e tp r é -p u b l i é s[ 9, 10, 11]s u r ces résultats dans lesquels le lecteur pourra trouver des développements plus détaillés.

Contents I Introduction

Gaussian multiplicative chaos and their scale invariance properties

Roughly observed, some random phenomena seem scale invariant. This is the case for the velocity field of turbulent flows or for the evolution in time of the logarithm of the price of a financial asset. However, a more precise empirical study of these phenomena displays in fact a generalized form of scale invariance commonly called multifractal scale invariance or intermittency or stochastic scale invariance. The exponent which governs the power law scaling of the process or field is no longer linear. More precisely, for a one dimensional stationary process we observe the following behavior for small scales h,

E [|X t+h -X t | p ] ∼ h→0 + C p h ζ(p)
where ζ is a non linear function. The concept of nonlinear power-law scalings goes back to the Kolmogorov theory of fully developed turbulence in the sixties (see [START_REF] Castaing | Velocity probability density-functions of high Reynolds-number turbulence[END_REF][START_REF] Schmitt | Empirical determination of universal multifractal exponents in turbulent velocity fields[END_REF][START_REF] Stolovitzky | Kolmogorov's Refined Similarity Hypotheses[END_REF][START_REF] Castaing | Conditional velocity pdf in 3-D turbulence[END_REF][START_REF] Frisch | Turbulence[END_REF]a n dr e f e r e n c e s therein), introduced to render the intermittency effects in turbulence. In 1974, Mandelbrot [START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades, divergence of high moments and dimension of the carrier[END_REF] came up with the first mathematical discrete approach of multifractality, the now celebrated multiplicative cascades, in order to build random measures describing energy dissipation and contribute explaining intermittency effects in Kolmogorov's theory of fully developed turbulence.

Despite the fact that multiplicative cascades have been widely used as reference models in many applications, they possess many drawbacks related to their discrete scale invariance, mainly they involve a particular scale ratio and they do not possess stationary fluctuations (this comes from the fact that they are constructed on a dyadic tree structure).

Am o r er e fi n e dm o d e lw a st h e ni n t r o d u c e db yK a h a n ei n1 9 8 5 ,u n d e rt h en a m e of Gaussian multiplicative chaos. Following the ideas of multiplicative cascades, Kahane's theory of Gaussian multiplicative chaos also constructs multifractal random measures by iterating products of lognormal random variables. The advantages of this construction is that the random measures possess stationary fluctuations (no particular scale ratio is involved in the construction).

This chapter is a brief introduction to this theory of multiplicative chaos. In the first subsection 1.0.1,w es t a r tb yr e c a l l i n gt h ec o n s t r u c t i o no fM a n d e l b r o t ' s multiplicative cascades and their main properties. In particular, we introduce Mandelbrot's star equation, which is a stochastic scale invariance equation, satisfied by the multiplicative cascades. In the following subsection, we introduce Kahane's theory of Gaussian multiplicative chaos. The third subsection is devoted entirely to the concept of stochastic scale invariance. We introduce two concepts: the exact stochastic scale invariance and the stochastic star-scale invariance (which is the continuous analog of the Mandelbrot's star equation). We present a brief study on the link with Gaussian multiplicative chaos and on the relation between the two concepts. In the final subsection 1.0.4, we enunciate the main result obtained in this field.

Multiplicative cascades and Mandelbrot's star equation

We recall the definition of multiplicative cascades, following the notations used in [START_REF] Benjamini | KPZ in one dimensional random geometry of multiplicative cascades,C o m m u n i c a t i o n si nm a t h e m a t i c a lp h y s i c s[END_REF]. The fundamental properties of multiplicative cascades were first proved in [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF] by Kahane and Peyrière in 1976. Let I n denotes the set of dyadic subintervals of [0, 1] of length 2 -n ,i . e .

I n := [k2 -n :(k +1)2 -n ]:k ∈{0, 1,...,2 n -1} .

Each interval in I n can be divided in exactly two subintervals in I n+1 .W ew i l la l s o set

I := n I n . Let Z = e X-σ 2 2
where X is a Gaussian variable of mean 0 and variance σ 2 . Note that Z is a non negative random variable with mean 1. We choose here a lognormal distribution for Z in order to be consistent with the next subsections but the construction of multiplicative cascades can be made with any choice of non negative random variable Z with mean 1. Let also Z I ,I ∈Ibe a collection of independent random variables distributed as Z.

We now define inductively a sequence of random measures (µ n ) n∈N on [0; 1]. Let µ 0 denote the Lebesgue measure and set µ 1 := Z [0;1] µ 0 .L e tµ 2 denote the measure that agrees with Z [0;1/2] µ 1 on [0; 1/2] and with Z [1/2;1] µ 1 on [1/2; 1]. Inductively, define µ n+1 as the measure that agrees on every I ∈I n with Z I µ n . Alternatively, we can also define the multiplicative cascade by setting µ n := w n µ 0 , where w n (x)= n-1 j=0 Z I j (x) , where I j (x)d e n o t e st h ei n t e r v a lI ∈I j that contains x (if there is more than one, the one whose maximum is x,s a y ) .

For each Borel set A ⊂ [0, 1], note that the sequence (µ n (A)) n is a non negative martingale. Thus, the sequence µ n (A)c o n v e r g e sa l m o s ts u r e l yw h e nn →∞to a limit that we will denote by µ(A).

Consequently the sequence of measures (µ n )c o n v e r g e sa l m o s ts u r e l yw e a k l yt o am e a s u r eµ on [0; 1]. The authors of [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF]a l s og i v ean o n -d e g e n e r e s c e n c ec r i t e r i o n for the measure µ:t h em e a s u r eµ is almost surely non zero if and only if we have E[Z log Z] < log 2. It is also shown that the measure µ has almost surely no atoms.

The multiplicative cascades present multifractal property in the sense that they obey the following stochastic scale invariance equation:

µ(dt) law = Z [0;1/2] 1 [0, 1 2 ] (t)µ 0 (2dt)+Z [1/2;1] 1 [ 1 2 ,1] (t)µ 1 (2dt -1) , (1.1) 
where µ 0 ,µ 1 are two independent copies of µ and Z [0;1/2] ,Z [1/2;1] are independent copies of Z,a l s oi n d e p e n d e n to fµ 0 ,µ 1 .S u c ha ne q u a t i o n( a n di t sg e n e r a l i z a t i o n s to b-adic trees for b 2), the celebrated star equation introduced by Mandelbrot in [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, I and II[END_REF], uniquely determines the law of the multiplicative cascade.

Let us mention here that even if we write equation (1.1)i nt h em o r eg e n e r a l setting where (Z [0;1/2] ,Z [1/2;1] )h a sa n yp r e s c r i b e dl a ww i t hc o m p o n e n t so fm e a n 1, Mandelbrot star's equation uniquely characterizes the law of the multiplicative cascade.

In the next subsection, we present Kahane's theory of Gaussian multiplicative chaos, which constructs, again through iterative products, random measures with properties similar to multiplicative cascades.

Kahane's theory of Gaussian multiplicative chaos

Kahane introduced the theory of Gaussian multiplicative chaos in 1985 in his paper [START_REF] Kahane | Sur le chaos multiplicatif[END_REF]. This theory relies on the notion of σ-positive type kernel: a kernel K : R d × R d → R + ∪ {∞} is of σ-positive type if there exists a sequence K k : R d × R d → R + of continuous non negative and positive definite type kernels such that:

K(x, y)= ∞ k=1 K k (x, y) . (1.2)
If K is a σ-positive type kernel with decomposition (1.2), one can consider a sequence of Gaussian processes (X n ) n 1 defined as X n = n k=1 Y k where the (Y k (x)) x∈R d ,k 1 are independent centered Gaussian processes on R d with respective covariance functions K k (x, y),k 1. Then the covariance function of the Gaussian process (X n (x)) x∈R d is n k=1 K k .I ti sp r o v e di n [START_REF] Kahane | Sur le chaos multiplicatif[END_REF]t h a tt h es e q u e n c eo fr a n d o mm e a s u r e sm n defined on every Borel set A ⊂ R d by m n (A)= A e Xn(x)- 1 2 E[Xn(x) 2 ] dx converges almost surely in the space of Radon measures (equipped with the topology of weak convergence) towards a (random) measure m and that the limit measure m does not depend on the sequence K k used in the decomposition (1.2). The measure m is called Gaussian multiplicative chaos associated to the kernel K.

The main application of this theory is to give a meaning to the "limit lognormal" model introduced by Mandelbrot in [START_REF] Mandelbrot | Possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence, Statistical Models and Turbulence[END_REF]. We denote by ln + (x)t h eq u a n t i t y max(ln x, 0). The "limit lognormal" model corresponds to the choice of a stationary kernel K given by

K(x, y)=γ 2 ln + R |x -y| + g(x, y)( 1 . 3 )
where g is a bounded continuous function and γ 2 and R are respectively the intermittency parameter and the integral scale.

In [START_REF] Kahane | Sur le chaos multiplicatif[END_REF], Kahane also gives a non degeneracy criterion: Gaussian multiplicative chaos m associated to a kernel K of the form (1.3)i sa l m o s ts u r e l yn o nd e g e n e r a t e if and only if the intermittency parameter γ 2 is strictly less than 2d.T h i sp h a s e transition shows that the logarithmic kernel is crucial in the theory of multiplicative chaos. Let us define the characteristic exponent ζ (also called structure function):

ζ(p)=(d + γ 2 2 )p - γ 2 p 2 2 .
The inequality γ 2 < 2i m p l i e st h ee x i s t e n c eo f>0s u c ht h a tζ(1 + ) > 1a n d therefore there exists a unique p * > 1suc hthatζ(p * )=1. Existenceofpositiv emoments for the random variable m[0; 1] is then characterized through p * :t h er a n d o m variable m[0; 1] admits moments of order q>0f o ra l lq ∈]0; p * [. It is also shown in [START_REF] Kahane | Sur le chaos multiplicatif[END_REF]thattheGaussianmultiplicativechaosm has the following multifractal behavior when h → 0,

E[m[0; h] p ] ∼ h ζ(p)
for all p<p * .W ew i l le s t a b l i s ht h el i n kb e t w e e nG a u s s i a nm u l t i p l i c a t i v ec h a o sa n d stochastic scale invariance in the next subsections.

The reader may wonder if we can get rid of the assumption that the kernels K k used in the decomposition are non negative (and then also of the assumption that K itself is non negative) for this construction to be valid. The answer is yes and is carried out in [START_REF] Robert | Gaussian Multiplicative Chaos revisited[END_REF]: we can define Gaussian multiplicative chaos associated to any positive definite kernel that can be written under the form (1.3).

The theory of Gaussian multiplicative chaos has found applications in 2d quantum gravity, turbulence, finance,... We now review an application in finance.

Application in finance Let us briefly explain the application in finance for modeling the volatility of an asset. If X(t)i st h el o g a r i t h mo ft h ep r i c eo fafi n a n c i a l asset, the volatility m of the asset on the interval [0; t]canbedefinedasthequadratic 0.0 0.2 0.4 0.6 0.8 1.0 0.000 0.001 0.002 0.003 0.004 0.005 (X(tk/n) -X(t(k -1)/n)) 2 .

The volatility can be viewed as a random measure on R + . The choice to model the volatility by a Gaussian multiplicative chaos m associated to the logarithmic kernel

K(s, t)=γ 2 ln + R |t -s| (1.4)
enables to reproduce important empirical properties measured on financial markets: approximate lognormality of the volatility, long range correlations (see [START_REF] Bouchaud | Theory of Financial Risk and Derivative Pricing From Statistical Physics to Risk Management[END_REF][START_REF] Cont | Running for the exit: distressed selling and endogeneous correlations in financial markets[END_REF] for a review on empirical finance). Given the volatility m, the most natural way to construct a model for the log price X is then to set

X(t)=B(m[0; t]) (1.5) 
where B(t) is a standard Brownian motion independent of m. Formula (1.5) defines the multifractal random walk (see [START_REF] Bacry | Multifractal random walks[END_REF]). A simulated path of a multifractal random walk is displayed in Fig. 8.1. We can observe the intermittent bursts of volatility which are due to the Gaussian multiplicative chaos m.W ew i l lw o r kw i t ht h i sm o d e l in Chapter 8 (a n da l s oi nt h ea r t i c l e [START_REF] Allez | Marchenko Pastur type theorem for independent MRW processes: convergence of the empirical spectral measure[END_REF]). The theory of Gaussian multiplicative chaos can be generalized by doing products of exponentials of infinitely divisible random variables. It was developed for example in [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF].

We will now review sto chastic scale invariance and its link with Gaussian multiplicative chaos in the next subsections. We will mainly restrict to the Gaussian case, but the following results can be extended to the case of Lévy random variables as well (see e.g. [START_REF] Rhodes | Star-scale invariant random measures[END_REF]).

Stochastic scale invariance

We will now define two different concepts of sto chastic scale invariance: the exact stochastic scale invariance and the star stochastic scale invariance. We will give those two definitions for general dimension d.

Lognormal exact stochastic scale invariance

Denote by B(0; R)t h ee u c l i d e a nb a l lo fr a d i u sR.I f m is a stationary random measure on R d ,w es a yt h a tm has the exact stochastic scale invariance property if there exists R>0s u c ht h a tf o ra l lε ∈]0, 1], the following equality in law holds:

(m(εA)) A⊂B(0;R) law = e Ωε (m(A)) A⊂B(0;R) (1.6) where Ω ε is a Gaussian random variable independent of m.

As already mentioned, we restrict to the case of a Gaussian random variable Ω ε .I fw ed on o tm a k ea n yp a r t i c u l a ra s s u m p t i o no nΩ ε ,t h e ni ft h em e a s u r em is not identically zero, we can easily check that the random variable Ω ε is infinitely divisible.

Example of lognormal exact stochastic scale invariant random measures

It is proved in [START_REF] Robert | Gaussian Multiplicative Chaos revisited[END_REF]thatthelogarithmickernelK defined in (1.4)ispositivedefinite if and only if d 3.

It is then straightforward to prove that, for d =1, 2, 3, the Gaussian multiplicative chaos m associated to this kernel K has the exact stochastic scale invariance property in the ball B(0,R) where the random variable Ω ε is a Gaussian random variable with mean -(d + γ 2 /2) ln(1/ε)a n dv a r i a n c eγ 2 ln(1/ε).

For d 4, the authors of [START_REF] Rhodes | Multidimensional multifractal random measures[END_REF]c o n s t r u c ts t a t i o n a r ya n di s o t r o p i cr a n d o mm e asures which have the exact stochastic scale invariance property and which again fall under the scope of Kahane's theory of Gaussian multiplicative chaos introduced above.

The question of finding all the stationary random measures which satisfy the exact stochastic scale invariance property remains unsolved.

Lognormal star scale invariance

The second concept of scale invariance is stochastic star scale invariance. It is the continuous analog of the Mandelbrot star equation that we wrote in the case of 2-adic multiplicative cascades in (3.1).

Ar a n d o mR a d o nm e a s u r eM is said to be lognormal star scale invariant if for all ε<1, M obeys the cascading rule

(M (A)) A∈B(R d ) law = A e ωε(x) M ε (dx) A∈B(R d ) (1.7)
where ω ε is a stationary continuous Gaussian process and M ε ar a n d o mm e a s u r e independent from the process ω ε with law such that

(M ε (A)) A∈B(R d ) law = ε M A ε A∈B(R d )
.

Intuitively, this relation means that when we zoom in the measure M ,w es h o u l d observe the same behavior up to an independent lognormal factor. A nice feature of stochastic star scale invariance is that there is not a particular scale ratio.

Example of lognormal star scale invariant random measure

In this paragraph, we give the first known example of log-normal star scale invariant random measures, which was first described in [START_REF] Barral | Multifractal products of cylindrical pulses[END_REF](seealso [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]). In fact many other examples exist among multiplicative chaos as we will see later when explaining the results of our paper [4]. The construction of this example is very intuitive (but limited to dimension 1) :I ti sg e o m e t r i ca n dr e l i e so nh o m o t h e t i cp r o p e r t i e so ft r i a n g l e si nt h eh a l f -p l a n e . We also stress that this specific example of star scale invariant random measures is not restricted to the Gaussian case: The factor can be more general (log-Lévy).

Following [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF], we recall the construction of this example and refer the reader to the aforementioned papers for further details. Fix T>0a n dl e tS + be the state-space half plane S + = {(t, l):t ∈ R,l > 0}.

with which one can associate the measure µ(dt, dl)=l -2 dtdl.

Then we introduce the independently scattered Gaussian random measure P characterized for any µ-measurable set A by E e iqP (A) = e ϕ(q)µ(A)

with ϕ(q)=-γ 2 q 2 /2iqγ 2 /2. Under those assumptions, we can note that for any µ-measurable set A, P (A)i saG a u s s i a nv a r i a b l ew i t hm e a nm = -µ(A)γ 2 /2a n d variance σ 2 = γ 2 µ(A). We can then define the Gaussian process (ω l (t)) t∈R for l 0 by ω l (t)=P (A l (t))

where A l (t)i st h et r i a n g l el i k es u b s e tA l (t): ={(t ,l ):l l T,-l /2 tt l /2} (see a picture of this triangle in Fig. 1.3). Define now the random measure M l by M l (dt)=e ω l (t) dt. Almost surely, the family of measures (M l (dt)) l>0 weakly converges towards a random measure M .I f γ 2 < 2, the measure M is not trivial.

Let us check that M is a good log-normal star scale invariant random measure. Fix <1a n dd e fi n et h es e t sA l,T (t):={(t ,l ):l l T, -l /2 tt l /2} and A T,T (t): ={(t ,l ):T l T,-l /2 tt l /2} (see Fig. 1.4 for a picture of those two ensembles). Note that A l (t)=A l,T (t) ∪A T,T (t)a n dt h a t those two sets are disjoint. Thus, we can write for every µ-measurable set A M l (A)= A e ω T,T (t) e ω l,T (t) dt (1.8)

with ω T,T (t)=P (A T,T (t)) and ω l,T (t)=P (A l,T (t)).

We then study equation (3.17) in the limit l → 0; we obtain

M (A)=

A e ω T,T (t) M (dt)( 1 . 9 )

where M is the limit when l → 0o ft h er a n d o mm e a s u r eM l (dt):=e ω l,T (t) dt.W e easily verify that M (A) and checking that the covariance of the Gaussian process (ω l,T (t)) t∈R is the same as the one of (ω l,T (t)) t∈R (this comes from the fact that the red set in Figure 1.4 is homothetic to the gray set of Figure 1.3.).

In view of the result we present in the next subsection, note finally that the random measure M is a Gaussian multiplicative chaos with associated kernel Before, turning to the whole description of all the random measures that are solutions of (1.7), let us make a few remarks on the link between the two notions of stochastic scale invariance we have just seen.

Note that the star scale invariance equation (1.7)i sag l o b a ln o t i o ni nt h es p a c e R d in contrast with the exact stochastic scale invariance equation (1.6)w h i c hi s restricted on a compact euclidean ball (it is easily proved that the unique exact scale invariant stationary random measure on the whole space is the null measure).

The reader may wonder if the two notions are related or if there is a hierarchical relation between the two's. The answer is not yet complete but we were able to prove in [4]t h a ti faG a u s s i a nm u l t i p l i c a t i v ec h a o sM has a kernel of the form K(x, y)=γ 2 ln + ( R |x-y| )( i np a r t i c u l a rw eh a v ea l r e a d ys e e nt h a tM satisfies the exact stochastic scale invariance property), then it is not al o g n o r m a ls t a rs c a l e invariant measure.

In the next subsection, we explain the results we obtained in collaboration with R. Rhodes and V. Vargas. The reader can find a complete proof of this result in Chapter 3 (see also [4]). We characterize all the random measures that satisfy (1.7)u n d e rw e a kr e g u l a r i t ya s s u m p t i o n sf o rt h ep r oc e s sω ε and with the additional assumption that M possesses a moment of order 1 + δ (with δ>0).

Our contribution

In the following, we will say that a stationary random measure M satisfies the good lognormal star scale invariance if M is lognormal star scale invariant with some additional weak regularity assumptions on the covariance function k ε of the process ω ε ,f o ra l lε<1.

Theorem 1.1 (R.A., R. Rhodes, V. Vargas). Let M be a good lognormal star scale invariant random measure. Assume that

E[M ([0, 1]) 1+δ ] < +∞
for some δ>0. Then M is the product of a nonnegative random variable Y ∈ L 1+δ and an independent Gaussian multiplicative chaos

∀A ⊂B(R),M (A)=Y A e Xr-1 2 E[X 2 r ] dr
(1.12)

with associated covariance kernel given by the improper integral

K(r)= +∞ |r| k(u) u du (1.13) 
for some continuous covariance function k such that

k(0) 2 1+δ
.

(1.14)

Conversely, given some datas k and Y as above, the relation (3.11) defines a log-normal star scale invariant random measure M with finite moments of order 1+γ for every γ ∈ [0,δ).

The inequality (1.14) implies that the Gaussian multiplicative chaos associated to the kernel K defined in (1.13)h a sam o m e n to fo r d e r1+δ,a se x pe c t e d .

It seems natural to describe all the stochastic (star or exact) scale invariant random measures. Theorem 1.1 is a step in this direction as it characterizes all the (good) star scale invariant stationary random measures with a moment of order 1+δ.

We hop e this result to b e useful to prove convergence to Gaussian multiplicative chaos. Indeed the star scale invariance equation (1.7)c a nb es e e na safi x e dp o i n t equation satisfied by the measure M and should be easy to verify in practice for a limiting random measure. If an unknown limiting random measure has this property, our theorem enables to identify this random measure as a Gaussian multiplicative chaos and gives a formula for its covariance structure.

Let us mention that the more general case where the lognormal factor e ωε(x) is replaced by a log-Lévy factor has been solved later in [START_REF] Rhodes | Star-scale invariant random measures[END_REF].

Chapter 2

Random matrix theory and its applications

Random matrix theory (RMT) has become one of the prominent field of research, at the boundary between atomic physics, solid state physics, statistical mechanics, statistics, probability theory and number theory [3,[START_REF] Bai | Spectral Analysis of Large dimensional random matrices[END_REF][START_REF] Anderson | An Introduction to Random Matrices[END_REF]. The start of the field is usually attributed to the work of Wigner, motivated by applications in nuclear physics. In 1951, Wigner suggested in [START_REF] Wigner | On the statistical distribution of the widths and spacings of nuclear resonance levels[END_REF]t h a tt h efl u c t u a t i o n si npo s i t i o n so ft h e energy levels of heavy nuclei could be described in terms of statistical properties of eigenvalues of very large real symmetric matrices with independent identically distributed entries. This postulate has led to random matrix theory which is essentially concerned with the study of large symmetric random matrices with i.i.d. entries, called Wigner matrices but also in the study of other type of random matrices, see below. This theory aims at describing the statistical properties of large random matrices and particularly those related to the eigenvalues and eigenvectors. The first major result in this direction is due to Wigner (see [START_REF] Wigner | On the Distribution of the Roots of Certain Symmetric Matrices[END_REF]) in 1957: the empirical eigenvalue density of a Wigner random matrix converges almost surely in the limit of large dimension to the Wigner semicircle probability density. This probability density is compactly supported and shaped as a semi circle. Other eigenvalue statistics such as the largest eigenvalue statistics or local eigenvalues statistics have also been investigated in great details, see [START_REF] Anderson | An Introduction to Random Matrices[END_REF]3,[START_REF] Mehta | Random matrices[END_REF]f o rar e v i e wo fR M T .

We now intro duce another very p opular typ e of random matrices of great interest for applications: the empirical covariance matrices, also called Wishart matrices. Historically, Wishart matrices were introduced before Wigner matrices by John Wishart in 1928 to study populations in biology through Principal Component Analysis (PCA). The purpose of PCA is to identify common causes (or factors) that govern the dynamics of N quantities. These quantities might be daily returns of the different stocks of the S&P 500, monthly inflation of different sectors of activity, motion of individual grains in a packed granular medium, or different biological indicators (blood pressure, cholesterol, ...) within a population. More precisely, if one is provided with a vector of (centered) correlated random variables |x := (x 1 ,x 2 , ••• ,x N ), whose covariance matrix is denoted as C and defined by C ij = E[x i x j ], PCA consists in writing the vector |x in the orthogonal basis of the eigenvectors |φ i of the covariance matrix C as

|x = N i=1 x|φ i |φ i .
(2.1)

It is straightforward to see that the variance E[x|φ i 2 ]oftherandomv ariablex|φ i is equal to λ i where λ i is the eigenvalue of the matrix C associated with the eigenvector |φ i .T h ed e c o m p o s i t i o n( 2.1) then shows that the favorite (or most likely) directions for the random vector |x are the eigenvectors of C associated to the largest eigenvalues of the matrix C.O fc o u r s e ,p r a c t i t i o n e r sd on o th a v ea c c e s st o C; instead, they must consider a noisy empirical estimator E of the true covariance matrix C constructed from a sample of datas as

E ij = 1 T T t=1
x t i x t j .

(2.2)

where the vectors |x t := (x t 1 , ••• ,x t N )a r ei n d e p e n d e n ta n di d e n t i c a l l yd i s t r i b u t e d as |x.T h em a t r i xE defines an empirical covariance matrix. Random matrix theory has thus been concerned, in the last decades, with the statistical properties of empirical covariance matrices. In particular the eigenvalue statistics (eigenvalues density, statistics of the largest eigenvalues, local eigenvalue statistics,...) for large dimensional empirical covariance matrices have been investigated in great details (see e.g. [START_REF] Anderson | An Introduction to Random Matrices[END_REF][START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrix[END_REF][START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF]) as in the Wigner case described above. The starting point of this active research area is the 1967 Marčenko Pastur paper [START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF]whic hgiv esanexplicit formula for the empirical eigenvalue density in the limit of large dimension N . This result, as a new statistical tool to analyse large dimensional data sets, became very relevant in the last two decades, when the storage and handling of humongous data sets became routine in almost all fields -physics, image analysis, genomics, epidemiology, engineering, economics and finance, to quote only a few. Since their introduction, Wishart matrices have appeared in many different applications such as communication technology [START_REF] Sadek | [END_REF], nuclear physics [75], quantum chromodynamics [139], quantitative finance [START_REF] Bouchaud | Financial Applications of Random Matrix Theory: a short review[END_REF][START_REF] Bouchaud | Theory of Financial Risk and Derivative Pricing From Statistical Physics to Risk Management[END_REF][START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF], statistical physics of directed polymers in random media [84]a n dn o ni n t e r s e c t i n gB r o w n i a nm o t i o n s [ 126].

In this very short (and obviously far from exhaustive) introduction to the field, we introduce, in the first section, the main ensembles of random matrix theory, the so called Gaussian orthogonal ensemble (GOE) and Gaussian unitary ensemble (GUE). Those ensembles are the most classical and most studied random matrix ensembles in the literature, and were introduced by Wigner and Dyson at the starting point of the theory. We review the main statistical properties of the eigenvalues of the GOE/ GUE random matrices. In particular, we derive the joint law of the eigenvalues, establishing the link between random matrix theory and Coulomb gas repulsive interaction. For this derivation, we introduce the Dyson Brownian motion, which is a diffusive matrix process closely related to the GOE and GUE. We also introduce ag e n e r a l i z a t i o no ft h o s ee n s e m b l e s ,t h es oc a l l e dβ-ensembles. At the end of the first section, we briefly explain some of our results which are related to the Gaussian ensembles. Then, in the second section, we give a fast review on the definition and main properties of empirical covariance matrices following the same line as in the first section and we sum up our contribution in the study of empirical covariance matrices at the end of the second section.

Gaussian Ensembles

We will denote by H β N with β =1( r e s p e c t i v e l yβ = 2) the space of symmetric real (resp. Hermitian complex) matrices of size N × N . In the next subsection, we introduce the Gaussian Orthogonal and Unitary Ensembles of random matrices. The random matrices of those ensembles are random variables in the space H 1 N (respectively H 2 N ).

Classical Gaussian Ensembles

Gaussian Orthogonal Ensemble Ar a n d o mm a t r i xH ∈H 1 N is said to belong to the Gaussian Orthogonal Ensemble (GOE) if its probability law on the space H 1 N is given by:

P 1 N (dH)= 1 Z 1 N exp - N 2 
Tr(H † H) dH (2.3) where dH denotes the Lebesgue measure on the space H 1 N , Z 1 N an o r m a l i z a t i o n factor and where H † denotes the Hermitian conjugate of H.T h ef a c t o rZ 1 N can be explicitly computed (see [START_REF] Anderson | An Introduction to Random Matrices[END_REF][START_REF] Mehta | Random matrices[END_REF]).

It is clear from the definition of the law P 1 N given by (2.3)t h a tt h er a n d o m matrices in the Gaussian Orthogonal Ensemble are invariant under conjugation of orthogonal matrices, in the sense that the matrix OHO † has the same law as the matrix H for any orthogonal matrix O.

If H is a real symmetric matrix, we have Tr(

H † H)=T r ( H 2 )= N i,j=1 H 2 ij = N i=1 H 2 ii +2 i<j H 2 ij .
T h e r e f o r et h ee n t r i e so ft h er a n d o mm a t r i xH in the GOE are independent (up to symmetry) centered Gaussian variables with variance 1/N on the diagonal and variance 1/2N off the diagonal.

Gaussian Unitary Ensemble

The Gaussian Unitary Ensemble is similarly defined: the random matrices take values in the space H β N of Hermitian complex matrices of size N × N and are distributed according to the law P 2 N defined as:

P 2 N (dH)= 1 Z 2 N exp - N 2 
Tr(H † H) dH (2.4) where Z 2 N is again a normalization factor (which can also be explicitly computed). The symmetry for this ensemble is now with respect to the unitary matrices: the random matrices in the Gaussian Unitary Ensemble are invariant under conjugation of unitary matrices. The entries are independent (up to symmetry) complex centered Gaussian random variables. The diagonal entries are real centered Gaussian variables with variance 1/N whereas the off diagonal entries can be written as N (0, 1/2N )+ √ -1 N (0, 1/2N ).

Dyson Brownian motion Definition

In this subsection, the parameter β is equal to 1 or 2. In the following, the process (H β (t)) t 0 will denote a Dyson Brownian motion, i.e. a process with values in the set of N × N symmetric real (β = 1) or Hermitian complex (β =2 )m a t r i c e s with entries H β ij (t),t 0, 1 i j d constructed via independent real valued Brownian motions B ij (t), B ij (t), 1 i j d by

H β ij (t)= 1 √ 2N (B ij (t)+ √ -1(β -1) B ij (t)) if i<j, 1 √
N B ii (t)o t h e r w i s e .

(2.5)

The process H β (t) was first introduced by Dyson in [START_REF] Dyson | A Brownian-Motion Model for the Eigenvalues of a Random Matrix[END_REF].

We now want to define another diffusive matrix pro cess that would converge in law in the limit of large time to the law of the Gaussian Ensembles defined previously. The idea is simply to define this matrix process X β (t)a ss o l u t i o no ft h ef o l l o w i n g Ornstein-Uhlenbeck type equation

dX β (t)=- 1 2 X β (t)dt +dH β (t)( 2 . 6 )
where H β (t)i saD y s o nB r o w n i a nm o t i o no fs i z eN × N . It is well known that the stationary law of a Ornstein-Uhlenbeck process is the Gaussian law and therefore, the real symmetric (resp. complex hermitian) matrix process X β (t)c o n v e r g e si nl a ww h e nt →∞to the law of a GOE (resp. GUE) random matrix.

The study of the eigenvalues diffusion process of X β (t)w i l le n a b l eu st od e r i v e , in the next section, the joint law of the eigenvalues of the random matrices in the GOE and GUE.

Eigenvalues and eigenvectors diffusion processes

For each t 0, the matrix X β (t)isarealsymmetricmatrixifβ =1(resp. hermitian complex if β =2 )a n dt h e r e f o r ei sd i a g o n a l i z a b l ei na no r t h o n o r m a lb a s i s . T h e eigenvalues of X β (t)w i l lb ed e n o t e d1 in increasing order as λ 1 (t) ... λ N (t) and the associated orthonormal eigenvectors as ψ 1 (t),...,ψ N (t). Sometimes we will also use the following decomposition for the matrix X β (t):

X β (t)=O β (t)∆ β (t)O β (t) †
where ∆ β (t)i st h ed i a g o n a lm a t r i xD i a g ( λ 1 (t),...,λ N (t)) and where O β (t)i st h e orthogonal matrix (resp. unitary if β =2)whosecolumnsare(inrespectiv eorder) given by ψ 1 (t),...,ψ N (t).

To find the stochastic differential system of equations verified by the eigenvalues and eigenvectors processes, a direct method is provided by using perturbation theory. Let us briefly recall the main ideas of this theory before coming back to our eigenvalues and eigenvectors processes.

Perturbation Theory. We are given a symmetric (resp. hermitian) matrix H 0 that is perturbed by the adding of a small symmetric (resp. Hermitian) matrix εP .P e r t u r b a t i o n t h e o r y e n a b l e s t o fi n d a p p r o x i m a t i o n s o f t h e e i g e n v a l u e s a n d eigenvectors of the matrix H 1 defined as

H 1 = H 0 + εP (2.7)
in the limit ε → 0. To second order in ε for the eigenvalues it gives

λ 1 i = λ 0 i + εP ii + ε 2 j =i |P ij | 2 λ 0 i -λ 0 j + o(ε 2 )( 2 . 8 )
where 2 P ij := φ 0 j |P |φ 0 i .F o rt h ee i g e n v e c t o r s ,p e r t u r b a t i o nt h e o r yt os e c o n do r d e r writes as

ψ 1 i = 1 - ε 2 2 j =i |P ij | λ 0 i -λ 0 j 2 ψ 0 i + ε j =i P ij λ 0 i -λ 0 j ψ 0 j + O(ε 2 ) , (2.9) 
where O(ε 2 )con tainsthese c ondorde rtransv e rsete rm(duetothenonz e roo v e rlap of φ 1 i with the non perturbed eigenvectors ψ 0 j for j = i)w h i c hw i l lt u r no u tt ob e negligible in the context of Itô's stochastic calculus (see below).

Physical derivation of the eigenvalues process. Coming back to our purpose, we can re-interpret the stochastic differential equation (2.6)v e r i fi e db yX β (t)a sa perturbation equation by writting X β (t+dt)=X β (t)- 1 2 X β (t)dt+dH β (t). It is now straightforward to check that ψ i (t)|X β (t)|ψ i (t) = λ i (t)andthatψ i (t)|X β (t)|ψ j (t) = 0f o ri = j due to the orthogonality of the family {ψ k (t)}.O n t h e o t h e r h a n d , conditionally on (ψ k (t)) k ,t h er a n d o mv a r i a b l e sψ i (t)|dH β (t)|ψ j (t),i < j are centered Gaussian (real or complex whether β =1o r2 )r a n d o mv a r i a b l e s( a st h e y are linear combination of independent Gaussian variables) which can be written as N (0, 1 2N (1 + δ i=j )dt)i fβ =1(respectiv elyN (0, dt/N )f o ri = j and N (0, 1/2N )+ √ -1 N (0, 1/2N )f o ri = j if β =2). Inadditionw ecanc hec kthattheyareindependent (their covariance is zero again because of orthogonality). The second order terms in those perturbative equations are of order of the square of those random variables, i.e. of order dt.T h e r e f o r e ,i ti ss t a n d a r da r g u m e n ti nI t ô ' sc a l c u l u st h a t the fluctuations of those second order terms are negligible: they can be replaced by their mean and we only keep the fluctuations of the first order terms.

Gathering the above arguments, we conclude that the eigenvalues verify the following Stochastic Differential System (SDS)

dλ i = - 1 2 λ i dt + 1 √ N db i + β 2N i =j dt λ i -λ j (2.10)
where the b i are independent standard Brownian motions and with β =1o r2 depending on the symmetry class (symmetric or hermitian).

For the eigenvectors, the evolution is describ ed as follows. Let w β ij (t),i < j be af a m i l yo fr e a lo rc o m p l e x( w h e t h e rβ =1o r2 )B r o w n i a nm o t i o n s( i . e . w β ij (t)=

1 √ 2 (B 1 ij (t)+ √ -1(β -1)B 2 ij (t))
where the B 1 ij ,B 2 ij are standard Brownian motions on R), independent of the family of Brownian motions {b i } involved in (2.10). For i<j,setinadditionw β ji (t):= wβ ij (t). The system of Stochastic Differential Equation (SDE) verified by the eigenvectors can then be written as

dψ i = - β 4N j =i dt (λ i -λ j ) 2 ψ i + 1 √ N j =i dw β ij λ i -λ j ψ j . (2.11) 
To write this evolution in terms of the matrix O β (t), define the skew Hermitian matrix (i.e. such that R β = -(R β ) * )b ys e t t i n gf o ri = j,

dR β ij (t)= 1 √ N dw β ij (t) λ i (t) -λ j (t) ,R β ij (0) = 0 .
Then, with λ i (t)be i n gt h es o l u t i o no ft h eS D S( 2.10), the matrix O β (t)e v o l v e sa s

dO β (t)=O β (t)dR β (t) - β 4 O β (t)d(R β ) † ,R β t .
(2.12)

To show more rigorously that Equations (2.10)and(2.11) (or equivalently (2.10) and (2.12)) hold, the proof usually goes backward,t h r o u g ht h ef o l l o w i n gs t e p s( s e e [14,L e m m a s4 . 3 . 3a n d4 . 3 . 4 ] ) :

• One first has to show that the SDS (2.10) is well defined for all time t 0.

One can indeed show that the λ i solution of (2.10)almostsurelynev ercollide, in the sense that the first collision time T 1 := inf{t 0:∃i = j, λ i (t)=λ j (t)} is almost surely infinite.

• Then one can show that the unique solution of the SDE (2.12) (this SDE indeed has a unique solution as it is linear in O β and R β is a well defined martingale) is am a t r i xp r oc e s sw i t hv a l u e si nt h es p a c eo fo r t h o g o n a l( r e s pe c t i v e l yu n i t a r y ) matrices.

• The last step uses standard Itô's calculus to show that the matrix process Y β (t) defined as Y β (t):=O β (t)∆ β (t)O β (t) † ,withO β the solution of sde (2.12) and with ∆ β (t)t h ed i a g o n a lm a t r i xD i a g ( λ 1 (t),...,λ N (t)) where the λ i are solution of the system (2.10), indeed verifies the stochastic differential equation (2.6)( w i t hY instead of X).

Joint law of the eigenvalues

As already mentioned, the matrix X β (t)c o n v e r g e si nl a ww h e nt →∞to the law P β N of the random matrices in the GOE if β = 1 and in the GUE if β =2. Therefore as i m p l ew a yt od e t e r m i n et h ej o i n tp r o b a b i l i t yo ft h ee i g e n v a l u e so ft h er a n d o m matrices in the GOE (resp. GUE) is to find the limiting law of the eigenvalues process of X β (t)forβ =1(resp. β =2). Theclassicalw a ytodothisistocompute as t a t i o n a r yp r o b a b i l i t yo ft h eS D S( 2.10)t h r o u g ht h eF o k k e r -P l a n c ke q u a t i o n( o r through the infinitesimal generator associated to (2.10)) and then to show that this stationary probability is the unique such measure. The Fokker Planck equation gives a partial differential equation satisfied by the probability density transition function of a diffusion given its stochastic differential equation. For the process (λ 1 (t),...,λ N (t)) that verifies (2.10), the transition function P (λ 1 ,...,λ N ; t)v e r i fi e s :

∂P ∂t = - N i=1 ∂ ∂λ i - λ i 2 + β 2N j =i 1 λ i -λ j P + 1 2N N i=1 ∂ 2 P ∂λ 2 i .
(2.13)

The stationary solutions of (6.77)a r ef o u n db ys e t t i n gt h et i m ed e r i v a t i v et o0 . It is easy using elementary algebra to show that a stationary solution to equation (6.77)i sg i v e nb y :

P β (λ 1 ,...,λ N )= 1 Z β 1 i<j N |λ i -λ j | β exp(- N 2 N i=1 λ 2 i ) N i=1 dλ i . (2.14)
Furthermore it is the unique stationary probability measure for the pro cess (λ 1 (t),...,λ N (t)) since if there was another invariant distribution Q β , we could reconstruct a Hermitian Ornstein-Uhlenbeck process X β (t)a n dam a t r i x X β 0 whose eigenvalues would follow Q β so that

X β (0) := X β 0 and d X β (t)=- 1 2 X β (t)dt +dH β (t) .
But this gives a contradiction since as time goes to infinity, the law of X β (t)i sa Gaussian law, independently of the law Q β .

Other derivations of formula (6.5)e x i s ta n dc a nbef o u n df o re x a m p l ei n [START_REF] Anderson | An Introduction to Random Matrices[END_REF].

Matrix model for β-ensembles

The probability measure P β introduced in (6.5) is a Gibbs measure of a one-dimensional repulsive Coulomb gas confined in an harmonic well with inverse temperature β and is in fact a well defined probability measure for all β>0. In the previous section, we have introduced two random matrix ensembles whose eigenvalues are distributed according to the law P β=1 for the GOE symmetric real matrices and P β=2 for the GUE hermitian complex matrices. Another random matrix ensemble, which was not introduced above and called the Gaussian Symplectic Ensemble (GSE), is invariant under conjugation by a symplectic matrix and has eigenvalues distributed according to the law P β=4 .T h e r e f o r e ,d e p e n d i n go nt h es y m m e t r yo ft h er a n d o mm a t r i x ,o n l y three values are allowed β =1, 2and4uptono w. Thisiskno wnasDyson's"threefold way". The existence of matrix ensembles that would lead to general values of β>0, is a very natural question, and the quest for such ensembles probably goes back to Dyson himself. Ten years ago, Dumitriu and Edelman [START_REF] Dumitriu | Matrix Models for Beta Ensembles[END_REF]h a v ep r o p o s e dt h ef o l l o w i n ge x p l i c i t construction of tri-diagonal random matrices, with eigenvalues distributed according to P β for general β>0,

H β = 1 √ 2N        g 1 χ (N -1)β χ (N -1)β g 2 χ (N -2)β . . . . . . . . . χ 2β g N -1 χ β χ β g N        (2.15)
where the g k are independent Gaussian random variables with variance 2 and where the χ kβ are independent χ distributed random variables with parameters kβ and scale parameter 2.

Another construction is proposed in [3,p a g e4 2 6 -4 2 7 ]( s e ea l s o [START_REF] Forrester | Interpretations of some parameter dependent generalizations of classical matrix ensembles[END_REF]) and uses a bordering procedure to construct iteratively on the dimension a sequence of matrices with eigenvalues distributed according to P β for general β>0. The advantage of this construction is that it gives not just the eigenvalue probability density of one matrix but also the joint eigenvalue probability density of all matrices of the sequence.

Eigenvalues density

Let H be an N × N symmetric (or hermitian) random matrix and denote by λ i the (real) eigenvalues of H,w i t hλ 1 ••• λ N .T h ee m p i r i c a ld i s t r i b u t i o no ft h e eigenvalues of H is the following (random) probability measure on R

µ N = 1 N N i=1 δ(λ -λ i ) .
The measure µ N is sometimes called spectral measure or density of states and is one of the central object of study in random matrix theory. In the following subsection, we briefly recall the main classical results on the empirical distribution of the eigenvalues in the limit of large random Wigner matrices, which are symmetric or hermitian random matrices with independent entries (up to symmetry).

Wigner matrices

A Wigner symmetric real (respectively hermitian complex) random matrix H can be defined from a family of independent and identically distributed (i.i.d.) real (respectively complex) centered random variables {h ij } 1 i j<∞ living on a common probability space (Ω, P)b ys e t t i n g

H N (ij)= 1 √ 2N h ij , if i<j, 1 √ N h ii , otherwise . (2.16)
If the entries have a finite second moment σ 2 = E[h 2 ij ], then Wigner's theorem (see [START_REF] Wigner | On the Distribution of the Roots of Certain Symmetric Matrices[END_REF]) asserts that the empirical spectral measure of the matrix H N (ij)converges weakly almost surely to the semicircle distribution

ρ(dx)= 1 πσ 2 √ 2σ 2 -x 2 dx. (2.17)
An illustration of this convergence is displayed in Fig. 2.1.

The case where the entries have infinite second moment was also treated in [START_REF] Bouchaud | Theory of Lévy matrices[END_REF][START_REF] Ben Arous | The spectrum of heavy-tailed random matrices[END_REF]. The entries are assumed to be in the domain of attraction of an α-s t a b l e law, for α ∈ (0; 2), i.e. they verify the following asymptotic for the tail

P[h ij u]= L(u) u α ,
where L is a slowly varying function. Under this assumption, the authors of [START_REF] Ben Arous | The spectrum of heavy-tailed random matrices[END_REF] show that the empirical spectral measure µ N of the matrix H N (where this time the entries of the matrix are renormalized by a sequence a N ,i n s t e a do f √ N in (2.16), of normalizing constants which roughly grows as N 1/α )c o n v e r g e sw e a k l y( i n probability, say) to a measure µ α .M o r e o v e ri ti sa l s os h o w ni n [START_REF] Ben Arous | The spectrum of heavy-tailed random matrices[END_REF]thatthemeasure µ α is symmetric, has unbounded support and a smooth density ρ α (x) outside a small subset. Even the asymptotic of the tails of µ α (dx)=ρ α (x)d x is known: there exists a constant L α > 0 such that

ρ α (x) ∼ L α x α+1
. Note that the GOE and GUE random matrices introduced above are particular cases of Wigner matrices with Gaussian entries. In the next subsection, we will show a possible way to recover the asymptotic of the empirical spectral distribution for those ensembles and more generally in the case of general β-ensembles.

Proof of the Wigner semicircle law for β-ensembles

We first need to introduce the Stieltjes transform of a probability measure. If µ is a probability measure on R, its Stieltjes transform is defined for all z ∈ C \ R as

G(z)= µ(dx)
xz .

The measure µ is characterized by its Stieltjes transform and its values on bounded continuous test functions can be recovered from G(z) by a limiting procedure z → x ∈ R. In particular, if the measure µ has a continuous density ρ(x) with respect to Lebesgue measure, we have the classical inversion formula lim

→0 (G(x -i)) = πρ(x) . (2.18) 
We now show that the empirical sp ectral distribution converges weakly to the Wigner semicircle density for general β-ensembles. Let (λ 1 (t),...,λ N (t)) be the diffusion process that verify the stochastic differential system (2.10)(withβ>0) and denote by G N (z, t)t h ea s s o c i a t e dS t i e l t j e st r a n s f o r mo ft h ee m p i r i c a ld i s t r i b u t i o n of the λ i (t). The following relation holds

G N (z, t)= 1 N N i=1 1 λ i (t) -z . (2.19)
The idea of the proof is to study the evolution of G N (z, t)withrespecttotimet and in particular its convergence to equilibrium when t →∞.W ea l r e a d yk n o wt h a tt h e diffusion process (λ 1 (t),...,λ N (t)) converges in law in the limit of large time t to P β .T h e r e f o r e ,G N (z, t = ∞)correspondstotheStieltjestransformoftheempirical spectral distribution of a random matrix H β in the β-ensembles. Applying Itô's formula to the functional 1

N N i=1 f (λ i (t))
where f is the smooth function f (λ)=1 /(λz)a n du s i n gt h eS D S( 2.10)v e r i fi e db yt h eλ i ,w eo b t a i n the following Langevin equation for G N (z, t)

2dG N = β 2 ∂G 2 N ∂z dt + ∂zG N ∂z dt + 1 2N (2 -β) ∂ 2 G N ∂z 2 dt +dM N t (2.20)
where dM 4 dt.

N t = -2 N N i=1 1 (λ i -z) 2 db i √ N with quadratic variation dM N t = 4 N 3 N i=1 1 (λ i -z)
In the large N limit, we easily see that the two last diffusion and martingale terms are negligible compared to the other terms and therefore we can rewrite the Eq. (2.20)i nt h el i m i tN →∞as a deterministic Burgers evolution equation

2 ∂G ∂t = β 2 ∂G 2 ∂z + ∂zG ∂z . (2.21) 
To leading order, the stationary equation asso ciated to (2.21)(wherethetimederivative is set to 0 and which is satisfied by G N (z, t = ∞)) can be integrated with respect to z as:

β 2 G 2 + zG +1=0 (2.22)
where the integration constant comes from the boundary condition G N ∼-1/z when |z|→∞.I ti st h e ne a s yt os o l v et h i se q u a t i o n( 2.22)t ofi n dt h ee q u i l i b r i u m Stieltjes transform

G(z, ∞)= 1 β z 2 -2β -z .
It can now be checked with the inversion formula (2.18)thattheassociatedempirical spectral distribution is indeed the Wigner semicircle density

ρ(λ)= 1 πβ 2β -λ 2 , - 2β λ 2β.
(2.23)

Our contribution

Let us briefly explain our results related to Gaussian ensembles. For further details on those results, we refer to the following chapters.

In the first paragraph, we define a new diffusive matrix model converging towards the β-Dyson Brownian motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of random matrices that is invariant under the orthogonal/unitary group. We show in the second paragraph that, for small values of β,our process allows one to interpolate smoothly between the Gaussian distribution and the Wigner semicircle. The interpolating limit distributions form a one parameter family and can be explicitly computed. In the third paragraph, we use the previous construction to compute the corrections for the empirical eigenvalue distribution of β-ensembles to the Wigner semicircle density for large but finite dimension. The last paragraph concerns the eigenvectors of the GOE random matrices. We propose ageneralframeworktostudythestabilityofthesubspacespannedbyP consecutive eigenvectors of a generic symmetric matrix H 0 ,whenasmallperturbationisadded. This problem is relevant in various contexts, including quantum dissipation (H 0 is then the Hamiltonian) and financial risk control (in which case H 0 is the assets return covariance matrix). We state our results later in chapter 7 in the case where H 0 is a GOE random matrix or when H 0 is a covariance matrix.

A diffusive matrix model for invariant β-ensembles [joint work with Alice Guionnet, see also chapter 5 or [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF]].

The goal of this work is to provide a natural interpretation of β-ensembles in terms of random matrices for β ∈ [0, 2]. Dumitriu and Edelman [START_REF] Dumitriu | Matrix Models for Beta Ensembles[END_REF]a l r e a d yp r oposed the tridiagonal matrix introduced above with eigenvalues distributed according to P β . However, this tridiagonal matrix lacks the invariant property of the classical ensembles (GOE is invariant under conjugation of an orthogonal matrix whereas GUE is invariant under the conjugation of a unitary matrix). The construction introduced in [9]h a st h i sp r o p e r t ya n dm o r e o v e ri sc o n s t r u c t i v ea si ti s based on a dynamical scheme. It was proposed by JP Bouchaud,[START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF]p r o v i d e s rigorous proofs of the results stated in [5]. The idea is to interpolate between the Dyson Brownian motion and the standard Brownian motion by throwing a coin at every infinitesimal time step to decide whether our matrix will evolve according to a Dyson Brownian motion (with probability p)orwillk eepthesameeigen v ectorsbut with eigenvalues diffusing according to independent Brownian motions. When the size of the infinitesimal time steps goes to zero, we prove that the dynamics of the eigenvalues of this matrix valued process converges towards the β-Dyson Brownian motion as defined in (2.10)w i t hβ = p.T h es a m ec o n s t r u c t i o nw i t hah e r m i t i a n Brownian motion leads to the same limit with β =2p.

More precisely, our model is defined as follows: we divide time into small intervals of length 1/n and for each interval [k/n;(k +1)/n], we choose independently Bernoulli random variables

n k ,k ∈ N such that P[ n k =1]=p =1-P[ n k =0]. Then, setting n t = n [nt]
, our diffusive matrix process simply evolves as:

dM n (t)=- 1 2 M n (t)dt + n t dH(t)+(1-n t )dY (t)( 2 . 2 4 )
where dH(t) is a Dyson real Brownian increment as defined in (5.2)andwheredY (t) is a symmetric matrix that is co-diagonalizable with M n (t)( i . e . t h et w om a t r i c e s have the same eigenvectors) but with a spectrum given by N independent Brownian increments of variance dt/N .I ti sc l e a rt h a tt h ee i g e n v a l u e so ft h em a t r i xM n (t)will cross at some points but only in intervals [k/n;(k +1)/n]f o rw h i c h n k =0( i nt h e other intervals where they follow Dyson Brownian motion with parameter β =1,it is well known that the repulsion is too strong and that collisions are avoided). In such a case, the eigenvalues are re-numbered at time t =( k +1)/n in increasing order. Now, using again standard perturbation theory, it is easy to derive the evolution of the eigenvalues of M n (t)d e n o t e da sλ n 1 (t) ... λ n N (t):

dλ n i = - 1 2 λ n i dt + n t 2N j =i dt λ n i -λ n j + 1 √ N db i (2.25)
where the b i are independent Brownian motions also independent of the n k ,k ∈ N. Recall that Cépa and Lépingle showed in [START_REF] Cépa | Diffusing particles with electrostatic repulsion,P r o bability Theory and Related Fields[END_REF]t h eu n i q u e n e s sa n de x i s t e n c eo f the strong solution to the stochastic differential system

dλ i (t)=- 1 2 λ i (t)dt + p 2N j =i 1 λ i (t) -λ j (t) dt + 1 √ N db i (2.26) starting from λ(0) = (λ 1 λ 2 ••• λ d )a n ds u c ht h a tf o ra l lt 0 λ 1 (t) ≤ λ 2 (t) ≤•••≤λ d (t) a.s. (2.27)
For the scaling limit of the ordered eigenvalues, we prove in Chapter 5 (and also in [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF]) that

Theorem 2.1 (R. A., A. Guionnet). Let M β 0 be a symmetric (resp. Hermitian) matrix if β =1(resp. β =2 ) with distinct eigenvalues λ 1 <λ 2 < ••• <λ d and (M β n (t)
) t≥0 be the matrix process defined in Definition 5.1. Let λ n 1 (t) ... λ n d (t) be the ordered eigenvalues of the matrix M β n (t). Let also (λ 1 (t),...,λ d (t)) t 0 be the unique strong solution of (5.5) with initial conditions in t =0given by (λ 1 ,λ 2 ,...,λ d ).

Then, for any T<∞, the process (λ n 1 (t),...,λ n d (t)) t∈[0,T ] converges in law as n goes to infinity towards the process (λ 1 (t),...,λ d (t)) t∈[0,T ] in the space of continuous functions C([0,T], R d ) embedded with the uniform topology.

One of the difficulty of the proof comes from the fact that when p<1, there is a positive probability for eigenvalues verifying (2.10)t oc o l l i d ei nfi n i t et i m e( t h e ordering constraint is therefore useful at those points to restart). The idea is then to show that collisions are in a sense sufficiently rare for the SDS (2.10)( w i t h β = p<1) to make sense (see [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF][START_REF] Cépa | Diffusing particles with electrostatic repulsion,P r o bability Theory and Related Fields[END_REF]o rc h a p t e r5 for further details).

The corresponding scaling limit of the matrices M n (t), denoted as M (t), is furthermore invariant under the orthogonal (or unitary) group. This is intuitively clear, since both alternatives in the evolution of M n (t)(addingafreesliceoradding a commuting slice) respect this invariance, and lead to a Haar probability measure for the eigenvectors (i.e. uniform over the orthogonal/unitary group). We have also proved in [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF]t h a tac o l l i s i o nl e a d st oac o m p l e t er a n d o m i z a t i o no ft h ee i g e n v e c t o r s within the two-dimensional subspace corresponding to the colliding eigenvalues.

To check numerically Theorem 2.1,ap o s s i b l ew a yi st oc h e c kt h a ti n d e e dt h e matrix process M n (t)s h a r et h ek n o w np r o p e r t i e so ft h es p e c t r u mo fβ ensembles, for large time t (and large n for M n (t)t ob en e a ri t ss c a l i n gl i m i t ) . I n d e e dw e have seen that the eigenvalue density of β-ensembles converges for large matrices to the Wigner semicircle density. Moreover the behavior of the nearest neighbor spacing distribution (NNSD) P (s)isexpectedtobeha v eass β near 0. We simulated numerically the matrix M n (t)w i t hN =2 0 0f o rav e r ys m a l ls t e p1 /n and until a large value of t so as to reach the stationary distribution for the eigenvalues. Then we started recording the spectrum and the nearest neighbor spacings (NNS) every 100 steps so as to sample the ensemble. We verified that the spectral density of M n (t = ∞) is indeed in very good agreement with the Wigner semi-circle distribution for β =1/2 (see Fig. 4.1). Our sample histogram for the NNS distribution is displayed in Fig. 4.1. We also added the corresponding Wigner surmise (which is expected to provide a good approximate description of the NNSD).

Invariant β-ensembles and the Gauss-Wigner crossover [joint work with Jean-Philippe Bouchaud and Alice Guionnet, see also chapter 4 or [5]].

The construction (6.13)oftheprevioussubsectionleadstotheβ-ensembles (with in fact β = p)i n t r o d u c e da b o v ea ss o o na st h ep a r a m e t e rp>0a n dw eh a v es e e n that in this case the empirical spectral distribution is given by the Wigner semicircle law with edges at ± √ 2p.

On the other hand, if p =0,theeigen v aluesprocessofthediffusiv ematrixv erifying (6.13)isgivenbyN independent Ornstein-Uhlenbeck processes. The empirical eigenvalues distribution is therefore in this case given by the Gaussian distribution.

This raises the question of the existence of an interpolation between these two regimes. A continuous cross-over indeed takes place for β = p =2c/N with c strictly positive and independent of N .T h eS D Ef o rt h el i m i t i n ge i g e n v a l u e sp r o c e s s( λ i (t)) is again given by (2.10)withtheadditionalorderingconstrain tλ 1 (t) ... λ N (t) (necessary to restart after collisions occurred) and the stationary joint probability density function (pdf) is still given by (6.5)b u tw i t hn o wt h ev a n i s h i n gr e p u l s i o n coefficient β =2c/N .

We can pro ceed along the same steps as in subsection 2.1.5.W er e s t a r tf r o m Equation (2.20). In the present scaling, we expect the spectrum to have a width of order √ p ∝ 1/ √ N and therefore we can easily check that in this scaling, the martingale term of (2.20)i sn e g l i g i b l ec o m p a r e dt ot h eo t h e rt e r m sw h i c ha r en o w all of the same order (the second derivative term is no longer negligible!). The stationary differential equation derived from equation (2.20)c a nbei n t e g r a t e dw i t h respect to z and after a further rescaling to make the support of the eigenvalues density of order 1, we obtain:

cG 2 + zG + dG dz = -1, (2.28) 
where the integration constant comes from the boundary condition G ∼-1/z for z →∞ .E q u a t i o n ( 4.12)c a nb ea l s or e c o v e r e dd i r e c t l yf r o mt h es a d d l ep o i n t equation route starting from the joint pdf P β with β =2 c/N (this method is also presented in [5]). Equation (4.12)c a nb ee x p l i c i t l ys o l v e da n dl e a d st ot h ef o l l o w i n ge i g e n v a l u e s density

ρ c (λ)= 1 √ 2πΓ(1 + c) 1 |D -c (iλ)| 2 ;( 2 . 2 9 ) D -c (z)= e -z 2 /4 Γ(c) ∞ 0 dxe -zx-x 2 2 x c-1 .
The probability density ρ c is the asymptotic eigenvalues density of a matrix H β defined as in (2.15)withβ =2c/N or equivalently the asymptotic empirical density of a random vector (x 1 ,...,x N )w i t hd i s t r i b u t i o nP β (with again β =2 c/N ). See the progressive deformation of the Gaussian towards Wigner's semi-circle in Fig. This family of distributions is indeed a crossover (or an interpolation) between the Wigner semicircle and the Gaussian distributions, as we have on the one hand, for c =0,

2.3.

ρ 0 (λ)= 1 √ 2π exp(- λ 2 2 )
and on the other hand, for c →∞,

ρ c (λ) ∼ 1 2πc √ 4c -λ 2 .
Wigner correction for large but finite dimension [joint work with Jean-Philippe Bouchaud, Satya N. Majumdar and Pierpaolo Vivo, see also chapter 6 or [START_REF] Allez | Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko-Pastur law[END_REF]].

We now explain how to derive a 1/N expansion for the asymptotic mean empirical eigenvalues distribution at order 1/N 2 for matrices in the GOE and in the GUE but only at order 1/N for general β-ensembles. More precisely, by denoting ρ N (λ)t h e density (with respect to Lebesgue measure) of the probability density

ρ β N (λ): = E[ 1 N N i=1 δ(λ -λ i )]
where the λ i are the eigenvalues of a GOE or GUE random matrix, we want to determine explicitly the 1/N expansion of ρ N written in the form

ρ N (λ)= 1 2π √ 4 -λ 2 + 1 N ρ 1 (λ)+ 1 N 2 ρ 2 (λ)+O( 1 N 3 ) . (2.30) 
We describe in the following how to find explicit formulas for the correction functions (not necessarily positive) ρ 1 and ρ 2 .

Let us return to (2.20)f o rβ =1o r2 . W ec o n s i d e rt h es t a t i o n a r yd i ff e r e n t i a l equation associated to (2.20) (i.e. when the derivative with respect to time is set to 0) as we have done in the previous subsection. By rescaling3 the eigenvalues as λ ← λ √ 2/ √ β and by taking expectation, it is easy to see that equation (2.20)c a n be rewritten as

dE[G N ] 2 dz + dzE[G N ] dz + 1 N 2 -β β d 2 E[G N ] dz 2 + d dz E[G 2 N ] -E[G N ] 2 =0. (2.31)
It turns out that the limit when N →∞of the last term has been explicitly computed in [START_REF] Lytova | Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF]. It is shown in [START_REF] Lytova | Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF]

t h a t lim N →∞ N 2 E[G 2 N ] -E[G N ] 2 = 1 2βπ 2 2 -2 2 -2 1 (λ -z) 2 (µ -z) 2 4 -λµ √ 4 -λ 2 4 -µ 2 dλdµ
(2.32) for β ∈{1, 2}. By denoting V β the right hand side of (2.32), we can integrate (2.31) with respect to z,n e g l e c t i n gt e r m so fo r d e rN -3 ,a s

E[G N ] 2 + zE[G N ]+ 1 N 2 -β β dE[G N ] dz + 1 N 2 V β = -1( 2 . 3 3 )
where the integration constant is again chosen according to the boundary condition G ∼-1/z when |z|→∞ . The interesting fact here is that the integral V β can be computed analytically as a function of z.W efi n d

V β = 2 β 1 (z 2 -4) 2 .
Then, using perturbation theory in (2.33), we can compute explicitly the coefficients ρ 1 and ρ 2 in expansion (2.30).

The result reads:

ρ β N (dλ)= 1 2π √ 4 -λ 2 dλ (2.34) + 1 N 1 β - 1 2 1 2 (δ(λ -2) + δ(λ +2))- 1 π 1 √ 4 -λ 2 dλ (2.35) + 1 π 1 β - 1 2 2 1 √ 4 -λ 2 3 2 1 λ 2 -4 + 5 4 1 (λ +2) 2 + 1 (λ -2) 2 1 N 2 (2.36) - 1 βπ dλ (4 -λ 2 ) 5/2 1 N 2 + O( 1 N 3 ) .
(2.37)

Anumericalevidenceforthisformulaisshownin2.4. This result was already known (see [START_REF] Forrester | Asymptotic form of the density profile for Gaussian and Laguerre random matrix ensembles with orthogonal and symplectic symmetry[END_REF]a n dr e f e r e n c e st h e r e i n ) . I n [START_REF] Forrester | Asymptotic form of the density profile for Gaussian and Laguerre random matrix ensembles with orthogonal and symplectic symmetry[END_REF], the authors discuss the origin of the Dirac mass at the edges.

Stability of eigenspaces [joint work with Jean-Philippe Bouchaud, see also chapter 7 or [START_REF] Allez | Eigenvector dynamics: general theory and some applications[END_REF]].

We are now interested in the eigenvectors stability of GOE random matrices when asmallGOEperturbationmatrixεP is added. Our aim is to understand the overlap between the eigenvectors of a non-perturbed GOE matrix H 0 with the eigenvectors of the perturbed matrix H 1 obtained from H 0 by adding a small perturbation εP as in equation (2.7)w h e r eP is a GOE matrix and ε is a small parameter.

It is quite clear, in view of the perturbation equation for the eigenvectors (7.2), that it will be difficult to follow the evolution of one single eigenvector when the perturbation is added if the perturbation entries are too large compared to the eigenvalue spacing of the GOE matrix H 0 (this level spacing is typically of order 1/(Nρ(λ)) where ρ is the density of eigenvalues for a GOE matrix renormalized by 1/ √ N ). Indeed the small denominators, due to eigenvalues at very near distance, will lead to divergence in the individual overlaps ψ 1 i |ψ 0 j between the perturbed and non perturbed eigenvectors.

The idea to avoid this problem is to study the overlap between a whole subspace of non-perturbed eigenvectors with a whole subspace of perturbed eigenvectors. More precisely, we study the (not necessarily square) overlap matrix with entries obtained by taking the scalar product between all the non-perturbed eigenvectors ψ 0 j whose eigenvalues lie in the interval4 [a; b] ⊂ [-2; 2] with all the perturbed eigenvectors ψ 1 i whose associated eigenvalues lie in an interval [aδ; b + δ]( w h e r e δ>0).

G ij = ψ 1 i |ψ 0 j ! ! N (!) -3 -2 -1 0 1
We are then able to extract precise informations on the overlap matrix G.I n particular, we characterize its spectrum in the limit of large matrices and we extract the main information on the shape of this spectrum. We also define the overlap distance D(V 0 ,V 1 )be t w e e nt h et w os u b s p a c e sV 0 and V 1 ,w h i c ha r er e s pe c t i v e l yt h e subspaces generated by the ψ 0 j and by the ψ 1 i ,a sf o l l o w s

D(V 0 ,V 1 )=- 1 P P i=1 log(s i )
where s 1 ,...,s P are the singular values of G (with P being the smallest dimension of the rectangular matrix G) 5 .W ea l s oc o m p u t et h i sd i s t a n c eD(V 0 ,V 1 )int h elimito f large dimension. This establishes some stability properties of the subspace generated by the eigenvectors of a GOE matrix and finds applications in quantum dissipation and in the study of the physical phenomenon of singular x-ray absorption in metals.

Empirical Covariance matrices

In this section, we first review the classical ensembles of random covariance matrices and we recall as in the previous section their main spectral properties. Then, in the final subsection, we present our contribution in this direction. Part of those results are theoretical results but we have also worked on some applications in quantitative finance.

Real and complex Gaussian Wishart Ensembles

Let X be a real (respectively complex) Gaussian random matrix of size M × N , i.e. a random matrix chosen in the space of M × N real (resp. complex) matrices according to the law:

P (dX) ∝ exp - 1 2 Tr(X † X) dX , (2.38) 
where X † is the Hermitian conjugate of X.I nt h ef o l l o w i n g ,w ew i l ld e n o t et h er e a l (resp. complex) Wishart ensemble by W β with β =1i nt h er ea lca s e( r es p . β =2 in the complex case).

The real (resp. complex) Wishart Ensemble is the ensemble of (N × N )s q u a r e matrices of the product form W := X † X where X is a real (resp. complex) Gaussian random matrix of size N × M .

The spectral properties of the Wishart matrices have been studied extensively and it is known [START_REF] James | [END_REF]thatforM N ,allN positive eigenvalues of W are distributed via the joint pdf

P β (λ 1 ,...,λ N )= 1 Z e -1 2 N i=1 λ i N i=1 λ β 2 (M -N +1)-1 i i<j |λ i -λ j | β (2.39)
where Z is a constant normalization factor and where β =1i nt h er e a lc a s e( r e s p . β = 2 in the complex case). Note that the distribution P β defined in (2.39)i si n fact defined for every β>0.

Continuous processes for real and complex Wishart ensembles

We wish to define here a diffusive matrix process depending on a fictitious time t 0 that will converge to the Wishart Ensembles in the limit of large time. The idea is simply to set

W t := X † t X t (2.40)
where X t is a real (resp. complex) random matrix process (of size M × N )follo wing the Ornstein-Uhlenbeck law,

dX t = - 1 2 X t dt +dB t
where B t is a real Brownian (resp. complex) random matrix, i.e. a matrix whose entries are given by independent standard Brownian motions.

It is well known that the stationary law of a Ornstein-Uhlenbeck process is the Gaussian law and therefore, the real (resp. complex) matrix process X t converges in law when t →∞to the law of a Gaussian real (resp. complex) random matrix. Hence, we deduce that the real (resp. complex) matrix process W t defines a diffusive matrix process that converges in law to W ∈W β .

It is also easy to check that the positive definite matrix process W t verifies the following stochastic differential equation [START_REF] Bru | Wishart Processes[END_REF]:

dW t = -W t dt + W t dB t +dB † t W t + Mβ I dt (2.41)
where B t is a real (resp. complex) Brownian random matrix and with β =1(resp. β =2).

The evolution of the eigenvalue process λ 1 (t) λ 2 (t) ... λ N (t)i sa l s oe a s yt o derive [START_REF] Bru | Diffusions of Perturbed Principal Component Analysis[END_REF]usingperturbationtheorytosecondorderasinthesecondsectionofthis chapter

dλ i = -λ i dt +2 λ i db i + β M + k =i λ i + λ k λ i -λ k dt (2.42)
where the b i are independent standard Brownian motions. 

Eigenvalues density

As in the second section, we are interested in the limiting eigenvalues density for large empirical covariance matrices, which we define here as matrices of the product form E := X † X/M where X is an M × N matrix with i.i.d. entries. Real and complex Gaussian Wishart random matrices are a particular case of what we call an empirical covariance matrix.

Under the assumption that the entries, denoted as x ij ,o ft h er a n d o mm a t r i xX have finite second moment (i.e. such that E[x 2 ij ]=σ 2 < ∞), the Marčenko Pastur theorem states that the eigenvalues empirical distribution of the random covariance matrix E converges weakly almost surely, in the limit N, M →∞with N/M → q (where q is a fixed parameter), to a deterministic probability measure whose density with respect to Lebesgue measure is

ρ(λ)= 1 2πq (γ + -λ)(λ -γ -) λ ,γ -<λ<γ + (2.43)
where γ ± are the edges of the compactly supported spectrum given by

γ -=(1- √ q) 2 ,γ + =(1+ √ q) 2 .
This result can be derived in the case of real and complex Gaussian Wishart random matrices by using the diffusion process defined in (2.42)alongthesameline as in the second section (see subsection 2.1.5). It is also done in [START_REF] Allez | Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko-Pastur law[END_REF].

