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Abstract

This thesis explores the use of Bayesian models in multi-player video game AI, particularly
real-time strategy (RTS) game AI. Video games are in-between real world robotics and total
simulations, as other players are not simulated, nor do we have control over the simulation.
RTS games require having strategic (technological, economical), tactical (spatial, temporal) and
reactive (units control) actions and decisions on the go. We used Bayesian modeling as an
alternative to logic, able to cope with incompleteness of information and uncertainty. Indeed,
incomplete specification of the possible behaviors in scripting, or incomplete specification of the
possible states in planning/search raise the need to deal with uncertainty. Machine learning
helps reducing the complexity of fully specifying such models. Through the realization of a fully
robotic StarCraft player, we show that Bayesian programming can integrate all kinds of sources
of uncertainty (hidden state, intention, stochasticity). Probability distributions are a mean to
convey the full extent of the information we have and can represent by turns: constraints, partial
knowledge, state estimation, and incompleteness in the model itself.

In the first part of this thesis, we review the current solutions to problems raised by multi-
player game AI, by outlining the types of computational and cognitive complexities in the main
gameplay types. From here, we sum up the cross-cutting categories of problems, explaining
how Bayesian modeling can deal with all of them. We then explain how to build a Bayesian
program from domain knowledge and observations through a toy role-playing game example. In
the second part of the thesis, we detail our application of this approach to RTS AI, and the
models that we built up. For reactive behavior (micro-management), we present a real-time
multi-agent decentralized controller inspired from sensorimotor fusion. We then show how to
perform strategic and tactical adaptation to a dynamic opponent through opponent modeling
and machine learning (both supervised and unsupervised) from highly skilled players’ traces.
These probabilistic player-based models can be applied both to the opponent for prediction, or
to ourselves for decision-making, through different inputs. Finally, we explain our StarCraft
robotic player architecture and precise some technical implementation details.

Beyond models and their implementations, our contributions fall in two categories: integrat-
ing hierarchical and sequential modeling and using machine learning to produce or make use of
abstractions. We dealt with the inherent complexity of real-time multi-player games by using a
hierarchy of constraining abstractions and temporally constrained models. We produced some of
these abstractions through clustering; while others are produced from heuristics, whose outputs
are integrated in the Bayesian model through supervised learning.
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Notations

Symbols

 assignment of value to the left hand operand
⇠ the right operand is the distribution of the left operand (random variable)
/ proportionality
⇡ approximation
# cardinal of a space or dimension of a variable
\ intersection
[ union
^ and
_ or
MT M transposed
J K integer interval

Variables

X and V ariable random variables (or logical propositions)
x and value values
#s = |s| cardinality of the set s

#X = |X| shortcut for “cardinality of the set of the values of X”
X1:n the set of n random variables X1 . . . Xn

{x 2 Ω|Q(x)} the set of elements from Ω that satisfy Q

Probabilities

P(X) = Distribution is equivalent to X ⇠ Distribution

P(x) = P(X = x) = P([X = x]) Probability (distribution) that X takes the value x

P(X,Y ) = P(X ^ Y ) Probability (distribution) of the conjunction of X and Y

P(X|Y ) Probability (distribution) of X knowing Y
P

X P(X)
P

x2X P(X = x)

Conventions

P

0

B

@

X1

...
Xk

1

C

A
= P(X) = N (µ,Σ)$ P(X = x) =

1

(2⇡)k/2 |Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ))

P(X) = Categorical1(K, p)$ P(X = i) = pi, such that
K
X

i=1

pi = 1

1also sometimes called Multinomial or Histogram
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Chapter 1

Introduction

Every game of skill is susceptible of being played by an automaton.

Charles Babbage

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Reading map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Context

1.1.1 Motivations

There is more to playing than entertainment, particularly, playing has been found to be a basis
for motor and logical learning. Real-time video games require skill and deep reasoning, attributes
respectively shared by music playing and by board games. On many aspects, high-level real-time
strategy (RTS) players can be compared to piano players, who would improvise depending on
how they want to play a Chess match, simultaneously to their opponent.

Research on video games rests in between research on real-world robotics and research on
simulations or theoretical games. Indeed artificial intelligences (AIs) evolve in a simulated world
that is also populated with human-controlled agents and other AI agents on which we have no
control. Moreover, the state space (set of states that are reachable by the players) is much
bigger than in board games. For instance, the branching factor* in StarCraft is greater than
1.106, compared to approximatively 35 in Chess and 360 in Go. Research on video games thus
constitutes a great opportunity to bridge the gap between real-world robotics and simulations.

Another strong motivation is that there are plenty of highly skilled human video game
players, which provides inspiration and incentives to measure our artificial intelligences against
them. For RTS* games, there are professional players, whose games are recorded. This provides
datasets consisting in thousands human-hours of play, by humans who beat any existing AI,
which enables machine learning. Clearly, there is something missing to classical AI approaches
to be able to handle video games as efficiently as humans do. I believe that RTS AI is where
Chess AI was in the early 70s: we have RTS AI world competitions but even the best entries
cannot win against skilled human players.
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Complexity, real-time constraints and uncertainty are ubiquitous in video games. Therefore
video games AI research is yielding new approaches to a wide range of problems. For instance
in RTS* games: pathfinding, multiple agents coordination, collaboration, prediction, planning
and (multi-scale) reasoning under uncertainty. The RTS framework is particularly interesting
because it encompasses most of these problems: the solutions have to deal with many objects,
imperfect information, strategic reasoning and low-level actions while running in real-time on
desktop hardware.

1.1.2 Approach

Games are beautiful mathematical problems with adversarial, concurrent and sometimes even
social dimensions, which have been formalized and studied through game theory. On the other
hand, the space complexity of video games make them intractable problems with only theoretical
tools. Also, the real-time nature of the video games that we studied asks for efficient solutions.
Finally, several video games incorporate different forms of uncertainty, be it from partial obser-
vations or stochasticity due to the rules. Under all these constraints, taking real-time decisions
under uncertainty and in combinatorial spaces, we have to provide a way to program robotic

video games players, whose level matches amateur players.

We have chosen to embrace uncertainty and produce simple models which can deal with the
video games’ state spaces while running in real-time on commodity hardware: All models are

wrong; some models are useful. (attributed to George Box). If our models are necessarily wrong,
we have to consider that they are approximations, and work with probability distributions. The
other reasons to do so confirm us in our choice:

• Partial information forces us to be able to deal with state uncertainty.

• Not only we cannot be sure about our model relevance, but how can we assume “optimal”
play from the opponent in a so complex game and so huge state space?

The unified framework to reason under uncertainty that we used is the one of plausible reasoning
and Bayesian modeling.

As we are able to collect data about high skilled human players or produce data through
experience, we can learn the parameters of such Bayesian models. This modeling approach unifies
all the possible sources of uncertainties, learning, along with prediction and decision-making in
a consistent framework.

1.2 Contributions

We produced tractable models addressing different levels of reasoning, whose difficulty of spec-
ification was reduced by taking advantage of machine learning techniques, and implemented a
full StarCraft AI.

• Models breaking the complexity of inference and decision in games:

– We showed that multi-agent behaviors can be authored through inverse programming

(specifying independently sensor distribution knowing the actions), as an extension
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of [Le Hy, 2007]. We used decentralized control (for computational efficiency) by
considering agents as sensorimotor robots: the incompleteness of not communicating
with each others is transformed into uncertainty.

– We took advantage of the hierarchy of decision-making in games by presenting and
exploiting abstractions for RTS games (strategy & tactics) above units control. Pro-
ducing abstractions, be it through heuristics or less supervised methods, produces
“bias” and uncertainty.

– We took advantage of the sequencing and temporal continuity in games. When taking
a decision, previous observations, prediction and decisions are compressed in distri-
butions on variables under the Markovian assumption.

• Machine learning on models integrating prediction and decision-making:

– We produced some of our abstractions through semi-supervised or unsupervised learn-
ing (clustering) from datasets.

– We identified the parameters of our models from human-played games, the same way
that our models can learn from their opponents actions / past experiences.

• An implementation of a competitive StarCraft AI able to play full games with decent
results in worldwide competitions.

Finally, video games is a billion dollars industry ($65 billion worldwide in 2011). With this
thesis, we also hope to deliver a guide for industry practitioners who would like to have new
tools for solving the ever increasing state space complexity of (multi-scale) game AI, and produce
challenging and fun to play against AI.

1.3 Reading map

First, even though I tried to keep jargon to a minimum, when there is a precise word for
something, I tend to use it. For AI researchers, there is a lot of video game jargon; for game
designers and programmers, there is a lot of AI jargon. I have put everything in a comprehensive
glossary.

Chapter 2 gives a basic culture about (pragmatic) game AI. The first part explains minimax,
alpha-beta and Monte-Carlo tree search in the context of Tic-tac-toe, Chess and Go respectively.
The second part is about video games’ AI challenges. The reader novice to AI who wants a deep
introduction on artificial intelligence can turn to the leading textbook [Russell and Norvig, 2010].
More advanced knowledge about some specificities of game AI can be acquired by reading the
Quake III (by iD Software) source code: it is very clear and documented modern C, and it stood
the test of time in addition to being the canonical fast first person shooter. Finally, there is no
substitute for the reader novice to games to play them in order to grasp them.

We first notice that all game AI challenges can be addressed with uncertain reasoning, and
present in chapter 3 the basics of our Bayesian modeling formalism. As we present probabilistic
modeling as an extension of logic, it may be an easy entry to building probabilistic models for
novice readers. It is not sufficient to give a strong background on Bayesian modeling however,
but there are multiple good books on the subject. We advise the reader who wants a strong
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intuition of Bayesian modeling to read the seminal work by Jaynes [2003], and we found the
chapter IV of the (free) book of MacKay [2003] to be an excellent and efficient introduction to
Bayesian inference. Finally, a comprehensive review of the spectrum of applications of Bayesian
programming (until 2008) is provided by [Bessière et al., 2008].

Chapter 4 explains the challenges of playing a real-time strategy game through the example
of StarCraft: Broodwar. It then explains our decomposition of the problem in the hierarchical
abstractions that we have studied.

Chapter 5 presents our solution to the real-time multi-agent cooperative and adversarial
problem that is micro-management. We had a decentralized reactive behavior approach provid-
ing a framework which can be used in other games than StarCraft. We proved that it is easy to
change the behaviors by implementing several modes with minimal code changes.

Chapter 6 deals with the tactical abstraction for partially observable games. Our approach
was to abstract low-level observations up to the tactical reasoning level with simple heuristics,
and have a Bayesian model make all the inferences at this tactical abstracted level. The key to
producing valuable tactical predictions and decisions is to train the model on real game data
passed through the heuristics.

Chapter 7 shows our decompositions of strategy into specific prediction and adaptation
(under uncertainty) tasks. Our approach was to reduce the complexity of strategies by using
the structure of the game rules (technology trees) of expert players wording (openings) decisions
(unit types combinations/proportions). From partial observations, the probability distributions
on the opponent’s strategy are reconstructed, which allows for adaptation and decision-making.

Chapter 8 describes briefly the software architecture of our robotic player (bot). It makes the
link between the Bayesian models presented before and their connection with the bot’s program.
We also comment some of the bot’s debug output to show how a game played by our bot unfolds.

We conclude by putting the contributions back in their contexts, and opening up several
perspectives for future work in the RTS AI domain.
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Chapter 2

Game AI

It is not that the games and mathematical problems are chosen because they are

clear and simple; rather it is that they give us, for the smallest initial structures, the

greatest complexity, so that one can engage some really formidable situations after a

relatively minimal diversion into programming.

Marvin Minsky (Semantic Information Processing, 1968)

I
s the primary goal of game AI to win the game? “Game AI” is simultaneously a research
topic and an industry standard practice, for which the main metric is the fun the players are

having. Its uses range from character animation, to behavior modeling, strategic play, and a
true gameplay* component. In this chapter, we will give our educated guess about the goals of
game AI, and review what exists for a broad category of games: abstract strategy games, partial
information and/or stochastic games, different genres of computer games. Let us then focus on
gameplay (from a player point of view) characteristics of these games so that we can enumerate
game AI needs.

2.1 Goals of game AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Single-player games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Abstract strategy games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Games with uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 FPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 (MMO)RPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 RTS Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Games characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Player characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 Goals of game AI

2.1.1 NPC

Non-playing characters (NPC*), also called “mobs”, represent a massive volume of game AI, as
a lot of multi-player games have NPC. They really represents players that are not conceived to

15



be played by humans, by opposition to “bots”, which correspond to human-playable characters
controlled by an AI. NPC are an important part of ever more immersive single player adventures
(The Elder Scrolls V: Skyrim), of cooperative gameplays* (World of Warcraft, Left 4 Dead), or
as helpers or trainers (“pets”, strategy games). NPC can be a core part of the gameplay as in
Creatures or Black and White, or dull “quest giving poles” as in a lot of role-playing games.
They are of interest for the game industry, but also for robotics, to study human cognition and
for artificial intelligence in the large. So, the first goal of game AI is perhaps just to make the
artificial world seem alive: a static painting is not much fun to play in.

2.1.2 Win

During the last decade, the video game industry has seen the emergence of “e-sport”. It is the
professionalizing of specific competitive games at the higher levels, as in sports: with spectators,
leagues, sponsors, fans and broadcasts. A list of major electronic sport games includes (but is
not limited to): StarCraft: Brood War, Counter-Strike, Quake III, Warcraft III, Halo, StarCraft
II. The first game to have had pro-gamers* was StarCraft: Brood War*, in Korea, with top
players earning more than Korean top soccer players. Top players earn more than $400,000 a
year but the professional average is lower, around $50-60,000 a year [Contracts, 2007], against the
average South Korean salary at $16,300 in 2010. Currently, Brood War is being slowly phased
out to StarCraft II. There are TV channels broadcasting Brood War (OnGameNet, previously
also MBC Game) or StarCraft II (GOM TV, streaming) and for which it constitutes a major
chunk of the air time. “E-sport” is important to the subject of game AI because it ensures
competitiveness of the human players. It is less challenging to write a competitive AI for game
played by few and without competitions than to write an AI for Chess, Go or StarCraft. E-
sport, through the distribution of “replays*” also ensures a constant and heavy flow of human
player data to mine and learn from. Finally, cognitive science researchers (like the Simon Fraser
University Cognitive Science Lab) study the cognitive aspects (attention, learning) of high level
RTS playing [Simon Fraser University].

Good human players, through their ability to learn and adapt, and through high-level strate-
gic reasoning, are still undefeated by computers. Single players are often frustrated by the NPC
behaviors in non-linear (not fully scripted) games. Nowadays, video game AI can be used as part
of the gameplay as a challenge to the player. This is not the case in most of the games though,
in decreasing order of resolution of the problem1: fast FPS* (first person shooters), team FPS,
RPG* (role playing games), MMORPG* (Massively Multi-player Online RPG), RTS* (Real-
Time Strategy). These games in which artificial intelligences do not beat top human players on
equal footing require increasingly more cheats to even be a challenge (and then not for long as
they mostly do not adapt). AI cheats encompass (but are not limited to):

• RPG NPC often have at least 10 times more hit points (health points) than their human
counterparts in equal numbers,

• FPS bots can see through walls and use perfect aiming,

• RTS bots see through the “fog of war*” and have free additional resources.

1Particularly considering games with possible free worlds and “non-linear” storytelling, current RPG and
MMORPG are often limited because of the unsolved “world interacting NPC” AI problem.

16



How do we build game robotic players (“bots”, AI, NPC) which can provide some challenge, or
be helpful without being frustrating, while staying fun?

2.1.3 Fun

The main purpose of gaming is entertainment. Of course, there are game genres like serious
gaming, or the “gamification*” of learning, but the majority of people playing games are having
fun. Cheating AIs are not fun, and so the replayability* of single player games is very low.
The vast majority of games which are still played after the single player mode are multi-player
games, because humans are still the most fun partners to play with. So how do we get game AI
to be fun to play with? The answer seems to be 3-fold:

• For competitive and PvP* (players versus players) games: improve game AI so that it can
play well on equal footing with humans,

• for cooperative and PvE* (players vs environment) games: optimize the AI for fun, “epic
wins”: the empowerment of playing your best and just barely winning,

• give the AI all the tools to adapt the game to the players: AI directors* (as in Left
4 Dead* and Dark Spore*), procedural content generation (e.g. automatic personalized
Mario [Shaker et al., 2010]).

In all cases, a good AI should be able to learn from the players’ actions, recognize their behavior
to deal with it in the most entertaining way. Examples for a few mainstream games: World of
Warcraft instances or StarCraft II missions could be less predictable (less scripted) and always
“just hard enough”, Battlefield 3 or Call of Duty opponents could have a longer life expectancy
(5 seconds in some cases), Skyrim’s follower NPC* could avoid blocking the player in doors, or
going in front when they cast fireballs.

2.1.4 Programming

How do game developers want to deal with game AI programming? We have to understand the
needs of industry game AI programmers:

• computational efficiency: most games are real-time systems, 3D graphics are computation-
ally intensive, as a result the AI CPU budget is low,

• game designers often want to remain in control of the behaviors, so game AI programmers
have to provide authoring tools,

• AI code has to scale with the state spaces while being debuggable: the complexity of
navigation added to all the possible interactions with the game world make up for an
interesting “possible states coverage and robustness” problem,

• AI behaviors have to scale with the possible game states (which are not all predictable due
to the presence of the human player, some of which may have not been foresighted by the
developers,

• re-use across games (game independent logic, at least libraries).
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As a first approach, programmers can “hard code” the behaviors and their switches. For some
structuring of such states and transitions, they can and do use finite state machines [Houlette
and Fu, 2003]. This solution does not scale well (exponential increase in the number of transi-
tions), nor do they generate truly autonomous behavior, and they can be cumbersome for game
designers to interact with. Hierarchical finite state machines (FSMs)* are a partial answer to
these problems: they scale better due to the sharing of transitions between macro-states and
are more readable for game designers who can zoom-in on macro/englobing states. They still
represent way too much programming work for complex behavior and are not more autonomous
than classic FSM. Bakkes et al. [2004] used an adaptive FSM mechanism inspired by evolution-
ary algorithms to play Quake III team games. Planning (using a search heuristic in the states
space) efficiently gives autonomy to virtual characters. Planners like hierarchical task networks
(HTNs)* [Erol et al., 1994] or STRIPS [Fikes and Nilsson, 1971] generate complex behaviors in
the space of the combinations of specified states, and the logic can be re-used accross games.
The drawbacks can be a large computational budget (for many agents and/or a complex world),
the difficulty to specify reactive behavior, and less (or harder) control from the game designers.
Behavior trees (Halo 2 [Isla, 2005], Spore) are a popular in-between HTN* and hierarchical fi-
nite state machine (HFSM)* technique providing scability through a tree-like hierarchy, control
through tree editing and some autonomy through a search heuristic. A transversal technique
for ease of use is to program game AI with a script (LUA, Python) or domain specific language
(DSL*). From a programming or design point of view, it will have the drawbacks of the mod-
els it is based on. If everything is allowed (low-level inputs and outputs directly in the DSL),
everything is possible at the cost of cumbersome programming, debugging and few re-use.

Even with scalable2 architectures like behavior trees or the autonomy that planning provides,
there are limitations (burdens on programmers/designers or CPU/GPU):

• complex worlds require either very long description of the state (in propositional logic) or
high expressivity (higher order logics) to specify well-defined behaviors,

• the search space of possible actions increases exponentially with the volume and complexity
of interactions with the world, thus requiring ever more efficient pruning techniques,

• once human players are in the loop (is it not the purpose of a game?), uncertainty has
to be taken into account. Previous approaches can be “patched” to deal with uncertainty,
but at what cost?

Our thesis is that we can learn complex behaviors from exploration or observations (of human
players) without the need to be explicitly programmed. Furthermore, the game designers can
stay in control by choosing which demonstration to learn from and tuning parameters by hand if
wanted. Le Hy et al. [2004] showed it in the case of FPS AI (Unreal Tournament), with inverse

programming to learn reactive behaviors from human demonstration. We extend it to tactical
and even strategic behaviors.

2both computationally and in the number of lines of codes to write to produce a new behavior
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2.2 Single-player games

Single player games are not the main focus of our thesis, but they present a few interesting AI
characteristics. They encompass all kinds of human cognitive abilities, from reflexes to higher
level thinking.

2.2.1 Action games

Platform games (Mario, Sonic), time attack racing games (TrackMania), solo shoot-them-up
(“schmups”, Space Invaders, DodonPachi), sports games and rhythm games (Dance Dance Rev-
olution, Guitar Hero) are games of reflexes, skill and familiarity with the environment. The main
component of game AI in these genres is a quick path search heuristic, often with a dynamic
environment. At the Computational Intelligence and Games conferences series, there have been
Mario [Togelius et al., 2010], PacMan [Rohlfshagen and Lucas, 2011] and racing competitions
[Loiacono et al., 2008]: the winners often use (clever) heuristics coupled with a search algorithm
(A* for instance). As there are no human opponents, reinforcement learning and genetic pro-
gramming work well too. In action games, the artificial player most often has a big advantage
on its human counterpart as reaction time is one of the key characteristics.

2.2.2 Puzzles

Point and click (Monkey Island, Kyrandia, Day of the Tentacle), graphic adventure (Myst, Heavy
Rain), (tile) puzzles (Minesweeper, Tetris) games are games of logical thinking and puzzle solv-
ing. The main components of game AI in these genres is an inference engine with sufficient
domain knowledge (an ontology). AI research is not particularly active in the genre of puz-
zle games, perhaps because solving them has more to do with writing down the ontology than
with using new AI techniques. A classic well-studied logic-based, combinatorial puzzle is Su-
doku, which has been formulated as a SAT-solving [Lynce and Ouaknine, 2006] and constraint
satisfaction problem [Simonis, 2005]. [Thiery et al., 2009] provides a review of AIs for Tetris
(harder than Sudoku), for which solutions ranges from general optimization (with an evaluation
function), dynamic programming to reinforcement learning.

2.3 Abstract strategy games

2.3.1 Tic-tac-toe, minimax

Tic-tac-toe (noughts and crosses) is a solved game*, meaning that it can be played optimally
from each possible position. How did it came to get solved? Each and every possible positions
(26,830) have been analyzed by a Minimax (or its variant Negamax) algorithm. Minimax is an
algorithm which can be used to determine the optimal score a player can get for a move in a
zero-sum game*. The Minimax theorem states:

Theorem. For every two-person, zero-sum game with finitely many strategies, there exists a

value V and a mixed strategy for each player, such that (a) Given player 2’s strategy, the best

payoff possible for player 1 is V, and (b) Given player 1’s strategy, the best payoff possible for

player 2 is -V.
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Figure 2.1: A Tic-tac-toe board position, in which it is the “circles” player’s turn to play. The
labeling explains the indexing (left to right, bottom to top, starting at 1) of the grid.

Applying this theorem to Tic-tac-toe, we can say that winning is +1 point for the player
and losing is -1, while draw is 0. The exhaustive search algorithm which takes this property into
account is described in Algorithm 1. The result of applying this algorithm to the Tic-tac-toe
situation of Fig. 2.1 is exhaustively represented in Fig. 2.2. For zero-sum games (as abstract
strategy games discussed here), there is a (simpler) Minimax variant called Negamax, shown in
Algorithm 7 in Appendix A.

Algorithm 1 Minimax algorithm
function mini(depth)

if depth  0 then
return −value()

end if
min +1
for all possible moves do

score maxi(depth− 1)
if score < min then

min score
end if

end for
return min

end function
function maxi(depth)

if depth  0 then
return value()

end if
max −1
for all possible moves do

score mini(depth− 1)
if score > min then

max score
end if

end for
return max

end function
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Fig. 2.1 state
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Figure 2.2: Minimax tree with initial position at Fig. 2.1 state, nodes are states and edges are
transitions, labeled with the move. Leafs are end-game states: 1 point for the win and -1 for
the loss. Player is “circles” and plays first (first edges are player’s moves).

2.3.2 Checkers, alpha-beta

Checkers, Chess and Go are also zero sum, perfect-information*, turn-taking, partisan*, de-
terministic strategy game. Theoretically, they all can be solved by exhaustive Minimax. In
practice though, it is often intractable: their bounded versions are at least in pspace and their
unbounded versions are exptime-hard [Hearn and Demaine, 2009]. We can see the complexity
of Minimax as O(bd) with b the average branching factor* of the tree (to search) and d the aver-
age length (depth) of the game. For Checkers b ⇡ 8, but taking pieces is mandatory, resulting in
a mean adjusted branching factor of ⇡ 4, while the mean game length is 70 resulting in a game
tree complexity of ⇡ 1031 [Allis, 1994]. It is already too large to have been solved by Minimax
alone (on current hardware). From 1989 to 2007, there were artificial intelligence competitions
on Checkers, all using at least alpha-beta pruning: a technique to make efficient cuts in the
Minimax search tree while not losing optimality. The state space complexity of Checkers is the
smallest of the 3 above-mentioned games with ⇡ 5.1020 legal possible positions (conformations
of pieces which can happen in games). As a matter of fact, Checkers has been (weakly) solved,
which means it was solved for perfect play on both sides (and always ends in a draw) [Schaeffer
et al., 2007a]. Not all positions resulting from imperfect play have been analyzed.

Alpha-beta pruning (see Algorithm 2) is a branch-and-bound algorithm which can reduce
Minimax search down to a O(bd/2) = O(

p
bd) complexity if the best nodes are searched first

(O(b3d/4) for a random ordering of nodes). ↵ is the maximum score that we (the maximizing
player) are assured to get given what we already evaluated, while β is the minimum score that
the minimizing player is assured to get. When evaluating more and more nodes, we can only
get a better estimate and so ↵ can only increase while β can only decrease. If we find a node for
which β becomes less than ↵, it means that this position results from sub-optimal play. When it
is because of an update of β, the sub-optimal play is on the side of the maximizing player (his ↵
is not high enough to be optimal and/or the minimizing player has a winning move faster in the
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Algorithm 2 Alpha-beta algorithm
function alphabeta(node,depth,↵,β,player)

if depth  0 then
return value(player)

end if
if player == us then

for all possible moves do
↵ max (↵, alphabeta(child, depth− 1, ↵, β, opponent))
if β  ↵ then

break
end if

end for
return ↵

else
for all possible moves do

β  min (β, alphabeta(child, depth− 1, ↵, β, us))
if β  ↵ then

break
end if

end for
return β

end if
end function

current sub-tree) and this situation is called an ↵ cut-off. On the contrary, when the cut results
from an update of ↵, it is called a β cut-off and means that the minimizing player would have
to play sub-optimally to get into this sub-tree. When starting the game, ↵ is initialized to −1
and β to +1. A worked example is given on Figure 2.3. Alpha-beta is going to be helpful to
search much deeper than Minimax in the same allowed time. The best Checkers program (since
the 90s), which is also the project which solved Checkers [Schaeffer et al., 2007b], Chinook, has
opening and end-game (for eight pieces or fewer) books, and for the mid-game (when there are
more possible moves) relies on a deep search algorithm. So, apart for the beginning and the
ending of the game, for which it plays by looking up a database, it used a search algorithm. As
Minimax and Alpha-beta are depth first search algorithms, all programs which have to answer
in a fixed limit of time use iterative deepening. It consists in fixing limited depth which will be
considered maximal and evaluating this position. As it does not relies in winning moves at the
bottom, because the search space is too big in bd, we need moves evaluation heuristics. We then
iterate on growing the maximal depth for which we consider moves, but we are at least sure to
have a move to play in a short time (at least the greedy depth 1 found move).

2.3.3 Chess, heuristics

With a branching factor* of ⇡ 35 and an average game length of 80 moves [Shannon, 1950],
the average game-tree complexity of chess is 3580 ⇡ 3.10123. Shannon [1950] also estimated
the number of possible (legal) positions to be of the order of 1043, which is called the Shannon
number. Chess AI needed a little more than just Alpha-beta to win against top human players
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Figure 2.3: Alpha-beta cuts on a Minimax tree, nodes are states and edges are transitions,
labeled with the values of positions at the bottom (max depth). Here is the trace of the algorithm:
1. descend leftmost first and evaluated 2 and 3, 2. percolate max(2,3) higher up to set β = 3,
3. β-cut in A because its value is at least 5 (which is superior to β = 3), 4. Update of ↵ = 3 at
the top node, 5. ↵-cut in B because it is at most 0 (which is inferior to ↵ = 3), 6. ↵-cut in C
because it is at most 2, 7. conclude the best value for the top node is 3.

(not that Checkers could not benefit it), particularly on 1996 hardware (first win of a computer
against a reigning world champion, Deep Blue vs. Garry Kasparov). Once an AI has openings
and ending books (databases to look-up for classical moves), how can we search deeper during
the game, or how can we evaluate better a situation? In iterative deepening Alpha-beta (or
other search algorithms like Negascout [Reinefeld, 1983] or MTD-f [Plaat, 1996]), one needs
to know the value of a move at the maximal depth. If it does not correspond to the end of
the game, there is a need for an evaluation heuristic. Some may be straight forward, like the
resulting value of an exchange in pieces points. But some strategies sacrifice a queen in favor
of a more advantageous tactical position or a checkmate, so evaluation heuristics need to take
tactical positions into account. In Deep Blue, the evaluation function had 8000 cases, with 4000
positions in the openings book, all learned from 700,000 grandmaster games [Campbell et al.,
2002]. Nowadays, Chess programs are better than Deep Blue and generally also search less
positions. For instance, Pocket Fritz (HIARCS engine) beats current grandmasters [Wikipedia,
Center] while evaluating 20,000 positions per second (740 MIPS on a smartphone) against Deep
Blue’s (11.38 GFlops) 200 millions per second.

2.3.4 Go, Monte-Carlo tree search

With an estimated number of legal 19x19 Go positions of 2.081681994 ⇤ 10170 [Tromp and
Farnebäck, 2006] (1.196% of possible positions), and an average branching factor* above Chess
for gobans* from 9x9 and above, Go sets another limit for AI. For 19x19 gobans, the game tree
complexity is up to 10360 [Allis, 1994]. The branching factor varies greatly, from ⇡ 30 to 300

(361 cases at first), while the mean depth (number of plies in a game) is between 150 to 200.
Approaches other than systematic exploration of the game tree are required. One of them is
Monte Carlo Tree Search (MCTS*). Its principle is to randomly sample which nodes to expand
and which to exploit in the search tree, instead of systematically expanding the build tree as
in Minimax. For a given node in the search tree, we note Q(node) the sum of the simulations
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rewards on all the runs through node, and N(node) the visits count of node. Algorithm 3 details
the MCTS algorithm and Fig. 2.4 explains the principle.

Algorithm 3 Monte-Carlo Tree Search algorithm. ExpandFrom(node) is the tree (growing)
policy function on how to select where to search from situation node (exploration or exploita-
tion?) and how to expand the game tree (deep-first, breadth-first, heuristics?) in case of untried
actions. Evaluate(tree) may have 2 behaviors: 1. if tree is complete (terminal), it gives an
evaluation according to games rules, 2. if tree is incomplete, it has to give an estimation, either
through simulation (for instance play at random) or an heuristic. BestChild picks the action
that leads to the better value/reward from node. Merge(node, tree) changes the existing tree
(with node) to take all the Q(⌫)8⌫ 2 tree (new) values into account. If tree contains new nodes
(there were some exploration), they are added to node at the right positions.

function MCTS(node)
while computational time left do

tree ExpandFrom(node)
tree.values Evaluate(tree)
Merge(node, tree)

end while
return BestChild(node)

end function

The MoGo team [Gelly and Wang, 2006, Gelly et al., 2006, 2012] introduced the use of Upper
Confidence Bounds for Trees (UCT*) for MCTS* in Go AI. MoGo became the best 9x9 and
13x13 Go program, and the first to win against a pro on 9x9. UCT specializes MCTS in that it
specifies ExpandFrom (as in Algorithm. 4) tree policy with a specific exploration-exploitation
trade-off. UCB1 [Kocsis and Szepesvári, 2006] views the tree policy as a multi-armed bandit
problem and so ExpandFrom(node) UCB1 chooses the arms with the best upper confidence
bound:

argmax
c2node.children

Q(c)

N(c)
+ k

s

lnN(node)

N(c)

in which k fixes the exploration-exploitation trade-off: Q(c)
N(c) is simply the average reward when

going through c so we have exploitation only for k = 0 and exploration only for k =1.

Kocsis and Szepesvári [2006] showed that the probability of selecting sub-optimal actions
converges to zero and so that UCT MCTS converges to the minimax tree and so is optimal.
Empirically, they found several convergence rates of UCT to be in O(bd/2), as fast as Alpha-beta
tree search, and able to deal with larger problems (with some error). For a broader survey on
MCTS methods, see [Browne et al., 2012].

With Go, we see clearly that humans do not play abstract strategy games using the same
approach. Top Go players can reason about their opponent’s move, but they seem to be able to
do it in a qualitative manner, at another scale. So, while tree search algorithms help a lot for
tactical play in Go, particularly by integrating openings/ending knowledge, pattern matching
algorithms are not yet at the strategical level of human players. When a MCTS algorithm learns
something, it stays at the level of possible actions (even considering positional hashing*), while
the human player seems to be able to generalize, and re-use heuristics learned at another level.
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Algorithm 4 UCB1 ExpandFrom

function ExpandFrom(node)
if node is terminal then

return node . terminal
end if
if 9c 2 node.children s.t. N(c) = 0 then

return c . grow
end if
return ExpandFrom(argmaxc2node.children)

Q(c)
N(c) + k

q

lnN(node)
N(c) ) . select

end function

+r

+r

+r

Figure 2.4: An iteration of the while loop in MCTS, from left to right and top to bottom:
ExpandFrom select, ExpandFrom grow, Evaluate & Merge.

2.4 Games with uncertainty

An exhaustive list of games, or even of games genres, is beyond the scope/range of this thesis.
All uncertainty boils down to incompleteness of information, being it the physics of the dice
being thrown or the inability to measure what is happening in the opponent’s brain. However,
we will speak of 2 types (sources) of uncertainty: extensional uncertainty, which is due to
incompleteness in direct, measurable information, and intentional uncertainty, which is related
to randomness in the game or in (the opponent’s) decisions. Here are two extreme illustrations
of this: an agent acting without sensing is under full extensional uncertainty, while an agent
whose acts are the results of a perfect random generator is under full intentional uncertainty.
The uncertainty coming from the opponent’s mind/cognition lies in between, depending on the
simplicity to model the game as an optimization procedure. The harder the game is to model,
the harder it is to model the trains of thoughts our opponents can follow.
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2.4.1 Monopoly

In Monopoly, there is no hidden information, but there is randomness in the throwing of dice3,
Chance and Community Chest cards, and a substantial influence of the player’s knowledge of
the game. A very basic playing strategy would be to just look at the return on investment
(ROI) with regard to prices, rents and frequencies, choosing what to buy based only on the
money you have and the possible actions of buying or not. A less naive way to play should
evaluate the questions of buying with regard to what we already own, what others own, our
cash and advancement in the game. Using expected valued to modify the minimax algorithm
(assuming a two players context to simplify) would lead to the expectimax algorithm [Russell
and Norvig, 2010]. The complete state space is huge (places for each players ⇥ their money
⇥ their possessions), but according to Ash and Bishop [1972], we can model the game for one
player (as he has no influence on the dice rolls and decisions of others) as a Markov process on
120 ordered pairs: 40 board spaces ⇥ possible number of doubles rolled so far in this turn (0,
1, 2). With this model, it is possible to compute more than simple ROI and derive applicable
and interesting strategies. So, even in Monopoly, which is not lottery playing or simple dice
throwing, a simple probabilistic modeling yields a robust strategy. Additionally, Frayn [2005]
used genetic algorithms to generate the most efficient strategies for portfolio management.

Monopoly is an example of a game in which we have complete direct information about
the state of the game. The intentional uncertainty due to the roll of the dice (randomness)
can be dealt with thanks to probabilistic modeling (Markov processes here). The opponent’s
actions are relatively easy to model due to the fact that the goal is to maximize cash and
that there are not many different efficient strategies to attain it. In general, the presence of
chance does not invalidate previous (game theoretic / game trees) approaches but transforms
exact computational techniques into stochastic ones: finite states machines become probabilistic
Bayesian networks for instance.

2.4.2 Battleship

Battleship (also called “naval combat”) is a guessing game generally played with two 10 ⇥ 10

grids for each players: one is the player’s ships grid, and one is to remember/infer the opponent’s
ships positions. The goal is to guess where the enemy ships are and sink them by firing shots
(torpedoes). There is incompleteness of information but no randomness. Incompleteness can
be dealt with with probabilistic reasoning. The classic setup of the game consist in two ships of
length 3 and one ship of each lengths of 2, 4 and 5; in this setup, there are 1,925,751,392 possible
arrangements for the ships. The way to take advantage of all possible information is to update
the probability that there is a ship for all the squares each time we have additional information.
So for the 10 ⇥ 10 grid we have a 10 ⇥ 10 matrix O1:10,1:10 with Oi,j 2 {true, false} being the
ith row and jth column random variable of the case being occupied. With ships being unsunk
ships, we always have:

X

i,j

P(Oi,j = true) =

P

k2ships length(k)

10⇥ 10

3Note that the sum of two uniform distributions is not a uniform but a Irwin-Hall, ∀n >
1,P([

Pn
i=1 (Xi ∈ U(0, 1))] = x) ∝ 1

(n−1)!

Pn
k=0(−1)k

(

n
k

)

max ((x− k)n−1, 0), converging towards a Gaussian (cen-

tral limit theorem).
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For instance for a ship of size 3 alone at the beginning we can have (supposed uniform) prior
distributions on O1:10,1:10 by looking at combinations of its placements (see Fig. 2.5). We can
also have priors on where the opponent likes to place her ships. Then, in each round, we will
either hit or miss in i, j. When we hit, we know P(Oi,j = true) = 1.0 and will have to revise
the probabilities of surrounding areas, and everywhere if we learned the size of the ship, with
possible placement of ships. If we did not sunk a ship, the probabilities of uncertain (not 0.0
or 1.0) positions around i, j will be raised according to the sizes of remaining ships. If we miss,
we know P([Oi,j = false]) = 1.0 and can also revise (lower) the surrounding probabilities, an
example of that effect is shown in Fig. 2.5.

Battleship is a game with few intensive uncertainty (no randomness), particularly because the
goal quite strongly conditions the action (sink ships as fast as possible). However, it has a large
part of extensional uncertainty (incompleteness of direct information). This incompleteness of
information goes down rather quickly once we act, particularly if we update a probabilistic model
of the map/grid. If we compare Battleship to a variant in which we could see the adversary board,
playing would be straightforward (just hit ships we know the position on the board), now in real
Battleship we have to model our uncertainty due to the incompleteness of information, without
even beginning to take into account the psychology of the opponent in placement as a prior.
The cost of solving an imperfect information game increases greatly from its perfect information
variant: it seems to be easier to model stochasticity (or chance, a source of randomness) than
to model a hidden (complex) system for which we only observe (indirect) effects.

Figure 2.5: Left: visualization of probabilities for squares to contain a ship of size 3 (P(Oi,j) =
true) initially, assuming uniform distribution of this type of ship. Annotations correspond to
the number of combinations (on six, the maximum number of conformations), Right: same
probability after a miss in (5, 5). The larger the white area, the higher the probability.
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2.4.3 Poker

Poker4 is a zero-sum (without the house’s cut), imperfect information and stochastic betting
game. Poker “AI” is as old as game theory [Nash, 1951], but the research effort for human-level
Poker AI started in the end of the 90s. The interest for Poker AI is such that there are annual
AAAI computer Poker competitions5. Billings et al. [1998] defend Poker as an interesting game
for decision-making research, because the task of building a good/high level Poker AI (player)
entails to take decisions with incomplete information about the state of the game, incomplete
information about the opponents’ intentions, and model their thoughts process to be able to
bluff efficiently. A Bayesian network can combine these uncertainties and represent the player’s
hand, the opponents’ hands and their playing behavior conditioned upon the hand, as in [Korb
et al., 1999]. A simple “risk evaluating” AI (folding and raising according to the outcomes of
its hands) will not prevail against good human players. Bluffing, as described by Von Neumann
and Morgenstern [1944] “to create uncertainty in the opponent’s mind”, is an element of Poker
which needs its own modeling. Southey et al. [2005] also give a Bayesian treatment to Poker,
separating the uncertainty resulting from the game (draw of cards) and from the opponents’
strategies, and focusing on bluff. From a game theoretic point of view, Poker is a Bayesian
game*. In a Bayesian game, the normal form representation requires describing the strategy
spaces, type spaces, payoff and belief functions for each player. It maps to all the possible game
trees along with the agents’ information state representing the probabilities of individual moves,
called the extensive form. Both these forms scale very poorly (exponentially). Koller and Pfeffer
[1997] used the sequence form transformation, the set of realization weights of the sequences
of moves6, to search over the space of randomized strategies for Bayesian games automatically.
Unfortunately, strict game theoretic optimal strategies for full-scale Poker are still not tractable
this way, two players Texas Hold’em having a state space ⇡ O(1018). Billings et al. [2003]
approximated the game-theoretic optimal strategies through abstraction and are able to beat
strong human players (not world-class opponents).

Poker is a game with both extensional and intentional uncertainty, from the fact that the
opponents’ hands are hidden, the chance in the draw of the cards, the opponents’ model about
the game state and their model about our mental state(s) (leading our decision(s)). While the
iterated reasoning (“if she does A, I can do B”) is (theoretically) finite in Chess due to perfect
information, it is not the case in Poker (“I think she thinks I think...”). The combination of
different sources of uncertainty (as in Poker) makes it complex to deal with it (somehow, the
sources of uncertainty must be separated), and we will see that both these sources of uncertainties
arise (at different levels) in video games.

2.5 FPS

2.5.1 Gameplay and AI

First person shooters gameplay* consist in controlling an agent in first person view, centered on
the weapon, a gun for instance. The firsts FPS popular enough to bring the genre its name were

4We deal mainly with the Limit Hold’em variant of Poker.
5http://www.computerpokercompetition.org/
6for a given player, a sequence is a path down the game tree isolating only moves under their control
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Wolfeinstein 3D and Doom, by iD Software. Other classic FPS (series) include Duke Nukem
3D, Quake, Half-Life, Team Fortress, Counter-Strike, Unreal Tournament, Tribes, Halo, Medal
of Honor, Call of Duty, Battlefield, etc. The distinction between “fast FPS” (e.g. Quake series,
Unreal Tournament series) and others is made on the speed at which the player moves. In “fast
FPS”, the player is always jumping, running much faster and playing more in 3 dimensions than
on discretely separate 2D ground planes. Game types include (but are not limited to):

• single-player missions, depending of the game design.

• capture-the-flag (CTF), in which a player has to take the flag inside the enemy camp and
bring it back in her own base.

• free-for-all (FFA), in which there are no alliances.

• team deathmatch (TD), in which two (or more) teams fight on score.

• various gather and escort (including hostage or payload modes), in which one team has to
find and escort something/somebody to another location.

• duel/tournament/deathmatch, 1 vs 1 matches (mainly “fast FPS”).

From these various game types, the player has to maximize its damage (or positive actions)
output while staying alive. For that, she will navigate her avatar in an uncertain environment
(partial information and other players intentions) and shoot (or not) at targets with specific
weapons.

Some games allow for instant (or delayed, but asynchronous to other players) respawn (recre-
ation/rebirth of a player), most likely in the “fast FPS” (Quake-like) games, while in others, the
player has to wait for the end of the round to respawn. In some games, weapons, ammunitions,
health, armor and items can be picked on the ground (mainly “fast FPS”), in others, they are
fixed at the start or can be bought in game (with points). The map design can make the game-
play vary a lot, between indoors, outdoors, arena-like or linear maps. According to maps and
gameplay styles, combat may be well-prepared with ambushes, sniping, indirect (zone damages),
or close proximity (even to fist weapons). Most often, there are strong tactical positions and
effective ways to attack them.

While “skill” (speed of the movements, accuracy of the shots) is easy to emulate for an AI,
coordination (team-play) is much harder for bots and it is always a key ability. Team-play is the
combination of distributed evaluation of the situation, planning and distribution of specialized
tasks. Very high skill also requires integrating over enemy’s tactical plans and positions to be
able to take indirect shots (grenades for instance) or better positioning (coming from their back),
which is hard for AI too. An example of that is that very good human players consistently beat
the best bots (nearing 100% accuracy) in Quake III (which is an almost pure skill “fast FPS”),
because they take advantage of being seen just when their weapons reload or come from their
back. Finally, bots which equal the humans by a higher accuracy are less fun to play with: it is
a frustrating experience to be shot across the map, by a bot which was stuck in the door because
it was pushed out of its trail.
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2.5.2 State of the art

FPS AI consists in controlling an agent in a complex world: it can have to walk, run, crouch,
jump, swim, interact with the environment and tools, and sometimes even fly. Additionally, it
has to shoot at moving, coordinated and dangerous, targets. On a higher level, it may have
to gather weapons, items or power-ups (health, armor, etc.), find interesting tactical locations,
attack, chase, retreat...

