
HAL Id: tel-00779764
https://theses.hal.science/tel-00779764v1

Submitted on 22 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Custom floating-point arithmetic for integer processors :
algorithms, implementation, and selection

Jingyan Lu Jourdan

To cite this version:
Jingyan Lu Jourdan. Custom floating-point arithmetic for integer processors : algorithms, implemen-
tation, and selection. Other [cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2012. English.
�NNT : 2012ENSL0762�. �tel-00779764�

https://theses.hal.science/tel-00779764v1
https://hal.archives-ouvertes.fr

N ◦ d’ordre: 762
N ◦ attribué par la bibliothèque: 2012ENSL0762

ÉCOLE NORMALE SUPÉRIEURE DE LYON - UNIVERSITÉ DE LYON

Laboratoire de l’Informatique du Parallélisme

T H È S E

présentée et soutenue publiquement le 15 novembre 2012 par

Jingyan JOURDAN-LU

pour l’obtention du grade de

Docteur de l’École Normale Supérieure de Lyon - Université de Lyon

spécialité: Informatique

au titre de
l’École Doctorale Informatique et Mathématiques (InfoMaths) de Lyon

Custom floating-point arithmetic
for integer processors:

algorithms, implementation, and
selection

Directeur de thèse : Jean-Michel MULLER
Co-directeurs de thèse : Claude-Pierre JEANNEROD

Christophe MONAT

Après avis des rapporteurs : Elisardo ANTELO
Sid TOUATI

Devant la commission d’examen formée de :

Pr. Elisardo ANTELO Universidade de Santiago de Compostela
M. Claude-Pierre JEANNEROD INRIA & ENS Lyon

Pr. Daniel MÉNARD INSA Rennes
M. Christophe MONAT STMicroelectronics Grenoble
M. Jean-Michel MULLER CNRS & ENS Lyon
M. Erven ROHOU INRIA Rennes
Pr. Sid TOUATI Université de Nice Sophia Antipolis

2

Abstract

Media processing applications typically involve numerical blocks that exhibit regu-
lar floating-point computation patterns. For processors whose architecture supports
only integer arithmetic, these patterns can be profitably turned into custom opera-
tors, coming in addition to the five basic ones (+, −, ×, / and

√
), but achieving

better performance by treating more operations.
This thesis addresses the design of such custom operators as well as the techniques

developed in the compiler to select them in application codes.
We have designed optimized implementations for a set of custom operators which

includes squaring, scaling, adding two nonnegative terms, fused multiply-add, fused
square-add (x2 + z with z > 0), two-dimensional dot products (DP2), sums of two
squares, as well as simultaneous addition/subtraction and sine/cosine. With novel
algorithms targeting high instruction-level parallelism and detailed here for squaring,
scaling, DP2, and sin/cos, we achieve speedups of up to 4.2x for individual custom
operators even when subnormal numbers are fully supported.

Furthermore, we introduce the optimizations developed in the ST231 C/C++
compiler for selecting such operators. Most of the selections are achieved at high
level, using syntactic criteria. However, for fused square-add, we also enhance the
framework of integer range analysis to support floating-point variables in order to
prove the required positivity condition z > 0.

Finally, we provide quantitative evidence of the benefits to support this selection
of custom operations: on DSP kernels and benchmarks, our approach allows us to
be up to 1.59x faster compared to the sole usage of basic ones.

Keywords: IEEE floating-point arithmetic; custom operator; embedded integer
processor; VLIW architecture; compiler optimization; compiler code selection.

Résumé

Les applications multimédia se composent généralement de blocs numériques ex-
hibant des schémas de calcul flottant réguliers. Sur les processeurs sans support
architectural pour l’arithmétique flottante, ils peuvent être profitablement trans-
formés en opérateurs dédiés, s’ajoutant aux cinq opérateurs élémentaires (+, −, ×,
/ et

√
) : en traitant plus d’opérations simultanément, ils permettent d’obtenir de

meilleures performances.
Cette thèse porte sur la conception de tels opérateurs, et les techniques de com-

pilation mises en oeuvre pour les sélectionner.
Nous avons réalisé des implémentations optimisées pour un ensemble d’opérateurs

dédiés : élévation au carré, mise à l’échelle, fused multiply-add et sa spécialisation
x2 + z avec z > 0, produit scalaire en dimension deux (DP2) et sa spécialisation
comme somme de deux carrés, et enfin addition/soustraction simultanées et sinus/-
cosinus simultanés. En proposant de nouveaux algorithmes cherchant à maximiser le
parallélisme d’instructions et détaillés ici pour l’élévation au carré, la mise à l’échelle,
DP2 et sinus/cosinus, nous obtenons des accélérations d’un facteur allant jusqu’à 4.2
par appel, et ce même en présence de nombres dénormaux.

i

Nous détaillons également les changements apportés dans le compilateur pour
effectuer la sélection. La plupart des opérateurs sont sélectionnés au niveau syn-
taxique. Cependant, pour certains opérateurs, nous avons dû améliorer l’analyse
d’intervalles entiers pour prendre en compte les variables de type flottant, afin de
prouver certaines conditions de positivité requises à leur sélection.

Enfin, nous apportons la preuve en pratique de la pertinence de cette approche :
sur des noyaux typiques du traitement du signal et sur certaines applications, nous
mesurons une amélioration de performance allant jusqu’à 1.59x en comparaison avec
la performance obtenue avec les seuls opérateurs élémentaires.

Mots-clés : IEEE arithmétique virgule flottante; opérateur dédié; processeur em-
barqué entier; architecture VLIW; optimisation du compilateur; sélection du code
par le compilateur.

ii

Table of Contents

Table of Contents . iii

Notation . vii

List of Tables . ix

List of Figures . xi

Acknowledgments . xiii

1 Introduction . 1

1.1 Context and motivations . 1

1.2 Contributions . 3

1.2.1 Fused, specialized, and paired operators 3

1.2.2 A production compiler supporting custom operators 7

1.3 Thesis outline . 9

2 IEEE binary floating-point arithmetic 13

2.1 Introduction . 13

2.2 Binary floating-point data . 14

2.2.1 Data defined by the standard 14

2.2.2 Standard encoding into integers 16

2.3 Rounding . 18

2.3.1 IEEE rounding modes . 18

2.3.2 Overflow . 19

2.3.3 Gradual underflow . 20

2.3.4 Encoding of the rounded value of a real number 20

2.4 The ulp function . 21

3 Design principles for software floating-point support on the ST231 23

3.1 Introduction to the ST231 and its C/C++ compiler 23

3.1.1 Architecture overview . 23

3.1.2 Instruction bundling and extended immediates 25

3.1.3 Data access in memory . 26

3.1.4 ST200 VLIW compiler . 26

3.1.5 ST231 intrinsics . 27

3.2 “Multi-tasks” for high instruction-level parallelism 29

3.2.1 Predicated execution for conditional branches reduction . . . 29

3.2.2 If-conversion in emulating floating-point arithmetic 30

iii

Table of Contents

3.3 An example of binary32 implementation exposing high ILP 31

3.4 Parameterized implementation for a specific binaryk format 33

3.4.1 64-bit and 128-bit integer support on the ST231 34

3.4.2 XML-based implementation for various formats 37

4 Squaring . 41

4.1 Introduction . 41

4.2 Specification . 42

4.3 Computing correctly-rounded squares for generic input 44

4.3.1 A normalized formula forx2 44

4.3.2 Implementation of ◦(x2) for the binaryk format 46

4.4 Detecting and handling special input 49

4.5 Experimental results obtained on the ST231 51

4.5.1 Operator performances . 51

4.5.2 Application examples . 53

5 Scaling by integer powers of two . 59

5.1 Introduction . 59

5.2 Scaling by nonnegative powers of two 61

5.2.1 Specification . 61

5.2.2 Scaling generic input . 62

5.2.3 Detecting and handling special input 64

5.2.4 Specializing to small values of n 67

5.3 Scaling by negative powers of two 72

5.3.1 Specification . 72

5.3.2 Scaling generic input . 72

5.3.3 Detecting and handling special input 75

5.3.4 Specializing to some negative values of n 76

5.4 Complete implementation and experimental results 78

5.4.1 Scaling by an arbitrary power of two 78

5.4.2 Application to matrix balancing 81

6 Two-dimensional dot products . 85

6.1 Introduction . 85

6.2 Specification . 87

6.3 Computing correctly-rounded 2D dot products for generic input . . 89

6.3.1 Normalizing the input and preparing the two summands . . 90

6.3.2 Swapping . 92

6.3.3 A normalized formula for xy + zt 94

6.3.4 Implementation of ◦(xy + zt) for the binaryk format 97

6.4 Detecting and handling special input 106

6.4.1 Detecting special input . 106

6.4.2 Handling special input . 107

6.5 Experimental results obtained on the ST231 109

6.5.1 Operator performances . 109

6.5.2 Application examples . 110

iv

7 Simultaneous sine and cosine over a reduced range 113
7.1 Introduction . 113
7.2 Accuracy specification using the ulp function 114
7.3 Computing cosine . 115

7.3.1 Constant approximation when x < 2−11 115
7.3.2 Polynomial approximation when x > 2−11 116

7.4 Computing sine . 119
7.4.1 Approximation by x when x < 2−11 120
7.4.2 Bivariate polynomial approximation when x > 2−11 120

7.5 Computing sine and cosine simultaneously 124

8 Compiler optimizations for floating-point support on the ST231 127
8.1 Background . 127

8.1.1 Intermediate representations for st200cc 127
8.1.2 Control on the selection of custom operators 128

8.2 Selection of custom floating-point operators at WHIRL 128
8.2.1 WHIRL intermediate representation 128
8.2.2 Squaring and scaling by a constant 131
8.2.3 Two-dimensional dot products and sums of squares 134
8.2.4 Paired operators . 137

8.3 Various optimizations at CGIR . 139
8.3.1 CGIR overview . 139
8.3.2 Improvement of integer support for 64-bit 141
8.3.3 Integer range analysis framework 143
8.3.4 Integer range analysis for shift operators 144
8.3.5 Diverting integer range analysis for floating-point specializa-

tion . 145
8.4 Experimental results: UTDSP benchmark’s FFT test suite 148

9 Conclusions and perspectives . 151

Bibliography . 155

Appendices

A Some C implementations for various integer functions 163

B Some C codes for compiler optimizations 169

v

Table of Contents

vi

Notation

p precision in bits, such that p > 2

w exponent field width in bits

k storage width in bits, such that k = w + p

emin, emax extremal exponents, such that emin = 1 − emax,
and emax = 2w−1 − 1

α smallest positive binary subnormal number,
such that α = 2emin−p+1

Ω largest finite binary floating-point number, such
that Ω = (2 − 21−p) · 2emax

x finite binary floating-point datum, such that x =
(−1)sx · mx · 2ex

sx sign bit of x

ex exponent of x, such that emin 6 ex 6 emax

mx = (mx,0.mx,1mx,2...mx,p−1)2 significand of x and its binary expansion: mx =∑p−1
i=0 mx,i · 2−i with mx,i ∈ {0, 1} for i ∈

{0, . . . , p − 1}
λx number of leading zeros in the binary expansion

of mx

X k-bit unsigned integer giving the standard bi-
nary encoding of x

Sx k-bit unsigned integer, such that Sx = sx · 2k−1

Ex w-bit unsigned integer encoding the biased value
of ex, such that Ex = ex − emin + mx,0

Dx w-bit unsigned integer, such that Dx = ex−emin

Mx k-bit unsigned integer giving integral signifi-
cand, such that Mx = mx · 2p−1

|X| encoding of |x|, such that |X| = X mod 2k−1

vii

Notation

Qi.f a Qi.f number is a rational number of the form
A/2f with A an unsigned integer having i + f
bits

◦ rounding-direction attributes, such that ◦ ∈
{RN,RU, RD,RZ}

ι(x) an IEEE standard integer encoding of floating-
point datum x

⌊x⌋ largest integer less than or equal to x

⌈x⌉ smallest integer greater than or equal to x

{x} fractional value of x, such that {x} = x − ⌊x⌋
a mod b for a, b ∈ N with b 6= 0, the remainder a−⌊a/b⌋b

in the Euclidean division of a by b

[a, b] for a, b ∈ R, the set of all real numbers x such
that a 6 x 6 b

[a, b) for a, b ∈ R, the set of all real numbers x such
that a 6 x < b

(a, b] for a, b ∈ R, the set of all real numbers x such
that a < x 6 b

(a, b) for a, b ∈ R, the set of all real numbers x such
that a < x < b

[S] for a true-or-false statement S, [S] = 1 if S is
true, [S] = 0 if S is false

R set of real numbers

Z set of integers

N set of natural numbers

F set of binaryk finite floating-point numbers

∧,∨,⊕,¬ for any two integers i, j ∈ {0, 1}, i∧j, i∨j, i⊕j,
¬i denote, respectively, the integers ij, i+j−ij,
i + j mod 2, 1 − i

I<x for a real interval I and a real number x, I<x

denotes the set of real numbers y such that y ∈ I
and y < x

I>x for a real interval I and a real number x, I>x

denotes the set of real numbers y such that y ∈ I
and y > x

viii

List of Tables

1.1 Performances for the binary32 format on the ST231 in # cycles [#
instructions]. 5

1.2 Speedups and CRRs. 6

1.3 IPCs for the binary32 format on the ST231. 7

1.4 Naive vs optimized specialization (in # cycles and for RN). 7

1.5 Custom operators vs FLIP 1.0 in # cycles and [speedups]. 9

1.6 Custom operators selected. 9

2.1 Basic standard binary floating-point formats. 15

2.2 Standard encoding of special data. 18

3.1 Elements of the ST231 instruction architecture set. 25

3.2 ST231 intrinsic functions frequently used for floating-point emulation. 27

3.3 Performances of the integer arithmetic supports on the ST231 in #
cycles. 37

4.1 Latency comparison for square and multiply. 52

4.2 Latency, code size, and IPC for square. 52

4.3 Latency comparison with two non-IEEE variants. 53

5.1 Refined IEEE specification of scaling when n > 0. 62

5.2 Latencies in # cycles [code sizes in # instructions] for scaling when
n > 0. 67

5.3 Latencies in # cycles [code sizes in # instructions] of scaling by some
small values of n for the binary32 format. 71

5.4 Latencies in # cycles [code sizes in # instructions] of scaling by some
small values of n for the binary64 format. 71

5.5 Latencies in # cycles [code sizes in # instructions] for scaling when
n < 0. 76

5.6 Latencies in # cycles [code sizes in # instructions] of scaling by some
negative values of n for the binary32 format. 78

5.7 Latencies in # cycles [code sizes in # instructions] of scaling by some
negative values of n for the binary64 format. 78

5.8 Performances for scaleB: latencies in # cycles [code sizes in # instruc-
tions]. 80

6.1 Latency comparison for DP2 and the naive implementation of xy + zt
using FLIP 1.0, for the binary32 format. 109

6.2 Latency, code size, and IPC for DP2. 110

ix

List of Tables

6.3 Latency comparison for FMA and the naive implementation of xy + z
using FLIP 1.0, for the binary32 format. 111

6.4 Latency, code size, and IPC for FMA. 111
6.5 Performances of FFT on the ST231 in # cycles and [speedups]. . . . 112
6.6 Performances of graphics applications on the ST231 in # cycles and

[speedups]. 112

7.1 Polynomial coefficients Ai. 119
7.2 Polynomial coefficients B2i. 124
7.3 Performances of 1-ulp accurate binary32 sine, cosine, and simultane-

ous sine and cosine on ST231. 124
7.4 Computational resources used by the two polynomial evaluations. . . 125

8.1 Layout of a WHIRL node. 129
8.2 Examples of predefined MTYPEs. 130
8.3 Pattern-matching table for Squaring and Scaling by a constant. . . . 132
8.4 Pattern-matching table for DP2. 134
8.5 Pattern-matching table for SOS. 136
8.6 Pattern-matching table for paired operators. 137
8.7 Structure of BB in st200cc. 140
8.8 Structure of OP in st200cc. 140
8.9 Register TN. 141
8.10 Constant values of TN. 141
8.11 Custom operators selected. 150

9.1 Performances for the binary64 format on the ST231 in # cycles [#
instructions]. 152

x

List of Figures

3.1 Architecture of the ST231 processor core. 24
3.2 XML-Python for C code generation. 38

4.1 Impact of square on naive Euclidean norm. 55
4.2 Impact of square on two-pass Euclidean norm. 55
4.3 Impact of square on binary powering. 57

5.1 Bundle occupancy for the scaling operator on ST231. 80
5.2 Speedups for balancing N × N matrices with N 6 100. 82

7.1 Bundle occupancy for the sincosf operator on ST231. 125

8.1 Rules to select DP2 for single precision. 135

xi

List of Figures

xii

Acknowledgments

It is a great gift of life to work with happiness. I appreciate the chance that life has
bestowed on me to work on interesting topics and to work with nice colleagues in
the past few years.

Nothing can be achieved easily. Even when you enjoy the fun of work, there are
always difficult moments. I would like to give my gratitude to the people who have
supported me during my research project. Without you, this work would not have
been possible.

My deepest gratitude goes to my thesis supervisors: Claude-Pierre Jeannerod,
Christophe Monat, and Jean-Michel Muller, for making this research possible. Claude-
Pierre has spent a lot of time, effort and dedication into this research. Thank you.
I am sincerely grateful to Christophe for his patience, enthusiasm, and kind con-
cern regarding my academic requirements. I thank Jean-Michel for his sincerity
and encouragement, which I will never forget. All their support, guidance, advice
throughout the project, have abundantly helped me to overcome all the obstacles in
the completion of this research work.

My deepest gratitude is also due to the other members of the PhD committee:
Elisardo Antelo, Daniel Ménard, Erven Rohou, and Sid Touati. I thank them for
carefully reading my thesis and offering opening perspectives. Before the defense,
Professors Antelo and Touati have done a great job as reviewers and provided me
with constructive and valuable feedback, which has helped me a lot to improve the
manuscript. Their sharp and clear ideas have been extremely valuable.

I owe special thanks to Christian Bertin, the head of the Compilation Expertise
Center at STMicroelectronics, and Florent de Dinechin, the head of the Computer
Arithmetic group at ENS de Lyon, for all their support, and especially their arrange-
ments for funding my research project.

Special thanks also go to Nathalie Revol, Stephen Clarke, and Hervé Knochel.
Nathalie has given me important advice on several presentations for international
conferences as well as for my PhD defense. Stephen and Hervé have helped me with
some very important technical details during the developments into the compiler.
Thank you.

I would also like to express my gratitude to colleagues at the Computer Arith-
metic group and at STMicroelectronics for their invaluable assistance. I thank
Christoph Lauter, Sylvain Chevillard, Mioara Joldes, Guillaume Melquiond, Guil-
laume Revy, and Christophe Mouilleron for their innovative work on the software
tools for computer arithmetic. I also thank all the members of CEC, who have de-
veloped such a robust compiler where I was able to integrate easily optimizations for
floating-point applications. It is really an honor for me to work with you all.

Last but not the least, I would like to express my love and gratitude to my
beloved family for their understanding and endless love. I love you.

xiii

Chapter 1

Introduction

1.1 Context and motivations

Even though media processing applications may rely intensively on floating-point
computations, some modern embedded media processors such as the ST231 from
the STMicroelectronics ST200 VLIW family do not contain floating-point hardware
and provide architectural support only for integer arithmetic. This choice avoids
paying high costs on silicon surface and power consumption.

Yet, this trade-off has to be compensated: a first approach would be to convert
the applications to some fixed-point [CC99, AC00, MCCS02] or block floating-point
format [MCS05]. With such techniques, ensuring accuracy can however be fairly
complex, and sometimes costly and unsustainable. A second approach, which is the
one we favor here, consists in designing a high-performance floating-point support.

The design and implementation of such a software library is critical in several
aspects: not only its performance must enable key applications to reach an acceptable
performance level, but the compliance with the IEEE 754-2008 standard [IEE08]
must not be compromised.

Starting point. In order to achieve good-enough performance without sacrificing
for accuracy, a first step is to optimize the five basic arithmetic operations by taking
into account some features of the target architecture (parallelism, large multipliers,
leading-zero counters,...). This was achieved by FLIP 1.0 (Floating-point Library for
Integer Processors) [JR09a, Rev09], with new algorithms exposing high instruction-
level parallelism (ILP). That library thus better exploits the VLIW architecture of
the ST231 processor than the reference library SoftFloat [Hau] and in practice, the
latency of each operator on ST231 was reduced by a factor of 1.85 to 5.21, as the
table below shows:

+ − × /
√

SoftFloat 48 49 31 177 95

FLIP 1.0 26 26 21 34 23

speedup 1.85 1.88 1.48 5.21 4.13

Such speedups (which are given here assuming single precision, rounding ’to nearest
even’, and subnormal support) have been achieved by a combination of techniques,
among which an optimized use of the IEEE 754 format encodings, a novel algorith-
mic approach based on highly-parallel polynomial evaluation for computing accurate
approximations of functions like division and square root, and also some compiler
optimizations; interestingly enough and unlike what is sometimes believed, the over-
head for supporting subnormals (that is, the tiny floating-point numbers allowing

1

Chapter 1. Introduction

gradual underflow) turned out to be extremely reasonable (for example, 5 cycles out
of 34 for division and 2 out of 23 for square root) [Rev09, BJJL+10].

Going beyond basic operators with custom operators. Embedded process-
ing application codes and benchmarks typically involve numerical blocks that exhibit
particular patterns, which we may refer to as being non-generic or custom. For ex-
ample, Euclidean norm calculations consist of square rooting a sum of squares; also,
radix-2 FFTs and arithmetic over the complex numbers use two-dimensional dot
products (DP2). Thus, a second step to increase further the performances of such
applications on integer processors like the ST231 is to design optimized custom op-
erators like square and DP2, that will then be added to the existing basic arithmetic
software support and selected at compile time. In fact, we can group custom opera-
tors into three categories, defined as follows:

• A fused operator replaces a set of two or more floating-point operators by a
single one. Examples include the fused multiply-add (FMA) operation xy + z,
as well as DP2 mentioned above.

• A specialized operator replaces a generic operator when the compiler can prove
properties about its arguments. A typical example is that of square replacing
a generic product xy whenever x equals y; another example is that of fused
square-add (FSA) x2 + z with z > 0, which replaces FMA whenever x equals
y and z is known to be nonnegative.

• A paired operator simultaneously evaluates two operators on the same input.
For example, given floating-point input x and y, the so-called addsub operator
will compute the pair (x + y, x − y).

Note that some fused operators may in fact be fully specified by a standard like IEEE
754-2008. For example, this is the case of FMA and of functions like reciprocal square
root and hypotenuse which compute, respectively, 1/

√
x and

√
x2 + y2 with just one

rounding error; see [IEE08, Table 9.1].
In hardware, some custom operators have been studied extensively. For ex-

ample, we refer to [SEES08, Sal09, SS12] and the references therein for DP2 and
addsub designs applied to FFT butterfly units. (Note that in these works addsub
is called ’fused’ rather than ’pair’.) Another example is the computation of qth
roots, for which algorithms and architectures have been proposed in [VB11]. In
addition, customization is now common practice for FPGAs due to the high flexibil-
ity offered by such architectures [dDP11] and for application-specific instruction-set
processors (ASIPs), methodologies on automating custom floating-point units are
proposed [CP07, CP09].

In software, several custom operators have been considered for processors having
floating-point hardware capabilities [CHT02, Mar03]. For integer processors like the
ST231, division has been specialized to reciprocal [Rev09, p. 4] and examples of fused
operators include reciprocal square, third, and fourth roots [Rev09, JR09b]. Such
operators are however not always critical ones in DSP applications, where most of
the computation time is spent on FMA-like patterns, that is, expressions made of
additions and various kinds of multiplications (generic, squares, by small constants).

2

1.2. Contributions

Selecting custom operators for software applications. Although the selec-
tion of FMA and DP2 can be quite trivial, taking full advantage of custom operators
in final applications still requires a specific effort to ensure the best possible code
generation during compilation. Furthermore, creating paired and specialized oper-
ators exploits the knowledge of the relationships and the ranges of the arguments,
for which various compilation optimizations and heuristics on different levels of in-
termediate representations must be applied.

Particularly, for some specialized operators (like FSA, for example), an important
condition is the positivity of floating-point operands for which the detection involves
static range analysis techniques. Static integer range analysis has already been stud-
ied for a diverse range of compiler optimizations [Pat95a, BGS00, Sim08, SGPB11]
and even for hardware customization [MRS+01]. However, it is a new try to explore
floating-point domain by diverting integer analysis techniques.

This thesis addresses the issue of accelerating embedded applications via the algo-
rithmic design and implementation of efficient custom floating-point operators as well
as the development of compiler optimizations for their selection in application codes.

1.2 Contributions

1.2.1 Fused, specialized, and paired operators

We have designed and implemented in standard ANSI C11 a set of custom floating-
point operators consisting of 4 fused operators, 5 specializations, and 2 paired op-
erators. These operators, which are reviewed below, have been optimized for IEEE
754 single precision (called ’binary32 format’ in [IEE08]) and fully support subnor-
mal numbers, signed zeros, signed infinities, and NaNs (Not-a-Numbers). Correct
rounding is provided for all of them except for trigonometric functions, which for cost
reasons are implemented with a guaranteed accuracy of only one ulp (unit in the last
place). Furthermore, correctly-rounded results can be obtained for any of the four
rounding modes required by the standard for binary floating-point arithmetic: to
nearest even (RN), up (RU), down (RD), and to zero (RZ).

Fused operators. We have implemented the following four fused operators. Each
of them commits just one rounding error.

• FMA (fused multiply-add): xy + z.

• FSA (fused square-add): x2 + z with z > 0.

• DP2 (two-dimensional dot product): xy + zt.

• SOS (sum of two squares): x2 + z2.

The FMA belongs to the IEEE 754 standard since its 2008 revision [IEE08, §5.4.1]
and is a key operation for linear algebra and schemes like Horner’s rule for evaluating
polynomials and Newton’s method for performing divisions. However, due to its lack

3

Chapter 1. Introduction

of symmetry, this operator is well-known to introduce subtle programming issues
when evaluating expressions like DP2; see [Kah96] and [Hig02, §2.6]. This is why we
provide a correctly-rounded DP2 operator as well. We also provide FSA and SOS,
which appear in n-dimensional and 2-dimensional Euclidean norm calculations; in
those cases the algorithms for FMA and DP2 can be simplified significantly, thus
providing opportunities for acceleration.

Specialized operators. We have also implemented the following five special cases
of multiplication and addition:

• mul2 (multiplication by two): 2x.

• div2 (multiplication by one half): 1
2x.

• scaleB (multiplication by an integer power of two): x · 2n with n a 32-bit
signed integer.

• square (squaring): x2.

• addnn (addition of nonnegative terms): x + y with x > 0 and y > 0.

All these patterns appear in application codes and can be implemented much faster
than generic multiplication or generic addition by means of specific algorithms. They
are also fully specified by the IEEE 754 standard in the sense that mul2, div2,
square, and addnn inherit the specification of multiplication and addition, and also
since scaleB is itself specified in [IEE08, §5.3.3]. Furthermore, since we assume
radix 2 floating-point arithmetic, no rounding occurs for mul2 and scaleB with n > 0,
assuming no overflow occurs. Finally, FSA and SOS can of course be also considered
as specialized versions of the fused operators FMA and DP2.

Paired operators. Two paired operators have been implemented so far, which
typically occur in DSP kernels (FFT butterflies and rotations):

• addsub (simultaneous addition and subtraction): (x + y, x − y).

• sincos (simultaneous sine and cosine over a reduced range): (sinx, cos x) with
x ∈ [−π

4 , π
4].

Such blocks give the opportunity to share some computations and also to expose
more ILP in an easy way, thus allowing reduced latencies than by calling the two
operations in sequence.

Design methodology. Our design aims at high instruction-level parallelism (ILP)
as well as scalability to various floating-point formats.

To achieve high ILP, our first step is to classify the input into two categories,
namely generic input and special input. Hence, the design of each operator reduces
to three independent tasks: the evaluation of the condition which distinguishes be-
tween generic and special input (T1), the handling of generic input (T2) and that of
special input (T3). These three tasks can be processed simultaneously on a VLIW

4

1.2. Contributions

architecture, and the return value can be obtained by a selection between the re-
sults from T2 and T3 depending on the outcome of T1. Our second step is to design
high-ILP algorithms for each of these three tasks, assuming unbounded parallelism.
However, T1, T2, T3 are not considered separately and, following [BJJL+10], we opti-
mize the a priori most expensive task first, and then try to reuse as much as possible
its intermediate results for the other two tasks.

Although we have optimized our implementations for the binary32 format, all our
algorithm descriptions (except for sincos) are parametrized by a more generic format,
binaryk, and accompanied with rigorous mathematical proofs. A first advantage of
this approach is that it allows us to support other formats, like binary64 (double
precision) or binary128 (quad precision), as soon as we have software support for 64-
bit or 128-bit integer arithmetic. In fact, to facilitate engineering, we have described
all these parametrized designs in an XML-based scheme, that is used to generate the
C codes of all variants for different formats and rounding modes. Another advantage
is to provide increased confidence into the produced C codes. Indeed, although we
have performed exhaustive tests for univariate operators in binary32, for multivariate
operators or for binaryk with k > 64, we had to resort to random tests and tests
on well-chosen special cases. Parametrized algorithms, whose correctness proofs are
done once for all, can therefore be seen as complementary of this classical validation
scenario.

Operator performances for the binary32 format on the ST231. Table 1.1
gives for all rounding modes and the first 10 custom operators the latencies (in
numbers of cycles) and code sizes (in numbers of integer instructions, and displayed
within square brackets) obtained for one call on the ST231.

RN RU RD RZ

mul2 5 [11] 7 [13] 6 [14] 6 [15]
div2 6 [16] 8 [17] 7 [16] 6 [13]

scaleB 15 [51] 16 [55] 16 [54] 14 [45]
square 12 [42] 11 [37] 9 [31] 9 [31]
addnn 15 [47] 15 [43] 14 [35] 14 [35]
FSA 22 [73] 22 [70] 19 [54] 19 [54]
FMA 46 [170] 46 [167] 45 [166] 42 [158]
SOS 26 [81] 25 [77] 22 [62] 22 [62]
DP2 55 [207] 54 [206] 53 [205] 51 [194]

addsub 28 [96] 30 [106] 30 [106] 26 [86]

Table 1.1: Performances for the binary32 format on the ST231 in # cycles [#
instructions].

For sine and cosine over the reduced range [−π/4, π/4] the following latencies and
code sizes have been achieved:

sine cosine sincos

19 [31] 18 [28] 19 [49]

5

Chapter 1. Introduction

First, a good way to measure the efficiency of the custom operators compared
to their naive implementation1 is by evaluating speedups and code reduction ratios
(CRR):

speedup =
latency of the original code

latency of the improved code

and

CRR =
size of the improved code

size of the original code
.

In this way, speedups > 1 denote an acceleration, while CRRs < 1 indicate a code size
reduction. Table 1.2 displays these ratios for rounding to nearest (except for sincos,
which has 1-ulp accuracy), but the results are essentially the same for the three other
rounding modes. From this table we see that speedups can be as high as 4.2, while
CRRs can be as low as 0.15. Furthermore, for fused operators, since the speedups
here do not account for the two function calls penalty, the exact performance gain
obtained at run time can even be larger. Finally, it is worth noting that the FMA’s
adverse CRR is due to bigger alignment logic in the addition stage, which is necessary
for correct rounding.

Speedup CRR

mul2 4.2 0.15
div2 3.5 0.22

scaleB 1.4 0.70
square 1.75 0.49
addnn 1.73 0.54
FSA 2.14 0.46
FMA 1.02 1.02
SOS 2.62 0.35
DP2 1.24 0.90

addsub 1.86 0.56
sincos 1.95 0.82

Table 1.2: Speedups and CRRs.

Second, a good measure of the exploitation of ILP is the Instruction Per Cycle
ratio (IPC), which ideally should approach 4 for the 4-way VLIW ST231 processor.
In practice, for sincos this ratio is 49/19 ≈ 2.6; for the other operators we see in
Table 1.3 that their IPC values range from 1.9 (for the mul2 operator in RU) to
3.9 (for the DP2 operator in RD). On the other hand, the average IPC of these 11
operators is of 3.1, thus demonstrating high ILP exposure.

Third, to conclude this set of experiments Table 1.4 illustrates with the example
of multiplication that naive specialization is not enough to obtain our results, and
that entirely different algorithms have been needed. Here naive specialization means
that 2, 1

2 , or x has been substituted to y in the C code of generic multiplication xy

1For example, the naive implementation of xy + z consists of one generic multiplication followed
by one generic addition; a naive implementation of sincos consists in one call to sine followed by one
call to cosine.

6

1.2. Contributions

RN RU RD RZ

mul2 2.2 1.9 2.3 2.5
div2 2.7 2.1 2.3 2.2

scaleB 3.4 3.4 3.4 3.2
square 3.5 3.4 3.4 3.4
addnn 3.1 2.9 2.5 2.5
FSA 3.3 3.2 2.8 2.8
FMA 3.7 3.6 3.7 3.8
SOS 3.1 3.1 2.8 2.8
DP2 3.8 3.8 3.9 3.8

addsub 3.4 3.5 3.5 3.3

Table 1.3: IPCs for the binary32 format on the ST231.

with, say, RN. After compilation of these new codes we see a latency reduction of at
best 3 cycles.

Operation Generic Naive specialization Optimized specialization

2x 21 18 5
1
2x 21 19 7
x2 21 19 12

Table 1.4: Naive vs optimized specialization (in # cycles and for RN).

1.2.2 A production compiler supporting custom operators

Selection of custom operators. A specific variant of the production compiler of
the ST200 C/C++ compiler has been developed to support the selection of custom
floating-point operators. The selection of the fused operators (FMA, DP2) as well
as most of the specialized operators (mul2, div2, scaleB of constant scaling factor,
square, and SOS) can be achieved at high level, on mostly syntactic criteria, but
as there are many choices to pattern-matching expressions, some heuristics are in-
volved. The selection of paired operators (addsub, sincos) is more elaborate since
the expressions candidate for such an association may not belong to the same state-
ments. Finally, the selection of FSA and addnn requires an elaborate static analysis
phase to prove the positivity condition of some of their arguments. The next three
paragraphs detail how we have addressed these issues.

Squaring and scaling operators (mul2, div2 and x · C when C is a constant such
that C = 2n and n 6= ±1) are specialized operators of general multiplication. In
the production compiler, a floating-point multiplication can be selected as a square,
when its two operands are identical; or selected as a scaling operator, when one
of its operands is a constant power of two. Also, three kinds of patterns can be
selected as DP2. According to the type of expressions x, y, z, and t, the expression
xy + zt is selected as dps(x, y, z, t), which means single precision for dot product,
or respectively, dpd(x, y, z, t) for double precision. Similarly, xy − zt is selected as
dpsubs(x, y, z, t) or dpsubd(x, y, z, t), and −xy−zt is selected as ndps(x, y, z, t)

7

Chapter 1. Introduction

or ndpd(x, y, z, t). Note finally that DP2 is selected as SOS when x = y and z = t.
To select addsub, the compiler replaces all additions and subtractions by a call

to a specific function returning a pair of floats. As addition and subtraction are
pure functions known by the compiler not to have any side-effect, when both results
are required for the same input, the specific function will be called only once after
redundancy elimination. We use the same method to select sincos.

To select FSA and addnn, we need a specific optimization to prove the positivity
of some operands during compilation. Since an integer range analysis framework is
already implemented in the compiler, we realize this optimization by diverting it for
floating-point variables.

Thanks to our production compiler, applications can benefit from the custom
operators proposed so far. For example, the listing below shows how a radix-2 but-
terfly, which is a basic block for performing FFT, can be processed in our context.
Here we see that the computation of t1 and t2 amounts to two DP2 fused opera-
tors, and the computations processed on array elements x[k], x[k+n1], and y[k],
y[k+n1] can be selected as two addsub paired operators. Therefore, the complete
butterfly can be computed by using only custom operators. The paragraph below
shows that significant performance gains are obtained in such applications by using
the production compiler together with the complete set of custom operators.

for(k = j; k <= n; k = k + n2){
t1 = c ∗ x[k + n1] − s ∗ y[k + n1]; → t1 = dpsubs(c, x[k+n1], s, y[k+n1])

t2 = s ∗ x[k + n1] + c ∗ y[k + n1]; → t2 = dps(s, x[k+n1], c, y[k+n1])

x[k + n1] = x[k] − t1; → (x[k+n1], x[k]) = adspairs(x[k], t1)
x[k] = x[k] + t1;

y[k + n1] = y[k] − t2; → (y[k+n1], y[k]) = adspairs(y[k], t2)
y[k] = y[k] + t2; }

Performances on the UTDSP benchmark. The UTDSP Benchmark Suite [Lee]
was created to assess C compilers efficiency on typical DSP codes. It is divided into
two classes: kernels (FFTs, filters,...) and applications (LPC coding,...). It is also
highly representative of our application domain and has been found, notably on com-
piler optimization work, to be a good predictor of the kind of improvements that
can be obtained at a larger scale, on actual multimedia applications, such as audio
coders and decoders.

Table 1.5 summarizes the gains on various UTDSP kernels and applications,
which are:

• FFT-256 (resp. FFT-1024), a complex radix-2 decimation-in-time 256-point
(resp. 1024-point) FFT;

• Latnrm-8 (resp. Latnrm-32), an 8th order (resp. 32nd) normalized lattice
filter processing 1 (resp. 64) point(s);

• SPE, a power spectral estimator using the periodogram averaging method;

• ADPCM, an Adaptive Differential PCM encoder;

8

1.3. Thesis outline

• LPC, a Linear Predictive Coding encoder.

Table 1.5 has been built by using internal compiler options that enable the selection of
FMA operators only, and options that enable the selection of the full set of custom
operators. The measures of the application performance are done with a cycle-
accurate simulator, configured not to account for the I- or D- cache cycles: we call
these ’perfect cycles’. For the floating-point operators, the D-cache cycles are zero
by design, and the I-cache cycles are rapidly amortized for these relatively small
functions in floating-point intensive code. For these test suites, the rounding mode
is not changed and defaults to RN.

FLIP 1.0 FMA custom operators

FFT-256 324001 304545 [1.06] 204194 [1.59]
FFT-1024 1609927 1512647 [1.06] 1010887 [1.59]
Latnrm-8 1857 1644 [1.13] 1388 [1.34]
Latnrm-32 467365 411173 [1.14] 347685 [1.34]

SPE 1186501 1116659 [1.06] 959924 [1.24]
ADPCM 1733237 1612096 [1.08] 1559928 [1.11]

LPC 874210 757948 [1.15] 747758 [1.17]

Table 1.5: Custom operators vs FLIP 1.0 in # cycles and [speedups].

Although the selection of the FMA alone brings speedups from 1.06 to 1.14 only,
enabling our full set of custom operators brings speedups that can be as high as
1.59. The usage of such operators, that replace FMA or complement it, is displayed
in Table 1.6. In this table ”X(Y %)” indicates that the proportion, over all available
floating-point operators, of the custom operator X is of Y %. As a consequence,
a sum equal to 100% means that only custom operators are selected; this is for
example the case of the FFT and Latnrm-32 benchmarks. Such benchmarks thus
provide quantitative evidence of the benefits of selecting custom operators.

custom operators selected

FFT-256,1024 DP2 (50%), addsub (50%)
Latnrm-8 DP2 (67%), FMA (29%)
Latnrm-32 DP2 (66%), FMA (34%)

SPE DP2 (20%), FMA (13%), addsub (9%),
SOS (5%), square (1%)

ADPCM FMA (25%), DP2 (8%), square (4%)
LPC FMA (72%), DP2 (4%), square (2%),

addsub (<1%)

Table 1.6: Custom operators selected.

1.3 Thesis outline

The rest of the manuscript is organized into eight chapters as follows. Chapters 2
and 3 are preliminary chapters introducing, respectively, IEEE binary floating-point

9

Chapter 1. Introduction

arithmetic and our design methodology on the ST231. The next four chapters detail
our algorithms and implementations for a representative subset of six custom op-
erators: some specialized products (square, scaleB, mul2, div2), the fused operator
DP2, and the paired operator sincos. Then, Chapter 8 covers the techniques we have
developed in the compiler for selecting custom operators in application codes. We
conclude in Chapter 9.

IEEE binary floating-point arithmetic (Chapter 2). This chapter provides
the necessary background in binary floating-point arithmetic according to the IEEE
754-2008 standard. There we review binary floating-point data, the parameters on
which they depend, and how they are encoded into unsigned integers. We also recall
the notions of rounding, overflow, gradual underflow, as well as a formula for the
encoding of the rounded value of a real number. Finally, we present the function ulp
(unit in the last place) together with some of its properties that will be useful later
in this thesis.

Design principles for software floating-point on the ST231 (Chapter 3).
In this chapter, we introduce the key architectural features of the ST231 for the
floating-point software support, such as predicated execution through select oper-
ations, count-leading-zero instructions and encoding of immediate operands up to
32 bits. For a VLIW processor, the goal is to expose high instruction-level paral-
lelism (ILP), and then we explain how to classify the inputs and define different tasks
during the floating-point emulation to achieve high ILP. This is illustrated on the ex-
ample of multiplication by two (mul2 operator). Finally, we detail the 64-bit integer
support on the ST231 and how to generate C code for binaryk floating-point format
from our parameterized implementations as long as the k-bit integer arithmetic is
supported.

Squaring (Chapter 4). This chapter focuses on the squaring function x 7→ x2.
We show how the specific properties of squaring can be exploited in order to design
and implement algorithms that have much lower latency than those for general mul-
tiplication, while still guaranteeing correct rounding. Our algorithm descriptions are
parameterized by the floating-point format, aim at high instruction-level parallelism
(ILP) exposure, support subnormal numbers, and cover all rounding modes. We
show further that their C implementation for the binary32 format yields efficient
codes for targets like the ST231, with a latency at least 1.75x smaller than that of
general multiplication in the same context.

Some parts of the work in this chapter have been published in [JJLMR11].

Scaling by integer powers of two (Chapter 5). Here we consider floating-
point scaling, with subnormal support and correct rounding for all standard specified
modes. By scaling, we mean multiplication by an integer power of two: given a
floating-point datum x and an integer n, we want x · 2n. Depending on the sign
of n, either overflow or inexact result may happen, which leads to very different
algorithms. Therefore, we first separate the discussion for nonnegative and negative

10

1.3. Thesis outline

n, and then we propose a complete implementation by simply merging the two cases.
On a VLIW processor like the ST231, this method results in a low latency and high
ILP scaling operator. Moreover, we present very efficient implementations for some
specific values of n, such as 1 and −1, which indeed compute 2x and x/2 and can be
considered as special cases of multiplication. The numerical results show that it is
worthwhile to have dedicated algorithms for different values of n and that this basic
operator can even impact some high-level applications like matrix balancing.

Two-dimensional dot products (Chapter 6). Various real applications require
the evaluation of floating-point two-dimensional dot products xy + zt. In this chap-
ter, we study how to evaluate such expressions accurately and efficiently on VLIW
integer processors. Accurately means that we provide correct rounding for the all
the rounding modes as well as support for subnormal numbers; efficiently means that
it shall be faster than evaluating the expressions by the naive approach consisting
of two multiplications followed by one addition. For this, we propose an algorithm
and its correctness analysis, which, like for the previous two chapters, is done in
a parametrized way. We also detail the corresponding C implementation for the
binary32 format. On the ST231, this code is from 1.15x to 1.3x faster than the naive
approach. It also exposes a lot of ILP, with an IPC of at least 3.8. Furthermore,
combining it with other custom operators leads to significant speedups: 1.59x when
performing FFT and up to 1.45x for some 3D graphics applications.

Simultaneous sine and cosine (Chapter 7). Graphics and signal processing
applications often require that sines and cosines be evaluated at a same floating-point
argument, and in such cases a very fast computation of the pair of values is desirable.
In this chapter, we study how to exploit the 32-bit VLIW integer architecture of the
ST231 in order to perform this task accurately for IEEE single precision, including
subnormals. We describe software implementations for sinf, cosf, and sincosf over
[−π/4, π/4] that have a proven 1-ulp accuracy and whose latency on the ST231 is
19, 18, and 19 cycles, respectively. Such performances are obtained by introducing
a novel algorithm for simultaneous sine and cosine that combines univariate and
bivariate polynomial evaluation schemes.

Most of the work in this chapter has been published in [JJL12].

Compiler optimizations (Chapter 8). In this chapter, we focus on compilation
aspects for the support of high-performance floating-point arithmetic on integer pro-
cessors. First, to allow applications to benefit from custom floating-point operators,
we study the selection of specialized, fused, and paired operators, that can be done
at target-independent intermediate representation (WHIRL). Then, as the compiler
is used to generate code for its own operators residing in a library (libgcc), we dedi-
cate a specific effort at code generator intermediate representation (CGIR) level to
ensure the best possible code selection when compiling the implementations of each
floating-point operator on the ST231. Finally, for operators requiring to prove the
positivity of some of their operands to be selected, such as fused square-add, we show
how to augment the integer range analysis framework available at the CGIR level to

11

Chapter 1. Introduction

detect this condition for floating-point variables. Compiling the UTDSP benchmark
by the production compiler, we observe high usage of custom floating-point operators
with speedups up to 1.59x.

Conclusions, perspectives, and appendices. In Chapter 9 we present our con-
clusions for both the computer arithmetic aspect and the compiler optimizations
aspect, as well as some possible directions for future research. There are also three
appendices: the first one summarizes the notation used throughout the document;
the second and third ones provide C codes for some basic integer functions and for
some compiler optimizations, respectively.

12

Chapter 2

IEEE binary floating-point
arithmetic

This short preliminary chapter provides the necessary background in binary floating-
point arithmetic according to the IEEE 754-2008 standard [IEE08]. We review binary
floating-point data, the parameters on which they depend, and how they are encoded
into unsigned integers. We also recall the notions of rounding, overflow, gradual
underflow, as well as a formula for the encoding of the rounded value of a real
number. Finally, we present the function ulp (unit in the last place) together with
some of its properties that will be useful later in this thesis.

