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bande étroite

THÈSE
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Ross MCPHEDRAN rapporteur
Evgeni POPOV directeur de thèse
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2 INTRODUCTION

A guided mode resonant (GMR) grating filter is a structure composed of a stack of a
few dielectric layers in which a sub-wavelength grating is engraved. This kind of grating
structures allows an incident plane wave to excite a mode of the stack which generates a
resonance peak in the reflection and transmission spectra as a function of the wavelength.
Their main interest is the thin spectral FWHM they can achieve: in practice, quality
factors greater than 7000 have already been obtained1. Since their discovery in the 80s,
they attracted a lot of interest, and various devices based on GMR have been developed,
such as all-optical switching devices in WDM system2, remote sensors3, devices for security
applications4, etc.

Together with the expansion of application areas of the GMR filter, there are contin-
uously new requirements for the filter performances to meet the practical needs, such as
narrower filtering band, larger angular tolerance, oblique incidence, polarization indepen-
dence, etc. Development of a tunable narrow band filter might be an effective way to
enlarge the potential of the GMR grating filters.

The center wavelength of a GMR filter can be simply tuned by modifying the angles of
incidence. Indeed, the resonance wavelength depends strongly on the angles of incidence
(see for example reference5). Yet, this solution requires a sharp control of the angles
of incidence which is not always possible. Moreover, changing the incidence angle also
changes the reflection and transmission angles, making the filtered beam difficult to follow
in practice. The tunability can also be obtained by modifying the parameters of the
structure: the dimensions or the refractive indices. These modifications can be obtained
for example by applying a strength, a magnetic or an electric field, or by controlling the
temperature. For a review on the principles of tunability, applied to the Fabry-Perot
filters, the interested reader can see the reference6. The impact of a modification of the
thicknesses of the layer is quite complex to analyze, since the dilatation of the layers of
different materials may be different. Moreover, these effects are usually weak. Among
the effect that allow a modification of the indices, the electro-optic effect seems to be the
most promising since it can be quite strong, targeted on a chosen area of the stack (the
electro-optic layers), and independent from the other effects. That is why we concentrated
our work on the electro-optic effect in resonant gratings. It must be noted that the
modification of the parameters of the structure due to the temperature variations would
be an interesting study in the scope of applications. The shift of the center wavelength with
respect to the temperature modification during the use of the filter could be predicted, and
insensitive designs could be proposed. However, these aspects have not been considered
during this thesis.

The studies on guided mode resonant grating tunable by the electro-optic effects re-
ported in the literature are not numerous. Magnusson and Wang firstly suggested that
GMR filters can be used as tunable optical filters or as low-power optical switching de-
vices7. Then theoretical studies8 and other types of tunable GMR devices2,3,9 have been
demonstrated10–12. Some studies involve the E-O effect in liquid crystals to tune the res-
onance wavelength in dielectrics13,14 or metallic (plasmonic)15 GMR filters. Yet, most of
these works are demonstrations of the possibility to tune the resonance wavelength us-
ing the E-O effect. Nothing is reported concerning a study aimed at understanding the
underlying physics, and optimizing the tunability. Moreover, not all of the theoretical cal-
culations reported take into account the anisotropy of the E-O crystal which is crucial in
order to analyze the behavior of the component with respect to the incident polarization.
At last, very few studies concern gratings having two-dimensional (2D) periodicity aiming
to polarizationally invariant resonance effects.
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Thesis Objective: In this thesis, we aim to develop the potential of resonant grating
filters by studying the tunability properties of guided mode resonant gratings including a
layer of electro-optic material.

The main questions that motivated our research are summarized as follows:

• How does the applied voltage affect the permittivity of E-O materials within different
crystal orientations? What is the impact on the guided modes of the structure?

• What is the magnitude of the tunability achievable?

• How can the tunability be maximized? What are the favorable configurations? Is it
possible to exhibit key parameters involved in the tunability?

• How does the anisotropy of the structure play on the characters of the GMR filter,
such as: resonant peak linewidth and maximum, tunability, angular tolerance and
polarization independence?

The research work that has been done during the thesis brought full or partial answers
which are presented in the manuscript.

Thesis Overview
The manuscript is divided into four chapters:

• Chapter 1 introduces the theoretical basis and the physical notions that are needed
in the following of the manuscript, especially in Chapters 3 and 4. It is composed
of two parts, one concerning the guided mode resonant gratings and the second the
electro-optic effect. In the part devoted to GMR gratings, their physical principles,
advantages and drawbacks are reminded. The solutions that have been proposed
during the last twenty years to improve the performances of GMR grating for filtering
applications are described and used as a starting point to design the structures
studied in the following chapters. The concept of equivalent homogeneous planar
structure is also introduced as a tool to estimate some optical properties of the
filter.

The rest of this chapter is devoted to a general introduction on the electro-optic
effect, and how the refractive index can be modified by an external applied electric
field. Both the linear and the quadratic E-O effect are described in this chapter.

• Chapter 2 concerns the numerical method that was developed and used during the
thesis to study the anisotropic resonant grating: the Fourier Modal Method. A brief
description of the method is given in the general case when an anisotropic material is
included as an homogeneous layer (which has been implemented during the thesis).
It also mentions the output that can be obtained from the code and that is used to
analyze the GMR filter characters throughout the chapters 3 and 4.

• Chapter 3 concerns the material Lithium Niobate (LiNbO3). We first chose the
orientation of the crystal with respect to the static electric field with the purpose to
maximize the influence of the E-O effect, and then study different modes excited in
the grating structure, in order to figure out the relationship between the tunability of
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the resonance peak and the modes. The performances of the whole structure, such
as narrow filtering band, angular tolerance, tunability, polarization independence
characters are analyzed and explained.

• Chapter 4 presents our work on Barium Titanate based tunable resonant grating.
Barium Titanate is interesting because of its large E-O effect coefficients. The same
framework as for Chapter 3 is followed, but different conclusions are deduced because
the orientation chosen for the crystal is different: the structure is anisotropic in the
plane parallel to the direction of propagation of the guided modes. This fact leads
to interesting observations on the behavior of the component with respect to the
incident polarization.

• Finally, in the general Conclusion of the thesis, we cite several critic problems to
be solved and also given some perspectives for the future work.

To complete the thesis, we also included two appendixes:

• Appendix 1 shows the detailed derivation of several equations needed for the real-
ization of the numeric tool based on the FMM. It contains the construction of the
four blocks of the S matrix.

• Appendix 2 is a summary of all the structures studied in the manuscript.



Chapter 1

Guided-Mode Resonant Grating
and Electro-Optic Effect
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6 1.1 Guided Mode Resonance Grating

In this chapter, we want to present some basic concepts of the guided mode resonant
gratings and the electro-optic effect. A lot of theoretical work has been done to understand
the physics of Guided Mode Resonant Gratings in various configurations16. We will give
here a brief reminder of the most important results obtained especially concerning the
optimization of the angular tolerance and the behavior with respect to the polarization of
the incident wave.

The physics of the electro-optic effect is described by a well established theory17. We
will introduce here the notations used to describe the modification by the electro-optic
effect of the index ellipsoid of materials.

1.1 Guided Mode Resonance Grating

In this part, we introduce the component under study in this thesis: guided mode resonant
(GMR) grating. We first explain the GRM Grating basic principle, then present the main
interesting properties of GMR gratings for filtering applications. We recall the main
drawbacks of GMR gratings, namely weak angular acceptance and strong sensitivity with
respect to the incident wave polarization, then we present the configurations in which
these drawbacks can disappear.

1.1.1 Guided-mode Resonant Grating: Basic Principles

Resonant gratings are simple structures composed of a stack of several dielectric layers on
top of which a periodic nanostructure is engraved. The multilayer stack plays the role of
a planar waveguide. A so called guided mode resonance phenomenon can occur due to
the coupling of an eigenmode of the structure to the incident wave through one diffraction
order of the grating. Figure 1.1 demonstrates the schematic diagram of a simple GMR
structure.

Figure 1.1 : Schematic diagram of a one dimensional GMR filter structure.

For example, for a grating having 1D periodicity and illuminated in a plane parallel
to the direction of periodicity (classical incidence), the coupling condition of one mode
through the mth diffraction order writes:

| sin θ +m
λ

D
|≃ nf , (1.1)

where nf is the effective index of the mode, D is the period of the grating, λ and θ are
the incident wavelength and angle.
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The coupling condition, in a more general case of incidence can also be written as:

∥
−−→
kinc +

−→
K∥ ≃ 2π

λ
nf , (1.2)

where
−−→
kinc is the in-plane incident wave vector,

−→
K is a vector of the reciprocal space of

the grating. The coupling of the incident wave into the waveguide and the decoupling in
the free space leads to a resonance peak in the reflectivity or transmittivity spectrum of
the structure, as shown in Fig. 1.2.
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Figure 1.2 : Reflection efficiency (structure 1.1 shown in Fig. 5.1 in Appendix 2) as a
function of the incident wavelength λ.

1.1.2 Equivalent Planar Structure

The grating structure modifies the effective modal index. It is possible to introduce an
equivalent planar structure (without grating), which has optical properties as close as
possible to the optical properties of the grating structure. For instance, the reflectivity
of the equivalent structure will give a good estimation of the reflectivity of the grating
structure without the resonance mode excitation, and the effective index of the mode will
give a good estimation of the center wavelength of the peak using the coupling Eq. 1.2.

In the equivalent planar structure, the grating is replaced by a layer of homogenous
material. The rest of the structure is kept unchanged as the following schema shows:

Figure 1.3 : Schema of the equivalent planar structure.

For example, the permittivity of the equivalent layer ε̃ as a function of the permittivity
of grating material ε1 and of air ε2 can be expressed as:
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ε̃ = ε1(1−
Shole
Stotal

) + ε2
Shole
Stotal

, (1.3)

where the Shole is the area of the air holes, and Stotal = D2 is the area of one grating period.
In other words, ε̃ stands for the arithmetic mean of the permittivity of the grating.

Note that ε̃ can be calculated in a different way using the numerical code based on the
Fourier Modal Method, as it will be described in the chapter 2, so that ε̃ becomes a tensor
of anisotropic permittivity.

As said above, the equivalent planar structure can be used to obtain in a first ap-
proximation the propagation constant of the modes and the reflectivity of the resonant
grating filter outside the resonance. We illustrate this below on an example. The structure
considered is described in Fig. 5.2 (structure 3.1) in the Appendix 2.
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Figure 1.4 : Reflected electric field as a function of the thickness of the LiNbO3 layer
with s polarized incident plane wave. (a). y direction component of reflected electric field;
(b). x direction component of reflected electric field.

We plot in Fig. 1.4 the amplitude of the reflected electric field as a function of the
thickness h of the LiNbO3 layer and the x component of the in plane evanescent incident
wave number (the x - wave vector component normalized by the free-space wave number).
We observe several resonant curves corresponding to modes of different orders and polar-
izations excited in the structure when the thickness of the LiNbO3 layer varies. According
to the modes coupling condition, taken under normal incidence on a grating with period
D engraved on this stack, the center wavelength λ of a peak is approximately given by:

λ = α̃gD , (1.4)

where α̃g ≡ nf is the normalized component of the propagation vector along the x direc-
tion. Conversely, for the design of a structure, Eq. 1.4 gives us an approximate value of
the period D which will give a peak at the chosen wavelength.

1.1.3 Some Important Properties for Filtering Applications

The first interesting property of the guided mode resonant grating is the proportionality
between the spectral width of the peak and the modulation strength of the grating, that
is to say the depth and the index contrast between the material of the layer and the
grooves. As a consequence, for shallow gratings and weak index contrast the peak can be
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very narrow (linewidth <0.5 nm), thus the resonant gratings can be used for narrow band
filtering.

