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Abstract

This dissertation introduces novel models to recognize broad action categories
� like "opening a door" and "running" � in real-world video data such as
movies and internet videos. In particular, we investigate how an action can be
decomposed, what is its discriminative structure, and how to use this infor-
mation to accurately represent video content. The main challenge we address
lies in how to build models of actions that are simultaneously information-rich
� in order to correctly di�erentiate between di�erent action categories � and
robust to the large variations in actors, actions, and videos present in real-
world data. We design three robust models capturing both the content of and
the relations between action parts. Our approach consists in organizing collec-
tions of robust local features into structured action representations, for which
we propose e�cient kernels. Even if they share the same underlying principles,
our methods di�er in terms of the type of problem they address and the struc-
tural information they rely on. First, we propose to model a simple action as
a sequence of meaningful atomic temporal parts, termed "actoms", which are
obtained by manual annotation. Our action model represents the temporal
structure of actions as a sequence of histograms of actom-anchored visual fea-
tures. We show how to learn a �exible model of an action's temporal structure
in order to automatically localize actions in long unsegmented videos. Sec-
ond, we extend our ideas to the spatio-temporal structure of more complex
activities. We describe a large-scale unsupervised learning algorithm used
to hierarchically decompose the motion content of videos. We leverage the
resulting tree-structured decompositions to build hierarchical action models,
and provide an action kernel between unordered binary trees of arbitrary sizes.
Third, we directly compare models of the structure instead of structuring ac-
tion models. We view short-duration actions as high-dimensional time-series,
and propose to model an action's temporal dynamics with its auto-correlation.
We design an e�cient kernel to compare the temporal dependencies between
two actions, and show that it provides useful complementary information to
the state-of-the-art unstructured models for action classi�cation.

In all three cases, we conducted thorough experiments on real-world videos
from challenging benchmarks used by the action recognition community. We
show that our methods outperform the related state of the art, thus high-
lighting that using structure information allows for more accurate and robust
action recognition in real-world videos.

Keywords:
Action Recognition, Video Analysis, Computer Vision, Machine Learning.
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Résumé

Cette thèse décrit de nouveaux modèles pour la reconnaissance de catégories
d'actions comme "ouvrir une porte" ou "courir" dans des vidéos réalistes telles
que les �lms. Nous nous intéressons tout particulièrement aux propriétés
structurelles des actions : comment les décomposer, quelle en est la structure
caractéristique et comment utiliser cette information a�n de représenter le
contenu d'une vidéo. La di�culté principale à laquelle nos modèles s'attellent
réside dans la satisfaction simultanée de deux contraintes antagonistes. D'une
part, nous devons précisément modéliser les aspects discriminants d'une action
a�n de pouvoir clairement identi�er les di�érences entre catégories. D'autre
part, nos représentations doivent être robustes en conditions réelles, c'est-à-
dire dans des vidéos réalistes avec de nombreuses variations visuelles en termes
d'acteurs, d'environnements et de points de vue.

Dans cette optique, nous proposons donc trois modèles précis et robustes
à la fois, qui capturent les relations entre parties d'actions ainsi que leur con-
tenu. Notre approche se base sur des caractéristiques locales � notamment
les points d'intérêts spatio-temporels et le �ot optique � et a pour objec-
tif d'organiser l'ensemble des descripteurs locaux décrivant une vidéo. Nous
proposons aussi des noyaux permettant de comparer e�cacement les représen-
tations structurées que nous introduisons. Bien que nos modèles se basent tous
sur les principes mentionnés ci-dessus, ils di�érent de par le type de problème
traité et la structure sur laquelle ils reposent.

Premièrement, nous proposons de modéliser une action par une séquence
de parties temporelles atomiques correspondant à une décomposition séman-
tique. De plus, nous décrivons comment apprendre un modèle �exible de la
structure temporelle dans le but de localiser des actions dans des vidéos de
longue durée. Deuxièmement, nous étendons nos idées à l'estimation et à la
représentation de la structure spatio-temporelle d'activités plus complexes.
Nous décrivons un algorithme d'apprentissage non supervisé permettant de
dégager automatiquement une décomposition hiérarchique du contenu dy-
namique d'une vidéo. Nous utilisons la structure arborescente qui en résulte
pour modéliser une action de manière hiérarchique. Troisièmement, au lieu
de comparer des modèles structurés, nous explorons une autre alternative :
directement comparer des modèles de structure. Pour cela, nous représentons
des actions de courte durée comme des séries temporelles en haute dimension
et étudions comment la dynamique temporelle d'une action peut être utilisée
pour améliorer les performances des modèles non structurés formant l'état
de l'art en reconnaissance d'actions. Dans ce but, nous proposons un noyau
calculant de manière e�cace la similarité entre les dépendances temporelles
respectives de deux actions.
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Nos trois approches et leurs assertions sont à chaque fois validées par
des expériences poussées sur des bases de données publiques parmi les plus
di�ciles en reconnaissance d'actions. Nos résultats sont signi�cativement
meilleurs que ceux de l'état de l'art, illustrant ainsi à quel point la struc-
ture des actions est importante a�n de bâtir des modèles précis et robustes
pour la reconnaissance d'actions dans des vidéos réalistes.

Mots-clés :
Reconnaissance d'Actions, Analyse Vidéo, Vision par Ordinateur, Apprentis-
sage Statistique.
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Does a horse lift all four feet completely o� the ground during the gallop?
The answer to this question is often considered as the �rst step towards the
development of video. In 1872, the photographer Eadweard Muybridge was
commissioned by Leland Stanford to give a de�nitive answer to this long
debated question. At this pace � around 58 kilometers per hour, or 36

miles per hour � a horse's hooves move too fast for the human eye to break
down the action: a scienti�c proof using photographs was required. After
several preliminary experiments, Muybridge brought an a�rmative answer to
the question through his famous study called "Sallie Gardner at a Gallop" (cf.
Figure 1.1). The main challenge was to create a set-up able to take a sequence
of pictures capturing the details of fast motions. Muybridge managed to take
a series of photos on June 19, 1878 at Stanford's Palo Alto stock farm by
placing 24 cameras in a line along the track. The shutter of each camera was
triggered by a trip wire as the horse passed.

Figure 1.1: Muybridge's "Sallie Gardner at a Gallop" study. It proved that, at one
point in time, all four hooves of a galloping horse are o� the ground.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.2: "The Human Body in Action", Etienne-Jules Marey, 1914.

This work was a prelude to the development of visual motion analysis,
which consists in scienti�cally and precisely investigating the visual properties
of dynamical systems, e.g., �uids and humans. Muybridge's work showed
that the technological evolution of photography allowed to take sequences of
pictures to display a real-world dynamic scene. Image sequences � such as
Etienne-Jules Marey's chronographs in Figure 1.2 � allow the scientist to
analyse complex motions, e.g., actions, by looking at the temporal evolution
of the participating actors and objects.

The development of video analysis is inseparable from the improvement of
recording and projection devices. A plethora of apparatus showing movement
through sequences of drawings have existed for a long time. They rely on
the optical illusion � discovered in 1912 by Max Wertheimer � called �Beta
movement�, whereby a succession of still images are combined by the brain to
form the perceptual impression of motion. The Zoetrope � meaning �wheel
of life� in Greek � is an example of a popular device producing the illusion
of motion from the rapid succession of still pictures �xed on the interior of a
spinning cylinder with vertical slits acting as a shutter.

Early video projectors combined the same ideas with the improvements
of photography � credited to Daguerre and Niépce (1839). For instance,
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Muybridge invented the �rst moving picture projector � the Zoopraxiscope
(1879) � in order to showcase his stop-action photographies. It relied on
rapidly projecting a succession of images from rotating glass disks. Shortly
after, Auguste and Louis Lumière patented the Cinématographe � a �lm
camera, projector, and developer � in 1895 and started producing some of
the �rst movies ever made.

Since then, video has become one of the most popular visual media for
communication and entertainment. In 2010, 441 billion videos were accessible
online, which corresponds to approximately 1021 pixels1. In 2011, the Youtube
website had more than one trillion views and over 800 million unique visitors
watched over 3 billion hours of videos per month. Content creation is also
booming as one hour of new video content is uploaded to Youtube every
second2. By the end of 2012, video will account for over 50% of internet
tra�c, with a 48% compound annual growth rate3.

Video spans a wide range of sources and applications: video surveillance,
industrial control, robotics (e.g., autonomous vehicles), building automation
and domotic, human computer interaction systems, gaming (e.g., Microsoft's
Kinect device for the Xbox gaming console), internet content platforms (e.g.,
Youtube and DailyMotion), TV shows, and movies. The common goal of
these applications is to convey or capture some visual information about a
real-world scene over some period of time.

The main challenge currently faced by users of these technologies is how
to �nd the meaningful content they are looking for. Due to the overwhelming
quantity of videos, answering this question calls for tools that can automati-
cally analyze, index, and organize video content.

Our work focuses on recognizing actions, one of the important visual infor-
mation present in video data. Computer vision has recently made signi�cant
progress in action recognition � especially for speci�c tasks such as video-
surveillance. Nevertheless, the current state-of-the-art methods are still far
from being able to understand every possible action in every type of video.
This can be measured by the low performance of the systems involved in the
Multimedia Event Detection (MED) task of TRECVID [Smeaton et al. 2006]
� a challenging automatic video interpretation competition. For the 2011
edition [Over et al. 2011], the submitted systems had an average of 6% false
alarms with 54% missed detections on actions like �making a sandwich� and
�grooming an animal�.

1http://www.comscore.com
2http://www.youtube.com/t/press_statistics
3http://www.cisco.com

http://www.comscore.com
http://www.youtube.com/t/press_statistics
http://www.cisco.com
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Figure 1.3: Examples of actions and videos from the �Hollywood 2�
dataset [Marszalek et al. 2009] used in our experiments.

1.1 Goals

The goal of our work is to recognize generic actions performed in real-world
videos (cf. Figure 1.3 for an illustration). We aim at designing robust models
that can represent a broad range of action categories, while accounting for the
visual variability of uncontrolled video conditions.

Action recognition under uncontrolled conditions faces numerous di�cul-
ties inherent to the complexity of both actions and videos. Several challenges
are related to intra-class variability: actions in the same category may sig-
ni�cantly di�er in terms of both appearance and motion content. The sources
of variation include noise, lighting conditions, scale and shape of the partici-
pating entities, background clutter, wide range of viewpoints, occlusions, fast,
complex, and articulated movements, motion blur, camera motion, variability
in duration, and execution style. These variations make it di�cult for action
models to rely on simplifying assumptions such as the full body of the actor
being always visible. We account for this variability by using robust local fea-
tures and by capturing essential structural properties of an action category.
Another set of challenges results from between-class confusion: there are
often subtle distinctions between actions of di�erent classes. For instance,
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the running and walking actions share similar motions and discriminating be-
tween these categories calls for careful motion analysis. Accurately modeling
the speci�cities of an action is especially important in uncontrolled conditions,
where a recognition algorithm has to distinguish between the actions of in-
terest and all other possible events � some observed during learning, some
not. Again, we tackle this issue by using structure information to build and
compare more detailed action models.

Action recognition encompasses two main tasks: classi�cation and local-
ization. On the one hand, classi�cation aims at assigning a semantic label
to an entire video focused on an action. On the other hand, the purpose of
localization is to provide both a semantic label and its spatio-temporal extent
in videos that may contain more than just one action. In practice, these two
problems are closely related, as localization methods often consist in applying
a classi�er at multiple candidate locations to determine the most likely ones.
In both cases, we perform category-level recognition, and study supervised

learning algorithms to tackle these problems: given a list of action categories,
we learn a model using a set of video examples for each category.

As stated previously, we assume that an action is characterized by spatio-
temporal relationships between sub-events. We claim that capturing this
structural information � and in particular the temporal structures � is es-
pecially important for action recognition in order to achieve robustness under
uncontrolled video conditions and to disambiguate between similar categories.
Our main goal is to learn better action models by discovering and using this
structure. The major di�culty lies in how to identify, represent, and inte-
grate in a learning framework the relevant structural aspects of actions. We
explore di�erent possibilities: sequences of atomic actions, hierarchical motion
decompositions, and temporal dependencies between frames.

1.2 Context

Automatic video understanding is a fundamental goal of computer vision.
As mentioned previously, actions convey important information needed to
understand a dynamic visual scene such as the one depicted in Figure 1.4.
Even though the actions of some characters may be inferred from this single
image, it is more di�cult to determine what the person in the middle is doing.
The nature of the objects and the pose of the actors are di�cult to understand
and � by themselves � not su�cient to determine what actions are being
performed: using motion information over a range of frames is necessary.
Furthermore, analysing the relations between these movements is necessary
to recognize this scene as a Kung-Fu �ght.
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Figure 1.4: Frame from Jackie Chan's movie �The Legend of Drunken Master�.
This frame alone is not enough to understand the content of the scene.
Only after looking at the temporal evolution of the di�erent actors can
we �nd out that this is a �ghting scene where the character in the
center of the frame is being attacked while drinking wine from a bottle.

For computers to be capable of such a high-level interpretation, they need
models to represent the various inter-related motions caused by the temporal
evolution of the participating entities, e.g., objects and body parts, over the
course of an action. For instance, the Motion History Images (MHI) of Bobick
and Davis [2001] is an early and in�uential model used to represent an action
as the temporal evolution of a silhouette (cf. Figure 1.5). This approach and
other closely related ones � e.g., the spatio-temporal shapes of Gorelick et al.
[2007] or the Motion History Volumes (MHV) of Weinland et al. [2006] �
are, however, not robust and limited to constrained scenarii, such as video-
surveillance [Hu et al. 2004], or optical human-computer interfaces [Shotton
et al. 2011]. They, indeed, rely on information that is di�cult to obtain
under uncontrolled video conditions, e.g., background subtraction, silhouette
extraction, or parametric models of the human body.

Recently, the computer vision community has investigated more challeng-
ing videos. Uncontrolled video data is characterized by a great variability and
the lack of available prior knowledge applicable to (i) the recording process
(e.g., the viewpoint, the camera motion, the video quality, and the resolution),
(ii) the scene (e.g., indoors or outdoors, crowded or not, moving and cluttered
backgrounds, occlusions, lighting conditions), and (iii) the actions performed
(e.g., fast or slow motions, interactions). It spans a large spectrum of videos
coming from a wide range of potential sources including amateur videos, news
reports, sports broadcasts, TV shows, and movies. There is also an expanding
variety of action categories present in the related action recognition bench-
marks: simple actions (e.g., running), more complex ones (e.g., getting out of
a car), interactions (e.g., kissing), and activities (e.g., eating).
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Figure 1.5: The motion energy images (MEI) and motion history images (MHI)
of Bobick and Davis [2001].

In order to address the aforementioned issues, several researchers [Chomat
and Crowley 1999, Dollár et al. 2005, Laptev 2005, Schüldt et al. 2004, Zelnik-
Manor and Irani 2001] proposed to use local features. These are in general
spatio-temporal extensions of the 2D detectors and descriptors successfully
used in images for object recognition (see for instance the results of the PAS-
CAL VOC challenges [Everingham et al. 2010]). Local video features such as
spatio-temporal interest points [Laptev 2005] describe the appearance (e.g.,
with histograms of oriented gradients [Dalal and Triggs 2005]) or motion (e.g.,
with histograms of optical �ow [Laptev et al. 2008]) of local spatio-temporal
volumes. Thanks to the robustness of local descriptors and their lack of global
assumptions (e.g., about geometrical relations), local features have been suc-
cessfully applied to challenging action recognition tasks in real-world videos.

An action is then described by the collection of local features found in
the corresponding video. The bag-of-features (cf. Section 2.2.3) is a popular
model used to represent the set of local spatio-temporal descriptors. It consists
in quantizing these local features by assigning each one of them to the closest
�visual word� � a prototypical feature � and then building the histogram
counting the occurrences of each visual word in the video (cf. Figure 1.6 for
an illustration). As this orderless model ignores the relations between local
features, several extensions have been proposed to incorporate some structure
information � e.g., with spatio-temporal pyramids [Laptev et al. 2008].

Action models based on local features are often high-dimensional (typi-
cally on the order of 104 dimensions). Furthermore, representations like the
bag-of-features are data-driven and not easily interpretable by humans. There-
fore, recognition approaches based on local features cannot be implemented
in practice using manually de�ned rules. The machine learning �eld provides
principled tools that allow to overcome these di�culties. Thanks to the large
amount of available video data, supervised machine learning algorithms can
automatically learn complex action models from annotated training examples.
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Figure 1.6: Bag-of-features: a robust model that aggregates local spatio-temporal
features by quantizing them on a vocabulary of prototypical features
called �visual words� by analogy with the �bag of words� text model.

Annotations � i.e., semantic labels such as �this video contains someone
falling down� � can be acquired by di�erent means, but are often obtained
manually. The power of machine learning techniques like Support Vector
Machines [Schölkopf and Smola 2002] allows to generalise to any video the
knowledge acquired from a few training ones.

Successful action recognition applications using machine learning algo-
rithms have already emerged � see for instance the development of auto-
matic video-surveillance or Microsoft's Kinect sensor for the Xbox gaming
console [Shotton et al. 2011]. Nevertheless, at the time of writing (2012) and
to the best of our knowledge, a mainstream application of action recognition
�in the wild� (e.g., on Youtube or with autonomous robots) does not exist yet.
This highlights the large amount of research that is still required in order to
understand the fundamental properties of actions and how to represent them
under real-world video conditions.

In this context, we believe it is necessary to build on both the early struc-
tured action models and on the recent orderless representations in order to
progress towards better action models. Our goal is to �nd the good level of
details that will allow action models to be simultaneously more precise than
bag-of-features and more robust than silhouette-based representations.
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1.3 Contributions

Our work relies on local features and aims at structuring their aggregation
to learn better high-level models of actions. We introduce both sequential
representations for simple actions and hierarchical representations for more
complex activities. We propose techniques to decompose � on frames, tem-
poral parts, and mid-level motion components � the global spatio-temporal
structure of actions. We exploit these structured representations by designing
adapted kernels (similarity measures), which are then integrated in non-linear
classi�ers. We provide experimental evidence validating our solutions con-
cerning the following questions:

• what are good units to decompose actions on;

• what is the interesting structure of actions;

• how to extract and represent structure in a robust manner;

• how to learn and compare structured action models.

Our contributions are described in the following paragraphs.

• To localize simple actions, e.g., opening a door, in long unsegmented
videos, we introduce a temporally structured extension of bag-of-features:
the Actom Sequence Model (ASM). We describe an action as a sequence
of atomic action units, termed actoms, which are semantically meaning-
ful temporal parts that are characteristic for the action. ASM repre-
sents the temporal structure of actions as a sequence of histograms of
actom-anchored visual features (cf. Figure 1.7). Training requires the
annotation of actoms for action examples. At test time, actoms are de-
tected automatically based on a non-parametric model, which acts as a
prior on an action's temporal structure. We propose a sliding central
frame detection approach: every N frames, we evaluate the probability
of an action being centered at a particular frame t by marginalizing over
our temporal prior:

P(action at t) =
s∑

j=1

fASM(t, ∆̂j) P(∆̂j) (1.1)

where ∆̂j is the j− th candidate sequence of actoms in our learned tem-
poral model, P(∆̂j) is its estimated prior probability, and fASM(t, ∆̂j) is
the posterior probability returned by our ASM classi�er. We present ex-
perimental results on the challenging Co�ee and Cigarettes [Laptev and
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Pérez 2007] and DLSBP [Duchenne et al. 2009] datasets. We also adapt
our approach to a classi�cation by detection set-up, and demonstrate
its applicability on the Hollywood 2 dataset [Marszalek et al. 2009]. We
show that our ASM method outperforms the current state of the art in
temporal action detection, as well as baselines that detect actions with
a sliding window method combined with a bag-of-features. This work
was published in [Gaidon et al. 2011a] and is presented in Chapter 3.

Actom Sequence Model

Actom models
(time-dependent voting)

t1 t2 t3r1 r2 r3
t

Actom 1 Actom 2 Actom 3

per-actom histograms of time-anchored visual words

Quantized local spatio-temporal features

Figure 1.7: Illustration on three actoms for the �sitting down� action of
our Actom Sequence Model (ASM): succession of temporal parts
modeled by the aggregation of time-anchored local features.

• Although simple actions can be represented as sequences of short tempo-
ral parts, longer activities, e.g., pole vaulting, are composed of a variable
number of sub-events connected by complex spatio-temporal relations.
In Chapter 4, we learn how to automatically represent activities as a hi-
erarchy of mid-level motion components. This hierarchy is a data-driven
decomposition that is speci�c to each video. We introduce a spectral di-
visive clustering algorithm to e�ciently extract a hierarchy over a large
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number of tracklets (i.e., local trajectories, cf. Figure 1.8). We use this
structure to represent a video as an unordered binary tree. This tree is
modeled by nested histograms of local motion features. We provide an
e�cient positive de�nite kernel that computes the structural and visual
similarity of two hierarchical decompositions by relying on models of
their parent-child relations:

k(T1, T2) =
1

|E1||E2|
·

∑

e1∈E1

e2∈E2

h(e1, e2) (1.2)

where Ti is our tree model with edges Ei and h(e1, e2) denotes the
similarity between the histogram models of two edges e1 and e2. We
present experimental results on three recent challenging benchmarks:
the complex activities from the Olympics Sports dataset [Niebles et al.
2010], the human-human interactions of the High Five dataset [Patron-
Perez et al. 2010], and the large set of simpler actions from the HMDB
dataset [Kuehne et al. 2011]. We show that per-video hierarchies provide
additional information for activity recognition. Our approach improves
over unstructured activity models, baselines using other motion decom-
position algorithms, and the state of the art. This work was published
in [Gaidon et al. 2012] and is presented in Chapter 4.

......
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Figure 1.8: Illustration on a pole vaulting activity of our cluster-tree of
tracklets: automatically learned hierarchical motion decomposi-
tion for complex activity recognition.
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Average statistics

kBOF( , ) +
Temporal dependencies

kDACO( ),

Figure 1.9: Combination of the orderless bag-of-features (left) with tempo-
ral dependency information (right) represented through auto-
correlation operators in the DACO kernel.

• Finally, we propose to complement representations based on average
statistics � e.g., BOF or the two aforementioned approaches � with a
model of the temporal dependencies between frames: the auto-correlation
operator. We address the problem of action recognition by describing
actions as time series of per-frame models and introduce a kernel to
compare their dynamical aspects (cf. Figure 1.9). The two previous
contributions focus on the global structure of actions to organize sets of
local features into high-level content representations re�ecting this struc-
ture. This part of our work investigates a di�erent way to use structure
information: instead of comparing structured video content, we compare
the structure of video contents. Our main contributions are the follow-
ing. First, we provide a principled kernel to compare the dynamics and
temporal structure of actions by computing the Distance between their
respective Auto-Correlation Operators (DACO):

kDACO({xt}t=1:T , {yt′}t′=1:T ′)2 = exp
(

− 1

2σ2

∥
∥ρ̂(y)

τ − ρ̂(x)
τ

∥
∥

2

HS

)

(1.3)

where ρ̂
(x)
τ and ρ̂

(y)
τ denote the auto-correlation operators of the time se-

ries {xt}t=1:T and {yt′}t′=1:T ′ respectively. Second, we derive a practical
formulation to compute DACO in any feature space deriving from a base
kernel between frames. Third, we report experimental results on recent
action recognition datasets showing that DACO provides useful com-
plementary information to the average distribution of frames, as used
in state-of-the-art models based on the bag-of-features representation.
This work was published in [Gaidon et al. 2011b] and is presented in
Chapter 5.
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In this chapter, we �rst provide a broad overview of early structured action
models based on global representations (Section 2.1), which include sequences
of frame descriptors and models of the spatio-temporal volume spanned by
an action. We then describe methods based on local features (Section 2.2),
which model actions as collections of spatio-temporal patches or local trajec-
tories represented with robust appearance and motion descriptors. We �nally
review the existing structured models (Section 2.3) that relate most closely
to ours. These approaches aim at organizing collections of local descriptors,
for instance by modeling their co-occurrence relations or by automatically
grouping them into mid-level parts.

13
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2.1 Global representations

Global models represent an action using appearance and motion descriptors
either of the whole body structure or of a region of interest tightly enclosing
an actor. These representations typically depend on silhouette extraction
or grid structured representations of the region spanned by the body over
the execution of an action. In contrast to early gait analysis methods using
parametric models of the human body (e.g., the locations and angles of body
joints, cf. [Moeslund et al. 2006] for a review), global models are more widely
applicable, as they do not rely on the identi�cation and tracking of individual
body parts. We �rst describe action models based on sequences of global
representations. We then review volumetric models that describe the shape
or motion content of the video volume spanned by an action in space-time.

2.1.1 Sequential approaches

Inspired by techniques successfully applied on speech recognition problems,
several works [Brand et al. 1997, Starner and Pentland 1995, Wilson and
Bobick 1995, Yamato et al. 1992] represent actions as sequences of states
modeled by latent variables. They rely on dynamic probabilistic graphical
models � such as Hidden Markov Models (HMM) [Rabiner and Schafer 2007]
� to learn temporal transitions between these hidden states. An action is
represented by a generative model over sequences of per-frame feature vectors,
and recognition is performed based on the likelihood of an image sequence with
respect to this model. For instance, Yamato et al. [1992] recognize tennis
actions using HMMs on grid representations of silhouettes.

Since then, several approaches [Chen and Agarwal 2011, Hoai et al. 2011,
Kulkarni et al. 2010, Laxton et al. 2007, Lv and Nevatia 2007, Oliver et al.
2000, Shi et al. 2011, Zeng and Ji 2010] attempt to recognize actions in more
challenging settings. In general, they use a Viterbi-like inference algorithm
to temporally segment videos. For instance, Chen and Agarwal [2011] adapt
speech recognition tools to model actions with a space-time-frequency repre-
sentation of scores of boosted spatio-temporal interest point detectors. Their
approach requires the localization and continuous tracking of the entire hu-
man body (not individual body parts) in order to compute a �gure-centric
descriptor. Dealing with long-term interactions with objects, Laxton et al.
[2007] use Dynamic Bayesian Networks (DBN) with manually designed per-
activity hierarchies of prede�ned contextual cues and object detectors. Some
other sequential approaches [Hoai et al. 2011, Shi et al. 2011] are related to
HMMs, but instead learn a discriminative model from manually segmented
training videos in order to perform action segmentation.
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Figure 2.1: Actions as time series of poses from [Brendel and Todorovic 2010].

Figure 2.2: A hand-crafted Dynamic Bayesian Network from [Laxton et al. 2007]
modeling the �cooking French toast� activity.

Also operating on sequential representations, exemplar-based techniques
[Darrell and Pentland 1993, Gavrila and Davis 1995, Niyogi and Adelson 1994,
Veeraraghavan et al. 2006] directly compute an alignment score between an
action and some template sequences. In general, these methods require less
training data and provide more �exibility, as they can handle non-linear speed
variations with the Dynamic Time Warping (DTW) algorithm [Sakoe and
Chiba 1978]. For instance, Darrell and Pentland [1993] use DTW on a se-
quence of scores obtained by correlating a video with a set of per-view tem-
plates. More recently, Brendel and Todorovic [2010] recognize actions as time
series of a few snapshots of body parts obtained by video segmentation (cf.
Figure 2.1). They use a template-based classi�cation approach by aligning a
video with training examples using DTW.

Despite their e�ciency on constrained video data and their encoding of
temporal aspects, sequential methods su�er from some limitations. For in-
stance, they cannot represent actions involving concurrent sub-events, e.g., hu-
man interactions. Some extensions of HMMs, such as coupled HMMs [Oliver
et al. 2000] or more generic Dynamic Bayesian Networks [Laxton et al. 2007],
address this issue. Their complex domain-speci�c structure, however, needs
to be manually speci�ed by experts (see for instance Figure 2.2). In addition,
spatio-temporal action localization requires higher-level probabilistic models,
e.g., by combining multiple HMMs [Brand and Kettnaker 2000, Lv and Neva-
tia 2007]. These models need a large amount of training examples in order to
account for all events that might occur, including non-actions.
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Figure 2.3: Tensor CCA on video volumes [Kim and Cipolla 2009].

2.1.2 Volumetric approaches

In contrast to sequential recognition techniques, volumetric methods view ac-
tions as 3D (X-Y-T) objects in a spatio-temporal video volume, thus treating
space and time in a uni�ed manner. They extract global action models that
capture structure information in the form of spatio-temporal shapes. Volu-
metric approaches mostly rely on template matching for recognition and are
successful under restricted video conditions [Gorelick et al. 2007, Schüldt et al.
2004], such as simple static backgrounds, actors with full body always visible,
and restricted viewpoint variations and camera motions.

Some models operate directly on the videos themselves. For instance, Kim
and Cipolla [2009] directly compare video volumes using Tensor Canonical
Correlation Analysis (cf. Figure 2.3). Alternatively, several approaches [Blank
et al. 2005, Bobick and Davis 2001, Gorelick et al. 2007, Rodriguez et al. 2008]
rely on silhouettes in order to obtain spatio-temporal templates. For instance,
Bobick and Davis [2001] introduce motion history images (MHI), which are
temporal templates representing the evolution of motion over time. Blank
et al. [2005] and Gorelick et al. [2007] use background subtraction techniques
to model actions as space-time shapes. Rodriguez et al. [2008] learn spatio-
temporal cuboid templates and perform template matching via correlation
using the generalized Fourier transform. Silhouettes provide useful informa-
tion for action recognition, but their use is limited to simple or controlled video
conditions. They are, indeed, di�cult to obtain in the presence of complex
dynamic backgrounds, and do not account for self-occlusions.

Other volumetric approaches [Efros et al. 2003, Ke et al. 2010, Polana and
Nelson 1994, Schindler and Van Gool 2008, Shechtman and Irani 2005] focus
on optical �ow to obtain global action templates. For instance, Polana and
Nelson [1994] represent periodic actions with spatio-temporal grids of optical
�ow. Shechtman and Irani [2005] use the correlation between motion �ows.
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Figure 2.4: Action localization with space-time templates from [Ke et al. 2010].

Figure 2.5: Spatio-temporal descriptors of appearance (Histogram of Oriented Gra-
dients) and motion (Histogram of Optical Flow) with di�erent spatial
and temporal subdivisions from [Laptev and Pérez 2007].

