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In this thesis, new precoding and equalization techniques for multicarrier systems were proposed and analyzed. First, the error performance of precoded filterbank multicarrier (FBMC) systems was analyzed. It was found out that this performance is highly sensitive to complete subchannel equalization. When there is residual intersymbol interference (ISI) stemming from imperfect subchannel equalization there is a loss of diversity ; this loss can be prevented with the adoption of a number of subchannels large enough so that each subchannel suffers flat fading or with the utilization of a subchannel equalizer with sufficient length to compensate the subchannel frequency response. After that, an approximation for the signal to interference-plus-noise ratio (SINR) distribution of SC-FDE systems using linear MMSE equalization was proposed. This approximation uses the lognormal distribution with the smallest Kullback-Leibler distance to the true distribution, and was shown to be precise in the error performance sense ; it serves as a system abstraction. With this abstraction, a precise method to obtain the analytical coded error performance of these systems was proposed. Finally, widely linear Tomlinson-Harashima precoders and equalizers (linear and decision-feedback) for SC-FDE systems were proposed. These precoders and equalizers have better error performance when compared to their strictly linear versions if signals coming from an improper constellation are transmitted. Their error performance when decision-feedback equalizers are used is less sensitive to the length of the feedback filter. When widely linear precoders are used, this error performance becomes less sensitive to channel estimation errors.

Résumé

Dans cette thèse, de nouvelles techniques d'égalisation et de précodage pour des systèmes multiporteuses ont été proposées et analysées. D'abord, la probabilité d'erreurs des systèmes multiporteuses à base de bancs de filtres (FBMC) précodées a été analysée. Il a été montré que cette performance est très sensible à l'égalisation complète des sous-canaux.

Lorsqu' il y a de l'interference inter-symbole residuelle qui vient de l'égalisation imparfaite des sous-canaux, il y a une perte de diversité ; cette diversité peut être récuperée avec l'utilisation d'un nombre de sous-canaux assez grand pour que chaque sous-canaux subisse de l'évanouissement plat ou avec l'utilisation d'un égaliseur par sous-canal avec une longueur suffisante pour compenser cette réponse en fréquence. Une approximation pour la distribution du rapport signal/bruit-plus-interfèrence (SINR) des systèmes SC-FDE qui utilisent égalisation MMSE linéaire a été ensuite proposée. Cette approximation utilise la distribution lognormal avec la plus petit distance de Kullback-Leibler vers la vraie distribution, et nous avons montré qu'elle est précise pour estimer la performance d'erreurs ; elle sert aussi comme une abstraction de ce système. Avec cette abstraction, une méthode précise pour obtenir la performance d'erreur analytique codée de ces systèmes a été proposée. 

Chapitre 2 -État de l'Art

Systèmes OFDM/QAM L'un des principaux problèmes des systèmes de communication est l'effet des trajets multiples, responsable de la selectivité en frequence. Pour éviter l'usage d'un égaliseur de grande taille dans le domaine temporel, un canal selectif en fréquence peut être partagé en plusieurs sous-canaux plus étroits qui subissent un évanouissement plat. Ces sous-canaux peuvent être égalisés avec des égaliseurs à un coefficient. Ce schéma est connu comme la technique OFDM/QAM, qui utilise la transformée de Fourier rapide pour une implementation moins complexe. En outre, un prefixe cyclique de taille plus grande que celle de la réponse impulsionnelle du canal est ajouté au bloc de symboles pour éliminer l'interference entre symboles (ISI) dans le recepteur.

xi

Filtres prototype

Les systèmes OFDM/QAM conventionnels utilisent une fenêtre rectangulaire comme filtre pour séparer les sous-canaux. L'orthogonalité entre les filtres rectangulaires est affectée dans les systèmes pratiques par les effets du canal (l'interférence entre symboles et entre sous-canaux), offsets de temps et fréquence et le bruit. Une façon de surmonter ces problèmes est l'adoption de filtres de Nyquist ayant une bonne localisation en fréquence (c'est-à-dire, avec des lobes secondaires petits en fréquence), en améliorant la séparation entre les sous-canaux. La perte de puissance et de bande, conséquence de l'utilisation du préfixe cyclique, peut être éliminée en adoptant de filtres bien localisés dans le domaine du temps.

Systèmes FBMC/OQAM

L'utilisation de filtres bien localisés en temps et en fréquence, limités en bande et avec une efficacité spectrale maximale pour séparer les sous-canaux dans les systèmes OFDM/QAM conventionnels est impossible. Pour utiliser ces filtres nous devons renoncer à l'orthogonalité complexe, car les filtres bien localisés n'ont que l'orthogonalité réele.

Pour surmonter cet obstacle, la modulation OQAM peut être utilisée ; elle sépare les symboles complexes en parties réelles et imaginaires pour la transmission. Il est possible d'implémenter ce système FBMC/OQAM avec la décomposition polyphase du filtre prototype et l'IFFT ; avec cela, la complexité matérielle est réduite par rapport à une implementation directe (un filtre par chaque sous-canal).

Systèmes OFDM/QAM Précodés

Les systèmes multiporteuses subissent le problème du facteur de crête, de la faible robustesse à des trous spectraux et au offset de fréquence de la porteuse (CFO, en anglais). Une façon de surmonter ces obstacles en gardant l'égalisation dans le domaine de la fréquence est l'usage de la précodage linéaire. Dans les systèmes OFDM/QAM conventionnels, l'égalisation de forçage à zéro est l'optimale.Comme l'égalisation est faite bloc par bloc (avant la déprecodage) dans les systèmes OFDM/QAM précodés, les techniques de xii maximum de vraisemblance peuvent avoir une complexité trop grande si le système a un nombre de sous-canaux élevé. Ainsi, des techniques d'égalisation linéaires sous-optimales sont souvent utilisées.

Égalisation Linéaire MMSE

Si le SNR est connu à la réception, l'égalisation linéaire basée dans le critere de l'erreur quadratique moyenne minimale (MMSE) peut être apliquée. Avec l'égalisation linéaire MMSE, l'ordre de diversité non-codée des systèmes OFDM/QAM précodés varie selon la taille de la réponse impulsionnelle du canal, la taille de la constellation et le nombre de sous-canaux.

Égalisation avec Retour de Décision MMSE

Un inconvenient de l'égaliseur linéaire MMSE est qu'il n'est pas capable d'éliminer complétement l'ISI. Un égaliseur avec retour de décision (DFE) peut être utilisé pour améliorer le taux d'erreurs, en utilisant les décisions précédentes pour réduire l'ISI postcurseur.

Précodage de Tomlinson-Harashima

Si l'émetteur a des informations complètes de l'état du canal, le filtre de retour du DFE peut être déplacé du récepteur vers l'émetteur pour compenser l'effet de l'ISI, en évitant la propagation des erreurs des systèmes DFE. Avec le filtre de précodage une opération modulo-2M est utilisée pour limiter la puissance à la sortie du précodeur si la réponse impulsionnelle du canal a des valeurs proches de zéro.

Cette technique s'appelle précodage de Tomlinson-Harashima. Comme les décisions dans le recepteur sont instantanées dans les systèmes THP, la codage de canal peut être utilisée avec une bonne performance. Le taux d'erreurs de ces systèmes est la même que celle de systèmes qui utilisent un DFE idéal (c'est-à-dire, sans propagation d'erreur) dans le recepteur à une penalité de puissance prés (qui varie selon la constellation utilisée pour le signal).
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Introduction

Le but de ce chapitre est étudier le taux d'erreurs des systèmes FBMC/OQAM précodés, y compris le cas où l'ISI résiduelle qui vient de l'égalisation imparfaite des sous-canaux est présente dans ces systèmes lorsqu'ils utilisent l'égalisation linéaire MMSE. Il est montré que cette ISI residuelle occasionne une perte de diversité dans les systèmes FBMC/OQAM précodés. Une expression analytique du BER pour ces systèmes que prend en compte ou pas cette ISI residuelle est comparée aux resultats des simulations de Monte Carlo pour des différents modéles de canaux afin de démontrer sa précision.

Puissance de l'ISI dans les Systèmes FBMC Non-complétement Égalisés

Dans les systèmes FBMC l'égalisation n'est pas toujours parfaite, à cause de l'absence du préfixe cyclique ; donc, des intérferences residuelles peuvent être présentes. La réponse impulsionnelle réelle désirée doit être zéro en nT s , n = 0 pour éliminer l'ISI des autres symboles transmis dans la partie réelle, lorsque la réponse impulsionnelle imaginaire désirée doit être zéro en nTs 2 , n = 0 pour éliminer l'ISI dans les symboles transmis dans la partie imaginaire. Les autres instants ne seront pas pris en compte.

Cette réponse impulsionnelle idéale resultera dans une réponse en fréquence égalisée plat du sous-canal H eq k (f ) ; ainsi, des déviations de cette réponse plat correspondront à de l'ISI supplémentaire dans le symbole détecté, parce que cette réponse en fréquence du sous-canal non-plat signifie que l'énergie du symbole a été étalée vers les autres symboles. ISI,k de cette ISI supplémentaire dans le k-ème sous-canal, selon l'équation suivante.

σ 2 ISI,k = ∞ -∞ |1 -H eq k (f )| 2 df.
La puissance de l'ISI qui vient des sous-canaux non-complètement égalisés sera ajoutée à la variance du bruit AWGN (en considérant cette ISI comme gaussienne grâce au grand nombre de sous-canaux) pour former le SINR effectif d'un système FBMC précodé qui utilise l'égalisation MMSE. L'expression qui définit ce SINR est donnée par

γ MMSE,ISI = 1 MSE MMSE,ISI -1, où MSE MMSE,ISI = 1 N N n=1 1 ζ k |H n | 2 + 1 . et ζ k = Es N 0 +σ 2 ISI,k
. Si l'égaliseur du sous-canal a une taille assez grande pour compenser la réponse en fréquence du sous-canal ou le nombre de sous-canaux est assez grand de façon que la réponse en fréquence des sous-canaux soit plat, l'équation précédente du SINR est réduite vers les équations connues de la MSE et du SINR pour les systèmes multiporteuse précodés utilisant l'égalisation linéaire MMSE. 

Resultats de Simulation

P e ≈ 1 √ π K n=1 w n Q E s σ 2 n exp √ 2σx n + µ ,
où w n et x n sont les paramètres d'integration de Gauss-Hermite.

Performance d'Erreur Codée

Comme le SINR non-codé d'un systéme multiporteuse précodé MMSE a été approximé par une distribution lognormale, on peut simplifier le système pour un système à porteuse unique qui transmet à travers un canal avec de l'évanouissement lognormal. On peut dériver une expression compacte pour la PEP des systèmes multiporteuses précodées en utilisant l'équation antérieure ; cette expression est donnée par 

P ep (d) ≈ 1 √ π Nt n=1 w n Q 2d E s σ 2 n exp √ 2σx n + µ ,

Résultats de Simulation

Modèle du Système

Égaliseur WL-MMSE L'égaliseur optimal A est donné par

A = C -1 RR C Rs = HH H + σ 2 n I N HUH T H * UH H H * H T + σ 2 n I N -1 H H * U .

Égaliseur WL-MMSE DFE

La valeur optimale du filtre feedforward B peut être donnée par

B = A(I N + D),
où D est le filtre de retour dans le domaine de la fréquence.

Les coefficients du filtre de retour d sont donnés par la solution du système linéaire

F d = -g.
La matrice F de taille L dxL d et le vecteur colonne g de taille L dx1 sont exprimés, respectivement, par

[F] m,l = N n=1 exp (-j2π((n(l -m))/N )) H mod (n, n) + σ 2 n , 1 ≤ m, l ≤ L d et [g] m = N n=1 exp (j2π(nm/N )) H mod (n, n) + σ 2 n , 1 ≤ m ≤ L d.
Pour initialiser le filtre de retour, les derniers L d symboles de xCP peuvent être utilisés. 

MSE WL = W -1 H mod + σ 2 n I N -1 W.
MSE WL est bien plus petite que celle obtenue par l'égaliseur strictement linéaire. Le SINR effectif aprés la déprécodage lorsqu'on utilise un égaliseur WL-MMSE est

γ WL-MMSE = 1 2 γN tr[MSE WL ] -1 , avec tr[MSE WL ] = 1 2|H 1 | 2 + σ 2 n + 1 2|H N/2+1 | 2 + σ 2 n + + N/2 i=2 2 |H i | 2 + |H N +2-i | 2 + σ 2 n , et γ = E s /σ 2
n . La division par 2 dans l'équation du SINR est du à la décision finale du symbole qui n'utilise que l'estimation réelle.

SINR pour le Récepteur WL-MMSE DFE

La MSE du système SC-FDE WL-MMSE DFE est exprimée par

MSE WL-DFE = exp 1 N N n=1 log 1 1 + γH mod (n, n) .
L'erreur moyen quadratique ne prend pas en compte l'effet de la propagation de l'erreur qui peut provenir de mauvaises décisions antérieures. Cette MSE est à nouveau plus petit que celle obtenue par le système strictement linéaire.

Le SINR pour le système SC-FDE WL-MMSE est donné par 

γ WL-DFE = 1 2 1 MSE WL-DFE -1 . À nouveau,
MSE WL-THP = exp 1 N N n=1 log 1 1 + γ η H mod (n, n) , avec η = M 2 M 2 -1 pour des constellations unidimensionnels et η = M M -1 pour des constellations bidimensionnels.

Résultats de Simulation

Contents

Introduction

The world had 7 billion people and 5.9 billion mobile phone subscriptions in use by the end of 2011. Of those 5.9 billion subscriptions, 1.6 billion were active users of mobile browsing and 1.1 billion were smartphone users [2]. These smartphones are used for much more than calls and short messages. They have more functions, larger screens, faster processors and more connectivity options than before. Their users demand constantly faster download and upload speeds. However, the pace of battery evolution has not kept up with these demands, and battery life in these devices is sometimes measured in hours, not days.

On the other end of the spectrum, the usage of mobile phones is also widespread in poorer countries. In Kenya, for example, 40 percent of the adult population use a mobile payment system to receive their salary, buy goods and transfer money [2]. In some of these countries, power supply is not constant, and rolling blackouts can be a common occurrence.

A large battery life can help the user avoid the unpleasant surprise of finding that his mobile device has no power and cannot be charged instantly. Thus, an effort to save power in every operational aspect is important to improve the user experience and battery life.

These mobile devices transmit data through multipath channels, which introduce intersymbol interference in the received data. To compensate the effect of this ISI, the adoption of multicarrier systems has increased greatly in the last few years. This is due to their efficient equalization, being able to equalize channels with a long impulse response with simple subchannel equalizers due to the use of the cyclic prefix. Nowadays, the most used multicarrier systems are the ones based on Orthogonal Frequency Division Multiplexing INTRODUCTION and transmitting data from Quadrature Amplitude Modulation symbols (OFDM/QAM) [3; 4]. However, because these systems use the rectangular window to separate the subchannels and a cyclic prefix to make equalization easier, they have large spectral lobes outside their designated bandwidth and waste power and bandwidth to transmit redundancy. Filterbank Multicarrier systems transmitting data from Offset Quadrature Amplitude Modulation (FBMC/OQAM) [5] have been proposed to eliminate the cyclic prefix and limit this out-of-band radiation, by using a window well-localized in time and frequency to separate the subchannels. This window also allows better user separation in multiuser systems.

Both of these multicarrier systems have a major drawback : they are not suitable for the uplink of mobile devices due to their high peak-to-average power ratio (PAPR). With this high PAPR, highly linear power amplifiers are required to avoid excessive distortion.

