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Résumé

Dans ce travail, nous nous sommes intéressés d’une part a la théorie du
chaos multiplicatif Gaussien introduite par Kahane en 1985 et d’autre
part a la théorie des matrices aléatoires dont les pionniers sont Wigner,
Wishart et Dyson. La premiere partie de ce manuscrit contient une breve
introduction a ces deux théories ainsi que les contributions personnelles
de ce manuscrit expliquées rapidement. Les parties suivantes contiennent
les textes des articles publiés [4, 5, 6, 7, 8] et pré-publiés [9, 10, 11] sur
ces résultats dans lesquels le lecteur pourra trouver des développements
plus détaillés.

Abstract

In this thesis, we are interested on the one hand in the theory of Gaussian
multiplicative chaos introduced by Kahane in 1985 and on the other
hand in random matrix theory whose pioneers are Wigner, Wishart and
Dyson. The first part of this manuscript constitutes a brief introduction
to those two theories and also contains the personal contributions of this
work rapidly explained. The following parts contain the texts of the
published articles [4, 5, 6, 7, 8] and pre-prints [9, 10, 11] on those results
where the reader can find more detailed developments.
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Chapter 1

Gaussian multiplicative chaos and
their scale invariance properties

Roughly observed, some random phenomena seem scale invariant. This is the case
for the velocity field of turbulent flows or for the evolution in time of the logarithm
of the price of a financial asset. However, a more precise empirical study of these
phenomena displays in fact a generalized form of scale invariance commonly called
multifractal scale invariance or intermittency or stochastic scale invariance. The
exponent which governs the power law scaling of the process or field is no longer
linear. More precisely, for a one dimensional stationary process we observe the
following behavior for small scales h,

E[|Xein — XifP] ~hsso, Cpht®

where ( is a non linear function.

The concept of nonlinear power-law scalings goes back to the Kolmogorov theory
of fully developed turbulence in the sixties (see [50, 129, 134, 51, 73] and references
therein), introduced to render the intermittency effects in turbulence. In 1974,
Mandelbrot [104] came up with the first mathematical discrete approach of mul-
tifractality, the now celebrated multiplicative cascades, in order to build random
measures describing energy dissipation and contribute explaining intermittency ef-
fects in Kolmogorov’s theory of fully developed turbulence.

Despite the fact that multiplicative cascades have been widely used as reference
models in many applications, they possess many drawbacks related to their discrete
scale invariance, mainly they involve a particular scale ratio and they do not possess
stationary fluctuations (this comes from the fact that they are constructed on a
dyadic tree structure).

A more refined model was then introduced by Kahane in 1985, under the name
of Gaussian multiplicative chaos. Following the ideas of multiplicative cascades, Ka-
hane’s theory of Gaussian multiplicative chaos also constructs multifractal random
measures by iterating products of lognormal random variables. The advantages of

7



8 CHAPTER 1. GAUSSIAN MULTIPLICATIVE CHAOS

this construction is that the random measures possess stationary fluctuations (no
particular scale ratio is involved in the construction).

This chapter is a brief introduction to this theory of multiplicative chaos. In
the first subsection 1.0.1, we start by recalling the construction of Mandelbrot’s
multiplicative cascades and their main properties. In particular, we introduce Man-
delbrot’s star equation, which is a stochastic scale invariance equation, satisfied by
the multiplicative cascades. In the following subsection, we introduce Kahane’s the-
ory of Gaussian multiplicative chaos. The third subsection is devoted entirely to
the concept of stochastic scale invariance. We introduce two concepts: the exact
stochastic scale invariance and the stochastic star-scale invariance (which is the con-
tinuous analog of the Mandelbrot’s star equation). We present a brief study on the
link with Gaussian multiplicative chaos and on the relation between the two con-
cepts. In the final subsection 1.0.4, we enunciate the main result obtained in this
field.

1.0.1 Multiplicative cascades and Mandelbrot’s star equa-
tion

We recall the definition of multiplicative cascades, following the notations used in
[33]. The fundamental properties of multiplicative cascades were first proved in [90]
by Kahane and Peyriere in 1976.

Let Z,, denotes the set of dyadic subintervals of [0, 1] of length 27", i.e.

Zo={k27": (k+1)27": k€ {0,1,...,2" —1}} .

Each interval in Z,, can be divided in exactly two subintervals in Z,,,,. We will also
set =, Zn.

2
g 2

Let Z = e*~% where X is a Gaussian variable of mean 0 and variance o2.
Note that Z is a non negative random variable with mean 1. We choose here a
lognormal distribution for Z in order to be consistent with the next subsections
but the construction of multiplicative cascades can be made with any choice of non
negative random variable Z with mean 1. Let also Z;,I € Z be a collection of
independent random variables distributed as Z.

We now define inductively a sequence of random measures (fi,)neny on [0;1]. Let
o denote the Lebesgue measure and set p; := Zjoqjpo. Let pp denote the measure
that agrees with Zjo,1 901 on [0;1/2] and with Zp 00111 on [1/2;1]. Inductively,
define g, 41 as the measure that agrees on every I € Z,, with Z;u,. Alternatively,
we can also define the multiplicative cascade by setting

n—1
HUn = Wnplo, where wn(x) = H le(m) ’
7=0

where [;(x) denotes the interval I € Z; that contains = (if there is more than one,
the one whose maximum is x, say).
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For each Borel set A C [0, 1], note that the sequence (i, (A)), is a non negative
martingale. Thus, the sequence p,(A) converges almost surely when n — oo to a
limit that we will denote by p(A).

Consequently the sequence of measures (p,) converges almost surely weakly to
a measure g on [0;1]. The authors of [90] also give a non-degenerescence criterion
for the measure p: the measure p is almost surely non zero if and only if we have
E[Zlog Z] < log2. It is also shown that the measure p has almost surely no atoms.

The multiplicative cascades present multifractal property in the sense that they
obey the following stochastic scale invariance equation:

law

pu(dt) =" Zioa oL 1y ()p’(2dt) + Zp o gy ()t (2dt = 1), (1.1)

where 0, it are two independent copies of p and Z0:1/2), Z[1/2;1) are independent
copies of Z, also independent of u°, pu!. Such an equation (and its generalizations
to b-adic trees for b > 2), the celebrated star equation introduced by Mandelbrot in
[102], uniquely determines the law of the multiplicative cascade.

Let us mention here that even if we write equation (1.1) in the more general
setting where (Zjo,1/9], Z[1/23]) has any prescribed law with components of mean
1, Mandelbrot star’s equation uniquely characterizes the law of the multiplicative
cascade.

In the next subsection, we present Kahane’s theory of Gaussian multiplicative
chaos, which constructs, again through iterative products, random measures with
properties similar to multiplicative cascades.

1.0.2 Kahane’s theory of Gaussian multiplicative chaos

Kahane introduced the theory of Gaussian multiplicative chaos in 1985 in his paper
[89]. This theory relies on the notion of o-positive type kernel: a kernel K : R? x
R? — R, U {oo} is of o-positive type if there exists a sequence Kj : R? x R — R,
of continuous non negative and positive definite type kernels such that:

If K is a o-positive type kernel with decomposition (1.2), one can consider a sequence

of Gaussian processes (X,,),, > 1 defined as X,, = "7 _; Vi where the (Yi()),ere, k > 1
are independent centered Gaussian processes on R? with respective covariance func-
tions Ky (z,y),k > 1. Then the covariance function of the Gaussian process (X, (z)),cra
is Y, K. It is proved in [89] that the sequence of random measures m, defined
on every Borel set A C R? by

A
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converges almost surely in the space of Radon measures (equipped with the topology
of weak convergence) towards a (random) measure m and that the limit measure m
does not depend on the sequence K}, used in the decomposition (1.2). The measure
m is called Gaussian multiplicative chaos associated to the kernel K.

The main application of this theory is to give a meaning to the ”limit lognor-
mal” model introduced by Mandelbrot in [105]. We denote by In, (z) the quantity
max(lnx,0). The "limit lognormal” model corresponds to the choice of a stationary
kernel K given by

K(o) =i () + ate) (1.9
|z =yl
where g is a bounded continuous function and 7? and R are respectively the inter-
mittency parameter and the integral scale.

In [89], Kahane also gives a non degeneracy criterion: Gaussian multiplicative
chaos m associated to a kernel K of the form (1.3) is almost surely non degenerate
if and only if the intermittency parameter +? is strictly less than 2d. This phase
transition shows that the logarithmic kernel is crucial in the theory of multiplicative
chaos. Let us define the characteristic exponent ¢ (also called structure function):

2 '72]92

2

C(p) = (d+ 5 )p -

The inequality v? < 2 implies the existence of ¢ > 0 such that ((1 +¢€) > 1 and
therefore there exists a unique p* > 1 such that {(p*) = 1. Existence of positive mo-
ments for the random variable m[0; 1] is then characterized through p*: the random
variable m[0; 1] admits moments of order g > 0 for all ¢ €]0; p*[. Tt is also shown in
[89] that the Gaussian multiplicative chaos m has the following multifractal behavior
when h — 0,

Efm(0; h]") ~ SV

for all p < p*. We will establish the link between Gaussian multiplicative chaos and
stochastic scale invariance in the next subsections.

The reader may wonder if we can get rid of the assumption that the kernels K,
used in the decomposition are non negative (and then also of the assumption that
K itself is non negative) for this construction to be valid. The answer is yes and is
carried out in [120]: we can define Gaussian multiplicative chaos associated to any
positive definite kernel that can be written under the form (1.3).

The theory of Gaussian multiplicative chaos has found applications in 2d quan-
tum gravity, turbulence, finance,... We now review an application in finance.

Application in finance Let us briefly explain the application in finance for mod-
eling the volatility of an asset. If X (t) is the logarithm of the price of a financial
asset, the volatility m of the asset on the interval [0; ¢] can be defined as the quadratic
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0.000 0.001
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Figure 1.1: Simulated density of a Gaussian multiplicative chaos m associated to
kernel (1.3) with g = 0, intermittency parameter 4? = 1 and integral scale 7 = 1/4.
The intermittency effect appears clearly.
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variation of X:

n

m[0;1] = lim » (X (th/n) — X (t(k — 1)/n))*.

n—oo
k=1
The volatility can be viewed as a random measure on R,. The choice to model the
volatility by a Gaussian multiplicative chaos m associated to the logarithmic kernel

K(s,t) = v*In, (i) (1.4)

|t — 5]

enables to reproduce important empirical properties measured on financial markets:
approximate lognormality of the volatility, long range correlations (see [44, 58] for
a review on empirical finance). Given the volatility m, the most natural way to

0.0

-0.5

-1.5

-2.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.2: Simulated path of a multifractal random walk with intermittency pa-
rameter 72 = 1 and with integral scale 7 = 1/4. Note the intermittent bursts in
volatility.

construct a model for the log price X is then to set
X(t) = B(m[0;1]) (1.5)

where B(t) is a standard Brownian motion independent of m. Formula (1.5) defines
the multifractal random walk (see [22]). A simulated path of a multifractal random
walk is displayed in Fig. 8.1. We can observe the intermittent bursts of volatility
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which are due to the Gaussian multiplicative chaos m. We will work with this model
in Chapter 8 ( and also in the article [10]). O

The theory of Gaussian multiplicative chaos can be generalized by doing products
of exponentials of infinitely divisible random variables. It was developed for example
in [23].

We will now review stochastic scale invariance and its link with Gaussian mul-
tiplicative chaos in the next subsections. We will mainly restrict to the Gaussian
case, but the following results can be extended to the case of Lévy random variables
as well (see e.g. [124]).

1.0.3 Stochastic scale invariance

We will now define two different concepts of stochastic scale invariance: the exact
stochastic scale invariance and the star stochastic scale invariance. We will give
those two definitions for general dimension d.

Lognormal exact stochastic scale invariance

Denote by B(0; R) the euclidean ball of radius R. If m is a stationary random
measure on R?, we say that m has the exact stochastic scale invariance property if
there exists R > 0 such that for all € €]0, 1], the following equality in law holds:

law

(m(eA))acsor) = € (m(A))acor) (1.6)

where (), is a Gaussian random variable independent of m.

As already mentioned, we restrict to the case of a Gaussian random variable
Q.. If we do not make any particular assumption on 2., then if the measure m is
not identically zero, we can easily check that the random variable €. is infinitely
divisible.

Example of lognormal exact stochastic scale invariant random measures

It is proved in [120] that the logarithmic kernel K defined in (1.4) is positive definite
if and only if d < 3.

It is then straightforward to prove that, for d = 1,2, 3, the Gaussian multiplica-
tive chaos m associated to this kernel K has the exact stochastic scale invariance
property in the ball B(0, R) where the random variable €). is a Gaussian random
variable with mean —(d +~v?/2)In(1/¢) and variance > In(1/¢).

For d > 4, the authors of [123] construct stationary and isotropic random mea-
sures which have the exact stochastic scale invariance property and which again
fall under the scope of Kahane’s theory of Gaussian multiplicative chaos introduced
above.

The question of finding all the stationary random measures which satisfy the
exact stochastic scale invariance property remains unsolved.
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Lognormal star scale invariance

The second concept of scale invariance is stochastic star scale invariance. It is the
continuous analog of the Mandelbrot star equation that we wrote in the case of
2-adic multiplicative cascades in (3.1).

A random Radon measure M is said to be lognormal star scale invariant if for
all e < 1, M obeys the cascading rule

(M(A)) aeBre faw (/A e“E(I)ME(dx)) (1.7)

AeB(RY)

where w, is a stationary continuous Gaussian process and M¢ a random measure
independent from the process w. with law such that

aw A
(M*(A)) acB(re e (M <—)> :
€/ /) AeB(Rrd)

Intuitively, this relation means that when we zoom in the measure M, we should
observe the same behavior up to an independent lognormal factor. A nice feature
of stochastic star scale invariance is that there is not a particular scale ratio.

Example of lognormal star scale invariant random measure

In this paragraph, we give the first known example of log-normal star scale invariant
random measures, which was first described in [25] (see also [23]). In fact many other
examples exist among multiplicative chaos as we will see later when explaining the
results of our paper [4].

The construction of this example is very intuitive (but limited to dimension 1)
: It is geometric and relies on homothetic properties of triangles in the half-plane.
We also stress that this specific example of star scale invariant random measures is
not restricted to the Gaussian case: The factor can be more general (log-Lévy).

Following [23], we recall the construction of this example and refer the reader
to the aforementioned papers for further details. Fix 7" > 0 and let ST be the
state-space half plane

St={(t,1):t€R, >0}
with which one can associate the measure
wu(dt,dl) = 172dtdl.

Then we introduce the independently scattered Gaussian random measure P char-
acterized for any p-measurable set A by
E [eiqP(A)} — er(@n(A)

with p(q) = —7%¢*/2 —igy?/2. Under those assumptions, we can note that for any
p-measurable set A, P(A) is a Gaussian variable with mean m = —pu(A)v?/2 and
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variance 02 = y?u(A). We can then define the Gaussian process (w;(t))ser for I > 0
by

wi(t) = P (A1)
where A;(t) is the triangle like subset A;(¢) :== {(¢,l') : I < U < T,-U'/2 <t —
t' <1'/2} (see a picture of this triangle in Fig. 1.3).

Ai(t)

0 t
Figure 1.3: Representation of Barral-Mandelbrot’s cone.

Define now the random measure M; by M;(dt) = e()dt. Almost surely, the
family of measures (M;(dt));~o weakly converges towards a random measure M. If
7? < 2, the measure M is not trivial.

Let us check that M is a good log-normal star scale invariant random measure.
Fix € < 1 and define the sets A or(t) := {(t",0') : I < U < T, =I'/2 <t -t <1')2}
and Aerr(t) == {(t,0) : el < U <T,-U')2 <t—1t <U'/2} (see Fig. 1.4 for
a picture of those two ensembles). Note that A;(t) = Apr(t) U Aerr(t) and that
those two sets are disjoint. Thus, we can write for every p-measurable set A

M,(A) = / ewer, T () qwrer(t) gt (1.8)
A

with weT’T(t) = P(AeT’T(t)) and wl,eT(t) = P(.Al’ET(t)).
We then study equation (3.17) in the limit [ — 0; we obtain

M(A) = /A eer O M(dt) (1.9)

where M€ is the limit when [ — 0 of the random measure M;(dt) := e“<7)dt. We

law

easily verify that M(eA) = eM(A) writing

Mf(A) =€ / et (€ gt (1.10)
A
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Aerr(t)

0 t

Figure 1.4: Decomposition of Barral-Mandelbrot’s cone.

and checking that the covariance of the Gaussian process (wyer(€t))ier is the same
as the one of (w;r(t))ier (this comes from the fact that the red set in Figure 1.4 is
homothetic to the gray set of Figure 1.3.).

In view of the result we present in the next subsection, note finally that the
random measure M is a Gaussian multiplicative chaos with associated kernel

K(r) = /| w@du with  k(u) = \2(1 — %)1[01](@\). (1.11)

Before, turning to the whole description of all the random measures that are
solutions of (1.7), let us make a few remarks on the link between the two notions of
stochastic scale invariance we have just seen.

Note that the star scale invariance equation (1.7) is a global notion in the space
R? in contrast with the exact stochastic scale invariance equation (1.6) which is
restricted on a compact euclidean ball (it is easily proved that the unique exact
scale invariant stationary random measure on the whole space is the null measure).

The reader may wonder if the two notions are related or if there is a hierarchical
relation between the two’s. The answer is not yet complete but we were able to
prove in [4] that if a Gaussian multiplicative chaos M has a kernel of the form
K(z,y) = +* ln+(ﬁ) (in particular we have already seen that M satisfies the
exact stochastic scale invariance property), then it is not a lognormal star scale
invariant measure.

In the next subsection, we explain the results we obtained in collaboration with
R. Rhodes and V. Vargas. The reader can find a complete proof of this result
in Chapter 3 (see also [4]). We characterize all the random measures that satisfy
(1.7) under weak regularity assumptions for the process w. and with the additional
assumption that M possesses a moment of order 1+ 4 (with 6 > 0).
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1.0.4 Our contribution

In the following, we will say that a stationary random measure M satisfies the good
lognormal star scale invariance if M is lognormal star scale invariant with some
additional weak regularity assumptions on the covariance function k. of the process
we, for all e < 1.

Theorem 1.1 (R.A., R. Rhodes, V. Vargas). Let M be a good lognormal star scale
invariant random measure. Assume that

E[M ([0, 1])'*] < 40

for some § > 0. Then M is the product of a nonnegative random variable Y € L'*+°
and an independent Gaussian multiplicative chaos

VACB(R), M(A) =Y / eXr =3 EXT gy (1.12)
A

with associated covariance kernel given by the improper integral

K(r) = /%onu (1.13)

7| u

for some continuous covariance function k such that

2

kO) < 15 (1.14)

Conversely, given some datas k and Y as above, the relation (3.11) defines a
log-normal star scale invariant random measure M with finite moments of order
1+~ for every v € [0,0).

The inequality (1.14) implies that the Gaussian multiplicative chaos associated
to the kernel K defined in (1.13) has a moment of order 1+ ¢, as expected.

It seems natural to describe all the stochastic (star or exact) scale invariant
random measures. Theorem 1.1 is a step in this direction as it characterizes all the
(good) star scale invariant stationary random measures with a moment of order 14-4.
We hope this result to be useful to prove convergence to Gaussian multiplicative
chaos. Indeed the star scale invariance equation (1.7) can be seen as a fixed point
equation satisfied by the measure M and should be easy to verify in practice for a
limiting random measure. If an unknown limiting random measure has this property,
our theorem enables to identify this random measure as a Gaussian multiplicative
chaos and gives a formula for its covariance structure.

Let us mention that the more general case where the lognormal factor e¥=(®) is
replaced by a log-Lévy factor has been solved later in [124].



18

CHAPTER 1.

GAUSSIAN MULTIPLICATIVE CHAOS



Chapter 2

Random matrix theory and its
applications

Random matrix theory (RMT) has become one of the prominent field of research,
at the boundary between atomic physics, solid state physics, statistical mechanics,
statistics, probability theory and number theory [3, 19, 14]. The start of the field
is usually attributed to the work of Wigner, motivated by applications in nuclear
physics. In 1951, Wigner suggested in [142] that the fluctuations in positions of the
energy levels of heavy nuclei could be described in terms of statistical properties
of eigenvalues of very large real symmetric matrices with independent identically
distributed entries. This postulate has led to random matrix theory which is es-
sentially concerned with the study of large symmetric random matrices with i.i.d.
entries, called Wigner matrices but also in the study of other type of random ma-
trices, see below. This theory aims at describing the statistical properties of large
random matrices and particularly those related to the eigenvalues and eigenvectors.
The first major result in this direction is due to Wigner (see [141]) in 1957: the
empirical eigenvalue density of a Wigner random matrix converges almost surely in
the limit of large dimension to the Wigner semicircle probability density. This prob-
ability density is compactly supported and shaped as a semi circle. Other eigenvalue
statistics such as the largest eigenvalue statistics or local eigenvalues statistics have
also been investigated in great details, see [14, 3, 107] for a review of RMT.

We now introduce another very popular type of random matrices of great in-
terest for applications: the empirical covariance matrices, also called Wishart ma-
trices. Historically, Wishart matrices were introduced before Wigner matrices by
John Wishart in 1928 to study populations in biology through Principal Compo-
nent Analysis (PCA). The purpose of PCA is to identify common causes (or fac-
tors) that govern the dynamics of N quantities. These quantities might be daily
returns of the different stocks of the S&P 500, monthly inflation of different sectors
of activity, motion of individual grains in a packed granular medium, or different
biological indicators (blood pressure, cholesterol, ...) within a population. More
precisely, if one is provided with a vector of (centered) correlated random variables

19
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|z) = (21,22, - ,zn), whose covariance matrix is denoted as C' and defined by
Ci; = E[x;z;], PCA consists in writing the vector |z) in the orthogonal basis of the
eigenvectors |¢;) of the covariance matrix C' as

N

2y = 3 (el (2.1)

i=1

It is straightforward to see that the variance E[(z|¢;)?] of the random variable (z|¢;)
is equal to \; where ); is the eigenvalue of the matrix C' associated with the eigen-
vector |¢;). The decomposition (2.1) then shows that the favorite (or most likely)
directions for the random vector |z) are the eigenvectors of C' associated to the
largest eigenvalues of the matrix C. Of course, practitioners do not have access to
C; instead, they must consider a noisy empirical estimator E of the {rue covariance
matrix C' constructed from a sample of datas as

T
1
P
where the vectors |z%) := (2}, -+ ,zY) are independent and identically distributed

as |x). The matrix E defines an empirical covariance matrix. Random matrix the-
ory has thus been concerned, in the last decades, with the statistical properties of
empirical covariance matrices. In particular the eigenvalue statistics (eigenvalues
density, statistics of the largest eigenvalues, local eigenvalue statistics,...) for large
dimensional empirical covariance matrices have been investigated in great details
(see e.g. [14, 28, 106]) as in the Wigner case described above. The starting point of
this active research area is the 1967 Marcenko Pastur paper [106] which gives an ex-
plicit formula for the empirical eigenvalue density in the limit of large dimension N.
This result, as a new statistical tool to analyse large dimensional data sets, became
very relevant in the last two decades, when the storage and handling of humongous
data sets became routine in almost all fields — physics, image analysis, genomics,
epidemiology, engineering, economics and finance, to quote only a few. Since their
introduction, Wishart matrices have appeared in many different applications such
as communication technology [125], nuclear physics [75], quantum chromodynamics
[139], quantitative finance [43, 44, 116], statistical physics of directed polymers in
random media [84] and non intersecting Brownian motions [126].

In this very short (and obviously far from exhaustive) introduction to the field,
we introduce, in the first section, the main ensembles of random matrix theory, the so
called Gaussian orthogonal ensemble (GOE) and Gaussian unitary ensemble (GUE).
Those ensembles are the most classical and most studied random matrix ensembles in
the literature, and were introduced by Wigner and Dyson at the starting point of the
theory. We review the main statistical properties of the eigenvalues of the GOE/
GUE random matrices. In particular, we derive the joint law of the eigenvalues,
establishing the link between random matrix theory and Coulomb gas repulsive
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interaction. For this derivation, we introduce the Dyson Brownian motion, which is
a diffusive matrix process closely related to the GOE and GUE. We also introduce
a generalization of those ensembles, the so called [-ensembles. At the end of the
first section, we briefly explain some of our results which are related to the Gaussian
ensembles. Then, in the second section, we give a fast review on the definition and
main properties of empirical covariance matrices following the same line as in the
first section and we sum up our contribution in the study of empirical covariance
matrices at the end of the second section.

2.1 Gaussian Ensembles

We will denote by ’H]BV with 8 = 1 (respectively § = 2) the space of symmetric
real (resp. Hermitian complex) matrices of size N x N. In the next subsection,
we introduce the Gaussian Orthogonal and Unitary Ensembles of random matrices.
The random matrices of those ensembles are random variables in the space H},
(respectively H%).

2.1.1 Classical Gaussian Ensembles
Gaussian Orthogonal Ensemble

A random matrix H € H} is said to belong to the Gaussian Orthogonal Ensemble
(GOE) if its probability law on the space HJ is given by:

Py(dH) = il exp (—ﬂ Tr(HTH)> dH (2.3)
Zy 2

where dH denotes the Lebesgue measure on the space H), Z5 a normalization

factor and where H' denotes the Hermitian conjugate of H. The factor Z} can be

explicitly computed (see [14, 107]).

It is clear from the definition of the law Pj given by (2.3) that the random
matrices in the Gaussian Orthogonal Ensemble are invariant under conjugation of
orthogonal matrices, in the sense that the matrix OHOT has the same law as the
matrix H for any orthogonal matrix O.

If H is a real symmetric matrix, we have Tr(H'H) = Tr(H?) = Zgjﬂ H =
SV UHZ 42 > ic; H7;. Therefore the entries of the random matrix H in the GOE
are independent (up to symmetry) centered Gaussian variables with variance 1/N
on the diagonal and variance 1/2N off the diagonal.

Gaussian Unitary Ensemble

The Gaussian Unitary Ensemble is similarly defined: the random matrices take
values in the space Hﬁ, of Hermitian complex matrices of size N x N and are
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distributed according to the law P% defined as:

P2(dH) = iz exp (—ﬂ Tr(HTH)> dH (2.4)
A 2

where Z% is again a normalization factor (which can also be explicitly computed).

The symmetry for this ensemble is now with respect to the unitary matrices:
the random matrices in the Gaussian Unitary Ensemble are invariant under conju-
gation of unitary matrices. The entries are independent (up to symmetry) complex
centered Gaussian random variables. The diagonal entries are real centered Gaus-
sian variables with variance 1/N whereas the off diagonal entries can be written as

N(0,1/2N) ++/—=1N(0,1/2N).

2.1.2 Dyson Brownian motion
Definition

In this subsection, the parameter ( is equal to 1 or 2. In the following, the process
(H®(t)); > o will denote a Dyson Brownian motion, i.e. a process with values in
the set of N x N symmetric real (§ = 1) or Hermitian complex (8 = 2) matrices

with entries <H5(t),t >0,1<i<j< d) constructed via independent real valued

Brownian motions (Bij(t), Eij(t), 1<i<j< d) by

2.
—=DB;;(t) otherwise . (2.5)

Hf](t) — { \/l%T\ABij(t) + \/__1(5 - 1)§ij(t)) ifi<y,

=

The process H?(t) was first introduced by Dyson in [66].

We now want to define another diffusive matrix process that would converge in
law in the limit of large time to the law of the Gaussian Ensembles defined previously.
The idea is simply to define this matrix process X#(t) as solution of the following
Ornstein-Uhlenbeck type equation

dXP(t) = —%Xﬁ (t)dt + dHP(¢) (2.6)

where HF(t) is a Dyson Brownian motion of size N x N.

It is well known that the stationary law of a Ornstein-Uhlenbeck process is the
Gaussian law and therefore, the real symmetric (resp. complex hermitian) matrix
process X#(t) converges in law when t — oo to the law of a GOE (resp. GUE)
random matrix.

The study of the eigenvalues diffusion process of X?(t) will enable us to derive,

in the next section, the joint law of the eigenvalues of the random matrices in the
GOE and GUE.
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Eigenvalues and eigenvectors diffusion processes

For each t > 0, the matrix X”(#) is a real symmetric matrix if 8 = 1 (resp. hermitian
complex if f = 2) and therefore is diagonalizable in an orthonormal basis. The
eigenvalues of X?(t) will be denoted! in increasing order as A\ (t) < ... < Anx(t)
and the associated orthonormal eigenvectors as ¥ (t), ..., ¥n(t). Sometimes we will
also use the following decomposition for the matrix X#(¢):

XP(t) = 0P (t)AP(H)OP ()T

where AP(t) is the diagonal matrix Diag(Ai(t),...,Ax(t)) and where OP(t) is the
orthogonal matrix (resp. unitary if § = 2) whose columns are (in respective order)
given by ¥y(t), ..., YN (t).

To find the stochastic differential system of equations verified by the eigenval-
ues and eigenvectors processes, a direct method is provided by using perturbation
theory. Let us briefly recall the main ideas of this theory before coming back to our
eigenvalues and eigenvectors processes.

Perturbation Theory. We are given a symmetric (resp. hermitian) matrix Hy
that is perturbed by the adding of a small symmetric (resp. Hermitian) matrix
eP. Perturbation theory enables to find approximations of the eigenvalues and
eigenvectors of the matrix H; defined as

Hl = H() +eP (27)
in the limit ¢ — 0. To second order in ¢ for the eigenvalues it gives

A=A 4 eP; + € Z N ” X0 + o(£?) (2.8)
J#i
where” Py := (¢9|P|¢}). For the eigenvectors, perturbation theory to second order
writes as
1 _ 1 82 |P | 0 0 O 2 9
wi— __Z /\0 )\0 ¢+€Z)\O )\0¢J+ ( ) <)
J# J#

where O(g?) contains the second order transverse term (due to the non zero overlap
of ¢; with the non perturbed eigenvectors ¢ for j # i) which will turn out to be
negligible in the context of 1t6’s stochastic calculus (see below). ]

ITo simplify notations, we omit the subscript 3 for the eigenvalues and eigenvectors of X4 (t).
ZWe use the classical bracket notations for the (hermitian) scalar product.
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Physical derivation of the eigenvalues process. Coming back to our purpose,
we can re-interpret the stochastic differential equation (2.6) verified by X?(¢) as a
perturbation equation by writting X°(t+dt) = X?(t)—$ X?(t)dt+dH"(t). It is now
straightforward to check that (1; ()| X?(¢)|1:(t)) = A\i(t) and that (v;(£)| XP(t)]w;(t))
0 for i # j due to the orthogonality of the family {¢x(¢)}. On the other hand,
conditionally on (¢ (t))s, the random variables (1;(¢)|dH?(t)|1;(t)),i < j are cen-
tered Gaussian (real or complex whether § = 1 or 2) random variables (as they
are linear combination of independent Gaussian variables) which can be written as
N0, 55 (14 8;—;) dt) if 8 =1 (respectively N'(0, d¢/N) for i = j and N'(0,1/2N) +
V=1N(0,1/2N) for i # j if 3 =2 ). In addition we can check that they are inde-
pendent (their covariance is zero again because of orthogonality). The second order
terms in those perturbative equations are of order of the square of those random
variables, i.e. of order dt. Therefore, it is standard argument in Ito’s calculus that
the fluctuations of those second order terms are negligible: they can be replaced by
their mean and we only keep the fluctuations of the first order terms.

Gathering the above arguments, we conclude that the eigenvalues verify the
following Stochastic Differential System (SDS)

d); = ——)\ dt+ Z o dt (2.10)

where the b; are independent standard Brownian motions and with § = 1 or 2
depending on the symmetry class (symmetric or hermitian). O]
For the eigenvectors, the evolution is described as follows. Let wfj (t),i < j be

a family of real or complex (whether 3 = 1 or 2) Brownian motions (i.e. w’ 2(t) =
75(B(t) + V=1(8 — 1)B};(t)) where the Bj;, B, are standard Brownian motlons

i
on R), independent of the famlly of Brownian motlons {b;} involved in (2.10). For
i < 7, set in addition wﬁ-(t) = W, ( ). The system of Stochastic Differential Equation

(SDE) verified by the eigenvectors can then be written as

3 dt 1 du,
dy, = —— —_— Y - 2.11
" 4N;<Ai—w¢+ _N;Ai_wj (2.11)

To write this evolution in terms of the matrix OP(t), define the skew Hermitian
matrix (i.e. such that R® = —(R")*) by setting for i # j,

1 dwl()
VN Ai(t) = Ai(t)’

Then, with \;() being the solution of the SDS (2.10), the matrix O?(t) evolves as

%Oﬁ(t)d«Rﬁ)T,Rﬁ)t. (2.12)

dR}(t) = R}(0)=0.

dO”(t) = OP(t)dR(t) —
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To show more rigorously that Equations (2.10) and (2.11) (or equivalently (2.10)
and (2.12)) hold, the proof usually goes backward, through the following steps (see
[14, Lemmas 4.3.3 and 4.3.4]):

e One first has to show that the SDS (2.10) is well defined for all time ¢ > 0.
One can indeed show that the \; solution of (2.10) almost surely never collide,
in the sense that the first collision time 77 :=inf{t > 0: 3i # 5, \;(t) = A\;(t)}
is almost surely infinite.

e Then one can show that the unique solution of the SDE (2.12) (this SDE indeed
has a unique solution as it is linear in O and R” is a well defined martingale) is
a matrix process with values in the space of orthogonal (respectively unitary)
matrices.

e The last step uses standard [to’s calculus to show that the matrix process
YP(t) defined as YP(t) := O°(t)AP(t)OP(t)T, with OP the solution of sde (2.12)
and with A®(t) the diagonal matrix Diag()\;(¢),..., An(t)) where the \; are
solution of the system (2.10), indeed verifies the stochastic differential equation
(2.6) (with Y instead of X).

2.1.3 Joint law of the eigenvalues

As already mentioned, the matrix X?(¢) converges in law when t — oo to the law
Pf, of the random matrices in the GOE if 8 = 1 and in the GUE if 8 = 2. Therefore
a simple way to determine the joint probability of the eigenvalues of the random
matrices in the GOE (resp. GUE) is to find the limiting law of the eigenvalues
process of X?(t) for B =1 (resp. 8 = 2). The classical way to do this is to compute
a stationary probability of the SDS (2.10) through the Fokker-Planck equation (or
through the infinitesimal generator associated to (2.10)) and then to show that this
stationary probability is the unique such measure.

The Fokker Planck equation gives a partial differential equation satisfied by the
probability density transition function of a diffusion given its stochastic differen-
tial equation. For the process (Ai(t),..., An(t)) that verifies (2.10), the transition
function P(\, ..., Ay;t) verifies:

opr al N B 1 1 X 9%P
o [<_5+W;/\i—)\j>4+ﬁ;8_)\f' (213

The stationary solutions of (6.77) are found by setting the time derivative to 0.
It is easy using elementary algebra to show that a stationary solution to equation
(6.77) is given by:

0
O\

1 N N N
Ps(Ar,- - Ax) = T - )\j|5exp(—§ > ) ] an (2.14)
B 1<i<j< N =1 =1
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Furthermore it is the unique stationary probability measure for the process (A;(t), ..., An(%))
since if there was another invariant distribution ()g, we could reconstruct a Hermi-

tian Ornstein-Uhlenbeck process X A(t) and a matrix )?5 whose eigenvalues would

follow Q5 so that X?(0) := X/ and

AXA (1) = —%)}B(t)dt +dHP().

But this gives a contradiction since as time goes to infinity, the law of X4 () is a
Gaussian law, independently of the law ().
Other derivations of formula (6.5) exist and can be found for example in [14].

2.1.4 Matrix model for S-ensembles

The probability measure Py introduced in (6.5) is a Gibbs measure of a one-dimensional
repulsive Coulomb gas confined in an harmonic well with inverse temperature § and
is in fact a well defined probability measure for all § > 0. In the previous section,
we have introduced two random matrix ensembles whose eigenvalues are distributed
according to the law Ps—; for the GOE symmetric real matrices and Ps—y for the
GUE hermitian complex matrices. Another random matrix ensemble, which was not
introduced above and called the Gaussian Symplectic Ensemble (GSE), is invariant
under conjugation by a symplectic matrix and has eigenvalues distributed according
to the law Ps—,. Therefore, depending on the symmetry of the random matrix, only
three values are allowed 8 = 1,2 and 4 up to now. This is known as Dyson’s “three-
fold way”. The existence of matrix ensembles that would lead to general values of
B > 0, is a very natural question, and the quest for such ensembles probably goes
back to Dyson himself.

Ten years ago, Dumitriu and Edelman [65] have proposed the following explicit
construction of tri-diagonal random matrices, with eigenvalues distributed according
to Pg for general 5 > 0,

[ X(N-1)8
X(N-1)3 g2 X(N-2)3
- _ - (2.15)

X2 gN-1 X8
Xg 4N

where the g, are independent Gaussian random variables with variance 2 and where
the xis are independent y distributed random variables with parameters k5 and
scale parameter 2.

Another construction is proposed in [3, page 426-427] (see also [71]) and uses a
bordering procedure to construct iteratively on the dimension a sequence of matrices
with eigenvalues distributed according to Ps for general 5 > 0. The advantage of this
construction is that it gives not just the eigenvalue probability density of one matrix
but also the joint eigenvalue probability density of all matrices of the sequence.
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2.1.5 Eigenvalues density

Let H be an N x N symmetric (or hermitian) random matrix and denote by \;
the (real) eigenvalues of H, with A\; < --- < Ay. The empirical distribution of the
eigenvalues of H is the following (random) probability measure on R

1N
MNZNZZZ;CS()\—)V)-

The measure uy is sometimes called spectral measure or density of states and is
one of the central object of study in random matrix theory. In the following subsec-
tion, we briefly recall the main classical results on the empirical distribution of the
eigenvalues in the limit of large random Wigner matrices, which are symmetric or
hermitian random matrices with independent entries (up to symmetry).

Wigner matrices

A Wigner symmetric real (respectively hermitian complex) random matrix H can
be defined from a family of independent and identically distributed (i.i.d.) real
(respectively complex) centered random variables {h;; }1 < < j<oo living on a common
probability space (€2, P) by setting

Hy(ij) = { ivh]
VN i

(2.16)

otherwise .

If the entries have a finite second moment o2 = E[h?j], then Wigner’s theorem
(see [141]) asserts that the empirical spectral measure of the matrix Hy (i) converges
weakly almost surely to the semicircle distribution

1
p(dr) = —v20? — 22 dz. (2.17)
o

An illustration of this convergence is displayed in Fig. 2.1.

The case where the entries have infinite second moment was also treated in
[42, 32]. The entries are assumed to be in the domain of attraction of an a- stable
law, for o € (0;2), i.e. they verify the following asymptotic for the tail

L{u)

P[h” 2 U] = e

)

where L is a slowly varying function. Under this assumption, the authors of [32]
show that the empirical spectral measure py of the matrix Hy (where this time
the entries of the matrix are renormalized by a sequence ay, instead of /N in
(2.16), of normalizing constants which roughly grows as N'/®) converges weakly (in
probability, say) to a measure p,. Moreover it is also shown in [32] that the measure
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Figure 2.1: The histogram represents the eigenvalue density of a simulated GOE
random matrix of size N = 1500. The (red) curve is the Wigner semicircle density.

[e is symmetric, has unbounded support and a smooth density p,(z) outside a small
subset. Even the asymptotic of the tails of y,(dx) = p(x) dx is known: there exists
a constant L, > 0 such that

Lq
potl’

pa(aj) ~

Note that the GOE and GUE random matrices introduced above are particular
cases of Wigner matrices with Gaussian entries. In the next subsection, we will show
a possible way to recover the asymptotic of the empirical spectral distribution for
those ensembles and more generally in the case of general S-ensembles.

Proof of the Wigner semicircle law for f-ensembles

We first need to introduce the Stieltjes transform of a probability measure. If p is
a probability measure on R, its Stieltjes transform is defined for all z € C\ R as

G(z):/M.

r—z

The measure p is characterized by its Stieltjes transform and its values on bounded
continuous test functions can be recovered from G(z) by a limiting procedure z —
x € R. In particular, if the measure p has a continuous density p(x) with respect to
Lebesgue measure, we have the classical inversion formula

lim (G (z — i€)) = mp(x) . (2.18)

e—0
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We now show that the empirical spectral distribution converges weakly to the
Wigner semicircle density for general f-ensembles. Let (A(t),...,An(t)) be the
diffusion process that verify the stochastic differential system (2.10) (with 8 > 0) and
denote by Gn(z,t) the associated Stieltjes transform of the empirical distribution
of the A;(t). The following relation holds

Gr(zt) = %Zlﬁ (2.19)

The idea of the proof is to study the evolution of G y(z,t) with respect to time ¢ and
in particular its convergence to equilibrium when t — co. We already know that the
diffusion process (Ai(%),..., An(f)) converges in law in the limit of large time ¢ to
Ps. Therefore, Gn(z,t = 00) corresponds to the Stieltjes transform of the empirical
spectral distribution of a random matrix H” in the 3-ensembles.

Applying Ito’s formula to the functional STV (1)) where f is the smooth
function f(A) = 1/(A — z) and using the SDS (2.10) verified by the \;, we obtain
the following Langevin equation for G y(z,t)

2dGn = ~ dt dt + —(2 — dt +dM, 2.20
N9 02 * 0z * 2N (2-6) 022 A (220
where dM} = -2 Zf;l m % with quadratic variation

N
ay, = =3 L
N3 i1 ()\z — Z>4

In the large N limit, we easily see that the two last diffusion and martingale
terms are negligible compared to the other terms and therefore we can rewrite the
Eq. (2.20) in the limit N — oo as a deterministic Burgers evolution equation

oG  BIG* 092G
o 20: o
To leading order, the stationary equation associated to (2.21) (where the time deriva-
tive is set to 0 and which is satisfied by Gn(z,t = 00)) can be integrated with respect
to z as:
8
2
where the integration constant comes from the boundary condition Gy ~ —1/z

when |z| — oco. It is then easy to solve this equation (2.22) to find the equilibrium
Stieltjes transform

(2.21)

G*+:G+1=0 (2.22)

G(z,00) = % [\/22 —26—2} .

It can now be checked with the inversion formula (2.18) that the associated empirical
spectral distribution is indeed the Wigner semicircle density

PN = VIE =N, —y2B <A< V. (2.23)
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2.1.6 Our contribution

Let us briefly explain our results related to Gaussian ensembles. For further details
on those results, we refer to the following chapters.

In the first paragraph, we define a new diffusive matrix model converging to-
wards the S-Dyson Brownian motion for all § € [0,2] that provides an explicit
construction of S-ensembles of random matrices that is invariant under the orthogo-
nal/unitary group. We show in the second paragraph that, for small values of 8, our
process allows one to interpolate smoothly between the Gaussian distribution and
the Wigner semicircle. The interpolating limit distributions form a one parameter
family and can be explicitly computed. In the third paragraph, we use the previous
construction to compute the corrections for the empirical eigenvalue distribution of
[-ensembles to the Wigner semicircle density for large but finite dimension. The
last paragraph concerns the eigenvectors of the GOE random matrices. We propose
a general framework to study the stability of the subspace spanned by P consecutive
eigenvectors of a generic symmetric matrix Hy, when a small perturbation is added.
This problem is relevant in various contexts, including quantum dissipation (Hj is
then the Hamiltonian) and financial risk control (in which case Hy is the assets
return covariance matrix). We state our results later in chapter 7 in the case where
Hy is a GOE random matrix or when Hj is a covariance matrix.

A diffusive matrix model for invariant S-ensembles [joint work with Alice
Guionnet, see also chapter 5 or [9]].

The goal of this work is to provide a natural interpretation of [-ensembles in
terms of random matrices for 8 € [0,2]. Dumitriu and Edelman [65] already pro-
posed the tridiagonal matrix introduced above with eigenvalues distributed accord-
ing to P3. However, this tridiagonal matrix lacks the invariant property of the
classical ensembles (GOE is invariant under conjugation of an orthogonal matrix
whereas GUE is invariant under the conjugation of a unitary matrix). The con-
struction introduced in [9] has this property and moreover is constructive as it is
based on a dynamical scheme. It was proposed by JP Bouchaud, and [9] provides
rigorous proofs of the results stated in [5]. The idea is to interpolate between the
Dyson Brownian motion and the standard Brownian motion by throwing a coin at
every infinitesimal time step to decide whether our matrix will evolve according to a
Dyson Brownian motion (with probability p) or will keep the same eigenvectors but
with eigenvalues diffusing according to independent Brownian motions. When the
size of the infinitesimal time steps goes to zero, we prove that the dynamics of the
eigenvalues of this matrix valued process converges towards the S-Dyson Brownian
motion as defined in (2.10) with 8 = p. The same construction with a hermitian
Brownian motion leads to the same limit with 5 = 2p.

More precisely, our model is defined as follows: we divide time into small inter-
vals of length 1/n and for each interval [k/n;(k + 1)/n], we choose independently
Bernoulli random variables €}, k € N such that Pe} = 1] = p = 1 —P[e} = 0]. Then,
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setting € = €[, our diffusive matrix process simply evolves as:

dM,(t) = —%Mn(t)dt +EdH () + (1— €)Y () (2.24)

where dH (t) is a Dyson real Brownian increment as defined in (5.2) and where dY (¢)
is a symmetric matrix that is co-diagonalizable with M, (¢) (i.e. the two matrices
have the same eigenvectors) but with a spectrum given by N independent Brownian
increments of variance dt/N. It is clear that the eigenvalues of the matrix M, (t) will
cross at some points but only in intervals [k/n; (k 4+ 1)/n] for which €} = 0 (in the
other intervals where they follow Dyson Brownian motion with parameter g = 1, it
is well known that the repulsion is too strong and that collisions are avoided). In
such a case, the eigenvalues are re-numbered at time ¢ = (k + 1)/n in increasing
order.

Now, using again standard perturbation theory, it is easy to derive the evolution
of the eigenvalues of M, (t) denoted as A}(¢) < ... < AR (t):

1 n dt 1
AA? = 5 Xt + = + ——db; (2.25)

J#

where the b; are independent Brownian motions also independent of the €}, k € N.
Recall that Cépa and Lépingle showed in [52] the uniqueness and existence of
the strong solution to the stochastic differential system

1 D 1 1
d\i(t) = —=\i(t)dt + — dt db; 2.2

starting from A(0) = (A < Ay < -+ < \y) and such that for all ¢ > 0
A(t) < Xo(t) < --- < A(t)  as. (2.27)

For the scaling limit of the ordered eigenvalues, we prove in Chapter 5 (and also
in [9]) that

Theorem 2.1 (R. A., A. Guionnet). Let M{ be a symmetric (resp. Hermitian)
matriz if f = 1 (resp. B = 2) with distinct eigenvalues A\ < Ay < -+ < A\g and
(MPB(t))s>0 be the matriz process defined in Definition 5.1. Let \}(t) < ... < \B(t)
be the ordered eigenvalues of the matriz MP(t). Let also (\i(t), ..., a(t))i> 0 be the
unique strong solution of (5.5) with initial conditions int = 0 given by (A1, Az, ..., Ag).

Then, for any T < oo, the process (AT(t),..., Aj(t))wcpm converges in law as n
goes to infinity towards the process (Ai(t), ..., Aa(t))icpm) in the space of continuous
functions C([0, T], R?) embedded with the uniform topology.

One of the difficulty of the proof comes from the fact that when p < 1, there
is a positive probability for eigenvalues verifying (2.10) to collide in finite time (the
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ordering constraint is therefore useful at those points to restart). The idea is then
to show that collisions are in a sense sufficiently rare for the SDS (2.10) (with
f = p < 1) to make sense (see [9, 52| or chapter 5 for further details).

The corresponding scaling limit of the matrices M, (t), denoted as M (t), is fur-
thermore invariant under the orthogonal (or unitary) group. This is intuitively
clear, since both alternatives in the evolution of M, (t) (adding a free slice or adding
a commuting slice) respect this invariance, and lead to a Haar probability measure
for the eigenvectors (i.e. uniform over the orthogonal/unitary group). We have also
proved in [9] that a collision leads to a complete randomization of the eigenvectors
within the two-dimensional subspace corresponding to the colliding eigenvalues.

To check numerically Theorem 2.1, a possible way is to check that indeed the
matrix process M, (t) share the known properties of the spectrum of 3 ensembles,
for large time ¢ (and large n for M,(t) to be near its scaling limit). Indeed we
have seen that the eigenvalue density of -ensembles converges for large matrices
to the Wigner semicircle density. Moreover the behavior of the nearest neighbor
spacing distribution (NNSD) P(s) is expected to behave as s® near 0. We simulated
numerically the matrix M, () with N = 200 for a very small step 1/n and until a
large value of ¢ so as to reach the stationary distribution for the eigenvalues. Then we
started recording the spectrum and the nearest neighbor spacings (NNS) every 100
steps so as to sample the ensemble. We verified that the spectral density of M, (t =
00) is indeed in very good agreement with the Wigner semi-circle distribution for
B =1/2 (see Fig. 4.1). Our sample histogram for the NNS distribution is displayed
in Fig.4.1. We also added the corresponding Wigner surmise (which is expected to
provide a good approximate description of the NNSD).

Invariant -ensembles and the Gauss-Wigner crossover [joint work with
Jean-Philippe Bouchaud and Alice Guionnet, see also chapter 4 or [5]].

The construction (6.13) of the previous subsection leads to the S-ensembles (with
in fact § = p) introduced above as soon as the parameter p > 0 and we have seen
that in this case the empirical spectral distribution is given by the Wigner semicircle
law with edges at ++/2p.

On the other hand, if p = 0, the eigenvalues process of the diffusive matrix veri-
fying (6.13) is given by N independent Ornstein-Uhlenbeck processes. The empirical
eigenvalues distribution is therefore in this case given by the Gaussian distribution.

This raises the question of the existence of an interpolation between these two
regimes. A continuous cross-over indeed takes place for § = p = 2¢/N with ¢ strictly
positive and independent of N. The SDE for the limiting eigenvalues process (\;(t))
is again given by (2.10) with the additional ordering constraint A;(¢) < ... < An(t)
(necessary to restart after collisions occurred) and the stationary joint probability
density function (pdf) is still given by (6.5) but with now the vanishing repulsion
coefficient 3 = 2¢/N.

We can proceed along the same steps as in subsection 2.1.5. We restart from
Equation (2.20). In the present scaling, we expect the spectrum to have a width
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Figure 2.2: Up: Empirical eigenvalue distribution for the matrix M, (t = oco) with
the semicircle density for N = 200,53 = 1/2. Down: Empirical NNSD P(s) for
the matrix M, (t = oo) for f = p = 1/2 with the Wigner surmise (red curve)
corresponding to 8 = %, which behaves as s” when s — 0.
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of order \/p o 1/ V/N and therefore we can easily check that in this scaling, the
martingale term of (2.20) is negligible compared to the other terms which are now
all of the same order (the second derivative term is no longer negligible!). The
stationary differential equation derived from equation (2.20) can be integrated with
respect to z and after a further rescaling to make the support of the eigenvalues
density of order 1, we obtain:

9 dG
cG"+2G + - 1, (2.28)
where the integration constant comes from the boundary condition G ~ —1/z for
z — o0o0. Equation (4.12) can be also recovered directly from the saddle point
equation route starting from the joint pdf Ps with 5 = 2¢/N (this method is also
presented in [5]).
Equation (4.12) can be explicitly solved and leads to the following eigenvalues
density

1 1
PN = o T D

D 6_22/4 OOd —za:—ﬁ c—1
_(2) = T /0 xe T

(2.29)

The probability density p. is the asymptotic eigenvalues density of a matrix H?
defined as in (2.15) with 5 = 2¢/N or equivalently the asymptotic empirical density
of a random vector (zi,...,xy) with distribution Pz (with again § = 2¢/N). See
the progressive deformation of the Gaussian towards Wigner’s semi-circle in Fig.
2.3.

Figure 2.3: Density p.(u) for ¢ = 0, 1,2, 3, 4, showing the progressive deformation of
the Gaussian towards Wigner’s semi-circle.
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This family of distributions is indeed a crossover (or an interpolation) between
the Wigner semicircle and the Gaussian distributions, as we have on the one hand,
for ¢ =0,

1 A2

NeT GXP(—E)

Po()\) =

and on the other hand, for ¢ — oo,

1
Pe(A) ~ —Vde — N2,

2me

Wigner correction for large but finite dimension [joint work with Jean-
Philippe Bouchaud, Satya N. Majumdar and Pierpaolo Vivo, see also chapter 6 or
11]).

We now explain how to derive a 1 /N expansion for the asymptotic mean empirical
eigenvalues distribution at order 1/N? for matrices in the GOE and in the GUE but
only at order 1/N for general S-ensembles. More precisely, by denoting py(A) the
density (with respect to Lebesgue measure) of the probability density pjﬁv()\) =
E[+ SOV 8(A — \;)] where the ); are the eigenvalues of a GOE or GUE random
matrix, we want to determine explicitly the 1/N expansion of py written in the
form . . )

pn(A) = oV 4=+ Npl(/\) + mm(/\) +O(
We describe in the following how to find explicit formulas for the correction functions
(not necessarily positive) p; and ps.

Let us return to (2.20) for f = 1 or 2. We consider the stationary differential
equation associated to (2.20) (i.e. when the derivative with respect to time is set
to 0) as we have done in the previous subsection. By rescaling® the eigenvalues as
A < M\2/+/PB and by taking expectation, it is easy to see that equation (2.20) can
be rewritten as

dE GN2 dzE GN 12— d2E GN d

;] + (L L+N 56 (£2]+azmm%m—MGm%:0. (2.31)

It turns out that the limit when N — oo of the last term has been explicitly

computed in [99]. It is shown in [99] that

1
=5 (2.30)

dAdy

N N N 26m% |5 Joo (A= 2)2 (1 — 2)? VA= N2\ /4 — 12
(2.32)
for g € {1,2}. By denoting V3 the right hand side of (2.32), we can integrate (2.31)

with respect to z, neglecting terms of order N3, as
12— 3 dE[GN] 1

2 —
E[GN] +Z]E[GN] + N 6 dz + N2

Vy=—1 (2.33)

3This rescaling is chosen so that the eigenvalue density, in the limit of large matrices, is the
Wigner semicircle density with the classical support [—2;2] instead of [—+/28;/20].
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where the integration constant is again chosen according to the boundary condition
G ~ —1/z when |z| — co. The interesting fact here is that the integral Vs can be
computed analytically as a function of z. We find

2 1
B (22 —4)*
Then, using perturbation theory in (2.33), we can compute explicitly the coefficients

p1 and po in expansion (2.30).
The result reads:

Vs =

P (dN) = L= a (2.34)
2
L33 Gonmene L) a e
1/1 1\* 1 3 1 5 1 1 1
w (5_5) 4= {5A2—4+1 ((Mr?)2 " (A—2)2)] N2
(2.36)
e} 237

A numerical evidence for this formula is shown in 2.4. This result was already known
(see [72] and references therein). In [72], the authors discuss the origin of the Dirac
mass at the edges.

Stability of eigenspaces [joint work with Jean-Philippe Bouchaud, see also chap-
ter 7 or [6]].

We are now interested in the eigenvectors stability of GOE random matrices when
a small GOE perturbation matrix e P is added. Our aim is to understand the overlap
between the eigenvectors of a non-perturbed GOE matrix H, with the eigenvectors
of the perturbed matrix H; obtained from H, by adding a small perturbation ¢P
as in equation (2.7) where P is a GOE matrix and ¢ is a small parameter.

It is quite clear, in view of the perturbation equation for the eigenvectors (7.2),
that it will be difficult to follow the evolution of one single eigenvector when the
perturbation is added if the perturbation entries are too large compared to the
eigenvalue spacing of the GOE matrix H, (this level spacing is typically of order
1/(Np(X)) where p is the density of eigenvalues for a GOE matrix renormalized by
1/v/N). Indeed the small denominators, due to eigenvalues at very near distance,
will lead to divergence in the individual overlaps (1] /) between the perturbed and
non perturbed eigenvectors.

The idea to avoid this problem is to study the overlap between a whole sub-
space of non-perturbed eigenvectors with a whole subspace of perturbed eigenvec-
tors. More precisely, we study the (not necessarily square) overlap matrix with
entries

Gij = (WilYy)
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Figure 2.4: Numerical simulations of the state density of a GOE matrix of dimension
N = 10. Histogram: sample density. Red curve: Finite size correction (2.34) until
order 1/N, which coincides almost perfectly with the sample density inside the bulk.
The Dirac is pictured with a single point. Green dashed curve: Finite size correction
(2.34) until order 1/N?. Blue curve: N — oo Wigner semi-circle density.
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obtained by taking the scalar product between all the non-perturbed eigenvectors
Y9 whose eigenvalues lie in the interval® [a;b] C [-2;2] with all the perturbed
eigenvectors ¢} whose associated eigenvalues lie in an interval [a — &;b + &] (where
d > 0).

We are then able to extract precise informations on the overlap matrix G. In
particular, we characterize its spectrum in the limit of large matrices and we extract
the main information on the shape of this spectrum. We also define the overlap
distance D(Vj, V1) between the two subspaces V and V;, which are respectively the
subspaces generated by the 1[1? and by the 1}, as follows

P
1
D(Vo, Vi) = =5 > log(s1)
i=1

where s1, ..., sp are the singular values of G' (with P being the smallest dimension of
the rectangular matrix G)°. We also compute this distance D(V;, V1) in the limit of
large dimension. This establishes some stability properties of the subspace generated
by the eigenvectors of a GOE matrix and finds applications in quantum dissipation
and in the study of the physical phenomenon of singular x-ray absorption in metals.

2.2 Empirical Covariance matrices

In this section, we first review the classical ensembles of random covariance matrices
and we recall as in the previous section their main spectral properties. Then, in the
final subsection, we present our contribution in this direction. Part of those results
are theoretical results but we have also worked on some applications in quantitative
finance.

2.2.1 Real and complex Gaussian Wishart Ensembles

Let X be a real (respectively complex) Gaussian random matrix of size M x N,
i.e. a random matrix chosen in the space of M x N real (resp. complex) matrices
according to the law:

P(dX) o< exp (—%Tr(XTX)) dX, (2.38)

where X is the Hermitian conjugate of X. In the following, we will denote the real
(resp. complex) Wishart ensemble by W# with 8 = 1 in the real case (resp. 3 = 2
in the complex case).

4In this paper, the renormalization of the matrices are such that the support of the spectrum
when NV = oo is [—2;2].

°In the limit of large matrices the former definition of G' through the interval [a; b] implies that
P~N ff p where p is the eigenvalue density.
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The real (resp. complex) Wishart Ensemble is the ensemble of (N x N) square
matrices of the product form W := XX where X is a real (resp. complex) Gaussian
random matrix of size N x M.

The spectral properties of the Wishart matrices have been studied extensively
and it is known [83] that for M > N, all N positive eigenvalues of W are distributed
via the joint pdf

N

1 B(nM— _

Ps(Ms. . Ay) = Ee—%EiNMHA;(M VOTTTI - 0P (239)
=1

1<J

where Z is a constant normalization factor and where § = 1 in the real case (resp.
f = 2 in the complex case). Note that the distribution Ps defined in (2.39) is in
fact defined for every g > 0.

2.2.2 Continuous processes for real and complex Wishart
ensembles

We wish to define here a diffusive matrix process depending on a fictitious time
t > 0 that will converge to the Wishart Ensembles in the limit of large time. The
idea is simply to set

W, .= XIX, (2.40)

where X; is a real (resp. complex) random matrix process (of size M x N) following
the Ornstein-Uhlenbeck law,

1
dXt - —§Xtdt + dBt

where B, is a real Brownian (resp. complex) random matrix, i.e. a matrix whose
entries are given by independent standard Brownian motions.

It is well known that the stationary law of a Ornstein-Uhlenbeck process is the
Gaussian law and therefore, the real (resp. complex) matrix process X; converges
in law when t — oo to the law of a Gaussian real (resp. complex) random matrix.
Hence, we deduce that the real (resp. complex) matrix process W, defines a diffusive
matrix process that converges in law to W € W7,

It is also easy to check that the positive definite matrix process W, verifies the
following stochastic differential equation [48]:

AW, = ~W,dt + /W,dB, + dB{ /W, + M31dt (2.41)

where By is a real (resp. complex) Brownian random matrix and with § =1 (resp.

B=2).
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The evolution of the eigenvalue process () < Aa(t) ... < Ay(f) is also easy to
derive [49] using perturbation theory to second order as in the second section of this
chapter

ki Ai = Ak

where the b; are independent standard Brownian motions. The stationary distribu-
tion of the process (A, ..., An)(t) is necessarily the joint pdf Ps(Aq, ..., Ay) defined
in (2.39) (this is true for any 8 > 0 and can also be recovered using the Fokker-Planck
equation for the multivariate diffusion (2.42)).

