base est de coupler la tech-
nique de champ proche (microscopie de force atomique/magnétique) avec la spéctrométrie.

Le champ de fuite fortement non homogène d’une nanostructure férromagnétique pro-
duit une force sur une moment magnetique, une particule sphérique de fer (en vert sur la
figure B.2a), placée dans le champ proche de l’échantillon. Cette particule est collée au
bout d’un résonnateur mécanique, un simple levier extremement souple, qui transforme
cette force en déplacement mesurable. Lorsque la dynamique de l’aimantation est excitée
dans l’échantillon par un champ micro-onde (produit par une antenne, représentée en doré
sur la figure B.2a), la composante longitudinale de l’aimantation (∆Mz) varie sous l’effet
de sa précession. La force appliquée sur la particule est modifiée et le déplacement du
levier, proportionnel à cette variation, peut être mesuré par interférométrie.

Cette technique expérimentale présente de nombreux avantages pour réaliser les expériences
spéctroscopiques envisagées plus tôt:

1. C’est une technique de champ proche qui permet de détécter la résonance férromagnétique
localement. En utilisant le gradient de champ crée par la particule de fer, il est aussi
possible de localiser la résonance spatiallement, à la manière des techniques d’IRM
(imagerie par résonance magnétique). De plus, ce champ de fuite inhomogène peut
être utilisé pour ajuster de manière continue la fréquence de résonance de nano-
objets.

2. Le facteur de remplissage peut aisement être optimisé en choisissant une taille de
particule comparable à celle de l’échantillon. Cette détection de la résonance par un
transformateur force-déplacement est une des plus sensible existante. A température
ambiante avec un levier commercial, une résolution de 100µB est facilement atteinte.
Cette sensibilité est suffisante pour mesurer les oscillations d’un coeur de vortex.

3. La dynamique de l’aimantation est mesurée dans le domaine fréquenciel avec un
dispositif en onde continue. La résolution spéctroscopique est alors arbitrairement
élevée, étant seulement limitée par la résolution spéctrale de la source micro-onde.
Cette configuration est bien adaptée a la dynamique basse fréquence du vortex
ainsi q’aux faibles largeurs de raie des modes considérés. C’est aussi une méthode
appropriée ‘à la résolution spéctroscopique de mode très proche en fréquence.
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4. La dynamique de l’aimantation est révélée par la mesure statique de la variation
longitudinale de l’aimantation ∆Mz. Cette technique donne donc directement accès
au temps de relaxation T1. Cela donne un point de vue expérimental complemen-
taire de la plupart des autres techniques qui mesurent la composante transverse de
l’aimantation, et donc T2.

5. L’étude de l’état saturé de nanostructures magnétiques requiert l’application d’un
fort champ magnétique ( jusqu’a 2 Tesla dans notre cas). Le microscope utilisé
dans cette thèse a été conu̧ en matériaux mon magnétiques autorisant l’utilisation
de champ intense.

Figure B.2: a) Schema de principe du fonctionnement d’un microscope de force à résonance
magnétique. b) Photos du dispositif expérimental construit au laboratoire.

Le dispositif expérimental réel est detaillé sur la figure B.2b. On peut y voir le
coeur du microscope avec le dispositif de champ proche: tubes et scanners piezo-
éléctriques, interféromètre avec fibre optique et résonateur mécanique. On voit aussi
l’antenne micro-onde large bande utilisée pour la spéctroscopie.

B.3 L’état saturé

Du point de vue de la dynamique de l’aimantation, un état saturé uniforme constitue
une bonne référence. Nous avons donc choisi de commencer notre étude en saturant
perpendiculairement nos nano-disqes de (voir figure B.1b).

Le spectre d’ondes de spin de peut être calculé analytiquement dans ce cas précis
[76, 137, 99]. Le confinement due à la taille réduite des disques discrétise les vecteurs
d’ondes. La symétrie axiale permet de définir une bonne base de fonctions propres
pour diagonaliser le système: les fonctions de Bessels. Les modes sont décomposés
en mode radiaux, présentant m noeuds de précession selon le rayon du disque, et
azimuthaux, ayant l noeuds de précession autour de la circomférence du disque. Ils
sont numérotés par un couple (l,m) et leur fréquence peut être calculées avec une
grande précision.