The Quake III AI is a standard for Quake-like games [van Waveren and Rothkrantz, 2002].
It consists in a layered architecture (hierarchical) FSM*. At the sensory-motor level, it has
an Area Awareness System (AAS) which detects collisions, accessibility and computes paths.
The level above provides intelligence for chat, goals (locations to go to), and weapons selection
through fuzzy logic. Higher up, there are the behavior FSM (“seek goals”, chase, retreat, fight,
stand...) and production rules (if-then-else) for squad/team AI and orders. A team of bots
always behaves following the orders of one of the bots. Bots have different natures and tempers,
which can be accessed/felt by human players, specified by fuzzy relations on “how much the
bot wants to do, have, or use something”. A genetic algorithm was used to optimize the fuzzy
logic parameters for specific purposes (like performance). This bot is fun to play against and is
considered a success, however Quake-like games makes it easy to have high level bots because
very good players have high accuracy (no fire spreading), so they do not feel cheated if bots
have a high accuracy too. Also, the game is mainly indoors, which facilitates tactics and terrain
reasoning. Finally, cooperative behaviors are not very evolved and consist in acting together
towards a goal, not with specialized behaviors for each agent.

More recent FPS games have dealt with these limitations by using combinations of STRIPS
planning (F.E.A.R. [Orkin, 2006]), HTN* (Killzone 2 [Champandard et al., 2009] and ArmA
[van der Sterren, 2009]), Behavior trees (Halo 2 [Isla, 2005]). Left4Dead (a cooperative PvE
FPS) uses a global supervisor of the AI to set the pace of the threat to be the most enjoyable
for the player [Booth, 2009].

In research, Laird [2001] focused on learning rules for opponent modeling, planning and
reactive planning (on Quake), so that the robot builds plan by anticipating the opponent’s
actions. Le Hy et al. [2004], Le Hy [2007] used robotics inspired Bayesian models to quickly
learn the parameters from human players (on Unreal Tournament). Zanetti and Rhalibi [2004]
and Westra and Dignum [2009] applied evolutionary neural networks to optimize Quake III
bots. Predicting opponents positions is a central task to believability and has been solved
successfully using particle filters [Bererton, 2004] and other models (like Hidden Semi-Markov
Models) [Hladky and Bulitko, 2008]. Multi-objective neuro-evolution [Zanetti and Rhalibi, 2004,
Schrum et al., 2011] combines learning from human traces with evolutionary learning for the
structure of the artificial neural network, and leads to realistic (human-like) behaviors, in the
context of the BotPrize challenge (judged by humans) [Hingston, 2009].

2.5.3 Challenges

Single-player FPS campaigns immersion could benefit from more realistic bots and clever squad
tactics. Multi-player FPS are competitive games, and a better game AI should focus on:

• believability requires the AI to take decisions with the same informations than the human
player (fairness) and to be able to deal with unknown situation.
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• surprise and unpredictability is key for both performance and the long-term interest in
the human player in the AI.

• performance, to give a challenge to human players, can be achieved through cooperative,
planned and specialized behaviors.

2.6 (MMO)RPG

2.6.1 Gameplay and AI

Inspired directly by tabletop and live action role-playing games (Dungeon & Dragons) as new
tools for the game masters, it is quite natural for the RPG to have ended up on computers. The
first digital RPGs were text (Wumpus) or ASCII-art (Rogue, NetHack) based. The gameplay
evolved considerably with the technique. Nowadays, what we will call a role playing game
(RPG) consist in the incarnation by the human player of an avatar (or a team of avatars) with
a class: warrior, wizard, rogue, priest, etc., having different skills, spells, items, health points,
stamina/energy/mana (magic energy) points. Generally, the story brings the player to solve
puzzles and fight. In a fight, the player has to take decisions about what to do, but skill plays
a lesser role in performing the action than in a FPS game. In a FPS, she has to move the
character (egocentrically) and aim to shoot; in a RPG, she has to position itself (often way less
precisely and continually) and just decide which ability to use on which target (or a little more for
“action RPG”). The broad category of RPG include: Fallout, The Elders Scrolls (from Arena to
Skyrim), Secret of Mana, Zelda, Final Fantasy, Diablo, Baldur’s Gate. A MMORPG (e.g. World
of Warcraft, AION or EVE Online) consist in a role-playing game in a persistent, multi-player
world. There usually are players-run factions fighting each others’ (PvP) and players versus
environment (PvE) situations. PvE* may be a cooperative task in which human players fight
together against different NPC, and in which the cooperation is at the center of the gameplay.
PvP is also a cooperative task, but more policy and reactions-based than a trained and learned
choregraphy as for PvE. We can distinguish three types (or modality) of NPC which have
different game AI needs:

• world/neutral/civilian NPC: gives quests, takes part in the world’s or game’s story, talks,

• “mob”/hostile NPC that the player will fight,

• “pets”/allied NPC: acts by the players’ sides.

• persistent character AI could maintain the players’ avatars in the world when they are
disconnected.

NPC acting strangely are sometimes worse for the player’s immersion than immobile and dull
ones. However, it is more fun for the player to battle with hostile NPC which are not too dumb
or predictable. Players really expect allied NPC to at least not hinder them, and it is even
better when they adapt to what the player is doing.

31



2.6.2 State of the art

Methods used in FPS* are also used in RPG*. The needs are sometimes a little different for
RPG games: for instance RPG need interruptible behaviors, behaviors that can be stopped and
resumed (dialogs, quests, fights...) that is. RPG also require stronger story-telling capabili-
ties than other gameplay genres, for which they use (logical) story representations (ontologies)
[Kline, 2009, Riedl et al., 2011]. Behavior multi-queues [Cutumisu and Szafron, 2009] resolve
the problems of having resumable, collaborative, real-time and parallel behavior, and tested
their approach on Neverwinter Nights. Basically they use prioritized behavior queues which can
be inserted (for interruption and resumption) in each others. AI directors are control programs
tuning the difficulty and pace of the game session in real-time from player’s metrics. Kline [2011]
used an AI director to adapt the difficulty of Dark Spore to the performance (interactions and
score) of the player in real-time.

2.6.3 Challenges

There are mainly two axes for RPG games to bring more fun: interest in the game play(s), and
immersion. For both these topics, we think game AI can bring a lot:

• believability of the agents will come from AI approaches than can deal with new sit-
uations, being it because they were not dealt with during game development (because
the “possible situations” space is too big) or because they were brought by the players’
unforeseeable actions. Scripts and strict policies approaches will be in difficulty here.

• interest (as opposed to boredom) for the human players in the game style of the AI
will come from approaches which can generate different behaviors in a given situation.
Predictable AI particularly affects replayability negatively.

• performance relative to the gameplay will come from AI approaches than can fully deal
with cooperative behavior. One solution is to design mobs to be orders of magnitude
stronger (in term of hit points and damages) than players’ characters, or more numerous.
Another, arguably more entertaining, solution is to bring the mobs behavior to a point
where they are a challenge for the team of human players.

Both believability and performance require to deal with uncertainty (randomness of effects,
partial observations, players’ intentions) of the game environment. RPG AI problem spaces are
not tractable for a frontal (low-level) search approach nor are there few enough situations to
consider to just write a bunch of simple scripts and puppeteer artificial agents at any time.

2.7 RTS Games

As RTS are the central focus on this thesis, we will discuss specific problems and solution
more in depth in their dedicated chapters, simply sketching here the underlying major research
problems. Major RTS include the Command&Conquer, Warcraft, StarCraft, Age of Empires
and Total Annihilation series.
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2.7.1 Gameplay and AI

RTS gameplay consists in gathering resources, building up an economic and military power
through growth and technology, to defeat your opponent by destroying his base, army and
economy. It requires dealing with strategy, tactics, and unit management (often called micro-
management) in real-time. Strategy consists in what will be done in the long term as well
as predicting what the enemy is doing. It particularly deals with the economy/army trade-off
estimation, army composition, long-term planning. The three aggregate indicators for strategy
are aggression, production, and technology. The tactical aspect of the gameplay is dominated
by military moves: when, where (with regard to topography and weak points), how to attack
or defend. This implies dealing with extensional (what the invisible units under “fog of war*”
are doing) and intentional (what will the visible enemy units do) uncertainty. Finally, at the
actions/motor level, micro-management is the art of maximizing the effectiveness of the units
i.e. the damages given/damages received ratio. For instance: retreat and save a wounded unit
so that the enemy units would have to chase it either boosts your firepower or weakens the
opponent’s. Both [Laird and van Lent, 2001] and Gunn et al. [2009] propose that RTS AI is one
of the most challenging genres, because all levels in the hierarchy of decisions are of importance.

More will be said about RTS in the dedicated chapter 4.

2.7.2 State of the art & challenges

RTS games are characterized by a long time scale (⇡ 20 minutes at ⇡ 24 frames per second)
and a huge action space (simultaneous moves). Buro [2004] called for AI research in RTS games
and identified the technical challenges as:

• adversarial planning under uncertainty, and for that abstractions have to be found
both allowing to deal with partial observations and to plan in real-time.

• learning and opponent modeling: adaptability plays a key role in the strength of
human players.

• spatial and temporal reasoning: tactics using the terrain features and good timings
are essential for higher level play.

To these challenges, we would like to add the difficulty of inter-connecting all special cases
resolutions of these problems: both for the collaborative (economical and logistical) management
of the resources, and for the sharing of uncertainty quantization in the decision-making processes.
Collaborative management of the resources require arbitrage between sub-models on resources
repartition. By sharing information (and its uncertainty) between sub-models, decisions can be
made that account better for the whole knowledge of the AI system. This will be extended
further in the next chapters as RTS are the main focus of this thesis.

2.8 Games characteristics

All the types of video games that we saw before require to deal with imperfect information and
sometimes with randomness, while elaborating a strategy (possibly from underlying policies).
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From a game theoretic point of view, these video games are closely related to what is called
a Bayesian game* [Osborne and Rubinstein, 1994]. However, solving Bayesian games is non-
trivial, there are no generic and efficient approaches, and so it has not been done formally for
card games with more than a few cards. Billings et al. [2003] approximated a game theoretic
solution for Poker through abstraction heuristics, it leads to believe than game theory can be
applied at the higher (strategic) abstracted levels of video games.

We do not pretend to do a complete taxonomy of video games and AI (e.g. [Gunn et al.,
2009]), but we wish to provide all the major informations to differentiate game genres (game-
plays). To grasp the challenges they pose, we will provide abstract measures of complexity.

2.8.1 Combinatorics

“How does the state of possible actions grow?” To measure this, we used a measure from perfect
information zero-sum games (as Checkers, Chess and Go): the branching factor* b and the
depth d of a typical game. The complexity of a game (for taking a decision) is proportional to
bd. The average branching factor for a board game is easy to compute: it is the average number
of possible moves for a given player. For Poker, we set b = 3 for fold, check and raise. The depth
d is quite shallow too with at least one decision per round that the player stays in, on a total
of 4 rounds, a little more if multiple raises. The complexity of Poker arises from the complexity
of the state space and thus of the belief space (due to the partial observability). d could be
defined over some time, the average number of events (decisions) per hour per player in Poker is
between 20 to 240 (19-25% money pre-flop and between 22% and 39% of “went to showdown”).
For video-games, we defined b to be the average number of possible moves at each decision, so
for “continuous” or “real-time” games it is some kind of function of the useful discretization of
the virtual world at hand. d has to be defined as a frequency at which a player (artificial or
not) has to take decisions to be competitive in the game, so we will give it in d/time_unit.
For instance, for a car (plane) racing game, b ⇡ 50− 500 because b is a combination of throttle
(ẍ) and direction (✓) sampled values that are relevant for the game world, with d/min at least
60: a player needs to correct her trajectory at least once a second. In RTS games, b ⇡ 200 is
a lower bound (in StarCraft we may have between 50 to 400 units to control), and very good
amateurs and professional players perform more than 300 actions per minute. As StarCraft is
a simultaneous move, multi-units game, a strict number for b would be |actions||units| (actions
account for atomic moves and abilities), thus for StarCraft b would be around 3060. Strictly
speaking, for a StarCraft game, d = 24 ⇥ game_seconds (24 game frames per second), with a
game duration of 25 minutes, this gives d ⇡ 36, 000, thus bd ⇡ 3060

36000
.

The sheer size of b and d in video games make it seem intractable, but humans are able to
play, and to play well. To explain this phenomenon, we introduce “vertical” and “horizontal”
continuities in decision making. Fig. 2.6 shows how one can view the decision-making process
in a video game: at different time scales, the player has to choose between strategies to follow,
that can be realized with the help of different tactics. Finally, at the action/output/motor level,
these tactics have to be implemented one way or another7. So, matching Fig. 2.6, we could
design a Bayesian model:

7With a view limited to a screen and only keyboard and mouse as input methods, players rely on grouping
units and pathfinding to give long-distance goals.
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Figure 2.6: Abstract decision hierarchy in a video game. It is segmented in abstraction levels:
at the strategical level, a decision is taken in Attack, Defend, Collect and Hide; at the tactical
level, it is decided between Front, Back, Hit− and− run, Infiltrate; and at the actions level
between the player’s possible interactions with the world.

• St,t−1 2 Attack,Defend,Collect,Hide, the strategy variable

• T t,t−1 2 Front,Back,Hit− and− run, Infiltrate, the tactics variable

• At,t−1 2 low_level_actions, the actions variable

• Ot
1:n 2 {observations}, the set of observations variables

P(St,t−1, T t,t−1, At,t−1, Ot
1:n) = P(St−1).P(T t−1).P(At−1)

.P(Ot
1:n).P(S

t|St−1, Ot
1:n).P(T

t|St, T t−1, Ot
1:n).P(A

t|T t, At−1, Ot
1:n)

• P(St|St−1, Ot
1:n) should be read as “the probability distribution on the strategies at time

t is determined/influenced by the strategy at time t− 1 and the observations at time t”.

• P(T t|St, T t−1, Ot
1:n) should be read as “the probability distribution on the tactics at time

t is determined by the strategy at time t, tactics at time t−1 and the observations at time
t”.

• P(At|T t, At−1, Ot
1:n) should be read as “the probability distribution on the actions at time

t is determined by tactics at time t, the actions at time t− 1 and the observations at time
t”.

Vertical continuity

In the decision-making process, vertical continuity describes when taking a higher-level decision
implies a strong conditioning on lower-levels decisions. As seen on Figure 2.7: higher level
abstractions have a strong conditioning on lower levels. For instance, and in non-probabilistic
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Figure 2.7: Vertical continuity in decision-making in a video game. There is a high vertical
continuity between strategy and tactics as P([T t = Front]|[St = Attack], T t−1, Ot

1:n) is much
higher than other values for P(T t|St, T t−1, Ot

1:n). The thicker the arrow, the higher the transition
probability.

terms, if the choice of a strategy s (in the domain of S) entails a strong reduction in the size
of the domain of T , we consider that there is a vertical continuity between S and T . There is
vertical continuity between S and T if 8s 2 {S}, {P(T t|[St = s], T t−1, Ot

1:n) > ✏} is sparse in
{P(T t|T t−1, Ot

1:n) > ✏}. There can be local vertical continuity, for which the previous statement
holds only for one (or a few) s 2 {S}, which are harder to exploit. Recognizing vertical continuity
allows us to explore the state space efficiently, filtering out absurd considerations with regard to
the higher decision level(s).

Horizontal continuity

Horizontal continuity also helps out cutting the search in the state space to only relevant states.
At a given abstraction level, it describes when taking a decision implies a strong conditioning on
the next time-step decision (for this given level). As seen on Figure 2.8: previous decisions on a
given level have a strong conditioning on the next ones. For instance, and in non-probabilistic
terms, if the choice of a tactic t (in the domain of T t) entails a strong reduction in the size of
the domain of T t+1, we consider that T has horizontal continuity. There is horizontal continuity
between T t−1 and T t if 8t 2 {T}, {P(T t|St, [T t−1 = t], Ot

1:n) > ✏} is sparse in {P(T t|St, Ot
1:n) >

✏}. There can be local horizontal continuity, for which the previous state holds only for one
(or a few) t 2 {T}. Recognizing horizontal continuity boils down to recognizing sequences of
(frequent) actions from decisions/actions dynamics and use that to reduce the search space of
subsequent decisions. Of course, at a sufficiently small time-step, most continuous games have
high horizontal continuity: the size of the time-step is strongly related to the design of the
abstraction levels for vertical continuity.
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Figure 2.8: Horizontal continuity in decision-making in a video game. The thicker the arrow,
the higher the transition probability.

2.8.2 Randomness

Randomness can be inherent to the gameplay. In board games and table top role-playing,
randomness often comes from throwing dice(s) to decide the outcome of actions. In decision-
making theory, this induced stochasticity is dealt with in the framework of a Markov decision
process (MDP)*. A MDP is a tuple of (S,A, T,R) with:

• S a finite set of states

• A a finite set of actions

• Ta(s, s
0) = P([St+1 = s0]|[St = s], [At = a]) the probability that action a in state s at time

t will lead to state s0 at time t+ 1

• Ra(s, s
0) the immediate reward for going from state s to state s0 with action a.

MDP can be solved through dynamic programming or the Bellman value iteration algorithm
[Bellman, 1957]. In video games, the sheer size of S and A make it intractable to use MDP
directly on the whole AI task, but they are used (in research) either locally or at abstracted
levels of decision. Randomness inherent to the process is one of the sources of intentional
uncertainty, and we can consider player’s intentions in this stochastic framework. Modeling this
source of uncertainty is part of the challenge of writing game AI models.

2.8.3 Partial observations

Partial information is another source of randomness, which is found in shi-fu-mi, poker, RTS*
and FPS* games, to name a few. We will not go down to the fact that the throwing of the
dice seemed random because we only have partial information about its physics, or of the seed
of the deterministic random generator that produced its outcome. Here, partial observations
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refer to the part of the game state which is deliberatively hidden between players (from a
gameplay point of view): hidden hands in poker or hidden units in RTS* games due to the fog
of war*. In decision-making theory, partial observations are dealt with in the framework of a
partially observable Markov decision process (POMDP)* [Sondik, 1978]. A POMDP is a tuple
(S,A,O, T,Ω, R) with S,A, T,R as in a MDP and:

• O a finite set of observations

• Ω conditional observations probabilities specifying: P(Ot+1|St+1, At)

In a POMDP, one cannot know exactly which state they are in and thus must reason with a
probability distribution on S. Ω is used to update the distribution on S (the belief) uppon taking
the action a and observing o, we have: P([St+1 = s0]) / Ω(o|s0, a).Ps2S Ta(s, s

0).P([St = s]).
In game AI, POMDP are computationally intractable for most problems, and thus we need to
model more carefully (without full Ω and T ) the dynamics and the information value.

2.8.4 Time constant(s)

For novice to video games, we give some orders of magnitudes of the time constants involved.
Indeed, we present here only real-time video games and time constants are central to comprehen-
sion of the challenges at hand. In all games, the player is taking actions continuously sampled
at the minimum of the human interface device (mouse, keyboard, pad) refreshment rate and
the game engine loop: at least 30Hz. In most racing games, there is a quite high continuity
in the input which is constrained by the dynamics of movements. In other games, there are
big discontinuities, even if fast FPS* control resembles racing games a lot. RTS* professional
gamers are giving inputs at ⇡ 300 actions per minute (APM*).

There are also different time constants for a strategic switch to take effect. In RTS games,
it may vary between the build duration of at least one building and one unit (1-2 minutes) to a
lot more (5 minutes). In an RPG or a team FPS, it may even be longer (up to one full round
or one game by requiring to change the composition of the team and/or the spells) or shorter
by depending on the game mode. For tactical moves, we consider that the time for a decision
to have effects is proportional to the mean time for a squad to go from the middle of the map
(arena) to anywhere else. In RTS games, this is usually between 20 seconds to 2 minutes. Maps
variability between RPG* titles and FPS* titles is high, but we can give an estimate of tactical
moves to use between 10 seconds (fast FPS) to 5 minutes (some FPS, RPG).

2.8.5 Recapitulation

We present the main qualitative results for big classes of gameplays (with examples) in a table
page 39.

2.9 Player characteristics

In all these games, knowledge and learning plays a key role. Humans compensate their lack of
(conscious) computational power with pattern matching, abstract thinking and efficient memory
structures. Particularly, we can classify required abilities for players to perform well in different
gameplays by:
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quantization in increasing order: no, negligible, few, some, moderate, much
Game Combinatory Partial information Randomness Vertical continuity Horizontal continuity
Checkers b ⇡ 4− 8; d ⇡ 70 no no few some
Chess b ⇡ 35; d ⇡ 80 no no some few
Go b ⇡ 30− 300; d ⇡ 150− 200 no no some moderate
Limit Poker b ⇡ 3a ; d/hour 2 [20 . . . 240]b much much moderate few
Time Racing b ⇡ 50− 1, 000c; d/min ⇡ 60+ no no much much
(TrackMania)
Team FPS b ⇡ 100− 2, 000d ; d/min ⇡ 100e some some some moderate
(Counter-Strike)
(Team Fortress 2)
FFPS duel b ⇡ 200− 5, 000d ; d/min ⇡ 100e some negligible some much
(Quake III)
MMORPG b ⇡ 50− 100f ; d/min ⇡ 60g few moderate moderate much
(WoW, DAoC)
RTS (human) d/min = APM ⇡ 300h much negligible moderate some
(StarCraft) b ⇡ 200i; d ⇡ 7, 500
RTS much negligible moderate some
(full complexity) b ⇡ 3060 j; d ⇡ 36, 000k

afold,check,raise
bnumber of decisions taken per hour
c{ẍ× θ × φ} sampling×50Hz
d{X × Y × Z} sampling×50Hz + firing
e60 “continuous move actions”+ 40 (mean) fire actions per sec
fin RPGs, there are usually more abilities than in FPS games, but the player does not have to aim to hit a target, and thus positioning plays a lesser role than in

FPS.
gmove and use abilities/cast spells
hfor pro-gamers, counting group actions as only one action, game of 25 minutes
iatomic dir/unit × # units + constructions + productions (scaled down with grouping, continuity and physical screen tracking limitations)
j|actions||units|

k24 game engine frames per second for a game of 25 minutes
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• Virtuosity: the technical skill or ease of the player with given game’s actions and interac-
tions. At high level of skills, there is a strong parallel with playing a music instrument. In
racing games, one has to drive precisely and react quickly. In FPS* games, players have
to aim and move, while fast FPS motions resemble driving. In RPG* games, players have
to use skill timely as well as have good avatar placement. Finally, in RTS* games, players
have to control several units (in “god’s view”), from tens to hundreds and even sometimes
thousands. They can use control groups, but it does not cancel the fact that they have to
control both their economy and their armies.

• Deductive reasoning: the capacity to follow logical arguments, forward inference: [A )
B]^A) B. It is particularly important in Chess and Go to infer the outcomes of moves.
For FPS games, what is important is to deduce where the enemy can be from what one has
seen. In RPG games, players deduce quests solutions as well as skills/spells combinations
effects. In RTS games, there is a lot of strategy and tactics that have to be infered from
partial information.

• Inductive reasoning: the capacity for abstraction, generalization, going from simple obser-
vations to a more general concept. A simple example of generalization is: [Q of the sample
has attribute A] ) [Q of the population has attribute A]. In all games, it is important
to be able to induce the overall strategy of the opponent’s from action-level observations.
In games which benefit from a really abstract level of reasoning (Chess, Go, RTS), it is
particularly important as it allows to reduce the complexity of the problem at hand, by
abstracting it and reasoning in abstractions.

• Decision-making: the capacity to take decisions, possibly under uncertainty and stress.
Selecting a course of actions to follow while not being sure of their effect is a key ability
in games, particularly in (very) partial information games as Poker (in which randomness
even adds to the problem) and RTS games. It is important in Chess and Go too as
reasoning about abstractions (as for RTS) brings some uncertainty about the effects of
moves too.

• Knowledge: we distinguish two kinds of knowledge in games: knowledge of the game and
knowledge of particular situations (“knowledge of the map”). The duality doesn’t exist in
Chess, Go and Poker. However, for instance for racing games, knowledge of the map is
most often more important than knowledge of the game (game mechanics and game rules,
which are quite simple). In FPS games, this is true too as good shortcuts, ambushes and
efficient movements comes from good knowledge of the map, while rules are quite simple.
In RPG, rules (skills and spells effects, durations, costs...) are much more complex to
grasp, so knowlege of the game is perhaps more important. Finally, for RTS games, there
are some map-specific strategies and tactics, but the game rules and overall strategies are
also already complex to grasp. The longer are the rules of the game to explain, the higher
the complexity of the game and thus the benefit from knowledge of the game itself.

• Psychology: the capacity to know the opponent’s move by knowing them, their style,
and reasoning about what they think. It is particularly important in competitive games
for which there are multiple possible styles, which is not really the case for Chess, Go
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and racing games. As players have multiple possible valid moves, reasoning about their
decision-making process and effectively predicting what they will do is what differentiate
good players from the best ones.

Finally, we made a quick survey among gamers and regrouped the 108 answers in table 2.9
page 42. The goal was a to get a grasp on which skills are correlated to which gameplays. The
questions that we asked can be found in Appendix A.2. Answers mostly come from good to
highly competitive (on a national level) amateurs. To test the “psychology” component of the
gameplay, we asked players if they could predict the next moves of their opponents by knowing
them personally or by knowing what the best moves (best play) was for them. As expected,
Poker has the strongest psychological dimension, followed by FPS and RTS games.
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Game Virtuositya Deduction b Induction c Decision-Makingd Opponent predictione Advantageous knowledgef

(sensory-motor) (analysis) (abstraction) (taking action) -1: subjectivity -1: map
[0-2] [0-2] [0-2] [0-2] 1: objectivity 1: game

Chess (n: 35) X 1.794 1.486 1.657 0.371 X
Go (n: 16) X 1.688 1.625 1.625 0.562 X
Poker (n: 22) X 1.136 1.591 1.545 -0.318 X
Racing (n: 19) 1.842 0.263 0.211 1.000 0.500 -0.316
Team FPS (n: 40) 1.700 1.026 1.075 1.256 0.150 -0.105
Fast FPS (n: 22) 2.000 1.095 1.095 1.190 0.000 0.150
MMORPG (n: 29) 1.069 1.069 1.103 1.241 0.379 0.759
RTS (n: 86) 1.791 1.849 1.687 1.814 0.221 0.453

a“skill”, dexterity of the player related to the game, as for a musician with their instrument.
bcapacity for deductive reasoning; from general principle to a specific conclusion.
ccapacity for inductive reasoning, abstraction, generalization; from specific examples to a general conclusion.
dcapacity to select a course of actions in the presence of several alternatives, possibly under uncertainty and stress.
ewhat is the biggest indicator to predict the opponent’s moves: their psychology (subjective) or the rules and logic of the game (objective)?
fIs knowledge of the game in general, or of the map specifically, preferable in order to play well?
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Chapter 3

Bayesian modeling of multi-player

games

On voit, par cet Essai, que la théorie des probabilités n’est, au fond, que le bon sens

réduit au calcul; elle fait apprécier avec exactitude ce que les esprits justes sentent

par une sorte d’instinct, sans qu’ils puissent souvent s’en rendre compte.

One sees, from this Essay, that the theory of probabilities is basically just common

sense reduced to calculus; it makes one appreciate with exactness that which accurate

minds feel with a sort of instinct, often without being able to account for it.

Pierre-Simon de Laplace (Essai philosophique sur les probabilités, 1814)

H
ere, we now present the use of probability theory as an alternative to logic, transform-
ing incompleteness into uncertainty. Bayesian models can deal with both intentional and

extensional uncertainty, that is: uncertainty coming from intentions of the players or the stochas-
ticity of the game, as well as uncertainty coming from imperfect information and the model’s
limits. We will first show how these problems are addressed by probabilities and how to struc-
ture a full Bayesian program. We illustrate the approach with a model evaluated on a simulated
MMORPG* situation.

3.1 Problems in game AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The Bayesian programming methodology . . . . . . . . . . . . . . . . . . . . . 45

3.3 Modeling of a Bayesian MMORPG player . . . . . . . . . . . . . . . . . . . . . 49

3.1 Problems in game AI

We sum up the problems that we have detailed in the previous chapter to make a good case for
a consistent reasoning scheme which can deal with uncertainty.

3.1.1 Sensing and partial information

If the AI has perfect information, behaving realistically is the problem. Cheating bots are not
fun, so either AI should just use information available to the players, or it should fake having
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only partial information. That is what is done is FPS* games with sight range (often ray
casted) and sound propagation for instance. In probabilistic modeling, sensor models allow for
the computation of the state S from observations O by asking P(S|O). One can easily specify or
learn P(O|S): either the game designers specify it, or the bot uses perfect information to get S

and learns (counts) P(O|S). Then, when training is finished, the bot infers P(S|O) = P(O|S).P(S)
P(O)

(Bayes rule). Incompleteness of information is just uncertainty about the full state.

3.1.2 Uncertainty (from rules, complexity)

Some games have inherent stochasticity part of the gameplay, through random action effects of
attacks/spells for instance. This has to be taken into account while designing the AI and dealt
with either to maximize the expectation at a given time. In any case, in a multi-player setting, an
AI cannot assume optimal play from the opponent due to the complexity of video games. In the
context of state estimation and control, dealing with this randomness require ad-hoc methods for
scripting of boolean logic, while it is dealt with natively through probabilistic modeling. Where
a program would have to test for the value of an effect E to be in a given interval to decide on
a given course of action A, a probabilistic model just computes the distribution on A given E:
P(A|E) = P(E|A).P(A)

P(E) .

3.1.3 Vertical continuity

As explained in section 2.8.1, there are different levels of abstraction use to reason about a game.
Abstracting higher level cognitive functions (strategy and tactics for instance) is an efficient way
to break the complexity barrier of writing game AI. Exploiting the vertical continuity, i.e. the
conditioning of higher level actions thinking, is totally possible in a hierarchical Bayesian model.
With strategies as values of S and tactics as values of T , P(T |S) gives the conditioning of T on
S and thus enables us to evaluate only those T values that are possible with given S values.

3.1.4 Horizontal continuity

Real-time games may use discrete time-steps (24Hz for instance for StarCraft), it does not
prevent temporal continuity in strategies, tactics and, most strongly, actions. Once a decision
has been made at a given level, it may conditions subsequent decisions at same level (see sec-
tion 2.8.1). There are several Bayesian models able to deal with sequences, filter models, from
which Hidden Markov Models (HMM*) [Rabiner, 1989] and Kalman filters [Kalman, 1960] are
specializations. With states S and observations O, filter models under the Markov assumption
represent the joint P(S0).P(O0|S0).

QT
t=1[P(S

t|St−1).P(Ot|St)]. Thus, from partial informa-
tions, one can use more than just the probability of observations knowing states to reconstruct
the state, but also the probability of states transitions (the sequences). This way we can only
consider transitions that are probable according to the current state.

3.1.5 Autonomy and robust programming

Autonomy is the ability to deal with new states: the challenge of autonomous characters arises
from state spaces too big to be fully specified (in scripts / FSM). In the case of discrete,
programmer-specified states, the (modes of) behaviors of the autonomous agent are limited
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to what has been authored. Again, probabilistic modeling enables one to recognize unspecified
states as soft mixtures of known states. For instance, with S the state, instead of having either
P(S = 0) = 1.0 or P(S = 1) = 1.0, one can be in P(S = 0) = 0.2 and P(S = 1) = 0.8, which
allows to have behaviors composed from different states. This form of continuum allows to deal
with unknown state as an incomplete version of a known state which subsumes it. Autonomy
can also be reached through learning, being it through online or offline learning. Offline learning
is used to learn parameters that does not have to be specified by the programmers and/or game
designers. One can use data or experiments with known/wanted situations (supervised learning,
reinforcement learning), or explore data (unsupervised learning), or game states (evolutionary
algorithms). Online learning can provide adaptability of the AI to the player and/or its own
competency playing the game.

3.2 The Bayesian programming methodology

3.2.1 The hitchhiker’s guide to Bayesian probability

Figure 3.1: An advisor introducing his student to Bayesian modeling, adapted from Land of Lisp
with the kind permission of Barski [2010].

The reverend Thomas Bayes is the first credited to have worked on inverting probabilities:
by knowing something about the probability of A given B, how can one draw conclusions on the
probability of B given A? Bayes theorem states:

P(A|B) =
P(B|A)P(A)

P(B)

Laplace [1814] independently rediscovered Bayes’ theorem and published the work of inductive
reasoning by using probabilities. He presented “inverse probabilities” (inferential statistics) al-
lowing the study of causes by observing effects: the first use of learning the probabilities of
observations knowing states to then infer states having only observations.

Later, by extending logic to plausible reasoning, Jaynes [2003] arrived at the same properties
than the theory of probability of Kolmogorov [1933]. Plausible reasoning originates from logic,
whose statements have degrees of plausibility represented by real numbers. By turning rules of
inferences into their probabilistic counterparts, the links between logic and plausible reasoning
are direct. With C = [A) B], we have:
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• modus ponens, A entails B and A = true gives us B = false:

[A) B] ^ [A = true]

B = true

translates to

P(B|A,C) =
P(A,B|C)

P(A|C)

As P(A,B|C) = P(A|C) we have P(B|A,C) = 1

• modus tollens, A entails B and B = false gives us A = false (otherwise B = true):

[A) B] ^ [B = false]

A = false

translates to

P(A|C¬B) =
P(A¬B|C)

P(¬B|C)

As P(A¬B|C) = 0 we have P(A|¬B,C) = 0, so P(¬A|¬B,C) = 1

Also, additionally to the two strong logic syllogisms above, plausible reasoning gets two weak
syllogisms, from:

•

P(A|B,C) = P(A|C)
P(B|A,C)

P(B|C)

we get
[A) B] ^ [B = true]

A becomes more plausible

If A stands for “the enemy has done action a” and B for “the enemy is doing action b”:
“the enemy is doing b so it is more probable that she did a beforehand (than if we knew
nothing)”. Because there are only a (not strict) subset of all the possible states (possibly
all possible states) which may lead in new states, when we are in these new states, the
probability of their origin states goes up.

•

P(B|C¬A) = P(B|C)
P(¬A|B,C)

P(¬A|C)

we get
[A) B] ^ [A = false]

B becomes less plausible

Using the same meanings for A and B as above: “the enemy has not done a so it is less
probable that she does b (than if we knew nothing)”. Because there are only a (not strict)
subset of all the possible states (possibly all possible states) which may lead in new states,
when we are not in one of these origin states, there are less ways to go to new states.

A reasoning mechanism needs to be consistent (one cannot prove A and ¬A at the same time).
For plausible reasoning, consistency means: a) all the possible ways to reach a conclusion leads
to the same result, b) information cannot be ignored, c) two equal states of knowledge have the
same plausibilities. Adding consistency to plausible reasoning leads to Cox’s theorem [Cox, 1946],
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which derives the laws of probability: the “product-rule” (P(A,B) = P(A \B) = P(A|B)P(B))
and the “sum-rule” (P(A+B) = P(A)+P(B)−P(A,B) or P(A[B) = P(A)+P(B)−P(A\B))
of probabilities.

Indeed, this was proved by Cox [1946], producing Cox’s theorem (also named Cox-Jayne’s
theorem):

Theorem. A system for reasoning which satisfies:

• divisibility and comparability, the plausibility of a statement is a real number,

• common sense, in presence of total information, reasoning is isomorphic to Boolean logic,

• consistency, two identical mental states should have the same degrees of plausibility,

is isomorphic to probability theory.

So, the degrees of belief, of any consistent induction mechanism, verify Kolmogorov’s axioms.
De Finetti [1937] showed that if reasoning is made in a system which is not isomorphic to
probability theory, then it is always possible to find a Dutch book (a set of bets which guarantees
a profit regardless of the outcomes). In our quest for a consistent reasoning mechanism

which is able to deal with (extensional and intentional) uncertainty, we are thus

bound to probability theory.

3.2.2 A formalism for Bayesian models

Inspired by plausible reasoning, we present Bayesian programming, a formalism that can be
used to describe entirely several kinds of Bayesian model. It subsumes Bayesian networks and
Bayesian maps, as it is equivalent to probabilistic factor graphs [Diard et al., 2003]. There are
mainly two parts in a Bayesian program (BP)*, the description of how to compute the joint
distribution, and the question(s) that it will be asked.

The description consists in exhibiting the relevant variables {X1, . . . , Xn} and explain their
dependencies by decomposing the joint distribution P(X1 . . . Xn|δ, ⇡) with existing preliminary
(prior) knowledge ⇡ and data δ. The forms of each term of the product specify how to compute
their distributions: either parametric forms (laws or probability tables, with free parameters
that can be learned from data δ) or recursive questions to other Bayesian programs.

The conditional independences are stated in the decomposition P(Searched, Free,Known).
Answering a question is computing the distribution P(Searched|Known), with Searched and
Known two disjoint subsets of the variables.

P(Searched|Known) (3.1)

=

P

Free P(Searched, Free, Known)

P(Known)
(3.2)

=
1

Z
⇥

X

Free

P(Searched, Free, Known) (3.3)

General Bayesian inference is practically intractable, but conditional independence hypothe-
ses and constraints (stated in the description) often simplify the model. There are efficient ways
to calculate the joint distribution like message passing and junction tree algorithms [Pearl, 1988,
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Aji and McEliece, 2000, Naïm et al., 2004, Mekhnacha et al., 2007, Koller and Friedman, 2009].
Also, there are different well-known approximation techniques: either by sampling with Monte-
Carlo (and Monte-Carlo Markov Chains) methods [MacKay, 2003, Andrieu et al., 2003], or by
calculating on a simpler (tractable) model which approximate the full joint as with variational
Bayes [Beal, 2003].

We sum-up the full model by what is called a Bayesian program, represented as:
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V ariables

Decomposition

Forms (Parametric or Program)

Identification (based on δ)

Question

For the use of Bayesian programming in sensory-motor systems, see [Bessière et al., 2008].
For its use in cognitive modeling, see [Colas et al., 2010]. For its first use in video game AI,
applied to the first person shooter gameplay (Unreal Tournament), see [Le Hy et al., 2004].

To sum-up, by using probabilities as an extension of propositional logic, the method to build
Bayesian models gets clearer: there is a strong parallel between Bayesian programming and
logic or declarative programming. In the same order as the presentation of Bayesian programs,
modeling consists in the following steps:

1. Isolate the variables of the problem: it is the first prior that the programmer puts into the
system. The variables can be anything, from existing input or output values of the problem
to abstract/aggregative values or parameters of the model. Discovering which variable to
use for a given problem is one of the most complicated form of machine learning.

2. Suppose and describe the influences and dependencies between these variables. This is
another prior that the programmer can have on the problem, and learning the structure
between these variables is the second most complicated form of learning [François and
Leray, 2004, Leray and François, 2005].

3. Fill the priors and conditional probabilities parameters. The programmer needs to be an
expert of the problem to put relevant parameters, although this is the easiest to learn
from data once variables and structure are specified. Learning the structure can be seen
as learning the parameters of a fully connected model and then removing dependencies
where are the less influent parameters.

In the following, we present how we applied this method to a simulated MMORPG* fight
situation as an example.

By following these steps, one may have to choose among several models. That is not a
problem as there are rational ground to make this choice, “all models are wrong; some are
useful” (George Box). Actually, the full question that we ask is P(Searched|Known, ⇡, δ), it
depends on the modeling assumptions (⇡) as well as the data (δ) that we used for training
(if any). A simple way to view model selection is to pick the model which makes the fewest
assumptions (Occam’s razor). In fact, Bayesian inference carries Occam’s razor with it: we shall
ask what is the plausibility of our model prior knowledge in the light of the data P(⇡|δ).
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Indeed, when evaluating two models ⇡1 and ⇡2, doing the ratio of evidences for the two
modeling assumption helps us choose:

P(⇡1|δ)
P(⇡2|δ)

=
P(⇡1)P(δ|⇡1)
P(⇡2|δ)P(δ|⇡2)

(3.4)

If our model is complicated, its expressiveness is higher, and so it can model more complex
causes of/explanations for the dataset. However, the probability mass will be spread thiner on
the space of possible datasets than for a simpler model. For instance, in the task of regression,
if ⇡1 can only encode linear regression (y = Ax+ b) and ⇡2 can also encore quadratic regression
(y = Ax+Bx2+ c), all the predictions for ⇡1 are concentrated on linear (affine) functions, while
for ⇡2 the probability mass of predictions is spread on more possible functions. If we only have
data δ of linear functions, the evidence for ⇡1, P(⇡1|δ) will be higher. If δ contains some quadratic
functions, the evidence ratio will shift towards ⇡2 as the second model has better predictions:
the shift to ⇡2 happens when the additional model complexity of ⇡2 and the prediction errors of
⇡1 balance each other.

3.3 Modeling of a Bayesian MMORPG player

3.3.1 Task

We will now present a model of a MMORPG* player with the Bayesian programming framework
[Synnaeve and Bessière, 2010]. A role-playing game (RPG) consist in the incarnation by the
human player of an avatar with specific skills, items, numbers of health points (HP) and stamina
or mana (magic energy) points (we already presented this gameplay in section 2.6). We want to
program a robotic player which we can substitute to a human player in a battle scenario. More
specifically here, we modeled the “druid” class, which is complex because it can cast spells to
deal damages or other negative effects as well as to heal allies or enhance their capacities (“buff”
them). The model described here deals only with a sub-task of a global AI for autonomous
NPC.

The problem that we try to solve is: how do we choose which skill to use, and on which target,
in a PvE* battle? The possible targets are all our allies and foes. There are also several skills
that we can use. We will elaborate a model taking all our perceptions into account and

giving back a distribution over possible target and skills. We can then pick the most
probable combination that is yet possible to achieve (enough energy/mana, no cooldown/reload
time) or simply sample in this distribution.

An example of a task that we have to solve is depicted in Figure 3.2, which shows two
different setups (states) of the same scenario: red characters are foes, green ones are allies, we
control the blue one. The “Lich” is inflicting damages to the “MT” (main tank), the “Add” is
hitting the “Tank”. In setup A, only the “Tank” is near death, while in setup B both the “Tank”
and the “Add” are almost dead. A first approach to reason about these kind of situations would
be to use the combination of simple rules and try to give them some priority.

• if an ally has less than X (threshold) HP then use a “heal” on him.

• if the enemy receiving most damage has resistances (possibly in a list), lower them if
possible.
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• if allies (possibly in a list) are not “buffed” (enhanced), buff them if possible.

• default: shoot at the most targeted enemy.

• self-preservation, etc.

The problem with such an approach is that tuning or modifying it can quickly be cumbersome:
for a game with a large state space, robustness is hard to ensure. Also, the behavior would seem
pretty repetitive, and thus predictable.

Figure 3.2: Example setup A (left) and B (right). There are 2 foes and 2 allies taking damages
(“MT” and “tank”). Players with stars can heal allies, players with dotted lines will soon die
(ID = true). Our model controls the blue character, green players are allies, while red characters
are foes. The larger the surrounding ellipse is, the more health points the characters have.

3.3.2 Perceptions and actions

To solve this problem without having the downsides of this naive first approach, we will use
a Bayesian model. We now list some of the perceptions available to the player (and thus the
robot):

• the names and positions of all other players, this gives their distances, which is useful to
know which abilities can be used.

• hit points (also health points, noted HP) of all the players, when the HP of a player fall
to 0, her avatar dies. It cannot be resurrected, at least in the situations that we consider
(not for the fight).

• the natures of other players (ally or foe).

• the class of other players: some have a tanking role (take incoming damages for the rest
of the group), others are damage dealers (either by contact or ranged attacks), the last
category are healers, whose role is to maintain everyone alive.

• an approximation of the resistance to certain types of attacks for every player.

Actions available to the players are to move and to use their abilities:

• damage over time attacks (periodic repeated damage), or quick but low damage attacks,
and slow but high damage attacks
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• energy/mana/stamina regenerators

• heal over time (periodic heal to selected allies), or quick but small heals, and slow but big
heals

• immobilizations, disabling effects (“stun”)

• enhancement of the selected allies HP/attack/speed... and crippling attacks (enhancing
future attacks), maledictions

• removing maledictions...

Here, we consider that the choice of a target and an ability to use on it strongly condition
the movements of the player, so we will not deal with moving the character.

3.3.3 Bayesian model

We recall that write a Bayesian model by first describing the variables, their relations (the
decomposition of the join probability), and the forms of the distribution. Then we explain how
we identified the parameters and finally give the questions that will be asked.

Variables

A simple set of variables is as follows:

• Target: T t−1,t 2 {t1 . . . tn} at t and t − 1 (previous action). T t is also abusively noted T

in the rest of the model. We have the n characters as possible targets; each of them has
their own properties variables (the subscripting in the following variables).

• Hit Points: HPi2J1...nK 2 [0 . . . 9] is the hit points value of the ith player. Health/Hit points
(HP ) are discretized in 10 levels, from the lower to the higher.

• Distance: Di2J1...nK 2 {Contact, Close, Far, V eryFar} is the distance of the ith player to
our robotic character. Distance (D) is discretized in 4 zones around the robot character:
contact where it can attack with a contact weapon, close, far and (very far) to the further
for which we have to move even for shooting the longest distance weapon/spell.

• Ally: Ai2J1...nK 2 {true, false} is true is the ith player is an ally, and false otherwise.

