
HAL Id: tel-00780719
https://theses.hal.science/tel-00780719v1

Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative Resource Management for Parallel and
Distributed Systems

Cristian Klein-Halmaghi

To cite this version:
Cristian Klein-Halmaghi. Cooperative Resource Management for Parallel and Distributed Systems.
Other [cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2012. English. �NNT : 2012ENSL0773�.
�tel-00780719�

https://theses.hal.science/tel-00780719v1
https://hal.archives-ouvertes.fr

N◦ dǶordre : 773
N◦ attribué par la bibliothĕque : 2012ENSL0773

École Normale Supérieure de Lyon
Laboratoire de lǶInformatique du Parallélisme

THĔSE
en vue dǶobtenention du grade de

Docteur de lǶÉcole Normale Supérieure Ĝ Université de Lyon
Discipline : Informatique

au titre de lǶÉcole Doctorale Informatique et Mathématiques

présentée et soutenue publiquement le 29 novembre 2012 par

Cristian Klein-Halmaghi

Cooperative Resource Management
for Parallel and Distributed Systems

Composition du jury

Directeur de thĕse : Christian Pérez
Directeur de Recherche à LIP/INRIA RhƬne-Alpes

Rapporteurs : Emmanuel Jeannot
Directeur de Recherche à LaBRI/INRIA Sud-Ouest

Ramin Yahyapour
Professeur à Université de Gƺttingen, Allemagne

Examinateurs : Michel Daydé
Professeur à INP/ENSEEIHT, Toulouse

Xavier Vigouroux
Résponsable Éducation et Recherche HPC à Bull

Remerciements
Voici la page des remerciements, la derniĕre écrite, mais la premiĕre lue. Avant de commencer avec
les remerciements dits classiques, jǶaimerais remercier la France, ce joli pays avec son fromage
fort et son bon vin, ses peuples accueillants qui ont su faire de cet endroit un chez moi pendant
presque cinq ans. CǶest pour leur montrer ma gratitude que cette page est écrite en français.

Tout dǶabord, je remercie le jury : Emmanuel Jeannot et Ramin Yahyapour pour avoir
accepté dǶātre rapporteurs, Michel Daydé pour avoir présidé le jury et Xavier Vigouroux pour
avoir complété le jury avec son expertise industrielle. JǶai beaucoup apprécié vos questions, qui
mǶont permis de montrer lǶintérāt que je porte à ce sujet.

Grand merci à Christian pour beaucoup de choses, que mes mots ne suffisent pas à exprimer.
Si tu mǶexcusais pour la simplification, je te remercierais pour ta disponibilité, ta compétence
et pour mǶavoir poussé toujours plus loin dans ma démarche scientifique.

Parmi dǶautres personnes avec qui jǶai collaboré, jǶaimerais remercier les partenaires du projet
ANR COOP, surtout Aurélie, Fréd, Ronan et Yann. Sans vous ma thĕse aurait été amputée dǶune
bonne partie de sa matiĕre. Merci beaucoup aux gens de lǶéquipe et du labo, qui, à travers des
discussions animées, mǶont donné des conseils importants pour ma recherche. Merci surtout aux
ǳvieuxǴ, Ben, Ghislain et Julien, qui mǶont donné de bonnes références au début, ainsi quǶau
ǳjeunesǴ, Noua et Vincent, pour le travail quǶils ont réalisé sous ma co-tutelle.

Un grand merci à toute la communauté GridǶ5000 pour avoir développé cet outil sans lequel
ma thĕse ne serait restée quǶun exercice théorique. Merci à lǶéquipe SimGrid, non seulement
pour lǶoutil quǶils ont développé, mais aussi pour les discussions autour de simulations, qui
mǶont permis dǶātre plus rigoureux dans mes expériences.

Parmi les personnes que jǶai rencontrées avant ma thĕse, jǶaimerais remercier Florent de
Dinechin et Octavian Creȧ, sans lequels mes études aurait fini plus tƬt. Merci à Emil Cebuc et
Alin Suciu pour mǶavoir donné le goȿt pour la recherche.

Pour avoir été de mon cƬté quand les ordinateurs ne lǶétaient pas, jǶaimerais remercier à
mes amis de prĕs et de loin. Grand merci à la Ŀ mafia roumaine ŀ, parmi dǶautres, pour mǶavoir
aidé ne pas oublier ma langue maternelle, et surtout à mon colocataire pour les soirs de débat
et de cuisine, bref, pour mǶavoir supporté sous le māme toit. Merci à mes amis internationaux
pour mǶavoir montré que, quelque soit le temps dans les montagnes, on peut toujours faire de
la rando. Pour mǶavoir intégré dans la société française tout en oxygénant mon cerveau, merci
aux gens de Génération Roller et du Club Rock.

Merci à ma famille (y compris la partie allemande avec qui nous avons récemment fusionné)
pour leur affection et leur soutien inconditionnel, pour les vacances de Noďl et de Pâques. Je
profite de cet espace pour mǶexcuser auprĕs ma sƾur de lǶavoir oubliée lors les remerciements
oraux, mais bon, tu comprends, mon cerveau était grillé aprĕs la soutenance.

Il y a beaucoup dǶautres personnes que jǶaurais aimé mentionner ici. Je mǶarrāte avant que
mes remerciements ne se transforment en autobiographie.

This manuscript was typeset using XeLaTeX and the memoir class. Figures were drawn
with Dia and Gnuplot. During the late nights, when my brain started producing bad English,
netspeak.org was there to help me. For those who contributed to these tools, thank you!

Throughout the manuscript, generic ǳsheǴ (instead of universal ǳheǴ or singular ǳtheyǴ) is
being used to designate a person. The choice has been made to reflect current writing trends in
scientific journals. The reader should not assume anything about the gender, race, color, age,
national origin, religion or disability, citizenship status, Vietnam Era or special disabled veteran
status, sexual orientation, gender identity, or gender expression of the person referred to.

i

Abstract

High-Performance Computing (HPC) resources, such as Supercomputers, Clusters, Grids
and HPC Clouds, are managed by Resource Management Systems (RMSs) that multiplex
resources among multiple users and decide how computing nodes are allocated to user ap-
plications. As more and more petascale computing resources are built and exascale is to be
achieved by 2020, optimizing resource allocation to applications is critical to ensure their
efficient execution. However, current RMSs, such as batch schedulers, only offer a limited
interface. In most cases, the application has to blindly choose resources at submittal without
being able to adapt its choice to the state of the target resources, neither before it started
nor during execution.

The goal of this Thesis is to improve resource management, so as to allow applications
to efficiently allocate resources. We achieve this by proposing software architectures that
promote collaboration between the applications and the RMS, thus, allowing applications to
negotiate the resources they run on. To this end, we start by analysing the various types
of applications and their unique resource requirements, categorizing them into rigid, mold-
able, malleable and evolving. For each case, we highlight the opportunities they open up for
improving resource management.

The first contribution deals with moldable applications, for which resources are only
negotiated before they start. We propose CooRMv1, a centralized RMS architecture, which
delegates resource selection to the application launchers. Simulations show that the solution
is both scalable and fair. The results are validated through a prototype implementation
deployed on GridǶ5000.

Second, we focus on negotiating allocations on geographically-distributed resources, man-
aged by multiple institutions. We build upon CooRMv1 and propose distCooRM, a dis-
tributed RMS architecture, which allows moldable applications to efficiently co-allocate re-
sources managed by multiple independent agents. Simulation results show that distCooRM
is well-behaved and scales well for a reasonable number of applications.

Next, attention is shifted to run-time negotiation of resources, so as to improve support
for malleable and evolving applications. We propose CooRMv2, a centralized RMS archi-
tecture, that enables efficient scheduling of evolving applications, especially non-predictable
ones. It allows applications to inform the RMS about their maximum expected resource us-
age, through pre-allocations. Resources which are pre-allocated but unused can be filled by
malleable applications. Simulation results show that considerable gains can be achieved.

Last, production-ready software are used as a starting point, to illustrate the interest as
well as the difficulty of improving cooperation between existing systems. GridTLSE is used as
an application and DIET as an RMS to study a previously unsupported use-case. We identify
the underlying problem of scheduling optional computations and propose an architecture to
solve it. Real-life experiments done on the GridǶ5000 platform show that several metrics are
improved, such as user satisfaction, fairness and the number of completed requests. Moreover,
it is shown that the solution is scalable.

ii

Résumé

Les ressources de calcul à haute performance (High-Performance ComputingěHPC),
telles que les supercalculateurs, les grappes, les grilles de calcul ou les Clouds HPC, sont
gérées par des gestionnaires de ressources (Resource Management SysteměRMS) qui mul-
tiplexent les ressources entre plusieurs utilisateurs et décident comment allouer les nƾuds
de calcul aux applications des utilisateurs. Avec la multiplication de machines péta-flopiques
et lǶarrivée des machines exa-flopiques attendue en 2020, lǶoptimisation de lǶallocation des
ressources aux applications est essentielle pour assurer que leur exécution soit efficace. Cepen-
dant, les RMSs existants, tels que les batch schedulers, nǶoffrent quǶune interface restreinte.
Dans la plupart des cas, lǶapplication doit choisir les ressources Ŀ aveuglément ŀ lors de la
soumission sans pouvoir adapter son choix à lǶétat des ressources ciblées, ni avant, ni pendant
lǶexécution.

Le but de cette Thĕse est dǶaméliorer la gestion des ressources, afin de permettre aux
applications dǶallouer des ressources efficacement. Pour y parvenir, nous proposons des ar-
chitectures logicielles qui favorisent la collaboration entre les applications et le gestionnaire
de ressources, permettant ainsi aux applications de négocier les ressources quǶelles veulent
utiliser. À cette fin, nous analysons dǶabord les types dǶapplications et leurs besoins en res-
sources, et nous les divisons en plusieurs catégories : rigide, modelable, malléable et évolutive.
Pour chaque cas, nous soulignons les opportunités dǶamélioration de la gestion de ressources.

Une premiĕre contribution traite les applications modelables, qui négocient les ressources
seulement avant leur démarrage. Nous proposons CooRMv1, une architecture RMS centra-
lisée, qui délĕgue la sélection des ressources aux lanceurs dǶapplication. Des simulations
montrent quǶun tel systĕme se comporte bien en termes dǶextensibilité et dǶéquité. Les résul-
tats ont été validés avec un prototype déployé sur la plate-forme GridǶ5000.

Une deuxiĕme contribution se focalise sur la négociation des allocations pour des res-
sources géographiquement distribuées qui appartiennent à plusieurs institutions. Nous éten-
dons CooRMv1 pour proposer distCooRM, une architecture RMS distribuée, qui permet
aux applications modelables de co-allouer efficacement des ressources gérées par plusieurs
agents indépendants. Les résultats de simulation montrent que distCooRM se comporte
bien et passe à lǶéchelle pour un nombre raisonnable dǶapplications.

Ensuite, nous nous concentrons sur la négociation des ressources à lǶexécution pour mieux
gérer les applications malléables et évolutives. Nous proposons CooRMv2, une architecture
RMS centralisée, qui permet lǶordonnancement efficace des applications évolutives, et surtout
celles dont lǶévolution nǶest pas prévisible. Une application peut faire des Ŀ pré-allocations ŀ
pour exprimer ses pics de besoins en ressources. Cela lui permet de demander dynamiquement
des ressources, dont lǶallocation est garantie tant que la pré-allocation nǶest pas dépassée. Les
ressources pré-allouées mais inutilisées sont à la disposition des autres applications. Des gains
importants sont ainsi obtenus, comme les simulations que nous avons effectuées le montrent.

Enfin, nous partons de logiciels utilisés en production pour illustrer lǶintérāt, mais aussi la
difficulté, dǶaméliorer la collaboration entre deux systĕmes existants. Avec GridTLSE comme
application et DIET comme RMS, nous avons trouvé un cas dǶutilisation mal supporté aupa-
ravant. Nous identifions le problĕme sous-jacent dǶordonnancement des calculs optionnels et
nous proposons une architecture pour le résoudre. Des expériences réelles sur la plate-forme
GridǶ5000 montrent que plusieurs métriques peuvent ātre améliorées, comme par exemple
la satisfaction des utilisateurs, lǶéquité et le nombre de requātes traitées. En outre, nous
montrons que cette solution présente une bonne extensibilité.

iii

Summary

Table of Contents . vii
List of Algorithms . xi
List of Figures . xi
List of Tables . xiii

I Introduction and Context 1
1 Introduction . 3
2 Context . 9

II RMS Support for Moldable Applications 35
3 CooRMv1: An RMS for Efficiently Supporting Moldable Applications 37
4 distCooRM: A Distributed RMS for Moldable Applications 57

III RMS Support for Malleable and Evolving Applications 75
5 Towards Scheduling Evolving Applications . 77
6 CooRMv2: An RMS for Non-predictably Evolving Applications 89
7 Fair Scheduling of Optional Computations in GridRPC Middleware 107

IV To Conclude 123
∞ Conclusions and Perspectives . 125

Appendices 133
A Supplementary Material . 135
B Acronyms . 145
C Bibliography . 147
D Webography . 159

v

Table of Contents

Table of Contents vii

List of Algorithms xi

List of Figures xi

List of Tables xiii

I Introduction and Context 1

1 Introduction 3
1.1 Motivation . 4
1.2 Goal of this Thesis . 5
1.3 Contributions of the Thesis . 5
1.4 Structure of this Document . 7
1.5 Publications . 7

2 Context 9
2.1 High-Performance Computing Resources 10

2.1.1 Supercomputing . 10
2.1.2 Cluster Computing . 11
2.1.3 Grid Computing . 11
2.1.4 Desktop Computing . 12
2.1.5 Cloud Computing . 12
2.1.6 Hybrid Computing Infrastructures 13
2.1.7 Analysis . 14

2.2 A Classification of Applications by Resource Requirements 15
2.2.1 QoS Requirements . 16
2.2.2 Time Variation of Resource Requirements 16
2.2.3 Conclusion . 20

2.3 Managing HPC Resources . 20
2.3.1 Cloud Managers . 20
2.3.2 Batch Schedulers . 21
2.3.3 Distributed Resource Managers 24
2.3.4 Meta Schedulers . 28
2.3.5 Application-Level Schedulers . 32

vii

Table of Contents

2.3.6 Analysis . 34
2.4 Conclusion . 34

II RMS Support for Moldable Applications 35

3 CooRMv1: An RMS for Efficiently Supporting Moldable Applications 37
3.1 Why Moldability? . 38
3.2 A Motivating Example . 39
3.3 Problem Statement . 40
3.4 The CooRMv1 Architecture . 41

3.4.1 Principles . 41
3.4.2 Data Types . 42
3.4.3 Interfaces . 43
3.4.4 Protocol . 44

3.5 An Example Implementation . 45
3.5.1 Application-side Resource Selections 45
3.5.2 A Simple RMS Implementation . 47

3.6 Evaluation . 49
3.6.1 Overview . 49
3.6.2 Scalability . 51
3.6.3 Fairness . 52
3.6.4 Validation . 53

3.7 Discussions . 54
3.8 Conclusion . 55

4 distCooRM: A Distributed RMS for Moldable Applications 57
4.1 Introduction . 58
4.2 The distCooRM Architecture . 59

4.2.1 Principles . 59
4.2.2 Agents . 60
4.2.3 Interfaces . 61
4.2.4 Interactions . 62

4.3 An Example Implementation . 65
4.4 Evaluation . 66

4.4.1 Experimental Setup . 66
4.4.2 Multi-owner Feasibility . 67
4.4.3 Scalability: Comparison to a Centralized RMS 70
4.4.4 Strong and Weak Scaling with the Size of the Platform 71

4.5 Conclusion . 73

III RMS Support for Malleable and Evolving Applications 75

5 Towards Scheduling Evolving Applications 77
5.1 Introduction . 78
5.2 Problem Statement . 78

viii

Table of Contents

5.2.1 Definitions and Notations . 79
5.2.2 Towards an RMS for Fully-Predictably Evolving Applications . . . 80
5.2.3 Formal Problem Statement . 81

5.3 Scheduling Fully-Predictably Evolving Applications 81
5.3.1 An Algorithm for Offline Scheduling of Evolving Applications . . 81
5.3.2 The fit Function . 82
5.3.3 Discussions . 85

5.4 Evaluation . 85
5.4.1 Description of Experiments . 85
5.4.2 Analysis . 87

5.5 Conclusions . 87

6 CooRMv2: An RMS for Non-predictably Evolving Applications 89
6.1 Introduction . 90
6.2 A Model for Non-predictably Evolving Applications 90

6.2.1 Working Set Evolution Model . 91
6.2.2 A Speed-up Model . 91
6.2.3 Analysis of the Model . 92

6.3 The CooRMv2 Architecture . 94
6.3.1 Principles . 94
6.3.2 Interfaces . 97
6.3.3 Example Interaction . 98

6.4 Application Support . 99
6.5 An Example RMS Implementation . 100
6.6 Evaluation with Evolving and Malleable Applications 100

6.6.1 Application and Resource Model 101
6.6.2 Scheduling with Spontaneous Updates 102
6.6.3 Scheduling with Announced Updates 103
6.6.4 Efficient Resource Filling . 104

6.7 Conclusion . 106

7 Fair Scheduling of Optional Computations in GridRPC Middleware 107
7.1 Introduction . 108
7.2 A Motivating Use-case . 108
7.3 Problem Statement . 110

7.3.1 Resource Model . 110
7.3.2 User/Application Model . 110
7.3.3 Metrics . 111

7.4 DIET-ethic . 112
7.4.1 DIET-ethic Extension . 112
7.4.2 Implementation on Top of DIET 113

7.5 Evaluation . 114
7.5.1 Gains of Supporting Optional Computations 114
7.5.2 Scalability . 119
7.5.3 End-User Perspective: Integration with GridTLSE 120

7.6 Conclusion . 122

ix

Table of Contents

IV To Conclude 123

∞ Conclusions and Perspectives 125
∞.1 Conclusions . 126
∞.2 Perspectives . 128

∞.2.1 Short-term Perspectives . 128
∞.2.2 Medium-term Perspectives . 128
∞.2.3 Long-term Perspectives . 130

Appendices 133

A Supplementary Material 135
A.1 CooRMv2 RMS Implementation . 135

A.1.1 Requests . 135
A.1.2 Request Constraints . 136
A.1.3 Views . 136
A.1.4 Helper Functions . 137
A.1.5 Main Scheduling Algorithm . 142
A.1.6 Limitations . 144

B Acronyms 145

C Bibliography 147

D Webography 159

x

List of Algorithms

3.1 Example implementation of a CooRMv1 policy 48

5.1 Offline scheduling algorithm for evolving applications. 82
5.2 Base fit Algorithm . 83

A.1 Implementation of the toView() function . 138
A.2 Implementation of the fit function . 140
A.3 Implementation of the eqSchedule function . 141
A.4 CooRMv2 main scheduling algorithm . 143

List of Figures

2.1 A classification of applications by resource requirements 15
2.2 Terminology used for expressing times throughout the life-cycle of an application . 17
2.3 Graphical explanation of how to improve response time using moldability 17
2.4 Resource waste when using advance reservations 22
2.5 Overview of XtreemOSǶs architecture . 25
2.6 Overview of DIETǶs architecture . 26
2.7 Overview of DIETǶs architecture when used as a meta-scheduler 29
2.8 A resource management taxonomy by the control one has over scheduling decisions 34

3.1 Performance of a CEM application for various cluster sets of GridǶ5000 39
3.2 Example of a view sent by CooRMv1 to an application 41
3.3 Application callbacks and RMS interface in CooRMv1 43
3.4 Example of interactions between an RMS, an application and its launcher 44
3.5 Scheduling example for a simple-moldable application 46
3.6 Scheduling example for a complex-moldable application 47
3.7 Fairness issue for adaptable applications . 49
3.8 Simulation results for OAR (W0) and CooRM (W0−3) for 1 to 8 clusters. 52
3.9 Unfairness caused by insufficient fair-start delay. 53

xi

List of Figures

3.10 Comparison between simulations and real experiments. 53

4.1 Deadlock with Advance Reservations . 59
4.2 Overview of distCooRM agents . 60
4.3 Interfaces corresponding to each role . 61
4.4 Trivial Scenario . 63
4.5 Typical Scenario . 64
4.6 Start-abort Scenario . 64
4.7 Variation of average completion time . 68
4.8 Empirical distribution function of end-time delays 69
4.9 Results of the scalability experiment, compared to a centralized system 70
4.10 Strong scaling results . 72
4.11 Weak scaling results . 72

5.1 Example of an evolution profile, a delayed and an expanded version of it 79
5.2 Example of interaction between a fully-predictably evolving application and the RMS 80
5.3 Example of post-processing optimization (compacting) 84
5.4 Example of how the rigid algorithm works . 86

6.1 Evolution of the mesh inside AMR simulations . 91
6.2 Examples of obtained AMR working set evolutions 92
6.3 AMR speed-up model . 93
6.4 End-time increase when an equivalent static allocation is used instead of a dynamic

allocation . 93
6.5 Static allocation choices for a target efficiency of 75%. 94
6.6 Visual description of request constraints . 95
6.7 Performing an update . 96
6.8 Example of views for one cluster . 97
6.9 Application callbacks and RMS interface in CooRMv2 97
6.10 Example of an interaction between the Resource Management System (RMS), a Non-

predictably Evolving Application (NEA) and a Malleable Application (MApp) . . . 98
6.11 Simulation results with spontaneous updates . 102
6.12 Simulation results with announced updates . 104
6.13 Graphical illustration of resource filling . 105
6.14 Simulation results for two Parameter-Sweep Applications (PSAs) 105

7.1 Example of the results output by a direct solver . 109
7.2 DIET-ethic architecture . 112
7.3 Results: night-time simultaneous submissions scenario 115
7.4 Results: night-time consecutive submissions scenario 116
7.5 Results: day-time scenario with regular arrivals . 117
7.6 Results: day-time scenario with irregular arrivals 118
7.7 Results: irregular arrivals and random execution times 118
7.8 System overhead: CPU usage for sleep requests . 120
7.9 GridTLSE scenario for multiple threshold pivoting 121

A.1 Example of request trees . 136

xii

List of Tables

1.1 Overview of the contributions of the Thesis . 6

2.1 Intrinsic properties of HPC resources . 14

3.1 Parameters used to reconstruct moldability from rigid job traces 50
3.2 Summary of workloads . 51

4.1 Vivaldi coordinates used for the resource model . 67

5.1 Comparison of Scheduling Algorithms (System-centric Metrics) 88
5.2 Comparison of Scheduling Algorithms (User-centric Metrics) 88

6.1 Input values to the NEA model used throughout this chapter 92

7.1 GridǶ5000 deployment for scalability experiment 119
7.2 Results of scalability experiment . 119

xiii

Part I

Introduction and Context

1

CHAPTER 1
Introduction

A PhD thesis is not like a
thriller. You can give away the
ending in the introduction.

C. P.

This chapter sets the mood of the Thesis. It starts by presenting its motivation, which leads
to the goal of the Thesis. Finally, the contributions of the Thesis are highlighted.

3

1. Introduction

1.1 Motivation
TodayǶs scientists are increasingly relying on numerical simulations both for fundamental re-
search (often called eScience) as well as for research and development. Indeed, more and more
domains are using simulations, such as cosmology, molecular biology, aircraft design, nuclear
power plant design validation, car crash simulations, just to name a few. Hence, continuing
scientific progress requires fulfilling increasing computing needs.

Answering this demand proves to be challenging in recent years. Since 2005, the processor
clock rate in MHz has stopped progressing significantly and previously used methods to speed
up execution, such as out-of-order execution, instruction-level parallelism and pipelining, seem
to have reached their limit. As a solution, hardware designers recur to parallelism, which can
nowadays be found in every device starting from supercomputers to laptops and even smart-
phones. Even before becoming a necessity, parallelism was routinely used in eScience to enable
the resolution of problems which are several orders-of-magnitude larger than what could be
solved without parallelism.

However, more parallelism is achieved with increasingly complex hardware. For example,
petascale resources present parallelism at several layers. At the top-most layer, users may have
access to several parallel machines, each being build of a large number of computing nodes. To
interconnect these nodes, one needs to recur to a non-homogeneous network, featuring a torus
or a fat-tree topology, since producing a high-radix switch is impractical. At the node level,
parallelism is achieved using multi-core CPUs and GPUs featuring non-uniform memory access.
Maximizing application performance on these resources is challenging and may become even
more difficult on exascale resources expected in 2020.

Due to the large investment in these computing resources, exploiting them at peak capacity
is of uttermost importance, which is the core interest of High-Performance Computing (HPC).
However, achieving good performance cannot be obtained by the hardware resources alone, but
has to be done by orchestrating the whole platform.

One of the most important components of the platform is the Resource Management System
(RMS). Indeed, HPC resources, as can be found in Super, Grid and Cloud Computing, are rarely
used by a single user. Therefore, it is the responsibility of the RMS to decide how to share
the hardware resources among users. Properly doing this is especially important since many
applications are highly performance sensitive: Some might run faster on CPUs, others may be
able to take advantage of GPUs. Also, most HPC applications are sensitive to the network latency
and bandwidth they observe.

Traditionally, resource management has been done as follows: The user (or user code acting
on behalf of the user) formulates a request, specifying the resource requirements of the appli-
cation. Then, the RMS runs a scheduling algorithm, which, taking into account the resource
requests of all applications, decides how to multiplex the resources in both space and time. Un-
fortunately, such an approach forces the application to ǳblindlyǴ choose resources at submittal,
without being able to adapt to the state of the target resources, neither before start, nor during
execution. For example, an application cannot express the fact that it may run on 4 nodes, but,
if enough resources are available, it would prefer running on 8 nodes, to speed up its execution.
Likewise, if resources become free, a currently executing application cannot take advantage of
these resources, so as to finish earlier.

Properly solving the above issue would be of benefit both to the user and to the administrator
of the platform. On one hand, the user would receive his results faster, on the other hand,
the administrator could improve resource usage, thus having a higher scientific return for the
investment in the resources.

4

1.2. Goal of this Thesis

1.2 Goal of this Thesis
The purpose of this Thesis is to improve resource management, so as to allow applications
to make a more efficient use of resources. We start by categorizing applications and showing
that application-side workarounds are necessary to circumvent RMS limitations. Therefore, this
Thesis proposes improving the cooperation between applications and the RMS. The issue is then
to find interfaces and protocols that would allow applications to efficiently express their resource
requirements, while allowing the RMS to enforce its own resource management policy.

As opposed to many works, the Thesis does not focus on scheduling algorithms. Nevertheless,
in order to prove the usefulness of the proposed concepts and architectures, scheduling algorithms
have to be devised on both the application- and the RMS-side. However, instead of reinventing
the wheel, we shall attempt to reuse existing algorithms and adapt them as necessary.

Another particularity of this Thesis is that the RMS is assumed to have direct control over
the resources, i.e., they are not limited by any lower-level abstractions. In literature one would
say that the resources are dedicated, i.e., no resource allocation may take place that the RMS
does not know about. Our hypothesis is somewhat stronger. We have taken this decision for a
very simple reason: Instead of proposing yet another workaround, we have decided to contribute
with minimalistic interfaces that would make workarounds unnecessary. Achieving this is best
done if the RMS can take all the liberty and has full control over the resources.

Also, allocations are done at node granularity, i.e., at a certain time, each computing node
is allocated to at most one application. This decision has been taken because:

Ĝ Tightly-coupled HPC applications perform better if they are run exclusively on a computing
node. Indeed, even ǳnoiseǴ generated by the operating system can significantly affect their
performance [111].

Ĝ It simplifies access control and accounting. In fact, this already reflects best-practices at
several computing centers [135].

Ĝ It somewhat simplifies the devised solutions. In some part of the proposed architectures, we
can work with node-counts (i.e., integers), instead of having to enumerate node identifiers
(i.e., list of identifiers).

1.3 Contributions of the Thesis
The contribution of the Thesis can be divided among three axis: the types of applications, the
scale of resources and the concepts the solution works with. As such, we start by dividing ap-
plications by resource requirements and classifying them into moldable and dynamic (malleable
and evolving). Moldable applications do not change their resource allocation during execution,
therefore, negotiation with the RMS only takes place before they start. Dealing with them first
is a prerequisite before dealing with the more challenging case of dynamic applications, which
may change their resource allocation at run-time. Depending on who initiates this change, dy-
namic applications can further be divided into malleable, i.e., the change is initiated by the RMS,
and/or evolving, i.e., the change is initiated by the application itself.

Judging by their geographic scale, resources can be either centralized or distributed. Central-
ized resources are those in which centralized control can be enforced, such as Supercomputers,
Clusters and Clouds. In contrast, geographically-distributed resources are owned by multiple
institutions, hence, enforcing centralized control is difficult. Examples of such resources include
Grids and Multi-Clouds (Sky Computing).

Related to the provided solution, the RMS can either work with low- or high-level concepts.

5

1. Introduction

Type of Application Type of Resource Type of Concept
centralized distributed

moldable CooRMv1 distCooRM low-level
dynamic CooRMv2 −

− GridTLSE & DIET high-level

Table 1.1: Overview of the contributions of the Thesis

Through low-level we understand concepts such as number of nodes and node identifiers, while
high-level concepts are tasks and services that are able to execute them.

Table 1.1 gives an overview of our contributions. We start by dealing with moldable ap-
plications in the centralized case. As a solution, we propose CooRMv1, a centralized RMS
architecture which delegates resource selection to application launchers, thus allowing them to
employ their custom resource selection algorithm. We show through simulations that the pro-
posed architecture ensures fairness and scales well. Furthermore, we validate results obtained
using simulations by doing real experiments on the GridǶ5000 platform. This contribution has
been published at an international conference [C3], with a more detailed version being available
as a research report [R2].

Our next two contributions extend the CooRMv1 architecture in two directions: distributed
resources and dynamic applications. For distributed resources, we propose the distCooRM
architecture, which allows moldable application to efficiently co-allocate resources managed by
multiple agents. This allows each institution to keep their independence and also improves the
fault-tolerance of the system. Simulation results show that distCooRM behaves well and is
scalable for a reasonable number of applications.

Next, we extend CooRMv1 to support dynamic applications, i.e., malleable and evolv-
ing ones. We first devise a scheduling algorithm for evolving applications and study the gains
that can be made by properly supporting them. Next, we use this algorithm and propose the
CooRMv2 architecture, which efficiently supports malleable and evolving applications, espe-
cially non-predictable ones. An evolving application can make pre-allocations to signal the RMS
their maximum expected resource usage, then it can reliably increase/decrease its allocation, as
long as the pre-allocation is not exceeded. Resources that are pre-allocated by an evolving appli-
cation, but not effectively used, can be filled by a malleable application. Simulation results show
that resource utilisation can be considerably improved. These contributions have been published
as an international conference paper [C3], a workshop paper [C1], with extended versions to be
found as research reports [R1, R3].

The previous contributions propose solutions which work with low-level concepts. Our last
contribution starts from existing systems which propose high-level resource management ab-
stractions, such as tasks to execute and service which can execute them, to study the benefit
as well as the difficulty to make these two software cooperate. To this end, we took GridTLSE
as an application and DIET as an RMS and studied a use-case which was previously badly sup-
ported. We identify the underlying issue of scheduling optional computations, i.e., computations
which are not critical to the user, but whose completion would improve her results. As a solu-
tion, we propose DIET-ethic, a generic master-client architecture, which fairly schedules optional
computations. For our evaluation we have implemented the architecture within DIET. Real-life
experiments show that several metrics are improved, such as user satisfaction, fairness and the
number of completed requests. Moreover, the solution is shown to be scalable. These contribu-
tions have been published as a research report [R4] and have been submitted to an international

6

1.4. Structure of this Document

conference [C4].

1.4 Structure of this Document
This manuscript is organized in four parts. Part I, which you are about to read, continues with
the context of the Thesis in Chapter 2. It gives the reader the necessary elements to understand
the motivation of this Thesis.

Part II presents the first contributions of this Thesis, which deal with moldable applications.
Chapter 3 presents CooRMv1, which deals with centralized resources, while Chapter 4 presents
distCooRM, an extension to CooRMv1, which deals with geographically-distributed resources.

Part III contains contributions related to malleable and evolving applications. Chapter 5
presents a scheduling algorithm for evolving applications, highlighting the gains that can be
made by properly supporting this type of application. Chapter 6 uses this scheduling algorithm
and proposes the CooRMv2 architecture, which allows the efficient scheduling of evolving and
malleable application. Finally, Chapter 7 starts from production-ready software, GridTLSE and
DIET, and studies how optional computations could efficiently be supported using them.

Part IV concludes the Thesis. Chapter ∞ presents concluding remarks and opens up per-
spectives.

1.5 Publications
The contributions of this Thesis have been published in several international and national con-
ferences with reviewing committees. More detailed versions of these articles have been published
as INRIA research reports. Some ideas, especially those related to context and motivation, have
been published in the deliverables of the National Research Agency (Agence Nationale de la
Recherche Ĝ ANR) COSINUS COOP project (ANR-09-COSI-001) [126], which has financed this
Thesis.

Articles in International Conferences
[C1] Cristian Klein and Christian Pérez. Towards Scheduling Evolving Applications. In Euro-

Par 2011: Parallel Processing Workshops - CCPI, CGWS, HeteroPar, HiBB, HPCVirt,
HPPC, HPSS, MDGS, ProPer, Resilience, UCHPC, VHPC, Bordeaux, France, August 29
- September 2, 2011, Revised Selected Papers, Part I, volume 7155 of Lecture Notes in
Computer Science. Springer, August 2011. doi:10.1007/978-3-642-29737-3_15.

[C2] Cristian Klein and Christian Pérez. An RMS Architecture for Efficiently Supporting
Complex-Moldable Applications. In 13th IEEE International Conference on High Perfor-
mance Computing and Communication, HPCC 2011, Banff, Alberta, Canada, September
2-4, 2011. IEEE, August 2011. doi:10.1007/978-3-642-29737-3_15.

[C3] Cristian Klein and Christian Pérez. An RMS for Non-predictably Evolving Applications.
In 2011 IEEE International Conference on Cluster Computing (CLUSTER), Austin, TX,
USA, September 26-30, 2011. IEEE, September 2011. doi:10.1109/CLUSTER.2011.56.

[C4] Frédéric Camillo, Eddy Caron, Ronan Guivarch, Aurélie Hurault, Cristian Klein, and
Christian Pérez. Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Mid-

7

http://dx.doi.org/10.1007/978-3-642-29737-3_15
http://dx.doi.org/10.1007/978-3-642-29737-3_15
http://dx.doi.org/10.1109/CLUSTER.2011.56

1. Introduction

dleware. In 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, CCGrid 2013, Delft, Netherlands, May 13Ĝ16, 2013. Submitted.

Articles in National Conferences
[N1] Eddy Caron, Cristian Klein, and Christian Pérez. Efficient Grid Resource Selection for a

CEMApplication. In 9ĕme Rencontres francophones du Parallélisme, RenparǶ19, Toulouse,
France, September 9-11, 2009, September 2009.

Research Reports
[R1] Cristian Klein and Christian Pérez. Scheduling Rigid, Evolving Applications on Homoge-

neous Resources. Research Report RR-7205, INRIA, February 2010.

[R2] Cristian Klein and Christian Pérez. Untying RMS from Application Scheduling. Research
Report RR-7389, INRIA, September 2010.

[R3] Cristian Klein and Christian Pérez. An RMS for Non-predictably Evolving Applications.
Research Report RR-7644, INRIA, June 2011.

[R4] Frédéric Camillo, Eddy Caron, Ronan Guivarch, Aurélie Hurault, Cristian Klein, and
Christian Pérez. Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Mid-
dleware. Research Report RR-7959, INRIA, May 2012.

Scientific Project Deliverables
[D1] Alexandre Denis, Cristian Klein, Christian Pérez, and Yann Radenac. Resource Manage-

ment Systems for Distributed High-Performance Computing. Deliverable D2.2, Agence
Nationale de la Recherche Ĝ ANR COSINUS COOP (ANR-09-COSI-001), February 2011.
Available from: http://coop.gforge.inria.fr/lib/exe/fetch.php?media=d2.2.pdf
[cited September 26, 2012].

[D2] Frédéric Camillo, Alexandre Denis, Ronan Guivarch, Aurélie Hurault, Cristian Klein,
Christian Pérez, Yann Radenac, and André Ribes. Analysis on Elements of Cooperation be-
tween Programming Model Frameworks and Resource Management Systems. Deliverable
D2.3, Agence Nationale de la Recherche Ĝ ANR COSINUS COOP (ANR-09-COSI-001),
July 2011. Available from: http://coop.gforge.inria.fr/lib/exe/fetch.php?media=
d2.3.pdf [cited September 26, 2012].

8

http://coop.gforge.inria.fr/lib/exe/fetch.php?media=d2.2.pdf
http://coop.gforge.inria.fr/lib/exe/fetch.php?media=d2.3.pdf
http://coop.gforge.inria.fr/lib/exe/fetch.php?media=d2.3.pdf

CHAPTER 2
Context

The pure and simple truth is
rarely pure and never simple.

Oscar Wilde

This chapter lays out the context of the Thesis by describing the High-Performance Computing
(HPC) aspects that are important for understanding the resource management problem. First,
the driving force of all complexity is being presented: the HPC resources. Second, the applications
that are executed on such resources are classified based on their resource requirements. Finally,
the state of the art of resource management is analyzed and improvement opportunities are
highlighted.

9

2. Context

2.1 High-Performance Computing Resources
This section describes HPC computing resources that are most commonly used today. For each
of them their intrinsic properties are analyzed.

2.1.1 Supercomputing
There is no universally accepted definition for a supercomputer [62], however, a supercomputersuper-

computer can best be defined as a computer at the frontline of current processing capacity. Achieving such
performance is mostly done using proprietary (instead of commodity) hardware. Nevertheless,
what hardware is to be considered proprietary is not clear [62]. Often, proprietary hardware
becomes commoditized, which makes drawing a clear line even more difficult.

To track the fastest public supercomputers in the world, the Top 500 List [146] has been
established. It is updated twice a year. Supercomputers are ranked using the High-Performance
Linpack benchmark [138], which has a high computation-to-communication ratio, thus exposing
the maximum Floating-Point Operations per Second (FLOPS) of the hardware. This has been
considered unfair, as it does not highlight the interconnectǶs performance. Alternative bench-
marks have been proposed, such as the HPC Challenge [78] or the Graph 500 List [132], but they
are not as widely recognized. In recent years, increasing importance has been given not only
to creating powerful supercomputers, but also energy-efficient ones. This is why, the Green 500
List [133] has been established, which tracks the most energy-efficient supercomputers from the
Top 500 List.

Let us give some examples of supercomputers. At the time of writing, the IBM Sequoia
ranked #1 on the Top 500 List with over 16PFLOPS. It achieved this performance using 98, 304
homogeneous computing nodes, each composed of a 16-core PowerPC A2 processor and 16GB
of memory. These nodes are interconnected using a 5D torus network.

A recent trend is to increase supercomputing performance using accelerators. For example,
the Chinese Tianhe-1A held the crown of the Top 500 List from October 2010 to June 2011
with over 2.5PFLOPS. A particularity of this supercomputer is the usage of GPUs: Besides 2
Intel Xeon 6-core CPUs, each of the 7, 168 computing nodes contains 1 Nvidiaȶ M2050 GPU.
Otherwise, the nodes themselves are homogeneous. Interconnection among them is ensured using
a proprietary Infiniband-like network organized in a fat-tree topology.

The Blue Waters project aims at creating a supercomputer which delivers 1PFLOPS for a
wide range of applications. According to current plans [11], the supercomputer will be composed
of two types of nodes: CPU nodes, featuring the 8-core AMD Operatonȶ 6200, and GPU nodes,
featuring the NVIDIAȉ Teslaȶ. As one can observe, nodes will no longer be homogeneous.
These nodes will be interconnected using a 3D torus network.

From the examples above, one can deduce several tendencies in supercomputing. First, the
interconnect is not homogeneous, i.e., the observed bandwidth and latency depend on the source
and destination node. This is important to take into account when allocating resources to la-
tency sensitive applications [81]. Second, the battle between using few powerful and complex
cores (i.e., CPUs) or many specialized cores (i.e., GPUs) has not drawn a clear winner yet. As
highlighted by the Blue Waters project, future supercomputing will most likely feature heteroge-
neous computing nodes, with some of them containing complex cores, accelerating the sequential
part of the applications, and others will contain simple cores, accelerating the parallel part of
the applications [143]. Both of these tendencies need to be taken into account when designing
tomorrowǶs Resource Management System (RMS).

10

2.1. High-Performance Computing Resources

2.1.2 Cluster Computing
A computing cluster is a set of (more or less) loosely connected computers that work together computing

clusteracting as a single system. In a way, clusters can be viewed as the ǳcheapǴ version of supercom-
puters: Instead of using expensive, proprietary technology, clusters use commodity hardware.

Due to their good price to performance ratio, clusters can be found in many research institutes
and companies. They most commonly feature homogeneous, multi-core nodes connected using
a high-bandwidth, low-latency Local-Area Network (LAN), ranging from Gigabit Ethernet to
Infiniband. High-end clusters employ a non-blocking switch, thus, for many applications, clusters
can be regarded as being perfectly homogeneous both communication- and computation-wise.

However, computing centers generally have multiple clusters. This occurs as a result of
upgrading the infrastructure: When a new cluster is bought, instead of decommissioning the
old one, the two clusters co-exist. Therefore, the actual hardware that a typical end-user has
access to can range from ǳnearlyǴ homogeneous to heterogeneous. For example, at the time
of writing the Computation Center at IN2P3, Lyon, France operated 4 clusters having similar
computing power [124]. In contrast, the Texas Advanced Computing Center operates two clusters
with quite different capabilities: One has GPUs, while the other one is CPU-only [144].

This makes resource management somewhat more difficult. Specifying a node-count is not
enough to properly select resources: One also has to specify on what cluster the allocation should
take place.

2.1.3 Grid Computing
In the previous two sections, we have presented resources that are under the administration of a
single institution. Pushing this concept further, we can imagine multiple institutions mutualizing
their hardware resources, in order to reach a common goal, such as a multi-partner research
project.

This is the vision of Grid computing: users having transparent access to computing resources,
no matter what their locations, similarly to how the power grid works nowadays. Grids can best
be defined using Ian FosterǶs three-point checklist [49]. Thus, a Computing Grid is a system computing

gridthat:

(1) coordinates resources that are not subject to centralized control
(2) using standard, open, general-purpose protocols and interfaces
(3) to deliver nontrivial qualities of service.

Grid are nowadays widely deployed for doing e-Science. For example, in the United States,
the TeraGrid project (now continued with the XSEDE project) aggregated the resources of 10 in-
stitutions, serving 4, 000 users at over 200 universities. In Europe, the EGI project provides
13, 319 users with over 300, 000 cores [128]. From a hardware perspective, these Grids are es-
sentially a geographically-dispersed multi-cluster system, in which the clusters are connected
through a high-bandwidth Wide-Area Network (WAN).

From a user perspective, Virtual Organizations [50] are abstract institutions grouping virtual or-
ganizationsusers and resources belonging to the same research community. As of today, Grids are mostly

used for running applications composed of loosely-coupled, sequential tasks [65]. However, they
do have the potential to run large, tightly-coupled simulations, which require the simultaneous
availability of resources on multiple sites [72, 83].

Let us highlight the characteristics of Grid resources. First, the computing resources and the
interconnecting network are heterogeneous. This means that good resource selection algorithms

11

2. Context

have to be employed in order to optimize application performance [30, 44]. Second, there is no
centralized control as each institution wants to keep its independence and be able to enforce its
own resource allocation policies. Third, Grid platforms are large-scale, distributed and dynamic.
Indeed, the availability of the resources changes at a high frequency, however, the installed
resources on the Grid platform only change at a low frequency [48].

These characteristics pose additional resource management challenges. A Grid RMS needs to
be scalable, distributed and efficiently deal with both static and dynamic resource information.

2.1.4 Desktop Computing
Desktop Computing or Volunteer Computing is a distributed computing paradigm indesktop

computing

volunteer
computing

which resources are donated voluntarily by computer owners. To make it attractive to participate
in such projects, impact on the ownersǶ computers is minimized by only exploiting idle resources,
such as idle CPU cycles or free disk space. The actual hardware that is donated can range from
low-end desktops, having only a CPU, to high-end desktops featuring a GPU. A recent trend is to
include gaming consoles as part of the platform, thus taking advantage of the high performance
provided by accelerators [95]. This allows desktop computing platforms to reach an aggregated
performance of over 6PFLOPS [123]. Considering that such a platform would rank 4th on the
Top 500 list, volunteer computing is an attractive alternative to managing a costly infrastructure.

Desktop computing has the following properties: First, the platform is distributed and highly
heterogeneous, as highlighted above. Second, since owners participate voluntarily, nodes can
enter and leave the system at a high rate. This high volatility makes it difficult to harness
its capacity for large, tightly-coupled simulations [13]. Moreover, even when running bag-of-
tasks, guaranteeing nontrivial Quality of Service (QoS) is difficult. This is why we chose to
classify Desktop Computing separately from Grid Computing, despite it being often referred to
as Desktop Grids in literature.

In order to improve resource utilization, the solutions provided in this Thesis require direct
control over the resources, which is not feasible in Desktop computing. Therefore, these platforms
are out of scope.

2.1.5 Cloud Computing
Let us start presenting Cloud Computing by giving the NIST definition [80]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-cloud
computing work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction.

Depending on the level of abstraction at which the computing resources are provided, Cloud
Computing can be classified as:
Software as a Service (SaaS) allows a Cloud user to provision with ready-to-use software.

Examples include popular web-mails, such as Yahoo! Mail, on-line document management
software, such as Google Docs, etc.

Platform as a Service (PaaS) gives the Cloud user access to programming languages, li-
braries and tools, to create and deploy software on the provides premises. For example, in
order to run a computation on a PaaS cloud, users might have to use the MapReduce [39]
programming model, which on one hand eases the burden of dealing with large data sets,
load balancing and fault tolerance, but on the other hand limits the kind of application

12

2.1. High-Performance Computing Resources

that can be executed. Popular examples of PaaS offers include Amazon Web Services [121],
Google App Engine [131], etc.

Infrastructure as a Service (IaaS) provisions the user with virtual hardware, such as virtual
machines, virtual network, etc. Popular examples include Amazon EC2 [120], Microsoft
Azure [149] and Rackspace Cloud [141].

Hardware as a Service (HaaS) provisions the user with bare-metal hardware, such as physi-
cal machines. GridǶ5000 [12], the French reconfigurable experimental computing platform,
is an example of an HaaS. A similar initiative in the USA is called FutureGrid [114].