We mention in passing that the case of heavy tail entries for the matrix X is treated in [START_REF] Belinschi | Spectral measure of heavy tailed band and covariance random matrices[END_REF], but as in the Wigner case, the limiting spectral density is not the Marčenko Pastur density but is fully characterized in [START_REF] Belinschi | Spectral measure of heavy tailed band and covariance random matrices[END_REF]. As in [START_REF] Ben Arous | The spectrum of heavy-tailed random matrices[END_REF], the authors of [START_REF] Belinschi | Spectral measure of heavy tailed band and covariance random matrices[END_REF]a l s od e r i v et h em a i np r o pe r t i e so ft h el i m i t i n gp r o b a b i l i t ym e a s u r e( c o n t i n u o u s density with respect to Lebesgue measure, tails behavior).

Our contribution

This subsection is devoted to our main contribution in the study of Wishart matrices. In the first paragraph, we construct a diffusive matrix model for the β-Wishart (or Laguerre) ensemble for general β ∈ [0, 2], which preserves invariance under the orthogonal/unitary group. Scaling the Dyson index β with the largest size M of the data matrix as β =2c/M (with c a fixed positive constant), we obtain a family of spectral densities interpolating continuously between the Marčenko-Pastur and the Gamma laws as c is varied. We obtain as a byproduct the correction to the Marčenko-Pastur density until order 1/M for all β and until order 1/M 2 for the particular cases β =1 , 2. In the second paragraph, we are interested in the empirical covariance matrix composed from the increments of independent multifractal random walks and in particular in the eigenvalue empirical density of this matrix. This study is motivated by applications in risk control and portfolio optimization in finance. In the third and last paragraph, we are interested in empirical covariance matrices composed from datas which have a non trivial "true" covariance matrix with one eigenvalue much larger than the other ones. In particular, we study the evolution of the top eigenvalue and associated eigenvector of the empirical matrix when it is measured through a sliding widow along a time series of datas.

Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko-Pastur law [joint work with Jean-Philippe Bouchaud, Satya N. Majumdar and Pierpaolo Vivo, see also chapter 6 or [START_REF] Allez | Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko-Pastur law[END_REF]].

This paragraph is related to the work [5] but concerns the Gaussian Wishart model instead of the Gaussian Orthogonal ensemble. We define a diffusive matrix model for invariant β-Wishart Ensembles for all β and we find the interpolation family of spectral measures when taking a vanishing repulsion coefficient β =2c/M . As ab yp r od u c t ,w ec a na l s ofi n dt h e1 /N and 1/N 2 correction terms to the Marčenko Pastur density (for the convergence of the empirical spectral distribution).

We first need to intro duce a family of real diffusion pro cesses. Let δ>0beafixed parameter. The CIR process (named after its creators John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross) is the diffusion process x(t)definedbyx(0) := x 0 > 0 and for t 0b y dx

(t)=-x(t)d t +2 x(t)d b t + δ dt. (2.44)
Using the assumption δ>0, it is easy to see that the process x(t)w i l lr e m a i n non negative for all times t 0. It is also easy to verify that the stationary pdf of the Langevin equation (6.11) is the Gamma distribution with shape and scale parameters k = δ/2a n dθ =2definedas

p δ (x)= 1 2 δ 2 Γ( δ 2 ) x δ 2 -1 e -x 2 .
(2.45)

In analogy with squared Bessel processes, the parameter δ will be called the dimension of the process x(t). Following [5,[START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF], our goal is to construct a diffusive matrix process whose eigenvalues process is asymptotically distributed according to

P β for general β ∈ [0; 2].
The idea is to slice the time interval into small intervals of length 1/n and for each interval [k/n;(k +1)/n], to choose independently Bernoulli random variables

n k ,k ∈ N such that P[ n k =1 ]=p =1-P[ n k =0 ] .
T h e n ,s e t t i n g n t = n [nt] ,o u r diffusive matrix process evolves as:

dW n t = -W n t dt +d∆ n t (2.46)
where the increment matrix d∆ n t now depends on the value of the additional random process n t :

• if n t =1,then

d∆ n t = W n t dB t +dB † t W n t + M I dt.
where dB t is an N × N real6 Brownian increment matrix whose entries have variance dt.

• if n t =0,then

d∆ n t = W n t dY t +dY † t W n t + δ I dt.
with δ>0andwheredY t is a symmetric matrix that is co-diagonalizable with W n t (i.e. the two matrix have the same eigenvectors) but with a spectrum given by N independent real Brownian increments of variance dt.

It is clear that the eigenvalues of the matrix W n t will cross at some points but only in intervals [k/n;(k +1)/n]f o rw h i c h n k =0(intheotherin terv alswherethey follow the SDE (2.42)w i t hp a r a m e t e rβ =1 ,i ti sw e l lk n o w nt h a tt h er e p u l s i o n is too strong and thus collisions are avoided). In this case, the eigenvalues are renumbered at time t =( k +1)/n in increasing order. With this procedure, when ordered λ n 1 (t) ... λ n N (t), we can again check as in [5,[START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF], using perturbation theory, that the eigenvalues will remain always non-negative and will verify the Stochastic Differential System (SDS):

dλ n i = -λ n i dt +2 λ n i db i + n t M +(1-n t )δ + n t k =i λ n i + λ n k λ n i -λ n k dt (2.47)
where the b i are independent standard Brownian motions, which are also independent of the process n t . Note that when n t =0 ,t h ep a r t i c l e sλ n i are evolving as independent CIR processes of dimension δ>0a sd e fi n e da b o v e . T h e r e f o r e ,t h ep a r t i c l e sc a nc r o s si n those time intervals, breaking the increasing order so that they will be re-ordered at time ([nt]+1)/n but they will remain non-negative as the dimension δ is strictly positive. Therefore the SDS (6.14) remains well defined at all times t 0.

One can follow the proof of [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF]topro v ethatthescalinglimit(i.e. whenn →∞) of the process (λ n 1 (t) ... λ n N (t)) verifies the following SDS

dλ i = -λ i dt +2 λ i db i + pM +(1-p)δ + p k =i λ i + λ k λ i -λ k dt. (2.48)
One can deduce from the above equation (6.15)t h eF o k k e r -P l a n c ke q u a t i o nf o r the joint density P ({λ i },t), for which the stationary joint pdf is readily found to be

P * (λ 1 ,...,λ N )= 1 Z e -1 2 N i=1 λ i N i=1 λ p 2 (M -N +1-δ)-(1-δ 2 ) i i<j |λ i -λ j | p .
(2.49)

The probability P β introduced in (2.39)isreco v eredhereb ytakingthev aluesp = β and δ =0. Ifp = β>0, the eigenvalue probability density in the large N, M limit is the Marčenko-Pastur law. Note that with the above normalizations, the spectrum is spread over a region of R + of width of order pM .O nt h eo t h e rh a n d ,i fp =0 , the large N, M-limit of the spectral density is the Gamma distribution with shape and scale parameters k = δ/2a n dθ = 2 (recall that it is the stationary pdf of the CIR process of dimension δ):

ρ 0 (dλ)= 1 2 δ/2 Γ( δ 2 ) λ δ 2 -1 e -λ 2 dλ. (2.50)
It is quite natural to ask whether a crossover regime may be found, interpolating between the Marčenko-Pastur density (p>0, independent of the dimension M )and the Gamma distribution (p =0). Agoodcandidatefortriggeringsuc hatransition is clearly a parameter p vanishing with M as p =2 c/M where c is a positive fixed constant.

The derivation of the crossover density can be made with two different (and perhaps surprisingly equivalent) methods: the Itô method using Stochastic calculus as was first done in [5] and the Saddle point route (which was also presented in [5]). We explain the link b etween those two metho ds in [START_REF] Allez | Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko-Pastur law[END_REF].

The interpolating family of probability densities that we finally find is the three parameters c (such that p =2c/M ), q = N/M and δ 0a s

ρ c,q,δ (λ)= 1 2Γ(µ + ζ + 1 2 )Γ(ζ -µ + 3 2 ) 1 |W -ζ,µ (-λ 2 )| 2 (2.51)
where W -ζ,µ is a Whittaker function and with the following values for the parameters

ζ = cq - α 4 ; µ = 1 4 |α -2| with α =(2-δ) -2c(1 -q); .
For c = 0, the probability density ρ 0,q,δ is indeed given by the Gamma distribution with shape and scale parameters k = δ/2 and θ = 2. For c → +∞, one can also check that the distribution ρ c=+∞,q,δ indeed corresponds to the Marčenko Pastur distribution with parameter q (the parameter δ is irrelevant in this regime). We also checked expression (2.51) numerically, with very good agreement, see Fig. We mention also that following a method similar to the one explained in paragraph Wigner correction for large but finite dimension, we can derive the correction term to the Marčenko Pastur distribution for the empirical eigenvalue distribution.

Marčenko Pastur theorem for MRW processes [joint work with Rémi Rhodes and Vincent Vargas, see also chapter 8 or [START_REF] Allez | Marchenko Pastur type theorem for independent MRW processes: convergence of the empirical spectral measure[END_REF]].

This work is inspired from applications. It stems from finance and focuses on the study of covariance matrices which is a crucial tool for minimizing the risk R w of a portfolio w that invests w i in asset number i. Indeed, if we denote by r i the price variation of asset i, R w can be defined as the variance of the random variable i w i r i and can be computed in terms of the covariance matrix R of the r i (defined

as R ij = E[r i r j ]): R w = w t Rw.
Of course, practitioners do not have access to R;instead,theym ustconsideranoisy empirical estimator of R,w h i c hc o n s i s t so fal a r g ee m p i r i c a lc o v a r i a n c em a t r i x . A key tool in distinguishing noise from real correlations is the study of the eigenvalues of the empirical covariance matrix: we refer to [START_REF] Bouchaud | Financial Applications of Random Matrix Theory: a short review[END_REF][START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF]formoreextendeddiscussions on the applications of large empirical covariance matrices in finance and in particular in portfolio theory.

We consider here N stock price processes X i (t)f o ri =1 ,...,N that evolve continuously with respect to time t ∈ [0; 1] and we observe those prices only on a discrete finite grid {j/T, j =1,...,T} where T is the number of observations. Using this discrete grid, we can compute the price variations r i (j)( t h a tw ew i l la b u s i v e l y call returns)f o re a c ha s s e tp r i c eX i on every time interval [(j -1)/T ; j/T]b y :

r i (j):=X i j T -X i j -1 T .
Then, we define the N × T matrix X N such that X N (ij)=r i (j)t h a te n a b l e st o define the empirical covariance matrix R N as follows

R N := X N X t N .
The Marčenko Pastur theorem enables to compute the limiting eigenvalue density of the empirical covariance matrix R N if the stock price processes X i (t)a r e evolving as independent standard Brownian motions. Indeed, in this case, the random variables r i (j)a r ei . i . d . G a u s s i a nv a r i a b l e sa n dt h em a t r i xR N is precisely an empirical covariance matrix as defined in subsection 2.2.3 (more precisely, R N is a real Gaussian Wishart matrix).

In [START_REF] Allez | Marchenko Pastur type theorem for independent MRW processes: convergence of the empirical spectral measure[END_REF], we have been interested in the case where the stock price processes X i (t) are independent lognormal multifractal random walk (LMRW), as defined in the first section in equation (1.5), which are typically not diffusions and which present many very interesting properties for finance as they respect several of the universal features, called stylized facts, observed for the price of assets on financial markets (see [START_REF] Cont | Running for the exit: distressed selling and endogeneous correlations in financial markets[END_REF]f o rar e v i e wo ns t y l i z e df a c t s ) . W eh a v eb e e na b l et op r o v ec o n v e r g e n c e of the eigenvalue density and to characterize the limiting distribution (which is a deformation of the Marčenko Pastur distribution due to the (long) memory volatility process of the LMRW process) through its Stieltjes transform. We have verified numerically our result: the agreement between the simulated eigenvalue density and the numerical value of the theoretical density obtained by inverting our equations on the Stieltjes transform is excellent. We also give some numerical properties of the limiting eigenvalue density in view of applications.

Empirical measurement of a covariance matrix with one isolated top eigenvalue [joint work with Jean-Philippe Bouchaud, see also chapter 7 or [START_REF] Allez | Eigenvector dynamics: general theory and some applications[END_REF]].

We are concerned here with the empirical measurement of a covariance matrix denoted as C which has a very large dimension N and a spectrum of the form (λ 1 , 1,...,1) where λ 1 1a n dw ea r eg i v e nas a m p l eo fi . i . d . c e n t e r e dG a u s s i a n vectors (r 1 (t),...,r N (t)),t ∈ N whose covariance matrix is C.T h e r ea r et w ow a y s of measuring the empirical covariance matrix E.T h efi r s to n ei st op i c kal a r g e integer T (typically such that N/T = q ∈ [0 : 1] where q is a fixed parameter) and to compute E as before through the classical formula,

E ij = 1 T T i=1 r i (t)r j (t)( 2 . 5 2 )
for each entries i, j of the matrix E.

The other way of measuring the empirical covariance matrix is through the exponential moving average estimator. Letting >0(thisparameterwillplaytherole of T ), the matrix E is measured through

E ij = ∞ t=0 (1 -) t r i (t)r j (t) .
(2.53)

The two different formulas (2.52) and (2.53)l e a dt ot w od i ff e r e n tm a t r i c e sw i t h different properties (although related). We can also use a sliding window to have sequences of matrices E(t)whic hev olv ewithtimeas,ifw econsiderforexamplethe second model defined in (2.53),

E ij (t)=(1-)E ij (t -1) + r i (t)r j (t) .
(2.54)

We always consider the evolution equation (2.54)i ni t ss t a t i o n a r yr e g i m e .

In [START_REF] Allez | Eigenvector dynamics: general theory and some applications[END_REF], we are interested in the dynamic evolution of the top eigenvalue and eigenvector of the matrix E(t)whichevolveswithtimethrough (2.54). In particular, we give the Langevin equations followed by the top eigenvalue and the angle θ t between the top eigenvector of E(t)w i t ht h et o pe i g e n v e c t o ro ft h em a t r i xC.The dynamics of the angle θ t defines an interesting new class of random processes. We also compare our results with numerical simulations with very good agreement.

We mention in passing that the study of the top eigenvalue of the empirical covariance matrix E defined in (2.52)c a nbef o u n di n [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrix[END_REF]i nam o r eg e n e r a ls e t t i n g where an arbitrary finite number of spikes (isolated eigenvalues different from 1) are authorized. The authors prove convergence of the top eigenvalue of the matrix E and they characterize the fluctuations for large but finite N .I np a r t i c u l a r ,t h e ye x h i b i t ap h a s et r a n s i t i o nd e p e n d i n go nt h ev a l u eo ft h et o pe i g e n v a l u eo ft h ec o v a r i a n c e matrix C.I ft h i st o pe i g e n v a l u eo fC is above their explicit threshold, the fluctuation of the empirical top eigenvalue is given by a (generalized) Gaussian distribution with the classical scaling in √ N although it is, as expected given by a Tracy Widom law if the top eigenvalue of C lies below the threshold with the usual scaling N 2/3 .

In [START_REF] Allez | Eigenvector dynamics: general theory and some applications[END_REF], let us mention that we are able to recover the value of the limit of the top eigenvalue of E when N, T →∞with N/T → q but not the fluctuations.

Applications to empirical finance [Work in collaboration with Jean-Philippe Bouchaud, see Chapters 7, 9 and 10 ]. We have also been interested in applications of random matrix theory to empirical and statistical finance. We would not go too much into the details in this paragraph and we refer the reader to the corresponding chapters. A part of Chapter 7 is devoted to the study of the evolution in time of the sectors (or top eigenvectors of the correlation matrix) in financial markets. This study uses the results we establish on eigenvectors stability in the same chapter. In Chapter 9,w er e v i s i tt h eL e v e r a g ee ff e c ti nfi n a n c i a lm a r k e t . T h eL e v e r a g ee ff e c t is among the best known stylized facts of financial markets: negative price returns induce increased future volatilities. Using random matrix theory, we study this effect and its mechanisms in great details. Random matrix theory enables us in particular to compute the noise measurement and to check the significancy of our empirical results. In Chapter 10,w es t u d yt h ei n t r a -d a yd y n a m i c so fs t o c k sr e t u r n sa n dw e draw the picture of the co-movement of stocks. Again, this study relies partly on random matrix theory.

Part II

Gaussian multiplicative chaos and their scale invariance properties . Nous obtenons aussi une caractérisation explicite de la structure de covariance de ces mesures. Nous prouvons de plus que certaines propriétés qualitatives telles que l'indépendance à longue portée ou l'isotropie peuvent être déduites de cette équation.

Abstract

In this article, we consider the continuous analog of the celebrated Mandelbrot star equation with lognormal weights. Mandelbrot introduced this equation to characterize the law of multiplicative cascades. We show existence and uniqueness of measures satisfying the aforementioned continuous equation; these measures fall under the scope of the Gaussian multiplicative chaos theory developed by J.P. Kahane in 1985 (or possibly extensions of this theory). As a by product, we also obtain an explicit characterization of the covariance structure of these measures. We also prove that qualitative prop erties such as long-range indep endence or isotropy can be read off the equation. 51

Introduction

Fractality and the related concept of scale invariance is nowadays well intro duced in many fields of applications ranging from physics, finance, information or social sciences. The scale-invariance property of a stochastic process is usually quantified by the scaling exponents ξ(q)assoc iate dwiththepo w e r-la wbe ha vioroftheorde rq moments of the fluctuations at different scales. More precisely, if X t is a 1-d process with stationary increments, we can consider the q-th moments of its fluctuations at scale l:

E |X t+l -X t | q .
The scaling exponents ξ(q)a r ed e fi n e dt h r o u g ht h ef o l l o w i n gpo w e r -l a ws c a l i n g :

E |X t+l -X t | q = C q l ξ(q) ∀l<T.
When ξ(q)=qH is linear, the process is said to be monofractal. Famous examples of such processes are (fractional) Brownian motion, α-stable Lévy processes or Hermitte processes. When ξ is nonlinear, the process is said to be multifractal. The concept of nonlinear power-law scalings goes back to the Kolmogorov theory of fully developed turbulence in the sixties (see [START_REF] Castaing | Velocity probability density-functions of high Reynolds-number turbulence[END_REF][START_REF] Schmitt | Empirical determination of universal multifractal exponents in turbulent velocity fields[END_REF][START_REF] Stolovitzky | Kolmogorov's Refined Similarity Hypotheses[END_REF][START_REF] Castaing | Conditional velocity pdf in 3-D turbulence[END_REF][START_REF] Frisch | Turbulence[END_REF]a n dr e f e r e n c e s therein), introduced to render the intermittency effects in turbulence. Mandelbrot [START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades, divergence of high moments and dimension of the carrier[END_REF]c a m eu pw i t ht h efi r s tm a t h e m a t i c a ld i s c r e t ea p p r o a c ho fm u l t i f r a c t a l i t y ,t h e now celebrated multiplicative cascades. Roughly speaking, a (dyadic) multiplicative cascade is a positive random measure M on the unit interval [0, 1] that obeys the following decomposition rule:

M (dt) law = Z 0 1 [0, 1 2 ] (t)M 0 (2dt)+Z 1 1 [ 1 2 ,1] (t)M 1 (2dt -1), (3.1) 
where M 0 ,M 1 are two independent copies of M and (Z 0 ,Z 1 )i sar a n d o mv e c t o r with prescribed law and positive components of mean 1 independent from M 0 ,M 1 . Such an equation (and its generalizations to b-adic trees for b 2), the celebrated star equation introduced by Mandelbrot in [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, I and II[END_REF], uniquely determines the law of the multiplicative cascade. Despite the fact that multiplicative cascades have been widely used as reference models in many applications, they possess many drawbacks related to their discrete scale invariance, mainly they involve a particular scale ratio and they do not possess stationary fluctuations (this comes from the fact that they are constructed on a dyadic tree structure). Much effort has been made to develop a continuous parameter theory of suitable stationary multifractal random measures ever since, stemming from the theory of multiplicative chaos introduced by Kahane [START_REF] Kahane | Sur le chaos multiplicatif[END_REF][START_REF] Barral | Multifractal products of cylindrical pulses[END_REF][START_REF] Schmitt | Empirical determination of universal multifractal exponents in turbulent velocity fields[END_REF][START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF][START_REF] Robert | Gaussian Multiplicative Chaos revisited[END_REF][START_REF] Rhodes | Multidimensional multifractal random measures[END_REF]. The construction of such measures is now well understood and they are largely used in mathematical modeling since they obey a so-called stochastic scale invariance property, namely the property of being equal in law at different scales up to an independent stochastic factor. This is some kind of continuous parameter generalization of (3.1).

Stochastic scale invariance property is observed in many experimental and theoretical problems, like turbulence (see [START_REF] Frisch | Turbulence[END_REF][START_REF] Castaing | Velocity probability density-functions of high Reynolds-number turbulence[END_REF]a n dm a n yo t h e r s ) ,q u a n t u mg r a v i t y( s e e [START_REF] Knizhnik | Fractal structure of 2Dquantum gravity[END_REF][START_REF] Duplantier | Liouville Quantum Gravity and KPZ,t o appear in Inventiones Mathematicae[END_REF][START_REF] Rhodes | KPZ formula for log-infinitely divisible multifractal random measures[END_REF]), mathematical finance, etc... and this is the main motivation for introducing multifractal random measures. However, as far as we know, the following question has never been solved: are these measures the only existing stochastic scale invariant object? This is fundamental since a positive answer gives a full justification to their intensive use. In this paper, we characterize stochastic scale invariant measures when the stochastic factor is assumed to be log-normal. We prove that the class of such objects is made up of Gaussian multiplicative chaos with a specific structure of the covariation kernel, which turns out to be larger than described in the literature.

Background

Let us first remind the reader of the main definitions we will use throughout the paper. We denote by B(E)t h eB o r e l i a ns i g m afi e l do nat o p o l o g i c a ls p a c eE.A random measure M is a random variable taking values into the set of positive Radon measures defined on B(R d )s u c ht h a tE[M (K)] < +∞ for every compact set K.A random measure M is said to be stationary if for all y ∈ R d the random measures M (•)a n dM (y + •)h a v et h es a m el a w .

Gaussian multiplicative chaos

We remind the reader of the notion of Gaussian multiplicative chaos as intro duced by Kahane [START_REF] Kahane | Sur le chaos multiplicatif[END_REF]. Consider a sequence (X n ) n of independent centered stationary Gaussian processes with associated nonnegative covariance kernel k n (r)=E[X n r X n 0 ] 0. For each N 1, we can define a Radon measure M N on the Borelian subsets of R d by

M N (A)= A e N n=0 X n r -1 2 E[(X n r ) 2 ] dr.
For each Borelian set A,t h es e q u e n c e( M N (A)) N is a positive martingale. Thus it converges almost surely towards a random variable denoted by M (A). One can deduce that the sequence of measures (M N ) N weakly converges towards a Radon measure M ,c o m m o n l yd e n o t e db y

M (A)= A e Xr-1 2 E[X 2 r ] dr (3.2)
and called Gaussian multiplicative chaos associated to the kernel Of special interest is the situation when the function K can be rewritten as (for some λ 2 > 0)

K(r)= +∞ n=0 k n (r). ( 3 
K(r)=λ 2 ln + T |r| + g(r)( 3 . 4 )
for some bounded function g (and ln + (x)=m a x ( 0 , ln(x))). In that case, Kahane proved that the martingale (M N (A)) N ,f o rs o m eB o r e l i a ns e tA with non-null finite Lebesgue measure, is uniformly integrable if and only if λ 2 < 2d. This condition is necessary and sufficient in order for the limiting measure M to be non identically null. For kernels of the form (3.4)whic hcannotbewrittenasasumofnonnegativ e terms as (3.3), we refer to the extended Gaussian multiplicative theory developed in [START_REF] Robert | Gaussian Multiplicative Chaos revisited[END_REF]. We remind that Gaussian multiplicative chaos with kernel given by (3.4) has found applications in many fields in science:

• In dimension 1, the measure M is called the lognormal Multifractal Random Measure (MRM). It is used to model the volatility of a financial asset (see [START_REF] Bacry | Continuous cascade models for asset returns[END_REF], [START_REF] Duchon | Forecasting volatility with the multifractal random walk model[END_REF]).

• In dimension 2, the measure M is a probabilistic formulation of the quantum gravity measure (more precisely, the quantum gravity measure is defined as the exponential of the Gaussian Free Field and therefore is defined in a bounded domain). We refer to references [START_REF] Benjamini | KPZ in one dimensional random geometry of multiplicative cascades,C o m m u n i c a t i o n si nm a t h e m a t i c a lp h y s i c s[END_REF], [START_REF] Duplantier | Liouville Quantum Gravity and KPZ,t o appear in Inventiones Mathematicae[END_REF], [START_REF] Rhodes | KPZ formula for log-infinitely divisible multifractal random measures[END_REF]forprobabilisticpapersonthis topic.

• In dimension 3, the measure M is called the Kolmogorov-Obhukov model (see textbook [START_REF] Frisch | Turbulence[END_REF]): it is a model of energy dissipation in the statistical theory of fully developed turbulence.

Main results

Definitions

In this paper we are interested in stationary random measures satisfying the following scale invariance property: Definition 3.1. Log-normal -scale invariance. A random measure M is said to be lognormal -scale invariant if for all <1, M obeys the cascading rule

= A e ω(r) M (dr) A∈B(R d ) (3.5)
where ω is a stationary Gaussian process with continuous sample paths and M is a random measure independent from ω satisfying the relation

M (A) A∈B(R d ) law = d M (A) A∈B(R d ) . (3.6) 
Intuitively, this relation means that when you zoom in the measure M ,y o u should observe the same behavior up to an independent log-normal factor. This relation is the continuous parameter analog of the celebrated Mandelbrot star equation.

Remark. In order for a measure M satisfying (3.5) with a moment of order 1 to be non trivial, it is obvious to check that the Gaussian process ω must be normalized so that E[e ω (r)] = 1. Definition 3.2. We will say that a stationary random measure M satisfies the good lognormal -scale invariance if M is lognormal -scale invariant and for each <1, the covariance kernel k of the process ω involved in (3.5) is continuous and satisfies: Though we would like to solve (3.5)i ng r e a tg e n e r a l i t y ,w em u s tm a k eaf e w technical assumptions to avoid pathological situations (a pathological example is given at the very end of Section 3.4). This is basically the purpose of the above definition 3.2.L e tu sm a k eaf e wc o m m e n t so ni t sc o n t e n t .

|k (r)|→0 as |r|→+∞, (3.7 
Equation (3.8)m a i n l ye x p r e s s e st h a tt h ek e r n e lk is Lipschitzian with a local Lipschitz constant that decays at most like θ when approaching infinity. By combining (3.7)a n d ( 3.8), it is plain to see that

∀r =0, |k (r)| C +∞ |r| θ(u) du. (3.10)
This is a very weak decorrelation property for the process ω ,w h i c hd e s c r i b e sh o w fast the covariance function decays at infinity. In our proofs, it will be the key tool to investigate the mixing properties of the measure M .

Results

In what follows, we are mainly interested in the one-dimensional case d =1 . W e have the following description of the solutions to (3.5), which is the main result of the paper:

Theorem 3.3.
Let M be a good lognormal -scale invariant random measure. Assume that

E[M ([0, 1]) 1+δ ] < +∞
for some δ>0. Then M is the product of a nonnegative random variable Y ∈ L 1+δ and an independent Gaussian multiplicative chaos

∀A ⊂B(R),M (A)=Y A e Xr-1 2 E[X 2 r ] dr (3.11)
with associated covariance kernel given by the improper integral

K(r)= +∞ |r| k(u) u du (3.12)
for some continuous covariance function k such that k(0) 2 1+δ . Conversely, given some datas k and Y as above, the relation (3.11) defines a log-normal -scale invariant random measure M with finite moments of order 1+γ for every γ ∈ [0,δ).

Let us also state the following result giving a sufficient (and not far from being necessary) condition in terms of k for the measure M as constructed in Theorem 3.3 to be good: then M is a good lognormal -scale invariant random measure.

Let us comment on Theorem 3.3. First we point out that Y is deterministic as soon as the random measure M is ergodic. Second, good lognormal -scale invariant measures exhibit a multifractal behaviour. More precisely, if we consider a measure M as in Theorem 3.3,w ed e fi n ei t ss t r u c t u r ee x po n e n t ∀q>0,ξ (q)=(1+

k(0) 2 )q - k(0) 2 q 2 .
Then we have the following asymptotic power-law spectrum, for q<1+δ: E M ([0,t]) q C q t ξ(q) as t → 0, for some positive constant C q . We also stress that the intermittency parameter k(0) is explicit when one knows K because of the relation

K(r) ∼ k(0) ln 1 r , when r → 0. (3.14)
The covariance function K can also be recovered from the two sets marginals of the measure M thanks to formula (3.48).

Finally, Theorem 3.3 has the following consequence about the regularity of good lognormal -scale invariant measures: Corollary 3.5. Almost surely, a good log-normal -scale invariant random measure M does not possess any atom on R, that is:

almost surely, ∀x ∈ R,M ({x})=0.
Now we investigate long-range independence for good lognormal -scale invariant random measures. So we introduce the related notion of cut-off: Definition 3.6. We will say that a stationary random measure M admits a cut-off d>0 if, for t<s , the σ-algebras

H t -∞ = σ{M (A); A ∈ B(R),A ⊂ (-∞,t]} and H +∞ s = σ{M (A); A ∈ B(R),A ⊂ [s,
+∞)} are independent, conditionally to the asymptotic σ-algebra of M , as soon as s -t>d.

Of course, if the measure M is ergodic then the asymptotic σ-algebra of M is trivial and we can remove the sentence "conditionally to the asymptotic σ-algebra of M " from the definition. For instance the measure constructed in subsection 3.3.4 admits a cut-off T and is ergodic. It results from the proof of Theorem 3.3 that the cut-off property can be read off the cascading rule (3.5): Proposition 3.7. Let M be a good lognormal -scale invariant random measure with finite 1+δ moment. Then M admits a cutoff if and only if, for some <1 (or equivalently for all <1), the covariance kernel k of the process ω in (3.5) reduces to 0 outside a compact set.

Finally, we mention that another notion of stochastic scale invariance has been studied in the literature before: it is called the exact stochastic scale invariance (see [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF][START_REF] Castaing | Velocity probability density-functions of high Reynolds-number turbulence[END_REF][START_REF] Rhodes | Multidimensional multifractal random measures[END_REF]). Let us recall the main result: if the Gaussian multiplicative chaos M admits a covariance kernel K such that K(x)=λ 2 ln T |x| +C for some constant C and for all x in a ball B(0,R)t h e nM satisfies the "exact stochastic scale invariance":

∀α ∈ (0, 1), (M (αA)) A⊂B(0,R) law = αe Yα-1 2 E[Y 2 α ] (M (A)) A⊂B(0,R)
where Y α is a centered Gaussian random variable with variance λ 2 ln 1 α . The reader may wonder if we can construct random measures that are both exactly stochastically scale invariant and good lognormal -scale invariant. Let us show that Proposition 3.8. Let M be a Gaussian multiplicative chaos whose covariance kernel K is such that, for |r| R, K(r)=λ 2 ln T |r| + C for some constant C (in particular, M satisfies the "exact stochastic scale invariance"), then M is not a good lognormal -scale invariant random measure.

Multidimensional results

We stress that our results remain true in higher dimensions without changes in the proofs. For the sake of completeness, we state the main result. Theorem 3.9. Let M be a good lognormal -scale invariant random measure such that for each <1, the covariance kernel k of the process ω is continuous and differentiable on R d \{0}. Assume that

E[M ([0, 1] d ) 1+δ ] < +∞
for some δ>0. Then M is the product of a nonnegative random variable Y ∈ L 1+δ and an independent Gaussian multiplicative chaos:

∀A ⊂B(R d ),M (A)=Y A e Xr-1 2 E[X 2 r ] dr (3.15) 
with associated covariance kernel given by the improper integral

∀x ∈ R d \{0},K (x)= +∞ 1 k(xu) u du (3.16)
for some continuous covariance function k such that k(0) 2d 1+δ . Conversely, given some datas k and Y as above, the relation (3.11) defines a lognormal -scale invariant random measure M with finite moments of order 1+γ for every γ ∈ [0,δ).

It turns out that Proposition 3.4 remains true in dimension d 1. When the dimension is greater than 1, it may be interesting to focus on the isotropy properties. In the same spirit as Proposition 3.7,foragoodlognormal-scale invariant measure M with a finite moment of order 1 + δ,t h ef o l l o w i n ga s s e r t i o n sa r ee q u i v a l e n t :

1. M is isotropic, 2. its covariance kernel K (or equivalently k in (3.16)) is isotropic, 3. the covariance kernel k is isotropic for some <1, 4. the covariance kernels k are isotropic for all <1.

Classical example

As far as we know, there exists only one example of good log-normal -scale invariant random measures in the literature, which was first described in [START_REF] Barral | Multifractal products of cylindrical pulses[END_REF]( s e ea l s o [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]). Its construction is very intuitive: it is geometric and relies on homothetic properties of triangles in the half-plane. We also stress that this specific example of -scale invariant random measures is not restricted to the Gaussian case: the factor can be more general (log-Lévy).

Following [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF], we recall the construction of this example and refer the reader to the aforementioned papers for further details. Fix T>0a n dl e tS + be the state-space half plane

S + = {(t, l):t ∈ R,l > 0}.
with which one can associate the measure µ(dt, dl)=l -2 dtdl.

Then we introduce the independently scattered Gaussian random measure P defined for any µ-measurable set A by

E e iqP (A) = e ϕ(q)µ(A)
with ϕ(q)=-λ 2 q 2 /2iqλ 2 /2. Under those assumptions, we can note that for any µ-measurable set A, P (A)i saG a u s s i a nv a r i a b l ew i t hm e a nm = -µ(A)λ 2 /2a n d variance σ 2 = λ 2 µ(A). We can then define the Gaussian process (ω l (t)) t∈R for l 0 by ω l (t)=P (A l (t))

where A l (t)i st h et r i a n g l el i k es u b s e tA l (t): ={(t ,l ):l l T,-l /2 tt l /2}.

0 t l A l (t) l T
Define now the random measure M l by M l (dt)=e ω l (t) dt. Almost surely, the family of measures (M l (dt)) l>0 weakly converges towards a random measure M .I f λ 2 < 2, this measure is not trivial.

Let us check that M is a good log-normal -scale invariant random measure. Fix <1a n dd e fi n et h es e t sA l,T (t): ={(t ,l ):l l T, -l /2 tt l /2} and A T,T (t): ={(t ,l ):T l T,-l /2 tt l /2}. Note that A l (t)= A l,T (t) ∪A T,T (t) and that those two sets are disjoint. Thus, we can write for every µ-measurable set A M l (A)= A e ω T,T (t) e ω l,T (t) dt (3.17)

with ω T,T (t)=P (A T,T (t)) and ω l,T (t)=P (A l,T (t)).

0 t l A T,T (t) A l,T (t) 
T l T

We then study equation (3.17) in the limit l → 0; we obtain

M (A)= A e ω T,T (t) M (dt)( 3 . 1 8 )
where M is the limit when l → 0o ft h er a n d o mm e a s u r eM l (dt):=e ω l,T (t) dt.W e easily verify that M (A)

law = M (A)w r i t i n g M l (A)= A e ω l,T (t) dt (3.19)
and checking that the covariance of the Gaussian process (ω l,T (t)) t∈R is the same as the one of (ω l,T (t)) t∈R . The covariance kernel of the stationary Gaussian process ω T,T (t)i sg i v e nb y

k (r)=      0i f |r| T λ 2 (ln T |r| + |r| T -1) if T |r| T λ 2 (ln 1 + |r| T -|r| T )i f |r| T . (3.20)
Since k reduces to 0 outside a compact set, it is straightforward to check (3.7)a n d (3.8). We further stress that this measure admits a cut-off in the sense of Definition 3.6.

Remark. In view of Theorem 3.3,n o t et h a tt h er a n d o mm e a s u r eM is a Gaussian multiplicative chaos with associated kernel

K(r)= +∞ |r| k(u) u du with k(u)=λ 2 (1 - |u| T )1 [0,T ] (|u|). (3.21)
and that we have

k (r)= |r| |r| k(u) u du.

Construction of log-normal -scale invariant random measures

This section is devoted to the existence part of Theorem 3.3:w eg i v ea ne x p l i c i t construction of lognormal -scale invariant random measures. We are given a p ositive random variable Y ∈ L 1+δ (for some δ>0) and a continuous covariation kernel k such that k(0) 2 1+δ .L e tF be the (symmetric) spectral measure associated to k,t h a ti s

k(t)= R e iλt F (dλ),
and we assume that the improper integral

K(r)= +∞ r k(u)
u du converges for r>0.

Let µ, ν be two i.i.d. independently scattered Gaussian random measures (independent of Y ) distributed on the half plane R × R * + such that:

∀A ∈B(R × R * + ), E[e qµ(A) ]=e 1 2 q 2 θ(A)
where

θ(A)= λ∈R y∈R * + 1 A (λ, y) 1 y dyF (dλ).
Let <1, we define the centered Gaussian process For all A ∈B(R), the process

∀t ∈ R,X (t)= λ∈R y∈[1,
M 1/l (A)=Y A exp X 1/l (r) - 1 2 E[X 2 1/l (r)] dr
is obviously a positive martingale and thus converges as l →∞towards a random variable M (A). The stationary random measure (M (A)) A∈B(R) is a Gaussian multiplicative chaos in the sense of [START_REF] Robert | Gaussian Multiplicative Chaos revisited[END_REF] with associated kernel K.

Note that for l>1/,w eh a v e∀t ∈ R:

X 1/l (t)=X (t)+ λ∈R y∈[ 1 ,l[ cos(λty)µ(dλ, dy)+ λ∈R y∈[ 1 ,l[ sin(λty)ν(dλ, dy) def = X (t)+ X,1/l (t), (3.22) 
where X,1/l is a centered stationary Gaussian process independent from X with covariance kernel given by:

k,1/l (t -s)=E[ X,1/l (s) X,1/l (t)] = l|t-s| 1 |t-s| k(y) y dy.
As above, we can define the random measure M as the limit as l → +∞ of the random measures

∀A ∈B(R),M 1/l (A)=Y A exp X,1/l (r) - 1 2 E[ X2 ,1/l (r)] dr.
The stationary random measure (M (A)) A∈B(R) is a Gaussian multiplicative chaos in the sense of [START_REF] Robert | Gaussian Multiplicative Chaos revisited[END_REF]withassociatedco v arianceK(• 1 ). We deduce that 1 M • is a Gaussian multiplicative chaos in the sense of [START_REF] Robert | Gaussian Multiplicative Chaos revisited[END_REF]w i t ha s s oc i a t e dc o v a r i a n c eK(•).

The measure 1 M • thus has the same law as M .F r o m( 3.22), we obviously have:

M (A)= A exp X (r) - 1 2 E[X 2 (r)] M (dr)
in such a way that (3.5) holds. Finally we point out that M admits a moment of order 1 + γ for all 0 γ<δ(see [START_REF] Kahane | Sur le chaos multiplicatif[END_REF]).

Remark. By focusing on the above construction, we see that the covariance kernel k can be intuitively interpreted as some kind of infinitesimal stochastic generator.

We may lo ok X as a sum X (r)= ln rθ(r) dr < +∞, so that the measure is good.

Practical examples

In this subsection, we give practical examples of log-normal -scale invariant random measures. Using Theorem 3.3, good log-normal -scale invariant random measures are Gaussian multiplicative chaos whose covariance structure is given by

K(s)= +∞ |s| k(u) u du (3.23)
where k is a continuous covariance function satisfying k(0) < 2andsomeweakdecay assumptions (ensuring (3.13) for instance). Therefore, to define explicit examples, we just need to exhibit suitable kernels k.T h ed e c a ya s s u m p t i o n sc a nb er e a do ff the spectral measure of k.F o ri n s t a n c e ,i fk is the Fourier transform of some positive even integrable function f ,w h i c hp o s s e s s e sa ni n t e g r a b l ed e r i v a t i v e ,i ti sas i m p l e application of the Riemann theorem to prove that (3.13) is satisfied. Actually, for (3.13) to be satisfied, the assumptions on the regularity of the spectral measure can be much weakened. For instance, we can consider a kernel k that is the Fourier transform of some positive even integrable function f with integrable α-fractional derivative for 0 <α<1:

∂ α f = R * f (x + z) -f (x) |z| 1+α dz ∈ L 1 (R).
In that case, the Riemann theorem implies |u| α k(u) → 0a s|u|→∞and it is then plain to se that (3.13)i ss a t i s fi e d . Below are listed a few examples of such kernels:

• the function k(s)= 1 σ √ 2π e -|s| 2 2σ 2
(where σ>0) is continuous and positivedefinite since its Fourier transform k(r)=e -σ 2 r 2 /2 is positive.

• the covariance function of the stationary Orstein-Uhlenbeck process which takes on the form k(s)= σ 2 2θ e -θ|s| where θ>0,σ > 0.

• we can consider k as the Fourier transform of the function ( λ>0)

f (x)= +∞ 0 e -λt E[g(x + X t )] dt (3.24)
where g ∈ L 1 (R)i sa n yp o s i t i v ei n t e g r a b l ef u n c t i o na n dX is a pure jump Lévy process with Lévy symbol

η(u)= R * (e iuz -1) 1 |z| 1+α dz
for some 0 <α<1. It is well know that the Lebesgue measure is invariant for the semi-group generated by X so that k(0) = f 1 = g 1 /λ:t h i sg i v e s a condition on the norm g 1 for having k(0) < 2. Furthermore, f admits an integrable α-fractional derivative so that (3.13) is satisfied. Actually, it turns out that all the functions in L 1 (R)w i t ha ni n t e g r a b l eα-fractional derivative admit a representation as (3.24). The reader may consult [START_REF] Applebaum | Lévy Processes and Stochastic Calculus,C a m b r i d g es t u d i e si n advanced mathematics 93[END_REF]f o rf u r t h e r details.

We stress that, as so on as they are not trivial (i.e. k(0) < 2), the Gaussian multiplicative chaos of the first two above examples do not have cut off in the sense of Definition 3.6.O b v i o u s l y ,m a n yo t h e re x a m p l e se x i s t . Let us mention another example of log-normal -scale invariant random measures which does not present the goodness property of Definition 3.2.F r o mT h e o r e m3.3, the Gaussian multiplicative chaos associated to the covariance function u du does not satisfy (3.8)s othat the associated measure M is not good. Note that this Gaussian multiplicative chaos falls under the scope of [START_REF] Robert | Gaussian Multiplicative Chaos revisited[END_REF]sincethefunctionK does not have a constant positive sign.

K(s)= +∞ |s| cos(u) u du. ( 3 

Characterization of star scale invariance

This section is devoted to the proof of the first statement of Theorem 3.3.F o rt h e sake of readability, some proofs of auxiliary results are gathered in the appendix.

Let M be a good log-normal scale invariant random measure defined on a probability space (Ω, F, P). We introduce as usually the spaces L p on (Ω, F, P)f o r 1 p ∞.R e c a l lt h a tt h em e a s u r eM satisfies, for all ∈ (0, 1)

M (A) A∈B(R) law = A e ω(r) M (dr) A∈B(R) (3.26)
where ω is a Gaussian process independent from M ,w i t hM (dr)=M ( dr )i n law. k denotes the covariation kernel of the process ω .F u r t h e r m o r e ,w ea s s u m e that the measure M is non trivial (M =0 )w i t ham o m e n to fo r d e r1+δ so that the process ω is necessarily normalized, that is E[e ω ]=1. Now we introduce some definitions and tools that will be used throughout this section. For each ∈ (0, 1), define ∀r =0,K (r)= and this last integral is assumed to be converging (3.9). Furthermore, (3.8)a l s o ensures that K is Lipschitzian over each set {z ∈ R; |z| >ρ} for any ρ>0because:

|K (r) -K (r )| +∞ n=0 |k r n -k r n | C +∞ n=0 θ min(|r|, |r |) n r -r n C +∞ 0 θ ρ y-1 r -r y dy C -ρ ln |r -r | +∞ ρ θ(u) du.
We let (X n ) n denote a sequence of independent centered stationary Gaussian processes with respective covariance kernels

E[X n r X n s ]=k ( r -s n ) def = k n (r -s).
Clearly X n depends on but this parameter is omitted from the notations for the sake of readability. We assume that the whole sequence (X n ) n and the measure M are constructed on the same probability space and are mutually independent. We further define the measure M N for N 0b y

∀A ∈B(R),M N (A)= N +1 M 1 N +1 A .
Note that E[M N (A)] = |A| where |A| stands for the Lebesgue measure of the set A.

By iterating the scale invariance relation (3.5), it is plain to see that, for each N 0, the measure

M N defined by M N (A)= A exp N n=0 X n r - 1 2 E[(X n r ) 2 ] M N (dr)( 3 . 2 9 )
has the same law as the measure M .

Ergodic properties

First we investigate the immediate properties of M resulting from the definitions.

Lemma 3.10. Let M be a stationary random measure on R admitting a moment of order 1+δ. There is a nonnegative integrable random variable Y ∈ L 1+δ such that, for every bounded interval I ⊂ R, Proof. If M is a stationary random measure, the Birkhoff ergodic theorem implies the following convergence, for n ∈ N,n →∞, T M (TI) →|I|Y almost surely and in L 1+δ . Along the same lines, one can show the same convergence for every bounded interval I ⊂ R - involving some nonnegative random variable Y ∈ L 1+δ .S t a t i o n a r i t yi m p l i e st h a t 1 T M (T [-1, 1]) has the same law as 1 T M (T [0, 2]). By letting T go to ∞,w efi n d that Y + Y has the same law as 2Y .S t a t i o n a r i t ya l s oi m p l i e st h a tY has the same law as Y .L e t0<α<1. We prove Finally, by the portemanteau theorem, the convergence of the measure A ∈ B(R) → 1 T M (TA)o nt h ei n t e r v a l st o w a r d sY |•| is enough to ensure the weak convergence.

1 n M ([0,n]) = 1 n n i=1 M ([i -1,i]) → Y almost
E[Y α ]=E Y + Y 2 α 1 2 (E[Y α ]+E[Y α ]) = E[Y α ]( 3 . 3 

Mixing properties

This section is devoted to study of the mixing properties of the measure M ,w h i c h can be read off the structure of the kernel K .

We first draw attention to the following relation, which will b e used throughout the paper:

E Y F M (A 1 ),...,M(A n ) = E Y F M N (A 1 ),..., M N (A n ) a.s.
for every positive measurable function F : R n → R. 

E Y [M (A)M (B)] = Y 2 A×B e K (r-u) dr du.
Proof. We fix R>0a n dd e n o t eb yG the σ-field generated by M .B e c a u s et h e function

x ∈ R + → min(R, x)i sc o n c a v e ,w eh a v e E Y min R, M(A)M (B) =E Y min R, M N (A) M N (B) =E Y E min R, M N (A) M N (B) |G E Y min R, E M N (A) M N (B)|G .
Since M N is given by (3.29), it is straightforward to compute: The dominated convergence theorem then yields: -u) dr du.

E M N (A) M N (B)|G = A×B e N n=0 kn(r-u) M N (dr)M N (du). ( 3 
E Y min R, M(A)M (B) E Y min R, Y
E Y M (A)M (B) Y 2 A×B e K (r
On the other hand, we also have 

E Y M (A)M (B) = E Y M N (A) M N (B) = E Y E M N (A) M N (B)|G . ( 3 

Characterization of the measure M

Having in mind that the measure M N weakly converges towards Y |•| as N goes to infinity, it is very tantalizing to think that the solution of our problem reduces to taking the limit in (3.29)a sN →∞. However, multiplicative chaos badly behaves with respect to weak convergence of measures. So we want to get rid of the measure M N and have the Lebesgue measure instead in order to deal with a multiplicative chaos in the sense of Kahane. This is the main difficulty of the proof. For that purpose, it is appropriate to take the conditional expectation of M N with respect to the σ-algebra F N = σ(X 0 ,...,X N ,Y). Therefore, for any Borelian subset A of R,w ed e fi n e

G N (A)=E[ M N (A)|F N ]
and we claim Lemma 3.15. The following relation holds for each N 0:

G N (A)=Y A exp N n=0 X n r - 1 2 E[(X n r ) 2 ] dr. (3.36)
Furthermore, for each bounded Borelian set A, the sequence

(G N (A)) N is a positive martingale bounded in L 1+δ .
Proof. If A has infinite Lebesgue measure, both sides of (3.36)a r ei n fi n i t e . S ow e focus on the case when A has finite Lebesgue measure. First observe that for each s<tand A ∈F N ,w eh a v ef r o mL e m m a3.10

E[ R 1 [s,t] (r)1 A M N (dr)|F N ]=1 A E Y [M N ([s, t])] = 1 A Y (t -s).
By using density arguments and Fatou's lemma, we establish that, for each positive

F N ⊗B(R)-measurable function ϕ ∈ L 1 (Ω × R; P ⊗ dt), we have E R ϕ(ω, r)M N (dr) F N ]= R ϕ(ω, r)Yd r . So (3.36)i sp r o v e d .
Finally, for each bounded set A we have E[M (A) 1+δ ] < +∞ for some δ>0. The Jensen inequality then yields

E[(G N (A)) 1+δ ]=E[(E[ M N (A)|F N ]) 1+δ ] E[( M N (A)) 1+δ ]=E[M (A) 1+δ ] < +∞. The martingale (G N (A)) N is thus bounded in L 1+δ .
Being bounded in L 1+δ ,t h em a r t i n g a l ec o n v e r g e sa l m o s ts u r e l ya n di nL 1+δ towards a random variable Q(A), which can be formally thought of as

Q(A)=Y A exp X r - 1 2 E[X 2 r ] dr
where (X r ) r∈R is a "Gaussian process" with covariance kernel K (r), that is a Gaussian multiplicative chaos. The remaining part of our argument can be roughly summed up as follows. First, we obtain estimates on the kernel K derived from the fact that the Gaussian multiplicative chaos Q admits a moment of order 1 + δ.

Second, we use these estimates to prove that Q has the same law as M . Finally, since Q has the same law as M ,w h i c hd o e sn o td e p e n do n,t h ek e r n e lK should not depend on either. This is a strong constraint on K ,f r o mw h i c hw ed e r i v et h e specific structure of K given by (3.12). So we claim Proposition 3.16. For each 0 <γ<δ, we can find ρ>0 such that:

sup n n 1+ρ E[M ([0, 1 n ]) 1+γ ] < +∞. (3.37)
Proof. The proof relies on the following bound (see the proof below):

Lemma 3.17. The existence of a moment of order 1+δ for the measure M implies the following bound:

k (0) 2 1+δ ln 1 .
Since we have for all r ∈ R: k (r) k (0), the covariance kernel of the process ω is dominated by that of the constant process ω (0). Hence, by using (3.5)a n d Lemma 3.24,i ti sp l a i nt os e et h a t ,f o re a c hγ>0:

E[M ([0, 1 n ]) 1+γ ]=E 1/n 0 e ω 1/n (r) M 1/n (dr) 1+γ E 1/n 0 e ω 1/n (0) M 1/n (dr) 1+γ E e (1+γ)ω 1/n (0) E M 1/n ([0, 1 n ]) 1+γ = e (1+γ) 2 2 k 1/n (0)-1+γ 2 k 1/n (0) E M ([0, 1]) 1+γ 1 n 1+γ . Since k 1/n (0) 2 1+δ ln n, we deduce E[M ([0, 1 n ]) 1+γ ] e γ 2 +γ 1+δ -γ-1 ln n E M ([0, 1]) 1+γ = 1 n 1+ρ E M ([0, 1]) 1+γ
where we have set

ρ def = - γ 2 + γ 1+δ + γ.

Clearly, we have ρ>0p r o v i d e dt h a t0<γ<δ .T h ep r o o fo fP r o p o s i t i o n3.16 is complete.

Proof of Lemma 3.17.

Let n ∈ N. E M [0; t] 1+δ = E M [0; t n ]+M [ t n ; 2t n ]+•••+ M [ (n -1)t n ; t] 1+δ (3.38) E M [0; t n ] 1+δ + M [ t n ; 2t n ] 1+δ + •••+ M [ (n -1)t n ; t] 1+δ (3.39) = nE M [0; t n ] 1+δ (3.40)
We used the stationarity of the measure M in the second line. Now write, for h>0:

g(h)=sup r h | k 1/n (0) -k 1/n (r) | (3.41)
We have, for every r ∈ (0,t/n]a n dn large enough:

| k 1/n (0) -g(t/n) | k 1/n (r).
So, using classical Gaussian inequality (see Lemma 3.24):

E M [0; t n ] 1+δ = E   t/n 0 e ω 1/n (r) M 1/n (dr) 1+δ   E   t/n 0 e √ |k 1/n (0)-g(t/n)|Zn-1 2 |k 1/n (0)-g(t/n)| M 1/n (dr) 1+δ   = E e √ |k 1/n (0)-g(t/n)|Zn-1 2 |k 1/n (0)-g(t/n)| 1+δ E M 1/n [0; t n ] 1+δ = e -1+δ 2 |k 1/n (0)-g(t/n)| e (1+δ) 2 2 |k 1/n (0)-g(t/n)| 1 n 1+δ E (M [0; t]) 1+δ (3.42)
We used Lemma 13 in the second line. Using equations (3.40)a n d( 3.42), one gets

e -1+δ 2 |k 1/n (0)-g(t/n)| e (1+δ) 2 2 |k 1/n (0)-g(t/n)| 1 n δ 1( 3 . 4 3 )
As h goes to 0, g(h)g oe st o0( t h ef u n c t i o nk 1/n is continuous). Letting t goes to 0 in (3.43), one gets

k 1/n (0) 2 1+δ ln n.
and the lemma is proved.

We are now in p osition to tackle the main step of the pro of:

Proposition 3.18. The random measures (Q(A)) A∈B(R) and (M (A)) A∈B(R) have the same law.

Proof. Let F be some function defined on R + such that:

• F is convex, • F (x) Cx 1+γ for some constants C>0a n d0<γ<δ,
• F • √ is concave, nondecreasing and sub-additive.

Let f be a lower semi-continuous positive function on R with compact support. We have by Jensen's inequality:

E F R f (x) M (dx) = E F R f (x) M N (dx) = E E F R f (x) M N (dx) |F N E F R f (x) G N (dx) .
We let N go to +∞.B yu s i n gt h ew e a kc o n v e r g e n c eo fG N (dr)t o w a r d sQ(dr), we obtain:

E F R f (r) M (dr) E F R f (r) Q(dr) . (3.44)
Now we want to establish the converse inequality. We set F = F • √ .F o ra n y τ>0, we have by using the sub-additivity of F :

E F R f (r) M (dr) =E F R f (r) M N (dr) 2 =E F R R f (r)f (u) M N (dr) M N (du) E F |r-u| τ f (r)f (u) M N (dr) M N (du) + E F |r-u|>τ f (r)f (u) M N (dr) M N (du) .
Then, by conditioning with respect to F N and by using the Jensen inequality in the second term of the latter inequality, we deduce:

E F R f (r) M (dr) (3.45) E F |r-u| τ f (r)f (u) M N (dr) M N (du) + E F |r-u|>τ f (r)f (u)exp N k=0 X n r + X n u -k n (0) E Y [M N (dr)M N (du)] def = C(1,τ,N)+C(2,τ,N). (3.46) 
We claim:

Lemma 3.19. For each fixed τ>0, C(2,τ,N) converges as N →∞towards E F |r-u|>τ f (r)f (u) Q(dr)Q(du) .
Furthermore, this latter quantity converges, as τ → 0, towards

E F f (r) Q(dr) .
Finally, the quantity C(1,τ,N) converges to 0 as τ → 0 uniformly with respect to N ∈ N * .

Let us admit for a while the above lemma to finish the proof of Proposition 3.18. By gathering (3.46)a n dL e m m a3.19,w ed e d u c e

E F R f (r) M (dr) lim inf τ →0 E F |r-u|>τ f (r)f (u) Q(dr)Q(du) =E F f (r) Q(dr) .
Hence we have proved

E F R f (r) M (dr) = E F R f (r) Q(dr) . (3.47) 
The basic choice for F is the function x → x 1+γ with 0 <γ<δ.T h u sw eh a v e proved that the mappings

E exp z ln R f (r) M (dr) and E exp z ln R f (r) Q(dr) coincide for z ∈]1, 1+δ[. By analyticity arguments, we deduce that R f (x) M (dx) and R f (x) Q(dx)
have the same law. This is enough to prove that the random measures M and Q have the same law. Indeed, if we consider two families (λ i ) 1 i n of positive real numbers and (A i ) 1 i n of bounded open subsets of R,w ed e fi n e the lower semi-continuous function

f (x)= n i=1 λ i 1 A i (x)
and we obtain

n i=1 λ i M (A i ) law = n i=1 λ i Q(A i ).
It turns out that the law of a random vector (Y 1 ,...,Y n )madeupofpositiverandom variables is characterized by the combinations 

n i=1 λ i Y i where (λ i ) 1 i n is
A n j =[t n j ,t n j+2 ] × [t n j ,t n j+2 ]w h e r e t n j = -R +2τj, for j =0,...,E( R τ ).
We set S =sup R f .B e c a u s e F is sub-additive and increasing, we have:

C(1,τ,N) E F 0 j E( R τ ) A n j f (r)f (u) M N (dr) M N (du) 0 j E( R τ ) E F A n j f (r)f (u) M N (dr) M N (du) 0 j E( R τ ) E F S 2 A n j M N (dr) M N (du) = 0 j E( R τ ) E F S 2 ( M N ([t n j ,t n j+2 ])) 2 = 0 j E( R τ ) E F SM([t n j ,t n j+2 ]) .
By stationarity, we deduce

C(1,τ,N) 2R τ E F SM([0, 2τ ]) 2R τ S 1+γ E M ([0, 2τ ]) 1+γ .
It results from Proposition 3.16 that the last quantity converges towards 0 as τ goes to 0 uniformly with respect to N . Now we investigate the quantity C(2,τ,N). Since F is sub-additive and increasing, we have |

F (a) - F (b)| F (|b -a|)f o ra l lp o s i t i v er e a ln u m b e r sa, b.T h i s together with Corollary 3.14 yields C(2,τ,N)-E F |r-u|>τ f (r)f (u)exp N k=0 X n r + X n u -k n (0) Y 2 dr du E F Y 2 ξ τ N |r-u|>τ f (r)f (u)exp N k=0 X n r + X n u -k n (0) dr du E F ξ τ N S 2 G N ([-R, R]) 2 E F Sξ τ N 1/2 G N ([-R, R]) ξ τ N 1+γ 2 S 1+γ E G N ([-R, R]) 1+γ .
Obviously, the last quantity converges to 0 as N goes to ∞.F u r t h e r m o r e , t h e quantity F

|r-u|>τ

f (r)f (u)exp N k=0 X n r + X n u -k n (0) Y 2 dr du almost surely converges towards F |r-u|>τ f (r)f (u) Q(dr) Q(du)
and is uniformly integrable because F (x) Cx 1+γ and Q is a multiplicative chaos admitting a moment of order 1 + δ with δ>γ.T h eL e b e s g u ec o n v e r g e n c et h e o r e m then yields:

E F |r-u|>τ f (r)f (u)exp N k=0 X n r + X n u -k n (0) Y 2 dr du → E F |r-u|>τ f (r)f (u) Q(dr) Q(du) as N →∞.
Gathering the above relations yields

C(2,τ,N) → E F |r-u|>τ f (r)f (u) Q(dr) Q(du) as N →∞.
Similar arguments as those used above allow to establish that lim inf

τ →0 E F |r-u|>τ f (r)f (u) Q(dr)Q(du) =E F R 2 f (r)f (u) Q(dr)Q(du) =E F R f (r) Q(dr) .
Indeed, by proceeding as for C(1,τ,N), we can prove that the "diagonal contribution" goes to 0 as τ → 0. Details are left to the reader. The proof of the Lemma is complete.

The final step of our argument is now to prove that the kernel K defined by (3.27)doesnotdependon.E x p r e s s i n gt h ek e r n e lK as a function of the marginals of the measure M is enough for that purpose. So we remind the reader of Lemma 3.11,w h i c hs t a t e s

E Y [M (A)M (B)] = Y 2 A×B e K (r-u) drdu.
We deduce that, for any s =0andontheset{Y>0}, for some ∈ (0, 1) and this relation is also valid for any ∈ (0, 1). It is also plain to see that for each ∈ (0, 1) we have:

K (s)=lim h→0 ln 1 h 2 E Y [M ([0,h])M ([s, s + h])] -2lnY. ( 3 
∀r =0,K (r)=k (r)+K( r )( 3 . 4 9 )
since K satisfies such a relation. Such a specific functional equation implies a precise structure for the function K:

Proposition 3.20. For r>0, we have

K(r)= +∞ r k(u) u du (3.50)
where k(u) is a positive-definite continuous function R + → R.

Proof. Because K is Lipschitzian on the compact subsets of R \{0},t h e r ee x i s t sa locally bounded measurable function f on (0; +∞)s u c ht h a tf o ra l lr, s > 0,

K(s) -K(r)= s r f (t)dt. Define, for r ∈ R, φ(r)=K(e r )
It is straightforward to derive from (3.49)t h a t ,f o ra l lr ∈ R,α 0,

φ(r + α) -φ(r)=-k e -α (e r )( 3 . 5 1 )
Note that k 1 (e r )=0. F romequation(3.51), one obtains :

1 α r+α r e u f (e u )du = - k e -α (e r ) α (3.52) 
For almost every r,t h el e f t -h a n ds i d eo fe q u a t i o n( 3.52)t e n d st oe r f (e r )w h e n α goes to 0. Thus, the right-hand side of (3.52)c o n v e r g e sa l s of o ra l m o s te v e r yr to e r f (e r )w h e nα goes to 0.

We define the function g by the following limit for almost every r:

g(r)=lim α→0 - 1 α r+α r e u f (e u )du =l i m α→0 k e -α (e r ) α (3.53)
As defined, the function g is measurable with respect to the Borelian σ-field of R.F o ra l m o s te v e r yx ∈ (0, +∞), define h(x)=g(ln(x)), and h(0) by h(0) = k e -α (0) α for some α>0. Note that the definition of h(0) does not depend on α because: Lemma 3.21. We have the following asymptotic behaviour of K around 0:

K(r) k (0) ln ln r as r → 0.
Thus h is well defined at 0 and we can now prove that it is positive definite:

Lemma 3.22. The function h(|.|) is positive definite (as a tempered distribution in the sense of Schwartz, see [START_REF] Gelfand | Generalized Functions[END_REF] or [START_REF] Schwartz | Théorie des distributions[END_REF]). One can also find a symmetric positive measure µ on R (with µ(R) < ∞) such that for almost every x ∈ R:

h(|x|)= R e ixξ µ(dξ) Proof. For almost every x ∈ R, h(|x|)=l i m α→0 k e -α (|x|) α
and k e -α (|x|) α h(0) uniformly in α.T h u s , i f ϕ is a smooth function with compact support, we get using the dominated convergence theorem:

R R h(|y -x|)ϕ(x)ϕ(y)dxdx =l i m α→0 R R k e -α (|y -x|) α ϕ(x)ϕ(y)dxdx 0.

We conclude that h(|.|)i sp o s i t i v ed e fi n i t e . B yt h eB o c h n e r -S c h w a r t zt h e o r e m ,t h e Fourier transform of h(|.|)i sas y m m e t r i cp o s i t i v em e a s u r eµ(dξ)s u c ht h a tt h e r e exists p 0w i t h :

R µ(dξ)

(1 + |ξ|) p < ∞.
In order to conclude, it is sufficient to prove that µ(R) < ∞.W en o t eθ(x)= e -x 2 /2 √ 2π

and θ = 1 θ(./)f o r>0. By the inverse Fourier theorem, we get:

(θ * h)(0) = R e -2 ξ 2 /2 µ(dξ).
Thus the right hand side of the above equality is bounded by h(0) and we conclude by letting go to 0.

Integrating with respect to the Lebesgue measure the relation g(t)=-e t f (e t ) which is true for almost every t ∈ R,o n eg e t s

K(s) -K(r)=- s r h(u) u du. Because K(s) → 0a ss → +∞, the function u → h(u)
u is integrable at the vicinity of +∞ in the generalized sense. We deduce:

K(r)= +∞ r h(u) u du.
By the previous lemma, there exists a finite symmetric positive measure µ on R such that, for almost every x ∈ R,

h(x)= R e ixξ µ(dξ)
For simplicity, define for all x ∈ R, k(x)= R e ixξ µ(dξ). The function k is continuous on R.W eg e tfi n a l l y ,

K(r)= +∞ r k(u) u du. (3.54)
The proof of Proposition 3.20 is complete.

Proof of Proposition 3.7. This is just a direct consequence of Theorem 3.3 and equation (3.48).

Proofs of some auxiliary lemmas

Lemma 3.23. Let F : R n → R be a measurable function. Then, for all bounded Borelian sets A 1 ,...,A n ⊂ R, the following relation holds almost surely:

E Y [F (M (A),...,M(A n ))] = E Y F ( M N (A), ••• , M N (A n ))
Proof. By using the Jensen inequality, we have

E 1 T M N [0; T ] - 1 T M N [0; T ] =E 1 T M N [0; T ] - 1 T M N [0; T ] 2 1/2 E E 1 T M N [0; T ] - 1 T M N [0; T ] 2 |M 1/2 =E 1 T 2 T 0 T 0 E e N n=0 X n r -1 2 E[(X n r ) 2 ] -1 e N n=0 X n u -1 2 E[(X n u ) 2 ] -1 M N (dr)M N (du) 1/2 =E 1 T 2 T 0 T 0 e N n=0 kn(r-u) -1 M N (dr)M N (du) 1/2
The integrand in the above expectation converges almost surely towards 0 because, for each 0 n N , kn is bounded and converges to 0 in the vicinity of ∞. Furthermore, it is uniformly integrable because sup

T E 1 T M N ([0; T ]) 1+δ < +∞.
We deduce that

E 1 T M N [0; T ] - 1 T M N [0; T ] → 0a s T → +∞.
As a consequence, 1 T M N [0; T ] converges almost surely along a subsequence towards Y .

One has, for any function h bounded and continuous,

E F (M (A 1 ),...,M(A n ))h 1 T M [0; T ] = E F ( M (A 1 ),..., M (A n ))h 1 T M N [0; T ]
Sending T to +∞ along the subsequence, we get by the bounded convergence theorem

E [F (M (A 1 ),...,M(A n ))h (Y )] = E F ( M (A 1 ),..., M (A n ))h (Y )
and the lemma is proved.

Lemma 3.24. Let F : R + → R be some convex function such that

∀x ∈ R + , |F (x)| M (1 + |x| β ),
for some positive constants M, β, and σ be a Radon measure on the Borelian subsets of R. Given a<b, let (X r ) a r b , (Y r ) a r b be two continuous centered Gaussian processes with continuous covariance kernels k X and k Y such that

∀u, v ∈ [a, b],k X (u, v) k Y (u, v). Then E F b a e Xr-1 2 E[X 2 r ] σ(dr) E F b a e Yr-1 2 E[Y 2
r ] σ(dr) .

Proof. For each N ∈ N,w ed e fi n et h es m o o t hs u b d i v i s i o nt N p = a + p b-a N , p = 0,...,N,o ft h ei n t e r v a l[ a, b]. We also introduce the random variables

S X N = N -1 p=0 e X t N p -1 2 E[X 2 t N p ] σ([t N p ,t N p+1 )) and S Y N = N -1 p=0 e Y t N p -1 2 E[Y 2 t N p ] σ([t N p ,t N p+1 )). By classical Gaussian inequalities (see [120,c o r o l l a r y6 . 2 ]f o ri n s t a n c e ) ,w eh a v e ∀N 1, E F S X N E F S Y N .
So it just remains to pass to the limit as N →∞by using the dominated convergence theorem. By continuity of the processes X, Y the random variables

S X N ,S Y N converge almost surely respectively towards b a e Xr-1 2 E[X 2 r ] σ(dr), b a e Yr-1 2 E[Y 2
r ] σ(dr). Clearly, we have:

|F (S X N )| M 1+|S X N | β , so that we just have to prove that |S X N | β is uniformly integrable (the same argument holds for |S Y N | β ). It is enough to establish that for each d ∈ N, sup N E (S X N ) d < +∞.
We have

E (S X N ) d =E N -1 p=0 e X t N p -1 2 E[X 2 t N p ] σ([t N p ,t N p+1 )) d = N -1 p 1 ,...,p d =0 E e X t N p 1 +•••+X t N p d e -1 2 (E[X 2 t N p 1 ]+•••+E[X 2 t N p d ]) σ([t N p 1 ,t N p 1 +1 )) ו••×σ([t N p d ,t N p d +1 )) = N -1 p 1 ,...,p d =0 e 1 2 d i,j=1 k X (t N p i ,t N p j ) e -1 2 (E[X 2 t N p 1 ]+•••+E[X 2 t N p d ]) σ([t N p 1 ,t N p 1 +1 )) ו••×σ([t N p d ,t N p d +1 )) → b a ... b a e 1 2 d i =j k X (u i ,u j ) σ(du 1 ) •••σ(du d )
as N →∞.T h i sc o m p l e t e st h ep r o o f .

Proof of Lemma 3.21. We cho ose any <1a n dc o n s i d e r|r| 1. Since k is continuous at 0, we can find, for α>0, some η>0 such that k (0)α k (u) k (0) for |u| η. Then we decompose K as

K (r)= +∞ n=0 k ( r n ) = ln r η ln -1 n=0 k r n + +∞ n= ln r η ln k r n def = ln r η ln -1 n=0 k r n + g (r)
Let us prove that g is bounded over a neighborhood of 0. By using (3.10)a n d following the computations of (3.28), we have for p ∈ N:

+∞ n=p |k r n | 2C -ln +∞ r p-1 θ(u)lnudu.
We deduce by taking p = ln r η ln :

|g (r)| 2C -ln +∞ η θ(u)lnudu.
Hence g is bounded. By noticing that r n η ⇔ n

ln r η ln , we deduce ln r η ln (k (0) -α)+g (r) K (r) ln r η ln k (0) + g (r).
By taking the lim sup and lim inf in the above inequality, we have proved that for each α>0:

k (0) -α ln 1 lim inf r→0 K (r) ln 1 r lim sup r→0 K (r) ln 1 r k (0) ln 1
, which completes the proof.