• Derivative Hit Points: ∆HPi2J1...nK 2 {−, 0,+} (decreasing, stable, increasing) is the
evolution of the hit points of the ith player. ∆HP is a 3-valued interpolated value from
the previous few seconds of fight that informs about the ith character getting wounded or
healed (or nothing).

• Imminent Death: IDi2J1...nK 2 {true, false} tells if the ith player is in danger of death.
Imminent death (ID) is an interpolated value that encodes HP , ∆HP and incoming
attacks/attackers. This is a Boolean variable saying if the ith character if going to die
anytime soon. This is an example of what we consider that an experienced human player
will infer automatically from the screen and notifications.
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• Class: Ci2J1...n 2 {Tank,Contact, Ranged,Healer} is the class of the ith player. Class
(C) is simplified over 4 values: a Tank can take a lot of damages and taunt enemies,
a Contact class which can deal huge amounts of damage with contact weapons (rogue,
barbarian...), Ranged stands for the class that deals damages from far away (hunters,
mages...) and Healers are classes that can heal in considerable amounts.

• Resists: Ri2J1...nK 2 {Nothing, F ire, Ice,Nature, F ireIce, IceNat, F ireNat,All} informs
about the resistances of the ith player. The resist variable is the combination of binary
variables of resistance to certain types of (magical) damages into one variable. With 3
possible resistances we get (23) 8 possible values. For instance “Ri = FireNat” means
that the ith character resists fire and nature-based damages. Armor (physical damages)
could have been included, and the variables could have been separated.

• Skill: S 2 {Skill1 . . . Skillm}. The skill variable takes all the possible skills for the given
character, and not only the available ones to cast at the moment to be able to have reusable
probability tables (i.e. it is invariant of the dynamics of the game).

Decomposition

The joint distribution of the model is:

P(S, T t−1,t, HP1:n, D1:n, A1:n,∆HP1:n, ID1:n, C1:n, R1:n) = (3.5)

P(S).P(T t|T t−1).P(T t−1).

n
Y

i=1

⇥

P(HPi|Ai, Ci, S, T ).P(Di|Ai, S, T ).P(Ai|S, T ) (3.6)

P(∆HPi|Ai, S, T ).P(Ri|Ci, S, T ).P(Ci|Ai, S, T )P(IDi|T )
⇤

(3.7)

We want to compute the probability distribution on the variable target (T ) and skill (S), so
we have to consider the joint distribution with all variables on which target (T ) or skill (S) are
conditionally dependent: the previous value of target (T t−1), and all the perceptions variables
on each character.

• The probability of a given target depends on the previous one (it encodes the previous
decision and so all previous states).

• The health (or hit) points (HPi) depends on the facts that the ith character is an ally (Ai),
on his class (Ci), and if he is a target (T ). Such a conditional probability table should be
learned, but we can already foresee that a targeted ally with a tanking class (C = tank)
would have a high probability of having low hit points (HP ) because taking it for target
means that we intend to heal him.

• The distance of the unit i (Di) is more probably far if unit i is an enemy (Ai = false) and
we target it (T = i) as our kind of druid attacks with ranged spells and does not fare well
in the middle of the battlefield.

• The probability of the ith character being an ally depends on if we target allies of foes
more often: that is P(Ai|S, T ) encodes our propensity to target allies (with heals and
enhancements) or foes (with damaging or crippling abilities).
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• The probability that the ith units is losing hit points (∆HPi = minus) is higher for
foes (Ai = false) with vulnerable classes (Ci = healer) that are more susceptible to be
targeted (T = i), and also for allies (Ai = true) whose role is to take most of the damages
(Ci = tank). As for Ai, the probability of IDi is driven by our

• Obviously, the usage of skills depends on their efficiency on the target (R, resistances),
and on their class. As a result, we have P(Ri|Ci, S, T ) as the conditional distribution on
“resists”. The probability of the resist to “nature based effects” (Ri = nature) for skills
involving “nature” damage (s 2 {nature_damage}) will be very low as it will be useless
to use spells that the receiver is protected against.

• The probability that the ith character will die soon (IDi) will be high if i is targeted
(T = i) with a big heal or big instant damage (S = big_heal or S = big_damage,
depending on whether i is an ally or not).

Parameters

• P(T t−1) is unknown and unspecified (uniform). In the question, we always know what was
the previous target, except when there was not one (at the beginning).

• P(T |T t−1) is a probability corresponding to the propensity to switch targets. It can be
learned, or uniform if there is no previous target (it the prior on the targets then).

• P(S) is unknown and so unspecified, it could be a prior on the preferred skills (for style
or for efficiency).

• P(HPi|Ai, Ci, S, T ) is a 2⇥4⇥m⇥2 probability table, indexed on if the ith character is an
ally or not, on its class, on the skills (#S = m) and on where it is the target or not. It can
be learned (and/or parametrized), for instance P(HPi = x|ai, ci, s, t) = 1+count(x,ai,ci,s,t)

10+count(ai,ci,s,t)
.

• P(Di|Ai, S, T ) is a 4⇥ 2⇥m⇥ 2 (possibly learned) probability table.

• P(Ai|S, T ) is a 2⇥m⇥ 2 (possibly learned) probability table.

• P(∆HPi|Ai, S, T ) is a 3⇥ 2⇥m⇥ 2 (possibly learned) probability table.

• P(Ri|Ci, S, T ) is a 8⇥ 4⇥m⇥ 2 (possibly learned) probability table.

• P(Ci|Ai, S, T ) is a 4⇥ 2⇥m⇥ 2 (possibly learned) probability table.

Identification

In the following Results part however, we did not apply learning but instead manually specified
the probability tables to show the effects of gamers’ common sense rules and how it/they can
be correctly encoded in this model.

About learning: if there were only perceived variables, learning the right conditional proba-
bility tables would just be counting and averaging. However, some variables encode combinations
of perceptions and passed states. We could learn such parameters through the EM algorithm
but we propose something simpler for the moment as our “not directly observed variables” are
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not complex to compute, we compute them from perceptions as the same time as we learn. For
instance we map in-game values to their discrete values for each variables online and only store
the resulting state “compression”.

Questions

In any case, we ask our (updated) model the distribution on S and T knowing all the state
variables:

P(S, T |tt−1, hp1:n, d1:n, a1:n,∆hp1:n, id1:n, c1:n, r1:n) (3.8)

We then proceed to choose to do the highest scoring combination of S ^ T that is available
(skills may have cooldowns or cost more mana/energy that we have available).

As (product rule) P(S, T ) = P(S|T ).P(T ), if we want to decompose this question, we can
ask:

P(T |tt−1, hp1:n, d1:n, a1:n,∆hp1:n, id1:n, c1:n)

Which means that we want to know the distribution on T knowing all the relevant state variables,
followed by (with the newly computed distribution on T ):

P(S|T, hp1:n, d1:n, a1:n,∆hp1:n, id1:n, c1:n, r1:n)

in which we use this distribution on T to compute the distribution on S with:

P(S = skill1| . . . ) =
X

T

P(S = skill1|T, . . . ).P(T )

We here choose to sum over all possible values of T. Note that we did not ask:
P(S|T = most_probable, . . . ) but computed instead

X

T

P(S|T, hp1:n, d1:n, a1:n,∆hp1:n, id1:n, c1:n, r1:n)

Bayesian program

Here is the full Bayesian program corresponding to this model:

BP
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S, T t−1,t, HP1:n, D1:n, A1:n,∆HP1:n, ID1:n, C1:n, R1:n

Decomposition

P(S, T t−1,t, HP1:n, D1:n, A1:n,∆HP1:n, ID1:n, C1:n, R1:n) =

P(S)P(T |T t−1)P(T t−1)
Qn

i=1

⇥

P(HPi|Ai, Ci, S, T )P(Di|Ai, S, T )

P(Ai|S, T )P(∆HPi|Ai, S, T )P(Ri|Ci, S, T )P(Ci|Ai, S, T )P(IDi|T )
⇤

Forms

probability tables parametrized on whether i is targeted

Identification (using δ)

learning (e.g. Laplace succession law) or manually specified

Question

P(S, T |T t−1, HP1:n, D1:n, A1:n,∆HP1:n, ID1:n, C1:n, R1:n)
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3.3.4 Example

This model has been applied to a simulated situation with 2 foes and 4 allies while our robot
took the part of a druid. We display a schema of this situation in Figure 3.2. The arrows indicate
foes attacks on allies. HOT stands for heal over time, DOT for damage over time, “abol” for
abolition and “regen” for regeneration, a “buff” is an enhancement and a “dd” is a direct damage.
“Root” is a spell which prevents the target from moving for a short period of time, useful to flee
or to put some distance between the enemy and the druid to cast attack spells. “Small” spells
are usually faster to cast than “big” spells. The difference between setup A and setup B is simply
to test the concurrency between healing and dealing damage and the changes in behavior if the
player can lower the menace (damage dealer).

Skills 2 {small_heal, big_heal,HOT, poison_abol,malediction_abol,

buff_armor, regen_mana, small_dd, big_dd,DOT, debuff_armor, root}

To keep things simple and because we wanted to analyze the answers of the model, we
worked with manually defined probability tables. In the experiments, we will try different
values P(IDi|T = i), and see how the behavior of the agent changes.

We set the probability to target the same target as before (P(T t = i|T t−1 = i)) to 0.4 and
the previous target to “Lich” so that the prior probability for all other 6 targets is 0.1 (4 times
more chances to target the Lich than any other character).

We set the probability that an enemy (instead of an ally) is our target P(Ai = false|T = i)

to 0.6. This means that our Druid is mainly a damage dealer and just a backup healer.

When we only ask what the target should be:

P(T |tt−1, hp1:n, d1:n, a1:n,∆hp1:n, id1:n, c1:n)

We can see on Figure 3.3 (left) that the evolution from selecting the main foe “Lich” to selecting
the ally “Tank” is driven by the increase of the probability that the selected target is near death,
and our robot eventually moves on targeting their “Tank” ally (to heal them). We can see on
Figure 3.3 (right) that, at some point, our robot prefers to kill the dying “add” (additional foe)
to save their ally Tank instead of healing them. Note that there is no variable showing the
relation between “Add” and “Tank” (the first is attacking the second, who is taking damages
from the first), but this could be taken into account in a more complete model.

When we ask what skill we should use:

P(S|tt−1, hp1:n, d1:n, a1:n,∆hp1:n, id1:n, c1:n, r1:n)

We can see on Figure 3.4 the influence of imminent death (IDi) on skill (S) which is coherent
with the target distribution:

• in setup A (left), we evolve with the increase of P(IDi = true|T = i) to choose to heal
(our ally),

• in setup B (right), to deal direct damage (and hopefully, kill) the foe attacking our ally.
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Figure 3.3: Left: probabilities of targets depending on the probability that a target is dying
(P(IDi = true|T = i)) with setup A (no enemy is risking death). Right: same, with setup B
(the foe “Add” is risking death). We can see that the target is shifted from the “Tank” in setup
A to the “Add” in setup B.

Figure 3.4: Left: Probabilities of skills depending on the probability that a target is dying
(P(IDi = true|T = i)) with setup A (no enemy is risking death). Right: same, with setup B
(the foe “Add” is risking death). We can see that the skill switches from “big_heal” in setup A
to “big_dd” in setup B.

As you can see here, when we have the highest probability to attack the main enemy (“Lich”,
when P(IDi = true|T = i) is low), who is a C = tank, we get a high probability for the skill
debuff_armor. We need only cast this skill if the debuff is not already present, so perhaps that
we will cast small_dd instead.

To conclude this example, we ask the full question, what is the distribution on skill and
target:

P(S, T |tt−1, hp1:n, d1:n, a1:n,∆hp1:n, id1:n, c1:n, r1:n)

Figure 3.5 shows this distribution with setup A and the probability to target the previous target
(set to “Lich” here) only ⇡ 2 times greater than any other character, P(IDi = true|T = i) = 0.9
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and P(Ai = false|T = i) = 0.6. To make decisions about our actions, a simple approach would
be a greedy one: if the first couple (T, S) is already done or not available, we perform the second,
and so on. Another approach would be to sample in this distribution, both approaches will lead
to very different results.

Figure 3.5: Log-probabilities of target (T ) and skill (S) with setup A, and P(IDi = true|T =
i) = 0.9,P(Ai = false|T = i) = 0.6. This plot corresponds to the answer to the full question
on which decision-making has to be done. The first choice (most probable P(S, T )) is to cast a
“big_heal” on the “tank”. The second choice is to cast “debuff_armor” on the “lich”...

3.3.5 Discussion

This limited model served the purpose of presenting Bayesian programming in practice. While
it was used in a simulation, it showcases the approach one can take to break down the problem
of autonomous control of NPC*. The choice of the skill or ability to use and the target on which
to use it puts hard constraints on every others decisions the autonomous agent has to take to
perform its ability action. Thus, such a model shows that:

• cooperative behavior is not too hard to incorporate in a decision (instead of being hard-
coded),

• it can be learned, either from observations of a human player or by reinforcement (explo-
ration),

• it is computationally tractable (for use in all games).

Moreover, using this model on another agent than the one controlled by the AI can give a
prediction on what it will do, resulting in human-like, adaptive, playing style.

57



We did not persist in the research track of Bayesian modeling MMORPG games due to
the difficulty to work on these types of games: the studios have too much to lose to “farmer”
bots to accept any automated access to the game. Also, there are no sharing format of data
(like replays) and the invariants of the game situations are fewer than in RTS games. Finally,
RTS games have international AI competitions which were a good motivation to compare our
approach with other game AI researchers.
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Chapter 4

RTS AI: StarCraft: Broodwar

We think of life as a journey with a destination (success, heaven). But we

missed the point. It was a musical thing, we were supposed to sing and dance while

music was being played.

Alan Watts

T
his chapter explains the basics of RTS gameplay*, particularly of StarCraft. We then list the
(computational) challenges brought by RTS gameplay. We present a transversal decompo-

sition of the RTS AI domain in levels of abstractions (strategy, tactics, micro-management*),
which we will use for the rest of the dissertation.

4.1 How does the game work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 RTS AI challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Tasks decomposition and linking . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 How does the game work

4.1.1 RTS gameplay

We first introduce the basic components of a real-time strategy (RTS) game. The player is usually
referred as the “commander” and perceives the world in an allocentric “God’s view”, performing
mouse and keyboard actions to give orders to units (or squads of units) within a circumvented
area (the “map”). In a RTS, players need to gather resources to build military units and defeat
their opponents. To that end, they often have worker units (or extraction structures) that
can gather resources needed to build workers, buildings, military units and research upgrades.
Workers are often also builders (as in StarCraft) and are weak in fights compared to military
units. Resources may have different uses, for instance in StarCraft: minerals* are used for
everything, whereas gas* is only required for advanced buildings or military units, and technology
upgrades. Buildings and research upgrades define technology trees (directed acyclic graphs) and
each state of a tech tree* (or build tree*) allow for different unit type production abilities and
unit spells/abilities. The military units can be of different types, any combinations of ranged,
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casters, contact attack, zone attacks, big, small, slow, fast, invisible, flying... In the end, a central
part of the gameplay is that units can have attacks and defenses that counter each others as in
a soft rock-paper-scissors. Also, from a player point of view, most RTS games are only partially
observable due to the fog of war* which hides units and new buildings which are not in sight
range of the player’s units.

In chronological order, RTS include (but are not limited to): Ancient Art of War, Herzog
Zwei, Dune II, Warcraft, Command & Conquer, Warcraft II, C&C: Red Alert, Total Annihila-
tion, Age of Empires, StarCraft, Age of Empires II, Tzar, Cossacks, Homeworld, Battle Realms,
Ground Control, Spring Engine games, Warcraft III, Total War, Warhammer 40k, Sins of a
Solar Empire, Supreme Commander, StarCraft II. The differences in gameplay are in the order
of number, nature and gathering methods of resources; along with construction, research and
production mechanics. The duration of games vary from 15 minutes for the fastest to (1-3) hours
for the ones with the biggest maps and longest gameplays. We will now focus on StarCraft, on
which our robotic player is implemented.

4.1.2 A StarCraft game

StarCraft is a science-fiction RTS game released by Blizzard EntertainmentTM in March 1998. It
was quickly expanded into StarCraft: Brood War (SC: BW) in November 1998. In the following,
when referring to StarCraft, we mean StarCraft with the Brood War expansion. StarCraft is a
canonical RTS game in the sense that it helped define the genre and most gameplay* mechanics
seen in other RTS games are present in StarCraft. It is as much based on strategy as tactics,
unlike the Age of Empires and Total Annihilation series in which strategy is prevalent. In the
following of the thesis, we will focus on duel mode, also known as 1 vs. 1 (1v1). Team-play (2v2
and higher) and “free for all” are very interesting but were not studied in the framework of this
research. These game modes particularly add a layer of coordination and bluff respectively.

A competitive game

StarCraft sold 9.5 millions licenses worldwide, 4.5 millions in South Korea alone [Olsen, 2007],
and reigned on competitive RTS tournaments for more than a decade. Numerous international
competitions (World Cyber Games, Electronic Sports World Cup, BlizzCon, OnGameNet Star-
League, MBCGame StarLeague) and professional gaming (mainly in South Korea [Chee, 2005])
produced a massive amount of data of highly skilled human players. In South Korea, there are
two TV channels dedicated to broadcasting competitive video games, particularly StarCraft.
The average salary of a pro-gamer* there was up to 4 times the average South Korean salary
[MYM, 2007] (up to $200,000/year on contract for NaDa). Professional gamers perform about
300 actions (mouse and keyboard clicks) per minute while following and adapting their strategies,
while their hearts reach 160 beats per minute (BPM are displayed live in some tournaments).
StarCraft II is currently (2012) taking over StarCraft in competitive gaming but a) there is still a
strong pool of highly skilled StarCraft players and b) StarCraft II has a really similar gameplay.

Replays

StarCraft (like most RTS) has a replay* mechanism, which enables to record every player’s
actions such that the state of the game can be deterministically re-simulated. An extract of a
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replay is shown in appendix in Table B.1. The only piece of stochasticity comes from “attack miss
rates” (⇡ 47%) when a unit is on a lower ground than its target. These randomness generator
seed is saved along with the actions in the replay. All high level players use this feature heavily
either to improve their play or study opponents’ styles. Observing replays allows player to see
what happened under the fog of war*, so that they can understand timing of technologies and
attacks, and find clues/evidences leading to infer the strategy as well as weak points.

Factions

In StarCraft, there are three factions with very different units and technology trees:

• Terran: humans with strong defensive capabilities and balanced, averagely priced biolog-
ical and mechanical units.

• Protoss: advanced psionic aliens with expensive, slow to produce and resistant units.

• Zerg : insectoid alien race with cheap, quick to produce and weak units.

The races are so different that learning to play a new race competitively is almost like learning
to play with new rules.

Economy

All factions use workers to gather resources, and all other characteristics are different: from
military units to “tech trees*”, gameplay styles. Races are so different that highly skilled players
focus on playing with a single race (but against all three others). There are two types of resources,
often located close together, minerals* and gas*. From minerals, one can build basic buildings
and units, which opens the path to more advanced buildings, technologies and units, which will
in turn all require gas to be produced. While minerals can be gathered at an increasing rate the
more workers are put at work (asymptotically bounded) , the gas gathering rate is quickly limited
to 3 workers per gas geyser (i.e. per base). There is another third type of “special” resource,
called supply*, which is the current population of a given player (or the cost in population of a
given unit), and max supply*, which is the current limit of population a player can control. Max
supply* can be upgraded by building special buildings (Protoss Pylon, Terran Supply Depot) or
units (Zerg Overlord), giving 9 to 10 additional max supply*, up to a hard limit of 200. Some
units cost more supply than others (from 0.5 for a Zergling to 8 for a Protoss Carrier or Terran
Battlecruiser). In Figure 4.1, we show the very basics of Protoss economy and buildings. Supply
will sometimes be written supply/max supply (supply on max supply). For instance 4/9 is that
we currently have a population of 4 (either 4 units of 1, or 2 of 2 or ...) on a current maximum
of 9.

Openings and strategy

To reach a competitive amateur level, players have to study openings* and hone their build

orders*. An opening corresponds to the first strategic moves of a game, as in other abstract
strategy games (Chess, Go). They are classified/labeled with names from high level players. A
build-order is a formally described and accurately timed sequence of buildings to construct in

61



Figure 4.1: A StarCraft screenshot of a Protoss base, with annotations. The interface (heads up
display at the bottom) shows the mini-map*. The center of the interface (bottom) shows the
selected unit (or group of units), here the Protoss Nexus (main economical building, producing
workers and to which resources are brought) which is in the center of the screen and circled in
green. The bottom right part shows the possible actions (here build a Protoss Probe or set a
rally point). The top right of the screen shows the minerals* (442), gas* (208) and supply* (25
total) on max supply* (33). The dotted lines demarcate economical parts with active workers:
red for minerals mining and green for gas gathering. The plain cut outs of buildings show: a
Pylon (white), a Forge (orange, for upgrades and access to static defense), a Cybernetics Core
(yellow, for technological upgrades and expanding the tech tree), a Gateway (pink, producing
ground units), a Photon Cannon (blue, static defense).

the beginning. As there is a bijection between optimal population and time (in the beginning,
before any fight), build orders are indexed on the total population of the player as in the example
for Protoss in table 4.1. At the highest levels of play, StarCraft games usually last between 6
(shortest games, with a successful rush from one of the player) to 30 minutes (long economically
and technologically developed game).

A commented game

We now present the evolution of a game (Figures 4.2 and 4.3) during which we tried to follow
the build order presented in table 4.1 (“2 Gates Goon Range”1) but we had to adapt to the fact

1On Teamliquid: http://wiki.teamliquid.net/starcraft/2_Gate_Goon_Range_(vs._Terran)

62

http://wiki.teamliquid.net/starcraft/2_Gate_Goon_Range_(vs._Terran)


Supply/Max supply Build Note
(population/max) or Product
8/9 Pylon “supply/psi/control/population” building
10/17 Gateway units producing structure
12/17 Assimilator constructed on a gas geyser, to gather gas
14/17 Cybernetics Core technological building
16/17 Pylon “supply/psi/control/population” building
16/17 Range it is a research/tech
17/25 Dragoon first military unit

Table 4.1: An example of the beginning of a “2 Gates Goon Range” Protoss build order which
focus on building dragoons and their attack range upgrade quickly.

that the opponent was Zerg (possibility for a faster rush) by building a Gateway at 9 supply and
building a Zealot (ground contact unit) before the first Dragoon. The first screenshot (image
1 in Figure 4.2) is at the very start of the game: 4 Probes (Protoss workers), and one Nexus
(Protoss main building, producing workers and depot point for resources). At this point players
have to think about what openings* they will use. Should we be aggressive early on or opt for
a more defensive opening? Should we specialize our army for focused tactics, to the detriment
of being able to handle situations (tactics and armies compositions) from the opponent that we
did not foresee? In picture 2 in the same Figure (4.2), the first gate is being built. At this
moment, players often send a worker to “scout” the enemy’s base, as they cannot have military
units yet, it is a safe way to discover where they are and inquiry about what they are doing. In
picture 3, the player scouts their opponent, thus gathering the first bits of information about
their early tech tree. Thus, knowing to be safe from an early attack (“rush”), the player decides
to go for a defensive and economical strategy for now. Picture 4 shows the player “expanding”,
which is the act of making another base at a new resource location, for economical purposes. In
picture 5, we can see the upgrading of the ground weapons along with 4 ranged military units,
staying in defense at the expansion. This is a technological decision of losing a little of potential
“quick military power” (from military units which could have been produced for this minerals
and gas) in exchange of global upgrade for all units (alive and to be produced), for the whole
game. This is an investment in both resources and time. Picture 6 showcases the production
queue of a Gateway as well as workers transferring to a second expansion (third base). Being
safe and having expanded his tech tree* to a point where the army composition is well-rounded,
the player opted for a strategy to win by profiting from an economical lead. Figure 4.3 shows
the aggressive moves of the same player: in picture 7, we can see a flying transport with artillery
and area of effect “casters” in it. The goal of such an attack is not to win the game right away
but to weaken the enemy’s economy: each lost worker has to be produced, and, mainly, the
missing gathering time adds up quite quickly. In picture 8, the transport in unloaded directly
inside the enemy’s base, causing huge damages to their economy (killing workers, Zerg Drones).
This is the use of a specialized tactics, which can change the course of a game. At the same
time, it involves only few units (a flying transport and its cargo), allowing for the main army
to stay in defense at base. It capitalizes on the manoeuverability of the flying Protoss Shuttle,
on the technological advancements allowing area of effects attacks and the large zone that the
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Figure 4.2: Start and economical parts of a StarCraft game. The order of the screenshots goes
from left to right and from top to bottom.

opponent has to cover to defend against it. In picture 9, an invisible attacking unit (circled in
white) is harassing the oblivious enemy’s army. This is an example of how technology advance
on the opponent can be game changing (the opponent does not have detection in range, thus is
vulnerable to cloaked units). Finally, picture 10 shows the final attack, with a full ground army
marching on the enemy’s base.
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Figure 4.3: Military moves from a StarCraft (PvT) game. The order of the screenshots goes
from left to right and from top to bottom.

4.2 RTS AI challenges

In combinatorial game theory terms, competitive StarCraft (1 versus 1) is a zero sum, partial-
information, deterministic2 strategy game. StarCraft subsumes Wargus (Warcraft II open source
clone), which has an estimated mean branching factor 1.5.103 [Aha et al., 2005] (Chess: ⇡ 35,
Go: < 360): Weber [2012] finds a branching factor greater than 1.106 for StarCraft. In a given
game (with maximum map size) the number of possible positions is roughly of 1011500, versus the
Shannon number for Chess (1043) [Shannon, 1950]. Also, we believe strategies are much more
balanced in StarCraft than in most other games. Otherwise, how could it be that more than a
decade of professional gaming on StarCraft did not converge to a finite set of fixed (imbalanced)
strategies?

Humans deal with this complexity by abstracting away strategy from low level actions: there
are some highly restrictive constraints on where it is efficient (“optimal”) to place economical
main buildings (Protoss Nexus, Terran Command Center, Zerg Hatchery/Lair/Hive) close to
minerals spots and gas geysers. Low-level micro-management* decisions have high horizontal

continuity and humans see these tasks more like playing a musical instrument skillfully. Finally,

2The only stochasticity is in attacks failures (miss rate) from lower grounds to higher grounds, which is easily
averaged.
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the continuum of strategies is analyzed by players and some distinct strategies are identified as
some kinds of “invariants”, or “entry points” or “principal components”. From there, strategic
decisions impose some (sometimes hard) constraints on the possible tactics, and the complexity
is broken by considering only the interesting state space due to this high vertical continuity.

Most challenges of RTS games have been identified by [Buro, 2003, 2004]. We will try to
anchor them in the human reasoning that goes on while playing a StarCraft game.

• Adversarial planning under uncertainty (along with resource management): it diverges
from traditional planning under uncertainty in the fact that the player also has to plan
against the opponent’s strategy, tactics, and actions. From the human point of view, he has
to plan for which buildings to build to follow a chosen opening* and subsequent strategies,
under a restricted resources (and time) budget. At a lower level, and less obvious for
humans, are the plans they make to coordinate units movements.

• Learning and opponent modeling, Buro accurately points out that human players need very
few (“a couple of”) games to spot their opponents’ weaknesses. Somehow, human opponent
modeling is related to the “induction scandal”, as Russell called it: how do humans learn
so much so fast? We learn from our mistakes, we learn the “play style” of our opponent’s,
we are quickly able to ask ourselves: “what should I do now given what I have seen and

the fact that I am playing against player XYZ?”. “Could they make the same attack as
last time?”. To this end, we use high level representations of the states and the actions
with compressed invariants, causes and effects.

• Spatial and temporal reasoning (along with decision making under uncertainty), this is
related to planning under uncertainty but focuses on the special relations between what
can and what cannot be done in a given time. Sadly, it was true in 2004 but is still true
today: “RTS game AI [...] falls victim to simple common-sense reasoning”. Humans learn
sequences of actions, and reason only about actions coherent with common sense. For AI
of complex systems, this common-sense is hard to encode and to use.

• Collaboration (teamplay), which we will not deal with here: a lot has to do with efficient
communication and “teammate modeling”.

As we have seen previously more generally for multi-player video games, all these challenges can
be handled by Bayesian modeling. While acknowledging these challenges for RTS AI, we now
propose a different task decomposition, in which different tasks will solve some parts of these
problems at their respective levels.

4.3 Tasks decomposition and linking

We decided to decompose RTS AI in the three levels which are used by the gamers to describe
the games: strategy, tactics, micro-management. We remind the reader that parts of the map
not in the sight range of the player’s units are under fog of war*, so the player has only partial
information about the enemy buildings and army. The way by which we expand the tech tree,
the specific units composing the army, and the general stance (aggressive or defensive) constitute
what we call strategy. At the lower level, the actions performed by the player (human or not) to
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RTS AI: predict,

decide, perform

Micro
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Cooperate

Tactics

When?

Where?

How?

Strategy

Economy

Army

Technology

Figure 4.4: A mind-map of RTS AI. This is the tasks decomposition that we will use for the
rest of the thesis.

optimize the effectiveness of its units is called micro-management*. In between lies tactics: where
to attack, and how. A good human player takes much data in consideration when choosing: are
there flaws in the defense? Which spot is more worthy to attack? How much am I vulnerable
for attacking here? Is the terrain (height, chokes) to my advantage? The concept of strategy
is a little more abstract: at the beginning of the game, it is closely tied to the build order and
the intention of the first few moves and is called the opening, as in Chess. Then, the long term
strategy can be partially summed up by three signals/indicators:

• aggression: how much is the player aggressive or defensive?

• initiative: how much is the player adapting to the opponent’s strategy vs. how much is
the player being original?

• technology/production/economy (tech/army/eco) distribution of resources: how much is
the player spending (relatively) in these three domains?

At high levels of play, the tech/army/eco balance is putting a hard constraint on the aggression
and initiative directions: if a player invested heavily in their army production, they should
attack soon to leverage this investment. To the contrary, all other things being equal, when
a player expands*, they are being weak until the expansion repaid itself, so they should play
defensively. Finally, there are some technologies (researches or upgrades) which unlocks an
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“attack timing” or “attack window”, for instance when a player unlocks an invisible technology
(or unit) before that the opponent has detection technology (detectors). On the other hand,
while “teching” (researching technologies or expanding the tech tree*), particularly when there
are many intermediate technological steps, the player is vulnerable because of the immediate
investment they made, which did not pay off yet.

From this RTS domain tasks decomposition, we can draw the mind map given in Figure 4.4.
We also characterized these levels of abstractions by:

• the conditioning that the decisions on one abstraction level have on the other, as discussed
above: strategy conditions tactics which conditions low-level actions (that does not mean
than there cannot be some feedback going up the hierarchy).

• the quantity of direct information that a player can hope to get on the choices of their
opponent. While a player can see directly the micro-management of their enemy (move-
ments of units on the battlefront), they cannot observe all the tactics, and a big part of
tactics gameplay is to hide or fake them well. Moreover, key technological buildings are
sometimes hidden, and the player has to form beliefs about the long term strategy of the
opponent (without being in their head).

• the time which is required to switch behaviors of a given level. For instance a change of
strategy will require to either a) (technology) build at least two buildings or a building
and a research/upgrade, b) (army) build a few units, c) take a new expansion (new base).
A change of tactics corresponds to a large repositioning of the army(ies), while a change in
micro-management is very quick (like moving units out of an area-of-effect damage zone).

This is shown in Figure 4.5. We will discuss the state of the art for the each of these subproblems
(and the challenges listed above) in their respective parts.
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Figure 4.5: Gameplay levels of abstraction for RTS games, compared with their level of direct
(and complete) information and orders of magnitudes of time to chance their policies.

To conclude, we will now present our works on these domains in separate chapters:

• Micro-management: chapter 5,

• Tactics: chapter 6,

• Strategy: chapter 7,
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• Robotic player (bot): chapter 8.

In Figure 4.6, we present the flow of informations between the different inference and decision-
making parts of the bot architecture. One can also view this problem as having a good model
of one’s strategy, one’s opponent strategy, and taking decisions. The software architecture that
we propose is to have services building and maintaining the model of the enemy as well as our
state, and decision-making modules using all this information to give orders to actuators (filled
in gray in Fig. 4.6).
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Figure 4.6: Information-centric view of the architecture of the bot’s major components. Arrows
are labeled with the information or orders they convey: dotted arrows are conveying constraints,
double lined arrows convey distributions, plain and simple arrows convey direct information or
orders. The gray parts perform game actions (as the physical actions of the player on the
keyboard and mouse).
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Chapter 5

Micro-management

La vie est la somme de tous vos choix.

Life is the sum of all your choices.

Albert Camus

W
e present a Bayesian sensory-motor model for multi-agent (decentralized) units control
in an adversarial setting. Orders, coming from higher up in the decision hierarchy, are

integrated as another sensory input. We first present the task of units control, its challenges
and previous works on the problem. We then introduce all the perceptions and actions used
before laying out our Bayesian model. Finally, we evaluated our model on classic StarCraft
micro-management* tasks.

This work was published at Computational Intelligence in Games (IEEE CIG) 2011 in Seoul
[Synnaeve and Bessière, 2011a].

5.1 Units management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 A pragmatic approach to units control . . . . . . . . . . . . . . . . . . . . . . 76

5.4 A Bayesian model for units control . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Results on StarCraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

• Problem: optimal control of units in a (real-time) huge adversarial actions space (collisions,
accelerations, terrain, damages, areas of effects, foes, goals...).

• Problem that we solve: efficient coordinated control of units incorporating all low level
actions and inputs, plus higher level orders and representations.

• Type: it is a problem of multi-body control in an adversarial environment1 that we solve
as a multi-agent problem.

1Strictly, it can be modeled as a POMDP* for each unit independently with S the states of all the other units
(enemies and allied altogether) which are known through observations O by conditional observations probabilities
Ω, with A the set of actions for the given unit, T transition probabilities between states and depending on actions,
and the reward function R based on goal execution, unit survivability and so on... It can also be viewed as a
(gigantic) POMDP* solving the problem for all (controlled units) at once, the advantage is that all states S
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• Complexity: pspace-complete [Papadimitriou and Tsitsiklis, 1987, Viglietta, 2012]. Our
solutions are approximations but they are real-time on a laptop.
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Figure 5.1: Information-centric view of the architecture of the bot, the part concerning this
chapter (micro-management*) is in the dotted rectangle

5.1 Units management

5.1.1 Micro-management complexity

In this part, we focus on micro-management*, which is the lower-level in our hierarchy of decision-
making levels (see Fig. 4.5) and directly affect units control/inputs. Micro-management consists
in maximizing the effectiveness of the units i.e. the damages given/damages received ratio.
These has to be performed simultaneously for units of different types, in complex battles, and
possibly on heterogeneous terrain. For instance: retreat and save a wounded unit so that the
enemy units would have to chase it either boosts your firepower (if you save the unit) or weakens
the opponent’s (if they chase).

StarCraft micro-management involves ground, flying, ranged, contact, static, moving (at
different speeds), small and big units (see Figure 5.2). Units may also have splash damage,
spells, and different types of damages whose amount will depend on the target size. It yields
a rich states space and needs control to be very fast: human progamers can perform up to
400 “actions per minute” in intense fights. The problem for them is to know which actions are
effective and the most rewarding to spend their actions efficiently. A robot does not have such
physical limitations, but yet, badly chosen actions have negative influence on the issue of fights.

Let U be the set of the m units to control, A = {[i ~di} [ S be the set of possible actions
(all n possible ~d directions, standing ground included, and Skills, firing included), and E the

for allied units is known, the disadvantage is that the combinatorics of T and A make it intractable for useful
problems.
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Figure 5.2: Screen capture of a fight in which our bot controls the bottom-left units in StarCraft.
The 25 possible directions ( ~d1 . . . ~d25) are represented for a unit with white and grey arrows
around it. Orange lines represent units’ targets, purple lines represent units’ priority targets
(which are objective directions in fightMove() mode, see below).

set of enemies. As |U| = m, we have |A|m possible combinations each turn, and the enemy has
|A||E|. The dimension of the set of possible actions each micro-turn (for instance: 1/24th of a
second in StarCraft) constrains reasoning about the state of the game to be hierarchical, with
different levels of granularity. In most RTS games, a unit can go (at least) in its 24 surrounding
tiles (see Figure 5.2, each arrow correspond to a ~di) ) stay where it is, attack, and sometimes
cast different spells: which yields more than 26 possible actions each turn. Even if we consider
only 8 possible directions, stay, and attack, with N units, there are 10N possible combinations
each turn (all units make a move each turn). As large battles in StarCraft account for at least

20 units on each side, optimal units control hides in too big a search space to be fully explored
in real-time (sub-second reaction at least) on normal hardware, even if we take only one decision
per unit per second.

5.1.2 Our approach

Our full robot has separate agents types for separate tasks (strategy, tactics, economy, army, as
well as enemy estimations and predictions): the part that interests us here, the unit control, is
managed by Bayesian units directly. For each unit, its objectives are set by the units group in
order to realize the higher level tactical goal (see Fig. 5.1). Units groups tune their Bayesian
units modes (scout, fight, move) and give them objectives as sensory inputs. The Bayesian unit
is the smallest entity and controls individual units as sensory-motor robots according to the
model described above. The only inter Bayesian units communication about attacking targets
is handled by a structure shared at the units group level. This distributed sensory-motor model
for micro-management* is able to handle both the complexity of unit control and the need of
hierarchy (see Figure 5.1). We treat the units independently, thus reducing the complexity
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(no communication between our “Bayesian units”), and allowing to take higher-level orders into
account along with local situation handling. For instance: the tactical planner may decide to
retreat, or go through a choke under enemy fire, each Bayesian unit will have the higher-level
order as a sensory input, along with topography, foes and allies positions. From its perception,
our Bayesian robot [Lebeltel et al., 2004] can compute the distribution over its motor control.
The performances of our models are evaluated against the original StarCraft AI and a reference
AI (based on our targeting heuristic): they have proved excellent in this benchmark setup.

5.2 Related work

Technical solutions include finite states machines (FSM) [Rabin, 2002], genetic algorithms (GA)
[Ponsen and Spronck, 2004, Bakkes et al., 2004, Preuss et al., 2010], reinforcement learning (RL)
[Marthi et al., 2005, Madeira et al., 2006], case-based reasoning (CBR) [Aha et al., 2005, Sharma
et al., 2007], continuous action models [Molineaux et al., 2008], reactive planning [Weber et al.,
2010b], upper confidence bounds tree (UCT) [Balla and Fern, 2009], potential fields [Hagelbäck
and Johansson, 2009], influence maps[Preuss et al., 2010], and cognitive human-inspired models
[Wintermute et al., 2007].

FSM are well-known and widely used for control tasks due to their efficiency and implemen-
tation simplicity. However, they don’t allow for state sharing, which increases the number of
transitions to manage, and state storing, which makes collaborative behavior hard to code [Cutu-
misu and Szafron, 2009]. Hierarchical FSM (HFSM) solve some of this problems (state sharing)
and evolved into behavior trees (BT, hybrids HFSM) [Isla, 2005] and behavior multi-queues (re-
sumable, better for animation) [Cutumisu and Szafron, 2009] that conserved high performances.
However, adaptability of behavior by parameters learning is not the main focus of these models,
and unit control is a task that would require a huge amount of hand tuning of the behaviors to
be really efficient. Also, these architectures does not allow reasoning under uncertainty, which
helps dealing with local enemy and even allied units. Our agents see local enemy (and allied)
units but do not know what action they are going to do. They could have perfect information
about the allied units intentions, but this would need extensive communication between all the
units.

Some interesting uses of reinforcement learning (RL)* [Sutton and Barto, 1998] to RTS
research are concurrent hierarchical (units Q-functions are combined higher up) RL* [Marthi
et al., 2005] to efficiently control units in a multi-effector system fashion. Madeira et al. [2006]
advocate the use of prior domain knowledge to allow faster RL* learning and applied their work
on a large scale (while being not as large as StarCraft) turn-based strategy game. In real game
setups, RL* models have to deal with the fact that the state spaces to explore is enormous, so
learning will be slow or shallow. It also requires some structure to be described in a partial
program (or often a partial Markov decision process) and a shape function [Marthi et al., 2005].
RL can be seen as a transversal technique to learn parameters of an underlying model, and this
underlying behavioral model matters. Ponsen and Spronck [2004] used evolutionary learning
techniques, but face the same problem of dimensionality.

Case-based reasoning (CBR) allows for learning against dynamic opponents [Aha et al., 2005]
and has been applied successfully to strategic and tactical planning down to execution through
behavior reasoning rules [Ontañón et al., 2007a]. CBR limitations (as well as RL) include the
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necessary approximation of the world and the difficulty to work with multi-scale goals and plans.
These problems led respectively to continuous action models [Molineaux et al., 2008]and reactive
planning [Weber et al., 2010b]. Continuous action models combine RL and CBR. Reactive
planning use a decomposition similar to hierarchical task networks [Hoang et al., 2005] in that
sub-plans can be changed at different granularity levels. Reactive planning allows for multi-
scale (hierarchical) goals/actions integration and has been reported working on StarCraft, the
main drawback is that it does not address uncertainty and so can not simply deal with hidden
information (both extensional and intentional). Fully integrated FSM, BT, RL and CBR models
all need vertical integration of goals, which is not very flexible (except in reactive planning).

Monte-Carlo planning [Chung et al., 2005] and upper Upper confidence bounds tree (UCT)
planning (coming from Go AI) [Balla and Fern, 2009] samples through the (rigorously in-
tractable) plans space by incrementally building the actions tree through Monte-Carlo sampling.
UCT for tactical assault planning [Balla and Fern, 2009] in RTS does not require to encode hu-
man knowledge (by opposition to Monte-Carlo planning) but it is too costly, both in learning
and running time, to go down to units control on RTS problems. Our model subsumes potential
fields [Hagelbäck and Johansson, 2009], which are powerful and used in new generation RTS AI
to handle threat, as some of our Bayesian unit sensory inputs are based on potential damages
and tactical goodness (height for the moment) of positions. Hagelbäck and Johansson [2008]
presented a multi-agent potential fields based bot able to deal with fog of war in the Tankbattle
game. Avery et al. [2009] and Smith et al. [2010] co-evolved influence map trees for spatial rea-
soning in RTS games. Danielsiek et al. [2008] used influence maps to achieve intelligent squad
movement to flank the opponent in a RTS game. A drawback for potential field-based techniques
is the large number of parameters that has to be tuned in order to achieve the desired behavior.
Our model provides flocking and local (subjective to the unit) influences on the pathfinding as
in [Preuss et al., 2010], which uses self-organizing-maps (SOM). In their paper, Preuss et al. are
driven by the same quest for a more natural and efficient behavior for units in RTS. We would
like to note that potential fields and influence maps are reactive control techniques, and as such,
they do not perform any form of lookahead. In their raw form (without specific adaptation to
deal with it), they can lead units to be stuck in local optimums (potential wells).

Pathfinding is used differently in planning-based approaches and reactive approaches.
Danielsiek et al. [2008] is an example of the permeable interface between pathfinding and re-
active control with influence maps augmented tactical pathfinding and flocking. As we used
pathfinding as the mean to get a sensory input towards the objective, we were free to use a
low resolution and static pathfinding for which A* was enough. Our approach is closer to the
one of Reynolds [1999]: combining a simple path for the group with flocking behavior. In large
problems and/or when the goal is to deal with multiple units pathfinding taking collisions (and
sometimes other tactical features), more efficient, incremental and adaptable approaches are re-
quired. Even if specialized algorithms, such as D*-Lite [Koenig and Likhachev, 2002] exist, it is
most common to use A* combined with a map simplification technique that generates a simpler
navigation graph to be used for pathfinding. An example of such technique is Triangulation
Reduction A*, that computes polygonal triangulations on a grid-based map [Demyen and Buro,
2006]. In recent commercial RTS games like Starcraft II or Supreme Commander 2, flocking-like
behaviors are inspired of continuum crowds (“flow field”) [Treuille et al., 2006]. A comprehensive
review about (grid-based) pathfinding was recently done by Sturtevant [2012].
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Finally, there are some cognitive approaches to RTS AI [Wintermute et al., 2007], and we
particularly agree with Wintermute et al. analysis of RTS AI problems. Our model has some
similarities: separate agents for different levels of abstraction/reasoning and a perception-action
approach (see Figure 5.1).

5.3 A pragmatic approach to units control

5.3.1 Action and perception

Movement

The possible actions for each unit are to move from where they are to wherever on the map,
plus to attack and/or use special abilities or spells. Atomic moves (shown in Fig. 5.2 by white
and gray plain arrows) correspond to move orders which will make the unit go in a straight
line and not call the pathfinder (if the terrain is unoccupied/free). There are collisions with
buildings, other units, and the terrain (cliffs, water, etc.) which denies totally some movements
for ground units. Flying units do not have any collision (neither with units, nor with terrain
obviously). When a move order is issued, if the selected position is further than atomic moves,
the pathfinder function will be called to decide which path to follow. We decided to use only
atomic (i.e. small and direct) moves for this reactive model, using other kinds of moves is
discussed later in perspectives.