In this Thesis, we are mostly interested in IaaS. The interfaces offered by PaaS and SaaS are
meant to hide resource management details from the users, therefore, the problematics raised in
this Thesis are not well highlighted from those perspectives. Note that, resource management
issues do appear when implementing a PaaS. However, this is no different than considering the
PaaS implementation a consumer of an IaaS interface. Regarding HaaS, resource management in
this context is no different than managing a cluster, which is why we shall not insist on in this
section.

In exchange, IaaS brings new opportunities for a more flexible resource management. Since
the allocated resources are virtual, the physical-to-virtual mapping can be transparently changed
without the userǶs knowledge. For example, this could be used to consolidate computing nodes
in order to save energy [58].

Nevertheless, there are some intricacies of resource management in IaaS. First, while IaaS
aims at abstracting resources, it cannot offer a homogeneous view of them, since the underlying
physical resources themselves are not homogeneous. Indeed, Amazon EC2 offers several instance
types, ranging from those with little processing power and slow network, to powerful HPC in-
stances with a 10Gbps full-bisection network. Second, public Clouds, i.e., those operated by public

clouda commercial provider, charge for using the resources, usually at a given granularity, such as
an hour. Therefore, resource selection not only has to take into account the performance of the
selected resources, but also their prices.

Sky Computing

Sky Computing is an emerging computing paradigm which consists in on-demand resource ac- sky
computingquisition from several Cloud provides [69]. This makes resource management even more difficult,

as the user no longer needs to negotiate with a single provider, but needs to coordinate among
multiple providers. This is somewhat similar to Grid Computing, except that a new dimension
is added to the problem: resource allocation is charged.

2.1.6 Hybrid Computing Infrastructures
The above infrastructures can be combined, so as to obtain a system with improved properties.
Let us give three examples of such hybrid infrastructures.

Cloud with Desktop Computing As previously highlighted, Desktop computing offers a
tremendous amount of computing power at a low price. However, due to the high volatility,
efficiently harnessing this computing power can be difficult. As a solution, Desktop computing
can be combined with Cloud resources, so as to reduce volatility while at the same time keeping
costs down [40].

13

2. Context

Heterogeneity Scale1 Domains2 Volatility Type
Supercomputer lowĜmedium building single low3 physical
Single cluster low building single low physical
Multiple clusters medium building single low physical
Grid high continent multiple high physical
Desktop very high world many very high idle physical4
Cloud medium continents single low virtual
Sky medium world multiple low virtual
Hybrid high world many low mixed

1 i.e., geographic scale
2 number of administrative domains, i.e., number of different organizations controlling the
resources
3 systems comprised of many cores are necessarily volatile [23]
4 allocations are only made from idle resources

Table 2.1: Intrinsic properties of HPC resources

Cloud with Grid Computing Grid computing requires partner institutions to provision for
enough resources, so as to satisfy the resource requirements of all users. However, the load of
the platform might greatly vary, having low and high resource utilization periods. For example,
the GridǶ5000 experimental platform is lightly loaded, except before an important conference
deadline [94] when resource utilization is high. Provisioning in order to meet demand during
these peak periods would be inefficient, since resources would be idle for most of the time.

In order to reduce the costs of running a Grid, while at the same time improving user-
perceived performance, capacity provided by the Grid resources can be augmented with Cloud
resources [116]. When the load of the Grid is too high, virtual machines are leased from the
Cloud provider. This allows reducing costs and improving user satisfaction at the same time.

Desktop and Grid Computing Augmenting the capacity of a Grid system can also be
done by adding Desktop computing resources [113]. For example, user resource requests can be
balanced between the two types of resources, so as to obtain good performance and reduced
cost.

In this Thesis we shall make a simplification and shall not specifically deal with hybrid in-
frastructures. Nevertheless, some of our propositions could be extended to them.

2.1.7 Analysis
Let us analyze the previously presented HPC resources as synthesised in Table 2.1. A first obser-
vation to make is that resources are becoming increasingly heterogeneous. Computation-wise, it
is nowadays common not only to find heterogeneity inside a computing node as CPUs and GPUs
co-exist, but also among nodes. Communication-wise, the interconnecting network is also hetero-
geneous, meaning that the performance observed by an application depends on its mapping on
the resources. Moreover, resources are constantly changing. Whether tomorrowǶs resources will
comprise many small cores, few large cores, or a combination thereof is yet to be decided. Soft-

14

2.2. A Classification of Applications by Resource Requirements

Figure 2.1: A classification of applications by resource requirements

ware platforms will have to be flexible enough, so as to guarantee their independent evolution,
without having to upgrade them in lock-step with the resources.

Second, HPC resources are geographically dispersed, belonging to multiple administrative
domains. Regarding the former, platforms need to be scalable and fault tolerant, despite the
high latencies separating the resources and an increased likelihood of network failures. Regarding
the latter, institutions should be allowed to implement their own resource allocation policies,
otherwise convincing stakeholders to mutualize resources could prove difficult.

All the above have an impact on the HPC platform. Indeed, HPC resources are simultane-
ously used by multiple users. To ensure that their applications run at peak performance, one
needs to efficiently allocate resources to them. To achieve this, both application and resource
characteristics have to be taken into account. An RMS, the part of the platform responsible for
multiplexing resources among multiple users, needs to provide good interfaces to allow for this.
Before studying what interfaces are currently proposed in the state of the art, let us analyze the
resource requirements of applications.

2.2 A Classification of Applications by Resource Requirements
Let us start by giving some definitions aimed a cleaning up confusion. We call an application application
a set of executables and libraries having the goal of processing input data and transforming it
into output data, which is useful to a user. Since we are mostly interested in distributed- and
parallel-applications, we consider that applications are composed of one-or-more tasks which do task
intermediate transformations, producing intermediate output data.

Distinguishing an application from its constituent tasks is important for our classification.
Indeed, in many resource management problems the two concepts may be mixed. Applications
may be presented to the system in any of the three following ways:

Ĝ An application is submitted ǳas a wholeǴ to the system: For one application, the system
manages one single entity. For example, tightly coupled parallel applications are usually
handled this way [47].

Ĝ The tasks of an application are each submitted to the system separately: For one applica-
tion, the system manages several entities. For example, parameter sweep applications are
often treated as such [63].

15

2. Context

Ĝ Several applications are submitted ǳas a wholeǴ to the system: For several applications,
the system manages one single entity. For example, there are some workload management
systems that aggregate several applications [31].

Having clarified on what we call an application, in the rest of this section, we analyze the
different types of applications depending on their resource requirements. Figure 2.1 offers an
overview of the properties we found relevant for our analysis, which we have grouped according
to two criteria: QoS requirements and time variation.

2.2.1 QoS Requirements
Quality of Service (QoS) is a generic term to describe the fact that services offered to aquality of

service consumer should have some guarantees. This is in contrast to best-effort delivery, where the
service is offered without any guarantees. The most common use of the word QoS is in packet-
switched networks, where some packets (e.g., those that are part of a file download) are delivered
in best-effort mode, while others (e.g., those that are part of an audio call) are delivered with
strict QoS requirements, such as at most 35ms latency, at most 10% jitter and no-loss delivery.

Similarly, since allocating resources is a service, one can assign to it QoS constraints such
as: start-time of the allocation, deadline of the allocation, maximum allowed failure rate of
computing nodes, etc. In order to simplify the classification of applications by QoS, we shall
group them into two categories: interactive and passive.

Interactive applications have strict QoS requirements, for example, because they need tointeractive
cooperate with external entities, such as scientific instruments or human operators. These ap-
plications require the allocation to start at a precise moment of time. Once the allocation has
started, these applications cannot tolerate a degradation of the allocation, e.g., suspending an
application so as to resume it later is not an option. Examples of such applications include web
servers, Massive Multi-player Online Role-Playing Game (MMORPG) servers and distributed
visualization applications.

Passive applications, in contrast to interactive ones, have more relaxed QoS requirements.passive
They do not interact with external entities, therefore, more liberty can be taken when allocating
resources to such applications. For example, the applicationǶs start-time may be delayed. Also,
during their execution, these applications can be killed and restarted later, suspended and re-
sumed later, or check-pointed and restarted. Nevertheless, the allocation of resources has to be
made carefully. At the very least it should be guaranteed that the application will eventually
finish. If specified by the user, other constraints might need to be taken into account, such as
a deadline (i.e., maximum allowed completion time), a budget (i.e., maximum allowed price),
energy consumption, etc. Examples of passive applications include video conversion software,
simulation software and build servers.

When allocating resources to interactive applications, one does not have a lot of choice:
Either the resources are allocated or the application runs in degraded mode (e.g., web pages are
served without pictures or videos). This approach has been extensively studied as part of the
SelfXL project [90]. In contrast, this Thesis focuses on efficiently running passive applications,
such as large-scale numerical simulations.

2.2.2 Time Variation of Resource Requirements
Let us characterize applications depending on when the resource requirements of the application
have been fixed. We distinguish three phases of the applicationǶs life-cycle:

Ĝ development: the applicationǶs code is being written by a development team;

16

2.2. A Classification of Applications by Resource Requirements

Figure 2.2: Terminology used for expressing times throughout the life-cycle of an application

Figure 2.3: Graphical explanation of how to improve response time using moldability

Ĝ submission: the user has submitted the application for execution to an HPC platform,
but no computing resources have been allocated to it yet;

Ĝ execution: the application is running its code.
In this Thesis, we are mostly interested in the user-perceived performance of an application,

after the application has been delivered to the end-user. For this purpose, we use the applicationǶs
response-time, which measures how quickly the user receives the results after the application response-

timehas been submitted. Figure 2.2 shows that the response time is the sum of the waiting-time, the
waiting-
time

duration the application had to wait for resources to become available, and the run-time, the

run-time

duration the application actually did computations. Depending on how resource requirements
are devised, an application may find an optimal compromise between the waiting-time and the
run-time, so as to minimize the end-time.

In the remaining of this section, we introduce terminology based on FeitelsonǶs taxonomy [46].
Applications whose resource requirements are fixed at development or submission are called
static, while the others dynamic.

Static applications

The resource requirements of a static application are fixed before execution and cannot change static
afterwards: The resources used by a static application are constant throughout its execution.
The resource requirements can either be fixed at development, in which case the application is
called rigid, or at submittal, in which case it is called moldable. Rigid applications can only rigid

moldable
run on a hard-coded configuration of resources, whereas moldable applications can run on a wide
variety of configurations.

Moldability allows to improve resource utilization and application performance by allowing
more flexibility in how the allocation can be made [59]. Moldability allows to find at submittal
the best trade-off between the waiting-time and the run-time, so as to minimize response-time.

17

2. Context

Figure 2.3 illustrates this: Let us assume that an application requires either 4nodes for 1 hour
or 3 nodes for 1hour 20minutes. If the platform has 4 nodes, one of which is only available in
40 minutes, it is better to run the application on 3 nodes (instead of 4): The run-time will be
20 minutes greater, however since the waiting-time is 0, the final response-time will be reduced.
Conversely, if all 4nodes are available right-away, then the optimum choice is to allocate all
nodes to the application.

Many HPC applications are already moldable [105]. For example, many applications coded
using Message-Passing Interface (MPI) partition the input data when they start executing. Since
data migration is left to be implemented by the programmer [43], these applications generally
do not support changing their resource allocation during execution.

Dynamic applications

As opposed to static applications, the allocated resources of a dynamic application can changedynamic
throughout its execution. Unfortunately, the word dynamic is very vague, as it does not charac-
terize who or what is determining the allocation to change. Therefore, dynamic application can
further be characterized as being malleable and/or evolving.

Malleable applications The allocated resources of a malleable application can changemalleable
(grow/shrink) due to resource-related constraints. For example, if additional resources are avail-
able, an application may be grown so as to take advantage of them for increased speed-up.
Similarly, if resources are becoming scarce, an application may be shrunken, so as to conform
to a system policy. When the set of allocated resources changes, a malleable application has to
adapt, which can be a more-or-less costly operation. Depending on the required bandwidth, time,
CPU power and disk capacity wasted1 during the adaptation process, we identify two extreme
cases:

Ĝ Applications that can quickly grow/shrink as required by the availability of the resources,
for example, Bag of Tasks (BoT) and Parameter-Sweep Application (PSA) can eas-bag of tasks

parameter-
sweep

application

ily be adapted to a varying number of resources during their execution. Growing is handled
by launching new tasks on the newly allocated resources, while shrinking is handled either
using checkpoint-resume or kill-restart [102]. Since tasks are generally short compared to
the duration of the whole application, adaptation can be achieved while wasting only a
small percentage of resources.

Ĝ Applications that are heavily penalized for each adaptation, for example, applications that
need to migrate large amounts of out-of-core data.

To efficiently make use of resources, a malleable application requires that its allocated re-
sources be within its minimum and maximum requirements. Such requirements can usually be
determined at the start of the application. Minimum requirements are imposed by the space
complexity of the computations, e.g., the amount of memory needed to store the working set.
Shrinking the application below this level forces it either to abort computation or to checkpoint
and restart later. Regarding maximum requirements, the speed-up curve of every application
has a global maximum [42], which limits its parallelism. Therefore, even though a malleable ap-
plication could be grown beyond its maximum requirements, it would not make effective usage
of the extra resources.

1We use the word ǳwastedǴ as we consider that adaptation is a secondary concern of the application, the
primary one being to complete computation and output the results. In no way do we want to suggest that
adaptation is not necessary, or that adaptation is hindering the application from executing efficiently.

18

2.2. A Classification of Applications by Resource Requirements

It has been shown that malleability improves both resource utilization and application
response-time [59]. Despite this, in practice, few applications are malleable, due to the fact
that commonly used programming models (such as MPI) leave the burden of implementing mal-
leability to the programmer [43]. Moreover, even if applications were malleable, taking advantage
of it would be difficult, due to the limited availability of RMS support.

Evolving applications The allocated resource of an evolving application changes due to the evolving
fact that the applicationǶs resource requirements change during its execution. This can either
happen because the computation has grown or shrunken in complexity (e.g., it requires more
Random-Access Memory (RAM) or more temporary disk space), or because of some external
factors, e.g., a human operator changed some parameters of the computation. While not a
passive application, one of the most common evolving applications is a web server, which can
exhibit evolving resource requirements, as a result of the varying number of users that it serves.

Depending on how much time in advance the evolution can be predicted (called the horizon horizon of
predictionof prediction), evolving applications can be divided into three subcategories:

Ĝ fully-predictably evolving applications are those whose evolution can be fully described
at the beginning of their execution, i.e., their horizon of prediction is infinite;

Ĝ marginally-predictably evolving applications have a finite horizon of prediction, e.g., it
can predict 5 minutes ahead that more resources will be required;

Ĝ Non-predictably Evolving Applications (NEA) change their requirements, without mak-
ing it possible to have any predictions (i.e., the horizon of prediction is zero).

As examples, applications which are described as workflows are often evolving. The work-
flows may have various branching factors [10], which increase/decrease the resource requirements.
Regarding predictability, workflows may be fully-predictable if all the tasks are known at start-
time (in literature these are commonly called static workflows [117]). However, some workflows
create tasks depending on the output of previous tasks, in which case, the application is only
marginally predictable.

At any rate, no matter what the horizon of prediction, exporting this information outside
the application would allow the system, and possibly other applications, to improve resource
management decisions. For example, a moldable application could make use of this information
to decide on how many resources it should allocate, whether to wait for more nodes to become
available or not.

Malleable and evolving applications As it has already been suggested, applications can be
both malleable and evolving. For example, either the minimum or the maximum requirements
might change as a function of the applicationǶs internal state. However, the application can
efficiently do computations as long as the allocated resources are within this range.

A good example are Adaptive Mesh Refinement (AMR) simulations, which are gaining in-
creasing momentum [97]. Instead of using a discretization of space computed at start-time (i.e.,
a static mesh), fine enough to ensure numerical precision throughout the whole domain, AMR
dynamically coarsens/refines the mesh on those part of the domain where interesting phenom-
ena happen, as required by numerical precision. This allows using the same computing power to
solve problems which are at least an order-of-a-magnitude more complex [17].

Since the simulated phenomena are rather chaotic, AMR applications are necessarily non-
predictably evolving. If implemented property, such applications can be made malleable, with
minimum requirements as low as to keep the refined mesh in memory, and with maximum re-
quirements as high as to make the application execute efficiently (e.g., at their maximal speedup).

19

2. Context

Unfortunately, as of today, most AMR applications are programmed so that the varying resource
requirements are not externally exposed. They are written as moldable applications [15], with the
number of processors empirically chosen at submittal. Dynamically allocating resources to such
an application would allow it to run efficiently throughout its whole execution. Moreover, being
able to provide applications with more nodes and memory on the fly is considered necessary for
achieving exascale computing [41].

2.2.3 Conclusion
To sum up, based on their resource requirements, applications can either be static or dynamic.
Static applications have their resource requirements fixed before execution: They can be either
rigid, having their requirements fixed at development, or moldable, having their requirements
fixed at submittal.

Dynamic application can have variable resource allocation during execution. For malleable
applications, the allocation change is determined by the system, whereas for evolving ones, the
allocation change is initiated by the application. An application can be both malleable and
evolving at the same time.

At any rate, not dealing properly with each kind of application, for example, not taking
advantage of an applicationǶs malleability, misses an opportunity at optimizing application per-
formance and resource usage.

2.3 Managing HPC Resources
This section presents the state of the art in HPC resource management. It presents and analyzes
resource allocation abstractions and their implementation, which are grouped in five classes by
the degree of control they have on taking allocation decisions. In decreasing oder of control,
the section discusses Cloud managers, batch schedulers, distributed resource managers, meta-
scheduler and application-level schedulers.

2.3.1 Cloud Managers
IaaS Cloud Manager (CM) are software solutions which manage bare hardware, such ascloud

manager computing nodes, storage and network, and expose it as a virtual infrastructure: Virtual Ma-
chines (VMs), virtual storage, virtual networks. The most popular open-source CMs are Euca-
lyptus [92], OpenNebula [104], OpenStack [96] and Nimbus [137].

Most of these CMs expose APIs such as the de facto Amazon EC2 [120] standard or the Open
Cloud Computing Interface (OCCI) [93] standard. With respect to resource management, they
basically offer the same services centered around leasing VMs2: The user decides when a virtual
machine is instantiated or destroyed, for which she is billed with a certain granularity (e.g.,
hourly). An exception to this is AmazonǶs EC2 offer, which proposes spot instances [119]: Thespot

instances system decides when to instantiate and release VMs based on a price set by the user and the
current market value of resources.

These abstractions are simple, yet powerful enough for many applications, especially inter-
active ones. For example, a web hosting application can instantiate/release VMs to adapt to
changing web traffic [28]. This allows both coping with the load, while at the same time only

2Cloud managers also have other functions, such as communicating with the computing nodesǶ hypervisors,
managing virtual images and storage. While important, these are not relevant for resource management.

20

2.3. Managing HPC Resources

allocating resources that can be effectively used. On the other hand, if the current mapping
between VMs and physical machines leaves the latter underutilized, VMs can be migrated so as
to shutdown machines and save energy [58]. Spot instances can be used for allocating resources
to low-priority malleable applications, with relaxed deadline constrains.

However, this interface is insufficient for dealing with large-scale passive applications. The
problem steams from the fact that in the context of IaaS Clouds it is often assumed that the
physical platform is either large enough to cover all on-demand needs or that applications can
somehow deal with receiving fewer VMs than requested [90]. This is not the case for HPC appli-
cations, which may require the whole platform [17]. If two such applications enter the system at
the same time, the CM has no choice but to signal an ǳout-of-capacityǴ error [125].

In order to make Cloud infrastructures more HPC-friendly, Haizea [103] proposes a custom
scheduler on top of OpenNebula. It augments the classic Cloud interface with concepts to be
found in batch schedulers, such as submitting rigid jobs and making advance reservations. We
shall describe them with more details in the next section, which is dedicated to batch schedulers.

2.3.2 Batch Schedulers

Batch schedulers are resource managers designed for clusters or supercomputers. Inspired by batch
schedulersbatch processing from the 1950s, the main idea of batch schedulers is that system throughput

can be improved by running applications one after another instead of concurrently [76]. Being
a key component of an HPC platform, there are quite a few batch scheduler implementations.
They range from production-oriented schedulers, such as LoadLeveler [68], Sun Grid Engine [51],
SLURM [66], TORQUE [147], to research-oriented ones, such as OAR [22] or ReSHAPE [108].

Regarding the interface they expose, batch schedulers try to be as generalist as possible,
so as to satisfy the needs of many users. Most of them provide two methods: submitting rigid
jobs and making advance reservations. Other, more innovative concepts include moldable jobs,
low-priority jobs, support for dynamic resizing of homogeneous applications, dynamic jobs. Let
us analyze each of these concepts.

Submitting Rigid Jobs

For submitting a rigid job, the user specifies a node-count and a maximum execution time. To rigid job
decide the start-times, the resource manager schedules jobs in space-sharing mode using First-
Come First-Serve (FCFS) [99] augmented with aggressive back-filling (EASY) or Conservative
Back-Filling (CBF). EASY [76] backfills a job as long as the start-time of the first queued job
stays the same, while CBF [86] backfills a job as long as the start-time of all previously queued
jobs are unchanged. Both backfilling strategies improve resource utilization, while at the same
time ensuring reasonable fairness among jobs.

Alternatively, resources could be allocated in time-sharing mode. For example, several ap-
plications could be running on the same nodes. In order to ensure reasonable performance one
would have to use coarse-grained gang-scheduling, i.e., simultaneously do context switching on
all the nodes that an application is running on. Still, due to the relatively high cost of gang-
scheduling, time-sharing is rarely employed in practice [47].

At any rate, as has previously been mentioned in Section 2.2, most HPC applications are
moldable. Submitting them as rigid jobs reduces the flexibility one has in allocating resources,
which leads both to inefficient resource usage and reduced application performance [59]. One
could try to emulate moldability by cancelling a job and resubmitting a new one (with a different

21

2. Context

Figure 2.4: Resource waste when using advance reservations: (a) application A1 enters the system
and requests nodes from t1 to t2; (b) application A2 enters the system and requests nodes from
t2 to t3; (c) application A1 finishes earlier at t′1<t2. The system cannot advance the allocation
of A2, thus, a hole is left in the resource allocation chart.

node-count), however, the job would be resubmitted at the end of the queue, hence, it would
lose its implicit priority based on submission time.

Advance Reservations

For advance reservations, besides the node-count and maximum execution time, the useradvance
reservations additionally specifies a start-time. The resource manager either guarantees that the allocation

can start at the given time or the reservation is rejected. Advance reservations are useful when
having to synchronize the application with external entities, such as scientific instruments [1] or
when needing simultaneous access to computing resources that are managed by different batch
schedulers (i.e., co-allocation).co-

allocation On the downside, advance reservation are sometimes inefficient. Since the resource manager
is not allowed to choose the start-time, advance reservations waste resources by leaving ǳholesǴ
in the resource allocation chart [101], as shown in Figure 2.4. Therefore, advance reservations
are rarely used in production systems.

Moldable Jobs

A simple support for moldable applications consists in specifying a range of node-counts with a
single maximum execution time, as implemented in SLURM. This simpler form of moldability
allows to improve application performance by allocating more resources (and reducing execu-
tion time) if enough nodes are available. However, since the job specification only includes one
single maximum execution time, one cannot express the fact that allocating more nodes to the
application reduces its execution time. Therefore, backfilling opportunities might be missed, in
which case the applicationǶs start-time is delayed.

Improved support for moldable applications can be achieved using moldable jobs: Whenmoldable
jobs submitting a job, a user is allowed to list several moldable configurations, which associate

moldable
configura-

tions

a node-count to a maximum execution time. Then, when starting the application, the resource
manager chooses the one that minimizes an internal criterion. Moldable jobs are supported both
by OAR and TORQUE3. OAR choses the configuration which greedily minimizes application
finish time, while TORQUE attempts to choose the one which improves resource usage.

3These are called ǳmalleable jobsǴ in the TORQUE User Manual. In this Thesis, we prefer to use FeitelsonǶs
terminology [46] and call them ǳmoldableǴ.

22

2.3. Managing HPC Resources

While moldable jobs are a considerable step towards supporting moldable applications, there
are still some cases where it proves inadequate. For example, let us assume that one wants to
describe all configurations that an application may run on, given a cluster of 1024nodes. One
would have to enumerate 1024 configurations: For each node-count from 1 to 1024 one would
have to give a separate maximum execution time. If there are many moldable applications that
are queued in the system, the resource manager might become overloaded.

This problem is somewhat more aggravated on supercomputers, for which the number of
computing nodes is of the order of 100, 000 (see Section 2.1.1). Moreover, some applications
are locality-sensitive [89]: For a constant number of nodes, their performance is significantly
slowed down when the allocation is non-continuous. Using moldable jobs to express this, so as
to optimally select resource for these applications, might significantly increase the number of
configurations.

This situation becomes impractical in case of multi-cluster applications. If a platform is
composed of c clusters each having n nodes, in order to list all possible configurations, one
would need to input (n + 1)c − 1 configurations: On each cluster one chooses any node-count
from 0 to n, thus giving (n+1)c combinations, from which the configuration without any nodes
is excluded (hence the −1 in the above formula). Clearly, having an exponential number of
configurations would not scale. Assuming a modest data-center of 4 clusters with 128 nodes
each, the number of configurations to enumerate is of the order of 108.

Low-priority Jobs

OAR supports low-priority, preemptible jobs called ǳbest-effortǴ which are similar to Cloud spot
instances. These jobs are only launched if enough resources are left idle by regular jobs. Also,
if there are insufficient resources to serve a regular job, best-effort jobs are killed after a grace
period. This type of job can be used for building a limited form of malleability, whose benefits
and drawbacks are discussed in Section 2.3.5.

Support for Homogeneous Applications

Homogeneous applications are iterative applications which respect two conditions: First, homogene-
ous
applications

computation and data are relatively uniformly distributed on each node and, second, each iter-
ation does approximately the same amount of work.

ReSHAPE [108] is a framework which supports dynamic resizing of homogeneous applica-
tions. One of its components is a prototype scheduler which decides how resources are allocated
among applications in the system. According to our classification, this scheduler can best be
described as a specialized batch scheduler.

ReSHAPE works as follows. Application need to be re-engineered so as to implemented a re-
distribution function and interact with the ReSHAPE Application Programming Interface (API).
At the end of every iteration, they contact the scheduler with some information, and receive
grow/shrink commands. The scheduler retains a cache of obtained application performance and
attempts to give resources to the application which would most benefit from it. The approach
improves resource utilization and application response times.

Despite its elegant solution, the ReSHAPE framework has some disadvantages. First, it offers
a very limited type of malleability, mainly targeted at homogeneous applications. Among other,
PSAs cannot be efficiently scheduling using the proposed approach. Second, since the performance
of the application as a function of the allocated notes is cached, evolving applications, such as

23

2. Context

AMR simulations, have no mean to declare their changing resource requirements. Thus, resource
allocation to such applications is suboptimal.

Dynamic Jobs

An increasing effort is devoted to enabling batch schedulers to change the resources allocated to
a job at run-time, as set forward by the Exascale Roadmap [41]. At least SLURM and TORQUE
allow jobs to be dynamically resized (grown or shrunken) during execution. This might be useful
to allow evolving applications to acquire resource on-the-fly, instead of having to reserve as many
resources as to fulfill their peak demands. This would improve resource utilization, as resources
that cannot be efficiently used by the evolving application could be filled by another application
that can make a more efficient use of them.

Growing and shrinking is handled slightly differently in SLURM and TORQUE. In SLURM,
changing the size of the allocation is directly initiated by the user [142]. For shrinking, the user
calls a special update command to release nodes to the system. For growing a job J , the user
submits a new job J ′, then, when job J ′ has started, she may merge the resources of two jobs J
and J ′. In TORQUE [147], the RMS regularly queries each application what its current load is,
then decides how resources are allocated. The application has to provide a custom script, which
is called by TORQUE to enact the growing or shrinking of the application.

Unfortunately, none of the proposed solutions address a fundamental issue: How can the
resource manager guarantee the availability of the resources when an evolving application needs
to grow? Without this guarantee, evolving applications would have to resort to one of the two
following solutions: (i) either wait for more resources to become available, possibly leading to
a dead-lock if two evolving applications need to grow at the same time; (ii) checkpoint and
resubmit a larger resource request, thus having to wait for queued applications to finish. In both
cases, evolving applications would be delayed, i.e., their end-time is increased. Sadly, they would
be penalized for attempting to more efficiently allocate resources. Obviously, it would be difficult
to convince users to accept this situation, therefore, they would most likely continue to allocate
resources for peak demand.

2.3.3 Distributed Resource Managers

In this Thesis, we call a Distributed Resource Manager (DRM) a set of agent, whichdistributed
resource
manager

have direct control over the resources, collaborating in order to allocate multiple, independent
resources to multiple users. This is in contrast to a batch scheduler or a CM, which are centralized.
Also, when using multiple batch schedulers (as is done in many Grid environments), they would
generally not cooperate.

The purpose of distributed resource managers is twofold: scalability and fault tolerance.
Regarding scalability, since the information related to the state of the resources is distributed
on multiple agents, a DRM can handle more resources. As for fault tolerance, if one agent fails,
only part of the resources become unaccessible. Also, if the resources get bisected due to a
network failure, users can still access resources which are on their side of the bisection.

DRMs aim at hiding the complexity of the platform from the users, therefore, they mostly
offer Cloud-like or batch-like interfaces. To better illustrate how DRMs work, let us describe two
of them: XtreemOS and DIET.

24

2.3. Managing HPC Resources

Grid Applications

XtreemOS API (SAGA & Posix-like)

Infrastructure for Highly Available Scalable Services

Application Execution Management Data ManagementVO & Security Management

LinuxSSI Embedded Linux

PC Cluster Mobile Device

User Software

XtreemOS-G

XtreemOS-F

Extensions to Linux for VO Support

Linux

X
tr
ee
m
O
S
G
ri
d
O
S

Figure 2.5: Overview of XtreemOSǶs architecture

XtreemOS

XtreemOS [84] is a grid operating system designed to ease user access to a large-scale platform,
managed by multiple, independent institutions. XtreemOS aims at offering for Grids the same
ease of use as traditional operating systems do for a single computer.

Figure 2.5 gives an overview of XtreemOSǶs architecture. On top, applications interact
with the system through some APIs: Legacy applications use the POSIX API, while applications
designed specifically for the Grid use the SAGA API [54]. This gives them access to the services
provided by the following modules:
Virtual Organization (VO) and Security Management This module allows applications

access to the whole platform without having to worry about credentials, i.e., it provides
single sign-on semantics.

Application Execution Management This module allocates resources, launches processes,
etc. We shall return to this module and describe it in more details shortly.

Data management This module allows applications to transparently access files, no matter
what their physical location on the platform. This is implemented using XtreemFS [60]
a scalable, distributed file system.

These modules form together an XtreemOS agent, which runs on each computing node that is
part of an XtreemOS platform4. Communication among the modules is done using a highly-
available and scalable message-passing infrastructure.

At the lower layers, the GNU/Linux system is extended for native single sign-on and VO
support. This allows POSIX user identifiers (IDs) to be transparently mapped to grid user IDs.
The Linux kernel itself is specialized depending on the target platform.

Let us focus on how resource management is done in XtreemOS. The main module that
takes care of this is the Application Execution Manager (AEM) [91]. Applications formulate re-
source requests using the Job Submission Description Language (JSDL) [6] specifying constraints
such as minimum amount of memory, number of CPUs, etc. Regarding time, resources can be
reserved in two ways: either for immediate usage or at a future date (i.e., advance reservation).
In both cases allocations are done either exclusively, i.e., no two applications can run on the
same nodes, or non-exclusively.

4We have taken the liberty to simplify the description. In reality, XtreemOS agents can have several roles
and run different modules depending on their roles. For details see the deliverables of the XtreemOS project.

25

2. Context

Figure 2.6: Overview of DIETǶs architecture

To discover fitting resources, AEM first uses a Distributed Hash Table (DHT) [100], which
returns a list of candidate resources. Next, AEM contacts each resource, checks its local calendar
and reserves a time-slot. If a failure is encountered during the process (e.g., insufficient resources
have been discovered, calendars changed just before making the reservation, etc.) AEM retries
up to three times, after which an error is reported to the upper layers.

To simplify the management of clusters, XtreemOS uses LinuxSSI, which presents multiple
nodes as a single, large SMP machine. This makes resource allocation somewhat easier, since a
single XtreemOS agent handles resource allocations on a whole cluster, instead of having to
run an XtreemOS agent per node.

Despite the easy-to-use, high-level resource management abstractions that XtreemOS of-
fers, there are three shortcoming. First, non-exclusive reservations are not suitable for HPC
applications [45]. Gang-scheduling could be employed as a solution, however, it is difficult to
implement it in a distributed system without a central coordinator. Second, XtreemOS does
not have a queuing system and only uses advance reservations. As discussed before, this leads
to an inefficient resource usage. Third, resource discovery and reservation are not transactional.
If several moldable applications entered the system and attempt to reserve the same resources,
but in a different order, they may become trapped into a live-lock.

DIET

Distributed Interactive Engineering Toolbox (DIET) [29] is a framework centered around the
GridRPC [87] paradigm, designed to allow easy, efficient and scalable access to heterogeneous
computing resources. In this section, we describe the general architecture of DIET and show how
it can implement a distributed resource manager.

Figure 2.6 gives an overview of the DIET architecture. A client is an application that uses
the DIET infrastructure to solve computation problems using an RPC approach. A Service
Daemon (SeD) is a server application exporting computational services through established
interfaces. The two are connected through a hierarchy of agents which help clients find the best
SeD(s) to execute their request(s) on. The SeDs form the leaves of the hierarchy, while the root
is a distinguished agent called the Master Agent (MA). The latter acts as an entry-point for the

26

2.3. Managing HPC Resources

clients. The other agents, called Local Agents (LAs), help achieve scalability.
A typical DIET interaction goes as follows. (1) First, the client enters the system and sends a

ǳlightǴ version5 of its request to the MA. (2) Next, the request is propagated from the MA to the
SeDs through LAs. The request eventually reaches all SeDs, (3) which reply with an estimation estimation

vectorvector: a set of values describing how fit they are for solving this particular request. Depending
on the implementation of a service, an estimation vector might contain information such as CPU
power (in FLOPS), amount of RAM, estimated completion time of the request, number of queued
requests, etc. (4) At each level of the agent hierarchy the estimation vectors are aggregated, so
that the MA only has to deal with a small amount of them. (5) Finally, one or more estimation
vectors are returned to the client, which chooses a suitable SeD. (6) The request with all the
data necessary to solve the problem is sent directly from the client to the SeD.

Let us highlight where scheduling decisions are taken. First, SeDs decide what values to
put in an estimation vector. This way, a SeD can make itself more or less preferred for solving
a problem. Second, agents throughout the hierarchy aggregate and filter SeDs based on these
estimation vectors. For example, only the top 10 least loaded SeDs are returned to the parent
agent, thus leaving out overloaded SeDs. Third, clients receive estimation vectors from several
SeDs, out of which they may choose a SeD.

Using the DIET framework, a distributed resource manager can be implemented as follows.
The administrator of the platform installs one SeD per computing node, then uses other nodes
(e.g., cluster front-end nodes) to set up an agent hierarchy. For improved performance, this hier-
archy should be optimized for the targeted resources [36, 26]. Thus, the SeDs have direct control
over the resources: They can take all the liberty in implementing any resource management
policy and they can gather all the information they need about the resources they manage. As
an example of resource management policy, DIET already has a queuing system implemented
which allows an administrator to choose the maximum number of requests that a SeD is serving
simultaneously. Related to gathering information, DIETǶs CoRI [25] module gathers the metrics
that are most important to optimize the resource selection for a wide range of applications.

On the positive side, the above architecture allows both the user and the administrator to
have control over scheduling. The user may change the client-side scheduling algorithm, while
the administrator controls the estimation vectors sent by the SeDs and how aggregation is done
by each agent.

On the negative side, the obtained DRM has several limitations, many due to the fact that
DIET is designed around the GridRPC paradigm and handles requests individually. First, since
SeDs have unsynchronized queues, co-allocating resources managed by different SeDs is difficult
and wasteful [83]. Second, clients cannot take resource-dependent decisions, e.g., adapt their
requests to the state of the resources, which is required for supporting moldable applications.
This is due to the fact that a request needs to be formulated before resources are being discovered
and the same request is sent to be solved by the chosen SeD. For example, a client cannot improve
the performance of a matrix multiplication by spreading the matrix across multiple SeDs, since
splitting the matrix (and generating requests) would have to be done after discovering resources.

XtreemOS vs. DIET

Let us compare and contrast XtreemOS to DIET and highlight the fundamental differences
between them. Both DRMs strive to obtain reasonably good scheduling with scalability in mind.
XtreemOS uses a DHT to filter candidate resources based on static information, then contacts

5ǳLightǴ in the sense that only scalar values are sent. For vectors, matrices and strings only their size is sent.

27

2. Context

resources directly for dynamic information. In contrast, DIET uses dynamic information from
resources which is then filtered at each level of a statically-deployed tree.

Both systems supports non-exclusive and exclusive allocations. In XtreemOS it is the user
who chooses what type of allocation is desired, whereas in DIET it is the administrator who
sets this parameter. As discussed before, non-exclusive allocations are not suitable for HPC
applications.

For exclusive reservations, XtreemOS uses calendars, whereas DIET uses queues. Calendars
have the advantage of offering an easy way to do co-allocations at the expense of a less effi-
cient resource usage. In contrast, doing co-allocation over unsynchronized queues is inefficient.
Nevertheless, if co-allocation is not required, using queues leads to a more efficient resource
usage: Since the start-time of requests is not fixed, requests can be advanced, so as to produce
a compact schedule.

Regarding non-rigid application support, as has been previously analyzed, none of the sys-
tems support moldable applications efficiently. With respect to dynamic applications, none of
the systems have a feedback mechanism which tell applications when new resources are avail-
able or when resources are too overloaded and should be freed. Therefore, it is not possible to
deal with malleable applications. Also, much like CM and batch schedulers, there is no way for
growing evolving applications reliably.

To sum up, both XtreemOS and DIET aim at solving the same issue, large-scale resource
management, with slightly different solutions. Unfortunately, none of them provide a solution
for efficiently supporting non-rigid applications.

2.3.4 Meta Schedulers

In the context of this Thesis, we define a meta-scheduler as a set of agents (possibly onlymeta-
scheduler one), which manage allocation on multiple independent resources for multiple users. The latter

implies that meta-schedulers are deployed and configured by an administrator. In contrast to
DRMs, meta-schedulers do not directly control the underlying resources. For this, they have to
resort to the interface provided by a lower-level resource managers, called in literature a Locallocal

resource
manage-

ment
system

Resource Management System (LRMS), most commonly a batch scheduler.
Meta-schedulers exists in order to extend functionality which is not provided natively by an

LRMS, such as:
Ĝ load-balancing across multiple cluster: DIET, Legion [88];
Ĝ offering co-allocation support: KOALA;
Ĝ specialized support for certain types of applications (especially PSAs): Condor [110], DI-

ANE [85], DIRAC, GridWay [56], KOALA, NorduGrid Broker [44].
Let us present the systems that have the most interesting features from a resource manage-

ment point-of-view.

DIET

In the previous section, we showed that DIET can be used as a distributed resource manager.
In this section, we show that the DIET framework is flexible enough to be used to implement a
meta-scheduler.

Figure 2.7 shows a slightly different DIET architecture. The client and the agent hierarchy
stay the same, instead, specialized SeDs are being deployed: SeD_batch, which interfaces batch
schedulers, and SeD_cloud which interfaces cloud managers [24].

28

2.3. Managing HPC Resources

Figure 2.7: Overview of DIETǶs architecture when used as a meta-scheduler

SeD_batch is an extended SeD, which, instead of implementing a computation directly, acts
as a wrapper between the DIET API and the batch scheduler. It mainly fulfills two main roles:
First, during discovery SeD_batch gathers information from the batch scheduler and fills in the
estimation vector. For this, it may use the Simbatch [21] framework, to simulate the behaviour
of the schedulerǶs queue and better estimate the completion time of a request. Second, when the
client sends a computation request, SeD_batch wraps this request in a helper script, pointing to
the executable corresponding to the called service, and submits it as a job to the batch scheduler.

SeD_cloud works similarly differing in that fact that it interacts with cloud managers [27].
During discovery, estimation vectors are filled with information such as price and availability,
retrieved from the cloud manager. When a request is received, SeD_cloud instantiates a VM
with the virtual image corresponding to the called service, executes the service inside the VM
and terminates the VM upon service completion.

This architecture has several advantages. First, it allows the user to easily interact with
several resources without changing the underlying platform. Second, features already provided
by the LRMS, such as managing job queues, mapping jobs on parallel resources, deploying VMs,
etc., do not have to be duplicated in DIET.

On the downside, information related to resources is limited to what the LRMSs provide.
Indeed, we have seen above that SeD_batch has to duplicate the behaviour of the LRMS to
retrieve the information it is interested in. Moreover, LRMSs may accept local resource requests
without notifying the meta-scheduler. This changes the state of the resources and might lead to
the meta-scheduler taking suboptimal scheduling decisions.

DIRAC

DIRAC [31] is a grid meta-scheduler which is widely used for processing data produced by the
Large Hadron Collider. It has been specifically designed for the needs of the LHCb community,
which mostly runs PSAs. The problem with traditional LRMSs is that they impose a ǳpushǴ
scheduling, in which applications submit jobs to resources. Due to the large amount of tasks
that PSAs contain, sending all tasks at once would overload the system. On the other hand,
sending insufficient tasks would underutilize resources. Therefore, ǳpullǴ scheduling is desirable,
in which resources (once they become available) contact applications to request additional tasks,

29

2. Context

similar to the way Voluntary computing middleware is implemented [4].
To solve the above issue, DIRAC proposes a solution based on the pilot job abstraction.

Pilot jobs are container jobs that, instead of executing an actual task, launch a daemon. Oncepilot jobs
the job starts and the daemon is running, the latter connects to a centralized agent and requests
tasks to execute.

From the meta-schedulerǶs point-of-view, pilot jobs improve scheduling decisions due to two
reasons. First, access to resources is done the same way, no matter what interface the LRMSs offer.
The meta-scheduler only has to deal with a set of daemons connected to it. Second, late bindinglate binding
can be employed, i.e., instead of binding tasks to resources at submittal, the meta-scheduler can
defer this decision up to the moment that the allocation actually starts.

Unfortunately, pilot jobs also have drawbacks. First, a fundamental problem is how to choose
the number of the pilot jobs to submit. In practice, having insufficient information about the
state of the resources, heuristics are used with parameters tuned based on trial-and-error [53].
Second, pilot jobs do not ensure fairness among several meta-schedulers. Since such a middleware
generally runs pilot jobs for multiple users under the same local user ID, the LRMSs do not have
enough information for improving fairness.

KOALA

KOALA is a grid meta-scheduler that has been developed at the Delft University of Technology.
It is extensively used on the Dutch research Grid DAS-3 [145], which is a multi-cluster platform.
Each cluster is managed independently by the Sun Grid Engine [51] batch scheduler, thus,
KOALA extends schedulerǶs functionality without requiring a change in the underlying platform.
The remaining of this section presents and analyzes two features of KOALA which are most
interesting for this Thesis: co-allocation support and malleable applications support.

Co-allocation Support KOALA takes a request from a user, which specifies how many nodes
to reserve on each cluster [83]. Then, it is the task of KOALA to allocate resources and launch
the application once the nodes on all clusters are simultaneously available. Without support for
advance reservations, the process of ensuring this is quite intricate. KOALA submits jobs to
each batch scheduler, with the duration of the allocation (i.e., the maximum execution time)
artificially increased in order to compensate for the skew between the start-times. To determine
by how much the duration of the jobs need to be increased, queue prediction algorithms are
employed. Finally, if the queue changed too much and the co-allocation cannot be satisfied with
the current jobs in the system, KOALA cancels all job submissions and retries.

While solving the co-allocation problem in a system with unsynchronised queues, this ap-
proach has several inconveniences. First, KOALA needs to over-allocate resources in order to
compensate for the skew, which wastes resources. Second, there is no guarantee that the process
actually succeeds. Third, the behaviour of the LRMS is duplicated through the queue prediction
algorithms. If one changes the scheduling algorithm of the LRMS, KOALA also needs updating.

Malleable Applications Support KOALA can also be used to add malleable applications
support over an LRMS which lacks such support [16]. On the user side, the application specifies
the minimum node-count and receives grow and shrink messages from the scheduler. On the
administrator side, several scheduling strategies are proposed. If resources become available, they
can either be used to grow malleable applications that are already running (precedence to running
applications) or to launch queued applications (precedence to waiting applications). Among

30

2.3. Managing HPC Resources

malleable applications, resources can either be used to grow the first malleable application, or
can be distributed equally (equi-grow and shrink).

At the time of this writing, there is no LRMS which natively supports malleable applications.
To work around this limitation, KOALA submits 1-node jobs and closely monitors the avail-
ability of the resources, as given by the LRMS, submitting new jobs or killing existing jobs as
needed.

The support for malleable applications can be used to efficiently support PSA. Without
such support, PSA can be executed by submitting each task as a separate rigid job. However,
due to the relatively short duration of a task and the large amount of tasks, this adds a lot
of overhead [102]. Therefore, KOALA proposes scheduling PSAs as malleable application. This
is similar to the pilot job concept presented above, except that the resources allocated to an
application do not have a fixed size, but increase/decrease as decided by the scheduler. On the
application side, growing is handled by spawning new tasks, while shrinking is handled by killing
existing tasks. Using equi-grow and shrink ensures a kind of fairness: Each PSAs gets the same
proportion of the platform.

There are two issue related to KOALAǶs malleable application support that should be high-
lighted. First, workarounds are necessary to simulated malleability on top of a non-supporting
LRMS. Having to submit many 1-node jobs is inefficient and might overload the LRMSs. Second,
this support cannot be used for evolving applications. Indeed, for evolving applications it is their
internal computation that requires the allocation of resources to grow and shrink, whereas in
KOALA it is the resource manager that takes this decision.

Redundant Requests and Job Migration

To further highlight the workarounds that meta-schedulers have to implement, let us present two
more scheduling schemes which are used to load-balance applications across multiple clusters.
They are kept in a separate section, since, to our knowledge, they are not employed in any
real meta-scheduler. Nevertheless, the solutions they propose are interesting from a resource
management point-of-view.

First, let us reiterate the issue. As discussed before, when submitting jobs to batch sched-
ulers, users have to give an upper bound on the execution time of their applications. If an
application finishes earlier, the next application in the queue will be started immediately. This
makes predicting the start-time of a job very difficult, as it depends on the correctness of the
estimations of all previously queued applications. Therefore, when having access to multiple
clusters, managed by independent batch schedulers, it is difficult to choose the cluster to which
a job should be submitted: If one cannot predict the applicationǶs start-time, the more difficult
it is to predict the end-time. Two solutions are often mentioned in literature: redundant requests
and job migration.