To operate in their linear region these amplifiers must be backed off from their peak power, leading to a low power efficiency (ratio of transmitted power to dc power dissipated), which places a significant burden on portable wireless terminals [START_REF] Hyung | Single Carrier FDMA for Uplink Wireless Transmission[END_REF]. A way to overcome this limitation is to linearly precode the signal before transmission. where equalization is done symbol by symbol and zero-forcing equalization corresponds to the maximum-likelihood one, equalization in precoded multicarrier systems is done blockwise ; thus, maximum-likelihood detection is impractical when the system uses a high number of subchannels. Because of this, linear equalization techniques are usually employed. Improved equalization techniques can be applied to these systems to make their error performance closer to the one provided by maximum-likelihood detection.

These systems normally transmit symbols from a complex QAM constellation. QAM symbols can be described as proper, that is, they have their second-order statistics comple- The transmitters in these systems can also benefit from channel state information if it is available, making possible to adapt transmissions to current channel conditions and improving channel capacity [START_REF] Caire | On the Capacity of Some Channels with Channel State Information[END_REF]. This channel state information can also be useful to improve the error performance by precoding or pre-equalization [START_REF] Robert | Precoding and Signal Shaping for Digital Transmission[END_REF]. However, perfect channel state information is hard to obtain at the transmitter because of the constantly changing channel conditions imposed by user and obstacle movement.

Goal

The goal of this thesis is to propose and study new equalization and precoding techniques for multicarrier systems, together with an theoretical analysis of their error performance. First, we studied the error performance of precoded FBMC/OQAM systems.

After, we tackled the problem of finding a distribution for the SINR of precoded multicarrier systems using linear Minimum Mean Square Error (MMSE) equalization and studied their theoretical coded error performance. Finally, we investigated the use of widely linear processing in precoders and equalizers for SC-FDE systems.

Contributions

The contributions of this thesis are the following :

-The error performance of precoded FBMC/OQAM systems was analyzed. It was found that their diversity order is highly sensitive to incomplete equalization : when there is residual intersymbol interference stemming from incomplete subchannel equalization, this diversity order is reduced. If the number of subchannels is large en- -An analytical method to determine an approximation for the SINR distribution of SC-FDE systems using linear MMSE equalization and transmitting through reallife channel models was proposed. This compares with the method proposed in [15; 16], which only works when all the channel taps have equal power. With this SINR distribution, the analytical error performance of SC-FDE systems using linear MMSE equalization and convolutional channel coding was found.

-A widely linear equalizer based on the MMSE criterion in its regular and decision feedback (DFE) versions was proposed for SC-FDE systems using improper modulations, together with a widely linear Tomlinson-Harashima precoder. Since a precoder/receiver using widely linear processing makes full use of the second-order statistics made available by the transmitted signal, it has better error performance. It was found that the feedback filter length can be reduced without much impact in the error performance of SC-FDE using WL-MMSE-DFE equalizers. The semi-analytical error performance of systems using these precoders/equalizers was also analyzed. In

Tomlinson-Harashima precoded systems, the error performance when using the widely linear precoder was found to be much less sensitive to imperfect channel state information in the transmitter when compared to its strictly linear version.

Publications

Based on the research work presented in this thesis the following publications were accepted or submitted. 

Organization

This work is organized in five chapters after this introduction.

-Chapter 2 contains the state of the art of the subjects studied in this thesis. It first revises the basics of multicarrier systems, starting with OFDM/QAM systems. Next, FBMC/OQAM systems are introduced and a comparison is made between them.

Linearly precoded multicarrier systems, together with the linear equalization techniques and the decision feedback equalizer that can be applied to them are detailed next. After that, the Tomlinson-Harashima precoder and its application to SC-FDE systems are discussed. Finally, an introduction to widely linear processing and the processing gain that can be obtained by using it is presented.

-Precoded FBMC/OQAM systems are studied in Chapter 3. We start by describing their structure. After, an error analysis in the uncoded case is done, taking into account the case where residual ISI is present after incomplete equalization and deriving a semi-analytical equation for the uncoded BER in this case. Finally, simulation 1.4. ORGANIZATION results to analyse the precision of this equation and these systems' error performance are presented.

-Chapter 4 discusses the probability density function for the SINR in a SC-FDE system using linear MMSE equalization. The lognormal distribution with the smallest Kullback-Leibler distance to the target SINR is proposed as an accurate approximation of this SINR in the sense of the BER. With this lognormal distribution, a novel way to determine the analytical error performance of these systems when they are employing convolutional channel coding is proposed.

-Widely linear MMSE equalizers and Tomlinson-Harashima precoders for SC-FDE systems are proposed in Chapter 5. This chapter starts with the derivation of the coefficients of these filters. After, an analysis of their error performance is made, with equations for the mean square error for each case provided. Finally, simulation results to validate these equations and to compare these systems with their linear counterparts are presented.

-Chapter 6 shows the concluding remarks, summarizing the main obtained results and providing suggestions for future work.

Chapter 2

State of the Art

Introduction

This chapter presents the background and the state of the art that served as basis for the research presented in this thesis. We introduce OFDM/QAM systems in Section 2.2. Section 2.3 shows prototype filters that can overcome some of the deficiencies of the rectangular windows used to separate the subchannels in OFDM/QAM systems, while introducing other characteristics of their own. In Section 2.4, multicarrier systems that can use the previously presented prototype filters are described : FBMC/OQAM ones. A comparison between the two multicarrier systems presented before in the chapter is shown in Section 2.5. Section 2.6 unveils precoded OFDM/QAM systems and the various techniques used in their equalization. After that, Tomlinson-Harasima precoding is described in Section 2.7.

Finally, Section 2.8 briefly introduces widely linear processing.

OFDM/QAM Systems

One of the main problems faced by communication systems is the multipath effect, which is responsible for frequency selectivity. The several replicas of the transmitted signal received in different time instants make necessary the utilization of a long linear equalizer in the receiver to eliminate the intersymbol interference and allow reliable recovery of the transmitted information. One alternative to avoid the usage of a long equalizer is the division of a frequency-selective channel (with its time dispersion T d larger than the 2.2. OFDM/QAM SYSTEMS symbol duration time T s ) in N subchannels, each suffering almost flat fading (the symbol duration time N T s is much larger than the time dispersion T d ). This way, a high data rate transmission ( 1 Ts ) is partitioned in several parallel transmissions, each one with lower data rates ( 1 N Ts ). In these parallel transmissions suffering from approximately flat fading, a one tap subchannel equalizer (which can be implemented by a simple multiplier) is enough to compensate the transmission channel effect, eliminating the need for a complex equalizer in the receiver. This scheme is the technique known as OFDM/QAM [3]. Its adoption started to be widespread after the application of the fast Fourier transform to multicarrier systems [4], since its analog implementation is extremely complex. Nowadays, OFDM/QAM modulation is adopted in several standards, such as DVB-T, DAB, IEEE 802.11, among others. OFDM/QAM symbols can be expressed by

s[n] = N -1 k=0 ∞ l=-∞ a k,l g[n -lN ]e j 2π N kn , (2.1) 
= N -1 k=0 ∞ l=-∞ a k,l ζ k,l [n], (2.2) 
where g is the rectangular window that separates the subchannels, with its coefficients expressed in the time domain by

g[n] = 1 √ T , if |n| ≤ T 2 0, if |n| > T 2 (2.3)
with T = 1 F = N T s is the OFDM/QAM symbol length and F is the spacing between subchannels. The synthesis basis function ζ k,l [n] are given by

ζ k,l [n] = g[n -lN ]e j 2π N kn , (2.4) 
where a k,l are complex symbols from a M -QAM constellation, k is the subchannel index, l the time index, N is the number of subchannels and T is the OFDM symbol length.

We can see that s[n] is the output of a N -point IDFT of a k,l . With the fast Fourier transform, this IDFT can be done in a computationally efficient way.

To eliminate the intersymbol interference (ISI), a cyclic prefix of length L CP is added to the OFDM/QAM symbol. If L CP is equal or larger than the channel impulse response 2.2. OFDM/QAM SYSTEMS length, the samples corrupted by ISI will be discarded, guaranteeing ISI-free received data and flat fading in every subchannel. This way, s with length L s is transformed into sCP , with length L s + L CP . s CP can be expressed by

sCP [-L CP ], ..., sCP [-L s -1] = s[L s -L CP ], ..., s[L s -1], s[0], ..., s[L s -1], -L CP ≤ n ≤ L s -1. (2.5)
The block diagram of an OFDM/QAM transmitter (comprising a serial to parallel conversion, the IFFT, the cyclic prefix insertion and a parallel to serial conversion) is shown in Figure 2.1.

With the cyclic prefix, the signal at the entry of the receiver ỹ[n] is given by

ỹ[n] = sCP [n] * h[n], (2.6) 
= L CP k=0 h[k]s[n -k] Ls (2.7) 
(s CP [n -k] = s[n -k] L s for 0 ≤ n ≤ L s -1), (2.8) = s[n] ⊗ h[n], (2.9) 
where [ ] L s indicates a modulo-L s operation and ⊗ represents cyclical convolution.

It is possible to see that the cyclic prefix transforms the linear convolution of the transmitted signal with the channel impulse response sCP [n] * h[n] in the cyclic (also known

as circular) convolution s[n] ⊗ h[n].
This cyclic convolution will lead to a circulant channel matrix, which is diagonalized by the FFT in the receiver. With this diagonalization, flat fading in every subchannel is guaranteed, and due to this condition, one tap equalizers are enough to compensate the channel effects. These equalizers can be implemented by a simple multiplier per subchannel.

Assuming a distortion-free channel, the estimated symbol âk,l at the receiver output will be equal to the transmitted symbol a k,l if the internal product of ỹ[n] and the analysis basis function ξ k,l [n], expressed as 

ξ k,l [n] = g[n -lN ]e -j 2π N kn , (2.10) 

OFDM/QAM SYSTEMS

PROTOTYPE FILTERS

constitutes an orthonormal basis of its vectorial space, in a way that

∞ n=-∞ g[n -lN ]g[n -l ′ N ]e j 2π N (k-k ′ )(n-Ls-1 2 ) = δ k,k ′ δ l,l ′ , (2.11) 
where u, v is the internal product between u and v, expressed by

u, v = ∞ k=-∞ u * [k]v[k], (2.12) 
and δ k,k ′ represents the Kronecker delta. 

Prototype Filters

As stated before, conventional OFDM/QAM systems use the rectangular window g as a filter to separate the subchannels. The spectral characteristics of the rectangular window are presented in Figure 2.3.

This window allows a complex orthogonality between the synthesis/analysis basis functions ζ k,l [n] and ξ k,l [n], which facilitates its use in the receivers. We remember that the orthogonality between two functions can be determined by the calculation of the their internal product, given in (2.12).

It can be seen in Figure 2.3 that the rectangular window has large sidelobes in its frequency response ; yet, without any external interference and perfect synchronization these large sidelobes are not a problem, due to the attenuation at the crossings with other subchannels. However, this orthogonality between the basis functions is affected in practical systems by channel effects (intersymbol and interchannel interference), time and frequency offsets and noise. When using OFDM/QAM systems and the rectangular window to separate the subchannels the intersymbol interference (caused by the multipath effect) is abolished with the adoption of a cyclic prefix with sufficient length to compensate this interference. The interchannel interference and frequency offsets remain obstacles in practical conditions (due to the large sidelobes of the rectangular window's frequency response), affecting the system performance. A way to combat these problems is the adoption of Nyquist filters with good frequency localization (i.e., with small sidelobes in their frequency response), improving the separation between the subchannels [START_REF] Bölcksei | Advances in Gabor Analysis[END_REF]. Power and bandwidth waste, which are consequences of the cyclic prefix, can be eliminated with the adoption of filters well localized in time.

PROTOTYPE FILTERS

However, if the filter is only optimized in the time domain (like conventional OFDM/QAM systems), its frequency localization will be bad, causing interchannel interference when the information is transmitted through frequency-selective channels. Perfect passband filters, on the other hand, have poor time localization, causing intersymbol interference in timedispersive channels [START_REF] Bölcksei | Advances in Gabor Analysis[END_REF]. The raised cosine, the extended gaussian functions [23; 24] and the filter proposed for the PHYDYAS project [START_REF] Bellanger | Specification and design of a prototype filter for filter bank based multicarrier transmission[END_REF] can be cited as examples of well-localized in time and frequency filters.

The raised cosine filter has the f -th element of its frequency response p given by

p(f ) =        1 2BW , 0 ≤ |f | < f 1 1 4BW 1 -sin π(|f |-BW )) 2BW -2f 1 , f 1 ≤ |f | < 2BW -f 1 0, |f | ≥ 2BW -f 1 , (2.13) 

PROTOTYPE FILTERS

with the frequency parameter f 1 and the bandwidth BW having the following relation :

α = 1 - f 1 BW , (2.14) 
where α is the rolloff factor. 

zλ,µ 0 ,τ 0 (t) = 1 2 ∞ k=0 g λ t + k µ 0 + g λ t - k µ 0 × ∞ l=0 d l,1/λ,µ 0 ,τ 0 cos 2πl t τ 0 , (2.15) 
with λ being real-valued, d λ,µ 0 ,τ 0 coefficients found in [START_REF] Siohan | Derivation of extended Gaussian functions based on the Zak transform[END_REF], µ 0 = 1 2τ 0 = F and g λ (t) being the gaussian function, expressed as

g λ (t) = (2λ) 1 4 e -πλt 2 .
(2.16) A special case of the extended gaussian functions is the IOTA (Isotropic Orthogonal Transform Algorithm) [START_REF] Floch | Coded orthogonal frequency division multiplex [TV broadcasting[END_REF], which happens when λ = 1 and µ 0 = τ 0 = 1 √ 2 . This function has its name because its time and frequency domain responses are identical. This way, its time and frequency localization properties are also identical. They are presented, respectively in The filter proposed for the PHYDYAS project has its coefficients defined as

PROTOTYPE FILTERS

F 1 = 0, 97196
(2.17)

F 2 = √ 2 2
(2.18)

F 3 = 0, 235147 (2.19) 
F k = cos π k 2K (2.20) fk = 1 2 F 0 + 2 K-1 k=1 (-1) k F k , (2.21) 
where f = [ f1 f2 . . . fL P F ] T is the filter's impulse response and K is the overlapping fac- where q(t) and q(f ) are the elements of the time and frequency response of the prototype filter.

The Heisenberg parameter has its upper limit (ξ = 1) in the gaussian function and its lower limit (ξ = 0) in the rectangular window.

FBMC/OQAM Systems

It is impossible to use bandlimited and well-localized in time and frequency filters, such as the ones cited in Section 2.3, with maximal spectral efficiency (T F = 1) to separate the subchannels in conventional OFDM/QAM systems, because according to the Balian-Low theorem [START_REF] Feichtinger | Gabor Analysis and Algorithms[END_REF] these filters do not have complex orthogonality. To use these filters we have to relax the complex orthogonality constraint, since well-localized filters only have real orthogonality, expressed between u and v as The time-frequency impulse response of a multicarrier system using filterbanks (with the PHYDYAS filter as the prototype filter) is presented in Table 2.1. As it is possible to see, there are interferences composed of only real or imaginary numbers. To recover information in the receiver without a lot of interference, it is necessary to transmit only the imaginary part of the symbol where the interference is a real number and vice-versa, like in the scheme presented in Figure 2.10.

u, v ℜ = ℜ ∞ k=-∞ u * [k]v[k] . ( 2 
This transmission scheme can be done by OQAM modulation, which separates complex symbols in its real and imaginary parts for transmission. With OQAM modulation, the adoption of well-localized in time and frequency filters becomes possible, because this modulation transmits real symbols at two times the transmission rate of a conventional QAM modulation. A OQAM transmitted symbol can be expressed as

sOQAM [n] = N -1 k=0 ∞ l=-∞ b k,l q n -l N 2 e j 2π N k(n- L P F -1 2 ) e jρ k,l (2.25) = N -1 k=0 ∞ l=-∞ b k,l ζ OQAM k,l [n], (2.26) 
with the synthesis basis function ζ OQAM k,l

[n] given by

ζ OQAM k,l [n] = q n -l N 2 e j 2π N k(n- L P F -1 2 
) e jρ k,l .