Attacks

To attack another unit, a given unit has to be in range (different attacks or abilities have different
ranges) it has to have reloaded its weapon, which can be as quick as 4 times per second up to
⇡3 seconds (75 frames) per attack. To cast a spell or use an ability also requires energy, which
(re)generates slowly and can be accumulated up to a limited amount. Also, there are different
kinds of attacks (normal, concussive, explosive), which modify the total amount of damages
made on different types of units (small, medium, big), and different spread form and range of
splash damages. Some spells/abilities absorb some damages on a given unit, others make a zone
immune to all range attacks, etc. Finally, ranged attackers at a lower level (in terrain elevation)
than their targets have an almost 50% miss rate. These reasons make it an already hard problem
just to select what to do without even moving.

Perceptions: potential damage map

Perceptions are of different natures: either they are direct measurements inside the game, or they
are built up from other direct measurements or even come from our AI higher level decisions.
Direct measurements include the position of terrain elements (cliffs, water, space, trees). Built
up measurements comes from composition of informations like the potential damage map (see
Fig. 5.3.1. We maintain two (ground and air) damage maps which are built by summing all
enemy units attack damages, normalized by their attack speed, for all positions which are in
their range. These values are then discretized in levels {No,Low,Medium,High} relative to
the hit (health) points (HP) of the unit that we are moving. For instance, a tank (with many
HP) will not fear going under some fire so he may have a Low potential damage value for a

76



given direction which will read as Medium or High for a light/weak unit like a marine. This
will act as subjective potential fields [Hagelbäck and Johansson, 2009] in which the (repulsive)
influence of the potential damages map depends on the unit type. The discrete steps are:

⇢

0, J0 . . .
unit base HP

2
K, K

unit base HP

2
. . . unit base HP J, Junit base HP · · ·+ infJ

}

Figure 5.3: Potential damage map (white squares for low potential damages, and yellow square
for moderate potential damages). Left: we can see that the tank in siege mode (big blue unit
with a red square on top) cannot shoot at close range and thus our units (in red) were attracted
to the close safe zone. Right: the enemy units (blue, with red squares on top) are contact attack
units and thus our unit (red, with a plain green square on top) is “kiting” (staying out of range):
attacking and then retreating away (out of their range).

Repulsion/attraction

For repulsion/attraction between units (allied or enemies), we could consider the instantaneous
position of the units but it would lead to squeezing/expanding effects when moving large groups.
Instead, we use their interpolated position at the time at which the unit that we move will be
arrived in the direction we consider. In the right diagram in Figure 5.4, we want to move the
unit in the center (U). There is an enemy (E) unit twice as fast as ours and an allied unit (A)
three times as fast as ours. When we consider moving in the direction just above us, we are
on the interpolated position of unit E (we travel one case when they do two); when we consider
moving in the direction directly on our right (East), we are on the interpolated position of unit

A. We consider where the unit will be dist(unit,~di)
unit.speed time later, but also its size (some units produce

collisions in a smaller scale than our discretization).

Objective

The goals coming from the tactician model (see Fig. 5.1) are broken down into steps which
gives objectives to each units. The way to incorporate the objective in the reactive behavior
of our units is to add an attractive sensory input. This objective is a fixed direction ~o and we
consider the probabilities of moving our unit in n possible directions ~d1 . . . ~dn (in our StarCraft
implementation: n = 25 atomic directions). To decide the attractiveness of a given direction ~di
with regard to the objective ~o, we consider a weight which is proportional to the dot product
~o · ~di, with a threshold minimum probability, as shown in Figure 5.4.
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U

Figure 5.4: In both figures, the thick squares represents the boundaries of the 24 atomic di-
rections (25 small squares with the current unit position) around the unit (U). Red is high
probability, down to green low probability. Left: repulsion of the linear interpolation of the
trajectories (here with uncertainty) of enemy unit (E) and allied unit (A), depending on their
speed. Right: attraction of the objective (in direction of the dotted arrow) which is proportional
to dot-product of the direction (square) considered, with a minimum threshold (in green).

5.3.2 A simple unit

Greedy pragmatism

Is staying alive better than killing an enemy unit? Is a large splash damage better than killing
an enemy unit? Is it better to fire or move? In that event, where? Even if we could compute to
the end of the fight and apply the same approach that we have for board games, how do we infer
the best “set of next moves” for the enemy? For enemy units, it would require exploring the tree
of possible plans (intractable) from which we could at best only draw samples [Balla and Fern,
2009]. Even so, taking enemy minimax (to which depth?) moves for facts would assume that
the enemy is also playing minimax (to the same depth) following exactly the same valuation
rules as ours. Clearly, RTS micro-management* is more inclined to reactive planning than board
games reasoning. That does not exclude having higher level (strategic and tactic) goals. In our
model, they are fed to the unit as sensory inputs, that will have an influence on its behavior
depending on the situation/state the unit is in. We should at least have a model for higher-level
decisions of the enemy and account for uncertainty of moves that could be performed in this
kind of minimax approach. So, as complete search through the min/max tree is intractable, we
propose a first simple solution: have a greedy target selection heuristic leading the movements
of units to benchmark our Bayesian model against. In this solution, each unit can be viewed as
an effector, part of a multi-body (multi-effector) agent, grouped under a units group.

Targeting heuristic

The idea behind the heuristic used for target selection is that units need to focus fire (which
leads to less incoming damages if enemy units die faster) on units that do the most damages,
have the less hit points, and take the most damages from their attack type. This can be
achieved by using a data structure, shared by all our units engaged in the battle, that stores
the damages corresponding to future allied attacks for each enemy units. Whenever a unit will
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fire on a enemy unit, it registers there the future damages on the enemy unit. As attacks are
not all instantaneous and there are reload times, it helps focus firing2. We also need a set of
priority targets for each of our unit types that can be drawn from expert knowledge or learned
(reinforcement learning) battling all unit types. A unit select its target among the most focus
fired units with positive future hit point (current hit points minus registered damages), while
prioritizing units from the priority set of its type. The units group can also impose its own
priorities on enemy units (for instance to achieve a goal). The target selection heuristics is fully
depicted in 8 in the appendices.

Fight behavior

Based on this targeting heuristic, we design a very simple FSM* based unit as shown in Figure 5.6
and Algorithm 5.5: when the unit is not firing, it will either flee damages if it has taken too much
damages and/or if the differential of damages is too strong, or move to be better positioned in
the fight (which may include staying where it is). In this simple unit, the flee() function just
tries to move the unit in the direction of the biggest damages gradient (towards lower potential
damages zones). The fightMove() function tries to position the units better: in range of its
priority target, so that if the priority target is out of reach, the behavior will look like: “try
to fire on target in range, if it cannot (reloading or no target in range), move towards priority
target”. As everything is driven by the firing heuristic (that we will also use for our Bayesian
unit), we call this AI the Heuristic Only AI (HOAI).

function move(prio_t,rdmg)
if needF lee() then

flee(rdmg)
else

fightMove(prio_t)
end if

end function
function fight

(target, prio_target) = selectTarget()
if reloaded then

if inRange(prio_target) then
attack(prio_target)

else if inRange(target) then
attack(target)

else
move(prio_target, damage_gradient)

end if
else

move(prio_target, damage_gradient)
end if

end function

Figure 5.5: Fight behavior FSM for micro-managing units.

2The only degenerated case would be if all our units register their targets at once (and all the enemy units
have the same priority) and it never happens (plus, units fire rates have a randomness factor).

79



Fire Reload

Flee

Move

Figure 5.6: Fight FSM of a simple unit model: Heuristic Only AI (HOAI), which will serve as
a baseline for benchmarks.

5.3.3 Units group

The units group (UnitsGroup, see Fig. 5.1) makes the shared future damage data structure
available to all units taking part in a fight. Units control is not limited to fight. As it is
adversarial, it is perhaps the hardest task, but units control problems comprehends efficient
team maneuvering and other behaviors such as scouting or staying in position (formation). The
units group structure helps for all that: it decides of the modes in which the unit has to be.
We implemented 4 modes in our Bayesian unit (see Fig. 5.7): fight, move, scout, inposition.
When given a task, also named goal, by the tactician model (see Fig. 5.1), the units group has
to transform the task objective into sensory inputs for the units.

• In scout mode, the (often quick and low hit points) unit avoids danger by modifying locally
its pathfinding-based, objectives oriented route to avoid damages.

• In move mode, the objective is extracted for the pathfinder output: it consists in key
waypoints near the units. When moving by flocking, our unit moves are influenced by other
near allied units that repulse or attract it depending on its distance to the interpolation of
the allied unit. It allows our units to move more efficiently by not splitting around obstacles
and colliding less. As it causes other problems, we do not use the flocking behavior in full
competitive games.

• In the inposition mode, the objective is the final unit formation position. The unit can be
“pushed” by other units wanting to pass through. This is useful at a tactical level to do
a wall of units that our units can traverse but the opponent’s cannot. Basically, there is
an attraction to the position of the unit and a stronger repulsion of the interpolation of
movements of allied units.

• In fight mode, our unit will follow the damages gradient to smart positions, for instance
close to tanks (they cannot fire too close to their position) or far from too much contact
units if our unit can attack with range (something called “kiting”). Our unit moves are also
influenced by its priority targets, its goal/objective (go through a choke, flee, etc.) and
other units. The objective depends of the confidence of the units group in the outcome of
the battle:

– If the units group is outnumbered (in adjusted strength) and the task is not a suicidal
one, the units group will “fall back” and give objectives towards retreat.
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– If the fight is even or manageable, the units group will not give any objective to units,
which will set their own objectives either to their priority targets in fightMove() or
towards fleeing damages (towards lowest potential damages gradient) in flee().

– If the units group is very confident in winning the fight, the objectives sensory inputs
of the units will be set at the task objectives waypoints (from the pathfinder).

5.4 A Bayesian model for units control

5.4.1 Bayesian unit

We use Bayesian programming as an alternative to logic, transforming incompleteness of knowl-
edge about the world into uncertainty. In the case of units management, we have mainly inten-

sional uncertainty. Instead of asking questions like: where are other units going to be 10 frames
later? Our model is based on rough estimations that are not taken as ground facts. Knowing
the answer to these questions would require for our own (allied) units to communicate a lot and
to stick to their plan (which does not allow for quick reaction nor adaptation).

We propose to model units as sensory-motor robots described within the Bayesian robot
programming framework [Lebeltel et al., 2004]. A Bayesian model uses and reasons on distribu-
tions instead of predicates, which deals directly with uncertainty. Our Bayesian units are simple
hierarchical finite states machines (states can be seen as modes) that can scout, fight and move
(see Figure 5.7). Each unit type has a reload rate and attack duration, so their fight mode
will be as depicted in Figure 5.6 and Algorithm 5.5. The difference between our simple HOAI
presented above and Bayesian units are in flee() and fightMove() functions.

Fire

Fight

Reload

Flee

Move

Scout

Move

In Position

Figure 5.7: Bayesian unit modal FSM (HFSM*), detail on the fight mode. Stripped modes are
Bayesian.

The unit needs to determine where to go when fleeing and moving during a fight, with regard
to its target and the attacking enemies, while avoiding collisions (which results in blocked units
and time lost) as much as possible. We now present the Bayesian program used for

flee(), fightMove(), and while scouting, which differ only by what is inputed as objective:

Variables

• Diri2J1...nK 2 {True, False}: at least one variable for each atomic direction the unit can
go to. P(Diri = True) = 1 means that the unit will certainly go in direction i (, ~di). For
example, in StarCraft we use the 24 atomic directions (48 for the smallest and fast units
as we use a proportional scale) plus the current unit position (stay where it is) as shown
in Figure 5.2.

81



• Obji2J1...nK 2 {True, False}: adequacy of direction i with the objective (given by a higher
rank model). In our StarCraft AI, we use the scalar product between the direction i

and the objective vector (output of the pathfinding) with a minimum value (0.3 in move

mode for instance) so that the probability to go in a given direction is proportional to its
alignment with the objective.

– For flee(), the objective is set in the direction which flees the potential damage gra-
dient (corresponding to the unit type: ground or air).

– For fightMove(), the objective is set (by the units group) either to retreat, to fight
freely or to march aggressively towards the goal (see 5.3.3).

– For the scout behavior, the objective (~o) is set to the next pathfinder waypoint.

• Dmgi2J1...nK 2 {no, low,medium, high}: potential damage value in direction i, relative to
the unit base health points, in direction i. In our StarCraft AI, this is directly drawn from
two constantly updated potential damage maps (air, ground).

• Ai2J1...nK 2 {free, small, big}: occupation of the direction i by an allied unit. The model
can effectively use many values (other than “occupied/free”) because directions may be
multi-scale (for instance we indexed the scale on the size of the unit) and, in the end,
small and/or fast units have a much smaller footprint, collision wise, than big and/or slow.
In our AI, instead of direct positions of allied units, we used their (linear) interpolation
dist(unit,~di)
unit.speed (time it takes the unit to go to ~di) frames later (to avoid squeezing/expansion).

• Ei2J1...nK 2 {free, small, big}: occupation of the direction i by an enemy unit. As above.

• Occi2J1...nK 2 {free, building, staticterrain}: Occupied, repulsive effect of buildings and
terrain (cliffs, water, walls).

There is basically one set of (sensory) variables per perception in addition to the Diri values.

Decomposition

The joint distribution (JD) over these variables is a specific kind of fusion called inverse pro-
gramming [Le Hy et al., 2004]. The sensory variables are considered conditionally independent
knowing the actions, contrary to standard naive Bayesian fusion, in which the sensory variables
are considered independent knowing the phenomenon.

P(Dir1:n, Obj1:n, Dmg1:n, A1:n, E1:n, Occ1:n) (5.1)

= JD =

n
Y

i=1

P(Diri)P(Obji|Diri) (5.2)

P(Dmgi|Diri)P(Ai|Diri) (5.3)

P(Ei|Diri)P(Occi|Diri) (5.4)

We assume that the i directions are independent depending on the action because dependency
is already encoded in (all) sensory inputs.
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Forms

• P(Diri) prior on directions, unknown, so unspecified/uniform over all i. P(diri) = 0.5.

• P(Obji|Diri) for instance, “probability that this direction is the objective knowing that
we go there” P(obji|diri) = threshold+ (1.0− threshold)⇥max(0, ~o · ~di). We could have
different thresholds depending on the mode, but this was not the case in our hand-specified
tables: threshold = 0.3. The right diagram on Figure 5.4 shows P(Obji|Diri) for each of
the possible directions (inside the thick big square boundaries of atomic directions) with
red being higher probabilities.

• P(Dmgi|Diri) probability of damages values in direction i knowing this is the direction
that we are headed to. P(Dmgi = high|Diri = T ) has to be small in many cases for the
unit to avoid going to positions it could be killed instantly. Probability table:

Dmgi diri ¯diri

no 0.9 0.25
low 0.06 0.25
medium 0.03 0.25
high 0.01 0.25

• P(Ai|Diri) probability that there is an ally in direction i knowing this is the unit direction.
It is used to avoid collisions by not going where allied units could be in the near future.
Probability table:

Ai diri ¯diri

free 0.9 0.333
small 0.066 0.333
big 0.033 0.333

• P(Ei|Diri) same explanation and use as above but with enemy units, it can have different
parameters as we may want to be stucking enemy units, or avoid them (mostly depending
on the unit type). In a repulsive setting (what we mostly want), the left diagram in Fig-
ure 5.4 can be seen as P(Ai, Ei| ¯Diri) if red corresponds to high probabilities (P(Ai, Ei|Diri)

if red corresponds to lower probabilities). In our hand-specified implementation, for flee()

and fightMove(), this is the same probability table as above (for P(Ai|Diri)).

• P(Occi|Diri) probability table that there is a blocking building or terrain element is some
direction, knowing this is the unit direction, P(Occi = Static|Diri = T ) will be very low,
whereas P(Occi = Building|Diri = T ) will also be very low but triggers building attack
(and destruction) when there are no other issues. Probability table:

Occi diri ¯diri

free 0.999899 0.333
building 0.001 0.333
static 0.000001 0.333
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Identification

Parameters and probability tables can be learned through reinforcement learning [Sutton and
Barto, 1998, Asmuth et al., 2009] by setting up different and pertinent scenarii and search for
the set of parameters that maximizes a reward function (more about that in the discussion). In
our current implementation, the parameters and probability table values are hand specified.

Question

When in fightMove() and flee(), the unit asks:

P(Dir1:n|obj1:n, dmg1:n, a1:n, e1:n, occ1:n) (5.5)

From there, the unit can either go in the most probable Diri or sample through them. We
describe the effect of this choice in the next section (and in Fig. 5.12). A simple Bayesian fusion
from 3 sensory inputs is shown in Figure 5.8, in which the final distribution on Dir peaks at
places avoiding damages and collisions while pointing towards the goal. Here follows the full
Bayesian program of the model (5.9):

A U A UA U A U

Repulsive Attractive

Damage map influence Allied collision map influence Objective influence Total fusion

Repulsive

Figure 5.8: Simple example of Bayesian fusion from 3 sensory inputs (damages, collisions avoid-
ance and goal attraction). The grid pattern represents statically occupied terrain, the unit we
control is in U, an allied unit is in A. The result is displayed on the rightmost image.

There are additional variables for specific modes/behaviors, also probability tables may be
different.

Move

Without flocking

When moving without flocking (trying to maintain some form of group cohesion), the model is
even simpler. The objective (~o) is set to a path waypoint. The potential damage map is dropped
from the JD (because it is not useful for moving when not fighting), the question is:

P(Dir1:n|obj1:n, a1:n, e1:n, occ1:n) (5.6)

With flocking

To produce a flocking behavior while moving, we introduce another set of variables: Atti2J1...nK 2
{True, False}, allied units attractions (or not) in direction i.

A flocking behavior [Reynolds, 1999] requires:
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V ariables

Dir1:n, Obj1:n, Dmg1:n, A1:n, E1:n, Occ1:n

Decomposition

P(Dir1:n, Obj1:n, Dmg1:n, A1:n, E1:n, Occ1:n) =
Qn

i=1

⇥

P(Diri)

P(Obji|Diri)P(Dmgi|Diri)P(Ai|Diri)P(Ei|Diri)P(Occi|Diri)
⇤

Forms

P(Diri) : prior on directions (crossing policy)

P(XY Zi|Diri) : probability tables

Identification (using δ)

reinforcement learning or hand specified (or distribs. parameters optimization)

Question

fightmoving/fleeing/scouting : P(Dir1:n|Obj1:n, Dmg1:n, A1:n, E1:n, Occ1:n)

Figure 5.9: Bayesian program of flee(), fightMove() and the scouting behaviors.

• Separation: avoid collisions, short range repulsion,

• Alignment: align direction with neighbours,

• Cohesion: steer towards average position of neighbours.

Separation is dealt with by P(Ai|Diri) already. As we use interpolations of units at the time
at which our unit will be arrived at the Diri under consideration, being attracted by Atti gives
cohesion as well as some form of alignment. It is not strictly the same as having the same
direction and seems to fare better on complex terrain. We remind the reader that flocking was
derived from birds flocks and fish schools behaviors: in both cases there is a lot of free/empty
space.

A ~a vector is constructed as the weighted sum of neighbour3 allied units. Then
P(Atti|Diri)for all i directions is constructed as for the objective influence (P(Obji|Diri)) by
taking the dot product ~a · ~di with a minimum threshold (we used 0.3, so that the flocking effect
is as strong as objective attraction):

P(atti|diri) = threshold+ (1.0− threshold)⇥max(0,~a · ~di)

The JD becomes JD ⇥Πn
i=1P(Atti|Diri).

In position

The inposition mode corresponds to when some units are at the place they should be (no new
objective to reach) and not fighting. This happens when some units arrived at their formation
end positions and they are waiting for other (allied) units of their group, or when units are sitting

3The devil is in the details, if one considers a too small neighbourhood, there is very rarely emergence of
the flocking behavior, whereas if one considers a too large neighbourhood, units can get in directions which are
getting them stuck. A pragmatic solution is to use a large neighbourhood with a decreasing weight (for increasing
distance) for each unit of the neighbourhood.
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V ariables

Dir1:n, Obj1:n, Att1:n, A1:n, E1:n, Occ1:n

Decomposition

P(Dir1:n, Obj1:n, Att1:n, A1:n, E1:n, Occ1:n) =
Qn

i=1

⇥

P(Diri)

P(Obji|Diri)P(Ai|Diri)P(Ei|Diri)P(Occi|Diri)P(Atti|Diri)
⇤

Forms

P(Diri) : prior on directions (crossing policy)

P(XY Zi|Diri) : probability tables

Identification

learning or hand specified

Question

without flocking (no Att1:n variables) : P(Dir1:n|Obj1:n, A1:n, E1:n, Occ1:n)

with flocking : P(Dir1:n|Obj1:n, A1:n, E1:n, Occ1:n, Att1:n)

Figure 5.10: Bayesian program of the move behavior without and with flocking.

(in defense) at some tactical point, like in front of a base for instance. The particularity of this
mode is that the objective is set to the current unit position. It will be updated to always point
to this “final formation position of the unit” as long as the unit stays in this mode (inposition).
This is useful so that units which are arriving to the formation can go through each others
and not get stuck. Figure 5.11 shows the effect of using this mode: the big unit (Archon) goes
through a square formation of the other units (Dragoons) which are in inposition mode. What
happens is an emerging phenomenon: the first (leftmost) units of the square get repulsed by the
interpolated position of the dragoon, so they move themselves out of its trajectory. By moving,
they repulse the second and then third line of the formation, the chain repulsion reaction makes
a path for the big unit to pass through the formation. Once this unit path is no longer colliding,
the attraction of units for their objective (their formation position) takes them back to their
initial positions.

5.5 Results on StarCraft

5.5.1 Experiments

We produced three different AI to run experiments with, along with the original AI (OAI) from
StarCraft:

• Heuristic only AI (HOAI), as described above (5.3.2): this AI shares the target selection
heuristic with our Bayesian AI models and will be used as a baseline reference to avoid
the bias due to the target selection heuristic.

• Bayesian AI picking best (BAIPB): this AI follows the model of section 5.4 and selects the
most probable Diri as movement.
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Figure 5.11: Sequence of traversal of an Archon (big blue unit which is circled in green) through
a square formation of Dragoons (four legged red units) in inposition mode.

• Bayesian AI sampling (BAIS): this AI follows the model of section 5.4 and samples through
Diri according to their probability (i.e. it samples a direction in the Dir distribution).

The experiments consisted in having the AIs fight against each others on a micro-management
scenario with mirror matches of 12 and 36 ranged ground units (Dragoons). In the 12 units
setup, the unit movements during the battle is easier (less collision probability) than in the 36
units setup. We instantiate only the army manager (no economy in this special scenarii/maps),
one units group manager and as many Bayesian units as there are units provided to us in the
scenario. The results are presented in Table 5.1.

12 units OAI HOAI BAIPB BAIS
OAI (50%)
HOAI 59% (50%)
BAIPB 93% 97% (50%)
BAIS 93% 95% 76% (50%)

36 units OAI HOAI BAIPB BAIS
OAI (50%)
HOAI 46% (50%)
BAIPB 91% 89% (50%)
BAIS 97% 94% 97% (50%)

Table 5.1: Win ratios over at least 200 battles of OAI, HOAI, BAIPB and BAIS in two mirror
setups: 12 and 36 ranged units. Left: 12 units (12 vs 12) setup. Right: 36 units (36 vs 36)
setup. Read line vs column: for instance HOAI won 59% of its matches against OAI in the 12
units setup.

These results show that our heuristic (HAOI) is comparable to the original AI (OAI), perhaps
a little better, but induces more collisions as we can see its performance diminish a lot in the
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36 units setup vs OAI. For Bayesian units, the “pick best” (BAIPB) direction policy is very
effective when battling with few units (and few movements because of static enemy units) as
proved against OAI and HOAI, but its effectiveness decreases when the number of units increases:
all units are competing for the best directions (to flee() or fightMove()) and they collide. The
sampling policy (BAIS) has way better results in large armies, and significantly better results in
the 12 units vs BAIPB. BAIPB may lead our units to move inside the “enemy zone” a lot more
to chase priority targets (in fightMove()) and collide with enemy units or get kill. Sampling
entails that the competition for the best directions is distributed among all the “bests to good”
positions, from the units point of view. We illustrate this effect in Figure 5.12: the units (on
the right of the figure) have good reasons to flee on the left (combinations of sensory inputs, for
instance of the damage map), and there may be a peak of “best position to be at”. As they have
not moved yet, they do not have interpolation of positions which will collide, so they are not
repulsing each other at this position, all go together and collide. Sampling would, on average,
provide a collision free solution here.

Figure 5.12: Example of P(Dir) when fleeing, showing why sampling (BAIS, bottom graphic on
the right) may be a better instead of picking the best direction (BAIPB, here Dir = 17 in the
plot, top graphic on the right) and triggering units collisions.

We also ran tests in setups with flying units (Zerg Mutalisks) in which BAIPB fared as good
as BAIS (no collision for flying units) and way better than OAI.

5.5.2 Our bot

This model is currently at the core of the micro-management of our StarCraft bot. In a com-
petitive micro-management setup, we had a tie with the winner of AIIDE 2010 StarCraft micro-
management competition, winning with ranged units (Protoss Dragoons), losing with contact
units (Protoss Zealots) and having a perfect tie (the host wins thanks to a few less frames of
lag) in the flying units setting (Zerg Mutalisks and Scourges).
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This model can be used to specify the behavior of units in RTS games. Instead of relying
on a “units push each other” physics model for handling dynamic collision of units, this model
makes the units react themselves to collision in a more realistic fashion (a marine cannot push a
tank, the tank will move). More than adding realism to the game, this is a necessary condition
for efficient micro-management in StarCraft: Brood War, as we do not have control over the
game physics engine and it does not have this “flow-like” physics for units positioning.

5.6 Discussion

5.6.1 Perspectives

Adding a sensory input: height attraction

We make an example of adding a sensory input (that we sometimes use in our bot): height
attraction. From a tactical point of view, it is interesting for units to always try to have the
higher ground as lower ranged units have a high miss rate (almost 50%) on higher positioned
units. For each of the direction tiles Diri, we just have to introduce a new set of sensory variables:
Hi2J0...nK 2 {normal, high, very_high, unknown} (unknown can be given by the game engine).
P(Hi|Diri) is just an additional factor in the decomposition: JD  JD⇥Πn

i=1P(Hi|Diri). The
probability table looks like:

Hi diri

normal 0.2
high 0.3
very_high 0.45
unknown 0.05

Even more realistic behaviors

The realism of units movements can also be augmented with a simple-to-set P(Dirt−1|Dirt)

steering parameter, although we do not use it in the competitive setup. We introduce
Dirt−1

i2J1...nK 2 {True, False}: the previous selected direction, Dirt−1
i = True iff the unit

went to the direction i, else False for a steering (smooth) behavior. The JD would then
be JD ⇥ Πn

i=1P(Dirt−1
i |Diri), with P(Dirt−1

i |Diri) the influence of the last direction, either a
dot product (with minimal threshold) as before for the objective and flocking, or a parametrized
Bell shape over all the i.

Reinforcement learning

Future work could consist in using reinforcement learning [Sutton and Barto, 1998] or evolu-
tionary algorithms [Smith et al., 2010] to learn the probability tables. It should enhance the
performance of our Bayesian units in specific setups. It implies making up challenging scenarii
and dealing with huge sampling spaces [Asmuth et al., 2009]. We learned (with BAIPB) the
distribution of P(Dmgi|Diri) through simulated annealing on a specific fight task (by running
thousands of games). Instead of having 4 parameters of the probability table to learn, we fur-
ther restrained P(Dmgi|Diri) to be a discrete exponential distribution and we optimized the
λ parameter. When discretized back to the probability table (for four values of Dmg), the
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parameters that we learned, by optimizing the efficiency of the army in a fixed fight micro-
management scenario, were even more risk adverse than the table presented with this model.
The major problem with this approach is that parameters which are learned in a given scenario
(map, setup) are not trivially re-usable in other setups, so that boundaries have to be found to
avoid over-learning/optimization, and/or discovering in which typical scenario our units are at a
given time. Finally, note that reinforcement learning with the BAIPB and BAIS policies differ:
BAIPB is akin to Q-learning, while BAIS could explore more (units movements combinations)
and converge to a deterministic distribution over actions.

Reducing collisions

Also, there are yet many collision cases that remain unsolved (particularly visible with contact
units like Zealots and Zerglings), so we could also try adding local priority rules to solve collisions
(for instance through an asymmetrical P(Dirt−1

i |Diri)) that would entails units crossing lines
with a preferred side (some kind of “social rule”),

In collision due to concurrency for “best” positions: as seen in Figure. 5.12, units may compete
for a well of potential. The solution that we use is to sample in the Dir distribution, which gives
better results than picking the most probable direction as soon as there are many units. Another
solution, inspired by [Marthi et al., 2005], would be for the Bayesian units to communicate their
Dir distribution to the units group which would give orders that optimize either the sum of
probabilities, or the minimal discrepancy in dissatisfaction, or the survival of costly units (as
shown in Fig. 5.13). Ideally, we could have a full Bayesian model at the UnitsGroup level, which
takes the P(Dir) distributions as sensory inputs and computes orders to units. This would be a
centralized model but in which the complexity of micro-management would have been reduced
by the lower-level model presented in this chapter.

Distribution

Order

UnitsGroup

BayesianUnit BayesianUnit BayesianUnit

Figure 5.13: Example of the decision taken at the units group level from “compressed” infor-
mation in the form of the distribution on Dir for each Bayesian unit. This can be viewed as
a simple optimization problem (maximize sum of probabilities of decisions taken), or as a con-
straint satisfaction problem (CSP) like “no unit should be left behind/die/dissatisfied”, or even
as another sensory-motor problem with higher-level inputs (Dir distributions). Related to 5.6.2

Tuning parameters

If we learn the parameters of such a model to mimic existing data (data mining) or to maximize a
reward function (reinforcement learning), we can interpret the parameters that will be obtained
more easily than parameters of an artificial neural network for instance. Parameters learned
in one setup can be reused in another if they are understood. We claim that specifying or
changing the behavior of this model is much easier than changing the behavior generated by a
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FSM, and game developers can have a fine control over it. Dynamic switches of behavior (as we
do between the scout/flock/inposition/fight modes) are just one probability tables switch away.
In fact, probability tables for each sensory input (or group of sensory inputs) can be linked to
sliders in a behavior editor and game makers can specify the behavior of their units by specifying
the degree of effect for each perception (sensory input) on the behavior of the unit and see the
effect in real time. This is not restricted to RTS and could be applied to RPG* and even FPS*
gameplays*.

Avoiding local optima

Local optimum could trap and stuck our reactive, small-look-ahead units: concave (strong)
repulsors (static terrain, very high damage field). A pragmatic solution to that is to remember
that the Obj sensory inputs come from the pathfinder and have its influence to grow when in
difficult situations (not moved for a long time, concave shape detected...). Another solution is
inspired by ants: simply release a repulsive field (a repulsive “pheromone”) behind the unit and
it will be repulsed by places it already visited instead of oscillating around the local optima (see
Fig. 5.14).

1

2

3

4

19 18 17 16 5

15 6

14 13 12 7

11 8

10 9

Figure 5.14: Example of trailing repulsive charges (repulsive “pheromones”) at already visited
positions for Bayesian units to avoid being blocked by local optimums. The trajectory is indi-
cated by the increasing numbers (most recent unit position in 19) and the (decaying) strength
of the trailing repulsion is weaker in green and stronger in red. Related to 5.6.2.

Another solution would be to consider more than just the atomic directions. Indeed, if one
decides to cover a lot of space with directions (i.e. use this model with path-planning), one needs
to consider directions whose paths collide with each others: if a direction is no longer atomic,
this means that there are at least two paths leading to it, from the current unit position. The
added complexity of dealing with these paths (and their possible collision routes with allied units
or going through potential damages) may not be very aligned with the very reactive behavior
that we envisioned here. It is a middle between our proposed solution and full path-planning,
for which it is costly to consider several dynamic different influences leading to frequent re-

91



computation. Path-planning solutions to this problem include Korf’s LRTA*[Russell and Norvig,
2010] and its non-deterministic setting generalization RTDP [?].

Probabilistic modality

Finally, we could use multi-modality [Colas et al., 2010] to get rid of the remaining (small: fire-
retreat-move) FSM. Instead of being in “hard” modes, the unit could be in a weighted sum of
modes (summing to one) and we would have:

P(Dir) = wfightMove()P(Dir|sensory_inputs)fightMove()+wflee()P(Dir|sensory_inputs)flee() . . .

This could particularly help dealing with the fact that parameters learned from fixed scenarii
would be too specialized. This way we could interpolate a continuous family of distributions for
P(Dir) from a fixed and finite number of parameters learned from a finite number of experiments
setups.

5.6.2 Conclusion

We have implemented this model in StarCraft, and it outperforms the original AI as well as
other bots: it is as good as FreSC, the AIIDE 2010 micro-management tournament winner.
Our approach does not require a specific vertical integration for each different type of objectives
(higher level goals), as opposed to CBR and reactive planning [Ontañón et al., 2007a, Weber
et al., 2010b]: it can have a completely different model above feeding sensory inputs like Obji. It
runs in real-time on a laptop (Core 2 Duo) taking decisions for every units 24 times per second.
It scales well with the number of units to control thanks to the absence of communication at
the unit level, and is more robust and maintainable than a FSM. Particularly, the cost to add a
new sensory input (a new effect on the units behavior) is low.
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Chapter 6

Tactics

It appears to be a quite general principle that, whenever there is a randomized

way of doing something, then there is a nonrandomized way that delivers better per-

formance but requires more thought.

E.T. Jaynes (Probability Theory: The Logic of Science, 2003)

W
e present a Bayesian model for opponent’s tactics prediction and tactical decision-making
in real-time strategy games. We first give our definitions of tactics and an overview of the

related works on tactical elements of RTS games. We then present the useful perceptions and
decisions relative to tactics. We assembled a dataset for which we present information available
and how we collected it. Then, the detail of the Bayesian program is presented. The main idea
is to adapt the model to inputs from (possibly) biased heuristics. We evaluated the model in
prediction of the enemy tactics on professional gamers data.

This work was published at Computational Intelligence in Games (IEEE CIG) 2012 in
Grenada [Synnaeve and Bessière, 2012a] and was presented at the Computer Games Work-
shop of the European Conference of Artificial Intelligence (ECAI) 2012 [Synnaeve and Bessière,
2012b].

6.1 What are tactics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Perception and tactical goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 A Bayesian tactical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Results on StarCraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

• Problem: make the most efficient tactical decisions (attacks and defenses) taking into
account everything that can happen.

• Problem that we solve: make the most efficient tactical decisions (in average) knowing
what we saw from the opponent and our model of the game.
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• Type: prediction is problem of inference or plan recognition from partial observations ;
adaptation given what we know is a problem of decision-making under uncertainty.

• Complexity: the complexity of tactical moves has not been studied particularly, as “tactics”
are hard to bound. If taken form the low-level actions that units perform to produce
tactics, the complexity is that of micro-management performed on the whole map and is
detailed in section 4.2. Players and AI build abstractions on top of that, which enables
them to reason about enemy tactics and infer what they should do from only partial
observations. For these reasons, we think that tactics, at this abstract level, can be modeled
as a POMDP* with partial observations of the opponent’s tactics (identifying them from
low-level observations is already an arduous task), actions as our tactics, and transition
probabilities defined by player’s skills and the game state. Our solutions are real-time on
a laptop.

UnitGroupsUnitGroups

Incomplete 
Data

Opponent Strategy

Our TacticsOur Strategy Unit Groups

BayesianUnit

BayesianUnit

BayesianUnit

BayesianUnit

BayesianUnit

BayesianUnit

BayesianUnit

BayesianUnit

Production planner 
and managers

Opponent Tactics Opponent Positions

Our Style
(+ meta)

Figure 6.1: Information-centric view of the architecture of the bot, the part concerning this
chapter (tactics) is in the dotted rectangle. Dotted arrows represent constraints on what is
possible, plain simple arrows represent simple (real) values, either from data or decisions, and
double arrows represent probability distributions on possible values. The grayed surfaces are
the components actuators (passing orders to the game).

6.1 What are tactics?

6.1.1 A tactical abstraction

In their study on human-like characteristics in RTS games, Hagelbäck and Johansson Hagel-
bäck and Johansson [2010] found out that “tactics was one of the most successful indicators
of whether the player was human or not”. Tactics are in between strategy (high-level) and
micro-management (lower-level), as seen in Fig. 4.5. They correspond to where, how and when

the players move their armies. When players talk about specific tactics, they use a specific
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vocabulary which represents a set of actions and compresses subgoals of a tactical goal in a
sentence.

Units have different abilities, which leads to different possible tactics. Each faction has
invisible (temporarily or permanently) units, flying transport units, flying attack units and
ground units. Some units can only attack ground or air units, some others have splash damage
attacks, immobilizing or illusion abilities. Fast and mobile units are not cost-effective in head-
to-head fights against slower bulky units. We used the gamers’ vocabulary to qualify different
types of tactics:

• ground attacks (raids or pushes) are the most normal kind of attacks, carried by basic
units which cannot fly,

• air attacks (air raids), which use flying units’ mobility to quickly deal damage to unde-
fended spots.

• invisible attacks exploit the weaknesses (being them positional or technological) in detec-
tors of the enemy to deal damage without retaliation,

• drops are attacks using ground units transported by air, combining flying units’ mobility
with cost-effectiveness of ground units, at the expense of vulnerability during transit.

This will be the only four types of tactics that we will use in this chapter: how did the player
attack or defend? That does not mean that it is an exhaustive classification, nor that our model
can not be adapted a) to other types of tactics b) to dynamically learning types of tactics.

RTS games maps, StarCraft included, consist in a closed arena in which units can evolve.
It is filled with terrain features like uncrossable terrain for ground units (water, space), cliffs,
ramps, walls, potential base locations1. So when a player decides to attack, she has to decide
where to attack, and this decision takes into account how it can attack different places, due
to their geographical remoteness, topological access posibilities and defense strengh. Choosing
where to attack is a complex decision to make: of course it is always wanted to attack poorly
defended economic expansions of the opponent, but the player has to consider if it places its
own bases in jeopardy, or if it may trap her own army. With a perfect estimator of battles
outcomes (which is a hard problem due to terrain, army composition combinatorics and units
control complexity), and perfect information, this would result in a game tree problem which
could be solved by alpha-beta. Unfortunately, StarCraft is a partial observation game with
complex terrain and fight mechanics so we can at best use expectiminimax.

6.1.2 Our approach

The idea is to have (most probably biased) lower-level heuristics from units observations which
produce information exploitable at the tactical level, and take advantage of strategic inference
too. For that, we propose a model which can either predict enemy attacks or give us a distribution
on where and how we should attack the opponent. Information from the higher-level strategy
[Synnaeve and Bessière, 2011, Synnaeve and Bessière, 2011b] (Chapter 7) constrains what types

1Particularly, each RTS game which allows production also give some economical (gathering) mechanism and
so there are some resources scattered on the map, where players need to go collect. It is far more efficient to
build expansion (auxiliary bases) to collect resources directly on site.
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of attacks are possible. As shown in Fig. 6.1, information from units’ positions (or possibly an
enemy units particle filter as in [Weber et al., 2011] or Chapter 9.2) constrains where the armies
can possibly be in the future. In the context of our StarCraft bot, once we have a decision: we
generate a goal (attack order) passed to units groups, which set the objectives of the low-level
Bayesian units control model [Synnaeve and Bessière, 2011a] (Chapter 5).

6.2 Related work

On spatial reasoning, Pottinger [2000] described the BANG engine implemented for the game
Age of Empires II (Ensemble Studios), which provides terrain analysis functionalities to the game
using influence maps and areas with connectivity information. Forbus et al. [2002] presented
a tactical qualitative description of terrain for wargames through geometric and pathfinding
analysis. Hale et al. [2008] presented a 2D geometric navigation mesh generation method from
expanding convex regions from seeds. Perkins [2010] automatically extracted choke points and
regions of StarCraft maps from a pruned Voronoi diagram, which we used for our regions repre-
sentations (see below).

Hladky and Bulitko [2008] benchmarked hidden semi-Markov models (HSMM) and parti-
cle filters in first person shooter games (FPS) units tracking. They showed that the accuracy
of occupancy maps was improved using movement models (learned from the player behavior)
in HSMM. Bererton [2004] used a particle filter [Arulampalam et al., 2002] for player position
prediction in a FPS. Kabanza et al. [2010] improve the probabilistic hostile agent task tracker
(PHATT [Geib and Goldman, 2009], a simulated HMM for plan recognition) by encoding strate-
gies as HTN, used for plan and intent recognition to find tactical opportunities. Weber et al.
[2011] used a particle model for hidden units’ positions estimation in StaCraft.

Aha et al. [2005] used case-based reasoning (CBR) to perform dynamic tactical plan re-
trieval (matching) extracted from domain knowledge in Wargus. Ontañón et al. [2007a] based
their real-time case-based planning (CBP) system on a plan dependency graph which is learned
from human demonstration in Wargus. A case based behavior generator spawns goals which are
missing from the current state and plan according to the recognized state. In [Mishra et al.,
2008a, Manish Meta, 2010], they used a knowledge-based approach to perform situation as-
sessment to use the right plan, performing runtime adaptation by monitoring its performance.
Sharma et al. [2007] combined Case-Based Reasoning (CBR)* and reinforcement learning to
enable reuse of tactical plan components. Bakkes et al. [2009] used richly parametrized CBR
for strategic and tactical AI in Spring (Total Annihilation open source clone). Cadena and Gar-
rido [2011] used fuzzy CBR (fuzzy case matching) for strategic and tactical planning (including
expert knowledge) in StarCraft. Chung et al. [2005] applied Monte-Carlo planning for strategic
and tactical planning to a capture-the-flag mode of Open RTS. Balla and Fern [2009] applied
upper confidence bounds on trees (UCT: a MCTS algorithm) to tactical assault planning in
Wargus.

In Starcraft, Weber et al. [2010a,b] produced tactical goals through reactive planning and
goal-driven autonomy, finding the more relevant goal(s) to follow in unforeseen situations. Win-
termute et al. [2007] used a cognitive approach mimicking human attention for tactics and units
control in ORTS. Ponsen et al. [2006] developed an evolutionary state-based tactics generator
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for Wargus. Finally, Avery et al. [2009] and Smith et al. [2010] co-evolved influence map trees
for spatial (tactical) reasoning in RTS games.

6.3 Perception and tactical goals

6.3.1 Space representation

The maps on which we play restrain movement and vision of ground units (flying units are not
affected). As ground units are much more prevalent and more cost-efficient than flying units,
being able to reason about terrain particularities is key for tactical reasoning. For that, we
clustered the map in regions. We used two kinds of regions:

• BroodWar Terrain Analyser (BWTA)*2 regions and choke-dependent (choke-centered) re-
gions (CDR). BWTA regions are obtained from a pruned Voronoi diagram on walkable
terrain [Perkins, 2010] and give regions for which chokes are the boundaries. We will note
this regions “Reg” or regions.

• As battles often happens at chokes, choke-dependent regions are created by doing an
additional (distance limited) Voronoi tessellation spawned at chokes, its regions set is
(regions \ chokes)[ chokes. We will note this regions “CDR” or choke-dependent regions.

Figure 6.2 illustrate regions and choke-dependent regions (CDR). Results for choke-dependent
regions are not fully detailed. Figure B.2 (in appendix) shows a real StarCraft map and its
decomposition into regions with BWTA.

Figure 6.2: A very simple map on the left, which is transformed into regions (between chokes in
dotted red lines) by Voronoi tessellation and clustering. These plain regions (numbers in red)
are then augmented with choke-dependent regions (letters in blue)

2http://code.google.com/p/bwta/
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6.3.2 Evaluating regions

Partial observations

From partial observations, one has to derive meaningful information about what may be the state
of the game. For tactics, as we are between micro-management and strategy, we are interested
in knowing:

• enemy units positions. In this chapter, we consider that units we have seen and that are
now under the fog of war* are at the last seen position for some time (⇡ few minutes),
and then we have no clue where they are (uniform distribution on regions which are not
visible) but we know that they exist. We could diffuse their position (respecting the terrain
constraints for ground units) proportionally to their speed, or use a more advanced particle
filter as Weber et al. [2011] did for StarCraft, or as explained in section 8.1.5.

• enemy buildings positions. For that, we will simply consider that buildings do not move at
all (that is not completely true as some Terran buildings can move, but a good assumption
nevertheless). Once we have seen a building, if we have not destroyed it, it is there, even
under the fog of war*.

• enemy strategy (aggressiveness and tech tree* for instance). Here, we will only use the
estimation of the enemy’s tech tree as it is the output of a part of our strategy estimation
in chapter 7.

The units and buildings perceptions are too low-level to be exploited directly in a tactical model.
We will now present importance and defense scoring heuristics.

Scoring heuristics

To decide where and how to attack (or defend), we need information about the particularity of
above-mentioned regions. For that, we built heuristics taking low-level information about enemy
units and buildings positions, and giving higher level estimator. They are mostly encoding
common sense. We do not put too much care into building these heuristics because they will
also be used during learning and the learned parameters of the model will have adapted it to
their bias.

