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Une méthode énerg étique pour les syst emes vibro-acoustiques coupl és
Résumé

Ce nemoire de tbse pesente le @veloppement de la @hode “statistical modal energy dis-
tribution analysis (SmEdA)” pour des sgstes vibro-acoustiques coapl Cette rathode de
calcul est base sur le bilarénergtique dans des sous-systes fermds coupks, comme une
structure ou une cawt L'interaction entre de tels sgshes est @crite par des couplages entre
les modes. La version initiale de SmEdA prend en compte seuleles modes qui ont une
frequence propre dans le bande d’excitation. Le trav&isemé ici etudie I'effet des modes
non esonants sur laéponse et identifie les cas dans lesquels un tel effet dewgdrtant.
L'introduction des modes norésonants permet d'utiliser lagthode SmEdA dans des cas
d’applications plus larges.

En outre, une nouvelle @thode de post-traitementede developgee pour calculer des distri-
butions dénergie dans les sous-systes. Finalement, une nouvell@thode d’approximation
pour la prise en compte des modes de &aysts de grandes dimensions ou nméfids aéte
formulée. Toutes ces @thodes onéte compages avec d'autres @hodes de calcul via des
exemples acamiques et industriels. Ainsi, la nouvelle version de SmHu#uant le post-
traitement pour obtenir des distributionsdergie @&t valice et les avantages et possiléit
d’applications sont mongs.

Mots-clés: SmEdA, nethodeénergtique, sysmes vibro-acoustiques coépl distribution
d’énergie, systmes mal éfinies, nethode modal

An energy based method for coupled vibro-acoustic systems
Abstract

This dissertation presents the further development of thgsstal modal energy distribution
analysis (SmEdA) for vibro-acoustic coupled problems. sTgmiediction method is based on
the energy balance in bounded coupled subsystems, likacgte or a cavity. The interaction
between such subsystems is described by mode-to-moderoguphe original SmEdA formu-
lation takes into account only the modes having the eigen@edges within the excitation band.
The present work investigates the effect of non resonanesital the response and identifies
cases in which such an effect becomes important. The imclwdinon resonant modes has thus
resulted in a new SmEdA formulation which can be used in eddmapplications.
Furthermore, a new post-processing method has been dedelogpredict energy distribution
within subsystems. Finally a novel approximation methadhandling modes of huge or ill-
defined systems has been formulated. All these methods kawvecompared to other prediction
methods via academic and industrial examples. In this ii@yektended SmEdA approach in-
cluding the post-processing for energy distribution hasbedidated and its advantages and
application possibilities have been demonstrated.

Keywords: SmEdA, energy based method, coupled vibro-acoustic sgstenergy distribu-
tion, ill-defined system, modal approach






Contents

1.

Exuctive Summary and Discussion 1

w

Introduction and scientific context
1.1. Calculation methods invibro-acoustics . . . . . .. .. ... ... ..... 4
1.1.1. Statistical Energy Analysis. . . . . . .. ... .. ... .. ..... 4
1.1.2. FEM for fluid-structure problems . . . . . .. ... ... ... ... 6
1.1.3. Mid-frequency methods . . . . . . .. .. ... ... ... .. ... 6
1.1.3.1. Hybrid FEM-SEAmethod. . . . . . .. ... ... .... 6
1.1.3.2. Trefftzmethods. . . . . ... ... ... .. ........ 7
1.1.3.3. Complex Envelope vectorization. . . . . . ... ... .. 7
1.1.4. Statistical modal Energy distribution analysis . . . . .. ... ... 8
1.1.4.1. Basicprinciple . . . . . ... ... .. 8

1.1.4.2. Limitsof SmEdA. . . . .. ... .. ... ... ...... 10
1.1.4.3. Powerinputofamode. . . . ... ... ... ....... 10
1.1.4.4. DampinginSmEdA . . . . .. ... ... ... .. ..., 12
1.1.4.5. Relation between SmEdAandSEA . . . . .. ... ... 13
1.1.4.6. Postprocessing for energy distributians . . . . . . . . .. 14
1.2. TransmisSioNn LOSS. . . . . . . . . o e e e 14
1.2.1. Definition. . . . . . . . ... 14
1.2.2. Transmission Loss of infinite plates. . . . . . ... ... ...... 16
1.3. Presentationofthesubject. . . . . .. ... ... ... ... ... ... 17
Non resonant modes and SmEdA 19
2.1. Nonresonant contributionin SmEdA . . . . . ... .. ... .. ... ... 19
2.1.1. Principle . . . . .. 19
2.1.2. Powerinput ofa SmEdA-oscillator . . . . .. .. ... ... .... 20
2.1.3. Heavyfluids. . ... .. ... .. .. ... ... 21
2.2. Transmission Loss and nonresonantmodes. . . . . . ... .. ... ... 23
2.3. Inwhich cases non resonant modes are necessary iratfener. . . . . . .. 30
Energy distributions in modal description 33
3.1. Postprocessingmethod. . . . . . ... . ... o 33
3.2. Energy distributions of structures. . . . . . .. ... ... ... ... 34
3.3. Energy distributions of cavities. . . . . . .. ... ... ... ... ... 38
Methods for ill defined systems and systems with high mode densiti es 41
4.1. Hybrid SEA/SmEdA methods. . . . . . . ... ... ... .. ... ... .. 41
4.2. Approximation of eigensystems . . . . . . ... 0oL 43

Conclusion and Perspective 47



Contents

Bibliography 50
[I. Publications 55
6. Paper I: Prediction of Transmission Loss using an improved SEA Method 57
1. Introduction. . . . . . . . . . e 59
2. Theory. . . . . . 60
2.1. Classical Statistical Energy Analysis . . . . . ... ... ...... 60
2.2.  Statistical modal Energy distribution Analysis . . . . . . ... ... 61
3. Comparison of the approaches. . . . . . . . . . ... ... ... ...... 63
3.1. Systemunderstudy. . . . . ... ... 63
3.2. TransmissionLosSs . . . . . . ... 64
3.2.1. Simply supportedplate . . . ... .. ... ... ... .. 64
3.2.2. Freeplate. . . . . . . . . . ... ... .. .. ... .. 67
4. Conclusion . . . . . ... e 68
5. Acknowledgment. . . . . .. ... 68
Bibliography . . . . . . . . 69
7. Paper II: Non resonant contribution and energy distributions using Statistical
modal Energy distribution Analysis (SmEdA) 71
1. Introduction. . . . . . . . . . 73
2. Statistical modal Energy distribution Analysis. . . . . ... .. ... .. .. 74
3. Energy and energy distributions in modal description . . . . . .. ... .. 76
3.1. Excitationatasinglefrequency . . . . . ... ... . ... ... .. 77
3.2. Broadbandexcitation. . . . .. ... ... ... ... 79
4. Results . . . . . e 81
4.1. Systemunderstudy. . . . ... ... L 81
4.2. Energy . . . . .. 82
4.3. Energydistributions. . . . ... ... 84
4.3.1. Single frequency excitation . . . . . .. ... .. ... .. 84
4.3.2. Broadband excitation . . . . .. ... ... ... 85
5. Conclusion . . . . . .. 87
6. Acknowledgment. . . . . . . ... 88
Bibliography . . . . . . . . 88
8. Paper llI: Improved modal Energy Analysis for industrial p roblems 89
1. Introduction. . . . . . . . . . 91
2.  Statistical modal Energy distribution Analysis. . . . . . .. ... ... ... 92
3. Energydistribution. . . . . ... 93
3.1. Energy distribution of asinglemode. . . . . . . .. ... ... ... 93
3.2.  Energy distributions of whole subsystems . . . . . ... ... ... 94
3.2.1. Theory. . . . . . . . ... 94
3.2.2. Example: Correction factor for a point force exciteddure 94
4 Example. . . . . . 95
4.1. Systemunderstudy. . . . ... ... 95
4.2. Energiesofthesubsystems . . . ... .. ... ... ........ 95
4.3. Energy distributions of the subsystems. . . . . . .. ... ... .. 96
5. Conclusion . . . . . .. 97



Contents

6. Acknowledgment. . . . . . . . ... 98
Bibliography . . . . . . . 98
9. Paper IV: Assessment report on SmEdA 101
1. Executive summary . . . . . . . . . .. 104
2. Basicconcepts. . . . . ... 105
2.1.  Statistical modal Energy distribution Analysis . . . . . . ... ... 105
2.1.1. Coupling betweenmodes. . . . . .. ... ... . .... 105
2.1.2. Powerinput. . . . . . . . .. ... .. ... 105
2.1.3. Energies of subsystems. . . . . .. .. ... ... .. .. 107
2.2. Energydistributions. . . . .. ... 108
2.2.1. Energy distribution of asinglemode . . . . . .. ... .. 108
2.2.2. Energy distributions of whole subsystems. . . . . . . .. 109
3. Performanceillustrations . . . . . . ... ... .. ... . 110
3.1. Plate-cavity system . . . . . . . . . . .. .. ... 110
3.1.1. Energies of the subsystems. . . . . . . ... ... .... 111
3.1.2. Energy distributions of the subsystems . . . . . . .. .. 112
3.2, Transmissionloss. . . . . . . .. ... 114
3.2.1. Comparison to the infinite transmission loss models. . . 115
3.2.2. ComparisontoFEM . . . . . . . .. ... ... ... ... 117
3.3. Double-decktrain . . . . . . . .. ... ... 118
3.3.1. Energies of the subsystems. . . . . ... ... ... ... 119
3.3.2. Energy distributions of the subsystems . . . . . . .. .. 120
4. Recent enhancements and future researchin SmedA. . . . . . . .. ... 122
4.1. Reduction of computationalcost. . . . . . ... ... ... ... .. 122
4.1.1. Approximatemodes . . . . . ... ... ... 122
4.1.2. Mixed power balance equation systems. . . . . . .. .. 124
4.2. Localiseddamping . . . . . . . . ... 125
5. Conclusion . . . . ... 126
Bibliography . . . . . . . . 127
10. Paper V: Application of SmEdA to systems with high mode densiti es 129
1. Introduction. . . . . . . . . . 131
2.  Statistical modal Energy distribution Analysis. . . . . ... ... ... ... 132
3.  Hybrid SEA/SmEdAmethods. . . . . . ... ... ... ... 133
4.  Approximate modes . . . . . ... 134
5. Example. . . . . e 136
5.1. Systemunderstudy. . . . ... .. .. ... .. 136
5.2.  Transmission Loss calculation using hybrid SEA/SmBu&hods. . . 137
5.3.  Transmission Loss calculation using approximate mades . . . . . 139
6. Conclusion . . . . ... 140
7. Acknowledgment. . . . . ... 141
Bibliography . . . . . . . 141
11. Paper VI: Non resonant modes and Transmission Loss using Statistical modal
Energy distribution Analysis (SmEdA) 143
1. Introduction. . . . . . . . . . e 146
1.1. TransmissionLOSS . . . . . . . . . . 146
1.2. Statisticalenergyanalysis . . . . . . . ... ... ... 147



Contents

2. Coupling betweentwo oscillators. . . . . . ... ... ... ......... 148
2.1. Resonant excited oscillators . . . . . . . ... ... . oL 148
2.2. Non resonant excited oscillators. . . . . . . .. ... ... .. ... 150
3. SMEdA . . . e 151
3.1.  Original formulation of SmEdA. . . . . . . .. ... ... ...... 151
3.2.  Extended version for structure-cavity coupling inithg non resonant
MOdES. . . . . . 152
3.2.1. Infinite transmission loss models expressed withgpdyal-
anceequations . . . . ... ... 152
3.2.2. Comparison to the formula of Cremer without damping . 153
3.2.3. Comparison to the formula of Cremer with damping . . . 154
3.2.4. Conclusion from the comparisons with the formula of Grertb4
4. Example. . . . . 156
4.1. Plate excited by a pointforce. . . . . . . .. ... ... ... .... 156
4.2.  Transmission loss of smallsystems. . . . . ... ... ... .... 157
4.2.1. Comparison to the infinite transmission loss model . . . 157
4.2.2. ComparisontoSEA . . . . . . . .. ... ... 159
4.2.3. ComparisontoFEM . . . . . . . .. ... ... .. .. .. 160
5. Conclusion . . . . ... e 162
6. Acknowledgment. . . . . . ... 162
AppendixX . ... 162
A. Transmission factor for a finite cavity-structure-cgngystem . . . . . 162
B. Modes and Eigenfrequancies of finite plates and cavities. . . . . . 163
C. Factors of the direct coupling factor of Lyon and DeJang . . . . . . 163
D. Modes and modal works of infinite plates and cavities. . . . . . . . 164
E. Relation between the bending wave frequency and the fnegus the
incidentwave. . . . . . . .. .. 165
Bibliography . . . . . . . 165



Part |.

Exuctive Summary and Discussion






1. Introduction and scientific context

The importance of the prediction of the vibro-acoustic vétar of industrial products is in-
creasing. One reason for this is that more and more prodwaersto get products sounding
well and to reduce disturbing noises for the users of theidpcts. To reach this aim without
spending a lot of time for tests on real products, which calge a lot, the sound design at
an early stage of development becomes more and more impofthos, methods have been
developed to study the contribution of different sound searand the influence of different
transmission paths on the global synthesized sound of aupro&xamples for such methods
are the virtual noise synthesig][and the virtual acoustic prototyp@][ Another reason for
the increasing of the need of predictive methods is the prolihat strong vibrations and high
noise levels can damage structures or electronic equiplikent aerospace applicationS][
Therefore, it is necessary to take into account these aspéetady in the design stage. To
reach all these aims effective calculations methods ardatke® predict for example transfer
functions characterising transmission paths. The frequesnge of interest, for which vibro-
acoustic calculations should be executed, is nhormallyeduiige for example 20Hz to 2000Hz
for aerospace application8][ Thus, the biggest wavelength at the lowest frequencytefast
can be 100 times bigger or even more than the smallest wagtblanthe highest frequency of
interest. That means that the wavelength can be very big arydswall in comparison to the
dimensions of a product or a room and so different phenomenargortant for the different
wavelengths. Because of that the frequency range can besdifadl example in three ranges,
the low, the mid and the high frequency range. In the case oWvadamped system the low
frequency range is characterised by the single responsgagié modes, because the modal
density is here quite smalld]. Thus, single maxima which belong to the eigenfrequencies
can be seen separately in the frequency response. Forehiseincy range the finite element
method (FEM) (see chaptérl.2 is the most popular calculation method. But the computa-
tional cost of FEM is increasing with the frequency becawssexglained before the wavelength
becomes smaller and so more discrete points are necess#gdobe these vibrations. Also,
in the high frequency range the modal density becomes highsarthe response at one fre-
guency is here an average response of a high number of motese Todes are in addition
very sensitive to small changes of characteristics of tapaetive systems as explained &. [
Thus, the responses of nominally identical industrial picisl excited at high frequencies can
be very different. Because of these reasons it makes no semsdctilate detailed response
for each point with a deterministic method like FEB].[ The most well known method to cal-
culate such averaged frequency responses in the high freguange is the statistical energy
analysis (SEA), which is presented more detailed in chahted All in all, there are well
established calculation methods for the low frequency eaargd for the high frequency range.
But in between in the mid frequency range the modal densiteeso® low to use SEA and the
computational cost is still quite high using FEM. To solvestproblem many different meth-
ods have been developed in the last 10 years. So there areaimpte the hybrid FEM/SEA
method, the wave based method, the variational theory optmorays (VTCR) and the com-
plex envelope vectorization (CEV), which are presentedtshior chapterl.1.3 One of these
Is also the statistical modal energy distribution analySisiEdA), which is the topic of this

3



1. Introduction and scientific context

dissertation. The development of SmEdA has been started it Biad Guyader§]. Their
aim was to get an energy based method like SEA, which can beati$ader frequencies, too.
In the last three years SmEdA has been further developee iindmework of ITN Marie Curie
project GA-214909 “MID-FREQUENCY - CAE Methodologies for Mirequency Analysis
in Vibration and Acoustics”. The main subjects of this reshaliscussed in thesis are:

e a new original method to take into non resonant modes in SmEdA

e anew postprocessing method to predict energy distribsibdsoherent sound fields with
the modal information and the results of SmEdA

¢ a novel method to handle ill defined systems

¢ the discussion of methods for systems with high modal diessiv reduce the computa-
tional cost of SmEdA

All the results of the research are summarised, discussedanmented in paitof this thesis
following chapters about the scientific context and the tedgiresentation of the subject. The
details of the research like derivations of formulae candomdl in the publications of paitt. In
this context, it has to be mentioned that some errors in théqaiions have been corrected and
the appearance of the publications have been adapted tif that thesis. Thus, the publications
in partll look not exactly like the original ones. Furthermore, somers in the publications
have been corrected and the appearance of the publicatamesheen adapted to that of this
thesis. Thus, the publications in p#rfook not exactly like the original ones.

1.1. Calculation methods in vibro-acoustics

1.1.1. Statistical Energy Analysis

The statistical energy analysis is the most popular eneaggd method. The development of
it started in the early 1960s with the works over coupledliagors from Lyon and Smith7].

At first, simple coupled oscillators and the relation betwtwesir energies and the power input
were investigated and discussed in lot of publications[#g[9] or [10]. These oscillators are
described by two coupled differential equations, which given in the case of a gyroscopic
coupling by

Ya(t) + A1ya(t) + wfyr(t) — /My "Mayyao(t) = Fa(t) L.1)

Ya(t) 4+ D2Ya(t) + wYa(t) + /My My (t) = Fo(t)

wherel; = wn; is the damping coefficieny; is the gyroscopic coupling factor amdh, My, y;
andy, are the masses and the displacement of the oscillators ongvanAs shown under the
condition of a white noise excitatioi8], the time-averaged power floﬁ?ﬁX between resonant
excited oscillators is direct proportional to the diffecerof their time-averaged energigsand
E;j.

R = nij(Ei —Ej) (1.2)

wherenj is the coupling factor. From equatioh.{) and (..2) it follows for the coupling factor
that

% <nimwjz+njwja%2)
(@? — )2+ (M@ + Njw)) (MW W? + Njwj «?)

Nij = (1.3)



1.1. Calculation methods in vibro-acoustics

A detailed description of the derivation gfj can be found in chaptekl. This so defined
exchanged power is used in a power balance equation for titats's as follows:

M = NS+ P = weniEi + wenij (B — Ej) (1.4)

wherewy is the central frequency of the excited frequency bandl%a;nalndl’lf“s are the input
power and the dissipated power of the oscillatoiThis principle to describe coupled oscil-
lators with power balance equations has been extended tood édher coupled system like
coupled structures. A derivation of SEA for general coueldsystems can be found ibl]
and some application possibilities are shown for examplgl#h or in [13]. To predict the
coupling factors for other systems, there are the modalospr, the wave approach and exper-
imental and numerical methodg]][ The first, the modal approach, splits the coupling of two
subsystems into couplings of modes, what is comparablethétitoupling between oscillator.
The same procedure is used for the statistical modal enésgibdtion analysis (SmEdA) (see
chapterl.1.4.9, and thus SmEdA can be regarded also as a kind of modal agptoaalcu-
late SEA coupling factors (see chapfel.4.5. The wave approach is discussed in detail for
different types of subsystems by Lyon and DeJorig Here, the coupling factors are defined
by describing the transmission of waves from one semi-it&fisubsystem to another. The so
predicted coupling factors for a cavity-plate-cavity gystfrom Lyon and DeJong are explained
in detail in chapter$ and11. As this approach is very common, there can be found coupling
factors predicted in this way also in other publicationg litr the cavity-plate-cavity coupling
in [14]. Using the experimental method, the energies in the subsystare measured for a
known power input. In this way, the coupling factors are dateed by equationl(.2). More
information about the experimental method can be foundxXanwle in fL5. Instead of mak-
ing measurements, the energies of subsystems can be atsitated for a given power input
with numerical methods like the finite element method FEIM|[ Another possibility to get
SEA coupling factors is to combine measurements with madslias described irb].

The big advantage of the SEA method is that there is only atiagstem of equations with one
equation for each subsystem, which has to be solved to gétgésr the energies of these sub-
systems. But SEA is in general only a method for high frequessydecause the modal density
in an excited frequency band has to be high so that the statistssumption of the equipar-
tition of the total energy on the modes is valid. A detailescdission of the validity of SEA
can be found for example ii}]. Because of this equipartition assumption it is principaibt
possible in SEA to take into account non resonant modesnglit an excited frequency band.
This problem is solved for example for the sound transmis#iimough a structure using non
physical direct coupling factors between two rooris Moreover, this assumption is also the
reason why SEA can not be used for narrow band excitatiorwwitadditional statistics].

But it can be considered that the energy is ergodic so that @yeageraged over a frequency
band is equal to the average energy of an ensemble of systémsandom properties, which
is excited at a single frequenc¥q]. In this way, a variance of this mean energy of an ensemble
of random structures can be also calculated. Because of BfaisSa good method for taking
into account uncertainties. A last problem of SEA mentioheck is that only global energies
are output and there is so no information about the disiobudf these energies].



1. Introduction and scientific context

1.1.2. FEM for fluid-structure problems

For FEM calculations, like in the commercial program Nastra®|, the following coupled
differential equation formulation is used to describe thepied fluid-structure problem:

Ms 0 U Ds O U Ks C U Ls

R I e | A | S e v B
whereU is the vector of the displacements of the FEM-nodes of thetire,C is the coupling
matrix describing the coupling between two systefss the vector of the pressures at the
FEM-nodes in the fluid ant¥s, M¢, Ds, D¢, Ks, K¢, Ls andL; are respectively the mass, the
damping and the stiffness matrices and the external forcerseof the structure and the fluid.
Here, it is assumed that a vibrating structure at the boynofaa cavity can be represented as
a source on a rigid wall of the cavity, whose boundaries dnegadl [ 20]. Equationl.5can be
symetrisized and also written as a function of the modesa$tiucture and the cavity instead of
physical degrees of freedom. This procedure is called nrediiction L9 and hence equation
1.5reads:

&[] SE] s IG5 o

where
U= chEs, P= (Dféfu

Mg = O Ms®s, Mg = GTM¢ D¢,

ds = O Dss, df = PID D¢, (1.7)
ks = ®! Ks®s, ki = TK; D¢,

fs=®IL, gr = Of G = ] [oLs

and®g, ®;, és andé; are the mode shapes and the modal amplitudes of the struespect-
ively of the cavity. This modal equation is similar to the gyatof equations of two coupled
gyroscopic oscillators (equatiof.(l)), which is used in SEA and also for SmEdA (see chapter
1.1.4.1. One problem of FEM is that the mesh of nodes for FEM has totmediner and finer

to describe well the displacement if the frequency of exicitagrows, because the wavelength
of the modes become smaller in this case. Thus, the compudhttost of FEM increases then
and so FEM is in general only a method for low frequencies. tA@oproblem specially of
equations 1.5 and (.6) for the fluid-structure interaction is that the boundarpdition of the
equality of the normal velocities, are not fully respectediasussed in chapteg&sand11. This
could be especially important if more than two subsysteracaupled.

1.1.3. Mid-frequency methods
1.1.3.1. Hybrid FEM-SEA method

A first example for a mid-frequency method is the hybrid FEEASmethod R1, 22]. Here,
one system is divided into subsystems like in SEA, but onégygtbsystems which cannot be
treated as SEA subsystems are handled with FEM. Thus, thstérsof the hybrid FEM-SEA
is to define for which subsystems FEM is necessary. This catebeled for example using
the expected wavelengths of the res@8][ If the wavelengths are big in comparison to the
dimension of a subsystem, it should be tackled with FEM. Nérite element models are
created for these chosen subsystems. To describe thecimeraetween the SEA and the FEM
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1.1. Calculation methods in vibro-acoustics

subsystems the sound field of a SEA subsystem is split in atdiedd and a reverberant field.
This direct field at the boundary is represented by a dired fighamic matrix, which is a
function of the degrees of freedom at the boundaries of tHd Bibsystems. The matrix can
be calculated using the boundary element method or anagpcoaches23]. The influence
of the reverberant field is described by a force exciting thiMFEbsystems. After that the
variables which are necessary for the SEA equations likgdeer input are calculated using
the direct field dynamic matrix and the force representirgrdverberant sound field. Finally,
the energies of the SEA subsystems are calculated first fnenSEA equations and then the
FEM equations are solved using these energies of the SEAstebs to get the response in the
FEM subsystems. One advantage of that method is that theutatignal cost can be reduced
dramatically in this way, because the much more time consgfiEM is used only for limited
parts of a system in which it is an indispensable necessit{go,Ahe results are ensemble
averaged ones and so uncertainties are directly takendotouat in this method?3].

1.1.3.2. Trefftz methods

The wave based method (WBM24] and the variational theory of complex rays (VTCRp[
26] are examples for Trefftz methods. The differences betw&8BM and VTCR are that
they use different wave functions and different variatidieamulations P7]. Therefore, the
procedure of calculation and advantages and disadvantdge$refftz method are discussed
in the following only on the example of WBM. This is a method tdccgate time independent
dynamic problems, which can be bounded or unbounded. Huwestyolume of a cavity or the
area of a structure are split in so called “subdomains”. &hpests have to be convex and non
overlapping. The variables of the subdomains like pressudisplacement are described then
in this method as a sum over a weighted set of functions. Teeialfeature of such a Trefftz
method herein is that these functions are exact solutiotiseofespective differential equation
and not just arbitrary functions like polynomial functiod®. calculate the weighting factors of
these functions a variational formulation of the problenused. In this way, a linear system
of equations is build which have to be solved to calculatewke&hting factors of the wave
functions and so the results for the field variables. One lprolof WBM is that it can be
difficult to describe complex geometries with convex subdm®. This can be solved using a
hybrid FEM/WBM method, because in this way small regions widmplex geometries can be
described with a FEM mesh and the huge rest with WBM subdomasjs Another problem
of WBM is that complex numerical integrations are necessagbtain the system matrix of
the linear system of equations. This leads to problems wighaiccuracy of the values of the
matrices and thus to ill-conditioned matrices. Also, thstegn matrices are fully populated.
On the one hand, these two drawbacks make the WBM calculatioe complex than a FEM
calculation. On the other hand, the system matrices are mmeller in WBM than in FEM
because of the smaller numbers of degrees of freedom andritaergence rate is also higher in
WBM than in FEM. But all in all the computational cost of WBM is muahaller than that of
FEM and thusiitis possible to handle problems at higher #agies with WBM than with FEM.
Furthermore, WBM can be combined like FEM with SEA (see previchiapter) to reduce the
computational cost again if one or more parts of a systembealescribed statisticall29].

1.1.3.3. Complex Envelope vectorization

The complex envelope vectorization (CE\3[])] is a further development of the complex envel-
ope displacement analysis (CEDAY)]. In CEDA a complex envelope displacement is used for
the calculation instead of the direct use of the physicglldement. This complex envelope

7



1. Introduction and scientific context

displacement is here defined via a Hilbert transform fromptimgsical displacement. In a more
practical sense this Hilbert transformation can be betteetstood by a look at the example of
a fast oscillating signal in the time domain. The signalamsformed in the frequency domain
using a Fourier Transform. After that the frequency spectisifiltered and shift to a lower fre-
guency range. The inverse Fourier transform of this frequepectrum leads finally to a much
slower oscillating signal in the time domain which is the gbex envelope displacement of the
original signal. This CEDA principle used successfully foealimensional systems was exten-
ded in CEV to three dimensional discrete systems. A field vhristdefined in CEV then as a
complex envelope vector. The advantage of this method ighleatnesh can be much coarser
than normally in FEM because the frequency spectrum of thgpbex envelope vector consists
of lower frequencies than the real physical field variablexggained above. Thus, less discrete
points are necessary to describe the longer wavelengths cbimplex envelop vector. Because
of that the computational cost is reduced by CEV and calarlatof problems in which higher
frequencies play a role become possible. But the disadvartftipis method is that it can be
only really successfully applied if the role of single mode& be neglected. Otherwise the
CEV results show correctly only the principle trend. Therefahe ideal conditions for the use
of CEV are principally highly damped systems, external atogpsoblems or high frequencies.

1.1.4. Statistical modal Energy distribution analysis
1.1.4.1. Basic principle

Maxit and Guyader32, 6] have started to develop the statistical modal energy idigton
analysis (SmEdA) to get an energy based method like SEA,hwtan be used also at lower
frequencies. For this purpose it is necessary to overcom&HA condition of equipartition
of modal energies in an excited frequency band, becausestbaty true at high frequencies,
where the number of modes is high. To reach this aim a coupl@tgyeen modes of differ-
ent subsystems is used to determine the interaction betstdeystems instead of a coupling
between whole subsystems like in SEA. Maxit and Guyader tieednalogy that the coupling
between modes is equal to a gyroscopic coupling betweelatscs (see Figurd.l) as dis-
cussed for example irBB]. This principle is valid if one subsystem can be handledoupted
as blocked and the connected one uncoupled as free on thiengpagea. This is the principle
of the dual modal formulation first introduced by Karnoppcdn be applied for example for
the case of a structure-cavity system (see Figue at which vibrations of the structure can
be described with in vacuo modes and vibrations in the cavity modes predicted under the
assumption of rigid walls. These modes can be calculatedtaraly for simple geometries
like in [34] and [35] or otherwise with FEM. The gyroscopic coupling factor fock modes is

defined as,q], >
W,
o= / Wn?ds= —— (1.8)
J(wh)2Mimz /s (wh)2MIM2
whereW:Z, the integral over the coupling ar&of the product of the mode shapes, is the

interaction modal workn? is the normal vector of the structure awt% and Mé are the modal
masses of the p-th and g-th mode of the subsystems one andhtsoch a case, the coupling
factor Bég between two modes is given similar to the coupling factomeen two oscillator,
equation 1.3), by, [6]:

g2 (Wr}qz)z n%w%(w§)2+n§w§(w%)2
"~ MEME(wR)? | ()2~ ()22 + (7hwi -+ 2R (jeob( @B+ NGeg (@p)?)

] (1.9)
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WhereMé, Mé, w,% andwg are the modal masses and the eigenfrequencies of the p-thege
th mode of the subsystems one and two. In this way, an anadageahanical model is created
in which every oscillator represents one mode. The masskshandamping factors of these
oscillators are the modal masses and the modal dampingdaaftthe respective modes. Due
to that the modal energies can be calculated with SEA-likegpdalance equations for each
mode respectively oscillator as follows:

My = npwpEs+ ZB E) (1.10)

WhereI‘I%, Is the power input in the p-th mode of subsystem one. Thusdheling between
two subsystems is described in SmEdA by modal power balaggatiens instead of power
balance equations for each subsystem only like in SEA. ThelewmergyE' of a subsystem
is the sum of all the energié, of resonant modes of this subsyste36,[37).

=5 E! (1.11)

But in this original formulation of SmEdJA only resonant moaes be taken into account due
to the assumption of a white noise excitation for the deiovedf the modal coupling loss factor,
equation .9). Therefore, this total energy is only equal to the realltetergy if approximately
all the energy is stored in resonant modes.

G

X1 X2

Kl A]_ K2 AZ

| |
7777 7777

Figure 1.1.: Analogous mechanical model: Two gyroscopigted oscillators

cavity structure
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Figure 1.2.: System in reality: A cavity coupled to a struetu
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1.1.4.2. Limits of SmEdA

SmEdA describes all the processes with undamped modest ikdescribed in the previous
chapter, and so it is nhecessary to pay attention what can d@atkrised by them. In prin-
ciple every vibration can be described as a sum of these mbdesuse they are an orthogonal
complete set of functior3B]. But one problem in this context is the damping at the boupydar
because systems with damped boundaries are not really &lo3dis cause that the ortho-
gonality relation between the modes which would descrilzetyx the problem is not valid any
more B8]. Thus, there would be also an interaction between the matigsh cannot be de-
scribed with the SmEdA method. Especially for fluids in dagthis can be a problem, because
the damping is normally given only through absorbing matsiat the walls. In the case of high
damped boundaries the direct field is dominating in a cavityraot the reverberant sound field.
Therefore, to be sure that the influence of the direct soutdlifiesmall, the critical distance,
which is used in room acoustics for diffuse sound fields, dae g rough indication. The crit-
ical distancel is the distance, at which the sound pressure level of thetdirel the reverberant
sound field are equal, and is given B[ by

yAs
1671e

0

(1.12)

wherey is the source directivity an8is the interior surface area of the cavity. The equivalent
absorption areds can be connected to the damping factor, which is used in SmEatAex-
ample with equation1(.30. If this critical distanced is small compared to the dimensions of
the cavity, the sound field is dominated by the reverberaataom the direct field is negligible.
Another limitation in SmEdA is that the external excitasoof different subsystems have to
be uncorrelated, because as explained in chdgdtehis is assumed for the derivation of the
coupling loss factor, equatiod.Q). Furthermore, SmEdA is a method for stationary problems,
because the used energy balance, equafidify is time independent. To sum up, SmEdA
can be applied only for stationary problems of more or legsexdd coupled subsystems, whose
external excitations are uncorrelated.

1.1.4.3. Power input of a mode

Besides the coupling loss factors, the damping factors andigensystems, the external power
input is one quantity that has to be known in advance for pdvedéance equation systems,
equation 1.10. For this purpose analytic solutions in modal descriptidrthe uncoupled
subsystems are used as describedlfj (see chapte®). In this way, the frequency averaged
input power of a moden can be written for example for a structure, which is excitetueen
the frequenciesy; andwy, as

1 w1
M= £ /wl 5 /. DIPexANG(A) dAdw (1.13)

with the uncoupled velocity3g]

_ Dr(A)
M (@3, — W? + iNsWmw

Vin(A) : [ i0Pex W) Pm(A) A (1.14)

wherewn andMp, are the eigenfrequency and the modal mass of a moge,(A) is an external
pressure acting on an aréaof a structure,®yn(A) is the mode shape of a mode at the
excitation are#, w is the excitation frequencys is the modal damping factor aridienotes the
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1.1. Calculation methods in vibro-acoustics

complex conjugate. In the case of a structure excited witloadband point force (|F| = 1N),
it follows analytically that the power input of a resonantaeas given by, 41],

_ m(Pm(e))?