(2.27) 

FBMC/OQAM SYSTEMS

b 2k,2l = a R 2k,l , b 2k,2l+1 = a I 2k,l , (2.28) 
b 2k+1,2l = a I 2k+1,l , b 2k+1,2l+1 = a R 2k+1,l .
As stated before, a k,l = a R k,l + ja I k,l are complex symbols from a QAM constellation, k the subchannel index, l the time index, N the number of subchannels, q the window separating the subchannels with length L P F (the prototype filter) and ρ k,l is given by

ρ 2k,2l = 0, ρ 2k,2l+1 = π 2 , (2.29) 
ρ 2k+1,2l = π 2 ,
ρ 2k+1,2l+1 = 0.

COMPARISON BETWEEN DIFFERENT MULTICARRIER SYSTEMS

(2.26) can be seen as the output of a synthesis filterbank with N subchannels. This way, it is possible to implement this so-called FBMC/OQAM system with the polyphase decomposition of the prototype filter and the IFFT [START_REF] Bellanger | TDM-FDM Transmultiplexer : Digital Polyphase and FFT[END_REF], reducing significatively the computational complexity with respect to a direct implementation (one digital filter for each subchannel). The scheme of a FBMC transmitter using the polyphase decomposition is presented in Figure 2.11.

Assuming a distortion-free channel, the estimated symbol bk,l will be equal to the transmitted symbol b k,l if the real internal product between the received signal y OQAM [n] and the analysis basis function ξ OQAM k,l

[n], which is given by

ξ OQAM k,l [n] = q n -l N 2 e -j 2π N k(n- L P F -1 2 ) e jρ k,l , (2.30) 
constitutes an orthonormal basis of its vectorial space, in a way that

∞ n=-∞ q n -l N 2 q n -l ′ N 2 e j 2π N (k-k ′ )(n- L P F -1 2 ) e j(ρ k ′ ,l ′ -ρ k,l ) ℜ = δ k,k ′ δ l,l ′ . (2.31) 
The block scheme of a FBMC receiver is presented in Figure 2.12.

Comparison Between Different Multicarrier Systems

In the previous sections, multicarrier systems based on the rectangular window, QAM modulation and the cyclic prefix (OFDM/QAM) and based on well-localized pulses, OQAM modulation and no cyclic prefix (FBMC/OQAM) were introduced. The goal of this section is to compare these systems with respect to computational and equalization complexity, bandwidth and power efficiency and error performance.

Equalization

Since the cyclic prefix is not present in filterbank multicarrier systems, ISI is not completely eliminated. For this reason, a one tap per subchannel equalizer is not always enough to compensate the channel effect, as is the case in OFDM/QAM systems. When the frequency selectivity of the channel is high, the usage of a multi-tap subchannel equalizer can be necessary to compensate the channel effect introduced by subchannel selectivity [30; 31]. 

COMPARISON BETWEEN DIFFERENT MULTICARRIER SYSTEMS

COMPARISON BETWEEN DIFFERENT MULTICARRIER SYSTEMS

However, since ICI is limited to the adjacent subchannel (due to the prototype filters' frequency response sidelobes), equalization complexity can be reduced. Proposals for subchannel equalizers in filterbank multicarrier systems can be found in [30; 32; 33; 17].

Efficiency

The introduction of the cyclic prefix in a multicarrier system brings transmission bandwidth and power waste. Bandwidth and power efficiencies η BW and η P are expressed, respectively, by

η BW = N -N g N + L CP (2.32)
and

η P = N N + L CP , (2.33) 
where N g is the number of subchannels not used for data transmission.

In filterbank multicarrier systems, the cyclic prefix is not used. Therefore, there is an efficiency gain ; for this case, bandwidth and power efficiencies η BW,F B and η P,F B are expressed, respectively, by

η BW,F B = N N + α (2.34)
and

η P,F B = N N = 1, (2.35) 
with α equal to the roll-off factor of the prototype filter.

Computational complexity

OFDM/QAM systems operate at a symbol rate T , thus a pair of IFFT/FFTs is done at each T seconds. Since filterbank multicarrier systems transmit the real and imaginary parts of the complex symbol separately, they must operate at a T /2 symbol rate to transmit the same amount of data, doing two times the amount of IFFT/FFTs for the same amount of transmitted data when compared to OFDM/QAM systems. The filterbank in its polyphase implementation adds N L P F multiplications, where L P F is the prototype filter length.

This way, the computational complexity of FBMC/OQAM is over two times higher than OFDM/QAM systems [34; 35]. Alongside the one tap subchannel equalizer, multitap subchannel equalizers based on the Lagrange and geometric interpolations were used in FBMC systems [START_REF] Chang | Técnicas de Projeto para equalizadores por subcanal para sistemas FBMC/OQAM[END_REF].

For 128 subchannels and the Vehicular A channel model the results are presented in N 0 ratios among FBMC/OQAM systems, because the subchannel frequency response is frequency selective. Thus, multi-tap subchannel equalizers are needed, but even with then the error performance is worse than the one from OFDM/QAM systems. However, this system uses a large cyclic prefix of 1/4, wasting 25 % of the bandwidth. subchannel equalizer based on geometric interpolation has the best error performance.

Precoded OFDM/QAM Systems

The multicarrier systems seen in previous sections use frequency domain equalization to simplify the equalization of channels with long impulse responses instead of long time domain equalizers. However, they suffer from high peak-to-average power ratio (PAPR), low robustness to spectral nulls in subchannels and low resistance to carrier frequency offset (CFO) [START_REF] Sari | Transmission Techniques for Digital Terrestrial TV Broadcasting[END_REF]. One way to overcome these drawbacks, while maintaining frequency domain equalization, is the use of linear precoding [START_REF] Lin | BER minimized OFDM systems with channel independent precoders[END_REF]. This section deals only with precoded OFDM/QAM systems ; precoded FBMC/OQAM systems will be detailed in Chapter 3.

A block diagram of a precoded OFDM/QAM system is presented in Figure 2.16. In this system model, the symbols to be transmitted are precoded by an unitary matrix satisfying the following condition [START_REF] Lin | BER minimized OFDM systems with channel independent precoders[END_REF] :

|t i,j | = 1 √ N , 0 ≤ i, j ≤ N -1, (2.36) 
where t i,j denotes the (i, j)-th element of the precoding matrix T. With this precoding operation, symbol power will not increase. If the matrix T is the normalized DFT one, this precoded multicarrier system will correspond to a SC-FDE system [7; 8], because the precoding DFT cancels the IFFT done at a OFDM/QAM transmitter. SC-FDE systems can also be seen as the switching of the IFFT from the OFDM/QAM transmitter to its receiver.

After being precoded by T, the precoded symbols go through the usual OFDM/QAM chain. In the receiver, after equalization the combined symbols are deprecoded by the inverse precoding matrix T -1 . Finally, the symbol decision is done in the time domain after deprecoding.

In regular OFDM/QAM systems, zero-forcing equalization is the optimal one, being equivalent to maximal likelihood decoding [START_REF] Wang | OFDM or Single-Carrier Block Transmis-BIBLIOGRAPHY sions ?[END_REF]. This is because equalization is done symbol by symbol. On precoded OFDM/QAM systems, since the equalization is done block by block (before deprecoding), maximal likelihood techniques can be computationally impractical if the system has a large number of subchannels. Thus, suboptimal linear equalization techniques are usually employed. In the following, we restrict ourselves to the case where the precoding matrix T is the discrete Fourier matrix W (SC-FDE systems).

Linear Zero-forcing Equalization

The simplest of these techniques is zero-forcing equalization. When using ZF equalization, the equalizer R ZF can be expressed as

R ZF = (H H H) -1 H H , (2.37) 
where H is the channel frequency response matrix. 

ŝZF = s + W -1 (H H H) -1 H H Wñ. (2.38)
The zero-forcing equalizer eliminates completely the ISI out of ŝZF ; however, it amplifies the noise term.

Observing (2.38), it is possible to see that the noise correlation matrix will be circulant.

Thus, the SNR after deprecoding will be the same for every symbol in the block. This SNR can be expressed as

γ ZF = γN tr((H H H) -1 ) , (2.39) 
where γ is the symbol energy. Since the SNR is the same for every symbol, the BER will be too.

The maximal uncoded diversity order of a precoded OFDM/QAM system using linear zero-forcing equalization will be one, no matter what the channel impulse response length is [START_REF] Tajer | Diversity Order in ISI Channels with Single-Carrier Frequency-Domain Equalizers[END_REF]. We remember that the diversity order D for a certain system is given by

D = lim SN R→∞ - log(P e (SN R)) log(SN R) , (2.40) 
with P e (SN R) being the average error probability of a certain system as a function of the SNR.

Linear Minimum Mean Square Error Equalization

If the SNR is known at the receiver, linear equalization based on the minimum mean square error (MMSE) criterion can be applied. The MMSE equalizer R MMSE is given by

R MMSE = (H H H + σ 2 n I N ) -1 H H . (2.41)
The symbol estimate when using MMSE equalization is expressed as

ŝMMSE =s -σ 2 n W -1 (H H H + σ 2 n I N ) -1 Ws + W -1 (H H H + σ 2 n I N ) -1 H H Wñ.
(2.42) 2.6. PRECODED OFDM/QAM SYSTEMS Unlike when using the ZF equalizer, ŝMMSE contains ISI (the second term of (2.42)) alongside the noise (the third term of (2.42)). This is a characteristic of MMSE equalizers : they minimize the mean square error but do not completely eliminate the ISI.

The ISI and noise covariance matrices are again circulant ; as a consequence, the mean square error is once again the same for every symbol in the block. This mean square error in this case is given by

MSE MMSE = 1 N N n=1 1 γ|H n | 2 + 1 , (2.43) 
with H n being the (n, n)th element of the channel frequency response matrix H, and the unbiased signal to interference-plus-noise ratio (SINR) for this linear equalizer is

γ MMSE = 1 MSE MMSE -1. (2.44)
With linear MMSE equalization, the uncoded diversity order of precoded OFDM/QAM systems is dependent of the channel impulse response length, the constellation size and the number of subchannels, varying between one and L h -1, where L h is the channel impulse response length [START_REF] Tajer | Diversity Order in ISI Channels with Single-Carrier Frequency-Domain Equalizers[END_REF]. Since this diversity order is usually higher than the one possible by using a zero-forcing equalizer, the utilization of linear MMSE equalization is preferred in precoded multicarrier systems.

Minimum Mean Square Error Decision Feedback Equalization

One drawback of the linear MMSE equalizer presented in Section 2.6.2 is that it is not able to completely eliminate the ISI. A decision feedback equalizer (DFE) can be used to improve the error performance, using previous decisions to reduce the postcursor ISI.

The system model of a precoded OFDM/QAM system using a MMSE DFE is shown in Figure 2.17. This equalizer consists in a frequency domain feedforward (FF) filter R MMSE-DFE,FF and a time domain feedback (FB) filter rMMSE-DFE,FB . The length of the feedback filter is set to match the length of the channel impulse response in order to cancel all the ISI from the previous symbols.

To minimize the mean square error, the coefficients of the feedforward filter are [40] 

R MMSE-DFE,FF = (H H H + σ 2 n I N ) -1 H H (I N -R MMSE-DFE,FB ) , ( 2 
C MMSE-DFE,FB rMMSE-DFE,FB = d MMSE-DFE,FB , (2.46) 
with C MMSE-DFE,FB being a L dxL d matrix with its m, l-th element given by

[C MMSE-DFE,FB ] m,l = N n=1 exp(-j2π(n(l -m)/N )) |H n | 2 + σ 2 n (2.47)
and d MMSE-DFE,FB is a L dx1 vector with its m-th element given by

[d MMSE-DFE,FB ] m = N n=1 exp(-j2π(nm)/N ) |H n | 2 + σ 2 n .
(2.48)

When using the MMSE-DFE equalizer, the mean square error considering that previous decisions are perfect is given by [START_REF] Panazio | An uncoded BER comparison between DFE-SCCP and OFDM using a convex analysis framework[END_REF] MSE

MMSE-DFE = exp 1 N N n=1 1 1 + γ|H n | 2 .
(2.49)

Tomlinson-Harashima Precoding

While decision feedback equalizers, such as the one presented in Subsection 2.6.3, are efficient in eliminating the ISI if past symbol decisions are correct, the effect of wrong symbol decisions can be propagated to future symbols. These incorrect propagated decisions can affect significatively the final error performance, even if limited to one block as is the case in SC-FDE DFE systems. These systems also cannot use channel coding without modifications, because reliable symbol decisions in the receiver will be available only after a delay [START_REF] Huang | Decision Feedback Equalization in SC-FDMA[END_REF].

If the transmitter has complete channel state information, the feedback filter of the DFE scheme can be moved from the receiver to the transmitter to overcome the effect of the ISI, avoiding error propagation. Together with the precoding filter a modulo-2M operation is employed to stop the output from increasing or diverging to infinity if the channel impulse response value is close to zero.

This scheme is known as Tomlinson-Harashima precoding [43; 44]. Since decisions are instantaneous at the receiver in Tomlinson-Harashima precoded systems, channel coding In the transmitter, together with the precoding filter a modulo-2M operation is employed to stop the output from increasing or diverging to infinity by mapping the precoded symbols from a M 2 -QAM constellation to the interval (-M, M ] if the channel impulse response has values close to zero. The precoded signal follows the same path of a SC-FDE system using linear MMSE equalization (cyclic prefix insertion, passage through the channel, cyclic prefix removal, FFT, linear MMSE equalization and IFFT). After the deprecoding IFFT, the same modulo operation is done in the receiver to obtain the symbol estimate. The coefficients for the precoding filter in this system are the same ones from the feedback filter in the MMSE-DFE equalizer ; thus, they can be found by solving (2.46).

The coefficients for the equalizer in the receiver are equal to the ones from the MMSE-DFE feedforward filter, which are expressed in (2.45).

Widely Linear Processing

The systems presented up to now use linear processing to obtain the symbol estimate from the received signal in the receiver. However, for a certain category of signals, linear processing does not take into account all the available second-order statistics of the received Let x be a scalar random variable to be estimated from an observation that is a random vector ỹ. ỹ is a vector whose elements are samples from a complex random process with zero mean, that is, E {ỹ} = 0. This vector can be written as ỹ = ỹr + j ỹi , where ỹr is the real part of ỹ and ỹi the imaginary one. As a consequence of E {ỹ} = 0, E {ỹ r } = 0 and

E {ỹ i } = 0.
We can also verify that for a random variable ỹ = ỹr + j ỹi belonging to ỹ, with ỹr and ỹi independent from each other with zero mean and the same variance, E {ỹ ỹ} = 0.

A vector ỹ is called a circular vector if [10]

P C ≡ E ỹỹ T = 0, (2.50) 
where P C is the so-called pseudocovariance matrix. Together with the covariance, (

defines completely the second-order statistics of ỹ. As examples of circular vectors, it is possible to cite modulated signals from complex constellations, such as M -QAM ones.

By processing the received observation ỹ by the linear estimator f we can obtain the scalar estimate x, resulting in

x = f H ỹ. (2.51) 
However, if ỹ belongs to a real or offset constellation (2.50) is no longer valid, because for these constellations the pseudocovariance is non-zero, that is

P C ≡ E ỹỹ T = 0. (2.52)
This is the case for constellations such as M -PAM (Phase Amplitude Modulation), MSK (Minimum Shift Keying), OQPSK (Offset Quadrature Phase Shift Keying)or M -OQAM (Offset Quadrature Amplitude Modulation). Thus, when the transmitted signal comes from one of these modulations the linear estimator f does not use all the available second-order statistics.