The value of a unit is just minerals_value+ 4
3gas_value+ 50supply_value. For instance

the value of an army with 2 dragoons and 1 zealot is: varmy = 2(125+ 4
350+50⇥2)+(100+50⇥2).

Now, we note vatype(r) the value of all units of a given type from the attacker (a) in region r. We
can also use vd for the defender. For instance vddragoon(r) is the sum of the values of all dragoons
in region r from the defender (d). The heuristics we used in our benchmarks are:

• economical score: number of workers of the defender on her total number of workers in
the game.

economical_scored(r) =
numberdworkers(r)

P

i2regions numberdworkers(i)

• tactical score: sum of the values of the defender’s armies forces in each regions, divided by
the distance between the region in which each army is and the region at hand (to a power
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> 1).

tactical_scored(r) =

P

i2regions v
d
army(i)

dist(i, r)1.5

We used a power of 1.5 such that the tactical value of a region in between two halves of an
army, each at distance 2, would be higher than the tactical value of a region at distance 4
of the full (same) army. For flying units, dist is the Euclidean distance, while for ground
units it takes pathfinding into account.

• ground defense score: the value of the defender’s units which can attack ground units in
region r, divided by the score of ground units of the attacker in region r.

ground_defensed(r) =
vdcan_attack_ground(r)

vaground_units(r)

• air defense score: the value of the defender’s units which can attack flying units in region
r, divided by the score of flying units of the attacker in region r.

air_defensed(r) =
vdcan_attack_air(r)

vaair_units(r)

• invisible defense score: the number of the defender’s detectors (units which can view
otherwise invisible units) in region r.

invis_defensed(r) = numberddetectors(r)

6.3.3 Tech tree

Our model also uses the estimation of the opponent’s tech tree* to know what types of attacks
are possible from them. An introduction to the tech tree is given in section 4.1.1. The tech tree
is the backbone of the strategy: it defines what can and what cannot be built by the player.
The left diagram of Figure 6.3 shows the tech tree of the player after completion of the build
order 4.1 in section 4.1.1. The strategic aspect of the tech tree is that it takes time (between 30
seconds to 2 minutes) to make a building, so tech trees and their evolutions through time result
from a plan and reveal the intention of the player.

From partial observations, a more complete tech tree can be reconstructed: if an enemy unit
which requires a specific building is seen, one can infer that the whole tech tree up to this unit’s
requirements is available to the opponent’s. Further in section 7.5, we will show how we took
advantage of probabilistic modeling and learning to infer more about the enemy build tree from
partial observation. In this chapter, we will limit our use of tech trees to be an indicator of what
types of attacks can and cannot be committed.

6.3.4 Attack types

With the discretization of the map into regions and choke-dependent regions, one can reason
about where attacks will happen. The types of the attacks depends on the units types involved
and their use. There may be numerous variations but we decided to keep the four main types
of attacks in the vocabulary of gamers:
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Figure 6.3: Two tech trees, the build trees subsets are the parts in red. Left: tech tree* obtained
at the end of the build order described in 4.1. Right: a more advanced tech tree.

• ground attacks, which may use all types of units (and so form the large majority of attacks).
They are constrained by the map topography and by units collisions so chokes are very
important: they are an advantage for the army with less contact units but enough ranged
units or simply more ranged units, and/or the higher ground.

• air raids, air attacks, which can use only flying units. They are not constrained by the
map, and the mobility of most flying units (except the largest) allows the player to attack
quickly anywhere. Flying units are most often not cost-effective against ranged ground
units, so their first role is to harass the economy (workers, tech buildings) and fight when
in large numerical superiority (interception, small groups) or against units which cannot
attack air units, all thanks to their mobility and ease of repositioning.

• invisible (ground) attacks, which can use only a few specific units in each race (Protoss
Dark Templars, Terran Ghosts, Zerg Lurkers). When detected, this units are not cost-
effective. There are two ways to use invisible attacks: as an all-in as soon as possible
(because reaching the technology required to produce such units is costly and long), before
that the enemy has detection technology. This is a risky strategy but with a huge payoff
(sometimes simply the quick win of the game). The second way is to try and sneak invisible
units behind enemy lines to sap the opponent’s economy.

• drop attacks, which need a transport unit (Protoss Shuttle, Terran Dropship, Zerg Overlord
with upgrade). Transports give the mobility of flying units to ground units, with the
downsides that units cannot fire when inside the transport. The usefulness of such attacks
comes from the fact that they are immediately available as soon as the first transport unit
is produced (because the ground units can be produced before it) and that they do not
sacrifice cost-efficiency of most of the army. The downside is that transports are unarmed
and are at the mercy of interceptions. The goals of such attacks are either to sap the
opponent’s economy (predominantly) or to quickly reinforce an army while maximizing
micro-management of units.

The corresponding goal (orders) are described in section 8.1.2.
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6.4 Dataset

6.4.1 Source

We downloaded more than 8000 replays* to keep 7649 uncorrupted, 1v1 replays from professional
gamers leagues and international tournaments of StarCraft, from specialized websites345. We
then ran them using BWAPI6 and dumped units’ positions, pathfinding and regions, resources,
orders, vision events, for attacks: types, positions, outcomes. Basically, every Brood War Appli-
cation Programmable Interface (BWAPI)* event, plus attacks, were recorded, the dataset and
its source code are freely available7. The implication of considering only replays of very good
player allows us to use this dataset to learn the behaviors of our bot. Otherwise, particularly
regarding the economy, a simple bot (AI) coupled with a planner can beat the average player,
who does not have a tightly timed build order and/or not the sufficient APM* to execute.

6.4.2 Information

Table 6.1 shows some metrics about the dataset. In this chapter, we are particularly interested
in the number of attacks. Note that the numbers of attacks for a given race have to be divided
by two in a given non-mirror match-up. So, there are 7072 Protoss attacks in PvP but there
are not 70,089 attacks by Protoss in PvT but about half that.

match-up PvP PvT PvZ TvT TvZ ZvZ
number of games 445 2408 2027 461 2107 199
number of attacks 7072 70089 40121 16446 42175 2162
mean attacks/game 15.89 29.11 19.79 35.67 20.02 10.86
mean time (frames) / game 32342 37772 39137 37717 35740 23898
mean time (minutes) / game 22.46 26.23 27.18 26.19 24.82 16.60
mean regions / game 19.59 19.88 19.69 19.83 20.21 19.31
mean CDR / game 41.58 41.61 41.57 41.44 42.10 40.70
actions issued (game engine) / game 24584 33209 31344 26998 29869 21868
mean “BWAPI APM*”8 (per player) 547 633 577 515 602 659
mean ground distance9 region $ region 2569 2608 2607 2629 2604 2596
mean ground distance10 CDR $ CDR 2397 2405 2411 2443 2396 2401

Table 6.1: Detailed numbers about our dataset. XvY means race X vs race Y matches and is
an abbreviation of the match-up: PvP stands for Protoss versus Protoss.

By running the recorded games (replays*) through StarCraft, we were able to recreate the
full state of the game. Time is always expressed in games frames (24 frames per second). We
recorded three types of files:

• general data (see appendix B.3): records the players’ names, the map’s name, and all
information about events like creation (along with morph), destruction, discovery (for one
player), change of ownership (special spell/ability), for each units. It also shows attack

3http://www.teamliquid.net
4http://www.gosugamers.net
5http://www.iccup.com
6http://code.google.com/p/bwapi/
7http://snippyhollow.github.com/bwrepdump/
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events (detected by a heuristic, see below) and dumps the current economical situation
every 25 frames: minerals*, gas*, supply* (count and total: max supply*).

• order data (see appendix B.4): records all the orders which are given to the units (indi-
vidually) like move, harvest, attack unit, the orders positions and their issue time.

• location data (see appendix B.5): records positions of mobile units every 100 frames, and
their position in regions and choke-dependent regions if they changed since last measure-
ment. It also stores ground distances (pathfinding-wise) matrices between regions and
choke-dependent regions in the header.

From this data, one can recreate most of the state of the game: the map key characteristics (or
load the map separately), the economy of all players, their tech (all researches and upgrades),
all the buildings and units, along with their orders and their positions.

6.4.3 Attacks

We trigger an attack tracking heuristic when one unit dies and there are at least two military
units around. We then update this attack until it ends, recording every unit which took part
in the fight. We log the position, participating units and fallen units for each player, the attack
type and of course the attacker and the defender. Algorithm 511 shows how we detect attacks.

6.5 A Bayesian tactical model

6.5.1 Tactical Model

We preferred to map the continuous values from heuristics to a few discrete values to enable
quick complete computations. Another strategy would keep more values and use Monte-Carlo
sampling for computation. We think that discretization is not a concern because 1) heuristics are
simple and biased already 2) we often reason about imperfect information and this uncertainty
tops discretization fittings.

Variables

With n regions, we have:

• A1:n 2 {true, false}, Ai: attack in region i or not?

• E1:n 2 {no, low, high}, Ei is the discretized economical value of the region i for the
defender. We choose 3 values: no workers in the regions, low : a small amount of workers
(less than half the total) and high: more than half the total of workers in this region i.

• T1:n 2 discrete levels, Ti is the tactical value of the region i for the defender, see above
for an explanation of the heuristic. Basically, T is proportional to the proximity to the de-
fender’s army. In benchmarks, discretization steps are 0, 0.05, 0.1, 0.2, 0.4, 0.8 (log2 scale).

11adapted from http://github.com/SnippyHolloW/bwrepdump/blob/master/BWRepDump.cpp#L1773 and
http://github.com/SnippyHolloW/bwrepdump/blob/master/BWRepDump.cpp#L1147
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Algorithm 5 Simplified attack tracking heuristic for extraction from games. The heuristics to
determine the attack type and the attack radius and position are not described here. They look
at the proportions of units types, which units are firing and the last actions of the players.

list tracked_attacks
function unit_death_event(unit)

tmp tracked_attacks.which_contains(unit)
if tmp 6= ; then

tmp.update(unit) . , update(tmp, unit)
else

tracked_attacks.push(attack(unit))
end if

end function
function attack(unit) . new attack constructor

. self , this
self.convex_hull propagate_default_hull(unit)
self.type determine_attack_type(update(self, unit))
return self

end function
function update(attack, unit)

attack.update_hull(unit) . takes units ranges into account
c get_context(attack.convex_hull)
self.units_involved.update(c)
self.tick  default_timeout()
return c

end function
function tick_update

self.tick  self.tick − 1
if self.tick < 0 then

self.destruct()
end if

end function

• TA1:n 2 discrete levels, TAi is the tactical value of the region i for the attacker (as above
but for the attacker instead of the defender).

• B1:n 2 {true, false}, Bi tells if the region belongs (or not) to the defender. P(Bi = true) =

1 if the defender has a base in region i and P(Bi = false) = 1 if the attacker has one.
Influence zones of the defender can be measured (with uncertainty) by P(Bi = true) ≥ 0.5

and vice versa. In fact, when uncertain, P(Bi = true) is proportional to the distance from
i to the closest defender’s base (and vice versa).

• H1:n 2 {ground, air, invisible, drop}, Hi: in predictive mode: how we will be attacked, in
decision-making: how to attack, in region i.

• GD1:n 2 {no, low,med, high}: ground defense (relative to the attacker power) in region
i, result from a heuristic. no defense if the defender’s army is ≥ 1/10th of the attacker’s,
low defense above that and under half the attacker’s army, medium defense above that
and under comparable sizes, high if the defender’s army is bigger than the attacker.
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• AD1:n 2 {no, low,med, high}: same for air defense.

• ID1:n 2 {no detector, one detector, several}: invisible defense, equating to numbers of
detectors.

• TT 2 [;, building1, building2, building1 ^ building2, techtrees, . . . ]: all the possible tech-
nological trees for the given race. For instance {pylon, gate} and {pylon, gate, core} are
two different T ech T rees, see chapter 7.

• HP 2 {ground, ground^air, ground^invis, ground^air^invis, ground^drop, ground^
air^drop, ground^invis^drop, ground^air^invis^drop}: how possible types of attacks,
directly mapped from TT information. This variable serves the purpose of extracting all
that we need to know from TT and thus reducing the complexity of a part of the model
from n mappings from TT to Hi to one mapping from TT to HP and n mapping from
HP to Hi. Without this variable, learning the co-occurrences of TT and Hi is sparse
in the dataset. In prediction, with this variable, we make use of what we can infer on
the opponent’s strategy Synnaeve and Bessière [2011b], Synnaeve and Bessière [2011], in
decision-making, we know our own possibilities (we know our tech tree as well as the units
we own).

We can consider a more complex version of this tactical model taking soft evidences into account
(variables on which we have a probability distribution), which is presented in appendix B.2.1.

Decomposition

P(A1:n, E1:n, T1:n, TA1:n, B1:n, (6.1)

H1:n, GD1:n, AD1:n, ID1:n, HP, TT ) (6.2)

=

n
Y

i=1

[P(Ai)P(Ei, Ti, TAi, Bi|Ai) (6.3)

P(ADi, GDi, IDi|Hi)P(Hi|HP )] P(HP |TT )P(TT ) (6.4)

This decomposition is also shown in Figure 6.4. We can see that we have in fact two models:
one for A1:n and one for H1:n.

Forms and learning

We will explain the forms for a given/fixed i region number:

• P(A) is the prior on the fact that the player attacks in this region, in our evaluation we
set it to nbattles/(nbattles + nnot battles).

• P(E, T, TA,B|A) is a co-occurrences table of the economical, tactical (both for the de-
fender and the attacker), belonging scores where an attacks happen. We just use Laplace’s
law of succession (“add one” smoothing) [Jaynes, 2003] and count the co-occurrences in
the games of the dataset (see section 6.4), thus almost performing maximum likelihood
learning of the table.

P(E = e, T = t, TA = ta, B = b|A = True) =
1 + nbattles(e, t, ta, b)

|E| |T | |TA| |B|+P

E,T,TA,B nbattles(E, T, TA,B)
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Figure 6.4: Plate diagram (factor graph notation) of the Bayesian tactical model.

• P(AD,GD, ID|H) is a co-occurrences table of the air, ground, invisible defense values
depending on how the attack happens. As for P(E, T, TA,B|A), we use a Laplace’s rule
of succession learned from the dataset.

P(AD = ad,GD = gd, ID = id|H = h) =
1 + nbattles(ad, gd, id, h)

|AD| |GD| |ID|+P

AD,GD,ID nbattles(AD,GD, ID, h)

• P(H|HP ) is the categorical distribution (histogram) on how the attack happens depending
on what is possible. Trivially P(H = ground|HP = ground) = 1.0, for more complex
possibilities we have different smoothed maximum likelihood multinomial distributions on
H values depending on HP .

P(H = h|HP = hp) =
1 + nbattles(h, hp)

|H|+P

H nbattles(H,hp)

• P(HP |TT = tt) is a Dirac distribution on the HP = hp which is compatible with TT = tt.
It is the direct mapping of what the tech tree allows as possible attack types: P(HP =

hp|TT ) = 1 is a function of TT (all P(HP 6= hp|TT ) = 0).

• P(TT ): if we are sure of the tech tree (prediction without fog of war, or in decision-making
mode), P(TT = k) = 1 and P(TT 6= k) = 0; otherwise, it allows us to take uncertainty
about the opponent’s tech tree and balance P(HP |TT ). We obtain a distribution on what
is possible (P(HP )) for the opponent’s attack types.

There are two approaches to fill up these probability tables, either by observing games
(supervised learning), as we did in the evaluation section, or by acting (reinforcement learning).
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The model is highly modular, and some parts are more important than others. We can
separate three main parts: P(E, T, TA,B|A), P(AD,GD, ID|H) and P(H|HP ). In prediction,
P(E, T, TA,B|A) uses the inferred (uncertain) economic (E), tactical (T ) and belonging (B)
scores of the opponent while knowing our own tactical position fully (TA). In decision-making,
we know E, T,B (for us) and estimate TA. In our prediction benchmarks, P(AD,GD, ID|H)

has the lesser impact on the results of the three main parts, either because the uncertainty from
the attacker on AD,GD, ID is too high or because our heuristics are too simple, though it still
contributes positively to the score. In decision-making, it allows for reinforcement learning to
have tuple values for AD,GD, ID at which to switch attack types. In prediction, P(H|HP ) is
used to take P(TT ) (coming from strategy prediction [Synnaeve and Bessière, 2011], chapter 7)
into account and constraints H to what is possible. For the use of P(H|HP )P(HP |TT )P(TT )
in decision-making, see the results section (6.6) or the appendix B.2.1.

Questions

For a given region i, we can ask the probability to attack here,

P(Ai = ai|ei, ti, tai, bi) (6.5)

=
P(ei, ti, tai, bi|ai)P(ai)

P

Ai
P(ei, ti, tai, bi|Ai)P(Ai)

(6.6)

/ P(ei, ti, tai, Bi|ai)P(ai) (6.7)

and the mean by which we should attack,

P(Hi = hi|adi, gdi, idi) (6.8)

/
X

TT,HP

[P(adi, gdi, idi|hi)P(hi|HP )P(HP |TT )P(TT )] (6.9)

We always sum over estimated, inferred variables, while we know the one we observe
fully. In prediction mode, we sum over TA,B, TT,HP ; in decision-making, we sum over
E, T,B,AD,GD, ID (see appendix B.2.1). The complete question that we ask our model is
P(A,H|FullyObserved). The maximum of P(A,H) = P(A)⇥P(H) may not be the same as the
maximum of P(A) or P(H) take separately. For instance think of a very important economic
zone that is very well defended, it may be the maximum of P(A), but not once we take P(H) into
account. Inversely, some regions are not defended against anything at all but present little or no
interest. Our joint distribution 6.3 can be rewritten: P(Searched, FullyObserved,Estimated),
so we ask:

P(A1:n, H1:n|FullyObserved) (6.10)

/
X

Estimated

P(A1:n, H1:n, Estimated, FullyObserved) (6.11)

The Bayesian program of the model is as follows:
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V ariables

A1:n, E1:n, T1:n, TA1:n, B1:n, H1:n, GD1:n, AD1:n, ID1:n, HP, TT

Decomposition

P(A1:n, E1:n, T1:n, TA1:n, B1:n, H1:n, GD1:n, AD1:n, ID1:n, HP, TT )

=
Qn

i=1 [P(Ai)P(Ei, Ti, TAi, Bi|Ai)

P(ADi, GDi, IDi|Hi)P(Hi|HP )] P(HP |TT )P(TT )
Forms

P(Ai) prior on attack in region i

P(E, T, TA,B|A) covariance/probability table

P(AD,GD, ID|H) covariance/probability table

P(H|HP ) = Categorical(4, HP )

P(HP = hp|TT ) = 1.0 iff TT ! hp, else P(HP |TT ) = 0.0

P(TT ) comes from a strategic model

Identification (using δ)

P(A = true) = nbattles
nbattles+nnot battles

=
µbattles/game

µregions/map
(probability to attack a region)

it could be learned online (preference of the opponent) :

P(Ai = true) = 1+nbattles(i)
2+

P
j2regions nbattles(i)

(online for each game 8r)
P(E = e, T = t, TA = ta, B = b|A = True) = 1+nbattles(e,t,ta,b)

|E|⇥|T |⇥|TA|⇥|B|+
P

E,T,TA,B nbattles(E,T,TA,B)

P(AD = ad,GD = gd, ID = id|H = h) = 1+nbattles(ad,gd,id,h)
|AD|⇥|GD|⇥|ID|+

P
AD,GD,ID nbattles(AD,GD,ID,h)

P(H = h|HP = hp) = 1+nbattles(h,hp)
|H|+

P
H nbattles(H,hp)

Questions

8i 2 regions P(Ai|ei, ti, tai)
8i 2 regions P(Hi|adi, gdi, idi)
P(A,H|FullyObserved)

6.6 Results on StarCraft

6.6.1 Learning and posterior analysis

To measure fairly the prediction performance of such a model, we applied “leave-100-out” cross-
validation from our dataset: as we had many games (see Table 6.2), we set aside 100 games of
each match-up for testing (with more than 1 battle per match: rather ⇡ 15 battles/match) and
train our model on the rest. We write match-ups XvY with X and Y the first letters of the factions
involved (Protoss, Terran, Zerg). Note that mirror match-ups (PvP, TvT, ZvZ) have fewer games
but twice as many attacks from a given faction (it is twice the same faction). Note also that,
due to the map-independence of our model, we can learn the parameters using different maps,
and even do inference on maps which were never seen. Learning was performed as explained in
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section 6.5.1: for each battle in r we had one observation for: P(er, tr, tar, br|A = true), and
#regions−1 observations for the i regions which were not attacked: P(ei 6=r, ti 6=r, tai 6=r, bi 6=r|A =

false). For each battle of type t we had one observation for P (ad, gd, id|H = t) and P (H =

t|HP = hp). By learning with a Laplace’s law of succession Jaynes [2003], we allow for unseen
event to have a non-zero probability.

An exhaustive presentation of the learned tables is out of the scope of this chapter, but we
analyzed the posteriors and the learned model concur with human expertise (e.g. Figures 6.5, 6.6
and 6.7). We looked at the posteriors of:

• P(H) for varying values of GD,AD, ID, by summing on other variables of the model.
Figure 6.5 shows some of the distributions of H in these conditions:

– (top left plot) We can see that it is far more likely that invisible (“sneaky”) attacks
happen where there is low ground presence, which concurs with the fact that invisible
units are not cost-efficient against ground units once detected.

– (right plots) Drops at lower values of GD correspond to unexpected (surprise) drops,
because otherwise the defender would have prepared his army for interception and
there would be a high GD (top right plot). We can also notice than drops are to be
preferred either when it is safe to land (no anti-aircraft defense, bottom right plot)
or when there is a large defense (harassment tactics and/or drops which are expected
by the defender: both right plots).

– (bottom left plot) It is twice more likely to attack a region (by air) with less than
1/10th of the flying force in anti-aircraft warfare than to attack a region with up to
one half of our force.

Finally, as ground units are more cost efficient than flying units in a static battle, we see
that both P(H = air|AD = 0.0) and P(H = drop|AD = 0.0) (bottom plots) are much
more probable than situations with air defenses: air raids/attacks are quite risk averse.

• P(H) for varying values of HP , by summing on other variables of the model, depicted in
Figure 6.6. We can see that, in general, there are as many ground attacks at the sum of
other types. The two top graphs show cases in which the tech of the attacker was very
specialized, and, in such cases, the specificity seems to be used. In particular, the top right
graphic may be corresponding to a “fast Dark Templars rush”.

• P(A) for varying values of T and E, by summing on other variables of the model, depicted
in Figure 6.7. It shows the transition between two types of encounters: tactics aimed at
engaging the enemy army (a higher T value entails a higher P(A)) and tactics aimed at
damaging the enemy economy (at high E, we look for opportunities to attack with a small
army where T is lower). Higher economical values are strongly correlated with surprise
attacks against low tactical value regions for the defender (regions which are far from the
defender’s army). These skirmishes almost never happens in open fields (“no eco”: where
the defender has no base) as this would lead to very unbalanced battles (in terms of army
sizes): it would not benefit the smaller party, which can flee and avoid confrontation, as
opposed to when defending their base.
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Figure 6.5: (top) P(H = invis) and P(H = drop) for varying values of GD (summed on other
variables); (bottom) P(H = air) and P(H = drop) for varying values of AD (summed on other
variables), for Terran in TvP.

Figure 6.6: P(H|HP ) for varying values of H and for different values of HP (derived from
inferred TT ), for Protoss in PvT. Conditioning on what is possible given the tech tree gives a lot
of information about what attack types are possible or not. More interestingly, it clusters the
game phases in different tech levels and allows for learning the relative distributions of attack
types with regard to each phase. For instance, the last (bottom right) plot shows the distribution
on attack types at the end of a technologically complete game.

6.6.2 Prediction performance

Setup

We learned and tested one model for each race and for each match-up. As we want to predict
where (P(A1:n)) and how (P(Hbattle)) the next attack will happen to us, we used inferred enemy
TT (to produce HP ) and TA, our scores being fully known: E, T , B, ID. We consider GD,
AD to be fully known even though they depend on the attacker force, we should have some
uncertainty on them, but we tested that they accounted (being known instead of fully unknown)
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Figure 6.7: P(A) for varying values of E and T , summed on the other variables, for Terran in
TvT. Zones with no economy are in red bars, with a low economy in green and the principal
economy in blue. The main difference along this economical axis comes at the lowest tactical
values of regions (for the defenser) at T < 0.05 (noted T = 0.0) and showcases sneaky attacks
to unprotected economical regions.

for 1 to 2% of P(H) accuracy (in prediction) once HP was known. We should point that pro-
gamers scout very well and so it allows for a highly accurate TT estimation [Synnaeve and
Bessière, 2011]. The learning phase requires to recreate battle states (all units’ positions) and
count parameters for up to 70,000 battles. Once that is done, inference is very quick: a look-up
in a probability table for known values and #F look-ups for free variables F on which we sum.
We chose to try and predict the next battle 30 seconds before it happens, 30 seconds being
an approximation of the time needed to go from the middle of a map to all other regions by
ground, so that the prediction is useful for the defender (they can position their army). The
model code12 (for learning and testing) as well as the datasets (see above) are freely available.

6.6.3 Predictions

Raw results of predictions of positions and types of attacks 30 seconds before they happen
are presented in Table. 6.2 page 117: for instance the bold number (38.0) corresponds to the
percentage of good positions (regions) predictions (30 sec before event) which were ranked 1st
in the probabilities on A1:n for Protoss attacks against Terran (PvT).

• The measures on where corresponds to the percentage of good prediction and the mean
probability for given ranks in P(A1:n) (to give a sense of the shape of the distribution).

• The measures on how corresponds to the percentage of good predictions for the most
probable P(Hattack) and the ratio of such attack types in the test set for given attack
types. We particularly predict well ground attacks (trivial in the early game, less in the
end game) and, interestingly, Terran and Zerg drop attacks.

12https://github.com/SnippyHolloW/AnalyzeBWData
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• The where & how row corresponds to the percentage of good predictions for the maxi-
mal probability in the joint P(A1:n, H1:n): considering only the most probable attack13,
according to our model, we can predict where and how an attack will occur in the next
30 seconds ⇡ 1/4th of the time.

Mistakes on the type of the attack are high for invisible attacks: while these tactics can
definitely win a game, the counter is strategic (it is to have detectors technology deployed)
more than positional. Also, if the maximum of P(Hbattle) is wrong, it does not mean than
P(Hbattle = good) = 0.0 at all! The result needing improvements the most is for air tactics,
because countering them really is positional, see our discussion in the conclusion.

We also tried the same experiment 60 seconds before the attack. This gives even more
time for the player to adapt their tactics. Obviously, the tech tree or the attacker (TT ), and
thus the possible attack types (HP ), are not so different, nor are the bases possession (belongs,
B) and the economy (E). For PvT, the where top 4 ranks are 35.6, 8.5, 7.7, 7.0% good versus
38.0, 16.3, 8.9, 6.7% 30 seconds before. For the how total precision 60 seconds before is 70.0%
vs. 72.4%. where & how maximum probability precision is 19.9% vs. 23%.

6.6.4 Error analysis

Distance

When we are mistaken, the mean ground distance (pathfinding wise) of the most probable
predicted region to the good one (where the attack happens) is 1223 pixels (38 build tiles, or 2
screens in StarCraft’s resolution). To put things in perspective, the tournament maps are mostly
between 128⇥ 128 and 192⇥ 192 build tiles, and the biggest maps are of 256⇥ 256 build tiles.

More interesting is to look at the mean ground distance (see Tables 6.1 and 6.8) between
two regions: We can see that the most probable predicted region for the attack is not as far of

Protoss Terran Zerg
metrics P T Z P T Z P T Z
µground dist

14

#1 prediction $ attack region 1047 1134 1266 1257 1306 1252 1228 1067 1480
µground dist

region $ region 2569 2608 2607 2608 2629 2604 2607 2604 2596

Figure 6.8: Table of the mean ground distance between the most probable prediction and the
region in which the attack actually happened when we are mistaken on the first prediction, and
mean ground distance between regions

as if it were random.

Towards a baseline heuristic

The mean number of regions by map is 19, so a random where (attack destination) picking
policy would have a correctness of 1/19 (5.23%). For choke-centered regions, the numbers of
good where predictions are lower (between 24% and 32% correct for the most probable) but the

13more information is in the rest of the distribution, as shown for where!

111



mean number of regions by map is 42. For where & how, a random policy would have a precision
of 1/(19*4), and even a random policy taking the high frequency of ground attacks into account
would at most be ⇡ 1/(19*2) correct.

For the location only (where question), we also counted the mean number of different regions
which were attacked in a given game (between 3.97 and 4.86 for regions, depending on the match-
up, and between 5.13 and 6.23 for choke-dependent regions). The ratio over these means would
give the prediction rate we could expect from a baseline heuristic based solely on the location
data: a heuristic which knows totally in which regions we can get attacked and then randomly
select in them. These are attacks that actually happened, so the number of regions a player
have to be worried about is at least this one (or more, for regions which were not attacked
during a game but were potential targets). This baseline heuristic would yield (depending on
the match-up) prediction rates between 20.5 and 25.2% for regions, versus our 32.8 to 40.9%,
and between 16.1% and 19.5% for choke-dependent regions, versus our 24% to 32%.

Note that our current model consider a uniform prior on regions (no bias towards past
battlefields) and that we do not incorporate any derivative of the armies’ movements. There
is no player modeling at all: learning and fitting the mean player’s tactics is not optimal, so
we should specialize the probability tables for each player. Also, we use all types of battles in
our training and testing. Short experiments showed that if we used only attacks on bases, the
probability of good where predictions for the maximum of P(A1:n) goes above 50% (which is
not a surprise, there are far less bases than regions in which attacks happen). To conclude on
tactics positions prediction: if we sum the 2 most probable regions for the attack, we are right
at least half the time; if we sum the 4 most probable (for our robotic player, it means it prepares
against attacks in 4 regions as opposed to 19), we are right ⇡ 70% of the time.

6.6.5 In-game decision-making

In a StarCraft game, our bot has to make decisions about where and how to attack or defend, it
does so by reasoning about opponent’s tactics, bases, its priors, and under strategic constraints
(Fig. 6.1). Once a decision is taken, the output of the tactical model is an offensive or defensive
(typed) goal (see sections 6.3.4 and 8.1.2). The spawned goal then autonomously sets objectives
for Bayesian units [Synnaeve and Bessière, 2011a], sometimes procedurally creating intermediate
objectives or canceling itself in the worst cases.

There is no direct way of evaluating decision-making without involving at least micro-
management and others parts of the bot. Regardless, we will explain how the decision-making
process works.

We can use this model to spawn both offensive and defensive goals, either by taking the
most probable attacks/threats, or by sampling in the answer to the question, or by taking into
account the risk of the different plausible attacks weighted by their probabilities:

• defensive goals (we are the defender, the opponent is the attacker):

– location: P(A1:n)

– type: what counters P(H1:n), what is available close to the most probable(s) P(A1:n)

– total knowledge: we know fully our army positioning T1:n = t1:n, our economy E1:n =

e1:n, if and where we have detectors ID1:n = id1:n
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– partial knowledge: from partial observations, the positioning of the opponent’s army
P(TA1:n), the belonging of regions P(B1:n). We also infer their tech tree* P(TT ) with
[Synnaeve and Bessière, 2011] presented in section 7.5. Note also that, even though
we know our defenses, P(GD1:n) and P(AD1:n) are dependent on the attackers army:
with a gross estimation on the opponent’s forces (from what we have seen and their
tech tree for instance), we can consider that we know it fully or not. Most often, we
have only “soft evidences” on this variables, which means that we have a distribution
on the variable values. By abusing the notation, we will write P(V ar) for a variable
on which we have a distribution. See appendix B.2.1 for how to take it into account
with coherence variables.

– question:

P(A1:n, H1:n|t1:n, e1:n, id1:n,P(TA1:n),P(B1:n),P(GD1:n),P(AD1:n),P(TT ))

= P(A1:n|t1:n, e1:n,P(TA1:n),P(B1:n))⇥ P(H1:n|id1:n,P(GD1:n),P(AD1:n,P(TT )))

The question may give back the best tactical interests of the opponent, taking into
account partial observations, their strengths and our weaknesses. From here we can
anticipate and spawn the right defense goals (put the adequate units at the right
place, and even build defensive structures).

• offensive goals (we are the attacker, the opponent is the defender):

– location: P(A1:n)

– type: P(H1:n)

– total knowledge: we fully know what attack types are possible HP1:n = hp1:n (our
units available, we also know our tech tree TT = tt but that is useless here), along
with our military positions TA1:n = ta1:n.

– partial knowledge: from partial (potentially outdated) observations, we have infor-
mation about E1:n, T1:n, B1:n, ID1:n, GD1:n, AD1:n. We still abuse the notation with
P(V ar) for a variable V ar on which we only have a distribution (“soft evidence”). See
appendix B.2.1 for how to take it into account with coherence variables.

– question:

P(A1:n, H1:n|ta1:n, hp1:n,P(T1:n),P(E1:n),P(B1:n),P(ID1:n),P(GD1:n),P(AD1:n))

= P(A1:n|ta1:n,P(T1:n),P(B1:n),P(E1:n))⇥ P(H1:n|hp1:n,P(AD1:n),P(GD1:n),P(ID1:n))

The question may give back a couple (i,Hi) more probable than the most probables
P(Ai) and P(Hj) taken separately. For instance in the case of an heavily defended
main base and a small unprotected expansion: the main base is ranked first economi-
cally and possibly tactically, but it may be too hard to attack, while the unprotected
(against a given attack type is enough) expand is a smaller victory but surer victory.
Figure 6.9 displays the mean P(A,H) for Terran (in TvZ) attacks decision-making
for the most 32 probable type/region tactical couples. It is in this kind of landscape
(though more steep because Fig. 6.9 is a mean) that we sample (or pick the most
probable couple) to take a decision.
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Figure 6.9: Mean P(A,H) for all H values and the top 8 P(Ai, Hi) values, for Terran in TvZ.
The larger the white square area, the higher P(Ai, Hi). A simple way of taking a tactical decision
according to this model, and the learned parameters, is by sampling in this distribution.

Finally, we can steer our technological growth towards the opponent’s weaknesses. A question
that we can ask our model (at time t) is P(TT ), or, in two parts: we first find i, hi which maximize
P(A1:n, H1:n) at time t+ 1, and then ask a more directive:

P(TT |hi) /
X

HP

P(hi|HP )P(HP |TT )P(TT )

so that it gives us a distribution on the tech trees (TT ) needed to be able to perform the wanted
attack type. To take a decision on our technology direction, we can consider the distances
between our current ttt and all the probable values of TT t+1.

6.7 Discussion

6.7.1 In-game learning

The prior on A can be tailored to the opponent (P(A|opponent)). In a given match, it should
be initialized to uniform and progressively learn the preferred attack regions of the opponent
for better predictions. We can also penalize or reward ourselves and learn the regions in which
our attacks fail or succeed for decision-making. Both these can easily be done with some form
of weighted counting (“add-n smoothing”) or even Laplace’s rule of succession.

In match situation against a given opponent, for inputs that we can unequivocally at-
tribute to their intention (style and general strategy), we can also refine the probability ta-
bles of P(E, T, TA,B|A, opponent), P(AD,GD, ID|H, opponent) and P(H|HP, opponent) (with
Laplace’s rule of succession). For instance, we can refine

P

E,T,TA P(E, T, TA,B|A, opponent)
corresponding to their aggressiveness (aggro) or our successes and failures. Indeed, if we sum
over E, T and TA, we consider the inclination of our opponent to venture into enemy territory
or the interest that we have to do so by counting our successes with aggressive or defensive
parameters. By refining P(H|HP, opponent), we are learning the opponent’s inclination for par-
ticular types of tactics according to what is available to them, or for us the effectiveness of our
attack types choices.

6.7.2 Possible improvements

There are several main research directions for possible improvements:
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• improving the underlying heuristics: the heuristics presented here are quite simple but
they may be changed, and even removed or added, for another RTS or FPS, or for more
performance. In particular, our “defense against invisible” heuristic could take detector
positioning/coverage into account. Our heuristic on tactical values can also be reworked
to take terrain tactical values into account (chokes and elevation in StarCraft). We now
detail two particular improvements which could increase the performance significantly:

– To estimate T1:n (tactical value of the defender) when we attack, or TA1:n (tactical
values of the attacker) when we defend, is the most tricky of all because it may
be changing fast. For that we use a units filter which just decays probability mass
of seen units. An improvement would be to use a particle filter Weber et al. [2011],
additionally with a learned motion model, or a filtering model adapted to (and taking
advantage of) regions as presented in section 8.1.5.

– By looking at Table 6.2, we can see that our consistently bad prediction across types
is for air attacks. It is an attack type for which is particularly important to predict
to have ranged units (which can attack flying units) to defend, and because the
positioning is so quick (air units are more mobile). Perhaps we did not have enough
data, as our model fares well in ZvZ for which we have much more air attacks, but
they may also be more stereotyped. Clearly, our heuristics are missing information
about air defense positioning and coverage of the territory (this is a downside of region
discretization). Air raids work by trying to exploit fine weaknesses in static defense,
and they are not restrained (as ground attacks) to pass through concentrating chokes.

• improving the dynamic of the model: there is room to improve the dynamics of the model:
considering the prior probabilities to attack in regions given past attacks and/or consid-
ering evolutions of the T ,TA,B,E values (derivatives) in time.

• The discretization that we used may show its limits, though if we want to use continuous
values, we need to setup a more complicated learning and inference process (Monte-Carlo
Markov chain (MCMC)* sampling).

• improving the model itself: finally, one of the strongest assumptions (which is a draw-
back particularly for prediction) of our model is that the attacking player is always
considered to attack in this most probable regions. While this would be true if the
model was complete (with finer army positions inputs and a model of what the player
thinks), we believe such an assumption of completeness is far fetched. Instead we should
express that incompleteness in the model itself and have a “player decision” variable
D ⇠Multinomial(P(A1:n, H1:n), player).

Finally, our approach is not exclusive to most of the techniques presented above, and it
could be interesting to combine it with Monte-Carlo planning, as Chung et al. [2005] did for
capture-the-flag tactics in Open RTS. Also, UCT* is a Monte-Carlo planning algorithm allowing
to build a sparse tree over the state tree (edges are actions, nodes are states) which had excellent
results in Go [Gelly and Wang, 2006, Gelly et al., 2012]. Balla and Fern [2009] showed that UCT
could be used in an RTS game (with multiple simultaneous actions) to generate tactical plans.
Another track (instead of UCT) would be to use metareasoning for MCTS* [Hay and Russell,
2011], which would incorporate domain knowledge and/or hyper-parameters (aggressiveness...).
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6.7.3 Conclusion

We have presented a Bayesian tactical model for RTS AI, which allows both for opposing tactics
prediction and autonomous tactical decision-making. Being a probabilistic model, it deals with
uncertainty easily, and its design allows easy integration into multi-granularity (multi-scale) AI
systems as needed in RTS AI. The advantages are that 1) learning will adapt the model output
to its biased heuristic inputs 2) the updating process is the same for offline and online (in-game)
learning. Without any temporal dynamics, the position prediction is above a baseline heuristic
([32.8-40.9%] vs [20.5-25.2%]). Moreover, its exact prediction rate of the joint position and
tactical type is in [23-32.8]% (depending on the match-up), and considering the 4 most probable
regions it goes up to ⇡ 70%. More importantly, it allows for tactical decision-making under
(technological) constraints and (state) uncertainty. It can be used in production thanks to its
low CPU and memory footprint.
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Table 6.2: Results summary for multiple metrics at 30 seconds before attack, including the percentage of the time that it is rightly what
happened (% column). Note that most of the time there is a very high temporal continuity between what can happen at time t+ 30sec and
at time t+ 31sec. For the where question, we show the four most probable predictions, the “Pr” column indicates the mean probability of the
each bin of the distribution. For the how question, we show the four types of attacks, their percentages of correctness in predictions (%) and
the ratio of a given attack type against the total numbers of attacks ( type

total ). The number in bold (38.0) is read as “38% of the time, the region i
with probability of rank 1 in P(Ai) is the one in which the attack happened 30 seconds later, in the PvT match-up (predicting Protoss attacks
on Terran)”. The associated mean probability for the first rank of the where measurement is 0.329. The percentage of good predictions of
ground type attacks type in PvT is 98.1%, while ground type attacks, in this match-up, constitute 54% (ratio of 0.54) of all the attacks. The
where & how line corresponds to the correct predictions of both where and how simultaneously (as most probables). NA (not available) is in
cases for which we do not have enough observations to conclude sufficient statistics. Remember that attacks only include fights with at least
3 units involved.

%: good predictions Protoss Terran Zerg
Pr=mean probability P T Z P T Z P T Z

total # games 445 2408 2027 2408 461 2107 2027 2107 199
measure rank % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr

1 40.9 .334 38.0 .329 34.5 .304 35.3 .299 34.4 .295 39.0 0.358 32.8 .31 39.8 .331 37.2 .324

w
h
er

e

2 14.6 .157 16.3 .149 13.0 .152 14.3 .148 14.7 .147 17.8 .174 15.4 .166 16.6 .148 16.9 .157
3 7.8 .089 8.9 .085 6.9 .092 9.8 .09 8.4 .087 10.0 .096 11.3 .099 7.6 .084 10.7 .100
4 7.6 .062 6.7 .059 7.9 .064 8.6 .071 6.9 .063 7.0 .062 8.9 .07 7.7 .064 8.6 .07

measure type % type
total

% type
total

% type
total

% type
total

% type
total

% type
total

% type
total

% type
total

% type
total

G 97.5 0.61 98.1 0.54 98.4 0.58 100 0.85 99.9 0.66 76.7 0.32 86.6 0.40 99.8 0.84 67.2 0.34

h
ow

A 44.4 0.05 34.5 0.16 46.8 0.19 40 0.008 13.3 0.09 47.1 0.19 14.2 0.10 15.8 0.03 74.2 0.33
I 22.7 0.14 49.6 0.13 12.9 0.13 NA NA NA NA 36.8 0.15 32.6 0.15 NA NA NA NA
D 55.9 0.20 42.2 0.17 45.2 0.10 93.5 0.13 86 0.24 62.8 0.34 67.7 0.35 81.4 0.13 63.6 0.32

total 76.3 1.0 72.4 1.0 71.9 1.0 98.4 1.0 88.5 1.0 60.4 1.0 64.6 1.0 94.7 1.0 67.6 1.0
where & how (%) 32.8 23 23.8 27.1 23.6 30.2 23.3 30.9 26.4
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Chapter 7

Strategy

Strategy without tactics is the slowest route to victory. Tactics without strategy is

the noise before defeat.

All men can see these tactics whereby I conquer, but what none can see is the

strategy out of which victory is evolved.

What is of supreme importance in war is to attack the enemy’s strategy.

Sun Tzu (The Art of War, 476-221 BC)

W
e present our solutions to some of the problems raised at the strategic level. The main idea
is to reduce the complexity encoding all possible variations of strategies to a few strong

indicators: the build tree* (closely related to the tech tree*) and canonical army compositions.
We start by explaining what we consider that belongs to strategic thinking, and related work.
We then describe the information that we will use and the decisions that can be taken. As we try
and abstract early game strategies to “openings” (as in Chess), we will present how we labeled a
dataset of games with openings. Then, we present the Bayesian model for build tree prediction
(from partial observations), followed by its augmented version able to predict the opponent’s
opening. Both models were evaluated in prediction dataset of skilled players. Finally we explain
our work on army composition adaptation (to the opponent’s army).

Build trees estimation was published at the Annual Conference on Artificial Intelligence and
Interactive Digital Entertainment (AAAI AIIDE) 2011 in Palo Alto [Synnaeve and Bessière,
2011] and openings prediction was published at Computational Intelligence in Games (IEEE
CIG) 2011 in Seoul [Synnaeve and Bessière, 2011b]. A part of the army composition model (as
well as details on the dataset) was published at the workshop on AI in Adversarial Real-time
Games at the Annual Conference on Artificial Intelligence and Interactive Digital Entertainment
(AAAI AIIDE) 2012 in Palo Alto [Synnaeve and Bessiere, 2012].
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Figure 7.1: Information-centric view of the architecture of the bot, the part concerning this
chapter is in the dotted rectangle

• Problem: take the winning strategy knowing everything that we saw and considering ev-
erything that can happen.

• Problem that we solve: take the winning abstracted strategy (in average) knowing every-
thing at this abstracted level that derives from what we saw.

• Type: prediction is a problem of inference or plan recognition from incomplete informa-

tions; adaptation given what we know is a problem of planning under constraints.

• Complexity: simple StarCraft decision problems are np-hard [Viglietta, 2012]. We would
argue that basic StarCraft strategy with full information (remember that StarCraft is
partially observable) is mappable to the Generalized Geography problem1 and thus is
pspace-hard [Lichtenstein and Sipser, 1978], Chess [Fraenkel and Lichtenstein, 1981] and
Go (with Japanese ko rules) are exptime-complete [Robson, 1983]. Our solutions are
abstracted approximations and so are real-time on a laptop.

1As the tech trees* get opened, the choices in this dimension of strategy is being reduced as in Generalized
Geography.
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7.1 What is strategy?