Efros et al. [2003] compute blurred optical �ow features inside tracks of soccer
players, and compare actions to templates by frame-wise alignment. Com-
bining appearance and �ow, Schindler and Van Gool [2008] model actions as
the concatenation of per-frame shape and motion features. More recently, Ke
et al. [2010] over-segment videos and use optical �ow and volumetric features
to match space-time shapes representing action templates (see Figure 2.4).

Finally, several researchers have investigated the combination of both ap-
pearance and motion information to represent the content of a video vol-
ume. For instance, Laptev and Pérez [2007] propose a boosted action clas-
si�er over multiple motion and shape features (see Figure 2.5). Relying on
spatio-temporal gradients and a generic human detector, Kläser et al. [2010b]
introduce the HOG-Track descriptor to represent a segment of a human track.



18 CHAPTER 2. RELATED WORK

A spatio-temporal volume spanned by a human is discretized with a spatio-
temporal grid, and each cell of this grid is represented using a HOG3D de-
scriptor [Klaser et al. 2008]. These methods have shown promising results on
challenging video data such as movies.

Volumetric approaches rely on a similarity measure between video volumes,
and typically localize actions by matching sub-volumes with a set of candidate
templates. For instance, Ke et al. [2010] use a sliding-window approach with
part-based matching relying on pictorial structures, and Kläser et al. [2010b]
localize actions using a sliding window approach restricted to human tracks.
Note that sequential approaches can also be applied in a similar sliding window
manner, such as in [Darrell and Pentland 1993] with DTW and in [Wilson and
Bobick 1999] with HMMs.

The aforementioned global approaches are particularly e�cient when used
to compare spatio-temporally aligned videos. As they focus on global struc-
ture, they are, however, not robust to occlusions (e.g., truncated actors),
signi�cant viewpoint changes, and duration variations. Global approaches
also assume the contiguity of the video volume spanned by an action. Con-
sequently, they are not adapted to actions composed of spatio-temporally
separated events such as interactions involving multiple actors (e.g., �ght-
ing). Finally, global representations are often restricted to constrained video
scenarii, because they rely on accurate human localization or background sub-
traction, e.g., for silhouette extraction. This type of information is, indeed,
di�cult to obtain in the presence of camera motion, dynamic and cluttered
backgrounds, lighting changes, and poor video quality.

2.2 Local features

Pioneered by Chomat and Crowley [1999], Dollár et al. [2005], Laptev and
Lindeberg [2003], Schüldt et al. [2004], Zelnik-Manor and Irani [2001], action
recognition approaches based on local features represent videos as collections
of local spatio-temporal regions. They rely on the automatic extraction of
small video volumes, or sequences of image patches, directly from the pixel
values or the optical �ow �eld. Local features make no assumptions about
the global structure of actions, and yield representations that are remark-
ably robust under uncontrolled video conditions. These methods have demon-
strated competitive performance on a wide range of challenging data, including
movies [Laptev et al. 2008, Marszalek et al. 2009], TV shows [Gaidon et al.
2009, Patron-Perez et al. 2010], Youtube clips [Ikizler-Cinbis et al. 2009, Liu
et al. 2009], and sports broadcasts [Niebles et al. 2010, Rodriguez et al. 2008].
See [Wang et al. 2009] for a recent evaluation.
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We �rst describe the di�erent types of local features. We then review
the two main families of recognition techniques based on local features: local

classi�ers, which deal with features individually, e.g., using voting strategies,
and global approaches, which aggregate features over video sub-volumes, e.g.,
using a bag-of-features representation.

2.2.1 Types of local features

Local spatio-temporal features

Local spatio-temporal features are an e�cient method to extract and repre-
sent the visual information from local video volumes. Indeed, they are easy to
extract, as they often rely on well-known image interest point detectors gen-
eralized to the 3D spatio-temporal domain, and require neither video segmen-
tation, nor human or object detection. For instance, Laptev [2005] proposes
an extension of the Harris cornerness criterion [Harris and Stephens 1988] to
detect spatio-temporal interest points (see Figure 2.6). Other spatio-temporal
feature detectors include the cuboids of Dollár et al. [2005] and Willems et al.
[2008]'s space-time extension of the Hessian blob detector [Beaudet 1978].

Spatio-temporal features are then described using robust local descrip-
tors. For instance, Laptev et al. [2008] describe both local appearance and
local motion in a small spatio-temporal volume using Histograms of Oriented
Gradients (HOG) [Dalal and Triggs 2005] and Histograms of Optical Flow
(HOF). Klaser et al. [2008] also propose the extension of HOG to the space-
time domain.

Figure 2.6: Spatio-temporal interest points of a walking action [Laptev 2005]. The
upside-down level surface of a leg pattern (left) shows that the detected
interest points (the ellipsoids) correspond to corners in space-time.
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Point trajectories

The temporal evolution of spatial coordinates of tracked local image regions
is another intuitive and e�cient way to characterize the local motion con-
tent associated to actions. Approaches based on long-term spatio-temporal
trajectories, e.g., [Ali et al. 2007, Campbell and Bobick 1995, Junejo et al.
2010, Messing et al. 2009, Parameswaran and Chellappa 2006, Rao et al. 2002,
Sheikh et al. 2005], have been able to automatically recognize a variety of ac-
tions from trajectory and velocity information only. However, tracking pixels
and their underlying parts across many frames is a challenging problem for
complex articulated movements of humans in real-world videos � essentially
due to lighting changes, motion blur, compression artifacts, and occlusions.
Furthermore, trajectory-based approaches often rely on the accurate detec-
tion or segmentation of body parts or objects, or require manually annotated
training data that are expensive to obtain.

Tracklets � local point trajectories, corresponding to pixels tracked across
a �xed small number of frames � combine useful aspects of both trajectories
and local spatio-temporal features. Similar to trajectories, tracklets di�eren-
tiate the time domain from the spatial one. They provide a structured and
information-rich characterization of the motion of underlying parts. Similar
to local features, tracklets can be easily and reliably extracted [Wang et al.
2011], for instance by simple interpolation in a motion �eld computed using
mature optical �ow extraction algorithms [Farnebäck 2003, Lucas and Kanade
1981]. Their short duration also limits drifting problems, i.e., trajectories de-
viating from the underlying tracked object. This is in contrast to long-range
trajectories [Brox and Malik 2010, Lezama et al. 2011, Sand and Teller 2008],
which are expensive to compute and face di�culties in capturing fast and
articulated motions due to their sensitivity to occlusions.

The modeling approaches used with local spatio-temporal features have
been successfully adapted to tracklets, thanks to their limited spatio-temporal
range and �xed duration. For instance, Matikainen et al. [2009] quantize tra-
jectory snippets of key points over a vocabulary of prototypical tracks (see
Figure 2.7a). In addition, the appearance and motion information of video
volumes surrounding a trajectory can be represented with the aforementioned
robust local descriptors (see Figure 2.7b). This yields state-of-the-art re-
sults as shown in [Wang et al. 2011]. Similarly to local spatio-temporal fea-
tures, tracklets only describe local information. Furthermore, tracklet-based
approaches often sample a large number of features obtained by dense sam-
pling [Wang et al. 2011], which makes them more computationally expensive
than sparse features like spatio-temporal interest points.
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Figure 2.7: Trajectories as local features: (a) spatial interest point trajectories
quantized over a vocabulary of prototypical �trajectons� [Matikainen
et al. 2009]; (b) dense �tracklets� represented with track-aligned local
appearance and motion descriptors [Wang et al. 2011].

2.2.2 Local classi�ers

Amongst methods processing features individually, voting-based approaches
[Gilbert et al. 2010, Mikolajczyk and Uemura 2008, Oikonomopoulos et al.
2009, Willems et al. 2009, Yao et al. 2010, Yuan et al. 2011] aim at measuring
the importance of each feature for a particular action. They detect actions
by extracting local features, each of which casts a vote for a particular action.
For instance, Willems et al. [2009] propose to prune quantized local features
using an exemplar-based voting approach (cf. Figure 2.8). Yuan et al. [2011]
detect spatio-temporal interest points that cast votes based on their point-
wise mutual information with the action category. They, then, use a spatio-
temporal branch and bound algorithm to e�ciently localize actions.

Other approaches [Liu et al. 2009, Nowozin et al. 2007] propose to select
the most relevant local features. For instance, Nowozin et al. [2007] use a
sequence of individual local features assigned to a �xed number of uniformly
sized temporal bins. Liu et al. [2009] prune local spatio-temporal features
using the PageRank algorithm [Page et al. 1999], and combine static and
motion features with an AdaBoost classi�er [Freund and Schapire 1995].

Figure 2.8: Voting approach of Willems et al. [2009]. From left to right: (i) a
video, (ii) spatio-temporal features, (iii) location hypotheses generated
from the features, (iv) detections obtained by clustering the hypotheses.
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Selecting local features allows to e�ciently localize the action in space-
time. Voting approaches can also detect multiple co-occurring actions and
simple multi-actor interactions. However, these methods assume that each lo-
cal feature can provide enough information to recognize an action. Therefore,
they are not discriminative enough to di�erentiate between complex actions
sharing common motion or appearance primitives, e.g., sport activities.

2.2.3 Bag-of-features

An alternative family of models uses the global distribution of features over a
video volume. In particular, one of the most common and e�cient represen-
tation is the bag-of-features (BOF). Originally designed to represent textual
documents as word frequencies, it was successfully adapted to model images as
collections of local patches [Csurka et al. 2004, Cula and Dana 2001, Sivic and
Zisserman 2003] (see Figure 2.9) , and videos as bags of local spatio-temporal
features [Dollár et al. 2005, Laptev et al. 2008, Niebles et al. 2008, Schüldt
et al. 2004, Wang et al. 2011]. In the BOF model, a vocabulary of prototype
features � called �visual words� � is obtained by clustering, and a video is
represented as a histogram of occurrences of local features quantized over this
visual word vocabulary (see Figure 1.6 for an illustration). Statistical learn-
ing methods like Support Vector Machines (SVM) [Schölkopf and Smola 2002]
can then be applied to learn a BOF classi�er. Localization can be performed
by applying this classi�er in a sliding window manner [Duchenne et al. 2009].
Due to its e�ciency and popularity, we systematically compare our methods
to this BOF approach, which we consider as a baseline to improve upon.

Note that the BOF model discards the global spatio-temporal information
inherent to actions: it is an orderless representation. Therefore, it is not
designed to discriminate between actions characterized by their structure �
e.g., opening and closing a door � and can cause numerous high score false
alarms during localization.

Figure 2.9: The bag-of-features image model (courtesy of Fei-Fei Li)
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2.3 Structuring collections of local features

Several works address the aforementioned shortcomings of the BOF represen-
tation. We �rst describe methods computing statistics on the spatial and/or
temporal relations between local features. We then review models that use
groups of features as mid-level building blocks for structured action models.

2.3.1 Modeling relations between local features

As stated before, the BOF model disregards the position of the local features
to build robust action models. This, however, is done at the expense of dis-
criminative power. In order to alleviate this well-known issue, a signi�cant
body of work has focused on augmenting BOF with the relations between the
positions of co-occurring features, either at a global level � i.e., in an entire
video � or at a more local one � i.e., between neighboring features.

Global relations

Spatio-temporal pyramids [Laptev et al. 2008] are a popular example of using
the positions of the features to globally structure an action representation. Ex-
tending spatial pyramids [Lazebnik et al. 2006] to the spatio-temporal domain,
Laptev et al. [2008] propose to divide a video into cells (sub-volumes) using a
coarse spatio-temporal grid. Each cell is described by the aggregation of its
local features. The full video is then described by the ordered concatenation
of the per-cell BOF models, leading to a globally structured representation.
The main limitation of this approach lies in the rigidity and a priori de�nition
of the coarse spatio-temporal layout, assumed to be shared by all videos: the
actors and actions must be roughly aligned in the X-Y-T video space such
that cells are in correspondence. Multiple grids can be combined � at the
expense of added computational complexity � but the authors showed that,
ultimately, the e�ciency of this technique depends on the videos and actions,
while yielding only moderate improvements on average.

Wong et al. [2007] propose a more �exible way to encode the global re-
lations between local features by extending the Implicit Shape Model (ISM)
of Leibe et al. [2005] to the space-time domain. Inspired by [Fergus et al.
2005, Leibe et al. 2005], they propose to combine probabilistic Latent Seman-
tic Analysis (pLSA) [Hofmann 2001] with an ISM in order to model both the
appearance of local space-time cuboids [Dollár et al. 2005] and their relative
position with respect to the center of the action. The EM algorithm is used to
learn the pLSA parameters from a large co-occurrence matrix between visual
words and quantized relative positions. Note that the center of the action
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must be known in order to convert the absolute positions of local features to
relative ones. If not available in advance, then this central location can be in-
ferred automatically using the probabilistic Hough voting scheme from Leibe
et al. [2005]. This, however, strongly degrades performance with respect to the
fully supervised case, i.e., with manually annotated centers. Even in this sce-
nario, discriminative methods, e.g., SVMs, clearly outperform this generative
model � as reported in [Wong et al. 2007].

Our Actom Sequence Model � presented in Chapter 3 � builds on these
approaches � especially the spatio-temporal pyramids of Laptev et al. [2008]
� in order to integrate in a discriminative learning framework a �exible model
of the global temporal relations between local features. Instead of using a �xed
video subdivision, we propose to learn an action-speci�c decomposition from
manual annotations of an action's most meaningful temporal parts.

Local relations

In contrast to the aforementioned global approaches, some methods [Gilbert
et al. 2010, Kovashka and Grauman 2010, Oikonomopoulos et al. 2009, Savarese
et al. 2008] focus on modeling the local relations between a feature and its
spatio-temporal neighbors. In general, these methods explicitly count co-
occurrences, and either build compound descriptors out of a feature and its
neighborhood [Gilbert et al. 2010, Kovashka and Grauman 2010], or concate-
nate the usual content BOF with a relations BOF [Matikainen et al. 2010,
Savarese et al. 2008]. For instance, Gilbert et al. [2010] use data mining tech-
niques to �nd frequent 2D corners of an action. They group a feature with
its neighbors to build compound features. They then iterate this process by
mining frequently co-occurring compound features to build higher-level com-
pound features. Recognition is performed using a voting scheme on the local
hierarchical structures of 2D corner neighborhoods.

Kovashka and Grauman [2010] use a similar hierarchical process. They
iteratively build increasingly complex compound features by vector-quantizing
the cumulative co-occurrence histograms between a feature and its neighbors
(cf. Figure 2.10a). A video is represented by the set of histograms of quantized
features over the various levels of neighborhoods. Recognition is performed
by a SVM and multiple neighborhood sizes and hierarchy levels are combined
through Multiple Kernel Learning [Bach et al. 2004].

Separately modeling relations, Savarese et al. [2008] propose to describe
the local neighborhood of a feature using spatio-temporal correlograms. These
are the concatenation of co-occurrence histograms between visual words in a
spatio-temporal neighborhood. These correlograms are then vector-quantized
on a k-means-computed codebook of �correlatons�, and classi�cation is per-
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formed using pLSA on histograms of correlatons. Matikainen et al. [2010]
also explicitly model pairwise relations between features using a Naive-Bayes
model, which assumes conditional independence of features when knowing
the action class (cf. Figure 2.10b). They avoid the performance issues of
generative models by using the log-likelihoods with respect to their per-class
probabilistic co-occurrence model as features fed to a discriminative classi�er.

These co-occurrence based methods face several limitations. First, count-
ing co-occurrences between local features yields very sparse models with a vast
number of parameters, which leads to over�tting and prevents these methods
from generalizing. It is possible to mitigate this issue by relying on approx-
imations and simpli�cations of the considered relations � e.g., Matikainen
et al. [2010] rely on a coarse orientation discretization. This, however, induces
strong quantization e�ects and restricts the discriminative power of those
representations. In addition, only relations between spatio-temporally close
features can be captured due to the combinatorial nature of the problem.

Finally, all the aforementioned works have conducted experiments sug-
gesting that co-occurrence models and compound features by themselves are
performing signi�cantly worse than the simple BOF model. Nevertheless, they
have also shown that the relations between features provide complementary
information that, when used in conjunction with BOF, results in performance
improvements.

Our DACO kernel between time series of frames � presented in Chapter 5
� builds on these results. However, instead of relying on co-occurrences be-
tween features, it accounts for an action's dynamics, i.e., the relations between
its frames over time. We show that the auto-correlation between frames pro-
vides a model of the temporal dependencies, which complements the average
statistics captured by BOF.

Figure 2.10: Approaches modeling relations between local features: (a) hierarchi-
cal compound features from local co-occurrence histograms [Kovashka
and Grauman 2010], (b) explicit models of pairwise relations between
trajectories [Matikainen et al. 2010].
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2.3.2 Structuring groups of local features

Instead of directly modeling relations between local features, some models rely
on the relations between groups of local features. Contrary to human-centric
models, these groups � or parts � do not necessarily map to semantically
meaningful entities, e.g., a body part, but correspond to a data driven or-
ganization of the video content. They aim at robustly encoding the global
structure of an action by studying the relations between mid-level descriptors
of groups of local features.

In particular, the design of probabilistic part-based models is a popular
direction of research to formalize high-level structural aspects of actions. For
instance, Niebles and Fei-Fei [2007] model an action category by a constella-
tion of parts (cf. Figure 2.11). Each part is associated to a distribution over
positions and appearance of its constitutive local features. The content of a
part is then represented as a BOF. The part layer of the generative model
in Figure 2.11 encodes the geometrical relations between parts. This mixture
model is learned using the EM algorithm and inference is done by maximizing
an approximation of the likelihood for e�ciency reasons.

Wang and Mori [2011] propose another probabilistic part-based model that
encodes the spatial pairwise relationships between features in a frame. Their
model is based on the hidden conditional random �eld (HCRF) [Quattoni et al.
2007]. These approaches, however, are limited to frame-by-frame recognition
and only model spatial relations inside the same frame.

Figure 2.11: Geometric part-based model of Niebles and Fei-Fei [2007] where an
action category is modeled by a constellation of bag-of-features.
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Figure 2.12: Graphical activity model of Brendel and Todorovic [2011] obtained by
hierarchical video segmentation.

Brendel and Todorovic [2011] propose a more sophisticated graphical model
which relies on hierarchical video segmentation (cf. Figure 2.12). They repre-
sent a video using a graph of spatial, temporal, and inclusion relations between
spatio-temporal parts. A category is modeled by an average graph � con-
taining thousands of nodes � learned by a robust least squares algorithm to
account for spurious parts. Recognition is done by estimating the likelihood
of a video with respect to each action graph. The resulting complex inference
procedure involves approximately solving a NP-hard Quadratic Assignment
Problem (QAP) to �nd a subgraph isomorphism between the video's graph
and an action's model. This powerful generative approach highlights the im-
portance of representing hierarchal structure. However, Brendel and Todor-
ovic [2011] make a strong spatio-temporal consistency assumption about the
data. Indeed, as they search for a subgraph isomorphism between an action
instance and the graphical model of a category, their approach assumes that
all action instances of a category share the same parts in the same geomet-
rical and temporal con�gurations. This method is also restricted to model
spatio-temporal �tubes�. Their video segmentation, indeed, de�nes parts as
continuous motions of color-consistent objects.

More discriminative approaches make use of the latent SVM of Felzen-
szwalb et al. [2010]. For instance, Niebles et al. [2010] discover temporal parts
and learn a SVM classi�er per video segment at temporal locations considered
as latent variables. They use a loose hierarchical structure that is adapted
to long duration activities by introducing a temporal displacement penaliza-
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tion factor in segment comparisons. In addition to discovering discriminative
temporal segments, Tang et al. [2012] model the transitions between hidden
states and their durations using a semi-Markov Model [Hongeng and Nevatia
2003], whose parameters are learned using a latent SVM.

Extending the previous approaches to handle not only temporal segments
but spatio-temporal parts, Raptis et al. [2012] use clusters of long-term point
trajectories [Brox and Malik 2010] as candidate parts. They also learn a
latent SVM model, where latent variables determine which clusters are the
most discriminative. MAP inference over the latent variables involves solving
a complex subgraph matching problem. This method relies on bounding boxes
for training and assumes that all actions from a category share the same a
priori �xed number of important parts.

Similar to the aforementioned models, our hierarchical action represen-
tation presented in Chapter 4 relies on modeling the content and relations
between groups of local features. We, however, distance ourselves from ex-
isting work by directly comparing per video hierarchies instead of looking for
a single global model of a category. Furthermore, both the content and the

structure of our activity descriptors are speci�c to each video. This allows for
models with a variable number of parts, which can, therefore, better model
intra-class variability.
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3.1 Introduction

Although early action recognition experiments in simple videos have shown
promising results [Blank et al. 2005, Schüldt et al. 2004], recent e�orts have
tried to address more challenging video sources like movies [Laptev et al. 2008].
In this chapter, we target such sources and address the problem of temporal

action localization: �nding if and when an action is performed in a database of
long and unsegmented videos. In particular, we focus on searching for actions
of a few seconds, like sitting down, in several hours of real-world videos.

For such realistic data, many state-of-the-art action models are based on
the popular bag-of-features (BOF) [Dollár et al. 2005, Duchenne et al. 2009,
Laptev et al. 2008, Niebles et al. 2008, Satkin and Hebert 2010, Schüldt et al.
2004, Wang et al. 2011], which su�ers from several limitations in the con-
text of action localization. First, a BOF ignores the temporal ordering of
the frames. Therefore, we propose to address the BOF's orderless nature by
introducing a sequential action model that enforces a soft ordering between
meaningful temporal parts. Our robust structured model can represent ac-
tions with only approximately ordered or partially concurrent sub-events of
di�erent durations. Second, BOF-based recognition methods assume that test
videos are presented in the same temporally segmented fashion as the training
examples, i.e., that they strictly contain only one action. Instead, we provide
an algorithm to learn the global temporal structure of actions, which allows
for e�cient action localization in unsegmented videos.

Our approach is based on a simple observation: a large number of actions
can be naturally de�ned in terms of a composition of simpler temporal parts.
For instance, Figure 3.1 illustrates that the displayed actions are easy to rec-
ognize given a short sequential description. Obtaining such a decomposition
is challenging, and its components are clearly action-speci�c.

Figure 3.1: Examples of actom annotations for two actions.
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In this work, we propose to model an action as a small sequence of key
atomic action units, which we refer to as actoms. These action atoms are an
intermediate layer between motion primitives � e.g., spatio-temporal interest
points � and actions. Composed of local video features, actoms are speci�c to
each action class, and obtained by manual annotation, though only at training
time. These annotations have the same cost as specifying start and end frames
of actions, while being richer and more consistent across action instances.

Closest references

Our approach extends BOF and localizes actions with a sliding central frame
technique. The most similar approaches are [Duchenne et al. 2009, Satkin
and Hebert 2010], which rely on multi-scale heuristics with manually de�ned
window sizes. In contrast, our algorithm leverages a learned generative model
of an action's temporal structure.

We also improve upon existing temporally structured extensions of BOF.
Laptev et al. [2008] combine multiple BOF models extracted for di�erent,
manually selected, and rigid spatio-temporal grids. Multiple coarse grids are
combined in a multi-channel Gaussian kernel. This approach improves over
the standard BOF representation, but the temporal structure of actions is
�xed and not explicitly modeled. On the contrary, we learn a temporal struc-
ture adapted to the action, and show that, compared to a rigid grid, this
results in more signi�cant gains in localization performance.

Related to our work, Niebles et al. [2010] discover motion parts based on
the latent model from Felzenszwalb et al. [2009]. They learn a SVM classi�er
per motion segment at �xed temporal locations, whereas we do not rely on an
intermediate recognition step, and use our temporal decomposition to classify
actions. In addition, they use a loose hierarchical structure that is tailored
to the classi�cation of long duration activities, e.g., �triple-jump�, but not
adapted to short actions as illustrated by their results.

Our method is similar in spirit to the state-of-the-art approaches for fa-
cial expression recognition from videos. Facial expression recognition can be
performed using label information de�ned by the Facial Action Coding Sys-
tem (FACS) [Ekman and Friesen 1978], which segments facial expressions into
prede�ned �action units�, complemented with temporal annotations such as
�onset�, �peak�, and �o�set�. Most approaches, however, only use peak frames
for classi�cation [Cohn and Kanade 2006], except [Simon et al. 2010]. Fur-
thermore, as the complexity of generic human actions makes the construction
of universal action units impractical, we investigate user-annotated, action-
speci�c training actoms.

Finally, we di�er from popular sequential probabilistic models like Hidden
Markov Models (HMM) [Rabiner and Schafer 2007]. Indeed, instead of using
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a generative model to measure the likelihood of transitions between latent
states, we adopt a non-parametric discriminative approach that jointly models
the content of temporally ordered parts without independence assumptions.

Outline

First, in Section 3.2, we introduce actoms and our temporally structured rep-
resentation of actions in videos, called the Actom Sequence Model (ASM).
Second, in Section 3.3, we describe our ASM classi�er, and propose a simple
yet e�cient algorithm to learn a generative model of the temporal structure of

an action. Third, in Section 3.4, we show how to use these models to perform
temporal action localization with a sliding central frame approach. In addition
to localizing actions, our approach can also return the most likely actoms (cf.
Figure 3.12). In Section 3.5, we show that our method outperforms the state
of the art on two challenging benchmarks for action localization: the Co�ee
and Cigarettes [Laptev and Pérez 2007] and DLSBP [Duchenne et al. 2009]
datasets. We also demonstrate the applicability of our approach in a classi-
�cation by localization setup on a larger set of actions from the Hollywood
2 dataset [Marszalek et al. 2009]. Finally, we investigate and quantify the
importance of the di�erent components of our method.

3.2 Actions as sequences of actoms

An action is decomposed into a few temporally ordered and category-speci�c

actoms. An actom is a short atomic action, identi�ed by its central tem-
poral location around which discriminative visual information is present. It
is represented by a temporally weighted aggregation of local features, which
are described in Section 3.2.1. We model an action as a sequence of actoms
by concatenating the per-actom representations in temporal order. We refer
to our sparse sequential model as the Actom Sequence Model (ASM), which
we de�ne in Section 3.2.2. Finally, we describe the process used to acquire
training actom annotations in Section 3.2.3.

3.2.1 Local visual information in actoms

Following [Duchenne et al. 2009, Laptev et al. 2008], we extract sparse space-
time features [Laptev 2005] to represent video content. They provide a good
compromise between representation power and sparsity, which allows for ac-
curate models with a limited memory footprint � a necessary property for
action localization in long video streams. We use a multi-scale space-time
extension of the Harris operator to detect spatio-temporal interest points
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(STIPs) [Laptev 2011]. They are represented with a concatenation of his-
tograms of oriented gradients (HOG) and optical �ow (HOF).

Once a set of local features has been extracted, we quantize them using
a visual vocabulary of size v. In our experiments, we cluster a subset of 106

features randomly sampled from the training videos. Similar to [Duchenne
et al. 2009], we use the k-means algorithm with a number of clusters set to
v = 1000 for our localization experiments, while, similar to [Wang et al. 2009],
we use v = 4000 for our classi�cation-by-localization experiments. We then
assign each feature to the closest visual word.

3.2.2 The Actom Sequence Model

We de�ne the time-span of an actom with a radius around its temporal lo-
cation. We propose an adaptive radius that depends on the relative position
of the actom in the video sequence. The adaptive radius ri, for the actom
at temporal location ti, in the sequence of a actom locations (t1, · · · , ta), is
parametrized by the overlap ratio ρ between adjacent actoms:

ri =
δi

2− ρ
, δi =







t2 − t1 if i = 1

ta − ta−1 if i = a

min(ti − ti−1, ti+1 − ti) if 1 < i < a

(3.1)

where ρ ranges between 0 and 1, and δi is the distance to the closest actom.
This de�nes a symmetric neighborhood around the temporal location speci�c
to each actom of an action. Visual features are computed only within the
forward and backward time range de�ned by the actom's radius. They are,
then, accumulated in per-actom histograms of visual words � cf. Figure 3.2.

Our model only assumes a weak temporal ordering of the actoms. In
addition, de�ning the actom's time-span relatively to its closest neighbor has
multiple advantages. On the one hand, it allows adjacent actoms to overlap
and share features, while enforcing a soft temporal ordering. This makes
the model robust to inaccurate temporal actom localizations and to partial
orderings between concurrent sub-events. On the other hand, it also allows
for gaps between actoms and can, therefore, represent discontinuous actions.
Furthermore, an adaptive time-span makes the model naturally robust to
variable action duration and speed.

We also introduce a temporally weighted assignment scheme. We propose
to aggregate temporally weighted contributions of per-actom features. Each
feature at temporal location t in the vicinity of the ith actom, i.e., if |t−ti| ≤ ri,
is weighted by its temporal distance to the actom:

wi(t) =
1

σ
√

2π
exp

(

−(t− ti)
2

2σ2

)

(3.2)
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Actom Sequence Model

Actom models
(time-dependent voting)

t1 t2 t3r1 r2 r3
t

Actom 1 Actom 2 Actom 3

per-actom histograms of time-anchored visual words

Quantized local spatio-temporal features

Figure 3.2: Construction of our ASM action model using actom-based annotations
and a temporal weighting scheme for aggregating local features in a
sparse temporally structured bag-of-features.

Hence, features further from an actom's center vote with a smaller im-
portance. See the actom models depicted in Figure 3.2 for an illustration.
This scheme o�ers an intuitive way to tune the bandwidth σ of the weighting
window using the Chebyshev inequality. For a random variable X of mean µ

and �nite standard deviation σ, we know that P(|X − µ| ≥ kσ) ≤ 1/k2, for
any k > 0. Rewriting this with X = t, µ = ti and ri = kσ, we obtain:

P(|t− ti| < ri) ≤ p, p = 1− σ2

r2
i

(3.3)

The probability p is the �peakyness� of our soft-assignment scheme and re-
places σ as a hyper-parameter of our model. It allows to encode a prior on
the amount of probability mass of features falling in an actom's time range.
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Figure 3.3: Illustration of the actom models in ASM (a = 3) for the same actom
locations, but di�erent ASM hyper-parameters. This shows the in�u-
ence of the overlap (ρ) and peakyness (p) on the per-frame weights.
ASM encompasses a continuum of models, ranging from sequences of
�soft� key-frames (upper left), to BOF-like models (lower right).