Widely Linear Estimator

To take into account (2.52), the received signal must be processed together with its conjugate to obtain the estimate xW L , in the following way [START_REF] Picinbono | Widely Linear Estimation with Complex Data[END_REF] :

xW L = cH ỹW L + dH ỹ * W L , (2.53) 
where c and d are two complex vectors constituting a linear subspace over the complex field, with ỹW L being an observation from an improper constellation.

This scheme is shown in Figure 2 

E x * W L ỹW L = E {x * W L ỹW L } , (2.54) 
E x * W L ỹ * W L = E {x * W L ỹ * W L } . ( 2 
Λ = E {x W L x * W L } , (2.58) 
Π = E xW L xT W L , (2.59) 
λ = E {ỹ * W L xW L } , (2.60) 
̟ = E {ỹ W L xW L } . (2.61)
The optimal values of c and d according to the widely linear minimum mean square

error criterion are c = [Λ -ΠΛ -1 * Π * ] -1 [λ -ΠΛ -1 * ̟ * ], (2.62) 
d = [Λ * -Π * Λ -1 Π] -1 [̟ * -Π * Λ -1 λ], (2.63) 
and the corresponding mean square error for the widely linear estimator is

ǫ 2 WL = P ỹW L -cH λ -dH ̟ * , (2.64) 
with

P ỹ = E |ỹ W L | 2 .
The mean square error obtained when using the widely linear estimator is lower than the one from linear estimation, which is

ǫ 2 L = P ỹ -λ H Λ -1 λ. (2.65) 
The corresponding processing gain can be expressed by

ǫ 2 δ = ǫ 2 L -ǫ 2 WL , (2.66) 
ǫ 2 δ is also given by

ǫ 2 δ = [̟ * -Π * Λ -1 λ] H [Λ * -Π * Λ -1 Π] -1 [̟ * -Π * Λ -1 λ] ≥ 0.
(2.67)

Widely Linear Processing Gain

The gain ǫ 2 δ obtained by employing widely linear processing depends on the second-order statistics of the noise and the transmitted signal.

WIDELY LINEAR PROCESSING

When both the noise and the transmitted signal are circular

The widely linear filter reduces to the strictly linear one if both the noise and the transmitted signal are circular, since P C = 0 and s = E {ỹ W L xW L } = 0 ; thus, there is no performance advantage in using widely linear processing over strictly linear processing.

If the observed signal is circular, but ̟ = 0

In this case P C = 0, but ̟ = 0 since there is no information about the statistics of the transmitted signal. Thus, the optimal coefficients of the filters c and d can be expressed as

c = Λ -1 λ, (2.68 
)

d * = Λ -1 ̟, (2.69) 
and the widely linear processing gain is

ǫ 2 δ = ̟ H Λ -1 ̟ ≥ 0.
(2.70)

If the transmitted signal is improper

However, if a improper signal is transmitted through a complex channel, the observed signal at the receiver is also complex and improper. In this case we reach easily the conclusion that λ = ̟, which will lead to c = d * . The widely linear estimator in this case will provide the following estimate xW L :

xW L = 2ℜ cH ỹ . (2.71)
This estimate is real, unlike when using strictly linear estimators, which will generate a complex estimate of this real transmitted signal. For this case, by using widely linear processing we can have up to half of the mean square error of the strictly linear estimator [46; 12]. The processing gain by using widely linear estimation is

ǫ 2 δ = cH λ.
(2.72) 2.9. CONCLUSION

Conclusion

This chapter has presented the background for the research work which will be presented in the next chapters of this thesis. The following chapter will deal with the application of linear precoding in FBMC/OQAM systems and their correspondent error performance.

Chapter 3

On Precoded FBMC/OQAM Systems

Introduction

Unlike precoded OFDM/QAM systems, precoded FBMC/OQAM systems are a theme not very explored in research. Few proposals have appeared so far in the literature for precoded FBMC systems ; one can be found in [START_REF] Ihalainen | Filter Bank BIBLIOGRAPHY Based Multi-Mode Multiple Access Scheme For Wireless Uplink[END_REF]. In this proposal, classical multicarrier, precoded multicarrier and pure single carrier transmissions can be done simultaneously, each in its group of subchannels, due to the high subchannel selectivity inherent to the FBMC systems. A proposal to minimize the transmitted symbols' PAPR in a single carrier-FBMC using a novel transmitter scheme can be found in [START_REF] Yuen | Single Carrier Frequency Division Multiple Access (SC-FDMA) for Filter Bank Multicarrier Communication Systems[END_REF]. However, the error performance of precoded FBMC systems has not been studied so far in the literature.

The objective of this chapter is to study the error performance of precoded FBMC/OQAM systems, including the case where residual ISI stemming from imperfect subchannel equalization is present in these systems when employing linear MMSE equalization. It is shown that this residual ISI causes a loss of diversity in precoded FBMC/OQAM systems. An analytical expression of the BER for these systems taking into account or not this residual ISI is compared to Monte Carlo simulations in different channel situations to demonstrate its precision.

This chapter is divided as follows : Section 3.2 presents an analysis on the error behaviour for precoded multicarrier systems with residual ISI. Simulation results for FBMC
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systems and a comparison with the error approximation provided earlier in the section are presented in Section 3.3. Concluding remarks are given in Section 3.4.

BER Analysis for Precoded Filterbank Multicarrier Systems

The block diagram of a precoded FBMC/OQAM system is presented in Figure 3.1.

Figure 3.1a depicts a precoded FBMC transmitter, while Figure 3.1b shows a precoded FBMC receiver. Finally, Figure 3.1c shows the complete system. In this diagram, the grey box T is the precoding matrix, η is the AWGN (additional white gaussian noise) with variance σ 2 η and h is the channel impulse response for a particular channel realization. The only change with respect to a regular FBMC/OQAM system is the precoding matrix T in the transmitter and the deprecoding one T -1 in the receiver.

We can write the received signal rOQAM [n] as

rOQAM [n] = h[n] * sOQAM [n] + η[n] (3.1) 
= ỹOQAM [n] + η[n], (3.2) 
where * is the convolution operator. After demodulation, the received signal on the k-th subchannel of the l-th FBMC data block can be expressed as

rOQAM k,l = ℜ      L P F -1+l N 2 n=l N 2 ξ OQAM k,l [n]ỹ OQAM [n] + η k,l      (3.3) = rOQAM k,l + ℜ {η k,l } , (3.4) 
with rOQAM k,l being the useful signal and η k,l the filtered noise, expressed by

η k,l = L P F -1+l N 2 n=l N 2 η[n]q n -l N 2 e j 2π N k(n- L P F -1 2 
) e jρ k,l .

(3.5) η k,l is a linear combination of Gaussian random variables ; so, it remains a Gaussian random variable with variance since the normalization of the prototype filters implies that

σ 2 η k,l = σ 2 η L P F -1+l N 2 n=l N 2 q n -l N 2 2 = σ 2 η , (3.6) 
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L P F -1+n N 2 n=l N 2 q2 n -l N 2 = 1. (3.7) 
Therefore, the noise variance will not change after the analysis filterbank, also due to the fact that the N xN DFT matrix is an unitary matrix. Thus, the analysis can proceed as in the precoded OFDM/QAM case.

The one-tap equalizer used to compensate the channel effect (see Figure 3.2a) is equal to c k,l = 1 H k for a ZF equalizer and to c k,l = γH * k 1+γ|H k | 2 for the one employing the MMSE criterion, with γ = Es σ 2 being the SNR and H k being the channel frequency response at the center of the k-th subchannel. A 3-tap per subchannel equalizer, which can be used to overcome frequency-selective subchannels, is presented in Figure 3.2b. The expression for its coefficients is not detailed in this section, but can be found in [30; 31].

We remind that a channel independent precoding matrix has to satisfy the following condition so that the noise variance is the same in every subchannel (Section 2.6) :

|t i,j | = 1 √ N , 0 ≤ i, j ≤ N -1, (3.8) 
where t i,j denotes the (i, j)-th element of the precoding matrix T. To satisfy the condition imposed by (3.8), we can use the Discrete Fourier Transform (DFT) matrix or the
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Hadamard matrix, among others.

ISI power in non-completely equalized FBMC systems

Up to now, we have seen that the noise variance analysis in precoded FBMC/OQAM systems can be done the same way as the OFDM/QAM ones. However, in FBMC systems equalization is not always perfect, due to the absence of the cyclic prefix ; thus, residual interferences can be present.

The effect of ICI (in absence of CFO) can be discarded in FBMC systems, because the fractionally spaced equalizer eliminates ICI from the neighbouring subchannels, and the high selectivity provided by the improved subchannel filtering eliminates the ICI from the other ones [START_REF] Waldhauser | MMSE subcarrier equalization for filter bank based multicarrier systems[END_REF]. However, residual ISI can be present, due to the absence of the cyclic prefix.

When the transmission channel is highly frequency-selective and the number of subchannels is low, the subchannel frequency response will also be frequency-selective, even with the subchannel pulse being optimized to minimize this selectivity.

To compensate this extra interference, equalization in FBMC systems has been dealt

with in [30; 31; 33], among other works. The desired complex impulse response on each subchannel (black circles on Figure 3.3) after equalization is given in Figure 3.3. The real desired impulse response must be zero at nT s , n = 0 in order to eliminate the ISI on the other transmitted symbols on the real part, whereas the imaginary desired impulse response must be zero at nTs 2 , n = 0 in order to eliminate the ISI on the transmitted symbols on the imaginary part. The impulse response at other instants (white circles on Figure 3. 

σ 2 ISI,k = ∞ -∞ |1 -H eq k (f )| 2 df. (3.9)
When using MMSE equalization it is appropriate to use the signal to interference plus noise ratio (SINR), since there is also ISI alongside the noise. Since after deprecoding both the ISI and the noise covariance matrices are also circulant, the noise variance, SNR and BER are the same for every subchannel. The ISI power stemming from non-completely equalized subchannels will be added to the AWGN noise variance (considering this ISI as gaussian due to the large number of subchannels) to form the effective SINR, which will be, for a precoded FBMC system employing MMSE equalization,

γ MMSE,ISI = 1 MSE MMSE,ISI -1, (3.10) 
where .11) and

MSE MMSE,ISI = 1 N N n=1 1 ζ k |H n | 2 + 1 . ( 3 
ζ k = Es N 0 +σ 2 ISI,k .

SIMULATION RESULTS

If the subchannel equalizer has sufficient length to compensate the subchannel frequency response or the number of subchannels is large enough so the subchannel frequency response is flat, (3.10) reduces to the known MSE and SINR equations ((2.43) and (2.44)) for precoded multicarrier systems using linear MMSE equalization, which are

MSE MMSE = 1 N N n=1 1 γ|H n | 2 + 1 , (3.12) 
and

γ MMSE = 1 MSE MMSE -1. (3.13)
Finally, the overall BER P e considering a given channel realization can be expressed as :

P e = aQ bβ . (3.14)
where a and b are constellation-specific parameters [START_REF] Proakis | Digital Communications[END_REF], β in this equation can be

β MMSE or β MMSE,ISI and Q(x) = 1 √ 2π ∞ x e -t 2 
2 dt. To compute the overall BER an average over all the results from different channel realizations is made.

Simulation Results

In this section, simulation results of the error performance for precoded filterbank multicarrier systems are presented, comparing the results from the error approximations presented in Section 3.2 and the ones provided by Monte Carlo simulations. The simulation parameters can be found in Table 3.1. Channel estimation is assumed to be perfect and channel fading is considered to be quasistatic (time-invariant during each transmitted frame). Results were averaged over all the independent channel realizations to obtain the presented error probabilities. The multiple-tap per subchannel equalizers are the ones presented in [START_REF] Da Rocha | Sub-Channel Equalizer Design Based on Geometric Interpolation for FBMC/OQAM Systems[END_REF], whose project is based on the frequency sampling approach, geometric interpolation and the IFFT to calculate the equalizers' coefficients. the Monte Carlo simulation results are faithful to the approximation because the noise variance is higher than the one from the ISI at this stage ; however, in higher signal-to-noise ratios, their results drift from the BER approximation, due to this remaining unequalized interference being higher than the noise variance. The results from the systems using a 1-tap per subchannel equalizer are much farther from the approximation than the ones using a 3-tap per subchannel equalizer, due to its worse equalization performance.

Figure 3.6 presents the simulation results for 64 subcarriers and the ITU-T Vehicular A channel model. For this scenario, the channel is highly frequency selective (for example, if regular OFDM systems were used, the appropriate cyclic prefix size to completely eliminate the ISI would be 1/2). It is possible to see that even subchannel equalizers with a higher number of taps are not able to compensate effectively the channel selectivity, leading to For 512 subcarriers and the Vehicular B channel model, Figure 3.7 presents the simulation results. In this scenario, the channel selectivity is similar to the one presented in approximation results are consistent with the ones provided by Monte Carlo simulation. It is also possible to see that the systems employing a one tap per subchannel equalizer have a lower diversity order than the systems using subchannel equalizers with three taps for the same number of subchannels if the subchannels are frequency-selective ; this is because the one tap equalizer is unable to deal with the subchannel selectivity in these cases. When the subchannels have a flat frequency response, a one tap equalizer is enough to completely equalize the subchannel and obtain the maximum possible diversity in the scenario. In this case, using subchannel equalizers with three taps per subchannel does not bring a performance improvement.

In the coded simulations, a mother convolutional code of rate 1/2 with a generating polynomial (133, 171) 8 , a constraint length K = 7 and free distance d f ree = 10 is used.

Higher rates are obtained through puncturing. Results are presented in Figure 3. subchannels, while with N = 2048 the subchannels will be flat. The same conclusions from the uncoded case can be drawn from the results in the coded one : the residual unequalized ISI from frequency-selective subchannels reduces the diversity order if a one tap subchannel equalizer is employed ; this diversity order can be restored with multiple tap equalizers or with an increase in the number of subchannels. With flat subchannels, a one tap equalizer is enough to remove all the ISI and obtain the maximal possible diversity.

Concluding Remarks

In this chapter the error performance of precoded FBMC systems using linear MMSE equalization was analyzed. Analytical uncoded BER performances for FBMC systems taking into account this residual ISI were derived in this section, which are precise throughout the ensemble of SNRs. It is also possible to see that the residual unequalized ISI from imperfect equalization causes a loss of diversity in the coded and uncoded cases. This loss of diversity can be prevented with the use of subchannel equalizers with multiple taps or with an increase in the number of subchannels ; with those measures, there will be very little to no residual ISI.

The next chapter deals with the probability density function of the SINR of a precoded multicarrier system using linear MMSE equalization and an analytical way to determine its coded performance when using convolutional coding. 

Chapter 4

On the Distribution of the SINR and Performance in Uncoded and Coded SC-FDE Systems Using Linear MMSE Equalization

In the previous chapter we have tackled the analysis of the error probability of precoded FBMC/OQAM systems ; a semi-analytical (averaging results from several channel realizations) expression for the BER of these systems was developed. However, for the direct analytical computation of the unconditional bit error probability of precoded multicarrier systems, the knowledge of the SINR distribution is necessary. [15; 16] proposed a SINR distribution for SC-FDE systems using linear MMSE equalization for channel models with equal powered taps. However, their method does not work when the channel taps do not have equal power. Thus, the distribution for precoded multicarrier systems employing MMSE equalization transmitting through real-life channel models has not been found, due to the difficulty of computing the exact probability density function (pdf) of the SINR [START_REF] Debbah | Linear precoded OFDM transmissions with MMSE equalization : facts and results[END_REF].