A\ = —\dt +2¢/ A db; + 3 (M +>° At A’“) dt (2.42)

2.2.3 Eigenvalues density

As in the second section, we are interested in the limiting eigenvalues density for
large empirical covariance matrices, which we define here as matrices of the product
form E := XX /M where X is an M x N matrix with i.i.d. entries.

Real and complex Gaussian Wishart random matrices are a particular case of
what we call an empirical covariance matrix.

Under the assumption that the entries, denoted as x;;, of the random matrix X
have finite second moment (i.e. such that E[mfj] = 0% < 00), the Marcenko Pastur
theorem states that the eigenvalues empirical distribution of the random covariance
matrix E converges weakly almost surely, in the limit N, M — oo with N/M — ¢
(where ¢ is a fixed parameter), to a deterministic probability measure whose density
with respect to Lebesgue measure is

IRV CTR=D VIO
27q A ’

p(A) = Y- <A<y (2.43)

where v are the edges of the compactly supported spectrum given by

- =0=Va? =0+

This result can be derived in the case of real and complex Gaussian Wishart
random matrices by using the diffusion process defined in (2.42) along the same line
as in the second section (see subsection 2.1.5). It is also done in [11].

We mention in passing that the case of heavy tail entries for the matrix X is
treated in [31], but as in the Wigner case, the limiting spectral density is not the
Maré¢enko Pastur density but is fully characterized in [31]. As in [32], the authors of
[31] also derive the main properties of the limiting probability measure (continuous
density with respect to Lebesgue measure, tails behavior).

2.2.4 Our contribution

This subsection is devoted to our main contribution in the study of Wishart matri-
ces. In the first paragraph, we construct a diffusive matrix model for the 5-Wishart
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(or Laguerre) ensemble for general § € [0, 2], which preserves invariance under the
orthogonal /unitary group. Scaling the Dyson index [ with the largest size M of
the data matrix as 8 = 2¢/M (with ¢ a fixed positive constant), we obtain a family
of spectral densities interpolating continuously between the Marcenko-Pastur and
the Gamma laws as ¢ is varied. We obtain as a byproduct the correction to the
Mar¢enko-Pastur density until order 1/M for all 3 and until order 1/M? for the
particular cases § = 1,2. In the second paragraph, we are interested in the empir-
ical covariance matrix composed from the increments of independent multifractal
random walks and in particular in the eigenvalue empirical density of this matrix.
This study is motivated by applications in risk control and portfolio optimization in
finance. In the third and last paragraph, we are interested in empirical covariance
matrices composed from datas which have a non trivial "true” covariance matrix
with one eigenvalue much larger than the other ones. In particular, we study the
evolution of the top eigenvalue and associated eigenvector of the empirical matrix
when it is measured through a sliding widow along a time series of datas.

Invariant $-Wishart ensembles, crossover densities and asymptotic cor-
rections to the Marcenko-Pastur law  [joint work with Jean-Philippe Bouchaud,
Satya N. Majumdar and Pierpaolo Vivo, see also chapter 6 or [11]].

This paragraph is related to the work [5] but concerns the Gaussian Wishart
model instead of the Gaussian Orthogonal ensemble. We define a diffusive matrix
model for invariant -Wishart Ensembles for all 5 and we find the interpolation fam-
ily of spectral measures when taking a vanishing repulsion coefficient 5 = 2¢/M. As
a by product, we can also find the 1/N and 1/N? correction terms to the Marcenko
Pastur density (for the convergence of the empirical spectral distribution).

We first need to introduce a family of real diffusion processes. Let 6 > 0 be a fixed
parameter. The CIR process (named after its creators John C. Cox, Jonathan E.
Ingersoll, and Stephen A. Ross) is the diffusion process x(t) defined by x(0) := x¢ > 0
and for t > 0 by

de(t) = —z(t) dt +2+/x(t) dby + 0 dt. (2.44)

Using the assumption § > 0, it is easy to see that the process z(t) will remain
non negative for all times ¢ > 0. It is also easy to verify that the stationary pdf
of the Langevin equation (6.11) is the Gamma distribution with shape and scale
parameters k = §/2 and 0 = 2 defined as

ps(x) = ——x2""e77 . (2.45)

In analogy with squared Bessel processes, the parameter ¢ will be called the dimen-
sion of the process z(t).

Following [5, 9], our goal is to construct a diffusive matrix process whose eigen-
values process is asymptotically distributed according to Pj for general 5 € [0;2].
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The idea is to slice the time interval into small intervals of length 1/n and for
each interval [k/n; (k 4+ 1)/n], to choose independently Bernoulli random variables
€,k € N such that Pley = 1] = p = 1 — Plej; = 0]. Then, setting €' = €], our
diffusive matrix process evolves as:

AW? = —W dt + dA” (2.46)

where the increment matrix dA} now depends on the value of the additional random
process €;":

o if ef =1, then
dA" = /W7 dB, + dB] /W7 + M Idt.

where dB; is an N x N real® Brownian increment matrix whose entries have
variance dt.

o if e =0, then

dAT = /W dY, +dY] /Wy + 6 1dt.

with § > 0 and where dY; is a symmetric matrix that is co-diagonalizable with
W7 (i.e. the two matrix have the same eigenvectors) but with a spectrum given
by N independent real Brownian increments of variance dt.

It is clear that the eigenvalues of the matrix W} will cross at some points but
only in intervals [k/n; (k + 1)/n] for which €} = 0 (in the other intervals where they
follow the SDE (2.42) with parameter 8 = 1, it is well known that the repulsion
is too strong and thus collisions are avoided). In this case, the eigenvalues are re-
numbered at time ¢ = (k 4+ 1)/n in increasing order. With this procedure, when
ordered A\ (t) < ... < A% (t), we can again check as in [5, 9], using perturbation
theory, that the eigenvalues will remain always non-negative and will verify the
Stochastic Differential System (SDS):

AT AT

AN} = —\'dt + 24/A7 db; + <e:;M +l—i ey W) At (247)
i Tk

where the b; are independent standard Brownian motions, which are also indepen-
dent of the process €}

Note that when €} = 0, the particles A} are evolving as independent CIR pro-
cesses of dimension § > 0 as defined above. Therefore, the particles can cross in
those time intervals, breaking the increasing order so that they will be re-ordered

60bviously, this construction can be done with complex Brownian motions, corresponding to
the parameter § = 2 instead of 8 = 1 in the present case.
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at time ([nt] + 1)/n but they will remain non-negative as the dimension 0 is strictly
positive. Therefore the SDS (6.14) remains well defined at all times ¢ > 0.

One can follow the proof of [9] to prove that the scaling limit (i.e. when n — o)
of the process (A7(t) < ... < A% (t)) verifies the following SDS

A+ A
d\; = —Adt + 21/ N db; + (pM+ (1=pd+p) 5 * A’“) dt. (2.48)
hi Tk

One can deduce from the above equation (6.15) the Fokker-Planck equation for
the joint density P({\;},t), for which the stationary joint pdf is readily found to be

N

1 1 P(M— 5 —(1-98

P, Ay) = e s ER A TR T g (249)
=1

i<j

The probability Ps introduced in (2.39) is recovered here by taking the values p =
and 6 = 0. If p = > 0, the eigenvalue probability density in the large N, M limit
is the Marcenko-Pastur law. Note that with the above normalizations, the spectrum
is spread over a region of R, of width of order pM. On the other hand, if p = 0,
the large N, M-limit of the spectral density is the Gamma distribution with shape
and scale parameters k = /2 and 6 = 2 (recall that it is the stationary pdf of the
CIR process of dimension 9):

_ L
po(dX) = 25/2F(§)A2 e

dA. (2.50)
It is quite natural to ask whether a crossover regime may be found, interpolating
between the Marcenko-Pastur density (p > 0, independent of the dimension M) and
the Gamma distribution (p = 0). A good candidate for triggering such a transition
is clearly a parameter p vanishing with M as p = 2¢/M where ¢ is a positive fixed
constant.

The derivation of the crossover density can be made with two different (and
perhaps surprisingly equivalent) methods: the Itd6 method using Stochastic calculus
as was first done in [5] and the Saddle point route (which was also presented in [5]).
We explain the link between those two methods in [11].

The interpolating family of probability densities that we finally find is the three
parameters ¢ (such that p = 2¢/M), g = N/M and § > 0 as

(M) = 1 1
Peas 20 (n+ 4+ HT(C — it 3) [Wogu(=3)

(2.51)
where W_¢ , is a Whittaker function and with the following values for the parameters

1
(=cq— —; ,u:Z|oz—2| with a=(2—-9)—2¢(1 —q);

«
4
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For ¢ = 0, the probability density po, ¢ is indeed given by the Gamma distribution
with shape and scale parameters k = §/2 and § = 2. For ¢ — 400, one can also
check that the distribution p.—joqs indeed corresponds to the Marcenko Pastur
distribution with parameter ¢ (the parameter ¢ is irrelevant in this regime). We also
checked expression (2.51) numerically, with very good agreement, see Fig. 2.5.
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Figure 2.5: The histogram represents the empirical eigenvalue distribution of the
matrix W7 __ for the following values of the parameters ¢ = 1,p = § = 2¢/M, M =
100, N = 50,6 = 1,q = 1/2. The (red) curve is our theoretical prediction for the
limiting eigenvalue density given by (2.51).

We mention also that following a method similar to the one explained in para-
graph Wigner correction for large but finite dimension, we can derive the
correction term to the Marcenko Pastur distribution for the empirical eigenvalue
distribution.

Marcenko Pastur theorem for MRW processes [joint work with Rémi Rhodes
and Vincent Vargas, see also chapter 8 or [10]].

This work is inspired from applications. It stems from finance and focuses on
the study of covariance matrices which is a crucial tool for minimizing the risk R,,
of a portfolio w that invests w; in asset number i. Indeed, if we denote by r; the
price variation of asset 7, R,, can be defined as the variance of the random variable
>, w;r; and can be computed in terms of the covariance matrix R of the r; (defined
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as Rij = E[T’ﬂ'j])l ,
Ry =wRuw.

Of course, practitioners do not have access to R; instead, they must consider a noisy
empirical estimator of R, which consists of a large empirical covariance matrix. A
key tool in distinguishing noise from real correlations is the study of the eigenvalues
of the empirical covariance matrix: we refer to [43, 116] for more extended discussions
on the applications of large empirical covariance matrices in finance and in particular
in portfolio theory.

We consider here N stock price processes X;(t) for i = 1,..., N that evolve
continuously with respect to time ¢ € [0;1] and we observe those prices only on a
discrete finite grid {j/T,j = 1,...,T} where T is the number of observations. Using
this discrete grid, we can compute the price variations r;(j) (that we will abusively
call returns) for each asset price X; on every time interval [(j — 1)/T; j/T] by:

we(f) - (7)

Then, we define the N x T matrix Xy such that Xy(ij) = r;(7) that enables to
define the empirical covariance matrix Ry as follows

RN = XNX]tV .

The Marc¢enko Pastur theorem enables to compute the limiting eigenvalue den-
sity of the empirical covariance matrix Ry if the stock price processes X;(t) are
evolving as independent standard Brownian motions. Indeed, in this case, the ran-
dom variables 7;(7) are i.i.d. Gaussian variables and the matrix Ry is precisely an
empirical covariance matrix as defined in subsection 2.2.3 (more precisely, Ry is a
real Gaussian Wishart matrix).

In [10], we have been interested in the case where the stock price processes X (t)
are independent lognormal multifractal random walk (LMRW), as defined in the
first section in equation (1.5), which are typically not diffusions and which present
many very interesting properties for finance as they respect several of the universal
features, called stylized facts, observed for the price of assets on financial markets
(see [58] for a review on stylized facts). We have been able to prove convergence
of the eigenvalue density and to characterize the limiting distribution (which is a
deformation of the Marc¢enko Pastur distribution due to the (long) memory volatility
process of the LMRW process) through its Stieltjes transform. We have verified
numerically our result: the agreement between the simulated eigenvalue density and
the numerical value of the theoretical density obtained by inverting our equations
on the Stieltjes transform is excellent. We also give some numerical properties of
the limiting eigenvalue density in view of applications.

Empirical measurement of a covariance matrix with one isolated top
eigenvalue [joint work with Jean-Philippe Bouchaud, see also chapter 7 or [6]].
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We are concerned here with the empirical measurement of a covariance matrix
denoted as C' which has a very large dimension N and a spectrum of the form
(A, 1,...,1) where A; > 1 and we are given a sample of i.i.d. centered Gaussian
vectors (ri(t),...,rn(t)),t € N whose covariance matrix is C. There are two ways
of measuring the empirical covariance matrix E. The first one is to pick a large
integer T (typically such that N/T = g € [0 : 1] where ¢ is a fixed parameter) and
to compute F as before through the classical formula,

1 T
Eyj = — ; ri(t)r;(t) (2.52)

for each entries 4, j of the matrix F.

The other way of measuring the empirical covariance matrix is through the ex-
ponential moving average estimator. Letting e > 0 (this parameter will play the role
of T'), the matrix F is measured through

Eij = € (1 — e)tri(t)rj(t) . (253)

t=0
The two different formulas (2.52) and (2.53) lead to two different matrices with
different properties (although related). We can also use a sliding window to have

sequences of matrices E(t) which evolve with time as, if we consider for example the
second model defined in (2.53),

Eyj(t) = (1 — €)Ey(t — 1) + ery(t)r;(t) . (2.54)

We always consider the evolution equation (2.54) in its stationary regime.

In [6], we are interested in the dynamic evolution of the top eigenvalue and
eigenvector of the matrix F(t) which evolves with time through (2.54). In particular,
we give the Langevin equations followed by the top eigenvalue and the angle 6,
between the top eigenvector of E(t) with the top eigenvector of the matrix C.The
dynamics of the angle 6, defines an interesting new class of random processes. We
also compare our results with numerical simulations with very good agreement.

We mention in passing that the study of the top eigenvalue of the empirical
covariance matrix E defined in (2.52) can be found in [28] in a more general setting
where an arbitrary finite number of spikes (isolated eigenvalues different from 1) are
authorized. The authors prove convergence of the top eigenvalue of the matrix £ and
they characterize the fluctuations for large but finite N. In particular, they exhibit
a phase transition depending on the value of the top eigenvalue of the covariance
matrix C'. If this top eigenvalue of C' is above their explicit threshold, the fluctuation
of the empirical top eigenvalue is given by a (generalized) Gaussian distribution with
the classical scaling in v/N although it is, as expected given by a Tracy Widom law
if the top eigenvalue of C' lies below the threshold with the usual scaling N?/3.

In [6], let us mention that we are able to recover the value of the limit of the top
eigenvalue of £ when N,T — oo with N/T" — ¢ but not the fluctuations.
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Applications to empirical finance [Work in collaboration with Jean-Philippe
Bouchaud, see Chapters 7, 9 and 10 |. We have also been interested in applications
of random matrix theory to empirical and statistical finance. We would not go too
much into the details in this paragraph and we refer the reader to the corresponding
chapters. A part of Chapter 7 is devoted to the study of the evolution in time of
the sectors (or top eigenvectors of the correlation matrix) in financial markets. This
study uses the results we establish on eigenvectors stability in the same chapter. In
Chapter 9, we revisit the Leverage effect in financial market. The Leverage effect
is among the best known stylized facts of financial markets: negative price returns
induce increased future volatilities. Using random matrix theory, we study this effect
and its mechanisms in great details. Random matrix theory enables us in particular
to compute the noise measurement and to check the significancy of our empirical
results. In Chapter 10, we study the intra-day dynamics of stocks returns and we
draw the picture of the co-movement of stocks. Again, this study relies partly on
random matrix theory.
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Chapter 3

Lognormal *x-scale invariant
random measures

Résumé

Cet article est publié dans le journal Probability theory and Related Fields
et est écrit en collaboration avec Rémi Rhodes et Vincent Vargas. Nous
considérons 'analogue continu de la célébre équation étoile de Mandel-
brot (avec des poids lognormals). Mandelbrot a introduit cette équation
afin de caractériser la loi des cascades multiplicatives. Nous montrons
I’existence et 'unicité des mesures qui satisfont cette équation continue;
ces mesures aléatoires appartiennent a I’ensemble des chaos multiplicat-
ifs Gaussiens introduit par J.-P. Kahane en 1985 (voir a des extensions
de cet ensemble). Nous obtenons aussi une caractérisation explicite de la
structure de covariance de ces mesures. Nous prouvons de plus que cer-
taines propriétés qualitatives telles que I'indépendance a longue portée
ou l'isotropie peuvent étre déduites de cette équation.

Abstract

In this article, we consider the continuous analog of the celebrated Man-
delbrot star equation with lognormal weights. Mandelbrot introduced
this equation to characterize the law of multiplicative cascades. We show
existence and uniqueness of measures satisfying the aforementioned con-
tinuous equation; these measures fall under the scope of the Gaussian
multiplicative chaos theory developed by J.P. Kahane in 1985 (or pos-
sibly extensions of this theory). As a by product, we also obtain an
explicit characterization of the covariance structure of these measures.
We also prove that qualitative properties such as long-range indepen-
dence or isotropy can be read off the equation.

o1
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3.1 Introduction

Fractality and the related concept of scale invariance is nowadays well introduced
in many fields of applications ranging from physics, finance, information or social
sciences. The scale-invariance property of a stochastic process is usually quantified
by the scaling exponents £(q) associated with the power-law behavior of the order ¢
moments of the fluctuations at different scales. More precisely, if X; is a 1-d process
with stationary increments, we can consider the ¢g-th moments of its fluctuations at
scale [:
E[\XHI — Xt]q].

The scaling exponents £(q) are defined through the following power-law scaling:
E[|Xps — Xi|7] = G890 Wl <T.

When £(q) = gH is linear, the process is said to be monofractal. Famous ex-
amples of such processes are (fractional) Brownian motion, a-stable Lévy processes
or Hermitte processes. When ¢ is nonlinear, the process is said to be multifractal.
The concept of nonlinear power-law scalings goes back to the Kolmogorov theory
of fully developed turbulence in the sixties (see [50, 129, 134, 51, 73] and references
therein), introduced to render the intermittency effects in turbulence. Mandelbrot
[103] came up with the first mathematical discrete approach of multifractality, the
now celebrated multiplicative cascades. Roughly speaking, a (dyadic) multiplicative
cascade is a positive random measure M on the unit interval [0, 1] that obeys the
following decomposition rule:

M(dt) "= 2% ()M (2dt) + Z'1py (1) M (2dt — 1), (3.1)

where M°, M*' are two independent copies of M and (Z°, Z') is a random vector
with prescribed law and positive components of mean 1 independent from M° M?!.
Such an equation (and its generalizations to b-adic trees for b > 2), the celebrated
star equation introduced by Mandelbrot in [102], uniquely determines the law of
the multiplicative cascade. Despite the fact that multiplicative cascades have been
widely used as reference models in many applications, they possess many drawbacks
related to their discrete scale invariance, mainly they involve a particular scale ratio
and they do not possess stationary fluctuations (this comes from the fact that they
are constructed on a dyadic tree structure).

Much effort has been made to develop a continuous parameter theory of suitable
stationary multifractal random measures ever since, stemming from the theory of
multiplicative chaos introduced by Kahane [89, 25, 129, 23, 120, 123]. The construc-
tion of such measures is now well understood and they are largely used in math-
ematical modeling since they obey a so-called stochastic scale invariance property,
namely the property of being equal in law at different scales up to an independent
stochastic factor. This is some kind of continuous parameter generalization of (3.1).
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Stochastic scale invariance property is observed in many experimental and theoret-
ical problems, like turbulence (see [73, 50] and many others), quantum gravity (see
[91, 63, 122]), mathematical finance, etc... and this is the main motivation for in-
troducing multifractal random measures. However, as far as we know, the following
question has never been solved: are these measures the only existing stochastic scale
invariant object? This is fundamental since a positive answer gives a full justifica-
tion to their intensive use. In this paper, we characterize stochastic scale invariant
measures when the stochastic factor is assumed to be log-normal. We prove that
the class of such objects is made up of Gaussian multiplicative chaos with a specific
structure of the covariation kernel, which turns out to be larger than described in
the literature.

3.2 Background

Let us first remind the reader of the main definitions we will use throughout the
paper. We denote by B(E) the Borelian sigma field on a topological space E. A
random measure M is a random variable taking values into the set of positive Radon
measures defined on B(R?) such that E[M(K)] < +oo for every compact set K. A
random measure M is said to be stationary if for all y € R? the random measures
M(-) and M (y + -) have the same law.

3.2.1 Gaussian multiplicative chaos

We remind the reader of the notion of Gaussian multiplicative chaos as introduced by
Kahane [89]. Consider a sequence (X"),, of independent centered stationary Gaus-
sian processes with associated nonnegative covariance kernel k,(r) = E[X"X{]| > 0.
For each N > 1, we can define a Radon measure M? on the Borelian subsets of R?
by

MY (A) = / XN X2 LB g
A

For each Borelian set A, the sequence (M™(A))y is a positive martingale. Thus
it converges almost surely towards a random variable denoted by M(A). One can
deduce that the sequence of measures (M”)y weakly converges towards a Radon
measure M, commonly denoted by

M(A) = /AeXr_;]E[X?'] dr (3.2)

and called Gaussian multiplicative chaos associated to the kernel

K(r) = ka(r). (3.3)
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Roughly speaking, (3.2) can be understood as a measure admitting as density the
exponential of a Gaussian process X with covariance kernel K. Of course, this is
purely formal because X can only be understood as a (random Gaussian) distri-
bution in the sense of Schwartz because of the possible singularities of the kernel
K.

Of special interest is the situation when the function K can be rewritten as (for
some A\? > ()

K(r) = AIn, % + g(r) (3.4)
for some bounded function g (and In, (z) = max(0,In(z))). In that case, Kahane
proved that the martingale (M (A))y, for some Borelian set A with non-null finite
Lebesgue measure, is uniformly integrable if and only if A?> < 2d. This condition is
necessary and sufficient in order for the limiting measure M to be non identically
null. For kernels of the form (3.4) which can not be written as a sum of nonnegative
terms as (3.3), we refer to the extended Gaussian multiplicative theory developed
in [120]. We remind that Gaussian multiplicative chaos with kernel given by (3.4)
has found applications in many fields in science:

e In dimension 1, the measure M is called the lognormal Multifractal Random
Measure (MRM). It is used to model the volatility of a financial asset (see [24],
[62]).

e In dimension 2, the measure M is a probabilistic formulation of the quantum
gravity measure (more precisely, the quantum gravity measure is defined as the
exponential of the Gaussian Free Field and therefore is defined in a bounded
domain). We refer to references [33], [63], [122] for probabilistic papers on this
topic.

e In dimension 3, the measure M is called the Kolmogorov-Obhukov model (see
textbook [73]): it is a model of energy dissipation in the statistical theory of
fully developed turbulence.

3.3 Main results

3.3.1 Definitions

In this paper we are interested in stationary random measures satisfying the follow-
ing scale invariance property:

Definition 3.1. Log-normal *-scale invariance. A random measure M is said
to be lognormal x-scale invariant if for all e < 1, M obeys the cascading rule

(M(A)) segpe 2 ( /A <O M(dr)) 4oz (3.5)
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where w, 1s a stationary Gaussian process with continuous sample paths and M€ is
a random measure independent from w. satisfying the relation

(M<(eA)) " A (M(A))

AcBEY) — (3.6)

AeB(R)"
]

Intuitively, this relation means that when you zoom in the measure M, you
should observe the same behavior up to an independent log-normal factor. This
relation is the continuous parameter analog of the celebrated Mandelbrot star equa-
tion.

Remark. In order for a measure M satisfying (3.5) with a moment of order 1 to be
non trivial, it is obvious to check that the Gaussian process w, must be normalized
so that Ele“(r)] = 1.

Definition 3.2. We will say that a stationary random measure M satisfies the good
lognormal x-scale invariance if M is lognormal *-scale invariant and for each € < 1,
the covariance kernel k. of the process w, involved in (3.5) is continuous and satisfies:

|ke(r)] =0 as |r] = +oo, :
vr, 7' € R%\ {0}, |ke(r) — ke(r")] < Cef(min(|r],|r']))|r — '] (3.8)

for some positive constant C. and some decreasing function 0 :]0, +oo[— R, such
that

+o0
/ O(u) In(u) du < 4o0. (3.9)
[]

Though we would like to solve (3.5) in great generality, we must make a few
technical assumptions to avoid pathological situations (a pathological example is
given at the very end of Section 3.4). This is basically the purpose of the above
definition 3.2. Let us make a few comments on its content.

Equation (3.8) mainly expresses that the kernel k. is Lipschitzian with a local
Lipschitz constant that decays at most like # when approaching infinity. By com-
bining (3.7) and (3.8), it is plain to see that

Vr # 0, |ke(r)| < C. +<><> 0(u) du. (3.10)

Ir|

This is a very weak decorrelation property for the process w,, which describes how
fast the covariance function decays at infinity. In our proofs, it will be the key tool
to investigate the mixing properties of the measure M.
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3.3.2 Results

In what follows, we are mainly interested in the one-dimensional case d = 1. We
have the following description of the solutions to (3.5), which is the main result of
the paper:

Theorem 3.3. Let M be a good lognormal x-scale invariant random measure. As-
sume that
E[M ([0, 1))'"] < 400

for some § > 0. Then M is the product of a nonnegative random variable Y € L'*°
and an independent Gaussian multiplicative chaos

VA C B(R), M(A) =Y / eXr= 2B gy (3.11)
A

with associated covariance kernel given by the improper integral

K(r) = /+<>° k(w) du (3.12)

7| u

for some continuous covariance function k such that k(0) < %.

Conversely, given some datas k and Y as above, the relation (3.11) defines a
log-normal x-scale invariant random measure M with finite moments of order 1+~
for every v € 10,0).

Let us also state the following result giving a sufficient (and not far from being
necessary) condition in terms of k for the measure M as constructed in Theorem
3.3 to be good:

Proposition 3.4. Let M be a log-normal x-scale invariant random measure as con-
structed in Theorem 5.5. If

+o00 k
/ Inr sup L] dr < 400 (3.13)
1

lu > U
then M is a good lognormal *-scale invariant random measure.

Let us comment on Theorem 3.3. First we point out that Y is deterministic as
soon as the random measure M is ergodic. Second, good lognormal x-scale invariant
measures exhibit a multifractal behaviour. More precisely, if we consider a measure
M as in Theorem 3.3, we define its structure exponent

HO) KO

Vg>0, &(q) =1+ 5 5

)q —
Then we have the following asymptotic power-law spectrum, for ¢ < 1+ ¢:

E[M([0,1])Y] =~ Ct*?9  ast—0,
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for some positive constant C|,.
We also stress that the intermittency parameter k(0) is explicit when one knows
K because of the relation

1
K(r) ~ k(0)In <—> ,  when r — 0. (3.14)
r
The covariance function K can also be recovered from the two sets marginals of the
measure M thanks to formula (3.48).
Finally, Theorem 3.3 has the following consequence about the regularity of good
lognormal x-scale invariant measures:

Corollary 3.5. Almost surely, a good log-normal *-scale invariant random measure
M does not possess any atom on R, that is:

almost surely, Vo € R, M ({z}) =0.

Now we investigate long-range independence for good lognormal x-scale invariant
random measures. So we introduce the related notion of cut-off:

Definition 3.6. We will say that a stationary random measure M admits a cut-off
d > 0if, fort < s, the o-algebras H' ., = c{M(A); A € B(R),A C (—o0,t]} and
Hi* = o{M(A); A € B(R),A C [s,+00)} are independent, conditionally to the
asymptotic o-algebra of M, as soon as s —t > d. [

Of course, if the measure M is ergodic then the asymptotic o-algebra of M is
trivial and we can remove the sentence ”conditionally to the asymptotic o-algebra
of M” from the definition. For instance the measure constructed in subsection 3.3.4
admits a cut-off T" and is ergodic. It results from the proof of Theorem 3.3 that the
cut-off property can be read off the cascading rule (3.5):

Proposition 3.7. Let M be a good lognormal *-scale invariant random measure
with finite 1 +6 moment. Then M admits a cutoff if and only if, for some e < 1 (or
equivalently for all € < 1), the covariance kernel k. of the process w. in (3.5) reduces
to 0 outside a compact set.

Finally, we mention that another notion of stochastic scale invariance has been
studied in the literature before: it is called the exact stochastic scale invariance (see
[23, 50, 123]). Let us recall the main result: if the Gaussian multiplicative chaos M
admits a covariance kernel K such that K(z) = A\?In % +C for some constant C' and

for all z in a ball B(0, R) then M satisfies the ”exact stochastic scale invariance”:

Vo€ (0,1), (M(aA))acso.r) o Oéeya_%my‘f](M(A))ACB(O,R)

where Y, is a centered Gaussian random variable with variance A2 In i

The reader may wonder if we can construct random measures that are both
exactly stochastically scale invariant and good lognormal x-scale invariant. Let us
show that
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Proposition 3.8. Let M be a Gaussian multiplicative chaos whose covariance kernel
K is such that, for |r| < R, K(r) = A*In |z—| +C for some constant C' (in particular,
M satisfies the "exact stochastic scale invariance”), then M is not a good lognormal
*-scale invariant random measure.

3.3.3 Multidimensional results

We stress that our results remain true in higher dimensions without changes in the
proofs. For the sake of completeness, we state the main result.

Theorem 3.9. Let M be a good lognormal x-scale invariant random measure such
that for each € < 1, the covariance kernel k. of the process w. is continuous and
differentiable on R4\ {0}. Assume that

E[M ([0, 1]9)*°] < 400

for some § > 0. Then M is the product of a nonnegative random variable Y € L'*+°
and an independent Gaussian multiplicative chaos:

VA C BRY, M(A) =Y / eXr—3EXT gy (3.15)
A

with associated covariance kernel given by the improper integral

+oo k
vz e RI\ {0}, K(z)= / (@) 1, (3.16)
1 u
for some continuous covariance function k such that k(0) < 12_+<5'

Conversely, given some datas k and Y as above, the relation (3.11) defines a
lognormal x-scale invariant random measure M with finite moments of order 1 + v
for every v € [0,0).

It turns out that Proposition 3.4 remains true in dimension d > 1. When the
dimension is greater than 1, it may be interesting to focus on the isotropy properties.
In the same spirit as Proposition 3.7, for a good lognormal %-scale invariant measure
M with a finite moment of order 1 4 ¢, the following assertions are equivalent:

1. M is isotropic,
2. its covariance kernel K (or equivalently & in (3.16)) is isotropic,
3. the covariance kernel k, is isotropic for some € < 1,

4. the covariance kernels k. are isotropic for all € < 1.
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3.3.4 Classical example

As far as we know, there exists only one example of good log-normal x-scale invariant
random measures in the literature, which was first described in [25] (see also [23]).
Its construction is very intuitive: it is geometric and relies on homothetic properties
of triangles in the half-plane. We also stress that this specific example of x-scale
invariant random measures is not restricted to the Gaussian case: the factor can be
more general (log-Lévy).

Following [23], we recall the construction of this example and refer the reader
to the aforementioned papers for further details. Fix T > 0 and let ST be the
state-space half plane

ST ={(t,1):t€R, 1> 0}.

with which one can associate the measure

p(dt, dl) = 1-2dtdl.
Then we introduce the independently scattered Gaussian random measure P defined
for any p-measurable set A by

E [eiqP(A)} — P(@n(A)

with ¢(q) = —A?¢*/2 — ig)\?/2. Under those assumptions, we can note that for any
p-measurable set A, P(A) is a Gaussian variable with mean m = —u(A)\?/2 and
variance 02 = A\?1(A). We can then define the Gaussian process (w;(t))er for I > 0
by

wi(t) = P (At))

where A;(t) is the triangle like subset A;(¢) == {(¢,l') : I < U < T,-U'/2 <t —
t<U/2}.

0 t
Define now the random measure M; by M;(dt) = e®dt. Almost surely, the

family of measures (M;(dt));~o weakly converges towards a random measure M. If
A2 < 2, this measure is not trivial.
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Let us check that M is a good log-normal *-scale invariant random measure. Fix
€ < 1 and define the sets A; p(t) == {(t,0) : I <V < T, -1'/2 <t —t <12}
and Acrp(t) = {(,0) : T < U <T,-U'/J2 <t—1t <1'/2}. Note that A(t) =
A er(t) U Aerr(t) and that those two sets are disjoint. Thus, we can write for every
p-measurable set A

My(A) = / goerr®) gt gy (3.17)
A

with weT,T(t) = P(AETJ“(t)) and wl75T(t) = P(.Al’eT(t)).

Aerp(t)

0 t

We then study equation (3.17) in the limit [ — 0; we obtain
M(A) = / eeerr ) \f<(dt) (3.18)
A

where M€ is the limit when [ — 0 of the random measure M (dt) := et dt. We

law

easily verify that M¢(eA) = eM(A) writing

Mf(A) =€ / et (€D g (3.19)
A
and checking that the covariance of the Gaussian process (wyer(€et))ier is the same

as the one of (w;7(t))ier.
The covariance kernel of the stationary Gaussian process werr(t) is given by

0 it |r|>=T
k(r) =4 ML +5H -1 if eT<|r|<T (3.20)
(4 - by if |r| <eT.

Since k. reduces to 0 outside a compact set, it is straightforward to check (3.7) and
(3.8). We further stress that this measure admits a cut-off in the sense of Definition
3.6.
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Remark. In view of Theorem 3.3, note that the random measure M is a Gaussian
multiplicative chaos with associated kernel

K(r) = /|+OO k() du with  k(u) = \(1 — M)ym(yu\). (3.21)

U T

u

and that we have

3.4 Construction of log-normal *-scale invariant
random measures

This section is devoted to the existence part of Theorem 3.3: we give an explicit
construction of lognormal x-scale invariant random measures.

We are given a positive random variable Y € L*% (for some § > 0) and a
continuous covariation kernel k such that k(0) < %. Let F' be the (symmetric)
spectral measure associated to k, that is

k(t) = / eMEF(dN),
R
and we assume that the improper integral

K(T):/T+00Mdu

u

converges for r > 0.
Let p, v be two i.i.d. independently scattered Gaussian random measures (inde-
pendent of V) distributed on the half plane R x R* such that:

VA€ B(R xRY), E[e#)] = 3070

where

0(A) = A . / N lA(/\,y)idyF(d)\).

Let € < 1, we define the centered Gaussian process

VteR, X(t) :/ / Cos()\ty),u(d/\,dy)—f—/ / sin(Aty)v(dA, dy).
AER Jye[1,1] AER Jye[l,1]
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It is plain to compute its covariation kernel, call it k., by using the symmetry of the
spectral measure F'(d\):

k(t —s) = E[X(s)X(t)]

/ cos(Aty) Cos()\ts) dyF (dX\) + / / sm()\ty) sin(Asy)— dyF(d)\)
ye[l,L] AER Jyel1,L

/ cos(A(t — s)y )1dyF(d)\)
yell, L] Yy

1
:/ At— syF d)\) dy
ye(l,2 AE]R Yy

/ (It = sly) ,
= ——=dy
yE[L;[ Yy

For all A € B(R), the process

Ml/l(A) :Y/AGXP (Xl/l<7") ;E[Xl/l( )Dd

is obviously a positive martingale and thus converges as [ — oo towards a ran-
dom variable M(A). The stationary random measure (M (A))cpm) is a Gaussian
multiplicative chaos in the sense of [120] with associated kernel K.

Note that for I > 1/¢, we have V¢ € R:

Xau(t) / / cos(Aty) u(dX, dy) / / sin(Aty)v(dA, dy)
A€ER ye[ A AER ye
de
S X(8) + Koalt). (3.22)

where )_(6,1 s is a centered stationary Gaussian process independent from X, with
covariance kernel given by:

B 3 B lt—s| k
Eoalt = 5) = EX,n(s) Xeat)) = | . —fj) y.
=|t—s

As above, we can define the random measure M€ as the limit as [ — +o0o of the
random measures

VA€ B(R), M(A)=Y / exp (Xean(r) = SE[XZ (1))

The stationary random measure (M(A))acpmw) is a Gaussian multiplicative chaos
in the sense of [120] with associated covariance K(%) We deduce that %MG(E ) is a
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Gaussian multiplicative chaos in the sense of [120] with associated covariance K (-).
The measure 2M¢(e-) thus has the same law as M. From (3.22), we obviously have:

M) = [ exp (X.lr) - GBI M (ar)

in such a way that (3.5) holds. Finally we point out that M admits a moment of
order 1+ for all 0 < v < ¢ (see [89]).

Remark. By focusing on the above construction, we see that the covariance kernel
k can be intuitively interpreted as some kind of infinitesimal stochastic generator.
We may look X, as a sum
Xe(r) = Z ay 2!
1<y<t
where (ZY), are independent centered Gaussian processes with kernel k(y-) and (a,),
are independent random Gaussian variables with variance d—;’. So, when € decreases
infinitesimally, we "add” an independent Gaussian process with kernel k:(%) times

an independent Gaussian factor of variance _Tde.

Proof of Proposition 3./ We show that the measure M is good under assumption
(3.13). Because k is continuous, the kernel k(1) = f‘zve @ du is of class C'! on R*.
Thus, we have:

|ke(r) = ke(r)l < sup [k{(u)].

w > min(lrl, )
Because we have .
ke(u) = a(k(U/E) — k(u)),

it is plain to see that a reasonable choice for 0 is 6(z) = sup,, - |, |@| and C, = 2/e.
+o00 k +oo
/ Inr sup Md7‘<+oo:>/ Inr0(r)dr < +oo,
1 lu| = r Uu 1

so that the measure is good. O]

3.4.1 Practical examples

In this subsection, we give practical examples of log-normal x-scale invariant random
measures. Using Theorem 3.3, good log-normal *x-scale invariant random measures
are Gaussian multiplicative chaos whose covariance structure is given by

K(s) = /+°O Malu (3.23)

s| u

where k is a continuous covariance function satisfying £(0) < 2 and some weak decay
assumptions (ensuring (3.13) for instance). Therefore, to define explicit examples,
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we just need to exhibit suitable kernels k. The decay assumptions can be read off
the spectral measure of k. For instance, if k is the Fourier transform of some positive
even integrable function f, which possesses an integrable derivative, it is a simple
application of the Riemann theorem to prove that (3.13) is satisfied. Actually, for
(3.13) to be satisfied, the assumptions on the regularity of the spectral measure can
be much weakened. For instance, we can consider a kernel £ that is the Fourier
transform of some positive even integrable function f with integrable a-fractional
derivative for 0 < a < 1:

flz+2) - f(z)

‘Z’Pra

Ouf = dz € L'(R).

R*

In that case, the Riemann theorem implies |u|*k(u) — 0 as |u| — oo and it is then
plain to se that (3.13) is satisfied.
Below are listed a few examples of such kernels:
the function k(s) = —_c 57 (wh 0) i ti d positi
e the function k(s) = 7t (where ¢ > 0) is continuous and positive-

_2.270 . L.
o°r%/2 ig positive.

definite since its Fourier transform k(1) = e
e the covariance function of the stationary Orstein-Uhlenbeck process which
2
takes on the form k(s) = Ze~?*l where § > 0,0 > 0.

e we can consider k as the Fourier transform of the function ( A > 0)

f(z) = /0+O° e ME[g(x + X,)] dt (3.24)

where g € L'(R) is any positive integrable function and X is a pure jump
Lévy process with Lévy symbol

, 1
o) = [ (€= ds

for some 0 < a < 1. It is well know that the Lebesgue measure is invariant
for the semi-group generated by X so that k(0) = || f||l1 = |lg||1/A: this gives
a condition on the norm ||g||; for having k(0) < 2. Furthermore, f admits an
integrable a-fractional derivative so that (3.13) is satisfied. Actually, it turns
out that all the functions in L!'(R) with an integrable a-fractional derivative
admit a representation as (3.24). The reader may consult [15] for further
details.

We stress that, as soon as they are not trivial (i.e. k(0) < 2), the Gaussian
multiplicative chaos of the first two above examples do not have cut off in the sense
of Definition 3.6. Obviously, many other examples exist.
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Let us mention another example of log-normal %-scale invariant random measures
which does not present the goodness property of Definition 3.2. From Theorem 3.3,
the Gaussian multiplicative chaos associated to the covariance function

K(s) = / T eosw) (3.25)

s| u

is log-normal *-scale invariant in the sense of Definition 3.1. The function k(r) =

cos(r) is indeed positive definite since its spectral measure is the positive measure
(01(dx) +d_1(dx))/2. The kernel k.(r) = fl‘rﬁl/e %(“)du does not satisfy (3.8) so that
the associated measure M is not good. Note that this Gaussian multiplicative chaos
falls under the scope of [120] since the function K does not have a constant positive

sign.

3.5 Characterization of star scale invariance

This section is devoted to the proof of the first statement of Theorem 3.3. For the
sake of readability, some proofs of auxiliary results are gathered in the appendix.

Let M be a good log-normal scale invariant random measure defined on a prob-
ability space (2, F,P). We introduce as usually the spaces L? on (2, F,PP) for
1 < p < 0o. Recall that the measure M satisfies, for all € € (0,1)

(VA gy ™ ([ M) s (3.26)

where w, is a Gaussian process independent from M€, with M¢(dr) = eM (%) in
law. k. denotes the covariation kernel of the process w,.. Furthermore, we assume
that the measure M is non trivial (M # 0) with a moment of order 1 + ¢ so that
the process w, is necessarily normalized, that is E[e¥<] = 1.

Now we introduce some definitions and tools that will be used throughout this
section. For each € € (0, 1), define

Vr#0, K(r)=Y ke(gn). (3.27)

n=0

The uniform convergence of the series on the sets {r € R;|r| > p} for any p > 0 is
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ensured by (3.10) since for |r| > p:
400 r 00 +00 ~+o00 400
k(—)| < Ce O(u)d . O(u)d
nZ:%| (e”)l C Z[T (u)du < C ;}/% (u) du

+oo
/ / u) du dy
pe~ y+1

lnf

+oo 1n€+1
=C, / / dy du

= / 0(u )ln—du (3.28)

—lne €p

and this last integral is assumed to be converging (3.9). Furthermore, (3.8) also
ensures that K¢ is Lipschitzian over each set {z € R;|z| > p} for any p > 0 because:

+oo /
) = K < 3 () = ke ()

o
<CZQ min(]|r|, |r])){r 7"|

en en

<0/ (L)
+oo
)
—pelne|r T|/

We let (X™),, denote a sequence of independent centered stationary Gaussian
processes with respective covariance kernels

<

r—s def 5

) = ku(r—s).

E[X7X!] = ki(
ETL

Clearly X™ depends on € but this parameter is omitted from the notations for the

sake of readability. We assume that the whole sequence (X"),, and the measure M

are constructed on the same probability space and are mutually independent. We

further define the measure M~ for N > 0 by

VA € B(R), MN(A)= N+1M(

A).

eN+1

Note that E[M™(A)] = |A| where |A| stands for the Lebesgue measure of the set A.
By iterating the scale invariance relation (3.5), it is plain to see that, for each
N > 0, the measure MY defined by

NIV (A) = /A exp (ix;@ - %]E[(Xf)ﬂ) M (dr) (3.29)

has the same law as the measure M.
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3.5.1 Ergodic properties

First we investigate the immediate properties of M resulting from the definitions.

Lemma 3.10. Let M be a stationary random measure on R admitting a moment of
order 1+ 6. There is a nonnegative integrable random variable Y € L' such that,
for every bounded interval I C R,

1
lim —M (TI)=Y|I| almost surely and in L'*°,
T—oo T

where | - | stands for the Lebesgue measure on R. As a consequence, almost surely
the random measure

A€ B(R) - %M(TA)

weakly converges towards Y| -| and Ey [M(A)] = Y|A| (Ey[-] denotes the conditional
expectation with respect to'Y ).

Proof. 1If M is a stationary random measure, the Birkhoff ergodic theorem implies
the following convergence, for n € N, n — oo,

n

1 1 &
—M([0,n]) = =Y M([i — 1,i]) =Y almost surely and in L'* (3.30)
n
i=1

where Y € L'™ is a nonnegative random variable. Using monotonicity of the
mapping ¢t — M([0,¢]), one can show that M ([0,7]) — Y almost surely and in
L' For a > 0,b > a, it is clear that +M (T(0,a]) — aY and that +M (T[a,b]) —
(b — a)Y almost surely and in L'*°. So, for every bounded interval I C R, the
following convergence holds £ M(TT) — |I|Y almost surely and in L'*. Along the
same lines, one can show the same convergence for every bounded interval I C R_
involving some nonnegative random variable Y’ € L'*9. Stationarity implies that
#M (T[—1,1]) has the same law as 7M (T[0,2]). By letting T go to oo, we find
that Y + Y’ has the same law as 2Y. Stationarity also implies that Y’ has the same
law as Y. Let 0 < a < 1. We prove

E[Y*] = E KY ! Y')a] > 2 (E[Y*] + E[Y"]) = E[Y"] (3.31)

by using the Jensen inequality for the concave function x +— z% So the above
inequality turns out to be an equality and thus Y = Y’ almost surely. We have
shown that £ M(TI) — |I|Y almost surely and in L'*° when 7' — oo for every
bounded interval I C R.

Finally, by the portemanteau theorem, the convergence of the measure A €
B(R) ~ +M(TA) on the intervals towards Y| - | is enough to ensure the weak
convergence. O
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3.5.2 Mixing properties

This section is devoted to study of the mixing properties of the measure M, which
can be read off the structure of the kernel K*¢.

We first draw attention to the following relation, which will be used throughout
the paper:

Ey [F(M(A),...,M(A))] = Ey [F(MY(A),...,MN(A)]  as.

for every positive measurable function F' : R® — R. The proof is deferred to
appendix 3.6 (see Lemma 3.23).

Lemma 3.11. Let A, B be two disjoint sets such that dist(A, B) > 0. Then the
random variable M (A)M (B) is integrable under Ey|.] and

Ey[M(A)M(B)] = Y? / K= dr du.
AxB

Proof. We fix R > 0 and denote by G the o-field generated by M. Because the
function z € R, — min(R, z) is concave, we have

Ey [min (R M(4)M(B))] =Ey [min (B, )" (4)01"(B))]
=Ey [E[min (R, MN(A)MN(B)) |QH
< Ey [mm (REWN(A)MN(BMQ})]

Since MY is given by (3.29), it is straightforward to compute:

E[MY(A)MN(B)|G] = /A y eXn=o Fn(r=w) LrN (dqr) MY (du). (3.32)

Because of the uniform convergence of the series (Egzo kn(r — u)),, on the set
{(r,u) € R%|r —u| > d} towards K¢ and the weak convergence of the measure M~
towards Y| - | (cf. Lemma 3.10), the random variable

/ eXn=o Fn (=) NN () MY ()
AxB
almost surely converges towards
Y2/ K= dr du.
AxB
The dominated convergence theorem then yields:

Ey [min (R, M(A)M(B))] < Ey | min (R,Y2/

AxB

=) gy du)] .
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By letting R — oo, the monotone convergence theorem yields

Ey [M(A)M(B)] < Y? / U= dr du.

AxB

On the other hand, we also have
Ey [M(A)M(B)] = Ey [MY(A)MY(B)] = Ey [E[MN(A)MY(B)|G]].  (3.33)
By gathering (3.32) and (3.33) and by using the Fatou’s lemma, we deduce
Ey [M(A)M(B)] > Y? / K=y du.
This completes the proof. O

Lemma 3.12. We have

sup |[K°(r)| =0 asd— oc.
[r| >d

Proof. By using (3.28), we have for |r| > d:

+oo
|K<(r)| < CG/ 0(u) In - du

—lne J 4 ed

Now, if ed > 1, we have:

C oo
sup |K(r)] < —= / O(u) Inu du

Ir| >d —Ine d
Hence the result follows from the convergence of the last integral. O]

Proposition 3.13. The measure M possesses the following mixing property: given
two disjoint sets A, B such that dist(A, B) = d > 0 we have:

[y [M(A)M(B)] - Y|A||Bl| < Y%(d)]A|1B] (3.34)

for some function & : Ry — Ry such that limg_, &(d) = 0.
As a consequence, for any Lebesque integrable function ¢ on R? and d > 0, we
have:

By [ /u M ) /

lu—r|>d

(u, 7) du dr‘ < YZ(d) / (6w, 7)| du

|lu—r|>d

(3.35)
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Proof. From Lemma 3.11, we have

By [MAM(B) - V2B = ¥? [ (&0~ 1ydrdu
AxB

< Y?e(d)|Al| B

where we have set {(d) = supy,| > 4 K —1|. From Lemma 3.12, we have limy_,o, £(d) =
0. It is then plain to derive (3.35). O
As a direct consequence, we obtain:

Corollary 3.14. For any Lebesque integrable function ¢ on R? and d > 0, we have
for all N € N\ {0}:

| ol Ey MY (dr) MY (du)) — Y / ) l>d|¢(u,r)|dudr\

d
V() /MW \6(u, )| du dr.

N

3.5.3 Characterization of the measure M

Having in mind that the measure M” weakly converges towards Y| -| as N goes to
infinity, it is very tantalizing to think that the solution of our problem reduces to
taking the limit in (3.29) as N — oo. However, multiplicative chaos badly behaves
with respect to weak convergence of measures. So we want to get rid of the measure
M?" and have the Lebesgue measure instead in order to deal with a multiplicative
chaos in the sense of Kahane. This is the main difficulty of the proof. For that
purpose, it is appropriate to take the conditional expectation of M¥ with respect
to the o-algebra Fy = (X, ..., XV Y). Therefore, for any Borelian subset A of
R, we define .
G(A) = E[NTY (A)|Fy)

and we claim

Lemma 3.15. The following relation holds for each N = 0:

Gr(A) = y/

[ e (nzzox;l - %E[(X;L)Q]) dr. (3.36)

Furthermore, for each bounded Borelian set A, the sequence (Gn(A))y is a positive
martingale bounded in L',

Proof. If A has infinite Lebesgue measure, both sides of (3.36) are infinite. So we
focus on the case when A has finite Lebesgue measure. First observe that for each
s <tand A € Fy, we have from Lemma 3.10

E[/R Ljs g (r)La MY (dr)|Fn] = LaEy [MY ([s,1])] = 14Y (t — s).



3.5. CHARACTERIZATION OF STAR SCALE INVARIANCE 71

By using density arguments and Fatou’s lemma, we establish that, for each positive
Fn ® B(R)-measurable function ¢ € L'(Q x R; P ® dt), we have

]E[/Rgo(w,T)MN(dr)‘fN] = /Rgo(w,T)YdT.

So (3.36) is proved.
Finally, for each bounded set A we have E[M(A)'™] < +o0 for some § > 0. The
Jensen inequality then yields

E[(G(A))"] = E[(E[M" (A)|Fx])+] < E[(MN(A))) = E[M(A)*] < +oo.

The martingale (G (A))y is thus bounded in L. O

Being bounded in L', the martingale converges almost surely and in L'*?
towards a random variable QQ(A), which can be formally thought of as

QA=Y /A exp (XT — %]E[Xf]) dr

where (X,.), g is a ” Gaussian process” with covariance kernel K(r), that is a Gaus-
sian multiplicative chaos. The remaining part of our argument can be roughly
summed up as follows. First, we obtain estimates on the kernel K¢ derived from
the fact that the Gaussian multiplicative chaos () admits a moment of order 1 + §.
Second, we use these estimates to prove that ) has the same law as M. Finally,
since () has the same law as M, which does not depend on ¢, the kernel K¢ should
not depend on € either. This is a strong constraint on K¢, from which we derive the
specific structure of K¢ given by (3.12).
So we claim

Proposition 3.16. For each 0 < v < ¢, we can find p > 0 such that:

sup n P E[M ([0, %])Hv] < 400, (3.37)

n

Proof. The proof relies on the following bound (see the proof below):

Lemma 3.17. The existence of a moment of order 1+ ¢ for the measure M implies

the following bound:
2 1

< — .
k.(0) < 1+51n6

Since we have for all » € R: k.(r) < k.(0), the covariance kernel of the process
we is dominated by that of the constant process w¢(0). Hence, by using (3.5) and
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Lemma 3.24, it is plain to see that, for each v > 0:

o, L = | ([ o)

1/n 1
<E (/ em/n(O)Ml/n(dT)> +
0

<E [e(lJrv)wl/n(O)} E [(Ml/"([()’ %]))1+7:|

a+? — L1y Ml
- 0o (a0, 1)

Since ky/,(0) < == lnn, we deduce
/ 1+6

1 Y24y _

E[M ([0, ~])+] < (1) lnnE|:<M<[0’ 1]))1”}

~zs:E{ (o)) ]

where we have set

2
def V" +7
P T
Clearly, we have p > 0 provided that 0 < v < d. The proof of Proposition 3.16 is
complete. O

Proof of Lemma 5.17. Let n € N.

| t t 2 e\
E [M[0;1]'"] = E (M[o; LA V1 L ¥ Gt ;t]> ] (3.38)
n n n n
i " 1+6 + ot 1+6 1)t 1+6
2B (M[O;—]) + (M[—;—]> et <M[(n ) ;t])
n n' n n
(3.39)
F o\ 1
=nE <M[O; —]) ] (3.40)
n
We used the stationarity of the measure M in the second line. Now write, for h > 0:
g(h) = sup | E1/n(0) = K1n(r) | (3.41)

We have, for every r € (0,t/n| and n large enough:

| KY7(0) — g(t/n) | < KY"(r).
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So, using classical Gaussian inequality (see Lemma 3.24):

; [ t/n 146
E [M[O; —]H‘S] =E (/ e“l/"(T)Ml/"(dr)>
0

n

i t/n 1+6
E </ e\/lkl/n(O)g(t/n)Znélkl/n(o)g(t/n)Ml/n(dr)>
0

WV

n

144
_ERB |k1/n<o>g<t/n>|zn;|k1/n<0)g(t/n>|>1+5}E[(Ml/n[o; 3}) ]

EY; (/)| QD2 —ot/m) L 146
— o=k (0)=g(t/m)| 2 [y (0)—g 2/ )‘WE [(M[O;t]) +} (3.42)

We used Lemma 13 in the second line. Using equations (3.40) and (3.42), one gets

o= S8 k(0 —g(t/m)] o 5 ey, (0) —g(t/m) i(; <1 (3.43)
n

As h goes to 0, g(h) goes to 0 (the function &, is continuous). Letting ¢ goes to 0

in (3.43), one gets
2

140
and the lemma is proved. O

k1/n(0) < Inn.

We are now in position to tackle the main step of the proof:

Proposition 3.18. The random measures (Q(A))acpm) and (M(A))acpm) have the
same law.

Proof. Let F' be some function defined on R, such that:
e ['is convex,
e F(z) < Cz'™ for some constants C' > 0 and 0 < 7y < 4,
e Fo+/ is concave, nondecreasing and sub-additive.

Let f be a lower semi-continuous positive function on R with compact support. We
have by Jensen’s inequality:

E[F(/Rf(x)M(dx))] :JE:F(/Rf(x) J\7N<dm>)}
_]E:E[F(/Rf(x) MY (o) | 7]
>E:F(/Rf($) GN(dx))]
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We let N go to +00. By using the weak convergence of Gy(dr) towards Q(dr), we
obtain:
F(/ fr)yM(dr))] > E[F(/ f(r)Q(dr))]. (3.44)
R R

Now we want to establish the converse inequality. We set F=Fo+ . For any
7 > 0, we have by using the sub-additivity of F":

F(/Rf(r) M(dr))] =E _ﬁ /f(r) MY (dr)) 2)}

_E F(//f ¥ dr) M (dw)) |
[y T @i )
(] o)

T

<E

Then, by conditioning with respect to Fxn and by using the Jensen inequality in the
second term of the latter inequality, we deduce:

F( /R £(r) M(dr))] (3.45)

<EF(AM<jvvwmﬂwmﬂwmm}

+E[ﬁ</l

r—u|>1

F)f () exp (30 X7+ X5 = ka(0)) By [MY (dr) MY (duw) )
k=0

“o@a,r, N)+C(2,7,N). (3.46)

We claim:

Lemma 3.19. For each fized 7 > 0, C(2,7, N) converges as N — oo towards

B[F( [ sormauna@m)]

Furthermore, this latter quantity converges, as T — 0, towards

P( [ rrQuan)

Finally, the quantity C(1,7, N) converges to 0 as 7 — 0 uniformly with respect to
N € N*.
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Let us admit for a while the above lemma to finish the proof of Proposition 3.18.
By gathering (3.46) and Lemma 3.19, we deduce

T—0

—E [F(/f(r) Qdr
Hence we have proved

F( /R £(r) M(dr)] = E[F( /R F(r) Q)] (3.47)

The basic choice for F is the function z +— 2'*” with 0 < v < . Thus we have
proved that the mappings

/f hmmf]E[F(/r . f(r)f(u)Q(dr)Q(du))}

E[exp (zln/Rf(r)M(dr))] and ]E[exp(zln/Rf(r)Q(dr))]

coincide for z €]1,1 + J[. By analyticity arguments, we deduce that [, f(x) M(dx)
and [; f(x) Q(dx) have the same law. This is enough to prove that the random
measures M and ) have the same law. Indeed, if we consider two families (A\;)1 < i <n
of positive real numbers and (A;); <; <, of bounded open subsets of R, we define
the lower semi-continuous function

i=1
and we obtain
Z )\ M law Z s Q

It turns out that the law of a random vector (Y7, ..., Y,) made up of positive random
variables is characterized by the combinations

i=1

where (\;)1 < < is a family of positive real numbers. The proof of Proposition 3.18
is complete. n

Proof of Lemma 3.19. Let us first investigate the quantity C(1,7, N). Assume
the function f has its support included in the ball B(0, R) for some R > 0. We can
cover the set

{(z,y) € R% |z —y| < 7 and max(|], |y|) < R}
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by the squares

AY = [t7, 17 o] x [t],t7,,]  where t] = —R +27j, for j = 0,...,E(?).

We set S = supy f. Because F is sub-additive and increasing, we have:

(1,7, N) < E[f( 3 Fr) f(w) MN(dr)MN(du)ﬂ

< Y E[F( [ f0)f(w) MY ()M (du) ) |
(

By stationarity, we deduce

C(1,7,N) < ?E[F(SM([OJTD)}

< Lgig [M([0,27])"*7].
-

It results from Proposition 3.16 that the last quantity converges towards 0 as 7 goes

to 0 uniformly with respect to N. N
Now we investigate the quantity C'(2, 7, N). Since F' is sub-additive and increas-

ing, we have |F(a) — F(b)| < F(|b — al) for all positive real numbers a,b. This
together with Corollary 3.14 yields

C(2,7,N)-E ﬁ(/ f(r) f(u) exp (iX’? X Ral0)) Y d“)”

Y2§(GLN) /T_W Fr) f(u) exp (ixy + XD = ky(0)) dr du)]

<E[F(
<E[F(e(5)S*Gu (=R, R)?)]
<E[F(s¢(F)""Cn(-R R))]
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Obviously, the last quantity converges to 0 as N goes to co. Furthermore, the
quantity

F</T_u|>T f(r)f(u)exp (kXN;XT" + X' =k, (0)) YZdr du)

almost surely converges towards

a /| IRACHOEIC) Qldu))

and is uniformly integrable because F(x) < Cz'™ and Q is a multiplicative chaos
admitting a moment of order 1+ ¢ with 6 > . The Lebesgue convergence theorem
then yields:

E[ﬁ(/r_u'y f(r)f(u)exp (kZN;XT" + X' =k, (0)) YZdr du)]

—>E[ﬁ</|

r—u|>7

F) () Q(dr) Q(dw)) | as N = oc.

Gathering the above relations yields

C(2,7,N) %E[ﬁ(/

[r—u|>7

F)f () Q(dr) Q(dw)) | as N = oc.

Similar arguments as those used above allow to establish that

i i 2[F( [ o T0f @ Qg | <B[F( [ ) Qlan)Qau)

K [F(/Rf(r) Q(an)].

Indeed, by proceeding as for C'(1,7, N), we can prove that the ”diagonal contribu-
tion” goes to 0 as 7 — 0. Details are left to the reader. The proof of the Lemma is
complete. O

The final step of our argument is now to prove that the kernel K¢ defined by
(3.27) does not depend on €. Expressing the kernel K€ as a function of the marginals
of the measure M is enough for that purpose. So we remind the reader of Lemma
3.11, which states

Ey[M(A)M(B)] = Y? / K= drdu.
AxB
We deduce that, for any s # 0 and on the set {Y > 0},
1
K¢(s) = limIn (—EY[M([O, )M ([s, s + h])]) —2lnY. (3.48)

h—0 h?