Proof of Corollary 3.5. By stationarity, it is enough to prove that, almost surely, the measure M does not possess any atom on the segment [0, 1]. From [59,C o r o l l a r y 9.

3 VI], it is enough to check that for each α>0:

n k=1 P M [ k -1 n ; k n ] >α = nP M [ 0 n ; 1 n ] >α → 0a s n →∞.
This is a direct consequence of the Markov inequality and Lemma 3.16:

nP M [ 0 n ; 1 n ] >α n α 1+γ E[M ([0, 1 n ]) 1+γ ] → 0a sn →∞.
Proof of Proposition 3.8. Otherwise, if M is a good lognormal -scale invariant random measure, then using Theorem 3.3,w ekno wthatthereexistsk acon tin uous covariance function such that, for all |r| R:

K(r)= ∞ |r| k(u) u du = λ 2 ln T |r| + C. (3.55)
By differentiating this equality with respect to r,weobtaink(r)=λ 2 for all |r| R. Then, let (X t ) t∈R be a centered stationary Gaussian process with covariance kernel k.F o ra l ls, t ∈ R such that |t -s| <R,w eh a v ecov(X t ,X s )=k(|t -s|)=k(0) = var[X t ]w h i c hi m p l i e s( b yC a u c h y -S c h w a r zi n e q u a l i t y )t h a tX t = X s almost surely.

The process X being stationary, this shows that it is a constant process. Hence k(r)=λ 2 for all r ∈ R.B e c a u s eo fe q u a t i o n( 3.55), this is a contradiction since it would imply K(r)=+∞ for all r.

Part III 

Abstract

We define a new diffusive matrix mo del converging towards the β -Dyson Brownian motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of random matrices that is invariant under the orthogonal/unitary group. For small values of β,o u rp r o c e s sa l l o w so n et o interpolate smoothly between the Gaussian distribution and the Wigner semi-circle. The interpolating limit distributions form a one parameter family that can be explicitly computed. This also allows us to compute the finite-size corrections to the semi-circle. Since Wigner's initial intuition that the statistical properties of the eigenvalues of random matrices should provide a good description of the excited states of complex 87 nuclei, Random Matrix Theory has become one of the prominent field of research, at the boundary between atomic physics, solid state physics, statistical mechanics, statistics, probability theory and number theory [3,[START_REF] Bai | Spectral Analysis of Large dimensional random matrices[END_REF][START_REF] Anderson | An Introduction to Random Matrices[END_REF]. It is well known that the joint distribution of the eigenvalues of a large Gaussian random matrix can be expressed as the Boltzmann-Gibbs equilibrium weight of a one-dimensional repulsive Coulomb gas confined in an harmonic well. However, the effective "inverse temperature" β of the system cannot take arbitrary values but is quantized (in units of the repulsive Coulomb potential). Depending on the symmetry of the random matrix, only three values are allowed β =1f o rs y m m e t r i cr e a lm a t r i c e s ,β =2 for Hermitian matrices and β =4f o rt h es y m p l e c t i ce n s e m b l e . T h i si sk n o w na s Dyson's "threefold way". The existence of matrix ensembles that would lead to other, possibly continuous, values of β,i sav e r yn a t u r a lq u e s t i o n ,a n dt h eq u e s tf o r such ensembles probably goes back to Dyson himself. Ten years ago, Dumitriu and Edelman [START_REF] Dumitriu | Matrix Models for Beta Ensembles[END_REF]h a v ep r o p o s e da ne x p l i c i tc o n s t r u c t i o no ft r i -d i a g o n a lm a t r i c e sw i t h non-identically distributed elements whose joint law of the eigenvalues is the one of β-ensembles for general β. Another construction is proposed in [3,p . 4 2 6 -4 2 7 ]( s e e also [START_REF] Forrester | Interpretations of some parameter dependent generalizations of classical matrix ensembles[END_REF]) and uses a bordering procedure to construct recursively a sequence of matrices with eigenvalues distributed as β-ensembles. This construction gives not just the eigenvalue probability density of one matrix of the sequence but also the joint eigenvalue probability density of all matrices. This has lead to a renewed interest for those ensembles, that have connections with many problems, both in physics and in mathematics, see e.g. [START_REF] Forrester | Log gases and Random Matrices[END_REF][START_REF] Anderson | An Introduction to Random Matrices[END_REF]. The aim of the paper is to provide another construction of β-ensembles that is, at least to our eyes, natural and transparent, and respects by construction the orthogonal/unitary symmetry [140]. Another motivation for our work comes from the recent development of free probability theory. "Freeness" for random matrices is the natural extension of independence for classical random variables. Very intuitively, two real symmetric matrices A, B are mutually free in the large N limit if the eigenbasis of B can be thought of as a random rotation of the eigenbasis of A (see e.g. [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF]f o ra na c c e s s i b l ei n t r o d u c t i o nt of r e e n e s sa n d for more rigorous statements). "Free convolution" then allows one to compute the eigenvalue distribution of the sum A + B from the eigenvalue distribution of A and B,m u c hi nt h es a m ew a ya sc o n v o l u t i o na l l o w so n et oc o m p u t et h ed i s t r i b u t i o no f the sum of two independent random variables. In this context, the Wigner semicircle distribution appears as the limiting distribution for the sum of a large number of free random matrices, exactly as the Gaussian is the limiting distribution for the sum of a large number of iid (independent and identically distributed) random variables. A natural question, from this perspective, is whether one can build a natural framework that interpolates between these two limits.

Let us first recall Dyson's Brownian motion construction of the GOE [START_REF] Dyson | A Brownian-Motion Model for the Eigenvalues of a Random Matrix[END_REF](forthe sake of simplicity, we will only consider here extensions of the β =1ensem ble,but similar considerations hold for β = 2 Hermitian matrices see [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF]forfulldetails). Itis defined as the real N × N symmetric matrix process M(t)solutionofthestoc hastic differential equation (SDE):

dM(t)=- 1 2 M(t)dt +dH(t)( 4 . 1 )
where dH(t)i sas y m m e t r i cB r o w n i a ni n c r e m e n t( i . e . as y m m e t r i cm a t r i xw h o s e entries above the diagonal are independent Brownian increments with variance

dH 2 ij (t) = 1 2 (1 + δ ij )dt).
Standard second order perturbation theory allows one to write the evolution equation for the eigenvalues λ i of the matrix M(t):

dλ i = - 1 2 λ i dt + 1 2 j =i dt λ i -λ j +db i , (4.2) 
where b i (t)a r ei n d e p e n d e n ts t a n d a r dB r o w n i a nm o t i o n s . T h i sd e fi n e sD y s o n ' s Coulomb gas model, i.e. "charged" particles on a line, with positions λ i ,i n t e racting via a logarithmic potential, subject to some thermal noise and confined by a harmonic potential. One can deduce from the above equation the Fokker-Planck equation for the joint density P ({λ i },t), for which the stationary joint probability density function (pdf) is readily found to be:

P * ({λ i })=Z i<j |λ i -λ j | β exp - 1 2 i λ 2 i , (4.3) 
with β ≡ 1a n dw h e r eZ is a normalization factor. The above expression is the well known joint distribution of the eigenvalues of an N × N random GOE matrix. The Wigner distribution can be recovered either by a careful analysis of the mean marginal univariate distribution ρ(λ)= ... dλ 2 ...dλ N P * (λ = λ 1 ,λ 2 ,...,λ N ) in the large N limit [START_REF] Mehta | Random matrices[END_REF], or by using the above SDE (4.2) to derive a dynamical equation for the Stieltjes transform G(z, t)o fρ(λ, t):

G(z, t)= 1 N N i=1 1 λ i (t) -z ,z ∈ C. (4.4)
With this scaling, the spectrum is spread out in a region of width of order

√ N and therefore z ∼ √ N and G ∼ 1/ √ N . Applying Itô's formula to G(z, t)a n du s i n g (4.
2), we obtain the following Burgers equation for G [START_REF] Rogers | Interacting Brownian particles and the Wigner law[END_REF]:

2 ∂G ∂t = αN 2 ∂G 2 ∂z + ∂zG ∂z +(2-α) 1 2 ∂ 2 G ∂z 2 (4.5)
where α is introduced for later convenience, with α = 1 for now. Note that we have neglected in Eq. ( 4.5)at e r mo fo r d e rN -5/2 .I n d e e di na g r e e m e n tw i t h [START_REF] Bai | Spectral Analysis of Large dimensional random matrices[END_REF]:

G 2 -G 2 ∼ N -3
.T h en e g l e c t e dt e r mi st h u s1 /N smaller than the diffusion term in Eq. (4.5).

For large N ,t h el a s t( d i ff u s i o n )t e r mo fE q . ( 4.5)i so fo r d e r1 /N smaller than the other ones. To leading order, the stationary solution (where the time derivative is set to 0) can be integrated with respect to z:

1 2 αNG 2 ∞ (z)+zG ∞ (z)=-1 , (4.6) 
where the integration constant comes from the boundary condition G(z) ∼-1/z when z →∞ .I ti st h e ne a s yt os o l v et h i se q u a t i o nt ofi n dt h eS t i e l t j e st r a n s f o r m that indeed corresponds to the Wigner semi-circle density:

G ∞ (z)= 1 αN √ z 2 -2αN -z -→ ρ(λ)= 1 παN √ 2αN -λ 2 1 {|λ| √ 2αN } . (4.7) 
Now let us turn to the central idea of the present paper. In Dyson's construction, the extra Gaussian slice dM(t)thatisaddedtoH(t)isc hosentobeindependen tof M(t)i t s e l f . T h ee i g e n b a s i so fd H(t)i sar a n d o mr o t a t i o n ,t a k e nu n i f o r m l yo v e rt h e orthogonal group. As mentioned above, this corresponds to free addition of matrices, and Eq. (4.5)c a ni n d e e db ed e r i v e d( f o rN = ∞)u s i n gf r e ec o n v o l u t i o n [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF]. If instead we choose to add a random matrix dY(t)thatisalways diagonal in the same basis as that of M(t), the process becomes trivial. The diagonal elements of M(t)are all sums of iid random variables, and the eigenvalue distribution converges towards the Gaussian. The construction we propose is to alternate randomly the addition of a "free" slice and of a "commuting" slice. More precisely, our model is defined as follows: we divide time into small intervals of length 1/n and for each interval

[k/n;(k +1)/n], we choose independently Bernoulli random variables n k ,k ∈ N such that P[ n k =1 ]=p =1-P[ n k = 0]. Then, setting n t = n [nt]
,o u rd i ff u s i v em a t r i x process simply evolves as:

dM n (t)=- 1 2 M n (t)dt + n t dH(t)+(1-n t )dY(t)( 4 . 8 )
where dH(t) is a symmetric Brownian increment as above and where dY(t)i sa symmetric matrix that is co-diagonalizable with M n (t)( i . e . t h et w om a t r i xh a v e the same eigenvectors) but with a spectrum given by N independent Brownian increments of variance dt.I ti sc l e a rt h a tt h ee i g e n v a l u e so ft h em a t r i xM n (t)w i l l cross at some points but only in intervals [k/n;(k +1)/n]f o rw h i c h n k =0( i nt h e other intervals where they follow Dyson Brownian motion with parameter β =1,it is well known that the repulsion is too strong and that collisions are avoided). In such a case, the eigenvalues are re-numbered at time t =( k +1)/n in increasing order. Now, using again standard perturbation theory, it is easy to derive the evolution of the eigenvalues of M n (t)d e n o t e da sλ n 1 (t) ... λ n N (t):

dλ n i = - 1 2 λ n i dt + n t 2 j =i dt λ n i -λ n j +db i (4.9)
where the b i are independent Brownian motions also independent of the n k ,k ∈ N. Am a t h e m a t i c a l l yr i g o r o u sd e r i v a t i o np r o v i d e di n [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF]a l l o w so n et os h o wt h a t the scaling limits λ i (t), when n →∞ ,o ft h ee i g e n v a l u e sλ n i (t)o b e yt h ef o l l o w i n g modified Dyson SDE:

dλ i = - 1 2 λ i dt + p 2 j =i dt λ i -λ j +db i , (4.10) 
with the additional ordering constraint λ 1 (t) ... λ N (t)f o ra l lt. One of the difficulty of the proof comes from the fact that when p<1, there is a positive probability for eigenvalues to collide in finite time (the ordering constraint is therefore useful at those points to re-start). The idea is then to show that collisions are in a sense sufficiently rare for the above SDE to make sense (see [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF][START_REF] Cépa | Diffusing particles with electrostatic repulsion,P r o bability Theory and Related Fields[END_REF]f o rf u r t h e r details). Using the SDE (4.10), one can derive as above the stationary distribution for the joint distribution of eigenvalues, which is still given by Eq. ( 4.3)b u tw i t h now β = α = p 1. A very similar construction can be achieved in the GUE case, leading to β =2 p. As announced, our dynamical procedure, that alternates standard and free addition of random matrices, can lead to any β-ensemble with β 2. The corresponding matrices M(t)a r ef u r t h e r m o r einvariant under the orthogonal (or unitary) group. This is intuitively clear, since both alternatives (adding a free slice or adding a commuting slice) respect this invariance, and lead to a Haar probability measure for the eigenvectors (i.e. uniform over the orthogonal/unitary group). We have also proved that a collision leads to a complete randomization of the eigenvectors within the two-dimensional subspace corresponding to the colliding eigenvalues, see again [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF].

It is well known that the eigenvalue density corresponding to the measure P * given by (4.3) is the Wigner semi-circle for any β>0. In fact, using (4.5)w i t h now α = β = p,o n ei m m e d i a t e l yfi n d st h a tt h ee i g e n v a l u ed e n s i t yi sas e m i -c i r c l e with edges at ± √ 2βN.W es i m u l a t e dn u m e r i c a l l yt h em a t r i xM n (t)w i t hN =200 for a very small step 1/n and until a large value of t so as to reach the stationary distribution for the eigenvalues. Then we started recording the spectrum and the nearest neighbor spacings (NNS) every 100 steps so as to sample the ensemble. We verified that the spectral density of M n (t = ∞)i si n d e e di nv e r yg o o da g r e e m e n t with the Wigner semi-circle distribution for β =1/2. Our sample histogram for the NNS distribution is displayed in Fig. 4.1. We also added the corresponding Wigner surmise (which is expected to provide a good approximate description of the NNSD).

From the p oint of view of a cross-over b etween the standard Gaussian central limit theorem for random variables and the Wigner central limit theorem for random matrices, we see that as soon as the probability p for a non-commuting slice is positive, the asymptotic density is the Wigner semi-circle, with a width of order (λ i (t)) becomes

dλ i = - 1 2 λ i dt + c N j =i dt λ i -λ j +db i , (4.11) 
with the additional ordering constraint λ 1 (t) ... λ N (t)andthestationaryjoint pdf is still given by (4.3) but with now a vanishing repulsion coefficient β =2 c/N . In order to elicit the cross-over, we study Eq. (4.5)w i t hα =2c/N .T h es t a t i o n a r y differential equation corresponding to (4.5) (note this time that all terms are of the same order and the second derivative term is not negligible) can be integrated with respect to z again as:

cG 2 + zG + dG dz = -1, (4.12) 
where the integration constant comes from the boundary condition G ∼-1/z for z →∞ . Note that (4.12)c a nb er e c o v e r e dd i r e c t l yf r o mt h es a d d l ep o i n te q u a t i o n route: under the measure P * with β =2 c/N ,t h ee n e r g yo fac o n fi g u r a t i o no ft h e λ i 's can be expressed in term of the continuous state density ρ,n e g l e c t i n gt e r m s 1, as:

E[ρ]= 1 2 λ 2 ρ(λ)dλ -c ln(|λ -λ |)ρ(λ)ρ(λ )dλdλ .
The probability density P * therefore rewrites in term of ρ as:

P * [ρ]=Z exp -N E[ρ]+ ρ ln(ρ) δ( ρ -1) ,
where the entropy term, which is negligible when β = p is of order 1, is now of the same order as the energy term (see [START_REF] Dean | Extreme value statistics of eigenvalues of Gaussian random matrices[END_REF]foradetaileddiscussionontheoriginofthe entropy term). We now need to minimize the quantity E[ρ]+ ρ ln(ρ)w i t hr e s pe c t to ρ. It is easy to see that the unique minimizer ρ c satisfies:

λρ c (λ) λ -z dλ -2c ρ c (λ)ρ c (λ ) (λ -z)(λ -λ ) dλdλ + ρ c (λ) λ -z dλ + ν =0
where ν is an integration constant. It is now straightforward to derive (4.12)f r o m this last equation by identifying each term and choosing the constant ν so as to have the correct boundary condition for the Stieltjes transform of a probability measure. As expected physically, the diffusion term in (4.12)c o r r e s p o n d se x a c t l y to the entropy contribution to the saddle-point. Eq. (4.12) was studied in detail by Askey & Wimp [START_REF] Askey | Associated Laguerre and Hermite polynomials[END_REF]a n dK e r o v [START_REF] Kerov | Interlacing measures,i nK i r i l l o v ' ss e m i n a ro nr e p r e s e n t a t i o nt h e o r[END_REF]( s e ea l s o [START_REF] Belinschi | The classical normal distribution is -infinitely divisible[END_REF]). Set G(z):=u (z)/cu(z)t oo b t a i nas e c o n do r d e re q u a t i o no nu:

u (z)+zu (z)+cu(z)=0. (4.13)
It follows from the asymptotic behavior of G(z)t h a t ,f o r|z|→∞,

u(z) ∼ A 1 z c . (4.14)
Eq. (4.13)caninturnbetransformedwiththechangeoffunctionu(z):=e -z 2 /4 y(z) into a Schrodinger equation on y(z):

y (z)+[c - 1 2 - 1 4 z 2 ]y(z)=0. (4.15)
The solutions of (4.15)areknown(see [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]) to write as y(z

)=A 2 D c-1 (z)+A 3 D -c (iz)
where D c-1 ,D -c are parabolic cylinder functions and where A 2 and A 3 are two constants. The general solution for u therefore is

u(z)=e -z 2 /4 (A 2 D c-1 (z)+A 3 D -c (iz))
and the correct asymptotic behavior of u is fulfilled for A 2 = 0. Now, one can recover the spectral density ρ c (λ)a s s o c i a t e dt oG by the classical inversion formula and various elegant tricks [100]. The final result for ρ(λ)r e a d s ,f o ra l lc>0:

ρ c (λ)= 1 √ 2πΓ(1 + c) 1 |D -c (iλ)| 2 ;( 4 . 1 6 ) D -c (z)= e -z 2 /4 Γ(c) ∞ 0 dxe -zx-x 2 2 x c-1 .
Expression (4.16)w a sa g a i nc h e c k e dw i t hn u m e r i c a ls i m u l a t i o n sw i t hv e r yg o o d agreement. The integral representation for D -c (z) does not hold for c =0 ,b u t the function D -c (iu) is still well defined for all c ∈ (-1; 0] (see [START_REF] Askey | Associated Laguerre and Hermite polynomials[END_REF]). It is easy to check that ρ 0 (u)=e -u 2 /2 / √ 2π when c = 0, as expected. When c →∞, the Wigner semi-circle law is recovered

ρ c (u) ≈ 1 2πc √ 4c -u 2 . (4.17)
Standard results [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]o nD -c enable to find the tails of ρ c :

ρ c (u) ∼ u 2c e -u 2 /2 (|u|→∞). (4.18)
Let us return to (4.5)f o rβ = α ∈ (0; 2). Interestingly, our method allows us to compute the correction to the Wigner semicircle inside the support of the spectral density for large but finite N due to the last diffusion term, which is usually neglected. Indeed one can solve as above the stationary equation of (4.5)k e e p i n g every term. This leads to the following corrected spectral density,v a l i df o rl a r g eb u t finite N :

ρ(λ)= √ α √ 2πΓ(1 + c) 1 |D -c (i √ αλ)| 2 , (4.19) 
where α =2 /(2β)a n dc = βN/(2β). Note that this correction is valid only inside the spectrum and does not describe the edge scaling behavior nor the Tracy-Widom tails. The above discussion can also be formally extended to -1 c<0, corresponding to a weakly attracting Coulomb gas (also mentioned in [140]; see also [START_REF] Fyodorov | Freezing transition in decaying Burgers turbulence[END_REF]f o ra n application). We conjecture that the stationary density for large system is again given by the above Askey-Wimp-Kerov distributions ρ c but for the parameter range c ∈ (-1; 0]. For c = -1, the stationary density ρ -1 is a Dirac mass at 0. Beyond this level, the attraction is too strong and the gas completely collapses on itself.

As a conclusion, we have provided here the first explicit construction of invariant β-ensembles of random matrices, for arbitrary β 2. The stationary distribution for the eigenvectors is the Haar probability measure on the orthogonal group if 0 < β 1, respectively unitary group if 1 <β 2. We have found a natural scaling limit that allows one to interpolate smoothly between the Gaussian distribution, relevant for sums of independent random variables, and the Wigner semi-circle distribution, relevant for sums of free random matrices. The interpolating limit distributions form a one parameter family that can be explicitly computed. The statistics of the largest eigenvalue is also very interesting (and now well known for β>0, see [START_REF] Dumaz | The right tail exponent of the Tracy-Widom-beta distribution[END_REF][START_REF] Borot | Right tail expansion of Tracy-Widom beta laws[END_REF][START_REF] Borot | Large deviations of the maximal eigenvalue of random matrices[END_REF][START_REF] Forrester | Spectral density asymptotics for Gaussian and Laguerre βensembles in the exponentially small region[END_REF]): one should be able to interpolate smoothly, as a function of c, between the well-known Gumbel distribution of extreme value statistics and the Tracy-Widom(β) distributions. Whether this can be mapped into a generalized KPZ/Directed polymer problem remains to be seen.

G. Schehr and P. P. Vivo for useful comments and discussions. A. G. and J.-P. B. thank the organizers of the NYU-Abu-Dhabi conference in January 2011, where this work was initiated (on way to buying dates). A. G. and R. A. acknowledge financial support of ANR GranMa ANR-08-BLAN-0311-01.

Chapter 5 A diffusive matrix model for invariant β-ensembles

Résumé

Cet article est soumis dans le journal Electronic Journal of probability et est écrit en collaboration avec Alice Guionnet. Nous définissons un nouveau modèle de diffusion matricielle qui converge vers le mouvement Brownien de Dyson avec un paramètre β quelconque appartenant à l ' i n t e r v a l l e [ 0 , 2]. En temps long, le modèle limite donne une construction explicite de matrices aléatoires appartenant aux ensembles β qui sont invariantes par conjugaison par des matrices orthogonales ou unitaires. Nous décrivons aussi la dynamique des vecteurs propres du processus matriciel limite; nous montrons que lorsque β<1e tq u e deux valeurs propres collisionnent, les vecteurs propres associés à ces deux valeurs propres fluctuent très fortement et finissent par être distribués uniformément sur le sous-espace supplémentaire orthogonal du sous espace engendré par les vecteurs propres associés aux autres valeurs propres.

Abstract

We define a new diffusive matrix mo del converging towards the β-Dyson Brownian motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of random matrices that is invariant under the orthogonal/unitary group. We also describe the eigenvector dynamics of the limiting matrix process; we show that when β<1andthattwoeigenv alues collide, the eigenvectors of these two colliding eigenvalues fluctuate very fast and take the uniform measure on the orthocomplement of the eigenvectors of the remaining eigenvalues. [START_REF] Lillo | Variety and volatility in financial markets[END_REF] 

Introduction

It is well known that the law of the eigenvalues of the classical Gaussian matrix ensembles are given by a Gibbs measure of a Coulomb gas interaction with inverse temperature β = 1 (resp. 2, resp. 4) in the symmetric (resp. Hermitian, resp. symplectic) cases;

dP β (λ)= 1 Z β i<j |λ i -λ j | β e -1 2 λ 2 i dλ i .
Such measures are associated with symmetric Langevin dynamics, the so-called Dyson Brownian motion, which describe the random motion of the eigenvalues of a symmetric (resp. Hermitian, resp. symplectic) Brownian motion. They are given by the stochastic differential system

dλ i (t)= √ 2db i (t) -λ i (t)dt + β j =i 1 λ i (t) -λ j (t) dt (5.1)
with iid Brownian motions (b i ). These laws and dynamics have been intensively studied, and both local and global behaviours of these eigenvalues have been analyzed precisely, starting from the reference book of Mehta [START_REF] Mehta | Random matrices[END_REF].

More recently, the generalization of these distributions and dynamics to all β ≥ 0, the so-called β-ensembles, was considered. As for β =1, 2, 4, the Langevin dynamics converge to their unique invariant Gibbs measure P β as times goes to infinity. Indeed, the stochastic differential system under study is a set of Brownian motions in interaction according to a strictly convex potential. Thus, one can then show by a standard coupling argument that two solutions driven by the same Brownian motion but with different initial data will soon be very close to each others. This entails the uniqueness of the invariant measure as well as the convergence to this Gibbs measure. It turns out that the case β ∈ [0, 1) and the case β ∈ [1, ∞)a r e quite different, as in the first case the eigenvalues process can cross whereas in the second the repulsion is strong enough so that the eigenvalues do not collide with probability one in finite time. However, the diffusion was shown to be well defined, even for β<1, by Cépa and Lépingle [START_REF] Cépa | Diffusing particles with electrostatic repulsion,P r o bability Theory and Related Fields[END_REF], at list once reordered.

The goal of this article is to provide a natural interpretation of β-ensembles in terms of random matrices for β ∈ [0, 2]. Dumitriu and Edelman [START_REF] Dumitriu | Matrix Models for Beta Ensembles[END_REF]a l r e a d y proposed a tridiagonal matrix with eigenvalues distributed according to the βensembles. However, this tridiagonal matrix lacks the invariant property of the classical ensembles. Our construction has this property and moreover is constructive as it is based on a dynamical scheme. It was proposed by JP Bouchaud, and this article provides rigorous proofs of the results stated in [?]. The idea is to interpolate between the Dyson Brownian motion and the standard Brownian motion by throwing a coin at every infinitesimal time step to decide whether our matrix will evolve according to a Hermitian Brownian motion (with probability p)o rw i l l keep the same eigenvectors but has eigenvalues diffusing according to a Brownian motion. When the size of the infinitesimal time steps goes to zero, we will prove that the dynamics of the eigenvalues of this matrix valued process converges towards the β-Dyson Brownian motion with β =2 p. The same construction with a symmetric Brownian motion leads to the same limit with β = p.T h i sr e s u l ti sm o r ep r e c i s e l y stated in Theorem 5.2.W es h a l ln o tc o n s i d e rt h ee x t e n s i o nt ot h es y m p l e c t i cB r o wnian motion in this paper, but it is clear that the same result holds with β =4 p. Our construction can be extended to other matrix models such as Wishart matrices, Circular and Ginibre Gaussian Ensembles and will lead to similar results.

We thus deduce from our construction that β-ensembles can be interpreted as an interpolation between free convolution (obtained by adding a Hermitian Brownian motion) and standard convolution (arising when the eigenvalues evolve following standard Brownian motions). It is natural to wonder whether a notion of β-convolution could be more generally defined.

Moreover we shall study the eigenvectors of our matrix-valued process. In the case where β ≥ 1, their dynamics is well known and is similar to the dynamics of the eigenvectors of the Hermitian or Symplectic Brownian motions, see e.g. [START_REF] Anderson | An Introduction to Random Matrices[END_REF]. When β<1 the question is to determine what happens at a collision. It turns out that when we approach a collision, the eigenvectors of the non-colliding eigenvalues converge to some orthogonal family B of d -2v e c t o r sw h e r e a st h ee i g e n v e c t o r so f the colliding eigenvalues oscillate very fast and take the uniform distribution on the ortho-complement of B,s e eP r o po s i t i o n5.6.

Statement of the results

Let H β d be the space of d × d symmetric (respectively Hermitian) matrices if β =1 (resp. β =2)andO β d be the space of d×d orthogonal (respectively unitary) matrices if β =1(resp. β =2).

We consider the matrix-valued process defined as follows. Let γ be a positive real number and

M β 0 ∈H β d with distinct eigenvalues λ 1 <λ 2 < ••• <λ d .F o re a c h n ∈ N,w el e t( n k
) k∈N be a sequence of i.i.d {0, 1}-valued Bernoulli variables with mean p in the sense that

P[ n k =1]=p =1-P[ n k =0
]. Furthermore, for t 0, we set n t := n [nt] . In the following, the process (H β (t)) t 0 will denote a symmetric Brownian motion, i.e. a process with values in the set of d × d symmetric matrices (respectively Hermitian if β =2 )w i t he n t r i e sH β ij (t),t 0,i j constructed via independent real valued Brownian motions (B ij , B ij , 

1 i j d)b y H β ij (t)= B ij (t)+i(β -1) B ij (t)i f i<j √ 2 B ii (t)
i ([nt]/n) of the matrix M β n ([nt]/n) if the eigenval- ues are numbered as λ 1 ([nt]/n) <λ 2 ([nt]/n) < ••• <λ d ([nt]/n) (
(t) λ n 2 (t) ••• λ n d (t)) (5.4)
and also those of the matrix O β n (t)d e fi n e da bo v e ,a sn goes to infinity. Let (b i t ) t 0 ,i ∈{ 1,...,d} be a family of independent Brownian motions on R. Recall that Cépa and Lépingle showed in [START_REF] Cépa | Diffusing particles with electrostatic repulsion,P r o bability Theory and Related Fields[END_REF]t h eu n i q u e n e s sa n de x i s t e n c eo ft h e strong solution to the stochastic differential system

dλ i (t)=-γλ i (t)dt + √ 2db i t + βp j =i 1 λ i (t) -λ j (t) dt (5.5) starting from λ(0) = (λ 1 λ 2 ••• λ d )a n ds u c ht h a tf o ra l lt 0 λ 1 (t) ≤ λ 2 (t) ≤•••≤λ d (t) a.s.
(5.6)

For the scaling limit of the ordered eigenvalues, we shall prove that Theorem 5.2. Let M β 0 be a symmetric (resp. Hermitian) matrix if β =1(resp. β =2 ) with distinct eigenvalues λ 1 <λ 2 < ••• <λ d and (M β n (t)) t≥0 be the matrix process defined in Definition 5.1. Let λ n 1 (t) ... λ n d (t) be the ordered eigenvalues of the matrix M β n (t). Let also (λ 1 (t),...,λ d (t)) t 0 be the unique strong solution of (5.5) with initial conditions in t =0given by (λ 1 ,λ 2 ,...,λ d ).

Then, for any T<∞, the process (λ n 1 (t),...,λ n d (t)) t∈[0,T ] converges in law as n goes to infinity towards the process (λ 1 (t),...,λ d (t)) t∈[0,T ] in the space of continuous functions C([0,T], R d ) embedded with the uniform topology.

In the case where βp 1, the eigenvalues almost never collide and we will see (see section 5.6.1) in this case that it is easy to construct a coupling of λ and λ n so that λ n almost surely converges towards λ.

We shall also describ e the scaling limit of the matrix O β n (t)( t h ec o l u m n so f O β n (t)arethee ige n v e c torsofM β n (t)) when n tends to infinity, at least until the first collision time for the eigenvalues, i.e. until the time T 1 defined as T 1 := inf{t 0: ∃i ∈{2,...,d},λ i (t)=λ i-1 (t)}.

Let w β ij (t), 1 i<j d be a family of real or complex (whether β =1o r 2) standard Brownian motions (i.e. 

w β ij (t)=B 1 ij (t)+ √ -1(β -1)B 2 ij (t)w h e r e the B 1 ij ,B
= -(R β ) * )b ys e t t i n gf o r i = j, dR β ij (t)= dw β ij (t) λ i (t) -λ j (t) ,R β ij (0) = 0 .
Then, with λ i (t), 0 t T 1 ,i ∈{ 1,...,d} being the solution of (5.5)u n t i l its first collision time, there exists a unique strong solution (O β (t)) 0 t T 1 to the stochastic differential equation Theorem 5.4 gives a convergence result as n goes to infinity for the eigenvectors of the matrix process (M β n (t)) but only until the first collision time T 1 .I fpβ 1, the result is complete as one can show (see [START_REF] Anderson | An Introduction to Random Matrices[END_REF]a n ds e c t i o n5.6.1)t h a tt h ep r o c e s s (λ 1 (t),...,λ d (t)) is a non colliding process (i.e. almost surely T 1 = ∞). However, if pβ < 1, it would be interesting to have a convergence on all compact sets [0; T ]ev en after collisions occurred. Our next results describe the behavior of the columns of the matrix O β (t)d e n o t e da s( φ 1 (t),...,φ d (t)) when t → T 1 with t<T 1 .

dO β (t)= √ pO β (t)dR β (t) - p 2 O β (t)d(R β ) * ,
We first need to describ e the b ehavior of the eigenvalues (λ 1 (t),...,λ d (t)) in the left vicinity of T 1 .

Proposition 5.5. If pβ < 1 then almost surely T 1 < ∞ and there exists a unique index i * ∈{ 2,...,d} such that λ i * (T 1 )=λ i * -1 (T 1 ). While we have, for all t 0 and almost surely,

t 0 ds (λ i * -λ i * -1 )(s)
< +∞ , the following divergence occurs almost surely

T 1 0 ds (λ i * -λ i * -1 ) 2 (s) =+∞ . (5.8) 
The first part of Proposition 5.5 is proved in subsections 5.3.1 and 5.3.2,thelast statement is proved in 5.7. Hence equality (5.8)i m p l i e st h ee x i s t e n c eo fd i v e r g i n g integrals in the SDE (5.7). Because of this singularity, we will show Proposition 5.6. Conditionally on (λ 1 (t),...,λ d (t)), 0 t T 1 , we have:

1. For all j = i * ,i * -1, the eigenvector φ j (t) for the eigenvalue λ j (t) converges almost surely to a vector denoted φ j as t grows to

T 1 . The family { φ j ,j = i * ,i * -1} is an orthonormal family of R d (respectively C d ) if β =1(resp. β =2
). We denote by V the corresponding generated subspace and by W its two dimensional orthogonal complementary in R d (resp. C d ).

2. The family {φ i * (t),φ i * -1 (t)} converges weakly to the uniform law on the orthonormal basis of W as t grows to T 1 .

The paper is organized as follows. In Section 5.3,w er e v i e wa n de s t a b l i s hs o m e new properties for the limiting eigenvalues process (λ 1 (t),...,λ d (t)) defined in 5.5 that will be useful later in our proof of Theorems 5.2 and 5.4.W ea l s oi n t r o d u c e , in subsection 5.3.4,ap r o c e s sw i t hf e w e rc o l l i s i o n st h a ta p p r o x i m a t e st h el i m i t i n g eigenvalue process. In fact this gives a new construction of the limiting eigenvalues process already constructed in [START_REF] Cépa | Diffusing particles with electrostatic repulsion,P r o bability Theory and Related Fields[END_REF], perhaps simpler and more intuitive using only standard Itô's calculus. We give some useful estimates on the processes of eigenvalues and matrix entries of M β n in Section 5.4.I nS e c t i o n5.5,w epro v ethealmost sure convergence of the process (λ n 1 ,...,λ n d ) to the limiting eigenvalues process (λ 1 ,...,λ d )u n t i lt h efi r s th i t t i n gt i m eo ft w op a r t i c l e sw i t hac o u p l i n ga r g u m e n t . In Section 5.6, we finish the proof of Theorem 5.2 by approximating in the same way the process (λ n 1 ,...,λ n d ) with the same idea of separating the particles which collide by a distance δ>0. At this point, it suffices to apply that the result of Section 5.5 to show that the two approximating processes are close in the large n limit. In Section 5.7, we prove Theorem 5.4,t h el a s ts t a t e m e n to fP r o p o s i t i o n5.5 and Propositions 5.3 and 5.6.

Properties of the limiting eigenvalues process

In this section we shall study the unique strong solution of (5.5)introducedbyCépa and Lépingle in [START_REF] Cépa | Diffusing particles with electrostatic repulsion,P r o bability Theory and Related Fields[END_REF]. We first derive some boundedness and smoothness properties. In view of proving the convergence of λ n towards this process, and in particular to deal with possible collisions, we construct it for pβ < 1a st h el i m i to fap r o c e s s which is defined similarly except when two particles hit, when we separate them by a (small) positive distance, see Definition 5.12.

Regularity properties of the limiting process

Lemma 5.7. Let λ =( λ 1 λ 2 ••• λ d ).
Then there exists a unique strong solution of (5.5). Moreover, it satisfies • For all T<∞, there exists α, M 0 > 0 finite so that for M M 0

P max 1≤i≤d sup 0 t T |λ i (t)| M e -α(M -M 0 ) 2 .
(5.9)

• For all T<∞, all i, j ∈{1,...,d}, i = j,

E T 0 ds |λ i (s) -λ j (s)| < ∞ .
Furthermore, there exists α, M 0 > 0 finite so that for M M 0 and i = j, we have

P T 0 ds |λ i (s) -λ j (s)| M e -α(M -M 0 ) 2 .
Proof. The existence and unicity of the strong solution is [52,P r o po s i t i o n3 . 2 ] . For the first p oint, we cho ose a twice continuously differentiable symmetric function φ,i n c r e a s i n go nR + , which approximates smoothly |x| in the neighborhood of the origin so that φ(0) = 0, xφ (x) ≥ 0, |φ (x)|≤c and |φ (x)|≤c,w h e r e a s |φ(x)|≥|x|×|x|∧1( t a k ee . gφ(x)=x 2 (1 + x 2 ) -1/2 )t oo b t a i nb yI t ô ' sL e m m a

d(φ(λ i (t))) = -γλ i (t)φ (λ i (t))dt + √ 2φ (λ i (t))db i t + pβ j =i φ (λ i (t)) dt λ i (t) -λ j (t) + φ (λ i (t))dt.
For all t, we have λ i (t)φ (λ i (t)) 0, and also

d i=1 j =i φ (λ i (t)) λ i (t) -λ j (t) = 1 2 d i=1 j =i φ (λ i (t)) -φ (λ j (t)) λ i (t) -λ j (t) d(d -1) 2 || φ || ∞ .
We deduce from the ab ove arguments that there exists C>0s u c ht h a t

d i=1 φ(λ i (t)) √ 2 d i=1 t 0 φ (λ i (s))db i s + Ct + d i=1 φ(λ i ) .
By usual martingales inequality, as φ is uniformly bounded we know that, see e.g. [14, Corollary H.13], 

P sup 0≤t≤T | d i=1 t 0 φ (λ i (t))db i (t) |≥ M exp(- M 2 
dt | λ d (t) -λ i (t) | pβ j<d T 0 dt | λ d (t) -λ j (t) | = pβ j<d T 0 dt λ d (t) -λ j (t) = λ d (T ) -λ d (0) - √ 2b d T + γ T 0 λ d (t)dt .
so that the first point gives the claim fo j = d.W et h e nc o n t i n u er e c u r s i v e l y .

Estimates on collisions

To obtain regularity estimates on the pro cess λ, we need to control the probability that more than two particles are close together. We shall prove, building on an idea from Cépa and Lépingle [START_REF] Cépa | No multiple collisions for mutually repelling Brownian particles[END_REF], that Lemma 5.8. For r ≥ 3 and I ⊂{1,...,d} with |I| = r, set

S I t = i,j∈I (λ i (t) -λ j (t)) 2 .
We let, for ε>0, τ r ε := inf{t ≥ 0:min

|I|=r S I t ≤ ε}
Then, for any T>0 and η>0, for any r ≥ 3 there exists ε r > 0 which only depends on {S I 0 , |I|≥3} so that

P τ r εr ≤ T ≤ η.
Proof. The proof is done by induction over r and we start with the case r = d, I = {1,...,d}.T h e n ,S verifies the following SDE (see e.g. [53, Theorem 1]):

dS t = -2γS t dt +4 √ d S t dβ t + adt
where β t is a a standard brownian motion and a =2d(d -1)(2 + pβd). The square root of ρ t := √ S t verifies the SDE

dρ t = -γρ t dt +2 √ ddβ t +( a 2 -2d) dt ρ t .
In particular, one can check that, if

α =2-a 4d =2-(d -1)(1 + pβd/2) dρ α t = -αγρ α t dt +2 √ dαρ α-1 t dβ t .
Thus, as α<0f o rd ≥ 3, for any ε>0, ρ α-1

t∧τ d ε is bounded so that . 0 ρ α-1 s∧τ d ε dβ s is a martingale and therefore E[ρ α T ∧τ d ε ] ≤ ρ α 0 -αγ T 0 E[ρ α t∧τ d ε ]dt By Gronwall's lemma, since sup t E[ρ α t∧τ d ε ]i sfi n i t e ,w ed e d u c et h a t E[ρ α T ∧τ d ε ] ≤ ρ α 0 (1 - 1 αγ )e -αγT + ρ α 0 αγ .
As a consequence, since α<0, we have

ε α/2 P(τ d ε ≤ T ) E[S α/2 T ∧τ d ε ]=E[ρ α T ∧τ d ε ] ρ α 0 (1 - 1 αγ )e -αγT + ρ α 0 αγ .
We can take ε small enough to obtain the claim for r = d.

We next assume that we have proved the claim for u r +1 and choose ε r+1 so that the probability that the hitting time is smaller than T is smaller than η/2. We can choose I to be connected without loss of generality as the λ i are ordered. We let R =min{τ I ε ,τ r+1 ε r+1 } when τ I ε is the first time where S I reaches ε. Again following [START_REF] Cépa | No multiple collisions for mutually repelling Brownian particles[END_REF], we have

log S I T ∧R =l o g S I 0 -2γT +4 √ 2 k,j∈I T ∧R 0 λ j (t) -λ k (t) S I t db j t +2βp j,k∈I l/ ∈I T ∧R 0 λ j (t) -λ k (t) S I t [ 1 λ j (t) -λ l (t) - 1 λ k (t) -λ l (t) ]dt +4r[(r -1)( pβ 2 r +1)-2] T ∧R 0 dt S I t (5.10) Note that M t =4 √ 2 k,j∈I t∧R 0 λ j (s)-λ k (s) S I s db j s is a martingale with bracket A t = 16r t∧R 0 ds S I s .F o rr ≥ 3, 4r[(r -1)(rpβ/2+1)-2] ≥ 2pβ > 0a n dt h e r e f o r ew e deduce E[logS I T ∧R ] log S I 0 -2γT +2βpE T ∧R 0 dt S I t + E 2βp j,k∈I l/ ∈I T ∧R 0 λ j (t) -λ k (t) S I t [ 1 λ j (t) -λ l (t) - 1 λ k (t) -λ l (t) ]dt
For j, k ∈ I, we cut the last integral over times

Ω j,k = {t ≤ T ∧ R : l/ ∈I 1 λ j (t) -λ l (t) 1 λ k (t) -λ l (t) ≤ 1 S I t } so that - j,k∈I Ω j,k (λ j (t) -λ k (t)) 2 S I t l/ ∈I [ 1 (λ j (t) -λ l (t))(λ k (t) -λ l (t)) ]dt ≥- T ∧R 0 dt S I t
This term will therefore be compensated by the third term in (5.10). For the re-

maining term, if l/ ∈ I is such that min i∈I |λ l -λ i |≤min i∈I |λ k -λ i | for all k/ ∈ I then if t ∈ Ω c j,k and i * ∈ I is so that min i∈I |λ l -λ i | = |λ l -λ i * |,w eg e t d -r (λ l (t) -λ i * (t)) 2 ≥ 1 S I t and therefore on τ r+1 ε r+1 ≥ t, ε r+1 ≤ S I t + j∈I (λ j (t) -λ l (t)) 2 ≤ S I t +2r(λ i * (t) -λ l (t)) 2 +2S I t ≤ (3 + 2r(d -r))S I t .
As a consequence, we have the bound for all j, k ∈ I,a l lt

∈ Ω c j,k , t ≤ R, λ j (t) -λ k (t) S I t -1/ S I t - 3+2r(d -r)/ √ ε r+1
which entails the existence of a finite constant c so that

j,k∈I l/ ∈I Ω c j,k λ j (t) -λ k (t) S I t [ 1 λ j (t) -λ l (t) - 1 λ k (t) -λ l (t) ]dt - c √ ε r+1 i∈I l/ ∈I T 0 dt | λ i (t) -λ l (t) | .
Using Lemma 5.7 we hence conclude that there exists a universal finite constant c depending only on T so that

E[log S I T ∧R ] log S I 0 -2γT - c √ ε r+1 . (5.11)
On the other hand, we have

E[log S I T ∧R ] P(τ I ε ≤ T )log(ε)+E[s u p 0≤t≤T log S I t ]
where the last term is bounded above by (5.9). We deduce that

P(τ I ε ≤ T ) ≤ | log S I 0 | | log(ε)| + c √ ε r+1 | log(ε)| + c | log(ε) | + 2γT | log(ε) | .
We finally cho ose ε small enough so that the right hand side is smaller than η/2t o conclude.

We next show that not only collisions of three particles are rare but also two collisions of different particles rarely happen around the same time.

Lemma 5.9. For all i, j such that i +1<j, set

τ ij ε =inf{t 0:(λ i (t) -λ i-1 (t)) 2 +(λ j (t) -λ j-1 (t)) 2 ε }.
Then, for any T>0 and η>0, there exists ε such that

P τ ij ε T η.
Proof. Using Itô's formula, it is easy to see that 2 and note that the quadratic variation of t 0

d (λ i -λ i-1 ) 2 +(λ j -λ j-1 ) 2 =8(1+pβ)dt -2γ (λ i -λ i-1 ) 2 +(λ j -λ j-1 ) 2 dt +2 √ 2 (λ i -λ i-1 )(db i t -db i-1 t )+(λ j -λ j-1 )(db j t -db j-1 t ) -2pβ k =i-1,i (λ i -λ i-1 ) 2 (λ i -λ k )(λ i-1 -λ k ) + k =j-1,j (λ j -λ j-1 ) 2 (λ j -λ k )(λ j-1 -λ k ) dt . Set X t := (λ i (t) -λ i-1 (t)) 2 +(λ j (t) -λ j-1 (t))
(λ i -λ i-1 )(db i s -db i-1 s )+(λ j -λ j-1 )(db j s -db j-1 s ) √ X s is 2t.
Thus there exists a standard Brownian motion B so that

dX t =8(1+pβ)dt -2γX t dt +4 X t dB t -2pβ k =i-1,i (λ i -λ i-1 ) 2 (λ i -λ k )(λ i-1 -λ k ) + k =j-1,j (λ j -λ j-1 ) 2 (λ j -λ k )(λ j-1 -λ k ) dt .
Note that, by the previous Lemma 5.8,w ec a nc h oo s eε such that

P[τ 3 ε <T] η 2 .
(5.12)

Moreover, for all t τ 3 ε such that X t ε/4, we have for all k = i -1,i,

(λ i -λ k )(λ i-1 -λ k )(t) ε 8 .
The same property holds for j. To finish the proof, we will use the fact that the sum in the last term is bounded for all t τ 3 ε such that X t ε/4. We thus need to introduce the process Y t defined by Y t =m i n ( X t , ε 4 ). Let us set f (x): = min(x, ε/4) -pβ . Note that f is a convex function R + → R + and that the left-hand derivative of f is given by

f -(x)=-pβx -pβ-1 1 {x ε 4 } .
Its second derivative in the sense of distributions is the positive measure

f (dx)=pβ ε 4 -pβ-1 δ ε 4 + pβ(pβ +1) x pβ+2 1 {x ε 4 } dx .
Thus, by Itô-Tanaka formula, see e.g. [86,T h e o r e m6 . 2 2 ] ,w eh a v e

Y -pβ t = Y -pβ 0 -pβ t 0 X -pβ-1 s 1 {Xs ε 4 } dX s + 1 2 pβ ε 4 -pβ-1 L ε 4 t (X)+ ε 4 0 pβ(pβ +1) x pβ+2 L x t (X)dx , where L x t (X) is the local time of X in x.B yd e fi n i t i o nw eh a v e ε 4 0 pβ(pβ +1) x pβ+2 L x t (X)dx = t 0 pβ(pβ +1) X pβ+2 s 1 {Xs ε 4 } dX, X s ,
and thus, we obtain

Y -pβ t = Y -pβ 0 + t 0 1 {Xs ε 4 } pβγY -pβ s dt +4Y -pβ-1 2 s dB s (5.13) +2p 2 β 2 t 0 Y -pβ-1 s k =i-1,i ((λ i -λ i-1 )(s)) 2 ((λ i -λ k )(s))((λ i-1 -λ k )(s)) + k =j-1,j ((λ j -λ j-1 )(s)) 2 ((λ j -λ k )(s))((λ j-1 -λ k )(s)) 1 Xs≤ε/4 ds + 1 2 pβ ε 4 -pβ-1 L ε 4 t (X) .
The definition of local time implies that, almost surely, L x t (X) t. We thus deduce from (5.13)t h a t

E Y -pβ T ∧τ ij ε ∧τ 3 ε Y -pβ 0 + 1 2 pβ ε 4 -pβ-1 T + C T 0 E Y -pβ t∧τ ij ε dt . with C =(pβγ +4p 2 β 2 (d -1) 8 ε ). Gronwall's Lemma implies that E Y -pβ T ∧τ ij ε ∧τ 3 ε Y -pβ 0 + 1 2 pβ ε 4 -pβ-1 T exp(CT). (5.14) 
If ε <ε/4, equation (5.14)i m p l i e st h a t (ε )

-pβ P τ ij ε T ∧ τ 3 ε Y -pβ 0 exp(CT), (5.15) 
Taking ε small enough gives the result with (5.12). As a direct consequence, we deduce the uniqueness of the i * of Proposition 5.5.

Lemma 5.10. With the same notations as in the previous Lemma 5.9, we have almost surely inf

(k,):k+1< τ k 0 =+∞.
In particular, this gives the unicity of the i * in Proposition 5.5.

Proof. It is enough to write that for all ε>0

P inf k+1< τ k 0 ≤ T ≤ d 2 { max k+1< P τ k 0 ≤ T ∧ τ 3 ε + P τ 3 ε ≤ T }
and deduce from Lemmas 5.9 and 5.8 that the right hand side is as small as wished when ε goes to zero.

Smoothness properties of the limiting process

Lemma 5.11. We have the following smoothness properties:

• For all T<∞ and ε>0, there exists C, c ,c finite positive constants so that for all δ, η positive real numbers so that η ≤ c (ε 2 ∧ δε) we have

P   max 1≤i≤d sup s≤t≤(s+η)∧τ 3 ε 0 t T |λ i (s) -λ i (t)|≥δ   ≤ C η e -cδ 4 /2η + e -cε 4 /η . (5.16)
• For all T<∞ and ε>0, there exists C, c ,c finite positive constants so that for all δ, η positive real numbers so that η ≤ c (ε 2 ∧ δε) we have

P   max i =j sup s≤t≤(s+η)∧τ 3 ε 0 t T t s du |λ i (u) -λ j (u)| ≥ δ   ≤ C η e -cδ 4 /2η + e -cε 4 /η .
(5.17)

Proof. Let us first fix s ∈ [0,T]a n ds e tI = {i ∈{ 2,...,d} : |λ i (s)λ i-1 (s)| ε/3} and note that on the event {s τ 3 ε },t h ec o n n e c t e ds u b s e t so f I contain at most one element. Let T ε =i n f{t ≥ s :i n f i/ ∈I |λ i (t)λ i-1 (t)| ε/4}. The continuity of the λ i implies that T ε is almost surely strictly positive.

If i ∈ I ∪{I -1},t h e nw eh a v e ,f o rt

∈ [s;(s + η) ∧ τ 3 ε ∧ T ε ] |λ i (t) -λ i (s)| γ t s |λ i (u)|du + √ 2|b i t -b i s | + pβ t s j =i du |λ i (u) -λ j (u)| γ t s |λ i (u)|du + √ 2|b i t -b i s | +4pβ(d -1) t -s ε .
Using (5.9)and[14, Corollary H.13], it is easy to deduce that there exists a constant c>0s u c ht h a tf o rη<ε δ/ (8pβ(d -1))

P max i ∈I∪{I-1} sup t∈[s;(s+η)∧τ 3 ε ∧Tε] |λ i (t) -λ i (s)| δ cde -δ 2 2η . (5.18)
Now, if i ∈ I, with the same argument as for (5.18)( t h ed r i f tt e r mi nt h eS D E satisfied by λ i + λ i-1 is also bounded), we can show that there exists a constant c>0s u c ht h a t

P sup t∈[s;(s+η)∧τ 3 ε ∧Tε] |(λ i + λ i-1 )(t) -(λ i + λ i-1 )(s)| δ ce -c δ 2 2η . (5.19)
On the other hand, the process x i (t):=(λ iλ i-1 )(t)v e r i fi e s

dx 2 i (t)=4(1+pβ)dt -γx 2 i (t)dt +2x i (t)(db i t -db i-1 t ) -2pβ k =j-1,j (λ i (t) -λ i-1 (t)) 2 (λ i (t) -λ k (t))(λ i-1 (t) -λ k (t))
dt .

The denominator in the last term of the above r.h.s is bounded below on the interval 

t ∈ [s;(s + η) ∧ τ 3 ε ∧ T ε ]b y2 pβ(d -2) 1 ε .T h u
|x i (t) -x i (s)| √ δ ≤ P sup t∈[s;(s+η)∧τ 3 ε ∧Tε] |x 2 i (t) -x 2 i (s)| δ ce -c δ 2 2η
(5.20) where the first inequality is due to the fact that x i is non-negative. Using (5. [START_REF] Bai | Spectral Analysis of Large dimensional random matrices[END_REF]) and (5.20)g i v e sf o rη<δε / c

P max i∈I∪{I-1} sup t∈[s;(s+η)∧τ 3 ε ∧Tε] |λ i (t) -λ i (s)| δ 2cde -c δ 4 2η .
Thus, with (5.18), we deduce that for η<δε / c

P max i sup t∈[s;(s+η)∧τ 3 ε ∧Tε] |λ i (t) -λ i (s)| δ 2cde -c δ 4 2η .
In particular, there exists c > 0s ot h a ti fε 2 >cη,

P T ε < (s + η) ∧ τ 3 ε ≤ P max i sup s≤t≤(s+η)∧Tε∧τ 3 ε |λ i (t) -λ i (s)| 5ε/12 ≤ 4cdT η e -c ε 4 /2η ,
which is as small as wished provided η is chosen small enough. This allows to remove the stopping time and get for any fixed s<T,a n dδ>c η/ ε

P max i sup s≤t≤(s+η)∧τ 3 ε |λ i (t) -λ i (s)| δ ≤ 2cde -cδ 4 /2η +2dce -c ε 4 /2η .
The uniform estimate on s is obtained as usual by taking s in a grid with mesh η/2u pt od i v i s eδ by two and to multiply the probability by 2T/η.T h u sw efi n d constant c, c , and C so that if η ≤ c(ε 2 ∧ δε) we have

P   max i sup s≤t≤(s+η)∧τ 3 ε 0≤s,t≤T |λ i (t) -λ i (s)| δ   ≤ CT η e -cδ 4 /2η + e -c ε 4 /η .
The second control is a direct consequence of the first as we can first consider the cas j = d to deduce that for i<d

| t s du λ d (u) -λ i (u) |≤|λ d (t) -λ d (s)| + √ 2|b d (t) -b d (s)|
where the right hand side is continuous. We then consider recursively the other indices.

Approximation by less colliding processes

When pβ 1, it is well known [14,L e m m a4 . 3 . 3 ]t h a tt h ep r o c e s sλ has almost surely no collision. In this case, the singularity of the drift which defines the SDE is not really important as it is almost always avoided. In the case pβ < 1, we know that collisions occur and in fact can occur as much as for a Bessel process with small parameter. The singularity of the drift becomes important, in particular when we will show the convergence in law of the process of the eigenvalues λ n towards λ.T o this end, we show that λ can be approximated by a process which does not spend too much time in collisions.

For δ>0, we define a new process (λ δ i (t)) t 0 as follows.

Definition 5.12. Let T 1 := inf{t 0:∃i = j, λ i (t)=λ j (t)} and for all t<T 1 , set λ δ i (t): =λ i (t). For t>T 1 , we define the process recursively by setting for all 2,λ δ i (T δ ): =λ δ i (T δ -)+iδ and for t>T δ , the process λ δ i (t) is defined up to time T δ +1 := inf{t>T δ : ∃i = j, λ δ i (t)=λ δ j (t)} as the unique strong solution of the system

dλ δ i (t)=-γλ δ i (t)dt + √ 2db i t + pβ j =i dt λ δ i (t) -λ δ j (t)
.

(5.21)

The main result of this section is that Theorem 5.13. Construct the process λ with the same Brownian motion b. Then, for any time T>0, any ξ ∈ (0,pβ/4)

lim δ↓0 P sup 0≤t≤T max 1≤i≤d |λ i (t) -λ δ i (t)|≤δ ξ =1.
The theorem is a direct consequence of the following lemma and proposition.

Lemma 5.14. Let δ>0. Construct the process λ with the same Brownian motion b than λ δ . There exists a constant c>0 such that, almost surely, for all ∈ N max

1 i d sup 0 t T δ |λ δ i (t) -λ i (t)| cδ .
To finish the pro of it is enough to show that T δ goes to infinity for 1/δ. This is the content of the next proposition. Proof of Lemma 5.14. We proceed by induction over to show that, for each ,

sup 0 t T δ d i=1 (λ δ i -λ i ) 2 (t) 1/2 cδ with c =( d i=1 i 2 = d(d +1)(2d +1)/6) 1 2 .
• We treat the case = 1. By definition of the processes, λ δ = λ on [0,T δ 1 ). At time t = T δ 1 ,t h es e p a r a t i o np r oc e d u r ei m p l i e st h a t

d i=1 (λ δ i -λ i ) 2 (T δ 1 )= d i=1 ((λ δ i -λ i )(T δ 1 -)+iδ) 2 = c 2 δ 2 .
The property is true for =1.

• Suppose it is true for .F o rt ∈ [T δ ,T δ +1
), since λ δ and λ are driven by the same Brownian motion, we get

d d i=1 (λ δ i (t) -λ i (t)) 2 = -2γ d i=1 (λ δ i (t) -λ i (t)) 2 dt +2pβ d i=1 j =i (λ δ i (t) -λ i (t)) 1 λ δ i (t) -λ δ j (t) - 1 λ i (t) -λ j (t) dt .
Observe that

d i=1 j =i (λ δ i (t) -λ i (t)) 1 λ δ i (t) -λ δ j (t) - 1 λ i (t) -λ j (t) (5.22) = 1 2 d i=1 j =i (λ δ i (t) -λ δ j (t) -(λ i (t) -λ j (t))) 1 λ δ i (t) -λ δ j (t) - 1 λ i (t) -λ j (t) = 1 2 d i=1 j =i λ δ i (t) -λ δ j (t) -(λ i (t) -λ j (t)) 2 1 (λ δ i (t) -λ δ j (t))(λ i (t) -λ j (t)) 0
as the (λ i ) 1≤i≤d and the (λ δ i ) 1≤i≤d are ordered. Thus,

sup t∈[T δ ,T δ +1 ) d i=1 (λ δ i (t) -λ i (t)) 2 d i=1 (λ δ i (T δ ) -λ i (T δ )) 2 .
(5.23)

In addition, because of the separation procedure at time T δ +1 , we have d i=1

(λ δ i -λ i ) 2 (T δ +1 ) 1/2 = d i=1 (λ δ i -λ i )(T δ +1 -)+iδ 2 1/2 d i=1 (λ δ i -λ i ) 2 (T δ +1 -) 1/2 + δc δ( +1)c,
where we used the induction hypothesis in the last line. The proof is thus complete.

Proof of Proposition 5.15. In the case pβ ≥ 1, it is well known [14,p . 2 5 2 ] that T 1 is almost surely infinite and therefore the proposition is trivial. We hence restrict ourselves to pβ ≤ 1. Let η>0. Let us define the stopping times

τ 3,δ ε := inf{t 0:min |I|=3 S I,δ t ε} , τ 2,δ ε := inf{t 0: min 1 i,j d ((λ δ i -λ δ i-1 ) 2 +(λ δ j -λ δ j-1 ) 2 )(t) ε},
where S I,δ t

:= i,j∈I (λ δ i -λ δ j ) 2 (t). Set also τ δ ε := τ 2,δ ε ∧ τ 3,δ ε .
We know from Lemmas 5.8 and 5.9 that we can choose ε small enough so that

P τ 3 2ε ∧ τ 2 2ε T η.
The number ε being fixed, it is then straightforward to see from Lemma 5.14 that there exists δ 0 small enough so that for all δ δ 0 , we have

P τ δ ε T η.
Now, we have

P T δ L T η + P δ ξ L =1 1 {T δ +1 -T δ δ ξ } T ; τ δ ε T δ L .
We need to show that the second term go es to 0 when δ → 0. Let {F t } t≥0 be the filtration of the driving Brownian motion. We will prove in Lemma 5.18,thereexists ac o n s t a n tc>0s u c ht h a t ,o nt h ee v e n t{τ δ ε T δ L },a l m o s ts u r e l y

L =1 P T δ +1 -T δ δ ξ |F T δ cδ -pβ+ξ .
In the following, we suppose that δ is small enough so that cδ -pβ+ξ δ -pβ+2ξ and δ -ξ Tδ -pβ+ξδ -pβ+2ξ . For such δ,w eh a v e

P L =1 1 {T δ +1 -T δ δ ξ } δ -ξ T ; τ δ ε T δ L P L =1 1 {T δ +1 -T δ δ ξ } -P T δ +1 -T δ δ ξ |F T δ -δ -pβ+2ξ ; τ δ ε T δ L P L =1 1 {T δ +1 -T δ δ ξ } -P T δ +1 -T δ δ ξ |F T δ δ -pβ+2ξ ; τ δ ε T δ L δ 2pβ-4ξ L =1 P T δ +1 -T δ δ ξ ; τ δ ε T δ L
where we used the Tchebychev inequality in the last line. Using Lemma 5.16,w e get that there exists a constant C>0s u c ht h a t

P L =1 1 {T δ +1 -T δ δ ξ } δ -ξ T ; τ δ ε T δ L Cδ 2pβ-4ξ Lδ (1-pβ)(1-2 -1 ξ) Cδ pβ-4ξ
which goes to 0 when δ goes to 0. The proposition is proved.

Lemma 5.16. Let ξ ∈ (0; 2). Then there exists a constant C>0 such that, almost surely, on ;

τ δ ε T δ L P δ ξ T δ +1 -T δ |F T δ Cδ (1-pβ)(1-2 -1 ξ) .
(5.24)

Proof. We know that there are no multiple collisions nor simultaneous collisions (because of Lemmas 5.8 and 5.9)andthereforewecandenotebyi the unique element such that

λ δ i (T δ -)=λ δ i-1 (T δ -)a n d( λ δ i -λ δ i-1 )(T δ
)=δ. We have by Itô's formula

d(λ δ i -λ δ i-1 )(t)=-γ(λ δ i -λ δ i-1 )(t)dt + √ 2(db i t -db i-1 t )( 5 . 2 5 ) +2pβ dt (λ δ i -λ δ i-1 )(t) -βp k =i,i-1 (λ δ i -λ δ i-1 )(t) (λ δ i -λ δ k )(t)(λ δ i-1 -λ δ k )(t)
dt .

Let us define the Bessel like process (X t ) t 0 by X 0 = δ and for t 0, 

dX t = √ 2(db i T δ +t -db i-1 T δ +t )+2pβ dt X t . ( 5 
δ i -λ δ i-1 )(T δ + t) X t . (5.27) Let us define T δ X := inf{t 0:X t =0}. It is clear that almost surely T δ +1 -T δ T δ X . We thus have on τ δ ε T δ L P δ ξ T δ +1 -T δ |F T δ P T δ X δ ξ .
We finally conclude using a classical result for Bessel pro cess, see e.g. [?, ( 1 3 ) ] ; the density with respect to the Lebesgue measure on R + of the law of the random variable T δ X is

p δ (t)= 1 Γ( 1-pβ 2 ) 1 t δ 2 2t 1-pβ 2 e -δ 2 2t .
Hence we deduce that for ξ ≤ 2t h e r ee x i s t sac o n s t a n tc>0s u c ht h a t

P T δ X δ ξ cδ (1-pβ)(1-2 -1 ξ) .
For time t ∈ [0; T ], we define the random set

I t := {i ∈{2,...,d} : |λ δ i -λ δ i-1 |(t) √ ε/3}. (5.28) 
Note that, on the event Ω := {τ δ ε T },f o re a c ht T ,t h es e tI t contains at most one element. For each ∈{ 1,...,L},a n di ∈{ 1,...,d},w ed e fi n et h es t o p p i n g times

t δ ( √ ε/3) := inf{t T δ :min j |λ δ j -λ δ j-1 |(t) √ ε/3} , tδ (i, √ ε/6) := inf{t T δ :min j =i |λ δ j -λ δ j-1 |(t) √ ε/6} . If i denotes the unique index such that λ δ i (T δ -)=λ i-1 (T δ -), note that if T δ τ δ ε then min j =i |λ δ j -λ δ j-1 |(T δ ) √ ε/3. Lemma 5.17. If T δ τ δ ε and if i denotes the (unique) index such that λ δ i (T δ -)= λ δ i-1 (T δ -)
, then there exists a constant c>0 and δ 0 > 0 such that for all δ δ 0 , we have

cδ 1-pβ P t δ ( √ ε/3) ∧ tδ (i, √ ε/6) T δ +1 |F T δ . (5.29)
Proof. Note that i is the unique element of the set I T δ defined by (5.28

)f o r which |λ δ i -λ δ i-1 |(T δ )=δ.F o rα =1-pβ and t ∈ [T δ ; T δ +1 ), we have by Itô's formula d(λ δ i -λ δ i-1 ) α (t)=-γα(λ δ i -λ δ i-1 ) α (t)dt (5.30) + α(λ δ i -λ δ i-1 ) α-1 (t) √ 2(db i t -db i-1 t ) -βp k =i,i-1 (λ δ i -λ δ i-1 ) α (t) (λ δ i -λ δ k )(t)(λ δ i-1 -λ δ k )(t) dt . For t ∈ [T δ ,τ δ ε ], we deduce that d(λ δ i -λ δ i-1 ) α (t) ≥ α(λ δ i -λ δ i-1 ) α-1 (t) √ 2(db i t -db i-1 t ) -c (λ δ i -λ δ i-1 ) α (t)dt where c = αγ + βp(d -2)36/ε.L e tT δ,κ
+1 be the first time after T δ so that

λ δ i -λ δ-1 i reaches κ<δ.T h e n ,a s .∧T δ,κ +1 0 (λ δ i -λ δ i-1 ) α-1 (t) √ 2(db i t -db i-1 t
)i sam a r t i n g a l e ,w e find that

E (λ δ i -λ δ i-1 ) α (t δ ( √ ε/3) ∧ tδ (i, √ ε/6) ∧ T δ,κ +1 ) |F T δ,κ δ α exp (-c T ) . (5.31) Before time tδ (i, √ ε/6), (λ δ j -λ δ j-1 )(t) can not cancel if j = i.
T h e r e f o r ew ec a n choose κ small enough so that the last inequality implies

E (λ δ i -λ δ i-1 ) α (t δ ( √ ε/3) ∧ tδ (i, √ ε/6)) 1 {t δ ( √ ε/3)∧ tδ (i, √ ε/6) T δ +1 } |F T δ 1 2 δ α exp (-c T ) .
which can be rewriten using the fact that

|λ δ i -λ δ i-1 |(t δ ( √ ε/3)∧ tδ (i, √ ε/6)) √ ε/3, as follows P t δ ( √ ε/3) ∧ tδ (i, √ ε/6) T δ +1 |F T δ δ α 3 √ ε α exp(-c T ) .
The lemma follows with c =( 3 √ ε ) α exp(-c T ).

Lemma 5.18. Let ξ, T > 0. There exists a constant c>0 and δ 0 > 0 so that if

δ ≤ δ 0 , on T δ τ δ ε ∧ T , P δ ξ T δ +1 -T δ |F T δ cδ 1-pβ .
(5.32)

Proof.We assume in the sequel that δ ≤ 1. The proof is based on Lemma 5.17. It implies

P δ ξ T δ +1 -T δ |F T δ P t δ ( √ ε/3) ∧ tδ (i, √ ε/6) T δ +1 ; δ ξ T δ +1 -T δ ≤ 1 |F T δ .
By Lemma 5.17,w ed e d u c et h a t

P δ ξ T δ +1 -T δ ≤ 1 |F T δ cδ 1-pβ -P t δ ( √ ε/3) ∧ tδ (i, √ ε/6) T δ +1 T +1;δ ξ T δ +1 -T δ |F T δ . But P t δ ( √ ε/3) ∧ tδ (i, √ ε/6) T δ +1 ≤ T +1;T δ +1 -T δ δ ξ |F T δ P t δ ( √ ε/3) ∧ T +1;T δ +1 -t δ ( √ ε/3) δ ξ |F T δ + P tδ (i, √ ε/6) t δ ( √ ε/3); tδ (i, √ ε/6) -T δ δ ξ |F T δ .
Let us handle the first term of the previous right hand side

P t δ ( √ ε/3) T δ +1 ∧ (T +1);T δ +1 -t δ ( √ ε/3) δ ξ |F t δ ( √ ε/3) P max j sup t δ ( √ ε/3) s (t δ ( √ ε/3)+δ ξ )∧t δ ( √ ε/12)∧(T +1) |λ δ j (s) -λ δ j (t δ ( √ ε/3))| √ ε 24 |F t δ ( √ ε/3) C exp(- cε 2 δ ξ )
where we used Lemma 5.11 for the last line (actually the proof since we used the estimate for a fixed s). For the second term, the idea is similar

P tδ (i, √ ε/6) t δ ( √ ε/3); tδ (i, √ ε/6) -T δ δ ξ |F T δ P max j =i sup T δ s (T δ +δ ξ )∧ tδ (i, √ ε/6)∧(T +1) |λ δ j (s) -λ δ j (T δ )| √ ε 12 |F T δ C exp(- cε 2 δ ξ ) ,
by Lemma 5.11. As for all ξ>0, exp(-c δ ξ/4 ) δ 1-pβ for small enough δ,t h ep r o o f is complete.