Mm= ANeDw (1.15)
whereMy, is the modal mass of the mode ®,(€) is the mode shape at the point of excitation
¢ andAw is the band width of the excited frequency band. Similar te #yuation the power
input M, of a whole subsystem is determinate in SEA as follofjs [

StAwn(w)

Miy =
n 4M

(1.16)
wheren(w) is the modal density in the excited frequency band, M is thesadi the subsystem
andSy is the power spectrum of the excitation force. To get the gyawer input for all modes,
resonant and non resonant ones, the integral over the @x@tguency range in equatioh.(3
has to be predicted numerically as done for the SmEdA calonkin [42], [34], [35],[43] and
[40] (chapterss to 11). In the same way the power input in cavity subsystems arairodd for
excitations with monopole sources and for excitations Waating structures. For the first kind
of excitation, the monopole excitation, the power inputiieg by, [44],

1 @1
Moy — A—w/wl S0[Pm()Q"] e (1.17)

with the modal pressurgm(Xq) at the locatiory of the monopole

Wi ()
=ilw — 1.18
whereQ is the the volume source strength of a point monopd#, [Wm(xq) is the mode shape
of the cavity moden at the excitation poirtg, ps is the density of the fluid andy, is the norm
of a modem. The wavenumbers,, andk are defined as

Ky = 0 (1.19)
Ct
and
w
~oi(Lring .

wherec; is the sound velocity of the fluid. The relation between the giagnfactorn+ of the
fluid and the damping used in equation,1) of SmEdA is approximately given by4(],

n

ne=> (1.21)
For the excitation via a vibrating structure, the power ingan be written as
A) Pm(A)
M= £ / ( ] dAdw (1.22)
with the modal pressurgm(A) at the excitation area, [41],
2 as\Wms
Pm(A) = —prw ‘szNm—_k?n) (1.23)

11
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whereZ is the impedance of the fluitf\ys is the interaction modal work, equatioh.d), and

as is the modal amplitude of the s-th mode of a structure, whichqual to the amplitude of
the velocityvn(A) from equation 1.14). Finally, for all the different excitation possibilitiets

Is important to pay attention to the correlation betweefed#nt sources. One example for that
is the excitation of a subsystem with more than one pointefoiithe resulting power input of
each force alone can be only added if the forces are fully mataded. Otherwise, the power
input in a mode have to be calculated for completely coreeldbrces with equationl(13 as
follows using the sum of the scalar products (denotedopyaetween the forces and the modal

Zu Fio Pm(&))?

shape vectors:
Mm = Aw/ — W2+ iNstnW)

whereg; is the point on a structure, at which a forléeexutes the structure. This formula was
used for example for the calculations #3] and chapteB. A part of a double deck train is
there excited by eight correlated point forces at the bottbthe structure.

(1.24)

1.1.4.4. Damping in SmEdA

For both the power balance equation system of SmEdA, equéid), and the power input
it is necessary to define in advance the damping, which isackenized by a modal damping
factor ni. The modal damping factors are all equal if the damping igitigied uniformly in

a subsystem. But in the case of a localised damping each madglidg factor has a unique
value. For structures this characterisation of the dampsngot problematic, because here
the damping is normally described with the quantityusing a complex elasticity modulus
B =B(1+in) [38]. Moreover, as explained in chapt@there are also methods for structures,
like the strain energy method%, 46] or the complex eigenvalue methotig 47, 48], to predict
one damping factor for each mode. The strain energy methageifor multi-layered structures
or structures with added damping materials in some areag, Hés assumed that the damping
factorng of the damping material is much bigger than those of the atberponent. The modal
damping factor for a modeis then given by

r’dEg,n
Nn=—=
ES

(1.25)

whereE; is the total modal strain energy of modandEj is the modal strain energy of a mode
n contained within the area of the damping material. The athethod, the complex eigenvalue
method, is applied to arbitrary structures like vehicle poments47]. To get a damping factor
for each real mode used for example in SmEdA, the complexeadae problem of a damped
system, which is described by the following equation, isaadffirst in this method.

My + Dy +Ky = F (1.26)

wherey is the displacemeng is the excitation force vector arid, K andD are the mass, the
stiffness and the damping matrix. The modal damping faajgrean be calculated from the
real and the imaginary part of the complex eigenvalligss follows B7):

10 (A
™= 0 (Am)

(1.27)

In cavities the damping is caused in contrast normally bydient materials at the boundaries
and not by a damping in the material as for structures. Therphben of these materials at
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1.1. Calculation methods in vibro-acoustics

the boundary is described by an absorption coefficteor a boundary impedancés. Thus,
formulae are needed to calculate equivalent damping fmétom these quantities. The relation
betweena andZg is given in 9] by

(1.28)

wherep; andct are the density and the speed of sound of the fluid. Under thergsions of a
uniformly distributed damping and a diffuse sound field ireaity, one global damping factor
n¢, which is equal for every mode, can be calculated fimas follows, [L4]:

Ay
Nt = e, (1.29)
with the equivalent absorption aréa
Af = anan (1.30)
n

where w is the frequency of excitatiorVs is the volume of the fluid S, are areas of the
boundary surface anal, are the absorption coefficients of these areas. To our kuigsléhis is
the only relation, which could be found in the literaturetviigena and a damping factay; and
there are no special methods to predict damping factorsiéocavities in the case of a localised
damping as for structures. But maybe the complex eigenvakibad, equationl(27), can be
also used for cavities to get damping factors for each modealrthe calculations presented
in this dissertation it was assumed to simplify the probléat the damping is described for
structures and for cavities with one global damping factor.

1.1.4.5. Relation between SmEdA and SEA

As shown and discussed iB(Q] and [37] it is possible to get good SEA coupling factors using
results of SmEdA . The SEA coupling loss factggg can be namely written as a function of

the modal coupling factorBliojq, equation {.9), on condition of modal equipartition of energy
as follows:

1 Pmax0max 12
N2= B (1.31)
Pmaxt p;q; b
=3 S B2 (1.32)
Qmach p=10g=1

wherepmaxandgmaxare the number of resonant modes relating to an exciteddrexsyband of

the subsystems one and two amglis the central frequency. Only resonant modes can be taken
into account for these formulae, because only for them thenagson of modal equipartition

of energy is so far valid. These SEA coupling factors predidh this way can be used for a
normal SEA calculation as described in chadtelr.1or in a hybrid SEA/SmEdA technique.
Such a technique was first used 80 in connection with structure-structure coupling. Here,
some subsystems are described with SEA-like equations #aisowith equations for each
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mode. Thus, for example a mixed power balance equationmeyfistewo connected subsystems
reads, p0]:
P'=ax (n'+nw2) E'-EZS Bin
n

El
P (nBht 3 PER) €2 53 o
n n

wherew?, n2, P2 andE? are the eigenfrequency, the damping factor, the input pamer
the modal energy of the mode m of subsystem twgis the central frequency of the excited
frequency bandjy is the number of modes of subsystem one in the excited fregugand and
nt, PL, andE? are the damping factor, the input power and the energy of ti@ersubsystem
one.

(1.33)

1.1.4.6. Postprocessing for energy distributions

The idea in 86], [51] and [52] was to predict with a postprocessing method energy distrib
tions of subsystems using the modal information and theutsiipf SmEdA. In these articles it
Is approximated that the modes are uncorrelated. Underauealssumption, an energy distri-
bution€ of a subsystercan be written as a function of total, kinetic or potentialdabenergy

distributionse,, as _ _
d=5¢d (1.34)
2
The total modal energy density distributigpis given in these articles by
d = Eq:ﬁ (1.35)
Nn

whereE, andN, are the total energy and the norm of a moderhe kinetic and the potential
modal energy distributiongX andef,, are defined as3[],

(can)T Koy En (cb.?)T K

P_EP _
e = Ej; K. = T (1.36)
T T
of) Mo, E,(dY) Mo
e’é:Eﬁ< n) - n< n> " (1.37)

This formulation for energy distributions works so far ietHamping of the subsystem is small,
as demonstrated ir8f]. But in the case of high damping the energy distribution mted with
this method shows no concentration of energy around the pbaexcitation as the result of an
analytical approactf)].

1.2. Transmission Loss

1.2.1. Definition

The transmission loss characterises the physical prodabge eransmission of the acoustical
power through a partition with the transmission faatoiThis factort is the ratio between the
transmitted poweR and the incident power,.

T =

oD

(1.38)
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And the transmission log8 is defined with that as follow5[:

R=10lg (%) = 10lg (g) (1.39)

If there are on both sides of a partition closed rooms, liketite case normally for transmission
loss measurements, an averaged pressure for each roontuatad from the measured or
predicted pressures. To determine for this case the trasgmiloss the incident pow& can
be expressed under the assumption of a diffuse sound figie seinding room as follows49):

q_ S

(1.40)

Moreover, the transmitted powé is equal to the dissipated power in the receiving room and
this power is thus given under the same assumption &3 for, [49],

_ A

R= 4pc

(1.41)

Here, & and p? are the effective values of the space averaged quadrasisyres in the sending
and the receiving roongis the area of the partition anglandc are the density and the speed
of sound of the fluid in the rooms. The equivalent absorptiead, can be described as a
function of the damping factay, normally used in SEA under the assumption of equipartition
of the damping in the receiving room as follow&4]:

_ Ac
 AwV,

Nr (1.42)
where w is the excitation frequency ang is the volume of the receiving room. From the
equations 1.40 and @.41)) it follows for the transmission loss:

_101g( B _ 100 (™
R_10Ig<ﬁt2) 1OIg<S> (1.43)

The output of energy based methods like SEA and SmEdA is teygrof subsystems. The
transmission loss, equatioh.43, can be written in terms of energies because of the propor-
tionality between the energy and the respective quadreggspres as:

R=10lg (%) —10lg (%) (1.44)

whereE; andE; are the total energies in the sending and the receiving radra.problem of
these definitions of the transmission loss, equati@3 and (1.44), is that they are only valid
under the assumption of diffuse sound fields. In this casé&itietic and the potential energies
are equal, because the space averaged energy densstgiven as twice the potential energy
[44].

i
2pc2
But the sound fields of small cavities are not diffuse esplycatl low frequencies and thus
equations 1.43 and (.44 are not valid anymore. Because of that it would be necessary t
find another definition of the transmission loss. Anothemttidin for the transmission loss was

ey = (1.45)
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found in [b4], The transmission loss is there given under the assumpfiequal rooms on both
sides of the partition by

B F~)|2 B ﬁ B Ar+As B
RN—]-O'Q(E) 1O|g(S> 10Ig( 28) 6 (1.46)

But this definition of the transmission loss by Nilsson seelas aot accurate enough. One
reason is thatRy has to converge t® for a frequency, which goes to infinity, because the
number of modes in an arbitrary small frequency band goestthafinity for a cavity and so
the sound field becomes diffuse. But that is in general not tee t@ Ry. Because of these
problems to find a correct definition of the transmission lesgjations 1.43 and (L.44) are
used for the result presented in this work, like it is donesicample in $5] or [56]. Therefore,
the values for the transmission loss are maybe not fullyeodribut in this way the different
calculation methods can be compared together. Also, tleetsffwhich appear in finite small
cavity-structure-cavity systems (see chaj2&y, can be so investigated.

1.2.2. Transmission Loss of infinite plates

To predict the transmission loss many ways have been dealoping different calculation
methods. An overview over these different possibilitiegiien in chapter$ and11. In the
following only the excerpt of these chapters about the srtmalnsmission loss models, the mass
law and the formula of Cremer for infinite plates, are preserftedthe mass law Newton'’s third
law, action is equal to reaction, is used and it is assumeditbglate in between two free sound
fields is rigid B3]. In this way, the transmission loss is given by

2
Rv = 101g |1+ (—wm COS’C}) ] (1.47)

2pc

The mass law shows that the transmission loss depends onase aha partitionrq:. mass
per area), the angular frequenwy the densityp and the speed of sourudbf the fluid and the
angle of incidence?. The theoretical background of this law was first formuldtgdrayleigh
[57] and experimentally verified amongst others by Ber&&.[ The further development was
made by Cremer. He used instead of the assumption of a rigidtste the plate equation of
Kirchhoff to describe the deformation of the plate. Undex #ssumption of an infinite plate
he got the following equation for the transmission Ids83,[which depends additionally to the
mass law also on the bending stiffnéss

. 2 2
1+ (wm— ngsln“ﬁ) (cosﬁ) ] (1.48)

Re =10l ct 2pc

This additional dependency characterises the so callegticance effect. This is a resonance
effect which appears for the case that the fluid wave lengifepted on the plate and the wave
length of the excited free plate bending wave are equal. Tinemal frequency where it can
occur is the critical frequency

_g /m (1.49)

-~ 2m\ B’ '

Due to the simplicity of this formula and the correct tenden@rovides, especially above the
critical frequency, it is still often used.

fe
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1.3. Presentation of the subject

As shown in the previous chapters there are already welllojgsd calculation methods for
vibro-acoustic problems even for the mid-frequency ranijevertheless, it is interesting to
further develop the statistical modal energy distributioralysis especially for coupled vibro-
acoustic problems. The beauty of this method is that it is1d¢ee complex coupled systems
possible to calculate quite easy an averaged energy likEfM But in contrast to SEA energy
distributions for areas of interest of the subsystems caaldmepredicted and it is not necessary
that the sound fields are diffuse. As shown in chapt&r4.5another good feature of SmEdA is
that it can be simply combined with SEA to extend the rangeppfiaation to higher frequen-
cies. Furthermore, the energies can be directly calculdealverages over whole frequencies
band with different bandwidths and not only for excitatiothasingle frequencies like in FEM.
To get a well developed SmEdA, which can be used for a widtlgeast applications, this
method has been further developed in some points througleslearch of the last years presen-
ted in this thesis. As explained in chapfet.4.1the original formulation can take into account
only resonant modes relating to an excited frequency. Buresonant modes are for example
important for highly damped or narrow band excited systeBwscause of that the theory of
SmEdA has been extended so that also non resonant modes iapéeted in the calculation.
Moreover, a new post-processing method has been develgpegithe modal information and
the modal results of SmEdA to predict energy distributiors® alf coherent sound fields and
not only of incoherent ones like in previous works (see obiahtl.4.6.

Another important topic of the research of the last years thasdevelopment of a method
which can approximate mode shapes and eigenfrequencidiiigiined systems. This method
can be also used to reduce the computational cost, becatisegéase of a high modal density
the calculation of modes is quite time consuming using fameple FEM. In this context, also
different mixed SEA/SmEdA formulations have been testedchyity-structure-cavity using
the relation of chaptet.1.4.5 because the number of equations can be reduced dramaticall
this way.

All the new developed methods are presented in the followirapters. To demonstrate herein
their application possibilities and to validate them in gamson to other methods the results
for simple academic and industrial cases are shown. But inwaghe aim of this research to
make an extensively comparison to other methods concefamgxample the computational
time, because the aim of this research was more to furthel@ethe necessary theories.
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2. Non resonant modes and SmEdA

2.1. Non resonant contribution in SmEdA

2.1.1. Principle

In chapterll the analogous mechanical model used of the original SmEdé1(4.4.1and
Table2.1) has been extended for the structure-cavity coupling soalh¢éhe modes, resonant
and non resonant ones, can be taken into account and notesdgant modes. To reach this
aim the formula of Cremer, equatiod.48, was used as a reference and in contrast to the
original formulation it was payed attention to respect tbarmary conditions on the coupling
surface between a cavity and a structure, like the equalityoamal velocities. Herein, the
transmission through an infinite plate is described withptiogs between modes, resonant and
non resonant ones. In this way, it has been shown that tmsuarfor the transmission loss of
an infinite plate can be derived analytically using the SmHEak#nulation. In consequence of
this it follows that the boundary conditions on the coupkugface correspond in the analogous
mechanical model to responses of the oscillators frequanesaged from zero to infinity. The
kinetic and potential energies of the oscillators becomgakm this way and thus there are
no differences in the analogous mechanical model betweermghillators, which represent
resonant modes, and those, which represent non resonaasntiut that moreover means that
for the non resonant modes only the total energies are eqtlas$e of the respective oscillators
and the respective potential and kinetic energies are itrastrunequal. Furthermore, because
of the averaged responses of the oscillators the couplictgrafor the coupling between the
oscillators are for every possible coupling between resbaad non resonant modes equal to
the modal coupling loss factor of the original formulati@guation 1.9). Because of these
reasons the total energies of these oscillators, which gueldo the respective total modal
energies, can be calculated with a similar power balancatexuas for the original formulation
(equation 1.10).

Omax
ngyp - ngngg+ > ng<Eg— E§> (2.1)
g=1

The investigation using the formula Cremer but do not showctmection between the power
input of a oscillatoﬂ'laIO of the analogous mechanical model and the power input of &mod
because the transmission loss is independent from the sthe power input. Thus, the next
section shows how this power inpﬂ%,p results from the power input of a mode. The total
energies of the subsystems are calculated with equdtidd) (ike in the original formulation.
All in all, the described extension summarized in TaBlg allows SmEdA to be used in all
situations where also non resonant modes are indispenalderrect modelling. Examples
for such cases are highly damped systems or systems excéathagie frequency. The limits of
the extended SmEdA approach are the same as for the origiealiscussed in chapt#rl.4.2
But after the integration of the non resonant modes in thecgmbrthe only remaining statistical
aspect is that the excitations of different subsystemsdiae uncorrelated.
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2. Non resonant modes and SmEdA

problem in reality analogous mechanical model
cavity plate
Lx ! G
E AT My 1@1 M2
w A 2y, y y2
Nl X 1 N 2 A
B E—
Lz h
Original SmEdA formulation for resonant modes (see chahtked.)
eigenmode — oscillator
interaction between the pressuygyity — gyroscopic coupling described with the
and the velocCitWstrycture coupling factorﬁég (equation 1.9))
Etot,m - Etot,o
Exinm = Epotm — Exin,o = Epoto
NMm = No
I_lm — I_lo
Extensions for resonant and non resonant modes
boundary conditions — frequency averaged response from Q to
0 Hz (= Exino = Epot,0)
interaction between the pressyguiy — gyroscopic coupling described with the
and the velocitWstrycture coupling factorﬁgg, equation 1.9), for
all the coupling possibilities between
resonant and non resonant modes
for non resonant modes:
Ekin,m 7é Ekin,o
Epot,m # Epot,o
Mm # Mo

Table 2.1.: Representation of coupled structure-cavitylpras in the analogous mechanical
model of SmEdA {: correspond toEot,i, Exini, Epoti: total, kinetic and poten-
tial energy;l;: power input;n;: damping factor; m: mode of the real system; o:
oscillator)

2.1.2. Power input of a SmEdA-oscillator

As explained in chapt&.1, the modes are represented in the analogous model by tss|lor
which the kinetic and potential energies are equal. Thansdzat the velocity or the pressure
of a given non resonant mode and those of the respectivdatscire not equal and thus also
the power inputs of them are different. But the relation betwiie two velocities is determined
by the equality of the total energies, for example of a stmgtas follows

P 2.2
%vag: % (MmVrzn‘FKmU%w) (22)

whereE,, v, are the total energy and the absolute value of the velocignobscillator,Ep,
Vm andup, are the total energy, the absolute value of the velocity hedabsolute value of the
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2.1. Non resonant contribution in SmEdA

displacement of a mode aMiandK are the modal mass and the modal stiffness. Thus, through
division by M, and usingwum = Vi andKmy /My = wr% the relation between the velocities reads:

V2 = VZZ (1+ %2) (2.3)

Moreover, the oscillators can be considered as uncouptatiéccalculation of the power input
like it is done also for the power input in modes. Thus, the gowputll, as a function of the
excitation frequencyw of an uncoupled oscillator is equal to the dissipated pdigs, which
Is under the assumption of a viscous damping proportiondledinetic energ)Eg:

w
Mo = Mais = 2NWEK = %Mvg (2.4)

wheren is the damping factor of the oscillator respectively of thed®. Insertion of equation
(2.3 in this equation yields a relation between the power ifpgtof a mode and the power
input M, of an oscillator.

2 2 2
_ OV (g G L) %
Mo= 2M2<1+w2>—2<1+w2>l'lm (2.5)

This relation between the power input is valid in generabdty cavities and not only for
structures. This can be demonstrated using the same precbdtin connection with the
formulae for the energies of cavities. Equatiéhy shows that the power input of a mode
and of a SmEdA-oscillator are equal for resonant modes asn@ssin the original SmEdA
formulation (sed..1.4.1and Table2.1) and unequal for non resonant modes. Through insertion
of equation 2.5) in equation 2.1) the power balance equations of an external excited sudrsyst
can be written for a single frequency excitation also as

2"’ E)-wg)- Omax

B Ll

It has to be noted that this additional factor has not beeentahto account in the calculations
in the publications of part Il. Instead, it was considereat tihe both input of a mode and of
an oscillator are equal. But that is in general not a problezoabse the factor plays only an
important role in special situations in which there are nalewin the excited frequency area
like for excitations below the first resonance frequency.

(2.6)

2.1.3. Heavy fluids

One special case in which non resonant modes play an impooians the coupling between
heavy fluids and structures as explainedd®] In chapterl1it is demonstrated that the formula
of Cremer, equationl(48), can be derived with SmEdA. This formula is not only appiea
to light fluids but to heavy fluids too6[]. The question is if SmMEdA can be used also for
heavy fluids or only for light fluids as it was done in all theazdations before. One important
point herein is if the vibrations of the subsystems can aésdéscribed in the case of a heavy
fluid as a function of the uncoupled modes. This is investigéty a look at the following well
established differential equation for structures underitfiuence of fluidsl, 62, 63, 64]

My +Ky =P —yZ (2.7)
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2. Non resonant modes and SmEdA

whereP is the excitation forcey is the structural displacement ahMdlandK are the mass and
the stiffness matrix of a structure. The impeda#¢&vhich describes the influence of the fluid
and the radiation into the fluid, is in general a complex giiyan@he real part ofZ act as a
damping term and the imaginary partofs an added mass term. Thus, because of this added
mass effect a heavy fluid changes the eigensystems of awstuntthe general case. But if a
plane wave radiation in a free field is given, like in the fotenaf Cremer,Z is only real and
reads:

Z = psCq (2.8)

wherep; andcs are the density and the sound velocity of the fluid. Therefiiere is no added
mass effect in this case and so also no change of the eigensg$a structure. In the case of a
closed finite cavity equatior2(7) can be expressed as a function of the uncoupled modes of the
structure and the cavity as follow2(]:

apMp (wh — &%) —20’prap Y Hpn = /SfCDp(S)d8+ 20°ps ; > aghpgn  (2.9)
n g=p N

where 2
n(S)Pp(
Hpn= {/Sq;h:(:p ksz))ds] , (2.10)
o Us,"’n<s><1>p<:~“r;r>]n djg Uf; :(S)%(S)ds] | o1

S is the surface of the structuie, andk are wavenumbers as defined in equatidng9 and
(1.20, Wy are the modal shapes of the fluid filled cavity aqgl ag, mp andmy are the modal
amplitudes and modal masses of the structural mdgesnd®,. The real part of the termp,
acts here as an added mass and thus, the modes of fluid loadetdrsts are indeed different
to the in vacuo ones, but the vibrations can be expressedugdn of the in vacuo modes as
mentioned in 20]. The reason for that is that the uncoupled modes are matieaihajust a
complete set of orthogonal functions and therefore, a suall tiese functions weighted with
different amplitudes can represent other functi@8 fike vibrations under fluid loading. Thus,

it seems that SmEdA is also valid for modelling of heavy fluidsig uncoupled modes, because
as shown in chaptelr.1.4.1the total energies are calculated by summing up the enerfjtbe
functions “uncoupled modes”. But it has to be clarified in tbheufe for SmEdA calculations
if the assumption, that the coupling has no influence to theepanput, is still valid for the
equations of the power input (see chajet.? in the case of a heavy fluid. Otherwise, a new
formulation for the power input has to be found.
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2.2. Transmission Loss and non resonant modes

2.2. Transmission Loss and non resonant modes

In chapterll it is demonstrated that the transmission loss predicted ShEdA is equal to
that of the formula of Cremer (see Figu?el), if the same assumptions are made, i.e. an
infinite plate and a free field (infinite cavity). The transsnis loss illustrated in Figurg.1lis
herein averaged over all possible angles of incidenceu@bffield). In this case of the infinite
plate the transmission is fully described via non resonaydes of the infinite plate below the
critical frequency and via resonant modes above the dritieguency. Thus, this comparison
demonstrates that the extended version of SmEdA can iniplén@espect non resonant modes
in a correct way and that the whole SmEdA approach is validhfercase of the infinite plate.
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Figure 2.1.: Transmission loss of an infinite steel platecudated with SmEdA (“Cremer
SmEdA") and the formula of Cremer (“Cremer original”) (pla&nopingn, = 0.1)

To verify the transmission losses predicted with SmEdA foitdi systems, in which the sound
fields in cavities are not necessarily diffuse, the resuita small cavity-plate-cavity system
are compared to those calculated with classical SEA and M in chapterss, 9 and 11
But for the SEA coupling loss factors as defined 1 & diffuse sound field and the mass
law are particularly assumed. The assumption of the difamgand field may lead to the huge
differences in some cases in comparison to SmEdA which arerstin Figures2.2 to 2.4,
because there are for example only 11, 55 and 125 modes iadb®ing room in the first three
excited frequency bands. The results of FEM and of SmEdA aite different, too (see Figure
2.5). One problem here could be that the used FEM formulatiom ¢bapted.1.2 is in general
only valid for structure-cavity systems but not for cavitlyucture-cavity system as discussed in
chapter® and11. Because of this reason that no method without limitation feasd for the
investigated case and the problem with the definition oflaiesmission loss in connection with
non diffuse sound fields (see chaple®), the transmission losses predicted with SmEdA are
here only qualitatively compared to some measurementsandlations for finite plates from
the literature. In this way, the effects which appear for tila@smission loss can be analysed
and compared.
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Figure 2.2.: Transmission loss calculated with differestimods (plate damping, = 0.001)

70

[e2]
o

B [
o o

w
O __

Il —— mass law normal incidence
formula of Cremer diffuse

I —8— SmEdA

—6— SEA-model Lyon

N
o

Transmission loss (dB)

=
o

10°
Frequency(Hz)

Figure 2.3.: Transmission loss calculated with differeetimods (plate damping, = 0.01)
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Figure 2.4.: Transmission loss calculated with differeetimods (plate damping, = 0.1)

One effect demonstrated by SmEdA is that it depends on thédbadary condition of a
plate if the transmission is dominated below the criticayfrency by the resonant modes or the
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Figure 2.5.: Comparison of the transmission loss for diffeygate damping factorg calcu-
lated with SmEdA and FEM (frequency band width: 200 Hz)

non resonant modes. So, only the resonant modes are ngcesganeral for the calculation
of the transmission loss of a simply supported plate (seerég.6to 2.8). Only for special
cases, like a high damping, also non resonant modes havea&dreinto account. In contrast,
the transmission in the case of free plate is given only tiinaihe non resonant modes below
the critical frequency (see Figug9), because the result for the transmission loss is infinite if
only resonant modes are used (see cha&tdtlere, it has to be noted that the modes of the free
plate are not exact but only roughly estimated as

W= cos( mnx) cos(niy) (2.12)
Lx Ly

wheremandn are positives integers ahg andLy are the dimension of the plate in the directions
of x andy. The eigenfrequencies are predicted using the formulaearbWton 5] in the
form of Dickinson B6]. The eigensystems are thus only approximately defineddnuenient

to show the effect of a free boundary condition.
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Figure 2.6.: Transmission loss of a simply supported stk plate damping), = 0.001;
frequency band width: 400 Hz)
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Figure 2.7.: Transmission loss of a simply supported steét gplate dampingp, = 0.01)
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Figure 2.8.: Transmission loss of a simply supported ste¢d gplate dampingp = 0.1)
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Figure 2.9.: Transmission loss of a free steel plate (plategingnp = 0.01)
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To prove if this effect for different boundary conditionspaars also in the case of a finite
plate between free sound fields, results for the transnmdei&s, Figure®.10and2.11, pre-
dicted with the method from Woodcock and Nicol&§][are used. This calculation method is
based on a variational formulation and uses a basis of poljals. Furthermore, a free sound
field is assumed there on both sides of the plate. Figur@demonstrates that the transmission
through a simply supported small steel plate is dominate@sgnant modes, because the trans-
mission loss has minima always at the resonance frequeoicibs plate. Contrary to that, the
transmission loss of a free plate has only a few small minin@avary large angles of incidence
(see Figure2.11). Hence, the resonant modes are more or less not excitecbamost of the
sound is transmitted for a free boundary condition throdrghrton resonant modes like in the
calculations with SmEdA.
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Figure 2.10.: Transmission loss of a simply supported giléé under different angles of in-
cidenceO [63]
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Figure 2.11.: Transmission loss (“Schalildmmal”) of a free plate under different angles of
incidence® [42] (“Massegesetz”: mass law; “frei”: TL of a free plate calatdd
with the method of Woodcock and Nicolas)
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2. Non resonant modes and SmEdA

Furthermore, it attracts attention that the minima due &dbincidence effect are not so
distinctive in the transmission losses calculated with 8A&H-igures2.6to 2.9, as for infinite
plates. This phenomena was also noticed skt 9] in some measurements of the trans-
mission loss (see Figur@sl2and2.13. He demonstrates that the coincidence effect is not so
strong if the critical coincidence frequency is low. To exdplthis, it is first necessary to define
what the coincidence is in the case of a finite plate. Bhattgeh&uy and Crocker explained
that the coincidence for a plate is a resonance effect beteveavity mode and a structure mode
and is thus influenced by the interaction of the mod&$. [But in contrast to other resonance
effects the wave length of the trace on the plate of the cavdge is approximately equal to the
wave length of the resonant plate mode. From this resultlavis that it is necessary to have
pairs of modes, which couple well, to get a good visible cioience effect. But if the mode
density is small, this is not necessarily the case. Thugnti@ppen that the coincidence is not
so visible as shown in Figuiz14 Here, the transmission loss of a small glass plate was again
calculated with the method of Woodcock and Nicolas.
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Figure 2.12.: Measured transmission loss (“Sclatichmal’d R”) of a glass platéd] (critical
coincidence frequency: 2500 Hz)
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Figure 2.13.: Measured transmission loss (“Scl@tidimald R”) of a plaster platd9] (critical
coincidence frequency: 350 Hz)

28



2.2. Transmission Loss and non resonant modes
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Figure 2.14.: Transmission loss of a small simply suppogtads plate42] (angle of incidence
© =80; “I*b 80°": TL calculated with the method of Woodcock and Nicolas)

Finally, the transmission loss shown in Fig@éd4 converges after the the coincidence fre-
guency against the result of the formula of Cremer. This is tile case for all here presented
transmission losses predicted with SmEdA. All in all, mokthe effects, which appear in
the SmEdA results, can be found also in measurements anddamed results for finite plates
between free sound fields. Only the reason for the huge diftas in the transmission losses for
different plate damping factors, Figurds$to 2.8, could not be investigated very well through
a comparison with results from the literature. It is cleattthere is an influence of the plate
damping if resonant modes are important for the transmmdsie in the case of a simply sup-
ported plate. But the author of this theses could not find a @eawer in the literature how
big this influence is. In§8] it is demonstrated on calculations of the transmissios losing
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Figure 2.15.: Transmission loss of 25mm thick fiberboardepealculated with the Wave Based
Method (7: damping factor of the panel)

the wave based method (skd.3.3 that as shown in figur@.15the influence of the damping
can be similar to the one appearing in Figu2edand2.8. But this is not for all examples like
that in [68]. One reason for the strong dependency on the damping cetltetinfluence of the
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2. Non resonant modes and SmEdA

small modal densities in the cavities on the transmissidso Ahe problem with the definition
of the transmission loss as described in chapi2could play a role here. But as demonstrated
in Figures2.10and2.11it is possible to get a transmission loss which is higher thahof the
formula of Cremer. The reason for that is in this case that tlued is radiated as non plane
waves p3] and not as plane waves like in the formula of Cremer (see ehdgk.3. Moreover,

it was shown for example by Bhattacharya and Gag} fhat the geometry of a room, which is
one reason for different sound fields with high or low modalsitees, has a significant influence
on the transmission loss. They found this out by comparegsimission losses of plates, which
were measured in different measurement facilities andfiarént geometric arrangements.

2.3. In which cases non resonant modes are necessary in
general?

As shown in chapte2.2the boundary condition of a structure is one factor of infieeii non
resonant modes play a role in cavity-structure problemgs & example the sound transmis-
sion through a simply supported plate in general dominajecesonant modes and through a
free plate by non resonant modes below the critical frequeBat it is also demonstrated on
these examples that the influence of non resonant modessss&ith a rising damping of the
plate. Thus, it depends on the damping if a calculation vegonant modes only is sufficient.
Furthermore, in the case of a high structural damping it eesary to take into account non
resonant modes not only for the structure but also for theaxbernal excited cavity. This ef-
fect is demonstrated id{] and chapte® on an example of a plate-cavity system (Figu2ek6
and2.17), which is excited by a point force on the structure. The inguace of non resonant
modes for the total energies of the subsystems increasesvitrthe damping of the plate. The
damping of the cavity is kept herein constant at 0.01. FigRre6and2.17demonstrate that the
results with non resonant modes agree well with those pestlicy an usual FEM calculation
(see chaptet.1.2, which is used as reference.
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Figure 2.16.: Energy (10[gnergy 1J] dB) in the cavity at different plate damping factorg
(“SmEdA non resonant”: calculation with resonant and n@onrant modes; fre-
guency band width: 200 Hz)
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Figure 2.17.: Energy (10]gnergy1J] dB) of the plate at different plate damping factayg
(“SmEdA non resonant”: calculation with resonant and n@onant modes; fre-
guency band width: 200 Hz)

Moreover, it seems that the characteristics of the subsstike geometry and material, and
the resultant particular modal interaction have an influginoen resonant modes are necessary
for the calculation. That appears for example in the casepafrbof a double deck train4B]
and @0]: chapters8 and9), which is excited at the bottom with eight point forces. éjahe
damping is not very high, structural damping = 0.03 and the cavity damping. = 0.02,
and the boundary condition of the structure is simply sufgabrBut nevertheless non reson-
ant modes are important especially for the upper cavity as/shn Figure2.18on the ratios
between the respective modal energies and the total enetlyg cespective subsystem. These
modal distributions of the total energies do not look as itldde expected in the case of a high
damping, because the energy is concentrated only to few srmaside the excited frequency
band and is not flat like in the case of high damping.
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Figure 2.18.: Energy ratios of the modes (frequency aread®st the dashed lines: excited
frequency band between 280 and 355 Hz)
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Furthermore, even if the part of the total energy, whichased in the non resonant modes,
Is small like in Figure2.16.1for a cavity, these modal energies can have a big influencheon t
distribution of the energy in the cavity as demonstratedguife2.19 How energy distributions
are predicted using the modal outputs of SmEdA is explainethe chapteB. All in all,
because of these reasons it is difficult to say in advance #d@utation with resonant modes
only is sufficient or not. Another question is how many nororest modes have to be taken
into account to reach an acceptable enough result. In the@era presented in this work this
problem is solved by repeating the calculations severaggimith an increasing number of
modes until the change of the result is smaller than an aimpecified value, for example 0.3
dB for total energies.