The second important property is that for particular symmetry of the structure, the
reflectivity, or the transmissivity, or both of them, can reach a maximum of 100% close
to the resonance. This can be demonstrated by using the energy conservation and the
reciprocity theorem18,19. This is true as long as the material does not present absorption
losses and if only the zero diffraction order of the grating is propagating in the substrate
and the superstrate (sub-wavelength grating). For instance, a symmetry with respect to
the axis normal to the plane of the layers (see Fig.1.5(a)) provides 100% of reflectivity
at resonance. A symmetry with respect to a plane parallel to the plane of the layers
(see Fig.1.5(b)) provides two peaks of 100% of reflectivity and 100% of transmissivity at
two different wavelengths in the vicinity of the resonance. In any case, the reflectivity
and transmissivity outside the peak are close to their values for the homogeneous planar
structure. Hence, it is possible to obtain a reflection (notch) filter with a great rejection
rate (ratio between the reflectivity at the maximum of the peak to that outside the peak).
The equivalent planar structure has to be optimized as an anti-reflection stack, and the
grating must be symmetric with respect to the normal of the layers. This kind of symmetry
is easy to obtain in practice. On the other hand, to obtain a transmission (bandpass)
filter, one has to use a mirror stack, and a structure which is symmetrical with respect to
a plane parallel to the layer’s plane. This kind of symmetry requires a grating at each side
of the stack, or a grating in the middle of the stack, which is quite difficult to fabricate.
Moreover, a dielectric mirror needs greater number of layers than an anti-reflective stack.
As the thickness of the layers depends on the considered wavelength, this may be a strong
drawback for example for applications at large wavelengths (mid infrared). That is the
reason why most of the work on guided mode resonant gratings concerns reflection filters
rather than transmission filters.

 

a) b) 

Figure 1.5 : Resonant grating with: (a) a symmetry axis normal to the plane of the
layers; (b) a symmetry plane parallel to the plane of the layers.

Unfortunately, besides these interesting properties, it is well known that the resonant
guided mode resonant filters in simple configurations have a weak angular acceptance, and
the resonant peak depends strongly on the polarization of the incident wave. Hopefully,
these drawbacks can be avoided by using some complex configurations which are presented
in the next two paragraphs.
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1.1.4 Angular Tolerances

From the coupling equation 1.1 it can be seen that in a simple configuration, the angular
width of the peak varies in the same manner as the spectral width. Indeed, differentiating
Eq. 1.1 leads to

∆θ =
|m|

D| cos (θ)|
∆λ (1.5)

It can be proved that in this case both the spectral and the angular width depends,
besides on the grating depth, on the Fourier coefficient of the permittivity of the grating
corresponding to the resonant diffraction order16. Hence, if the first diffraction order is
used to excite the mode, the spectral and the angular width are both proportional to
the first harmonic of the grating permittivity ε1. In this configuration, it is not possible
to obtain a small spectral width and a large angular tolerance. This may be a problem
if the component can not be illuminated with a beam having a divergence smaller than
the angular tolerance of the structure, because this will enlarge the spectral width of the
peak and reduce the reflectivity maximum. In practice, if the component is fabricated
using e-beam lithography, the grating area is a few millimeters square only, and a focused
beam is necessary to illuminate the component. Moreover, in a recent study20 it has
been proved that the defaults of fabrication have an impact on the filter performances
(spectral width and reduction of the maximum reflectivity). To avoid the deterioration
of the filter performances, it is thus recommended to use a narrower beam, which covers
smaller grating region to avoid fabrication defaults.

A solution to avoid the tight angular tolerances is found in normal incidence, when
two counter-propagative modes can be excited in the structure. This would correspond
to a crossing point between the dispersion curves of the two modes if they were not
coupled to each others. However, the grating introduces a coupling between these two
modes, which opens a gap in the dispersion relations of the modes close to the crossing
point without the grating coupling. For the mode at the edge of the gap, it can be
proved that the spectral width of the resonant peak still depends on the Fourier harmonic
associated to the diffraction order used for the excitation of the mode (ε1 if the resonant
diffraction order is the first order). But the angular width of the peak now depends on
the coupling strength between the two counter-propagative modes, which is related to
the second Fourier harmonic of the grating permittivity ε2 if the first diffraction order is
resonant.

To increase ε2 with respect to ε1, a complex 1D basic pattern, composed of two grooves
of different width has been proposed. For this so called 1D “bi-periodic” grating, the ε2
coefficient can be much larger than ε1, and a large ∆θ/∆λ ratio can be obtained21. We
report in Fig.1.6 a comparison between a 1D GMR Filter with a simple pattern and a 1D
“bi-periodic” GMR Filter. When illuminated with a plane wave, the two structures can
produce a peak with the same width. Yet, when they are illuminated with a Gaussian
beam (500µm diameter at waist), the peak obtained with the simple pattern structure is
strongly deteriorated while that obtained with the “bi-periodic” GMR grating keeps the
same form.
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Figure 1.6 : (figure from21) Transmissivity spectra for (a) a single groove grating (period
971 nm, groove width 250 nm, height 13 nm, refractive index na=1, nh=2.07, nb=1.47,
and ns=1.448, and layer thickness, from top to bottom, 65, 113, and 196 nm). Fourier
coefficients: ϵ1=0.76, ϵ2=0.52. (b) Doubly periodic grating (period 1047.5 nm, groove
widths 241.25 and 281.25 nm, height 382.6 nm, refractive index na=1,nh =2.07, nb=1.47,
and ns=1.448, and layers thickness, from top to bottom, 62.5, 263.5, and 79.1 nm).
Fourier coefficients: ϵ1=0.09, ϵ2=1.04.

1.1.5 Behavior with Respect to the Incident Polarization

The independence of the filter characteristics with respect to the polarization of the in-
cident beam is another crucial property that is often requested in applications where the
incident light is unpolarized or the polarization unknown. Yet, in a simple configuration
where only one mode is excited, the resonance depends strongly on the polarization: it
is maximum for one polarization, while for the orthogonal polarization, the resonance is
not excited. For example, if the mode is TE (electric field perpendicular to the direction
of propagation) and the plane of incidence parallel to a direction of periodicity, the mode
can not be excited with a p polarization (magnetic field perpendicular to the plane of
incidence). An important theoretical work has been developed in reference22. We remind
in the following the most relevant conclusions.

We consider the reflectivity matrix R which relates the incident field to the reflected
field in the zero order of diffraction of the grating. It is composed with four coefficients
rss, rps, rsp and rpp corresponding respectively to the conversion of the field amplitude
from s incident field to s reflected field, s incident field to p reflected field, p incident field
to s reflected field, and p incident field to p reflected field:

R =

[
rss rps
rsp rpp

]
(1.6)

It can be proved that the energy reflection coefficient |R|2 can be expressed with respect
to the eigenvalues L1, L2 and eigenvectors V1, V2 of the matrix R∗R, where R∗ is the
transposed and complex conjugated of R:

|R|2 = L1|V∗
1.I|2 + L2|V∗

2.I|2 (1.7)

where I is a unitary vector collinear to the electric field of the incident wave. It is important
to note that as R∗R is an Hermitian matrix, then L1 and L2 are real and positive and
its eigenvectors are orthogonal in the sense that their Hermitian scalar product is null:
V∗

1.V2 = 0. From Eq. 1.7, it can be seen that when the polarization of the incident wave
varies, the reflectivity bounds are L1 and L2. Thus, L1 = L2 is a sufficient and necessary
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condition for which the reflectivity does not depend on the polarization. Moreover, it
is observed numerically that when an eigenmode is excited, one eigenvalue (for example
L1) is resonant. The associated eigenvector V1 corresponds to the field of the incident
wave that allows the full excitation of the mode. If the incident field is collinear to the
second eigenvector V2, the eigenmode is not excited. Hence, an important conclusion
is that the simultaneous excitation (for the same wavelength and angles of incidence)
with orthogonal polarization of two eigenmodes is the prerequisite of the polarization
independence. Moreover, note that obtaining the same reflectivity for an s-polarized and
a p-polarized incident wave does not mean that the structure is polarization independent,
unless the s and p polarizations correspond to the eigenvectors of the Rs ∗R matrix. On
the other hand, if the s an p reflectivities reach 100% for the same angle and wavelength of
incidence, it can be said that the structure is polarization independent for this incidence.
Several solutions have been proposed to excite two modes with orthogonal polarizations
for the same angle and wavelength of incidence. For example, one can excite a TE and a
TM mode with a 1D grating under oblique incidence along the direction of periodicity. It
is also possible to illuminate a grating along a plane of symmetry. In this case, two modes
can be excited, one with a field symmetrical and the other anti-symmetrical with respect
to the plane of incidence23. These two modes can be excited at the same wavelength and
angle of incidence for suitable grating parameters.

In the case of grating having 2D periodicity and illuminated under normal incidence,
four counter-propagative eigenmodes are exited along the two directions of periodicity, and
couple to each other by pairs, which ensures the polarization independence. Moreover, this
configuration is favorable for the angular tolerance enhancement. In the following, we will
work with this kind of a 2D “bi-periodic” gratings illuminated under normal incidence. A
”bi-periodic” grating with 2D periodicity has a period D and contains four air holes with
different diameters, holes A and A’ have the same diameter D1, the diameter is D2 for
hole B, and D3 for hole C (see Fig. 1.7). Note that the holes A and A’ have the same
diameter so that the grating is symmetrical with respect to the normal to the layers. The
values of the diameters are designed to enhance ε2 with respect to ε1 and then optimize
the angular tolerance.

Figure 1.7 : Top view of the designed grating pattern.

Reference22 firstly put up the conception of this kind of structure and reference21 in-
troduces in detail the experimental realization of a narrow band, polarization independent
filter based on this configuration.

We are interested in designing a filter with a tunable center wavelength. This could be
done simply by changing the angle of incidence, but this solution is difficult to realize since
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a precise control of the rotation of the sample is required, and moreover, the direction of
the reflected beam changes, together with the incident beam. We prefer studying a solution
that relies on a modification of the effective index of the mode, which will lead, according
to the coupling condition, to a shift of the peak. There are various approaches to modify
the refractive index of a material, such as applying a magnetic field, a mechanical stress,
etc24. In particular, we will focus on the electro-optic effect (modification of the refractive
index when an electric field is applied) with a static electric field.

1.2 Tunability Using the Electro-optic Effect

For some specific materials, optical properties can change when they are subjected to a
static or low-frequency (up to several GHz) externally applied electric field. This is known
as the electro-optic effect (E-O effect)24. In this section, we give a general introduction of
the E-O effect in the materials.

1.2.1 Electro-Optic Effect Applications

Since the electro-optic effect was discovered, it has been widely applied in various domains.
The linear E-O effect can be used to make light modulators, deflectors and filters.25–27 It
allows in particular the modulation of laser beams up to several gigahertz.28.

For example, the electro-optic modulator is an optical device used to modulate a beam
of light by a signal-controlled element which is affected by electro-optic effect. These kind
of modulators are key components in high-speed and wide bandwidth optical communi-
cation systems. Both LiNbO3 and BaTiO3 are attractive ferroelectric materials for this
application29,30. Taking advantage of the Pockels effect, an applied external electric field
will cause variation in phase retardation which can be used to manipulate the polariza-
tion state of light beam. In this phase modulator working together with a polarization
analyzer, the different phase delays will be converted into an intensity variation of the
light, realizing a so called amplitude modulation. The modulation also may change the
frequency, or the direction of the modulated beam31. These guided-wave modulators can
be designed in chips and associated with fiber systems. In particular, lithium niobate and
barium titanate, the two typical electro-optic materials widely used are studied in this the-
sis. E-O tunable filters can be designed in a variety of different ways32–34. These include
birefringent, Solc, Fabry-Perot, and tunable Bragg filters. The particular design selected
depends on whether narrow transmission, suppression of side lobes, wide field of view, high
sensitivity, high-speed response, or other features are desired. Tunable spectral filters have
been demonstrated in a variety of materials for the different configurations with some ex-
perimental success. E-O tunable filters offer the potential for electrically controlling the
filter bandpass and bandwidth. Furthermore, certain devices have been demonstrated that
are polarization independent and have been used as E-O laser modulators.