Coding, together with interleaving, can also be applied to these systems to improve the transmission performance, resulting in the so-called Bit Interleaved Coded Modulation (BICM) [START_REF] Caire | Bit-interleaved Coded Modulation[END_REF]. In precoded multicarrier systems, since the diversity gain comes mainly from the precoding operation, coding and interleaving provide these systems with a coding gain.

Numerical simulation for these systems at high SNRs is time-consuming, due to the low bit error rates at this stage ; thus, an analytical analysis is desired. An analysis for block 4.1. SYSTEM MODEL fading channels was done in [START_REF] Malkamaki | Evaluating the performance of convolutional codes over block fading channels[END_REF]. For the coded multicarrier case, but without precoding, [53; 54; 55; 56] show an analysis of their performance. In [57; 58], linear constellation precoding using subchannel grouping was applied to coded multicarrier systems, with maximum likelihood iterative decoding being used at the receiver. The use of subchannel grouping instead of full-scale (a combination of all subchannels) precoding when maximum likelihood decoding is employed is desirable, since the decoding complexity increases with the number of subchannels being grouped. As for precoded multicarrier systems using linear MMSE equalization, the obtention of a pairwise error probability (PEP), which is necessary for the analysis of their coded performance, is difficult. This is due to the inherently imperfect (non-maximum likelihood (ML)) decoding of a combination of subchannels and the noise and subchannel gains correlation introduced by this process.

In this chapter, we propose the adoption of the lognormal distribution with the smallest Kullback-Leibler distance to the observed distribution as an approximation of the probability density function of the SINR in a precoded multicarrier system employing MMSE equalization. This approximation is accurate in the sense of the BER and gives very accurate results in terms of the error probability, even at high SNR values. We use this lognormal approximation to simplify the calculation of the coded performance of this system. Due to this simplification, an expression for the PEP is derived considering the lognormal system abstraction. This PEP expression provides bounds that are close to the Monte Carlo simulation results.

This chapter is organized as follows : Section 4.1 presents the system model employed in this chapter. Section 4.2 deals with the approximation of the SINR distribution by the lognormal one with the smallest Kullback-Leibler distance to the true distribution, while the coded performance analysis employing the lognormal approximation to obtain an expression for the PEP is presented in Section 4. After interleaving, x follows the same path detailed in Section 2.6, using linear MMSE equalization. Thus, repeating (2.43) and (2.44) we remind that the MSE and SINR for this system will be

System Model

MSE MMSE = 1 N N n=1 1 γ|H n | 2 + 1 , (4.1) 
and

γ MMSE = 1 MSE MMSE -1. (4.2) 
The deprecoded sequence x is demapped, deinterleaved and decoded by a soft-input soft-output (SISO) maximum likelihood Viterbi decoder, resulting in the estimated sequence ŝ.

SINR Distribution

The uncoded unconditional bit error probability for a communications system transmitting through a fading channel with gain α is given by [START_REF] Proakis | Digital Communications[END_REF]]

P e = ∞ 0 ξ a Q( ξ b γ)p γ (γ)dγ, (4.3) 
where ξ a and ξ b are constellation-specific parameters, γ = α 2 E s /σ 2 n is the SINR and p γ (γ) is the pdf of this SINR. Looking at (4.3), it is necessary to know the pdf of γ M M SE in order to compute analytically the BER of a precoded multicarrier system using linear MMSE equalization. This SINR for N = 128 and the Vehicular A channel model is presented in Figure 4.2.

Since it can be seen that this distribution changes for each SNR for the aforementioned system, it is very hard to use a specific distribution that will fit to the SINR for all SNR values. For low SNRs, the SINR distribution can be approximated by various distributions, such as the Gamma one, as an example ; however, for higher SNR values, the approximation becomes very loose. For the BER computation, the approximation should be more precise in the left tail of the pdf curve. This is because this tail corresponds to low SINR values, which will contribute heavily to the overall error performance. High SINR values correspond to very low error probabilities in the Q-function curve ; thus, the other parts of the pdf curve correspond to negligible errors [START_REF] Wang | A Simple and General Parameterization Quantifying Performance in Fading Channels[END_REF]. To achieve this goal, an approximation which will minimize the Kullback-Leibler (KL) distance to the target SINR distribution is desired.

The Kullback-Leibler distance between two distributions P and Q is given as

D KL (P ||Q) = ∞ -∞ p(x) log 2 p(x) q(x) dx, (4.4) 
where p and q are the probability density functions of P and Q. The KL distance (which is non-negative and zero if and only if P = Q) is a measure of the inefficiency of assuming 4.2. SINR DISTRIBUTION that the distribution is Q when the true distribution is P [START_REF] Cover | Elements of Information Theory[END_REF]. Also called relative entropy, it is a measure of the distance between two distributions, but it is not a true distance because it is not symmetric and does not satisfy the triangle inequality.

There is a direct connection between the minimization of the KL distance between an approximation and the target distribution and the minimization of the effect of the KL tail components [START_REF] Hall | On Kullback-Leibler Loss and Density Estimation[END_REF]. A good fit in the tails of the pdf is needed so that the tail components effect is minimized. Thus, with the minimization of the KL distance it is possible to obtain a precise approximation in the region of interest for the bit error probability case. To minimize the KL distance between the approximation and the SINR, a Monte Carlo simulation is done at each SNR to search for the distribution parameters that will lead to the smallest possible value of the KL distance.

Since the SINR of a precoded multicarrier system using MMSE equalization has only positive values, low mean, high variance and positive skew, a suitable distribution for a fit could be the lognormal distribution [START_REF] Aitchison | The Log-normal Distribution[END_REF]. It was seen in our tests that by using the lognormal distribution it is possible to obtain a smaller KL distance to the true SINR distribution when compared to other distributions.

The lognormal distribution has its probability density function given by

f X (x, µ, σ) = 1 xσ √ 2π exp - (ln x -µ) 2 2σ 2 for {x > 0} , (4.5) 
where µ and σ are the mean and standard deviation, respectively, of a variable whose logarithm is normally distributed.

µ and σ can be found for specific channel models. specify them for some of the ITU-T channel models. They were found to minimize the KL distance between the approximation and the SINR specified by (2.44). 30000 channel realizations were made to generate this SINR.

Using Craig's formula for the Q function, which is [63] Table 4.1µ for some ITU-T channel models. 

Q(x) = 1 π π 2 0 exp -x 2 2 sin 2 θ dθ, (4.6) 
Pe = 1 π π 2 0 ∞ 0 exp -γ 2 sin 2 θ 1 √ 2πσ 2 γ exp - (ln γ -µ) 2 2σ 2 dγ dθ, (4.7) 
since ξ a = ξ b = 1 for a QPSK constellation.

By the variable substitution x = ln γ-µ √ 2σ 2 , (4.7) can be rewritten as 

0 5 10 15 20 25 30 -1.8 -1.6 -1.4 -1.2 -1 -0.8 
Pe = 1 π π 2 0 1 √ π ∞ 0 exp - Es σ 2 n exp √ 2σx + µ 2 sin 2 θ exp(-x 2 )dx dθ. (4.8) 
The inner integral in (4.8) can be calculated by a quadrature Gauss-Hermite integration, which results in

4.3. CODED PERFORMANCE K n=1 w n exp - exp( Es σ 2 n √ 2σx n + µ) 2 sin 2 θ , (4.9) 
where w n and x n are, respectively, the weights and the abcissas of the Hermite polynomial and K is the desired series precision. Values of w n , x n and K can be found in [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[END_REF].

Thus, the following closed-form expression for the bit error probability in a precoded multicarrier system using the lognormal approximation can be used :

P e ≈ 1 √ π K n=1 w n 1 π π 2 0 exp - Es σ 2 n exp( √ 2σx n + µ) 2 sin 2 θ dθ (4.10) ≈ 1 √ π K n=1 w n Q E s σ 2 n exp √ 2σx n + µ . (4.11) 

Coded Performance

The direct derivation of the pairwise error probability of a precoded multicarrier system employing MMSE equalization is very difficult, due to the subchannel gains and noise correlation introduced by the imperfect (non-ML) decoding of a combination of all subcarriers. Since the uncoded SINR of a precoded system employing MMSE equalization was approximated by a lognormal distribution in the previous section, we can simplify the highlighted part of the system model presented in Figure 4.1 to the one presented in Figure 4.5. Thus, the analysis of the coded performance of a precoded multicarrier system employing MMSE equalization can be reduced to the much simpler analysis of the coded performance of a single carrier system transmitting through a lognormal fading channel distances were considered, because their impact appears at low SNR [START_REF] Frenger | Multi-rate Convolutional Codes[END_REF]. The cyclic prefix size is the minimum sufficient to eliminate the interblock interference and the power loss caused by the redundance introduced by the cyclic prefix is taken into account in the SNR calculation. Channel estimation in the receiver is assumed to be perfect, channel fading is considered to be quasistatic (time-invariant during each transmitted block) and other system imperfections are not taken into account in our simulations. To validate this approach, the results from lognormal distributions whose parameters were estimated using up to second-order moment matching (MM) and maximum likelihood (ML) estimation are also presented. These figures are shown with the x axis in logarithmic scale to make it easier to visualize the beginning of the probability density function curve. It is possible to see that the approximation using the Kullback-Leibler distance to estimate its parameters matches more closely the target distribution than the other ones in the beginning of the pdf curve for both cases.

(because if γ = α 2 E s /σ
In order to show the effect of the left tail of the pdf function on the bit error probability, We see that the approximation employing the KL distance is more precise in higher SNRs 

Concluding Remarks

We have presented in this chapter an approximation for the distribution of the SINR in a precoded multicarrier system employing MMSE equalization. This approximation, involving the lognormal distribution and the Kullback-Leibler distance, was shown to be precise when calculating the unconditional uncoded bit error probability even in high signalto-noise ratios, due to its fidelity in the beginning of the pdf curve. This approximation can also serve as an abstraction for the aforementioned system.

With this abstraction, we have developed a novel method of deriving the analytical coded performance of a precoded multicarrier system employing MMSE equalization. This method allows for a quicker performance evaluation when compared to time-intensive numerical simulations. By using the lognormal approximation to abstract the precoded multicarrier system, an equation for the corresponding PEP was derived. Simulation results have shown that the analysis is accurate when compared to the Monte Carlo simulation The next chapter deals with the application of widely linear processing to precoding and equalization for SC-FDE systems using MMSE equalization. 

System Model

On the transmitter side, the block s = [s 1 s2 . . . sN ] T of size N is composed by symbols si belonging to an improper constellation (such as M -PAM or M 2 -OQAM) with unit energy. The transmitted signal, after the RF module, will pass through a channel with an impulse response h = [ h1 h2 . . . hL h ] T of size L h. Thus, the cyclic prefix appended to the block s before transmission must have a length L CP of at least L h + 1, resulting in sCP .

Complex proper uncorrelated additional white gaussian noise (AWGN) ñ with zero mean and variance σ 2 n also contaminates the transmitted signal.

Due to the cyclic prefix, the N xN channel matrix H M is a circulant one, with its first column containing the impulse response appended by (N -L CP -1) zeros. Since H M is a circulant matrix, we can apply an eigendecomposition to this matrix to obtain W * HW,

where W is the discrete Fourier transform (DFT) matrix and H is a N xN diagonal matrix with its (k,k)-th entry H k corresponding to the k-th DFT coefficient of the channel impulse response h.

The signal r = [r 1 r2 . . . rN+L CP ] T at the entry of the receiver has its cyclic prefix removed and passes to the frequency domain through a Fast Fourier Transform (FFT), whose normalized matrix W is of size N xN , so that equalization can be done in the frequency domain. This will result in the signal r, expressed as :

r = Hs + n = HWs + n, (5.1) 
where H corresponds to the channel frequency response of a specific channel realization and s = Ws. Equalization is performed by an filter based on the minimum mean square error (MMSE) criterion. However, since the equalizer is dealing with a signal from an improper constellation (which has non-zero pseudocorrelation), it has to employ widely linear processing to use all the second-order statistics made available by the received signal.

In order to do that, the original version of the signal in the frequency domain together with its conjugate version are processed by the equalizer. 

WL-MMSE Equalizer

The system model for a SC-FDE system employing widely linear MMSE-based equalization is presented in Figure 5.1. The signal at the output of the equalizer z is given by

z = A H 1 r + A H 2 r * = A H R, (5.2) 
with

A H = [A H 1 A H 2 ] and R = r r * T .
The cost function ǫ WL to derive the equalizer A based on the WL-MMSE criterion is

ǫ WL = E[||A H R -s|| 2 ] = A H C RR A -A H C Rs -C sR A + I N . (5.3) 
where 

C RR = E[RR H ] = E r r * r H r T = C rr C rr C * rr C * rr (5.4) C rr = E rr H = E (Hs + n)(n H + s H H H ) = HE[ss H ]H H + σ 2 n I = HWE[ss H ]W H H H + σ 2 n I = HWW H H H + σ 2 n I = HH H + σ 2 n I N (5.
C Rs = E[Rs H ] = E r r * s H = E rs H r * s H = HE[ss H ] H * E[s * s H ] = HWE[ss H ]W H H * (WE[ss T ]W T ) * = HWW H H * (WW T ) * = H H * U (5.8) 
and

C sR = E[sR H ] = E s H r r * = E sr H s * r H = E[ss H ]H E[s * s H ]H * = WE[ss H ]W H H (WE[ss T ]W T ) * H * = WW H H (WW T ) * H * = H UH * , (5.9) 
with E[nn T ] = 0 (since the noise is proper), and WW H = I N . We obtain the optimal equalizer A by differentiating ǫ WL with respect to A and equalling the result to zero, resulting in 

A = C -1 RR C Rs = HH H + σ 2 n I N HUH T H * UH H H * H T + σ 2 n I N -1 H H * U . ( 5 
= σ 2 n H mod + σ 2 n I N -1 UHH H U + σ 2 n I N (5.12) BB = σ 2 n H mod + σ 2 n I N -1 HUH T (5.13) CC = σ 2 n H mod + σ 2 n I N -1 H * UH H (5.14) DD = σ 2 n H mod + σ 2 n I N -1 UHH H U + σ 2 n I N (5.15)
and

H mod = HH H + UHH H U. (5.16) 
Analysing (5.16), it is possible to see that H mod is a diagonal matrix with its diagonal

equal to [2|H 1 | 2 (|H 2 | 2 +|H N | 2 ) (|H 3 | 2 +|H N -1 | 2 ) . . . 2|H N/2+1 | 2 . . . (|H 3 | 2 +|H N -1 | 2 ) (|H 2 | 2 + |H N | 2 )].
This way, the equalizer A can be expressed as

A = C -1 RR C Rs (5.17) = A 1 A 2 (5.18)
with

A 1 = σ 2 n H mod + σ 2 n I N -1 UHH H U + σ 2 n I N H- -σ 2 n H mod + σ 2 n I N -1 HUH T H * U = σ 2 n H mod + σ 2 n I N -1 σ 2 n H = H mod + σ 2 n I N -1 H (5.19)
and ] = 0. This process is very similar to the one done in [START_REF] Lin | Analysis of receiver algorithms for LTE SC-FDMA based uplink MIMO systems[END_REF], but better details A 1 and A 2 , showing that A 2 is the conjugate version of A 1 .

A 2 = -σ 2 n H mod + +σ 2 n I N -1 H * UH H H+ + σ 2 n H mod + σ 2 n I N -1 UHH H U + σ 2 n I N H * U = σ 2 n H mod + σ 2 n I N -1 σ 2 n H * U = H mod + σ 2 n I N -1 H * U. ( 5 

SYSTEM MODEL

After equalization, an inverse Fast Fourier Transform (IFFT) is done so that the symbol decision is realized in the time domain. Due to the fact that widely linear processing is employed in the equalizer, the estimated symbols z at the output of the receiver will be purely real.

WL-MMSE DFE Equalizer

When using a WL-MMSE DFE equalizer, the system model is described in Figure 5.2.