Properties of the eigenvalues of M β n

In this section, we will study the regularity and boundedness properties of the eigenvalues of M β n .

Definition 5.19. Let M β 0 be a symmetric (resp. Hermitian) matrix if β =1(resp. β =2 ) with distinct eigenvalues λ 1 <λ 2 < ••• <λ d and (M β n (t)) t 0 be the matrix process defined in Definition 5.1. For all t 0, the ordered eigenvalues of the matrix M β n (t) will be denoted by

λ n 1 (t) λ n 2 (t) ... λ n d (t).
The following proposition characterizes the evolution of the process λ n (t)u n t i l its first collision time.

Proposition 5.20. Let (λ n 1 (t),...,λ n d (t)) be the process defined in Definition 5.19 and set T n (1) := inf{t 0:∃i = j, λ n i (t)=λ n j (t)}. Then, almost surely, the process (λ n 1 (t),...,λ n d (t)) verifies for every k ∈ N, the following strict inequality

λ n 1 (k/n) <λ n 2 (k/n) < ••• <λ n d (k/n) .
(5.33)

In addition, there exist a sequence of Bernoulli random variables ( n k ) k∈N with mean p and a sequence of independent (standard) Brownian motions (b i t ) t 0 ,i∈{1,...,d} also independent of the Bernoulli random variables ( n k ) k∈N such that, the process (λ n 1 (t),...,λ n d (t)) t 0 is the re-ordering of the process (µ n 1 (t),...,µ n d (t)) t 0 defined for t 0 by

dµ n i (t)=-γµ n i (t) dt + √ 2db i t + β j =i n t µ n i (t) -µ n j (t)
dt .

(5.34)

with initial conditions in t =0given by (µ n 1 (0),...,µ n d (0)) = (λ 1 ,...,λ d ). In particular, up to time T n (1), the process λ n verifies

dλ n i (t)=-γλ n i (t) dt + √ 2db i t + β j =i n t λ n i (t) -λ n j (t)
dt .

Remark here that we use the property that n t =( n t ) 2 . Proof. Let us show first that for each k ∈ N such that k/n < T n (1), we have almost surely the strict inequality (5.33). We will proceed by induction over k. Note that under our assumptions, it is true for k =0 . S u p p o s ei ti st r u ea tr a n kk and let us show it is then true at rank k +1. F rom Definition 5.1,i ft h ee i g e n v a l u e so f 

M β n (k/n)a r ed e n o t e da sλ n 1 (k/n) < ••• <λ n d (k/n),
dλ n i (t)=-γλ n i (t) dt + √ 2dW i t + β j =i dt λ n i (t) -λ n j (t)
.

where the (W i t ) t 0 ,i ∈{ 1,...,d} are independent Brownian motions. In particular, this process is non-colliding in the sense that the λ n i (t)w i l la l m o s t surely remain strictly ordered for all t ∈ [k/n;(k +1)/n)( s e e[ 14,T h e o r e m 4.3.2]). Thus, we will almost surely have

λ n 1 ((k +1)/n) < ••• <λ n d ((k +1)/n).
• on the other hand, if n k =0,w eneedtodefineanewprocess(µ n 1 (t),...,µ n d (t)) of independent Ornstein-Uhlenbeck processes with initial conditions (λ n 1 (k/n),...,λ n d (k/n)); More precisely, the evolution for t ∈ [k/n;(k +1)/n]i sg i v e nb y

dµ n i (t)=-γµ n i (t)dt + √ 2dB i t (5.35)
where the Brownian motions B i are the ones of Definition 5.1. Note that, before time T n (1), the two processes λ n and µ n coincide. In this case, the µ n i (t)cancrossandtheorderingcanbebrok eninthein terv al[k/n;(k +1)/n]. However, if crossing for the process µ n happen before time t =(k +1)/n still we know that e γ(k+1)/n µ n i ((k+1)/n)arealmostsurelydistinct. There-ordering of the µ n i thus always gives

λ n 1 ((k +1)/n) < ••• <λ n d ((k +1)/n) a.s.
The induction is complete and proves equality (5.33)forallk ∈ N.W ed e d u c ef r o m the above arguments that for k such that k/n < T n (1), the evolution of

λ n (t)f o r t ∈ [k/n;(k +1)/n ∧ T n (1)) is dλ n i (t)=-γλ n i (t) dt + √ 2( n t dW i t +(1-n t )dB i t )+β j =i n t λ n i (t) -λ n j (t)
dt .

with initial conditions in t = k/n given by (λ 

(W i t -W i s )+(1-n k )(B i t -B i s )
and n k are independent. Therefore, we deduce that the brownian motions (b i t ) t 0 ,i ∈{ 1,...,d} are independent of the sequence ( n k ) k∈N . The following regularity properties will be useful later on.

Lemma 5.21. Let T<∞. Then there exist constants C, A 0 ,c,c ,α > 0 which depend only on T,d such that for all n ∈ N, all A A 0 and all ε>0 P max

1 i,j d sup 0 t T |M β n (t) ij | >A C exp(-αA 2 ) , (5.36) 
P   max 1 i,j d sup 0 s,t T, |t-s| δ |M β n (t) ij -M β n (s) ij | >ε   c δ exp(- ε 2 c δ ) .
(5.37)

Proof. Using Itô's formula, we can check that

e γt M β n (t) -e γs M β n (s)= t s e γs n s dH β s +(1-n s ) √ 2 d i=1 χ n i ( [ns] n )dB i s .
Let us set ∆ n (s, t):=e γt M β n (t)e γs M β n (s). The entries of ∆ n (s, .) are martingales with respect to the filtration of the Brownian motions conditionally to the Bernoulli random variables ( n k ) k∈N (this is due to the independence between the Brownian motions (B i t ) t 0 , (H β t (ij)) t 0 , 1 i, j d and the sequence of Bernoulli random variables ( 
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Let A>0, using [14, corollary H.13], we have

P max 1 i,j d sup 0 t T |(e γt M β n (t)) ij | >A d 2 max 1≤i,j≤d P sup 0 t T |(e γt M β n (t) -M β 0 ) ij | >A-max i,j |M β 0 (i, j)| = d 2 max 1 i,j d P sup 0 t T |∆ n (0,t) ij | >A-max i,j |M β 0 (i, j)| d 2 exp - (A -max i,j |M β 0 (i, j)|) 2 C(d, T )T .
(5.38)

Similarly, for any given s ∈ [0,T], for ε>0, using [14, Corollary H.13], we have, for each entry ij and for every δ>0:

P max 1 i,j d sup t∈[s-δ,s+δ] |(e γt M β n (t) -e γs M β n (s)) ij | >ε d 2 exp - ε 2 2Cδ .
and therefore there exists a positive constant c so that

P   max 1 i,j d sup 0 s,t T, |t-s| δ |(e γt M β n (t) -e γs M β n (s)) ij | >ε   [2T/δ]+1 i=1 P max 1≤i,j≤d sup |t-iδ 2 | δ/2 |(e γt M β n (t) -e γiδ/2 M β n (iδ/2)) ij | >ε/2 d 2 2T δ exp - ε 2 c δ .
Lemma 5.22. Let T<∞. Then there exist constants C ,A 0 ,c ,c ,α, 0 > 0 which depend only on T,d such that for all n ∈ N, all A A 0 and all ε>0 P max

1 i d sup 0 t T |λ n i (t)| >A C exp(-αA 2 ) , (5.39) 
P   max 1 i d sup 0 s,t T, |t-s| δ |λ n i (t) -λ n i (s)| >ε   c δ exp(- ε 2 c δ ) . (5.40)
Proof. This lemma is a consequence of Lemma 5.21 and the inequalities max

1≤k≤d |λ n k (t) -λ n k (s)| d i=1 |λ n i (t) -λ n i (s)| 2 1 2 = d i,j=1 |M β n (t) ij -M β n (s) ij | 2 1/2
(5.41)

d max 1≤i,j≤d |M β n (t) ij -M β n (s) ij |
where, for the second inequality, we used [14, lemma 2.1.19] and the fact that the λ n i are ordered.

Convergence till the first hitting time

Proposition 5.23. Take λ(0) = (λ

1 <λ 2 < ••• <λ d ).
Construct µ n , strong solution of (5.34), with the same Brownian motion than λ, strong solution of (5.5), both starting from λ(0). λ n equals µ n till T n (1). For all T>0, we have the following almost sure convergence

lim n→∞ max 1 i d sup t T ∧Tn(1)∧τ 3 ε |λ n i (t) -λ i (t)| =0.
As a consequence, if we let T 1 =i n f{t>0, ∃i = j, λ i (t)=λ j (t)}, we have almost surely T 1 lim inf T n (1) .

We p oint out that this convergence do es not happ en on a trivial interval since we have Remark. For any η>0, there exists τ (η) > 0s ot h a t

lim n→∞ P [T n (1) τ (η)] 1 -η.
Proof of Remark 5.5. By the same arguments developed in (5.41), we find that

P sup t T max 1 i d |λ n i (t)e γt -λ i (0)| P sup t T |tr((M n (t)e γt -M 0 ) 2 )| 2 d 2 exp(- 2 2C(d, T )T
) .

But since also the λ n i are uniformly bounded with high probability, we can choose for any η>0t h ep a r a m e t e rT small enough so that P max

1 i d sup t T |λ n i (t) -λ i (0)|≥ min 1 i d |λ i -λ i+1 |/3 η
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This implies that P (T n (1) ≤ T ) ≤ η.

Proof of Proposition 5.23 Using Itô's formula, we can compute

d i=1 (λ n i (t) -λ i (t)) 2 = -2γ t 0 d i=1 (λ n i (s) -λ i (s)) 2 ds (5.42) +2β t 0 n s d i=1 j =i (λ n i (s) -λ i (s)) 1 λ n i (s) -λ n j (s) - 1 λ i (s) -λ j (s) ds +2β t 0 ( n s -p) d i=1 j =i λ n i (s) -λ i (s) λ i (s) -λ j (s) ds .
By the same argument as in (5.22)t h es e c o n dt e r mi nt h er i g h th a n ds i d ei sn o n positive. Thus using equations 5.42,w efi n df o rt T n (1)

d i=1 (λ n i (t) -λ i (t)) 2 2β t 0 ( n s -p) d i=1 j =i λ n i (s) -λ i (s) λ i (s) -λ j (s) ds := R n (t) .
We next prove that lim 

n→∞ sup 0 t T ∧τ 3 ε R n (t)=0 a.s. ( 5 
λ n i ([ns]/n) -λ i (s) λ i (s) -λ j (s) ds , Q n (t):= t 0 ( n s -p) d i=1 j =i λ n i (s) -λ n i ([ns]/n) λ i (s) -λ j (s)
ds .

We first handle the convergence of

Q n (t). Set Ω 1 = {sup |s-t|≤1/n t≤T max 1≤i≤d |λ n i (t) - λ n i (s)| n -1/2+ }. On the event Ω 1 ,w eh a v e |Q n (t)|≤n -1/2+ d i=1 j =i t 0 ds | λ i (s) -λ j (s) | .
Following (5.41), we know that

P (Ω c 1 ) ≤ ce -cn 2 .
We thus deduce from Lemma 5.7 that

P sup t T |Q n (t)| >δ P d i=1 j =i T 0 ds | λ i (s) -λ j (s) | >δn 1/2- + P [Ω c 1 ] ce -cδ 2 n 1-2 + ce -cn 2 .
Hence, Borel Cantelli's Lemma insures the almost sure convergence of Q n to zero. We now turn to the convergence of P n (t). Let η>0s m a l la n dw r i t e

P n (t)=- d(d -1) 2 t 0 ( n s -p)ds + P n (t) with P n (t)= t 0 ( n s -p) d i=1 j<i λ n i ([ns]/n) -λ n j ([ns]/n) λ i (s) -λ j (s)
ds .

The process t 0 ( n sp)ds is a martingale and by Azuma-Hoeffding inequality, for any δ>0

P max t≤T | t 0 ( n s -p)ds|≥δ ≤ 2exp(- δ 2 n 2 )
.

We now use the independence between the brownian motions (b i t ) 0 t T ,i =1,...,d and the Bernoulli random variables n k ,k =1,..., [nT ]. Conditionally on the (b i t ) 0 t T ,i = 1,...,d,t h ep r o c e s s e sλ i (t),i =1 ,...,d are deterministic and the process P n is a martingale with respect to the filtration of the n k .W el e t

A n k = d i=1 j<i k+1/n k/n λ n i ([ns]/n) -λ n j ([ns]/n) λ i (s) -λ j (s)
ds.

By Lemma 5.11 and Lemma 5.22,t h es e t Ω={ sup k≤nT ∧τ 3

|A n k |≤n -1/8 } has probability larger than 1e -cn 1/16 .M o r e o v e r ,b ym a r t i n g a l ep r o p e r t yi ti se a s y to see that for all λ ≥ 0,

E[1 Ω e λ Pn(k/n)-1 2 λ 2 k-1 =0 (A n k/n ) 2 ] ≤ 1 . Taking λ = n 1/16 ,sinceonΩ,-n 1/16 |A n k | + n 1/8 |A n k | 2 /2 ≤ 0, Tchebychev's inequality yields P   {| P n (k/n ∧ τ 3 ε )|≥n -1/16 ( [Tn] =0 |A n k | + t)}∩Ω   ≤ e -t
As by Lemma 5.7,

[Tn] =0 |A n k | is bounded by n 1/32 with probability greater than 1 -e -n 1/16 we conclude that 

P | P n (k/n ∧ τ 3 ε )|≥n -1/32 ≤ Ce -n 1/32

Colliding case pβ < 1

We now define the pro cess (λ n,δ i (t)) t 0 which will depend on the sequence (T δ ) ∈N defined in Definition 5.12.T ou n i f yn o t a t i o n s ,s e tT δ 1 := T 1 and T δ n (1) := T n (1). Definition 5.24. For t<T δ 1 , set λ n,δ i (t): =λ n i (t). For time t>T δ 1 , we define the process recursively by setting for each 1, λ n,δ i (T δ )=λ n,δ i (T δ -)+iδ for all i ∈{1,...,d} and for t>T δ , the process λ n,δ i is defined up to time T δ +1 by ordering the process (µ n,δ 1 (t),...,µ n,δ d (t)) T δ t T δ +1 which is defined for t T δ as

dµ n,δ i (t)=-γµ n,δ i (t) dt + √ 2db i t + β j =i n t µ n,δ i (t) -µ n,δ j (t)
dt .

(5.44)

with initial conditions in t = T δ given by (λ n,δ 1 (T δ ),...,λ n,δ d (T δ )). Lemma 5.25. Let T<∞ and δ>0. We have the following convergence in probability, for all ∈ N,

lim n→∞ max 1 i d sup 0 t T δ ∧T |λ δ i (t) -λ n,δ i (t)| =0.
In particular, for every , if T δ n is the first collision time for λ n,δ after T δ -1 ,

T δ ∧ T lim inf T δ n () ∧ T a.s.
Proof Again, we prove this Lemma by induction over .

• We b egin with the case =1. Proposition5.23 yields that the random variable max 

λ δ i = λ i and λ n,δ i = λ n i ,i fT δ n (1) <T δ 1 ∧ T , max 1 i d sup T δ n (1) t<T δ 1 ∧T |λ δ i (t) -λ n,δ i (t)| (5.45) max 1 i d sup T δ n (1) t<T δ 1 ∧T {|λ n i (t) -λ n i (T δ n (1))| + |λ i (t) -λ i (T δ n (1))|} (5.46) + |λ n i (T δ n (1)) -λ i (T δ n (1)
)| goes to zero in probability, when n goes to infinity.

• Suppose the property is true for and let us show that it is then true for +1. By the same argument as in the proof of Proposition 5.23,w ec a ns h o wt h a t ,f o ra l l t ∈ [T δ

; T δ n ( +1)∧ T δ +1 ], we have

d i=1 λ n,δ i -λ δ i 2 (t) d i=1 λ n,δ i -λ δ i 2 (T δ )( 5 . 4 7 ) +2β t T δ ( n s -p) d i=1 j =i λ n,δ i (s) -λ δ i (s) λ δ i (s) -λ δ j (s)
ds.

The same proof as in Proposition 5.23 shows that, if

τ 3,
is the stopping time τ 3 for the process λ δ (t),t ≥ T δ , lim

n→∞ sup t∈[T δ ;T δ n (+1)∧T δ +1 ∧τ 3, ] t T δ ( n s -p) d i=1 j =i λ n,δ i (s) -λ δ i (s) λ δ i (s) -λ δ j (s)
ds =0 a.s. (5.48)

Thus, because of (5.47), the following convergence in holds lim

n→∞ max i sup t∈[T δ ;T δ n (+1)∧T δ +1 ∧τ 3 ] |λ n,δ i (t) -λ δ i (t)| =0 a.s . (5.49) 
Because of (5.49), we have

T δ +1 ∧τ 3 lim inf n→∞ T δ n (+1)∧τ 3 .S i n c et h ep r o b a b i l i t y that τ 3
is larger than T goes to one as vanishes, we can show as in (5.45)( n o t e that Lemma 5.22,L e m m a5.11 and Proposition 5.23 extend to {λ n,δ t ,λ δ t ,t ≥ T δ }) that in probability, lim n→∞ max

1 i d sup T δ n (+1) t T δ +1 |λ δ i (t) -λ n,δ i (t)| =0.
The property at rank +1 is established. The Lemma is proved.

Lemma 5.26. There exists a constant c>0 such that for all L ∈ N, we have the following almost sure estimate max

1 j d sup 0 t T δ L |λ n,δ j (t) -λ n j (t)| δL √ c.
Proof. Note that the estimate is striaghtforward on [0,T δ 1 ]. We then proceed by induction on the time intervals [T δ ,T δ +1 ]asintheproofofLemma5.14 until the first collision time

t 1 := inf{t T δ : ∃i, λ n i (t)=λ n i-1 (t)orλ n,δ i (t)=λ n,δ i-1 (t)} .
We next claim that, at a given time, almost surely the eigenvalues λ n are different. Indeed, this is clear if the eigenvalues follows Brownian motion and even more when they follow Dyson Brownian motion. Moreover the probability that more than two eigenvalues collide at some time vanishes. Indeed, this can only happen if the eigenvalues follow the Brownian motion. But the probability that 3 Brownian motions collide vanishes and hence the result.

Hence, there are almost surely at most two eigenvalues which can collide. Hence, let i(t 1 )betheuniquein tegerin{1,...,d} such that λ n i (t 1 )=λ n i-1 (t 1 )(re spe c tiv e ly λ n,δ i (t 1 )=λ 

dµ n,δ i (t)=-γµ n,δ i (t)dt + √ 2db i t dµ n i (t)=-γµ n i (t)dt + √ 2db i t
with initial conditions at t = t 1 respectively given by µ n,δ (t 1 )=λ n,δ (t 1 )andµ n (t 1 )= λ n (t 1 ). We know that the λ n,δ i ,r e s p e c t i v e l yt h eλ n i ,a r ej u s tar e -o r d e r i n go ft h e processes µ n,δ i and µ n i By definition, for t ∈ [t 1 ; τ 1 ], we find that : (µ n,δ jµ n j )(t)=e -γ(t-t 1 ) (µ n,δ jµ n j )(t 1 ) . As a consequence, we deduce that

d j=1 (µ n,δ j -µ n j ) 2 (t) d j=1 (λ n,δ j -λ n j ) 2 (t 1 ) .
Moreover, as the λ's are ordered but the set of the values of the λ's and the µ's are the same, using for instance [14,l e m m a 2 . 1 . 1 9 ] , w e h a v e t h a t

d j=1 (λ n,δ j -λ n j ) 2 (t) d j=1 (µ n,δ j -µ n j ) 2 (t) .
Gathering the above inequalities, we have shown that

sup t∈[0,τ 1 ] d j=1 (λ n,δ j -λ n j ) 2 (t) d j=1 (λ n,δ j -λ n j ) 2 (T δ ) .
We can continue inductively until we reach the time T δ +1 to finish the proof.

Asymptotic properties of the eigenvectors

Recall that w β ij ,i < j are real (respectively complex) standard Brownian motions if β =1( r e s p . β = 2) with quadratic variation βt and that we also set for i<j, w β ji := wβ ij . In addition we also defined the skew Hermitian matrix R β = -(R β ) * by setting for i<j,

dR β ij (t)= dw β ij (t) λ n i (t) -λ n j (t) ,R β ij (0) = 0 .
Proof of Proposition 5.3

It is classical to check that the unique strong solution of the stochastic differential equation 

dO β n (t)= n t O β n (t)dR β (t) - n t 2 O β n (t)d(R β ) * ,R β t , (5.50 
O β n (t)∆ β n (t)O β n (t) * law = M β n (t) .
The law of the continuous process O β n is uniquely determined as the unique strong solution of (5.50).

One can thus define the eigenvectors of M β n (t), denoted as φ n i (t), so that they satisfy the stochastic differential system

dφ n i (t)= n t j =i dw β ij (t) λ n i (t) -λ n j (t) φ n j (t) - n t 2 j =i β (λ n i (t) -λ n j (t)) 2 dtφ n i (t)( 5 . 5 1 ) 
where (λ i (s)λ j (s)) -2 ds uniformly almost surely. Since T 1 converges towards T 1 as goes to zero, the convergence holds till (T 1η) ∧ T for any η>0.

w β ij ,i < j is a family of i.i.d. Brownian motions (on R if β =1 ,C if β =2 ) , independent of the eigenvalues λ n i , 1 i d. Proof of
Gathering the above arguments, the result follows from [82,T h e o r e m6 . 9 ,p . 578].

We now turn to the analysis of the behavior of the columns φ i (t)o ft h em a t r i x O β (t)w h e nt → T 1 with t<T 1 .T h o s ev e c t o r sφ i (t)f o r ma no r t h o n o r m a lb a s i so f R d (respectively C d )i fβ =1( r e s p . β =2 )a n di ti se a s yt oc h e c kt h a tt h e yv e r i f y the following stochastic differential system

dφ i (t)= j =i √ p λ i (t) -λ j (t) dw β ij (t)φ j (t) - pβ 2 j =i dt (λ i (t) -λ j (t)) 2 φ i (t) .
(5.53)

In the following of this section, we will denote by i * the unique (because of Lemma 5.10)i n d e xs u c ht h a tλ i * (T 1 )=λ i * -1 (T 1 ).

The main issue we meet at this point in the presence of collisions (that will occur if pβ < 1; see [START_REF] Cépa | Diffusing particles with electrostatic repulsion,P r o bability Theory and Related Fields[END_REF]) lies in the divergence of the integral 5.8 that we now prove.

We now describ e the b ehavior of the d -2v ectorsφ j (t),j = i * ,i * -1justbefore the first collision time T 1 .

Proof of the first statement of Proposition 5.6

We will denote by φ j (t) the -th entry of the d-dimensional vector φ j (t). For 0 t<T 1 ,w eh a v e

dφ j (t)= k =j √ p λ j (t) -λ k (t) dw β jk (t)φ k (t) - p 2 k =j β (λ j -λ k ) 2 φ j (t)dt .
(5.54)

We recall from section 5.3.2 that there are no multiple collisions nor two collisions at the same time for the system (λ 1 (t),λ 2 (t),...,λ d (t)) 0 t T 1 verifying (5.5), and therefore we may assume without loss of generality that for j = i * ,i * -1, every diffusions and drift terms of (5. To prove the lemma, we just need to prove that almost surely lim

s→T 1 ; s<T 1 sup s t<T 1 φ j (t) -φ j (s) 2 =0.
The drift terms appearing in (5.54)a r eo b v i o u st od e a lw i t hs i n c e1 /(λ jλ k )(t)i s bounded in the vicinity of T 1 and that |φ j (t)| 1f o ra l lt<T 1 . For the diffusion terms, we have for every ∈{ 1,...,d} and for every s ∈ [0; T 1 ]t h ef o l l o w i n g estimate

P sup s t<T 1 | t s k =j √ p λ j (u) -λ k (u) dw β jk (u)φ k (u)| >η exp(- η 2 2βp(d -1)M (T 1 -s)
) ,

where t) . Using the Borel-Cantelli Lemma, we deduce the result.

M =sup t∈[0;T 1 ] max k =j 1 (λ j -λ k ) 2 (
For δ>0, we want to define a process ( φ 1 (t), φ 2 (t),..., φ d (t)) T 1 -δ t<T 1 that will be a good approximation of the process (φ 1 (t),φ 2 (t),...,φ d (t)) T 1 -δ t<T 1 on the time interval [T 1δ; T 1 ]. Hence for j = i * ,i * -1, we set φ j (t)= φ j (the vectors do not depend of time). It remains to define the evolution for ( φ i * -1 (t), φ i * (t)) that will depend of time t.

Let V be the (d -2)-dimensional subspace spanned by the orthonormal family { φ j ; j = i * ,i * -1} and W its orthogonal complement in R d .L e t u s d e fi n e the"diffusive orthonormal basis" in the space W that will describe the evolution of the two vectors (

φ i * -1 (t), φ i * (t)
) on the interval [T 1δ; T 1 ]( u pt ot h ei n i t i a l conditions at time t = T 1δ we will explicit later).

Lemma 5.27. Let δ>0 and (u, v) an orthonormal basis of the two-dimensional subspace W . We consider the following stochastic differential system

d φ i * (t)= √ p (λ i * -λ i * -1 )(t) dw β i * -1,i * (t) φ i * -1 (t) - pβ 2 dt (λ i * -λ i * -1 ) 2 (t) φ i * (t) , (5.55) 
d φ i * -1 (t)=- √ p (λ i * -λ i * -1 )(t) d wβ i * -1,i * (t) φ i * (t) - pβ 2 dt (λ i * -λ i * -1 ) 2 (t) φ i * -1 (t) with initial conditions ( φ i * -1 (T 1 -δ), φ i * (T 1 -δ)) = (u, v
). This stochastic differential system has a unique strong solution defined on the interval

[T 1 -δ; T 1 ) such that for each t ∈ [T 1 -δ; T 1 ), { φ i * -1 (t), φ i * (t)} is an or- thonormal basis of W .
Proof. For all >0, the function t → 1/(λ i *λ i * -1 )(t)i sb o u n d e do nt h ei n t e r v a l [T 1 -δ; T 1 ] and therefore there is a unique strong solution to the stochastic differential system (5.55)tillthetimeT 1 where |λ i * -λ i * -1 | <as it is driven by bounded linear drifts. As T 1 grows to T 1 the proof is complete. To show that for all t ∈ [T 1 -δ; T 1 )thefamily{

φ i * -1 (t), φ i * (t)} is an orthonormal basis of W ,w eproceedalongthesamelineasintheproofof[14, Lemma 4.3.4].
In the following lemma, we show that we can choose a constant δ>0s m a l l enough and an initial condition (u, v) ∈ W such that the processes ( φ 1 (t),...,

φ 1 (t)) t∈[T 1 -δ;T 1 )
defined by Lemma 5.27 is indeed a good approximation of the process (φ 1 (t),...,φ d (t)) t∈[T 1 -δ;T 1 ) . The advantage of the process ( φ 1 (t),..., φ 1 (t)) t∈[T 1 -δ;T 1 ) is that it is simpler to study in the vicinity of T 1 (see Lemma 5.29 below).

Lemma 5.28. Let η>0 and κ>0. Then there exists an orthonormal basis (u, v) of W and δ>0 small enough such that if we denote by (

φ i * -1 (t), φ i * (t)) t∈[T 1 -δ;T 1 )
the unique strong solution of the stochastic differential system (5.55) with initial conditions given in t 0 = T 1δ by (

φ i * -1 (t 0 ), φ i * (t 0 )) = (u, v), we have P sup t∈[t 0 ;T 1 ) ||φ i * (t) - φ i * (t)|| 2 2 + ||φ i * -1 (t) - φ i * -1 (t)|| 2 2 η ≤ κ.
Proof. Using Itô's formula, we find1 for all t ∈ [t 0 ; T 1 ),

||φ i * (t) - φ i * (t)|| 2 2 + ||φ i * -1 (t) - φ i * -1 (t)|| 2 2 = ||φ i * (t 0 ) -u|| 2 2 + ||φ i * -1 (t 0 ) -v|| 2 2 -2 t t 0 i∈{i * ,i * -1} j =i * ,i * -1 √ p (λ i -λ j )(s) dw β ij (s) φ i (s),φ j (s) . (5.56) 
As for i ∈{ i * ,i * -1} and j ∈ {i * ,i * -1} the terms 1/(λ iλ j ) 2 (t)h a v ea l m o s t surely a finite integral with respect to Lebesgue measure on the interval [t 0 ; T 1 )( i n fact those terms are almost surely bounded as the corresponding particles remain at finite distance), the quadratic variation of the last term is of order δ and therefore is smaller than η/2w i t hp r o b a b i l i t yg r e a t e rt h a t1-κ for δ small enough.

It remains to check that we can choose (u, v)a no r t h o n o r m a lb a s i so fW and δ>0s u c ht h a t

||φ i * (T 1 -δ) -u|| 2 2 + ||φ i * -1 (T 1 -δ) -v|| 2 2 η/2 . (5.57)
This is a straightforward: Indeed we can approximate the φ j (T 1 -δ)forj ∈ {i * ,i * -1} by the φ j because of the first point of Proposition 5.6,t h u sw ec a nc h o o s et w o vectors {u, v} in the two dimensional space W so that (5.57) holds. This completes the proof.

We now turn to the study of the couple (

φ i * -1 (t), φ i * (t)) for t ∈ [T 1 -δ; T 1
)a n d in particular when t → T 1 ,t < T 1 .Ac r u c i a lp o i n ti se q u a t i o n5.8 which we now prove.

Itô's Formula gives for t<T 1

ln(λ i -λ i-1 )(t)=(-γ +2pβ)t + t 0 √ 2 db i * s -db i * -1 s (λ i * -λ i * -1 )(s) -pβ t 0 j =i * ,i * -1 ds (λ i * -λ j )(λ i * -1 -λ j )(s) - t 0 2 ds (λ i * -λ i * -1 ) 2 (s)
.

If we suppose that T 1 0 dt/(λ i *λ i * -1 ) 2 (t) < +∞ and since T 1 <τ 3 for some >0 small enough, we obtain a contradiction letting t → T 1 : under this assumption, the right hand side tends to -∞ whereas the left hand side is almost surely bounded in this limit.

The next Lemma 5.29 shows that the orthonormal basis (

φ i * -1 (t), φ i * (t))
of the subspace W is in fact uniformly distributed in the set of all orthonormal basis of W in the limit t → T 1 ,t < T 1 .

As W is two dimensional, up to a change basis, we can suppose that the two vectors Proof. To simplify notations, we do the pro of in the case β =1.

φ i * -1 (t)a n d φ i * (t)
Set

t 0 := T 1 -δ and define for t ∈ [0; δ)t h ef u n c t i o n ϕ(t):= t 0 +t t 0 ds (λ i * -λ i * -1 ) 2 (s)
and denote by ϕ -1 its functional inverse. We now proceed to a change of time by setting for t ∈ [0; δ)

ψ i * (t)= φ i * (ϕ -1 (t)), ψ i * -1 (t)= φ i * -1 (ϕ -1 (t)) .
As ϕ -1 (t) → +∞ when t → δ, t < δ (because of (5.8)), the two by two matrix ψ(t) whose first line is

ψ i * (t)a n ds e c o n dl i n ei s ψ i * (t): ψ(t):= ψ i * (t) ψ i * -1 (t)
is now defined for all t ∈ R + and verifies the following stochastic differential equation

d ψ(t)= √ pA ψ(t) dB t - pβ 2 ψ(t) dt . (5.58)
where B is a standard Brownian motion on R and where A is the two by two matrix defined by

A = 01 -10 .
Note in particular that A 2 = -I.

It is clear that there is pathwise uniqueness in the stochastic differential equation (5.58) (it is linear in ψ). Therefore to solve entirely this equation, we just need to exhibit one solution. Using Itô's Formula, one can check that the solution is

ψ(t)=exp( √ pAB t ) ψ(0) = cos( √ pB t )s i n ( √ pB t ) -sin( √ pB t )c o s ( √ pB t ) ψ(0) .
Note that for all t ∈ R + ,t h em a t r i x ψ(t)i si n d e e di nt h es p a c eo fo r t h o g o n a l matrices.

But (cos( √ pB t ), sin( √ pB t )) converges in law as time goes to infinity towards the law of (θ, ε √ 1θ 2 )w i t hθ uniformly distributed on [-1, 1] and ε = ±1w i t h probability 1/2, from which the result follows. 

Abstract

We construct a diffusive matrix mo del for the β-Wishart (or Laguerre) ensemble for general β ∈ [0, 2], which preserves invariance under the orthogonal/unitary group. Scaling the Dyson index β with the largest size M of the data matrix as β =2c/M (with c a fixed positive constant), we 135 obtain a family of spectral densities interpolating continuously between the Marčenko-Pastur and the Gamma laws as c is varied. Analyzing the full resolvent equation, we obtain as a byproduct the correction to the Marčenko-Pastur density until order 1/M for all β and until order 1/M 2 for the particular cases β =1, 2.

Introduction

The theory of matrices with random entries, originally devised as a tool to understand and predict the spectra of heavy nuclei for which a detailed account of the interactions between particles is too complicated, has seen a spectacular resurgence of interest in recent years, with a number of unexpected and often surprising applications (see ... for a recent review). While Wigner and Dyson are usually regarded as the pioneers in the field, John Wishart had already introduced in 1928 random matrices in his studies of multivariate populations [145]. The Wigner-Dyson (Gaussian) and Wishart ensembles (together with a few others) lie at the core of the classical world of invariant matrices, characterized by the following main features:

1. The joint distribution of matrix entries, collectively denoted by P [X], remains unaltered if one performs a similarity transformation X → UXU -1 ,w i t hU and orthogonal (real symmetric X), unitary (complex hermitian X)o rs y mplectic (quaternion self-dual X) matrix. As a consequence, the eigenvectors of such matrices are Haar (uniform) distributed in their respective groups.

2. The joint distribution of the N real eigenvalues P (λ 1 ,...,λ N )c a nb eg e n e r ically written in the Gibbs-Boltzmann form,

P (λ 1 ,...,λ N )= 1 Z N exp (-H(λ 1 ,...,λ N )) (6.1)
with the Hamiltonian H(λ 1 ,...,λ N )g i v e nb y :

H(λ 1 ,...,λ N )= N i=1 V (λ i ) -β j<k ln |λ j -λ k | (6.2)
and the partition function Z N (normalization constant) given by

Z N = ••• i dλ i exp (-H(λ 1 ,...,λ N )) . (6.3) 
V (x)ac o n fi n i n gp o t e n t i a ld e r i v e df r o mt h ej o i n td i s t r i b u t i o no fm a t r i xe ntries P [X]. For example, if the entries of X are independent, the only allowed potential is quadratic V (x)=βx 2 /2, which correspond to the Gaussian ensembles. If correlations among the entries are allowed, then different potentials (all corresponding to rotationally invariant weights) are possible (e.g. V (x)=x/(2σ 2 )α log x for the Wishart case).

From (6.1), one easily deduces that the system of N eigenvalues of a classically invariant ensemble behaves as a thermodynamic system of charged particles arranged on the real line, in equilibrium at inverse temperature β under competing interactions (the confining potential V (x)andthelogarithmicall-to-all repulsion term) in (6.2). In contrast with the usual canonical ensemble in statistical mechanics, however, the so-called Dyson index β is quantized and can only assume the values β =1 , 2, 4f o rr e a ls y m m e t r i c ,c o m p l e xh e r m i t i a n and quaternion self-dual matrices respectively.

Lifting the quantization of β (Dyson's threefold way)h a sb e e nam a j o rt h e oretical challenge in view of possible applications e.g. to the quantum Hall effect [...]. Dumitriu and Edelman [START_REF] Dumitriu | Matrix Models for Beta Ensembles[END_REF]w e r ee v e n t u a l l ya b l et oc o n s t r u c te n s e m b l e so f tridiagonal matrices with independent entries whose eigenvalues are distributed as (6.1)w i t hg e n e r a lβ>0. Their ensemble is however not invariant under similarity transformations, and the eigenvectors are not Haar distributed in the appropriate symmetry group. After an earlier attempt in the case of 2 × 2m a t r i c e s[ 140], the explicit construction of an ensemble of N × N matrices displaying at once rotational invariance and a continuous β was put forward in [...] for the Gaussian ensemble. It was further shown in [...] that only by letting the Dyson index β of that ensemble scale with the matrix size N in an appropriate way (namely β = c/N ) one obtains ac o n t i n u o u sf a m i l yo fd e f o r m e ds pe c t r a ld e n s i t i e sp a r a m e t r i z e db yc,i n t e r po l a t i n g between Wigner's semicircle (typical for β ∼O(1) invariant ensembles) and a Gaussian law (properly describing the non-interacting limit β → 0). This result can be established in two alternative ways:

1. Starting from the stationary joint distribution of eigenvalues (eq. (6.1)), setting β = c/N , and then finding the average density of eigenvalues ρ(λ)= (1/N ) i δ(λλ i ).I n t h e l i m i t o f l a r g e N ,t h i sa v e r a g ed e n s i t yc a nb e obtained by a saddle point analysis of the partition function eq. ( 6.3)i na standard way. Usually, when β ∼O(1), only the energy term ∼O(N 2 )d o m inates and the entropy term ∼O(N ) is subleading. However, when β ∼ c/N , both the energy and the entropy terms are of the same order (∼O(N )), which leads to a nontrivial modification of the density (see detailed discussion in ....).

Starting from the dynamical equation of motion of the eigenvalues, one first

derives the equation of motion of the Stieltjes transform of the density via Ito's calculus, finds the stationary solution and then obtain the average density.

In the context of our model we show that both methods lead to the same solution.

The purpose of this paper is threefold:

1. We explicitly construct a random matrix model ι)w h i c hi si n v a r i a n tu n d e r similarity transformations (and thus has Haar distributed eigenvectors), and ιι)w h o s ej p do fe i g e n v a l u e si se x a c t l yg i v e nb yt h eβ-Wishart ensemble of random matrices with a continuous β>0. The plan of the paper is as follows. In section 6.2 we introduce the main features of the classical Wishart ensemble along with the evolution law for the eigenvalue process. In section 6.3, we construct a 3-parameters matrix model (and the respective evolution law for the eigenvalues) that at large times interpolates between the Wishart ensemble and so-called CIR processes whose stationary pdf is a certain Gamma distribution. The corresponding parametrical density of states is computed exactly in the two ways described above (from the saddle point route on the partition function in section ... and from Ito's calculus in section ...) and constitutes a continuous deformation of the Marčenko-Pastur distribution (see below). In section 6.4 we compute systematic 1/N (for all β>0) and 1/N 2 (for β =1 , 2) corrections to the Marčenko-Pastur law for the (scaled) β-Wishart ensemble. We conclude with as u m m a r yi ns e c t i o n6.5.

Wishart ensembles 6.2.1 Real and complex Wishart ensembles

Let X be a real (respectively complex) Gaussian random matrix of size M × N , i.e. a random matrix chosen in the space of M × N real (resp. complex) matrices according to the law:

P (X)dX ∝ exp - 1 2σ 2 Tr(X † X) dX , (6.4) 
where X † is the Hermitian conjugate of X.I nt h ef o l l o w i n g ,w ew i l ld e n o t et h er e a l (resp. complex) Wishart ensemble by W β with β =1i nt h er ea lca s e( r es p . β =2 in the complex case). The real (resp. complex) Wishart Ensemble is the ensemble of (N × N )s q u a r e matrices of the product form W := X † X where X is a real (resp. complex) Gaussian random matrix of size N × M . They have appeared in many different applications such as communication technology [START_REF] Sadek | [END_REF], nuclear physics [75], quantum chromodynamics [139], statistical physics of directed polymers in random media [84]a n dn o n intersecting Brownian motions [126], as well as Principal Component Analysis of large datasets [101].

The spectral properties of the Wishart matrices have been studied extensively and it is known [START_REF] James | [END_REF]thatforM N ,allN positive eigenvalues of W are distributed via the joint probability density function (pdf)

P β (λ 1 ,...,λ N )= 1 Z e -1 2σ 2 N i=1 λ i N i=1 λ β 2 (M -N +1)-1 i i<j |λ i -λ j | β (6.5)
where Z is a constant normalization factor and where β =1i nt h er e a lc a s e( r e s p . β = 2 in the complex case). Note that the distribution P β defined in (6.5)i si nf a c t defined for every β>0.

Another very classical result of Random Matrix Theory concerns the asymptotic density of states (or spectral measure) for the eigenvalues (λ 1 ,λ 2 ,...,λ N )o far e a l Wishart matrix W ∈W 1 in the limit of large matrices, i.e. when N, M →∞with N/M = q ∈ (0; 1] where q is a fixed parameter. Let us recall that the density of states of the matrix W is simply the probability measure µ β N defined as

µ β N = 1 N N i=1 δ λ i (6.6)
where β is introduced for later convenience (β ≡ 1i nt h ep r e s e n tc a s e )a n dw h e r e (λ 1 ,...,λ N )a r et h ee i g e n v a l u e so fW.T h eM a r č e n k o -P a s t u rT h e o r e ms t a t e st h a t , in the limit N, M →∞with N/M = q ∈ (0; 1], the spectral measure of a Wishart matrix W ∈W 1 converges to a continuous probability density (with compact support) given by

ρ β (λ)= 1 2πMσ 2 βq (b -λ)(λ -a) λ ,a < λ < b (6.7)
where the edges a, b of the spectrum are given by

a = Mσ 2 β(1 + q -2 √ q),b = Mσ 2 β(1 + q +2 √ q)
with again β =1.

For general β>0, the probability measure µ β N is defined again as in (6.6) where this time the vector (λ 1 ,...,λ N )i sd i s t r i b u t e da c c o r d i n gt ot h el a wP β .T h e Marčenko-Pastur theorem remains in fact valid for all β>0i nt h es e n s et h a tt h e probability law µ β N converges when N, M →∞with N/M = q ∈ (0; 1] to the continuous probability density ρ β for every β>0.

The probability measure µ β N will sometimes be referred to as the spectral density as it corresponds to the spectral density of random matrices W ∈W β at least when β =1or2.

Continuous processes for real and complex Wishart ensembles

We wish to define here a diffusive matrix pro cess dep ending on a fictitious time t 0 that will converge to the Wishart Ensembles in the limit of large time. The idea is simply to set

W t := X † t X t (6.8)
where X t is a real (resp. complex) random matrix process (of size M × N )follo wing the Ornstein-Uhlenbeck law,

dX t = - 1 2 X t dt + σdB t
where B t is a real Brownian (resp. complex) random matrix, i.e. a matrix whose entries are given by independent standard Brownian motions.

It is well known that the stationary law of a Ornstein-Uhlenbeck process is the Gaussian law and therefore, the real (resp. complex) matrix process X t converges in law when t →∞to the law of a Gaussian real (resp. complex) random matrix. Hence, we deduce that the real (resp. complex) matrix process W t defines a diffusive matrix process that converges in law to W ∈W β .

It is also easy to check that the positive definite matrix process W t verifies the following stochastic differential equation [START_REF] Bru | Wishart Processes[END_REF]:

dW t = -W t dt + σ W t dB t + σdB † t W t + Mσ 2 β I dt (6.9)
where B t is a real (resp. complex) Brownian random matrix and with β =1inthe real (resp. β =2forcomplex)case. The evolution of the eigenvalue process λ 1 (t) λ 2 (t) ... λ N (t)i sa l s oe a s yt o derive [START_REF] Bru | Diffusions of Perturbed Principal Component Analysis[END_REF]u s i n gpe r t u r b a t i o nt h e o r yt os e c o n do r d e r

dλ i = -λ i dt +2σ λ i db i + σ 2 β M + k =i λ i + λ k λ i -λ k dt (6.10)
where the b i are independent standard Brownian motions and with β =1i nt h e real (resp. β = 2 for complex) case. The stationary distribution of the process (λ 1 ,...,λ N )(t)i sn e c e s s a r i l yt h ej o i n tp d fP β (λ 1 ,...,λ N )d e fi n e di n( 6.5)( t h i si s true for any β>0a n dc a na l s ob er e c o v e r e du s i n gt h eF o k k e r -P l a n c ke q u a t i o nf o r the multivariate diffusion (6.10)).

Crossover between Wishart and CIR processes

Following [5,[START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF], we aim at defining a diffusive matrix process W t which converge in the limit of large time to a general β-Wishart matrix, i.e. a matrix whose eigenvalues are distributed according to P β for general β>0 and with Haar distributed eigenvectors. In this paper, we will restrict ourselves to the description of the eigenvalues process but the interested reader can find a study of the eigenvectors for a related model in [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF]. To simplify notations, we will take in this section σ =1.

Preliminary definition: CIR diffusion process

We first need to introduce a family of real diffusion processes. Let δ>0b eafi x e d parameter. The CIR process (named after its creators John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross) is the diffusion process x(t)definedbyx(0) := x 0 > 0 and for t 0b y

dx(t)=-x(t) dt +2 x(t) db t + δd t. (6.11) 
Using the assumption δ>0, it is easy to see that the process x(t)w i l lr e m a i n non negative for all times t 0. It is also easy to verify that the stationary pdf of the Langevin equation (6.11)i st h eG a m m ad i s t r i b u t i o nw i t hs h a p ea n ds c a l e parameters k = δ/2a n dθ =2definedas

p δ (x)= 1 2 δ 2 Γ( δ 2 ) x δ 2 -1 e -x 2 .
(6.12)

In analogy with squared Bessel processes, the parameter δ will be called the dimension of the process x(t).

Diffusive matrix process for general β-Wishart matrices

Following [5,[START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF], our goal is to construct a diffusive matrix process whose eigenvalues process is asymptotically distributed according to P β for general β ∈ [0, 1]. This construction can be extended respectively for general β ∈ [0, 2] (resp. β ∈ [0, 4]) by using complex (resp. symplectic) Brownian motions instead of real Brownian motions in the following. We will in fact describ e how to handle the value β ∈ [0, 1] by using real Brownian matrix. This construction can be extended for the values β ∈ [0, 2] using complex Brownian matrix and also β ∈ [0, 4] using symplectic Brownian matrix.

The idea is to slice the time interval into small chops of length 1/n and for each interval [k/n;(k +1)/n], to choose independently Bernoulli random variables

n k ,k ∈ N such that P[ n k =1 ]=p =1-P[ n k =0 ] .
T h e n ,s e t t i n g n t = n [nt] ,o u r diffusive matrix process evolves as:

dW n t = -W n t dt + d∆ n t (6.13)
where the increment matrix d∆ n t now depends on the value of the additional random process n t :

• if n t =1,then d∆ n t = W n t dB t + dB † t W n t + M I dt.
where dB t is an N × N real1 Brownian increment matrix whose entries have variance dt.

• if n t =0,then

d∆ n t = W n t dY t + dY † t W n t + δ I dt.
with δ>0 and where dY t is a symmetric matrix that is co-diagonalizable with W n t (i.e. the two matrix have the same eigenvectors) but with a spectrum given by N independent real Brownian increments of variance dt.

An algorithmic description of how to build (approximatively on a discrete grid) the matrix process W n t can be found in Appendix 6.5. It is clear that the eigenvalues of the matrix W n t will cross at some points but only in intervals [k/n;(k +1)/n]f o rw h i c h n k =0(intheotherin terv alswherethey follow the SDE (6.10)w i t hp a r a m e t e rβ =1 ,i ti sw e l lk n o w nt h a tt h er e p u l s i o n is too strong and thus collisions are avoided). In this case, the eigenvalues are renumbered at time t =( k +1)/n in increasing order. With this procedure, when ordered λ n 1 (t) ... λ n N (t), we can again check as in [5,[START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF], using perturbation theory, that the eigenvalues will remain always non-negative and will verify the Stochastic Differential System (SDS):

dλ n i = -λ n i dt +2 λ n i db i + n t M +(1-n t )δ + n t k =i λ n i + λ n k λ n i -λ n k dt (6.14)
where the b i are independent standard Brownian motions, which are also independent of the process n t . Note that when n t =0 ,t h ep a r t i c l e sλ n i are evolving as independent CIR processes of dimension δ>0a sd e fi n e di np a r a g r a p h6.3.1.T h e r e f o r e ,t h ep a r t i c l e s can cross in those time intervals, breaking the increasing order so that they will be re-ordered at time ([nt]+1)/n but they will remain non-negative as the dimension δ is strictly positive. Therefore the SDS (6.14)remainsw elldefinedatalltimest 0.

One can follow the proof of [START_REF] Allez | A diffusive matrix model for invariant β-ensembles[END_REF] to prove that the scaling limit (i.e. the limiting process when n →∞ ) of the process (λ n 1 (t) ... λ n N (t)) satisfies the following SDS

dλ i = -λ i dt +2 λ i db i + pM +(1-p)δ + p k =i λ i + λ k λ i -λ k dt . (6.15) 
One can deduce from the above equation (6.15)t h eF o k k e r -P l a n c ke q u a t i o nf o r the joint density P ({λ i },t), for which the stationary joint pdf is readily found to be [see the derivation in appendix 6.5]

P * (λ 1 ,...,λ N )= 1 Z e -1 2 N i=1 λ i N i=1 λ p 2 (M -N +1-δ)-(1-δ 2 ) i i<j |λ i -λ j | p .
(6.16)

The probability P β introduced in (6.5)i sr e c o v e r e dh e r eb yt a k i n gt h ev a l u e sp = β and δ =0 . T h ec o r r e s p o n d i n gl a r g eN, M-limit spectral probability density is therefore given by the Marčenko-Pastur law in the case where p = β>0 independent of M . Note that with the above normalizations, the spectrum is spread over a region of R + of width of order pM = βM.O nt h eo t h e rh a n d ,i fp =0,thelargeN, M-limit of the spectral density is the Gamma distribution with shape and scale parameters k = δ/2andθ = 2 (recall that it is the stationary pdf of the CIR process of dimension δ):

ρ 0 (λ)dλ = 1 2 δ/2 Γ( δ 2 ) λ δ 2 -1 e -λ 2 dλ . (6.17)
It is quite natural to ask whether a crossover regime may be found, interpolating between the Marčenko-Pastur density (p independent of M )a n dt h eG a m m ad i stribution (p =0 ) . Ag o o dc a n d i d a t ef o rt r i g g e r i n gs u c hat r a n s i t i o ni sc l e a r l ya parameter p vanishing with M as p =2 c/M where c is a positive fixed constant. We discuss this case in the following subsection.

Crossover for the spectral density via saddle point route

We now wish to compute the crossover density interp olating b etween the Marčenko-Pastur law and the Gamma distribution with shape parameter δ/2. This family of probability densitites is indexed by the three parameters c (such that p =2 c/M ), q = N/M and δ 0. More precisely, we have to compute the limiting density of the probability measure µ N = 1 N N i=1 δ λ i ,w h e nN, M →∞with N/M = q ∈ (0; 1] and where (λ 1 ,...,λ N ) is distributed according to the law P * defined in (6. [START_REF] Askey | Associated Laguerre and Hermite polynomials[END_REF])with p = β =2c/M . Although the crossover density can be derived using the stochastic processes introduced in the previous section 6.3 as is done in [5], we will take here the saddle point route on the full action of the matrix model.

The normalization constant (partition function) Z of our model is given by:

Z = [0,∞] N i dλ i e -1 2 i λ i i<j |λ i -λ j | p i λ p 2 (M -N +1-δ)-(1-δ/2) i = [0,∞] N i dλ i e -E[{λ i }] (6.18)
where the energy function E[{λ i }]i sg i v e nb y :

E[{λ i }]= 1 2 i λ i - p 2 (M -N +1-δ) -(1 -δ/2) i ln λ i - p 2 i =j ln |λ i -λ j | (6.
19) Written in this form, Eq. (6.18)istheGibbs-Boltzmanncanonicalweightofasystem of charged particles on the positive half-line in equilibrium at inverse temperature β = 1 under the effect of competing interactions. We are now seeking for a coarsegrained description of the system introducing a smooth density function ρ(λ)a s :

ρ(λ)= 1 N N i=1 δ (λ -λ i )( 6 . 2 0 )
which is normalized to unity. In terms of this density, and using the identity i f (λ i )=N dλf (λ)ρ(λ)t h ee n e r g yf u n c t i o nE[{λ i }]be c o m e s :

E[ρ(λ)] = N 2 dλλρ(λ) - p 2 ( 1 q -1)N +1-δ - 1 - δ 2 N dλρ(λ)lnλ - p 2 N 2 dλdλ ρ(λ)ρ(λ )ln|λ -λ | + p 2 N dλρ(λ)ln 1 ρ(λ) + C 1 dλρ(λ) -1 (6.21)
where the next-to-last term accounts for the self-energy term (λ → λ )thatneedsto be subtracted (note that in the original discrete sum i =j ln |λ i -λ j |,theeigenv alues cannot coincide. The term with two eigenvalues nearly coinciding can be written as i ln(s i ), where s i is the typical spacing between the two, which in the continuum limit is clearly proportional to the inverse local density 1/ρ(λ). ). The last term includes a Lagrange multiplier C 1 that enforces the normalization of the density to 1.

In going from the multiple integral to a functional integral over the density, i dλ i →D[ρ], a Jacobian (entropic) factor must be included. This Jacobian factor basically counts the number of microstates (arrangement of particles in K boxes) that are compatible with a fixed density profile. If we have N particles and K boxes, the number of ways we can arrange these particles in these boxes is

N ! n 1 !n 2 ! •••n K ! (6.22)
Setting ρ i = n i /N (the local density in box i)a n du s i n gS t i r l i n g ' sa p p r o x i m a t i o n N ! ∼ N N +1/2 e -N (using the fact that i n i = N ), we have:

N ! n 1 !n 2 ! •••n K ! ∼ e - i n i ln n i (6.23)
which in the continuum limit, becomes ∼ e -N dλρ(λ)lnρ (λ) . Inserting this expression in the functional integral over the density, yields:

Z = D[ρ]e -E[ρ(λ)] e -N dλρ(λ)lnρ(λ) = D[ρ]e -NF[ρ(λ)] (6.24)
where the free energy F [ρ(λ)] is given by:

F [ρ(λ)] = 1 2 dλλρ(λ) - p 2 ( 1 q -1)N +1-δ - 1 - δ 2 dλρ(λ)lnλ - p 2 N dλdλ ρ(λ)ρ(λ )ln|λ -λ | + 1 - p 2 dλρ(λ)lnρ(λ)+C 1 dλρ(λ) -1 (6.25) 
Note that for p ∼O (1/N )t h ee n t r o p yt e r mb e c o m e so ft h es a m eo r d e ro f the energy term, while in the usual case p ∼O (1) the entropy contribution is subdominant in the large N limit and is therefore disregarded.

Setting now p =2c/M =2cq/N ,w eg e t :

F [ρ(λ)] = 1 2 dλλρ(λ) - cq 1 q -1 - 1 - δ 2 dλρ(λ)lnλ -cq dλdλ ρ(λ)ρ(λ )ln|λ -λ | + 1 - p 2 dλρ(λ)lnρ(λ)+C 1 dλρ(λ) -1 (6.26)
Setting a = cq(1/q -1) -(1δ/2) and taking the saddle point of the free energy δF δρ = 0, we get the following equation:

λ 2 -a ln λ -2cq dλ ρ(λ )ln|λ -λ | +lnρ + C 2 =0 (6.27)
where C 2 is another constant. Taking one more derivative, we get:

1 2 - a λ -2cq Pr ρ(λ ) λ -λ dλ + ρ (λ) ρ(λ) =0 (6.28)
Next, we define the Stieltjes transform:

H(z)= ρ(λ) λ -z dλ (6.29)
for z complex and outside the support of ρ.B yd e fi n i t i o n ,f o rl a r g e|z|, H(z) → -1/z.M u l t i p l y i n ge q .( 6.28)b yρ(λ)/(λz)a n di n t e g r a t i n go v e rλ,w eh a v e :

1 2 ρ(λ) λ -z dλ -a ρ(λ)dλ λ(λ -z) -2cq Pr ρ(λ)dλ λ -z ρ(λ ) λ -λ dλ + ρ (λ)dλ λ -z =0 
(6.30) and we analyze each of the four contribution separately.

1. T 1 = 1 2 ρ(λ) λ-z dλ = 1 2 H(z) 2. T 2 = -a ρ(λ)dλ λ(λ-z)
.W er e w r i t et h i sa s :

T 2 = -a ρ(λ)dλ 1 λ -z - 1 λ 1 z (6.31)
implying:

T 2 = - a z H(z)+ b 1 z (6.32)
where b 1 = a dλ ρ(λ) λ .

3.

T 3 = -2cq Pr ρ(λ)dλ λ-z ρ(λ )
λ-λ dλ which we rewrite as:

T 3 =2cq Pr dλdλ ρ(λ)ρ(λ ) 1 λ -z - 1 λ -λ 1 λ -z (6.33) =2cqH 2 (z) -2cq Pr dλdλ ρ(λ)ρ(λ ) (λ -λ )(λ -z) (6.34)
By renaming λ → λ and λ → λ,w eg e t :

T 3 =2cqH 2 (z)+2cqPr dλdλ ρ(λ)ρ(λ ) (λ -λ )(λ -z) (6.35) =2cqH 2 (z) -T 3 (6.36)
Solving for T 3 we get:

T 3 = cqH 2 (z)( 6 . 3 7 )
4. T 4 = ρ (λ)dλ λ-z ,w h i c hw ei n t e g r a t eb yp a r t s ,o b t a i n i n g :

T 4 = 1 λ -z ρ(λ) ∞ 0 + ρ(λ) (λ -z) 2 dλ = c 1 z + H (z)( 6 . 3 8 ) 
In the derivation above, we assumed b 1 and c 1 to be finite. This is not completely obvious, because ρ(λ) at an edge point may diverge. However, by imposing that for large z, H(z) →-1/z, it is immediate to derive that b 1 + c 1 =1 /2. Thus, one may regularize the density near the edge points so that b 1 and c 1 exist individually, but eventually their sum is universally 1/2 and hence is independent of the specific regularization near the edge.

Adding up the four contribution, we get the equation:

dH dz - a z H + b 1 + c 1 z + cq H 2 + 1 2 H =0
Thus we find the following differential equation for the Stieltjes transform H:

dH dz + γH 2 + 1 2 1+ α z H + 1 2z =0 (6.39)
where we have set α =(2-δ) -2c(1q),γ = cq .

In the next subsection, we will derive the same equation via Ito's calculus route. The density ρ(λ)( n o r m a l i z e dt ou n i t y )c a nt h e nber e a do fff r o m

ρ(λ)= 1 π Im[H(z → λ)] (6.40) 
where z → λ occurs inside the cut on the real axis. We first pro ceed in Eq. (6.39)t ot h ec h a n g eo ff u n c t i o n

H(z)= 1 γ u (z) u(z) = 1 γ ∂ z ln u(z) . (6.41)
This gives the differential equation for u(z)

u (z)+ 1 2 1+ α z u (z)+ γ 2z u(z)=0. (6.42) 
It follows from Eq. (6.41) and the asymptotic behavior of H(z)t h a t

u(z) ----→ |z|→∞ A 1 z γ (6.43)
where A 1 is a constant. To reduce Eq. (6.42) to a Schrödinger like differential equation, we make the substitution u(z)=e -z/4 z α/4 ψ(z) , (6.44)

and we find the following equation for ψ

ψ (z)+ - 1 16 + 1 z 4γ -α 8 + α 4 (1 - α 4 ) 1 z 2 ψ(z)=0.
Making further a rescaling ψ(z)=y(z/2), it reduces to the standard form of the Whittaker differential equation [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] y (z)+ -

1 4 + λ z + 1 4 -µ 2 z 2 y(z)=0, (6.45) 
where 

ζ = γ - α 4 ,µ = 1 2 |1 - α 2 | . ( 6 
W ζ,µ (z) ----→ |z|→∞ z ζ e -z/2 . (6.47)
Thus the general solution of u(z), using Eq. (6.44), reads

u(z)=e -z/4 z α/4 [C 1 W ζ,µ (z/2) + C 2 W -ζ,µ (-z/2)] (6.48) 
where C 1 and C 2 are arbitrary constants. Using the asymptotic behavior in Eq. (6.47) it is easy to check that only the second solution has the right asymptotic behavior in Eq. (6.43). Thus, finally, we have our solution u(z)=C 2 e -z/4 z α/4 W -ζ,µ (-z/2) (6.49)

where ζ and µ are given in Eq. (6.46). By plugging this solution (6.49)i n t oE q . ( 6.41)a n du s i n gE q . ( 6.40), we find the following expression

ρ(λ)= C 2 2πγ ((W -ζ,µ )(W -ζ,µ ) -(W -ζ,µ )(W -ζ,µ ))(-λ/2) |W -ζ,µ (-λ/2)| 2 .
But, using the linear differential equation verified by the Whittaker functions (6.45), it is easy to see that the derivative with respect to λ of the Wronskian type function

((W -ζ,µ )(W -ζ,µ ) -(W -ζ,µ )(W -ζ,µ
)) is equal to 0. Collecting all the constants together, we get:

ρ(λ)= A |W -ζ,µ (-λ/2)| 2 .
(6.50)

The overall normalization constant A has to be fixed from ∞ 0 ρ(λ) dλ =1 . T h u s we get, after rescaling λ/2 → λ,

1 A =2 ∞ 0 dλ |W -ζ,µ (-λ)| 2 . (6.51)
This integral in Eq. (6.51) can be done in closed form. First, we first use the well known identity [1] W ζ,µ (z)=z µ+1/2 e -z/2 U (µζ +1/2, 1+2µ; z)( 6 . 5 2 )

where U (a, b; z)i st h eT r i c o m ih y p e r g e o m e t r i cf u n c t i o nt h a tb e h a v e sf o rl a r g ez as U (z) ∼ z -a . Using this in Eq. (6.51

)g i v e s 1 A =2 ∞ 0 dλ λ -2µ-1 e -λ |U (µ + ζ +1/2, 1+2µ; -λ)| -2 . (6.53)
It turns out that there exists an interesting integral representation in a paper by Ismail and Kelkar [81] ∞

0 dt e -t t -b z + t |U (a, b; -t)| -2 =Γ(a)Γ(a-b+2) 1 z U (a, b -1; z) U (a, b; z) ;f o r a>0, 1 <b<a+1
(6.54) Note that in Ref. [81]t h e yu s et h en o t a t i o nψ(a, b, z)i n s t e a do fU (a, b; z), but it is the same function. Our µ and ζ satisfy the condition of validity of this identity: a>0a n d1<b<a+1. T aking z →∞limit on both sides and using U (z) ∼ z -a , we arrive at the following exact expression of the normalization constant

1 A =2Γ(µ + ζ +1/2)Γ(ζ -µ +3/2) . (6.55) 
This leads to the following solution for the spectral density

ρ(λ)= 1 2Γ(µ + ζ + 1 2 )Γ(ζ -µ + 3 2 ) 1 |W -ζ,µ (-λ 2 )| 2 (6.56)
with the following values for the parameters

α =(2-δ) -2c(1 -q); ζ = cq - α 4 ;a n dµ = 1 4 |α -2| .
We verified this expression numerically. Expression (6.56)i si nv e r yg ooda g r e ement with the density of our sample histogram (see Fig. 6.1).

Crossover for the spectral density via Ito's calculus

In this subsection, we want to re find the result Eq. (6.39)oftheprevioussubsection via Itô's calculus. We therefore consider the process (λ 1 (t), ••• ,λ N (t)) which verifies the stochastic differential system (6.15)w i t ht h es c a l i n gr e l a t i o np =2 c/M .T h e idea is to work out the evolution equation of the probability measure in the large N limit. We expect the equilibrium of this evolution equation to be the solution of (6.39).

µ t N (dx):= 1 N N i=1 δ(x -λ i (t)) (6.
In the following, f is a smooth function. Using Itô's formula for f (x)µ t N (dx), Eq. (6.15)a n dt h es c a l i n gr e l a t i o np =2c/M ,w eo b t a i n

d f (x)µ N t (dx)= -x +2c + 1 - 2c M δ f (x)µ N s (dx)dt +2 1 - c M xf (x)µ N s (dx)dt (6.58) + cq t 0 f (x) -f (y) x -y (x + y)µ N s (dx)µ N s (dy)dt + dM N t ,
where

dM N t = 2 N N i=1 √ λ i f (λ i )db i is a noise term of variance 4 N λf (λ) 2 µ t N (dλ)dt.
When N, M →∞with N/M = q,t h i sn o i s et e r mi so fo r d e r1 / √ N . In the large N, M limit, the stationary probability measure µ solution of Eq. (6.58) therefore satisfies to leading order (keeping only the terms of order 1)

(-x +2c + δ) f (x)µ(dx)+2 xf (x)µ(dx)+cq f (x) -f (y) x -y (x + y)µ(dx)µ(dy)=0 (6.59) 
Applying Eq. (6.59)totheparticularfunctionf (x)= 1 x-z for z ∈ C\R and denoting

H(z)t h eS t i e l t j e st r a n s f o r mo ft h ep r o b a b i l i t ym e a s u r eµ,w eo b t a i nt h ef o l l o w i n g differential equation for H [H(z)+zH (z)] -(2c + δ) H (z)+2[2H (z)+zH (z)] +2cq

H (z)+H 2 (z)+2zH(z)H (z) =0. (6.60)

Eq. (6.60)c a nber e a r r a n g e da s

2cqH(z)[H(z)+2zH (z)] + 1 2 [H(z)+2zH (z)] + 1 2 H(z)+[3H (z)+2zH (z)] +[(1-δ) -2c(1 -q)] H (z)=0. ( 6.61) 
Eq. (6.61)c a nbei n t e g r a t e de a s i l yb yd o i n gt h ec h a n g eo ff u n c t i o nG(z)=zH(z 2 ). Indeed, we just need to write (6.61)f o rz 2 instead of z and then multiply the corresponding equation by z to obtain the following equation

2cqG(z)G (z)+ 1 2 [zG (z)+G(z)] + 1 2 G (z)+ 1 -δ 2 -c(1 -q) 2zH (z 2 )=0,
which can be integrated as

2cqG 2 (z)+ z + (1 -δ) -2c(1 -q) z G(z)+G (z)=-1( 6 . 6 2 )
where the integration constant is chosen so that zG(z) ∼-1w h e n|z|→∞ . Note that the asymptotic behavior for H is therefore also zH ∼-1w h e n|z|→∞as is expected for the Stieltjes transform of a probability measure. Rewriting now Equation (6.62)i nt e r mo ft h ef u n c t i o nH,w eo b t a i ne x a c t l yE q . ( 6.39).

Correction to the Marčenko-Pastur law

In this section, we come back to the case of generalized Wishart matrices for which particles are distributed according to the jpdf P β with general parameter β>0(not scaling with M ). We want to compute the first correction terms to the Marčenko-Pastur density µ β N (defined in Eq. (6.6)) for large but finite N, M with N/M = q ∈ (0; 1].

We are therefore interested in computing functionals of the form f (λ)µ β N (dλ) where f is a test function and where (λ 1 ,λ 2 ,...,λ N ) is distributed according to the joint pdf P β defined in Eq. (6.5)forβ>0. The idea is to use the stochastic process λ 1 (t) ... λ N (t)f o l l o w i n gt h eS D E( 6.10)t h a tc o n v e r g e si nl a ww h e nt →∞ to the vector (λ 1 ... λ N )d i s t r i b u t e da c c o r d i n gt oP β .I n o r d e r t o h a v e a limiting spectral distribution spread in a region of width 1 and with edges which do not depend on β, we will take in this section σ =1/ √ Mβ. Using again Itô's formula for f (λ)µ t N (dλ)( w h e r eµ t N is still defined by Eq. (6.57)) and Eq. (6.10), we obtain

d f (x)µ t N (dx)= (-x +1)f (x)µ t N (dx)dt + 1 Mβ (2 -β) xf (x)µ s N (dx)dt (6.63) + q 2 f (x) -f (y)
xy (x + y)µ 

H t (z)= µ t N (dx) x -z .
We now apply (6.63)t ot h ep a r t i c u l a rf u n c t i o nf (x)=1 /(xz)a n dw et a k et h e expectation with respect to the b i ;E q . ( 6.63)r e w r i t e sa s

∂H t ∂t = H t + z ∂H t ∂z - ∂H t ∂z + 1 Mβ (2 -β) 2 ∂H t ∂z + z ∂ 2 H t ∂z 2 (6.64) + q ∂H t ∂z + H t 2 +2zH t ∂H t ∂z + q H 2 t -H t 2 + zq ∂ ∂z H 2 t -H t 2
where • denotes the expectation with respect to the Brownian motions b i .T h e two last terms come from the replacement of H 2 t by H t 2 in the third term of the right hand side of (6.66). By setting which can be rewritten as

F t (z)=H t (z) 2 -H t (z)
qH(z)[H(z)+2z dH dz ]+ 1 2 [H(z)+2z dH dz ]+ 1 2 H(z)( 6 . 6 8 ) + 1 2Mβ (2 -β)[3 dH dz +2z d 2 H dz 2 ]+ 1 2Mβ (2 -β)+(-1+q) dH dz + q F + z dF dz =0.
Eq. ( 6.68)c a nb ei n t e g r a t e de a s i l yb yd o i n gt h ec h a n g eo ff u n c t i o nG(z)= zH(z 2 ). Indeed, we just need to write (6.68)f o rz 2 instead of z and then multiply the corresponding equation by z to obtain the following equation

qG dG dz + 1 2 z dG dz + G + 1 4Mβ (2 -β) d 2 G dz 2 (6.69) + 1 2 1 2Mβ (2 -β)+(-1+q) 2z dH dz (z 2 )+qz F (z 2 )+z 2 dF dz (z 2 ) =0.
Equation (6.69)c a nbes t r a i g h t f o r w a r d l yi n t e g r a t e dw i t hr e s pe c tt oz as

qG 2 + zG + 1 2Mβ (2 -β) dG dz + 1 2Mβ (2 -β)+β(-1+q) G(z) z + qz 2 F (z 2 )=-1 (6.70)
where the integration constant is chosen so that zG(z) ∼-1w h e n|z|→∞ . Note that the asymptotic behavior for H is therefore also zH ∼-1w h e n|z|→∞as is expected for the Stieltjes transform of a probability measure. Rewriting now Equation (6.70)i nt e r mo ft h ef u n c t i o nH, we obtain

qH 2 + H 1+ 1 z q -1+ 1 M 2 -β β + 1 M 2 -β β dH dz + 1 z + qF(z)=0. (6.71)
Now, using the result about the noise in the Marčenko-Pastur law obtained in [START_REF] Lytova | Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF]b yL y t o v aa n dP a s t u r ,w ek n o wt h a ti nt h el i m i to fl a r g eM ,w eh a v ef o rβ =1 or 2,

F (z) ∼ 1 M 2 1 q 2 1 2βπ 2 γ + γ - γ + γ - dλdµ (λ -z) 2 (µ -z) 2 4q -(λ -(1 + q))(µ -(1 + q)) 4q -(λ -(1 + q)) 2 4q -(µ -(1 + q)) 2 (6.72) with γ ± =1+q ± 2 √ q.
The idea to obtain the correction to the Marčenko-Pastur law is to use perturbation theory in Eq. (6.71). More precisely, we want to compute explicitly the coefficients ρ 0 ,ρ 1 and ρ 2 such that the eigenvalue density of a β-Wishart matrix writes under the form, in the limit of large N, M with N/M = q,

ρ(λ)=ρ 0 (λ)+ 1 M ρ 1 (λ)+ 1 M 2 ρ 2 (λ)+o( 1 M 2 ) . (6.73) 
Note that this asymptotic expansion (6.73)i so b t a i n e db yp e r t u r b a t i o nt h e o r y and therefore is valid only for the values of λ such that the correction terms ρ 1 (λ)/M and ρ 2 (λ)/M 2 are negligible compared to the leading term ρ 0 (λ)inthelimitoflarge M ,i . e . f o rt h ev a l u e so fλ such that ρ 0 (λ) =0 . T h ee x p a n s i o n( 6.73)i sn o tv a l i d outside the Marčenko Pastur sea.