1.2.2 Modification of the Index Ellipsoid

The optical properties of an anisotropic material medium are characterized by the optical
index ellipsoid, described by the equation:

(
x1
n1

)2 + (
x2
n2

)2 + (
x3
n3

)2 = 1 , (1.8)
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where n1, n2, n3 are the principal refractive indices, which also correspond to the principal
lengths along the ellipsoid axes. If the medium is uniaxial, then n1 = n2 = no, n3 = ne;
for a biaxial medium, n1 ̸= n2 ̸= n3.

When an external static electric field E is applied to an E-O medium, its index ellipsoid
will be modified according to the equation:

3∑
i=1

3∑
j=1

(
1

ñ2

)
ij

xixj = 1 , (1.9)

with the following relationship:

(
1

ñ2
)ij = (

1

n20
)ij + (∆

1

n2
)ij(E) , (1.10)

where ñ is the modified new refractive index, ( 1
n2
0
)ij represents the coefficients of the

index ellipsoid equation without applied electric field , which means that ( 1
n2
0
)11 = 1

n2
1
,

( 1
n2
0
)22 = 1

n2
2
, ( 1

n2
0
)33 = 1

n2
3
and ( 1

n2
0
)ij = 0 for i ̸= j. The last term in the Eq. 1.10 stands

for the modification of the index caused by the static electric field E. This is the key
variable, and it will be explained in detail in the following subsection.

1.2.2.1 Electro-optic Coefficients

The term electro-optic effect encompasses a number of distinct phenomena, which may
have strong effect on the refractive index of the material and can be subdivided into two
basic categories35:

• (a) linear electro-optic effect: the change in the refractive index is linearly propor-
tional to the electric field. It is often called the Pockels effect, since Friedrich Pockels
discovered it in 1893;

• (b) quadratic electro-optic effect: the change in the refractive index is proportional
to the square of the electric field. It is also known as the Kerr effect since John Kerr
discovered it in 1875 in optically isotropic media such as liquids or gases.

From the previous section we know that an applied external electric field will modify
the refractive index according to Eq. 1.10, and the last term of this equation can be
expanded into:

(∆
1

n2
)ij =

∑
k

rijkEk︸ ︷︷ ︸
linear

+
∑
k,l

sijklEkEl︸ ︷︷ ︸
quadratic

, (1.11)

where Ek stands for the component of the applied electric field along the k direction. The
constants rijk are the linear electro-optic coefficients, and sijkl are the quadratic electro-
optic coefficients. We neglect higher order terms in the expansion because they are too
small for most applications.

In most practical applications of the electro-optic effect, the quadratic effect is expected
to be small as compared to the linear effect and is often neglected when the linear effect
is present. There are some crystals (those with centrosymmetric point groups) in which
the linear effect vanishes and the quadratic effect becomes the dominant phenomenon.
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1.2.2.2 Coefficient Notation Simplification

For the linear E-O effect coefficient, the ordinary notations have three indices, i, j, k =
1, 2, 3, so that it is a third-rank tensor with 33 = 27 elements. From symmetry considera-
tions ((∆ 1

n2 )ij = (∆ 1
n2 )ji), it is convenient to renumber the pair of indices (i,j), i, j = 1, 2, 3

as a single index i = 1, 2, ..., 6 in accordance with the rule in Table 1.1:

Table 1.1 : Table for the index i that represents the pair if indices (i, j).

j i 1 2 3

1 1 6 5
2 6 2 4
3 5 4 3

Thus the linear E-O coefficients can be represented by only 18 rij elements.
For the same reasons, the same rule applies for the indices i and j of the quadratic

E-O effect coefficients sijkl. Moreover, the coefficients sijkl are also invariant under per-
mutations of the indices k and l, so that k, l = 1, 2, 3 can be renamed in another single
index k = 1, 2, ..., 6 using the same rule as in the Table above. It is then useful to in-

troduce a vector E(2) which contains 6 elements given by E
(2)
k = E2

k for k = 1, 2 or 3,

and E
(2)
4 = 2E2E3, E

(2)
5 = 2E1E3 and E

(2)
6 = 2E1E2. Thus the quadratic E-O effect

coefficients can be expressed by a 6× 6 = 36 elements instead of a 34 = 81 elements.
Considering the general case, in which Pockels coefficients and Kerr coefficients tensors

are both full matrices, assuming that there is an external electric field E = (E1, E2, E3) ap-
plied, with a coordinate system consistent with the orientation of the crystal, the modified
index is given by:

(∆
1

n2
)ij =



r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43
r51 r52 r53
r61 r62 r63


E1

E2

E3

+



s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66





E2
1

E2
2

E2
3

2E2E3

2E1E3

2E1E2

 (1.12)

1.2.2.3 E-O effect Tensor of a Typical Material

Both the linear and quadratic electro-optic coefficients depend on the crystalline symmetry.
In this part, we give the form of E-O tensor for the two classes of symmetry to which belong
the materials under study in chapters 3 and 4, LiNbO3 and BaTiO3.

• Trigonal symmetry
Class 3m (for example:LiNbO3)

Pockels



0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
−r22 0 0

 Kerr



s11 s12 s13 s14 0 0
s12 s11 s13 −s14 0 0
s31 s31 s33 0 0 0
s41 −s41 0 s44 0 0
0 0 0 0 s44 s41
0 0 0 0 s14

s11−s12
2


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• Tetragonal symmetry
Class 4mm (for example:BaTiO3)

Pockels



0 0 r13
0 0 r13
0 0 r33
0 r42 0
r51 0 0
0 0 0

 Kerr



s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s31 s31 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66


1.3 Summary

This chapter can be considered as the introductory paragraph of the whole thesis. It is
divided into two separate parts: the first one introducing guided-mode resonant gratings,
and the second one discussing the electro-optic effect. In the part concerning GMR grat-
ings, we mainly introduced the physical principle of this type of grating. We emphasized
the importance of the planar equivalent structure and the link between the effective index
of the guided mode and the center wavelength of the peak. We introduced the“bi-periodic”
two dimensional grating pattern. All the simulation works in the following chapters are
based on this grating pattern, in order to optimize the angular tolerance of the designed
filters. At last, we gave some elements of theory concerning the behavior of guided mode
resonant gratings with respect to the polarization of the incident wave: a necessary con-
dition to ensure a polarization independent behavior is the excitation, with orthogonal
polarizations, of two modes for the same wavelength and angles of incidence.

The electro-optic effect is the second physical phenomenon introduced in this first
chapter. The external voltage applied to the E-O material causes the modification of
its refractive index. By taking advantage of this, we will in the following confirm the
possibility to tune the center wavelength of the filter and study the effects introduced by
the anisotropy of the material. The linear electro-optic effect in two E-O materials, namely
Lithium Niobate and Barium Titanate, is analyzed in chapter 3 and chapter 4 respectively.
The effects caused by the quadratic electro-optic effect involved with the Barium Titanate
is also explained in the chapter 4.
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Numeric Tool Based on the
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2.1 Introduction

The key subject of this chapter is presenting the realization of a numeric tool, which was
used to analyze the behavior of the tunable GMR filters involved in the thesis. This tool
is based on the Fourier Modal Method (FMM), which is also known as rigorous coupled
waves analysis (RCWA). Generations of researchers have worked on the electromagnetic
theory of gratings and tried to implement a stable and effective numerical solution of the
electromagnetic behavior for various types of gratings. My work also is involved in this
search, and it is based on a numerical code written by A.-L. Fehrembach. I have devel-
oped a new version of this program, which allows the treatment of multilayer structures
containing both homogenous anisotropic layers and periodic isotropic grating structures.

We will firstly introduce the development of the FMM and the entire algorithm for the
general grating problem. Further on, the approach dealing with anisotropic case will be
developed. Some important functions of the developed numeric tool will be described at
the end of this chapter.

2.2 Basis of the Numerical Resolution of the Diffraction by
a Grating

2.2.1 Statement of the Problem

Figure 2.1 : The geometry schematic diagram of the diffraction grating of thickness h
and period Dx along x, Dy along y, illuminated by a plane wave with wavelength λ and
angle of incidence θ.

Figure 2.1 illustrates the schematic diagram of a two-dimensional periodic grating structure
illuminated by a plane wave. The area Da (z > d+h) is the incident medium that consists
of a dielectric material characterized by a homogeneous real permittivity ϵa; Region Ds

(z < 0), can be made of materials with complex permittivity ϵs; Intermediate medium Dc

(d <z <d+h) is the grating part, whose thickness equals to h. Medium Dl (0 <z <d) is
the multilayer stack part, which can be composed of homogeneous isotropic or anisotropic
materials. Note that in the numerical code, the grating part is not necessary at the top
of the stack.
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2.2.2 Fourier Transformation of Permittivity and Pseudoperiodicity of
the Field

In the region Dc, the permittivity can be complex and is modulated periodically along the
x axis with a period denoted Dx, along y axis with a period denoted Dy. The permittivity
of the grating can be decomposed into Fourier series:

ϵc(x, y, z) =
+∞∑

m=−∞

+∞∑
n=−∞

ϵmn(z) exp (imKxx+ inKyy), (2.1)

where Kx is the lattice vector component along the x axis, Kx = 2π
Dx

; Ky is the lattice

vector component along the y axis, Ky = 2π
Dy

.
The incident plane wave has an unit amplitude and its wavelength in vacuum equals

to λ, it propagates in the medium Da and is incident on the interface between media Da

and Dc under the angle θ relative to the axis z. We consider the time harmonic case,
so that the time dependence exp(−iωt) can be skipped. We assume that the grating
surface is infinite. Due to the periodicity, the denoted total field F satisfies the following
relationship:

F(x+Dx, y +Dy, z) = exp (i(α0Dx + β0Dy))F(x, y, z), (2.2)

for further, it can be represented by the Fourier series with its Fourier components Fmn(z):

F(x, y, z) =

∞∑
n=−∞

∞∑
m=−∞

Fmn(z) exp (i(αmx+ βny)), (2.3)

with

αm = α0 +mKx, βn = β0 + nKy, (2.4)

The representation in Eq. 2.3 is called a pesudo-Fourier serie for the quasi-periodic total
field function.

Our aim will clearly be the determination of the function Fmn(z) , which corresponds
to the amplitude of the (m,n)-th diffraction order.

2.2.3 Rayleigh Expansions in the Substrate and Superstrate

As shown in Fig. 2.1, the substrate Ds and superstrate Da media are homogeneous, the
electromagnetic fields in these two areas F(a) and F(s) can be directly written in the form
of Rayleigh expansions:

F(a) = I exp[i(α0x+ β0y − γ
(a)
00 z)] +

∑
m,n

Rmn exp[i(αmx+ βny + γ(a)mnz)],

F(s) =
∑
m,n

Tmn exp[i(αmx+ βny − γ(s)mnz)] , (2.5)

where F stands for electric E or magnetic field H, and I, R, T are, respectively, the
incident, reflected or transmitted electric or magnetic fields. Meanwhile, the component
of the wavevector for the incident wave and the (m, n) diffraction order are given by:

α0 = k(a) sin θ cosφ, β0 = k(a) sin θ sinφ, γ
(a)
00 = k(a) cos θ, (2.6)
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αm = α0 +mKx, βn = β0 + nKy, γ(a,s)mn = [k(a,s)2 − α2
m − β2n]

1/2, (2.7)

where φ is the azimutal angle of incidence, k(a,s)2 = k20n
(a,s)2, and the sign of γ

(a,s)
mn should

be chosen such that
Re[γ(a,s)mn ] + Im[γ(a,s)mn ] > 0. (2.8)

2.3 Fourier Modal Method (FMM)

In order to determinate the field within the region Ds, we use the Fourier Modal Method,
which will be detailed in this section.