2.1 Introduction

Radix-β, precision-p floating-point numbers are numbers of the form

m · βe,

where the integer β is the radix of the floating-point system, the rational m is
the significand and satisfies |m| < β and m · βp−1 ∈ Z, and the integer e is the
exponent. Kahan’s paper, Why Do We Need a Floating-Point Standard? [Kah81],
depicts the messy situation of floating-point arithmetic before the 1980s. The IEEE
754 Standard, first published in 1985, was proposed in order to address this issue
and especially to improve the robustness, efficiency, and portability of programs used
for numerical computations. Its latest revision dates back to August 2008, and is
referred to as the IEEE 754-2008 Standard for Floating-Point Arithmetic [IEE08].
In this document, it is simply called the standard. Today, and as a result of this
standardization effort, IEEE floating-point arithmetic is the most common way of
approximating arithmetic with real numbers on a computer.

The standard defines floating-point formats, rounding modes, and operators,
which are used to represent a finite subset of real numbers. The standard defines in
particular various floating-point formats and their encodings into unsigned integers,
rounding modes, exceptions and how to handle them, and what the result of an
operation must be (for some given input/output formats and a given rounding mode).

Specifically, the standard defines two families of formats: binary (β = 2) and
decimal (β = 10) floating-point formats. In this document, we will consider only
binary floating-point formats, that is, we assume

β = 2.

For comprehensive reviews of floating-point arithmetic, we refer to the books [Hig02,
§2] and [MBdD+10], as well as to Goldberg’s survey [Gol91].

13

Chapter 2. IEEE binary floating-point arithmetic

Outline. We start in §2.2 by reviewing binary floating-point data, the parameters
on which they depend, and how they are encoded into unsigned integers. Then §2.3
recalls the notions of rounding, overflow, gradual underflow, and provides a formula
for the encoding of the rounded value of a real number. Finally, §2.4 presents the
function ulp (unit in the last place) together with some of its properties that will be
useful later in this thesis.

2.2 Binary floating-point data

2.2.1 Data defined by the standard

As specified in the standard [IEE08], binary floating-point data consist of

• quiet and signaling not-a-numbers (qNaN, sNaN),

• signed zeros (+0, −0),

• signed infinities (+∞, −∞),

• and finite nonzero binary floating-point numbers.

Finite nonzero binary floating-point numbers have the following form: given a pre-
cision p and an exponent range [emin, emax],

x = (−1)sx · mx · 2ex , (2.1a)

where sx is either 0 or 1, and where, writing (. . .)2 for a binary expansion,

mx = (mx,0.mx,1 . . . mx,p−1)2 and emin 6 e 6 emax. (2.1b)

Here, since the radix is 2, each mi is a bit, so that another way of writing mx is

mx =

p−1∑

i=0

mx,i · 2−i.

The expression in (2.1a) with mx and ex as in (2.1b) is also called the normalized
representation of a floating-point number [MBdD+10, p. 15]. Any such number must
in fact be

• either normal (m0 = 1),

• or subnormal (m0 = 0 and e = emin).

Thus, writing α for the smallest positive subnormal number and Ω for the largest
normal number, we have

α = 2emin−p+1 and Ω = (2 − 21−p) · 2emax .

Remark. In this thesis, we will sometimes use the expression in (2.1) to represent
signed zeros. In this case, we shall set ex to emin and set all the bits of mx to zero.

14

2.2. Binary floating-point data

Unbounded normalized representation. For our designs, we will often use
the so-called unbounded normalized representation for intermediate results. This
alternative representation to (2.1) is defined as follows. Let λx be the number of
leading zeros of the binary expansion of mx:

mx = (0.00 . . . 00︸ ︷︷ ︸
λx zeros

1mx,λx+1 . . . mx,p−1)2.

Then

x = (−1)sx · m′
x · 2e′x , (2.2)

where

m′
x = mx · 2λx and e′x = ex − λx.

This representation is normalized in the sense that m′
x is always in the real interval

[1, 2), whereas mx can be either in (0, 1) or in [1, 2). It is unbounded, since now e′x
can be less than emin and, therefore, outside the bounded exponent range [emin, emax]
of ex.

Remark. When x is a normal number, λx = 0, and when x is a subnormal number,
λx = emin − e′x > 0.

Binaryk format. We shall assume that emax, emin, and p in (2.1b) satisfy

emax = 2w−1 − 1 for some positive integer w, (2.3a)

and

emin = 1 − emax, 2 6 p < emax. (2.3b)

The format used to represent such floating-point data is called the binaryk format,
where

k = w + p.

In particular, the standard specifies three basic binary floating-point formats: binary32,
binary64, and binary128. Their parameters w and p are shown below together with
the corresponding values of emin and emax.

k w p emin emax

binary32 32 8 24 -126 127
binary64 64 11 53 -1022 1023
binary128 128 15 113 -16382 16383

Table 2.1: Basic standard binary floating-point formats.

Property 2.1. All the binaryk formats of the standard satisfy (2.3a) and (2.3b).

Proof. See [IEE08, Table 3.5] for the first two identities. On the other hand, the fact
that 2 6 p < emax for all standard binary formats can be shown as follows.

15

Chapter 2. IEEE binary floating-point arithmetic

The standard binary formats are defined in [IEE08, Table 3.5]. There we see
that, on one hand, this is true when k 6 128. On the other hand, when k > 128 we
have

p = k − jk + 13 and emax = 2jk−14 − 1,

with jk = round(4 log2 k), the integer closest to 4 log2 k. (If k is an integer then
4 log2 k cannot be exactly halfway two consecutive integers, so that no tie can occur.)
By definition of round, 4 log2 k − 1/2 < jk < 4 log2 k + 1/2. This implies first that,
for k > 27, 2 6 p 6 k. Second, 2−14.5k4 − 1 < emax. Third, k3 > 215.5 and then
2−14.5k4 > 2k > k + 1, so that k < emax.

Notice that the binaryk format is naturally expressed in terms of the parameters
w and p. In our designs, we will heavily use this property, by providing algorithm
descriptions parametrized by the format, that is, by w and p. This approach has the
advantage of making specialization to a given format easy. For example, most of the
C codes shown in this thesis for the binary32 format have been produced by setting

w = 8 and p = 24

in some parametrized formulas.

Here and hereafter, the set of binaryk finite floating-point numbers will be
denoted by F. We call normal range of F the set of real numbers ρ such that
2emin 6 |ρ| 6 Ω.

2.2.2 Standard encoding into integers

Encoding of finite nonzero floating-point numbers. For the binaryk format,
the standard encoding of x in (2.1) is via a k-bit unsigned integer X whose bit string
(which we write [Xk−1Xk−2 · · ·X0] and which we identify to X) satisfies

X = [sx|Ex,w−1 · · ·Ex,0|mx,1 · · ·mx,p−1], Ex =

w−1∑

i=0

Ex,i2
i, (2.4)

with biased exponent

Ex = ex − emin + mx,0.

From (2.4) we deduce the following alternative equation for X:

X = sx · 2k−1 + Dx · 2p−1 + Mx, (2.5)

where

• sx is the sign bit of x,

• Mx = mx · 2p−1 is its integer significand,

• and Dx = ex − emin is a biased exponent of ex.

16

2.2. Binary floating-point data

Note that the bias for Ex is −emin+mx,0, while it is −emin for Dx. In our designs, (2.4)
will be mainly used to extract some information from the input, and (2.5) will be
mainly used to reconstruct the output.

In this document, we shall indicate that a floating-point datum x is encoded by
X using the following notation:

X = ι(x).

For example, for the binary32 number x = −5/2, we have sx = 1, mx = 1 + 1/4 =
(1.01)2, ex = 1, so that X = ι(x) = 231 + 127 · 223 + (1.01)2 · 223 = 3223322624.

Examples of extracting information from these encodings.

Encoding of |x|. Let x be a finite floating-point number encoded by integer X.

Then the encoding of its absolute value |x| is clearly

X mod 2k−1 = [0|Ex,w−1 · · ·Ex,0|mx,1 · · ·mx,p−1].

Therefore, in the rest of this document, we shall use the following notation:

|X| = X mod 2k−1.

Remark. When x is a subnormal number, the bit string of |X| satisfies

|X| = [00 . . . 00︸ ︷︷ ︸
w + 1

mx,1 . . . mx,p−1]

= [00 . . . 00︸ ︷︷ ︸
w + 1

00 . . . 00︸ ︷︷ ︸
λx − 1

1mx,λx+1 . . . mx,p−1]. (2.6)

Computing λx. Let x be a finite floating-point number. Recall that the number λx

of leading zeros of the binary expansion of mx is zero if x is normal, and as in (2.6)
if x is subnormal. Then we have

λx = max(clz |X|, w) − w,

where the function clz counts the leading zeros of a k-bit unsigned integer Y :

clz Y =

{
k, if Y = 0,

k − 1 − ⌊log2 Y ⌋, otherwise.

Encoding of special data. Zeros, infinities, and signaling or quiet NaNs are
encoded via special values of X given in the table below. The bit of X of weight
2p−2 is zero for signaling NaNs and one for quiet NaNs.

In fact, as we have already remarked: when x is zero, we can write it as

x = (−1)sx · mx · 2ex , with mx = 0 and ex = emin.

Consequently, (2.4) can also be used for the encoding ι(0) of zero, which in some
implementations may simplify the way zero is handled.

17

Chapter 2. IEEE binary floating-point arithmetic

floating-point datum x Value or range of integer X

+0 0

−0 2k−1

+∞ 2k−1 − 2p−1

−∞ 2k − 2p−1

sNaN |X| ∈ [2k−1 − 2p−1 + 1, 2k−1 − 2p−2 − 1]

qNaN |X| ∈ [2k−1 − 2p−2, 2k−1 − 1]

Table 2.2: Standard encoding of special data.

Another consequence of the encodings above is that for finite floating-point num-
bers and special values, the integer Ex in (2.4) satisfies

Ex =

{
ex − emin + mx,0, if x is a finite floating-point number,

2w − 1, if x is ±∞ or NaN.
(2.7)

Therefore, we see in particular that Ex = 0 if and only if x is zero or subnormal.

2.3 Rounding

In general, the result of an operation (or a function) on floating-point numbers is not
exactly representable in the floating-point system being used, so it has to be rounded.
The standard has brought out the notion of rounding mode: how a numerical value
is rounded to a finite (or, possibly, infinite) floating-point number is specified by a
rounding mode (also called rounding-direction attribute in the 2008 revision of the
standard [IEE08, pp. 16]).

2.3.1 IEEE rounding modes

The four rounding modes that are specified in the standard are:

• Round to nearest: RN(x) is the floating-point number that is the closest to
x. To ensure uniqueness when x falls exactly halfway between two consecutive
floating-point numbers, the 2008 revision of the standard specifies two tie-
breaking rules: round to nearest even and round to nearest away. Since this
second rule is not required by binary implementations, the tie-breaking rule
chosen in this document is to even: x is rounded to the only one of these
two consecutive floating-point numbers whose integer significand is even. For
example, consider the rational number x0 = 16777217/134217728. Here x0 is
halfway between the two consecutive binary32 floating-point numbers x′

0 = 2−3

and x
′′

0 = (1 + 2−23) · 2−3, whose integer significands are 223 and 223 + 1.
Therefore, RN(x0) = x′

0.

• Round toward +∞ (also known as ’round up’): RU(x) is the floating-point
number (possibly +∞) closest to and no less than x; for example, RU(x0) = x

′′

0 .

18

2.3. Rounding

• Round toward −∞ (also known as ’round down’): RD(x) is the floating-point
number (possibly −∞) closest to and no greater than x; for example, RD(x0) =
x

′

0.

• Round toward zero: RZ(x) is the floating-point number closest to and no
greater in magnitude than x; it is equal to RD(x) if x > 0, and to RU(x) if
x 6 0; for example, RZ(x0) = x

′

0.

Rounding modes have many properties: see for instance [MBdD+10, §2.2]. In par-
ticular, RN and RZ are odd functions, that is,

RN(−x) = −RN(x) and RZ(−x) = −RZ(x), (2.8a)

while RU and RD are related to each other as follows:

RU(−x) = −RD(x) and RD(−x) = −RU(x). (2.8b)

2.3.2 Overflow

Overflow occurs when the rounded result with an unbounded exponent range would
have an exponent larger than emax. More precisely, given the unbounded normalized
representation of a nonzero real number x,

x = (−1)sx · mx · 2ex ,

where mx ∈ [1, 2) and ex unbounded, we have

• overflow before rounding when ex > emax;

• overflow after rounding when ex = emax and mx > 2 − 21−p.

Whatever overflow before rounding or after rounding, the standard specifies [IEE08,
§7.4] that

• round to nearest carries all overflows to ∞ with the sign of the intermediate
result;

• round toward zero carries all overflows to Ω with the sign of the intermediate
result;

• round toward +∞ carries negative overflows to −Ω, and carries positive over-
flows to +∞;

• round toward −∞ carries positive overflows to Ω, and carries negative overflows
−∞.

19

Chapter 2. IEEE binary floating-point arithmetic

2.3.3 Gradual underflow

The availability of subnormal numbers allows for what Kahan calls gradual underflow
(also called graceful underflow): the loss of precision is slow instead of being abrupt.
Several interesting properties are valid only when subnormal numbers are available:
for example, if x 6= y then the computed value of x − y is nonzero, or if x and
y are finite floating-point numbers such that y

2 6 x 6 2y then x − y is exactly
representable [Kah96, Hau96, Ste74]. Moreover, the support of gradual underflow
can significantly ease the writing of stable numerical software [Dem84].

Although it is considered the most difficult type of numbers to implement in
floating-point units in hardware [SSDT05], software emulation is not necessarily
costly. For example, on ST231, the native hardware instruction clz counts the
leading zeros of a 32-bit integer in only 1 cycle, which leads to the efficient detection
of subnormal inputs. Furthermore, we will see in the rest of the document (especially
in Chapters 4 and 7) that for some particular operators, such as square, sine, and
cosine, subnormal support can be obtained for free after careful analysis.

2.3.4 Encoding of the rounded value of a real number

Let ◦ denote one of the four rounding modes: ◦ ∈ {RN, RU, RD,RZ}. The standard
integer encoding of a rounded real number is specified by the fact below [Rev09,
§2.3] on the condition that overflow before rounding does not occur.

Fact 2.1. Let ρ be a real number such that

ρ = (−1)s · ℓ · 2d, (2.9)

where s ∈ {0, 1} and where (ℓ, d) ∈ R × Z satisfies

• either ℓ ∈ [0, 1) and d = emin,

• or ℓ ∈ [1, 2) and d ∈ [emin, emax].

Then its standard encoding of the rounded value ◦(ρ) is the integer R such that

R = s · 2k−1 + D · 2p−1 + L + b, (2.10a)

where the three integers D, L and b satisfy

D = d − emin, (2.10b)

L = ⌊ℓ · 2p−1⌋, (2.10c)

b =

g ∧ (ℓp−1 ∨ t) if ◦ = RN,

(g ∨ t) ∧ (¬s) if ◦ = RU,

(g ∨ t) ∧ s if ◦ = RD,

0 if ◦ = RZ,

(2.10d)

and where

ℓp−1 = L mod 2, g = ⌊ℓ · 2p⌋ mod 2, t =
[
{ℓ · 2p} 6= 0

]
.

20

2.4. The ulp function

Here and hereafter, for any two integers i, j ∈ {0, 1}, we write i ∧ j, i ∨ j,
¬i for, respectively, the integers ij, i + j − ij, 1 − i. In addition, throughout this
document, we shall call b the round bit, g the guard bit, and t the sticky bit. Writing
ℓ = (ℓ0.ℓ1 . . . ℓp−1ℓp . . .)2, we have in particular

g = ℓp and t = ℓp+1 ∨ ℓp+2 ∨ · · · . (2.11)

When ρ is known to be positive, for example ρ = x2 with x 6= 0, the computation
of the rounding bit b is somehow simpler. By applying s = 0, Equation (2.10d) is
simplified to

b =

g ∧ (ℓp−1 ∨ t) if ◦ = RN,

g ∨ t if ◦ = RU,

0 if ◦ = {RD,RZ}.
(2.12)

For example, consider ρ = 16777217/134217728. For the binary32 format, we
have s = 0, d = −3,

ℓ = (1. 00 . . . 00︸ ︷︷ ︸
23

1)2

and thus D = 123 and L = 223. It follows that ℓp−1 = 0, g = 1, t = 0, and then
b = 0 if ◦ ∈ {RN, RD,RZ} and b = 1 if ◦ = RU.

The expressions in (2.12) are in fact classical (see for example [EL04, §8.4.3]),
and to prove Fact 2.1, it suffices to combine them with the properties of the rounding
modes in (2.8) and with Equation (2.5).

Note that for overflow after rounding, Fact 2.1 ensures the right encoding of the
result.

2.4 The ulp function

Units in the last place (ulps) are often used to indicate the accuracy of floating-point
results. Given a floating-point system of precision p and minimal exponent emin, the
ulp of any real number x can be defined as follows [Mul05, MBdD+10]:

ulp(x) =

{
0 if x = 0,

2max{emin,e}−p+1 otherwise,

with e the integer power of two such that 2e 6 |x| < 2e+1. For example, for x =
16777217/134217728 = 0.1250000075 . . ., we have 2−3 6 x < 2−2, so that e = −3;
for the binary32 format, this gives ulp(x) = 2max{−126,−3}−24+1 = 2−26.

When ◦ = RN, we have

| ◦(x) − x| 6
1

2
ulp(x). (2.13)

For other rounding modes, ◦ ∈ {RU, RD,RZ}, we have

| ◦(x) − x| 6 ulp(x). (2.14)

In (2.13) we say that an accuracy of “half an ulp” is achieved, while in (2.14), we
talk about 1-ulp accuracy. Similarly to (2.14), in Chapter 7 we will ensure 1-ulp

21

Chapter 2. IEEE binary floating-point arithmetic

accuracy for our sine and cosine operators: this means that the result r returned by
any of these two operators satisfies

|r − ρ| 6 ulp(ρ),

where ρ is the exact result.

Relationship with unit roundoff u. Another quantity used very frequently in
numerical error analysis is the so-called unit roundoff u defined in terms of the
precision p as

u = 2−p.

When the real number x is such that |x| ∈ [2emin , Ω], we have 2e 6 |x| and, on the
other hand, ulp(x) = 2e−p+1, so that

ulp(x) 6 2u|x|.

Hence, in particular,

|x| ∈ [2emin , Ω] ⇒ |RN(x) − x|
|x| 6 u.

Some basic properties. We conclude this chapter with some basic properties of
the ulp function, that are easy to check and will be useful in the sequel:

• For any real x,
ulp(x) = ulp(|x|). (2.15a)

• For x, y ∈ R,
|x| 6 |y| ⇒ ulp(x) 6 ulp(y). (2.15b)

• If j ∈ Z and x ∈ R are such that both x and 2jx are in the normal range of F

then
ulp(2jx) = 2julp(x). (2.15c)

• For any real x in the normal range of F, we have

21−p
6 |x|ulp(x) < 22−p. (2.15d)

• For x ∈ R,

0 < |x| < 2emin+1 ⇒ ulp(x) = 2emin−p+1 =: α. (2.15e)

22

Chapter 3

Design principles for software
floating-point support on the
ST231

The ST231 is a 4-way 32-bit very long instruction word (VLIW) integer processor
from STMicroelectronics widely used in embedded media processing systems. In this
chapter, we start in §3.1 by introducing the key architectural features of the ST231
for the floating-point software support, such as predicated execution through select
operations, count-leading-zero instructions and encoding of immediate operands up
to 32 bits. For a VLIW processor, the goal is to expose high instruction-level paral-
lelism (ILP), and we explain in §3.2 how to classify the inputs and define different
tasks during the floating-point emulation to achieve high ILP. This is illustrated on
the example of multiplication by two (mul2 operator) in §3.3. Finally, we detail
in §3.4 the 64-bit integer support on the ST231 and how to generate C code for
binaryk floating-point format from our parameterized implementations as long as
the k-bit integer arithmetic is supported.

3.1 Introduction to the ST231 and its C/C++

compiler

3.1.1 Architecture overview

The ST231 is a 4-way 32-bit VLIW integer core from STMicroelectronics’ ST200
family derived from the Lx technology platform [FBF+00], highly used in audio and
video domains, such as HD-IPTV, set-top-boxes, printers, wireless terminals, etc.

The architecture of the ST231 (depicted in Figure 3.1) includes the following
features:

• parallel execution units, including multiple integer ALUs and two 32×32-bit
multipliers;

• a large register file of 64 32-bit general purpose registers ($r02 to $r633) and
8 1-bit condition registers ($b0 to $b7);

• predicated execution through ’select’ operations;

• efficient branch architecture with multiple condition registers;

2Reading $r0 always returns the value zero. Writing to $r0 has no effect on the processor state.
3$r63, the architectural link register, is used by the call and return mechanism.

23

Chapter 3. Design principles for software floating-point support on the ST231

ICache

DTLB

Mul

Register
file (64
registers
8 read

4 write)

Load

(LSU)

IU IU IU IU

Trap
controller

4 x SDI

STBus

SDI ports

61 interrupts Debuglink

Peripherals

Debug
Timers

3 x
controller support unit 32-bit

I-side
memory
subsystem

Interrupt

register
PC and
branch
unit

Branch

file

DCache

buffer
Write

Prefetch
buffer

SCU

CMC

STBus

64-bit

registers
Control

UTLB
Mul

D-side
memory
subsystem

Store
Unit

ITLB

Instruction
buffer

ST231 core

Figure 3.1: Architecture of the ST231 processor core.

• encoding of immediate operands up to 32 bits.

The two 32×32-bit multipliers can be used simultaneously and the execution is fully
pipelined, that is, we can start two multiplications every cycle. Together with the
feature that immediate values up to 32 bits can be encoded in one instruction,
fast polynomial evaluation for elementary functions such as sine and cosine can be
implemented efficiently on the ST231, as detailed in Chapter 7.

Except for multiplication whose latency is 3 cycles, the latency of all the other
integer instructions, such as addition and subtraction, is only 1 cycle.

In addition to the usual operations, the ALUs also implement several specific
1-cycle instructions dedicated to code optimization: leading zero count (which is key
to subnormal numbers support and mantissa alignment), computation of minimum
and maximum, arbitrary left and right shifts, and combined shift and add.

Table 3.1 summarizes the ST231 instructions which are frequently used in our
floating-point emulation and how to use them in C.

Signed and unsigned maximum and minimum instructions can be selected by the
compiler from the C expressions in Table 3.1. For better readability of our imple-
mentations, we wrap such ternary operators into an inline function. For example,
we define the minu function as follows, which will be used in Listing 3.5 in § 3.3.
Other functions are detailed in Appendix A.

inline uint32_t minu(uint32_t x, uint32_t y){

return (x<y)?x:y;}

24

3.1. Introduction to the ST231 and its C/C++ compiler

Description ST231 instruction
C expression

(X, Y: int32 t or uint32 t)

addition, subtraction add, sub X+Y, X−Y
add with carry and generate carry addcg st200addcg(X,Y,C), see §3.1.5
32 × 32 unsigned product mul32, mul64hu (uint64 t)X *(uint64 t)Y

bitwise AND and X & Y

logical AND andl X && Y

count leading zeros clz lzcntw(X), see § 3.1.5

bitwise OR or X | Y

logical OR orl X || Y

(un)signed maximum max(u) (X > Y) ? X : Y

(un)signed minimum min(u) (X < Y) ? X : Y

shift N bits and add,
shNadd (X ≪ N) + Y

N ∈ {1,2,3,4}
shift left, shift right shl, shr(u) X ≪ N, X ≫ N

bitwise XOR xor X ˆ Y

select instructions slct if (cond) {...} else {...}

Table 3.1: Elements of the ST231 instruction architecture set.

3.1.2 Instruction bundling and extended immediates

As a 4-way VLIW processor, the ST231 issues simultaneously up to 4 instructions,
which are encoded into a wide word, called a bundle. More precisely, a bundle
contains from 1 to 4 consecutive 32-bit words, called syllables. A syllable contains
either an instruction or an extended immediate.

Except for clz, all the other instructions in Table 3.1 can operate on registers as
well as on immediates. For example, for unsigned minimum, minu, we have the two
following forms:

• Register form.

minu $dest = $src1 , $src2

Instruction minu applies to registers $src1 and $src2.

• Immediate form.

minu $dest = $src1 , ISRC2

Instruction minu applies to registers $src1 and immediate value ISRC2.

In general, only small (9-bit) immediates can be directly encoded in a single word
syllable. In the event that larger immediates are required, an “immediate extension”
is used. This extension is encoded in an adjacent word in the bundle, making the
operation effectively a two-word operation. These immediate extensions associate
either with the operation to their left or their right in the bundle.

Though this reduces available instruction parallelism, it is an effective mechanism
to build large constants, avoiding any access through the data memory, as we will
see in the next subsection.

25

Chapter 3. Design principles for software floating-point support on the ST231

3.1.3 Data access in memory

The core accesses the memory system through two separated L1 caches: a 32-Kbyte
4-way associative data cache (D-cache), and a 32-Kbyte direct-mapped instruction
cache (I-cache).

The direct mapped organization of the I-cache creates a specific difficulty to
obtain good and reproducible performance, since its caching performance is very
sensitive to the code layout, that can create conflict misses. This has been addressed
by post link time optimizations [GRBB05] that are either driven by heuristics or by
actual code profile.

If the datum is in the D-cache, it is directly accessed by the Load Store Unit
(LSU), and the load-use latency is 3 cycles. If the datum is not cached, the latency
is dependent on the actual implementation of the memory sub-system: controller
and memory type. In this case, loading a cache line into the D-cache may cost up to
100 cycles. If the datum is present in the prefetch buffer, it is transferred first to the
D-cache, which may take around 10 cycles, and then loaded by the LSU. In the code
designed for this thesis, the choice was made not to use any in-memory table, to
avoid any access through the D-cache side of the system, because a cold miss entails
a significant performance hit and hoisting the prefetch early enough to be efficient
is impossible due to various barriers, mostly function calls.

3.1.4 ST200 VLIW compiler

The ST200 compiler, st200cc, is based on the Open64 technology,4 open-sourced by
SGI in 2001, further developed by STMicroelectronics and more generally by the
Open64 community.

The Open64 compiler has been re-targeted to support different variants of the
ST200 family of cores by a dedicated tool, called the Machine Description System
(MDS), providing an automatic flow from the architectural description to the com-
piler and other binary utilities.

Though the compiler has been developed in the beginning to achieve high per-
formance on embedded media C code, it has been further developed and is able
to compile a fully functional Linux kernel and distribution, including, for instance,
C++ graphics applications based on Web Kit.

It is organized as follows: the gcc-4.2.0 based front-end translates C/C++ source
code into a first high level target independent representation called WHIRL, that
is further lowered and optimized by the middle-end, including WHIRL global opti-
mizer (WOPT), based on static single assignment form (SSA) representations, and
optionally loop nest optimizer (LNO). It is then translated in a low-level target de-
pendent representation, code generator intermediate representation (CGIR) for code
generation, including code selection, low level loop transformations, if-conversion,
scheduling, and register allocation.

In addition the compiler is able to work in a specific interprocedural analysis
(IPA) and interprocedural optimization (IPO) mode where the compiler builds a
representation for a whole program, and optimizes it globally by constant propaga-
tion, inlining, code cloning, and other optimizations.

4http://www.open64.net

26

http://www.open64.net

3.1. Introduction to the ST231 and its C/C++ compiler

Several additions have been done by STMicroelectronics to achieve high perfor-
mance goals for the ST200 target:

• A dedicated linear assembly optimizer (LAO) is in charge at the CGIR level
of software pipelining, pre-pass and post-pass scheduling. It embeds a nearly
optimal scheduler based on an integer linear programming (ILP) formulation
of the pipelining problem [ADN07]. As the problem instances are very large, a
large neighborhood search heuristic is applied as described in [dD07] and the
ILP problem is further solved by an embedded GLPK (GNU Linear Program-
ming Kit) solver.

• A specific if-conversion phase, designed to transform control flow into ’select’
operations [Bru09].

• Some additions to the CGIR ’extended block optimizer’ (EBO), including a
dedicated ’range analysis’ and ’range propagation’ phase.

• A proved and efficient out-of-SSA translation phase, including coalescing im-
provements [BDR+09].

Besides efficient code selection, register allocation, and instruction scheduling,
the key optimizations contributing to the generation of the low-latency floating-
point software are mostly the if-conversion optimization, and to a lesser extent the
range analysis framework.

3.1.5 ST231 intrinsics

The st200cc compiler recognizes a number of intrinsic operators (also called builtin
functions) which can be used to produce assembly language statements that other-
wise can not be expressed through standard ANSI C/C++.

Table 3.2 gives the ones frequently used for floating-point emulation:

Intrinsic prototype ST231 operation

uint32 t lzcntw(uint32 t) clz

uint32 t lzcntl(uint64 t) clz

uint64 t st200addcg(uint32 t, uint32 t, uint32 t) addcg

Table 3.2: ST231 intrinsic functions frequently used for floating-point emulation.

Count leading zeros. Intrinsic operator lzcntw simply uses the hardware in-
struction clz to count the leading zeros of a 32-bit integer. However, we implement a
C function uint32 t clz(uint32 t) in order to make our implementations portable
to other architectures.

inline uint32_t clz(uint32_t x){

#ifdef __ST200__

return __lzcntw(x);

#else

27

Chapter 3. Design principles for software floating-point support on the ST231

uint32_t n;

if (x == 0) return 32;

n = 0;

if (x <= 0x0000FFFF) { n = n + 16; x = x << 16; }

if (x <= 0x00FFFFFF) { n = n + 8; x = x << 8; }

if (x <= 0x0FFFFFFF) { n = n + 4; x = x << 4; }

if (x <= 0x3FFFFFFF) { n = n + 2; x = x << 2; }

if (x <= 0x7FFFFFFF) { n = n + 1; }

return n;

#endif

}

We are aware that GNU C5 also provides the built-in functions to count the leading
zeros of an integer, such as builtin clz, builtin clzl, and builtin clzll.
As the result of zero input is not defined for such functions, the length of the integer
format should be returned explicitly for our floating-point emulation. For example,
to implement clz by using builtin clz, we must write the following code.

Listing 3.1: clz by using GNU C built-in.

inline uint32_t clz(uint32_t x){

if (x == 0) return 32;

else return __builtin_clz (x);

}

On the ST231, whether by lzcntw or by Listing 3.1, this function is imple-
mented by the hardware instruction listed below. Register $r16 holds the input x

and meanwhile the result is also written to the same register.

clz $r16=$r16 ## (cycle 0)

The implementation for lzcntl, which counts the leading zeros of a 64-bit integer,
is detailed in § 3.4.1.

Remark. In floating-point arithmetic, we often need to compute λx, which is
defined as the number of leading zeros of the significand mx of a finite floating-point
number x. For the binary32 format, λx can be implemented efficiently on the ST231
by using clz as follows.

lambda = maxu (clz (X & 0x7FFFFFFF), 8) - 8;

Addition with carry and generate carry. st200addcg adds two unsigned
32-bit integers together with a 1-bit input carry, whose implementation is listed
below.

convib $b0=$r18 ## (cycle 0)

;; ## (bundle 0)

5http://gcc.gnu.org/

28

http://gcc.gnu.org/

3.2. “Multi-tasks” for high instruction-level parallelism

addcg $r16 , $b0=$r16 , $r17 , $b0 ## (cycle 1)

;; ## (bundle 1)

convbi $r17=$b0 ## (cycle 2)

return $r63 ## (cycle 2)

;; ## (bundle 2)

Registers $r16 and $r17 hold the two input integers, $r18 holds the input carry and
the 64-bit result is written back to $r16 (lower 32 bits) and $r17 (upper 32 bits).

According to the ST231 run-time architecture manual [ST209], argument values
up to 32 bytes are passed in register $r16 to $r23 and arguments beyond these
registers appear in memory. Return values up to 32 bytes also appear in these
registers.

3.2 “Multi-tasks” for high instruction-level parallelism

3.2.1 Predicated execution for conditional branches reduction

The architecture supports predicated execution through select operations to improve
performance by removing conditional branches. The select semantic is

$dest = slct $cond , $src1 , $src2

Here $cond is a condition register and it usually holds the result of a comparison
instruction. When $cond is true, the $dest register takes the value in $src1; other-
wise, it takes the value in $src2.

In st200cc, the if-conversion optimization is implemented to eliminate conditional
branches by transforming a control flow region into an equivalent set of conditional
instructions [Bru09].

Example of if-conversion. Listing 3.2 gives a piece of C code that returns −1 if
x < 0, and 1 otherwise.

Listing 3.2: Example of if-conversion.

0 int32_t exp_ifconversion(int32_t x){

1 if(x<0) return -1;

2 else return 1;}

By using st200cc, Listing 3.3 gives the assembly code without if-conversion,
and 3.4 with if-conversion. Listing 3.3 shows that the critical path of this func-
tion takes 5 cycles when the branch is generated. The reason is that there is a
3-cycle latency after an operation writing the condition register ($b0 at line 0) to
issue the operation branch (brf at line 3).

Listing 3.3: The ST231 assembly code with branches.

0 cmpge $b0=$r16 , $r0 ## (cycle 0)

1 mov $r16=1 ## (cycle 0)

2 ;; ## (bundle 0)

3 brf $b0 , .L_BB2_exp_ifconversion ## (cycle 3)

29

Chapter 3. Design principles for software floating-point support on the ST231

4 ;; ## (bundle 1)

5 return $r63 ## (cycle 4)

6 ;; ## (bundle 4)

7 .L_BB2_exp_ifconversion:

8 mov $r16=-1 ## (cycle 0)

9 return $r63 ## (cycle 0)

10 ;; ## (bundle 0)

Listing 3.4 shows that the critical path takes 2 cycles by using slct. At line 0,
condition register $b0 obtains the result whether variable x stored in register $r16

is negative or not. At line 4, the slct instruction writes the final result to register
$r16 depending on the value of $b0. There is no latency restriction between cmpge

and slct operation.

Listing 3.4: The ST231 assembly code with if-convention.

0 cmplt $b0=$r16 , $r0 ## (cycle 0)

1 mov $r16=-1 ## (cycle 0)

2 ;; ## (bundle 0)

3 slct $r16=$b0 , $r16 , 1 ## (cycle 1)

4 return $r63 ## (cycle 1)

5 ;; ## (bundle 1)

3.2.2 If-conversion in emulating floating-point arithmetic

Let us now present the methology on how to expose high ILP for floating-point
arithmetic by using if-conversion.

For each operator, we classify inputs as being either special or generic by
introducing the following definitions:

• special: the inputs are such that the output is a value known in advance, like
a constant (+0, −∞, . . .), or the input itself.

• generic: every input that is not special.

Using Knuth’s bracket notation

[S] =

{
1, if S is true,

0, if S is false,

we define the condition

Cspec = [x is special]. (3.1)

This condition allows us to reach the following high-level algorithmic description,
which shows that implementation of each operator essentially reduces to three inde-
pendent tasks T1, T2, and T3:

30

3.3. An example of binary32 implementation exposing high ILP

evaluate the condition Cspec [T1]
if (Cspec = 1) then

handle special inputs [T2]
else

handle generic inputs [T3]

Thanks to if-conversion, the generated assembly code for the above algorithm will
consist of a straight-line piece of code computing the result Ri of each task Ti and
ending with a ’slct’ instruction that selects R2 if R1 is true, R3 otherwise.

For the design and implementation of each task we shall proceed in two steps
as in [BJJL+10]: assuming unbounded parallelism we optimize the a priori most
expensive task first, namely task T3 and then only T1 and T2, by trying to reuse as
much as possible what was computed for T3. The latency of ’slct’ being 1 cycle, the
lowest latency we can expect for any operator is thus 1 cycle more than that of T3.

3.3 An example of binary32 implementation exposing

high ILP

In this section, we show how the method introduced in the previous section (§3.2.1)
can be applied in a real design in order to expose high ILP. The example we have
chosen here is the implementation for the binary32 format of mul2, which multi-
plies a floating-point datum x by two. The detailed algorithm will be discussed in
Chapter 5, and the goal here is simply to give a general view of how to use the
architectural support of the ST231 (integer arithmetic, if-conversion, etc.) in order
to realize floating-point emulation.

Defining generic and special input of mul2. The mul2 operator is a special-
ization of general multiplication. When ◦ = RN, it is specified by the standard as

r =

+∞ if x > 2emax ,

◦(2x) if |x| < 2emax ,

−∞ if x 6 −2emax ,

qNaN if x is NaN.

(3.2)

Then, we say the floating-point number x is generic if |x| ∈ [0, 2emax), and special
otherwise. Therefore, Cspec, defined by Equation (3.1), satisfies

Cspec =
[
x is ±∞ or NaN

]
(3.3)

∨
[
x is finite number and |x| > 2emax

]
.

Computing correctly-rounded multiplication by 2. Given x generic, we will
see in Chapter 5 that the binary32 format encodings of x and r satisfy

R = X + min(|X|, 0x00800000), |X| = X mod 0x80000000.

The corresponding C implementation is shown at line 10 of Listing 3.5.

31

Chapter 3. Design principles for software floating-point support on the ST231

Detecting and handling special input for ◦ = RN. Let us now consider the
implementation of the condition Cspec, which satisfies

Cspec = Clarge ∨ Cnan, (3.4)

where Clarge = [|x| > 2emax] and Cnan = [x is NaN]. Therefore, the C implementation
for the binary32 format is

Clarge ∨ Cnan =
[
|X| > 0x7F000000

]
.

According to the specification shown by Equation (3.2), the C implementation below
gives the handling of special input for the binary32 format. Here, absX at line 0,
which computes the encoding of |x|, is used in both T1 (evaluation of Cspec) and T3

(generic input handling).

Listing 3.5: Implementation of Mul2 for binary32, ◦ = RN.

0 uint32_t mul2(uint32_t X){

1 uint32_t absX ,sigX ,Cspec ,Cnan;

2 absX = X & 0x7FFFFFFF; // shared in T1 and T3

3 Cspec = absX >= 0x7F000000; // eva luate the cond i t i on Cspec , T1

4 if(Cspec){ // handl ing s p e c i a l input , T2

5 sigX = X & 0x80000000;

6 Cnan = absX > 0x7F800000;

7 if(Cnan) return X | 0x00400000;

8 else return sigX | 0x7F800000;

9 }else{

10 return X + minu(absX , 0x00800000); // computing the g ene r i c T3

11 }

12 }

ILP exposed on the ST231. In order to illustrate the ILP exposed by the C
code in Listing 3.5 on the ST231, we present it in Listing 3.6 with a layout that gives
an idea of the scheduling and latency of computing each variable.

The statements that can appear in the same line present the instructions able to
be executed in one bundle; therefore, up to 4 instructions may appear in one line.
The constants longer than 9 bits are considered as an instruction as well, since they
occupy an additional syllable. Meanwhile, a variable appearing on the left side of
the assignment symbol (=) at line i implies that this variable is evaluated at cycle i
and will be available for use (appearing on the right side of the assignment symbol)
at cycle i+1. The instructions that dominate the latency of the operator are usually
the first instruction of each line. This in general gives a good idea of the length of
the critical path.

We can see from Listing 3.6 that, unlike other operators in the next chapters, the
handling of special inputs of mul2 is on the critical path for the binary32 format
and ◦ = RN.

32

3.4. Parameterized implementation for a specific binaryk format

Listing 3.6: Implementation of mul2 for the binary32 format and ◦ = RN.

0 absX = X & 0x7FFFFFFF; sigX = X & 0x80000000;

1 Rspec = sigX | 0x7F800000; qnan = X | 0x00400000;

2 Cnan = absX > 0x7F800000; delta = minu(absX , 0x00800000)

3 if(Cnan) Rspec = qnan; Cspec = absX >= 0x7F000000; Rgen = X + delta;

4 if(Cspec)R = Rspec; else R = Rgen; return R;

Listing 3.7 gives the assembly codes generated by the compiler. As we have explained
in §3.1.2, the constants from line 0 to line 11 are 32-bit immediates and therefore
each of them occupies an extra syllable. Thus, from cycle 0 to cycle 3, the 4 syllables
of each bundle are fully used, which indicates the highest achievable use of ILP.

Listing 3.7: Implementation of mul2 for the binary32 format and ◦ = RN.

0 and $r20=$r16 , -2147483648 ## (cycle 0)

1 and $r18=$r16 , 2147483647 ## (cycle 0)

2 ;; ## (bundle 0)

3 or $r20=$r20 , 2139095040 ## (cycle 1)

4 or $r19=$r16 , 4194304 ## (cycle 1)

5 ;; ## (bundle 1)

6 cmpgtu $b1=$r18 , 2139095040 ## (cycle 2)

7 minu $r17=$r18 , 8388608 ## (cycle 2)

8 ;; ## (bundle 2)

9 add $r17=$r16 , $r17 ## (cycle 3)

10 slct $r16=$b1 , $r19 , $r20 ## (cycle 3)

11 cmpgeu $b0=$r18 , 2130706432 ## (cycle 3)

12 ;; ## (bundle 3)

13 slct $r16=$b0 , $r16 , $r17 ## (cycle 4)

14 return $r63 ## (cycle 4)

15 ;; ## (bundle 4)

3.4 Parameterized implementation for a specific

binaryk format

We have optimized our algorithms for the binary32 format. However, as we have
seen on the previous example of the mul2 operator, all the analysis is carried out in
a parameterized fashion, that is, expressed in terms of the IEEE 754 binaryk format.
In fact, except for sine and cosine, all the algorithms presented in the rest of this
document are parameterized by the format factors, such as p, w and k. Then, we
describe our algorithms by Extensible Markup Language (XML) in a parameterized
way and use Python scripts to decode them into C code for a specific format. The
XML description is close to the mathematical expressions, and easy to check and to
maintain. Therefore, the implementation for a specific format is direct as soon as the
corresponding k-bit fixed-point arithmetic support is available. On the ST231, 32-bit
integer support is native, while 64-bit and 128-bit integer supports are emulated.

33

Chapter 3. Design principles for software floating-point support on the ST231

For the implementations of sine and cosine, we have currently focused on the
binary32 format, but some code for other formats could in principle be obtained too,
by recomputing the polynomial approximations and their error analyzes.

In the following, we will first introduce the 64-bit and 128-bit integer supports
on ST231. Then, we will present our XML-Python based mechanism to generate C
code implementation for any specific binaryk format.

3.4.1 64-bit and 128-bit integer support on the ST231

64-bit integer support. The ST231 compiler fully supports the C11 standard
’long long’ type and its unsigned variant as a 64-bit integral type, emulated on the
32-bit architecture.

For every expression that contains an operation on such a 64-bit type (arithmetic,
comparison, logical, conversions), the compiler has to generate emulation code, ei-
ther in the form of a function call, when the operation is long, or in the form of
direct assembly emission, that we call ’open code’. Obviously, logical operations and
compares are emitted as ’open code’ since the length of the sequence emitted is not
significantly bigger that a function call. The conversion sequences are either pure
register operations for integral type (for instance copies, or sign or zero extensions),
but rely on calls to the compiler run-time support for conversions with floating-point
types.

The choice was also done to emit ’open code’ for most arithmetic operations
(with the exception of division and modulus operators, implemented as function
calls), even though the multiplication can incur a high code size.

One key benefit of emitting ’open code’ is that the emission is done at a rea-
sonably high level in the compiler code generator, and thus benefits from all further
optimizations. This enables for instance to simplify 64-bit operations that can be
statically detected as being in reality 32-bit only (whether for the high or low 32-bits),
a frequent case in practice. Some further optimizations refined from our practice have
been proposed in Chapter 8.

Here are some implementations of 64-bit integer support on the ST231:

• Unsigned minimum.

uint64_t minu64(uint64_t x, uint64_t y){

return (x<y)?x:y;

}

cmpltu $b1=$r17 , $r19 ## (cycle 0)

cmpeq $b0=$r17 , $r19 ## (cycle 0)

minu $r8=$r16 , $r18 ## (cycle 0)

minu $r17=$r17 , $r19 ## (cycle 0)

;; ## (bundle 0)

slct $r16=$b1 , $r16 , $r18 ## (cycle 1)

;; ## (bundle 1)

slct $r16=$b0 , $r8 , $r16 ## (cycle 2)

return $r63 ## (cycle 2)

34

3.4. Parameterized implementation for a specific binaryk format

;; ## (bundle 2)

• Unsigned left shift.

uint64_t shiftL(uint64_t x, uint32_t n){

return x << n;

}

sub $r19=32, $r18 ## (cycle 0)

add $r20=$r18 , -32 ## (cycle 0)

shl $r17=$r17 , $r18 ## (cycle 0)

;; ## (bundle 0)

shru $r19=$r16 , $r19 ## (cycle 1)

shl $r20=$r16 , $r20 ## (cycle 1)

shl $r16=$r16 , $r18 ## (cycle 1)

;; ## (bundle 1)

or $r18=$r19 , $r20 ## (cycle 2)

;; ## (bundle 2)

or $r17=$r17 , $r18 ## (cycle 3)

return $r63 ## (cycle 3)

;; ## (bundle 3)

• Implementation of intrinsic call lzcntl, which counts the leading zeros of a
64-bit integer.

clz $r16=$r16 ## (cycle 0)

clz $r18=$r17 ## (cycle 0)

convib $b0=$r17 ## (cycle 0)

;; ## (bundle 0)

add $r16=$r16 , 32 ## (cycle 1)

;; ## (bundle 1)

slctf $r16=$b0 , $r16 , $r18 ## (cycle 2)

return $r63 ## (cycle 2)

;; ## (bundle 2)

128-bit integer support. The 128-bit support exists only as a prototype library
with no native implementation in the compiler and we implement 128-bit integer
operations by function calls. Now, suffering from the memory access generated by
the compiler due to the representation of 128-bit types by structures, it is not as
efficient as it could be. Ideally, implementing the native support for the uint128 t
and int128 t gcc extensions (at the moment limited to 64-bit architectures) would
alleviate these issues.