See Figure 3.3 for an illustration of the in�uence of the overlap ρ and
peakyness p on the actom-speci�c per-frame weights. In our experiments, we
set the parameters ρ and p per-class by maximizing localization performance
on a held out, unsegmented, validation video. We found that this hyper-
parameter optimization scheme yielded better results than cross-validation on
the segmented training clips. Cross-validation, indeed, only maximizes win-
dow classi�cation performance, which is an easier problem than localization,
as the training videos are already segmented.

To summarize, we derive our ASM model from a sequence of a actom
locations by (i) computing visual features only in the actoms's time-spans,
parametrized by the ρ parameter (Eq. 3.1), (ii) computing the feature con-
tributions to per-actom temporally weighted histograms (Eq. 3.2), and (iii)
appending these histograms into a temporally ordered sequence, i.e., our ASM
representation of videos x = (x1,1, · · · , x1,v, · · · , xa,1, · · · , xa,v), where:

xi,j =

ti+ri∑

t=ti−ri

wi(t)cj(t) (3.4)

In Equation 3.4, xi,j is the weighted sum of the number cj(t) of local features
detected at frame t and assigned to visual word j, over the ith actom's time-
span [ti − ri, ti + ri]. The ASM vector x is then L1-normalized.
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3.2.3 Actom annotations

We now present how to obtain actom annotations and the advantages of this
supervision over annotating beginning and ending frames of actions.

Obtaining annotations

An actom annotation is a time stamp in the corresponding video. This tem-
poral location is selected such that its neighboring frames contain visual infor-
mation that is representative of a part of the action. The number of actoms
is �xed depending on the action category. We observed that only a few ac-
toms are necessary to unambiguously recognize an action from their sequence
(cf. examples in Figure 3.1). We use three actoms per action example in our
experiments. Note that only positive training examples are manually anno-
tated. In general, this corresponds to a small fraction of the training data �
most action recognition benchmarks use in the order of 100 action examples
per category. The initial noisy set of candidate training clips can be auto-
matically obtained by using external data, e.g., with simple textual queries
on movie transcripts [Gaidon et al. 2009].

During the annotation process, semantic consistency in the choice of ac-
toms across di�erent video clips is necessary: the ith actom of an action should
have a single interpretation, e.g., �recipient containing liquid coming into con-
tact with lips� for the drinking action. This is ensured by giving precise
guidelines to annotators, and by making multiple annotators label or correct
each example. Note, however, that our approach is robust to the violation of
this assumption, i.e., we can still model actions, even when an actom has a
few possible meanings across training examples.

After all the training examples are annotated once, we perform a simple
outlier detection step using the temporal structure model described in Sec-
tion 3.3.2. First, we learn a model of the temporal structure and estimate
the likelihood of each annotation according to this model. We, then, resub-
mit for annotation the inconsistently annotated examples, i.e., those below a
likelihood threshold (we use 2%). After these samples are re-annotated, we
update the model of the temporal structure and re-estimate the likelihood of
each annotation. We iterate this process up to three times.

Practical observations

Consistent actom annotations are easier to obtain than precise action bound-
aries. For instance, it is unclear whether a person walking towards a door
before opening it is a part of the action �Open Door�. In contrast, the time
at which the door opens can be unambiguously determined. Duchenne et al.
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[2009] and Satkin and Hebert [2010] observed that temporal boundaries of
actions are not precisely de�ned in practice. Furthermore, they show that
inaccurate boundary annotations signi�cantly degrade the recognition perfor-
mance. Therefore, they propose to improve the quality of annotated action
clips by automatically cropping their temporal boundaries in a discrimina-
tive manner. They, however, only model the temporal extent of actions, not
their temporal structure. On the contrary, actom annotations are well de�ned
as a few frames of precise atomic events. Consequently, annotating actoms
leads to smaller annotation variability. Figure 3.4 quantitatively illustrates
this claim. It shows that the ground truth annotations for the action �sitting
down� have a smaller duration variance when actoms are annotated instead
of beginning and ending frames. We also observed that the average anno-
tation time per action is comparable for both of these annotation types �
we measured between 10 and 30 seconds per action. In addition, an actom
is a visual phenomenon that is deemed semantically relevant by annotators,
and not an automatically learned part of the action. It is, therefore, always
possible to interpret a predicted actom sequence. Moreover, we show that it
leads to discriminative representations for action recognition.

Figure 3.4: Frequencies of action durations obtained from manual annotations for
the action �Sit Down�. �Boundaries� depict the duration of ground
truth annotations from [Duchenne et al. 2009], obtained by labeling
beginning and end frames of the action. �Actom-cropped� represents
the time interval between the �rst and the last actom.
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3.3 Temporal action detector learning

In the following, we detail the training part of our localization algorithm.
First, we give details on the action classi�er operating on our ASM represen-
tation (Section 3.3.1). Then, we describe how we learn a generative model of
an action's temporal structure in order to sample likely actom candidates at
test time (Section 3.3.2). Finally, we show how to obtain negative training
examples (Section 3.3.3).

3.3.1 ASM classi�er

Our localization method is similar to the sliding-window approach. It con-
sists in applying a binary classi�er at multiple temporal locations throughout
the video, in order to determine the probability that the queried action is
being performed at a particular moment. We use a Support Vector Machine
(SVM) [Schölkopf and Smola 2002] trained to discriminate between the ac-
tion of interest and all other visual content. As ASM is a histogram-based
representation, we can use a non-linear SVM with the χ2 or the intersection
kernel [Hein and Bousquet 2005, Laptev et al. 2008]. For e�ciency reasons,
we choose to use the intersection kernel [Maji et al. 2008]. It is de�ned for any
x = (x1, . . . , xv) and x′ = (x′

1, . . . , x
′
v) as K(x, x′) =

∑v
j=1 min(xj, x

′
j). Note

that, in our case, using a non-linear SVM does not prohibitively impact the
localization speed, because the size of our training set is small.

In this set-up, the negative class spans all types of events except the action
of interest. Therefore, more negative training examples than positive ones are
necessary. We use a SVM with class-balancing [Lin et al. 2002] to account for
this imbalance between the positive and negative classes. Assume we have a
set of labeled training examples (x1, y1), . . . , (xn, yn) ∈ X × {−1, 1}, where X
is the space of ASM models. Let n+, resp. n−, denote the number of positive,
resp. negative, examples, and n = n+ + n− the total number of examples.
The binary SVM classi�er with class-balancing minimizes the regularized cost
function:

1

n

n∑

i=1

L(yi)ℓ(yi, f(xi)) + λ‖w‖2H (3.5)

with f(xi) = wT φ(xi)+b, w ∈ H, H the feature space associated with the ker-
nel K, φ : X → H the corresponding feature map, ℓ(y, f) = max(0, 1 − yf)

the hinge loss, L(+1) = 1/n+, L(−1) = 1/n−, and λ a regularization pa-
rameter. In order to return probability estimates, we �t a sigmoid function
to the decision function f learned by the SVM [Lin et al. 2007, Platt 2000].
Our ASM classi�er evaluates the posterior probability of an action being per-
formed, knowing its actoms.
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3.3.2 Generative model of temporal structure

For unseen videos, we do not know the temporal locations of the actoms.
Therefore, we learn a generative model of the temporal structure allowing to
sample likely actom candidates at test time. The temporal structure we esti-
mate is the distribution of inter-actom spacings from the training sequences:
{∆i = (ti,2−ti,1, . . . , ti,a−ti,a−1), i = 1 . . . n+}, where a is the number of actoms
of the action category and n+ is the number of positive training examples.

In practice, we have only few actom annotations, typically n+ ≤ 100,
which, in addition, can signi�cantly di�er from one another. Therefore, using
histograms to model the actom spacings yields a too sparse estimate with
many empty bins. Instead, we make the assumption that there is an un-
derlying smooth distribution, which we estimate via non-parametric Kernel
Density Estimation (KDE) [Rosenblatt 1956, Wasserman 2004]. This makes
the assumption that there is a continuum of execution styles for the action
of interest, and it allows to correctly interpolate unseen, but likely, temporal
structures. We use KDE with Gaussian kernels whose bandwidth h is auto-
matically set using Scott's factor [Scott 1992]: h = n

− 1

a+4

+ . We obtain a con-
tinuous distribution D over inter-actom distances ∆ = (t2− t1, . . . , ta− ta−1):

D ∼ 1

n+ha−1
√

2π

n+∑

i=1

exp

(

−||∆−∆i||2
2h2

)

. (3.6)

As we deal with discrete time steps (frames), we discretize this distribution in
the following way. First, we sample 104 points, randomly generated from our
estimated density D. Second, we quantize these samples by clustering them
with k-means. This yields a set of s centroids {∆̂j , j = 1 · · · s} and their
associated Voronoi cells that partition the space of likely temporal structures.
Third, we compute histograms by counting the fraction p̂j of the random
samples drawn from D that belong to each cell j. This results in the discrete
multi-variate distribution:

D̂ = {(∆̂j, p̂j) , j = 1 · · · s}, p̂j = P(∆̂j). (3.7)

Finally, we truncate the support of D̂ by removing structures with a proba-
bility smaller than 2% (outliers), and re-normalize the probability estimates.
Figure 3.5 gives an example of the distribution D̂ learned for the �smoking�
action. Note that s corresponds to the size of the support of D̂, i.e., the
number of likely candidate actom spacings. This parameter controls a trade-
o� between the coarseness of the model of the temporal structure, and its
computational complexity. We used s = 10 for all actions in our experiments.
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Figure 3.5: Temporal structure learned for �smoking� from the Co�ee & Cigarettes
dataset. The candidate actom models (∆̂j , pj) ∈ D̂ are sorted by their
estimated prior probability pj.

3.3.3 Negative training examples

Our localization method relies on a binary classi�er discriminating between
an action of interest and all other events. To obtain negative examples, we
randomly sample clips from the unlabeled part of the training database, and
�lter out those intersecting annotated training positives. To be consistent with
the localization stage at test time, we randomly sample actoms according to
the learned temporal structure D̂. There are, however, several practical issues
associated with the extraction of such random negatives. First, the number
of random negatives needed to learn a good detector is not a priori obvious.
Second, the unlabeled part of the database from which these negatives are
sampled might still contain an unknown number of positives that were not
annotated. Indeed, the automatic techniques used to help in the acquisition
of positive examples (e.g., [Gaidon et al. 2009, Laptev et al. 2008]) might
miss many action examples. Therefore, randomly sampled windows have a
non-negligible chance of containing the action of interest, and our negative
examples might contain a signi�cant number of false negatives compared to the
number of true positives. Note that this problem also rules out the possibility
to mine so-called �hard negative� examples for a re-training stage [Dalal and
Triggs 2005]. Consequently, instead of generating as many negative windows
as possible, we observed that sampling a number of negatives that is less than
ten times the number of training positives yields a better performance �
cf. Section 3.5.6 for more details. Furthermore, this signi�cantly reduces the
running time of our kernel-based classi�er.
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3.4 Localization with actoms

In this section, we describe our temporal localization approach (Section 3.4.1),
some post-processing steps (Section 3.4.2), and a strategy for action classi�-
cation in approximatively pre-segmented videos (Section 3.4.3).

3.4.1 Sliding central frame localization

To localize actions in a test sequence, we apply our ASM classi�er in a sliding
window manner. However, instead of sliding a temporal window of �xed scale,
we shift the temporal location of the middle actom tm, where m = ⌊a/2⌋, and
a is the number of actoms for the action category. We use a temporal shift of 5

frames in our experiments. Given a central actom location tm, we compute the
probability of the action occurring at tm by marginalizing over our generative
model of inter-actom spacings D̂:

P(action at tm) =
s∑

j=1

P(action at tm | ∆̂j) P(∆̂j)

=
s∑

j=1

fASM(t̂j,1, · · · , tm, · · · , t̂j,a) p̂j (3.8)

where fASM is the a posteriori probability estimate returned by our SVM
classi�er trained on ASM models (Eq. 3.5). See Figure 3.6 for an illustration.

Alternatively, taking the maximum a posteriori allows to not only localize
an action, but also its most likely temporal structure. We have experimen-
tally observed that, for the goal of temporal localization, marginalizing yields
more stable results than just taking the best candidate actoms. The temporal
structures in D̂ are indeed related. This is a consequence of our assumption on
smoothly varying styles of execution (cf. Figure 3.5). Therefore, the redun-
dancy in D̂ makes marginalizing over actom candidates robust to inaccurate
actom placements.

tm

Figure 3.6: Sliding central frame temporal localization. The probability of an ac-
tion being performed at frame tm is evaluated by marginalizing over
all actom candidates learned with our model of the temporal structure.
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Note that Equation 3.8 provides a way to perform multi-scale localization
di�erently than the usual multi-scale sampling heuristic. Both the sequential
structure and the duration of the action is modeled by D̂, whereas traditional
sliding-window approaches, e.g., [Laptev and Pérez 2007], manually specify a
�xed set of window sizes.

3.4.2 Post-processing

Our algorithm estimates a probability of localization everyN th frame. In order
to localize the action, we also return an estimate of the temporal extent of each
localization, i.e., a temporal window surrounding each high-scoring frame. As
we deal with short actions with limited duration variation, we choose to use
a single, �xed, action-speci�c duration for our temporal windows. We use a
temporal scale such that a localization window contains all frames used in the
computation of the score of its central frame. As we marginalize over D̂, this
de�nes a single scale per action category, which only depends on the largest
actom spacings in D̂. In practice, we obtained the constant window sizes of
95 frames for �drinking� and �smoking� in the Co�ee and Cigarettes dataset,
85 frames for �opening a door� and 65 frames for �sitting down� in DLSBP.
In addition, as the temporal shift between two localizations can be small in
practice, we use a non-maxima suppression algorithm to remove overlapping
localization windows. We recursively (i) �nd the maximum of the scores, and
(ii) delete overlapping windows with lower scores. Windows are considered as
overlapping if the Jaccard coe�cient � the intersection over the union of the
frames � is larger than 20%.

3.4.3 Classi�cation by localization

Although designed for temporal localization, our method is also applicable to
action classi�cation. In both cases, the training data and learning algorithms
are the same. The test data, however, di�ers. For localization, we process
continuous streams of frames. In contrast, unseen data for classi�cation come
in the form of pre-segmented video clips.

The classi�cation goal is to tell whether or not the action is performed in
an unseen video clip, independently of when it is performed. Consequently,
after applying our sliding central frame approach to label every N th frame of a
new test clip, we pool all localization scores to provide a global decision for the
entire clip. Similarly to Satkin and Hebert [2010], we found that max-pooling
� i.e., taking the best localization score as classi�cation score � yields good
results in our set up. Indeed, marginalizing over actom candidates limits the
number and the score of spurious false localizations, thanks to the redundancy
in the learned temporal structure.
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3.5 Experimental evaluation

This section presents experimental results comparing our ASM-based ap-
proach with BOF-based alternatives and the state of the art. We, �rst,
introduce the datasets used in our experiments (Section 3.5.1). We, then,
describe how we measure the localization performance (Section 3.5.2), and
what baseline localization methods we compare to (Section 3.5.3). Our local-
ization results are reported in Section 3.5.4, while our classi�cation results are
reported in Section 3.5.5. Finally, we quantify and discuss the in�uence of the
parameters of our method (Section 3.5.6).

3.5.1 Datasets

We use two challenging movie datasets for action localization: �Co�ee and
Cigarettes� [Laptev and Pérez 2007] and �DLSBP� [Duchenne et al. 2009].
Note that they are currently among the largest public benchmarks for action
localization in realistic settings. There are, indeed, only few action localization
datasets, due to the high cost incurred by the manual annotation of the full
test sequences. We also use the �Hollywood 2� dataset [Marszalek et al. 2009]
for our classi�cation by localization experiments. These datasets are provided
with annotations in the form of temporal boundaries delimiting actions.

Co�ee and Cigarettes [Laptev and Pérez 2007]. This dataset is designed
for the localization of two action categories in movie data: �drinking� and
�smoking� (cf. Figure 3.7). Initially, Laptev and Pérez [2007] evaluated action
localization for the drinking action only. Evaluation for the smoking category
was later added by Kläser et al. [2010b]. The training sets contain 106 drinking
and 78 smoking clips: 41 drinking and 70 smoking examples from six short
stories � with di�erent actors and settings � of the �Co�ee and Cigarettes�
movie, 32 drinking and 8 smoking clips from the movie �Sea of love�, and
33 drinking examples recorded in a laboratory setting. The test set for the
drinking action consists of two short stories (36, 000 frames) containing 38

drinking actions. The test set for the smoking action consists of three short
stories (32, 000 frames) containing 42 smoking actions. There is no overlap
between the training and test sets, in terms of both scenes and actors.

Figure 3.7: Actions from the Co�ee and Cigarettes dataset
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DLSBP [Duchenne et al. 2009]. Named after its authors, this dataset con-
sists of two action categories: �Open Door� and �Sit Down� (cf. Figure 3.8).
The training sets include 38 �Open Door� and 51 �Sit Down� examples ex-
tracted from 15 movies. Three movies are used as test set (440, 000 frames),
containing a total of 91 �Open Door� and 86 �Sit Down� actions. This dataset
is more challenging than Co�ee and Cigarettes, because the test data is larger
by one order of magnitude, the actions are less frequent, and the video sources
are more varied. Note that the chance level for localization, i.e., the prob-
ability of randomly �nding the positives, is of approximatively 0.1% for the
Co�ee and Cigarettes dataset, and 0.01% for the DLSBP dataset.

Figure 3.8: Actions from the DLSBP dataset

Hollywood 2 [Marszalek et al. 2009]. This classi�cation dataset consists
of 1707 video clips � 823 for training, 884 for testing � extracted from 69

Hollywood movies. There are 12 categories: answering a phone, driving a car,
eating, �ghting, getting out of a car, hand shaking, hugging, kissing, running,
sitting down, sitting up, and standing up (cf. Figure 3.9 for some examples).
Note that we use uniformly sampled actoms for the ��ghting� category, as it
could not be annotated with consistent actoms. Indeed, �ghting scenes in
movies are not short, sequentially de�ned actions, but involve various actions
in no particular order, e.g., punching and kicking.

Figure 3.9: Some of the actions from the �Hollywood 2� dataset
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3.5.2 Evaluation criteria

For temporal localization, we use two evaluation criteria to determine if a test
window is matching a ground truth action (cf. Figure 3.10). We �rst consider
the most commonly used criterion [Duchenne et al. 2009, Kläser et al. 2010b,
Laptev and Pérez 2007], referred to as OV20: a window matches a ground
truth action if the Jaccard coe�cient (intersection over union) is more than
20%. We use the original ground truth start and end frame annotations
provided by the dataset authors. This criterion, however, does not guarantee
that a localization will contain enough of the action to be judged relevant by
a user. For instance, a localization relevant according to OV20 may contain
a person walking towards a door, but not the door opening itself.

Therefore, in addition to OV20, we introduce a more precise matching
criterion based on ground truth actom annotations. Referred to as OVAA,
for �overlap all actoms�, it states that a test window matches a ground truth
test action only if it contains the central frames of all ground truth actoms.
The OVAA criterion stems from the de�nition of actoms as the minimal set of
sub-events needed to recognize an action. Hence, a correct localization must,
by de�nition, contain all actoms. In consequence, we also annotate actoms for
the positive test examples to assess ground truth according to OVAA. These
annotations are not used at test time. Note that a single window covering
the entire test sequence will always match the ground truth according to the
OVAA criterion. This bias, however, is not present in our comparisons as all
methods have comparable window sizes of approximatively 100 frames or less.

OVAA

[ [

OV20

[ [ [ [
[ [

[ [
[ [

[ [
[ [

Figure 3.10: Overlap criteria used for localization OV20 (intersection over union
of at least 20% with the ground truth) and OVAA (a match needs to
contain all ground truth actom frames).
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We use both criteria in our evaluation, because they provide complemen-
tary insights. If after non-maxima suppression there are multiple windows
matching the same ground truth action, we only consider the one with the
maximal score as a true positive, while the other localizations are considered
as false positives. This is similar to the evaluation of object detection, e.g.,
in the Pascal VOC challenge [Everingham et al. 2010]. Note that, for clas-
si�cation by localization, no matching criterion is required as we return one
score for each test video. In all cases, we follow the state of the art and mea-
sure performance in terms of precision and recall by computing the Average
Precision (AP).

3.5.3 Bag-of-features baselines

We compare our approach to two baseline methods: the standard bag-of-
features (BOF), and its extension with a regular temporal grid. To make the
results comparable, we use the same visual features, vocabularies, and kernel
as the ones used for our ASM model. In addition, for the action localization
experiments, we crop the original annotations of the positive training samples
around the training actoms, which we further extend by a small o�set � half
the inter-actom distances for each sequence � in order to use an amount of
frames comparable to what ASM uses. A similar, but automatic, cropping step
was shown to improve performance by Satkin and Hebert [2010]. Furthermore,
we use the same random training negative samples as the ones used by our
ASM approach. This allows for a fair comparison between ASM and BOF-
based methods.

At test time, BOF-based sliding window approaches require the a priori

de�nition of multiple temporal scales. We learn the scales from the positive
training examples using a generative model similar to the one used for actoms
(cf. Section 3.3.2). Like for our sliding central frame method, we use a step-
size of 5 frames for the sliding window approach in all of our experiments.
We, �nally, apply a non-maxima suppression post-processing step similar to
the one described in Section 3.3.2, and commonly used in the literature, e.g.,
in [Kläser et al. 2010b].

As mentioned previously, in addition to the global BOF baseline, we eval-
uate its extension with regular temporal grids [Laptev et al. 2008]. We use a
�xed grid of three equally sized temporal bins, which in practice gave good
results, and is consistent with our number of actoms. First, the video is cut
in three parts of equal duration: beginning, middle, and end. A BOF is then
computed for each part, and the three histograms are concatenated. This
method is referred to as �BOF T3� in the following.
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3.5.4 Localization results

We report temporal localization results in Table 3.1 for the Co�ee and Cigarettes
dataset, and in Table 3.2 for the DLSBP dataset. We compare our method
(ASM), two baselines (BOF and BOF T3), and recent state-of-the-art re-
sults. Where possible, we report the mean and standard deviation of the
performance over �ve independent runs with di�erent random negative train-
ing samples. Figure 3.11 shows frames of the top �ve results for �drinking�
and �open door� obtained with our method. Some examples of automatically
localized actoms with our ASM method are depicted in Figure 3.12. In the fol-
lowing, we discuss how our ASM model compares to both our bag-of-features
baselines and the state of the art.

Figure 3.11: Frames of the top 5 actions localized with ASM for �Drinking� (top
row) and �Open Door� (bottom row, #2 is the only false positive).

Figure 3.12: Automatically localized frames of actoms for 4 action sequences (from
top to bottom): opening a door, drinking, smoking, and sitting down.
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Method �Drinking� �Smoking�

matching criterion: OV20

DLSBP [Duchenne et al. 2009] 40 N.A.

LP-T [Laptev and Pérez 2007] 49 N.A.

KMSZ-T [Kläser et al. 2010b] 59 33

BOF 36 (±1) 17 (±2)

BOF T3 44 (±2) 20 (±3)

ASM 63 (±3) 40 (±4)

matching criterion: OVAA

BOF 10 (±3) 1 (±0)

BOF T3 21 (±4) 3 (±1)

ASM 62 (±3) 27 (±3)

Table 3.1: Action localization results in Average Precision (in %) on the Co�ee
and Cigarettes dataset. ASM refers to our method.

Method �Open Door� �Sit Down�

matching criterion: OV20

DLSBP [Duchenne et al. 2009] 14 14

BOF 8 (±3) 14 (±3)

BOF T3 8 (±1) 17 (±3)

ASM 14 (±3) 22 (±2)

matching criterion: OVAA

BOF 4 (±1) 3 (±1)

BOF T3 4 (±1) 6 (±2)

ASM 11 (±3) 19 (±1)

Table 3.2: Action localization results in Average Precision (in %) on the DLSBP
dataset. ASM refers to our method.

Comparison to bag-of-features

We perform better than BOF according to both evaluation criteria. The im-
provement is signi�cant with OV20: +27% for �Drinking�, +23% for �Smok-
ing�, +6% for �Open Door�, and +8% for �Sit Down�. BOF is also less precise
than our approach. Indeed, the performance of BOF drops when changing
the matching criterion from OV20 to the more restrictive OVAA, e.g., −26%

for �Drinking�. In contrast, our ASM model is more accurately localizing all
action components, and the relative gap in performance with respect to the
baseline increases even more when changing from OV20 to OVAA, e.g., from
+27% to +52% for �Drinking�, and from +8% to +16% for �Sit Down�.
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Rigid v.s. adaptive temporal structure

The �exible temporal structure modeled by ASM allows for more discrimina-
tive models than BOF T3. Using the �xed temporally structured extension of
BOF increases performance, but is outperformed by our model on all actions.
This con�rms that the variable temporal structure of actions needs to be rep-
resented with a �exible model that can adapt to di�erent durations, speeds,
and interruptions.

Comparison to the state of the art

The method of Laptev and Pérez [2007] is trained for spatio-temporal local-
ization with stronger supervision in the form of spatio-temporally localized
actions. We compare to the mapping of their spatio-temporal localization
results to the temporal domain as reported in [Duchenne et al. 2009], cf.

row �LP-T� in table 3.1. Similarly, Kläser et al. [2010b] learn from spatio-
temporally localized training examples. The mapping of their results to the
temporal domain are reported in the �KMSZ-T� row of table 3.1. On the
DLSBP dataset, we compare to the original �ground truth� results of the au-
thors in [Duchenne et al. 2009]. They use a similar set-up to our BOF baseline.
The di�erences between their approach and our BOF baseline lies mostly in
the negative training samples and, to a lesser extent, in the visual vocab-
ulary. Our experiments show that ASM outperforms these state-of-the-art
approaches, for all actions of the two datasets. Our method even outperforms
methods trained with more complex supervision like bounding boxes, e.g.,
+14% with respect to LP-T [Laptev and Pérez 2007], or human tracks, e.g.,
+4% and +7% with respect to KMSZ-T [Kläser et al. 2010b]. This shows
that modeling the temporal structure of actions is crucial for performance.

3.5.5 Classi�cation-by-localization results

Figure 3.13 contains the per class classi�cation by localization results on the
�Hollywood 2� dataset. As mentioned previously, the BOF baselines are using
the same sliding window approach as in the previous localization results.

On average over all classes, ASM improves by +11% over both BOF base-
lines, which perform comparably (BOF T3 only marginally improves by+0.1%

with respect to BOF). The improvement yielded by ASM is noticeable on the
classes with a clear sequential nature such as �Answer Phone�, �Hug Person�,
or �Sit Down�. Interestingly, ASM always improves performance, even when
BOF T3 yields worse results than the orderless BOF, e.g., for �Hand Shake�
and �Stand Up�. Once again, these results show that a �exible model of the

temporal structure is required in order to recognize real-world actions.
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Figure 3.13: Classi�cation by localization results in Average Precision (AP) on the
Hollywood 2 dataset [Marszalek et al. 2009]. BOF and BOF-T3 are
sliding-window approaches using BOF and its temporally structured
extension. Our approach is ASM. AVG contains the average perfor-
mance over all classes (BOF: 38%, BOF-T3: 38%, ASM: 49%).

We also evaluate baseline classi�cation methods similar to [Laptev et al.
2008], where a single model is computed over the entire duration of each test
video. On average over all classes, we obtained approximately the same results
of 45% AP for three di�erent models: BOF, BOF T3, and ASM with uniformly
spread actoms and ρ = p = 75%. Note that the similar performance of these
three global models shows that the bene�ts of ASM do not only lie in its use of
soft-voting. In comparison, ASM with classi�cation by localization achieves
49% AP. This +4% gain is less signi�cant than for temporal localization,
because classi�cation of pre-segmented videos is an easier problem in this
benchmark. Indeed, global models use context information, whereas the more
local representations used for localization focus only on the action, at training
time as well as at test time. As shown by the dataset authors [Marszalek et al.
2009], using context improves action recognition. Our experiments con�rm
this, as classifying using a global model of the entire video improves by +9%

(45%) over the BOF classi�cation by localization results (36%).

3.5.6 Parameter study

We measured the impact of the di�erent components of our approach: (i)
the sliding central frame localization method compared to the sliding window
technique, (ii) manual actom annotations compared to uniformly spread ones,
(iii) the ASM parameters, (iv) the number of candidate temporal structures
learned, and (v) the number of training negatives.

Sliding central frame

First, we found that our sliding central frame approach outperforms the sliding
window one. Therefore, marginalizing over a generative model of the temporal
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structure is preferable to the commonly used scale sampling heuristics. This
can be observed in Table 3.3, where we report the localization results using
BOF models in conjunction with our sliding central frame approach.

In this case, we adopt the same method as described in Section 3.4.1: a
prior on the action duration is learned with the algorithm from Section 3.3.2,
and localization is performed by marginalizing over this univariate distribu-
tion on temporal extents. In contrast, the sliding window approach also uses
multiple scales learned from the training data, but it does not marginalize
over a generative model of these scales. Note also that ASM still outperforms
BOF baselines with a sliding central frame.

C&C DLSBP

OV20 OVAA OV20 OVAA

BOF (s-win) 27.5 5.0 11.0 3.5

BOF (s-cfr) 35.5 21.5 12.5 9.0

BOF T3 (s-win) 32.0 12.0 12.5 5.0

BOF T3 (s-cfr) 37.0 26.5 14.0 9.5

ASM (s-cfr) 51.5 44.5 18.0 15.0

Table 3.3: Average localization performance of sliding window (s-win) and sliding
central frame (s-cfr) on Co�ee and Cigarettes (C&C) and DLSBP.

Manual training actoms

Second, we computed the localization results using our ASM approach with
training actoms spread uniformly between the manually annotated temporal
boundaries. We observed that localization results are signi�cantly worse than
when using manually annotated training actoms. Indeed, ASM with these
uniform actoms yields results similar to BOF T3 with the sliding central
frame approach. This shows that temporal boundaries do not provide enough
information to model the temporal aspects of an action.