Redundant requests are jobs which are submitted simultaneously to the K least loaded redundant
requestsbatch schedulers (possibly all) [107]. When the first job starts on any of these clusters, the jobs

on the other K − 1 clusters are cancelled. By minimizing the start-time of the application, the
end-time is also reduced. However, redundant requests are harmful as they worsen even more
the estimated start times and create unfairness towards applications which cannot use them,
by hindering back-filling opportunities [32]. In theory, redundant requests could also be used to
emulate moldable jobs, however their impact has not been studied yet.

An alternate solution is to migrate jobs. First, the meta-scheduler submits jobs to a cluster job
migrationchosen according to the state of the queues at that time (à la DIET, see beginning of this section).

Then, the meta-scheduler regularly wakes up, retrieves the state of the queues and migrates jobs

31

2. Context

if it estimates that the end-times can be improved. Migration can be achieved by cancelling the
job on one cluster and resubmitting it to another. Job migration has been shown to improve
application response-times [19]. Unfortunately, this solution is difficult to apply in practice due
to two reasons. First, LRMS administrators are reluctant to giving too much power to a meta-
scheduler, as a result, locally queued jobs are not even exposed to the meta-scheduler. Second,
assuming administrators would trust meta-schedulers enough, if migration is done while a local
job is submitted, then the migrated jobs are placed at the end of the queue. Therefore, their
end-time might actually be increased, which would defeat the very purpose of job migration.

Analysis

This section presented and analyzed several meta-schedulers, whose primary purpose is to extend
functionality provided by the LRMS and better adapt resource management to a certain type of
application. The analysis revealed that achieving this is inefficient: LRMS expose a too simplistic
interface, which forces meta-schedulers to resort to workarounds.

When looking from the applicationǶs point-of-view, meta-schedulers attempt to optimize the
performance across a wide range of applications, but do not take into account the specificities of a
particular application. For example, an application cannot use knowledge about its performance
model to optimize resource selection.

2.3.5 Application-Level Schedulers
An Application-Level Scheduler (ALS) is an agent which is responsible for scheduling oneapplication-

level
scheduler

application or one type of application. Its purpose is to interact with lower-level resource man-
agers, such as meta-schedulers or batch schedulers, in order to extend their functionality as
required by a specific type of application. In contrast to meta-schedulers, an instance of an ALS
only handles one single instance of an application, thus, they are deployed and configured by
the user. ALS are employed for several reasons:

Ĝ improving support for moldable applications: AppLeS;
Ĝ simulating malleability: malleability over low-priority jobs;
Ĝ improving support for evolving applications: GridARM.

Let us present and analyze each of them separately.

AppLeS

The AppLeS project [9], whose name itself comes from Application-Level Schedulers, delivered
a framework which can be used to create specialized ALSs in order to optimize resource selec-
tion. The argument is that, since such an ALS has application-specific knowledge, such as the
structure of the application, performance-prediction models, etc., application performance can
be substantially improved.

Among others, the AppLeS project proposed and implemented a moldable application sched-
uler called ǳSAǴ [37]. It is designed to optimize application performance on batch schedulers
which only support rigid jobs. SA works as follows: First, the user launches the application with
SA, specifying a list of node-counts and maximum execution times, similarly to moldable con-
figurations supported by TORQUE and OAR. Then, SA retrieves the state of the batch queue
and submits a job which minimizes the response time of the application, as computed based on
the user estimations.

A limitation of SA is that it does submit-time moldability, i.e., the choice of the jobsubmit-
time

moldability 32

2.3. Managing HPC Resources

size is made at submittal. This has been shown to be inefficient [105, 106] when compared to
schedule-time moldability, i.e., deferring the choice of the job size until it starts. However, to schedule-

time
moldability

be usable in practice, this either requires moldable job support or the batch scheduler to actively
involve the application in its scheduling decisions. The former is impractical as has been shown
in Section 2.3.2, as of the latter, there is currently no resource manager which allows this.

Malleability over Low-priority Jobs

An ALS can be used to support malleability on top of OARǶs low-priority, preemptible jobs (see
Section 2.3.2) [34]. First, a normal job Jmin of node-count nmin is submitted in order to satisfy
the applicationǶs minimum resource requirements. Then, when Jmin starts, the ALS asks OAR
for the number of currently free nodes nfree and submits a preemptible job Jextra having the
node-count nfree. The application initially runs on nmin+nfree nodes. When a job is submitted
to the system, which requires the preemptible jobǶs resources, OAR sends a custom signal to
one of the application processes and kills Jextra after a grace-period. This allows the application
enough time to transfer data from Jextra and continue its computations on Jmin.

The presented ALS is indeed improving resource usage and application response time, by
allocating resources that are otherwise unused. However, the approach only achieves a limited
form of malleability and suffers from two limitations. First, the preemptible job Jextra is killed
even if only part of the resources allocated to it are needed. Ideally, Jextra should be resized as
required, so that the application can continue running on a maximum number of nodes. Second,
when reasoning about multiple malleable applications in the system, since OAR is ignorant to
the purpose of the preemptible jobs, only the first application can acquire the free resources on
the platform. It is not possible to fairly share resources among multiple malleable applications,
for example, as proposed in KOALA.

GridARM

GridARM [35] is a framework for scheduling AMR applications on resources such as Grids. The
challenge is to execute the application efficiently, knowing that both the state of application and
the state of the resources are dynamic.

GridARM works as follows. The AMR application is split in natural regions (NR), the smallest
possible computation unit. Several NRs are mapped to a virtual computation unit (VCU). The
active VCUs (also called the working set) are mapped onto Virtual Resource Units (VRUs) using
the vGrid middleware [71]. VRUs are an abstraction for individual Grid resources, such as hosts
or clusters. To optimize the execution of the application, a complex autonomic control loop is
used. It takes into account both application and resource state, so as to dynamically allocated
resources and change the NRs to VCUs to VRUs mapping. According to our classification, the
resulting application is both evolving and malleable.

Unfortunately, the cited articles aim at offering an efficient application framework and do
not address two fundamental resource management issues. First, how resources are co-allocated
over several clusters is not discussed. Second, it is not clear how the framework behaves if the
platform is highly loaded and the application needs to grow. If the framework aborts, then all
computation done so far is lost. If the framework waits for resources to become available, then
a dead-lock might occur if two such applications simultaneously run on the platform.

33

2. Context

Figure 2.8: A resource management taxonomy by the control one has over scheduling decisions

2.3.6 Analysis
Figure 2.8 classifies the previously presented resource management systems and shows that
resource management is done on several levels: system and user. The system level attempts to
offer uniform abstractions, so as to simplify access to resources. Software operating at this level
has direct control over the resources, thus it has the most flexibility with respect to scheduling
decisions. However, the exported interfaces have to be very general, so as to fulfill the needs of
a wide range of users. This hinders it from implementing application-specific optimizations.

At the user level, the software aim to offer resource management systems, which are special-
ized for a particular application or a certain class of applications. Decisions taken at this level
are tuned to optimize the performance of the applications. However, since they do not directly
control the underlying resources, they have to use the interfaces provided by system-level soft-
ware. Therefore, the information they can gather to take scheduling decisions and the resulting
actions are limited by the abstractions offered by system-level software.

Two things are especially concerning. First, there is a considerable overlap between the
decisions taken by user-level and system-level agents. Second, since system-level agents export
an insufficient interface, user-level agents need to find workarounds in order to take action for
their decisions.

2.4 Conclusion
This chapter presented the context of the Thesis. First, it presented the currently used HPC
resources and highlighted that they are becoming increasingly complex. Exploiting them at
peak performance requires resource allocation to be carefully done. Next, applications running
on these resources have been classified according to their resource usage. It has been highlighted
that resource management can be improved if moldable, malleable and evolving applications are
properly supported. Finally, the state of the art of resource management has been presented and
it has been shown that these types of applications are not efficiently dealt with.

34

Part II

RMS Support for Moldable
Applications

35

CHAPTER 3
CooRMv1: An RMS for Efficiently
Supporting Moldable Applications

Perfection is achieved, not when
there is nothing more to add, but
when there is nothing left to take
away.

Antoine de Saint-Exupéry

This chapter addresses the first issue of the Thesis: efficiently scheduling moldable appli-
cations. A centralized Resource Management System (RMS) architecture called CooRMv1 is
presented, which actively involves applications in scheduling decisions, thus allowing them to
optimize their resource selection. The architecture is evaluated using a simulator which is then
validated using a proof-of-concept implementation on GridǶ5000. Results show that such a system
is feasible and performs well with respect to scalability and fairness. Concepts presented in this
chapter can then be extended to efficiently support malleable and evolving applications, as shown
in Chapter 6.

37

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

3.1 Why Moldability?
As more and more peta-scale computing resources are built and exa-scale is to be achieved
by 2020 [41], optimizing resource allocation to applications is critical to ensure their efficient
execution. For example, supercomputers feature non-homogeneous networks, having topologies
such as a torus or a fat-tree. Tightly-coupled parallel applications might need their allocated
nodes to be grouped in order to execute efficiently [89]. This issue is even more aggravated
in multi-cluster systems, as commonly found in modern data centers, Clouds or Grids: the
inter-cluster network features high latencies compared to the intra-cluster network, that might
significantly slow applications down [30].

A first step in improving the way resources are allocated to applications is to consider
them moldable, so to say, one may chose the resource they execute on, but once started, the
allocation cannot be changed. Section 2.2 showed that application response-time can be reduced
if application moldability is taken into account. Unfortunately, state of the art RMSs do not
efficiently support such applications. Let us briefly remind the proposed solutions and their
drawbacks.

Submit-time moldability Selecting a moldable configuration at submittal is inefficient [105],
as the state of the system might greatly vary from the time the configuration has been
chosen until the application starts. Also, in order to implement submit-time moldability,
literature proposes [37] to retrieve the list of jobs from the RMS and simulating its schedul-
ing algorithm. This not only duplicates functionality, but also forces applications to be
developed in lock-step with the RMS: every time the scheduling algorithm of the RMS is
changed, applications need to be upgraded, too.

Schedule-time moldability Selecting a moldable configuration before the application starts
is more efficient than submit-time moldability [105]. The only implementation proposed in
literature are moldable jobs, which allow an application to enumerate to the RMS several
moldable configurations. However, this is only practical if the number of configurations is
small. Otherwise, the solution might either overload the RMS or be altogether impractical.
As shown in Section 2.3.2, this is problematic both for supercomputers and multi-cluster
systems. For the former, the number of configurations is large, while for the latter the
number of configurations is exponential.

To solve the problem of efficiently supporting moldable applications, this chapter proposes
and evaluates a new RMS architecture called CooRMv1, that implements submit-time mold-
ability by delegating resource selection to applications (more precisely their launchers). The
proposed RMS assumes centralized control, targeting any system where such a control can
be enforceděsuch as supercomputing centers, enterprise Grids or High-Performance Comput-
ing (HPC) Clouds. Our approach is especially suited for computation centers with multiple clus-
ters or supercomputing centers where the interconnect can be approximated as homogeneous.
Large scale platforms with multiple administrative domains such as Grids are outside the scope
of this chapter.

The remaining of the chapter is organized as follows: Section 3.2 motivates the work by
presenting a moldable application with a specialized resource selection algorithm. Section 3.3
lays out the problem statement, for which a solution is proposed in Section 3.4. Section 3.5
proposes an implementation, which is then evaluated in Section 3.6 both using a simulator and
a proof-of-concept implementation. Section 3.7 analyzes some features of the proposition, while
Section 3.8 concludes.

38

3.2. A Motivating Example

 60

 70

 80

 90

 100

 110

re li,re
li,ly,re

li,ly,na,re

li,ly,na,or,re (*)

gr,li,ly,na,or,re

gr,li,ly,na,or,re,so

bo,gr,li,ly,na,or,re,so

T
o
ta

l
It

er
at

io
n
 T

im
e

(m
s)

List of Clusters

1
6
5

1
2
4

measured
estimated

Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia
(*) Optimal solution found by our resource selection algorithm.

Figure 3.1: Performance of a CEM application for various cluster sets of GridǶ5000

3.2 A Motivating Example: Optimizing Resource Selection for
a Computational Electromagnetics Applications

In this section, we motivate our research by giving an example of an application which requires
a specialized resource selection algorithm.

Computational ElectroMagnetics (CEM) is a Finite-Element Method (FEM) which provides
solutions to many problems, such as antenna performance, electromagnetic compatibility and
radar cross section. FEM works on a discretization of space (i.e., a mesh) over which it applies an
iterative algorithm. Increasing the precision of the result is done by using a more refined mesh,
which in turn increases the computation-time and the required amount of memory.

In order to take advantage of the latest hardware architectures and improve response-time,
the CEM application needs to be parallelized. This is commonly done by partitioning the input
mesh into submeshes and mapping them onto target cores. The resulting problem is non-trivially
parallelisable as resulting submeshes need to frequently exchange data.

Such applications are usually run on a single cluster. Indeed, since data exchanges happen
frequently, a high-speed, low-latency Local-Area Network (LAN) would ensure a good perfor-
mance of the application. However, the increasing need for more precision, which requires more
computing power and more memory, is pushing towards a multi-cluster execution. The appli-
cationǶs scalability on such architectures might be problematic, as the higher latencies observed
on an inter-cluster Wide-Area Network (WAN) might potentially slow the application down.

In order to study whether a multi-cluster execution of CEM applications is beneficial, the
MAXDG1 application has been ported to allow multi-cluster execution [127]. The resulting
application uses TCP to efficiently couple MPI codes running on multiple clusters. According to
our classification, the application is moldable: one may choose what resources it should execute
on, but once started the allocated resources cannot change. Before executing it, one must choose
for each cluster the number of nodes the application should run on, thus giving rise to an
exponential number of configurations.

Initial experiments (as exemplified in Figure 3.1) showed that multi-cluster execution of
the studied application can indeed lead to a smaller execution time, provided the resources are
carefully chosen. Therefore, in order to ensure that the application is always executed at peak

39

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

performance, an analytical performance model has been devised for it [30]: the function p takes
as input cluster metrics, such as node computing power, intra-cluster LAN network latency and
bandwidth, as well as the inter-cluster WAN latency and bandwidth, and outputs an execution
time.

To optimize resource selection for the CEM application, we need to determine the input that
minimizes p. Since the search space is exponential, a heuristic based on a greedy approach and
simulated annealing has been devised. The algorithm f takes as input cluster and inter-cluster
information (i.e., the set of available resources) and estimates the minimum execution
time and the resources for which is minimum is obtained (i.e., the set of selected resources).
The performance model and the algorithm manage to reasonably find the minimum execution
time of the application (Figure 3.1), requiring up to 1 seconds for 12 clusters and up to 16 seconds
for 40 clusters.

Unfortunately, using such a resource selection algorithm in practice is difficult, as has already
been highlighted in Section 3.1. Using submit-time moldability and calling f based on informa-
tion acquired from the RMS is inefficient, first, because the scheduling algorithm of the RMS
would have to be duplicated and, second, because the state of the system might change from
the moment a configuration is chosen until the application is actually executed. Using schedule-
time moldability implemented using moldable jobs, one would have to use p and enumerate all
possible moldable configurations, which is impractical.

3.3 Problem Statement
Seeing that application-specific resource selection algorithms can improve performance, this
chapter focuses on the following question: What is the interface that an RMS should pro-
vide, to allow each moldable application to employ its specialized resource selection
algorithm?

How such resource selection algorithms should be written is application-specific and outside
the scope of this Thesis. However, if a clean and simple RMS interface exists, developers could
provide application-specific launchers (which implement a resource selection algorithm) with
their applications, so as to improve the response time experienced by the end users. As an
example, the above CEM application gives an idea of the effort and benefits of developing such
a launcher.

Since these selection algorithms might take some time, we are especially concerned with two
issues:

Scalability The selection algorithm should be called only when necessary, e.g., exhaustively
iterating over the whole resource space is not practical. Since the result of the selection only
depends on the available resources and not on the applicationǶs internal state (remember
that the applications dealt with are considered moldable), memoization1 can be used.
Therefore, the system needs to reduce the number of unique inputs for which the selection
algorithm is invoked, a metric that we shall call the number of computed configurations.

Fairness In rigid job scheduling, applications are considered to have an implicit priority based
on their arrival time. Intuitively, if two application A and B arrive in the system in this
order, a fair scheduler should not allow the application B to delay (i.e., increase the end-
time) of application A [76, 118].

1NIST Definition [122]: save (memoize) a computed answer for possible later reuse, rather than recomputing
the answer.

40

3.4. The CooRMv1 Architecture

Figure 3.2: Example of a view sent by CooRMv1 to an application

For applications with intelligent resource selection, a new fairness issue arises. An applica-
tion A with a lengthy selection (e.g., 10 seconds) should not be delayed (i.e., its end-time
is increased) by an application B with a quicker selection (e.g., 1 second) submitted just
after A. Since A has been submitted before, A should have a higher priority, therefore its
resource selection should not be impacted by applications submitted after it.
Thus, the RMS should make sure that applications are not delayed, as long as they have
reasonable lengthy resource selection algorithms, i.e., the duration of the resource selection
algorithm should be negligible compared to the execution time of the applications.

The next section presents an RMS architecture that solves the above issues.

3.4 The CooRMv1 Architecture
This section introduces CooRMv1, an RMS architecture which delegates resource selection to
applications. First, the rationale of the architecture is given. Then, interactions between appli-
cations and the RMS are detailed.

3.4.1 Principles
CooRMv1 is inspired by a batch-like approach, where the RMS launches one application after the
other as resources become available. Batch schedulers work by periodically running an algorithm
which loops through the list of applications and computes for each one a start-time based on
their resource requests.

Similarly, in CooRMv1 each application i sends one request2 r(i), containing the resources request
(e.g., the number of nodes) and the maximum duration for which the allocation should take
place. The RMS shall eventually allocate resources to the application, guaranteeing exclusive,
non-preempted access for the given duration. Requests never fail, their start-time is arbitrarily
delayed until their allocation can be fulfilled. Abusing this concept, if an application requests
more resources than exist on the platform, the start-time is set to infinity. Regarding the end-
time, the application is allowed to terminate earlier, however, the RMS shall kill an application
exceeding its allocation.

2Since the application is moldable and cannot change its resource allocation during execution, one request is
sufficient to express a constant resource allocation.

41

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

For choosing a request r(i), moldable applications need information regarding the availability
of the resources. This allows them, for example, to choose a request r(i) which minimizes their
completion time. To this end, CooRMv1 presents each application i a view V (i), which storesview
the estimated availability of resources as a function of time (see example in Figure 3.2). Some
resources might not be available during a certain period, either because of the request of another,
higher-priority application, or because of policy-specific decisions (e.g., applications may not
run overnight). The views represent the currently available information which aids applications
in optimizing their requests. Views and requests allow to implement submit-time moldability,
without having to duplicate or simulate the behaviour of the RMS.

For schedule-time moldability, one more issue remains. When the state of the system changes,
the requests r(i) that the applications have previously computed might become sub-optimal. For
example, if an application A finished earlier than estimated, another application B, that has
not yet started, might want to update its request rB in order to take advantage of the newly
freed resources. Therefore, until its start, each application i receives an up-to-date view V (i), so
that it can send an updated request r(i) to the RMS. In contrast to batch schedulers, updating
a request does not make the application lose its implicit priority based on its arrival time (see
Section 2.3.2).

When a system change impacts multiple application, updating requests can be done in one
of two ways: either sequentially or in parallel. For sequential updates, the RMS first deals with
the highest-priority application A by sending it an updated view V A

u and waiting for an updated
request rAu , before dealing with the next, lower-priority application. For parallel updates, the
RMS asynchronously sends updated views to all applications simultaneously and then waits for
updated requests. Furthermore, if the probability of an application changing its request is small,
the RMS needs not wait for its answer and may simply assume that no answer means no request
update. We chose this approach, since it has the potential to reduce the number of messages
exchanged between the RMS and the applications.

To sum up, the above approach can be considered a dynamic, distributed scheduling algo-
rithm. The RMS is responsible for applying a policy, which decides how to multiplex resourcespolicy
among applications, while the selection of resources, which decides how to optimize the appli-

selection cationǶs structure to the available resources, is handled by the applications themselves.

3.4.2 Data Types
In the rest of this chapter, we apply the above principles to a multi-cluster system. We assume
that the computing nodes inside a cluster are equivalent, which is true if the network can be
assumed to be homogeneous. This allows us to make a few optimization, such as working with
number of nodes, instead of having to individually specify node identifiers (IDs).

Before describing the interactions that take place in the system, let us first define some data
types:

Ĝ FILTER is a Job Submission Description Language (JSDL)-like [6] filter to select candidate
clusters. It specifies the minimum number of nodes, per-node Random-Access Memory
(RAM), total RAM, scratch space, etc.

Ĝ CID (cluster ID) uniquely identifies a cluster.
Ĝ CINFO (cluster info) stores the clusterǶs properties, e.g., the number of nodes, the number

of CPU cores per nodes, presence of accelerators, size of RAM, size of scratch space, LAN
characteristics, etc. Information that should be contained in this structure has already
been discussed in the GLUE schema [5].

Ĝ ICINFO (inter-cluster info) stores information about the interconnection of one or more

42

3.4. The CooRMv1 Architecture

Figure 3.3: Application callbacks and RMS interface in CooRMv1

clusters, e.g., WAN network topology, bandwidth and latency. Information that should be
contained in this structure has already been discussed in [74].

Ĝ CAP (cluster availability profile) is a concretization of the view concept for a multi-cluster
system. For a given cluster, it represents a step function which stores the number of
available computing nodes as a function of time, as exemplified in Figure 3.2.

Ĝ REQUEST is concretization of the request concept for a multi-cluster system. It contains
the number of nodes to allocate on each cluster and the duration of the allocation (e.g., 4
nodes on cluster A, 5 nodes on cluster B for 2 hours).

Ĝ NODEID uniquely identifies a node, e.g., by specifying its fully-qualified domain name.
Ĝ CHANGE represents a change event for a cluster. It is composed of the tuple

{CID, type, CAP}

where CID is the cluster ID for which some information changed and type specifies whether
cluster information (CINFO), inter-cluster information (ICINFO) or the availability (CAP)
has changed. In the latter case, the new CAP is included in the message.

Ĝ Plurals are used to denote ǳset ofǴ (e.g., CIDs means ǳset of CIDǴ).

3.4.3 Interfaces
In CooRMv1, the system consists of one or more applications, their launchers, which contain
the application-specific resource selection algorithm, and the RMS. Since the interactions between
the launcher and the application itself are programming-model dependent and do not involve
the RMS, we shall focus on the interactions between the launcher and the RMS.

Before starting the actual computations, an application negotiates the resources it will run
on through its launcher, which could run, either collocated with the RMS on a front-end, or on a
distinct node (e.g., the userǶs computer). Figure 3.3 presents the interfaces that are exposed by
the RMS and the application launcher. The launcher exposes an interface providing two callbacks:

Ĝ changeNotify, allowing it to receive dynamic information about the resources, e.g., the
cluster availability profile (CAP);

Ĝ startNotify, which notifies the application that the resource allocation has started, also
specifying what node IDs it can deploy on.

The RMS exposes methods allowing the launcher:
Ĝ to subscribe to resource availability (subscribe), optionally specifying a filter, so as to

reduce the amount of information the launcher receives;
Ĝ to retrieve static information about clusters (listClustersInfo) and the WAN that in-

terconnects them (listInterClusterInfo);
Ĝ to update the resource request (request);
Ĝ to terminate a resource allocation (done).

Let us now see how this interface can be used for efficiently negotiating resources.

43

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

Figure 3.4: Example of interactions between an RMS, an application and its launcher

3.4.4 Protocol
Figure 3.4 presents an example of a typical interaction between a single application (through its
launcher) and the RMS:

1. The launcher subscribes to the resources it is interested in. Depending on the input of
the application, the launcher might use the FILTER to eliminate unfit resources like nodes
with too little memory or unsupported architectures. This allows an application to reduce
the amount of notifications it receives, also reducing the load on the RMS.

2. The RMS registers the application in its database and sends a changeNotify message with
the relevant clusters and dynamic information about them, i.e., their CAPs. The launcher
uses this data to update its local view of the resources.

3. Since the launcher has no previous knowledge about the clusters, it has to pull static
information about them, i.e., it has to retrieve the associated CINFOs and ICINFOs by
calling listClustersInfo and listInterClusterInfo, respectively.

4. The launcher executes the resource selection algorithm, computes a resource request and
sends it to the RMS.

5. Until these resources become available and the application can start, the RMS keeps the
application informed by sending changeNotify messages every time information regarding
the resources or their estimated availability changes.

6. The launcher re-runs the selection and updates its request, if necessary.
7. When the requested resources become available, the RMS sends a startNotify message,

containing the NODEIDs that the application may use.
8. The launcher deploys the application.
9. Finally, when the application has finished its computations, it informs the RMS that the

resources have been freed by sending a done message.

44

3.5. An Example Implementation

For multiple applications, each launcher creates a separate communication session with the
RMS. No communication occurs between the launchers. It is the task of the RMS to compute for
each of them a view, so that the goals of the system are met.

3.5 An Example Implementation
The presented architecture gives an answer to the main problem raised in this chapter, that of
offering an interface to allow each application to employ its own resource selection algorithm,
as posed in Section 3.3. There are still some potential issues such as scalability and fairness. In
order to evaluate their impact, we need an implementation for CooRMv1. This section proposes
implementations both for application-side resource selections and for an RMS policy.

3.5.1 Application-side Resource Selections
In this section we give examples of several types of application launchers and describe how they
interact with a CooRMv1 RMS to negotiate resources so as to minimize the completion-time of
the application.

All launchers are structured similarly. They internally store a local view of the resources
containing the most up-to-date view received from the RMS and the last request sent to the
RMS. Initially, both the local view and the last request are empty. Then, the changeNotify
handler reads the information sent by the RMS, updates the local view and uses a specific
algorithm to compute a new request. If the new request is different from the last request, it is
immediately sent to the RMS and the last request is updated.

Let us present these specific algorithms for three types of applications: rigid, simple-moldable
and complex-moldable. For each of them, we give a definition, present a performance model and
illustrate through an example the implementation of a selection algorithm. Rigid applications
are treated as a particular case of simple-moldable applications, as a result we present the
simple-moldable applications first.

Simple-moldable Applications

Definition In what follows, we call simple-moldable a moldable application to which all simple-
moldableallocated nodes need to belong to the same cluster. This is commonly the case with legacy ap-

plications as they have been developed assuming that they will only execute on homogeneous
resources. For example, the data is partitioned equally among computing nodes, without taking
into account possible differences in computing power. As a result, the application cannot effi-
ciently run on multiple clusters: faster nodes would have to idle, waiting for data from slower
nodes to become available.

An important thing to note is that, for simple-moldable applications, the number of mold-
able configurations is small. They can still be efficiently dealt with by exhaustively enumerating
all configurations to an RMS with support for moldable jobs, such as OAR or TORQUE. As
an example, assuming the resources are composed of c clusters, each having n nodes, then a
simple-moldable application can run on n · c configurations: for each cluster, one has to enu-
merate a configuration comprised of 1 to n nodes. As opposed to multi-cluster applications the
configuration count is only linear instead of exponential (see Section 2.3.2).

Model Let us consider a simple-moldable application model inspired by [20]. Such an ap-
plication can be described by the minimum (nmin) / maximum (nmax) number of nodes, the

45

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

(a) (b) (c) (d) (e)

Figure 3.5: Scheduling example for a simple-moldable application

proportion of the program that can be parallelized (P ∈ [0, 1]) and the single-node duration on
the ith cluster (d(i)1). Given a cluster i and the number of nodes n, the execution time d

(i)
n can

be computed according to AmdahlǶs law:

d(i)n = (1− P + P/n) · d
(i)
1 (3.1)

Example Let us show by giving an example, inspired by [59], of an algorithm that minimizes
the completion time. Assume the locally stored view is composed of a single cluster with 5 nodes
having the CAP presented in Figure 3.5a and a simple-moldable application with P = 1, nmin = 1,
nmax = ∞ and d

(1)
1 = 5. For each cluster in the view, the launcher iterates through the list of

steps (which start at 0, 1 and 2). For the first step at t = 0, there are 4 free nodes; however,
these 4 nodes will not be available during the whole length of the computed execution time
(Figure 3.5b). For the same step at t = 0, the launcher retries, with the minimum number of
free nodes it has previously found (1 node) and obtains an end-time of 5 (Figure 3.5c). For the
step at t = 1, it has 1 free node and obtains an end-time of 6. For the step at t = 2, there are
5 free nodes and the end-time is 3, which is the best that can be obtained. Thus, given the view
in Figure 3.5a, the launcher chooses to request 5 nodes for a duration of 1.

Rigid Applications

Let us consider a single-cluster rigid application, which is characterized by a fixed number of
nodes n and a maximum execution time d

(i)
r for each cluster i it can run on. Scheduling such an

application is done using the same simple-moldable application launcher, using the parameters
P = 1, d(i)1 = d

(i)
r · n and nmin = nmax = nr.

Complex-moldable Applications

Definition We define complex-moldable a moldable application which can run on multiplecomplex-
moldable clusters simultaneously, such as the CEM application presented in Section 3.2. For such appli-

cations, the number of moldable configurations is exponential: if the resources are composed
of c clusters, each having n nodes, for each cluster one can select a node-count from 0 to n,
combined independently, excluding the configuration with no nodes. Therefore, the number of
moldable configurations to enumerate is (n+ 1)c − 1. Clearly, it is impractical to schedule such
applications using moldable jobs, therefore, specialized resource selection algorithms have to be
used.

46

3.5. An Example Implementation

(a) (b) (c) (d) (e)

Figure 3.6: Scheduling example for a complex-moldable application

Model Resource selection for such an application can be done similarly to simple-moldable
applications, except that the CAPs of all the clusters have to be simultaneously considered. Let
us illustrate this through an example. Assume that we already have a function

f : acid 7→ scid, d

which gets as input acid a mapping from each cluster (identified by its cluster ID) to the number
of nodes available and outputs scid a mapping for each cluster to the number of nodes selected
and d the estimated execution time (for the CEM application in Section 3.2 this function can be
found in [30]).

Example Given the view in Figure 3.6a, the resource selection algorithm works as follows:
First, the steps of all CAPs are identified, as illustrated with dashed lines. For the step at t = 0,
no resources are available, so it is skipped. For the step at t = 1, f is called with the available
resources (3 nodes on cluster B and 3 nodes on cluster C) and returns the same resources
with a duration of 6 (Figure 3.6b). However, some resources are not available during this time
interval. Therefore, this step is retried with the minimum number of free nodes previously found
(Figure 3.6c), for which f returns a duration 6, thus giving an end-time of 7.

Next, for the step at t = 2, f is called with 3 nodes on cluster A and 3 nodes on cluster C,
but for performance reasons it has chosen to select only the 3 nodes on cluster A. This might
happen because the WAN latency between cluster A and cluster C is too high and cluster A is
faster. Nevertheless, the found end-time is 8 which is worse than what was previously found.
Finally, for the step at t = 5, f is called with 6 nodes on cluster A, 6 nodes on cluster B and
6 nodes on cluster C. Due to the lower WAN latency, selecting the nodes on cluster B and C
lead to the lowest execution time. Nevertheless, the found end-time 8 still does not improve the
previously found best.

In the end, the launcher requests the RMS 3 nodes from cluster C for a duration of 6.

3.5.2 A Simple RMS Implementation
This section presents an example of an RMS implementation. First, the behaviour of the RMS is
described. Next, the scheduling algorithm that lies at the RMSǶs core, called policy, is presented.
Finally, how the RMS deals with the fairness problem (highlighted in Section 3.3) is explained.

47

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

Behaviour When the RMS receives a subscribe message, it stores the arrival time t
(i)
a of the

application i in a database. Next, it sends the application a changeNotify message with the
last view, which was computed by the last invocation of the policy.

When the RMS receives a request or a done message the database of current requests is
updated and the policy is called, similarly to how rigid-job RMSs run their scheduling algorithm
when a job is received or a job ends. A request message simply replaces the currently stored
request of the application with the one to be found in the message, whereas a done message
sets the end-time of the current request to the current time. After the policy has been executed,
changeNotify messages are simultaneously3 sent to the applications whose views have changed.

In order to coalesce messages coming from multiple applications at the same time and reduce
system load, the policy is run at most once every re-policy interval, a parameter of the system.
The choice of this parameter is briefly discussed in Section 3.6.

Policy For each application i, the policy takes as input its arrival-time t(i)a , its status (waiting
or running) and its current request r(i). It computes its new view V (i) and its start-time t(i)s . An
application is started when the computed start-time t(i)s is equal to the current time: NODEIDs are
allocated from the pool of free nodes and startNotify is sent to the corresponding application.

The internals of the policy are similar to First-Come First-Serve (FCFS) with repeated
Conservative Back-Filling (CBF) [86], as detailed in Algorithm 3.1.

Algorithm 3.1: Example implementation of a CooRMv1 policy
1 For each cluster, a cluster availability profile is maintained, which stores the expected
resource usage at future times. Initially, each profile represents that all nodes on the
respective cluster are free for an infinite amount of time;

2 Subtract from these profiles the resources used by running applications;
3 for each application ordered by their arrival-time (as stored when the subscribe
message was received) do

4 Set the view of the current application to the current profiles;
5 Find the first ǳholeǴ, where its request fits and store the found start-time;
6 Update the profiles to reflect the allocation of resources to this application;
7 Store the current profiles, which at this step reflect the allocation of resources to all
applications, as the last view.

Fairness Let us come back to the fairness issue (see the definition in Section 3.3) and explain
how an implementation can easily solve it. Assume that three applications are in the system:
App0 is already running, while App1 and App2 have sent requests to the RMS and are waiting for
the startNotify message. Also, let App1Ƕs resource selection algorithm take d1 seconds, while
App2Ƕs d2 seconds, with d1 > d2. According to our goal of fairness, since App1 arrived before
App2, the latter should not be able to delay the former.

However, without any mechanism in place, App1 could be delayed by App2. As shown in
Figure 3.7a, when App0 sends the done message, both applications want to take advantage of
the newly freed resources. Since App2 has a quicker resource selection than App1, without any
mechanism in place, the RMS would launch it immediately. App1, which has a slower resource

3see Section 3.4.1 for rationale

48

3.6. Evaluation

(a) without fair-start delay (b) with fair-start delay

Figure 3.7: Fairness issue for adaptable applications

selection, could not take advantage of these resources, despite the fact that it had priority over
App2.

Therefore, in order to ensure fairness for applications with a lengthy resource selection,
resources allocated to an application are not immediately released after a done message, but
are artificially marked as occupied for a fair-start amount of time. Implementation-wise, this
is achieved by setting the end-time of the request to the current time plus the fair-start interval.
This additional delay allows high-priority applications with intelligent resource selection enough
time to adapt and request the resources that will be freed after the fair-start delay expires (see
Figure 3.7b). We have decided for the fair-start to be an administrator-tunable parameter, whose
choice is discussed in the next section.

3.6 Evaluation
This section evaluates the scalability and fairness of CooRMv1. First, an overview of the exper-
iments is given, then the simulation results are analyzed. Finally, the simulations are validated,
by comparing the results with values obtained using a real implementation.

3.6.1 Overview
The ultimate purpose of CooRMv1 is to allow complex-moldable applications to employ their
own resource selection algorithms, while ensuring scalability and fairness as defined in Sec-
tion 3.3. In our experiments, the motivating multi-cluster CEM application is used as a complex-
moldable application. However, it is unlikely that a platform will be reserved for running only
applications with a complex structure. Therefore, the testing workloads also need to include
simple-moldable applications submitted, as it is currently done, either as rigid jobs (the node-
count is fixed by the user) or using a list of moldable configurations.

Comparison to an existing system is difficult, since there are no RMSs that offer exactly the
same services. Thus, CooRMv1 is compared to an RMS that gives equivalent schedules, so as to
focus on the overhead that CooRMv1 may bring. To this end, we have chosen OAR [22] both
because it uses the CBF scheduling algorithm as well as due to its support for moldable jobs.
In essence, each job is submitted with a list of node-count, maximum execution time pairs and
OAR greedily chooses the configuration that minimizes the jobǶs completion-time.

49

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

p nmin nmax P

0.25 1 32 0.8
0.25 1 96 0.9
0.25 1 256 0.99
0.25 1 650 0.999

Table 3.1: Parameters used to reconstruct moldability from rigid job traces (inspired by [20]). p
represents the probability that an application is generated with these parameters. nmin, nmax,
P are the parameters presented in Section 3.5.1.

As previously explained, this is only practical for simple-moldable applications. For complex-
moldable applications, the number of configurations to enumerate would be exponential in the
number of clusters (see Section 3.5.1). Thus, CooRMv1 is evaluated in two ways: relative to an
existing system in scenarios that could previously be supported, then, we use these results to
analyze scenarios which could not be previously supported.

Simulator

To study the behavior of CooRMv1, we have written a discrete-event simulator in Python [140],
using the greenlet framework [134] for co-routing support. Applications receive their views (Fig-
ure 3.2) and ǳinstantlyǴ (i.e., the simulation time is not advanced) send a new request aimed
at minimizing their completion-time. The re-policy interval of the RMS has been set to 1 second
since we want a very reactive system. The fair-start has been set to 5 seconds, a good starting
value in order to allow the applications we target enough time to run their resource selection
algorithms. This parameter will be further discussed in Section 3.6.3.

The simulator also includes a ǳmockǴ implementation of OAR, that we shall call OARsim.
For OARsim, applications enumerate all the possible configurations and let the RMS choose
which one to execute.

Resource Model

Resources are made of c clusters, each having n = 128 nodes. To add heterogeneity, the ith

cluster (i ∈ [2, c]) is considered 1 + 0.1 × (i − 1) times faster than the 1st cluster. The clusters
are interconnected using a hierarchical model of a WAN, with latencies typically found over the
Internet: two clusters are grouped in a ǳcityǴ and every two ǳcitiesǴ in a ǳcountryǴ. The latency
between two clusters is 5ms if they are in the same city, 10ms if they are in the same country,
and 50ms otherwise, as can be typically found on the Internet.

Application Model

We generated two types of workloads. First, workloads W0 include only ǳlegacyǴ applications
to compare CooRMv1 with OARsim. They were generated by taking packs of 200 consecutive
jobs from the LLNL-Atlas-2006-1.1-cln trace from the parallel workload archive [129]. Since
traces do not contain enough information to reconstruct the moldability of applications, we
consider that 20% of the applications are simple-moldable, having an AmdahlǶs-law speed-up
(see Table 3.1). The remaining 80% of the applications are considered rigid, with node-counts
and execution-times found in the traces, subject to the speed-up of our resource model. The job
arrival rate is set to 1 application per second, as the issues we are interested in appear when

50

3.6. Evaluation

Workload Rigid Simple CEM
W0 80.0% 20.0% 0.0%
W1 79.6% 19.9% 0.5%
W2 40.0% 10.0% 50.0%
W3 0.0% 0.0% 100.0%

Table 3.2: Summary of workloads. Proportion of rigid, simple-moldable and complex-moldable
(CEM) applications.

the system is under high load. During the experiments, we have observed that the maximum
execution times provided with the original traces are mostly set to the system default. Since in
CooRMv1 the launcher is aimed to choose a (more-or-less precise) maximum execution time,
we set them to the execution-times multiplied by a uniform random number in [1.1, 2].

Second, we generate workloads which include complex-moldable applications. Since the num-
ber of configurations to submit to OARsim is exponential in c (see Section 3.5.1), we only test
CooRMv1 with these workloads. We present a subset of setups, so as to focus on the most
interesting ones. Workloads W1 have been generated starting from W0 in which one instance
of the CEM application has been inserted. These workloads act as a reasonable case, with a
realistic mix of applications. Workloads W2 have been generated starting from W0 by replacing
50% of the jobs with instances of the CEM application. These workloads are the worst-case for
CooRMv1 that we have found during all the experiments. Workloads W3 contain 100% CEM
application, to test the scalability in an extreme case, with only complex-moldable applications.

A summary of the workloads can be found in Table 3.2.

3.6.2 Scalability

We are interested in the following metrics: the number of computed configurations (defined
in Section 3.3) and the simulation time (measured on a single-core AMD Opteronȶ 250 at
2.4GHz) which gives us the CPU-time consumed on the front-end to schedule all applications in
the workload. For the case where the launchers and the RMS are run on separate hosts, we also
need to measure the network traffic. Therefore, we measure the total size of the messages, by
encoding CooRMv1 messages similarly to Corba Common Data Representation (CDR) [55].
For each of these metrics, Figure 3.8 plots the minimum, maximum and quartiles.

For simple-moldable applications (W0), the results show that CooRMv1 outperforms OAR-
sim both regarding the number of computed configurations and the simulation time. We remind
the reader that the obtained schedules are equivalent. For CooRMv1, more data needs to be
transferred between the RMS and the applications, nevertheless, the total size of the messages is
below 35MB for 200 applications, in average 175KB per application, which is a relatively low
value for todayǶs systems, especially when considering the size of the input / output data of a
typical HPC application.

For complex-moldable applications, the results show that introducing one single CEM ap-
plication does not significantly influence the metrics (W1). Workloads W2, which are the worst
case, increase the values of the metrics, nevertheless, the scalability of the system holds. The
network traffic is below 60MB, in average 300KB per application, a value which can be handled
by todayǶs systems. The time to schedule all applications is below 400 s, usually below 100 s,
which is quite low, considering that it includes the time taken by the CEM resource selection
algorithm. For the given resource model, computing a configuration may take up to 1 s.

51

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

0

5k

10k

15k

20k

25k

30k

35k

40k

12345678 12345678 12345678 12345678 12345678N
u
m

b
er

 o
f

C
o
m

p
u
te

d
 C

o
n
fi

g
u
ra

ti
o
n
s

Number of Clusters
6

4
k

6
5

k
7

8
k

OAR CooRMv1
W0 W0 W1 W2 W3

0

50

100

150

200

12345678 12345678 12345678 12345678 12345678

S
im

u
la

ti
o
n
 T

im
e
 (

s)

Number of Clusters

2
5

6
2

5
7

3
8

9

OAR CooRMv1
W0 W0 W1 W2 W3

0

10M

20M

30M

40M

50M

12345678 12345678 12345678 12345678 12345678

T
o
ta

l
S

iz
e

o
f

M
es

sa
g
es

 (
b
y
te

s)

Number of Clusters

5
2

M
5

7
M

6
0

M

OAR CooRMv1
W0 W0 W1 W2 W3

Figure 3.8: Simulation results for OAR (W0) and CooRM (W0−3) for 1 to 8 clusters.

For W3, an extreme case where only CEM applications are present, the metrics are of the
same order of magnitude as for the previous workloads. The number of computed configurations
is smaller, due to the fact that the resource selection algorithm tries to select all the nodes from
a cluster, thus applications are better ǳpackedǴ.

To sum up, results show that CooRMv1 scales well both for existing workloads and work-
loads in which the number of complex-moldable applications is large.

3.6.3 Fairness

Let us now discuss the importance of the fair-start parameter (see Section 3.5.2). To simulate
applications with lengthy selections, we took workloads W1 (see Section 3.6.1) and added to the
CEM application an adaptation delay: when receiving a new view, the launcher waits for aadaptation

delay timeout to expire, before sending a new request. In real-life, this delay represents the execution
time of the resource selection algorithm. In the case of the CEM application, this algorithm may
take up to 1 second for 12 clusters and up to 16 seconds for 40 clusters. Thus, we are interested
in how much the application ends later compared to an ǳinstantǴ response.

Figure 3.9 shows the empirical cumulative distribution of the end-time increase, which isend-time
increase the end-time for the plotted adaptation delay minus the end-time when the adaptation-delay

is zero, for an otherwise identical experiment instance. We note that the higher the adaptation

52

3.6. Evaluation

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

1 10 100 1k 10k 100k

P
er

ce
n
t

o
f

S
im

u
la

ti
o
n
s

(%
)

End Time Increase (s)

Adaptation
Delay

1s
2s
3s
4s
5s
6s
9s

Figure 3.9: Unfairness caused by insufficient fair-start delay.

 0

 10

 20

 30

 40

 50

0 20 40 60 80 100

C
o
m

m
u
n
ic

at
io

n
 (

M
B

)

CEM Applications (%)

Simulations
Real experiments

(a) Network Usage

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 20 40 60 80 100

C
P

U
 T

im
e

(s
)

CEM Applications (%)

Simluations
Real experiments

(b) CPU Usage

Figure 3.10: Comparison between simulations and real experiments.

delay, the more the CEM application is delayed. In particular, when the adaptation-delay is
higher than the fair-start delay, the application is significantly impacted. This happens due to
the fact that another, lower-priority application, but with 0 adaptation delay, was allocated the
resources that the CEM application could have taken advantage of. In up to 5% of the cases the
application was delayed more than an hour. Therefore, the fair-start delay should be set to a
high-enough value, so that complex-moldable applications have time to compute a new request.

Note that a high fair-start delay makes resources idle longer, thus increasing resource waste.
Depending on the average job execution time, a high fair-start delay might not be acceptable.
For example, the traces used in the experiments have an average job runtime of 1.5 h. Thus,
0.5% of the resources would be wasted for a fair-start delay of 30 s, which is quite small. In
contrast, if the average job runtime were 5min, 10% of the resources would be wasted. Thus, an
administrator has to reach a compromise between resource waste and fairness.

3.6.4 Validation
We have developed a proof-of-concept implementation of CooRMv1 in Python to validate the
values obtained by simulations. The communication protocol has been ported to Corba for two
reasons:

Ĝ Our architecture maps easily to a Remote Procedure Call (RPC)-based implementation,
therefore, porting to Corba was straightforward.

53

3. CooRMv1: An RMS for Efficiently Supporting Moldable Applications

Ĝ Compared to other commonly used encoding technologies, such as JSON, XML or YAML,
Corba IIOP has the smallest overhead.

Since we focus on the RMS-launchers interactions (which are functionally equivalent to the
simulations), launchers are only deploying a sleep payload.

For these experiments, we used an instance of workloadW0 in which we replaced a percentage
of applications with instances of the CEM application, similarly to W2 and W3 (see Section 3.6.1).
We used the same resource model as during simulations, with c = 8. The RMS was run on the
first processor, while all the launchers were run on the second processor of a system with two
single-core AMD Opteronȶ 250 processors, running at 2.4GHz.

Figure 3.10a compares the TCP traffic generated in practice to the simulation results. Values
obtained in practice are up to 50% higher than those obtained by simulations. This is caused
mainly because of Corba IIOPǶs overhead, but also because we neglected some messages in the
simulations. However, the generated traffic is of the same order of magnitude, therefore we argue
that the scalability from the network perspective is validated, even if the RMS and the launchers
run on separate hosts.