Here is the implementation of counting leading zeros for a 128-bit integer:

35

Chapter 3. Design principles for software floating-point support on the ST231

typedef struct {

uint64_t l;

uint64_t h;

}uint128_t;

uint32_t clz128(uint128_t x){

uint32_t n1 = __lzcntl(x.h);

uint32_t n2 = __lzcntl(x.l);

if(n1 == 64) return 64 + n2 ; else return n1 ;

}

clz $r20=$r18 ## (cycle 0)

clz $r22=$r16 ## (cycle 0)

clz $r21=$r19 ## (cycle 0)

convib $b2=$r19 ## (cycle 0)

;; ## (bundle 0)

stw 0[$r12]=$r16 ## (cycle 1) x

add $r20=$r20 , 32 ## (cycle 1)

add $r16=$r22 , 32 ## (cycle 1)

convib $b1=$r17 ## (cycle 1)

;; ## (bundle 1)

stw 4[$r12]=$r17 ## (cycle 2) x+4

slctf $r20=$b2 , $r20 , $r21 ## (cycle 2)

clz $r21=$r17 ## (cycle 2)

;; ## (bundle 2)

stw 8[$r12]=$r18 ## (cycle 3) x+8

slctf $r16=$b1 , $r16 , $r21 ## (cycle 3)

cmpeq $b0=$r20 , 64 ## (cycle 3)

;; ## (bundle 3)

stw 12[$r12]=$r19 ## (cycle 4) x+12

add $r16=$r16 , 64 ## (cycle 4)

;; ## (bundle 4)

slct $r16=$b0 , $r16 , $r20 ## (cycle 5)

return $r63 ## (cycle 5)

;; ## (bundle 5)

Table 3.3 gives the latencies of some integer operators for the 32-, 64-, and 128-bit
formats. As the compiler does not support 128-bit integers, mulh for 64-bit integer,
which returns the upper half of a 64×64 multiplication product, is also supported
by function call. The detailed implementations for unsigned integer multiplications
are in Appendix A.

36

3.4. Parameterized implementation for a specific binaryk format

32-bit 64-bit 128-bit

unsigned add 1 3 9
unsigned sub 1 3 16
unsigned min,max 1 3 28
unsigned shifts, ≫,≪ 1 4 25
clz 1 3 6
mulh 3 8 29
mull 3 5 14
(un)signed >,>=,<,<= 1 2 10
(un)signed == 1 2 9

Table 3.3: Performances of the integer arithmetic supports on the ST231 in # cycles.

3.4.2 XML-based implementation for various formats

XML basics. Extensible Markup Language (XML) is a markup language that
defines a set of rules to encode documents in a flexible and readable way. XML 1.0
Specification is produced by the W3C [W3C]. The key constructs are:

• Tags, which begin with < and end with >, are used either in pairs with start-
tags and end-tags, or as empty-element tags (for example, < empty-tag/ >).

• Attributes, which are quoted either by single or double quotes, consist of
name/value pairs that exist within a start-tag or empty-element tag.

An XML document consists of XML elements, such that an XML element is ei-
ther everything from its start-tag to its end-tag or consists only of an empty-
element tag. The listing below gives the example of an XML element. Here <
INF format=’binary32’ > is a start-tag with name INF and with attribute format,
whose value is binary32; < /INF > is an end-tag.

<INF format=’binary32 ’> 0x7F800000 </INF >;

Overview of the code generation scheme. As our algorithms are fully param-
eterized, we separate our implementation into two parts: algorithm description on
one hand, and integer arithmetic support on the other hand. In our design, the
algorithms are described in a parameterized way in XML tags and meanwhile the
format-specified constants such as k, w and p, and k-bit integer operators are also
implemented in XML tags with an attribute dedicated to binary32, binary64 and
binary128.

Figure 3.2 gives an overview on how this works. We have developed some Python
scripts to decode such XML files and to generate corresponding C codes by using
some Python standard library tools such as an XML parser [Pyt].

37

Chapter 3. Design principles for software floating-point support on the ST231

Figure 3.2: XML-Python for C code generation.

38

3.4. Parameterized implementation for a specific binaryk format

This approach is essentially similar to the typical C conditional compilation di-
rectives, shown below.

#if defined (binary32)

#define k 32

#define p 24

...

#elif defined (binary64)

#define k 64

#define p 53

...

#else

...

#endif

However, as we have seen that the various k-bit integer supports can be different on
the same processor, their C implementations will be slightly different.

For example, on the ST231, as there is no native support for 128-bit integer
types in the compiler, we must use structures to represent 128-bit integer types
and explicitly call functions for their integer operations, which is not the case for
the support of 32- or 64-bit integer operators. Although C++ operator overloading
would be a solution to write generic code, the final performance of the floating-point
emulation may suffer from the object abstraction penalty.

In summary, our framework enables us to abstract the floating-point arithmetic
description away from the implementation details such as the binaryk support. Ex-
cept for sine and cosine, all the other implementations introduced in this thesis work
are described by XML in our framework. However, since the support for the 128-
bit integer operators is not complete yet, this should still be considered as work in
progress.

39

Chapter 3. Design principles for software floating-point support on the ST231

40

Chapter 4

Squaring

This chapter focuses on the squaring function x 7→ x2. We show how the specific
properties of squaring can be exploited in order to design and implement algorithms
that have much lower latency than those for general multiplication, while still guar-
anteeing correct rounding. Our algorithm descriptions are parameterized by the
floating-point format, aim at high instruction-level parallelism (ILP) exposure, sup-
port subnormal numbers, and cover all rounding modes. We show further that their
C implementation for the binary32 format yields efficient codes for targets like the
ST231, with a latency at least 1.75x smaller than that of general multiplication in
the same context.

Some parts of the work in this chapter have been published in [JJLMR11].

4.1 Introduction

In this chapter we focus on the specialization of the multiplication operator f :
(x, y) 7→ x × y into a square operator x 7→ x2. Squares of floating-point values are
ubiquitous in scientific computing and signal processing, since they are intensively
used in any algorithm requiring the computation of Euclidean norms, powers, sample
variances, etc. [Hig02, PTVF07].

We give a thorough study of how to design efficient software for IEEE floating-
point squaring on targets like the ST231, that is, by means of integer arithmetic and
logic only, and with high ILP exposure.

Our first contribution is to show how the specific properties of squaring can
be exploited in order to refine the IEEE specification of multiplication, to deduce
definitions of special input and generic input that are suitable for implementation,
and to optimize the generic path and the special path for latency. This analysis is
done for all rounding modes and presented in a parameterized fashion, in terms of
the precision and the exponent range of the input/output floating-point format.

Second, this analysis allows us to produce a complete portable C code for the
binary32 format and each rounding mode. On the ST231 processor, the result is a
latency of 12 cycles for rounding ’to nearest even,’ which is 1.75x faster than the 21
cycle latency of the multiply operator of FLIP 1.0; for the other rounding modes,
the speedups are even higher and range from 1.9 to 2.3. Also, the average number
of instructions issued every cycle lies between 3.4 and 3.5, thus indicating heavy use
of the 4 issues available.

Third, we report on some experiments involving non-IEEE variants and square-
intensive applications. We show that relaxing the IEEE requirements (finite math
only, no support of subnormals) saves at most 1 cycle in the context of the ST231.
We also show that for applications like the Euclidean norm, the sample variance,

41

Chapter 4. Squaring

and binary powering the practical impact of our fast squarer reflects well the best
that can theoretically be achieved.

For squaring in integer / fixed-point arithmetic several optimized hardware de-
signs have been proposed; see for example [EL04, §4.9] as well as [WSS01, Gök08]
and the references therein. However, for squaring in IEEE floating-point arithmetic
much less seems to be available and to the best of our knowledge, no optimized
design has been presented and analyzed in the details as we do in this chapter, be
it in hardware or in software. Furthermore, the implementation of squaring for the
binary32 format and the ST231 processor outlined in [Rai06] does not support sub-
normal numbers, is available only for rounding ’to nearest even,’ and has a latency
of 27 cycles, which is 2.25x more than our 12 cycle latency.

Outline. First, we show in §4.2 how to specialize to squaring the IEEE specification
of multiplication, deduce suitable definitions of generic and special input, and give a
high-level algorithmic view of the squaring operator. Then, §§4.3 and 4.4 detail our
algorithms for handling, respectively, generic and special input by means of integer
arithmetic, and give the corresponding C implementation for the binary32 format.
The performances of this implementation and the improvements for real applications
on the ST231 processor are reported in §4.5.

4.2 Specification

Squaring being a special case of general multiplication x × y, it is fully specified by
the IEEE 754-2008 standard: given a rounding mode ◦ and assuming x = y, the
result r prescribed by [IEE08] for x × y is as follows:

r =

|x| if x ∈ {±0,±∞},
qNaN if x is NaN,

◦(x2) otherwise.

(4.1)

This specification shows that r is essentially known in advance when x is zero, infinity,
or NaN. However, in the particular case of squaring, if |x| is nonzero but “small
enough” then the rounded value ◦(x2) will always be equal to a tiny constant (0 or
α). Similarly, if |x| is finite but “large enough” then ◦(x2) will always be equal to a
huge constant (Ω or +∞). The rest of this section studies such properties of ◦(x2)
in order to refine the specification (4.1) and deduce a high-level algorithm.

Let min◦ and max◦ denote, respectively, the minimum value and maximum value
of ◦(x2) for |x| in [α,Ω]. Using the monotonicity, for x > 0, of the map x 7→ x2

together with the definitions of rounding and overflow recalled in Chapter 2, one
may check that these values are as follows:

◦ RN RD RU

min◦ +0 +0 α

max◦ +∞ Ω +∞
(4.2)

For which values of x are such extremal values attained? To answer this, let us define
the following two quantities

α′ = 2⌊(emin−p)/2⌋ and Ω′ = 2(emax+1)/2. (4.3)

42

4.2. Specification

We give below three properties regarding these quantities.

Property 4.1. The values α′ and Ω′ defined in (4.3) are normal floating-point
numbers such that α′ < Ω′.

Proof. Since α′ and Ω′ in (4.3) are integer powers of two it suffices to verify that

emin 6 ⌊(emin − p)/2⌋ < (emax + 1)/2 6 emax.

The leftmost inequality is equivalent to emin 6 (emin−p)/2 because emin is an integer;
since emin = 1 − emax, the latter inequality is itself equivalent to p < emax, which is
true by (2.3b). From (2.3b) it also follows in particular that emax > 1, which implies
the rightmost inequality. The remaining inequality follows from the fact that (2.3b)
implies that emin is negative while p and emax are positive.

Property 4.2. For ◦ ∈ {RN,RD,RU} and x a finite nonzero floating-point number,
one has ◦(x2) = max◦ iff |x| > Ω′.

Proof. If |x| > Ω′ then x2 > 2emax+1, so that ◦(x2) = max◦ for each ◦. Conversely,
assume that |x| < Ω′. Since x is a finite floating-point number in precision p, we
deduce that |x| 6 (2−21−p)·2(emax−1)/2 and then x2 6 C ·2emax , with C = 2(1−2−p)2.
Since C < 2 − 21−p one has further x2 < Ω. This implies ◦(x2) < max◦ for each ◦
and the conclusion follows.

The interval [Ω′,Ω] thus defines the widest input range on which max◦ is achieved.
Interestingly, this range is the same for all our rounding modes, which makes things
simpler from the implementer point of view. Note also that Ω′ is an integer power
of two because of (2.3a). For min◦ the situation is slightly more complex, as this
minimum value is achieved on an input range [α, α′

◦] whose upper bound now depends
on ◦. However, the property below shows that one can suppress this dependency by
restricting to input ranges whose upper bound has the form 2i for some integer i.

Property 4.3. The value α′ in (4.3) is the largest integer power of two such that,
for every finite nonzero floating-point number x in [α, α′), ◦(x2) = min◦ for ◦ ∈
{RN,RD,RU}.
Proof. If α 6 x < α′ then 0 < x2 < α/2, so that RN(x2) = RD(x2) = +0 and
RU(x2) = α. This shows that x ∈ [α, α′) implies ◦(x2) = min◦ for all ◦. To prove
the maximality of α′ it suffices to check that RN(y2) 6= minRN for some floating-
point number y in [α′, 2α′), say y = 3

2α′. We have y2 = 9
422⌊(emin−p)/2⌋ and, using

the fact that ⌊i/2⌋ > (i − 1)/2 when i ∈ Z, we deduce that y2 >
9
8α/2 > α/2. It

follows that RN(y2) = α, which differs from minRN = +0.

The main outcome of Properties 4.2 and 4.3 is the following specification of
floating-point squaring, which refines (4.1):

r =

+0 if x = ±0,

min◦ if α 6 |x| < α′,

◦(x2) if α′ 6 |x| < Ω′,

max◦ if Ω′ 6 |x| 6 Ω,

+∞ if x = ±∞,

qNaN if x is NaN.

(4.4)

43

Chapter 4. Squaring

This brings a natural distinction between two kinds of input:

Definition 4.1. Input x is called generic if α′ 6 |x| < Ω′, and special otherwise.

By Property 4.1 every subnormal input is special, so that generic input consist of
normal numbers only. The corresponding output ◦(x2) must be finite because of the
“only if” part in Property 4.2, but it can be (sub)normal or zero.

4.3 Computing correctly-rounded squares for generic

input

In this section we consider the computation of ◦(x2) for x generic, that is, x as
in (2.1) and such that

α′ ≤ |x| < Ω′. (4.5)

By Property 4.1 such an x is normal, and thus 1 6 m < 2.

4.3.1 A normalized formula for x2

Normalized representation of the exact square. A first step towards the
computation of ◦(x2) consists in normalizing the representation m2 ·22e of x2 implied
by (2.1a). Let

c =
[
m >

√
2
]
. (4.6)

Defining m′ = m2 · 2−c and e′ = c + 2e then yields the unique pair (m′, e′) ∈ R × Z

such that 1 6 m′ < 2 and

x2 = m′ · 2e′ . (4.7)

This is the so-called unbounded normalized representation of the exact square. Tight
bounds for e′ are given by the next result.

Property 4.4. The normalized exponent e′ of x2 satisfies

2⌊(emin − p)/2⌋ 6 e′ 6 emax.

Proof. Recalling (4.3) and taking squares in (4.5), we obtain 22⌊(emin−p)/2⌋ 6 m′·2e′ <
2emax+1. On the one hand, m′ < 2 implies 2⌊(emin − p)/2⌋ < e′ + 1 and, since both
sides are integers, the announced lower bound follows. On the other hand, 1 6 m′

implies e′ < emax + 1 and, similarly, we deduce the announced upper bound.

These bounds for e′ are the best possible ones:

• The lower bound is attained when |x| = α′. It is equal to emin − p − ǫ with
ǫ =

[
p is odd

]
. One has ǫ = 0 for the standard binary32 format, and ǫ = 1 for

the standard binary16, binary64, and binary128 formats [IEE08, §3.6].

• The upper bound emax is attained for example when x = (1.1)2 · 2(emax−1)/2,
which satisfies (4.5) and whose square is (1.001)2 · 2emax .

Also, the tight lower bound on e′ is less than emin for p > 2, so that both situations
e′ > emin and e′ < emin do occur.

44

4.3. Computing correctly-rounded squares for generic input

Correctly-rounded value of the exact square. When e′ > emin the normalized
representation (4.7) already allows to express the correctly-rounded value ◦(x2). In
this case x2 lies in the range [2emin , 2emax+1) and, since m′ ∈ [1, 2),

◦(x2) = ◦(m′) · 2e′

= ◦(m2 · 2−c) · 2c+2e. (4.8a)

When e′ < emin the exact square ranges in (0, 2emin). In this case, we first set the
exponent to emin and only then round the resulting scaled significand in fixed point:

◦(x2) = ◦̃(m′ · 2−(emin−e′)) · 2emin

= ◦̃(m2 · 2−(emin−2e)) · 2emin , (4.8b)

where ◦̃ denotes the function that rounds the reals from [0, 2) in the same direction
as ◦ but on the regular grid {i · 21−p : i = 0, 1, . . . , 2p}.

In order to handle the cases (4.8a) and (4.8b) simultaneously, let us define

µ = max(c, emin − 2e). (4.9)

Then, the exact result of square is given in both cases by

x2 = ℓ · 2d, (4.10a)

where

ℓ = m2 · 2−µ and d = µ + 2e. (4.10b)

By construction we have

• either ℓ ∈ (0, 1) and d = emin,

• or ℓ ∈ [1, 2) and d ∈ [emin, emax].

The property below further gives bounds for the range of µ.

Property 4.5. c 6 µ 6 p + ǫ with ǫ =
[
p is odd

]
.

Proof. The lower bound is an immediate consequence of the definition of µ in (4.9).
To establish the claimed upper bound we consider two cases:

• If µ = c then µ is at most 1 and cannot be larger than p + ǫ, since p > 2 and
ǫ > 0.

• If µ = emin − 2e then, recalling that e′ = c + 2e and noticing that the lower
bound in Property 4.4 equals emin − p + ǫ (because emin is even), we obtain
µ 6 p + ǫ + c. Since both µ and p + ǫ are even integers, and since c is either 0
or 1, it follows that µ 6 p + ǫ.

Hence µ 6 p + ǫ in both cases, and the proof follows.

Again, these bounds are tight: x = 1 gives µ = 0, while x = ±α′ gives c = 0,
e′ = emin − p − ǫ, and then µ = p + ǫ.

45

Chapter 4. Squaring

4.3.2 Implementation of ◦(x2) for the binaryk format

We detail here how to implement, for x generic and the binaryk floating-point format,
the computation of r = ◦(x2) using k-bit integer arithmetic and logic. We assume x
is given by its standard encoding into an unsigned k-bit integer X. Since the exact
result x2 satisfies (4.10a), by Fact 2.1 the standard integer encoding R of its rounded
value ◦(x2) is given by

R = D · 2p−1 + L + b, (4.11)

where
D = d + emax − 1, (4.12)

L =
⌊
ℓ · 2p−1

⌋
, (4.13)

and b is the round bit defined in (2.10d).
Consequently, computing R amounts to deducing D, L, b from X, which we

detail now in a parameterized fashion, that is, for the binaryk format. We illustrate
our analysis for the binary32 format, and the corresponding C code (for rounding
’to nearest even’) appears in Listing 4.1. As already said in Chapter 3, in order to
give an idea of the ILP exposed by our approach, this C code has been set out in
such a way that line i displays only the expressions that can be evaluated in i + 1
cycles with the ST231 latencies.

Listing 4.1: Computing ◦(x2) for the binary32 format, ◦ = RN, and x generic.

0 T2 = X & 0xff;

1 M = (X << 8) | 0x80000000; E2 = (X >> 22) & 0x1fe;

2 F = 128 - E2; c = M > 0xb504f333;

3 mu = max(c, F);

4 H = mul(M, M);

5 L = H >> (mu + 7); G = H >> (mu + 6); T1 = H << (26 - mu);

6

7

8 b = (G & 1) && ((L & 1) | (T1 | T2));

9 return (((mu - F) << 23) + L) + b;

Computing L. From (4.10b) and (4.13) it follows that

L =
⌊
m2/21−p+µ

⌋
(4.14)

and, therefore, we first need to deduce from X an integer encoding of m, say M , as
well as the integer µ.

To produce M , recall that m = (1.m1 . . . mp−1)2 as x is normal. Since p 6 k a
possible choice is to set up m · 2k−1, which can be obtained from (2.4) by shifting
and masking:

M = m · 2k−1 = (X ≪ w) | 2k−1.

46

4.3. Computing correctly-rounded squares for generic input

For the binary32 format, where w = 8 and k = 32, this corresponds to line 1 in
Listing 4.1; on ST231, this takes 2 cycles and, due to the extended immediate value
231 = (80000000)16, 3 instruction syllables.

To get µ, recall first that x normal implies e = E − emax. Then, recalling that
emin = 1 − emax and applying (4.9),

µ = max(c, F), F = emax + 1 − 2E. (4.15)

To get the boolean value c, it suffices to remark that (4.6) and M = m · 2k−1 imply

c = [M > M0], with M0 =
⌊√

2 · 2k−1
⌋

.

To get the (possibly negative) integer F , first we extract 2E from X in (2.4) by using
the identity

2E =
(
X ≫ (p − 2)

)
& (2w+1 − 2), (4.16)

and then we subtract 2E from the constant emax + 1. For the binary32 format the
computation of c and F appears at line 2 of Listing 4.1, where (b504f333)16 is M0

for k = 32; on ST231 each of c and F takes 3 cycles, so that µ is eventually obtained
in 4 cycles.

Let us now see how to deduce L from M and µ. The property below shows that
the k most significant bits of the 2k-bit integer M2 are enough for that purpose.

Property 4.6. L = ⌊H/2µ+w−1⌋ with H = ⌊M2/2k⌋.

Proof. From (4.14), M = m · 2k−1, and k = w + p it follows that L = ⌊y/n⌋ with
y = M2/2k and n = 2µ+w−1. Since w > 3 and since, by Property 4.5, µ > 0, n is a
positive integer. To conclude it suffices to apply the fact that ⌊y/n⌋ = ⌊⌊y⌋/n⌋ for
n > 0 (see [GKP94, p. 72]).

Let mul denote a function that computes the higher half H of M2. Then, by
Property 4.6, we have:

H = mul(M,M)

L = H ≫ (µ + w − 1)

For the binary32 format, this appears at lines 4 and 5 of Listing 4.1, and on the
ST231, the mul function is implemented by calling the mul64h instruction. Since
here p = 24 is even, we deduce from Property 4.5 that µ + 7 is at most 31, which
thus agrees with the C99 specification of the bitwise shift operator [Int99, p. 84].
With the ST231 latency constraints, both H and µ + 7 are computed from X in 5
cycles, so that L is obtained in 6 cycles.

Computing b. We focus here on the most difficult case, rounding to nearest even,
for which b = g ∧ (ℓp−1 ∨ t) with g and t as in (2.11).

Note first that g is the least significant bit of the integer G = ⌊ℓ · 2p⌋ =∑
06i6p ℓi2

p−i and, using a proof similar to that of Property 4.6, we arrive at

g = G mod 2, G = ⌊H/2µ+w−2⌋.

47

Chapter 4. Squaring

For the binary32 format, the corresponding C code appears at lines 5 and 8 of
Listing 4.1. On ST231, G will have the same latency as L (6 cycles), and we thus
get g in 7 cycles.

Since ℓp−1 is the least significant bit of L we have

ℓp−1 = L mod 2,

so that it remains to compute the sticky bit t. The next result shows how to recover
this bit simply by checking that some lower parts of H and X are nonzero, that is,
without computing the lower half of the exact square M2.

Property 4.7. One has t = [T1 6= 0]∨ [T2 6= 0] with T1 and T2 the two k-bit integers
given by

T1 = H ≪ (p + 2 − µ) and T2 = X mod 2p−⌊k/2⌋.

Proof. Let q be the number of trailing zeros of m = (1.m1 . . . mp−1)2. Then m2 can
be written

m2 = (s−1s0.s1 . . . s2p−2q−2)2 with s2p−2q−2 = 1.

Thus, H = (s−1s0 . . . sk−2)2 and, using (4.10b) and (2.11), we can also decompose
the sticky bit as t = t1 ∨ t2 with

t1 = sp−µ+1 ∨ · · · ∨ sk−2 and t2 = sk−1 ∨ · · · ∨ s2p−2q−2.

By Property 4.5 and since w > 3, we have k − 2 − (p − µ + 1) + 1 = µ + w −
2 ∈ {1, . . . , k − 1}. Hence t1 = 1 if and only if the last µ + w − 2 bits of H are
not all zero, that is, if and only if the integer T1 obtained by shifting H left by
k− (µ+w− 2) = p+2−µ is nonzero. Since s2p−2q−2 = 1 we have t2 = 0 if and only
if k − 1 > 2p − 2q − 2, that is, if and only if the number q of trailing zeros of m is
at least p − ⌊k/2⌋. The latter condition is equivalent to X mod 2p−⌊k/2⌋ = 0, which
concludes the proof.

For the binary32 format, Property 4.7 gives

T2 = X mod 28,

which can be implemented by masking X as shown at line 0 of Listing 4.1. The
computation of T1 is a mere left shift of H by 26 − µ, the latter value ranging in
[0, 31] thanks to Property 4.5. Then notice that the bit ℓp−1 ∨ t is zero if and only if
the integer U obtained by bitwise-ORing the integers L & 1 and T1 and T2 is zero.
The logical AND of g = G & 1 ∈ {0, 1} and U is thus enough to yield b, which
allows us to avoid testing explicitly if T1 or T2 is nonzero. This is shown at line 8
of Listing 4.1. The parenthesization chosen there aims to reduce the overall latency
for b on ST231: both L and T1 can be obtained in 6 cycles, while T2 costs 1 cycle;
therefore, both L & 1 and T1 |T2 follow in 7 cycles, which yields b in 9 cycles.

48

4.4. Detecting and handling special input

Computing D. From the definitions of d and D in (4.10b) and (4.12) we deduce
that D = µ + 2e + emax − 1. Hence, recalling that e = E − emax and the definition of
F in (4.15),

D = µ − F.

For the binary32 format, this subtraction appears at line 9 of Listing 4.1. Recalling
that on ST231 we get F and µ in, respectively, 3 and 4 cycles, we will thus get D in
5 cycles.

Packing the result. From (4.11) the integer encoding R of the result satisfies
R = D · 2p−1 +L+ b and we have just detailed how to get from X the integers D, L,
and b. Moreover, assuming the latency model of the ST231, their respective cost has
been shown to be of 5, 6, and 9 cycles. This implies a latency of 6 cycles for D ·2p−1,
and using the parenthesization shown at the last line of Listing 4.1 we eventually get
R in 10 cycles. Thus, when ◦ is RN the overall cost is larger than that of the round
bit b by only one cycle.

Some simplifications when ◦ is not RN. When the rounding mode ◦ is RD
the round bit b in (2.10d) is zero. Consequently, the instructions involving G, T1,
T2, and b can be suppressed and the last line of Listing 4.1 replaced with:

return ((mu - F) << 23) + L;

When ◦ is RU the bit ℓp−1 is not needed and b is the logical OR of g = G & 1
and T1 |T2. In this case, we thus replace line 8 of Listing 4.1 by:

b = (G & 1) || (T1 | T2);

With these new codes the expected latency of R on ST231 drops from 10 to 7
cycles for ◦ = RD, and from 10 to 9 cycles for ◦ = RU.

4.4 Detecting and handling special input

We first have to decide whether input x is special or not, that is, to compute from
X the value of Cspec in (3.1). By Definition 4.1 this condition satisfies

Cspec = Csmall ∨ Clarge ∨ Cnan (4.17)

with

• Csmall =
[
|x| < α′],

• Clarge =
[
|x| > Ω′],

• Cnan =
[
x is NaN

]
.

The next two properties show how to obtain Csmall and Clarge ∨Cnan by reusing the
value 2E computed for the generic case (see (4.16) and line 1 of Listing 4.1).

Property 4.8. Csmall = [2E 6 emax − p − 1].

49

Chapter 4. Squaring

Proof. Let |X| and A′ denote the standard integer encodings of |x| and α′, respec-
tively. It is known [MBdD+10, p. 58] that |x| < α′ if and only if |X| < A′, that is,

|X| 6 A′ − 1. (4.18)

By (2.4), |X| = (E+ǫ)·2p−1 with ǫ ∈ [0, 1−21−p] and, by Property 4.1, A′ = E′ ·2p−1

with E′ = ⌊(emin − p)/2⌋ + emax. Thus, (4.18) is equivalent to E 6 E′ − (ǫ + 21−p).
Since E, E′ are integers and ǫ + 21−p ∈ (0, 1], the latter inequality is equivalent to
E 6 E′ − 1. Now, emin = 1− emax gives E′ − 1 = ⌊(emax − p− 1)/2⌋ and we conclude
using the fact that i 6 ⌊j/2⌋ is equivalent, for integers i, j, to 2i 6 j.

Property 4.9. Clarge ∨ Cnan = [2E > 3emax + 1].

Proof. We use the same notation as in the proof of Property 4.8 and write O′ for the
standard integer encoding of Ω′. The special integer encoding used for NaNs gives
Clarge∨Cnan = [|X| > O′]. By Property 4.1 we have O′ = (3emax +1)/2 ·2p−1, so that
|X| > O′ is equivalent to E + ǫ > (3emax + 1)/2. Since ǫ ∈ [0, 1), this is equivalent to
E > (3emax + 1)/2 and the conclusion follows.

For the binary32 format, a C fragment implementing Cspec by means of 2E and the
two previous properties is shown at lines 1 to 3 of Listing 4.2. On ST231 the cost
will be of 4 cycles and, as Cspec is independent of ◦, this fragment holds not only for
◦ = RN but also for ◦ ∈ {RD, RU}.

Listing 4.2: Detecting and handling special input for the binary32 format and ◦ =
RN.

0 absX = X & 0x7fffffff;

1 E2 = (X >> 22) & 0x1fe; Cnan = absX > 0x7f800000;

2 Csmall = E2 <= 102; Clarge_or_nan = E2 >= 382;

3 Cspec = Csmall || Clarge_or_nan;

4 if (Cspec) {

5 if (Csmall) return 0; // r = +0

6 else {

7 if (Cnan) return 0x7fc00000; // r = qNaN

8 else return 0x7f800000; } // r = +oo

9 } else {

10 // g ene r i c case (L i s t i n g 1) .

11 }

Once special input have been filtered out, it remains to return, for the given
rounding mode ◦, the standard integer encoding R of the associated result r pre-
scribed by (4.4):

When ◦ is RN. We deduce from (4.2) and (4.4) that for x special, r must be
+0 if |x| < α′, qNaN if x is NaN, and +∞ otherwise. Implementing this is then
straightforward as it suffices to recall from Table 2.2 that, on the one hand 0, 2k−1−

50

4.5. Experimental results obtained on the ST231

2p−1, and 2k−1 − 2p−2 are standard encodings of +0, +∞, and qNaNs, and that, on
the other hand,

Cnan =
[
X & (2k−1 − 1) > 2k−1 − 2p−1

]
.

For the binary32 format, the computation of Cnan is shown at lines 0 and 1 of
Listing 4.2, while lines 5 to 8 display the computation of R. On ST231, lines 5 to 8
will be if-converted as shown by the following pseudo-code:

Rlarge_or_nan = slct(Cnan ,0x7fc00000 ,0 x7f800000)

R = slct(Csmall ,0, Rlarge_or_nan)

With a latency of 1 cycle for the ’slct’ instruction and since Cnan costs 2 cycles, we
thus get R for x special in 4 cycles.

When ◦ is not RN. For ◦ = RD the only difference with the previous case is
when |x| > Ω′ and, by(4.2) and (4.4), we now have r = max(|x|,Ω). The standard
integer encoding of Ω is 2k−1−2p−1−1, which equals (7f7fffff)16 for the binary32
format. Consequently, it suffices to replace line 8 of Listing 4.2 with:

else return maxu(absX , 0x7f7fffff);

For ◦ = RU, the specification differs from that for ◦ = RN only in the case where
|x| < α′, for which we have r = min(|x|, α). Since the standard integer encoding of
α is 1, an implementation for the binary32 format follows by simply replacing line 5
in Listing 4.2 by

if (Csmall) return minu(absX , 1);

On ST231, R still costs 4 cycles as both max(|x|,Ω) and min(|x|, α) have a latency
of 2 cycles, like Cnan.

4.5 Experimental results obtained on the ST231

The C codes detailed in Sections 4.3 and 4.4 yield a full implementation of squaring,
for the binary32 format and each rounding mode. To check correctness we compiled
them with gcc (using a C emulation of the mul, max, maxu, and minu operators as
given in Appendix A), and compared with the results of multiplication x×x obtained
on an Intel R© Xeon R© workstation. For each rounding mode this exhaustive test took
about five minutes.

We also compiled our C codes with the ST200 compiler, in -O3 for the ST231
processor. The remainder of this section details the performances obtained in this
context.

4.5.1 Operator performances

Latency and comparison with general multiplication. The latency on ST231
of our binary32 square implementation is shown in the third column of Table 4.1.
Due to if-conversion, it gives for each rounding mode a number of clock cycles in-
dependent of the input value x. The values within square brackets indicate the

51

Chapter 4. Squaring

lowest latencies we can theoretically achieve with the ST231 latency constraints and
assuming unbounded parallelism; these best latencies follow from our analysis in
Sections 4.3 and 4.4 and have the form 1+L with L the best latency for the generic
case. This first experiment shows that the latencies achieved in practice are at most
1 cycle form the best possible ones.

For comparison, the second column of Table 4.1 displays the latencies of the
multiply operator x × y available in the FLIP 1.0 library and optimized for the
ST231 [JR09a]. As shown in the fourth column, our specialization of this multiply
operator into a square operator yields a speedup between 1.75 and 2.3, depending
on the rounding mode.

◦ FLIP 1.0 multiply square speedup

RN 21 12 [11] 1.75
RD 21 9 [8] 2.3
RU 21 11 [10] 1.9
RZ 18 9 [8] 2

Table 4.1: Latency comparison for square and multiply.

Instruction-level parallelism. When designing our algorithms in Sections 4.3
and 4.4 we strived to expose as much ILP as we could. As already mentioned in the
introduction of this thesis, to evaluate ILP in practice we use instructions-per-cycle
(IPC), which is the parallelism really exposed on the target. As shown in Table 4.2
it is deduced from the assembly code by dividing the number of instructions by
the latency. The IPC achieved is close to the highest ILP reachable within the
architectural constraints of the machine, demonstrating a very efficient usage of its
resources.

◦ Latency L Number N of instructions IPC = N/L

RN 12 42 3.5
RD 9 31 3.4
RU 11 37 3.4

Table 4.2: Latency, code size, and IPC for square.

Comparison with two non-IEEE variants. To study the impact on latency
of relaxing the IEEE 754 specification used so far, we have implemented for each
rounding mode a finite-math-only variant and a variant without subnormals.

Finite math only. We assume here that input and output are neither infinity nor
NaN, and that overflow does not occur. Hence x now satisfies |x| < Ω′. On the one
hand, this leaves the generic path unchanged, so that the best possible latencies are
the same as for our IEEE version. On the other hand, (4.17) becomes Cspec = Csmall

and the C codes of Section 4.4 can be simplified accordingly. As the third column
of Table 4.3 shows, in practice this simplification has no impact on latency for RD,
while it saves 1 cycle for RN and RU.

52

4.5. Experimental results obtained on the ST231

No subnormals. Here we assume that x is not subnormal, which means, writing
λ = 2emin for the smallest positive normal number, that x is either NaN, zero, or such
that λ 6 |x|. We also assume that if the exact result x2 lies in the subnormal range
(0, λ) then r = +0 for RN and RD, and r = λ for RU. Since x2 < λ is equivalent
to |x| < λ′ with λ′ =

√
λ, the specification of this non-IEEE variant can thus be

deduced from (4.2) and (4.4) simply by replacing α and α′ with, respectively, λ and
λ′.

For the special path, this relaxed specification implies Csmall = [|x| < λ′] and
the proof of Property 4.8 can be adapted to show that we now have Csmall = [2E 6

emax − 1]. Thus, it suffices to replace 102 by 126 at line 2 of Listing 4.2 and, for RU,
to replace 1 by 223 in the minu operation. These updates clearly have no impact on
the latency.

Concerning the generic path, the case (4.8b) need not be considered anymore, so
that µ in (4.9) is now equal to c. Hence the max operation at line 3 of Listing 4.1 can
be removed and we can replace µ by c at line 5. However, as H still has a latency of
5 cycles, this simplification does not shorten the critical path. This means that the
best latencies that we can theoretically achieve with this second non-IEEE variant
are the same as for our IEEE version. Furthermore, Table 4.3 shows that this is true
in practice as well.

◦ IEEE finite math only no subnormals

RN 12 11 12
RD 9 9 9
RU 11 10 11

Table 4.3: Latency comparison with two non-IEEE variants.

4.5.2 Application examples

We now apply our fast operator to some square-intensive algorithms in order to
study its effect on real applications. After giving a theoretical model of the speedup
achievable on ST231, we show practical speedups and how they match that model.
All experiments have been done on the ST231 cycle-accurate simulator, and while
we focus on rounding ’to nearest even’ (RN) similar results hold for RU and RD.

Speedup model for loop nests involving squares. While Table 4.1 gives
speedups for a single replacement of multiply by square, we now evaluate the the-
oretical expectation of speedup for loops. When the square operator appears in a
loop of n iterations, we introduce the definition

theoretical speedup =
(L + ∆ · σ) · n + C

L · n + C

with L, ∆, σ, and C given as follows:

• L is the latency of the loop body where squares are used, which includes the
application-related operations inside the loop and the cost to control the loop.

53

Chapter 4. Squaring

• ∆ is the latency gap between multiply and square.

• σ is the number of squares in a single iteration.

• C is the cost of the straight-line code outside the loop.

Note that when n tends to infinity, the theoretical speedup tends to 1 + ∆ · σ/L,
which does not depend on C.

On ST231 the values ∆, L, and C have the following features. First, Table 4.1
gives ∆ = 21 − 12 = 9 cycles. Second, L and C can be modelled as

L = a · Br + Idx + Ld + Cin, C = St + Cout.

Here, Br is the cost of a taken branch, which is 3 cycles. The unrolling transformation
done by the compiler has the effect of dividing the number of branches taken to jump
back to the head of the loop by the unrolling factor; a in (0, 1] is used to denote this
effect. The value of a depends on the application and on the compiler optimization
level; to estimate the trend of the speedup, we take a = 0.5, meaning that the loop is
always unrolled by a factor of 2. Idx is the cost to test loop index, which is 1 cycle;
Ld is the cost to load input values, which is 3 cycles. Cin (resp. Cout) is the latency of
the application-related code within (resp. outside) the loop; for each application, the
values of Cin and Cout can be deduced from the latencies of the 5 basic operators of
FLIP 1.0 [Rev09, Table 1] and from the latency of 12 cycles of our square operator.
Finally, St is the cost of stack handling of the function call; it ranges from 10 to 12
cycles depending on the achievable ILP of each application.

The above model has been applied to three application examples, which we review
now.

Example 1: Euclidean norm. Given a vector v of n floating-point data vi we
consider the computation of its Euclidean norm

‖v‖2 =

(
n∑

i=1

v2
i

)1/2

by means of three different algorithms.

Naive algorithm. Here ‖v‖2 is produced by a for loop whose ith iteration simply
squares vi and adds it to the current partial sum of squares. Figure 4.1 shows that
the theoretical speedup tends to about 1.185 and that in practice we are close to this
value as soon as n > 20, assuming n is known at runtime. If n is known at compile
time then an even higher speedup is observed, since the compiler achieves more
efficient loop unrolling optimization. The nine black bullets in Figure 4.1 illustrate
this fact for n = 2, . . . , 10. The greatest speedups are for n 6 4, since in this case all
the parameters are directly passed to the function by registers instead of by stack
and the loop is fully unrolled.

Two-pass algorithm. This algorithm, which is already mentioned in [Blu78], aims
to avoid overflow by first computing ‖v‖∞ = maxi |vi| and then applying the naive
algorithm to the scaled vector [vi/‖v‖∞]i. The input is scanned twice and n divisions
are used. Thus, the speedup we can expect is lower than for the naive algorithm, as

54

4.5. Experimental results obtained on the ST231

Figure 4.1: Impact of square on naive Euclidean norm.

Figure 4.2: Impact of square on two-pass Euclidean norm.

55

Chapter 4. Squaring

shown in Figure 4.2. However, we see that the practical speedup still matches well
the theoretical model as soon as n > 20.

One-pass algorithm. This algorithm also intends to avoid overflow but requires
only one pass over the data, the scaling factor being now computed on the fly. It is an
adaptation of Blue’s algorithm [Blu78] attributed to Hammarling and implemented
in LAPACK [Hig02, p. 507]. Each of the n iterations performs exactly 1 square as
well as 2 or 4 additional operations, depending on the data vi. The total number of
operations thus varies dynamically and turns out to be maximum when |v1| < |v2| <
· · · < |vn|, and minimum when |v1| > |v2| > · · · > |vn|. Each of these two extreme
cases yields a behavior similar to the one displayed in Figure 4.2, the limiting value
when n → ∞ being about 1.077 in the first case, and about 1.096 in the second case.

Example 2: sample variance. The sample variance of v1, . . . , vn is

1

n − 1

n∑

i=1

(vi − v̄)2, where v̄ =
1

n

n∑

i=1

vi.

It is known [Hig02, p. 11] that it can be evaluated accurately by the naive way,
which requires two passes over the data: get v̄ first and then iteratively square and
add the vi−v̄’s. This method has the same structure as the two-pass algorithm in the
previous example (with the maximum replaced by a sum, and the division replaced
by a subtraction). Consequently, the theoretical and practical speedups brought by
our fast square operator are similar to those in Figure 4.2.

Example 3: binary powering. For a floating-point datum x and for n an integer
power of two such that n > 4, we consider here the evaluation of xn by means of log2 n
successive squares. The results obtained for this application are shown in Figure 4.3.
The qualitative analysis done for the naive algorithm of Example 1 still applies but,
since binary powering does not involve any operation other than squaring, higher
speedups are observed. This is even more visible for small values of n (say, between
4 and 64) for which loop unrolling is done by the compiler.

56

4.5. Experimental results obtained on the ST231

Figure 4.3: Impact of square on binary powering.

57

Chapter 4. Squaring

58

Chapter 5

Scaling by integer powers of two

Here we consider floating-point scaling, with subnormal support and correct rounding
for all standard specified modes. By scaling, we mean multiplication by an integer
power of two: given a floating-point datum x and an integer n, we want x · 2n.
Depending on the sign of n, either overflow or inexact result may happen, which
leads to very different algorithms. Therefore, we first separate the discussion for
nonnegative and negative n, and then we propose a complete implementation by
simply merging the two cases. On a VLIW processor like the ST231, this method
results in a low latency and high ILP scaling operator. Moreover, we present very
efficient implementations for some specific values of n, such as 1 and −1, which
indeed compute 2x and x/2 and can be considered as special cases of multiplication.
The numerical results show that it is worthwhile to have dedicated algorithms for
different values of n and that this basic operator can even impact some high-level
applications like matrix balancing.

5.1 Introduction

In this chapter we deal with the scaling operation, which given a floating-point datum
x and an integer n, evaluates x ·2n. The main advantage of having such an operation
is that it allows to multiply by 2n without having to compute explicitly this value.
Multiplication by such integer powers of two is useful in various circumstances, such
as the following ones:

• Multiplication and division by small constants: in many C codes, state-
ments like *2.0f, *4.0f, *0.5f, *0.25f can be seen, which correspond to very
special cases of scaling. Furthermore, codes for computing inverse FFTs in
dimension N = 2n typically end with the division by N of each of the com-
puted values, and in practice N is often known at compile time (for example,
N = 256) [PTVF07, §12].

• Control of underflow and overflow: scaling by integer powers of two is also
sometimes used to improve the behavior of numerical algorithms, especially in
order to avoid or reduce the occurrence of overflow and unnecessary under-
flow. For example, such scalings have been introduced in Horner’s method for
polynomial evaluation [HPW90] and in algorithms for performing divisions of
complex floating-point numbers [Pri04].

• Improvement of numerical accuracy: finally, scaling is also used to in-
crease the accuracy of eigenvalue computations. In this context, a common
preliminary step is to ’balance’ the input matrix A by means of diagonals

59

Chapter 5. Scaling by integer powers of two

of powers of two: A is transformed into DAD−1 and D is chosen so as to
make the norms of the rows and columns of A of the same order of magni-
tude. The balanced matrix DAD−1 has the same eigenvalues of A but, in
most cases, is easier to handle by eigenvalue solvers [PR69], [Bet08], [PTVF07,
§11.6.1]. This balancing procedure is proceeded by default in MATLAB’s eig
function [HH05].

Scaling was already recommended in the 1985 version of the IEEE 754 standard.
In the 2008 revision, it is now required and its prototype is as follows [IEE08, §5.3.3]:

sourceFormat scaleB(source, logBFormat),

where sourceFormat denotes the destination format, source is the format of floating-
point input x, and logBFormat is the format used for n. In particular, logBFormat
can be either a floating-point format or an integer format, and it must have enough
range to include all the integers from −2(emax + p) to 2(emax + p).

Also in §5.3.3 of the standard, another function using logBFormat is the logB
function and its prototype is

logBFormat logB(source).

This function logB returns the exponent of its input in the return format.
For any floating-point number x and logBFormat scaling exponent n, the scaling

function (x, n) 7→ x · 2n is fully specified by the standard as follows, assuming ◦ is
one of the standard rounding modes.

r =

x if x = ±∞,

qNaN if x is NaN,

◦(x · 2n) otherwise.

(5.1a)

Furthermore, in all our designs, we assume that

n is a signed 32-bit integer. (5.1b)

This means that we choose signed 32-bit integer format for logBFormat. There are
two reasons for this design decision. First, the general purpose registers on the
ST231 are 32-bit wide. Second, signed 32-bit integers are enough for the binary32,
binary64, and binary128 formats: indeed, as shown in the table below, in all these
cases 2(emax + p) is less than 231 = 2147483648.

emax p 2(emax + p)

binary32 127 24 302

binary64 1023 53 2152

binary128 16383 113 32992

Remark that since we are assuming radix 2 floating-point arithmetic, the scaleB
function is equivalent to scalbn for radix 2 or ldexp in C11 [Int11].

60

5.2. Scaling by nonnegative powers of two

There are a number of implementations for scaling, which assume that basic
floating-point arithmetic support is available. For example, Cody and Coonen’s al-
gorithm [CC93] is purely based on floating-point arithmetic, which can result in
good portability between different floating-point systems. FDLIBM [fdl] uses a
hybrid method which uses fixed-point arithmetic to handle normal numbers and
floating-point arithmetic for subnormal numbers. However, as we focus on integer-
only processors, all these solutions cannot really be efficient on our target.

Depending on the sign of n, either overflow or inexact result may happen, which
leads to very different algorithms. Therefore, we first separate the discussion for
non-negative and negative n, and then we propose a complete implementation by
simply merging the two cases. On a VLIW processor, this method results in a low
latency and high ILP scaling operator.