To this purp ose, we first write H(z)u n d e rt h ef o r m

H(z)=H 0 (z)+ 1 M H 1 (z)+ 1 M 2 H 2 (z)+o( 1 M 2 )( 6 . 7 4 ) 
and we plug Eq. (6.74)i n t oE q . ( 6.71). By solving the equation to leading order, we find the following expression for H 0 (z)

H 0 (z)= 1 2q -(z + q -1) + (z -γ -)(z -γ + ) z (6.75) = 1 2q -(z + q -1) + (z -(1 + q)) 2 -4q z .
We deduce from this the famous Marčenko-Pastur result: the eigenvalue density converges in the limit of large N, M with N/M = q to the Marčenko-Pastur density as expected given by

ρ 0 (λ)= 1 2πq (λ -γ -)(γ + -λ) λ .
For all value of β>0, we can now compute the 1/N correction to the Marčenko-Pastur density by plugging Eq. (6.74)in toEq. (6.71)andsolv etoorder1/M .T h i s gives the following expression for H 1 (z)

H 1 (z)=- 1 β - 1 2 1 q 1 2 1 z -γ + + 1 z -γ - - 1 (z -γ + )(z -γ -)
and the corresponding 1/N correction to the density is then given (for all β)b y

ρ 1 (λ)= 1 β - 1 2 1 q 1 2 (δ(λ -γ + )+δ(λ -γ -)) - 1 π dλ (λ -γ -)(γ + -λ) .
(6.76) For the particular value β =1or2,w ecanusetheresultofLyto v aandP astur stated above in Eq. (6.72)t oc o m p u t et h e1 /M 2 correction with the same method by solving the equation until order 1/M 2 .

Let us first compute an explicit expression for F (z)f r o mt h ei n t e g r a lr e p r e s e ntation in Eq. (6.72)

q 2 M 2 F (z)= 1 2βπ 2 4q γ + γ - 1 (λ -z) 2 dλ 4q -(λ -(1 + q)) 2 2 - γ + γ - dλ (λ -z) 2 λ -(1 + q) 4q -(λ -(1 + q)) 2 2 + o(1) = 1 2βπ 2 4q - π (z -γ -)(z -γ + ) 2z -γ --γ + (z -γ -)(z -γ + ) 2 - π 2 (z -γ -)(z -γ + ) 1 - 1 2 (2z -γ --γ + ) 2 (z -γ -)(z -γ + ) 2 + o(1) = 1 2β 1 (z -γ -)(z -γ + ) 4q (2z -γ --γ + ) 2 (z -γ -) 2 (z -γ + ) 2 - 1 - 1 2 (2z -γ --γ + ) 2 (z -γ -)(z -γ + ) 2 + o(1) = 1 2β 1 (z -γ -)(γ + -z) + o(1) .
Then we can turn to compute H 2 (z) and deduce from this computation the expression for ρ 2 (λ)

ρ 2 (λ)=-2 1 2 - 1 β 2 1 q 1 (λ -γ -)(γ + -λ) 1 2 1 λ -γ - + 1 λ -γ + - λ 2 1 (λ -γ -) 2 + 1 (λ -γ + ) 2 + 1 2qβ λ (λ -γ -) 3/2 (γ + -λ) 3/2 .

Conclusions

In summary, we proposed a random matrix model (invariant under similarity transformations) whose joint density of eigenvalues is given by the classical β-Wishart ensemble where the quantization of the Dyson index β is lifted. The procedure is constructive and is described in section 6.3.2.T h er e s u l t i n ge n s e m b l ei sb yc o n s t r u ction invariant under similarity transformations with Haar distributed eigenvectors.

The diffusive evolution equation for the eigenvalues involves the Dyson index of the ensemble as a free parameter. When letting it scale with the size M of the matrix, the spectral density of the ensemble becomes a one-parameter continuous family interpolating between the familiar Marčenko-Pastur distribution and a certain type of Gamma distribution. On the other hand, keeping the Dyson index unscaled but not quantized, we showed that a careful analysis of the full Stieltjes transform equation lead naturally to 1/N and 1/N 2 corrections (and possibly systematically to any order) to the average spectral density (Marčenko-Pastur) for all β =2.

Derivation of (6.16)

The Fokker Planck equation for the transition probability density P (λ 1 , ••• ,λ N ; t) of the process (λ 1 (t), ••• ,λ N (t)) which satisfies the stochastic differential system (6.15)w r i t e sa s

∂P ∂t = - N i=1 ∂ ∂λ i P -λ i + pM +(1-δ)p + p k =i λ i + λ k λ i -λ k +2 N i=1 ∂ 2 ∂λ 2 i [λ i P ] .
(6.77) The stationary solution is the solution which does not depend on time t,s a t i s f y i n g

- N i=1 ∂ ∂λ i P -λ i + pM +(1-δ)p + p k =i λ i + λ k λ i -λ k +2 N i=1 ∂ 2 ∂λ 2 i [λ i P ]=0. (6.78)
It is easy to check using elementary algebra that the jpdf P * defined in (6.16)verifies Eq. (6.77)a si nf a c tw ec a nv e r i f yt h a tf o ra l li,

2 ∂ ∂λ i [λ i P * ]=P * -λ i + pM +(1-δ)p + p k =i λ i + λ k λ i -λ k . (6.79)

Algorithmic description of how to build the process W n t in practice

Let us describe shortly an algorithmic description of how to build the process W n t in practice, on a discrete grid. First note that this algorithmic description needs a discrete grid and that it does not reproduce exactly the process W n t but only a discretized approximation of it. Choose a large value of n and an initial symmetric matrix W 0 . The construction is iterative. Suppose that the process is constructed until time k/n and let us explain how to compute the matrix W n (k+1)/n at the next discrete time of the grid, (k +1)/n. 

W n k/n = O n k/n Σ n k/n O n k/n †
where Σ n k/n is the diagonal matrix composed of the eigenvalues of W n k/n (in increasing order). The eigenvalues of the matrix W n k/n should be non negative as the eigenvalues process of W n t are almost surely non negative at all time t. However, due to the discretization scheme necessary for algorithmic procedure, the non negativity can fail. To avoid this problem, we define

W n k/n as W n k/n = O n k/n Σ n k/n O n k/n † (6.80)
where Σ n k/n is the diagonal matrix composed of the square roots of the absolute values of the eigenvalues of W n k/n (again in increasing order).

Step We sample the Bernoulli random variable

n k with P[ n k =1 ]=p = 1 -P[ n k =0].
3.

Step 3. It depends on the value of n k :

• if n k =1,w esampleaN ×N matrix G n filled with independent Gaussian variables with mean 0 and variance 1/n and then we compute the matrix W n (k+1)/n by the formula

W n (k+1)/n = 1 - 1 n W n k/n + W n k/n G n + G † n W n k/n + 1 n M I .
• if n k =0,w esampleN independent Gaussian variables (z 1 , ••• ,z N )with mean 0 and variance 1/n.W et h e nc o m p u t et h em a t r i xY n ,w h i c hi sc o diagonalizable with the matrix W n k/n ,d e fi n e da st h ep r od u c t

Y n := O n k/n Diag (z 1 ,z 2 ,...,z N ) O n k/n † . (6.81)
Finally we obtain the matrix W n (k+1)/n by

W n (k+1)/n = 1 - 1 n W n k/n + W n k/n Y n + Y † n W n k/n + 1 n δ I .
Chapter 7

Eigenvector dynamics: general theory and some applications 

Abstract

We prop ose a general framework to study the stability of the subspace spanned by P consecutive eigenvectors of a generic symmetric matrix H 0 , 159 eigenvector of H 0 ,theprobabilit ytojumptothejth eigenvector of H 1 , |φ 1 j ,attime t =1isgiv enb y|φ 1 j |φ 0 i | 2 , where we use the bra-ket notation for vectors and scalar products. The way energy is absorbed by the system will therefore be determined by the perturbation-induced distortion of the eigenvectors. More precisely, if |φ 0 i is different from |φ 1 i ,s o m et r a n s i t i o n sm u s tt a k ep l a c ei nt h en o n -a d i a b a t i cl i m i t , which involve all the states j that have a significant overlap with the initial state.

Another very relevant situation is Quantitative Finance, where the covariance matrix C between the returns of N assets (for example stocks) plays a major role in risk control and portfolio construction [START_REF] Bouchaud | Financial Applications of Random Matrix Theory: a short review[END_REF]. More precisely, the risk of a portfolio which invests w α in asset α is given by R 2 = αβ w α C αβ w β .C o n s t r u c t i n g l o w risk portfolios requires the knowledge of the n largest eigenvalues of C (n is often chosen empirically, keeping only the statistically meaningful eigenvalues which lie outside the Marchenko-Pastur sea, see [START_REF] Bouchaud | Theory of Financial Risk and Derivative Pricing From Statistical Physics to Risk Management[END_REF]f o rd e t a i l s ) ,λ 1 ... λ n and their corresponding eigenvectors |φ 1 ,...,|φ n . The top eigenvalues and eigenvectors represent the most risky directions in a financial context. A portfolio such that the vector of weights |w has zero overlap with the first n eigenvectors of C has a risk which is bounded from above by λ n+1 .T h ep r o b l e mw i t ht h i si d e ai st h a ti tr e l i e s on the assumption that the covariance matrix C is perfectly known and constant in time.T h eo b s e r v a t i o no fas u ffi c i e n t l yl o n gt i m es e r i e so fp a s tr e t u r n sw o u l dt h u s allow one, in such a stable world, to determine C and to immunize the portfolio against risky investment modes.

Unfortunately, this idea is thwarted by two (inter-related) predicaments: a) time series are always of finite length, and lead to substantial "noise" in empirical estimates of C [START_REF] Bouchaud | Financial Applications of Random Matrix Theory: a short review[END_REF] and b) the world is clearly not stationary and there is no guarantee that the covariance matrix corresponding to the pre-crisis period 2000-2007 is the same as the one corresponding to the period 2008-2011. For one thing, some companies disappear and others are created in the course of time. But even restricted to companies which exist throughout the whole period, it is by no means granted that the correlation between stock returns do not evolve in time. This is why it is common practice in the financial industry to restrict the period used to determine the covariance matrix to windows of a few years into the recent past. This leads to the measurement noise problem alluded above. Now, if the "future" large eigenvectors do not coincide with the past ones, a supposedly low risk portfolio will in fact be exposed to large risks directions in the future. Denoting as |φ 0 i the past eigenvectors and |φ 1 j the future ones, the total risk of the portfolio |w = |φ 0 i can be defined as N j=1 λ 1 j φ 1 j |φ 0 i 2 .T h e r e f o r e ,a sf o rt h eq u a n t u md i s s i p a t i o np r o b l e m , the statistics of the overlaps φ 1 j |φ 0 i is a crucial piece of information. In practice, one computes the empirical covariance matrix E using past stock returns, which is defined as:

E ij = 1 T T t=1 r t i r t j ,
where T is the length of the period on which the measurement is done and r t i is the return of stock number i on day t.I ft h et r u ec o v a r i a n c em a t r i xC exists and is stable in this period, the empirical matrix E can be seen as a perturbation of C, since one can write E = C + E where E is a matrix whose elements are of order 1/ √ T (by the central limit theorem) to be considered small as T is usually quite large. In this sense, the problem falls in the more general context introduced above.

The paper is organized as follows. In the next section 7.2,w ein troducethemain statistical tools and objects studied in different contexts in the following sections and we also briefly recall standard perturbation theory. In the next two sections, we turn to two explicit illustrations, first in the context of matrices in the Gaussian Orthogonal ensemble (GOE), and then in the context of covariance matrices. More precisely, in section 7.3,w es t u d yt h es t a b i l i t yo ft h ee i g e n v e c t o r sf o ram a t r i xH 0 in the GOE by computing the "overlap distance" between the perturbed space and the non-perturbed space in the limit of large matrices H 0 when the perturbation matrix P is also in the GOE. Furthermore, we are able to compute the full spectrum of the overlap matrix in this limit, which gives a precise idea of the perturbation induced distortion for the eigenvectors. In section 7.4,w eg ot h r o u g ht h es a m e steps in the context of covariance matrices. We study the link between the population eigenvectors (the eigenvectors of the true covariance matrix) and the sample eigenvectors (the eigenvectors of the empirical covariance matrix). Then, in section 7.5, we analyse more precisely the case of a population covariance matrix with an isolated top eigenvalue much larger than the other ones. We measure the empirical covariance matrix with an exponential moving average estimator and characterize the temporal evolution of the angle made by the top eigenvector and its true direction which defines an interesting new class of random processes. Finally, in section 7.6,w eapplyourideastotheanalysisoffinancialmark etcorrelations. Ourpurpose here is to study whether correlations between stock returns evolve or not. In particular, is there a constant in time correlation matrix (population correlation matrix)? Do the economical sectors (eigenvectors of the correlation matrix) evolve or not ? We find that there is indeed a genuine evolution of the correlation matrix of sto cks returns for different markets in the U.S, in Europe and in Japan, a result which confirms recent studies (see e.g. [START_REF] Balogh | Persistent collective trend in stock markets[END_REF][START_REF] Reigneron | Principal regression analysis and the index leverage effect[END_REF][START_REF] Münnix | Identifying States of a Financial Market[END_REF]). We also give a partial description of this temporal evolution.

Perturbation theory and Statistical tools

In this section, we first recall the perturbation theory for the eigenvalues and eigenvectors (see Eq. ( 7.3)a n d( 7.2)) when the perturbed matrix H 1 writes as in Eq. (7.1). Then we define the two main objects of the paper, the overlap matrix G and the overlap distance D (see Eq. (7.4) and (7.5)) useful for the comparison of the two perturbed and non perturbed eigen subspaces, that will be studied in different contexts in sections 7.3, 7.4 and also in 7.6 for financial applications. At the end of this section, we compute asymptotic expressions for the two objects G and D using the perturbation theory's equation for the eigenvectors, when the perturbation is of the form (7.1)( s e eE q . ( 7.7), (7.8)f o rt h em a t r i xG † G and (7.9)f o rt h ed i s t a n c e D). Those computations will be very useful later in sections 7.3 and 7.4.T h el a s t definition of the matrix Σ defined in Eq. ( 7.10)a n dt h ee x p r e s s i o n ( 7.11)f o ri t s entries in the perturbative regime will be convenient and used later.

In the whole paper, we will mainly be interested in the eigenvectors of a matrix H 1 which can be written as

H 1 = H 0 + εP (7.1)
where H 0 and P are two N × N symmetric matrices and ε as m a l l( p o s i t i v e )p arameter. The matrix H 0 is the true signal which is perturbed by the adding of the small term εP.T h em a t r i xH 1 will be referred as the perturbed matrix. The eigenvalues of the matrix H i ,i =0 , 1w i l lb ed e n o t e da sλ i 1 λ i 2 ... λ i N and the corresponding eigenvectors |φ i 1 ,...,|φ i N . Our aim is to describe the relation between the perturbed eigenvectors |φ 1 i and the non-perturbed eigenvectors |φ 0 i when the parameter ε tends to 0. When trying to follow the evolution of a given eigenvector |φ i when the small perturbation εP is added, one immediately faces a problem if the neighbouring eigenvalues of λ 0 i are too close to λ 0 i .F o re x a m p l e ,i ft h ed i s t a n c eb e t w e e nt h ee i g e n v a l u e s λ 0 i and λ 0 i+1 is very small, the eigenvectors |φ i and |φ i+1 will strongly hybridize (this phenomenon was observed for example in [START_REF] Vallejos | Orthogonality catastrophe in parametric random matrices[END_REF]Fig. 1]). The eigenvector |φ 0 i will in fact hybridize with all the perturbed eigenvectors |φ 1 j ,w i t hs t r o n g e ro v e r l a p sf o r those associated to eigenvalues λ 0 j ,j = i which are close to λ 0 i .T h i si d e ac a nb e made precise by using standard perturbation theory to second order in ε:t h ep e rturbed eigenvectors can be expressed in terms of the initial eigenvectors, for small ε,a s :

|φ 1 i = 1 - ε 2 2 j =i P ij λ 0 i -λ 0 j 2 |φ 0 i + ε j =i P ij λ 0 i -λ 0 j |φ 0 j (7.2) + ε 2 j =i 1 λ 0 i -λ 0 j =i P j P i λ 0 i -λ 0 - P ii P ij λ 0 i -λ 0 j |φ 0 j
where P ij ≡ φ 0 j |P|φ 0 i . The denominators λ 0 iλ 0 j remind us that the eigenvector |φ 0 i can have very large overlaps with the eigenvectors associated to the closest eigenvalues to λ 0 i . This fact makes difficult to follow the evolution of one single eigenvector in the case of small spacings between the eigenvalues (this will happen when the dimension of the matrix is large, see below). We mention in passing that perturbation theory to second order in ε for the eigenvalues gives

λ 1 i = λ 0 i + εP ii + ε 2 j =i P 2 ij λ 0 i -λ 0 j . (7.
3)

It is important to note at this point that equations (7.2)a n d( 7.3)a r ea priori only valid in the perturbative regime, i.e. when the entries of the perturbation matrix εP are small compared to the level spacing of the non-perturbed matrix H 0 .

T h i sc o n d i t i o ne n s u r e st h a tt h ea s y m p t o t i cc o r r e c t i o nt e r m sa p p e a r i n gi n( 7.2) and (7.3)a r es m a l lc o m p a r e dt ot h el e a d i n gt e r mo fo r d e r1c o r r e s p o n d i n gt ot h e non-perturbed system.

The idea is then to study the stability of a whole subspace V 0 spanned by 2p +1 several consecutive eigenv alues: {|φ 0 k-p ,...|φ 0 k ,...,|φ 0 k+p }.M o t i v a t e db y the above examples, we ask the following question: how should one choose q p such that the subspace V 1 of dimension 2q+1 spanned by the set {|φ 1 k-q ,...|φ 1 k ,...,|φ 1 k+q } has a significant overlap with the initial subspace? In order to answer this question, we consider the (2q +1)× (2p +1) rectangular matrix of overlaps G with entries:

G ij := φ 1 i |φ 0 j . (7.4)
The (2p +1) non zero singular v alues 1 s 1 s 2 ... s 2p+1 0o fG give full information about the overlap between the two spaces. For example, the largest singular value s 1 indicates that there is a certain linear combination of the (2q + 1) perturbed eigenvectors that has a scalar product s 1 with a certain linear combination of the (2p +1) unperturbed eigenvectors. If s 2p+1 =1,thentheinitial subspace is entirely spanned by the perturbed subspace. If on the contrary s 1 1, it means that the initial and perturbed eigenspace are nearly orthogonal to one another since even the largest possible overlap between any linear combination of the original and perturbed eigenvectors is very small. A good measure of what can be called an overlap distance D(V 0 ,V 1 )betweenthetwospacesV 0 and V 1 is provided by the average of the logarithm of the singular values:

D(V 0 ,V 1 ):=- i ln s i 2p +1 , (7.5) 
but alternative measures, such as 1i s i /(2p +1), can be considered as w ell. Since the singular values s are obtained as the square-root of the eigenvalues of the matrix G † G,o n eh a sD ≡-ln det G † G/2P ,w h e r ew eh e n c e f o r t hi n t r o d u c e for convenience the notations P =2 p +1, Q =2 q +1. The o v erlap distance D was originally studied for P = Q in [START_REF] Anderson | Infrared Catastrophe in Fermi Gases with Local Scattering Potentials[END_REF], see e.g. [START_REF] Hentschel | Fermi edge singularities in the mesoscopic regime: Anderson orthogonality catastrophe[END_REF][START_REF] Vallejos | Orthogonality catastrophe in parametric random matrices[END_REF], where a fundamental effect observed in many body systems, called the Anderson Orthogonality catastrophe (AOC) is introduced. Anderson [13]a d d r e s s e dt h eg r o u n ds t a t eo fafi n i t es y s t e m consisting of P noninteracting electrons. Upon the introduction of a finite rank perturbation matrix εP, this ground state gets modified. It is then shown that the overlap between the original and the modified P -electron ground state, which is in fact exactly given by our overlap distance D(V 0 ,V 1 )b e t w e e nt h et w os u b s p a c e sV 0 and V 1 (with P = Q), is proportional to a negative power of P ,a n dv a n i s h e si nt h e thermodynamic P → +∞ limit, hence the catastrophe. We will see that our idea of introducing a rectangular Q×P overlap matrix G enables to avoid this orthogonality catastrophe. Our objects introduced here will also allow us to revisit the AOC in the case of square matrices G showing that it occurs for the random matrix model studied in section 7.3 (AOC for this RM model is also studied in [START_REF] Vallejos | Orthogonality catastrophe in parametric random matrices[END_REF]). In [START_REF] Hentschel | Fermi edge singularities in the mesoscopic regime: Anderson orthogonality catastrophe[END_REF][START_REF] Vallejos | Orthogonality catastrophe in parametric random matrices[END_REF], the AOC is also investigated through random matrix models as in our paper. The main difference with [START_REF] Hentschel | Fermi edge singularities in the mesoscopic regime: Anderson orthogonality catastrophe[END_REF]i st h a tw ec o n s i d e rh e r ef u l lr a n kp e r t u r b a t i o ni n s t e a do f a localized perturbation of rank 1, for which one can do explicit computations (and so treat the non-perturbative regime).

As an interesting benchmark, consider the case when two subspaces W 0 and W 1 respectively of dimensions P and Q are constructed using randomly chosen orthonormal vectors in a space of dimension N .I nt h i sc a s e ,o n ee x p e c t sa c c i d e n t a l overlaps, such that the s i are in fact non zero, and therefore D(W 0 ,W 1 )i sfi n i t e . This distance can be calculated exactly using Random Matrix Theory tools in the limit N, P, Q →∞,w i t hα = P/N and β = Q/N held fixed. The result is [START_REF] Bouchaud | Large dimension forecasting models and random singular value spectra[END_REF]:

D RM T (W 0 ,W 1 )=- 1 0 ds ln(s) (s 2 -γ -) + (γ + -s 2 ) + βπs(1 -s 2 )
where

γ ± = α + β -2αβ ± 2 αβ(1 -α)(1 -β).
In other words, in that limit, the full density of singular values is known; all singular values are within the interval

[ √ γ -, √ γ + ]
. This provides a benchmark to test whether the two eigenspaces are accidentally close (D ≈ D RM T ), or if they are genuinely similar (D D RM T ). Endowed with the above formalism, we can now proceed to compute D(V 0 ,V 1 )in the case where the perturbation is small. Indeed equation (7.2)a l l o w su st oo b t a i n the overlap matrix G.K e e p i n go n l yt h er e l e v a n tt e r m st oo r d e rε 2 ,w efi n d :

1 G ij =    1 -ε 2 2 =i P i λ 0 i -λ 0 2 if i = j, εP ij λ 0 i -λ 0 j + ε 2 λ 0 i -λ 0 j =i P j P i λ 0 i -λ 0 - P ii P ij λ 0 i -λ 0 j if i = j. (7.6)
Using (7.6), we can also compute the matrix G † G to second order in ε,w eo b t a i n for i = j:

(G † G) ij = -ε 2
∈{k-q;...;k+q}

P i P j (λ 0 i -λ 0 )(λ 0 j -λ 0 ) , (7.7) 
and, for i = j:

(G † G) ii =1-ε 2 j ∈{k-q;...;k+q} P ij λ 0 i -λ 0 j 2 . (7.8)
It is then easy to derive the central result of our study: to second order in ε,t h e distance D(V 0 ,V 1 )be t w e e nt h ei n i t i a la n dpe r t u r be de i g e n s p a c e si s :

D(V 0 ,V 1 )= ε 2 2P
k+p i=k-p j/ ∈{k-q,...,k+q}

P ij λ 0 j -λ 0 i 2 . (7.9)
The matrices G and G † G are both close to the identity matrix as they should. Let us define the matrix Σ by

Σ = 1 ε 2 I -G † G (7.10)
whose elements write, using the previous perturbation equations for G † G (Eq. (7.7) and (7.8)), as

Σ ij =
∈{k-q;...;k+q} .11) One can note that the matrix Σ is positive definite and that its matrix elements are of order 1 when ε goes to 0.

P i P j (λ 0 i -λ 0 )(λ 0 j -λ 0 ) . ( 7 

Eigenvector stability in the GOE ensemble

We will now define a random matrix mo del for which we will apply the results of the previous section. Let H 0 be a random matrix of the Gaussian Orthogonal Ensemble (GOE), i.e. a matrix of size N × N with gaussian entries randomly chosen with the probability measure on the space of real symmetric matrices

P (dH 0 )=exp(- N 2σ 2 tr(H 2 0 )) dH 0 .
This definition implies that the matrix H 0 is symmetric with independent Gaussian entries above the diagonal with variance σ 2 /N on the diagonal and σ 2 /2N off diagonal.

The perturbation matrix is similarly defined as a random matrix of the GOE, independent of H 0 with the same variance profile for the entries.

We then define the perturbed matrix H 1 as before:

H 1 = H 0 + εP. (7.12)
It is very well known that the density of H 0 -eigenvalues ρ N (λ): =1 /N N i=1 δ λ i tends in the large N limit to the Wigner semi-circle law

ρ(dλ) ≡ 1 2π √ 4σ 2 -λ 2 dλ. (7.13)
For simplicity, we take σ 2 =2inthefollo wing.

Remark. Here the choice of a GOE random matrix for H 0 is made to get an explicit expression for the density of states in the limit of large matrices. But our theory developed in the following would apply for sequences of matrices (H 0 (N )) N such that the density of states converges to a general (not necessarily the semi-circle density) continuous density ρ(λ)dλ.M o r e o v e r , t h e s e q u e n c e ( H 0 (N )) N can be supposed deterministic or random. The matrix H 0 can be seen as the true signal to which a small noisy perturbation εP is added.

In this whole current section, ••• denotes an averaging over the random matrix P2 .

In the following subsection 7.3.1,w es t u d yt h eo v e r l a pd i s t a n c eD(V 0 ,V 1 )b etween two eigenspaces V 0 and V 1 (see below for definition) of the matrices H 0 and H 1 and we consider in particular its limit when the dimension N of the (GOE) random matrices H 0 , H 1 and P tends to infinity. In subsection 7.3.2,w es t u d y the spectrum of the matrix G † G introduced above in this context, and we characterize the limiting eigenvalue empirical distribution of G † G in the limit of large N .T h ec h a r a c t e r i z a t i o na p p e a r si ne q u a t i o n( 7.20)w h i c hi sa ne q u a t i o n( w i t ha unique solution) satisfied by the Stieltjes transform (or resolvent) of the limiting probability measure. Then, in the following subsection 7.3.3,w ea n a l y s ee q u a t i o n (7.20) and its solution in great details so as to extract informations on the density of this distribution (it has a compact support, values of its edges,... ).

Distance between subspaces of perturbed and nonperturbed eigenvectors

We consider the subspace V 0 of initial eigenvectors corresponding to all the eigenvalues λ contained in a certain finite interval Using formula (7.9), which is valid if the entries of the perturbation matrix εP (of order εN -1/2 )a r em u c hs m a l l e rt h a nt h em e a nl e v e ls p a c i n go ft h em a t r i xH 0 , of order (Nρ(λ)) -1 ,w ec a nw r i t ef o rε N -1/2 :

D(V 0 ,V 1 )= ε 2 2P λ 0 i ∈[a;b] λ 0 j ∈[a-δ;b+δ] 1 (λ 0 j -λ 0 i ) 2 . (7.14)
It is easily seen that Eq. (7.14)be c o m e s ,i nt h el a r g eN limit:

D(V 0 ,V 1 )= ε 2 2 b a ρ(λ)dλ b a dλ [-2;2]\[a-δ;b+δ] dλ ρ(λ)ρ(λ ) (λ -λ ) 2 , (7.15)
where ρ is the Wigner semicircle density (7.13). Formula (7.15)i sap r i o r io n l yr i g o r o u s l yv a l i di nt h epe r t u r b a t i v er e g i m ew h e r e ε N -1/2 .W ea r g u et h a ti nf a c ti tr e m a i n sv a l i di naw i d e rr e g i m ew h e r eε 1. Indeed although perturbation theory for the eigenvectors fails for H 0 eigenvalues which are at distance of order of the mean level spacing of H 0 ,i tr e m a i n sv a l i d in the limit ε 1 for eigenvalues at distance large compared to the order of the perturbation entries εN -1/2 and in particular for two eigenvalues lying respectively in the two well separated intervals [a; b]a n d[ aδ; b + δ]f o rw h i c ht h i sd i s t a n c ei s larger than δ (which indeed is εN -1/2 ). We see that every terms appearing in (7.2)correspondingtoo v erlapbet w eeneigen v ectorsassociatedtoeigen v alueswhic h are at distance smaller than δ disappear in formulas (7.9)( a n da l s oi n( 7.7), (7.8)). Therefore, we expect (7.15), as well as our results below, to remain valid in the regime N -1/2 ε 1, provided the computed distance D(V 0 ,V 1 )i t s e l fr e m a i n s much smaller3 than unity. We checked formula (7.15) using numerical simulations, with very good agreement for different values of a, b, δ, N, ε.I nt h o s en u m e r i c a lt e s t s we chose the parameters N, ε, δ so as to approach the regime N -1/2 ε 1( f o r example, N =4000,ε =0.1,δ =0.5).

We will now write D(a, b; δ, ε)i n s t e a do fD(V 0 ,V 1 ).

It is interesting to study the above expression in the double limit δ → 0a n d ∆=ba → 0. One finds:

1 ε 2 D(a, a +∆;δ, ε) ≈ ρ(a)ln(∆/δ) ∆ if δ ∆ 1, ρ(a) δ if ∆ δ 1. (7.16)
In the second case where ∆ δ 1, this last expression shows that when the width ∆ of interval [a, b]tendstozero,thecorrespondingeigen v ectorsarescattered in a region of width δ much larger than ∆ itself as soon as ε √ δ.I nt h efi r s t case, it shows that for fixed ∆, the distance D diverges logarithmically when δ → 0. This is a consequence of the small spacings between the (non-perturbed) eigenvalues close to the boundaries of the two intervals [a; b]a n d[ aδ; b + δ]. When δ>0, these spacings remains larger than the fixed distance δ>0a n dD remains finite.

When δ =0,w ecandoamorepreciseanalysisoftherigh thandsideof (7.14). One can show, for large N , that the following result holds at least in the regime

ε N -1/2 : 1 ε 2 D(a, b; δ =0,ε) ≈ ln N ρ(a) 2 + ρ(b) 2 2 b a ρ(λ)dλ + A(a, b)( 7 . 1 7 )
where A(a, b) is a constant independent of N which can be explicitly computed, and involves the well known two-point function g(r)w h i c hd e s c r i b e st h el e v e l -l e v e l correlations in the GOE (see Appendix A for the details of this computation). The ln N term can be guessed from the logarithmic behavior of D when δ → 0, since one indeed expects the divergence to be cut off when δ becomes of the order of the level spacing, i.e. δ ∼ (Nρ) -1 .E q .( 7.17) is precisely the Anderson orthogonality catastrophe as first introduced in [START_REF] Anderson | Infrared Catastrophe in Fermi Gases with Local Scattering Potentials[END_REF]inthecaseoffiniterankperturbationmatrices.

We recover here exactly the result of [START_REF] Vallejos | Orthogonality catastrophe in parametric random matrices[END_REF](seetheirEq. ( 31))bytakinga = -2,b = 0i no u rE q . ( 7.17). 4As a side remark, we note that Eq. ( 7.16) predicts that when δ ∆, a fraction ε 2 /δ of the original eigenspace gets shoved away at distances larger than δ (in eigenvalue space). In the context of the non adiabatic evolution of a quantum system [START_REF] Belinschi | The classical normal distribution is -infinitely divisible[END_REF], this implies that the energy of the system makes jump with a power-law distribution of sizes that decays as δ -2 ,sinceb ytheabo v eargumen tthecum ulativ edistribution decays as δ -1 . This means that under an extreme non-adiabatic process, the energy is not diffusive but rather performs a "Cauchy flight" (i.e. a Lévy flight with a tail exponent equal to 2), see [START_REF] Wilkinson | Statistical aspects of dissipation by Landau-Zener transitions[END_REF].

Full distribution of the singular values of the overlap matrix

To order ε 2 ,t h ed i s t a n c eD computed in the previous subsection is proportional to the mean position of the singular values. One can actually be much more precise and compute, for N →∞,thefull distribution of all singular values,givinganindication of their scatter around the mean position s.T h e c o m p u t a t i o n o f t h e d e n s i t y of states (DOS) can be straightforwardly performed using free random matrices techniques.

We have already seen in Eq. ( 7.11)t h a tt h ee n t r i e so ft h em a t r i xΣ,d e fi n e di n (7.10), write in the perturbative regime ε √ N 1a s : 5

Σ ij = ∈{k-q;...;k+q}

P i P j (λ i -λ )(λ j -λ ) (7.18)
Denote, for each ∈ {kq; ...; k + q} by v the random Gaussian vectors of

R P v = P ,k-p λ k-p -λ , P ,k-p+1 λ k-p+1 -λ ,..., P ,k+p λ k+p -λ † .
It is easily seen that in fact (changing to the equivalent notation for the summation on in term of a, b) Σ=

:λ ∈[a-δ;b+δ] v v †
This matrix v v † is clearly the matrix of a projector on v and has only one non-zero eigenvalue which is equal to

σ(λ )=||v || 2 2 =
j∈{k-p;...;k+p}

P j λ j -λ 2
authors of [START_REF] Vallejos | Orthogonality catastrophe in parametric random matrices[END_REF] explain that the failure of (7.17) for not small enough x is due to the first-order perturbation theory estimate that breaks down when used for levels in the vicinity of the edges a, b of the initial interval. This problem was avoided previously by the use of rectangular matrices with Q>P and the introduction of the δ margin at the edges a and b. 5 We skip the subscript 0 on the eigenvalues λ i s.

which can be approximated in the limit of large matrices (P →∞)b y

σ(λ ) → b a dλ ρ(λ) (λ -λ ) 2 .
The resolvent Z (z)

≡ 1 P tr((z -v v † ) -1 )o ft h em a t r i xv v † is equal to: 6 Z (z)= 1 P 1 z -σ(λ ) + P -1 z .
The Blue function, which by definition is the functional inverse of the resolvent B (Z (z)) = z,c a nbec o m p u t e dt ofi r s to r d e ri n1 /P :

B (z)= 1 z + 1 P σ(λ ) 1 -σ(λ )z
Finally, the Red function, defined as R (z) ≡ B (z) -1 z ,i sg i v e nb y :

R (z)= 1 P σ(λ ) 1 -σ(λ )z
The trick, coming from the theory of free matrices, is to use the additive property of the Red function (also called R-transform) for the asymptotically free matrices v v † .E s s e n t i a l l y ,t h eR -t r a n s f o r mo ft h em a t r i xΣ can be computed as the sum of the R-transforms of the matrices v v † : R(z)= ∈{k-q;...;k+q} R (z)= 1 P ∈{k-q;...;k+q}

σ(λ ) 1 -σ(λ )z
Finally, the Blue function of Σ is:

B(z)= 1 z + 1 P ∈{k-q;...;k+q} σ(λ ) 1 -σ(λ )z
which can be approximated in the limit of large P as:

B(z)= 1 z + 1 N b a [-2;2]\[a-δ;b+δ] dλ ρ(λ)σ(λ) 1 -σ(λ)z . (7.19)
where we note here and below N b a := b a ρ(λ)dλ.R e w r i t i n ge q u a t i o n ( 7.19)i nt e r m s of the resolvent gives our central result:

z = 1 Z(z) + 1 N b a [-2;2]\[a-δ;b+δ] dλ ρ(λ)σ(λ) 1 -σ(λ)Z(z) . (7.20)
Equation (7.20) characterizes the density of states of the matrix Σ in the limit of large dimension. We ran numerical simulations to test the validity of Eq. (7.20) in the regime 1/ √ N ε 1, see Fig. 7.1. The agreement is excellent. It would be interesting to run this numerical test for very large values of N (here we took N = 4000) so as to fully reach the regime 1/ √ N ε 1. However, this becomes numerically demanding, and we leave this study for future work.

We now want to extract the qualitative informations about the distribution of all singular values of the matrix G from this equation. In particular, we will show in the next subsection that the density of singular values has a compact support for which we characterize the left and right edges. We also study the shape of this distribution in the two asymptotic regimes ∆ δ and δ ∆ 1. the matrix Σ (computed with 15 independent samples). The red curve is the theoretical corresponding density for r(s) obtained by solving numerically (7.20). For this figure, we chose a =0 ,b =0 .5, δ =0 .5. We chose the parameters N and ε so as to approach the "less perturbative" regime where 1/ √ N ε 1 for this figure as N = 4000 and ε =0.1.

Qualitative properties of the spectrum of Σ Right and Left edges

The relation between the resolvent Z and the density of states r(s)o ft h em a t r i xΣ is lim ω→0 Z(siω)=πr(s),s ∈ R. Note that one should not confuse the density of states ρ(λ)o ft h eo r i g i n a lm a t r i xH 0 with the density of eigenvalues r(s)o fΣ.

From equation (7.20), we can derive a system of equations for the real (g(s)) and imaginary (r(s)) parts of Z(s), for ω → 0:

s = g(s) g(s) 2 + π 2 r(s) 2 + 1 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x)(1 -σ(x)g(s)) (1 -σ(x)g(s)) 2 + σ(x) 2 π 2 r(s) 2 , (7.21) 0=r(s)    -1 g(s) 2 + π 2 r(s) 2 + 1 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x) 2 (1 -σ(x)g(s)) 2 + σ(x) 2 π 2 r(s) 2    . (7.22)
The second equation (7.22)a l w a y sa d m i t st h es o l u t i o nr =0 . P l u g g i n gr =0 into the first equation gives:

s = 1 g(s) + 1 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x) 1 -σ(x)g(s) (7.23) 
Equation (7.23)i m p l i e st h ea s y m p t o t i cr e l a t i o ng(s) ∼ s→∞ 1/s and therefore large positive values of s correspond to small values of g(s). Set

m 0 ≡ max x∈[-2;2]\[a-δ;b+δ] σ(x), (7.24) 
the Right Hand Side (RHS) of the above equation is well defined provided g(s) ∈ (0; 1/m 0 ) . However, when g(s) → 0 + or when g(s) → (1/m 0 ) -, the RHS tends to +∞.T h u s ,o nt h ei n t e r v a lg(s) ∈ (0; 1/m 0 ), the RHS must reach a minimum which corresponds to the right edge of the density of states. The point ḡ ∈ (0; 1/m 0 )f o r which this minimum is reached verifies:

- 1 ḡ2 + 1 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x) 2 (1 -σ(x)ḡ) 2 =0, (7.25)
and we can compute the right edge of the spectrum s max from: .26) We can now turn to the left edge of the sp ectrum. Equation (7.23)i m p l i e sa l s o the asymptotic relation g(s) →-∞when s → 0andthereforesmallpositiv ev alues of s correspond to large negative values of g(s). The RHS of equation (7.23)i sw e l l defined for negative values of g(s); it goes to 0 -for very large and negative values of g(s), and goes to -∞ for g(s)=0 -,s oi th a sap o s i t i v em a x i m u ms o m e w h e r e in between. The value of this maximum corresponds to the left edge of the density of states and can be computed numerically like for the right edge. The point g ∈ (-∞;0) for which this maximum is reached verifies the same equation as ḡ above, and the left edge s min is now given by:

s max = 1 ḡ + 1 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x) 1 -σ(x)ḡ . ( 7 
s min = 1 g + 1 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x) 1 -σ(x) g . (7.27)

Small fluctuations regime ∆ δ

We first consider the case where ∆ ≡ b-a δ,correspondingtoP Q,inparticular the dimension of the perturbed subspace is much larger than the dimension of the unperturbed space and so the perturbed space almost surely spans the unperturbed subspace. We therefore expect small fluctuations in this regime. Equation (7.20) can be solved explicitly in this case. It is in fact possible to perform an asymptotic expansion in σ(x), which is very small compared to 1 for all x ∈ [-2; 2] \ [aδ; b + δ] and then to solve equation (7.20). More precisely, in this regime, we have for all x ∈ [-2

; 2] \ [a -δ; b + δ]: σ(x) ≈ ρ(a) (x -a) 2 ∆ .
We plug this approximation in equation (7.20) to obtain

z = 1 Z(z) + ∆ × ρ(a) N b a [-2;2]\[a-δ;b+δ] dx ρ(x) (x -a) 2 -∆ × ρ(a)Z(z) ≈ 1 Z(z) + [-2;2]\[a-δ;b+δ] dx ρ(x) (x -a) 2 +∆× ρ(a)Z(z) [-2;2]\[a-δ;b+δ] dx ρ(x) (x -a) 4 . Now setting A ≡ [-2;2]\[a-δ;b+δ] dx ρ(x) (x-a) 2 and B ≡ ∆ × ρ(a) [-2;2]\[a-δ;b+δ] dx ρ(x) (x-a) 4
, we see that Z(z)i ss o l u t i o no ft h epo l y n o m i a le q u a t i o no fd e g r e et w o :

BZ(z) 2 +(A -z)Z(z)+1=0.
(7.28) For z = s ∈ R,t h i se q u a t i o nh a ss o l u t i o n sw i t hn o n -z e r oi m a g i n a r yp a r to n l yi f s

∈ [A -2 √ B; A +2 √ B]
, which are given by

Z(z)= -A + s ± i 4B -(A -s 2 ) 2B .
Using the relation lim ω→0 Z(siω)=πr(s)f o rs ∈ R, we find that r(s)i nt h i s regime is given by the semi-circle law

r(s)= 1 2Bπ 4B -(A -s) 2 ,A -2 √ B<s<A+2 √ B. (7.29)
This result is consistent with (7.15)s i n c e ,i nt h i sr e g i m e ,D(a, b; δ)=ε 2 A.

Note that in the particular regime ∆ δ 1, the quantity B is proportional to ∆/δ 3 and is therefore much smaller than A 2 ∝ 1/δ 2 ,m e a n i n gt h a tr(s)b e c o m e s concentrated around s = A, with fluctuations of order ∆/δ 3 .T h i sr e s u l ti sa l s o consistent with the direct calculation of the root-mean squared fluctuations of s,a s obtained in Appendix B, see equation (7.61). the matrix Σ (computed with 100 independent samples). The red curve is the theoretical corresponding density for r(s) in small fluctuations regime given by (7.29). The blue curve represents also the theoretical density r(s) but computed numerically by solving directly the system (7.21) and (7.22). For this figure, we chose a =0,b =0.01, ∆=0.01,δ = 1.

Strong fluctuations regime δ ∆ 1

To simplify notations, we will suppose in the following that a and b are such that ρ(a) ρ(b). Let us first consider the right edge s max as given by (7.26). We need to find an asymptotic expansion in this regime of the ḡ ∈ (0; 1/m 0 )w h i c hv e r i fi e s (7.25). So we start by defining α := ḡm 0 ∈ (0; 1) and investigate its behavior when δ ∆ 1. Since m 0 ∼ δ→0 ρ(a)/δ,e q u a t i o n( 7.25)n o wr e w r i t e sa s

α 2 δ 2 ρ(a) 2 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x) 2 (1 -α σ(x) m 0 ) 2 ∼ 1 .
(7.30)

In the limit ∆ 1, it is easy to see that the function σ can be written for x<aas

σ(x)= ρ(a) a -x f a -x ∆ , (7.31) 
where the function f verifies f (u) ∼ u→0 1a n df (u) ∼ u→∞ 1/u. Using (7.31), we can write a-δ

-2 dx ρ(x)σ(x) 2 (1 -ασ(x) δ ρ(a) ) 2 = ρ(a) 2 a-δ -2 dx ρ(x)f 2 ( a-x ∆ ) (a -x -αf ( a-x ∆ )δ) 2 = ρ(a) 2 ∆ a+2 ∆ δ ∆ du ρ(a -u∆)f 2 (u) (u -α δ ∆ f (u)) 2 ,
where we did the change of variables u =( ax)/∆f o rt h el a s tl i n e . I nt h el i m i t δ ∆ 1, this last integral is dominated by the region where u is small and f (u) ∼ 1. We thus have a-δ

-2 dx ρ(x)σ(x) 2 (1 -ασ(x) δ ρ(a) ) 2 ∼ ρ(a) 3 ∆ +∞ 0 du (u -α δ ∆ ) 2 ∼ ρ(a) 3 δ 1 1 -α .
Then, using (7.30)a n dw i t ht h es a m ea r g u m e n tn o wf o rx>b,w eg e t α =1-2δ ∆ .

The corresponding ḡ is ḡ = δ/ρ(a)(1 -2δ/∆) and plugging this value of ḡ in (7.26) gives

s max ∼ ρ(a) δ + 1 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x) 1 -σ(x)ḡ .
But, it is plain to check that the second term is of order at most ln(δ/∆)/∆ 1/δ in the limit δ ∆ 1. The determination of s min proceeds similarly, and the calculations are detailed in Appendix C. The final result is that

s min = cρ(a) ∆ ,
where c>0i san u m be ro fo r d e ru n i t yw h i c hc a nbed e t e r m i n e di fn e e d e d .

To summarize, in this regime, the minimum and maximum eigenvalues s min and s max of the random matrix Σ are asymptotically given by: We verified the result for s max (δ) with numerical simulations (see Fig. 7.4).

s min ∼ cρ(a) ∆ s max ∼ ρ(a) δ .
Together with the exact result on the average value of r(s)i nt h i sr e g i m e( g i v e n by D(a, a +∆;δ)/ε 2 ) and its variance computed in Appendix B, we conjecture that the asymptotic behaviour of r(s)i nt h er e g i o ns min s s max is given by:

r(s) ∝ s min s 2 . (7.32)
Since the integral of sr(s)islogarithmicallydivergent(butcut-offats min and s max ), it is easy to see that this form reproduces exactly the logarithmic behavior of D(a, a+ ∆; δ)i nt h i sr e g i m e ,s e ee q u a t i o n ( 7.16). On the other hand, the integral of s 2 r(s) is dominated by its upper bound, leading to a variance of the spectrum given by s min ×s max , in agreement with the exact result obtained in Appendix B, see equation 7.60. Therefore, in this regime, the situation is particularly interesting: while most eigenvalues are close to s min ,t h e r ei sas l o wp o w e r -l a wt a i li nr(s)w h i c hm a k e s the average of s logarithmically divergent when δ → 0. This is why we call this as t r o n gfl u c t u a t i o nr e g i m e : t h e' o v e r l a p 'd i s t a n c eD between the initial and the target spaces is large because a relatively small number of directions are completely lost.

Eigenvector stability for covariance matrices

In the next subsection, we do essentially the same study as in the previous section 7. 3 for another random matrix model. There is a small difference with the previous study as the spectrum of the matrices introduced below has some isolated eigenvalues as well as a continuous part. The study of the eigenvectors associated to eigenvalues in the continuous part (that we call the "sea") is very similar to the previous study. The isolated eigenvectors have to be treated separately (see the paragraph Isolated eigenvectors).

In the next subsection 7.4.2,w ec o m p u t et h eo v e r l a pd i s t a n c eD between two eigenspaces generated by the top isolated eigenvectors of the empirical covariance matrix and the true covariance matrix. The formulas that we obtain are (7.38)a n d (7.39) and will be used later in the section 7.6 on application to financial data.

We end this subsection 7.4.2 by doing a different analysis of the stability of eigenspaces through the spectral projectors. The formulas that we will use later for applications are about the spectrum of the mean spectral projectors (7.42)a n d (7.43).

Eigenvectors of Spiked matrices

In this subsection, we will assume that (C N )i sas e q u e n c eo fp o s i t i v ed e fi n i t em atrices. We will denote by λ N 1 ,...,λ N N the eigenvalues of (C N )i nd e c r e a s i n go r d e r and we will suppose that • there exists a fixed number k<N, q ∈ (0; 1) and (λ

1 > ••• >λ k > (1 + √ q) 2 ) such that (λ N 1 ,...,λ N k ) → N →∞ (λ 1 ,...,λ k ).
• the empirical measure µ N ≡ 1 N N i=k+1 δ λ i converges in the limit of large N, T with N/T = q to the Marchenko-Pastur distribution whose density with respect to Lebesgue measure is given by

ρ(x) ≡ 1 2πqx (γ + -x)(x -γ -),a < x < b ,
where

γ -≡ (1 - √ q) 2 and γ + ≡ (1 + √ q) 2 .
For each N , C N is the true covariance matrix (also called "population covariance matrix"). This particular choice for the shape of the matrices C N is rather natural in view of applications. For example, in financial market, the correlation (or covariance) matrix has k isolated eigenvalues well separated from the other eigenvalues which form the noisy part of the spectrum (Marchenko-Pastur sea or the bulk).

We now consider the asso ciated empirical covariance matrix E N defined as:

E N,ij ≡ 1 T T t=1 r t i r t j
where the (r t 1 ,...,r t N ), 1 t T are i.i.d. Gaussian vectors of covariance C N . The question we ask in this subsection is: how close are the eigenvectors of E N to those of the matrix C N ? In the following two paragraphs, we treat the two cases of the eigenvectors associated to eigenvalues in the Marchenko-Pastur sea and of those associated to the isolated eigenvalues λ 1 ,...,λ k .

This question falls under the scope of section 7.2 since the matrix E N can be written as a perturbation of the matrix C N .I n d e e dw eh a v e : .33) and the matrix elements of E are (because of the Central Limit Theorem) of order 1/ √ T which is much smaller than 1 as T is large. However, this problem is of different nature than the one treated in section 7.3 because of the non-trivial dependance structure for the matrix elements of the perturbation matrix E.I ti sg i v e nb y

E N = C N + E N , with E N,ij = 1 T T t=1 r t i r t j -C N,ij . ( 7 
E N,ij E N,k =(C N,ik C N,j + C N,i C N,jk )/T. (7.34)
In the whole current section, ••• denotes an averaging over the r t i .

Eigenvectors in the Marchenko-Pastur sea

The results of subsections 7.3.1, 7.3.2 and 7.3.3 can be extended to this context. We consider the subspace of eigenvectors of C N corresponding to all the eigenvalues λ contained in a certain finite interval [a, b]i n c l u d e di nt h eM a r c h e n k o -P a s t u rs e a [γ -,γ + ]. We want to compute the distance D between this subspace and the subspace spanned by the perturbed eigenvectors of E N corresponding to all eigenvalues of

E N contained in [a -δ, b + δ],
where δ is a positive parameter. Using formula (7.9)a sb e f o r e ,w efi n dt h a ti nt h el i m i to fl a r g eN, T (with N/T = q), as soon as δ>0, the mean overlap distance D is given (using (7.34)f o rt h ea v e r a g i n g )b y : For the singular value density of states r(s), the resolvent of the matrix Σ defined as Σ ≡ T (I -GG † )n o wv e r i fi e s :

D(a, b; δ) ∼ 1 2TN b a b a dλ [-2;2]\[a-δ;b+δ] dλ λλ ρ(λ)ρ(λ ) (λ -λ ) 2 , ( 7 
z = 1 Z(z) + 1 N b a [-2;2]\[a-δ;b+δ] dλ ρ(λ)ν(λ) 1 -ν(λ)Z(z) (7.36)
where ν is defined as ν(λ) ≡ λ b a dx ρ(x) (x-λ) 2 . As before, it is easy to show that the density of states of Σ is compactly supported and to find numerical evaluations of the left and right edges. One can also study the limit shape of the density of states in the two regimes ∆ δ and δ ∆ 1, with results very similar to the GOE ones above.

The matrix GG † in this case gives a precise information on the relationship between the eigenvectors of the population covariance matrix (or true covariance matrix) C N and the eigenvectors of the sample covariance matrix E N .P r e v i o u s works along these lines can be found in [START_REF] Ledoit | Eigenvectors of some large sample covariance matrix ensembles[END_REF][START_REF] Bai | Spectral Analysis of Large dimensional random matrices[END_REF].

Isolated eigenvectors

In this paragraph, we now consider the case of eigenvectors associated to isolated eigenvalues λ 1 ,...,λ k .W ed e n o t eb y|φ 1 , |φ 2 ,...,|φ k the corresponding eigenvectors of C N and by |φ 1 , |φ 2 ,...,|φ k7 the corresponding eigenvectors of E N . To understand precisely how the |φ i decompose in the basis of the |φ j in the limit of large N ,w ew a n tt oc o m p u t et h el i m i to ft h ea v e r a g el oc a ld e n s i t yo fs t a t e s for each state |φ i (1 i k), that is the probability measure

ν (i) N (λ) ≡ 1 N N j=1 φ i |φ j 2 δ(λ -λ j )
where •••denotes an average over E N .T h i se x p r e s s e st h ew a y|φ i is scattered over the unperturbed eigenvectors.

Perturbation theory again allows to compute the quantities φ i |φ j 2 for i = j:

φ i |φ j 2 = φ i |E|φ j 2 (λ N i -λ N j ) 2 = 1 T λ N i λ N j (λ N i -λ N j ) 2 ∼ N →∞ 1 T λ i λ j (λ i -λ j ) 2 ,
and for i = j,

φ i |φ i 2 =1- k =i φ i |E|φ k 2 (λ N i -λ N k ) 2 ∼ N →∞ 1 - 1 T k =i λ i λ k (λ i -λ k ) 2 .
Note that the random variables φ i |E|φ j ,i = j are uncorrelated. Thus, the local density of states ν

(i)
N has k atoms and (for large N, T with N/T = q)a d m i t sa continuous density in the Marchenko-Pastur sea. The atom are localized on the λ j ,j =1,...,k and have weights 1 T λ i λ j (λ i -λ j ) 2 for j = i.T h ec o n t i n u o u sd e n s i t yi nt h e Marchenko-Pastur sea [γ -,γ + ]i sg i v e nb y :

1 T λ i λ (λ i -λ) 2 ρ(λ)dλ, γ -<λ<γ + . (7.37)
This asymptotic for the probability measure ν

N has been verified with numerical simulations.

Stability of eigenspaces

We now want to characterize the stability of the subspace spanned by the eigenvectors associated to the (largest) isolated eigenvalues. The theory we develop here provides a precise estimate of the amount of eigenspace instability induced by measurement noise. This sets a benchmark that will allow us to detect any extra dynamics of the eigenvectors of the correlation matrix of stock returns in financial markets not explained by measurement noise and therefore attributable to a genuine evolution of the market (see section 7.6).

As shown by Eq. (7.33) above, the sample covariance matrix E8 is a perturbed version of C. Using again the framework of section 7.2,onecancalculatethedistance (or overlap) between the top P eigenvectors of the true correlation matrix C and the top Q9 eigenvectors of the empirical correlation matrix E.

Provided T is large enough for the above perturbation theory to be valid, and upon averaging over the measurement noise, one gets the following expression for the overlap distance D:

D(P, Q)= 1 2TP P i=1 N j=Q+1 λ i λ j (λ i -λ j ) 2 , (7.38) 
where the λ i sa r et h ee i g e n v a l u e so fC,i nd e c r e a s i n go r d e r . Note that one can extend the previous result (7.38)tothecasewherethevectors (r t 1 ,...,r t N ),t 0a r ed i s t r i b u t e da c c o r d i n gt oam u l t i v a r i a t eS t u d e n td i s t r i b u t i o n with ν-degrees of freedom and covariance matrix C. In this case 10 ,E q . ( 7.38) becomes

D(P, Q)= ν -2 ν -4 1 2TP P i=1 N j=Q+1 λ i λ j (λ i -λ j ) 2 .
(7.39)

Note that the Gaussian case corresponds to ν →∞ .F o rν → 4 + ,o nt h eo t h e r hand, fluctuations become divergent.

In practice for applications (see section 7.6), one does not know the true correlation matrix C and thus it is in fact not possible to compute empirically the overlap distance between the eigenvectors of C and the eigenvectors of the empirical correlation matrix E. However, if one is given a time series of empirical correlation matrix (E t ) t 0 defined for all t as

E t ij = 1 T T u=1 r t+u i r t+u j , (7.40) 
where, (r v 1 ,...,r v N ),v 0 are independent Gaussian vectors of covariance matrix C, one can similarly define the distance between the eigenspaces of two independent sample covariance matrices E s and E t (determined on two non overlapping time periods, i.e. such that |t -s| >T). In this case, the above formula Eq. (7.38)i s simply multiplied by a factor 2.

For the comparison b etween the eigenvalues of E s and E t ,o n ec a ns h o wu s i n g perturbation theory (see equation (7.3)a n da l s oe q u a t i o n( 7.34)f o rt h ea v e r a g i n g ) that the measurement noise is, for T large enough, given by:

(λ s i -λ t i ) 2 |t-s|>T ≈ 4λ 2 i T . (7.41) 
where the λ i are the eigenvalues of the matrix C measured empirically using the whole period of time and where ••• |t-s|>T denotes an empirical average over all s, t such that |t -s| >T. As before, if the vectors (r v 1 ,...,r v N ),v 0a r ed i s t r i b u t e d according to a multivariate Student distribution with ν-degrees of freedom and covariance matrix C,o n efi n d sa ne x t r am u l t i p l i c a t i v et e r m( ν -2)/(ν -4) in (7.41).

Another characterization of the stability of eigenspaces was proposed by Zumbach [START_REF] Zumbach | The empirical properties of large covariance matrices[END_REF]. The idea here is to study the stability of the spectral projectors associated to the top k eigenvalues. The spectral projector of rank k associated to the top k eigenvalues is defined as follows:

χ k = k i=1 |φ i φ i | ,
10 see e.g. Eq. (9.28) p. 154 of [START_REF] Bouchaud | Theory of Financial Risk and Derivative Pricing From Statistical Physics to Risk Management[END_REF] that replaces Eq. (7.34) above.

where the |φ i ,i ∈{1,...,k} are the eigenvectors of C. As before the true spectral projector χ k is measured through an empirical covariance matrix E and the resulting spectral projector χ k will be affected by measurement noise. The aim is again to compute properties of this spectral projector χ k ,s oa st ob ea b l et os e p a r a t et h e measurement noise effect from a true temporal evolution of the matrix C.

Using perturbation theory in Eq. (7.33), we have:

χ k = k i=1 |φ i φ i | = k i=1 1 - j =i φ i |E|φ j 2 (λ i -λ j ) 2 |φ i φ i | + k i=1 j =i φ i |E|φ j λ i -λ j (|φ i φ j | + |φ j φ i |) + k i=1 j =i α i,j (|φ i φ j | + |φ j φ j |)+ k i=1 j =i =i φ i |E|φ j φ i |E|φ (λ i -λ j )(λ i -λ ) |φ j φ |
where

α i,j = 1 λ i -λ j =i φ j |E|φ φ |E|φ i λ i -λ - φ i |E|φ i φ i |E|φ j λ i -λ j .
Using again equation (7.34),

φ j |E|φ i φ |E|φ i =      0i f = j, λ j λ i /T if j = , j = i, 2λ 2 i /T otherwise,
we get:

χ k = k i=1 1 - 1 T j =i λ i λ j (λ i -λ j ) 2 |φ i φ i | + 1 T k i=1 j =i λ i λ j (λ i -λ j ) 2 |φ j φ j | .
We see that the vectors φ i ,i ∈{ 1,...,N} are also eigenvectors of χ k ,b u tw i t h shifted eigenvalues. More precisely, we have, for i k

χ k |φ i = 1 - 1 T N j=k+1 λ i λ j (λ i -λ j ) 2 |φ i , (7.42) 
and, for i>k,

χ k |φ i = 1 T k j=1 λ i λ j (λ i -λ j ) 2 |φ i . (7.43) 
Therefore, in the absence of measurement noise (i.e. for T →∞ ), χ k has k eigenvalues exactly equal to unity, and Nk eigenvalues equal to zero, as expected since in this case χ k = χ k . All the above results will be compared with empirical data (for the case of financial markets) in section 7.6.1 below.

The case of an isolated top eigenvalue

In the first subsection 7.5.1,w econsiderthecasewheretheco v ariancematrixC has only one isolated eigenvalue much larger than all the other ones. By measuring the covariance matrix through an exponential moving average estimator along a time series of multivariate gaussian vectors with covariance matrix C,w efi n dt h et i m e evolution of the angle θ t between the top eigenvector of the empirical covariance matrix and the top eigenvector of the covariance matrix C.T h er e s u l ti saL a n g e v i n equation for x t ≡ 1cos θ t given in (7.48), for which we can compute the stationary distribution and even more information on the transition probability density. We also find the Langevin equation for the top eigenvalue of the empirical covariance matrix (see Eq. (7.46)). This enables to compute variograms of different related quantities in subsection 7.5.2,w h i c hw i l lb eu s e f u ll a t e ro nf o ra p p l i c a t i o n s . I nt h e final subsection (7.5.3), we analyse the transverse fluctuations of the top eigenvector of the empirical covariance matrix through a random matrix.

A Langevin equation for the top eigenvalue and eigenvector

Am o r ed e t a i l e dc h a r a c t e r i z a t i o no ft h ed y n a m i c so ft h et o pe i g e n v a l u ea n de i g e nvector can be given in the case where this top eigenvalue is well separated from all the others, as is well known to be the case for financial covariance matrices. The financial interpretation of this large eigenvalue is the so-called 'market mode': in a first approximation, all stocks move together, up or down. In this subsection, we assume that the true covariance matrix C has one large eigenvalue λ 1 of order N well separated from the other ones, which are all equal to λ 2 .W e s u p p o s e t h a t λ 1 λ 2 . Let (r t i ) 1 i N , 1 t T be i.i.d. Gaussian vectors of covariance C.B o t hf o r technical convenience and to follow market practice, we suppose that the covariance matrix is now measured through an exponential moving average of the r t i .T h i s means that the matrix E evolves in time as:

E ij,t =(1-ε)E ij,t-1 + εr t i r t j . (7.44) 
We address the following question: what is the dynamics of the top eigenvalue λ 1 (t)andofthetopeigenvectorφ t 1 of the empirical covariance matrix E t ?O fc o u r s e , the largest eigenvalue and eigenvector of the empirical covariance matrix will be, as discussed at length above, affected by measurement noise. Can one make predictions about the fluctuations of both the largest eigenvalue and the corresponding eigenvector induced by measurement noise? We shall see that such a decomposition is indeed possible in the limit where λ 1 λ 2 .T h ec a l c u l a t i o n si nt h i ss e c t i o na n d in Appendix D follow closely those made in [START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF]w h i c hw e r es l i g h t l yi n c o r r e c t( s e e below).

We keep the same notations as in the previous section for the eigenvalues of C. The eigenvalues and eigenvectors of E t will be respectively denoted as λ t 1 ,...,λ t N and φ t 1 ,...,φ t N . Standard perturbation theory, valid for ε 1, gives:

λ t 1 =(1-ε)λ t-1 1 + εφ t-1 1 |C|φ t-1 1 + εφ t-1 1 |η t |φ t-1 1 , with η ij = r i r j -C ij .
B e c a u s et h er e t u r n sa r eG a u s s i a n ,w eh a v e :

η ij η k = C ik C j + C i C jk .
In the limit where λ 1 becomes much larger than all other eigenvalues, the above equation simplifies to:

λ t 1 ≈ (1 -ε)λ t-1 1 + ε cos 2 (θ t-1 )λ 1 [1 + ξ t ] , (7.45) 
where cos(θ t ) ≡ φ t 1 |φ 1 and ξ t is a random noise term of mean zero and variance equal to 2. In the limit of large matrices and ε → 0, the above difference equation can be written as a Langevin (or stochastic differential) equation, in the Itô sense:

dλ t 1 = ε (λ 1 -cos 2 (θ t )λ t 1 )dt + √ 2λ 1 cos 2 (θ t )dB t . (7.46) 
where B t is a standard Brownian motion. We have neglected in the above equation ad e t e r m i n i s t i ct e r me q u a lt oε sin 2 (θ t )λ 2 ,w h i c hw i l lt u r no u tt ob eaf a c t o rλ 2 /λ 1 smaller than the terms retained in Eq. (7.46). As we shall show below, the angle θ t turns out to be small, so that one can replace cos(θ t )b yu n i t yi nt h ea b o v e equation, which becomes a simple Ornstein-Uhlenbeck process. We therefore find for the variogram of λ 1 :

λ s 1 -λ t 1 2 ≈ 2ελ 2 1 (1 -exp(-ε|t -s|)) , (7.47) 
ar e s u l tt h a tw em e n t i o n e di nt h ea bo v es e c t i o n7.4.2. AsimilarSDEcanbewrittenfortheprojectionoftheinstan taneouseigen v ector |φ t 1 on the true eigenvector |φ 1 .T h i sc a na g a i nb ed o n eu s i n gp e r t u r b a t i o nt h e o r y , as is detailed in Appendix D. The quantity cos(θ t )i sf o u n dt obec l o s et o1w h e nε is small, so we set x t ≡ 1cos(θ t ).

Keeping only the leading term in the three small parameters ε, λ 2 /λ 1 and x t ,w e finally find the following Langevin equation for x t (in the Itô sense):

dx t =2ε (µ -x t )dt + ε 2x t (4x t + λ 2 λ 1 )d B t (7.48)
with, for N →∞, ε → 0,

µ := q 4 λ 2 λ 1
, with q ≡ εN. Equation (7.48)d e fi n e sav e r yi n t e r e s t i n gc l a s so fr a n d o mp r o c e s s e s ,t h a tw ec a l l "Pöschl-Teller" processes, on which we say more in Appendix E.

In the continuous time limit, we have therefore established two coupled Langevin equations (SDEs) for the top eigenvalue λ t 1 and x t .T ol e a d i n go r d e ra n df o rN →∞, ε → 0, the stationary solution for the "angle" x t can be computed to be:

P (x) ∝ 4x 4x + λ 2 λ 1 N 2 1 4x + λ 2 λ 1 1 2ε
, which corrects the result obtained in [START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF], and is plotted in Fig. 7.5.F r o mt h e above Langevin equation, it is immediate to see that the average value of x is given by x = µ.I ti sn i c e rt or e w r i t et h es t a t i o n a r yd i s t r i b u t i o ni nt e r m so fx = x/µ.T h e interesting regime is when q remains of order unity when N →∞and ε → 0, in which case:

P (x) ≈ Ze -Nf(x) 2 ,f (x)= ln(1 + qx) q +ln 1+ 1 qx ,
where Z is a normalisation. It is easy to see that f (x)h a sam i n i m u mf o rx =1 , or x = µ (corresponding to the most probable value), and that f (1) = 1/(1 + q). This shows that the fluctuations of x around x =1a r eo fo r d e r (1 + q)/N and thus very small in the large N limit.

Note finally that according to Eq. (7.46), the largest eigenvalue is on average shifted upwards compared to the true value λ 1 ,b yaf a c t o r≈ (1 + 2µ)=( 1+ q 2 λ 2 λ 1 ). This is the analogue of a similar well-known result for flat-window averages of empirical covariance matrices -see [START_REF] Baik | Eigenvalues of Large Sample Covariance Matrices of Spiked Population Models[END_REF][START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrix[END_REF].

