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Modelling tools for quieter vehicles : Waves in poro-and visco-elastic continua

Résumé

De nouveaux outils de modélisation permettant de contribuer au développement de véhicules silencieux sont développés. Ils sont fondés sur des modèles continus de propagation d'ondes en milieux poro-et viscoélastiques. Par l'exploitation des spécificités géométriques des éléments étudiés, les temps de calculs associés peuvent être grandement améliorés par rapport à l'utilisation de modélisations plus traditionnelles. Ainsi, l'utilisation de fonctions analytiques pré-déterminées pour une ou deux directions permet de réduire la dimension spatiale du problème numérique restant à résoudre. Cette réduction de dimension spatiale est introduite pour deux configurations privilégiées. Premièrement, elle est appliquée à la propagation d'ondes au sein de cylindres creux, infiniment longs, et homogènes, ou guides d'onde, en matériau viscoélastique. Les solutions obtenues en termes d'ondes sont ensuite utilisées afin de modéliser des amortisseurs de vibration en caoutchouc, de longueur finie, en faisant correspondre les modes aux conditions limites radiales du problème. Dans un deuxième temps, une méthode de réduction de la dimension spatiale du problème est appliquée à la modélisation de structures multicouches avec symétrie de révolution, composées de domaines poro-élastiques, élastiques et fluides. En utilisant une décomposition en série de Fourier de la dépendance spatiale azimutale, le problème d'origine, en trois dimensions, est décomposé en plusieurs petits problèmes de deux dimensions, réduisant radicalement le coût en temps de calcul.

De plus, par une méthode mixte alliant mesures et méthodes numériques, les caractéristiques d'un amortisseur visqueux de poids lourd sont déterminées, dans le domaine fréquentiel audible, illustrant l'influence des coussinets en caoutchouc au niveau des attaches avec les pièces voisines.

Les approches de modélisation présentées dans cette thèse ont pour but de contribuer aux outils de conception de véhicules nouveaux, intégrant de nouvelles technologies permettant de s'inscrire dans l'objectif de produire des véhicules durables. Tout particulièrement, ces outils ont pour objectif l'amélioration de la modélisation des vibrations et nuisances sonores, qui sont souvent pénalisés lors de la conception de nouveaux concepts de véhicules durables.

Mots clés : Vibroacoustique interne; Modèles numériques; Matériaux poroélastiques; Matériaux viscoélastiques; Modèles réduits; Ingénierie des véhicules Chapter 1

Introduction

Environmental issues have become increasingly important for virtually all industries, and will during the coming decades be the, perhaps, greatest challenge facing both industry and society at large. The most discussed environmental issue is probably that of global warming, primarily caused by carbon dioxide emissions and other green house gases. A large part of these emissions come from transport industry; estimations suggest that transport industry accounts for approximately 26 % Swedens energy consumption [1], requiring a considerable reduction of the energy consumed by the transport sector in order to obtain a sustainable environment. Åkerman and Höijer [2] suggests that a 60 % reduction of the energy used for transport is required until the year 2050 for this to be achieved. At the same time, these improvements should be made while maintaining, and preferably improving, other environmental factors related to comfort and load integrity, such as sound and vibration levels.

To reduce fuel consumption, and hence the emission of green house gases, the vehicle industry of today focuses a lot of effort on the possibilities to reduce tire wear, rolling resistance, aerodynamic loads and vehicle weight. At the same time, an increase of the load carrying capacity would open up new possibilities. However, when addressing these environmental issues, the performance in terms of sound and vibration properties is often negatively influenced through conflicting functional requirements. For instance, an efficient way to reduce aerodynamic loads and increase load carrying capacity is to decrease the distance between the chassis and the ground, and by reducing the tire size. However, when doing this, the suspension travel has to be decreased, potentially leading to increased transmission of structure borne sound. Another example where the trade off between improvements of the power train technology on the one side, and sound and vibration performance on the other, is the current development of electric vehicles, where the lack of masking sound from the engine causes the structure borne vibrations generated by the tyre-road interaction to induce sometimes unacceptable annoyance inside the vehicle.

CHAPTER 1. INTRODUCTION

These future challenges for the vehicle industry naturally fuels the demand for new technology used in the design process to aid the necessary improvements of sustainability. One such technology is related to rapid virtual modelling requiring special measures and modelling tools enabling the development of new technology. By providing such technology enablers, a better understanding of, and more efficient ways of addressing, noise and vibration issues, can be achieved. In this thesis, the objective is to provide tools for new sustainable vehicles without degrading or even improving noise and vibration characteristics, in procedures similar to that described by e.g. Cameron et al. [3]; a crucial demand when developing new competitive vehicles.

The methods developed treat modelling of components consisting of isotropic viscoelastic and anisotropic poro-elastic media, such as rubber and sound absorbing foams. The methods are based on continuum wave propagation models, usually requiring a large amount of computational power. In order to reduce this demand of computational resources, advantage is taken of the geometrical properties of the system components of interest. The common geometrical attribute of the presented formulations is that of rotational symmetry. This allows for an harmonic expansion of the azimuthal dependence in terms of orthogonal harmonic functions, reducing the original threedimensional problem to a set of two-dimensional ones. Further, by also assuming a constant cross section, that is, a cylindrical geometry, the geometry may be extended infinitely in the axial direction, further simplifying the modelling by studying wave propagation in this infinite direction. These wave solutions can then be used to model components of finite axial extent, such as rubber vibration isolators.

In addition to the more theoretical models presented, a combined measurement and modelling of a truck damper element is presented. The damper is designed to reduce low frequency energy transfer between the chassis and the passenger compartment to which it is attached by rubber bushings. However, for higher, audible, frequency ranges, the properties are currently, to a large extent, unknown. In the presented procedure, the damper characteristics are obtained by measurements, while the rubber bushing properties are obtained by the above-mentioned models. The components are subsequently connected, and the behaviour of the assembled system is studied.

The presented works are intended as a further step towards more efficient modelling and a deeper understanding of the acoustic sound transmission mechanisms in modern day vehicles, hopefully enabling novel solutions for a more sustainable future transportation system.

Chapter 2 Wave equations

In this chapter, the fundaments for acoustic waves in visco-elastic and porous elastic media are given. Commonly, when one talks about acoustics, the implicit interpretation of linear acoustics is made; that is, the magnitudes of the state variables' deviations from an equilibrium are of such a small scale, that a linear relation between them may be considered. This has the consequence that the phenomena of interest may readily be studied in the frequency domain rather than the time domain. Indeed, the field of nonlinear acoustics is, for a range of cases, needed to satisfactorily describe the mechanical behaviour of the waves. This, however, is beyond the scope of this thesis, and only linear motion will be considered.

Waves in isotropic visco-elastic media

The foundations for the theory of linear visco-elasticity was laid in the late 18th century by Maxwell, Voigt, Kelvin and Boltzmann among others, and thorough reviews are found in numerous standard text books on the subject, such as Refs. [4,5,6]. Here, a brief review of the governing equations and existing models is given, with emphasis on the visco-elastic behaviour of rubber.

For a (visco-)elastic, isotropic, continuum, the linear, constitutive stress-strain relation may be given in terms of its spherical

σ s (t) = t -∞ κ(t -t ) ∂ div u(t ) ∂t I dt (2.1)
and deviatoric

σ d (t) = t -∞ 2µ(t -t ) ∂ dev[∇u(t )] ∂t dt (2.2)
parts where σ = σ s + σ d and u are Cauchy stress tensor and displacement vector, respectively, I is the second order unit tensor, κ and µ are bulk and shear relaxation, or memory, functions, while t and ∇ denote time and nabla operator, respectively. The CHAPTER 2. WAVE EQUATIONS momentum equation reads

∇ • σ(t) = ρ ∂ 2 u(t) ∂t 2 , (2.3)
where ρ is the density and • denote single contraction. By applying a temporal Fourier transform, (•) = ∞ -∞ (•) exp(-iωt)dt to the constitutive equations (2.11) and (2.12), the frequency domain representation is obtained as

σ = σ s + σ d = κ I div u + 2 µ dev ∇ u, (2.4) 
while the momentum equation (2.3) becomes

∇ • σ = -ρω 2 u, (2.5) 
where i is imaginary unit, ω is the angular frequency and κ = iω κ and µ = iω µ are in general complex and frequency dependent, where the real parts describe the elasticity and the imaginary parts the viscous dissipation. The dissipation may be modelled in various ways. Considering the frequency domain representation, the simplest, and in engineering practices perhaps most common approach, is that of a frequency independent loss factor. This, however, may give rise to a non-causal behaviour [7] and hence more intricate descriptions are often preferable. Simple, classical, models obeying the causality requirement are e.g. the Maxwell and Kelvin-Voigt models and extensions of these, such as the generalised Maxwell and Standard Linear Solid models [4], involving (integer) time derivatives of the stress and strain tensors and the Augmented Hooke's Law (AHL) [8], establishing a very general formalism for arbitrary anisotropic visco-elasticity. To accurately fit these models to experimental data, a large number of parameters are usually required. An alternative, more attractive from this point of view, is a fractional order derivative model [9]. This, mathematically quite intricate concept, is probably best understood as the fractional derivative order, being between zero and one, describes neither elastic, nor viscous, behaviour, but something in between these two extremes. The constitutive equations (2.1) and (2.2) may, using fractional derivatives, alternatively be written

∞ n=1 A s n ∂ α s n ∂t α s n σ s (t) = ∞ n=1 B s n ∂ β s n ∂t β s n div u(t) I (2.6) and ∞ n=1 A d n ∂ α d n ∂t α d n σ d (t) = ∞ n=1 B d n ∂ β d n ∂t β d n dev[∇u(t)] (2.7)
where

∂ (•) /∂t (•) is a fractional derivative of order (•); 0 ≤ (•) ≤ 1, while A s n , A d n , B s n and B d
n are (real valued) coefficients. For the nearly incompressible rubber material modelled in Papers I and II, the bulk modulus is taken to be very large and memory less; κ(t) = κ = βµ ∞ , hence capturing all dissipation in the shear modulus, here conveniently CHAPTER 2. WAVE EQUATIONS given as

µ(t) = 1 + ∆E γ -∆ t τ γ µ ∞ h(t), (2.8) 
where the constant β 1, the equilibrium shear modulus µ ∞ = lim t→∞ µ(t), the non-dimensional relaxation density ∆ 1 : lim t→0 µ(t) = µ ∞ (1 + ∆) , the fractional derivative order γ : 0 < γ 1 and the generalized relaxation time τ 0 are material parameters and h is a step function. The Mittag-Leffler function reads

E γ (x) = ∞ n=0 x n Γ(1 + nγ) (2.9)
where the Gamma function is defined as [10] Γ(y) = ∞ 0 s y-1 e -s ds.