Moreover, since scaleB can be used as a special case of floating-point multipli-
cation and division by constant when n is known at compilation time, we present
very efficient implementations for some specific values of n, such as 1 or −1, which
correspond to, respectively, multiplication or division by two.

Outline. This chapter is organized as follows. The cases n > 0 and n < 0 are
presented in §§ 5.2 and 5.3, respectively. In each case, we provide: a specification,
an algorithm, some implementation details, a specialized version for small values of
|n|, and performance results. Then, §5.4 describes our general scaleB operator and
its application to matrix balancing.

5.2 Scaling by nonnegative powers of two

Throughout this section, we assume

n > 0.

This case is the simplest one in the sense that there is no rounding to perform.
Consequently, the main difficulty here is to support subnormal numbers efficiently.

5.2.1 Specification

As explained in Section 3.2.1, the classification of generic and special inputs is es-
sential to achieve high ILP. For this, we start by giving a property characterizing
overflow.

Property 5.1. Let x be a finite floating-point number and let n be a nonnegative
integer. Then

• overflow occurs if and only if |x| > Ω′ with

Ω′ := 2emax+1−n;

• when overflow does not occur, we have ◦(x · 2n) = x · 2n.

61

Chapter 5. Scaling by integer powers of two

Proof. Let us show the first claim. Since x is finite, we have |x| = mx · 2ex with
mx = (mx,0.mx,1 . . . mx,p−1)2. Hence, |x|2n = mx · 2ex+n still has at most p − 1
fraction bits, so that overflow occurs if and only if |x|2n > 2emax+1, that is, if and
only if |x| > Ω′, as wanted.

For the second claim, note that the absence of overflow implies |x|2n < 2emax+1.
But since x is a radix-2 floating-point number, this strict inequality implies x · 2n is
a finite floating-point number, so that ◦(x · 2n) = x · 2n.

Thanks to the above property and by using the rules in §2.3, we can now refine
the specification given in (5.1). This is shown in Table 5.1 and leads to the following
definition.

◦(x · 2n)

x

finite ±∞ NaN
|x| ∈ (0,Ω′) x 6 −Ω′ x > Ω′ x = ±0

RN

x · 2n

−∞ ∞
RU −Ω ∞
RD −∞ Ω

x qNaN

RZ −Ω Ω

Table 5.1: Refined IEEE specification of scaling when n > 0.

Definition 5.1. For scaling and when n > 0, input x is generic when |x| ∈ (0,Ω′),
and special otherwise.

Note that x = ±0 is considered as special in order to simplify the handling of
generic input. Indeed, we will see that for scaling by nonnegative powers of two, the
handling of generic input is on the critical path, and therefore we try to move some
computation to the special path in order to balance the costs of the two paths to
decrease the whole latency.

The gray part of Table 5.1 specifies the results for special inputs. More precisely,
Cspec := [x is special] satisfies

Cspec =
[
x is ±0,±∞ or NaN

]
∨
[
x is finite and |x| > Ω′]. (5.2)

5.2.2 Scaling generic input

Assume that x is generic. According to Definition 5.1, this implies that both x and
x ·2n are nonzero, finite floating-point numbers. In other words, there is no rounding
issue and all we have to do is to return this exact result efficiently even for subnormal
inputs.

To achieve this goal, we start with the theorem below, which provides a formula
for handling simultaneously normal and subnormal inputs. Recall that the k-bit
unsigned integer X denotes the standard encoding (abbreviated as encoding) of
floating-point number x for binaryk format. Recall also that |X| stands for the
encoding of the absolute value of x, that is |X| = X mod 2k−1.

62

5.2. Scaling by nonnegative powers of two

Theorem 5.1. Let x be generic in the sense of Definition 5.1, let sx denote the sign
bit of x, let λx be the number of leading zeros of the significand of x, and let µ be
defined as

µ = min(λx, n). (5.3a)

Then, the encoding R of the exact result r = x · 2n can be deduced from the encoding
X of x as follows:

R = sx · 2k−1 + |R| (5.3b)

with

|R| = |X| · 2µ + (n − µ) · 2p−1. (5.3c)

Proof. When x is generic, r = (−1)sx · mx · 2ex+n, and |r| = mx · 2ex+n. Thus,
R = sx · 2k−1 + |R|, as claimed in Equation (5.3b).

To prove Equation (5.3c), recall from Chapter 2 that

|X| = (ex − emin + mx) · 2p−1

and

mx = (0.0 . . . 0︸ ︷︷ ︸
λx zeros

1mx,λx+1 . . . mx,p−1)2.

When x is normal, λx = 0, and |r| = |x| · 2n = mx · 2ex+n is a finite floating-point
number with mx ∈ [1, 2) and ex + n ∈ [emin, emax]. Therefore, the encoding of r
satisfies |R| = (ex − emin +n+mx) · 2p−1 = |X|+n · 2p−1, which is equivalent to 5.3c
for µ = min(0, n) = 0.

When x is subnormal, ex = emin and we distinguish between two sub-cases:

• When n 6 λx, |r| = mx · 2n · 2emin is a finite floating-point number with
mr = mx · 2n ∈ (0, 2) and er = emin. Therefore, we have

|R| = (er − emin + mr) · 2p−1

= mx · 2n · 2p−1

= |X| · 2n,

which is equivalent to (5.3c) for µ = n.

• When n > λx, we now have mr = mx · 2λx and er = emin + n − λx. Hence

|R| = (er − emin + mr) · 2p−1

= mx · 2λx · 2p−1 + (n − λx) · 2p−1

= |X| · 2λx + (n − λx) · 2p−1,

which is equivalent to (5.3c) for µ = λx.

The ready-to-implement equations in Theorem 5.1 lead to the result Rgen of
generic input whose implementation for the binary32 format is shown in Listing 5.1.

63

Chapter 5. Scaling by integer powers of two

Listing 5.1: Implementation of R for binary32 as in Theorem 5.1.

0 absX = X & 0x7fffffff;

1 nz = clz(absX); sigX = X-absX;

2

3 lambda = maxu(nz ,8) -8;

4 mu = minu(lambda ,n);

5 Xmu = absX << mu; D = n - mu;

6

7 Rgen = (sigX | Xmu) + (D << 23);

Here, the hardware instruction clz is employed to compute the number of leading
zeros of |X|. As can be seen from Listing 5.1, the latency for nz is of 2 cycles. Then,
the comparison of nz with the length of the exponent field (w = 8 for binary32), is
carried out by using maxu, so that the latency for λx (lambda) is of 4 cycles.

Note also that this code exposes some ILP: nz and sigX can be computed simul-
taneously (see line 1), and this holds for sigX | Xmu and D << 23 as well (see line
7). Specifically, sigX | Xmu and D << 23 have a latency of 7 cycles, so that the
latency of Rgen is of 8 cycles

5.2.3 Detecting and handling special input

Detecting special input. This first step corresponds to the evaluation of Cspec

and is independent of the rounding mode. According to Equation (5.2), Cspec can be
implemented as

Cspec = Czero ∨ Clarge ∨ Cnan,

where

Czero = [x = ±0], Clarge = [|x| > Ω′], Cnan = [x is NaN].

Recalling that |X| is the encoding of |x|, a straightforward computation of Czero is
as follows

Czero = [|X| = 0]. (5.4)

On the other hand, the following property shows how to get Clarge ∨Cnan by reusing
the variable lambda computed in the generic path (see line 3 in Listing 5.1).

Property 5.2. We have Clarge ∨ Cnan = [Ex + n′ − ν − Λ > 2emax] with

n′ = min(n, 2emax + p − 1), ν = [clz |X| 6 w],

and

Λ = max(clz |X|, w) − w.

Before proving the property, let us remark that during the implementation of
Clarge ∨ Cnan, the reason for using n′ instead of n is to avoid the overflow caused by
the addition Ex + n.

64

5.2. Scaling by nonnegative powers of two

Proof. First, let us prove that for any floating-point number x,

◦(x · 2n) = ◦(x · 2n′

). (5.5)

When x is NaN or ±∞, Equation (5.5) holds according to the specification shown
in Table 5.1. When x is finite and n < 2emax + p − 1, we have n′ = n and thus (5.5)
is true. When x is finite and n > 2emax + p − 1, we have Ω′ = 2emax+1−n 6 α; since
overflow occurs if and only if |x| > Ω′ according to Property 5.1, and |x| > α for
finite x, we are in a case where ◦(x · 2n) and ◦(x · 2n′

) overflow, and thus are equal
to each other.

By the definition of ν and Λ, we have

ν =

{
mx,0, if x is a finite floating-point number,

1, if x is ±∞ or NaN,

and

Λ =

{
λx, if x is a finite floating-point number,

0, if x is ±∞ or NaN.

Now, let us prove that when Clarge or Cnan holds, Ex + n′ − ν − Λ > 2emax holds. To
do so, we distinguish between two cases:

• When x is ±∞ or NaN, we have Ex = 2w − 1, ν = 1, and Λ = 0. Since n > 0,
we have also n′ > 0, from which we deduce that Ex + n′ − ν − Λ > 2emax.

• When x is finite and overflows occurs, |x| · 2n′

= mx · 2λx · 2ex−λx+n′

> 2emax+1.
Since mx ·2λx is in [1, 2), we have 2 ·2ex−λx+n′

> 2emax+1, that is, ex−λx +n′ >

emax + 1. Since Ex = ex − emin + mx,0, mx,0 = ν, and λx = Λ, we obtain
Ex + n′ − ν − Λ > 2emax.

On the other hand, assume now that neither Clarge nor Cnan holds. This implies
that x is a finite floating-point number and that overflow does not occur, so that
Ex + n′ − ν − Λ < 2emax.

To summarize, by using Equation (5.4) and Property 5.2, we compute Cspec as

Cspec = Czero ∨ (Clarge ∨ Cnan).

The corresponding C code for binary32 is shown at lines 0 to 5 of Listing 5.2.

Handling special input. Once we have filtered out special input by Cspec, it
remains to handle them according to the specification in Table 5.1. From this table,
remark that this second step does depend on the rounding mode ◦.

Assume first that ◦ = RN. For this rounding mode, special input handling is
done as shown at lines 7 to 10. Notice that we first handle NaN input by using an
extra condition, namely

Cnan = |X| > ι(+∞), ι(+∞) = (2emax + 1) · 2p−1.

Then, it remains to return either x or (−1)sx ·∞, depending on whether Czero is true
or not.

65

Chapter 5. Scaling by integer powers of two

Listing 5.2: Detecting and handling special input of scaling when n > 0 for the
binary32 format, ◦ = RN.

0 absX = X & 0x7fffffff; np = minu(n,277);

1 nz = clz(absX); Ex = absX >> 23; Cnan = absX > 0x7F800000;

2 nu = nz <= 8; Czero = absX == 0; sigX = X - absX;

3 lambda = maxu(nz ,8) -8;

4 Clarge_or_nan = (int32_t)(Ex+np -nu-lambda) >= 2*0 x7f;

5 Cspec = Czero || Clarge_or_nan;

6 if (Cspec) {

7 if (Cnan) return 0x7fc00000; // r = qNaN

8 else {

9 if (Czero) return X; // r = +\− 0

10 else return sigX|0 x7f800000; } // r = +\− oo

11 } else {

12 // g ene r i c case (L i s t i n g 5 . 1) .

13 return Rgen;

14 }

For other rounding modes (RU, RD, RZ), all we need to change is lines 9 and
10 according to Table 5.1. The corresponding C codes for the binary32 format are
given below.

- Rounding up (◦ = RU):

if(Czero |(Ex == 255)) return X;

else return sigX |(0 x7f800000 - (sigX !=0));

- Rounding down (◦ = RD):

if(Czero |(Ex == 255)) return X;

else return sigX |(0 x7f800000 - (sigX ==0));

- Rounding to zero (◦ = RZ):

if(Czero |(Ex == 255)) return X;

else return sigX|0 x7f7fffff;

Since Listing 5.2 refers to Listing 5.1 at line 12, we have in fact here a complete
code for scaling when n > 0. Consequently, we present the performances of this
operator in the paragraph below.

Performances on the ST231. Table 5.2 summarizes the performances of scaling
when n > 0 on the ST231. We give both the latencies in cycles and the number of
instructions (in brackets) for each rounding mode.

66

5.2. Scaling by nonnegative powers of two

For the binary32 format, we see from Listing 5.1 that it takes 8 cycles to compute
the result if the input is generic. Then, ideally, it would cost only one more cycle
to obtain the desired result, where a selection between the results computed by
the generic path and by the special path is applied. In Table 5.2, for ◦ = RN, it
takes exactly 9 cycles, which means that the handling of generic input is critical to
the latency here and the code is optimally scheduled. For other rounding modes,
although there is an overhead of two or four instructions, only one more cycle is
required.

Although the algorithm is optimized for the binary32 format, we still achieve
interesting latencies for the binary64 format: the data width is doubled while the
latencies are less than twice those for binary32.

For both formats and all the rounding modes, the IPCs (instructions per cycle,
see §4.5.1) are higher than 3, which means that for all these implementations most
of the bundles are full.

◦(x · 2n), n > 0 RN RU RD RZ

binary32 9 [28] 10 [32] 10 [32] 10 [30]
binary64 14 [44] 16 [51] 16 [51] 15 [46]

Table 5.2: Latencies in # cycles [code sizes in # instructions] for scaling when n > 0.

5.2.4 Specializing to small values of n

Scaling by summation. We introduce here another algorithm to compute scaling,
which does not require λx, the number of leading zeros of the significand of x.
Instead, we use n times the min function and n additions to compute x · 2n for x
generic or zero. Assuming infinite parallelism, this method leads to a latency of
O(log2 n) by using parallel summation. In practice, this method turns out to be fast
for small values of n on the ST231, and therefore it is used for some specialized cases
of scaling, such as mul2. The theorem below gives the formula that underlies this
algorithm.

Theorem 5.2. Let x be generic or zero. Then, the encoding R of the exact result
r = x · 2n can be deduced from the encoding X of x as follows:

R = X +
n−1∑

i=0

min(|X| · 2i, 2p−1). (5.6)

Proof. When x is zero, we have r = x and thus also R = X. Assume now that x is
nonzero, which implies in particular

|X| > 1.

For n = 0 the result is clear, and for n > 1 we proceed by induction on n.

• If n = 1 then r = 2x. When x is normal, we have |X| > 2p−1 so that
min(|X|, 2p−1) = 2p−1 and, by Theorem 5.1 we deduce that µ = 0 and

R = sx · 2k−1 + |X| + 2p−1

= X + min(|X|, 2p−1).

67

Chapter 5. Scaling by integer powers of two

When x is subnormal, we have |X| < 2p−1, and Theorem 5.1 gives µ = 1 and

R = sx · 2k−1 + 2|X|
= X + |X|
= X + min(|X|, 2p−1).

Therefore, we have shown the result for n = 1.

• Assume now that n > 2 and that the result is true up to n−1. Defining y = 2x,
one has r = y · 2n−1 and one may check that since x is generic, y is generic as
well. Thus, the induction assumption yields R = Y +

∑n−2
i=0 Si, where Y is the

standard encoding of y, and where Si = min(2i|Y |, 2p−1). Furthermore, the
case n = 1 studied just before leads to

Y = X + min(|X|, 2p−1). (5.7)

Consequently, it suffices to check that

Si = min(2i+1|X|, 2p−1) for i = 0, . . . , n − 2. (5.8)

If |X| 6 2p−1 then (5.7) gives |Y | = 2|X|, from which (5.8) follows. If |X| >
2p−1 then |Y | = |X| + 2p−1 > 2p−i−1, which implies Si = 2p−1; since in this
case |X| > 2p−i−2, one has (5.8) too. Combining (5.7) and (5.8) thus gives the
desired expression for R, and the conclusion follows by induction.

Here are three examples of Theorem 5.2 for some specific values of n and the
corresponding C codes for the binary32 format:

• Example where n = 1: we have r = 2x, which is the mul2 operator, and thus

R = X + min(|X|, 2p−1).

Getting R from X takes 3 cycles on the ST231, as the listing below shows:

0 absX = X & 0x7FFFFFFF;

1

2 Rgen = X + min(absX , 0x00800000);

• Example where n = 2: we have r = 4x and in this case

R = X + min(|X|, 2p−1) + min(|X| · 2, 2p−1).

This now takes 4 cycles on the ST231:

0 absX = X & 0x7FFFFFFF; X1 = X << 1;

1 min1 = min(absX , 0x00400000); min2 = min(X1 , 0x00400000);

2

3 Rgen = X + min1 + min2;

68

5.2. Scaling by nonnegative powers of two

• Example where n = 3: we have r = 8x and then

R = X + min(|X|, 2p−1) + min(|X| · 2, 2p−1) + min(|X| · 2, 2p−2) · 2.

This takes 5 cycles on the ST231. Here the addition with (min3 ≪ 1) is exe-
cuted in one cycle thanks to the sh1add instruction.

0 absX = X & 0x7FFFFFFF; X1 = X << 1;

1 min1 = min(absX , 0x00400000); min2 = min(X1 , 0x00400000);

2 min3 = min(X1, 0x00200000);

3

4 Rgen = X + min1 + min2 + (min3 << 1);

Detecting and handling large and NaN input. Since zero input is covered in
Theorem 5.2, special input now means large or NaN input. More precisely, we now
take for Cspec the following equation:

Cspec = Clarge ∨ Cnan, (5.9)

where Clarge = [|x| > Ω′] and Cnan = [x is NaN], which are exactly the same as
specified in §5.2.3. The property below gives the implementation of Cspec.

Property 5.3. Cspec = [|X| > ι(Ω′)].

Proof. First, let us prove that when Clarge or Cnan holds, |X| > ι(Ω′) holds.

• When Clarge is true, x is either a finite number with |x| > Ω′ or ±∞. Thus,
|X| > ι(Ω′).

• When Cnan is true, x is NaN. Then, we have |X| > ι(∞) > ι(Ω′).

On the other hand, assume that neither Clarge nor Cnan holds. This implies x is
a finite floating-point number and overflow does not occur, so that |x| < Ω′ and
|X| < ι(Ω′).

The handling of the special input is easier than that in §5.2.3, as zero input is
not handled here. The listing below shows how to detect and handle special input
of mul2 for the binary32 format and ◦ = RN.

Listing 5.3: Detecting and handling special input of mul2 for the binary32 format,
◦ = RN.

0 absX = X & 0x7fffffff;

1 Cspec = absX >= 0x7F000000;

2 if(Cspec){

3 sigX = X - absX;

4 Cnan = absX > 0x7F800000;

5 if(Cnan) return X | 0x00400000;

6 else return sigX | 0x7F800000;

69

Chapter 5. Scaling by integer powers of two

7 }else{

8 // handl ing g ene r i c input x o f mul2

9 return Rgen;

10 }

For other rounding modes, similarly to §5.2.3 only minor modifications of the
code are needed: here it suffices to update only line 6 (the line which handles large
input) according to the rounding mode.

- Rounding to zero (◦ = RZ):

Cinf = absX == 0x7F800000;

if(Cinf) return sigX|0 x7F800000; return sigX|0 x7F7FFFFF ;

Notice that in this case we need to distinguish between finite and infinite input,
which is done by the computation of Cinf.

- Rounding down (◦ = RD):

Cinf = X >= 0x7F800000;

if(Cinf) return sigX|7 F800000; return 0x7F7FFFFF;

Here, Cinf holds for all the negative large floating-point finite numbers and
+∞. Thus, we return the encoding of ±∞ according to the sign of the input
when Cinf holds, or otherwise that of Ω for all large finite positive numbers.

- Rounding up (◦ = RU):

Covf = (X + min(absX , 0x00800000)) >= 0xFF000000;

if(Covf) return 0xFF7FFFFF; else return sigX|0 x7F800000;

Here Covf holds for large negative input. Then, we return the encoding of −Ω
when Covf holds, or otherwise that of ±∞. Notice that the computation of
Covf involves the result of the generic input and, in such a case, we let the
compiler optimize the scheduling of the C codes.

Performances on the ST231. Table 5.3 and Table 5.4 summarize the perfor-
mances of scaling by some small positive values of n for the binary32 and the binary64
formats on the ST231. Similarly to Table 5.2, we give both the latencies in cycles
and the number of instructions (in brackets) for each rounding mode.

Comparing to Table 5.2, we see that up to n = 4 the specialized operators are
faster than (or as fast as, for ◦ = RU) the general scaling operator with n > 0 for
the binary32 format. However, for the binary64 format, the specialized operators do
not give any performance gain as soon as n > 3.

The first line of Table 5.3 gives the performances of mul2 for the binary32 format,
which is 3x to 4x faster than the general multiplication of FLIP 1.0 depending on
the rounding modes.

70

5.2. Scaling by nonnegative powers of two

n RN RU RD RZ

1 5 [11] 7 [13] 6 [14] 6 [15]
2 7 [14] 8 [16] 7 [17] 7 [18]
3 7 [16] 9 [18] 8 [19] 8 [20]
4 8 [18] 10 [20] 8 [21] 9 [22]
5 9 [20] 10 [22] 10 [23] 9 [24]
6 9 [23] 12 [25] 11 [26] 10 [27]
7 10 [26] 13 [27] 11 [29] 11 [30]
8 11 [29] 14 [30] 12 [32] 12 [33]

Table 5.3: Latencies in # cycles [code sizes in # instructions] of scaling by some
small values of n for the binary32 format.

n RN RU RD RZ

1 10 [28] 12 [34] 11 [34] 11 [34]
2 12 [39] 14 [45] 14 [45] 14 [45]
3 15 [50] 17 [56] 16 [56] 16 [56]
4 18 [61] 20 [67] 20 [67] 19 [67]
5 21 [72] 23 [78] 23 [78] 23 [78]
6 24 [84] 27 [90] 26 [90] 26 [90]
7 28 [96] 30 [102] 29 [102] 29 [102]
8 31 [108] 33 [114] 33 [114] 32 [114]

Table 5.4: Latencies in # cycles [code sizes in # instructions] of scaling by some
small values of n for the binary64 format.

71

Chapter 5. Scaling by integer powers of two

Meanwhile, from Table 5.3, we can deduce that the IPCs of mul2 are around 2,
which indicates that on average only two instructions are executed in each cycle.
However, since several 32-bit constants are used in the C codes, the real bundle
occupancies are very high. For instance, for mul2 of the binary32 format, the first
four bundles are full when ◦ = RN.

5.3 Scaling by negative powers of two

In this section, we now assume
n < 0.

In this case, for every finite x, we have |x| · 2n 6 |x|, and therefore overflow will not
occur. However, since the significand of the result is limited to p bits, the result can
be inexact and rounding becomes necessary.

5.3.1 Specification

Since overflow cannot occur when n < 0, we do not need a refined specification as
for n > 0 (see Table 5.1), and it is enough to consider (5.1). Another consequence
of the absence of overflow is that the distinction between special and generic input
is somehow simpler, and we have the following definition.

Definition 5.2. For scaling and when n < 0, input x is called special when x is
±∞ or NaN, otherwise it is generic.

In terms of condition Cspec, this means

Cspec =
[
x is ±∞ or NaN

]
. (5.10)

5.3.2 Scaling generic input

A normalized formula for x · 2n. Since x is generic, it is finite and therefore the
exact result ρ = x · 2n has the form

ρ = (−1)sx · mx · 2ex+n.

Let us first consider separately two cases, depending on the value of ex + n:

• If ex + n > emin then r is a floating-point number, so that no rounding error
occurs.

• If ex + n < emin then by defining the positive integer

δ = emin − (ex + n), (5.11)

we can normalize the exact result ρ as follows:

ρ = (−1)sx · mx · 2−δ · 2emin ,

where mx · 2−δ is in [0, 1). In this case, mx · 2−δ can have more than p− 1 bits,
so that rounding may be necessary.

72

5.3. Scaling by negative powers of two

Thanks to the definition of δ, these two cases can in fact be handled simultaneously
by the following formula:

ρ = (−1)sx · ℓ · 2d, (5.12a)

where
ℓ = mx · 2−max(δ,0), d = emin − min(δ, 0). (5.12b)

Note that by construction, we have either ℓ ∈ [0, 1) and d = emin, or ℓ ∈ [1, 2) and
d ∈ [emin, emax].

Implementation for the binaryk format. We detail here how to implement,
for x generic and the binaryk floating-point format, the computation of scaling when
n < 0 by using k-bit integer arithmetic and logic. Given the normalized result ρ as
in (5.12), the standard encoding R of ◦(ρ) can be deduced from Fact 2.1:

R = sx · 2k−1 + D · 2p−1 + L + b,

where D = d − emin =, L = ⌊ℓ · 2p−1⌋, and b is specified by (2.10d).

Computing D and L. By (5.12b), we have D = −min(δ, 0), and L = ⌊mx ·
2−max(δ,0) · 2p−1⌋, where δ is a function of ex. Instead of ex, what we can extract
directly from the encoding X is Ex. Then, we deduce the property below to compute
D and L by using this integer Ex.

Property 5.4. Let ∆ = mx,0 − n and Mx = mx · 2p−1. Then

D = Ex − min(∆, Ex).

and
L = ⌊Mx · 2−µ⌋,

where µ = min(p + 1, max(∆, Ex) − Ex).

Proof. Since n < 0, we have ∆ ∈ {−n, 1 − n}, from which we deduce 0 < ∆ 6

231 + 1, which will be stored in an unsigned 32-bit integer. Furthermore, from
Ex = ex − emin + mx,0, it follows that δ defined in (5.11) satisfies

δ = mx,0 − n − Ex

= ∆ − Ex.

Using (5.12b), we see that D = d − emin is given by

D = −min(δ, 0),

= Ex − min(∆, Ex),

which is the desired expression for D.
Let us now prove the expression for L. Since L = ⌊ℓ·2p−1⌋ and ℓ = mx ·2−max(δ,0),

we have
L = ⌊Mx · 2−(max(∆,Ex)−Ex)⌋,

and since Mx < 2p, L = ⌊Mx · 2−µ⌋.

73

Chapter 5. Scaling by integer powers of two

Given the minu and maxu instructions, Property 5.4 can be implemented effi-
ciently. For the binary32 format, shown in Listing 5.4, mx,0 is computed in line 1
by variable m0, and ∆ (variable Delta) is obtained in the next cycle. Then, both
instructions minu and maxu are applied to Delta and Ex (computed in parallel with
m0 in line 1). Hence, D is obtained in 5 cycles and L is obtained in 7 cycles.

Computing b. Let us start by considering rounding to nearest even, for which

b = g∧ (ℓp−1∨ t) with g and t as defined in (2.10d). Since by definition of µ, we have
0 6 µ 6 p + 1, the computation of g can be implemented as shown in the property
below:

Property 5.5. g = G mod 2 with G = (2Mx) ≫ µ.

Proof. First, g being the least significant bit of the integer G = ⌊ℓ · 2p⌋, we have
g = G mod 2. Furthermore, by proceeding as in the proof of Property 5.4, one can
deduce that G = ⌊2Mx/2µ⌋.

Since ℓp−1 = L mod 2, it suffices to get a formula for t. This is given by the next
property.

Property 5.6. t = [T 6= 0] with T = (4Mx) ≪ (k − 1 − µ).

Proof. By definition of t, we have t = [{ℓ · 2p} 6= 0], and since mx has at most p bits,
one can replace ℓ by mx · 2−µ in this identity, so that

t = [{mx · 2p−µ} 6= 0]

= [{4Mx/2µ+1} 6= 0].

As 4Mx fits into a k-bit unsigned integer and the value k− (µ+1) is less than k, the
fraction of 4Mx/2µ+1 is zero if and only if the k-bit unsigned integer T = 4Mx ≪
(k − 1 − µ) is zero.

As shown in Listing 5.4, as soon as µ (variable mu at line 5) is obtained, it
takes 2 cycles to compute T (variable T at line 7) and in these two cycles we can
simultaneously compute L, G, g, and L& 1. Then, b is computed at line 10. As
a result, on the ST231 it takes 11 cycles to compute R (variable Rgen) for generic
input, assuming the binary32 format and ◦ = RN.

Listing 5.4: Implementation of R for the binary32 format and ◦ = RN.

0 absX = X & 0x7fffffff; F = X << 9;

1 m0 = absX >= 0x00800000; Ex = absX >> 23;

2 Delta = (uint32_t)(m0-n);

3 mup = maxu(Delta , Ex); nv = minu(Delta , Ex); Mx = (F>>9) | (m0 < <23));

4 D = Ex-nv; sigX = X- absX;

5 mu = minu(25, mup -Ex); Mx2 = Mx << 1; Mx4 = Mx << 2;

6 L = Mx >> mu; G = Mx2 >> mu;

7 T = Mx4 << (31-mu); g = G & 1;

8

9 b = g && (T | (L & 1));

10 Rgen = (sigX | (D << 23)) + L + b;

74

5.3. Scaling by negative powers of two

Now, let us detail the implementations when ◦ is not RN. When the rounding
mode is RZ, b = 0 as given in (2.10d). Consequently, the instructions involving g,
G, T , and b can be suppressed and the last line of Listing 5.4 can be replaced by

Rgen = (sigX | (D << 23)) + L;

For either RU or RN, recall that g = ⌊ℓ · 2p⌋ mod 2 and t = [{ℓ · 2p} 6= 0], which
are defined in (2.10d). Then, we have g ∨ t = [{ℓ · 2p−1} 6= 0]. By proceeding as in
the proof of Property 5.6, we can deduce that g ∨ t = [T ′ 6= 0] with T ′ = (2Mx) ≪
(k− 1−µ). Therefore, we can remove the instructions for g, G, and T . For RU, line
9 of Listing 5.4 can be replaced by

b = (Mx2 << (31-mu)) && (sigX ==0);

While for RD, this line is replaced by

b = (Mx2 << (31-mu)) && sigX;

5.3.3 Detecting and handling special input

By Definition 5.2, the handling of special input is to handle ±∞ or NaN input x.
According to Equation (5.10), Cspec can be implemented as

Cspec = Cinf ∨ Cnan,

where Cinf = [x is ± ∞], and Cnan = [x is NaN]. In fact, as shown in (2.7), when
x is not a finite floating-point number, the biased exponent field of the standard
encoding X equals 2emax + 1. Then, the property below gives the implementation of
Cspec.

Property 5.7. Cspec = [Ex = 2emax + 1], where Ex is defined by (2.4).

Proof. First, (2.7) gives that when Cinf or Cnan holds, Ex = 2emax + 1. Then, when
neither Cinf nor Cnan holds, x is a finite floating-point number, and we have Ex =
ex − emin + mx,0 with ex ∈ [emin, emax]. Thus, Ex 6 2emax.

The listing below displays how to detect and handle special input of scaling when
n < 0 for the binary32 format.

Listing 5.5: Detecting and handling special input of scaling when n < 0 for the
binary32 format and ◦ = RN.

0 absX = X & 0x7fffffff;

1 Ex = absX >> 23;

2 Cspec = Ex == 255;

3 if (Cspec){

4 Cnan = absX > 0x7f800000;

5 if(Cnan) return 0x7fc00000;

6 else return X;

7 } else {

75

Chapter 5. Scaling by integer powers of two

8 // g ene r i c case (L i s t i n g 5 . 4)

9 return Rgen;

10 }

In this case as well, since Listing 5.5 refers to Listing 5.4 at line 8, we have
a complete code for scaling when n < 0, and we present the performances of this
operator in the next paragraph.

Performances on the ST231. Table 5.5 gives the performances of scaling when
n < 0 on the ST231. Since the latency for the binary32 format is 12 cycles when
◦ = RN and we see from Listing 5.4 that it takes 11 cycles to handle the generic
input, we can conclude that the implementation on the ST231 is optimally scheduled.
For both formats, the IPCs are around 3, which indicates that on average two to
three instructions are executed in each cycle.

In addition, the latencies of scaling by negative powers of two are longer than
nonnegative scaling due to the expensive rounding scheme.

◦(x · 2n), n < 0 RN RU RD RZ

binary32 12 [33] 12 [30] 12 [29] 9 [23]
binary64 21 [66] 17 [56] 17 [56] 14 [41]

Table 5.5: Latencies in # cycles [code sizes in # instructions] for scaling when
n < 0.

5.3.4 Specializing to some negative values of n

An algorithm based on case-selection. For generic x, we have seen at the
beginning of §5.3.2 that (ℓ, d) = (mx, ex + n) if ex > emin + |n|. In the other case,
that is, when ex < emin+|n|, we have also seen that d = emin and ℓ is given by (5.12b);
however, since ex is lower bounded by emin, there are at most |n| possible values for
ℓ. More precisely, we have

(ℓ, d) =

(mx, ex + n), if ex + n > emin,

(mx · 2−1, emin), if ex + n = emin − 1,

(mx · 2−2, emin), if ex + n = emin − 2,
...

...

(mx · 2−|n|, emin), if ex = emin.

(5.13)

Therefore, we can first compute the |n| + 1 floating-point numbers associated with
the pairs (ℓ, d), and then use a binary tree of select instructions on the ST231 to
return the correct result.

Example for n = −1. Here we give the implementation details for the div2
operator, that is, how to get the encoding R of the result ◦(x/2) from the encoding
X of the input x.

76

5.3. Scaling by negative powers of two

Since x is generic, it is finite, and recalling Fact 2.1, we have

R = sx · 2k−1 + D · 2p−1 + L + b

with D = d−emin and L = ⌊ℓ ·2p−1⌋. We consider the two cases of (5.13) separately:

• If ex > emin then (ℓ, d) = (mx, ex−1). In this case, the exact result (−1)sx ·ℓ ·2d

is already a floating-point number. Hence, b = 0 and

R = sx · 2k−1 + (ex − emin + mx) · 2p−1 − 2p−1.

Thus, recalling (2.5), we conclude that R = X − 2p−1.

• If ex = emin then (ℓ, d) = (mx/2, emin). In this case, L = ⌊Mx/2⌋ and D = 0.
This leads to R = sx ·2k−1 +⌊Mx/2⌋+b, and since ex = emin implies |X| = Mx,
we arrive at

R = sx · 2k−1 + (|X| ≫ 1) + b. (5.14)

It remains to compute the round bit b. For doing this, note first that ℓ =
mx/2 = (ℓ0.ℓ1 . . . ℓp)2 has no more that p fraction bits, which implies that the
sticky bit t is zero. Since the guard bit g is ℓp, the formula for b given in (2.10d)
degenerates into

b =

ℓp ∧ ℓp−1, if ◦ = RN,

ℓp ∧ (¬sx), if ◦ = RU,

ℓp ∧ sx, if ◦ = RD,

0, if ◦ = RZ.

Now, we can easily check that

ℓp = X mod 2 and ℓp ∧ ℓp−1 = [X mod 4 6= 0].

Consequently, the round bit b can be implemented by means of the following
formula:

b =

[X mod 4 6= 0], if ◦ = RN,

(X mod 2) ∧ (¬sx), if ◦ = RU,

(X mod 2) ∧ sx, if ◦ = RD,

0, if ◦ = RZ.

(5.15)

To summarize, we have shown the following property:

Property 5.8. If n = −1 and x is generic then

R =

{
X − 2p−1, if ex > emin,

as in (5.14) and (5.15), otherwise.

The corresponding C code for the binary32 format, and ◦ = RN is shown in
Listing 5.6. In particular, note that detecting and handling special input are exactly
the same as in § 5.3.3.

As shown at line 3 in Listing 5.6, R1 corresponds to the result when ex > emin,
and R2 corresponds to the result when ex = emin, which dominates the cost of this
operator. We see that R1 takes only one cycle and can be computed in parallel with
the computation of R2. As R2 (obtained at line 3) has a latency of 4 cycles, the
latency of R for generic input is of 5 cycles on the ST231.

77

Chapter 5. Scaling by integer powers of two

Listing 5.6: Implementation of R for the binary32 format as by Property 5.8, ◦ = RN.

0 absX = X & 0x7FFFFFFF;

1 b = (X & 3) != 0; Ex = absX >> 23; sigX = X - absX;

2 R1 = X - 0x00800000; Clarge = Ex > 1;

3 R2 = sigX + (absX >> 1) + b;

4 if (Clarge) R = R1; else R = R2;

Performances on the ST231. Table 5.6 and Table 5.7 summarize the perfor-
mances of scaling by some specific negative values of n for the binary32 and the
binary64 formats on the ST231.

By comparing with Table 5.5, we see that the specialized operators do not give
any performance gain as soon as n 6 −4 for the binary32 format. Whereas for
the binary64 format, the specialized operators are still slightly faster when n = −4
and ◦ = {RN,RZ}. This is caused by the different emulations of 64-bit integer shifts
used for the implementations of these two algorithms. The implementation of general
scaling by negative powers of two for the binary64 format requires several general
64-bit integer shifts, which is costly on the ST231. However, the implementations
for the specialized cases involve only 64-bit shifts by small constants, for which the
compiler can generate fast emulations.

n RN RU RD RZ

-1 6 [16] 8 [17] 7 [16] 6 [13]
-2 8 [24] 9 [24] 9 [23] 7 [17]
-3 11 [32] 11 [31] 11 [30] 9 [21]
-4 14 [40] 13 [38] 13 [38] 11 [25]

Table 5.6: Latencies in # cycles [code sizes in # instructions] of scaling by some
negative values of n for the binary32 format.

n RN RU RD RZ

-1 8 [26] 9 [27] 9 [27] 8 [21]
-2 12 [39] 12 [39] 12 [39] 9 [29]
-3 15 [52] 15 [51] 15 [51] 11 [37]
-4 18 [65] 18 [63] 18 [63] 13 [49]

Table 5.7: Latencies in # cycles [code sizes in # instructions] of scaling by some
negative values of n for the binary64 format.

5.4 Complete implementation and experimental results

5.4.1 Scaling by an arbitrary power of two

So far, we have discussed different designs for scaling depending on the sign of n,
since for nonnegative values of n, the result is exact but overflow may occur, whereas

78

5.4. Complete implementation and experimental results

for negative values of n, there is no overflow but the result may be inexact. As in real
applications we cannot always know the sign of n at compilation time, we discuss in
this section the design of a full operator scaleB which handles both cases.

Complete implementation for an arbitrary power of two. Given the codes
for scaling by nonnegative and negative powers of two described and analyzed in §§5.2
and 5.3, an implementation of a general scaling operator scaleB is straightforward:
we essentially merge the two codes by introducing an if-else statement. Listing 5.7
displays such an implementation for the binary32 format.

Listing 5.7: ScaleB operator for the binary32 format and ◦ = RN.

4 if (n >= 0 && absX){

5 // s c a l i n g when n i s nonnegat ive and x i s nonzero

6 // code in L i s t i n g 5 .2 with i n s t r u c t i o n s i nvo l v i ng Czero removed

7 }else{

8 // s c a l i n g when n i s negat ive or x i s ze ro

9 // code in L i s t i n g 5 .5

10 }

Note that whatever the sign of n, zero input is handled by the C code used for the
case n < 0 (Listing 5.5). This choice calls two remarks:

• First, let us see why this is correct. If we replace ∆ in Property 5.4 by ∆′,
such that ∆′ = (mx,0 − n) mod 232, the new property holds for scaling by an
arbitrary power of n for zero input as well as scaling when n < 0. For scaling
when n < 0, since 0 < mx,0−n 6 231+1, we have ∆′ = ∆, and therefore it falls
to Property 5.4. When n > 0 and x is zero, we have ∆′ > 0 and Mx = Ex = 0.
Therefore, we have µ ∈ [0, p + 1] and L = ⌊Mx · 2−µ⌋ = 0. Consequently,
Properties 5.5 and 5.6 hold for an arbitary power of two when x is zero.

Since we conclude in the proof of Property 5.4 that 0 < ∆ 6 231 + 1 and that
it will be stored in an unsigned 32-bit integer, we convert the result of m0-n
explicitly to uint32 t at line 2 in Listing 5.4. Indeed, this conversion computes
(mx,0 − n) mod 232, which is ∆′. Then, the code in Listing 5.5 can be applied
to any n when x is zero.

• Second, the advantage of such a choice is to save computational resurces by
removing the instructions of the special case handling zero input from scaling by
nonnegative powers of two. For scaling when n > 0, a zero input is considered
special to reduce the latency of the generic path (critical path) at the cost
of more instructions; however, for scaling when n < 0, a zero input can be
handled in the generic path without increasing the latency. Since both of the
implementations in Listings 5.2 and 5.5 expose high ILP, to realize the ILP
exposed by merging these two cases on the ST231, we need to reduce the total
number of instructions for the lowest achievable latency.

Table 5.8 gives the performances of scaling by any powers of two. Ideally, the
latency of scaleB for each rounding mode and binaryk format should be one cycle

79

Chapter 5. Scaling by integer powers of two

more than that of the corresponding case for scaling by negative powers of two, since
scaling when n < 0 is more costly than scaling by nonnegative powers of two due to
the rounding scheme. In practice, we see from Table 5.8 that although the overlaps
are from three to five cycles for the binary32, the IPCs are over three in all these
cases, which means that all the instructions are well scheduled.

RN RU RD RZ

scaleB binary32 15 [51] 16 [55] 16 [54] 14 [45]
binary64 26 [96] 27 [98] 27 [98] 22 [77]

Table 5.8: Performances for scaleB: latencies in # cycles [code sizes in # instruc-
tions].

Figure 5.1 gives a precise description of the bundle occupancy when compiling the
scaling implementation in Listing 5.7. The slots in black are those used to compute
scaling when n < 0, those marked by ∗ are also used for scaling when n > 0, and
those in grey are used for scaling when n > 0 only. Here, every constant longer
than 9 bits occupies one slot beyond the slot used by the instruction operating on
it. Among the 15 bundles, 13 bundles are fully used, which indicates a high ILP and
thus a very good usage of the resources of the machine.

Cycle Issue 1 Issue 2 Issue 3 Issue 4

0 * * *

1 * *

2

3

4

5

6 * *

7

8

9 *

10

11 * *

12 * * * *

13 * * * *

14 * *

Figure 5.1: Bundle occupancy for the scaling operator on ST231.

Regarding previous available software implementations, Cody and Coonen’s al-
gorithm [CC93] is fully based on other floating-point operators and it takes around
300-400 cycles depending on the inputs on the ST231. On the other hand, FDlibm
supports only double precision inputs (binary64 format) and it is as fast as our im-
plementation for binary64 normal numbers. As to subnormals, like for Cody and
Coonen’s algorithm, it depends on floating-point multiplication, which means that it
will cost several hundreds of cycles in our context. In other words, the latencies for
subnormal numbers of these algorithms are even larger than that of floating-point
multiplication.

80

5.4. Complete implementation and experimental results

5.4.2 Application to matrix balancing

As already said in the introduction to this chapter, in linear algebra we often balance
the input matrix to obtain more accurate eigenvalues. In particular, this balancing
procedure is proceeded by default in MATLAB’s function eig [HH05]. In radix 2,
this amounts to replacing an N ×N matrix A by DAD−1 with D = diag(d1, . . . , dN)
and each di is an integer power of two.

To evaluate the effect of scaling operators on matrix balancing, we use the code
from [PTVF07, §11.6.1] shown in Listing 5.8. Here we observe that several multipli-
cations can be specialized to mul2, mul4, div2 or div4, such as the multiplications
at lines 13, 14, 18, and 19. Furthermore, we can fully rewrite the multiplications at
lines 25 and 26 by the C11 standard scaling function ldexp. The complete re-written
code is shown in Listing 5.9.

The test is run on the cycle-accurate simulator of the ST231. The baseline is by
using the general floating-point operators of FLIP 1.0. The matrices are randomly
generated by the C++ library function rand shown in the listing below.

time_t seconds;

int i;

time(& seconds);

srand((unsigned int) seconds);

cout << "float A[N][N]={\\" << endl;

for(i=0;i<N;i++){

cout << (float) rand()/((rand() %1000 + 1) << " ,\\" << endl;

}

cout << "};"<<endl;

With this code, when the generated floating-point number is not zero, it is at least
10−3, which means these numbers are always in the normal range. However, since
the performances of the scaling operators as well as the general operators of FLIP 1.0
do not depend on the input range, the constraint on the range of input will not affect
the result of the experiment.

Figure 5.2 gives the speedups obtained for such N × N random matrices with
N up to 100. The curve ’Speedup by specialized operators only’ gives the speedups
introduced by using the specialized operators mul2, mul4, div2, and div4 to compute
the multiplications at lines 13, 14, 18, and 19 of Listing 5.8. The curve ’Speedup by
fast scaling and specialized special operators’ gives the speedups of balancing matri-
ces by Listing 5.9, which uses both the scaleB operator and the specialized operators.
We observe that the method using the scaleB operator leads to higher speedups, and
since the accumulation of the loop (line 6 in both Listings 5.8 and 5.9) dominates the
cost of balancing, both curves fall to the baseline as N approaches 100. However,
for small dimensions, significant speedups are achieved thanks to our scaling opera-
tors. For example, in dimension N = 10, an acceleration of about 10% is obtained
compared with FLIP 1.0.

81

Chapter 5. Scaling by integer powers of two

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 10 100

Sp
ee

du
p

Dimension N

Speedup by specialized operators only
Speedup by fast scaling and specialized operators

Figure 5.2: Speedups for balancing N × N matrices with N 6 100.

Listing 5.8: Original C code for matrix balancing.

0 while(!done){

1 done = true;

2 for (i = 0; i < N; i++){

3 float r = 0.0f, c = 0.0f;

4 for(j = 0;j < N; j++)

5 if(j != i){

6 c += abs(A[j][i]); r += abs(A[i][j]);

7 }

8 if(c != 0.0f && r != 0.0f){

9 float g = r / 2.0f;

10 float f = 1.0f;

11 float s = c + r;

12 while(c < g){

13 f *= 2.0f;

14 c *= 4.0f;

15 }

16 g = r * 2.0f;

17 while (c > g){

18 f /= 2.0f;

19 c /= 4.0f;

20 }

21 if ((c + r) / f < (0.95f) * s){

22 done = false;

23 g = (1.0f) / f;

24 scale[i] *= f;

25 for(j = 0; j < N; j++) A[i][j] *= g;

26 for(j = 0; j < N; j++) A[j][i] *= f;

82

5.4. Complete implementation and experimental results

27 }

28 }

29 }

30 }

83

Chapter 5. Scaling by integer powers of two

Listing 5.9: Matrix balancing using ldexp.