Variograms

From the Langevin equation one can easily compute the second moment x 2 t with as initial condition x 0 =0 . I n d e e d ,u s i n gI t ô ' sf o r m u l aa n dt a k i n ge x p e c t a t i o n s ,w e get:

x 2 t = x 2 0 +4ε µ + ε λ 2 2λ 1 t 0 x s ds -4ε(1 -2ε) t 0 x 2 s ds.
Computing x t with the same technique, we can solve this ordinary differential equation to obtain that

x 2 t = x 2 0 e -4ε(1-2ε)t + µ(µ + ε λ 2 2λ 1 ) 1 -2ε 1 -e -4ε(1-2ε)t + (2µ + ε λ 2 λ 1 )(x 0 -µ) 1 -4ε e -2εt -e -4ε(1-2ε)t .
In order to characterize the dynamics of the angle fluctuations, we want to compute the variogram of x t ,d e fi n e da sυ(τ ): =(x t+τx t ) 2 for τ 0, and in the limit t →∞. Using the previous computations, we obtain, in the scaling limit:

υ(τ ) ≈ q 2 (1 + q) 4N λ 2 λ 1 2 1 -e -2ετ .
We show in Fig. 7.6 a numerical simulation of the dynamics of the top eigenvector of a fixed matrix C such that λ 2 /λ 1 =0 .033. The resulting variogram compares very well with the above prediction. However, the above calculation is not particularly useful for financial applications, since the "true" top eigenvector |φ 1 , needed to define the angle θ t , is in general not known. A more appropriate quantity to describe the dynamical fluctuations of |φ 1 is, as suggested in [START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF], the function τ → φ t 1 |φ t+τ 1 , which we now study analytically. Let us write |φ t 1 as

|φ t 1 = cos(θ t )|φ 1 + |ϕ t ⊥ , (7.49) 
where ϕ t 2 is a vector in the eigenspace corresponding to the small eigenvalues λ 2 . Therefore:

φ t 1 |φ t+τ 1 = cos(θ t ) cos(θ t+τ )+ϕ t ⊥ |ϕ t+τ ⊥ .
Now, it is easy to have an explicit expression for ϕ t 2 by considering the empirical covariance (or correlation) matrix E t as a perturbation of the true covariance matrix C,a sw ed i da bo v e . S t a n d a r dpe r t u r b a t i o nt h e o r yt h e ng i v e s

|φ t 1 = 1 - 1 2 i =1 φ 1 |E t |φ i 2 (λ 1 -λ 2 ) 2 |φ 1 + i =1 φ 1 |E t |φ i λ 1 -λ 2 |φ i
where

E t ij = ε +∞ s=0 (1 -ε) s r t-s i r t-s j -C ij .
It is clear that the last term of the above expression is exactly |ϕ t 2 ,w h i c he n a b l e s us to obtain:

ϕ t ⊥ |ϕ t+τ ⊥ = 1 (λ 1 -λ 2 ) 2 i =1 φ 1 |E t |φ i φ 1 |E t+τ |φ i .
But, by noting that:

E t+τ ij =(1-ε) τ E t ij + ε τ -1 s=0 (1 -ε) s r t+τ -s i r t+τ -s j -C ij
and with the fact that φ 1 |E t |φ i 2 = ελ 1 λ 2 /2, we get that:

ϕ t ⊥ |ϕ t+τ ⊥ ≈2 µe -ετ
, and hence, our final result, to lowest order in µ:

φ t 1 |φ t+τ 1 = (1 -x t )(1 -x t+τ )+ϕ t ⊥ |ϕ t+τ ⊥ (7.50) ≈ 1 -2µ 1 -e -ετ . (7.51) 
which is similar to the result obtained in [START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF], except that the coefficient µ was a factor N too small in that paper. This result will be compared with empirical data in section 7.6.2.

Transverse fluctuations of the top eigenvector

In order to go further and describe the evolution of the top eigenvector of E (the so-called "market mode" in the context of financial markets), we need to study the statistics of the transverse component |ϕ t ⊥ .I no r d e rt om a k es e n s eo ft h ep a t t e r n created by these transverse fluctuations, we propose to introduce the correlation matrix of the components of |ϕ t ⊥ in the eigen-basis of the true correlation matrix. We therefore define the following N -1 × N -1m a t r i x :

F ij = 1 T T t=1 ϕ t ⊥ |φ i ϕ t ⊥ |φ j (i, j 2)
The eigenvalues and eigenvectors of this new correlation matrix (not to be confused with the empirical correlation matrix E needed to define |ϕ t 2 !) will entirely characterize the transverse fluctuations of the "market mode".

In the benchmark case where there is a true correlation matrix C stable in time, one can check that:

F ij = 1 T T t=1 φ 1 |E t |φ i λ 1 -λ i φ 1 |E t |φ j λ 1 -λ j .
What is the eigenvalue spectrum of F for this benchmark case? In our case where for all i =1 ,λ i = λ 2 ,t h ed e n s i t yo fs t a t e so ft h i st y p eo fr a n d o mm a t r i xh a sb e e n studied before in the literature (see [START_REF] Pfaffel | Eigenvalue distribution of large sample covariance matrices of linear processes[END_REF]). Indeed the random variables φ 1 |E t |φ i are uncorrelated for i = j,t h e i rm e a ni s0a n dt h e i rv a r i a n c ei sg i v e nb y :

φ 1 |E t |φ i 2 = ελ 1 λ 2 2 . (7.52) 
However, the random variables φ 1 |E t |φ i are correlated in time and thus the density of states in the limit of large matrices will not be given by the usual Marchenko-Pastur law. Rather, φ 1 |E t |φ i follows an auto-regressive linear process, for which the authors of [START_REF] Pfaffel | Eigenvalue distribution of large sample covariance matrices of linear processes[END_REF], give a precise way to compute the density of states in the limit of large matrices by mean of its Stieltjes transform. This probability density depends as expected on the parameter N/T but also on the parameter ε of the auto-regression. In the case where λ i>1 = λ 2 ,o n ef u r t h e r m o r ee x p e c t st h a tt h e eigenvectors of F are isotropically distributed in the N -1 dimensional subspace spanned by |φ 2 ,...|φ N .T h i sm e a n st h a tt h et r a n s v e r s efl u c t u a t i o n s|ϕ ⊥ of the top eigenvector have no particular structure.

In the more general context where the λ i for i =1a r en o ta l le q u a lt oλ 2 ,t h e eigenvalue spectrum of F must be characterized numerically, see below.

Empirical results

For the following analysis, we have used the daily returns of several pools of stocks belonging to 4 major indices: SP500, Nikkei, DAX & CAC 40. The number of stocks are respectively N =500, 204, 30, 39 and the period of interest is 2000 -2010 (11 years of data, corresponding to ≈ 2750 days). The main issue, as alluded to above, is that the empirical determination of correlation11 matrices requires some measurement time T .I ft h i st i m ei st o os h o r t ,t h ee m p i r i c a lc o r r e l a t i o nm a t r i xw i l l appear to evolve with time, but this may just be due to the measurement noise which one would like to distinguish from a genuine evolution of the underlying structure of correlation. If the measurement time is too long, on the other hand, one may miss important correlation shifts and get exposed to unwanted sources of risk.

Stability of eigenspaces

We first determined the empirical variograms (λ s iλ t i ) 2 |t-s|=τ for i =1 , 2, the result (for i = 1) is shown in Figure 7.7 and is found to be much larger than the above theoretical prediction, i.e. 4λ 2 i /T ,s h o w na sah o r i z o n t a lp l a i nl i n e . T h e fact that the empirical (red) curve starts from 0 for τ =0a n di n c r e a s e st or e a c h the stationary noise level at time τ = T is simply due to the overlapping between the sliding periods. For those figures, we computed the time series of correlation matrices using a sliding window of size T = N (recall N is the number of stocks). Thus, for small markets like DAX and CAC40, this value is quite small (respectively 30 and 40) and we find that the first eigenvalue of the correlation matrix does not evolve too much during the following (non overlapping) period τ ∈ [T ;250] days. After this time period, the evolution appears and from this point, the difference between the two non overlapping periods increases significantly with the time lag. For larger markets such as SPX and Nikkei, the value of T is quite large as N is respectively equal to 500 and 200. So it is not very surprising the temporal evolution shows up immediately. This clearly shows that there is a genuine evolution of the eigenvalues of C with time. For the top eigenvalue, this is a well known effect (see [START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF]a n ds e c t i o n7.5.2, Fig. 7.6 below): both the volatility of individual stocks and the average correlation between stocks are indeed time dependent, and tend to increase in crisis periods [START_REF] Reigneron | Principal regression analysis and the index leverage effect[END_REF][START_REF] Balogh | Persistent collective trend in stock markets[END_REF]. We see that the same is true for smaller eigenvalues too, reflecting the instability of intra-sector correlations (data not shown).

But what about the eigenvectors? One could be in a "mixed" situation where the eigenvectors of the true underlying covariance C keep a fixed direction through time 12 while its eigenvalues are moving around. But if the eigenvalues of the matrix C (which was always supposed not to depend of time in the previous sections) themselves are evolving with time, the formulas derived in the theoretical section above need to be upgraded. Let us assume that the true covariance matrix C t has time dependent eigenvalues λ t 1 ,...,λ t N but with constant eigenvectors which will be denoted |φ 1 ,...,|φ N as above. For times s<twith |t -s| T ,w ed e fi n et h e overlap matrix G s,t as: G s,t ij = φ s i |φ t j . Under the assumption that the eigenvalues are varying sufficiently slowly with time, one now finds that:

D(P, Q; s, t)=- 1 2P ln | det(G s,t † G s,t )| ≈ 1 2TP P i=1 N j=Q+1 λ s i λ s j (λ s i -λ s j ) 2 + λ t i λ t j (λ t i -λ t j ) 2 . ( 7.53) 
Up to corrections of order T -3/2 ,o n ec a nr e p l a c ei nt h ea b o v ef o r m u l a st h eλ s,t by their empirical estimates. We finally compute the theoretical distance D th (P, Q, τ) as an average over all s, t such that |t -s| = τ of the above quantity. ) 2 |t-s|=τ as a function of τ for the four different indexes of our sample. The empirical correlation matrices are computed on a sliding window of size T = N . The red line corresponds to the empirical datas from our pools of stocks, the plain blue line is the theoretical prediction 4λ 2 1 /T (valid in the limit of large T ) and the dotted blue line represents a numerical simulation of the benchmark case. Very similar curves hold for the second and third eigenvalues as well.

We now compare our null hyp othesis formula, Eq. (7.53) with (a) an empirical determination of D emp (P, Q, τ) using financial data and (b) a numerical determination of D num (P, Q, τ)u s i n gs y n t h e t i ct i m es e r i e so fr e t u r n sw h i c ha b i d et ot h e hypothesis of a covariance matrix C t with fixed eigenvectors, but time dependent eigenvalues. To achieve this, we choose an arbitrary (but fixed) set of orthonormal vectors |ψ 1 ,...,|ψ N and define C t as C t = N i=1 λ t i |ψ i ψ i |,w h e r et h eλ t are the empirical eigenvalues obtained on the financial return time series. We then use C t to generate synthetic Gaussian multivariate returns {r i (u)}.W e s h o w t h e c o r r esponding results in Fig. 7.8,w i t ht h ec h o i c eP =5,Q =10,asafunctionofτ and for T = N days. As above, the study concerns the same 4 different pools of stocks corresponding to 4 major indices: SP500, Nikkei, DAX, CAC 40. We conclude that (i) the theoretical formula Eq. (7.53)i si n d e e di nv e r yg o o da g r e e m e n tw i t ht h e numerical results obtained with synthetic data: D num ≈ D th ;w h e r e a s( i i )t h efinancial data clearly departs from the null hypothesis of constant eigenvectors, since D emp >D th .T h es a m ec o n c l u s i o nh o l d sf o rd i ff e r e n tv a l u e so fP, Q.

We have also computed the value D emp (τ = T )f o rd i ff e r e n tv a l u e so fT for every pool of stocks, the result is shown in Fig. 7.9.W ec o m p a r et h ee m p i r i c a l function T → D emp (T )w i t ht h et h e o r e t i c a lv a l u eD th (T )i nt h eb e n c h m a r kc a s e where the stock returns are distributed as Gaussian vectors of constant covariance matrix C.A tfi r s ts i g h t ,t h en o i s ec o n t r i b u t i o na p p e a r st ob et o os m a l lt oe x p l a i n the value of D emp (T )a ts m a l lT s, at least for the pool of the CAC40 and DAX indices. Nevertheless, if we now compare the value of D emp (τ = T ) for small value of T with the value of D th (τ = T )i nt h eb e n c h m a r kc a s ew h e r et h es t o c kr e t u r n s are distributed with a multivariate Student distribution with ν-degrees of freedom and with a constant covariance matrix C,w es e et h a tw ec a nm a k et h et w oc u r v e s coincide for small values of T .T h e r e f o r e ,t h ei n i t i a ld e c l i n ea sT increases indeed follows from a reduction of the measurement noise. However, when T becomes very large, the "true" evolution of the eigenvectors starts being visible, and leads to an increase of D emp . This plot suggests that the optimal time scale to measure the empirical eigenspaces is around T * = 600 days for the stocks from the Nikkei index, T * =400da ysfortheonesfromCA C40,T * = 450 days for the ones from DAX and T * = 700 days for the ones from the SP500 index.

The above results are fully confirmed, and made more precise, by the spectral projector analysis proposed by Zumbach. In Fig. 7.10 we plot, as in [START_REF] Zumbach | The empirical properties of large covariance matrices[END_REF], the eigenvalues of the average spectral projector χ k as a function of its theoretical rank k,f o rs e v e r a lv a l u e so fk.W es h o wi np l a i nl i n e st h ee i g e n v a l u e so ft h ee m p i r i c a l l y determined χ k for the Nikkei idex, where the averaging is made over (overlapping) periods of length T =6 0 0d a y s ,a n di nd o t t e dl i n e st h ec o r r e s p o n d i n gt h e o r e t i c a l predictions Eqs. The constant ν is chosen equal to 5.5 for the CAC40 and DAX indexes and to 18 for the Nikkei index. The initial decline as T increases follows from reducing the measurement noise. However, when T becomes very large, the "true" evolution of the eigenvectors is being felt, and leads to an increase of D emp . This plot suggests that the optimal time scale to measure the empirical eigenspaces is around two years (T * = 500 days). Here T = 600. In the ideal case (constant correlation matrix, T →∞), these functions should be step functions: i k = 1 and i>k = 0.

The dynamics of the top eigenvector

As explained above, one expects in general the top eigenvector to wobble around its "true" direction |φ 1 . The fluctuations around |φ 1 have two possible origins: one is measurement noise, the other is the presence of a systematic rotation of the top eigenvector due to some financial mechanism. As a further check that measurement noise is not enough to explain the observed dynamics of |φ t 1 ,w eh a v es t u d i e dn u m e r i c a l l yt h ea v e r a g eo v e r l a po ft h et o pe i g e nvector measured a time τ apart: φ t 1 |φ t+τ 1 . This is an interesting quantity because it does not require the knowledge of the true direction |φ 1 . As shown above, this quantity should be approximately given by 1 -2µ (1e -ετ )i fm e a s u r e m e n tn o i s e is the only source of fluctuations. We show in Fig. 7.11 ac o m p a r i s o nb e t w e e n this prediction and empirical data on the market mode of the Nikkei index. Here again, we find that the decorrelation of the top eigenvector is much stronger than the benchmark. The deviation from unity is, for τ =3 5 0 ,m o r et h a nt h r e et i m e s larger than the benchmark case, with no signs of saturation.

So there is a genuine motion of the top eigenvector in time. This was already pointed out in [START_REF] Reigneron | Principal regression analysis and the index leverage effect[END_REF], where we established empirically that the top eigenvector rotates towards the uniform vector |e =(1, 1,...,1)/ √ N when the market goes down, and away from |e when the market goes up. In order to be more comprehensive and understand in details the dominant transverse fluctuations of the top eigenvector, we have studied the correlation matrix F defined in subsection 7.5.3 above. We first determined the eigenvalue spectrum of F numerically, both for the benchmark case (with only measurement noise) and for real empirical data, see Fig. 7.12.F r o m this figure, we conclude that, for the Nikkei index during the period 2000 -2010, there are 3 (maybe 4) eigenvalues of the empirical matrix F that reside outside the spectrum of the corresponding benchmark matrix. This suggests that these 3 or 4 modes are real and correspond to true fluctuations of the market mode, which contribute to the discrepancy displayed in Fig. 7.11 above. We are now in a position to identify the corresponding eigenvectors, i.e. the directions in which the market mode most likely to tilt.

It is natural to think that these directions should themselves correspond to large eigenvectors of the correlation matrix C.T h e r e f o r ew el o o kf o rt h ed e c o m p o s i t i o n of the top three eigenvectors of F (that we call |ω 1 , |ω 2 , |ω 3 )i nt e r m so f|φ i ,i ∈ {2, 3, 4, 5}.As i n g u l a rv a l u ea n a l y s i so ft h e3× 4o v erlapmatrixsho wsthatonecan indeed explain ≈ 85% of these three eigenvectors in this way, with: This means that all the four top eigenvectors of C contribute to the "tilt motion" of the market mode. To check that this result is significant, we ran numerical simulations for this singular value decomposition in the benchmark case with a There are N = 204 stocks from the Nikkei index. The exponential moving average is made with a parameter =1/50. The true empirical correlation matrix C is chosen to be the empirical correlation matrix computed using the data on the whole period. For this C,w eh a v eλ 1 ≈ 73 and λ 2 ≈ 0.7. The beginning of the period is used to initialize the exponential moving average. The plain blue is a numerical simulation in the benchmark case. The dotted line represents the function τ → 1 -2µ(1exp(-ετ )) which corresponds to the benchmark case when there is a constant in time correlation matrix.

|ω 1 ≈-0.
constant correlation matrix C chosen as before to be the empirical correlation matrix computed using the whole period of time (here the decade 2000 -2010). The 3 × 4 singular values analysis now give an explanatory power of ≈ 70%, which is clearly less than the 85% obtained above. Still, a large part of this explanatory power seems to trivially come from the non random structure of C itself.

In order to revisit the result found in [START_REF] Reigneron | Principal regression analysis and the index leverage effect[END_REF], we need to understand the link between the uniform vector |e and the eigenvectors |φ 2 ,...,|φ 5 of the correlation matrix C.T h u s ,w el o o ka tt h eo r t h o g o n a lp r o j e c t i o n|e ⊥ := (|e-e|φ 1 |φ 1 )/N (N is chosen such that e ⊥ |e ⊥ 2 = 1 ) of the uniform vector |e in the space generated by the |φ i ,i 2. The overlap e ⊥ |φ i for all i>2aresho wninfig. 7.13 for the Nikkei index during the period 2000-2010. We see that |e ⊥ has indeed very strong overlap with |φ 2 , |φ 3 , |φ 4 , |φ 5 ,andhence,fromtheabo v eresults,alsowith|ω 1 , |ω 2 , |ω 3 . Therefore, the fact that the main fluctuation modes of |φ 1 are along these three ω directions is compatible with the tilt motion towards |e. However, other modes, not mentionned in [START_REF] Reigneron | Principal regression analysis and the index leverage effect[END_REF], are detected by the present analysis. The blue curve is a numerical simulation for the benchmark case with the true correlation matrix C chosen to be the empirical correlation matrix using the whole period. For this period and pool of stocks, we have λ 1 ≈ 73 and λ 2 ≈ 0.7. 

Conclusion & Open problems

Let us try to summarize what we have achieved in this paper. We have developed general tools to describe the dynamics of eigenvectors under the influence of small random perturbations and to study the stability of the subspace spanned by P consecutive eigenvectors of a generic symmetric matrix. This problem is relevant in various contexts, including quantum dissipation and financial risk control, but hopefully the ideas and methods introduced here can be used in a much broader context.

We argue that the problem can b e formulated in terms of the singular values of the overlap matrix between the initial eigenspace and the target eigenspace, which allows one to define an overlap distance, which is small if most of the initial information is conserved. We first specialize our results for the case of a Gaussian Orthogonal Ensemble, for which the full spectrum of singular values can be explicitly computed in the limit of large matrices under the regime where the entries of the perturbation are very small compared to the mean level spacing of the non-perturbed matrix. We argue that our setting with rectangular Q × P overlap matrices G allows to extend our results to perturbations with entries larger than the mean level spacing. We provide some numerical evidences that it is indeed true. We find two regimes, depending on the dimension of the target space Q compared to that of the initial space P .I fQ P ,a l ls i n g u l a rv a l u e sa r ec l o s et oo n ea n o t h e r ,a n dt h e i r distribution is given by Wigner's semi-circle. If on the other hand (Q -P )/P 1, the singular values s are distributed according to a very broad law which decays as s -2 .T h e s er e s u l t sa r ea c t u a l l yu n i v e r s a l ,a n da p p l yf o ro t h e rm a t r i xe n s e m b l e as well -for example the case of empirical covariance matrices -provided one is interested in eigenspaces deep in the bulk.

We have also studied the case of isolated eigenvalues, which are usually very important for applications, for example in finance. In most cases, empirical correlation matrices are noisy measurements of the true covariance matrix and this can lead to an apparent evolution of the top eigenspace, whereas in reality the underlying process is stationary. We have derived exact expressions both for the overlap distance and for the average spectral projectors (introduced by Zumbach [START_REF] Zumbach | The empirical properties of large covariance matrices[END_REF]) which can be directly compared to empirical results. The special case where the top eigenvalue is much larger than all the other ones can be investigated in full detail. In particular, the dynamics of the angle made by the top eigenvector and its true direction defines an interesting new class of random processes, for which we have provided explicit analytical results.

When compared to empirical correlation matrices of several major stock markets, our results allow us to unambiguously conclude that there is a genuine evolution in time of the true underlying correlation matrix: measurement noise in itself is unable to explain the observed variability (in time) of the top eigenspaces. We have found that the overlap distance is minimized when the measurement time is on the order of two to three years. Both for shorter and longer averaging times, measurement noise and the genuine evolution of the market leads to an instability of the correlation matrix, and to exposure to unwanted sources of risk.

The case of the top eigenvector of the correlation matrix, usually called the market mode, is particularly interesting. We have suggested a characterization of the evolution of its direction through a new correlation matrix, which measures the amplitude of its fluctuations transverse to its average direction. We found that the dominant modes are in the space spanned by the largest eigenvectors of the correlation matrix itself. Now the genuine evolution of the correlation structure of stock returns is well characterized, one should aim at devising quantitative models for this evolution. As usual, there are two ways to do this. One is to postulate an econometric model and try to calibrate it on data. In this line of thought, extensions of the GARCH framework have been proposed: multivariate GARCH, BEKK model, etc. [START_REF] Bauwens | Multivariate GARCH models: A survey[END_REF], but they often lack intuition (to say the least) and are very hard to calibrate (the a priori number of parameters is of order N 4 !).

The second approach is to think about mechanisms which can lead to changes of the correlation structure. For example, market drops may lead to panic sell-offs, which increase the top eigenvalue of the correlation matrix and tilt the top eigenvector towards uniformity, as reported in [START_REF] Balogh | Persistent collective trend in stock markets[END_REF][START_REF] Reigneron | Principal regression analysis and the index leverage effect[END_REF]. The impact of rebalancing or deleveraging complex portfolios can also lead to substantial changes in the correlation matrix -see the insightful work of Cont and Wagalath [START_REF] Cont | Running for the exit: distressed selling and endogeneous correlations in financial markets[END_REF]i nt h i sd i r e c t i o n . We hop e that the to ols provided in this pap er will help building financially motivated, more efficient models of dynamical correlations and, correspondingly, second generation risk models where impact and feedback effects are accounted for [START_REF] Bouchaud | The Endogenous Dynamics of Markets: Price Impact, Feedback Loops and Instabilities[END_REF].

Proof of the formula for δ =0

We need to intro duce the two level density of states

ρ N 2 (λ, λ )= 1 N 2 N i,j=1 δ(λ -λ i ,λ -λ j ),
and to note from equation (7.9)t h a t

D(V 0 ; V 1 )= Nε 2 2P b a [-2;2]\[a;b] ρ N 2 (λ, λ ) (λ -λ ) 2 . ( 7.55) 
From [START_REF] Mehta | Random matrices[END_REF], we know the asymptotic behavior of the two level density of states in the limit of large matrices; more precisely, there exists a function g such that, in the limit of large N ,

ρ N 2 (λ, λ )=g(Nρ(λ)|λ -λ |)ρ(λ)ρ(λ )dλdλ (7.56)
which is defined as g(r)=1-1 2 -r 0 s(t)dt s (r)+s(r) 2 with s(r)= sin(πr) πr .O n e can check that:

• g(r) 1f o ra l lr,

• in the neighborhood of 0, g(r) ∼ π 2 2 r, • g(r)t e n d st o1w h e nr goes to ∞,

• g (r)=O(1/r 2 )i nt h en e i g h bo r h oodo f∞.

We can write:

D(a, b; δ =0)= Nε 2 2P b a [-2;2]\[a;b] g(Nρ(x)|x -y|) (x -y) 2 ρ(x)ρ(y)dxdy.
We want to do an asymptotic expansion of the right hand side when N →∞. First, note that N/P tends to 1/ b a ρ. For the integral, we begin by doing an integration by part, we get for x ∈ [-2; a]:

b a g(Nρ(x)|x -y|) (x -y) 2 dy = ρ(a)g(Nρ(x)(a -x)) a -x - ρ(b)g(Nρ(x)(b -x)) b -x (7.57) + b a dy y -x [ρ (y)g (Nρ(x)(y -x)) + Nρ(x)ρ(y)g (Nρ(x)(y -x))] . (7.58) 
We need to integrate equation (7.57)b e t w e e n-2a n da and between b and 2 and to compute the asymptotic of every integrals of the right hand side. We will decompose each integral into two terms so as to take advantages of the asymptotic property of g around 0 and ∞.

Set η = N -1+α with α>0. First we consider the integral:

a a-η ρ(x) g(Nρ(x)(a -x)) a -x dx = N α 0 dx x ρ(a - x N )g(ρ(a - x N )x) ∼ ρ(a) N α 0 dx x g(ρ(a)x)=ρ(a) ln (ρ(a)N α ) - ∞ 0 ln(x)g (x)dx .
Using the fact that g(r)tendsto1whenr goes to ∞,w eeasilygetthat,inthelimit

N →∞: a-η -2 ρ(x) g(Nρ(x)(a -x)) a -x dx ∼ a-δ -2 ρ(x) a -x dx = -ρ(a)ln(N -1+α )+ a -2 ρ (x)ln(a -x)dx .
Moreover, we easily find that, when N tends to ∞:

a-η -2 ρ(x) g(Nρ(x)(b -x)) b -x dx → a -2 ρ(x) b -x dx ,
and a a-η

ρ(x) g(Nρ(x)(b -x)) b -x dx a a-η ρ(x) b -x dx ,
which goes to 0 as η goes to 0. The next term is easy to control using the fact that g(r)g o e st o1w h e nr goes to ∞;a sN →∞:

a-η -2 dxρ(x) b a ρ (y)dy y -x g (Nρ(x)(y -x)) → a -2 dxρ(x) b a ρ (y)dy y -x .
Using the fact that g (r)i so fo r d e r1 /r 2 for large r,i ti se a s yt oc h e c kt h a t is of order N -1+α . One has to go through the same steps to compute the asymptotic of the integrals between b and 2.

Finally, we get:

D(a, b; δ =0)≈ ln Nε 2 ρ(a) 2 + ρ(b) 2 2 b a ρ(λ)dλ + A(a, b)( 7 . 5 9 ) 
where 7.9 Derivation of the standard deviation σ(r)

A(a, b)= ε 2 2 b a ρ ρ(a) 2 + ρ(b) 2 1 - ∞ 0 ln(x)g (x)dx + ρ(a)
We have

σ 2 (r)=r(s) 2 -r(s) 2 ≈ 1 P tr Σ 2 - 1 P tr(Σ) 2 .
But the two quantities are computable easily in the limit of large matrices using the convergence of the density of states for H 0 ;W eo b t a i n

1 P tr Σ 2 ≈ ε 4 N b a [a;b] dλ [-2;2]\[a-δ;b+δ] dλ [-2;2]\[a-δ;b+δ] dλ ρ(λ)ρ(λ )ρ(λ ) (λ -λ ) 2 (λ -λ ) 2 + ε 4 N b a [a;b] dλ [a;b] dλ [-2;2]\[a-δ;b+δ] dλ ρ(λ)ρ(λ )ρ(λ ) (λ -λ ) 2 (λ -λ ) 2
and 1

P tr(Σ) 2 ≈ ε 4 N b a 2 [a;b] dλ [a;b] dλ [-2;2]\[a-δ;b+δ] dλ [-2;2]\[a-δ;b+δ] dλ ρ(λ)ρ(λ )ρ(λ )ρ(λ ) (λ -λ ) 2 (λ -λ ) 2 .
Those two expressions give in the regime δ ∆ 1 For simplicity, we set ĝ =g and we aim to compute ĝ 0s u c ht h a t

σ(r) ≈ ρ(a) √ δ∆ , ( 7 
1 N b a [-2;2]\[a-δ;b+δ] dx ρ(x)σ(x) 2 (1 + σ(x)ĝ) 2 = 1 ĝ2 ,
As ĝ is non-negative, the integral on the left hand side converges when δ goes to 0 and hence ĝ verifies in fact

1 N b a [-2;2]\[a;b] dx ρ(x)σ(x) 2 (1 + σ(x)ĝ) 2 = 1 ĝ2 , (7.62) 
We now need to estimate the integral in the limit ∆ 1. As before, we can write using (7.31)

a -2 dx ρ(x)σ(x) 2 (1 + σ(x)ĝ) 2 = ρ(a) 2 ∆ a+2 ∆ 0 du ρ(a -u∆)f 2 (u) (u + ρ(a)ĝ ∆ f (u))
.

In the limit ∆ 1, this integral is dominated by the region where u is small and f (u) ∼ 1a n dh e n c ew eh a v et h ef o l l o w i n ge s t i m a t e a -2

dx ρ(x)σ(x) 2 (1 + σ(x)ĝ) 2 ∼ ρ(a) 3 ∆ +∞ 0 du (u + ρ(a)ĝ ∆ ) 2 ∼ ρ(a) 2 ĝ .
Then we deduce from (7.62)a n dw i t ht h es a m ea r g u m e n tf o rt h ei n t e g r a lb e t w e e n b and 2 that ĝ = ∆ 2ρ(a) .

Now we have to plug this ĝ into equation (7.27)t oo b t a i n

s min = - 2ρ(a) ∆ + 1 N b a [-2;2]\[a;b] dx ρ(x)σ(x) 1+σ(x) ∆ 2ρ(a)
.

To evaluate the integral, we need to cut it into two parts. The first part is handled by

a -2 ρ(x)σ(x) 1+σ(x) ∆ 2ρ(a) = ρ(a) a+2 ∆ 0 du ρ(a -u∆)f (u) u + f (u)/2 → ρ(a) 2 +∞ 0 du f (u) u + f (u)/2 .
Finally, we can deduce that

s min = 2ρ(a) ∆ +∞ 0 du f (u) u + f (u)/2 -1 .

SDE for x t

Using perturbation theory, one gets, in braket notation:

|φ t 1 = 1 - ε 2 2 i =1 φ t-1 1 |r t r t * |φ t-1 i 2 (λ t-1 1 -λ t-1 i ) 2 |φ t-1 1 + ε i =1 φ t-1 1 |r t r t * |φ t-1 i λ t-1 1 -λ t-1 i |φ t-1 i ≈ 1 - ε 2 2(λ t-1 1 ) 2 i =1 φ t-1 1 |r t r t * |φ t-1 i 2 |φ t-1 1 + ε λ t-1 1 i =1 φ t-1 1 |r t r t * |φ t-1 i |φ t-1 i = 1 - ε 2 2(λ t-1 1 ) 2 φ t-1 1 |(r t r t * ) 2 |φ t-1 1 -φ t-1 1 |r t r t * |φ t-1 1 2 |φ t-1 1 + ε λ t-1 1 r t r t * |φ t-1 1 -φ t-1 1 |r t r t * |φ t-1 1 |φ t-1 1 .
Since cos(θ t )=φ t 1 |φ 1 ,w ec a nw r i t e φ t 1 =cos(θ t )|φ 1 +sin(θ t )|ϕ t ⊥ where |ϕ ⊥ is a vector lying in the subspace spanned by the vectors |φ 2 ,...,|φ N . We want to describ e the dynamic of cos(θ t ); we deduce from the previous equation that

cos(θ t )= 1 - ε 2 2(λ t-1 1 ) 2 φ t-1 1 |(r t r t * ) 2 |φ t-1 1 -φ t-1 1 |r t r t * |φ t-1 1 2 cos(θ t-1 ) (7.63) + ε λ t-1 1 φ 1 |r t r t * |φ t-1 1 -φ t-1 1 |r t r t * |φ t-1 1 cos(θ t-1 ) . (7.64) 
Since we have:

φ 1 |C|φ t-1 1 = λ 1 cos(θ t-1 ) , φ t-1 1 |C|φ t-1 1 = λ 1 cos 2 (θ t-1 )+λ 2 sin 2 (θ t-1 ) , φ 1 |η t |φ t-1 1 2 =2cos 2 (θ t-1 )λ 2 1 +sin 2 (θ t-1 )λ 1 λ 2 , φ t-1 1 |η t |φ t-1 1 2 =2 λ 1 cos 2 (θ t-1 )+λ 2 sin 2 (θ t-1 ) 2 , φ t-1 1 |r t r t * |φ t-1 1 2 = λ 2 1 cos 4 (θ t-1 )+2cos 2 (θ t-1 )λ 2 1 +sin 2 (θ t-1 )λ 1 λ 2 , φ t-1 1 |(r t r t * ) 2 |φ t-1 1 =cos 2 (θ t-1 )(3λ 2 1 +(N -1)λ 1 λ 2 )+sin 2 (θ t-1 )((N +1)λ 2 2 + λ 1 λ 2 )
, equation (7.63)c a nb er e w r i t t e n ,i nt h ea s y m p t o t i cr e g i m ew h e r eε 1,N 1 with q = εN fixed and λ 2 λ 1 ,k e e p i n gu pt ot e r m so fo r d e r2f o r" d r i f t "t e r m s and of order 1 for noise terms in ε and λ 2 /λ 1 13 : We will denote by F (y)t h ed r i f tc o e ffi c i e n to ft h ep r e v i o u ss t o c h a s t i cd i ff e r e n t i a l equation (7.67)a n dd e n o t eb yU its potential, which verifies U = -F .T h et r a n s ition density P (y, t)v e r i fi e st h eF o k k e r -P l a n c ke q u a t i o n

d(cos(θ t )) = - ε 2 2 1 λ 2 1 (λ 2 1 + Nλ 1 λ 2 )cos
∂ P ∂t = - ∂(F P ) ∂y + σ 2 2 
∂ 2 P ∂y 2 .
By setting P (y, t):=e -U (y)/σ 2 ψ(y, t), this equation becomes a Schrodinger equation:

∂ψ ∂t = σ 2 2 ∂ 2 ψ ∂y 2 -V (y)ψ,
with the so-called Pöschl-Teller potential V (y):

V (y)= 1 2
F 2 (y)

σ 2 + F (y) = 1 2 α sinh 2 (y) - β cosh(y) sinh 2 (y) + γ with: α = θ + σ 2 2 3 2 + θ σ 2 + θ 2 σ 2 1+ 2µ b 2 , β =2θ 1+ 2µ b 1+ θ σ 2 , γ = 1 σ 2 θ + σ 2 2 2 .
Since the evolution of ψ(y, t)i sg o v e r n e db yas e l fa d j o i n to pe r a t o r

H := σ 2 2 ∂ 2 • ∂y 2 -V (y)•
we can use its eigenfunctions to construct an orthonormal basis (ψ n )w i t hc o r r esponding eigenvalues (-λ n ). The general solution ψ(y, t)c a nt h u sb ee x p a n d e di n the following form ψ(y, t)= n c n ψ n (y)e -λnt .

The general solution for P is thus given by P (y, t)=e -U (y)/σ 2 n c n ψ n (y)e -λnt .

The initial conditions for y t determines the sequence (c n ). In particular, if at time t =0 ,t h ep r o b a b i l i t y P (y, 0) = δ(yy 0 )w i t hy 0 := arg cosh( 2 b x 0 +1), then it is straightforward to see that c n = e U (y 0 )/σ 2 ψ n (y 0 ) .

The spectrum of H consists of a discrete and a continuous branch. The discrete energy levels (eigenvalues) are computed in, e.g. [START_REF] Dong | Energy spectra of the hyperbolic and second Poschl-Teller like potentials solved by new exact quantization rule[END_REF]a n da r eg i v e nf o ra l ln ∈ N,n g/2w i t hg =1+2θσ 2 ,b y

λ n = σ 2 2 n (g -n) . (7.68) 
The corresponding eigenvectors are also computed in [START_REF] Dong | Energy spectra of the hyperbolic and second Poschl-Teller like potentials solved by new exact quantization rule[END_REF]andareexpressedinterms of Jacobi polynomials. To the best of our knowledge, the continuous branch of the spectrum has not been fully characterized in the literature. We should also mention that in the limit b → 0 the corresponding process has been studied in details (see [START_REF] Schenzle | Multiplicative stochastic processes in statistical physics[END_REF]a n dt h ea p p e n d i xo f [START_REF] Monthus | On the flux distribution in a one dimensional disordered system[END_REF]). The problem can now be mapped into the Morse potential, which has exactly the same discrete spectrum as above (as expected since b does not appear), with eigenfunctions that can be expressed in terms of Laguerre polynomials. However, we have not been able to directly match the eigenfunctions in the two cases, and understand the b → 0l i m i ti nd e t a i l s . T h el i m i tb →∞ with σ 2 b fixed, on the other hand, boils down to the standard Bessel process with mean-reversion.

r i the price variation of asset i, R w can be defined as the variance of the random variable i w i r i and can be computed in terms of the covariance matrix R of the r i (defined as R ij = E[r i r j ]): R w = w t Rw.

Of course, practitioners do not have access to R;instead,theym ustconsideranoisy empirical estimator of R,w h i c hc o n s i s t so fal a r g ee m p i r i c a lc o v a r i a n c em a t r i x . A key tool in distinguishing noise from real correlations is the study of the eigenvalues of the empirical covariance matrix: we refer to [START_REF] Bouchaud | Financial Applications of Random Matrix Theory: a short review[END_REF], [START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF]f o rm o r ee x t e n d e dd i scussions on the applications of large empirical covariance matrices in finance and in particular in portfolio theory. We will work in a high frequency setting: we consider N stock price processes X i (t)f o ri =1 ,...,N that evolve continuously with respect to time t ∈ [0; 1] but we observe those prices only on a discrete finite grid {j/T, j =1 ,...,T} where T is the number of observations. Using this discrete grid, we can compute the price variations r i (j)( t h a tw ew i l la b u s i v e l yc a l lreturns)f o re a c ha s s e tp r i c eX i on every time interval [(j -1)/T ; j/T]b y :

r i (j):=X i ( j T ) -X i ( j -1 T ).
Then, we define the N × T matrix X N such that X N (ij)=r i (j)t h a te n a b l e st o define the empirical covariance matrix R N as follows

R N := X N X t N .
In this work, we will be interested in the statistics of the symmetric matrix R N and in particular in its spectrum, or more precisely, in its limiting spectral distribution in the limit of large matrices (i.e. when N →∞ ) for different models of the i.i.d. random continuous processes (X i (t)),i ∈{ 1,...,N} (see below for precise definitions). For this purpose, the Marcenko-Pastur paper enables to deal with the case where stock prices follow independent Brownian motions. More precisely, in this case, the matrix X N is defined as:

X N (ij)=B i j T -B i j -1 T (8.1)
where the B i are i.i.d. standard Brownian motions. If λ 1 ,...,λ N are the eigenvalues of R N , the empirical spectral distribution of the matrix R N is the probability measure defined by:

µ R N = 1 N N i=1 δ λ i . (8.2)
The Marcenko-Pastur (MP) result states that, in the limit of large matrices N, T → ∞ with N/T → q ∈ (0, 1], the empirical spectral distribution µ R N weakly converges (almost surely) to a probability measure whose density ρ(x)i s :

ρ(x)= 1 2πq (γ + -x)(x -γ -) x 1 [γ -,γ + ] dx (8.3) 
where γ ± =1+q ± 2 √ q.

Independently of the aforementioned work on random matrix theory, much work has been devoted to studying the statistics of financial stocks. It turns out that most financial assets (stocks, indices, etc...) possess universal features, called stylized facts. In short, one can observe empirically the following properties (the list below is obviously non exhaustive) for asset returns on financial markets:

• The returns are multifractal; in particular on short scales, they are heavy tailed but tend to have distribution closer to the Gaussian law on larger scales.

• The volatility fluctuates randomly and follows approximately a lognormal distribution.

• While the returns are rapidly decorrelated, the volatility exhibits long range correlations following a power law.

We refer to the references [START_REF] Bouchaud | Theory of Financial Risk and Derivative Pricing From Statistical Physics to Risk Management[END_REF][START_REF] Cont | Running for the exit: distressed selling and endogeneous correlations in financial markets[END_REF]f o rad i s c u s s i o no nt h i st o p i c . M a n ym od e l sh a v e been proposed in the literature that take into account these stylized facts. Among them, there has been growing interest in the lognormal Multifractal Random Walk (MRW) model introduced in [?]( s e ea l s o [ 20, ?]). The lognormal MRW model satisfies several of the so-called stylized facts, but a few of them remain unchecked such as asymmetry of returns and Leverage effect (see [START_REF] Bouchaud | Leverage Effect in Financial Markets: The Retarded Volatility Model[END_REF]). The lognormal MRW is simply defined as:

X(t)=B (M [0,t]) (8.4)
where B is a standard Brownian motion and M is an independent lognormal multifractal random measure (MRM for short) formally defined, for t 0, by:

M [0; t]= t 0 e ω(x)-1 2 E[ω(x) 2 ] dx,
where (ω(x)) x∈R is a "gaussian field" whose covariance kernel K is

K(x, y)=γ 2 ln + τ |t -s| ,
where ln + x =m a x ( l nx, 0). The two parameters γ 2 and τ are respectively called intermittency parameter and integral scale (or correlation length) of the lognormal random multifractal measure M . We thus aim at studying the large sample covariance matrices where the underlying price processes evolve as lognormal MRW. More precisely, the matrix X N is defined, for 1 i N, 1 j T , as:

X N (ij)=B i (M i (0, j T )) -B i (M i (0, j -1 T )) (8.5)
where the B i are i.i.d. Brownian motions and the M i are i.i.d. lognormal MRM independent of the B i . Let us mention the work [START_REF] Li | On the estimation of integrated covariance matrices of high dimensional diffusion processes[END_REF] which considers high frequency covariance matrices in the context of diffusion processes (see also [119] for studies of high frequency large empirical covariance matrices motivated by financial applications). The processes described by (8.5) are typically not diffusions.

In the spirit of the MP Theorem, the purpose of this work is to characterize the limit of the empirical spectral measure µ R N when N, T →∞with N/T → q ∈ (0, 1]. It is interesting to understand how the long-memory volatility process affects the covariance matrix in the limit of large matrices. In particular, we will see that the intermittent volatility has the effect to spread the spectrum of the covariance matrix R N in a wider region of R + .I n d e e d t h e s p e c t r a l d e n s i t y h a s a c o m p a c t support [γ -; γ + ]intheMarcenko-Pastursetting(inwhichthepricesfollowBrownian motions) whereas it has an infinite support with a tail that gets heavier as the intermittency parameter grows. We mention that our results can be extended to many different auto-correlated volatility processes.

The effect of the integral scale τ on the empirical covariance matrix R N is also very interesting in the context of price variations measured on a very short scale (high frequency). The high frequency case corresponds to large values of the parameter τ while low frequency case corresponds to small values of τ .I n d e e d ,i fX is al o g n o r m a lM R Ww i t hi n t e g r a ls c a l eτ ,t h e nt h ep r o c e s s X(t)d e fi n e do n[ 0 ;1 ]a s X(t)=X(t/2) is a lognormal MRW with integral scale 2τ . Note that this discussion on high freqency measurement is irrelevant in the MP case when asset prices follow independent Brownian motions since, in this model, the distribution of price variations is the same on any scale: it is Gaussian, only the variance will change with the scale and up to the variance parameter the limiting spectral distribution will always be the same at different scales. However, if asset prices follow lognormal MRW (or even another process with a correlated in time volatility process), the price variations measured on small scales will have a distribution with higher kurtosis (i.e. the probability mass of the tail is heavier) and therefore the spectrum of the empirical covariance matrix R N should be affected by decreasing the measurement scale. We therefore exp ect stronger right tail for the sp ectral distribution. The numerical analysis of our results indeed confirms this guess: the larger the integral scale is, the heavier is the right tail.

Here, we are mainly interested in the case where asset prices follow lognormal MRW but we will also present our results for two other related models where asset prices follow independent Brownian motions with a time change, which can be thought of as a volatility process with memory (i.e. the volatility process is correlated in time).

The next sections are organized as follows. In section 2, we remind the definition of MRW and introduce the main notations of the paper. In section 3, we state our main theorems which are characterizations of the limiting spectral measure of R N through its Stieltjes transform for different types of underlying processes X.T h e s e equations are tedious to invert analytically and it is hard to extract the properties (continuity, tails of the distribution) of the associated spectral density. In section 4, we invert these equations numerically so as to get informations on the spectral measure of the covariance matrix R N as N →∞and we check the validity and applicability of our results using numerical simulations. The proofs appear in section 5 with some auxiliary lemmas proved in the appendix. The strategy of our proofs is classical among the random matrix literature (the so-called resolvent method) as it relies on the Schur recursion formula for the Stieltjes transform; in particular, we follow the approach of [START_REF] Ben Arous | The spectrum of heavy-tailed random matrices[END_REF]. The main difficulty lies in handling the Stieltjes transforms in a multifractal setting.

Background, notations and main results

Reminder of the construction of MRM

To fix precisely the notations that we will use throughout the pap er, we quickly remind the main steps of the construction of Multifractal Random Measures (MRM). The description is necessarily concise and the reader is referred to [?]f o rf u r t h e r details. In particular, we use the same notations as in [?]t of a c i l i t a t et h er e a d i n g . We consider the characteristic function of an infinitely divisible random variable Z, which can be written as E[e ipZ ]=e ϕ(p) where (Lévy-Khintchine's formula):

ϕ(p)=imp - 1 2 γ 2 p 2 + R * (e ipx -1) ν(dx)( 8 . 6 )
and ν(dx)i sas o -c a l l e dL é v ym e a s u r e( i es a t i s f y i n g R * min(1,x 2 ) ν(dx) < +∞) together with the following additional assumption:

[-1,1] |x| ν(dx) < +∞, (8.7) 
so that its characteristic function perfectly makes sense as written in (8.6). We also introduce the Laplace exponent ψ of Z by ψ(p)=ϕ(-ip)f o re a c hp such that both terms of the equality make sense, and we assume that the following renormalization condition holds: ψ(1) = 0. We further consider the half-space S = {(t, y); t ∈ R,y ∈ R * + },w i t hw h i c hw e associate the measure (on the Borel σ-algebra B(S)): θ(dt, dy)=y -2 dt dy.

(8.8)

Then we consider an independently scattered infinitely divisible random measure µ associated to (ϕ, θ)a n dd i s t r i b u t e do nS.

Then we define a process ω for >0 by the following. Given a positive parameter τ ,l e tu sd e fi n et h ef u n c t i o nf : R + → R by:

f (r)= r, if r τ τ if r τ .
The cone-like subset A (t)o fS is defined by: A (t)={(s, y) ∈ S; y , -f (y)/2 st f (y)/2}. (8.9)

We then define the stationary pro cess (ω (t)) t∈R by:

ω (t)=µ (A (t)) . (8.10)
The Radon measure M is then defined as the almost sure limit (in the sense of weak convergence of Radon measures) by: for all p such that the right-hand side makes sense. The measure M is different from 0ifandonlyifthereexists>0suc hthatζ(1 + ) > 1, (or equivalently ψ (1) < 1).

M (A)= lim →0 + M (A)= lim
In that case, we have:

Theorem 8.1. The measure M is stationary and satisfies the exact stochastic scale invariance property: for any λ ∈]0, 1],

(M (λA)) A⊂B(0,τ

) law =( λe Ω λ M (A)) A⊂B(0,τ ) ,
where Ω λ is an infinitely divisible random variable, independent of (M (A)) A⊂B(0,T ) , the law of which is characterized by:

E[e ipΩ λ ]=λ -ϕ(p) .

Notations

Let N and T := T (N ) be two integers, the aim of this paper is to compute the empirical spectral measure of the matrix R N := X N t X N as N →∞,w h e r eX N is a N × T real matrix the entries of which are given by (8.5). Recall that the number N of sampled processes is supposed to be comparable with the sample size T := T (N ), and more precisely, we will suppose in the following that there exists a parameter q ∈]0, 1] such that: lim

N →∞ N T = q. (8.11)
We further set R N := t X N X N ,a n di fM is a symmetric real matrix, we will denote by µ M the empirical spectral measure of M .

Define the (T + N ) × (T + N )m a t r i xB N by:

B N = 0 t X N X N 0 .
We also define for z ∈ C \ R,

A N (z)=(zI T +N -B N )= zI T -t X N -X N zI N .
Notice that

B 2 N = R N 0 0 R N
and that the eigenvalues of R N are those of R N augmented with T -N zero eigenvalues. We thus have:

µ B 2 N =2 N N + T µ R N + T -N N + T δ 0 , (8.12) 
where δ x stands for the Dirac mass at x. Combining this equality with the relation

f (x)µ B 2 N (dx)= f (x 2 )µ B N (dx)( 8 . 1 3 )
true for all bounded continuous functions f on R, we see that it is sufficient to study the weak convergence of the spectral measure of B N for the study of the convergence of the spectral measure µ R N .

We will thus work on the (weak) convergence of the sp ectral measures µ B N and E [µ B N ] in the following. To that purpose, it is sufficient to prove the convergence of the Stieltjes transform of these two measures. Recall that, for a probability measure µ on R,t h eS t i e l t j e st r a n s f o r mG µ of µ is defined, for all z ∈ C \ R,a s :

G µ (z)= R 1 z -x µ(dx). (8.14) 
and one can note that:

G µ B N (z)= 1 N + T Trace(G N (z)), (8.15) 
where we have set:

G N (z)=(A N (z)) -1 . (8.16) 
Hence, we have to investigate the convergence of the right-hand side of (8.15). Let us introduce the two following complex measures L 1,z N and L 2,z N such that, for all bounded and measurable function f :[0, 1] → R:

L 1,z N (f )= 1 T T k=1 f k T G N (z) kk L 2,z N (f )= 1 N N k=1 f k N G N (z) k+T,k+T
Clearly, we have the relation

1 N + T Trace(G N (z)) = T N + T L 1,z N ([0, 1]) + N N + T L 2,z N ([0, 1]) (8.17)
so that it suffices to establish the convergence of the two complex measures L 1,z N and L 2,z N .

measurable function K z (x) over [0, 1] such that, for all bounded and continuous function f on [0, 1], we have respectively:

E L 1,z N (f ) → N →∞ 1 0 K z (x)f (x) dx, E L 2,z N (f ) → N →∞ µ 2 z 1 0 f (x) dx.
ii) In addition, we have the following relation between µ 2 z ∈ C and K z (x):

1 0 K z (x) dx = qµ 2 z + 1 -q z (8.19)
iii) Furthermore, there exists a unique probability measure υ on R whose Stieltjes transform is µ 2 z , meaning that for all z ∈ C \ R,

µ 2 z = R υ(dx) z -x . (8.20)
It is important to state a characterization of the probability measure υ:i ti s done by means of its Stieltjes transform µ 2 z : Theorem 8.5. The constant µ 2 z and the bounded function K z (x) are uniquely determined for all z ∈ C \ R, by the following system of equations:

µ 2 z = E z - 1 0 K z (t)M (dt) -1 , (8.21) 
K z (x)= z -qE z - 1 0 τ |t -x| γ 2 + K z (t)M (dt) -1 -1 (8.22)
where 1 M is the MRM with structure exponent ζ(q)=(1+γ 2 /2)qq 2 γ 2 /2.

Let us notice that one can give a precise meaning to (8.22)f o ra l lγ 2 ∈ [0, 2[. Indeed, we can define for all x ∈ [0, 1] and all continuous function f ,t h ef o l l o w i n g almost sure limit as a definition:

1 0 τ |t -x| γ 2 + f (t)M (dt)=lim η→0 t∈[0,1];|t-x|>η τ |t -x| γ 2 + f (t)M (dt)( 8 . 2 3 )
Note that the above limit exists almost surely since, for x fixed:

ln M [x -k ,x+ k ] ln k → k→∞ 1+ γ 2 2 , a.s.
where k = 1 2 k .O n ec a na l s oc h e c kw i t ht h i sd e fi n i t i o nt h a tw eh a v e :

1 0 τ |t -x| γ 2 + f (t)M (dt)=lim →0 1 0
e cov(ω(t),ω(x)) f (t)e ω(t) dt 1 The notation (•) + is a shortcut for max(•, 1).

Conjecture 8.6. With this extended definition, we conjecture that theorem 8.5 holds in the lognormal multifractal case for all γ 2 ∈ [0, 2[ and thus that the limiting equations can be obtained by the ones of theorem 8.10 (see below) with 2W = ω as → 0.

General multifractal random walk

We now lo ok at the more general case when the change of time is a measure M for which the function ϕ(q)i sg i v e nb y( 8.6)a n dt h es t r u c t u r ee x p o n e n tb yζ(q)= qψ(q)w i t hψ(q)=ϕ(-iq).

We still have to make an assumption to avoid the issue of strong correlations. In this more general setting, Assumption (8.2)be c o m e s : Assumption 8.7. Assume that the structure exponent of the MRM satisfies the condition:

ζ(2) > 5 -4ζ (1). (8.24) and that there exists δ>0 such that:

ζ(2 + δ) > 1. (8.25) 
As in the previous section, we conjecture that our results hold as soon as the measure M is non degenerated, i. z and the bounded function K z (x) are uniquely determined for all z ∈ C \ R, by the following system of equations:

µ 2 z = E z - 1 0 K z (t)M (dt) -1 , (8.26) 
K z (x)= z -qE z - 1 0 τ |t -x| κ + K z (t)Q(dt) -1 -1 (8.27)
with κ = ψ(2) and where M is the MRM whose characteristic and structure exponent are respectively ϕ(q),ζ(q) and where the random Radon measure Q is defined, conditionally on M , as the almost sure weak limit as goes to 0 of the family of random measures Q (dt): =e ω(t) M (dt) where, for each >0, the random process ω is independent of M and defined as ω (t)=µ(A (t)) where µ is the independently scattered log infinitely divisible random measure associated to (φ, θ(•∩A 0 (x))) with:

φ(p)=ip(γ 2 -κ)+
R (e ipx -1)(e x -1)ν(dx). (8.28)

Lognormal random walk

Let us mention that one can easily adapt the methods used to prove the above theorems in the simpler case (lognormal case) where X(t)isdefined,forallt ∈ [0; 1], by:

X(t)=B t 0 e 2W (s) ds , (8.29) 
where (W (s)) s∈[0;1] is a stationary gaussian process with expectation m and stationary covariance kernel k.T h en o r m a l i z a t i o nw i l lb ec h o s e ns u c ht h a t :m = -k(0). In this context, the entries of X N are given, for 1 i N, 1 j T by:

X N (ij)= 1 √ T e W i ( j T ) B i j := r i (j)( 8 . 3 0 )
where the (B i j ) ij are i.i.d standard centered Gaussian random variables and the W i are i.i.d stationary Gaussian processes with expectation m and stationary covariance kernel k.I n d e e d ,i fo n em a k e st h ef o l l o w i n ge x t r aa s s u m p t i o n : Assumption 8.9. Assume that for some constants C>0 and β>0, the covariance kernel k satisfies:

∀x ∈ R, |k(x) -k(0)| C|x| β .
With the same notations as in the previous section, we can now state the following theorem under assumption 8.9:

Theorem 8.10. The system of equations for µ 2 z and K z (x) becomes:

µ 2 z = E z - 1 0 K z (t)e 2W (t) dt -1 (8.31) K z (x)= z -qE z - 1 0 K z (t)e 4k(t-x) e 2W (t) dt -1 -1 . (8.32) 
where (W (t)) t∈[0;1] is a stationary gaussian process with expectation m and stationary covariance kernel k.

Numerical results and computer simulations

In this section, we are interested in the case handled in sub-section 8.3.1,i nw h i c h the price of an asset evolves as a lognormal multifractal random walk. We want to extract informations on the spectral density υ • (x 2 ) -1 of the covariance matrix R N in the limit of large matrices. This section will also give evidence that our equations are easy to use in practice for applications. The information on the measure υ is entirely contained in its Stieltjes transform µ 2 z which is the unique solution of the system of equations ( 8 

K z (x) dx = qµ 2 z + 1 -q z . ( 8 
Tg(x)= 1 z -qE z - 1 0 τ |t-x| γ 2 + g(t)M (dt) -1 . (8.35) 
It can easily be shown (see sub-section 8.5.6)thatifz ∈ C \ R is sufficiently far from the real line, then the operator T is contracting and therefore admits a unique fixed point K z (•)i nC([0; 1], C). To find the fixed point K z ,w ew i l li t e r a t et h eo p e r a t o r T starting from any fixed initial function K

z . We know that, for z such that the operator T is contracting, the n-th iteration of the function K

(n) z := T (K (n-1) z
) converges to the unique fixed point K z .I nf a c t ,n u m e r i c a l l y ,t h e r ei sn on e e di n applying the iteration on T for z such that T is contracting (i.e. for z far from the real line) and one can apply the Picard method directly near the real line2 and find the fixed point after a reasonable number of iterations of the operator T .

The multifractal lognormal random measure M (dt) and multifractal random walk are simulated through the standard method by simulating first, with the use of fast Fourier transform, a gaussian process with covariance function given for η>0 small by

K η (|t -s|)=γ 2 ln + ( τ |t -s| + η
) .

The lognormal multifractal random measure and random walk are then constructed from this gaussian process through the standard formulas (see e.g. [?, ?]). Lemma 8.12. The complex measure µ 1 z (dx) has Lebesgue density; more precisely, there exists a bounded measurable function K z (x) such that:

µ 1 z (dx)=K z (x)dx. (8.38)
Proof. One has:

E L 1,z N (f ) 1 N N k=1 |f (k/N)|E [G N (z) kk ]( 8 . 3 9 ) 1 |(z)| 1 N N k=1 |f (k/N)| (8.40)
Letting N → +∞ along a subsequence, one obtains: .41) This proves the lemma. Thus, there exists a subsequence such that, as N tends to +∞ along this subsequence:

1 0 f (x)µ 1 z (dx) 1 |(z)| 1 0 |f (x)|dx. ( 8 
E L 1,z N (f ) → 1 0 f (x)K z (x)dx. (8.42)
Lemma 8.13. There exists a subsequence and a constant µ 2 z ∈ C such that, as N goes to +∞ along this subsequence:

E L 2,z N (f ) → µ 2 z 1 0 f (x)dx. (8.43)
Proof. It is easy to see that the G N (z) kk ,k = N +1,...,N are identically distributed. In particular, these variables have the same mean µ 2 z (N ). One has, for all N :

|µ 2 z (N )| 1 |(z)| . (8.44)
So there exists a subsequence and a complex number µ 2 z such that, as N goes to +∞ along this subsequence, µ 2 z (N ) → µ 2 z .O n et h u so b t a i n s ,a sN goes to +∞ along this subsequence:

E L 2,z N (f ) → µ 2 z 1 0 f (x)dx. ( 8 
.45) Following the classical metho d as in [START_REF] Ben Arous | The spectrum of heavy-tailed random matrices[END_REF], [START_REF] Belinschi | Spectral measure of heavy tailed band and covariance random matrices[END_REF], [START_REF] Khorunzhy | The largen limit in statistical mechanics and the spectral theory of disordered systems[END_REF], we will show in the following that the limit point µ 2 z and K z (x)a r ed e fi n e du n i q u e l ya n dd on o td e p e n do nt h e subsequence. We will first recall some preliminary results on resolvents. Lemma 8.16. There exists a constant C>0 such that, for all k ∈{1,...,N} and all t = k:

E G N (z) tt - Ĝ(k) N (z) tt C |(z)| 2 1 N 1-γ 2 4
. (8.60)

Proof. Again, we start from the relation:

G N (z) - Ĝ(k) N (z)=G N (z)( Â(k) N (0) -A N (0)) Ĝ(k) N (z). Thus we have G N (z) tt - Ĝ(k) N (z) tt = G N (z)( Â(k) N (0) -A N (0)) Ĝ(k) N (z) tt (8.61) = Ĝ(k) N (z) k,t N i=N +1 G N (z) ti r i (k)( 8 . 6 2 ) + G N (z) t,k N +1 j=1 r j (k) Ĝ(k) N (z) jt (8.63) = G N (z) t,k N +1 j=1 r j (k) Ĝ(k) N (z) jt (8.64) 
where we have noticed that, for all t = k, Ĝ(k) N (z) k,t =0. Therefore, we find that:

E G N (z) tt - Ĝ(k) N (z) tt E |G N (z) t,k | 2 1/2 E   N j=1 r j (k) Ĝ(k) N (z) jt 2   1/2 (8.65)
by Cauchy-Schwartz's inequality. We want to expand the square in the above expression. To that purpose, we first observe that, conditionally to the M i ,t h ev a r i a b l e s (r j (k)) j are independent from Ĝ(k) N (z) and centered. Hence we have for j

= j , E r j (k)r j (k) Ĝ(k) N (z) jt Ĝ(k) N (z) j t =0.
Thus we get:

E G N (z) tt - Ĝ(k) N (z) tt E |G N (z) t,k | 2 1/2 N +1 j=1 E r j (k) 2 Ĝ(k) N (z) jt 2 1/2 E |G N (z) t,k | 2 1/2 N +1 j=1 E r j (k) 4 1/2 E Ĝ(k) N (z) jt 4 1/2 1/2 E[r 1 (k) 4 ] 1/4 |(z)| N +1 j=1 E Ĝ(k) N (z) jt 4 1/2 1/2 E[r 1 (k) 4 ] 1/4 |(z)| (N +1) 1/4 N +1 j=1 E Ĝ(k) N (z) jt 4 1/4
If P denotes the law of the vector X

(N ) 1j 1 j N , E | F 1 N -E[F 1 N ] | 2 = N i=0 E | E[F 1 N |F i+1 ] -E[F 1 N |F i ] | 2 = N i=0 | (F N (x 1 ,x 2 ,...,x i+1 ,y i+2 ,...,y N +1 ) -F N (x 1 ,x 2 ,...,x i ,y i+1 ,...,y N +1 )) dP ⊗N +1 (y) | 2 dP ⊗i+1 (x) N i=0 | (F N (x 1 ,x 2 ,...,x i ,x i+1 ,x i+2 ,...,x N +1 ) -F N (x 1 ,x 2 ,...,x i ,y,x i+2 ,...,x N +1 )) dP (y) | 2 dP ⊗N +1 (x) N i=0 sup R (N +1) 2 || ∇ x i+1 F N || 2 || x -y || 2 dP ⊗2 (x, y).
The quantity ∇ x i+1 F 1 N refers to the gradient of F 1 N in the direction of the vector x i+1 .

If we consider a couple of processes ( B 1 , M 1 )i n d e p e n d e n tf r o m( B 1 ,M 1 )w i t h the same law, it is easy to see that:

|| x -y || 2 dP ⊗ dP (x, y)= N j=1 E (B 1 M 1 (0, j N ) -B 1 M 1 (0, j-1 N ) - B 1 M 1 (0, j N ) + B 1 M 1 (0, j-1 N ) ) 2 . =2-2 N j=1 E (B 1 M 1 (0, j N ) -B 1 M 1 (0, j-1 N ) )( B 1 M 1 (0, j N ) B 1 M 1 (0, j-1 N ) )
=2.

In our case, we have, for i ∈{1,...,N +1},j ∈{1,...,N}:

∂G N (z) kk ∂X ij = G N (z) k,j G N (z) N +i,k + G N (z) k,N+i G N (z) j,k (8.78) 
Thus,

∇ x i+1 F N = 1 N N k=1 f k N ∇ x i+1 G N (z) kk (8.79)
It is now plain to compute:

|| ∇ x i+1 F N || 2 = 1 N 2 N j=1 | G N (z)D 1 (f )G N (z) N +i+1,j + G N (z)D 1 (f )G N (z) j,N +i+1 | 2
where D 1 (f )i st h e( 2 N )-dimensional diagonal matrix of entries:

D 1 (f ) kk = f k N 1 {1 k N } .
One thus has:

|| ∇ x i+1 F 1 N || 2 = 4 N 2 N j=1 | G N (z)D 1 (f )G N (z) N +i+1,j | 2 4 N 2 2N j=1 | G N (z)D 1 (f )G N (z) N +i+1,j | 2 4 N 2 || f || 2 ∞ |z | 4 .
where, in the last line, we used lemma 8.26 and the fact that the matrix

G N (z)D 1 (f )G N (z) has a spectral radius smaller than || f || ∞ / |z | 2 .
Finally,

E | F 1 N -E[F 1 N ] | 2 8 N || f || 2 ∞ |z | 4 .
(8.80) We also prove the following lemma: Lemma 8.20. For all α>1 such that ζ(2α) > 1, we have

E N t=1 r k (t) 2 Ĝ(N+k) N (z) tt -E[ Ĝ(N+k) N (z) tt ] C(ln N ) 2 N ζ(2α)-1 α |(z)| 4 (8.81)
for some positive constant C independent from N, z, k.

Proof. Notice that (r k (t)) t and Ĝ(N+k) N (z) are independent. Hence, by conditioning with respect to the process (r k (t)) t ,w ec a na r g u ea l o n gt h es a m el i n e sa si nt h e previous lemma with r k (t)i n s t e a do f 1 N f ( t N )a n dw eg e tt h ef o r m u l a :

E   N t=1 r k (t) 2 Ĝ(N+k) N (z) tt -E[ Ĝ(N+k) N (z) tt ] 2   8 |(z)| 4 E[sup t r k (t) 4 ].
We conclude with Prop osition 8.29 in the appendix .

In the following, we fix α>1s u c ht h a tζ(2α) > 1( b e c a u s eo ft h ee x p r e s s i o no f ζ and the inequality γ 2 < 1/3, it is clear that such a number exists). 

G N (z) N +k,N+k = z - N s,t=1 r k (s)r k (t)G (N +k) N (z) st -1 (8.82)
Using Lemma 8.27,o n ec a nw r i t e :

G N (z) N +k,N+k = z - N t=1 r k (t) 2 G (N +k) N (z) tt + 1 N,k (z) -1 (8.83)
where 1 N,k (z)isacomplexv aluedrandomv ariableforwhic hthereexistsC>0such that for all N ∈ N and 1 k N ,

E[| 1 N,k (z)| 2 ] < C N 1-γ 2 .
(8.84)

By using Lemma 8.17,w ec a nw r i t e :

G N (z) N +k,N+k = z - N t=1 r k (t) 2 Ĝ(N+k) N (z) tt + 1 N,k (z) -1 . (8.85) 
Lemma 8.20 applied to α>1s u c ht h a tζ(2α) > 1y i e l d s :

E   N t=1 r k (t) 2 Ĝ(N+k) N (z) tt -E[ Ĝ(N+k) N (z) tt ] 2   C(ln N ) 2 N ζ(2α)-1 α |(z)| 4 . ( 8.86) 
Thus, one can write:

G N (z) N +k,N+k = z - N t=1 r k (t) 2 E Ĝ(N+k) N (z) tt + 1 N,k (z)+ 2 N,k (z) -1 (8.87)
where 2 N,k (z) is a complex valued random variable such that for all N ∈ N and

1 k N +1, E[| 2 N,k (z)| 2 ] < C(ln N ) 2 N ζ(2α)-1 α |(z)| 4 . ( 8.88) 
In addition, using Lemma 8.15,w ec a ns h o w :

E N t=1 r k (t) 2 E Ĝ(N+k) N (z) tt -G N (z) tt (8.89) N t=1 E[r k (t) 2 ]E Ĝ(N+k) N (z) tt -G N (z) tt (8.90) 1 |(z)| 2 √ N . (8.91) 
It follows:

G N (z) N +k,N+k = z - N t=1 r k (t) 2 E [G N (z) tt ]+ 1 N,k (z)+ 2 N,k (z)+ 3 N,k (z) 
-1

(8.92) where 3 N,k (z) is a complex valued random variable such that for all N ∈ N and 1 k N +1,

E | 3 N,k (z)| < 1 |(z)| 2 √ N . (8.93) 
Let us denote by I t N the interval [ t-1 N , t N ]. Then we have: Lemma 8.21. The following inequality holds:

E   N t=1 r k (t) 2 -M k (I t N ) E [G N (z) tt ] 2   C N 1-γ 2 |(z)| 2
for some positive constant C.

Proof. We expand the square and, b ecause r k (t)andr k (t )areindependentfort = t conditionally to M k ,w eh a v e :

E N t=1 r k (t) 2 -M k (I t N ) E [G N (z) tt ] 2 = N t,t =1 E r k (t) 2 -M k (I t N ) r k (t ) 2 -M k (I t N ) E [G N (z) tt ] E [G N (z) t t ] = N t=1 E r k (t) 2 -M k (I t N ) 2 E [G N (z) tt ] 2 =2 N t=1 E M k (I t N ) 2 E [G N (z) tt ] 2 2C N N ζ(2) |(z)| 2
We can thus write

G N (z) N +k,N+k = z - N t=1 M k (I t N )E [G N (z) tt ]( 8 . 9 4 ) + 1 N,k (z)+ 2 N,k (z)+ 3 N,k (z)+ 4 N,k (z) -1 (8.95) 
where 4 N,k (z) is a complex valued random variable such that for all N ∈ N and 1 k N +1,

E | 4 N,k (z)| 2 C N ζ(2)-1 |(z)| 2 . (8.96) Set N,k (z)= 1 N,k (z)+ 2 N,k (z)+ 3 N,k (z)+ 4 N,k (z) 
a n dr e w r i t e :

G N (z) N +k,N+k = z - N t=1 M k (I t N )E [G N (z) tt ]+ N,k (z) -1 (8.97) 
We now need to introduce the truncated Radon measure M k (dx)withLebesgue density e ω k (x) which converges almost surely as goes to 0, in the sense of weak convergence in the space of Radon measure, to the measure M k (see section 8.2.1). Lemma 8.22. For >0, the following uniform bound holds:

sup N E | N t=1 M k (I t N )E [G N (z) tt ] - N t=1 M k (I t N )E [G N (z) tt ] | 2 C 1-γ 2 |(z)| 2 .
Proof. We expand the square. Note that the covariance function ρ of the process ω increases as decreases to 0 and uniformly converges as → 0 towards ln + τ |x| over the complement of any ball centered at 0. Thus we have:

sup

N E | N t=1 M k (I t N )E [G N (z) tt ] - N t=1 M k (I t N )E [G N (z) tt ] | 2 =sup N N t,t =1 E (M k (I t N ) -M k (I t N ))(M k (I t N ) -M k (I t N )) E [G N (z) tt ] E [G N (z) t t ] =sup N N t,t =1 E (M k (I t N ) -M k (I t N ))(M k (I t N ) -M k (I t N )) E [G N (z) tt ] E [G N (z) t t ] =sup N N t,t =1 E M k (I t N )M k (I t N ) -E M k (I t N )M k (I t N ) E [G N (z) tt ] E [G N (z) t t ] =sup N N t,t =1 E [G N (z) tt ] E [G N (z) t t ] I t N I t N e ψ(2) ln + τ |r-u| -e ψ(2)ρ(r-u) drdu 1 |(z)| 2 1 0 1 0 e ψ(2) ln + τ |r-u| -e ψ(2)ρ(r-u) drdu.
where, in the fourth line, we used the fact that, if F is the sigma field generated by the random variables µ(A),A ∈B({(t, y):y }), then E[M k (A)|F ]=M k (A)f o r all borelian set A.As t r a i g h t f o r w a r dc o m p u t a t i o nl e a d st ot h er e l a t i o n

ρ (t)=    ln τ +1-|t| if |t| ln τ |t| if |t| τ 0i f τ<|t| (8.98)
By using the expression of ρ ,i ti st h e np l a i nt oo b t a i nt h ed e s i r e dbo u n d .