(2.10)

With these definitions, the constitutive equations (2.6) and (2.7) become

∆ + τ γ ∂ γ ∂t γ σ d (t) = 2 ∆µ ∞ + τ γ µ ∞ (1 + ∆) ∂ γ ∂t γ dev[∇u(t)] (2.11)
for the deviatoric part of the Cauchy stress while the spherical part is

σ s (t) = βµ ∞ div u(t) I. (2.12) 
Equation (2.11) is also identified as the fractional derivative Standard Linear Solid. In terms of the frequency domain constitutive equation (2.4) the frequency independent, and real valued, bulk modulus is obtained as

κ(ω) = κ = βµ ∞ (2.13)
while the shear modulus becomes

µ(ω) = iω µ(ω) = 1 + ∆(τ iω) γ ∆ + (τ iω) γ µ ∞ . (2.14)
If a Helmholtz decomposition for the displacement field [4],

u = grad φ + curl ψ, (2.15) 
is utilised, the potentials are found to be governed by the Helmholtz equations are identified as longitudinal and transverse wave numbers respectively, describing plane wave propagation in an infinite homogeneous medium.

∇ 2 φ + k 2 L φ = 0 (2.

Anisotropy

While the previous section describes the linear dynamics of isotropic solids, that is, solids having the same behaviour in all spatial directions, a large range of materials require an anisotropic constitutive description, where the material parameters may vary depending on coordinate direction. With this at hand, the frequency domain constitutive equation (2.4) is replaced with the tensor equation,

σ = C : ε, (2.20) 
where : denotes double contraction, and, written in Cartesian tensor component notation,

σ ij = C ijkl ε kl , (2.21) 
where the Cauchy stress and strain tensors, σ = σ ij e i ⊗ e j and ε = ε ij e i ⊗ e j = 1 2 ∇ u + (∇ u) T , are second order tensors where (•) T denotes transpose and ⊗ is the dyadic operator, while the fourth order Hooke's tensor, C = C ijkl e i ⊗ e j ⊗ e k ⊗ e l , is positive definite, while exhibiting the symmetries C ijkl = C klij and C ijkl = C jikl = C ijlk , leaving at a maximum 21 independent material parameters. In the formalism of Equation (2.21), an isotropic media is defined as a media being invariable under rotation, that is, given a rotation by an arbitrary rotation tensor, R = R ij e i ⊗ e j ; RR T = I and det R = 1, the identity,

C mnop = R im R jn R ko R lp C ijkl , (2.22) 
must hold, resulting in a Hooke's tensor,

[C] =           2µ + λ λ λ 0 0 0 2µ + λ λ 0 0 0 2µ + λ 0 0 0 µ 0 0 symm. µ 0 µ           , (2.23) 
CHAPTER 2. WAVE EQUATIONS as written in its 6×6 matrix representation in terms of the shear modulus, µ, and second Lamé parameter, λ = κ -2µ/3. Several classifications of anisotropic media exist, but the most common ones are as follow, given along with their matrix representation of the Hooke's tensor:

1. Transversely isotropic, where the material has a symmetry plane around whose normal the material is invariant under rotation, and an out of plane behaviour different from it, requiring a maximum of five independent elastic material parameters in order to describe its behaviour:

[C] =           A B C 0 0 0 A C 0 0 0 E 0 0 0 D 0 0 symm. D 0 (A -B)/2           (2.24)
2. Orthotropic, where the principal directions are orthogonal, i.e., there exists an orthogonal coordinate system where there is no coupling between dilatation and shear. This material has nine independent material parameters at the most:

[C] =           C 11 C 12 C 13 0 0 0 C 22 C 23 0 0 0 C 33 0 0 0 C 44 0 0 symm. C 55 0 C 66           (2.25)
2. Fully anisotropic, where the principal directions are not orthogonal, i.e., shear motion may cause compressional stresses and vice versa, independent of the coordinate system. This, most general material description, can require up to 21 parameters:

[C] =           C 11 C 12 C 13 C 14 C 15 C 16 C 22 C 23 C 24 C 25 C 26 C 33 C 34 C 35 C 36 C 44 C 45 C 46 symm. C 55 C 56 C 66           (2.26)
The introduction of anisotropic media has the consequence that the number of existing plane waves is greater than the two for isotropic media. These waves are in general a combination of transverse and longitudinal waves, and furthermore, dependent on propagation direction.

CHAPTER 2. WAVE EQUATIONS

Waves in porous elastic media

The foundations for the modern day theories of sound propagation in fluid saturated porous elastic materials was laid by Biot [11,12] and Biot and Willis [13]. The novelty of the work is that, instead of treating the material as heterogeneous, the fields of the elastic and fluid medium, respectively, are homogenized, rendering two separate, but coupled continua, occupying the same space. The approach naturally exhibits some restrictions; the typical scales of the wave lengths has to be magnitudes larger than the length scales of the microscopic heterogeneities in order to allow for a meaningful average. For audible frequency ranges, and common porous media used for sound absorption, this condition is, however, usually not violated.

A large portion of the work on porous media following the works of Biot has been dealing with obtaining physically meaningful descriptions of the material parameters. These can be divided into three groups: elastic, fluid and coupling parameters, where the most focus has been on the latter ones. The choice of these may vary, but a standard choice is the five given by the Johnson-Champoux-Allard model [14]:

• Porosity, φ [1], defined as the volume fraction of fluid content, which, for acoustic applications normally is close to 1.

• Tortuosity, α ∞ [1], giving a relation between the length of the path the fluid is travelling in relation to the same length in the porous media. More explicitly it is defined as the fraction of the square of the mean microscopic velocity and the mean microscopic velocity squared.

• Viscous and thermal characteristic lengths, Λ and Λ' [m], providing corrections for the viscous and thermal fluid-structure interactions.

• Static flow resistivity, σ s [Nsm -4 ], defined as the pressure difference over flow velocity per unit length.

The parameters are here given as scalar entities, whereas porous media often exhibits a, to some extent, anisotropic behaviour. In the following, the anisotropic form of Biot's equations will be considered, which, naturally, also hold for isotropic media. Given in terms of the fluid and frame Cauchy stresses, σ f and σ s , and fluid and frame displacements, u f and u s , the two (frequency domain) momentum

∇ • σ s = -ω 2 ρ11 u s -ω 2 ρ12 u f (2.27) and ∇ • σ f = -ω 2 ρ12 u s -ω 2 ρ22 u f , (2.28) 
CHAPTER 2. WAVE EQUATIONS and two constitutive

σ s = C + Q ⊗ Q R : ε + Qθ f (2.29)
and

σ f = Q : ε + Rθ f I (2.30)
equations govern the wave propagation in the porous medium. The (fourth order) Hooke's tensor of the frame at zero pressure C is equivalent to that of the homogenized solid skeleton, while the dilatational coupling tensor Q and homogenized bulk modulus R are related to the adiabatic bulk modulus of the fluid via the porosity and a frequency dependent thermal response function. The frequency dependent second order tensors ρ11 , ρ22 and ρ12 account for both inertial and viscous effects concerning the solid, fluid and solid-fluid coupling, respectively. Furthermore the fluid dilatation is

θ f = ∇ • u f (2.31)
and the solid frame strain is

ε = 1 2 ∇u s + (∇u s ) T . (2.32) 
An alternative to the above used fluid and frame displacement fields is to replace the fluid Cauchy stress tensor by the (scalar) pore pressure as σ f = -φpI. By manipulations of the momentum and constitutive equations, the fluid displacement can be dropped in favour of the pore pressure, reducing the number of dependent variables from six to four. A consequence of this is, that even though rotation may be present in both the fluid and the solid, one of them need not be explicitly considered since these rotations are linearly dependent. It can be shown that this implies the existence of three plane waves for an infinite, isotropic, medium, as compared to the two in an elastic solid: one shear and two longitudinal waves.

By a closer inspection of Equations (2.27)-(2.30) it can be seen that, by setting the coupling terms ρ12 and Q to zero, Equations (2.27) and (2.29) resemble the momentum and constitutive equations of an anisotropic solid, while Equations (2.28) and (2.30) are similar to the equations of waves in fluids. In fact, as described in Paper IV, by substituting ρ11 and ρ22 by a solid and fluid density, respectively, and R with the adiabatic bulk modulus, the analogy is exact.

In addition to the anisotropic Hooke's tensor from Section 2.1.1, the above stated anisotropic porous media description contains additional momentum (ρ 11 , ρ12 , ρ22 ) and dilatationally (Q) induced anisotropy. In terms of the previously described classifications, a second order tensor Σ, is given in its matrix representation as:

CHAPTER 2. WAVE EQUATIONS 1. Transversely isotropic [Σ] =    Σ 1 0 0 Σ 1 0 symm. Σ 3    . (2.33) 2. Orthotropic [Σ] =    Σ 1 0 0 Σ 2 0 symm. Σ 3    . (2.34) 2.
Fully anisotropic

[Σ] =    Σ 11 Σ 12 Σ 13 Σ 22 Σ 23 symm. Σ 33    . (2.35)
An isotropic second order tensor is furthermore simply one obeying 3Σ -(I : Σ)I = 0. Similarly to the case of anisotropic (visco-)elastic media, the number of waves in anisotropic porous media is greater than the three existing in isotropic porous media.

It should be noted that, perhaps apart from the Hooke's tensor, the question of how to obtain realistic anistropic material parameters is still an open issue; to apply the experimental procedures available for characterisation of isotropic media to anisotropic materials is not a trivial task.

Chapter 3

Modelling

In order to solve the wave equations from the previous section, a range of methods are at hand. They include different numerical methods, such as finite element (FE) methods [15,16,17,18] or boundary element (BE) methods as well as analytical methods, and combinations thereof [19,20,21]. The most popular of these is probably that of FE; the domain of interest is discretised, and the solution is approximated by a set of base functions. The set of functions may vary [22], but a standard choice is that of polynomial functions, e.g. Lagrangian base functions. The FE-problem may be solved by either a direct frequency response method or by a modal approach. Even though very promising, the modal approach has some limitations; for the visco-elastic and poro-elastic media treated in this thesis, the sometimes strong frequency dependence results in non-orthogonal modes, requiring special treatment [23,24,25]. The biggest virtue of FE is its generality; on bounded domains it has few restrictions and the ease of implementation makes it the standard procedure for solving a large range of engineering problems. It has, however, one major drawback: with increased complexity of the models, especially in the higher frequency ranges, the required computational power can become extremely large.

In this thesis, two different solution methods are presented in an attempt to overcome this problem. Both methods concern axially symmetric geometries, i.e., the geometry of interest is, in a cylindrical coordinate system (r, ϕ, z), bounded by surfaces having normals n(r, ϕ, z) = n r (r, z)e r +n z (r, z)e z . The first method uses an harmonic expansion of the field in one spatial direction in combination with a FE-method for the remaining two, while the second method completely abandons FE in favour of a more direct approach where analytical expressions are derived for the entire three-dimensional field in accordance with Kari [19,20] and Coja and Kari [26]. Both methods have their virtues and drawbacks; commonly, the further one applies an analytical approach, the less computational power is required, while, at the same time, the more restricted it is in terms of generality.

CHAPTER 3. MODELLING

Waves in infinite cylinders

In Papers I and II, waves in infinitely extended homogeneous and hollow cylinders are treated, often referred to as wave guides. The waves in the homogenous cylinders are axially anti-symmetric while axisymmetric waves are studied for the hollow ones.