Ces modes sont mesurés sur des disques de NiMnSb de diffŕents diamt̀res sur la figure
B.3. Le mode de plus basse énergie est le mode uniforme, pour lequel l’aimantation
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Figure B.3: Spectre d’onde de spin dans létat saturé perpendiculairement d’un disque de NiMnSb
de 1 micron de diamètre a) et de quatre disques de diamètre compris entre 700 et 250 nanomètres.
Leurs fréquences (tirets et indices) sont calculées analytiquement.

précesse en phase dans tout le disque. On voit sur la figure B.3 à droite l’influence
du confinement sur la fréquences de ces modes.

De manière à comprendre la dynamique de l’aimantation dans des réseaux denses
de disques magnétiques, nous avons réalisé une étude préliminaire sur un système
de deux disques de FeV de 600 nanomètres de diamètre couplés par l’intéraction
magnéto-dipolaire. Si on considére deux disques dont l’onde de spin à une fréquence
ω1 et ω2 proche spatiallement l’ un de l’autre, une dynamique couplés va apparaitre
et réveler deux modes couplés de fréquences:

ωA,B =
ω1 + ω2

2
±
√(

ω1 − ω2

2

)2

+

(
Ω

2

)2

(B.1)

Ces deux modes s’anti-croisent lorsque ω1 = ω2 et Ω est l’écart en fréquence des
deux modes à cet endroit. Le couplage est médié par le champ magnéto-dipolaire
dynamique rayonné par un disque sur son voisin.

Nous avons utilisé le gradient de champ de la particule magnétique du micro-
scope pour ajuster différentiellement la fréquence de chaque disque en la déplaa̧nt
latéralement au dessus de ceux-ci. La figure B.4 présente les diagrammes d’onde
de spin couplées pour trois séparations décroissantes. En abcisses, la position de
la sonde est une mesure relative du désaccord de fréquences entre les deux disques,
tandis que l’ordonnée donne la fréquence des modes couplés. On voit bien apparaitre
deux modes couplés, correspondant à une précession en phase et en opposition de
phase, qui s’enticroisent lorsque les fréquences de chaque disques coincident.

En utilisant la thórie des ondes de spin et la formule des fréquences couplées, il est
possible de calculer le comportement des modes couplés. Les diagrammes calculés
sont comparés aux expériences sur la figure B.4.

Nous avons ainsi pu comprendre la dynamiques des modes couplés sur ce systéme
simple. La mesure de Ω fournit de précieux renseignements sur la manière d’optimiser
la géométrie de futures réseaux de disques. Enfin, nous avons démontré la perti-
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Figure B.4: Diagrammes expérimentaux (gauche) et calculés théoriquement (droite) des modes
d’onde de spin couplés pour trois séparation diffŕentes entre disque de FeV de diamètre 600
nanomètres.

nence de notre technique de mesure pour détécter les effets du couplage de manière
précise.

B.4 L’état vortex

L’état magnétique rémanent de nos nano-disques est une structure vortex. L’aimantation
forme une boucle dans le plan du disque de manière à minimiser l’énergie magnéto-
dipolaire, tandis qu’au centre l’aimantation est orientée hors du plan sur un rayon
de l’ordre de la longueur d’échange, de manière à régulariser la singularité due à
l’énergie d’échange. La caractéristique principale du vortex est la préscence de cette
structure centrale, où coeur de vortex, dont l’orientation relative est définie par la
polarité p = ±1.

La structure statique du vortex a été décrite par plusieurs models analytiques. La
difficulté étant de reproduire correctement le coeur de vortex, dont la taille est
calculée en minimisant l’énergie magnétique totale du système. Le calcul de la
susceptibilité statique permet alors de comprendre la réponse du vortex á un champ
magnétique exterieur.