ASM parameters

Third, we studied the impact of the ASM parameters on performance. In
table 3.4, we report localization results for ASM with learned parameters �
cf. an example in Figure 3.5 � and for di�erent parameter con�gurations
� corresponding to the four corners in Figure 3.3. These results show that
learning action-speci�c ASM overlap and peakyness parameters yields the
most accurate models, resulting in increased localization performance. Note
that the learned parameters change from one action to another. For instance,
the learned parameters for �Smoking� are ρ = 25% and p = 70%, denoting
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clearly separated actoms, whereas for �Sit Down� we obtain ρ = 120% and
p = 50%, denoting actoms sharing a signi�cant amount of frames.

ASM parameters C&C DLSBP

ρ p OV20 OVAA OV20 OVAA

low high 40.3 34.5 11.4 9.0

high low 39.0 30.9 12.5 10.0

high high 45.5 34.8 15.0 11.2

low low 49.8 42.8 15.1 11.9

learned 51.5 44.5 18.0 15.0

Table 3.4: Impact of the ASM parameters: ρ (overlap) and p (peakyness). Average
of the localization results on Co�ee and Cigarettes (C&C) and DLSBP.

Temporal model complexity

In addition, we studied the impact of the complexity of the temporal structure
model � measured by the support size s of D̂, cf. Eq. 3.7 � on the localization
performance. This parameter controls a trade-o� between the precision of
the model and, as we marginalize over this distribution, the computational
complexity at test time. We found that s = 10 candidate actom structures
yields a good compromise for most classes � cf. Figure 3.14 for an illustration
using the �Smoking� action. On the one hand, if s < 5, then the model is too
simple and the performance gap between the OV20 and OVAA results is large.
On the other hand, if s > 15, then results are equivalent to 5 ≤ s ≤ 15 but
at a higher computational cost. Note that this parameter has the strongest
impact on localization performance after the ASM hyper-parameters.
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Figure 3.14: Minimum, average, and maximum localization performance for ac-
tion �Open Door� for varying sizes of the support of D̂ (number of
candidate temporal structures).
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Training negatives

Finally, we measured the localization performance as a function of the number
of random training negatives used (cf. Figure 3.15 for the �Drinking� action).
We found that between one and ten times the number of positives was suf-
�cient to reach satisfactory performance for all classes. We sampled twice
more negatives than positives for the Co�ee and Cigarettes dataset, and eight
times more for the DLSBP dataset. This choice allows to maintain a high true
positive over false negative ratio, while limiting the imbalance factor between
classes and speeding up localization.

Sampling only few training negatives, however, yields unstable results, as
illustrated by the large standard deviation reported in our experiments. This
instability can be controlled using a simple bagging approach � i.e., averaging
classi�ers over di�erent negative training sets as suggested in [Mordelet and
Vert 2010] � at the expense of an increase in computational complexity.
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Figure 3.15: Minimum, average, and maximum localization performance for ac-
tion �Drinking� for varying numbers of random training negatives.
The x-axis is in log-scale.

3.6 Conclusion

In this chapter, we introduced the Actom Sequence Model (ASM). This model
describes an action with a temporal sequence of actoms, i.e., meaningful tem-
poral parts that are characteristic of the action. It is discriminative, as it
represents an action by several components instead of one average represen-
tation as in the bag-of-features. It is �exible, as our temporal representation
allows for varying temporal speed of an action as well as interruptions within
the action. Experimental results show that our approach outperforms the
bag-of-features as well as its extension with a �xed temporal grid. Further-
more, ASM improves over the state of the art, including more sophisticated
models using spatial localization.
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4.1 Introduction

Video content often relates to humans and their actions. Simple actions, e.g.,
running, rarely convey enough meaning to interpret a scene, but instead form
the building blocks of more complex activities, e.g., pole vaulting. In this
chapter, we aim at recognizing such high-level activities, which are spatio-
temporal patterns composed of several related movements of actors, body
parts, and objects. Automatically identifying those parts and exploiting both
their contents and their relations is a challenging problem that is important
for the recognition of complex activities. Therefore, we introduce an unsuper-
vised approach to hierarchically decompose the complex motion content of an

activity, and an e�cient algorithm to compare two tree-structured videos.
Our method consists in, �rst, extracting dense tracklets [Wang et al. 2011],

which are short-term trajectories of densely sampled points that describe most
of the interesting motion contained in a video. We, then, decompose the mo-
tion content of a video into a hierarchy of data-driven parts by using hier-
archical clustering on the set of tracklets. Our main contribution is a hier-

archical divisive clustering algorithm based on recursive bi-partitioning of an
approximate multi-modal spectral embedding of tracklets. We use the result-
ing structure, called cluster-tree [Duda et al. 1995] (cf. Figure 4.1), to model
a video as an unordered binary tree, called BOF-tree, which we represent by
nested histograms of local motion features.

Figure 4.1: Example of a hierarchical motion decomposition obtained with our re-
cursive bi-partitioning algorithm on dense tracklets.
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Using this structured information presents several challenges. First, BOF-
trees have a variable number of nodes (motion components), and a structure
that is speci�c to each video. Second, there is no natural left-to-right ordering
of the children of the same parent node. Therefore, we introduce a positive
de�nite kernel on variable-size, unordered binary trees. It consists in e�ciently
comparing all sub-trees by approximating them through simple edge models,
and leveraging the additive structure of BOF-trees. We, then, use this kernel
with a Support Vector Machine (SVM) [Schölkopf and Smola 2002] to learn
powerful non-linear activity classi�ers.

Closest references

Our approach is weakly supervised: it relies neither on part annotations, nor
on a prede�ned action decomposition as in Chapter 3. In addition, we use
neither video segmentation techniques [Brendel and Todorovic 2011, Brox and
Malik 2010, Grundmann et al. 2008, Lezama et al. 2011], nor pre-trained ob-
ject detectors [Prest et al. 2012]. We argue that clusters of tracklets provide
a compromise between, on the one hand, detailed information available from
segmentation, and, on the other hand, higher-level attributes, body part local-
izations, or object detections. Although our tracklets are of a short duration,
the clusters obtained with our hierarchical decomposition capture complex
and long-term motions of spatio-temporal parts, as well as their relations.

Our method is based on the Nyström approximation for spectral clus-
tering [Fowlkes et al. 2004]. However, in contrast to the k-means algorithm
used in [Fowlkes et al. 2004], we do not require the number of parts to be
globally �xed and known a priori, and our hierarchical decomposition pro-
vides useful structural information relating the motion parts together, instead
of unrelated clusters. Furthermore, our divisive method can scale to videos
with hundreds of thousands of tracklets, whereas bottom-up agglomerative
algorithms have a computational complexity that is at least quadratic in the
number of points [Fradet et al. 2009, Hastie et al. 2008]. As we deal with track-
lets, another di�erence with existing trajectory clustering approaches [Brox
and Malik 2010, Fradet et al. 2009, Lezama et al. 2011] is that we do not
restrict trajectory comparisons to their common time span.

Related to our work, Niebles and Fei-Fei [2007] propose to represent an
action as a constellation of parts represented by BOFs over shape and motion
features. They model a category using a probabilistic mixture of a �xed
number of parts. They classify actions in controlled video conditions by
maximizing the likelihood with respect to their generative model. Brendel
and Todorovic [2011] propose another related generative model. They use a
more general graphical model learned from hierarchical video segmentations.
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Their approach, however, assumes that all actions of the same category share
strong geometrical and temporal part relationships. Furthermore, their video
segmentation algorithm � and therefore the resulting action models � can
only account for smooth motions of color-consistent parts forming continu-
ous spatio-temporal �tubes�. We do not make these restrictive assumptions
on parts. Furthermore, we estimate and compare each video's speci�c struc-
ture, and learn a discriminative model instead of matching to a global action
template. In our experiments, we show that we outperform their method.

Discriminative alternatives to these generative models are often based on
the popular deformable part model of Felzenszwalb et al. [2010]. For instance,
Liu et al. [2011] combine manually prede�ned attributes with data-driven ones
obtained by clustering local features. They use a latent SVM [Felzenszwalb
et al. 2010] to learn the importance of each part. Wang and Mori [2011] use
tracking and a Hidden Conditional Random Field (HCRF) to learn a discrim-
inative model of latent parts for frame-by-frame recognition. Closest to our
work, Raptis et al. [2012] extract clusters of long-term trajectories and learn
a latent model over a �xed number of parts. Their approach has a cubic time
complexity in the number of trajectories, relies on bounding box annotations,
and uses only a �xed small subset of clusters for all videos. Furthermore, they
explicitly model pairwise relationships between clusters using the trajectory,
whereas we use the full hierarchical structure resulting from our clustering.
In contrast to all the aforementioned discriminative approaches, we do not
assume that actions share a �xed number of parts common to all training
instances. Instead, each video has its own decomposition structure, and all
parts � including their relationships � are used in our video comparisons. In
addition, as we do not rely on latent parts, we do not need to solve a complex
inference problem for each test video.

We also di�er from methods using global hierarchies over local features [Miko-
lajczyk and Uemura 2008, Reddy et al. 2009] or shape-motion prototypes [Jiang
et al. 2012]. These methods use global tree structures to speed up the compu-
tation of a matching score, where each feature casts a vote for an action cat-
egory. In our approach, we account for all local features jointly, and leverage
instance-level relationships without explicitly modeling neighborhoods and co-
occurrences over the whole dataset [Gilbert et al. 2010, Kovashka and Grau-
man 2010, Matikainen et al. 2010].
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Outline

Section 4.2 describes the tracklets, and introduces our hierarchical divisive
multi-modal clustering scheme. Section 4.3 details our second contribution:
our hierarchical model for the motion content of a video, the BOF-Tree, and
our kernel for such BOF-Trees. In Section 4.4, we evaluate our method on the
complex activities from the �Olympic Sports� dataset [Niebles et al. 2010] and
on the human-human interactions from the �High Five� dataset [Patron-Perez
et al. 2010]. We show that our approach outperforms BOF-based baselines,
decompositions obtained with other clustering algorithms, and the state of
the art. We also show that our approach can be successfully applied on a
large set of simple actions, the HMDB dataset [Kuehne et al. 2011], although
the performance gains are smaller.

4.2 Clustering dense tracklets

In this section, we �rst describe how we extract dense local point trajectories,
called tracklets (cf. Figure 4.2) using dense optical �ow �elds. We then ad-
dress the problem of e�ciently and accurately clustering a video composed of
a large number of tracklets in order to obtain a hierarchical decomposition of
its motion components. We describe the two steps of our clustering algorithm:
a non-linear projection of the tracklets on a multi-modal spectral embedding
using the Nyström approximation, followed by a hierarchical divisive cluster-
ing algorithm. Note that the algorithm described in this section is applied to
a single video at a time and does not require any other external data, such as
other videos containing the same action.

Figure 4.2: Tracklets of a weightlifting activity. Colors correspond to the most
detailed clusters obtained with our hierarchical motion decomposition.
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4.2.1 Extracting dense tracklets

In order to track densely sampled points, we follow the approach described
in [Wang et al. 2011]. First, we compute the dense optical �ow �eld of the
video using Farnebäck's algorithm [Farnebäck 2003] as implemented in the
OpenCV library [Bradski and Kaehler 2008]. This iterative multi-scale ap-
proach is based on approximating the neighborhood of pixels by quadratic
polynomials using polynomial expansion.

Second, we sample the pixels to be tracked on a dense spatial grid. Similar
to [Wang et al. 2011], we observed that a sampling step-size of 5 pixels along
both the x-axis and the y-axis is a good compromise between density and
speed given the dimensions of our videos � between 50 and 1000 frames for
resolutions close to 640 × 480. As points in homogeneous regions cannot be
reliably tracked, we �lter them out following the criterion of Shi and Tomasi
[1994]: if the smallest eigenvalue of the autocorrelation matrix of a point is
lower than a threshold, it is removed from the set of points to be tracked.

Third, we use a multi-scale video representation over 8 spatial scales,
spaced by a factor 1/

√
2. We do not use multiple temporal scales � i.e.,

we track points from frame t to t + 1 � as we are only interested in local

point trajectories. Each point Pt = (xt, yt) at frame t is robustly tracked in
each scale by median �ltering in the dense optical �ow �eld w = (ut, vt):

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ w)|x̄t,ȳt
, (4.1)

where M is the median �ltering kernel and (x̄t, ȳt) is the rounded position of
(xt, yt). Note that this interpolation step is e�cient once the dense optical
�ow �eld is extracted. This approach, therefore, allows to e�ciently track
points on a dense spatial grid.

The new frame t + 1 may then contain good regions void of points to be
subsequently tracked. Indeed, points can be lost and new ones can appear
due to a change in the scene. Therefore, and in order to maintain density, we
�ll these regions by adding new points re-sampled on the dense spatial grid.

Point trajectories interpolated from an optical �ow �eld are often deviating
from the underlying tracked pixel after a certain number of frames. In order
to limit this drifting problem, Wang et al. [2011] propose to track points
only across a �xed small number of frames L. In their experiments, they
show that using tracklets of duration L = 15 frames can yield state-of-the-art
action recognition results. We observed that, in our case, shorter tracklets
yields better results and use L = 5 frames in our experiments. Indeed, when
dealing with fast motions, the displacements of the underlying pixels are large,
motion blur causes point tracks to drift faster, and self-occlusions make it often
impossible to track interesting body parts for more than a few frames. This
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is especially frequent in sports videos, e.g., when an athlete spins on himself
before throwing a discus. Furthermore, although such short duration tracklets
convey less information, clusters of tracklets can encode mid-level information
on par with variable-length longer-term trajectories. Finally, errors in long-
term trajectories due to drift cannot be easily recovered from at later stages.
On the contrary, errors in short-term tracklets amount to noise that can be
appropriately handled via some simple post-processing steps, as described in
the following paragraphs.

First, tracklets with static trajectories are deleted. They indeed convey
no motion information and are often associated either with a static textured
background (e.g., trees) or with noise. We also handle the other extremal case
by removing tracklets containing large and sudden displacements.

Finally, we �lter out tracklets that are in low-density regions. In more de-
tails, isolated but reliably tracked points � e.g., due to block-like compression
artifacts � are considered as outliers and removed. We use a simple sliding
window outlier estimation technique that has proven e�ective in our situation.
For each tracklet P = (Pt)t=F−L+1,··· ,F ending at frame F , we �rst estimate its
approximate spatial k-nearest neighbors Nk,r(P) restricted to tracklets ending
between frames F − r and F + r. In our experiments, we used k = 30 neigh-
bors, r = 5 frames, and the spatial distance between tracklets is estimated
between their respective average positions P̄ = (x̄, ȳ) = 1

L

∑L
t=1 Pt. We then

compute the local sparsity sP of a tracklet as the mean spatial distance to its
neighbors in the temporal window [F − r, F + r]:

sP =
1

k

∑

P′∈Nk,r(P)

‖P̄ − P̄ ′‖ (4.2)

We consider a tracklet with local sparsity sP as an outlier if sP > s̄ + σ̄s,
where (s̄, σ̄s) is the mean and standard deviation of the spatial distance to the
approximate spatial k-nearest neighbors of all tracklets in the entire video,
irrespective of temporal position. The approximate k-nearest neighbors are
computed via kd-trees, which are e�ciently built in the 2-D space of average
spatial positions of tracklets.

4.2.2 Tracklet descriptors for intra-video clustering

Once the tracklets have been extracted, we model them using multiple fea-
tures describing both their spatio-temporal position and shape. We use the
following descriptors to represent trajectory information:

• x = (x1, · · · , xL), x positions over time,

• y = (y1, · · · , yL), y positions over time,
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• z = (t, · · · , t + L− 1), temporal positions,

• vx = (xk+1 − xk)k=1:L−1, velocities along x-axis,

• vy = (yk+1 − yk)k=1:L−1, velocities along y-axis.

Note that as our goal is to cluster tracklets to decompose the motion com-
ponents inside a video, our descriptors need not be particularly robust as all
comparisons are intra-video during this clustering stage. We also separate
the trajectory information along the di�erent spatio-temporal dimensions in
order to allow for dimension-speci�c normalizations in the later stages of our
algorithm. Another noteworthy point is the seemingly redundant use of both
trajectory and velocity descriptors. This redundancy is important in prac-
tice, because velocity information tends to be unstable as taking derivatives
along the trajectory ampli�es high frequency noise that results from small
inaccuracies of the point tracking algorithm.

Our approach is, however, not speci�c to the set of features chosen to
represent a tracklet. The only pre-requisite is the availability of a similar-
ity function speci�c to each feature channel. We use Gaussian RBF kernels
k(f, f ′) = exp(−γd(f, f ′)2), where the distance d(f, f ′) is the Euclidean dis-
tance. The γ parameter of each kernel is automatically �xed to γ = 1/(2d̄),
where d̄ is an estimate of the median of the distances between the corre-
sponding tracklet features. This normalization ensures that all kernels are
comparable across the di�erent feature channels.

4.2.3 Multi-modal spectral embedding of tracklets

Once the features are extracted, the �rst step of our clustering algorithm is
to project tracklets onto a low-dimensional space. This embedding relies on
spectral properties of a similarity matrix between tracklets.

4.2.3.1 Similarity between tracklets

In our case, as we have multiple features representing di�erent useful charac-
teristics of tracklets, we use as similarity the product of the per-feature sim-

ilarities. As each feature-speci�c similarity is positive-de�nite, the product
similarity is also a positive-de�nite kernel. It corresponds to a feature space
that is the tensor product of the feature spaces induced by the individual ker-
nels. Using this product kernel has the advantage of entailing an �and� e�ect,
i.e., tracklets close according to this similarity are close with respect to all

the features used. This behavior is desirable as all our feature spaces convey
meaningful information representing our priors on tracklets, such as �similar
tracklets should be close and have similar shapes�.
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In contrast, using an �early fusion� approach � i.e., concatenating the
descriptors into a single vector or summing the per-feature kernels � has an
�or� e�ect: tracklets are close according to at least one feature. In addition,
early fusion mixes heterogeneous descriptors with various scales into a long
vector, for which Euclidean distances are not adequate. Therefore, central
grouping methods like k-means are not adapted to our set-up, as they search
for clusters with a Gaussian distribution in the Cartesian product of the input
spaces. These shortcomings are addressed by resorting to a spectral clustering
method, which operates on an embedding of the data points.

4.2.3.2 Spectral embedding

The spectral embedding of our tracklets is based on projections onto the lead-
ing eigenvectors of the graph Laplacian corresponding to a similarity matrix
between tracklets. Let W ∈ R

N×N be a symmetric similarity matrix between
N tracklets. This matrix can be viewed as the weighted adjacency matrix
of a graph, where the nodes are the tracklets and the edges are weighted
by the pairwise a�nity between tracklets. The normalized Laplacian of this
graph is de�ned as L = I −D−1/2WD−1/2, where D is the diagonal matrix of
row-sums of W . Thresholding the eigenvector of L with the second smallest
eigenvalue yields an approximate solution to the NP-Hard Normalized Cut
(NCut) bi-partitioning problem [Shi and Malik 2000]. Note that the leading
eigenvalue-eigenvector pair of L is (0, D1/21).

In order to obtain a predetermined number of clusters, one can either
apply this technique recursively on the next leading eigenvectors, or use a
distortion-minimization clustering algorithm � e.g., k-means � on an em-
bedding consisting of the projections on multiple leading eigenvectors.

For N data points, the NE-dimensional spectral embedding (NE ≪ N) is
obtained by computing the N × (NE + 1) matrix V of the NE + 1 leading
eigenvectors and the (NE + 1)× (NE + 1) diagonal matrix Λ of eigenvalues of
the system:

(
D−1/2WD−1/2

)
V = V Λ. (4.3)

The jth embedding coordinate of the ith tracklet is given by:

Ei,j =
Vi,j+1
√

Di,i

, i = 1, · · · , N, j = 1, · · · , NE, (4.4)

where the eigenvectors are sorted by ascending eigenvalue. Thus, each tracklet
is associated with a row of E and a clustering algorithm can be applied on
the rows to partition the data.
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However, the spectral embedding cannot be directly computed this way in
our case. Indeed, for N tracklets, solving equation 4.3 requires the computa-
tion and storage of a N ×N similarity matrix. In addition, its computational
complexity is in O(N3) which seems to prohibit its use in our setup, where
the number of data points can go up to 106.

A mechanism to overcome this complexity is to use a sparse a�nity ma-
trix � e.g., by thresholding its entries � and e�cient sparse eigensolvers such
as the Lanczos method [Shi and Malik 1998]. With our dense tracklets, the
a�nity matrix is not sparse and thresholding its entries still requires the eval-
uation of all similarities. Thresholding has also side-e�ects that are not well
understood [Fowlkes et al. 2004]. For instance, thresholding a kernel matrix
is known to not preserve its positive-de�niteness. Therefore, we choose to use
the Nyström method in order to e�ciently compute an approximate spectral
embedding.

4.2.3.3 Nyström approximation

The Nyström method [Nyström 1930] is a technique for �nding numerical
approximations to eigenfunction problems and has been introduced in the
context of spectral clustering in [Fowlkes et al. 2004]. It allows to extend
an eigenvector computed for a subset of points to any arbitrary point, while
requiring only a subset of the columns (or rows) of the similarity matrix W

(see Figure 4.3 for an illustration). As observed by Williams and Seeger [2001],
it is related to kernel PCA [Schölkopf et al. 1998].

Let A be the n × n similarity matrix between a subset of n randomly
sampled tracklets, with n ≪ N , and let B be the n × (N − n) similarity
matrix between this subset and all other tracklets. With no loss of generality,
we assume the samples sorted such that we can rewrite the full N×N similarity
matrix W as:

W =

[

A B

BT C

]

(4.5)

with A ∈ R
n×n, B ∈ R

n×(N−n) and C ∈ R
(N−n)×(N−n), C being in general

too expensive to compute as N ≫ n. Note that in our case W and A are
positive-de�nite.

Let A = UAΛAUT
A be the eigendecomposition of A. The matrix form of

the Nyström extension is BT UAΛ−1
A . The approximate eigenvectors Û of W

given by the Nyström method are:

Û =

[

UA

BT UAΛ−1
A

]

(4.6)
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Figure 4.3: Illustration of the Nyström approximation. We �rst sample n ≪ N

tracklets by randomly choosing p points in each cell of a regular spatio-
temporal grid. We then compute the similarity between the selected
tracklets (in blue), yielding matrix A, as well as with all other N − n

points (in red), yielding matrix B. The Nyström method allows to
e�ciently compute the approximate leading eigenvectors Û of the large
N ×N matrix W of all similarities using only the small n ×N slice
of it, composed of blocks A and B.

Note that Û are also the eigenvectors of the approximation Ŵ of W :

Ŵ = ÛΛAÛT =

[

A B

BT BT A−1B

]

(4.7)

It shows that the Nyström method implicitly approximates C using BT A−1B.
Thus, the quality of the approximation can be measured by the norm of the
Schur complement ‖C − BT A−1B‖, which measures how well C is spanned
by the rows of B. Consequently, the subset of rows of W must be chosen
such that the corresponding tracklets span all underlying �true� clusters to be
discovered. Therefore, to ensure good diversity and coverage, we randomly
subsample p tracklets per cell of a spatio-temporal grid over the whole video
(cf. Figure 4.3). The grid granularity and p can be adapted dynamically to the
total number of tracklets and the available computational resources. Similarly
to Fowlkes et al. [2004], we observed that good results can be obtained with
less than 1% of the total number of points.

As observed in [Fowlkes et al. 2004], the columns of Û are not orthogonal.
However, as A is positive-de�nite in our case, we can apply the �one-shot�
technique of Fowlkes et al. [2004] and compute the orthogonalized approximate
eigenvectors of W in one step as follows. Let S = A+A−1/2BBT A−1/2, where
A−1/2 is a pseudo-inverse of a symmetric positive de�nite square root of A.
Let S = USΛSUT

S be the eigendecomposition of S. As shown in [Fowlkes et al.
2004], Ŵ is diagonalized by V̂ and ΛS, where:

V̂ =
[

A B
]T

A−1/2USΛ
−1/2
S (4.8)
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Note that in the context of NCut, A and B must be normalized by the row-
sums d̂ of Ŵ beforehand. This can be done without computing the expensive
BT A−1B block of Ŵ by:

Ai,j ←
Ai,j

√

d̂id̂j

, Bk,l ←
Bk,l

√

d̂kd̂l+n

, (4.9)

i, j, k = 1, · · · , n, l = 1, · · · , N − n

where

d̂ = Ŵ1N =

[

ar + br

bc + BT A−1br

]

(4.10)

with 1N the column vector of N ones, ar, br ∈ R
n the row-sums of A and

B, and bc ∈ R
N−n the column-sums of B. After normalizing A and B

(eq. 4.9, 4.10) and computing V̂ (eq. 4.8), the spectral embedding E is:

Ei,j =
V̂i,j+1

V̂i,1

, i = 1, · · · , N, j = 1, · · · , NE, (4.11)

As we are in a large scale, realistic set-up, special care must be taken with
respect to numerical stability. Indeed, even though A is positive-de�nite,
it is in general ill-conditioned. Therefore, we use a robust pseudo-inverse
algorithm to compute A−1 by thresholding the lower-end of its spectrum.
We also follow some useful guidelines from [Foster et al. 2009]. Note that
the overall computational cost of this approximate spectral embedding is in
O(n2N) time and O(nN) space, which is a large improvement over the O(N3)

time, O(N2) space complexity of the exact method.

4.2.4 Hierarchical divisive clustering

Using the computed spectral embedding, we cluster tracklets via an e�cient
hierarchical divisive algorithm. The pseudo-code of our approach is given in
algorithms 1 and 2. We adopt a top-down approach that consists in recur-
sively bi-partitioning the set of tracklets (cf. Figure 4.1). We split a set of
tracklets in two by thresholding along an eigenvector, i.e., along a dimension
of the spectral embedding. As the second smallest eigenvector is the real-
valued solution to the Normalized-Cut (NCut) problem, it is composed of two
clearly separated ranges of values that indicate the optimal partition of the
tracklets. This argument is also valid for the next leading eigenvectors and,
theoretically, one can optimally sub-partition the data by recursively thresh-
olding one eigenvector after the other. However, several practical problems
need to be taken into account while following such an approach.
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Algorithm 1 spectral_division
1: Input: features of N tracklets (cf. section 4.2.2)
2: Output: the cluster-tree (hierarchical set of nodes)

# Compute the spectral embedding
3: Compute the slice [A B] of W (cf. �g. 4.3)
4: Normalize A and B (eq. 4.9, 4.10)
5: Compute the embedding E (eq. 4.8, 4.11)

# Initialize priority queue over nodes to be split
6: to_split← empty priority queue of nodes
7: Push the root of the cluster-tree on to_split

# Recursively split nodes according to priority
8: while to_split is not empty do

9: node← pop highest priority node from to_split

10: left, right = find_best_split(node) # cf. algorithm 2
# Add children to the queue

11: if left and right are not empty then

12: Push left on to_split

13: Push right on to_split

14: end if

15: end while

First, the optimal bi-partition is often unclear in realistic conditions and
the eigenvectors tend to re�ect this ambiguity by having smooth variations.
Therefore, which threshold to use is in general unclear when looking only
at eigenvector values. Furthermore, thresholding a smoothly varying eigen-
vector can lead to an unstable partition, as a small change in the threshold
signi�cantly modi�es the partition.

The �rst technique we use to address this stability problem is based on a
criterion similar to the one mentioned in [Shi and Malik 2000]. If the variations
of an eigenvector are below a small threshold, then we do not attempt to
split along this eigenvector. We used 10−10 as threshold in our experiments.
More importantly, we propose to circumvent the di�culties posed by smooth
eigenvectors by �nding the threshold that maximizes a model selection score
based on spatio-temporal information (cf. Algorithm 2). We experimented
with multiple spatio-temporal consistency criteria, such as inertia or label
agreement amongst neighbors, but the one that yielded the best results in our
experiments is the connectedness measure described in the following.
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Algorithm 2 �nd_best_split
1: Inputs: node: set of tracklets, E: embedding
2: Parameters: m & M : min & max leaf sizes
3: Output: left, right: nodes of best split found

# Determine if we cannot split further
4: if |node| ≤ 2m then

5: return ∅, ∅ # node is a leaf
6: end if

# Determine score to improve upon
7: if |node| ≤M then

8: best_score← score(node)

9: else

10: best_score← −∞ # force the split
11: end if

# Greedily search for the best split
12: left, right← ∅, ∅
13: for j = 1 to NE do

14: for e in candidate thresholds do
15: score_l← connectedness({i ∈ node ; Ei,j < e})
16: score_r ← connectedness({i ∈ node ; Ei,j ≥ e})
17: split_score← min(score_l, score_r)

18: if split_score > best_score then

19: best_score← split_score # best split so far
20: left ← {i ∈ node ; Ei,j < e}
21: right← {i ∈ node : Ei,j ≥ e}
22: end if

23: end for

# Check the stopping criterion
24: if an improving split was found then

25: if j > 1 or split was not forced then

26: return left, right # the best split found
27: end if

28: end if

29: end for

30: return left, right
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Connectedness score of a node

Let G = (V , E) be a spatio-temporal k-nearest neighbor graph over the track-
lets V in a video: (vi, vj) ∈ E if and only if vi, vj ∈ V are k-nearest neighbors
according to their spatio-temporal positions. We de�ne the connectedness
score c(V ′) of a subset of tracklets V ′ ⊂ V forming a node in the cluster-tree
as: c(V ′) = |C(V ′)|−1, where C(V ′) is the set of connected components of the
subgraph G(V ′) of G.

Maximizing this connectedness score has a strong advantage over the mini-
mization of distortion-based measures such as inertia: it does not constrain the
shape of the clusters. Furthermore, it does not enforce �tube-like� clusters, but
only encourages spatio-temporal contiguity of the tracklets in order to avoid
clearly spatio-temporally disjoint parts in the same node. Connectedness is
also not biased with respect to node size. In addition, it can be e�ciently
obtained along the course of our divisive algorithm by pre-computing once �
during an initialization step � the full spatio-temporal adjacency matrix of
all tracklets in the video. We compute this sparse matrix using kd-trees on
the average spatio-temporal position of tracklets to determine the graph of
approximate k-nearest neighbors. As this is fast to compute, including for
hundreds of thousands of tracklets, we select the smallest k such that the
entire video has exactly one spatio-temporally connected component. This
yields approximatively k = 10 neighbors on average over all videos. Once the
neighborhood graph is built, computing the number of connected components
of a subgraph is done in linear time by a depth-�rst search.