0 while(!done){

1 done = true;

2 for (i = 0; i < N; i++){

3 float r = 0.0f, c = 0.0f;

4 for(j = 0; j < N; j++)

5 if(j != i){

6 c += abs(A[j][i]); r += abs(A[i][j]);

7 }

8 if(c != 0.0f && r != 0.0f){

9 float g = r / 2.0f;

10 int exp = 0;

11 float s = c + r;

12 while(c < g){

13 exp ++;

14 c *= 4.0f;

15 }

16 g = r * 2.0f;

17 while (c > g){

18 exp --;

19 c /= 4.0f;

20 }

21 if (ldexpf ((c + r), 0-f) < (0.95f) * s){

22 done = false;

23

24 scale[i] = ldexpf(scale[i], exp);

25 A[i][j] = ldexpf(A[i][j], -exp);

26 A[j][i] = ldexpf(A[j][i], exp);

27 }

28 }

29 }

30 }

84

Chapter 6

Two-dimensional dot products

Various real applications require the evaluation of floating-point two-dimensional dot
products xy + zt. In this chapter, we study how to evaluate such expressions accu-
rately and efficiently on VLIW integer processors. Accurately means that we provide
correct rounding for the all the rounding modes as well as support for subnormal
numbers; efficiently means that it shall be faster than evaluating the expressions by
the naive approach consisting of two multiplications followed by one addition. For
this, we propose an algorithm and its correctness analysis, which, like for the previ-
ous two chapters, is done in a parametrized way. We also detail the corresponding
C implementation for the binary32 format. On the ST231, this code is from 1.15x
to 1.3x faster than the naive approach. It also exposes a lot of ILP, with an IPC of
at least 3.8. Furthermore, combining it with other custom operators leads to signif-
icant speedups: 1.59x when performing FFT and up to 1.45x for some 3D graphics
applications.

6.1 Introduction

This chapter deals with the operator (x, y, z, t) 7→ xy + zt, which evaluates the dot
product of two vectors in dimension two:

xy + zt =
[
x z

][y
t

]
.

Two-dimensional dot products (DP2) occur in several situations, and we list below
a few examples:

• Evaluation of discriminants. When computing the roots of a quadratic
equation ax2 + bx + c = 0 for some given floating-point coefficients a 6= 0, b, c,
one typically has to evaluate the discriminant

b2 − 4ac,

which in radix 2 is of the form xy + zt with x, y, z, t floating-point numbers
such that, for instance, x = y = b, z = −2a, and t = 2c.

• Complex arithmetic. If a = a′+ia′′ and b = b′+ib′′ are two complex numbers
whose real and imaginary parts are floating-point data, then multiplication and
division naturally involve floating-point DP2s, possibly in a specialized form
like sums of two squares:

ab = a′b′ − a′′b′′ + i
(
a′′b′ + a′b′′

)
,

85

Chapter 6. Two-dimensional dot products

and
a

b
=

a′b′ + a′′b′′

b′2 + b′′2
+ i

a′′b′ − a′b′′

b′2 + b′′2
.

Applications using complex arithmetic thus eventually rely on essentially floating-
point addition, division, and DP2. This is for example the case of FFT com-
putations, whose core block (the so-called ’butterfly’ operation) involves DP2s
and pairs of addition/subtraction [SS12].

Although the DP2 operation is not mentioned in the IEEE 754-2008 standard [IEE08],
it has been studied both in hardware and in software. For example, hardware designs
have been proposed in [SEES08] and [SS12], with applications to accelerating FFT
computations. In software, it is known that DP2s can be implemented accurately
using floating-point arithmetic, especially if a fused-multiply add (FMA) operation
is available, using an algorithm due to Kahan [Kah98, Hig02, JLM12]. However, in
our context, this approach would be too expensive and, on the other hand, Kahan’s
algorithm does not provide the correctly rounded result.

In this chapter, we study how to evaluate such expressions accurately and ef-
ficiently on VLIW integer processors. Accurately means that we provide correct
rounding for the all the rounding modes as well as support for subnormal numbers;
efficiently means that it shall be faster than evaluating the expressions by the naive
approach consisting of two multiplications followed by one addition.

Our first contribution is to provide a specification for DP2 inspired by the IEEE
specification of FMA, together with a definition of generic and special input that is
well adapted to an efficient implementation.

Our second contribution is a detailed algorithm for DP2 that aims at high ILP
exposure. As in the previous two chapters, this algorithm is described in a way
parametrized by the input/output binaryk floating-point format. Although this
algorithm reduces to a classical summation algorithm, it introduces a new swapping
step, which is more economical in terms of slct instructions.

Third, as a consequence of this algorithm analysis, we obtain a complete C im-
plementation for the binary32 format and each rounding mode. On the ST231, we
get a latency of 55 cycles for rounding ’to nearest even’. This is 1.24x faster than
68-cycle latency of the naive implementation using two multiplications followed by
one addition of FLIP 1.0; roughly similar performances are observed for the other
rounding modes. As another consequence of our analysis, we also derive an imple-
mentation for fused multiply-add (FMA). In all cases, our codes expose a lot of ILP,
with IPCs between 3.8 and 3.9 for DP2 and between 3.6 to 3.8 for FMA.

Finally, we analyze the practical impact of DP2 on two real applications, namely
some FFTs and a 3D-graphics pipeline. Here we show that combining DP2 with other
custom operators allows to accelerate these applications by factors of, respectively,
1.59 and up to 1.45.

Outline. First, we provide in §6.2 our specification for the DP2 operator, and
deduce the definitions of generic and special input. Then, we detail in §§6.3 and 6.4
the algorithms and implementations for handling, respectively, generic and special
input. Finally, §6.5 reports on the performances obtained on the ST231 for this DP2
operator alone, for its specialization to FMA, and for its application to the FFT and
the 3D-graphics pipeline.

86

6.2. Specification

6.2 Specification

Since DP2 is not part of the standard, we first have to propose a specification for
this operation. Roughly, our specification requires correct rounding for finite input,
and for infinite or NaN input it follows the same rules as the ones for FMA in the
standard. The two paragraphs below detail each of these aspects.

One rounding for the exact result ρ. For finite x, y, z, and t, DP2 shall
compute xy + zt as if with unbounded range and precision, and then round this
exact value to the destination format. Thus, during this process, either only one
rounding occurs or there is an overflow.

Overflow. To characterize it, let ρ denote the exact result xy + zt rewritten in
normalized form:

ρ = (−1)s · ℓ · 2d,

where s ∈ {0, 1} and where (ℓ, d) ∈ R × Z satisfies

• either ℓ ∈ [0, 1) and d = emin,

• or ℓ ∈ [1, 2) and d > emin.

Using this rewriting, we see that overflow before rounding occurs if and only if

d > emax.

According to the specification of overflow in the standard [IEE08, §7.4], the result r
to be returned satisfies

r =

(−1)s · ∞, if ◦ = RN ,

(−1)s · Ω, if ◦ = RZ,

∞, if ◦ = RU and s = 0,

−Ω, if ◦ = RU and s = 1,

Ω, if ◦ = RD and s = 0,

−∞, if ◦ = RD and s = 1.

(6.1)

Recall that Ω = (2 − 21−p) · 2emax is the largest normal floating-point number.

Sign bit when the exact result is zero. When overflow does not occur, we can
apply Fact 2.1 to compute the standard encoding of the correctly-rounded result.
When the exact result is zero (ℓ = 0), we view xy + zt as a sum of xy and zt, and
apply the rules specified in the standard for floating-point addition [IEE08, §6.3].
This gives the two cases below:

• If xy and zt are either nonzero or zero with opposite signs, s = 0 for ◦ ∈
{RN, RU, RZ}, and s = 1 for ◦ = RD;

• If xy and zt are zero and of the same sign, s gets the sign of the products for
◦ ∈ {RN,RU, RZ}, and s = 1 for ◦ = RD.

87

Chapter 6. Two-dimensional dot products

Rules for infinite and NaN input. If any of input the x, y, z, or t is infinite or
NaN, the result can only be either infinite or NaN.

Returning NaN. The result is NaN if and only if one of the following statements
is true:

• One of the input is NaN;

• One of the two products xy or zt is NaN;

• The sum of xy and zt is NaN;

The second statement holds when a multiplication is either ∞ × 0 or 0 × ∞. The
third statement holds when an addition is the sum of two infinite numbers with
opposite sign.

Returning ∞ or −∞. Meanwhile, when at least one of the input is infinity, and

the result is not NaN, we return infinity as specified in the standard [IEE08, §6.1]:

• For multiplication, for finite or infinite x 6= 0, we have

(−1)sinf∞× (−1)sx |x| = (−1)sinf⊕sx∞.

• For addition, for finite x, we have

(−1)sinf∞ + x = (−1)sinf∞.

Definition for generic and special input. Thanks to the specification above,
we give the definition below to classify generic and special input for DP2.

Definition 6.1. For DP2, input is generic when for finite x, y, z, and t, the exact
result is nonzero and overflow does not occur, and special otherwise.

Note that an exact zero result is considered as special in order to simplify the
handling of generic input. Like for all the other operators whose generic input is on
the critical path, we try to move some computation to the special path in order to
balance the costs of the two paths to decrease the whole latency.

Hence, using the definition above, the condition Cspec satisfies

Cspec = Cnan ∨ Cinf ∨ Covf ∨ Czero, (6.2)

where

• Cnan = [r is NaN],

• Cinf = [one of x, y, z, t is infinite],

• Covf = [overflow occurs],

• Czero = [ρ is ± 0].

88

6.3. Computing correctly-rounded 2D dot products for generic input

6.3 Computing correctly-rounded 2D dot products for

generic input

In this section we assume that the input (x, y, z, t) is generic, which means that the
condition Cspec in §6.2 is false. Since in this case x, y, z, t must be finite floating-
point numbers, they have the form x = (−1)sx · mx · 2ex , y = (−1)sy · my · 2ey ,
z = (−1)sz · mz · 2ez , t = (−1)st · mt · 2et . Furthermore,

either xy 6= 0 or zt 6= 0, (6.3)

for otherwise we would have xy + zt = 0 and thus a returned result equal to zero, a
case which is already covered by the special path; see the condition Czero in §6.2.

Following what is sometimes done for other operators like addition, multiplica-
tion, or FMA [EL04, MBdD+10], we shall normalize those of these numbers which
are subnormal, by removing the leading zeros of their significands. Consider for
example input x. Then its significand mx has the form

mx = (0.00 · · · 00︸ ︷︷ ︸
λx zeros

1mx,λx+1 · · ·mx,p−1)2, (6.4)

and we shall rewrite x as
x = (−1)sx · m′

x · 2e′x

with
m′

x = mx · 2λx and e′x = ex − λx.

If x is normal then the pair (mx, ex) is left unchanged, while if it is subnormal then
mx ∈ (0, 1) is transformed to m′

x ∈ [1, 2) by decreasing ex = emin down to e′x < emin.
Finally, note that if x is zero then (6.4) gives λx = p, so that m′

x = mx = 0 and
e′x = emin − p. In particular, we see that

e′x ∈ [emin − p, emax].

Since we have a cheap (1 cycle) leading-zero count instruction available on the
ST231, we can afford such normalization for the four components x, y, z, and t of
the input.

Let us now define the following quantities, which are associated to the exact
products xy and zt:

• their signs sxy = sx ⊕ sy and szt = sz ⊕ st, with ⊕ denoting the logical XOR,

• the exact products of the normalized significands mxy = m′
xm′

y and mzt =
m′

zm
′
t,

• the exponent sums exy = e′x + e′y and ezt = e′z + e′t.

Then, the exact result can clearly be rewritten as

xy + zt = (−1)sxy · mxy · 2exy + (−1)szt · mzt · 2ezt . (6.5)

The identity in (6.5) simply says that DP2s, for generic input, can be seen as a
kind of floating-point sum with precision 2p instead of p, and with exponent range

89

Chapter 6. Two-dimensional dot products

[2emin−2p, 2emax] instead of [emin, emax]. Thus, a natural approach to compute ◦(xy+
zt) will be to first normalize the input and prepare the above encodings for the two
summands xy and zt, and then perform essentially a floating-point algorithm. This
summation is itself usually composed of several steps [EL04, MBdD+10]:

• Swap of the summands depending on their magnitude;

• Alignment of the operand of smallest magnitude to the one of largest magni-
tude;

• Fixed-point addition/subtraction;

• Normalization and rounding of the result.

The next subsections detail algorithms and implementations for all these steps.

6.3.1 Normalizing the input and preparing the two summands

This first step will consist in computing from the input encodings X, Y , Z, and T
the following integer quantities:

• the bits sxy and szt;

• the 2k-bit unsigned integers

Mxy = NxNy and Mzt = NzNt,

where for i ∈ {x, y, z, t}, Ni is the k-bit unsigned integer such that

Ni = m′
i · 2k−2

= [0 ∗ ∗ ∗ · · · ∗ ∗∗︸ ︷︷ ︸
p bits

000 · · · 000︸ ︷︷ ︸
w − 1 zeros

];

• the k-bit signed integers

Dxy = exy − emin and Dzt = ezt − emin. (6.6)

Note that the triples (sxy, Mxy, Dxy) and (szt, Mzt, Dzt) exactly encode the sum-
mands xy and zt, respectively. In particular, we have

Mxy = mxy · 22k−4

= [00 ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗︸ ︷︷ ︸
2p bits

0000 · · · 0000︸ ︷︷ ︸
2w − 2 zeros

],

and similarly for Mzt.

90

6.3. Computing correctly-rounded 2D dot products for generic input

Implementation of Mxy, Dxy, and sxy. Now we detail the computation of
(sxy, Mxy, Dxy) and provide C codes for the binary32 format. In our implemen-
tation, the second triple (szt, Mzt, Dzt) is computed in exactly the same way.

Computing Mxy. First, we should prepare the normalized significands m′
x and

m′
y of x and y, by implementing the computation of Nx and Ny. Here we give only

the details for Nx, since Ny is computed in the same way.
If x 6= 0, then

2Nx =

[1.mx,1 . . . mx,p−1

w zeros︷ ︸︸ ︷
000 . . . 000], if x is normal,

[1.mx,λx+1 . . . mx,p−1 000 . . . 000︸ ︷︷ ︸
w + λx zeros

], if x is subnormal.

We have seen in Chapter 2 that λx can be implemented as λx = max(clz |X|, w)−w,
from which it follows that

2Nx =
(
X ≪ max(clz |X|, w)

)
| 2k−1.

Then, Nx is deduced as

Nx =

{
2Nx ≫ 1, if |X| 6= 0,

0, otherwise.

Since the number of leading zeros can be computed efficiently on the ST231, the
computation of 2Nx for the binary32 format (see variable N2x at line 4 in Listing 6.1)
has a latency of 5 cycles. Since the ST231 is a 4-way VLIW processor, Ny can be
computed in parallel and obtained at the same cycle as Nx.

Then, the ST231 instructions mul32 and mul64h are used to compute the full
32×32 unsigned product (see Table 3.1). Since the two hardware multipliers can
be used simultaneously, Mxy can be obtained in 3 cycles as soon as Nx and Ny are
ready.

Computing Dxy. Let Dx = ex − emin and Dy = ey − emin. Since by definition

Dxy = e′x + e′y − emin, we deduce that

Dxy = ex − λx + ey − λy − emin

= Dx + Dy − λx − λy + emin

= Dx + Dy − max(clz |X|, w) − max(clz |Y |, w) + emin + 2w.

Furthermore, Dx can be implemented as Dx = Ex −mx,0 with mx,0 = [clz |X| 6 w],
and the computation of Dy is exactly the same.

The computation of Dxy can be done fully in parallel with that of Mxy for the
binary32 format on the ST231: see line 8 in Listing 6.1.

Computing sxy. In order to ease the packaging of the final result, what we

compute in our implementation is Sxy = sxy · 2k−1, which can easily be extracted
from the input as follows:

Sxy = (X − |X|) ⊕ (Y − |Y |).

91

Chapter 6. Two-dimensional dot products

This computation appears at lines 7 and 8 of Listing 6.1.

Listing 6.1: Implementation of Mxy, Dxy, and sxy for the binary32 format.

0 absX = X & 0x7f800000; absY = Y & 0x7f800000;

1 lzx = clz(absX); lzy = clz(absY); Sx = X - absX; Sy = Y - absY;

2 MX = max(lzx ,8); MY = max(lzy ,8); mx0 = lzx <= 8; my0 = lzy <= 8;

3

4 Nx2 = (X << MX) | 0x80000000; Ny2 = (Y << MY) | 0x80000000;

5 Dx = (absX >> 23) - mx0; Dy = (absY >> 23) - my0;

6 if (absX != 0) Nx = Nx2 >> 1; else Nx = 0;

7 if (absY != 0) Ny = Ny2 >> 1; else Ny = 0;

8 Mxy = (uint64_t)Nx * (uint64_t)Ny; Dxy = Dx + Dy - MX - MY - 110; Sxy = Sx^Sy;

6.3.2 Swapping

Once the operands in the sum (6.5) are available, we may swap them in order to
ensure that we will always add/subtract the one of smallest magnitude to the one of
largest magnitude.

For this second step, let us define

σ = sxy ⊕ szt, (6.7)

as well as the following quantities s∗, m∗, e∗ for ∗ ∈ {u, v}:

• (su, mu, mv, ev) =

{
(sxy, mxy, mzt, ezt) if exy > ezt,

(szt, mzt, mxy, exy) otherwise,

• sv = σ ⊕ su,

• eu =

max(exy, ezt) if xyzt 6= 0,

ezt if xy = 0 and zt 6= 0,

exy if xy 6= 0 and zt = 0.

With this definition, we see that both mu and mv are in [0, 4), with at least one
of them being > 1. Furthermore, eu and ev are in [2emin − 2p, 2emax], and in all cases

ev = min(exy, ezt).

However, when one of the products is zero, eu is not necessarily the maximum of exy

and ezt. For example, if xy = 0 then exy can be as large as 1 − p (since e′x and e′y
are both at most emax, but one of them must be equal to emin − p) and ezt can be as
small as 2emin − 2p, which is less that 1 − p.

The next property shows that the exact result is preserved during such a swapping
process. This is a priori not obvious due to the special definition of eu.

92

6.3. Computing correctly-rounded 2D dot products for generic input

Property 6.1. For ∗ ∈ {u, v} let s∗, m∗, e∗ be defined as above, and let

u = (−1)su · mu · 2eu and v = (−1)sv · mv · 2ev .

Then the exact result satisfies

xy + zt = u + v.

Proof. The case where xyzt 6= 0 is clear. Assume now that xy = 0 (the case zt = 0
can be handled in exactly the same way, by exchanging indices). For this, we consider
two subcases separately:

• If exy > ezt then (sv, ev, mv) is equal to (szt, ezt, mzt) and mu = mxy is zero.
Thus, (u, v) = (0, zt) and the result is true.

• If exy > ezt then, similarly, we can check that (u, v) = (zt, 0), from which the
result holds true as well.

Given the integers sxy, szt, Mxy, Mzt, Dxy, Dzt as in §6.3.1, swapping will consist
in producing

• the bits su and sv;

• the 2k-bit unsigned integers

Mu = mu · 22k−4 and Mv = mv · 22k−4;

• the k-bit signed integers

Du = eu − emin and Dv = ev − emin.

Since mu is one of mxy and mzt, the bit string of Mu has the same shape as the one
of Mxy and Mzt:

Mu = [00 ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗︸ ︷︷ ︸
2p bits

0000 · · · 0000︸ ︷︷ ︸
2w − 2 zeros

],

and similarly for Mv.

Implementing the swap. We first need to evaluate the condition exy > ezt, which
by (6.6) is equivalent to

Dxy > Dzt;

the corresponding C code for the binary32 format appears at line 0 of Listing 6.2.

Computing Mu, Mv and su. Since Mu and Mv are 64-bit integers, the expres-
sion below involves two slct instructions on the ST231.

if(Cns) Mu = Mxy else Mu = Mzt;

93

Chapter 6. Two-dimensional dot products

Therefore, the computation of Mu and Mv at line 1 of Listing 6.2 costs four slct

instructions.
By using Sxy and Szt, we compute Su = su · 2k−1 at line 1 as well, which costs

one slct instruction on the ST231.

Computing Du. Since the input leading to an exact zero result is considered as
special input, the computation of Du falls to

Du =

Dzt if xy = 0,

Dxy if zt = 0,

max(Dxy, Dzt) otherwise.

To evaluate whether the products xy and zt are zero, it suffices to evaluate the two
conditions

[min(|X|, |Y |) = 0] and [min(|Z|, |T |) = 0];

the corresponding C code appears at lines 2 and 3 of Listing 6.2. Then, Du is
obtained at line 5 (see also lines 0 and 4).

The computations of Dv, σ, and Sv = sv · 2k−1 are straightforward, whose corre-
sponding C codes are at lines 0 and 2 of Listing 6.2.

Listing 6.2: Implementation of u and v for the binary32 format.

0 Du = max (Dxy , Dzt); Dv = min(Dxy , Dzt); Cns = Dxy >= Dzt; sigma = Sxy^Szt;

1 if (Cns) {Su = Sxy; Mu = Mxy; Mv = Mzt;} else {Su = Szt; Mu = Mzt; Mv = Mxy;}

2 M2 = min(absX , absY); M4 = min(absZ , absT); Sv = sigma ^ Su;

3 C2 = M2 == 0; C4 = M4 == 0;

4 if (C2) Du = Dzt;

5 if (C4) Du = Dxy;

6.3.3 A normalized formula for xy + zt

The goal of this step is to express xy+zt in the form (−1)s ·ℓ·2d with s, ℓ, d satisfying
the conditions of applicability of Fact 2.1, that is, s is a bit and the pair (ℓ, d) is in
R × Z and such that either ℓ ∈ [0, 1) and d = emin (exact result in the subnormal
range), or ℓ ∈ [1, 2) and d ∈ [emin, emax] (exact result in the normal range). Note that
overflow does not occur, since we are in the generic case.

To achieve this goal, we first align v with the exponent eu, then we normalize
this exponent to make it at least emin and, finally, we normalize the resulting exact
significand.

Alignment. Defining the integer

δ = eu − ev, (6.8)

and since σ in (6.7) satisfies σ = su ⊕ sv, we can rewrite the exact result as

xy + zt = (−1)su ·
(
mu + (−1)σ · mv · 2−δ

)
· 2eu . (6.9)

An important property of the integer δ is given below. It will be used in particular
to prove the correctness of our implementation.

94

6.3. Computing correctly-rounded 2D dot products for generic input

Property 6.2. We have δ > 0. Furthermore, if mu = 0 then δ = 0.

Proof. The fact that δ is nonnegative comes from eu ∈ {exy, ezt} and ev = min(exy, ezt).
Let us now check that it is zero when mu is zero. In this case, either mxy or mzt

must be zero but not both, because of (6.3). Assume for example that mxy = 0 (the
other case can be handled in exactly the same way by exchanging indices). Then,
xy = 0 and thus

eu = ezt.

On the other hand, xy being zero implies zt is nonzero and thus mzt 6= 0. Since
mu = 0 by assumption, this implies further that mu 6= mzt, so that we are in the
case exy > ezt. Recalling that ev is the minimum of exy and ezt, we deduce that

ev = ezt.

Hence δ = 0.

Exponent and significand normalization. Let us now define m as the exact
sum in (6.9):

m = mu + (−1)σ · mv · 2−δ. (6.10)

First, it should be noticed that
m 6= 0,

for otherwise the returned result would be zero, which, as already said before, is not
possible in the generic case (that is, when Cspec is false).

Then, denoting the sign and absolute value of m by sm and |m|, respectively, we
obtain

xy + zt = (−1)su⊕sm · |m| · 2eu . (6.11)

Since |m| is nonnegative, we see that the sign s of both the exact result xy + zt and
of its rounded version ◦(xy + zt) is given by

s = su ⊕ sm. (6.12)

However, the expression in (6.11) is not normalized yet. Indeed, we have mu, mv ∈
[0, 4), δ > 0, and m 6= 0, so that all we can say for now is

|m| ∈ (0, 8), (6.13a)

and
eu ∈ [2emin − 2p, 2emax]. (6.13b)

The two ranges in (6.13) are too wide, since we are looking for ℓ and d such that
ℓ ∈ [0, 2) and d ∈ [emin, emax]. How to rescale |m| and eu in (6.11) in order to get a
suitable pair (ℓ, d) is given by the next theorem.

Theorem 6.1. Assume the input (x, y, z, t) is generic, and let the integers µ, λ, ν
be defined as follows:

• µ = max(eu, emin),

95

Chapter 6. Two-dimensional dot products

• λ is the unique integer such that |m| · 2eu−µ ∈ [2−λ, 2−λ+1),

• ν = min(λ, µ − emin).

Furthermore, let

ℓ = |m| · 2eu−µ+ν and d = µ − ν.

Then

xy + zt = (−1)s · ℓ · 2d

with s as in (6.12) and with (ℓ, d) such that

• either ℓ ∈ [0, 1) and d = emin,

• or ℓ ∈ [1, 2) and d ∈ [emin, emax].

Proof. By definition, d = µ−min(λ, µ− emin), so that d > µ− (µ− emin) = emin. Let
us now consider two cases:

• If d = emin then it suffices to check that ℓ ∈ [0, 2). For this, note first that
ν = µ − emin by definition of d, which by definition of ν implies λ > µ − emin.
Now, using the definition of λ, we deduce that

|m| · 2eu−µ < 2emin−µ+1,

and then ℓ < 2emin−µ+ν+1 = 2, as wanted.

• If d > emin, let us show that ℓ is in [1, 2). We have ν = µ−d 6 µ− emin −1 and
thus ν = λ. Then, by using the definition of λ, we deduce that ℓ = |m|·2eu−µ+ν

is in [2ν−λ, 2ν−λ+1) = [1, 2).

Note first that the definition of µ implies

µ − eu > 0. (6.14)

In Theorem 6.1 this nonnegative integer is used to normalize the exponent eu in the
case where it is below emin. Then, the other key integer is ν, which can be either
positive or nonnegative, and whose effect will be to rescale |m| · 2eu−µ. However, as
the next property shows, as soon as µ differs from eu then this scaling factor ν is
known to be at most zero.

Property 6.3. If µ − eu 6= 0 then ν 6 0.

Proof. The definition of µ implies that µ = emin, from which it follows that ν =
min(λ, 0) 6 0.

We conclude this section with another property, which says that if eu is small
enough then ν is zero and the normalized real mantissa is less than 2−p.

Property 6.4. If µ − eu > p + 3 then ν = 0 and ℓ < 2−p.

96

6.3. Computing correctly-rounded 2D dot products for generic input

Proof. Since µ 6= eu, we have µ = emin and the definition of ν then implies

ν = min(λ, 0).

Now, by definition of λ and since |m| < 8, we have 2−λ 6 |m|·2eu−µ < 8·2−p−3 = 2−p,
so that

λ > 0.

Consequently, ν = 0 and ℓ = |m| · 2eu−µ < 2−p.

6.3.4 Implementation of ◦(xy + zt) for the binaryk format

Theorem 6.1 makes it possible to apply Fact 2.1 and thus to recover the encoding R
of ◦(xy + zt) as

R = s · 2k−1 + D · 2p−1 + L + b,

where the sign bit s is as in (6.12) and where D, L, and b are as follows: D = d−emin,
L = ⌊ℓ ·2p⌋, and the round bit b is defined as shown in (2.10d) in terms of ℓp−1 (least
significant bit of L), g (guard bit, equal to ℓp), and the sticky bit [{ℓ · 2p} 6= 0].

In the paragraphs below we detail how to get s, D, L, b from su, σ, Mu, Mv, Du,
Dv. As can be expected, the computations of L and of the sticky bit used for b are
the most costly ones.

We proceed as follows: we shall first compute an approximation to the absolute
value of m in (6.10). Then, this approximation will be useful for getting both the
sticky bit and the integer G given by

G = ⌊ℓ · 2p⌋.

Finally, it will be easy to deduce

L = ⌊G/2⌋, ℓp−1 = L mod 2, g = G mod 2.

simultaneously from G.

Computing a 2k-bit approximation M to the exact sum |m|. From (6.10)
we have

|m| =

mu + mv · 2−δ if σ = 0,

mu − mv · 2−δ if σ = 1 and mu > mv · 2−δ,

mv · 2−δ − mu if σ = 1 and mu < mv · 2−δ,

(6.15)

where mu = Mu/22k−4, mv = Mv/22k−4, and δ = eu − ev = Du − Dv.

Our goal here is to define a suitable 2k-bit integer M such that M/22k−4 approx-
imates |m| well enough, in a sense that will be made precise in Theorem 6.2.

To do this, we first need an equivalent integer formulation of the inequality
mu < mv · 2−δ introduced in (6.15) to define |m|. Such a formulation is given by the
next property.

97

Chapter 6. Two-dimensional dot products

Property 6.5. Let
δ′ = min(δ, 2p + 2). (6.16)

Then
mu < mv · 2−δ if and only if Mu < ⌊Mv · 2−δ′⌋.

Proof. Assume that mu = 0. Then Property 6.2 implies δ = 0 and (6.16) leads to
δ′ = 0. Hence ⌊Mv · 2−δ′⌋ is equal to Mv · 2−δ, and the conclusion follows from the
fact that Mu = mu · 22k−4 and Mv = mv · 22k−4.

Assume now that mu > 0 and consider the two implications separately:

• If mu < mv ·2−δ then, since mu > 1 and mv < 4, we deduce that 1 < 22−δ, that
is, δ 6 1. Hence δ′ = δ 6 1 and thus mu < mv · 2−δ implies Mu < Mv · 2−δ′ =
⌊Mv · 2−δ′⌋, as wanted.

• Conversely, if Mu < ⌊Mv · 2−δ′⌋ then Mu < Mv · 2−δ′ . By dividing both sides
by 22k−4, we deduce that 1 6 mu < mv · 2−δ′ < 4 · 2−δ′ . Hence δ′ 6 1.
Consequently, Mv · 2−δ′ is an integer and Mu < Mv · 2−δ′ can be rewritten as
Mu < ⌊Mv · 2−δ′⌋.

Then we need also an integer version of the sums defining the possible values of
|m| in (6.15). Here, approximation will be necessary, since |m| may not be repre-
sentable using 2k consecutive bits. Taking

Tδ′ = [Mv mod 2δ′ 6= 0] and M ′
v = ⌊Mv · 2−δ′⌋

∣∣Tδ′ ,

we approximate |m| by M/22k−4, where M is the following 2k-bit unsigned integer:

M =

Mu + M ′
v if σ = 0,

Mu − M ′
v if σ = 1 and Mu > ⌊Mv · 2−δ′⌋,

M ′
v − Mu if σ = 1 and Mu < ⌊Mv · 2−δ′⌋.

(6.17)

Since Mu and Mv are in [0, 22k−2], one can check easily that M is in [0, 22k−1].
Consequently, we can write

M = [0 ∗ ∗ ∗
2k − 4 bits︷ ︸︸ ︷

∗ ∗ ∗ · · · ∗ ∗ ∗ ∗]
≈ |m| · 22k−4.

The reason for which here we have replaced δ by δ′ is the same as for implementing
floating-point addition: indeed, as explained in [MBdD+10, p. 337], the shift value δ
can be huge (in the hundreds for binary32) and, on the other hand, correct rounding
does not require to shift by more than, roughly, the current precision (p for binaryk
addition, 2p in the case of binaryk DP2) as soon as we can tell, for a huge value of
δ, whether the quantity to be shifted is zero or not.

A case where δ is known to be small (and thus to be equal to δ′) is indicated in the
property below. This result will turn out to be useful for deriving our implementation
of the computation of G = ⌊ℓ · 2p⌋ in the next paragraph.

98

6.3. Computing correctly-rounded 2D dot products for generic input

Lemma 6.1. If Mu < M ′
v then δ′ = δ 6 1.

Proof. If Mu = 0 then mu = 0, and Property 6.2 implies δ = 0, and thus δ′ =
min(0, 2p + 2) = 0.

Assume now Mu > 0. In this case, due to the normalization of input, we must
have Mu > 22k−4. On the other hand, by definition, M ′

v 6 Mv · 2−δ′ + 1 with
Mv = mv · 22k−4 < 22k−2. Therefore, when Mu < M ′

v we have

22k−4
6 Mu 6 M ′

v − 1 < 22k−2−δ′ ,

which implies δ′ 6 1.

Computing δ′. First, let us discuss the computation of δ′. By using the k-bit
signed integers Du = eu−emin and Dv = ev−emin, which are computed in Listing 6.2,
and the definition δ, δ = eu − ev, we have

δ = Du − Dv.

Therefore, we can obtain δ′ = min(δ, 2p + 2), which is implemented at line 1 of
Listing 6.4.

Implementing M ′
v. The computation of M ′

v requires ⌊Mv · 2−δ′⌋ and Tδ′ . Since

0 6 δ′ 6 2p+2 < 2k and Mv is a 2k-bit unsigned integer, ⌊Mv ·2−δ′⌋ can be directly
implemented by a right shift as follows:

Mv ≫ δ′,

which appears at line 7 of Listing 6.4.
Now, let us discuss the computation of Tδ′ , which is more involved. A direct way

to implement Tδ′ could be

Tδ′ = [(Mv ≪ (2k − δ′)) 6= 0].

However, since 2k − δ′ ∈ [2w − 2, 2k] and the behavior of the shift operators is
undefined in the C standard if the value of the right operand equals the width of the
left operand, the implementation above is not safe.

Then, there are two alternative solutions:

• We can use an if-else statement to implement Tδ′ as follows:

Tδ′ =

{
[(Mv ≪ (2k − δ′)) 6= 0], if δ′ 6= 0,

0, otherwise.

For the implementation of the binary32 format on the ST231, since the em-
ulation of the 64-bit shift has a latency of 4 cycles (see Table 3.3 and, for a
detailed algorithm, see §3.4.1), this method costs 6 cycles: that is, 4 cycles for
the shift, 1 cycle for the equality operator (!=) for [(Mv ≪ (2k − δ′)) 6= 0],
and 1 cycle for the select instruction (slct). The condition [δ′ 6= 0] can be
computed in parallel and is not counted for the final latency.

99

Chapter 6. Two-dimensional dot products

• Since δ′ ∈ [0, 2p + 2], we can also split the shift in two parts as follows:

Tδ′ = [((Mv ≪ 1) ≪ (2k − 1 − δ′)) 6= 0].

For the binary32 format on the ST231, realizing the second method by two
64-bit shifts can be costly. However, by using further the fact that the last
significant bit of the integer Mv is zero, we can efficiently incorporate the two
shifts into the equality operator and obtain Tδ′ in 5 cycles. The corresponding
C code is given in Listing 6.3.

Listing 6.3: Implementation of Tδ′ for the binary32 format.

uint32_t compute_Td(uint64_t Mv, uint32_t deltap){

uint32_t TdH ,TdL ,Td,Lv ,Hv;

int32_t A,A1,A2 ,B,B1;

Lv = (uint32_t) Mv; Hv = Mv >> 32;

A = 32 - deltap; B = 63 - deltap;

A1 = min(A,31); B1 = min(B,31);

A2 = max(0,A1);

TdL = Lv << A2; TdH = (Hv << 1) << B1;

Td = TdL || TdH;

return Td;}

When both ⌊Mv · 2−δ′⌋ and Tδ′ are ready, M ′
v is realized by a bitwise OR of these

two parts, shown at line 7 of Listing 6.4.

Implementing the condition [Mu < ⌊Mv · 2−δ′⌋]. When ⌊Mv · 2−δ′⌋ is available,

the implementation this condition is straightforward. Here we introduce another
way to implement this condition based on the following property.

Property 6.6. The condition [Mu < ⌊Mv · 2−δ′⌋] is equivalent to [Mu < M ′
v].

Proof. If Mu < ⌊Mv · 2−δ′⌋, by Property 6.5, we can deduce δ′ 6 1. Then, we have
Tδ′ = 0 and M ′

v = ⌊Mv · 2−δ′⌋. Conversely, if Mu < M ′
v, by Lemma 6.1, we have

δ′ 6 1. Again, we have Tδ′ = 0 and M ′
v = ⌊Mv · 2−δ′⌋.

The advantage of using the condition [Mu < M ′
v] (implemented at line 11 of

Listing 6.4) is to decrease the liveness time of the register which holds the integer
⌊Mv · 2−δ′⌋. This can ease the instruction scheduling and leads to better ILP. In
practice, for the binary32 format and on the ST231, one cycle is saved for the full
DP2 operator.

100

6.3. Computing correctly-rounded 2D dot products for generic input

Listing 6.4: Implementation of M for the binary32 format.

0 delta = Du - Dv;

1 deltap = min(delta , 50);

2

3

4

5

6 Td = compute_Td (Mv, deltp); // L i s t i n g 6 .3

7 Mvp = (Mv >> deltap) | Td;

8

9

10 Ma = Mu + Mvp;

11 if (Mu < Mvp) Ms = Mvp - Mu; else Ms = Mu - Mvp;

12 if (sigma) M = Ms; else M = Ma;

Computing ν and G. Recall from Theorem 6.1 that the integer ν is defined as

ν = min(λ, µ − emin).

Here, λ depends on the exact sum |m| and is thus not directly available, since we
have only the approximation M . The theorem below gives expressions for both ν
and G, in terms of this integer M . It uses in particular the clz function introduced
in Chapter 2, which counts leading zeros: if X is a k-bit unsigned integer then

clz(X) =

{
k if X = 0,

k − ⌊log2 X⌋ − 1 otherwise.

Theorem 6.2. Let M be as in (6.17) and let the integers ǫ1, M̃ , and λ′ be defined
as follows:

• ǫ1 = min(µ − eu, p + 3),

• M̃ = ⌊M/2ǫ1⌋,

• λ′ = clz
(
M̃
)
− 3.

Then
ν = min(λ′, µ − emin) and G = ⌊M̃ · 2−ǫ2−k⌋,

where ǫ2 = w − 4 − ν.

Proof. Assume first that µ − eu > p + 3. Then µ 6= eu, which implies µ = emin

and then ν = min(λ, 0). Now, by definition of λ and since |m| < 8, we have 2−λ <
8 · 2p−3 = 2−p. This implies λ > 0, and we conclude that ν = 0. On the other hand,
since M < 22k−1 and ǫ1 = p + 3, we have

M̃ 6 M · 2ǫ1 < 22k−1−p−3 = 2k+w−4. (6.18)

101

Chapter 6. Two-dimensional dot products

Consequently, clz
(
M̃
)

> 2k − (k + w − 4) = p + 4. Hence λ′ > p + 1, which implies
that min(λ′, µ − emin) is zero and thus equal to ν.

Let us now consider G. From Property 6.4, it must be zero when µ− eu > p + 3.
Since ν = 0, we have ǫ2 = w − 4 and using (6.18) gives M̃ · 2−ǫ2−k < 1. Hence its
integer part is zero, and thus equal to G.

The rest of the proof deals with the case where

µ − eu < p + 3,

and for M in (6.17) we assume σ = 1 and Mu < ⌊Mv · 2−δ′⌋. (The other two cases
can be handled using the same kind of reasoning.)

First, note that Lemma 6.1 implies δ′ = δ 6 1. Hence Mv · 2−δ′ is an integer and
it follows that Tδ′ = 0 and M ′

v = Mv · 2−δ. Therefore,

M = Mv · 2−δ − Mu

= (mv · 2−δ − mu) · 22k−4

= |m| · 22k−4.

Since M 6= 0, this implies

clz(M̃) = ǫ1 + clz(M)

= ǫ1 + 2k − ⌊log2 |m| + 2k − 4⌋ − 1

= 3 + µ − eu − ⌊log2 |m|⌋
= 3 + λ.

Hence λ′ = λ and we conclude that ν equals min(λ′, µ − emin).

Let us now consider G = ⌊ℓ · 2p⌋. Since ǫ1 = µ − eu, we have

G = ⌊|m| · 2−ǫ1+ν+p⌋
= ⌊M · 2−ǫ1+4−2k+ν+p⌋
= ⌊M · 2−ǫ1−ǫ2−k⌋.

We conclude by distinguishing between two cases:

• If eu > emin then ǫ1 = 0. Hence M̃ = M and we arrive at the claimed formula
for G.

• If eu 6 emin then µ = emin, which implies ν 6 0. Hence both ǫ1 and ǫ2 + k are
nonnegative, and then gives G =

⌊
⌊M · 2−ǫ1⌋ · 2−ǫ2−k

⌋
, as claimed.

Implementing M̃ . First, we should compute µ − eu to get ǫ1. Since µ − eu =

(µ − emin) − (eu − emin) and the signed integer Du = eu − emin has already been
computed, we have

µ − eu = D′ − Du

102

6.3. Computing correctly-rounded 2D dot products for generic input

with D′ = µ − emin. By definition, µ = max(eu, emin), we deduce that

D′ = max(eu, emin) − emin

= max(Du, 0).

Hence, we have
ǫ1 = min(D′ − Du, p + 3),

which is implemented at line 2 of Listing 6.5 for the binary32 format.
Then, the computation of M̃ is straightforward:

M̃ = M ≫ ǫ1.

For the binary32 format, this formula leads to a 64-bit shift, which takes 4 cycles on
the ST231. However, since in this case ǫ1 satisfies 0 6 ǫ1 6 27 < 32, this shift can
be implemented as

M̃H = MH ≫ ǫ1,

M̃L = ((MH ≪ 1) ≪ ǫ̃1) | (ML ≫ ǫ̃1),

where M̃ = M̃H · 232 + M̃L, M = MH · 232 + ML, and

ǫ̃1 = 31 − ǫ1.

This is implemented at lines 3 to 5 of Listing 6.5.

Implementing G. First, let us compute ν and ǫ2. By defining clzl as a function

that counts the number of leading zeros of the 2k-bit integer M̃ , we have

ν = min(clzl M̃ − 3, D′).

This is implemented at line 10 of Listing 6.5. When M̃ is a 64-bit integer, the
function clzl is implemented by the intrinsic operator lzcntl (see §3.1.5) on the
ST231.

Then, the implementation of ǫ2 = w − 4 − ν is straightforward and we have

G =

M̃H ≫ ǫ2 if ǫ2 > 0,
(
M̃ ≪ −ǫ2

)
≫ k if ǫ2 6 0.

Recall that M̃H is the upper half of the 2k-bit integer M̃ . The corresponding C code
to compute ǫ2 and G for the binary32 format is shown at lines 11 to 16 of Listing 6.5.

Implementing b. The most difficult part for the implementation of b is how to
compute the sticky bit τ , which is

τ = [{ℓ · 2p} 6= 0].

Property 6.7. We have τ = [τǫ1 6= 0] ∨ [τǫ2 6= 0], where τǫ1 and τǫ2 are the rational
numbers given by

τǫ1 = {M/2ǫ1} and τǫ2 = {M̃ · 2−ǫ2−k}.

103

Chapter 6. Two-dimensional dot products

Proof. The sticky bit collects the information ’being zero or not’ for all the bits that
can have been discarded during the shifts. The first shift is by δ′ and this information
is contained in the last bit of M via Tδ′ . This last bit is either in τǫ1 when ǫ1 > 0, or
in τǫ2 when ǫ1 = 0. The second shift if by ǫ1 > 0 and the information is contained
in the ǫ1 least significant bits of M . The third and last shift is by ǫ2 + k, which can
be positive or nonnegative.

Recall that M̃H and M̃L are respectively, the higher half and the lower half of
the 2k-bit unsigned integer M̃ . Then, from Property 6.7 we deduce that the sticky
bit can be implemented as τ = [Tau 6= 0] with

Tau = T1 |T2,

where

T1 = (ML ≪ 1) ≪ ǫ̃1 (6.19)

and

T2 =

(
M̃H ≪ (k − ǫ2)

)
| M̃L if ǫ2 > 0,

(
M̃ ≪ (−ǫ2)

)
mod 2k if ǫ2 6 0.

(6.20)

Like for the computation of Tδ′ , the straightforward implementation of T1, such that
T1 = M ≪ (2k − ǫ1), may involve a shift by 2k bits. However, since ǫ1 satisfies
0 6 ǫ1 6 p + 3 < k, we can implement T1 as in (6.19). For the binary32 format, we

can reuse ǫ̃1 = 31 − ǫ1 from the computation of M̃ . The corresponding C code is at
line 4 of Listing 6.5.

To compute T2 for the case when ǫ2 > 0, according to (6.20), we have k− ǫ2 < k,
and therefore the shift by k − ǫ2 bits is safe. The corresponding C code for the
implementation of T2 is shown at lines 13 to 16 of Listing 6.5.

When Tau is available, for ◦ = RN, the implementation of b is

b = g ∧ (Tau | ℓp−1),

where g = G & 1, ℓp−1 = G & 2, which is shown at line 20 of Listing 6.5.

For ◦ = {RU, RD}, we need to compute g ∨ τ = [{ℓ · 2p−1} 6= 0]. By using
Theorem 6.2 and Property 6.7, we have g ∨ τ = g ∨ T1 ∨ T2 and we can implement
the computation of g ∨ T2 as follows:

g ∨ T2 =

(
M̃H ≪ (k − ǫ2 − 1)

)
| M̃L, if ǫ2 > 0,

(
M̃ ≪ (−ǫ2 − 1)

)
mod 2k if ǫ2 6 0.

Hence, for ◦ = {RU, RD}, we can replace the implementation of T2 at lines 13 and
16 of Listing 6.5 by

if(ep2 > 0) T2 = MtL | MtH << (31 - ep2);

else T2 = (uint32_t)(Mt << (-ep2 - 1));

Therefore, for ◦ = RU, we replace the computation of b at line 20 of Listing 6.5 by

104

6.3. Computing correctly-rounded 2D dot products for generic input

b = (T1 | T2) && (S == 0);

Respectively, for ◦ = RD, we have

b = (T1 | T2) && S;

Computing s. To implement the sign of the result, we can in fact reuse the
if-else statement introduced for computing the integer M . Indeed, we have the
following characterization:

Property 6.8. The sign s of the result is such that s =

{
su ⊕ σ if Mu < ⌊Mv · 2−δ′⌋,
su otherwise.