2.3.1 Introduction

The Fourier modal method (FMM) was at first proposed by Moharam and Gaylord in
198136 and has quite a long history in the field of rigorous diffraction modeling. The
general idea of FMM is the same as of the more general differential method and lies in
expanding all the electromagnetic quantities (for example, electric field E, magnetic field
H , permittivity tensor ϵ, permeability tensor µ) into the Fourier series. Starting from
the Maxwell equation, the field in substrate and superstrate can be written as Rayleigh
expansions, whereas inside the inhomogeneous (grating) region the Fourier components
depend on the z-coordinate. Maxwell equations are then transformed into an system
of infinite number of first-order ordinary differential equations. If the optogeometrical
parameters of the grating region are z-invariant, this system can be solved by the eigen-
values/eigenvectors technique. Then using the limit condition at the grating interfaces it
is possible to calculate the field everywhere.

In order to implement the theory and to find a numerical solution of the diffraction
problem, it is necessary to truncate the Fourier series and the number of equations. One
of the most important criterium in verifying the solution is a test of convergence with
respect to the truncation parameter.

The first formulations of both differential method and FMM suffered from the begin-
ning from slow convergence in the case of metallic gratings having 1D periodicity in TM
(transverse magnetic) polarization. In the 90s the reason for this slow convergence has
been established37–40. In fact, it is due to two factors: (i) growing exponential terms
corresponding to the evanescent diffraction orders, and (ii) inadequate factorization in
the Fourier space of the product of the permittivity and the electric field. The elimina-
tion of these two factors that spoiled the performance has been found in introducing the
so-called scattering (S) matrix propagation algorithm, and in establishing the so-called
inverse rule of Fourier factorization39. For gratings having 2D periodicity, in 2001, Popov
and Nevière41,42 presented a new general differential method but without implementation
details and numerical data for 2D periodical gratings.

In the grating region, we use the algorithm proposed by Li for 2D gratings43.
In 2003, Zeng et al44 presented a Fourier modal analysis of crossed anisotropic gratings

that permitted both the permittivity and permeability in the grating region to be tensorial
and assumed the grating structure is orthogonal in two periodic directions. This analysis
can be a good reference for our study and is used in describing the anisotropic planar
section of the structure. We first consider a general case, which means that there is no
restrictions on the permittivity and permeability tensors of the medium in the region Dl.
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2.3.2 Fourier Representation of Maxwell Equations

In chapter 1, we have explained that our research focus on a grating structure in which
both isotropic dielectric material grating, homogenous isotropic and anisotropic layers are
involved at the same time. We describe in the following how each case is treated in the
numerical code. We especially emphasize the case of the homogeneous anisotropic layer
which has been implemented in the code during the thesis.

2.3.2.1 Homogenous Anisotropic Layer

We start from the time-harmonic Maxwell Equation:

∇×H =
∂D

∂t
= −iωϵ0ϵrE

∇×E = −∂B
∂t

= iωµ0µrH, (2.9)

where E and H denote the complex vectors of electric and magnetic field, ϵ0 and µ0 are the

permittivity and permeability in vacuum, ϵr =

ϵ11 ϵ12 ϵ13
ϵ21 ϵ22 ϵ23
ϵ31 ϵ32 ϵ33

 and µr =

µ11 µ12 µ13
µ21 µ22 µ23
µ31 µ32 µ33


are the matrix form of permittivity and permeability tensors for a general anisotropic
medium.

The next step is to replace the electric field and magnetic field by their pseudo-Fourier
transform (Eq. 2.3). When projected on the coordinate axis, these equations lead to a set
of six coupled partial differential equations:

iβ[H]z −
∂

∂z
[H]y = −iωϵ0(ϵ11[E]x + ϵ12[E]y + ϵ13[E]z) (2.10)

−iα[H]z +
∂

∂z
[H]x = −iωϵ0(ϵ21[E]x + ϵ22[E]y + ϵ23[E]z) (2.11)

−iα[H]y − iβ[H]x = −iωϵ0(ϵ31[E]x + ϵ32[E]y + ϵ33[E]z) (2.12)

iβ[E]z −
∂

∂z
[E]y = iωµ0(µ11[H]x + µ12[H]y + µ13[H]z) (2.13)

−iα[E]z +
∂

∂z
[E]x = iωµ0(µ21[H]x + µ22[H]y + µ23[H]z) (2.14)

−iα[E]y − iβ[E]x = iωµ0(µ31[H]x + µ32[H]y + µ33[H]z), (2.15)

where ∂
∂x and ∂

∂y have been replaced by iα and iβ, α and β are diagonal matrices with

diagonal elements (α)mn = δmnαn ≡ δmn(α0+n
2π
Dx

) and (β)mn = δmnβn ≡ δmn(β0+n
2π
Dy

)

respectively. Here α0 (β0) is the x(y)-component of the propagation vector and δmn is the
Kronecker delta symbol. [F]a is a column vector containing the Fourier components of Fa

for F representing either the electric field or magnetic field and a being equal to x, y or z.
From Eq. 2.11 and 2.14 we can find that vectors [Ez] and [Hz] can be expressed in

term of [Ex], [Ey], [Hx], [Hy] only , which are the solution of the system of equations 2.10,
2.11, 2.13 and 2.14. They are listed as follow:

[E]z = − α

ωϵ0ϵ33
[H]y +

β

ωϵ0ϵ33
[H]x −

ϵ31
ϵ33

[E]x −
ϵ32
ϵ33

[E]y

[H]z =
α

ωµ0µ33
[E]y +

β

ωµ0µ33
[E]x −

µ31
µ33

[H]x −
µ32
µ33

[H]y, (2.16)
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then we substitute these two expressions into the other four equations and order to elimi-
nate [Ez] and [Hz]. We thus obtain a set of first-order differential equations of the form:

d

dz


[Ex]
[Ey]
[Hx]
[Hy]

 = M


[Ex]
[Ey]
[Hx]
[Hy]

 , (2.17)

where M is a known 4× 4 block matrix


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 with elements given as

follows:

M11 = −i(αϵ31
ϵ33

+
µ23β

µ33
)

M12 = −i(αϵ32
ϵ33

+
µ23α

µ33
)

M13 =
i

ωϵ0
[
αβ

ϵ33
+ k20(µ21 −

µ23µ31
µ33

)]

M14 =
i

ωϵ0
[
−α2

ϵ33
+ k20(µ22 −

µ23µ32
µ33

)]

M21 = −i(βϵ31
ϵ33

+
µ13β

µ33
)

M22 = −i(βϵ32
ϵ33

+
µ13α

µ33
)

M23 =
i

ωϵ0
[
β2

ϵ33
− k20(µ11 −

µ13µ31
µ33

)]

M24 =
i

ωϵ0
[
−αβ
ϵ33

− k20(µ12 −
µ13µ32
µ33

)]

M31 =
i

ωµ0
[−αβ

µ33
− k20(ϵ21 −

ϵ23ϵ31
ϵ33

)] (2.18)

M32 =
i

ωµ0
[
α2

µ33
− k20(ϵ22 −

ϵ23ϵ32
ϵ33

)]

M33 = −i(αµ31
µ33

+
ϵ23β

ϵ33
)

M34 = −i(αµ32
µ33

− ϵ23α

ϵ33
)

M41 =
i

ωµ0
[− β2

µ33
+ k20(ϵ11 −

ϵ13ϵ31
ϵ33

)]

M42 =
i

ωµ0
[
αβ

µ33
+ k20(ϵ12 −

ϵ13ϵ31
ϵ33

)]

M43 = −i(βµ31
µ33

− ϵ13β

ϵ33
)

M44 = −i(βµ32
µ33

+
ϵ13α

ϵ33
)
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These expressions are valid for the most general anisotropic case outside of the grating
slice, and then the diffraction problem is reduced to a boundary-value problem.

In the case of E-O material studied in the thesis, we consider the permeability to be
equal to µ0, without magnetic effects. So in this case, the matrix M can be written as:

M =


−α ϵ31

ϵ33
−α ϵ32

ϵ33
αβ

ωϵ0ϵ33
ωµ0 − α2

ωϵ0ϵ33

−β ϵ31
ϵ33

−β ϵ32
ϵ33

−ωµ0 + β2

ωϵ0ϵ33
− βα

ωϵ0ϵ33
−αβ
ωµ0

− ωϵ0(ϵ21 − ϵ23ϵ31
ϵ33

) α2

ωµ0
− ωϵ0(ϵ22 − ϵ23ϵ32

ϵ33
) βϵ23

ϵ33
αϵ23
ϵ33

−β2

ωµ0
+ ωϵ0(ϵ11 − ϵ13ϵ31

ϵ33
) αβ

ωµ0
+ ωϵ0(ϵ12 − ϵ13ϵ32

ϵ33
) βϵ13

ϵ33
−βϵ13
ϵ33


(2.19)

2.3.2.2 Homogenous Isotropic Layer

The homogenous isotropic layers such as the electrode, the buffer layer are the simplest
case. In these layers, the permittivity can be complex but is kept constant scalar, ϵ = n2,
and in most situations the permeability can be taken as µ = µ0. Thus in this case, the
matrix M can be written as:

M =


0 0 αβ

ωϵ0ϵ
ωµ0 − α2

ωϵ0ϵ

0 0 −ωµ0 + β2

ωϵ0ϵ
− βα

ωϵ0ϵ
−αβ
ωµ0

α2

ωµ0
− ωϵ0ϵ 0 0

−β2

ωµ0
+ ωϵ0ϵ

αβ
ωµ0

+ ωϵ0 0 0

 (2.20)

2.3.2.3 Isotropic Material Grating

In the case of a grating, as already explained, some cautions have to be taken when
factorizing the product of the permittivity and electric field. We do not detail here the
calculations which can be found in reference43. The system of equations can be set in a
form similar to Eq. 2.17 but where M contains the Fourier transform of the permittivity:

M =


0 0 α[[ϵ]]−1β k20 − α[[ϵ]]−1α
0 0 β[[ϵ]]−1β − k20 −β[[ϵ]]−1α
αβ α2 − k20⌈⌊ϵ⌋⌉ 0 0

k20⌊⌈ϵ⌉⌋ − β2 αβ 0 0,

 (2.21)

where we have introduced a notation [[.]] for the coefficients of the usual 2D Fourier
transform of ϵ, as defined by Eq.2.1:

[[ϵ]]mn,jl = ϵm−j,n−l, (2.22)

then two notations ⌈.⌉,⌊.⌋ defined by

⌈ϵ⌉mn =
1

Dx

∫ Dx

0
ϵ(x, y) exp[−i(m− n)Kxx]dx, (2.23)

⌊ϵ⌋mn =
1

Dy

∫ Dy

0
ϵ(x, y) exp[−i(m− n)Kyy]dy, (2.24)
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and at last two notations ⌊⌈.⌉⌋ and ⌈⌊.⌋⌉ defined by

⌊⌈ϵ⌉⌋mn,jl =
1

Dy

∫ Dy

0
{⌈1/ϵ⌉−1} × exp[−i(n− l)Kyy]dy

2, (2.25)

⌈⌊ϵ⌋⌉mn,jl =
1

Dx

∫ Dx

0
{⌊1/ϵ⌋−1} × exp[−i(m− j)Kxx]dx

2, (2.26)

2.3.3 Eigenvalue Problem

We already have done the operation of elimination of the field components [Ez] and [Hz]
in the previous subsection, so that Eq. 2.17 is transformed into an eigenvalue problem:

M


Exmn

Eymn

Hxmn

Hymn

 = γ


Exmn

Eymn

Hxmn

Hymn

 , (2.27)

where γ is the eigenvalue of Eq. 2.27, and each of (Ex,Ey,Hx,Hy) is represented as a
column vector of the corresponding Fourier coefficients. Each of these solutions of Eq.
2.27 is considered as a mode that propagates in z-direction, thus the adjective “ modal ”
in the name of the method.