78 CHAPTER 3. STAR SCALE INVARIANT RANDOM MEASURES

As a straightforward consequence, the kernel K€ defined by (3.27) does not
depend on € since the left-hand side in (3.48) does not either. So we can define the
quantity

Vr#£0, K(r)=K(r)
for some € € (0,1) and this relation is also valid for any € € (0,1). It is also plain to
see that for each € € (0,1) we have:

Vr£0, K(r)=k(r)+ K() (3.49)
€
since K€ satisfies such a relation. Such a specific functional equation implies a
precise structure for the function K:

Proposition 3.20. For r > 0, we have
too L(u
K(r) = / EL >du (3.50)

where k(u) is a positive-definite continuous function R, — R.

Proof. Because K is Lipschitzian on the compact subsets of R\ {0}, there exists a
locally bounded measurable function f on (0;+00) such that for all r, s > 0,

0= [ st

Define, for r € R,

o(r) = K(e")
It is straightforward to derive from (3.49) that, for all r € R, > 0,
d(r+a) — o(r) = —ke-a(e") (3.51)
Note that k;(e") = 0. From equation (3.51), one obtains :
1 [rre ke—a(e")
— “fle")du = ———= 3.52
S e = - (3.52)

For almost every 7, the left-hand side of equation (3.52) tends to e” f(e") when
a goes to 0. Thus, the right-hand side of (3.52) converges also for almost every r to
e" f(e") when «a goes to 0.

We define the function g by the following limit for almost every r:

1 [ ke-a(€”
g(r) = lim — —/ e’ f(e")du = lim — (")

(3.53)

a—0 le a—0 [0

As defined, the function ¢ is measurable with respect to the Borelian o-field of
R. For almost every = € (0, 4+00), define

h(x) = g(In(z)),

and h(0) by h(0) = ke_T“(o) for some a > 0. Note that the definition of h(0) does
not depend on « because:
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Lemma 3.21. We have the following asymptotic behaviour of K around 0:
ke(0)

Inr asr—0.
Ine

K(r) ~

Thus h is well defined at 0 and we can now prove that it is positive definite:

Lemma 3.22. The function h(|.|) is positive definite (as a tempered distribution in
the sense of Schwartz, see [176] or [130]). One can also find a symmetric positive
measure p on R (with p(R) < 0o) such that for almost every x € R:

B(z) = / ¢ u(de)

Proof. For almost every = € R, h(|z|) = hn%) - a(lwl) nd k+(‘x|) < Rh(0) uniformly

in . Thus, if ¢ is a smooth function with compact support, we get using the
dominated convergence theorem:

[ [ = shetormtasas = iy [ [ == im0

We conclude that A(|.|) is positive definite. By the Bochner-Schwartz theorem, the
Fourier transform of h(].|) is a symmetric positive measure pu(d§) such that there

exists p > 0 with:
d
/ pag)
= (1+5])7
—a2/2

In order to conclude, it is sufficient to prove that u(R) < oco. We note 6(z) = T

and 0° = 10(_/e) for e > 0. By the inverse Fourier theorem, we get:

(6 % 1) (0) = / )

Thus the right hand side of the above equality is bounded by h(0) and we conclude
by letting € go to 0. O

Integrating with respect to the Lebesgue measure the relation g(t) = —e' f(e)
which is true for almost every t € R, one gets

K(s) — K(r) :—/SMdu.

u

Because K(s) — 0 as s — +o0, the function u — @ is integrable at the vicinity
of +00 in the generalized sense. We deduce:

K(r) = / () g,

u
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By the previous lemma, there exists a finite symmetric positive measure g on R
such that, for almost every x € R,

h(z) = / ¢ u(de)

For simplicity, define for all z € R, k(z) = [, e p(d€). The function k is continuous
on R. We get finally,
+oo k
K(r) = / %du. (3.54)
The proof of Proposition 3.20 is complete. O

Proof of Proposition 3.7. This is just a direct consequence of Theorem 3.3 and
equation (3.48). O

3.6 Proofs of some auxiliary lemmas

Lemma 3.23. Let F' : R" — R be a measurable function. Then, for all bounded
Borelian sets Ay, ..., A, CR, the following relation holds almost surely:

Ey [F(M(A), ..., M(A,)] = Ey |[F(MY(A), -, MY (4,))
Proof. By using the Jensen inequality, we have
I ~n I N
]EHTM 057) = =M™ [0; 7] H
/L~ 1w o 2\ 12
—E (’ M [OT]—TM [o,:r]‘) }

(o[ 07— o i)
=E (% / / [(erY:oX?—%EKXW] — 1) (eXn=o Xi—2EI(X)? _1)] MY (dr) MY ( du))lﬂ]
( 1

0

/ / k) 1)MN(dr>MN<du)>1/2}

The integrand in the above expectation converges almost surely towards 0 because,
for each 0 < n < N, k, is bounded and converges to 0 in the vicinity of oc.
Furthermore, it is uniformly integrable because

sng[(%MN([o;T]))M] < 400,
We deduce that

. 1
EH?MN 057) = =M™ (057 H 50 asT — +oo.
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As a consequence, %]T/[/ N'10; T] converges almost surely along a subsequence towards
Y.

One has, for any function h bounded and continuous,

—

E|F(M(A),...,M(A,))h (%M [O;T]H =E {F(]\N/[(Al), o M(A))R (%MN [O;T])}

Sending 7' to +oc0 along the subsequence, we get by the bounded convergence the-
orem
E[F(M(A),...,M(A))h (V)] =E [F(M(Al), o M(A))h (Y)]
and the lemma is proved. O
Lemma 3.24. Let F': R, — R be some convex function such that
Vo € Ry, |F(x)] < M(1+ |z|?),

for some positive constants M, 3, and o be a Radon measure on the Borelian subsets
of R. Given a < b, let (X,)a<r<bs (Yr)a<r<p be two continuous centered Gaussian
processes with continuous covariance kernels kx and ky such that

vua CAS [aa b]? kX(uv U) < /{ZY(U, U)'

E[F(/abex’"_%mx?'] g(dr)ﬂ < E[F(/abeyr—;m?] U(dT))]

Proof. For each N € N, we define the smooth subdivision ti,v =a-+ pb_T“, p =

Then

0,..., N, of the interval [a,b]. We also introduce the random variables
N-1 i N—-1 ¥y LEY]
s¥-X e T ) and Sy = 30T o1 42))
p=0

By classical Gaussian inequalities (see [120, corollary 6.2] for instance), we have

YN > 1, E[F(Sﬁﬂ < E[F(S}Q)].

So it just remains to pass to the limit as N — oo by using the dominated convergence
theorem. By continuity of the processes X, Y the random variables Sy, Sk converge
almost surely respectively towards f; eXr—2EX o (dr) ), [, e b ¥ =3B 5 (dr). Clearly,
we have:

[F(S0I < M(1+[Sy]7),
so that we just have to prove that |Sx|? is uniformly integrable (the same argument
holds for |SY|?). Tt is enough to establish that for each d € N,

supE[(Sy)?] < +o0.
N
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We have
N-1
X, n—1E[X2 d
E[(Sﬁ)d} :E[( e 2 [ tév}o'([tév,tﬁ_l))) }
=0
Nl X, n+-+X y 1 —5EX +-+E[X3 ]) N LN N 4N
_ E[e ]e B o ([N L)) X x o ([ L))
P1;--,pa=0
= Iy g Ny 3 ERCN BRG] N 4N
= Z o2 2ig=17"xUpplp;) tpy tpq O-({tp17tp1+1>) X o0 X U([tpdvtderl))
P15--,Pa=0
b b,
—>/ / e2 2z Fx (i) g (duy) - - - o (duyg)
as N — oo. This completes the proof. O

Proof of Lemma 3.21. We choose any € < 1 and consider |r| < 1. Since k. is contin-

uous at 0, we can find, for « > 0, some 7 > 0 such that k.(0) — a < kc(u) < kc(0)
for |u| < n. Then we decompose K as

+0o0
K(r) = Y k()
n=0
llr;,f*l +00
T T
= 2 k() + X k()
n=0 InT

Let us prove that g. is bounded over a neighborhood of 0. By using (3.10) and
following the computations of (3.28), we have for p € N:

+oo +oo
Z |ke(§n)| < 2C. / O(u) Inu du.
n=p

—Ine J »
eP—

We deduce by taking p = ny

Ine "

+oo
lg.(r)] < 206/ 0(u) Inu du.
n

—1Ine /,,

T

Int
Hence g. is bounded. By noticing that == <n < n < 0 we deduce

Ine?’

InZ In %
S (0) — 0) + gfr) < K(r) < 1 2k(0) + 0u(r).
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By taking the limsup and liminf in the above inequality, we have proved that for
each a > 0:

ke(0) — K K k(0
Lla < liminf (f) < limsup q) < (1),
In r=0  In r—0 In. In
which completes the proof. O]

Proof of Corollary 3.5. By stationarity, it is enough to prove that, almost surely, the
measure M does not possess any atom on the segment [0, 1]. From [59, Corollary
9.3 VIJ, it is enough to check that for each o > 0:

n n n

g k—1 k 0 1
ZP(M[ ;—]>a):nIP<M[—;—]>a>—>O as n — 00.
k=1 "

This is a direct consequence of the Markov inequality and Lemma 3.16:

n 1
aME[M([o, ;])lﬂ] —0asn—oo. [0

3

01
nP(M[=; -] > a) <
n'n
Proof of Proposition 3.8. Otherwise, if M is a good lognormal *-scale invariant
random measure, then using Theorem 3.3, we know that there exists £ a continuous

covariance function such that, for all |r| < R:

K(r) = /loo @du _ XL +C. (3.55)

7| U ‘Tl

By differentiating this equality with respect to r, we obtain k(r) = A? for all |r| < R.
Then, let (X})cr be a centered stationary Gaussian process with covariance kernel
k. For all s,t € R such that |t — s| < R, we have cov(X;, X;) = k(|t — s|) = k(0) =
var|[X;] which implies (by Cauchy-Schwarz inequality) that X; = X, almost surely.
The process X being stationary, this shows that it is a constant process. Hence
k(r) = A2 for all r € R. Because of equation (3.55), this is a contradiction since it
would imply K (r) = +oo for all r. O
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Chapter 4

Invariant $-ensembles and the
Gauss-Wigner crossover

Résumé

Cet article est publié dans le journal Physical Review Letters et est écrit
en collaboration avec Jean-Philippe Bouchaud et Alice Guionnet. Nous
définissons un nouveau modele de diffusion matricielle qui converge vers
le mouvement Brownien de Dyson avec un parametre § € [0,2]. En
temps long, le modele limite donne une construction explicite de ma-
trices aléatoires appartenant aux ensembles 5 qui sont invariantes par
conjugaison par des matrices orthogonales ou unitaires. Pour des petites
valeurs de 3, la densité limite en grande dimension des valeurs propres
de ces matrices définit une interpolation continue entre la distribution
Gaussienne et le demi-cercle de Wigner. Cette famille de distribution est
une famille a un parametre et les distributions admettent des densités
explicitement calculables. Un prolongement de ce calcul nous permet de
trouver les corrections de tailles finies (quand la dimension est grande
mais pas infinie) dans la convergence vers la loi du demi cercle de Wigner.

Abstract

We define a new diffusive matrix model converging towards the 5 -Dyson
Brownian motion for all 5 € [0, 2] that provides an explicit construction
of [-ensembles of random matrices that is invariant under the orthog-
onal/unitary group. For small values of §, our process allows one to
interpolate smoothly between the Gaussian distribution and the Wigner
semi-circle. The interpolating limit distributions form a one parameter
family that can be explicitly computed. This also allows us to compute
the finite-size corrections to the semi-circle.

Since Wigner’s initial intuition that the statistical properties of the eigenvalues of
random matrices should provide a good description of the excited states of complex

87
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nuclei, Random Matrix Theory has become one of the prominent field of research,
at the boundary between atomic physics, solid state physics, statistical mechanics,
statistics, probability theory and number theory [3, 19, 14]. It is well known that
the joint distribution of the eigenvalues of a large Gaussian random matrix can be
expressed as the Boltzmann-Gibbs equilibrium weight of a one-dimensional repul-
sive Coulomb gas confined in an harmonic well. However, the effective “inverse
temperature” § of the system cannot take arbitrary values but is quantized (in units
of the repulsive Coulomb potential). Depending on the symmetry of the random
matrix, only three values are allowed § = 1 for symmetric real matrices, f = 2
for Hermitian matrices and § = 4 for the symplectic ensemble. This is known as
Dyson’s “threefold way”. The existence of matrix ensembles that would lead to
other, possibly continuous, values of 3, is a very natural question, and the quest for
such ensembles probably goes back to Dyson himself. Ten years ago, Dumitriu and
Edelman [65] have proposed an explicit construction of tri-diagonal matrices with
non-identically distributed elements whose joint law of the eigenvalues is the one of
[-ensembles for general 5. Another construction is proposed in [3, p. 426-427] (see
also [71]) and uses a bordering procedure to construct recursively a sequence of ma-
trices with eigenvalues distributed as [-ensembles. This construction gives not just
the eigenvalue probability density of one matrix of the sequence but also the joint
eigenvalue probability density of all matrices. This has lead to a renewed interest
for those ensembles, that have connections with many problems, both in physics
and in mathematics, see e.g. [69, 14]. The aim of the paper is to provide another
construction of [-ensembles that is, at least to our eyes, natural and transparent,
and respects by construction the orthogonal /unitary symmetry [140]. Another mo-
tivation for our work comes from the recent development of free probability theory.
“Freeness” for random matrices is the natural extension of independence for classical
random variables. Very intuitively, two real symmetric matrices A, B are mutually
free in the large NV limit if the eigenbasis of B can be thought of as a random rotation
of the eigenbasis of A (see e.g. [136] for an accessible introduction to freeness and
for more rigorous statements). “Free convolution” then allows one to compute the
eigenvalue distribution of the sum A + B from the eigenvalue distribution of A and
B, much in the same way as convolution allows one to compute the distribution of
the sum of two independent random variables. In this context, the Wigner semi-
circle distribution appears as the limiting distribution for the sum of a large number
of free random matrices, exactly as the Gaussian is the limiting distribution for the
sum of a large number of 7id (independent and identically distributed) random vari-
ables. A natural question, from this perspective, is whether one can build a natural
framework that interpolates between these two limits.

Let us first recall Dyson’s Brownian motion construction of the GOE [66] (for the
sake of simplicity, we will only consider here extensions of the § = 1 ensemble, but
similar considerations hold for 8 = 2 Hermitian matrices see [9] for full details). It is
defined as the real N x N symmetric matrix process M(t) solution of the stochastic
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differential equation (SDE):
1
dM(t) = —§M(t)dt + dH(t) (4.1)

where dH(#) is a symmetric Brownian increment (i.e. a symmetric matrix whose
entries above the diagonal are independent Brownian increments with variance
(dHZ (1)) = 3(1 + 6;;)dt). Standard second order perturbation theory allows one
to write the evolution equation for the eigenvalues \; of the matrix M(?):

1 1 dt
A\ = — A 4 =
PN TR 2 T

J#i

+ db,, (4.2)

where b;(t) are independent standard Brownian motions. This defines Dyson’s
Coulomb gas model, i.e. “charged” particles on a line, with positions \;, inter-
acting via a logarithmic potential, subject to some thermal noise and confined by
a harmonic potential. One can deduce from the above equation the Fokker-Planck
equation for the joint density P({\;},t), for which the stationary joint probability
density function (pdf) is readily found to be:

Pr({nh) = Z [N = Al exp [—%ZA?], (4.3)

1<j

with # = 1 and where Z is a normalization factor. The above expression is the
well known joint distribution of the eigenvalues of an N x N random GOE matrix.
The Wigner distribution can be recovered either by a careful analysis of the mean
marginal univariate distribution p(A) = [... [dXa...dANP*(A = A, Aa, .., AN)
in the large N limit [107], or by using the above SDE (4.2) to derive a dynamical
equation for the Stieltjes transform G(z,t) of p(\,t):

G(z,t) = %; ﬁ z€C. (4.4)

With this scaling, the spectrum is spread out in a region of width of order v/ N and
therefore z ~ v/N and G ~ 1/v/N. Applying Ito’s formula to G(z,t) and using
(4.2), we obtain the following Burgers equation for G' [121]:

G aNaG)?  9:(G) 162(G)
250 =9 0. T o, T35

(4.5)

where « is introduced for later convenience, with o = 1 for now. Note that we
have neglected in Eq. (4.5) a term of order N=°/2. Indeed in agreement with [19]:
(G?) — (G)? ~ N73. The neglected term is thus 1/N smaller than the diffusion term
in Eq. (4.5).
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For large N, the last (diffusion) term of Eq. (4.5) is of order 1/N smaller than
the other ones. To leading order, the stationary solution (where the time derivative
is set to 0) can be integrated with respect to z:

%aNGio(z) + 2G(2) = -1, (4.6)

where the integration constant comes from the boundary condition G(z) ~ —1/z
when z — oco. It is then easy to solve this equation to find the Stieltjes transform
that indeed corresponds to the Wigner semi-circle density:

Gool2) = aLN Vz2—2aN — z

1

Now let us turn to the central idea of the present paper. In Dyson’s construction,
the extra Gaussian slice dM(¢) that is added to H(t) is chosen to be independent of
M(t) itself. The eigenbasis of dH(t) is a random rotation, taken uniformly over the
orthogonal group. As mentioned above, this corresponds to free addition of matrices,
and Eq. (4.5) can indeed be derived (for N = o0o) using free convolution [136]. If
instead we choose to add a random matrix dY (¢) that is always diagonal in the same
basis as that of M(t), the process becomes trivial. The diagonal elements of M(t) are
all sums of #d random variables, and the eigenvalue distribution converges towards
the Gaussian. The construction we propose is to alternate randomly the addition
of a “free” slice and of a “commuting” slice. More precisely, our model is defined
as follows: we divide time into small intervals of length 1/n and for each interval
[k/n; (k+1)/n], we choose independently Bernoulli random variables €}, k € N such
that Plep = 1] = p = 1 — Pl = 0]. Then, setting €' = €}, our diffusive matrix
process simply evolves as:

dM,,(t) = —%Mn(t)dt +EdH() + (1 — e)dY (1) (4.8)

where dH(¢) is a symmetric Brownian increment as above and where dY (¢) is a
symmetric matrix that is co-diagonalizable with M, (¢) (i.e. the two matrix have
the same eigenvectors) but with a spectrum given by N independent Brownian
increments of variance dt. It is clear that the eigenvalues of the matrix M, () will
cross at some points but only in intervals [k/n; (k + 1)/n] for which €} = 0 (in the
other intervals where they follow Dyson Brownian motion with parameter § = 1, it
is well known that the repulsion is too strong and that collisions are avoided). In
such a case, the eigenvalues are re-numbered at time ¢ = (k 4+ 1)/n in increasing
order.

Now, using again standard perturbation theory, it is easy to derive the evolution
of the eigenvalues of M,,(t) denoted as A}(t) < ... < AR (t):

o Lo, € dt
AN = —gArdE + o ; Yo + db; (4.9)
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where the b; are independent Brownian motions also independent of the €,k € N.
A mathematically rigorous derivation provided in [9] allows one to show that

the scaling limits \;(t), when n — oo, of the eigenvalues A!(¢) obey the following
modified Dyson SDE:

1 P dt
d\;, = —=\dt + 5 ; + db;, (4.10)
e

2 A=A

with the additional ordering constraint A\i(t) < ... < Ay(¢) for all t. One of the
difficulty of the proof comes from the fact that when p < 1, there is a positive prob-
ability for eigenvalues to collide in finite time (the ordering constraint is therefore
useful at those points to re-start). The idea is then to show that collisions are in
a sense sufficiently rare for the above SDE to make sense (see [9, 52] for further
details). Using the SDE (4.10), one can derive as above the stationary distribution
for the joint distribution of eigenvalues, which is still given by Eq. (4.3) but with
now f = a = p < 1. A very similar construction can be achieved in the GUE
case, leading to f = 2p. As announced, our dynamical procedure, that alternates
standard and free addition of random matrices, can lead to any (-ensemble with
B < 2. The corresponding matrices M(t) are furthermore invariant under the or-
thogonal (or unitary) group. This is intuitively clear, since both alternatives (adding
a free slice or adding a commuting slice) respect this invariance, and lead to a Haar
probability measure for the eigenvectors (i.e. uniform over the orthogonal /unitary
group). We have also proved that a collision leads to a complete randomization of
the eigenvectors within the two-dimensional subspace corresponding to the colliding
eigenvalues, see again [9].

It is well known that the eigenvalue density corresponding to the measure P*
given by (4.3) is the Wigner semi-circle for any 5 > 0. In fact, using (4.5) with
now a = (3 = p, one immediately finds that the eigenvalue density is a semi-circle
with edges at +1/20N. We simulated numerically the matrix M,,(¢) with N = 200
for a very small step 1/n and until a large value of ¢ so as to reach the stationary
distribution for the eigenvalues. Then we started recording the spectrum and the
nearest neighbor spacings (NNS) every 100 steps so as to sample the ensemble. We
verified that the spectral density of M, (t = oo) is indeed in very good agreement
with the Wigner semi-circle distribution for § = 1/2. Our sample histogram for the
NNS distribution is displayed in Fig.4.1. We also added the corresponding Wigner
surmise (which is expected to provide a good approximate description of the NNSD).

From the point of view of a cross-over between the standard Gaussian central
limit theorem for random variables and the Wigner central limit theorem for random
matrices, we see that as soon as the probability p for a non-commuting slice is
positive, the asymptotic density is the Wigner semi-circle, with a width of order
VpN. A continuous cross-over therefore takes place for p = 2¢/N with ¢ strictly
positive and independent of N. When ¢ = 0, p(\) is a Gaussian of rms 1, which
indeed corresponds to the solution of Eq. (4.5) for @« = 0. The SDE for the system
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Figure 4.1: Empirical NNSD P(s) for the matrix M,,(t = co0) for § = p = 1/2 with
the Wigner surmise (red curve) corresponding to f = %, which behaves as s? when
s — 0.
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(X\i(t)) becomes

1 c
= —\dt + —
dA; = =5 Ad +N2Ai_&

J#i

+ db;, (4.11)

with the additional ordering constraint A;(¢) < ... < Ay(¢) and the stationary joint
pdf is still given by (4.3) but with now a vanishing repulsion coefficient 5 = 2¢/N.
In order to elicit the cross-over, we study Eq. (4.5) with a = 2¢/N. The stationary
differential equation corresponding to (4.5) (note this time that all terms are of the
same order and the second derivative term is not negligible) can be integrated with

respect to z again as:

d
cG2+zG+d—f =1, (4.12)

where the integration constant comes from the boundary condition G ~ —1/z for
z — 00. Note that (4.12) can be recovered directly from the saddle point equation
route: under the measure P* with § = 2¢/N, the energy of a configuration of the
A;’s can be expressed in term of the continuous state density p, neglecting terms

< 1, as:
Elp] = %//\Qp()\)d)\ - c//ln(|)\ — NP pN)p(N)dAdN' .

The probability density P* therefore rewrites in term of p as:

P*lp] = Zexp (—N {5[9] +/p1n(p)]> 5(/p— 1),

where the entropy term, which is negligible when 5 = p is of order 1, is now of the
same order as the energy term (see [60] for a detailed discussion on the origin of the
entropy term). We now need to minimize the quantity E[p] + [ pIn(p) with respect
to p. It is easy to see that the unique minimizer p. satlsﬁes

Ape(A A)pe(XN)
/ d)\—2 // 1O /\/)dAdX

—i—/wd/\—f—yz()
A—2z

where v is an integration constant. It is now straightforward to derive (4.12) from
this last equation by identifying each term and choosing the constant v so as to
have the correct boundary condition for the Stieltjes transform of a probability
measure. As expected physically, the diffusion term in (4.12) corresponds exactly
to the entropy contribution to the saddle-point.

Eq. (4.12) was studied in detail by Askey & Wimp [16] and Kerov [87] (see also
[30]). Set G(z) :=u/(2)/cu(z) to obtain a second order equation on wu:

u"(2) 4+ zu'(2) + cu(z) = 0. (4.13)
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It follows from the asymptotic behavior of G(z) that, for |z| — oo,
u(z) ~ —. (4.14)

Eq. (4.13) can in turn be transformed with the change of function u(z) := e=*"/4y(z)
into a Schrodinger equation on y(z):
" 1 1 2

y'(2) + [c— 5 1% ly(z) =0. (4.15)
The solutions of (4.15) are known (see [79]) to write as y(z) = AsD._1(2)+A3D_.(iz)
where D,._1, D_. are parabolic cylinder functions and where A, and Aj are two con-
stants. The general solution for u therefore is u(z) = e **/4(AyD._1(2) + AsD_.(i2))
and the correct asymptotic behavior of u is fulfilled for A; = 0. Now, one can re-
cover the spectral density p.(A) associated to G by the classical inversion formula
and various elegant tricks [100]. The final result for p(\) reads, for all ¢ > 0:

1 1
T V2rl(1 + o) [D_ (NP

D 6_Z2/4 OOd —za:—ﬁ c—1
_(2) = I /0 xe T

pa()‘)

(4.16)

Expression (4.16) was again checked with numerical simulations with very good
agreement. The integral representation for D_.(z) does not hold for ¢ = 0, but
the function D_.(iu) is still well defined for all ¢ € (—1;0] (see [16]). It is easy to
check that po(u) = e **/2/y/21 when ¢ = 0, as expected. When ¢ — co, the Wigner
semi-circle law is recovered

pe(u) = —Vide —u?. (4.17)
2me
Standard results [79] on D_, enable to find the tails of p,:
pe(u) ~ w2 (Ju] = o). (4.18)

Let us return to (4.5) for f = «a € (0;2). Interestingly, our method allows
us to compute the correction to the Wigner semicircle inside the support of the
spectral density for large but finite NV due to the last diffusion term, which is usually
neglected. Indeed one can solve as above the stationary equation of (4.5) keeping
every term. This leads to the following corrected spectral density, valid for large but

finite NV:
() = Va 1
P = (1 + o) ID—o(i/aN
where o = 2/(2 — 3) and ¢ = fN/(2 — ). Note that this correction is valid only

inside the spectrum and does not describe the edge scaling behavior nor the Tracy-
Widom tails.

(4.19)
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Figure 4.2: Density p.(u) for ¢ = 0, 1,2, 3, 4, showing the progressive deformation of
the Gaussian towards Wigner’s semi-circle.

The above discussion can also be formally extended to —1 < ¢ < 0, corresponding
to a weakly attracting Coulomb gas (also mentioned in [140]; see also [74] for an
application). We conjecture that the stationary density for large system is again
given by the above Askey-Wimp-Kerov distributions p. but for the parameter range
c € (—1;0]. For ¢ = —1, the stationary density p_; is a Dirac mass at 0. Beyond
this level, the attraction is too strong and the gas completely collapses on itself.

As a conclusion, we have provided here the first explicit construction of invariant
[-ensembles of random matrices, for arbitrary § < 2. The stationary distribution
for the eigenvectors is the Haar probability measure on the orthogonal group if 0 <
B < 1, respectively unitary group if 1 < § < 2. We have found a natural scaling limit
that allows one to interpolate smoothly between the Gaussian distribution, relevant
for sums of independent random variables, and the Wigner semi-circle distribution,
relevant for sums of free random matrices. The interpolating limit distributions
form a one parameter family that can be explicitly computed. The statistics of
the largest eigenvalue is also very interesting (and now well known for 5 > 0, see
[64, 40, 41, 70]): one should be able to interpolate smoothly, as a function of c,
between the well-known Gumbel distribution of extreme value statistics and the
Tracy-Widom(f3) distributions. Whether this can be mapped into a generalized
KPZ/Directed polymer problem remains to be seen.
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Chapter 5

A diffusive matrix model for
invariant S-ensembles

Résumé

Cet article est soumis dans le journal FElectronic Journal of probabil-
ity et est écrit en collaboration avec Alice Guionnet. Nous définissons
un nouveau modele de diffusion matricielle qui converge vers le mouve-
ment Brownien de Dyson avec un parametre § quelconque appartenant
a lintervalle [0,2]. En temps long, le modele limite donne une con-
struction explicite de matrices aléatoires appartenant aux ensembles (3
qui sont invariantes par conjugaison par des matrices orthogonales ou
unitaires. Nous décrivons aussi la dynamique des vecteurs propres du
processus matriciel limite; nous montrons que lorsque < 1 et que
deux valeurs propres collisionnent, les vecteurs propres associés a ces
deux valeurs propres fluctuent tres fortement et finissent par étre dis-
tribués uniformément sur le sous-espace supplémentaire orthogonal du
sous espace engendré par les vecteurs propres associés aux autres valeurs
propres.

Abstract

We define a new diffusive matrix model converging towards the S-Dyson
Brownian motion for all 5 € [0, 2] that provides an explicit construction
of [-ensembles of random matrices that is invariant under the orthog-
onal/unitary group. We also describe the eigenvector dynamics of the
limiting matrix process; we show that when 5 < 1 and that two eigenval-
ues collide, the eigenvectors of these two colliding eigenvalues fluctuate
very fast and take the uniform measure on the orthocomplement of the
eigenvectors of the remaining eigenvalues.
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5.1 Introduction

It is well known that the law of the eigenvalues of the classical Gaussian matrix
ensembles are given by a Gibbs measure of a Coulomb gas interaction with inverse
temperature 5 = 1 (resp. 2, resp. 4) in the symmetric (resp. Hermitian, resp.
symplectic) cases;

1 _lvs2
dPs(\) = ﬁH N = N|Pemz =N T dn

i<j

Such measures are associated with symmetric Langevin dynamics, the so-called
Dyson Brownian motion, which describe the random motion of the eigenvalues of a
symmetric (resp. Hermitian, resp. symplectic) Brownian motion. They are given
by the stochastic differential system

dNi(t) = V2dbi(t) — Ni(t)dt + 8

J#

1
NOESWOR 5-1)

with iid Brownian motions (b;). These laws and dynamics have been intensively
studied, and both local and global behaviours of these eigenvalues have been ana-
lyzed precisely, starting from the reference book of Mehta [107].

More recently, the generalization of these distributions and dynamics to all 5 > 0,
the so-called S-ensembles, was considered. As for § = 1,2, 4, the Langevin dynam-
ics converge to their unique invariant Gibbs measure P3 as times goes to infinity.
Indeed, the stochastic differential system under study is a set of Brownian motions
in interaction according to a strictly convex potential. Thus, one can then show
by a standard coupling argument that two solutions driven by the same Brownian
motion but with different initial data will soon be very close to each others. This
entails the uniqueness of the invariant measure as well as the convergence to this
Gibbs measure. It turns out that the case 5 € [0,1) and the case 8 € [1,00) are
quite different, as in the first case the eigenvalues process can cross whereas in the
second the repulsion is strong enough so that the eigenvalues do not collide with
probability one in finite time. However, the diffusion was shown to be well defined,
even for 5 < 1, by Cépa and Lépingle [52], at list once reordered.

The goal of this article is to provide a natural interpretation of [-ensembles
in terms of random matrices for g € [0,2]. Dumitriu and Edelman [65] already
proposed a tridiagonal matrix with eigenvalues distributed according to the (-
ensembles. However, this tridiagonal matrix lacks the invariant property of the
classical ensembles. Our construction has this property and moreover is construc-
tive as it is based on a dynamical scheme. It was proposed by JP Bouchaud, and
this article provides rigorous proofs of the results stated in [?]. The idea is to in-
terpolate between the Dyson Brownian motion and the standard Brownian motion
by throwing a coin at every infinitesimal time step to decide whether our matrix
will evolve according to a Hermitian Brownian motion (with probability p) or will
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keep the same eigenvectors but has eigenvalues diffusing according to a Brownian
motion. When the size of the infinitesimal time steps goes to zero, we will prove that
the dynamics of the eigenvalues of this matrix valued process converges towards the
[-Dyson Brownian motion with § = 2p. The same construction with a symmetric
Brownian motion leads to the same limit with g = p. This result is more precisely
stated in Theorem 5.2. We shall not consider the extension to the symplectic Brow-
nian motion in this paper, but it is clear that the same result holds with 5 = 4p.
Our construction can be extended to other matrix models such as Wishart matrices,
Circular and Ginibre Gaussian Ensembles and will lead to similar results.

We thus deduce from our construction that S-ensembles can be interpreted as
an interpolation between free convolution (obtained by adding a Hermitian Brow-
nian motion) and standard convolution (arising when the eigenvalues evolve fol-
lowing standard Brownian motions). It is natural to wonder whether a notion of
[B-convolution could be more generally defined.

Moreover we shall study the eigenvectors of our matrix-valued process. In the
case where 3 > 1, their dynamics is well known and is similar to the dynamics of
the eigenvectors of the Hermitian or Symplectic Brownian motions, see e.g. [14].
When < 1 the question is to determine what happens at a collision. It turns out
that when we approach a collision, the eigenvectors of the non-colliding eigenvalues
converge to some orthogonal family B of d — 2 vectors whereas the eigenvectors of
the colliding eigenvalues oscillate very fast and take the uniform distribution on the
ortho-complement of B, see Proposition 5.6.

5.2 Statement of the results

Let ’Hg be the space of d x d symmetric (respectively Hermitian) matrices if 5 = 1
(resp. f = 2) and Og be the space of d x d orthogonal (respectively unitary) matrices
if =1 (resp. f=2).

We consider the matrix-valued process defined as follows. Let « be a positive
real number and Mg € 7—[5 with distinct eigenvalues \; < Ay < --- < A4. For each
n € N, we let (€} )ren be a sequence of i.i.d {0, 1}-valued Bernoulli variables with
mean p in the sense that

nt]-

In the following, the process (H”(t)); > ¢ will denote a symmetric Brownian mo-
tion, i.e. a process with values in the set of d x d symmetric matrices (respectively
Hermitian if 5 = 2) with entries Hg(t),t > 0,7 < j constructed via independent
Bij,1<i<j<d) by

(B—1)By(t) ifi<j

0}
) otherwise

Furthermore, for t > 0, we set €] := €

real valued Brownian motions (B;;,

_ ) Bi(H)+
H0 = A

\/%Bu‘ (5:2)
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Definition 5.1. For each n € N, we define a diffusive matriz process (MP(t));> o
such that M?(0) := M and for t >0

AMP(t) = —yMP(t)dt + 'dH] + (1 — €})dY; (5.3)

where (H), s o is a d x d symmetric (resp. Hermitian) as defined in (5.2) whereas

dy, = fz ( >de

with i.i.d Brownian motions (B{); o and where x?([nt]/n) is the spectral projector
associated to the i-th eigenvalue \;([nt]/n) of the matriz MP([nt]/n) if the eigenval-
ues are numbered as Ai([nt]/n) < Aa([nt]/n) < --- < Ag([nt]/n) (we shall see that
the above 1s possible as the eigenvalues are almost surely distinct at the given times

{k/n,k € N}).

As for all ¢, the matrix M?(¢) is in the space ’Hg, we know that it can be

decomposed as

M;(t) = O ()AL (1O (1)
where AS(t) is the diagonal matrix whose diagonal is the vector of the ordered
cigenvalues of MP(t) and where OF(t) is in the space O for all t € R,. We also
introduce a matrix O?(0) to be the initial orthogonal matrix (resp. unitary if 3 = 2)
such that MP (t) = OP(0)Ag0%(0)" where Ay := diag(\y, . . ., Aa)-

The evolution of the eigenvalues of M?(t) during the time interval [k /n; (k+1)/n]
is given by independent Brownian motions if €} = 0 and by Dyson Brownian motions
if en = 1.

The eigenvectors of M?(t) do not evolve on intervals [k/n; (k + 1)/n] such that
ep = 0 and evolve with the classical diffusion of the eigenvectors of Dyson Brownian
motions if €} =1 (see [14] for a review on Dyson Brownian motion).

Our main theorems describe the asymptotic properties of the ordered eigenvalues
of the matrix MP#(t) denoted in the following as

(L) < A3(1) < - < X3(1) (5.4)

and also those of the matrix O?(t) defined above, as n goes to infinity.

Let (b)) 0,7 € {1,...,d} be a family of independent Brownian motions on R.
Recall that Cépa and Lepingle showed in [52] the uniqueness and existence of the
strong solution to the stochastic differential system

dAi(t) = —yNi(t)dt + V2db; + Bp > cht (5.5)
j#i A

starting from A(0) = (A < Ay < -+ < \y) and such that for all ¢ > 0
M(t) < Malt) < - < Malt) s (5.6)

For the scaling limit of the ordered eigenvalues, we shall prove that
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Theorem 5.2. Let M()G be a symmetric (resp. Hermitian) matriz if § = 1 (resp.
B = 2) with distinct eigenvalues A\; < Xy < -+ < A\g and (MP(t));>0 be the matrix
process defined in Definition 5.1. Let N7(t) < ... < Nj(t) be the ordered eigenvalues
of the matriz MP(t). Let also (A (t),..., a(t)): >0 be the unique strong solution of
(5.5) with initial conditions in t =0 given by (A1, Aoy ..., Ag).

Then, for any T < oo, the process (A}(t), ..., \j(t))iepo,r converges in law as n
goes to infinity towards the process (Ai(t), ..., Aa(t))icpm in the space of continuous
functions C([0, T],R?) embedded with the uniform topology.

In the case where Sp > 1, the eigenvalues almost never collide and we will see
(see section 5.6.1) in this case that it is easy to construct a coupling of A and A" so
that A" almost surely converges towards .

We shall also describe the scaling limit of the matrix OZ(¢) (the columns of
OB(t) are the eigenvectors of M?(t)) when n tends to infinity, at least until the first
collision time for the eigenvalues, i.e. until the time 7; defined as T} := inf{t > 0 :
Fied{2,...,d},N(t) = N1 (D)}

Let wiﬁj(t), 1 <i < j < dbe a family of real or complex (whether § = 1 or
2) standard Brownian motions (i.e. wg(t) = BL(t) + V=1(8 — 1)B}(t) where
the Bj;, B}; are standard Brownian motions on R), independent of the family of

Brownian motions (b!); 0,7 € {1,...,d}. For i < j, set in addition wfi(t) = wZ (t)

and define the skew Hermitian matrix (i.e. such that R? = —(R’)*) by setting for
LF s 5
dwy; (1)
Ai(t) = A;(t)
Then, with \;(¢),0 < t < T1,7 € {1,...,d} being the solution of (5.5) until
its first collision time, there exists a unique strong solution (O”(t))o<: <7, to the
stochastic differential equation

dO™(t) = VBO® (AR’ (t) — SOP(Od((RP)', RY), (5.7)

B _ 8 —
dR;;(t) = R;(0)=0.

This solution exists and is unique since it is a linear equation in O” and R” is a well
defined martingale at least until time 7. It can be shown as in [14, Lemma 4.3.4]
that OF(t) is indeed an orthogonal (resp. unitary if 8 = 2) matrix for all t € [0; T}].

We mention at this point that the matrix OP(t) is not uniquely defined, even
when we impose the diagonal matrix to have a non-decreasing diagonal A\7(t) < ... <
Indeed, the matrix O?(t) can be replaced, for example, by —O%(t) (other possible
matrices exist). The following proposition overcomes this difficulty.

Define T,,(1) to be the first collision time of the process (A7 (), ..., Al(t)).

Proposition 5.3. There exists a continuous process (O°(t))o <1<z, in OF with a
uniquely defined law and such that for each t € [0;T,(1)], we have

ON(BALMOLH) = M),
where AB(t) is the diagonal matriz of the ordered (as in (5.4)) eigenvalues of MP(t).
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Proposition 5.3 is proved in Section 5.7. We are now ready to state our main
result for the convergence in law of the matrix O?(t).

Theorem 5.4. Let n and T be positive real numbers. Then, conditionally on the
sigma-algebra generated by (A7(s),..., Ai(s)),

0 < s <Ty AT, the matriz process (O2(t))o <t < (r—nar introduced in Proposition
5.3 converges in law in the space of continuous functions C([0;T], (95) towards the
unique solution of the stochastic differential equation (5.7).

Theorem 5.4 gives a convergence result as n goes to infinity for the eigenvectors
of the matrix process (M#(t)) but only until the first collision time Tj. If p3 > 1,
the result is complete as one can show (see [14] and section 5.6.1) that the process
(A1(t), ..., Aa(t)) is a non colliding process (i.e. almost surely 7} = oco). However, if
pfB < 1, it would be interesting to have a convergence on all compact sets [0; 7] even
after collisions occurred. Our next results describe the behavior of the columns of
the matrix O%(¢) denoted as (¢1(t), ..., ¢q(t)) when t — Ty with ¢t < T7.

We first need to describe the behavior of the eigenvalues (A; (%), ..., A\g(¢)) in the
left vicinity of T7.

Proposition 5.5. If p8 < 1 then almost surely Ty < oo and there exists a unique
index i* € {2,...,d} such that \j-(T1) = N\p«_1(T1). While we have, for allt > 0

and almost surely,

[t
0 ()\1* —Ai*,l)(S) ’

the following divergence occurs almost surely

n ds
/0 v — de_1)2(s) +00. (5.8)

The first part of Proposition 5.5 is proved in subsections 5.3.1 and 5.3.2, the last
statement is proved in 5.7. Hence equality (5.8) implies the existence of diverging
integrals in the SDE (5.7). Because of this singularity, we will show

Proposition 5.6. Conditionally on (Ai(t),..., (t)),0 <t < T}, we have:

1. For all j # i*,1* — 1, the eigenvector ¢;(t) for the eigenvalue \;(t) converges
almost surely to a vector denoted gz~5j as t grows to Ty. The family {gz~5j,j #+
i*,i* — 1} is an orthonormal family of RY (respectively C) if B = 1 (resp.
B =2). We denote by V' the corresponding generated subspace and by W its
two dimensional orthogonal complementary in R (resp. C?).

2. The family {¢i(t), pi—1(t)} converges weakly to the uniform law on the or-
thonormal basis of W as t grows to T.



5.3. PROPERTIES OF THE LIMITING EIGENVALUES PROCESS 103

The paper is organized as follows. In Section 5.3, we review and establish some
new properties for the limiting eigenvalues process (Ai(t),...,Ay(t)) defined in 5.5
that will be useful later in our proof of Theorems 5.2 and 5.4. We also introduce,
in subsection 5.3.4, a process with fewer collisions that approximates the limiting
eigenvalue process. In fact this gives a new construction of the limiting eigenval-
ues process already constructed in [52], perhaps simpler and more intuitive using
only standard Ito’s calculus. We give some useful estimates on the processes of
eigenvalues and matrix entries of M? in Section 5.4. In Section 5.5, we prove the al-
most sure convergence of the process (A7, ..., A7) to the limiting eigenvalues process
(A1,...,Ag) until the first hitting time of two particles with a coupling argument.
In Section 5.6, we finish the proof of Theorem 5.2 by approximating in the same
way the process (A},...,A]) with the same idea of separating the particles which
collide by a distance 6 > 0. At this point, it suffices to apply that the result of
Section 5.5 to show that the two approximating processes are close in the large n
limit. In Section 5.7, we prove Theorem 5.4, the last statement of Proposition 5.5
and Propositions 5.3 and 5.6.

5.3 Properties of the limiting eigenvalues process

In this section we shall study the unique strong solution of (5.5) introduced by Cépa
and Lépingle in [52]. We first derive some boundedness and smoothness properties.
In view of proving the convergence of A" towards this process, and in particular to
deal with possible collisions, we construct it for p5 < 1 as the limit of a process
which is defined similarly except when two particles hit, when we separate them by
a (small) positive distance, see Definition 5.12.

5.3.1 Regularity properties of the limiting process

Lemma 5.7. Let A = (A < Ay < -+ < N\g). Then there ezists a unique strong
solution of (5.5). Moreover, it satisfies

o For all T < oo, there exists a, My > 0 finite so that for M > M,

P [max sup | \i(t)] = M] L e o M=Mo)* (5.9)

1<i<d g <t < T

o ForallT <oo,alli,je{l,...,d}, i#j,

. V |Ai<s>isxj<s>\} Rt

Furthermore, there exists a, My > 0 finite so that for M > My and i # j, we

have .
dS 2
P / M} < e M=Mo)®
{0 [Ai(s) — Aj(s)]

WV
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Proof. The existence and unicity of the strong solution is [52, Proposition 3.2].

For the first point, we choose a twice continuously differentiable symmetric func-
tion ¢, increasing on R*, which approximates smoothly |z| in the neighborhood
of the origin so that ¢(0) = 0, z¢/'(z) > 0, |¢'(x)| < ¢ and |¢"(x)| < ¢, whereas
()] > |2| x |z| A1 (take e.g ¢(x) = 2%(1 + 22)~/2) to obtain by Itd’s Lemma

d(P(Ni(1))) = =7 Ai()d (Ni(t))dt + V2 (Ni(t))db;
dt §
+p6§;¢ ——7—335+¢(&@»ﬁ.

For all ¢, we have \;(t)¢'(\;(t)) > 0, and also

PO _dd—1)
ZZA ZZ¢ J<(t)<>>< CE NP

i=1 j#i 11]751

We deduce from the above arguments that there exists C' > 0 such that

S 6(n fz/¢ dbl+Ct+Z¢

By usual martingales inequality, as ¢’ is uniformly bounded we know that, see e.g.
[14, Corollary H.13],

M2
su > M| < exp(———
Pl 12 / SO 2 P

and therefore usmg the fact that |p(z)| > |z| x |z| A 1, we deduce the first point
with My = |30, ¢(\)| + CT and o = 1/2CT.

For the second point, we first remark as in the proof of [52, Lemma 3.5] that for
all i < d

pﬁ/ ) <WZ/ EYCERN0]

so that the first point gives the claim fo 5 = d. We then continue recursively. O]
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5.3.2 Estimates on collisions

To obtain regularity estimates on the process A\, we need to control the probability
that more than two particles are close together. We shall prove, building on an idea
from Cépa and Lépingle [53], that

Lemma 5.8. Forr >3 and I C {1,...,d} with |I| =7, set
SE=(Nlt) = A (0)*
ijel
We let, for e > 0,
77 :=inf{t > 0: |HTin SE<e}
Il=r
Then, for any T > 0 and n > 0, for any r > 3 there exists €, > 0 which only
depends on { S, |I| > 3} so that
P (7'; < T) <n.
Proof. The proof is done by induction over r and we start with the case r = d,
I ={1,...,d}. Then, S verifies the following SDE (see e.g. [53, Theorem 1]):
dS; = —2vS,dt + 4Vd\/S,dB; + adt
where (; is a a standard brownian motion and a = 2d(d — 1)(2 + pfd). The square
root of p; := +/S; verifies the SDE
dt
t
In particular, one can check that, if « =2 — % =2 — (d — 1)(1 + pf3d/2)

dpy = —arypldt + 2\/Eapf"1d5t.

Thus, as o < 0 for d > 3, for any ¢ > 0, p®_% is bounded so that fo pg‘A’Tlddﬁs is a

tATd
martingale and therefore

T
ElpTral < 05—y / Elpgpraldt
0

By Gronwall’s lemma, since sup, E[pf, ,] is finite, we deduce that

« (e} 1 —anyT pg
Elparal < 05 (1 — a—v)e T+ o
As a consequence, since o < 0, we have

« 1 o &
e PP(r! < T) S E[SH2] = Elof ] < p5(1- ) % .
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We can take ¢ small enough to obtain the claim for r = d.

We next assume that we have proved the claim for v > r + 1 and choose &, so
that the probability that the hitting time is smaller than T is smaller than 7/2. We
can choose [ to be connected without loss of generality as the A" are ordered. We
let R = min{7!, 7" 1} when 7! is the first time where S’ reaches . Again following
[53], we have

log Sppr = logSy — 29T + 42 Z —dbi
k jEI
TAR
Ai(t) — Aw(?) 1 1
+20p / [ — Jdt
]kzef% M) =) () = N()
TAR
dt
+4r[(r — 1)(p—6r +1)-2] / 57 (5.10)
0

Note that M; = 4\/§Zk,j61 ft/\R A4 db’ is a martingale with bracket A; =
16r me gi' For r > 3, 4r[(r — 1)(7795/2 + 1) — 2] > 2pS > 0 and therefore we
deduce

TAR dt

E[logSt,z] = log S§ — 29T + 28pE [/ §]
0 t
B 120 / [ - |t
jkzel % Ai(t) = N(t)  Ak(t) — (D)

For 7,k € I, we cut the last integral over times

1 1 1

={t<TAR: < =
]k { ;)‘ ) )‘l(t) Ak(t)—)\z(t) - St]}
so that
t 2 1 TAR dt
_Z/ ) >l ]dtZ—/ ad
jkel 21 (A (@) = M) (A (t) — Mi(2)) o S

This term will therefore be compensated by the third term in (5.10). For the re-
maining term, if [ ¢ [ is such that mine; [N, — Ai| < minger [Ap — A| for all k ¢ T
then if ¢ € Qf, and ¢* € [ is so that min,es A — N = [N — Aix|, we get

d—r S i
(N(t) = A (1))2 — S

and therefore on 7'6’”:r11 > t,

et S ST+ (N 2 < ST 2r (M (t) = N(1)? 428! < (3+2r(d—1))S!.

jel
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As a consequence, we have the bound for all j,k € I, all t € Qf,, t < R,

M > _1/\/5712 —V3+2r(d—r)/\/ert1

which entails the existence of a finite constant ¢ so that

A (1) 1 1
ry/ [M)Am 0 <Wt
=2 e

’LGI l¢1

Z =

Using Lemma 5.7 we hence conclude that there exists a universal finite constant ¢
depending only on T' so that

/

VEr+1 .

E[log Syg) = log S§ — 29T — (5.11)

On the other hand, we have

E[log ST, rl < P(r! < T)log(e) + E[OiltlET log S7]

where the last term is bounded above by (5.9). We deduce that

s |log S{| o c 24T
=TS o)l T Vamlios@l  Thog@ | F Tloa@) |
We finally choose ¢ small enough so that the right hand side is smaller than 7/2 to
conclude. O
We next show that not only collisions of three particles are rare but also two
collisions of different particles rarely happen around the same time.

Lemma 5.9. For allv,j such that 1+ 1 < j, set
T =1nf{t = 0: (Ni(t) — M1 (1) + (N () — A1 (1)? < €'}
Then, for any T > 0 and n > 0, there exists € such that
P[rd <T] <.

€

Proof. Using It6’s formula, it is easy to see that
d (N — Xi1)?+ (N — M\jo1)?) = 8(1 + pB)dt
=2y [N = M)+ (N — Ajon)? dt
F2V2 [(Ni — Ny ) (dbf — dbf—l) + (Aj = A1) (db] — db] )]
(AN — Xi1) >\ —\jp)?
—2 + dt .
po| 2 (AZ-—Ak)(“—Ak 2 A0

k#i—1,i k#j—1,j J
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Set X := (Ni(t) — N1 (6))? 4+ (A () = Aj—1(¢))* and note that the quadratic variation
of

[ O A 0
0 V Xs

is 2t. Thus there exists a standard Brownian motion B so that
dX, = 8(1 + pB)dt — 2vX,dt + 4/ X,dB,

(>\i - )\1—1)2 ()‘j — )‘j—l)Q
+ dt .
k;z (A = M) (Aict — k) ,#JZM (A = M) (Aot — Ae)

— 2pp

Note that, by the previous Lemma 5.8, we can choose € such that

Pl < T] < g (5.12)

Moreover, for all ¢ < 73 such that X; < /4, we have for all k # i — 1,4,

(A = ) (Nic1 — M) (t) 2

col| ™

The same property holds for j. To finish the proof, we will use the fact that the
sum in the last term is bounded for all t < 73 such that X; < e/4. We thus

€

need to introduce the process Y; defined by Y; = min(X,, ). Let us set f(z) :=
min(z,e/4)7P?. Note that f is a convex function R, — R, and that the left-hand
derivative of f is given by

f(x)= —pﬂx_pﬁ_ll{x <:p

Its second derivative in the sense of distributions is the positive measure

el pBpB+1)
f"(dz) = pp <Z_l> os + Wl{x <zyde.

Thus, by Ito-Tanaka formula, see e.g. [86, Theorem 6.22], we have
t
Yt—Pﬂ _ Yo—pﬁ . pﬁ/ XS—PB—ll{XS . %}dXs
0
1 e\PA-l = ipBpB+Y) ,
+3 (pﬁ <Z> L (X) +/0 WLt (X)dz |,

where L¥(X) is the local time of X in x. By definition we have

/4 pﬂ(pﬂ + 1)Lf(X)dl’ — /twl{){s < i}d<X’X>S’
0 0

pB+2 X§B+2
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and thus, we obtain
t —pB—1
Y, =Y / lix. <5 <p6m"’ﬁdt+4n g 2st) (5.13)
0

2 2 ! —pB—1 (()‘i_)‘i—l)(s))z
2 [, LZ (O A ot~ A0

(A = Aji1)(8))?
kti—1,j (A = M) () (Aj—1 — Aw)(s))

+

1 e\ Pl e
] Lx,<c/ads + §p6 (Z) Li(X).

The definition of local time implies that, almost surely, L7(X) < t. We thus deduce
from (5.13) that

1 €\ —P8-1 T
—pB —pB —pB
E {Y } <Y+ opB (Z> T+C/ E {Ymg} dt .

1 A3
T/\Tg/ AT 0

with C' = (pfy + 4p*B%(d — 1)%). Gronwall’s Lemma implies that

_ _ 1 e\ —pb-1
E {YTA”%MJ < (Yb PB4 51)5 (Z> T) exp(CT). (5.14)
If ¢ < e/4, equation (5.14) implies that
()PP [ T AT <Y " exp(CT), (5.15)

Taking ¢’ small enough gives the result with (5.12). O
As a direct consequence, we deduce the uniqueness of the i* of Proposition 5.5.

Lemma 5.10. With the same notations as in the previous Lemma 5.9, we have

almost surely

inf 7 = +oo0.
(k,0):k+1<

In particular, this gives the unicity of the i* in Proposition 5.5.

Proof. 1t is enough to write that for all ¢ > 0

- ke < P2 % 3 3
P(kﬁge% _T) _d{’g?ép(% <STATR)+P(2<T)}

and deduce from Lemmas 5.9 and 5.8 that the right hand side is as small as wished
when € goes to zero.

O
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5.3.3 Smoothness properties of the limiting process

Lemma 5.11. We have the following smoothness properties:

e For all T < oo and € > 0, there exists C,c, ¢ finite positive constants so that
for all 6,n positive real numbers so that n < (g2 A de) we have

C
Plmax sup  |h(s) = N()| >d| <= (6*664/277 + 6*084/") . (5.16)
I<i<d sgtg(s-‘—n)/\‘rsg n
0Kt T

e For all T < oo and e > 0, there exists C,c, ¢ finite positive constants so that
for all 6,n positive real numbers so that n < (g A de) we have

C
P max sup / >80 <= <6—054/277 + e—cs‘*/n) '
i#] s<t<(s+n)ATS |)\ )| n
o<t T
(5.17)

Proof. Let us first fix s € [0,7] and set I = {i € {2,...,d} : |\(s) —
Ai—1(s)] < €/3} and note that on the event {s < 72}, the connected subsets of
I contain at most one element. Let T, = inf{t > s : infig; [Ni(t) — N1 (t)] < e/4}.
The continuity of the \; implies that T} is almost surely strictly positive.

If i ¢ TU{I — 1}, then we have, for t € [s; (s +n) A T3 AT

(1) — /|)\ |du+\f|zf—zf|+pﬂ/z|A ol

S j#i

<7 / Ihs(a0) du + V21 — b + dpB(d — 1)

t—s

Using (5.9) and [14, Corollary H.13], it is easy to deduce that there exists a constant
¢ > 0 such that for n < §/(8pB(d — 1))

P [ max sup IAi(t) — Ni(s)| = 5] < cde™ % | (5.18)

IEI{I=1} te[s;(s4n)ATBATL]

Now, if ¢ € I, with the same argument as for (5.18) (the drift term in the SDE
satisfied by A\; + A;_; is also bounded), we can show that there exists a constant
¢ > 0 such that

2

P [ sup (A + X)) () — (N + Nic1)(s)] = 5] < ce (5.19)
te(s;(

s(sHmATSAT]
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On the other hand, the process x;(t) := (\; — X\j_1)(t) verifies
da?(t) = 4(1 + pB)dt — va2(t)dt + 2x;(t)(dbi — dbi ™)

B (Ni(t) = Nica(t))?
w2 = N~ W)

The denominator in the last term of the above r.h.s is bounded below on the interval
t € [s;(s+n) A3 AT.] by 2pB(d — 2)L. Thus, using again (5.9) and [14, Corollary
H.13], we can show that for § > cn/e,

P [ sup |zi(t) — zi(s)| = \/5] <P [ sup |22 (t) — 22(s)| = 5] < ce ‘2
t€[s;(

s;(s+m)ATSAT] te[s;(s+n)AT3ATE]

where the first inequality is due to the fact that x; is non-negative. Using (5.19)
and (5.20) gives for n < de/c

54
P | max sup IXi(t) — Ni(s)| = | < 2cde” 2.

i€TU{I =1} te[s;(s+n) ATBATL]
Thus, with (5.18), we deduce that for n < de/c

P [max sup IXi(t) — Ni(s)| = 5] < 2cde™ % .

bote[si(sHm)ATENTE]
In particular, there exists ¢ > 0 so that if €2 > cn,

dedT 6_0184/277 7

P[I. <(s+n) AT <P [max sup IXi(t) — Ni(s)| = 55/12] <

v s<t<(s+n)ATATS

which is as small as wished provided 7 is chosen small enough. This allows to remove
the stopping time and get for any fixed s < T, and 6 > ¢n/e

le‘ax sup  [Ni(t) = Nils)] 2 3| < 2ede 7/ 4 2dce </

v s<t<(s+m)AT3

The uniform estimate on s is obtained as usual by taking s in a grid with mesh
n/2 up to divise 0 by two and to multiply the probability by 27 /n. Thus we find
constant ¢, ¢, and C so that if n < c¢(e? A de) we have

CcT ,

P |{max sup |N(t) = N(s)| = 0| < — <€7C(54/2n Lee 54/77) '

b s<u<(smaTd n
0<s,t<T
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The second control is a direct consequence of the first as we can first consider the
cas j = d to deduce that for i < d

| / o ) S P = M)+ VElt) = )

where the right hand side is continuous. We then consider recursively the other
indices. o

5.3.4 Approximation by less colliding processes

When ps > 1, it is well known [14, Lemma 4.3.3] that the process A has almost
surely no collision. In this case, the singularity of the drift which defines the SDE
is not really important as it is almost always avoided. In the case p8 < 1, we know
that collisions occur and in fact can occur as much as for a Bessel process with small
parameter. The singularity of the drift becomes important, in particular when we
will show the convergence in law of the process of the eigenvalues A" towards A. To
this end, we show that A\ can be approximated by a process which does not spend
too much time in collisions.
For 6 > 0, we define a new process (A(t)); > o as follows.

Definition 5.12. Let T} := inf{t > 0 : 3i # 5, \i(t) = \;(t)} and for all t < T7,
set Xo(t) == N\i(t). Fort > Ty, we define the process recursively by setting for all
0= 2 X(TP) := N(T?—) +id and for t > TP, the process N(t) is defined up to
time T,y :=inf{t > T} : 3i # j, M) (t) = X(t)} as the unique strong solution of the
system

AN (1) = =\ () dt + /2db —i—pﬁz

— (5.21)
2N E v( )

The main result of this section is that

Theorem 5.13. Construct the process \ with the same Brownian motion b. Then,
for any time T > 0, any £ € (0,pB/4)

lim P ( sup max |\;(t) — A(1)] < 55) =1.

040 o<t<T 1<i<d
The theorem is a direct consequence of the following lemma and proposition.

Lemma 5.14. Let 6 > 0. Construct the process A with the same Brownian motion
b than \°. There exists a constant ¢ > 0 such that, almost surely, for all { € N

max  sup |A(t) — \i(t)] < o

1<z<d0<t<T5
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To finish the proof it is enough to show that T} goes to infinity for ¢ < 1/4.
This is the content of the next proposition.

Proposition 5.15. Let T < oo, 0 < & < pB/4 and L = [1/5'7%]. Then the
probability P [T}j < T} vanishes when & goes to zero.