Assuming that correct past decisions are passed along in the feedback filter, the frequency domain representation q of the symbol estimate q can be expressed as 

q = B H R -D H s, (5.21 
ǫ WL-DFE = E[||B H R -D H s -s|| 2 ] = B H C RR B -B H C Rs D -B H C Rs - -D H C Rs B + D H D + D H -C sR B + D + I N . (5.22) 
Deriving this cost function with respect to the feedforward filter B and setting it to zero, we obtain the optimal value of B, expressed as

B = C -1 RR C Rs (I N + D) = A(I N + D). (5.23) 
Now, we substitute (5.23) in (5.22) to obtain the new cost function for the optimal value of the feedback filter d, which is 

ǫ FB = 1 N N n=1 |1 + D(n, n)| 2 H mod (n, n) + σ 2 n . ( 5 
′ k = s ′ k - L d l=1 d ′ l x k-l . ( 5 
= s′ d + n + ĩ, (5.31) 
where s′ d is the desired symbol vector, n the filtered noise and the remaining interference is expressed by ĩ. This way, the error vector ẽ′ is 

ẽ′ = n + ĩ = W -1 ((B ′ ) H n) + W -1 ((B ′ ) H K -D ′ )x ′ . ( 5 

ERROR PERFORMANCE ANALYSIS

Since MSE WL is a circulant matrix, its diagonal elements are all the same. Thus, the MSE for all the elements of z is 1 N tr[MSE WL ]. Note that MSE WL is much lower than the MSE given by the stricly linear equalizer, which is

1 N tr[W -1 (H H H+σ 2 n I N ) -1 W] [39]
. The effective SINR after deprecoding when using a WL-MMSE equalizer is

γ WL-MMSE = 1 2 γN tr[MSE WL ] -1 , (5.38) 
with

tr[MSE WL ] = 1 2|H 1 | 2 + σ 2 n + 1 2|H N/2+1 | 2 + σ 2 n + + N/2 i=2 2 |H i | 2 + |H N +2-i | 2 + σ 2 n , (5.39) 
and γ = E s /σ 2 n . The division by 2 in (5.38) is because the final symbol decision is only done on the real estimate [START_REF] Mirbagheri | An enhanced widely linear CDMA receiver with OQPSK modulation[END_REF]. Since [START_REF] Lin | Analysis of receiver algorithms for LTE SC-FDMA based uplink MIMO systems[END_REF] does not specify well A 1 and A 2 , (5.38) clarifies the calculation of the SINR for a SC-FDE system using widely linear MMSE equalization in the SISO case. (5.38)) also does not rely on matrix inversion for its calculation, as is the case for the SINR expression given in [START_REF] Lin | Analysis of receiver algorithms for LTE SC-FDMA based uplink MIMO systems[END_REF].

SINR for the WL-MMSE DFE Receiver

For the SC-FDE system using WL-MMSE DFE equalization, its MSE can be expressed, using the method described in [START_REF] Salz | Optimum mean-square decision feedback equalization[END_REF], as

MSE WL-DFE = exp 1 N N n=1 log 1 1 + γH mod (n, n) . (5.40) 
The mean square error expressed in (5.40) does not take into account the error propagation effect that can be caused by erroneous previous decisions. This MSE is lower than the one obtained by the strictly linear solution, given by [START_REF] Panazio | An uncoded BER comparison between DFE-SCCP and OFDM using a convex analysis framework[END_REF] MSE

DFE = exp 1 N N n=1 log 1 1 + γ|H n | 2 .
(5.41)

The SINR for the SC-FDE system using WL-MMSE DFE equalization is given by

γ WL-DFE = 1 2 1 MSE WL-DFE -1 . (5.42)
Again, we divide by 2 to obtain the effective SINR for the system using widely linear equalization.

SIMULATION RESULTS

SINR for the WL-MMSE-THP Precoder

The MSE for the WL-MMSE-THP SC-FDE system is the same one from a WL-MMSE DFE one outside of a factor η which will represent the precoding loss. Thus, it can be expressed as

MSE WL-THP = exp 1 N N n=1 log 1 1 + γ η H mod (n, n) , (5.43) 
with η = M 2 M 2 -1 for one-dimensional constellations and η = M M -1 for two-dimensional ones.

Finally, to calculate the error probability P e conditional to a specific channel realization, the following equation is used :

P e = αQ( βγ), (5.44) 
where α and β are constellation-specific parameters, γ can be γ WL-MMSE , γ WL-DFE or γ WL-THP and Q

(x) = 1 √ 2π ∞ x exp -t 2 2 dt.
The unconditional error probability is obtained by averaging over all the conditional error probabilities corresponding to the channel realizations.

Simulation Results

Simulation results to validate the use of widely linear MMSE based equalization and precoding for different block sizes and channel models are presented in this section. For the simulations presented in this section, the cyclic prefix size used is the minimum sufficient to eliminate the interblock interference and the power loss caused by the redundance introduced by the cyclic prefix is taken into account in the SNR calculation. A sampling frequency of 10 MHz was used. To calculate the final bit error performance in the Monte Carlo simulations, a minimum of 400 errors were taken into account for each point ; for the method presented in Section 5.3, 5000 independent channel realizations were done to obtain the unconditional error probability. Channel estimation in the receiver is assumed to be perfect (unless noted otherwise), channel fading is considered to be quasistatic (timeinvariant during each transmitted block) and other system imperfections are not taken into account. For THP systems, the precoder size is L d. In simulations using channel coding, a mother convolutional code with R = 1/2, K = 7, (171, 133) 8 code followed by a block interleaver is used at the transmitter ; in the receiver, a block de-interleaver followed by a 5.4. SIMULATION RESULTS soft-decision Viterbi decoder is used. Higher code rates are obtained through puncturing. effect of the linear feedforward filter's lower efficiency in removing the ISI is compensated by its feedback filter. It is interesting to note that the system with a WL-MMSE DFE transmitting symbols from a 64-OQAM constellation has better error performance that the system transmitting symbols from a 16-QAM constellation using regular linear MMSE equalization.

In Figure 5.9, results for N = 128, the Vehicular A channel model, but this time using convolutional coding, are presented. In this scenario, the performance gain from using the WL-MMSE equalizer is also observed, with its advantage growing with a weaker code ratio.

For systems using a feedback filter, coding is not directly applicable due to the effect of error propagation in the feedback filter, which causes a significant amount of burst errors in the Viterbi decoder [START_REF] Huang | Decision Feedback Equalization in SC-FDMA[END_REF]. Efforts to overcome this problem in decision-feedback equalizers have been discussed in [70; 71].

The results presented from previous simulations considered that in DFE systems the Results for Tomlinson-Harashima precoded systems using convolutional coding are presented in Figure 5.13. In this scenario, the performance gain from using widely linear-based precoding is also observed, with its advantage growing with a weaker code ratio.

The previous results when using Tomlinson-Harashima precoding assumed perfect channel estimation in the receiver and perfect channel state information at the transmitter ; however, this is an unlikely scenario in real conditions, because of channel variations. As stated before, Tomlinson-Harashima precoded systems rely on complete channel state information in the transmitter, which in turn needs perfect channel estimation in the receiver.

A comparison on the impact of channel estimation errors and imperfect CSI in the error performance of MMSE-THP SC-FDE systems using or not widely linear equalization is presented in Figure 5.12 for E b N 0 = 19.25 dB, N = 128 and the Vehicular A channel model. The imperfect channel estimates can be expressed as H e = H + E H , where E H is the 5.5. CONCLUDING REMARKS channel estimation error matrix, with its diagonal composed of zero-mean Gaussian distributed random variables with variance σ 2 e [START_REF] Maurer | Multi-threshold TOP-full-diversity vector perturbation precoding with finite-rate feedforward[END_REF]. This imperfect channel estimate is then passed to the transmitter, which will have erroneous CSI. While the error performance of the strictly linear system degrades as the error variance σ 2 e increases, the widely linear precoded SC-FDE system is nearly insensitive to the increase of the channel estimation error variance.

Concluding Remarks

This chapter presented SC-FDE systems using widely linear MMSE-based equalization, decision-feedback equalization and Tomlinson-Harashima precoding. The use of widely linear processing brings, when the transmitter uses improper constellations, a performance gain compared to when common strictly linear MMSE processing is used. With respect to SC-FDE systems using MMSE-DFE equalization, together with the performance gain the use of widely linear processing also makes the error performance less sensitive to the feedback filter size. The error performance of Tomlinson-Harashima precoded systems using widely linear processing is also much less sensitive to channel estimation/CSI errors than the one from systems using strictly linear processing.

The next chapter brings the concluding remarks and suggestions for future work. Chapter 6

Conclusion

In this thesis new precoding and equalization techniques for multicarrier systems were proposed, together with a theoretical analysis of their error performance. First, the error performance of precoded FBMC/OQAM systems was studied in Chapter 3. It was found out that this error performance is highly sensitive to residual ISI stemming from incomplete subchannel equalization. If the subchannel frequency response is flat or if the subchannel equalizer is large enough to compensate the frequency response there will be no residual ISI after equalization and the diversity order will be the same of a SC-FDE system. However, if subchannel equalization is incomplete, the residual interference after equalization will reduce the maximal diversity possible. An expression for the SINR considering these cases was found for uncoded transmissions ; this expression provides results consistent with the Monte Carlo simulation results.

Chapter 4 deals with the probability distribution function of the SINR in a precoded multicarrier system employing linear MMSE equalization. We proposed the lognormal distribution for this SINR as an accurate approximation in the sense of the BER, with its parameters minimizing the Kullback-Leibler distance to the target SINR. By minimizing the Kullback-Leibler distance, we ensure that the approximation will be precise in the lower tail of the pdf, which is the part that counts for the calculation of the BER. With this lognormal distribution as an abstraction for the system we have developed a novel analytical way to determine the error performance of a precoded multicarrier system employing linear MMSE equalization and convolutional channel coding. This method gives results matching CONCLUSION results.

-A more fundamental analysis of maximal achievable bit rate of the widely linear decision-feedback equalizer and Tomlinson-Harashima precoder does not exist yet in the literature.

-It was found out in [START_REF] Devillers | Bit Rate Comparison of Adaptive OFDM and Cyclic Prefixed Single-Carrier with DFE[END_REF] that adaptive multicarrier transmission achieves a bit rate greater than or equal to that of SC-FDE systems using decision-feedback equalization.

It remains to be verified if this result holds for SC-FDE WL-MMSE-DFE systems.

-The extension of the analysis presented in Chapter 4 for the case where subchannel equalization is incomplete in precoded FBMC/OQAM systems and for SC-FDE systems using widely linear processing. 
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  Finalement, des précodeurs Tomlinson-Harashima (THP) et égaliseurs (linéaires et à retour de décision) largement linéaires pour des systèmes SC-FDE ont été proposés. Ces précodeurs et égaliseurs ont une meilleures performance comparés aux versions strictement linéaires lorsque les signaux de constellations impropres sont transmises. Aussi, le taux d'erreurs quand des égaliseurs à retour de décision sont utilisés est moins sensible à la longueur du filtre de retour. Quand des précodeurs largement linéaires sont utilisés, cette performance devient moins sensible aux erreurs d'estimation des canaux. v Résumé des Travaux de Thèse Chapitre 1 -Introduction Le but de cette thèse est de proposer et d'étudier de nouvelles techniques d'égalisation et de précodage pour les systèmes multiporteuses. D'abord, nous avons étudié le taux d'erreurs des systèmes FBMC/OQAM (FilterBank MultiCarrier/OQAM) précodés. Ensuite, nous avons abordé le problème de l'aproximation du SINR des systèmes multiporteuses précodés qui utilisent l'égalisation linéaire MMSE ; une étude de leurs taux d'erreurs théoriques avec codage est aussi présentée. Finalement, nous avons examiné l'utilisation du traitement largement linéaire dans les précodeurs et égaliseurs pour les systèmes SC-FDE.

  Donc, nous intégrons sur ce spectre résiduel du sous-canal pour déterminer la puissance xiv Réponse impulsionnelle complexe désirée aprés égalisation dans les systèmes FBMC.σ 2

  xv

M

  = 128, 1 tap, Monte Carlo M = 128, 1 tap, Analytical M = 128, 3 tap, Monte Carlo M = 128, 3 tap, Analytical M = 256, 1 tap, Monte Carlo M = 256, 1 tap, Analytical Taux d'erreurs pour les systèmes FBMC non codés précodés qui utilisent l'égalisation MMSE en transmettant à travers du modèle de canal Vehicular A. Taux d'erreurs pour les systèmes FBMC codés précodés qui utilisent l'égalisation MMSE en transmettant à travers du modèle de canal Vehicular B.

Chapitre 4 -

 4 La première Figure montre la comparaison entre les résultats de simulation de Monte Carlo et ceux de l'approximation présentée dans ce chapitre. Les systèmes FBMC transmettent à travers un modèle de canal Vehicular A avec N = 128, 256. Pour ce cas, avec N = 128 les sous-canaux seront sélectifs en fréquence ; si N = 256 les sous-canaux seront plats. Les résultats de l'approximation sont conforment avec ceux fournis par les simulations de Monte Carlo. Il est aussi possible voir que les systèmes qui utilisent des égaliseurs de sous-canal d'un coefficient ont une ordre de diversité réduite par rapport aux systèmes qui utilisent des égaliseurs de sous-canal de trois coefficients pour le même nombre de souscanaux si les sous-canaux sont sélectifs en fréquence car l'égaliseur d'un coefficient n'est pas capable de compenser toute la sélectivité du sous-canal dans ces cas. Lorsque les souscanaux ont une réponse en fréquence plate, l'égaliseur d'un coefficient suffit pour égaliser complètement le sous-canal et obtenir l'ordre de diversité maximum dans le scénario. Dans ce cas, l'utilisation d'égaliseurs de sous-canal avec plus de coefficients n'apporte pas de gain de performance. Les résultats pour des systèmes qui utilisent un codage de canal avec le modèle de canal Vehicular B, avec N = 1024, 2048 sont présentés dans la deuxième Figure. Dans ce cas, avec N = 1024 on aura des sous-canaux sélectifs en fréquence, lorsque avec N = 2048 les sous-canaux seront plats. Les mêmes conclusions peuvent être apliquées au cas codé. Sur la Distribution du SINR et la Performance d'Erreur Non-codée et Codée en Systèmes SC-FDE avec Égalisation Linéaire MMSE

  performance d'erreur du SINR avec ses approximations pour le modèle de canal Pedestrian B. La première Figure montre la probabilité d'erreur de bit du système comparée avec ses approximations pour le modèle de canal Pedestrian B. Les paramétres µ et σ en fonction du SNR et du modèle du canal sont estimés par la méthode des moments, maximum de vraisemblance et ceux qui resultent dans la plus petite distance KL vers la vraie distribution. On peut voir que l'approximation qui utilise la distance KL est la plus précise dans les SNRs élevés (> 10 dB) par rapport aux autres approximations, parce que la méthode KL assure que l'approximation sera plus proche de la vraie distribution dans la partie gauche de la pdf. Pour valider la nouvelle méthode analytique pour la détermination de la performance codée, la deuxième Figure compare les résultats de Monte Carlo avec les résultats de l'équation de la performance codée (avec les paramétres de la distribution lognormale obtenus avec le méthode KL) pour N = 512, le modéle de canal Pedestrian B et les taux xix R = 1/2, Monte Carlo R = 2/3, Monte Carlo R = 3/4, Monte Carlo Introduction Dans ce chapitre nous proposons des systèmes SC-FDE qui utilisent de l'égalisation simple, de l'égalisation avec retour de décision et du précodage Tomlinson-Harashima MMSE largement linéaire. L'usage de l'égalisation et de la précodage largement linéaire donne une avantage de performance par rapport aux systèmes strictement linéaires quand des constellations impropres sont transmises. Des expressions pour le SINR à la sortie du récepteur sont données pour tous les cas. xx

  nous divisons par 2 pour obtenir le SINR effectif pour le système qui utilise l'égalisation largement linéaire. xxii SINR pour le Précodeur WL-MMSE-THP La MSE pour le système WL-MMSE-THP SC-FDE est la même que celle d'un système WL-MMSE DFE moins un facteur η, qui représente la perte de précodage. Donc, cette MSE peut être exprimée par