During the programming, we set the truncation orders of the Fourier series with respect
to x and y as Nx = 2nx +1 and Ny = 2ny +1 respectively, where nx and ny stand for the
lower and upper limits of the sums in the truncated series, so thatM is a 4NxNy×4NxNy

matrix. All of the eigenvalues of M are divided into two sets according to the rule:
eigenvalues with positive imaginary parts are put in set Σ+, eigenvalues with negative
imaginary parts are put in set Σ−, the real eigenvalues are distributed between Σ+ and
Σ− according to the sign of their real part. The eigenvalues belonging to sets Σ+ and Σ−

are denoted by γ+l and γ−l respectively, where l runs from 1 to 2NxNy.
Thus the Fourier coefficients of the field within the region Dc can be written as:

Exmn

Eymn

Hxmn

Hymn

 =
(
W+

mnl W−
mnl

)(eiγ+z 0

0 eiγ
−z

)(
Ul

Dl

)
, (2.28)

where Exmn is NxNy×1 column vector, the same is valid for the other three vectors at the
left, W±

mnl are 4NxNy × 2NxNy matrices containing the the eigenvectors of Eq. 2.27. The
propagating factors containing complex exponentials of the eigenvalues with positive or
negative imaginary parts are organized in two diagonal 2NxNy × 2NxNy matrices respec-
tively. Ul and Dl are unknown modal field amplitudes at z = 0 in the form of 2NxNy × 1
column vectors.

2.4 Propagation Algorithm

In order to determine the modal field amplitudes U and D, we need the help of a propa-
gation algorithm that avoids the growing exponential terms, as already mentioned above.
In this section, we will demonstrate how to pass from the transfer matrix algorithm to the
scattering matrix algorithm in succession.
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2.4.1 T - Matrix Algorithm

During the grating modeling, a stack of successive layers is always studied by a separate
analysis in each layer. At the interface between two consecutive layers, the conditions of
continuity of the tangential components of the electric and magnetic fields result in a ma-
trix equation that binds the complex amplitudes of the fields on both sides of the interface.
The amplitudes of the different orders in transmission and reflection for the whole grating
structure can be obtained by multiplying the transfer matrices of the different layers. This
direct approach is so called “ T - matrix ” algorithm.

Figure 2.2 : Schematic representation and notations used for propagation of the modes
in a grating structure.

Figure 2.2 is a schematic presentation of a layered grating stack, the field in each
layer has been represented as upward or downward propagating and decaying waves. The
notations U and D are column vectors whose elements represent the up- and down-going
wave amplitudes. Thus the grating problem was divided into two separate problems: the
eigenmode problem and the problem of determining the mode amplitudes. According to
the continuity conditions at the interface z = zp, between the layer p and p− 1, we obtain
the following equation:

W(p+1)

[
U(p+1)(yp + 0)

D(p+1)(yp + 0)

]
= W(p)

[
U(p)(yp − 0)

D(p)(yp − 0)

]
, (2.29)

where matrix W contains the eigenvectors of the Eq. 2.27. The propagation between two
successive interfaces can be described by the transfer matrix:[

U(p)(yp − 0)

D(p)(yp − 0)

]
= ϕ(p)

[
U(p)(yp−1 + 0)

D(p)(yp−1 + 0)

]
, (2.30)

where ϕ(p) =

[
exp(iγ

(p)+
m hp) 0

0 exp(iγ
(p)−
m hp)

]
and the exponential functions are the com-

ponents of diagonal matrices. It is necessary to mention that all eigenvalues with positive
or negative imaginary parts are separated equally into two set Σ+ and Σ−. And also
hp = zp − zp−1 stands for the thickness of the pth layer.

From the Eq. 2.29 and 2.30 we can get the relationship between the field amplitudes
in the two layers, written in following form:[

U(p+1)(yp + 0)

D(p+1)(yp + 0)

]
= (W(p+1))−1W(p)ϕ(p)

[
U(p)(yp−1 + 0)

D(p)(yp−1 + 0)

]
(2.31)



26 2.4 Propagation Algorithm

We can note that t(p) = (W(p+1))−1W(p) represents the interface transfer matrix t(p)

between layer p and p + 1. Meanwhile, the matrix t(p)ϕ(p) represents the layer transfer
matrix across the pth layer.

So if we consider the grating structure with the n layers, we can establish a relationship
between the fields on both sides of the grating by a transfer matrix written as:[

U(n+1)

D(n+1)

]
=

n∏
i=1

t(i)ϕ(i)t(0)
[
U(0)

D(0)

]
(2.32)

However this algorithm has a serious defect, when the layer thickness or the number of
layers increases, and due to the growing exponentials, the product of these sub-matrices
t(i)ϕ(i) can lead to significant numerical errors42. The cause of them45,46 is the loss of
significant digits when handling exponential functions which describe the propagation of
different modes within the grating. To solve this numerical problem, the “ Scattering-
matrix propagation ” (“ S - matrix ”) algorithm has been introduced40,47.

2.4.2 Introduction and Definition of the S - Matrix

The S - matrix algorithm permits to avoid the loss of the significant digits during the
calculations. For a certain grating stack of n layers, a matrix S can be constructed to link
the amplitudes of the field in the layer p+1 and in the incident medium 0. It needs to be
emphasized that S(p) stands for the matrix of stack with p slices as marked in Fig. 2.2,
and not only the matrix of the pth slice in the stack. For a stack of p layers shown in Fig.
2.3, the scattering matrix of this stack can be written as:

Figure 2.3 : The scattering matrix of a p layers stack.

[
U(p+1)

D(0)

]
= S(p)

[
U(0)

D(p+1)

]
(2.33)

It must also be divided into a 2× 2 blocks matrix as Eq. 2.34 shown:

S(p) =

[
T

(p)
uu R

(p)
ud

R
(p)
du T

(p)
dd

]
, (2.34)

this block form of S matrix operates with two inputs and generates two outputs in the

layer 0 and (p+1). For example, sub-matrices T
(p)
dd is a transmission part, which gives the
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amplitude of the orders transmitted downwards in layer 0, and generated by an incident

wave in the layer (p+1)th from above and penetrating through the first p layers, while R
(p)
ud

means the reflection matrix, which gives the amplitudes of the waves propagating upwards
in the medium (p+1) and generated by the incident wave propagating downwards in layer
(p+ 1).

We will present out the construction of the matrix S(p) in the next subsection and in
Appendix 1.

2.4.3 Construction of the S-Matrix

By assuming the simpler case that there is no upward incidence in the medium 0 as in the
Fig. 2.4, we can find two sub-matrices of S - matrix.

Figure 2.4 : A simple case of scattering matrix for p layers stack.

If U(0) is null, then from Eq. 2.34 it is easy to get:

U(p+1) = R
(p)
udD

(p+1) (2.35)

D(0) = T
(p)
dd D

(p+1).

The detailed derivation of the R
(p)
ud and T

(p)
dd is given in Appendix 140,47. We have:

R
(p)
ud = [t

(p)
11 Ω

(p) + t
(p)
12 ][t

(p)
21 Ω

(p) + t
(p)
22 ]

−1

T
(p)
dd = t

(p−1)
11 [ϕ

(p)
− ]−1(t

(p)
21 Ω

(p) + t
(p)
22 )

(2.36)

where ϕ
(p)
+ and ϕ

(p)
− are the two set of exponential functions matrix ϕ(p) that we have

introduced before, and Ω(p) = ϕ
(p)
+ R

(p−1)
ud [ϕ

(p)
− ]−1 is introduced in order to simplify the

equation.

The remaining two blocks R
(p)
du and T

(p)
uu can be obtained similarly by considering no

incident wave in the medium p+ 1th and an incident wave in the medium 0:

T
(p)
uu = [t

(p)
11 −R

(p)
ud t

(p)
21 ]ϕ

(p)
+ T

(p−1)
uu

R
(p)
du = R

(p−1)
du −T

(p)
dd t

(p)
21 ϕ

(p)
+ T

(p−1)
uu .

(2.37)
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2.5 Calculation of the Diffracted Field and Efficiencies

In this part, we want to describe several functions of the program, which mainly refer to
the diffraction efficiency calculation.

2.5.1 Notations

Figure 2.5 : Notations of coordinate system and incidence wave used for efficiency
calculation.

First, when the coordinate system is set as shown in Fig. 2.5, the incident wave vector,
normalized with respect to the wavevector in vacuum k0, can be written naturally as:

k̂i = (α̃0, β̃0,−γ̃0) , (2.38)

where α̃0, β̃0, γ̃0 are the components of the incident wave vector along x, y, z direction
respectively, normalized by k0. Second, we choose an unity vector ês (Eq. 2.22) that is
perpendicular to k̂i and the z-axis, and corresponds to an incidence with polarization s,
which means that the electric field vector is perpendicular to the plane of incidence.

ês =
1√

α̃2
0 + β̃20

(−β̃0, α̃0, 0) (2.39)

Third, these two vectors, accompanied by another unity vector êp which corresponds
to the direction of p polarization, compose an orthogonal triad. The components of êp can

be found by calculating the cross product of vector k̂i and ês:

êp = k̂i × ês =
1√

α̃2
0 + β̃20

(α̃0γ̃0, β̃0γ̃0, α̃
2
0 + β̃20) (2.40)

2.5.2 Incident Field Representation

In the cladding Da, we assume that we have a single incident plane wave FI , which has
only two non-zero elements in the Fourier space of 2NxNy dimensions. At the same time,
because we want to analyze simultaneously the incidence with two different polarizations,

the vector FI takes two different forms, F
(s)
I and F

(p)
I , which stand for incidence with s

and p polarization, respectively:
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F
(s)
I =



...

E
(s)
00,x
...
...

E
(s)
00,y
...


, F

(p)
I =



...

E
(p)
00,x
...
...

E
(p)
00,y
...


. (2.41)

Here, E00,x and E00,y are the amplitudes of the incident electric field Ex and Ey, and their
positions in the vector are numbered 2nxny+(nx+ny+1) and 2nxny+(nx+ny+1)+NxNy,
respectively.

2.5.3 Representation of Reflected and Transmitted Fields

Similar to the presentation of the incident field, we can also denote the reflected field FR

and transmitted field FT at the top or bottom of the grating stack as:

FR =



E−NxNy ,x
...

Emn,x
...
...

Emn,y
...

ENxNy ,y


, FT =



E−NxNy ,x
...

Emn,x
...
...

Emn,y
...

ENxNy ,y


. (2.42)

The matrix S gives the link between the incident and the diffracted amplitudes:

FR = RudFI , FT = TddFI . (2.43)

There also exist two solutions for the reflected and transmitted field, each corresponding
to s and p polarizations obtained with the two incident fields as given in the previous
subsection. It should be stressed that the two solutions are obtained using the same S-
matrix submatrices. The remaining z-components of the field can be calculated according
to the Maxwell equations using the values of the other two components Ex and Ey, as
discussed in the next subsection.

2.5.4 Efficiency Calculation

As usually, the diffraction efficiency is defined as the energy flux in direction perpendic-
ular to the grating plane carried away by the corresponding diffraction order, divided
by the same quantity of the incident wave, i.e. as the ratio of the z-components of the
Poynting vectors of the diffracted and incident waves. Because of the anisotropic layer,
the incidence wave with linear polarization can generate both TE and TM modes in the
guiding-wave layer. For this reason, we calculate and present in the next chapters four
different efficiencies Rss, Rsp, Rps, Rpp instead of only one total reflection efficiency Rtotal.
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These four variables refer to:
-Rss means the ratio of s polarized reflection energy and the incidence energy with s po-
larization;
-Rsp means the ratio of p polarized reflection energy and the incidence energy with s po-
larization;
-Rps means the ratio of s polarized reflection energy and the incidence energy with p po-
larization;
-Rpp means the ratio of p polarized reflection energy and the incidence energy with p po-
larization.