As stated in Section 2.1, the potentials are, for a given circumferential mode order n, required to satisfy the Helmholtz equations,

∇ 2 φ + k 2 L φ = 0 (3.1)
and

∇ 2 ψ + k 2 T ψ = 0. (3.2)
For the case of tubes, infinitely extended in the axial z-direction, separable solutions of the form

φ n = R n φ ( k 2 L -k 2 z r)Θ φ (nϕ) Z φ (k z z), (3.3) 
ψ n r = R n r ( k 2 T -k 2 z r)Θ r (nϕ) Z r (k z z), (3.4) 
ψ n ϕ = R n ϕ ( k 2 T -k 2 z r)Θ ϕ (nϕ) Z ϕ (k z z) (3.5) 
and

ψ n z = R n z ( k 2 T -k 2 z r)Θ z (nϕ) Z z (k z z) (3.6) 
are assumed, where, by insertion in the Helmholtz equations (3.1) and (3.2), the radial dependence is found to be governed by Bessel functions, the angular dependence by trigonometric functions and the axial dependence by harmonic exponential functions. In Paper I, the second order Bessel functions are omitted due to boundedness requirement at the origin, while n = 1, describing first order, anti-symmetric azimuthal motion. In Paper II, n = 0, giving Θ r = Θ z = 0 and Θ ϕ = Θ φ = 1, while both first and second order Bessel functions are present. The resulting potential solutions are required to fulfill the stress-free boundary conditions, σ rr = σ rϕ = σ rz = 0, at the radial boundaries, resulting in dispersion relations giving allowed values for the axial wave number k z for the given integer circumferential mode order.

It should be noted that the separability requirement on the potentials, (3.3)-(3.6), is not sufficient to obtain a dispersion relation. Rather, the separability requirement is taken on the field variables which are required to be satisfied in the boundary conditions, i.e., the stresses. For the axial propagation, this will, however, always be satisfied for any circumferential wave order n due to the natural spatial derivative of the exponential functions governing the axial wave propagation. The same can, however, not generally be said about the formulations describing waves in the radial direction for an infinite disc of thickness h occupying the space r ∈ [0, ∞), ϕ ∈ [0, 2π), z ∈ (-h/2, h/2). For a non-trivial solution to the wave equation, the order of separation is changed such that, in Equation

(3.3), k 2 L -k 2 z → k r and k z → k 2 L -k 2 r while in in Equations CHAPTER 3. MODELLING (3.4) to (3.6) k 2 T -k 2 z → k r and k z → k 2 T -k 2 r
, where, in order to determine values for the radial wave numbers, k r , the radial dependence (Bessel functions), need to be separated for the stresses σ rz , σ ϕz and σ zz , which are required to vanish at the plane boundaries z = ±h/2. Indeed, a dispersion relation for radially symmetric waves can be obtained [26]. Whether such relations exist for antisymmetric, and azimuthally higher order radial waves remains, to the author's knowledge, an open issue. In fact, to prove that a dispersion relation exists is a quite straightforward task. To prove the opposite, i.e. the non-existence of such a relation, is not.

By solving the dispersion relation, an infinite number of values for the axial wave number k z is obtained. These may be used to constitute field solutions as infinite series of base functions exactly satisfying the governing differential wave equation as well as the stress free boundary conditions exactly. These infinite series may then be truncated and used to solve finite cylinder problems by finding the corresponding coefficients. This latter procedure, known as mode matching, is here performed by integrating the displacement boundary conditions at the plane cylinder ends and satisfying these conditions in mean.

Harmonic expansion

In contrast to the above-mentioned study of waves in infinite tubes, the harmonic expansion methodology given in Papers III and IV considers a bases for the wave field on a finite region, namely, the circumferential direction of a geometrically symmetric structure, spanning from 0 to 2π. Hence, a complete, separable basis may be assigned a priori, eliminating the cumbersome procedure of finding the correct wave numbers. The basis is constituted of harmonic functions, e imϕ , where m ∈ Z, making the basis orthogonal on ϕ ∈ [0, 2π). Furthermore, the harmonic functions are assigned to a weak, or integral, formulation suitable for solving the remaining two-dimensional problem by a FE procedure. In the appended papers, these directions are discretised and assigned Lagrangian base functions. Because of the orthogonality of the harmonic functions, the original three dimensional problem can then be solved as a number of independent, two dimensional ones. One restriction of this approach is, that the materials and geometries considered, need to be homogeneous with respect to the azimuthal angle. If this is not fulfilled, the orthogonality of the modes will break down, and coupling between the modes will exist. This can, however, be dealt with by simultaneously assigning an harmonic expansion to the material parameters, accounting for the azimuthal spatial variations [27].

Chapter 4 Study of viscous dampers

A vehicle component is studied using a combination of numerical and experimental techniques. The component is a viscous damper element from a Scania truck, used to reduce low frequency, and in terms of the vibro-acoustic context of this thesis, quasistatic, energy transmission from the chassis to the drivers compartment. Two different versions of the damper is studied: the first one is a standard damper element consisting of oil filled chambers, whereas the other one has a small by-pass between two of the chambers, creating a short cut for the oil flow. A schematic of the damper is shown in Figure 4.1, which is attached by means of rubber bushings to surrounding structures. The study is split up into two parts: first, the dynamic behaviour of the viscous damper element without the bushings attached is experimentally determined and secondly, the rubber bushings are modelled using the axisymmetric FE-method presented in Paper III, with the poro-elastic material parameters modified such that they describe a viscoelastic rubber material, in the manner of Chapter 2. Each component is described in terms of their dynamic transfer (tr) and driving point (dp) stiffnesses, relating the forces and displacements at each end as

F 1 = k dp 1 u 1 + k tr u 2 (4.1)
and

F 2 = k tr u 1 + k dp 2 u 2 . (4.2)
The viscous damper and the rubber bushing models are then assembled, giving, the total transfer stiffness as

K tot tr = k Damper tr k Bush tr 2 k Damper dp 2 + k Bush dp 1 -m 2 ω 2 k Damper dp 1 + k Bush dp 2 -m 1 ω 2 -k Damper tr 2 , (4.3) 
where m 1 and m 2 are the masses of the metal parts at each end of the viscous damper element. 

Experimental study of the viscous dampers

The audio frequency behaviour of the viscous dampers are studied by an experimental procedure. A photograph of the measurement setup is shown in Figure 4.2 along with the schematic in Figure 4.3 with details listed in Tables 4.1 and 4.2. On its lower end, the measurement object is firmly attached to a blocking mass M = 473 kg separated from a stiff concrete floor by auxiliary rubber isolators. On its top end, it is excited by an 

k Damper tr ≈ -ω 2 M a 1 a 2 ≈ -ω 2 M G 12 G 22 , (4.4) 
where G 12 and G 22 are cross and power spectral densities of the accelerometer signals, respectively. The driving point stiffness components are, using the described 

+ k Bush dp 1 -m 2 ω 2 k Damper tr + k Bush dp 2 -m 1 ω 2 -k Damper

Rubber bushing modelling

The bushings consist of stiff metal inner and outer sleeves between which rubber is perfectly fitted (Fig. 4.4). Due to the large rubber-steel stiffness mismatch, only rigid body motion of the sleeves needs to be considered, and the modelling is left to the visco-elastic rubber behavior, governed by the Equations (2.3) and (2.4), with material parameters corresponding to those given in Papers I and II. Since only longitudinal vibrations of the system are considered, the modelling of the bushings is limited to their radial stiffness. By prescribing a displacement, u = -∆ue x , on the inner surface (Case I, Fig. 4.5), Γ 1 , while keeping the outer surface, Γ 2 , fixed, the inner driving point and transfer stiffness components are obtained from Equations (4.1) and (4.2) as

k Bush dp 1 = Γ 1 σ • ndΓ 1 /∆u -( u| Γ 1 = -∆ue x , u| Γ 2 = 0) (4.6) and k Bush tr = Γ 2 σ • ndΓ 2 /∆u -( u| Γ 1 = -∆ue x , u| Γ 2 = 0) . (4.7)
Equivalently, the outer driving point stiffness is obtained by assigning a displacement, ∆ue x , on the outer surface (Case II, Fig. 4.5), keeping the inner fixed, as

k Bush dp 2 = Γ 2 σ • ndΓ 2 /∆u -( u| Γ 1 = 0, u| Γ 2 = ∆ue x ) , (4.8) 
while the transfer stiffness component may, alternatively, be obtained as

k Bush tr = Γ 1 σ • ndΓ 1 /∆u -( u| Γ 1 = 0, u| Γ 2 = ∆ue x ) . (4.9)
The axisymmetric FE-formulation is obtained in the same manner as for the isotropic media in Paper III and implemented in the commercial FE-software Comsol Mul-tiphysics 3.5, giving a computationally efficient and accurate way to compute the frequency dependent radial stiffness components following the methodology in Papers I and II.

Results

The measured dynamic behaviour of the two viscous dampers are shown in Figures ≈ M (2πf 0 ) 2 is the driving point stiffness of the isolators separating the blocking mass from the floor where the resonance frequency f 0 ≈ 18 Hz. The resulting error estimates are plotted in Figure 4.10, limiting the results to frequencies above ∼100 Hz, where the maximum error is found for the damper without slit, being about 10% and 1.8 degrees for the amplitude and phase respectively, while the coherence is above 0.995 for all frequencies (Figure 4.11). Furthermore, the upper limit is around 950 Hz, where the rocking mode of the blocking mass is found to be no longer negligible.

The rubber bushings used to attach the damper element to surrounding structures have length L = 40 mm and inner and outer radius r 1 = 5 mm and r 1 = 20 mm respectively. The inner and outer driving point and transfer stiffness are shown in Figure 4.12, where a resonance (stiffness trough) for the outer driving point stiffness is found around 560 Hz, while the first resonance for the (stiffer) inner driving point stiffness falls outside In Figure 4.13 the dynamic transfer stiffness of the assembled system, consisting of the damper, two masses and two rubber bushings from Fig. 4.4 is shown. Apparently, the viscous damper appears to have very little effect, acting as a stiff rod, implying that the behaviour is almost completely governed by the rubber bushings and the masses, at least for lower frequencies of the measured frequency range. For frequencies above ∼500 Hz, the damper element has a slightly stiffening effect, especially for the damper without by pass. The stiffness peak appearing at ∼148 Hz corresponds to an eigenfrequency of the total mass of the damper element, m 1 + m 2 , suspended by the two bushings, given as 

1 2π k dp 1 + k dp 2 m 1 + m 2 . ( 4 

Conclusions

Two different modelling approaches are presented. The first one treats wave propagation in infinitely extended homogeneous and hollowed cylindrical rods consisting of viscoelastic media. The wave solutions obtained are then used to model rubber vibration isolators of finite length in terms of their dynamic stiffness. The second one is a method for modelling rotationally symmetric multilayered structures consisting of poroelastic, elastic and fluid domains. By using a harmonic expansion for the azimuthal spatial dependence, the original three-dimensional problem is split up into several, much smaller, two-dimensional ones, radically decreasing the computational load.