0(.4) y(g.4) 0.2 0 0.8 0.6 .4) 0.2 :“
yim m, m
2.19.1: SmEdA 2.19.2: SmEdA non 2.19.3: FEM
resonant resonant
Figure 2.19.: Energy density distribution in the cavityzat —0.3624 (frequency band: 600-
800 Hz; plate dampingnp = 0.01; “SmEdA non resonant”: calculation with

resonant and non resonant modes)
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3. Energy distributions in modal
description

3.1. Postprocessing method

As explained in chaptet.1.4.6the existing postprocessing using modal information canno
predict in a satisfactory manner coherent energy distobstwith for example concentrations
around the area of excitation. Therefore, it was neceseagdrch for a new extended postpro-
cessing method for energy distribution, which takes intoaat also the interaction between
the modes of a subsystem. 189 and chaptef7 the derivation of such a new method is de-
scribed. The resultant equation is globally equal to theaggn (1.34) of chapterl.1.4.6but
modified with a term describing the correlation between tioel@s:

d(aw) = ¥ eh(dw) +25 ¥ 1cmn¢dn<Aw>%<Aw> (3.1)
m m n=m+

A correlation factoiCy, is needed in this equation, because there is no informabontahe
algebraic sign of the displacement of a modal response asiegergy based methdg]. This
information is necessary to characterise the spatial anti¢lquency correlation of modes. One
possibility to approximat€m, is given in B5] using the power inpuitl(w) of the modes:

/Awsnm/l'lm(w)l'ln(w)dw

Mm(w)dw [ Mp(w)dw
\//Aw Aw

Here, it is assumed that the subsystems can be considered@spled for the postprocessing
calculation of the energy distributions. Thus, the equmifor the power input in uncoupled
systems of chaptet.1.2can be used. The fact&,, depends on the given excitation and can
be approximated using analytic solutions from chaptér2for the modal amplitudes of the
velocitiesvor of the pressurep as follows B5):

Conn = (3.2)

Smn = sign(PmPy + PmPn) = SIGN(Ym¥;, + ViyVn) (3.3)

where* denotes the conjugate complex of a variable. In the pulbdicstof partll this equation
is misleadingly written without the terms-;,pn” and “+-V;, V" in the sign function. The other
needed functions, the modal energy distributions appgamiequation 8.1), are discussed for

structures and cavities in the following chapters.
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3. Energy distributions in modal description

3.2. Energy distributions of structures

The new postprocessing given by equati@nl) was first used for the computation of total
energy density distributions i8p] and chaptef. The total modal energy density distributions,
which are necessary for equatidhl), are defined in this case as

th= o Pf (3.4)

whereN,, ®, andE, are the norm, the shape and the total energy of a mod&uch energy
density distributions of a simple cavity-plate system amagared in Figure8.1to 3.4to those
calculated with FEM, which is used as a reference. This coispa shows that the interac-
tion between modes have to be respected using equaidn(Figures “SmEdJA”) to get good
results. Otherwise, if the equation without a correlatiemt, equation.34), is used like for
the Figures entitled with “SmEdA diagonal”, the differeneath FEM are larger. The figures
demonstrate also that the results predicted with equali@#)(become better for small plate
damping factorg)p and if a broadband excitation (Figur8s3 and 3.4) is used instead of a
single frequency excitation (Figurésl and3.2). The reason for this is that the correlation
between the modes decline in these cases and so the sourzkfielties more incoherer®y).

0.4 0.4 0.

02 02 0.

0 0 0
08 06 04 02 0 08 06 04 02 0 08 06 04 02 0
y y ()

3.1.1: SmEdA 3.1.2: SmEdA 3.1.3: FEM
diagonal

Figure 3.1.: Energy density distribution of a plate (extoita: 600Hz; damping)p = 0.1)
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3.2.1: SmEdA 3.2.2: SmEdA 3.2.3: FEM
diagonal

Figure 3.2.: Energy density distribution of a plate (extoita: 600Hz; damping), = 0.01)
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3.2. Energy distributions of structures
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3.3.1: SmEdA 3.3.2: SmEdA 3.3.3: FEM

diagonal
Figure 3.3.: Energy density distribution of a plate (extoita: 600-800 Hz; damping, = 0.1)
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3.4.1: SmEdA 3.4.2: SmEdA 3.4.3: FEM
diagonal

Figure 3.4.: Energy density distribution of a plate (extoia: 600-800 Hz; dampingp = 0.01)

Still, the differences between the results of FEM and of SAptus postprocessing are
noticeable. On the one hand, SmEdA calculations are madeg asialytic mode shapes and
can thus slightly differ from those obtained with FEM. On ttker hand, it was assumed that
the total energy density distributions are two times theetimor the potential energy density
distributions. This is approximately correct for the tgbatential and kinetic energies under
the given excitation but the differences in the densityriigtions of these energies can locally
be large as shown for example inj. Because of that in43], chapter8, the equationsl(36
and (.37 from Totaro and GuyadebP] for the modal kinetic and the modal potential energy
distributions of structureseﬁ andel, were used and extended for non resonant modes. The
modal energy distributions then read:

(can)T Koy Ep (anQ>T K®p

P_ EP =
(JJ% n
T T
o (can) M®n  En (qaf?) My,
n o
(1+ —2) Mn
w
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3. Energy distributions in modal description

Where(CDE?)T is the transpose of the shape function vector of the nmaattea pointQ, @, is here
the complete shape function vector for all poi@;sEﬁ andE} are the kinetic and the potential
energy of a mode, K andM are the stiffness and the mass matrix predicted with FEMKand
M, and w, are the modal stiffness, the modal mass and the eigenfregquéra moden. For

a broadband excitatiow is approximately the central frequency of the excited bamdi the
output of equations3(5) and @.6) is an energy for each single point and not an energy density
like in equation 8.4). In [43] and chapteB it was found out that it is necessary that for these
formulae the factoSy, equation 8.3), should be multiplied by a factd®, to describe the
influence of the angle between two modal vectof$ at a pointQ, because this angle is not
always zero for a three dimensional structure like a doubtkdrain. In particular, two modes
are fully uncorrelated if the angle between two modal shagmors aiQ is 90°. Thus, S is
equal to the cosine of the angiebetween two modal shape vector€aandSy, is in this case

written as
Q4@

PPN ORI PPN
Smn = SnnSIgNImVy) = —o o7 SIgN(Tm;) 3.7)
95 [oF

Using equationd.6) a good result for the kinetic energy distribution of a pdra @ouble-deck
train was reached in comparison to FEM (see FigiBe On the contrary, using equatio8.)
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=i =z 160 = 1 =z -160
1 1 o0

0 47 2 180 0 ;T X -180

3.5.1: SmEdA (using all modes 3.5.2: FEM

from 0 to 600 Hz)

Figure 3.5.: Kinetic energy distribution (1d&nergy 1J] dB) of the train structure calculated
with SmEdA and FEM (excited frequency band: 280-355 Hz)

the potential energy distribution for this example, Fig8ré.1, is equal to the kinetic energy
distribution but not to the potential energy distributicadaulated with FEM, Figur@.6.3 As
explained in #0] the problem of this equation is that the potential energy lmamot defined
in single points but only within areas, like the elements BM-(see chapte®). Therefore,
equation 8.6) has been rewritten for potential energy distributionslefreents as follows:

-
pP_EP (CDﬁ) Kecbﬁ o EnEriR
EC-IL
> | En
w

where®R is the modal vector of an elemeRtof the moden. Instead of calculating directly
with the element stiffness matrig the element modal strain energigg g and the total modal
strain energye;, which can be calculated with some commercial FEM prograanspe used as
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3.2. Energy distributions of structures

shown in equation3.8). Using this equation3.8) the results for the potential energy distribu-
tion (Figure3.6.2 agree well with that of a FEM calculation. Furthermore, &tpns 8.5 and
(3.8) have been applied successfully #0] to a cavity-plate example as demonstrated on the
kinetic and the potential energy distributions of the pl&igures3.7to 3.10 The eigenmodes
and eigenfrequencies were calculated for these resuliiliM and not analytically like it was
the case for the results presented in Figi&-dsand3.4.
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. -180 : -180 0 7Ty -180
3.6.1: SmEdA using equation 3.6.2: SmEdA using equation 3.6.3: FEM
(3.9 (3.9

Figure 3.6.: Potential energy distribution (1¢dgergy 1J] dB) of the train structure calculated
with SmEdA and FEM (excited frequency band: 280-355 Hz)
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3.7.1: SmEdA 3.7.2: FEM

Figure 3.7.: Kinetic energy distribution (1Jé&nergy1J] dB) of a plate (excitation: 600-800
Hz; dampingn, = 0.01)
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3.8.1: SmEdA using equatio®.8.2: SmEdA using equation 3.8.3: FEM
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Figure 3.8.: Potential energy distribution (1¢dgergy 1J] dB) of a plate (excitation: 600-800
Hz; dampingn, = 0.01)
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3. Energy distributions in modal description
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3.9.1: SmEdA 3.9.2: FEM

Figure 3.9.: Kinetic energy distribution (1Jénergy1J] dB) of a plate (excitation: 600-800
Hz; dampingn, =0.1)
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Figure 3.10.: Potential energy distribution (1(Hgergy 1J] dB) of a plate (excitation: 600-800
Hz; dampingn, = 0.1)

3.3. Energy distributions of cavities

For the modal energy density distributions in the cavitiesfollowing equation, which is equal
to equation 8.4), has been used in all the publications, chapfdrs9:

&= —P; (3.9)

whereN,, ®, andE, are the norm, the shape and the total energy of a mod&e distributions
of total energy densities predicted with the postprocessiethod in combination with this
equation have been compared to twice the potential energytyelistributions calculated with
FEM. This procedure is only correct for resonant modes, tthas been found that this error is
negligible for the results presented in this thesis. Theeway is to predict only the potential
energy density distributions} using the following equation and to compare these with the
pressures respectively potential energies from FEM.

E

E
p_ 2 _ n
el'] qu)n

2
N, (1+ %)
whereE} andw, are the total potential energy and the eigenfrequency afakigdy moden and

w is the frequency of excitation. The relation betwdghandE, used here follows from the
time and space averaged kinetic and potential energieshvané given in44] by

ep_ PRVi
n >

»? (3.10)

(3.11)
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3.3. Energy distributions of cavities

ek _ PaVi i

= 3.12
n 32pr?0)2 ( )

whereEX and g, are the total kinetic energy and the modal pressure amglitfid cavity mode
n andVs, ps andcs are the volume, the density and the speed of sound of the flthds, it
follows for the relation betweeB andEr'§ that

Er _ of
—5=— 3.13
EP ~ o2 (3.13)
Finally, the total energy of a modecan be written with this equation as
2
En=EK+EP=EP (1+ %) (3.14)

Nevertheless, the energy density distribution in the mid o&vity (Figure3.11) is quite good
in comparison to that of FEM as demonstrateddi and chapte® on the example of a point-
excited plate coupled to a cavity. Furthermore, it is nemgsalso for the cavity to respect the
correlation of the modes, because otherwise the differeloceEM are quite huge (see Figure

3.12[35].

0 05 1 o o0s 1
3.11.1: SmEdA 3.11.2: FEM
Figure 3.11.: Energy density distribution (10dgergy1J] dB) in the cavity atz= —0.3624
(excitation: 600-800 Hz; damping, = 0.01)
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Figure 3.12.: Energy density distribution in the cavitgat —0.3624 (excitation: 600-800 Hz;
dampingnp = 0.01)
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3. Energy distributions in modal description

In the case of the example of the double deck train (see ah@yitee energy density distribu-
tions in the mid of the cavities predicted with SmEdA plusplostprocessing are quite different
in comparison to those calculated with FEM (see Fig@.@8and3.14). The reason for that is
that also the total energies calculated with SmEdA and wEMFRre quite different as shown
in Table3.1 The problem could be that the used FEM formulation is vadidcivity-structure
systems but not for cavity-structure-cavity systedd.[ Another problem, which appears for
these energy density distributions and is still unexpldjne the convergence of these energy
density distributions, because they change if more modeta&en into account although these
additional modes play no role for the total energié@

total energy [dB] SmEdA FEM difference [dB]
structure -56.8 -56.2 0.6
lower cavity -67.4 -65.7 1.7
upper cavity -81.1 -86.7 5.6

Table 3.1.: Comparison of the total energies (18tgrgy 1J] dB) of the subsystems calculated

with SmEdA and FEM
-90
’ 95
-100
-V -105

- .
. o N\ - ‘ F o
a ab b - e o
3.13.1: SmEdA (using all 3.13.2: SmEdA (using all 3.13.3: FEM

modes from 0 to 600 Hz) modes from 0 to 1000 Hz)

Figure 3.13.: Energy distribution (10knergy 1J] dB) of the central section of the upper cavity
calculated with SmEdA and FEM (excited frequency band: 285-Hz)

- ; ™
3.14.1: SmEdA (using all 3.14.2: SmEdA (using all 3.14.3: FEM
modes from 0 to 600 Hz)  modes from 0 to 1000 Hz)

Figure 3.14.: Energy distribution (10knergy 1J] dB) of the central section of the lower cavity
calculated with SmEdA and FEM (excited frequency band: 285-Hz)
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4. Methods for ill defined systems and
systems with high mode densities

4.1. Hybrid SEA/SmEdA methods

One problem of SmEdA is that the computational cost is irgirgawith a rising number of

modes, because the number of power balance equationsesgnag in this case. As a solution
for that the relation between SmEdA and SEA described inteindpl.4.5can be used to get
SEA coupling factors. If only resonant modes are necessaget a result with a sufficient

accuracy, a normal SEA can be executed then with them. Thanéatye of this procedure
Is, that the computational cost can be reduced dramaticallyis way compared to SmEdA,
because the linear system of equations consists of onlycuregtien per subsystem.

—*— mass law

60 formula of Cremer diffuse M
—&— SmEdA non resonant

50| —>— SmEdA resonant : : l

—<— SEA SmEdA

Transmission loss (dB)

10°
Frequency (Hz)
Figure 4.1.: Transmission loss for a plate damping= 0.001 (frequency band width: 400

Hz: “SmEdA non resonant”: resonant and non resonant modessad for the
calculation)

Such a SEA method using these couplings factors predictidSmEdA has been successfully
tested on two different examples B4 and [35] (see chapter8 and7). In [34] the transmission
loss calculated with SEA is compared to that calculated ®ittEdA. The plate damping factor
is here 0.001 and the damping factors of both cavities arke 0.Be results of the two methods
agree well with each other (see Figutd). There is only a small difference between them at
very low frequencies because of the very small mode densghg second example shown in
[39] is the result for the energies of two cavities (cavity dangpiactorn. = 0.01) which are
excited by a point force excited plate (plate damping fagipe= 0.01) in between of them. As
demonstrated in Figure 2the energies predicted with SEA are quite similar to thosautated
with FEM.
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Figure 4.2.: Energies (10Jgnergy 1J] dB) in two cavities calculated with different methods
(frequency band width: 200 Hz)

To reduce the computational cost at least also for problemghich non resonant modes are
additionally needed, the hybrid SEA/SmEdA technique erpldin chapted.1.4.5can be ap-
plied. Here, some subsystems are considered as SEA suhsyatel some as SmEdJA subsys-
tems. This method was used if] for a cavity-structure-cavity example (see chagd@r First,
only the sending cavity was described by a SEA-like equdtior “SEA/SmEdA 1 cavity” in
Figure4.3). In this case the transmission loss of the chosen systedicped with a hybrid
SEA/SmEdA method agrees well with that calculated with 8SuohEdA method. In a second
step a SEA-like equation was also used for the receivingycéine “SEA/SmEdA 2 cavities”).
But here the differences between the results of SmEdA ancediybrid SEA/SmEdA method
are quite large as shown in Figu4e3. The reason is that non resonant modes have to be taken
into account also for the receiving cavity to calculate ta@$mission loss in the case of a plate

dampingnp = 0.1 (see chapted). This is however not possible for a SEA-like equation as
mentioned before.

30| —«— mass law normal incidence
formula of Cremer diffuse
—b— SEA/SmEdA 1 cavity

10l —8— SmEdA full equation system
—— SEA/SmEdA 2 cavities

Transmission loss (dB)

10°
Frequency (Hz)

Figure 4.3.: Transmission loss calculated with mixed pobedance equation systems (plate
dampingnp = 0.1; frequency band width: 400 Hz)
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4.2. Approximation of eigensystems

4.2. Approximation of eigensystems

Amongst the problem mentioned in the previous chapter tleatomputational cost is increas-
ing with a rising number of modes, the calculation of suchgehnumber of modes, which have
to be known in advance for SmEdA, can be quite time consuniiRgM is used. This is es-
pecially a problem in the cases of big cavities or of high ixcies. Also, the exact geometry,
which has to be known for such calculations, is sometimesowk. Hence, it has been started
to develop a method with which the mode shapes of a cavity ecdlupling surface and the
cavity eigenfrequencies can be approximated. The eiggundrecieswy, are given in 1] and
chapterlO approximately by

,/6m2cim

Vi

wheremis a positive integer anck andVs are the speed of sound and the volume of the fluid in
the cavity. To get also an approximation of the mode shapesconpling surface, it is assumed
that the pressure distributions of modes on a surface awd emtnese of incident waves. Every
eigenfrequency is attributed to such a wave. The minimaktmavelengtA ™. on a surface
of each of these waves is reached for an incidence paraltbigsurface (angle of incidence
J = 90°). Thus, this minimal wave length is given by

W = (4.1)

m 211C 2rc
min — : =
wWnSIN90@ Whn

4.2)

pit2

incident
sound wave

Figure 4.4.: Sound incident on a boundary surface

Additionally to the angle of incidenc&, the direction of incidence with an angpe(see Figure
4.4) and the phase shift have to be defined to get a full description of an incident wavéhis

way, the mode shapegy, on the surface of for example a plane structure can be appated
as

D5 = cos(izx + 5) cos(iTny + 5) = cos(kixsing cosg + &) cos(krysing sing + )
(4.3)

m,x my
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4. Methods for ill defined systems and systems with high maeaesides

whereks is the wavenumber of the fluid and,, andAS , are the approximate wavelengths in
the directions ok andy. The parameterg, & andJd are assumed to be uniformly distributed
random numbers between zero arm r2spectivelyrr/2 for 9 like it would be the case in a
semi-infinite cavity, in which the number of modes betweea frequencies is infinite. These
mode shapes and eigenfrequencies predicted in this wagaddruSmEdA to calculate first the
modal coupling factors, equatiot.@), and then the modal energies. All in all, this procedure
can be understood also as a combination between a modal aedawproach in the sense of
the prediction of SEA coupling factors (see chapdr.1), because on the one hand waves in
a semi-infinite space are considered, but on the other handcbupling is described with the
modal coupling factor. This approximation method was useld@1] for the calculation of the
transmission loss of a small cavity-plate-cavity systerareslas shown in tabke 1the numbers

of modes in the excited frequency bands are quite small andifference between the exact
and the approximate number of modes is large especiallywvatr lvequencies.

number of modes
frequency band sending cavity receiving cavity
exact approximate  exact approximate
10-410 Hz 11 5 15 7

410 - 810 Hz 55 37 74 54
810-1210 Hz 125 100 180 142
1210- 1610 Hz 237 194 321 277
1610 - 2010 Hz 373 318 517 454
2010 - 2410 Hz 517 473 740 677
2410 - 2810 Hz 741 660 1038 942
2810 - 3210 Hz 951 877 1340 1254
3210 - 3610 Hz 1213 1126 1724 1607
3610 - 4010 Hz 1514 1405 2133 2007
4010 - 4410 Hz 1810 1715 2589 2450
4410 - 4810 Hz 2183 2056 3079 2937

Table 4.1.: Exact and approximate number of modes in theréifit frequency bands

In spite of the differences mentioned above, the resultshfertransmission losses are good
even for small systems. This is demonstrated in the Figlifesnd4.6, where the approximate
results are compared to those predicted with exact modeestaqd eigenfrequencies (line “
SmEdA exact” in Figuregl.5and4.6). Two different phase shiftd are tested, because the
approximation of a uniformly random distributéds very incorrect in a small system. Another
problem discussed irV[] is also the uniformly distribution of the anglgsandd, which de-
scribe the direction of wave incidence, because in smalkgsys some directions of incidence
are dominant. Thus, it would be necessary to find conveniesirlalitions for small systems.
Furthermore, it is difficult to calculate the power inputrfran external source, because the
modes are defined in this way only on the coupling area. Onelgp@es®lution for this problem
is to assume that the total power input can be equally spétltine resonant modes only, as it
is done in SEA.

44



4.2. Approximation of eigensystems

formula of Cremer diffuse
—8— SmEdA exact
10| —x— SmEdA & random

Transmission loss (dB)

—>— SmEdA 6=0
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Figure 4.5.: Transmission loss for a plate damping faggo# 0.01 predicted with approximate
modes
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Figure 4.6.: Transmission loss for a plate damping fagtpe 0.001 predicted with approxim-
ate modes
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5. Conclusion and Perspective

One important research result presented in chaptef this dissertation is the extension of
SmEdA for structure-cavity problems so that non resonardeaa@an be taken into account.
This extension allows SmEdA to be applied to a wider rangeroblems like narrow band
excitations and highly damped systems. Also, SmEdA may pkemhin the future to problems
with heavy fluids as mentioned in chapt@r&.3 In the context of the non resonant modes the
transmission loss of finite systems has been also discugdkethe effects characterising the
transmission loss in measurements and in calculations feenel also in the transmission loss
calculated with SmEdA. As the computation of the transrois$oss in between closed cavities
has been not well investigated, a more precise comparisareba SmEdA and other methods
was not possible. The important question which arose foalications in connection with
non resonant modes is: when is it necessary to take into atoon resonant modes and how
many of them. It has been found that many parameters influéeceffect of non resonant
modes, but no clear rule could be found. Thus, this could bestigated in more detail in the
future research.

Another main topic, the energy distributions within subeyss, has been presented in the next
chapter. With a new developed post-precessing it is nowilpless predict energy distributions
using the modal information and the modal energies of SmBEah éor very coherent sound
fields, where the energy is concentrated in one region of system. Here, the convergence of
the method, which is linked to the influence of non resonardesanentioned before, should be
investigated in the future. The main original idea of thig/est-processing is the definition of
a correlation factor, which describes the energy intevadtietween modes. This point could be
further developed, because there may exist alternative Wwagefine this factor that are more
convenient for some cases. One future application of this-pcessing method is to predict
transfer functions for local receiving points under givewigtions. These functions can be
used for example for the virtual noise synthesis.

Finally, a method to approximate eigensystems of cavitias developed. Such a method is
important for ill defined systems and to reduce the comparaticost of SmEdA as explained
in chapter4.2 As demonstrated on a transmission loss example the resitig this methods
are already relatively good even for small systems. But irfulére it could be interesting to
extend the method with statistical distributions, which gaprove these results and which can
provide good approximations even for low frequencies. Mweg, such methods could be used
in the future to represent in SmEdA uncertainties that haveffurence on the eigensystems.
For the reduction of the computational cost also the exgstaiationship between SEA and
SmEdA can be successfully applied as shown on a example eftg-s&ructure-cavity case in
chapterd.l

All in all, SmEdA has reached through the research discusséis thesis a good level of
theoretical development for coupled vibro-acoustic peats but of course SmEdA has still a
big potential for development. One of the next step shoulthbrefore the development of good
SmEdA computer code, because except for the calculatidrecigensystems only simple and
non efficient programs has been written and used for the ¢kieal further development of
SmEdA . Because of that it was not possible and also not thecasombhpare SmEdA extensively
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5. Conclusion and Perspective

to other methods. Thus, SmEdA results should be comparéd finture to those predicted with
other mid-frequency methods as well as to measurementsésashe ultimate scope of this
approach.

Nevertheless, it can be said in general that SmEdA is aneistiag alternative to the well

established numerical methods SEA and FEM, because it caslzsdvantages of the two.
On the one hand, total energies of subsystems for whole drexyubands can be predicted
by SmEdA quite easily and fast like in SEA. On the other hahd also possible to create
energy distributions like with FEM. Another advantage of B is also that only a part of

the complete computation has to be repeated by changinghptaes like the excitation or the
damping.
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Abstract

Statistical energy analysis (SEA) is a well-known methobicl can be also used for predic-
tion of transmission loss. The difficulty in this method isetstimate the coupling loss factors,
which are needed to calculate the energy transfer betweesutbsystems. It has been shown
in previous articles on examples for structure-to-strecand structure-to-cavity coupling, that
the statistical modal energy distribution analysis (SmEAa convenient method for calcu-
lating this coupling loss factors. This approach relies alual modal formulation to describe
vibrations of coupled subsystems. However, the originaE8Aformulation takes into ac-
count only the resonant modes related to a frequency barad.igthe reason for developing an
improved approach on the basis of SmEdA in the frameworkeMirie Curie project "MID-
FREQUENCY”. This improved method integrates the non resomates in the calculation.
The application possibilities and the advantages of the eeended version of SmEdA are
demonstrated on the example of transmission loss of a pédteclen two finite cavities. The
principal advantages are that transmission loss can beprddor non-diffuse sound fields and
for different boundary conditions.
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1. Introduction

1. Introduction

The well-know transmission log3is used to characterize the physical process of the transmis
sion of acoustic power through a partition. It is defined it transmission factaras follows

[1]:
R=10Ig (%) . (1)

The transmission factaritself is the ratio of the powd® transmitted through the partition and
the incident poweR.

T=— (2)

The search for equations far depending on the parameters of the incident waves and the
partition is a quite old field of research. The first one wasstilevery popular and often used

so called "mass law” X
3
14 (wmcos ) ] 3

R=10Ig 20¢

It describes the relation between the mass perraréae angular frequenay, the density and
the speed of soundof the fluid, the angle of incidend® and the transmission logs The basic
acoustic equations for this law were formulated by Rayleigthiawas experimentally verified
amongst others by Berger. The further development of thisiphylaw was the formula of
Cremer for thin infinite plates. He included the influence & thending stiffnes® on the
transmission loss using the plate equation of Kirchhoff.

Ssinf 9\ ( cosd \ 2
1+<wm Bw = ) <2pc)] 4)
In the following years till this day many other transmissloas models have been developed.
For that purpose it exists more or less four different waylsandle the transmission problem.
The first one is the wave approach, which was also used for #ss maw and the formula of
Cremer. Here it is tried to find exact analytical solutionsh# wave equations and so to pre-
dict the transmission loss. Such approaches has beenigiséabfor example for finite plates
by Heckl [1] or for finite plate and finite cavities by Nilsso@][and by Josse and Lamur8]]
But because of the involved assumptions and simplificatibase are only useful for special
cases and provide only rough estimates. The second way @i the transmission problem
with a numerical method. This is in principle possible fdrcases, even for complex geomet-
ries. Sakuma and Oshimd]] for example, developed a computational procedure foritefin
plate with arbitrary elastic boundary conditions betwesa semi-infinite rooms with FEM.
The third procedure is to use a variational approach. Thispsinciple a very general formu-
lation of the transmission problem, but only applicableitome geometries, like a rectangular
plate. The variational approach was used for example byaeadigi, Roland and Guyadeb|
(finite systems) and by WoodcocE][(finite plate) to develop transmission loss models. The
fourth way is to calculate the transmission loss with théigtteal energy analysis (SEA), like
Lyon and DeJong7] or Reniji, Nair and Narayanar8] have done it. SEA is a quite easy
and fast method, because only a linear power balance equatitem (one equation for each
subsystem) must be solved. But the problem of this model idéleription of the cavity-plate-
cavity coupling. In addition SEA is generally only dedigafer high frequencies and diffuse
sound fields. A description of it is given in the following gtar. All in all there are still a lot
of problems to calculate the transmission loss of more @& fealistic cases. At the moment

Rc = 10lg
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no calculation method exists, that can be used withouticéstus for different geometries of
cavities and plates, for different boundary conditions fomdhon diffuse sound fields. The cal-
culation method for the transmission loss with the stadtnodal energy distribution analysis
(SmEdA), presented in this paper, can in principle handiedhestrictions. SmEdA, which was
developed by Maxit and Guyaded][ is a mixture of the other already described approaches.
The basic equation system is the same as the one of SEA aretlg adunctional basis, namely
the eigenmodes of the subsystems, which can be calculatedebgf the other methods. The
latter represents a critical point of this prediction prwes, because the mode density increases
with rising frequency and with rising size of the subsystemd so does the computation time.

2. Theory

2.1. Classical Statistical Energy Analysis

The statistical energy analysis is a well-known energy basethod. The development of it
started in the early 1960s with the works about coupled lasoik by Lyon and Smith7]. The
fundamental equation of this method is the power balancedoh subsystem (for example an
oscillator). This means, that all the pow@", which is input to a subsysteinmust be dissipated
(I‘Iijis) in this subsystem or must be transmitted into another cn:tadesubsystem‘('ég.

|—|i :nidis""niex (5)

Lyon has found out that this power exchariglg, between two coupled subsystems is propor-
tional to the difference of their total time-averaged eresgAlso the total energy is linked via
the subsystem damping loss factptto the dissipation powsr ;.. So it can be written

N' = wniE + wenij (Ei — Ej) (6)

wherewy is the central angular frequency of the frequency bandmpes the coupling loss
factor. Moreover, the coupling loss factors of two coupladsystems are interrelated through
the reciprocity relation

niNij = Njnji (7)
with the modal densitiel; andn; of subsystemsandj. Allin all the energies of the subsystems
are calculated with a linear equation system at a given pawpert. So SEA is principally an
easy calculation method, but one problem is the estimatidgheocoupling loss factors. Also
it produces only global results for the average energy oh eabsystem without any further
detailed informations, like the distribution of these gies. One way to predict the coupling
loss factors for the transmission loss calculation of adipitite between two finite cavities is
described by Lyon and DeJong| | They divided the process of transmission into two pahs, t
non resonant and the resonant transmission. The first is onéess an extended version of the
mass law for a diffuse sound field and is characterized by thelow loss factomq, for the
direct coupling between the two cavities.

C1 T12(0)
= [l ’ 8

with the transmission coefficiemi, . (0) for normal incidence, the correction facty for the
case of low modal overlap, the frequenicythe correction factol» for diffuse sound field and
the sound velocityc;, the wavenumbek; and the volumeé/; of the cavity one. The second
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2. Theory

part of transmission in the model of Lyon and DeJong, therrasbtransmission through the
resonant modes of the plate, is represented by an indirapting factornp,. This is related to
the plate radiation efficienag,oq as follows:

(9)

Np2 = marad

wherep, andc; are the density and the sound velocity of cavity gmeandh are the density
and the thickness of the plate aadis the angular frequency. Finally the basic power balance

equation system of SEA read§]]
M1 Ea
0 | =A| Ep (10)
0 =

with
Ni+nNip+nNi2 —Ip1 —n21
A= —Nip N2+ Np1+Np2 —N2p
—nN12 —1Np2 N2+ N2p+N21

At equal fluids in the both cavitiegp, is equal tonp;. The rest of the coupling factors can
be obtained from the reciprocity relation (equation (7)heTransmission factor can be then
calculated with the estimated energies using the folloveiggation, 10]:

2
A
T = % (11)
piS
where p2 and p; are the effective values of the pressures in cavity one armd Ay is the
equivalent absorption area of cavity two a@the surface of the plate. The pressure and the
equivalent absorption area in a cavitgre given by 11, 8]:

2 PiCiin
and 4 v
o nlg)c i (13)
(|

wherep;, ¢; andV; are the density, the sound velocity and the volume of cawatyd ¢ is the
central frequency of the excited frequency band. To sum oiptrary to the mass law and the
formula of Cremer this formulation does not neglect the infieeeof the cavity parameters, size
and damping, and takes into account the finite size of the plat

2.2. Statistical modal Energy distribution Analysis

The statistical modal energy distribution analysis (Sm@Aased on the dual formulation of
two gyroscopic coupled oscillator8][ Under the assumption of a white noise excitation the
modal coupling loss factor reads:

Wog)? | npwp(wg)® + ngag(wp)?

VMG (05’ d oo

12
qu_
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with
d= (njwh+nded)(nfep(wd)? +ndewd(w))?)
+((wp)? — (wf)?)?
whereWF}q2 is the interaction modal work and whelv, M2, N1, N2, wi andw, are the modal
masses, the damping factors and the eigenfrequencies pitthand g-th mode of the subsys-

tems 1 and 2. The coupling loss factors of classical SEA caraleellated then on condition of
modal equipartition of energyLP] with the following formulas:

Pmax0max

Niz2= Blz (15)
pmach pZ]_ qz]_
1 Pmax0max

N21 Omaxk Z]_ Z]_qu ( )

where pmax and gmax are the numbers of resonant modes relative to the excitegidrey
band with the central frequenay. It was shown by some authors, for example by Maxit
and Guyader13] for structure-structure coupling or by Totaro, Dodard &wyader 2] for
structure-cavity coupling, that the coupling factors comep by SmEdA agree well with these
obtained by other approaches. Moreover, the energies dfifieeent subsystems can be also
calculated directly usin@é& and a power balance equation system with one equation fbr eac
mode instead of one for each subsystem like in SEA.

max

%z%w%+ZB E2) (17)

A main drawback of this original SmEdA approach is that beeanf the assumption of white
noise excitation only resonant modes in an excited frequbaad are taken into account. But
the influence of non resonant modes can be not neglected im cases, for example in the case
of highly damped systems. To find a solution for this probléms necessary to have a closer
lock to the original derivation of the method for the case osity-plate coupling. In SmEdA
the coupled system is split into a clamped cavity and freeepdait the coupling surface to
describe the coupling between the pressure in the cavityhenplate velocity. This is the same
as the assumption "blocked pressure” in other transmidss models, where it is assumed
that the move of the plate is negligible for the calculatibthe surface pressure and the plate is
then excited by the resultant force. But of course for theuatan of the kinetic energy of the
cavity and the potential energy of the plate the boundarylitimms must be respected. These
condltlons are the equality of the velocmgéé and the equality of the products of the stress
tensorso? and normal vectorsl at the coupling surface.