Proof of Lemma 5.14. We proceed by induction over ¢ to show that, for each
¢,

d 1/2
sup (Z(Af—w(t)) < el

0<t<T) \i=1

with ¢ = (320,42 = d(d +1)(2d +1)/6)z=.
e We treat the case £ = 1. By definition of the processes, \> = X on [0,77). At
time t = T?, the separation procedure implies that

d d

DT AT) = ) (O = )T ) +i8)° = 7.

i=1 i=1

The property is true for £ = 1.
e Suppose it is true for . For ¢t € [T, 46>T€5+1)> since A’ and \ are driven by the
same Brownian motion, we get

d

4y (N(t) - = —272 N0 t))2dt

=1

1 1
+2pﬁzz (N(1) <)\6( TN T /\j(t)> dt .

i=1 j#i J

Observe that

1 1
.S (w =X N - w>> o2

=1 j#i

_ %ZZ(Af(t) = A2(t) — (N(t) — Ai(1))) (/\%f) i N2 (t) YD) i )\j(t)>

i=1 ji

1< 5 1
322, WO =XO - 0O - M0 G - w)
<0

as the (\;)1<i<q and the (\?);<;<q are ordered. Thus,

d d

sup (A1) = A1) < DO (N(TP) = M(T)))*. (5.23)

te[T) 17, ) =1 i=1
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In addition, because of the separation procedure at time Tfﬂ, we have

; 1/2 . 1/2
<Z TZ+1)> - (Z (()‘? - /\i)(T156+1_) + i5)2>

=1

d 1/2
(Z (A — N)H(TP— )) +6c < I+ 1)c,

i=1

where we used the induction hypothesis in the last line. The proof is thus complete.

O

Proof of Proposition 5.15. In the case p§ > 1, it is well known [14, p. 252]

that T is almost surely infinite and therefore the proposition is trivial. We hence
restrict ourselves to p8 < 1. Let n > 0. Let us define the stopping times

f{t>0: S
720 = inf{ |I}‘111§ < e},
20 =imf{t >0 Jnin (7 =X+ (A = A5 )0)(0) < )
where S/ := Z”el( — M)2(t). Set also 70 := 72° A 73°. We know from Lemmas

5.8 and o.9 that we can choose € small enough so that
P [7235 /\7225 < T] <.

The number € being fixed, it is then straightforward to see from Lemma 5.14 that
there exists dy small enough so that for all § < dy, we have

P[0 <T] <.

Now, we have

L
0D g, ap >0y STiTe 2 T3

P[T; <T] <n+P

We need to show that the second term goes to 0 when 6 — 0. Let {F;}1>0 be the
filtration of the driving Brownian motion. We will prove in Lemma 5.18, there exists
a constant ¢ > 0 such that, on the event {72 > T?}, almost surely

L
Sp [T;Ll N L e

(=1

In the following, we suppose that § is small enough so that ¢ §P#+¢ > §7P8+2¢ and
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5T — §7PP+e L — §7PP+2_ For such 6, we have

L
[Z 1{ TP > 86} S §ET; Tf > T

Mh

§ § — 26, .6 0

~
—_

Mh

6 6 — 6 o
<P Vs _qp > 56 — P [TM — T =6 | ng} > PP 0 > T

~

=1

L
< PRSP, 1) > 657 > 1))
/=1

where we used the Tchebychev inequality in the last line. Using Lemma 5.16, we
get that there exists a constant C' > 0 such that

< O 5848 L s0-pB)(1-271¢) < O P4

[Z 1{ TP —T7 > 8¢} < ¢ T 7‘3 > Tg

which goes to 0 when ¢ goes to 0. The proposition is proved. O

Lemma 5.16. Let € € (0;2). Then there ezists a constant C > 0 such that, almost
surely, on ; 0 > T?

_ _9—1
P [56 <T, — TP ITZ;] < Ost-rH-2710) (5.24)
Proof. We know that there are no multiple collisions nor simultaneous collisions

(because of Lemmas 5.8 and 5.9) and therefore we can denote by i the unique element
such that XO(T9—) = X2 (TP —) and (A — X0_,)(T?) = 0. We have by 1t6’s formula

d(AS — X 1)() —y(X =N ))(¢ )dt+\/’(dbi —dbi ™) (5.25)
— N )(t)
WS P DI aTey e AT

Let us define the Bessel like process (X;); >0 by Xo =0 and for ¢ > 0,

Z dt
dX, = \/_(de5+t de‘S{H) + ZPﬁZ- (5.26)
Using the comparison theorem for SDE [86, Proposition 2.18] (note that the drifts
are smooth before T), | —T7), we know that for all ¢ € [0,77,, —T}), we have almost

surely
(A =X )(T7 +1) < X, (5.27)
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Let us define 7% := inf{t > 0 : X, = 0}. It is clear that almost surely 77 , -7} < T%.
We thus have on Tf > T}f

P[0 < T - T | Fup| <P[T% > 07

We finally conclude using a classical result for Bessel process, see e.g. [?7, (13)];
the density with respect to the Lebesgue measure on R, of the law of the random

variable T is
1-pB
(t) ! 1(52> -
Ps\t) = 157 \ 507 e 2.
I(edy e \ 2t

Hence we deduce that for £ < 2 there exists a constant ¢ > 0 such that

P [T)fS( > 55] < 65(1—175)(1—2715).

O
For time ¢ € [0; 7], we define the random set

L={ic{2,....d}: |\ =\ _,|(t) < ve/3}). (5.28)

Note that, on the event Q := {72 > T}, for each t < T, the set I, contains at most
one element. For each ¢ € {1,...,L}, and i € {1,...,d}, we define the stopping
times

B(VE/3) = int{t > TP s min X — ML, (1) > VE/3},
J
£, V2/6) = inf{t > TP : min |X] = XJ, |(1) < VE/6}
jF#
If i denotes the unique index such that XO(T9—) = \;_1(TP—), note that if T) < 72
then min;; XS — X _,|(T7) > v/2/3.

Lemma 5.17. If T < 72 and if i denotes the (unique) index such that N (T} —) =
N (T?—) , then there exists a constant ¢ > 0 and 0y > 0 such that for all § < do,
we have

08" <P [t](VE/3) NBi, VE/6) < Tf|Fg (5.20)

Proof. Note that ¢ is the unique element of the set Ir; defined by (5.28) for
which |A? — X)_,|[(IY) = 6. For @ = 1 —pp and t € [T};T),,), we have by Ito’s
formula

d(A] = A1) (1) = —7a(X] = X)) (t)dt (5.30)

a— 7 i—1 )\? 1>a()
ol =20 VI = i) =0 3 o w0t

For t € [T?,70], we deduce that
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(X} = N_)(8) = (W) = AL )0 V2(db, — dbyh) = (X = Ay (¢)dt
where ¢ = oy + fp(d —2)36/¢. Let Tffl be the first time after T so that A — A2~

S,k ) .
reaches k < 6. Then, as fd/\T“l(/\f — A2 )27 H(t) V2(dbi — dbi™') is a martingale, we
find that

B[ = AL (8 (VE/3) A VE[B) ATES) | Frse] = 0%exp(—¢'T). (5.31)

Before time #)(i,/2/6), (A — XJ_;)(t) can not cancel if j # i. Therefore we can
choose k small enough so that the last inequality implies

o 0/ 1 o
E [()\? = A1)t (VE/3) AT (6, VE/6)) s (e rmnistinzre) < 5,43 | ng] > 50%exp (=c'T).

which can be rewriten using the fact that [\ — A2, |(t3(\/€/3) AL3(i,+/€/6)) < +/2/3,
as follows

P [V AT VEIS) < T | 7] 0% () exp(oe ).

The lemma follows with ¢ = (\%)”‘ exp(—c' T). O

Lemma 5.18. Let £, T > 0. There exists a constant ¢ > 0 and dg > 0 so that if
0 < do, oan ng/\T,

P [55 STy —T) | Frs| = 677 (5.32)

Proof.We assume in the sequel that 6 < 1. The proof is based on Lemma 5.17.
It implies

P [56 < Tz5+1 - Tz5 | }_Tg]
> P |t(VE/3) AT, VE/6) < Tfhi 6 < Tfy — 10 <1 Fg|
By Lemma 5.17, we deduce that
P [55 <TS, —T)<1| ng]
> e P t(VE/3) AT (i, VE/6) < Tiyy ST+ 156¢ > Thy, — T | Fg
But
P t(VE/3) AT, VE/6) S Ty ST+ 15T5, — TP < 6 | Fy
<PH(VE/3) < AT+ LT, — t(VE/3) < 6| Fry
+ P [0, VE/6) < G(VE/3); 50, VE/6) — T < 6 | Fg
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Let us handle the first term of the previous right hand side

P [#(VE/3) < Ty A (T + 15 Ty — £(VE/3) < 6| Fis(epm

NG
<P | max sup Xo(s) = MEWE/D) = Y2 | Py
T 18(V2/3) < s < (t5(VE/3)+0)AE (VE/12)A(T+1)
2
ce

< Cexp(=—)

where we used Lemma 5.11 for the last line (actually the proof since we used the
estimate for a fixed s). For the second term, the idea is similar

P (70, VE/6) < H3(VE/3); 56, VE/6) = T) < 6% | Fiy]

<P |max sup X3() = XTI = Y2 | Fy
TFL TS < s < (T+S€)AE (i,/E/6)A(T+1) 12 ‘
2
ce
<C eXp(_?> )

by Lemma 5.11. As for all £ > 0, exp(—+7) < 51778 for small enough 6, the proof
is complete. O

5.4 Properties of the eigenvalues of M/

In this section, we will study the regularity and boundedness properties of the eigen-
values of MP.

Definition 5.19. Let Moﬁ be a symmetric (resp. Hermitian) matriz if 5 =1 (resp.
B = 2) with distinct eigenvalues \y < Ay < -++ < A\g and (MP(t)); > o be the matrix
process defined in Definition 5.1. For allt > 0, the ordered eigenvalues of the matrix
MPB(t) will be denoted by \¢(t) < M\5(t) < ... < A\%(3).

The following proposition characterizes the evolution of the process \"(¢) until
its first collision time.

Proposition 5.20. Let (A}(t),...,A(t)) be the process defined in Definition 5.19
and set T,,(1) == inf{t > 0: 3i # j, \}(t) = N7(t)}. Then, almost surely, the process
(AT(F), ..., A(t)) verifies for every k € N, the following strict inequality

Ne(k/n) < A(k/n) < -+ < A(k/n) . (5.33)

In addition, there exist a sequence of Bernoulli random variables (€})gen with mean p
and a sequence of independent (standard) Brownian motions (b}); >, 1 € {1,...,d}
also independent of the Bernoulli random variables (€} )ren such that, the process
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(AT(F), ..., A5 ()t > 0 is the re-ordering of the process (pi(t), ...,y (t))e=0 defined
fort >0 by

duya):z-—yuz()dt+—»fluf4—5;;;——?—y——;;65dt. (5.34)

with initial conditions int =0 given by (u7(0),..., u3(0)) = (A1,...,\a). In partic-
ular, up to time T,(1), the process A" verifies

AN'(t) = =N (8) dt + v/2db} + 3 —ndt.
; A7 (t) = A7 (t)

Remark here that we use the property that € = (e})%.
Proof. Let us show first that for each k£ € N such that k/n < T,,(1), we have almost
surely the strict inequality (5.33). We will proceed by induction over k. Note that
under our assumptions, it is true for £k = 0. Suppose it is true at rank k and let
us show it is then true at rank k 4+ 1. From Definition 5.1, if the eigenvalues of
MP(k/n) are denoted as A\t(k/n) < -+ < A%(k/n), then, depending on the value of
the Bernoulli random variable €}, the dynamic for ¢ € [k/n; (k+ 1)/n] is

o if ¢} = 1, the process (A}(t),...,A;(t)) follows the Dyson Brownian motion
with 1n1t1a1 conditions ()\”(k/n) ., Aj(k/n)) (see [14, Theorem 4.3.2]); More
precisely, we have for ¢t € [k/n; (k+ 1)/n)

AN (t) = —fy)\”()dtJr\/_dWUrﬁZW.
VR

where the (W});>¢,4 € {1,...,d} are independent Brownian motions. In
particular, this process is non-colliding in the sense that the A'(¢) will almost
surely remain strictly ordered for all t € [k/n;(k + 1)/n) (see [14, Theorem
4.3.2]). Thus, we will almost surely have 7' ((k+1)/n) <--- < N:((k+1)/n).

e on the other hand, if €} = 0, we need to define a new process (u}(t), ..., u5(t))

of independent Ornstein-Uhlenbeck processes with initial conditions (A} (k/n), . ..

More precisely, the evolution for t € [k/n; (k + 1)/n] is given by
dp (t) = —yul(t)dt + V2d B! (5.35)

where the Brownian motions B* are the ones of Definition 5.1. Note that,
before time T,,(1), the two processes A" and p” coincide. In this case, the
pit(t) can cross and the ordering can be broken in the interval [k/n; (k+1)/n].
However, if crossing for the process " happen before time ¢t = (k + 1)/n still
we know that eY*+1/m 2 ((k+1)/n) are almost surely distinct. The re-ordering
of the pf thus always gives AP ((k+1)/n) <--- < A((k+1)/n) a.s.

yAa(k/n));
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The induction is complete and proves equality (5.33) for all £ € N. We deduce from
the above arguments that for & such that k/n < T,(1), the evolution of \"(t) for
telk/n;(k+1)/nAT,(1))is
. . en
AN} (t) = —yAM(t) dt 2(e;dW) 4+ (1 — €)dB; : dt .

with initial conditions in ¢ = k/n given by (A?(k/n),..., Ni(k/n)). Let us define the
process b’ for t > 0 by bi := fg(egdW; + (1 —€")dB:). Using the fact that the Brow-
nian motions (W/);>¢,% € {1,...,d} are mutually independent and independent
of the Brownian motions (B});¢,7 € {1,...,d} (also mutually independent), it is
straightforward to check that the processes (bY); > ¢, € {1,...,d} are mutually inde-
pendent Brownian motions. It is also easy to see that, for all s,t € [k/n; (k+1)/n],
the random variables e (W} — W)+ (1—€})(B;— B.) and €} are independent. There-
fore, we deduce that the brownian motions (b!)¢¢,7 € {1,...,d} are independent
of the sequence (€} )ren. ]

The following regularity properties will be useful later on.

Lemma 5.21. Let T < oco. Then there exist constants C, Ag,c,c’,a > 0 which
depend only on T, d such that for alln € N, all A > Ay and all € > 0

P| max sup |MP(t);] > Al < Cexp(—aA?), (5.36)
1<4j<dogt<T
P| max sup |MP(t)y — MP(s)y| >¢e| < Eexp(—6—2). (5.37)
1<4,j<dogs,t<T, nA " K ) o
lt—s| <6

Proof. Using Ito’s formula, we can check that

MP(t) — e MP(s) = /t e (e’;dHS’B +(1— e’;)\/EZX?([Z—S])dBQ .

=1

Let us set A, (s,t) := e"*MP?(t) — e7*MP?(s). The entries of A,(s,.) are martingales
with respect to the filtration of the Brownian motions conditionally to the Bernoulli
random variables (€} )ren (this is due to the independence between the Brownian
motions (B}); >0, (H (i5))i>0,1 < 4,7 < d and the sequence of Bernoulli random
variables (€} )ken. Using the fact that |x}'([ns]/n);;| < 1 for all 4,7, we can check
that there exists a constant C'(d,T") which does not depend on n such that for all
neN

[{An(8:)igs An(s, Jm)e| < C(T, d)[t = s].
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Let A > 0, using [14, corollary H.13], we have
P| max su e MP(t))i] > A}
s (A0

<d® max P| sup |(e"MP(t) — MP);;| > A — max | M 1,7
n 0/ i 0

1<4,j<d 0<t<T

=d?> max IP’[ sup |An(0,t)ij|>A—max|M§(i,j)]}
i

1<4,j<d 0<t<T
A —max,; |MP (i, )])?
< d2 _( 1,7 0 9 . 538
eXp( C(d,T)T .

Similarly, for any given s € [0, 77, for € > 0, using [14, Corollary H.13], we have, for
each entry 75 and for every 6 > 0:

2
P ML) — @ M(s)y] > ¢| < Pexp (—oms )
llgggdte[jﬁml(e n(t) = €M (s))y| > €| < dexp | —5 =5

and therefore there exists a positive constant ¢’ so that

P| max sup [(e"M](t)—e*MI(s))y| > e
1<i,j<dogst<T,
lt—s] < &

2T/6]+1
< P| max  su et MP(t) — "2 MPB(i5/2)).s| > £/2
izl llgi’jgdlt—?lga/zu ) n(i0/2))is| > €/

2T g2
< dQT exp (—5) .

[]

Lemma 5.22. Let T < oo. Then there exist constants C', Ay, ', ", o, ¢g > 0 which
depend only on T, d such that for alln € N, all A > Ag and all e > 0

P| max sup [X'(H)] > A| < C'exp(—ad?),  (5.39)
I<i<do<i<r
! &2
n —\P < _— ). .
P 1???@2321 IAR(t) — A (s)| > e| < 5 exp( 0’5) (5.40)

lt—s < 6
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Proof. This lemma is a consequence of Lemma 5.21 and the inequalities
3
max [NE(1) = A (ZIA" AL (s) )
1/2
(Z | M7 (t)i; — M (s )ul2> (5.41)

i,7=1
Bt B(e)..
<d max [M/(t);; — My (s)s]
where, for the second inequality, we used [14, lemma 2.1.19] and the fact that the
A are ordered. O

5.5 Convergence till the first hitting time

Proposition 5.23. Take A\(0) = (A1 < Xy < -+ < N\g). Construct u™, strong
solution of (5.34), with the same Brownian motion than X\, strong solution of (5.5),
both starting from X(0). A" equals p™ till T,,(1). For allT > 0, we have the following
almost sure convergence

lim max sup AT (t) — Ni(t)] = 0.

N0l <iSdy ¢ PAT, (1)AT3
As a consequence, if we let Ty = inf{t > 0,3i # j, \i(t) = X\;(t)}, we have almost

surely

Ty < liminf 7,,(1).

We point out that this convergence does not happen on a trivial interval since
we have

Remark. For any n > 0, there exists 7(n) > 0 so that
lim P[T,,(1) >7(n)] >1—n.

n—oo

Proof of Remark 5.5. By the same arguments developed in (5.41), we find that

P [sup max |A'(t)e? — X (0)] = e} < P [sup [tr((M™(t)e" — My)?)| > 621
t<T1l<i<d t<T

62

< 2 —_).
< deol-gmm )

But since also the A! are uniformly bounded with high probability, we can choose
for any n > 0 the parameter 7" small enough so that

1<i<di<r 1<i<d

P[ max sup X(6) = A(0)] = min |AZ»—A1-+1|/3} <
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This implies that P(T,,(1) <T) <. O
Proof of Proposition 5.23 Using It6’s formula, we can compute

> — 2 / Z(W) ~ (s))ds (5.42)
n 1 1
+25/ ZZ (AT ( )<)\’7‘(s)—/\n(3) _)\i(s)—/\j(s))ds

=1 j#i ? J
d M(s) — ANi(s
+ 20 ; (Eg—p)zz )\Z((s))—/\((s;ds'
i=1 j#i J

By the same argument as in (5.22) the second term in the right hand side is non
positive. Thus using equations 5.42, we find for ¢ < T,,(1)

>0 - A0 <28 [ (@ -p) S SN .

i=1 0 i=1 j#i i(s) =

We next prove that
lim sup R,(f)=0 a.s. (5.43)

N0 <t < TATS

Write R, (t) as R,(t) = P,(t) + Q,(t) where

d )\” ([ns]/n
Pu(t) == / —-p)y > = / MS)( Vs

i=1 j#i

d

— A (|ns|/n
Qult) = / aop SN 19](5]{ ds.

=1 j#i

We first handle the convergence of Q,(t). Set @y = {Supjs—s<i/» maxj<j<q | A (t) —
t<T ==
()| < n1/%€}. On the event ), we have

UERES » ) | ROESYOIL

i=1 j#i

Following (5.41), we know that
2e

P(Q]) <ce ™

We thus deduce from Lemma 5.7 that

P sy Q.0 > o] <P [ZZ/O pYoreverkLas Radoi
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Hence, Borel Cantelli’s Lemma insures the almost sure convergence of @), to zero.
We now turn to the convergence of P,(t). Let n > 0 small and write

d(d —1)

Pu(t) = _T/o (" — p)ds + Po(t)

with

n

~ AP ( ns/n A7 ([ns]/n)
But) = / oy N M

=1 j<t

The process fot (e — p)ds is a martingale and by Azuma-Hoeffding inequality, for

any 0 >0
2

P (max| (e —p)ds| > 5) < QeXp(—(sTn) .

We now use the independence between the brownian motions (bi)g <t <7,i=1,...,d

and the Bernoulli random variables €}, k = 1, ..., [nT]. Conditionally on the (b})o << 7,7 =
., d, the processes X\;(t),i = 1,...,d are deterministic and the process ﬁn is a

martingale with respect to the filtration of the €. We let

. FH1/n A\ ([ns /n) A% ([ns]/n) )
% Z/ YW R

By Lemma 5.11 and Lemma 5.22, the set

O={ sup |Af| <n )

k<nTAT3

_enl/16

has probability larger than 1 —e . Moreover, by martingale property it is easy

to see that for all A > 0,

E[1ae? P ®m =3 DI (48,)% < 1 |

Taking A = n'/1%, since on 2, —n!/16| A?| +n!/8|A7|2/2 < 0, Tchebychev’s inequality
yields
(Tn]

P ({|Pa(k/nAT2) =0 VO AT+ 0} NQ | <ef
(=0

As by Lemma 5.7, Z[Tn] |A?| is bounded by n!/32 with probability greater than
1—e """ we conclude that

1/32

P (|Pa(k/n AT =0 32) < Ce

The uniform estimate is obtained easily by controlling the increments of P, in be-
tween the times k/n, k < [nT] by supj<p,7 |A%| which we have already bounded.
O
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5.6 Proof of Theorem 5.2

5.6.1 Non colliding case pf§ > 1

It is straightforward to deduce Theorem 5.2 when pg > 1. Indeed if p > 1 we know
that there are no collisions for the limiting process and more precisely, see e.g [14,
p. 252],

P(r2 < T) < c(A)T)|loge

£

with some finite constant ¢(\g) which only depends on the spacings of the eigenvalues
at the initial time. This implies in particular that

lim lim P(T" < 7T) =0

e—0n—o0

from which we easily deduce Theorem 5.2 from Proposition 5.23.

5.6.2 Colliding case pf < 1

We now define the process (A\"°(£)); s o which will depend on the sequence (79)sen
defined in Definition 5.12. To unify notations, set T¢ := T} and T?(1) := T,(1).

Definition 5.24. For t < T9, set AXM°(t) := A\(t). For time t > T?, we define
the process recursively by setting for each £ > 1, )\?’(S(Tés) = /\?’5(1}5—) + 6 for all
i €{1,...,d} and fort > T?, the process )\?’6 1s defined up to time T[‘Zr1 by ordering
the process (u°(t), . .. ,,ug’é(t))Tés <t<p,, which is defined fort > T? as

n
€4

dp 0 (t) = —yu (1) dt + V2db, + B — ———dt. (5.44)
' ; H; ’5(75) — Hy 75@)

with, initial conditions int =T? given by (A\I°(T7), ..., XV (TP)).

Lemma 5.25. Let T < oo and & > 0. We have the following convergence in
probability, for all { € N,

lim max sup  |AY(E) = AP (1) = 0.

n—)oolgigdogthés/\T
In particular, for every £, if T is the first collision time for \™° after T) .,
T)AT < liminf T°(O) AT a.s.

Proof Again, we prove this Lemma by induction over /.

e We begin with the case £ = 1. Proposition 5.23 yields that the random variable
Max; < i < dSUPg < ¢ < 7, (1)t | Ni(t) — AF(t)] = 0 converges to 0 in probability as by
Lemma 5.8, P(12 > T) goes to one as ¢ vanishes. Since we have the almost sure
inequality 79 < liminf72(1), the continuity of the )\;,1 < i < d, the regularity
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property of the A? given by Lemma 5.22, Lemma 5.11 and Proposition 5.23, we can
check that since before T? \¢ = \; and /\"5 AT (1) < TP AT,

max sup  |A(t) = AP (1) (5.45)
Isisdpsay <t<TiAT

< max sup  {AT() = AT (L) + [N(t) = NI} (5.46)

ISisdpsqy <t<TonT
+ IAMTR(1)) — A (T2 (1))

goes to zero in probability, when n goes to infinity.

e Suppose the property is true for £ and let us show that it is then true for £+ 1.
By the same argument as in the proof of Proposition 5.23, we can show that, for all
t € [T T2(0+ 1) ANTP,,], we have

S (e 0 3 (o) 547
vos [ piZW A(S)d&
2

E =1 j

The same proof as in Proposition 5.23 shows that, if 73 is the stopping time 73 for
the process \(t),t > T},

lim sup /t (e —p) Z Z )\ZL:( 8) = )(\55< )ds =0 as. (5.48)
T TS (e )NTE, A I T i—1 X (s) — )‘j( s)

Thus, because of (5.47), the following convergence in holds

lim max sup IO = X)) =0 a.s. (5.49)

nTOO [T (A 1)ATY,  ATE]

Because of (5.49), we have T ; A73 < liminf, o T} ((4+1)A72. Since the probability
that 73 is larger than T goes to one as € vanishes, we can show as in (5.45) (note
that Lemma 5.22, Lemma 5.11 and Proposition 5.23 extend to {\°, X0t > T?})
that in probability,

R T A7 (1) = A () =0

(+1) St TY,

The property at rank ¢ 4 1 is established. The Lemma is proved. O

Lemma 5.26. There exists a constant ¢ > 0 such that for all L € N, we have the
following almost sure estimate

max  sup |)\;L’6(t) - N(t)| < oL+

1<J<d0<t<T“
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Proof. Note that the estimate is striaghtforward on [0,7?]. We then proceed
by induction on the time intervals [T, T}, ,] as in the proof of Lemma 5.14 until the
first collision time

—inf{t > TP : 3i, A\*(t) = N, (£) or XM () = A (1)}

We next claim that, at a given time, almost surely the eigenvalues \" are different.
Indeed, this is clear if the eigenvalues follows Brownian motion and even more when
they follow Dyson Brownian motion. Moreover the probability that more than
two eigenvalues collide at some time vanishes. Indeed, this can only happen if
the eigenvalues follow the Brownian motion. But the probability that 3 Brownian
motions collide vanishes and hence the result.

Hence, there are almost surely at most two eigenvalues which can collide. Hence,
let (1) be the unique integer in {1,...,d} such that \!(t;) = A ;(¢1) (respectively
A (ty) = N (t1)) and let 7 = ([nt1] + 1)/n. Notice that, for ¢ € [[nt,]/n; ([nt)] +
1)/n), we necessarily have € = 0. Let z*° and p? for i € {1,...,d} be the processes
such that for ¢ € [t1; 7]

—y " (t)dt 4+ \/2db}
—y P (t)dt + v/2db}

dp(t)
dpi' (1)

with initial conditions at t = t; respectively given by u™°(t;) = \™°(t;) and u"(t;) =
A"(t1). We know that the )\?’5, respectively the A7, are just a re-ordering of the
processes ;*° and p7

By definition, for ¢ € [t1; 7], we find that :

(" = 1) () = e — ) (h) -

As a consequence, we deduce that

D (= () <

Jj=1 J

(A} = A1 (t).

'M&

1

Moreover, as the \’s are ordered but the set of the values of the \’s and the u’s are
the same, using for instance [14, lemma 2.1.19], we have that

ROLRPILORS wumet)

]:

[y

Gathering the above inequalities, we have shown that

d d

sup Y (AT = AP < (AT = ADA(TY).

te[0,m1] =1 j=1

We can continue inductively until we reach the time T}, to finish the proof.
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5.7 Asymptotic properties of the eigenvectors

Recall that w;ﬁj,z’ < j are real (respectively complex) standard Brownian motions
if 5 =1 (resp. 5 = 2) with quadratic variation St and that we also set for i < j,
wfi = wﬁ In addition we also defined the skew Hermitian matrix R® = —(R?)* by
setting for ¢ < j,

dR (1) = _ dwy®)
Y MOEPHON
Proof of Proposition 5.3
It is classical to check that the unique strong solution of the stochastic differential
equation

dOy(t) = ;O (1) dR(t) — %Oﬁ(t)d«fzﬁ)*ﬁﬁﬁa (5.50)

with initial condition O?(0) := O?(0) (defined at the end of Section 5.1), is in the
space OF for all time ¢ (see e.g. [14, Lemma 4.3.4]) and is such that, with AS(t)
being the diagonal matrix of the ordered (as in (5.4)) eigenvalues of M#(t), we have

OB(#)AZ(1H)O5(8) " ME(t) .

The law of the continuous process OF is uniquely determined as the unique strong
solution of (5.50). O

One can thus define the eigenvectors of MP(t), denoted as ¢?(t), so that they
satisfy the stochastic differential system

o7 (t) = e Z OBy 95 1) - iz o /BA?(t))thqﬁ?(t) (5.51)

J#i

where wﬁ i < j is a family of i.i.d. Brownian motions (on R if 5 =1, C if g = 2),

1ndependent of the eigenvalues A7, 1 < ¢ < d.

Proof of Theorem 5.

This proof is classical and uses the theory of stability for stochastic differential
equations.

For n > 0 fixed, we deduce from Proposition 5.23 and Lemma 5.8 that the pro-
cess (AT(1),. .. ,)\"( )) converges almost surely in the space of continuous functions
C([0; (T} — n) AT],R%) (respectively C?) if 3 = 1 (resp. B = 2) endowed with the
uniform norm towards (A1(t), ..., Aa(t))o < ¢ < (1y—nar Where the );’s are the unique
strong solutions of (5.5) (with the same Brownian motions b') and where T} is the
first collision time of the \;,1 < i < d. In the sequel we will work conditionally to
the (A, \;)’s satisfying the above Convergence

Define for i # j the processes w " by setting

t
Wi (t) = / erdwli(s). (5.52)
0



5.7. ASYMPTOTIC PROPERTIES OF THE EIGENVECTORS 129

Note that the quadratic variation of this continuous martingale converges almost
surely towards [pt so that by Rebolledo’s theorem (wg ,i < j) converges towards
(VWi < j).

Moreover, if T7 is the first time at which two eigenvalues are at distance less than
€, the drift coefficients being bounded, we see, with a proof similar to the proof of
Proposition 5.23, that for ¢ # j

tATY en
/0 (A7 = AT)2(s)

converges towards p fot ME(\(s) — Aj(s))~%ds uniformly almost surely. Since T con-
verges towards T} as € goes to zero, the convergence holds till (73 — n) A T for any
n > 0.

Gathering the above arguments, the result follows from [82, Theorem 6.9, p.
578]. O

We now turn to the analysis of the behavior of the columns ¢;() of the matrix
OP(t) when t — Ty with t < T}. Those vectors ¢;(t) form an orthonormal basis of
R? (respectively C?) if 8 =1 (resp. 8 = 2) and it is easy to check that they verify
the following stochastic differential system

d¢i<t>=zw%d S Z TaEt®- (653)

j#i J#Z

In the following of this section, we will denote by ¢* the unique (because of
Lemma 5.10) index such that A\j«(71) = X\i«—1(T1).

The main issue we meet at this point in the presence of collisions (that will occur
if pB < 1; see [52]) lies in the divergence of the integral 5.8 that we now prove.

We now describe the behavior of the d — 2 vectors ¢;(t),j # i*,7* — 1 just before
the first collision time 73.

Proof of the first statement of Proposition 5.6

We will denote by ¢;4(t) the ¢-th entry of the d-dimensional vector ¢;(t). For
0 <t <Ti, we have

d;(t) Z W dwjk . Z o Ak J(t)dt . (5.54)

We recall from section 5.3.2 that there are no multiple collisions nor two collisions
at the same time for the system (A1(t), Ao(%), ..., Aa(t))o <t <1, verifying (5.5), and
therefore we may assume without loss of generality that for j # i*,i* — 1, every
diffusions and drift terms of (5.54) remains almost surely bounded for ¢ € [0;7T7].
To prove the lemma, we just need to prove that almost surely

lim  sup |[|¢;(t) — ¢;(s)lla =0.

s—T7;
s<Ty s < t<Ty
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The drift terms appearing in (5.54) are obvious to deal with since 1/(\; — A\g)(?) is
bounded in the vicinity of 77 and that |¢;(t)| < 1 for all ¢ < T3. For the diffusion
terms, we have for every ¢ € {1,...,d} and for every s € [0;7}] the following
estimate

VP n’
Ky " =] < g )

P| sup |
s < t<T1 s k]

where M = sup;¢(o,r,) MaXy; W Using the Borel-Cantelli Lemma, we deduce
the result. _ _ B ]

For 6 > 0, we want to define a process (¢1(t), pa(t), ..., ¢a(t))r—s < i<, that
will be a good approximation of the process (¢1(t), ¢2(t), ..., ¢a(t))r,—s < t<1, On the
time interval [T} — 0;T1]. Hence for j # i*,i* — 1, we set %(t) = % (the vectors
do not depend of time). It remains to define the evolution for (di=—1(1), Pi- (t)) that
will depend of time ¢.

Let V be the (d — 2)-dimensional subspace spanned by the orthonormal fam-
ily {(Ej, j # i*,i* — 1} and W its orthogonal complement in R? Let us define
the “diffusive orthonormal basis” in the space W that will describe the evolution
of the two vectors (¢s_1(t), di(t)) on the interval [T} — 6; T3] (up to the initial
conditions at time ¢ = T} — § we will explicit later).

Lemma 5.27. Let 6 > 0 and (u,v) an orthonormal basis of the two-dimensional
subspace W. We consider the following stochastic differential system

VP pp dt

()‘i* - /\i*—l)( ) 7()\1,* _ /\i*—1)2(t) 9252-*(15),

(5.55)
ie 1 (1)

doi- (t) = dwy. (D) o1 (t) —

) ) /P i ~ B dt
ey V[ M A C B s v vy

with initial conditions (Gy_1(Ty — 8), ds=(Ty — 8)) = (u, v).

This stochastic differential system has a unique strong solution defined on the
interval [Ty — 6;Ty) such that for each t € [Ty — 6:T1), {w_1(t), ¢ (1)} is an or-
thonormal basis of W.

Proof. For all € > 0, the function ¢ — 1/(X\i» — A\i=—1)(¢) is bounded on the interval
[T1—0; Tf] and therefore there is a unique strong solution to the stochastic differential
system (5.55) till the time T where | A\ — A« 1| < € as it is driven by bounded linear
drifts. As T} grows to 17 the proof is complete.

To show that for all ¢ € [T} —d;T}) the family {¢;+_1(t), ¢ (t)} is an orthonormal
basis of W, we proceed along the same line as in the proof of [14, Lemma 4.3.4]. [

In the following lemma, we show that we can choose a constant § > 0 small
enough and an initial condition (u, v) € W such that the processes (¢ (t), . . ., ¢y (t )te[ri—5:11)
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defined by Lemma 5.27 is indeed a good approxmaatlon of the process (¢1(t), . .., @a(t))cim—s:1y)-

The advantage of the process (¢ (t), ..., o1 (t ))teir,—s;my) is that it is simpler to study
in the vicinity of 77 (see Lemma 5. 29 below)

Lemma 5.28. Let n > 0 and x > 0. Then there exists an orthonormal basis (u,v)
of W and & > 0 small enough such that if we denote by (i1 (t), by (t))terr—s:m1)
the unique strong solution of the stochastic differential system (5.55) with initial
conditions given in to =Ty — 8 by (dp_1(to), di- (to)) = (u,v), we have

P ( sup (| (1) = Gi- (D13 + [l -1 (1) = G 1 (1)][5 = n) <k.

t€lto;T1)

Proof. Using Itd’s formula, we find' for all t € [to; T}),
16+ (£) = Gix (D113 + [ —1(t) = B2 (D)]]3 = |Ii= (t0) — ul[3 + || @1 (o) — v]I3
t VP B G(s). 6
2 XY 5@ ),

0 jefix ix—1} jAi*i*—1

(5.56)

As for i € {i*,i* — 1} and j & {i*,i* — 1} the terms 1/(\; — \;)?(t) have almost
surely a finite integral with respect to Lebesgue measure on the interval [tg; 77) (in
fact those terms are almost surely bounded as the corresponding particles remain at
finite distance), the quadratic variation of the last term is of order ¢ and therefore
is smaller than 1/2 with probability greater that 1 — x for ¢ small enough.

It remains to check that we can choose (u,v) an orthonormal basis of W and
0 > 0 such that

166 (Ty = 8) = ull3 + [|¢s—1 (T — 8) — vlf3 < /2. (5.57)

This is a straightforward: Indeed we can approximate the ¢,(71—0) for j & {i*,i*—1}

by the 5] because of the first point of Proposition 5.6, thus we can choose two
vectors {u, v} in the two dimensional space W so that (5.57) holds. This completes
the proof. n

We now turn to the study of the couple ($i*_1(t), 5,*(25)) for t € [T1 — §;T1) and
in particular when ¢t — T7,¢ < T7. A crucial point is equation 5.8 which we now
prove.

It6’s Formula gives for ¢ < T}

dbi — dbi !
o — A1) (8)

t ds ¢ 2ds
—pp 0 Z (Air = ) (A1 = Aj)(s) _/o (Nir = Ai=1)%(s)

!Note that all the diverging terms in T} cancel in this expression.

(A — Aa)(t) = (7+%ﬁt+/xf
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If we suppose that f dt/( Ay — Ai—1)%(t) < +oo and since T} < 72 for some € > 0
small enough, we obtain a contradlction letting ¢ — T7: under this assumption, the
right hand side tends to —oo whereas the left hand side is almost surely bounded in
this limit. B B O

The next Lemma 5.29 shows that the orthonormal basis (¢;«—1(t), ¢i(t)) of the
subspace W is in fact uniformly distributed in the set of all orthonormal basis of W
in the limit t — T1,t < T}.

As W is two dimensional, up to a change basis, we can suppose that the two
vectors g1 (t) and ¢ (t) are two dimensional (we just study the evolution of their
coordinates in an orthonormal basis of W). Let us define the two by two matrix
&(t) whose first line is the vector ¢ (¢) and second line is the vector ¢;-_q(t):

5= (270 ).
sz* 1( )
Lemma 5.29. The matrix 5(1&) converges in law when t — T1,t < T} to the Haar

probability measure on the orthogonal group (respectively unitary group if 5 = 2.)

Proof. To simplify notations, we do the proof in the case g = 1.
Set to := 17 — § and define for ¢ € [0;9) the function

to+t ds
o= [

and denote by ¢! its functional inverse. We now proceed to a change of time by
setting for t € [0;0)

bir(t) = G- (97HE)), Ve (t) = Pie—1(p71(1)) .

As 71(t) — +o0 when ¢ — d,t < (because of (5.8)), the two by two matrix @Z(t)
whose first line is ¥;+(t) and second line is 1+ (t):

T - W( )

is now defined for all ¢ € R, and verifies the following stochastic differential equation

40(t) = VBAT() B, ~ 2 ey dr. (5.58)

where B is a standard Brownian motion on R and where A is the two by two matrix

defined by
0 1
A= (_1 0) |
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Note in particular that A2 = —1.
It is clear that there is pathwise uniqueness in the stochastic differential equation

(5.58) (it is linear in ). Therefore to solve entirely this equation, we just need to
exhibit one solution. Using [t6’s Formula, one can check that the solution is

() = exp (vp A By) b (0)

_( cos(y/pB;) sin(\/pBy)\ ~
— <_ sin(,/pBy) COS(\/]_)Bt)) (0) .

Note that for all ¢t € R, the matrix J(t) is indeed in the space of orthogonal
matrices.

But (cos(y/pB;),sin(y/pB;)) converges in law as time goes to infinity towards
the law of (0,ev/1 — 62?) with 6 uniformly distributed on [—1,1] and ¢ = £1 with
probability 1/2, from which the result follows. m

Lemmas 5.28 and 5.29 give the second statement of Proposition 5.6.
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Chapter 6

Invariant $-Wishart ensembles,
crossover densities and asymptotic
corrections to the
Marcenko-Pastur law

Résumé

Cet article est en préparation au moment de ’écriture de ce manuscrit
et est écrit en collaboration avec Jean-Philippe Bouchaud, Satya N. Ma-
jumdar et Pierpaolo Vivo. Nous construisons un modele de matrice
diffusante dont 1’équilibre stationnaire correspond a des ensembles de
matrices aléatoires invariantes par conjugaison orthogonale ou unitaire
avec des valeurs propres distribuées suivant les ensembles -Wishart (ou
Laguerre) avec  quelconque appartenant a l'intervalle [0,2]. Dans le
régime ou le parametre [ dépend de la plus grande dimension M de la
matrice des données par la relation 5 = 2¢/M (ou ¢ est une constante
positive), les densités limites des valeurs propres forment une famille de
distributions indéxée par le parametre ¢ qui interpole continument entre
la loi de Mar¢enko Pastur (correspondant au cas ou > 0 ne dépend
pas de M) et la loi Gamma (qui correspond au cas # = 0). Un prolonge-
ment de ce calcul nous permet de trouver les corrections de tailles finies
(quand la dimension est grande mais pas infinie) dans le théoreeme de
Marcenko Pastur.

Abstract

We construct a diffusive matrix model for the S-Wishart (or Laguerre)
ensemble for general § € [0, 2], which preserves invariance under the or-
thogonal /unitary group. Scaling the Dyson index /3 with the largest size
M of the data matrix as § = 2¢/M (with ¢ a fixed positive constant), we
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obtain a family of spectral densities interpolating continuously between
the Marcenko-Pastur and the Gamma laws as ¢ is varied. Analyzing the
full resolvent equation, we obtain as a byproduct the correction to the
Marcenko-Pastur density until order 1/M for all 3 and until order 1/M?
for the particular cases =1, 2.

Introduction

The theory of matrices with random entries, originally devised as a tool to under-
stand and predict the spectra of heavy nuclei for which a detailed account of the
interactions between particles is too complicated, has seen a spectacular resurgence
of interest in recent years, with a number of unexpected and often surprising appli-
cations (see ... for a recent review). While Wigner and Dyson are usually regarded
as the pioneers in the field, John Wishart had already introduced in 1928 random
matrices in his studies of multivariate populations [145]. The Wigner-Dyson (Gaus-
sian) and Wishart ensembles (together with a few others) lie at the core of the
classical world of invariant matrices, characterized by the following main features:

1. The joint distribution of matrix entries, collectively denoted by P[X], remains

unaltered if one performs a similarity transformation X — UXU™!, with U
and orthogonal (real symmetric X), unitary (complex hermitian X) or sym-
plectic (quaternion self-dual X) matrix. As a consequence, the eigenvectors of
such matrices are Haar (uniform) distributed in their respective groups.

. The joint distribution of the N real eigenvalues P(\;,...,Ay) can be generi-

cally written in the Gibbs-Boltzmann form,

POy ) = ——exp (=HOw .., Aw) (6.1)

with the Hamiltonian H(Ay, ..., Ay) given by:

N
H(A, o An) = D V(A =B Infd; — A (6.2)
i=1 j<k

and the partition function Zy (normalization constant) given by

Zy :/-~-/1:[d)\iexp(—7{()\1,...,)\N)). (6.3)

V(z) a confining potential derived from the joint distribution of matrix en-
tries P[X]. For example, if the entries of X are independent, the only al-
lowed potential is quadratic V (x) = Sz?/2, which correspond to the Gaussian
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ensembles. If correlations among the entries are allowed, then different po-
tentials (all corresponding to rotationally invariant weights) are possible (e.g.
V(z) = z/(20%) — alogz for the Wishart case).

From (6.1), one easily deduces that the system of N eigenvalues of a classically
invariant ensemble behaves as a thermodynamic system of charged particles
arranged on the real line, in equilibrium at inverse temperature $ under com-
peting interactions (the confining potential V(x) and the logarithmic all-to-all
repulsion term) in (6.2). In contrast with the usual canonical ensemble in
statistical mechanics, however, the so-called Dyson index [ is quantized and
can only assume the values g = 1, 2,4 for real symmetric, complex hermitian
and quaternion self-dual matrices respectively.

Lifting the quantization of S (Dyson’s threefold way) has been a major theo-
retical challenge in view of possible applications e.g. to the quantum Hall effect
[...]. Dumitriu and Edelman [65] were eventually able to construct ensembles of
tridiagonal matrices with independent entries whose eigenvalues are distributed as
(6.1) with general 5 > 0. Their ensemble is however not invariant under similarity
transformations, and the eigenvectors are not Haar distributed in the appropriate
symmetry group. After an earlier attempt in the case of 2 x 2 matrices [140], the
explicit construction of an ensemble of N x N matrices displaying at once rotational
invariance and a continuous / was put forward in [...] for the Gaussian ensemble. It
was further shown in [...] that only by letting the Dyson index [ of that ensemble
scale with the matrix size N in an appropriate way (namely 8 = ¢/N) one obtains
a continuous family of deformed spectral densities parametrized by ¢, interpolating
between Wigner’s semicircle (typical for 8 ~ O(1) invariant ensembles) and a Gaus-
sian law (properly describing the non-interacting limit 8 — 0). This result can be
established in two alternative ways:

1. Starting from the stationary joint distribution of eigenvalues (eq. (6.1)), set-
ting 8 = ¢/N, and then finding the average density of eigenvalues p(\) =
(1I/N)(3>_,0(A — A;)). In the limit of large N, this average density can be
obtained by a saddle point analysis of the partition function eq. (6.3) in a
standard way. Usually, when 3 ~ O(1), only the energy term ~ O(N?) domi-
nates and the entropy term ~ O(N) is subleading. However, when § ~ ¢/N,
both the energy and the entropy terms are of the same order (~ O(N)), which
leads to a nontrivial modification of the density (see detailed discussion in ....).

2. Starting from the dynamical equation of motion of the eigenvalues, one first
derives the equation of motion of the Stieltjes transform of the density via Ito’s
calculus, finds the stationary solution and then obtain the average density.

In the context of our model we show that both methods lead to the same
solution.

The purpose of this paper is threefold:
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1. We explicitly construct a random matrix model ¢) which is invariant under
similarity transformations (and thus has Haar distributed eigenvectors), and
) whose jpd of eigenvalues is exactly given by the S-Wishart ensemble of
random matrices with a continuous 8 > 0.

2. First, letting the Dyson index 8 of the ensemble scale with the dimension
of the matrix model, we derive analytically the density of states for this
crossover model, written in terms of the Whittaker hypergeometric function
(see eq. (6.56)), and we show that it continuously interpolates between the
Mar¢enko-Pastur law and a certain type of Gamma distribution (see subsec-
tion 6.3.3). Deformations of the Marcenko-Pastur distribution for Wishart-like
matrix models were reported already in the literature (see e.g. ...).

3. Subsequently, keeping the Dyson index [ unscaled (i.e. it remains of ~ O(1)
for large matrix size N) but nevertheless continuous (/5 > 0), we analyze the
full Stieltjes transform equation and we can compute the 1/N correction to
the Marcenko-Pastur asymptotic density for the S-Wishart ensemble for all
value of # > 0. Furthermore, using results obtained by Pastur and Lytova
obtained in [99] on the noise in the Marc¢enko-Pastur law, we are also able to
derive the 1/N? correction term in the particular cases 8 = 1 and 2.

The plan of the paper is as follows. In section 6.2 we introduce the main features
of the classical Wishart ensemble along with the evolution law for the eigenvalue
process. In section 6.3, we construct a 3-parameters matrix model (and the respec-
tive evolution law for the eigenvalues) that at large times interpolates between the
Wishart ensemble and so-called CIR processes whose stationary pdf is a certain
Gamma distribution. The corresponding parametrical density of states is computed
exactly in the two ways described above (from the saddle point route on the parti-
tion function in section ... and from Ito’s calculus in section ...) and constitutes a
continuous deformation of the Marcenko-Pastur distribution (see below). In section
6.4 we compute systematic 1/N (for all 8 > 0) and 1/N? (for 3 = 1,2) corrections
to the Marcenko-Pastur law for the (scaled) f-Wishart ensemble. We conclude with
a summary in section 6.5.

6.2 Wishart ensembles

6.2.1 Real and complex Wishart ensembles

Let X be a real (respectively complex) Gaussian random matrix of size M x N,
i.e. a random matrix chosen in the space of M x N real (resp. complex) matrices
according to the law:

P(X)dX o exp (—%ﬂ(XU{)) dX, (6.4)
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where X is the Hermitian conjugate of X. In the following, we will denote the real
(resp. complex) Wishart ensemble by W# with 3 = 1 in the real case (resp. 3 = 2
in the complex case).

The real (resp. complex) Wishart Ensemble is the ensemble of (N x N) square
matrices of the product form W := XX where X is a real (resp. complex) Gaussian
random matrix of size N x M. They have appeared in many different applications
such as communication technology [125], nuclear physics [75], quantum chromody-
namics [139], statistical physics of directed polymers in random media [84] and non
intersecting Brownian motions [126], as well as Principal Component Analysis of
large datasets [101].

The spectral properties of the Wishart matrices have been studied extensively
and it is known [83] that for M > N, all N positive eigenvalues of W are distributed
via the joint probability density function (pdf)

Pg(Al,...,AN):—e 307 Zim N Hv DT NG - )P (6.5)

1<j

where Z is a constant normalization factor and where 5 = 1 in the real case (resp.
£ = 2 in the complex case). Note that the distribution Ps defined in (6.5) is in fact
defined for every 8 > 0.

Another very classical result of Random Matrix Theory concerns the asymptotic
density of states (or spectral measure) for the eigenvalues (A1, Ao, ..., Ay) of a real
Wishart matrix W € W! in the limit of large matrices, i.e. when N, M — oo with
N/M = q € (0;1] where ¢ is a fixed parameter. Let us recall that the density of
states of the matrix W is simply the probability measure Mzﬂv defined as

pi = %i (6.6)

where [ is introduced for later convenience (8 = 1 in the present case) and where
(A1, ..., An) are the eigenvalues of W. The Maréenko-Pastur Theorem states that,
in the limit N, M — oo with N/M = ¢ € (0;1], the spectral measure of a Wishart
matrix W € W! converges to a continuous probability density (with compact sup-
port) given by

20 = g Y=Y

,a<A<b (6.7)

where the edges a, b of the spectrum are given by

a=Mdc*B(1+q—2q), b=Mdo*B(1+q+2/4q)

with again g = 1.
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For general 8 > 0, the probability measure u]BV is defined again as in (6.6)
where this time the vector (Aq,. .., Ay) is distributed according to the law Pz. The
Marcenko-Pastur theorem remains in fact valid for all § > 0 in the sense that the
probability law 5 converges when N, M — oo with N/M = ¢ € (0;1] to the
continuous probability density pg for every 5 > 0.

The probability measure u?\, will sometimes be referred to as the spectral density
as it corresponds to the spectral density of random matrices W € W7 at least when
8 =1or2.

6.2.2 Continuous processes for real and complex Wishart
ensembles

We wish to define here a diffusive matrix process depending on a fictitious time
t > 0 that will converge to the Wishart Ensembles in the limit of large time. The
idea is simply to set

W, = X/X, (6.8)

where X, is a real (resp. complex) random matrix process (of size M x N) following
the Ornstein-Uhlenbeck law,

1
dXt = —§Xtdt + O'dBt

where B, is a real Brownian (resp. complex) random matrix, i.e. a matrix whose
entries are given by independent standard Brownian motions.

It is well known that the stationary law of a Ornstein-Uhlenbeck process is the
Gaussian law and therefore, the real (resp. complex) matrix process X; converges
in law when ¢ — oo to the law of a Gaussian real (resp. complex) random matrix.
Hence, we deduce that the real (resp. complex) matrix process W, defines a diffusive
matrix process that converges in law to W € W¥.

It is also easy to check that the positive definite matrix process W; verifies the
following stochastic differential equation [48]:

AW, = —W,dt + 0 /W, dB, + o dB /W, + Mc?31dt (6.9)

where By is a real (resp. complex) Brownian random matrix and with § = 1 in the
real (resp. [ = 2 for complex) case.

The evolution of the eigenvalue process () < Aa(t) ... < Ay(¢) is also easy to
derive [49] using perturbation theory to second order

d\; = —\dt + 20/ N\ db; + 03 (M +) At A’“) dt (6.10)

ki Ai = A

where the b; are independent standard Brownian motions and with § = 1 in the
real (resp. § = 2 for complex) case. The stationary distribution of the process
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(A1,-.., An)(t) is necessarily the joint pdf Ps(Aq,...,Ay) defined in (6.5) (this is
true for any [ > 0 and can also be recovered using the Fokker-Planck equation for
the multivariate diffusion (6.10)).

6.3 Crossover between Wishart and CIR processes

Following [5, 9], we aim at defining a diffusive matrix process W; which converge
in the limit of large time to a general S-Wishart matrix, i.e. a matrix whose eigen-
values are distributed according to Ps for general S > 0 and with Haar distributed
eigenvectors. In this paper, we will restrict ourselves to the description of the eigen-
values process but the interested reader can find a study of the eigenvectors for a
related model in [9]. To simplify notations, we will take in this section o = 1.

6.3.1 Preliminary definition: CIR diffusion process

We first need to introduce a family of real diffusion processes. Let § > 0 be a fixed
parameter. The CIR process (named after its creators John C. Cox, Jonathan E.
Ingersoll, and Stephen A. Ross) is the diffusion process x(t) defined by x(0) := x¢ > 0
and for t > 0 by

dx(t) = —x(t) dt +2+/x(t) db, + 9 dt . (6.11)

Using the assumption § > 0, it is easy to see that the process z(t) will remain
non negative for all times t > 0. It is also easy to verify that the stationary pdf
of the Langevin equation (6.11) is the Gamma distribution with shape and scale
parameters k = /2 and 0 = 2 defined as

e7?. (6.12)

In analogy with squared Bessel processes, the parameter ¢ will be called the dimen-
sion of the process z(t).

6.3.2 Diffusive matrix process for general S-Wishart matri-
ces

Following [5, 9], our goal is to construct a diffusive matrix process whose eigenvalues
process is asymptotically distributed according to Ps for general 8 € [0,1]. This
construction can be extended respectively for general g € [0,2] (resp. 5 € [0,4])
by using complex (resp. symplectic) Brownian motions instead of real Brownian
motions in the following.

We will in fact describe how to handle the value 8 € [0, 1] by using real Brownian
matrix. This construction can be extended for the values 8 € [0,2] using complex
Brownian matrix and also 8 € [0,4] using symplectic Brownian matrix.
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The idea is to slice the time interval into small chops of length 1/n and for
each interval [k/n; (k + 1)/n], to choose independently Bernoulli random variables

€,k € N such that Pleg = 1] = p = 1 — Plej = 0]. Then, setting ¢ = €], our
diffusive matrix process evolves as:
dW3} = —W(dt + dA} (6.13)

where the increment matrix dA} now depends on the value of the additional random
process €;':

o if ¢ =1, then

dA?T = /W dB, + dB] /W7 + M 1dt.

where dB; is an N x N real ' Brownian increment matrix whose entries have
variance dt.

o if ¢ =0, then

dAT = /WP dY, + dY] /W} + 6 Ldt.

with 6 > 0 and where dY; is a symmetric matrix that is co-diagonalizable with
W7 (i.e. the two matrix have the same eigenvectors) but with a spectrum given
by N independent real Brownian increments of variance dt.

An algorithmic description of how to build (approximatively on a discrete grid)
the matrix process W} can be found in Appendix 6.5.

It is clear that the eigenvalues of the matrix W} will cross at some points but
only in intervals [k/n; (k + 1)/n] for which €} = 0 (in the other intervals where they
follow the SDE (6.10) with parameter 8 = 1, it is well known that the repulsion
is too strong and thus collisions are avoided). In this case, the eigenvalues are re-
numbered at time ¢ = (k + 1)/n in increasing order. With this procedure, when
ordered AP(t) < ... < A} (t), we can again check as in [5, 9], using perturbation
theory, that the eigenvalues will remain always non-negative and will verify the
Stochastic Differential System (SDS):

AN! = —\Pdt + 24/ db; + (e M+ (L—e)d+e )y = v +in> dt - (6.14)
k#i

where the b; are independent standard Brownian motions, which are also indepen-
dent of the process €}

Note that when €] = 0, the particles A} are evolving as independent CIR pro-
cesses of dimension § > 0 as defined in paragraph 6.3.1. Therefore, the particles
can cross in those time intervals, breaking the increasing order so that they will be

'Here one can use use complex Brownian motions instead to extend the interval of 3 to [0, 2].
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re-ordered at time ([nt]+1)/n but they will remain non-negative as the dimension §
is strictly positive. Therefore the SDS (6.14) remains well defined at all times ¢ > 0.
One can follow the proof of [9] to prove that the scaling limit (i.e. the limiting

process when n — 00) of the process (A7(t) < ... < A% (¢)) satisfies the following
SDS
i + Ak
i = —Ndt + 24/ Ndbi + [ pM + (1 =p)s+p) dt . (6.15)
N M

One can deduce from the above equation (6.15) the Fokker-Planck equation for
the joint density P({\;},t), for which the stationary joint pdf is readily found to be
[see the derivation in appendix 6.5]

N
1 1 p _ 5 —(1-2
PO, ) = Ee*EEiIAiHAiQ(M MEEITT I - AP, (6.16)

i=1 i<j

The probability Ps introduced in (6.5) is recovered here by taking the values p =
and 0 = 0. The corresponding large N, M-limit spectral probability density is
therefore given by the Marcenko-Pastur law in the case where p = 5 > 0 independent
of M. Note that with the above normalizations, the spectrum is spread over a region
of R, of width of order pM = M. On the other hand, if p = 0, the large N, M-limit
of the spectral density is the Gamma distribution with shape and scale parameters
k = 6/2 and 0 = 2 (recall that it is the stationary pdf of the CIR process of dimension
J):

L e

ANdN = ———A
IOO( ) 25/2F(g)

dX. (6.17)
It is quite natural to ask whether a crossover regime may be found, interpolating
between the Marc¢enko-Pastur density (p independent of M) and the Gamma dis-
tribution (p = 0). A good candidate for triggering such a transition is clearly a
parameter p vanishing with M as p = 2¢/M where ¢ is a positive fixed constant.
We discuss this case in the following subsection.

6.3.3 Crossover for the spectral density via saddle point
route

We now wish to compute the crossover density interpolating between the Marcenko-
Pastur law and the Gamma distribution with shape parameter §/2. This family of
probability densitites is indexed by the three parameters ¢ (such that p = 2¢/M),
g = N/M and § > 0. More precisely, we have to compute the limiting density of
the probability measure puy = + SN 0y, when N, M — oo with N/M = q € (0;1]
and where (Aq,. .., Ay) is distributed according to the law P* defined in (6.16) with
p = =2c/M. Although the crossover density can be derived using the stochastic
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processes introduced in the previous section 6.3 as is done in [5], we will take here
the saddle point route on the full action of the matrix model.
The normalization constant (partition function) Z of our model is given by:

/ HCM@QZAHM—MPHA?M N+1-6)—(1-58/2)
[0,00

1<J
/ H dze PN (6.18)
[0,00]¥

where the energy function E[{\;}] is given by:

E[{\)] = ZA—( (M—N+1-36)— 1—6/2)Zln)\—221n|)\—/\\

i#]
(6.19)
Written in this form, Eq. (6.18) is the Gibbs-Boltzmann canonical weight of a system
of charged particles on the positive half-line in equilibrium at inverse temperature
B = 1 under the effect of competing interactions. We are now seeking for a coarse-
grained description of the system introducing a smooth density function p(\) as:

= % > 5(A=N) (6.20)

which is normalized to unity. In terms of this density, and using the identity
i f(N) =N [dAf(N)p(N) the energy function E[{);}] becomes:

N/de [- ((1—1)N+1—5>—(1—%)}N/d)\p()\)ln)\
3% / / NN p(N)p(N) In A — V| + N / dAp(\) In ﬁ e ( / dAp()) — 1)

(6.21)

where the next-to-last term accounts for the self-energy term (A — \') that needs to
be subtracted (note that in the original discrete sum » 7, In |[A;—A;|, the eigenvalues
cannot coincide. The term with two eigenvalues nearly coinciding can be written as
> In(s;), where s; is the typical spacing between the two, which in the continuum
limit is clearly proportional to the inverse local density 1/p(A). ). The last term
includes a Lagrange multiplier C; that enforces the normalization of the density to
1.

In going from the multiple integral to a functional integral over the density,
I1, d\i = DIp], a Jacobian (entropic) factor must be included. This Jacobian factor
basically counts the number of microstates (arrangement of particles in K boxes)
that are compatible with a fixed density profile. If we have N particles and K boxes,
the number of ways we can arrange these particles in these boxes is

N!

- 6.22
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Setting p; = n;/N (the local density in box ¢) and using Stirling’s approximation
N! ~ NNHL2e=N (yging the fact that >, n; = N), we have:

N!

e 2l (6.23)
n1!n2! cee TLK!