A mixed experimental/modelling procedure, using the above-mentioned harmonic expansion technique, of a viscous damper element mounted by means of rubber bushings is carried out. The results show, that despite having a strong frequency dependence, the dynamics of the viscous damper element has a small effect on the audible frequency range behaviour of the assembled system, mainly contributing with mass effects. Hence, the dynamics are to a large extent governed by the properties of the rubber bushing mounts and the mass of the damper element.

The modelling approaches presented in this thesis have the potential of aiding the design process of new vehicles, enabling new technology striving for more sustainable vehicle concepts. More specifically, the tools aim to improve the modelling of sound and vibration properties which are often penalised when seeking new, more sustainable vehicle designs.

Future work

Several possible extensions of the methods presented in this thesis exist. For example, the harmonic expansion technique should be extended to include anisotropic media with principle axis different from the assigned cylindrical coordinate system, as well as inhomogeneous media. Further, refinements of the combined experimental/modelling technique, including the presented rubber component models, should be carried out, such that additional degrees of freedoms, i.e. translational and rotational ones, are included. Models of the viscous damper element complementing the given experimental approach should also be developed. CHAPTER 6. SUMMARY OF PAPERS conditions of finite hollowed rubber cylinders of various lengths and their dynamic stiffness components are given. The correctness of the derived formulation is verified against finite element calculations and comparisons with the long rod theory and simple mass-spring systems is carried out. The results clearly illustrates the limitations of these theories.

Paper III

Weak formulation of Biot's equations in cylindrical coordinates with harmonic expansion in the circumferential direction M. Ostberg, N.-E. Horlin and P. Goransson A weak symmetric form of the isotropic Biot's equation in cylindrical coordinates with a spatial Fourier expansion in the circumferential direction is derived where the solid phase displacement and the pore pressure are used as dependent variables. The formulation is verified against the original full three-dimensional Cartesian formulation. The proposed formulation is found to converge more rapidly than the original formulation and has the potential to greatly decrease computational cost for vibro-acoustical simulations of rotationally symmetric multilayered structures consisting of porous media, elastic domains and fluid regions. Fourier expansion in the circumferential direction is derived where the solid phase displacement and the pore pressure are used as dependent variables. The formulation is verified against the original full three-dimensional Cartesian formulation. The proposed formulation is found to converge more rapidly than the original formulation and has the potential to greatly decrease computational cost for vibro-acoustical simulations of rotationally symmetric multilayered structures consisting of porous media, elastic domains and fluid regions.

Paper IV

Weak forms for modelling of rotationally symmetric, multilayered structures, including anisotropic poro-elastic media M. Ostberg, L. Kari, N.-E. Horlin and P. Goransson An anisotropic weak formulation of Biot's equation is re-written in terms of orthogonal curvilinear coordinates. Subsequently, scale factors and Christoffel symbols corresponding to cylindrical coordinates are assigned, and a Fourier expansion of the azimuthal dependence is undertaken. Due to the orthogonality of the harmonic functions, the full three-dimensional problem is split up into several, independent, two-dimensional ones.

The derived formulation is verified against the original full three-dimensional one and its superiority in terms of computational cost demonstrated. A modelling example of a multilayered configuration including porous, elastic and fluid domains is constructed, where the weak forms for the two latter domains are readily obtained from the derived, harmonically expanded, poro-elastic formulation.

Deuxième partie

Résumé des travaux de thèse Chapitre 1

Introduction

Les problèmes environnementaux sont devenus de plus plus important pour potentiellement toutes les industries, et seront peut-être, pendant les prochaines décénies, le plus grand défit à relever pour l'industrie et la société en général. Le défit environnemental le plus discuté aujourd'hui est probablement celui du réchauffement climatique, provoqué essentiellement par les émissions de dioxyde de carbone et autres gaz à effet de serre. Une grande partie de ces émissions provient de l'industrie du transport ; selon des estimations, l'industrie du transport représenterait approximativement 26 % de la consommation d'énergie en Suède [1], cela impliquant qu'une réduction très importante de l'énergie consommée par le secteur des transports est nécessaire afin de maintenir un environnement durable. Dans ce cadre, Åkerman et Höijer [2] suggèrent qu'une réduction de 60 % de l'énergie utilisée dans le transport, d'ici l'année 2050, est indispensable. Ces améliorations devraient cependant être faites en maintenant, et de manière préférable en améliorant, d'autres facteurs environnementaux en relation avec le confort tels que les niveaux sonores et vibratoires. CHAPITRE 1. INTRODUCTION vibrations de structure, dues à l'intéraction pneu-route, pouvant produire parfois des niveaux de nuisance inacceptables dans le véhicule.

Ces futures défits de l'industrie automobile viennent alimenter la demande de nouvelles technologies dans le domaine des procédés de conception afin de contribuer aux nécessaires améliorations de durabilité. Une de ces technologies est relié à la modélisation rapide virtuelle nécessitant des mesures spécifiques et des outils de modélisation permettant le développement de nouvelles technologies. Se faisant, une meilleure compréhension des problèmes sonores et vibratoires pourra être atteinte et des façons efficaces de répondre à ces problèmes pourront être proposées. L'objectif de cette thèse est de fournir des outils pour le développement de nouveaux véhicules durables sans dégrader voire en en améliorant les charactéristiques sonores et vibratoires, en suivant des procédures similaires à celles décrites par e.g. Cameron et al. [3] ; un besoin crucial dans le développement de nouveaux véhicules compétitifs.

Les méthodes développées traitent de la modélisation de composants constitués de milieux visco-élastiques isotropes et poro-élastiques anisotropes, tels que le caoutchouc et les mousses absorbant le son. Ces méthodes sont fondées sur des modèles continus de propagation d'ondes qui requièrent une puissance de calcul très importante. Afin de réduire ce besoin en terme de ressources de calcul, les propriétés géométriques des composants du système d'intérêt sont mis à profit. La symétrie de révolution est l'attribut géométrique commun aux formulations présentées dans ces travaux. Son utilisation permet de réduire la dimension spatiale du problème de trois à deux dimensions, en appliquant la décomposition en série harmonique (en termes de fonctions harmoniques orthogonales) de la dépendance azimutale. De plus, en supposant que la section transversale est constante, formant se faisant une géométrie cylindrique, la géométrie peut être étendue à l'infini, permettant de simplifier encore la modélisation. On se limite ainsi à l'étude de la propagation d'ondes dans cette direction infinie. Ces solutions obtenues en termes d'ondes peuvent ensuite être utilisées pour modéliser des composants d'étendue axiale finie, tels que les amortisseurs de vibration en caoutchouc.

En plus des modèles théoriques mentionnés ci-dessus, une méthode mixte alliant mesures et méthodes numériques appliquée à un élément d'amortisseur de poids lourd est présentée. L'amortisseur est conçu de façon à réduire le transfert d'énergie en basses fréquences entre le châssis et le compartiment passager par lequel il est attaché par des coussinets en caoutchouc. Toutefois, dans le domaine fréquentiel audible, les propriétés sont pour le moment en grande partie inconnues. Dans la procédure présentée ici, les caractéristiques de l'amortisseur sont obtenues par des mesures, tandis que les propriétés du coussinet en caoutchouc sont obtenues grâce aux modèles mentionnés ci-dessus. Les composants sont ensuite connectés, et on étudie le comportement du système ainsi assemblé.

Les travaux présentés dans cette thèse ont pour but de permettre de mieux comprendre les méchanismes de transmission acoustique dans les véhicules actuels, de franchir un nouveau pas dans la modélisation de ces phénomènes, et de faire avancer la recherche de nouvelles solutions pour un système de transport de demain durable.

Chapitre 2 Equations d'ondes

Dans ce chapitre, les fondements de la théorie des ondes acoustiques en milieu visco-et poroélastique sont donnés. De manière générale, lorsqu'on parle d'acoustique, l'interprétation implicite qui en est faite est celle d'acoustique linéaire ; c'est à dire que l'ampleur des écarts des variables d'état à partir de l'équilibre est si petite que l'on considère qu'il existe une relation linéaire entre elles. Cela permet d'étudier le phénomène d'intérêt dans le domaine fréquentiel plutôt que dans le domaine temporel. Pourtant, le domaine d'acoustique non-linéaire est nécessaire, dans certains cas, pour décrire de manière satisfaisante le comportment méchanique des ondes. Ceci est cependant hors du cadre de cette thèse, dans laquelle on ne considère que des mouvements linéaires.

Les ondes dans un milieu visco-élastique isotrope

Les fondements de la théorie des ondes dans un milieu visco-élastique linéaire ont été établis à la fin du 18ème siècle par, entre autres, Maxwell, Voigt, Kelvin et Boltzmann, et des rapports exhaustifs peuvent être trouvés sur le sujet dans quantités d'ouvrages standards, tels que Refs. [4,5,6]. Ci-après, un bref rappel des principales équations et des modèles existant est donné, en mettant en avant le comportement visco-élastique du caoutchouc.

Pour un continuum (visco-)élastique et isotrope, la relation linéaire reliant la contrainte à la déformation peut être donnée en fonction de ces composantes sphériques 

σ s (t) = t -∞ κ(t -t ) ∂ div u(t ) ∂t I dt (2.1) et déviatoriques σ d (t) = t -∞ 2µ(t -
∞ n=1 A s n ∂ α s n ∂t α s n σ s (t) = ∞ n=1 B s n ∂ β s n ∂t β s n div u(t) I (2.6) et ∞ n=1 A d n ∂ α d n ∂t α d n σ d (t) = ∞ n=1 B d n ∂ β d n ∂t β d n dev[∇u(t)] (2.7) CHAPITRE 2. EQUATIONS D'ONDES où ∂ (•) /∂t
µ(t) = 1 + ∆E γ -∆ t τ γ µ ∞ h(t), (2.8) 
où la constante β 1, le module de cisaillement à l'équilibre µ ∞ = lim t→∞ µ(t), la densité de relaxation adimensionnée ∆ 1 : lim t→0 µ(t) = µ ∞ (1 + ∆) , l'ordre de dérivé fractionnaire γ : 0 < γ 1 et le temps de relaxation généralisé τ 0, sont des paramètres matériaux, et h est une fonction en escalier. La fonction Mittag-Leffler s'écrit

E γ (x) = ∞ n=0 x n Γ(1 + nγ) (2.9)
où la fonction Gamma est défini par

Γ(y) = ∞ 0 s y-1 e -s ds. ( 2 

.10)

A partir de ces définitions, les équations constitutives (2.6) et (2.7) deviennent

∆ + τ γ ∂ γ ∂t γ σ d (t) = 2 ∆µ ∞ + τ γ µ ∞ (1 + ∆) ∂ γ ∂t γ dev[∇u(t)] (2.11)
pour la partie déviatorique de la contrainte de Cauchy, alors que la partie sphérique s'écrit σ s (t) = βµ ∞ div u(t) I.