Vo =v8 (18)

onl = 02n2 (19)

The latter is not the case in the original SmEdA formulatidiinally the coupled system is
defined with four equations, the two coupled differential&ipns of original SmEdA and the
two boundary conditions, but there are only two variablagchSoverdetermined systems have
in general no exact solution and it is difficult to find an apgpmeate solution. Through trial
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and error it was found out that the mass law and the formula efm@r, equations (3) and (4),
can be derived analytically with the original coupling taxqﬁr}g equation (14), and the power
balance, equation (17). Sﬁgg seems to be also the general coupling factor for any coupling
two modes, non resonant and resonant ones, because theaganghe formula of Cremer is
arbitrary and no assumption of white noise is needed. Pertapworks, becaus[éég can be
also interpreted as the average coupling loss factor betivee modes of all possible single-
frequency excitations from zero to infinity. Altogether besa of these reasons the non resonant
modes are also taken into account in an extended SmEdA aﬂngBF}g, whereas the
excitation still remains in a frequency band only. Finalig bbtained energies, the geometrical
data and the damping factors of the cavities need only toderted in equation (11) to get the
transmission factor and so the transmission loss. Thistné&gsion loss depends on the same
parameters as the one obtained by the SEA approach.

3. Comparison of the approaches

3.1. System under study

To compare the results for the transmission loss of theréifitecalculation methods we consider
a basic configuration of a rectangular plate between two lptepipedic cavities as presented
in Figure 1 and Table 1.

sending room receiving room

plate
!
|
. Ay Ly
I
! z
/// X LXx
| i |
Lzl h Lz2

Figure 1.: Sketch of the system

plate sending | receiving
room room
LxxLyx | 1.2 12 x| 1.2 X
Lz(h) (m) | 0.9 09x07 |09x1
0.004
P 7820 1.2 1.2
(kg/m?)
c(m/s) 340 340
n 0.01 0.01 0.01
E (MPa) | 210
Y 0.3
Table 1.: Characteristics of the subsystems
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In the present case the eigenmodes and eigenfrequenciég catculated quite easily ana-
lytically. The shapegqrs of the eigenmodes and the eigenfrequenaigs for the cavities are

given by [LO]
qrIx r iy STz
Pars = cos(—LX ) cos(—Ly ) cos(—LZ ) (20)

o= (2)(5)"+(2)

For the plate there is the possibility to choose betweeemifft boundary conditions. We take
for our study the simply supported and the free boundary itiond The eigenfrequencies;,,
and the mode¥\3 , of the simply supported boundary condition are

W= T [(g)2+ (Lﬂyﬂ % 22)

WS, = sin (mnx) sin (ﬂy) (23)
Lx Ly

with the mass per arga and the bending stiffne€of the plate.

and

and

3.2. Transmission Loss
3.2.1. Simply supported plate

At first before we compare the results from the SmEdA appreatththose of other models, it
is necessary to compare the different possibilities ofudations with SmEdA. So the next two
Figures (2 and 3) show the results of transmission loss féerdint plate damping factong,
calculated with

- SEA with SmEdA estimated couplings factors (SmEdA SEA CLdyations (6), (15)
and (16))

- SmEdA direct only with resonant modes (SmEdJA resonantatgps (14) and (17))

- SmEdA direct with resonant and non resonant modes (SmEd&esnnant; equations
(14) and (17)).

For the last approach the number of modes, that are takeraautount, is enlarged until the
changes in the transmission loss get small, for examplelasniabn 1 dB. In our case at the
plate damping 0.1 it is necessary to take into account athibges of the not excited subsystems
from 600 Hz below to 300 Hz above the frequency band (bandw#l0 Hz). The non resonant
modes of the excited systems, which are also not excitedptimatter.
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Figure 2.: Transmission loss of the different SmEdA modelgpat 0.001

Transmission loss (dB)

—&— SmEdA non resonant
10l —©— SmEdA resonant
—+— SmEdA SEA CLF

10°
Frequency(Hz)

Figure 3.: Transmission loss of the different SmMEdA modelgat 0.1

All in all Figures 2 and 3 demonstrate that the case with thgbki supported boundaries
of the plate is at low damping governed by the resonant mantethé whole frequency range
while the non resonant modes play a role only at quite highpitagn Furthermore between the
SEA calculation with SmEdA coupling factors and SmEdA direcly with resonant modes
there is only a difference at low frequencies, because thergstton of modal equipartition of
energy (see equation (7)) is generally not valid for low mattaisities 14]. Because of these
facts only the SmEdA direct calculation without non resdmaades is given in the following
figures, except in the case of high damping, where the nomaggonodes are needed. Figures
4 to 6 show now for three damping factans of the plate the different transmission losses
predicted with the mass law for normal incidence, the foamfl Cremer for a diffuse sound
field, the SEA model of Lyon and DeJong and the SmEdA approach.
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20|{ —*— mass law normal incidence
formula of Cremer diffuse
10 —©— SEA-model Lyon

—&— SmEdA

Transmission loss (dB)

10°
Frequency(Hz)

Figure 4.: Transmission loss of the different modelgat 0.001
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10°
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Figure 5.: Transmission loss of the different modelgat 0.01

By looking at the results of the different models it attradtsration that both, the SmEdA and
SEA prediction, are sensitive below the critical frequetwy change of the damping, unlike
the formula of Cremer. The main reason for this is that thaphsi®n of energy of the vibrating
plate modes rises with increasing damping, because thdicgupctors change only a little.
Above the critical frequency the dependency of the transimnsloss on the plate damping is
then equal for these three models. This difference betweerfarmula of Cremer and the
SmEdA approach does not come from different descriptionth®ftransmission mechanism.
Under the same assumptions as for the formula of Cremer ¢diffound field, infinite plate,
etc.) the transmission loss predicted with SmEdA is areaiii given by

2
1+s(%) ] (24)

. 2 .
B st 5 4SIntd
S= (wm w BT) +mBn“w o

R=10Ig

with
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Figure 6.: Transmission loss of the different modelgat 0.1
This formulation is compared to the original formula of Crertequation (4)) in Figure 7 for

our configuration and a diffuse sound field (average overaatible incident directions). The

damping in this original formula is taken into account via tisual assumption of a complex
bending stiffnes8 = B(1—in2).
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Figure 7.: Transmission loss of the infinite models from Creamel SmEdJA at), = 0.1

It could be seen, there is only a small difference at thecaiitirequency between the two
formulations. To sum up, this means that the transmissies ¢ a small system, where we
have a small plate and no diffuse field at lower frequencgequite different than the one of a
big or infinite one below the critical frequency but staysadabove it.

3.2.2. Free plate

As a second example for a plate boundary, the free boundaditean was chosen. In Figure
8 the calculation possibilities of SmEdA with and withoutnmesonant modes and the formula
of Cremer are compared. In this case the plate is 1 cm thick ardlimm as in the calculations
for the simply supported plate.
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Figure 8.: Transmission loss of the different modelgat 0.01

Using the original SmEdA calculation, i.e. only with resonarodes, the transmission loss
becomes infinite below the critical frequency. This mearad &8l modal works between the
resonant modes are zero. Thus it is necessary to take inboiaicioelow the critical frequency
all the modes from zero Hz to the upper limit of the frequenagd because the energy transfer
proceeds only through the non resonant modes. This shoatshi configuration with a free
boundary condition has a non resonant behaviour below itieatifrequency and a more or
less resonant above it. In comparison to the formula of Creéhsetransmission loss calculated
with SmEdA is much higher. One reason for this is the small Inemof energy transporting
combinations of plate and cavity modes. In addition to tlmglififuse sound field exists in such
a small system with lots of modes, which could excite theeplstter.

4. Conclusion

As itis shown on the previous examples, the presented nehanéd estimate the transmission
loss with SmEdA is an interesting alternative to the othéstang prediction models, especially
in the frequency range below the critical frequency andrfioalésystems with non diffuse fields.
Furthermore this method demonstrates that the transmiksss can be smaller or much higher
in this frequency range than the one predicted by the infmibelels. Another important ad-
vantage is the very general formulation of the transmisprablem. So not only the presented
cases of a simply supported and a free plate between to finittesacan be handled but also
cases with arbitrary plate boundaries and complex geoesetAlso it would be, for example,
possible to predict the transmission loss with SmEdA fordeim assemblies, where the plate
is smaller than the corresponding walls of the cavities. diig limits are the estimation of the
modes and the computation time growing with a rising numibenades, which are taken into
account.
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Abstract

Statistical modal energy distribution analysis (SmEdAg immethod to compute modal energies
in coupled subsystems. This approach relies on the basistis@t energy analysis (SEA)
relations and on a dual modal formulation to describe resg®mf coupled subsystems. In
contrast to the classical SEA it describes not the globapluog between the subsystems but
the coupling between each mode of different subsystemss fids the advantage, that it is
possible to estimate in a post-processing step the enesgybdtions of the subsystems with
the calculated modal energies. The SmEdA approach is iatetadbe further improved within
the framework of the Marie Curie project "MID-FREQUENCY” on twmints. The first is
to include the cross modal terms, which are neglected inigmewvorks, in the calculation
of energy distributions. These terms are important for cafesound fields, for example that
of a plate excited by only one point force. The second poimt ke into account also non
resonant modes relating to an excited frequency band, venelspecially important for highly
damped systems, because this is not done in the originatfation of SmEdA. The application
possibilities and the advantages of the improved approabemonstrated on the example of
a point force excited plate between two finite cavities.
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1. Introduction

1. Introduction

The most well-known energy based method is the Statisticaidyy Analysis. The development
of it started in the early 1960s with the works about coupledi@ators by Lyon and Smith].
The fundamental equation of this method is the power baltoreach subsystem (for example
an oscillator). This means, that all the pow#r, which is input to a subsysteim must be
dissipated Il,;,y) in this subsystem or must be transmitted into another attedesubsystem
(Mex)- o .

n' :nltjis+rllex (1)
Lyon has found out that this power exchan@g between two coupled subsystems is propor-
tional to the difference of their total time-averaged ereggAlso the total energy is linked via
the subsystem damping loss factpito the dissipation powd'rlidis. So it can be written

N' = weniE + wenij (Ei — Ej) 2)

where . is the central angular frequency of the frequency bandmpds the coupling loss
factor. Moreover, the coupling loss factors of two coupladsystems are interrelated through
the reciprocity relation

ninij = NjNiji ®3)
with the modal densities; andn; of subsystems and j. All in all the energies of the sub-
systems are calculated with a linear equation system atsznived power input. So SEA is
principally an easy calculation method, but the main qoess how to determine the coupling
loss factors. For this purpose there are a lot of estimatiethads. Some classical prediction
formulas for point, line and area coupling are given for egbniy Lyon and DeJondl]. Also
the Power Injected Method (PIM) is often used experimen@inumerically with Finite Ele-
ment software Z, 3]. Another possibility to calculate the coupling loss fastis to use the
Statistical modal Energy distribution Analysis (SmEdAJieh was developed at first only for
this purpose by Maxit and Guyadef][ The advantages of SmEdA in comparison to other
methods at the prediction of coupling loss factors have béready demonstrated, for example
on the applications for structure-structure couplibigand for structure-cavity couplin@]. But
SmEdA is not only a method for the prediction of SEA couplingd factors, but also a fully
independent energy method, as it was shown by Totaro anddeufza6]. The main difference
between SmEdA and SEA is that SmEdA describes the couplingeleetall the single modes
of the different subsystems and not only between the entiosystems like in SEA. For this
reason it is necessary to calculate the eigenmodes andreigeencies, for example with the
Finite Element Method (FEM), to get the basic input inforimatfor SmEdA. This cause the
advantage in comparison to SEA that it is contrary to SEAiptes$o handle the case of a point
force excitation and to evaluate by a post-processing tegggrdistributions of the subsystems.
Also SmEdA can be used at lower frequencies than SEA. On tier band, the computation
cost is of course higher with SmEdA. One of the problems ohlestergy methods, original
SmEdA and SEA, is the fact, that only resonant modes reldtirg frequency band can be
taken into account. Yet the influence of non resonant modespsrtant in some cases, for
example for highly damped systems. For this reason thislapresents an extended version
of SmEdA with a non resonant contribution. The second topihe article is the estimation
of energy distributions in modal description with the cddted modal energies from SmEdA.
Here it is shown, how to handle the cross modal terms, whigk baen neglected in previous
works [2, 6, 7], because this terms are very important for coherent sowtdisfi One import-
ant example for such a sound field is the often treated teahoase of a single point force
excitation.
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2. Statistical modal Energy distribution Analysis

The statistical modal energy distribution analysis (SmdAased on the dual formulation of
two gyroscopic coupled oscillatord][ The time-averaged power flofi, between these two
oscillators is directly proportional to the difference béir time-averaged energiés andE,.
The proportionality factor is the so called coupling fagbor

P2 = B(E1—E2) 4)

The velocitiesy; andy, and displacementg andy, of the two oscillators 1 and 2, that are
needed to calculate the energies and the power flow ajid ae definable through solving the
following coupled differential equation system:

Ya(t) + Arya(t) + wfyr(t) — /M *Mayya(t) = Fa(t) -

Yo (t) + Do¥a(t) + wBYa(t) + /My "My (t) = Fu(t)

wherel; = wnj is the damping coefficient andis the gyroscopic coupling factor. Under the
assumption of a white noise excitation, represented thrdu¢t) and F(t) (harmonic time
dependences™'“"), B is given by

V2 (f71w1w22+ '"Izwzwf)
(w? — )2+ (N1 + N2p) (N1 W3 + N2 WR)

B= (6)
wheren; andn; are the damping factors awng andw, are the eigenfrequencies of the oscillat-
ors. A detailed derivation of this equation can be found f@meple in fL]. This principle was
formulated more arbitrarily and extended to coupled vibgatontinuous systems by Maxit and
Guyader fl]. They assumed, that the coupling between each mode of ehffesubsystems is
equal to the coupling between two oscillators, if one sysgeamcoupled a blocked system and
the other is uncoupled a free system on the coupling area i$tior example the case for a
cavity-structure coupling. So the first is characterizethwiress or pressure mode shapgs
and the second with displacement mode shm@sln this way the modal coupling coefficient

yrl,g, equivalent to the gyroscopic coupling factoin equation (5), is deduced.
WlZ
/ WW2ds= L 7)
0)1 2M1M2 w1)2M1M2
\/ \/ p™¥lq
wherewgg, the integral over the coupling aré&aof the product of the mode shapes, is the

interaction modal work and WheM% and Mé are the modal masses of the p-th and g-th mode
of the subsystems 1 and 2. Finally, under the assumption diite woise excitation the modal
coupling loss factor reads:

g (WP Mhob(h)? + nFef() ©
P4 MEME(wd)? | ((o0)? — (wg)?)?+ (njws + nged) (Noog(wf)? + ngwd (wh)?)

wheren, N2, w andwy, are the modal masses, the damping factors and the eigeafreiqs
of the p-th and g-th mode of the subsystems 1 and 2. The cauiplss factors of classical SEA
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can be calculated then on condition of modal equipartitiberergy B] with the following
formulas:

Pmax0max
Ni2= Bog )
e pmach pzl qzl
pmaXQmaxB ( )
No1 = 10
2 Qmach pzl qzl

wherepmax andgmax are the numbers of resonant modes relative to the excitqddrey band
with the central frequency. Moreover, the energies of the different subsystems carsie a
calculated directly usin@ég and a power balance equation system with one equation fbr eac
mode instead of one for each subsystem like in SEA, equaipn (

Omax
= NpwpEp+ > Boa(Ep—EZ) (11)
g=1

The whole energy of a subsystem is then the sum of all modageseof this subsystem (see
chapter 3). A main drawback of this original SmEdA approadhat because of the assumption
of a white noise excitation only resonant modes in an exditeguency band are taken into
account. But the influence of non resonant modes can not beatedlin some cases, for
example in the case of highly damped systems. To find a saltdrdhis problem it is necessary
to have a closer lock to the original derivation of the metlimdthe case of a cavity-plate
coupling. In SmEdA the coupled system is split into a clampadty and a free plate on
the coupling surface to describe the coupling between tbsspre in the cavity and the plate
velocity. This is the same as the assumption "blocked pre$sao some transmission loss
models, where it is assumed that the move of the plate isgiklgifor the calculation of the
surface pressure and the plate is then excited by the resfitane. But of course for the
evaluation of the kinetic energy of the cavity and the pa&teinergy of the plate the boundary
conditions must be respected. These conditions are thdityqoiathe velocitiesyib and the
equality of the products of the stress tensgifsand normal vectorsl at the coupling surface.

=8 (12)

oPnl = g2n2 (13)
The latter is not the case in the original SmEdA formulatiéfinally the coupled system is
defined with four equations, the two coupled differential&ipns of original SmEdA (equation
(5)) and the two boundary conditions, but there are only taables. Such overdetermined
systems have in general no exact solution and it is diffiaufind an approximate solution.
Through trial and error it was found out that the mass law &eddrmula of Cremer

v 2 2
1+ (wm—Bw3s'rC'4’9> (C;;’f) ] (14)

can be derived analytically with the original coupling iacﬁég, equation (8), and the power
balance, equation (11)3] SoB seems to be also the general coupling factor for any coupling
of two modes, non resonant and resonant ones, because thlengan the formula of Cremer

Is arbitrary and no assumption of white noise is needed. dparthis works, becausﬁ?}g can

be also interpreted in the sense of the original formulasisithe average coupling loss factor

Rc = 101g
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between two modes of all possible single-frequency exoitatfrom zero to infinity. Altogether
because of these reasons the coupling between a non resmubatnon resonant, a resonant
and a non resonant and a resonant and a resonant mode carcieediesow using the same
formula forBéz, equation (8). For example this allows to make calculations point force
excitation at only one frequency. This means that the pairtef excites more or less all the
modes of one subsystem at the excitation frequency andhleanades of the excited subsystem
can be coupled to all modes of the other subsystem.

3. Energy and energy distributions in modal description

The SmEdA approach provides the modal information, shagdatal energy, of every mode
(look at the previous chapter) and so it should be in prircpassible to compute the energy
density distributions of every subsystem by a post-prongssiep. This is the topic of the
present chapter.

The kinetic energy densitsf and the potential energy densi of every moden are defined
as follows [7]:

1, ., 1. -
e = ZMnU% = ZMn<Un)2¢% (15)
1 1
el = ZKnuﬁ = 21|<nuﬁc|>ﬁ (16)

whereu, anduy, are the displacement and the velocity of the mndé?n andup, are the amp-
litudes of the displacement and the velociyandK are the modal mass and the modal stiffness
and @, is the shape of the mode The sum of the kinetic and the potential energy densities
gives the required total modal energy densjfyf the subsystern

- 1. - 1, -
eh=enteh= ZMn(Un)Zq)ﬁ + ZKnUﬁq)ﬁ = Ra®; (17)

The integral over the are&of this €, is on the other hand the known modal enefgy which
can be computed for example with SmEdA.

En:Ad]dA:%A¢ﬁdA: RaNn (18)

whereN, is the norm of the mode9]. Thus it is possible to define the at first unknown factor
Rn and so the total modal energy dengyfinally reads:

. E
g = —N” 2 (19)
n

To predict the energy densiy of a whole subsysternfrom these of every mode previous
works [2, 6, 7] assume that all kind of cross modal terms can be neglecigédaé is just the
sum of all total modal energy densities of this subsystem.

d-yéd (20)

But Totaro and Guyade2] have shown that this is for example not a good assumption for
a broadband point force excited plate with a high dampinglsxlito a cavity. The problem

of such a case of excitation at one single point is that thelteegusound field is coherent
[10,11, 12].
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3.1. Excitation at a single frequency

In arbitrary for all kind of sound fields the superpositiomgiple can be used for the quadratic
value of the total pressui or the total velocity? of a subsystemi[3] and so it can be written
for example for the total quadratic pressure

pZ:(ZPn> = PE+ P53+ P3+...+20(p1ps)+20(p1p3) + me-f-ZZ > O(pmph)
n

M n=m+1

(21)
where py, is the complex modal pressure of the madand* denotes complex conjugate. In
analogy to this fact the total energy densityf a subsysternfor a single frequency excitation
can be exactly defined as follows, because the energy is pirapal to the quadratic pressure:

:[Z\/;r:él+$+ei3+...+2\/é1%'+2\/é1%+...:%eim+2% S \/%
m_ o mn=mi

(22)
The differences to the previous equation (20) is only thatemhdl factorB, which describes
the influence of the cross modal terms on the energy denditig factorB becomes zero for
incoherent sound field4.8], that means that every excited mode is independent frorottiers
and that the excited modes are uncorrelated. The totalgonésgsubsystem is then the integral
over the ared of €.

E :/AeidA:/ADdA-l—/ABdA 23)

Herein the integral over the areaB®is due to the orthogonality of the mode shaggsalways
zero B, 10] and so it follows that the total energy of a subsysiamalways the sum of all the
modal energies.

:/ADdA:ZE}] (24)

In the next step equation (19) is inserted in the t&to have a closer look at it.

Em { Em En
B=2 =2 (£Pm) (£Pn) }
3,2 Voo 2y 3 [Eeneon o
/Em En
=2 {Sn DdmP }
;n:%l nPm®Pn Nm No

The problem of this equation is, that it is necessary to defieesignS,,, plus or minus, of the
mode shapes. But there is no information about it in the ptevialculations from SmEdA,
because an energy method, which works at last only with gi@dralues of the shapes, does
not need it. At a look at equations (21) and (22), it can be Hieginthe searched sign for every
amplitude of every corresponding term must be the same aarth®gous one of the other
equation. From this it follows that

Sn = SigN(PmpPr) = SigN(VmVp) (26)

where " denotes the amplitude. These modal pressure or mebtality amplitudes can be
approximated using analytic solutions for the excited wipéed subsystems.
As examples to demonstrate this procedure, an arbitrafiteebstructure and a cavity, which is

(25)
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excited at the boundary by a vibrating structure, are choska velocity in modal description
of an arbitrary excited plate is given by4]

®p .

whereaw, is the eigenfrequency of the modgw is the excitation frequencyex is the excitation
pressure and, is the modal damping factor. For the modal damping fadtat is possible to
use structural damping,

di = inpa? (28)
or viscous damping,
dy = iNpunw (29)

wheren, is the damping factor of the plate. All in all the si@, for an excited plate then
reads:

Shn= sign(vmVy,) = Sign({ [wrzn_ wZ} [(4?. - wZ} — Omdn } /A pechmdA/A Pex®n dA) (30)

For the special case of an excitation at only one point, whigh the coordinates andye,
equation (30) becomes

Shin = sign({ [ — @?] [6f — w?] — dmhn } Pm(Xe, Ye) Pn(Xe, Ve)) (31)

The pressure® of the other example, the cavity excited by a vibrating dtre; is described
with modal pressurepf as follows P:

aBWs
0 [q:c (—p F —)] (32)
2P =2 [T P2 Rae 1
whereWs is the interaction modal work (see chapterig),s the norm of the mode with the
mode shap&?¢ andp; is the density of the fluid in the cavity. The modal amplitgeof the
s-th mode of the structure is given by

1
P_ b dA 33
aS Mn(@%_wz_‘_dn)/ApeX n ( )
and the wave numbeksandk; are defined as
w
K ———— 34
Co(1+1inc) (34)
and
Wh
k = — 35
% (35)

wherecy andn are the sound velocity and the damping factor of the caviiyally the sign
S, for the cavity excited by a vibrating structure is calcutbégain with equation (26). It must
be pointed out at this that equation (32) uses another defirfior the damping in the cavity
than the SmEdA approach. For a dampipgg 1 the relation between. and the damping)s
of SmEdA is given by 9]

s
nem (36)
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3. Energy and energy distributions in modal description

3.2. Broadband excitation

Next the whole formulation for the energy densityfor a single frequency excitation must be
extended for a broadband excitation. For this purpose therposition principle can be used
to describe the searched solution for the frequency Ban@s a sum of solutions for discrete
frequency steps.

d(8w) = y &) = yfen) + e(@n) + . +2¢e;n<wl>e'n<wl> +2,/E(wn)eh (@) + .

R i
> ¢(0) w23 z 3 /bl (@)

m n=nm+1

=Baw
(37)
On the other hand the resultant modal energies from the Sndatbdlation are values for the
whole frequency bandw and so the total energy density must have the following foBmn (
SmEdA):

= en(bw)+2y Y \/ eh(Aw)e,(Aw) (38)

m n=m41

J/

~
_RnS
*BAw

For an incoherent sound field, wheBg,, and Biw are zero, the two equations (37) and (38)
are equal and again the same as equation (20). Also the teedyeof a whole subsystems
i is always again just the sum of all modal energies like in #qng24). But for a coherent
sound field there is the problem that the faddgy, does not agree with the exact fac®xy,.
This fact shows that for a broadband excitation not only tifermations for the sign of the
shape functions (see chapter 3.1) can get lost at an enertiyodhkke SmEdA but also the
information how much energy get every mode at every exoitatiequency. The information
about the last is important for coherent sound fields, becBugedescribes in this way the
interaction between the excited modes. So the size of theosenthe frequencies step for one
pair of modes in equation (37) is a synonym for the size oftlflaénce on each other. Normally
such a sum can be only big in general, when the differencedsetithe eigenfrequencies of two
modes is small, because then the amount of the energies bbthanodes can be quite big
at the excitation frequencies near their eigenfrequencideere are now two possibilities to
solve this problem of the broadband excitation for SmEdAe Tirst one is to calculate the
modal energies also with SmEdA for many discrete frequenggsstbut then the calculation
cost grows immense. The second and less computation tiersiue one is to make only one
SmEdA calculation for the whole frequency band and to defioergection factoC,, for each
pair of modes. This correction factor is defined as followshsd the difference between the
product of the energies for a frequency band of equationgB8)the midmost sum of equation
(37) is equalized:

Cin=—+ _ (39)
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From this and equation (37) it follows for the total energysiey € of a subsysten under a
broadband excitation that

d(0w) = ¥ di(bw)+2Y T Cony/eh(bw)ey(80) (40)
m m n=m+

At lastCyy is nothing else than a kind of correlation factor for every phimodes, which de-
scribes the relationship between them at a broadband eanitd hrough insertion of equation
(19) in equation (39, becomes then a relation of modal energies

annmf)@m)@n)\/ E”‘,\(f‘") Enlr) Zsmn 1) y/Em(@1)En(wr)
Crnn = - NI (41)
m(AwW)En(Aw
() (@) \/Em&?nm E”ﬁfnw)

Next it is possible to make the approximation that the pairsmodal energies, for single
frequency excitations and for a broadband excitation hhgesame relation to each other as
the corresponding modal input powélts,, because the modal input powers of a subsystem are
proportional to the modal energies of this subsystem andxarept the modal energies the only
factors, which depend on the frequency in the linear eqonatystem of SmEdA (see chapter

2).
Zsmn wr ) \/ Mm( s )Mn(ws)
G VMm(Aw)Mp(Aw) (42)
At last it can be also assumed that the frequency band isetivitto infinite frequency steps
and the input powefl,(Aw) for the whole frequency band can be expressed with the itegr
over the frequency band of the modal input powky for a single frequency. Finall€qy, is
then given by

{sznwf \/l'l (cr)Mn(wr) /smnw\/mdw

\//Awl'lm( w)dw Aw w)dw \//Aw Awl‘ln(ou)dw

where Spn(wr) is defined by equation (26). The modal input powBkg can be calculated
with the modal pressurmgn(A) and the modal velocity, (A) of the respective subsystem on the
excited ared using the following formula:

2/D Pm(AVE(A)] dA = 2/ [P Z)pm( Alga_ L /ZD V(AN (A)]dA  (44)

whereZ is the impedance of the material or fluid. For the two examflta® the last chapter,
the excited structure and the cavity excited by a structgaation (27) for the velocity of the
structure and equation (32) for the pressure in the cavitypearsed. So, for example, the factor
CP, of the structure reads as follows for the special case of lat ffaice excitation:

Crn= (43)

w?

AﬁnJ (-] [P c]

w? w?
d d
\//Aw el W

CP.= (45)
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whereSh, anddp, respectivelyd, are defined by the equations (31), (28) and (29).

4. Results

4.1. System under study

To demonstrate the advantages of the extended SmEdA apmdidctine non resonant contri-
bution and to show the application possibilities of the gwsicessing method for the energy
distributions we consider a basic example configurationsfrgoly supported rectangular plate
between two parallelepipedic cavities as presented inr€ifjand Table 1.

cavity 1 plate cavity 2
: —
! Ay F Ly
i - ! X LX
s ! h‘ L, !

Figure 1.: Sketch of the system

plate cavity 1 | cavity 2
Ly x Ly x | 1.2 x | 1.2 x | 1.2 X
L,(h) (m) | 0.9 x 109x0.7 |09x1
0.004
p 7820 1.2 1.2
(kg/m)
c(m/s) 340 340
n 0.01 0.01 0.01
E (MPa) | 210
Y 0.3

Table 1.: Characteristics of the subsystems

The plate is excited with a point forcé~| = 1N) at one point, which has the coordinates
Xe = 0.211765 andje = 0.189474, and the coincidence frequency of the plate is 2933liHz
the present case the necessary eigenmodes and eigenfrieguen SmEdJA can be calculated
quite easily analytically. The eigenmodggs and the eigenfrequenciess of the cavities are

given by [L5]
Pars = Cos<—qnx> cos(—r ny) cos(—snz> ; 9,r,s=0,1,2,3,... (46)
Lx Ly L,

2 2 2
= (2) +(5)+ ()
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The eigenfrequencias;,, and the mode®\s;,, of the simply supported plate are

2 2
aﬁmznzl(l_m> +(Lﬂ>] %; mn=123,... (48)
x y

We = sin(mnx) sin<ﬂy> (49)
Lx Ly

with the mass per area and the bending stiffnegsof the plate.

and

4.2. Energy

In the Figures 2 to 4 the results for the total energies of ifierdnt subsystems calculated with
SmEdA are compared for three 200 Hz frequency bands with threskcted with a standard
direct FEM calculation. With SmEdA there are the follwingeh calculation possibilities as it
Is shown in chapter 2:

- SEA with couplings factors estimated by SmEdA (SmEdA SEA Caduations (2), (9)
and (10))

- SmEdA direct only with resonant modes (SmEdA resonantaggus (8) and (11))

- SmEdA direct with resonant and non resonant modes (SmEd&esonant; equations
(8) and (11)).

For the last approach the number of modes, that are takeraattount, is enlarged until the
changes in the values of the energies get small enough, &on@he smaller than 0.1 dB at an
increase of the frequency range by 300 Hz. In our case (se¢echaf) at the plate damping
np = 0.1 it is for example necessary at an excitation in the frequéand from 600 Hz to 800
Hz to take into account all the modes from 0 Hz to 1500 Hz abbegdrequency band. At low
plate damping, for examplg, = 0.01, the results for the excited plate of all these different
calculations are more or less the same and equal to thesaaxbtey FEM. Also for the energy
in the non directly excited cavities it is not so importahtion resonant modes are taken into
account or not. But at a higher damping, = 0.1, it is really necessary to take into account
also non resonant modes, especially for the cavities, lsecatherwise we get a difference of 5
dB and more in comparison to the FEM results. The energy sgluedicted with resonant and
non resonant modes agree then well with these of the FEM la#lm.
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4.3. Energy distributions

In this chapter examples for total energy density distrdng of the new SmEdA post-processing
procedure, which is described in chapter 3, are comparégsetobtained fully analytically and
by classical FEM. For an analytical solution equations @Yj (32) are used, because they are
indeed only solutions for an uncoupled plate and a systemrferplate and one cavity, but this
should make not a big difference for our case with a light fluMso we want to have a look,
how big is the discrepancy, if the cross modal terms are negldor the energy distributions
(SmEdA diagonal) like in previous works.

4.3.1. Single frequency excitation

Figures 5 and 6 and show the total energy densities disoigibf the plate for two different
damping factors calculated by FEM, analytically and by theE8A post-processing procedure
with and without cross modal terms. The plate is herein egcitith the point force only at
600 Hz. At the higher plate damping, = 0.1 (Figure 5), the energy density distributions in
absolute valuesJ(n?) of the different models are quite the same except the orfeouftthe
cross modal terms. A little problem at high damping, which nahbe seen in this figure, is
that the energy density predicted by SmEdA can be a littledgative in areas of very small
values, if the number of modes, which are taken into acca@uwatnot high enough.