If the electric field amplitude of the incidence wave vector Êinc equals to 1, then its
components for an arbitrary linearly polarized wave can be rewritten in the xyz coordinate
system as:

Êinc = cosψês + sinψêp = (Ex, Ey, Ez)

Ex =
1

k0
√
α2
0 + β20

(−k0β0 cosψ + α0γ0 sinψ) (2.44)

Ey =
1

k0
√
α2
0 + β20

(k0α0 cosψ + β0γ0 sinψ)

Ez =
1

k0
√
α2
0 + β20

((α2
0 + β20) sinψ)

The magnetic field vector can be found for each order with wave vector k by:

H =
1

ωµ
k ∧E (2.45)

• For the incident wave, (kz = −|γ| < 0), the magnetic field x and y components are
expressed, respectively:

Hx =
1

ωµ
(βEz + |γ|Ey)

Hy =
1

ωµ
(−|γ|Ex − αEz) (2.46)

and then Poynting vector z component equals to:

Pinc =
1

2
Re(ExHy − EyHx)

• For the reflected field component, (kz = |γ| > 0), so that the x and y components of
magnetic field vector and the z component of the electric field can be expressed as:

E+
z = − 1

|γ|
(αE+

x + βE+
y )

H+
x =

1

ωµ
(βE+

z − |γ|E+
y ) (2.47)

H+
y =

1

ωµ
(|γ|E+

x − αE+
z )
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and then the Poynting vector in z direction can be expressed as:

Pref =
1

2
Re(E+

x H
+
y − E+

y H
+
x )

(2.48)

The total reflected efficiency is then obtained by:

R =
Pref

Pinc
(2.49)

• For the part in transmission, (kz = −|γ| < 0), the x and y components of magnetic
field vector and the z component of the electric field can be expressed as:

Ez =
1

|γ|
(αEx + βEy)

Hx =
1

ωµ
(βEz + |γ|Ey) (2.50)

Hy =
1

ωµ
(−|γ|Ex − αEz)

then the Poynting vector in z direction and transmitted efficiency can also be ob-
tained in the same way as in reflection.

When we are interested in the polarization states of the propagative order and, in
particular, in the conversion of polarization, it is necessary to separate both the incident
and the diffracted electric fields into two orthogonal polarizations s and p with respect to
the plane containing the direction of propagation and the (Oz) axis:

Es = (ês.E)ês,

Ep = E−Es. (2.51)

Note that the same vector ês can be used to describe the s polarized field for the incident,
reflected or transmitted wave.

The s and p components of the magnetic field vector can be found for each order with
wave vector k:

Hs =
1

ωµ
k ∧Es ,

Hp =
1

ωµ
k ∧Ep . (2.52)

Then the Poynting vector z component can be separated in two parts corresponding
to the s and p polarizations:

P = Pp + Ps

Ps = − 1

2
Re(EsHs) (2.53)

Pp =
1

2
Re(EpHp)
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The reflective efficiency can be calculated:

Rss =
Ps,ref

Ps,inc
, Rsp =

Pp,ref

Ps,inc

Rps =
Ps,ref

Pp,inc
, Rpp =

Pp,ref

Pp,inc
(2.54)

2.6 Validation of the Numerical Code

The results of the calculation for arbitrary anisotropic layer without the grating structure
(denoted as SD in the table) have been compared with G. Tayeb’s program (GT). The nu-
merical experiment uses a “substrate + layer + superstrate ” structure, having wavelength
of the normally incident plane wave equal to 1550nm, with either s or p polarization. The
permittivities for the results given in the Table were take as:

ϵa = 1.44, ϵs = 1.69, ϵc =

 2 0.25 0.15
0.25 4 0.35
0.15 0.35 3



Table 2.1 : The comparison of the efficiency calculation.

Rss Rsp Tss Tsp

GT 0.2993540737 0.10094275E-02 0.6445701967 0.550663020E-01

SD 0.29935407 0.100942725E-02 0.64457020 0.55066302E-01

Rps Rpp Tps Tpp

GT 0.35958481E-02 0.120529657E-01 0.9273450306 0.570061556E-01

SD 0.35958481E-02 0.12052966E-01 0.92734503 0.57006156E-01

We have also used different values of the permittivity tensor components and compared
the efficiencies, the results always coincide, even with asymmetrical permittivity tensor,
which gave gains or losses.

Other tests were performed against existing independent numerical codes in the case
of isotropic media.

In the case of anisotropic layers and grating structures, modelized in the next chap-
ters, we have made test for energy balance, convergence with respect to the truncation
parameters, and tests for fulfillment of the requirements of the reciprocity theorem.

2.7 Conclusion

In this chapter, we have briefly explained the method for numerical modeling and also
the process of program realization. The works in the following two chapters are mostly
based on this numerical code, in which the Fourier Modal Method is used to calculate
the distribution of electromagnetic field in both reflection and transmission, giving the
possibility to calculate diffraction efficiencies in normal or oblique incidences and different
polarizations. To analyze the performance of a given filter structure, we need this program
to locate the center wavelength of resonant peak, to calculate the linewidth and the angular
tolerance.
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However, this program also has its limits: it can deal with a structure consisting of
isotropic, anisotropic layers and isotropic grating but it does not give the possibility to
model gratings structures fabricated inside the anisotropic material. The second limitation
is that it is not made for structures with periodicity in two non-orthogonal directions.
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3.1 Introduction

Lithium Niobate (LiNbO3) is a ferroelectric material suitable for a variety of applica-
tions48,49. Its excellent electro-optic, nonlinear, and piezoelectric properties has made of
it one of the most thoroughly characterized and widely applied material50. For specific
electro-optic applications, its large E-O coefficients and low half-wave voltage51 are always
utilized for optical modulation and Q-switching of infrared wavelengths.52–54

In this chapter, we present a theoretical study of the properties of a guided mode
resonance (GMR) grating including a layer of LiNbO3. The aimed application is narrow
band tunable spectral filtering, thus we focus on the spectral tunability performances, but
also on the behavior of the filter with respect to the polarization and angular divergence of
the incident beam. The approach we used is the following: using the 2D“doubly periodic”
grating structure in order to improve the angular acceptance of the filter; introducing a
layer of electro-optic material LiNbO3 as guiding layer (in which the field of the guided
mode is maximum), in order to maximize the guided mode sensitivity to the changes of
the permittivity tensor of LiNbO3; using two layers of ITO as electrodes to apply external
voltage. The structure is illuminated under normal incidence to ensure both polarization
independence with respect to the incident field and optimized angular acceptance, at least
when no voltage is applied.

When the external voltage is adjusted, it modifies the permittivity tensor of LiNbO3

and thus the guided mode. This results, as desired, in a spectral shift of the resonant
peak. However, some complementary questions arise: what spectral tunability magnitude
can we get, what is the best configuration, does it break the polarization independence
property, does it modify the angular acceptance?

First, we present the E-O characteristics of the LiNbO3 and our choice of the orienta-
tion of the crystal with respect to the applied static electric field in order to maximize the
change of the permittivity tensor εLiNbO3 ; Second, the structure under study is presented
in detail and the reason for choosing this specific design is explained; Then, the behavior
of the resonance peak when a static voltage is applied is studied. The TE and TM guided
mode resonance cases are compared. The important features such as spectral and angular
widths, spectral tunability and modification of the peak with respect to the incident po-
larization are addressed in detail. Finally, some information concerning the manufacturing
of the device is mentioned at the end of the chapter.

3.2 Electro-Optic Effect in LiNbO3

In this part, we recall the electro-optic properties of LiNbO3. We deduce from the values
of the E-O coefficients of the LiNbO3 the adequate orientation of the crystal with respect
to the applied static electric field, and we study how the permittivity tensor εLiNbO3 is
modified in this configuration.

3.2.1 Physical and Optical Properties of LiNbO3

Lithium Niobate has a 3m point group-symetry (symetry axis is the c-axis), thus it is a
uniaxial anisotropic crystal. Some of its physical properties are enumerated in table 3.1.
We observe that LiNbO3 has interesting properties that make it suitable for optoelec-
tronic applications: its large transparent spectral range, from 450nm to 5200nm, which
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covers from visible to infrared light; its high refractive index; and its low absorption co-
efficient. Many investigations55,56 focused on its physical and mechanical properties have
been continued for decades aimed to improve its properties for applications.

For our purpose, the interesting property is the strong E-O coefficients which are shown
in the last row of table 3.1. Because LiNbO3 is a crystal with a 3m point-group symmetry,
only eight elements of the E-O tensors are non-null, with only four values. These elements
are as follows57:

r12 = r61 = −r22, r33, r51 = r42, r13 = r23. (3.1)

Table 3.1 : Physical properties of Lithium Niobate.58

material LiNbO3

symmetry system 3m

transparency band(nm) 450 - 5200

absorption coefficient 0.1%/cm at 1064nm

no=2.211, ne=2.138 at 1550 nm
refractive index no=2.322, ne=2.156 at 1064 nm

no=2.286, ne=2.203 at 632.8 nm

Sellmerier equations n2o(λ) = 4.9048 + 0.11768/(λ2 − 0.04750)− 0.027169λ2

λ in µm n2e(λ) = 4.5820 + 0.09917/(λ2 − 0.04443)− 0.021950λ2

r33=30.8, r13=8.6
E-O coefficients (pm/V) r22=3.4, r51=28

According to the Sellmerier equations in table 3.1, we can calculate the refractive
indexes values at upper and lower limit of the wavelength range λ = [1400nm, 1700nm],
and their deviation with respect to those at 1550nm:

• λ= 1400nm: no=2.2165, ne=2.1426 deviation ∆no= 2.5% , ∆ne=2.2%

• λ= 1700nm: no=2.2095, ne=2.1366 deviation ∆no= 2.1% , ∆ne=1.9%.

The effect of the dispersion of the reflective indexes can be neglected, during the simulation,
we can always use the value at 1550nm.

3.2.2 Electro-optic Effect in LiNbO3

In Chapter 1, we have recalled the useful tools to study the effect, on the permittivity
tensor of an electo-optic material, when applying an external static electric field. Here, we
apply this theory to the particular case of LiNbO3.

When no voltage is applied, LiNbO3 is a uniaxial crystal with optical c-axis chosen
along z, whose extraordinary ne and ordinary no refractive index are given in table 3.1.
In the orthogonal (x, y, z) system (x and y are chosen freely in the plane perpendicular to
z = c), its index ellipsoid writes as

(
x2 + y2

n2o
+
z2

n2e
) = 1 , (3.2)

and is represented in figure 3.1.
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Figure 3.1 : Refractive index ellipsoid of LiNbO3.

The optical axis Oz is a symmetry axis and in the xy plane the material behaves as
an isotropic medium.

In our study, only the linear term of the E-O effect, corresponding to the Pockels effect,
is taken into account. So, when an external electrical field E⃗ = (Ex, Ey, Ez) is applied
on the layer of LiNbO3, the index variation due to the E-O effect will be given by the
following tensorial expression:

∆( 1
n2 )1

∆( 1
n2 )2
·
·
·

∆( 1
n2 )6

 =



0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
−r22 0 0


Ex

Ey

Ez

 , (3.3)

where ∆( 1
n2 )i is the variation of the ith element of the inverse square of the index matrix,

as introduced in Chapter 1. The expression of this matrix is:

(
1

ñ2
) =


1
n2
x
+∆( 1

n2 )1 ∆( 1
n2 )6 ∆( 1

n2 )5

∆( 1
n2 )6

1
n2
y
+∆( 1

n2 )2 ∆( 1
n2 )4

∆( 1
n2 )5 ∆( 1

n2 )4
1
n2
z
+∆( 1

n2 )3

 , (3.4)

and the index ellipsoid equation writes as:

(
1

n2o
− r22Ey + r13Ez)x

2 + (
1

n2o
+ r22Ey + r13Ez)y

2 + (
1

n2e
+ r33Ez)z

2 (3.5)

+2r51Eyyz + 2r51Exzx− 2r22Exxy = 1.

This equation is valid when a static electric field with components along x, y and z is
applied. In the following, we will chose a particular direction for the static electric field, a
priori the most convenient for our purpose.
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3.2.3 Crystal Orientation and Variation of Permittivity

The question of the choice of the orientation of the crystal is not trivial. We have to
consider the spectral tunability that can be achieved, the possibility to preserve the po-
larization independence property of the filter, and at last, the possibility to manufacture
the structure. The second and third points will be treated in Sections 3.4 and 3.5. The
orientation that will give the greatest tunability is not so obvious. Indeed, in general,
the index ellipsoid changes in form and orientation when a static field is applied, and the
consequence on the effective index of the guided modes that can propagate is not direct.
We will illustrate this point in the chapter describing BaTiO3. Moreover, it would be
necessary, in order to quantify the magnitude of the modification of the index ellipsoid, to
introduce a scalar parameter, that is to say a figure of merit (FOM). This could be for ex-
ample, as in reference59, the optical index in the crystal proper axis that varies the most.
Yet, this approach may be not suitable for our purpose (the guided mode propagation
problem).