Figure 3.10b compares the simulation time to the CPU-time consumed by the whole system
(RMS and launchers). Practical values are up to 3.3 times higher than simulations. However,
this is to be expected, since data needs to be marshalled/unmarshalled to/from Corba. Also,
the measured CPU-time includes starting up the launchers which, due to the need of loading the
Python executable and compiling the byte-code, is non-negligible. Nevertheless, the consumed
CPU-time is quite low, which shows that CooRMv1 scales well as the number of applications
with intelligent resource selection increases.

To sum up, the differences between theoretical and practical results are implementation
specific. A different implementation (e.g., another middleware than Corba) might show val-
ues closer to the simulations. Therefore, we argue that the conclusions drawn in Section 3.6.2
and 3.6.3 are of practical value and that the CooRMv1 architecture is a viable solution for
efficiently supporting moldable applications.

3.7 Discussions
Let us highlight some properties of the proposed solution. The RMS policy proposed in Sec-
tion 3.5.2 does not attempt to do any global, inter-application optimizations. We deliberately
chose a simple approach, as, in real-life, access to HPC resources is either paid or limited by a
quota. This forces users to choose the right trade-off between efficiency and completion-time.
CooRMv1 is flexible enough to allow applications to consider quota-related criteria when se-
lecting resources. Nevertheless, should a better RMS policy be found, it can readily be used by
changing only a few implementation details.

Single-cluster moldable applications can be reshaped [106], so as to improve system through-
put. Such an approach might be extended and used as an alternative CooRMv1 policy, however,
whether this benefits moldable applications with custom resource selection algorithms needs to
be studied.

An alternative design could have allowed applications to submit utility functions [73], then
let the RMS optimize global utility. We have refrained from adopting such a solution, because
we do not believe that utility can be translated into comparable values for applications with a
complex structure. Also, there is nothing preventing a user from ǳexaggeratingǴ his utility, thus
acquiring more resources than deserved.

54

3.8. Conclusion

3.8 Conclusion
This chapter addressed the first issue of the Thesis, that of efficiently supporting moldable ap-
plications. We started by presenting a motivating use-case, the resource selection algorithm of
a Computational ElectroMagnetics (CEM) application. We showed that using this algorithm in
practice is difficult, thus, we formulated the problem of efficiently scheduling moldable applica-
tions. As a solution, a centralized RMS, called the CooRMv1 architecture, has been proposed,
which allows application to employ their custom resource selection algorithms for improved per-
formance. Experiments done with a workload mixing rigid and moldable applications showed
that the architecture is fair and scalable.

CooRMv1 is applicable to resources in which centralized control can be assumed, such as
clusters and supercomputing centers. However, this is difficult to enforce for geographically-
distributed, multi-owner resources, as can be found in Grid and Sky computing. Therefore, the
next chapter extends CooRMv1 and proposes a distributed version of it.

55

CHAPTER 4
distCooRM: A Distributed RMS for

Moldable Applications

If you canǶt write it down in
English, you canǶt code it.

Peter Halpern

In this chapter, we extend the previously introduced problem, that of efficiently scheduling
moldable applications, to the case of geographically-distributed resources, as featured in Grid and
Sky Computing. We focus on two issues: devising a solution for resources owned by multiple
administrative domains and ensuring the fault-tolerance of the system to network bisections.

To this end, we extend the concepts, interfaces and protocols presented in Chapter 3 to a
distributed version. Thus, we propose distCooRM, a distributed resource management archi-
tecture, that efficiently supports moldable applications by allowing them to employ their custom
resource selection algorithms. Experiments show that the system is well-behaved and scales well
for a reasonable number of applications.

57

4. distCooRM: A Distributed RMS for Moldable Applications

4.1 Introduction
In the previous chapter, we have shown that moldability can be used to improve application per-
formance. We have given an example of an application which uses a custom algorithm to select
resources so as to optimize its response time. Next, we have presented a resource management
architecture, CooRMv1, in which applications are actively involved in scheduling decisions,
enabling them to use their custom resource selection algorithms. CooRMv1 is especially well
suited in multi-cluster data centers (e.g., Clouds) or supercomputing centers, in which a cen-
tralized Resource Management System (RMS) can be installed. However, a centralized solution
has several disadvantages, which makes it impractical for resources which are geographically
distributed, as can be found in Grid or Sky Computing:

Multi-owner Since multiple institutions may own the resources, each one would like to keep
its independence, so as to control how much and in what conditions their resources are
shared with other institutions.

Fault-tolerance A centralized solution has a single point of failure, the RMS. If this component
fails, all users are denied access to computational resources. Also, if the network becomes
bisected, users which are separated from the RMS cannot use the resources that are on
their side of the bisection.
Note that, in this Thesis, since we are interested in resource management, we only deal with
fault-tolerance when negotiating resource allocations, i.e., when applications are waiting.
In particular, we do not deal with making applications themselves fault-tolerant after they
have started executing.

Scalability As of today, the scale of HPC Grids and Clouds is limited judging by the number
of distinct parallel machines (clusters or supercomputers) that have to be managed. For
example, in Europe, DEISA [52] was composed of 11 supercomputers, while its follow-up, the
PRACE project [139], proposed in its last call up to 25 clusters or supercomputers1. In North
America, the XSEDE project gives access to 9 supercomputers [150]. To our knowledge the
largest of these infrastructures is EGI, which contains 109 HPC clusters [128]. Nevertheless,
when devising a solution, we have to make sure that scalability is not sacrificed for solving
the former two issues.

Due to the above reasons, one needs to split the centralized RMS into several agents. This,
however, complicates the problem, as co-allocating resources across multiple agents is difficult,
as highlighted in Section 2.3.4. Implementing co-allocation on top of agents with uncoordinated
queues, as is commonly the case with batch schedulers, is cumbersome and wasteful [83]. Us-
ing advance reservations to coordinate the queues is less cumbersome, but still wasteful (see
Figure 2.4 in Chapter 2) and, moreover, may lead to distributed deadlocks or livelocks.

Let us illustrate the latter two with an example. Figure 4.1 presents the Gantt charts of
two initially empty resources R1 and R2. Two applications A1 and A2 enter the system at the
same time. They first gather information about the availability of the resources and compute
a resource selection. For example, both might want to reserve both resources (Figure 4.1a).
Next, each application reserves their computed selection. However, since we are in a distributed
system, with no global coordinator and heterogeneous network latencies, it might happen that
A1 first reserves R1 and A2 first reserves R2 (Figure 4.1b). Then, both applications attempt

1Strictly speaking, DEISA is not operated as a Grid, as it does not respect condition 1 and 2 of the Grid
definition given in Section 2.1.3. Indeed, in their propositions, users explicitly state the machine they are interested
in. We are mentioning them here just to give an idea of the scale of such systems.

58

4.2. The distCooRM Architecture

Figure 4.1: Deadlock with Advance Reservations

to reserve the other resource, however, since the other application already took that slot, their
second reservations fail (Figure 4.1c).

There are several strategies that the applications may adopt. They may either wait for the
other slot to become free, in which case a deadlock occurs. They may cancel and retry the
whole process, in which case a livelock may occur. Effectively, since there is no tie-breaking
between the two applications, they cannot reliably select resources.

This chapter takes a first step towards solving the above issues. We propose distCooRM, a
distributed resource management architecture, which builds upon CooRMv1 and advance reser-
vations. It guarantees that applications can reliably and efficiently select resources using loose
reservations and resource state change notifications. Deadlocks are eliminated by imposing
a global order on applications in the system.

The remaining of this chapter is structured as follows. Section 4.2 presents distCooRM the
novel resource management architecture. Section 4.3 proposes an implementation, which is used
for the evaluation of the architecture in Section 4.4. Finally, Section 4.5 concludes the chapter.

4.2 The distCooRM Architecture
This section presents distCooRM. It starts by describing the principles of the system. Then, it
enumerates the agents that are part of the system and details the interfaces they export. Finally,
the interactions between the agents in usual and exceptional cases are detailed.

4.2.1 Principles
distCooRM builds upon CooRMv1 (see Section 3.4). At the core of the application-RMS inter-
actions are the same two concepts: requests and views. Requests allow applications to express request
what resources they want to have allocated. Applications compute requests based on their cur-
rent view, which contains the most up-to-date information about the resources that are available view
to an application, as computed by the RMS.

A fundamental difference between distCooRM and CooRMv1 is that in distCooRM the
RMS is distributed. There are multiple agents that manage resources and collectively deal with
the requests and views of applications. Each agent operates independently on partial informa-
tion, i.e., a set of partial requests and partial views for all applications, but restricted to the partial

request

partial view

resource it manages. As a consequence, a resource request, that is computed by the application-
side resource selection algorithm, will eventually have to be split into several partial requests
before reaching each of the agents that manage the resources. Likewise, the partial views coming

59

4. distCooRM: A Distributed RMS for Moldable Applications

Figure 4.2: Overview of distCooRM agents. Roles: C = Client, S = Server.

from different agents will eventually have to be merged into a single view before inputing them
to the application-side selection algorithm.

Regarding the start-time, in CooRMv1 the start-time of each allocation is computed by the
RMS. This approach cannot be used in distCooRM any more. Due to the distributed nature of
the solution, each partial request is scheduled independently by a different agent. In order to
allow applications to coordinate partial allocations, requests are extended to contain a start-
time. This is similar to advance reservations, however, in distCooRM the start-time is not strict,
but rather it is interpreted as not-earlier-than. The allocation is allowed to start later than the
start-time given in the request, but not earlier. As such, we define a loose reservations asloose

reservations a resource request containing a cluster, a node-count, a minimum start-time and an end-time.
For example, an application might request 4 nodes on cluster C1 from time 100 to time 120
and 5 nodes on cluster C2 from time 100 to time 120. Note that, since each agent might take
scheduling decisions at a different time, the actual start-time of the partial allocations might
skew. For the previous example, the applicationǶs allocation might start at time 101 on cluster C1

and time 102 on cluster C2. Since we deal with moldable applications, these partial allocations
have to be merge in a single allocation before the application may start executing on them. We
shall discuss this more when presenting the interactions in distCooRM.

Using loose reservations instead of advance reservations helps make the system converge
faster. For example, if two applications A and B reserve the exactly same slot on the same
resources, the system may delay the reservation of B. The application can deduce if this happens
by monitoring its view. It can then either decide to accept this delay or adapt and send a new
request.

One more issue remains. Since scheduling decisions are taken for each resource independently,
there is a risk of deadlocks occurring (as exemplified in Figure 4.1). In order to break deadlocks
when allocating resources, a global order is imposed on applications. When an applicationglobal order
initially enters the system its submit-time (with a certain precision, for example, microsecond)
and a randomly generated session ID is recorded. This data is then transmitted throughout the
whole distributed system and must be used to order applications in the scheduling algorithms.
This is further illustrated by giving an example implementation in Section 4.3.

4.2.2 Agents
Figure 4.2 shows the main types of agents that are part of the system. A launcher is a user-launcher
code, part of an application, that is responsible for implementing the application-specific resource
selection algorithm and negotiating the resources on which the application is going to execute.

An mediator is the user entry-point to access the resources. Its main purpose is to hide themediator
complexity of how resources are reached, thus, providing the user with a more general interface.
It also deals with various issues, such as authenticating the user, traversing firewalls, etc.

A manager is responsible for multiplexing access to a computational resource, such as a su-manager

60

4.2. The distCooRM Architecture

Figure 4.3: Interfaces corresponding to each role

percomputer or a cluster, and enforcing exclusive access. More precisely, this agent is responsible
for tracking the requests and allocations for the resource it manages.

Each of these agents takes the role of a server, a client or both. A manager acts as a server
and exposes an interface to give access to resources, while a launcher acts as a client and uses
the server interface to gain access to resources. A mediator is a proxy which acts as a server to
launchers and as a client to managers. More details about the interface of each role is given in
the next section.

Additionally, we assume that the mediators and managers are connected to a discovery discovery
agentagent. Its purpose is to provide a publish/subscribe catalog allowing mediators to discover

managers. The discovery agent could either be centralized or could itself be distributed. For
example, it could be implemented using a Distributed Hash Table (DHT). There are many
works dealing with implementing a scalable discovery service (see, for example, Section 2.3.3).
Therefore, in this chapter we shall focus on the interactions which take place between the
launchers, the mediators and the managers.

4.2.3 Interfaces

In the previous section we have defined two roles: server and client. In this section, after defining
a few data types, we shall describe the interface of each role. The datatypes used in distCooRM
are the following:

Ĝ SessionId is a unique identifier of an instance of a launcher used throughout the whole
system, for example a UUID;

Ĝ ResourceId is a unique identifier of a resource used throughout the whole system, for
example the fully-qualified domain name of the node on which the manager is running;

Ĝ Request describes a loose reservation, by specifying the ResourceId on which the al-
location should take place, the earliest start-time, the duration and the number of
computing nodes to reserve;

Ĝ ResourceInfo stores static information about a resource, allowing the application to esti-
mate its computing power and network connectivity. For example, it may store the number
of CPUs and GPUs, the computing power of a node in FLOPS, the latency and bandwidth
of the Local-Area Network (LAN), etc. For the Wide-Area Network (WAN), the Vivaldi
coordinates [38] of the resource allow applications to estimate network latencies, while
the inbound and outbound bandwidth allow the estimation of the bandwidth using the
last-mile model [8];

Ĝ View (same as in CooRMv1, see Figure 3.2) stores availability information about re-
sources. It is a data structure that associates to each ResourceId a step function repre-
senting the number of available nodes as a function of time.

Let us now describe the interface of each role (Figure 4.3). A server exposes an interface which
allows a client to subscribe/unsubscribe to resource state notifications, manipulate reservations

61

4. distCooRM: A Distributed RMS for Moldable Applications

(reserve), get static information about resources (getResourceInfo) and signal completion
of the execution (done). Note that, the subscribe message contains a time-stamp (submitTime)
which is generated by the mediator (the time-stamp given by the launcher is ignored, for security
reasons). In order to enforce a global order among launchers and solve the deadlock issue pre-
sented in Figure 4.1, resource agents must use this time-stamp when taking scheduling decision,
as illustrated in Section 4.3. This is in constrast to other resource management systems, such as
batch schedulers, which take scheduling decisions based on the time at which a reservation has
been requested.

A client exposes an interface which allows it to be notified when dynamic information about
the resources have changed (changeNotify) or when its reservation has started (startNotify).
We have chosen for the startNotify message to have the same signature as the reserve mes-
sage, for the following two reasons:

Ĝ Spatial disambiguation: a launcher needs to determine on what resource its requested
allocation has started. Indeed, since the start-time of the partial allocations may skew, as
managers may take scheduling decisions at different moments of time, the launcher may
receive multiple, partial startNotify messages from different resources. Hence, by looking
at the ResourceId of the Request with which startNotify was called, a launcher can
find out the resource on which its allocation has started;

Ĝ Temporal disambiguation: a launcher needs to make sure that the startNotify it has
received corresponds to the last request it had sent. As a launcher adapts to new views it
receives, it may send new requests. Since we are in a distributed system, it may happen
that a startNotify message is send by a resource, before it received the last reserve
message from the launcher. To deal with this situation, a launcher should compare the
fields of the Request it has last send with the information contained in the startNotify
message.

Of course, the above disambiguations can also be achieved by giving each request a unique
identifier. However, we refrained from adopting this approach, as we wanted to send the minimum
amount of information.

4.2.4 Interactions
The interactions between launchers, mediators and managers occur similarly to CooRMv1 (see
Section 3.4.4). Mediators only act as relays, splitting resource requests coming from launchers
into separate, partial requests for each manager and forwarding views from managers to launch-
ers. More advanced mediator implementations may cache static resource information, merge
partial views and merge partial startNotify messages into a single one. In our case, we chose
to leave merging of partial information coming from the managers to the launcher.

From the distCooRM launcherǶs and managerǶs point of view, there are two differences
compared to CooRMv1:

Ĝ Launchers may receive partial startNotify messages, which indicate that some managers
have started their allocations, but allocations on other managers have yet to start;

Ĝ Launchers need to send an unsubscribe message to inform managers to no longer send
dynamic availability information (views). In CooRMv1, this was implicitly done when
the application started. We shall illustrate through an example, why in distCooRM un-
subscribing needs to be explicit.

For better illustration, let us give examples of interactions between a launcher, a mediator
and two managers in three scenarios which we call the trivial scenario, the typical scenario
and the start-abort scenario. In the trivial scenario (Figure 4.4), we assume that the state

62

4.2. The distCooRM Architecture

Figure 4.4: Trivial Scenario

of the resources does not change between the arrival of the application and its start, therefore,
negotiation is straight-forward. Upon entering the system, the launcher subscribes to receive
resource information (Step 1). It receives views from the two managers (Step 2) and, if necessary,
retrieves static information about the resources (not illustrated for briefness). Next, it uses this
information to run its resource selection algorithm and sends resource requests (Step 3). Some
time later, the managers start the requested allocations and send startNotify messages to the
launcher (Step 4). When all allocations have started, the launcher unsubscribes (Step 5) and
deploys the application on the node IDs it has received. Finally, when the application has finished
executing a done message is sent to the managers (Step 6).

In the typical scenario (Figure 4.5) the state of the resources changes before the application
starts, for example, because a higher priority application changed its reservation. In this case,
the launcher receives a changeNotify message (Step 4), re-runs in resource selection algorithm
and changes its reservations (Step 5). Otherwise, the interactions are identical to the trivial
scenario (steps 6 to 8).

Finally, in the start-abort scenario (Figure 4.6) the state of the resources managed by
one manager changes, while the other manager already started the resource allocation. In such
a case, the application receives a startNotify from one manager (Step 6) and a changeNotify
from the other (Step 7). The application re-runs its resource selection algorithm and submits a
new reservation (Step 8). Effectively, it has aborted the start on one resource, hence the name of
this scenario. In order to continue negotiating, the launcher needs to continue receiving resource
state change notifications until all its allocations have started. This is why we had to make
unsubscription explicit in distCooRM.

Note that, the both startNotify skew as well as the start-abort scenario may waste re-
sources. Initial experiments revealed that this waste is negligible compared to the execution-time
of the targeted applications. Therefore, we have not looked further into this issue.

63

4. distCooRM: A Distributed RMS for Moldable Applications

Figure 4.5: Typical Scenario

Figure 4.6: Start-abort Scenario

64

4.3. An Example Implementation

4.3 An Example Implementation

This section describes one possible implementation for the distCooRM architecture, which is
used in the evaluation section. To test the prototype, we have implemented the distCooRM
agents as part of a simulator, which uses the SimGrid framework [33].

Manager A distCooRM manager is responsible for managing one resource (in our case a clus-
ter). It has to decide how to allocate nodes, it has to compute views, send them to applications
and process resource requests from applications. Our manager implementation works similarly
to the CooRMv1 RMS implementation given in Section 3.5.2: It waits for requests from appli-
cations, runs a scheduling algorithm which computes views and application start-times, sends
changeNotify messages for applications whose views have changed and startNotify messages
for applications whose allocations have started. There are three implementation differences which
deserve to be highlighted:

1. To ensure that applications are treated consistently by all managers (otherwise, deadlocks
or livelocks may occur), the list scheduling algorithm (Algorithm 3.1 in Chapter 3) iterates
through the applications as given by their global order: Applications are first sorted by
the time-stamp received in the subscribe message, then by session ID. This is similar to
the behavior of the CooRMv1 RMS, except that the time-stamp is given by a mediator
and not by the manager itself.

2. When computing the start-time of a request, the first ǳholeǴ in the availability of the
resources is searched starting from the minimum start-time given in the request. This is in
contrast to CooRMv1, whose requests do not contain a start-time, therefore, the ǳholeǴ
is searched starting from the current time.

3. The application is not explicitly unsubscribed when it starts, as needed to deal with the
start-abort scenario described in the previous section. CooRMv1 automatically stops
sending changeNotify messages once the application has started.

As in the case of CooRMv1, the scheduling algorithm is triggered every time a subscribe,
reserve or done message arrives. However, to lower the CPU usage on the nodes the medi-
ators are running, the scheduling algorithm is run at most once per coalesce interval, an coalesce

intervaladministrator-chosen parameter. How to chose a value for this parameter is discussed in the
evaluation section.

Mediator A distCooRM mediator acts as a proxy between launchers and managers. We have
devised a naśve implementation which assumes that the system is static, i.e., managers do not
change during the live-time of a mediator. During initialization, the mediator first uses the
discovery agent to discover managers, then retrieves static resource information by calling their
getResourceInfo method. This information is cached for serving it to the launchers when they
request it.

Next, the mediator waits for launchers to connect to it. When a subscribe messages is
received the current time is recorded and used as a time-stamp in the subscribe messages
which are sent to all discovered managers. changeNotify, startNotify and done messages are
relayed unchanged. reserve messages are split by the resource ID they target and the resulting
sub-requests are sent to the corresponding manager.

65

4. distCooRM: A Distributed RMS for Moldable Applications

Launchers We have implemented three launchers: rigid, single-cluster moldable and multi-
cluster moldable for the CEM application. Their resource selection algorithms are identical to
those of the applications used to evaluate CooRMv1, which are described in Section 3.5.1.

A distCooRM launcher works as follows. At initialization, it connects to the mediator run-
ning on the same node as itself, using a well-known method (e.g., a pre-define TCP port on
localhost). It sends a subscribe message and enters the monitoring phase. During this phase,
it listens for changeNotify messages and updates its local view of the resources with the in-
formation contained therein. When its view changes, it runs the resource selection algorithm
corresponding to the application type it handles and sends a reserve message. As in the case of
managers, to reduce the CPU usage, the resource selection algorithm is called at most once per
coalesce interval. For simplicity, we assume that the whole system is characterized by a single
coalesce interval and that the same value is being used by all managers and launchers.

The launcher also listens for startNotify messages. When all requested allocations have
started, it sends an unsubscribe message and deploys the application on the node IDs that have
been allocated to it. When the application finished executing, a done message is sent.

The above agents have been implemented in a simulator which uses the SimGrid frame-
work [33]. Our contribution consists of 3600 SLOC2 of C++ code.

4.4 Evaluation
In this section, we evaluate whether the devised solution solves the issues raised in Section 4.1.
First, we give the experimental setup common to all experiments, next we present experiments
which test whether the system behaves well in a multi-owner environment. Finally, the scalability
of the system is evaluated.

4.4.1 Experimental Setup
To evaluate distCooRM, we are using a resource and an application model similar to the ones
used to evaluate CooRMv1 in Section 3.6.1. Let us resume the main elements here.

Application Model The workload is composed of 200 applications: 100 CEM applications, 80
single-cluster moldable applications and 20 rigid applications, that are implemented as presented
above. The single-cluster moldable applications and rigid applications have been generated by
choosing among 200 consecutive jobs from the LLNL-Atlas-2006-1.1-cln trace from the parallel
workload archive [129]. For rigid applications, the requested node-count and execution-time are
taken unmodified from the traces. For single-cluster moldable applications, the node-count and
the execution-time found in the traces are used to reconstruct the sequential execution-time, as
given my AmdahlǶs law (see Equation 3.1). The amount of parallelism and maximum parallelism
is chosen randomly as presented in Table 3.1.

To simulate the inherent unreliability of estimating the execution time, each application sends
requests with a duration that is s times larger than its execution time, where s is a uniform
random variable in [1.1, 2]. In order to test the systemǶs properties in an extreme case, when it
is highly loaded, the inter-arrival time is set to 1 second. In comparison, in the original traces
approximately 7 applications arrive every hour.

2as measured by David A. WheelerǶs SLOCCount utility [148]

66

4.4. Evaluation

Cluster ID x y z
1 −3.72915245662 24.7160772325 3.62602427974
2 −4.25755167998 24.9087688069 −0.587859438454
3 5.57375542796 24.4550412426 3.05256792234
4 5.0461271909 24.7167805855 −1.15395583134
5 3.5885666087 −24.6894143829 −3.86609732834
6 0.208382141164 −24.4527765207 −6.40596892806
7 −1.52894680558 −24.9203236456 3.93929406457
8 −4.90118042655 −24.7341533185 1.39599525955

Table 4.1: Vivaldi coordinates, in milliseconds, which approximate the latencies targeted in the
resource model in Section 4.4.1. The square root of the sum of the residuals is 3.61.

Resource Model The resource model consists of 8 clusters each having one frontend and
128 computing nodes. We consider that the LAN latency is negligible, e.g., the latency between
the frontend and the nodes is zero. To simulate heterogeneity, cluster i ∈ [2, 8] is considered
1 + 0.1 · (i− 1) times faster than cluster 1.

To model the WAN, every 2 clusters are grouped in a city, every 2 cities are grouped into
a country. Next, 3D euclidean Vivaldi Coordinates are assigned to each cluster, so that the
resulting latencies be 5ms between clusters belonging two the same city, 10ms between clusters
belonging to the same country and 50ms otherwise (Table 4.1).

During initial experiments, we measured the size of any message to be less than 100 bytes.
Therefore, for simplicity, we neglect transmission delays due to limited bandwidth, i.e., our
network model behaves as if bandwidth was infinite.

Deployment Model A mediator and a manager are deployed on the frontend node of each
cluster. Application launchers are also deployed on frontend nodes (either all on the same fron-
tend or on different ones, depending on the experiment) and connect to the mediator which
runs on the same node. Initially, we set the coalesce interval to 1 second. The importance of this
parameter is studied in the second part of the evaluation.

Metrics We are interested in the following two metrics: the average completion time and the
maximum traffic per frontend. The average completion time measures the average of the average

completion
time

completion times of the applications. Its purpose is to quantify the quality of the schedule that
the system devised.

The maximum traffic per frontend measures the maximum of the number of bytes that maximum
traffic per
frontend

both enter and exit a frontend node. Note that, since the size of the messages is small, it would
make more sense to measure the number of messages. However, we preferred measuring bytes, so
as to be able to compare distCooRM to CooRMv1. This metric serves to judge the scalability
of the system.

4.4.2 Multi-owner Feasibility
In this section, we evaluate distCooRMǶs behavior when resources are managed by multiple
owners and also compare its performance to a centralized solution. To this end, we first deploy
all launchers on the same frontend. Effectively, the other mediators are not taking part in the
interactions, in other words, they are inactive. Next, we randomly ǳspreadǴ the launchers on an

67

4. distCooRM: A Distributed RMS for Moldable Applications

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

centralized 2 3 4 5 6 7 8

A
v
er

ag
e

co
m

p
le

ti
o
n
 t

im
e

v
ar

ia
ti

o
n
 (

%
)

Number of active mediators

CooRMv1 distCooRM

Figure 4.7: Variation of average completion time

increasing number of frontends, thus increasing the number of active mediators, and study how
this affects the devised schedule. Ideally, the system should behave exactly the same: applications
should be allocated the same resources during the same time-slots.

To verify the behavior, for each workload, we measure the Average Completion Time (ACT) of
the applications for a number of mediators between 1 and 8. Then, for each workload, we compute
the relative difference between the ACT when the number of mediators is greater than 2, and the
ACT when the number of mediators is 1. For comparison with a fully-centralized solution, we
also compute the relative difference between the ACT obtained with CooRMv1 and distCooRM
with a single mediator.

Figure 4.7 plots the difference of the average completion time as a function of the number
of active mediators, relative to the case in which a single mediator is active. The plot shows the
minimum, the first quartile, the median, the third quartile and the maximum of the measured
metric. Two observations can be made: First, when looking at the minimum and maximum, we
observe that the resulting ACT with CooRMv1 and distCooRM may be quite different. This
is due to the fundamental different ways that the two systems work. Nevertheless, when looking
at the median, the ACT obtained with distCooRM is only 3% higher than CooRMv1, from
which we conclude that distCooRM is competitive compared to a centralized solution.

Second, the experiments show that, for distCooRM, varying the number of active mediators
has a limited impact on the average completion time. In the studied experiments, the difference is
always less than 21% and is mostly less than 2%. In fact, the quartiles can barely be distinguished.
While the deviations are small, the observed behavior is not ideal (i.e., zero deviations), which
is why we wanted to have more refined explanations. Therefore, we have studied in detail a few
traces of the simulations. We identified three causes for the differences in schedules:

C1. Due to different observed latencies, the reserve messages arrive at the managers at mo-
ments which can slightly differ from one experiment to another. This in turn influences the
time at which the scheduling algorithms of the managers are triggered, which causes changes
in the moments the changeNotify messages are sent and arrive at launchers. These small
differences propagate from higher-priority applications to lower-priority ones. Thus, the
launchers may receive views which are slight delayed and, in the end, requested start-times
of the allocations may drift.

C2. Due to the previous reason, the resources that are available when a moldable application
runs its scheduling algorithm can differ from one experiment to another. For example, let us

68

4.4. Evaluation

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.2 0.4 0.6 0.8 1

%
 o

f
d
el

ay
s

End-time delay (s)

Figure 4.8: Empirical distribution function of end-time delays

assume we have two experiments α and β. In both experiments, an application A reserved
resources until t1, but finishes a lot earlier at time t0 ≪ t1. Let us further assume that in
experiments α, due to the way previous changeNotify messages arrived, a lower-priority
application B runs its scheduling algorithm at t0 − ǫ. According to its local view, the
resources that A is currently running on are occupied until t1, so it decides to immediately
reserve the available resources and start on them, expecting to finish at tα < t1. Since the
applications are only moldable (and not malleable), at moment t0, when A finishes, B is
unable to take advantage of the newly freed resources.
In exchange, in experiment β, the application B runs its scheduling algorithm at t0 + ǫ. Its
local view contains the resources that have just been freed by application A. Application
B reserves the resources freed by A, which are somewhat faster, and starts on them, thus
finishing at tβ < tα. In the end, the end-time of B is smaller in experiment β than in
experiment α.

C3. When from one experiment to another an application selects different resources, which
reduce its end-time (such as application B in the previous paragraph), it is highly likely
that a lower-priority application C is forced to choose slower resources, thus increasing its
end-time.
In our opinion, end-time increases (i.e., delays) caused by C3 are not really an issue. As
in the case of CooRMv1, distCooRM should favor higher-priority applications and allow
them to adapt to the available resources as they choose fit.
To have more insight into the contribution of the above causes to the end-time variations

shown in Figure 4.7, let us study the distribution of the end-times. For each application, we
compute the end-time delay, i.e., the difference between its end-time when multiple mediators
are active in the system and its end-time when a single mediator is active. We ignore delays
caused by C3 (as argued above) as follows: When an application A reduces its end-time, all
the applications that have arrived later than A are ignored. Since the number of delays that
occur is small, instead of having separate plots for each mediator-count from 2 to 8, we chose to
aggregate the results of all these experiments into a single plot.

Figure 4.8 plots the empirical distribution function of the end-time delays, which shows two
distinct features: First, the results show that more than 93% of all delays are significantly less
than the coalesce interval (more precisely, less than 0.3 seconds), while more than 98.5% of all
delays are less than 1.1 seconds, i.e., a little above the coalesce interval. We believe that these
delays can be attributed to cause C1. Second, we had one instance when the delay was 13 seconds.

69

4. distCooRM: A Distributed RMS for Moldable Applications

0

20M

40M

60M

80M

100M

 0 20 40 60 80 100 120
 14000

 16000

 18000

 20000

 22000

 24000

M
ax

im
u

m
 T

ra
ff

ic
 p

er
 F

ro
n

te
n

d
 (

b
y

te
s)

A
v

er
ag

e
C

o
m

p
le

ti
o

n
 T

im
e

(s
)

Coalesce interval (s)

124M

Traffic per Frontend (CooRMv1)
Traffic per Frontend (distCooRM)

Average Completion Time

Figure 4.9: Results of the scalability experiment, compared to a centralized system

By carefully studying the traces, we were able to identify that these delays are due to cause C2:
By incrementing the number of active mediators, the time when the scheduling algorithm of a
launcher was triggered was advanced. Another application, which estimated a large maximum
execution time, finished around the same time. Thus, the former application was delayed, because
it missed an opportunity to execute on the resources that the latter application freed.

To sum up, we have tested distCooRM and studied how the number of deployed mediators
affects its behavior. We have shown through simulations that its behavior remains essentially
the same. The small variations are mainly caused by the inherent uncertainty in the system,
due to the inability to accurately predict execution times. This allows us to conclude that the
system can be effectively used in a multi-owner environment. Each owner can deploy his own
manager and mediator and, by doing so, not only do the owners keep their independence, but
they also improve the fault-tolerance of the system: If a network bisection occurs, the waiting
applications can continue requesting the resources that are on their side of the bisection and
eventually start on them.

For the rest of the evaluation, we shall always deploy one manager and one mediator per
cluster.

4.4.3 Scalability: Comparison to a Centralized RMS

Let us now focus on the scalability of distCooRM. Figure 4.9 shows both the maximum traffic
per frontend and the Average Completion Time (ACT) as a function of the coalesce interval. As
a reference, the traffic of the CooRMv1 RMS node (with coalesce interval 1 second) is included
in the graph. For each value of the coalesce interval, at least 10 experiments have been done.
For the ACT we have observed large deviations, which, unfortunately, highlight artifacts and
hide the trends we are interested in. Therefore, inspired by input shaking [112], we reduce the
evaluation sensitivity and render graphs more readable by only plotting the medians.

One observes that, for the same coalesce interval (1 second), the amount of communication
is more than 1.5 times higher for distCooRM when compared to CooRMv1. This is due to
the fact that in CooRMv1 it is up to the RMS to choose a start-time for the requests of the
applications. Therefore, if an application terminates earlier, the next applications in the queue
are automatically advanced and might not need to send a new resource request. Hence, the
negotiation between the applications and the RMS is less costly in terms of communication. In

70

4.4. Evaluation

contrast, distCooRM resource requests have a minimum start-time which is needed to allow an
application to coordinate allocations on different managers. If an application terminates earlier
and a ǳholeǴ is created in the schedule, managers are not allowed to advance the allocation of
any application at their own initiative. Instead, it is up to the applications to detect (through
their views) that a hole has been created in the schedule and potentially take advantage of it by
sending new resource requests. While this allows both coordinating managers and filling in holes
(otherwise, as in the case of advance reservations, resources would be left idleěsee Figure 2.4),
the negotiation protocol is more communication intensive.

The results also show that reducing the amount of communication, which translates to im-
proving the scalability of distCooRM, can be done by increasing the coalesce interval. In par-
ticular, when the coalesce interval is 10 seconds, the distCooRM maximum traffic per frontend
is lower than the traffic on the RMS node for CooRMv1 with a 1 second coalesce interval. On
the downside, increasing the coalesce interval reduces the reactivity of the system and leaves
resources idle. As the graph shows, this has a significant impact on the ACT, which nearly mono-
tonically increasing. The deviations from a monotonic increase are due to a phenomenon similar
to cause C2 described in Section 4.4.2: As the coalesce interval is changed, some moldable ap-
plication may take better decisions and may thus contribute to reducing the ACT. Nevertheless,
these spurious gains are eventually eclipsed by the increasing idleness of the resources.

In the end, choosing a coalesce interval of 10 seconds seems to be a good compromise between
scalability and ACT, which is why we shall use this value in the following experiments.

4.4.4 Scalability: Strong and Weak Scaling with the Size of the Platform
Let us now test the limits of distCooRM and see how it behaves on large platforms. For this
set of experiments, we use the following resource and application models to test the scalability
in the both the strong sense, i.e., the number of resources is increased, while the number of
applications is kept constant, and the weak sense, i.e., the number of resources and the number
of applications are increased at the same rate.

Resource Model We generate platforms with increasing number of clusters from 8 to 384,
having the following characteristics: The computation power of cluster i is min(1+0.1 ·(i−1), 2),
i.e., the computation power of each cluster is 10% higher than the previous cluster, but no higher
that twice the computation power of the first cluster3. As for the Vivaldi coordinates of the
clusters, they have been taken from real traces measured ǳin the wildǴ on the Internet [136, 75].

Application Model As in the previous experiments, the workload consists of 50% multi-
cluster moldable applications (in the previous experiments we used the CEM application), 40%
single-cluster moldable and 10% rigid. For strong scalability, we fix the number of application
at 200. For weak scalability, we fix the application-count to cluster-count ratio at 25, so as to
obtain 200 applications for 8 clusters.

Unfortunately, the resource selection algorithm of the CEM application was not designed to
scale to the number of clusters that we target in this set of experiments. It has a cubic complexity
in the number of clusters and using it for all multi-cluster moldable applications would signif-
icantly slow down simulations. Therefore, to reduce the duration of the simulations, we have
replaced the CEM applications with a simpler application, that we call trivial multi-cluster trivial

multi-
cluster
moldable

3This reduces considerably the heterogeneity of the resources, as most of them will have twice the computation
power of the first cluster, however, this does not influence the scalability results.

71

4. distCooRM: A Distributed RMS for Moldable Applications

1M

10M

100M

 8 16 32 64 128 256 384

M
ax

im
u

m
 T

ra
ff

ic
 p

er
 F

ro
n

te
n

d
 (

b
y

te
s)

Number of Clusters

Figure 4.10: Strong scaling results

10M

100M

1G

10G

 8 16 32

M
ax

im
u
m

 T
ra

ff
ic

 p
er

 F
ro

n
te

n
d
 (

b
y
te

s)

Number of Clusters

Figure 4.11: Weak scaling results

moldable applications. In essence, this application works similarly to the simple-cluster mold-
able application: It takes its sequential execution time from the LLNL traces and the maximum
node-count randomly as presented in Table 3.1. However, the trivial multi-cluster moldable ap-
plication assumes a parallelism of 1 and can execute on nodes spanning multiple clusters. Its
execution time is computes by dividing the sequential execution time to the sum of the com-
putation powers contributed by all nodes allocated to it. While we admit that this application
model is somewhat simplistic, it is good enough for testing the scalability of distCooRM. For
example, the measured amount of communication for 8 clusters is similar to the workload with
the original CEM application.

Strong Scaling Results Figure 4.10 plots the minimum, first quartile, median, third quartile
and maximum traffic per frontend as a function of the number of clusters in the system for the
strong scalability experiments. One can observe that for the left part of the plot, i.e., when
the cluster-count is smaller than 256, the traffic per frontend decreases: As more resources are
available to the applications, their average waiting time decreases and less negotiation takes
place before they start. For the right part of the plot, i.e., cluster-count larger than 256, the
amount of communication increases. This happens due to the fact that more static and more
dynamic information is transmitted from the managers to the applications, which eventually
overtakes the previously described phenomenon. Nevertheless, we observe that the increase is
relatively small, therefore, we conclude that distCooRM presents good strong scalability.

Weak Scaling Results Figure 4.11 plots the results of the weak scaling experiment. Due to
the length of the simulations (approximately 4 hours for 32 clusters), we were only able to obtain
a limited number of results. Nevertheless, the graph clearly shows that distCooRM does not
scale well in the weak sense: The maximum traffic per frontend shows a large increase as clusters
are added to the system, instead of remaining constant, as would be ideal. This is due to the fact
that, distCooRM follows a M ×N (quadratic) communication pattern, i.e., all M applications
may potentially communicate with all N resources: On one hand, each manager sends to each
application a changeNotify message, on the other hand, each application generates requests
that (after being split by the mediators) may potentially arrive at all managers.

An improvement to the system would consist in adding a mechanism to limit communication
complexity to at most linear. For example, a pre-selection phase might be added, so that each
launcher only negotiates with a subset of managers based on network proximity. There is ongoing

72

4.5. Conclusion

work with the Myriads team at IRISA/INRIA in Rennes, France in this direction.

4.5 Conclusion
In this chapter, we have continued studying the problem of efficiently scheduling moldable ap-
plications. In contrast to the previous chapter, which solved the problem for resources in which
centralized control can be assumed, such as clusters and supercomputing centers, this chapter
targeted geographically-distributed, multi-owner resources, as can be found in Grid and Sky
computing. As a solution, an RMS architecture called distCooRM has been proposed, which
combines the previously proposed centralized RMS (CooRMv1) with advance reservations. The
evaluation has shown that the system is feasible, behaves well in multi-owner systems and can
be deployed so as to improve the fault-tolerance of the system. distCooRM showed to scale well
for a reasonable number of applications, however, improvements have to be devised to reach
large-scale.

Up to this chapter, we have been interested in scheduling moldable applications, which can
only select resources before they start. As has been shown in literature and in Section 3.2, this
considerably improves application response time. However, applications may take non-optimal
decisions, due to the inherent uncertainty in the system: Accurately estimating execution times
is difficult. Indeed, we have observed during our experiments that moldable applications would
start just before additional resources would be freed. Therefore, resource management can further
be improved by supporting dynamic, run-time negotiation of resources. This is the direction that
we are heading for in the next part of the Thesis.

73

Part III

RMS Support for Malleable and
Evolving Applications

75

CHAPTER 5
Towards Scheduling Evolving

Applications

This chapter takes the first step towards supporting evolving applications in Resource Manage-
ment Systems (RMSs). It focuses on the case where full information is available to the system and
quantifies the gains that can be expected. More precisely, it deals with scheduling fully-predictably
evolving applications, i.e., the complete evolution of the resource requirements is known to the
system at submittal. Off-line scheduling algorithms are proposed, which show that several user-
and system-centric metrics can be improved. Thus, this chapter paves the way to dealing with
more challenging cases, where only partial information is available. Indeed, the proposed concepts
and algorithms are used in the next chapter to design an RMS which supports non-predictably
evolving applications.

77

5. Towards Scheduling Evolving Applications

5.1 Introduction

High-Performance Computing (HPC) resources, such as clusters and supercomputers, are man-
aged by an RMS which is responsible for multiplexing computing nodes among multiple users.
Commonly, users get an exclusive access to nodes by requesting a static allocation of resources,
i.e., a rigid job, characterized by a node-count and a duration. Some resource managers support
ǳdynamic jobsǴ which allow resource allocations to be grown or shrunken while the application
is running. However, none of the existing RMSs are able to do this reliably, so as to guarantee
that the application will actually receive additional resources (see Section 2.3.1 and 2.3.2).

This is required for supporting applications that exhibit evolving resource requirements,
i.e., their resource requirements change during execution. The most commonly studied evolving
applications are workflows. There are two main approaches for running them: submitting tasks
as individual jobs [2] or creating a big pilot job, inside which tasks are scheduled [31]. However,
none of these resource allocation abstractions are usable for running tightly-coupled, evolving
applications, such as Adaptive Mesh Refinement (AMR) [97] simulations or component-based
applications with spatial and temporal relationships [14, 98]. Indeed, the former change the
working set size as the mesh is refined/coarsened, while the latter may have non-constant resource
requirements as components are activated/deactivated during certain phases of the computation.
Unfortunately, without being able to grow their resource allocation reliably, such applications
can only use static allocations and allocate resources based on their maximum requirements.
Needless to say, this leads to an inefficient resource usage.

This chapter quantifies the gains that can be made by supporting evolving applications in
RMSs. It focuses on fully-predictably evolving applications (see Section 2.2) for which the
system has full information about their evolution at submittal. Studying this case is interesting
for two reasons. First, it paves the way to supporting marginally-predictably evolving applica-
tions. If little gain can be made with fully-predictably evolving applications, where the system
has complete information, it is clear that it makes little sense to support marginally-predictable
ones. Second, the developed algorithms can be extended to the marginally- and non-predictable
case. Each time an application submits a change to the RMS, the scheduling algorithm for fully-
predictable applications could be re-run with updated information.

The contribution of this chapter is threefold. First, it formalizes the novel problem of schedul-
ing fully-predictably evolving applications. Second, it proposes a solution based on a list schedul-
ing algorithm. Third, it evaluates the algorithm and shows that significant gains can be made.
Therefore, we argue that RMSs should be extended to take into account evolving resource re-
quirements.

The remaining of this chapter is structured as follows. Section 5.2 gives a few definitions and
notations used throughout the chapter and formally introduces the problem. Section 5.3 proposes
algorithms to solve the stated problem, which are evaluated using simulations in Section 5.4.
Finally, Section 5.5 concludes.

5.2 Problem Statement

To accurately define the problem studied in this chapter, let us first introduce some mathematical
definitions and notations.

78

5.2. Problem Statement

Figure 5.1: Example of an evolution profile, a delayed and an expanded version of it

5.2.1 Definitions and Notations
Let an Evolution Profile (EP) be a sequence of steps, each step being characterized by a evolution

profileduration and a node-count. Formally, ep = {(d1, n1), (d2, n2), . . . , (dN , nN)}, where N is the
number of steps, di is the duration and ni is the node-count during Step i (see Figure 5.1).

An evolution profile can be used to represent three distinct concepts. First, a resource EP resource EP
represents the resource occupation of a system. For example, if 10 nodes are busy for 1200 s,
afterwards 20 nodes are busy for 3600 s, then:

epres = {(1200, 10), (3600, 20)}

Second, a requested EP represents application resource requests. For example, requested
EP

epreq = {(500, 5), (3600, 10)}

models a two-step application with the first step having a duration of 500 s and requiring 5nodes
and the second step having a duration of 3600 s and requiring 10 nodes. Non-evolving, rigid
applications can be represented by an EP with a single step.

Third, a scheduled EP represents the number of nodes actually allocated to an application. scheduled
EPFor example, an allocation of nodes to the previous two-step application might be:

eps = {(2000, 0), (515, 5), (3600, 10)}

For the first 2000 s, no nodes are allocated to the application, therefore, it has to wait before
starting execution. Then, it would have 5 nodes allocated for 500 seconds, so as to execute its
first step. Before being able to start its second step, which requires 10 nodes, it would have to
wait another 15 s (= 515 s − 500 s). During this time, the application would still have 5 nodes
allocated: it retains all its data, but it cannot do any useful computations. Finally, it would have
10 nodes allocated for 3600 seconds, during which it can execute its second step.

We define the expanded and delayed EPs of ep = {(d1, n1), . . . , (dN , nN)} as follows:

ep′ = {(d′1, n1), . . . , (d
′

N , nN)}

is an expanded EP of ep, if ∀i ∈ {1, . . . , N}, d′i ≥ di and expanded
EP

ep′′ = {(d0, 0), (d1, n1), . . . , (dN , nN)}

is a delayed EP of ep, if d0 > 0. For a graphical representation of these two concepts, see delayed EP
Figure 5.1.

For manipulating EPs, we use the following helper functions:

79

5. Towards Scheduling Evolving Applications

Figure 5.2: Example of interaction between a fully-predictably evolving application and the RMS

Ĝ ep(t) returns the number of nodes at time coordinate t,
i.e., ep(t) = n1 for t ∈ [0, d1), ep(t) = n2 for t ∈ [d1, d1 + d2), etc.

Ĝ max(ep, t0, t1) returns the maximum number of nodes between t0 and t1,
i.e., max(ep, t0, t1) = maxt∈[t0,t1) ep(t), and 0 if t0 = t1.