As it is an abstract concept, what constitutes strategy is hard to grasp. The definition that we use
for strategy is a combination of aggressiveness and “where do we put the cursor/pointer/slider
between economy, technology and military production?”. It is very much related to where we
put our resources:

• If we prioritize economy, on a short term basis our army strength (numbers) may suffer, but
on the longer term we will be able to produce more, or produce equally and still expand our
economy or technology in parallel. Also, keep in mind that mineral deposits/gas geysers
can be exhausted/drained.

• If we prioritize technology, on a short term basis our army strength may suffer, on the
longer term it can thrive with powerful units or units which are adapted to the enemy’s.

• If we prioritize military production, on a short term basis our army strength will thrive,
but we will not be able to adapt our army composition to new unit types nor increase our
production throughput.

Strategy is a question of balance between these three axis, and of knowing when we can attack
and when we should stay in defense. Being aggressive is best when we have a military advantage
(in numbers or technology) over the opponent. Advantages are gained by investments in these
axis, and capitalizing on them when we max out our returns (comparatively to the opponent’s).

The other aspect of strategy is to decide what to do with these resources. This is the part
that we studied the most, and the decision-making questions are:

• Where do we expand? (We deal with this question by an ad-hoc solution.)

• Which tech path do we open? Which tech tree do we want to span in a few minutes? We
have to follow a tech tree that enables us to perform the tactics and long term strategy
that we want to do, but we also have to adapt to whatever the opponent is doing.

• Which unit types, and in which ratios, do we want in our army? We have a choice in
units that we can build, they have costs, we have to decide a production plan, knowing
the possible evolutions of our tech tree and our possible future production possibilities and
capabilities.

In the following, we studied the estimation of the opponent’s strategy in terms of tech trees*
(build trees*), abstracted (labeled) opening* (early strategy), army composition, and how we
should adapt our own strategy to it.

7.2 Related work

There are precedent works of Bayesian plan recognition [Charniak and Goldman, 1993], even in
games with [Albrecht et al., 1998] using dynamic Bayesian networks to recognize a user’s plan in
a multi-player dungeon adventure. Commercial RTS games most commonly use FSM* [Houlette
and Fu, 2003] to encode strategies and their transitions.
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There are related works in the domains of opponent modeling [Hsieh and Sun, 2008, Schadd
et al., 2007, Kabanza et al., 2010]. The main methods used to these ends are case-based reasoning
(CBR) and planning or plan recognition [Aha et al., 2005, Ontañón et al., 2008, Ontañón et al.,
2007b, Hoang et al., 2005, Ramírez and Geffner, 2009].

Aha et al. [2005] used CBR* to perform dynamic plan retrieval extracted from domain
knowledge in Wargus (Warcraft II open source clone). Ontañón et al. [2008] base their real-time
case-based planning (CBP) system on a plan dependency graph which is learned from human
demonstration in Wargus. In [Ontañón et al., 2007b, Mishra et al., 2008b], they use CBR and
expert demonstrations on Wargus. They improve the speed of CPB by using a decision tree to
select relevant features. Hsieh and Sun [2008] based their work on [Aha et al., 2005] and used
StarCraft replays to construct states and building sequences. Strategies are choices of building
construction order in their model.

Schadd et al. [2007] describe opponent modeling through hierarchically structured models of
the opponent’s behavior and they applied their work to the Spring RTS game (Total Annihilation
open source clone). Hoang et al. [2005] use hierarchical task networks (HTN*) to model strategies
in a first person shooter with the goal to use HTN planners. Kabanza et al. [2010] improve the
probabilistic hostile agent task tracker (PHATT [Geib and Goldman, 2009], a simulated HMM*
for plan recognition) by encoding strategies as HTN.

Weber and Mateas [2009] presented “a data mining approach to strategy prediction” and
performed supervised learning (from buildings features) on labeled StarCraft replays. In this
chapter, for openings prediction, we worked with the same dataset as they did, using their
openings labels and comparing it to our own labeling method.

Dereszynski et al. [2011] presented their work at the same conference that we presented [Syn-
naeve and Bessière, 2011]. They used an HMM which states are extracted from (unsupervised)
maximum likelihood on the dataset. The HMM parameters are learned from unit counts (both
buildings and military units) every 30 seconds and Viterbi inference is used to predict the most
likely next states from partial observations.

Jónsson [2012] augmented the C4.5 decision tree [Quinlan, 1993] and nearest neighbour with
generalized examplars [Martin, 1995], also used by Weber and Mateas [2009], with a Bayesian
network on the buildings (build tree*). Their results confirm ours: the predictive power is strictly
better and the resistance to noise far greater than without encoding probabilistic estimations of
the build tree*.

7.3 Perception and interaction

7.3.1 Buildings

From last chapter (section 6.3.3), we recall that the tech tree* is a directed acyclic graph which
contains the whole technological (buildings and upgrades) development of a player. Also, each
unit and building has a sight range that provides the player with a view of the map. Parts of
the map not in the sight range of the player’s units are under fog of war and the player ignores
what is and happens there. We also recall the notion of build order*: the timings at which the
first buildings are constructed.
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In this chapter, we will use build trees* as a proxy for estimating some of the strategy. A
build tree is a little different than the tech tree*: it is the tech tree without upgrades and
researches (only buildings) and augmented of some duplications of buildings. For instance,
{Pylon^Gateway} and {Pylon^Gateway,Gateway2} gives the same tech tree but we consider
that they are two different build trees. Indeed, the second Gateway gives some units producing
power to the player (it allows for producing two Gateway units at once). Very early in the
game, it also shows investment in production and the strategy is less likely to be focused on
quick opening of technology paths/upgrades. We have chosen how many different versions of
a given building type to put in the build trees (as shown in Table 7.2), so it is a little more
arbitrary than the tech trees. Note that when we know the build tree, we have a very strong
conditioning on the tech tree.

7.3.2 Openings

In RTS games jargon, an opening* denotes the same thing than in Chess: an early game plan
for which the player has to make choices. In Chess because one can not move many pieces at
once (each turn), in RTS games because during the development phase, one is economically
limited and has to choose between economic and military priorities and can not open several
tech paths at once. A rush* is an aggressive attack “as soon as possible”, the goal is to use an
advantage of surprise and/or number of units to weaken a developing opponent. A push (also
timing push or timing attack) is a solid and constructed attack that aims at striking when the
opponent is weaker: either because we reached a wanted army composition and/or because we
know the opponent is expanding or “teching”. The opening* is also (often) strongly tied to the
first military (tactical) moves that will be performed. It corresponds to the 5 (early rushes) to
15 minutes (advanced technology / late push) timespan.

Players have to find out what opening their opponents are doing to be able to effectively deal
with the strategy (army composition) and tactics (military moves: where and when) thrown at
them. For that, players scout each other and reason about the incomplete information they
can bring together about army and buildings composition. This chapter presents a probabilistic
model able to predict the opening* of the enemy that is used in a StarCraft AI competition
entry bot. Instead of hard-coding strategies or even considering plans as a whole, we consider
the long term evolution of our tech tree* and the evolution of our army composition separately
(but steering and constraining each others), as shown in Figure 7.1. With this model, our bot
asks “what units should I produce?” (assessing the whole situation), being able to revise and
adapt its production plans.

Later in the game, as the possibilities of strategies “diverge” (as in Chess), there are no longer
fixed foundations/terms that we can speak of as for openings. Instead, what is interesting is
to know the technologies available to the enemy as well as have a sense of the composition of
their army. The players have to adapt to each other’s technologies and armies compositions
either to be able to defend or to attack. Some units are more cost-efficient than others against
particular compositions. Some combinations of units play well with each others (for instance
biological units with “medics” or a good ratio of strong contact units backed with fragile ranged
or artillery units). Finally, some units can be game changing by themselves like cloaking units,
detectors, massive area of effects units...
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7.3.3 Military units

Strategy is not limited to technology state, openings and timings. The player must also take
strategic decisions about the army composition. While some special tactics (drops, air raids,
invisible attacks) require some specific units, these does not constitute the bulk of the army, at
least not after the first stages of the game (⇡ 10 minutes).

The different attack types and “armor” (size) types of units make it so that pairing units
against each others is like a soft rock-paper-scissors (shi-fu-mi). But there is more to army
composition than playing rock-paper-scissors with anticipation (units take time to be produced)
and partial information: some units combine well with each others. The simplest example of
combinations are ranged units and contact units which can be very weak (lots of weaknesses)
taken separately, but they form an efficient army when combined. There are also units which
empower others through abilities, or units with very strong defensive or offensive abilities with
which one unit can change the course of a battle. As stated before, these different units need
different parts of the tech tree to be available and they have different resources costs. All things
considered, deciding which units to produce is dependent on the opponent’s army, the require-
ments of the planned tactics, the resources and the current (and future) technology available to
the player.

7.4 Replays labeling

A replay* contains all the actions of each players during a game. We used a dataset of replays
to see when the players build which buildings (see Table B.1 in appendix for an example of
the buildings constructions actions). We attributed a label for each player for each game which
notes the players opening*.

7.4.1 Dataset

We used Weber and Mateas [Weber and Mateas, 2009] dataset of labeled replays. It is composed
of 8806 StarCraft: Broodwar game logs, the details are given in Table 7.1. A match-up* is a
set of the two opponents races: Protoss versus Terran (PvT) is a match-up, Protoss versus Zerg
(PvZ) is another one. They are distinguished because strategies distribution are very different
across match-ups (see Tables 7.1 and 7.3). Weber and Mateas used logic rules on building
sequences to put their labels, concerning only tier 2 strategies (no tier 1 rushes).

opening PvP PvT PvZ opening TvP TvT TvZ opening ZvP ZvT ZvZ

FastLegs 4 17 108 Bio 144 41 911 Lurker 33 184 1
FastExpand 119 350 465 Unknown 66 33 119 Unknown 159 164 212
ReaverDrop 51 135 31 Standard 226 1 9 HydraRush 48 13 9
FastObs 145 360 9 SiegeExpand 255 49 7 Standard 40 80 1
Unknown 121 87 124 VultureHarass 134 226 5 TwoHatchMuta 76 191 738
Carrier 2 8 204 TwoFactory 218 188 24 HydraMass 528 204 14
FastDT 100 182 83 FastDropship 96 90 75 ThreeHatchMuta 140 314 35

total 542 1139 1024 total 1139 628 1150 total 1024 1150 1010

Table 7.1: Weber’s dataset with its labels. XvY means the XvY or YvX match-up but the
openings numbers are presented for X.
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7.4.2 Probabilistic labeling

Instead of labeling with rules, we used (positive labeling vs rest) clustering of the opening’s main
features to label the games of each player.

The pitfall of logical/rule-based labeling

Openings are closely related to build orders* (BO) but different BO can lead to the same opening
and some BO are shared by different openings. Particularly, if we do not take into account the
time at which the buildings are constructed, we may have a wrong opening label too often: if an
opening consist in having building C as soon as possible, it does not matter if we built B-A-C
instead of the standard A-B-C as long as we have built C quickly. That is the kind of case that
will be overlooked by logical labeling simply following the order of construction. For that reason,
we tried to label replays with the statistical appearance of key features with a semi-supervised
method (see Figure 7.2). Indeed, the purpose of our opening prediction model is to help our
StarCraft playing bot to deal with rushes and special tactics. This was not the main focus of
Weber and Mateas’ labels, which follow exactly the build tree. So, we used the key components
of openings that we want to be aware of as features for our labeling algorithm as shown in
Table 7.2.

replaysreplaysreplays
replay replaysjoint

replays + 

multiple 

labels

replays + 

1 label / 

player / 

replay

score filteringEM 2 clusters

positive labeling 1 cluster vs others
different features for different labels

as many EM as labels

Figure 7.2: Data centric view of our semi-supervised labeling of replays. We put together
a replays dataset and pass each game (for each player) through a Gaussian mixtures model
(GMM*) expectation-maximization (EM*) clustering for each label against the rest. We then
filter and keep only the most probable and first to appear opening* label for each player for each
game.

Main features of openings

The selection of the features along with the opening labels is the supervised part of our labeling
method. The knowledge of the features and openings comes from expert play and the StarCraft
Liquipedia2 (a Wikipedia for StarCraft). They are all presented in Table 7.2. For instance, if
we want to find out which replays correspond to the “fast Dark Templar” (DT, Protoss invisible
unit) opening, we put the time at which the first Dark Templar is constructed as a feature and
perform clustering on replays with it. This is what is needed for our playing bot: to be able to
know when he has to fear “fast DT” opening and build a detector unit quickly to be able to deal
with invisibility.

2http://wiki.teamliquid.net/starcraft/
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Table 7.2: Opening/Strategies labels of the replays (Weber’s and ours are not always corre-
sponding)

Race Weber’s labels Our labels Features Note (what we fear)

Protoss FastLegs speedzeal Legs, GroundWeapons+1 quick speed+upgrade attack
FastDT fast_dt DarkTemplar invisible units
FastObs nony Goon, Range quick long ranged attack

ReaverDrop reaver_drop Reaver, Shuttle tactical attack zone damages
Carrier corsair Corsair flying units

FastExpand templar Storm, Templar powerful zone attack
two_gates 2ndGateway, Gateway, aggressive rush

1stZealot
Unknown unknown (no clear label)

Terran Bio bio 3rdBarracks, 2ndBarracks, aggressive rush
Barracks

TwoFactory two_facto 2ndFactory strong push (long range)
VultureHarass vultures Mines, Vulture aggressive harass, invisible
SiegeExpand fast_exp3 Expansion, Barracks economical advantage

Standard
FastDropship drop DropShip tactical attack

Unknown unknown (no clear label)

Zerg TwoHatchMuta fast_mutas Mutalisk, Gas early air raid
ThreeHatchMuta mutas 3rdHatch, Mutalisk massive air raid

HydraRush hydras Hydra, HydraSpeed, quick ranged attack
HydraRange

Standard (speedlings) (ZerglingSpeed, Zergling) (removed, quick attacks/mobility)
HydraMass

Lurker lurkers Lurker invisible and zone damages
Unknown unknown (no clear label)

Table 7.3: Openings distributions for Terran in all the match-ups. They are the result of the
clustering-based labeling with selection of one label per replay and per player. We can see that
openings usage is different depending on the match-up*.

vs Protoss vs Terran vs Zerg
Opening Nb Percentage Nb Percentage Nb Percentage

bio 62 6.2 25 4.4 197 22.6
fast_exp 438 43.5 377 65.4 392 44.9
two_facto 240 23.8 127 22.0 116 13.3
vultures 122 12.1 3 0.6 3 0.3

drop 52 5.2 10 1.7 121 13.9
unknown 93 9.3 34 5.9 43 5.0

Clustering

For the clustering part, we tried k-means and expectation-maximization (EM*, with Gaussian
mixtures) on Gaussian mixtures with shapes and volumes chosen with a Bayesian information
criterion (BIC*). Best BIC models were almost always the most agreeing with expert knowledge
(15/17 labels), so we kept this method. We used the R package Mclust [Fraley and Raftery,
2002, 2006] to perform full EM clustering.

The Gaussian mixture model (GMM*) is as follows:
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• Variables:

– Xi2J1...nK the features for the ith replay/game. For instance for the “fast_expand”
opening (Barracks and then direct expanding), we used the features “time of the first
expansion” and “time of the first Barracks”, as is shown in Figure 7.4, and each data
point is an Xi.

– Opi2J1...nK the opening of game i. Instead of doing one clustering with k possible open-
ings, we did k clusterings of 1 opening vs the rest4. So for us Opi 2 {opening, rest}.

• Decomposition (n data points, i.e. n games):

P(X1:n, Op1:n) =

n
Y

i=1

P(Xi|Opi)P(Opi)

• Forms, for the k openings we have:

– P(Xi|Opi) mixture of (two) Gaussian distributions

8

<

:

P(Xi|Opi = op) = N (µop, σ
2
op)

P(Xi|Opi = ¬op) = N (µ¬op, σ
2
¬op)

– P(Opi) = Bernouilli(pop):

8

<

:

P(Opi = op) = pop

P(Opi = ¬op) = 1− pop

• Identification (EM* with maximum likelihood estimate5):
Let ✓ = (µ1:2, σ1:2), initialize ✓ randomly,
and let L(✓;X) = P(X|✓) = Qn

i=1

P

Opi
P(Xi|✓,Opi)P(Opi) Iterate until convergence (of

✓):

1. E-step: Q(✓|✓(t)) = E[logL(✓;x,Op)] = E[log
Qn

i=1

P

Opi
P(xi|Opi, ✓)P(Opi)]

2. M-step: ✓(t+1) = argmax✓ Q(✓|✓(t))

• Question (for the ith game):

P(Opi|Xi = x) = P(Xi = x|Opi)P(Opi)

The σj matrices can define Gaussian distribution of any combinations between:

• volume (of the normal distributions of each mixtures at a given σ value): equal or variable,

• shape (of the multidimensional normal distributions of each mixtures): equal or variable,

4with different features for each clustering, so each of the binary clustering represent the labeling of one
opening against all others.

5Maximum a posteriori (MAP) would maximize the joint.
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• orientation: spherical (i.e. no orientation), coordinate axes, equal (any orientation al-
though the same for all mixtures components) or variable (any orientation for any compo-
nent).

A σ with variable volume, variable shape and variable orientation is also called a full covariance
matrix. We chose the combinations with the best (i.e. smallest) BIC* score. For a given model
with n data points, m parameters and L the maximum likelihood, BIC = −2 ln(L) +m ln(n).

Figure 7.3: Protoss vs Terran distribution of first appearance of Dark Templars (Protoss invisible
unit) for the “fast_dt” label (left mode) vs the rest (right mode).

Labeling, score filtering

The whole process of labeling replays (games) is shown in Figure 7.2. We produce “2 bins clus-
tering” for each set of features (corresponding to each opening), and label the replays belonging
to the cluster with the lower norm of features’ appearances (that is exactly the purpose of our
features). Figures 7.5, 7.4 and 7.6 show the clusters out of EM with the features of the corre-
sponding openings. We thought of clustering because there are two cases in which you build a
specific military unit or research a specific upgrade: either it is part of your opening, or it is part
of your longer term game plan or even in reaction to the opponent. So the distribution over the
time at which a feature appears is bimodal, with one (sharp) mode corresponding to “opening
with it” and the other for the rest of the games, as can be seen in Figure 7.3.

Due to the different time of effect of different openings, some replays are labeled two or three
times with different labels. So, finally, we apply a score filtering to transform multiple label
replays into unique label ones (see Figure 7.2). For that we choose the openings labels that were
happening the earliest (as they are a closer threat to the bot in a game setup) if and only if
they were also the most probable or at 10% of probability of the most probable label (to exclude
transition boundaries of clusters) for this replay. We find the earliest by comparing the norms
of the clusters means in competition. All replays without a label or with multiple labels (i.e.
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Figure 7.4: Terran vs Zerg Barracks and first Expansion timings (Terran). The bottom left
cluster (square data points) is the one labeled as fast_exp. Variable volume, variable shape,
variable orientation covariance matrices.

which did not had a unique solution in filtering) after the filtering were labeled as unknown.
An example of what is the final distribution amongst replays’ openings labels is given for the
three Terran match-ups* in Table 7.3. We then used this labeled dataset as well as Weber and
Mateas’ labels in the testing of our Bayesian model for opening prediction.

129



Figure 7.5: Protoss vs Protoss Ground Attack +1 and Zealot Legs upgrades timings. The
bottom left cluster (square data points) is the one labeled as speedzeal. Variable volume, equal
shape, spherical covariance matrices.

Figure 7.6: Zerg vs Protoss time of the third Hatch and first appearance of Mutalisks. The
bottom left cluster (square data points) is the one labeled as mutas. Variable volume, variable
shape, variable orientation covariance matrices.
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7.5 Build tree prediction

The work described in the next two sections can be classified as probabilistic plan recognition.
Strictly speaking, we present model-based machine learning used for prediction of plans, while
our model is not limited to prediction. We performed two levels of plan recognition, both are
learned from the replays: tech tree prediction (unsupervised, it does not need openings labeling,
this section) and opening prediction (semi-supervised or supervised depending on the labeling
method, next section).

7.5.1 Bayesian model

Variables

• BuildTree: BT 2 {;, {building1}, {building2}, {building1 ^ building2}, . . . }: all the pos-
sible building trees for the given race. For instance {pylon, gate} and {pylon, gate, core}
are two different BuildTrees.

• Observations: Oi2J1...NK 2 {0, 1}, Ok is 1/true if we have seen (observed) the kth building
(it can have been destroyed, it will stay “seen”). Otherwise, it is 0/false.

• λ 2 {0, 1}: coherence variable (restraining BuildTree to possible values with regard to
O1:N )

• Time: T 2 J1 . . . P K, time in the game (1 second resolution).

At first, we generated all the possible (according to the game rules) build trees* (BT val-
ues) of StarCraft, and there are between ⇡ 500 and 1600 depending on the race without even
counting buildings duplicates! We observed that a lot of possible build trees are too absurd to
be performed in a competitive match and were never seen during the learning. So, we restricted
BT to have its value in all the build trees encountered in our replays dataset and we added
multiple instances of the basic unit producing buildings (gateway, barracks), expansions and
supply buildings (depot, pylon, “overlord” as a building), as shown in Table 7.2. This way, there
are 810 build trees for Terran, 346 for Protoss and 261 for Zerg (learned from ⇡ 3000 games for
each race, see Table 7.1). In a new game, if we encounter a build tree that we never saw, we
are in a unknown state. Anyway we would not have seen enough data (any at all) during the
learning to conclude anything. We could look at the proximity of the build tree to other known
build trees, see section 7.5.2 and the Discussion (7.5.3).

Decomposition

The joint distribution of our model is the following:

P(T,BT,O1 . . . ON , λ) = P(T |BT )P(BT )P(λ|BT,O1:N )

N
Y

i=1

P(Oi) (7.1)

This can also be see as a plate diagram in Figure 7.7.
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Figure 7.7: Graphical model (plate notation) of the build tree Bayesian model, gray variables
are known.

Forms

• P(BT ) is the prior distribution on the build trees. As we do not want to include any bias,
we set it to the uniform distribution.

• P(O1:N ) is unspecified, we put the uniform distribution (we could use a prior over the most
frequent observations).

• P(λ|BT,O1:N ) is a functional Dirac that restricts BT values to the ones than can co-exist
with the observations:

8

<

:

P(λ = 1|bt, o1:N ) = 1 if bt can exist with o1:N

P(λ = 1|bt, o1:N ) = 0 else

A build tree value (bt) is compatible with the observations if it covers them fully. For
instance, BT = {pylon, gate, core} is compatible with ocore = 1 but it is not compatible
with oforge = 1. In other words, buildTree is incompatible with o1:N iff {o1:N\{o1:N ^
buildTree}} 6= ;.

• P(T |BT = bt) = N (µbt, σ
2
bt): P(T |BT ) are discrete normal distributions (“bell shapes”).

There is one bell shape over T per bt. The parameters of these discrete Gaussian distri-
butions are learned from the replays.

Identification (learning)

As we have full observations in the training phase, learning is just counting and averaging. The
learning of the P(T |BT ) bell shapes parameters takes into account the uncertainty of the bt for
which we have few observations: the normal distribution P(T |bt) begins with a high σ2

bt, and
not a strong peak at µbt on the seen T value and sigma = 0. This accounts for the fact that
the first(s) observation(s) may be outlier(s). This learning process is independent on the order
of the stream of examples, seeing point A and then B or B and then A in the learning phase
produces the same result.
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Questions

The question that we will ask in all the benchmarks is:

P(BT |T = t, O1:N = o1:N , λ = 1) / P(t|BT )P(BT )P(λ|BT, o1:N )
N
Y

i=1

P(oi) (7.2)

An example of the evolution of this question with new observations is depicted in Figure 7.8, in
which we can see that build trees (possibly closely related) succeed each others (normal) until
convergence.

Bayesian program

The full Bayesian program is:

B
ay

es
ia

n
pr

og
ra

m

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

D
es

cr
ip

ti
on

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Sp
ec

ifi
ca

ti
on

(⇡
)

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

V ariables

T,BT,O1 . . . ON , λ

Decomposition

P(T,BT,O1 . . . ON , λ) = JD

= P(λ|BT,OJ1...NK)P(T |BT )
QN

i=1 P(Oi)P(BT )

Forms

P(λ|BT,OJ1...NK) = functional Dirac (coherence)

P(T |BT = bt) = discrete N (µbt, σ
2
bt)

Identification

P(BT = bt|Opt = op) = 1+count(bt,op)
|BT |+count(op)

(µbt, σbt) = argmaxµ,σ P(T |BT = bt;µ, σ2)

Question

P(BT |T = t, O1:N = o1:N , λ = 1) / P(t|BT )P(BT )P(λ|BT, o1:N )
QN

i=1 P(oi)

7.5.2 Results

All the results presented in this section represents the nine match-ups (races combinations) in 1
versus 1 (duel) of StarCraft. We worked with a dataset of 8806 replays (⇡ 1000 per match-up)
of skilled human players (see 7.1) and we performed cross-validation with 9/10th of the dataset
used for learning and the remaining 1/10th of the dataset used for evaluation. Performance wise,
the learning part (with ⇡ 1000 replays) takes around 0.1 second on a 2.8 Ghz Core 2 Duo CPU
(and it is serializable). Each inference (question) step takes around 0.01 second. The memory
footprint is around 3Mb on a 64 bits machine.

Metrics

k is the numbers of buildings ahead that we can accurately predict the build tree of the opponent
at a fixed d. d values are distances between the predicted build tree(s) and the reality (at fixed
k).
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Figure 7.8: Evolution of P(BT |observations, time, λ = 1) in time (seen/observed buildings
on the x-axis). Only BT with a probability > 0.01 are shown. The numbers in the legend
correspond to build trees identifier numbers. The interpolation was obtained by fitting a second
order polynomial.

The robustness to noise is measured by the distance d to the real build tree with increasing
levels of noise, for k = 0.

The predictive power of our model is measured by the k > 0 next buildings for which we
have “good enough” prediction of future build trees in:

P(BT t+k|T = t, O1:N = o1:N , λ = 1)

“Good enough” is measured by a distance d to the actual build tree of the opponent that
we tolerate. We used a set distance: d(bt1, bt2) = card(bt1∆bt2) = card((bt1

S

bt2)\(bt1
T

bt2)).
One less or more building in the prediction is at a distance of 1 from the actual build tree. The
same set of buildings except for one replacement is at a distance of 2 (that would be 1 is we
used tree edit distance with substitution).

• We call d(best, real) =“best” the distance between the most probable build tree and the
one that actually happened.

• We call d(bt, real) ⇤ P(bt)=“mean” the marginalized distance between what was inferred
balanced (variable bt) by the probability of inferences (P(bt)).

Note that this distance is always over the complete build tree, and not only the newly inferred
buildings. This distance metric was counted only after the fourth (4th) building so that the
first buildings would not penalize the prediction metric (the first building can not be predicted
4 buildings in advance).

For information, the first 4 buildings for a Terran player are more often amongst his first
supply depot, barracks, refinery (gas), and factory or expansion or second barracks. For Zerg,
the first 4 buildings are is first overlord, zergling pool, extractor (gas), and expansion or lair tech.
For Protoss, it can be first pylon, gateway, assimilator (gas), cybernectics core, and sometimes
robotics center, or forge or expansion.
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Table 7.4 shows the full results, the first line has to be interpreted as “without noise, the
average of the following measures are” (columns):

• d for k = 0:

– d(best, real) = 0.535, it means that the average distance from the most probable
(“best”) build tree to the real one is 0.535 building.

– d(bt, real) ⇤ P(bt) = 0.870, it means that the average distance from each value bt of
the distribution on BT , weighted by its own probability (P(bt)), to the real one is
0.87 building.

• k for d = 1:

– best k = 1.193, it means that the average number of buildings ahead (of their con-
struction) that the model predicts at a fixed maximum error of 1 (d = 1) for the most
probable build tree (“best”) is 1.193 buildings.

– “mean” k = 3.991, it means that the average number of buildings ahead (of their
construction) that the model predicts at a fixed maximum error 1 (d = 1), summed
for bt in BT value and weighted by P(bt) is 3.9916

• as for the bullet above but k for d = 2 and d = 3.

The second line (“min”) is the minimum across the different match-ups* (as they are detailed for
noise = 10%), the third (“max”) is for the maximum across match-ups, both still at zero noise.
Subsequent sets of lines are for increasing values of noise (i.e. missing observations).

Predictive power

To test the predictive power of our model, we are interested at looking at how big k is (how
much “time” before we can predict a build tree) at fixed values of d. We used d = 1, 2, 3: with
d = 1 we have a very strong sense of what the opponent is doing or will be doing, with d = 3,
we may miss one key building or the opponent may have switched of tech path.

We can see in Table 7.4 that with d = 1 and without noise (first line), our model predicts
in average more than one building in advance (k > 1) what the opponent will build next if we
use only its best prediction. If we marginalize over BT (sum on BT weighted by P(bt)), we
can almost predict four buildings in advance. Of course, if we accept more error, the predictive
power (number of buildings ahead that our model is capable to predict) increases, up to 6.122

(in average) for d = 3 without noise.

Robustness to missing informations (“noise”)

The robustness of our algorithm is measured by the quality of the predictions of the build trees
for k = 0 (reconstruction, estimation) or k > 0 (prediction) with missing observations in:

P(BT t+k|T = t, O1:N = partial(o1:N ), λ = 1)

6This shows that when the most probable build tree is mistaken, there is 1) not much confidence in it
(otherwise we would have P(btbest) ≈ 1.0 and the “mean” k for fixed d values would equal the “best” one). 2)
much information in the distribution on BT , in the subsequent P(bt¬best) values.
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Table 7.4: Summarization of the main results/metrics, one full results set for 10% noise

measure d for k = 0 k for d = 1 k for d = 2 k for d = 3
noise d(best, real) d(bt, real) ⇤ P(bt) best “mean” best “mean” best “mean”

0
%

average 0.535 0.870 1.193 3.991 2.760 5.249 3.642 6.122
min 0.313 0.574 0.861 2.8 2.239 3.97 3.13 4.88
max 1.051 1.296 2.176 5.334 3.681 6.683 4.496 7.334

1
0
% PvP 0.397 0.646 1.061 2.795 2.204 3.877 2.897 4.693

PvT 0.341 0.654 0.991 2.911 2.017 4.053 2.929 5.079
PvZ 0.516 0.910 0.882 3.361 2.276 4.489 3.053 5.308
TvP 0.608 0.978 0.797 4.202 2.212 5.171 3.060 5.959
TvT 1.043 1.310 0.983 4.75 3.45 5.85 3.833 6.45
TvZ 0.890 1.250 1.882 4.815 3.327 5.873 4.134 6.546
ZvP 0.521 0.933 0.89 3.82 2.48 4.93 3.16 5.54
ZvT 0.486 0.834 0.765 3.156 2.260 4.373 3.139 5.173
ZvZ 0.399 0.694 0.9 2.52 2.12 3.53 2.71 4.38

average 0.578 0.912 1.017 3.592 2.483 4.683 3.213 5.459
min 0.341 0.646 0.765 2.52 2.017 3.53 2.71 4.38
max 1.043 1.310 1.882 4.815 3.45 5.873 4.134 6.546

2
0
% average 0.610 0.949 0.900 3.263 2.256 4.213 2.866 4.873

min 0.381 0.683 0.686 2.3 1.858 3.25 2.44 3.91
max 1.062 1.330 1.697 4.394 3.133 5.336 3.697 5.899

3
0
% average 0.670 1.003 0.747 2.902 2.055 3.801 2.534 4.375

min 0.431 0.749 0.555 2.03 1.7 3 2.22 3.58
max 1.131 1.392 1.394 3.933 2.638 4.722 3.176 5.268

4
0
% aerage 0.740 1.068 0.611 2.529 1.883 3.357 2.20 3.827

min 0.488 0.820 0.44 1.65 1.535 2.61 1.94 3.09
max 1.257 1.497 1.201 3.5 2.516 4.226 2.773 4.672

5
0
% average 0.816 1.145 0.493 2.078 1.696 2.860 1.972 3.242

min 0.534 0.864 0.363 1.33 1.444 2.24 1.653 2.61
max 1.354 1.581 1 2.890 2.4 3.613 2.516 3.941

6
0
% average 0.925 1.232 0.400 1.738 1.531 2.449 1.724 2.732

min 0.586 0.918 0.22 1.08 1.262 1.98 1.448 2.22
max 1.414 1.707 0.840 2.483 2 3.100 2.083 3.327

7
0
% average 1.038 1.314 0.277 1.291 1.342 2.039 1.470 2.270

min 0.633 0.994 0.16 0.79 1.101 1.653 1.244 1.83
max 1.683 1.871 0.537 1.85 1.7 2.512 1.85 2.714

8
0
% average 1.134 1.367 0.156 0.890 1.144 1.689 1.283 1.831

min 0.665 1.027 0.06 0.56 0.929 1.408 1.106 1.66
max 1.876 1.999 0.333 1.216 1.4 2.033 1.5 2.176

The “reconstructive” power (infer what has not been seen) ensues from the learning of our
parameters from real data: even in the set of build trees that are possible, with regard to the
game rules, only a few will be probable at a given time and/or with some key structures. The
fact that we have a distribution on BT allows us to compare different values bt of BT on the
same scale and to use P(BT ) (“soft evidence”) as an input in other models. This “reconstructive”
power of our model is shown in Table 7.4 with d (distance to actual building tree) for increasing
noise at fixed k = 0.

Figure 7.9 displays first (on top) the evolution of the error rate in reconstruction (distance
to actual building) with increasing random noise (from 0% to 80%, no missing observations to 8
missing observations over 10). We consider that having an average distance to the actual build
tree a little over 1 for 80% missing observations is a success. This means that our reconstruction
of the enemy build tree with a few rightly timed observations is very accurate. We should ponder
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that this average “missed” (unpredicted or wrongly predicted) building can be very important
(for instance if it unlocks game changing technology). We think that this robustness to noise
is due to P(T |BT ) being precise with the amount of data that we used, and the build tree
structure.

Secondly, Figure 7.9 displays (at the bottom) the evolution of the predictive power (number
of buildings ahead from the build tree that it can predict) with the same increase of noise.
Predicting 2 building ahead with d = 1 (1 building of tolerance) gives that we predict right (for
sure) at least one building, at that is realized up to almost 50% of noise. In this case, this “one
building ahead” right prediction (with only 50% of the information) can give us enough time to
adapt our strategy (against a game changing technology).

7.5.3 Possible improvements

We recall that we used the prediction of build trees (or tech trees), as a proxy for the estimation
of an opponent’s technologies and production capabilities.

This work can be extended by having a model for the two players (the bot/AI and the
opponent):

P(BTbot, BTop, Oop,1:N , T, λ)

So that we could ask this (new) model:

P(BTbot|obsop,1:N , t, λ = 1)

This would allow for simple and dynamic build tree adaptation to the opponent strategy (dy-
namic re-planning), by the inference path:

P(BTbot|obsop,1:N , t, λ = 1)

/
X

BTop

P(BTbot|BTop) (learned)

⇥P(BTop)P(oop,1:N ) (priors)

⇥P(λ|BTop, oop,1:N ) (consistency)

⇥P(t|BTop) (learned)

That way, one can ask “what build/tech tree should I go for against what I see from my op-
ponent”, which tacitly seeks the distribution on BTop to reduce the complexity of the possible
combinations of O1:N . It is possible to not marginalize over BTop, but consider only the most
probable(s) BTop. In this usage, a filter on BTbot (as simple as P(BT t

bot|BT t−1
bot ) can and should

be added to prevent switching build orders or strategies too often.

137



Figure 7.9: Evolution of our metrics with increasing noise, from 0 to 80%. The top graphic
shows the increase in distance between the predicted build tree, both most probable (“best”)
and marginal (“mean”) and the actual one. The bottom graphic shows the decrease in predictive
power: numbers of buildings ahead (k) for which our model predict a build tree closer than a
fixed distance/error (d).
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7.6 Openings

7.6.1 Bayesian model

We now build upon the previous build tree* predictor model to predict the opponent’s strategies
(openings) from partial observations.

Variables

As before, we have:

• Build trees: BT 2 [;, building1, building2, building1 ^ building2, techtrees, . . . ]: all
the possible building trees for the given race. For instance {pylon, gate} and
{pylon, gate, core} are two different BT .

• N Observations: Oi2J1...NK 2 {0, 1}, Ok is 1 (true) if we have seen (observed) the kth
building (it can have been destroyed, it will stay “seen”).

• Coherence variable: λ 2 {0, 1}: coherence variable (restraining BT to possible values with
regard to OJ1 . . . NK)

• Time: T 2 J1 . . . P K, time in the game (1 second resolution).

Additionally, we have:

• Opening: Opt 2 [opening1 . . . openingM ] take the various opening values (depending on
the race), with opening labels as described in section 7.3.2.

• Last opening: Opt−1 2 [opening1 . . . openingM ], opening value of the previous time step
(this allows filtering, taking previous inference into account).

Decomposition

The joint distribution of our model is the following:

P(T,BT,O1 . . . ON , Opt, Opt−1, λ) (7.3)

= P(Opt|Opt−1)P(Opt−1)P(BT |Opt)P(T |BT,Opt) (7.4)

⇥P(λ|BT,OJ1...NK)Π
N
i=1P(Oi) (7.5)

This can also be seen as Figure 7.10.

Forms

• P(Opt|Opt−1), we use it as a filter, so that we take into account previous inferences (com-
pressed). We use a Dirac:

8

<

:

P(Opt = opt|Opt−1 = opt−1) = 1 if opt = opt−1

P(Opt = opt|Opt−1 = opt−1) = 0 else

This does not prevent our model to switch predictions, it just uses the previous inference’s
posterior P(Opt−1) to average P(Opt).
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Figure 7.10: Graphical model (plate notation) of the opening Bayesian model, gray variables
are known.

• P(Opt−1) is copied from one inference to another (mutated from P(Opt)). The first
P(Opt−1) is bootstrapped with the uniform distribution. We could also use a prior on
openings in the given match-up, which is directly shown in Tables 7.1 and 7.3.

• P(BT |Opt = op) = Categorical(|BT | , pop) is learned from the labeled replays. P(BT |Opt)

are M (#{openings}) different histogram over the values of BT .

• P(Oi2J1...NK) is unspecified, we put the uniform distribution.

• P(λ|BuildTree,OJ1...NK) is a functional Dirac that restricts BuildTree values to the ones
than can co-exist with the observations. As explained above in the build tree model.

• P(T |BT = bt, Opt = op) = N (µbt,op, σ
2
bt,op): P(T |BT,Opt) are discrete normal distribu-

tions (“bell shapes”). There is one bell shape over T per couple (opening, buildTree). The
parameters of these discrete Gaussian distributions are learned from the labeled replays.

Identification (learning)

The learning of the P(BT |Opt) histogram is straight forward counting of occurrences from the
labeled replays with “add-one smoothing” (Laplace’s law of succession [Jaynes, 2003]):

P(BT = bt|Opt = op) =
1 + count_games(bt ^ op)

|BT |+ count_games(op)

The learning of the P(T |BT,Opt) bell shapes parameters takes into account the uncertainty
of the couples (bt, op) for which we have few observations. This is even more important as
observations may (will) be sparse for some values of Opt, as can be seen in Figure 7.11. As for
the previous, the normal distribution P(T |bt, op) begins with a high σ2

bt,op. This accounts for the
fact that the first(s) observation(s) may be outlier(s).
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Questions

The question that we will ask in all the benchmarks is:

P(Opt|T = t, OJ1...NK = oJ1...NK, λ = 1) (7.6)

/QN
i=1 P(oi)

P

Opt−1 P(Opt|Opt−1)
P

BT P(λ|BT, oJ1...NK)P(BT |Opt).P(t|BT,Opt) (7.7)

Note that if we see P(BT, T ime) as a plan, asking P(BT |Opt, T ime) boils down to use our “plan
recognition” mode as a planning algorithm. This gives us a distribution on the build trees to
follow (build orders) to achieve a given opening.

Bayesian program
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V ariables

T,BT,O1 . . . ON , Opt, Opt−1, λ

Decomposition

P(T,BT,O1 . . . ON , Opt, Opt−1, λ) = JD

= P(Opt|Opt−1)P(Opt−1)P(BT |Opt)

P(λ|BT,OJ1...NK)P(T |BT,Opt)
QN

i=1 P(Oi)

Forms

P(Opt|Opt−1) = Dirac (filtering)

P(Opt = opt|Opt−1 = opt−1) = 1 iff opt == opt−1, 0 else

P(BT |Opt = op) = Categorical(|BT | , pop)
P(λ|BT,OJ1...NK) = functional Dirac (coherence)

P(T |BT = bt, Opt = op) = discreteN (µbt,op, σ
2
bt,op)

Identification

P(BT = bt|Opt = op) = 1+count(bt,op)
|BT |+count(op)

(µbt,op, σbt,op) = argmaxµ,σ P(T |BT = bt, Opt = op;µ, σ2)

Question

P(Opt|T = t, OJ1...NK = oJ1...NK, λ = 1) /P

Opt−1

P

BT JD

7.6.2 Results

Metrics

For each match-up, we ran cross-validation testing with 9/10th of the dataset used for learning
and the remaining 1/10th of the dataset used for testing. We ran tests finishing at 5, 10 and
15 minutes to capture all kinds of openings (early to late ones). To measure the predictive
capability of our model, we used 3 metrics:

• the final prediction, which is the opening that is predicted at the end of the test,

• the online twice (OT), which counts the openings that have emerged as most probable
twice a test (so that their predominance is not due to noise),
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Figure 7.11: P(T,BT |Opt = ReaverDrop) Values of BT are in y-axis and values of T in x-axis.
We have sparse 1-dimensional Gaussian distributions depending on T for each value of BT .

• the online once > 3 (OO3), which counts the openings that have emerged as most prob-
able openings after 3 minutes (so that these predictions are based on really meaningful
information).

After 3 minutes, a Terran player will have built his first supply depot, barracks, refinery (gas),
and at least factory or expansion. A Zerg player would have his first overlord, zergling pool,
extractor (gas) and most of the time his expansion and lair tech. A Protoss player would have
his first pylon, gateway, assimilator (gas), cybernectics core, and sometimes his robotics center,
or forge and expansion.

Predictive power

Table 7.8 sums up all the prediction probabilities (scores) for the most probable opening accord-
ing to our model (compared to the replay label) in all the match-ups with both labeling of the
game logs. The first line should be read as: in the Protoss vs Protoss (PvP) match-up*, with
the rule-based openings labels (Weber’s labels), the most probable opening* (in the Op values)
at 5 minutes (“final”) is 65% correct. The proportion of times that the most probable opening
twice (“OT”) in the firsts 5 minutes period was the real one (the game label for this player) is
53%. The proportion of times that the most probable opening after 3 minutes (“OO3”) and in
the firsts 5 minutes periods was the real one is 0.59%. Then the other columns show the same
metrics for 10 and 15 minutes periods, and then the same with our probabilistic clustering.

Note that when an opening is mispredicted, the distribution on openings is often not

P(badopening) = 1,P(others) = 0 and that we can extract some value out of these distri-
butions (see the bot’s strategy adaptation in chapter 8). Also, we observed that P(Opening =

unknown) > P(others) is often a case of misprediction: our bot uses the next prediction in this
case.
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Figure 7.12: Evolution of P(Opening) with increasing observations in a TvP match-up, with
Weber’s labeling on top, our labeling on the bottom. The x-axis corresponds to the construction
of buildings. The interpolation was obtained by fitting a second order polynomial.

Figure 7.12 shows the evolutions of the distribution P(Opening) during a game for Weber’s
and our labeling or the openings. We can see that in this game, their build tree* and rule-
based labeling (top plot) enabled the model to converge faster towards FastDropship. With our
labeling (bottom plot), the corresponding drop opening peaked earlier (5th building vs 6th with
their labeling) but it was then eclipsed by two_facto (while staying good second) until later
with another key observation (11th building). This may due to unorthodox timings of the drop

opening, probably because the player was delayed (by a rush, or changed his mind), and that
the two_facto opening has a larger (more robust to delays) support in the dataset.

Robustness to noise

Figure 7.13 shows the resistance of our model to noise. We randomly removed some observations
(buildings, attributes), from 1 to 15, knowing that for Protoss and Terran we use 16 buildings
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observations and 17 for Zerg. We think that our model copes well with noise because it backtracks
unseen observations: for instance if we have only the core observation, it will work with build
trees containing core that will passively infer unseen pylon and gate.

Figure 7.13: Two extreme evolutions of the 3 probabilities of opening recognition with increasing
noise (15 missing attributes/observations/buildings correspond to 93.75% missing information
for Protoss and Terran openings prediction and 88.23% of missing attributes for Zerg openings
prediction). Zerg opening prediction probabilitly on top, Protoss bottom.
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Table 7.5: Prediction probabilities for all the match-ups, at 5 minutes, 10 minutes, 15 minutes, both for Weber’s labels and for our labels.
The three metrics are 1) final: what is the most probable at the end of the time equals compared to the label, 2) OT: (online twice) what was
the most probable in two different inferences during the game compared to the label, 3) OO3 (online once > 3 minutes) what was the most
probable opening after 3 minutes of game compared to the label.