1

0.8]

0.6|

0.4

0.2]

0 0 0 0
08 06 04 02 0 08 06 04 02 0 08 06 04 02 O 08 06 04 02 0
y () y (m) y (m)

5.1: SmEdA diagonal 5.2: SmEdA 5.3: analytic 5.4: FEM
Figure 5.: Energy density distribution of the plate(freqcye 600Hz; plate damping), = 0.1)

Also at a lower dampingjp = 0.01 (Figure 6), the SmEdA post-processing procedure with
the cross modal terms agree well again with the analytictisolu Due the quite rough mesh
the FEM energy density distribution is here not so exact aedvalues are a little bit lower
than these of SmEdA and the analytical method, which work @xact functions and not with
discrete points. To get also such a good detailed energytgeatistribution with FEM it is
necessary to take a very fine mesh as it is shown in Figure "foneoupled plate. But one
problem is then, that the value at the excitation point is esttmated by FEM. For the whole
energy of the plate a finer mesh is not necessary, becauseahgecis only plus minus 0.5 dB.
Another important point at Figures 5 and 6 is that they dennatesthat the cross modal terms
are always essential to get good results for the energytgiehsiributions in the case of a single
frequency point force excitation. So this means that theddield is very coherent here.
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12
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6.1: SmEdA diagonal 6.2: SmEdA 6.3: analytic 6.4: FEM
Figure 6.: Energy density distribution of the plate(fregcye 600Hz; plate damping), = 0.01)
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7.1: 1938 elements 7.2: 7752 elements 7.3: 31008 elements

Figure 7.: Energy density distribution of a uncoupled pédtdifferent FEM meshes (frequency:
600Hz; plate dampingj, = 0.01)

4.3.2. Broadband excitation

At a broadband excitation we get at a high plate dampinpg= 0.1 (Figure 8), again a similar
shape for the energy density distribution of the plate asthiersingle frequency excitation
(see chapter 4.3.1). The solutions of the different modete@ SmEdJA without the cross
modal terms (SmEdA diagonal) are more or less equal. But arlp¥ate dampingr, = 0.01
(Figure 9), the sound field on the plate becomes more synuretd the estimation without
the cross modal terms is here relatively good. This effeth@tbroadband excitation comes
from the spectral averaging and depends on the bandwidtthendbmping 12]. That means
for example that the sound field becomes more and more ineoheith a decreasing damping
and so also the influence of the cross modal terms declines.
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PN W OO N 0 ©

0 0 0
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8.1: SmEdA diagonal 8.2: SmEdA 8.3: analytic 8.4: FEM
Figure 8.: Energy density distribution of the plate (fregeyeband: 600-800 Hz; plate damping:
N2> =0.1)

0 0 0
08 06 04 02 0 08 06 04 02 0 08 06 04 02 O
y (m) y{m) y (m)

9.1: SmEdA diagonal 9.2: SmEdA 9.3: analytic 9.4: FEM
Figure 9.: Energy density distribution of the plate (freqeyeband: 600-800 Hz; plate damping:
n2 =0.01)

Finally we want to have a look at the energy density distiims (J/m?®) in cavity 1. So
Figure 10 shows the energy density distributioz at —0.3624 and at a damping of = 0.01
in all the subsystems. Here it plays in contrast to the direotcited plate a big role, how much
modes are taken into account for the SmEdA and the analyttolesion, because there is a
quite big difference between the results only with the resdmodes (Figures 10.1, 10.2 and
10.3) and these with non resonant modes (Figures 10.5, 40.6(a7). The energy distributions
calculated with resonant and non resonant modes agreeuftemel!l with the one predicted by
FEM. But of course due to the rough mesh and so on there arertieediacrepancies compared
to FEM (Figures 8.4, 9.4 and 10.4) as described in chaptel.4A3so the values of the analytic
approach are in general bigger, because the underlyingufaria only for a system of one
plate and one cavity and not for two cavities like in our caB@ally, these energy density
distributions of the cavity points out that the sound fieltiése not a diffuse one, in which the
energy would have been the same in every point in the cavity.
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Figure 10.: Energy density distribution in the cavityzat —0.3624 (frequency band: 600-800
Hz; damping:n, = 0.01)

5. Conclusion

As it is shown in the previous examples, it is possible towake using the non resonant con-
tribution all cases in the whole frequency range, below arala the critical frequency. So it
is possible to predict for example the energies of highly plagnsystems and even of systems,
which are excited only at one single frequency. Also the nevetbped post-precessing method
for coherent energy density distributions works well in @amson to other models. All in all
this two improvements offer big advantages compared to S#EAch can predict only energy
values of whole subsystems. The advantages in compariseENbare that the eigenmodes
must be computed for SmEdA, for example with FEM, only once #ren only a part or the
whole SmEdA procedure must be recalculated, if the exoitadr the damping is changed. Us-
ing FEM, in contrast, the whole calculation for a coupledtegsmust be always repeated, if
one parameter is changed. Furthermore only one simple letgation system must be solved
in SmEdJA for a whole frequency band and not complete indepeinchlculations for a lot of
frequency steps like in FEM. So SmEdA can save time dranigticko sum up, SmEdA is
because of these arguments a good alternative to other dsetii@ FEM and SEA, especially
if one is interested in average values for a frequency bamndvbats to have also a detailed
energy mapping.

87



Bibliography

6. Acknowledgment

The authors gratefully acknowledge the ITN Marie Curie prof@A-214909 "MID-FREQUENCY
- CAE Methodologies for Mid-Frequency Analysis in Vibratiand Acoustics”.

Bibliography

[1] R. H. Lyon, R. G. DeJong, Theory and application of statatienergy analysis,
Butterworth-Heinemann, 2nd edn., 1995.

[2] N. Totaro, J.-L. Guyader, Structure/ cavity couplingngs Statistical Energy Analysis:
Coupling Loss Factors and energy maps into subsystems, ace@edings of Acoustics
08, Paris.

[3] N. Totaro, C. Dodard, J.-L. Guyader, SEA coupling lossdesbf complex vibro-acoustic
systems, Journal of Vibration and Acoustics 131 (2009) 0814.

[4] L. Maxit, J.-L. Guyader, Estimation of the SEA coupliragk factors using a dual formu-
lation and FEM modal information, part I: theory, JournaBafund and Vibration 239(5)
(2001) 907-930.

[5] L. Maxit, J.-L. Guyader, Estimation of the SEA coupliragsk factors using a dual formuu-
lation and FEM modal information, part II: numerical apptioas, J. Sound Vib. 239(5)
(2001) 931-948.

[6] N. Totaro, J.-L. Guyader, extension of SmEdA method tinggte energy repartition into
SEA subsystems, in: Proceedings of ISMA 2008, Leuven.

[7] N. Totaro, L. Maxit, J.-L. Guyader, Post-traitement ealyseénergtiques de &sultats
eléments finis, in: Proceedings of CFA 2010, Lyon.

[8] R. Stelzer, N. Totaro, G. Pavic, J. Guyader, Predictiom@nsmission Loss using an
improved SEA Method, in: Proceedings of CFA 2010, Lyon.

[9] Dodard, Simulation des Transferts Enetigues en Vibro-Acoustique et Recherche des
Energies Locales par 8hode SmEdA, Master's thesis, INSA Lyon, 2006.

[10] W. T. Chu, Eigenmode analysis of the interference pastén reveberant sound fields,
Journal of the Acoustical Society of America 68 (1) (19804-4890.

[11] W. Chu, Comments on the coherent and incoherent natureefesiberent sound fields,
Journal of the Acoustical Society of America 69 (6) (1981)0-#1715.

[12] F. Jacobsen, T. Roisin, The coherence of reveberantdaelds, Journal of the Acoustical
Society of America 68 (1) (2000) 184—-190.

[13] E. Hering, R. Martin, M. Stohrer, Physikif Ingenieure, Springer, 10th edn., 2007.
[14] L. Cremer, M. Heckl, B. Petersson, Structure-Borne So&@mdinger, 3rd edn., 2005.
[15] M. Moser, Technische Akustik, Springer, 7th edn., 2007.

88



8. Paper lll: Improved modal Energy

Analysis for industrial problems

Contents
1. Introduction . . . . . . . . . . 91
2. Statistical modal Energy distribution Analysis . . . . . ... .. ... ... 92
3.  Energydistribution . . .. ... 93
3.1 Energy distribution ofasinglemode. . . . . . ... ... ... ... 93
3.2.  Energy distributions of whole subsystems . . . . . ... ... ... ..... 94
3.2.1. Theory. . . . . . . 94
3.2.2. Example: Correction factor for a point force excited structute. . . 94
4. Example . . . . e 95
4.1, Systemunderstudy. . . . . . ... e e 95
4.2. Energiesofthesubsystems . . . . . ... ... ... .. ... ... ... 95
4.3.  Energy distributions of the subsystems. . . . . ... ... ... ....... 96
5. Conclusion . . . . . .. 97
6. Acknowledgment. . . . . ... 98
Bibliography . . . . . . . . 98

89



8. Paper Ill: Improved modal Energy Analysis for industpadblems

Published in the Proceedings of 18th Congress on Sound and VibratiSi {&)}, Rio de Janeiro,
Brazil, July 10-14, 2011

Improved modal Energy Analysis for industrial problems

Rainer Stelzér, Nicolas Totard, Goran Pavit, Jean-Louis Guyadér
L INSA Lyon Laboratoire Vibrations et Acoustique, 25 Bis Avenue Jeanli@&siment St. Exugry,
69621 Villeurbanne Cedex
rainer.stelzer@insa-lyon.fr

Abstract

The most popular methods for the analysis of vibro-acoustgtems are the finite element
method (FEM) and the statistical energy analysis (SEA).lGsecthe gap in the mid frequency
range between FEM and SEA and to overcome their drawbaokst#tistical modal energy
distribution analysis (SmEdA) was developed. Contrary té\S&ll the modes of different
subsystems are coupled to each other and not only whole stebbsy. The newly developed
version of SmEdA, described herewith, can handle coupletgvben all the modes, resonant
and non resonant ones, and not only between resonant mkedkdiclassical SmEdA. Using
a suitable post-processing, SmEdA enables the calculatienergy distributions. Up to now,
such a post-processing and the improved SmEdA were onlgdestd validated on simple
academic cases. In the present paper, an application & thethods to real industrial systems
Is demonstrated on an example of a double-deck train.
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1. Introduction

1. Introduction

Two classical calculations methods in vibro-acousticglaedinite element method (FEM) and
the statistical energy analysis (SEA). The finite elementhogk solves in general a problem,
which is described by one or more differential equationsdiscrete geometrical points. An
overview and details about FEM can be found in many books][like The number of mesh
points has to become larger if the frequency increases addesothe computation time. Thus,
FEM is in general an effective computation method only favdo frequencies. Another dis-
advantage of this method is that a lot of calculation stepsacessary to get frequency band
averaged values, which are often required in practicaliegipbns. The second often used
method, the statistical energy analysis, is an energy baggwach. That means that the basic
equation for each subsystens the following power balance equation:

|—|i :nidis"'"niex (l)

where' is the input powerJ‘Ii]Iis is the dissipated power arﬁlgx is the transmitted power
into connected subsystems. The dissipated pdWgris proportional to the total enerdy of
systemi and I‘ILX is proportional to the difference of the total energies l@stwthe concerned
subsystem and the connected subsyst&sThe proportionality factors in these relations are
the damping loss factay; and the coupling loss factayj. Hence, the power balance, equation
(), reads:

N' = wniEi + wenij (Ei — Ej) 2)

wherewy is the central frequency of an excited frequency band. Allinonly a system of
linear equations with one equation for each subsystem hlas swlved to get global total en-
ergy values for each subsystem. But SEA is in general only\alhigh frequencies, because
the mode density has to be high in a frequency band. Detadatahe validity of SEA are
described for example ir8]. Another deficiency amongst others is that SEA outputs tmdy
global energy values but no information about the distrdng of these (see for exampld).

To close the gap in the mid-frequency range between the lequéncy method FEM and the
high frequency method SEA many different methods have bkeady developed and are still
developed. Examples are the hybrid FEM/SEA methsjd the wave based metho@][ the
Variational Theory of complex Rays (VTCRY][and the statistical modal energy distribution
analysis (SmEdA) which is the topic of this article. This het is an energy based one like
SEA, but uses the coupling of pairs of modes from differesystems and not only coupling
between different subsystems. That has the advantagertitad/S can be used in principal in
the whole frequency range. In the original SmE@Aif was only possible to take into account
the coupling between resonant modes relating to an exaieegiéncy band. Because of the
importance of non resonant modes in many acoustical prabldm highly damped systems
the SmEdA method has been extended so that couplings bedMleaades, resonant and non
resonant ones, can be taken into accoOnilf)]. Furthermore, a post-processing method has
been developed to obtain energy distributions with the rhedargies predicted with SmEdA
[10]. In the articles §] and [10], simple academic examples were presented to demondieate t
possibilities and advantages of this post-processing adetind the improved SmEdA.

To illustrate how the new methods can be used for real comptistrial structures, a compu-
tation of a part of a double-deck train is presented at theoétids article. First, an introduction
to SmEdA and the post-processing method for energy disimigl is given. The latter is ex-
tended in this article — compared to that b0 to kinetic and potential energy distributions of
three-dimensional structures.
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2. Statistical modal Energy distribution Analysis

The eigenmodes and einfrequencies of subsystems, whichecaalculated for example with
FEM, provides the basis of SmEdA. The coupling between tinesdes is characterised in
SmEdA with a dual formulation of two gyroscopic coupled tatars [8], which are described
by the following coupled differential equations:

Ya(t) +A1ya(t) + wfyi(t) — /My Mayysa(t) = Fa(t) -

Yo (t) + Do¥a(t) + wYa(t) + /My "Mayya () = Fo(t)

whered; = wn; is the damping coefficient with the eigenfrequenrgyand the damping factor
ni, y is the gyroscopic coupling factor amdy, M2, y1 andy, are the masses and displacements
of the oscillators one and two. This is a good analogous nmechlamodel for example for
coupling between pressure moc*d@of a fluid filled cavity and displacement bending modes
qu of a structure. Furthermore, the exchanged pdwgbetween two modes respectively two
oscillators is — similar to SEA, equatiof)(— proportional to the difference of their energies.

P12 = B12(E1 — E2) (4)

wheref;2 is the modal coupling loss factor. The gyroscopic couplirigr two coupled modes
is given by, B,

WlZ
/ pW2dS= P4 5)

1/ (wh)2MIMz /S \/ (Wh)?MEM2

Finally, the modal coupling loss fact@ follows from equationsg) to (5):

i npob(e)”  nedlah)? o
P MEME(R)? | ((h)— ()% + (mhwp + n3eh) (nfeob( R + 3B (o))

Wherewgg is the interaction modal work and th\”ﬂ%, Mé, oo% andwg are the modal masses
and the eigenfrequencies of the p-th and g-th mode of the stdmag one and two. 9]
and [LQ] it has been shown that this modal coupling loss factor dessithe coupling between
every pair of two modes of different subsystems and not oatwben resonant ones like it was
demonstrated by Maxit and Guyad8&t.[With 312 the energy of every mode is calculated using
a power balance equation system like in SEA, equat®)nkut with one equation for every
mode and not only with one for every subsystem.

Omax

= NpwpEp+ z Bog 7)

The sum of all these modal energies of a subsystgives the whole energg' of a subsystem
i [11, 10].

=YE (8)
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3. Energy distribution

3. Energy distribution

3.1. Energy distribution of a single mode

It has been shown irlfl] and [10] that the relation between the total energy distributhof a
moden and the total energl, of this mode is given exact for a cavity and approximativegor
structure by

d = 7 ©)

n

whereN, and®,, are the norm and the shape function of the mod&o get also equations for
the distributions of the kinetic and the potential enegfyandef, of a mode as a function of
En it is necessary to characterise the relation between tretikianergyEX and the potential
energyEy, which are ]

1
EY = éKny2 (10)
1., ., 1
EX = E|\/|ny2 = éMnmzy2 (11)

wherey is the time averaged displacement of a modeis the excitation frequency ari,
andM, are the modal stiffness and the modal mass. Thus, it folloitis thhe quadratic modal

eigenfrequency
K
2 n
= — 12
E = (12)
for the relation betweeE? and E,'§

EP K, 2 2
B Mo~ o (139
EX  Mphwey: w
The relations between the total modal endigyand the modal potential ener§ respectively
the modal kinetic energ&r'f are consequently given by

2

En=EP+EX=EP (1+ %) (14)
w3
o2

a:$+ﬂ:$0+5§ (15)

Finally, the energy distributionsh andeX can be written as follows using the stiffness and the
mass matrixK andM, like in [12]:

(qanQ)T Ko, Eq (qanQ)T K®,

P_EP —
aﬁ n
Q\' Q\'
) k(cbn) M®,, En<¢n> M,
R e an
n W
(1+_2) M,
w

-
whereef, is again only approximative(d)nQ is the transpose of the shape function vector of

the moden at a pointQ and®,, is here the complete shape function vector for all poihtsor
a broadband excitatiom is approximately the central frequency of the excited band.
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3.2. Energy distributions of whole subsystems
3.2.1. Theory

The energy distribution of a subsystem is given for a broadlexcitation as a function of the
modal energy distributions defined in chapter 3.1 as fol]¢hg:

zqﬂ (B0)+2F S Cony/€(B0)eh(80) (18)

m n=nm41

whereé (Aw) is the total, kinetic or potential energy distribution of Aale broadband excita-
tion with the bandwidtiAw. The factorCy,, of equation 18) is a correction factor to describe
the correlation between two modes and is given by

/ Smnér% \/—dw

\//Awl'lm Ydw wl‘l( w)dw

This correction is necessary, because information, whiehraportant to identify the spatial
and the frequency correlation of modes, get lost using #aqu band averaged energies. The

spatial correlation is characterised by the fac®ys and §§% Snn compares the signs of the
amplitudes of two modes, which depend on the given excitadad can be approximated using
analytic solutions for the amplitude of the velocitpr of the pressure 6f uncoupled systems
as follows [LOJ:

(19)

Sin = sign( PmPr) = SigN(VmVp) (20)

The other factoréﬁ%, describes the relation between the modes at a Qpamtd is for the kinetic
and the potential energy distributions, equatidt®) énd (L7), equal to the cosine of the angle
a between two modal shape vectorsatonly the translational degrees of freedom are used
here!).

(21)

For the total energy distribution, equaticﬁ),(S(ﬁ% is 1, because the shape functishgcan be
extracted from the root of the second term of equati®8).(The second type of correlation, the
frequency correlation, is described with the power ingiiig w) andMpy(w) in the modesn
andn. They can be again approximated with analytic solutiongHervelocity or the pressure
of uncoupled systems like for equatid20f as follows using the impedan&eof a structure or

a fluid, [10]:

2/me \f:()dA_Z/ [P ) 2/ZDVr AJdA (22)

3.2.2. Example: Correction factor for a point force excited structu re

The velocityv in modal description of an arbitrary excited and uncouptedcsure is given as
a sum over the modal velocitieg [13].

o,
V= Zvn Z M (o w2+|nsahw)/lwpexq)ndA (23)
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4. Example

wherens and w, are the damping factor and the n-th eigenfrequency of thuetsire andpey
andA are the excitation pressure and the excited area. Thudlowfor the correction factor
Cmn, €quation 19), of a structure excited with a point force at a pdiising equationd2):

/[ wsms}ﬁ%J [( ot »

Wi — w2)2 + (nswmw)z} [(OJ,% - w2)2 + (nswnw)z]

w2 w?
e
80 (00— 0?)+ (Nstomw)? /8w (@ — w?)” + (Nsthw)?
with
Smn = sign({ [ — @?] [6f — 0] + Nstmnw? } Om(P)Pn(P)) (25)
4. Example

4.1. System under study

In the following a section of a double-deck train (Fig@jes chosen as an industrial example of
use to demonstrate the application possibilities of therektd SmEdA approach and the post-
processing method for energy distributions described aptdrs 2 and 3. The section of the
train is simulated as a simple supported structure couplead cavities. The structure consists
of many different components (windows, stiffnessers,andl is excited with 8 point forces at
the bottom between 280 and 355 Hz. The number of degreeseaxfdne and the number of
modes in different frequency ranges of these three subsgsiespresented in Table

Table 1.: Degrees of freedoms and number of modes of the sigosy

structure lower cavity upper cavity
degrees of freedom| 334920 56699 54079
number of modes
0-280Hz 120 42 24
280 - 355 Hz 72 30 24
355 - 600 Hz 235 222 178
600 - 1000 Hz 648 850 715

4.2. Energies of the subsystems

The energies of the three subsystems calculated with SmBdABM are compared in Table

2. For SmEdA all the modes between 0 and 600 Hz are taken inbmatand not only those in
the excited frequency band (280-355Hz), because the batitn of the non resonant modes
to the total energies is high, especially for the upper gavihis is illustrated with the energy
ratios of the modes (modal energy divided by the total enefglge corresponding subsystem)
between 0 and 1000 Hz in Figuie The resonant modes store only 78%, 62% and 28% of
the energy of the structure, the lower cavity and the uppeityceespectively. Figurel also
shows that the most of the energy is stored only in a few mod#sn all, the result for the
energies of the structure and the lower cavity of SmEdA arg geod compared to these of
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FEM (see Tabl®). There is only an essential difference for the energy inughyger cavity. But
this is the subsytem that is not directly connected to thetiexcarea and its energy is very
small compared to other energies. Thus, maybe the erroedlitect FEM calculation is also
relativly high.

Table 2.: Comparison of the total energies of the subsystaioslated with SmEdA and FEM

total energy [dB] SmEdA FEM difference [dB]
structure -56.8 -56.2 0.6
lower cavity -67.4 -65.7 1.7
upper cavity -81.1 -86.7 5.6

o
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o©
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0.2

energy ratio
energy ratio
o
=
energy ratio
o
[

o
o
a

0.05]

ool

O 00 400 800 8001000 05 200 400 800 B0 1000 O 0 1500
frequency (Hz) frequency (Hz) frequency (Hz)
1.1: structure 1.2: lower cavity 1.3: upper cavity
Figure 1.: Energy ratios of the modes (frequency area betle® dashed lines: excited fre-
guency band)

4.3. Energy distributions of the subsystems

The kinetic energy distribution of the structure and thaltehergy distributions of the central
sections of the cavities are presented as examples in Bigtwe3. The kinetic energy distribu-
tion of the structure predicted with the the post-precessierthod of SmEdA (see chapter 3) is
quite similar to that calculated with FEM. In contrast, #hare more discrepancies between the
energy distributions for the lower (Figu# and the upper cavity (Figui® predicted with the
post-precessing method and FEM. One reason is certainlyhtbadtal energies of the cavities
obtained by SmEdA and FEM are differ more than the total aaesmgf the structure (see Table
2) and so do the energy distributions. The problem of the gneigjributions of the cavities
predicted from the modal energies with the post-processietod is that these converge quite
slowly against a stable solution. This is demonstrated byparing Figuregl and3, where in
Figures 3.1 and 4.1 all the modes from 0 to 600 Hz and in Fig8r2snd 4.2 all the modes
from 0 to 1000 Hz have been used for calculation. Especiatlyhie lower cavity (Figurd), the
change of the energy distribution is enormous when usinggmudes, although the energies
of these modes are negligible for the calculation of the ten@&rgies as demonstrated in Figure
1. Therefore, it is difficult to say how much modes are necgssaget a good stable solution
for the energy distributions of the cavities.
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5. Conclusion

4 a2
2.1: model of the train (one 2.2: SmEdA (using all modes
colour for each property) from O to 600 Hz)

Figure 2.: Model and kinetic energy distribution [dB] usingiBSdA and FEM of the train

structure

\ga¥ . NCe)

- »
. o \ - F § -
a b - e
3.1: SmEdA (using all modes3.2: SmEdA (using all modes 3.3: FEM
from O to 600 Hz) from O to 1000 Hz)
Figure 3.: Energy distribution [dB] of the central sectiortloé upper cavity using SmEdA and
FEM

. O

- ®
4.1: SmEdA (using all modes4.2: SmEdA (using all modes 4.3: FEM
from O to 600 Hz) from 0 to 1000 Hz)
Figure 4.: Energy distribution [dB] of the central sectiortloé lower cavity using SmEdA and
FEM

5. Conclusion

As it is demonstrated on the example of a part of a double-tfaak, SmEdA could be an al-
ternative to the existing methods for vibro-acoustic clttans of real industrial problems. An
advantage of SmEdA is in this connection that the predistmfrtotal energies is quite fast and
easy and energy distributions can be generated after this caliulation in a post-processing
applied only to interested areas. In contrast, FEM is in ggmaore time-consuming, because
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the distributions of whole systems must be calculated talgetotal values. And for SEA,
which outputs also total energies, a post-precessing tergggy distributions is not possible,
because of the missing modal information. But the articlevshalso that there are two points,
which must be investigated in detail in the future researthe first point is to identify the
reasons for the differences between FEM and SmEdA resutishvoccur in a few cases. The
other one is the quite slow convergence of the post-pracgssethod for energy distributions
of cavities.

6. Acknowledgment

The authors gratefully acknowledge the ITN Marie Curie prof@A-214909 "MID-FREQUENCY
- CAE Methodologies for Mid-Frequency Analysis in Vibratiand Acoustics”.

Bibliography

[1] S. Marburg, B. Nolte (Eds.), Computational Acoustics ofid¢oPropagation in Fluids -
Finite and Boundary Element Methods, Springer, 2008.

[2] R. H. Lyon, R. G. DeJong, Theory and application of statatienergy analysis,
Butterworth-Heinemann, 2nd edn., 1995.

[3] A. Le Bot, V. Cotoni, Validity diagrams of statistical emgranalysis, J. Sound Vib. 329
(2010) 221-235.

[4] A. J. Keane, W. G. Price (Eds.), Statistical Energy A&y An overview with applica-
tions in structural dynamics, Cambridge University Pre§941

[5] P.J. Shorter, R. S. Langley, Vibro-acoustic analysis ohplex systems, Journal of Sound
and Vibration 288 (2005) 669-699.

[6] W. Desmet, A wave based prediction technique for couplbtb-acoustic analysis, Ph.D.
thesis, K.U. Leuven, 1998.

[7] P. Rouch, P. Ladeveze, The variational theory of compkeysr a predictive tool for
medium-frequency vibrations, Computer methods in appliedhmanics and engineering
192 (2003) 3301-3315.

[8] L. Maxit, J.-L. Guyader, Estimation of the SEA couplirask factors using a dual formu-
lation and FEM modal information, part I: theory, JournaBafund and Vibration 239(5)
(2001) 907-930.

[9] R. Stelzer, N. Totaro, G. Pavic, J. Guyader, Predictiom@nsmission Loss using an
improved SEA Method, in: Proceedings of CFA 2010, Lyon.

[10] R. Stelzer, N. Totaro, G. Pavic, J. Guyader, L. Maxit, Mesonant contribution and energy
distributions using Statistical modal Energy distribatianalysis (SmEdA), in: Proceed-
ings of ISMA 2010, Leuven.

[11] N. Totaro, C. Dodard, J.-L. Guyader, SEA coupling losgdas of complex vibro-acoustic
systems, Journal of Vibration and Acoustics 131 (2009) 0914.

98



Bibliography

[12] N. Totaro, L. Maxit, J.-L. Guyader, Post-traitementagialyseénergtiques de @sultats
elements finis, in: Proceedings of CFA 2010, Lyon.

[13] L. Cremer, M. Heckl, B. Petersson, Structure-Borne So@minger, 3rd edn., 2005.

99






9. Paper IV: Assessment report on
SmEdA

101



EUROPEAN COMMISSION
RESEARCH EXECUTIVE AGENCY

‘MID-FREQUENCY”

7th FRAMEWORK PROGRAMME
Marie Curie Initial Training Network (ITN)
Grant Agreement 214909

MID-FREQUENCY

CAE methodologies for Mid-Freguency Analysis in Vibration and Acoustics

SEVINTH FRAMDWORY
PROGRAMME

D21
Assessment report on SmEdA

Deliverable no. D21

Dissemination level Public

Work Package WP2

Author(s) Rainer Stelzer

Co-author(s) Nicolas Totaro, Goran Pavic, Jean-Louis Guyader
Status (F: final, D: draft) F (15.09.2011)

File Name D21 assessmentrepo8mEdA. pdf

Project Start Date and Duration October 1st, 2008 - September 30, 2012

102



Contents

1.  EXecutive summary . . . . . . . . . o i e e e e 104
2. Basicconcepts. . . . . ... e 105
2.1.  Statistical modal Energy distribution Analysis . . . . . .. .. ... ... .. 105
2.1.1. Coupling betweenmodes. . . . . . . ... ... ... ... .. 105
2.1.2. Powerinput. . . . . . . . . .. . e 105
2.1.3. Energiesof subsystems. . . . .. .. .. ... ... ... ... 107
2.2. Energy distributions. . . . . . .. ... . L 108
2.2.1. Energy distribution ofasinglemode . . . . . . ... ... ... .. 108
2.2.2. Energy distributions of whole subsystems. . . . . ... ... ... 109
3. Performance illustrations . . . . . . . . ... ... .. 110
3.1. Plate-cavity system . . . . . . . . . . . 110
3.1.1. Energies of the subsystems. . . . . .. .. ... ... ....... 111
3.1.2. Energy distributions of the subsystems . . . . . . ... ... ... 112
3.2, Transmissionloss. . . . . . . ... 114
3.2.1. Comparison to the infinite transmission loss models. . . . . . . . 115
3.2.2. ComparisontoFEM . . . . . . . . . . ... .. .. . 117
3.3.  Double-decktrain. . . . . ... ... 118
3.3.1. Energies ofthe subsystems. . . . . .. .. ... ... ....... 119
3.3.2. Energy distributions of the subsystems . . . . . .. ... ... .. 120
4. Recent enhancements and future researchin SmeEdA. . . . . . . ... .. 122
4.1. Reduction of computationalcost. . . . . . ... ... ... . L. 122
4.1.1. Approximatemodes . . . . . . . ... 122
4.1.2. Mixed power balance equationsystems. . . . .. ... ... ... 124
4.2. Localiseddamping . . . . . . . . . . . 125
5. Conclusion . . . . ... 126
Bibliography . . . . . . . . 127

103



9. Paper IV: Assessment report on SmEdA

1. Executive summary

The most popular methods for the analysis in vibro-acosisie the finite element method
(FEM) and the statistical energy analysis (SEA). FEM is usedhe low frequency range, be-
cause the computational cost increases strongly withgiggquency. Another disadvantage
of this method is that a lot of calculations for single freqcies steps are necessary to get av-
erage values over frequency bands, which are often usea@atigal applications. The second
method, the statistical energy analysis, is an energy bggawach for high frequencies, which
outputs global energy values for each subsystem withouirdiogmation about the distributions
of these energies.

To close the gap in the mid frequency range between FEM and &tAto overcome their
described drawbacks, the statistical modal energy digtab analysis (SmEdA) is developed
since more than 10 years. This method is based on the penaiphe energy conversation like
SEA but describes contrary to SEA the power exchange betawglesystems with couplings
between the modes of these subsystems and not only withiogafdetween whole subsys-
tems. SmEdA is further developed in the framework of “Mickguency” with a focus on the
coupling between fluid filled cavities and structures. Duthtd this method can handle coup-
lings between all modes, resonant and non resonant onéagedtaan excited frequency band,
and not only between resonant modes like in previous worksthEBrmore, a post-processing
method has been developed to obtain energy distributiong tise modal energies predicted
with SmEdA. This extended version of SmEdA can be used in th@evfrequency range and
is also principally not statistical. Thus, it is maybe bettecall this method modal energy dis-
tribution analysis (MEDA).

This deliverable gives first an overview over the recentiversf SmEdA and the related post-
processing for the prediction of energy distributions. kkeaond part the application possibil-
ities and advantages of these methods are demonstratednenesamples. At last, the report
shows also some recent enhancements and a perspectivefotuteeesearch.
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2. Basic concepts

2. Basic concepts

2.1. Statistical modal Energy distribution Analysis
2.1.1. Coupling between modes

The basis of the energy based method SmEdA are the eigenmodesgenfrequencies which
have to be calculated first of all for example analyticallyéasy subsystems or with FEM. To
describe the coupling between these modes of differentystdass the analogous mechanical
model of two coupled gyroscopic oscillators is used. Mand &uyader]] have demonstrated
that this oscillator coupling is equal to the coupling bedawéwo modes, if one system is un-
coupled a blocked system and the other is uncoupled a fréensym the coupling area. This
is for example the case for a cavity-structure couplinghls way the well established research
results for coupled oscillators, which can be found for eglenmn [2], [3], [4] or [5], were used
as a basis to define a coupling factor for two coupled modestefbre, the coupling fact(ﬁpl,g
between a mode of a system one and a modef a system two was deduced B8] ps

gz (W5 I1E I i A i o
P MIME(cB)? | ((h)? — (@f)?)2 + (7} + nFel) (nfewb(wf)? + nged(wh)?)
with the interaction modal work
Wiz — [ o0 ds @

whereS is the coupling area anklly, Mz, ng, n3, ws, wé, @3 and @7 are respectively the
modal masses, the modal damping factors, the eigenfremseand the mode shapes of the
p-th and the g-th mode of the subsystems one and two7]Jri§] and [9] it has been shown
that this modal coupling loss factor describes the coudietyveen every pair of two modes of
different subsystems (see Figuneand not only between resonant ones like it was demonstrated
by Maxit [6]. Because of that it is even possible to make calculations 8thEdA for single
frequency excitations and for highly damped structures [8§.