Ĝ loc(ep, t0, t1) returns the end-time of the last step containing the maximum, restricted to
[t0, t1],
i.e., loc(ep, t0, t1) = t⇒ max(ep, t0, t) = max(ep, t0, t1) > max(ep, t, t1).

Ĝ delay(ep, t0) returns an evolution profile that is delayed by t0.
Ĝ ep1 + ep2 is the sum of the two EPs, i.e., ∀t, (ep1 + ep2)(t) = ep1(t) + ep2(t).

5.2.2 Towards an RMS for Fully-Predictably Evolving Applications

To give a better understanding on the core problem we are interested in, this section briefly
describes the interaction between a fully-predictably evolving applications and a supportive
RMS.

Let us consider that the platform consists of a homogeneous cluster of nnodes computing
nodes, managed by a centralized RMS. Fully-predictably evolving applications are submitted to
the system. Each application i expresses its resource requirements by submitting a requested
EP1 ep(i) (ep(i)(t) ≤ nnodes, ∀t). The RMS is responsible for deciding when and which nodes are
allocated to applications, so that their evolving resource requirements be met.

During run-time, each application maintains a session with the RMS (Figure 5.2). If from
one step to another the application increases its resource requirements, as shown by the coarse-
dashed arrows, it keeps the currently allocated nodes and has to wait for the RMS to allocate
additional nodes to it. Note that, the RMS can delay the allocation of additional nodes, i.e.,
it is allowed to expand a step of an application. However, we assume that during the wait
period the application cannot make any useful computations: the resources currently allocated
to the application are wasted. Therefore, the scheduled EP (the EP representing the resources

1Note that this is in contrast to traditional parallel job scheduling, where resource requests only consist of a
node-count and a maximum execution time.

80

5.3. Scheduling Fully-Predictably Evolving Applications

effectively allocated to the application) must be equal to the requested EP, optionally expanded
and/or delayed.

If from one step to another the node-count decreases, as shown by the fine-dashed arrows,
the application has to release some nodes to the system (the application may choose which ones).
The application is assumed fully-predictable, therefore, it is not allowed to contract nor expand
any of its steps at its own initiative.

To completely devise an RMS several issues would have to be dealt with. An RMS interface
would have to be defined and the RMS-application protocol would have to be developed. Protocol
violations should be detected and handled, e.g., an application which does not release nodes when
it is required to should be killed. These issues are dealt with in Chapter 6.

In this chapter, we focus on quantifying the gains that can be made by developing such a
system. The first step consists in finding an offline scheduling algorithm that operates on the
queued applications and decides how nodes are allocated to them. It can easily be shown that
such an algorithm does not need to operate on node identifiers (IDs): if for each application, a
scheduled EP is found, such that the sum of all scheduled EPs never exceeds available resources,
a valid mapping can be computed at run-time. The next section formally defines the problem.

5.2.3 Formal Problem Statement
Based on the previous definitions and notations, the problem can be stated as follows. Let nnodes

be the number of nodes in a homogeneous cluster. napps applications having their requested EPs
ep(i) (i = 1 . . . napps) are queued in the system (∀i, ∀t, ep(i)(t) ≤ nnodes). The problem is to
compute for each application i a scheduled EP ep

(i)
s , such that the following conditions are

simultaneously met:
C1 ep

(i)
s is equal to ep(i) or a delayed/expanded version of ep(i);

C2 resources are not overflown (∀t,
napps
∑

i=1
ep

(i)
s (t) ≤ nnodes).

Application completion time and resource usage should be optimized.

5.3 Scheduling Fully-Predictably Evolving Applications
This section aims at solving the above problem in two stages. First, a list-scheduling algorithm is
presented, which transforms requested EPs into scheduled EPs. It takes as input a helper function
which operates on two EPs at a time, a resource EP and a requested EP, and outputs a scheduled
EP. Second, several algorithms for implementing this helper function are described.

5.3.1 An Algorithm for Offline Scheduling of Evolving Applications
Let us present an offline scheduling algorithm that solves the stated problem (Algorithm 5.1).
The algorithm takes as input the requested EP ep(i) of each application i and the number of
computing nodes in the system nnodes. It outputs for each application i a scheduled EP ep

(i)
s , so

that resources are not overflown.
The algorithm works as follows. Throughout the algorithm, the resource EP epr is maintained,

which stores the future resource occupation, as computed after a certain step of the algorithm.
This variable is initialized to the empty EP. Then, the algorithm considers each requested EP,
potentially expanding and delaying it using a helper fit function. The resulting scheduled EP
ep

(i)
s is added to epr, effectively updating the resource occupation.

81

5. Towards Scheduling Evolving Applications

Algorithm 5.1: Offline scheduling algorithm for evolving applications.
Input: ep(i), i = 1 . . . napps, requested EP of the application i,

nnodes, number of nodes in the system,
fit(nnodes, epreq, epres)→ (ts, eps), a fit function

Output: ep(i)s , scheduled EP of application i

1 epr ← empty EP ;
2 for i = 1 to napps do
3 t

(i)
s , ep

(i)
x ← fit(ep(i), epr, nnodes) ;

4 ep
(i)
s ← delay(ep(i)x , t

(i)
s) ;

5 epr ← epr + ep
(i)
s ;

The fit function takes as input the number of nodes in the system nnodes, a requested EP
epreq and a resource EP epres and returns a time coordinate ts and epx an expanded version
of epreq, such that ∀t, epres(t) + delay(epx, ts)(t) ≤ nnodes. A very simple fit implementation
consists in delaying epreq such that it starts after epres.

Throughout the whole algorithm, the condition

∀t, epr(t) ≤ nnodes

is guaranteed by the post-conditions of the fit function. Since at the end of the algorithm

epr =

napps
∑

i=1

ep(i)s

resources will not be overflown.

5.3.2 The fit Function
The core of the scheduling algorithm is the fit function, which delays and/or expands a re-
quested EP over a resource EP. It returns a scheduled EP, so that the sum of the resource EP
and scheduled EP does not exceed available resources.

Because it can expand an EP, the fit function is an element of the efficiency of a schedule.
On one hand, a step can be expanded so as to interleave applications, potentially reducing their
response time. On the other hand, when a step is expanded, the application cannot perform
useful computations, thus resources are wasted. Hence, there is a trade-off between the resource
usage, the applicationǶs start time and its completion time.

In order to evaluate the impact of expansion, the proposed fit algorithm takes an additional
parameter, the expand limit. This parameter expresses how many times the duration of a step
may be increased. For example, if the expand limit is 2, a step may not be expanded to more
than twice its original duration. Having an expand limit of 1 means applications will not be
expanded, while an infinite expand limit does not impose any limit on expansion.

Base fit Algorithm

Algorithm 5.2 aims at efficiently computing the fit function, while allowing to choose different
expand limits. It operates recursively for each step in epreq as follows:

82

5.3. Scheduling Fully-Predictably Evolving Applications

Algorithm 5.2: Base fit Algorithm
Input: nnodes : number of nodes in the system,

epreq =
{(

d
(1)
req, n

(1)
req

)

, . . . ,
(

d
(Nreq)
req , n

(Nreq)
req

)}

, EP to expand,

epres =
{(

d
(1)
res, n

(1)
res

)

, . . . ,
(

d
(Nres)
res , n

(Nres)
res

)}

, destination EP,
l : maximum allowed expansion (l ≥ 1),
i : index of step from epreq to start with (required for recursion, initially 1),
t0 : first moment of time where epreq is allowed to start (required for recursion,
initially 0)

Output: epx : expanded epreq,
ts : time when epx starts or time when expansion failed

/* Base case (for terminating recursion), remaining epsrc is empty */
1 if i > Nreq then
2 ts ← t0 ; epx ← empty EP ;
3 return

4 d← d
(i)
req ; n← n

(i)
req ; /* duration and node-count of current step */

5 ts ← t0 ;
6 while True do
7 if nnodes −max(epres, ts, ts + d) < n then
8 ts ← loc(epres, ts, ts + d) ; continue
9 if i > 1 then

10 teas ← ts − l · d
(i−1)
req /* earliest allowed start of previous step */

11 if teas > t0 − d
(i−1)
req then

12 ts ← teas ; epx ← ∅ ; return

13 else if nnodes −max(epres, t0, ts) < n
(i−1)
req then

14 ts ← loc(epres, t0, ts) ; epx ← ∅ ; return

15 ttails , epx ← fit(epreq, epres, nnodes, i+ 1, ts + d) ;
16 if epx = ∅ then
17 ts ← ttails ; continue
18 if i > 0 then prepend (ttails − ts, n) to epx ;
19 else
20 prepend (d, n) to epx ;
21 ts ← ttails − d ;
22 return

83

5. Towards Scheduling Evolving Applications

Figure 5.3: Example of post-processing optimization (compacting)

1. find ts, the earliest time coordinate when the current step can be placed, so that nnodes is
not exceeded (lines 5 Ĝ 8);

2. test if this placement forces an expansion on the previous step, which exceeds the expand
limit (lines 9 Ĝ 12) or exceeds nnodes (lines 13 Ĝ 14);

3. recursively try to place the next step in epreq, starting at the completion time of the current
step (line 15);

4. prepend the expanded version of the current step in epx (line 18). The first step is delayed
(i.e., ts is increased) instead of being expanded (line 21).

The recursion ends when all steps have been successfully placed (lines 1Ĝ3).
Placement of a step is first attempted at time coordinate t0, which is 0 for the first step, or

the value computed on line 15 for the other steps. After every failed operation (placement or
expansion) the time coordinate ts is increased so that the same failure does not repeat:

Ĝ if placement failed, jump to the time after the encountered maximum (line 8);
Ĝ if expansion failed due to the expand limit, jump to the first time which avoids excessive

expansion (computed on line 12, used on line 17).
Ĝ if expansion failed due to insufficient resources, jump to the time after the encountered

maximum (computed on line 14, used on line 17);
Since each step, except the first, is individually placed at the earliest possible time coordinate

and the first step is placed so that the other steps are not delayed, the algorithm guarantees
that the application has the earliest possible completion time. However, resource usage is not
guaranteed to be optimal.

Post-processing Optimization (Compacting)

In order to reduce resource waste, while maintaining the guarantee that the application completes
as early as possible, a compacting post-processing phase can be applied. After a first solution
is found by the base fit algorithm, the expanded EP goes through a compacting phase: the
last step of the applications is placed so that it ends at the completion time found by the base
algorithm. Then, the other steps are placed from right (last) to left (first), similarly to the base
algorithm (Figure 5.3). In the worst case, no compacting occurs and the same EP is returned
after the compacting phase.

The base fit algorithm with compacting first optimizes completion time then start time (it
is optimal from expansion point-of-view), but because it acts in a greedy way, it might expand
steps with high node-count, so it is not always optimal for resource waste.

84

5.4. Evaluation

5.3.3 Discussions

This section has presented a solution to the problem stated in Section 5.2. The presented strate-
gies attempt to minimize both completion time and resource waste. However, these strategies
treat applications in a pre-determined order and do not attempt to do a global optimization.
This allows the algorithm to be easier to adapt to an online context for two reasons. First, list
scheduling algorithms are known to be fast, which is required in a scalable RMS implementa-
tion. Second, since the algorithms treat application in-order, starvation cannot occur, i.e., an
application is guaranteed to eventually be allocated the resources it requested.

One can observe that Algorithm 5.1 has some similarities to Algorithm 3.1 which implements
a CooRMv1 policy. Both algorithms get as input the resource requests of applications, and
output application start-times: the former returns this value as a delay in scheduled EP, while
the latter returns it explicitly. Both algorithms maintain a profile of the future availability of
resources and both of them iterate through the requests of the applications, given a certain
order, and update the resource availability at each iteration step.

However, the two algorithms differ in several aspects. First, for Algorithm 5.1 resource re-
quests are expressed as evolution profiles, i.e., as a variation of node-count in time, whereas for
Algorithm 3.1 resource requests express the number of nodes to allocate on each cluster and the
maximum duration. Second, Algorithm 3.1 also computes views (presented in Section 3.4.1) to
send to the applications. Algorithm 5.1 does not compute them, as it assumes a static scenario,
in which applications do not adapt to the state of the resources.

Nevertheless, we observe that the two algorithms were designed with the same purpose: to
be readily usable in an RMS. This feature is exploited in the next chapter to combine the two,
the CooRMv1 architecture and the offline scheduling algorithm, to devise an RMS for evolving
applications.

Let us now resume to quantifying the gains that can be made when evolving applications
are properly supported.

5.4 Evaluation
This section evaluates the benefits and drawbacks of taking into account evolving resource
requirements of applications. It is based on a series of experiments done with a home made sim-
ulator developed in Python. The experiments are first described, then the results are analyzed.

5.4.1 Description of Experiments

The experiments compare two kinds of scheduling algorithms: rigid, which does not take into
account evolution, and variations of Algorithm 5.1. Applications are seen by the rigid algorithm
as non-evolving: the requested node-cound is the maximum node-count of all steps and the
duration is the sum of the durations of all steps (Figure 5.4). Then, rigid schedules the resulting
jobs in a Conservative Back-Filling (CBF)-like manner.

Five versions of Algorithm 5.1 are considered to evaluate the impact of its options: base fit
with no expansion (noX), base fit with expand limit of 2 without compacting (2X) and with com-
pacting (2X+c), base fit with infinite expansion without compacting (infX) and with compacting
(infX+c).

Two kinds of metrics are measured: system-centric and user-centric. The five system-centric
metrics considered are:

85

5. Towards Scheduling Evolving Applications

Figure 5.4: Example of how the rigid algorithm works. The resource area marked in green (light
grey) is what the application requested. The resource area marked in red (dark grey) is wasted:
the application cannot make use of it.

1. Resource utilisation is the resource area that has been allocated to applications, whether
the application could make use of it or not. Effectively, from the schedulers point of view,
these resources are busy.

2. Effective resource utilisation is the resource area (expressed as percent of total re-
sources) that has been effectively used for computations by the applications.

3. Resource waste is the resource area (nodes×duration, expressed as percent of total
resources), which has been allocated to applications, but has not been used to make com-
putations. It can be computed as the difference between the resource utilisation and the
effective resource utilization. For rigid, resources are wasted because they are uselessly al-
located to the application, due to the algorithm not taking into account evolving resource
requirements. For the other algorithms, resources are wasted due to expansion, during
which, as previously said, the application cannot make use of resources.

4. Makespan is the completion times of the last application. This is a classical offline schedul-
ing metric to quantify performance.

5. Schedule time is the computation time taken by a scheduling algorithm to schedule one
test on a computer with an IntelȉCoreȶ2 Duo processor running at 2.53GHz. This metrics
is important, as it allows us to judge whether the algorithms are fast enough to be adapted
to an on-line context and integrated in a real RMS implementation.

The five user-centric metrics considered are:
1. Average application completion time (Avg. ACT), computed for each test separately: this

is a commonly scheduling metric to highlight the schedulerǶs performance as perceived by
the user.

2. Average application waiting time (Avg. AWT), computed for each test separately: this allows
us to have an insight of the behaviour of the system as discussed in the Analysis section.

3. The number of expanded applications (num. expanded), i.e., the number of applications
for which at least a step was expanded, as a percentage of the total number of applications
in a test: this allows us to evaluate how many users are affected by expansion.

4. By how much was an application expanded (App Expansion) as a percentage of its initial
total duration: this allows us to observe whether few applications suffer a large expansion
or many applications suffer a small expansion.

5. Per-application waste as a percentage of resources allocated to the application: this is
similar to the system-centric resource waste, but allows us to measure waste as perceived
by the user.

86

5.5. Conclusions

As we are not aware of any public archive of evolving application workloads, we created syn-
thetic test-cases. A test case is made of a uniform random choice of the number of applications,
their number of steps, as well as the duration and requested node-count of each step. We tried
various combinations that gave similar results. Table 5.1 and 5.2 respectively present the results
for the system- and user-centric metrics of an experiment made of 1000 tests. The number of
applications per test is within [15, 20], the number of steps within [1, 10], a step duration within
[500, 3600] and the node-count per step within [1, 75].

5.4.2 Analysis
AdministratorǶs Perspective rigid is outperformed by all other strategies. They improve
effective resource utilisation, reduce makespan and drastically reduce resource waste within
reasonable scheduling time. Compared to rigid, all algorithms reduce resource utilization. We
consider this to be a desired effect, as it means that, instead of allocating computing nodes to
applications which do not effectively use them, these nodes are release to the system. The RMS
could, for example, shut these nodes down to save energy.

There is a trade-off between resource waste and makespan (especially when looking at max-
imum values). However makespan differs less between algorithms than waste. If maintaining
resources is expensive, an administrator may choose the noX algorithm (which does no expan-
sion), whereas to favour throughput, she would choose 2X+c.

UserǶs Perspective When compared to rigid, the proposed algorithms always improve both
per-application resource waste and average completion time. When looking at maximum values,
the trade-off between expansion / waste vs. completion time is again highlighted. Algorithms
which favor expansion (infX, infX+c) reduce average waiting time, but not necessarily average
completion time. In other words, application are started earlier, but due to the fact that the
duration of a step is increased, the completion time is not always reduced.

The results show that waste is not equally split among applications, instead, few applications
are expanded a lot. Since in Cloud computing resources are payed for and, similarly, most cluster
/ Grid systems are subject to accounting, using the infX and infX+c algorithm, which do not
guarantee an upper bound on the waste, should be avoided. Regarding algorithms which limit
expansion, the benefits of using 2X+c instead of noX are small, at the expense of significant
per-application resource waste. Therefore, users might prefer not to expand their applications
at all.

Global Perspective From both perspectives, expanding applications has limited benefit.
Therefore, the noX algorithm seems to be the best choice. Taking into account evolving re-
quirements of applications enables improvement of all metrics compared to an algorithm that
does not take evolvement into consideration.

5.5 Conclusions
Some applications, such as Adaptive Mesh Refinement simulations, can exhibit evolving resource
requirements. As it may be difficult to obtain accurate evolvement information, this chapter
studied whether this effort would be worthwhile in terms of system and user perspectives. The
chapter has presented the problem of scheduling fully-predictable evolving applications, for which
it has proposed an offline scheduling algorithm, with various options. Experiments show that

87

5. Towards Scheduling Evolving Applications

Name Waste Utilisation Eff. Util. Makespan Sch. Time
(%) (relative) (%) (relative) (ms)

min avg max min avg max min avg max min avg max min avg max
rigid 43 70 116 1 1 1 30 40 51 1 1 1 4.64 6.2 9.41
noX 0 0 0 .46 .58 .69 49 61 73 .49 .65 .82 11.4 24.7 55.8
2X 0 2 11 .47 .60 .71 50 63 75 .48 .64 .82 11.4 24.4 45.4
2X+c 0 ǫ 4 .46 .59 .70 53 63 75 .48 .63 .82 17.1 36.7 88.6
infX 0 7 22 .49 .63 .78 52 64 73 .49 .63 .78 11.4 23.4 49.2
infX+c 0 1 11 .46 .59 .71 55 64 74 .47 .62 .78 17.6 36 124

Table 5.1: Comparison of Scheduling Algorithms (System-centric Metrics)

Name Avg. ACT Avg. AWT Num. expanded App expansion Per-app. waste
(relative) (relative) (%) (%) (%)

min avg max min avg max min avg max min avg max min avg max
rigid 1 1 1 1 1 1 0 0 0 0 0 0 0 67 681
noX .42 .61 .84 .36 .55 .81 0 0 0 0 0 0 0 0 0
2X .45 .61 .84 .36 .54 .80 0 22 56 0 4 76 0 2 75
2X+c .44 .60 .84 .37 .54 .81 0 7 40 0 ǫ 60 0 ǫ 41
infX .43 .62 .81 .27 .53 .76 0 26 62 0 19 884 0 6 360
infX+c .44 .60 .81 .35 .53 .76 0 13 47 0 5 1354 0 1 119

Table 5.2: Comparison of Scheduling Algorithms (User-centric Metrics)

taking into account resource requirement evolvement leads to improvements in all measured
metrics, such as resource utilization and completion time. However, the considered expansion
strategies do not appear valuable.

Thanks to this work, we can now devise an RMS architecture which deals with non-predictably
evolving applications. Concepts and algorithms proposed in this chapter can easily be extended
for this, as highlighted in the next chapter.

88

CHAPTER 6
CooRMv2: An RMS for

Non-predictably Evolving
Applications

We can predict everything,
except the future.

John Galsworthy

This chapter presents CooRMv2, an extension to the CooRMv1 architecture proposed in
Chapter 3. Besides support for rigid and moldable application which it inherits from CooRMv1,
CooRMv2 adds extensions which greatly widen the resource requirements that applications may
express. For example, a non-predictably evolving application can make ǳpre-allocationsǴ to specify
its peak resource usage, then reliably allocate resources during execution as long as the pre-
allocation is not outgrown. Resources which are pre-allocated but not used, can be filled by other
applications, such as a malleable one. Results show that the approach is feasible and leads to a
more efficient resource usage.

89

6. CooRMv2: An RMS for Non-predictably Evolving Applications

6.1 Introduction

Let us start this chapter by resuming the elements described so far. Chapter 3 presented
CooRMv1, a Resource Management System (RMS) to support moldable applications. Instead
of submitting a static allocation of resources, as commonly done in todayǶs RMSs, application
launchers are actively involved in the scheduling decisions taken by the RMS, which allow them to
optimize their resource selection. Negotiating resources only takes place before the applications
start, i.e., resource allocation is not re-negotiated during their execution.

In Section 2.2 we highlighted that applications may have evolving resource requirements.
For example, Adaptive Mesh Refinement (AMR) simulations may need to acquire/release new
computing nodes as the mesh they operate on needs to be refined/coarsened. In Section 2.3 we
have shown that such applications are currently not efficiently dealt with in the state of the
art. On one hand, if static allocations are used, such as common in batch schedulers, one needs
to allocate resources to meat the peak demands of the application, thus resources are wasted.
On the other hand, if one uses dynamic allocations, such as common in Cloud managers, the
application cannot be guaranteed that it can grow. Indeed, large-scale resource requests may
be refused with an ǳout-of-capacityǴ error, thus, allocating resources on the fly may lead to
the application reaching an out of memory condition. To properly support such applications,
we have made a first step in Chapter 5, in which we have studied the case of fully-predictable
evolving applications and determined the gains that can be made by efficiently supporting them.

In this chapter we reuse and extend previously introduced concepts, such as requests, views,
evolution profiles and scheduling algorithms, and propose CooRMv2, an extension to the
CooRMv1 architecture, that significantly improves the expressiveness of the RMS-application
protocol, so as to support applications with dynamic resource requirements. For example, it
enables efficient scheduling of evolving applications, especially non-predictable ones. It allows
applications to inform the RMS about their maximum expected resource usage, using pre-
allocations. Resources which are pre-allocated but unused can be filled by malleable appli-
cations.

The remaining of this chapter is organized as follows. Section 6.2 motivates the work and
refines the problem statement by presenting a model for Non-predictably Evolving Applications
(NEAs) based on an AMR application. Section 6.3 introduces CooRMv2, a novel RMS which
efficiently supports various types of applications as evaluated in Section 6.4. Among them, we
focus on malleable and evolving applications: Section 6.5 proposes an RMS implementation,
which is used in Section 6.6 to highlight the gains that can be made by properly supporting
them. Finally, Section 6.7 concludes the chapter.

6.2 A Model for Non-predictably Evolving Applications

This section motivates the present work and presents a new model of a non-predictably evolving
application based on observations of AMR applications. It is used both for defining the problem
statement and evaluating the solution. First, we model the evolution of the working set size for
each step of the application and the duration of the steps. Second, the model is analyzed and
the problem statement is refined.

90

6.2. A Model for Non-predictably Evolving Applications

Figure 6.1: Evolution of the mesh inside AMR simulations, as shown in [79, 15]. x-axis represents
the simulation (or solution) time, roughly equivalent to the step number. y-axis represents the
number of cells, to which the working set size is proportional.

6.2.1 Working Set Evolution Model
Our goal is to devise a model for simulating how the data size evolves during an AMR computa-
tion. In order to have a model which is parametrizable, we first devise a ǳnormalizedǴ evolution
profile, which is independent of the maximum size of the data or the duration of the computa-
tions. The model has to be simple enough to be easy to analyze and use, but at the same time it
should resemble observed behaviors. To this end, we consider that the application is composed
of 1000 steps. During step i the size of the data si is considered constant (si ∈ [0, 1000]).

Unfortunately, we have been able to find only a few papers on the evolution of the refined
mesh. Most of the papers focus either on providing scalable implementations [17] or showing
that applying AMR to a certain problem does not reduce its precision as compared to a uniform
mesh [97]. From the few papers we found [79, 15] (see reproduction in Figure 6.1), we extracted
the main features of the evolution:

Ĝ it is mostly increasing;
Ĝ it features regions of sudden increase and regions of constancy;
Ĝ it features some noise.
Using the above constraints, we derive the following model, that we call the acceleration-

deceleration model. First, let the evolution of the size of the mesh be characterized by a
velocity vi, so that si = si−1+vi. The application is assumed to be composed of multiple phases.
Each phase consists of a number of steps uniform randomly distributed in [1, 200]. Each step i

of an even phase increases vi (vi = vi−1 + 0.01), while each step i of an odd phase decreases vi
(vi = vi−1 × 0.95). Next, a Gaussian noise of µ = 0 and σ = 2 is added. Finally, the profile is
normalized, so that the maximum of the series si is 1000. The above values have been chosen so
that the obtained profiles (Figure 6.2) resemble the ones found in the cited articles (Figure 6.1).

To obtain the actual, non-normalized data size profile Si at step i, given the maximum data
size Smax, one can use the following formula:

Si = si × Smax (6.1)

6.2.2 A Speed-up Model
The next issue is to find a function t(n, S) that returns the duration of a step, as a function of
the number of allocated nodes n and the size of the data S. Both n and S are assumed constant
during a step.

91

6. CooRMv2: An RMS for Non-predictably Evolving Applications

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

al
iz

ed
 d

at
a

si
ze

Step number

Figure 6.2: Examples of obtained AMR working set evolutions

A = 7.26× 10−3 s× node×MiB−1

B = 1.23× 10−4 s× node−1

C = 1.13× 10−6 s×MiB−1

D = 1.38 s
Smax = 3.16TiB

Table 6.1: Input values to the NEA model used throughout this chapter

Instead of having a precise model (such as in [70]) which would be applicable to only one AMR
application, we aimed at finding a simple formula, which could be fit against existing data. To
this end, we chose to use the data presented in [77] as it shows both strong and weak scalability
of an AMR application for data sizes which stay constant during one experiment. After trying
several functions and verifying how well they could be fit, we found a good one to be:

t(n, S) = A×
S

n
+B × n+ C × S +D (6.2)

The terms of this formula can be intuitively explained. Term A expresses the part of the
computation which is perfectly parallelisable. Term B is the overhead of the parallelization, such
as the extra effort to keep track of all the nodes in the system or the extra cost of collective
communication. Term C is the time payed by each nodes per unit of data, the limiting factor
for a good weak scalability. Finally, D is a constant term.

Figure 6.3 presents the result of logarithmically fitting this formula against actual data. The
model fits within an error of less than 15% for any data point. The values of the parameters
used in the rest of the chapter are presented in Table 6.1.

6.2.3 Analysis of the Model
Let us analyze the model and refine the problem statement. Users want to adapt their resource
allocation to a target criterion. For example, depending on the computational budget of a sci-
entific project, an application has to run at a given target efficiency. This allows scientists to
receive the results in a timely fashion, but at the same time control the amount of used resources.

To run the above modeled application at a target efficiency et throughout its whole execution,
given the evolution of the data size Si, one can compute the number of nodes ni that have to

92

6.2. A Model for Non-predictably Evolving Applications

 1

 10

 100

1 4 16 64 256 1k 4k 16k

D
u
ra

ti
o
n
 o

f
a

st
ep

 (
s)

Number of nodes

3136 GiB
784 GiB
196 GiB
48 GiB
12 GiB

Figure 6.3: AMR speed-up model: crosses represent measured values (taken from [77]), while lines
represent the speed-up model given by Equation 6.2 with the parameters in Table 6.1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E
n
d
-t

im
e

(%
)

Target efficiency (et)

Figure 6.4: End-time increase when an equivalent static allocation is used instead of a dynamic
allocation

be allocated during each step i of the computation. Let us denote the consumed resource area
(node-count×duration) in this case A(et). To achieve this in practice, one would need dynamic
allocations: at the start of a step i one must allocate ni nodes, which is computed using the
value of the size of the date Si. Thus, one does not need any a priori knowledge of the evolution
of the size of the data, i.e., the values of Si do not need to be known in advance.

However, most High-Performance Computing (HPC) resource managers do not support dy-
namic resource allocations, which forces a user to request a static number of nodes. Let us define
the equivalent static allocation a number of nodes neq which, if assigned to the application
during each step, leads to the consumed resource area A(et). Computing neq requires to know
all Si a priori. Using simulations, we found that neq exists for et < 0.8. Of course, with a static
allocation, some steps of the application run more efficiently, while others run less efficiently
than et. However, interestingly, the end-time of the application increases with at most 2.5%
(Figure 6.4). We deduce that, if users had an a priori knowledge of the evolution of the data
size, they could allocate resources using a rigid job and their needs would be fairly well satisfied.

Unfortunately, the evolution of an AMR application is generally not known a priori, which
makes choosing a static allocation difficult. Let us assume that a scientist wants to run her
application efficiently. For example, she wants her application not to run out of memory, but at
the same time, she does not want to use 10% more resources than A(75%). Figure 6.5 shows
the range of nodes the scientist should request, depending on the maximum data size Smax. We
observe that taking such a decision without knowing the evolution of the application in advance

93

6. CooRMv2: An RMS for Non-predictably Evolving Applications

1/8

1/4

1/2

1

2

4

8

 0 1000 2000 3000 4000 5000

D
a
ta

 s
iz

e
 (

re
la

ti
v
e
)

Number of nodes

Figure 6.5: Static allocation choices for a target efficiency of 75%.

is difficult, in particular, if the behavior is highly unpredictable.
Ideally, a distinction should be made between the resources that an evolving application

expects to use in the worst case and the resources that it actually uses. The unused resources
should be filled by malleable applications, that can free these resources if the evolving application
requests them. However, since applications might belong to different users, this cannot be done
without RMS support. The next section proposes such an RMS.

6.3 The CooRMv2 Architecture

This section introduces CooRMv2, an extension to the CooRMv1 architecture presented in
Chapter 3, which allows to efficiently schedule malleable and evolving applications, whether
fully-, marginally- or non-predictable. First, it explains the concepts that are used in the system.
Second, it gives an example of interaction between the RMS, a malleable application and an
evolving application.

6.3.1 Principles

At the core of the RMS-application interaction are four concepts: requests, request constraints,
high-level operations and views. Let us detail each one of them.

Requests

A request is a description, sent by applications to the RMS, of the resources an applicationrequest
wants to have allocated. As in usual parallel batch schedulers, a request consists of the number
of nodes (node-count), the duration of the allocation and the cluster on which the allocation
should take place1. It is the RMS that computes a start-time for each request. When the start-
time of a request is the current time, node identifiers (IDs) are allocated to the request and the
application is notified.

CooRMv2 supports the following three request types. Non-preemptible requests (alsonon-
preemptible called run-to-completion, default in most RMSs [47]) ask for an allocation that once started

cannot be interrupted by the RMS. Preemptible requests ask for an allocation that can be
preemptible interrupted by the RMS, whenever it decides to, similarly to OARǶs best-effort jobs [22] or to

1In practice, separate batch queues are used for each cluster [32].

94

6.3. The CooRMv2 Architecture

Figure 6.6: Visual description of request constraints (Section 6.3.1). The x-axis represents time
and the y-axis the number of nodes.

AmazonǶs EC2 spot instances [120]. Preemptible requests are not automatically re-scheduled by
the RMS, as this decision is left to the application2.

In order to allow a non-predictably evolving application to inform the RMS about its max-
imum expected resource usage, CooRMv2 supports a third request type which we shall call
pre-allocation. No node IDs are actually allocated as a result of submitting such a request. pre-

allocationThe goal of a pre-allocation is to allow the RMS to mark resources for possible future usage.
In order to have node IDs allocated, an application has to submit non-preemptible requests in-
side the pre-allocation. Pre-allocated resources cannot be allocated non-preemptibly to another
application, but they can be allocated preemptibly.

Request Constraints

Since CooRMv2 deals with applications whose resource allocation can be dynamic, each ap-
plication is allowed to submit several requests, so as to allow it to express varying resource re-
quirements. However, the application needs to be able to specify some constraints regarding the
start-times of the requests relative to each other. To this purpose, each request r has two more
attributes: relatedToěpoints to an existing request (noted rp)ěand relatedHowěspecifies
how r is constrained with respect to rp.

CooRMv2 defines three possible values for relatedHow (Figure 6.6): FREE, COALLOC, and
NEXT. FREE means that r is not constrained and relatedTo is ignored. COALLOC specifies that
r has to start at the same time as rp. NEXT specifies that r has to start immediately after rp,
with r and rp sharing common resources. If r requests more nodes than rp, then the RMS will
allow the application to keep the resources allocated as part of rp and will send additional node
IDs when r is started. Conversely, if r requests fewer nodes than rp, then the application has to
decide which node IDs to release at the end of rp.

High-Level Operations

Let us now examine how applications can use the request types and constraints to fulfill their
need for dynamic resource allocation.

Having defined the above request types and request constraints, the targeted applications
only need two low-level operations:

Ĝ request() adds a new request into the system;
2According to the Oxford Dictionary, ǳto preemptǴ may mean ǳto interrupt or replaceǴ, e.g., ǳThe special

newscast preempted the usual television program.Ǵ In contrast to its usage in OS scheduling, ǳto preemptǴ does
not imply resuming at a later time.

95

6. CooRMv2: An RMS for Non-predictably Evolving Applications

(a) Initial state (b) Spontaneous (c) Announced

Figure 6.7: Performing an update. The x-axis and y-axis represent time and node-count, respec-
tively. The arrow on the x-axis represents the current time, i.e., the time at which an update
is performed. The area before that moment represents resources already allocated to the appli-
cation, while the area after represents resources that the RMS will allocate to the application,
based on the most up-to-date information it has. Dotted lines between requests represent the
NEXT constraint.

Ĝ done() immediately terminates a request, i.e., its duration is set to the current time minus
the requestǶs start-time. For requests constrained with NEXT, the application also has to
specify which node IDs it has released.

Using these two operations, an application can perform high-level operations. We shall present
two of which are the most relevant: spontaneous update and announced update.

A spontaneous update is the operation through which an application immediately requestsspontane-
ous

update
the allocation of additional resources. It can be performed by first calling request() with a
different node-count and a NEXT constraint to the current request, then calling done() on the
current request. For example, let us assume that an application currently has 1 node allocated for
another 2 hours (through request r0), as illustrated in Figure 6.7a. If the application immediately
desires to increase its allocation to 2 nodes, it can submit a request r1 asking for 2 nodes for
2 hours, then calling done() on request r0, thus obtaining the allocation in Figure 6.7b.

An announced update is the operation through which an application announces that it willannounced
update require additional resources at a future moment of time (i.e., after an announcement interval

has passed), thus allowing the system (and possible other applications) some time to prepare for
the changes of resource allocation. It can be performed by first calling request() with a node-
count equal to currently allocated number of nodes and a duration equal to the announcement
interval, then calling request() with a new node-count and, finally, calling done() on the
current request. For example, let us assume that an application currently has 1 node for another
2 hours (through request r0 as in Figure 6.7a) and desires to increase its allocation to 2 nodes,
with an announce interval of 1 hour. To this end, it shall submit a new request r1 for 1 node for
1 hour, then a request r2 for 2 nodes for 1 hour, finally calling done() on request r0. Thus, it
obtains the allocation illustrated in Figure 6.7c.

Note that, in order to guarantee that at update is successful (i.e., the RMS can actually
allocate additionally requested resources), updating non-preemptible requests can only be guar-
anteed if they can be served from a pre-allocation.

Views

In order to allow moldable and malleable applications to adapt their resource request to the
state of the resources, views, i.e., information about the future availability of the resources,

96

6.3. The CooRMv2 Architecture

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

N
u
m

b
er

 o
f

n
o
d
es

Time (minutes)

Non-preemptible view
Preemptible view

Figure 6.8: Example of views for one cluster

Figure 6.9: Application callbacks and RMS interface in CooRMv2

are transmitted to applications. In CooRMv2, two types of views are sent to each application i

(Figure 6.8): non-preemptive view (V (i)
NP) and preemptive view (V (i)

P). The former, identical non-
preemptive

view

preemptive
view

in purpose to CooRMv1Ƕs views, allows applications to estimate when pre-allocations and non-
preemptive requests will be served. The latter allows applications to estimate when preemptive
requests will be served.

The preemptive view is also used to signal an application, that it has to release some preemp-
tively allocated resources, either immediately or at a future time. In CooRMv2, each application
is supposed to cooperate and immediately release node IDs when it is asked to, using the above
presented update operation. Otherwise, if a protocol violation is detected, the RMS kills the
applicationǶs processes and terminates the session with it.

6.3.2 Interfaces
Figure 6.9 shows the interface of the RMS and the callbacks that the application must imple-
ment in CooRMv2. One can observe that they are similar to those of CooRMv1 presented in
Section 3.4.3. Let us highlight the differences:

Ĝ CooRMv2 allows applications to have multiple requests in the system. The CooRMv2
request method adds a new request in the system, whereas in CooRMv1 it updates the
applicationǶs request (if it had already submitted one).

Ĝ CooRMv2 supports multiple types of requests, while CooRMv1 only supports non-
preemptible ones.

Ĝ CooRMv2 requests are somewhat simpler in that they are made of a single cluster and a
single node-count, instead of a list. The application may express co-allocation over multiple

97

6. CooRMv2: An RMS for Non-predictably Evolving Applications

Figure 6.10: Example of an interaction between the Resource Management System (RMS), a
Non-predictably Evolving Application (NEA) and a Malleable Application (MApp)

cluster using the COALLOC constraint.
Ĝ Since CooRMv2 allows an application to submit multiple requests, the done method also

specifies which request to terminate. In addition, for requests constraint with NEXT, done
is also used to declare which nodes to release.

Ĝ Last, CooRMv2 transmits two types of views to applications, through the viewType
parameter in the changeNotify callback, whereas CooRMv1 only transmits one type.

6.3.3 Example Interaction

Let us describe the RMS-application protocol using an example. Assume there is one Non-
predictably Evolving Application (NEA) and one malleable application in the system (see Fig-
ure 6.10). First, the NEA connects to the RMS (Step 1). In response, the RMS sends the corre-
sponding views to the application (Step 2). The NEA sends a pre-allocation (Step 3) and a first
non-preemptible request (Step 4), to which the RMS will immediate allocate resources (Step 5).
Similar communication happens between the RMS and the malleable application, except that a
preemptible request is sent (Step 6Ĝ9). As the computation of the NEA progresses, it requires
more resources, therefore, it performs a spontaneous update (Step 10Ĝ11). As a result, the RMS
updates the view of the malleable application (Step 12), which immediately frees some nodes
(Step 13Ĝ14). Then, the RMS allocates these nodes to the NEA (Step 15).

To sum up, CooRMv2 builds upon concepts introduced in CooRMv1 and adds extensions,
which, despite being relatively small, greatly increase the expressiveness of the RMS-application
negotiation, as required to support malleable and evolving applications.

98

6.4. Application Support

6.4 Application Support
This section evaluates how the CooRMv2 architecture supports all the types of application
presented in Section 2.2.

Rigid Applications A rigid application sends a single non-preemptible request of the user-
submitted node-count and duration. Since the application does not adapt, it ignores its views.

Moldable Applications A moldable application waits for the RMS to send a non-preemptive
view, then runs a resource selection algorithm, which chooses a non-preemptible request. Should
the state of the system change before the application starts, the RMS shall keep it informed by
sending new views. This allows the application to re-run its selection algorithm and update its
request, similarly to CooRMv1 (see Section 3.4.4).

Malleable Applications A malleable application first sends a non-preemptible request rmin

with its minimum requirements. Next, for the extra resources (i.e., the malleable part), the appli-
cation scans its preemptive view VP and sends a preemptible request rextra, which is COALLOCated
with rmin. rextra can either request a node-count equal to the node-count in VP , or it can re-
quest fewer nodes. This allows an application to select only the resources it can actually take
advantage of. For example, if the malleable application requires a power-of-two node-count, but
36 nodes are available in its preemptive view, it can request 32 nodes, leaving the other 4 to be
filled by another application. During execution, the application monitors VP and updates rextra
if necessary.

Evolving Applications A fully-predictably evolving application sends several non-pre-
emptible requests linked using the NEXT constraint. During its execution, if from one request
to another the node-count decreases, it has to call done with the node IDs it chooses to free.
Otherwise, if the node-count increases, the RMS sends it the new node IDs.

A Non-predictably Evolving Application (NEA) first sends a pre-allocation request
(whose node-count is discussed below), then sends an initial non-preemptible request. During
execution, the application updates the non-preemptible request as the resource requirements
change. Since such updates can only be guaranteed as long as they happen inside a pre-allocation,
such an application may adopt two strategies: sure execution or probable execution.

The application can opt for a sure execution, i.e., uninterrupted run-to-completion, if it
knows the maximum node-count (nmax) it may require. To adopt this strategy, the size of the
pre-allocation must be equal to nmax. In the worst case, nmax is the whole machine.

Otherwise, if the application only wants probable execution, e.g., because pre-allocating
the maximum amount of required resources is impractical, then the application sends a ǳgood-
enoughǴ pre-allocation and optimistically assumes never to outgrow it. If at some point the
pre-allocation is insufficient, the RMS cannot guarantee that updates will succeed. Therefore,
the application has to be able to checkpoint. It can later resume its computations by submitting
a new, larger pre-allocation. Note that, in this case, the application might further be delayed as
the RMS might have placed it at the end of the waiting queue.

If multiple NEAs enter the system, one of the two following cases may occur. Either their
pre-allocations are small enough to fit inside the system simultaneously, in this case the NEAs
are launched at the same time, or their pre-allocations are too large to fit simultaneously, in
which case the one that arrived later will be queued after the other. In both cases, the RMS is

99

6. CooRMv2: An RMS for Non-predictably Evolving Applications

able to guarantee that whenever one of the NEAs requests an update inside its pre-allocation, it
can actually be served.

Note that, resources that are pre-allocated to a NEA, but not effectively used, cannot be non-
preemptively allocated to another application. For example, these resources cannot be allocated
to a rigid or a moldable application. However, a malleable application can preemptively allocate
such resources and use them for its malleable part. This approach is used in Section 6.6, to
highlight the gains one may obtain by properly supporting evolving and malleable applications.

6.5 An Example RMS Implementation
In order to focus our evaluation on evolving and malleable applications, we need an RMS imple-
mentation. This section presents an example implementation that we have used for our proto-
type. A CooRMv2 RMS has three tasks:

(i) for each application i compute a non-preemptible (V (i)
NP) and a preemptible view (V (i)

P),
(ii) compute the start-time of each request and
(iii) start requests and allocate node IDs.

In this section, we shall only give a high-level description of the implementation. The full
specification is quite intricate, therefore, the reader is asked to find the details, such as used
data structures and algorithms, in Appendix A.1.

The RMS runs a scheduling algorithm whenever it receives a request or done message.
In order to coalesce messages coming from multiple applications at the same time and reduce
system load, the algorithm is run at most once every re-scheduling interval, which is anre-

scheduling
interval

administrator-chosen parameter. Initial testing showed that a value of 1 second gives a system
that is very reactive, yet scales well.

The scheduling algorithm goes as follows. Applications are sorted in a list based on the
time the applications send the subscribe message. First, pre-allocation requests are scheduled
using Conservative Back-Filling (CBF) [86]. Next, inside these pre-allocations, non-preemptible
requests are scheduled. The remaining resources are used to schedule preemptible requests.

Regarding preemptive views and the start-time of preemptive requests, they are computed
so as to achieve equi-partitioning. However, should an application not use its partition, other
applications are allowed to fill it in. We shall call this ǳsmartǴ equi-partitioning.ǳsmartǴ

equi-
partitioning

The proposed scheduling algorithm has a linear complexity with respect to the number of
requests in the system. We have developed a Python implementation (with more compute-
intensive parts in C++) which is able to handle approximately 500 requests/second on a single
core of an Intelȉ Coreȶ2 Duo CPU @ 2.53GHz. The prototype is composed of approximately
1600 SLOC3 of Python code and 1000 SLOC of C++ code.

The above implementation is just one possible implementation and can easily be adapted to
other needs. For example, the amount of resources that an application can pre-allocate can be
limited, by clipping its non-preemptible view.

6.6 Evaluation with Evolving and Malleable Applications
This section evaluates the gains that can be made with the CooRMv2 architecture if evolv-
ing and malleable applications are properly supported. It uses the previously presented RMS

3as measured by David A. WheelerǶs SLOCCount utility [148]

100

6.6. Evaluation with Evolving and Malleable Applications

implementation. First, the application and resource models are presented. Next, the impact on
evolving and malleable applications is analyzed.

The evaluation is based on a discrete-event simulator, which simulates both the CooRMv2
RMS and the applications. To write the simulator, we have first written a real-life prototype RMS
and synthetic applications. Then, we have replaced remote calls with direct function calls and
calls to sleep() with simulator events.

Regarding the figures in this section, we use candlesticks to represent minimum, lower quar-
tile, median, upper quartile and maximum.

6.6.1 Application and Resource Model

As other works which propose scheduling new types of applications [108], we shall only focus on
the malleable and evolving applications, which can fully take advantage of CooRMv2Ƕs features.
Therefore, we shall not evaluate our system against a trace of rigid jobs [129] as we have done
in Chapter 3 and as is commonly done in the community. Nevertheless, as shown in Section 6.4,
the proposed system does support such a usage.

For the evaluation, two applications are used: a non-predictably evolving AMR and a mal-
leable Parameter-Sweep Application (PSA). Let us present how the two applications behave with
respect to CooRMv2.

AMR Application

A synthetic AMR application is considered, which behaves as a non-predictably evolving applica-
tion with sure execution (see Section 6.4). The application knows its speed-up model, but cannot
predict how the working set will evolve (see Section 6.2). Knowing only the current working set
size, the application tries to target an efficiency of 75% using spontaneous updates.

The user submits the application by trying to ǳguessǴ the node-count neq of the equivalent
static allocation (defined in Section 6.2). The application uses this value for its pre-allocation.
Inside this pre-allocation, non-preemptible allocations are sent/updated, so as to keep the ap-
plication running at the target efficiency.

Since the user cannot determine neq a priori, her guesses will be different from this optimum.
Therefore, we introduce as a simulation parameter the overcommit factor, which is defined overcommit

factoras the ratio between the node-count that the user has chosen and the node-count that the user
should have chosen, i.e., the best node-count assuming a posteriori knowledge of the applicationǶs
behavior.