In the case of LiNbO3, we can observe in table 3.1 that the greatest E-O coefficients is
r33 which is involved if the static electric field is applied along the oz axis. Thus, intuitively,
we think that the greatest tunability will be obtained if the static electric field is applied
along z. The r51 coefficient, whose value is close to that of r33, would be involved for a
field applied along Oy or Ox. Yet, in this configuration, the material becomes anisotropic
in the plane perpendicular to the axis along which the electric field is applied, which is
not suitable for the polarization independence property of the filter, as it will be seen
latter. Thus we turn the electro-optic crystal so that the direction that corresponds to
the ordinary refractive index no is perpendicular to the static electric field and that of the
extraordinary refractive index ne is parallel to it, as illustrated in Fig. 3.2.

Figure 3.2 : Arrangement of the crystal and the applied static electric field. The applied
field E and the c-axis of the crystal are parallels.

Two electrodes are used to apply the external field, the c-axis of LiNbO3 and the static
electric field direction are both along the z direction. When the electrical field (0, 0, Ez)
is applied, the largest E-O coefficient r33 is involved, together with r13. Eq. 3.5 can be
simplified into:

(
1

n2o
+ r13Ez)x

2 + (
1

n2o
+ r13Ez)y

2 + (
1

n2e
+ r33Ez)z

2 = 1. (3.6)

From this equation it can be observed that the orientation of the index ellipsoids does
not change, but the values of the ellipse’s radii vary, the one along x remaining equals to the
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one along y. Hence, LiNbO3 under an electric field along z still keeps its uniaxial negative
characteristic with optical axes along z, but with different refractive index values. The
conservation of the isotropy in the xy plane is very interesting for our filtering application
purpose, especially concerning the polarization independence property.

According to the relationship between the refractive index and the permittivity tensor,
[ε

′
] = [n

′2], we can calculate the new permittivity ε
′
. From the Eq. 3.6 we get:

[
1

n′2
] =


1
n2
o
+ r13Ez 0 0

0 1
n2
o
+ r13Ez 0

0 0 1
n2
e
+ r33Ez

 , (3.7)

then we inverse the matrix [ 1
n′2 ] and get the new permittivity εLiNbO3:

εLiNbO3 =


n2
o

1+r13Ezn2
o

0 0

0 n2
o

1+r13Ezn2
o

0

0 0 n2
e

1+r33Ezn2
e
.

 (3.8)

We find again that the crystal remains uniaxial with its optical axis along z. We show
the variation of the permittivity tensor coefficients with respect to the applied voltage in
Fig. 3.3:

Figure 3.3 : The change of the permittivity elements under the condition of external
static electric field applied along z direction. Circle, star and triangle marks correspond
to ε11, ε22, ε33 respectively.

In this simulation, the thickness of LiNbO3 layer is equal to 350nm, the external
voltage varies from -10V to 10V, so the range of intensity of the static electric field is
[-2.86, 2.86]×107 V/m, which is less than the breakdown limit of the material (see table
3.1).

We can find that the three coefficients decrease as the voltage increases. At the wave-
length 1550nm, the permittivities ε11 and ε22 change from 4.8894 at 0V to 4.8835 at 10V,
and ε33 changes from 4.5715 to 4.5532. The variation of ε33 is larger than that of ε11 and
ε22 in the same condition of variation of V . This is due to the difference between the r33
and r13 coefficients.

As a conclusion, by now, we have presented the E-O effect in LiNbO3 and the orien-
tation we have chosen for the LiNbO3 layer. Applying the external electrical field along
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the z direction and orienting the LiNbO3 layer to make its optical axis parallel to z in-
volves the greatest E-O coefficient. Intuitively, we believe that this is the most convenient
configuration for tunability. Moreover, in that case, the layer remains isotropic in the xy
plane, which is important for the polarization independence property of the filter.

3.3 Design of the Structure

In the present Chapter, the aim is the study of the properties of a resonant grating filter
including an E-O layer of LiNbO3. For this study to be relevant for applications, we have
chosen to work with a structure which presents the following properties:

1. A controllable narrow reflection band (resonant peak);

2. A maximal reflective efficiency for the center wavelength and a low sideband;

3. A large angular tolerance as compared to the divergence of a standard incident beam;

4. An independence with respect to the polarization of the incident wave.

We have designed a filter structure based on a two-dimensional grating on the top of
a stack of dielectric layers including a layer of LiNbO3. In this section, we will mainly
introduce this filter structure from conception to constitution.

3.3.1 Composition of the structure

Figure 3.4 : The schematic diagram of the optimized GMR filter’s structure based on
LiNbO3.
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Table 3.2 : Material’s permittivity of each layer at 1550nm.

Layer number Material Permittivity Thickness

0 (substrata) Silica εSiO2 = 2.082

1 ITO εITO = 1.613 50nm

εx,y = 4.89
2 LiNbO3 εz = 4.57 -

3 ITO εITO = 1.613 50nm

4 HfO2 εX = 3.24 100nm

εX = 3.24
5 HfO2 and air εair = 1.00 419.5nm

6(superstrata) air εair = 1.00

As shown in Fig.3.4, the stack is composed of a silica substrate, a layer of E-O material
LiNbO3, which will be the guiding layer (its thickness depends on the configuration), and
a grating etched in a HfO2 layer. HfO2 has been chosen for its low refraction index
with respect to LiNbO3, so that the guided mode can have its field maximum in the
LiNbO3 layer. Two layers of ITO (indium tin oxide) surrounding the LiNbO3 layer will
be used as electrodes to apply the external electrical field. The ITO is a well known
conducting oxide material which presents advantages in both electrical conductivity and
optical transparency. Meanwhile, it is also easy to be deposited as a thin film60. In the
spectral region on which we focus, ITO presents a small absorption character (k=0.02 at
1550nm)61. In the following, we focus on studying the physical aspect of the resonance
phenomenon in LiNbO3 based GMR filter. Hence, for the sake of simplicity, we ignore, for
this first study, the imaginary part of the index of ITO during the simulation. Latter in
the section concerning the manufacture, we will explain what kind of deposition method
allows to minimize the absorption coefficient of ITO.

The grating is 2D and illuminated under normal incidence, in order to obtain the
polarization independence property, and the pattern is “doubly-periodic” to optimize the
angular tolerance.

All the structures studied in the following have the same composition but with different
parameters, which are all given in the Appendix-2.

In the next paragraph, we detail the rules we used to optimize the parameters of theses
structures.

3.3.2 Rules for Tunable GMR Filter Designing

We first present a brief reminder of the link between the parameters of the structure and
its optical properties, and the design rules that follow from it. Then, we emphasize the
supplementary step brought in the design process by taking into account the E-O effect
and the purpose of tunability.

Some of the filter properties can be deduced from the study of the equivalent homo-
geneous structure as defined in Chapter 1. The reflectivity outside resonance is given by
the reflectivity of the equivalent homogeneous structure. Hence, in order to obtain a low
sideband, the whole filter should be a stack that forms an antireflection structure. Here,
the main layers are E-O material layer, 2D grating layer and isolating layer, so it can
be considered as a three layers stack, where the two layers of ITO electrode have been
neglected, because of its thin thickness. From the coupling condition, the position of the
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peak depends linearly both on the effective index of the guided mode of the equivalent
structure and on the grating period. As a consequence, modifying the stack will modify the
center wavelength of the filter. However, it can also be shifted at the desired wavelength
simply by changing the grating period while conserving the holes radii versus period ratio.
One has in addition to keep in mind that in order to avoid energy losses, one diffraction
order only (zero order) must be propagative in the substrate and superstrate. Hence, the
grating period must be smaller than the incidence wavelength (sub-wavelength grating).
The last two important features are the spectral bandwidth and the angular tolerance.
They depend on the field of the guided mode that is excited, on the grating thickness and
on the grating pattern.

From these rules, we can deduce a first set of parameters, and calculate the angular and
spectral bandwidths of the structure. Then an iterative optimization process can begin:
(1). Optimization of the thickness of the grating in order to adjust the spectral bandwidth.
(2). Optimization of the pattern in order to maximize the angular bandwidth versus
spectral bandwidth ratio.
(3). Optimization of the period; All the above steps modify the center wavelength of the
filter. It can be re-adjusted by varying the grating period.

In addition to this procedure, because of the tunability requirement, a supplementary
step has to be included in this optimization process. Indeed, the achievable tunability may
depend on the profile of the guided mode field in the E-O layer. In the next paragraph, we
study the influence of the guided mode order and the distance from cut-off on the tunability
of the resonance peak. These features can be adjusted by changing the thickness of the
LiNbO3 layer, which requires repeating again the optimization procedure described herein.

3.3.3 Influence of the Profile of the Guided Mode Field

We start by studying the evolution of the guided modes of an equivalent planar structure
(namely structure 3.1 in the Appendix 2) when the thickness of the LiNbO3 varies. We
plot on Fig. 3.5 the amplitude of the reflected electric field as a function of the thickness
h of the LiNbO3 layer and the normalized x-component of the in-plane wave vector. We
observe several bright curves corresponding to modes of different orders and polarization
excited in the structure. Note that as the structure is isotropic in the xy plane, the modes
are either TE or TM.

It is obvious that when the LiNbO3 layer thickness increases, the number of modes in
the layer augments. The choice of the guided mode propagation constant α̃g (normalized
with respect to the wavenumber in vacuum) and the thickness of the layer determine the
profile of the mode field, and thus the properties of the resonance peak. In order to study
the influence of the mode field profile, we take the TE mode as an example and choose
four typical points which are indicated on Fig.3.5:
(1). point A, thin layer thickness (h = 0.15 µm, α̃g = 1.69 ), first order mode;
(2). point B, moderate layer thickness (h = 0.35 µm, α̃g = 1.91), first order mode;
(3). point C, thick layer thickness (h = 0.55 µm, α̃g = 2.02), first order mode;
(4). point D, thick layer thickness (h = 0.55 µm, α̃g = 1.57), second order mode.
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Figure 3.5 : The reflected electric field with respect to the thickness of the LiNbO3 layer
and the normalized x-component of the in-plane wave vector.

For these four situations, we firstly adjust the grating period to locate the resonant
peaks at the same wavelength range, with the purpose of analyzing the effect of the mode
field profile on the tunability under the same condition (the parameters are given in the
Appendix 2, Fig. 5.3, 5.4, 5.5).

Fig. 3.6 shows the reflectivity spectrum for each working point, without and with a
1.4 × 107V/m applied electrical field. The tunabilities are 0.53nm, 0.81nm, 0.88nm and
0.56nm respectively for points A, B, C and D. Points A and D correspond to modes quite
close to the cut-off. Their field may be less confined in the LiNbO3 layer than modes B
and C, which may explain their lower tunability. The fact that the tunability for point C
is slightly greater than for point B supports this conclusion. The order of the mode seems
not to be relevant since point A and D have quite the same tunability.

The best choice of the working point is finally made according to the total performance
of the structure, taking into account the interaction imposed by the grating. From this
point of view, the resonant peak property at point B is the best among these four points.
Its peak width is the smallest (Q ≃ 15000) and the tunability is larger than for points A
and D. Point C holds these two similar characters as point B, but its sideband is obviously
higher than point B, which it’s not suitable for application. Thus for the study in the next
section, we choose the structure which corresponds to the point B.
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Figure 3.6 : The comparison of resonance peak and tunability with different points in
the mode profile.