Weber and Mateas’ labels Our labels
5 minutes 10 minutes 15 minutes 5 minutes 10 minutes 15 minutes

match-up final OT OO3 final OT OO3 final OT OO3 final OT OO3 final OT OO3 final OT OO3
PvP 0.65 0.53 0.59 0.69 0.69 0.71 0.65 0.67 0.73 0.78 0.74 0.68 0.83 0.83 0.83 0.85 0.83 0.83
PvT 0.75 0.64 0.71 0.78 0.86 0.83 0.81 0.88 0.84 0.62 0.69 0.69 0.62 0.73 0.72 0.6 0.79 0.76
PvZ 0.73 0.71 0.66 0.8 0.86 0.8 0.82 0.87 0.8 0.61 0.6 0.62 0.66 0.66 0.69 0.61 0.62 0.62
TvP 0.69 0.63 0.76 0.6 0.75 0.77 0.55 0.73 0.75 0.50 0.47 0.54 0.5 0.6 0.69 0.42 0.62 0.65
TvT 0.57 0.55 0.65 0.5 0.55 0.62 0.4 0.52 0.58 0.72 0.75 0.77 0.68 0.89 0.84 0.7 0.88 0.8
TvZ 0.84 0.82 0.81 0.88 0.91 0.93 0.89 0.91 0.93 0.71 0.78 0.77 0.72 0.88 0.86 0.68 0.82 0.81
ZvP 0.63 0.59 0.64 0.87 0.82 0.89 0.85 0.83 0.87 0.39 0.56 0.52 0.35 0.6 0.57 0.41 0.61 0.62
ZvT 0.59 0.51 0.59 0.68 0.69 0.72 0.57 0.68 0.7 0.54 0.63 0.61 0.52 0.67 0.62 0.55 0.73 0.66
ZvZ 0.69 0.64 0.67 0.73 0.74 0.77 0.7 0.73 0.73 0.83 0.85 0.85 0.81 0.89 0.94 0.81 0.88 0.94
overall 0.68 0.62 0.68 0.73 0.76 0.78 0.69 0.76 0.77 0.63 0.67 0.67 0.63 0.75 0.75 0.63 0.75 0.74
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Computational performances

The first iteration of this model was not making use of the structure imposed by the game in the
form of “possible build trees” and was at best very slow, at worst intractable without sampling.
With the model presented here, the performances are ready for production as shown in Table 7.6.
The memory footprint is around 3.5Mb on a 64bits machine. Learning computation time is linear
in the number of games logs events (O(N) with N observations), which are bounded, so it is
linear in the number of game logs. It can be serialized and done only once when the dataset
changes. The prediction computation corresponds to the sum in the question (III.B.5) and so
its computational complexity is in O(N ·M) with N build trees and M possible observations,
as M << N , we can consider it linear in the number of build trees (values of BT ).

Table 7.6: Extremes of computation time values (in seconds, Core 2 Duo 2.8Ghz)

Race Nb Games Learning time Inference µ Inference σ2

T (max) 1036 0.197844 0.0360234 0.00892601
T (Terran) 567 0.110019 0.030129 0.00738386
P (Protoss) 1021 0.13513 0.0164457 0.00370478
P (Protoss) 542 0.056275 0.00940027 0.00188217
Z (Zerg) 1028 0.143851 0.0150968 0.00334057
Z (Zerg) 896 0.089014 0.00796715 0.00123551

Strengths and weaknesses of StarCraft openings

We also proceeded to analyze the strengths and weaknesses of openings against each oth-
ers. For that, we labeled the dataset with openings and then learned the P(Win =

true|Optplayer1, Optplayer2) probability table with Laplace’s rule of succession. As can be seen
in Table 7.1, not all openings are used for one race in each of its 3 match-ups*. Table 7.6.2
shows some parts of this P(Win = true|Optplayer1, Optplayer2) ratios of wins for openings against
each others. This analysis can serve the purpose of choosing the right opening as soon as the
opponent’s opening was inferred.

Zerg | Protoss two gates fast dt reaver drop corsair nony
speedlings 0.417 0.75 NED NED 0.5
lurkers NED 0.493 NED 0.445 0.533
fast mutas NED 0.506 0.5 0.526 0.532

Terran | Protoss fast dt reaver drop corsair nony
two facto 0.552 0.477 NED 0.578
rax fe 0.579 0.478 0.364 0.584

Table 7.7: Opening/Strategies labels counted for victories against each others for the PvZ (top,
on 1408 games) and PvT (bottom, on 1657 games) match-ups. NED stands for Not Enough
Data to conclude a preference/discrepancy towards one opening. The results should be read as
win rates of columns openings vs lines openings.
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7.6.3 Possible uses

We recall that we used this model for opening prediction, as a proxy for timing attacks and
aggressiveness. It can also be used:

• for build tree suggestion when wanting to achieve a particular opening. Particularly one
does not have to encode all the openings into a finite state machine: simply train this
model and then ask P(BT |time, opening, λ = 1) to have a distribution on the build trees
that generally are used to achieve this opening.

• as a commentary assistant AI. In the StarCraft and StarCraft 2 communities, there are
a lot of progamers tournaments that are commented and we could provide a tool for
commentators to estimate the probabilities of different openings or technology paths. As
in commented poker matches, where the probabilities of different hands are drawn on
screen for the spectators, we could display the probabilities of openings. In such a setup
we could use more features as the observers and commentators can see everything that
happens (upgrades, units) and we limited ourselves to “key” buildings in the work presented
here.

Possible improvements

First, our prediction model can be upgraded to explicitly store transitions between t and t + 1

(or t − 1 and t) for openings (Op) and for build trees* (BT ). The fact is that P(BT t+1|BT t)

will be very sparse, so to efficiently learn something (instead of a sparse probability table)
we have to consider a smoothing over the values of BT , perhaps with the distances men-
tioned in section 7.5.2. If we can learn P(BT t+1|BT t), it would perhaps increase the results of
P(Opening|Observations), and it almost surely would increase P(BuildTreet+1|Observations),
which is important for late game predictions.

Incorporating P(Opt−1) priors per match-up (from Table 7.1) would lead to better results,
but it would seem like overfitting to us: particularly because we train our robot on games played
by humans whereas we have to play against robots in competitions.

Clearly, some match-ups are handled better, either in the replays labeling part and/or in
the prediction part. Replays could be labeled by humans and we would do supervised learning
then. Or they could be labeled by a combination of rules (as in [Weber and Mateas, 2009])
and statistical analysis (as the method presented here). Finally, the replays could be labeled
by match-up dependent openings (as there are different openings usages by match-ups*, see
Table 7.1), instead of race dependent openings currently. The labels could show either the two
parts of the opening (early and late developments) or the game time at which the label is the
most relevant, as openings are often bimodal (“fast expand into mutas”, “corsairs into reaver”,
etc.).

Finally, a hard problem is detecting the “fake” builds of very highly skilled players. Indeed,
some progamers have build orders which purpose are to fool the opponent into thinking that they
are performing opening A while they are doing B. For instance they could “take early gas” leading
the opponent to think they are going to do tech units, not gather gas and perform an early rush
instead. We think that this can be handled by our model by changing P(Opening|LastOpening)
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by P(Opening|LastOpening, LastObservations) and adapting the influence of the last predic-
tion with regard to the last observations (i.e., we think we can learn some “fake” label on replays).
If a player seem on track to perform a given opening but fails to deliver the key characteristic
(heavy investment, timing attack...) of the opening, this may be a fake.

7.7 Army composition

We reuse the predictions on the build tree* (P(BT )) directly for the tech tree* (P(TT )) (for the
enemy, so ETT ) by estimating BT as presented above and simply adding the tech tree additional
features (upgrades, researches) that we already saw7. You can just assume that BT = TT , or
refer to section 7.3.1.

7.7.1 Bayesian model

In this model, we assume that we have some incomplete knowledge of the opponent’s tech tree
and a quite complete knowledge of his army composition. We want to know what units we should
build now, to adapt our army to their, while staying coherent with our own tech tree and tactics
constraints. To that end, we reduce armies to mixtures of clusters that could have generated a
given composition. In this lower dimension (usually between 5 to 15 mixture components), we
can reason about which mixture of clusters the opponent is probably going to have, according
to his current mixture components and his tech tree. As we learned how to pair compositions
strengths and weaknesses, we can adapt to this “future mixture”.

Variables

• TT t is a tech tree* variable, at time t. TT 2 {;, {building1}, {building2}, {building1 ^
building2}, . . . }: all the possible building trees for the given race. We just want to know
what unit types we can produce and not recreate the whole technological state. TT has
V possible values (V is the number different tech trees* and depends on the faction).

• ETT t the enemy tech tree, same as above but for the enemy. ETT has V 0 possible values.

• ECt,t+1 2 {enemy0s race0s clusters} the enemy’s cluster (EC) estimated at t from their
units that we saw, and estimated at t + 1 from their (estimated distribution on) tech
trees (ETT ) and previous ECt. ECt, ECt+1 each have K 0 values (number of mixtures
components).

• Ct+1
t,c,m,f 2 {our race0s clusters}, our army cluster (C), both wanted (Ct for tactics,Cc for

counter, Cm for merge) and decided (Cf for final) at t+1. Ct, Cc, Cm, Cf have K values
(K units clusters for us). We infer Cc the “counter” cluster for (adaptation to) ECt+1.
Ct (a distribution Ct) comes from the needs of specific units by the tactical model, we
merge Ct and Cc in Cm (merge). The final clusters (Cf ) corresponds to what is coherent
with our tech tree (TT ) so use a coherence variable (λ) to make Cm and Cf coherent. See
Figure 7.14.

7We could also modify the models above and incorporate tech tree features but it is of little benefit. Also,
BT contains duplicates of buildings and is it easier to downgrade to TT than to estimate the openings from TT
instead of BT .
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• U t+1 2 ([0, 1] . . . [0, 1]), our N dimensional unit types (U) proportions at time t + 1, i.e.
U t+1 2 [0, 1]N . For instance, an army with equal numbers of zealots and dragoons (and
nothing else) is represented as {Uzealot = 0.5, Udragoon = 0.5, 8ut 6= zealot|dragoon Uut =

0.0}, i.e. U = (0.5, 0.5, 0, . . . , 0) if zealots and dragoons are the first two components of
the U vector. So

P

i Ui = 1 whatever the composition of the army.

• EU t and EU t+1 2 ([0, 1] . . . [0, 1]), the M enemy units types (EU) at time t and t+1, i.e.
EU t 2 [0, 1]M . Same as above, but for the enemy and at two different times (t and t+1).

• λ 2 {0, 1} is a coherence variable unifying Ct+1
m and Ct+1

f to possible values with regard
to TT t.

For tech trees (TT and ETT ) values, it would be absurd to generate all the possible com-
binations, exactly as for BT (see the previous two sections). We use our previous BT and the
researches. This way, we counted 273 probable tech tree values for Protoss, 211 for Zerg, and
517 for Terran (the ordering of add-on buildings is multiplying tech trees for Terran). Should it
happen, we can deal with unseen tech tree either by using the closest one (in set distance) or
using an additional value of no knowledge.

Decomposition

The joint distribution of our model is the following:

P(TT t, Ct+1
t , Ct+1

c , Ct+1
m , Ct+1

f , ETT t, ECt, ECt+1, U t+1, EU t) (7.8)

= P(EU t|ECt)P(ECt|ECt+1)P(ECt+1|ETT t)P(ETT t) (7.9)

⇥P(Ct+1
c |ECt+1)P(Ct+1

t )P(Ct+1
m |Ct+1

t , Ct+1
c ) (7.10)

⇥P(λ|Ct+1
f , Ct+1

m )P(Ct+1
f |TT t)P(TT t)P(U t+1|Ct+1

f ) (7.11)

This can also be see as Figure 7.14.

Forms

• P(EU t|ECt = ec) = N (µec, σec
2), as above but with different parameters for the enemy’s

race (if it is not a mirror match-up).

• P(ECt|ECt+1 = ect+1) = Categorical(K 0, pect+1), P(ECt|ECt+1) is a probability table
of dimensions K 0⇥K 0 resulting of the temporal dynamic between clusters, that is learned
from the dataset with a soft Laplace’s law of succession (“add one” smoothing) Jaynes
[2003].

• P(ECt+1|ETT t = ett) = Categorical(K 0, pett), P(ECt+1|ETT t) is a probability table
of dimensions K 0 ⇥ V 0 resulting of the inter-dependency between some tech trees and
clusters/mixtures. It is learned from the dataset with a soft Laplace’s law of succession.

• P(ETT t) = Categorical(V 0, peracett), it is a categorical distribution on V 0 values, i.e.
an histogram distribution on the enemy’s tech trees. It comes from the build/tech tree
prediction model explained above (section 7.5). For us, TT ⇠ Categorical(V ) too, and
we know our own tech tree (TT ) exactly.
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Figure 7.14: Left: the full Gaussian mixture model for Q armies (Q battles) for the enemy,
with K 0 mixtures components. Right: Graphical (plate notation) representation of the army
composition Bayesian model, gray variables are known while for gray hatched variables we have
distributions on their values. Ct can also be known (if a decision was taken at the tactical model
level).

• P(Ct+1
c |ECt+1 = ec) = Categorical(K, pec), P(Ct+1

c |ECt+1) is a probability table of
dimensions K ⇥K 0, which is learned from battles with a soft Laplace’s law of succession
on victories.

• P(Ct+1
t ) = Categorical(K, ptac) (histogram on the K clusters values) coming from the

tactical model. Note that it can be degenerate: P(Ct+1
t = shuttle) = 1.0. It serves the

purpose of merging tactical needs with strategic ones.

• P(Ct+1
m |Ct+1

t , Ct+1
c ) = ↵P(Ct+1

t )+(1−↵)P(Ct+1
c ) with ↵ 2 [0 . . . 1] the aggressiveness/ini-

tiative parameter which can be set fixed, learned, or be variable (P (↵|situation)). If ↵ = 1

we only produce units wanted by the tactical model, if ↵ = 0 we only produce units that
adapts our army to the opponent’s army composition.

• P(λ|Ct+1
f , Ct+1

m ) is a functional Dirac that restricts Cm values to the ones that can co-exist
with our tech tree (Cf ).

P(λ = 1|Cf , Cm = cm)

= 1 iff P(Cf = cm) 6= 0

= 0 else

This was simply implemented as a function. This is not strictly necessary (as one could
have P(Cf |TT,Cm) which would do the same for P(Cf ) = 0.0) but it allows us to have the
same table form for P(Cf |TT ) than for P(EC|ETT ), should we wish to use the learned
co-occurrences tables (with respect to the good race).

• P(Ct+1
f |TT ) is either a learned probability table, as for P (ECt+1|ETT t), or a functional

Dirac distribution which tells which Cf values (cf ) are compatible with the current tech
tree TT = tt. We used this second option. A given c is compatible with the tech tree
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(tt) if it allows for building all units present in c. For instance, tt = {pylon, gate, core} is
compatible with a c = {µUzealot

= 0.5, µUdragoon
= 0.5, 8ut 6= zealot|dragoon µUut = 0.0},

but it is not compatible with c0 = {µUarbiter
= 0.1, . . . }.

• P(U t+1|Ct+1
f = c) = N (µc, σ

2
c ), the µ and σ come from a Gaussian mixture model learned

from all the battles in the dataset (see left diagram on Fig. 7.14 and section 7.4.2).

Identification (learning)

We learned Gaussian mixture models (GMM) with the expectation-maximization (EM) algo-
rithm on 5 to 15 mixtures with spherical, tied, diagonal and full co-variance matrices [Pedregosa
et al., 2011]. We kept the best scoring models according to the Bayesian information criterion
(BIC) [Schwarz, 1978].

• P(U t+1|Ct+1
f = c) is the result of the clustering of the armies compositions (U) into C,

and so depends from the clustering model. In our implementation, µc, σc are learned from
the data through expectation maximization. One can get a good grasp on this parameters
by looking at Figure 7.16.

• It is the same for µec, σec, they are learned by EM on the dataset (see section 7.4.2).

• P(ECt = ect|ECt+1 = ect+1) = 1+P(ect)P(ect+1)⇥count(ect!ect+1)
K+P(ect+1)⇥count(ect+1)

• P(ETT t) comes from the model described two sections above (7.5).

• P(ECt+1 = ec|ETT t = ett) = 1+P(ec)⇥count(ec^ett)
K0+count(ett)

• P(Ct+1
c = c|ECt+1 = ec) = 1+P(c)P(ec)⇥countbattles(c>ec)

K+P(ec)countbattles(ec)
, we only count when c won against

ec.

• Both P(Ct+1
f |TT ) and P(λ|Ct+1

f , Ct+1
m ) are functions and do not need identification.

Questions

The question that we ask to know which units to produce is:

P(U t+1|eut, ttt, λ = 1) (7.12)

/
X

ETT t,ECt,ECt+1

h

P(ECt+1|ETT t)P(ETT t) (7.13)

⇥P(eut|ECt)
X

Ct+1
f ,Ct+1

m ,Ct+1
c ,Ct+1

t

⇥

P(Ct+1
c |ECt+1) (7.14)

⇥P(Ct+1
t )P(Ct+1

f |ttt)P(λ|Ct+1
f , Ct+1

m )P(U t+1|Ct+1
f )

⇤

i

(7.15)

or we can sample U t+1 from P (Ct+1
f ) or even from ct+1

f (a realization of Ct=1
f ) if we ask

P(Ct+1
f |eut1:M , ttt, λ = 1). Note that here we do not know fully neither the value of ETT

nor of Ct so we take the most information that we have into account (distributions). The eval-
uation of the question is proportional to |ETT | ⇥ |EC|2 ⇥ |C|4 = V 0 ⇥ K 02 ⇥ K4. But we do
not have to sum on the 4 types of C in practice: P(Cm|Ct, Cc) is a simple linear combination
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of vectors and P(λ = 1|Cf , Cm) is a linear filter function, so we just have to sum on Cc and
practical complexity is proportional to V 0 ⇥ K 02 ⇥ K. As we have most often ⇡ 10 Gaussian
components in our GMM, K or K 0 are in the order of 10 (5 to 12 in practice), while V and V 0

are between 211 and 517 as noted above.
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V ariables

TT t, Ct+1
t , Ct+1

c , Ct+1
m , Ct+1

f , ETT t, ECt, ECt+1, U t+1, EU t

Decomposition

P(TT t, Ct+1
t , Ct+1

c , Ct+1
m , Ct+1

f , ETT t, ECt, ECt+1, U t+1, EU t)

= P(EU t|ECt)P(ECt|ECt+1)P(ECt+1|ETT t)P(ETT t)

⇥P(Ct+1
c |ECt+1)P(Ct+1

t )P(Ct+1
m |Ct+1

t , Ct+1
c )

⇥P(λ|Ct+1
f , Ct+1

m )P(Ct+1
f |TT t)P(TT t)P(U t+1|Ct+1

f )

Forms

P(EU t|ECt = ec) = N (µec, σec
2)

P(ECt|ECt+1 = ect+1) = Categorical(K 0, pect+1)

P(ECt+1|ETT t = ett) = Categorical(K 0, pett)

P(ETT t) = Categorical(V 0, pett), comes from an other model

P(Ct+1
c |ECt+1 = ec) = Categorical(K, pec)

P(Ct+1
t ) = Categorical(K, ptac)

P(Ct+1
m |Ct+1

t , Ct+1
c ) = ↵P(Ct+1

t ) + (1− ↵)P(Ct+1
c )

P(λ = 1|Cf , Cm = cm) = 1 iff P(Cf = cm) 6= 0, else 0

P(Ct+1
f = cf |TT = tt) = 1 iff cf producible with tt, else 0

P(U t+1|Ct+1
f = c) = N (µc, σ

2
c )

Identification

µc, σc learned by EM on the full dataset

µec, σec learned by EM on the full dataset

P(ECt = ect|ECt+1 = ect+1) = 1+P(ect)P(ect+1)⇥count(ect!ect+1)
K+P(ect+1)⇥count(ect+1)

P(ECt+1 = ec|ETT t = ett) = 1+P(ec)⇥count(ec^ett)
K0+count(ett)

P(Ct+1
c = c|ECt+1 = ec) = 1+P(c)P(ec)⇥countbattles(c>ec)

K+P(ec)countbattles(ec)

Question

P(U t+1|eut, ttt, λ = 1)

/P

ETT t,ECt,ECt+1

h

P(ECt+1|ETT t)P(ETT t)

⇥P(eut|ECt)
P

Ct+1
f ,Ct+1

m ,Ct+1
c ,Ct+1

t

⇥

P(Ct+1
c |ECt+1)

⇥P(Ct+1
t )P(Ct+1

f |ttt)P(λ|Ct+1
f , Ct+1

m )P(U t+1|Ct+1
f )

⇤

i
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7.7.2 Results

We did not evaluate directly P(U t+1|eut, ttt, λ = 1) the efficiency of the army compositions
which would be produced. Indeed, it is difficult to make it independent from (at least) the
specific micro-management of different unit types composing the army. The quality of P(ETT )

also has to be taken into account. Instead, we evaluated the reduction of armies compositions
(EU and U sets of variables) into clusters (EC and C variables) and the subsequent P(Cc|EC)

table.
We use the dataset presented in section 6.4 in last chapter (tactics). It contains everything

we need about the state and battles, units involved, units lost, winners. There are 7708 games.
We only consider battles with about even force sizes, but that lets a sizable number on the more
than 178,000 battles of the dataset. For each match-up, we set aside 100 test matches, and use
the remaining of the dataset for learning. We preferred robustness to precision and thus we
did not remove outliers: better scores can easily be achieved by considering only stereotypical
armies/battles. Performance wise, for the biggest dataset (PvT) the learning part takes around
100 second on a 2.8 Ghz Core 2 Duo CPU (and it is easily serializable) for 2408 games (57 seconds
to fit and select the GMM, and 42 seconds to fill the probability tables / fit the Categorical
distributions). The time to parse all the dataset is far larger (617 seconds with an SSD).

Evaluation of clustering

We will look at the predictive power of the P(Cc|EC) (comprehending the reduction from U to
C and EU to EC) for the results of battles. For each battle, we know the units involved (types
and numbers) and we look at predicting the winner.

Metrics

Each battle consists in numbers of units involved for each types and each parties (the two
players). For each battle we reduce the two armies to two Gaussian mixtures (P(C) and P(EC)).
To benchmark our clustering method, we then used the learned P(Cc|EC) to estimate the
outcome of the battle. For that, we used battles with limited disparities (the maximum strength
ratio of one army over the other) of 1.1 to 1.5. Note that the army which has the superior forces
numbers has more than a linear advantage over their opponent (because of focus firing8), so
a disparity of 1.5 is very high. For information, there is an average of 5 battles per game at a 1.3
disparity threshold, and the numbers of battles per game increase with the disparity threshold.

We also made up a baseline heuristic, which uses the sum of the values of the units (see
section 6.3.2 for a reminder) to decide which side should win. If we note v(unit) the value of a
unit, the heuristic computes

P

unit v(unit) for each army and predicts that the winner is the one
with the biggest score. Of course, we recall that a random predictor would predict the result of
the battle correctly 50% of the time.

A summary of the main metrics is shown in Table 7.8, the first line can be read as: for a
forces disparity of 1.1, for Protoss vs Protoss (first column),

• considering only military units

– the heuristic predicts the outcome of the battle correctly 63% of the time.

8Efficiently micro-managed, an army 1.5 times superior to their opponents can keep much more than one
third of the units alive.
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– the probability of a clusters mixture to win against another (P(C|EC)), without
taking the forces sizes into account, predicts the outcome correctly 54% of the time.

– the probability of a clusters mixture to win against another, taking also the forces
sizes into account (P(C|EC)⇥P

unit v(unit)), predicts the outcome correctly 61% of
the time.

• considering only all units involved in the battle (military units, plus static defenses and
workers): same as above.

And then it is given for all match-ups* (columns) and different forces disparities (lines). The
last column sums up the means on all match-ups, with the whole army (military units plus static
defenses and workers involved), for the three metrics.

Also, without explicitly labeling clusters, one can apply thresholding to special units (ob-
servers, arbiters, science vessels...) to generate more specific clusters: we did not include these
results here (they include too much expertize/tuning) but they sometimes drastically increase
prediction scores.

Predictive power

We can see that predicting battle outcomes (even with a high disparity) with “just probabilities”
of P(Cc|EC) (without taking the forces into account) gives relevant results as they are always
above random predictions. Note that this is a very high level (abstract) view of a battle, we do
not consider tactical positions, nor players’ attention, actions, etc. Also, it is better (in average)
to consider the heuristic with the composition of the army (prob⇥heuristic) than to consider
the heuristic alone, even for high forces disparity. These prediction results with “just prob.”, or
the fact that heuristic with P(Cc|EC) tops the heuristic alone, are a proof that the assimilation
of armies compositions as Gaussian mixtures of cluster works.

Army efficiency

Secondly, and perhaps more importantly, we can view the difference between “just prob.” results
and random guessing (50%) as the military efficiency improvement that we can (at least)
expect from having the right army composition. Indeed, we see that for small forces disparities
(up to 1.1 for instance), the prediction with army composition only (“just prob.”: 63.2%) is
better that the prediction with the baseline heuristic (61.7%). It means that we can expect to

win 63.2% of the time (instead of 50%) with an (almost) equal investment if we have the right

composition. Also, we predict 58.5% of the time the accurate result of a battle with disparity
up to 1.5 from “just prob.”: these predictions are independent of the sizes of the armies. What
we predicted is that the player with the better army composition won (not necessarily the one
with more or more expensive units).

Analysis of the clustering

Figure 7.15 shows a 2D Isomap [Tenenbaum et al., 2000] projection of the battles on a small
ZvP dataset. Isomap finds a low-dimensional non-linear embedding of the high dimensionality
(N or N 0 dimensions, as much as unit types, the length of U or EU) space in which we represent
armies. The fact that the embedding is quasi-isometric allows us to compare the intra- and inter-
clusters similarities. Most clusters seem to make sense as strong, discriminating components.
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forces scores PvP PvT PvZ TvT TvZ ZvZ mean
disparity in % m ws m ws m ws m ws m ws m ws ws

heuristic 63 63 58 58 58 58 65 65 70 70 56 56 61.7
1.1 just prob. 54 58 68 72 60 61 55 56 69 69 62 63 63.2

prob⇥heuristic 61 63 69 72 59 61 62 64 70 73 66 69 67.0
heuristic 73 73 66 66 69 69 75 72 72 72 70 70 70.3

1.3 just prob. 56 57 65 66 54 55 56 57 62 61 63 61 59.5
prob⇥heuristic 72 73 70 70 66 66 71 72 72 70 75 75 71.0

heuristic 75 75 73 73 75 75 78 80 76 76 75 75 75.7
1.5 just prob. 52 55 61 61 54 54 55 56 61 63 56 60 58.2

prob⇥heuristic 75 76 74 75 72 72 78 78 73 76 77 80 76.2

Table 7.8: Winner prediction scores (in %) for 3 main metrics. For the left columns (“m”), we
considered only military units. For the right columns (“ws”) we also considered static defense
and workers. The “heuristic” metric is a baseline heuristic for battle winner prediction for
comparison using army values, while “just prob.” only considers P(Cc|EC) to predict the winner,
and “prob⇥heuristic” balances the heuristic’s predictions with

P

Cc,EC P(Cc|EC)P(EC).

Figure 7.15: 2 dimensional Isomap projection of a small dataset of battles for Zerg (vs Pro-
toss) with most probable Gaussian mixture components as labels. The clusters are (Gaussian
components) are labeled in colored numbers and projected in this 2 dimensional space.

The clusters identified by the numbers 2 and 7 (in this projection) are not so discriminative, so
they probably correspond to a classic backbone that we find in several mixtures.

Figure 7.16 shows a parallel plot of army compositions. We removed the less frequent unit
types to keep only the 8 most important unit types of the PvP match-up, and we display a 8
dimensional representation of the army composition, each vertical axis represents one dimension.
Each line (trajectory in this 8 dimensional space) represents an army composition (engaged in
a battle) and gives the percentage9 of each of the unit types. These lines (armies) are colored

9scales are between 0 and a maximum value ≤ 100%, different across unit types
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with their most probable mixture component, which are shown in the rightmost axis. We have
8 clusters (Gaussian mixtures components): this is not related to the 8 unit types used as the
number of mixtures was chosen by BIC* score. Expert StarCraft players will directly recognize
the clusters of typical armies, here are some of them:

• Light blue corresponds to the “Reaver Drop” tactical squads, which aims are to transport
(with the flying Shuttle) the slow Reaver (zone damage artillery) inside the opponent’s
base to cause massive economical damages.

• Red corresponds to the “Nony” typical army that is played in PvP (lots of Dragoons,
supported by Reaver and Shuttle).

• Green corresponds to a High Templar and Archon-heavy army: the gas invested in such
high tech units makes it that there are less Dragoons, completed by more Zealots (which
cost no gas).

• Purple corresponds to Dark Templar (“sneaky”, as Dark Templars are invisible) special
tactics (and opening).

Figure 7.16: Parallel plot of a small dataset of Protoss (vs Protoss, i.e. in the PvP match-up)
army clusters on most important unit types (for the match-up). Each normalized vertical axis
represents the percentage of the units of the given unit type in the army composition (we didn’t
remove outliers, so most top (tip) vertices represent 100%), except for the rightmost (framed)
which links to the most probable GMM component. Note that several traces can (and do) go
through the same edge.

Analysis of dynamics

Figure 7.17 showcases the dynamics of clusters components: P(ECt|ECt+1, for Zerg (vs Protoss)
for ∆t of 2 minutes. The diagonal components correspond to those which do not change between
t and t+1 (, t+2minutes), and so it is normal that they are very high. The other components
show the shift between clusters. For instance, the first line seventh column (in (0,6)) square
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shows a brutal transition from the first component (0) to the seventh (6). This may be the
production of Mutalisks10 from a previously very low-tech army (Zerglings).

Figure 7.17: Dynamics of clusters: P(ECt|ECt+1) for Zerg, with ∆t = 2 minutes

Extensions

Here, we focused on asking P(U t+1|eut, ttt, λ = 1), and evaluated (in the absence of ground
truth for full armies compositions) the two key components that are P(U |C) (or P(EU |EC))
and P(Cc|EC). Many other questions can be asked: P(TT t|eut) can help us adapt our tech
tree development to the opponent’s army. If we know the opponent’s army composition only
partially, we can benefit of knowledge about ETT to know what is possible, but also probable,
by asking P(ECt|Observations).

10Mutalisks are flying units which require to unlock several technologies and thus for which player save up for
the production while opening their tech tree.
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7.8 Conclusion

We contributed a probabilistic model to be able to compute the distribution over openings
(strategies) of the opponent in a RTS game from partial and noisy observations. The bot can
adapt to the opponent’s strategy as it predicts the opening with 63 − 68% of recognition rate
at 5 minutes and > 70% of recognition rate at 10 minutes (up to 94%), while having strong
robustness to noise (> 50% recognition rate with 50% missing observations). It can be used in
production due to its low CPU (and memory) footprint.

We also contributed a semi-supervised method to label RTS game logs (replays) with open-
ings (strategies). Both our implementations are free software and can be found online11. We use
this model in our StarCraft AI competition entry bot as it enables it to deal with the incomplete
knowledge gathered from scouting.

We presented a probabilistic model inferring the best army composition given what was
previously seen (from replays, or previous games), integrating adaptation to the opponent with
other constraints (tactics). One of the main advantages of this approach is to be able to deal
natively with incomplete information, due to player’s intentions, and to the fog of war in RTS.
The army composition dimensionality reduction (clustering) can be applied to any game and
coupled with other techniques, for instance for situation assessment in case-based planning.
The results in battle outcome prediction (from few information) shows its situation assessment
potential.

11https://github.com/SnippyHolloW/OpeningTech/
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Chapter 8

BroodwarBotQ

Dealing with failure is easy: Work hard to improve. Success is also easy to

handle: You’ve solved the wrong problem. Work hard to improve.

Alan J. Perlis (1982)

I
n this chapter, we present some of the engineering that went in the robotic player (bot)
implementation, which may help the comprehension of the organization and utility of the

different chapters. We will also present the different flows of informations and how decisions are
made during a game. Finally we will present the results of the full robotic player to various bots
competitions.

8.1 Code architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 A game walk-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.1 Code architecture

Our implementation1 (BSD licensed) uses BWAPI2 to get information from and to control
StarCraft. The bot’s last major revision (January 2011) consists of 23,234 lines of C++ code,
making good use of boost libraries and BWTA (Brood War Terrain Analyzer). The learning of
the parameters from the replays is done by separated programs, which serialize the probability
tables and distribution parameters, later loaded by BroodwarBotQ each game.

The global (simplified) view of the whole bot’s architecture is shown in Figure 8.1. There
are three main divisions: “Macro” (economical and production parts), “Intelligence” (everything
information related) and “Micro” (military units control/actions). Units (workers, buildings,
military units) control is granted through a centralized Arbitrator to “Macro” parts and Goals.
This is a bidding system in which parts wanting a unit bid on it relatively to the importance of
the task they will assign it. There may (should) be better systems but it works. We will now
detail the parts which were explained in the previous three chapters.

1BroodwarBotQ, code and releases: http://github.com/SnippyHolloW/BroodwarBotQ
2BWAPI: http://code.google.com/p/bwapi/
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Figure 8.1: Simple view of the code architecture of BroodwarBotQ, the most important
interactions are shown: every piece which has responsibility for the control of units refer to the
Arbitrator, all macro components compete for resources, all other arrows represent orders or
important transfers of information.

8.1.1 Units control

As presented in chapter 5, units are controlled in a sensory-motor fashion through Bayesian
fusion of physical or abstract influences. Units pursuing a common objective are regrouped in a
UnitsGroup, which sets this objective for every unit it commands. This objective is generated
for each unit from the needs of a higher-up Goal (see below) through achieve() or cancel().

The BayesianUnit class has different fusion modes (see section 5.3.3) set by the UnitsGroup
depending on the Goal type and on the situation (number and types of enemies, terrain...).
Its sensory inputs are fed by the UnitsGroup (objectives) and by the MapManager (potential
damages, terrain) and the EUnitsFilter (enemy units).

A derivative (child) of the BayesianUnit class is instantiated for each unit that is controlled.
A BayesianUnit is a modal FSM* as shown in Figure 5.7. It presents a simple interface to
move and fight (the micro() method). Some parameter can be specialized depending on the
particularities of unit types:

• the list of priority unit types to target (because of units attacks efficiencies as in rock/pa-
per/scissors),

• the reasons for which to flee (flee?()),

• micro() itself can be specialized further if the two points above do not suffice to produce
a skillful behavior (for very special unit types: casters).

A call to micro() then decides of the course of actions during a fight (applying Bayesian fusion
with the right sensory inputs when moving).
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8.1.2 Tactical goals

The decision that we want our AI system to make at this level is where and how to attack. This
is reflected in the StarCraft bot as a Goal creation. Goals are interfacing high level tactical
thinking with the steps necessary to their realization. A Goal recruits units and binds them
under a UnitsGroup (see section 5.3.3). A Goal is an FSM* in which two states are simple
planners (an FSM with some form of procedural autonomy), it has:

• preconditions, for instance a drop attack needs to specify at least a transport unit (Shut-
tle/Dropship/Overlord) and ground attack units.

• hard states: waiting precondition, in progress, in cancel, achieved, canceled, which corre-
sponds to the Goal advancement..

• and and/or or logic subgoals with:

– a realization test

– a proposition of action to try to realize it

– an estimation of the “distance” to realization

In the in progress and in cancel modes, the “plan” is a simple search in the achievable subgoals
and their “distance” to realization.

The tactical model can specify where to attack by setting a localized subgoal (Forma-
tion/See/Regroup/KillSubgoal...) to the right place. It can specify how by setting the adequate
precondition(s). It also specifies the priority of a Goal so that it has can bid on the control of
units relatively to its importance. The GoalManager updates all Goals that were inputed and
act as a proxy to the Arbitrator for them.

8.1.3 Map and movements

The MapManager keeps track of:

• the economical and military bases (positions) of the enemy,

• the potential damages map, which is updated with each new observations (units, spells...),

• the “walkability” of the terrain (static terrain and buildings).

It also provides threaded pathfinder services which are used by UnitsGroups to generate objec-
tives waypoints when the Goal’s objectives are far. This pathfinder can be asked specifically to
avoid certain zones or tiles.

8.1.4 Technology estimation

The ETechEstimator does constant build tree* prediction as explained in section 7.5, and so it
exposes the distribution on the enemy’s tech tree* as a “state estimation service” to other parts
of the bot taking building and production decision. It also performs openings* prediction during
the first 15 minutes of the game, as explained in section 7.6.
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New enemy units observations are taken into account instantly. When we see an enemy unit
at time t, we infer that all the prerequisites were built at least some time t0 earlier according to
the formula: t0 = t− ubd− umd with ubd being the unit’s building duration (depending on the
unit type), and umd being the unit’s movement duration depending on the speed of the unit’s
type, and the length of the path from its current position to the enemy’s base. We can also
observe the upgrades that the units have when we see them, and so we take that into account the
same way. For instance, if a unit has an attack upgrade, it means that the player has the require
building since at least the time of observation minus the duration of the upgrade research.

The distribution on openings* computed by the ETechEstimator serves the purpose of rec-
ognizing the short term intent of the enemy. This way, the ETechEstimator can suggest the
production of counter measures to the opponent’s strategy and special tactics. For instance,
when the belief that the enemy is doing a “Dark Templars” opening (an opening aimed at rush-
ing invisible technology before the time at which a standard opening reaches detector technology,
to inflict massive damage) pass above a threshold, the ETechEstimator suggests the construction
of turrets (Photon Cannon, static defense detectors) and Observers (mobile detectors).

8.1.5 Enemy units filtering

At the moment, enemy units filtering is very simple and just diffuse uniformly (with respect to
its speed) the probability of a unit to be where it was last seen before totally forgetting about
its position (not its existence) when it was not seen for too long. We will now shortly present
an improvement to this enemy units tracking.

A possible improved enemy units tracking/filtering

We consider a simple model, without speed nor steering nor See variable for each position/unit.
The fact that we see positions where the enemy units are is taken into account during the update.
The idea is to have (learn) a multiple influences transition matrix on a Markov chain on top
of the regions discretization (see chapter 6), which can be seen as one Markov chain for each
combination of motion-influencing factors.

The perception of such a model would be for each unit if it is in a given region, as the
bottom diagram in Figure B.2. From there, we can consider either map-dependent regions,
regions uniquely identified as they are in given maps that is; or we can consider regions labeled
by their utility. We prefer (and will explain) this second approach as it allows our model to be
applied on unknown (never seen) maps directly and allows us to incorporate more training data.
The regions get a number in the order in which they appear after the main base of the player
(e.g. see region numbering in Fig. 6.2 and 8.2).

Variables

The full filter works on n units, each of the units having a mass in the each of the m regions.

• Agg 2 {true, false}, the player’s aggressiveness (are they attacking or defending?), which
can comes from other models but can also be an output here.

• UTi2J1...nK 2 {unit types} the type of the ith tracked unit, with K unit types.

• Xt−1
i2J1...nK 2 Jr1 . . . rmK, the region in which is the ith unit at time t− 1.
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• Xt
i2J1...nK 2 Jr1 . . . rmK, the region in which is the ith unit at time t.

Joint Distribution

We consider all units conditionally independent give learned parameters. (This may be too
strong an assumption.)

P(Agg, UT1:m, Xt−1,t
1:m,1:n) (8.1)

= P(Agg)

n
Y

i=1

⇥

P(UTi)P(X
t−1
i )P(Xt

i |Xt−1
i , UTi, Agg)

⇤

(8.2)

Forms

• P(Agg) = Binomial(pagg) is a binomial distribution.

• P(UTi) = Categorical(K, put) is categorical distribution (on unit types).

• P(Xt−1
i ) = Categorical(m, preg) is a categorical distribution (on regions).

• P(Xt
i |Xt−1

i , UTi, Agg) are #{units_types} ⇥ |Agg| = K ⇥ 2 different m ⇥ m matrices
of transitions from regions to other regions depending on the type of unit i and of the
aggressiveness of the player. (We just have around 15 unit types per race (K ⇡ 15) so we
have ⇡ 15⇥ 2 different matrices for each race.)

Identification (learning)

P(Xt
i |Xt−1

i , UTi, Agg) is learned with a Laplace rule of succession from previous games.
Against a given player and/or on a given map, one can use P(Xt

i |Xt−1
i , UTi, Agg, P layer,Map)

and use the learned transitions matrices as priors. When a player attacks in the dataset, we can
infer she was aggressive at the beginning of the movements of the army which attacked. When
a player gets attacked, we can infer she was defensive at the beginning of the movements of the
army which defended. At other times, P(Agg = true) = P(Agg = false) = 0.5.

PP (Xt
i = r|Xt−1

i = r0, UTi = ut,Agg = agg)

/ 1 + ntransitions(r
0 ! r, ut, agg)P(agg)

#{entries_to_r}+Pm
j=1 ntransitions(r0 ! rj , ut, agg)P(agg)

Note that we can also (try to) learn specific parameters of this model during games (not a
replay, so without full information) against a given opponent with EM* to reconstruct and learn
from the most likely state given all the partial observations.

Update (filtering)
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• When a unit i becomes hidden, which was seen in region r just before, we have:
8

<

:

P(Xt
i = r) = 1.0

P(Xt
i = rj) = 0.0 8j iff rj 6= r

• For all regions r that we see “totally” (above a threshold of a percentage of the total area),
we set P(Xt

i = r) = 0.0 and redistribute their probability mass to hidden (or still partially
hidden) regions (algorithm 6):

Algorithm 6 Culling/updating algorithm for filtering visible regions

for all i 2 {enemy_units} do
s 0.0
for all r 2 {visible_regions} do

s s+ P(Xt−1
i = r)

P(Xt−1
i = r) = 0.0

end for
total Pm

j=1 P(X
t−1
i = rj)

for all r 2 {¬visible_regions} do
P(Xt

i = r) P(Xt
i = r) + s

total ⇥ P(Xt−1
i = r)

end for
end for

• For all the other cases, we have:

P(Xt
i = r) =

m
X

j=1

P(Xt−1
i = r0j)P(X

t
i = r|Xt−1

i = r0j , UTi, Agg)

Questions

• When we want to infer where the n enemy units are, we ask:

P(Xt
1:n|UT1:n = ut1:n)

/
X

Agg

P(Agg)

n
Y

i=1

P(uti)
X

Xt−1
i

P(Xt
i |Xt−1

i , uti, Agg)

/
true
X

Agg=false

P(Agg)
n
Y

i=1

P(UTi = uti)
m
X

j=1

P(Xt
i |Xt−1

i = rj , uti, Agg)

• When we want to infer the aggressiveness of the enemy (from the troupes’ movements that
we have seen), we ask:

P (Agg|UT1:n = ut1:n)

/ P(Agg)

n
Y

i=1

P(uti)
X

Xt−1
i

P(Xt−1
i )

X

Xt
i

P(Xt
i |Xt−1

i , uti, Agg)
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Figure 8.2: Example of the units filter transition matrices on a simple map (same as in Fig. 6.2)
for aggressive and defensive sets of parameters for a given unit type. The thickness of the arrows
is proportional to the transition probability between regions.

Discussion

Offline learning of matrices (as shown in Fig. 8.2) of aggressive and defensive probable region
transitions (for a given unit type) should be simple maximum likelihood (or add-one smoothing)
on what happens in replays. With online learning (taking previous offline learned parameters
as priors), we could learn preferences of a given opponent.

By considering a particle filter [Thrun, 2002], we could consider a finer model in which we
deal with positions of units (in pixels or walk tiles or build tiles) directly, but there are some
drawbacks:

• The data to learn (offline or online) is sparse as there are several versions of the same map
and the combinatorics of start positions (2 occupied start positions on 4 possible most of
the time). This would need any form of spatial abstraction anyway, like distance to most
walked traces.

• Computation cost to track ⇡ 40 units makes it so that the particle sampling numbers
should be low to stay real-time. Or that one should abandon the motion model for a
Kalman filter [Kalman, 1960].

The advantages are not so strong:

• (hopefully) more precision in units position estimation,

• possibilities to have more complex motion models (updates/culling of the filter),
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• differentiation between trajectories of ground and flying units,

• differentiation between different trajectories of attacks inside large regions.

We would like to implement our regions-based enemy units filtering in the future, mainly for
more accurate and earlier tactical prediction (perhaps even drop tactics interception) and better
tactical decision making.

8.2 A game walk-through

We will now show key moments of the game, as was done with a human-played game in sec-
tion 4.1.2, but from the bot’s point of view (with debug output).

Figure 8.3: A full screen capture of some debug output of economical parts of BroodwarBotQ.
The orange text at the top left shows the minerals/minute and gas/minute rates as well as the
resources reserved for planned buildings and additional supply. The teal (light blue) rectangle
at the bottom of the game’s view shows the buildings that will be constructed (and their future
tentative positions). The big transparent (translucent) blue ellipses show the Pylons construction
coverage. The yellow rectangles (with numbers in their top left corners) show the future buildings
planned positions.