(2.12) L'équation (2.11) est également nommée la dérivée fractionnaire du modèle du solide linéaire standard. Dans l'équation constitutive du domaine fréquentiel (2.4), le module de compressibilité, indépendant de la fréquence et à valeurs réelles, est ainsi obtenu

κ(ω) = κ = βµ ∞ (2.13)
alors que le module de cisaillement devient

µ(ω) = iω µ(ω) = 1 + ∆(τ iω) γ ∆ + (τ iω) γ µ ∞ . (2.14)
Si une décomposition de Helmholtz pour le champ de déplacement [4],

u = grad φ + curl ψ, (2.15) 
CHAPITRE 2. EQUATIONS D'ONDES est utilisée, les potentiels sont alors régis par les équations de Helmholtz

∇ 2 φ + k 2 L φ = 0 (2.16) et ∇ 2 ψ + k 2 T ψ = 0 (2.17)
où la première équation tient compte des ondes de dilatation et la deuxième des ondes rotationnelles, et

k L = ω ρ βµ ∞ + 4 3 µ (2.18) et k T = ω ρ µ (2.19)
sont, respectivement, le nombre d'onde longitudinal et le nombre d'onde transversal, décrivant ainsi la propagation des ondes dans un milieu homogène et infini.

Anisotropie

Tandis que la section précédente décrit les dynamiques linéaires des solides isotropes, c'est à dire, des solides ayant le même comportement dans toutes les directions spatiales, un grand nombre de matériaux requière une description constitutive anisotrope, où les paramètres matériaux peuvent varier suivant les directions. L'équation constitutive du domaine fréquentiel (2.4) est ainsi remplacé par l'équation tensorielle,

σ = C : ε, (2.20) 
où : indique la double contraction, et, écrite en notation de composant de tenseur cartésien, 

σ ij = C ijkl ε kl , ( 2 
C mnop = R im R jn R ko R lp C ijkl , (2.22)
CHAPITRE 2. EQUATIONS D'ONDES doit être respectée, résultant dans un tenseur de Hooke,

[C] =           2µ + λ λ λ 0 0 0 2µ + λ λ 0 0 0 2µ + λ 0 0 0 µ 0 0 symm. µ 0 µ           , (2.23)
comme écrit dans sa représentation matricielle 6 × 6 en fonction du module de cisaillement, µ, et du second paramètre de Lamé, λ = κ -2µ/3. Plusieurs classifications des milieux anisotropes existent, mais celle qui est la plus commune est présentée ci-après (la représentation matricielle du tenseur de Hooke est donnée dans chaque cas) :

1. Isotrope transversal : le matériau présente un plan de symétrie autour duquel le matériau est invariant rotationnellement, amenant à cinq au maximum le nombre de paramètres élastiques indépendants du matériau permettant de décrire son comportement.

[C] =

          A B C 0 0 0 A C 0 0 0 E 0 0 0 D 0 0 symm. D 0 (A -B)/2           (2.24)
2. Orthotrope : les directions principales sont orthogonales, i.e., il existe un système de coordonnées orthogonal pour lequel il n'y a pas de couplage entre la dilatation et le cisaillement. Ce matériau a alors au plus neuf paramètres matériaux indépendants.

[ 

C] =           C 11 C 12 C 13 0 0 0 C 22 C 23 0 0 0 C 33 0 0 0 C 44 0 0 symm. C 55 0 C 66           (2.

Les ondes dans un milieu poreux élastique

Les théories modernes de propagation du son dans un matériau poreux élastique saturé en fluide ont été fondés par Biot [11,12] et Biot et Willis [13]. La nouveauté de leur travail consistait à ne pas traiter le matériau comme hétérogène, mais plutôt à considérer les champs du milieu élastique et du fluide comme, réspectivement, homogène, aboutissant ainsi à deux milieux séparés mais couplés, occupant le même espace. Cette approche admet naturellement quelques restrictions ; les échelles typiques de longueur d'onde doivent être bien plus grandes que les échelles de longueur des hétérogénéités microscopiques, afin d'obtenir une moyenne ayant du sens. Pour les gammes de fréquence de l'audible, et les milieux poreux utilisés communément dans l'absorption du son, cette condition est cependant respectée.

Une grande partie du travail sur les milieux poreux qui a suivi ceux de Biot, a consisté à obtenir des descriptions des paramètres matériaux ayant un sens physique. Ces paramètres peuvent être divisés en trois catégories : les paramètres élastiques, ceux liés au fluide et enfin ceux liés au couplage. Les paramètres les plus étudiés ont été ceux liés au couplage. Le choix de ces paramètres peut varier, mais un choix standard correspond aux cinq paramètres donnés par le modèle Johnson-Champoux-Allard [14] :

• Porosité, φ [1]
, définie comme la fraction volumique de fluide, laquelle, est normalement proche de 1 pour les applications en acoustique.

• Tortuosité, α ∞ [1], qui donne une relation entre la longueur du chemin que le fluide traverse en fonction de la même longueur dans un milieu poreux. De manière plus explicite, elle est définie comme le ratio entre le carré de la vitesse moyenne microscopique et de la vitesse moyenne microscopique au carré.

• Longueurs Visqueuses et thermiques caractéristiques, Λ et Λ' [m], permettant d'ame-ner des corrections aux interactions fluide-structure visqueuses et thermiques.

• Résistance statique à l'écoulement, σ s [Nsm -4 ], définie comme le rapport entre la différence de pression et la vitesse d'écoulement, par unité de longueur.

Les paramètres sont donnés ici sous forme scalaire bien que les milieux poreux présentent souvent un comportement anisotrope. Par la suite, la forme anisotrope des équations de Biot sera considérée, laquelle est applicable aussi aux milieux isotropes. Les deux moments (du domaine fréquentiel) sont exprimés en fonction des contraintes de Cauchy, σ f (fluide) et σ s (squelette), et des déplacements u f (fluide) et u s (squelette)

∇ • σ s = -ω 2 ρ11 u s -ω 2 ρ12 u f (2.27) et ∇ • σ f = -ω 2 ρ12 u s -ω 2 ρ22 u f , (2.28) 
et la propagation des ondes dans un milieu poreux est régie par les deux équations constitutives

σ s = C + Q ⊗ Q R : ε + Qθ f (2.29) et σ f = Q : ε + Rθ f I (2.30)
Le tenseur de Hooke (de quatrième ordre) du squelette C, à une pression de zéro, est équivalent à celui du squelette solide homogénéisé, alors que le tenseur de couplage de dilatation Q et le module de compressibilité homogénéisé sont reliés au module de compressibilité adiabatique du fluide par la porosité et une fonction de réponse thermique dépendante de la fréquence. Les tenseurs d'ordre deux dépendant de la fréquence ρ11 , ρ22 et ρ12 tiennent compte des effets visqueux et d'inertie pour, respectivement, la phase solide, la phase fluide et le couplage solide-fluide. De plus, la dilatation du fluide est donnée par

θ f = ∇ • u f (2.31) et la déformation du squelette par ε = 1 2 ∇u s + (∇u s ) T . (2.32) 
Une alternative à l'utilisation des champs de déplacement du fluide et du squelette comme ci-dessus, consiste à remplacer le tenseur des contraintes de Cauchy relatif au fluide par la pression du pore (scalaire) tels que σ f = -φpI. Après remaniement des équations du moment et des équations constitutives, le déplacement du fluide peut être remplacé par la pression du pore, réduisant ainsi de six à quatre le nombre de variables dépendantes. De ce fait, même s'il y a rotation dans, à la fois, le fluide et le solide, on a seulement besoin de considérer la rotation dans soit le solide, soit le fluide, étant donné que ces rotations sont linéairement dépendants. Il peut être montré que cela implique l'existence de trois ondes planes pour un milieu infini et isotrope, comparé aux deux pour un solide élastique : deux ondes longitudinales et une onde de cisaillement.

En examinant les équations (2.27)-(2.30) de plus près, on peut remarquer, en fixant à zéro les termes de couplage ρ12 et Q, que les équations (2.27) et (2.29) s'apparentent aux équations du moment et constitutives d'un solide anisotrope, alors que les équations (2.28) et (2.30) sont elles similaires aux équations de propagation des ondes dans un fluide. En fait, comme cela est décrit dans l'Article IV, en substituant ρ11 et ρ22 par la densité, respectivement, d'un solide et d'un fluide, et R par le module de compressibilité adiabatique, l'analogie est exacte.

En plus du tenseur de Hooke anisotrope décrit dans le paragraphe 2.1.1, la description du milieu poreux anisotrope nécessite l'introduction des moments supplémentaires (ρ 11 , ρ12 , ρ22 ) et du paramètre de dilatation anisotrope induite (Q). Un tenseur d'ordre deux Σ est donné ci-après dans sa représentation matricielle, en suivant la classification des milieux anisotropes mentionnée au paragraphe 2.1.1 :

1. Isotrope transversal [Σ] =    Σ 1 0 0 Σ 1 0 symm. Σ 3    . (2.33) 2. 
Orthotrope Il est à noter que, à part peut-être pour le tenseur de Hooke, la problématique concernant l'obtention de paramètres matériaux réalistes pour les matériaux anisotropes, reste toute entière ; il n'est en effet pas trivial d'appliquer les procédures expérimentales des milieux isotropes aux matérieux anisotropes.

[Σ] =    Σ 1 0 0 Σ 2 0 symm. Σ 3    . (2.34) 2. Complètement anisotrope [Σ] =    Σ 11 Σ 12 Σ 13 Σ 22 Σ 23 symm. Σ 33    . ( 2 

Chapitre 3 Modélisation

Afin de résoudre les équations d'onde du chapitre précédent, on peut utiliser plusieurs méthodes. Elles incluent différentes méthodes numériques, telles que les méthodes des éléments finis (EF) [15,16,17,18] ou les méthodes des éléments finis de frontière (BEM), des méthodes analytiques, et des combinaisons des deux [19,20,21]. La méthode la plus répandue est celle des EF ; le domaine auquel on s'intéresse est discrétisé, et la solution est approximée par un ensemble de fonctions de base. L'ensemble de fonctions peut varier [22], mais un choix standard est celui des fonctions polynomiales, e.g. des fonctions de base de Lagrange. Le problème aux éléments finis peut être résolu, soit par une méthode directe de réponse en fréquence, soit par une approche modale. Bien que très prometteuse, l'approche modale admet certaines limites ; pour les milieux visco-élastiques et poro-élastiques traités dans cette thèse, la parfois forte dépendance en fréquence a pour conséquence l'obtention de modes non-orthogonaux qui requièrent un traitement spécial. Le plus grand avantage de la méthode des EF est son caractère général ; sur des domaines bornés elle admet peu de restrictions, et sa facilité d'implantation en fait la procédure standard pour résoudre un grand nombre de problèmes d'ingénierie. Elle admet cependant une limite majeur : lorsque la complexité des modèles augmente, en particulier dans les domaines des hautes fréquences, il peutêtre nécessaire de disposer d'une puissance de calcul très importante.

Dans cette thèse, deux méthodes différentes sont présentées afin de résoudre ce problème. Les deux méthodes concernent des géométries de symétrie axiale, i.e., la géométrie concernée est, dans un système de coordonnées cylindriques (r, ϕ, z), délimitée par des surfaces ayant pour normales n(r, ϕ, z) = n r (r, z)e r + n z (r, z)e z . La première méthode utilise une expansion harmonique du champ dans une direction spatiale en combinaison avec une méthode aux EF pour les deux directions spatiales restantes. La deuxième méthode n'utilise plus la méthode des EF mais plutôt une approche plus directe, où, pour le champ 3D, les expressions analytiques sont dérivées des travaux de Kari [19,20] et Coja et Kari [26]. Chaque méthode présente ses avantages et ses inconvénients ; plus on applique une approche analytique, moins on a besoin de puissance de calcul, mais moins l'approche est-elle générale. 