Proof. Recall from (6.12) that s = su ⊕ sm. Then, for σ = 0 we have s = su

and the result is true. Assume now that σ = 1. Then sm = [mu < mv · 2−δ].
Since by Property 6.5 the condition mu < mv · 2−δ is equivalent to the condition
Mu < ⌊Mv · 2−δ′⌋, we obtain

s =

{
su ⊕ 1 if Mu < ⌊Mv · 2−δ′⌋,
su otherwise,

and the conclusion follows.

Based on the above property, we implement S = s · 231 for the binary32 format
as shown at line 1 of Listing 6.5. On the ST231, we implemented Mu < ⌊Mv · 2−δ′⌋
by [Mu < M ′

v] by using Property 6.6.

Computing D and packing the result. For D = d − emin, we can in fact reuse

the integer D′ (implemented as max(Du, 0)) already computed for producing M̃ .
Indeed,

D = µ − ν − emin, since d = µ − ν,

= D′ − ν, since D′ = µ − emin.

The corresponding C code is shown at line 18 of Listing 6.5.
When G is available, we have L = G ≫ 1, and the final result for generic input

is implemented as

R = (S | (D ≪ (p − 1))) + L + b.

The corresponding C code for the binary32 format is shown at line 21 of Listing 6.5.

Listing 6.5: Implementation of R for generic input (binary32 format and ◦ = RN).

0 Dp = max(Du, 0); MH = M >> 32; ML = (uint32_t)M;

1 if(Mu < Mvp) S = Su ^ sigma; else S = Su;

2 ep1 = min(Dp - Du, 27);

3 ep1t = 31 - ep1;

4 MtH = MH >> ep1; T1 = (ML << 1) << ep1t;

105

Chapter 6. Two-dimensional dot products

5 MtL = ((MH << 1) << ep1t) | (ML >> ep1);

6 Mt = ((uint64)MtH << 32) + MtL;

7

8 lzMt = clzl(Mt);

9 lmbp = lzMt - 3;

10 nu = min(lmbp , Dp);

11 ep2 = 4 - nu;

12

13 if(ep2 > 0) {G = MtH >> ep2; T2 = MtL | MtH << (32 - ep2);}

14 else {Mt = ((uint64_t)MtH << 32) + MtL;

15 Mtp = Mt << (-ep2);

16 G = Mtp >> 32; T2 = (uint32_t)Mtp;}

17 L = G >> 1; g = G & 1;

18 Tau = T1 | T2; D = Dp - nu;

19

20 b = g && (Tau | (G & 2));

21 Rgen = (S | (D << 23)) + L + b;

6.4 Detecting and handling special input

6.4.1 Detecting special input

Now that we have seen how to handle generic input, we turn to special input. We
see first how to detect special input, that is, how to evaluation the condition Cspec.
Recall from Equation (6.2) that we have

Cspec = Cnan ∨ Cinf ∨ Covf ∨ Czero,

where Cnan = [r is NaN], Cinf = [one of x, y, z, t is infinity], Covf = [overflow occurs],
and Czero = [ρ is ±0]. Therefore, we can obtain Cspec from Cnan, Cinf, Covf, and Czero,
and here we present the implementation for each of these sub-conditions.

Before the discussion, we define some useful integers and conditions for the im-
plementation of Cspec by using the standard encodings X, Y , Z, T of x, y, z, t as
follows.

We compute the encoding of max(|x|, |y|) and check whether x or y is infinite:

M1 = max(|X|, |Y |),
C1 = [M1 = ι(∞)].

We compute the encoding of min(|x|, |y|) and check whether x or y is zero:

M2 = min(|X|, |Y |),
C2 = [M2 = 0].

Similarly, we have

M3 = max(|Z|, |T |),
C3 = [M3 = ι(∞)],

106

6.4. Detecting and handling special input

and

M4 = min(|Z|, |T |),
C4 = [M4 = 0].

Remark that M2, C2, and M4, C4 are already used in the generic path to compute
eu.

Computing Cnan. Recall the three cases which lead to the result NaN for DP2.
We have

Cnan = Cnan1 ∨ Cnan2 ∨ Cnan3,

where

• Cnan1 = [one of x, y, z, t is NaN],

• Cnan2 = [either xy or zt is a product of the form 0 ×∞],

• Cnan3 = [xy and zt are infinite with opposite signs].

Using the integers Mi, Ci, i = 1, . . . , 4 introduced just above, we can implement
Cnan1, Cnan2, and Cnan3 as follows:

• Cnan1 = [max(M1, M3) > ι(∞)];

• Cnan2 = (C1 ∧ C2) ∨ (C3 ∧ C4);

• Cnan3 = C1 ∧ C3 ∧ σ with σ = sxy ⊕ szt.

Computing Cinf, Covf, and Czero. Implementing these three conditions is imme-
diate as well:

• Cinf = C1 ∨ C3;

• Covf = [D > 2emax];

• Czero = [clz M̃ = 2k].

Note that D and clz M̃ are already computed in the generic path.

6.4.2 Handling special input

As soon as special inputs are detected, we should handle them as specified in §6.2.
The easiest case is when Cnan is true: we return qNaN independently of the rounding
mode. Now, let us discuss how to handle other special input.

Handling Cinf. When Cinf is true, although the result is independent of the round-
ing mode as well, the sign of the result is that of the product introducing the infinity,
which is either sxy or szt. The C code is shown at lines 17 and 18 in Listing 6.6. If
both xy and zt are infinite, when Cnan does not hold, we have sxy = szt. Then, the
selection at lines 17 and 18 is still correct.

107

Chapter 6. Two-dimensional dot products

Handling Covf. The result of overflow depends on the rounding mode, which is
specified in (6.1). The C code for ◦ = RN for the binary32 format is given at line 23
in Listing 6.6, where variable S is reused from the generic path.

For the other rounding modes (RU, RD, RZ), all we need to change is line 23.
The corresponding C codes for the binary32 format are given below.

- Rounding up (◦ = RU):

else if (Covf) return (S | 0x7f800000) - (S >> 31);

- Rounding down (◦ = RD):

else if (Covf) return (S | 0x7f800000) - (S == 0);

- Rounding to zero (◦ = RZ):

else if (Covf) return S | 0x7f7fffff;

Handling Czero. When the exact result is zero, from the rules specified in §6.2,
we can conclude that

• for ◦ = RD, we have s = 1;

• for other rounding modes, we have s = sxy∧szt. Indeed, if the products xy and
zt are nonzero, only operands with opposite signs can lead to the exact zero
result, and therefore, sxy & szt = 0; if both xy and zt are zero, we still have
sxy & szt = 0 when they have opposite signs, and we have sxy ∧ szt = sxy = szt

otherwise.

We give at line 24 in Listing 6.6 the C code for the handling the case of an exact
result equal to zero. This code holds for ◦ = RN, but also for ◦ ∈ {RU, RZ}. For
◦ = RD, we replace line 24 by

else if (Czero) return 0x80000000;

Listing 6.6: Detecting and handling special input of DP2 for the binary32 format,
◦ = RN

0 // handl ing g ene r i c input , d e t a i l e d in Sec t i on 6 .3

1

2 // computing M1,C1 , and M3, C3

3

4 Cnan1 = maxu(M1, M3) > 0x7f800000;

5 Cnan2 = (C1 && C2) || (C3 && C4);

6 Cnan3 = C1 && C3 && sigma;

7 Cnan = Cnan1 || Cnan2 || Cnan3;

8

9 Cinf = C1 || C3;

108

6.5. Experimental results obtained on the ST231

10 Covf = D >= 254;

11 Czero = lzMt == 64;

12

13 Cspec = Cnan || Cinf || Covf || Czero;

14

15 if(C1) Sinf = Sxy;

16 else Sinf = Szt; // Sxy , Szt computed in the g ene r i c path

17

18 if (Cspec){

19 if (Cnan) return 0x7fc00000;

20 else if (Cinf) return Sinf | 0x7f800000;

21 else if (Covf) return S | 0x7f800000;

22 else if (Czero) return Sxy & Szt;

23 }else{

24 return Rgen;

25 }

6.5 Experimental results obtained on the ST231

6.5.1 Operator performances

Performances on the ST231. The latencies of DP2 for the binary32 format
on the ST231 are given in the third column of Table 6.1. For comparison, the
second column of the table displays the latencies of a naive implementation of DP2
(using two multiplications and one addition from FLIP 1.0). As shown in the fourth
column, our fused operator achieves a speedup between 1.15 and 1.30, depending on
the rounding mode. Since the speedups here do not account for the two function
calls penalty, the exact performance gain obtained at run time can even be larger.
Furthermore, recall that our DP2 operator provides the correctly-rounded result
(only one rounding error) while the naive approach entails up to three rounding
errors.

◦ FLIP 1.0 ◦(◦(xy) + ◦(zt)) DP2 ◦(xy + zt) speedup

RN 68 55 1.24
RU 69 54 1.28
RD 69 53 1.30
RZ 59 51 1.15

Table 6.1: Latency comparison for DP2 and the naive implementation of xy + zt
using FLIP 1.0, for the binary32 format.

Table 6.2 shows that on the ST231 and for the binary32 format, the IPC of DP2
is extremely high: it ranges between 3.8 and 3.9 depending on the rounding modes.
In fact, by studying the assembly codes, we observe that for ◦ = RD, all the bundles
are fully occupied except the last one, and for other rounding modes, there are only

109

Chapter 6. Two-dimensional dot products

three or four bundles which are not fully used. Therefore, our DP2 operator makes
almost the best possible usage of the 4 issues of the ST231.

◦ Latency L Number N of instructions IPC = N/L

RN 55 207 3.8
RU 54 206 3.8
RD 53 205 3.9
RZ 51 194 3.8

Table 6.2: Latency, code size, and IPC for DP2.

Comparison with fused multiply-add. The standard specified operator, fused
multiply-add (FMA), which computes ◦(xy + z), can of course be considered as a
specialization of DP2. Assuming the same definition of generic input for FMA as for
DP2, we have the same steps to compute FMA as those for DP2:

1. normalizing the input and preparing the two summands;

2. swapping the two summands to get u and v;

3. computing ◦(u + v) using integer arithmetic.

Note that step 1 of FMA is slightly simpler than for DP2 since we only need to
compute one product, namely xy, instead of two. However, step 2 and step 3 are
exactly the same. Thus, we can derive an implementation of FMA directly from the
one we have presented for DP2. Its performances are shown in Tables 6.3 and 6.4
below.

Table 6.3 gives the performances of FMA on the ST231. Since steps 2 and 3
are the most expensive parts of the implementation, the latency of FMA is not
significantly smaller than that of DP2. For example, for ◦ = RN, FMA takes 46
cycles, while DP2 takes 55 cycles. Furthermore, since multiplication in FLIP 1.0
takes 21 cycles, we could get ◦(◦(xy) + zt) in 21 + 46 = 67 cycles. This is more
expensive than one call to DP2, which is both faster (55 cycles) and more accurate
(only one rounding error).

The second column of Table 6.3 gives the latencies of a naive implementation of
FMA (using one multiplication and one addition from FLIP 1.0). Here we see that
the difference of latencies is only around one or two cycles depending on the rounding
modes. For ◦ = RZ, the fused operator is even slower by one cycle. This is caused
by the expensive normalization and rounding step of FMA. However, FMA should
still be preferred to the naive approach , since it guarantees at most one rounding
error instead of up to two.

Table 6.4 gives the IPCs of FMA for the binary32 format on the ST231, which
range between 3.6 and 3.8. Although they are slightly smaller than for DP2, such
IPC values still indicate a heavy use of the machine resources.

6.5.2 Application examples

FFT computation. Radix-2 butterfly is the basic computation element in per-
forming FFT. As we have explained in the introduction part of the document (see §1.2.2),

110

6.5. Experimental results obtained on the ST231

◦ FLIP 1.0 ◦(◦(xy) + z) FMA ◦(xy + z) speedup

RN 47 46 1.02
RU 48 46 1.04
RD 48 45 1.07
RZ 41 42 0.98

Table 6.3: Latency comparison for FMA and the naive implementation of xy + z
using FLIP 1.0, for the binary32 format.

◦ Latency L Number N of instructions IPC = N/L

RN 46 170 3.7
RU 46 167 3.6
RD 45 166 3.7
RZ 42 158 3.8

Table 6.4: Latency, code size, and IPC for FMA.

our production compiler can generate two DP2 and two addsub operators for each
butterfly; here, we study the performance gain provided by our fast DP2 implemen-
tation on the ST231.

Listing 6.7 gives the typical butterfly implementation. We see that the variable
t1 at line 1 can be computed by three independent general operators (two multi-
plications and one subtraction) with three times rounding, or by one FMA and one
multiplication, or by a single DP2 operator. Similarly, the variable t2 can also be
computed by several operators or by a single DP2.

Listing 6.7: Typical butterfly implementation.

0 for (k=j; k <= n; k=k+n2){

1 t1 = c*x[k+n1] - s*y[k+n1]; t2 = s*x[k+n1] + c*y[k+n1];

2 x[k+n1] = x[k] - t1; x[k] = x[k] + t1;

3 y[k+n1] = y[k] - t2; y[k] = y[k] + t2 ;

4 }

Table 6.5 gives the performance of running the FFT test suites from the UTDSP
benchmark [Lee] on the ST231. The baseline is performing FFT by general addition
and multiplication operators of FLIP 1.0. From column “DP2”, we see that using
DP2 operators alone (without addsub operator) can almost be 1.2x faster than the
baseline. Compared with the speedup introduced by FMA, selecting DP2 gives much
more performance gain.

Furthermore, the computation at lines 2 and 3 of Listing 6.7 can be selected as
two addsub operators (latencies shown in Table 1.1). The last column shows that
to compute FFT by a conjunction of DP2 and addsub can be 1.59x faster than the
baseline.

Graphics applications. Another application area where this approach is efficient
is in software 3D-graphics pipeline, that operates in single precision mode.

111

Chapter 6. Two-dimensional dot products

Test suite FLIP 1.0 FMA DP2 DP2 and addsub

FFT-256 324001 304545 [1.06] 271811 [1.19] 204194 [1.59]
FFT-1024 1609927 1512647 [1.06] 1352879 [1.19] 1010887 [1.59]

Table 6.5: Performances of FFT on the ST231 in # cycles and [speedups].

Table 6.6 gives the performance of running the whole GeometryPipeline, as well
as the cost of important sub-computations of this pipeline:

• Lerp is a tri-linear interpolator;

• BackFaceCull computes the polygon visibility;

• TransfromPt is a 4D matrix by vector product computation.

The baseline is performing the test suites by using FLIP 1.0. The columns “FMA”
and “DP2” give the latencies and speedups obtained when, respectively, either the
FMA or the DP2 operator is available. The average speedup provided by DP2 is
higher than that of FMA. The last column “FMA and DP2” gives the performances
when both of these two fused operators are in use, and the speedups then range from
1.25 to 1.45.

Test sutie FLIP 1.0 FMA DP2 FMA and DP2

GeometryPipeline 60803 53056 [1.15] 53555 [1.14] 48746 [1.25]
Lerp 23212 20523 [1.13] 15989 [1.45] 15989 [1.45]

BackFaceCull 9281 8214 [1.13] 7037 [1.32] 6903 [1.34]
TransformPt 17903 15303 [1.17] 15570 [1.15] 13903 [1.29]

Table 6.6: Performances of graphics applications on the ST231 in # cycles and
[speedups].

112

Chapter 7

Simultaneous sine and cosine
over a reduced range

Graphics and signal processing applications often require that sines and cosines be
evaluated at a same floating-point argument, and in such cases a very fast compu-
tation of the pair of values is desirable. In this chapter, we study how to exploit
the 32-bit VLIW integer architecture of the ST231 in order to perform this task
accurately for IEEE single precision, including subnormals. We describe software
implementations for sinf, cosf, and sincosf over [−π/4, π/4] that have a proven 1-ulp
accuracy and whose latency on the ST231 is 19, 18, and 19 cycles, respectively. Such
performances are obtained by introducing a novel algorithm for simultaneous sine
and cosine that combines univariate and bivariate polynomial evaluation schemes.

Most of the work in this chapter has been published in [JJL12].

7.1 Introduction

In this chapter we consider the sine and cosine functions, with special emphasis on
their simultaneous computation, as in [Mar03]. Typically, the evaluation of any of
these functions is decomposed into three steps [Mul06]:

• Range reduction, which computes x∗ ∈ [−π/4, π/4] and k ∈ Z such that x∗ =
x − kπ/2;

• Evaluation of sinx∗ or cos x∗ depending on the value of k mod 4;

• Sign adaptation to reconstruct the result.

Clearly, range reduction can be shared by both functions, so that we focus here on
the reduced range [−π/4, π/4].

When multipliers are available on the target architecture, CORDIC-like shift-
and-add methods need not be used and the computation of sine and/or cosine
eventually often relies on the evaluation of one or several univariate polynomial
approximations, be it in hardware [PKS00, Tis06, DdD07] or in software [Tan90,
GB91, Mar00, CHT02, Rai06, LS07, crl, Shi10]. In particular, fixed-point univariate
polynomials have been already employed for sine and cosine on ST231 [Rai06, §14],
yielding respective latencies of 29 and 36 cycles, without accuracy guarantee.

In this chapter we propose a new approach based on the combination of fixed-
point univariate and bivariate polynomials for more ILP exposure, along with rig-
orous accuracy analyzes. More precisely, the contributions of this chapter are as
follows:

113

Chapter 7. Simultaneous sine and cosine over a reduced range

First, we introduce an algorithm for sine (resp. cosine) that uses a single bivariate
(resp. univariate) polynomial approximation evaluated in a highly parallel fashion,
and whose accuracy is shown to be 6 1 ulp of the exact result.

Second, we deduce from these two algorithms a third one for simultaneous sine
and cosine, whose hybrid univariate/bivariate nature brings high ILP exposure.

Third, we detail the corresponding C implementations, showing optimal schedules
and very low latencies on a VLIW integer processor like the ST231: 19 cycles for
sinf, 18 for cosf, and 19 for sincosf.

Thus, compared with [Rai06] speedups of > 1.5× for sinf and 2× for cosf are
obtained, together with proven 1-ulp accuracy. Also, sincosf yields both 1-ulp
accurate sine and cosine in the same latency as it takes to compute sine alone.

As for all the other operators implemented during this thesis work, our codes
have been optimized with the ST231 architecture in mind, but they are written in
standard C and are thus portable. In addition, the design has been assisted by a
software toolchain consisting of Sollya [CJL10] for certified polynomial approximants
and of Gappa [Mel] and CGPE [MR11] to guarantee the accuracy and cost features
of polynomial evaluations. Finally, our approach supports subnormals for free and
can easily be adapted to other floating-point formats like double precision as soon
as 64-bit integer arithmetic is available.

Throughout this chapter, u denotes the unit roundoff in precision p = 24, that
is,

u = 2−24,

and F denotes the set of standard binary32 finite floating-point numbers.

Outline. The chapter is organized as follows. §7.2 introduces the 1-ulp accuracy
specification of the evaluations for sine and cosine. §§7.3 and 7.4 present our al-
gorithms and implementations, respectively; in each case we provide a theoretical
analysis yielding a proven 1-ulp error bound, as well as implementation details and
C codes.6 Then, in §7.5 we describe our simultaneous computation of sine and cosine
and analyze its performances on ST231.

7.2 Accuracy specification using the ulp function

Recall from §2.4 that given a floating-point system of precision p and minimal expo-
nent emin, the ulp of any real number x is

ulp(x) =

{
0 if x = 0,

2max{emin,e}−p+1 otherwise,

with e the unique integer power of two such that 2e 6 |x| < 2e+1.

Thanks to the above definition, “1-ulp accuracy” means that our implementations
conform to the following precise specification: assuming an input x in

I = F ∩ [0, π/4],

6 The symmetry properties cos(−x) = cos x and sin(−x) = − sin x allow us to restrict our
accuracy analyzes to nonnegative inputs, but the codes do handle the range [−π

4
, π

4
].

114

7.3. Computing cosine

for cosine we want an r in F such that

|r − cos x| 6 ulp(cosx). (7.1)

Similarly, for sine this means an r in F such that

|r − sinx| 6 ulp(sinx). (7.2)

Furthermore, for x zero we ensure in each case that r is the exact result: r = 1 for
cosine and r = ±0 for sine.

7.3 Computing cosine

Over [0, π/4] the cosine function is strictly decreasing and takes values between 1
and 1/

√
2 ≈ 0.707. Thus, for x ∈ I, we have

ulp(cosx) =

{
2u if x = 0,

u otherwise,

and to satisfy our accuracy requirement in (7.1) it suffices to ensure

|r − cos x| 6 u. (7.3)

7.3.1 Constant approximation when x < 2−11

Of course, when x is “close enough” to zero then cos x will be “close enough” to one
and can be approximated by a constant in F. More precisely, by Taylor’s theorem,
for x > 0 there exists a real x0 in (0, x) such that

cos x = 1 − cos x0

2 x2. (7.4)

Hence 0 6 1 − cos x 6
1
2x2 and the accuracy condition in (7.3) holds with r = 1 − u

as long as x 6 2
√

u. For binary32 this threshold is equal to 2−11.
Thus, in principle we would start by detecting whether x satisfies x 6 2−11 or

not. However, we prefer to replace that condition by the strict inequality

x < 2−11,

which is just slightly stronger but has the advantage of being equivalent to decid-
ing whether the biased exponent of x satisfies Ex < emax − 11 = 116. Since Ex

will be needed anyway when handling inputs larger than 2−11 (as shall be seen in
Section 7.3.2), this is a way of reusing it to filter out small inputs.

To sum up, when x is in I<2−11 , that is, when

Ex < 116

then we simply proceed as follows: if x > 0 we return the encoding of 1− u, namely

127 · 223 − 1 = (3f7fffff)16;

if x = 0 we add 1 to this value in order to return the encoding of the exact result
cos 0 = 1.

Note that since emin = −126, this first subinterval I<2−11 contains zero as well as
all positive subnormal numbers.

115

Chapter 7. Simultaneous sine and cosine over a reduced range

7.3.2 Polynomial approximation when x > 2−11

Let us now see how to evaluate cos x when x is in I>2−11 . We start by proving that
in this case any floating-point number r satisfying (7.3) has exponent equal to −1.

Lemma 7.1. Let x ∈ I>2−11 and r ∈ F be as in (7.3). Then

1
2 6 r < 1.

Proof. By assumption, cos x − u 6 r 6 cos x + u. Since 0 6 x 6 π/4, we have
cos x− u >

1√
2
− 2−p >

1
2 as soon as p > 3, which is of course the case for binary32.

Let us now check that cos x + u < 1. Recalling that we have (7.4) with x0 < x and
that the cosine function is decreasing on [0, π/4], we obtain cos x0 > cos x and thus,
for any x in I,

cos x 6
(
1 + x2

2

)−1
.

Now, this upper bound is less than 1− u as soon as x >
√

2u/(1 − u), which is true
since x > 2−11 = 2

√
u.

Lemma 7.1 implies that our floating-point unknown r = mr · 2er is in fact a
fixed-point number of the form

r = (0.1mr,1 . . . mr,23)2. (7.5)

To obtain r as in (7.3) and (7.5) we extend to cosine the approach introduced
in [JKMR11] for square root and consisting in the truncation of a Q0.32 number
v that approximates “accurately enough” from above the exact result. A rigorous
sufficient condition on the accuracy of v is provided by the theorem below.

Theorem 7.1. Let x ∈ I>2−11, let v = (0.v1v2 . . . v32)2 be such that

|v − g(x)| 6
u
2 with g(x) = u

2 + cos x,

and let r be the truncated value of v after 24 fraction bits. Then r is a binary32
number that satisfies (7.3).

Proof. We have r = (0.v1v2 . . . v24)2, which implies that r is a binary32 number and,
since u = 2−24, that

−u < r − v 6 0.

On the other hand, v satisfies

0 6 v − cos x 6 u.

Hence −u < r − cos x 6 u, from which (7.3) follows.

To compute from x a value v as in Theorem 7.1 we essentially rely on polynomial
approximation and evaluation. The process consists of three steps:

• Precompute a polynomial a that approximates g over I>2−11 and whose fixed-
point coefficients have at most 32 fraction bits. This approximation generates
the error ǫ0 = maxx∈I

>2−11
|a(x) − g(x)|.

116

7.3. Computing cosine

• Compute a 32-bit fixed-point approximation t to the floating-point input x.
This approximation yields the error ǫ1 = |a(t) − a(x)|.

• Given t and the coefficients of a, compute an approximation v to a(t) in 32-bit
fixed-point arithmetic by choosing a suitable polynomial evaluation scheme.
The associated evaluation error is ǫ2 = |v − a(t)|.

Thus, by the triangle inequality, the accuracy constraint |v − g(x)| 6
u
2 in Theo-

rem 7.1 is satisfied as soon as we have

ǫ0 + ǫ1 + ǫ2 6
u
2 . (7.6)

The next three paragraphs give some implementation details showing how to achieve
the bound in (7.6) very efficiently on the ST231 architecture. A fourth paragraph
details how to reconstruct the encoding of the result r directly from the encoding
of v.

1. Precomputing the polynomial approximant a. A polynomial that satisfies
the necessary condition ǫ0 6

u
2 must have degree at least 6; this can be seen using

the software tool Sollya [CJL10], which further gives us:

• coefficients of the form a0 = 1+A0 ·2−32, a4 = A4 ·2−32 and ai = −Ai ·2−32 for
i ∈ {1, 2, 3, 5, 6} and where the seven Ais are 32-bit unsigned integers. (Recall
that on the ST231, these coefficients can be encoded directly in instruction
words, thus avoiding using tables, whose access can be costly.)

• the rigorous bound ǫ0 < 2−28.86.

2. Approximating x by t. For x in I>2−11 we have

x = (0.00 . . . 00︸ ︷︷ ︸
|ex| zeros

1mx,1 . . . mx,23)2, −11 6 ex 6 −1,

showing that the fraction of x can be up to 34-bit long. An approximation of x that
will be enough for our purpose is its truncation after 32 fraction bits, that is,

t = ⌊x · 232⌋/232 = (0.t1t2 . . . t32)2.

Hence 0 6 x−t < 2−32 and, using the software tool Gappa [Mel], we get the rigorous
bound ǫ1 < 2−32.98.

Furthermore, this approximation is stored into the 32-bit unsigned integer T =
t · 232, which can be deduced from the standard encoding X in (2.4) as follows:
shift X left by 8 places, set the leftmost bit to 1, and then shift the result right by
|ex| − 1 = 126 − Ex places. Lines 2 and 3 of Listing 7.1 give the corresponding C
code, which on ST231 takes 4 cycles.

3. Evaluating a(t) fast and accurately in fixed point. High ILP exposure is
obtained by parenthesizing our degree-6 polynomial a(y) = a0 + · · · + a6y

6 as

(
(a0 + a1y) + (a2 + a3y)z

)
+
(
(a4 + a5y) + a6z

)
(z2)

117

Chapter 7. Simultaneous sine and cosine over a reduced range

with z = y2. With unbounded parallelism and latencies of 3 and 1 for × and +, this
scheme takes 11 cycles, which is 2.18 times less than Horner’s rule [Knu87, p. 486].

The corresponding C code using (unsigned) 32-bit integer arithmetic appears at
lines 4 to 14 in Listing 7.1. (Similarly to squaring in §4.3, mul returns the 32 most
significant bits of the exact product of two 32-bit unsigned integers.) We see that the
parallelism constraints of the ST231 still allow for an 11-cycle latency. Concerning
the accuracy of this scheme, we used Gappa to check that all the computed quantities
are positive Q0.32 numbers and also to get a rigorous bound on ǫ2 = |v − a(t)| with
v = V · 2−32. In our case, it turns out that ǫ2 < 2−30.04, so that overall (7.6) is
satisfied.

4. Reconstructing the result. From Theorem 7.1 and since V = v · 232, we
conclude that the encoding of our result r is R = 125 · 223 + ⌊V/28⌋. Once V is
available its computation thus takes 2 cycles, as line 16 of Listing 7.1 shows.

Listing 7.1: Cosine evaluation in binary32 over [−π
4 , π

4].

0 Ex = (X >> 23) & 0xff;

1

2 mx = (X << 8) | 0x80000000;

3 T = mx >> (126 - Ex);

4 Z = mul(T, T); A5T = mul(A5 , T);

5 A1T = mul(A1 , T); A3T = mul(A3, T);

6

7 Z2 = mul(Z, Z); A45 = A4 - A5T; A6Z = mul(A6, Z);

8 A01 = A0 - A1T; A23 = A2 + A3T;

9 A23Z = mul(A23 , Z);

10 A46Z = A45 - A6Z;

11 A46 = mul(A46Z , Z2);

12 A03 = A01 - A23Z;

13

14 V = A03 + A46; // V encodes v = (0 . v1 . . . v32)

15

16 R = (125 << 23) + (V >> 8);

17 if (Ex < 116) return 0x3f7fffff + ((X << 1) == 0);

18 else return R;

Remarks:

• When compiling the code in Listing 7.1 with st200cc, a latency of 18 cycles is
achieved, thus indicating an optimal schedule: 4 cycles for T, 11 cycles for V, 2
cycles for R, and a final 1-cycle ’select’ to choose between R and the constant
0x3f7fffff.

• Also, it is not hard to see that the C code in Listing 7.1 works not only for the
range [0, π

4] but also for [−π
4 , π

4]. This is solely due to the first line, so that for

118

7.4. Computing sine

applications where x is known to be in [0, π
4], one can replace this line by Ex =

X >> 23; and thus reduce the latency by 1 cycle.

• The values of the polynomial coefficients Ai are displayed in Table 7.1.

A0 0x00000089 A1 0x000003ef

A2 0x7fffb575 A3 0x0002110b

A4 0x0ab188a0 A5 0x000b29ea

A6 0x005364d9

Table 7.1: Polynomial coefficients Ai.

7.4 Computing sine

Let us now consider the sine function x 7→ sinx. Over [0, π/4] the sine function is
strictly increasing and takes values between 0 and 1/

√
2. This output range contains

values that vary a lot in magnitude, making the ulp analysis more involved than for
cosine. A classical workaround is to consider instead of sinx the function sin x

x whose
range for 0 < x 6 π/4 belongs to [0.89, 1). Indeed, by Taylor’s theorem there exists
for x > 0 a real x0 in (0, x) ⊂ [0, π/4] such that

sinx = x − cos x0

6 x3, (7.7)

from which it follows that for any real x in (0, π/4],

x(1 − x2

6) < sinx < x. (7.8)

This enclosure implies that sin x
x ranges in [1 − ǫ, 1) with

ǫ =
π2

96
= 0.102

It also serves as a basis for the following result, which describes the behavior of the
ulp of sine and is a key ingredient for establishing the numerical accuracy of our
implementations.

Lemma 7.2. Let x be a real in [0, π/4]. Then

ulp(sinx) =

{
ulp(x) if x < 2emin+1,
1
2ulp(x) or ulp(x) otherwise.

Proof. If x = 0 then sinx = x and the result is true. If 0 < x < 2emin+1 then (7.8)
gives sinx < x < 2emin+1 and by using (2.15e) we deduce that ulp(sinx) = ulp(x) =
α. It remains to consider the case where x > 2emin+1. In this case, we have 0 < x < 1,
so that (7.8) leads to

x
2 < sinx < x

and thus, using (2.15b), to ulp(x
2) 6 ulp(sinx) 6 ulp(x). On the other hand,

x > 2emin+1 implies that both x
2 and x are in the normal range of F, and (2.15c)

then gives ulp(x
2) = 1

2ulp(x). Consequently, ulp(sinx) ranges between 1
2ulp(x) and

ulp(x); but since ulps are integer powers of two, this means that ulp(sinx) must be
one of these two values.

119

Chapter 7. Simultaneous sine and cosine over a reduced range

7.4.1 Approximation by x when x < 2−11

Just like for cosine, for x ∈ I in the neighborhood of zero we use the second-order
Taylor approximation of sinx and thus return r = x; see (7.7). For binary32 it turns
out that this choice guarantees the accuracy condition (7.2) as long as x 6 2−11.
(This can be checked easily using arguments similar to those employed for the proof
of Lemma 7.2.) Also, again like for cosine, in practice we work with the strict
inequality

x < 2−11

instead. Thus, the general structure of the C code for sine, shown in Listing 7.2, is
similar to the one of Listing 7.1 and when x ∈ I<2−11 we simply return r = x.

7.4.2 Bivariate polynomial approximation when x > 2−11

Assume now that our input x is in I>2−11 . Unlike for cosine and as can be expected,
the exponent of the result is not anymore a constant known in advance. However, the
result below shows that any floating-point number satisfying the accuracy constraint
in (7.2) can have only two possible exponents, namely ex or ex − 1.

Lemma 7.3. Let x ∈ I>2−11 and r ∈ F be as in (7.2). Then, writing ex for the
exponent of x we have

2ex−1
6 r < 2ex+1.

Proof. Since x is a normal number, we have ulp(x) = 2u · 2ex , so that (7.2) implies

sinx − 2u · 2ex 6 r 6 sinx + 2u · 2ex .

Furthermore, x is in (0, π/4] and we can apply (7.8): the upper bound in (7.8) leads
to r < x + 2u · 2ex = (mx + 2u) · 2ex and since mx 6 2 − 2u we conclude that

r < 2ex+1; using the lower bound gives r >
(
mx(1− x2

6)− 2u
)
· 2ex and since mx > 1

and 0 < x < 1 we arrive at r > (1 − 1
6 − 2u) · 2ex . For p > 3—which is the case for

binary32—, this implies r > 2ex−1 and the conclusion follows.

Lemma 7.3 indicates that for floating-point solutions r to (7.2) the binary ex-
pansion of r/2ex is either (0.1 ∗1 · · · ∗23)2 or (1. ∗1 · · · ∗23)2. In the theorem below
we show how to recover such bits from truncating a suitable approximation v to a
function of our input x.

Theorem 7.2. Let x ∈ I>2−11, let v = (v0.v1 . . . v31)2 be such that

|v − h(x)| 6
u
2 with h(x) = u

2 + sin x
2ex

and with ex the exponent of x, and let r be defined as

r =

{
(0.v1 . . . v23v24)2 · 2ex if v < 1,

(1.v1 . . . v23)2 · 2ex if v > 1.

Then r is a binary32 number satisfying (7.2).

120

7.4. Computing sine

Proof. Note first that ex > emin, which implies that r is a binary32 number and that
ulp(x) = 2u · 2ex . Note also that the definition of h gives

0 6 v · 2ex − sinx 6 u · 2ex . (7.9a)

If v < 1 then r/2ex is the truncated value of v after 24 fraction bits, so that

−u · 2ex < r − v · 2ex 6 0. (7.9b)

Using (7.9a) and (7.9b) leads to the upper bound |r − sinx| 6 u · 2ex = 1
2ulp(x),

which by Lemma 7.2 is at most ulp(sinx). Hence (7.2) is satisfied when v < 1.
Assume now that v > 1. In this case, r/2ex is the truncated value of v after 23

fraction bits and thus
−2u · 2ex < r − v · 2ex 6 0. (7.9c)

We consider two subcases separately, depending on the value of the ulp of sine:

• If ulp(sinx) = ulp(x) then (7.2) is equivalent to |r − sinx| 6 2u · 2ex , which
holds thanks to (7.9a) and (7.9c).

• If ulp(sinx) = 1
2ulp(x) then sinx < 2ex 6 x, so that the upper bound in (7.9a)

leads to
1 6 v < 1 + u = (1. 00 . . . 00︸ ︷︷ ︸

23 zeros

1)2.

Since by assumption v is a Q1.31 number, this implies v1 = · · · = v23 = 0 and
then r = 2ex . Therefore, in this subcase, (7.2) is equivalent to 2ex − sinx 6

u · 2ex , which holds true thanks to (7.9a) and since v > 1.

Thus (7.2) holds for v > 1 too, which concludes the proof.

Theorem 7.2 is obviously the counterpart of Theorem 7.1, that we have estab-
lished for cosine in Section 7.3.2. However, its efficient implementation by means
of polynomial approximation and evaluation is somehow more delicate, since the
function h does not only depend on sinx but also on 2ex .

An efficient solution is to generalize to our context the bivariate polynomial
approach of [JKMR11]: writing mx for the significand of x, we have sin x

2ex = mx · sin x
x

and we can view h(x) as the value at (mx, x) of the bivariate function

h̃(s, y) = u
2 + s · sin y

y . (7.10)

We then follow the same three-step process as seen for cosine, but with a polynomial
in two variables instead of just one:

• Precompute a suitable bivariate polynomial b̃ that approximates h̃ over [1, 2)×
I>2−11 .

• In the evaluation pair (mx, x), only x may not fit into 32 bits, so we approxi-
mate it by t as for cosine.

• Given mx, t, and the coefficients of b̃, compute an approximate value v to
b̃(mx, t).

121

Chapter 7. Simultaneous sine and cosine over a reduced range

This process generates three errors, say ǫ̃0, ǫ̃1, ǫ̃2 (defined essentially as for cosine by
replacing a and g with, respectively, b̃ and h̃). In order to apply Theorem 7.2 it
suffices that the following analogue of (7.6) be satisfied:

ǫ̃0 + ǫ̃1 + ǫ̃2 6
u
2 . (7.11)

We conclude this section by detailing our implementation choices for those stages
as well as for the reconstruction of the result.

1. Precomputing the bivariate polynomial approximant b̃. Due to the shape
of h̃ in (7.10) we use a special bivariate polynomial of the form

b̃(s, y) = u
2 + s · b(y).

Consequently,

∣∣̃b(s, y) − h̃(s, y)
∣∣ = s · ∆ with ∆ =

∣∣b(y) − sin y
y

∣∣,

and since 1 6 s < 2, we search for a polynomial b of minimal degree such that
∆ 6

1
2 · u

2 = 2−26. Using again Sollya, an even polynomial of degree 6 is found:

b(y) = b0 + b2y
2 + b4y

4 + b6y
6,

where, for 0 6 i 6 3, b2i = (−1)i · B2i · 2−32 and B2i is a 32-bit unsigned integer. In
addition, ∆ < 2−27.84 and thus ǫ̃0 < 2−26.84.

2. Approximating x by t. Our C code for this step is the same as for cosine and
appears at lines 2 and 3 of Listing 7.2. Again, we have 0 6 x − t < 2−32 and using
Gappa now leads to |b(t) − b(x)| < 2−34.57 and thus to ǫ̃1 < 2−33.57.

3. Evaluating b̃(mx, t) fast and accurately in fixed point. A highly parallel
scheme for our bivariate polynomial is

b̃(s, y) =
(
(2−25 + sb0) + (sb2)z

)
+
(
sb4 + (sb6)z

)
(z2),

where z = y2. On ST231 this scheme takes 11 cycles and using the software tool
CGPE [MR11], one can check that even with the knowledge that s = mx is available
earlier than y = t this latency cannot be reduced further by any other parenthesiza-
tion.

A fixed-point implementation of this scheme is given in Listing 7.2: all the vari-
ables of the form sB* encode Q1.31 numbers, while as for cosine Z and Z2 encode
Q0.32 numbers. We have checked with Gappa the absence of overflow and that the
Q1.31 number

v = V · 2−31 = (v0.v1 . . . v31)2.

satisfies ǫ̃2 := |v − b̃(mx, t)| < 2−31.37, so that the accuracy constraint in (7.11) is
eventually satisfied.

4. Reconstructing the result. By Lemma 7.3 and Theorem 7.2 the result is
r = (1.v2 . . . v24)2 · 2ex−1 if v0 = 0, and r = (1.v1 . . . v23)2 · 2ex if v0 = 1. Therefore,
its biased exponent is Er = Ex − 1 + v0 and its encoding has the form

R = H · 223 + L

122

7.4. Computing sine

with a high part H = K + v0 such that K = sx · 28 + Ex − 2, and with a low part
L = ⌊V/27+v0⌋.

For the cost, the bottleneck is the computation of v0. Given V one could of
course get it as v0 = V >> 31;. A faster way, shown at line 14 of Listing 7.2, consists
in producing v0 in parallel with the addition of sB02 and sB46 that gives V . Indeed,
since sB02 is available before sB46, we precompute the signed integer 231 - sB02 and
compare it with sB46 (whose first bit has been checked with Gappa to be always
zero); this is equivalent to evaluating the condition V > 231, whose value is precisely
v0.

To summarize, this implementation brings R in 3 cycles after V . In addition,
since K and H carry the sign bit of X, it works for signed inputs, that is, for any x
in F ∩ [−π

4 , π
4].

Listing 7.2: Sine evaluation in binary32 over [−π
4 , π

4].

0 Ex = (X >> 23) & 0xff;

1

2 mx = (X << 8) | 0x80000000;

3 T = mx >> (126 - Ex); sB6 = mul(mx, B6);

4 Z = mul(T, T); sB4 = mul(mx, B4);

5 sB2 = mul(mx , B2);

6 sB0 = mul(mx , B0);

7 Z2 = mul(Z, Z); sB6Z = mul(sB6 , Z);

8 sB2Z = mul(sB2 , Z);

9 sB0_up = 0x40 + sB0;

10 sB46Z = sB4 - sB6Z;

11 sB46 = mul(sB46Z , Z2); sB02 = sB0_up - sB2Z;

12 J = 0x80000000 - sB02;

13 K = (X >> 23) - 2;

14 V = sB02 + sB46; v0 = (int32_t)sB46 >= J;

15

16 H = (K + v0) << 23; L = (V >> 7) >> v0;

17 R = H + L;

18 if (Ex < 116) return X; else return R;

Remarks:

• As for cosine, the st200cc compiler is able to optimally schedule the code in
Listing 7.2, thus leading to a latency of 4 + 11 + 3 + 1 = 19 cycles.

• One can restrict Listing 7.2 to the range [0, π
4] by modifying only its first line (in

exactly the same way as for cosine; see the remark at the end of Section 7.3.2).
This will reduce the latency from 19 to 18 cycles.

• The values of the polynomial coefficients Bi are given in Table 7.2.

123

Chapter 7. Simultaneous sine and cosine over a reduced range

B0 0xfffffff2 B2 0x2aaaa7e7

B4 0x02220c05 B6 0x000cc7d8

Table 7.2: Polynomial coefficients B2i.

7.5 Computing sine and cosine simultaneously

Given the codes for sine and cosine described and analyzed so far, an implementa-
tion of a 1-ulp accurate operator sincosf is straightforward: we essentially merge
Listings 7.1 and 7.2, renaming some variables whenever necessary. The resulting C
code has the form

uint64 t sincosf(uint32 t X) {...}

and, given the encoding X of x in F ∩ [−π
4 , π

4], it returns R whose leftmost 32 bits
contain the encoding of r1 ∈ F such that |r1−sinx| 6 ulp(sinx), and whose rightmost
32 bits encode r2 ∈ F such that |r2 − cos x| 6 ulp(cosx).

The performances obtained by compiling the code for sincosf with the st200cc
compiler (in -O3 and for the ST231 core) are summarized in Table 7.3. The results for
the restricted range [0, π

4] are indicated within square brackets. (Recall from §3.2.1
that thanks to if-conversion and the ’select’ instruction, we get straight-line assem-
bly code whose latency is independent of the value of the input.) Note that if we
simply inline sinf and cosf and let the compiler merge the codes automatically, then
st200cc achieves the same latency for sincosf as that in Table 7.3 but with one extra
instruction.

Latency L Number N of instructions IPC = N/L

sinf 19 [18] 31 [30] 1.6 [1.7]
cosf 18 [17] 28 [27] 1.4 [1.4]

sincosf 19 [18] 49 [48] 2.4 [2.5]

Table 7.3: Performances of 1-ulp accurate binary32 sine, cosine, and simultaneous
sine and cosine on ST231.

The main conclusion is that we get both sine and cosine in exactly the same
latency as it takes to compute sine alone.

Reasons for this are the relatively low IPC of separate sine and cosine, but also
the fact that several instructions are common to both functions. Specifically, the
number of instructions for sincosf is 10 less than the sum of those numbers for sine
and cosine taken separately. On the other hand, by inspecting Listings 7.1 and 7.2
we see that sine and cosine share the computation of the biased exponent Ex and
significand mx of the input, as well as the computation of T, Z, Z2 and of the predicate
Ex < 116.

This said, as Table 7.4 shows, the two polynomial evaluations used within sincosf

do not have much in common: they share only the computation of t2 and t4 (variables
Z and Z2).

Figure 7.1 gives a precise description of the bundle occupancy when compiling
sincosf with st200cc. The slots in black are those used to compute sine, those

124

7.5. Computing sine and cosine simultaneously

sine cosine shared by both total

× 7 6 2 15
+,− 4 6 0 10

32-bit constants 4 6 0 10
9-bit constants 1 1 0 2

Table 7.4: Computational resources used by the two polynomial evaluations.

marked by ∗ are also used for cosine, and those in grey are used for cosine only. On
the ST231, cosine can be fully computed in parallel with sine. In particular, since
the latency of an integer multiplication here is 3 cycles, some computation for cosine
can be conducted in bundles where no instructions for sine are executed, such as in
cycles 6, 9, 12, and 13. On this target, every constant longer than 9 bits occupies one
slot beyond the slot used by the instruction operating on it. Among the 19 bundles
used, 15 are full or have 3 slots occupied. For this reason, the 4 issues of the ST231
are key to achieve a latency of 19 cycles.

Cycle Issue 1 Issue 2 Issue 3 Issue 4

0 * *

1 * * *

2 * *

3 *

4 *

5

6

7 *

8

9

10

11

12

13

14

15

16

17

18 *

Figure 7.1: Bundle occupancy for the sincosf operator on ST231.

125

Chapter 7. Simultaneous sine and cosine over a reduced range

126

Chapter 8

Compiler optimizations for
floating-point support on the
ST231

In this chapter, we focus on compilation aspects for the support of high-performance
floating-point arithmetic on integer processors. First, to allow applications to benefit
from custom floating-point operators, we study the selection of specialized, fused,
and paired operators, that can be done at target-independent intermediate represen-
tation (WHIRL). Then, as the compiler is used to generate code for its own operators
residing in a library (libgcc), we dedicate a specific effort at code generator inter-
mediate representation (CGIR) level to ensure the best possible code selection when
compiling the implementations of each floating-point operator on the ST231. Fi-
nally, for operators requiring to prove the positivity of some of their operands to
be selected, such as fused square-add, we show how to augment the integer range
analysis framework available at the CGIR level to detect this condition for floating-
point variables. Compiling the UTDSP benchmark by the production compiler, we
observe high usage of custom floating-point operators with speedups up to 1.59x.