~N [ drp(N)

which in the continuum limit, becomes ~ e np(M) | Inserting this expression

in the functional integral over the density, yields:
_ / Dlple=EPN =N [ o) 1np(h) _ / Dlple— NIV (6.24)

where the free energy F[p())] is given by:

Flp()] = & /d)\/\ (\) — [g ((é — N +1- 5) - (1 - g)} /d)\p()\) In A

. —N//d)\d)\’ (V) In A — N[ + (1 - g) /d)\p(A) Inp(\) + C) (/ dAp()) — 1)

(6.25)

Note that for p ~ O(1/N) the entropy term becomes of the same order of
the energy term, while in the usual case p ~ O(1) the entropy contribution is
subdominant in the large N limit and is therefore disregarded.

Setting now p = 2¢/M = 2cq/N, we get:

Flp(\)] = % / D)) — [cq (3 _ 1) _ <1 _ g)} / dAp(A)In A
—cq//d)\dX (V) In A — X| + (1 - g) /d)\p(/\) In p(\) + Cy (/ dAp(\) — 1)

(6.26)

Setting a = ¢q(1/g—1) — (1—4§/2) and taking the saddle point of the free energy

oF — (), we get the following equation:

5p
)\ / !/ /
5—aln)\—ch/d)\p()\)ln|)\—)\|+lnp+02:O (6.27)

where (5 is another constant. Taking one more derivative, we get:

E—X—QCQPF/)\ )\’d>\ —i—T)\):O (6.28)

Next, we define the Stieltjes transform:

H(z) = / A” (_A)Zd)\ (6.29)
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for z complex and outside the support of p. By definition, for large |z|, H(z) —
—1/z. Multiplying eq. (6.28) by p(\)/(A — z) and integrating over A, we have:

L o) / &dx) o /p(A)dA / ) /p’(A)dA_O

2) A=z AN — 2 A=z ) A=NX A—z
(6.30)
and we analyze each of the four contribution separately.
L Ty = [ §2kdA = 3 H(2)
2. Th=—af 5((;\\)—613' We rewrite this as:
1 111
Ty = — A)dA —=| - 31
= [ o |32 -5 (631
implying:
Ty = —LH(x) + (6.32)
2T 2 z '
where b; = afd)\@.
3. T3 =—2cq Pr [ % %d)\’ which we rewrite as:
Ty = 20q 4 Pr / AN p(Np(V) | —— — L | ! (6.33)
3o PPN T =N v =z '
AN p(\)p(N)
= 2cqH?(2) — 2¢q P 6.34
cal(2) = 2cq Py [ ST (630
By renaming A — X and X' — \, we get:
dAIN p(\)p(N)
T3 = 2cqH? 2cqP 6.35
3 cq (Z>+ cq r/()\—)\/)()\—Z) ( )
=2cqH?*(2) — Ty (6.36)
Solving for T3 we get:
Ts = cqH?(2) (6.37)

4. Ty= [ pl/(\’\%, which we integrate by parts, obtaining;:

Ty = ép(k)‘? +/ ()\pi/\i)zd/\

:%+H%) (6.38)
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In the derivation above, we assumed b; and ¢; to be finite. This is not completely
obvious, because p(\) at an edge point may diverge. However, by imposing that for
large z, H(z) — —1/z, it is immediate to derive that b; + ¢; = 1/2. Thus, one
may regularize the density near the edge points so that b; and ¢y exist individually,
but eventually their sum is universally 1/2 and hence is independent of the specific
regularization near the edge.

Adding up the four contribution, we get the equation:

dH &H i b1 + 1

1
H>+-H=0
dz z z e +2

Thus we find the following differential equation for the Stieltjes transform H:

dH 1 o 1
Y —(1 —> H+— =0 6.39
dz T * 2 + z + 2z ( )

where we have set
a=(2-0)—-2c(l—q), 7=cq.

In the next subsection, we will derive the same equation via Ito’s calculus route.
The density p(A\) (normalized to unity) can then be read off from

p(A) = %Im[H(z ) (6.40)

where z — )\ occurs inside the cut on the real axis.
We first proceed in Eq. (6.39) to the change of function

Lu'(z) 1
H(z)=— =—0,Inu(z). 6.41
(2= 28 = 2o mu) (6.41)
This gives the differential equation for u(z)
1 « y
" -+ « / e _
u'(z) + 5 [1 + Z] /() + Sou(z) = 0. (6.42)
It follows from Eq. (6.41) and the asymptotic behavior of H(z) that
A
u(z) = (6.43)

|z|] =00 27

where A; is a constant.
To reduce Eq. (6.42) to a Schrodinger like differential equation, we make the
substitution
u(z) = e 22/ (2) (6.44)

and we find the following equation for 1
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Making further a rescaling ¥ (z) = y(z/2), it reduces to the standard form of the
Whittaker differential equation [79]

TP W S
"(2) + -7t . ZQM y(z) =0, (6.45)
where ]
(0% (8%
C:’Y—Z, M:jl—g\- (6.46)

Note that the solution of this differential equation does not depend on the sign of p,
hence we take the absolute value. The differential equation (6.45) has two linearly
independent solutions W¢ ,(z) and W_¢ ,(—z). The Whittaker function W; ,(z) has
the following asymptotic behavior [79]

Weu(2) — 25 e72/%. (6.47)

|z]—o0
Thus the general solution of u(z), using Eq. (6.44), reads
u(z) = e 1 2 [Oy We 1 (2/2) + Co W (—2/2)] (6.48)

where () and Cy are arbitrary constants. Using the asymptotic behavior in Eq.
(6.47) it is easy to check that only the second solution has the right asymptotic
behavior in Eq. (6.43). Thus, finally, we have our solution

u(z) = Coe 22 W \(—2/2) (6.49)

where ¢ and p are given in Eq. (6.46).
By plugging this solution (6.49) into Eq. (6.41) and using Eq. (6.40), we find
the following expression

Cy (S )RW_cp) = SV ) RV ) (=A/2)

N = 5y | W A2 '

But, using the linear differential equation verified by the Whittaker functions
(6.45), it is easy to see that the derivative with respect to A of the Wronskian type
function (S(W”, JR(W_¢,) — S(W_¢)RW”, ) is equal to 0.

Collecting all the constants together, we get:

A

= W (A (6:50)

p(A)

The overall normalization constant A has to be fixed from [ p(A)dX = 1. Thus
we get, after rescaling A/2 — A,

1 /OO d\
— =2 _ 6.51
172 W np (6.51)
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This integral in Eq. (6.51) can be done in closed form. First, we first use the well
known identity [1]

Weu(z) = 227U (= ¢+ 1/2,1 4 2415 2) (6.52)

where Ul(a, b; z) is the Tricomi hypergeometric function that behaves for large z as
U(z) ~ z=®. Using this in Eq. (6.51) gives
1 = —2u—1 _—A -2
222 AANT P e MU (p+C+1/2, 1+ 205 =N)| 77 (6.53)
0
It turns out that there exists an interesting integral representation in a paper by
Ismail and Kelkar [81]

X dt e tt? ' 2 1U(a,b—1;2)
/0 P |U(a,b;—t)| = =T(a)'(a b—i—2)z Ulabia)
(6.54)

Note that in Ref. [81] they use the notation (a,b, z) instead of U(a,b; z), but it
is the same function. Our p and ¢ satisfy the condition of validity of this identity:
a>0and 1 <b<a+1. Taking z — oo limit on both sides and using U(z) ~ 2%,

we arrive at the following exact expression of the normalization constant

% = 20(u+ ¢+ 1/2)0(C — 1+ 3/2). (6.55)

This leads to the following solution for the spectral density

1 1
M = S CF DN =+ D Wocn (2P (6:56)

with the following values for the parameters

1
a=(2-10)—2c(1-q); (:cq—%; and ,LL:Z|OC—2’.

We verified this expression numerically. Expression (6.56) is in very good agree-
ment with the density of our sample histogram (see Fig. 6.1).

6.3.4 Crossover for the spectral density via Ito’s calculus

In this subsection, we want to re find the result Eq. (6.39) of the previous subsection
via Itd’s calculus. We therefore consider the process (A;(t), -+, Ay (t)) which verifies
the stochastic differential system (6.15) with the scaling relation p = 2¢/M. The
idea is to work out the evolution equation of the probability measure

pidr) = 1 D200 = ) (6.57)

fora > 0,1 <b<a+l
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0.4

0.3
l

p(»)

0.2

0.1

0.0

Figure 6.1: Numerical simulations of the state density of W _ forc=1,p = =
2¢/M, M =100, N =50, =1,q = 1/2.

25
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in the large N limit. We expect the equilibrium of this evolution equation to be the
solution of (6.39).
In the following, f is a smooth function. Using It6’s formula for [ f(z)uly(dz),
(6.15) and the scaling relation p = 2¢/M, we obtain

/f o) (dx) / (—x 2+ (1 - %) 5) F(@) ¥ (d)dt + 2 (1 - %) /xf"(x)uf(dx)dt

(6.58)
vor [ [ [EEZIE gy e+ a

where dM} = 2 SV VA f'(\g)db; is anoise term of variance 4 = JAF (N2 pdy (dN)dt.

When N, M — oo with N/M = ¢, this noise term is of order 1/\/_
In the large N, M limit, the stationary probability measure u solution of Eq.
(6.58) therefore satisfies to leading order (keeping only the terms of order 1)

[ b2 0) flantan) + 2 [ ap ot +og [ [HEOZI 0 gianuay) —o
(6.59)
Applying Eq. (6.59) to the particular function f(z) = ﬁ for z € C\R and denoting

H(z) the Stieltjes transform of the probability measure p, we obtain the following
differential equation for H

[H(2)+ zH'(2)] — (2¢+ 0) H' (2) + 2[2H'(2) + zH"(2)]
+2cq [H'(z) + H*(z) + 22H(2)H'(2)] = 0. (6.60)
Eq. (6.60) can be rearranged as

2cqH (2)[H(z) +2zH'(2)] + 1[H(z) +22H'(2)] + %H(z) + [3H'(2) 4+ 2zH"(2)]

2
+[(1=0) = 2¢(1 - q)] H'(2) = 0.
(6.61)

Eq. (6.61) can be integrated easily by doing the change of function G(z) = zH (2?).
Indeed, we just need to write (6.61) for 2% instead of z and then multiply the
corresponding equation by z to obtain the following equation

QGG ) + 56 + G + 56"+ |15 = el = )| 22176 =,

which can be integrated as

2eqG(z) + | - 4 L) =21 = Q)] G(x)+ G'(2) = 1 (6.62)

z

where the integration constant is chosen so that zG(z) ~ —1 when |z| — co. Note
that the asymptotic behavior for H is therefore also zH ~ —1 when |z| — o0 as
is expected for the Stieltjes transform of a probability measure. Rewriting now
Equation (6.62) in term of the function H, we obtain exactly Eq. (6.39).
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6.4 Correction to the Marcenko-Pastur law

In this section, we come back to the case of generalized Wishart matrices for which
particles are distributed according to the jpdf Ps with general parameter 5 > 0 (not
scaling with M). We want to compute the first correction terms to the Marcenko-
Pastur density z (defined in Eq. (6.6)) for large but finite N, M with N/M = q €
(0; 1.

We are therefore interested in computing functionals of the form ([ f()) 1 (dN))
where f is a test function and where (A1, Ao, ..., Ay) is distributed according to the
joint pdf Ps defined in Eq. (6.5) for 8 > 0. The idea is to use the stochastic process
AM(t) < ... < An(t) following the SDE (6.10) that converges in law when ¢ — oo
to the vector (A < ... < Ay) distributed according to Ps. In order to have a
limiting spectral distribution spread in a region of width 1 and with edges which do
not depend on S, we will take in this section o = 1/4/Mp.

Using again It6’s formula for [ f(A\)ul(d)\) (where ply is still defined by Eq.
(6.57)) and Eq. (6.10), we obtain

d / F (@)t (der) = / (— 1 1) f () ()t + MLB@ _5) / £ () iy ()t
(6.63)

- g / / W(I +y) iy (da) iy (dy)dt + dM;

where dMN = L7 2,/ 1\}_15 f'(Xi)db; is a noise term of variance _ziz [ Af'(A)*ply (dN)dt.
Let us introduce the Stieltjes transform H;(z) of the probability measure p,

defined as
¢

r— =z

We now apply (6.63) to the particular function f(z) = 1/(z — z) and we take the
expectation with respect to the b;; Eq. (6.63) rewrites as

O(Hy)

0(Hy) 0*(Hy)
5 2 +

5 55 (6.64)

[ 2] o

0z 0z +Mﬁ(2_ﬁ){

+q [ag? +(H)? + 22<Ht>%} +q [(HF) — (H)?] + ZQ% [(HP) = (H,)?]

where (-) denotes the expectation with respect to the Brownian motions b;. The
two last terms come from the replacement of (H?) by (H;)? in the third term of the

right hand side of (6.66). By setting

Fy(z) = (Hi(2)*) — (Hi(2))* (6.65)
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Eq. (6.66) can be rewritten as

+q [% + (Hy)? + 22<Ht>a<a]jt>:| +q [Ft + Z%] :

To simplify notations, we will now omit the (-) and write H instead of (H). The
stationary equation of (6.66) writes simply as

dH dH 1 dH d*H
H+z—| ——+—(2- 2— 42— .
{ “dez] PER VI 5){ dz+zdzz} (6.67)
H H F
+q d—+H2+22Hd— +q F+zd— =0.
dz dz dz
which can be rewritten as
dH, 1 dH, 1
qH(2)[H(2) + QZE] + §[H(z) + 225] + §H(z) (6.68)
1 dH d*H 1 dH dF
+W<2_B)[3E+2Z d22]+ {2M6(2—6)+(—1+q)} - ta lF+ZE} =0.

Eq. (6.68) can be integrated easily by doing the change of function G(z) =
zH (2%). Indeed, we just need to write (6.68) for 2% instead of z and then multiply
the corresponding equation by z to obtain the following equation

dG 1 { dG ] 1 5 d*G

¢G—+=-|z2—+G +M( —ﬁ)w

dz 2| dz (6.69)

+5 | g 9+ (L0 256+ as | PG+ 2 =0

Equation (6.69) can be straightforwardly integrated with respect to z as

G

1
2
G G+ —(2—
q z ( 5)(12

20 * [L@ ~B)+B(-1+ q)] GG | o2 F(22) = -1

2M 3 o
(6.70)

where the integration constant is chosen so that 2G(z) ~ —1 when |z| — oo. Note
that the asymptotic behavior for H is therefore also zH ~ —1 when |z| — oo as
is expected for the Stieltjes transform of a probability measure. Rewriting now
Equation (6.70) in term of the function H, we obtain
1 12-8 12-8dH 1
H+H|l+-(¢g—14+—="—— — —— 4+ - +qF(z)=0. (6.71
qH" + {%—Z(q + )}—I—Mﬁ ot Ta (2) (6.71)
Now, using the result about the noise in the Marcenko-Pastur law obtained in
[99] by Lytova and Pastur, we know that in the limit of large M, we have for § =1
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or 2,
ST d>\du - A= 1+q)(p—(1+q)
F(z) ~ M2 22ﬁ7r2/ / (1 — 2)? \/4q—( (1+4q)) \/4q— : 1)+Q))
6.72

with 72 =1+ ¢4 2,/7.

The idea to obtain the correction to the Marcenko-Pastur law is to use pertur-
bation theory in Eq. (6.71). More precisely, we want to compute explicitly the
coefficients pg, p1 and ps such that the eigenvalue density of a [S-Wishart matrix
writes under the form, in the limit of large N, M with N/M = g,

1

p(0) = po(A) + T () + ).

(A) + of (6.73)

Wﬂz
Note that this asymptotic expansion (6.73) is obtained by perturbation theory
and therefore is valid only for the values of A such that the correction terms py(\)/M
and po(N)/M? are negligible compared to the leading term py()\) in the limit of large
M, i.e. for the values of A such that po(A) # 0. The expansion (6.73) is not valid
outside the Marcenko Pastur sea.
To this purpose, we first write H(z) under the form

H(z) = Hofz) + <-Fi(2) + 115

1
» Hy(2) + of

=) (6.74)

and we plug Eq. (6.74) into Eq. (6.71). By solving the equation to leading order,
we find the following expression for Hy(z)

1 -(+g-1)+(-1)E-)

Ho(z) = % . (6.75)
_l—(+e-D+V(-(1+4q) —4q
2q z '

We deduce from this the famous Marcenko-Pastur result: the eigenvalue density
converges in the limit of large N, M with N/M = ¢ to the Maréenko-Pastur density
as expected given by

L V=)0 =N

) =
po(A) o7q \

For all value of 8 > 0, we can now compute the 1/N correction to the Marcenko-
Pastur density by plugging Eq. (6.74) into Eq. (6.71) and solve to order 1/M. This
gives the following expression for Hi(z)

Hd@z—(%‘%)é[% (2_17++z—17_) N \/(z—%l)(z—%)
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and the corresponding 1/N correction to the density is then given (for all 3) by

1 1\1 (1
p1(A) = (— - _) 7 [5 (A =70) +0(A—7-)) —

1 d\
P2 V=)0 N
(6.76)
For the particular value § = 1 or 2, we can use the result of Lytova and Pastur
stated above in Eq. (6.72) to compute the 1/M? correction with the same method
by solving the equation until order 1/M?2.
Let us first compute an explicit expression for F'(z) from the integral represen-

tation in Eq. (6.72)
- 1 v+ 1 d\ i
PAFG) = 5o [4q </ AR q>>2>
- /’Y+ d\ A—(1+9q) ’
v A=22 A= (A= (1 +q))?

_ 4q | - m 22 —y- — 4 i
26 (2= =) Ve =) =)

+o(1)

L ® (i,

(z =7-)(z = 74) (1 2(2—7_)(z—fy+)) +o(1)

L 1 (22 =7 —13)° B _1(22—7,—@4)2 2 .

28— )e—) | e ) ( 2(z =y )(2 - %)) +oll)
1 1

S50, W

Then we can turn to compute Hy(z) and deduce from this computation the
expression for pa(\)

pe}) = =2 (% N %)2$¢(A_71)(7+ DY E (A—17 i A—lm)

_§<1+1)+1 A
I\ T ) | T 2B — N

6.5 Conclusions

In summary, we proposed a random matrix model (invariant under similarity trans-
formations) whose joint density of eigenvalues is given by the classical -Wishart
ensemble where the quantization of the Dyson index f is lifted. The procedure is
constructive and is described in section 6.3.2. The resulting ensemble is by construc-
tion invariant under similarity transformations with Haar distributed eigenvectors.
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The diffusive evolution equation for the eigenvalues involves the Dyson index of the
ensemble as a free parameter. When letting it scale with the size M of the matrix,
the spectral density of the ensemble becomes a one-parameter continuous family
interpolating between the familiar Marcenko-Pastur distribution and a certain type
of Gamma distribution. On the other hand, keeping the Dyson index unscaled but
not quantized, we showed that a careful analysis of the full Stieltjes transform equa-
tion lead naturally to 1/N and 1/N? corrections (and possibly systematically to any
order) to the average spectral density (Marcenko-Pastur) for all 5 # 2.

Derivation of (6.16)

The Fokker Planck equation for the transition probability density P(Ay,- -+, An; )
of the process (A\i(t), -+, An(t)) which satisfies the stochastic differential system
(6.15) writes as

OP N
o

N 82
=1 v

(6.77)
The stationary solution is the solution which does not depend on time ¢, satisfying

N
0 i + A\
— Pl =\ M 1—46
> ( oM >p+pk§&_%)

A+ A
P<—)\i+pM+(1—5)p+pZ>\‘_)\:>
k#i "

0
O\

N 82
i=1 g

(6.78)
It is easy to check using elementary algebra that the jpdf P* defined in (6.16) verifies
Eq. (6.77) as in fact we can verify that for all i,

Za_Ai i — A\

0 Ai + A
[\iP*] = P* (—/\i +pM+(1—9)p +pz * k) . (6.79)
ket

Algorithmic description of how to build the process

n L] L3
. 1n practice

Let us describe shortly an algorithmic description of how to build the process W}
in practice, on a discrete grid. First note that this algorithmic description needs
a discrete grid and that it does not reproduce exactly the process W} but only a
discretized approximation of it. Choose a large value of n and an initial symmetric
matrix Wy. The construction is iterative. Suppose that the process is constructed
until time k/n and let us explain how to compute the matrix W?k +1)/n 8L the next
discrete time of the grid, (k + 1)/n.
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1. Step 1. We first need to compute the matrix Wg/n. It suffices to compute
the orthogonal matrix O} In such that

where X7 Jn 1S the diagonal matrix composed of the eigenvalues of W} In (in

increasing order). The eigenvalues of the matrix W7 /n Should be non negative
as the eigenvalues process of W} are almost surely non negative at all time ¢.
However, due to the discretization scheme necessary for algorithmic procedure,

the non negativity can fail. To avoid this problem, we define , /W7 k/n

\/W;;L/n: Z/n 27l;cb/n Z/"Jr (680)

where 1/E]Z/ is the diagonal matrix composed of the square roots of the

absolute values of the eigenvalues of W} k/n (again in increasing order).

2. Step 2. We sample the Bernoulli random variable €} with P[e} = 1] = p =
1 —Plep = 0].

3. Step 3. It depends on the value of €}

o if ¢ = 1, we sample a N x N matrix G, filled with independent Gaussian

variables with mean 0 and variance 1/n and then we compute the matrix
W7V .1y, by the formula

(k+1)/
mn 1 n n 1' n ]'
W(k+1)/n =(1- n k/n T Wk/n G, + G, Wk/n + EM I
o if ¢} =0, we sample N independent Gaussian variables (zy, -, zx) with

mean 0 and variance 1/n. We then compute the matrix Y,,, which is co
diagonalizable with the matrix W} > defined as the product

Yn = OZ/nDlag (Zl7 B2y vy % ) Ok/n ' (681)

Finally we obtain the matrix W7, . ,,, by

(k+1)/

. 1
W(k+1)/n:(1 ) En /Wi Yo+ Y1 Wi+ =5 T
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Chapter 7

Eigenvector dynamics: general
theory and some applications

Résumé

Cet article est a paraitre dans le journal Physical Review E est est écrit
en collaboration avec Jean-Philippe Bouchaud. Nous proposons un cadre
de travail général pour étudier la stabilité du sous espace engendré par
P vecteurs propres associés a des valeurs propres consécutives d’une
matrice symmétrique Hy sous l'effet d’une petite perturbation additive.
Ce probleme intervient dans divers contextes, notamment la dissipation
quantique (dans ce cas, Hy est 'Hamiltonien du systeme) et le controle
du risque en finance (dans ce cas la matrice Hy est la matrice de co-
variance des rendements des actions). L’idée est de calculer les valeurs
singulieres de la matrice des chevauchements partir desquelles on peut
calculer une distance mesurant le chevauchement de deux sous-espaces
vectoriels. Nous nous concentrons sur le cas particulier ou la matrice Hy
est une matrice aléatoire de ’ensemble orthogonal Gaussien. Dans ce
cas, le spectre des valeurs singulieres admet une forme limite explicite
dans la limite des grandes matrices. Nous nous intéressons aussi au cas
ou Hj est une matrice de covariance et nous illustrons 1'utilité pratique
de nos résultats par des applications en finance. Le cas particulier ou
cette matrice de covariance a une valeur propre beaucoup plus grande que
toutes les autres est traité tres précisément. En particulier, la dynamique
de I'angle entre les plus grands vecteurs propres de la vraie matrice de
covariance et de la matrice de covariance empirique fait apparaitre une

nouvelle classe de processus stochastiques.

Abstract

We propose a general framework to study the stability of the subspace
spanned by P consecutive eigenvectors of a generic symmetric matrix Hy,
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when a small perturbation is added. This problem is relevant in various
contexts, including quantum dissipation (Hg is then the Hamiltonian)
and financial risk control (in which case Hy is the assets return covariance
matrix). We argue that the problem can be formulated in terms of
the singular values of an overlap matrix, which allows one to define an
overlap distance. We specialize our results for the case of a Gaussian
Orthogonal Hy, for which the full spectrum of singular values can be
explicitly computed. We also consider the case when Hj is a covariance
matrix and illustrate the usefulness of our results using financial data.
The special case where the top eigenvalue is much larger than all the
other ones can be investigated in full detail. In particular, the dynamics
of the angle made by the top eigenvector and its true direction defines
an interesting new class of random processes.

7.1 Introduction

Random Matrix Theory (RMT) is extraordinarily powerful at describing the eigen-
values statistics of large random, or pseudo-random, matrices [136, 3, 14, 107].
Eigenvalue densities, two-point correlation functions, level spacing distributions, etc.
can be characterized with exquisite details. The “dynamics” of these eigenvalues,
i.e. the way these eigenvalues evolve when the initial matrix Hy is perturbed by
some small matrix P, is also well understood [131]. The knowledge of the corre-
sponding eigenvectors is comparatively much poorer (but see [143]). One reason is
that many RMT results concern rotationally invariant matrix ensembles, such that
by definition the statistics of eigenvectors is featureless. Still, as we will show below,
some interesting results can be derived for the dynamics of these eigenvectors. Let
us give two examples for which this question is highly relevant.

One problem where the evolution of eigenvectors is important is Quantum Dis-
sipation [144] (see also the related recent strand of the literature on Quantum “Fi-
delity” [68]). As the parameters of the Hamiltonian H, = Hy 4 ¢P; of a system
evolve with time ¢, the average energy changes as well. One term corresponds to
the average (reversible) change of the Hamiltonian which leads to a shift of the en-
ergy levels (the eigenvalues). But if the external perturbation is not infinitely slow,
some transitions between energy levels will take place, leading to a dissipative (ir-
reversible) term in the evolution equation of the average energy of the system. The
adiabaticity condition which ensures that no transition takes place amounts to com-
paring the speed of change of the perturbation eP; with a quantity proportional to
the typical spacing between energy levels. For systems involving a very large number
N of degrees of freedom, the average level spacing of the N x N Hamiltonian H goes
to zero as N~1. For N — oo, any finite speed of change therefore corresponds to the
“fast” limit, where a large number of transitions between states is expected. In fact,
if the quantum system is in state |¢?) at time ¢ = 0, which corresponds to the ith
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eigenvector of Hy, the probability to jump to the jth eigenvector of Hy, |¢]1), at time
t = 1is given by [(¢;]¢?)[*, where we use the bra-ket notation for vectors and scalar
products. The way energy is absorbed by the system will therefore be determined
by the perturbation-induced distortion of the eigenvectors. More precisely, if [¢?)
is different from |¢}), some transitions must take place in the non-adiabatic limit,
which involve all the states j that have a significant overlap with the initial state.

Another very relevant situation is Quantitative Finance, where the covariance
matrix C between the returns of N assets (for example stocks) plays a major role
in risk control and portfolio construction [43]. More precisely, the risk of a portfolio
which invests w, in asset « is given by R? = Zaﬁ waCopws. Constructing low
risk portfolios requires the knowledge of the n largest eigenvalues of C (n is often
chosen empirically, keeping only the statistically meaningful eigenvalues which lie
outside the Marchenko-Pastur sea, see [44] for details), \; > ... > A, and their
corresponding eigenvectors |¢1), . .., |¢,). The top eigenvalues and eigenvectors rep-
resent the most risky directions in a financial context. A portfolio such that the
vector of weights |w) has zero overlap with the first n eigenvectors of C has a risk
which is bounded from above by A,;;. The problem with this idea is that it relies
on the assumption that the covariance matrix C is perfectly known and constant in
time. The observation of a sufficiently long time series of past returns would thus
allow one, in such a stable world, to determine C and to immunize the portfolio
against risky investment modes.

Unfortunately, this idea is thwarted by two (inter-related) predicaments: a) time
series are always of finite length, and lead to substantial “noise” in empirical esti-
mates of C [43] and b) the world is clearly not stationary and there is no guarantee
that the covariance matrix corresponding to the pre-crisis period 2000-2007 is the
same as the one corresponding to the period 2008-2011. For one thing, some com-
panies disappear and others are created in the course of time. But even restricted
to companies which exist throughout the whole period, it is by no means granted
that the correlation between stock returns do not evolve in time. This is why it is
common practice in the financial industry to restrict the period used to determine
the covariance matrix to windows of a few years into the recent past. This leads
to the measurement noise problem alluded above. Now, if the “future” large eigen-
vectors do not coincide with the past ones, a supposedly low risk portfolio will in
fact be exposed to large risks directions in the future. Denoting as |¢?) the past
eigenvectors and |¢}) the future ones, the total risk of the portfolio [w) = [¢{) can
be defined as Zivzl Aj(pj|#7)?. Therefore, as for the quantum dissipation problem,
the statistics of the overlaps (¢}|¢}) is a crucial piece of information.

In practice, one computes the empirical covariance matrix E using past stock
returns, which is defined as:

Eij = % Z T’f’f’; s

t=1

where T is the length of the period on which the measurement is done and r} is the
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return of stock number ¢ on day ¢. If the true covariance matrix C exists and is
stable in this period, the empirical matrix E can be seen as a perturbation of C,
since one can write E = C 4+ £ where £ is a matrix whose elements are of order
1/V/T (by the central limit theorem) to be considered small as T is usually quite
large. In this sense, the problem falls in the more general context introduced above.

The paper is organized as follows. In the next section 7.2, we introduce the main
statistical tools and objects studied in different contexts in the following sections
and we also briefly recall standard perturbation theory. In the next two sections,
we turn to two explicit illustrations, first in the context of matrices in the Gaussian
Orthogonal ensemble (GOE), and then in the context of covariance matrices. More
precisely, in section 7.3, we study the stability of the eigenvectors for a matrix Hy
in the GOE by computing the “overlap distance” between the perturbed space and
the non-perturbed space in the limit of large matrices Hy when the perturbation
matrix P is also in the GOE. Furthermore, we are able to compute the full spectrum
of the overlap matrix in this limit, which gives a precise idea of the perturbation
induced distortion for the eigenvectors. In section 7.4, we go through the same
steps in the context of covariance matrices. We study the link between the popu-
lation eigenvectors (the eigenvectors of the true covariance matrix) and the sample
eigenvectors (the eigenvectors of the empirical covariance matrix). Then, in section
7.5, we analyse more precisely the case of a population covariance matrix with an
isolated top eigenvalue much larger than the other ones. We measure the empirical
covariance matrix with an exponential moving average estimator and characterize
the temporal evolution of the angle made by the top eigenvector and its true direc-
tion which defines an interesting new class of random processes. Finally, in section
7.6, we apply our ideas to the analysis of financial market correlations. Our purpose
here is to study whether correlations between stock returns evolve or not. In partic-
ular, is there a constant in time correlation matrix (population correlation matrix)?
Do the economical sectors (eigenvectors of the correlation matrix) evolve or not ?
We find that there is indeed a genuine evolution of the correlation matrix of stocks
returns for different markets in the U.S, in Europe and in Japan, a result which
confirms recent studies (see e.g. [26, 7, 109]). We also give a partial description of
this temporal evolution.

7.2 Perturbation theory and Statistical tools

In this section, we first recall the perturbation theory for the eigenvalues and eigen-
vectors (see Eq. (7.3) and (7.2)) when the perturbed matrix H; writes as in Eq.
(7.1). Then we define the two main objects of the paper, the overlap matrix G and
the overlap distance D (see Eq. (7.4) and (7.5)) useful for the comparison of the
two perturbed and non perturbed eigen subspaces, that will be studied in different
contexts in sections 7.3, 7.4 and also in 7.6 for financial applications. At the end of
this section, we compute asymptotic expressions for the two objects G and D using
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the perturbation theory’s equation for the eigenvectors, when the perturbation is of
the form (7.1) (see Eq. (7.7), (7.8) for the matrix GTG and (7.9) for the distance
D). Those computations will be very useful later in sections 7.3 and 7.4. The last
definition of the matrix ¥ defined in Eq. (7.10) and the expression (7.11) for its
entries in the perturbative regime will be convenient and used later.
In the whole paper, we will mainly be interested in the eigenvectors of a matrix
H; which can be written as
H1 = Ho + P (71)

where Hy and P are two N x N symmetric matrices and ¢ a small (positive) pa-
rameter. The matrix Hy is the true signal which is perturbed by the adding of
the small term ¢P. The matrix H; will be referred as the perturbed matrix. The
eigenvalues of the matrix H;,7 = 0,1 will be denoted as A} > X, > ... > Ny, and
the corresponding eigenvectors |¢?), ..., |¢k).

Our aim is to describe the relation between the perturbed eigenvectors |¢}) and
the non-perturbed eigenvectors |¢?) when the parameter € tends to 0.

When trying to follow the evolution of a given eigenvector |¢;) when the small
perturbation P is added, one immediately faces a problem if the neighbouring eigen-
values of A\ are too close to \?. For example, if the distance between the eigenvalues
A and XY, | is very small, the eigenvectors |¢;) and |¢;41) will strongly hybridize (this
phenomenon was observed for example in [138, Fig. 1]). The eigenvector |¢) will
in fact hybridize with all the perturbed eigenvectors |gz5]1>, with stronger overlaps for
those associated to eigenvalues )\?, J # 1 which are close to \?. This idea can be
made precise by using standard perturbation theory to second order in e: the per-
turbed eigenvectors can be expressed in terms of the initial eigenvectors, for small
g, as:

|¢zl> = (1 - %Z (/\()P ) ) ’¢O + EZ >\0 )\0|¢0> (72)

JF JF

ePri -Pzsz
+€Z>\0 AO(ZAOJ )\— ]>|¢0>

JFi

where Py = (¢7|P|¢?). The denominators A} — AJ remind us that the eigenvector
|#Y) can have very large overlaps with the eigenvectors associated to the closest
eigenvalues to A). This fact makes difficult to follow the evolution of one single
eigenvector in the case of small spacings between the eigenvalues (this will happen
when the dimension of the matrix is large, see below). We mention in passing that
perturbation theory to second order in ¢ for the eigenvalues gives

2

A — AO

M= +ePi+e) (7.3)

J#i

It is important to note at this point that equations (7.2) and (7.3) are a priori
only valid in the perturbative regime, i.e. when the entries of the perturbation
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matrix eP are small compared to the level spacing of the non-perturbed matrix
Hy. This condition ensures that the asymptotic correction terms appearing in (7.2)
and (7.3) are small compared to the leading term of order 1 corresponding to the
non-perturbed system.

The idea is then to study the stability of a whole subspace V; spanned by
2p + 1 several consecutive eigenvalues: {[¢}_,),...[¢}), .., |¢p,,)}. Motivated by
the above examples, we ask the following question: how should one choose ¢ > p such
that the subspace V; of dimension 2¢+1 spanned by the set {|¢}_), ... |0p), ..., [dpi o) }
has a significant overlap with the initial subspace? In order to answer this question,
we consider the (2g 4+ 1) x (2p + 1) rectangular matrix of overlaps G with entries:

Gij = (9i19]) - (7.4)

The (2p + 1) non zero singular values 1 > s; > so > ... = 5941 > 0 of G
give full information about the overlap between the two spaces. For example, the
largest singular value s; indicates that there is a certain linear combination of the
(2q + 1) perturbed eigenvectors that has a scalar product s; with a certain linear
combination of the (2p + 1) unperturbed eigenvectors. If s5,11 = 1, then the initial
subspace is entirely spanned by the perturbed subspace. If on the contrary s; < 1,
it means that the initial and perturbed eigenspace are nearly orthogonal to one
another since even the largest possible overlap between any linear combination of
the original and perturbed eigenvectors is very small. A good measure of what can
be called an overlap distance D(Vj, V1) between the two spaces V, and V; is provided
by the average of the logarithm of the singular values:

»h’lSi
D(Vh. Vi) = S (7.5)

but alternative measures, such as 1 — ) . s;/(2p + 1), can be considered as well.
Since the singular values s are obtained as the square-root of the eigenvalues of
the matrix G'G, one has D = —Indet GTG/2P, where we henceforth introduce
for convenience the notations P = 2p 4+ 1, @ = 2q + 1. The overlap distance D
was originally studied for P = @ in [13], see e.g. [80, 138], where a fundamental
effect observed in many body systems, called the Anderson Orthogonality catastrophe
(AOC) is introduced. Anderson [13] addressed the ground state of a finite system
consisting of P noninteracting electrons. Upon the introduction of a finite rank
perturbation matrix P, this ground state gets modified. It is then shown that the
overlap between the original and the modified P-electron ground state, which is in
fact exactly given by our overlap distance D(V;, V1) between the two subspaces Vj
and V; (with P = @), is proportional to a negative power of P, and vanishes in the
thermodynamic P — 400 limit, hence the catastrophe. We will see that our idea of
introducing a rectangular () X P overlap matrix G enables to avoid this orthogonality
catastrophe. Our objects introduced here will also allow us to revisit the AOC in
the case of square matrices G showing that it occurs for the random matrix model
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studied in section 7.3 (AOC for this RM model is also studied in [138]). In [80, 138],
the AOC is also investigated through random matrix models as in our paper. The
main difference with [80] is that we consider here full rank perturbation instead of
a localized perturbation of rank 1, for which one can do explicit computations (and
so treat the non-perturbative regime).

As an interesting benchmark, consider the case when two subspaces W, and
W1 respectively of dimensions P and () are constructed using randomly chosen
orthonormal vectors in a space of dimension /N. In this case, one expects accidental
overlaps, such that the s; are in fact non zero, and therefore D(Wy, W) is finite.
This distance can be calculated exactly using Random Matrix Theory tools in the
limit N, P, — oo, with & = P/N and 8 = @/N held fixed. The result is [45]:

Dryir (Wo, Wh) = — /01 dslIn(s) VI ;X;&*ﬁﬁ;)— %)+

where 7+ = a + 8 — 2a8 £ 2y/aB(1 — a)(1 — B). In other words, in that limit, the
full density of singular values is known; all singular values are within the interval
[\/7=,+/7+)- This provides a benchmark to test whether the two eigenspaces are
accidentally close (D = Dgrpr), or if they are genuinely similar (D << Dgyr).

Endowed with the above formalism, we can now proceed to compute D(V, V4) in
the case where the perturbation is small. Indeed equation (7.2) allows us to obtain
the overlap matrix G. Keeping only the relevant terms to order 2, we find:!

2
_§Z£;ﬁi <AOA) if i = j,

Gii =
J 8PL P, PP AP .

J e Zz iid7ij
+ ,\0 ,\0 Zésﬂ PUED VAPV it i #j.

(7.6)

Using (7.6), we can also compute the matrix G'G to second order in €, we obtain
for i # j:

Py Pyj
(GTG)Z] = = 2 Z 0 0 0 o (77)
0¢{k—q;...;k+q} (N = )‘12)()‘3' )

and, for i = j:

GGa=1-¢ 3 (AolfjAQ)Q. (7.8)

j#{k—g..sk+qt " J

It is then easy to derive the central result of our study: to second order in e, the
distance D(Vp, V1) between the initial and perturbed eigenspaces is:

DAV = = kf ) (Aolfjko)z. (7.9)

i=k—p j¢{k—q,..k+q} > 7 ¢

!see [143] for similar calculations.
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The matrices G and GG are both close to the identity matrix as they should. Let

us define the matrix 3 by

3= é (I-G'G) (7.10)

whose elements write, using the previous perturbation equations for G'G (Eq. (7.7)
and (7.8)), as

Py Pyj
i = . A1
/ 2 e (AT = A9) (7.11)

One can note that the matrix X is positive definite and that its matrix elements are
of order 1 when ¢ goes to 0.

7.3 Eigenvector stability in the GOE ensemble

We will now define a random matrix model for which we will apply the results of the
previous section. Let Hy be a random matrix of the Gaussian Orthogonal Ensemble
(GOE), i.e. a matrix of size N x N with gaussian entries randomly chosen with the
probability measure on the space of real symmetric matrices

N
P(dHy) = exp(—ﬁtr(ﬂg)) dHy.

This definition implies that the matrix Hg is symmetric with independent Gaus-
sian entries above the diagonal with variance 0%/N on the diagonal and o?/2N off
diagonal.

The perturbation matrix is similarly defined as a random matrix of the GOE,
independent of Hy with the same variance profile for the entries.

We then define the perturbed matrix H; as before:

H1 = HO + eP. (712)

It is very well known that the density of Hy-eigenvalues py(A) := 1/N Zi\;l I
tends in the large N limit to the Wigner semi-circle law

1
p(dX) = 5V 42 — N2d\. (7.13)
™
For simplicity, we take 02 = 2 in the following.

Remark. Here the choice of a GOE random matrix for Hg is made to get an explicit
expression for the density of states in the limit of large matrices. But our theory
developed in the following would apply for sequences of matrices (Ho(N))y such that
the density of states converges to a general (not necessarily the semi-circle density)
continuous density p(A)dA. Moreover, the sequence (Ho(V))y can be supposed
deterministic or random. The matrix Hgy can be seen as the true signal to which a
small noisy perturbation P is added.
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In this whole current section, -~ denotes an averaging over the random matrix
P

In the following subsection 7.3.1, we study the overlap distance D(Vj, Vi) be-
tween two eigenspaces V and V; (see below for definition) of the matrices Hy and
H,;, and we consider in particular its limit when the dimension N of the (GOE)
random matrices Hy, H; and P tends to infinity. In subsection 7.3.2, we study
the spectrum of the matrix GG introduced above in this context, and we char-
acterize the limiting eigenvalue empirical distribution of G'G in the limit of large
N. The characterization appears in equation (7.20) which is an equation (with a
unique solution) satisfied by the Stieltjes transform (or resolvent) of the limiting
probability measure. Then, in the following subsection 7.3.3, we analyse equation
(7.20) and its solution in great details so as to extract informations on the density
of this distribution (it has a compact support, values of its edges,... ).

7.3.1 Distance between subspaces of perturbed and non-
perturbed eigenvectors

We consider the subspace V; of initial eigenvectors corresponding to all the eigenval-
ues A contained in a certain finite interval [a, b] included in the Wigner sea [—2,2].
We want to compute the mean overlap distance D(Vp, V1) between V; and the sub-
space V; spanned by the perturbed eigenvectors of H;, corresponding to all eigen-
values contained in [a — 0, b + d], where § is a positive parameter.

Using formula (7.9), which is valid if the entries of the perturbation matrix P
(of order eN~%/2) are much smaller than the mean level spacing of the matrix Hy,
of order (Np()\))~!, we can write for ¢ < N~/2:

D(Vy, V) = Z > W (7.14)

€la;b] )\0 Zla—0;b+4]
It is easily seen that Eq. (7.14) becomes, in the large N limit:

2 b /
D) =~ [ | ax PVPY) g )
2 [ p(N)dA Ja [—2:2)\[a—6:b+5] (A=)

where p is the Wigner semicircle density (7.13).

Formula (7.15) is a priori only rigorously valid in the perturbative regime where
e < N7Y2. We argue that in fact it remains valid in a wider regime where ¢ < 1.
Indeed although perturbation theory for the eigenvectors fails for Hy eigenvalues
which are at distance of order of the mean level spacing of Hy, it remains valid
in the limit ¢ < 1 for eigenvalues at distance large compared to the order of the
perturbation entries e N~'/2 and in particular for two eigenvalues lying respectively

2There is no need in averaging over the random matrix Hy for the following results to be valid.
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in the two well separated intervals [a;b] and [a — ;b + 0] for which this distance is
larger than § (which indeed is > eN~/2). We see that every terms appearing in
(7.2) corresponding to overlap between eigenvectors associated to eigenvalues which
are at distance smaller than ¢ disappear in formulas (7.9) (and also in (7.7), (7.8)).
Therefore, we expect (7.15), as well as our results below, to remain valid in the
regime N~'/2 < ¢ < 1, provided the computed distance D(Vp, V}) itself remains
much smaller® than unity. We checked formula (7.15) using numerical simulations,
with very good agreement for different values of a, b, d, N, e. In those numerical tests
we chose the parameters N, e,d so as to approach the regime N™Y/? < ¢ < 1 (for
example, N = 4000, = 0.1,5 = 0.5).

We will now write D(a,b;d,¢) instead of D(Vp, V4).

It is interesting to study the above expression in the double limit § — 0 and
A =b—a— 0. One finds:

PAlBl) if 5 < A <1,
(a)

. (7.16)
if A << 1.

a

=
9

1 —
ED(a,a—i-A;é,a) ~ {

In the second case where A < § < 1, this last expression shows that when the
width A of interval [a, b] tends to zero, the corresponding eigenvectors are scattered
in a region of width & much larger than A itself as soon as € > /4. In the first
case, it shows that for fixed A, the distance D diverges logarithmically when § — 0.
This is a consequence of the small spacings between the (non-perturbed) eigenvalues
close to the boundaries of the two intervals [a;b] and [a — d;b + 6]. When 6 > 0,
these spacings remains larger than the fixed distance § > 0 and D remains finite.
When § = 0, we can do a more precise analysis of the right hand side of (7.14).
One can show, for large N, that the following result holds at least in the regime

£ < N_1/22

pla)® + p(b)°
2 [ p(\)dA
where A(a,b) is a constant independent of N which can be explicitly computed,
and involves the well known two-point function g(r) which describes the level-level
correlations in the GOE (see Appendix A for the details of this computation). The
In N term can be guessed from the logarithmic behavior of D when 6 — 0, since
one indeed expects the divergence to be cut off when ¢ becomes of the order of the
level spacing, i.e. § ~ (Np)~!. Eq. (7.17) is precisely the Anderson orthogonality
catastrophe as first introduced in [13] in the case of finite rank perturbation matrices.
We recover here exactly the result of [138] (see their Eq. (31)) by taking a = —2,b =
0 in our Eq. (7.17). *

1—
;D(a, b;0 =0,¢e) ~In N

Aa, b) (7.17)

3For this condition to be valid, § has to be fixed independent of e, or at least such that
e?|n(9)] < 1.

4The authors of [138] expect deviations in (7.17) when the parameter = := ev/N (which has
to be <« 1 for (7.17) to be fully valid) is increased. However their numerical results (presented in
Fig. 2 of [138]) show that the discrepancies are only noticeable for x close to 1. In addition, the
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As a side remark, we note that Eq. (7.16) predicts that when § > A, a fraction
g2 /5 of the original eigenspace gets shoved away at distances larger than § (in eigen-
value space). In the context of the non adiabatic evolution of a quantum system [30],
this implies that the energy of the system makes jump with a power-law distribution
of sizes that decays as d~2, since by the above argument the cumulative distribution
decays as 1. This means that under an extreme non-adiabatic process, the energy
is not diffusive but rather performs a “Cauchy flight” (i.e. a Lévy flight with a tail
exponent equal to 2), see [144].

7.3.2 Full distribution of the singular values of the overlap
matrix

To order 2, the distance D computed in the previous subsection is proportional to
the mean position of the singular values. One can actually be much more precise and
compute, for N — oo, the full distribution of all singular values, giving an indication
of their scatter around the mean position (s). The computation of the density
of states (DOS) can be straightforwardly performed using free random matrices
techniques.

We have already seen in Eq. (7.11) that the entries of the matrix 3, defined in
(7.10), write in the perturbative regime ev/N < 1 as: °

Py Py
EA. et
Y 2 (Ai = A) (A5 — o)

LZ{k—gq;..;k+q}

(7.18)

Denote, for each £ € {k—gq;...;k+q} by v, the random Gaussian vectors of R

v, ( Ppi—p Prg—pr1 Ppiip >T
L — ’ )
Ak—p — At Ak—pi1 — A Metp — Ao

It is easily seen that in fact (changing to the equivalent notation for the summa-
tion on ¢ in term of a, b)
Y= Z ngz

L\ o&[a—0;b+6]

This matrix V@VZ is clearly the matrix of a projector on v, and has only one

non-zero eigenvalue which is equal to

Py \°
o =lvit= ¥ (52
J

je{k—p;..;k+p}

authors of [138] explain that the failure of (7.17) for not small enough x is due to the first-order
perturbation theory estimate that breaks down when used for levels in the vicinity of the edges
a, b of the initial interval. This problem was avoided previously by the use of rectangular matrices
with Q > P and the introduction of the § margin at the edges a and b.

5We skip the subscript 0 on the eigenvalues \;s.
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which can be approximated in the limit of large matrices (P — oo) by

p(A
dA\——"—
/ (A — )\e

The resolvent Z*(z) = $tr((z — vevi)™) of the matrix vv] is equal to: ©

()= (z—iw) " 1) |

The Blue function, which by definition is the functional inverse of the resolvent
BY(Z%(z)) = z, can be computed to first order in 1/P:

1 U()\g)
P1- a(/\g)z

1
BZ(Z) = ; -+

Finally, the Red function, defined as R‘(z) = B%(z) — 1, is given by:

1 O'()\g)

Ri(z) = P1—o(\)z

The trick, coming from the theory of free matrices, is to use the additive property
of the Red function (also called R-transform) for the asymptotically free matrices

nge Essentially, the R-transform of the matrix 3 can be computed as the sum of

the R-transforms of the matrices ng}.

1 O’()\g)
R(z) = R'(2) = — —_—
(2) b (=5 2. = o)z
t¢{k—q;..;k+q} t¢{k—q;...;k+q}
Finally, the Blue function of 3 is:

B(z):%—k% > o)

0@{k—q;...;k+q} 1= U(Aé)z

which can be approximated in the limit of large P as:

11 p(N)a(N)
Bl = + N§ /[ 2;2]\[a—8;b-+4] d)\ —o(AN)z (719)

where we note here and below N? := fab p(A)dA. Rewriting equation (7.19) in terms
of the resolvent gives our central result:

L1 PNIENEEY

Z(z) = N! 220\ asprs] L —0(N)Z(2)

6Resolvents are usually denoted by the letter G, but we do not want to confuse the reader with
the overlap matrix G of which we compute the singular value spectrum.

(7.20)
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Equation (7.20) characterizes the density of states of the matrix 3 in the limit of
large dimension. We ran numerical simulations to test the validity of Eq. (7.20)
in the regime 1/ VN <« e < 1, see Fig. 7.1. The agreement is excellent. It would
be interesting to run this numerical test for very large values of N (here we took
N = 4000) so as to fully reach the regime 1/v/N < ¢ < 1. However, this becomes
numerically demanding, and we leave this study for future work.

We now want to extract the qualitative informations about the distribution of
all singular values of the matrix G from this equation. In particular, we will show
in the next subsection that the density of singular values has a compact support
for which we characterize the left and right edges. We also study the shape of this
distribution in the two asymptotic regimes A < § and § < A < 1.

r(s)

Figure 7.1: The histogram represents a numerical simulation of the density of states of
the matrix ¥ (computed with 15 independent samples). The red curve is the theoretical
corresponding density for r(s) obtained by solving numerically (7.20). For this figure, we
chose a = 0,b = 0.5,0 = 0.5. We chose the parameters N and € so as to approach the
"less perturbative” regime where 1/v/N <« e < 1 for this figure as N = 4000 and ¢ = 0.1.
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7.3.3 Qualitative properties of the spectrum of X
Right and Left edges

The relation between the resolvent Z and the density of states r(s) of the matrix 3
is lim,, 0 SZ(s — iw) = 7wr(s),s € R. Note that one should not confuse the density
of states p(\) of the original matrix Hy with the density of eigenvalues r(s) of 3.
From equation (7.20), we can derive a system of equations for the real (g(s)) and
imaginary (r(s)) parts of Z(s), for w — 0:
9(s) 1 p(a)o(x)(1 = o(x)g(s))

ST g (s N / T o (0)g(8)? + o(@)2rtr (s

(7.21)

—1 1 p(z)o(x)?
0= — d
r(s) g(8)% + m2r(s)? + NP / x(l
[—2:2]\[a—8;b--0]

(7.22)

The second equation (7.22) always admits the solution r = 0. Plugging r» = 0
into the first equation gives:

1 PG GO (7.23)

§=— 4+ —
g(s)  N? 1—o(z)g(s)
[—2;2]\[a—d;b+0]

Equation (7.23) implies the asymptotic relation g(s) ~s o, 1/s and therefore large
positive values of s correspond to small values of g(s). Set
(

my = re[_z%l\e[zx_&bw] o(x), (7.24)
the Right Hand Side (RHS) of the above equation is well defined provided g(s) €
(0;1/mg) . However, when g(s) — 07 or when g(s) — (1/myg)~, the RHS tends to
+00. Thus, on the interval g(s) € (0;1/mg), the RHS must reach a minimum which
corresponds to the right edge of the density of states. The point g € (0;1/my) for
which this minimum is reached verifies:

11 p(x)o(x)?

B T dp—"L""7 - 2

R / M—o@a? (7:25)
[—2;2]\[a—d;b+9]

and we can compute the right edge of the spectrum s,,,, from:

1 p(x)o(z)
— dr———F7——. 7.26

i T=o(2)g (7:26)
[~ 2:2)\ [a— ;0]

Smaz =

Q| —
oo

We can now turn to the left edge of the spectrum. Equation (7.23) implies also
the asymptotic relation g(s) — —oo when s — 0 and therefore small positive values
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of s correspond to large negative values of ¢g(s). The RHS of equation (7.23) is well
defined for negative values of g(s); it goes to 0~ for very large and negative values
of g(s), and goes to —oo for g(s) = 07, so it has a positive maximum somewhere
in between. The value of this maximum corresponds to the left edge of the density
of states and can be computed numerically like for the right edge. The point g €
(—00;0) for which this maximum is reached verifies the same equation as g above,
and the left edge s,,;, is now given by:

11 _pla)o(a)
Smin = 5 + N / d I —o)] (7.27)

a

[—2;2]\[a—6;b4-0]

Small fluctuations regime A < ¢

We first consider the case where A = b—a < 9, corresponding to P < @, in particu-
lar the dimension of the perturbed subspace is much larger than the dimension of the
unperturbed space and so the perturbed space almost surely spans the unperturbed
subspace. We therefore expect small fluctuations in this regime. Equation (7.20)
can be solved explicitly in this case. It is in fact possible to perform an asymptotic
expansion in o(z), which is very small compared to 1 for all x € [—2;2]\ [a —§; b+ ]
and then to solve equation (7.20).
More precisely, in this regime, we have for all € [—2;2] \ [a — ;b + 4]

1 A
L A . )
Z(z) N? (x —a)?— A xpla)Z(2)
[—2;2]\[a—d;b+9]
1 p(a) [ o)
~ dr——— + A X A dr————
ZER B e AL oy
[—2;2]\[a—d;b+4] [—2;2]\[a—d;b+4]
Now setting A = f[—2;2]\[a—5;b+6] dx )2 and B = A X p(a f[ 2:2)\[a—5:b-+0] dx(x R
we see that Z(z) is solution of the polynomlal equation of degree two:
BZ(2)> 4+ (A—2)Z(2)+1=0. (7.28)

For z = s € R, this equation has solutions with non-zero imaginary part only if

s € [A — 2v/B; A + 2v/B], which are given by

2(2) = —A+sii\é43B—(A—32)‘
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Using the relation lim,, 0 $Z(s — iw) = 7r(s) for s € R, we find that r(s) in this
regime is given by the semi-circle law

r(s) = —+/4B— (A—s)?2, A—2VB<s<A+2VB. (7.29)

This result is consistent with (7.15) since, in this regime, D(a,b;d) = 2 A.

Note that in the particular regime A < 0 < 1, the quantity B is proportional
to A/&% and is therefore much smaller than A? o 1/§%, meaning that 7(s) becomes
concentrated around s = A, with fluctuations of order \/A/§3. This result is also
consistent with the direct calculation of the root-mean squared fluctuations of s, as
obtained in Appendix B, see equation (7.61).

97 e E———
s | WA
— —
o
o J J
[ T T T 1
0.18 0.20 0.22 0.24 0.26

Figure 7.2: The histogram represents a numerical simulation of the density of states of
the matrix ¥ (computed with 100 independent samples). The red curve is the theoretical
corresponding density for r(s) in small fluctuations regime given by (7.29). The blue curve
represents also the theoretical density r(s) but computed numerically by solving directly
the system (7.21) and (7.22). For this figure, we chose a = 0,b = 0.01,A =0.01,§ = 1.

Strong fluctuations regime § < A < 1

To simplify notations, we will suppose in the following that a and b are such that
p(a) = p(b). Let us first consider the right edge $,,., as given by (7.26). We need
to find an asymptotic expansion in this regime of the g € (0;1/mg) which verifies
(7.25). So we start by defining o := gmg € (0;1) and investigate its behavior when
d < A < 1. Since mgy ~s5-0 p(a)/d, equation (7.25) now rewrites as

a?4? / p(z)o(x)?
—_— de ———F— ~ 7.30
R ST 1 (7:30)
[—2:2]\[a—8;b+9]
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In the limit A < 1, it is easy to see that the function ¢ can be written for x < a as

o) = 29 (a;x> : (7.31)

a—x

where the function f verifies f(u) ~y-0 1 and f(u) ~yoo 1/u. Using (7.31), we
can write

[t teer =l [ ae LR

2 (1= ao(z),55 2 (a—2—af(%5%)0)?

_ pla)? / iy Pla—uld) [ (u)
A Js (u—axf(w)?’
where we did the change of variables u = (a — x)/A for the last line. In the limit

0 < A < 1, this last integral is dominated by the region where u is small and
f(u) ~ 1. We thus have

[ o R gl [T

S (1-— aa(m)ﬁ)z A u—al)?
pla)’® 1
b 1—a’

Then, using (7.30) and with the same argument now for x > b, we get

20
oa=1——.

A
The corresponding g is g = d/p(a)(1 — 26/A) and plugging this value of g in (7.26)

gives
pla) 1 / gy P)o(@)

SmamNT‘i‘m 1—0‘(]}).{7

[—2;2]\[a—6;b+7]
But, it is plain to check that the second term is of order at most In(6/A)/A < 1/6
in the limit § < A < 1.
The determination of s,,;, proceeds similarly, and the calculations are detailed
in Appendix C. The final result is that

- cpla)
szn - A )

where ¢ > 0 is a number of order unity which can be determined if needed.
To summarize, in this regime, the minimum and maximum eigenvalues s,,;, and
Smae Of the random matrix ¥ are asymptotically given by:

pla) . pla)
max 5 .

~Y

Smin A
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Figure 7.3: The histogram represents a numerical simulation of the density of states of
the matrix ¥ (computed with 20 independent samples). The red curve is the theoretical
corresponding density for r(s), it is computed numerically by solving the system (7.21)
and (7.22). The red dotted vertical lines show the left and right edges of the density

7(s). The blue dotted curve is the graph of the function 8/z%. For this figure, we chose
a=0,b=0.1,A=0.1,86 =0.0l.
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Figure 7.4: The points represent the function s,,.,(d) as a function of 6. They are
computed numerically through equations (7.25) and (7.26). The blue dotted line is the
function § — p(a)/d. In this figure, we chose a = 0,b=0.1,A =0.1.
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We verified the result for $,,,,(0) with numerical simulations (see Fig. 7.4).

Together with the exact result on the average value of r(s) in this regime (given
by D(a,a+ A;§)/e?) and its variance computed in Appendix B, we conjecture that
the asymptotic behaviour of r(s) in the region s,,;, < § K Spmae is given by:

r(s) S;n;” . (7.32)

Since the integral of sr(s) is logarithmically divergent (but cut-off at s,,;, and s,,4.),
it is easy to see that this form reproduces exactly the logarithmic behavior of D(a, a+
A;§) in this regime, see equation (7.16). On the other hand, the integral of s%r(s)
is dominated by its upper bound, leading to a variance of the spectrum given by
Smin X Smaz, 1N agreement with the exact result obtained in Appendix B, see equation
7.60. Therefore, in this regime, the situation is particularly interesting: while most
eigenvalues are close to Sy, there is a slow power-law tail in 7(s) which makes
the average of s logarithmically divergent when 0 — 0. This is why we call this
a strong fluctuation regime: the ‘overlap’ distance D between the initial and the
target spaces is large because a relatively small number of directions are completely
lost.

7.4 Eigenvector stability for covariance matrices

In the next subsection, we do essentially the same study as in the previous section
7.3 for another random matrix model. There is a small difference with the previous
study as the spectrum of the matrices introduced below has some isolated eigenvalues
as well as a continuous part. The study of the eigenvectors associated to eigenvalues
in the continuous part (that we call the "sea”) is very similar to the previous study.
The isolated eigenvectors have to be treated separately (see the paragraph Isolated
eigenvectors).

In the next subsection 7.4.2, we compute the overlap distance D between two
eigenspaces generated by the top isolated eigenvectors of the empirical covariance
matrix and the true covariance matrix. The formulas that we obtain are (7.38) and
(7.39) and will be used later in the section 7.6 on application to financial data.

We end this subsection 7.4.2 by doing a different analysis of the stability of
eigenspaces through the spectral projectors. The formulas that we will use later
for applications are about the spectrum of the mean spectral projectors (7.42) and
(7.43).