∇ 2 φ + k 2 L φ = 0 (3.1) et ∇ 2 ψ + k 2 T ψ = 0. (3.2)
Dans le cas de tubes infiniment long dans la direction axiale z, on suppose que les solutions séparables sont de la forme 

φ n = R n φ ( k 2 L -k 2 z r)Θ φ (nϕ) Z φ (k z z), (3.3) 
ψ n r = R n r ( k 2 T -k 2 z r)Θ r (nϕ) Z r (k z z), (3.4) 
ψ n ϕ = R n ϕ ( k 2 T -k 2 z r)Θ ϕ (nϕ) Z ϕ (k z z) (3.5) et ψ n z = R n z ( k 2 T -k 2 z r)Θ z (nϕ) Z z (k z z) (3 
-k 2 z → k r et k z → k 2 L -k 2 r , et dans les équations (3.4) à (3.6) k 2 T -k 2 z → k r et k z → k 2 T -k 2 r
, où, afin de déterminer les valeurs pour les nombres d'onde radiaux, k r , la dépendance radiale (fonctions de Bessel) doit être séparée pour les contraintes σ rz , σ ϕz et σ zz , lesquelles doivent disparaître pour les limites planes z = ±h/2. En effet, une relation de dispersion pour des ondes de symétrie radiale peut être obtenue [26]. Que de telles relations existent, pour des ondes radiales d'ordre azimutal plus grand et antisymétriques, restent, à la connaissance de l'auteur, une question en suspens. En fait, démontrer qu'une relation de dispersion existe est une tâche assez simple, mais démontrer l'opposé, i.e. la non-existence d'une telle relation, ne l'est pas.

On obtient un nombre infini de valeurs pour le nombre d'onde axial k z lorsqu'on résout la relation de dispersion. Ces valeurs peuvent être utilisées afin de constituer un champ de solutions comme séries infinies de fonctions de base satisfaisant exactement l'équation d'onde ainsi que les conditions aux limites à contrainte nulle. Ces série infinies peuvent ensuite être tronquées et utilisées pour résoudre des problèmes de cylindres de longueur finie, en déterminant les coefficients correspondant. Cette dernière procédure, appelée la "Technique Mode Matching", est ici appliquée en intégrant les conditions aux limites en déplacement aux extrémités planes du cylindre et en satisfaisant en moyenne ces conditions.

Expansion harmonique

En contraste avec les études sur la propagation des ondes dans des tubes infinis mentionnées précédemment, la méthode d'expansion harmonique telle qu'expliquée dans les Articles III et IV, considère une base pour le champ d'ondes sur une région finie, à savoir la direction circonférentielle d'une structure de géométrie symétrique, couvrant de 0 à 2π. De ce fait, une base complète et séparable peut être affectée a priori, éliminant ainsi la procédure fastidieuse de détermination des nombres d'onde corrects. La base est constituée de fonctions harmoniques, e imϕ , où m ∈ Z, formant ainsi une base orthogonale sur ϕ ∈ [0, 2π).

De plus, les fonctions harmoniques sont affectées à une formulation faible, ou intégrale, adaptée pour résoudre le problème 2D restant, par une procédure d'EF. Dans les articles annexés, ces directions sont discrétisées et on leur attribue des fonctions de base Lagrangien. En raison de l'orthogonalité des fonctions harmoniques, le problème 3D initial peut être résolu comme un problème de deux dimensions indépendantes. Il existe cependant une restriction à cette approche : les matériaux et géométries considérés doivent être homogène par rapport à l'angle azimutal. Si cette condition n'est pas respectée, les modes ne seront plus orthogonaux, et il y aura couplage entre les modes. Ce problème peut toutefois être résolu en affectant simultanément une expansion harmonique à tous les paramètres matériaux responsables des variations spatiales azimutales [27].

Chapitre 4 Étude des amortisseurs visqueux

Un composant de véhicule est étudié en utilisant une procédure mixte alliant mesures expérimentales et méthodes numériques. Le composant est un élément d'amortisseur visqueux provenant de Scania truck, permettant de réduire la transmission d'énergie du châssis vers l'habitacle des passagers, en basse fréquence, et, dans le contexte vibroacoustique de cette thèse, en quasi-statique. Deux versions différentes d'amortisseur sont étudiées : le premier est un élément d'amortisseur standard comprenant des chambres remplies d'huile, tandis que le deuxième présente un petit bypass entre deux des chambres, créant un raccourci pour l'écoulement de l'huile. La Figure 4.1 présente un schéma de l'amortisseur, lequel est fixé au reste de la structure à l'aide de coussinets en caoutchouc. L'étude est séparée en deux parties : premièrement, le comportement dynamique de l'élément d'amortisseur visqueux est déterminé expérimentalement sans les coussinets attachés, et deuxièmement, les coussinets en caoutchouc sont modélisés en utilisant la méthode aux EF axisymétrique présentée dans l'Article III, en modifiant les paramètres matériaux poro-élastiques de façon à ce qu'ils décrivent un matériau caoutchouc visco-élastique, comme décrit dans le Chapitre 2. Chaque composant est décrit à partir de sa raideur dynamique en transfert (tr) et de sa raideur dynamique au point de conduite(dp), les forces et déplacements à chaque extrémité s'exprimant alors 

F 1 = k dp 1 u 1 + k tr u 2 (4.1) et F 2 = k tr u 1 + k dp 2 u 2 . (4.2)
Les modèles de l'amortisseur visqueux et des coussinets en caoutchouc sont ensuite assemblés, fournissant ainsi la raideur de transfert totale 

K tot tr = k Amortisseur tr k Coussinet tr 2 k Amortisseur dp 2 + k Coussinet dp 1 -m 2 ω 2 k Amortisseur dp 1 + k Coussinet dp 2 -m 1 ω 2 -k Amortisseur tr 2 , (4.3 

Étude expérimentale des amortisseurs visqueux

Le comportement de la fréquence audible des amortisseurs visqueux est étudié grâce à une procédure expérimentale. La Figure 4.2 présente une photographie du dispositif de mesure, la Figure 4.3 le schéma du montage, et les Tables 4.1 et 4.2 les caractéristiques du dispositif. A son extrémité basse, l'objet de mesure est attaché à une masse de blocage (M = 473 kg), les amortisseurs en caoutchouc auxiliaires le séparant du sol en béton. A son extrémité haute, il est excité par un générateur de vibration électro dynamique. Les accélérations de la masse, a 1 , et du mélangeur, a 2 , sont obtenues par deux pairs d'accéléromètres montés de manière équidistantes par rapport à l'amortisseur. Les signaux sont conditionnés par des amplificateurs de charge et passent ensuite par un analyseur de fréquence. Deux accéléromètres supplémentaires, montés à l'extrémité haute de l'amortisseur, sont utilisés pour contrôler la vitesse d'excitation, à travers une boucle de rétro-contrôle. Les données de l'analyseur de fréquence sont enfin transférées dans un ordinateur portable afin de traiter ces données. La masse de blocage limite le mouvement de l'extrémité basse tels que | u 2 | >> | u 1 |, et de ce fait l'équation (4.2) peut être approximée par F 1 ≈ k Amortisseur tr u 2 , donnant, en accord avec la deuxième loi de Newton, F 1 = M a 1 , la relation respectée par la raideur de transfert dynamique de l'amortisseur 

k Amortisseur tr ≈ -ω 2 M a 1 a 2 ≈ -ω 2 M G 12 G 22 , (4.4 
+ k Coussinet dp 1 -m 2 ω 2 k Amortisseur tr + k Coussinet dp 2 -m 1 ω 2 -k Amortisseur tr 2 .
(4.5) Ces effets de masse sont plutôt par la suite inclus dans le modèle, en ajoutant deux masses, m 1 = 0.45 kg et m 2 = 0.8 kg, à chaque extrémité de l'élément amortisseur. 

Modélisation du coussinet en caoutchouc

Les coussinets sont constitués de douilles métalliques rigides intérieur et extérieur entre lesquelles du caoutchouc est parfaitement fixé (Fig. 4.4). En raison de la grande différence de raideur entre le caoutchouc et l'acier, il est uniquement nécessaire de considérer le mouvement de la partie rigide des douilles, et il suffit de modéliser alors le comportement visco-élastique du caoutchouc, régit par les équations (2.3) et (2.4), avec pour paramètres matériaux ceux donnés dans les Articles I et II. Étant donné qu'on ne considère dans ce système que des vibrations longitudinales, la modélisation des coussinets est limitée à celle de leur raideur radiale. En imposant un déplacement, u = -∆ue x , à la surface interne (Cas I, Fig. 4.5), Γ 1 , tout en maintenant la surface externe, Γ 2 , fixe, la raideur au point de conduite et la raideur en transfert internes du composant sont obtenues à partir des équations (4.1) and (4.2) :

k Coussinet dp 1 = Γ 1 σ • ndΓ 1 /∆u -( u| Γ 1 = -∆ue x , u| Γ 2 = 0) (4.6) et k Coussinet tr = Γ 2 σ • ndΓ 2 /∆u -( u| Γ 1 = -∆ue x , u| Γ 2 = 0) . (4.7) 
De manière similaire, la raideur au point de conduite externe est obtenu en imposant un déplacement, ∆ue x , à la surface externe (Cas II, Fig. 4.5), tout en maintenant la surface interne fixe :

k Coussinet dp 2 = Γ 2 σ • ndΓ 2 /∆u -( u| Γ 1 = 0, u| Γ 2 = ∆ue x ) , (4.8) 
et la raideur en transfert du composant peut être obtenue par 2 est la raideur au point de conduite des amortisseurs séparant la masse de blocage du sol pour lequel la fréquence de résonance f 0 ≈ 18 Hz. Les estimations de l'erreur résultante, sont représentées dans la Figure 4.10, limitant les résultats aux fréquences au-dessus de ∼100 Hz, où l'erreur maximum apparait pour l'amortisseur sans fente (10% pour l'amplitude, 1.8 degrés pour la phase). D'après la Figure 4.11, la cohérence est de plus de 0.995 sur toute la gamme de fréquence. La limite haute se situe aux alentours de 950 Hz, où le mode de balancement de la masse de blocage ne peut plus être considéré comme négligeable. Les coussinets en caoutchouc utilisés pour attacher l'élément d'amortisseur aux structures l'entourant ont pour longueur L = 40 mm, et pour rayons interne et externe, respectivement, r 1 = 5 mm et r 2 = 20 mm. La raideur au point de conduite interne et externe et la raideur en transfert sont présentées dans la Figure 4.12, où la fréquence de résonance pour la raideur au point de conduite externe se situe vers 560 Hz, alors que la première fréquence de résonance au point de conduite interne ne se situe pas dans la gamme de fréquence étudiée. La phase, pour les raideurs au point de conduite, se situe entre 0 et 90 degrés, assurant le respect des principes de conservation de l'énergie. La Figure 4.13 présente la raideur dynamique en transfert du système assemblé, composé de l'amortisseur, de deux masses, et de deux coussinets en caoutchouc (Fig. 4.4). A première vue, l'amortisseur visqueux ne semble avoir que peu d'effet, agissant comme une tige rigide, ce qui implique que le comportement est presque entièrement régie par les coussinets en caoutchouc et les masses, au moins pour les plus basses fréquences de la gamme de fréquence de mesure. Pour des fréquences au dessus ∼500 Hz, l'élément amortisseur a un faible effet raidissant, en particulier pour l'amortisseur sans bypass. Le pic de raideur apparaissant à ∼148 Hz correspond à une fréquence propre de la masse totale (m 1 + m 2 ) de l'élément amortisseur suspendu par les deux coussinets. Elle est donnée par 1 2π 

k Coussinet tr = Γ 1 σ • ndΓ 1 /∆u -( u| Γ 1 = 0, u| Γ 2 = ∆ue x ) . ( 4 
k dp 1 + k dp 2 m 1 + m 2 . ( 4 