First, Figure 8.3 shows some economical elements of BBQ. The yellow rectangles show future
buildings placements. In the light blue (teal color) rectangle are the next buildings which are
planned for construction with their future positions. Here, the Protoss Pylon was just added to
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the construction plan as our Producer estimated that we will be supply* blocked in 28 seconds
at the current production rate. This is noted by the “we need another pylon: prevision supply 84
in 28 sec” line, as supply is shown doubled (for programmatic reasons, so that supply is always
an integer): 84 is 42, and we have a current max supply* of 41 (top right corner).

Our buildings placer make it sure that there is always a path around our buildings blocks with
a flow algorithm presented in the appendix in algorithm 9 and Figure B.7. It is particularly
important to be able to circulated in the base, and that newly produced units are not stuck
when they are produced (as they could is there was a convex enclosure as in Fig. B.7). Buildings
cannot be placed anywhere on the map, even more so for Protoss buildings, as most of them
need to be build under Pylon coverage (the plain blue ellipses in the screenshot). At the same
time, there are some (hard) tactical requirements for the placement of defensive buildings3.

At the beginning of the game, we have no idea about what the opponent is doing and thus our
belief about their opening equals the prior (here, we set the priori to be uniform, see section 7.6.3
for how we could set it otherwise) we send a worker unit to “scout” the enemy’s base both to
know where it is and what the enemy is up to. Figure 8.4 shows when we first arrive at the
opponent’s base in a case in which we have a strong evidence of what the opponent is doing
and so our beliefs are heavily favoring the “Fast Legs” opening (in the blue rectangle on the
right). We can see that with more information (the bottom picture) we make an even stronger
prediction.

If our bot does not have to defend an early rush by the opponent, it chooses to do a “push”
(a powerful attack towards the front of the opponent’s base) once it has a sufficient amount of
military units, while it expands* (take a second base) or opens up its tech tree*. The first push
is depicted in Figure 8.5:

• First (top), we regroup our forces in front of the opponent’s base with a formation SubGoal.

• By trying to enter the opponent’s base (second screenshot), our units have to fight they
way through.

• The bottom left picture shows the distribution on P(Diri) for the possible movements
directions of one of the units at the top. We can see that it wants to avoid collision with
allied units while going towards its target.

• The bottom right picture shows our units “kiting back” (retreating while fighting) to avoid
being exposed in the ramp up the cliff (right part of the image).

BroodwarBotQ then goes up the ramp and destroys the base of the built-in AI.

3A good benchmark for buildings positioning would be to test if an AI can perform a “Forge expand” which
consists in blocking all ground paths with buildings and protecting against the early rushes with judiciously
placed Photon Cannons, without any military unit.
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Figure 8.4: Crops of screenshots of the first scouting (discovery) of an opponent’s base in a
Protoss vs Protoss game. The buildings shown here are the ones of the opponent. The yellow
squares represent the pathfinding output. On the bottom, in the blue rectangle, are displayed
the possible openings for the Protoss opponent and their respective probabilities (in percentage)
according what we have seen. The top picture was captured a few seconds before the right one
and thus we had less information about the opponent’s buildings (the upper right part is black
because of the fog of war).
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Figure 8.5: Crops of screenshots of an attack towards a Protoss opponent. The first screenshot
(top) shows the units arriving at their formation SubGoal objectives (purple disks), the second
shows the switch to the fight mode (for ground units) with the first enemy units appearing on
the right. The third (bottom left) and fourth (bottom right) screenshots show the battle as
it happens. The small squares (white to blue) show the attraction of one unit for its possible
directions (P(Diri)8i): the whiter it is, the higher the probability to go there.
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8.3 Results

BroodwarBotQ (BBQ) consistently beats the built-in StarCraft: Broodwar AI4, to a point that
the original built-in AI is only used to test the stability of our bot, but not as a sparing/training
partner.

BroodwarBotQ took part in the Artificial Intelligence and Interactive Digital Entertainment
(AAAI AIIDE) 2011 StarCraft AI competition. It got 67 games counted as “crashes” on 360
games because of a misinterpretation of rules on the first frame5, which is not the real unstability
of the bot (⇡ 0,75% as seen in B.8). The results of AIIDE are in Table 8.1.

bot race refs win rate notes
Skynet Protoss 0.889 openings depending on opponent’s race
UAlbertaBot Protoss [Churchill and Buro, 2011] 0.794 always 2-Gates opening
Aiur Protoss 0.703 robust and stochastic strategies
ItayUndermind Zerg 0.658 6-pooling
EISBot Protoss [Weber et al., 2010b,a] 0.606 2-Gates or Dragoons opening
SPAR Protoss [Kabanza et al., 2010] 0.539 uses Dark Templars
Undermind Terran 0.517 Barracks units
Nova Terran [Pérez and Villar, 2011] 0.475 robust play
BroodwarBotQ Protoss 0.328 adapts to the opening
BTHAI Zerg [Hagelbäck and Johansson, 2009] 0.319 Lurkers opening
Cromulent Terran 0.300 Factory units
bigbrother Zerg 0.278 Hydralisks and Lurkers
Quorum Terran 0.094 expands and produce Factory units

Table 8.1: Result table for the AIIDE 2011 StarCraft AI competition with 360 games played by
each bot.

Also in 2011 was the Computational Intelligence and Games (IEEE CIG) 2011 StarCraft AI
competition. This competition had 10 entries6 and BroodwarBotQ placed 4th with a little luck
of seed (it did not have to play against Aiur). The finals are depicted in Table 8.2.

bot race crashes games wins
Skynet Protoss 0 30 26
UAlbertaBot Protoss 0 30 22
Xelnaga7 Protoss 3 30 11
BroodwarBotQ Protoss 2 30 1

Table 8.2: Result table of the finals for the CIG 2011 StarCraft AI competition (10 entries)

Finally, there is a continuous ladder in which BroodwarBotQ (last updated January 2012)
is ranked between 7 and 9 (without counting duplicates, there are ⇡ 20 different bots) and is
on-par with EISBot [Weber et al., 2010b,a] as can be seen in Figure B.8 (February 2012 ladder

4The only losses that our bot suffers against the built-in AI are against Zerg when the built-in AI does a
quick zergling rush attack (“6 pool”) on small maps. Human players who successfully counter this have a good
micro-management of workers as well as an efficient replanning of the first buildings (which is not BBQ’s case).

5the additional terrain analysis was not serialized and taking more than one minute on the frame 0, which
has no special tolerance as opposed as the year before.

6BroodwarBotQ https://github.com/SnippyHolloW/BroodwarBotQ, BTHAI http://code.google.com/p/

bthai/, AIUR http://code.google.com/p/aiurproject/, LSAI http://cs.lafayette.edu/~taylorm, EvoBot,
Protoss Beast Jelly http://wwbwai.sourceforge.net/, Xelnaga (modified AIUR), Skynet http://code.google.
com/p/skynetbot/, Nova http://nova.wolfwork.com/, UAlbertaBot
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ranking). We consider that this rating is honorable, particularly considering our approach and
the amount of engineering that went in the other bots. Note that the ladder and all previous
competitions do not allow to record anything (learn) about the opponents.

We want to give a quick analysis of the performance of BroodwatBotQ. We did not specialize
the bot for one (and only one) strategy and type of tactics, which makes our tactics less optimized
than other concurrents higher up in the ladder. Also, our bot tries to adapts its strategy, which
has two drawbacks:

• our strategy prediction model’s parameters were learned from human-played games, which
differ from bot’s games.

• some of the decision-making (particularly with regard to arbitrage of resources) is not
probabilistic and interfaces badly with the predictions and suggestions. For instance,
when we predict a “Dark Templars” opening, the ETechEstimator suggests building static
and mobile detectors, both may be out of our current tech tree*: how do we allocate our
(limited) resources and plan the constructions, while taking into consideration the current
building and production plan? This is not solved currently in a unified manner.

171





Chapter 9

Conclusion

Man’s last mind paused before fusion, looking over a space that included nothing

but the dregs of one last dark star and nothing besides but incredibly thin matter,

agitated randomly by the tag ends of heat wearing out, asymptotically, to the absolute

zero.

Man said, “AC, is this the end? Can this chaos not be reversed into the Universe

once more? Can that not be done?”

AC said, “THERE IS AS YET INSUFFICIENT DATA FOR A MEANINGFUL

ANSWER.”

Isaac Asimov (The Last Question, 1956)

9.1 Contributions summary

We classified the problems raised by game AI, and in particular by RTS AI. We showed how the
complexity of modern video games makes it so that game AI systems can only be incompletely
specified comparatively to all the states the player can put the game in. This leads to uncertainty
about our model, but also about the model of the opponent. Additionally, video games are often
partially observable, sometimes stochastic, and most of them require motor skills (quick and
precise hands control), which will introduce randomness in the outcomes of player’s actions.
We chose to deal with incompleteness by transforming it into uncertainty about our reasoning
model. We bind all these sources of uncertainty in Bayesian models.

Our contributions about reducing the complexity of specifying and controlling game AI
systems are:

• In chapter 5, we produced reactive, decentralized, multi-agent control by transforming
the incompleteness about allied units intentions into uncertainty of their future locations.
This can be viewed as an extension of Bayesian robot programming [Lebeltel et al., 2004]
in a multi-agent setting. Instead of specifying a distribution on the possible directions
knowing the sensory inputs, we specified the sensor distribution (independently of each
other sensors) knowing the direction (P(Sensor|Direction)). This approach, called inverse

programming, can be viewed as “instead of specifying the states and their transitions based
on sensors (an FSM), we specifying what the sensors should be when we are in a given
state”, reverting some of the burden of specifying behaviors, and in a probabilistic setting.
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This is an extension of the work on inverse programming for Unreal Tournament avatars
[Le Hy et al., 2004]. Combined, these contributions lead to real-time micro-management
behaviors for StarCraft, which achieved very satisfying results (ex-aequo with the best
micro-management AI of AIIDE 2010 competition), and were published in [Synnaeve and
Bessière, 2011a].

• By going up in the ladder of abstraction (strategy & tactics), we were able to exploit
what we previously called vertical continuity (see section 2.8.1) through hierarchical mod-
els. About strategy (chapter 7), from low-level observations, we produced build trees*
(section 7.5, [Synnaeve and Bessière, 2011]), and built upon that to infer openings* (sec-
tion 7.6, [Synnaeve and Bessière, 2011b]) and to constrain the inference on the opponent’s
army composition (section 7.7). Tactics (chapter 6) also make good use of the prediction
on the opponent’s tech tree*. When used in decision-making, our models are even more
constrained, because we have full knowledge of our state instead of distributions.

• We also took advantage of actions sequencing, previously called horizontal continuity (see
section 2.8.1), by assessing that, often, things which are done should not be undone (at least
not immediately) and that some strategic and tactical steps are prerequisite of intended
steps. At the strategic level, the distribution on build trees* is time-dependent: the
sequencing is encoded in the learned discrete Gaussian distributions (section 7.5, [Synnaeve
and Bessière, 2011]). The openings are filtered on previous inferences with a first order
Markovian assumption (section 7.6, [Synnaeve and Bessière, 2011b]), i.e. the value at
time t is dependent on the value at time t− 1. The army composition model (section 7.7)
makes use of temporal continuity to adapt the player’s army to the opponent’s future army
composition. Micro-management assumes an uncertain linear interpolation of future units
position resulting of trajectory continuity (instead of considering all possible positions), as
explained in subsection 5.3.1.

We used machine learning to help specifying our models, both used for prediction (opponent
modeling) and for decision-making. We exploited different datasets for mainly two separate
objectives:

• We produced relevant abstract models thanks to learning. For the labeling replays (allow-
ing for supervised learning of our full openings* prediction model), we used semi-supervised
(by selecting features and a scoring function) GMM* clustering of replays, as presented
in section 7.4 [Synnaeve and Bessière, 2011b]. In order to reason qualitatively and quan-
titatively about armies composition with a tractable model, we applied GMM to armies
unit types percentages to find the different composing components (section 7.7). For tac-
tics, we used heuristics (see subsection 6.3.2) for the evaluation of the regions, whose bias
(incompleteness) the model was adapted to by learning.

• We learned the parameters of our models from human-played games datasets. At the
strategic level, we learned the time-dependent distributions on the build trees and the
co-occurrence of openings with build trees in sections 7.5 and 7.6, respectively published
as [Synnaeve and Bessière, 2011], [Synnaeve and Bessière, 2011b]. We were also able to
study the strengths and weaknesses of openings this way (subsection 7.6.2, and we looked
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at the dynamics or army compositions (section 7.7). For tactics (see chapter 6), we learned
the co-occurrences of attacks with regions tactical properties.

Finally, we produced a StarCraft bot (chapter 8), which ranked 9th (on 13) and 4th (on 10),
respectively at the AIIDE 2011 and CIG 2011 competitions. It is about 8th (on ⇡ 20) on an
independent ladder containing all bots submitted to competitions (see Fig. B.8).

9.2 Perspectives

We will now present interesting perspectives and future work by following our hierarchical de-
composition of the domain. Note that there are bridges between the levels presented here. In
particular, having multi-scale reasoning seems necessary to produce the best strategies. For
instance, no current AI is able to work out a “fast expand*” (expand before any military pro-
duction) strategy by itself, in which it protects against early rushes by a smart positioning of
buildings, and it performs temporal reasoning about when the opponent is first a threat. This
kind of reasoning encompasses micro-management level reasoning (about the opponent units),
with tactical reasoning (of where and when), buildings positioning, and economical and produc-
tion planning.

9.2.1 Micro-management

Reactive behaviors

An improvement (explained in subsection 5.6.1) over our existing model usage would consist
in using the distributions on directions (P(Dir)) for each units to make a centralized decision
about which units should go where. This would allow for coordinated movements while retaining
the tractability of a decentralized model: the cost for units to compute their distributions on
directions (P(Dir)) is the same as in the current model, and there are methods to select the
movements for each unit which are linear in the number of units (for instance maximizing the
probability for the group, i.e. for the sum of the movements).

For the problem of avoiding local optima “trapping”, we proposed a “trailing pheromones
repulsion” approach in subsection 5.6.1 (see Fig. 5.14), but other (adaptive) pathfinding ap-
proaches can be considered.

Parameters identifications

Furthermore, the identification of the probability distributions of the sensors knowing the di-
rections (P(Sensor|Direction)) is the main point of possible improvements. In the industry,
behavior could be authored by game designers equipped with an appropriate interface (with
“sliders”) to the model’s parameters. As a competitive approach, reinforcement leaning or evo-
lutionary learning of the probability tables (or probability distributions’ parameters) seems the
best choice. The two main problems are:

• types and/or levels of opponents: as we cannot assume optimal play from the opponents
(at least not for large scale battles), the styles and types of the opponents’ control will
matter for the learning.

175



• differences in situations: as there are several types of micro-management situations, we
have to choose the granularity of learning settings (battles) and how we recognize them in-
game. We could consider the continuum of situations, and use Bayesian fusion of posteriors
from models learned in discrete contexts.

As the domain (StarCraft) is large, distributions have to be efficiently parametrized (normal,
log-normal, exponential distributions should fit our problem). The two main approaches to learn
these sensors distributions would be:

• Concurrent hierarchical reinforcement learning ([Marthi et al., 2005] showed how it can
work in Wargus).

• Co-evolving control policies by playing them against each others ([Miles et al., 2007, Avery
et al., 2009] presented a related work with influence maps).

.

9.2.2 Tactics

We explained the possible improvements around our model in subsection 6.7.2. The three most
interesting research directions for tactics would be:

• Improve tactical state estimation, so that both our tactical decision-making and tactical
prediction benefit from it. A first step would be to use a (dynamic) filtering on enemy
units. We proposed a simpler units filtering model based on the decomposition of the map
in regions in section 8.1.5.

• Use our learned parameters as bootstrap (“prior”) and keep on learning against a given
opponent and/or on a given map. We should count how often and in which circumstances
an attack, which should be successful, fails. It should even be done during a given game
(as human players do). This may be seen as an exploration-exploitation trade-off in which
our robotic player wants to minimize its regret for which multi-armed bandits [Kuleshov
and Precup, 2000] are a good fit.

• Tactical assault generation, so that we do not have to hard-code the tactical goals be-
haviors. The definition of tactics used in [Ponsen et al., 2006] is not exactly matching
ours, but they evolved some strategic and tactical decision elements (evolving knowledge
bases for CBR*) in Wargus. However, we are still far from script-independent tactics (in
StarCraft). Being able to infer the necessary steps to carry out a Drop (request a Drop-
ship and military units, put them in the Dropship at some location A and drop them at
location B to attack location C, retreat if necessary) attack would be a good benchmark
for tactics generation.

9.2.3 Strategy

Higher-level parameters as variables

Strategy is a vast subject and impacts tactics very much. There are several “strategic dimen-
sions”, but we can stick to the two strategy axes: aggressiveness (initiative), and economy/tech-
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nology/production balance. These dimensions are tightly coupled inside a strategical plan, as
putting all our resources in economy at time t is not aimed at attacking at time t+1. Likewise,
putting all our resources in military production at time t is a mistake if we do not intend to be
aggressive at time t + 1. However, there are several combinations of values along these dimen-
sions, which lead to different strategies. We detailed these higher order views of the strategy in
section 7.1.

In our models (tactics & army composition), the aggressiveness is a parameter. Instead these
two strategic dimensions could be encoded in variables:

• A 2 {true, false} for the aggressiveness/initiative, which will influence tactical (When do
we attack?) and strategic models (How much do we adapt and how much do we follow
our initiative? How do we adapt?).

• ETP 2 {eco, tech, prod} which will arbitrate how we balance our resources between eco-
nomic expansion, technology advances and units production.

A possibility is yet again to try and use a multi-armed bandit acting on this two variables (A
and ETP ), which (hyper-)parametrize all subsequent models. At this level, there is a lot of
context to be taken into account, and so we should specifically consider contextual bandits.

Another interesting perspective would be to use a hierarchy (from strategy to tactics) of
reinforcement learning of (all) the bot’s parameters, which can be seen as learning the degrees
of liberty (of the whole bot) one by one as in [Baranès and Oudeyer, 2009]. A more realistic
task is to learn only these parameters that we cannot easily learn from datasets or correspond
to abstract strategical and tactical thinking (like A and ETP ).

Production & construction planning

A part of strategy that we did not study here is production planning, it encompasses planning
the use (and future collection) of resources, the construction of buildings and the production of
units. Our bot uses a simple search, some other bots have more optimized build-order search,
for instance UAlbertaBot uses a build-order abstraction with depth-first branch and bound
[Churchill and Buro, 2011]. Planning can be considered (and have been, for instance [Bartheye
and Jacopin, 2009]), but it needs to be efficient enough to re-plan often. Also, it could be
interesting to interface the plan with the uncertainty about the opponent’s state (Will we be
attacked in the next minute? What is the opponent’s technology?).

A naive probabilistic planning approach would be to plan short sequences of constructions
as “bricks” of a full production plan, and assign them probability variables which will depend
on the beliefs on the opponent’s states, and replan online depending on the bricks probabilities.
For instance, if we are in a state with a Protoss Cybernetics Core (and other lower technology
buildings), we may have a sequence “Protoss Robotics Facility ! Protoss Observatory” (which
is not mutually exclusive to a sequence with Protoss Robotics Facility only). This sequence
unlocks detector technology (Observers are detectors, produced out of the Robotics Facility),
so its probability variable (RO) should be conditioned on the belief that the opponent has
invisible units (P(RO = true|Opening = DarkTemplar) = high or parametrize P(RO|ETT )

adequately). The planner would both use resources planning, time of construction, and this
posterior probabilities on sequences.
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9.2.4 Inter-game Adaptation (Meta-game)

In a given match, and/or against a given player, players tend to learn from their immediate
mistakes, and they adapt their strategies to each other’s. As this can be seen as a continuous
learning problem (reinforcement learning, exploration-exploitation trade-off), there is more to
it. Human players call this the meta-game*, as they enter the “I think that he thinks that I
think...” game until arriving at fixed points. This “meta-game” is closely related to the balance
of the game, and the fact that there are several equilibriums makes the interest of StarCraft.
Also, clearly, for human players there is psychology involved.

Continuous learning

For all strategic models, the possible improvements (subsections 7.5.3, 7.6.3, 7.7.2) would include
to learn specific sets of parameters against the opponent’s strategies. The problem here is that
(contrary to battles/tactics) there are not much observations (games against a given opponent) to
learn from. For instance, a naive approach would be to learn a Laplace’s law of succession directly
on P (ETechTrees = ett|Player = p) = 1+nbgames(ett,p)

#ETT+nbgames(p) , and do the same for EClusters,
but this could require several games. Even if we see more than one tech tree per game for the
opponent, a few games will still only show a sparse subset of ETT . Another part of this problem
could arise if we want to learn really in-game as we would only have partial observations.

Manish Meta [2010] approached “meta-level behavior adaptation in RTS games” as a mean
for their case-based planning AI to learn from its own failures in Wargus. The opponent is not
considered at all, but this could be an interesting entry point to discover bugs or flaws in the
bot’s parameters.

Bot’s psychological warfare

Our main idea for real meta-game playing by our AI would be to use our models recursively. As
for some of our models (tactics & strategy), that can be used both for prediction and decision-
making, we could have a full model of the enemy by maintaining the state of a model from them,
with their inputs (and continually learn some of the parameters). For instance, if we have our
army adaptation model for ourselves and for the opponent, we need to incorporate the output
of their model as an input of our model, in the part which predicts the opponent’s future army
composition. If we cycle (iterate) the reasoning (“I will produce this army because they will have
this one”...), we should reach these meta-game equilibriums.

Final words

Finally, bots are as far from having a psychological model of their opponent as from beating the
best human players. I believe that this is our adaptability, our continuous learning, which allows
human players (even simply “good” ones like me) to beat RTS games bots consistently. When
robotic AI will start winning against human players, we may want to hinder them to have only
partial vision of the world (as humans do through a screen) and a limited number of concurrent
actions (humans use a keyboard and a mouse so they have limited APM*). At this point, they
will need an attention model and some form of hierarchical action selection. Before that, all the
problems arose in this thesis should be solved, at least at the scale of the RTS domain.
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Glossary

AI directors system that overlooks the behavior of the players to manage the intensity, diffi-
culty and fun. 17

APM action per minute, an input speed frequency in competitive gaming. 38, 101, 178

Bayesian game a game in which information about knowledge about payoffs is incomplete.
28, 34

BIC Bayesian information criterion, a score for model selection. For a given model with n data
points, k parameters and L the maximum likelihood, BIC = −2 ln(L)+k ln(n). 126, 128,
156

BP Bayesian program. 47

branching factor (average) number of nodes at each level of a search tree, i.e. base b of the
complexity of a search of depth d in a tree, which is O(bd). 11, 21–23, 34

build order a formal specification of timings (most often indexed on total population count)
at which to perform build actions in the early game.. 61, 122, 125

build tree abbrev. for “buildings tree”, state of the buildings (and thus production) unlocked
by a player. 59, 119, 121–123, 131, 139, 143, 147, 148, 161, 174

BWAPI Brood War Application Programmable Interface. 101

BWTA BroodWar Terrain Analyser. 97, 205

CBR Case-Based Reasoning. 96, 122, 176

Dark Spore a fast-paced, sci-fi action-RPG, with PvP and cooperative (vs AI) modes. 17

DSL Domain Specific Language. 18

EM expectation-maximization, an iterative method to optimize parameters of statistical mod-
els depending on unobserved variables. The expectation (E) step gives the likelihood
depending on the latent variables, and the maximization (M) step computes maximizing
parameters for the expectation of this likelihood.. 125–127, 163

expand either placement of a new base or the action to take a new base (to collect more
resources).. 67, 167, 175
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fog of war hiding of some of the features (most often units and new buildings) for places where
a player does not have units in range of sight.. 16, 33, 38, 60, 61, 66, 98, 203

FPS First Person Shooter: egocentric shooter game, strong sub-genres are fast FPS, also called
“Quake-likes”, e.g. Quake III; and team/tactical FPS, e.g. Counter-Strike, Team Fortress
2. 16, 32, 37, 38, 40, 44, 91

FSM finite state machine. 18, 30, 79, 121, 160, 161

gameplay describes the interactive aspects of game design, which constraints the players possi-
ble behaviors and the players’ goals in a given game. Also, the category/type of the game..
15, 16, 28, 59, 60, 91

gamification the use of game mechanics and game design to enhance non-game contexts. 17

gas also called vespene, short for vespene gas. Advanced resource in StarCraft, use for all
advanced units, technological buildings, upgrades and researches. It can be harvested only
once an assimilator/refinery/extractor has been built on the gas geyser and maximally fast
with 3 workers only at the closest (standard) distance to the resource depot.. 59, 61, 62,
102

GMM Gaussian mixture model, a generative model in which observations are the outcomes of
mixtures of normal distribution.. 125, 126, 174

goban board used for the game of Go. 23

HFSM hierarchical finite state machine. 18, 81

HMM Hidden Markov Model, a dynamic Bayesian network estimating hidden states following
a Markov process from observations. 44, 122

HTN hierarchical task network. 18, 30, 122

Left 4 Dead a teamplay (cooperative vs AI) survival horror FPS in which players have to fight
and escape zombie hordes. 17

match-up the pairing of two factions in StarCraft for a match in the form XvY, with X and
Y being factions. When we consider only one race’s strategy, it should be in front. For
instance, PvT is the Protoss versus Terran match-up, with Protoss being studied if the
features are not symmetric.. 124, 126, 129, 135, 142, 146, 147, 154

max supply also total supply, maximum number of units that a player can control at a given
time, can be increased up to a hard limit (200 in StarCraft).. 61, 62, 102, 167

MCMC Monte-Carlo Markov chain. 115

MCTS Monte-Carlo Tree Search. 23, 24, 115

MDP Markov decision process. 37, 38
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meta-game preparation and maneuvering before (and between) games to exploit: current
trends, opponent’s style and weaknesses, map’s specificities (safe zones, back doors, tim-
ings), and psychological “mind games”.. 178

micro-management gameplay actions that are manually addressed by the player; the way of
maximizing one’s army efficiency by using the units to the maximum of their potential..
59, 65, 67, 71–73, 78, 209

mineral basic resource in StarCraft, used for everything. It can be harvested increasingly faster
with the number of workers (up to an asymptote).. 59, 61, 62, 102

mini-map radar view of the full game area, shown in the bottom corner of the interface in
StarCraft.. 62

MMORPG Massively Multi-player Online Role Playing Game, distinct of RPG by the scale
of cooperation sometimes needed to achieve a common goal, e.g. Dark Age of Camelot,
World of Warcraft. 16, 43, 48, 49

NPC non-playing characters: game AI controlled third party characters, which were not con-
ceived to be played by humans as opposed to “bots”. 15–17, 57

opening in Chess as in RTS games: the first strategic moves of the game, the strategy of the
early game. 61, 63, 66, 121, 123–125, 142, 161, 162, 174

partisan (game) which is not impartial, in which a player can do actions another can not do
(move a faction while the other player(s) cannot). 21

perfect-information (game) in which all the players have complete knowledge of the (board)
state of the game. 21

POMDP partially observable Markov decision process. 38, 71, 94

positional hashing a method for determining similarities in (board) positions using hash func-
tions. 24

pro-gamer professional gamer, full-time job. 16, 60

PvE Players vs Environment. 17, 31, 49

PvP Players versus Players. 17

replay the record of all players’ actions during a game, allowing the game engine to recreate
the game state deterministically. 16, 60, 101, 124

replayability replay value, entertainment value of playing the game more than once. 17

RL reinforcement learning. 74

RPG Role Playing Game, e.g. Dungeons & Dragons based Baldur’s Gate. 16, 32, 38, 40, 91
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RTS Real-Time Strategy games are (mainly) allocentric economic and military simulations from
an operational tactical/strategist commander viewpoint, e.g. Command & Conquer, Age
of Empires, StarCraft, Total Annihilation. 11, 12, 16, 37, 38, 40

rush quick aggressive opening. 123

solved game a game whose outcome can be correctly predicted from any position when each
side plays optimally. 19

StarCraft: Brood War a science fiction real-time strategy (RTS) game released in 1998 by
Blizzard Entertainment. 16

supply cost in population (or supply) of a given unit, or current population count of a player.
Originally, the Terran name for population/psi/control.. 61, 62, 102, 167

tech tree abbreviation for “technological tree”, state of the technology (buildings, researches,
upgrades) which are unlocked/available to a given player.. 59, 61, 63, 68, 98–100, 113,
119–123, 148, 161, 167, 171, 174, 207

UCT Upper Confidence Bounds for Trees. 24, 115

zero-sum game a game in which the total score of each players, from one player’s point-of-
view, for every possible strategies, adds up to zero; i.e. “a player benefits only at the
expense of others”. 19
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Appendix A

Game AI

A.1 Negamax

Algorithm 7 Negamax algorithm (with closures)

function negamax(depth)
if depth  0 then

return value()
end if
↵ −1
for all possible moves do

↵ max(↵,−negamax(depth− 1))
end for
return ↵

end function

A.2 “Gamers’ survey” in section 2.9 page 42

Questions

How good are you?

• Very good

• Good

How important is the virtuosity? (to win the game) reflexes, accuracy, speed, "mechanics"

• 0 (not at all, or irrelevant)

• 1 (counts, can be game changing for people on equal level at other answers)

• 2 (counts a lot, can make a player win even if he is a little worse on lower importance

gameplay features)

How important is deductive thinking? (to win the game) "If I do A he can do B but not C"

or "I see E so he has done D", also called analysis, forward inference."
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• 0 (not at all, or irrelevant)

• 1 (counts, can be game changing for people on equal level at other answers)

• 2 (counts a lot, can make a player win even if he is a little worse on lower importance
gameplay features)

How important is inductive thinking? (to win the game) "He does A so he may be thinking

B" or "I see D and E so (in general) he should be going for F (learned)", also called generalization,

"abstraction".

• 0 (not at all, or irrelevant)

• 1 (counts, can be game changing for people on equal level at other answers)

• 2 (counts a lot, can make a player win even if he is a little worse on lower importance

gameplay features)

How hard is decision-making? (to win the game) "I have options A, B and C, with regard

to everything I know about this game, I will play B (to win)", selection of a course of actions.

• 0 (not at all, or irrelevant)

• 1 (counts, can be game changing for people on equal level at other answers)

• 2 (counts a lot, can make a player win even if he is a little worse on lower importance

gameplay features)

You can predict the next move of your opponent: (is knowledge of the game or of the

opponent more important)

• 1 by knowing what the best moves are / the best play for him?

• -1 by knowing him personally (psychology)?

• 0 both equal

What is more important:

• 1 knowledge of the game (general strategies, tactics, timings)

• -1 knowledge of the map (specific strategies, tactics, timings)

• 0 both equal

Results
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Game Virtuosity Deduction Induction Decision-Making Opponent Knowledge
(sensory-motor) (analysis) (abstraction) (acting) -1: subjectivity -1: map

[0-2] [0-2] [0-2] [0-2] 1: objectivity 1: game
top rest n top rest n top rest n top rest n top rest n top rest n

Chess X X X 1.714 1.815 34 1.714 1.429 35 1.714 1.643 35 0.714 0.286 35 X X X
Go X X X 2.000 1.667 16 2.000 1.600 16 2.000 1.600 16 1.000 0.533 16 X X X
Poker X X X 1.667 0.938 22 1.667 1.562 22 1.333 1.625 22 -0.167 -0.375 22 X X X
Racing 2.000 1.750 19 0.286 0.250 19 0.571 0.000 19 1.286 0.833 19 0.571 0.455 18 -0.286 -0.333 19
TeamFPS 1.917 1.607 40 1.083 1.000 39 1.417 0.929 40 1.417 1.185 39 0.000 0.214 40 -0.083 -0.115 38
FFPS 2.000 2.000 22 1.250 1.000 21 1.125 1.077 21 1.125 1.231 21 0.250 -0.154 21 0.250 0.083 20
MMORPG 1.118 1.000 29 1.235 0.833 29 1.176 1.000 29 1.235 1.250 29 0.471 0.250 29 0.706 0.833 29
RTS 1.941 1.692 86 1.912 1.808 86 1.706 1.673 83 1.882 1.769 86 0.118 0.288 86 0.412 0.481 86

Table A.1: Results of the survey (means) for “top” players and the “rest” of answers, along with the total number of answers (n).
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Appendix B

StarCraft AI

B.1 Micro-management

Algorithm 8 (Simplified) Target selection heuristic, efficiently implemented with a enemy units
$ damages bidirectional map: bimap : u, d! (left : u! d, right : d! u)

function on_death(unit)
remove_incoming_damages(unit.target, damages(unit, unit.target))

end function
function register_target(unit, target)

add_incoming_damages(target, damages(unit, target))
unit.target target

end function
function select_target(unit)

for all eunit 2 focus_fire_order(enemy_units) do
if eunit.type 2 priority_targets(unit.type) then

if in_range(unit, eunit) then
register_target(unit, eunit)

else if unit.prio_target == NULL then
unit.prio_target eunit

end if
end if

end for
if unit.target == NULL then

for all eunit 2 focus_fire_order(enemy_units) do
if in_range(unit, eunit) then

register_target(unit, eunit)
end if

end for
end if
if unit.target == NULL and unit.prio_target == NULL then unit.prio_target  

closer(unit, enemy_units)
end if

end function
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Figure B.1: Plate diagram of a Bayesian unit with N possible directions.

B.2 Tactics

frame player name player id order/action X pos. Y pos. unit
...

...
...

...
...

...
...

6650 L.Nazgul[pG] 0 Train Probe
6720 SaFT.eSu 1 Train Probe
6830 L.Nazgul[pG] 0 Train Probe
7000 SaFT.eSu 1 Train Probe
7150 L.Nazgul[pG] 0 Build 39 108 Forge
7245 L.Nazgul[pG] 0 Build 36 108 Citadel of Adun
7340 L.Nazgul[pG] 0 Train Probe
7405 SaFT.eSu 1 Train Probe
7415 L.Nazgul[pG] 0 Train Probe
7480 SaFT.eSu 1 Train Shuttle
7510 SaFT.eSu 1 Build 26 24 Robotics Support Bay
...

...
...

...
...

...
...

Table B.1: Example of what is in a replay (in human readable format), lines with non-empty
positions are constructions of buildings. Several other action types are not represented (current
selection, move/attack orders...)

B.2.1 Decision-making: soft evidences and coherence variables

Here we will present the full tactical model for decision making, with soft evidences of variables
we know only partially (variables we have only the distribution).

Variables

In the tactical model (section 6.5), for some variables, we take uncertainty into account with
“soft evidences”: for instance for a region in which no player has a base, we have a soft evidence
that it belongs more probably to the player established closer. In this case, for a given region,
we introduce the soft evidence variable(s) B0 and the coherence variable λB and impose P(λB =



1|B,B0) = 1.0 iff B = B0, else P(λB = 1|B,B0) = 0.0; while P(λB|B,B0)P(B0) is a new factor
in the joint distribution. This allows to sum over P(B0) distribution (soft evidence). We do that
for all the variables which will not be directly observed in decision-making.

Decomposition

The joint distribution of our model contains soft evidence variables for all input family variables
(E, T,B,GD,AD, ID) as we cannot know for sure the economical values of the opponent’s
regions under the fog of war* (E), nor can we know exactly the tactical value (T ) for them,
nor the possession of the regions (B), nor the exact defensive scores (GD,AD, ID). Under this
form, it deals with all possible uncertainty (from incomplete information) that may come up in
a game. For the n considered regions, we have:

P(A1:n, E1:n, T1:n, TA1:n, B1:n, B
0
1:n, λB,1:n, T

0
1:n, λT,1:n, (B.1)

E0
1:n, λE,1:n, ID

0
1:n, λID,1:n, GD0

1:n, λGD,1:n, AD
0
1:n, λAD,1:n, (B.2)

H1:n, GD1:n, AD1:n, ID1:n, HP, TT ) (B.3)

=
n
Y

i=1

[P(Ai)P(Ei, Ti, TAi, Bi|Ai) (B.4)

P(λB,i|B1:n, B
0
1:n)P(B

0
1:n)P(λT,i|T1:n, T

0
1:n)P(T

0
1:n) (B.5)

P(λE,i|E1:n, E
0
1:n)P(E

0
1:n)P(λID,i|ID1:n, ID

0
1:n)P(ID

0
1:n) (B.6)

P(λGD,i|GD1:n, GD0
1:n)P(GD0

1:n)P(λAD,i|AD1:n, AD
0
1:n)P(AD

0
1:n) (B.7)

P(ADi, GDi, IDi|Hi)P(Hi|HP )] P(HP |TT )P(TT ) (B.8)

The full plate diagram of this model is shown in Figure B.6.

Forms

To the previous forms (section 6.5.1), we add for all variables which were doubles (X with X 0):

8

<

:

P(λX |X,X 0) = 1.0 iff X = X 0

P(λX |X,X 0) = 0.0 else

Identification

The identification and learning does not change, c.f. section 6.5.1.

Questions

∀i ∈ regions P(Ai|tai, λB,i = 1, λT,i = 1, λE,i = 1)

∝

Z

Bi,B
0

i

Z

Ti,T
0

i

Z

Ei,E
0

i

P(Ei, Ti, tai, Bi|Ai)P(Ai)P(B
0
i)P(T

0
i )P(E

0
i)

∀i ∈ regions P(Hi|tt, λID,i = 1, λGD,i = 1, λAD,i = 1)

∝

Z

IDi,ID
0

i

Z

GDi,GD0

i

Z

ADi,AD0

i

X

HP

P(ADi, GDi, IDi|Hi)P(Hi|HP )P(HP |tt)P(ID0
i)P(AD0

i)P(GD0
i)
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Bayesian program

The Bayesian program of the model is as follows:
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V ariables

A1:n, E1:n, T1:n, TA1:n, B1:n, B
0
1:n, λB,1:n, T

0
1:n, λT,1:n, E

0
1:n, λE,1:n,

ID0
1:n, λID,1:n, GD0

1:n, λGD,1:n, AD0
1:n, λAD,1:n, H1:n, GD1:n, AD1:n, ID1:n, HP, TT

Decomposition

P(A1:n, E1:n, T1:n, TA1:n, B1:n, B
0
1:n, λB,1:n, T

0
1:n, λT,1:n, E

0
1:n, λE,1:n,

ID0
1:n, λID,1:n, GD0

1:n, λGD,1:n, AD0
1:n, λAD,1:n, H1:n, GD1:n, AD1:n, ID1:n, HP, TT )

=
Qn

i=1 [P(Ai)P(Ei, Ti, TAi, Bi|Ai) P(λB,i|B1:n, B
0
1:n)P(B

0
1:n)P(λT,i|T1:n, T

0
1:n)P(T

0
1:n)

P(λE,i|E1:n, E
0
1:n)P(E

0
1:n)P(λID,i|ID1:n, ID

0
1:n)P(ID

0
1:n)P(λGD,i|GD1:n, GD0

1:n)P(GD0
1:n)

P(λAD,i|AD1:n, AD0
1:n)P(AD0

1:n) P(ADi, GDi, IDi|Hi)P(Hi|HP )] P(HP |TT )P(TT )

Forms

P(Ar) prior on attack in region i

P(E, T, TA,B|A) covariance/probability table

P(λX |X,X 0) = 1.0 iff X = X 0, else P(λX |X,X 0) = 0.0 (Dirac)

P(AD,GD, ID|H) covariance/probability table

P(H|HP ) = Categorical(4, HP )

P(HP = hp|TT ) = 1.0 iff TT → hp, else P(HP |TT ) = 0.0

P(TT ) comes from a strategic model

Identification (using δ)

P(Ar = true) = nbattles
nbattles+nnot battles

=
µbattles/game

µregions/map
(probability to attack a region)

it could be learned online (preference of the opponent) :

P(Ar = true) = 1+nbattles(r)

2+
P

i2regions
nbattles(i)

(online for each game)

P(E = e, T = t, TA = ta,B = b|A = True) = 1+nbattles(e,t,ta,b)

|E|⇥|T |⇥|TA|⇥|B|+
P

E,T,TA,B
nbattles(E,T,TA,B)

P(AD = ad,GD = gd, ID = id|H = h) = 1+nbattles(ad,gd,id,h)

|AD|⇥|GD|⇥|ID|+
P

AD,GD,ID
nbattles(AD,GD,ID,h)

P(H = h|HP = hp) = 1+nbattles(h,hp)

|H|+
P

H
nbattles(H,hp)

Questions

decision−making

∀i ∈ regionsP(Ai|tai, λB,i = 1, λT,i = 1, λE,i = 1)

∀i ∈ regionsP(Hi|tt, λID,i = 1, λGD,i = 1, λAD,i = 1)
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Figure B.2: Top: StarCraft’s Lost Temple map (one of the most famous maps with Python).
We can see features like cliffs, ramps, walls, waters and resources (minerals and gas). Bottom:
output of BWTA* with the regions slicing. We can see regions with one or several chokes, but
also isolated regions as gray is non walkable terrain (crossable by flying units only).
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[Replay Start]

RepPath: $(PATH/TO/REP)

MapName: $MAPNAME

NumStartPositions: $N

The following players are in this replay:

<list of

$PLAYER_ID, $PLAYER_NAME, $START_LOC

separated by newlines>

Begin replay data:

<list of

$FRAME_NUMBER,$PLAYER_ID,$ACTION,[$ACTION_DEP_ARGS]

separated by newlines>

[EndGame]

Figure B.3: Template of an RGD (replay general data) file from the dataset (see section 6.4)

<list of

$FRAME,$UNIT_ID,$ORDER,TargetOrPosition,$POS_X,$POS_Y

separated by newlines>

Figure B.4: Template of an ROD (replay order data) file from the dataset (see section 6.4)

Regions,$REGIONS_IDS_COMMA_SEPARATED

$REGION_ID, $DIST, $DIST, ...

$REGION_ID, $DIST, $DIST, ...

.

.

.

ChokeDepReg,$REGIONS_IDS_COMMA_SEPARATED

$REGION_ID, $DIST, $DIST, ...

$REGION_ID, $DIST, $DIST, ...

.

.

.

[Replay Start]

<list of

$FRAME,$UNIT_ID,$POS_X,$POS_Y

$FRAME,$UNIT_ID,Reg,$REGION_ID

$FRAME,$UNIT_ID,CDR,$CDR_ID

separated by newlines>

Figure B.5: Template of an RLD (replay location data) file from the dataset (see section 6.4)
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N

[0..2]

E

[0..5]

T

[0..5]

TA

0,1

B

0,1

A

0,1

!
B

[0..3]

AD

[0..3]

GD

[0..2]

ID

[0..3]

H

0,1

B'

[0..7]

HP

#TT

TT

0,1

!
ID

[0..2]

ID'

0,1

!
E

[0..2]

E'

[0..5]

T

0,1

!
T

0,1

!
GD

[0..3]

GD'

0,1

!
AD

[0..3]

AD'

Figure B.6: Plate diagram (factor graph notation) of the Bayesian tactical model in decision-
making mode. Hatched nodes are nodes on which we only have a distribution. We know TA
(our tactical scores as we are the attacker) and TT (our tech tree*).
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B.3 Strategy

B.4 BroodwarBotQ

Algorithm 9 Flow algorithm making sure there are no convex closures
function init(region)
{diri,j  list()|(i, j) 2 region}
updated {(i, j)|(i, j) 2 entrance(region)}
{diri,j  dir_towards(region)|(i, j) 2 updated}
while 9diri,j == list() do

(sources, new_updated) neighbours_couples(updated)
for all ((x, y), (i, j)) 2 (sources, new_updated) do

if (x− i, y − j) /2 dirx,y then
diri,j .append((i− x, j − y))

end if
end for
updated new_updated

end while
end function
function build(i, j)

refill list()
for all (x, y) 2 neighbours(i, j) do . cut the flow arround

dirx,y.remove((x− i, y − j))
if dirx,y.empty() then

refill.append((x, y))
build(x, y) . Recursively cut the flow

end if
end for
while ¬fixed_point do . refill as in the initialization...

current dir
for all (x, y) 2 refill do

if 9(i, j) 2 neighbours(x, y) such that currenti,j 6= list() then . non empty flow
dirx,y.append((x− i, y − j))

end if
end for

end while
end function
function is_isolated?(i, j)

if diri,j .empty() then
return True

else
return False

end if
end function
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C C

A A C C

A A 4 3

B B 3 2

B B 2 1

D D D

D D D

C C

A A C C

A A 4

B B 4 3 4

B B 4 3 2 3

D D D 3 2 1 2

D D D 2 1

4 3 2

Filling: 1, 2, 3, 4... Empyting: 1, 2, 3, 4

Figure B.7: Example of the algorithm 9 in a case in which there are buildings A, B, C, D and
building in the new cross spots would close the paths to the interior and trap units. Left: flood
filling of the region with the source at the choke (bottom right). The arrows show the dir vectors
for each tile. Right: recursive calls to build which drain the interior zone. Refilling will not be
able to refill the middle.

Figure B.8: Bots ladder on February 12th, 2012. With BroodwarBotQ using a Bayesian
model for opponent’s strategy prediction as well as for micro-management*.
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Nani gigantum humeris insidentes.
Des nains sur des épaules de géants.
Standing on the shoulders of giants.
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