7.4.1 Eigenvectors of Spiked matrices

In this subsection, we will assume that (Cy) is a sequence of positive definite ma-
trices. We will denote by AV, ... AY the eigenvalues of (Cy) in decreasing order
and we will suppose that
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e there exists a fixed number k < N, ¢ € (0;1) and (A > -+ > X\ > (1+,/9)?)
such that

AN, A = Nsee (AL ).

e the empirical measure uy = % Zf\;k 41 0x, converges in the limit of large N, T’

with N/T = ¢ to the Marchenko-Pastur distribution whose density with re-
spect to Lebesgue measure is given by

1
2wqx

V(e —z)(x—72), a<z<b,

ple) =

where v- = (1 — ,/g)* and 4 = (1 + /q)*.

For each N, Cy is the true covariance matrix (also called “population covariance
matrix”). This particular choice for the shape of the matrices Cy is rather natural
in view of applications. For example, in financial market, the correlation (or covari-
ance) matrix has k isolated eigenvalues well separated from the other eigenvalues
which form the noisy part of the spectrum (Marchenko-Pastur sea or the bulk).

We now consider the associated empirical covariance matrix Ex defined as:

1
EN,ij = T Z T’f?”;

where the (rt,...,7%),1 <t < T are i.i.d. Gaussian vectors of covariance Cy.

The question we ask in this subsection is: how close are the eigenvectors of Ey
to those of the matrix Cy 7 In the following two paragraphs, we treat the two cases
of the eigenvectors associated to eigenvalues in the Marchenko-Pastur sea and of
those associated to the isolated eigenvalues Ay, ..., \x.

This question falls under the scope of section 7.2 since the matrix Ey can be
written as a perturbation of the matrix Cy. Indeed we have:

T
1
EN = CN + EN, with (C/'Nﬂ'j = ? ZT‘ET; — CN,ij' (733)
t=1

and the matrix elements of £ are (because of the Central Limit Theorem) of order
1/ VT which is much smaller than 1 as T is large. However, this problem is of differ-
ent nature than the one treated in section 7.3 because of the non-trivial dependance
structure for the matrix elements of the perturbation matrix £. It is given by

EniiEnge = (CnikCnje + CniCnj) /T (7.34)

In the whole current section, == denotes an averaging over the 7.
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Eigenvectors in the Marchenko-Pastur sea

The results of subsections 7.3.1, 7.3.2 and 7.3.3 can be extended to this context.
We consider the subspace of eigenvectors of Cy corresponding to all the eigenvalues
A contained in a certain finite interval [a, b] included in the Marchenko-Pastur sea
[7—,7+]. We want to compute the distance D between this subspace and the sub-
space spanned by the perturbed eigenvectors of Ey corresponding to all eigenvalues
of Ey contained in [a — §,b 4 J], where § is a positive parameter. Using formula
(7.9) as before, we find that in the limit of large N,T (with N/T = q), as soon as
§ > 0, the mean overlap distance D is given (using (7.34) for the averaging) by:

D(a,b;8) ~ 2T1Nf; / )\ / dN %, (7.35)

[—2;2]\[a—d;b+9]

where p(\) is now the Marchenko-Pastur distribution of parameter ¢ = N/T. Ob-
viously, when T is infinite, D = 0 since Ey = Cy.

For the singular value density of states r(s), the resolvent of the matrix ¥ defined
as X = T(I — GGT) now verifies:

1 1 p(A)r(A)
= dAN—"S—"— .
SECRE I e (730
[—2;2]\[a—5;b+0]
where v is defined as v(\) = A f dx -~ (I) As before, it is easy to show that the

density of states of X is compactly supported and to find numerical evaluations of
the left and right edges. One can also study the limit shape of the density of states
in the two regimes A < ¢ and § < A < 1, with results very similar to the GOE
ones above.

The matrix GGT in this case gives a precise information on the relationship
between the eigenvectors of the population covariance matriz (or true covariance
matrix) Cn and the eigenvectors of the sample covariance matrix En. Previous
works along these lines can be found in [93, 19].

Isolated eigenvectors

In this paragraph, we now consider the case of eigenvectors associated to isolated
eigenvalues Aq, ..., \z. We denote by [¢1), |¢2), ..., |¢k) the corresponding eigenvec-
tors of Cy and by |¢}),|¢5),...,|¢}) T the corresponding eigenvectors of Ey.

To understand precisely how the |¢}) decompose in the basis of the |¢;) in the
limit of large NV, we want to compute the limit of the average local density of states
for each state |¢}) (1 < i < k), that is the probability measure

= Z¢’|¢]25/\ Aj)
]1

"The vectors |¢;) and |¢%) depend on N but to simplify notations, we drop the subscript.
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where ~~~ denotes an average over Ex. This expresses the way |¢/) is scattered over
the unperturbed eigenvectors.

Perturbation theory again allows to compute the quantities (¢;|¢;)? for i # j:
o= G 1NN 1o,
Y A2 T =AY T T (= )Y

and for i = j,

TN (9il€]on)* B l Ai M

Note that the random varlables (9il€l@j),i # j are uncorrelated Thus, the local

density of states VN has k£ atoms and (for large N,T with N/T = ¢) admits a
continuous density in the Marchenko—Pastur sea. The atom are localized on the
Aj,j=1,...,k and have weights 7 5 for j # 4. The continuous density in the

T (/\ >\
Marchenko—Pastur sea [y_,v4] is given by
I NA
———=p(A)dA <A<y, 7.37
This asymptotic for the probability measure 1/](\? has been verified with numerical
simulations.

7.4.2 Stability of eigenspaces

We now want to characterize the stability of the subspace spanned by the eigen-
vectors associated to the (largest) isolated eigenvalues. The theory we develop
here provides a precise estimate of the amount of eigenspace instability induced
by measurement noise. This sets a benchmark that will allow us to detect any extra
dynamics of the eigenvectors of the correlation matrix of stock returns in financial
markets not explained by measurement noise and therefore attributable to a genuine
evolution of the market (see section 7.6).

As shown by Eq. (7.33) above, the sample covariance matrix E® is a perturbed
version of C. Using again the framework of section 7.2, one can calculate the distance
(or overlap) between the top P eigenvectors of the true correlation matrix C and
the top QY eigenvectors of the empirical correlation matrix E.

Provided T is large enough for the above perturbation theory to be valid, and
upon averaging over the measurement noise, one gets the following expression for
the overlap distance D:

P N
D(P Q):LZ Z A (7.38)
’ 2TP on (A — )2

8As N does not have to be necessarily large in this subsection and in the next section, we drop
the subscript N for the matrices C and E.
9We take (Q > P as before in section 7.2 .
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where the \;s are the eigenvalues of C, in decreasing order.

Note that one can extend the previous result (7.38) to the case where the vectors
(rf,...,rl),t = 0 are distributed according to a multivariate Student distribution
with v-degrees of freedom and covariance matrix C. In this case'’, Eq. (7.38)

becomes
Dart ¥ 5 el

zlel

Note that the Gaussian case corresponds to v — oco. For v — 47, on the other
hand, fluctuations become divergent.

In practice for applications (see section 7.6), one does not know the true cor-
relation matrix C and thus it is in fact not possible to compute empirically the
overlap distance between the eigenvectors of C and the eigenvectors of the empirical
correlation matrix E. However, if one is given a time series of empirical correlation
matrix (E'); > o defined for all ¢ as

D(rQ) = (4=

1 X
t t+u, t+u
B = T g it (7.40)
u=1
where, (r},...,7%),v > 0 are independent Gaussian vectors of covariance matrix C,

one can similarly define the distance between the eigenspaces of two independent
sample covariance matrices E* and E' (determined on two non overlapping time
periods, i.e. such that |t —s| > T'). In this case, the above formula Eq. (7.38) is
simply multiplied by a factor 2.

For the comparison between the eigenvalues of E* and Ef, one can show using
perturbation theory (see equation (7.3) and also equation (7.34) for the averaging)
that the measurement noise is, for 7' large enough, given by:

4N

S 2 ~
()" - )‘f) [t—s|>T ™ T

]

(7.41)

where the )\; are the eigenvalues of the matrix C measured empirically using the
whole period of time and where ~~~;_;~r denotes an empirical average over all s,
such that |t —s| > T. As before, if the vectors (r},...,7%),v = 0 are distributed
according to a multivariate Student distribution with u—degrees of freedom and co-
variance matrix C, one finds an extra multiplicative term (v —2)/(v —4) in (7.41).

Another characterization of the stability of eigenspaces was proposed by Zum-
bach [147]. The idea here is to study the stability of the spectral projectors associated
to the top k eigenvalues. The spectral projector of rank k associated to the top k
eigenvalues is defined as follows:

k
Xk = Z |03 (@il ,
i=1

see e.g. Eq. (9.28) p. 154 of [44] that replaces Eq. (7.34) above.
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where the |¢;),7 € {1,...,k} are the eigenvectors of C. As before the true spectral
projector xy is measured through an empirical covariance matrix E and the resulting
spectral projector xj will be affected by measurement noise. The aim is again to
compute properties of this spectral projector x., so as to be able to separate the
measurement noise effect from a true temporal evolution of the matrix C.

Using perturbation theory in Eq. (7.33), we have:

Zw ¢|—Z( Zéfﬁ’g‘@;)ww

i=1 J#

+ZZ@WWWWHWM

=1 j#i
€16, (i€
+Zz%m@www>zzzﬁﬁﬁ”%wu
=1 j#i =1 j#i (#i v J
where
_ 1 (051€100) (PelE1di) — (Dil€1di)(Dil €]0))
O""f_xi—Aj<; Thon N— N j)‘

Using again equation (7.34),
0 if £ #£ 5,
(01€10i) (Del€ldi) = S NN/T  if j=€,5 #1,
2)\2/T otherwise,

(135 2 ) otar + £ 35 Ao

zl];éz

We see that the vectors ¢;,7 € {1,..., N} are also eigenvectors of X_Z;, but with
shifted eigenvalues. More precisely, we have, for i < k

Xiloi) = (1 —% > ()\l)\i—)\;\])g> |9i) (7.42)

j=k+1

and, for ¢ > k,
k
Xk|¢z - Z )\ _)\ |¢z . (743>
] 1

Therefore, in the absence of measurement noise (i.e. for T — o0), X_;g has k eigen-
values exactly equal to unity, and N — k eigenvalues equal to zero, as expected since
in this case X_;c = xx. All the above results will be compared with empirical data
(for the case of financial markets) in section 7.6.1 below.
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7.5 The case of an isolated top eigenvalue

In the first subsection 7.5.1, we consider the case where the covariance matrix C has
only one isolated eigenvalue much larger than all the other ones. By measuring the
covariance matrix through an exponential moving average estimator along a time
series of multivariate gaussian vectors with covariance matrix C, we find the time
evolution of the angle 6; between the top eigenvector of the empirical covariance
matrix and the top eigenvector of the covariance matrix C. The result is a Langevin
equation for z; = 1 —cos 0, given in (7.48), for which we can compute the stationary
distribution and even more information on the transition probability density. We
also find the Langevin equation for the top eigenvalue of the empirical covariance
matrix (see Eq. (7.46)). This enables to compute variograms of different related
quantities in subsection 7.5.2, which will be useful later on for applications. In the
final subsection (7.5.3), we analyse the transverse fluctuations of the top eigenvector
of the empirical covariance matrix through a random matrix.

7.5.1 A Langevin equation for the top eigenvalue and eigen-
vector

A more detailed characterization of the dynamics of the top eigenvalue and eigen-
vector can be given in the case where this top eigenvalue is well separated from all
the others, as is well known to be the case for financial covariance matrices. The
financial interpretation of this large eigenvalue is the so-called ‘market mode’: in a
first approximation, all stocks move together, up or down. In this subsection, we
assume that the true covariance matrix C has one large eigenvalue A\, of order N
well separated from the other ones, which are all equal to Ay. We suppose that
A1 > Ao

Let (r{); <; < n,1 <t < T beiid. Gaussian vectors of covariance C. Both for
technical convenience and to follow market practice, we suppose that the covariance
matrix is now measured through an exponential moving average of the r!. This
means that the matrix E evolves in time as:

Eiji = (1 —&)Ey, 1 +erjrj. (7.44)

We address the following question: what is the dynamics of the top eigenvalue
A1(t) and of the top eigenvector ¢} of the empirical covariance matrix E;? Of course,
the largest eigenvalue and eigenvector of the empirical covariance matrix will be, as
discussed at length above, affected by measurement noise. Can one make predic-
tions about the fluctuations of both the largest eigenvalue and the corresponding
eigenvector induced by measurement noise? We shall see that such a decomposition
is indeed possible in the limit where A\; > Ay. The calculations in this section and
in Appendix D follow closely those made in [116] which were slightly incorrect (see
below).
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We keep the same notations as in the previous section for the eigenvalues of C.
The eigenvalues and eigenvectors of E; will be respectively denoted as i, ... A%,
and ¢}, ..., @l

Standard perturbation theory, valid for ¢ < 1, gives:

A= (L=e)AT +e(or Oy ) + (@ mel o),
with n;; = r;r; — C;;. Because the returns are Gaussian, we have:
NijMke = CirCje + CiyCip.

In the limit where A\; becomes much larger than all other eigenvalues, the above
equation simplifies to:

Mo~ (=N +ecos®(O )N 1+ &, (7.45)

where cos(0;) = (¢!|¢1) and & is a random noise term of mean zero and variance
equal to 2. In the limit of large matrices and € — 0, the above difference equation
can be written as a Langevin (or stochastic differential) equation, in the Ito sense:

AN = £ |(A\ — cos?(B)A!)dt + v/2) cos®(6,) dB, | . (7.46)

where B; is a standard Brownian motion. We have neglected in the above equation
a deterministic term equal to e sin®(6;)\y, which will turn out to be a factor Ao/
smaller than the terms retained in Eq. (7.46). As we shall show below, the angle
; turns out to be small, so that one can replace cos(f;) by unity in the above
equation, which becomes a simple Ornstein-Uhlenbeck process. We therefore find
for the variogram of A;:

<(A; - x;)2> ~ 2202 (1 — exp(—e|t — s])) (7.47)

a result that we mentioned in the above section 7.4.2.

A similar SDE can be written for the projection of the instantaneous eigenvector
|#%) on the true eigenvector |¢;). This can again be done using perturbation theory,
as is detailed in Appendix D. The quantity cos(6;) is found to be close to 1 when ¢
is small, so we set z; = 1 — cos(6;).

Keeping only the leading term in the three small parameters ¢, Ao /A1 and x;, we
finally find the following Langevin equation for x; (in the It sense):

A
dry = 2e (pp — my) dt + &4 ) 224 (4, + )\—2) dB, (7.48)
1

with, for N — oo, € — 0,

A
W= %)\—j, with ¢ =¢eN.
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Equation (7.48) defines a very interesting class of random processes, that we call
“Poschl-Teller” processes, on which we say more in Appendix E.

In the continuous time limit, we have therefore established two coupled Langevin
equations (SDEs) for the top eigenvalue \! and x;. To leading order and for N — oo,
¢ — 0, the stationary solution for the “angle” x; can be computed to be:

7 3
Az 1 )
P(z) x b b ,

which corrects the result obtained in [116], and is plotted in Fig. 7.5. From the
above Langevin equation, it is immediate to see that the average value of = is given
by T = p. It is nicer to rewrite the stationary distribution in terms of & = x/u. The
interesting regime is when ¢ remains of order unity when N — oo and € — 0, in
which case:

P~ ze- M2 gy = Ut (1+i> ,
q qr

where Z is a normalisation. It is easy to see that f(#) has a minimum for = 1,
or x = p (corresponding to the most probable value), and that f”(1) = 1/(1 + q).
This shows that the fluctuations of Z around & = 1 are of order /(1 + ¢)/N and
thus very small in the large N limit.

Note finally that according to Eq. (7.46), the largest eigenvalue is on average
shifted upwards compared to the true value A, by a factor =~ (1 + 2u) = (1 +
222)  This is the analogue of a similar well-known result for flat-window averages

2N
of empirical covariance matrices — see [18, 28].

7.5.2 Variograms

From the Langevin equation one can easily compute the second moment :v_? with as
initial condition zy = 0. Indeed, using It6’s formula and taking expectations, we

get:
— o t t__
x} = x) + 4e (u—l—s—) / Tyds — 4e(1 —28)/ r2ds.

Computing Z; with the same technique, we can solve this ordinary differential equa-
tion to obtain that

A
gj_g = ;I;(Q)e*45(1*25)t + M('u + €ﬁ) (1 _ e*4€(172€)t)
1—2¢
A
(2/JJ+€)\_?)(Q:O B ,U,) (6—25t _ 6—45(1—25)15) )

1—4e

In order to characterize the dynamics of the angle fluctuations, we want to compute
the variogram of z;, defined as v(7) := (244, — )% for 7 > 0, and in the limit
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Figure 7.5: A picture of the stationary probability density P(z) of the process z; verifying
(7.48). The parameters are: € = 1/50, N = 200 (corresponding to ¢ = 4) and Aa/A\; =
0.02. The vertical blue dotted line shows the position of pu = 0.02 for this choice of
parameters.
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t — oo. Using the previous computations, we obtain, in the scaling limit:

o)~ LD (i—j)Q (1— 7).

We show in Fig. 7.6 a numerical simulation of the dynamics of the top eigenvector
of a fixed matrix C such that A\y/A\; = 0.033. The resulting variogram compares
very well with the above prediction.
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Figure 7.6: The plain line represents the function v(7) as a function of 7 for e = 0.002, N =
200 (¢ = 0.4) and A2/A; = 0.033 = 30. The dotted line is a numerical simulation of the
semivariogram of x; in the benchmark case where there is a constant in time correlation
matrix C.

However, the above calculation is not particularly useful for financial applica-
tions, since the “true” top eigenvector |¢;), needed to define the angle 6, is in
general not known. A more appropriate quantity to describe the dynamical fluctu-
ations of |¢;) is, as suggested in [116], the function 7 — (¢%]¢!™™), which we now
study analytically. Let us write |¢!) as

|61) = cos(04)|¢1) + [1), (7.49)

where b is a vector in the eigenspace corresponding to the small eigenvalues A,.
Therefore:

(@11¢17T) = cos(Br) cos(brr) + (@l |'17) -
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Now, it is easy to have an explicit expression for ¢} by considering the empirical
covariance (or correlation) matrix E* as a perturbation of the true covariance matrix
C, as we did above. Standard perturbation theory then gives

E o i
01) = <1——Z<&| ja >|¢> +Z |¢ 6:)
where
+o00
5% = 82(1 — 5)8 (’l“f_s’l“;-_s — C,]) .
s=0

It is clear that the last term of the above expression is exactly |¢h), which enables
us to obtain:

1
t+ry - gt ; gH—T i)
<SOL| > ()\1 . )\2)2 ;7&1 <¢1| |¢ ><¢1| |¢ >
But, by noting that:
glt]—i—T — ( _ Tgt +e 2 t+T Srt-‘rT s C’L])

J

and with the fact that (¢1]|E¢:)? = €A1 A2/2, we get that:

ET

t+T>N2:uei )

<§0L|90

and hence, our final result, to lowest order in u:

(@eTT) = (1= 2) (1 — zesr) + (#8]017) :
~l-2u(l—e). (7.51)

which is similar to the result obtained in [116], except that the coefficient p was a
factor IV too small in that paper. This result will be compared with empirical data
in section 7.6.2.

7.5.3 Transverse fluctuations of the top eigenvector

In order to go further and describe the evolution of the top eigenvector of E (the
so-called “market mode” in the context of financial markets), we need to study the
statistics of the transverse component |¢’ ). In order to make sense of the pattern
created by these transverse fluctuations, we propose to introduce the correlation
matrix of the components of |¢ ) in the eigen-basis of the true correlation matrix.
We therefore define the following N — 1 x N — 1 matrix:
1
Fij =+ DA AN IO =)

t=1
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The eigenvalues and eigenvectors of this new correlation matrix (not to be con-
fused with the empirical correlation matrix E needed to define |©4)!) will entirely
characterize the transverse fluctuations of the “market mode”.

In the benchmark case where there is a true correlation matrix C stable in time,
one can check that:

1 i wetm (011€"165)
z] t:l Z. >\1 — )\j ’

What is the eigenvalue spectrum of F for this benchmark case? In our case where
for all i £ 1, \; = Aq, the density of states of this type of random matrix has been
studied before in the literature (see [113]). Indeed the random variables {(¢;|E?|d;)
are uncorrelated for ¢ # j, their mean is 0 and their variance is given by:

5)\1)\2

(e = =L

(7.52)

However, the random variables (¢1|E*|¢;) are correlated in time and thus the density
of states in the limit of large matrices will not be given by the usual Marchenko-
Pastur law. Rather, (¢1|E%|¢;) follows an auto-regressive linear process, for which
the authors of [113], give a precise way to compute the density of states in the
limit of large matrices by mean of its Stieltjes transform. This probability density
depends as expected on the parameter N/T but also on the parameter ¢ of the
auto-regression. In the case where \;~1 = )9, one furthermore expects that the
eigenvectors of F are isotropically distributed in the N — 1 dimensional subspace
spanned by |¢2),...|¢n). This means that the transverse fluctuations |p,) of the
top eigenvector have no particular structure.

In the more general context where the \; for i # 1 are not all equal to Ao, the
eigenvalue spectrum of F must be characterized numerically, see below.

7.6 Empirical results

For the following analysis, we have used the daily returns of several pools of stocks
belonging to 4 major indices: SP500, Nikkei, DAX & CAC 40. The number of
stocks are respectively N = 500, 204, 30, 39 and the period of interest is 2000 — 2010
(11 years of data, corresponding to ~ 2750 days). The main issue, as alluded to
above, is that the empirical determination of correlation'! matrices requires some
measurement time 7°. If this time is too short, the empirical correlation matrix will
appear to evolve with time, but this may just be due to the measurement noise which
one would like to distinguish from a genuine evolution of the underlying structure of
correlation. If the measurement time is too long, on the other hand, one may miss
important correlation shifts and get exposed to unwanted sources of risk.

L Our results in the previous sections hold for empirical covariance matrices. Hence we centered
and normalized our empirical time series of returns so as to use them.
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7.6.1 Stability of eigenspaces

We first determined the empirical variograms ((Af — \f)?)ji—s=- for i = 1,2, the
result (for ¢ = 1) is shown in Figure 7.7 and is found to be much larger than the
above theoretical prediction, i.e. 4)\?/T, shown as a horizontal plain line. The
fact that the empirical (red) curve starts from 0 for 7 = 0 and increases to reach
the stationary noise level at time 7 = T is simply due to the overlapping between
the sliding periods. For those figures, we computed the time series of correlation
matrices using a sliding window of size T = N (recall N is the number of stocks).
Thus, for small markets like DAX and CACA40, this value is quite small (respectively
30 and 40) and we find that the first eigenvalue of the correlation matrix does not
evolve too much during the following (non overlapping) period 7 € [T’;250] days.
After this time period, the evolution appears and from this point, the difference
between the two non overlapping periods increases significantly with the time lag.
For larger markets such as SPX and Nikkei, the value of T is quite large as N is
respectively equal to 500 and 200. So it is not very surprising the temporal evolution
shows up immediately. This clearly shows that there is a genuine evolution of the
eigenvalues of C with time. For the top eigenvalue, this is a well known effect (see
[116] and section 7.5.2, Fig. 7.6 below): both the volatility of individual stocks
and the average correlation between stocks are indeed time dependent, and tend to
increase in crisis periods [7, 26]. We see that the same is true for smaller eigenvalues
too, reflecting the instability of intra-sector correlations (data not shown).

But what about the eigenvectors? One could be in a “mixed” situation where
the eigenvectors of the true underlying covariance C keep a fixed direction through
time'? while its eigenvalues are moving around. But if the eigenvalues of the matrix
C (which was always supposed not to depend of time in the previous sections)
themselves are evolving with time, the formulas derived in the theoretical section
above need to be upgraded. Let us assume that the true covariance matrix C, has
time dependent eigenvalues A}, ..., A\ but with constant eigenvectors which will be
denoted |¢1),...,|on) as above. For times s < t with |t —s| > T, we define the
overlap matrix G*' as: fo = (#5]¢%). Under the assumption that the eigenvalues
are varying sufficiently slowly with time, one now finds that:

: — — 1 S,tT s,t
D(P,Q;s,t) = =55 (In|det(G'G) )
N
1 AN AL
%QTPZ Z ((/\5_/\5)24_()\?—)\?)2)' (7.53)
i=1 j=Q+1 1 J 7 J

Up to corrections of order T7%/2, one can replace in the above formulas the A** by
their empirical estimates. We finally compute the theoretical distance Dy, (P, Q,7)
as an average over all s, ¢ such that |t — s| = 7 of the above quantity.

12Here we mean that the non-perturbed (or population) eigenvectors do not evolve with time;
obviously we do not talk about the sample eigenvectors of the empirical covariance matrix E which
will be affected by measurement noise, evolving around the population eigenvectors.
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Figure 7.7: Plot of ((Aj — A%)?);_s/=, as a function of 7 for the four different indexes of
our sample. The empirical correlation matrices are computed on a sliding window of size
T = N. The red line corresponds to the empirical datas from our pools of stocks, the
plain blue line is the theoretical prediction 4\2/T (valid in the limit of large 7)) and the
dotted blue line represents a numerical simulation of the benchmark case. Very similar
curves hold for the second and third eigenvalues as well.
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We now compare our null hypothesis formula, Eq. (7.53) with (a) an empirical
determination of Dep,(P, @, 7) using financial data and (b) a numerical determi-
nation of Dy, (P, @, T) using synthetic time series of returns which abide to the
hypothesis of a covariance matrix C; with fized eigenvectors, but time dependent
eigenvalues. To achieve this, we choose an arbitrary (but fixed) set of orthonormal
vectors [¢1), ..., [¢n) and define C; as C; = SO0 | AL[e)) (i, where the A* are the
empirical eigenvalues obtained on the financial return time series. We then use C,
to generate synthetic Gaussian multivariate returns {r;(u)}. We show the corre-
sponding results in Fig. 7.8, with the choice P = 5, = 10, as a function of 7 and
for T'= N days. As above, the study concerns the same 4 different pools of stocks
corresponding to 4 major indices: SP500, Nikkei, DAX, CAC 40. We conclude that
(i) the theoretical formula Eq. (7.53) is indeed in very good agreement with the
numerical results obtained with synthetic data: Dy, =~ Dy,; whereas (ii) the fi-
nancial data clearly departs from the null hypothesis of constant eigenvectors, since
Depnp > Dyj,. The same conclusion holds for different values of P, Q.

We have also computed the value D.,,,(r = T for different values of T" for
every pool of stocks, the result is shown in Fig. 7.9. We compare the empirical
function T — Depy,(T) with the theoretical value Dy, (7T) in the benchmark case
where the stock returns are distributed as Gaussian vectors of constant covariance
matrix C. At first sight, the noise contribution appears to be too small to explain
the value of Dep,(T) at small T's, at least for the pool of the CAC40 and DAX
indices. Nevertheless, if we now compare the value of D,,,(7 = T') for small value
of T with the value of Dy,(7 = T') in the benchmark case where the stock returns
are distributed with a multivariate Student distribution with v-degrees of freedom
and with a constant covariance matrix C, we see that we can make the two curves
coincide for small values of T'. Therefore, the initial decline as T increases indeed
follows from a reduction of the measurement noise. However, when T becomes very
large, the “true” evolution of the eigenvectors starts being visible, and leads to an
increase of Dep,,. This plot suggests that the optimal time scale to measure the
empirical eigenspaces is around 7™ = 600 days for the stocks from the Nikkei index,
T* = 400 days for the ones from CAC40, T = 450 days for the ones from DAX and
T =700 days for the ones from the SP500 index.

The above results are fully confirmed, and made more precise, by the spectral
projector analysis proposed by Zumbach. In Fig. 7.10 we plot, as in [147], the
eigenvalues of the average spectral projector X_; as a function of its theoretical rank
k, for several values of k. We show in plain lines the eigenvalues of the empirically
determined X_gg for the Nikkei idex, where the averaging is made over (overlapping)
periods of length T" = 600 days, and in dotted lines the corresponding theoretical
predictions Eqgs. (7.42) and (7.43) for the benchmark case where the eigenspaces
are fixed in time, but are blurred by measurement noise. Here again we find clear
signals of a true evolution of the eigenspaces. The results for other stock indices are
very similar.
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Figure 7.8: Plot of Dy, Dyym, Demp for T = N, P = 5,Q = 10 for the four indices
considered here. The blue lines are theoretical benchmark results for fixed eigenvector
directions (plain line: analytical result, dotted line: numerical simulations, while the red
line is the empirical result). These plots clearly show that the subspace spanned by the 5
top eigenvectors evolve with time.
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Figure 7.9: Plot of Deyyp(7 = T') (red line) and Dy, (7 = T') as a function of T', P = 5,Q =
10 for the four indices considered here. The dotted green line represents Dy, (7 = T') in the
benchmark case where the returns are Gaussian with constant covariance matrix C and
the dotted blue line represents Dy, (7 = T') in the benchmark case where the returns are
distributed with a multivariate Student distribution with v-degrees of freedom and with a
constant covariance matrix C. The constant v is chosen equal to 5.5 for the CAC40 and
DAX indexes and to 18 for the Nikkei index. The initial decline as T' increases follows
from reducing the measurement noise. However, when T becomes very large, the “true”
evolution of the eigenvectors is being felt, and leads to an increase of D.p,,. This plot
suggests that the optimal time scale to measure the empirical eigenspaces is around two
years (T = 500 days).



196 CHAPTER 7. EIGENVECTORS DYNAMICS

Nikkei

1.0

0.6
|

(i)

0.4

0.2

Figure 7.10: The dotted lines represent the eigenvalues ¢; of the spectral projector of rank
k (for k = 5,10,20 see the legend) as a function of log(i),i = 1,..., M in the benchmark
case where the true correlation matrix C is not evolving but dressed by measurement noise.
The plain lines represent the same function for the empirical data from the Nikkei index
(204 stocks between 2000 — 2010). Here T' = 600. In the ideal case (constant correlation
matrix, 7" — 00), these functions should be step functions: €; < =1 and €55 = 0.
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7.6.2 The dynamics of the top eigenvector

As explained above, one expects in general the top eigenvector to wobble around its
“true” direction |¢;). The fluctuations around |¢;) have two possible origins: one
is measurement noise, the other is the presence of a systematic rotation of the top
eigenvector due to some financial mechanism.

As a further check that measurement noise is not enough to explain the observed
dynamics of |¢}), we have studied numerically the average overlap of the top eigen-

vector measured a time 7 apart: (¢}|¢'"7). This is an interesting quantity because
it does not require the knowledge of the true direction |¢;). As shown above, this
quantity should be approximately given by 1 — 2u (1 — e°7) if measurement noise
is the only source of fluctuations. We show in Fig. 7.11 a comparison between
this prediction and empirical data on the market mode of the Nikkei index. Here
again, we find that the decorrelation of the top eigenvector is much stronger than
the benchmark. The deviation from unity is, for 7 = 350, more than three times
larger than the benchmark case, with no signs of saturation.

So there is a genuine motion of the top eigenvector in time. This was already
pointed out in [7], where we established empirically that the top eigenvector rotates
towards the uniform vector |e) = (1,1,...,1)/v/N when the market goes down, and
away from |e) when the market goes up. In order to be more comprehensive and
understand in details the dominant transverse fluctuations of the top eigenvector,
we have studied the correlation matrix F defined in subsection 7.5.3 above. We first
determined the eigenvalue spectrum of F numerically, both for the benchmark case
(with only measurement noise) and for real empirical data, see Fig. 7.12. From
this figure, we conclude that, for the Nikkei index during the period 2000 — 2010,
there are 3 (maybe 4) eigenvalues of the empirical matrix F that reside outside
the spectrum of the corresponding benchmark matrix. This suggests that these 3
or 4 modes are real and correspond to true fluctuations of the market mode, which
contribute to the discrepancy displayed in Fig. 7.11 above. We are now in a position
to identify the corresponding eigenvectors, i.e. the directions in which the market
mode most likely to tilt.

It is natural to think that these directions should themselves correspond to large
eigenvectors of the correlation matrix C. Therefore we look for the decomposition
of the top three eigenvectors of F (that we call |wy), |ws), |ws)) in terms of |¢;),i €
{2,3,4,5}. A singular value analysis of the 3 x 4 overlap matrix shows that one can
indeed explain & 85% of these three eigenvectors in this way, with:

wi) &~ —0.34 [¢2) + 0.29 |¢3) + 0.30 |44) + 0.84 |¢5)
lwa) =~ 0.53|pa) + 0.45 |p3) + 0.47 |p4) — 0.54 |d5) (7.54)
This means that all the four top eigenvectors of C contribute to the “tilt motion”

of the market mode. To check that this result is significant, we ran numerical
simulations for this singular value decomposition in the benchmark case with a
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Figure 7.11: The plain line represents the empirical function (¢}|¢:*") as a function of
7. The period on which the average is performed has 2336 days starting 01,/01/2000.
There are N = 204 stocks from the Nikkei index. The exponential moving average is
made with a parameter € = 1/50. The true empirical correlation matrix C is chosen to be
the empirical correlation matrix computed using the data on the whole period. For this
C, we have A\; = 73 and Ay ~ 0.7. The beginning of the period is used to initialize the
exponential moving average. The plain blue is a numerical simulation in the benchmark
case. The dotted line represents the function 7 — 1 —2pu(1 —exp(—e7)) which corresponds
to the benchmark case when there is a constant in time correlation matrix.
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constant correlation matrix C chosen as before to be the empirical correlation matrix
computed using the whole period of time (here the decade 2000 — 2010). The 3 x 4
singular values analysis now give an explanatory power of ~ 70%, which is clearly
less than the 85% obtained above. Still, a large part of this explanatory power seems
to trivially come from the non random structure of C itself.

In order to revisit the result found in [7], we need to understand the link between
the uniform vector |e) and the eigenvectors |¢ps), ..., |¢s5) of the correlation matrix
C. Thus, we look at the orthogonal projection |e1) := (|e) — (e|d1)|p1))/N (N is
chosen such that (e |e;)? = 1) of the uniform vector |e) in the space generated by
the |¢;),7 > 2. The overlap (e, |¢;) for all ¢ > 2 are shown in fig. 7.13 for the Nikkei
index during the period 2000—2010. We see that |e, ) has indeed very strong overlap
with [p2), |@3), |@4), |¢5), and hence, from the above results, also with |wy), [wa), |ws)-
Therefore, the fact that the main fluctuation modes of |¢;) are along these three w
directions is compatible with the tilt motion towards |e). However, other modes,
not mentionned in [7], are detected by the present analysis.
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|

0.4

0.2

0.0
|

le-06 1le-05 le-04 le-03 1le-02

Figure 7.12: The red curve represents the cumulative distribution of the density of states
of the matrix F for the Nikkei index with N = 204 stocks, in the period 2000 — 2010,
with e = 1/50. The blue curve is a numerical simulation for the benchmark case with the
true correlation matrix C chosen to be the empirical correlation matrix using the whole
period. For this period and pool of stocks, we have A\; &~ 73 and A2 =~ 0.7.
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Figure 7.13: Plot of the overlap |(e |¢i)| as a function of ¢ for i > 2. This graph shows
that the main contribution to |e;) comes from the top eigenvectors of the correlation
matrix C.
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7.7 Conclusion & Open problems

Let us try to summarize what we have achieved in this paper. We have developed
general tools to describe the dynamics of eigenvectors under the influence of small
random perturbations and to study the stability of the subspace spanned by P
consecutive eigenvectors of a generic symmetric matrix. This problem is relevant
in various contexts, including quantum dissipation and financial risk control, but
hopefully the ideas and methods introduced here can be used in a much broader
context.

We argue that the problem can be formulated in terms of the singular values of
the overlap matrix between the initial eigenspace and the target eigenspace, which
allows one to define an overlap distance, which is small if most of the initial in-
formation is conserved. We first specialize our results for the case of a Gaussian
Orthogonal Ensemble, for which the full spectrum of singular values can be explic-
itly computed in the limit of large matrices under the regime where the entries of the
perturbation are very small compared to the mean level spacing of the non-perturbed
matrix. We argue that our setting with rectangular ) x P overlap matrices G al-
lows to extend our results to perturbations with entries larger than the mean level
spacing. We provide some numerical evidences that it is indeed true. We find two
regimes, depending on the dimension of the target space () compared to that of the
initial space P. If ) > P, all singular values are close to one another, and their
distribution is given by Wigner’s semi-circle. If on the other hand (Q — P)/P < 1,
the singular values s are distributed according to a very broad law which decays
as s72. These results are actually universal, and apply for other matrix ensemble
as well — for example the case of empirical covariance matrices — provided one is
interested in eigenspaces deep in the bulk.

We have also studied the case of isolated eigenvalues, which are usually very im-
portant for applications, for example in finance. In most cases, empirical correlation
matrices are noisy measurements of the true covariance matrix and this can lead to
an apparent evolution of the top eigenspace, whereas in reality the underlying pro-
cess is stationary. We have derived exact expressions both for the overlap distance
and for the average spectral projectors (introduced by Zumbach [147]) which can be
directly compared to empirical results. The special case where the top eigenvalue is
much larger than all the other ones can be investigated in full detail. In particular,
the dynamics of the angle made by the top eigenvector and its true direction defines
an interesting new class of random processes, for which we have provided explicit
analytical results.

When compared to empirical correlation matrices of several major stock markets,
our results allow us to unambiguously conclude that there is a genuine evolution in
time of the true underlying correlation matrix: measurement noise in itself is unable
to explain the observed variability (in time) of the top eigenspaces. We have found
that the overlap distance is minimized when the measurement time is on the order of
two to three years. Both for shorter and longer averaging times, measurement noise
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and the genuine evolution of the market leads to an instability of the correlation
matrix, and to exposure to unwanted sources of risk.

The case of the top eigenvector of the correlation matrix, usually called the
market mode, is particularly interesting. We have suggested a characterization of
the evolution of its direction through a new correlation matrix, which measures the
amplitude of its fluctuations transverse to its average direction. We found that
the dominant modes are in the space spanned by the largest eigenvectors of the
correlation matrix itself.

Now the genuine evolution of the correlation structure of stock returns is well
characterized, one should aim at devising quantitative models for this evolution. As
usual, there are two ways to do this. One is to postulate an econometric model
and try to calibrate it on data. In this line of thought, extensions of the GARCH
framework have been proposed: multivariate GARCH, BEKK model, etc.[27], but
they often lack intuition (to say the least) and are very hard to calibrate (the a
priori number of parameters is of order N*!).

The second approach is to think about mechanisms which can lead to changes
of the correlation structure. For example, market drops may lead to panic sell-offs,
which increase the top eigenvalue of the correlation matrix and tilt the top eigen-
vector towards uniformity, as reported in [26, 7]. The impact of rebalancing or
deleveraging complex portfolios can also lead to substantial changes in the correla-
tion matrix — see the insightful work of Cont and Wagalath [58] in this direction.
We hope that the tools provided in this paper will help building financially moti-
vated, more efficient models of dynamical correlations and, correspondingly, second
generation risk models where impact and feedback effects are accounted for [46].

7.8 Proof of the formula for 6 =0

We need to introduce the two level density of states

PN (AN = NQZ(S/\ A N = \),

3,j=1

and to note from equation (7.9) that

PO N)
D(Vy: V) // 7.55
( o [ 22\[ab )‘ )\/> ( )

From [107], we know the asymptotic behavior of the two level density of states in
the limit of large matrices; more precisely, there exists a function g such that, in the
limit of large NV,

p2 (A X) = g(Np(N)[A = N])p(X)p(N)dAdN (7.56)

which is defined as g(r) = 1 — (3 — [J s(t)dt) s'(r) + s(r)? with s(r) = 227 One
can check that:
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e g(r) <1 forallr,

in the neighborhood of 0, g(r) ~ ér,

e ¢(r) tends to 1 when r goes to oo,
e ¢'(r) =O(1/r?) in the neighborhood of oco.

We can write:

) p(a)lz — y) ’
D(a,b;5 = 0) //{WH A (ol

We want to do an asymptotic expansion of the right hand side when N — oo.
First, note that N/P tends to 1/ ff p-
For the integral, we begin by doing an integration by part, we get for z € [—2; al:

/”g(Np(fv)lfc —yl) dy = pla)g(Np(z)(a—=))  p(b)g(Np(z)( — x)) (757)
a (:C - y>2 a—x b—=x ’
body /
+ / pyp— [0/ (y)g (Np(x)(y — z)) + Np(x)p(y)g" (Np(x)(y —2))] . (7.58)

We need to integrate equation (7.57) between —2 and a and between b and 2
and to compute the asymptotic of every integrals of the right hand side. We will
decompose each integral into two terms so as to take advantages of the asymptotic
property of g around 0 and oo.

Set n = N~1* with o > 0. First we consider the integral:

| o= s - [T e Digtota~ 500

<o) [ Lgtotan) = o) [ o3 - [ ntolg o]

Using the fact that g(r) tends to 1 when r goes to 0o, we easily get that, in the limit
N — oo:

[ plirede =),

—9 a—x

~ / ) gy - ) (v / @) Infa — o)

_9 a—T _92

Moreover, we easily find that, when N tends to co:

/“” p<x>g(Np(93)(b — ) e /a p() dr,

—9 b—x _Qb—l’
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and

b—=x

/“ p(%,)g(f\fp(ﬂff)(b—fff))dx< /“ plx) dr |

which goes to 0 as 1 goes to 0.
The next term is easy to control using the fact that g(r) goes to 1 when r goes
to oo; as N — oo:

/_anxp(x)/a y(_)iyg(NP y— ) —>/ dzp /%fiy

Using the fact that ¢’(r) is of order 1/r? for large r, it is easy to check that

a—n
N/ dzp(x)
—2
is of order N ¢,

The remaining term

—py)g (Np(x)(y —2))

| oo [ -2 g (Nola) = ) + Nole)ol)d (Np(e)y )]

Yy—x

is of order N—1t,

One has to go through the same steps to compute the asymptotic of the integrals
between b and 2.
Finally, we get:

D(a,b;6 = 0) ~ In N &2 M + Aa,b) (7.59)

2 [} p(\)

where

2

2 f;p[(pm) o(0?) (1 -/ 1n<x>gf<x>dx)
+ p(a)*In(p(a)) + p(b)* In(p(b))

+ p(a) /a P (x)In(a — x)dz — p(b) /b p'(x)In(x — b)dz

-2

o [ [ 22

L [ 25 [ [ 428

A(a,b) =
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7.9 Derivation of the standard deviation o(r)

We have

~ %(tr (=%) - <(%tr(2))2> :

But the two quantities are computable easily in the limit of large matrices using the
convergence of the density of states for Hy; We obtain

1 et p(N)p(N)p(\")

(e (322)) A~ — [ d) aN N

plir () Nb/ / / (A= V)2 — )2
lasb]  [=252]\[a—&;b+4] [—2;2]\[a—0;b+4]

R Y R G C VLTS

Ng ()\ _ )\//)2()\/ _ )\//)2
[a;b] [a;b] [—2;2]\[a—6;b+44]
and
1 2 et , , PN (N p(N") p(N")
<(ﬁtr(2>) > ~ N_f;z / dA / dA / dA / dA (/\ _ )\//)2(}\/ _ )\///)2 ’
[a;b] [a;b] [—2;2]\[a—6;b+4] [—2;2]\[a—6;b+0]

Those two expressions give in the regime § < A < 1

o(r) ~ 29 (7.60)

o(r) ~ p(a)\/%. (7.61)

7.10 s, in the strong fluctuation limit

and in the regime A < § < 1,

It is given by (7.27) and we have to compute the g € (—oo;0) which verifies (7.25).

For simplicity, we set § = —g and we aim to compute g > 0 such that
1 2 1
1 O
Ng (1+o(z)g)? &
[—2;2]\[a—8;b+]

As g is non-negative, the integral on the left hand side converges when § goes to 0
and hence ¢ verifies in fact

1 p(z)o(x)? 1

P S S .62

v | T (7.62)
[—2;2]\[a;0]
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We now need to estimate the integral in the limit A < 1. As before, we can write
using (7.31)

/“ 4o P’ pla)? /X L pla—ud) ()

o (T+o(n)g)? A (u+ 232 f(u))

In the limit A < 1, this integral is dominated by the region where v is small and
f(u) ~ 1 and hence we have the following estimate

[ kel N/xaﬁh£+w< du

o (I+o(x)9) A u+ %)2

_ pla)?
g

Then we deduce from (7.62) and with the same argument for the integral between
b and 2 that

Now we have to plug this § into equation (7.27) to obtain

Smin = — A Nb

a

%) 1 / o p@ole)

[—2:2)\[asb] 2p(a)

To evaluate the integral, we need to cut it into two parts. The first part is handled
by

a+2

“ pa)ola) £ pa— ud)f(w)
/ B :“”A T )2

2 e f (U)
=ty | TR YO

Finally, we can deduce that
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7.11 SDE for z;

Using perturbation theory, one gets, in braket notation:

2 t—1 tt* t—1 t—1 tt* t—1
94) = (1—32 A )|¢§—1>+EZ AL e

i#1 i#1

£? f 1yt | b — € f 1yt | b t—
~ (1— WZ@% et g 1>2> [ 1>+FZ<¢1 Hrtrt e Dl

i#1 ~
2
:(1 sorm (10260 — (@ t*|¢§—1>2>) o)
" ;—1 (rtr i) — (@t e Do) -

1

Since cos(6;) = (¢!|d1), we can write
¢1 = cos(0)|d1) + sin(0y) | )

where |p)) is a vector lying in the subspace spanned by the vectors |¢s), ..., |oN).
We want to describe the dynamic of cos(6;); we deduce from the previous equatlon

that

cos(h) = (1= 5z (61 1™ Plot ) = (616112 ) cos(B)
(7.63)
(s 1687) (6471 167 cos(Bi) (760

Since we have:

(@1 Cloy !

) = Apcos(0;_1),
<¢§ 1|C|¢ > M COS2(9t—1) + A2 Sin2(9t—1) )
W 2cos”(0;-1) AT + sin(0,-1) A Az,
<¢t1_1|77t|¢§_1>2 =2 ()\1 COSQ(Qt—l) + A2 SiHZ(Qt—l))2 ;
(o1 Hrtrt*|¢i )2 = AT cos™ (0,-1) + 2cos®(Bp1) AT + sin? (6, 1) A Az,

(@ (rtrt)2|¢y ") = cos™(0r-1) (BAT + (N — D)ArAa) +sin(0r-1) (N + 1)A; + Mda)
equation (7.63) can be rewritten, in the asymptotic regime where ¢ < 1, N > 1

with ¢ = eN fixed and Ay < \q, keeping up to terms of order 2 for “drift” terms

and of order 1 for noise terms in € and \y/ A3

2

1
62 )\2 [()\2 + N Ag) cos?(6) — A2 COS4((9t)] cos(fy)dt

+ £ cos(0,) sin®(6,)dt + od B,

d(cos(6y)) =

13Note that sin®(6;) ~ 2u is of order A\y/\; and that 1 — cos(6;) ~ u is also of order \y/\;.
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where
2

o} = % [2A7 cos®(0;) sin®(6;) + Az cos®(26;)] sin®(6;). (7.65)

1

When 6; < 1, this leads to Eq. 7.48 given in the main text for x; = 1 — cos(6;).

7.12 Transition probability of x;

In this appendix, we show that the function P(z,t) giving the probability that
the “particle” x; verifying (7.48) is in = at time ¢ can be computed explicitly. More
generally, we will show that one can compute explicitly this transition density P(x,t)
for a process x; with initial condition in ¢ = 0 given by zy > 0 verifying the Langevin
equation

dl’t = 9(,u — It)dt + o/ It(xt + b)dBt (766)

where 0, 1,0 and b are positive constants and B; a standard Brownian motion. One
can proceed to the change of variables

2 b
y; = cosh ™ (gIt + 1) S m=g (cosh(y,) — 1),
and find that the process y; verifies

2u, 1 o2 cosh(y;)
= (o1 + 22 — z
dys (0( - b )sinh(yt) (6 2 “sinh(y)

) dt + 0 dB, . (7.67)

We will denote by F(y) the drift coefficient of the previous stochastic differential
equation (7.67) and denote by U its potential, which verifies U’ = —F. The transi-
tion density P(y,t) verifies the Fokker-Planck equation

ot oy 208

oP B a(FI-:’) n o2 0%P

By setting P(y, t) := e~U®/7*y)(y, ), this equation becomes a Schrodinger equation:

oy % 0%
o 2o Vi(y),

with the so-called Pdschl-Teller potential V (y):

Vi(y) = % (F;(Qy) + F’(y))

s ()~ )
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with:

Since the evolution of 1(y, t) is governed by a self adjoint operator

a? 9%

we can use its eigenfunctions to construct an orthonormal basis (¢,,) with corre-
sponding eigenvalues (—\,). The general solution ¢ (y,t) can thus be expanded in
the following form

@Z)(y, t) = Z Cndjn(y)e_)\nt .
The general solution for P is thus given by

Bly.1) = 7 S ()

n

The initial conditions for y; determines the sequence (¢n). In particular, if at time
t = 0, the probability P(y,0) = d(y — yo) with yo := argcosh(3zy + 1), then it is
straightforward to see that

Cp = €U(3”0)/02¢n(y0) '

The spectrum of H consists of a discrete and a continuous branch. The discrete
energy levels (eigenvalues) are computed in, e.g. [61] and are given for all n €
N,n < ¢g/2 with g = 1 + 2002, by

0.2

A = 5 (g—n). (7.68)

The corresponding eigenvectors are also computed in [61] and are expressed in terms
of Jacobi polynomials. To the best of our knowledge, the continuous branch of the
spectrum has not been fully characterized in the literature. We should also mention
that in the limit b — 0 the corresponding process has been studied in details (see
[127] and the appendix of [108]). The problem can now be mapped into the Morse
potential, which has exactly the same discrete spectrum as above (as expected since
b does not appear), with eigenfunctions that can be expressed in terms of Laguerre
polynomials. However, we have not been able to directly match the eigenfunctions
in the two cases, and understand the b — 0 limit in details. The limit b — oo
with o?b fixed, on the other hand, boils down to the standard Bessel process with
mean-reversion.
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Chapter 8

Marcenko Pastur theorem for
independent MRW

Résumé

Cet article est soumis au journal Annals of Applied Probability et est écrit
en collaboration avec Rémi Rhodes et Vincent Vargas. Nous prouvons la
convergence de la densité empirique des valeurs propres d'une matrice de
covariance empirique construite a partir des accroissements de marches
aléatoires multifractales indépendantes. Nous caractérisons la mesure de
probabilité limite par sa transformée de Stieltjes, qui vérifie une équation
explicite admettant une unique solution. Nous illustrons nos résultats

numériquement.

Abstract

We study the asymptotic of the spectral distribution for large empirical
covariance matrices composed of independent Multifractal Random Walk
processes. The asymptotic is taken as the observation lag shrinks to 0.
In this setting, we show that there exists a limiting spectral distribution
whose Stieltjes transform is uniquely characterized by equations which

we specify. We also illustrate our results by numerical simulations.

8.1 Introduction

Since the seminal work of Marcenko and Pastur [106] in 1967, there has been grow-
ing interest in studying the asymptotic of large empirical covariance matrices. These
studies have found applications in many fields of science: physics, telecommunica-
tions, information theory and finance, etc... The main motivation of this work stems
from finance: the study of covariance matrices is a crucial tool for minimizing the
risk R,, of a portfolio w that invests w; in asset number ¢. Indeed, if we denote by

211
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r; the price variation of asset i, R, can be defined as the variance of the random
variable > . w;r; and can be computed in terms of the covariance matrix R of the r;
(deﬁned as Rij = E[TZ‘T]'Dl

Ry =w'Rw.

Of course, practitioners do not have access to R; instead, they must consider a noisy
empirical estimator of R, which consists of a large empirical covariance matrix. A
key tool in distinguishing noise from real correlations is the study of the eigenvalues
of the empirical covariance matrix: we refer to [43], [116] for more extended dis-
cussions on the applications of large empirical covariance matrices in finance and in
particular in portfolio theory.

We will work in a high frequency setting: we consider N stock price processes
X;(t) for i = 1,..., N that evolve continuously with respect to time ¢ € [0; 1] but
we observe those prices only on a discrete finite grid {j/T,j = 1,...,T} where T
is the number of observations. Using this discrete grid, we can compute the price
variations 7;(j) (that we will abusively call returns) for each asset price X; on every
time interval [(j — 1)/T%;j/T] by:

‘ J j—1
r() = X - XL o)
Then, we define the N x T matrix Xy such that Xx(ij) = r;(j) that enables to
define the empirical covariance matrix Ry as follows

RN = XNX}fV .

In this work, we will be interested in the statistics of the symmetric matrix Ry and
in particular in its spectrum, or more precisely, in its limiting spectral distribution
in the limit of large matrices (i.e. when N — oo) for different models of the i.i.d.
random continuous processes (X;(t)),7 € {1,..., N} (see below for precise defini-
tions). For this purpose, the Marcenko-Pastur paper enables to deal with the case
where stock prices follow independent Brownian motions. More precisely, in this
case, the matrix Xy is defined as:

Xy(ij) = B <%) _B <J%1) (8.1)

where the B; are i.7.d. standard Brownian motions.
If A\i, ..., Ay are the eigenvalues of Ry, the empirical spectral distribution of the
matrix Ry is the probability measure defined by:

1 N
HRy = N ZZI 6)\2" (82)

The Marcenko-Pastur (MP) result states that, in the limit of large matrices N, T —
oo with N/T — ¢ € (0, 1], the empirical spectral distribution pg, weakly converges
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(almost surely) to a probability measure whose density p(x) is:

1 V(s —2)(z— )

2mq x

p(x) = Iy 4 de (8.3)
where v+ =1+ ¢+ 2,/q.

Independently of the aforementioned work on random matrix theory, much work
has been devoted to studying the statistics of financial stocks. It turns out that most
financial assets (stocks, indices, etc...) possess universal features, called stylized
facts. In short, one can observe empirically the following properties (the list below

is obviously non exhaustive) for asset returns on financial markets:

e The returns are multifractal; in particular on short scales, they are heavy tailed
but tend to have distribution closer to the Gaussian law on larger scales.

e The volatility fluctuates randomly and follows approximately a lognormal dis-
tribution.

e While the returns are rapidly decorrelated, the volatility exhibits long range
correlations following a power law.

We refer to the references [44, 58] for a discussion on this topic. Many models have
been proposed in the literature that take into account these stylized facts. Among
them, there has been growing interest in the lognormal Multifractal Random Walk
(MRW) model introduced in [?] (see also [20, 7]). The lognormal MRW model
satisfies several of the so-called stylized facts, but a few of them remain unchecked
such as asymmetry of returns and Leverage effect (see [47]). The lognormal MRW
is simply defined as:

X(t) = B (M]0,t]) (8.4)

where B is a standard Brownian motion and M is an independent lognormal mul-
tifractal random measure (MRM for short) formally defined, for ¢ > 0, by:
t
MI0;t] = / e“’(m)_%E[“’(m)Q]dx,
0

where (w(z)).er 18 a ”gaussian field” whose covariance kernel K is

K(:v,y):’flm( . )

|t = s

where In, x = max(Inz,0). The two parameters 7 and 7 are respectively called
intermittency parameter and integral scale (or correlation length) of the lognormal
random multifractal measure M.

Fig. 8.1 represents a simulated path of a lognormal MRW X (¢) = B(M([0;1]))
where B is a standard Brownian motion independent of the multifractal random
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Figure 8.1: Simulated path of a multifractal random walk with intermittency pa-
rameter 72 = 1 and with integral scale 7 = 1/4. Note the intermittent bursts in
volatility.

measure M with intermittency parameter 4> = 1 and integral scale 7 = 1/4. The
reader can find a more precise reminder of the construction/definition of a more gen-
eral class of Multifractal Random Measure (MRM), as well as (standard) notations
used throughout the paper in section 8.2.1.

We thus aim at studying the large sample covariance matrices where the under-
lying price processes evolve as lognormal MRW. More precisely, the matrix Xy is
defined, for 1 <i < N,1 < j < T, as:

Xy(i) = B0, 3)) — B0, 222)) (55
T T
where the B; are 4.i.d. Brownian motions and the M; are 4.i.d. lognormal MRM
independent of the B;. Let us mention the work [94] which considers high frequency
covariance matrices in the context of diffusion processes (see also [119] for studies
of high frequency large empirical covariance matrices motivated by financial appli-
cations). The processes described by (8.5) are typically not diffusions.

In the spirit of the MP Theorem, the purpose of this work is to characterize the
limit of the empirical spectral measure g, when N, T — oo with N/T — ¢ € (0, 1].
It is interesting to understand how the long-memory volatility process affects the
covariance matrix in the limit of large matrices. In particular, we will see that
the intermittent volatility has the effect to spread the spectrum of the covariance
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matrix Ry in a wider region of R,. Indeed the spectral density has a compact
support [y_; 4] in the Marcenko-Pastur setting (in which the prices follow Brownian
motions) whereas it has an infinite support with a tail that gets heavier as the
intermittency parameter grows. We mention that our results can be extended to
many different auto-correlated volatility processes.

The effect of the integral scale 7 on the empirical covariance matrix Ry is also
very interesting in the context of price variations measured on a very short scale
(high frequency). The high frequency case corresponds to large values of the pa-
rameter 7 while low frequency case corresponds to small values of 7. Indeed, if X is
a lognormal MRW with integral scale 7, then the process X (t) defined on [0;1] as
X(t) = X(t/2) is a lognormal MRW with integral scale 2r. Note that this discus-
sion on high freqency measurement is irrelevant in the MP case when asset prices
follow independent Brownian motions since, in this model, the distribution of price
variations is the same on any scale: it is Gaussian, only the variance will change
with the scale and up to the variance parameter the limiting spectral distribution
will always be the same at different scales. However, if asset prices follow lognormal
MRW (or even another process with a correlated in time volatility process), the price
variations measured on small scales will have a distribution with higher kurtosis (i.e.
the probability mass of the tail is heavier) and therefore the spectrum of the empir-
ical covariance matrix Ry should be affected by decreasing the measurement scale.
We therefore expect stronger right tail for the spectral distribution. The numerical
analysis of our results indeed confirms this guess: the larger the integral scale is, the
heavier is the right tail.

Here, we are mainly interested in the case where asset prices follow lognormal
MRW but we will also present our results for two other related models where as-
set prices follow independent Brownian motions with a time change, which can be
thought of as a volatility process with memory (i.e. the volatility process is corre-
lated in time).

The next sections are organized as follows. In section 2, we remind the definition
of MRW and introduce the main notations of the paper. In section 3, we state our
main theorems which are characterizations of the limiting spectral measure of Ry
through its Stieltjes transform for different types of underlying processes X. These
equations are tedious to invert analytically and it is hard to extract the properties
(continuity, tails of the distribution) of the associated spectral density. In section
4, we invert these equations numerically so as to get informations on the spectral
measure of the covariance matrix Ry as N — oo and we check the validity and
applicability of our results using numerical simulations. The proofs appear in section
5 with some auxiliary lemmas proved in the appendix. The strategy of our proofs
is classical among the random matrix literature (the so-called resolvent method) as
it relies on the Schur recursion formula for the Stieltjes transform; in particular,
we follow the approach of [32]. The main difficulty lies in handling the Stieltjes
transforms in a multifractal setting.
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8.2 Background, notations and main results

8.2.1 Reminder of the construction of MRM

To fix precisely the notations that we will use throughout the paper, we quickly
remind the main steps of the construction of Multifractal Random Measures (MRM).
The description is necessarily concise and the reader is referred to [?] for further
details. In particular, we use the same notations as in [?] to facilitate the reading.
We consider the characteristic function of an infinitely divisible random variable Z,
which can be written as E[e??] = #(?) where (Lévy-Khintchine’s formula):

pp) = imp = 57°p" + / (€™ = 1) v(dz) (8:6)
and v(dz) is a so-called Lévy measure (ie satisfying [,. min(1,2?)v(dz) < +00)
together with the following additional assumption:

/ |z| v(dx) < 400, (8.7)
[7171]

so that its characteristic function perfectly makes sense as written in (8.6). We also
introduce the Laplace exponent ¢ of Z by ¢ (p) = ¢(—ip) for each p such that both
terms of the equality make sense, and we assume that the following renormalization
condition holds: (1) = 0.

We further consider the half-space S = {(¢,y);t € R,y € R% }, with which we
associate the measure (on the Borel o-algebra B(95)):

0(dt,dy) =y~ 2dt dy. (8.8)

Then we consider an independently scattered infinitely divisible random measure p
associated to (p,#) and distributed on S.