2.1.2. Power input

Another quantity, which is necessary for the later caleofaof the energies of the subsystems
IS the external power input in each mode for example from atgorce on a structure or from a
monopole in a fluid filled cavity. For an excited structure tbiéowing equation for this modal
power inputily, can be used:

M= 5 [ D[PexANin(A)| dA ©

wherepey(A) is an external pressure acting on a akend* denotes the conjugate complex of
a quantity. The modal velocity,(A) on the excitation areA of a structure under an arbitrary
excitation is given for an uncoupled system 19 by

Dpn(A)
Mp, (2, — w2 + iNstmw

Vm(A) = )/Aiwpexq)m(A>dA (4)

wherewy, is the eigenfrequency of the mode ®,(A) is the mode shape of the modeat the
excitation area, w is the excitation frequency ang is the modal damping factor. The power
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input for a mode of a fluid filled cavity is defined similar ) @s follows:

M= 50[pm(6)Q°]dA ©

or

1 Opm(A) pm(A)]
My = E/A > dA (6)

whereQ is the the volume source strength of a point monopdi¢ 4ndZ is the impedance of
the fluid. In the case of a monopole excitation, equatB)nthe modal pressurpm(Xq) at the
locationxq of the monopole is given inlfl] by

P7(Xq) (7)
Nm(k? — k&)

where®n(Xq) is the mode shape of the modeat the excitation poinkg, pr is the density of

the fluid and\j, is the norm of a mode. The wave numbeis,, andk, which includes damping
using a complex sound velocit§ ()], are given by

Pm(Xq) =10prQ

kmzc—‘*’;” 8)
and
w
= @i ®)

wherec; is the sound velocity of the fluid. The relation between thasn@ing factorn; of
the fluid and a damping factaye, which is defined in a complex modulus of elasticity=

D(1+ine) and normally used in SmEdA and FEM calculations, is giverafemall damping
(4% error forne = 0.5 [10]) by

Nt = %e (20)

Furthermoren can be linked to the absorption on the boundary surfacesambe expressed
for the case of equipartition of the absorption 28] [

ACt

= 11
4oV (11)

nt

whereAs andV are the equivalent absorption area and the volume of a flied tlavity. For the
other possible excitation of a fluid filled cavity, the extita via a vibrating boundary structure,
equation 6) is used. The modal pressupg(A) at the excitation area reads herel[l]:

W
Pr(A) = —pr POy (12)
S m

(K — k&)

whereWs is the interaction modal work, equatia®) ( The modal amplitudes of the s-th mode
of the structure is the amplitude of the velocity(A) from equation 4).
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2.1.3. Energies of subsystems

To calculate first the modal energies and then the total ereqj total subsystems a power
balance equation system is used like in SEA, but with onetemquéor each mode instead of
one for each subsystem. This means, that all the input pﬁl},\t\e(rsee previous chapter) of a
mode m of a subsysteimmust be dissipated () in this mode or must be transmitted into

other connected modes of other subsystdﬁggr(,).
I_Iirn: I_Iidis,m'|'|_|ie>gm (13)

Using the modal coupling factcﬁgg, equation {), the power balance equation system reads in
terms of the modal energieﬁfgL and Eg of a system one and twd]

Omax

My = n{)wpl,Eg+ > ng(Eg - Eg> (14)
g=1

The sum of all these modal energies of a subsystgives the whole energl' of a subsystem
i [13, 8]. . .
E'=YVE (15)
Z n

If only resonant modes are taken into account, it is also ptessy calculate the SEA coupling
loss factorsnj; on condition of modal equipartition of energy and to make assical SEA
calculation. Those factorg; result from the modal coupling loss factods3] as follows:

1 Pmax0max 12
N2 = B (16)
Pmaxk lequ P
=SS B (17)
Qmach p:1 q:1

where pmax andgmax are the number of resonant modes relating to an exciteddrexyuband
with the central frequency.

A frequency

frequency
band

subsystem 1 subsystem 2
N; modes N> modes

Figure 1.: Resonant and non resonant modes and their diffesapling possibilities
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2.2. Energy distributions
2.2.1. Energy distribution of a single mode

To characterise the energy distribution of a single modeethee the following equations from
[14] and [15] for the total energy density distributiagh, the kinetic energy densitsf and the
potential energy distributiog) as functions of the modal energy.

= o2 (18)
Q\" Q\"
e
A n
T T
) =ik (cbﬁ?) Koy E; (qaﬁ?)z K®, o0

Kn
<1+ %) Kn

whereT denotes the transpose of a vectdbR is the mode shape of the modat a pointQ, M
andK are the stiffness and the mass matrix @yl N, M, andK,, are respectively the mode
shape, the norm, the modal mass and the modal stiffness olarm@he excitation frequency
w can be approximated for calculations with non resonant sddethe case of an excited
frequency band as the central frequengyof this frequency band. The equatiod$)and 0)
are only approximate formulas for structures, becausedf@mhation of a structure can not be
defined for single points like these equations make it withéhergies but only for areas. In
contrast, the kinetic energy can be given for single poiritema diagonal mass matrix is used,
because that defines a mass for each single point of a meshet Boagrrect solution for the
potential energy of a structure it is necessary to use instethe stiffness matriX the element
stiffness matrixe like it is done in FEM programslig]

1
el = EuT Keu (21)

whereu is the displacement of the structure. Thus, it results fetbtential energy distribution
as a function of the modal energy similar to equati?) (

T
P_EP (CDIB) Kecbﬁ o EnErsl,R
€ =En K - 2 (22)
G-I
2 n
w

where®R is the modal vector of an elemeRtof the moden. Instead of calculating directly
with the element stiffness matrix it is easier— if for exaeffle FEM program Nastran is used—
to work with the element modal strain energkgg and the total modal strain energy, of a
moden like it is shown in equation22). For a fluid filled cavity equationl@) is applied. This
equation gives here an exact result for the energy dengtsitalition, because the pressure in a
cavity is defined for single points and the energy dergigt a point is so given byl[7]:

P

- 2ps C%

(23)

wherep; is the pressure at a poinandps andcs are the density and the sound velocity of the
fluid.
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2. Basic concepts

2.2.2. Energy distributions of whole subsystems

The energy distribution of a whole subsystem for an arhjtexcitation has been derived i8] [
from a superposition principle as a function of the modalrgyelistributions of the previous
chapter as

&(0w) = Y &n(80) +25 5 Crnny/eh(Bw)er(20) (24)

m n=m4-1

whereé (Aw) is the total, kinetic or potential energy distribution of aale broadband excita-
tion with the bandwidtiAw. The correction facto€y, describes the correlation between two
modes and can be written &9

/Awsms,";n\/l'lm(w)l‘ln(w)dw

Crn= (25)

\/ NMp(w)dw [ MNp(w)dw
Aw Aw

This correction is necessary, because some informatioichvidnimportant to identify the spa-
tial and the frequency correlation of modes, get lost usieguency band averaged energies.
The spatial correlation is characterised by the fac8ysand %n. Snn compares the signs of
the amplitudes of two modes, which depend on the given daitaand can be approximated
using analytic solutions for the amplitudes of the velestior of the pressureg 6f uncoupled
systems (see equatiory,((7) and (L2)) as follows B]:

Sn = sign( PmPr) = SigN(VmVp) (26)

The other factors?! , describes the relation between the modes at a oéamtd is for the kinetic
and the potential energy distributions, equatiat®,((20) and @2), equal to the cosine of the
anglea between two modal shape vectorgaonly the translational degrees of freedom are
used here!)15].

o oN)
& — cosa = oM _ (27)

For the total energy distribution, equatiabg), S, is 1, because the shape functishg can
be extracted from the root of the second term of equatzdh (The second type of correlation,
the frequency correlation, is described with the power igapli(w) andlM,(w) in the modes
mandn, which are given in sectiof.1.2 In this way the correction fact@y,,, equation 24),
can be for example written for a structure excited with a pfwrce at a poinQ as

2) w!
/AwSﬂnS(nnJ [(o)r%—wz)z-i-(nswmw)z} [(aﬁ_wZ)z_i_(nsa)nw)z] dw

Cmn - (28)

/ w? w?
5 dw/ 5 dw
8w (W2 — w?) 4+ (Nstmw)?  /bw (W — w?)” + (Nsthw)?

with
Smn=sign({ [wh — @°] [ — @?] + Ns@nn®® } O(Q)Pn(Q)) (29)

109



9. Paper IV: Assessment report on SmEdA

3. Performance illustrations

3.1. Plate-cavity system

The first example, which is presented in this deliverablegmanstrate the application pos-
sibilities of the SmEdJA approach and the post-processinpodefor the energy distributions,

Is a system of a point force excited rectangular plate couggledparallelepipedic cavity (see
Figure2). The plate is excited with a point forcé~| = 1N) between 600 and 800 Hz at one
point, which has the coordinates= 0.211765 and/, = 0.189474. The characteristics of the
plate and the cavity are presented in Tahl€Contrary to 8], only a system with one cavity is

used here and the modes for the following calculation examate predicted with FEM and

not analytically.

110

cavity plate

L, h

Figure 2.: Sketch of the point force excited system

plate cavity
Lx x Ly x [ 1.2x09x | 1.2x0.9x
Lz(h) (m) 0.004 0.7
p (kg/m?) | 7820 1.2
c(m/s) 340
n 0.01 0.01
E (MPa) | 210
v 0.3

Table 1.: Characteristics of the subsystems



3. Performance illustrations

3.1.1. Energies of the subsystems

In the Figures and4 the results for the total energies of the different subsgystealculated with
SmEdA are compared for three 200 Hz frequency bands with ghieskcted with a standard
direct FEM calculation. For the SmEdA calculation the reswith (SmEdA non resonant)
and without (SmEdA resonant) non resonant modes are shothese figures to illustrate the
influence of the non resonant modes for different plate dagifaictors. For the prediction with
non resonant modes all the modes between 0 and 1500 Hz areitddeccount here. There
are 342 cavity modes and 121 plate modes in this frequengergee tabl@). For the lower
plate dampingi)p = 0.01, these non resonant modes play for the plate energy and@vihe
energy in the cavity a quite small role like Figui®4 and4.1 demonstrate. But for the case of
the higher plate damping), = 0.1 (see Figure8.2and4.2), it is important especially for the
non directly excited cavity to take into account non resomaodes, otherwise the difference to
the FEM calculation is up to 8 dB. Allin all, the energy valuesgicted with SmEdA using non
resonant modes agree well with those of the FEM calculat@mly for the highest frequency
band it would be necessary to increase the number of modekdaralculation of the cavity
energy — as it was done iB]F- to get a more exact result for the cavity.
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—— SmEdA resonant
|| —e—FEM ] | <§
—&— SmEdA non resonant

—— SmEdA resonant

Energy (dB)
4
=

Energy (dB)

|
o]
o
|
[e]
o

-90 . - 90 - -
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3.1: Energy in the cavityr(, = 0.01) 3.2: Energy in the cavityr(, = 0.1)
Figure 3.: Energy in the cavity at different plate dampingdesn,
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_gol| ——FEM | _gol| = FEM
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4.1: Energy of the platen,, = 0.01) 4.2: Energy of the plateni = 0.1)

Figure 4.: Energy of the plate at different plate dampingdesa,
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plate cavity
degrees of freedom| 12168 62868
number of modes
0-400 Hz 28 12
400 - 600 Hz 16 21
600 - 800 Hz 16 34
800 - 1000 Hz 19 51
1000 - 1500 Hz 42 224

Table 2.: Degrees of freedoms and number of modes of the gahakéhe cavity

3.1.2. Energy distributions of the subsystems

Next, the kinetic and potential energy distributions of pegte calculated with SmEdA and the
post-processing from secti@?2 are compared for the excited frequency band from 600 to 800
Hz in Figures5 to 8 for the plate damping factorg, = 0.01 andnp = 0.01 to those predicted
with FEM. For this purpose the modal energy results of the &mEalculation are taken,
which use all the modes between 0 and 1500 Hz (see previousrgecThese comparison
demonstrates that even energy distributions with a coraton of energy at one area around
the excitation can be obtained well with the modal energi¢sutated with SmEdA and the
used post-processing method. As FigBes 6.2, 8.1and8.2moreover show, it is necessary to
use equation2?) for the modal potential energy distribution in the caltigla process instead
of the approximative one2(), to get a good result for the potential energy distributidithe
boundary.
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5.1: SmEdA 5.2: FEM
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6.1: SmEdA using equation 6.2: SmEdA using equation 6.3: FEM
(20 (22

Figure 6.: Potential energy distribution of the plate (pldamping)p = 0.01)
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Figure 7.: Kinetic energy distribution of the plate (plasnupingn, = 0.1)

— N -85

0.8 e 0.8 M 0.8
: | -90

0.6 0.6 i 0.6
0.4 . 0.4 £ 04 -95
o2 0.2f -100
OEEE = e -105

0 0.5 1 0 0.5 1 0.5 1
8.1: SmEdA using equation 8.2: SmEJA using equation 8.3: FEM
(20 (22

Figure 8.: Potential energy distribution of the plate (pldamping)p = 0.1)

Finally, also the energy density distribution in the midlué tavity az= —0.3624 predicted
with SmEdA and FEM is given in Figurgfor the case of the plate dampirng = 0.01 and the
excited frequency band from 600 to 800 Hz. The result for ¢émsrgy density distribution of
the post-processing method using SmEdA results agrees-agea the energy distributions for
the plate — well with those of FEM.

-60

Y |
9.1: SmEdA 9.2: FEM

Figure 9.: Energy density distribution in the cavityzat —0.3624 (plate dampingp = 0.01)
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3.2. Transmission loss

The next example of the performance illustration is quiteilgir to the first one (see Figure
2) but with one cavity on both sides of the plate (see Fidi)leand with an excitation in an
edge of a cavity (sending cavity) with a monopole sourcesExcitation is more or less equal
to an equal power input in all the resonant modes like it waseda [7]. The transmission
loss of such a small system calculated by SmEdA is compar#eifollowing sections to the
infinite models, the mass law and the formula of Cremer, andradsird FEM calculation. The
coincidence frequency of the plate is 2933 Hz. The otheradtaristics of the subsystems are
given in Table3.

sending room receiving room

plate
|
|
| LAY Ly
! z
- —> - - - -
/// X 7/)(
% t— %
I—ZI. h Lzz

Figure 10.: Sketch of the cavity-plate-cavity system

plate sending receiving

room room

Lx x Ly x | L2x09x | 12x09x | 1.2x0.9x

Lz(h) (m) 0.004 0.7 1

p (kg/m3) | 7820 1.2 1.2

c (m/s) 340 340

n 0.01 0.01 0.01

E (MPa) | 210

v 0.3

Table 3.: Characteristics of the subsystems

In the present case the necessary eigenmodes and eigemfcezgifor SmEdA can be cal-
culated quite easily analytically. The eigenmogis and the eigenfrequenciegys of the
cavities are given byl[g|

Pgrs = COS<£X> COS(@) COS<£Z) ; 9,r,s=0,1,23,... (30)
L Ly L,

2 2 2
= (Z) (5 + ()

The eigenfrequencias;,, and the mode®\;,, of the simply supported plate are

2 2
R S
X y

and
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3. Performance illustrations

and

We = sin(mnx) sin<ﬂy> (33)
Lx Ly

with the mass per arga and the bending stiffne€sof the plate.

3.2.1. Comparison to the infinite transmission loss models

Like it was demonstrated in sectidhl.1the interaction between a small simple supported
plate and a cavity is dominated for low plate damping by theti@n of the resonant modes and
the influence of the non resonant modes relating to an extriggdiency band grows with an
increasing damping. This behaviour appears also in theafabe transmission loss of such a
system, because there is only a significant difference itrmsmission loss between SmEdA
with (SmEdA non resonant) and without non resonant mode€(@nresonant) at the plate
dampingn, = 0.1 (see Figured1to 13). The transmission loss graphs in these figures were
calculated for excited frequency bands with a bandwidthO6fz and for the calculations with
non resonant modes all the modes from 800 Hz below to 200 Hzeahe respective frequency
band were used. In comparison of these results for the tiaagm loss predicted with SmEdA
to the infinite transmission loss model, the formula of Creniteattracts attention that the
SmEdA results are contrary to the formula of Cremer sendit@lew the critical frequency to

a change of the damping. The reason for this is that the intid@wver on an infinite plate is
transmitted below the critical frequency only by the nororesit modes, on which the damping
has no influence, and not by resonant modes like it is the dagesaall simple supported
plate. In [7] it is demonstrated that these different behaviour depantisnly on the size of the
plate but for example also on the boundary condition, bectheséransmission loss of a free
plate is also fully dominated by the non resonant modes b#leveritical frequency. Another
difference between an infinite and a small finite system isttfeatnode densities of a small plate
and of a small cavity (see Figug are much smaller than those of infinite systems, which are
infinity. Because of that the interaction between the difiesibsystems is in general maybe
worser for finite systems at a given frequency if resonaneeesfplays there not a role. Hence,
the transmission loss of the highly damped small plate (f€i¢d) is much bigger than those of
the formula of Cremer, because the resonant effects are méesssuppressed.
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20} —*— mass law

formula of Cremer diffuse
10| —=— SmEdA non resonant
—b>— SmEdA resonant

Transmission loss (dB)

0

10°
Frequency (Hz)

Figure 11.: Transmission loss for plate damping= 0.001 (frequency band width: 400 Hz)
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Figure 12.: Transmission loss for plate damping= 0.01 (frequency band width: 400 Hz)
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Figure 13.: Transmission loss for plate damping= 0.1 (frequency band width: 400 Hz)

To demonstrate that all these described effects are noemfkd of possible different descrip-
tions of the transmission mechanism of the formula of Cremérdithe SmEdJA approach and
to validate the SmEdA transmission loss model, the formt@remer was derived analytically
with the SmEdA formalismg]. Under the same assumptions as for the formula of Cremex (fre
sound fields on both sides of the plate, infinite plate, etee)ttansmission loss predicted with

SmEdA is given by
cosd \ 2 5 sint 9\’ 5 4sint9

whered is angle of incidenceB, n andm are the bending stiffness, the damping and the mass
per area of the plate armndp are the density and the speed of sound of the fluid. Compared
to the original formula of Cremer (equatioBs)), in which the damping is taken into account
via the usual assumption of a complex bending stiffréessB(l— in), only the damping term

of equation 84) is different.

2 .4 2 .
%legF+<%$?>{(wm—w%ﬁgﬁ)-+§n%ﬁ§£§}] (35)

Rs = 10lg
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But a graphical comparison in Figudet of this two equations for a diffuse incident sound

(average over all the angles of incidence) shows that thiemanly a small difference at the
critical frequency.
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Figure 14.: Transmission loss of the infinite models from Geand SmEdA (plate damping

3.2.2. Comparison to FEM

To compare the transmission loss calculation with SmEdAveitid FEM the transmission loss
for the plate damping factorg, = 0.01 andnp = 0.001 is illustrated in Figurd5. The band-
width of the excited frequency is here 200 Hz. This Figurenshthat contrary to the trans-
missions losses predicted with SmEdA (only resonant modesised) those calculated with
FEM are less sensitive to a change of the plate damping arayaltigher in the investigated
frequency range than the transmission loss of the mass damtia of Cremer.

70 T T
—&— FEM 0.001 : :
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—P— FEM average 0.001
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Figure 15.: Comparison of the transmission loss for diffef@ate damping factorg, calcu-
lated with SmEdA and FEM
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To investigate where this difference come from the FEM fdation must be discussed.
In FEM a coupled fluid-structure system is normally descriiaith two coupled differential
equation system as follow49:

Ms 0 U Ds O U Ks C U Ls

R B L R B B T
whereU is the displacement of the structukeis the pressure in the fluid aids, M¢, Ds, Dy,
Ks, K, LsandL¢ are respectively the mass, the damping and stiffness reaisied the external
force vectors of the structure and the fluid. One importaniragsgion of this formulation is that
the boundary surface of the cavity are considered as rigideavibrated boundary is handled
like a source at these rigid boundari@§][ In this way the formulation, which describes finally
the interaction between bending modes of a structure an@smaith cavity, does not respect the
boundary conditions of the equality of the velocities on sheface. That means in the modal
description that the summation of all modes converge agtiescorrect surface pressure but
leads to wrong normal velocities on the boundari2g.[ This is maybe not a problem for a
system which consists of one structure and one fluid filledtgaBut to get a complete and
correct description of coupled fluid-structure problemss ihecessary to respect the velocity
boundary condition, like it is also written ii]]. In contrast, this problem with this boundary
condition is taken into account in SmEdA (sek 8, 9]). All in all, because of these facts
the mistake, which is made by a such FEM calculation, is bigafransmission loss problem
and thus this FEM formulation seems not to be convenient fetesys with more than two
subsystems.

3.3. Double-deck train

In the following a section of a double-deck train (Figur® is chosen as an industrial ex-

ample of use to demonstrate the application possibilitteee@SmEdA approach and the post-
processing method for energy distributions (see chatatso on a real complex industrial

case. The section of the train is simulated as a simple stggpetructure coupled to two cav-

ities. The structure consists of many different componénisdows, stiffnessers, ...) and is

excited with 8 point forces at the bottom between 280 and 3565THe number of degrees of

freedom and the number of modes in different frequency ranfjieese three subsystems are
presented in Tablé.

structure lower cavity | upper cavity
degrees of freedom| 334920 56699 54079
number of modes
0-280Hz 120 42 24
280 - 355 Hz 72 30 24
355 - 600 Hz 235 222 178
600 - 1000 Hz 648 850 715

Table 4.: Degrees of freedoms and number of modes of the si¢vsy
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Figure 16.: Model of the train (one colour for each property)

3.3.1. Energies of the subsystems

The energies of the three subsystems calculated with SmBdABM are compared in Table
5. For SmEdA all the modes between 0 and 1000 Hz are taken inbmatand not only those
in the excited frequency band (280-355 Hz), because theibatibn of the non resonant modes
to the total energies is high, especially for the upper gavihis is illustrated with the energy
ratios of the modes (modal energy divided by the total enefglge corresponding subsystem)
between 0 and 1000 Hz in Figuit&. The resonant modes store only 78%, 62% and 28% of the
energy of the structure, the lower cavity and the upper gaggpectively. Figurd7 also shows
that the most of the energy is stored only in a few modes. Adllirthe result for the energies of
the structure and the lower cavity of SmEdA are good compiarédtbse of FEM (see Tabi®.
There is only an essential difference for the energy in theeupavity. This is maybe a mistake
of the used FEM formalism because that does not respecteabbdbindary conditions as it is
described in sectioB.2.2

total energy [dB] SmEdA FEM difference [dB]
structure -56.8 -56.2 0.6
lower cavity -67.4 -65.7 1.7
upper cavity -81.1 -86.7 5.6

Table 5.: Comparison of the total energies of the subsystafoslated with SmEdA and FEM
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17.1: structure 17.2: lower cavity 17.3: upper cavity
Figure 17.: Energy ratios of the modes (frequency area legtwiee dashed lines: excited fre-

quency band)
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3.3.2. Energy distributions of the subsystems

The kinetic energy distribution and the potential energstrdiution of the structure predicted
with the post-precessing method of SmEdA (see se@i@nusing equations19) and @2)
are quite similar to that calculated with FEM. If the appraogate formula for the modal energy
distribution, equationZ0), is used to describe the potential energy (Fidi9d), the differences
are but quite big especially at the boundaries.
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Figure 18.: Kinetic energy distribution [dB] of the trainstture calculated with SmEdA and
FEM
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19.1: SmEdA using equation 19.2: SmEdA using equation 19.3: FEM

(20) (22
Figure 19.: Potential energy distribution [dB] of the trairusture calculated with SmEdA and
FEM

In contrast, there are more discrepancies between theyedistgbutions for the lower (Fig-
ure 20) and the upper cavity (Figur2l) predicted with the post-precessing method and FEM.
One reason is certainly that the total energies of the esvadbtained by SmEdA and FEM are
differ more than the total energies of the structure (seéeTaband so do the energy distribu-
tions. The problem of the energy distributions of the casipredicted from the modal energies
with the post-processing method is that these converge glotwvly against a stable solution.
This is demonstrated by comparing Figug&sand21, where in Figure20.1and21.1all the
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3. Performance illustrations

modes from 0 to 600 Hz and in Figur@8.2and21.2all the modes from 0 to 1000 Hz have
been used for the calculation. Especially for the lower tyafffigure 21), the change of the
energy distribution is enormous when using more modesyadfh the energies of these modes
are negligible for the calculation of the total energies esdnstrated in Figurg?7. Therefore,

it is difficult to say how much modes are necessary to get a gtadale solution for the energy
distributions of the cavities.
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20.1: SmEdA (using all mode20.2: SmEdA (using all modes 20.3: FEM
from 0 to 600 Hz) from 0 to 1000 Hz)

Figure 20.: Energy distribution [dB] of the central sectidrtlee upper cavity calculated with
SmEdA and FEM

21.1: SmEdA (using all mode&1.2: SmEdA (using all modes 21.3: FEM
from O to 600 Hz) from 0 to 1000 Hz)

Figure 21.: Energy distribution [dB] of the central sectidrilee lower cavity calculated with
SmEdA and FEM
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4. Recent enhancements and future research in SmEdA

One of the next steps in the future research is the validatiéime SmEdA approach with some
of the validation cases, which are defined in the delivesabl@ and D12 of the project “Mid-
Frequency”. Another part of the future research will be tinehfer development of the recent
enhancements in the area of reduction of computational CBisis is an important research
topic to handle systems with high mode densities, becawsedmputational cost grows with
an increasing number of modes. Two ideas to reach this aiprasented in combination with
first easy applications on the transmission loss problererfallowing section. Furthermore,
in many real problems the damping is not uniformly distréziand thus it will be necessary
to investigate in the future how localised damping can berakto account in SmEdA. Two
methods from the literature, which can be used for this pggpare described shortly in section
4.2

4.1. Reduction of computational cost
4.1.1. Approximate modes

In the case of huge fluid filled cavities it costs a lot of congpional time to predict the huge
number of eigenmodes and eiegenfrequencies. To solveriidepn a method is developed,
which approximate the eigenfrequencies and the shapeg eigenmodes. For the former the
following approximate formula for the mode density11] is used as a basis

. K2V
- 21Cs

wherek is the wavenumber anck andV; are the sound velocity and the volume of the fluid.
From this equation it follows for the number of mod¥sn a frequency range via integration

overw 2y
w
N=[ —odw (38)
w, 2TCt
Under the assumption that a frequency is an eigenfrequercyor which under the condition
of ey = 0 the numbeN of the modes is an integer, it results from equati®$) (

(37)

23
5/ 671T°CEM
Vs

wherem is a positive integer. The approximation of the second phath® eigensystem, the
shapes of the eigenmodes, bases upon the idea that everycaiode linked to an angle of
incidence of an incident wave. Thus, it follows that thera iminimal possible on the surface
of a structure projected wavelengifl}, for each eigenfrequenaym, which corresponds to an
incidence parallel to a boundary surface (angle of incidds®0). This wavelengtA ™ is
given by

W = (39)

m 211C 2rc
min — ; =
wnSIN90@ Whn
Because of that the wavelength of a mode shape on a surface of a coupled structure can takes
values between this minimum and infinity (equates to normzilence of a wave) and can be
approximated as follows for each eigenfrequency using oumly distributed random angle
of incidenced:

(40)

)‘min (41)
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In addition to get a complete description of a mode sh@peon a boundary surface relating
to a coordinate system it is necessary to define the direofiarcidence with an angle (see
Figure22) and the phase shift. These values can be also characterised as uniformlytalitd
random numbers, which can take values between zero andRin all, this random method
to get approximate modes works theoretically exact for idicavities, because in this case an
infinite number of modes exists at every frequency and théeargl the direction of incidence
and the phase shift are uniformly distributed. At lower mddasities of real cavities this leads
to an error for the eigensystems, but this error becomedeanfiat increasing dimensions.

itz

incident
sound wave

Figure 22.: Sound incident on a boundary surface

In a first example these so approximated eigensystems adefaséhe calculation of the
transmission loss of the small cavity-plate-cavity sysfeom section3.2 In this case the
approximate mode shap@s, on the surface of the plate are given by

O = cos(j?x + 5) cos(igy + 5) = cos(ksxsing cosp + &) cos(ksysing sing + d)
m'/X m?y
(42)

wherek; is the wavenumber of the fluid angh,, andAg,  are the approximate wavelength in
the directions ok andy. The so obtained transmission loss is illustrated in Fi@®&éor the
plate damping factorg, = 0.01 andnp = 0.001. Using a random phase shditgives here
in general a huge error below the critical frequency. On tieohand, for a constad = 0
the difference in comparison to the exact SmEdA calculdtieromes much smaller below the
critical frequency. The reason for this phenomena is thaptiase shift of the modes of a finite
cavity is as a consequence of the boundary condition catrigtathe formula for cavity modes,
equation 80), shows, but at higher frequencies, where the wavelengésmall in comparison
to the dimensions of the cavity the influence of the boundangitmn becomes less important.
All'in all, with such a approximate method it is possible toaleaven for a small system a quiet
good approximation of the transmission loss above the f6tHz frequency band, although
the modes are very roughly estimated and the numbers of naoegsiite small in the frequency
bands (see Tablg).
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Figure 23.: Transmission loss for different plate dampamidrsn, predicted with approximate

modes

10°
Frequency (Hz)
23.2: Np= 0.001

number of modes

frequency band

sending cavity

receiving cavity

exact approximate  exact approximate

10 - 410 Hz 11 5 15 7

410 - 810 Hz 55 37 74 54
810 - 1210 Hz 125 100 180 142
1210- 1610 Hz 237 194 321 277
1610 - 2010 Hz 373 318 517 454
2010 - 2410 Hz 517 473 740 677
2410 - 2810 Hz 741 660 1038 942
2810 - 3210 Hz 951 877 1340 1254
3210 - 3610 Hz 1213 1126 1724 1607
3610 - 4010 Hz 1514 1405 2133 2007
4010 - 4410 Hz 1810 1715 2589 2450
4410 - 4810 Hz 2183 2056 3079 2937

Table 6.: Exact and approximate number of modes in the diftéfrequency bands

4.1.2. Mixed power balance equation systems

Another possibility to reduce the computational cost is$e mixed power balance equation
systems. That means that one power balance equation isarseef whole system and power
balance equations for each mode for another connected ®ebsysee equatiori4)). But
because of the necessary condition of energy equipartifidhe modal energies (see section
2.1.3 itis only possible to take into account resonant modegst/stem, which is represented
only with one power balance equation. The coupling lossofair this system is equal to the
SEA one and is predicted using equati@g)( Finally, a mixed power balance equation system
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for two connected subsystems rea@$|{
P! = (n'+nw) E - E%Zﬁnlr%
n

= (nBeh 3 PER) €G- 5 3 o

n n
where 312 is modal coupling loss factor, equatioh)(n1» is the SEA couplling loss factor,
equation 16), w?, N2, P2 andEZ are the eigenfrequency, the damping factor, the input power
and the modal energy of the mode m of subsystem wois the central frequency of the
excited frequency bandh is the number of modes of subsystem one in the excited freaguen
band andq?, Pt andE?! are the damping factor, the input power and the energy of tiaev
subsystem one. Such a mixed power balance equation systebe @pplied for example for
the calculation of the transmission loss, because the reonamt modes can be neglected in
general for the sending room. In this way this transmissass Icase can be described with
one power balance equation for the sending cavity and wittepdalance equations for each
mode of the receiving cavity and of the structure in betwéencavities. To demonstrate that
this works the transmission loss of the small cavity-plzaeiy system of sectio.2is given
for the plate damping)p, = 0.1 in the following figure. Here, the transmission loss grapies
calculated with SmEdA including non resonant modes onaggusiull power balance equation

system (one equation for each mode of each subsystem) andusimgethe described mixed
power balance equation system.

20} —*— mass law normal incidence
formula of Cremer diffuse

10| —>— SmEdA mixed equation system
—&— SmEdA full equation system

Transmission loss (dB)

10°
Frequency (Hz)

Figure 24.: Transmission loss calculated with a mixed povadance equation system (plate
dampingnp = 0.1)

4.2. Localised damping

To describe a localised damping in modal methods, like SmHEdA necessary to define an
unique damping factor for each single mode, because thengsisin of one equal damping
factor for all the modes as used in secti.2is only valid for uniformly distributed damping.
These modal factors can be calculated for example for stregtusing a strain energy method
[22, 23] or a complex eigenvalue methodd, 24, 25]. The strain energy method is used for
multi-layered structures or structures with added dampmaderials in some areas. Here it is
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assumed that the damping factpy of the damping material is much bigger than those of the
other component, for example steel. The modal dampingfé@t@ moden is given by

_ naEg,

n=
S
En

(44)

whereE; is the total modal strain energy of modandEjm is the modal strain energy of mode
n contained in the area of the damping material. The other odettihe complex eigenvalue
method, is applied to arbitrary structures like vehicle poments 24]. To get a damping factor

for each mode, the complex eigenvalue problem of a dampeermys/hich is described by the
following equation, is solved first in this method.

My + Dy + Ky = F (45)

wherey is the displacemeng is the excitation force vector arid, K andD are the mass, the
stiffness and the damping matrix. The modal damping faagjgrsan be calculated from the
real and the imaginary part of the complex eigenval\jgas follows R4
|0 (Am)]
= 46

= 10 (A “o
Such a complex eigenvalue method can be maybe also usedviiegawhich have not uni-
formly distributed damping on the boundaries.