Chapitre 5 Conclusions

Deux différentes approches de modélisation sont présentées. La première traite de la propagation des ondes dans des cylindres creux homogènes infiniment longs dans un milieu visco-élastique. Les solutions obtenues en termes d'ondes sont ensuite utilisées pour modéliser la raideur dynamique des amortisseurs de vibration en caoutchouc de longueur finie. La deuxième est une méthode servant à modéliser des structures multicouches à symétrie de révolution composées de domaines poro-élastiques, élastiques et fluides. En utilisant une décomposition en série harmonique de la dépendance spatiale azimutale, le problème d'origine, en trois dimensions, est décomposé en plusieurs petits problèmes de deux dimensions, réduisant radicalement le coût en temps de calcul. Une procédure mixte alliant mesures et méthodes numériques et utilisant la technique d'expansion harmonique précédemment citée, a été appliquée à un élément d'amortisseur visqueux monté au moyen de coussinets en caoutchouc. Les résultats montrent que, malgré une forte dépendance en fréquence, les dynamiques de l'élément amortisseur visqueux ont un faible effet sur le comportement du système assemblé sur la gamme de fréquence de l'audible, apportant principalement des effets de masse. De ce fait, les dynamiques sont dans une large mesure régies par les propriétés des supports des coussinets en caoutchouc et par la masse de l'élément amortisseur.

Les approches de modélisation présentées dans cette thèse ont le potentiel de contribuer à la conception de véhicules nouveaux, intégrant de nouvelles technologies permettant de s'inscrire dans l'objectif de produire des véhicules durables. Tout particulièrement, ces outils ont pour objectif l'amélioration de la modélisation des vibrations et nuisances sonores, qui sont souvent pénalisés lors de la conception de nouveaux concepts de véhicules durables.

Perspectives

Plusieurs possibles extensions aux méthodes présentées dans cette thèse existent. Par exemple, la technique d'expansion harmonique pourrait être étendue de façon à inclure CHAPITRE 5. CONCLUSIONS un milieu anisotrope avec un axe principal différent de celui défini par le système de coordonnées cylindriques, ou des milieux non homogènes. De plus, des raffinements de la technique combinant mesures et méthodes numériques, y compris les modèles des composants en caoutchouc présentés dans cette thèse, seraient à effectuer afin d'inclure des degrés de liberté supplémentaires, i.e. en translation et en rotation. On pourrait également envisager de développer une modélisation de l'élément d'amortisseur visqueux, en complément de l'approche expérimentale présentée dans ces travaux.
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 41 Figure 4.1: Schematic of the damper with rubber bushings.
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 42 Figure 4.2: Photograph of the measurement setup.
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 43 Figure 4.3: Test rig and measurement setup.

Table 4 . 1 :

 41 Objects in Fig. 4.3 Letter Object A Measurement object B Electro dynamic vibration generator C Piezo electric accelerometers (four upper, two lower) D Blocking mass E Auxiliary rubber isolator F Concrete floor G Strong columns electro dynamic vibration generator. The accelerations of the mass, a 1 , and the shaker, a 2 , are obtained by two pairs of accelerometers equidistantly mounted on opposite sides of the damper. The signals are conditioned by charge amplifiers and subsequently run through a frequency analyser. Two additional accelerometers mounted on the top end of the damper are used to control the excitation velocity through a feed back loop. The data from the frequency analyser are finally fed forward into a lap top for processing. The blocking mass limits the motion of the lower end such that | u 2 | >> | u 1 |, and hence equation (4.2) may be approximated by F 1 ≈ k Damper tr u 2 , giving, in accordance with Newton's second law, F 1 = M a 1 , the dynamic transfer stiffness of the damper as
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 5 These mass effects are instead subsequently included in the model by adding the two masses, m 1 = 0.45 kg and m 2 = 0.8 kg, at each end of the damper element.
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 244 Figure 4.4: Rubber bushing geometry.
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 45 Figure 4.5: Rubber bushing load cases.
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 4647 Figure 4.6: Magnitude and phase of the of the dynamic stiffness for the damper element without bypass.
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 4849 Figure 4.8: Magnitude and phase of the of the dynamic stiffness for the damper element with bypass.
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 410 Figure 4.10: Magnitude and phase error for the damper with (dashed) and without (solid line) bypass.
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 411 Figure 4.11: Coherence between the measurement signals.
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 4 STUDY OF VISCOUS DAMPERSthe studied frequency range. The phase for the driving point stiffnesses lie between 0 and 90 degrees, ensuring they obey energy conservation principles.
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 412 Figure 4.12: Magnitude and phase of the dynamic outer (solid line) and inner (dashed) driving point and transfer (dotted) stiffness of the rubber bushings.
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 413 Figure 4.13: Magnitude and phase of the dynamic stiffness for the assembled system with (dotted) and without (dashed) by-pass, compared to a system where the damper is replaced by an infinitely stiff rod (solid line)
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 211 où, les tenseurs de contrainte et de déformation σ = σ ij e i ⊗ e j et ε = ε ij e i ⊗ e j = ∇ u + (∇ u) T , sont des tenseurs d'ordre deux où (•) T est l'opérateur transposé et ⊗ est l'opérateur diadique, alors que le tenseur de Hooke d'ordre quatre, C = C ijkl e i ⊗ e j ⊗ e k ⊗ e l , est positif et défini, avec pour symétrie C ijkl = C klij et C ijkl = C jikl = C ijlk ; le nombre de paramètres matériaux indépendants restant est donc au maximum de 21. Avec le formalisme de l'équation (2.21), un milieu anisotrope est défini comme un milieu invariable sous rotation, c'est à dire, soit une rotation de tenseur rotationnel choisi arbitrairement, R = R ij e i ⊗ e j ; RR T = I et det R = 1, l'identité,

  .35) De plus, un tenseur d'ordre deux isotrope obéit à la relation suivante 3Σ -(I : Σ)I = 0. De manière similaire au cas du milieu (visco-)elastique anisotrope, le nombre d'ondes dans un milieu poreux anisotrope est plus grand que les trois existants dans un milieu poreux isotropes.
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 41 Figure 4.1 -Schéma de l'amortisseur avec des coussinets en caoutchouc.

) où m 1

 1 et m 2 sont les masses des parties de métal à chaque extrémité de l'élément d'amortisseur visqueux.
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 4243 Figure 4.2 -Photographie du dispositif de mesure.
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 244 Figure 4.4 -Géométrie du coussinet en caoutchouc.
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 45 Figure 4.5 -Cas de charge du coussinet en caoutchouc.

  True tr = k tr + ∆ k tr et où k Aux dp ≈ M (2πf 0 )
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 4647 Figure 4.6 -Magnitude et phase de la raideur dynamique pour l'élément d'amortisseur sans bypass.
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 48 Figure 4.8 -Magnitude et phase de la raideur dynamique pour l'élément d'amortisseur avec bypass.
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 49 Figure 4.9 -Magnitude et phase de l'impédance dynamique pour l'élément d'amortisseur avec bypass.

Figure 4 . 10 -

 410 Figure 4.10 -Erreurs de la magnitude et de la phase pour l'élément d'amortisseur avec bypass (ligne à tirets) et sans bypass (ligne continue).
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 411 Figure 4.11 -Cohérence entre les mesures des signaux.
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 412 Figure 4.12 -Magnitude et phase de la raideur dynamique du point d'entrainement externe (ligne continue) et interne (ligne à tirets) et du transfert (en pointillé) des coussinets en caoutchouc.
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 413 Figure 4.13 -Magnitude et phase de la raideur dynamique du système assemblé avec (pointillé) et sans (ligne à tirets) bypass, comparé à un système où l'amortisseur est remplacé par une tige infiniment raide (ligne continue).
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 42 Measurement instruments.

	Instrument		Type		Number
	Electrodynamic vibration generator Brüel & Kjaer Type 4817	1
	Accelerometers		Brüel & Kjaer Type 4371 V 6
	Charge amplifier		Brüel & Kjaer Type 2635 V 3
	Amplifier		Brüel & Kjaer Type 3708	1
	Frequency analyser		SigLab Model 20-42	1
	measurement procedure, obviously not obtained. Rather, they are assumed to be
	equal to the transfer stiffness due to the negligible mass effects, which are not actually
	measured due to the firm coupling between the rig and the damper element, reducing
	Equation (4.3) to			
	K tot tr =	k Damper tr	k Damper tr	k Bush tr	2

  4.6-4.9. Two versions of the plots are given: in Figures 4.6 and 4.8, the transfer stiffness, i.e., force divided by displacement, is shown, and in Figures 4.7and 4.9 the impedance, force divided by velocity, is given. The results are shown for different excitation amplitudes, v = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.15 m/s, indicating a slightly nonlinear behaviour, where increased amplitudes cause decreased stiffness, at least for lower amplitudes. By inspection of the phases, it can be concluded that the damper acts as a mix between a viscous and an elastic element, where a stiffness phase close to zero implies an elastic response, whereas an impedance phase close to zero indicates more

viscous-like properties. For lower frequencies the element with a by-pass, the viscous properties dominate strongly, turning into a more spring-like behaviour with increased frequency. The damper element without by-pass, on the other hand, shows more of an elastic behaviour in the entire studied frequency range, having a stiffness phase between 10 and 40 degrees. As stated by Kari

[28]

, the error is, using the assumption k Damper tr ≈ k Damper dp 1 ≈ k Damper

  = σ s + σ d et u sont, respectivement, le tenseur des contraintes et le vecteur déplacement de Cauchy, I est le tenseur unitaire de second ordre, κ et µ sont, respectivement, le module de relaxation en traction-compression et en cisaillement, et t and ∇ désignent, respectivement, le temps et l'opérateur nabla. L'équation du moment s'écrit Mais afin que ces modèles concordent précisément avec les donnés expérimentales, il faut disposer en général d'un grand nombre de paramètres. Une alternative à cela est le modèle de la dérivée d'ordre fractionnaire[9]. Ce, quelque peu complexe, concept mathématique est mieux compris avec l'ordre de la dérivée fractionnaire compris entre zéro et un, qui décrit un comportement ni élastique, ni visqueux, mais quelque chose situé entre ces deux extrêmes. Les équations constitutives (2.1) et (2.2) peuvent être ainsi réecrites, en utilisant les dérivées fractionnaires