This connectedness score is speci�c to a node in the cluster-tree, and when
deciding whether a split improves performance, we compare the score of the
parent node with the lowest score of its children resulting from a candidate
split (cf. Algorithm 2). The score of a node is also employed to determine the
order used to choose the nodes to split. We use a priority queue to split nodes
with the lowest score �rst, as they are those with the maximum expected gain.
As outlined in Algorithm 1, at each iteration, we retrieve the highest priority
(lowest score) node, attempt to split it, and, if it is not a leaf, we push its
children to the priority queue. We observed that, in general, this choice of
priority leads to a depth-�rst construction of the cluster-tree, with occasional
jumps to higher nodes (i.e., backtracking). Ties in priority are handled by
picking the largest node, then the node closer to the root.

Note that we do not use the NCut value as score for two reasons. First, as
we compute an approximate spectral embedding using the Nyström method,
we do not have access to the full similarity matrix W , and computing the
NCut value would therefore be prohibitively expensive. Second, smooth vari-
ations in an eigenvector yields smooth variations in the NCut value, which,
consequently, cannot be used reliably to �nd a good split.
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The second issue faced when adopting a recursive thresholding approach,
is that there is an accumulation of approximation errors that makes higher
eigenvectors less reliable. We, therefore, use this natural ordering of the eigen-
vectors in order to �nd a good split. We adopt a greedy strategy depicted
in Algorithm 2. We �rst try candidate thresholds along the leading eigenvec-
tor. In our experiments, we use nine adaptive thresholds corresponding to the
10th, 20th, . . . , 90th percentile of the considered eigenvector values, in order to
avoid severe imbalance between nodes at the same depth in the cluster-tree.
If the best split along this eigenvector improves with respect to the score of
the parent node that we try to split, then the split is registered with this
eigenvector-threshold pair. Otherwise, we iteratively try to split along the
next leading eigenvector, until we reached the last one. We observed that less
than 20 eigenvectors are generally used. For each node, we start again from
the leading eigenvector, as suggested in [Shi and Malik 2000], because it is the
most reliable one, and we observed that, in practice, the leading eigenvectors
might be decomposed over several approximately �at plateaus.

The only hyper-parameters of our divisive algorithm are the minimum
and maximum leaf sizes: m and M . They are employed in order to avoid
�degenerate� � i.e., too large or too small � leaves, a frequent problem faced
by central grouping methods such as k-means. If a node to be split contains
less than 2m tracklets, we automatically mark it as a leaf. If a node is larger
than M , we force the split by using the best eigenvector-threshold pair, even
if the scores of the children nodes are lower than the score of the parent (cf.
Algorithm 2). We used m = 200 and M = 2000 in our experiments.

4.3 Classi�cation of cluster-trees

In this section, we �rst explain how we represent each node in the cluster-tree
as a histogram of quantized tracklet features. We then introduce a tree kernel
to e�ciently compare cluster-trees for activity recognition.

4.3.1 Tracklet descriptors for classi�cation

As described in Section 4.2.2, we use simple discriminative tracklet descriptors
in the video-speci�c clustering stage, because all tracklet comparisons remain
inside the same video. In the classi�cation stage of our method, however, we
compare the content of di�erent videos. Therefore, recognition requires more
robust features in order to build models that can handle the large intra-class
variability of activities in real-world videos. Consequently, we choose to repre-
sent a tracklet using Motion Boundary Histograms (MBH) [Dalal et al. 2006,
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Wang et al. 2011]. It consists of two histograms quantifying the gradients of
the horizontal and vertical components of the optical �ow. As shown in [Wang
et al. 2011] for the bag-of-features model, using MBH to describe tracklets al-
lows for better action recognition than when using trajectory information.
As MBH relies on the derivatives of the optical �ow, it suppresses constant
motion information and focuses on representing motion boundaries, i.e., local
changes of orientation in the motion �eld. Therefore, it can be robust to a
certain amount of camera translation, but not to more complex movements
such as rotations. In addition, MBH allows to robustly handle the noise in
the spatial derivatives of the optical �ow via quantization.

Note that we found that MBH is not adapted as a clustering feature for
over-segmentation. Its robustness, indeed, can yield large clusters containing
multiple distinct objects moving in the same manner, e.g., soccer players
running on a soccer �eld, which, in spite of their di�erent spatio-temporal
locations, cannot be separated according to MBH features.

Contrary to the clustering stage, we only use one descriptor here. Results
presented in [Wang et al. 2011] have shown that further moderate classi�cation
improvements can be achieved by combining MBH with trajectory, HOG, and
HOF information, at the expense of signi�cantly increased computational cost.
We use the same parameters as in [Wang et al. 2011] to e�ciently compute
tracklet-aligned MBH descriptors directly from the dense optical �ow �eld
used to obtain the tracklets.

4.3.2 BOF-Tree: tree of nested bag-of-features

As a node is a motion component composed of a diverse set of tracklets, we
propose to e�ciently encode this diversity with a bag-of-features (BOF). Note
that we could also represent a node's content with the average of its track-
lets. However, this has several limitations in our situation. First, there is a
potentially large number of points per node, which makes a node qualitatively
di�erent from a �super-tracklet�, especially at a low depth in the cluster-tree.
Second, as our clustering algorithm uses di�erent features than the ones used
for classi�cation, there is, in general, a high variability of tracklet descriptors
in a node, i.e., a large dispersion around the centroid. In addition, the spatio-
temporal consistency of the nodes is not strictly enforced. Thus, the global
shape of our nodes may not be discriminative, due to holes and noise caused
by our approximate clustering algorithm. In contrast, the BOF representation
has proven to be a reliable way to describe entire videos as well as smaller
temporal action units [Gaidon et al. 2011a]. We adopt the common pipeline
described in the following.
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From the set of MBH descriptors and the cluster-tree obtained by our
spectral divisive algorithm, we extract a hierarchical representation of a video
called BOF-tree. Its structure is the same as its corresponding cluster-tree.
In addition, each node in the BOF-tree is modeled by a bag-of-features. See
Figure 4.4 for an illustration. We �rst pre-compute a vocabulary of track-
aligned MBH features on a random subset of the training features. We use
an on-line k-means algorithm [Sculley 2010] with k = 4000 to cluster 106

tracklets randomly sampled from the training videos. We then quantify all
MBH features by assigning them to the closest �visual word� (centroid) in the
learned vocabulary. Finally, each node is represented by a BOF, i.e., its his-
togram of occurrences of visual words. Although we use a high-dimensional
representation for better accuracy, this does not pose computational or mem-
ory problems. In practice, per-node histograms are indeed sparse, thus can
be represented e�ciently. Modeling a node with a BOF discards the �inter-
mediate geometry� at the node level � i.e., between neighboring tracklets �
while local geometry is still captured by the local tracklet features, and global
spatio-temporal structure information is captured by the cluster-tree.

As a consequence of the clustering, the left-to-right order in the BOF-tree
does not have any geometrical interpretation (the cluster-tree is unordered).
The only semantic relation directly captured by our tree structure is the in-
clusion relation derived from the cluster-tree: the two children of a node
correspond to a bi-partition of the tracklets of this parent node. This induces
an additive property on the nodes of a BOF-tree: the BOF of a node in a
BOF-tree is the sum of its children's BOFs (cf. Figure 4.4). We now show
how to use this property to e�ciently compare BOF-trees, while leveraging
the hierarchical structure information between nodes.

Figure 4.4: (a) A cluster-tree of tracklets, where edges between nodes represent a
strict inclusion. (b) Its corresponding BOF-tree, where the BOF of a
node is the sum of its children's BOFs.
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4.3.3 Kernel between BOF-trees

On the one hand, existing kernels on variable-size trees are inspired by string
kernels, i.e., measure structural similarity by counting the number of common
sub-structures [Shawe-Taylor and Cristianini 2004]. In BOF-trees, however,
these approaches are not directly applicable as siblings are unordered. In
addition, our goal is to use the structure information to disambiguate com-
parisons between the content of the motion component hierarchies, not to
directly compare the tree structures. On the other hand, summing over all
pairwise node comparisons results in a valid kernel comparing the contents
of BOF-Trees (which we use as a baseline, cf. Section 4.4.3), but it ignores
their structure. Instead, we propose the �All Tree Edge Pairs� (ATEP) kernel,
which consists in comparing the edges of BOF-trees.

Let T1 = (V1, E1) and T2 = (V2, E2) be two BOF-trees, de�ned from their
set of vertices (nodes) Vi and directed edges (parent-child relations) Ei. Each
node v ∈ Vi is represented by a BOF, noted b[v], over its constitutive tracklets.
We model a directed edge e = (vp, vc) ∈ Ei by the concatenation b[e] =

(b[vp], b[vc]) of the BOF of the child node vc with the BOF of its parent node
vp. Let h be a kernel between BOF. We use the intersection kernel [Maji et al.
2008] between L1-normalized histograms:

h(x, x′) =
∑

j

min(
xj

‖x‖1
,

x′
j

‖x′‖1
) (4.12)

Let ri ∈ Vi be the root of Ti, i ∈ {1, 2}. Our ATEP kernel is de�ned as:

k(T1, T2) = wr · h(b[r1], b[r2]) +
1− wr

|E1||E2|
·

∑

e1∈E1

e2∈E2

h(b[e1], b[e2]) (4.13)

As the roots have no parents, they are handled separately in this kernel:
wr ∈ [0, 1] is a cross-validated parameter encoding a prior on the importance
of the root-to-root comparisons. Note that the case wr = 1 corresponds to
the standard global BOF model with the intersection kernel.

This kernel relies on hierarchical relations: a node only depends on its
parent. It can be seen as a similarity between all sub-trees of two BOF-
trees. Let a direct family (v, s(v), p(v)) denote, respectively, a non-root node
v ∈ Vi\ri, its only sibling s(v), and its parent p(v). The additive property of
BOF-trees is formulated as b[v] + b[s(v)] = b[p(v)]. Therefore, (b[v], b[p(v)])

completely characterizes a direct family. In addition, the BOF b[v] is the sum
of all the BOFs of its descendants. Consequently, (b[v], b[p(v)]) can be seen
as an approximation of the content of the sub-tree rooted at p(v). Therefore,
the ATEP kernel e�ciently compares all sub-trees by using only one level
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of hierarchy at a time to compare two motion components. Note that if the
node kernel h is positive de�nite, then our ATEP kernel is also positive de�nite
(it is a sum of positive de�nite kernels). We can, therefore, use it directly in
conjunction with a SVM classi�er [Schölkopf and Smola 2002]. For multi-class
classi�cation, we adopt the One v.s. Rest approach.

4.4 Experiments

In this section, we report the results obtained with our approach and compare
it to both the state of the art and several baselines.

4.4.1 Activity datasets

We evaluate our method on two publicly available benchmarks: the High Five
dataset [Patron-Perez et al. 2010] and the Olympic Sports dataset [Niebles
et al. 2010]. Both of these datasets focus on complex activities instead of
more commonly investigated short actions such as �running�.

The High Five dataset [Patron-Perez et al. 2010] consists of 300 video
clips collected from 20 di�erent TV shows (cf. Figure 4.5). The activity cate-
gories are four human-human interactions: hand shakes, high �ves, hugs, and
kisses. Each activity is performed in 50 di�erent clips, the remaining 100 �neg-
ative� clips containing other actions. These activities are of short duration
and involve a simple combination of atomic actions. As the dataset authors
propose a model relying on head orientations, annotations for discrete head
orientation and upper body localization of actors are available. We do not use
this additional supervision in our experiments. Evaluation on this benchmark
is conducted like in [Patron-Perez et al. 2010], i.e., by computing the recog-
nition performance in Average Precision using a 2-fold cross-validation with
�xed folds provided with the dataset.

Figure 4.5: Frames from the High Five dataset [Patron-Perez et al. 2010]
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The Olympic Sports dataset [Niebles et al. 2010] contains 783 Youtube
videos of athletes practicing 16 di�erent sport activities such as springboard
diving and weight lifting (cf. Figure 4.6). This dataset contains longer video
sequences of fast and complex articulated human motions, possibly involving
interactions with objects (e.g., a javelin). It presents several challenges, such
as cluttered backgrounds, low quality videos, compression artifacts, and subtle
distinctions between some categories (e.g., triple jump and long jump). In
addition, the activities are composed of multiple simpler actions (e.g., running
and jumping) that can be shared across categories, which is a great challenge
for part-based recognition. Di�erent actions might, indeed, contain the same
parts, but arranged in a di�erent manner. This justi�es the need to leverage
the spatio-temporal structure of activities in order to better distinguish them.

Figure 4.6: Activities of the Olympic Sports dataset [Niebles et al. 2010]
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4.4.2 Camera motion stabilization

Although motion stabilization is not necessary with our approach, it allows
to remove the camera motion bias of a dataset. Some video sources � and
sports videos in particular � tend to be �lmed in a manner that is strongly
correlated with the action performed. For instance, in the stabilized frames
of Figure 4.7 (bottom row), we can see the rapid downward tilt of the camera
as it follows the landing of the jumper.

Figure 4.7: An action of the Olympic Sport [Niebles et al. 2010] dataset, before
(top row) and after (bottom row) camera motion stabilization.

Such camera motion biases are consistently present in the Olympic Sports
dataset and characterize to some extent the action performed. When using
dense tracklets, camera motion is directly encoded by the features. Further-
more, the background tracklets will share similar motion statistics as they
mostly correspond to the movement of the camera. As can be seen in �g-
ure 4.8, in the non-stabilized case (top row), the camera motion yields many
consistent tracklets on the background, while in the second case most motion
is on the moving objects (the jumper and the referee). Thus, in the non-
stabilized case, we observed that our clustering approach may result in hier-
archical decompositions, of which discriminative, large sub-trees are formed
by background tracklets. Therefore, we report results on stabilized video for
the Olympic Sports dataset. That way, our evaluation is independent of any
(positive or negative) camera motion bias and only quanti�es the e�ciency
of our action model. Note that the High Five clips do not su�er from cam-
era motion bias. We, therefore, present results on the original non-stabilized
video sequences for this benchmark.
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Figure 4.8: Tracklets from a video (top) and from its stabilized version (bottom).

Camera motion stabilization under uncontrolled video conditions is a di�-
cult task. Although e�cient approaches exist for simple transformations, e.g.,
phase correlation [De Castro and Morandi 1987] for translations, only few can
address all kinds of complex, time-varying camera motions, such as camera
shake in amateur videos, or out-of-plane rotations coupled with zooms in
movies. Here, we follow [Ikizler-Cinbis and Sclaro� 2010, Kuehne et al. 2011],
i.e., we explicitly model the camera motion to generate stabilized videos. The
optical �ow in these videos corresponds to the full �ow in the original video,
from which the estimated background �ow was subtracted (cf. Figure 4.8).

We use simple and e�cient image-stitching techniques to compute the ap-
proximate motion of a background plane. First, we extract salient 2D Harris
interest points in frames which we represent with SIFT [Lowe 2004] descrip-
tors. We, then, robustly match the interest points using RANSAC [Fischler
and Bolles 1981] and estimate the transformation between all pairs of adjacent
frames. Finally, we produce a stabilized video where all frames are warped
according to the estimated transformation (cf. Figure 4.7). Note that the
trajectories of points on the warped frame boundaries are �ltered out and not
included in our models.
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4.4.3 Baselines

We �rst compare to two simple baselines using a global BOF model over the
entire video [Laptev et al. 2008, Wang et al. 2011]. The approach of Laptev
et al. [2008] uses sparse local Spatio-Temporal Interest Points (STIPS) [Laptev
2005] described by a concatenation of histogram of oriented gradients [Dalal
and Triggs 2005] and optical �ow, denoted �HOG/HOF�. The approach of
Wang et al. [2011] uses dense tracklets represented by MBH descriptors. Note
that this method corresponds to using only the model of the root node of our
BOF-trees. In both cases, we use our own implementation of the method with
the same vocabulary construction and size as mentioned previously.

In addition to these unstructured baselines, we compare our approach with
decompositions obtained by alternative clustering methods. First, we compare
to two standard ��at� clustering algorithms that produce a set of unrelated
clusters: k-means and spectral clustering. Due to the large amount of tracklets
per video, we adopt an e�cient on-line variant of k-means [Sculley 2010].
For spectral clustering, we adopt the approach of Fowlkes et al. [2004]: we
partition tracklets with (on-line) k-means on the same approximate spectral
embedding used by our method. These two algorithms take as input a �xed
number of clusters. However, di�erent videos contain di�erent numbers of
distinct motion components. Therefore, we use a number of clusters that
depends linearly on the number of tracklets, such that the smallest videos
have at least 2 clusters, whereas the largest ones have at most 1000 clusters.

We also compare our approach to a closely related baseline yielding a
cluster-tree. Its steps are all similar to our method except for one: we replace
the spectral divisive thresholding algorithm of Section 4.2.4 (noted SDT) by
a recursive application of k-means. This amounts to splitting a node with
(on-line) k-means (k = 2) on the spectral embedding. The algorithm is noted
�SDKM� for Spectral Divisive K-Means. Like with our approach, we classify
the resulting cluster-trees using a SVM with our BOF-tree kernel.

Note that in order to compare unrelated sets of clusters, we use a natural
simpli�cation of our ATEP kernel consisting in averaging all pairwise cluster
comparisons between two videos. This baseline kernel is noted as �ACP� for
�All Cluster Pairs�. It can be applied on the clusters resulting from the ��at�
clustering algorithms, the leaves of a BOF-tree, or on all nodes of a BOF-tree
(including internal ones) in which case the hierarchical relations are ignored.

Table 4.1 contains a summary of all notations used to describe the methods
and kernels we compare in our experiments.
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Tree-structured activity models

SDT tree BOF-Tree (Section 4.3.2) obtained by Spectral Divisive
Thresholding on tracklets (Section 4.2.4)

SDKM tree BOF-Tree (Section 4.3.2) obtained by bi-partitioning
K-Means on tracklets (Section 4.4.3)

Flat sets of bag-of-features

SDT leaves leaves of the SDT BOF-Trees

SDKM leaves leaves of the SDKM BOF-Trees

spectral clusters obtained by spectral clustering (Section 4.4.3)

kmeans clusters obtained by k-means (Section 4.4.3)

Unstructured baselines

BOF tracklets bag-of-features with all tracklets as in [Wang et al.
2011], equal to the root of a BOF-tree

BOF STIPS bag-of-features with spatio-temporal interest points as
in [Laptev et al. 2008]

Kernels on part-based activity models

ATEP All Tree Edge Pairs kernel, mean of all pairwise edge
comparisons, speci�c to BOF-Trees (Section 4.3.3)

ACP All Cluster Pairs kernel, mean of all pairwise cluster
comparisons, applicable to BOF-Trees and �at decom-
positions (Section 4.4.3)

Table 4.1: The methods we implemented and compared in our experiments.
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4.4.4 Activity recognition results

Table 4.2 reports performance comparisons between our unstructured and
structured baselines, the state of the art, and our method.

SDT tree & ATEP 85.0

SDKM tree & ATEP 77.8

SDT tree & ACP 79.3

SDKM tree & ACP 70.6

SDT leaves & ACP 77.9

SDKM leaves & ACP 72.2

spectral & ACP 71.7

kmeans & ACP 70.8

BOF tracklets 76.6

BOF STIPS 61.3

Brendel and Todorovic [2011] 77.3

Niebles et al. [2010] 72.1

(a) Olympics Sports (Accuracy in %)

SDT tree & ATEP 56.5

SDKM tree & ATEP 55.3

SDT tree & ACP 51.3

SDKM tree & ACP 46.5

SDT leaves & ACP 47.0

SDKM leaves & ACP 45.3

spectral & ACP 48.9

kmeans & ACP 50.1

BOF tracklets [Wang et al. 2011] 53.5

BOF STIPS [Laptev et al. 2008] 36.9

Patron-Perez et al. [2010] 32.8

(b) High Five (AP in %)

Table 4.2: Performance comparison on the Olympics Sports [Niebles et al. 2010]
and High Five [Patron-Perez et al. 2010] datasets.

First, we found that our hierarchical ATEP kernel on SDT BOF-trees in
conjunction with a SVM outperforms the state of the art on both datasets,
including latent part models [Niebles et al. 2010] (+12.9%), complex graph-
ical models resulting from video segmentation [Brendel and Todorovic 2011]
(+7.7%, cf. Figure 4.9 for per-class details), and interaction-speci�c struc-
tured learning [Patron-Perez et al. 2010] (+23.7%).
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Figure 4.9: Performance improvement of our method over the method from [Bren-
del and Todorovic 2011] on the Olympic Sports dataset.
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Second, our approach improves over the BOF baselines. This con�rms the
importance of leveraging structure information to recognize complex activi-
ties. Note, however, that only our method yields clear performance improve-
ments, whereas other structured baselines are less accurate. This shows that
decomposing activities is as challenging as it is critical for performance.

Third, using hierarchical relations between motion components with our
ATEP kernel consistently improves over the ��at� baselines, which rely on
unrelated sets of clusters, e.g., the leaves of BOF-trees or clusters obtained by
k-means. We also observe a similar improvement when comparing the perfor-
mance of our ATEP kernel with its unstructured counterpart (ACP) on the
full BOF-trees (cf. Figure 4.10 for per-class details on the Olympic Sports
dataset). This con�rms that our method captures useful structure informa-
tion, and that the improvement does not result only from the decomposition
into parts, but also from the comparison of their relations.
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Figure 4.10: Performance improvement obtained by using the hierarchical rela-
tions of the SDT BOF-trees on the Olympic Sports dataset.

Finally, table 4.2 also shows that the BOF-trees produced by our SDT
algorithm yield more powerful models than the SDKM ones obtained by bi-
partitioning k-means (+7.2% on Olympic Sports, +1.2% on High Five).

Discussion on the Olympic Sports results

Figure 4.11 is the confusion matrix of our method on Olympic Sports. We
can see, for instance, that �triple jump� is often predicted as the similarly
structured �long jump� (the only di�erence between the two categories is the
middle of the activity). In addition, �high jump� is often wrongly predicted as
�javelin throw� due to their similar structure (running, then hopping, followed
by a fast upwards motion). Another frequent confusion is between the �tennis
serve� and �discus throw� actions, which both involve a long preparation time
with only few movements, followed by a short and fast motion.
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As can be observed in Figure 4.10, our hierarchical method yields the
largest improvements on the �bowling� and �basketball layup� classes. Both
of these activities involve a clear spatio-temporal structure that is captured
by our cluster-trees. Furthermore, they contain large motions (e.g., running)
as well as fast and short motion parts that are characteristic for the category
(e.g., the layup gesture, or the arm movement when throwing the bowling
ball). Our model can separate these components, whereas averaging models
like BOF will be dominated by the largest clusters of tracklets, thus losing the
discriminative information present in the motion parts with less tracklets.

The �vault� (gymnastics) activity is the only category where our method
degrades performance with respect to its unstructured counterpart (ACP ker-
nel on SDT BOF-Trees, cf. Figure 4.10). It is often confused with another
di�cult category: �triple jump� (cf. Figure 4.11). After analyzing the results,
we observed that this confusion results from common artifacts due to incor-
rect stabilization of the fast traveling motions of the cameras �lming both the
�vault� and �triple jump� categories.
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cleanandjerk

discusthrow

diving10m

diving3m
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javelinthrow

longjump
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Figure 4.11: Confusion matrix obtained with our method (ATEP on SDT BOF-
Trees) on the Olympic Sports dataset.
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Discussion on the High Five results

Table 4.2 also shows that the performance improvements on the High Five
dataset are less signi�cant than on the Olympic Sports benchmark. This
can be explained by several factors. First, the interactions contained in the
High Five dataset are shorter and are, therefore, decomposed over smaller
trees with less structure. Second, all interaction categories are close and share
both common motion parts and relations between them (some are visible in
Figure 4.5). Note that the per-class improvements on the High Five dataset
are all roughly equal. Third, the High Five dataset contains additional ran-
dom negative videos � both in the training and test splits � that have no
particular motion structure, and, thus, increase the noise level. When remov-
ing these random negatives from the test samples, our method reaches 66%

in mean Average Precision, which represents a +27% improvement over the
results of Patron-Perez et al. [2010] in the same settings (39% mean AP).

4.4.5 Results for simpler actions

In addition to the previously described experiments on activity recognition,
we investigated the performance of our method on simpler actions from the
HMDB dataset [Kuehne et al. 2011] (cf. Figure 4.12 for frames extracted from
some clips of the database).

cartwheel dribbleflicflac kick

chew claplaughsmile

golfsitup swingbaseball swordexercise
Figure 4.12: Stabilized videos of the HMDB dataset [Kuehne et al. 2011]
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This benchmark is composed of 6849 clips from di�erent real-world sources
such as Youtube videos, TV footage, and movies. It contains 51 action cate-
gories that entail general facial actions (e.g., smile, laugh, talk), facial actions
with object manipulation (e.g., smoke, drink), general body movements (e.g.,
cartwheel, climb, walk, wave), interactions with objects (e.g., dribble, golf),
and person-person interactions (e.g., hug, kiss, punch). Each action is per-
formed in at least 101 clips. Performance is evaluated by the mean accuracy
over all classes averaged over three �xed di�erent train/test splits provided
by the authors. HMDB is a challenging dataset: the current state of the
art [Sadanand and Corso 2012] is of 26.9% accuracy only. This highlights
the di�culties of this dataset, which include poor video conditions (only 17%

of high quality clips), partially visible actors (in 44% of the videos), camera
motions, and a large variety of viewpoints. In addition, another di�culty is
caused by the presence of close pairs of classes such as chewing v.s. talking,
shooting a gun v.s. shooting a bow, fencing v.s. sword exercise.

We use this dataset in addition to the previous ones because of their com-
plementarity. On the one hand, the actions in the Olympic Sports dataset
are longer, more complex activities with 230 frames per action on average.
They are composed of multiple simpler actions (e.g., running and jumping)
that can be shared across categories, which is a great challenge for part-based
recognition and justi�es the need to leverage the spatio-temporal structure of
actions. On the other hand, HMDB actions � some of which are parts of
the more complex Olympic Sports activities � tend to be both simpler and
shorter with 90 frames per action on average, but they are more numerous and
varied. Note that we use the on-line available stabilized version of HMDB.

Our method (ATEP kernel on SDT BOF-Trees) obtains an average clas-
si�cation accuracy of 41.3%, which corresponds to a +14.4% improvement
over the state of the art. This improvement is in large part due to our use
of tracklets combined with the MBH descriptor. Indeed, the performance of
our BOF baseline � i.e., using only the root of our BOF-trees � reaches
38.9% accuracy. Figure 4.13 contains the confusion matrix for our method.
The classes are clustered by confusion, according to a 1D projection obtained
by Locally Linear Embedding (LLE) [Roweis and Saul 2000] on the rows of
the confusion matrix. The actions most often confused are the facial actions
visible in the top left corner of the confusion matrix: chew, smile, talk, and
laugh. They all involve only few tracklets depicting consistent movements of
the head and facial muscles that are too simple and too small to decompose.
Other common confusions include smoke v.s. eat v.s. drink, draw sword v.s.

sword exercise, and actions at the bottom-right corner of the confusion matrix
(swing baseball, throw, jump, kick, kick ball, and fall �oor), which generally
involve a single, fast, uni-directional, translation movement.
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chew
smile
talk

laugh
smoke

kiss
eat

drink
shootgun

turn
clap

climb
shakehands
climbstairs
brushhair

wave
handstand

pour
sit

stand
hug

pullup
push
pick

ridebike
pushup

ridehorse
walk

fencing
flicflac

shootbow
golf

drawsword
swordexercise

situp
somersault
shootball

catch
dive

punch
cartwheel

run
hit

sword
dribble

swingbaseball
throw
jump
kick

kickball
fallfloor

Figure 4.13: Confusion matrix obtained with our method (ATEP on SDT BOF-
Trees) on the HMDB dataset [Kuehne et al. 2011].

p
u
sh

sh
a
ke

h
a
n
d
s

sh
o
o
tg

u
n

h
a
n
d
st

a
n
d

sw
o
rd

so
m

e
rs

a
u
lt

ki
ck

p
o
u
r

sw
o
rd

e
x
e
rc

is
e

ri
d
e
b
ik

e
p
u
n
ch ru
n

p
ic

k
la

u
g
h

ta
lk

cl
im

b
ki

ss
ca

tc
h

d
ra

w
sw

o
rd

st
a
n
d

sh
o
o
tb

o
w

tu
rn

sm
ile

cl
a
p

sh
o
o
tb

a
ll

sw
in

g
b
a
se

b
a
ll

g
o
lf

h
it

p
u
llu

p
fe

n
ci

n
g

si
tu

p
d
iv

e
fl
ic

fl
a
c

p
u
sh

u
p

sm
o
ke

cl
im

b
st

a
ir

s
th

ro
w

ca
rt

w
h
e
e
l

ch
e
w

d
ri

b
b
le

b
ru

sh
h
a
ir

fa
llf

lo
o
r

ju
m

p
w

a
v
e

ki
ck

b
a
ll

d
ri

n
k

ri
d
e
h
o
rs

e
h
u
g

e
a
t

si
t

w
a
lk

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

D
if
fe

re
n
ce

 i
n
 a

cc
u
ra

cy

Improvement of ATEP on the full SDT trees over the BOF baseline (i.e. only roots)

Figure 4.14: Performance improvement of our method over the BOF baseline on
the HMDB dataset [Kuehne et al. 2011].
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Figure 4.14 contains the per-class performance di�erences between our
method and the BOF baseline. We can observe that, although the improve-
ment is limited on average over all categories (+2.4%), the majority of the
actions clearly bene�t from our hierarchical decomposition. For instance, the
�push� category is signi�cantly improved (+9%), because it consists in the in-
teraction between a human and an object (a cart). Similarly, our method im-
proves the recognition of the human-human interaction �shake hands� (+9%),
and other interactions, e.g., �shoot gun�, �pour�, and �kiss�.