5. Conclusion

This deliverable demonstrates after the explanation ob#sec concepts (sectid?) on some
examples (sectioB}) that SmEdA is a good alternative method for the calculatibnoupled
cavity-structure problems. One advantage of SmEdA in coispato FEM is the faster pre-
diction of total energies of subsystems for broad band attoits, because after the calculation
of eigensystems only one linear power equation system hag tolved for one frequency
band using SmEdA instead of coupled differential equatfona lot of single frequency steps.
Moreover, it is also possible to predict energy distribasiof the subsystems with the presented
post-processing method (see sect®P and not only total energies as is the case with SEA.
But one problem of SmEdA is that the computation time incredseexample with rising fre-
guency like in FEM, because the mode density especially dfiea increase and so does the
time for the prediction of the eigensystems and for the SmEall&ulation procedure. There-
fore, the development of methods, which reduce the computdtcost, has been started (see
sectiond). Other future research topics will be the handling of Ie&d damping in connection
with SmEdA and further application possibilities.
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Abstract

The statistical modal energy distribution analysis (SmEbHas been developed to bridge the
gap in the mid frequency range between the finite elementoddfFfEM) and the statistical en-
ergy analysis (SEA). SmEdA requires a solution of the eigkm/problem for each subsystem.
But it can be very time consuming to compute the modal parasiefest subsystem in some
cases, for example that of a large cavity. Also, the inforomaabout the mode shapes in the
whole space is not necessary, if one is interested only &h éotergies of subsystems. Because
of these reasons a method to approximate eigensystems ah&/@iupling surface between to
subsystems is developed. Another possibility to reducedneputation cost for systems with
high mode densities is to use a hybrid SEA/SmEdA method, s presented in a previous
article about SmEdA in connection with structure-struetcoupling. In the present paper, the
new method to approximate eigensystems and the hybrid SERd® method are presented.
The application possibilities of them are demonstratedamity-structure systems.
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1. Introduction

1. Introduction

The most popular methods for the analysis of vibro-acoustgtems are the finite element
method (FEM) for the low frequency range and the statisgécedrgy analysis (SEA) for the
high frequency range. To close the gap in the mid frequenayeraetween FEM and SEA, the
statistical modal energy distribution analysis (SmEdApwaveloped by Maxit and Guyader
[1, 2] to create an energy based method which can be used at logagreincies than SEA.
This aim was reached by using a coupling between the mode#feredt subsystems instead
of the coupling of complete subsystems like in SEA. In thiywee key SEA constraint, that
of equipartition of modal energies, is removed. But on theeptiand SmEdA uses still the
principle of conservation of energy like SEA. That meanshia tase of SEA that the basic
equation for each subsystens the following power balance equation:

|—|i :nidis"H_Iiex (l)

wherel! is the input powerl'li]IiS is the dissipated power arﬂiex is the transmitted power into
connected subsystems. The dissipated pdWgr is proportional to the total enerdy of a
systemi and I‘ILX is proportional to the difference of the total energies l@stwthe concerned
subsystem and the connected subsyst&nsThe proportionality factors in these relations are
the damping loss factay; and the coupling loss factayj. Hence, the power balance, equation
(), reads:

N' = wniEi + wenij (Ei — Ej) 2)

whereax is the central frequency of an excited frequency band. Hasvehergy principle is
used in SmEdA for each mode is explained in detail in the nestar of this article. Moreover,
this chapter gives an overview over the recent extendedoveo$ SmEdA for cavity-structure
coupled systems, which takes into account also non resenadés contrary to the original
SmEdA [1, 2]. The non resonant modes play for example an important oslaighly damped
systems. In previous articled,[5, 6], the advantages in comparison to FEM and SEA and
the application possibilities of the extended SmEdJA apghdeave been demonstrated on both
simple academic and industrial cavity-structure probleBist one problem of SmEdA is that
the computational cost grows with increasing mode dessibecause each mode is described
with one power balance equation and so the linear equatistersyincreases, which has to be
solved. This is especially a problem for cavities, wherertitele density increases strongly
with a rising frequency. If only the resonant modes are resng40 get a good result, this prob-
lem can be solved by using SEA with coupling loss factorsipted from the modal coupling
factors of SmEdA as described id]][ In other cases it may be possible to find some subsys-
tems, which can be handled as SEA subsystems using onlyamrgsorodes, and to apply a
hybrid SEA/SmEdA method. Such a technique, which was usstddyr Maxit and Guyader
[8] in combination with structure-structure coupling, is geted and used for structure-cavity
coupling in this article. Another problem is that the eigestems, basis of SmEdA, are calcu-
lated normally with FEM, because the computational cost ohsucalculation is in the case of
high mode densities also quite high and increases withragrfsequency because of the need of
a finer mesh. Furthermore, a cavity is sometimes ill definetsarthe exact shape of it, which
is necessary for a FEM calculation, is not known. Because egehreasons a new method,
described in this article, has been developed to approgigigensystems of cavities. After the
presentation of this method and of the hybrid SmEdA/SEA wtkthe advantages and applic-
ation possibilities of the two methods are demonstrateagusie examples of transmission loss
calculation, which are discussed in detail 4}, [ 9] and [10].
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2. Statistical modal Energy distribution Analysis

It was demonstrated by Maxi2] that the coupling between two modes of different subsystem
can be described as an gyroscopic coupling between twdaiscd, if one subsystem can be
considered as blocked on the coupling area and anothereaslines is for example possible in
the case of a cavity-structure coupling, where the vibratio the cavity can be described with
blocked eigenmodes and those in the structure with in vacaesy The same analogy is also
used for structure-structure coupling, for exampledhdnd [8], but this article is only about
SmEdA for cavity-structure couplings. The advantage of Hnalogy to coupled oscillators
is that the well established results for coupled oscilgtwom for example 11], [12], [13]

or [3] can be used. One important result, which was the start oflévelopment of SEA,

is the description of the coupled problem with one coupleergy conservation equation for
each oscillator. In this way, a first energy based analogoeshanical model consisting of
gyroscopic coupled oscillators (see Fig@yavas developed by Maxit and Guyader for the real
problem of coupled subsystems (see FiglyteHere, each mode of a subsystem is represented
by one oscillator whose mass is equal to the respective nmdas. The coupling between
two oscillators is described with a coupling facﬁég as a function of the mode parameters as
follows, [1]:

3)

g VR D66 + 1))

P MIME(6B)? | ((h)? — (@f)?)2 + (neh + nFel) (nfeb(wf)? + ngd(wd)?)
whereMg, M3, w; andwg are the modal masses and the eigenfrequencies of the p-tirtind
mode of the subsystems one and two. The interaction modd Wéf is the integral over the
coupling are& of the product of the mode shapp§ anqu2 of the p-th and g-th mode of the
subsystems one and two:

Wod /S PpWEdS (4)

cavity structure

Lx

i Ay

/L___ ﬁ

Figure 1.: System in reality: A cavity coupled to a structure

The problem of this first analogous model is that only resbnardes relating to an excited
frequency band can be taken into account, because a whge excitation is assumed for the
derivation of the coupling factor like in the classical theof coupled oscillaors3. Also, the
boundary conditions between a cavity and a structure, famgte the equality of the normal
velocities, are not respected and thus it was necessarydondeihis analogous model. 1&Q]
it has been demonstrated using the formula of Cremer (traassoni loss of an infinite plate)
as reference, that the boundary conditions between thesubal/stems can be respected in the
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Figure 2.: Analogous mechanical model: Two gyroscopic tedipscillators

analogous mechanical model with the response of the osegl&tequency averaged from zero
to infinity. In this way, the coupling factors between all tiexillators, which represent resonant
or non resonant modes, are equaBﬁé of equation 8). Because of this average response the
kinetic and potential energies of all oscillators are alseagk equal and so they are only equal
to those of the respective modes in the case of resonanedxuoibdes. But the total energy of
an oscillator and its respective mode is of course alwayaledine advantage of these equality
of the potential and kinetic energies for the oscillatottlist the real coupled cavity-structure
system can be represented with a power balance equati@msgsta function of total energies
like in SEA, equationZ), but with one equation for each mode and not only with onesarh
subsystem.

Omax
1 1,11 121 2
Mp =NpwpEp+ > Bpg(Ep—Eg) )
0=
WhereI’I%, is the power input in the p-th mode of the subsystem one. Thredfall these total
modal energies, respectively energies of oscillators,saftsysten gives the whole energy’'
of a subsystem(7, 5].

E'=YE, (6)

3. Hybrid SEA/SmEdA methods

In the following it is shown how the SmEdA approach can be doedb with SEA. If only
resonant modes are necessary to be taken into account fdifférent subsystems, the SEA
coupling loss factorg)j can be calculated on condition of modal equipartition ofrgpérom
the modal coupling loss factors (equati@))(like in [7] as follows:

1 Pmax0max

12
— 7
Mma=-— le qu Bog (7)
N21 = ! pfxqfxﬁéé (8)
Qmach p:]_ q:]_

where pmax andgmax are the number of resonant modes relating to an exciteddrexyuband
with the central frequenay.. Using equationsd) and @), itis possible to make a classical SEA
calculation, equation2). This reduces the computational cost dramatically, b&eeaite linear
power balance equation system, which has to be solved,stdresie only of one equation for
each subsystem instead of a lot of equations for modes inatbe @f a SmEdA calculation. In
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[4] and [5] it has been demonstrated yet that this procedure prodwaebrgsults in comparison
to a usal SmEdA calculation if only resonant modes are nacgssid the non resonant modes
do not play a role. If only a part of the subsystems can be thestwith resonant modes only,
there is also the possibility to generate a hybrid SEA/Smipd#er balance equation system
to reduce the computational cost. For example a mixed poalanbe equation system for two
connected subsystems read; [

Pt = (' + N12) El_Er%ZBnlr%
n

2 2 2 2\ E! 9)
Ph= nmwm"’ZBnm Em_FZBnm
n n
wherew?, n2, P2 andE? are the eigenfrequency, the damping factor, the input pandrthe
modal energy of the mode m of subsystem twp,is the central frequency of the excited fre-

quency bandp is the number of modes of subsystem one in the excited fregusand and)?,
P, andE! are the damping factor, the input power and the energy of thieesubsystem one.

4. Approximate modes

To predict approximatively the eigensystems of fluid filleities two approximations, one
for the eigenfrequencies and one for the mode shapes, aessaey. From the literature, for
example 4], it is known that the mode densityis approximately given by

K2V

- 271Cs

(10)

wherek is the wavenumber anck andVs are the sound velocity of the fluid and the volume
of the cavity. Thus, the number of modBisin a frequency rangew; to wy, fellows from
integration oveko

2] kZVf

dw 11
w, 2TPCt (11)

Under the assumption thay is zero and that a frequency is an eigenfrequency, for wieh t
numberN of the modes is an integer, the eigenfrequenaigxan be approximated as follows
using equationX1):
,/6mcim
Vi

W = (12)
wheremis a positive integer. For the approximation of the shapeék@tigenmodes, it can be
assumed that the shape of a cavity mode at the coupling susfapgroximately equal to the
distribution of the pressure on a structure of an incidenhgovave. The frequencies of these
waves are assumed to be equal to the approximate eigenfiggser, of the modes. In this
way, the wavelengtiA 3, of a mode shape on a surface is equal to the on the surface tejec
wavelength (trace wavelength) of the corresponding soumawT herefore, it results that

s 2m
M wmsingd

(13)
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whered is the angle of incidence of an incident wave (see Fi@)reThe trace wavelength
becomes minimal for an incidence parallel to a boundaraserfangle of incidence is 90

Am 2T1C :27'[0
MmN w,sin90  why

(14)

Thus, the wavelengthg, of a mode shape on a surface of a coupled structure can takes va
between this minimum and infinity (normal incidence). Initidd to get a complete description
of a mode shap@;, on a boundary surface relating to a coordinate system itésssary to
define also the direction of incidence with an azimuthal agg(see Figure3) and the phase
shift 8. For example, in the case of a plane structure the approgimatle shape®;, on the
surface can be thus written as

o7, = cos(igx + 5) cos(igy + 5) = cos(ksxsing cosp + 8) cos(ksysing sing + d)
m,x my

(15)
wherek is the wavenumber of the fluid ang, , andAg, , are the approximate wavelength in the
directions ofx andy. All these valuesg, d andd can be characterised as uniformly distributed
random numbers, which can take values between zero améspectivelyrr/2 for 9. The
mode shapes approximated in this way are theoreticallytégamfinite cavities, because in
this case an infinite number of modes exists at every frequand all the incidence parameters
are uniformly distributed. At lower mode densities of reaVities this leads to an error for the
eigensystems, but this error becomes in general smallariméteasing dimensions. All in all,
these approximate eigenfrequencies, equatl@ @nd these approximate mode shapes on a
coupling surface, equationd3) and (5), are a sufficient description of eigensystems for the
use in connection with SmEdA, because only the mode shapi®@oupling surfaces and the
eigenfrequancies are necessary to calculate the moddimggctors, equationd). But there
Is no information in this way about the mode shapes of a cavitlge rest of the volume.

pit2

incident
sound wave

Figure 3.: Sound incident on a boundary surface
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5. Example

5.1. System under study

To demonstrate the advantages and the application passghibf the hybrid SEA/SmEdA
methods and of SmEdA with approximate eigensystems, a leasitple configuration of a
simply supported rectangular plate between two paraligéelic cavities as presented in Fig-
ure4 and Tablel is chosen. This system is excited in a corner of one of theieayisending
room) with a monopole source. The coincidence frequenchi@ptate is 2933 Hz. The exact
eigenmodes and eigenfrequencies for the SmEdA calcutatiancalculated in the present case
analytically. The eigenmodgsys and the eigenfrequenciesgys of the cavities are given by

[15]
Pgrs = cos(qix> cos(riy) cos<£z) ;) q,,s=0,1,23,... (16)
Ly Ly L,

o= (2 (5)"+(2)

The eigenfrequencias;,, and the mode®\s;,, of the simply supported plate are

2 2
e SRGITERS
X Yy

Wen= sin(mm(> sin (@) (19)
Lx Ly

with the mass per area and the bending stiffne€of the plate.

and

and

sending room receiving room

plate
:
|
| Ay Ly
! z
- —>--r--> -
I X ﬁx
i t i
La h Lo

Figure 4.: Sketch of the cavity-plate-cavity system
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5. Example

plate sending room receiving room
Ly x Ly x L (h) (m) | 1.2x0.9x0.004 | 1.2x0.9x0.7 [12x09x1
p (kg/m3) 7820 1.2 1.2
c(m/s) 340 340
n 0.01 0.01 0.01
E (MPa) 210
v 0.3

Table 1.: Characteristics of the subsystems

5.2. Transmission Loss calculation using hybrid SEA/SmEdA methods

As demonstrated ind] and [9], it is necessary to take into account non resonant modes to
calculate the transmission loss of the chosen examplersystgure4, if the damping factor

np of the plate is high (see Figuré&sand6). Therefore, only for a low plate damping it is
possible to reduce the computational cost using a compkefecalculation with coupling loss
factors predicted from SmEdA as described in chaBteBut in this case the so calculated
transmission loss (line “SEA SmEdA’ in FiguB agrees well with those of the usual SmEdA
calculation. The only difference between the results oftthe methods exists at very low
frequencies because of the low modal densids [
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Figure 5.: Transmission loss for a plate damping= 0.001 (frequency band width: 400 Hz;
graph “SmEdA non resonant”: resonant and non resonant mergessed for the

calculation)
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Figure 6.: Transmission loss for a plate dampifg= 0.1 (frequency band width: 400 Hz;
graph “SmEdA non resonant”: resonant and non resonant ma@essed for the
calculation)

To reduce the computational cost also for the case of a hage gahmping a hybrid SEA/SmEdA
calculation, equation9j, can be used. Here, the sending room can be representedmath
SEA-like equation, because the excitation with a monopola corner is more or less equal
to an equal nonzero power input in all the resonant modes [@hlyThus, if the other two
subsystems are described with power balance equationesdonant and non resonant modes,
the transmission loss predicted with such a hybrid methioé (ISEA/SmEdA 1 cavity” in
Figure7) is as expected almost equal to the one calculated with &fuEdA approach. Next,
the computational cost is reduced further using SEA-likaagigns for the two cavities for
the calculation of the transmission loss (line “SEA/SmEdAaRities” in Figure7). But the
difference in comparison to a complete SmEdA calculatiotobees here quite large like for
the calculation without non resonant modes in Figbird hus, only the sending room can be
described with one SEA-like power balance equation in tkeargle, because non resonant
modes have to be taken into account for the other cavity {rexgeroom).
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Figure 7.: Transmission loss calculated with a mixed powadarce equation system (plate
dampingn, =0.1)
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5.3. Transmission Loss calculation using approximate modes

Next, the transmission losses obtained with approximaensiystems (see chap@rfor the
two cavities are compared in Figur8sand9 to those predicted with exact analytic eigensys-
tems, equationslg) and (L7). As it is not possible to handle localised point excitasiavith
approximate modes as these are only defined on the couplifageysee chaptet), only all
the resonant modes have equal nonzero power input, whaaiky/riee same as with the excit-
ation at one cornet9|. Using a random phase shdtgives here in general a huge error for the
transmission loss below the critical frequency. On the r@ogt for a constand = 0 the differ-
ence in comparison to the exact SmEdA calculation becomet remaller below the critical
frequency. The reason for this effect is that the phase shifie modes of a finite cavity is as
a consequence of the boundary condition constant like ttmeuia for cavity modes, equation
(16), shows. But at higher frequencies, where the wavelengthsraall in comparison to the
dimensions of the cavity the influence of the boundary caoibecomes less important.

formula of Cremer diffuse

Transmission loss (dB)

—8— SmEdA exact
10| —x— SmEdA & random
—p>— SmEdA 5=0

10°
Frequency (Hz)

Figure 8.: Transmission loss for a plate damping fagige= 0.01 predicted with approximate
modes

formula of Cremer diffuse

Transmission loss (dB)

—&— SmEdJA exact
10f| —%— SmEdA & random
—b— SmEdA 6=0

10°
Frequency (Hz)

Figure 9.: Transmission loss for a plate damping fagipe= 0.001 predicted with approximate
modes
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Another problem of the approximate method as described apten4 is that the angle of
incidenced is assumed to be uniformly distributed, because espediallije case of small
cavities different directions of incidence can be dominantavities, which have the same
volume. If for example_, (see Figuret) is much larger thahy andLy, the waves normal to
the plate and with small angles of incidence would be dontinBat all in all, with such an
approximate method it is possible to reach even for a smalegy a quite good approximation
of the transmission loss above the first 400 Hz frequency Jbaltlibugh the modes are very
roughly estimated and the numbers of modes are quite smdilff@rent frequency bands (see
Table2).

number of modes
frequency band sending cavity receiving cavity
exact approximate  exact approximate
10-410 Hz 11 5 15 7

410 - 810 Hz 55 37 74 54
810-1210 Hz 125 100 180 142
1210- 1610 Hz 237 194 321 277
1610 - 2010 Hz 373 318 517 454
2010 - 2410 Hz 517 473 740 677
2410 - 2810 Hz 741 660 1038 942
2810- 3210 Hz 951 877 1340 1254
3210 - 3610 Hz 1213 1126 1724 1607
3610 - 4010 Hz 1514 1405 2133 2007
4010 - 4410 Hz 1810 1715 2589 2450
4410 - 4810 Hz 2183 2056 3079 2937

Table 2.: Exact and approximate number of modes in the diftéfrequency bands

6. Conclusion

As demonstrated on the examples of the transmission losslatbns in the previous chapter,
hybrid SEA/SmEdA methods can be successfully applied usmtee conditions and can reduce
so the computational cost. But one problem is that it has taéetified first if it is sufficient
to use only resonant modes for a subsystems and thus tolzefas subsystem with a SEA-
like power balance equation. At this, also the connectedygibms and their characteristics,
for example the damping, can play a role especially for noectliexcited subsystems, like the
sending room of the presented example. Thus, it can be qgéfiutl to decide a priori if non
resonant modes are necessary to be taken into account ddthet. problems are typical SEA
ones. So it is not possible to respect the differences betddemnent point excitations in a
SEA-like subsystem. Also, there is no information aboutdistribution of the energy in such
a subsystem. The other in this article presented methodelvanethod to approximate modes
for ill defined systems or systems with high mode densities, teen tested here for the first
time but on a quite small system with low mode densities. @lth this method is designed for
systems with high mode densities because of the assumgtiamformly distributions of the
mode shape describing values, the predicted transmisssgied are so far quite good. Thus, it
seems to be a good method to describe ill defined systems aaditce the computational cost,
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maybe also in combination with the hybrid SEA/SmEdA methdalssystems with high mode
densities, because no time consuming calculation of theneigstems with FEM is needed. But
to get more exact results with this method also for smallesyst it is necessary to research in
the future different distributions for the directions otidence and the phase shift, which are
used to define the mode shape on the coupling surface. Anribiglem is, that similar to SEA
no localised external excitations can be handled with thppeoximate mode shape because of
their definition only on the coupling surfaces.
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Abstract

The Statistical Modal Energy Distribution Analysis (SmBd#as been conceived to close the
mid-frequency gap between the widely used low-frequendyllB&d high-frequency SEA. Un-
like SEA which couples the entire sub-systems, SmEdA usesdhpling between individual
modes of subsystems. The original SmEdA formulation istéohito coupling between reson-
ant modes only. This makes it for example less applicablegioljxdamped systems. A novel
version of SmEdA is presented in the paper, extended to remmasit modes. The advantages
of the new method are demonstrated by modelling the traissonisoss of a flat panel inserted
between two cavities. One principal advantage is, thataonto other methods, which assume
often a diffuse sound field, SmEdA can predict the transmiskiss of partitions in between
cavities with non-diffuse sound fields.
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1. Introduction

1.1. Transmission Loss

Different approaches have been in use for vibro-acoustoulzdions: — analytical, variational,
finite element and energy methods. One important applicatidhese approaches is the pre-
diction of transmission loss through a partition. Severah$mission loss models have been
developed over the past century. The transmission lossctegises the physical process of the
transmission of the acoustical power through a partitiai e transmission factar, the ratio
between the transmitted powigrand the incident poweR. In this way, the transmission loss
Rin decibel is defined as follow4]:

R=10lg (%) =10lg (%) Q)

The earliest and simplest transmission loss model is thes faas

2
Ru = 101g |1+ (—wmcos’c}) ] 2)

2pc

which assumes a rigid partition between two free sound fiekguation ) shows that the
transmission loss depends on the mass of a partitomfass per area), the angle frequency
w, the densityp of the fluid, the speed of sourtdof the fluid and the angular of incidende

The theoretical background of this law was first formulatgdRiayleigh P] and experimentally
verified amongst others by Berg@j[ The next development was made by Cremer. He replaced
the model of a rigid partition by the Kirchhoff plate modelaocount for the plate deformation.
Assuming an infinite plate Cremer obtained an expressioneofrdnsmission loss which not
only depends on the plate mass but also on its bending s#fae

-4 2 2
sin* 39 cosd
1 ~Bw® 3
(om-sr27) (52) ©
The additional dependence on stiffness yields the soetakéncidence effect: a resonance
phenomenon which appears when the wavelength of a free Ipdsiging wave matches the

wavelength of an incident sound wave projected onto the [fteice wavelength). The lowest
frequency allowing the coincidence is the so-called altfoequency:

¢ /m
c“on\B"

Rc = 1019

(4)

Due to the simplicity of the formula of Cremer and its good @ppnation of the principal
tendency of transmission loss, especially above the atitrequency, this formula is still of-
ten used. Other analytical solutions were searched andufated later for more complex and
realistic configurations like for finite plates by HecH] [or for finite plates between finite cav-
ities by Nilsson #] and by Josse and LamurB][ But these models are only rough estimates
due to multiple involved assumptions. This has promptedticre@f other models to predict
the transmission loss using variational, finite element emergy methods. The first one, the
variational approach, was used for example by Woodcock acala$ [B] for finite plates or by
Gagliardini, Roland and Guyadéf][for a finite plate between two finite cavities. The drawback
of these models is that the functional basis of a completesysvhich satisfies the geometrical
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boundary conditions, can be found only for simple geometile a rectangular plate. How-
ever, there is also a newer variational approach, the wasedaethod, that overcomes this
obstacle by using the functional basis only for parts of $enggometry. One application of this
approach was demonstrated by Dijckmans and Verngifof the transmission loss of a real
cavity-plate-cavity system. Another group of calculatiools are the finite element method
(FEM) and the boundary element method (BEM). For example ®aki Egawa and Yasuda
[9] used a combination of FEM and BEM to predict the transmis$iss of finite plates in
between diffuse sound fields. The main difficulty of thesehuds is the rapid increase of the
computation cost with rising frequency and with increassimg of the system. Finally, there
are the energy methods, the statistical energy analysi8)(8&d the statistical modal energy
distribution analysis (SmEdA), which is the topic of thisiele. These two methods are based
on the principle of the balance of energy for each subsyslikma cavity or a plate, and de-
scribe the coupling between subsystems with one or moreliogujactors. In contrast to the
other calculation methods the energy methods output exgergther than pressures, velocities
or displacements.

The original formulations of energy methods can take intmaat only resonant modes related
to an excited frequency band. But non resonant modes are tampdor example for highly
damped systems, narrow band excitations or some boundaditioms. In SEA applied to
transmission problem, this is solved by using a non physiicatt coupling factor between two
cavities. The present paper describes how to handle thisasamant modes in a new extended
version of SmEdA.

1.2. Statistical energy analysis

The statistical energy analysis is the most popular eneaggd method. The development of
it started in the early 1960s with the works over coupledltadors from Lyon and Smith10].
The fundamental equation of this method is the power baltoresach subsystem (for example
an oscillator). This means, that all the poW#r which is input in a subsystemis dissipated
(I'Iidis) in this subsystem or transmitted into another connectbdyatem [1L,).

|-|i :nitjis+niex (5)

It has been found out, that the power exchafiggbetween two coupled subsystems is propor-
tional to the difference of their total time-averaged eresgThe total energy of a subsyst&mn

Is linked over the subsystem damping loss factoto the dissipation powdﬁijis. Thus, it can

be written .

N' = weniEi + wenij (B — E;j) (6)
wherewy is the central angular frequency of the frequency bandmpes the coupling loss
factor. Moreover, the coupling loss factors of two couplaldsystems are interrelated through
the reciprocity relation

ninNij = Njnji (7)
with the modal densities; andn; of subsystemsandj. Allin all, the energies of subsystems
at a given power input are calculated with a linear set of Bgna. Thus, SEA is principally
an easy calculation method, but the key problem is the eBtmaf the coupling loss factors.
These coupling factors can be predicted for the transmmdess calculation of a finite plate in
between two finite cavities using for example the method ofjiREair and Narayananl|l] or
that of Lyon and DeJondL[)]. In [10] the process of transmission is divided into two paths, the
non resonant and the resonant transmission. The first is onéegs an extended version of the
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mass law and is characterized by the coupling loss fagigifor the direct coupling between
the two cavities under the assumption of diffuse sound fields.

C1 112,00 (0)
f k%Vl 2—T120(0)

with the transmission coefficiemi, (0) for normal incidence, the correction facty for the
case of low modal overlap, the frequenicythe correction factok; » for diffuse sound field and
the sound velocitg;, the wavenumbek; and the volumé&/; of the cavity one. The factoi,

l12 and 712, (0) are explained in appendiX. The second path of transmission, the resonant
transmission through the resonant modes of the plate, resepted by the indirect coupling
factorng,. This factor is related to the plate radiation efficiemgyy as follows:

(8)

N12 = Bcl12

_ k& ©)

wherep, andc; are the density and the sound velocity of cavity gmeandh are the density
and the thickness of the plate aads the angular frequency. For a simple supported thin plate
and light fluids in the cavities the radiation efficiency ipegximately given by, 10],

2k2Ls 1

Orad = (10)

+
TIk? 2 2
3 ™ k2 kd
TARK, <1+ 2k2) (—2—1) <—p+1> T
b ki ki Ko\/Ap
with the length of the edgks, the plate are#, and the wavenumbeis, andk; of the plate
respectively of the cavity. Finally, the basic power baaaquation system of SEA readdl]:

My N1+ N1ip+N12 —Np1 —N21 =]
0 = —Nip N2+ Np1+Np2 —N2p Ep (11)
0 —N12 —Np2 N2+ N2p+N21 E>

Using these energies of the subsystems estimated in thishe@dgansmission loss is calculated
with the formulas for finite cavity-plate-cavity systemseay in appendixA. To sum up, con-
trary to the mass law and the formula of Cremer the presentuiation does not neglect the
influence of the cavity size and damping and takes into addberfinite size of the plate.

2. Coupling between two oscillators

The statistical modal energy distribution analysis (SmjdAs developed by Maxit and Guyader
[12] to extend the frequency range to lower frequencies, whezeggrbased methods like SEA
cannot be used. The description of coupling in SmEdA is basdtie dual formulation of two
gyroscopic coupled oscillators (Figutg

2.1. Resonant excited oscillators

The behaviour of gyroscopic coupled oscillators is desttiby the following coupled differ-
ential equations:

Ya(t) + Arya(t) + wfyi(t) — /My "Mayya(t) = Fa(t) 12)

Ya(t) + Do¥a(t) + wYa(t) + /My TMayya (t) = Fo(t)
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Y1 i

Ky JAY] K> JAYS

| |
7777 7777

Figure 1.: Two oscillators coupled by a gyroscopic element

wherel; = wn; is the damping coefficieny; is the gyroscopic coupling factor amty andM,
are the masses of the oscillators. It was shown that underite wbise excitation the time-
averaged power floWP;»> between the oscillators is directly proportional to thefetédnce of
their time-averaged energi&s andE; [13].

P2 = B(E1 - Ep) (13)

wheref is the coupling factor. FurthermorBy,, E; andE; can be expressed in terms of the
time-averaged velocities;) of the oscillators 10] as follows :
Ex = $Mq (¥2)
Ez = 3M2(¥3) (14)
Pio = 30 (yy/M1Mz (y1y2))
These velocities are calculated for harmonic foregs) using equationX2). Therefore, for

uncorrelated forceb;(t) the velocity terms can be written in the following form4 10] (*:
complex conjugate):

()= [ 8,62 HusPdo+ [ 5,07 Hialdo
() :/ssz\sz\Zder/sleyH21|2dw (15)
(Y1y2) :/SlwanHﬁldwnL/SzwzleHé"zdw
with the complex frequency response functions

—? +iwhy + w3
M1D
—? +iwhy + w?
M_D
iaz)y (16)
DvM:iM
—iwy

DvMiM>

Hio =

and
D = w* —iw® (B +D2) — &P (Wf + W8 + Dyl + VP) + 1w (B wh + Do0R) + e (17)

149



11. Paper VI: Non resonant modes and Transmission Loss Sgatigtical modal Energy
distribution Analysis (SmEdA)

Under the assumption of a white noise excitation, the sp&tf the forced are given by
S(w) = const.# 0 (18)
in the whole frequency range. Finally, equatioh8)(to (18) yield:

B V2 (101605 + N2wp0?)
(0 — 02)2+ (N1 + N2wp) (N1 ()2 + Moy (wr)?)

(19)

wheren, andn, are the damping factors amo, andw, are the eigenfrequencies of the oscil-
lators.

2.2. Non resonant excited oscillators

The principle stating that the exchanged power of connesystems is proportional to the
difference of the energies of these systems is a quite geoenakpt which can be used not
only for oscillators excited with a with a white noise, eqoat(13). Such an example is given
by Lyon and DeJongll0]. They used two connected fluid filled containers as an awoal®g
model for two coupled subsystems. In the case of two osoilagxcited with the same single
frequencyw the relation between the kinetic energies and the exchgmmedr can be generally
described using the following equations for the differen€d¢he kinetic energieEi" of two
oscillators and the exchanged powvires.

2(Ef —Ej) = %wz (M1(y%) —M2(¥3)) (20)
P2 = %002)/\/ M1M200 ({y1y2)) (21)

Solving equationZ0) for w? and insertion of the result in equatic®lj gives:
Pio  2a (EX - EY) (22)

The factora is given for two uncorrelated forces with equal single extoiin frequencies using
equations 15) and @6) by

. M1Ma2y*w? (SM141 — S M2A2)
SMoM2 (0 — 260702 + i + wPAZ — w?y?) — SMIM3 (w* — 20205 + Wi + W2AS — w?y?)
(23)

The factora is symmetric @12 = a»;) and thus the exchanged power is really proportional
to the difference of the kinetic energies, because the syrmgnsea necessary and sufficient
condition for the proportionality]5]. Therefore, an arbitrary power balance equation system
for oscillators can be written — similar to this of SEA, eqaat(6) — as a function of the kinetic
energies of coupled oscillators.

M' = 2c N;iExin; + 20 (Exinj — Exin j) (24)
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3. SmEdA

3.1. Original formulation of SmEdA

The coupling between two oscillators was formulated madoérarily than in SEA and extended
to continuous vibrating systems. It has been demonstrafdd], that the coupling between any
two modes of different subsystems is equal to the couplimgéxen two oscillators, if across the
coupling area one system is taken as blocked and the othexeasrhis is for example the case
of a cavity-structure coupling. The cavity subsystem igabierized here with pressure mode
shapesp}, and the structure with displacement mode shéip@fasln this way, the modal coupling

coefficienty%g, equivalent to the gyroscopic coupling factoin equation (25), is deduced.

W12
/ WW2dS= P (25)

N wl)2MIM2 /S J(@h)2Mim2
whereWw?12

g the integral over the coupling are&hof the product of the mode shapes, is the
interaction modal work and Wheml}J and Mé are the modal masses of the p-th and g-th mode
of the subsystems 1 and 2. Finally, again under the assumgtia white noise excitation, the
modal coupling loss factor reads:

s nfobla - ned o
P4 MEMA ()2 | ((wh)? — ()77 + (ndoh + nZek) (nfeop () + ndeg ()

The modal energies of the different subsystems can be asdcbdlirectly withG;; with a system
power balance equations. One equation for each mode is esednistead of one equation per
subsystem like in SEA.

My = npwpEp+ z Bod E) (27)

The entire energy of a subsystem is the sum of all modal ezefithis subsysterml§, 17]
and the transmission loss can be calculated using equd4dn® (45) from A. Moreover, the
coupling loss factors of classical SEA can be calculatet thi¢ modal coupling loss factors on
condition of modal equipartition of energ${] with the following formulae:

PmaxCmax
= 28
N2= Prmae le qZ qu ( )
PmaxCmax
= 29
No1= RS pzl qz Bog (29)

where pmax andgmax are the number of resonant modes relating to an exciteddrexyuband
with the central frequencyy. It was shown by some authors, for example by Maxit and
Guyader L8] for structure-structure coupling or by Totaro, Dodard éwyader 17] for structure-
cavity coupling, that the SEA coupling factors computed byESlA agree well with these ob-
tained by other approaches.
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3.2. Extended version for structure-cavity coupling including non
resonant modes

A main drawback of the original SmEdA approach is that onsorent modes in an excited
frequency band are taken into account in view of the assemuif a white noise excitation.
However, the influence of non resonant modes can not be nedlecsome cases, for example
for highly damped systems. To find a solution involving nesenant modes for the cavity-
structure coupling it is necessary to have a closer lookeabtlginal derivation of the method.
In SmEdA the coupled system is split into a blocked cavity aficee structure on the coupling
surface to describe the coupling between the pressure ioathity and the structure velocity.
This is equivalent to the "blocked pressure” assumptiorctvig often used, for example i6][
or [19], where it is assumed that the motion of the plate is nedkgibr the calculation of the
surface pressure and the plate is then excited by the restdt@e. However, the calculation
of e.g. the transmission loss or the sound radiation regjtivat the boundary conditions are
respected. This is not the case in the original SmEdA fortraria The boundary conditions
are the equality of the velocitig® and the equality of the products of the stress tengffrand
normal vectorsy. at the coupling surface.

V=8 (30)

oPnl = 02n2 (31)
Finally, the coupled system is defined in this way with foun&itpns, the two coupled differ-
ential equations of original SmEdA, equatidi®), and the two boundary conditions. On the
other hand, only two variables are involved. Such an overdehed system has in general no
exact solution and it is difficult to find an approximate smnt Because of this problem an
exact analytic solution for the fluid-structure interantithe formula of Cremer (equatioB)j,
Is used here as a reference to find and to validate an analageeisanical model consisting of
two gyroscopic coupled oscillators. This model describescoupling between bending waves
of an infinite plate and waves of free sound fields which cardnsidered as modes of an infin-
ite plate and of semi-infinite cavities. Here, there is ndy @oupling between resonant modes
but also between other combinations with non resonant motiestefore, different possible
coupling factors can be tested in the following if they casalde also couplings with non
resonant modes.