Dans cette ths̀e nous nous sommes intéressés à la dynamique de l’aimantation dans
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l’état vortex. Plus particulièrement, le mode de plus basse énergie, ou mode gy-
rotropique, à été étudié en détail. Ce mode consiste en une rotation à basse
fréquence (100 MHz - 1GHZ) du coeur de vortex autour du centre du disque. Sa
fréquence de résonance a été calculée à partir de l’equation de Thiele [128], qui
au premier ordre décrit la dynamique d’une paroi de domaine rigide se déplaçant
sur un fond magnétique. En première approximation on trouve la formule [50]
ωG = 20/9γMsL/R à champ nul. Nous avons alors étudié l’influence d’un champ
magnétique appliqué perpendiculairement au plan du disque sur ce mode. L’aimantation
se trouvant dans le plan du vortex à champ nul est deviée hors du plan, d’un
angle linéairement proportionnel au champ magnétique. L’expression précédente
doit être modifiée pour tenir compte du champ perpendiculaire Hz [32]: ωG(Hz) =
ωG(0)[1 + pHz/HS]; où Hs est le champ de saturation du disque magnétique. Ce
mode subit l’équivalent d’un effet Zeeman, sa féquence de résonance ayant une
dépendance avec le champ opposée pour chaque polarite p.

Les modes d’onde de spin à plus haute fréquence sont de nature comparable à ceux
observés dans l’état saturé. Ils consistent en une combinaison d’ondes radiales et
azimuthales, notées (l,m) se développant dans le plan du vortex, la différence étant
la présence du coeur de vortex au centre du disque.

Figure B.5: Spectre d’onde de spin en fonction du champ perpendiculaire dans l’état vortex puis
saturé. Le mode gyrotropique est noté G, puis on voit les modes azimuthaux l = ±1, 2 dans
l’état vortex et m = ±1, 2 dans l’état saturé.

Expérimentallement, ces modes sont excités par un champ micro-onde, polarisé
linéairement, appliqué dans le plan du disque. Le diagramme d’onde de spin général
est présenté figure B.6. Sur la partie de droite, le mode de plus basse énergie est le
mode gyrotropique (noté G) de polarité p = +1 (parallèle au champ appliqué). Sa
dépendance en champ est bien décrite par la théorie. A plus haute fréquence, on
identifie les premiers modes azimuthaux, qui ont une dépendance en champ inversée.

Le mode gyrotropique est d’un intérêt particulier car il est isolé à basse fréquence.
Cela en fait un candidat potentiel pour réaliser un oscillateur à transfert de spin dans
l’état vortex [86]. De plus, le régime non linéaire de ce mode est particulièrement
riche. Lorsque le coeur de vortex est excité à grande amplitude, il se déforme
dynamiquement, et si sa vitesse radiale dépasse une valeur universelle [85] Vc =
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1.66
√
Aex (où Aex est la constant d’échange du matériau) la polarité du coeur se

renverse [134]. Nous avons étudié en détail ce retournement dynamique du coeur
de vortex. Nous avons en particulier montré que le retournement peut-être efféctué
à l’aide d’une courte impulsion micro-onde, dont nous avons optimisé la durée, la
fréquence et la puissance.

La combinaison de l’effet Zeeman observé sur chaque polarité du mode gyrotropique
en champ perpendiculaire associé au retournement dynamique de la polarité du vor-
tex nous a menée à proposer un nouveau type de mémoire magnétique. L’information
binaire est codée par la polarité du coeur de vortex: elle est stable thermiquement
et au regard des champs appliqués. Le mécanisme d’écriture se fait grâce au re-
tournement dynamique: il est rapide et énergétiquement favorable car il n’implique
le retournement que d’un faible partie de l’aimantation du disque. La lecture se fait
en discriminant entre chaque polarité par l’application d’un petit champ prependic-
ulaire, ce qui lève la dégénérésence en fréquence du mode gyrotropique. Une mesure
spéctroscopique de la fréquence du mode dans le régime linéaire révèle la polarité.