  Ld = Lh/2 DFE, Ld = Lh/4 DFE, Ld = Lh/8 WL-DFE, Ld = Lh/2 WL-DFE, Ld = Lh/4 WL-DFE, Ld = Lh/8 Taux d'erreurs pour N = 128 et le modèle de canal Vehicular A en systèmes SC-FDE DFE avec de differents tailles de L d. Les systèmes avec l'égalisation et précodage largement linéaire ont un gain de performance par rapport aux leurs versions strictemente linéaires si des constellations impropres sont utilisées, grâce à l'usage complet des statistiques de second ordre du signal. La premième figure montre l'effet de la variation de la taille du filtre de retour sur le taux d'erreurs des systèmes SC-FDE DFE. Le système largement linéaire a un taux d'erreurs moins sensible par rapport au système strictement linéaire, parce que son filtre feedforward est plus efficient dans l'enlèvement de l'ISI. Avec des filtres de retour plus xxiii model, N = 128, Eb N0 = 19.25 dB MMSE-THP WL-MMSE-THP L'impact des erreur d'estimation du canal/CSI dans la performance d'erreur des systèmes THP. courts, la complexité de calcul pour le calcul des coefficients de ce filtre est réduite. Une comparaison de l'impact des erreurs d'estimation du canal et CSI imparfait sue le taux d'erreurs des systèmes MMSE-THP SC-FDE est présentée dans la deuxième figure pour E b N 0 = 19.25 dB, N = 128 et le modèle de canal Vehicular A. L'estimation imparfaite du canal peut être exprimée comme H e = H + E H , où E H est la matrice d'erreurs d'estimation du canal, avec sa diagonale composée par des variables aléatoires gaussiennes, de moyenne zéro et variance σ 2 e . Cette estimation imparfaite est transmise au émetteur, qui aura une mauvaise information de l'état du canal. Lorsque les performances du système strictement linéaire deviennent pire à cause de l'augmentation de la variance d'erreur σ 2 e , le système SC-FDE précodé largement linéaire est presque insensible à l'augmentation de la variance d'erreurs de l'estimation du canal. Chapitre 6 -Conclusions Finales Dans cette thèse de nouvelles techniques de précodage et d'égalisation pour les systèmes multiporteuses ont été proposées, avec une analyse théorique de leurs performances. D'abord, le taux d'erreurs des systèmes FBMC/OQAM précodés a été étudié dans le Chapitre 3. Il a été montré que cette performance est très sensible à l'ISI residuelle qui provient xxiv de l'égalisation imparfaite des sous-canaux. Une expression pour le SINR qui considère ces cas a été obtenue pour des transmissions non-codées ; cette expression fournit des résultats identiques avec ceux des simulations de Monte Carlo. Le Chapitre 4 traite de la densité de probabilité du SINR dans un système multiporteuse précodé qui utilise l'égalisation linéaire MMSE. Nous avons proposé d'utiliser la distribution lognormale pour ce SINR comme approximation afin d'estimer le BER ; les paramétres de cette distribution doivent minimiser la distance de Kullback-Leibler vers le vrai SINR. Avec cette minimisation, nous nous assurons que cette approximation sera précise dans la partie gauche de la fonction, qui est la partie la plus importante pour le calcul du BER. Avec cette distribution lognormal comme abstration du système nous avons développé une nouvelle méthode analytique pour déterminer la performance d'erreurs pour les systèmes multiporteuses précodés qui utilisent l'égalisation linéaire MMSE et la codage de canal convolutionnel. Cette méthode donne des résultats cohérents avec ceux des simulations de Monte Carlo. Des égaliseurs et précodeurs Tomlinson-Harashima MMSE qui utilisent le traitement largement linéaire pour les systèmes SC-FDE ont été proposés dans le Chapitre 5. Comme ces égaliseurs et précodeurs utilisent toutes les statistiques de deuxième ordre disponibles si le signal transmis est impropre, ils ont une erreur quadratique moyenne plus petite et un meilleur taux d'erreurs. Des expressions pour la MSE et le SINR de tous les égaliseurs et précodeurs proposés ont été développés ; ces expressions sont en conformité avec les résultats de simulation de Monte Carlo. Les égaliseurs à retour de décision pour les systèmes SC-FDE ont un taux d'erreurs moins sensible à la taille du filtre de retour. Les précodeurs Tomlinson-Harashima largement linéaires sont moins sensible à une information du canal erronée à l'émetteur par rapport aux versions strictement linéaires.
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 3 PUBLICATIONSough to turn the subchannel frequency responses flat or if the subchannel equalizers are large enough to compensate the selective frequency response precoded FBMC/OQAM systems have the same diversity order of SC-FDE systems using regular OFDM modulation.
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 21 Figure 2.1 -An OFDM/QAM Transmitter.
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 2 Figure 2.2 shows an OFDM/QAM receiver, which realizes the inverse of the operations done in the transmitter plus equalization.
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 2223 Figure 2.2 -An OFDM/QAM Receiver.
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 24 Figure 2.4 -Time-domain response of the raised cosine filter.
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 25 Figure 2.5 -Frequency-domain response of the raised cosine filter.
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 2 Figures 2.6 and 2.7.
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 27 Figure 2.7 -Frequency-domain response of the IOTA filter.
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 28 Figure 2.8 -Time-domain response of the PHYDYAS filter.
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 29 Figure 2.9 -Frequency-domain response of the PHYDYAS filter.
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 2 Figure 2.10 -The OQAM transmission scheme.
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 2 Figure 2.11 -A FBMC transmitter.
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 2 Figure 2.12 -A FBMC receiver.
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 5 COMPARISON BETWEEN DIFFERENT MULTICARRIER SYSTEMS 2.5.4 Error Performance The error performance of OFDM/QAM and FBMC/OQAM systems is compared in this subsection through simulation examples. The simulation parameters are -Sampling frequency -10 MHz -Carrier frequency -2,5 GHz -Number of subchannels -128, 256 and 1024 -1000 independent channel realizations for each point -Frame length -53 OFDM symbols-QPSK/OQPSK constellations -PHYDYAS prototype filter for the FBMC/OQAM system -Channel models : Vehicular A and B[START_REF] Itu-R | Guidelines for evaluation of radio transmission technologies for IMT-2000 -Recommendation M.1225[END_REF] 
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 2 Figure 2.13. Clearly, the one tap subchannel equalizer has the worst performance in high E b
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 2213 Figure2.14 shows that for 256 subchannels and the Vehicular A channel model all the FBMC/OQAM subchannel equalizers have similar error performance. This result can be explained due to the fact that in this case the subchannels are nearly flat, thus a one tap subchannel equalizer is enough to compensate the channel distorsion. Again the OFDM/QAM system has the best error performance, but with a waste of more than 10 % of the bandwidth.Finally results for 1024 subchannels and the Vehicular B channel model (which is more frequency selective than the Vehicular A one) are presented in Figure2.15. To eliminate the ISI the OFDM/QAM system used a cyclic prefix of 1/4, which leads to a waste of 25 % of the bandwidth. Among the FBMC/OQAM systems the one using the multitap
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 214 Figure 2.14 -Comparison between OFDM/QAM and FBMC/OQAM systems for 256 subchannels and the Vehicular A channel model.
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 215 Figure 2.15 -Comparison between OFDM/QAM and FBMC/OQAM systems for 1024 subchannels and the Vehicular B channel model.
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 2296 Figure 2.16 -A precoded OFDM/QAM system using linear equalization.
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 2358 Figure 2.18 -A SC-FDE system employing linear MMSE equalization and Tomlinson-Harashima precoding.
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 31 Figure 3.1 -A precoded FBMC/OQAM system.
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 32 Figure 3.2 -Equalizers for FBMC Systems.
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 33 Figure 3.3 -Desired equalized subchannel complex impulse response in FBMC systems.
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 33435 Figure 3.4 presents the simulation results comparing the results obtained from the Monte Carlo simulations to the BER approximation presented in (2.44) (which does not take into account the residual ISI) using linear MMSE equalization, for a system with N = 1024 and the Vehicular A channel model. 1-tap and 3-tap per subchannel equalizers are
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 36 Figure 3.6 -Error performance for N = 64 and the Vehicular A channel model.
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 36 Figure 3.6 (a cyclic prefix size of 1/2 would be needed too), and the subchannel equalizers cannot eliminate all the ISI.
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 337 Figures 3.8 and 3.9 shows the comparison between the Monte Carlo simulation results and the approximation results when using the model based on (3.10), which takes into account the residual unequalized ISI present in the subchannels for the calculation of the SINR. FBMC systems are transmitting through a Vehicular A channel model with N = 128, 256 (in Figure 3.8) and the Pedestrian B channel model with N = 256, 512 (in Figure 3.9). For these cases, with N = 128 for the Vehicular A channel model and N = 256 for the Pedestrian B channel model the subchannels are going to be frequency selective. On the other hand, with N = 256 for the Vehicular A channel model and N = 512 for the Pedestrian B channel model the subchannels can be considered as flat. The

M

  10 for systems employing convolutional coding, transmitting throught the Vehicular B channel model and with N = 1024, 2048. In this case, N = 1024 will lead to frequency-selective = 128, 1 tap, Monte Carlo M = 128, 1 tap, Analytical M = 128, 3 tap, Monte Carlo M = 128, 3 tap, Analytical M = 256, 1 tap, Monte Carlo M = 256, 1 tap, Analytical
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 38 Figure 3.8 -Uncoded error performance for precoded FBMC systems using MMSE equalization and transmitting through the Vehicular A channel model.
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  = 256, 1 tap, Monte Carlo M = 256, 1 tap, Analytical M = 256, 3 tap, Monte Carlo M = 256, 3 tap, Analytical M = 512, 1 tap, Monte Carlo M = 512, 1 tap, Analytical
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 39 Figure 3.9 -Uncoded error performance for precoded FBMC systems using MMSE equalization and transmitting through the Pedestrian B channel model.
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 310 Figure 3.10 -Coded error performance for precoded FBMC systems using MMSE equalization and transmitting through the Vehicular B channel model.
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 3 Simulation results validating this approach are presented in Section 4.4 and the concluding remarks in Section 4
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 41 Figure 4.1 -A precoded multicarrier system using channel coding.

Figure 4 .

 4 Figure 4.1 details the system model for this chapter. In this system, the sequence s, of size mS is encoded by a rate R c convolutional code with constraint length K. This codeword is bit-interleaved by an interleaver, resulting in the codeword c. c is then Gray mapped to a block of M -QAM symbols x = [x 1 x2 . . . xN ] T of size N = S/R c , where M = 2 m .
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 42 Figure 4.2 -SINR for a precoded multicarrier system using linear MMSE equalization, N = 128 and the Vehicular A channel model.
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 43 can be rewritten, for the lognormal distribution presented in (4.5) and a QPSK 4
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 43 Figure 4.3µ for some ITU-T channel models.
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 44 Figure 4.4σ for some ITU-T channel models.
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 45 Figure 4.5 -A coded precoded multicarrier system using the lognormal approximation.

For a SNR of 25

 25 dB, a comparison of the observed SINR distribution (obtained with 20000 channel realizations) with the lognormal approximation with the smallest Kullback-Leibler distance to the observed distribution is presented in Figure 4.6 for the ITU-T Pedestrian B channel model and in Figure 4.7 for the ITU-T Vehicular A channel model.
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 46 Figure 4.6 -A comparison of the true SINR distribution with the approximations at SNR = 25 dB for the Pedestrian B channel model.

Figure 4 .

 4 Figure 4.8 presents the bit error probability when taking into account into the calculation different percentages of the left tail of the SINR's probability density function curve. For this simulation, the Vehicular A channel model was used. As stated before and validated by the results seen in this Figure, only the lowest SINR values (the beginning of the pdf curve) are important when calculating the bit error probability at high SNR values, dueto the fact that the rest of the pdf curve will correspond to very high SINR values, which in turn will lead to a near-zero bit-error rate.

Figures 4 .

 4 Figures 4.9 and 4.10 shows the system's bit error probability (an average from all channel realizations) compared to its approximations, for the Pedestrian B and Vehicular A channel models respectively. (4.11) is used to calculate the bit error probability for the lognormal approximation. The parameters µ and σ as a function of the SNR and the channel model are estimated by moment matching, maximum likelihood estimation and the ones which result in the smallest Kullback-Leibler distance to the target distribution.
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 47 Figure 4.7 -A comparison of the true SINR distribution with the approximations at SNR = 25 dB for the Vehicular A channel model.
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 48 Figure 4.8 -Error performance when taking into account different parts of the probability density function curve of the SINR.
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 49 Figure 4.9 -Comparison of the error performance using the SINR with the SINR approximations for the Pedestrian B channel model.
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 4101 Figure 4.10 -Comparison of the error performance using the SINR with the SINR approximations for the Vehicular A channel model.
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 411 Figure 4.11 -Comparison between the bounds and Monte Carlo simulation results for N = 512 and the Pedestrian B channel model.
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 51 Figure 5.1 -A SC-FDE system employing widely linear MMSE equalization.
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  ) where B is the feedforward filter and D is a N xN matrix with its main diagonal being the N x1 sized frequency-domain representation of the time-domain feedback filter d = [ d1 d2 . . . dL d ] T , with length L d. Thus, the cost function ǫ WL-DFE to derive the feedforward filter B is
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 5253 Figure 5.2 -A SC-FDE system employing widely linear MMSE equalization and a decision-feedback equalizer.

. 30 )

 30 x′ follows the same path of a SC-FDE WL-MMSE-DFE up to the feedback filter (cyclic prefix insertion, passage through the channel, cyclic prefix removal, FFT, WL-MMSE equalization by the filter B ′ and IFFT). The same modulo operation realized in the transmitter is done in the receiver to ỹ′ to map the received data to the interval (-M, M ], resulting in the symbol estimate ŝ′ . Only the first N -L h elements of ŝ′ are used for the decision. An equivalent linearized scheme of the system model presented in Figure 5.3 is shown in Figure 5.4, following the time domain THP conversion made in [67]. In this Figure, K = [H H * ] T and D ′ is a N xN diagonal matrix with its main diagonal being the N -sized Fourier transform of the Tomlinson-Harashima precoder d′ .

Figure 5 .

 5 Figure 5.4 shows that the symbol estimate ŝ′ is given by

Figure 5 . 4 -

 54 Figure 5.4 -Equivalent system structure for the SC-FDE system employing widely linear MMSE equalization and Tomlinson-Harashima precoding.

Figure 5 . 5 -

 55 Figure 5.5 -Error performance for N = 128 and the Vehicular A channel model in SC-FDE systems.

Figure 5 .

 5 Figure 5.5 shows the Monte Carlo results for a SC-FDE system using WL-MMSE equalization compared to the results provided by(5.44) for transmission symbols drawn from an BPSK constellation, a block size N = 128 and the ITU-T Vehicular A channel model. For the systems employing a DFE, its length L d is equal to the channel length L h. For reference, the error performance of SC-FDE systems using strictly linear MMSE equalization is also shown. It is possible to see that the use of the analysis presented in this chapter gives consistent results when compared to the Monte Carlo simulation results throughout the E b /N 0 range. The utilization of the WL-MMSE equalizer brings a performance gain when compared to the strictly linear MMSE one in the entire E b /N 0 range for systems using or not a DFE, due to the complete use of the second-order statistics made available by the improper signal. Results using a QPSK constellation for the strictly linear receiver and a OQPSK constellation for the widely linear one will be the same as the ones presented in Figure5.5.