Parameter-Sweep Application (PSA)

Inspired by [102], we consider that this malleable applications is composed of an infinite number
of single-node tasks, each of duration dtask. As described in Section 6.4, the PSA monitors its
preemptive view. If more resources are available to it than it has currently allocated, it updates
its preemptible request and spawn new processes. If the RMS requires it to release resources
immediately, it kills a few tasks then updates its request. The computations done so far are lost.
We measure the PSA waste which is the number of node-seconds wasted in such a case. PSA waste

If the RMS is able to inform the PSA some time in advance that resources will become
unavailable, then the PSA waits for some tasks to complete, afterwards it updates its request to
release the resources on which the completed tasks ran. No waste occurs in this situation.

101

6. CooRMv2: An RMS for Non-predictably Evolving Applications

0

10M

20M

30M

40M

50M

60M

70M

 0.1 1 10

A
M

R
 u

se
d
 r

es
o
u
rc

es
 (

n
o
d
e

×
s)

AMR overcommit factor

Static
Dynamic

0

100k

200k

300k

400k

500k

600k

 0.1 1 10

P
S

A
 w

as
te

 (
n
o
d
e

×
s)

AMR overcommit factor

Dynamic

Figure 6.11: Simulation results with spontaneous updates

Resource Model

We assume that resources consist of one single, large homogeneous cluster of n nodes. The
re-scheduling interval of the RMS is set to 1 second, to obtain a very reactive system.

6.6.2 Scheduling with Spontaneous Updates
In this set of experiments, we evaluate whether CooRMv2 solves the initial problem of efficiently
scheduling NEAs.

Two applications enter the system: one AMR and one PSA (PSA1 with dtask = 600 s). Since
we want to highlight the advantages that supporting evolving applications in the RMS brings,
we shall schedule the AMR application in two ways: dynamic, in which the application behaves
as described above, and static, in which the application is forced to use all the resources it has
pre-allocated.

Regarding the resources, the number of nodes n is chosen so that the pre-allocation of
the AMR application can succeed. By observing the behaviour of the application during some
preliminary simulations, we concluded that, for an overcommit factor φ ∈ [1/8, 8], the AMR
application needs n = 1400× φ nodes.

Figure 6.11 shows the results of the simulations. Regarding the amount of resources effectively
allocated to the AMR (AMR used resources), the figure shows that as the overcommit factor grows,
a static allocation forces the application to consume more resources. This happens because,
as the user chooses more nodes for the application than optimal, the application runs less
efficiently. Moreover, the application is unable to release the resources it uses inefficiently to
another application.

In contrast, a dynamic allocation allows the AMR application to cease resources it cannot use
efficiently. Therefore, as the overcommit factor grows, a dynamic allocation allows the application
to maintain an efficient execution. Note however, that thanks to the pre-allocation, if the resource
requirements of the application increase, the application can request new resources and the RMS
guarantees their timely allocation. Since, CooRMv2 mandates that preemptible resources be
freed immediately, the impact on the AMR application is negligible.

In this experiment, the RMS allocates the resources that are not used by the AMR application
to the malleable PSA. However, since the AMR application does spontaneous updates and the
RMS cannot inform the PSA in a timely manner that it has to release resources, the PSA has to
kill some tasks, thus, computations are wasted (Figure 6.11). Nevertheless, we observe that the
amount of resources wasted is smaller that the resources which would be used by an inefficiently

102

6.6. Evaluation with Evolving and Malleable Applications

running AMR application.
The PSA waste first increases as the overcommit factor increases, then stays constant after

the overcommit factor is greater than 1. This happens because once the AMR application is
provided with a big enough pre-allocation, it does not change the way it allocates resources
inside it.

To sum up, this experiment shows that, if there are non-predictably evolving applications
in the system, properly supporting them can lead to a more efficient resource usage. Neverthe-
less, PSA waste is non-negligible, therefore, the next section evaluates whether using announced
updates makes sense to reduce this waste.

6.6.3 Scheduling with Announced Updates

This section evaluates whether using announced updates can improve resource utilization. To
this end, the behavior of the AMR application has been modified as follows. A new parameter has
been added, the announce interval: instead of sending spontaneous updates, the application announce

intervalshall send announced updates (see Section 6.3.1). The node-count in the update is equal to the
node-count required at the moment the update was initiated. This means that the AMR receives
new nodes later than it would require to maintain its target efficiency. If the announce interval
is zero, the AMR behaves as with spontaneous updates. Otherwise, the application behaves like
a marginally-predictably evolving application.

For this set of experiments, we have set the overcommit factor to 1. The influence of this
parameter has already been studied in the previous section.

Using announced updates instead of spontaneous ones has several consequences. On the
negative side, the AMR application is allocated fewer resources than required, thus, its end-time
increases4 (see Figure 6.12). On the positive side, this informs the system some time ahead that
new resources will need to be allocated, thus, it allows other applications more time to adapt.

Figure 6.12 shows that the PSA waste is decreasing as the announce interval increases. This
happens because, in order to free resources, the PSA can gracefully stop tasks when they complete,
instead of having to kill them. Once the announce interval is greater than the task duration dtask,
no PSA waste occurs.

Let us discuss the percent of used resources, which we define as the resources allocated to percent of
used
resources

applications minus the PSA waste as a percentage of the total resources. Figure 6.12 shows that
announced updates do not generally improve resource utilization. This happens because the PSA
cannot make use of resources if the duration of the task is greater than the time the resources
are available to it. In other words, the PSA cannot fill resources unused by the AMR if the ǳholesǴ
are not big enough: these ǳholesǴ are either wasted on killed tasks (Figure 6.13a) or released to
the system (Figure 6.13b). However, the higher the announce interval, the more resources the
PSA frees, so that the RMS can either put them in an energy saving mode, or allocate them to
another application, as shown in the next section.

We observe that the percent of used resources has two peaks, when the announce interval is
300 s and 600 s. In these two cases, a ǳresonanceǴ occurs between the AMR application and the
PSA. The ǳholesǴ left by the AMR application have exactly the size required to fit PSA tasks. On
the contrary, when the announce interval is just below the duration of the task (i.e., 550 s) the
percent of used resources is the lowest, as the PSA has to kill tasks just before they end.

4Instead of sending an update with the currently required node-count, the application could use predictions
and send a larger announced update, at the expense of an increased resource usage. Devising such prediction
algorithms and studying the compromise between end-time and resource usage is outside the scope of this Thesis.

103

6. CooRMv2: An RMS for Non-predictably Evolving Applications

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700

A
M

R
 e

n
d

-t
im

e
 i

n
c
re

a
se

 (
%

)

AMR announce interval (s)

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700

P
S

A
 w

a
st

e
 (

%
)

AMR announce interval (s)

 96

 97

 98

 99

 100

 0 100 200 300 400 500 600 700

U
se

d
 r

e
so

u
rc

e
s

(%
)

AMR announce interval (s)

Figure 6.12: Simulation results with announced updates

The resource utilisations shown in the graphs are higher than typically found in todayǶs
computing centers, however, it has been shown that these values can easily be obtained using a
mixture of moldable and malleable applications [59], but without NEAs.

6.6.4 Efficient Resource Filling
In the previous section, we have observed that while announced updates reduce PSA waste, they
do not improve resource utilization. This happens because the PSAǶs task duration is greater
than the ǳholesǴ left by the AMR application (Figure 6.13b). In this section, we evaluate whether
CooRMv2 is able to allocate such resources to another PSA, with a smaller task duration, in
order to improve resource utilization.

To this end, we add another PSA in the system with a smaller task duration (PSA2 with
dtask = 60 s). By default, the RMS does equi-partitioning between the two PSA applications,
however, when one of them signals that it cannot use some resources, the other PSA can request
them (Figure 6.13d).

To highlight the gain, we compare this experimental setup with an RMS which implements
ǳstrictǴ equi-partitioning (Figure 6.13c): instead of allowing one PSA to fill the resourcesǳstrictǴ

equi-
partitioning

that are not requested by the other PSA, the RMS presents both PSAs a preemptible view, which
makes them request the same node-count.

Figure 6.14 shows the percent of used resources. For readability, only medians are plotted.
Experiments show that CooRMv2 is able to signal PSA2 that some resources are left unused
by PSA1. Resource utilization is improved, because PSA2 is able to request these resources and
do useful computations on them.

To sum up, CooRMv2 is able to efficiently deal with the applications it has been designed

104

6.6. Evaluation with Evolving and Malleable Applications

Figure 6.13: Graphical illustration of resource filling. The figures incrementally represent: (a)
one AMR application using spontaneous updates and one PSA, (b) using announced updates, (c)
two PSAs with ǳstrictǴ equi-partitioning, (d) two PSAs with ǳsmartǴ equi-partitioning.

 98

 99

 100

 0 100 200 300 400 500 600 700

U
se

d
 r

es
o
u

rc
es

 (
%

)

AMR announce interval (s)

Strict equi-partitioning
Smart equi-partitioning

Figure 6.14: Simulation results for two Parameter-Sweep Applications (PSAs)

105

6. CooRMv2: An RMS for Non-predictably Evolving Applications

for: evolving and malleable. On one hand, evolving applications can efficiently deal with their
unpredictability by separately specifying what their maximum and what their current resource
requirements are. Should evolving applications be able to predict some of their evolution, they
can easily export this information into the system. On the other hand, malleable applications
are provided with this information and are able to improve resource usage.

6.7 Conclusion
This chapter presented CooRMv2, a centralized RMS architecture, which extends CooRMv1
presented in Chapter 3. In addition to rigid and moldable application support which it inherited,
CooRMv2 supports malleable and evolving applications, ranging from fully-predictable to non-
predictable. Thus, we reached the goal of this Thesis and devised an RMS architecture which
supports all the types of applications that we have presented in Section 2.2.

The new resource management features enabled by CooRMv2 were evaluated using two
types of synthetic applications: non-predictably evolving, based on the model of an AMR ap-
plication, and malleable, based on the model of a parameter-sweep application. The results
showed that resources can be more efficiently allocated with proper support for these types of
applications.

Up to this chapter, we have devised resource management abstractions which operated at a
low level: the applications negotiated with the RMS in terms of computing nodes and duration. In
the next chapter, we study how the collaboration between two systems, working with higher-level
resource management abstractions, such as tasks to be executed, can be bettered for improved
resource management.

106

CHAPTER 7
Fair Scheduling of Optional
Computations in GridRPC

Middleware

Și numai cu cei mari egalitate
vrem. [We want equality only
with the greater ones.]

Grigore Alexandrescu

In this last contribution chapter, we continue our quest to improve resource management
by promoting collaboration between applications and Resource Management Systems (RMSs).
In previous chapters, we proposed lower-level abstractions which were mostly inspired by batch
schedulers. In this chapter, we start our research from existing systems which propose higher-level
resource management abstractions, then study how cooperation could be improved.

To this end, we took GridTLSE as an application and DIET as an RMS. We present a use-
case which is badly supported by these systems and we identify an underlying research problem:
scheduling optional computations, i.e., computations which are not critical to the user, but their
completion would improve results.

The main contribution of this chapter is to propose a generic, distributed master-client
architecture, which fairly schedules optional computations. The architecture has been implemented
in the DIET GridRPC middleware. Real-life experiments show that several metrics are improved,
such as user satisfaction, fairness and the number of completed requests. Moreover, the solution
is shown to be scalable.

107

7. Fair Scheduling of Optional Computations in GridRPC Middleware

7.1 Introduction
In previous chapters, we have devised systems which improve resource management, by promot-
ing the cooperation between applications and RMSs. The proposed systems were designed with
the purpose of allowing for a great flexibility in expressing resource requirements. The resulting
interfaces are mostly inspired by batch scheduler and are relatively low-level. Thus, with this
great flexibility comes a greater burden for the application developer. For example, in order
to run a Parameter-Sweep Application (PSA) in CooRMv2, one must not only write code to
interact with the RMS, but also code to schedule tasks inside the allocation.

In this chapter, we study how resource management could be improved, by promoting co-
operation at a higher level: the applications not longer negotiate with the RMS in terms of
computing nodes and duration, but in terms of tasks to be executed. To this purpose, we start
from two existing systems, which previously did not cooperate: GridTLSE is used as a motivat-
ing application, while DIET is used as a distributed RMS. We are given a use-case which is badly
supported by the two systems and aim at extending them so as to find a satisfactory solution.
In doing so, we identify an underlying research problem: scheduling optional computations,
i.e., computations which are not critical to the user, but their completion would improve results.
The challenge is to find a collaborating, distributed resource management architecture, which
fairly schedules optional computations.

The use-case has been chosen due to its generality. Indeed, a similar issue arises in sampling-
based uncertainty analysis [57], such as Monte Carlo experiments, which is a widely used method
for testing the numerical stability of complex simulations. Applications range from aerospace
engineering to validating nuclear power plant design. At its core, the method consists in varying
input parameters and studying the changes in the output parameters. The larger the number of
tested input parameters, the better the quality of the results are. Hence, obtaining good results
in a timely manner would consist in testing as many parameters as possible before a given
deadline.

Unfortunately, many system which aim at easing the submission of PSA to distributed com-
puting infrastructures, such as Condor [110], DIANE [85] and DIRAC [31], propose interfaces
which force a user to submit a pre-determined number of computation requests. This is cumber-
some to do in advance for applications which have optional computations. If too many requests
are submitted, then the resources are over-utilized, preventing other scientists from completing
their simulations in due time. If too few requests are submitted, resources might be left idle,
thus, the user lost an opportunity to improve her results. Hence, the user faces the difficulty of
choosing the number of requests to submit.

In remaining of this chapter we present a motivating use-case in Section 7.2, which is then
formalized into a problem statement in Section 7.3. Section 7.4 proposes a generic solution,
the DIET-ethic master-client architecture, which is then implemented in the DIET GridRPC
middleware. Section 7.5 presents the evaluation using real-life experiments and shows that several
metrics can be improved, such as user happiness and fairness. Also, the architecture is shown to
be scalable. Finally, Section 7.6 concludes the chapter.

7.2 A Motivating Use-case
This section briefly presents the GridTLSE project and a motivating use-case called multiple
threshold pivoting.

GridTLSE [3] is a joint project initiated by several research laboratories (CERFACS, IRIT,

108

7.2. A Motivating Use-case

 0

 1

 2

 3

0 0.01
0.17

0.33
0.5

0.67
0.83

1
 1

 1.1

 1.2

 1.3

B
ac

k
w

ar
d
 e

rr
o
r

(1
0

-1
2
)

R
el

at
iv

e
ex

ec
u
ti

o
n
 t

im
e

Threshold pivoting parameter

5
0
.6

5
0
.0

Backward error
Execution time

Figure 7.1: Example of the results output by a direct solver

LaBRI, LIP) and industrial partners (CNES, CEA, EADS, EDF, IFP) in France. Its main goal
is to design an expert site that provides easy access to many direct solvers for sparse linear
systems, allowing their comparative analysis. The site assists users in choosing the right solver
for their problems, appropriate values for the control parameters of the selected solver and the
best computer architecture to run the solver on. GridTLSE also serves as a testbed for experts
in sparse linear algebra. A computational Grid is used to execute all the runs arising from
user requests, which is accessed using GridRPC. In production deployments, DIET is used as a
GridRPC middleware. The GridTLSE project has started in 2002 years and is currently being
used by 157 users.

Let us detail how direct solvers work. Solving a linear system of the form Ax = b usually
consists of three steps: analysis, factorisation and solving. During the factorisation step of an
asymmetric matrix, two matrices are computed, a lower triangular matrix L and an upper
triangular matrix U , such that LU = A. In order to preserve the numerical stability (e.g.,
avoiding the division by a small number) pivoting can take place. One way to select the pivot
is to choose a diagonal entry according to a given threshold thr ∈ [0, 1]. The selection of the
threshold is important and for some values, the result of the solution of the linear system can
be very bad.

Figure 7.1 gives an example of running a direct solvers with the same input matrices A and
B, but with different thresholds. The backward error, an indication of the accuracy of the backward

errorsolution (smaller is better), is computed after having determined x as ||b− Ax||/||b||. One may
observe that for the given example, a threshold thr = 0.83 gives the smallest backward error.
In contrast, the default threshold for the selected solver, thr = 0.1, gives a very inaccurate
result. Unfortunately, the relationship between the backward error and the threshold is highly
dependent on the input matrix A and cannot be determined in advance. Therefore, there is no
analytic method to determine the optimal threshold.

Returning to GridTLSE, an often requested feature is to allow a user to run as many factor-
izations as possible, with different thresholds, until a given deadline is reached. If the deadline
is too tight or resources are highly loaded, the system should test at least a predefined num-
ber of thresholds (for example, three). This would allow the user to find the solution with the
smallest backward error, given the time constraints. In other words, the user needs to submit
some mandatory requests, which need to be solved whether the deadline is due or not, and a mandatory

requests(potentially large) number of optional requests, which the user would like to have computed,

optional
requests109

7. Fair Scheduling of Optional Computations in GridRPC Middleware

but are not as useful as to wait for their completion past the deadline.
It is up to the users to voluntarily choose how many of their requests are mandatory and

how many are optional. In small data centers with few users, optional requests might be used
as a way to be fair towards workmates. In large data centers, users may be charged differently
for mandatory and optional requests, thus, declaring their requests as optional may allow them
to more efficiently use their quota. Nevertheless, devising a cost model is outside the scope of
this paper.

Regarding the classification in Section 2.2, this application is malleable. However, the prob-
lematic is different from what has been done in literature. Related work [16, 34, 43, 59, 102, 108]
aims at improving some kind of metric, but, in the end, the computations that are executed are
always the same, no matter how resources are allocated to the application. In contrast, to our
knowledge, we are the first to propose for a malleable application to adapt to the state of the
resources by also changing the computations it does. If many resources are available, the ap-
plication produces more accurate results, whereas if few resources are available, the application
guarantees at least a minimum accuracy.

Using classical resource management abstractions, such as GridRPC, it is difficult to choose
the number of optional requests to submit to the platform. Obviously, if too few requests are sub-
mitted, the number of tested thresholds is suboptimal. If too many are submitted, the optional
requests of other users might not have a chance at getting executing, which would be unfair.
Even worse, the platform might be so overloaded that the other users might need to wait past
their deadlines for the completion of the mandatory requests, which makes them unhappy.

Now that we presented a motivating use-case, let us give a more formal definition of the
targeted problem.

7.3 Problem Statement
This section formalizes the problem. First, the resource and user models are described. Second,
the metrics that the system has to optimize are defined.

7.3.1 Resource Model
Let the platform be composed of nR resources, which are homogeneous (a computation request
has the same execution time on any resource), static (resources are neither added nor removed
during execution) and reliable (resources do not fail).

This model is somewhat simple but still applicable in many cases. For example, it fairly well
approximates production-level multi-cluster systems such as the Decrypthon grid [7]. Neverthe-
less, these assumptions will be relaxed in future work.

7.3.2 User/Application Model

Let the platform be used by nU users. A user i enters the system at time t
(i)
0 (which is not

known in advance) and needs to solve at least n
(i)
min (also called mandatory requests) and at

most n(i)
max requests (including mandatory and optional requests).

The user sets a ǳtentativeǴ deadline d(i) which acts as follows. If at time d(i) all mandatorydeadline
requests are completed, the remaining optional requests are cancelled and the user exits the
system. Otherwise, the user waits until all mandatory requests are completed, even if this means
waiting past the deadline. In the latter case, optional computations can still be executed until

110

7.3. Problem Statement

the last mandatory request finishes. In other words, the hard deadline is equal to the maximum
between the user-provided deadline and the last completion time of the mandatory requests.

To completely characterize the workload, the execution times need to be modeled. We con-
sider that the requests of user i are homogeneous, having the same execution time T (i).
This is a reasonable approximation for the targeted use-cases (see Figure 7.1), as well as many
parameter-sweep applications [102]. However, execution times are not known in advance.

7.3.3 Metrics
To evaluate how well a system deals with a workload, the following metrics are of interest: the
number of unhappy users, unfairness and the number of completed requests.

The number of unhappy users is the number of users who did not complete their manda- number of
unhappy
users

tory requests before their deadline d(i). These users had to wait additionally, after the tentative,
user-provided deadline. Ideally, the number of unhappy users should be 0, provided the workload
permits such a solution.

Before defining fairness, let us introduce some helper notations. For each user i, the amount
of deserved resources r(i)deserved (i.e., the amount the system should allocate the user) is computed
as follows. The set of users in the system as a function of time is piece-wise continuous. Let
U (j) be the set of users in the system during the time-slot

[

S(j), S(j+1)
)

. Theses values can be
computed as follows:

S(j) = jth element of
{

t
(i)
0 , ∀i

}

∪
{

d(i), ∀i
}

ordered ascending (7.1)

U (j) =
{

i ∈ set of users
∣

∣

∣

(

t
(i)
0 ≤ S(j)

)

∧
(

S(j+1) ≤ d(i)
)}

(7.2)

The resource area (number of resources times duration) available during that time-slot is divided
equally among the users in U (j):

r
(i)
deserved =

∑

j:i∈U(j)

nR ·
(

S(j+1) − S(j)
)

#U (j)
(7.3)

Next, for each user i, the satisfaction s(i) is defined as the amount of resources the system
allocated her r

(i)
allocated over the amount of resources she deserved r

(i)
deserved. A satisfaction 0 ≤

s(i) < 1 means that the user i was allocated fewer resources than deserved, while s(i) > 1 means
that the user i was allocated more resources than deserved. Ideally, the satisfaction of all users
should be 1, i.e., they are allocated as many resources as deserved.

Having all prerequisites, let unfairness be defined as the difference between the maximum unfairness
and the minimum among the user satisfactions:

unfairness = max
i

s(i) −min
i

s(i) (7.4)

We refrained from defining unfairness as an average, for the same reasons as stated in [118]:
users tend to be more sensitive to fairness than to performance, thus, the former should be more
like a law or a guarantee that the system is heavily penalized for breaking. Ideally, unfairness
should equal 0.

Finally, the number of completed requests is a performance-oriented metric, computed as number of
completed
requests

the sum of all the requests (mandatory and optional) belonging to any user that have completed.
To sum up, we aim at finding a system, which minimizes the number of unhappy users,

minimizes unfairness and maximizes the number of completed requests, in this order. Note that,
the three presented metrics can only be computed a posteriori, after all users exited the system.

111

7. Fair Scheduling of Optional Computations in GridRPC Middleware

Figure 7.2: DIET-ethic architecture

7.4 DIET-ethic
In this section, the DIET-ethic platform for fair scheduling of optional computations is presented.
First, the architecture is described in an abstract, implementation-independent manner. Second,
our implementation of DIET-ethic in the production-level DIET GridRPC middleware is detailed.

7.4.1 DIET-ethic Extension
DIET-ethic is an extension over a client-server architecture. The clients (representing the users of
the system) are resource consumers that generate computational requests, while the servers are
resource providers, doing computations on behalf of the clients. Clients and servers are connected
through a middleware, that implements a discovery mechanism.

Before describing DIET-ethic, let us highlight some design choices. First, we chose to keep the
server-side scheduling algorithm simple and make servers unaware of the user deadlines. This
choice has been taken based on a similar rationale as in the case of CooRMv1 (see Chapter 3)
or CooRMv2 (see Chapter 6): clients, which are under the control of the user, are able to evolve
their scheduling algorithms separately from the functionality offered by the server. For example,
a future extension of DIET-ethic might schedule workflows containing optional computations,
without requiring administrators to upgrade the servers.

Second, the number of requests stored in the platform have to be minimized. This is impor-
tant, since, for the targeted use-cases, any single user could fill the whole platform alone with
her optional requests. Therefore, having a system in which all users submit all their requests to
the system would clearly not scale.

Let us now describe the DIET-ethic architecture consisting of a server-side queuing module
and a client-side request dispatcher (Figure 7.2), that are described in the next sections.

Server-side Queuing Module

When a request arrives at a server, it is not immediately executed, but is added to a local
queue. The queue is regularly checked to determine which requests should be started, cancelled
(erased from the queue) or killed (prematurely terminated after having been started). The
scheduling algorithm orders requests according to the following five rules (rules presented
first take precedence):

1. mandatory requests are ordered before optional ones; this ensures that the number of
unhappy users is minimized;

2. started requests are ordered before waiting ones; otherwise resources might be wasted as
requests are killed and computations completed so-far are lost; this improves the number

112

7.4. DIET-ethic

of completed requests, paying a small price on fairness;
3. mandatory requests are ordered by submit time, i.e., the First-Come First-Serve (FCFS)

scheduling strategy is used; this allows users who arrived first in the system to get a better
chance at completing their mandatory requests before the deadline, thus decreasing the
number of unhappy users;

4. requests are ordered by the amount of resources allocated to their user so far; this ensures
server-local fairness;

5. for users having the same amount of allocated resources (such is the case when users enter
the system at the same time) a request is chosen randomly; this ensures global fairness, as
each server most likely chooses to execute the request of a different client.

For example, a waiting mandatory request is ordered before a started optional request, a waiting
optional requests is ordered after a started optional request.

When a request gets to the front of the queue it is started. Otherwise, when sorting moves
a request from the front of the queue, it is killed. For example, if a user submits a mandatory
request to a server which is currently executing an optional request, the latter is killed. Requests
can also be cancelled or killed on the clientǶs demand.

Client-side Request Dispatcher

On the client-side, a custom request dispatcher is required. It works in three phases: setup,
monitoring and cleanup.

The setup phase starts with a resource discovery, asking the middleware to return at most
n
(i)
max servers. Next, mandatory requests are dispatched to discovered servers, for example, in

round-robin. Finally, one optional request is submitted to each discovered server.
In the monitoring phase, the client enters an event-loop. It stays in this phase until all

mandatory requests are completed and the deadline has not expired. When an optional request
is completed, the client submits a new optional request to the server which executed the former
request. As a result, as long as the user is in the system, provided n

(i)
max is large enough, each

server has at least one optional request in its queue, ready to be executed.
Finally, in the cleanup phase, the client cancels all requests that have been submitted but

not yet completed. Note that, this phase is entered when all mandatory requests have been
completed, thus, only optional requests need to be cancelled.

Remarks

DIET-ethic is generic and can be applied to any client-server architecture. For example, it can
be applied to a video conversion platform, accessed through REST or RPC-XML, in which users
tag certain videos as mandatory and others as optional. In this paper, we are interested in
improving resource management in HPC data centers, therefore, we chose to implement it on
top of an existing GridRPC middleware.

7.4.2 Implementation on Top of DIET

The above concepts have been implemented in the DIET GridRPC middleware, which has been
described in detail in Section 2.3.3. Besides the addition of a request dispatcher and a queuing
module, two types of changes had to be made: GridRPC API extensions and client-server protocol
extensions.

113

7. Fair Scheduling of Optional Computations in GridRPC Middleware

The GridRPC API has been extended with three functions:
1. The grpc_discover function allows clients to discover servers in the system. The function

accepts two parameters: the name of the service and the maximum number of servers to
return.

2. The grpc_function_handle_set_optional function allows clients to declare a request as
optional.

3. The grpc_wait_any_until function has been implemented, which is an extension to
grpc_wait_any allowing a client to specify a timeout. The function block until either
a GridRPC request completes or the timeout expires, similarly to the POSIXȶ select or
poll system calls [61].

Regarding the client-server communication protocol, it has been extended so that each re-
quest is tagged with the user it belongs to. This is necessary information allowing servers to
ensure fairness among different users. The current implementation assumes that users are honest
and do not attempt to falsify their identity. A future implementation will include authentication,
thus making sure that requests can be securely associated with a user.

Thus, we obtained a production-ready implementation which we shall use to evaluate the
DIET-ethic architecture in the following section. The contribution consist of approximately
1000 SLOC of C++ code.

7.5 Evaluation
This section evaluates the proposed architecture. First, we show the gains that can be made with
DIET-ethic by comparing it to a standard system which has not been designed to support optional
computations. Second, we show that the architecture is scalable. We would like to highlight that
all experiments have been done on a real platform. Finally, we discuss the benefits that can
be observed by an end-user.

7.5.1 Gains of Supporting Optional Computations
Let us consider increasingly complex scenarios and make a comparative analysis between DIET-
ethic and a system without optional computation support. For the latter, we used the DIET
middleware as it was before our contribution: the Service Daemons (SeDs) serve incoming requests
using the FCFS policy, without distinguishing mandatory from optional requests. On the client-
side, we implemented the following behaviour. When a client i enters the system it has to blindly
choose n(i)

submit, a number between n
(i)
min and n

(i)
max, representing the number of requests to submit.

First, it submits n
(i)
min mandatory and n

(i)
submit − n

(i)
min optional requests (in this order). Then,

it waits for the mandatory requests to finish. If the deadline has not expired, it sleeps until
the deadline is reached. Finally, it gathers the results of all completed requests and cancels the
remaining optional requests submitted to the system. To simplify the analysis of the results, all
clients ǳguessǴ the same value nsubmit. Let us call this system the legacy system.

Before detailing the scenarios, let us present the common methodology. The platform consists
of 1 Master Agent (MA) and nR = 10 Service Daemon (SeD). The SeDs only implement a sleep
service, i.e., the service itself consumes no CPU nor network bandwidth. The platform is used
by nU = 10 identical clients with their parameters chosen as follows: to make experiments as
useful as possible, but at the same time reduce the time it takes to complete them, we have
chosen to ǳcompressǴ the time: 8hours are normalized to 100 s. Therefore, we set the execution

114

7.5. Evaluation

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 200 400 600 800 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

#
 c

o
m

p
le

te
d
 r

eq
u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h
ap

p
y
 u

se
rs

 (
▲

)

U
n
fa

ir
n
es

s
(■

)

Figure 7.3: Results: night-time simultaneous submissions scenario

time T (i) = 1 s and the deadlines d(i) = 100 s. These values are large enough compared to the
time scheduling decisions take, yet small enough so that the time of experiments be reasonable.
Next, we set the number of mandatory requests n

(i)
min = 3 and the number of total requests

n
(i)
max = 1000. These parameters have been chosen so that the following conditions be met:
Ĝ there is a solution which makes all users happy;
Ĝ each user can generate enough optional computations to fill all resources.

The above conditions are the ones in which our system is the most interesting to be studied.
Otherwise, if the number of mandatory computations is too high, the platform has no choice
but to schedule them in a FCFS fashion, being forced to make some users unhappy. Also, if the
number of optional requests is too low, its fairness properties cannot be highlighted.

The metrics we are interested in are those presented in Section 7.3.3. All measurements have
been done at least 10 times and, since we found deviations to be small, we only plot the median
to make graphs more readable.

The figures in this section are structured as follows. The x-axis is divided in two. On the
left, the metrics obtained with DIET-ethic, which fairly schedules optional requests, are plotted.
There is a single data point, since DIET-ethic requires no manual tuning and automatically choses
the number of requests to submit. On the right, the metrics are plotted for the legacy system,
which is does not fairly schedule optional requests. There are several data points on the x-axis,
since it requires manually choosing the number of submitted requests nsubmit.

The systems are compared in 5 different, increasingly complex scenarios, which are described
in detail in the next sections.

Night-time Simultaneous Submissions

Let us start with a simple scenario. Users want to do computations during the night, so that their
results would be ready in the morning and could be analyzed during the workday. Effectively,
users enter the computation platform in the evening, just before leaving work and have a tentative
deadline for the next morning, when they arrive at work. In our experiments, we can model them
by setting the same arrival-time t

(i)
0 = 0 and deadline d(i) = 100 for all users.

Figure 7.3 shows that DIET-ethic managed to find a solution with no unhappy users, with
good (almost ideal) fairness, while maximizing the number of completed requests. Regarding
the legacy system, one observes that, if nsubmit is small, the resources are not filled with com-

115

7. Fair Scheduling of Optional Computations in GridRPC Middleware

 0

 200

 400

 600

 800

 1000

 200 400 600 800 1000
 0

 1

 2

 3

 4

 5

 6

#
 c

o
m

p
le

te
d

 r
eq

u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h

ap
p

y
 u

se
rs

 (
▲

)

U
n

fa
ir

n
es

s
(■

)

Figure 7.4: Results: night-time consecutive submissions scenario

putation requests, thus, the number of completed requests is suboptimal. However, if nsubmit is
high enough, on average, the legacy system behaves fairly well. This is due to an experiment
artifact that, since all users enter the system at precisely the same moment of time, their re-
quests favorably interleave, therefore, the FCFS policy is mostly finding the optimal solution: all
mandatory requests are started first, followed by the optional requests.

Night-time Consecutive Submissions

However, in production systems, users never enter the platform at exactly the same time. In
fact, the time the users enter the system might be quite different: some people leave work earlier,
others later. Their deadlines are about the same, since those who leave work earlier, often come
earlier the next day. To model this scenario, we insert a very small inter-arrival gap t

(i)
0 = i ·0.1 s

and keep d(i) = 100 s.
Figure 7.4 shows that, unless all users guess the ideal solution (that of each user submitting

exactly nideal = 100 requests), the legacy system either does not manage to optimize the number
of completed requests (if nsubmit < nideal) or makes users unhappy (if nsubmit > nideal). The latter
happens because the FCFS policy fills resources with optional requests of users who arrived early
in the system. Therefore, the mandatory requests of users who arrive later start later and can
be delayed past the tentative deadline. A similar observation applies to fairness: the FCFS policy
favors users who enter the system early, instead of trying to balance requests equally among
them.

In contrast, since DIET-ethic distinguishes mandatory and optional requests, it makes sure
that mandatory requests have priority over optional ones. Also, instead of favoring users who
arrive early, resources are allocated equally among the optional requests of the users. In the end,
DIET-ethic improves fairness up to 150 times and behaves as if all users chose the ideal number
of requests to submit, but without having to guess it.

Day-time Submissions with Regular Arrivals

Let us pass on to a different scenario: day-time submissions. During the day, the users to not
enter the system during a short time interval, but are separated by significant inter-arrival times.
Let us start with a simple scenario, in which the inter-arrival time between consecutive clients
is constant.

116

7.5. Evaluation

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 200 400 600 800 1000
 0

 1

 2

 3

 4

 5

#
 c

o
m

p
le

te
d

 r
eq

u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h

ap
p

y
 u

se
rs

 (
▲

)

U
n

fa
ir

n
es

s
(■

)

Figure 7.5: Results: day-time scenario with regular arrivals

To model this, we took the night-time consecutive scenario and set t
(i)
0 = i · 10 s. Except

arrival times, all other experimental parameters are kept the same. When contrasting the two
scenarios, the main difference is that, in the previous one all clients have entered the system
before the mandatory requests of the first client are completed. In contrast, in the current
scenario, mandatory requests of a client are already completed by the time the next client
arrives in the system. One could say that the previous scenario resembles an off-line scheduling
problem (i.e., all requests are known in advance, decisions can be taken in advance), whereas
the current scenario resembles an on-line scheduling problem (i.e., the system needs to adapt to
arriving requests).

Figure 7.5 shows the results for this scenario. One can observe that the legacy system behaves
best for nsubmit = 190. No users are unhappy, unfairness is low and the number of completed
requests is the highest, even when compared to DIET-ethic. The latter happens because, when
a new client enters the system, DIET-ethic immediately starts its mandatory requests, killing
optional request if necessary. Therefore, some started computations are interrupted, thus reduc-
ing the number of completed requests. Nevertheless, one observes that DIET-ethicǶs solution has
a lower (near-ideal) unfairness and the number of completed requests stays competitive to the
legacy system (1842 vs. 1890, i.e., ≈ −2.5%).

However, on a real platform guessing the best number of requests n(i)
submit each client i should

submit is difficult, as it depends on a number of factors, such as the number of resources, arrivals
and requirements of other users. Some of this information is unknown at the time a client enters
the system. When looking at the results for nsubmit 6= 190, one observes that the legacy system
is outperformed by DIET-ethic. As in previous scenarios, if fewer requests are submitted, then
the number of completed requests is suboptimal. Deviating in the other direction, if too many
requests are submitted then unfairness increases.

Interestingly, as the number of submitted requests increases, the number of completed re-
quests slightly decreases. This happens because, increasing nsubmit also increases the probability
that clients launched earlier still have executing requests in the system by the time their deadline
is reached. These requests are killed, thus are not completed.

In contrast, DIET-ethic auto-tunes itself and finds a good solution, without requiring the user
to guess a good number of requests to submit.

117

7. Fair Scheduling of Optional Computations in GridRPC Middleware

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 200 400 600 800 1000
 0

 2

 4

 6

 8

 10

 12

 14

 16

#
 c

o
m

p
le

te
d
 r

eq
u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h
ap

p
y
 u

se
rs

 (
▲

)

U
n
fa

ir
n
es

s
(■

)

Figure 7.6: Results: day-time scenario with irregular arrivals

 0

 250

 500

 750

 1000

 200 400 600 800 1000
 0

 1

 2

 3

 4

 5

 6

 7

 8

#
 c

o
m

p
le

te
d

 r
eq

u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h

ap
p

y
 u

se
rs

 (
▲

)

U
n

fa
ir

n
es

s
(■

)

Figure 7.7: Results: irregular arrivals and random execution times

Other Day-time Scenarios

In order to make sure that the proposed system is well-behaved in more realistic cases, let us
present two more scenarios.

In the first scenario, we drop the assumption that the inter-arrival time between consecutive
clients is constant. Instead, the arrivals are assumed to obey the well-known and widely rec-
ognized diurnal cycle [130]. To model this, we took the polynomial P proposed in [18], scaled
its input to the [0, 100] seconds interval and used the output value as follows: at each second
t, the probability of launching a new client is P (t)/40. The division by 40 was made so as to
keep the average number of clients in the system equal to 10, similarly to the previous scenar-
ios. Figure 7.6 presents the experimental results of this scenario. The same observations can be
made as in previous sections. There is a value of nsubmit in which the legacy system behaves
well, however, this value is difficult to compute a priori in a real system. In contrast, DIET-ethic
obtains almost the same values for the targeted metrics without requiring to manually choose
this parameter.

In the second scenario, we give each client a different execution time by choosing T (i) uniform
randomly in [0.125, 8]. Requests generated by the same client are still homogeneous and the
arrivals are considered to obey the diurnal cycle as in the paragraph above. The results of this
scenario, presented in Figure 7.7, show that no matter how nsubmit is chosen, the legacy system

118

7.5. Evaluation

Cluster # nodes Configuration
capricorne 2 2×AMD Opteron 246 @ 2.0GHz
sagittaire 69 2×AMD Opteron 250 @ 2.4GHz

Table 7.1: GridǶ5000 deployment for scalability experiment

Unhappy users 0 ideally 0
Unfairness 0.70 ideally 0
Number of completed requests 13605 out of 13800

Table 7.2: Results of scalability experiment

cannot optimize all targeted metrics. Indeed, due to the large variation in execution times, each
user i should choose a different number of requests to submit n(i)

submit. In practice, when a user i
enters the system, optimizing n

(i)
submit would require complete information about future arriving

users (or at least accurate estimations) which is unlikely to be available. In contrast, DIET-ethic
auto-tunes itself and manages to minimize the number of unhappy users, minimize unfairness
and maximize the number of completed requests.

7.5.2 Scalability
In order to assess the scalability of our solution and measure the overhead, we have designed
the following experiment. We reserved the whole Lyon site on the GridǶ5000 experimental
platform [12] (Table 7.1). The set of nodes has been divided into three: 1 client node, 1 MA node
and 69 SeD nodes.

Experiments has been done as follows: first, 1 MA has been deployed on the MA node. Second,
SeDs have been deployed on each core of the bi-processor SeD nodes, totalling nR = 2 × 69 =
138SeDs. Finally, on the client node, nU = 100 client have been launched simultaneously with
the parameters: n(i)

min = 3, n(i)
max = 10000, d(i) = 100, T (i) = 1. As a reference, traces from the

Grid Workload Archive [64] contains less that 100 users per day.
Besides the metrics presented in Section 7.3.3, we measure the CPU utilization on the client

node, the MA node and one of the SeD nodes. On the client node, we have been careful to filter
out CPU usage due to process creation and destruction. The SeDs implement a simple ǳsleepǴ
service, which does not do any computations. Therefore, the measured CPU usage represents the
overhead our system incurs for managing computational requests.

Table 7.2 reports the metrics of Section 7.3.3. There are zero unhappy users and unfairness
is low. Also, the number of completed requests is 13605, which, compared to the maximum of
13800 requests that could have been completed by 138SeDs in the 100 s deadline, represents
98.6%. Hence, we conclude that the system managed to optimize the targeted metrics, even
under stress conditions.

Let us now take a deeper look at the behaviour of the system and study the CPU usage
overhead during the experiments. Figure 7.8 presents the CPU usage as a function of time on the
client node, the MA node and one of the SeD nodes. First, let us observe that the measured CPU
usage before launching the clients and after the clients finished is below 1%, thus indicating
a low measurement noise. Next, one can clearly distinguish the three phases of the clients
(Section 7.4.1): setup, monitoring and cleanup.

The setup phase takes about 13 s from t = 0 to t = 13. During this phase the CPU usage

119

7. Fair Scheduling of Optional Computations in GridRPC Middleware

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
P

U
 u

sa
g
e

(%
)

Experiment time (s)

Client node
MA node
SeD node

Figure 7.8: System overhead: CPU usage for sleep requests

on the client node is somewhat high, due to all clients simultaneously discovering SeDs, then
submitting requests to all of them. Discovery is handled by the MA, on which one observes a
peak in CPU usage. On the SeD node, the CPU usage is negligible, being less than 3%.

During the monitoring phase, which lasts from t = 13 to t = 100, one observes that the
CPU usage stays relatively low on all nodes. The most stressed is the client node, as the client
applications have to submit 138 requests/s to keep SeDs busy. The MA is idling, since it is not
participating in this phase, while the CPU usage on the SeD node is negligible.

Finally, during the cleanup phase, the CPU usage on the client node tops at 100%, as cancel-
lation requests are sent by all clients, simultaneously to all SeDs. Again, the MA is idling, while
the CPU usage on the SeD node is still fairly low (< 5%).

Note that the scalability experiment is extreme. The clients arrive simultaneously, which is
unlikely in real systems and the execution time is short (1 s). For comparison, the average job
inter-arrival time on the LHC Computing Grid is 5 s, whereas the average run-time is 2.5h [64].

To sum up, the CPU usage on the SeD nodes is negligible when a sleep service is used. This
means that our system involves low overhead and that SeDs can perform useful computations.
The CPU usage on the client node is high during the setup and cleanup phase, nevertheless it
managed to generate enough requests, so as to keep SeDs busy. The MA did not prove to be a
bottleneck in these experiments.

7.5.3 End-User Perspective: Integration with GridTLSE

Now that we evaluated DIET-ethic with a synthetic ǳsleepǴ service, we return to the motivating
application (Section 7.2) and discuss the advantages that a GridTLSE user observes. In close
collaboration with the GridTLSE team at IRIT, Toulouse, France, we have implemented a
working prototype in order to test an initial version of DIET-ethic against GridTLSE. In this
section, we first give an overview of GridTLSE from the end-userǶs perspective, then describe
the changes that we have made.

As presented in Section 7.2, the purpose of GridTLSE is to allow the comparative analysis
of direct solvers. To this end, GridTLSE proposes the user a list of scenarios, which are inscenario
fact abstract workflows. A typical user would select a scenario and input parameter values,
such as providing a list of matrices and solvers, thus instantiating a concrete workflow called
an expertise. The workflow operates with experiments, which are characterized by a matrixexpertise

experiment
(the A term in a linear system Ax = B), the name of a solver, control parameters for the solver

120

7.5. Evaluation

Figure 7.9: GridTLSE scenario for multiple threshold pivoting:
(a) with manually-chosen thresholds, (b) with automatically-chosen thresholds

and measured metrics. Two types of operations may be applied on experiments: OpTrans and
OpExec (see example in Figure 7.9).

OpTrans represent computationally inexpensive tasks, such as modifying control parameters.
They are executed on a single node, usually the one which hosts the GridTLSE website. An
OpTrans receives as input a list of experiments and outputs a potentially different list of exper-
iments. It may change some parameters of the experiments, it may create new experiments or
it may delete experiments.

In contrast, OpExecs represent computationally expensive tasks, which need to run on a Grid.
For example, an OpExec may initiate the transfer of a matrix onto Grid resources, launch a solver
and store some metrics, such as the execution time, the number of FLOPS, the backward error,
etc. Initially, OpExecs were designed to receive a list of input experiments and output the same
list of experiments with some parameters and metrics potentially updated.

Let us now describe the changes that we have made. GridTLSE is composed of an upper
layer, ALTO, responsible for interpreting expertises and issuing computation requests generated
by OpExecs. The resulting requests are executed by the lower layer, BASSO, responsible for com-
municating with a GridRPC middleware and performing computations. Before our contribution,
ALTO expected that each computation request returned one result. This is no longer a valid
assumption if the number of computations to be executed depends on the status of the platform.
Therefore, ALTO has been extended to accept a variable number of results for every request
sent to BASSO. The code dealing with OpExecs has been changed so that new experiments are
generated to store the metrics of the additional results.

Next, a new OpTrans has been implemented. It sets the necessary control parameters to
signal that a certain parameter should be modulated depending on the resources (Figure 7.9).
To keep a clear separation of concerns, ALTO is unaware of the state of the platform, how the
number of requests is chosen or how the requests are dispatched to available resources. This
is in contrast to ǳclassicalǴ OpTrans which are entirely implemented in ALTO itself. Instead,
the semantics of the resource-dependent OpTrans are implemented in the lower layer, BASSO,
which is responsible for dealing with such low-level, resource-related issues.

As to BASSO, the following behavior has been implemented. When it receives a computation
request, it first checks whether the request contains a resource-dependent parameter. If so, the
computation request is cloned, assigning each time a different value to the resource-dependent
parameter. Next, a client-side dispatcher and a server-side queue module is used, as described
in Section 7.4.1. If no resource-dependent parameter is found in the request, BASSO will use
the legacy behavior, i.e., it will use the GridRPC API to invoke the request and return a single

121

7. Fair Scheduling of Optional Computations in GridRPC Middleware

result.
In the end, the user can more easily run experiments because the platform auto-tunes pa-

rameters for her. Previously, when a user wanted to solve a linear system, she had to choose the
number of thresholds to test. This was done using a combination of trial-and-error and guess-
work. The user had to know approximately the number of available resources and the time a
solve takes. If the user overestimated the number of thresholds, she would manually cancel the
computations. Conversely, the user underestimated, she would have to manually relaunch the
computations with a new set of thresholds.

In contrast, thanks to our contribution, a working prototype showed that the user only has
to specify the minimum and the maximum number of thresholds to test, and a deadline. The
system automatically tests as many thresholds as to respect the constraints imposed by the
users.