3.2.1. Infinite transmission loss models expressed with power b alance equations

The coupling in the formula of Cremer concerns one incidentewaespectively one mode,
one plate mode and one transmitted wave. That means thissadesgcribed under inclusion of
chapter 3.2 by three power balance equations with only oneero power input.

P = 2011 Eiin 1 + 2B12 (Exin,1 — Exin,2)
P> = 0= 2N2Exin 2 + 2B21 (Exin2 — Exin1) + B3 (Exin2 — Exin.3) (32)
Ps = 0 = 21n3w3Exin 3+ 2B32 (Exinz — Exin,2)

where the indices 1, 2 and 3 identify the sending room, thiegad the receiving room. From
this equation system it follows fd#in 3:

B32B21E1

B23
(N2en + Bo1+ B23) {1730)3+ Bs2 (1— (N2t + Bor + 523))]

Exinz = (33)
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Also, it is assumed thatz = n1 = 0 for the infinite models and consequently, it results from
equations 1) and @3) for the transmission factor

1 Exina 1203
—=——=14+—= (34)

T Exng3 B12

Here, the kinetic energies can be used to calculate the tissiom loss, because the same
modes are excited in the two cavities and so the relationsdest the total energies and the
Kinetic energies are equal.

3.2.2. Comparison to the formula of Cremer without damping

From the power balance equation syst&®) (t can be inferred that a coupling factB, with

a coupling between one resonant excited cavity made=(cy, S;(wi1) # 0) and one plate
mode, which is excited only by this cavity mod&(w) = 0), could be a correct description of
the coupling. The test modal coupling loss fagBds can be then obtained from equatic@8,
which is a solution for gyroscopic coupled oscillators ndijected to any additional conditions,

VWil
(@ — ?)® + w3 — wiy?

Bio= (35)

Upon inserting}, in equation 84), using the formulae given in appendicd3 and E and
assuming)z = 0 one gets:

1 (B-wd)” (COSB)Zlanm—afB <ﬁ)4r (36)

T y2w? 20101 C1

This result matches well equatior®®) @nd @) if the influence of the factor+1” can be neg-
lected. But this is not the searched exact result of the faarofiCremer and sf!,, is also not

a general coupling factor. Next, the origir@& (equation 26)) is tested in the same way. Here
the obtained result is an exact one, i.e. the searched trssismfactor.

2
N (I cosd \ 2 s [Sind\*
T g T (2p101> wlm_wlB(C—l) &0

To getB)3 a white noise excitation is assumed rather than a singleiérecy excitation like in
the case of the infinite models. This means that there mustsee@nd way to get an integra-
tion from zero to infinity in equationslf). This other way is to calculate the averages of the
velocity/displacement terms for all possible single frexgey excitations from zero to infinity.
For examplg)y3) is then given by

. 1 ® ©
<y§> = A_Ot) (/O Slw2|H11‘2dCU—|—/O Szwz\ng\zdw> (38)

The factorAiw is canceled out using equatioris3| and (L4) to calculate and so the resultis a
kind of averaged coupling factor which is equal to that inaon 26).
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3.2.3. Comparison to the formula of Cremer with damping

Normally a complex stiffnesB = B(1—inc) is applied in the formula of Cremer (equati@))(
to take into account the plate damping whereby the trangmnissss reads:

cosd \ 2 sint 9\ 2 sinf 9
—10lg |1+ m— w’B ) +B2n2wb 39
R g[ = {(wl aie™” ) +enzaf g 39)

This assumption is not necessary for SmEdA because of tremdepce of the balance equation
system on the plate damping. Therefore the formula of Crearebe written as follows using
SmEdA and the coupling fact(ﬁir (equation 26)), which describes correctly the case without
damping (previous chapter):

cosd \ 2 sint9 ) 4S|n 9
o (20101> {(wl — B ci ) ez ci }] “o

In the case of the two eigenfrequencwesand w, being equal the transmission loss equation
Is equal to that of Cremer, because equatid) Can be then transformed as follows using
equation 66):

| cosd \ 2 sin*9 W 4sln 3
Rs =10lg 1+<2P1C1) {( —wls a ) 2 mBn; w o }]
(41)

[ cosd \ 2 sint 9 sinf 9
=10lg|1+ B> +B?nZw? —
J i <2plcl) {( “ 1 ) et Cl }] R

In contrast, the damping parts of the two transmission lags&ons are not equal for two
coupled modes of different eigenfrequencies. But this mikrisaof little importance, because
below the critical frequency, where the difference betwegandwy is large, the transmission
loss of the formula of Cremer is independent from the damp2@ gnd the coupling factor,
equation 26), is only dominated by the frégiency difference. Moreover, Figu2eshows for an
example of a steel plate in between a diffuse sound field égecover all incident angles), that
the transmission losses of equatioB8)(and @0) are equal for the whole considered frequency
band. The small difference at the critical frequency betwthe two transmission loss values
appears only because of an error in the numerical integratrer the incident angl8.

3.2.4. Conclusion from the comparisons with the formula of Creme r

The comparisons with the formula of Cremer in the previoudi@es demonstrate that the
coupling between two oscillators, which represent two nsoilethe analogous mechanical
model, is described bﬁpz (equation 26)). The coupling depends on the modes shapes, the
modal masses, the modal damping factors and the eigenfreiggebut not on the excitation
frequency. This implies thqﬂé& of the original formulation is the general coupling factothe
analogous mechanical model to describe every possible inatidn of coupling of resonant
and non resonant modes. Another consequence of this rgsahiupling factorﬁpl,g is that
the responses of the coupled oscillators become averagede(giation38)) and similar to
those under white noise excitation. This makes the kineigrgies of the oscillators are always
equal to the potential energies like in the case of the wloisenexcitation 13] resulting in

no difference between oscillators, which represent resomades, and those, which represent
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Figure 2.: Transmission loss of the infinite models from Creamel SmEdJA af), = 0.1

non resonant modes. Thus the real coupled structure-caystgm can be represented by an
analogous mechanical model of gyroscopically coupledlasuis, where the coupling factors
at any frequency equals the coupling factor resulting fromdveraged responses and where
the kinetic and the potential energy of each oscillator atmked his may lead to wrong results
in the kinetic and potential energies of the oscillators amparison to the real system but
to the right results for the total energies and the transprskiss. As a consequence, the
power balance equation system, equatid4),(can be written for this special case of coupled
oscillators as a function of total energies instead of kinehergies. The resulting equation
system is equal to the one of the original formulation of S¥Eequation 27). Regarding
the damping it is assumed that the original damping factbteeoreal cavity-structure system
can be used, because the error made by this assumption igilbleg(see previous chapter).
SmEdA becomes in this way a quasi-deterministic methodectloFEM or to a variational
approach. The only statistical aspect is that externataens of different subsystems have
to be uncorrelated, because this is assumed in equdt®nKurthermore, the novel extended
SmEdA approach can be even applied to cases with a singlydray excitation.
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4. Example

In the previous chapter the new extended SmEdA approachdimg) non resonant modes is
derived and validated using the transmission loss caseiofiaite plate. To investigate the be-

haviour of small systems and to compare SmEdA with otheutation methods the example of

a simply supported rectangular plate in between two paeglipédic cavities is chosen, Figure
3. The parameters of this assembly are given in TAblEhe system is excited in a first case by
a point force on the plate and in a second case by a monopaieesatian edge of the sending
room. The modes and eigenfrequencies in the present cadeeceaiculated analytically as

shown in appendixB.

sending room receiving room

plate
l
|
| Y Ly
! z
- —>--r--> -
I X ﬁx
| H |
Lz h Lz

Figure 3.: Sketch of the cavity-plate-cavity system

plate sending receiving

room room

Lx x Ly x | L.2x09x | 12x09x | 1.2x0.9x

L.(h) (m) | 0.004 0.7 1

p (kg/m3) | 7820 1.2 1.2

c (m/s) 340 340

n 0.01 0.01 0.01

E (MPa) | 210

Y 0.3

Table 1.: Characteristics of the subsystems

4.1. Plate excited by a point force

The cavity-plate-cavity system (see Fig®es first excited by a point force on the plate (ex-
citation point: xe = 0.211765 andje = 0.189474). The plate excitation splits the system into
two separate cavity-plate systems in which the interadigtmween the cavities is negligible. As
shown in Figure< to 6 the energies of the different subsystems calculated witk&and
FEM are equal in this case. These figures demonstrated ihatgtessary to take into account
non resonant modes for a high plate dampmg= 0.1, line “SmEdA non resonant”. Here,
all the modes from 0 Hz to 1500 Hz above the 200 Hz wide excitegiency bands are used
for the calculation with non resonant modes. The point f@xeton case validates the new
extended SmEdA formulation as a correct method for the tation of energies of coupled
subsystems.
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Figure 5.: Energy of the plate at different plate dampingdesa
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6.1: Energy in cavity 2rf, = 0.01) 6.2: Energy in cavity 2rf, = 0.1)
Figure 6.: Energy in cavity 2 at different plate damping éast),,

4.2. Transmission loss of small systems
4.2.1. Comparison to the infinite transmission loss model

For low plate damping the interaction between a small sinspiyported plate and a cavity is
dominated by the resonant modes as shown in Figute8. The influence of the non resonant
modes grows with an increasing damping. At the plate damping- 0.1, the difference in
the transmission loss obtained with (line “SmEdA non resthand without non resonant
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modes (line “SmEdA resonant”) becomes significant. Thestrassion loss in these figures
was calculated for excited frequency bands with a bandwatid©0 Hz. The calculations with
non resonant modes comprise the modes in the frequency flamy&00 Hz below to 200 Hz
above the respective excited frequency band. In compaoisthiese results for the transmission
loss predicted with SmEdA to the infinite transmission losglel, formula of Cremer, under
the assumption of a diffuse field it attracts attention that3mEdA results are below the critical
frequency sensitive to a change of the damping contraryagddimula of Cremer. The reason
for this is that the incident power on an infinite plate is siatted below the critical frequency
only by the non resonant modes, on which the damping has neeide, and not by resonant
modes like it in the case of a small simply supported plat¢21hit has been demonstrated that
these different behaviour depends not only on the size gpldite but for example also on the
boundary conditions, because the transmission loss oéafate is also fully dominated by the
non resonant modes below the critical frequency. Anothiéeréince between an infinite and a
small finite system is that the mode densities of a small @atkof a small cavity are much
lower than those of infinite systems, which are infinity. Bessaaf that the interaction between
the different subsystems is in general maybe worser foefsystems at a given frequency if
resonance effects plays there not a role. Hence, the trasgmiloss of the highly damped small
plate (Figure7) is much higher than the one of the formula of Cremer, becdusegsonant
effects are globally suppressed.

70
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Figure 7.: Transmission loss for plate dampipg= 0.001 (frequency band width: 400 Hz)
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Figure 8.: Transmission loss for plate damping= 0.01 (frequency band width: 400 Hz)
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Figure 9.: Transmission loss for plate dampimg= 0.1 (frequency band width: 400 Hz)

4.2.2. Comparison to SEA

By looking at the transmission losses predicted with SEAufgg10to 12, using the coupling
loss factors described in chapte® one notices that below the critical frequency these depend
on the damping like those predicted with SmEdA, but lessgiso Moreover, the transmission
loss is much higher at low frequencies than that of the foanuilCremer, because the used
SEA coupling factors respect only partly the low modal caprét low frequencies (se€). But

the transmission loss obtained with SEA is globally moreilsinto the one of the formula of
Cremer than to the one predicted with SmEdA. This is a conseguef the assumption that
the sound field is diffuse. However the sound field of such koagities becomes diffuse only

at quite high frequencies. Thus, the SEA coupling factorsalorespect all the assumptions
relative to small finite systems.
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Figure 12.: Transmission loss calculated with differenthods (plate damping, = 0.1)

4.2.3. Comparison to FEM

To compare the transmission loss calculation obtained @tiEdA and with FEM the com-
putation was done using the plate damping factgys= 0.01 andnp = 0.001, Figurel3. The
bandwidth of the excited frequency band is here 200 Hz. TgarEishows that contrary to the
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transmissions losses predicted with SmEdA (only resonartes are used) those calculated
with FEM are less sensitive to a change of the plate dampingrebier the FEM results are
always higher in the investigated frequency range thanrtresinission loss of the mass law/
formula of Cremer. To find out where the difference comes frioenREM formulation needs to
be discussed.

50—

20}

—>— FEM n=0.001
—%—FEM n=0.01
formula of Cremer diffuse| -
—&— SmEDA n=0.01
—#— SmEDA n=0.001
10° 10°
Frequency (Hz)

Transmission loss (dB)

10}

Figure 13.: Comparison of the transmission loss for diffe@ate damping factorg, calcu-
lated with SmEdA and FEM (frequency band width: 200 Hz)

In FEM a coupled fluid-structure system is described withsiesy of two coupled differential
equation — similar to the equations for the coupled oscitigtequationi2) — as follows R2:

M W8] e[ [ e )] e

HereU is the displacement of the structufejs the pressure in the fluid arMs, M¢, Ds, Dy,

Ks, K, LsandL¢ are respectively the mass, the damping and stiffness reaisied the external
force vectors of the structure and the fluid. One importaniragsion of this formulation is that
the boundary surface of the cavity is considered as rigickandrating boundary is modelled as
a source distributed across a rigid bound&§] [ In this way, the formulation, which describes
finally the interaction between bending modes of a strucime modes of a cavity, does not
respect the boundary conditions of the equality of the veéscon the surface. This means that
the mode summation converges to the correct surface pesbstiproduces a wrong normal
velocity on the boundarie28]. On the contrary, the velocity boundary condition is takeio
account in SmEdA (see chapte?). Such a discrepancy may not be a problem for a system
which consists of one structure and one fluid filled cavity lasws1 in chapted.1L This is
also the configuration for that the FEM formulation, equat{$2), was developed?3]. Yet a
complete and correct description of coupled fluid-striefanoblems has to respect the velocity
boundary conditiong4]. The comparison of SmEdA and FEM for the two cases of exoitat
monopole and point force excitation, demonstrates thantheence of the boundary condition
may be small in the case of two coupled subsystems but hudeeicdse of three coupled
subsystems. Therefore, the FEM formulation seems to been@nt method only in the case
of two coupled subsystem, for which it was developed.
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5. Conclusion

As shown in the previous examples for the transmission libgesnew extended SmEdA ap-
proach is an interesting alternative to the existing ptemtianodels for vibro-acoustic systems,
especially in the frequency range below the critical freguyeand for small systems with non
diffuse sound fields. Furthermore, this method demonstthtgghe transmission loss can be
smaller or much higher below the critical frequency for rsystems than the one predicted by
the often used infinite models, mass law and formula of CreAwother important advantage
of the extended approach is that contrary to the applicaBM Formulation SmEdA respects
the boundary conditions between subsystems and thus beamsatil for cases which consist
of more than two subsystems. Moreover, only one linear sysfeequations, equatio27), has

to be solved in SmEdA to get a result for a whole frequency b@hds stands in strong contrast
with FEM which requires independent calculations for a [dtequency steps. But on the other
hand FEM is needed to calculate first the eigenmodes andfesgelencies of the subsystems,
as analytic solutions exist only for simple cases. This als®reason for the increasing of the
computional time with the frequency, because the numberEdfl Elements have to increase
to predict modes at higher frequencies and so does the catignal time. The second reason
for this problem is that also the linear systems of power lmdagquations, equatio7), in-
crease with the frequency because the mode density edpadiahvities rise and so does the
number of modes. To sum up, SmEdA is now a numerical modettrabe used in the whole
frequency range also for problems in which non resonant siade necessary like for highly
damped systems or for narrow band excitations. MoreoveEdcan be used not only for
cases with simple geometries like in this article but alsoréal industrial applications with
complex geometries.
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Appendix

A. Transmission factor for a finite cavity-structure-cavity system

The transmission factor for finite cavity-structure-cgdystem is , 25|,

ZA
= P22 (43)
pIS
where p2 and p; are the effective values of the pressures in cavity one aig Ay is the
equivalent absorption area of cavity two aBthe surface of the plate. The pressure and the
equivalent absorption area in a cavitgre given by 26, 11]

iCE
=P (44)
and An oV
A =TI (45)
(|
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wherep;, ¢; andV; are the density, the sound velocity and the volume of a caatd . is the
central frequency of the excited frequency band.

B. Modes and Eigenfrequancies of finite plates and cavities

The eigenmodepqrs and eigenfrequenciesys of parallelepipedic cavities are given (34

Pqrs = COS ax cos 'y cos Sz ; 9,r,s=0,1,23,... (46)
Lx Ly L,

2 2 2
Wyrs = C\/(?_—f) + <L—7;) =+ (SL_Z[) (47)

The eigenfrequencias;,, and the mode®\;,, of a simply supported plate are

2 2
w?nnznzl(l_m) +(|_£) ]\/E; mn=123.. (48)
X y

WP, = sin(mnx> sin(niy> (49)
Lx Ly

with the mass per arga and the bending stiffne€sof the plate.

and

and

C. Factors of the direct coupling factor of Lyon and DeJong

The correction factof for the the case of low modal overlap is specified by

Bo— ! (50)

1 gy 1/4
{1+ [Zn(ﬁl,net‘f' BZ,net)} }

with the net effective modal overlap factor

Ty
Binet = ey (51)

wheren; net is the net effective loss factor. The latter is in a first appration equal to the
damping loss factom; of the cavityi. The factor, is approximately given by

2k2A,

K2\’ 2\’ 211f Nppph 2
_ 1 1 7 IpEpTp
m [(1 k%) <1+ | %) +87124(0) \/l—l— 20101 ]

and the normal incidence transmission coefficient is

l120=

4p2c2

20161 + 271 pphp |

(53)

whereAy, pp, hp, Np andk, are the area, the density, the thickness, the damping faotbthe
wave number of the plate and whepe andc; are the the density and the sound velocity of
cavity 1.
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D. Modes and modal works of infinite plates and cavities

The mode of the platéh and the cavitiep; and p3 can be described under the assumption of
an infinite plate arbitrarily with sine or cosine functiorBut since the modal work, equation
(25), is only nonzero for in phase modes the mode shapes arerilegel as follows (see also

[1]):

p1=p3= cos(mnx) cos(ﬂy) cos<ﬂz) ; mng=0,1,23,... (54)
Lx Ly L,
W, = cos I cos Sy ; 1,s=0,1,23,... (55)
Lx Ly
The corresponding modal masses are given by
Omna /" LyLyL
My — Mg — 2 ( gz) (56)
8 \piciey
25rs
Mz = [ paedVe = =" Lulyhez (57)
A 4

wherely, Ly andL; are the lengths of the cavities in the direction of the thiiegedsion andh
andV, are the thickness and the volume of the plate. For the moddd W82 it follows using
equations25), (54) and 65):

r m S n
0 for —#— or — # —
7 L7'éLy

Lx * Lx
Wiz — / pi(SWedS={ Ly 1 _m s_n (58)
S ) for L L and Lo L

LxLy for r=m=s=n=0

The missing information on the deplth in equation §6) is derived from Newton’s third law,
which is used in the original derivations of the mass law dredformula of Cremer. Assuming
the hypothesis "blocked pressure” this law reads as follows

p2hap = pe+ Pr = 2pPe (59)

wherepe andpy are the pressures of the incident and the reflected wavagaiscacceleration
of the plate. The pressum can be written as

Pe = P1lede (60)

with a lengthLe and a acceleratione in the direction of the incident wave. The relations
betweerga, andae and betweemhe and the depth. in the z-direction are given by

%= cosSd (61)
Le= cosd (62)

whered is the incident angle (see Figutd). It follows therefore through insertion of equations
(60) to (62) in equation $9):

_ 2 P2
L, =h(cosd) 201 (63)
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Figure 14.: Sketch of the transmission problem

E. Relation between the bending wave frequency and the frequency of
the incident wave

The bending wavelength of the plate is described as fell@#is [

2 B
AB= —— (] — 64
8= U\ m (64)
In the infinite models only the bending wave with the wavetargj the incident wavelengthe
projected on the plate is excited. This means that

. Ae o 27TC1
- sind  w;sing

s (65)

From these two equations it follows for the relation betwtenfree bending wave frequency
and the frequency of the incident wave:

5 sinﬁ)2 B
= i — 66
W C“)l( o - (66)

Bibliography

[1] M. Heckl, The tenth Sir Richard Farey memorial lectureuSo transmission in buildings,
Journal of Sound and Vibration 77(2) (1981) 165-189.

[2] J. Rayleigh, The theory of sound, vol. 2, Dover Publica$i01945.

[3] R. BergerUber die Schalldurckissigkeit, Ph.D. thesis,diglich Technische Hochschule
zu Munchen, 1911.

[4] A. C. Nilsson, Reduction Index and boundary conditionsdawall between two rectan-
gular rooms, part I: theoretical results, Acustica 26 ()97218.

165



Bibliography

[5] R. Josse, C. Lamure, Transmission du son par une paroiajrplustica 14 (1964) 266—
280.

[6] R. Woodcock, J. Nicolas, A generalized model for predigtihe sound transmission prop-
erties of generally orthotropic plates with arbitrary bdary conditions, Journal of the
Acoustical Society of America 97(2) (1995) 1099-1112.

[7] L. Gagliardini, J. Roland, J.-L. Guyader, The use of a tioral basis to calculate acoustic
transmission between rooms, Journal of Sound and Vibrad&(3) (1991) 457-478.

[8] A. Dijckmans, G. Vermeir, Application of the wave baseae@giction technique to building
acoustical problems, in: Proceedings of ISMA 2010, Leuven.

[9] T. Sakuma, T. Oshima, Numerical Analysis of Sound Traissian Loss of Glass Pane -
On the Treatment of Edge Damping, in: Proceedings of Intésen2008, Shanghai.

[10] R. H. Lyon, R. G. DeJong, Theory and application of stai#dtenergy analysis,
Butterworth-Heinemann, 2nd edn., 1995.

[11] K.Reniji, P. S. Nair, S. Narayanan, Non-resonant respassg statistical energy analysis,
Journal of Sound and Vibration 241(2) (2001) 253-270.

[12] L. Maxit, J.-L. Guyader, Estimation of the SEA couplilggs factors using a dual formu-
lation and FEM modal information, part I: theory, JournaBafund and Vibration 239(5)
(2001) 907-930.

[13] T. Scharton, R. Lyon, Power Flow and Energy Sharing in Ram®ibration, Journal of
the Acoustical Society of America 43 (6) (1968) 1332—-1343.

[14] E. Ungar, Statistical energy analysis of vibratingteyss, Tech. Rep. AFFDL-TR-66-52,
US Air Force, 1966.

[15] J. Woodhouse, An approach to the theoretical backgtafrstatistical energy analysis
applied to structural vibration, Journal of the AcoustiSatiety of America 69 (6) (1981)
1695-17009.

[16] N. Totaro, J.-L. Guyader, extension of SmEdA methoddiineate energy repartition into
SEA subsystems, in: Proceedings of ISMA 2008, Leuven.

[17] N. Totaro, C. Dodard, J.-L. Guyader, SEA coupling lostdas of complex vibro-acoustic
systems, Journal of Vibration and Acoustics 131 (2009) 0914.

[18] L. Maxit, J.-L. Guyader, Estimation of the SEA couplilogs factors using a dual formuu-
lation and FEM modal information, part Il: numerical apptioas, Journal of Sound and
Vibration 239(5) (2001) 931-948.

[19] M. J. Crocker (Ed.), Handbook of Noise and Vibration cohtWiley, 2007.

[20] R. Haberkern, On how to Obtain Diffuse Field Sound Traission Loss from Cremers
Thin Plate Transmission Coefficient Formula, acta acusfic@801) 542-551.

[21] R. Stelzer, N. Totaro, G. Pavic, J. Guyader, Predictibfransmission Loss using an
improved SEA Method, in: Proceedings of CFA 2010, Lyon.

166



Bibliography

[22] M. Chargin, O. Gartmeier, A finite element procedure falcalating fluid-structure in-
teraction using MSC/Nastran, Tech. Rep. NASA Technical Memdum 102857, NASA
(National Aeronautics and Space Adminstration), 1990.

[23] F. Fahy, P. Gardonio, Sound and structural vibratiadiation, transmission and response,
Elsevier Academic Press, 2nd edn., 2007.

[24] F. Fahy, Foundations of Engineering Acoustics, Elsegicademic Press, 2005.
[25] M. Maoser, Technische Akustik, Springer, 7th edn., 2007.
[26] M. Bruneau, Fundamentals of acoustics, ISTE, 2006.

[27] F. Mechel (Ed.), Formulas of Acoustics, Springer-¥erlBerlin, Heidelberg 2002.

167



FOLIO ADMINISTRATIF

NOM : Stelzer DATE de SOUTENANCE : 07/06/2012
(avec précision du nom de jeune fille, le cas éct)éa

Prénoms Rainer Michael
TITRE :

Une méthode énergétique pour les systéemes-gboastiques couplés
An energy based method for coupled vibro-acougstems

NATURE : Doctorat Numeéro dordre : AAAAISALXXXX

Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustiquee®BA)

Spécialité : Acoustique

RESUME :

Ce mémoire de thése présente le développementaétiende «statistical modal energy distribution gsial(SmEdA)» pour des systen
vibro-acoustiques couplés. Cette méthode de calcul ssebmur le bilan énergétique dans des sous-sysféemess couplés, comme U
structure ou une cavité. L'interaction entre de ®istemes est décrite par des couplages entreolédss. La version initiale de SmE
prend en compte seulement les modes qui ont uneenee propre dans le bande d’excitation. Le trgu@isenté ici étudie I'effet d
modes non résonants sur la réponse et identifieagslans lesquels un tel effet devient importdirttroduction des modes non résong
permet d'utiliser la méthode SmEdA dans des cappli@ations plus larges. En outre, une nouvellehwd#¢ de post-traitement a

développée pour calculer des distributioféndrgie dans les sesgstemes. Finalement, une nouvelle méthddppadoximation pour |
prise en compte des modes de systéemes de gramdessibns ou mal définis a été formulée. Toutese&thodes ont été comparées 4
d'autres méthodes de calcul via des exemples adgdésnet industriels. Ainsi, la nouvelle versionSEdA incluant le podraitemen
pour obtenir des distribution&diergie a été validé et les avantages et pogstbdiapplications sont montrés.

This dissertation presents the further developroétite statistical modal energy distribution ansy$mEdA) for vibreacoustic couple
problems. This prediction method is based on tleeggnbalance in bounded coupled subsystems, létriature or a cavity. The interact
between such subsystems is described by mode-te-modpling. The original SmEdA formulation takesoiraccount only the mod
having the eigenfrequencies within the excitatiand The present work investigates the effect of msonant modes to the response

es
ne
HA
i
nts
pté

vec

d
on
BS
and

identifies cases in which such an effect becomgsoitant. The inclusion of non resonant modes has tiesulted in a new SmEJA

formulation which can be used in extended appbceti Furthermore, a new post-processing methodéas developed to predict ene
distribution within subsystems. Finally a novel mpfimation method for handling modes of huge ordéfined systems has be
formulated. All these methods have been compareather prediction methods via academic and indalsaxamples. In this way, t
extended SmEdA approach including the post-proegskir energy distribution has been validated asdatvantages and applicaf]
possibilities have been demonstrated.

MOTS-CLES :

SmEdA, méthode énergétique, systémes vibro-acagstiqouplés, distributioriéhergie, systemes mal définies, méthode modal
SmEdA, energy based method, coupled vilitoustic systems, energy distribution, ill-defisgdtem, modal approach
Laboratoire (s) de recherche: Laboratoire Vibragideoustique

Directeur de théese:

Goran PAVIC (Directeur de thése), Nicolas TOTARO (@icecteur de thése)

Président de jury :

Composition du jury :

Goran PAVIC (Professeur), INSA de Lyon, Directeuttligse

Nicolas TOTARO (Maitre de Conférences), INSA de LyBn;Directeur de these

Robin LANGLEY (Professeur), University of Cambriddrapporteur

Ennes SARRADJ (Professeur) TU Cottbus, Rapporteur

Herve RIOU (Maitre de Conférences), LMT Cachan, Exateinr
Michael THIVANT, Vibratec, Examinateur

Fay
en
ne

on




	Contents
	I Exuctive Summary and Discussion
	1 Introduction and scientific context
	1.1 Calculation methods in vibro-acoustics
	1.1.1 Statistical Energy Analysis
	1.1.2 FEM for fluid-structure problems
	1.1.3 Mid-frequency methods
	1.1.3.1 Hybrid FEM-SEA method
	1.1.3.2 Trefftz methods
	1.1.3.3 Complex Envelope vectorization

	1.1.4 Statistical modal Energy distribution analysis
	1.1.4.1 Basic principle
	1.1.4.2 Limits of SmEdA
	1.1.4.3 Power input of a mode
	1.1.4.4 Damping in SmEdA
	1.1.4.5 Relation between SmEdA and SEA
	1.1.4.6 Postprocessing for energy distributions


	1.2 Transmission Loss
	1.2.1 Definition
	1.2.2 Transmission Loss of infinite plates

	1.3 Presentation of the subject

	2 Non resonant modes and SmEdA
	2.1 Non resonant contribution in SmEdA
	2.1.1 Principle
	2.1.2 Power input of a SmEdA-oscillator
	2.1.3 Heavy fluids

	2.2 Transmission Loss and non resonant modes
	2.3 In which cases non resonant modes are necessary in general?

	3 Energy distributions in modal description
	3.1 Postprocessing method
	3.2 Energy distributions of structures
	3.3 Energy distributions of cavities

	4 Methods for ill defined systems and systems with high mode densities
	4.1 Hybrid SEA/SmEdA methods
	4.2 Approximation of eigensystems

	5 Conclusion and Perspective
	Bibliography

	II Publications
	6 Paper I: Prediction of Transmission Loss using an improved SEA Method
	1 Introduction
	2 Theory
	2.1 Classical Statistical Energy Analysis
	2.2 Statistical modal Energy distribution Analysis

	3 Comparison of the approaches
	3.1 System under study
	3.2 Transmission Loss
	3.2.1 Simply supported plate
	3.2.2 Free plate


	4 Conclusion
	5 Acknowledgment
	Bibliography

	7 Paper II: Non resonant contribution and energy distributions using Statistical modal Energy distribution Analysis (SmEdA)
	1 Introduction
	2 Statistical modal Energy distribution Analysis
	3 Energy and energy distributions in modal description
	3.1 Excitation at a single frequency
	3.2 Broadband excitation

	4 Results
	4.1 System under study
	4.2 Energy
	4.3 Energy distributions
	4.3.1 Single frequency excitation
	4.3.2 Broadband excitation


	5 Conclusion
	6 Acknowledgment
	Bibliography

	8 Paper III: Improved modal Energy Analysis for industrial problems
	1 Introduction
	2 Statistical modal Energy distribution Analysis
	3 Energy distribution
	3.1 Energy distribution of a single mode
	3.2 Energy distributions of whole subsystems
	3.2.1 Theory
	3.2.2 Example: Correction factor for a point force excited structure


	4 Example
	4.1 System under study
	4.2 Energies of the subsystems
	4.3 Energy distributions of the subsystems

	5 Conclusion
	6 Acknowledgment
	Bibliography

	9 Paper IV: Assessment report on SmEdA
	1 Executive summary
	2 Basic concepts
	2.1 Statistical modal Energy distribution Analysis
	2.1.1 Coupling between modes
	2.1.2 Power input
	2.1.3 Energies of subsystems

	2.2 Energy distributions
	2.2.1 Energy distribution of a single mode
	2.2.2 Energy distributions of whole subsystems


	3 Performance illustrations
	3.1 Plate-cavity system
	3.1.1 Energies of the subsystems
	3.1.2 Energy distributions of the subsystems

	3.2 Transmission loss
	3.2.1 Comparison to the infinite transmission loss models
	3.2.2 Comparison to FEM

	3.3 Double-deck train
	3.3.1 Energies of the subsystems
	3.3.2 Energy distributions of the subsystems


	4 Recent enhancements and future research in SmEdA
	4.1 Reduction of computational cost
	4.1.1 Approximate modes
	4.1.2 Mixed power balance equation systems

	4.2 Localised damping

	5 Conclusion
	Bibliography

	10 Paper V: Application of SmEdA to systems with high mode densities
	1 Introduction
	2 Statistical modal Energy distribution Analysis
	3 Hybrid SEA/SmEdA methods
	4 Approximate modes
	5 Example
	5.1 System under study
	5.2 Transmission Loss calculation using hybrid SEA/SmEdA methods
	5.3 Transmission Loss calculation using approximate modes

	6 Conclusion
	7 Acknowledgment
	Bibliography

	11 Paper VI: Non resonant modes and Transmission Loss using Statistical modal Energy distribution Analysis (SmEdA)
	1 Introduction
	1.1 Transmission Loss
	1.2 Statistical energy analysis

	2 Coupling between two oscillators
	2.1 Resonant excited oscillators
	2.2 Non resonant excited oscillators

	3 SmEdA
	3.1 Original formulation of SmEdA
	3.2 Extended version for structure-cavity coupling including non resonant modes
	3.2.1 Infinite transmission loss models expressed with power balance equations
	3.2.2 Comparison to the formula of Cremer without damping
	3.2.3 Comparison to the formula of Cremer with damping
	3.2.4 Conclusion from the comparisons with the formula of Cremer


	4 Example
	4.1 Plate excited by a point force
	4.2 Transmission loss of small systems
	4.2.1 Comparison to the infinite transmission loss model
	4.2.2 Comparison to SEA
	4.2.3 Comparison to FEM


	5 Conclusion
	6 Acknowledgment
	Appendix
	 A Transmission factor for a finite cavity-structure-cavity system
	 B Modes and Eigenfrequancies of finite plates and cavities
	 C Factors of the direct coupling factor of Lyon and DeJong
	 D Modes and modal works of infinite plates and cavities
	 E Relation between the bending wave frequency and the frequency of the incident wave

	Bibliography