8.1 Background

8.1.1 Intermediate representations for st200cc

ST200 VLIW compiler, st200cc, is organized as follows: the gcc-4.2.0 based front-end
translates C/C++ source code into a first high level target independent represen-
tation called WHIRL, that is further lowered and optimized by the middle-end,
including WHIRL global optimizer (WOPT), based on static single assignment form
(SSA) representations, and optionally loop nest optimizer (LNO). It is then trans-
lated in a low-level target dependent representation, code generator intermediate
representation (CGIR) for code generation, including code selection, low level loop
transformations, if-conversion, scheduling, and register allocation.

The optimizations done to improve code selection when compiling library func-
tions for floating-point support are done at the CGIR level. Most custom operators
can be selected at the WHIRL level, except for the selection of fused square-add
and non-negative add, which divert the integer range analysis optimization at CGIR
level to analysis the range of floating-point variables.

127

Chapter 8. Compiler optimizations for floating-point support on the ST231

8.1.2 Control on the selection of custom operators

Even though the FMA operator is described in the 2008 revision of the standard [IEE08,
§5.4], the automatic reselection of FMAs in C11 application codes by compile-time
recombination of addition and multiplication may lead to different application be-
havior, which may be an issue for example when strict bit-exactness is required to
certify an application conformance to a standard. The selection of the DP2 operator,
not even specified in the standard, may lead to similar difficulties.

Such options will as well allow us to measure the improvements introduced by
the custom operators precisely.

Three options are designed for these two purposes:

• a specific option to disable the selection of FMA, -mno-fused-madd;

• a specific option to disable the selection of DP2, -mno-fused-fp;

• a specific option to enable the rebalancing transformation for DP2, -ffast-math.

The rebalancing transformation refers to the re-association of additions and multi-
plications of an n-dimensional product to have maximum number of DP2 operators
selected, see §8.2.3.

Organization of the rest of the chapter. First, we show in §8.2 how to select
squaring, scaling, two-dimensional dot products, and paired operators (addsub and
sincos) at WHIRL level. Then, §8.3 details the optimizations that we introduce at
CGIR level, which includes various peephole optimizations for code selection and
the enhancement on the integer range analysis framework to support floating-point
variables. Finally, in §8.4 we provide the experimental result of our production
compiler for UTDSP benchmark’s FFT test suite.

8.2 Selection of custom floating-point operators at

WHIRL

In this section, we first introduce the target-independent intermediate presentation,
named WHIRL, and we describe how the selection of custom floating-point operators
can be carried out at this level, namely for squaring, scaling by a constant, two-
dimensional dot product, and paired operators.

Working at this level has several benefits: the transformations done are target-
and language- independent, and are relatively easy to implement in the existing
compiler framework.

8.2.1 WHIRL intermediate representation

The compiler optimization components are driven to operate on the various levels of
the target- and language-independent WHIRL intermediate representation [Ope00a],
created by a specific bridge with a GNU gcc/g++ front-end.

Five levels of WHIRL are defined: very high (VH), high (H), Mid (M), low
(L), and very low (VL) WHIRL. Each optimization phase is defined to work at a

128

8.2. Selection of custom floating-point operators at WHIRL

specific level of WHIRL and Figure 1 in [Ope00a] presents optimizations proceeding
together with the process of continuous lowering from one WHIRL level to the next
lower level. At the end, the code generator translates the lowest level of WHIRL
into its own internal representation that matches the target machine instructions.
WHIRL thus serves as the common IR interface among all back end components. A
WHIRL file generated by the front-end consists of WHIRL instructions and WHIRL
symbol tables. Now, we will give a general view of these two components.

WHIRL instructions. The instruction part of the WHIRL file represents the
program code, organized in program units (PUs). The WHIRL instructions are
linked in strictly tree form, and we refer to each node in the tree as a WHIRL node.
Table 8.1 presents the layout of a WHIRL node.

field description API

prev previous pointer WN* WN prev(const WN*)

next next pointer WN* WN next(const WN*)

linenum source position information uint64 WN linenum(const WN*)

offset (union)

Offsets for memory operators, int32 WN load offset(const WN*)

label number, flags for calls, int32 WN lda offset(const WN*)

pragmas, trip count for loop info, int32 WN store offset(const WN*)

element size for array, etc. int16 WN loop trip est(const WN*)

int64 WN element size(const WN*)

...

st idx (union)
symbol table index, type index, ST IDX WN st idx(const WN*)

flags for loop info, etc. TY IDX WN ty (const WN*)

operator WHIRL operator OPERATOR WN operator(const WN*)

rtype result type TYPE ID WN rtype(const WN*)

kid count
number of kids for n-ary operators, int WN kid count(const WN*)

or bit offset/size uint WN field id(const WN*)

for bit manipulation operators uint WN bitsize/offset(const WN*)

desc Operands type TYPE ID WN desc(const WN*)

map id index into map table int32 WN map id(const WN*)

parameters (union)
parameters for kids, const val, WN *WN kid[0,1,2,3]

block list, pragma, etc. WN const val

Table 8.1: Layout of a WHIRL node.

A WHIRL opcode (prefixed with OPC) is specified by three fields: operator, desc,
and rtype.

WHIRL node instruction semantic defined by an operator is started with prefix
OPR . Some common operators are as follows:

• Structured Control Flow, such as DO LOOP, IF, FUNC.

• Statements, such as CALL, ASM.

• Expressions, such as ADD, NEG.

129

Chapter 8. Compiler optimizations for floating-point support on the ST231

• Leaves, such as LABEL, CONST.

Predefined data types are attached to WHIRL nodes using MTYPE, which stands
for machine type. MTYPEs are used for the fields desc and rtype, which respectively
specify the types of operand and result. Examples of predefined MTYPEs:

flag description

I1, I2, I4, I8 8, 16, 32, 64-bit signed integer

U1, U2, U4, U8 8, 16, 32, 64-bit unsigned integer

F4, F8 binary32, binary64 floating-point number

C4, C8 binary32, binary64 floating-point complex number

V void

B boolean

Table 8.2: Examples of predefined MTYPEs.

Examples of WHIRL opcodes:

• OPC F4F4LDID = OPR LDID + RTYPE(MTYPE F4) + DESC(MTYPE F4).

• OPC F4MPY = OPR MPY + RTYPE(MTYPE F4) + DESC(MTYPE V);

As we see in the second example, the type of the operands for a multiplication is
void. This is because the two operands of the multiplication are two independent
WHIRL nodes linked as kid nodes to the multiplication node (more details shown in
Listing 8.2). Thus, from the view of the opcode of this WHIRL node, the operands
are void type.

WHIRL symbol tables. The WHIRL symbol table is made up of a series of
tables. They are designed for compilation, optimization and storage efficiency. The
way the tables are organized closely corresponds to the compiler’s view of the symbol
table. The model also enhances locality in references to the tables [Ope00b].

As symbol tables are not really important during the implementation of our
optimizations, we do not provide more details on them in this document.

Example of WHIRL at different levels. A program unit is represented as a
distinct tree, starting from a FUNC ENTRY node. To compile the C code in Listing 8.1,
the floating-point multiplication is represented by WHIRL opcode OPC F4MPY at H
WHIRL, shown in Line 13 in Listing 8.2. However, as floating-point arithmetic is
supported by library functions, the opcode OPC F4MPY is lowered to intrinsic opcode
at M WHIRL, shown in Listing 8.3, and finally lowered to function call at L WHIRL,
shown in Listing 8.4.

Listing 8.1: C code for the example for WHIRL presentations.

float mul(float x, float y){

return x*y;

}

130

8.2. Selection of custom floating-point operators at WHIRL

Listing 8.2: Example of H level WHIRL presentation

0 FUNC_ENTRY <level:1,idx:23,name:mul >

1 IDNAME ofst:0 <level:2,idx:1,name:x> T<id:13,name:.predef_F4 ,align:4>

2 IDNAME ofst:0 <level:2,idx:2,name:y> T<id:13,name:.predef_F4 ,align:4>

3 BODY

4 BLOCK

5 END_BLOCK

6 BLOCK

7 END_BLOCK

8 BLOCK

9 PRAGMA 0 120 <null -st> val:0 (0x0) # PREAMBLE_END

10 LOC 1 2 return x*y;

11 F4F4LDID ofst:0 <level:2,idx:1,name:x> T<id:13,name:.predef_F4 ,align:4>

12 F4F4LDID ofst:0 <level:2,idx:2,name:y> T<id:13,name:.predef_F4 ,align:4>

13 F4MPY

14 F4RETURN_VAL

15 END_BLOCK

Listing 8.3: Example of M level WHIRL presentation

F4INTRINSIC_OP 2 <961,MULS > 0

Listing 8.4: Example of L level WHIRL presentation

F4CALL 64 <level:1,idx:25,name:__muls > T<id:30,name:,align:1> # flags 0x40

8.2.2 Squaring and scaling by a constant

Squaring and scaling by a constant are specialized operators of general multiplica-
tion. In the production compiler, a floating-point multiplication can be selected as a
square, when its two operands are identical. Meanwhile, a floating-point multiplica-
tion can be selected as a scaling operator, when one of its operands is a constant of
powers of 2. Tabel 8.3 gives the patterns that can be selected as squaring or scaling.
Here x is a C expression, which can be a constant, a single variable or the statement
of operators acting on operands.

131

Chapter 8. Compiler optimizations for floating-point support on the ST231

Expression C type of expression x Function selected in the ST231 libgcc

x · x float squares

double squared

x · 2, x + x
float mul2s

double mul2d

x · (−2)
float nmul2s

double nmul2d

x/2, x · 0.5
float div2d

double div2d

x/(−2), x · (−0.5)
float ndiv2s

double ndiv2s

x · C, C = 2n, float scalbns

n 6= ±1 double scalbnd

x · C, C = −2n, float nscalbns

n 6= ±1 double nscalbnd

Table 8.3: Pattern-matching table for Squaring and Scaling by a constant.

Selecting squaring and scaling. They are selected during lowering H WHIRL
(opcode = OPC F4MPY) to M WHIRL (opcode = OPC F4INTRINSIC OP). Now, we
explain how to select squaring and scaling by computing the intrinsic ID by the
ST231-dependent function WN To INTRINSIC with the information of the operands
(WN* kids[]).

First, at target-independent level, we get the information of the operands, and
then call WN To INTRINSIC to compute the intrinsic ID.

kids [0] = RT_LOWER_expr(WN_kid0(tree));

kids [1] = RT_LOWER_expr(WN_kid1(tree));

intrinsic = WN_To_INTRINSIC(opcode , kids);

• Squaring. In WN To INTRINSIC, check if the two operands are identical by
comparing the their WHIRL nodes for squaring.

if (opcode == OPC_F4MPY){

id = INTRN_MULS;

if (WN_Compare_Trees(kids[0],kids [1]) == 0) {

id = INTRN_SQUARES;

}else{

// s e l e c t i n g s c a l i n g . . .

}

}

• Scaling. Scaling by a constant, such as mul2, div2, is also selected during
lowering high WHIRL to Mid WHIRL by checking the constant of a multipli-
cation when computing the intrinsic ID. Meanwhile, mul2 can also be selected
from addition (x + x), which is similar to the selection of square. For every

132

8.2. Selection of custom floating-point operators at WHIRL

floating-point addition, we check the identity of the two operands by function
WN Compare Trees.

{

TCON tc = Const_Val(kids [1]);

if(Targ_Is_Power_Of_Two(tc)){

UINT32 factor = TCON_uval(tc);

INT32 exp = (factor >> 23)&0xff;

UINT32 sign = factor >> 31;

UINT32 mantissa = factor << 9;

if(exp == 0){

UINT32 nz = countLeadingZeros(mantissa); // nz in [0 , 2 2]

exp = -nz - 127;

}else

exp = exp - 127;

switch(exp){

case 1:

if(sign) id = INTRN_NMUL2S;

else id = INTRN_MUL2S;

break;

case -1:

if(sign) id = INTRN_NDIV2S;

else id = INTRN_DIV2S;

break;

default:

// s ca lb (f l o a t x , i n t n) , computing (+/−)2ˆn∗x , detec ted .

// n = exp .

kids [1] = WN_Intconst(MTYPE_I4 ,exp); // c r e a t e a WN t r e e f o r n

and po int k ids [1] to i t .

if(sign) id = INTRN_NSCALBS;

else id = INTRN_SCALBS;

break;

}

}

}

Creating the M WHIRL node for multiplication and its custom operators.
With the obtained intrinsic ID, intrinsic, we create the new M WHIRL tree for
the multiplication. Although for operations like squaring, mul2, and div2, we need
only one operand, we still have to lower the two operands because the creation of M
WHIRL node is on the target-independent level, and we can not check the IDs.

nd = Extension_Aware_CreateIntrinsic(OPCODE_make_op(OPR_INTRINSIC_OP , res ,

MTYPE_V), intrinsic , 2, kids);

133

Chapter 8. Compiler optimizations for floating-point support on the ST231

8.2.3 Two-dimensional dot products and sums of squares

In this section, we will first present the basic idea to select two-dimensional dot prod-
ucts (DP2), and then we will see how to improve the selection when the expression is
an n-dimensional dot product, which is normally lowered to only one DP2 and n−2
FMA, as by default, the compiler lowers the expressions from left to right. In the
end, we will also explain the selection of sums of squares (SOS), which is considered
as a specialized operator of DP2.

Selecting DP2. Three kinds of patterns can be selected as DP2. According to the
type of expressions x, y, z, and t, expression x · y + z · t is selected as dps(x, y, z, t),
which means single precision for dot product, or respectively, dpd(x, y, z, t) for dou-
ble precision. Similarly, x·y−z·t is selected as dpsubs(x, y, z, t) or dpsubd(x, y, z, t),
and −x · y − z · t is selected as ndps(x, y, z, t) or ndpd(x, y, z, t). Table 8.4 sum-
marizes the selections as follows.

Expression
C type of expressions

Function selected in the ST231 libgcc
x, y, z, and t

x · y + z · t float dps

double dpd

x · y − z · t float dpsubs

double dpsubd

−x · y − z · t float ndps

double ndpd

Table 8.4: Pattern-matching table for DP2.

DP2 operators are selected at H WHIRL, and the selections are made out of
the opcodes such as OPC F4ADD, OPC F4SUB, and OPC F4MPY, with the rules shown in
Figure 8.1. In this figure, we give the bottom-up view of the WHIRL trees that can
be selected as DP2 operators. The right-justified opcodes are the kid nodes of the
opcode below. Although we give only the rules for single precision here, the rules
are exactly the same for double precision, for which we only need to replace F4, the
rtype field of the WHIRL node, by F8.

Now we check every addition and subtraction to collect DP2. The following three
listings show the selection of two-dimensional dot products. As explained in §8.1.2,
option -mno-fused-fp is used to control the selection of DP2, this control is checked
in the function WN DP Allowed in the following three listings.

• checking addition:

Listing 8.5: Selecting OPC F4(F8)DP from addition.

case OPR_ADD:

TYPE_ID type = WN_rtype(tree);

WN *l= WN_kid0(tree);

WN *r= WN_kid1(tree);

if(WN_DP_Allowed(type) && WN_operator_is(l, OPR_MPY) &&

WN_operator_is(r, OPR_MPY))

134

8.2. Selection of custom floating-point operators at WHIRL

return_wn = WN_DP(type , WN_kid0(l), WN_kid1(l),WN_kid0(r),

WN_kid1(r));

break;

• checking subtraction:

Listing 8.6: Selecting OPC F4(F8)DPSUB from subtraction.

case OPR_SUB:

TYPE_ID type = WN_rtype(tree);

WN *l= WN_kid0(tree);

WN *r= WN_kid1(tree);

if(WN_DP_Allowed(type) && WN_operator_is(l, OPR_MPY) &&

WN_operator_is(r, OPR_MPY))

return_wn = WN_DPSub(type , WN_kid0(l), WN_kid1(l),WN_kid0(r),

WN_kid1(r));

break;

• checking NDP:

Listing 8.7: Selecting OPC F4(F8)NDP.

case OPR_NEG:

case OPR_DP:

TYPE_ID type = WN_rtype(tree);

return_wn = WN_NDP(type , WN_kid0(child), WN_kid1(child), WN_kid2(

child), WN_kid(child ,3));

break;

...

break;

OPC F4MPY

OPC F4MPY

OPC F4ADD → OPC F4DP

OPC F4MPY

OPC F4MPY

OPC F4SUB → OPC F4DPSUB

OPC F4DP

OPC F4NEG → OPC F4NDP

Figure 8.1: Rules to select DP2 for single precision.

135

Chapter 8. Compiler optimizations for floating-point support on the ST231

Selecting DP2 for n-dimensional dot products. An n-dimensional dot prod-
uct, a chain of multiplications and additions, is normally lowered to only one DP2
and n−2 FMA, as by default, the compiler lowers the expressions from left to right.
For example, a four-dimensional dot product, a0 · a1 + a2 · a3 + a4 · a5 + a6 · a7, is
lowered to

FMA(FMA(DP2(a0, a1, a2, a3), a4, a5), a6, a7).

However, a faster way to evaluate this expression on the ST231 can be

ADD(DP2(a0, a1, a2, a3), DP2(a4, a5, a6, a7)).

We realize this transformation by splitting the FMA trees which have at least 2
FMAs nested. The C implementation is in Appendix B.

Since this transformation changes the precision of the result, the compilation
option -ffast-math is used to control this optimization.

Expression
C type of expressions

Function selected in the ST231 libgcc
x, and z

x · x + z · z float soss

double sosd

Table 8.5: Pattern-matching table for SOS.

Selecting sum of squares. When lowering DP2 from H to M WHIRL (intrinsic
opcode), we can check the identity of the operands of the two multiplications to
select sum of squares shown in Listing 8.8, which is very similar to the selection of
square.

Listing 8.8: Computing the intrinsic ID for SOS.

0 if(opcode == OPC_F4DP){

1 if ((WN_Compare_Trees(kids[0],kids [1]) == 0) && (WN_Compare_Trees(kids[2],

kids [3]) == 0))

2 id = INTRN_SOSS;

3 }

Creating M WHIRL node. Listing 8.9 shows how to create the M WHIRL node.
Although we can not check the intrinsic ID at the target-independent level, as we
have only one specialized operator for DP2 till now, we can determine the number of
operands to lower by a simple comparison of whether the ID we obtain equals that
of the general one. As shown in Listing 8.9, intrinsic general in Line 0 contains
the intrinsic ID of a DP2 and intrinsic in the same line is what we obtain from
function WN To INTRINSIC. Therefore, only two operands are lowered for SOS and
all the four operands must be lowered otherwise.

Listing 8.9: Creating M level WHIRL for DP2 or SOS.

0 if((intrinsic_general != intrinsic)&& (type== MTYPE_F4))

136

8.2. Selection of custom floating-point operators at WHIRL

1 nd = Extension_Aware_CreateIntrinsic(OPCODE_make_op(OPR_INTRINSIC_OP , res ,

MTYPE_V), intrinsic , 2, kids);

2 else

3 nd = Extension_Aware_CreateIntrinsic(OPCODE_make_op(OPR_INTRINSIC_OP , res ,

MTYPE_V), intrinsic , 4, kids);

8.2.4 Paired operators

Expression
C type of expressions

Function selected in the ST231 libgcc
x, and y

x + y, float adspairs

x − y double adspaird

sinx, float sincoss

cos x double sincosd

Table 8.6: Pattern-matching table for paired operators.

Here we detail only the selection for addsub pair, but it is exactly the same
method to select sincos pair. The compiler replaces all additions and subtractions
by a call to a specific function returning a pair of floats. As addition and subtraction
are ’pure’ functions known by the compiler not to have any side-effect, when both
results are required for the same input, the specific function will be called only once
after redundancy elimination.

Indeed, the selection of paired operators is derived from the lowering process
of complex numbers. At H level, we replace a single addition (or subtraction) by a
paired operator with return type as for single-precision complex numbers (MTYPE C4),
shown in Listing 8.10. Listing 8.11 displays that an addition is lowered as the real
part of a complex number and a subtraction is lowered as the imaginary part. Then,
we create a new WHIRL node with opcode for paired operators.

Listing 8.10: Setting return type for paired operator.

switch (rtype)

case MTYPE_F4: new_rty=MTYPE_C4; // t r e a t the pa i r as complex data

break;

Listing 8.11: Lowering additon and subtraction as complex data.

switch (OPCODE_operator(old_wn_opc)) {

case OPR_ADD:

addsub_part = OPCODE_make_op(OPR_REALPART ,rtype ,desc);

break;

case OPR_SUB:

addsub_part = OPCODE_make_op(OPR_IMAGPART ,rtype ,desc);

break;

...

137

Chapter 8. Compiler optimizations for floating-point support on the ST231

}

const OPCODE addsub_opc = OPCODE_make_op(OPR_ADDSUB ,new_rty ,desc);

WN *addsub = WN_CreateExp2(addsub_opc , WN_kid0(old_wn),WN_kid1(old_wn));

WN *part = WN_CreateExp1(addsub_part , addsub);

*new_wn = part;

If no paired operators is selected, we will decompose it as shown in Listing 8.12.

Listing 8.12: Decomposing the paired operator.

switch (OPCODE_rtype(kid0_opc)){

case MTYPE_C4: rtype = MTYPE_F4; break;

}

const OPCODE add_or_sub_opc = old_wn_opr == OPR_REALPART ?

OPCODE_make_op(OPR_ADD , rtype ,OPCODE_desc(kid0_opc)) :

OPCODE_make_op(OPR_SUB , rtype ,OPCODE_desc(kid0_opc));

WN *add_or_sub = WN_CreateExp2(add_or_sub_opc , WN_kid0(kid0),WN_kid1(kid0));

*new_wn = add_or_sub;

If both results are required, the paired operator is called only once after redun-
dancy elimination. At M level, it is lowered to intrinsic as shown in Listing 8.13.

Listing 8.13: Lowering paired operator to intrinsic opcode.

case OPR_ADDSUB:

{

TYPE_ID rtype = OPCODE_rtype (RT_LOWER_opcode(tree));

INTRINSIC mid;

OPCODE new_intr_opc;

switch (rtype){

case MTYPE_C4:

mid = OPCODE_To_INTRINSIC(WN_opcode(tree));

new_intr_opc = OPC_C4INTRINSIC_OP;

break;

}

// lower ing the operands here

...

// c r e a t e the new WHIRL with i n t r i n s i c opcode

nd = WN_Create_Intrinsic(new_intr_opc ,mid , 2, kids);

break;

}

138

8.3. Various optimizations at CGIR

8.3 Various optimizations at CGIR

In this section we present our work on the Code Generator Intermediate Represen-
tation (CGIR), namely:

• peephole-like optimizations to ensure the best possible code generation for the
implementations of floating-point operators;

• the extension of the integer range analysis framework for floating-point spe-
cialization.

Contrary to the transformations done at the higher WHIRL level, the optimizations
done here are target-specific but remain language-independent.

The motivation for working at this lower CGIR level is twofold. First, most
of the high- and mid-level compiler optimizations have been carried out, exposing
precise properties of the program that can be approximated by the Range Analysis
framework. Second, the semantic of each CGIR operator is precisely known for the
target, enabling even more precise Range Analysis computations.

These properties are important to implement peephole-like optimizations that
would be otherwise impossible to implement without range information, and to ex-
tend the Integer Range Analysis framework to prove positivity of floating-point ar-
guments.

8.3.1 CGIR overview

The lowest WHIRL level is finally lowered to a target dependent intermediate rep-
resentation, CGIR. Several target dependent optimizations can be carried out at
CGIR, including low level loop transformations, if-conversion, scheduling, register
allocation, and code selection. The integer range analysis framework is implemented
in the extended block optimizer (EBO), which works on extended blocks and per-
forms forward propagation, common expression elimination, constant folding, dead
code elimination, and special case transformations that are specific to an architec-
ture.

Basic structures of CGIR. The CGIR implementation is based on three kinds
of data structures: basic block, operation, and temporary name.

Basic block. Intermediate codes are partitioned into basic blocks (BB) [ALSU06],
which are maximal sequence of consecutive three-address instructions with the prop-
erties that:

• the control flow can only enter the basic block through the first instruction of
the block, that is, there are no jumps into the middle of the block;

• control will leave the block without halting or branching, except possibly at
the last instruction in the block.

The data structure of basic blocks in st200cc is shown in Table 8.7
CGIR operation. For each WHIRL node, one or a few CGIR operations (OPs)

are generated and inserted into a basic block. The structure of OP in st200cc is shown

139

Chapter 8. Compiler optimizations for floating-point support on the ST231

structure member description

id unique ID

general information
flags, BB entry, BB scheduled, BB asm, etc
annotations list of annotations (label, pragma, loopinfo,, etc)
rid region from WHIRL that contains this BB

next, prev sequential ordering
control-flow informationpreds, succs control-flow arcs with probabilities

freq estimated or profiled execution frequency

loop head bb basic block head of the loop that contains this BB
loops informationunrollings number of times a BB has been unrolled

nest level number of times a bb has been unrolled

ops sequential list of operations

operations information
next op map idx internal field to give a unique ID for operations in a BB
bb regs live information
branch wn information from the WHIRL

on the branch instruction at the end of a BB

Table 8.7: Structure of BB in st200cc.

in Table 8.8. Each OP represents a unique target machine instruction defined by its
opr opcode. OPs are implemented as quads, with operands and results represented
as temporary names (TNs). OPs can be queried through properties to allow code
transformations such as code reselection through peephole optimizations.

structure member description

srcpos source line number

general information

opr target operation (TOP)
variant more abstract information for branch,

compare, memory, and operations, etc
map idx unique ID for an operation in a BB
scycle scheduling date
flags OP copy, OP spill, etc

next, prev sequential order

BB information
bb BB where this op lives
unroll bb unrolling: original BB and unrolled replication
order relative order in BB

results, opnds number of results and operands
arguments information

res opnd array of operands followed by results

Table 8.8: Structure of OP in st200cc.

Temporary name. The compiler’s semantic analysis phase will select registers
for parameters and local variables, and choose machine-code addresses for procedure
bodies. But it is too early to determine exactly which registers are available, or
exactly where a procedure body will be located. We use TN as a temporary register
to hold such values or as a tag to note constant values to hold information of addresses
before they are really decided.

140

8.3. Various optimizations at CGIR

When TN denotes a register (TN is register()):

structure (union) member description

number register id
save creg callee saved register that this TN saves
class reg dedicated or allocated register ID and register class
spill spill information if this TN is spilled
home re-materialization information if this TN is re-materialize

Table 8.9: Register TN.

When TN holds constant values (TN is constant()):

values inquiry function structure (union) member

literal value TN has value() value: 64 bit literal value

enumeration TN is enum() ecv: enumeration description

label TN is label() label: label description
offset: offset to label

symbol TN is symbol() var: symbol description
relocs: relocations
offset: offset to symbol

Table 8.10: Constant values of TN.

Example on building an operator. The listing below gives the expander func-
tion which creates CGIR operator for the equality operator (==). Here the operator
is created at line 1 by function Build OP, where TOP cmpeq r r b is the target oper-
ation, b0, in0, in1, and ops are temporary names.

Listing 8.14: Example of building the CGIR operator for equality operator.

0 void expand_eq(TN* in0 , TN* in1 , OPS* ops){

1 TN *b0 = Build_RCLASS_TN (ISA_REGISTER_CLASS_branch) ;

2 Build_OP (TOP_cmpeq_r_r_b , b0, in0 , in1 , ops) ;

3 }

8.3.2 Improvement of integer support for 64-bit

The ST231 compiler supports the C11 standard ’long long’ type and its unsigned
variant as a 64-bit integral type, emulated on the 32-bit architecture. As we have
explained in § 3.4.1, when the emulation code is in the form of direct assembly
emission (’open code’), the emission is done at reasonably high CGIR level and
therefore it benefits from all further optimizations.

In this section we show an optimization made on the code emission of 64-bit
unsigned min operator at CGIR, which leads to better code generation when one of
the operand is some special constant.

141

Chapter 8. Compiler optimizations for floating-point support on the ST231

The C expression of the 64-bit unsigned min operator is shown at line 1 of the
listing below.

Listing 8.15: C function minul for 64-bit unsigned min.

0 uint64_t minul(uint64_t x, uint64_t y){

1 return (x < y)? x: y;

2 }

The CGIR operation expander function for minul is shown below:

Listing 8.16: Expanded CGIR operators for minul.

0 static void

1 Expand__minul(TN* ol0 , TN* oh0 , TN* il0 , TN* ih0 , TN* il1 , TN* ih1 , OPS* ops)

2 {

3 TN *b0_0_0 = Build_RCLASS_TN (ISA_REGISTER_CLASS_branch);

4 TN *b0_1_0 = Build_RCLASS_TN (ISA_REGISTER_CLASS_branch);

5 TN *r0_20_0 = Build_RCLASS_TN (ISA_REGISTER_CLASS_integer);

6 TN *r0_21_1 = Build_RCLASS_TN (ISA_REGISTER_CLASS_integer);

7 Build_OP (TOP_cmpltu_r_r_b , b0_0_0 , ih0 , ih1 , ops) ;

8 Build_OP (TOP_cmpeq_r_r_b , b0_1_0 , ih0 , ih1 , ops) ;

9 Build_OP (TOP_minu_r_r_r , r0_20_0 , il0 , il1 , ops) ;

10 Build_OP (TOP_targ_slct_r_r_b_r ,oh0 , b0_0_0 , ih0 , ih1 , ops) ;

11 Build_OP (TOP_targ_slct_r_r_b_r ,r0_21_1 ,b0_0_0 , il0 , il1 , ops) ;

12 Build_OP (TOP_targ_slct_r_r_b_r ,ol0 , b0_1_0 , r0_20_0 ,r0_21_1 , ops) ;

13 }

Assembly code for Listing 8.15:

Listing 8.17: Assembly code for minl

0 cmpltu $b1=$r17 , $r19 ## (cycle 0)

1 cmpeq $b0=$r17 , $r19 ## (cycle 0)

2 minu $r8=$r16 , $r18 ## (cycle 0)

3 minu $r17=$r17 , $r19 ## (cycle 0)

4 ;; ## (bundle 0)

5 slct $r16=$b1 , $r16 , $r18 ## (cycle 1)

6 ;; ## (bundle 1)

7 slct $r16=$b0 , $r8 , $r16 ## (cycle 2)

8 return $r63 ## (cycle 2)

9 ;; ## (bundle 2)

In our emulation for binary64 floating-point arithmetic, minl sometimes involves
some special constants. For example, mul2 of binary64 format.

uint64_t absX = X & 0x7fffffffffffffffLL;

uint64_t Rgen = X + minul(absX , (uint64_t)1 << 0x34);

142

8.3. Various optimizations at CGIR

The lower 32-bit of the constant, (uint64 t)1 << 0x34, is zero. According to the
CGIR expansion shown in Listing 8.16, the il1 in Line 9 is zero. Then, we can
conclude that r0 20 0 is zero, which leads to the minu operation in Line 2 of List-
ing 8.17 to be removed. However, no more result can be propagated and the latency
to evaluate the result remains the same.

Here, we propose a new expansion, which is shown below in Listing 8.18. Since
il1 in Line 2 of Listing 8.18 is zero, the result r0 20 0 is zero. Then this result
propagates to line 4, such that the result of selection r0 21 1 is zero, which leads to
a faster implementation shown in Listing 8.19.

Listing 8.18: Improved CGIR expansion for minl.

0 Build_OP (TOP_cmpeq_r_r_b , b0_1_0 , ih0 , ih1 , ops) ;

1 Build_OP (TOP_cmpgeu_r_r_b , b0_0_0 , ih0 , ih1 , ops) ;

2 Build_OP (TOP_minu_r_r_r , r0_20_0 , il0 , il1 , ops) ;

3 Build_OP (TOP_targ_slct_r_r_b_r , oh0 , b0_0_0 , ih1 , ih0 , ops) ;

4 Build_OP (TOP_targ_slct_r_r_b_r , r0_21_1 ,b0_1_0 , r0_20_0 , il1 , ops) ;

5 Build_OP (TOP_targ_slct_r_r_b_r , ol0 , b0_0_0 , r0_21_1 , il0 , ops) ;

Listing 8.19: Assembly generated by improved CGIR expansion.

0 cmpgeq $b1=$r17 , $r19 ## (cycle 0)

1 minu $r17=$r17 , $r19 ## (cycle 0)

2 ;; ## (bundle 0)

3 slct $r16=$b1 , $r0 , $r16 ## (cycle 1)

4 ;; ## (bundle 1)

8.3.3 Integer range analysis framework

Overview of range analysis operating on SSA form The standard range
analysis described in the literature (e.g. [Pat95b]) is an extension of the analysis
performed for constant propagation. A popular algorithm is the Sparse Conditional
Constant (SCC) algorithm [WZ91]; this algorithm operates on SSA form, and is used
as the basis of the implementation described here.

The SSA algorithm is described in terms of a lattice, where a lattice value repre-
sents the range of possible values of a variable. There are special lattice values TOP
and BOTTOM. TOP indicates an unvisited or uninitialized variable and BOTTOM indicates
a variable with unknown value.

The basic algorithm for forward analysis to calculate the value range for all
variables is:

• initialize all variables to TOP;

• add all instructions to a worklist;

• take an instruction from the worklist, and calculate the result range using the
current range of the operands;

143

Chapter 8. Compiler optimizations for floating-point support on the ST231

• add all instructions that use the result to the worklist, if the result range
changes;

• continue until the worklist is empty.

A whole family of range analyses can be defined by making changes to the values
held in the lattice:

• value range analysis, in which the lattice elements are [min:max] pairs of
integers;

• an extension to value range analysis, in which the lattice elements are sets of
[min:max] pairs;

• bit range analysis, in which the lattice elements are sign and number of signif-
icant bits;

• an analysis that may be useful for detecting alignments, in which the lattice
value is the number of least-significant zeros. For example, a pointer value is
4-byte aligned if it has at least two least-significant zeros.

In all these cases, the framework is identical, it is just the lattice implementation
that is changed.

It is also useful to have a backward analysis: this uses the same lattice, but visits
nodes backward. This calculates the range of values that are required by the uses of
a variable.

Implementation of integer range analysis framework on st200cc. This
optimization is implemented at CGIR, because at this level both properties of the
program and properties of the target are known, which enables the best possible
precision for range analysis computations.

The framework consists of two phases: range analysis and range propagation
(peephole optimizations). In the Open64 compiler, each phase is split into generic
and target specific part.

Range analysis. First, a target specific part is called to handle target specific
instructions. For instance the ST200 clz instruction creates values in the range of
[0,32]. Then, a target independent part acts on generic instruction types based on
standard Open64 compiler predicates.

Range propagation. After the range analysis has assigned a value range to each
variable, this information is used by the range propagation phase to perform various
code improvements, that are first target specific, and then generic.

Range propagation is indeed very similar to a “peepholing” transformation, where
the knowledge of ranges on operands of operations enables more powerful and precise
transformations.

8.3.4 Integer range analysis for shift operators

Here we detail a transformation made at the range propagation stage to expose
better ILP. This work has been published in [BJJL+10, §6].

144

8.3. Various optimizations at CGIR

Motivation. For floating-point support on the ST231, we often compute L, speci-
fied in Equation (4.13), the mantissa of the result, by a right shift based on the sum
of a format-related constant and a variable with predictable range. For example, L
is computed as follows in FSA for binary32 format.

0 // u in t 32 t S , nlz , L ;

1 // i n t 3 2 t u ;

2 nlz = countLeadingZeros(S);

3 u = max(3-nlz ,0);

4 L = S >> (C + u); //C i s a constant .

The right shift expression in line 4, S ≫ (C + u) (or similarly with a left shift),
can be transformed into (S ≫ C) ≫ u, which improves the parallelism by relaxing
the data dependency on u, provided that the following conditions hold:

u ∈ [0, 31], C ∈ [0, 31], u + C ∈ [0, 31].

Then, instead of S ≫ (C + u) that incurs the following computations:

[1] computation of u

[2] tmp = C + u

[3] S >> tmp

we get a potentially better use of ILP (|| here means “in parallel with”):

[1] tmp = S >> C || computation of u

[2] tmp >> u

Implementation. Thanks to the range analysis framework, the implementation
is very simple. At the propagation phase, when we first look for the following CGIR
operation sequence.

0 r2 = add r3 r4 (or immediate)

1 r0 = shl (resp. shr(u)) r1 r2

Then if we have the information that r2, r3, and r4 are in the range [0, 31] from
the analysis phase, we replace the operations by

0 r2 = shl (resp. shr(u)) r1 r4 (or immediate)

1 r0 = shl (resp. shr(u)) r2 r3

In fact, this compilation transformation helped us to find similar situations dur-
ing designing other floating-point operators and it is found to be applied in other
benchmarks during validation.

8.3.5 Diverting integer range analysis for floating-point
specialization

To select fused square-add (FSA) and addition of non-negative terms (addnn), we
need specific optimization to prove the positivity of some operands during the com-
pilation. Since an integer range analysis framework is already implemented in the

145

Chapter 8. Compiler optimizations for floating-point support on the ST231

compiler, we realize this optimization by diverting it for floating-point variables.
Since the method is same for both FSA and addnn, we detail only the design of
selecting FSA here.

Basic idea of selecting FSA. Listing 8.20 gives a typical routine to compute
sum of squares (2-norm). To select the operation at line 4 as FSA, a specialized case
of fused multiply-add (FMA) requires work in three steps.

1. Lowering FMA with squaring component to general FSA at WHIRL level;

2. Analyzing ranges of related floating-point variables by using the integer range
analysis framework;

3. Selecting FSA from general FSA at integer range propagation phase.

The first step is done at lowering floating-point opcode (H WHIRL) to intrinsic
opcode (M WHIRL), which is very similar to the selection of squaring and scaling.
Steps 2 and 3 are done at CGIR level.

Listing 8.20: Sample code for FSA.

0 float sum(float a[]){

1 float s = 0.0f;

2 int i;

3 for(i=0;i<N;i++)

4 s += a[i]*a[i];

5 return s;}

Selecting general FSA. The general FSA refers to the pattern that x · x + z
with no range requirement on z. To select this pattern, we check whether the two
operands of the multiplication of a floating-point FMA are identical or not.

Same as squaring and scaling by a constant, call WN To Intrinsic to compute the
intrinsic ID to lower High WHIRL (opcode = OPC F4MADD) to Mid WHIRL (opcode
= OPC F4INTRINSIC OP). The identity of the operands of the multiplication of an
FMA is checked.

if(opcode == OPC_F4MADD){

if (WN_Compare_Trees(kids[1],kids [2]) == 0) id = INTRN_SADDGS;

else id = INTRN_MADDS ;}

Then, we create the M WHIRL node. When the intrinsic code of the checked
WHIRL tree is not that of an FMA, it is a general FSA. Then we need only two
operands instead of three.

if((intrinsic_general != intrinsic) && (type== MTYPE_F4)){

nd = Extension_Aware_CreateIntrinsic(OPCODE_make_op(OPR_INTRINSIC_OP , res ,

MTYPE_V),

intrinsic , 2, kids);}

146

8.3. Various optimizations at CGIR

Analyzing the range of general FSA and selecting FSA. At CGIR level, we
analyze the range of s of Listing 8.20 during the phase of range analysis and select
the operation as an FSA when s is nonnegative. For a floating-point number, the
MSB of its interchange encoding is zero when the value is nonnegative. As the range
analysis is based on integer type, our work is to check if we can prove that the MSB
of variable s is zero.

After SSA, line 4 of Listing 8.20 is eventually interpreted as

s’ = s+ a[i]*a[i];

s = s’;

Thus, to analyze the range of s, we must analyze the range of each general FSA.
The listing below gives a general view of CGIR operators corresponding to the C
code of Listing 8.20.

Listing 8.21: Excerpt CGIR operators corresponding to Listing 8.20

0 TOP_move r1 = Const;

1 #loop head

2 ...

3 #loop body

4 TOP_call_i r = r1,r2

5 TOP_mov r1 = r

6 #loop tail

7 ...

Here, register r at line 4 holds the floating-point result of general FSA.
From the arithmetic point of view, floating-point numbers r1 and r2 satisfy,

r1 + r2 · r2 > r1. (8.1a)

Then, if we know the range of r1 ∈ [min,max], we have

range of(r1 + r2 · r2) = [min,∞). (8.1b)

To cast the floating-point range on the integer range analysis framework, we use
the fact that

• when the result is a positive finite number or a positive infinity, the sign bit of
the encoding is zero, which is required by the standard;

• when the input is a NaN, the result is a qNaN with MSB not changed, which
is guaranteed by our implementation, although the sign bit of NaN results
of general-computational operations are not specified by the IEEE 754 stan-
dard [IEE08, §6.3].

Thus, the range of r1 is denoted by a pair of unsigned integers [min, max]. We will
apply the following rules to bound the range of each general FSA.

r1 + r2 · r2 ∈ [r1, 0x7fffffff], when r1 ∈ [0, 0x7fffffff]. (8.2)

The detailed C implementation for (8.2) is shown in the listing below.

147

Chapter 8. Compiler optimizations for floating-point support on the ST231

Listing 8.22: Implementation of bounding the range of each general FSA.

0 if(opcode == TOP_call_i){

1 TN *opnd_op = OP_opnd(op, 0);

2 TN *opnd_r1 = OP_opnd(op, 1);

3 if(TN_is_symbol(opnd_op)){

4 if(strcmp(ST_name(TN_var(opnd_op)),"__saddgs")==0){

5 LRange_pc rref = lattice ->makeRangeMinMax (0,0 x7fffffff);

6 LRange_pc val1 = Value(opnd_r1);

7 if(rref ->ContainsOrEqual(val1)){ //whether r1 i s a p o s i t i v e number

8 if(val1 ->hasValue ()) {

9 // r1 i s a const , const + r2 ∗ r2 >= [const , i n f)

10 new_value = lattice ->makeRangeMinMax(val1 ->getValue () ,0x7fffffff);

11 }else{

12 // range o f (r1+r2 ∗ r2) = range o f (r1)

13 new_value = Value(opnd_r1);

14 }

15 return TRUE;

16 }

17 }

18 }

19 }

Here, we first check at line 4 whether it is a general FSA operator. Then, we read
the range of r1 and compare if it is in the range of [0, 0x7fffffff] at lines 6 and
7. If it is, we create the new range according to (8.2) to be linked with this general
FSA operator from line 9 to 13.

Then in the range propagation stage, we check for each general FSA whether r1

is in the range of [0, 0x7fffffff] and replace the general by FSA if r1 is in the
good range. The C code is given in Appendix B.

8.4 Experimental results: UTDSP benchmark’s FFT

test suite

This section gives the details on the code generation of the production compiler
for floating-point operations for the FFT test suite of the UTDSP benchmark [Lee].
This test suite provides complex radix-2 decimation-in-time 256-point and 1024-point
FFT implementations, whose butterfly computation is floating-point intensive.

In our experiment the production compiler manages to select the most efficient
custom floating-point operators for the butterflies, which leads to a speedup of 1.59x
over the usage of general floating-point operators only.

Typical pattern of a radix-2 FFT butterfly. Listing 8.23 displays the C code
of a radix-2 FFT butterfly in the test suite, whose pattern is typical for butterfly
calculations from the view of compilation.

148

8.4. Experimental results: UTDSP benchmark’s FFT test suite

Listing 8.23: A radix-2 FFT butterfly in the UTDSP benchmark.

0 temp_real = Wr * data_real [2*j*buttersPerGroup+buttersPerGroup+k] -

1 Wi * data_imag [2*j*buttersPerGroup+buttersPerGroup+k];

2 temp_imag = Wi * data_real [2*j*buttersPerGroup+buttersPerGroup+k] +

3 Wr * data_imag [2*j*buttersPerGroup+buttersPerGroup+k];

4

5 sub0 = data_real [2*j*buttersPerGroup+k] - temp_real;

6 add0 = data_real [2*j*buttersPerGroup+k] + temp_real;

7 data_real [2*j*buttersPerGroup+buttersPerGroup+k] = sub0;

8 data_real [2*j*buttersPerGroup+k] = add0;

9

10 sub1 = data_imag [2*j*buttersPerGroup+k] - temp_imag;

11 add1 = data_imag [2*j*buttersPerGroup+k] + temp_imag;

12 data_imag [2*j*buttersPerGroup+buttersPerGroup+k] = sub1;

13 data_imag [2*j*buttersPerGroup+k] = add1;

Code selection by using general floating-point operators. Normally, temp real

in Line 0 of Listing 8.23 can be computed by two floating-point multiplication and
one floating-point subtraction, or one multiplication and one FMA, shown in List-
ing 8.24. Here in line 2 of Listing 8.24, msubs means fused multiply-subtract,
◦(x · y− z), which is essentially FMA. Respectively, temp imag in line 2 can be com-
puted by two multiplication and one addition, or one multiplication and one FMA
(madds at Line 2 of Listing 8.25).

Listing 8.24: Typical assembly code computing temp real of the ST231.

0 call $r63=__muls ## __muls

1 ;;

2 call $r63=__msubs ## __msubs

3 ;;

Listing 8.25: Typical assembly code computing temp imag of the ST231.

0 call $r63=__muls ## __muls

1 ;;

2 call $r63=__madds ## __madds

3 ;;

Meanwhile, add0 and sub0 (resp. add1 and sub1) in Listing 8.23 are typically
computed by one floating-point addition and one floating-point subtraction, shown
in Listing 8.26.

Listing 8.26: Typically assembly code computing sub0 and add0 of the ST231.

0 call $r63=__adds ## __adds

1 ;;

2 call $r63=__subs ## __subs

149

Chapter 8. Compiler optimizations for floating-point support on the ST231

3 ;;

Code selection by using custom floating-point operators. With the new pro-
duction compiler, the computation of temp real (resp. temp imag) can be selected
as dpsubs (resp. dps). The assembly code generated is given in Listing 8.27.