7.6 Conclusion
This chapter continued the goal of the Thesis, to promote cooperation between applications and
resource management systems for a more efficient resource usage. In contrast to previous chap-
ters, we started by studying existing systems, which work with higher-level resource management
abstractions, such as tasks to execute and services which are able to execute them. We took a
use-case which was previously inefficiently supported, fairly scheduling optional computations.

As a solution, we proposed a generic architecture, called DIET-ethic, that is applicable to any
client-server architecture. It allows clients to tag requests as either mandatory or optional and
submit them for execution to servers in a scalable manner. DIET-ethic is especially well suited to
be implemented in GridRPC middleware, such as GridSolve [115] or Ninf [109]. Evaluation has
been done using an implementation on top of the production-level DIET middleware. Real-life
experiments showed that several metrics can be improved, for example, user unhappiness can
be reduced to 0 and unfairness can be decreased up to 150 times. Additionally, the architecture
was shown to be scalable. Finally, DIET-ethic has been integrated into a real application, the
GridTLSE project, which has been modified to fully support multiple threshold pivoting.

122

Part IV

To Conclude

123

CHAPTER∞
Conclusions and Perspectives

Ę to boldly go where no man has
gone before.

Star Trek: The Next Generation

This chapter concludes the Thesis, reminding the addressed problem, highlighting the contri-
butions and opening up perspectives.

125

∞. Conclusions and Perspectives

∞.1 Conclusions

Scientific research is increasingly relying on numerical simulations. Indeed, it has found applica-
tions in cosmology, molecular biology, electromagnetic compatibility, particle physics and many
other disciplines. This in turn generates more demands for computing power.

Supplying this demand has become increasingly difficult. Since 2005, due to technological
limitations related, amongst others, to energy usage and heat dissipation, increasing the clock
rate of a computing processor seems to have reached a cap. Moreover, previously-used speed-up
methods, such as out-of-order execution, instruction-level parallelism, branch prediction, etc.,
seems to give diminishing returns. Therefore, parallel processing needs to be used to increase
the raw computing power of a system.

As more and more petascale machines are being build and exascale is expected to be achieved
in 2020, computing hardware is becoming increasingly complex. It presents parallelism at sev-
eral levels, each level being composed of heterogeneous computing units and a heterogeneous
interconnect. Therefore, harvesting the hardwareǶs computing power at peak efficiency is very
challenging.

The aim of the Thesis was to make a more efficient usage of High-Performance Computing
(HPC) platforms by improving resource management at the system level. Indeed, whether we are
talking about Super, Cluster, Cloud, Grid or Sky Computing, computing resources are rarely
used by a single user. Therefore, a component of the platform, called the Resource Management
System (RMS) is responsible for multiplexing resources, in space and time, among multiple users.
Doing so properly is of uttermost importance to ensure that the user applications are running
efficiently.

The context of the Thesis was presented in Chapter 2. First, we have described the current
trends of HPC resources and presented their intrinsic properties to highlight the difficulty of
exploiting them properly. Second, we presented a taxonomy of applications by resource require-
ments. Applications can either be static, i.e., their resource allocation does not change during
execution, or dynamic. Static applications can further be divided into rigid, i.e., their resource
requirements are fixed at compilation, or moldable, i.e., their resource requirements are chosen
before they start. Dynamic applications can be malleable, i.e., their resource allocation may
change as initiated by the system, and/or evolving, i.e., they require a change in resource al-
location due to some internal constraints, such as an increase in the size of the simulation.
Evolving applications can further be divided into fully predictable, marginally predictable and
non-predictable, depending on how much time in advance they are able to predict their evolu-
tion. Finally, the chapter presented the state of the art in resource management, showed that
some types of applications are not efficiently dealt with and that workarounds are necessary.

The contributions of the Thesis proposed resource management architectures, which support
all types of applications without needing to recur to workarounds. This is achieved by promot-
ing collaboration between applications and the RMS in order to efficiently negotiate resources.
Each contribution consists both in an architecture, described in an abstract, implementation-
independent manner, and a prototype implementation.

The first contribution, presented in Chapter 3, dealt with improving resource management for
running moldable applications on centralized resources. This is applicable to Super, Cluster and
Cloud computing, which are owned by a single institution and for which centralized control can
be enforced. As a motivating example, we have presented how a multi-cluster computational
electromagnetics application could improve its response time if it were able to use a custom

126

∞.1. Conclusions

resource selection algorithm. We have highlighted that taking advantage of such an algorithm is
difficult in practice. As a solution, we proposed CooRMv1, a centralized resource management
architecture, which delegates resource selection to applications, while at the same time enforcing
its own policy. Evaluation was done using simulations, which showed that the system is feasible,
ensures fairness and scales well. Furthermore, simulation results were validated with real-life
experiments on the GridǶ5000 platform.

The second contribution of the Thesis dealt with moldable applications on distributed re-
sources in Chapter 4. Such resources are owned by multiple parties, therefore, it is impractical
to impose centralized control on them. They are to be found in Grid computing and when using
multiple Cloud providers, also called Sky Computing. We proposed distCooRM, a distributed
version of CooRMv1, which allows moldable applications to efficiently use their resource selec-
tion algorithm to co-allocate resources managed by multiple agents. This allows participating
institutions to keep their independence when managing resources and also improves the fault-
tolerance of the whole system: For example, if a network bisection occurs, users still have access
to the resources which are on their side of the bisection. Simulation results showed that the
system is well-behaved and scales well for a reasonable number of applications. In collaboration
with the Myriads team at IRISA/INRIA, Rennes, France, we are working on pushing scalability
even further.

Next, we return to centralized resources and shift focus to dynamic applications. We start by
studying theoretical aspects of how to efficiently support fully-predictably evolving applications
in Chapter 5, a prerequisite to dealing with non-predictable ones. We formulated a problem
statement and proposed a scheduling algorithm which considerably improves effective resource
utilization, as compared to an algorithm which does not take application evolution into con-
sideration. The proposed algorithm is then used as a basis for the CooRMv2 architecture in
Chapter 6, which is an extension to CooRMv1. It supports all types of applications and, in
particular, it allows non-predictable applications to make an efficient use of resources. An ap-
plication may declare its peak resource requirements using pre-allocations. Resources that are
pre-allocated but not effectively used, may be filled by other applications such as malleable
ones. For the evaluation, an adaptive mesh refinement application was used as a non-predictable
application, which we have modelled based on data that can be found in literature. Simulation
results showed that the approach is feasible and that considerable gains can be made.

The previous contributions proposed low-level interfaces, working with number of nodes and
node identifiers. In our last contribution, presented in Chapter 7, we study how collaboration
could be promoted when negotiation is done with high-level concepts, such as tasks to exe-
cute and services which can execute them. To this end, we took two existing, production-level
software, GridTLSE as an application and DIET as an RMS, and studied a use-case which was
previously badly supported. We thus identified the underlying problem of scheduling optional
computations, for which we proposed a generic master-client architecture called DIET-ethic. For
the evaluation, a prototype implementation of DIET-ethic within DIET was used. Evaluation was
done using real-life experiments on the GridǶ5000 platform and a synthetic workload. Results
showed that many metrics can be improved, such as user happiness, fairness and the number
of completed requests. Furthermore, the architecture has been tested and shown to be scalable.
Collaboration with IRIT, Toulouse, France allowed to make changes in GridTLSE to improve
support for the motivating use-case.

127

∞. Conclusions and Perspectives

∞.2 Perspectives
The contributions of this Thesis can be extended in several directions. We have divided them
into short-term, medium-term and long-term.

∞.2.1 Short-term Perspectives
Short-term perspectives include implementing the proposed concepts in production-ready soft-
ware, supporting dynamic applications on distributed resources and improving the scalability of
distCooRM.

Implementation The proposed architectures should be implemented within a production-
ready RMS. We have already had initial discussions with the Mescal team at IMAG in Greno-
ble, France, who are working on the OAR batch scheduler. We concluded that implementing
CooRMv1 should be fairly straight-forward, only requiring to change the default scheduler. On
the other hand, implementing CooRMv2 is somewhat more challenging: Significant changes
would have to be made to implement the semantics of the NEXT request relationship. More pre-
cisely, OAR would need modifications to make sure that the nodes which are shared between
two consecutive requests (linked with a NEXT relationship) would not be cleaned.

distCooRM would best be implemented in XtreemOS, since the latter also targets Grids. The
two systems share a number of concepts, such as the presence of multiple agents, each managing
a different resource and the usage of reservations to coordinate allocations on different agents.
Works in this direction have already been started in collaboration with the Myriads team at
IRISA/INRIA in Rennes, France.

Dynamic Applications Support for dynamic applications on distributed resources should
be improved. This would allows non-predictably evolving applications, such as adaptive mesh
refinement simulations, to make an efficient use of resources owned by multiple institutions,
such as Grids or multiple Clouds. distCooRM has already provided valuable insight into how
to devise a distributed version of a collaborative RMS, while CooRMv2 proposed concepts to
efficiently deal with dynamic applications. As such, combining the two systems, so as to solve
the issue presented at the beginning of the paragraph, should not be too difficult.

Improved Scalability We have observed that distCooRM does not present good weak-
scaling capabilities: When the application to resource ratio is kept constant, the traffic per
node increases quickly, due to the fact that an application negotiates with all managers of the
platform. For targeting large-scale distributed platforms, an additional negotiation mechanism
would be needed. For example, a pre-selection phase could be established, which would limit
the number of managers an application negotiates with. This pre-selection phase would have to
work with data structures which are constant in the size of the platform. Works in this direction
have already been started in collaboration with the Myriads team.

∞.2.2 Medium-term Perspectives
Medium-term perspectives include improved support for exascale machines, formally verifying
the devised architectures, proposing more differentiated allocations and an economic model for
the them.

128

∞.2. Perspectives

Exascale Support for petascale and exascale machines needs to be improved. A fundamental
assumption of all architectures working with low-level concepts (CooRMv1, distCooRM and
CooRMv2) is that all computing nodes of a cluster or supercomputer are equivalent. This
allowed us to do several simplifications, such as working with node-counts, instead of list of nodes,
in some places. However, petascale and exascale machines feature non-homogeneous networks,
mostly a torus or a fat-tree topology. Effectively, the observed latency and bandwidth between
nodes may be different, which may considerably affect the performance of HPC applications.
Therefore, optimizing resource selection needs to take this into consideration too. It is possible
that applying a simple Hilbert-curve scheduling, as currently done in SLURM, to regroup close
nodes, might prove sufficient for most use-cases. Otherwise, delegating resource selection to
applications might need to be done at a finer granularity.

Formal Verification The fact that distCooRM is well behaved has not been verified exhaus-
tively. It has only been checked on paper on a certain number of cases and has been confirmed
by doing a large amount of experiments. However, it would be desirable to have stronger proofs.
This could be achieved using model checking, which, to state it simply, simulates all unique,
reachable states of a distributed system to verify whether certain properties are held. A limited
version of model checking has been implemented in SimGrid [82], the simulation framework that
we used for distCooRM. However, since it can only verify safety properties, it is insufficient for
our needs. A PhD in the AlGorille team at LORIA/Université de Lorraine in Nancy, France is
in progress aiming to extend SimGrid, so as to enable the verification of liveness properties.

Differentiated Allocations To further improve resource management, new differentiated
allocations can be proposed. CooRMv2 currently proposes two levels of allocations. Non-
preemptible allocations are guaranteed for their whole duration, while preemptible ones provide
no guarantees: The RMS may terminate such an allocation whenever it decides to. Therefore,
when using preemptible allocations, a malleable application would have to save its current state
(i.e., checkpoint) often enough to make sure that it minimizes the amount of computations it
loses. Even so, it does lose the computations it has done since the last checkpoint, since pre-
emptible resources have to be release immediately upon the RMSǶs request. To reduce the amount
of computations lost, it would be interesting to extend CooRMv2 and add a mechanism which
would allow negotiating a grace period: The RMS can only terminate an allocation after having
announced it some time ahead. An evolving application which needs more nodes could request
the resources that are currently allocated to the malleable application, but would only receive
them after the grace period expires. This is in contrast to the mechanism we proposed in Chap-
ter 6, announced updates, in which the evolving application chooses an announce interval by
itself, without taking into account the constraints of other applications in the system.

Economic Models Related to the above differentiated allocations, a new economical model
needs to be devised. Indeed, each platform proposes some kind of economic model, which give
users incentives to more efficiently use resources. In private infrastructures, such as Supercom-
puters or Grids, users are allocated a certain quota, from which their resource usage is deduced.
In public infrastructures, such as Cloud, users (assumed to have a limited budged) pay for the
resources they allocate. While economic models have already been used in many contexts, how
to charge users for different types of allocations in the context of computing resource manage-
ment needs to be studied. To our knowledge, Amazon is the only Cloud provider which proposes
a pricing mechanism for non-guaranteed resources, called spot instance. As example of pricing

129

∞. Conclusions and Perspectives

for CooRMv2 and the grace period mechanism described above, preemptible allocations could
be charged less than non-preemptible ones. Likewise, the higher the grace period, the more the
user pays. On the contrary, a bonus is awarded for announcing resource demand increases in
advance.

∞.2.3 Long-term Perspectives
As long-term perspectives, we should return to the original problem of exploiting the full com-
puting power of increasingly complex hardware. As has been said, this can only be done by
orchestrating all layers of the platform, ranging from the application to the hardware itself. In
this Thesis, we have focused on the RMS, however, it is unlikely that the proposed concepts can
easily be used by programmers, provided they are not given higher level abstractions.

Increasing the abstraction level is usually the task of the runtime system and the program-
ming model. Indeed, several high-level programming models have been developed, which attempt
to simplify parallel programming. For example, Charm++ [67] is an object-oriented program-
ming model, which allows the programmer to over-decompose an application into concurrent
object called chares, that communicate using message-passing. The programmer is unaware ofchares
the way her code is going to be mapped onto resources. Instead, it is the task of the runtime to
dynamically load-balance computations on target resources.

Taking this concept one step further, we could imagine Charm++ cooperating with the RMS
and handling resource allocations on behalf of the end-user. Instead of asking the user to choose
a node-count at submittal, a Charm++ application could dynamically adapt its allocations to
the load the application is currently experiencing and the state of the platform, thus obtaining
a malleable and evolving application without additional programming effort. For example, if
there are many resources available and many chares are active, the runtime could ask the RMS
to allocate more resources. On the contrary, if few chares are active, the runtime could release
some resources, so as to allow other users to speed-up their computation. Last, if many users
are queued on the platform, waiting for resources to become available, the runtime could shrink
the allocation of the application to allow fair sharing of the platform.

A similar approach could be used for OpenMP applications. When the runtime encounters a
parallel-for which operates on a large array, it could request additional resources from the RMS.
Conversely, if a sequential region is encountered, resources could be release back to the system
to allow other users of the platform to do useful computations.

Taking this research direction would raise several related issues, such as choosing an algo-
rithm, a granularity and extending the programming model. First, an algorithm would have to
be devised that, based on the load of the application and the status of the platform, decides
what request to send to the RMS.

Second, a level of granularity would have to be chosen. Join-fork application, as promoted
by OpenMP) usually feature very short transitions between a parallel and a sequential section.
Acquiring resources before the parallel section and releasing them at the end would not only
slow down the application, waiting for RMS to allocate resources, but would also overwhelm
the RMS. Therefore, a negotiation granularity should be chosen, which determines how often to
negotiate with the RMS. It may either be a system parameter or a value negotiated with the RMS.
As an example for the later approach, if the load of the RMS is low, a small (e.g., millisecond)
granularity might be chosen. Conversely, if the load of the RMS is high, a large (e.g., minutes)
granularity might be imposed.

Finally, as with any solution that tries to minimize the burden on the programmer, one size
does not fit all. Primitives would need to be provided to the programmer to override the default

130

∞.2. Perspectives

behavior of the runtime related to negotiating with the RMS. Also, new ǳhintsǴ might be added
to the programming model, to allow the programmer to highlight certain opportunities of opti-
mizing resource management. For example, she might tag a sequential section as ǳlongǴ, which
would indicate the runtime that it should definitely release resources before entering it. Simi-
larly, the programmer might hint at the fact that parallelism is going to increase substantially
and that the runtime should acquire resources some time before entering the parallel section.
More interestingly, properly supporting some of these hints might not only need to evolve the
runtime, but also the negotiating protocol with the RMS, thus having an impact on all layers of
the platform.

131

Appendices

133

APPENDIX A
Supplementary Material

A.1 CooRMv2 RMS Implementation
This section gives details about the implementation of the RMS, which has been briefly presented
in Section 6.5. First, the manipulated data structures are described in detail, next the pseudo-
code of the implementation is given.

A.1.1 Requests
Requests (defined in Section 6.3.1) stored inside the RMS have two types of attributes: those sent
by the application and those set by the RMS. The attributes which are sent by the application
are:

Ĝ cid Ĝ the ID of the cluster;
Ĝ n Ĝ the number of nodes;
Ĝ duration Ĝ the duration of the allocation;
Ĝ type Ĝ the type of the request: pre-allocation (PA), non-preemptible (¬P) or preemptible

(P);
Ĝ relatedHow Ĝ the type of constraint: FREE, NEXT or COALLOC;
Ĝ relatedTo Ĝ the request to which the start-time is constrained.

While computing a schedule, the RMS sets the following additional request attributes:
Ĝ nalloc Ĝ the number of nodes that will be effectively allocated (see details below);
Ĝ scheduledAt Ĝ the time at which the allocation of this request should start;
Ĝ fixed Ĝ the request is fixed, see Section A.1.4;
Ĝ earliestScheduleAt Ĝ earliest time when the request can be scheduled, see Section A.1.4.

To store information about requests after they started, the RMS sets the following attributes:
Ĝ startedAt Ĝ time when the request has started; if the request has not started yet, e.g., it

has just been sent by the application, this attribute is set to NaN; started(r) returns true
if the request has been started.

Ĝ nodeIDs Ĝ the node IDs that have been allocated to this request.
Let us explain the purpose of the nalloc attribute. Assume there are two applications in the

system: a malleable application A and an evolving application B. Let us assume the following
scenario. A scans its preemptive view, finds out that additional resources are available for it and
updates its preemptible request. At the same time, B needs more nodes, so it spontaneously

135

A. Supplementary Material

Figure A.1: Example of request trees

updates its non-preemptible request. The changes induced by the two applications trigger the
scheduling algorithm of the RMS. Due to the race between A and B, if insufficient resources
are available for both applications, then the RMS cannot allocate the requested node-count to
A. Therefore, in order to correctly compute new views and request start-times, nAlloc stores
the number of nodes which A can be allocated according to the current resource state. When a
preemptible request is started, nAlloc is used to decide how many node IDs to allocate. nalloc
might be smaller than n, which, since preemptible requests are not guaranteed, is allowed by
the CooRMv2 specifications.

A.1.2 Request Constraints
In CooRMv2 each application is allowed to send multiple requests, thus the RMS needs to
store for each application a request set. However, the RMS needs to treat requests of each
type differently. Therefore, for each application i, the RMS stores three separate request sets:
the set of pre-allocation requests R

(i)
PA, the set of non-preemptible requests R

(i)
¬P and the set of

preemptible requests R(i)
P .

Inside a request set, the requests and their constraints form multiple trees. Indeed, requests
which are unconstrained or whose constraints are outside the request set are the roots of distinct
trees, while COALLOC or NEXT constraints determine parent-child relations (see Figure A.1). Some
of the algorithms that we shall present require navigating the request sets as a tree. Therefore,
we define the following functions:

Ĝ roots : R 7→ Rroots, returns the set of root requests in R

i.e., roots(R) = {r ∈ R, such that r.relatedHow = FREE ∨ r.relatedTo /∈ R}

Ĝ children : r,R 7→ Rchildren, returns the set of child requests of r which belong to R

i.e., children(r,R) = {rc ∈ R, such that rc.relatedTo = r}

A.1.3 Views
Views (as defined in Section 6.3.1) map a cluster ID cid to a CAP, which is a step function: the
x-axis represents the absolute time, while the y-axis represents the number of available nodes.

136

A.1. CooRMv2 RMS Implementation

The CAPs are stores as a list of duration, node-count pairs, similarly to Evolution Profiles (EPs)
(see Section 5.2). For example,

V = {a : [(3600, 4), (3600, 3)], b : [(∞, 6)]}

represents that on cluster a, 4 nodes are available for time t ∈ [0, 3600), 3 nodes are available
for time t ∈ [3600, 7200) seconds and 0 nodes are available for time t ∈ [7200,∞). On cluster b,
6 nodes are always available.

Let us define a few operations on views:
Ĝ we note V [cid] the step-function which corresponds to cid in the view V ;

e.g., for the view above, V [a] = [(3600, 4), (3600, 3)];

Ĝ CAP : t 7→ n, returns the number of nodes n available at time t;
e.g., V [a](1800) = 4, V [a](3600) = 3, V [a](7200) = 0;

Ĝ ∪ : V1, V2 7→ VR, returns the union view V of the views V1 and V2;
i.e., V1 ∪ V2 = V ⇔ V [cid](t) = max(V1[cid](t), V2[cid](t)), ∀cid, t

Ĝ + : V1, V2 7→ VR, returns the sum view V of the views V1 and V2;
i.e., V1 + V2 = V ⇔ V [cid](t) = V1[cid](t) + V2[cid](t), ∀cid, t

Ĝ − : V1, V2 7→ VR, returns the difference view V of the views V1 and V2;
i.e., V1 − V2 = V ⇔ V [cid](t) = V1[cid](t)− V2[cid](t), ∀cid, t

Ĝ alloc : V, r 7→ n, returns the node-count that should be allocated to r, without changing
its start-time, limited by the resources available in V . This function is used to compute
nalloc.
i.e., alloc(V, r) = n⇔ n = min(mint∈[r.scheduledAt,r.scheduledAt+r.duration) V [r.cid](t), r.n)

Ĝ findHole : V, r, t0 7→ ts, returns the first time after max(t0, r.earliestScheduleAt) when
r could be started, so that all requested resources can be allocated;
i.e., find ts ≥ max(t0, r.earliestScheduleAt), such that
mint∈[ts,ts+r.duration) V [r.cid](t) ≥ r.n

All above operations can be easily implemented by iterating through the list of duration, node-
count pairs of the relevant CAPs. Due to their simplicity, the pseudo-code of the above operations
is not given.

A.1.4 Helper Functions
In order to ease the description of the main scheduling algorithm, three helper functions are
defined. Their purpose is to transform a set of requests into a view (called the generated view),
representing how resources are being occupied by the input requests. Once a set of requests has
been transformed into generated views, the above defined operations on views can be used to
compute the resources that are left unused after a set of requests is served. The helper functions
are: toView, fit and eqSchedule.

toView()

toView() (see Algorithm A.1) generates a view representing resources occupied by fixed re- fixed
requestsquests, defined as requests which are either started or are constrained to a fixed request.

These requests are treated specially, because the RMS cannot choose a start-time for them

137

A. Supplementary Material

Algorithm A.1: Implementation of the toView() function
Input: R, set of requests

Vi, view of available resources (optional)
Output: Vo, view generated by requests

The scheduledAt, nalloc and fixed attributes of requests are updated
/* Initialization: start with an empty output view, clear fixed flag of

requests and create an empty queue */
1 Vo ← ∅ ;
2 forall the r ∈ R do r.fixed← false ;
3 Q← ∅ /* Queue of requests which are to be processed */

/* First, add started requests to queue */
4 forall the r ∈ R, such that started(r) do
5 enqueue(Q, r) ;

/* Next, process requests in the queue */
6 while Q 6= ∅ do
7 r = dequeue(Q) ;
8 switch r.relatedHow do
9 case FREE

10 r.scheduledAt← r.startedAt ;
11 case NEXT
12 r.scheduledAt← r.relatedTo.scheduledAt+ r.relatedTo.duration ;
13 case COALLOC
14 r.scheduledAt← r.relatedTo.scheduledAt ;
15 otherwise
16 continue /* Constraint not implemented */

17 if Vi = ∅ then
18 r.nalloc = r.n ;
19 else
20 r.nalloc = alloc(Vi, r) ;
21 r.fixed← True ;
22 Vo ← Vo + {r.cid : [(r.scheduledAt, 0), (r.duration, r.nalloc)]} ;

/* Enqueue children of this request */
23 forall the rc ∈ children(r) do
24 enqueue(Q, r) ;

138

A.1. CooRMv2 RMS Implementation

anymore. Indeed, in order not to violate the CooRMv2 protocol and allocate resources to ap-
plications according to their requests, the start-times are fixed. As a side effect, toView() sets
the scheduledAt, fixed and nalloc attributes of the input requests as needed.

For generating the view of preemptible requests, toView() accepts an optional parameter
Vi representing the available resources. If this parameter is given, the generated view uses at
most as many resources as available in Vi. The attribute nalloc of preemptible requests is set
according to this limit.

fit()

fit() (see Algorithm A.2) generates a view representing resources that are occupied by non-
fixed requests. The RMS has the liberty to choose the start-time for these requests, subject to
the application-provided constraints. Note that its purpose is similar to the fit() function in
Chapter 5, which is why we have chosen to keep the same name.

The main idea of the algorithm is as follows. Each request has an earliestScheduleAt at-
tribute, which specifies which is the time that the request can be scheduled the earliest. Initially,
this attribute is set to t0, which is input to the algorithm (line 3). Then, the algorithm uses a
queue of requests it has to process, which is initially filled with all root requests (line 5). Each
request is then dequeue (line 7) and, depending on the requestǶs constraint, the scheduledAt
attribute is computed (lines 14Ĝ33). If this attribute is changed, all child requests are queued,
so as to recompute their scheduledAt attribute (lines 34Ĝ35).

In certain cases, the current schedule of the parent request makes it impossible for a child
request to be scheduled so as to respect its constraint (lines 22, 31). If this happens, the
earliestScheduleAt attribute of the parent is updated and the parent is added anew to the
queue. This attribute is then used by findHole to find a later schedule-time for the parent, which
might allow the child to find a valid schedule (lines 15, 21, 30). For preemptible requests, instead
of delaying their parent, these requests are shrunken and nalloc is set accordingly (lines 19, 28).
This behavior is allowed by the CooRMv2 specifications.

Eventually, the algorithm converges and the scheduledAt attribute of all requests is stable
(in worst case, all requests are scheduled at infinity). The scheduledAt and nalloc attributes of
the requests are used to computed the generated view (lines 36Ĝ38).

eqSchedule()

The purpose of this function is to do the equi-partitioning of resources available for preemptible
requests. It gets as input the preemptible request set of each application, the view represent-
ing the available resources for equi-partitioning and the time after which non-started requests
have to be scheduled. It outputs for each application a preemptible view. As a side effect, the
scheduledAt and nalloc attributes of requests are updated.

The pseudo-code is shown in Algorithm A.3. It consists of three main parts. First, preliminary
occupation views are computed (lines 1Ĝ3). These are used to determine time intervals, during
which the requested node-count of all applications are constant. Second, for each piece-wise
constant resource state (i.e., application resource request and available resources), the number
of nodes that can be assigned to each application is determined (lines 4Ĝ27). Third, the computed
views are used to reschedule the application requests and correctly set the scheduledAt and
nalloc attributes of requests (lines 28Ĝ30).

The second part of the algorithm, which operates on a piece-wise constant resource state,
works as follows. The system is either in a congested state, i.e., more resources are requested

139

A. Supplementary Material

Algorithm A.2: Implementation of the fit function
Input: R, set of requests (scheduledAt and fixed must have been set)

Vi, view of available resources
t0, requests have to be scheduled after this time

Output: Vo, view generated by requests
The scheduledAt and nalloc attributes of non-fixed requests are updated

1 Q← ∅ /* Queue of requests which are to be processed */
2 forall the r ∈ R, such that ¬r.fixed do
3 r.earliestScheduleAt← t0 ; /* No request can be scheduled earlier than t0 */
4 r.scheduledAt←∞ ; /* In case of error, the request never starts */
5 forall the r ∈ roots(R) do enqueue(Q, r) ;
6 while Q 6= ∅ do
7 r ← dequeue(Q) ;
8 if r.fixed then /* If this is a fixed request, just add children to queue */
9 forall the rc ∈ children(r) do enqueue(Q, rc) ;

10 continue ;
/* Take a decision for the current request, depending on its constraint */

11 rp ← r.relatedTo ; /* Store parent request to make pseudo-code briefer */
12 r.nalloc ← r.n ; /* Set a default value for nalloc (will be overwritten later) */
13 tbefore ← r.scheduledAt ; /* Store the previous value, used to detect changes */
14 switch r.relatedHow do
15 case FREE r.scheduledAt = findHole(Vi, r, 0) ;
16 case COALLOC
17 if r.type = P ∧ rp.type ∈ {PA,¬P} then
18 r.scheduledAt← rp.scheduledAt ;
19 r.nalloc = alloc(Vi, r) ;
20 else
21 r.scheduledAt = findHole(Vi, r, rp.scheduledAt) ;
22 if r.scheduledAt 6= rp.scheduledAt then
23 rp.earliestScheduleAt← r.scheduledAt ;
24 enqueue(Q, rp) ;

25 case NEXT
26 if r.type = P then
27 r.scheduledAt← rp.scheduledAt+ rp.duration ;
28 r.nalloc = alloc(Vi, r) ;
29 else
30 r.scheduledAt = findHole(Vi, r, rp.scheduledAt+ rp.duration) ;
31 if r.scheduledAt 6= rp.scheduledAt+ rp.duration then
32 rp.earliestScheduleAt← r.scheduledAt− rp.duration ;
33 enqueue(Q, rp) ;

/* If scheduledAt has changed, reschedule children */
34 if tbefore 6= r.scheduledAt then
35 forall the rc ∈ children(r) do enqueue(Q, rc)

/* Schedule converged, compute generated view */
36 Vo = ∅ ;
37 forall the r ∈ R, such that ¬r.fixed do
38 Vo ← Vo + {r.cid : [(r.scheduledAt, 0), (r.duration, r.nalloc)]} ;

140

A.1. CooRMv2 RMS Implementation

Algorithm A.3: Implementation of the eqSchedule function
Input: R(i)

P , for each application i (i = 1 . . . napp), the set of preemptible requests
Vin, view of available resources for equi-partitioning
t0, non-started requests have to be scheduled after this time

Output: V (i)
P , preemptive view of application i

The scheduledAt and nalloc attributes of the requests are updated
1 for i← 1 to napp do
2 V

(i)
occ ← toView(R(i)

P , Vin) ;
3 V

(i)
occ ← V

(i)
occ − fit(R(i)

P , Vin − V
(i)
occ, t0) ;

4 forall the cid ∈ clusters do
5 forall the t, d ∈ time interval start-times and durations do

/* Store requested and available node-counts during this interval */
6 for i← 1 to napp do r(i) ← V

(i)
occ(t) ;

7 vin ← Vin(t) ;
/* Is the system congested during this time interval? */

8 if
∑napp

i=1 r(i) > vin then
/* Initialize views for this interval */

9 for i← 1 to napp do v(i) ← 0 ;
/* Distribute resources equally until none are left free */

10 while vin 6= ∅ ∧ ∃i, such that r(i) ≥ 0 do
11 npartitions ← #{r(i) > 0} ; /* Compute number of equi-partitions */
12 if ∃i, such that r(i) = 0 then npartitions ← npartitions + 1 ;
13 veq ← max(vin ÷ npartitions, 1) ; /* Compute size of equi-partitions */
14 forall the i, such that r(i) ≥ 0 do
15 vin ← vin −min(r(i), veq) ;
16 r(i) ← r(i) − veq ;
17 v(i) ← v(i) + veq ;
18 if vin = 0 then break ;

19 else
/* Give each application the amount of resources left free by other

applications */
20 forall the i← 1 to napp do
21 v(i) ← vin −

∑

i 6=j r
(j) ;

/* But not less than the equi-partition */
22 npartitions ← #{r(j) > 0} ;
23 if r(i) = 0 then npartitions ← npartitions + 1 ;
24 veq ← vin ÷ npartitions ;
25 v(i) ← max(vin, veq) ;

/* Append values computed for this time interval to application views */
26 for i← 1 to napp do
27 append step

(

d, v(i)
)

to V
(i)
P [cid] ;

28 for i← 1 to napp do
29 V

(i)
occ ← toView(R(i)

P , V
(i)
P) ;

30 V
(i)
occ ← V

(i)
occ − fit(R(i)

P , V
(i)
P − V

(i)
occ, t0) ;

141

A. Supplementary Material

than available for equi-partitioning, or the system is uncongested. The former situation might
occur, due to the following reasons:

Ĝ since the last scheduling iteration, the number of resources for equi-partitioning has been
reduced,

Ĝ a new application has chosen to participate in equi-partitioning,
Ĝ an application has decided to increase the requested node-count and use more of its par-

tition.
If any of these situations occur, it is the duty of the RMS to inform malleable applications (by
sending them new views), that they have to release some resources. The available resources are
distributed equally, until the requests of applications are satisfied (lines 8Ĝ18).

In case the system is not congested (during a certain time interval), each application is as-
signed a view based on the number of resources that other applications leave unused (lines 19Ĝ25).
However, this should not be smaller that the equi-partition of the application.

The number of equi-partitions is computed as follows (lines 22Ĝ23). Applications are either
considered active, i.e., they currently request preemptible resources, or inactive. When comput-
ing the view of active applications, the number of partitions is equal to the number of active
applications in the system. For inactive applications, the number of partitions is equal to the
number of active applications in the system plus 1, i.e., the number of partitions if this applica-
tion were to become active.

A.1.5 Main Scheduling Algorithm
Finally, let us describe the main scheduling algorithm. As stated in Section 6.5, this algorithm is
triggered whenever a request or done message is received from an application. The purpose of
this algorithm is to compute views for applications and start-times for requests, given as input
the current requests of the applications, the number of nodes on each cluster and the current
time.

The proposed pseudo-code is presented in Algorithm A.4. Two scratch variables are used,
V¬P and VP , which store two views, representing non-preemptible / preemptible resources that
are still available for scheduling. The algorithm works as follows:

1. The scratch variables are initialized to represent all resources (line 1Ĝ2);
2. Resources that are already allocated and cannot be preempted, i.e., resources assigned to

started preallocations and non-preemptible requests, are subtracted (line 3Ĝ5);
3. Preallocations and non-preemptible requests that are not started are scheduled (line 6Ĝ11).

Non-preemptive views are computes as part of this step;
4. Preemptive views are computed and preemptible requests are scheduled using the previ-

ously described eqSchedule function (line 12);
5. If any of the computed start-times is the current time, the corresponding requests are

started (line 13Ĝ14).
For simplicity, the presented scheduling algorithm only allocates non-preemptible requests

inside preallocations. The newly computes views are sent immediately to the application.
Let us focus on the nodeIDs attribute of requests. This attribute is initialized to an empty set

when the request is first submitted to the RMS. Next, if the main scheduling algorithm decided
that a request should start, two situations may occur:

1. either enough nodes are free, the nodeIDs attribute is immediately assigned nalloc node
IDs and the application is sent a startNotify message;

142

A.1. CooRMv2 RMS Implementation

Algorithm A.4: CooRMv2 main scheduling algorithm
Input: n(cid), number of nodes on cluster cid

R
(i)
PA, R

(i)
¬P , R

(i)
P , set of PA, ¬P and P requests of application i (i = 1 . . . napp)

now, the current time
Output: V (i)

¬P , non-preemptive view presented to application i

V
(i)
P , preemptive view presented to application i

updates the scheduledAt, startedAt and nalloc attributes of requests
/* Initialize temporary views with all resources */

1 V¬P ← {cid : [∞, n(cid)], ∀cid} ; /* non-preemptible resources */
2 VP ← {cid : [∞, n(cid)], ∀cid} ; /* preemptible resources */

/* Subtract resources allocated to started requests */
3 for i← 1 to napp do
4 V¬P ← V¬P − toView(R(i)

PA) ; /* Subtract pre-allocated resources */
5 VP ← VP − toView(R(i)

¬P) ; /* Subtract non-preemptibly allocated resources
*/

/* Compute non-preemptive views and start-times of non-preemptible requests
*/

6 for i← 1 to napp do
7 V

(i)
¬P ← toView(R(i)

PA) + V¬P

/* Compute what this application occupies */
8 V occ

PA = fit(R(i)
PAV

(i)
¬Pnow) ;

9 V occ
¬P = fit(R(i)

¬PtoView(R
(i)
PA + V occ

PA − toView(R(i)
¬P , now) ;

/* Update views for next application */
10 V¬P = V¬P − V occ

PA ;
11 VP ← VP − V occ

¬P ;

/* Compute preemptive views and start-times of preemptible requests */
12 V

(1...napp)
P = eqSchedule(R(1...napp)

P , VP , now) ;
/* Start requests, whose start-time is now */

13 forall the ¬started(r) and r.scheduledAt ≤ now do
14 r.startedAt← now ;

143

A. Supplementary Material

2. or insufficient nodes are currently free, the RMS waits for an application to release resources.
When the application sends the done message (as part of an update), the scheduling
algorithm is re-run and the nodeIDs attribute is reconsidered.

A.1.6 Limitations
The implementation presented in this section has the following limitations:

Ĝ Non-preemptible allocations can only be done inside preallocations.
Ĝ The scheduling algorithm does not handle overlapping requests, i.e., requests of the same

type, on the same cluster that temporarily overlap.
Ĝ Invalid request updates are not handle gracefully. For example, if an application updates

a started pre-allocation, so as to request more resources than are available, the RMS is
unable to allocate resources to it. The above implementation does not handle these cases
well.

Ĝ Applications which ǳstealǴ resources, i.e., do not release preemptively allocated resources
when they are asked to, are not killed.

The above implementation provides a solid foundation and it can easily be extended to address
these issues.

144

APPENDIX B
Acronyms

ACT Average Completion Time
AEM Application Execution Manager (a module of XtreemOS)
AMR Adaptive Mesh Refinement
API Application Programming Interface
ALS Application-Level Scheduler
BoT Bag of Tasks
CBF Conservative Back-Filling
CDR Common Data Representation
CEM Computational ElectroMagnetics
CM Cloud Manager
CPU Central Processing Unit
DEISA Distributed European Infrastructure for Supercomputing Applications
DIET Distributed Interactive Engineering Toolbox
DHT Distributed Hash Table
DRM Distributed Resource Manager
EASY aggressive back-filling (Extensible Argonne Scheduling sYstem)
EGI European Grid Infrastructure
EP Evolution Profile
FCFS First-Come First-Serve
FEM Finite-Element Method
FLOPS Floating-Point Operations per Second
GPU Graphics Processing Unit
HaaS Hardware as a Service
HPC High-Performance Computing
IaaS Infrastructure as a Service

145

B. Acronyms

ID identifier
IIOP Internet Inter-ORB Protocol (part of the CORBA specification)
JSDL Job Submission Description Language
JSON JavaScript Object Notation
LA Local Agent
LAN Local-Area Network
LHC Large Hadron Collider
LRMS Local Resource Management System
MA Master Agent
MMORPG Massive Multi-player Online Role-Playing Game
MPI Message-Passing Interface
NEA Non-predictably Evolving Application
OCCI Open Cloud Computing Interface
PaaS Platform as a Service
POSIX Portable Operating System Interface
PRACE Partnership for Advanced Computing in Europe
PSA Parameter-Sweep Application
QoS Quality of Service
OpenMP Open MultiProcessing
OS Operating System
RAM Random-Access Memory
REST Representational state transfer
RMS Resource Management System
RPC Remote Procedure Call
SaaS Software as a Service
SAGA Simple API for Grid Applications
SeD Service Daemon
SLOC Source Lines of Code
SMP Symmetric MultiProcessing
TCP Transmission Control Protocol
UUID Universally Unique IDentifier
VM Virtual Machine
VO Virtual Organization
WAN Wide-Area Network
XML eXtensible Markup Language
XSEDE Extreme Science and Engineering Discovery Environment
YAML Yet Another Markup Language

146

APPENDIX C
Bibliography

[1] Rashid J. Al-Ali, Kaizar Amin, Gregor von Laszewski, Omer F. Rana, David W. Walker,
Mihael Hategan, and Nestor J. Zaluzec. Analysis and Provision of QoS for Distributed
Grid Applications. Journal of Grid Computing, 2(2):163Ĝ182, 2004. doi:10.1007/s10723-
004-6743-8.

[2] A. Amar, Raphael Bolze, Aurelien Bouteiller, Andréea Chis, Yves Caniou, Eddy Caron,
Pushpinder-Kaur Chouhan, Gaďl Le Mahec, Holly Dail, Benjamin Depardon, Frédéric
Desprez, Jean-Sébastien Gay, and Alan Su. Diet: New Developments and Recent Results.
In Euro-Par 2006 Workshops: Parallel Processing, CoreGRID 2006, UNICORE Summit
2006, Petascale Computational Biology and Bioinformatics, Dresden, Germany, August
29-September 1, 2006, Revised Selected Papers, volume 4375 of Lecture Notes in Computer
Science, pages 150Ĝ170. Springer, 2007. doi:10.1007/978-3-540-72337-0_15.

[3] Patrick R. Amestoy, Iain S. Duff, Luc Giraud, Jean-Yves LǶExcellent, and Chiara Puglisi.
Grid-TLSE: A Web Site for Experimenting with Sparse Direct Solvers on a Computa-
tional Grid. In Proceedings of the SIAM conference on Parallel Processing for Scientific
Computing, San Francisco, USA, 25Ĝ27 February 2004, 2004.

[4] David P. Anderson. BOINC: A System for Public-Resource Computing and Storage. In
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID
Ƕ04, pages 4Ĝ10. IEEE Computer Society, 2004. doi:10.1109/GRID.2004.14.

[5] Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang, Balazs
Konya, Maarten Litmaath, Paul Millar, and JP Navarro. GLUE Specification v. 2.0.
Recommendation GFD-R-P.147, Open Grid Forum (OGF), 2009.

[6] Ali Anjomshoaa, Fred Brisard, et al. Job Submission Description Language (JSDL) Spec-
ification, Version 1.0. Full Recommendation GDF-R.136, Open Grid Forum (OGF), 2008.

[7] N. Bard, R. Bolze, E. Caron, F. Desprez, M. Heymann, A. Friedrich, L. Moulinier, N. H.
Nguyen, O. Poch, and T. Toursel. Décrypthon grid - grid resources dedicated to neuro-
muscular disorders. Studies in Health Technology and Informatics, 159:124Ĝ133, 2010.

147

http://dx.doi.org/10.1007/s10723-004-6743-8
http://dx.doi.org/10.1007/s10723-004-6743-8
http://dx.doi.org/10.1007/978-3-540-72337-0_15
http://dx.doi.org/10.1109/GRID.2004.14

C. Bibliography

[8] Olivier Beaumont, Lionel Eyraud-Dubois, and Young J. Won. Using the last-mile model as
a distributed scheme for available bandwidth prediction. In Proceedings of the 17th inter-
national conference on Parallel processing - Volume Part I, Euro-ParǶ11, pages 103Ĝ116.
Springer-Verlag, 2011.

[9] Francine Berman, Richard Wolski, Henri Casanova, Walfredo Cirne, Holly Dail, Marcio
Faerman, Silvia Figueira, Jim Hayes, Graziano Obertelli, Jennifer Schopf, Gary Shao,
Shava Smallen, Neil Spring, Alan Su, and Dmitrii Zagorodnov. Adaptive Computing
on the Grid using AppLeS. IEEE Transactions on Parallel and Distributed Systems,
14(4):369Ĝ382, 2003. doi:10.1109/TPDS.2003.1195409.

[10] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su, and Karan
Vahi. Characterization of scientific workflows. In Third Workshop on Workflows in Support
of Large-Scale Science, pages 1Ĝ10, 2008. doi:10.1109/works.2008.4723958.

[11] Blue Waters Project Team. The Cray Blue Waters system. Blue Waters Project Newsletter,
3(1), January 2012.

[12] Raphaďl Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric Desprez, Emmanuel
Jeannot, Yvon Jégou, Stephane Lanteri, Julien Leduc, Noredine Melab, Guillaume Mor-
net, Raymond Namyst, Pascale Primet, Benjamin Quetier, Olivier Richard, El-Ghazali
Talbi, and Iréa Touche. GridǶ5000: A Large Scale And Highly Reconfigurable Experimen-
tal Grid Testbed. International Journal of High Performance Computing Applications,
20(4):481Ĝ494, November 2006. doi:10.1177/1094342006070078.

[13] Aurelien Bouteiller, Thomas Hérault, Géraud Krawezik, Pierre Lemarinier, and Franck
Cappello. MPICH-V Project: A Multiprotocol Automatic Fault-Tolerant MPI. In-
ternational Journal of High Performance Computing Applications, 20(3):319Ĝ333, 2006.
doi:10.1177/1094342006067469.

[14] Hinde-Lilia Bouziane, Christian Pérez, and Thierry Priol. A Software Component Model
with Spatial and Temporal Compositions for Grid Infrastructures. In Euro-Par 2008 -
Parallel Processing, 14th International Euro-Par Conference, Las Palmas de Gran Ca-
naria, Spain, August 26-29, 2008, Proceedings, volume 5168 of Lecture Notes in Computer
Science, pages 698Ĝ708. Springer, 2008. doi:10.1007/978-3-540-85451-7_75.

[15] Greg L. Bryan, Tom Abel, and Michael L. Norman. Achieving extreme resolution in
numerical cosmology using adaptive mesh refinement: resolving primordial star formation.
In Proceedings of the 2001 ACM/IEEE conference on Supercomputing, Supercomputing
Ƕ01. ACM, 2001. doi:10.1145/582034.582047.

[16] Jeremy Buisson, Omer Ozan Sonmez, Hashim H. Mohamed, Wouter Lammers, and Dick
H. J. Epema. Scheduling malleable applications in multicluster systems. In Proceedings
of the 2007 IEEE International Conference on Cluster Computing, pages 372Ĝ381. IEEE,
2007. doi:10.1109/CLUSTR.2007.4629252.

[17] Carsten Burstedde, Omar Ghattas, Michael Gurnis, Tobin Isaac, Georg Stadler, Tim War-
burton, and Lucas Wilcox. Extreme-Scale AMR. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC Ƕ10, pages 1Ĝ12, Washington, DC, USA, 2010. IEEE Computer Society.
doi:10.1109/SC.2010.25.

148

http://dx.doi.org/10.1109/TPDS.2003.1195409
http://dx.doi.org/10.1109/works.2008.4723958
http://dx.doi.org/10.1177/1094342006070078
http://dx.doi.org/10.1177/1094342006067469
http://dx.doi.org/10.1007/978-3-540-85451-7_75
http://dx.doi.org/10.1145/582034.582047
http://dx.doi.org/10.1109/CLUSTR.2007.4629252
http://dx.doi.org/10.1109/SC.2010.25

[18] Maria Calzarossa and Giuseppe Serazzi. A Characterization of the Variation in Time of
Workload Arrival Patterns. IEEE Transactions on Computers, C-34(2):156Ĝ162, 1985.