We can thus write

G N (z) N +k,N+k = z - N t=1 M k (I t N )E [G N (z) tt ]+ N,k (z)+δ(, N, z) -1 , (8.99) 
where sup

N E[|δ(, N, z)| 2 ] → 0a s → 0, (8.100) 
and also: 

E [G N (z) N +k,N+k ]=E   z - N t=1 M k (I t N )E [G N (z) tt ]+ N,k (z)+δ(, N, z) -1   . ( 8 
(I t N )E [G N (z) tt ] converges in probabil- ity as N → +∞ towards 1 0 K z (x)M k ( 
dx). We fix >0. For that ,thefamilyofrandomv ariables(δ(, N, z)) N is bounded in L 2 so that it is tight. Even if it means extracting again a subsequence we assume that the couple (

N t=1 M k (I t N )E [G N (z) tt ] ,δ(, N, z)) N converges in law towards the couple ( 1 0 K z (x)M k (dx),Y ).
We remind the reader of (8.82)w h i c hi m p l i e st h a t z -

N t=1 M k (I t N )E [G N (z) tt ]+ N,k (z)+δ(, N, z) -1 1 |(z)| . The quantity z - N t=1 M k (I t N )E [G N (z) tt ]+ N,k (z)+δ(, N, z) -1
is therefore bounded uniformly with respect to N, and converges in law towards z -

1 0 K z (x)M k (dx)+Y -1 .
We deduce that the expectation of the former quantity converges as → 0t o w a r d s the expectation of the latter quantity. From (8.101), we deduce that

µ 2 z = E z - 1 0 K z (x)M k (dx)+Y -1 . (8.102) 
Clearly, standard arguments prove that 1 0 K z (x)M k (dx)c o n v e r g e sa l m o s ts u r e l y towards 1 0 K z (x)M k (dx)as → 0(K z is deterministic (see lemma 8.19), measurable and bounded) and, because of (8.100), Y converges almost surely towards 0 as → 0.

Again, because the quantity z -

1 0 K z (x)M k (dx)+Y -1
is bounded uniformly with respect to ,w ed e d u c et h a t :

µ 2 z = E z - 1 0 K z (x)M k (dx) -1 . (8.103)

Second equation

Now we turn our attention to the terms G N (z) kk for k ∈{ 1,...,N}. Again, by using the Schur complement formula, we can write, for k ∈{1,...,N}: 

G N (z) kk = z - N i,j=1 r i (k)r j (k)G (k) N (z) N +i,N +j -1 (8.104) = z - N i=1 r i (k) 2 G (k) N (z) N +i,N +i + η 1 N,k (z) 
G N (z) kk =   z - N i=1 r i (k) 2 z - N s,t =k r i (s)r i (t)G (k,N+i) N (z) st -1 + η 1 N,k (z)   -1 (8.106) where G (k,N+i) N (z)=A (k,N+i) N (z) -1 . Note that G (k,N+i) N (z)isindependentof(r i (t)) t=1,...,
G N (z) kk = z - N i=1 r i (k) 2 z - N t=1 M i (I t N )E [G N (z) tt ]+δ N,k,i (z) + η 1 N,k (z) -1 (8.107) 
where (δ N,k,i (z)) 1 i N are complex random variable such that

E[|δ N,k,i (z)|] C N min( 1-γ 2 4 , ζ(2α)-1 α ) (8.108) 
for some positive constant C that does not depend on i, N and for α>1s u c ht h a t ζ(2α) > 1.

Lemma 8.24. One can write:

G N (z) kk = z - N i=1 r i (k) 2 z - N t=1 M i (I t N )E [G N (z) tt ] + η 1 N,k (z)+η 2 N,k (z) -1 (8.109) 
where η 2 N,k (z) is a random variable that tends to 0 in probability as N goes to ∞. Proof. By using Lemma 8.14,w ed e d u c et h a t : .110) We stress that the lemma is proved as so on as we can prove that the left-hand side in (9.19) converges in probability to 0. Hence it is enough to prove that

N i=1 r i (k) 2 z - N t=1 M i (I t N )E [G N (z) tt ]+δ N,k,i (z) - r i (k) 2 z - N t=1 M i (I t N )E [G N (z) tt ] 1 |(z)| 2 N i=1 r i (k) 2 min(|δ N,k,i (z)|, 2). ( 8 
E N i=1 r i (k) 2 min(|δ N,k,i (z)|, 2)
converges to 0 as N tends to ∞. By noticing that:

δ N,k,i (z)= N s,t =k r i (s)r i (t)G (k,N+i) N (z) st - N t=1 M i (I t N )E [G N (z) tt ] , (8.111) 
it is straightforward to see that the variables r i (k) 2 min(|δ N,k,i (z)|, 2)

1 i N +1
are identically distributed. Thus we have

E N i=1 r i (k) 2 min(|δ N,k,i (z)|, 2) = N E r 1 (k) 2 min(|δ N,k,1 (z)|, 2) .
Then for all A>1a n dα>0, we have

N E r 1 (k) 2 min(|δ N,k,1 (z)|, 2) =N E r 1 (k) 2 min(|δ N,k,1 (z)|, 2)1 {Nr 1 (k) 2 A} + N E r 1 (k) 2 min(|δ N,k,1 (z)|, 2)1 {Nr 1 (k) 2 >A} AE[|δ N,k,1 (z)|]+2E Nr 1 (k) 2 1 {Nr 1 (k) 2 >A} AC N ζ(2)-1 4 + 2 A α E N 1+α r 1 (k) 2(α+1) = AC N ζ(2)-1 4 + 2N 1+α A α E M 1 (0, 1 N ) α+1
By using the scale invariance property of the measure M 1 ,w eh a v e :

E M 1 (0, 1/N ) α+1 = 1 N ζ(1+α) E M 1 (0, 1) α+1 ,
in such a way that

N E r 1 (k) 2 min(|δ N,k,1 (z)|, 2) AC N ζ(2)-1 4 +2E M 1 (0, 1) α+1 N ψ(1+α) A α . (8.112) Since ζ(2) > 5 -4ζ (1) 
(this inequality is clear with ζ(q)=( 1+γ 2 /2)q + q 2 γ 2 /2 and is due to our hypotheses of Assumption 8.24 in the more general case), we can choose p>0s u c ht h a t 

ζ(2) -1 4 >p>1 -ζ (1) = ψ (1). ( 8 
N E r 1 (k) 2 min(|δ N,k,1 (z)|, 2) C N ζ(2)-1 4 -p +2 2+α E M 1 (0,T) α+1 1 N αp-ψ(1+α) .
The result follows by letting N →∞since min((ζ(2) -1)/4p, αpψ(1 + α)) > 0.

Lemma 8.25. There exists a constant c>0, which does not depend on N , such that for each N ∈ N:

E N i=1 r i (k) 2 z - N t=1 M i (I t N )E [G N (z) tt ] -E r i (k) 2 z - N t=1 M i (I t N )E [G N (z) tt ] 2 c N 1-γ 2 .
Proof. The proof is straightforward using the fact that for i ∈{ 1,...,N},t h e random variables 

r i (k) 2 z - N t=1 M i (I t N )E [G N (z) tt ] ( 8 
G N (z) kk = z - N i=1 r i (k) 2 z - N t=1 M i (I t N )E [G N (z) tt ] + η 1 N,k (z)+η 2 N,k (z)+η 3 N,k (z) -1 (8.115) with E[(η 3 N,k (z)) 2 ] c N 1-γ 2
. Now we can take the expectation in (8.115)t oo b t a i n

E[L 1,z N (f )] = 1 N N k=1 f (k/N)E[G N (z) kk ] = 1 N N k=1 f (k/N)E z -E N i=1 r i (k) 2 z - N t=1 M i (I t N )E G N (z) tt + η N,k (z) -1 = 1 N N k=1 f (k/N)E z -N E M k-1 N ; k N z - N t=1 M (I t N )E G N (z) tt + η N,k (z) -1 with η N,k (z)=η 1 N,k (z)+η 2 N (z)+η 3 N,k (z) 
. Then, by introducing the truncated measure M and by using the Girsanov formula, we can approximate (uniformly in N )t h i s last expression by:

1 N N k=1 f (k/N)E z-N E M k-1 N ; k N z - N t=1 M (I t N )E G N (z) tt -1 + δ(N, k, z, ) (8.116) with sup N,k E[| δ(N, k, z, )| 2 ]
goingto0when is going to 0. Along some appropriate subsequence, this latter quantity converges as N → +∞ to:

1 0 f (x)E   z -E e ω(x) z - 1 0 K z (r) M (dr) -1 + Y   dx (8.117)
where Y is such that E[(Y ) 2 ]c o n v e r g e st o0w h e n is going to 0. And, we thus obtain gathering the above arguments that:

1 0 f (x)K z (x) dx = 1 0 f (x)E   z -E e ω(x) z - 1 0 K z (r) M (dr) -1 + Y   dx. (8.118) 
It remains to pass to the limit as → 0i nt h a te x p r e s s i o n . T h i sj o bi sc a r r i e do u t with the help of a Girsanov type transform in Appendix 8.8.

Uniqueness of the solution to the system of equations

Let X be the space of bounded measurable functions [0, 1] → C endowed with the uniform norm defined for f ∈ X by:

||f || ∞ =s u p x∈[0,1] |f (x)|. (8.119)
Define the operator T : X → X by setting, for g ∈ X and for all x ∈ [0, 1]:

Tg(x)= 1 z -qE z - 1 0 τ |t-x| γ 2 + g(t)M (dt) -1 (8.120) 
For g, h ∈ X and for all x ∈ [0, 1], we have:

|Tg(x) -Th(x)| q |(z)| 4 E 1 0 τ |t -x| γ 2 + |g(t) -h(t)|M (dt) q |(z)| 4 E 1 0 τ |t -x| γ 2 + M (dt) ||g -h|| ∞ q |(z)| 4 1 0 τ |t -x| γ 2 + dt||g -h|| ∞ .
Recall that γ 2 < 1/3, and thus it is easy to see that: And we can deduce that there exists a positive constant C such that:

sup x∈[0,1] |Tg(x) -Th(x)| C |(z)| 4 ||g -h|| ∞ (8.122)
in such a way that z -

1 0 K z (x) M (dx) -1 |(z)| -1 .T h e r e f o r e z z - 1 0 K z (x) M (dx) 1 
when z takes on the form z = iy (y ∈ R). The dominated convergence theorem then implies that lim y→∞ iyµ 2 iy =1a n dw ec a nc o n c l u d eµ 2 is indeed the Stieltjes transform of a (unique) probability measure υ.

Proof of theorem 8.3 i) and 8.4 ii) We observe that, for z ∈ C \ R:

A N (z) zI T 0 X N zI N = z 2 I T -t X N X N -z t X N 0 z 2 I N . (8.124) 
Let us rewrite the matrix G N (z)=A N (z) -1 under the form:

G N (z)= G 1 (z) t G 1,2 (z) G 1,2 (z) G 2 (z) , (8.125) 
where G 1 (z),G 1,2 (z),G 2 (z)a r er e s pe c t i v e l yo fs i z eT × T , N × T , N × N . By taking the inverse in the relation (8.124), we obtain:

I T /z 0 -X N /z 2 I N /z G 1 (z) t G 1,2 (z) G 1,2 (z) G 2 (z) = (z 2 I T -t X N X N ) -1 B 0 I N /z 2 (8.126) 
where

B =(z 2 I T -t X N X N ) -1t X N /z.
It can be rewritten, using the fact that -

X N G 1 (z)+zG 1,2 (z)=0and-X N t G 1,2 (z)+ zG 2 (z)=I N ,a s : G 1 (z)/z t G 1,2 (z)/z 0 I N /z 2 = (z 2 I T -t X N X N ) -1 B 0 I N /z 2 (8.127)
Therefore, taking the trace we get:

1 Tz T k=1 G N (z) kk = 1 T tr(z 2 I T -t X N X N ) -1 , (8.128) 
and, by using the fact that the eigenvalues of t X N X N are those of X N t X N augmented with T -N zeros:

1 Tz T k=1 G N (z) kk = 1 T tr(z 2 I N -X N t X N ) -1 + T -N Tz 2 . (8.129)
Now, taking expectation and using theorem 8.4,w ed e d u c e :

1 0 K z (x)dx = qz lim N →∞ 1 N E tr(z 2 I N -X N t X N ) -1 + 1 -q z (8.130)
Using the fact that (by (8.12)) the spectrum of B N contains 2N eigenvalues which are the positive and negative square-roots of the spectrum of R N = t X N X N plus T -N zero eigenvalues and the fact that 1/(zλ)+1/(z + λ)=2z/(z 2λ 2 ), we can see that:

1 N + T N +T k=1 G N (z) kk = 2z N + T tr(z 2 I N -X N t X N ) -1 + T -N T + N 1 z (8.131)
Using the relation 8.17 and theorem 8.4,i ti se a s yt os e et h a t :

lim N →+∞ 1 N + T N +T k=1 E[G N (z) kk ]= 1 1+q qµ 2 z + 1 0 K z (x)dx (8.132)
Taking exp ectation in 8.131 and using (8.132), we get:

1 1+q qµ 2 z + 1 0 K z (x)dx = 2qz 1+q lim N →∞ 1 N E tr(z 2 I N -X N t X N ) -1 (8.133) + 1 -q 1+q 1 z . (8.134) 
From equations (8.130)a n d( 8.133), we get the following relation: 

1 0 K z (x)dx = qµ 2 z + 1 -q z . ( 8 
N →+∞ 1 N + T N +T k=1 E[G N (z) kk ]= 1 1+q 2qµ 2 z + 1 -q z (8.136)
and, we note that the right hand side of (8.136)i st h eS t i e l t j e st r a n s f o r mo ft h e measure 2q/(1 + q)υ(dx)+(1-q)/(1 + q)δ 0 (dx). Thus, the mean spectral measure E[µ B N ]c o n v e r g e sw e a k l yt ot h em e a s u r e2 q/(1 + q)υ(dx)+(1-q)/(1 + q)δ 0 (dx).

We have also:

lim N →∞ 1 N E tr(z 2 I N -X N t X N ) -1 = µ 2 z z (8.137)
Again using the fact that, for all x ∈ R, 1/(z 2 -x 2 )=(1/(z -x)+1/(z +x))/(2z) and the fact that υ(dx) is a symmetric measure on R (υ(dx)i st h ew e a kl i m i to f E [µ B N ], which is symmetric since the spectrum of B N is symmetric with respect to 0a l m o s ts u r e l y ) ,w es e et h a t : 

lim N →∞ 1 N E tr(z 2 I N -X N t X N ) -1 = 1 z R υ(dx) z -x (8.138) = R υ • (x 2 ) -1 (dx) z 2 -x . ( 8 
E   N s =t r k (s)r k (t)G (N +k) N (z) st 2   C N 1-γ 2 .
Similarly, for each N ∈ N and k ∈{1,...,N}, i ∈{1,...,N}, we have the following inequality concerning the conditional expectation with respect to M i :

E   N s,t =k,s =t r i (s)r i (t)G (k,N+i) N (z) st 2 |M i   C N 1-γ 2 .
Proof. We first expand the square and use the independence of (r k (s)) s from G

(N +k) N (z): E   N s =t r k (s)r k (t)G (N +k) N (z) st 2   =2 N s =t E r k (s) 2 r k (t) 2 E G (N +k) N (z) st 2 Now we compute E r k (s) 2 r k (t) 2 = E M k ( s -1 N , s N )M k ( t -1 N , t N ) = s N s-1 N t N t-1 N max 1, τ |r -u| ψ(2) drdu 1 N 0 2 N 1 N max 1, τ |r -u| ψ(2)
drdu

We consider N large enough so as to make 2/N τ .T h ea b o v ei n t e g r a li st h e n plain to compute and we get

E r k (s) 2 r k (t) 2 τ ψ(2) (2 2-ψ(2) -2) (1 -ψ(2))(2 -ψ(2)) 1 N 2-ψ(2) . (8.143) 
Thus we have for some positive constant

C E   N s =t r k (s)r k (t)G (N +k) N (z) st 2   C N 2-ψ(2) N s =t E G (N +k) N (z) st 2 C N 1-ψ(2) 1 |(z)| 2 ,
where we have used the fact that almost surely:

1 2N -1 2N s,t =N +k G (N +k) N (z) st 2 1 |(z)| 2 .
It just remains to see that ψ(2) = γ 2 .T op r o v et h es e c o n dr e l a t i o n ,w ef o l l o wt h e same argument by noticing that (r i (t)) t and G (k,N+i) N (z)a r ei n d e pe n d e n tc o n d i t i o nally to M i . Lemma 8.28. There exists some constant c>0 such that for each N ∈ N and k ∈{1,...,N}:

E   N i =j r i (k)r j (k)G (k) N (z) N +i,N +j 2   c N .
Proof. Again we expand the square and we use the fact that, conditionally to the

(M i ) i ,thequan titiesr i (k),r j (k),G (k) 
N (z) N +i,N +j are independent and r i (k),r j (k)are centered. Indeed, conditionally to the (M i ) i ,thevariablesr i (k),r j (k),G

N (z) N +i,N +j involve different increments of the Brownian motion. Thus we have

E   N i =j r i (k)r j (k)G (k) N (z) N +i,N +j 2   = N i =j E r i (k) 2 r j (k) 2 E G (k) N (z) N +i,N +j 2 N i =j E[r i (k) 2 ]E[r j (k) 2 ]E G (k) N (z) N +i,N +j 2 = N -2 N i =j E G (k) N (z) N +i,N +j 2 c N ,
where we have used the fact that almost surely:

1 2N -1 2N i,j =k G (k) N (z) i,j 2 1 |(z)| 2 .
Proof of Lemma 8.23. We define the function f k, N on the interval [0, 1] by

f k, N (x)=NM k, (I t N )i fx ∈ I t N .
Notice the relation:

N t=1 M k (I t N )E [G N (z) tt ]= 1 0 f k, N (r) dE[L 1,z N ](dr).
Then, by stationarity, we have:

E 1 0 f k, N (r) dE[L 1,z N ](dr) - 1 0 e ω k (r) dE[L 1,z N ](dr) N t=1 E I t N (f k, N (r) -e ω k (r) ) dE[L 1,z N ](dr) N |(z)| sup r∈I 1 N E I 1 N (e ω k (u) -e ω k (r) ) du N |(z)| sup r∈I 1 N I 1 N E e ω k (u) -e ω k (r) ) 2 1/2 du N |(z)| sup r∈I 1 N I 1 N 2e ψ(2)ρ(0) -2e ψ(2)ρ(r-u) 1/2 du.
Because of the continuity of the function ρ over [0, 1], we have

E 1 0 f k, N (r) dE[L 1,z N ](dr) - 1 0 e ω k (r) dE[L 1,z N ](dr) → 0a s N →∞. (8.144) 
In a quite similar way, we can prove that .

E 1 0 e ω k * φ p (r) dE[L 1,z N ](dr)- 1 0 e ω k (r) dE[L
for some positive constant C.

Proof. To prove the result, we first prove Lemma 8.30. There exists a constant C such that, if (X i ) 1 i N are iid centered Gaussian random variables then:

E max 1 i N |X i | 4 C max 1 i N E[X 2 i ] 2 (ln N ) 2 .
Proof. By homogeneity, it suffices to assume that E[X 2 i ]=1 . T h e nw eh a v ef o ra l l δ 0 E max

1 i N |X i | 4 δ + N ∞ δ P(|X 1 | 4 >t)dt δ +2N ∞ δ P(X 1 >t 1/4 )dt δ + 2N √ 2π ∞ δ e - √ t dt δ + 4N √ 2π ∞ √ δ e -t tdt δ + 4N √ 2π √ δe - √ δ + e - √ δ ,
and this last expression can be made smaller than C(ln N ) 2 by choosing δ =(lnN ) 2 .

We want apply the ab ove lemma after conditioning with resp ect to the law of the MRM M k :

E sup t=1,...,N r k (t) 4 = E E sup t=1,...,N r k (t) 4 |M k .
Notice then that, conditionally to M k (0, 1 N )=x 1 ,...,M k ( N -1 N , 1) = x N ,t h ev e c t o r (r k (1),...,r k (N )h a st h es a m el a wa st h ei n c r e m e n t so fB:( 

B x 1 -B 0 ,...,B x N - B x N -1
M k t -1 N , t N 2 δ + N ∞ δ P M k t -1 N , t N 2 >x dx δ + N ∞ δ 1 x α E M k t -1 N , t N 2α dx δ + Cδ 1-α N 1-ζ(2α)
for some constant C only depending on α, τ and γ 

(A)=E[1 A e µ(B) ].
Then, under P B , µ has the same law as µ+µ B where µ B is an independently scattered infinitely divisible random measures independent of µ and is associated to (ψ B ,θ B ) given by

ψ B (q)=qσ 2 + R (e qx -1)(e x -1)ν(dx) θ B (•)=θ(•∩B).
Proof. It suffices to compute the joint distribution of p disjoint sets A 1 ,...,A p .W e have for any λ 1 ,...,λ p ∈ R:

E B e λ 1 µ(A 1 )+•••+λpµ(Ap) = E e λ 1 µ(A 1 )+•••+λpµ(Ap)+µ(B) = E e λ 1 µ(A 1 \B)+•••+λpµ(Ap\B)+λ 1 µ(A 1 ∩B)+•••+λpµ(Ap∩B)+µ(B) = E e λ 1 µ(A 1 \B)+•••+λpµ(Ap\B)+(λ 1 +1)µ(A 1 ∩B)+•••+(λp+1)µ(Ap∩B)+µ(B\ n i=1 A i ) = E e λ 1 µ(A 1 \B)+•••+λpµ(Ap\B) E e (λ 1 +1)µ(A 1 ∩B)+•••+(λp+1)µ(Ap∩B) = e ψ(λ 1 )θ(A 1 \B)+•••+ψ(λp)θ(Ap\B) e ψ(λ 1 +1)θ(A 1 ∩B)+•••+ψ(λp+1)θ(Ap∩B) = e ψ(λ 1 )θ(A 1 )+•••+ψ(λp)θ(Ap) e (ψ(λ 1 +1)-ψ(λ 1 ))θ(A 1 ∩B)+•••+(ψ(λp+1)-ψ(λp))θ(Ap∩B) .
Then it suffices to notice that:

ψ(q +1)-ψ(q)=m + σ 2 q + 1 2 σ 2 + R (e (q+1)z -e qz )ν(dz)
and ψ(1) = 0.

Lemma 8.32. If the process ω is defined as ω (x)=µ(A (x)) where µ is an independently scattered random measure associated to (ϕ, θ) with ϕ(q)=-iqγ 2 /2q 2 γ 2 /2 and θ given by 8.8, then:

lim →0 E e ω(x) z - 1 0 K z (r)e ω(r) dr = E   z - 1 0 τ |r -x| γ 2 + K z (r)M (dr) -1  
where M is the lognormal MRM.

Proof. One can check that (ω (x)) x∈[0;1] is a stationary gaussian process with covariance given by γ 2 ρ (xy). So, using Girsanov transform, we can write:

E e ω(x) z - 1 0 K z (r)e ω(r) dr = E z - 1 0 K z (r)e γ 2 ρ(r-x) e ω(r) dr -1
We are interested in the limit when goes to 0 of this latter term, we thus approximate it with a simpler term:

E z - 1 0 K z (r)e γ 2 ρ(r-x) e ω(r) dr -1 -E   z - 1 0 K z (r) τ |r -x| γ 2 + e ω(r) dr -1   1 |(z)| 2 E 1 0 |K z (r)|e ω(r) e γ 2 ρ(r-x) - τ |r -x| γ 2 + dr 1 |(z)| 3 1 0 e γ 2 ρ(r-x) - τ |r -x| γ 2 + dr (8.150)
where we have used Lemmas 8.14 and 8.18 and the normalization ψ(1) = 0. Because γ 2 < 1, the dominated convergence theorem implies that 8.150 converges to 0 when goes to 0.

We thus lo ok at the limit when goes to 0 of the term:

E   z - 1 0 K z (r) τ |r -x| γ 2 + e ω(r) dr -1   .
The random variable

1 0 K z (r) τ |r -x| γ 2 + M (dr)
is well defined and is finite almost surely since:

E 1 0 K z (r) τ |r -x| γ 2 + M (dr) 1 0 |K z (r)| τ |r -x| γ 2 + dr < +∞.
And thus, we can compute:

E   z - 1 0 K z (r) τ |r -x| γ 2 + e ω(r) dr -1   -E   z - 1 0 K z (r) τ |r -x| γ 2 + M (dr) -1   1 |(z)| 2 E 1 0 K z (r) τ |r -x| γ 2 + (e ω(r) dr -M (dr))
, and, for all n ∈ N,t h i sl a t t e rt e r mi ss m a l l e rt h a n and thus converge to 0, uniformly in as n goes to infinity. For a fixed n,t h ef u n c t i o nm i n ( ( τ/|r -x|) γ 2 + ,n)i sm e a s u r a b l ea n dbo u n d e da n d thus it is plain to see that, for a fixed n,t h et e r m8.152 goes to 0 when goes to 0.

E 1 0 K z (r) τ |r -x| γ 2 + -min τ |r -x| γ 2 + ,n e ω(r) dr (8.151) + E 1 0 K z (r)min τ |r -x| γ 2 + ,n (e ω(r) dr -M (dr)) (8.152) + E 1 0 K z (r) τ |r -x| γ 2 + -min τ |r -x| γ 2 + ,n M (dr) . ( 8 
The lemma follows gathering the above estimates.

Lemma 8.33. If the process ω is defined as ω (x)=µ(A (x)) where µ is an independently scattered random measure associated to (ϕ, θ) where ϕ is given by (8.6),i.e.

ϕ(q)=imq -

γ 2 2 q 2 + R (e iqx -1)ν(dx)
and where θ given by (8.8), then:

lim →0 E e ω(x) z - 1 0 K z (r)e ω(r) dr = E z - 1 0 τ |r -x| κ + K z (r)Q(dr) -1
with κ = γ 2 + R (e x -1) 2 ν(dx) and where the random Radon measure Q is defined, conditionally on a MRM denoted by M whose structure exponent is ζ(q): =qϕ(-iq), as the almost sure weak limit as goes to 0 of the family of random measures Q (dt): =e ω(t) M (dt) where, for each >0, the random process ω is independent of M and defined as ω (t)=µ(A (t)) where µ is the independently scattered log infinitely divisible random measure associated to (φ, θ(•∩A 0 (x))) where φ(p)=ip(γ 2 -κ)+ R (e ipx -1)(e x -1)ν(dx).

(8.155)

Proof. We want to apply Lemma 8.31 to the process ω .I f w e s e t B = A (x), Lemma 8.31 tells us that, under P B ,t h ep r o c e s sω possesses the same law as the process ω (1) (r)+ω (2) (r)w i t h ω (1) (r)=µ (1) (A (r)) and ω (2) (r)=µ (2) (A (r)), where µ

,µ

are independent independently scattered log infinitely divisible random measures respectively associated to (ϕ, θ)a n d( ϕ (2) ,θ (2) )w i t h :

ϕ (2) (q)=iγ 2 q + R (e iqx -1)(e x -1)ν(dx)a n dθ (2) (•)=θ(•∩A (x)). ( 8 

.156)

Define:

κ = γ 2 + R (e x -1) 2 ν(dx), ϕ(q)=ϕ (2) (q) -iqκ, ψ(q)=ϕ(-iq). ( 8 

.157)

Notice that ψ is then normalized so as to make ψ(1) = ψ(0) = 0. Let us define the process ω by:

ω (r)=ω (2) (r) -κθ(A (r) ∩ A (x)) = ω (2) (r) -κρ (r -x), (8.158) 
and notice that E[e iqω(r) ]=e ϕ(q)ρ(r-x) . We can now apply Lemma 8.31:

E e ω(x) z - 1 0 K z (r)e ω(r) dr = E z - 1 0 K z (r)e ω(r)+κρ(r-x)+ω(r) dr -1
We are interested in the limit when goes to 0 of this latter term, we thus approximate it with a simpler term:

E z - 1 0 e ω(r)+ω(r)+κρ(r-x) K z (r) dr -1 -E z - 1 0 e ω(r)+ω(r) τ |r -x| κ + K z (r) dr -1 1 |(z)| 2 E 1 0 e ω(r)+ω(r) e κρ(r-x) - τ |r -x| κ + |K z (r)| dr 1 |(z)| 3 1 0 e κρ(r-x) - τ |r -x| κ + dr (8.159) 
where we have used Lemmas 8.14 and 8.18, the normalizations ψ(1) = 0,ψ(1) = 0 and the independence between ω and ω . Let us show that κ<1. Indeed, we have:

κ = γ 2 + R (e x -1) 2 ν(dx) = γ 2 + R (e 2x -1)ν(dx) -2 R (e x -1)ν(dx) = γ 2 + R (e 2x -1)ν(dx)+2(m + 1 2 γ 2 ) =2m +2γ 2 + R (e 2x -1)ν(dx) = ψ(2)
where, in the third line, we used the fact that ψ(1) = 0 (which implies the relation R (e x -1)ν(dx)=-(m + γ 2 /2)). We will now show that ψ(2) is strictly less than Because κ<1, the dominated convergence theorem implies that 8.159 converges to 0 when goes to 0.

For each Borelian set A of [0; 1], the family M (A): = A e ω(r) dr, > 0i sa positive martingale with respect to and that it converges almost surely to M (A). With the assumption 8.24 and in particular the condition ζ(2 + ) > 1, we can show (see [?]f o rap r o o f)t h a tt h ef a m i l y( M (A)) >0 is in fact uniformly integrable. In particular, if we let F be the sigma field generated by the family of random variables (ω η (r)) η>,r∈R , we have the following almost sure equality:

E [M (A)|F ]=M (A). ( 8 

.161)

Conditionally to the random measure M ,thefamilyP (A):= A e ω(r) M (dr), > 0isalsoapositivemartingalewithrespectto.T h u s ,P (A)convergesalmostsurely to a random variable that we will denote by P (A). We know that this defines a random Radon measure P on [0; 1] and that the family of random Radon measures P converges, when goes to 0, weakly almost surely to P in the space of Radon measures. Denote, conditionally to the random measure M ,b yP M the law P[•|M ] and let us show that the family (P ([0; 1])) >0 is P M -uniformly integrable. Let δ be such that ψ(1 + δ) < +∞ (we can show, using the condition ψ(2 + δ) < +∞,t h a t that there exists such δ ). We will show that the family (P ([0; 1])) >0 is uniformly bounded in L 1+δ (P M ). Indeed, conditionally to the random measure M :

E M 1 0 e ω(r) M (dr) 1+δ E M 1 0 e (1+δ)ω(r) M (dr) M [0; 1] δ 1 0 e ψ(1+δ)ρ(r-x) M (dr)M [0; 1] δ M [0; 1] δ e ψ(1+δ) 1 0 τ |r -x| κ + M (dr) < +∞.
The family (P ([0; 1])) >0 is therefore P M -uniformly integrable, in particular, P ([0; 1]) converges to P ([0; 1]) also in L 1 ,w h i c hi m p l i e st h a tP is a non degenerated random measure. Moreover, denoting by F the sigma field generated by the family of random variables (ω η (r)) η>,r∈R , we have, almost surely, conditionally to M ,f o ra l l Borelian set A of [0; 1]:

E M [P (A)|F ]=P (A).
Now, as before, it is easy to see that the family Q (A):= A e ω(r)+ω(r) dr, > 0 is also a positive martingale with respect to .T h e r e f o r e ,Q (A)c o n v e r g e sa l m o s t surely to a random variable that we will denote by Q(A). This defines a random Radon measure Q and the family of random Radon measure Q converges, as → 0, weakly almost surely to Q in the space of Radon measure. We want to show that the two random measures P and Q have the same law.

Gathering the above arguments, we can write, almost surely: and with the dominated convergence theorem, we conclude as in the proof of lemma 8.32 using the fact that κ<1t h a t :

E P (A)|σ(F , F ) = E E[P (A)|F ] = E A e ω(r) M (dr)|F = A e ω(
1 0 K z (r) τ |r -x| κ + Q(dr) (law) = 1 0 K z (r) τ |r -x| κ + P (dr). (8.162) 
Gathering the above argument and letting go to 0 concludes the proof.

the corresponding market mode away from uniformity. There are two time scales associated to these effects, a short one on the order of a month (20 trading days), and a longer time scale on the order of a year. We also find indications of a leverage effect for sectorial correlations as well, which reveals itself in the second and third mode of the PRA.

Introduction

Among the best known stylized facts of financial markets lies the so-called "leverage effect" [START_REF] Glosten | Relationship between the expected value and the volatility of nominal excess return[END_REF][START_REF] Bekaert | Asymmetric volatility and risk in equity markets[END_REF][START_REF] Nelson | Conditional Heteroskedasticity in Asset Returns: A New Approach[END_REF][START_REF] Bouchaud | Leverage Effect in Financial Markets: The Retarded Volatility Model[END_REF][START_REF] Perelló | Random diffusion and leverage effect in financial markets[END_REF][START_REF] Perelló | Multiple time scales in volatility and leverage correlations: a stochastic volatility model[END_REF], a name coined by Black to describe the negative correlation between past price returns and future realized volatilities in stock markets [START_REF] Black | Proceedings of the 1976 American Statistical Association, Business and Economical Statistics Section[END_REF]. 1 It is indeed well documented that negative price returns induce increased future volatilities, an effect responsible for the observed skew on the implied volatility smile in stock option markets (see e.g. [START_REF] Bergomi | Smile Dynamics II. Risk[END_REF][START_REF] Ciliberti | Smile Dynamics: a Theory of the Implied Leverage Effect[END_REF]). However, the association, made by Black, with a true leverage effect (i.e. that when the value of a stock goes down its debt to equity ratio increases, thereby making the company riskier and more volatile), is probably misleading. In particular, the amplitude of the leverage correlation for indices is noticeably stronger than for individual stocks, which even sounds paradoxical when the index return is by definition the average of individual stock returns! The volatility of an index in fact reflects both the volatility of underlying single stocks and the average correlation between these stocks. The increased leverage effect for indices must therefore mean that both these quantities are sensitive to a downward move of the market.

The aim of the present paper is to investigate more specifically this "correlation leverage effect", and make precise the common lore according to which correlations "jump to one" in crisis periods (see [START_REF] Erb | Forecasting International Equity Correlations[END_REF][START_REF] Longin | Is the correlation in international equity returns constant: 1960-1990[END_REF][START_REF] Solnik | International Market Correlation and Volatility[END_REF][START_REF] Ramchand | Volatility and cross-correlation across major stock markets[END_REF]f o re a r l ys t u d i e so ft h et i m e evolution of the correlations in financial markets). Similar studies have appeared recently. In [START_REF] Balogh | Persistent collective trend in stock markets[END_REF], a careful study of the average correlation between stock returns during contemporaneous upward/downward trends of the market index has confirmed that correlations are indeed stronger when the market goes down [START_REF] Borland | Market panic on different time-scales[END_REF]. Our analyses confirm and make more precise these results, first by extending them to different markets, and second by devising and exploiting a new tool to investigate conditional correlations, that we call "principal regression analysis" (PRA). The idea here is to regress the instantaneous correlation matrix on the value of the index return (or any other conditioning variable). While the intercept of the regression gives the average correlation matrix, the regression slopes define a second symmetric (but not definite positive) matrix that can be diagonalized, leading to modes (eigenvectors) of sensitivity to the conditioning variable(s). The interpretation of these eigenvectors is particularly transparent when they coincide with those of the correlation matrix itself. The corresponding eigenvalues quantify how the whole correlation structure of stock returns is affected by the conditioning variable. The nice point about the PRA is that Random Matrix Theory (RMT) provides, as for standard PCA, a useful guide to decide whether or not these sensitivity modes are statistically meaningful (for a review on RMT, see [START_REF] Bouchaud | Financial Applications of Random Matrix Theory: a short review[END_REF]). When the conditioning variable is the past values of the index return, the conclusion of PRA is that the dominant mode is the market mode, associated to a negative eigenvalue, indeed corresponding to a correlation leverage effect. We characterize the temporal decay of this effect. Upon separating positive and negative index returns, we furthermore find that the correlation leverage effect is strongly asymmetric: whereas negative returns increase both the volatility of the underlying stocks and the average correlation between stocks, positive returns have weaker influence on these quantities (see Fig. 6 below). We furthermore find indications of a leverage effect for sectorial correlations as well, which reveals itself in the second and third modes of the PRA.

Data, notations and definitions

We have considered 6 pools of stocks corresponding to 6 major stock indices: SP500, BE500, Nikkei, FTSE, CAC 40 and DAX. We analyze the daily returns in a time period spanning from 01/01/2000 to 04/26/2010. Stocks are labelled by α =1,...,N (where N depends on the market), and days by t =1 ,...,T (where T =2 5 9 4 ) . Time average will be denoted by ..T h er e t u r no fs t o c kα between the close of day t -1a n dt h ec l o s eo fd a yt is denoted as η α (t). We in fact understand η α (t)a s the demeaned return over the whole time period T .W ed e fi n ea ni n v e r s ev o l a t i l i t y weighted index return at time t as:

I(t)= 1 N N α=1 η α (t), η α (t) ≡ η α (t) σ α , (9.1) 
where σ α is the average volatility of the stock α over the whole time period:

σ 2 α := 1 T T t=1 η α (t) 2 . (9.2)
We will further define the average instantaneous sto ck volatility σ(t)a tt i m et as:

σ(t) 2 := 1 N N α=1 η α (t) 2 (9.3)
while the average instantaneous correlation between all pairs of stocks ρ(t)isdefined as:

ρ(t):= 1 N (N -1) N α =β=1 η α (t) η β (t) σ(t) 2 . (9.4)
The average over time of the above two quantities will be denoted as σ 2 0 and ρ 0 . The squared index return I(t) 2 is a rough proxy for the instantaneous index volatility. Using the above definitions and the fact that N is large, it is easy to check that:

I(t) 2 ≈ ρ(t)σ(t) 2 + O( 1 N ), (9.5) 
showing that both the average stock volatility and the average correlation contribute to the index volatility. It is therefore natural to decompose the full index leverage effect in two contributions: one coming from the dependence of the average stock volatility on the past returns of the index, and a second one describing the average correlation. We thus define a full leverage correlation function L I (τ ):

L I (τ )= I(t -τ )I(t) 2 I(t) 2 , (9.6) 
and two partial leverage correlation functions:

L σ (τ )= I(t -τ )σ(t) 2 I(t) 2 , L ρ (τ )= I(t -τ )ρ(t) I(t) 2 . ( 9.7) 
All the above leverage correlation functions are normalized to be the regression slope of the corresponding observables on the past value of the index return, for example:

ρ(t)=ρ 0 + L ρ (τ )I(t -τ )+ε(t, τ ), (9.8) 
where ε(t, τ )i ss o m en o i s e . ( R e m e m be rt h a tb yc o n s t r u c t i o n ,I(t)h a sz e r om e a n . )

In the limit of weak correlations, the two effects are additive and one should find:

L I (τ ) ≈ ρ 0 L σ (τ )+σ 2 0 L ρ (τ ), (9.9) 
eliciting the contribution of the average stock volatility and of the average correlation to the full leverage correlation. The second term is responsible for the enhanced leverage effect for indices compared to single stocks.

Index leverage effect: A simple empirical analysis

As a first stab at understanding the index leverage effect, we plot in Fig. 9.1 the normalized partial leverage correlation functions, ρ 0 L σ (τ ), σ 2 0 L ρ (τ ), together with the full leverage L I (τ ). In these plots, the data is averaged over the four indices, SP500, BE500, Nikkei and FTSE. From this figure, we draw the following conclusions:

• (a) the two contributions to the index leverage are of the same order of magnitude. In particular, the correlation leverage is significant and confirms the conclusions of Refs. [START_REF] Balogh | Persistent collective trend in stock markets[END_REF][START_REF] Borland | Market panic on different time-scales[END_REF]. • (c) a test of Eq. (9.9)w i t ht h es u mo ft h ea b o v et w ofi t t e de x p o n e n t i a l sr eproduces satisfactorily the full leverage effect, although the latter is underestimated at short times, when the correlations cease to be small enough for Eq. (9.9)t obea c c u r a t e .

In fact, one can test directly whether linear regressions such as Eq. (9.8)a b o v e make sense or not, by averaging all values of ρ(t)c o r r e s p o n d i n gt oag i v e nv a l u e of I(t -1) within some range. The resulting graphs are shown in Fig. 10.2,b o t h for ρ and for σ 2 .O n es e e st h a tw h e r e a sal i n e a rr e g r e s s i o nf o rρ makes sense for I(t-1) < 0, there is in fact perhaps a small positive slope for I(t-1) > 0. For σ 2 ,the graph looks even more symmetric, reflecting the presence of volatility correlations on top of (asymmetric) leverage correlations. .2: Dependence of the average correlation ρ(t)a n dt h ea v e r a g es i n g l es t oc k volatility σ 2 (t) on the index return the previous day, I(t -1). The result is obtained as an average over all 6 indices: SP500, BE500, Nikkei, FTSE, CAC40 and DAX, but the qualitative effects are robust and appear on each markets individually. These plots suggest that a quadratic I 2 (t -1) term should be included to the linear regressions. The printed error bars are the average of the error bars obtained for each of the 6 indices.

The "Principal Regression Analysis"

The above analysis, although interesting, is oversimplified, because the structure of inter-stock correlations is described by a full correlation matrix C and not by a single number ρ,t h a to n l yc a p t u r e st h ea v e r a g ec o r r e l a t i o n s . I no r d e rt oc h a r a c t e r i z et h e way the correlation matrix depends on the past value of the index (or on any other conditioning variable), we propose the following: consider a given pair of stocks, α, β,a n dr e g r e s st h ep r o d u c to fn o r m a l i z e dr e t u r n s η α (t) η β (t)o nt h ep a s tv a l u eo f the index return, i.e. write: η α (t) η β (t):=C α,β + D α,β (τ )I(tτ )+ε α,β (t, τ ). (9.12)

Since I(t)h a sz e r om e a n ,t h ei n t e r c e p to ft h er e g r e s s i o ni se x a c t l yt h ee m p i r i c a l Pearson estimate of the correlation matrix. The regression slopes D α,β (τ )d e fi n e another N × N symmetric matrix D(τ ), which encodes the full information about the dependence of the correlations on past returns. More precisely, the regression leads to the following empirical determination of D(τ ):

I 2 D α,β (τ )= 1 (T -τ ) T t=τ +1
η α (t) η β (t)I(tτ ). (

The aim of this section is first to discuss the information contained in D(τ ), in particular its eigenvalues and eigenvectors, and second to use results from Random Matrix Theory to assess how meaningful this information is when the length of the sample, T ,i sn o tv e r yl a r g ec o m p a r e dt ot h en u m b e ro fs t o c k sN . Finally, we describe our empirical results on D(τ ), in particular its most negative eigenvalue and eigenvectors.

Interpretation

Define C(I)t ob et h ec o r r e l a t i o nm a t r i xc o n d i t i o n e dt oac e r t a i np a s tv a l u eo fI, by: C(I)=C + ID. (9.14)

The interpretation of the matrix D is particularly simple when it commutes with the correlation matrix C, i.e. when the eigenvectors of D are the same as those of C.I nt h i sc a s e ,t h ee i g e n v e c t o r so fC(I)areexactlythesameasthoseofC,whereas the eigenvalues λ k (I)a r es h i f t e da s : for the eigenvectors of the matrix C(I).

As we will find below, the eigenvector corresponding to the most negative eigenvalue of D turns out to be very close to the first eigenvector of C (i.e. the so-called market mode, |v 1 ), whereas all other eigenvalues are significantly smaller. In this case, the top eigenvalue of C is to a good approximation given by:

λ 1 (I) ≈ λ 1 + Iµ 1 , (9.17) 
where µ 1 is the most negative eigenvalue of D.S i n c eλ 1 can be used to define the average correlation between stocks through λ 1 := Nρ,t h em e a n i n go fµ 1 is similar to, but more precise than, the correlation leverage function L ρ defined above. More generally, when D and C do not commute, one expects the "correlation leverage" to rotate the top eigenvector away from the market mode |v 1 .T h e common lore is indeed that when markets go down, all stocks "move together", meaning that the top eigenvector should rotate towards the uniform vector |e = (1/ √ N,1/ √ N,...,1/ √ N ). The cosine of the angle between |v 1 and |e is given by the scalar product e|v 1 , that one can compute using perturbation theory. Eq. (9.16) above. Assuming further that the top eigenvalue of C is much larger than all the others (λ 1 λ =1 ), one finds:

e|v 1 (I)≈e|v 1 + I λ 1 [e|D|v 1 -v 1 |D|v 1 e|v 1 ] . (9.18) 
A measure of how strongly the top eigenvector moves towards |e is therefore provided by the quantity ∆, defined as:

∆= 1 λ 1 [e|D|v 1 -v 1 |D|v 1 e|v 1 ] . (9.19) 
An e g a t i v e∆m e a n st h a tt h ei n s t a n t a n e o u sm a r k e tm o d ei sc l o s e rt ot h eu n i f o r m mode |e when the index goes down, since e|v 1 (I)-e|v 1 = I∆ > 0.

Results from Random Matrix Theory

When N is large, the simultaneous determination -using Eq. (9.13)a b o v e-o f the N (N +1)/2d i ff e r e n te l e m e n t so fD from the NT data points is problematic, exactly in the same way the correlation matrix C is hard to measure. We thus need to provide a benchmark to compare the empirical results obtained with the noise level of the benchmark case. This will enable to separate significant effect from noise level arising from the dimensionality problem. Let ξ be a random variable which will play the role of the conditioning variable (the past values of index returns in our context) and let x α ,α =1 ,...,N be a gaussian vector of covariance matrix C which should be seen as instantaneous stock returns. The x α will be supposed to have 0 mean and unit variance, so that C is the correlation matrix of the gaussian vector (x 1 ,...,x N ). We begin by the case C = I.S u p p o s e ,i na d d i t i o n ,t h a tt h e r ei sno correlations whatsoever between the conditioning variable ξ and the correlation x α x β ,a n dt h a t one forms a matrix D from:

ξ 2 D α,β = 1 T T t=1
x α (t)x β (t)ξ(t). (9.20)

In the limit T →∞for finite N one should find that all the elements of the matrix D are zero, and therefore all its eigenvalues are zero as well. For finite T ,h o w e v e r ,t h e matrix D will have a set of non trivial eigenvalues. Random Matrix Theory offers aw a yt oc o m p u t et h es t a t i s t i c so ft h e s ee i g e n v a l u e sw h e nN and T are both large, with a fixed ratio q = N/T . The result depends both on the eigenvalue spectrum of the matrix C and, perhaps surprisingly, on the probability distribution of the conditioning variable, P (ξ). The simplest, albeit unrealistic case for applications in finance, is when C is the identity matrix, i.e. there is no correlations between the η.I nt h i sc a s e ,u s i n gt h et h e o r yo fF r e eR a n d o mM a t r i c e s [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF], one finds that the empirical eigenvalue spectrum of D, ρ 1 (µ), is the solution of the following set of equations, in the limit where goes to zero: [START_REF] Bouchaud | Financial Applications of Random Matrix Theory: a short review[END_REF][START_REF] Biroli | The Student ensemble of correlation matrices: eigenvalue spectrum and Kullback-Leibler entropy[END_REF] 

µ = G R G 2 R + π 2 ρ 2 1 + dξP(ξ) ξ(1 -qξG R ) (1 -qξG R ) 2 +(qπξρ 1 ) 2 (9.21) = ρ 1 - 1 G 2 R + π 2 ρ 2 1 + dξP(ξ) qξ 2 (1 -qξG R ) 2 +(qπξρ 1 ) 2 , (9.22) 
where G R is the real part of the resolvent. One can check that in the limit q → 0, and using the fact that ξ has zero mean, the above equations boil down to:

1 G R -iπρ 1 = µ -i → ρ 1 (µ)=δ(µ), (9.23) 
i.e. all eigenvalues are zero, as they indeed should when T N . The case of an arbitrary correlation matrix C can also be solved completely using the above result on ρ 1 and the so-called S-transform of the eigenvalue spectrum [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF], noting that the eigenvalues of D are the same as those of the product C × D 1 , where D 1 is a random matrix with eigenvalue spectrum ρ 1 (µ). The resulting equation can in principle be solved numerically for any value of q and for an arbitrary correlation matrix C.T h er e s u l t i n gt h e o r e t i c a le i g e n v a l u es p e c t r u mf o rt h em a t r i x D,a s s u m i n gn oc o r r e l a t i o nb e t w e e nt h ec o n d i t i o n i n gv a r i a b l eξ and the instantaneous correlation x α x β ,c a nb ec o m p a r e dt ot h ee m p i r i c a ls p e c t r u mo b t a i n e df r o m data using Eq. (9.13). Any difference between the two spectra can be interpreted as resulting from a true correlation with the conditioning variable.

In the null-hypothesis case, it is also clear that the quantity ∆d e fi n e db y : ∆= For large T ,t h ec e n t r a ll i m i tt h e o r e me n s u r e st h a t ∆b e c o m e sG a u s s i a nw i t ht h e above variance. This result will be used below to assess whether the empirical value of ∆ (defined above) is meaningful or not. 

Numerical simulations

In practice, however, we found it more convenient to use direct numerical simulations rather than the above exact results. In principle, these results below could be obtained using the mathematical formalism above, but the effort required to solve

Separating negative & positive returns

As Fig. 10.2 explicitely shows, the correlation depends on past index returns in a non-linear way. In fact, both negative and positive returns increase the correlations, although the effect is stronger for negative returns, which in turn leads to a non-zero linear term in the regression of η α (t) η β (t)onI(t-τ ). A way to capture the parabolic shape seen in Fig. 10 where I + =m a x ( I,0),I -= min(I,0) and δ is the Dirac function. With this definition, one can rewrite the correlation matrix conditioned to a certain past value of I more precisely, separating the effect of positive returns and negative returns, as follows:

C(I)=C + D - I --I - δ {I<0} + D + I + -I + δ {I>0} . (9.29) 
Again, in order to reduce the measurement noise, we used "Gaussianized" empirical index returns I G (t)i n s t e a do fI(t). We apply to D ± (τ )t h es a m ea n a l y s i sa sa bo v e . As anticipated, the top eigenvalue µ - 1 of D -is strongly negative, whereas the top eigenvalue µ + 1 of D + is positive, but with µ + 1 < |µ - 1 | -see Fig. 10.6. The projections of |w + 1 and |w - 1 onto |v 1 are both very close to unity for small τ and gradually decay to the noise level as τ increases. To check the significancy of our effect, as before, we define a null-hypothesis case, introducing the matrix:

φ 2 D - α,β = 1 T T t=1
x α (t)x β (t)φ(t)( 9 . 3 0 )

where the conditioning variables φ is independent of the x α (which are standard gaussian variables whose correlation matrix is C as above) and distributed as min(ξ, 0)min(ξ, 0) where ξ is as before a standard gaussian variable. We define further the matrix D + exactly as D -except for the fact that the conditioning variable is now distributed as max(ξ, 0) -max(ξ, 0). As above, µ - 1 , µ - 2 , µ - 3 will be the average positions of the first, second and third most negative eigenvalues of D -and µ + 1 , µ + 2 , µ + 3 will be the average positions of the first, second and third most positive eigenvalues of D + .T h o s ev a l u e sa r ea l lc o m p u t e du s i n gn u m e r i c a ls i m u l a t i o n s .

We have also studied the rotation parameter ∆ ± for both matrices D ± (τ )defined as: 

∆ ± = 1 λ 1 e|D ± |v 1 -v 1 |D ± |v 1 e|v 1 . ( 9 

Abstract

We establish several new stylized facts concerning the intra-day seasonalities of stock dynamics. Beyond the well known U-shaped pattern of the volatility, we find that the average correlation between stocks increases throughout the day, leading to a smaller relative dispersion between stocks. Somewhat paradoxically, the kurtosis (a measure of volatility surprises) reaches a minimum at the open of the market, when the volatility is at its peak. We confirm that the dispersion kurtosis is 279 am a r k e d l yd e c r e a s i n gf u n c t i o no ft h ei n d e xr e t u r n . T h i sm e a n st h a t during large market swings, the idiosyncratic component of the stock dynamics becomes sub-dominant. In a nutshell, early hours of trading are dominated by idiosyncratic or sector specific effects with little surprises, whereas the influence of the market factor increases throughout the day, and surprises become more frequent.

Introduction

Financial markets operate in sync with human activities. It is therefore no surprise that financial time series reveal a number of seasonalities related to human rhythms: markets open in the morning and close in the evening, remain closed during week-ends and during vacations; wages are paid and portfolios are re-balanced on a monthly basis, earnings are announced on a quarterly basis (in the US), etc. These periodicities leave a statistical trace on the time series of returns of many assets. Among the best known periodicities is the so-called U effect [2,[START_REF] Andersen | Intraday periodicity and volatility persistence in financial markets[END_REF], that describes the intra-day pattern of volatility of individual US stocks: the average volatility is observed to be high after the market opens, then decreases as to reach am i n i m u ma r o u n dl u n c ht i m ea n di n c r e a s e sa g a i ns t e a d i l yu n t i lm a r k e tc l o s e . 1In this short note we want to report on additional intra-day patterns concerning both individual and collective stock dynamics. First, we study the intra-day pattern of other moments of the individual stock dynamics, beyond the well known U-shaped volatility. Second, we characterise the cross-sectional distribution of returns and its typical evolution during the day. Finally, we study the correlation matrix between stock returns and find that the leading modes also have a very well defined intraday pattern. Our study here is entirely empirical, but our results certainly beg for a detailed theoretical interpretation in terms of agent behaviour: strategies, information processing, risk aversion, etc. We provide some hints in that direction in the conclusion.

Data, notations and definitions

We have considered a set of N = 126 stocks of the New York Stock Exchange (which are among the 250 largest market capitalisations) that has been continuously traded during the period between 01/01/2000 and 12/31/2009 to form a statistical ensemble of 5 minutes stock returns. The total number of 5 minute bins is 186, 498, whereas the total number of days is T =2, 391 (K =78binsperda y). Stoc kswillbelabelled by α =1 ,...,N,d a y sb yt =1 ,...,T and bins by k =1 ,...,K.T h er e t u r no f stock α in bin k of day t will be denoted as η α (k; t). Different types of averages will be needed. Time averages for a given stock and ag i v e nb i na r ee x p r e s s e dw i t ha n g l e db r a c k e t s : ...,w h e r e a sa v e r a g e so v e rt h e ensemble of stocks for a given bin in a given day appear with square brackets: [F ](k; t).

(10.1) The first set of observables concerns single stock properties. We characterise the distribution of stock α in bin k by its four first moments: mean µ α (k), standard deviation (volatility) σ α (k), skewness ζ α (k)a n dk u r t o s i sκ α (k). We will in fact use low moments, less noisy estimates of the last two quantities. We will define m α (k) as the median of all returns of stock α in bin k,a n dd e fi n e :

µ α (k)=η α (k; t) (10.2a) σ 2 α (k)=η α (k; t) 2 -µ 2 α (k)( 1 0 . 2 b ) ζ α (k)= 6 σ α (k) (µ α (k) -m α (k)) (10.2c) κ α (k)=24 1 - π 2 |η α (k; t) -µ α (k)| σ α (k) + ζ α (k) 2 . (10.2d) 
Within a cumulant expansion, the last two lines coincide with the usual definition of skewness and kurtosis, but no moments larger than two are needed to estimate them. Note that the correction term ζ α (k) 2 to the kurtosis turns out to be negligible, and we have neglected it in the following. We will be interested below in the average over all stocks of the above quantities, as a way to characterize the typical intra-day evolution of the distribution of single stock returns. One can also consider cross sectional distributions, i.e. the dispersion of the returns of the N stocks for a given bin k in a given day t,i.e . on ed is trib u tione v e ry five minutes. One can again characterize these distributions in terms of the first four moments. The median of all N returns for a given k; t is now m d (k; t)( d for "dispersion"), and we define: Note that µ d (k; t)c a nbes e e na st h er e t u r no fa ni n d e x ,e q u i w e i g h t e do na l ls t oc k s . We will b e interested b elow in the average over all days of the ab ove quantities, as a way to characterize the typical intra-day evolution of the dispersion between stock returns.

µ d (k; t)=[η α (k; t)] ( 10 
Although the dispersion already captures part of the "Co-movements" of stocks, a more direct characterization is through the standard correlation of returns. In order to measure the correlation matrix of the returns, we first normalize each return by the dispersion of the corresponding bin. This factors in any "trivial" intraday seasonality, and also accounts for the fact that the volatility fluctuates quite a bit during the 10 year time interval that we consider. Therefore, we introduce: η α (k; t)=η α (k; t)/σ d (k; t)a n ds t u d yt h ec o r r e l a t i o nm a t r i xd e fi n e df o rag i v e nb i n k:

C α,β (k):= 1 σ α (k) σ β (k) η α (k; t) η β (k; t) c , (10.4) 
where the subscript c means "connected part" (i.e. averages have been subtracted) and σ 2 α (k):=η 2 α (k; t) c .O fs p e c i a li n t e r e s ta r et h el a r g e s te i g e n v a l u e sa n de i g e n v e ctors of C α,β (k), which characterize the correlation structure of stock returns. This analysis has been performed in several papers ( [START_REF] Bouchaud | Theory of Financial Risk and Derivative Pricing From Statistical Physics to Risk Management[END_REF][START_REF] Bouchaud | Financial Applications of Random Matrix Theory: a short review[END_REF][START_REF] Utsugi | Random matrix theory analysis of cross correlations in financial markets[END_REF][START_REF] Plerou | Random matrix approach to cross correlations in financial data[END_REF]) using daily or high frequency returns, and it is well known that the structure of large eigenvectors reflects the existence of economic sectors of activity. The largest eigenvalue λ 1 ,i n particular, corresponds to the market mode, and is associated to an eigenvector with all entries positive and close to 1/ √ N .I nf a c t ,λ 1 /N can be seen as a measure of the average correlation between stocks. We will be interested below in the k dependence of the largest eigenvalues and their associated eigenvectors, a study that, to the best of our knowledge, has not been reported in the literature before.

Single stock intra-day seasonalities 10.3.1 Odd moments

Odd moments tend to be small and noisy, so it is difficult to draw definite conclusions. The average return is on average over the whole period positive, but noisy and does not show any intra-day pattern. The average skewness of five minutes returns is also noisy and is compatible with zero, again without any identifiable intra-day pattern at all. This is at variance with the skewness of returns on a longer time interval, which is negative. The build up of negative skewness with time scale is a consequence of the leverage effect, i.e. negative returns tend to be followed by larger volatilities (see e.g. [START_REF] Bouchaud | Theory of Financial Risk and Derivative Pricing From Statistical Physics to Risk Management[END_REF]).

Even moments

The average volatility, on the other hand, reveals a very clean U-shaped pattern that has been reported many times in the literature ( [2,[START_REF] Andersen | Intraday periodicity and volatility persistence in financial markets[END_REF]). We show in Fig. 10.1 σ(k)=[ σ α (k)]. Note that the overnight volatility ≈ 1.15% is much larger than the typical five minute volatility, and is not shown in the graph. Interestingly, the average volatility is found to decay in the first two hours of trading as a powerlaw k -β with β ≈ 0.3. This relaxation is reminiscent of the power-law decay of the volatility after large price swings [START_REF] Lillo | Power law relaxation in a complex system: Omori Law After a Financial Market Crash[END_REF][START_REF] Sornette | What causes crashes? Risk[END_REF][START_REF] Zawadowski | Short-term market reaction after extreme price changes of liquid stocks[END_REF][START_REF] Joulin | Stock price jumps: news and volume play a minor role[END_REF]. The overnight return is indeed usually quite large, and can be seen as a strong perturbation. The power-law relaxation suggests that some critical mechanism is involved in the way volatility reverts back to 'normal' after market jumps.

Turning now to the kurtosis κ(k)=[ κ α (k)], we find, perhaps surprisingly, that there is a clear intra-day growth of the kurtosis from κ ≈ 3.5atthebeginningofthe day to κ ≈ 5around1p.m.,andsta ysappro ximatelyconstan t(butnoisy)un tilthe end of the day -see Fig. 10.2,l e f t . T h eo v e r n i g h tk u r t o s i sr e m a i n sa r o u n d5 . T h i s finding is counter-intuitive because one would naively associate the large volatility in the morning with huge swings, symptomatic of the market uncertainty at the open. But this is not the case: the maximum of the intra-day volatility corresponds to a minimum in kurtosis. We will report similar counter-intuititive results below. Possible mechanisms are discussed in the conclusion. Noting that the average over stocks of µ α (k)i si d e n t i c a lt ot h ea v e r a g eo v e rt i m e of µ d (k; t), the discussion of the first moment of the cross-sectional distribution is redundant. The average of |µ d (k; t)| is a proxy for the index volatility, and is displayed in Fig. 10.1 : it shows a U-shaped pattern similar to that of σ(k), with however a stronger end-of-day surge. This is due to the correlation pattern discussed in section 5 below: the average correlation between stock indeed increases as the day proceeds, leading to an increased index volatility.

As far as the average skewness ζ d (k)=ζ d (k; t) is concerned, we again find a very noisy quantity with no particular intra-day pattern. The only notable feature is that this time, the skewness is significantly positive, albeit small: the average over k of ζ d (k)i sf o u n dt obe≈ 0.025.

Even moments

As above, the even moments show clear patterns. The average dispersion σ d (k)= σ d (k; t) exhibits a U-shaped pattern very similar to that of σ(k) -see Fig. [START_REF] Cizeau | Correlation structure of extreme stock returns[END_REF]o nd a i l y data and recently emphasised by Borland [START_REF] Borland | Statistical Signatures in Times of Panic: Markets as a Self-Organizing System[END_REF]. Here, we confirm on five minute returns this strange stylised fact: the cross-sectional distribution of returns appears to be more Gaussian when its mean is off-centred.

However, if we now condition κ d on the dispersion σ d (which, as we found above, is positively correlated with |µ d |), we find (see Fig. 10.5)theoppositebeha viour,i.e. the larger the dispersion, the larger the kurtosis κ d !W ew i l lo ff e rad i s c u s s i o no f these confusing effects in the discussion section below.

Intra-day seasonalities in the inter-stock correlations

Let us now turn to the properties of the eigenvalues and eigenvectors of the N × N correlation matrix C α,β (k)d e fi n e db yE q . ( 10.4)a bo v e . 

The top eigenvalue

The largest eigenvalue λ 1 of the correlation matrix of stock returns is well known to be associated with the "market mode", i.e. all stocks moving more or less in sync. As recalled above, the quantity λ 1 /N can be used to define the average correlation between stocks.

We show in Fig. 10.6 (left side) the magnitude of λ 1 /N as a function of k. Interestingly, the average correlation clearly increases as time elapses, from a rather small value ≈ 0.12 when the market opens to ≈ 0.3n e a rm a r k e tc l o s e . T h i si si n agreement with the fact that the dispersion σ d (k)i s ,i nr e l a t i v et e r m s ,s m a l l e ra t the end of the day (see Fig. 10.1,i n s e t ) . T h ev a l u eo fλ 1 /N for the correlation of overnight returns is also around 0.3, in continuity with the value at the end of the trading day.

In agreement with the idea that the stock dynamics become more and more uniform as the day proceeds, we find a substantial increase of the scalar product of the largest eigenvector v 1 (k)withtheuniformnormalisedvector e =(1/ √ N,1/ √ N,...,1/ √ N ) -see Fig. 10.6 right. This scalar product is always close to unity, confirming the market mode interpretation of the top eigenvalue, but starts the day around 0.97 and ends the day at 0.995, before dropping again in the last bins of the day and during the overnight, when it is equal to 0.985 (i.e. larger than the open value). 

Smaller eigenvalues

The evolution of the next six eigenvalues λ i (k), i =2 ,...,7 is shown in Fig. 10.7.

We see that the amplitude of this risk factors now decreases with time, before shooting back up during the overnight (see the last point of the graphs). Although by construction the trace of the correlation matrix, and therefore the sum of all N eigenvalues is constant (and equal to N ), this decrease is not a trivial consequence of the increase of λ 1 ,s i n c et h es u mo ft h efi r s tfi v ee i g e n v a l u e si s∼ 50, still small compared to Tr(C)=N = 126. What we see here is that as the day proceeds, more and more risk is carried by the market factor, while the amplitude of sectorial moves shrivels in relative terms (but remember that the correlation matrix is defined after normalising the returns by the local volatility, which increases in the last hours of the day). It is more difficult to visualise the evolution of the corresponding eigenvectors, since there is no natural vectors to compare them with. Furthermore, eigenvalues can "collide" and cross, resulting in an interchange between two consecutive eigenvectors. We have therefore chosen to take as a reference the eigenvectors v i (1) in the opening bin k =1 ,c o r r e s po n d i n gt ot h el a r g e s tv a l u e so fλ i (k), i =2 ,...,7. We then form the 6 × 6 matrix of scalar products W ij (k)= v i (1) • v j (k). The singular values s (k) of this matrix (equal to the square-root of the eigenvalues of W T W )giv eameasure of the overlap between the eigenspace spanned by the v i (1) and that spanned by the v j (k). If the v j (k)a r eape r m u t a t i o no ft h e v i (1), all the s i 's are equal to unity, The 6 singular values s (k)( =2,...,7) of the matrix W ij (k). In the absence of any true persistence, one would expect all singular value to lie in the interval [0, 0.12], much below the smallest singular value s 7 ∼ 0.8. The triangles correspond to the overnight values.

indicating maximum overlap. In particular, s (1) ≡ 1t r i v i a l l y . T h ee v o l u t i o no f the s (k), =2 ,...,7 is shown in Fig. 10.7 right. Using the results of [START_REF] Bouchaud | Large dimension forecasting models and random singular value spectra[END_REF], we conclude that all s (k)a r em e a n i n g f u l ,s i n c ei nt h ea b s e n c eo fa n yt r u ec o r r e l a t i o n s between the v i (1) and the v j (k), one would expect all singular values to lie in the interval [0, 0.12]. Therefore, although the structure of correlations clearly evolves between the opening hours and the closing hours, there is as expected a strong overlap between the principal components throughout the day.

Discussion & Conclusion

Let us present a synthetic account of the above empirical results, for which we only propose an interpretation stub. We have seen that during the opening hours of the market, the volatility and the dispersion of returns are high, whereas kurtosis effects are relatively low. These two quantities are different measures of the heterogeneity of stock returns, and quite paradoxically they are found to behave in opposite ways. But while the volatility and dispersion are dimensional measures of heterogeneity (measuring the spread of returns in %), the kurtosis is a relative, a-dimensional measure of surprise. What our results mean in intuitive terms is that although the typical amplitudes of stock returns are high in the morning, outliers are relatively rare, both over time and over stocks. In a sense, agitation is the norm during these early hours of trading, stocks move in different directions in such a way that the average correlation is weaker than average, and the top eigenvector of the correlation matrix is farther away from the uniform mode e =(1/ √ N,1/ √ N,...,1/ √ N ). But anomalously large jumps rarely take place in the morning -as expected, these jumps are more likely overnight (and are to be related to arrival of corporate specific or market-wide information), where kurtosis effects are strongest, both for single stock and cross-sectional returns. As the day proceeds, correlations increase and dispersion decreases, but unexpectedly large jumps become more probable,t h e r e b y increasing the kurtosis.

The second somewhat paradoxical effect is the dependence of the kurtosis on the index return, which was recently interpreted by L. Borland as a signature of collective behaviour during crises [START_REF] Borland | Statistical Signatures in Times of Panic: Markets as a Self-Organizing System[END_REF]. Again, days when the market as a whole moves a lot are also large dispersion days where all stocks move a lot in different directions, but with little outliers, i.e. one or a handful of stocks that would jump up or down. In this sense, these days are more homogeneous. Should one deduce from this that there is a stronger "synchronisation", or collective dynamics, during these periods, as suggested by Borland? While it is true that the average correlation between stocks depends on the index return, this dependence is in fact signed: correlations are stronger for negative index returns and weaker for positive returns, see [START_REF] Balogh | Persistent collective trend in stock markets[END_REF][START_REF] Reigneron | Principal regression analysis and the index leverage effect[END_REF]. This is in contrast with the kurtosis effect discussed here, which is surprisingly symmetrical (see Fig. 10.5). A quantitative model for this behaviour is missing at this stage. Qualitatively, however, we believe that the mechanism is the following [START_REF] Chicheportiche | Goodness-of-Fit tests with Dependent Observations[END_REF]: when the index return is large, the dominant source of dispersion becomes the market exposure (the 'β's') of the different stocks, rather than the idiosyncratic residuals. Since the distribution of the β's is roughly Gaussian, kurtosis effects do indeed decrease for large index returns. This interpretation however requires that the volatility of the residuals increases sub-linearly with the index volatility, as indeed suggested by the data shown in Fig. 10.3.T h ef a c tt h a td u r i n gl a r g es w i n g s of the index, the market exposure of stocks becomes the dominant factor is probably ar e s u l to fi n d e x / f u t u r e sa r b i t r a g e .

Finally, although large index return days are large dispersion days, the converse is not true. A typical large dispersion day is in fact a day when one or a handful of stocks gyrate wildly, contributing both to the dispersion and to the kurtosis, and explaining the positive correlation between σ d and κ d .I ft h i si n t e r p r e t a t i o ni s correct, this positive correlation should diminish when one uses the mean-absolute deviation and not the variance to compute the dispersion, since the former is less sensitive to outliers. We have checked that this is indeed the case.

To summarise, we have established several new stylised facts concerning the intra-day seasonalities of stock dynamics. Beyond the well known U-shaped pattern of the volatility, we have found that the average correlation between stocks increases throughout the day, leading to a smaller dispersion between stocks (in relative terms). However, the kurtosis, which is a measure of volatility surprises, is in fact minimum at the open of the market, when the volatility is at its peak.