Listing 8.27: Assembly code computing temp real and temp imag by DP2.

0 call $r63=__dpsubs ## __dpsubs

1 ;;

2 call $r63=__dps ## __dps

3 ;;

The two calls in Listing 8.26 are merged to a single one to adspairs, computing
addsub pair, shown in Listing 8.28.

Listing 8.28: Assembly code computing sub0 and add0 by addsub.

0 call $r63=__adspairs ## __adspairs

In this experiment, we see that a radix-2 FFT butterfly can be computed by
using only custom floating-point operators, that is, each butterfly can be computed
by 2 DP2 and 2 addsub.

Table 1.6 in Chapter 1 (reproduced below) gives the usage of custom operators
in some test suites of the UTDSP benchmark and we observe that the production
compiler achieves to select most of the custom operators from the source code.

custom operators selected

FFT-256,1024 DP2 (50%), addsub (50%)
Latnrm-8 DP2 (67%), FMA (29%)
Latnrm-32 DP2 (66%), FMA (34%)

SPE DP2 (20%), FMA (13%), addsub (9%),
SOS (5%), square (1%)

ADPCM FMA (25%), DP2 (8%), square (4%)
LPC FMA (72%), DP2 (4%), square (2%),

addsub (<1%)

Table 8.11: Custom operators selected.

150

Chapter 9

Conclusions and perspectives

In this thesis we have proposed a set of custom floating-point operators, and shown
the benefits of having optimized software custom floating-point support to signifi-
cantly speed up both individual calls and embedded applications on VLIW integer
processors like the ST231. We have detailed the algorithms and implementations of
squaring, scaling and its specializations, two-dimensional dot product and its special-
ization fused multiply-add, and simultaneous sine and cosine; we have also detailed
the techniques developed in the compiler to select such operations in application
codes.

This work has contributed to two complementary domains: computer arithmetic
designs and compiler optimizations. For each of these domains, we present below
our conclusions as well as some possible directions for future research.

Computer arithmetic designs

Over all the custom operators, we observe on the ST231 that for the binary32 format
and ◦ = RN, the specialized operators introduce speedups ranging from 1.4 to 4.2
compared with their general operators of FLIP 1.0; the fused and paired operators
provide speedups range from 1.02 to 1.95 compared with their naive implementations
using general operators of FLIP 1.0. For all these operators, except FMA, we also
observe significant reductions in code size. Similar improvements can be observed
for other rounding modes as well.

Although our implementations are optimized for the binary32 format, the under-
lying design of all the operators has been parametrized by the format and generically
described in an XML-based scheme. As a result, the implementations can be scaled
to other formats like binary64 or binary128 as soon as the 64-bit or 128-bit integer
arithmetic is supported.

On the ST231, the 64-bit integer layer exists naturally in the compiler which
supports the ANSI C11 ’long long’ type, and for which lots of efforts have been
done for code generation and optimization. Thanks to this support and to our
parametrized approach, we obtain the C codes for the binary64 format without extra
development cost - except for sincos. Table 9.1 gives the corresponding performances
and, when comparing with the performances for the binary32 format (Table 1.1), we
see that the latencies increase by a factor of 2 to 3.9 (DP2, RZ), which seems to be
reasonable, since we expect a slowdown of 2 to 4 because of the cost of the emulation
of 64-bit integer support compared to 32-bit native instructions.

On the other hand, although these codes for the binary64 format may be sub-
optimal, in our experiments we observe that for DP2 and FMA, they are at least
2x faster than the naive implementations using operators from the original ST li-

151

Chapter 9. Conclusions and perspectives

brary for double precision; for other custom operators the speedups are even more
significant.

RN RU RD RZ

mul2 9 [28] 11 [35] 12 [36] 11 [33]
div2 11 [22] 11 [34] 11 [34] 10 [29]

scaleB 28 [101] 29 [103] 29 [103] 22 [74]
square 26 [83] 25 [78] 22 [67] 22 [67]
andnn 29 [104] 30 [99] 26 [84] 26 [84]
FSA 58 [222] 56 [212] 45 [162] 45 [162]
FMA 115 [443] 111 [433] 110 [428] 104 [403]
SOS 65 [236] 63 [225] 53 [177] 53 [177]
DP2 182 [704] 178 [691] 178 [694] 170 [661]

addsub 65 [226] 70 [235] 70 [235] 64 [224]

Table 9.1: Performances for the binary64 format on the ST231 in # cycles [# in-
structions].

The work in computer arithmetic designs shows a number of directions that
should be followed in the future:

A first direction deals with the sincos operator. Since our current design for sincos
is for the binary32 format, the next step would be to extend it to the binary64 format.
This can be achieved by using the same software toolchain to find a new polynomial
approximation and to generate its certified evaluation scheme. On the other hand,
we would also like to provide a parametrized design for range reduction: so far we
have assumed an input in [−π/4, π, 4], but for large inputs it remains to be studied
how reduction to that range can be performed accurately enough and with high ILP
exposure for the binaryk format on VLIW integer architectures.

As a second direction, we should also investigate algorithm designs and their op-
timized implementations for more floating-point operators. For example, correctly-
rounded sums of more than two terms, like x + y + z or x + y + z + t, could be
worth being implemented. Also, one step beyond sum of squares (SOS) would
be to compose it with square root to get a correctly-rounded hypotenuse function√

x2 + y2, as recommended by the standard. Finally, its three-dimensional counter-
part

√
x2 + y2 + z2 should be interesting for 3D-graphics applications. In all these

cases, although high speedups can hardly be expected, the latencies should still be
lower than the ones of the naive implementations and, more importantly, the impact
on the accuracy, especially for sums of many terms, could be significant.

A third direction would be to study further the impact on performances (la-
tency, code size) of relaxing the IEEE 754 specification used so far. By relaxed
specifications, we mean variants such as finite-math-only (which discards ∞, NaN,
and overflow) or without subnormals, as well as variants having a proven accuracy
of only a few ulps. In the special case of squaring, we have already seen that at
most one cycle is saved for relaxed variants like finite-math-only or without subnor-
mals. We can expect similar conclusions for our other custom operators, but this

152

Compiler optimizations

remains to be done. Also—and this seems more challenging, what exactly can we
gain when relaxing the accuracy constraints? For example, OpenCL [Ope] requires
only 4 ulps of accuracy for sine and cosine, but it is not clear if a significant speedup
(by a factor of 2, say) is then possible. Ideally, to explore this, we should have de-
signs parametrized not only by the format, as we do now, but also by the targeted
accuracy.

Compiler optimizations

The optimizations to select custom floating-point operators and to ensure the best
possible code selection when compiling the implementations of each floating-point
operator described in this thesis have been implemented in a specific variant of
the Open64 compiler for the ST231 target. Along with the libgcc library including
the implementation of the specialized operators, this project passes successfully the
whole industrial test suite mandatory to deliver this improved compiler to end-
users. To our knowledge, this is the first time that a floating-point range analysis
technique is implemented and used for optimization in an industrial, production-
quality compiler.

Thanks to this production compiler, real applications can benefit from the cus-
tom floating-point operators proposed in this thesis. We have seen that the UTDSP
benchmark’s FFT test suites can be fully performed by DP2 and addsub operations
without using other general operators. The complete support of custom opera-
tors introduces speedups ranging from 1.17 to 1.59 on various UTDSP kernels and
applications (see Table 1.5). For the graphics applications, we have also observed
speedups from 1.13 to 1.45 by comparison with using only general operators provided
by FLIP 1.0 (see Table 6.6).

The work in compiler optimizations shows a number of directions that should be
followed in the future:

A first direction is to deal with the weaknesses in the current optimizations. The
selection of custom operators is not exempt from a few open issues, which are for-
tunately not exhibiting functional issues: for instance we have observed, but not
been able to fix so far, that the selection of arithmetic operators pairs was very
sensitive to the shapes of the expression used and thus sometimes missed. Another
issue is that, from the user standpoint, the control of fused floating-point operation
selection through global options is not precise enough in its scope. Ideally, our imple-
mentation should account for the C11 pragma FP CONTRACT semantic, as described
in the ISO/IEC 9899:2011 standard [Int11]: the contraction of expressions would
be naturally allowed or disallowed in the regions controlled by this pragma.

The second direction would be to implement the native 128-bit integer support
in the compiler. Since our design for floating-point operators is fully parametrized,
on the ST231, the support of the binary128 format reduces to the support of 128-bit
integer arithmetic. The 128-bit support exists only as a prototype library with no
native implementation in the compiler: thus at the moment it is not as efficient as
it could be, suffering from the representation of 128-bit types by structures. Ideally,

153

Chapter 9. Conclusions and perspectives

implementing the native support for the uint128 t and int128 t gcc extensions
(at the moment limited to 64-bit machines) would alleviate these issues.

As a third direction, we would like to improve the range analysis techniques for
floating-point operations. First, the current simple technique based on integer range
analysis could be further extended to catch more positivity cases. For this, an imme-
diately usable idea would be to augment the precision of the analysis by recognizing
elementary functions calls in the libm and propagating range information from them.
Furthermore, the implementation level choices done in this work (WHIRL vs CGIR)
could be revisited, in particular, a range analysis framework could be implemented
at the WHIRL level, thus benefiting to all the compiler targets, but it remains to be
proved if the information available would be sufficient to compute information equiv-
alent to what we get at the CGIR level. Finally, we think that the next key enabler
to implement more compilation-time floating-point optimizations is the availability
of a pure floating point range analysis framework in the compiler, possibly helped
by user-level annotations, specifically designed to use various numerical abstract
domains, and defining properties of all the libm functions. This would allow the
exploration of new floating-point optimizations, such as the specialization of libm
entry points to specific domains at their point of use.

154

Bibliography

[AC00] Tor Aamodt and Paul Chow. Embedded ISA support for enhanced
floating-point to fixed-point ANSI-C compilation. In Proceedings of the
2000 international conference on Compilers, architecture, and synthesis
for embedded systems, CASES’00, pages 128–137, New York, NY, USA,
2000. ACM. [cited on page(s) 1]

[ADN07] Christian Artigues, Sophie Demassey, and Emmanuel Neron. Resource-
Constrained Project Scheduling: Models, Algorithms, Extensions and
Applications. ISTE, 2007. [cited on page(s) 27]

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, August 2006. [cited on page(s) 139]

[BDR+09] Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont
de Dinechin, and Christophe Guillon. Revisiting out-of-SSA translation
for correctness, code quality and efficiency. In Proceedings of the 7th
annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO’09, pages 114–125, Washington, DC, USA, 2009.
IEEE Computer Society. [cited on page(s) 27]

[Bet08] Timo Betcke. Optimal scaling of generalized and polynomial eigenvalue
problems. SIAM J. Matrix Anal. Appl., 30(4):1320–1338, 2008. [cited
on page(s) 60]

[BGS00] Rastislav Bod́ık, Rajiv Gupta, and Vivek Sarkar. Abcd: eliminating
array bounds checks on demand. In PLDI, pages 321–333, 2000. [cited
on page(s) 3]

[BJJL+10] Christian Bertin, Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Hervé
Knochel, Christophe Monat, Christophe Mouilleron, Jean-Michel
Muller, and Guillaume Revy. Techniques and tools for implementing
IEEE 754 floating-point arithmetic on VLIW integer processors. In
Proceedings of PASCO’10, pages 1–9. ACM, 2010. [cited on page(s) 2,
5, 31, 144]

[Blu78] James L. Blue. A portable Fortran program to find the Euclidean norm
of a vector. ACM Trans. Math. Soft., 4(1):15–23, 1978. [cited on page(s)
54, 56]

155

Bibliography

[Bru09] Christian Bruel. If-conversion for embedded VLIW architectures. Inter-
national Journal of Embedded Systems (IJES), 4(1):2–16, 2009. [cited
on page(s) 27, 29]

[CC93] W. J. Cody and Jerome T. Coonen. Algorithm 722: Functions to sup-
port the IEEE standard for binary floating-point arithmetic. ACM
Trans. Math. Soft., 19(4):443–451, 1993. [cited on page(s) 61, 80]

[CC99] Andrea G. M. Cilio and Henk Corporaal. Floating point to fixed point
conversion of C code. In Proceedings of the 8th International Conference
on Compiler Construction, Held as Part of the European Joint Confer-
ences on the Theory and Practice of Software, ETAPS’99, CC’99, pages
229–243, London, UK, UK, 1999. Springer-Verlag. [cited on page(s) 1]

[CHT02] Marius Cornea, John Harrison, and Ping Tak Peter Tang. Scientific
Computing on ItaniumR©-based Systems. Intel Press, 2002. [cited on
page(s) 2, 113]

[CJL10] Sylvain Chevillard, Mioara Joldes, and Christoph Lauter. Sollya: an
environment for the development of numerical codes. In Proc. of the
Third International Congress on Mathematical Software (ICMS), pages
28–31. LNCS, Springer, 2010. [cited on page(s) 114, 117]

[CP07] Yee Jern Chong and Sri Parameswaran. Automatic application specific
floating-point unit generation. In Proceedings of the conference on De-
sign, automation and test in Europe, DATE ’07, pages 461–466, San
Jose, CA, USA, 2007. EDA Consortium. [cited on page(s) 2]

[CP09] Yee Jern Chong and Sri Parameswaran. Custom floating-point unit
generation for embedded systems. Trans. Comp.-Aided Des. Integ. Cir.
Sys., 28(5):638–650, May 2009. [cited on page(s) 2]

[crl] CR-Libm, a library of correctly rounded elementary functions in double
precision. Available at http://lipforge.ens-lyon.fr/www/crlibm/.
[cited on page(s) 113]

[dD07] Benoit Dupont de Dinechin. Time-indexed formulations and a large
neighborhood search for the resource-constrained modulo scheduling
problem. In 3rd Multidisciplinary International Scheduling conference:
Theory and Applications (MISTA), 2007. [cited on page(s) 27]

[DdD07] Jérémie Detrey and Florent de Dinechin. Floating-point trigonometric
functions for FPGAs. In Proc. IEEE International Conference on Field-
Programmable Logic and Applications (FPL), pages 29–34, 2007. [cited
on page(s) 113]

[dDP11] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic
data paths with FloPoCo. IEEE Design & Test of Computers, 28(4):18–
27, July 2011. [cited on page(s) 2]

156

http://lipforge.ens-lyon.fr/www/crlibm/

[Dem84] J. Demmel. Underflow and the reliability of numerical software. SIAM
Journal on Scientific and Statistical Computing, 5(4):887–919, 1984.
[cited on page(s) 20]

[EL04] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann,
2004. [cited on page(s) 21, 42, 89, 90]

[FBF+00] Paolo Faraboschi, Geoffrey Brown, Joseph A. Fisher, Giuseppe Desoli,
and Fred Homewood. Lx: a technology platform for customizable VLIW
embedded processing. In Proc. of the 27th International Symposium on
Computer Architecture (ISCA), pages 203–213. ACM, 2000. [cited on
page(s) 23]

[fdl] FdLibM: C math library for machines that support IEEE 754 floating-
point. Available at http://www.netlib.org/fdlibm/. [cited on
page(s) 61]

[GB91] Shmuel Gal and Boris Bachelis. An accurate elementary mathematical
library for the IEEE floating point standard. ACM Trans. Math. Softw.,
17:26–45, March 1991. [cited on page(s) 113]

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics: A Foundation for Computer Science. Addison-Wesley,
Reading, MA, USA, second edition, 1994. [cited on page(s) 47]

[Gök08] Mustafa Gök. Integer squarers with overflow detection. Computers &
Electrical Engineering, 34(5):378–391, 2008. [cited on page(s) 42]

[Gol91] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.
[cited on page(s) 13]

[GRBB05] Christophe Guillon, Fabrice Rastello, Thierry Bidault, and Florent
Bouchez. Procedure placement using temporal-ordering information:
Dealing with code size expansion. J. Embedded Comput., 1(4):437–459,
December 2005. [cited on page(s) 26]

[Hau] John Hauser. The SoftFloat and TestFloat Packages. Available at
http://www.jhauser.us/arithmetic/. [cited on page(s) 1]

[Hau96] John R. Hauser. Handling floating-point exceptions in numeric pro-
grams. ACM Transactions on Programming Languages and Systems,
18:139–174, 1996. [cited on page(s) 20]

[HH05] Desmond J. Higham and Nicholas J. Higham. MATLAB Guide Second
Edition. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2005. [cited on page(s) 60, 81]

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, PA, USA, second edition, 2002. [cited on page(s)
4, 13, 41, 56, 86]

157

http://www.netlib.org/fdlibm/
http://www.jhauser.us/arithmetic/

Bibliography

[HPW90] Eldon R. Hansen, Merrell L. Patrick, and Richard L. C. Wang. Polyno-
mial evaluation with scaling. ACM Trans. Math. Softw., 16(1):86–93,
1990. [cited on page(s) 59]

[IEE08] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. [cited on page(s) 1, 2, 3, 4, 13,
14, 15, 16, 18, 19, 42, 44, 60, 86, 87, 88, 128, 147]

[Int99] International Organization for Standardization. Programming Lan-
guages – C. ISO/IEC Standard 9899:1999, Geneva, Switzerland, De-
cember 1999. [cited on page(s) 47]

[Int11] International Organization for Standardization. Programming Lan-
guages – C. ISO/IEC Standard 9899:201x, Geneva, Switzerland, April
2011. [cited on page(s) 60, 153]

[JJL12] Claude-Pierre Jeannerod and Jingyan Jourdan-Lu. Simultaneous
floating-point sine and cosine for VLIW integer processors. In Proceed-
ings of the 23rd IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2012. [cited on page(s)
11, 113]

[JJLMR11] Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Christophe Monat, and
Guillaume Revy. How to square floats accurately and efficiently
on the ST231 integer processor. In 10.1109/ARITH.2011.19, editor,
Proceedings of the 20th IEEE Symposium on Computer Arithmetic
(ARITH’20), pages 77–81, Tübingen, Germany, July 2011. IEEE Com-
puter Society. [cited on page(s) 10, 41]

[JKMR11] Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and Guil-
laume Revy. Computing floating-point square roots via bivariate poly-
nomial evaluation. IEEE Trans. on Computers, 60(2):214–227, 2011.
[cited on page(s) 116, 121]

[JLM12] Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller. Fur-
ther analysis of Kahan’s algorithm for the accurate computation of 2×2
determinants. Mathematics of Computation, 2012. to appear. Prelimi-
nary version available at http://hal-ens-lyon.archives-ouvertes.
fr/ensl-00649347/en/. [cited on page(s) 86]

[JR09a] Claude-Pierre Jeannerod and Guillaume Revy. FLIP 1.0: a fast floating-
point library for integer processors. http://flip.gforge.inria.fr/,
February 2009. [cited on page(s) 1, 52]

[JR09b] Claude-Pierre Jeannerod and Guillaume Revy. Optimizing correctly-
rounded reciprocal square roots for embedded VLIW cores. In Proceed-
ings of the 43rd Asilomar Conference on Signals, Systems, and Com-
puters (Asilomar’09), Pacific Grove, CA, USA, November 2009. [cited
on page(s) 2]

158

http://hal-ens-lyon.archives-ouvertes.fr/ensl-00649347/en/
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00649347/en/
http://flip.gforge.inria.fr/

[Kah81] W. Kahan. Why do we need a floating-point arithmetic standard?,
1981. [cited on page(s) 13]

[Kah96] W. Kahan. Lecture notes on the status of IEEE Standard 754 for binary
floating-point arithmetic. Manuscript, May 1996. [cited on page(s) 4,
20]

[Kah98] W. Kahan. Matlab’s loss is nobody’s gain. Available at http://www.

cs.berkeley.edu/~wkahan/MxMulEps.pdf, 1998. [cited on page(s) 86]

[Knu87] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming. Addison-Wesley, third edition, 1987. [cited on
page(s) 118]

[Lee] Corinna G. Lee. UTDSP Benchmark Suite. Available at http://www.
eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html.
[cited on page(s) 8, 111, 148]

[LS07] Karlo Gusso Lenzi and Osamu Saotome. Optimized math functions
for a fixed-point DSP architecture. In 19th International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD), pages 125–132, 2007. [cited on page(s) 113]

[Mar00] Peter Markstein. IA-64 and Elementary Functions: Speed and Preci-
sion. Prentice-Hall, Englewood Cliffs, NJ, 2000. [cited on page(s) 113]

[Mar03] Peter Markstein. Accelerating sine and cosine evaluation with compiler
assistance. In Proc. of the 16th IEEE Symposium on Computer Arith-
metic (ARITH), pages 137–140. IEEE Computer Society, 2003. [cited
on page(s) 2, 113]

[MBdD+10] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point
Arithmetic. Birkhäuser, 2010. [cited on page(s) 13, 14, 19, 21, 50, 89,
90, 98]

[MCCS02] Daniel Ménard, Daniel Chillet, Franois Charot, and Olivier Sentieys.
Automatic floating-point to fixed-point conversion for DSP code gener-
ation. In Proceedings of the 2002 international conference on Compil-
ers, Architecture, and Synthesis for Embedded Systems (CASES), pages
270–276, 2002. [cited on page(s) 1]

[MCS05] A. Mitra, M. Chakraborty, and H. Sakai. A block floating-point treat-
ment to the LMS algorithm: efficient realization and a roundoff error
analysis. IEEE Transactions on Signal Processing, 53(12):4536–4544,
2005. [cited on page(s) 1]

[Mel] Guillaume Melquiond. Gappa - génération automatique de preuves de
propriétés arithmétiques. http://gappa.gforge.inria.fr/. [cited on
page(s) 114, 117]

159

http://www.cs.berkeley.edu/~wkahan/MxMulEps.pdf
http://www.cs.berkeley.edu/~wkahan/MxMulEps.pdf
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://gappa.gforge.inria.fr/

Bibliography

[MR11] Christophe Mouilleron and Guillaume Revy. Automatic generation of
fast and certified code for polynomial evaluation. In Proc. of the 20th
IEEE Symposium on Computer Arithmetic (ARITH), pages 233–242.
IEEE Computer Society, 2011. [cited on page(s) 114, 122]

[MRS+01] Scott Mahlke, Rajiv Ravindran, Michael Schlansker, Robert Schreiber,
and Timothy Sherwood. Bitwidth cognizant architecture synthesis of
custom hardware accelerators. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20:1355–1371, 2001. [cited
on page(s) 3]

[Mul05] Jean-Michel Muller. On the definition of ulp(x). Technical Report 2005-
09, École normale supérieure de Lyon, Laboratoire de l’Informatique du
Parallélisme, 2005. [cited on page(s) 21]

[Mul06] Jean-Michel Muller. Elementary Functions, Algorithms and Implemen-
tation. Birkhäuser Boston, MA, USA, second edition, 2006. [cited on
page(s) 113]

[Ope] OpenCL 1.2 Specification. version 15, released November 15, 2011,
http://www.khronos.org/registry/cl/. [cited on page(s) 153]

[Ope00a] WHIRL Intermediate Language Specification, October 2000. Available
from http://www.open64.net/documentation/manuals.html. [cited on
page(s) 128, 129]

[Ope00b] WHIRL Symbol Table Specification, October 2000. Available
from http://www.open64.net/documentation/manuals.html. [cited on
page(s) 130]

[Pat95a] Jason R. C. Patterson. Accurate static branch prediction by value range
propagation. SIGPLAN Not., 30(6):67–78, June 1995. [cited on page(s)
3]

[Pat95b] Jason R. C. Patterson. Accurate static branch prediction by value range
propagation. SIGPLAN Not., 30(6):67–78, June 1995. [cited on page(s)
143]

[PKS00] Vassilis Paliouras, Konstantina Karagianni, and Thanos Stouraitis. A
floating-point processor for fast and accurate sine/cosine evaluation.
IEEE Trans. on Circuits and Systems - Part II: Analog and Digital
Signal Processing, 47(5):441–451, 2000. [cited on page(s) 113]

[PR69] B. N. Parlett and C. Reinsch. Balancing a matrix for calculation of
eigenvalues and eigenvectors. Numerische Mathematik, 13(4):293–304,
1969. [cited on page(s) 60]

[Pri04] Douglas M. Priest. Efficient scaling for complex division. ACM Trans.
Math. Softw., 30(4):389–401, 2004. [cited on page(s) 59]

160

[PTVF07] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery.
Numerical Recipes Third Edition: The Art of Scientific Computing.
Cambridge University Press, 32 Avenue of the Americas, NY 10013-
2473, USA, 2007. [cited on page(s) 41, 59, 60, 81]

[Pyt] Python v2.7.3 documentation. [cited on page(s) 37]

[Rai06] Saurabh-Kumar Raina. FLIP: a Floating-point Library for Integer Pro-
cessors. PhD thesis, ENS de Lyon, France, September 2006. [cited on
page(s) 42, 113, 114]

[Rev09] Guillaume Revy. Implementation of binary floating-point arithmetic
on embedded integer processors: polynomial evaluation-based algorithms
and certified code generation. PhD thesis, Université de Lyon - ÉNS de
Lyon, France, December 2009. [cited on page(s) 1, 2, 20, 54]

[Sal09] Hani H. Saleh. Fused Floating-Point Arithmetic For DSP. PhD thesis,
The University of Texas at Austin, May 2009. [cited on page(s) 2]

[SEES08] Hani H. Saleh and Jr Earl E. Swartzlander. A floating-point fused dot-
product unit. In 2008 IEEE International Conference on Computer
Design (ICCD 2008), pages 427–431, Lake Tahoe, Canada, 2008. [cited
on page(s) 2, 86]

[SGPB11] Rodrigo Sol, Christophe Guillon, Fernando Magno Quintão Pereira,
and Mariza A. S. Bigonha. Dynamic elimination of overflow tests in
a trace compiler. In Proceedings of the 20th international conference
on Compiler construction: part of the joint European conferences on
theory and practice of software, CC’11/ETAPS’11, pages 2–21, Berlin,
Heidelberg, 2011. Springer-Verlag. [cited on page(s) 3]

[Shi10] Naoki Shibata. Efficient evaluation methods of elementary functions
suitable for SIMD computation. Computer Science - Research and De-
velopment, 25(1-2):25–32, 2010. [cited on page(s) 113]

[Sim08] Axel Simon. Value-Range Analysis of C Programs: Towards Proving
the Absence of Buffer Overflow Vulnerabilities. Springer Publishing
Company, Incorporated, 1 edition, 2008. [cited on page(s) 3]

[SS12] Earl E. Swartzlander and Hani H. M. Saleh. FFT implementation with
fused floating-point operations. IEEE Trans. on Computers, 61(2):284–
288, 2012. [cited on page(s) 2, 86]

[SSDT05] Eric M. Schwarz, Martin Schmookler, and Son Dao Trong. FPU im-
plementations with denormalized numbers. IEEE Trans. Comput.,
54(7):825–836, July 2005. [cited on page(s) 20]

[ST209] ST200 VLIW Series - ST200 run-time architecture manual, June 2009.
[cited on page(s) 29]

161

[Ste74] P. H. Sterbenz. Floating-point computation. Prentice-Hall series in
automatic computation. Prentice-Hall, 1974. [cited on page(s) 20]

[Tan90] Ping Tak Peter Tang. Some software implementations of the functions
sine and cosine. Technical Report ANL-90/3, Argonne National Labo-
ratory, Argonne, Ill., April 1990. [cited on page(s) 113]

[Tis06] Arnaud Tisserand. Hardware operator for simultaneous sine and co-
sine evaluation. In Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), volume 3, pages 992–995, 2006.
[cited on page(s) 113]

[VB11] Álvaro Vázquez and Javier D. Bruguera. Composite iterative algorithm
and architecture for q-th root calculation. In Proceedings of the 20th
IEEE Symposium on Computer Arithmetic (ARITH-20), pages 52–61,
Tübingen, Germany, July 2011. [cited on page(s) 2]

[W3C] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). [cited
on page(s) 37]

[WSS01] E. G. Walters, J. Schlessman, and M. J. Schulte. Combined unsigned
and two’s complement hybrid squarers. In Proceedings of the thirty-
fifth Conference on Signals, Systems, and Computers (Asilomar 2001),
volume 1, pages 861–866, Asilomar, Pacific Grove, CA , USA, 2001.
IEEE. [cited on page(s) 42]

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):181–
210, April 1991. [cited on page(s) 143]

A Some C implementations for
various integer functions

Implementation of 32-bit min operators.

inline int32_t min(int32_t x, int32_t y){

return (x<y)?x:y;

}

inline uint32_t minu(uint32_t x, uint32_t y){

return (x<y)?x:y;

}

Implementation of 32-bit max operators.

inline int32_t max(int32_t x, int32_t y){

return (x>y)?x:y;

}

inline uint32_t maxu(uint32_t x, uint32_t y){

return (x>y)?x:y;

}

Implementation of unsigned 32 × 32 → 32 multiplication.

inline uint32_t mul(uint32_t x, uint32_t y){

uint64_t a = x;

uint64_t b = y;

uint64_t r = (a * b) >> 32;

return r;

}

Implementation of unsigned 64-bit multiplications, mulh64, mull64.

static inline uint32_t mulh32(uint32_t x,uint32_t y){

uint64_t r = (uint64_t)x*(uint64_t)y;

return (uint32_t)(r>>32);

}

static inline uint32_t mull32(uint32_t x,uint32_t y){

uint64_t r = (uint64_t)x*(uint64_t)y;

163

A Some C implementations for various integer functions

return (uint32_t)r;

}

uint64_t mulh64(uint64_t x, uint64_t y){

uint32_t x1,x0,y1 ,y0,xy11h ,xy11l ,xy10h ,xy10l ,xy01h ,xy01l ,xy00h;

uint64_t A,B,C,Rh ,Rl;

x0 = (uint32_t)x;

x1 = (uint32_t)(x>>32);

y0 = (uint32_t)y;

y1 = (uint32_t)(y>>32);

xy10l = mull32(x1,y0);

xy01l = mull32(x0,y1);

xy10h = mulh32(x1,y0);

xy01h = mulh32(x0,y1);

xy00h = mulh32(x0,y0);

xy11l = mull32(x1,y1);

xy11h = mulh32(x1,y1);

A = __st200addcg(xy10l ,xy01l ,0);

B = __st200addcg(xy10h ,xy01h ,A>>32);

C = __st200addcg(xy00h ,(uint32_t)A,0);

Rl= __st200addcg(xy11l ,(uint32_t)B,C>>32);

Rh= __st200addcg(xy11h ,(uint32_t)(B>>32),Rl >>32);

return (Rh <<32)|((Rl <<32) >>32);

}

inline uint64_t mull64(uint64_t x, uint64_t y){

return x*y;

}

164

Implementation of unsigned 128-bit multiplications, mulh128, mull128.

typedef struct {

uint64_t l;

uint64_t h;

}uint128_t;

static inline uint64_t mul32(uint32_t x, uint32_t y){

uint64_t r = (uint64_t)x*(uint64_t)y;

return r;

}

inline uint128_t mulh128(uint128_t u, uint128_t v){

/∗ !

(a ∗2ˆ(96)+b∗2ˆ(64)+c ∗2ˆ(32)+d) ∗(e ∗2ˆ(96)+f ∗2ˆ(64)+g ∗2ˆ(32)+h)

= (ae) ∗2ˆ(192) +(a f+be) ∗2ˆ(160)+(ag+ce+bf) ∗2ˆ(128)

+(ah+de+bg+c f) ∗2ˆ(96)+(bh+df+cg) ∗2ˆ(64)+(ch+dg) ∗2ˆ(32)+dh

∗/

uint32_t a,b,c,d,e,f,g,h;

uint64_t r7,r6,r5 ,r4,r3,r2,r1,r0;

uint64_t ae,af,ag ,ah,be,bf,bg,bh ,ce,cf,cg ,ch,de,df ,dg,dh;

uint128_t r;

a = (uint32_t)(u.h>>32);

b = (uint32_t)((u.h<<32) >>32);

c = (uint32_t)(u.l>>32);

d = (uint32_t)((u.l<<32) >>32);

e = (uint32_t)(v.h >>32);

f = (uint32_t)((v.h <<32) >>32);

g = (uint32_t)(v.l >>32);

h = (uint32_t)((v.l<<32) >>32);

dh= mul32(d,h);

ch= mul32(c,h);

bh= mul32(b,h);

ah= mul32(a,h);

dg= mul32(d,g);

cg= mul32(c,g);

bg= mul32(b,g);

ag= mul32(a,g);

df= mul32(d,f);

165

A Some C implementations for various integer functions

cf= mul32(c,f);

bf= mul32(b,f);

af= mul32(a,f);

de= mul32(d,e);

ce= mul32(c,e);

be= mul32(b,e);

ae= mul32(a,e);

/∗ !

(a ∗2ˆ(96)+b∗2ˆ(64)+c ∗2ˆ(32)+d) ∗(e ∗2ˆ(96)+f ∗2ˆ(64)+g ∗2ˆ(32)+h)

= (ae) ∗2ˆ(192) +(a f+be) ∗2ˆ(160)+(ag+ce+bf) ∗2ˆ(128)

+(ah+de+bg+c f) ∗2ˆ(96)+(bh+df+cg) ∗2ˆ(64)+(ch+dg) ∗2ˆ(32)+dh

∗/

r0 = (dh <<32) >>32;

r1 = ((ch <<32) >>32)+((dg <<32) >>32)+(dh >>32);

r2 =((bh <<32) >>32)+((df <<32) >>32)+((cg <<32) >>32)+(ch >>32)+(dg >>32)+(r1 >>32);

r3 =((ah <<32) >>32)+((de <<32) >>32)+((bg <<32) >>32)+((cf <<32) >>32)+(bh >>32)+(df

>>32)+(cg >>32)+(r2 >>32);

r4 =((ag <<32) >>32)+((ce <<32) >>32)+((bf <<32) >>32)+(ah >>32)+(de >>32)+(bg >>32)

+(cf >>32)+(r3 >>32);

r5 =((af <<32) >>32)+((be <<32) >>32)+(ah >>32)+(de >>32)+(bg >>32)+(cf >>32)+(r4

>>32);

r6 =((ae <<32) >>32)+(af >>32)+(be >>32)+(r5 >>32);

r7 =(ae >>32)+(r6 >>32);

r.h = (r7 <<32)|((r6 <<32) >>32);

r.l = (r5 <<32)|((r4 <<32) >>32);

return r;

}

inline uint128_t mull128(uint128_t u, uint128_t v){

/∗ !

(a ∗2ˆ(96)+b∗2ˆ(64)+c ∗2ˆ(32)+d) ∗(e ∗2ˆ(96)+f ∗2ˆ(64)+g ∗2ˆ(32)+h)

= (ae) ∗2ˆ(192) +(a f+be) ∗2ˆ(160)+(ag+ce+bf) ∗2ˆ(128)

+(ah+de+bg+c f) ∗2ˆ(96)+(bh+df+cg) ∗2ˆ(64)+(ch+dg) ∗2ˆ(32)+dh

∗/

uint32_t a,b,c,d,e,f,g,h;

uint64_t r7,r6,r5 ,r4,r3,r2 ,r1,r0;

uint64_t ae,af,ag ,ah,be,bf ,bg,bh,ce ,cf,cg ,ch,de,df ,dg,dh;

uint128_t r;

166

a = (uint32_t)(u.h>>32);

b = (uint32_t)((u.h<<32) >>32);

c = (uint32_t)(u.l>>32);

d = (uint32_t)((u.l<<32) >>32);

e = (uint32_t)(v.h >>32);

f = (uint32_t)((v.h <<32) >>32);

g = (uint32_t)(v.l >>32);

h = (uint32_t)((v.l<<32) >>32);

dh= mul32(d,h);

ch= mul32(c,h);

bh= mul32(b,h);

ah= mul32(a,h);

dg= mul32(d,g);

cg= mul32(c,g);

bg= mul32(b,g);

ag= mul32(a,g);

df= mul32(d,f);

cf= mul32(c,f);

bf= mul32(b,f);

af= mul32(a,f);

de= mul32(d,e);

ce= mul32(c,e);

be= mul32(b,e);

ae= mul32(a,e);

/∗ !

(a ∗2ˆ(96)+b∗2ˆ(64)+c ∗2ˆ(32)+d) ∗(e ∗2ˆ(96)+f ∗2ˆ(64)+g ∗2ˆ(32)+h)

= (ae) ∗2ˆ(192) +(a f+be) ∗2ˆ(160)+(ag+ce+bf) ∗2ˆ(128)

+(ah+de+bg+c f) ∗2ˆ(96)+(bh+df+cg) ∗2ˆ(64)+(ch+dg) ∗2ˆ(32)+dh

∗/

r0 = (dh <<32) >>32;

r1 = ((ch <<32) >>32)+((dg <<32) >>32)+(dh >>32);

r2 =((bh <<32) >>32)+((df <<32) >>32)+((cg <<32) >>32)+(ch >>32)+(dg >>32)+(r1 >>32);

r3 =((ah <<32) >>32)+((de <<32) >>32)+((bg <<32) >>32)+((cf <<32) >>32)+(bh >>32)+(df

>>32)+(cg >>32)+(r2 >>32);

r4 =((ag <<32) >>32)+((ce <<32) >>32)+((bf <<32) >>32)+(ah >>32)+(de >>32)+(bg >>32)

+(cf >>32)+(r3 >>32);

167

A Some C implementations for various integer functions

r5 =((af <<32) >>32)+((be <<32) >>32)+(ah >>32)+(de >>32)+(bg >>32)+(cf >>32)+(r4

>>32);

r6 =((ae <<32) >>32)+(af >>32)+(be >>32)+(r5 >>32);

r7 =(ae >>32)+(r6 >>32);

r.h = (r3 <<32)|((r2 <<32) >>32);

r.l = (r1 <<32)|((r0 <<32) >>32);

return r;

}

168

B Some C codes for compiler
optimizations

Selecting DP2 for n-dimensional dot products (§8.2.3, page 136).

// lower ing a chain o f FMA to DP2.

//

// eg : r = a∗b +c∗d + e∗ f + g∗h

// r = madd(madd(dp(a , b , c , d) , e , f) , g , h)

//==>> r = add (dp (a , b , c , d) , dp (e , f , g , h))

static void lower_madd_tree(WN *block , WN *tree , LOWER_ACTIONS actions);

static WN *lower_one_madd_tree(WN *block , WN *wn);

static WN *sum_madd_segments(WN **segments , INT high , INT low);

// step1 : search an FMA chain

static void lower_madd_tree(WN *block , WN *tree , LOWER_ACTIONS actions)

{

if (WN_operator(tree) != OPR_MADD) {

INT16 i;

for (i = 0; i < WN_kid_count(tree); i++) {

WN *kid = WN_kid(tree , i);

if (WN_operator(kid) == OPR_MADD) {

// Kid p o t e n t i a l l y beg ins a MADD chain .

WN_kid(tree , i) = lower_one_madd_tree(block , kid);

} else {

lower_madd_tree(block , kid , actions);

}

}

}

}

// step 2 : s p l i t a s i n g l e madd t r e e

// f o r the example expr , segments [0] = dp(e , f , g , h) , segments [1]=dp(a , b , c , d)

static WN *lower_one_madd_tree(WN *block , WN *wn)

{

// Tree i s a MADD and po t e n t i a l l y s t a r t s a MADD chain .

Is_True(WN_operator(wn) == OPR_MADD ,

169

B Some C codes for compiler optimizations

("lower_one_madd_tree_height: MADD operator not found"));

// Count the MADDs in the chain .

INT madd_count = 0;

WN *this_wn;

TYPE_ID type = WN_rtype(wn);

for (this_wn = wn;

WN_operator(this_wn) == OPR_MADD;

this_wn = WN_kid0(this_wn)) {

madd_count ++;

}

// only one madd found

if(madd_count <2)

return wn;

if(! WN_DP_Allowed(type))

return wn;

// trans form MADDs to DP

INT dp_count = madd_count / 2;

INT segment_count = dp_count + 1;

WN ** segments = (WN **) alloca(segment_count * sizeof(WN *));

memset(segments , 0, segment_count * sizeof(WN *));

INT idx = 0;

this_wn = wn;

for(;idx <dp_count;idx++){

WN *next_wn = WN_kid0(this_wn);

WN *dp = WN_DP(WN_rtype(this_wn),WN_kid1(next_wn), WN_kid2(next_wn),

WN_kid1(this_wn), WN_kid2(this_wn));

segments[idx] = dp;

WN_Delete(this_wn);

this_wn = WN_kid0(next_wn);

}

segments[dp_count] = this_wn;

// Add the p a r t i a l sums .

WN *tree = sum_madd_segments(segments , dp_count ,0);

return tree;

}

170

// step 3 : Add the p a r t i a l sums toge the r

// The expr (r = a∗b +. .) i s accumulated from l e f t to r i g h t .

// (. . ((segments [high]+segments [high −1])+ segments [high −2]) + . .)+segments [0]

static WN *sum_madd_segments(WN **segments , INT high , INT low)

{

WN *tree;

if (high -low ==1) {

WN *opnd1 = segments[high];

WN *opnd0 = segments[low];

tree = WN_Add(WN_rtype(opnd0), opnd1 , opnd0);

}else{

WN *sum1 = sum_madd_segments(segments , high , low +1);

WN *sum0 = segments[low];

tree = WN_Add(WN_rtype(sum0), sum1 , sum0);

}

return tree;

}

171

B Some C codes for compiler optimizations

Selecting FSA at range propagation stage (§8.3.5, page 148).

static BOOL match_fsa_sequence(const RangeAnalysis &range_analysis , OP *op ,

OPS *ops)

{

int val;

TOP opcode = OP_code(op);

if(opcode == TOP_call_i){

TN *opnd_op = OP_opnd(op, 0);

TN *opnd_r1 = OP_opnd(op, 1);

TN *result = OP_result (op, 0);

if(TN_is_symbol(opnd_op)){

if(strcmp(ST_name(TN_var(opnd_op)),"__saddgs")==0){

LRange_pc val1 = range_analysis.Get_Value(opnd_r1);

LRange_pc rref = range_analysis.getLattice ()->makeRangeMinMax (0,0

x7fffffff);

if(rref ->ContainsOrEqual(val1)){

INT64 offset=TN_offset(opnd_op);

mUINT8 relocs=TN_relocs(opnd_op);

ST * st_org = TN_var(opnd_op);

TY_IDX ty =ST_pu_type(st_org);

ST * st=Gen_Intrinsic_Function(ty,"__sadds");

TN * tn=Gen_Symbol_TN(st,offset ,relocs);

BB * bb = OP_bb(op);

ANNOTATION *annot = ANNOT_Get(BB_annotations(bb), ANNOT_CALLINFO);

CALLINFO *call_info = ANNOT_callinfo(annot);

WN * call_wn = CALLINFO_call_wn(call_info);

WN *new_call_wn = WN_CopyNode (call_wn);

WN_st_idx(new_call_wn) = st->st_idx;

CALLINFO_call_wn(call_info) = new_call_wn;

CALLINFO_call_st(call_info) = st;

PU& pu = Pu_Table[ST_pu (st)];

Set_PU_is_pure (pu);

Set_PU_no_side_effects (pu);

Set_OP_opnd(op ,0,tn);

return TRUE;

172

}

}

}

}

return FALSE;

}

173

	Table of Contents
	Notation
	List of Tables
	List of Figures
	Acknowledgments
	Introduction
	Context and motivations
	Contributions
	Fused, specialized, and paired operators
	A production compiler supporting custom operators

	Thesis outline

	IEEE binary floating-point arithmetic
	Introduction
	Binary floating-point data
	Data defined by the standard
	Standard encoding into integers

	Rounding
	IEEE rounding modes
	Overflow
	Gradual underflow
	Encoding of the rounded value of a real number

	The ulp function

	Design principles for software floating-point support on the ST231
	Introduction to the ST231 and its C/C++ compiler
	Architecture overview
	Instruction bundling and extended immediates
	Data access in memory
	ST200 VLIW compiler
	ST231 intrinsics

	``Multi-tasks" for high instruction-level parallelism
	Predicated execution for conditional branches reduction
	If-conversion in emulating floating-point arithmetic

	An example of binary32 implementation exposing high ILP
	Parameterized implementation for a specific binaryk format
	64-bit and 128-bit integer support on the ST231
	XML-based implementation for various formats

	Squaring
	Introduction
	Specification
	Computing correctly-rounded squares for generic input
	A normalized formula for x2
	Implementation of (x2) for the binaryk format

	Detecting and handling special input
	Experimental results obtained on the ST231
	Operator performances
	Application examples

	Scaling by integer powers of two
	Introduction
	Scaling by nonnegative powers of two
	Specification
	Scaling generic input
	Detecting and handling special input
	Specializing to small values of n

	Scaling by negative powers of two
	Specification
	Scaling generic input
	Detecting and handling special input
	Specializing to some negative values of n

	Complete implementation and experimental results
	Scaling by an arbitrary power of two
	Application to matrix balancing

	Two-dimensional dot products
	Introduction
	Specification
	Computing correctly-rounded 2D dot products for generic input
	Normalizing the input and preparing the two summands
	Swapping
	A normalized formula for xy+zt
	Implementation of (xy+zt) for the binaryk format

	Detecting and handling special input
	Detecting special input
	Handling special input

	Experimental results obtained on the ST231
	Operator performances
	Application examples

	Simultaneous sine and cosine over a reduced range
	Introduction
	Accuracy specification using the ulp function
	Computing cosine
	Constant approximation when x < 2-11
	Polynomial approximation when x 2-11

	Computing sine
	Approximation by x when x < 2-11
	Bivariate polynomial approximation when x 2-11

	Computing sine and cosine simultaneously

	Compiler optimizations for floating-point support on the ST231
	Background
	Intermediate representations for st200cc
	Control on the selection of custom operators

	Selection of custom floating-point operators at WHIRL
	WHIRL intermediate representation
	Squaring and scaling by a constant
	Two-dimensional dot products and sums of squares
	Paired operators

	Various optimizations at CGIR
	CGIR overview
	Improvement of integer support for 64-bit
	Integer range analysis framework
	Integer range analysis for shift operators
	Diverting integer range analysis for floating-point specialization

	Experimental results: UTDSP benchmark's FFT test suite

	Conclusions and perspectives
	Bibliography
	A Some C implementations for various integer functions
	B Some C codes for compiler optimizations