Figure 5 . 6 -

 56 Figure 5.6 -Error performance for N = 512 and the Pedestrian B channel model in SC-FDE systems.

Figure 5 .Figure 5 . 7 -

 557 Figure 5.6 presents results for N = 512, the ITU-T Pedestrian B channel model and again a BPSK constellation. The same conclusions made for the previous case can also be stated for this scenario. For high E b /N 0 ratios, the Monte Carlo simulation can be very time-consuming for the WL-MMSE receiver, due to low BER values. Thus, the use of the analytical method presented in this chapter allows us to derive the system performance in less time.Results for the same scenario employed in Figure5.5, but with 16-QAM/OQAM constellations in Figure5.7 and 64-QAM/OQAM constellations in Figure5.8, are shown. It is possible to see that the performance advantage between the widely linear equalizer and the strictly linear one in the case where a DFE is not used increases when the constellation size grows. With a DFE, the advantage for the widely linear equalizer remains the same with the increase of the constellation size. This can be explained by the fact that the WL-MMSE feedforward filter is more effective in eliminating the ISI when compared to the strictly linear MMSE feedforward filter, thus leaving less ISI for its feedback filter to remove. The

Figure 5 . 8 -Figure 5 . 9 -

 5859 Figure 5.8 -Error performance for N = 128 and the Vehicular A channel model for 64-QAM/OQAM in SC-FDE systems.

8 Figure 5 . 10 -

 8510 Figure 5.10 -Error performance for N = 128 and the Vehicular A channel model with different L d sizes in SC-FDE DFE systems.

Figure 5 . 11 -

 511 Figure 5.11 -Error performance for N = 128 and the Vehicular A channel model in THP SC-FDE systems.

Figure 5 . 12 -NFigure 5 . 13 -

 512513 Figure 5.12 -The impact of channel estimation/CSI errors on the error performance of THP systems.

  Dans cette thèse, de nouvelles techniques d'égalisation et de précodage pour des systèmes multiporteuses ont été proposées et analysées. D'abord, la probabilité d'erreurs des systèmes multiporteuses à base de bancs de filtres (FBMC) précodées a été analysée. Il a été montré que cette performance est très sensible à l'égalisation complète des sous-canaux. Lorsqu' il y a de l'interference inter-symbole residuelle qui vient de l'égalisation imparfaite des sous-canaux, il y a une perte de diversité ; cette diversité peut être récuperée avec l'utilisation d'un nombre de sous-canaux assez grand pour que chaque sous-canaux subisse de l'évanouissement plat ou avec l'utilisation d'un égaliseur par sous-canal avec une longueur suffisante pour compenser cette réponse en fréquence. Une approximation pour la distribution du rapport signal/bruit-plus-interfèrence (SINR) des systèmes SC-FDE qui utilisent égalisation MMSE linéaire a été ensuite proposée. Cette approximation utilise la distribution lognormal avec la plus petit distance de Kullback-Leibler vers la vraie distribution, et nous avons montré qu'elle est précise pour estimer la performance d'erreurs ; elle sert aussi comme une abstraction de ce système. Avec cette abstraction, une méthode précise pour obtenir la performance d'erreur analytique codée de ces systèmes a été proposée. Finalement, des précodeurs Tomlinson-Harashima (THP) et égaliseurs (linéaires et à retour de décision) largement linéaires pour des systèmes SC-FDE ont été proposés. Ces précodeurs et égaliseurs ont une meilleures performance comparés aux versions strictement linéaires lorsque les signaux de constellations impropres sont transmises. Aussi, le taux d'erreurs quand des égaliseurs à retour de décision sont utilisés est moins sensible à la longueur du filtre de retour. Quand des précodeurs largement linéaires sont utilisés, cette performance devient moins sensible aux erreurs d'estimation des canaux.
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Table 2 .

 2 

		1 -FBMC transmultiplexer time-frequency impulse response with the PHYDYAS
	prototype filter.						
	T/F	-3	-2	-1	0	1	2	3
	-2 -1	0, 0006 j0,0429	-0, 0001 -0,125	0 -j0,2058 0,2393 0	0 j0,2058	-0, 0001 -0,125	0, 0006 -j0,0429
	0	-0,0668	0,0002	0,5644	1	0,5644	0,0002	-0,0668
	1	-j0,0429	-0,125	j0,2058	0,2393 -j0,2058	-0,125	j0,0429
	2	0,0006	-0,0001	0	0	0	-0,0001	0,0006

  MMSE-DFE,FB is the frequency domain version of the feedback filter rMMSE-DFE,FB . rMMSE-DFE,FB (of length L d) can be found by solving the following equation[START_REF] Benvenuto | On the Comparison Between OFDM and Single Carrier Modulation With a DFE Using a Frequency-Domain Feedforward Filter[END_REF] 

.45) 2.6. PRECODED OFDM/QAM SYSTEMS Figure 2.17 -A precoded OFDM/QAM system employing MMSE decision-feedback equalization. 2.7. TOMLINSON-HARASHIMA PRECODING where R

Table 2 .

 2 2 -Precoding loss in dB of Tomlinson-Harashima precoded systems[START_REF] Robert | Precoding and Signal Shaping for Digital Transmission[END_REF]. with good performance. Their error performance is the same as the one from systems employing an ideal DFE (i.e., error free) in the receiver minus a power penalty, which is dependent of the signal constellation used. This power penalty is due to the modulo operation employed to limit the transmitted signal power. The power penalty for one and two-dimensional constellations is listed in Table2.2. As seen in Table2.2, this power penalty (precoding loss) becomes negligible as the constellation size grows[START_REF] Tomlinson | New automatic equaliser employing modulo arithmetic[END_REF].

	M	2	4	8	16	32	64
	η 1D 1.25 0.28 0.07 0.02 0.004 0.001
	η 2D	-	1.25 0.58 0.28 0.14	0.07
	can be employed						

Zhu et al. in

[START_REF] Zhu | Frequency Domain Equalization With Tomlinson-Harashima Precoding for Single Carrier Broadband Wireless Communications[END_REF] 

propose a SC-FDE system employing MMSE-based Tomlinson-Harashima precoding. The block diagram for this system is presented in Figure

2

.18.

  .19. W L,1 xW L,2 . As a consequence, xW L can be seen as a orthogonal projection of xW L in this Hilbert subspace and due to the orthogonality principle,

		c
	ỹW L	xW
		+
	() *	d

L Figure 2.19 -A receiver using widely linear processing. It is clear that xW L is not a linear function of ỹW L , which is the case of x in (2.51). However, the order-k statistics of xW L can be inferred from the order-k statistics of ỹW L and ỹ * W L . This is why (2.53) is called a wide sense linear or widely linear system. Observing (2.53), the estimation problem consists in finding the optimal values of c and d in a way that E | xW L -xW L | 2 is minimized. The linear subspace spanned by xW L becomes a Hilbert subspace if we define the scalar product by < xW L,1 , xW L,2 > = E x *

Table 4 .

 4 2σ for some ITU-T channel models.

	E b N 0 (dB) Veh. A 0.52 0.54 0.56 0.59 0.63 0.66 0 3 6 9 12 15
	Ped. B 0.45 0.45 0.48 0.5 0.52 0.55
	Veh. B 0.56 0.58 0.6 0.63 0.67 0.71
	E b N 0 (dB) Veh. A	18 0.7 0.74 0.79 0.82 0.86 21 24 27 30
	Ped. B 0.59 0.62 0.66 0.7 0.73
	Veh. B 0.74 0.79 0.82 0.86 0.90

  2 n has a lognormal distribution, α has the same distribution).

							ñ		
	s	Coding + Interleaving		Mapping	Lognormal Fading Channel	+	x	Demapping	Deinterleaving + Decoding	ŝ
	4.3. CODED PERFORMANCE								
	A tight BER union upper bound for this system employing a convolutional code (with a	
	rate R c = k c /n c obtained by puncturing a rate 1/2 mother code, with a minimum Hamming	
	distance d f ree ) is given by [49]							
		P e ≤	1 k c	d=d f ree ∞	w(d)P ep (d|γ),		(4.12)	
	where w(d) is the input weight of all error events at Hamming distance d and P ep (d|γ) is	
	the average pairwise error probability (PEP) conditional on the lognormal SINR γ between	

Table 4 .

 4 3 -Simulation parameters for Section 4.4.

	Constellation	QPSK
	Sampling Frequency	10 MHz
	Channel Models	ITU-T Pedestrian B, Vehicular A
	Number of channel realizations	20000

Table 4 .

 4 4 -Error event weights. R c d f ree w(d), d = d f ree , d f ree + 1, . . . , d f ree + 5

	1/2	10	[11 0 38 0 193 0]
	2/3	6	[1 16 48 158 642 2435]
	3/4	5	[8 31 160 892 4512 23297]

Table 2 .

 2 5.2. SYSTEM MODELIf the real (imaginary) part of t is greater than M , 2M is (repeatedly) subtracted from it until the result is less than M . If this real (imaginary) part is less than -M , 2M is (repeatedly) added to it until the result is greater than or equal to -M . In other words, t is reduced modulo 2M to the half-open interval [-M, M ), limiting the effective dynamic range of the transmitted signal to this interval. This modulo operation is represented by the sequence ã. After this operation, L h zeros are appended to x′′ to initialize the state of T of size N x1. More power is necessary to transmit the precoded symbols when compared to non-precoded ones (see 2) ; however, this penalty becomes negligible with an increase in constellation size.Ignoring the modulo operation, the output of the Tomlinson-Harashima precoder x

	the precoding filter, resulting in the vector	x′ = [x	′ 1	x′ 2 . . .	x′ N ]

′ is

x
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SIMULATION RESULTS

the codewords having Hamming distance d between them, expressed by [START_REF] Malkamaki | Evaluating the performance of convolutional codes over block fading channels[END_REF] P ep (d|γ) = Q 2dγ . (4.13)

Values for w(d) at various code rates can be found in [START_REF] Frenger | Multi-rate Convolutional Codes[END_REF]. Without loss of generality, we consider that these two codewords only differ in their first d bits. The unconditional pairwise error probability can be obtained by averaging the conditional PEP over the probability density function of the SINR, yielding

Thus, we can use the process shown in Section 4.2 to derive a closed-form solution for (4.14), which can be expressed as

where µ and σ are the lognormal distribution parameters which were found to minimize the Kullback-Leibler distance between the lognormal approximation and the true SINR distribution from a uncoded precoded multicarrier system employing MMSE equalization.

We remind that these parameters were presented in Tables 4.1 and 4.2 for some channel models.

The union bound for the coded error performance can be obtained by remplacing (4.14) in (4.12), resulting in

Simulation Results

In this section, simulation results to validate the approach presented in the previous sections in different situations are presented. The simulation parameters used are depicted in Widely Linear MMSE Precoding and Equalization Techniques for SC-FDE Systems

Introduction

We have investigated the use of linear equalization in precoded multicarrier systems in the previous chapters. However, as seen in Section 2.8, if the transmitted signal is improper widely linear processing can be employed with a performance gain.

In this chapter we propose SC-FDE systems using widely linear MMSE-based equalization, decision-feedback equalization and Tomlinson-Harashima precoding. The use of widely linear MMSE-designed equalization and precoding brings a performance advantage with respect to stricly linear systems when improper constellations are transmitted.

It also makes the system less sensitive to the feedback filter length (in systems using decision-feedback equalizers) and to channel estimation/channel state information errors (in Tomlinson-Harashima precoded systems) when compared to systems using strictly linear processing. An expression for the Signal to Interference-plus-Noise Ratio (SINR) at the output of the receiver is provided for all cases.

It is divided as follows. Section 5.2 presents the system models used in this work. The 

To minimize ǫ FB the feedback filter coefficients d are given by the solution of the linear system

The L dxL d matrix F and the L dx1 column vector g are expressed, respectively, as

and

To initialize the feedback filter, the last L d symbols of xCP can be used. Once d is determined, B can be calculated by (5.23). To cancel all the ISI from the previous detected symbols, the size of the feedback filter L d should be equal to the channel length L h.

WL-MMSE Tomlinson-Harashima Precoder

A block diagram for the SC-FDE system using WL-MMSE Tomlinson-Harashima precocding is shown in Figure 5.3.

In this system model, we consider a single carrier block transmission, with the block to be transmitted The modulo-2M operation to the vector t in the precoder is done independently on the real and imaginary parts. The output of this modulo operation is given by

(5.29)

ERROR PERFORMANCE ANALYSIS

Using (5.32), we obtain the mean square error E ′ , given by 

Error Performance Analysis

SINR for the WL-MMSE Receiver

Let us remember that after the FFT in this system, the received signal and its conjugate version are grouped in the vector R. Both versions are processed together in the frequency domain by the WL-MMSE equalizer A. Thus, the symbol estimate z is expressed by

is obtained after deprecoding the signal z at the output of the WL-MMSE equalizer by the

We can rewrite z in the following way :

The combined effect of the ISI and the noise in z is e, given by

With e we can calculate the mean square error MSE WL , expressed as Future work to extend the results presented in this thesis could be centered in the following lines :

-We have seen in Chapter 5 that SC-FDE systems using widely linear equalization have less ISI after the feedforward filter when compared to regular linear systems.

Thus, iterative widely-linear equalizers for SC-FDE systems (such as the linear ones presented in [73; 74]) could need less iterations to reach the desired error performance when compared to their strictly linear versions.

-Since FBMC/OQAM systems transmit signals from improper modulations, the application of widely-linear equalizers and precoders in linearly precoded FBMC/OQAM systems could increase their error performance. An analysis of their error performance when the subchannel frequency response is selective as the one done in Chapter 3

(if their residual ISI after incomplete equalization also affects the diversity order as much as in precoded FBMC systems using linear equalization) would also be desired.

-In [START_REF] Tajer | Diversity Order in ISI Channels with Single-Carrier Frequency-Domain Equalizers[END_REF] the diversity order of SC-FDE systems using linear equalization is studied. It was found out this diversity order varies with block and constellation sizes. In Chapter 5 it was found that with an increase in the constellation size the error performance advantage of SC-FDE systems using widely linear MMSE equalizers (without DFEs) over their linear counterpart improves. Thus, the mathematical analysis of the diversity order in SC-FDE systems using widely linear processing could bring interesting Abstract :

In this thesis, new precoding and equalization techniques for multicarrier systems were proposed and analyzed. First, the error performance of precoded filterbank multicarrier (FBMC) systems was analyzed.

It was found out that this performance is highly sensitive to complete subchannel equalization. When there is residual intersymbol interference (ISI) stemming from imperfect subchannel equalization there is a loss of diversity ; this loss can be prevented with the adoption of a number of subchannels large enough so that each subchannel suffers flat fading or with the utilization of a subchannel equalizer with sufficient length to compensate the subchannel frequency response. After that, an approximation for the signal to interference-plus-noise ratio (SINR) distribution of SC-FDE systems using linear MMSE equalization was proposed. This approximation uses the lognormal distribution with the smallest Kullback-Leibler distance to the true distribution, and was shown to be precise in the error performance sense ; it serves as a system abstraction. With this abstraction, a precise method to obtain the analytical coded error performance of these systems was proposed. Finally, widely linear Tomlinson-Harashima precoders and equalizers (linear and decision-feedback) for SC-FDE systems were proposed. These precoders and equalizers have better error performance when compared to their strictly linear versions if signals coming from an improper constellation are transmitted. Their error performance when decision-feedback equalizers are used is less sensitive to the length of the feedback filter. When widely linear precoders are used, this error performance becomes less sensitive to channel estimation errors.

Keywords :

Multicarrier systems, Precoding, Equalization, Widely linear processing