		∇ • σ(t) = ρ	∂ 2 u(t) ∂t 2 ,	(2.3)
	où ρ représente la densité et • le produit contracté. En appliquant une transformée
	de Fourier temporelle, (•) =	∞ -∞ (•) exp(-iωt)dt aux équations (2.11) et (2.12), la
	représentation du domaine fréquentiel est obtenue par
	σ = σ s + σ d = κ I div u + 2 µ dev ∇ u,	(2.4)
	et l'équation du moment (2.3) devient	
		∇ • σ = -ρω 2 u,	(2.5)

t ) ∂ dev[∇u(t )] ∂t dt (2.2) où σ où i est l'unité imaginaire pur, ω la fréquence angulaire et, κ = iω κ et µ = iω µ sont en général complexes et dépendants de la fréquence, les parties réelles décrivant l'élasticité et les parties imaginaires la dissipation visqueuse. La dissipation peut être modélisée de différentes façons. Etant donnée la représentation du domaine fréquentiel, l'approche la plus simple et la plus commune en pratique, est celle admettant un facteur d'amortissement indépendant de la fréquence. Cependant, en raison d'une possibilité de comportement non causal [7], des descriptions plus complexes sont souvent préférables à cette première approche. Des modèles simples et classiques répondant à l'exigence de causalité sont e.g. les modèles de Maxwell et de Kelvin-Voigt avec leurs extensions, tels que les modèles généralisés de Maxwell et du solide linéaire standard [4], où des dérivées temporelles (entières) des tenseurs des contraintes et des déformations et la loi de Hooke généralisée [8] sont associées, permettant d'établir un formalisme très général pour un milieu visco-élastique anisotrope arbitraire.

  (•) est une dérivée fractionnaire d'ordre (•) ; avec 0 ≤ (•) ≤ 1, alors que A s n , A d n , B s n et B d n sont des coefficients (valeurs réelles). Pour le matériau en caoutchouc presque incompressible modélisé dans les Articles I et II, le module de compressibilité est supposé très grand et sans effet mémoire ; κ(t) = κ = βµ ∞ , toute la dissipation étant ainsi inclue dans le module de cisaillement, donné ici par

  12 C 13 C 14 C 15 C 16 C 22 C 23 C 24 C 25 C 26 C 33 C 34 C 35 C 36 C 44 C 45 C 46

	[C] =	         	C 11 C symm.	C 55 C 56	         	(2.26)
				C 66		
	L'introduction d'un milieu anisotrope a pour conséquence d'augmenter le nombre
	d'ondes planes (deux dans le cas d'un milieu isotrope). Ces ondes sont, en général,
	une combinaison d'ondes transversales et longitudinales, dépendantes de la direction de
	propagation.					

25) 

3. Complètement anisotrope : les directions principales ne sont pas orthogonales, i.e., le mouvement de cisaillement peut causer des contraintes en compression et vice versa, indépendemment du système de coordonnées choisi. Cette description plus générale du matériau peut nécessiter jusqu'à 21 paramètres.

  3.1 Les ondes dans un cylindre infiniDans les Articles I et II, il est question du traitement des ondes dans des cylindres creux et infiniment long, souvent désignés comme guides d'ondes. Les ondes dans des cylindres homogènes sont d'anti-symétrie axiale alors que les ondes axisymétriques sont étudiées pour des cylindres creux. Comme indiqué dans le paragraphe 2.1, les potentiels doivent, pour un mode circonférentiel donné n, satisfaire les équations de Helmhotz,

  Article I, les fonctions de Bessel d'ordre deux sont omises en raison du caractère borné à l'origine, et n = 1, décrivant ainsi un mouvement azimutal anti-symmétrique de premier ordre. Dans l'Article II, n = 0, donnant Θ r = Θ z = 0 et Θ ϕ = Θ φ = 1, et les fonctions de Bessel d'ordre un et deux sont présentes. Les solutions potentielles résultantes doivent respecter les conditions aux limites σ rr = σ rϕ = σ rz = 0, aux limites radiales, donnant des relations de dispersion permettant d'attribuer des valeurs permises au nombre d'onde axial k z pour un ordre de mode entier circonférentiel donné. le champ de contrainte. Pour la propagation axiale cela est toujours satisfait, quelque soit l'onde circonférentielle d'ordre n, en raison de la dérivée spatiale naturelle des fonctions exponentielles régissant la propagation des ondes axiales. Cela n'est par contre pas le cas, de manière générale, pour les formulations décrivant la propagation des ondes dans la direction radiale pour un disque infini, d'épaisseur h, Afin de déterminer une solution non triviale à l'équation d'onde, l'ordre de séparation est modifié de telle sorte que, dans l'équation (3.3), k 2 L

	.6)
	où, par insertion dans les équations de Helmholtz (3.1) et (3.2), la dépendance radiale
	est gouvernée par les fonctions de Bessel, la dépendance angulaire par les fonctions
	trigonométriques et la dépendance axiale par les fonctions exponentielles harmoniques.
	Dans l'Il est à noter que l'exigence de séparabilité des solutions des équations de Helmhotz,
	(3.3)-(3.6), n'est pas suffisante pour obtenir une relation de dispersion. L'exigence de
	séparabilité est plutôt prise sur les variables de champ devant satisfaire aux conditions
	aux limites, i.e.,

occupant l'espace r ∈ [0, ∞), ϕ ∈ [0, 2π), z ∈ (-h/2, h/2).

Table 4 . 1 -

 41 Objects dans la Fig. 4.3

	Lettre Object
	A	Object de mesure
	B	Générateur de vibration électro dynamique
	C	Accéléromètres piezo électriques (quatre supérieurs, deux inférieurs)
	D	Masse de blocage
	E	Amortisseur en caoutchouc auxiliaire
	F	Sol en béton
	G	Colonnes rigides

Table 4 . 2 -

 42 Instruments de mesure.

	Instrument	Type		Nombre
	Générateur de vibration électrodynamique Brüel & Kjaer Type 4817	1
	Accéléromètres	Brüel & Kjaer Type 4371 V 6
	Amplificateur de charge	Brüel & Kjaer Type 2635 V 3
	Amplificateur	Brüel & Kjaer Type 3708	1
	Analyseur de fréquence	SigLab Model 20-42	1
	composants ne peut pas être obtenue à partir de la procédure de mesure décrite ci-
	dessus. Elles sont plutôt supposées être égales à la raideur en transfert en raison des
	effets négligeables de la masse, lesquels ne sont pas mesurés au vu du couplage très ferme
	entre le banc d'essai et l'élément amortisseur, réduisant ainsi l'équation (4.3) à
	K tot tr =	k Amortisseur tr	tr k Coussinet	2
	k Amortisseur tr			

) où G 12 et G 22 sont, respectivement, la densité spectrale transverse et la densité spectrale de puissance des signaux de l'accéléromètre. La raideur au point de conduite des

  .9) La formulation EF axisymétrique est obtenue de manière analogue au cas du milieu isotrope décrit dans l'Article III et implémentée dans le logiciel EF Comsol Multiphysics 3.5, permettant d'effectuer des calculs de raideur radiale (dépendant de la fréquence) des composants de manière efficace et précis, en suivant la méthode présentée dans les Articles I et II.4.3 ResultatsLes mesures du comportement dynamique des deux amortisseurs visqueux sont présentées dans les Figures 4.6-4.9. Deux types de graphique sont donnés : les Figures 4.6et 4.8 décrivent la raideur de transfert, i.e., la force divisée par le déplacement, et les Figures 4.7et 4.9 représentent l'impédance, i.e., la force divisée par la vitesse. Les résultats sont présentés pour différentes amplitudes d'excitation, v = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.15 m/s, indiquant un comportement légèrement non-linéaire, où l'augmentation de l'amplitude provoque la diminution de la raideur, au moins pour les amplitudes les plus basses. Par inspection des phases, on peut conclure que le comportement de l'amortisseur se situe entre celui d'un élément visqueux et d'un élément élastique, où une phase rigide proche de zéro implique une réponse élastique, et une phase d'impédance proche de zéro implique des propriétés plus visqueuses. Dans le cas de l'élément avec un bypass, pour les fréquences les plus basses, ce sont les propriétés visqueuses qui dominent le comportement, comportement devenant de plus en plus élastique à mesure que la fréquence augmente. L'élément d'amortisseur sans le bypass, présente quant à lui un comportement plus élastique sur toute la gamme de fréquence étudiée, avec une phase rigide présente entre 10 et 40 degrés. Comme indiqué par Kari[28], en utilisant l'hypothèse k Amortisseur

	tr	≈ k Amortisseur dp 1	≈ k Amortisseur

Dans le but de réduire la consommation en carburant, et de ce fait les émissions de gaz à effet de serre, l'industrie automobile concentre beaucoup de ces efforts sur les possibilités de réduire l'usure des pneus, la résistance au roulement, le poids des véhicules et la résistance aérodynamique. Par ailleurs, la possibilité d'augmenter la capacité de charge d'un véhicule permettrait d'explorer de nouvelles voies. Cependant, en vis à vis de ces problèmes environnementaux, les performances en terme de propriétés sonores et vibratoires rentrent souvent en conflit avec les besoins fonctionnels d'un véhicule. Par exemple, une manière efficace de réduire les charges aérodynamiques et d'augmenter la capacité de charge d'un véhicule est de diminuer la distance entre le châssis et le sol et de réduire la taille des pneus. Cependant, se faisant, la course des amortisseurs doit être diminué, impliquant potentiellement une augmentation de la transmission des vibrations. Un autre exemple montrant la difficulté à trouver un compromis entre les améliorations technologiques du groupe motopropulseur d'un côté, et les performances sonores et vibratoires de l'autre, est illustré par le développement actuel des véhicules électriques, où le manque de masquage du bruit provenant du moteur provoque des

Acknowledgments

The work presented in this thesis has been carried out within in the Centre for ECO 2 Vehicle Design at the Marcus Wallenberg Laboratory (MWL) and within the Smart Structures network at Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC) at the Conservatoire National des Arts et Métiers (CNAM). The financial

A dispersion relation for anti-symmetric waves in an infinite rod is derived and the roots, i.e. the axial wave numbers, are calculated by means of a winding integral method in conjunction with the Newton-Rhapson method. The calculated wave numbers are used to satisfy the boundary conditions of a finite rubber cylinder and the dynamic stiffness components are given. The correctness of the derived formulation is verified against finite element calculations. A comparison is also done with simple beam theories; the Euler-Bernoulli beam theory, the Timoschenko beam theory and the simple shear model. The results clearly illustrates the limitations of these theories.

Paper II

Dynamic stiffness of hollowed cylindrical rubber vibration isolators -The wave-guide solution M. Östberg, M. Coja and L. Kari A dispersion relation for symmetric waves in hollow infinite rods is derived and its roots obtained using a winding integral method in conjunction with the Newton-Rhapson method. The calculated wave numbers are used to satisfy the boundary