Some actions, on the other hand, are negatively impacted by our method.
However, as we cross-validate the per-class root weight wr in ATEP (Equa-
tion 4.13), and as the case wr = 1 corresponds to the BOF baseline, it should
not be possible, in theory, for our method to perform worse than BOF. In
practice, however, the limited training set size does not guarantee that the
best parameters on the test set are those with maximum cross-validation per-
formance. The performance degradation observed for some classes suggests
that there is not a clear and stable value for the best root weight parameter of
these actions. In particular, the performance on the �walk� action is smaller
(−8%) with our model than with the BOF baseline. Indeed, the motions of
the legs are sometimes either too close to each other to be separated, or are
not visible. Furthermore, videos of this category often involve a wide array
of contexts, most of which contain the unrelated motions of other objects or
actors. These �distractors� result in spurious nodes in our cluster-trees, and
negatively a�ect our kernel, as we rely on the full cluster-tree structure. Note
that we did not observe such performance degradation on the activities of the
Olympic Sports and High Five datasets: our ATEP kernel on SDT BOF-Trees
performed equally or better than the BOF baseline on all activities.

4.5 Conclusion

We introduced an e�cient hierarchical clustering algorithm on short duration
point trajectories (tracklets). Our approach relies on recursive bi-partitioning
using a spatio-temporal connectedness criterion to threshold the projection
of tracklets on a multi-modal spectral embedding obtained with the Nyström
approximation. A video is structured as a tree of nested motion components.
Each one of these data-driven parts is represented by a bag-of-features over lo-
cal motion descriptors in order to form our BOF-Tree activity model. We also
proposed a kernel on unordered binary trees, which can accurately compare
activities with a variable number of hierarchically ordered parts. This kernel
uses an additive property of our motion decomposition to e�ciently compare
sub-trees and leverages structure information to re�ne part comparisons.
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Our experimental results show that the combination of our clustering al-
gorithm and our tree kernel outperforms unstructured bag-of-features base-
lines, video decompositions with other clustering techniques, and the state of
the art � including approaches based on latent parts, video segmentation,
and structured learning. Furthermore, we observed that our method can be
successfully applied to short actions as long as they have a characteristic mo-
tion decomposition structure. We observed, however, that the performance
improvements with our method are more signi�cant on complex activities in-
volving the spatio-temporal composition of several short actions.
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5.1 Introduction

Action recognition in realistic videos has been previously addressed using ker-
nel methods like SVMs. Most existing approaches, however, extract �xed-
length vector representations of video volumes (e.g., a bag-of-features of an
entire video or of each part like in previous chapters), and compare them us-
ing generic kernels on vectors. In contrast, in this chapter we model actions
as time series of per-frame representations, and propose a kernel speci�cally

tailored for the purpose of action recognition, which hinges upon distances
between models of action dynamics. Dynamic aspects alone are likely to be
insu�cient to describe some types of actions, especially when the scene or the
nature of objects involved are discriminative. Therefore, our goal is to show
that our kernel on dynamics complements orderless aggregation statistics (cf.
Figure 5.1), which have proved e�cient in this context.

We propose to encode the statistical dependency information of an action
example by using its auto-correlation operator, i.e., the cross-correlation in
a Reproducing Kernel Hilbert Space (RKHS)[Schölkopf and Smola 2002] of
the signal of frames with a temporally shifted version of itself. The auto-
correlation operator contains information pertaining to the temporal depen-
dencies between frames and the temporal structure of actions, as it depends on
the ordering of the frames. Hence, we propose to compare the dynamics of two

actions by computing the distance between their respective auto-correlations.
This distance is de�ned as the Hilbert-Schmidt norm of the di�erence between
auto-correlations and we call the associated Gaussian RBF kernel the Di�er-
ence between Auto-Correlation Operators (DACO) kernel (see �gure 5.2 for
an illustration). Note that this is di�erent from the cross-correlation between

Average statistics

kBOF( , ) +
Temporal dependencies

kDACO( ),

Figure 5.1: Our goal is to complement the robustness of the orderless bag-of-
features model of actions (left) with temporal dependency information
(right) captured by our kernel on dynamics.
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video volumes, which measures dependencies between frames of two di�erent
videos and is not suited to compare di�erent actions with strongly related
motions (e.g., running and walking).

xt+τ
}
}

xt+τ+1 xt+τ+2

yt+τ yt+τ+1 yt+τ+2

yt yt+1 yt+2

xt xt+1 xt+2

Figure 5.2: Computation of our DACO kernel. For two actions represented as
time series of frames, x = (x1, . . . , xT ) and y = (y1, . . . , yT ′), the
kernel compares their dynamics by using the di�erence between their
auto-correlations ρ̂

(x)
τ and ρ̂

(y)
τ , with a lag of τ frames.

Closest references

Though good results were achieved with models aggregating statistics of local
features over the entire duration of an action (cf. [Wang et al. 2009] for
a recent evaluation), these action models can be enhanced by treating the
time dimension di�erently from the spatial ones. For instance, Niebles et al.
[2010] propose a latent model of temporal parts for long duration activities,
and Gaidon et al. [2011a] model the temporal structure and ordering con-
straints of actions as sequences of �actoms�. These methods only encode the
coarse temporal structure, and, therefore, fail to capture dynamic aspects like
the temporal dependencies between frames. Another limitation of volumetric
approaches is that the temporal granularity is not taken into account. The
visual di�erence between two frames is, indeed, much more pronounced than
the di�erence between two pixels, as fast discriminative motions often occur
in less than ten frames.
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One of the simplest ways to represent actions and their temporal struc-
ture is just to concatenate, in the temporal order, per-frame feature vectors.
Schindler and Van Gool [2008] show that such a simple technique can yield
good results in simple video conditions. However, their approach assumes that
videos are synchronized in time beforehand. Consequently, it is not robust to
signi�cant variations in action speed.

A more sophisticated approach based on chaos theory is used by Basharat
and Shah [2009]. They model repetitive human actions and dynamic textures
as nonlinear dynamical systems. They use �strange attractors� to represent
the dynamics of time series for action and dynamic texture synthesis, yet do
not provide a way to compare two series of observations.

Other approaches, inspired by speech and gesture recognition, represent
actions as sequences of states [Brendel and Todorovic 2010, Jung et al. 2008,
Kulkarni et al. 2010, Nowozin et al. 2007], or use dynamic probabilistic graph-
ical models [Brand et al. 1997, Laxton et al. 2007, Yamato et al. 1992, Zeng
and Ji 2010] to model the temporal aspects of the videos. These methods,
however, only measure alignments between videos. Hence, they are not ro-
bust to temporal occlusions, and signi�cant duration variations. Furthermore,
they generally involve a di�cult intermediate recognition step, for instance by
labeling each frame.

Both alignment-based approaches � computing a matching score between
videos � and aggregation-based techniques � discarding most temporal as-
pects by averaging over frames � do not take into account characteristic dy-
namic information, such as repeating patterns, or the relationships between
frames. In contrast to these previous works, we represent videos directly as
time series of frames and propose to compare actions through models of their
key dynamic aspects.

Note that our DACO kernel di�ers from existing kernels on time series.
Cuturi et al. [2007] proposed a kernel based on Dynamic Time Warping, with
applications to speech recognition tasks. However, this kernel does not com-
pare the dynamics but measures alignments between time series. Another
example of time series kernel is given by Lu et al. [2008], with applications
to synchronized EEG segments. However, their similarity between two time
series corresponds to similarity between temporal regularity, in the spirit of
the functional data analysis framework [Ramsay and Silverman 2005].

Outline

We introduce our time series representation of videos and our novel DACO
kernel in Section 5.2. We give a practical formulation that can operate on any
type of frame model, including high-dimensional ones like BOF, in Section 5.3.
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DACO only requires a kernel function on frames (e.g., the intersection kernel
between histograms), and computes auto-correlation operators in the feature
space induced by this kernel. Section 5.4 contains experimental results on
recent action recognition datasets, showing that a simple linear combination
of our DACO kernel and an aggregation-based kernel can improve recognition
performance. In addition, we show the superiority of DACO over alternative
kernels on time series.

5.2 Kernel on auto-correlation operators

Let X a space of frame representations (e.g., histograms of visual words).
Let a video x = (xt)t=1···T of duration T frames represented as a time series
where xt ∈ X . We de�ne the space of videos S =

⋃

i>0X i. Our goal is to
design a kernel kS : S ×S → R adapted to compare actions. In Section 5.2.1,
we quickly recall the main properties of the auto-correlation, which is the
base mathematical component of our approach. In Section 5.2.2, we give the
de�nition of our auto-correlation-based kernel and some details.

5.2.1 Auto-correlation operators

We model the dynamics of an actions x = (xt)t=1,··· ,T (a time series of frames)
with its corresponding auto-correlation operator ρ̂

(x)
τ , i.e., the series's sampled

auto-covariance, Σ̂
(x)
τ , normalized by its sampled covariance, Σ̂(x):

ρ̂(x)
τ =

(

Σ̂(x) + γI
)−1

Σ̂(x)
τ (5.1)

where γ is a regularization parameter, and τ is a time lag in frames. The auto-
covariance of a time series is simply de�ned as the cross-covariance between
the series and a temporally shifted version of itself. For a time series (Xt)

with mean E[Xt] = µt, the auto-covariance at time t and lag τ is de�ned by

Σ(x)(t, t + τ) = E [(Xt − µt)⊗ (Xt+τ − µt+τ )]

= E [Xt ⊗Xt+τ ]− µt ⊗ µt+τ (5.2)

where ⊗ denotes the tensor product operation.
Note that Equation 5.1 makes the assumption that all time series are wide

sense stationary, i.e., that �rst and second order moments do not vary with
time. We show in our experiments (Section 5.4) that this approximation yields
reasonable results in practice for short actions.

We note the mean µ = µt and the auto-covariance Σ
(x)
τ = Σ(x)(t, t + τ),

which only depends on the lag τ . Their sampled versions estimated from the
observation of the frames are noted µ̂ and Σ̂

(x)
τ .
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The auto-covariance contains information pertaining to the temporal de-
pendencies between frames, e.g., repeating patterns. It is a special case
of cross-covariance, which has some interesting statistical properties. The
Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al. 2005] between
two random variables X ∼ PX , Y ∼ PY is a statistical dependency measure
using the squared Hilbert-Schmidt norm of the cross-covariance operator be-
tween X and Y in some kernel-induced feature space: ‖Σ(x,y)‖2HS. Gretton
et al. [2005] prove that, under certain conditions, ‖Σ(x,y)‖2HS is zero if and only
if the random variables X and Y are independent. Furthermore, they show
that it can be estimated using only kernel evaluations between i.i.d. sampled
observations of X and Y .

However, contrary to Gretton et al. [2005], we are dealing with non-i.i.d.
observations of frames, and di�erent actions might be statistically dependent
(e.g., �walking� and �running�). Therefore, we propose to compare time series
by computing the distance between their dynamics, modeled by their respec-
tive auto-correlation operators.

5.2.2 The DACO kernel

We de�ne our Di�erence between Auto-Correlation Operators (DACO) kernel
from the Hilbert-Schmidt norm of the di�erence between auto-correlations:

kDACO(x,y) = exp
(

− 1

2σ2
dDACO(x,y)2

)

where dDACO(x,y) =
∥
∥ρ̂(y)

τ − ρ̂(x)
τ

∥
∥

HS
(5.3)

The Hilbert-Schmidt norm, noted ‖·‖HS, is simply the extension of the Frobe-
nius matrix norm to any separable Hilbert space, and can be de�ned for any
bounded operator A as:

‖A‖2HS = Tr (A∗A) (5.4)

where Tr denotes the trace function and A∗ is the conjugate transpose of A.
It derives from the Hilbert-Schmidt inner product:

〈A, B〉HS = Tr (A∗B) (5.5)

This allows us to decompose the DACO distance in three terms:

dDACO(x,y)2 =
∥
∥ρ̂(x)

τ

∥
∥

HS
+

∥
∥ρ̂(y)

τ

∥
∥

HS
− 2

〈
ρ̂(y)

τ , ρ̂(x)
τ

〉

HS
(5.6)

As the norm of the auto-correlation operator measures the dependency be-
tween a series and a shifted version of itself, we can see from Equation 5.6 that
the distance will tend to be smaller for time series with almost no temporal
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structure (e.g., for random sequences of frames), and bigger for actions with
quasi-deterministic relationships between neighboring frames (e.g., a constant
translation movement). In addition, the inner product in Equation 5.6 shows
that if the dynamics of the two series x and y are di�erent, then the dis-
tance will be bigger. Therefore, actions with strong but di�erent temporal
structures will tend to have large DACO distances.

Consequently, DACO is well suited to compare actions characterized by
their dynamics, but needs to be combined with another kernel in order to deal
with actions with little temporal structure. This shows that combining DACO
with an aggregation-based kernel allows to e�ciently represent dynamics and
orderless distribution aspects, which are both useful for action recognition.

5.2.3 The time-lag parameter

The main parameter of our DACO kernel is the lag τ in frames. For periodic
actions, it is important that this parameter be di�erent from a multiple of the
period. Indeed, a periodic signal is always perfectly correlated with its ver-
sion shifted by a period, and comparing two auto-correlations of two periodic
signals with the same periodicity yields uninformative distances.

This problem can be avoided in practice by multiple techniques, for in-
stance by detecting the period or by averaging the distances for multiple τ

values. However, these methods are generally either expensive or unreliable
in the absence of prior information, e.g., for periodic actions with variable
period durations.

The alternative solution that we found to work best in practice is to simply
take a τ which is small enough with respect to the action duration, such that
it cannot be a multiple of a period. As we deal with short actions that
include fast motions and potentially drastic changes in a few frames, we chose
a τ of one frame in our experiments. This has the other advantage to not
�dilute� temporal relations between the signal and its shifted version, hence
ensuring the DACO distances are meaningful thanks to the preservation of
strong temporal structures.

Another advantage of using a small lag value is to limit border e�ects when
estimating the sampled auto-correlation operator. We, indeed, deal with the
recognition of short videos, which have only a �nite number of observations
per time series. Hence, we need either to truncate them, x = (x1, · · · , xT−τ )

and xτ = (x1+τ , · · · , xT ), or to have a cyclic representation (modulo T ). As
the �rst solution is reducing the number of observations and making our rep-
resentations dependent on the size of τ , we choose the latter (cyclic) one.
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5.3 Practical formulation of DACO

In the following section, we give a practical formulation of the DACO distance
that is obtained by kernelizing Equation 5.3, i.e., expressing it using only inner
products between frames, computed via a kernel function.

5.3.1 Kernelized DACO

Frame representations are in general high-dimensional (e.g., several thou-
sands of dimensions for BOF) and can be of a non-vector type (e.g., graphs).
Therefore, instead of making assumptions on the frame models, we only as-
sume the availability of a symmetric positive-de�nite kernel between frames
kF : X × X → R, such as the intersection kernel between per-frame BOFs.
We note HF the feature space, and φF : X → HF the feature map associated
with the kernel kF (xt, yt′) = 〈φF (xt), φF (yt′)〉HF

between two frames xt and
yt′ of two series x and y. HF might be in�nite-dimensional, for instance when
the Gaussian RBF kernel is used. Yet, using the kernel trick, our kernel can
be computed only by using kernel evaluations between frames.

In the following, we adopt notations similar to those of Shawe-Taylor and
Cristianini [2004]. Corresponding to the video x, we de�ne the time series
X of frames in the frame feature space HF with X = [φF (x1) · · · φF (xT )],
where the column t of X is the projection φF (xt) of frame xt. For two time
series x = (xt)t=1···T , y = (yt′)t′=1···T ′ and their representations X and Y, the
matrix K of kernel evaluations between frames of both series is noted:

K =

[

K(x) K(x,y)

K(y,x) K(y)

]

(5.7)

K(x) = XTX , K(y) = YTY , K(x,y) = XTY =
(
K(y,x)

)T

Using our previous notations, we de�ne the auto-covariance of action x at
lag τ in the frame feature space HF as:

Σ̂(x)
τ =

1

T
XXT

+τ where X+τ = [φF (x1+τ ) · · · φF (xT+τ )] (5.8)

xτ = (x1+τ , · · ·xT+τ ) is the shifted version of x and X+τ is the corresponding
time series representation in HF . Additionally, we de�ne the kernel matrix
K(xτ ) between frames of xτ .

Note, that this formulation assumes that our actions have zero mean
µ̂x = 1

T

∑T
t=1 φF (xt) = 0. This requires centering the frames in the feature

space HF . As our computations use only kernel matrices, we directly center
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them [Harchaoui et al. 2008, Shawe-Taylor and Cristianini 2004]:

K̃(x) = X̃T X̃ = ΠTK(x)ΠT , X̃ = XΠT , ΠT = IT −
1

T
1T1T

T (5.9)

where IT is the T × T identity matrix and 1T is the column vector of T ones.
ΠT is called the centering matrix, X̃ are the centered frames and K̃(x) is the
centered kernel matrix. In the following, we assume the series are centered in
the feature space and use the notations K(x) and X instead of K̃(x) and X̃.

We can compute the DACO kernel using only kernel matrices:

dDACO(x,y)2 = Tr
(
NTKNK+τ

)
(5.10)

= Tr
(

N(x)T

K(x)N(x)K(xτ )
)

+Tr
(

N(y)T

K(y)N(y)K(yτ )
)

−2 Tr
(

N(x)T

K(x,y)N(y)K(yτ ,xτ )
)

where K+τ is the (T + T ′)× (T + T ′) kernel matrix between all frames of the
shifted series xτ and yτ , and N is a matrix de�ned as:

N =

[

N(x) 0

0 −N(y)

]

, N(x) =
1

γ2T

(

γI−
(
T I + γ−1K(x)

)−1
K(x)

)

(5.11)

Proof. First, we recall that Σ̂(x) = 1
T
XXT and K(x) = XTX. We use the

Sherman-Morrison-Woodbury formula to develop the normalization factors:

(

Σ̂(x) + γI
)−1

=

(

γI + X
1

T
IXT

)−1

=
1

γ
I− 1

γ
X

(

T I +
1

γ
XTX

)−1

XT 1

γ

=
1

γ2

(
γI−XQ(x)XT

)
(5.12)

where Q(x) =
(
T I + γ−1K(x)

)−1
(5.13)

Using the fact that Σ̂
(x)
τ = 1

T
XXT

+τ , Equation 5.12 allows us to re-write the
auto-correlation as:

(

Σ̂(x) + γI
)−1

Σ̂(x)
τ = XN(x)XT

+τ (5.14)

where N(x) =
1

γ2T

(
γI−Q(x)K(x)

)
(5.15)
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We then compute the Hilbert-Schmidt norm of the di�erence between auto-
correlation operators by expanding it from the Hilbert-Schmidt inner product
(cf. Equation 5.6):

dDACO(x,y)2 =
∥
∥XN(x)XT

+τ

∥
∥

2

HS
+

∥
∥YN(y)YT

+τ

∥
∥

2

HS

−2
〈
XN(x)XT

+τ ,YN(y)YT
+τ

〉

HS
(5.16)

The Hilbert-Schmidt norm of the auto-correlation operator is computed from
the trace de�nition by:

∥
∥XN(x)XT

+τ

∥
∥

2

HS
= Tr

((
XN(x)XT

+τ

)T
XN(x)XT

+τ

)

= Tr
(

N(x)T

XTXN(x)XT
+τX+τ

)

(5.17)

= Tr
(

N(x)T

K(x)N(x)K(xτ )
)

(5.18)

where Equation 5.17 results from the fact that the trace of products is invari-
ant to circular permutations. The Hilbert-Schmidt inner product in Equa-
tion 5.16 is obtained using the same approach.

5.3.2 Advantages of the kernelized formulation

Our kernel is comparing time series using only between-frame kernel matri-
ces as described in Equation 5.10. Therefore, its complexity depends only
on the number of frames, instead of the number of dimensions of the frame
features space. Consequently, this results in large speed-ups. Indeed, even
when assuming the use of a linear kernel between frames, i.e., that the frame
feature space and the input space of �nite dimension d coincide, the complex-
ity of directly evaluating the DACO distance between two time series using
Equation 5.3 is in O(d3). This is to expensive to be useful in practice, as
frame representations are generally too high-dimensional, e.g., d = 4000 in
our experiments. However, computing the DACO distance using the kernel-
ized expression in Equation 5.10 leads to a much smaller complexity in O(T 3),
where T is the duration of an action, typically of the order of 100 frames.

Furthermore, Junejo et al. [2010] observed that the diagonal blocks of K

are matrices of �temporal self-similarities�. A self-similarity matrix has some
interesting properties for action recognition, namely its stability with respect
to view point changes and its action speci�c structure. However, Junejo et al.
[2010] propose to represent the structure of this matrix by viewing it as an
image described using HOG features. Instead, we show that these temporal
self-similarities are related to auto-correlation operators in the feature space
associated with a frame kernel.
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5.4 Experiments

In this section, we evaluate our approach using non-linear SVMs on standard
video benchmarks for action classi�cation. First, we introduce the datasets we
use. Second, we detail how we model frames and the base kernel between these
representations. Third, we describe how we combine a simple aggregation-
based kernel with our DACO kernel. Finally, we give the classi�cation results
of our approach, and compare it to related and state-of-the-art methods.

5.4.1 Datasets

As dynamic aspects of actions might not be useful to classify every type of
action, we investigate the use of our kernel on three state-of-the-art datasets.

The KTH dataset [Schüldt et al. 2004] is composed of six human action
categories: three similar displacement ones (walking, jogging and running)
and three others involving mostly arm motions (boxing, waving and hand-
clapping). See Figure 5.3 for an illustration. Note that these actions are
periodic. This dataset contains 2391 videos �lmed with four di�erent scenarios
but with homogeneous and static backgrounds (in most sequences). We use
the evaluation protocol of Schüldt et al. [2004]: accuracy averaged over all
classes, for a �xed train and test split.

Figure 5.3: Frames from the 6 action categories of the KTH dataset.
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The UCF Sports dataset [Rodriguez et al. 2008] contains ten human ac-
tions: bench swinging, diving, golf swinging, high-bar swinging, horse riding,
kicking, running, skateboarding, walking, and weight-lifting (cf. Figure 5.4).
It consists of 150 video samples that show a large intra-class variability. To
increase the amount of samples, the dataset is extended with horizontally
�ipped versions of each sequence. Videos of this dataset are of high resolution
and good quality. The evaluation metric is the average leave-one-out accuracy
(without considering the �ipped versions at test time).

Figure 5.4: Frames from the 10 action categories of the UCF Sports dataset.

The Youtube dataset [Liu et al. 2009] contains eleven action categories:
basketball shooting, biking/cycling, diving, golf swinging, horse riding, soccer
juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking,
and walking with a dog. See Figure 5.5 for an illustration. This dataset is
challenging due to large variations in camera motion, object appearance and
pose, object scale, viewpoint, cluttered background and illumination condi-
tions. Videos are of low resolution, contain shaky camera motion and actions
are characterized not only by motion but also by the objects involved and
the context in which they are performed. Performance is measured as in [Liu
et al. 2009] using �leave-one-group-out� average accuracy.

For all experiments, predictions are obtained by learning non-linear SVMs
with the standard �one-against-rest� multi-class approach.

Figure 5.5: Frames from 10 (out of 11) action categories of the Youtube dataset.
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5.4.2 Frame description and frame kernel

We use the state-of-the-art features recently proposed by Wang et al. [2011].
First, we compute densely sampled tracklets (local feature trajectories) from
the dense optical �ow �eld between frames. Then, we compute a concatena-
tion of trajectory-aligned local descriptors for each feature track. We use the
best descriptor reported in [Wang et al. 2011]: Motion Boundary Histograms
(MBH [Dalal et al. 2006], quantized spatial derivatives of the horizontal and
vertical components of the optical �ow). We use the same track and descrip-
tor parameters as the ones mentioned in [Wang et al. 2011], namely feature
tracks of 15 frames, with a dense sampling stride of 5 pixels.

We, then, represent each frame by a BOF. We compute a dictionary of
4000 �visual words� obtained with k-means clustering on a subset of 100,000
randomly sampled features (separately for each dataset). Each tracklet is
assigned to a visual word. Each frame is then modeled with the histogram
of occurrences of visual words corresponding to tracks passing through this
frame. This strategy implies that each tracklet votes for multiple frames. This
has a temporal smoothing e�ect, and makes our frame representations depend
on neighboring ones.

We obtain a video representation as a time series of per-frame BOF (cf.
Figure 5.6). In the rare cases where the histogram of a frame is empty, we
replace it by its linear interpolation obtained from neighboring frames. We
use the intersection kernel between histograms [Maji et al. 2008] as base ker-
nel between frames, as it provides a good compromise between accuracy and
computational e�ciency.

Figure 5.6: Actions as time series of per-frame BOF over dense tracklets.
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5.4.3 Combination with an aggregation-based kernel

In order to show the complementarity of our kernel with traditionally used
aggregation-based kernels, we combine DACO with the Di�erence between

Mean Elements (DME) kernel:

kDME(x,y) = exp

(

− 1

2σ2
dDME(x,y)2

)

,

where dDME(x,y) = ‖µ̂y − µ̂x‖HF
(5.19)

This kernel is simply using the di�erence between the means, µ̂x and µ̂y, of
the frames in the feature space HF . This is related to the traditional BOF
approach consisting of aggregating local descriptors computed over the entire
video sequence as in [Laptev et al. 2008, Wang et al. 2011], except that the
aggregation is performed in the feature space. In practice, the DME kernel is
computed using the same kernel matrix K (before centering) as DACO by:

dDME(x,y)2 = mTKm , m =
[

− 1

T
, · · · ,− 1

T
︸ ︷︷ ︸

T

,
1

T ′
, · · · , 1

T ′
︸ ︷︷ ︸

T ′

]T

(5.20)

In the following section, we report results for the DME kernel, the DACO
kernel, and the linear combination of the two noted �DME + DACO�. Note,
that in the latter case, a single mixing weight between DME and DACO is
cross-validated per dataset (instead of per-action).

5.4.4 Results

Table 5.1, Table 5.2, and Table 5.3 contain per-class and average classi�cation
accuracies on the three datasets described in Section 5.4.1. We compare our
approach to our implementation of a bag-of-features (BOF) baseline over MBH
descriptors of tracklets, the state of the art, and the related works.

First, the good performance of DACO on the simple KTH dataset con-
�rms that comparing auto-correlation operators is a valid approach for action
recognition. Indeed, both our DACO kernel and the DME+DACO combina-
tion achieve a performance above 93%, which is comparable to most of the
recently published results. Our approach is only outperformed by Sun et al.
[2011] on the KTH dataset. Interestingly, they also rely on self-similarity
information, but at a local level. Note, however, that we outperform their
approach by +3.4% on the UCF Sports.

Second, we can see that the simple combination of the aggregation-based
DME kernel and our auto-correlation-based DACO kernel achieves comparable
or better performance than the state of the art. We, indeed, improve by +0.2%

on UCF Sports and by +3.7% on the Youtube dataset.
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classes DME DACO DME+DACO

boxing 100 100 100

handclapping 97.9 92.4 97.9

handwaving 92.4 91.7 91.7

jogging 95.8 92.4 94.4

running 80.6 84.0 85.4

walking 100 100 100

Schüldt et al. [2004] 71.7

Laptev et al. [2008] 91.8

Niebles et al. [2010] 91.3

Brendel and Todorovic [2010] 94.2

Sun et al. [2011] 100

Wang et al. [2011] 94.2

BOF 94.8

DME 94.4

DACO 93.4

DME+DACO 94.9

Table 5.1: Accuracy on the KTH dataset [Schüldt et al. 2004].

classes DME DACO DME+DACO

bench 100 95.0 100

diving 100 100 100

golf 94.4 88.9 88.9

high bar 100 92.3 100

horse riding 75.0 83.3 75.0

kicking 85.0 100 100

running 53.8 69.2 76.9

skateboarding 66.7 50.0 66.7

walking 95.5 95.5 95.5

weightlifting 100 100 100

Rodriguez et al. [2008] 69.2

Wang et al. [2009] 85.6

Kläser et al. [2010a] 86.7

Kovashka and Grauman [2010] 87.27

Weinland et al. [2010] 90.1

Le et al. [2011] 86.5

Sun et al. [2011] 86.9

Wang et al. [2011] 88.2

BOF 86.5

DME 87.0

DACO 87.4

DME+DACO 90.3

Table 5.2: Accuracy on the UCF Sports dataset [Rodriguez et al. 2008].

classes DME DACO DME+DACO

basketball 66.7 51.4 72.5

biking 92.4 82.1 91.7

diving 98.1 95.5 98.1

golf 96.5 95.1 95.1

horse riding 88.3 84.8 90.4

soccer 84.0 80.1 84.6

swinging 86.9 87.6 86.9

tennis 79.6 66.5 82.0

trampoline 92.4 89.9 95.8

volleyball 94.0 85.3 94.0

walking a dog 74.8 52.0 75.6

Liu et al. [2009] 71.2

Ikizler-Cinbis and Sclaro� [2010] 75.21

Brendel and Todorovic [2010] 77.8

Le et al. [2011] 75.8

Wang et al. [2011] 84.2

BOF 84.4

DME 86.7

DACO 79.1

DME+DACO 87.9

Table 5.3: Accuracy on the Youtube dataset [Liu et al. 2009].
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Third, our experimental results suggest that the DME and DACO kernels
complement each other for the purpose of action recognition. Their combina-
tion, indeed, improves performance with respect to just using one of the two
kernels. Although the average improvement with respect to DME on the KTH
dataset is small (+0.5%), it is more pronounced on the Youtube (+1.2%) and
the UCF Sports (+3.3%) datasets. The actions that bene�t the most from
this combination are:

• the running actions from both the KTH (+4.8% w.r.t. DME, +1.4%

w.r.t. DACO) and the UCF Sports (+23.1% w.r.t. DME, +7.7% w.r.t.

DACO) datasets, which have discriminative dynamics (DACO alone out-
performs DME by +3.4%, resp. +15.4%, on KTH, resp. UCF sports);

• the basketball shooting action from the Youtube dataset (+5.8% w.r.t.

DME, +21.1% w.r.t. DACO), which is the most di�cult category of
Youtube (it has the lowest accuracy with DME), and, therefore, the
largest margin for improvement.

Actions that are not improved by the combination of DME and DACO include:

• jogging from KTH (−1.4% w.r.t. DME), whose global temporal struc-
ture is similar to both the running and walking actions;

• the gol�ng actions (−5.5% w.r.t. DME on UCF Sports, −1.4% w.r.t.

DME on Youtube), which are characterized by the fast local movement
of a golf club instead of the temporal dependencies between frames.