We have also confirmed that the disp ersion kurtosis is a symmetric, markedly decreasing function of the index return. This means that during large market swings, the idiosyncratic component of the stock dynamics becomes sub-dominant, an effect that we have confirmed directly. Finally, while the market mode component of the dynamics becomes stronger as the day proceeds, the sectorial components recede. In a nutshell, early hours of trading are dominated by idiosyncratic or sector specific effects with little surprises, whereas the influence of macro, market factor increases throughout the day, and surprises become more frequent. A detailed quantitative interpretation of our results, for example of the power-law decay of the volatility in the morning, is at this stage lacking. We believe that, when available, such an interpretation will shed light on the relative importance of behavioural and informational effects on price formation and volatility.
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 11 Figure 1.1: Simulated density of a Gaussian multiplicative chaos m associated to kernel (1.3) with g = 0, intermittency parameter γ 2 = 1 and integral scale τ =1/4. The intermittency effect appears clearly.
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 12 Figure 1.2: Simulated path of a multifractal random walk with intermittency parameter γ 2 = 1 and with integral scale τ =1 /4. Note the intermittent bursts in volatility.
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 13 Figure 1.3: Representation of Barral-Mandelbrot's cone.
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 21 Figure 2.1: The histogram represents the eigenvalue density of a simulated GOE random matrix of size N = 1500. The (red) curve is the Wigner semicircle density.
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 22 Figure 2.2: Up: Empirical eigenvalue distribution for the matrix M n (t = ∞) with the semicircle density for N = 200, β =1 /2. Down: Empirical NNSD P (s) for the matrix M n (t = ∞) for β = p =1 /2 with the Wigner surmise (red curve) corresponding to β = 1 2 , which behaves as s β when s → 0.
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 23 Figure 2.3: Density ρ c (u)forc =0, 1, 2, 3, 4, showing the progressive deformation of the Gaussian towards Wigner's semi-circle.
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 25 Figure 2.5: The histogram represents the empirical eigenvalue distribution of the matrix W nt=∞ for the following values of the parameters c =1,p = β =2c/M , M = 100,N = 50, δ =1 ,q =1 /2. The (red) curve is our theoretical prediction for the limiting eigenvalue density given by (2.51).
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 34 Let M be a log-normal -scale invariant random measure as constructed in Theorem 3.3.I f
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 27 The uniform convergence of the series on the sets {r ∈ R; |r| >ρ } for any ρ>0i s ensured by (3.10)s i n c ef o r|r| >ρ:

  )=Y |I| almost surely and in L 1+δ , where |•| stands for the Lebesgue measure on R. As a consequence, almost surely the random measure A ∈B(R) → 1 T M (TA) weakly converges towards Y |•| and E Y [M (A)] = Y |A| (E Y [•] denotes the conditional expectation with respect to Y ).

  surely and in L 1+δ (3.30) where Y ∈ L 1+δ is a nonnegative random variable. Using monotonicity of the mapping t → M ([0,t]), one can show that 1 T M ([0,T]) → Y almost surely and in L 1+δ .F o ra>0,b > a,i ti sc l e a rt h a t 1 T M (T [0,a]) → aY and that 1 T M (T [a, b]) → (ba)Y almost surely and in L 1+δ .S o ,f o re v e r yb o u n d e di n t e r v a lI ⊂ R + ,t h e following convergence holds 1

1 )

 1 by using the Jensen inequality for the concave function x → x α .S o t h e a b o v e inequality turns out to be an equality and thus Y = Y almost surely. We have shown that1 T M (TI) →| I|Y almost surely and in L 1+δ when T →∞for every bounded interval I ⊂ R.

. 32 ) 2 A×Be

 322 Because of the uniform convergence of the series N n=0 kn (ru) N on the set {(r, u) ∈ R 2 ; |r -u| d} towards K and the weak convergence of the measure M N towards Y |•| (cf. Lemma 3.10), the random variable A×B e N n=0 kn(r-u) M N (dr)M N (du) almost surely converges towards Y K (r-u) dr du.

  a family of positive real numbers. The proof of Proposition 3.18 is complete. Proof of Lemma 3.19. Let us first investigate the quantity C(1,τ,N). Assume the function f has its support included in the ball B(0,R)f o rs o m eR>0. We can cover the set {(x, y) ∈ R 2 ; |x -y| τ and max(|x|, |y|) R} by the squares

. 48 )

 48 As a straightforward consequence, the kernel K defined by(3.27)d o e sn o t depend on since the left-hand side in (3.48)d oe sn o te i t h e r . S ow ec a nd e fi n et h e quantity ∀r =0,K (r)=K (r)

  √ pN .Ac o n t i n u o u sc r o s s -o v e rt h e r e f o r et a k e sp l a c ef o rp =2 c/N with c strictly positive and independent of N . When c =0 ,ρ(λ)i saG a u s s i a no fr m s1 ,w h i c h indeed corresponds to the solution of Eq. (4.5)f o rα =0. TheSDEforthesystem

Figure 4 . 1 :

 41 Figure 4.1: Empirical NNSD P (s) for the matrix M n (t = ∞) for β = p =1/2 with the Wigner surmise (red curve) corresponding to β = 1 2 , which behaves as s β when s → 0.

Figure 4 . 2 :

 42 Figure 4.2: Density ρ c (u)forc =0, 1, 2, 3, 4, showing the progressive deformation of the Gaussian towards Wigner's semi-circle.

Theorem 5 . 4 .

 54 Let η and T be positive real numbers. Then, conditionally on the sigma-algebra generated by (λ n 1 (s),...,λ n d (s)), 0 s T 1 ∧ T , the matrix process (O β n (t)) 0 t (T 1 -η)∧T introduced in Proposition 5.3 converges in law in the space of continuous functions C([0; T ], O β d ) towards the unique solution of the stochastic differential equation (5.7).

  2cT ) and therefore using the fact that |φ(x)|≥| x|×|x|∧1, we deduce the first point with M 0 = | d i=1 φ(λ i )| + CT and α =1/2CT. For the second p oint, we first remark as in the pro of of [52,L e m m a3 . 5 ]t h a tf o r all i<d pβ T 0

Proposition 5 . 15 .

 515 Let T<∞, 0 <ξ<p β / 4 and L =[ 1 /δ 1-ξ ]. Then the probability P T δ L T vanishes when δ goes to zero.

  n k ) k∈N . Using the fact that |χ n i ([ns]/n) ij | 1f o ra l li, j,w ec a nc h e c k that there exists a constant C(d, T )w h i c hd o e sn o td e p e n do nn such that for all n ∈ N |∆ n (s, •) ij , ∆ n (s, •) kl t | C(T,d)|t -s| .

  1 i d sup 0 t Tn(1)∧T |λ i (t)λ n i (t)| =0c o n v e r g e st o0i np r o b a b i l i t ya sb y Lemma 5.8, P (τ 3 ε ≥ T )g o e st oo n ea sε vanishes. Since we have the almost sure inequality T δ 1 lim inf T δ n (1), the continuity of the λ i , 1 i d,t h er e g u l a r i t y property of the λ n i given by Lemma 5.22,L e m m a5.11 and Proposition 5.23,w ec a n check that since before T δ 1

Theorem 5. 4

 4 This proof is classical and uses the theory of stability for stochastic differential equations.For η>0fi x e d ,w ed e d u c ef r o mP r o p o s i t i o n5.23 and Lemma 5.8 that the process (λ n 1 (t),...,λ n d (t)) converges almost surely in the space of continuous functions C([0; (T 1η) ∧ T ], R d )( r e s p e c t i v e l yC d )i fβ =1( r e s p . β =2 )e n d o w e dw i t ht h e uniform norm towards (λ 1 (t),...,λ d (t)) 0 t (T 1 -η)∧T where the λ i 's are the unique strong solutions of (5.5)( w i t ht h es a m eB r o w n i a nm o t i o n sb i )a n dw h e r eT 1 is the first collision time of the λ i , 1 i d.I nt h es e q u e lw ew i l lw o r kc o n d i t i o n a l l yt o the (λ n i ,λ i )'s satisfying the above convergence. Define for i = j the processes w β,n ij by settingw β,n ij (t)= t 0 n s dw β ij (s) .(5.52)Note that the quadratic variation of this continuous martingale converges almost surely towards βpt so that by Rebolledo's theorem (w β,n ij ,i < j)c o n v e r g e st o w a r d s ( √ pw β ij ,i < j). Moreover, if T 1 is the first time at which two eigenvalues are at distance less than ,t h ed r i f tc o e ffi c i e n t sb e i n gb o u n d e d ,w es e e ,w i t hap r o o fs i m i l a rt ot h ep r o o fo f Proposition 5.23,t h a tf o ri = j t∧T

  54)r e m a i n sa l m o s ts u r e l yb o u n d e df o rt ∈ [0; T 1 ].

Lemmas 5 .

 5 28 and 5.29 give the second statement of Proposition 5.6.Chapter 6Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko-Pastur law Résumé Cet article est en préparation au moment de l'écriture de ce manuscrit et est écrit en collaboration avec Jean-Philippe Bouchaud, Satya N. Majumdar et Pierpaolo Vivo. Nous construisons un modèle de matrice diffusante dont l'équilibre stationnaire correspond à des ensembles de matrices aléatoires invariantes par conjugaison orthogonale ou unitaire avec des valeurs propres distribuées suivant les ensembles β-Wishart (ou Laguerre) avec β quelconque appartenant à l'intervalle [0, 2]. Dans le régime où le paramètre β dépend de la plus grande dimension M de la matrice des données par la relation β =2 c/M (où c est une constante positive), les densités limites des valeurs propres forment une famille de distributions indéxée par le paramètre c qui interpole continument entre la loi de Marčenko Pastur (correspondant au cas où β>0n ed é p e n d pas de M )etlaloiGamma(quicorrespondaucasβ = 0). Un prolongement de ce calcul nous permet de trouver les corrections de tailles finies (quand la dimension est grande mais pas infinie) dans le théoreème de Marčenko Pastur.

2 .

 2 First, letting the Dyson index β of the ensemble scale with the dimension of the matrix model, we derive analytically the density of states for this crossover model, written in terms of the Whittaker hypergeometric function (see eq. (6.56)), and we show that it continuously interpolates between the Marčenko-Pastur law and a certain type of Gamma distribution (see subsection 6.3.3). Deformations of the Marčenko-Pastur distribution for Wishart-like matrix models were reported already in the literature (see e.g. ...).3. Subsequently, keeping theDyson index β unscaled (i.e. it remains of ∼O(1) for large matrix size N )b u tn e v e r t h e l e s sc o n t i n u o u s( β>0), we analyze the full Stieltjes transform equation and we can compute the 1/N correction to the Marčenko-Pastur asymptotic density for the β-Wishart ensemble for all value of β>0. Furthermore, using results obtained by Pastur and Lytova obtained in [99]o nt h en o i s ei nt h eM a r č e n k o -P a s t u rl a w ,w ea r ea l s oa b l et o derive the 1/N 2 correction term in the particular cases β =1and2.

Figure 6 . 1 :

 61 Figure 6.1: Numerical simulations of the state density of W n t=∞ for c =1 ,p = β = 2c/M , M = 100,N = 50, δ =1,q =1/2.

  [a, b] included in the Wigner sea [-2, 2]. We want to compute the mean overlap distance D(V 0 ,V 1 )b e t w e e nV 0 and the subspace V 1 spanned by the perturbed eigenvectors of H 1 ,c o r r e s p o n d i n gt oa l le i g e nvalues contained in [aδ, b + δ], where δ is a positive parameter.

Figure 7 . 1 :

 71 Figure 7.1: The histogram represents a numerical simulation of the density of states of

Figure 7 . 2 :

 72 Figure 7.2: The histogram represents a numerical simulation of the density of states of

Figure 7 . 3 :Figure 7 . 4 :

 7374 Figure 7.3: The histogram represents a numerical simulation of the density of states of the matrix Σ (computed with 20 independent samples). The red curve is the theoretical corresponding density for r(s), it is computed numerically by solving the system (7.21) and (7.22). The red dotted vertical lines show the left and right edges of the density r(s). The blue dotted curve is the graph of the function 8/x 2 . For this figure, we chose a =0,b =0.1, ∆ =0.1, δ =0.01.

. 35 )

 35 where ρ(λ)i sn o wt h eM a r c h e n k o -P a s t u rd i s t r i b u t i o no fp a r a m e t e rq = N/T .O bviously, when T is infinite, D =0sinceE N = C N .

Figure 7 . 5 :

 75 Figure 7.5: A picture of the stationary probability density P (x) of the process x t verifying (7.48). The parameters are: ε =1 /50, N = 200 (corresponding to q = 4) and λ 2 /λ 1 = 0.02. The vertical blue dotted line shows the position of µ ≈ 0.02 for this choice of parameters.

2 Figure 7 . 6 :

 276 Figure 7.6: The plain line represents the function υ(τ ) as a function of τ for ε =0.002,N = 200 (q =0 .4) and λ 2 /λ 1 =0 .033 = 30. The dotted line is a numerical simulation of the semivariogram of x t in the benchmark case where there is a constant in time correlation matrix C.

2 Figure 7 . 7 :

 277 Figure 7.7: Plot of (λ s 1λ t 1 ) 2 |t-s|=τ as a function of τ for the four different indexes of our sample. The empirical correlation matrices are computed on a sliding window of size T = N . The red line corresponds to the empirical datas from our pools of stocks, the plain blue line is the theoretical prediction 4λ2 1 /T (valid in the limit of large T ) and the dotted blue line represents a numerical simulation of the benchmark case. Very similar curves hold for the second and third eigenvalues as well.

  (7.42)a n d( 7.43)f o rt h eb e n c h m a r kc a s ew h e r et h ee i g e n s p a c e s are fixed in time, but are blurred by measurement noise. Here again we find clear signals of a true evolution of the eigenspaces. The results for other stock indices are very similar.

Figure 7 . 8 :Figure 7 . 9 :

 7879 Figure 7.8: Plot of D th ,D num ,D emp for T = N , P =5 ,Q = 10 for the four indices considered here. The blue lines are theoretical benchmark results for fixed eigenvector directions (plain line: analytical result, dotted line: numerical simulations, while the red line is the empirical result). These plots clearly show that the subspace spanned by the 5 top eigenvectors evolve with time.

Figure 7 . 10 :

 710 Figure 7.10: The dotted lines represent the eigenvalues i of the spectral projector of rank k (for k =5, 10, 20 see the legend) as a function of log(i),i =1,...,M in the benchmark case where the true correlation matrix C is not evolving but dressed by measurement noise. The plain lines represent the same function for the empirical data from the Nikkei index (204 stocks between 2000 -2010). Here T = 600. In the ideal case (constant correlation matrix, T →∞), these functions should be step functions: i k = 1 and i>k = 0.

Figure 7 . 11 :

 711 Figure 7.11: The plain line represents the empirical function φ t 1 |φ t+τ 1 as a function of τ . The period on which the average is performed has 2336 days starting 01/01/2000. There are N = 204 stocks from the Nikkei index. The exponential moving average is made with a parameter =1/50. The true empirical correlation matrix C is chosen to be the empirical correlation matrix computed using the data on the whole period. For this C,w eh a v eλ 1 ≈ 73 and λ 2 ≈ 0.7. The beginning of the period is used to initialize the exponential moving average. The plain blue is a numerical simulation in the benchmark case. The dotted line represents the function τ → 1 -2µ(1exp(-ετ )) which corresponds to the benchmark case when there is a constant in time correlation matrix.

Figure 7 . 12 :

 712 Figure 7.12: The red curve represents the cumulative distribution of the density of states of the matrix F for the Nikkei index with N = 204 stocks, in the period 2000 -2010, with ε =1/50. The blue curve is a numerical simulation for the benchmark case with the true correlation matrix C chosen to be the empirical correlation matrix using the whole period. For this period and pool of stocks, we have λ 1 ≈ 73 and λ 2 ≈ 0.7.

Figure 7 . 13 :

 713 Figure 7.13: Plot of the overlap |e ⊥ |φ i | as a function of i for i 2. This graph shows that the main contribution to |e ⊥ comes from the top eigenvectors of the correlation matrix C.

  ρ(y)g (Nρ(x)(yx)) is of order N -α . y)g (Nρ(x)(yx)) + Nρ(x)ρ(y)g (Nρ(x)(yx))]

2 2 ρ

 22 ln(ρ(a)) + ρ(b) 2 ln(ρ(b)) + ρ(a) a -(x)ln(ax)dxρ(b)

. 60 )

 60 and in the regime ∆ δ 1, σ(r) ≈ ρ(a) 2∆ 3δ 3 . (7.61) 7.10 s min in the strong fluctuation limit It is given by (7.27)a n dw eh a v et oc o m p u t et h e g ∈ (-∞;0) which verifies (7.25).
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 881 Figure 8.1: Simulated path of a multifractal random walk with intermittency parameter γ 2 = 1 and with integral scale τ =1 /4. Note the intermittent bursts in volatility.

A

  e ω(r) dr for any Lebesgue measurable subset A ⊂ R.T h ec o n v e r g e n c ei se n s u r e db yt h ef a c t that the family (M (A)) >0 is a right-continuous positive martingale. The structure exponent of M is defined by: ∀p 0,ζ (p)=pψ(p)

Theorem 8 . 8 .

 88 e. (see [?]) ζ(1 + ) > 1f o rs o m e>0. Theorems 8.3 and 8.4 remain unchanged for this more general context. Theorem 8.5 becomes: The constant µ 2

. 34 )

 34 Let C([0; 1], C) be the space of bounded functions from [0; 1] to C.F o rz ∈ C \ R fixed, the idea to find (K z (x)) x∈[0;1] is the fixed point method due to Picard. Let us introduce the operator T : C([0; 1], C) →C([0; 1], C)b ys e t t i n g ,f o rg ∈C([0; 1], C) and for all x ∈ [0, 1]:

Figure 8 . 2 :

 82 Figure 8.2: Comparison between the theoretical value of the density υ • (x 2 ) -1 (x) and the empirical histogram computed through a sample of simulated empirical covariance matrices R N as defined in the introduction. For both plots, q =1b u t stock prices follow multifractal random walks with intermittency parameter γ 2 =1/4 in the upward figure, γ 2 =1/2i nt h ed o w n w a r dfi g u r e .

Figure 8 . 3 :

 83 Figure 8.3: Log-log plot of the density υ • (x 2 ) -1 with q =1 ,τ =1 /4f o rt h r e e different intermittency parameter: γ 2 =0( b l a c kd a s h e dl i n e ) ,γ 2 =1 /4 (blue line) and γ 2 =1/2( r e dl i n e ) .

Figure 8 . 4 :

 84 Figure 8.4: Log-log plot of the density υ • (x 2 ) -1 with q =1 ,γ 2 =1 /4f o rf o u r different integral scales τ : τ =0(blac kdashedline),τ =1/4( r e dl i n e ) ,τ =1(blue line) and τ =2(greenline).
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 54 The system verified by the limit point µ 2 z and K z (x): first equationFrom the Schur complement formula (see e.g. Lemma 4.2 in[START_REF] Ben Arous | The spectrum of heavy-tailed random matrices[END_REF]f o rar e m i n d e r ) , one has for k ∈{1,...,N}:

- 1 ( 8

 18 .105) where, using Lemma 8.28, η 1 N,k (z)i sac o m p l e xv a l u e dr a n d o mv a r i a b l ef o rw h i c h there exists c>0s u c ht h a tf o ra l lN ∈ N and 1 k N, E[|η 1 N,k (z)| 2 ] <c/ N. With a further use of the Schur complement formula for the term G (k) N (z) N +i,N +i , we obtain:

. 113 )

 113 The mapping α ∈]0, +∞[ → pαψ(1 + α)r e d u c e st o0f o rα =0a n d ,b e c a u s e p>ψ (1), is strictly positive for α>0s m a l le n o u g h . S ow ec h oo s eα<1s u c ht h a t pαψ(1 + α) > 0a n dw es e tA = N p .W eo b t a i n :

1 .

 1 It suffices to show that ζ(2) > 1. Using the concavity of the function ζ,w eh a v e the inequality: ζ(2 + )ζ(1) 1+ <ζ(2)ζ(1) (8.160) and with assumption 8.24,w es e et h a tζ(2)ζ(1) = ζ(2) -1 > 0. We can thus conclude that κ<1.

Figure 9 . 1 :

 91 Figure 9.1: Left: normalized leverage correlation functions ρ 0 L σ (τ ), σ 2 0 L ρ (τ ), and an exponential fits with two scales (dotted lines). Right: Full leverage function L I (τ ) and comparison with an additive model (dotted line).

2 Figure 9

 29 Figure 9.2: Dependence of the average correlation ρ(t)a n dt h ea v e r a g es i n g l es t oc k volatility σ 2 (t) on the index return the previous day, I(t -1). The result is obtained as an average over all 6 indices: SP500, BE500, Nikkei, FTSE, CAC40 and DAX, but the qualitative effects are robust and appear on each markets individually. These plots suggest that a quadratic I 2 (t -1) term should be included to the linear regressions. The printed error bars are the average of the error bars obtained for each of the 6 indices.

2

 2 

  λ k (I)=λ k (0) + Iv k |D|v k ,(9.15)where λ k (0) are the eigenvalues of C and |v k are the associated eigenvectors (in quantum mechanics notations). When D does not commute with C,t h es t r u c t u r e of the eigenvectors themselves is impacted by the conditioning variable. If DI is small enough, standard first order perturbation theory gives back Eq. (9.15)forthe eigenvalues and:|v k (I) = |v k + I =k v |D|v k λ kλ |v ,(9.16)

1 λ 1 e| D|v 1 -v 1 | 2

 112 D|v 1 e|v 1 . (9.24) must be zero when averaged over ξ, x α .O n e c a n c o m p u t e i t s v a r i a n c e ,w h i c h i s found to be: ∆ 2 ξ,xα = e|C|e-λ 1 e|v 1 Tλ

Figure 9 . 3 :

 93 Figure 9.3: Main figure: empirical spectrum of D for the BE500 index (in red), compared to the null-hypothesis case (in blue). For the latter case, we have generated 1000 random samples, ranked the eigenvalues and averaged each of them separately. The leftmost blue peak therefore corresponds to the average value of the most negative eigenvalue. Insets: cumulative distributions of the most negative eigenvalue µ 1 and of the scalar product S = w 1 |v 1 .

FFF

  [...]. For an arbitrary function F (.)o ft h e s er e t u r n sw et h e r e f o r ew r i t e : (η α (k; t)); [F ](k; t):= 1 N N α=1 (η α (k; t)); [F ](k)= 1 T T t=1

Figure 10 . 1 :

 101 Figure 10.1: We show the average volatility of stocks σ(k), the average cross sectional dispersion σ d (k) and the average absolute value of the index return |µ d (k, t)| (multiplied by 4 for clarity) as a function of k,w i t ht h ec o r r e s p o n d i n gs t a t i s t i c a l error bars. All display the well known U pattern. We also compare σ(k)w i t ha power-law decay k -β with β ≈ 0.3( d a s h e dl i n e ) ,w h i c hi sag o o dfi tf o rt h efi r s t half of the day. Inset: ratio σ(k)/σ d (k)a saf u n c t i o no fk,s h o w i n gt h a td i s p e r s i o n effects diminish throughout the day.

Figure 10 . 2 :

 102 Figure 10.2: Left: average kurtosis of individual stocks κ(k)a saf u n c t i o no fk. Right: average cross sectional kurtosis κ d (k) as a function of k.I nb o t hc a s e s ,w e show the 1-σ dispersion around the mean (i.e. not the error bar). The red triangles correspond to the overnight values.

10. 4

 4 Cross-sectional intra-day seasonalities 10.4.1 Odd moments

Figure 10 . 4 :

 104 Figure 10.4: Cross sectional skewness ζ d as a function of the index return (equiweighted on all stocks) µ d .W ea d d e de r r o rb a r s( d o t t e dl i n e s ) ,t h a ta r ea c t u a l l y difficult to see near the origin.

Figure 10 . 5 :

 105 Figure 10.5: Left: Cross sectional kurtosis κ d as a function of the index return (equiweighted on all stocks) µ d . Note that the dependence is nearly the same for positive and negative market returns. Right: Cross sectional kurtosis κ d as a function of the cross sectional dispersion σ d .W ea d d e de r r o rb a r s( d a s h e dl i n e s )o nb o t hfi g u r e s .

Figure 10 . 6 :

 106 Figure 10.6: Left: Dependence of the top eigenvalue of the correlation matrix C(k), λ 1 (k)/N ,asafunctionoftimeofday . Right: Evolutionofthescalarproductbetween top eigenvector v 1 (k)andtheuniformv e c tor e .T h er e dt r i a n g l e sc o r r e s p o n dt ot h e overnight values.

Figure 10 . 7 :

 107 Figure 10.7: Left: Smaller eigenvalues λ i (k), i =2,...,7) as a function of k.R i g h t :The 6 singular values s (k)( =2,...,7) of the matrix W ij (k). In the absence of any true persistence, one would expect all singular value to lie in the interval [0, 0.12], much below the smallest singular value s 7 ∼ 0.8. The triangles correspond to the overnight values.
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  The stationary distribution of the process (λ 1 ,...,λ N )(t)isnecessarilythejoin tpdfP β (λ 1 ,...,λ N )defined in (2.39)(thisistrueforanyβ>0andcanalsoberecoveredusingtheF okker-Planck equation for the multivariate diffusion (2.42)).

  we shall see that the above is possible as the eigenvalues are almost surely distinct at the given times {k/n, k ∈ N}).

	As for all t,t h em a t r i xM β n (t)i si nt h es p a c eH β d ,w ek n o wt h a ti tc a nb e
	decomposed as
	M β n (t)=O β n (t)∆ β n (t)O β n (t) The evolution of the eigenvalues of M β n (t)duringthetimeinterval[k/n;(k+1)/n] is given by independent Brownian motions if n k =0andb yDysonBro wnianmotions if n k =1. The eigenvectors of M β
	n k =0andev olv ewiththeclassicaldiffusionoftheeigen v ectorsofDysonBro wnian motions if n

* where ∆ β n (t) is the diagonal matrix whose diagonal is the vector of the ordered eigenvalues of M β n (t)a n dw h e r eO β n (t) is in the space O β d for all t ∈ R + .W ea l s o introduce a matrix O β (0) to be the initial orthogonal matrix (resp. unitary if β =2) such that M β 0 (t)=O β (0)∆ 0 O β (0) * where ∆ 0 := diag(λ 1 ,...,λ d ). n (t)d on o te v o l v eo ni n t e r v a l s[ k/n;(k +1)/n]s u c ht h a t k =1(see[14]f o rar e v i e wo nD y s o nB r o w n i a nm o t i o n ) . Our main theorems describe the asymptotic properties of the ordered eigenvalues of the matrix M β n (t)d e n o t e di nt h ef o l l o w i n ga s (λ n 1

  Proposition 5.3 is proved in Section 5.7.W ea r en o wr e a d yt os t a t eo u rm a i n result for the convergence in law of the matrix O β n (t).

	Indeed, the matrix O β n (t)c a nb er e p l a c e d ,f o re x a m p l e ,b y-O β n (t)( o t h e rp o s s i b l e
	matrices exist). The following proposition overcomes this difficulty.
	Define T n (1) to be the first collision time of the process (λ n 1 (t),...,λ n d (t)).
	Proposition 5.3. There exists a continuous process (O β n (t)) 0 t T 1 in O β

R β t

(5.7) 

This solution exists and is unique since it is a linear equation in O β and R β is a well defined martingale at least until time T 1 .I tc a nb es h o w na si n[ 14,L e m m a4 . 3 . 4 ] that O β (t)i si n d e e da no r t h o g o n a l( r e s p . u n i t a r yi fβ =2)matrixforallt ∈ [0; T 1 ].

We mention at this p oint that the matrix O β n (t)i sn o tu n i q u e l yd e fi n e d ,even when we impose the diagonal matrix to have a non-decreasing diagonal λ n 1 (t) ... λ n (t). d with a uniquely defined law and such that for each t ∈ [0; T n (1)], we have

O β n (t)∆ β n (t)O β n (t) * law = M β n (t)

, where ∆ β n (t) is the diagonal matrix of the ordered (as in (5.4)) eigenvalues of M β n (t).

  then, depending on the value of the Bernoulli random variable n

k ,t h ed y n a m i cf o rt ∈ [k/n;(k +1)/n]i s • if n k =1 ,

t h ep r o c e s s( λ n 1 (t),...,λ n d (t)) follows the Dyson Brownian motion with initial conditions (λ n 1 (k/n),...,λ n d (k/n)) (see [14,T h e o r e m4 . 3 . 2 ] ) ;M o r e precisely, we have for t ∈ [k/n;(k +1)/n)

  ) t 0 ,i ∈{ 1,...,d} are mutually independent and independent of the Brownian motions (B i t ) t 0 ,i ∈{ 1,...,d} (also mutually independent), it is straightforward to check that the processes (b i t ) t 0 ,i ∈{1,...,d} are mutually independent Brownian motions. It is also easy to see that, for all s, t ∈ [k/n;(k +1)/n], the random variables n k

	process b i for t 0b yb i t := nian motions (W i t	n 1 (k/n),...,λ n d (k/n)). Let us define the s +(1-n s dW i 0 ( n t s )dB i s ). Using the fact that the Brow-

.

  The uniform estimate is obtained easily by controlling the increments of P n in between the times k/n, k ≤ [nT ] by sup k≤[nT ] |A n k | which we have already bounded.

	5.6 Proof of Theorem 5.2
	5.6.1 Non colliding case pβ 1
	It is straightforward to deduce Theorem 5.2 when pβ 1. Indeed if βp 1weknow
	that there are no collisions for the limiting process and more precisely, see e.g [14,
	p. 252],		
	P(τ 2 ε T ) c(λ 0 )T/| log ε|
	with some finite constant c(λ 0 )whichonlydependsonthespacingsoftheeigenvalues
	at the initial time. This implies in particular that
	lim ε→0	lim n→∞	P(T n ε T )=0
	from which we easily deduce Theorem 5.2 from Proposition 5.23.

  ) with initial condition O β n (0) := O β (0) (defined at the end of Section 5.1), is in the space O β d for all time t (see e.g. [14,L e m m a4 . 3 . 4 ] )a n di ss u c ht h a t ,w i t h∆ β n (t) being the diagonal matrix of the ordered (as in (5.4)) eigenvalues of M β

n (t), we have

  a r et w od i m e n s i o n a l( w ej u s ts t u d yt h ee v o l u t i o no ft h e i r coordinates in an orthonormal basis of W ). Let us define the two by two matrix φ(t)w h o s efi r s tl i n ei st h ev e c t o r φ i * (t)a n ds e c o n dl i n ei st h ev e c t o r φ i The matrix φ(t) converges in law when t → T 1 ,t < T 1 to the Haar probability measure on the orthogonal group (respectively unitary group if β =2.)

* -1 (t): φ(t):= φ i * (t) φ i * -1 (t)

.

Lemma 5.29.

  Dans ce cas, le spectre des valeurs singulières admet une forme limite explicite dans la limite des grandes matrices. Nous nous intéressons aussi au cas où H 0 est une matrice de covariance et nous illustrons l'utilité pratique de nos résultats par des applications en finance. Le cas particulier où cette matrice de covariance a une valeur propre beaucoup plus grande que toutes les autres est traité très précisément. En particulier, la dynamique de l'angle entre les plus grands vecteurs propres de la vraie matrice de covariance et de la matrice de covariance empirique fait apparaître une nouvelle classe de processus stochastiques.

Résumé

Cet article est à paraître dans le journal Physical Review E est est écrit en collaboration avec Jean-Philippe Bouchaud. Nous proposons un cadre de travail général pour étudier la stabilité du sous espace engendré par P vecteurs propres associés à des valeurs propres consécutives d'une matrice symmétrique H 0 sous l'effet d'une petite perturbation additive. Ce problème intervient dans divers contextes, notamment la dissipation quantique (dans ce cas, H 0 est l'Hamiltonien du système) et le contrôle du risque en finance (dans ce cas la matrice H 0 est la matrice de covariance des rendements des actions). L'idée est de calculer les valeurs singulières de la matrice des chevauchements partir desquelles on peut calculer une distance mesurant le chevauchement de deux sous-espaces vectoriels. Nous nous concentrons sur le cas particulier où la matrice H 0 est une matrice aléatoire de l'ensemble orthogonal Gaussien.

  34 |φ 2 +0.29 |φ 3 +0.30 |φ 4 +0.84 |φ 5 |ω 2 ≈0.53 |φ 2 +0.45 |φ 3 +0.47 |φ 4 -0.54 |φ 5 (7.54) |ω 3 ≈0.77 |φ 2 +0.40 |φ 3 +0.48 |φ 4 .

  2 (θ t )λ 2 1 cos 4 (θ t ) cos(θ t )dt + ε cos(θ t )sin 2 (θ t )dt + σ t dB t (θ t )sin 2 (θ t )+λ 1 λ 2 cos 2 (2θ t ) sin 2 (θ t ). (7.65) When θ t 1, this leads to Eq. 7.48 given in the main text for x t =1-cos(θ t ). In this appendix, we show that the function P (x, t) giving the probability that the "particle" x t verifying (7.48)i si nx at time t can be computed explicitly. More generally, we will show that one can compute explicitly this transition density P (x, t) for a process x t with initial condition in t =0giv enb yx 0 0verifyingtheLangevin equation dx t = θ(µx t )dt + σ x t (x t + b)dB t (7.66) where θ, µ, σ and b are positive constants and B t astandardBro wnianmotion. One can proceed to the change of variables

	where 1 cos 2 7.12 Transition probability of x t σ 2 t = ε 2 λ 2 1 2λ 2
	y t =cosh -1	2 b	x t +1	⇔ x t =	b 2	(cosh(y t ) -1) ,
	and find that the process y t verifies						
	dy t =	θ(1 +	2µ b	)	1 sinh(y t )	-(θ +	σ 2 2	)	cosh(y t ) sinh(y t )	dt + σ dB t .	(7.67)

  .21)a n d( 8.22). Let us admit for clarity at this point that the measure υ admits a continuous density, at least on the set R \{0}. One should be able to show that this is indeed true using the two equations (8.21)a n d( 8.22)t h a tc h a r a c t e r i z et h ep r o b a b i l i t ym e a s u r e υ. Under this continuity assumption for υ(x), we can re-find the density υ(x)f r o m

	µ 2 z by the relation	lim →0	1 π	(µ 2 x-i )=υ(x) .	(8.33)
	Note that we just need to find the unique family of functions (K z (x)) x∈[0;1] for
	z ∈ C \ R near the real line, that verifies the fixed point equation (8.22). Indeed, knowing (K z (x)) x∈[0;1] ,w ecancomputeµ 2 z by using equation (8.21), or even simpler,
	the additional relation that we stated above	
		1			
	0				

  .101) The next step is to study the convergence of the above quantity. Hence we prove (see the proof in the appendix):

	Lemma 8.23. The random variable	N t=1 M k

  N . Using the same arguments as in the derivation of the first equation (in particular Lemmas 8.27, 8.17, 8.20, 8.29, 8.16 and 8.15), one can show that:

  .139) Lemma 8.27. There exists C>0 such that for each N ∈ N and k ∈{1,...,N}:

  ) p∈N is a regularizing sequence and * stands for the convolution. Furthermore, for each fixed p and because of the weak convergence of E[L 1,z N ]t o w a r d s K z (x)dx, we have almost surely

	Proposition 8.29. We have for all k =1,...,N +1
						E	sup t=1,...,N	r k (t) 4	C	(ln N ) 2 ζ(2α)-1 N α
											1,z N ](dr)	→ 0a s p →∞uniformly w.r.t. N
											(8.145)
	and									
	E	0	1	e ω k	* φ p (r)K z (r) dr-	0	1	e ω k	(r) K z (r) dr	→ 0a s p →∞uniformly w.r.t. N (8.146)
	where (φ p 1 0 e ω k	* φ p (r) dE[L 1,z N ](dr) →	0	1	e ω k	* φ p (r)K z (r) dr as N →∞.	(8.147)
	We prove the result by gathering (8.144)( 8.145)( 8.146)a n d( 8.147).
	8.7 Sup of MRW		
	Here we prove				

  ). By applying Lemma 8.30,w ed e d u c et h a t

	Finally we have for all δ>0a n df o rα>1 such that ζ(2α) > 1:
	E	max t=1,...,N								
		E	sup t=1,...,N	r k (t) 4 |M k	C(ln N ) 2 max t=1,...,N	M k t -1 N	,	t N	2 .
	Thus we deduce									
	E	sup t=1,...,N	r k (t) 4	C(ln N ) 2 E	max t=1,...,N	M k t -1 N	,	t N	2	.	(8.148)

  2 .C h o o s en o wδ = N

							1-ζ(2α) α	so as
	to get					
	E	sup t=1,...,N	r k (t) 4		(1 + C)	(ln N ) 2 α N ζ(2α)-1	(8.149)
	8.8 Girsanov transform		
	Lemma 8.31. Let µ be an independently scattered infinitely divisible random mea-
	sure associated to (ψ, θ), where				
	∀q ∈ R,ψ (q)=mq +	1 2	σ 2 q 2 +	

R

(e qz -1)ν(dz), ψ(2) < +∞ and ψ(1) = 0. Let B be a bounded Borelian set. We define a new probability measure P B (with expectation E B ) by: ∀Ameasurable set, P B

  r)+ω(r) dr, and the latter quantity has the same law as Q (A). Since the martingale (E[P (A)|σ(F , F )]) >0 is uniformly integrable, we deduce that the family (Q (A)) >0 is also uniformly integrable. Hence, both random variables P (A)a n dQ(A)h a v et h es a m el a w . W ec a n show easily that in fact the two random measures P and Q have the same law. In particular, Q is non degenerated.It is now easy to see that, for all bounded and continuous function f ,t h et w o random variables

	the function	τ |r-x|	R f (r)P (dr)and κ +	R f (r)Q(dr)havethesamelaw. Byregularizing

  .2 would be to extend the above model to:η α (t) η β (t):=C α,β + D α,β (τ )I(tτ )+E α,β (τ ) I 2 (tτ ) -I 2 + ε α,β (t), (9.26) defining a new matrix E that captures the symmetric effect of index returns on the correlation matrix. An alternative choice, that we adopt below, is to regress separately on negative returns and on positive returns: η α (t) η β (t):=C α,β + D + α,β (τ ) I + (tτ ) -I +

	+ D -α,β (τ )	I	δ {I(t-τ )>0}	(9.27)

-(tτ ) -I - δ {I(t-τ )<0} + ε α,β (t),

(9.28)

  .31) Cet article est publié dans le journal New Journal of Physics et est écrit en collaboration avec Jean-Philippe Bouchaud. Nous établissons plusieurs nouveaux faits stylisés concernant les saisonalités de la dynamique des prix des actions au cours de la journée. Au delà du célèbre effet U pour la volatilité au cours de la journée, nous trouvons que la corrélation moyenne entre les actions augmente au cours de la journée, ce qui conduit à une plus petite dispersion entre les stocks. D'une manière légèrement paradoxale, la kurtosis (une mesure des occurrences de volatilité inhabituelles) atteint son minimum à l'ouverture du marché, lorsque la volatilité est à son maximum. Nous confirmons que la kurtosis est une fonction décroissante du rendement de l'indice. Cela signifie que lors des grands mouvements du marché, la composante idiosyncratique devient moindre dans la dynamique des actions. Schématiquement, les heures du matin sont dominés par les mouvements idiosyncratiques ou sectorielle avec peu de surprise, tandis que l'influence du vecteur marché augmente au cours de la journée et que les surprises deviennent plus fréquentes.
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To simplify notations, we omit the subscript β for the eigenvalues and eigenvectors of X β (t).

We use the classical bracket notations for the (hermitian) scalar product.

This rescaling is chosen so that the eigenvalue density, in the limit of large matrices, is the Wigner semicircle density with the classical support [-2; 2] instead of [-√ 2β; √ 2β].

In this paper, the renormalization of the matrices are such that the support of the spectrum when N = ∞ is [-2; 2].

In the limit of large matrices the former definition of G through the interval [a; b] implies that P ∼ N b a ρ where ρ is the eigenvalue density.

Obviously, this construction can be done with complex Brownian motions, corresponding to the parameter β = 2 instead of β = 1 in the present case.

M (A) A∈B(R d ) law

Note that all the diverging terms in T 1 cancel in this expression.

Here one can use use complex Brownian motions instead to extend the interval of β to [0,

2].

see[START_REF] Wilkinson | A Brownian motion model for the parameter dependence of matrix elements[END_REF] for similar calculations.

There is no need in averaging over the random matrix H 0 for the following results to be valid.

For this condition to be valid, δ has to be fixed independent of ε, or at least such that ε 2 | ln(δ)|1.

The authors of[START_REF] Vallejos | Orthogonality catastrophe in parametric random matrices[END_REF] expect deviations in (7.17) when the parameter x := ε √ N (which has to be 1 for (7.17) to be fully valid) is increased. However their numerical results (presented in Fig.2of[START_REF] Vallejos | Orthogonality catastrophe in parametric random matrices[END_REF]) show that the discrepancies are only noticeable for x close to 1. In addition, the

Resolvents are usually denoted by the letter G, but we do not want to confuse the reader with the overlap matrix G of which we compute the singular value spectrum.

The vectors |φ i and |φ i depend on N but to simplify notations, we drop the subscript.

As N does not have to be necessarily large in this subsection and in the next section, we drop the subscript N for the matrices C and E.

We take Q P as before in section 7.2 .

Our results in the previous sections hold for empirical covariance matrices. Hence we centered and normalized our empirical time series of returns so as to use them.

Here we mean that the non-perturbed (or population) eigenvectors do not evolve with time; obviously we do not talk about the sample eigenvectors of the empirical covariance matrix E which will be affected by measurement noise, evolving around the population eigenvectors.

Note that sin 2 (θ t ) ≈ 2µ is of order λ 2 /λ 1 and that 1cos(θ t ) ≈ µ is also of order λ 2 /λ 1 .

Recall that, in view of equation(8.33), we are interested in the value of the Stieltjes transform near the real line.

While this effect holds for most markets in developed economies, Tenenbaum et al.[START_REF] Tenenbaum | Comparison between response dynamics in transition economies and developed economies[END_REF] report that the situation appears to be different for markets in developing countries.

Note that the dependence on the lag τ is implied in the following formulas.

This pattern is a little different in Europe or in the UK, with a second volatility spike at

2:30 pm GMT when the US market opens.
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when a small perturbation is added. This problem is relevant in various contexts, including quantum dissipation (H 0 is then the Hamiltonian) and financial risk control (in which case H 0 is the assets return covariance matrix). We argue that the problem can be formulated in terms of the singular values of an overlap matrix, which allows one to define an overlap distance. We specialize our results for the case of a Gaussian Orthogonal H 0 , for which the full spectrum of singular values can be explicitly computed. We also consider the case when H 0 is a covariance matrix and illustrate the usefulness of our results using financial data. The special case where the top eigenvalue is much larger than all the other ones can be investigated in full detail. In particular, the dynamics of the angle made by the top eigenvector and its true direction defines an interesting new class of random processes.

Introduction

Random Matrix Theory (RMT) is extraordinarily powerful at describing the eigenvalues statistics of large random, or pseudo-random, matrices [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF]3,[START_REF] Anderson | An Introduction to Random Matrices[END_REF][START_REF] Mehta | Random matrices[END_REF]. Eigenvalue densities, two-point correlation functions, level spacing distributions, etc. can be characterized with exquisite details. The "dynamics" of these eigenvalues, i.e. the way these eigenvalues evolve when the initial matrix H 0 is perturbed by some small matrix εP,i sa l s ow e l lu n d e r s t o o d [START_REF] Simon | Exact Description of Spectral Correlations by a Quantum One-dimensional Model with Inverse-square Interaction[END_REF]. The knowledge of the corresponding eigenvectors is comparatively much poorer (but see [START_REF] Wilkinson | A Brownian motion model for the parameter dependence of matrix elements[END_REF]). One reason is that many RMT results concern rotationally invariant matrix ensembles, such that by definition the statistics of eigenvectors is featureless. Still, as we will show below, some interesting results can be derived for the dynamics of these eigenvectors. Let us give two examples for which this question is highly relevant.

One problem where the evolution of eigenvectors is important is Quantum Dissipation [START_REF] Wilkinson | Statistical aspects of dissipation by Landau-Zener transitions[END_REF] (see also the related recent strand of the literature on Quantum "Fidelity" [START_REF] Kohler | Exact Fidelity and Full Fidelity Statistics in Regular and Chaotic Surroundings[END_REF]). As the parameters of the Hamiltonian H t = H 0 + εP t of a system evolve with time t,t h ea v e r a g ee n e r g yc h a n g e sa sw e l l . O n et e r mc o r r e s p o n d st o the average (reversible) change of the Hamiltonian which leads to a shift of the energy levels (the eigenvalues). But if the external perturbation is not infinitely slow, some transitions between energy levels will take place, leading to a dissipative (irreversible) term in the evolution equation of the average energy of the system. The adiabaticity condition which ensures that no transition takes place amounts to comparing the speed of change of the perturbation εP t with a quantity proportional to the typical spacing between energy levels. For systems involving a very large number N of degrees of freedom, the average level spacing of the N × N Hamiltonian H goes to zero as N -1 .F o rN →∞,an yfinitespeedofc hangethereforecorrespondstothe "fast" limit, where a large number of transitions between states is expected. In fact, if the quantum system is in state |φ 

Abstract

We study the asymptotic of the sp ectral distribution for large empirical covariance matrices composed of independent Multifractal Random Walk processes. The asymptotic is taken as the observation lag shrinks to 0.

In this setting, we show that there exists a limiting spectral distribution whose Stieltjes transform is uniquely characterized by equations which we specify. We also illustrate our results by numerical simulations.

Introduction

Since the seminal work of Marcenko and Pastur [START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF]i n1 9 6 7 ,t h e r eh a sbe e ng r o wing interest in studying the asymptotic of large empirical covariance matrices. These studies have found applications in many fields of science: physics, telecommunications, information theory and finance, etc... The main motivation of this work stems from finance: the study of covariance matrices is a crucial tool for minimizing the risk R w of a portfolio w that invests w i in asset number i.I n d e e d ,i fw ed e n o t eb y

Main results

Lognormal multifractal random walk

We first present our results when the pro cess X(t)i sal o g n o r m a lm u l t i f r a c t a lr a ndom walk, i.e. X(t)=B(M [0; t]) where M is the MRM whose characteristic and structure exponent (see section 8.2.1)a r er e s pe c t i v e l yg i v e nb y :

We will make the assumption that the intermittency parameter γ 2 is small enough so as to overcome in our proofs the strong correlations of the model. Assumption 8.2. More precisely, let us suppose that:

Though we conjecture that our results hold as soon as the measure M is non degenerated, i.e. γ 2 < 2( s e e[ ?]), Assumption 8.2 is largely sufficient to cover most practical applications. For instance, in financial applications or in the field of turbulence, γ 2 is found empirically around 2.10 -2 .

We can now state our main result ab out the convergence of the empirical sp ectral measures and mean empirical spectral measures of the matrices B N and R N : Theorem 8.3. i) There exists a probability measure υ on R such that the two mean spectral measures E[µ B N ] and E[µ R N ] converge weakly respectively towards the two probability measures 2q 1+q υ + 1-q 1+q δ 0 and υ • (x 2 ) -1 as N goes to ∞, where υ • (x 2 ) -1 is the push-forward of the measure υ by the mapping x → x 2 .

ii) The two spectral measures µ B N and µ R N converge weakly in probability respectively to the two probability measures 2q 1+q υ + 1-q 1+q δ 0 and υ • (x 2 ) -1 as N goes to ∞. More precisely, for any bounded and continuous function f ,

< +∞, then the two sequences µ B N k and µ R N k converge weakly almost surely to the two probability measures 2q 1+q υ + 1-q 1+q δ 0 and υ • (x 2 ) -1 as k goes to ∞. The results are as follows. In Fig. 8.2,w es h o wt h ec o m p a r i s o nb e t w e e nt h e theoretical value of the density υ • (x 2 ) -1 (x)( c o m p u t e dn u m e r i c a l l ya sd e s c r i b e d above) and an empirical histogram of the eigenvalues of a sample of simulated covariance matrices R N (defined in the introduction) for N =1 0 2 4a n dq =1 . T h e upward plot is done with an intermittency parameter γ 2 =1/4andanin tegralscale τ =1 /4. The agreement is excellent as expected from Theorems 8.3, 8.4 and 8.5. The downward figure is done for an intermittency parameter γ 2 =1 /2a n da ni ntegral scale τ =1 /4, suggesting that our prediction remains true for γ 2 > 1/3( s e e conjecture 8.6 which also covers the case

In Fig. 8.3,w er e p r e s e n tt h r e ec u r v e s( a x i sa r ei nl o g -l o g )c o r r e s p o n d i n gt ot h e theoretical density υ • (x 2 ) -1 (x)f o rap a r a m e t e rq =1 ,a ni n t e g r a ls c a l eτ =1 /4 and for three different values of γ 2 .T h eb l a c kd a s h e dc u r v ec o r r e s p o n d st oγ 2 =0, which in fact is the Marcenko-Pastur case: asset prices are following independent Brownian motions with a trivial constant volatility process. In this case, the support is compact and the right edge of the spectrum is known to be equal to 4. The blue curve corresponds to an intermittency parameter equal to 1/4a n dt h er e dc u r v ei s for γ 2 =1/2. In this way, we see precisely the distortion of the spectrum induced by the auto-correlated volatility process. The most interesting part for applications is certainly about the tails of the distribution: the higher the intermittency parameter γ 2 is, the heavier the tail of the distribution is.

In Fig. 8.4,w erepresen tfourcurv escorrespondingtothethoereticaldensit yυ • (x 2 ) -1 (x)butv aryingtheintegralscaleτ instead of the intermittency parameter γ 2 . We chose for this plot q =1andγ 2 =1/4a n dr e p r e s e n t e dt h ed e n s i t yυ • (x 2 ) -1 (x) for τ =0( c o r r e s p o n d i n gt ot h et r i v i a lM Pc a s e )a n df o rτ =1 /4, 1, 2. The result on the right tail of the distribution is the following: the higher the integral scale is, the heavier the right tail of the distribution is. As mentionned above, large integral scale corresponds to measuring price variations on small scales. On small scales, it is known that price variations will have distribution with larger kurtosis than price variations on larger scales and therefore it was expected to find heavier right tail distribution for the spectral distribution of the corresponding covariance matrix.

Proofs of the main results

In this section, we give the proofs of theorems 8.3, 8.4 and 8.5.T h ep r o o fo fT h e o r e m 8.8 is very similar and we will not explain it in every detail, except for the final part where we establish the second equation of the system in Theorem 8.8 verified by K z .W ew i l lg i v et h ed e t a i l sf o rt h i sp a r to ft h ep r o o fi nt h ea p p e n d i x .T h ep r o o f of theorem 8.10 is an easy adaptation of our proofs for theorems 8.3, 8.4 and 8.5;i t is left to the reader. Furthermore, the proofs are very similar when q =1o rw h e n q<1. For the sake of clarity, we assume T = N and hence q =1intheproofsthat follow.

Hence, in the following, we will suppose (unless otherwise stated) that:

and M will be the MRM whose structure exponent is ζ (see section 8.2.1 for a reminder).

Our approach to show the convergence of

o n s i s t si np r o v i n g tightness and characterizing uniquely the possible limit points. The classical Schur complement formula is our basic linear algebraic tool to study

N ] recursively on the dimension N ,asisu s u alw h e nth ere s olv e n tme th odisu s e d . T h e original part of our proof is that we apply the Schur complement formula two times in a row to find the second equation of the system in theorem 8.5 involving the limit point K z (x)o ft h em e a s u r eE[L 1,z N ]. We will also show that the limit points of the two complex measures

N ]s a t i s f yafi x e dp o i n ts y s t e m( w r i t t e ni n theorem 8.5).

We b egin by showing tightness.

Tightness of the complex measures

N ] and limit points Lemma 8.11. The two families of complex measures (E[L i,z N ]) N ∈N ,i =1, 2 are tight and bounded in total variation.

Proof. Let us present the proof for (E[L 1,z

N ]) N ∈N ;t h eo t h e rp r oo fi ss i m i l a r . One has, for each N ∈ N:

and so the family of complex measures (E[L 1,z N ]) N ∈N is bounded in total variation. It is obviously tight since the support of all the complex measures in the family is included in [0, 1], which is a compact set.

Using Prokhorov's theorem, we know that those two families of complex measures are sequentially compact in the space of complex Borel measure on [0, 1] equipped with the topology of weak convergence. In particular, there exists a subsequence such that, for all bounded continuous function f ,o n eh a s ,w h e nN goes to +∞ along this subsequence:

Preliminary results on resolvents

We first recall the following standard and general result; the next lemmas of this section are also standard but are applied to our particular case.

Lemma 8.14. Let A be a symmetric real valued matrix of size N . For z ∈ C \ R, let us denote by G(z) the matrix

For z ∈ C \ R and k ∈{1,...,N}, we have

In particular, if F ⊂{1,...,N} is a finite set and (a i ) i∈F a finite sequence of positive number, then:

and we also have:

Proof. Write A = Ū t DU where D is a diagonal matrix with diagonal real entries For i =1 ,...,N,l e tX (i) N =( X N (kl)) k,l =i be the matrix obtained from X N by taking off the i-th column and row. Define, also for i =1 ,...,2N the (2N -1) × (2N -1) matrix A (i) N (z)obtainedfromA N (z)b ytakingoffthei-th column and row. In particular, for i =1,...,N,

, For i =1,...,2N ,s e t :

Let now X(i) N denote the matrix X N with the i-th column and row set to 0 and Â(i) N (z)denotethematrixA N (z)withthei-th column and row set to 0 excepted the diagonal term. Again we have, for i =1,...,N:

In the paper, we will also use the terms

. The double superscript just means that you make the operations described above to the rows and columns i and k. Lemma 8.15. For all k ∈{1,...,N} and all t = N + k, one has:

Proof. Multiply the identity:

to the left by G N (z)a n dt ot h er i g h tb y Ĝ(N+k)

Then one has:

where we have noticed that, for all t = N + k, Ĝ(N+k) N (z) N +k,t =0. Therefore, we find that:

(8.59) by Cauchy-Schwartz's inequality. Using then the independence of r k (j) and Ĝ(N+k) N (z), we get:

The proof is complete. Now we use the scaling properties of the MRM to obtain, for some positive constant C,

Furthermore, by using Lemma 8.26 which assures that, almost surely:

and the fact that:

we finally obtain

)

Proof. It is straightforward to see that the two matrices G 

The result follows since, for t = k, (z)

We pass to the limit as N goes to ∞ along some suitable subsequence and obtain:

(z)

The result follows.

Concentration inequalities

This lemma is adapted to our case from Lemma 5.4 in [START_REF] Ben Arous | The spectrum of heavy-tailed random matrices[END_REF].

Lemma 8.19. Let f :[ 0 , 1] → R be a bounded measurable function. For each i ∈{1, 2}, we have the following concentration results:

Proof. Define two functions F 1 N and F 2 N such that:

We will prove the Lemma for L 1,z N ;t h ep r o o ff o rL 2,z N is a straightforward adaptation.

Let, for k ∈{1,...,N +1},

If z is such that C/|(z)| 4 < 1, the operator T is contracting and thus has a unique fixed point g in the Banach space X.W ec o n c l u d et h a t ,f o re a c hz with |(z)| large enough, there exists a unique bounded function K z :[ 0 , 1] → C such that for all x ∈ [0, 1]:

Using the first equation, it is now plain to see that, for z such that C/|(z)| 4 < 1, the constant µ 2 z is uniquely defined by the system of equations (by the first equation, it is a function of the function K z ,w h i c hi su n i q u e l yd e fi n e df o rs u c hz). Now it remains to show that the limit point µ 2 z is uniquely defined for all z ∈ C\R. It will be easy to see using analyticity arguments. Indeed, from the Montel theorem, every limit point µ 2 z is holomorphic on the set C\R since it is the pointwise limit of a subsequence of the sequence of holomorphic functions L 1,z N ([0, 1]) that are uniformly bounded on each compact set of C \ R (see Lemma 8.14). Thus, µ 2 z is uniquely defined for each z ∈ C \ R by analytic extension (we have just seen that µ 2 z is uniquely defined for a set of z with accumulation points).

The same argument holds for the unicity of the integral 1 0 K z (x)dx.I n d e e d , every limit point Let us gather the above arguments to prove the main theorems.

Proof of theorem 8.5:i ti sad i r e c tc o n s e q u e n c eo fs e c t i o n s8.5.4, 8.5.5 and 8.5.6. Proof of theorem 8.4 i):T h el i m i tp o i n t sK z (x)dx and µ 2 z dx of the two complex measures E[L 1,z N ]a n dE[L 2,z N ]a r eu n i q u e l yd e fi n e db e c a u s eµ 2 z and K z (x)s a t i s f ya fixed point system of equations (we have just seen this in theorem 8.5).

Proof of theorem 8.4 iii): We need to prove that µ 2 z is the Stieltjes transform of a probability measure υ.F r o m [START_REF] Geronimo | Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform[END_REF], it suffices to prove that µ 2 z is holomorphic over C\R,maps{z ∈ C\R; (z) < 0} to {z ∈ C\R; (z) > 0} and that lim y→∞ iyµ 2 iy =1 (y ∈ R). Let us check those properties. We have already seen in section 8.5.6 that µ 2 z is holomorphic. From Lemma 8.14, µ 2 maps {z ∈ C \ R; (z) < 0} to {z ∈ C \ R; (z) > 0}. Finally, from Theorem 8.5,w eh a v e

.

dx)/z converges pointwise towards 0 when z = iy and y →∞. Furthermore, from Lemma 8.18,wehave(z)(K z (x) 0 This implies that, for each z ∈ C \ R,

and thus, the probability measure E[µ R N ]c o n v e r g e sw e a k l yt ot h em e a s u r eυ • (x 2 ) -1 (dx).

Proof of theorem 8.3 ii):u s i n gr e l a t i o n( 8.17)andlemma8.19,itisplaintocheck that R (zx) -1 µ B N (dx)c o n v e r g e si np r o b a b i l i t yt ot h eS t i e l t j e st r a n s f o r mo ft h e probability measure 2q/(1 + q)υ(dx)+(1-q)/(1 + q)δ 0 (dx). This convergence holds for finite dimensional vectors ( R (z ix) -1 µ B N (dx)),i =1,...,d) as well. Using the fact that the set of functions {(zx) -1 ,z ∈ C \ R} is dense in the set C 0 (R)o f continuous functions on R going to 0 at infinity, we can show, for each

Proof of theorem 8.3 iii):a g a i nu s i n gr e l a t i o n( 8.17)a n dl e m m a8.19 together with Borel-Cantelli's lemma, one can show that the two spectral measures µ B N k converges weakly almost surely to 2q/(1 + q)υ(dx)+(1-q)/(1 + q)δ 0 (dx). It is then easy to deduce as before that µ R N k converges weakly almost surely to υ • (x 2 ) -1 (dx).

Auxiliary lemmas

Lemma 8.26. Let A be a n × n complex matrix such that the Hermitian matrix M = A ĀT has spectral radius λ max . Then, for all i, we have:

Proof. It is straightforward to see that all the entries of M are, in modulus, smaller than λ max . On the other hand, we have:

and, thus: 

Abstract

We revisit the index leverage effect, that can b e decomp osed into a volatility effect and a correlation effect. We investigate the latter using a matrix regression analysis, that we call 'Principal Regression Analysis' (PRA) and for which we provide some analytical (using Random Matrix Theory) and numerical benchmarks. We find that downward index trends increase the average correlation between stocks (as measured by the most negative eigenvalue of the conditional correlation matrix), and makes the market mode more uniform. Upward trends, on the other hand, also increase the average correlation between stocks but rotates numerically the equations above is larger than the one needed to make direct simulations. We measure the null-hypothesis spectrum of D by choosing ξ(t)t ob ea Gaussian random variable of zero mean and unit variance, completely independent of the true returns η α (t), which we then diagonalize. The cumulative distribution of the largest negative eigenvalue in the null-hypothesis is shown in the inset. The average position of the most negative eigenvalue of D in the null-hypothesis case is found to be µ 1 ≈-4.8. The average position of the second and third most negative eigenvalues in the null-hypothesis case will be denoted by µ 2 and µ 3 . We have also measured the distribution of the scalar pro duct S = w 1 |v 1 between the corresponding top eigenvector |w 1 and the top eigenvector of C, |v 1 . We find that even in the case where ξ(t)i sa ni n d e p e n d e n tr a n d o mv a r i a b l e ,t h e top eigenvector of D is in fact strongly correlated with |v 1 ,w i t ha na v e r a g es c a l a r product equal to S =0 .68 for the correlation matrix of the returns of the BE500 index. We find numerically that P (S 0.5) ≈ 0.11 and P (S 0.65) ≈ 0.38 for the BE500 index -see Fig. 10.3.R e s u l t sf o rt h eS P 5 0 0a r ev e r ys i m i l a r .

Comparison with empirical data

In order to reduce the measurement noise and compare with the above numerical simulations, we have estimated D(τ )usingEq. (9.13)with"Gaussianized"empirical index returns, obtained by first ranking the true index return from most negative to most positive, defining the rank of day t, k(t). The Gaussianized index return I G (t) is then obtained as Φ -1 (k(t)/T ), where Φ is the error function.

We show in Fig. 10.4 the evolution of µ 1 (τ ), the largest (in absolute value) eigenvalue of D(τ )a saf u n c t i o no fτ .W efi n dt h a tµ 1 is negative, corresponding to the correlation leverage effect (see Eq. (9.17)). Comparing with the null-hypothesis case, we find that µ 1 (τ )remainssignificantatthe1%confidenceleveluptoτ ≈ 240. When fitting µ 1 (τ )w i t ha ne x p o n e n t i a lf u n c t i o nw i t ht w os c a l e st h a ts a t u r a t e s at the noise level µ 1 determined above, we find µ 1 (τ )= µ 1 -26.6exp(-τ/11) -17.1exp(-τ/200). This reveals two time scales; a rather short one close to the one determined directly from L ρ (τ ) above (see Fig. 9.1), and a much longer time scale on the order of a year, showing that the effect of market drops on the correlation is long lasting. The scalar product S(τ )=w 1 (τ )|v 1 between the top eigenvectors of D(τ )a n dC globally exceeds 0.8i nt h ew h o l er a n g eτ ∈ [1,240], whereas the null-hypothesis average value is S =0.68.

We have also studied the second (µ 2 (τ )) and third (µ 3 (τ )) eigenvalues of D(τ ) as a function of τ ,w h i c ha r eb o t hn e g a t i v ea n dc l e a r l yb e y o n dt h en o i s el e v e l ,a n d are found to decay with very similar time scales: a month and a year (see Fig. 10.5). The corresponding eigenvectors are found to be mostly within the subspace spanned by the second and third eigenvectors of C.T h e fi n a n c i a l i n t e r p r e t a t i o n o f t h e s e eigenvalues is of an increased sectorial correlation when the market drops on top of an increase of the market correlations. Therefore, all idiosyncratic effects disappear upon market drops, while global factors become dominant. 

Figure 9.4: Left: Largest negative eigenvalue µ 1 (τ )o ft h el a g g e dr e g r e s s i o nm atrix D(τ ). The double exponential fit (dotted line) is given by : µ 1 (τ )= µ ∞ 1 -26.6exp(-τ/11) -17.1exp(-τ/200), where we fix the value of µ ∞ 1 using the numerical results of the previous section: µ ∞ 1 = µ 1 ≈-4.8, since we expect that for large τ ,a l lc o r r e l a t i o n sa r el o s t . R i g h t : E v o l u t i o no ft h es c a l a rp r o d u c t S(τ )=v 1 |w 1 (τ ) as a function of τ .T h eh o r i z o n t a ld a s h e dl i n ec o r r e s p o n d st ot h e mean of the scalar product S in the null-hypothesis case. The data corresponds to the BE500 index, but the results for the SP500 are very similar. The exponential fit (dotted line) is given by: µ 2 (τ )= µ 2 -1.3exp(-τ/14.4) -2.3exp(-τ/364). Right: Third eigenvalue µ 3 (τ )o ft h el a g g e dr e g r e s s i o nm a t r i x D(τ ). The exponential fit (dotted line) is given by : µ 3 (τ )= µ 3 -1.3exp(-τ/20) -1.5exp(-τ/420). Direct numerical simulations of the random case lead to µ 2 ≈ -1.52 and µ 3 ≈-1.24. The data corresponds to the BE500 index, but the results for the SP500 are again very similar. The exponential fit (dotted line) is given by : µ - 1 (τ )= µ - 1 -73 exp(-τ/19) -41 exp(-τ/300). Right: µ + 1 (τ )o ft h el a g g e dr e g r e s s i o nm a t r i xD + (τ ). The exponential fit (dotted line) is now given by : µ + 1 (τ )= µ + 1 +10.6exp(-τ/49) + 44 exp(-τ/200). Note again the presence of a long relaxation time on the order of a year. We have used direct numerical simulations to obtain µ

The data is for the returns of the BE500. Again, SP500 yields very similar results.

CHAPTER 9. PRA AND THE INDEX LEVERAGE EFFECT

The results are shown in Fig. 10.7.I n a g r e e m e n t w i t h t h e c o m m o n l o r e , ∆ -is negative, indicating that strongly negative index returns (below I -)leadtoamore uniform instantaneous market mode. On the other hand, ∆ + is found to be negative as well, meaning that while strongly positive returns also tend to increase the average correlation between stocks, the instantaneous market mode rotates away from the uniform vector |e.T h ee ff e c t sw ea r er e p o r t i n ga r es t a t i s t i c a l l ys i g n i fi c a n ts i n c et h e root-mean square error on ∆ ± (defined as in Eq.(9.24)) in the null-hypothesis case is found to be ∼ 8 • 10 -4 ,af a c t o r3t o4s m a l l e rt h a nt h ea m p l i t u d eo ft h ee m p i r i c a l values of ∆ ± . -m e a ns q u a r ee r r o ro n∆ ± in the null-hypothesis case. The data is for BE500; the amplitude of ∆ -and ∆ + are found to be roughly a factor 2 larger for the SP500.

Summary & Conclusion

The aim of this paper was to revisit the index leverage effect, that can be decomposed into a volatility effect and a correlation effect. We investigated the latter in great detail using a matrix regression analysis, that we called 'Principal Regression Analysis' (PRA) and for which we have provided, using Random Matrix Theory and simulations, some analytical and numerical benchmarks.

Using this refined analysis, we confirm that downward index trends increase the average correlation between stocks (as measured by the top eigenvalue of the conditional correlation matrix), which in turn explains why the index leverage effect is stronger than for single stocks. Compared to the null-hypothesis benchmark, this leverage correlation effect is highly significant (see Fig. 10.4 and Fig. 10.6). We also find that large downward trends implies a more uniform future market mode (see Fig. 10.7,l e f t ) .

Upward trends, on the other hand, also increase the average correlation between stocks (see Fig. 10.6,r i g h t )b u tl a r g eu p w a r dt r e n d sr o t a t et h ef u t u r em a r k e tm od e away from uniformity (see Fig. 10.7, right). All these effects are characterized by two 'memory' time scales: a 'short' one on the order of a month and a longer one on the order of a year. The latter long time scale could be related to the fact that the market had long cycles of booms and busts within the studied time series, during which the average correlation went down and up again.

We have also studied the correlation leverage effect on intraday data, and we find (results not shown) that while the top eigenvalue of the 15 minutes correlation matrix is nearly insensitive to the sign of the previous 15 minutes index return, a significant effect emerges when the time scale reaches one hour.

Finally, we have found indications of a leverage effect for sectorial correlations as well, which reveals itself in the second and third modes of the PRA (see Fig. 10.5).

It would be interesting to analyze other conditional correlation matrices using the tools developed in this paper, such as for example leader-lagger effects [START_REF] Potters | Financial Applications of Random Matrix Theory: Old laces and new pieces[END_REF][START_REF] Bouchaud | Large dimension forecasting models and random singular value spectra[END_REF][START_REF] Podobnik | Time-lag cross-correlations in collective phenomena[END_REF], or the role of other macro variables such as oil, currencies or interest rates. dispersion is thus stronger in the morning, and decreases as the day proceeds. The dispersion kurtosis κ d (k)=κ d (k; t), on the other hand, has an inverted U shape, and reaches a minimum at the open and at the close of the market, i.e. when the dispersion and the volatility are locally maximum. So even when the dispersion of returns is at its peak, with stocks all over the place (so to say), the cross-sectional distribution of returns is on average closer to a Gaussian! Note however that the variation of the kurtosis is not large, from κ d =2t oκ d =2 .4. The overnight dispersion kurtosis, on the other hand, is much stronger: κ d ≈ 3.3.

Conditioning on the index return

As noted above, the quantity µ d (k; t)i st h er e t u r no fa ne q u i w e i g h t e di n d e x . I ti s interesting to condition the value of the moments of the cross-sectional dispersion on this quantity. Such a study was performed on daily returns in [START_REF] Lillo | Variety and volatility in financial markets[END_REF]a n dm o r e recently by L. Borland [START_REF] Borland | Statistical Signatures in Times of Panic: Markets as a Self-Organizing System[END_REF]. In agreement with the results of [START_REF] Lillo | Variety and volatility in financial markets[END_REF][START_REF] Cizeau | Correlation structure of extreme stock returns[END_REF], we find that the average dispersion σ d is an increasing function of the amplitude of the index return, see Fig. 10.3. As noted in [START_REF] Cizeau | Correlation structure of extreme stock returns[END_REF], this observation shows that the volatility of the stock residuals in a one-factor model must depend on the volatility of the market mode. Fig. 10.3 furthermore suggests that this dependence is sub-linear (see [START_REF] Chicheportiche | Goodness-of-Fit tests with Dependent Observations[END_REF] for some elaborations on this observation.)

As first established in [START_REF] Lillo | Symmetry alteration of ensemble return distribution in crash and rally days of financial markets[END_REF]o nd a i l yd a t a ,w efi n dt h a tt h es k e w n e s sζ d is an odd function of µ d , as shown in Fig. 10.4. Note that the skewness increases very abruptly for small µ d and saturates for larger values of the index return. Pictorially, apositiv eindexreturncanbethough tofasresultingfromafew"winners"running ahead of the pack, contributing both to the mean µ d and to the skewness. The