Then we define a process w, for € > 0 by the following. Given a positive parameter
7, let us define the function f: R, — R by:

f(r):{r’ ifr<r

T ifr>rT

The cone-like subset A(t) of S is defined by:

Adt) ={(s,y) € Ssy=e,—f(y)/2<s—t < f(y)/2}. (8.9)
We then define the stationary process (we(t))ter by:
wlt) = p(ALD) . (3.10)

The Radon measure M is then defined as the almost sure limit (in the sense of
weak convergence of Radon measures) by:

M(A) = lim M. (A) = lim [ e dr

e—0T e—=0t [ 4
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for any Lebesgue measurable subset A C R. The convergence is ensured by the fact
that the family (M.(A))so is a right-continuous positive martingale. The structure
exponent of M is defined by:

Vp =0, ((p)=p—1(p)

for all p such that the right-hand side makes sense. The measure M is different from
0 if and only if there exists € > 0 such that ((1+¢€) > 1, (or equivalently ¢'(1) < 1).
In that case, we have:

Theorem 8.1. The measure M is stationary and satisfies the exact stochastic
scale invariance property: for any A €0, 1],

(MOA)) acB07) = (AP M(A)) acBom),

where Q) is an infinitely divisible random variable, independent of (M (A))acpo,r),
the law of which is characterized by:

E[ez‘pm] — )\~

8.2.2 Notations

Let N and T := T(N) be two integers, the aim of this paper is to compute the
empirical spectral measure of the matrix Ry := Xy'Xn as N — oo, where Xy is a
N x T real matrix the entries of which are given by (8.5). Recall that the number N
of sampled processes is supposed to be comparable with the sample size T' := T'(N),
and more precisely, we will suppose in the following that there exists a parameter
q €]0,1] such that:

lim — =gq. (8.11)
We further set I:éN = Xy Xy, and if M is a symmetric real matrix, we will denote

by pas the empirical spectral measure of M.
Define the (T'+ N) x (T + N) matrix By by:

(0 Xy
BN_(XN 0),

We also define for z € C\ R,

An(z) = (zIryy — By) = (_XN e

> (Ry 0
BN_<0 RN)

Z[T —tXN>

Notice that
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and that the eigenvalues of Ry are those of Ry augmented with T'— N zero eigen-
values. We thus have:

N (TN
N+ T TN T

Jips, =2 8o, (8.12)

where 9§, stands for the Dirac mass at x. Combining this equality with the relation

[ F@hu @) = [ 5Hn, (o) .13

true for all bounded continuous functions f on R, we see that it is sufficient to study
the weak convergence of the spectral measure of By for the study of the convergence
of the spectral measure pp, .

We will thus work on the (weak) convergence of the spectral measures g, and
E [, ] in the following. To that purpose, it is sufficient to prove the convergence of
the Stieltjes transform of these two measures. Recall that, for a probability measure
pon R, the Stieltjes transform G, of y is defined, for all z € C\ R, as:

GM(Z):/R ! p(dx). (8.14)

Z—XT

and one can note that:

Gy (2) = Trace(Gn(2)), (8.15)

N+T

where we have set:
Gn(z) = (AN(z))_l. (8.16)

Hence, we have to investigate the convergence of the right-hand side of (8.15). Let
us introduce the two following complex measures L]lv’z and L?\}z such that, for all
bounded and measurable function f : [0,1] — R:

L (f %if( ) 2) ke
:%if( ) (2)k+T k4T

Clearly, we have the relation

1 T . N
N+TTrace(GN(z)) = N+TLN ([0,1]) + N+TL ([0, 1]) (8.17)

so that it suffices to establish the convergence of the two complex measures Ly~ and
L7
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8.3 Main results

8.3.1 Lognormal multifractal random walk

We first present our results when the process X (¢) is a lognormal multifractal ran-
dom walk, i.e. X(t) = B(M]0;t]) where M is the MRM whose characteristic and
structure exponent (see section 8.2.1) are respectively given by:

2 72

a2
v(q) = 5 e =54,
2 2
Y A
:1 — _ — .
C(q) (+2)q 54

We will make the assumption that the intermittency parameter +? is small
enough so as to overcome in our proofs the strong correlations of the model.

Assumption 8.2. More precisely, let us suppose that:

7 < L (8.18)
3
Though we conjecture that our results hold as soon as the measure M is non
degenerated, i.e. * < 2 (see [?]), Assumption 8.2 is largely sufficient to cover
most practical applications. For instance, in financial applications or in the field of
turbulence, 72 is found empirically around 2.1072.
We can now state our main result about the convergence of the empirical spectral
measures and mean empirical spectral measures of the matrices By and Ry:

Theorem 8.3. i) There exists a probability measure v on R such that the two mean
spectral measures Elup,] and E[ug,| converge weakly respectively towards the two
probability measures %’qv + %;50 and v o (z*)~! as N goes to oo, where v o (z*)~*
is the push-forward of the measure v by the mapping x — 2.

ii) The two spectral measures jip, and jgr, converge weakly in probability re-
spectively to the two probability measures %‘qu + %;(50 and v o (%)™ as N goes
to 0o. More precisely, for any bounded and continuous function f, [ f(z)pry(dz)
converges in probability to [ f(z)v o (x*)~!(dz).

ii) Let Ny be an increasing sequence of integers such that > ;- N,;l < +00,
then the two sequences pp, and pg, converge weakly almost surely to the two

probability measures f—fqv + %50 and vo (2%)7! as k goes to oo.

Theorem 8.3 is implied by (8.15), (8.17) and by Theorem 8.4:

Theorem 8.4. i) The measures E[LY] and E[L%] converge weakly towards two
complex measures. More precisely, there exist a unique > € C and a unique bounded
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measurable function K.(x) over [0,1] such that, for all bounded and continuous
function f on [0,1], we have respectively:

M%wﬂﬁMmAKmvmm,

EU%M—mmﬁif@M-

ii) In addition, we have the following relation between p? € C and K, (x):

1
1 —
/ K.(z)dr = qu? + — (8.19)
0

iii) Furthermore, there exists a unique probability measure v on R whose Stieltjes
transform is p?, meaning that for all z € C\ R,

(2 = /R Z(f”’z. (8.20)

It is important to state a characterization of the probability measure v: it is
done by means of its Stieltjes transform p?:

Theorem 8.5. The constant p? and the bounded function K.(x) are uniquely de-
termined for all z € C\ R, by the following system of equations:

(z _ /O 1Kz(t)]\/[(dt)>_1] , (8.21)
<z— /01 <|t_Tx|>sz(t)M(dt)) 1D1 (8.22)

where' M is the MRM with structure exponent ((q) = (1 +%/2)q — ¢*7*/2.

p=E

K,(z) = (z —qE

Let us notice that one can give a precise meaning to (8.22) for all v% € [0,2].
Indeed, we can define for all x € [0, 1] and all continuous function f, the following
almost sure limit as a definition:

2

/;( - )72f(t)M(dt)zlim (=) fom@r  (823)

’t—.ﬁE’ + n—0 te[0,1];|t—z|>n |t—$‘ +

Note that the above limit exists almost surely since, for z fixed:

In Mz — 2
n Miz - e, + e — 1+ l, a.s.
In e, k—o0 2

- L1

where ¢, ~. One can also check with this definition that we have:

[\

1 2 1
/ < ’ >PY f(t)M(dt) - hm ecov(we(t)vwe(x))f(t)ewe(t) dt
0

’t—$’ + =0 Jo

!The notation (-) is a shortcut for max(-,1).
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Conjecture 8.6. With this extended definition, we conjecture that theorem 8.5 holds
in the lognormal multifractal case for all v* € [0,2[ and thus that the limiting equa-
tions can be obtained by the ones of theorem 8.10 (see below) with 2W = w. as
e — 0.

8.3.2 General multifractal random walk

We now look at the more general case when the change of time is a measure M
for which the function ¢(q) is given by (8.6) and the structure exponent by ((q) =
q — ¥ (q) with ¥(q) = (—iq).

We still have to make an assumption to avoid the issue of strong correlations. In
this more general setting, Assumption (8.2) becomes:

Assumption 8.7. Assume that the structure exponent of the MRM satisfies the
condition:

¢(2) >5— 4(/(1). (8.24)
and that there exists 6 > 0 such that:

C(240) > 1. (8.25)

As in the previous section, we conjecture that our results hold as soon as the
measure M is non degenerated, i.e. (see [?]) ((1+ €) > 1 for some € > 0.

Theorems 8.3 and 8.4 remain unchanged for this more general context. Theorem
8.5 becomes:

Theorem 8.8. The constant p? and the bounded function K,(x) are uniquely de-
termined for all z € C\ R, by the following system of equations:

(z— /O 1 Kz(t)M(dt))ll, (8.26)
(z - /0 1 (ﬁ)ifg@)@(dw)_lb_l (8.27)

with k = ¥(2) and where M is the MRM whose characteristic and structure expo-
nent are respectively v(q),((q) and where the random Radon measure Q) is defined,
conditionally on M, as the almost sure weak limit as € goes to 0 of the family of
random measures Q.(dt) = ¢“®OM(dt) where, for each ¢ > 0, the random process
W, is independent of M and defined as W(t) = Ti(A(t)) where [ is the independently
scattered log infinitely divisible random measure associated to (@, 0(- N Ag(x))) with:

p:=E

z

K.(z) = (z —qE

o(p) = ip(y — k) + / (€7 — 1)(e" — 1)u(dz). (8.28)
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8.3.3 Lognormal random walk

Let us mention that one can easily adapt the methods used to prove the above
theorems in the simpler case (lognormal case) where X (t) is defined, for all ¢ € [0; 1],

by:
X(t) =B ( /0 t 62W<S>ds) : (8.29)

where (W (s))scoa) is a stationary gaussian process with expectation m and station-

ary covariance kernel k. The normalization will be chosen such that: m = —k(0).
In this context, the entries of Xy are given, for 1 <7< N,1 <5< T by:
Xn(ij) = ﬁe ’(T)Bj =1i(J) (8.30)

where the (B});; are i.i.d standard centered Gaussian random variables and the W;
are i.i.d stationary Gaussian processes with expectation m and stationary covariance
kernel k. Indeed, if one makes the following extra assumption:

Assumption 8.9. Assume that for some constants C' > 0 and 8 > 0, the covariance

kernel k satisfies:
Vo e R, |k(z) — k(0)] < C|z)’.

With the same notations as in the previous section, we can now state the follow-
ing theorem under assumption 8.9:

Theorem 8.10. The system of equations for u? and K,(x) becomes:

(z - /O 1 K. (t)e2® dt) 1] (8.31)
(z — /0 1 K. (t)et =)W dt) _1] > B . (8.32)

where (W (t))icpon) is a stationary gaussian process with expectation m and stationary
covariance kernel k.

W=E

K.(z) = (z —qE

8.4 Numerical results and computer simulations

In this section, we are interested in the case handled in sub-section 8.3.1, in which
the price of an asset evolves as a lognormal multifractal random walk. We want to
extract informations on the spectral density v o (2?)~! of the covariance matrix Ry
in the limit of large matrices. This section will also give evidence that our equations
are easy to use in practice for applications.

The information on the measure v is entirely contained in its Stieltjes transform
p? which is the unique solution of the system of equations (8.21) and (8.22). Let
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us admit for clarity at this point that the measure v admits a continuous density,
at least on the set R\ {0}. One should be able to show that this is indeed true
using the two equations (8.21) and (8.22) that characterize the probability measure
v. Under this continuity assumption for v(z), we can re-find the density v(x) from

©2 by the relation

lim l%(,ui_ie) =v(z). (8.33)

e—0 77

Note that we just need to find the unique family of functions (K.(z))zcpo.) for
z € C\ R near the real line, that verifies the fixed point equation (8.22). Indeed,
knowing (K (x)).eo,1], we can compute 42 by using equation (8.21), or even simpler,
the additional relation that we stated above

1
K.(z)dr = qu® + — (8.34)

Let C([0; 1], C) be the space of bounded functions from [0; 1] to C. For z € C\ R
fixed, the idea to find (K.(x))sc(0;1) is the fixed point method due to Picard. Let us
introduce the operator T : C([0;1],C) — C([0;1],C) by setting, for g € C([0;1],C)
and for all x € [0, 1]:

Tg(x) = !

(8.35)

2

(z — Iy <|tj—m|>1 g(t)M(dt))ll :

It can easily be shown (see sub-section 8.5.6) that if z € C\R is sufficiently far from
the real line, then the operator 7" is contracting and therefore admits a unique fixed
point K, (-) in C([0;1],C). To find the fixed point K, we will iterate the operator
T starting from any fixed initial function K. We know that, for z such that
the operator T is contracting, the n-th iteration of the function K™ := T(K{"™)
converges to the unique fixed point K,. In fact, numerically, there is no need in
applying the iteration on 7T for z such that T is contracting (i.e. for z far from the
real line) and one can apply the Picard method directly near the real line* and find
the fixed point after a reasonable number of iterations of the operator T'.

The multifractal lognormal random measure M (dt) and multifractal random
walk are simulated through the standard method by simulating first, with the use of
fast Fourier transform, a gaussian process with covariance function given for n > 0
small by

z—q

.
K, (It —s|) =+*In; (—).

A= s =7 (=)

The lognormal multifractal random measure and random walk are then constructed
from this gaussian process through the standard formulas (see e.g. [?, 7]).

2Recall that, in view of equation (8.33), we are interested in the value of the Stieltjes transform
near the real line.
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The results are as follows. In Fig. 8.2, we show the comparison between the
theoretical value of the density v o (2?)~!(z) (computed numerically as described
above) and an empirical histogram of the eigenvalues of a sample of simulated co-
variance matrices Ry (defined in the introduction) for N = 1024 and ¢ = 1. The
upward plot is done with an intermittency parameter v> = 1/4 and an integral scale
7 = 1/4. The agreement is excellent as expected from Theorems 8.3, 8.4 and 8.5.
The downward figure is done for an intermittency parameter 4> = 1/2 and an in-
tegral scale 7 = 1/4, suggesting that our prediction remains true for v2 > 1/3 (see
conjecture 8.6 which also covers the case v* € [1,2]).

In Fig. 8.3, we represent three curves (axis are in log-log) corresponding to the
theoretical density v o (z2)7!(x) for a parameter ¢ = 1, an integral scale 7 = 1/4
and for three different values of ¥2. The black dashed curve corresponds to v* = 0,
which in fact is the Marcenko-Pastur case: asset prices are following independent
Brownian motions with a trivial constant volatility process. In this case, the support
is compact and the right edge of the spectrum is known to be equal to 4. The blue
curve corresponds to an intermittency parameter equal to 1/4 and the red curve is
for v* = 1/2. In this way, we see precisely the distortion of the spectrum induced by
the auto-correlated volatility process. The most interesting part for applications is
certainly about the tails of the distribution: the higher the intermittency parameter
7?2 is, the heavier the tail of the distribution is.

In Fig. 8.4, we represent four curves corresponding to the thoeretical density v o
(2?)7Y(z) but varying the integral scale 7 instead of the intermittency parameter v2.
We chose for this plot ¢ = 1 and v* = 1/4 and represented the density v o (2?)7!(x)
for 7 = 0 (corresponding to the trivial MP case) and for 7 = 1/4,1,2. The result
on the right tail of the distribution is the following: the higher the integral scale is,
the heavier the right tail of the distribution is. As mentionned above, large integral
scale corresponds to measuring price variations on small scales. On small scales, it
is known that price variations will have distribution with larger kurtosis than price
variations on larger scales and therefore it was expected to find heavier right tail
distribution for the spectral distribution of the corresponding covariance matrix.

8.5 Proofs of the main results

In this section, we give the proofs of theorems 8.3, 8.4 and 8.5. The proof of Theorem
8.8 is very similar and we will not explain it in every detail, except for the final part
where we establish the second equation of the system in Theorem 8.8 verified by
K.. We will give the details for this part of the proof in the appendix. The proof
of theorem 8.10 is an easy adaptation of our proofs for theorems 8.3, 8.4 and 8.5; it
is left to the reader. Furthermore, the proofs are very similar when ¢ = 1 or when
q < 1. For the sake of clarity, we assume T'= N and hence ¢ = 1 in the proofs that
follow.
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Figure 8.2: Comparison between the theoretical value of the density v o (z2)7!(z)
and the empirical histogram computed through a sample of simulated empirical
covariance matrices Ry as defined in the introduction. For both plots, ¢ = 1 but
stock prices follow multifractal random walks with intermittency parameter v2 = 1/4
in the upward figure, 42 = 1/2 in the downward figure.
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Figure 8.3: Log-log plot of the density v o (z?)™! with ¢ = 1, 7 = 1/4 for three
different intermittency parameter: v* = 0 (black dashed line), v* = 1/4 (blue line)
and 72 = 1/2 (red line).
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Figure 8.4: Log-log plot of the density v o (2?)~! with ¢ = 1,74* = 1/4 for four
different integral scales 7: 7 = 0 (black dashed line), 7 = 1/4 (red line), 7 = 1 (blue
line) and 7 = 2 (green line).
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Hence, in the following, we will suppose (unless otherwise stated) that:

and M will be the MRM whose structure exponent is ¢ (see section 8.2.1 for a
reminder).

Our approach to show the convergence of E[Ly"] and E[L%"] consists in proving
tightness and characterizing uniquely the possible limit points. The classical Schur
complement formula is our basic linear algebraic tool to study E[Ly"] and E[L%"]
recursively on the dimension N, as is usual when the resolvent method is used. The
original part of our proof is that we apply the Schur complement formula two times
in a row to find the second equation of the system in theorem 8.5 involving the limit
point K. (x) of the measure E[L}’]. We will also show that the limit points of the
two complex measures E[L}y"] and E[L%?] satisfy a fixed point system (written in
theorem 8.5).

We begin by showing tightness.

8.5.1 Tightness of the complex measures E[Ly’], E[L%] and
limit points

Lemma 8.11. The two families of complex measures (E[L?{,Z])Ne;\r,i = 1,2 are tight

and bounded in total variation.

Proof. Let us present the proof for (E[L}VZ]) ~Nen; the other proof is similar.
One has, for each N € N:

E(LY) 1 0.1] =

1

| E[GN(2)rr] | < RO

(8.36)

NE

k=1

1,z

and so the family of complex measures (E[Ly’])yen is bounded in total variation.
It is obviously tight since the support of all the complex measures in the family is
included in [0, 1], which is a compact set. O

Using Prokhorov’s theorem, we know that those two families of complex measures
are sequentially compact in the space of complex Borel measure on [0, 1] equipped
with the topology of weak convergence. In particular, there exists a subsequence
such that, for all bounded continuous function f, one has, when N goes to +oo
along this subsequence:

ELE (] = [ faiias). (8.37)
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Lemma 8.12. The complex measure jul(dz) has Lebesque density; more precisely,
there exists a bounded measurable function K,(x) such that:

pi(de) = K, (z)dx. (8.38)
Proof. One has:
B [LE ]| < L /ME G (5.39)
|
< 5 (Z N}; F(k/N)| (8.40)

Letting N — +o00 along a subsequence, one obtains:

/f ), (dz)

This proves the lemma. ]
Thus, there exists a subsequence such that, as N tends to 400 along this subse-
quence:

\|% /If )|dz. (8.41)

E [Ly(f)] — /0 f(2) K, (z)dx. (8.42)

Lemma 8.13. There exists a subsequence and a constant > € C such that, as N
goes to +00 along this subsequence:

1
E [LY ()] = 12 / f(z)dz. (8.43)
0
Proof. 1t is easy to see that the G (2)gx, k = N+1,..., N are identically distributed.

In particular, these variables have the same mean p?(N). One has, for all N:

1

S

[12(N)] < (8.44)

So there exists a subsequence and a complex number p? such that, as N goes to +oo
along this subsequence, p?(N) — p?. One thus obtains, as N goes to +oo along
this subsequence:

E [L27(f)] — 42 /0 F(@)da. (8.45)

OJ

Following the classical method as in [32], [31], [88], we will show in the following

that the limit point x? and K,(z) are defined uniquely and do not depend on the
subsequence. We will first recall some preliminary results on resolvents.
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8.5.2 Preliminary results on resolvents

We first recall the following standard and general result; the next lemmas of this
section are also standard but are applied to our particular case.

Lemma 8.14. Let A be a symmetric real valued matriz of size N. For z € C\ R,
let us denote by G(2) the matriz
G(z)=(z—A)" (8.46)
For z€ C\R and k € {1,..., N}, we have
1
S(2)(G(2)k) <0 and |G(2)kk| < SOl (8.47)
3z
In particular, if F C {1,..., N} is a finite set and (a;);cr a finite sequence of positive
number, then:

s(z . aiG(z)iZ)

50 > 1. (8.48)

and we also have:
1 1

|Z - Ziep aiG(Z)n“ S 1S(2)]

Proof. Write A = U'DU where D is a diagonal matrix with diagonal real entries
()\1)1 <i<N- Then

(8.49)

Y 1
G = Usil? .
(2) i ;l Ly

Since 3?(2_1%) = (%(Z)SE(/\ZB);:\:%(Z)2 and %<z—1>\1> = (%(z)—;?)(j—)i-%(zﬁ the relation (8.47)
follows. It is then straightforward to derive (8.48) from (8.47). O

Fori=1,...,N, let XJ(\Z,) = (Xn(kl))y s be the matrix obtained from Xy by
taking off the i-th column and row. Define, also for i = 1,...,2N the (2N — 1) x

(2N —1) matrix Ag\i,)(z) obtained from Ay(z) by taking off the i-th column and row.
In particular, for i =1,..., N,

N ZI _tX(i)
AN(e) = ( w0
—Ay zIn_y
For:=1,...,2N, set: . '
G () = (AR ()" (8.50)
Let now X'](\?) denote the matrix Xy with the i-th column and row set to 0 and

AE\? (z) denote the matrix Ay(z) with the i-th column and row set to 0 excepted the
diagonal term. Again we have, fori=1,..., N:

~(N+4i zl _tx®
AS\/ i )(Z) = ( X]\(fz) N,
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Fori=1,...,2N, set:
GV(z) = (AV ()L (8.51)

In the paper, we will also use the terms AN (z),Gg\l,”)(z),ﬁg\lﬁl)(z),ﬁg\’,“)(z) The
double superscript just means that you make the operations described above to the
rows and columns ¢ and k.

Lemma 8.15. For allk € {1,...,N} and allt # N + k, one has:

N 1
E||lG — QWK <— 8.52
H N(Z)tt N (Z)tt } \/N’%(Z)P ( )
Proof. Multiply the identity:
AV ) — An(z) = AN (0) — An(0) (8.53)
to the left by Gy () and to the right by G (2) to obtain
Gn(2) = GNP (2) = Gu(2)(AY™(0) — AN (0)GT ™ (2).  (8.54)

Then one has:

On () = N @) = (On AR 0 - A )G () - (8:59)

N
= G ()N Z G (2)urk(?) (8.56)
=1
N A
+GN (2w ()G ™ (2);0 (8.57)
j 1
)t N4k Z N+k) (2)t (8.58)

where we have noticed that, for all t # N + k, GE\],VM (2)N4rt = 0.
Therefore, we find that:

97 1/2
2

] <E[|Gn(2)en+kl’] 1/ E

N
Z re( N+k) (2) s

g=1

= HGN(Z)tt - G%VM)(Z)?%

(8.59)
by Cauchy-Schwartz’s inequality. Using then the independence of r4() and G, (v +k) (2),

we get:
1/2
N 2
K HGN(Z)tt - G%V-i-k)(z)tt ]

} <E[|Gy(2)nil] B [re(1)2] B

1
S URBEE

The proof is complete. O

N
~N(N+k
Z‘va+ (2
1

Jj=
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Lemma 8.16. There ezists a constant C > 0 such that, for all k € {1,...,N} and
allt # k:

_. (8.60)

]E HGN(Z)tt — ég\’;) (Z)tt

Proof. Again, we start from the relation:
Gr(2) — GF(2) = Gn(2)(AY(0) — Ax(0)GV(2).

Thus we have

Gn(2) = O (2 = (Gn(AV(O) - An(O)ER())  (8:61)
= GV (2) i]::ﬂ G (2)uri(k) (8.62)
+ G (2) Ni ri(K)GY (2); (8.63)
= Gn(2) Nf ri(K)GW (2);0 (8.64)

j
where we have noticed that, for all ¢ # k, égl\f)(z)kt = 0.
Therefore, we find that:

07 1/2
} UGN tk‘ 1/2 |:Z7“] t] (8.65)

by Cauchy-Schwartz’s inequality. We want to expand the square in the above expres-
sion. To that purpose, we first observe that, conditionally to the M ¢ the variables
(r;(k)); are independent from Gg\];)(z) and centered. Hence we have for j # j,

)

E HGN(Z)tt - éngc)<z)tt

A

E 1 (k)ry ()G (2069 ()] = 0.
Thus we get:

W (2)5

]E HGN(Z)tt — GAE\];) (Z>tt

} <E UGN(Z)t,kF} V2 (ZE [Tj(k)Q
AL 1

E [|Gn(2)ekl] (ZE [ri (k)] "R {

E[ry (k)44 N+1 a2\ 2
STRE (ZE{ } )

< E[Tl(k)4]1/4(N L)V (%E “G%C)(z)]t 4} ) 1/4

SG)
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Now we use the scaling properties of the MRM to obtain, for some positive constant
c,

E[r;(k)*] = 3E[M (0, %)2] < ON—O),

Furthermore, by using Lemma 8.26 which assures that, almost surely:

N+1

~ 2 1
G(k)(z) 1< (8.66)
2, [0V G| <5t
and the fact that:
NtL A NtL . 5\ 2
> |GV | < (Z GY (2);e ) , (8.67)
=1 =1
we finally obtain
A(K) C 1.¢@-1
E HGN(Z)tt -GN (2)u ] < EOE (N) !
It just remains to check that ((2) =2 — ~2%. O
Lemma 8.17. For each k € {1,...,2N}, if t # k, then
Ggl\?)(z)tt = ég\l;)(z)m (8.68)

and if t = k, then @g\’;)(z)kk =z7L

Proof. 1t is straightforward to see that the two matrices Gg\];)(z) and GA’E\],C)(Z) have the
same eigenvalues except that égl\;)(z) has one more zero eigenvalue. In addition, the
eigenvectors look also very similar since you can obtain 2N eigenvectors of CAT’%C)(Z)
by adding a zero entry to the eigenvectors of Gg\]f)(z) (between the entries k — 1 and
k). The last eigenvector of G%“)(z) is the vector of RY for which all entries are zero

except the entry number £. ) B
Now observe that with Gg\];)(z) = Udiag(z —A\)U* and Gg\];)(z) = Vdiag(z —\)V*,

2N
1
GS\];)(Z)tt = Z ‘UtiPZ Y (8.69)
i=1 ¢
N
. 1
G%)(Z)tt = Z ‘UtiPZ T (8.70)
i=1 M

The result follows since, for ¢t # k,

2N—-1

2 1 = 2 1
Z s N Z [l Y (8.71)
i=1 t i=1 N

and, for t =k, G’g\’f)(z)kk =z L O




234 CHAPTER 8. MARCENKO PASTUR THEOREM FOR L1.D. MRW

Lemma 8.18. For all z € C and Lebesgue almost every point x € [0,1], we have

I(2)S(KL(x)) <0 (8.72)
and )
R < 575 (873)

Proof. This is a straightforward consequence of Lemma 8.14. Indeed, we have for
all positive continuous function f on [0,1] and N € N:

%(z)%( /O 1 f(x)IE[L}f](dx)) <0,

We pass to the limit as N goes to oo along some suitable subsequence and obtain:

%(z)%( /0 1 () K. (z) dm) <0.

The result follows. O

8.5.3 Concentration inequalities
This lemma is adapted to our case from Lemma 5.4 in [32].

Lemma 8.19. Let f : [0,1] — R be a bounded measurable function. For each
i € {1,2}, we have the following concentration results:

[ () - B ()] ] < S Ll (8.74)
Proof. Define two functions Fj and Fg such that:
M) , 1, [k
Fy ((Xz(g >1<j<N+171<%<N) ZN;JC(N> G (2) (8.75)

N+1
1 k

Fi ((x57) 1<i<N|=— A ‘

N( Y J1<i< Ny ! N;f N+ 1 GN(2)ksnien  (8.76)

We will prove the Lemma for Ly?; the proof for L3 is a straightforward adap-
tation.

Let, for k € {1,...,N + 1},

Fr.=0 ((X»(N)

vy

1<i< k:) (8.77)
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If P denotes the law of the vector (Xl(;v)>
1<j<N

E[| Fy —E[Fy] 7]

- ZE [| E[Fy | Fiy1] — E[Fy | Fi |2]

=0

N
:Z/ \ /(FN(iUl,xz,---,$i+1:yi+27--->yN+1)—FN(%,J?Q,---,flfi,yzurl»---,yN+1)>dP®NH(?/) ‘2
dP®i+1($)

N
< Z/ | /(FN<I‘17‘7;27"'thxi-l-laxi—i-%"‘?x]\f—i—l) _FN(£17I‘27"'7Ii7y7mi+27‘"JxN+1))dP(y) |2

dP®N+1(aj)
N
<3 sw (Ve Fy P [ 1o =y | aP(a)

i—0 RIN+D?
The quantity V
Tit1-

If we consider a couple of processes (B!, M ) independent from (B!, M) with
the same law, it is easy to see that:

i1 P\ refers to the gradient of Fy, in the direction of the vector

N
2 1 1 nl nl 2
/ |z —y|[*dP ® dP(z,y) = Z;E[(BMl(o 4) BMl(o,%) o BMl(o%) T BMl(o,%)) ]
]:
1 nl nl
=2- QZE[ MY(0,4) BMl(O,%)XBMl(O,%)Bﬁl(o,%))]
= 2.
In our case, we have, fori € {1,... . N+1},5€{1,...,N}:
OGN (z
# =GN (kiGN (2)Nrik + GN(2)kN1iGN(2) 0k (8.78)
ij
Thus,
1oL [k
Ve B = 5 ; f (N) Vi G (2) 1 (8.79)
It is now plain to compute:
N
2 1 1 2

Jj=1
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where D!(f) is the (2N)-dimensional diagonal matrix of entries:

D'(f)w=f (%) i <k< Ny

One thus has:

N
4
|| v$i+1F]{f ||2 Z | GN )GN( ))N+i+1,j |2
4 2
Sw Z\ (G NN i |
4 || f 1
< — .
SN2 Oz

where, in the last line, we used lemma 8.26 and the fact that the matrix Gy (z) D' (f)Gn(2)
has a spectral radius smaller than || f || / | Sz |?.

Finally,
E[| Fy —E[Fy] )] < SIS (8.80)
A R AT

O

We also prove the following lemma:

Lemma 8.20. For all o > 1 such that ((2a) > 1, we have
AN+R) A(N+k) C(lnN)?
Zm OV ~EIOY )| € (88D
N=a[S(2)]

for some positive constant C' independent from N, z, k.

Proof. Notice that (rg(t)),; and G%V+k)(z) are independent. Hence, by conditioning
with respect to the process (ri(t));, we can argue along the same lines as in the
previous lemma with r4(t) instead of  f(+) and we get the formula:

N 2
. 8
E|[> () (G(N+k () — E[GE\];V*’“)(Z)tt]) < |S<z)|4]E[Slip ()]
t=1
We conclude with Proposition 8.29 in the appendix . O

In the following, we fix @ > 1 such that ((2a) > 1 (because of the expression of
¢ and the inequality 7* < 1/3, it is clear that such a number exists).
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8.5.4 The system verified by the limit point p? and K. (z):
first equation

From the Schur complement formula (see e.g. Lemma 4.2 in [32] for a reminder),
one has for k € {1,...,N}:

N -1
GN( )N—i—k: N+k = [Z - Z T’k N+k)(z)st] (8~82)
s,t=1
Using Lemma 8.27, one can write:
N -1
GN(2)Ntb Ntk = [Z =) it GO () + G}V,k(z)] (8.83)
t=1

where €}y ;.(2) is a complex valued random variable for which there exists C' > 0 such

that forall N e Nand 1 <k < N,

C
Ellens ()] < 5= (8.84)
By using Lemma 8.17, we can write:
—1
GN(2)Ntk N1k = [Z - Z Tk N+k) (2)u + E}Vk(z)] : (8.85)

Lemma 8.20 applied to o > 1 such that {(2a) > 1 yields:

C(ln N)?

E )
<Ga)=
|\5( )|4

al , N+k) AN+ D i
G 7 (G092 — EIGY <>1)‘ < s

Thus, one can write:

N -1
ORI [ = >kt [G ()] + ehvalz) + e%mz)] (8.87)
t=1
where €%, (2) is a complex valued random variable such that for all N € N and
1<k<N+1,

C(InN)?

EHEz k(z)|2] < 200)—1 :
: NS

(8.88)
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In addition, using Lemma 8.15, we can show:

E E:WQV(E[Gﬂ*“@ﬁ,—GN@%4>H (8.89)
< SBR[ |GV () - G (2| (8:90)
<1 (8.91)
S(2))PVN
It follows:
GN(2) N4k Nk = [2 =) r(t)? (2)u] + enpo(2) + €qp(2) + Rp(2)
= (8.92)

where € ,(2) is a complex valued random variable such that for all N € N and

1<k<N+1,
1

[S(z) VN

Then we have:

2
C
S NI a2
] NP

Proof. We expand the square and, because 74 (t) and rx(¢') are independent for ¢ # ¢’
conditionally to M*, we have:
]

HE:Q% — M(I4) )E [G(2)ul

E [Jens(2)]] <

Let us denote by I% the interval [

(8.93)

N -
Lemma 8.21. The following inequality holds:

|

for some positive constant C'.

N

Z (Tk(t)Z - Mk(ﬁv))“-;: (G (2)u]

t=1

::E: [( jwqhw>< ()I_Aﬁ@%»EHGN@ﬁAEK%NZMH

=1

E[(re(e)? - MH15)) |E LGN ()l®

=§_Vj[ W) ElGh P
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]
We can thus write
N
GN(2)Nhnek = |2 — Y MF(INE [Gy(2)u] (8.94)
t=1 L
+ ejl\f,k(z> + E?Vk(z) + Ez]))\fk(z) + E?V,k:(z) (8.95)

where € ,(2) is a complex valued random variable such that for all N € N and
I<E<S N+,

C
E [lexs(2)]*] < NOTSEE (8.96)

Set eni(2) = €y (2) + €y i(2) + € 4(2) + €xx(2) and rewrite:

N -1

Cr(2vnin = |2 = S MHILE G ()] + ena(2) (8.97)

t=1

We now need to introduce the truncated Radon measure M*(dz) with Lebesgue
density <@ which converges almost surely as € goes to 0, in the sense of weak
convergence in the space of Radon measure, to the measure M* (see section 8.2.1).

Lemma 8.22. For e > 0, the following uniform bound holds:

SB[ 3 MHIIE Gy (e = 3 MEIE Gy ()l F] < (5

Proof. We expand the square. Note that the covariance function p. of the process
w, increases as € decreases to 0 and uniformly converges as ¢ — 0 towards In, ﬁ
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over the complement of any ball centered at 0. Thus we have:

sngU ZMk<[]tV)E [Gn(2)u] — Z MEF(IN)E [Gx(2)u] ’2}

= sup > E[(MM(IY) — MEIN) (MM(IR) — MEUIR)]E [Gr(2)a] E Gy (2) ]

—supz [ (28) = MEI)) MH(IG) — MEUE)] B G (2)ul E (G2

= sup Z ( [Mk (I8 ) M*(1%, )} _E [Mf(I}V)Mf(I}\',)D E Gy (2)u] E[Gn(2)e]

tt'=

= sup Z ]E G]V )tt] [GN t’t’ / / $(2) Iny Tr—u] u\ _ ew(2 pe(r— u)) d/’«du
It J It

N tt'=

‘2/ / ln+ Tr—u] u| —e ( ﬂs("" u)) drdu

where, in the fourth line, we used the fact that, if F.is the sigma field generated by
the random variables p(A), A € B({(t,y) : y > €}), then E[M*(A)|F.] = MF(A) for

all borelian set A. A straightforward computation leads to the relation

InT+1-4 if [t <e

pe(t) =< Ing ife<|t| <7 (8.98)
0 if 7 < |t
By using the expression of p,, it is then plain to obtain the desired bound. O]

We can thus write

G (2) N4k Ntk = [Z = > MEIRE[GN(2)u] + enal(z) + (e, N, Z)] ;o (8:99)

t=1
where
supE[|6(e, N, 2)[*] = 0 ase— 0, (8.100)
N
and also:
—-1
k
E[GNn(2)N4kn+k] z = Z ME(IN)E [G(2)u] + enp(z) + (e, N, Z)]
(8.101)

The next step is to study the convergence of the above quantity. Hence we prove
(see the proof in the appendix):
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Lemma 8.23. The random variable 31 | M*(IL)E [Gy(2)u] converges in probabil-
ity as N — +o00 towards fo (r)MF(dx).

We fix € > 0. For that €, the famﬂy of random variables (d(e, N, z))n is bounded
in L? so that it is tight. Even if it means extracting again a subsequence we assume
that the Couple (N MFM(IE)E [Gn(2)u], 6(e, N, 2)) 5 converges in law towards the
couple fo (x)MF(dx),Y.). We remind the reader of (8.82) which implies that

<Z — Z Mf(I}V)E [GN<Z)tt] + EN,k(Z) + (5(6, N, Z)) < |%(12)| .

The quantity (z — S MF(IL)E [Gn (2)u] + enp(2) + 6(e, N, Z)) is therefore bounded

uniformly with respect to N, e and converges in law towards

(z - /0 1 K. (2)M*(d) + Y)

We deduce that the expectation of the former quantity converges as e — 0 towards
the expectation of the latter quantity. From (8.101), we deduce that

(z — /01 K.(z)MF(dz) + Y)

Clearly, standard arguments prove that fo r)MF(dz) converges almost surely

towards fo L(z)M*(dx)ase — 0 (K, is determlmstlc (see lemma 8.19), measurable
and bounded) and, because of (8.100), Y; converges almost surely towards 0 as € — 0.

-1

-1

p2=E (8.102)

1
Again, because the quantity <z — fo () MF(dx) + Y> is bounded uniformly
with respect to €, we deduce that:

<z _ /0 1 KZ@)Mk(dx)) _1] | (8.103)

8.5.5 Second equation

p:=E

Now we turn our attention to the terms Gy (z)x, for k € {1,..., N}. Again, by
using the Schur complement formula, we can write, for k € {1,..., N}:

Gn (2 = |2 = > rilk (Z)NJri,NJrj] (8.104)

i,7=1

N -1
= Zrz NH N+ +77Nk( )] (8'105)
i=1
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where, using Lemma 8.28, nb’k(z) is a complex valued random variable for which
there exists ¢ > 0 such that for all N € N and 1 <k < N, E[jny,(2)[*] < ¢/N.

With a further use of the Schur complement formula for the term GE\],C)(,Z) N+i.N+is
we obtain:

1 -1

+ 77]1Vk(z)

Gr(2)w = 2= _ri(k)? [2 - ri(s)ri() G (2)

=1 s,t#k

(8.106)
where GV () = AFNTD (5)-1 Note that G (2) is independent of (7;(£))e—1....
Using the same arguments as in the derivation of the first equation (in particular
Lemmas 8.27, 8.17, 8.20, 8.29, 8.16 and 8.15), one can show that:

S al ri(k>2 1o, B
GN(Z)’“’“_[ 2 T B G (] o) | >] 10

where (On1.i(2))1 <i <~ are complex random variable such that

C

1 72 C(Qa) 1)

len P

Ellonki(2)]] <

(8.108)

for some positive constant C' that does not depend on 7, N and for o > 1 such that
((2a) > 1.

Lemma 8.24. One can write:

N

ri(k)? 1 2 B
©) [ Y ){GN(>]+?7,()+77,()] (5109

where n?Vk(z) 18 a random variable that tends to 0 in probability as N goes to oo.

Proof. By using Lemma 8.14, we deduce that:

i ri(k)? ri(k)?
Py Et 1MZ(F) (G (2)id) + Onpalz) 2 — S0y MAILE [Gr(2)]

min(|0n4i(2)], 2). (8.110)

/

We stress that the lemma is proved as soon as we can prove that the left-hand side
in (9.19) converges in probability to 0. Hence it is enough to prove that

N
E | > ri(k)* min(|dni(2)],2)
i=1
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converges to 0 as IV tends to co. By noticing that:

N N
Onki(2) = Y ri(s)r(OGY N (2) = > MUINE[Gr(2)ul], (8.111)
s,t#k t=1
it is straightforward to see that the variables (ri(k)2 min(|onx,i(2)], 2)) e e
identically distributed. Thus we have
N
E| Z ri(k)? min(|6n 1i(2)], 2)] = NE[r1(k)* min(|0nx,1(2)], 2)].
i=1

Then for all A > 1 and o > 0, we have

NE[ri (k) min(|6nx1(2)],2)] =NE[r1(k)? min([0n 1 (2)], 2)1 (v k)2 < 43
—|— N]E [T1<I€)2 min(|5N,k,1(z)|, 2)1{N7"1(k)2>A}}
< AE[8w1(2)]] + 2E[N71(k)*Lnvp, g2 a3
AC 2
“E NlJroz k 2(a+1)
N((ziq + Ac [ r1(k) ]
AC 2Nt 1
_ + ]E[Ml (07 _)a+1]

NC@i*l Ao N

<

By using the scale invariance property of the measure M, we have:

E [M'(0,1/N)*] =

L [M*'(0,1)*H],

in such a way that

A NY(1+a)
NE [rl(k:)2 min(|dn,1(2)],2)] < _AC +2E [M'(0,1)*""] ———

— (8.112)
NC( ) A«

Since ((2) > 5 — 4¢’(1) (this inequality is clear with ((q) = (1 +72/2)q + ¢*~*/2
and is due to our hypotheses of Assumption 8.24 in the more general case), we can
choose p > 0 such that

¢(2) -1
4
The mapping « €]0,+oco[— pa — (1 + ) reduces to 0 for a = 0 and, because
p > '(1), is strictly positive for v > 0 small enough. So we choose o < 1 such that
pa— (14 a) >0 and we set A = NP. We obtain:

>p>1-C(1)=v¢'(1). (8.113)

1

NE[?"l(k)Qmin(‘5N7k71(z)|,2)] < m.

4 92teg [Ml(O, T)oz+l}
P

¢(2)—1
N

The result follows by letting N — oo since min((¢(2) —1)/4 — p,ap — (1 + ) >
0. O]
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Lemma 8.25. There exists a constant ¢ > 0, which does not depend on N, such
that for each N € N:
2
c
< -

Proof. The proof is straightforward using the fact that for ¢ € {1,... N}, the
random variables

N

ri(k)? ri(k)?
E —E
Z( = 2 MUIL)E [G(2)u] = 2 MUIG)E (G (2): ]D

(k)
il t) (8.114)
z2 =2 MUIY)E[GN(2)4]
are 1.i.d. random variables and Lemma 8.14. OJ
Therefore we can write
1
a ri(k)?

+ Uzlv,k(z) + n]2V,k<Z> + 77?\/,1@(2)

(8.115)

Gn(2)we = |2 — ; 2= SN MR [Gr(2)4]

with E[(n} ()2 < 5
Now we can take the expectation in (8.115) to obtain

E[Ly (f)

—

f(k/N)E[GN(2)kx]

I
=~
WE

e
Il
—

I
=
WE

samEl (£ 3 e ) )|
b))

JE[Gn(2)u]
with 7y k(2) = Ny, (2)+0% (2)+n% . (2). Then, by introducing the truncated measure
M. and by using the Girsanov formula, we can approximate (uniformly in N) this
last expression by:

i
I

f(k/N)]E[(z . NE[

[l
2|~
WE

M|
2= SN M(I

B
Il
—

M [ 4]

N ' N

1 — L
N ; f(k/N)E| (2~ NE [Z SN TAT AT RPN |) N,k 20| (8.116)

with supy . E[|0(N, k, z, €)|?] going to 0 when € is going to 0. Along some appropriate
subsequence, this latter quantity converges as N — 400 to:

/Olf(ac)E <z _E

ewe (z)

2 — [i K. (r) M(dr)

-1
) +Y°| dx (8.117)
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where Y¢ is such that E[(Y€)?] converges to 0 when € is going to 0. And, we thus
obtain gathering the above arguments that:
-1
> + Y| dx.

/0 f(x)Kz(ZE)CM:/O f(z)E <Z—E
(8.118)

It remains to pass to the limit as € — 0 in that expression. This job is carried out
with the help of a Girsanov type transform in Appendix 8.8. m

ewe (z)

2 — [i K. (r) M(dr)

8.5.6 Uniqueness of the solution to the system of equations

Let X be the space of bounded measurable functions [0, 1] — C endowed with the
uniform norm defined for f € X by:

1 flloe = sup [f(2)]. (8.119)

z€[0,1]

Define the operator T': X — X by setting, for ¢ € X and for all z € [0, 1]:

Tg(z) = (8.120)
z —qE

st |, (72, wo- h“)'M“”)]
<mi® [ ). M(dt)] lg =l

1 Y

Sl )
< dt|lg — hl|s.
S Jo \ji=ay), o=l

Recall that v < 1/3, and thus it is easy to see that:

2

1 g
sup / ( T ) dt < +00 (8.121)
z€[0,1] Jo it — x| +
And we can deduce that there exists a positive constant C' such that:
C
sup [Tg(x) — Th(z)| < ;m=7ll9 = lls (8.122)

z€[0,1] |5 (2) 4
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If 2 is such that C'/|3(2)|* < 1, the operator T is contracting and thus has a unique
fixed point g in the Banach space X. We conclude that, for each z with |3(z)| large
enough, there exists a unique bounded function K, : [0,1] — C such that for all
z € 0,1]:

1

K,(z) = (8.123)

2

(z — <t+x|>1 Kz(t)M(dt>> —1] :

Using the first equation, it is now plain to see that, for z such that C'/|S(2)|* < 1,
the constant 2 is uniquely defined by the system of equations (by the first equation,
it is a function of the function K, which is uniquely defined for such z).

Now it remains to show that the limit point 2 is uniquely defined for all z € C\R.
It will be easy to see using analyticity arguments. Indeed, from the Montel theorem,
every limit point z? is holomorphic on the set C\ R since it is the pointwise limit of a
subsequence of the sequence of holomorphic functions Ly ([0, 1]) that are uniformly
bounded on each compact set of C \ R (see Lemma 8.14). Thus, p? is uniquely
defined for each 2 € C\ R by analytic extension (we have just seen that u? is
uniquely defined for a set of z with accumulation points).

The same argument holds for the unicity of the integral fol K, (z)dz. Indeed,

z—qE

every limit point fol K.(x)dz is a holomorphic function on C \ R that has some
prescribed value on the set {z € C\ R : C/|S(2)[* < 1}, which has accumulation
points.

8.5.7 Proof of Theorem 8.3, 8.4 and 8.5

Let us gather the above arguments to prove the main theorems.

Proof of theorem §.5: it is a direct consequence of sections 8.5.4, 8.5.5 and 8.5.6.

Proof of theorem 8./ i): The limit points K, (z)dz and p?dz of the two complex
measures E[Ly?] and E[L%"] are uniquely defined because p? and K, (z) satisfy a
fixed point system of equations (we have just seen this in theorem 8.5).

Proof of theorem 8.4 iii): We need to prove that p? is the Stieltjes transform of
a probability measure v. From [77], it suffices to prove that u? is holomorphic over
C\R, maps {z € C\R; J(2) < 0} to {z € C\R; ¥(2) > 0} and that lim,_, iyus, = 1
(y € R). Let us check those properties. We have already seen in section 8.5.6
that p? is holomorphic. From Lemma 8.14, p? maps {z € C\ R;3(z) < 0} to
{z € C\ R;¥(2) > 0}. Finally, from Theorem 8.5, we have

1
1— 27! [ K (x) M(dv) |

pi=E

As | K. (z)| < |S(2)[7!, the term fol K.(x) M(dx)/z converges pointwise towards 0
when z = iy and y — oo. Furthermore, from Lemma 8.18; we have $(2)J(K,(z) <0
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1
in such a way that ‘z — fol K.(z) M(d:zs)‘ < |S(2)|7t. Therefore

z
| | <
z— fo () M(dx)
when z takes on the form z = iy (y € R). The dominated convergence theorem

then implies that lim,_,. iysu;, = 1 and we can conclude p® is indeed the Stieltjes

transform of a (unique) probability measure v.
Proof of theorem 8.3 i) and 8./ ii) We observe that, for z € C\ R:

ZIT 0 . Z2[T — tXNXN —ZtXN
An(2) <XN ZIN) _( . 1) (8.124)

Let us rewrite the matrix Gy (z) = Ax(z)~! under the form:

Gn(z) = ( gl 12((’22)) %22((5)) , (8.125)

where G (z), Gh2(2), G2(2) are respectively of size T' x T', N x T, N x N.
By taking the inverse in the relation (8.124), we obtain:

(Lot 0 ) (S Gty _ (G =X By (g

where B = (2217 — Xy Xn) HXy/ 2.
It can be rewritten, using the fact that —XnG1(2)+2G12(z) = 0 and —XN'Gy2(2)+
2Go(2) = Iy, as:

Gl(Z)/Z tGLQ(Z)/Z _ (Z2IT — tXNXN)_l B (8 127)
0 In/2* 0 In/2? '
Therefore, taking the trace we get:
LZT:G (2)kr = ltr(z% — Xy Xy) ™t (8.128)
Tx _ N kk T T NN ) .

and, by using the fact that the eigenvalues of Xy Xy are those of XXy aug-
mented with T'— N zeros:

T
1 1 T—-N
— = —tr(2* Iy — Xy'Xy) '+ .
T ; G (2)kk T (2" Iy NXN)T+ T2

(8.129)

Now, taking expectation and using theorem 8.4, we deduce:

1 1 -
/ K. (w)dz = gz lim B [tx(z*Ly — Xn'Xy) '] + = (8.130)
z
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Using the fact that (by (8.12)) the spectrum of By contains 2N eigenvalues
which are the positive and negative square-roots of the spectrum of Ry = Xy Xy
plus T'— N zero eigenvalues and the fact that 1/(z — \) +1/(z + \) = 2z/(2% — \?),
we can see that:

N+T
2z T—N1
tr(z* Iy — Xn'X = 8.131
N+T 2k = N+ TT( N NXN)T! TI N2 ( )
Using the relation 8.17 and theorem 8.4, it is easy to see that:
1R 1
S D BNl = (quz / K. dm) (8.132)
Taking expectation in 8.131 and using (8.132), we get:
- ( 2+/1K()d> 2qzl LB [tr(2Ly — Xa'Xy)] (8.133)
— Lr)dr ) = im —E |tr(z" Iy — .
+q ar 0 1+qgN—=co N N NAN
1—ql
- 8.134
1+qz ( )
From equations (8.130) and (8.133), we get the following relation:
1 —
/ K.(z)de = qui2 + —2., (8.135)
z

and theorem 8.4 ii). is proved.
With (8.135), (8.132) becomes:

N+T 1 ¢
E G 2 e 8.136
Z ~N(2) k] 1+q ( qu? + B ) ( )

and, we note that the right hand side of (8.136) is the Stieltjes transform of the

measure 2¢/(1 4+ q)v(dx) + (1 — q)/(1 + q)do(dz). Thus, the mean spectral measure

E[pp,| converges weakly to the measure 2¢/(1 + q)v(dz) + (1 — q) /(1 + q)do(dx).
We have also:

Nﬁ+00N—|—T

1 2
lim —E [tr(z*Iy = Xx'Xy) '] = Mz (8.137)

N—o0 z
Again using the fact that, for all z € R, 1/(2*—2?) = (1/(z—x)+1/(2+x))/(22)
and the fact that v(dz) is a symmetric measure on R (v(dz) is the weak limit of
E [ppy], which is symmetric since the spectrum of By is symmetric with respect to
0 almost surely), we see that:

1
lim %E [tr(z2Ly — Xy'Xy) "] = = / v(dz) (8.138)
R

N—o0 z Z—X

:/—“O(xQ)_l(dx>. (8.139)

22—z
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This implies that, for each z € C\ R,

1 e 17 [ vo(2?) ! (dr)
lim NE [tr(z]N—XNXN) } —/R ) (8.140)

N—o00 Z—X

and thus, the probability measure E[ug,] converges weakly to the measure v o
(%)~ (dx).

Proof of theorem 8.3 ii): using relation (8.17) and lemma 8.19, it is plain to check
that [;(z — )" up, (dz) converges in probability to the Stieltjes transform of the
probability measure 2¢/(14 q)v(dz)+ (1—¢q)/(14 ¢)do(dz). This convergence holds
for finite dimensional vectors ([, (2 — ) 'up, (dx)),i =1,...,d) as well. Using the
fact that the set of functions {(z — x)~!,z € C\ R} is dense in the set Cy(R) of
continuous functions on R going to 0 at infinity, we can show, for each f € Cy(R),
that [ f(z)upy (dx) converges in probability to [ f(z)(2¢/(1+q)v(dz)+(1—q)/(1+

q)do(dx)). But, since pp,(R) = 2¢/(1 + q)v(R) + (1 — q)/(1 + q)do(R) = 1, this
vague convergence can be strengthened in a weak convergence. With the relations
[ip2, = 2N/(N + T)pry + (T — N)/(T + N)dy and the fact that [ f(z)ups (dx) =
J f Hu BN (dx), it is plain to conclude that g, converges weakly in probability to
0o (a) (dx).

Proof of theorem 8.3 iii): again using relation (8.17) and lemma 8.19 together
with Borel-Cantelli’s lemma, one can show that the two spectral measures LBy,
converges weakly almost surely to 2¢/(1+4 q)v(dx)+ (1 —q)/(1+q)do(dx). It is then
easy to deduce as before that up, converges weakly almost surely to vo (z?)~1(dx).

8.6 Auxiliary lemmas

Lemma 8.26. Let A be a n x n complex matriz such that the Hermitian matriz
M = AAT has spectral radius Amaz. Then, for all i, we have:

Z | Aij ’2 g )\maz- (8141)
j=1

Proof. 1t is straightforward to see that all the entries of M are, in modulus, smaller
than \,,.:. On the other hand, we have:

M=) | Ay *.
j=1

and, thus:

Z | Aij |2 < /\maa:- (8142)
j=1
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Lemma 8.27. There exists C > 0 such that for each N € N and k € {1,...,N}:

N 2

> )G ™ ()

s#t

C

E <W-

Similarly, for each N € Nandk € {1,...,N},i € {1,..., N}, we have the following
inequality concerning the conditional expectation with respect to M*:

2

N
. , C
k,N+1i )
Ell Y r(s)r®)GEY ™ (2)a| M <
s,t#k,s#t

Proof. We first expand the square and use the independence of (ri(s))s from GE\J,VM) (2):

> rls)r()GE ™ (2)0

N 2
E — 23 B [0 B || |
s#t s#t
Now we compute
—1 s t—1 t
E [ri(s)rs(t)?] = E | M* (=, ) M*(m, —
(s Pr) =B [ M )
> I - ¥(2)
= / max (1, ) drdu
s=1 Ji-1 | — ul
N N
ER ] NEE)
</ / max (1, ) drdu
o Ji r —uf

We consider N large enough so as to make 2/N < 7. The above integral is then
plain to compute and we get

7-1/)(2)(22—1/)(2) . 2) 1
(1—1(2))(2 —(2)) N>v)

Thus we have for some positive constant C

E [r(s)*ri(t)?] < (8.143)

2

N N
C 2
E Zrk(s)rk(t)G%Hk)(Z)st < N2 ZE “G%VM)(ZM }
s#t s#t
C 1

S N0 [S() P

where we have used the fact that almost surely:

1 2N
N+k
ON — 1 Z ‘Gg\/_'_ )(Z)st

s, t#N~+k

2 1
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It just remains to see that 1)(2) = 2. To prove the second relation, we follow the
b (ri

same argument by noticing that (r;(¢)); and GS\’;’NH)(Z) are independent condition-
ally to M. [

Lemma 8.28. There exists some constant ¢ > 0 such that for each N € N and
ke{l,...,N}:

N 2

> iRy (k)G (2w vins

i

&
E < —.
N

Proof. Again we expand the square and we use the fact that, conditionally to the
(M");, the quantities r;(k), r;(k), Gg\l,c)(z)NH,NH are independent and r;(k), r;(k) are
centered. Indeed, conditionally to the (M");, the variables r;(k), r;(k), Ggl\;)(z)NH’Nﬂ-
involve different increments of the Brownian motion. Thus we have

2
2 ||[S 16 G| | = SR b 018 [0 e
i#j i#j
N . )
Bl B0 0718 |60 G
i#j
2
_ N Z]EUG NHNﬂ}
i#]
c
<_7
N

where we have used the fact that almost surely:

2 1

S(2)*

k)
2N—1 Z‘G 2
1,j7k

Proof of Lemma 8.23. We define the function fr on the interval [0, 1] by
v(x) = NMPe(I) if o € T4

Notice the relation:

ZM’“ IHE[Gn(2)4] / ) dE[LY](dr).
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|

Then, by stationarity, we have:

=1/

r) dE[LY)(dr) — / k) dE[LY)(dr)
V() — e ) dE[L](dr)

S 8GN e, ]

N 571/2
< s sup/ E[ } du
1S(2)] rell, JI}

S @N sup / (26¥@P(0) _ 9e¥(@pe(r= u)1/2 o
S ren I

sup E

k k
(e (u) _ pwe (r)) du
/]}V

(UE) _ k)

Because of the continuity of the function p. over [0, 1], we have
! k
‘ / r) dE[LY] (dr) — / et () dIE[L}\’,Z](dr)H 0 as N oo, (8.144)
0

In a quite similar way, we can prove that

E H /O e as, () dE(L] (dr)— /0 0 gE(L (dr)

] — 0 as p — oo uniformly w.r.t. N
(8.145)

] — 0 as p — oo uniformly w.r.t. N

( / e x5, (r) K. (r) dr—/ol “EO K (r) dr
(8.146)

where (¢,)pen is a regularizing sequence and * stands for the convolution. Fur-
thermore, for each fixed p and because of the weak convergence of E[Ly’] towards
K. (x)dx, we have almost surely

/ "o s b () dELY(dr) — / gy (KL dr as N o0, (8.147)
0 0

We prove the result by gathering (8.144) (8.145) (8.146) and (8.147). O

8.7 Sup of MRW

Here we prove
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Proposition 8.29. We have for allk=1,..., N +1

(In V)2
E |:t sup 'I“k(t)4:| < CW

for some positive constant C'.

Proof. To prove the result, we first prove

Lemma 8.30. There exists a constant C' such that, if (X;)1 <:<n are iid centered
Gaussian random variables then:

E[ max |Xi|4} < C max E[X?*(InN)>.

1<i<N 1<i< N

Proof. By homogeneity, it suffices to assume that E[X?] = 1. Then we have for all
d>0

é

1<i<N
<5+2N/ P(X, > tY/4)dt
é
ON [

<o+ —— [ eVt
b V2T Js

AN [
<0+ — e ttdt

V2T S5

<O+ j—2N_7T (\/56_\/3—1—6_\/5) :

and this last expression can be made smaller than C'(In N)? by choosing 6 = (In N)?.
[l

We want apply the above lemma after conditioning with respect to the law of
the MRM M*:

Notice then that, conditionally to M*(0, &) = 21, ..., M*(£=1,1) = zy, the vector
(ri(1),...,7e(NN) has the same law as the increments of B: (B,, — By, ..., By, —
B, _,)- By applying Lemma 8.30, we deduce that

<tinf?fN M* (= N)ﬂ - (8.148)



254 CHAPTER 8. MARCENKO PASTUR THEOREM FOR L1.D. MRW

Finally we have for all § > 0 and for a > 1 such that ((2a) > 1:

t—1 ¢
(max Mk(— —)
t=1,....N

.....

E 5—|—N/ Mkt_1 t) >$)d:£

N 'N
1

\5+051 aNl ¢(2a)

for some constant C only depending on o, 7 and 72. Choose now § = N =2 50 as

to get

2
E [ sup rk(t)4] < (1+ C)(IIST]QV))_I (8.149)
t= N o

]

8.8 Girsanov transform

Lemma 8.31. Let p be an independently scattered infinitely divisible random mea-
sure associated to (¢, 0), where

1
Vg e R, (q) =mq-+ §a2q2 + /(eqz — v(dz),
R

¥(2) < 400 and P(1) = 0. Let B be a bounded Borelian set. We define a new
probability measure Pp (with expectation Eg) by:

VAmeasurable set, Pp(A) = E[14¢"P)].