[19] Yves Caniou, Ghislain Charrier, and Frederic Desprez. Analysis of Tasks Reallocation in a
Dedicated Grid Environment. In Proceedings of the 2010 IEEE International Conference
on Cluster Computing, CLUSTER Ƕ10, pages 284Ĝ291. IEEE Computer Society, 2010.
doi:10.1109/CLUSTER.2010.39.

[20] Yves Caniou, Ghislain Charrier, and Frédéric Desprez. Evaluation of Reallocation Heuris-
tics for Moldable Tasks in Computational Grids. In 9th Australasian Symposium on Par-
allel and Distributed Computing (AusPDC 2011), Perth, Australia, 17-20 January, 2011.
ACM, 2011.

[21] Yves Caniou and Jean-Sébastien Gay. Simbatch: An API for Simulating and Predicting
the Performance of Parallel Resources Managed by Batch Systems. In Euro-Par 2008
Workshops - Parallel Processing, VHPC 2008, UNICORE 2008, HPPC 2008, SGS 2008,
PROPER 2008, ROIA 2008, and DPA 2008, Las Palmas de Gran Canaria, Spain, August
25-26, 2008, Revised Selected Papers, volume 5415 of Lecture Notes in Computer Science,
pages 223Ĝ234. Springer, 2009. doi:10.1007/978-3-642-00955-6_27.

[22] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille Martin,
Grégory Mounié, Pierre Neyron, and Olivier Richard. A batch scheduler with high level
components. In Proceedings of the Fifth IEEE International Symposium on Cluster Com-
puting and the Grid, volume 2 of CCGRID Ƕ05, pages 776Ĝ783. IEEE Computer Society,
2005. doi:10.1109/CCGRID.2005.1558641.

[23] Franck Cappello, Al Geist, Bill Gropp, Sankay Kale, Bill Kramer, and Marc Snir. Toward
Exascale Resilience. Technical Report TR-JLPC-09-01, INRIA-Illinois Joint Laboratory
on PetaScale Computing, July 2009.

[24] Eddy Caron. Contribution to the management of large scale platforms: the Diet experience.
Habilitation thesis, Ecole Normale Supérieure de Lyon, October 2010.

[25] Eddy Caron, Andréea Chis, Frédéric Desprez, and Alan Su. Design of plug-in schedulers
for a GridRPC environment. Future Generation Computer Systems, 24(1):46Ĝ57, 2008.
doi:10.1016/j.future.2007.02.005.

[26] Eddy Caron, Benjamin Depardon, and Frédéric Desprez. Multiple Services Throughput
Optimization in a Hierarchical Middleware. In 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2011, Newport Beach, CA, USA, May
23-26, 2011, pages 94Ĝ103. IEEE, 2011. doi:10.1109/CCGrid.2011.20.

[27] Eddy Caron, Frederic Desprez, David Loureiro, and Adrian Muresan. Cloud Computing
Resource Management through a Grid Middleware: A Case Study with DIET and Euca-
lyptus. In Proceedings of the 2009 IEEE International Conference on Cloud Computing,
CLOUD Ƕ09, pages 151Ĝ154. IEEE Computer Society, 2009. doi:10.1109/CLOUD.2009.
70.

[28] Eddy Caron, Frédéric Desprez, and Adrian Muresan. Pattern Matching Based Fore-
cast of Non-periodic Repetitive Behavior for Cloud Clients. Journal of Grid Computing,
9(1):49Ĝ64, 2011. doi:10.1007/s10723-010-9178-4.

149

http://dx.doi.org/10.1109/CLUSTER.2010.39
http://dx.doi.org/10.1007/978-3-642-00955-6_27
http://dx.doi.org/10.1109/CCGRID.2005.1558641
http://dx.doi.org/10.1016/j.future.2007.02.005
http://dx.doi.org/10.1109/CCGrid.2011.20
http://dx.doi.org/10.1109/CLOUD.2009.70
http://dx.doi.org/10.1109/CLOUD.2009.70
http://dx.doi.org/10.1007/s10723-010-9178-4

C. Bibliography

[29] Eddy Caron and Frédéric Desprez. DIET: A Scalable Toolbox to Build Network Enabled
Servers on the Grid. International Journal of High Performance Computing Applications,
20(3):335Ĝ352, 2006. doi:10.1177/1094342006067472.

[30] Eddy Caron, Cristian Klein, and Christian Pérez. Efficient Grid Resource Selection for a
CEMApplication. In 9ĕme Rencontres francophones du Parallélisme, RenparǶ19, Toulouse,
France, September 9-11, 2009, 2009.

[31] Adrian Casajus, Ricardo Graciani, Stuart Paterson, Andrei Tsaregorodtsev, and the LHCb
DIRAC Team. DIRAC pilot framework and the DIRAC Workload Management System.
Journal of Physics: Conference Series, 219(6), 2010. doi:10.1088/1742-6596/219/6/
062049.

[32] Henri Casanova. Benefits and Drawbacks of Redundant Batch Requests. Journal of Grid
Computing, 5(2):235Ĝ250, 2007. doi:10.1007/s10723-007-9068-6.

[33] Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: A Generic Framework
for Large-Scale Distributed Experiments. In Proceedings of the Tenth International Confer-
ence on Computer Modeling and Simulation, UKSIM Ƕ08, pages 126Ĝ131. IEEE Computer
Society, 2008. doi:10.1109/UKSIM.2008.28.

[34] Márcia C. Cera, Yiannis Georgiou, Olivier Richard, Nicolas Maillard, and Philippe O. A.
Navaux. Supporting malleability in parallel architectures with dynamic CPUSETs map-
ping and dynamic MPI. In Proceedings of the 11th International Conference on Dis-
tributed Computing and Networking, ICDCNǶ10, pages 242Ĝ257. Springer-Verlag, 2010.
doi:10.1007/978-3-642-11322-2_26.

[35] Sumir Chandra, Manish Parashar, and Salim Hariri. GridARM: An Autonomic Runtime
Management Framework for SAMR Applications In Grid Environments. In New Frontiers
in High-Performance Computing, Proceedings of the Autonomic Applications Workshop
10th International Conference on High Performance Computing, HiPC 2003, Hyderabad,
India. December 2003, pages 286Ĝ295. Elite Publishing, 2003.

[36] Pushpinder-Kaur Chouhan, Eddy Caron, and Frédéric Desprez. Automatic middleware
deployment planning on heterogeneous platforms. In 22nd IEEE International Symposium
on Parallel and Distributed Processing, IPDPS 2008, Miami, Florida USA, April 14-18,
2008. IEEE, 2008. doi:10.1109/IPDPS.2008.4536171.

[37] Walfredo Cirne and Francine Berman. Using Moldability to Improve the Performance of
Supercomputer Jobs. Journal of Parallel and Distributed Computing, 62(10):1571Ĝ1601,
2002. doi:10.1006/jpdc.2002.1869.

[38] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: a decentralized
network coordinate system. In Proceedings of the 2004 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, SIGCOMM Ƕ04, pages
15Ĝ26. ACM, 2004. doi:10.1145/1015467.1015471.

[39] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In 6th Symposium on Operating System Design and Implementation (OSDI
2004), San Francisco, California, USA, December 6-8, 2004, pages 137Ĝ150. USENIX
Association, 2004.

150

http://dx.doi.org/10.1177/1094342006067472
http://dx.doi.org/10.1088/1742-6596/219/6/062049
http://dx.doi.org/10.1088/1742-6596/219/6/062049
http://dx.doi.org/10.1007/s10723-007-9068-6
http://dx.doi.org/10.1109/UKSIM.2008.28
http://dx.doi.org/10.1007/978-3-642-11322-2_26
http://dx.doi.org/10.1109/IPDPS.2008.4536171
http://dx.doi.org/10.1006/jpdc.2002.1869
http://dx.doi.org/10.1145/1015467.1015471

[40] Simon Delamare, Gilles Fedak, Derrick Kondo, and Oleg Lodygensky. SpeQuloS: a QoS
service for BoT applications using best effort distributed computing infrastructures. In
Proceedings of the 21st international symposium on High-Performance Parallel and Dis-
tributed Computing, HPDC Ƕ12, pages 173Ĝ186. ACM, 2012. doi:10.1145/2287076.
2287106.

[41] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude
Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, Franck
Cappello, Barbara Chapman, Xuebin Chi, Alok Choudhary, Sudip Dosanjh, Thom Dun-
ning, Sandro Fiore, Al Geist, Bill Gropp, Robert Harrison, Mark Hereld, Michael Her-
oux, Adolfy Hoisie, Koh Hotta, Zhong Jin, Yutaka Ishikawa, Fred Johnson, Sanjay Kale,
Richard Kenway, David Keyes, Bill Kramer, Jesȹs Labarta, Alain Lichnewsky, Thomas
Lippert, Bob Lucas, Barney Maccabe, Satoshi Matsuoka, Paul Messina, Peter Michielse,
Bernd Mohr, Matthias S. Mueller, Wolfgang E. Nagel, Hiroshi Nakashima, Michael E
Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner, Marc Snir,
Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto, William Tang,
John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero, Aad van der Steen, Jeffrey
Vetter, Peg Williams, Robert Wisniewski, and Kathy Yelick. The International Exas-
cale Software Project roadmap. International Journal of High Performance Computing
Applications (IJHPCA), 25(1):3Ĝ60, 2011. doi:10.1177/1094342010391989.

[42] Allen B. Downey. A Model For Speedup of Parallel Programs. Technical Report
UCB/CSD-97-933, University of California, 1997.

[43] Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and Carlos A. Varela. Dy-
namic Malleability in Iterative MPI Applications. In Proceedings of the Seventh IEEE In-
ternational Symposium on Cluster Computing and the Grid, CCGRID Ƕ07, pages 591Ĝ598.
IEEE Computer Society, 2007. doi:10.1109/CCGRID.2007.45.

[44] Erik Elmroth and Johan Tordsson. A grid resource broker supporting advance reservations
and benchmark-based resource selection. In Proceedings of the 7th international conference
on Applied Parallel Computing: state of the Art in Scientific Computing, PARAǶ04, pages
1061Ĝ1070. Springer-Verlag, 2006. doi:10.1007/11558958_128.

[45] Dror G. Feitelson and Larry Rudolph. Gang Scheduling Performance Benefits for Fine-
Grain Synchronization. Journal of Parallel and Distributed Computing, 16:306Ĝ318, 1992.
doi:10.1016/0743-7315(92)90014-E.

[46] Dror G. Feitelson and Larry Rudolph. Toward Convergence in Job Schedulers for Parallel
Supercomputers. In Job Scheduling Strategies for Parallel Processing, pages 1Ĝ26. Springer-
Verlag, 1996.

[47] Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Parallel Job Scheduling -
A Status Report. In Job Scheduling Strategies for Parallel Processing, 10th International
Workshop, JSSPP 2004, New York, NY, USA, June 13, 2004, Revised Selected Papers,
volume 3277 of Lecture Notes in Computer Science, pages 1Ĝ16. Springer, 2005. doi:
10.1007/11407522_1.

[48] Laurence Field and Rizos Sakellariou. How dynamic is the Grid? Towards a quality metric
for Grid information systems. In Proceedings of the 2010 11th IEEE/ACM International

151

http://dx.doi.org/10.1145/2287076.2287106
http://dx.doi.org/10.1145/2287076.2287106
http://dx.doi.org/10.1177/1094342010391989
http://dx.doi.org/10.1109/CCGRID.2007.45
http://dx.doi.org/10.1007/11558958_128
http://dx.doi.org/10.1016/0743-7315(92)90014-E
http://dx.doi.org/10.1007/11407522_1
http://dx.doi.org/10.1007/11407522_1

C. Bibliography

Conference on Grid Computing, Brussels, Belgium, October 25-29, 2010, pages 113Ĝ120.
IEEE, 2010. doi:10.1109/GRID.2010.5697957.

[49] Ian Foster. What is the Grid? - a three point checklist. GRIDtoday, 1(6), July 2002.

[50] Ian T. Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In
Euro-Par 2001: Parallel Processing, 7th International Euro-Par Conference Manchester,
UK August 28-31, 2001, Proceedings, volume 2150 of Lecture Notes in Computer Science,
pages 1Ĝ4. Springer, 2001. doi:10.1007/3-540-44681-8_1.

[51] W. Gentzsch. Sun Grid Engine: towards creating a compute power grid. In Proceedings of
the first IEEE/ACM International Symposium on Cluster Computing and the Grid, pages
35Ĝ36, 2001.

[52] Wolfgang Gentzsch, Denis Girou, Alison Kennedy, Hermann Lederer, Johannes Reetz,
Morris Riedel, Andreas Schott, Andrea Vanni, Mariano Vazquez, and Jules Wolfrat.
DEISAěDistributed European Infrastructure for Supercomputing Applications. J. of
Grid Computing, 9(2):259Ĝ277, June 2011. doi:10.1007/s10723-011-9183-2.

[53] Tristan Glatard and Sorina Camarasu-Pop. A model of pilot-job resource provisioning on
production grids. Parallel Computing, 37(10-11):684Ĝ692, 2011. doi:10.1016/j.parco.
2011.04.001.

[54] Tom Goodale et al. A Simple API for Grid Applications (SAGA). Full Recommendation
GFD-R-P.90, Open Grid Forum (OGF), 2008.

[55] Object Management Group. Common Object Request Broker Architecture (CORBA)
Specification, Version 3.2, Part 2: CORBA Interoperability. Specification formal/2011-11-
02, Object Management Group, 2011. Available from: http://www.omg.org/spec/CORBA/
3.2/Interoperability/PDF [cited June 1, 2012].

[56] Janko Heilgeist, Thomas Soddemann, and Harald Richter. Design and Implementation of
a Distributed Metascheduler. In Proceedings of the 2009 Third International Conference
on Advanced Engineering Computing and Applications in Sciences, ADVCOMP Ƕ09, pages
63Ĝ72. IEEE Computer Society, 2009. doi:10.1109/ADVCOMP.2009.17.

[57] J. Helton, J. Johnson, C. Sallaberry, and C. Storlie. Survey of sampling-based methods
for uncertainty and sensitivity analysis. Reliability Engineering & System Safety, 91(10-
11):1175Ĝ1209, October 2006. doi:10.1016/j.ress.2005.11.017.

[58] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall.
Entropy: a consolidation manager for clusters. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments, VEE Ƕ09,
pages 41Ĝ50, New York, NY, USA, 2009. ACM. doi:10.1145/1508293.1508300.

[59] Jan Hungershofer. On the Combined Scheduling of Malleable and Rigid Jobs. In SBAC-
PAD Ƕ04: Proceedings of the 16th Symposium on Computer Architecture and High Perfor-
mance Computing, pages 206Ĝ213, Washington, DC, USA, 2004. IEEE Computer Society.
doi:10.1109/sbac-pad.2004.27.

152

http://dx.doi.org/10.1109/GRID.2010.5697957
http://dx.doi.org/10.1007/3-540-44681-8_1
http://dx.doi.org/10.1007/s10723-011-9183-2
http://dx.doi.org/10.1016/j.parco.2011.04.001
http://dx.doi.org/10.1016/j.parco.2011.04.001
http://www.omg.org/spec/CORBA/3.2/Interoperability/PDF
http://www.omg.org/spec/CORBA/3.2/Interoperability/PDF
http://dx.doi.org/10.1109/ADVCOMP.2009.17
http://dx.doi.org/10.1016/j.ress.2005.11.017
http://dx.doi.org/10.1145/1508293.1508300
http://dx.doi.org/10.1109/sbac-pad.2004.27

[60] Felix Hupfeld, Toni Cortes, Bjƺrn Kolbeck, Jan Stender, Erich Focht, Matthias Hess, Jesus
Malo, Jonathan Marti, and Eugenio Cesario. The XtreemFS architecture ě a case for
object-based file systems in Grids. Concurrency and Computing : Practice and Experience,
20(17):2049Ĝ2060, 2008. doi:10.1002/cpe.v20:17.

[61] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology ě Portable Oper-
ating System Interface (POSIX) System Interfaces, Issue 6. IEEE, 2001. Revision of
IEEE Std 1003.1-1996 and IEEE Std 1003.2-1992, Open Group Technical Standard Base
Specifications, Issue 6.

[62] Interconnects: Is Exascale End-of-the-line for Commodity Networks? Panel at the 2011
IEEE International Conference on Cluster Computing, Austin, Texas, USA, September
27, 2011.

[63] Alexandru Iosup, Mathieu Jan, Omer Ozan Sonmez, and Dick H. J. Epema. The Char-
acteristics and Performance of Groups of Jobs in Grids. In Euro-Par 2007, Parallel Pro-
cessing, 13th International Euro-Par Conference, Rennes, France, August 28-31, 2007,
Proceedings, volume 4641 of Lecture Notes in Computer Science, pages 382Ĝ393. Springer,
2007. doi:10.1007/978-3-540-74466-5_42.

[64] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Dumitrescu, Lex Wolters,
and Dick H. J. Epema. The Grid Workloads Archive. Future Generation Computer
Systems, 24(7):672Ĝ686, 2008. doi:10.1016/j.future.2008.02.003.

[65] Alexandru Iosup, Omer Ozan Sonmez, Shanny Anoep, and Dick H. J. Epema. The per-
formance of bags-of-tasks in large-scale distributed systems. In Proceedings of the 17th
International Symposium on High-Performance Distributed Computing (HPDC-17 2008),
23-27 June 2008, Boston, MA, USA, pages 97Ĝ108. ACM, 2008. doi:10.1145/1383422.
1383435.

[66] Morris A. Jette, Andy B. Yoo, and Mark Grondona. SLURM: Simple Linux Utility for
Resource Management. In Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003, Lecture Notes in Computer Science, pages 44Ĝ60. Springer-Verlag, 2002.
doi:10.1007/10968987_3.

[67] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented System
Based on C++. In A. Paepcke, editor, Proceedings of OOPSLAǶ93, pages 91Ĝ108. ACM
Press, September 1993.

[68] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. Skovira. Workload Management
with LoadLeveler. IBM Press, 2001.

[69] Katarzyna Keahey, Maurőcio O. Tsugawa, Andréa M. Matsunaga, and José A. B. Fortes.
Sky Computing. IEEE Internet Computing, 13(5):43Ĝ51, 2009. doi:10.1109/MIC.2009.
94.

[70] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Gittings.
Predictive performance and scalability modeling of a large-scale application. In Proceedings
of the 2001 ACM/IEEE conference on Supercomputing, Supercomputing Ƕ01, pages 37Ĝ37,
New York, NY, USA, 2001. ACM. doi:10.1145/582034.582071.

153

http://dx.doi.org/10.1002/cpe.v20:17
http://dx.doi.org/10.1007/978-3-540-74466-5_42
http://dx.doi.org/10.1016/j.future.2008.02.003
http://dx.doi.org/10.1145/1383422.1383435
http://dx.doi.org/10.1145/1383422.1383435
http://dx.doi.org/10.1007/10968987_3
http://dx.doi.org/10.1109/MIC.2009.94
http://dx.doi.org/10.1109/MIC.2009.94
http://dx.doi.org/10.1145/582034.582071

C. Bibliography

[71] Bithika Khargharia, Salim Hariri, Manish Parashar, Lewis Ntaimo, and Byoung uk Kim.
vGrid: A Framework For Building Autonomic Applications. In Proceedings of the 1st
International Workshop on Challenges of Large Applications in Distributed Environments,
CLADE Ƕ03, pages 19Ĝ26, Washington, DC, USA, 2003. IEEE Computer Society. doi:
10.1109/CLADE.2003.1209995.

[72] Soon-Heum Ko, Nayong Kim, Joohyun Kim, Abhinav Thota, and Shantenu Jha. Effi-
cient Runtime Environment for Coupled Multi-physics Simulations: Dynamic Resource
Allocation and Load-Balancing. In Proceedings of the 2010 10th IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing, CCGRID Ƕ10, pages 349Ĝ358,
Washington, DC, USA, 2010. IEEE Computer Society. doi:10.1109/CCGRID.2010.107.

[73] Krzysztof Kurowski, Jarek Nabrzyski, Ariel Oleksiak, and Jan WĠglarz. A multicriteria
approach to two-level hierarchy scheduling in grids. Journal of Scheduling, 11(5):371Ĝ379,
October 2008. doi:10.1007/s10951-008-0058-8.

[74] Sébastien Lacour, Christian Pérez, and Thierry Priol. A Network Topology Description
Model for Grid Application Deployment. In 5th International Workshop on Grid Com-
puting (GRID 2004), 8 November 2004, Pittsburgh, PA, USA, Proceedings, pages 61Ĝ68.
IEEE Computer Society, 2004. doi:10.1109/GRID.2004.2.

[75] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network coordinates in the wild. In
Proceedings of the 4th USENIX conference on Networked systems design and implemen-
tation, NSDI Ƕ07, pages 22Ĝ22. USENIX Association, 2007.

[76] David A. Lifka. The ANL/IBM SP Scheduling System. In Proceedings of the Job Scheduling
Strategies for Parallel Processing (JSSPP) Workshop 1995, volume 949 of Lecture Notes
in Computer Science, pages 295Ĝ303. Springer, 1995. doi:10.1007/3-540-60153-8_35.

[77] Justin Luitjens and Martin Berzins. Improving the performance of Uintah: A large-scale
adaptive meshing computational framework. In 24th IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA, 19-23 April 2010
- Conference Proceedings, pages 1Ĝ10. IEEE, 2010. doi:10.1109/IPDPS.2010.5470437.

[78] Piotr Luszczek, Jack Dongarra, and Jeremy Kepner. Design and Implementation of the
HPCC Benchmark Suite. CT Watch Quarterly, 2(4A), November 2006.

[79] Daniel F. Martin, Phillip Colella, Marian Anghel, and Francis J. Alexander. Adaptive
Mesh Refinement for Multiscale Nonequilibrium Physics. Computing in Science and Eng.,
7:24Ĝ31, 2005. doi:10.1109/mcse.2005.45.

[80] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. Technical re-
port, National Institute of Standards and Technology, Information Technology Laboratory,
July 2009. Available from: http://www.csrc.nist.gov/groups/SNS/cloud-computing/
[cited May 18, 2012].

[81] Guillaume Mercier and Emmanuel Jeannot. Improving MPI Applications Performance on
Multicore Clusters with Rank Reordering. In Recent Advances in the Message Passing
Interface - 18th European MPI UsersǶ Group Meeting, EuroMPI 2011, Santorini, Greece,
September 18-21, 2011. Proceedings, volume 6960 of Lecture Notes in Computer Science,
pages 39Ĝ49. Springer, 2011. doi:10.1007/978-3-642-24449-0_7.

154

http://dx.doi.org/10.1109/CLADE.2003.1209995
http://dx.doi.org/10.1109/CLADE.2003.1209995
http://dx.doi.org/10.1109/CCGRID.2010.107
http://dx.doi.org/10.1007/s10951-008-0058-8
http://dx.doi.org/10.1109/GRID.2004.2
http://dx.doi.org/10.1007/3-540-60153-8_35
http://dx.doi.org/10.1109/IPDPS.2010.5470437
http://dx.doi.org/10.1109/mcse.2005.45
http://www.csrc.nist.gov/groups/SNS/cloud-computing/
http://dx.doi.org/10.1007/978-3-642-24449-0_7

[82] Stephan Merz, Martin Quinson, and Cristian Rosa. SimGrid MC: Verification Support for
a Multi-API Simulation Platform. In Roberto Bruni and Juergen Dingel, editors, 31st IFIP
International Conference on Formal Techniques for Networked and Distributed Systems,
volume 6722 of Lecture Notes in Computer Science, pages 274Ĝ288, Reykjavik, Islande,
June 2011. Springer. doi:10.1007/978-3-642-21461-5_18.

[83] Hashim Mohamed and Dick Epema. Experiences with the KOALA Co-Allocating Sched-
uler in Multiclusters. In Proceedings of the Fifth IEEE International Symposium on Cluster
Computing and the Grid (CCGridǶ05), volume 2 of CCGRID Ƕ05, pages 784Ĝ791. IEEE
Computer Society Press, 2005. doi:10.1002/cpe.1268.

[84] Christine Morin. XtreemOS: a Grid Operating System Making your Computer Ready
for Participating in Virtual Organizations. In IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing (ISORC), 2007. doi:
10.1109/ISORC.2007.62.

[85] J. T. MoȐcicki. Distributed analysis environment for HEP and interdisciplinary ap-
plications. Nuclear Instruments & Methods in Physics Research, 502:426Ĝ429, 2003.
doi:10.1016/S0168-9002(03)00459-5.

[86] Ahuva W. MuǶalem and Dror G. Feitelson. Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Transactions
on Parallel and Distributed Systems, 12(6):529Ĝ543, 2001. doi:10.1109/71.932708.

[87] H. Nakada, S. Matsuoka, K. Seymour, J. Dongorra, C. Lee, and H. Casanova. A GridRPC
Model and API for End-User Applications. Full Recommendation GFD-R.052, Open Grid
Forum (OGF), 2007.

[88] Anand Natrajan, Marty Humphrey, and Andrew S. Grimshaw. Capacity and Capability
Computing Using Legion. In International Conference on Computational Science, volume
2073 of Lecture Notes in Computer Science, pages 273Ĝ283. Springer, 2001. doi:10.1007/
3-540-45545-0_36.

[89] Javier Navaridas, Jose Antonio Pascual, and José Miguel-Alonso. Effects of Job and Task
Placement on Parallel Scientific Applications Performance. In Proceedings of the 17th Eu-
romicro International Conference on Parallel, Distributed and Network-Based Processing,
PDP 2009, Weimar, Germany, 18-20 Febuary 2009, pages 55Ĝ61. IEEE Computer Society,
2009. doi:10.1109/PDP.2009.53.

[90] Hien Nguyen Van, Frederic Dang Tran, and Jean-Marc Menaud. Autonomic virtual re-
source management for service hosting platforms. In Proceedings of the 2009 ICSE Work-
shop on Software Engineering Challenges of Cloud Computing, CLOUD Ƕ09, pages 1Ĝ8.
IEEE Computer Society, 2009. doi:10.1109/CLOUD.2009.5071526.

[91] Ramon Nou, Jacobo Giralt, Julita Corbalán, Enric Tejedor, Josep Oriol FitƦ, Josep M.
Pérez, and Toni Cortes. XtreemOS Application Execution Management: A scalable ap-
proach. In Proceedings of the 2010 11th IEEE/ACM International Conference on Grid
Computing, pages 49Ĝ56. IEEE, 2010. doi:10.1109/GRID.2010.5697954.

[92] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia
Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-source Cloud-computing System.
In Proceedings of Cloud Computing and Its Applications, 2008.

155

http://dx.doi.org/10.1007/978-3-642-21461-5_18
http://dx.doi.org/10.1002/cpe.1268
http://dx.doi.org/10.1109/ISORC.2007.62
http://dx.doi.org/10.1109/ISORC.2007.62
http://dx.doi.org/10.1016/S0168-9002(03)00459-5
http://dx.doi.org/10.1109/71.932708
http://dx.doi.org/10.1007/3-540-45545-0_36
http://dx.doi.org/10.1007/3-540-45545-0_36
http://dx.doi.org/10.1109/PDP.2009.53
http://dx.doi.org/10.1109/CLOUD.2009.5071526
http://dx.doi.org/10.1109/GRID.2010.5697954

C. Bibliography

[93] Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, and This Metsch. Open Cloud Com-
puting Interface - Core. Proposed Recommendation GFD-P-R.183, Open Grid Forum
(OGF), 2011.

[94] Anne-Cécile Orgerie, Laurent Lefĕvre, and Jean-Patrick Gelas. How an experimental Grid
is used: The GridǶ5000 case and its impact on energy usage. In Poster at the 8th IEEE
International Symposium on Cluster Computing and the Grid (CCGridǶ2008), 2008. Avail-
able from: http://www.ens-lyon.fr/LIP/RESO/energy_grid/ [cited June 28, 2012].

[95] Alfred Park and Richard Fujimoto. A scalable framework for parallel discrete event simula-
tions on desktop grids. In Proceedings of the 8th IEEE/ACM International Conference on
Grid Computing, GRID Ƕ07, pages 185Ĝ192, Washington, DC, USA, 2007. IEEE Computer
Society. doi:10.1109/GRID.2007.4354132.

[96] Ken Pepple. Deploying OpenStack. OǶReilly Media, 2011.

[97] Tomasz Plewa, Timur Linde, and V. Gregory Weirs. Adaptive Mesh Refinement Ĝ Theory
and Applications, volume 41 of Lecture notes in computational science and engineering.
Springer, 2005.

[98] André Ribes and Christian Caremoli. Salome platform component model for numerical
simulation. In 31st Annual International Computer Software and Applications Conference
(COMPSAC 2007), 24-27 July 2007, Beijing, China, pages 553Ĝ564. IEEE Computer
Society, 2007. doi:10.1109/COMPSAC.2007.185.

[99] Uwe Schwiegelshohn and Ramin Yahyapour. Analysis of first-come-first-serve parallel
job scheduling. In Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms, SODA Ƕ98, pages 629Ĝ638. Society for Industrial and Applied Mathematics,
1998.

[100] Thorsten SchɃtt, Florian Schintke, and Alexander Reinefeld. A Structured Overlay for
Multi-dimensional Range Queries. In Euro-Par 2007 Parallel Processing, volume 4641 of
Lecture Notes in Computer Science, chapter 54, pages 503Ĝ513. Springer Berlin Heidelberg,
2007. doi:10.1007/978-3-540-74466-5_54.

[101] Warren Smith, Ian T. Foster, and Valerie E. Taylor. Scheduling with Advanced Reser-
vations. In Proceedings of the 14th International Parallel and Distributed Processing
Symposium (IPDPS Ƕ00), pages 127Ĝ132. IEEE Computer Society, 2000.

[102] Omer Ozan Sonmez, Bart Grundeken, Hashim H. Mohamed, Alexandru Iosup, and Dick
H. J. Epema. Scheduling Strategies for Cycle Scavenging in Multicluster Grid Systems. In
9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGrid
2009, Shanghai, China, 18-21 May 2009, pages 12Ĝ19. IEEE Computer Society, 2009.
doi:10.1109/CCGRID.2009.46.

[103] Borja Sotomayor, Kate Keahey, and Ian Foster. Combining batch execution and leasing
using virtual machines. In Proceedings of the 17th international symposium on High
performance distributed computing, HPDC Ƕ08, pages 87Ĝ96, New York, NY, USA, 2008.
ACM. doi:10.1145/1383422.1383434.

156

http://www.ens-lyon.fr/LIP/RESO/energy_grid/
http://dx.doi.org/10.1109/GRID.2007.4354132
http://dx.doi.org/10.1109/COMPSAC.2007.185
http://dx.doi.org/10.1007/978-3-540-74466-5_54
http://dx.doi.org/10.1109/CCGRID.2009.46
http://dx.doi.org/10.1145/1383422.1383434

[104] Borja Sotomayor, Ruben S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual Infras-
tructure Management in Private and Hybrid Clouds. IEEE Internet Computing, 13:14Ĝ22,
2009. doi:10.1109/MIC.2009.119.

[105] Srividya Srinivasan, Vijay Subramani, Rajkumar Kettimuthu, Praveen Holenarsipur, and
P. Sadayappan. Effective Selection of Partition Sizes for Moldable Scheduling of Parallel
Jobs. In Proceedings of the 9th International Conference on High Performance Computing,
HiPC Ƕ02, pages 174Ĝ183. Springer-Verlag, 2002. doi:10.1007/3-540-36265-7_17.

[106] Sudha Srinivasan, Savitha Krishnamoorthy, and P. Sadayappan. Robust scheduling of
moldable parallel jobs. International Journal of High Performance Computing and Net-
working, 2(2-4):120Ĝ132, 2004. doi:10.1504/IJHPCN.2004.008913.

[107] Vijay Subramani, Rajkumar Kettimuthu, Srividya Srinivasan, and P. Sadayappan. Dis-
tributed Job Scheduling on Computational Grids Using Multiple Simultaneous Requests.
In Proceedings of the 11th IEEE International Symposium on High Performance Dis-
tributed Computing, HPDC Ƕ02, pages 359Ĝ366. IEEE Computer Society, 2002. doi:
10.1109/HPDC.2002.1029936.

[108] Rajesh Sudarsan and Calvin J. Ribbens. ReSHAPE: A Framework for Dynamic Resizing
and Scheduling of Homogeneous Applications in a Parallel Environment. In Proceedings
of the 2007 International Conference on Parallel Processing, ICPP Ƕ07. IEEE Computer
Society, 2007. doi:10.1109/ICPP.2007.73.

[109] Yoshio Tanaka, Hidemoto Nakada, Satoshi Sekiguchi, Toyotaro Suzumura, and Satoshi
Matsuoka. Ninf-G: A Reference Implementation of RPC-based Programming Middleware
for Grid Computing. Journal of Grid Computing, 1(1):41Ĝ51, 2003. doi:10.1023/A:
1024083511032.

[110] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in practice:
the Condor experience. Concurrency and Computation: Practice and Experience, 17(2-
4):323Ĝ356, 2005. doi:10.1002/cpe.v17:2/4.

[111] Dan Tsafrir, Yoav Etsion, Dror G. Feitelson, and Scott Kirkpatrick. System noise, OS clock
ticks, and fine-grained parallel applications. In Proceedings of the 19th annual international
conference on Supercomputing, ICS Ƕ05, pages 303Ĝ312, New York, NY, USA, 2005. ACM.
doi:10.1145/1088149.1088190.

[112] Dan Tsafrir, Keren Ouaknine, and Dror G. Feitelson. Reducing Performance Evaluation
Sensitivity and Variability by Input Shaking. In 15th International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS
2007), October 24-26, 2007, Istanbul, Turkey, pages 231Ĝ237. IEEE Computer Society,
2007. doi:10.1109/MASCOTS.2007.58.

[113] Etienne Urbah, Péter Kacsuk, Zoltan Farkas, Gilles Fedak, Gabor Kecskemeti, Oleg Lody-
gensky, Csaba Attila Marosi, Zoltán Balaton, Gabriel Caillat, Gabor Gombás, Adam Ko-
rnafeld, JƦzsef Kovács, Haiwu He, and RƦbert Lovas. EDGeS: Bridging EGEE to BOINC
and XtremWeb. Journal of Grid Computing, 7(3):335Ĝ354, 2009. doi:10.1007/s10723-
009-9137-0.

157

http://dx.doi.org/10.1109/MIC.2009.119
http://dx.doi.org/10.1007/3-540-36265-7_17
http://dx.doi.org/10.1504/IJHPCN.2004.008913
http://dx.doi.org/10.1109/HPDC.2002.1029936
http://dx.doi.org/10.1109/HPDC.2002.1029936
http://dx.doi.org/10.1109/ICPP.2007.73
http://dx.doi.org/10.1023/A:1024083511032
http://dx.doi.org/10.1023/A:1024083511032
http://dx.doi.org/10.1002/cpe.v17:2/4
http://dx.doi.org/10.1145/1088149.1088190
http://dx.doi.org/10.1109/MASCOTS.2007.58
http://dx.doi.org/10.1007/s10723-009-9137-0
http://dx.doi.org/10.1007/s10723-009-9137-0

C. Bibliography

[114] Gregor von Laszewski, Geoffrey C. Fox, Fugang Wang, Andrew J. Younge, Archit Kul-
shrestha, and Greg Pike. Design of the FutureGrid Experiment Management Framework.
In Proceedings of Gateway Computing Environments 2010 at Supercomputing 2010, New
Orleans, LA, Nov 2010. IEEE.

[115] Asim YarKhan, Keith Seymour, Kiran Sagi, Zhiao Shi, and Jack Dongarra. Recent Devel-
opments in GridSolve. International Journal of High Performance Computing Applications,
20(1):131Ĝ141, 2006. doi:10.1177/1094342006061893.

[116] Nezih Yigitbasi and Dick H. J. Epema. Overdimensioning for Consistent Performance in
Grids. In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting, CCGrid 2010, 17-20 May 2010, Melbourne, Victoria, Australia, pages 526Ĝ529.
IEEE, 2010. doi:10.1109/CCGRID.2010.44.

[117] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for grid comput-
ing. SIGMOD Record, 34(3):44Ĝ49, 2005. doi:10.1145/1084805.1084814.

[118] Yulai Yuan, Guangwen Yang, Yongwei Wu, and Weimin Zheng. PV-EASY: a strict fairness
guaranteed and prediction enabled scheduler in parallel job scheduling. In Proceedings of
the 19th ACM International Symposium on High Performance Distributed Computing,
HPDC Ƕ10, pages 240Ĝ251, New York, NY, USA, 2010. ACM. doi:10.1145/1851476.
1851505.

158

http://dx.doi.org/10.1177/1094342006061893
http://dx.doi.org/10.1109/CCGRID.2010.44
http://dx.doi.org/10.1145/1084805.1084814
http://dx.doi.org/10.1145/1851476.1851505
http://dx.doi.org/10.1145/1851476.1851505

APPENDIX D
Webography

[119] Amazon EC2 Spot Instances. Available from: http://aws.amazon.com/ec2/spot-
instances/ [cited July 31, 2012].

[120] Amazon Elastic Compute Cloud (EC2) Documentation. Available from: http://aws.
amazon.com/documentation/ec2/ [cited March 19, 2012].

[121] Amazon Web Services. Available from: http://aws.amazon.com [cited June 26, 2012].

[122] Paul E. Black. Dictionary of Algorithms and Data Structures. Available from: http:
//xlinux.nist.gov/dads/ [cited July 10, 2012].

[123] BOINC Stats: Detailed stats. Available from: http://boincstats.com/en/stats/-1/
project/detail/overview [cited June 26, 2012].

[124] Computation Center of IN2P3: Computing farms. Available from: http://cc.in2p3.fr/
Fermes-de-calcul [cited May 16, 2012].

[125] Cycle Computing. Lessons learned building a 4096-core Cloud HPC Supercomputer.
Available from: http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-
cluster.html [cited March 19, 2012].

[126] ANR COOP Project. Available from: http://coop.gforge.inria.fr/ [cited Septem-
ber 26, 2012].

[127] French ANR DiscoGrid project, 2005Ĝ2009. Available from: http://www-sop.inria.
fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/.

[128] EGI: Figures and utilisation. Available from: http://www.egi.eu/infrastructure/
operations/figures_and_utilisation/ [cited June 26, 2012].

[129] Dror G. Feitelson. The Parallel Workloads Archive. Available from: http://www.cs.
huji.ac.il/labs/parallel/workload [cited June 1, 2012].

[130] Dror G. Feitelson. Workload Modeling for Computer Systems Performance Evaluation,
version 0.34. 2011. Available from: http://www.cs.huji.ac.il/~feit/wlmod/ [cited
July 31, 2012].

159

http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com
http://xlinux.nist.gov/dads/
http://xlinux.nist.gov/dads/
http://boincstats.com/en/stats/-1/project/detail/overview
http://boincstats.com/en/stats/-1/project/detail/overview
http://cc.in2p3.fr/Fermes-de-calcul
http://cc.in2p3.fr/Fermes-de-calcul
http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-cluster.html
http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-cluster.html
http://coop.gforge.inria.fr/
http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/
http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/
http://www.egi.eu/infrastructure/operations/figures_and_utilisation/
http://www.egi.eu/infrastructure/operations/figures_and_utilisation/
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/~feit/wlmod/

D. Webography

[131] Google App Engine. Available from: https://developers.google.com/appengine [cited
June 26, 2012].

[132] The Graph500 List. Available from: http://www.graph500.org [cited June 26, 2012].

[133] The Green500 List. Available from: http://www.green500.org [cited June 26, 2012].

[134] greenlet: Lightweight concurrent programming. Available from: http://greenlet.
readthedocs.org/en/latest/index.html [cited July 12, 2012].

[135] National Institute for Computational Sciences: Running Jobs on Kraken. Available from:
http://www.nics.tennessee.edu/computing-resources/kraken/running-jobs [cited
June 29, 2012].

[136] Network Coordinates Research Group. Available from: http://www.eecs.harvard.edu/
~syrah/nc/ [cited September 19th, 2012].

[137] Nimbus Project. Available from: http://www.nimbusproject.org/ [cited March 19,
2012].

[138] Antoine Petitet, Clint Whaley, Jack Dongarra, and Andy Cleary. HPL Ĝ A Portable
Implementation of the High-Performance Linpack Benchmark for Distributed-Memory
Computers. Available from: http://www.netlib.org/benchmark/hpl/ [cited May 16,
2012].

[139] Partnership for Advanced Computing in Europe. Available from: http://www.prace-
project.eu/ [cited September 20th, 2012].

[140] Python Programming Language. Available from: http://www.python.org [cited July 12,
2012].

[141] RackSpace Cloud. Available from: http://www.rackspace.com/cloud/ [cited June 26,
2012].

[142] Rod Schultz. SLURM: Advanced Usage. Presentations from SLURM User Group Meeting,
September 2011. Available from: http://www.schedmd.com/slurmdocs/slurm_ug_2011/
Advanced_Usage_Tutorial.pdf [cited May 25, 2012].

[143] Herb Sutter. Welcome to the Jungle, 2011. Available from: http://herbsutter.com/
welcome-to-the-jungle/.

[144] Texas Advanced Computing Center: High Performance Computing (HPC) Systems. Avail-
able from: http://www.tacc.utexas.edu/resources/hpc/ [cited June 26, 2012].

[145] The Distributed ASCI Supercomputer 3. Available from: http://www.cs.vu.nl/das3/
[cited March 21, 2012].

[146] TOP500 Supercomputing Sites. Available from: http://www.top500.org [cited June 26,
2012].

[147] TORQUE Resource Manager. Available from: http://www.adaptivecomputing.com/
products/open-source/torque/ [cited March 19, 2012].

160

https://developers.google.com/appengine
http://www.graph500.org
http://www.green500.org
http://greenlet.readthedocs.org/en/latest/index.html
http://greenlet.readthedocs.org/en/latest/index.html
http://www.nics.tennessee.edu/computing-resources/kraken/running-jobs
http://www.eecs.harvard.edu/~syrah/nc/
http://www.eecs.harvard.edu/~syrah/nc/
http://www.nimbusproject.org/
http://www.netlib.org/benchmark/hpl/
http://www.prace-project.eu/
http://www.prace-project.eu/
http://www.python.org
http://www.rackspace.com/cloud/
http://www.schedmd.com/slurmdocs/slurm_ug_2011/Advanced_Usage_Tutorial.pdf
http://www.schedmd.com/slurmdocs/slurm_ug_2011/Advanced_Usage_Tutorial.pdf
http://herbsutter.com/welcome-to-the-jungle/
http://herbsutter.com/welcome-to-the-jungle/
http://www.tacc.utexas.edu/resources/hpc/
http://www.cs.vu.nl/das3/
http://www.top500.org
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/

[148] David A. Wheeler. SLOCCount. Available from: http://www.dwheeler.com/sloccount/
[cited August 1st, 2012].

[149] Windows Azure: MicrosoftǶs Cloud Platform. Available from: http://www.windowsazure.
com [cited June 26, 2012].

[150] XSEDE: High Performance Computing. Available from: https://www.xsede.org/high-
performance-computing [cited September 22, 2012].

161

http://www.dwheeler.com/sloccount/
http://www.windowsazure.com
http://www.windowsazure.com
https://www.xsede.org/high-performance-computing
https://www.xsede.org/high-performance-computing

	Table of Contents
	List of Algorithms
	List of Figures
	List of Tables
	Introduction and Context
	Introduction
	Motivation
	Goal of this Thesis
	Contributions of the Thesis
	Structure of this Document
	Publications

	Context
	High-Performance Computing Resources
	Supercomputing
	Cluster Computing
	Grid Computing
	Desktop Computing
	Cloud Computing
	Hybrid Computing Infrastructures
	Analysis

	A Classification of Applications by Resource Requirements
	QoS Requirements
	Time Variation of Resource Requirements
	Conclusion

	Managing HPC Resources
	Cloud Managers
	Batch Schedulers
	Distributed Resource Managers
	Meta Schedulers
	Application-Level Schedulers
	Analysis

	Conclusion

	RMS Support for Moldable Applications
	CooRMv1: An RMS for Efficiently Supporting Moldable Applications
	Why Moldability?
	A Motivating Example
	Problem Statement
	The CooRMv1 Architecture
	Principles
	Data Types
	Interfaces
	Protocol

	An Example Implementation
	Application-side Resource Selections
	A Simple RMS Implementation

	Evaluation
	Overview
	Scalability
	Fairness
	Validation

	Discussions
	Conclusion

	distCooRM: A Distributed RMS for Moldable Applications
	Introduction
	The distCooRM Architecture
	Principles
	Agents
	Interfaces
	Interactions

	An Example Implementation
	Evaluation
	Experimental Setup
	Multi-owner Feasibility
	Scalability: Comparison to a Centralized RMS
	Strong and Weak Scaling with the Size of the Platform

	Conclusion

	RMS Support for Malleable and Evolving Applications
	Towards Scheduling Evolving Applications
	Introduction
	Problem Statement
	Definitions and Notations
	Towards an RMS for Fully-Predictably Evolving Applications
	Formal Problem Statement

	Scheduling Fully-Predictably Evolving Applications
	An Algorithm for Offline Scheduling of Evolving Applications
	The fit Function
	Discussions

	Evaluation
	Description of Experiments
	Analysis

	Conclusions

	CooRMv2: An RMS for Non-predictably Evolving Applications
	Introduction
	A Model for Non-predictably Evolving Applications
	Working Set Evolution Model
	A Speed-up Model
	Analysis of the Model

	The CooRMv2 Architecture
	Principles
	Interfaces
	Example Interaction

	Application Support
	An Example RMS Implementation
	Evaluation with Evolving and Malleable Applications
	Application and Resource Model
	Scheduling with Spontaneous Updates
	Scheduling with Announced Updates
	Efficient Resource Filling

	Conclusion

	Fair Scheduling of Optional Computations in GridRPC Middleware
	Introduction
	A Motivating Use-case
	Problem Statement
	Resource Model
	User/Application Model
	Metrics

	DIET-ethic
	DIET-ethic Extension
	Implementation on Top of DIET

	Evaluation
	Gains of Supporting Optional Computations
	Scalability
	End-User Perspective: Integration with GridTLSE

	Conclusion

	To Conclude
	Conclusions and Perspectives
	Conclusions
	Perspectives
	Short-term Perspectives
	Medium-term Perspectives
	Long-term Perspectives

	Appendices
	Supplementary Material
	CooRMv2RMS Implementation
	Requests
	Request Constraints
	Views
	Helper Functions
	Main Scheduling Algorithm
	Limitations

	Acronyms
	Bibliography
	Webography