• horse riding from UCF Sports (−8.3% w.r.t. DACO), which has a strong
temporal structure (DACO alone outperforms DME by +8.3%);

Individually, the averaging DME kernel tends to outperform our dynamics-
based DACO although not on all classes. Indeed, the average accuracies of
DME and DACO on the UCF Sports are comparable (cf. Table 5.2). In addi-
tion, some actions are clearly better recognized based on their dynamics (e.g.,
kicking and running). This can be qualitatively assessed by looking at Fig-
ure 5.7 and Figure 5.8. On the one hand, Figure 5.7 displays the kernel matrix
K containing the similarities between the frames of two actions from the same
kicking category. The diagonal blocks are the temporal self-similarities K(x)

and K(y) of the two actions. They clearly share similar temporal dependency
patterns. The DACO distance between these videos (0.86) captures this struc-
ture information and is smaller than the DME distance (1.31). On the other
hand, Figure 5.8 also contains a kernel matrix K, but for two di�erent actions:
walking and golf swing. In this case, the discrepancy between the two videos
is better captured by DACO with a distance of 2.15, which is larger than the
one obtained by DME (0.52).



5.4. EXPERIMENTS 105

Figure 5.7: Example of kernel matrix K (cf. Eq. 5.7) between the frames of two
similar kicking actions with a small DACO distance (0.86).

Figure 5.8: Example of kernel matrix K (cf. Eq. 5.7) between the frames of a
walking and gol�ng actions with a high DACO distance (2.15).
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However, most categories are better described by their average local motion
statistics, especially on Youtube videos. The results of DACO on this dataset
(−7.6% w.r.t. DME on average) could be explained by the longer duration
of actions in this dataset (approximatively 160 frames on average) compared
to the duration of actions in UCF Sports (around 60 frames on average).
This suggests that DACO is more suited to short duration, fast actions and
is explained by: (i) the small value of the lag we use (τ = 1 frame), (ii)
the di�culty to estimate long range temporal dependencies between frames of
non-periodic actions, and (iii) longer actions are less likely to be stationary, as
they contain more di�erent motions. This suggests a possible improvement of
our method by applying the DACO kernel in a temporally localized manner,
in order to detect correlated components with a strong temporal structure.

Finally, it seems from our results that the mixing weight between DME and
DACO should be optimized independently per binary classi�cation problem in
our one-against-rest strategy, instead of jointly over all categories. As stated
previously, some actions are, indeed, better characterized by their dynamics,
while others are better modeled using average statistics.

5.4.5 Comparison with other kernels on time series

We performed additional experiments with alternative time series kernels and
compared their performance to DACO.

Di�erence between auto-covariances

First, we measured the importance of using the auto-correlation over just the
auto-covariance. To that end, we compared DACO with a kernel using the
Hilbert-Schmidt norm of the auto-covariance operators Σ̂

(x)
τ , instead of the

auto-correlations ρ̂
(x)
τ =

(

Σ̂(x) + γI
)−1

Σ̂
(x)
τ (Equation 5.1), where Σ̂(x) is the

covariance operator. Using the same notations as in Section 5.3 and a similar
proof to the one of Equation 5.10, we obtain:

∥
∥
∥Σ̂(y)

τ − Σ̂(x)
τ

∥
∥
∥

2

HS
=

1

T 2
Tr

(
K(x)K(xτ )

)
+

1

T ′2
Tr

(
K(y)K(yτ )

)
(5.21)

− 2

TT ′
Tr

(
K(x,y)K(yτ ,xτ )

)

Note that this expression is similar to the one for DACO in Equation 5.10,
but without the normalization matrix N (Equation 5.11). We found that
replacing auto-correlations with auto-covariances yields a noticeable decrease
in recognition performance for all actions and across all datasets: −2% on
KTH, −6% on UCF Sports, −1% on Youtube. Therefore, normalizing by the
covariance of the series allows for more meaningful inter-series comparisons.
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Di�erence between auto-regressive models

Second, instead of using auto-correlation operators, we can directly model an
action's temporal dependencies through an auto-regressive (AR) model in the
RKHS HF associated with the frame kernel:

φF (xt) =

p
∑

i=1

W
(x)
i φF (xt−i) + ut (5.22)

where p is the order of the AR model, W
(x)
i are operators in HF , and ut is

a white noise process. Note that this assumes that the action x is station-
ary and centered in the feature space (like with DACO). This model can be
used to predict (linearly in the feature space HF ) a frame xt from the pre-
ceding p frames by using the predictive codings W

(x)
i . These operators can be

obtained by �tting the AR model of x in Equation 5.22 using kernel ridge re-
gression [Shawe-Taylor and Cristianini 2004], i.e., by minimizing the following
cost with respect to the predictive codings W

(x)
i :

1

T − p

T∑

t=p+1

∥
∥
∥
∥
∥
φF (xt)−

p
∑

i=1

W
(x)
i φF (xt−i)

∥
∥
∥
∥
∥

2

HF

+
λ

p

p
∑

i=1

∥
∥
∥W

(x)
i

∥
∥
∥

2

HF

(5.23)

where λ is a regularization parameter. Solving the dual of this problem leads
to the dual predictive codings A(x):

A(x) = X
(
S(x) + λ′ IT−p

)−1
(5.24)

where λ′ = λ(T − p)p−1 and S(x) is a kernel matrix between the sub-series of
length p of action x:

{(xt−p, · · · , xt−1) , t = p + 1, · · · , T} .

As the order p of the AR model is �xed, we use a simple frame alignment
kernel, which yields:

(
S(x)

)

t,t′
=

1

p

p
∑

k=1

kF (xt−k, xt′−k) (5.25)

where kF is the previously de�ned frame kernel (Section 5.3). Note that the
kernel matrix S(x) de�ned in Equation 5.25 can be obtained from the between-
frames kernel matrix K by simply convolving it with the identity Ip.
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We investigated an auto-regressive kernel based on the Hilbert-Schmidt
distance between the dual predictive codings A(x) and A(y) of two actions
x and y. Directly from the de�nition of the Hilbert-Schmidt norm (Equa-
tion 5.4) and from Equation 5.24, we obtain:

dAR(x,y)2 =
∥
∥A(y) −A(x)

∥
∥

2

HS
= Tr

(
LTK|pL

)
(5.26)

where K|p is the kernel matrix between the frames of the series x and y

truncated of their �rst p frames, and L is de�ned as:

L =

[

L(x)

−L(y)

]

, L(x) =
(
S(x) + λ′ IT−p

)−1
(5.27)

This distance compares dynamics explicitly modeled by the dual AR coef-
�cients obtained with Equation 5.24. Equation 5.26 shows that it is related to
DACO � AR models, indeed, share strong connections with auto-correlations
� and that it also relies only on the kernel matrix K of frame similarities.
Nevertheless, their practical formulation di�er, and we observed that, in most
cases, DACO outperforms the auto-regressive kernel based on the distance
in Equation 5.26. Indeed, although this kernel obtains the highest accuracy
(93.5%) on the short actions of the UCF sports dataset, it only reaches 86.5%

on KTH (−6.9% w.r.t. DACO) and 55.1% on Youtube (−24% w.r.t. DACO).
These results suggest that DACO is more robust to the violation of the sta-
tionarity assumption, and, thus, applicable to a wider range of actions.

Global alignment kernel

Finally, we evaluated recognition results with the global alignment kernel
of Cuturi [2011], which extends the well-known Dynamic Time Warping algo-
rithm by computing the soft-max of all possible alignments. It obtained the
average accuracy of 90.1% on the UCF Sports dataset, which is comparable to
the DME+DACO combination. This good performance can be explained by
the fact that actions of the same category tend to be of very similar duration
and time-synchronized in this dataset. However, the good performance of this
alignment kernel did not transfer to the other datasets where it obtained a
much lower performance than DACO (70.2% on KTH, 57.6% on Youtube).
Two factors can explain these results. First, the videos in these datasets are
clearly not synchronized, and there is a signi�cant intra-class duration vari-
ability. Second, some pairs of categories, e.g., running and jogging in KTH,
can be aligned in spite of their di�erences.
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5.5 Conclusion

We introduced a new kernel on videos, theDi�erence between Auto-Correlation

Operators (DACO) kernel, speci�cally designed for action recognition. It com-
pares the dynamics of actions, represented as time series of frames, by using
a distance between auto-correlations. It can be e�ciently computed using
only inner products between frames. We show that, even if not all actions
exhibit characteristic temporal relationships between frames, the dynamic
information extracted by auto-correlations can complement state-of-the-art
distribution-based kernels that average visual information over frames.





Chapter 6

Conclusion

Our work investigated structured collections of local spatio-temporal features

in order to build action models that are both accurate and robust to real-
world video conditions. Our experiments suggest that recognition performance
on challenging video sources can be improved by bridging the gap between
rigidly structured global representations and orderless aggregations of local
descriptors. This dissertation has presented several structured models adapted
for the recognition of both simple actions and more complex activities in
uncontrolled scenarii.

In the following, we summarize our key contributions and the main ob-
servations derived from our experiments (Section 6.1). We also indicate some
potential research directions that we deem interesting for future work on ac-
tion recognition in real-world videos (Section 6.2).

6.1 Summary of contributions

Action detection with Actom Sequence Models

Our �rst contribution is a temporally structured extension of bag-of-features

for the task of action localization in long, real-world, unsegmented videos.
We studied the decomposition of an action into a �exible sequence of mean-
ingful temporal parts termed actoms, and proposed a robust representation
called the Actom Sequence Model. We also introduced a �exible model of the
temporal structure of an action. Relying on this generative model, we pro-
posed a sliding-central frame detection approach, which is more principled and
more accurate than traditional sliding window techniques. We validated our
approach on movie data, showing that our method outperforms both unstruc-
tured and rigidly structured models, thanks to its �exibility and robustness.
In addition, our experiments highlighted that marginalizing over a learned
prior of the temporal structure signi�cantly improves upon traditional multi-
scale sampling heuristics, even in a typical sliding window context where the
structure is simply the action's temporal extent.

111
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Activities as cluster-trees of tracklets

Our second contribution pertains to the modeling of complex activities using
tree-structured video representations. We proposed a large-scale divisive spec-
tral clustering algorithm able to automatically organize a collection of dense
tracklets, i.e., local point trajectories. Our algorithm organizes the motion
content of a video in a hierarchical representation, called cluster-tree. Con-
trary to existing methods, we neither select an arbitrarily �xed number of
spatio-temporal parts (nodes in the cluster-tree), nor build a global model
of a category such as its average cluster-tree. Instead, we use the full de-
composition of a video to represent an action with nested histograms forming
our BOF-Tree model. We introduced a kernel that can e�ciently compare
the content of two unordered binary trees of variable sizes by relying on the
inclusion relations encoded by the tree's edges. We conducted experiments
on challenging benchmarks for activity recognition and showed that our non-
linear classi�er on per-video hierarchies yields state-of-the-art results, improv-
ing upon structured learning methods and latent part models. We also showed
that our clustering algorithm yields more discriminative decompositions than
unrelated clusters obtained by k-means and spectral clustering, as well as
decompositions from other hierarchical clustering algorithms.

Modeling action dynamics

Our third contribution consists in studying how action dynamics can com-
plement the state-of-the-art models relying on average statistics about local
features. We proposed to represent actions as time series of frame descriptors,
and described a model of an action's temporal dependencies over time: the
auto-correlation operator in a frame feature space. In addition to its statistical
properties, we also motivated the choice of this operator as a model of action
dynamics by showing its connection with temporal self-similarities. We for-
mally derived this connection from the dual expression of the Hilbert-Schmidt
distance between the auto-correlation operators of two actions. Furthermore,
we relied on this dual formulation in order to provide an e�cient kernel, called
the Di�erence between Auto-Correlation Operators (DACO) kernel. It com-
pares action dynamics by computing the similarity between the respective
auto-correlation operators of two actions. In order to evaluate our approach,
we conducted experiments on a variety of datasets, ranging from short simple
periodic actions to complex ones in Youtube videos. In all cases, we showed
that the performance of methods averaging over frames is improved by the
combination with our kernel on dynamics. This emphasized that, for action
recognition, comparing content structure (e.g., an action's temporal depen-
dencies) is complementary with comparing the contents themselves.
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6.2 Perspectives for future research

In this section, we give some possible extensions of our work, which are sug-
gested by our experiments and the recent progress of the computer vision and
machine learning �elds.

6.2.1 Extensions of ASM

A �rst improvement of our ASM model and of our sliding central frame ap-
proach consists in adapting them for the task of spatio-temporal localiza-

tion, i.e., returning a temporal window and a sequence of bounding boxes
around the actors performing the action of interest. In order to localize when
and where an action is performed, one could apply the temporal localization
approach in Chapter 3 inside tracks obtained by pre-trained human and ob-
ject detectors [Kläser et al. 2010a,b, Prest et al. 2011]. As mentioned above,
instead of independently localizing �rst and then classifying, one could jointly
model spatio-temporal structure and appearance, for instance with the de-
formable part model of Felzenszwalb et al. [2010]. One of the main di�culties,
however, lies in how to incorporate geometrical aspects while maintaining the
robustness of our models under real-world video conditions, especially when
facing strong and time-varying viewpoint variations, or in the presence of oc-
clusions. Poselets [Bourdev and Malik 2009] are an interesting approach to
handle the aforementioned challenges in static images. These pre-trained de-
tectors of local 3D poses have successfully been applied to action recognition
in static images [Maji et al. 2011]. Building on these ideas and our work on
actoms, one could design detectors of �actionlets�, i.e., iconic local dynamic
poses, which encode more information than just motion, e.g., the nature of
the moving object or body part.

In Chapter 3, ASM models rely on a �xed number of actoms per cat-
egory. This limitation needs to be removed and our approach extended in
order to handle sequence models with a variable number of parts.
Allowing action examples of the same category to have di�erent numbers of
actoms is, indeed, likely be necessary in order to model a wide range of ac-
tions, e.g., due to temporal occlusions, intra-class variability, or di�erences
between annotators on how to decompose the action. Comparing sequences
with di�erent numbers of actoms while preserving temporal ordering can be
done by relying on dynamic programming strategies, e.g., by adapting string
kernels to compute an �actom edit distance�, or with the Global Alignment
Kernel [Cuturi et al. 2007]. One can also use the Fisher kernel [Jaakkola and
Haussler 1999] with respect to a sequential generative model, e.g., a HMM,
in order to obtain a �xed-length representation based on a �xed number of
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hidden states. In addition, estimating the variable-sized temporal structure of
an action requires a more complex probability distribution than a histogram
on inter-actom distances as done in Chapter 3. A straightforward extension
of our approach would consist in using two temporal distributions instead:
one for the number of temporal parts, and another conditional distribution on
the actom placements knowing the number of actoms. However, this makes
strong independence assumptions that may not hold in practice. Ideally, both
the content, the number, and the positions of the actoms should be estimated
jointly, instead of independently as done in Chapter 3. This is of particular
importance when aiming to detect multiple actions simultaneously.

Weakly supervised training. In Chapter 3, we demonstrated that ac-
tion models can be signi�cantly improved by learning from a meaningful man-
ually labeled decomposition instead of just a temporal window. This supervi-
sion has, however, a cost that needs to be minimized in order to scale up to a
large number of action categories. In addition to semi-supervised learning ap-
proaches, a promising direction of research consists in automatically re�ning
inaccurate annotations (also called weak supervision) coming from cheap or
readily-available additional sources of information, e.g., transcripts of movies
and TV shows [Gaidon et al. 2009, Laptev et al. 2008]. Promising results have
been obtained in order to re�ne temporal extent using discriminative meth-
ods [Duchenne et al. 2009, Satkin and Hebert 2010]. These approaches could
be generalized to infer latent actom locations from rough temporal extent an-
notations. Note that the approach of Duchenne et al. [2009] shares several
similarities with recent approaches for image co-segmentation. For instance,
Joulin et al. [2012a] rely on multiple images and their global category labels
as weak supervision for segmentation via discriminative clustering. There-
fore, one could adapt the related weakly supervised learning algorithms (e.g.,
[Joulin et al. 2012b]) in order to infer the latent spatio-temporal structure of
actions from a set of loosely labeled videos.

6.2.2 Extensions of BOF-Trees

Our tree model of activities only accounts for inclusions between parts from
a cluster-tree. This could be improved by modeling more complex struc-

tural relations between motion parts, e.g., spatial, temporal, and hier-
archical relations as in [Brendel and Todorovic 2011]. However, de�ning an
overly complex latent structure leads to di�culties in learning and inference,
which eventually results in sub-optimal performance. Indeed, the additional
�exibility in the latent variables makes the parameter space too vast for it to be
e�ciently explored, and may lead to over�tting. Overcoming these issues �
e.g., by �nding a good compromise between unconstrained structure learning
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and �xed decompositions � will improve recognition, thanks to the discrimi-
native learning of the model, while ensuring greater robustness to real-world
videos by modeling the uncertainty in the structure of the decompositions.

Instead of only learning the parts, our decomposition method described
in Chapter 4 could be improved by also modeling the latent importance

of each part for a category. Our tree structure is, indeed, obtained without
using the action category information. Furthermore, all nodes are treated
equivalently in our ATEP kernel (Section 4.3.3), whereas some sub-trees might
be unrelated to the action of interest (e.g., background motion). So far, these
extraneous sub-trees are treated as noise, which is handled by the robustness
of our kernel thanks to its averaging e�ect. Our method could be improved
by taking a more explicit approach and learning category-speci�c importance
of sub-trees based on their content, structure, and position in the cluster-tree.
Node-speci�c importance factors can, indeed, be directly integrated in our
ATEP kernel as simple multiplicative weights in the edge-to-edge comparisons.
These weights could be learned by treating the importance of each node as
a latent variable, and using adequate inference mechanisms. As mentioned
previously, jointly co-clustering actions from the same category or from all
categories at the same time could be used to leverage category labels in order
to obtain better activity decompositions. Note that such part-based weighting
might also be applicable to actoms, as some temporal parts are more important
than others (e.g., the middle actom in our ASM models).

Finally, another extension consists in adapting our method to allow for
spatio-temporal localization within BOF-Trees. The approach described
in Chapter 4 is, indeed, speci�cally tailored for videos focusing on a single ac-
tivity. When the video is only temporally segmented and contains several
co-occurring activities, we can adapt our method to operate only on parts of
the video by individually matching sub-trees instead of comparing the whole
cluster-trees. In addition to existing e�cient sub-tree matching algorithms
(cf. [Valiente 2002]), we could also adopt a greedy coarse-to-�ne match-
ing approach in order to speed up computations. By relying on the additive
property of BOF-Trees, we can indeed, approximate a sub-tree by its top-level
(root, child) edge, as done in our ATEP kernel (Section 4.3.3). Therefore, we
could match only the edges of BOF-Trees, and traverse the tree in a top-down
fashion akin to a branch-and-bound strategy.

Applying our method to long video streams as those studied in Chapter 3
is, however, less straightforward. Indeed, as we build our tree using a divisive
top-down strategy, our approach assumes that all tracklets are available at
once. Therefore, it seems that our clustering algorithm must be preceded by
an on-line temporal segmentation strategy � e.g., using a shot detector for
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edited videos such as movies, or a more generally applicable change point
detection algorithm such as [Harchaoui et al. 2009] � in order to �rst �nd
the roots of the cluster-trees to be built.

6.2.3 Extensions of DACO

Combining DACO with ASM. As suggested by our experiments in Chap-
ter 5, our DACO kernel is particularly suited to short actions, and improves
the performance of aggregation-based kernels. Therefore, we could improve
the actom-to-actom comparisons in ASM by not only computing the similarity
between actom contents, but also by comparing their dynamics using DACO.
Indeed, the shorter duration of actoms means that they can be considered as
almost stationary time-series of frames. Furthermore, the per-frame weights
derived from the actom models can be directly integrated in DACO by weight-
ing the projections of the per-frame BOFs in the RKHS associated with the
frame kernel.

Short-time DACO. As our results on the Youtube dataset seem to in-
dicate (cf. Section 5.4.4), the main limitation of our DACO kernel pertains
to its stationarity assumption, which is often violated for long and complex
actions. Therefore, a natural extension of our approach consists in comput-
ing a short-time version of DACO, e.g., by successively convolving the frames
with a temporal Gaussian window of a short duration. Shorter time series
can indeed be considered as almost stationary, as there is simply less observa-
tions to notice a signi�cant change in the distribution of frames. The problem
with this approach, however, is that the dynamics of the series is modeled
by a sequence of local auto-correlation operators instead of single global one.
Consequently, another sequence kernel must be used in order to pool the local
window-to-window comparisons obtained with DACO. Note that applying this
idea to compute a windowed version of the auto-regressive kernel described
in Section 5.4.5, results in an interesting representation of the video signal,
which shares similarities with the linear predictive codings that are widely
used in audio and speech processing.

Time series analysis of actions. Most of the tools built to analyze time
series are designed for univariate data such as audio signals or the evolution
of stock prices. Videos, however, rely on high-dimensional representations.
Therefore, the analysis of their temporal properties � e.g., periodicity � re-
quires di�erent techniques adapted to these complex multivariate signals. For
instance, Cutler and Davis [2000], more than a decade before us, used time-
frequency analysis on temporal self-similarities to detect periodic motion. In
Chapter 5, we showed that the auto-correlation operator in a frame RKHS
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is a mathematical object that can be used as a proxy to study the tempo-
ral properties of actions. We believe that this formal framework, although
embryonic, can pave the way for more sophisticated analysis of actions by
generalizing the numerous tools that already exist for such tasks in univariate
settings such as in �nance, or speech and audio processing. For instance, we
could extend the notion of correlogram to build an �action correlogram� by
using the Hilbert-Schmidt norm of the auto-correlation operator in order to
measure the randomness of an action, e.g., for abnormal behavior detection.
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Annexe A

Résumé

Les quatre sabots d'un cheval au galop se retrouvent-ils à un moment donné
tous en l'air ? La réponse à cette question est souvent considérée comme la pre-
mière étape du développement de la vidéo. En 1872, le photographe Eadweard
Muybridge fut chargé par Leland Stanford de donner une réponse dé�nitive à
cette question longtemps débattue. A cette allure � environ 58 kilomètres par
heure, soit 36 miles par heure � les sabots d'un cheval sont trop rapides pour
permettre à l'oeil humain de les suivre : une preuve scienti�que basée sur
la photographie était nécessaire pour répondre. Après plusieurs expériences
préliminaires, Muybridge apporta une réponse a�rmative à la question, avec
sa célèbre étude "Sallie Gardner at a Gallop" (cf. Figure A.1). La principale
di�culté fut d'élaborer une installation capable de prendre une succession
d'images capturant les détails du mouvement malgré sa vitesse. Muybridge
réussit à prendre une série de photographies le 19 juin 1878, à la ferme de
Stanford à Palo Alto, en plaçant 24 appareils photo le long de la piste. L'ob-
turateur de chaque appareil était déclenché par un �l de détente au passage
du cheval.

Ce travail fut un prélude au développement de l'analyse visuelle du mouve-
ment, qui consiste à étudier les propriétés visuelles des systèmes dynamiques,
comme les �uides et les humains, de manière scienti�que et précise. Le tra-
vail de Muybridge montra que l'évolution de la photographie permettait de

Fig. A.1: Étude de Muybridge "Sallie Gardner at a Gallop" qui prouva qu'à un
moment donné, les quatre sabots d'un cheval au galop sont tous en l'air.
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Fig. A.2: "The Human Body in Action", Etienne-Jules Marey, 1914.

prendre une succession d'images a�n de de décrire une scène dynamique réa-
liste. Les séquences d'images � comme les chronographes d'Etienne-Jules
Marey de la Figure A.2 � permettent aux scienti�ques d'analyser les mouve-
ments complexes, tels que les actions, en regardant l'évolution temporelle des
acteurs et des objets participant.

Le développement de l'analyse vidéo est indissociable du progrès des appa-
reils d'enregistrement et de projection. Pendant longtemps, un grand nombre
d'appareils permettaient de montrer des mouvements à partir de séries de
dessins. Ces appareils se basent sur l'illusion d'optique � découverte en 1912
par Max Wertheimer � appelée �Beta mouvement�, par laquelle le cerveau
combine une succession d'images �xes pour former une impression de mouve-
ment. Le Zoetrope � �roue de la vie� en grec � est un exemple d'un dispositif
populaire produisant l'illusion de mouvement à partir d'une succession rapide
d'images placées à l'intérieur d'un cylindre tournant muni de fentes verticales
jouant le rôle d'obturateur.

Les premiers vidéo-projecteurs combinaient les mêmes idées avec les pro-
grès de la photographie � attribués à Daguerre and Niépce (1839). Par
exemple, Muybridge inventa le premier projecteur de �lm � le Zoopraxi-
scope (1879) � dans le but de présenter ses photographies "stop-action". Cet
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appareil reposait sur la projection rapide d'une succession d'images depuis des
disques en verre tournants. Peu après, Auguste et Louis Lumière brevetèrent
le Cinématographe � à la fois caméra, projecteur et révélateur de �lm � en
1895 et commencèrent à produire les tous premiers �lms jamais réalisés.

Depuis lors, la vidéo est devenue un des médias les plus populaires pour la
communication et le divertissement. En 2010, 441 milliards de vidéos étaient
accessibles en ligne, ce qui correspond approximativement à 1021 pixels1.

En 2011, le site web YouTube avait plus de mille milliards de vues, et plus
de 800 millions de visiteurs uniques regardaient plus de 3 milliards d'heures
de vidéos par mois. La création de contenu est également en pleine explosion,
avec une nouvelle heure de vidéo mise en ligne sur YouTube chaque seconde2.
Fin 2012, la vidéo représentera plus de 50% du tra�c internet, avec un taux
de croissance annuelle de 48%3.

La vidéo comprend un large éventail de sources et d'applications : la vi-
déosurveillance, le contrôle industriel, la robotique (comme les véhicules au-
tonomes), la domotique, les systèmes d'interaction homme-machine, les jeux
vidéo (comme le Kinect de Microsoft pour la console de jeux Xbox), les plate-
formes de contenu internet (comme YouTube et DailyMotion), les séries TV
et les �lms.

Le but commun à toutes ces applications est de capturer et transmettre les
informations visuelles d'une scène réaliste sur une certaine période de temps.
Le principal challenge auquel les utilisateurs de ces technologies font actuel-
lement face est de trouver le contenu qu'ils recherchent parmi la quantité
massive de données disponibles. En raison de l'énorme quantité de vidéos
existantes, répondre à cette question nécessite des outils pour automatiser
l'analyse, l'indexation et l'organisation de leur contenu.

Notre travail se concentre sur la reconnaissance d' actions, l'une des in-
formations visuelles les plus présentes dans les données vidéo. La vision par
ordinateur a fait récemment des progrès signi�catifs dans le domaine de la
reconnaissance d'actions � notamment pour des tâches particulières comme
la vidéosurveillance. Néanmoins, les méthodes de l'état de l'art actuel sont
encore loin de pouvoir comprendre toute action dans n'importe quel type de
vidéo. Ceci peut être mesuré par la faible performance des systèmes impliqués
dans la tâche Multimedia Event Detection (MED) de TRECVID [Smeaton
et al. 2006] � une compétition d'interprétation automatique de vidéo. Pour
l'édition de 2011 [Over et al. 2011], les systèmes soumis avaient une moyenne
de 6% de faux positifs, avec 54% de détections manquées, sur des actions
simples telles que �préparer un sandwich� et �brosser un animal�.

1http://www.comscore.com
2http://www.youtube.com/t/press_statistics
3http://www.cisco.com

http://www.comscore.com
http://www.youtube.com/t/press_statistics
http://www.cisco.com
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Fig. A.3: Exemples d'actions tirées de vidéos de la base �Hollywood 2� [Marszalek
et al. 2009] utilisé dans nos expériences.

A.1 Objectifs

L'objectif de notre travail est de reconnaître des actions génériques ef-
fectuées dans des vidéos réalistes (cf. Figure A.3 pour une illustration). Nous
avons pour but de concevoir des modèles robustes, capables de représenter une
grande variété de catégories d'actions, tout en tenant compte de la variabilité
visuelle de vidéos réalisées dans des conditions non contrôlées.

La reconnaissance d'actions en conditions non contrôlées fait face à de
nombreuses di�cultés inhérentes à la complexité des actions et des vidéos.

Plusieurs challenges sont liés à la variabilité intra-classe : les actions
d'une même catégorie peuvent di�érer signi�cativement en terme d'apparence
et de mouvement. Les sources de variation incluent le bruit, les conditions
d'éclairage, l'échelle et la forme des entités participantes, le fouillis de l'arrière-
plan, le large éventail de points de vue possibles, les occlusions, les mouve-
ments rapides, complexes et articulés, le �ou du mouvement, le mouvement de
la caméra, la variabilité de durée, et le style d'exécution. À cause de ces varia-
tions, les modèles d'action peuvent di�cilement se reposer sur des hypothèses
simpli�catrices, comme par exemple supposer que la totalité du corps des ac-
teurs est toujours entièrement visible. Nous tenons compte de cette variabilité
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en utilisant des caractéristiques locales robustes, et en capturant des proprié-
tés structurelles des actions qui sont essentielles à leur reconnaissance. Un
autre ensemble de challenges résulte de la confusion entre classes. En e�et,
la distinction est souvent subtile entre des actions de classes di�érentes. Les
actions courir et marcher partagent par exemple des mouvements similaires.
Une analyse minutieuse du mouvement est donc nécessaire pour distinguer ces
deux catégories. La modélisation précise des spéci�cités d'une action est par-
ticulièrement importante en conditions non contrôlées, où un algorithme de
reconnaissance doit distinguer les actions intéressantes parmi tous les autres
événements possibles. Une fois encore, nous nous attaquons à ce problème
en utilisant la structure des actions pour construire et comparer des modèles
d'action plus détaillés.

La reconnaissance d'actions comprend deux tâches principales : la classi-
�cation et la localisation. D'une part, la classi�cation a pour but d'assigner
une étiquette sémantique à une vidéo focalisée sur une action. D'autre part,
l'objectif de la localisation est de proposer une étiquette sémantique ainsi que
son étendue spatio-temporelle, pour des vidéos pouvant contenir plus d'une
action. En pratique, ces deux problèmes sont étroitement liés, dans la mesure
où les méthodes de localisation consistent souvent à appliquer un classi�eur à
di�érentes positions a�n de déterminer les plus probables. Dans les deux cas,
nous reconnaissons des catégories d'action, et nous étudions des algorithmes
d'apprentissage supervisé pour résoudre ces problèmes : étant donné une liste
de catégories d'actions, nous apprenons un modèle en utilisant des exemples
de vidéos correspondant à chaque catégorie.