Then, under Pg, p has the same law as p+pp where pp s an independently scattered
infinitely divisible random measures independent of 11 and is associated to (¢¥p,0p)
given by

b(g) = a0 + / (e — 1)(e" — 1)w(dz)

Op(-) =0(-N B)H%

Proof. 1t suffices to compute the joint distribution of p disjoint sets Ay,..., A,. We
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have for any A,..., A, € R:

o [6/\1M(A1)+~"+/\pu(z4p) ) 'emml)+~~-+Apu<Ap>+u(B>}

_ 'emml\B>+~--+Apu<Ap\B>+A1u(AmB>+~~+Apu(ApﬂB)+u<B>]

_ 'eAw(Al\BH---+Apu<Ap\B>+(A1+1>u<A1mB)+---+<Ap+1>u(Ame>+u<B\U?:1An]

_ 'em(m\B)+~--+Apu<Ap\B>] E [e(/\l+1)M(A1OB)+~-+(/\p+1)u(ApﬂB)]

P ODBANB) - +9(0)8(Ap\ B) (01 +1D8(AINB)+ -+ (rp+1)8(ApN B)

— ¥ (A)0(AD)+ Y (Ap)0(Ap) o (P(A1+1) = (A1))0(A1NB) -+ (P (Ap +1) = (Xp))0(ApNB)

Then it suffices to notice that:

Bla+ 1)~ v(a) =m+ g+ 20?4 /(6("“)2 — % )u(dz)
2 R

and ¢ (1) = 0. O

Lemma 8.32. If the process w, is defined as w.(x) = u(A.(x)) where p is an indepen-
dently scattered random measure associated to (p,0) with ©(q) = —iqy*/2 — ¢*7*/2
and 0 given by 8.8, then:

-1
we ()
limE T ¢
z— [y K.(r)ew<mdr

e—0

where M s the lognormal MRM.

Proof. One can check that (w(z))zepo; is a stationary gaussian process with covari-
ance given by v?p.(x — y). So, using Girsanov transform, we can write:
ewe(:v)

1 —1
E (z - / Kz(r)€72pe(r_x)e“€(’")dr)
z— fo r)ews (") dr 0

We are interested in the limit when e goes to 0 of this latter term, we thus
approximate it with a simpler term:

1 1
(z — / KZ(T)@QPS(T_%)@“"(T) dr) ]
0
1 72 -1
—-E z—/ K.(r) T <) dr
r—a|)
,YQ
/|K |ew5r) efypgr z) T
|r — x| N

2

N
e'Y Pe(r x) _ T
|r — x| N

dr]

dr (8.150)
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where we have used Lemmas 8.14 and 8.18 and the normalization (1) = 0.
Because 72 < 1, the dominated convergence theorem implies that 8.150 converges
to 0 when € goes to 0.
We thus look at the limit when € goes to 0 of the term:

1 - v -1
E||z- / K. (r) (—) <) dr
0 ’7’ - .CEl +

The random variable
1 - 72
[ w (5 5)
0 ’7“ - m‘ +

is well defined and is finite almost surely since:

[0 ().

And thus, we can compute:

2

-
/ | K, (r ( ) dr < +o0.
|7ﬂ - | +

E

R (Z—/;Kz(r) (V%:U,XQM(‘”))_I ‘
/01 K.(r) (rr - x1)+ (e ar = M(dr) ] |

and, for all n € N, this latter term is smaller than

() () )] o]
- /K mm<(‘r—l’|) ><ew6(r)d7“—M(dr))“ (8.152)
HE-/ A [(T—x|) _min<(|rix|>f,n>]M(dT)

The two quantities 8.151 and 8.153 are smaller than

[ 1m0 [<|r—x|>72‘mi“((rriﬂ)f’”)]dr (8:154)

1

3(2)[?

E

(8.151)

] . (8.153)
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and thus converge to 0, uniformly in € as n goes to infinity.
For a fixed n, the function min((7/|r — x\)f, n) is measurable and bounded and
thus it is plain to see that, for a fixed n, the term 8.152 goes to 0 when € goes to 0.
The lemma follows gathering the above estimates. O

Lemma 8.33. If the process w, is defined as we(x) = u(Ac(x)) where p is an inde-
pendently scattered random measure associated to (@, 0) where ¢ is given by (8.6),i.e.

2

¢la) = img = T+ [ (€% = Dl

and where 0 given by (8.8), then:
ewe(m)

z— fol K. (r)ew (") dr

=K

IimE

([ o) o) |

with k = ~* + [p(e” —1)*v(dx) and where the random Radon measure Q is defined,
conditionally on a MRM denoted by M whose structure exponent is ((q) := q —
©(—1iq), as the almost sure weak limit as € goes to 0 of the family of random measures
Qc(dt) := O M (dt) where, for each ¢ > 0, the random process @, is independent
of M and defined as W.(t) = u(Ac(t)) where [i is the independently scattered log
infinitely divisible random measure associated to (@, 0(- N Ag(z))) where

#0) = ipl0? = r) + [ (€7 = 1)(e" = V(o) (8.155)

Proof. We want to apply Lemma 8.31 to the process w.. If we set B = A.(z),
Lemma 8.31 tells us that, under P, the process w, possesses the same law as the
process

W (r) +wP(r)  with w!V(r) = pD(A(r)) and W) (r) = p? (A1),
where ,ugl), ug) are independent independently scattered log infinitely divisible ran-
dom measures respectively associated to (¢, ) and (¢, 0®)) with:

@ (q) = ir?q + / (€% — 1)(e” — 1)w(dz) and 6@ () = 0(- N Ac(x)).  (8.156)

R

Define:
K=+ /R (e — 1)2u(dz), 7(q) = 9@ (q) — igr, ¥(q) = P(—iq). (8.157)

Notice that 1 is then normalized so as to make (1) = ¢/(0) = 0. Let us define the
process w, by:

We(r) = w?) (r) — KO(Ac(r) N A(x)) = w(2)(r) — Kpe(r — ), (8.158)

€
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and notice that E[e/®@<(")] = eP(@)pe(r—a)
We can now apply Lemma 8.31:

we () 1 B -1
I 1 ° =E (Z - / Kz(T)ewE(TH”pe(T—IHwE(r)dr)
- fo K. (r)ew"dr 0

We are interested in the limit when € goes to 0 of this latter term, we thus
approximate it with a simpler term:

. —1
E (z— / PV V=) () C”") ]
0
1 T " !
g <Z_/ 60.)5(7“)4-0-)6(7")( ) Kz(r)dr>
0 L
< | [ oo o (LY ikl
SEE L r=al/
1 /1 T \"
< b e,{pe(,,-_x) - ( ) d/r' (8159>
SGF s =y

where we have used Lemmas 8.14 and 8.18, the normalizations (1) = 0,%(1) = 0
and the independence between w, and w.
Let us show that k < 1. Indeed, we have:

k=7+ /R(em — 1)*v(dx)
— 2 /R(e?z — Dv(dz) —2 /R(eﬂ’ — D(dz)

— 2 /R(e?x — Dw(dz) + 2(m + %72)

=2m + 29* + /(62”” — Vv (dx)
=(2)

where, in the third line, we used the fact that ¢)(1) = 0 (which implies the relation
Je(e® = Dv(dx) = —(m +~?/2)). We will now show that ¢(2) is strictly less than
1. It suffices to show that ((2) > 1. Using the concavity of the function (, we have

the inequality:
<2 Jﬁr; <) _ C(2) — ¢(1) (8.160)

and with assumption 8.24, we see that ((2) — ((1) = {(2) —1 > 0. We can thus
conclude that k < 1.

Because k < 1, the dominated convergence theorem implies that 8.159 converges
to 0 when € goes to 0.
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For each Borelian set A of [0;1], the family M.(A) := [, e*dre > 0 is a
positive martingale with respect to € and that it converges almost surely to M(A).
With the assumption 8.24 and in particular the condition {(2+¢€) > 1, we can show
(see [?] for a proof) that the family (M.(A)).o is in fact uniformly integrable. In
particular, if we let F, be the sigma field generated by the family of random variables
(wy(7))y>erer, we have the following almost sure equality:

E [M(A)|F] = M.(A). (8.161)

Conditionally to the random measure M, the family P.(A) := [, e M (dr), e >
0 is also a positive martingale with respect to e. Thus, P.(A) converges almost surely
to a random variable that we will denote by P(A). We know that this defines a
random Radon measure P on [0; 1] and that the family of random Radon measures
P, converges, when € goes to 0, weakly almost surely to P in the space of Radon
measures. Denote, conditionally to the random measure M, by Py, the law P[-|M]
and let us show that the family (P.([0;1]))eso is Pp-uniformly integrable. Let § be
such that 1)(1 + &) < +o0o (we can show, using the condition (2 + 6) < +oo, that
that there exists such 0 ). We will show that the family (P.([0;1]))cso is uniformly
bounded in L'*(PPy;). Indeed, conditionally to the random measure M:
1 146
(/ ewﬁ(’")M(dr)>
0

1 _ _
E s < Euy [ / e<1+5>w6<’">M(dr)} M][0;1]°
0

r_ _
< / e IH0P<r=m) N (dr) M [0; 1]°
0

_ 1 K
< MI0; 1% () / (L> M(dr) < +oo.
0

|r — x| N

The family (P,([0; 1]))eso is therefore Py-uniformly integrable, in particular, P,.([0;1])
converges to P([0;1]) also in L', which implies that P is a non degenerated random
measure. Moreover, denoting by F. the sigma field generated by the family of ran-
dom variables (@, (7)),>erer, We have, almost surely, conditionally to M, for all
Borelian set A of [0; 1]:

En [P(A)|J—"€] = Pe(A)'

Now, as before, it is easy to see that the family Q.(A) := fA e (MH@) dr € > 0
is also a positive martingale with respect to e. Therefore, Q.(A) converges almost
surely to a random variable that we will denote by QQ(A). This defines a random
Radon measure () and the family of random Radon measure (). converges, as ¢ — 0,
weakly almost surely to () in the space of Radon measure. We want to show that
the two random measures P and () have the same law.
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Gathering the above arguments, we can write, almost surely:
E [P(A)lo(F., Fo)] = E [E[P(4)|F]
=E { / e%@“)M(dr)m]
A

_ / (1B g,
A

and the latter quantity has the same law as Q.(A). Since the martingale (E[P(A)|o(F., Fe)])eso
is uniformly integrable, we deduce that the family (Q((A))so is also uniformly inte-
grable. Hence, both random variables P(A) and Q(A) have the same law. We can
show easily that in fact the two random measures P and () have the same law. In
particular, () is non degenerated.

It is now easy to see that, for all bounded and continuous function f, the two
random variables [, f(r)P(dr) and [, f(r)Q(dr) have the same law. By regularizing

the function (ﬁ) and with the dominated convergence theorem, we conclude as
+

in the proof of lemma 8.32 using the fact that x < 1 that:

/01 K.(r) (,r - x|)+ Q(dr) "2 /01 K.(r) (Ir - ; ) + P(dr). (8.162)

Gathering the above argument and letting € go to 0 concludes the proof. O]




Chapter 9

Principal Regression Analysis and
the index leverage effect

Résumé

Cet article est publié dans Physica A et est écrit en collaboration avec
Jean-Philippe Bouchaud et Pierre-Alain Reigneron. Nous revisitons
I’effet Levier pour l'indice, qui peut étre décomposé en un effet sur
la volatilité et un effet sur les corrélations. Nous nous intéressons a
ce dernier en utilisant une régression linéaire matricielle, que nous ap-
pelons analyse en régression principale et pour lequel nous donnons un
cadre de travail (grace a la théorie des matrices aléatoires) théorique et
numérique. Nous trouvons que les rendements négatifs passés ont pour
effet d’augmenter la corrélation moyenne entre les prix des actions mais
ont tendance a éloigner le mode marché du vecteur uniforme. Il y a deux
échelles de temps associées a cet effet, une échelle courte de I'ordre d’un
mois (correspondant a 20 jours d’échange sur les marchés) et une plus
longue de l'ordre de un an. Nous trouvons aussi des traces d'un effet
levier pour les secteurs, qui se révélent par les deuxieme et troisieme
modes de la matrice issue de I'analyse en régression principale.

Abstract

We revisit the index leverage effect, that can be decomposed into a
volatility effect and a correlation effect. We investigate the latter using
a matrix regression analysis, that we call ‘Principal Regression Analysis’
(PRA) and for which we provide some analytical (using Random Ma-
trix Theory) and numerical benchmarks. We find that downward index
trends increase the average correlation between stocks (as measured by
the most negative eigenvalue of the conditional correlation matrix), and
makes the market mode more uniform. Upward trends, on the other
hand, also increase the average correlation between stocks but rotates
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the corresponding market mode away from uniformity. There are two
time scales associated to these effects, a short one on the order of a
month (20 trading days), and a longer time scale on the order of a year.
We also find indications of a leverage effect for sectorial correlations as
well, which reveals itself in the second and third mode of the PRA.

9.1 Introduction

Among the best known stylized facts of financial markets lies the so-called “leverage
effect” [78, 29, 110, 47, 111, 112], a name coined by Black to describe the nega-
tive correlation between past price returns and future realized volatilities in stock
markets [37]. ! Tt is indeed well documented that negative price returns induce in-
creased future volatilities, an effect responsible for the observed skew on the implied
volatility smile in stock option markets (see e.g. [34, 55]).

However, the association, made by Black, with a true leverage effect (i.e. that
when the value of a stock goes down its debt to equity ratio increases, thereby mak-
ing the company riskier and more volatile), is probably misleading. In particular,
the amplitude of the leverage correlation for indices is noticeably stronger than for
individual stocks, which even sounds paradoxical when the index return is by def-
inition the average of individual stock returns! The volatility of an index in fact
reflects both the volatility of underlying single stocks and the average correlation
between these stocks. The increased leverage effect for indices must therefore mean
that both these quantities are sensitive to a downward move of the market.

The aim of the present paper is to investigate more specifically this “correlation
leverage effect”, and make precise the common lore according to which correlations
“jump to one” in crisis periods (see [67, 98, 132, 117| for early studies of the time
evolution of the correlations in financial markets). Similar studies have appeared
recently. In [26], a careful study of the average correlation between stock returns
during contemporaneous upward/downward trends of the market index has con-
firmed that correlations are indeed stronger when the market goes down [39]. Our
analyses confirm and make more precise these results, first by extending them to
different markets, and second by devising and exploiting a new tool to investigate
conditional correlations, that we call “principal regression analysis” (PRA). The
idea here is to regress the instantaneous correlation matrix on the value of the index
return (or any other conditioning variable). While the intercept of the regression
gives the average correlation matrix, the regression slopes define a second symmet-
ric (but not definite positive) matrix that can be diagonalized, leading to modes
(eigenvectors) of sensitivity to the conditioning variable(s). The interpretation of
these eigenvectors is particularly transparent when they coincide with those of the
correlation matrix itself. The corresponding eigenvalues quantify how the whole

"'While this effect holds for most markets in developed economies, Tenenbaum et al. [135] report
that the situation appears to be different for markets in developing countries.
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correlation structure of stock returns is affected by the conditioning variable. The
nice point about the PRA is that Random Matrix Theory (RMT) provides, as for
standard PCA, a useful guide to decide whether or not these sensitivity modes are
statistically meaningful (for a review on RMT, see [43]). When the conditioning
variable is the past values of the index return, the conclusion of PRA is that the
dominant mode is the market mode, associated to a negative eigenvalue, indeed
corresponding to a correlation leverage effect. We characterize the temporal decay
of this effect. Upon separating positive and negative index returns, we furthermore
find that the correlation leverage effect is strongly asymmetric: whereas negative
returns increase both the volatility of the underlying stocks and the average cor-
relation between stocks, positive returns have weaker influence on these quantities
(see Fig. 6 below). We furthermore find indications of a leverage effect for sectorial
correlations as well, which reveals itself in the second and third modes of the PRA.

9.2 Data, notations and definitions

We have considered 6 pools of stocks corresponding to 6 major stock indices: SP500,
BE500, Nikkei, FTSE, CAC 40 and DAX. We analyze the daily returns in a time pe-
riod spanning from 01/01/2000 to 04/26/2010. Stocks are labelled by « =1,..., N
(where N depends on the market), and days by ¢t = 1,...,T (where T' = 2594).
Time average will be denoted by (.). The return of stock o between the close of
day t — 1 and the close of day ¢ is denoted as 7,(t). We in fact understand 7,(t) as
the demeaned return over the whole time period 7. We define an inverse volatility
weighted index return at time ¢ as:

10 =5 S, Al ="", (9.1

where o, is the average volatility of the stock a over the whole time period:

o2 = % St 9.2)

We will further define the average instantaneous stock volatility o () at time ¢ as:

o) = = DMl (9.3)

as:

p(t) = - 3 ()75 () (9.4)
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The average over time of the above two quantities will be denoted as o2 and py.

The squared index return I(¢)? is a rough proxy for the instantaneous index
volatility. Using the above definitions and the fact that N is large, it is easy to
check that:

10 ~ plt)o(t) + O(1), (9.5)

showing that both the average stock volatility and the average correlation contribute
to the index volatility. It is therefore natural to decompose the full index leverage
effect in two contributions: one coming from the dependence of the average stock
volatility on the past returns of the index, and a second one describing the average
correlation. We thus define a full leverage correlation function £;(7):

_ (=717
ﬁI(T) - <[(t)2> ’ (96)

and two partial leverage correlation functions:

(I(t —7)a(t)?) (I(t —7)p(t))
Ly(T) = , L,(T)=—"". (9.7)
(I(t)*) ’ (I(t)?)
All the above leverage correlation functions are normalized to be the regression slope
of the corresponding observables on the past value of the index return, for example:

p(t) = po+ L(T)I(t —7) +e(t, 7). (9.8)

where &(t,7) is some noise. (Remember that by construction, /() has zero mean.)
In the limit of weak correlations, the two effects are additive and one should find:

Li(7) = poLo(T) + 0 L,(7), (9.9)

eliciting the contribution of the average stock volatility and of the average correlation
to the full leverage correlation. The second term is responsible for the enhanced
leverage effect for indices compared to single stocks.

9.3 Index leverage effect: A simple empirical anal-
ysis

As a first stab at understanding the index leverage effect, we plot in Fig. 9.1 the nor-
malized partial leverage correlation functions, poLy(7), 05L,(T), together with the
full leverage L£7(7). In these plots, the data is averaged over the four indices, SP500,
BE500, Nikkei and FTSE. From this figure, we draw the following conclusions:

e (a) the two contributions to the index leverage are of the same order of mag-
nitude. In particular, the correlation leverage is significant and confirms the
conclusions of Refs. [26, 39].
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Figure 9.1: Left: normalized leverage correlation functions poL,(7), 02L,(7), and an
exponential fits with two scales (dotted lines). Right: Full leverage function £;(7)
and comparison with an additive model (dotted line).

e (b) the correlation effect is stronger at short times but decays faster than the
volatility effect; a two time scale exponential fit of these two contributions in
the range 7 € [1,250] (in days) indeed leads to

0o L,(1) =~ —0.053 exp(—7/18) — 0.005 exp(—7/350); (9.10)
poLs(T) = —0.02exp(—7/14) — 0.02 exp(—7/280), (9.11)

e (c) a test of Eq. (9.9) with the sum of the above two fitted exponentials re-
produces satisfactorily the full leverage effect, although the latter is underesti-
mated at short times, when the correlations cease to be small enough for Eq.
(9.9) to be accurate.

In fact, one can test directly whether linear regressions such as Eq. (9.8) above
make sense or not, by averaging all values of p(t) corresponding to a given value
of I(t — 1) within some range. The resulting graphs are shown in Fig. 10.2, both
for p and for 02. One sees that whereas a linear regression for p makes sense for
I(t—1) < 0, there is in fact perhaps a small positive slope for I(t—1) > 0. For o2, the
graph looks even more symmetric, reflecting the presence of volatility correlations
on top of (asymmetric) leverage correlations.
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Figure 9.2: Dependence of the average correlation p(t) and the average single stock
volatility o2(¢) on the index return the previous day, I(t — 1). The result is ob-
tained as an average over all 6 indices: SP500, BE500, Nikkei, FTSE, CAC40 and
DAX, but the qualitative effects are robust and appear on each markets individually.
These plots suggest that a quadratic I?(¢ — 1) term should be included to the linear
regressions. The printed error bars are the average of the error bars obtained for
each of the 6 indices.
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9.4 The “Principal Regression Analysis”

The above analysis, although interesting, is oversimplified, because the structure of
inter-stock correlations is described by a full correlation matrix C and not by a single
number p, that only captures the average correlations. In order to characterize the
way the correlation matrix depends on the past value of the index (or on any other
conditioning variable), we propose the following: consider a given pair of stocks,
@, 5, and regress the product of normalized returns 7),(¢)nz(t) on the past value of
the index return, i.e. write:

Na(t)p(t) == Cop+ Dapg(T)I(t — T) + €0 p(t, 7). (9.12)

Since I(t) has zero mean, the intercept of the regression is exactly the empirical
Pearson estimate of the correlation matrix. The regression slopes D, g(7) define
another N x N symmetric matrix D(7), which encodes the full information about
the dependence of the correlations on past returns. More precisely, the regression
leads to the following empirical determination of D(7):

T

(I*)Das() = Y D&t~ 7). (9.13)

The aim of this section is first to discuss the information contained in D(7), in
particular its eigenvalues and eigenvectors, and second to use results from Random
Matrix Theory to assess how meaningful this information is when the length of
the sample, T', is not very large compared to the number of stocks N. Finally, we
describe our empirical results on D(7), in particular its most negative eigenvalue
and eigenvectors.

9.4.1 Interpretation

Define C(I) to be the correlation matrix conditioned to a certain past value of I,
by:
C(I) =C+ID. (9.14)

The interpretation of the matrix D is particularly simple when it commutes with
the correlation matrix C, i.e. when the eigenvectors of D are the same as those of
C. In this case, the eigenvectors of C([/) are exactly the same as those of C, whereas
the eigenvalues A\ (I) are shifted as:*

A(I) = M(0) + I(0[Dlu), (9.15)

where \;(0) are the eigenvalues of C and |vg) are the associated eigenvectors (in
quantum mechanics notations). When D does not commute with C, the structure

2Note that the dependence on the lag 7 is implied in the following formulas.
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of the eigenvectors themselves is impacted by the conditioning variable. If DI is
small enough, standard first order perturbation theory gives back Eq. (9.15) for the
eigenvalues and:
ve|D|v
ok(1) = o) + 1Y ~—— (ve|Dlvi) (9.16)

o A —)\g

for the eigenvectors of the matrix C(7).

As we will find below, the eigenvector corresponding to the most negative eigen-
value of D turns out to be very close to the first eigenvector of C (i.e. the so-called
market mode, |v1)), whereas all other eigenvalues are significantly smaller. In this
case, the top eigenvalue of C is to a good approximation given by:

where p; is the most negative eigenvalue of D. Since A\; can be used to define the
average correlation between stocks through A\; := Np, the meaning of p; is similar
to, but more precise than, the correlation leverage function £, defined above.

More generally, when D and C do not commute, one expects the “correlation
leverage” to rotate the top eigenvector away from the market mode |v;). The
common lore is indeed that when markets go down, all stocks “move together”,
meaning that the top eigenvector should rotate towards the uniform vector |e) =
(1/v/N,1/v/N,...,1/v/N). The cosine of the angle between |v;) and |e) is given by
the scalar product (e|v;), that one can compute using perturbation theory. Eq. (9.16)
above. Assuming further that the top eigenvalue of C is much larger than all the
others (A1 > Apz1), one finds:

{e[or(1)) = (e]vr) + Ail [{e[Dlv1) = (v1[Dlor)(efv1)] . (9.18)

A measure of how strongly the top eigenvector moves towards |e) is therefore pro-
vided by the quantity A, defined as:

1
A =+~ [{elDlvr) — (w1 [Dlvr){efor)] . (9.19)
1
A negative A means that the instantaneous market mode is closer to the uniform
mode |e) when the index goes down, since (e|vy(I)) — (e|vy) = IA > 0.

9.4.2 Results from Random Matrix Theory

When N is large, the simultaneous determination — using Eq. (9.13) above — of
the N(N + 1)/2 different elements of D from the NT data points is problematic,
exactly in the same way the correlation matrix C is hard to measure. We thus need
to provide a benchmark to compare the empirical results obtained with the noise
level of the benchmark case. This will enable to separate significant effect from noise



9.4. THE “PRINCIPAL REGRESSION ANALYSIS” 269

level arising from the dimensionality problem. Let £ be a random variable which
will play the role of the conditioning variable (the past values of index returns in
our context) and let x,, = 1,..., N be a gaussian vector of covariance matrix C
which should be seen as instantaneous stock returns. The z, will be supposed to
have 0 mean and unit variance, so that C is the correlation matrix of the gaussian
vector (z1,...,2N).

We begin by the case C = 1. Suppose, in addition, that there is no correlations
whatsoever between the conditioning variable £ and the correlation z,zg, and that

one forms a matrix D from:
~ 1 &
(6%) Das = 7 D wa(t)ws(t)E(2). (9-20)
t=1

In the limit T — oo for finite N one should find that all the elements of the matrix D
are zero, and therefore all its eigenvalues are zero as well. For finite T', however, the
matrix D will have a set of non trivial eigenvalues. Random Matrix Theory offers
a way to compute the statistics of these eigenvalues when N and T' are both large,
with a fixed ratio ¢ = N/T. The result depends both on the eigenvalue spectrum
of the matrix C and, perhaps surprisingly, on the probability distribution of the
conditioning variable, P(£). The simplest, albeit unrealistic case for applications
in finance, is when C is the identity matrix, i.e. there is no correlations between
the 7). In this case, using the theory of Free Random Matrices [136], one finds that
the empirical eigenvalue spectrum of f), p1(p), is the solution of the following set of
equations, in the limit where € goes to zero: [43, 30]

. Gr 5(1 - ngR)
Ho= * / PO T ey + (anepm)?

Gy +mp]
1 g€ )
€ = —— 4+ [ AP , 9.22
m( Gy + mpi u/é.ghl—%Gml+@%mV (522)
where G is the real part of the resolvent. One can check that in the limit ¢ — 0,

and using the fact that ¢ has zero mean, the above equations boil down to:

1
Gr—impy

(9.21)

= p—ie — pi(p) = (), (9.23)

i.e. all eigenvalues are zero, as they indeed should when 7" > N.

The case of an arbitrary correlation matrix C can also be solved completely us-
ing the above result on p; and the so-called S-transform of the eigenvalue spectrum
[136], noting that the eigenvalues of D are the same as those of the product C x Dy,
where D is a random matrix with eigenvalue spectrum p;(u). The resulting equa-
tion can in principle be solved numerically for any value of ¢ and for an arbitrary
correlation matrix C. The resulting theoretical eigenvalue spectrum for the matrix
D, assuming no correlation between the conditioning variable ¢ and the instanta-
neous correlation z,2g, can be compared to the empirical spectrum obtained from



270 CHAPTER 9. PRA AND THE INDEX LEVERAGE EFFECT

data using Eq. (9.13). Any difference between the two spectra can be interpreted as
resulting from a true correlation with the conditioning variable.
In the null-hypothesis case, it is also clear that the quantity A defined by:

A- Ail [(elBlow) — r[Blor}efen)] (9.24)

must be zero when averaged over &, z,. One can compute its variance, which is
found to be: )
{e|Cle) — Ai(elvr)

T (€2). (9.25)

<32>57xa =

For large T', the central limit theorem ensures that A becomes Gaussian with the
above variance. This result will be used below to assess whether the empirical value
of A (defined above) is meaningful or not.
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Figure 9.3: Main figure: empirical spectrum of D for the BE500 index (in red), com-
pared to the null-hypothesis case (in blue). For the latter case, we have generated
1000 random samples, ranked the eigenvalues and averaged each of them separately.
The leftmost blue peak therefore corresponds to the average value of the most nega-
tive eigenvalue. Insets: cumulative distributions of the most negative eigenvalue p,
and of the scalar product S = (w;|vy).

9.4.3 Numerical simulations

In practice, however, we found it more convenient to use direct numerical simula-
tions rather than the above exact results. In principle, these results below could be
obtained using the mathematical formalism above, but the effort required to solve
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numerically the equations above is larger than the one needed to make direct sim-
ulations. We measure the null-hypothesis spectrum of D by choosing £(¢) to be a
Gaussian random variable of zero mean and unit variance, completely independent
of the true returns 7,(t), which we then diagonalize. The cumulative distribution
of the largest negative eigenvalue in the null-hypothesis is shown in the inset. The
average position of the most negative eigenvalue of D in the null-hypothesis case is
found to be i1 &~ —4.8. The average position of the second and third most negative
eigenvalues in the null-hypothesis case will be denoted by s and 5.

We have also measured the distribution of the scalar product S = (wy|v;) be-
tween the corresponding top eigenvector |w;) and the top eigenvector of C, |vy).
We find that even in the case where £(t) is an independent random variable, the
top eigenvector of D is in fact strongly correlated with |v;), with an average scalar
product equal to S = 0.68 for the correlation matrix of the returns of the BE500
index. We find numerically that P(S < 0.5) ~ 0.11 and P(S < 0.65) ~ 0.38 for the
BE500 index — see Fig. 10.3. Results for the SP500 are very similar.

9.4.4 Comparison with empirical data

In order to reduce the measurement noise and compare with the above numerical
simulations, we have estimated D(7) using Eq. (9.13) with “Gaussianized” empirical
index returns, obtained by first ranking the true index return from most negative to
most positive, defining the rank of day ¢, k(¢). The Gaussianized index return I(t)
is then obtained as ®~!(k(t)/T), where @ is the error function.

We show in Fig. 10.4 the evolution of u(7), the largest (in absolute value)
eigenvalue of D(7) as a function of 7. We find that u; is negative, corresponding to
the correlation leverage effect (see Eq. (9.17)). Comparing with the null-hypothesis
case, we find that u;(7) remains significant at the 1% confidence level up to 7 ~ 240.
When fitting p;(7) with an exponential function with two scales that saturates
at the noise level ji; determined above, we find uy(7) = 13 — 26.6 exp(—7/11) —
17.1exp(—7/200). This reveals two time scales; a rather short one close to the one
determined directly from L£,(7) above (see Fig. 9.1), and a much longer time scale
on the order of a year, showing that the effect of market drops on the correlation
is long lasting. The scalar product S(7) = (wy(7)|v1) between the top eigenvectors
of D(7) and C globally exceeds 0.8 in the whole range 7 € [1,240], whereas the
null-hypothesis average value is S = 0.68.

We have also studied the second (po(7)) and third (us(7)) eigenvalues of D(7)
as a function of 7, which are both negative and clearly beyond the noise level, and
are found to decay with very similar time scales: a month and a year (see Fig. 10.5).
The corresponding eigenvectors are found to be mostly within the subspace spanned
by the second and third eigenvectors of C. The financial interpretation of these
eigenvalues is of an increased sectorial correlation when the market drops on top of
an increase of the market correlations. Therefore, all idiosyncratic effects disappear
upon market drops, while global factors become dominant.
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Figure 9.4: Left: Largest negative eigenvalue (1) of the lagged regression ma-
trix D(7). The double exponential fit (dotted line) is given by : (1) =
pu® — 26.6 exp(—7/11) — 17.1exp(—7/200), where we fix the value of uf® using
the numerical results of the previous section: u(® = p; ~ —4.8, since we expect
that for large 7, all correlations are lost. Right: Evolution of the scalar product
S(7) = (v1|wy (7)) as a function of 7. The horizontal dashed line corresponds to the
mean of the scalar product S in the null-hypothesis case. The data corresponds to
the BE500 index, but the results for the SP500 are very similar.
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Figure 9.5: Left: Second eigenvalue po(7) of the lagged regression matrix D(7).
The exponential fit (dotted line) is given by: pus(7) = 2 — 1.3exp(—7/14.4) —
2.3exp(—7/364). Right: Third eigenvalue us(7) of the lagged regression matrix
D(7). The exponential fit (dotted line) is given by : ps(7) = i3 — 1.3 exp(—7/20) —
1.5exp(—7/420). Direct numerical simulations of the random case lead to pis =~
—1.52 and pi3 &~ —1.24. The data corresponds to the BE500 index, but the results
for the SP500 are again very similar.
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9.4.5 Separating negative & positive returns

As Fig. 10.2 explicitely shows, the correlation depends on past index returns in a
non-linear way. In fact, both negative and positive returns increase the correlations,
although the effect is stronger for negative returns, which in turn leads to a non-zero
linear term in the regression of 1, (¢)7s(¢) on I(t—7). A way to capture the parabolic
shape seen in Fig. 10.2 would be to extend the above model to:

Na(t)5(t) = Cag + Dap(T)I(t = T) + Eap(7) [I*(t — 7) = (I*)] +€ap(t), (9.26)

defining a new matrix E that captures the symmetric effect of index returns on
the correlation matrix. An alternative choice, that we adopt below, is to regress
separately on negative returns and on positive returns:

Ma(t)ls(t) 1= Cap + Dy (1) [IT(t = 7) = {IT)] 611¢—r)>0) (9.27)
+ D () [I7(t = 7) = (I7)] r—ry<0} + Eas(t), (9:28)

where 1™ = max(/,0),1~ = min(/,0) and ¢ is the Dirac function. With this defi-
nition, one can rewrite the correlation matrix conditioned to a certain past value of
I more precisely, separating the effect of positive returns and negative returns, as
follows:

C(I)=C+D" [I" = (I")] dz<oy + D" [I" = (I)] 00y (9:29)

Again, in order to reduce the measurement noise, we used “Gaussianized” empirical
index returns I¢(t) instead of I(t). We apply to D*(7) the same analysis as above.
As anticipated, the top eigenvalue p; of D™ is strongly negative, whereas the top
eigenvalue | of DT is positive, but with ui” < || — see Fig. 10.6. The projections
of |wi") and |w;) onto |v;) are both very close to unity for small 7 and gradually
decay to the noise level as 7 increases. To check the significancy of our effect, as
before, we define a null-hypothesis case, introducing the matrix:

() D = D walt)rst)6(1) (9.30)

where the conditioning variables ¢ is independent of the z,, (which are standard gaus-
sian variables whose correlation matrix is C as above) and distributed as min(&, 0) —
(min(¢,0)) where & is as before a standard gaussian variable. We define further the
matrix DF exactly as D- except for the fact that the conditioning variable is now
distributed as max(&,0) — (max(§,0)). As above, iy, iy, i will be the average po-
sitions of the first, second and third most negative eigenvalues of D~ and fif, if, i
will be the average positions of the first, second and third most positive eigenvalues
of DT. Those values are all computed using numerical simulations.

We have also studied the rotation parameter A* for both matrices D*(7) defined

AF = )\il [{e|D*|v1) — (v1|D*|vy) {e|v)] - (9.31)
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Figure 9.6: Left: uy (7) of the lagged regression matrix D~ (7). The exponential fit
(dotted line) is given by : pu; (1) = iy — 73exp(—7/19) — 41 exp(—7/300). Right:
ui (1) of the lagged regression matrix DT (7). The exponential fit (dotted line) is
now given by : pf (1) = i + 10.6 exp(—7/49) + 44 exp(—7/200). Note again the
presence of a long relaxation time on the order of a year. We have used direct
numerical simulations to obtain fi; = i &~ —8.3. The data is for the returns of the
BE500. Again, SP500 yields very similar results.
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The results are shown in Fig. 10.7. In agreement with the common lore, A~ is
negative, indicating that strongly negative index returns (below (I7)) lead to a more
uniform instantaneous market mode. On the other hand, A™ is found to be negative
as well, meaning that while strongly positive returns also tend to increase the average
correlation between stocks, the instantaneous market mode rotates away from the
uniform vector |e). The effects we are reporting are statistically significant since the
root-mean square error on A% (defined as in Eq.(9.24)) in the null-hypothesis case
is found to be ~ 8- 10, a factor 3 to 4 smaller than the amplitude of the empirical
values of A*.
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Figure 9.7: Plot of the rotation parameters A~ (left) and A™* (right) as a function
of 7. The horizontal dashed lines correspond to the root-mean square error on A*
in the null-hypothesis case. The data is for BE500; the amplitude of A~ and A*
are found to be roughly a factor 2 larger for the SP500.

9.5 Summary & Conclusion

The aim of this paper was to revisit the index leverage effect, that can be decom-
posed into a volatility effect and a correlation effect. We investigated the latter in
great detail using a matrix regression analysis, that we called ‘Principal Regression
Analysis’ (PRA) and for which we have provided, using Random Matrix Theory and
simulations, some analytical and numerical benchmarks.

Using this refined analysis, we confirm that downward index trends increase
the average correlation between stocks (as measured by the top eigenvalue of the
conditional correlation matrix), which in turn explains why the index leverage effect
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is stronger than for single stocks. Compared to the null-hypothesis benchmark, this
leverage correlation effect is highly significant (see Fig. 10.4 and Fig. 10.6). We also
find that large downward trends implies a more uniform future market mode (see
Fig. 10.7, left).

Upward trends, on the other hand, also increase the average correlation between
stocks (see Fig. 10.6, right) but large upward trends rotate the future market mode
away from uniformity (see Fig. 10.7, right). All these effects are characterized by
two ‘memory’ time scales: a ‘short’ one on the order of a month and a longer one on
the order of a year. The latter long time scale could be related to the fact that the
market had long cycles of booms and busts within the studied time series, during
which the average correlation went down and up again.

We have also studied the correlation leverage effect on intraday data, and we
find (results not shown) that while the top eigenvalue of the 15 minutes correlation
matrix is nearly insensitive to the sign of the previous 15 minutes index return, a
significant effect emerges when the time scale reaches one hour.

Finally, we have found indications of a leverage effect for sectorial correlations as
well, which reveals itself in the second and third modes of the PRA (see Fig. 10.5).
It would be interesting to analyze other conditional correlation matrices using the
tools developed in this paper, such as for example leader-lagger effects [116, 45, 115],
or the role of other macro variables such as oil, currencies or interest rates.
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Vargas.
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Chapter 10

Individual and collective stock
dynamics: intra-day seasonalities

Résumé

Cet article est publié dans le journal New Journal of Physics et est
écrit en collaboration avec Jean-Philippe Bouchaud. Nous établissons
plusieurs nouveaux faits stylisés concernant les saisonalités de la dy-
namique des prix des actions au cours de la journée. Au dela du célebre
effet U pour la volatilité au cours de la journée, nous trouvons que la
corrélation moyenne entre les actions augmente au cours de la journée,
ce qui conduit a une plus petite dispersion entre les stocks. D’une
maniere légerement paradoxale, la kurtosis (une mesure des occurrences
de volatilité inhabituelles) atteint son minimum & I’ouverture du marché,
lorsque la volatilité est a son maximum. Nous confirmons que la kurtosis
est une fonction décroissante du rendement de l'indice. Cela signifie que
lors des grands mouvements du marché, la composante idiosyncratique
devient moindre dans la dynamique des actions. Schématiquement, les
heures du matin sont dominés par les mouvements idiosyncratiques ou
sectorielle avec peu de surprise, tandis que 'influence du vecteur marché
augmente au cours de la journée et que les surprises deviennent plus
fréquentes.

Abstract

We establish several new stylized facts concerning the intra-day season-
alities of stock dynamics. Beyond the well known U-shaped pattern
of the volatility, we find that the average correlation between stocks
increases throughout the day, leading to a smaller relative dispersion
between stocks. Somewhat paradoxically, the kurtosis (a measure of
volatility surprises) reaches a minimum at the open of the market, when
the volatility is at its peak. We confirm that the dispersion kurtosis is

279



280 CHAPTER 10. INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS

a markedly decreasing function of the index return. This means that
during large market swings, the idiosyncratic component of the stock
dynamics becomes sub-dominant. In a nutshell, early hours of trading
are dominated by idiosyncratic or sector specific effects with little sur-
prises, whereas the influence of the market factor increases throughout
the day, and surprises become more frequent.

10.1 Introduction

Financial markets operate in sync with human activities. It is therefore no sur-
prise that financial time series reveal a number of seasonalities related to human
rhythms: markets open in the morning and close in the evening, remain closed dur-
ing week-ends and during vacations; wages are paid and portfolios are re-balanced
on a monthly basis, earnings are announced on a quarterly basis (in the US), etc.
These periodicities leave a statistical trace on the time series of returns of many
assets. Among the best known periodicities is the so-called U effect [2, 12], that
describes the intra-day pattern of volatility of individual US stocks: the average
volatility is observed to be high after the market opens, then decreases as to reach
a minimum around lunch time and increases again steadily until market close.!

In this short note we want to report on additional intra-day patterns concerning
both individual and collective stock dynamics. First, we study the intra-day pattern
of other moments of the individual stock dynamics, beyond the well known U-shaped
volatility. Second, we characterise the cross-sectional distribution of returns and its
typical evolution during the day. Finally, we study the correlation matrix between
stock returns and find that the leading modes also have a very well defined intra-
day pattern. Our study here is entirely empirical, but our results certainly beg
for a detailed theoretical interpretation in terms of agent behaviour: strategies,
information processing, risk aversion, etc. We provide some hints in that direction
in the conclusion.

10.2 Data, notations and definitions

We have considered a set of N = 126 stocks of the New York Stock Exchange (which
are among the 250 largest market capitalisations) that has been continuously traded
during the period between 01/01/2000 and 12/31,/2009 to form a statistical ensemble
of 5 minutes stock returns. The total number of 5 minute bins is 186, 498, whereas
the total number of days is T' = 2,391 (K = 78 bins per day). Stocks will be labelled
by « = 1,...,N,days by t = 1,...,T and bins by £ = 1,..., K. The return of
stock a in bin k of day ¢ will be denoted as n,(k; ).

! This pattern is a little different in Europe or in the UK, with a second volatility spike at 2:30
pm GMT when the US market opens.
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Different types of averages will be needed. Time averages for a given stock and
a given bin are expressed with angled brackets: (...), whereas averages over the
ensemble of stocks for a given bin in a given day appear with square brackets: [...].
For an arbitrary function F'(.) of these returns we therefore write:

T N T

(F) (ki) o= o 3 Flmalks ) [FI( 1) o= o S0 Flnalhit): [(FI(R) = o S [FI (ks 1)

T

t=1
(10.1)

The first set of observables concerns single stock properties. We characterise the
distribution of stock « in bin k& by its four first moments: mean p,(k), standard
deviation (volatility) o,(k), skewness (, (k) and kurtosis (k). We will in fact use
low moments, less noisy estimates of the last two quantities. We will define m,, (k)
as the median of all returns of stock « in bin k, and define:

t=1 a=1

ta(k) = (a(k; 1)) (10.2a)

oa(k) = (na(k;t)?) — pa (k) (10.2b)

Calk) = k) (Ha(k) = ma(k)) (10.2¢)
_ . i<|77a(k§t) — 1o (k)| 2

Ka(k) = 24 (1 \/g 0 >) + (k)2 (10.2d)

Within a cumulant expansion, the last two lines coincide with the usual definition
of skewness and kurtosis, but no moments larger than two are needed to estimate
them. Note that the correction term (,(k)? to the kurtosis turns out to be negligible,
and we have neglected it in the following. We will be interested below in the average
over all stocks of the above quantities, as a way to characterize the typical intra-day
evolution of the distribution of single stock returns.

One can also consider cross sectional distributions, i.e. the dispersion of the
returns of the N stocks for a given bin k in a given day ¢, i.e. one distribution every
five minutes. One can again characterize these distributions in terms of the first
four moments. The median of all N returns for a given k;t is now mg(k;t) (d for
“dispersion”), and we define:

pa(k;t) = [na(k;t)] (10.3a)

oq(kit) = [na(k;t)?] — pi(kst) (10.3b)
6

Ca(k;t) = py s (a(k; t) —ma(k;t)) (10.3¢c)

(k) = 24 (1 B \/g[!na(k;z(;)ua(k)!]) (10.34)

Note that pg(k;t) can be seen as the return of an index, equiweighted on all stocks.
We will be interested below in the average over all days of the above quantities, as a
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way to characterize the typical intra-day evolution of the dispersion between stock
returns.

Although the dispersion already captures part of the “Co-movements” of stocks,
a more direct characterization is through the standard correlation of returns. In
order to measure the correlation matrix of the returns, we first normalize each
return by the dispersion of the corresponding bin. This factors in any “trivial” intra-
day seasonality, and also accounts for the fact that the volatility fluctuates quite a
bit during the 10 year time interval that we consider. Therefore, we introduce:
Na(k;t) = na(k;t)/oq(k;t) and study the correlation matrix defined for a given bin

k:
1

Ta(k)Ts(k)

where the subscript ¢ means “connected part” (i.e. averages have been subtracted)
and o2 (k) := (n2(k;t)).. Of special interest are the largest eigenvalues and eigenvec-
tors of Cy g(k), which characterize the correlation structure of stock returns. This
analysis has been performed in several papers ([44, 43, 137, 114]) using daily or
high frequency returns, and it is well known that the structure of large eigenvectors
reflects the existence of economic sectors of activity. The largest eigenvalue Ay, in
particular, corresponds to the market mode, and is associated to an eigenvector with
all entries positive and close to 1/v/N. In fact, A\; /N can be seen as a measure of the
average correlation between stocks. We will be interested below in the £ dependence
of the largest eigenvalues and their associated eigenvectors, a study that, to the best
of our knowledge, has not been reported in the literature before.

Cap(k) = (7o (k5 1)1 (1)), (10.4)

10.3 Single stock intra-day seasonalities

10.3.1 0Odd moments

Odd moments tend to be small and noisy, so it is difficult to draw definite conclu-
sions. The average return is on average over the whole period positive, but noisy and
does not show any intra-day pattern. The average skewness of five minutes returns
is also noisy and is compatible with zero, again without any identifiable intra-day
pattern at all. This is at variance with the skewness of returns on a longer time
interval, which is negative. The build up of negative skewness with time scale is a
consequence of the leverage effect, i.e. negative returns tend to be followed by larger
volatilities (see e.g. [44]).

10.3.2 Even moments

The average volatility, on the other hand, reveals a very clean U-shaped pattern
that has been reported many times in the literature ([2, 12]). We show in Fig. 10.1
o(k) = [04(k)]. Note that the overnight volatility ~ 1.15% is much larger than
the typical five minute volatility, and is not shown in the graph. Interestingly, the
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Figure 10.1: We show the average volatility of stocks o(k), the average cross sec-
tional dispersion o4(k) and the average absolute value of the index return (|puq(k,t)])
(multiplied by 4 for clarity) as a function of k, with the corresponding statistical
error bars. All display the well known U pattern. We also compare o(k) with a
power-law decay k=# with 8 ~ 0.3 (dashed line), which is a good fit for the first
half of the day. Inset: ratio o(k)/oq4(k) as a function of k, showing that dispersion
effects diminish throughout the day.

average volatility is found to decay in the first two hours of trading as a power-
law k=7 with 8 ~ 0.3. This relaxation is reminiscent of the power-law decay of
the volatility after large price swings [95, 133, 146, 85]. The overnight return is
indeed usually quite large, and can be seen as a strong perturbation. The power-law
relaxation suggests that some critical mechanism is involved in the way volatility
reverts back to ‘normal’ after market jumps.

Turning now to the kurtosis k(k) = [kq(k)], we find, perhaps surprisingly, that
there is a clear intra-day growth of the kurtosis from x ~ 3.5 at the beginning of the
day to k & 5 around 1 p.m., and stays approximately constant (but noisy) until the
end of the day — see Fig. 10.2, left. The overnight kurtosis remains around 5. This
finding is counter-intuitive because one would naively associate the large volatility
in the morning with huge swings, symptomatic of the market uncertainty at the
open. But this is not the case: the maximum of the intra-day volatility corresponds
to a minimum in kurtosis. We will report similar counter-intuititive results below.
Possible mechanisms are discussed in the conclusion.
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Figure 10.2: Left: average kurtosis of individual stocks x(k) as a function of k.
Right: average cross sectional kurtosis kq(k) as a function of k. In both cases, we
show the 1-0 dispersion around the mean (i.e. not the error bar). The red triangles
correspond to the overnight values.

10.4 Cross-sectional intra-day seasonalities

10.4.1 0Odd moments

Noting that the average over stocks of p, (k) is identical to the average over time
of pg(k;t), the discussion of the first moment of the cross-sectional distribution
is redundant. The average of |u4(k;t)| is a proxy for the index volatility, and is
displayed in Fig. 10.1 : it shows a U-shaped pattern similar to that of o(k), with
however a stronger end-of-day surge. This is due to the correlation pattern discussed
in section 5 below: the average correlation between stock indeed increases as the
day proceeds, leading to an increased index volatility.

As far as the average skewness (4(k) = ((4(k;t)) is concerned, we again find a
very noisy quantity with no particular intra-day pattern. The only notable feature
is that this time, the skewness is significantly positive, albeit small: the average over
k of (4(k) is found to be ~ 0.025.

10.4.2 Even moments

As above, the even moments show clear patterns. The average dispersion o,4(k) =
(04(k;t)) exhibits a U-shaped pattern very similar to that of o(k) — see Fig. 10.1.
In fact, the ratio o(k)/o4(k) is plotted in the inset of Fig. 10.1 as a function of k
and increases from = 1.15 at the open to 1.45 at the close. In relative terms, the
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Figure 10.3: Cross sectional dispersion o4 as a function of the index return (equi-
weighted on all stocks) pg. We added error bars, and linear branches that fit the
small |u4] slopes, that emphasise the sub-linear behaviour of o.

dispersion is thus stronger in the morning, and decreases as the day proceeds.

The dispersion kurtosis kq(k) = (kq(k;t)), on the other hand, has an inverted U
shape, and reaches a minimum at the open and at the close of the market, i.e. when
the dispersion and the volatility are locally maximum. So even when the dispersion
of returns is at its peak, with stocks all over the place (so to say), the cross-sectional
distribution of returns is on average closer to a Gaussian! Note however that the
variation of the kurtosis is not large, from x; = 2 to kg = 2.4. The overnight
dispersion kurtosis, on the other hand, is much stronger: x4 ~ 3.3.

10.4.3 Conditioning on the index return

As noted above, the quantity ug(k;t) is the return of an equiweighted index. It is
interesting to condition the value of the moments of the cross-sectional dispersion
on this quantity. Such a study was performed on daily returns in [97] and more
recently by L. Borland [38]. In agreement with the results of [97, 56], we find that
the average dispersion o4 is an increasing function of the amplitude of the index
return, see Fig. 10.3. As noted in [56], this observation shows that the volatility
of the stock residuals in a one-factor model must depend on the volatility of the
market mode. Fig. 10.3 furthermore suggests that this dependence is sub-linear (see
[54] for some elaborations on this observation.)

As first established in [96] on daily data, we find that the skewness (; is an
odd function of pg, as shown in Fig. 10.4. Note that the skewness increases very
abruptly for small pg and saturates for larger values of the index return. Pictorially,
a positive index return can be thought of as resulting from a few “winners” running
ahead of the pack, contributing both to the mean py; and to the skewness. The



286 CHAPTER 10. INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS

-0.2 0.0 0.2
Il Il

-0.4
Il

0.6

T T T T T T
-0.0015 -0.0010 -0.0005 0.0000 0.0005 0.0010 0.0015

Ha

Figure 10.4: Cross sectional skewness (; as a function of the index return (equi-
weighted on all stocks) pg. We added error bars (dotted lines), that are actually
difficult to see near the origin.

slope of (4(pq) around the origin, together with the fact that the index has made
on average positive daily gains in the period 2000 — 2009, are enough to explain the
average value of the dispersion skewness (4(k) = 0.025 reported above.

Finally, the dispersion kurtosis x; shows again a non-intuitive decreasing be-
haviour as a function of |p4], see Fig. 10.5. The average kurtosis conditioned to a
value of |ug| decreases from = 2.8 for small index returns to ~ 1.8 for index returns
larger than 2% in absolute value. This was first noticed en passant in [56] on daily
data and recently emphasised by Borland [38]. Here, we confirm on five minute
returns this strange stylised fact: the cross-sectional distribution of returns appears
to be more Gaussian when its mean is off-centred.

However, if we now condition k4 on the dispersion o, (which, as we found above,
is positively correlated with |ug4|), we find (see Fig. 10.5) the opposite behaviour, i.e.
the larger the dispersion, the larger the kurtosis k4! We will offer a discussion of
these confusing effects in the discussion section below.

10.5 Intra-day seasonalities in the inter-stock cor-
relations

Let us now turn to the properties of the eigenvalues and eigenvectors of the N x N
correlation matrix C, g(k) defined by Eq. (10.4) above.
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Figure 10.5: Left: Cross sectional kurtosis x4 as a function of the index return (equi-
weighted on all stocks) 4. Note that the dependence is nearly the same for positive
and negative market returns. Right: Cross sectional kurtosis k4 as a function of the
cross sectional dispersion o4,. We added error bars (dashed lines) on both figures.

10.5.1 The top eigenvalue

The largest eigenvalue \; of the correlation matrix of stock returns is well known to
be associated with the “market mode”, i.e. all stocks moving more or less in sync.
As recalled above, the quantity A\;/N can be used to define the average correlation
between stocks.

We show in Fig. 10.6 (left side) the magnitude of \;/N as a function of k.
Interestingly, the average correlation clearly increases as time elapses, from a rather
small value ~ 0.12 when the market opens to ~ 0.3 near market close. This is in
agreement with the fact that the dispersion o4(k) is, in relative terms, smaller at
the end of the day (see Fig. 10.1, inset). The value of A;/N for the correlation of
overnight returns is also around 0.3, in continuity with the value at the end of the
trading day.

In agreement with the idea that the stock dynamics become more and more uni-
form as the day proceeds, we find a substantial increase of the scalar product of the
largest eigenvector ¥y (k) with the uniform normalised vector &€ = (1/v/N,1/v/N,...,1/v/N)
— see Fig. 10.6 right. This scalar product is always close to unity, confirming the
market mode interpretation of the top eigenvalue, but starts the day around 0.97
and ends the day at 0.995, before dropping again in the last bins of the day and
during the overnight, when it is equal to 0.985 (i.e. larger than the open value).
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Figure 10.6: Left: Dependence of the top eigenvalue of the correlation matrix C'(k),
A1(k)/N, as a function of time of day. Right: Evolution of the scalar product between
top eigenvector v (k) and the uniform vector €. The red triangles correspond to the
overnight values.

10.5.2 Smaller eigenvalues

The evolution of the next six eigenvalues \;(k), i = 2,...,7 is shown in Fig. 10.7.
We see that the amplitude of this risk factors now decreases with time, before shoot-
ing back up during the overnight (see the last point of the graphs). Although by
construction the trace of the correlation matrix, and therefore the sum of all NV
eigenvalues is constant (and equal to V), this decrease is not a trivial consequence
of the increase of A1, since the sum of the first five eigenvalues is ~ 50, still small
compared to Tr(C') = N = 126. What we see here is that as the day proceeds, more
and more risk is carried by the market factor, while the amplitude of sectorial moves
shrivels in relative terms (but remember that the correlation matrix is defined after
normalising the returns by the local volatility, which increases in the last hours of
the day).

It is more difficult to visualise the evolution of the corresponding eigenvectors,
since there is no natural vectors to compare them with. Furthermore, eigenvalues can
“collide” and cross, resulting in an interchange between two consecutive eigenvectors.
We have therefore chosen to take as a reference the eigenvectors v;(1) in the opening
bin k£ = 1, corresponding to the largest values of \;(k), i = 2,...,7. We then form
the 6 x 6 matrix of scalar products W;;(k) = ©;(1) - U;(k). The singular values sy(k)
of this matrix (equal to the square-root of the eigenvalues of W7 W) give a measure
of the overlap between the eigenspace spanned by the @;(1) and that spanned by
the U;(k). If the v;(k) are a permutation of the v;(1), all the s;’s are equal to unity,
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Figure 10.7: Left: Smaller eigenvalues \;(k), i = 2,...,7) as a function of k. Right:
The 6 singular values s;(k) (¢ = 2,...,7) of the matrix W;;(k). In the absence of any
true persistence, one would expect all singular value to lie in the interval [0,0.12],
much below the smallest singular value s; ~ 0.8. The triangles correspond to the
overnight values.

indicating maximum overlap. In particular, s,(1) = 1 trivially. The evolution of
the so(k), £ = 2,...,7 is shown in Fig. 10.7 right. Using the results of [45], we
conclude that all s,(k) are meaningful, since in the absence of any true correlations
between the (1) and the v;(k), one would expect all singular values to lie in the
interval [0,0.12]. Therefore, although the structure of correlations clearly evolves
between the opening hours and the closing hours, there is as expected a strong
overlap between the principal components throughout the day.

10.6 Discussion & Conclusion

Let us present a synthetic account of the above empirical results, for which we only
propose an interpretation stub. We have seen that during the opening hours of the
market, the volatility and the dispersion of returns are high, whereas kurtosis effects
are relatively low. These two quantities are different measures of the heterogeneity
of stock returns, and quite paradoxically they are found to behave in opposite ways.
But while the volatility and dispersion are dimensional measures of heterogeneity
(measuring the spread of returns in %), the kurtosis is a relative, a-dimensional
measure of surprise. What our results mean in intuitive terms is that although the
typical amplitudes of stock returns are high in the morning, outliers are relatively
rare, both over time and over stocks. In a sense, agitation is the norm during these
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early hours of trading, stocks move in different directions in such a way that the
average correlation is weaker than average, and the top eigenvector of the correlation
matrix is farther away from the uniform mode &= (1/v/N,1/v/N,...,1/v/N). But
anomalously large jumps rarely take place in the morning — as expected, these
jumps are more likely overnight (and are to be related to arrival of corporate specific
or market-wide information), where kurtosis effects are strongest, both for single
stock and cross-sectional returns. As the day proceeds, correlations increase and
dispersion decreases, but unexpectedly large jumps become more probable, thereby
increasing the kurtosis.

The second somewhat paradoxical effect is the dependence of the kurtosis on the
index return, which was recently interpreted by L. Borland as a signature of collective
behaviour during crises [38]. Again, days when the market as a whole moves a lot
are also large dispersion days where all stocks move a lot in different directions, but
with little outliers, i.e. one or a handful of stocks that would jump up or down.
In this sense, these days are more homogeneous. Should one deduce from this that
there is a stronger “synchronisation”, or collective dynamics, during these periods,
as suggested by Borland? While it is true that the average correlation between
stocks depends on the index return, this dependence is in fact signed: correlations
are stronger for negative index returns and weaker for positive returns, see [26, 7].
This is in contrast with the kurtosis effect discussed here, which is surprisingly
symmetrical (see Fig. 10.5). A quantitative model for this behaviour is missing at
this stage. Qualitatively, however, we believe that the mechanism is the following
[54]: when the index return is large, the dominant source of dispersion becomes
the market exposure (the ‘3’s’) of the different stocks, rather than the idiosyncratic
residuals. Since the distribution of the (’s is roughly Gaussian, kurtosis effects
do indeed decrease for large index returns. This interpretation however requires
that the volatility of the residuals increases sub-linearly with the index volatility, as
indeed suggested by the data shown in Fig. 10.3. The fact that during large swings
of the index, the market exposure of stocks becomes the dominant factor is probably
a result of index/futures arbitrage.

Finally, although large index return days are large dispersion days, the converse
is not true. A typical large dispersion day is in fact a day when one or a handful
of stocks gyrate wildly, contributing both to the dispersion and to the kurtosis,
and explaining the positive correlation between o, and k4. If this interpretation is
correct, this positive correlation should diminish when one uses the mean-absolute
deviation and not the variance to compute the dispersion, since the former is less
sensitive to outliers. We have checked that this is indeed the case.

To summarise, we have established several new stylised facts concerning the
intra-day seasonalities of stock dynamics. Beyond the well known U-shaped pat-
tern of the volatility, we have found that the average correlation between stocks
increases throughout the day, leading to a smaller dispersion between stocks (in
relative terms). However, the kurtosis, which is a measure of volatility surprises,
is in fact minimum at the open of the market, when the volatility is at its peak.
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We have also confirmed that the dispersion kurtosis is a symmetric, markedly de-
creasing function of the index return. This means that during large market swings,
the idiosyncratic component of the stock dynamics becomes sub-dominant, an effect
that we have confirmed directly. Finally, while the market mode component of the
dynamics becomes stronger as the day proceeds, the sectorial components recede.
In a nutshell, early hours of trading are dominated by idiosyncratic or sector specific
effects with little surprises, whereas the influence of macro, market factor increases
throughout the day, and surprises become more frequent. A detailed quantitative
interpretation of our results, for example of the power-law decay of the volatility in
the morning, is at this stage lacking. We believe that, when available, such an inter-
pretation will shed light on the relative importance of behavioural and informational
effects on price formation and volatility.
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