Figure B.6: Shéma de principe d’une mémoire magnétique utilisant la polarité de l’état vortex.
Le processus de lecture/écriture se fait grace à un réseau de ligne de courant qui adresse un seul
élément spécifique.

B.5 Conclusion

Notre technique de résonance férromagnétique détéctée mécaniquement à été ap-
pliquée à l’étude de nano disques de métaux magnétique à très bas ammortissement,
FeV et NiMnsB. Le spectre d’onde de spin de ces échantillons à été mesuré dans
l’état saturé pour calibration, puis dans l’état vortex. Il ont révelés une dynamique
riche, qui peut-être décrite puis utilisé en é”léctronique de spin.
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de doctorat, Université Paris 7, Paris, France, 2003.

[26] T.-Y. Chen and P. Crowell, Non-linear dynamics of a magnetic vortex,
Magnetics, IEEE Transactions on, 46 (2010), pp. 1457 –1459.

[27] H.-J. Chia, F. Guo, L. M. Belova, and R. D. McMichael, Nanoscale
spin wave localization using ferromagnetic resonance force microscopy, Phys.
Rev. Lett., 108 (2012), p. 087206.

[28] S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran,
J. Stohr, and H. A. Padmore, Vortex Core-Driven Magnetization Dy-
namics, Science, 304 (2004), pp. 420–422.

Benjamin Pigeau



BIBLIOGRAPHY 157

[29] R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland,
and D. M. Tricker, Single-domain circular nanomagnets, Phys. Rev. Lett.,
83 (1999), pp. 1042–1045.

[30] M. Curcic, B. Van Waeyenberge, A. Vansteenkiste, M. Weigand,
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Résumé

Dynamique de vortex magnétique dans une nanostructure

Cette thèse à pour objet l’étude expérimentale de la dynamique de l’aimantation de
disques de taille sub-micronique fait de matériau ferromagnétiques à faible amor-
tissement . Pour cela, nous avons utilisé une technique spectroscopique extremement
sensible qui sera préalablement présentée: la résonance férromagnétique détéctée
mécaniquement. Une première partie est consacré à la mesure des modes propres
dans des disques de NiMnSb dans leur état rémanent: le vortex. L’influence d’un
champ magnétique, aplliqué perpendiculairement, sur les ondes de spin du vortex
est détaillé. L’accent est ensuite mis sur l’interaction du coeur de vortex avec ces on-
des de spin, qui mène à son retournement dynamique. Un cadre théorique de l’état
vortex est présenté, permettant de modéliser les mesures expérimentales. Dans une
deuxième partie, le problème de la dynamique collective de plusieurs disques de
FeV dont l’aimantation est saturée perpendiculairement est étudiée. La mesure des
modes couplés par l’intéraction dipolaire dynamique y est présentée, associée à une
modélisation théorique qui explique quantitativement les résultats observés.

Mots-clefs: Ondes de spin; MRFM-microscopie de force à résonance magnétique;
état vortex magnétique; couplage dipolaire.

Abstract

Magnetic vortex dynamics nanostructures

This thesis is aimed at studying experimentally the magnetisation dynamics of discs
in the sub-micron range made of low damping ferromagnetic materials. For this pur-
pose, an extremely sensitive technique has been used: the ferromagnetic resonance
force microscopy. A first part is devoted to the measurement of the eigenmodes of
NiMnSb discs taken in their remanent state: a vortex. The influence of a perpen-
dicular magnetic field on the spin wave modes in the vortex state will be detailed.
Then, the coupling mechanism between the vortex core and these spin wave, even-
tually leading to its dynamical reversal, is highlighted. A theoretical framework of
the vortex state is presented, allowing to model the experimental observations. In
a second part, the problem of the collective magnetisation dynamics in several FeV
discs is addressed. Measurements of the collective modes coupled by the dynamical
dipolar interaction are presented, associated with a theoretical model which explain
quantitatively the experimental results.

Keywords: Spin waves; MRFM-magnetic resonance force microscopy; magnetic
vortex state; dipolar coupling.