Comme dit précédemment, nous supposons qu'une action est caractérisée
par des relations spatio-temporelles entre sous-événements. Nous a�rmons et
véri�ons expérimentalement qu'extraire cette information structurelle � et
notamment les structures temporelles � est particulièrement important pour
la reconnaissance d'action, a�n d'être robuste aux conditions non contrôlées
des vidéos, et de pouvoir lever l'ambiguïté entre des catégories similaires. Notre
objectif principal est d'apprendre de meilleurs modèles d'action en découvrant
et en utilisant cette structure. La di�culté majeure repose sur comment iden-
ti�er, représenter et intégrer avec des techniques d'apprentissage statistique,
les aspects structurels pertinents d'une action. Nous étudions di�érentes pos-
sibilités : des séquences d'actions atomiques, des décompositions hiérarchiques
du mouvement, et des dépendances temporelles entre images.
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Fig. A.4: Image du �lm de Jackie Chan �The Legend of Drunken Master�. Cette
image seule ne su�t pas pour comprendre le contenu de la scène. Il
est nécessaire de considérer l'évolution temporelle des di�érents acteurs
pour pouvoir déterminer qu'il s'agit d'une scène de combat dans laquelle
le personnage central est attaqué alors qu'il boit du vin à la bouteille.

A.2 Contexte

La compréhension automatique de vidéos est un objectif fondamental de la
vision par ordinateur. Comme mentionné précédemment, les actions contiennent
des informations indispensables à la compréhension d'une scène visuelle dyna-
mique telle que celle décrite dans la Figure A.4. En e�et, même si les actions
de certains personnages peuvent être déduites de cette seule image, il est plus
di�cile de déterminer ce que fait la personne au centre. La nature des objets
et la pose des acteurs sont di�ciles à comprendre et ne permettent pas � par
eux-mêmes � de déterminer quelles actions sont réalisées : il est nécessaire
d'utiliser l'information de mouvement sur une séquence d'images. De plus, il
est nécessaire d'analyser les relations entre ces mouvements pour reconnaître
qu'il s'agit d'une scène de combat de Kung-Fu.

A�n que les ordinateurs puissent faire preuve d'un tel niveau d'interpré-
tation, ils ont besoin de modèles qui représentent les di�érents mouvements,
leurs relations et l'évolution temporelle des entités participantes (objets, par-
ties du corps) au cours d'une action. Par exemple, les Motion History Images
(MHI) de Bobick and Davis [2001] sont un modèle précurseur utilisé pour
représenter une action comme l'évolution temporelle d'une silhouette (cf. Fi-
gure A.5). Cependant, cette approche et ses extensions � comme les formes
spatio-temporelles de Gorelick et al. [2007] ou les Motion History Volumes
(MHV) de Weinland et al. [2006] � manquent de robustesse et sont limitées à
des scenarii contraints, tels que la vidéosurveillance [Hu et al. 2004] ou les in-
terfaces homme-machine [Shotton et al. 2011]. En e�et, elles reposent sur des
informations di�ciles à obtenir pour des vidéos sous conditions non contrôlées,
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Fig. A.5: Les Motion Energy Images (MEI) et Motion History Images (MHI)
de Bobick and Davis [2001].

comme par exemple l'élimination d'arrière-plan, l'extraction de silhouettes ou
l'estimation de modèles paramétriques du corps humain.

Depuis peu, la communauté de vision par ordinateur se penche désormais
sur des vidéos plus di�ciles. Les données vidéo non contrôlées sont caracté-
risées par une grande variabilité et l'absence de connaissance a priori sur (i)
le processus d'enregistrement (comme le point de vue, le mouvement de la
caméra, la qualité de la vidéo et la résolution), (ii) la scène (en intérieur ou en
extérieur, bondée ou non, arrière-plan en mouvement ou encombré, occlusions,
conditions d'éclairage), et (iii) les actions réalisées (mouvements rapides ou
lents, interactions). Ces données englobent un large éventail de vidéos issues
d'un grand nombre de sources potentielles, comprenant les vidéos amateur,
les reportages, les di�usions sportives, les émissions télévisées et les �lms. Les
catégories d'actions présentes dans les données de test pour la reconnaissance
d'actions sont elles aussi de plus en plus variées : elles comprennent des actions
simples (comme courir) et plus complexes (comme sortir de sa voiture), des
interactions (comme embrasser) et des activités (comme se battre).

A�n de résoudre les problèmes mentionnés précédemment, plusieurs cher-
cheurs [Chomat and Crowley 1999, Dollár et al. 2005, Laptev 2005, Schüldt
et al. 2004, Zelnik-Manor and Irani 2001] ont proposé d'utiliser des caractéris-
tiques visuelles locales. Ce sont en général des extensions spatio-temporelles de
détecteurs de points d'intérêt en 2D et de descripteurs utilisés avec succès pour
la reconnaissance d'objets dans des images (voir par exemple les résultats des
compétitions PASCAL VOC [Everingham et al. 2010]). Les caractéristiques
locales de vidéo, telles que les points d'intérêt spatio-temporels [Laptev 2005],
décrivent l'apparence (comme avec les histogrammes de gradients orientés [Da-
lal and Triggs 2005]) ou le mouvement (comme avec les histogrammes de �ot
optique [Laptev et al. 2008]) de volumes spatio-temporels locaux. Grâce à
la robustesse des descripteurs locaux et à leur absence d'hypothèses globales
(sur les relations géométriques par exemple), les caractéristiques locales ont
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Fig. A.6: Bag-of-features : un modèle robuste qui agrège les caractéristiques spatio-
temporelles locales en les quanti�ant sur un vocabulaire de caractéris-
tiques prototypiques appelées �mots visuels�, par analogie avec le modèle
de texte par �sac de mots�.

été utilisées avec succès pour des tâches di�ciles de reconnaissance d'actions
dans des vidéos réalistes.

Après leur extraction, une action est ensuite décrite par une collection
de caractéristiques locales trouvées dans la vidéo correspondante. Le bag-of-
features (cf. Section 2.2.3) est un modèle populaire, utilisé pour représenter un
ensemble de descripteurs spatio-temporels locaux. Il vise à quanti�er ces ca-
ractéristiques locales en assignant à chacune d'entre elles le �mot visuel� � une
caractéristique prototypique � le plus proche, et à construire ensuite l'histo-
gramme constitué des occurrences de chaque mot visuel apparaissant dans la
vidéo (cf. Figure A.6 pour une illustration). Comme ce modèle non structuré
ignore les relations entre les caractéristiques locales, plusieurs extensions ont
été proposées � comme par exemple les pyramides spatio-temporelles [Laptev
et al. 2008] � a�n d'incorporer de l'information de structure.

Les modèles d'action basés sur les caractéristiques locales sont souvent
en grande dimension (typiquement de l'ordre de 104 dimensions). De plus,
les représentations telles que bag-of-features sont apprises automatiquement à
partir des données et di�cilement interprétables. C'est pourquoi les approches
basées sur des caractéristiques locales ne peuvent pas être implémentées en uti-
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lisant des règles dé�nies manuellement. L'apprentissage statistique propose un
cadre théorique et pratique qui permet de surmonter ces di�cultés. Grâce aux
grandes quantités de données vidéo disponibles, les algorithmes d'apprentis-
sage statistique supervisés peuvent automatiquement apprendre des modèles
complexes d'action à partir de données d'entraînement annotées.

Les annotations � i.e., étiquettes sémantiques telles que �cette vidéo
contient quelqu'un en train de tomber� � peuvent être acquises de di�érentes
manières, mais elles sont souvent obtenues manuellement. La puissance de
techniques d'apprentissage statistique comme les Séparateurs à Vaste Marge
(SVM) [Schölkopf and Smola 2002] permet de généraliser à n'importe quelle
vidéo les connaissances acquises à partir de quelques données d'entraînement.

Des applications basées sur la reconnaissance d'actions à l'aide d'algo-
rithmes d'apprentissage statistique ont déjà fait leur apparition � voir par
exemple le développement de la vidéosurveillance automatique ou du capteur
Kinect de Microsoft pour la console de jeux Xbox [Shotton et al. 2011]. Néan-
mois, à l'heure actuelle (2012), il n'existe toujours pas d'application grand pu-
blic de la reconnaissance d'actions �in the wild� (comme sur YouTube ou avec
des robots autonomes). Cela souligne le vaste travail qu'il reste à e�ectuer par
la communauté scienti�que, a�n de comprendre les propriétés fondamentales
des actions et comment les représenter dans des vidéos réalistes en conditions
non contrôlées.

Dans ce contexte, nous pensons qu'il est nécessaire de se baser à la fois
sur les modèles précurseurs structurés, et sur les représentations récentes non
structurées, a�n de construire de meilleurs modèles d'action. Notre objectif est
de trouver le bon niveau de détails qui permettra aux modèles d'action d'être
à la fois plus précis que bag-of-features et plus robustes que les représentations
basées sur les silhouettes.

A.3 Contributions

Notre travail repose sur des caractéristiques locales et a pour but de struc-
turer leur agrégation a�n d'apprendre de meilleurs modèles d'action. Nous
présentons à la fois des représentations séquentielles pour des actions simples,
et des représentations hiérarchiques pour des activités plus complexes. Nous
proposons des techniques de décomposition de la structure spatio-temporelle
globale des actions par série d'images, par parties temporelles et par compo-
santes de mouvement de niveau intermédiaire. Nous utilisons ces représenta-
tions structurées en concevant des noyaux (mesures de similarité), qui sont
ensuite intégrés dans des classi�eurs non linéaires.
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Nous validons expérimentalement les approches que nous proposons a�n
de répondre aux questions suivantes :

� quelles sont les bonnes unités à considérer pour décomposer les actions ;
� quelle est la structure intéressante des actions ;
� comment extraire et représenter la structure de manière robuste ;
� comment apprendre et comparer les modèles structurés d'action.

Nos contributions sont décrites dans les paragraphes suivants.
� Dans le but de localiser des actions simples, comme ouvrir une porte,
dans de longues vidéos non segmentées, nous introduisons une exten-
sion temporellement structurée de bag-of-features : le Actom Sequence
Model (ASM). Nous décrivons une action comme une séquence d'unités
atomiques d'action, appelées actoms, qui sont des parties temporelles
sémantiquement signi�catives et caractéristiques de l'action. ASM re-
présente la structure temporelle des actions comme une séquence d'his-
togrammes de caractéristiques visuelles ancrées sur les actoms (cf. Fi-
gure A.7). La phase d'apprentissage nécessite l'annotation des actoms
pour les exemples d'action. A l'étape de test, les actoms sont détec-
tés automatiquement à l'aide d'un modèle non paramétrique, qui agit
comme une distribution a priori sur la structure temporelle d'une ac-
tion. Nous proposons une approche de détection par image centrale glis-
sante : toutes les N images, nous évaluons la probabilité qu'une action
soit centrée à une image particulière t en marginalisant sur notre a priori
temporel :

P(action at t) =
s∑

j=1

fASM(t, ∆̂j) P(∆̂j) (A.1)

où ∆̂j est la j ème séquence d'actoms candidate dans le modèle temporel
que nous avons appris, P(∆̂j) est sa probabilité a priori estimée à par-
tir des données, et fASM(t, ∆̂j) est la probabilité a posteriori retournée
par notre classi�eur ASM. Nous présentons des résultats expérimentaux
obtenus sur les bases de données réalistes Co�ee and Cigarettes [Lap-
tev and Pérez 2007] et DLSBP [Duchenne et al. 2009]. Nous adaptons
également notre approche au problème de classi�cation par détection et
démontrons son applicabilité sur la base de données Hollywood 2 [Mars-
zalek et al. 2009]. Nous montrons que notre méthode ASM fait mieux
que (i) l'actuel état de l'art en localisation temporelle d'action, ainsi que
(ii) les méthodes classiques combinant bag-of-features avec une méthode
de localisation par fenêtre glissante. Ce travail a été publié dans [Gaidon
et al. 2011a].
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Actom Sequence Model

Actom models
(time-dependent voting)

t1 t2 t3r1 r2 r3
t

Actom 1 Actom 2 Actom 3

per-actom histograms of time-anchored visual words

Quantized local spatio-temporal features

Fig. A.7: Illustration de trois actoms pour l'action �s'asseoir� de notre Ac-
tom Sequence Model (ASM) : succession de parties temporelles
modélisées par l'agrégation de caractéristiques locales ancrées dans
le temps.

� Les actions simples peuvent être représentées comme des séquences de
parties temporelles de courte durée. Cependant des activités plus longues,
comme le saut à la perche, sont composées d'un nombre variable de
sous-événements spatio-temporellement interconnectés. Nous apprenons
de manière automatique à réprésenter ces activités à l'aide de hiérarchies
de mouvements. Ces structures arborescentes sont apprises directement
des données, pour chaque vidéo indépendemment. Nous élaborons un
algorithme de partitionnement divisif, s'appuyant sur des techniques
de plongement spectral a�n d'extraire e�cacement la structure hiérar-
chique de vidéos contenant de grands nombres de trajectoires locales
(�tracklets�, cf. Figure A.8). Nous utilisons cette structure pour repré-
senter une vidéo comme des arbres binaires non orientés. Ces arbres sont
modélisés par des histogrammes emboîtés de caractéristiques locales du
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mouvement. Nous proposons un noyau positif dé�ni qui calcule e�ca-
cement la similarité structurelle et visuelle entre deux décompositions
hiérarchiques. Ce noyau se base sur les relations père-�ls :

k(T1, T2) =
1

|E1||E2|
·

∑

e1∈E1

e2∈E2

h(e1, e2) (A.2)

où Ti est notre modèle arborescent ayant pour arrêtes Ei et où h(e1, e2)

dénote la similarité entre deux arrêtes modélisées par les histogrammes
e1 et e2. Nous présentons des résultats expérimentaux sur trois bases
de données récentes et di�ciles : les activités complexes de Olympics
Sports [Niebles et al. 2010], les intéractions entre personnes de High
Five [Patron-Perez et al. 2010], et la base HMDB [Kuehne et al. 2011]
contenant un plus grand nombre d'actions de structure simple. Nous
montrons que des représentations hiérarchiques spéci�ques à chaque vi-
déo donnent des informations additionnelles pour la reconnaissance d'ac-
tions. Notre approche o�re des meilleures performances que les modèles
d'activité non structurés, des méthodes utilisant d'autres algorithmes de
décomposition du mouvement et l'état de l'art. Ce travail a été publié
dans [Gaidon et al. 2012].
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Fig. A.8: Illustration de notre dendogramme de tracklets sur une activité
de saut à la perche : décomposition hiérarchique du mouvement
apprise automatiquement.
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� Pour �nir, nous proposons de compléter les représentations tradition-
nelles basées sur la distribution moyenne des caractéristiques locales
� comme BOF ou les deux approches mentionnées précédemment �
avec un modèle des dépendances temporelles entre images : l'opérateur
d'auto-corrélation. Nous nous attaquons au problème de reconnaissance
d'actions en décrivant une vidéo comme une série temporelle de modèles
par image. Nous proposons un noyau pour comparer la dynamique tem-
porelle des actions (cf. Figure A.9). Les deux contributions détaillées
précédemment se concentrent sur la structure globale des actions pour
organiser des ensembles de caractéristiques locales en représentations
structurées de haut niveau. Cette partie de notre travail explore une
voie di�érente pour utiliser l'information de structure : au lieu de com-
parer des représentations vidéo structurées, nous comparons des repré-

sentations de la structure des vidéos. Nos contributions principales sont
les suivantes. Tout d'abord, nous proposons un noyau théoriquement
bien fondé permettant de comparer la dynamique et la structure tem-
porelle des actions. Ce noyau s'appuie sur une distance entre opérateurs
d'auto-corrélation (DACO : Di�erence of Auto-Correlation Operators) :

kDACO({xt}t=1:T , {yt′}t′=1:T ′)2 = exp
(

− 1

2σ2

∥
∥ρ̂(y)

τ − ρ̂(x)
τ

∥
∥

2

HS

)

(A.3)

où ρ̂
(x)
τ et ρ̂

(y)
τ dénotent les opérateurs d'auto-corrélation des séries tem-

porelles {xt}t=1:T et {yt′}t′=1:T ′ . Ensuite, nous obtenons une formulation
pratique pour calculer DACO dans n'importe quel espace de représen-
tation dérivant d'un noyau de base entre images. Pour �nir, nous rap-
portons des résultats expérimentaux sur des bases de données récentes
de reconnaissance d'actions, montrant que DACO apporte une infor-
mation complémentaire aux distributions moyennes de caractéristiques
locales, comme utilisées dans les modèles de l'état de l'art basés sur
bag-of-features. Ce travail a été publié dans [Gaidon et al. 2011b].

Average statistics

kBOF( , ) +
Temporal dependencies

kDACO( ),

Fig. A.9: Combinaison entre bag-of-features non structuré (à gauche) et dé-
pendances temporelles (à droite) modélisées par des opérateurs
d'auto-corrélation dans le noyau DACO.
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A.4 Perspectives

Dans cette section, nous donnons des extensions possibles à notre travail,
suggérées par nos expériences et les récents progrès dans les domaines de la
vision par ordinateur et de l'apprentissage statistique.

Extensions de notre approche de localisation

Une première amélioration de notre modèle ASM et de notre approche
de localisation par image centrale glissante consiste à les adapter pour les
tâches de localisation spatio-temporelle, c'est-à-dire retourner une fenêtre
temporelle et une séquence de boîtes englobantes autour des acteurs réali-
sant l'action. Pour pouvoir localiser quand et où une action est réalisée, il
est possible d'appliquer l'approche de localisation temporelle utilisée pour
ASM à des trajectoires obtenues à l'aide de détecteurs d'humains et d'objets
pré-entrainés [Kläser et al. 2010a,b, Prest et al. 2011]. Alternativement, au
lieu de commencer par localiser indépendemment pour ensuite classi�er, il
est aussi possible modéliser conjointement la structure et l'apparence spatio-
temporelles, avec par exemple le modèle par parties déformable de Felzensz-
walb et al. [2010]. Cependant, l'une des principales di�cultés est de trouver
comment incorporer des aspects géométriques tout en maintenant la robus-
tesse de nos modèles aux conditions vidéos réalistes, notamment en présence
d'occlusions ou de grandes variations de points de vue. Les poselets [Bour-
dev and Malik 2009] constituent une approche intéressante pour gérer dans
des images statiques les challenges cités précédemment. Ces détecteurs pré-
entraînés de poses locales ont été appliqués avec succès à la reconnaissance
d'actions dans des images statiques [Maji et al. 2011]. En se basant sur ces
idées et sur notre travail sur les actoms, il est envisageable de concevoir des dé-
tecteurs de poses dynamiques locales emblématiques, qui contiendraient plus
d'information que juste le mouvement, comme par exemple la nature des ob-
jets ou des parties du corps en mouvement.

Les modèles ASM reposent sur un nombre �xe d'actoms par catégorie.
Cette limitation pourrait être levée a�n que notre approche s'étende aux mo-

dèles de séquence avec un nombre variable de parties. En e�et, il
semble nécessaire de permettre à des exemples d'action d'une même caté-
gorie d'avoir di�érents nombres d'actoms, pour pouvoir modéliser un large
éventail d'actions, en raison par exemple des occlusions temporelles, de la va-
riabilité intra-classe ou des di�érences entre les annotateurs sur la manière
de décomposer une action. Il est possible de comparer des séquences avec
di�érents nombres d'actoms tout en préservant l'ordre temporel en se ba-
sant sur des stratégies de programamtion dynamique, comme par exemple en
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adaptant les noyaux sur chaînes de caractères au calcul d'une �distance d'édi-
tion d'actom� ou avec le Global Alignment Kernel [Cuturi et al. 2007]. Une
autre piste potentielle consiste à utiliser le noyau Fisher [Jaakkola and Hauss-
ler 1999] associé à un modèle génératif séquentiel, comme un HMM, dans le
but d'obtenir une représentation de longueur �xe basée sur un nombre �xe
d'états latents. De plus, pour pouvoir estimer la structure temporelle de taille
variable d'une action, cela nécessite une distribution de probabilité plus com-
plexe qu'un histogramme de distances entre actoms comme utilisé dans ASM.
Une extension directe de notre approche consisterait à utiliser à la place deux
distributions temporelles : une pour le nombre de parties temporelles, et une
autre distribution conditionnelle sur la position des actoms sachant le nombre
d'actoms. Cependant, cela suppose de fortes hypothèses d'indépendance qui
ne seraient pas nécessairement véri�ées en pratique. Idéalement, il faudrait es-
timer conjointement à la fois le contenu, le nombre et la position des actoms,
au lieu de le faire indépendemment. Ceci est particulièrement important pour
la localisation simultanée de plusieurs actions dans une même vidéo.

Apprentissage faiblement supervisé. Nous avons démontré que des
modèles d'action peuvent être nettement améliorés en apprenant à partir d'une
décomposition signi�cative étiquetée manuellement, au lieu d'une simple fe-
nêtre temporelle. Cette supervision a cependant un coût qui doit être minimisé
dans le but de passer à l'échelle avec un grand nombre de catégories. En plus
des approches d'apprentissage semi-supervisées, une direction prometteuse de
recherche consiste à a�ner automatiquement les annotations inexactes (éga-
lement appelées supervision faible) venant de sources d'information bon mar-
ché ou facilement disponibles, comme des transcriptions de �lms et de séries
TV [Gaidon et al. 2009, Laptev et al. 2008]. Des résultats prometteurs ont
été obtenus dans le but d'a�ner l'étendue temporelle en utilisant des mé-
thodes discriminatives [Duchenne et al. 2009, Satkin and Hebert 2010]. Ces
approches pourraient être généralisées a�n de déduire les positions latentes
des actoms depuis des annotations temporelles approximatives obtenues au-
tomatiquement. Notons que l'approche de Duchenne et al. [2009] partage plu-
sieurs similarités avec les approches récentes de co-segmentation d'images.
Par exemple, Joulin et al. [2012a] se base sur de multiples images et leurs
étiquettes globales de catégories pour segmenter par un algorithme de parti-
tionnement discriminatif. Il semblerait donc possible de pouvoir adapter ces
algorithmes d'apprentissage faiblement supervisés (comme par exemple [Jou-
lin et al. 2012b]) a�n de trouver la structure spatio-temporelle latente des
actions à partir d'un ensemble de vidéos faiblement annotées.
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Extensions de nos modèles d'activités

Notre modèle arborescent d'activité modélise uniquement des relations
d'inclusions entre parties du mouvement. Cette approche pourrait être aug-
mentée par l'utilisation de relations supplémentaires � spatiales, temporelles
et hiérarchiques � plus complexes, comme par exemple dans [Brendel and
Todorovic 2011]. Néanmoins, la dé�nition d'une structure latente trop com-
plexe entraîne des di�cultés d'apprentissage et d'inférence et, par conséquent,
des performances sous-optimales. En e�et, la �exibilité supplémentaire au ni-
veau des variables latentes d'un tel modèle fait que l'espace de paramètres
exploré est sous-contraint et trop vaste pour permettre une exploration e�-
cace et éviter le sur-apprentissage. Surmonter ces di�cultés � par exemple en
trouvant des bonnes contraintes sur la structure à apprendre � permettrait
d'améliorer les modèles d'actions, grâce à l'apprentissage discriminatif de leurs
paramètres, tout en développant leur robustesse, grâce à la modélisation de
l'incertitude sur leur structure.

En plus de découvrir automatiquement les di�érentes parties, notre mé-
thode de décomposition pourrait être améliorée en modélisant également l'im-

portance latente de chaque partie pour une catégorie. En e�et, notre
structure arborescente sur une action est obtenue sans utiliser l'information
de son appartenance Ã une catégorie. De plus, tous les noeuds sont traités de
manière équivalente dans notre noyau ATEP, alors que certains sous-arbres
peuvent être sans rapport avec l'action (des mouvements à l'arrière plan par
exemple). Pour l'instant, ces sous-arbres super�us sont considérés comme du
bruit auquel notre noyau est robuste dû à son e�et de moyenne. Notre méthode
pourrait être améliorée par une approche plus explicite, en apprenant l'impor-
tance des sous-arbres, pour chaque catégorie, à partir de leur contenu, de leur
structure et de leur position dans le dendogramme. Des facteurs d'importance
d'un noeud peuvent en e�et être directement intégrés dans notre noyau ATEP
comme de simples poids multiplicatifs dans les comparaisons entre arêtes. Ces
poids pourraient être appris en considérant l'importance de chaque noeud
comme une variable latente et en utilisant des méchanismes d'inférence adé-
quats. Comme mentionné précédemment, la segmentation conjointe d'actions
(d'une même catégorie ou de toutes les catégories à la fois) pourrait être uti-
lisée pour tirer pro�t des étiquettes de catégorie, a�n d'obtenir de meilleures
décompositions d'activités. Notons qu'une telle pondération basée sur les par-
ties pourrait également être applicable aux actoms puisque certaines parties
temporelles sont plus importantes que d'autres a priori.

En�n, une autre extension consiste à adapter notre méthode pour per-
mettre la localisation spatio-temporelle au sein des BOF-Trees. En
l'état actuel, notre approche est spéci�quement conçue pour des vidéos se



A.4. PERSPECTIVES 137

concentrant sur une seule activité. Lorsque la vidéo est seulement temporel-
lement segmentée et contient plusieurs activités concurrentes, nous pouvons
adapter notre méthode pour se restreindre à des sous-parties de la vidéo en
mettant en correspondance des sous-arbres, au lieu de comparer la totalité de
notre représentation hierarchique. En complément des algorithmes existants
et e�caces d'appariement de sous-arbres, (cf. [Valiente 2002]), nous pourrions
également adopter une approche d'appariement gloutonne �coarse-to-�ne� a�n
d'accélérer les calculs. En s'appuyant sur la propriété d'additivité des BOF-
trees, nous pouvons en e�et approcher un sous-arbre par une de ses arêtes
supérieures (père, �ls), comme dans notre noyau ATEP. C'est pourquoi nous
pourrions seulement appairer les arêtes des BOF-trees, et parcourir l'arbre de
haut en bas de manière analogue à une stratégie par séparation et évaluation.

Appliquer notre méthode à des vidéos de longue durée comme celles étu-
diées/considérées par nos modèles ASM requiert une approche di�érente. En
e�et, la construction descendante de notre modèle arborescent suppose que
toutes les tracklets soient disponibles simultanément. Par conséquent, notre
algorithme de segmentation doit être précédé d'une phase de segmentation
temporelle à la volée � par exemple en utilisant un détecteur de changement
de plan pour des vidéos éditées telles que les �lms, ou plus généralement un al-
gorithme de détection de point de changement comme [Harchaoui et al. 2009]
� a�n de dégager d'abord les racines des arbres à construire.

Extensions du modè par séries temporelles

Combinaison de DACO et de ASM. Nos résultats suggèrent que notre
noyau DACO est particulièrement adapté aux actions courtes, et améliore la
performance des noyaux par agrégation. Il semblerait donc possible d'amé-
liorer les comparaisons entre actoms réalisées dans ASM en calculant non
seulement la similarité entre le contenu des actoms, mais aussi en comparant
leur dynamique avec DACO. En e�et, la faible durée des actoms signi�e qu'ils
peuvent être considérés comme des séries temporelles quasi-stationnaires. De
plus, les poids des images dérivés des modèles d'actom peuvent être direc-
tement intégrés dans DACO en les appliquant aux projections des BOFs de
chaque image dans le RKHS associé au noyau entre images.

Version courte durée de DACO. Comme semblent le montrer nos ré-
sultats sur la base de données Youtube, la principale limitation de notre noyau
DACO provient de son hypothèse de stationnarité, qui est souvent fausse dans
le cas d'actions longues et complexes. C'est pourquoi une extension naturelle
de notre approche consiste à calculer une version courte durée de DACO, par
exemple en convoluant successivement les images avec une fenêtre temporelle
Gaussienne de courte durée. Les séries temporelles de courte durée peuvent
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en e�et être consiérées comme quasi-stationnaires, puisqu'il y a tout simple-
ment moins d'observations pour remarquer un changement signi�catif dans la
distribution d'images. Cette approche pose cependant le problème suivant :
la dynamique des séries est modélisée par une séquence d'opérateurs d'auto-
corrélation locaux au lieu d'un seul global. Par conséquent, un autre noyau
doit être utilisé a�n de combiner les comparaisons locales de fenêtres obtenues
avec DACO. Notons que l'application de cette idée au calcul d'une version fe-
nêtrée du noyau d'auto-régression donne une représentation intéressante du
signal vidéo, qui partage des similarités avec les codes linéaires prédictifs, très
utilisés en traitement de signaux sonores et de la parole en particulier.

Analyse de séries temporelles d'actions. La plupart des outils construits
pour analyser des séries temporelles sont conçus pour des données univariées,
comme des signaux sonores ou l'évolution de prix sur un marché �nancier.
Cependant, les vidéos reposent sur des représentations en haute dimension.
C'est pourquoi l'analyse de leurs propriétés temporelles � comme la périodi-
cité � nécessite des techniques di�érentes, adaptées à ces signaux complexes
et multivariés. Par exemple, Cutler and Davis [2000] � plus d'une décennie
avant nous � utilisa des techniques d'analyse temps-fréquence sur des auto-
similarités temporelles a�n de détecter des mouvements périodiques. Nous
avons montré que l'opérateur d'auto-corrélation dans un RKHS d'image est
un objet mathématique qui peut être utilisé pour étudier les propriétés tem-
porelles des actions. Nous pensons que ce cadre formel, bien qu'embryonnaire,
peut ouvrir la voie à une analyse plus sophistiquée des actions, en généralisant
le grand nombre d'outils qui existent déjà pour des séries univariées, comme
la �nance ou le traitement de la parole et du son. Nous pourrions par exemple
étendre la notion de corrélogramme et construire un �corrélogramme d'action�
en utilisant la norme de Hilbert-Schmidt de l'opérateur d'auto-corrélation, a�n
de mesurer le caractère aléatoire d'une action, pour la détection de compor-
tements anormaux notamment.
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