3.4 Detailed Study of the Tunability Properties of the Struc-
ture

The brief comparative study of the mode structure in the previous section allows us in
this section to first study in detail the center wavelength shift with respect to the applied
voltage. Then, we focus on the spectral shape with respect to the incident polarization,
with and without voltage applied. Last, we study the reflectivity versus the angle of
incidence for different planes of incidence. For these three points, we compare the TE
mode and the TM mode that can be seen in Fig. 3.5 close to point B.

3.4.1 Tunability as a Function of the Applied Voltage

In this part, we want to discuss the relationship between the shift of the resonant peak and
the applied voltage. From the previous discussion in chapter 1 we know that the shift of
the resonant peak in the spectrum is basically due to the change of the permittivity tensor
of the E-O material, which modifies the effective index of the mode. In Fig.3.7 we present
the result of the resonant peak position changes for a TE and a TM mode. Figure 3.7(a)
and (b) shows the reflectivity spectrum for the TE mode and TM mode, respectively, for
several applied voltages from 0V to 20V, with a 5V step. As the thickness of the E-O layer
is 0.35 µm, the maximal electric intensity is equal to 5.7 × 107V/m, which is bellow the
breakdown limit of the material. In Fig.3.7 (c) and (d) we have plotted the variation of
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the center wavelength with respect to the applied voltage for the TE mode and TM mode,
respectively.
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Figure 3.7 : Resonant peak positions under different applied voltages for the TE mode
(a) and the TM mode (b); center wavelength shift with respect to the applied voltage for
the TE mode (c) and TM mode (d).

It is easy to understand why the resonant peak wavelength for TE mode λTE is larger
than that of TM mode. For a given filter structure and with the same condition of
incidence, the normalized x-component of the mode propagation constant α̃TE for the
TE mode is larger than α̃TM for the TM mode. According to the resonant condition
λpeak = α̃

D , where D is the grating period, a larger value of α̃ corresponds to a larger
wavelength of resonant peak.

Fig. 3.7 shows that the resonance peak for both the TE and the TM mode shifts as
the applied voltage increases, which means that the concept of tunable resonant grating
works. When the external applied voltage changes from 0V to 20V, the peak of the TE
mode shifts within 1.63 nm in the direction of the shorter wavelength, and the peak of the
TM mode shifts within 2.9 nm in the same direction. This shift tendency can be explained
by the permittivity variation as the voltage changes. Fig. 3.3 shows the change of the
permittivity components with respect to the applied voltage. As the voltage augments,
the three elements of the permittivity tensor ε decrease, which explain the shift of the
peak towards shorter wavelengths (the effective index of the guided modes decreases).
Moreover, the variation of ε33 is larger than that of ε11 and ε22. For the TE mode, with
field components (Ex,Hy,Hz), the only permittivity tensor element involved is ε11, and
for the TM mode, with field components (Ey, Ez,Hx), both of ε22 and ε33 are implied.
As a consequence the shift of the TM mode resonant peak is larger than that of the TE
mode. Last, we observe that for both TE and TM modes, the shift is linear with respect
to V , which may be related to the linear dependency of the permittivity tensor coefficients
for this variation range (see Fig. 3.3).
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Meanwhile, these peaks also keep a low sideband level as the applied voltage changes,
which is important for applications.

Now, we will focus on the properties of the spectral peak as a function of the polariza-
tion and applied voltage.

3.4.2 Spectral Peak Properties

Fig. 3.8 shows the peak in the reflectivity spectrum for both TE (Fig. 3.8(a), (b)) and
TM (Fig. 3.8(c), (d)) mode of structure 3.3 (Fig. 5.4 in Appendix 2) illuminated by a
normal incident wave with s (solid line) and p (circles) polarizations. The case for no
voltage applied (Fig. 3.8(a), (c)) and 10V voltage applied (Fig.3.8(b), (d)) are presented.
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Figure 3.8 : The filtering center wavelength and the linewidth of the resonance peak for
structure 3.3 (Fig. 5.4). (a). TE mode resonant peak for normal incidence without applied
voltage; (b). TE mode resonant peak for normal incidence with 10V applied voltage; (a).
TM mode resonant peak for normal incidence without applied voltage; (b). TM mode
resonant peak for normal incidence with 10V applied voltage.

We can read from the figure that: for the TE mode, the filter central wavelength λTE

= 1558.3 nm and the FWHM ( full width at half maximum) ∆λ1 is equal to 0.104 nm for
both s and p polarization incident wave; for the TM mode, the filter central wavelength
λTM = 1422.2 nm and the FWHM ∆λ2 is equal to 0.224 nm. The FWHM is the same
whether a voltage is applied or not. Hence, the filter, no matter it is based on a TE or a
TM guided mode resonance, is independent of the incident polarization and this property
persists when a voltage is applied.
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The factor Q (wavelength to bandwidth ratio) can be calculated as:

QTE =
λTE

∆λ1
= 14984

QTM =
λTM

∆λ2
= 6354, (3.9)

which are both extremely high.
The linewidth for the TM mode is more than twice larger than for the TE mode.

This can be explained by the strength of the coupling between the incident field and the
mode field. As the value of α̃TE is larger than α̃TM , the TE mode decreases more quickly
outside the guiding layer than the TM mode so that its field is more localized, and may
show a narrower bandwidth. Yet, the coupling between the incident field and the mode
field involves several parameters (see for example16) which may be different for the TE
mode and the TM mode (especially because of the fact that the TM mode has a part of
its electric field along z), and the difference between the effective index may be not the
only explanation for the bandwidth difference.

3.4.3 Angular Peak Properties

To study the angular tolerance with respect to the incident wave beam, we move from the
case of normal incidence to the oblique one. The wavelength of the incident plane wave is
equal to the center wavelength of the resonant peak in the situation of normal incidence.
The incident angle varies in the range of [−θ ◦, θ ◦] in both xz and yz planes. We plotted
both the reflective (solid line) and transmissive (dash line) efficiency with respect to the
incident angle θ for s or p polarization, for both TE (Fig. 3.9) and TM modes (Fig. 3.10).
The Full Width at Half Maximum (FWHM) is taken as a characteristic representing the
angular tolerance of the filter. For each mode, the curves in the xz plane are similar to that
in the xy plane which is due to the isotropy of the structure in the xy plane. We observe
that the angular tolerances along the x and y directions are different, depending on the
propagation direction of the mode. In particular, in Fig. 3.9(a) and (c), the excited modes
propagate in both positive and negative directions parallel to the plane of incidence, while
in Fig. 3.9(b) and (d), the direction of propagation of the modes is perpendicular to the
plane of incidence. Note that the definitions of the directions of the s and p polarizations
are given with respect to the plane of incidence.
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Figure 3.9 : TE mode angular tolerance for the structure 5.4, λ = 1559nm. The
incidence wave is: (a). s polarized in xz plane; (b). p polarized in xz plane; (c). s
polarized in yz plane; (d). p polarized in yz plane.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

E
ffi

ci
en

cy

Angle of incidence θ (°)

(a)

 

 

R
ss

T
ss

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

E
ffi

ci
en

cy

Angle of incidence θ (°)

(b)

 

 

R
pp

T
pp

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

E
ffi

ci
en

cy

Angle of incidence θ (°)

(c)

 

 

R
sp

T
sp

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

E
ffi

ci
en

cy

Angle of incidence θ (°)

(d)

 

 

R
ps

T
ps

Figure 3.10 : TM mode angular tolerance for the structure 5.4, λ = 1422.2nm. The
incidence wave is: (a). xz incidence plane, s polarization; (b). xz incidence plane, p
polarization; (c). yz incidence plane, s polarization; (d). yz incidence plane, p polariza-
tion.

For the TE mode the wavelength of the incident plane wave is λ = 1559nm, which is
the peak position wavelength under normal incidence. When the incident plane wave with
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s or p polarization varies in the xz plane (3.9 (a) and (c)), the angular width is equals to
0.09 ◦, however it increases to 1.71 ◦ for the yz plane case (3.9 (b) and (d)). For the TM
mode case the incidence wavelength is λ = 1422nm. When the incident plane wave with s
and p polarization varies in the xz plane (3.10 (a) and (c)), the angular width is equals to
2.66 ◦, however it reduces to 0.2 ◦ approximately for the yz plane case (3.10 (b) and (d)).

These differences can be easily explained by considering the coupling equation: the

norm of the in-plane resonant diffraction order wave vector
−−→
kinc +

−→
K varies more rapidly

with respect to the polar incidence angle θ when
−−→
kinc and

−→
K are collinear than when they

are perpendicular to each other. Hence, the coupling condition is broken more rapidly
with respect to θ in the former case than in the latter.

Since the field of a TE mode is orthogonal to its direction of propagation, an s polar-
ized incident wave excites a TE mode propagating in the direction given by the plane of
incidence (Fig. 3.9 (a) and (c)), and in the orthogonal direction when for a p polarized
wave (Fig. 3.9 (b) and (d)). The contrary is true for a TM mode.

Now, we study the effect of applying a voltage. We applied a 5V voltage on the stack,
the center resonant peak position of TE and TM modes move to 1558.2nm and 1421.6 nm,
then we choose these new value as the incidence wavelength and do the same measurement.
Calculation results are presented in Fig. 3.11 and 3.12 below:
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Figure 3.11 : TE mode angular tolerance for the structure with 5V applied voltage,
λ = 1558.2nm. The incidence wave is: (a). xz incidence plane, s polarization; (b). xz
incidence plane, p polarization; (c). yz incidence plane, s polarization; (d). yz incidence
plane, p polarization.
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Figure 3.12 : TM mode angular tolerance for the structure with 5V applied voltage,
λ = 1421.6nm. The incidence wave is: (a). xz incidence plane, s polarization; (b). xz
incidence plane, p polarization; (c). yz incidence plane, s polarization; (d). yz incidence
plane, p polarization.

From the two figures we can find that, when the external voltage is applied, the resonant
peak position shifts but the angular tolerances are well kept. This is an important feature
of this GMR tunable filter from for the application concerned.

3.5 Discussion on the Filter Manufacturing

In the previous two sections, we have studied numerically the characteristics of the tunable
GMR filter which takes advantage of the electro-optical effect in the LiNbO3 layer. This
section is intended to discuss the manufacturing process of the filter. There are two key
steps during the construction of the active filter: one is the fabrication of the stack, espe-
cially the deposition of the E-O thin film and another is the realization of the diffraction
grating.

The choice of the technique and deposition parameters depends on the material’s forms
(amorphous or crystalline) and the optical properties required (permittivity, absorption
coefficient and active behavior). Fabrication of LiNbO3 layer has been studied by vari-
ous methods, such as rf-magnetron sputtering62, molecular beam epitaxy63, liquid phase
epitaxy64, MOCVD65, sol-gel method66 and especially the pulsed laser deposition (PLD)
technique67. The latter becomes an universally accepted solution to obtain high qual-
ity stoichiometric multicompetent thin film on various substrates, such as Al2O3, Si,
SiO2

68–70.
The main difficulty in fabricating the devices we propose is the problem of crystal

growth on an amorphous material. Whereas epitaxial growth may partially solves this
problem, recently wafer bonding and ion slicing process has been proposed to cut thin lay-
ers (680nm in particular) from a bulk crystal of an E-O material, and to deposit electrodes,
amorphous buffers and other layers71.
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For the electrodes, it is important to ensure the minimum of absorption so as not to
reduce the amplitude of the component’s overall response. Moreover, in GMR filter, the
resonance peak thinness and height are very sensitive to the material intrinsic absorption.
On the other hand, the electrode’s low resistivity corresponds to a high conductivity and
allows itself to achieve stronger static electric fields. So apparently one should provide
electrode layers whose resistivity and absorption are lowest as possible. As shown latter
in chapter 4 for the case of BaTiO3, the losses in ITO layers can completely spoil the
resonance effect so that instead of a peak one observes a minimum in the reflectivity. This
is due to the fact that the electrodes are positioned at the boundaries of the guiding layer.
To avoid this, it is possible to separate them by a buffer layer of SiO2 below, and to deposit
the upper electrode on the grating surface before etching it (see Fig. 4.26 in chapter 4).

For a grating structure with dimension as those designed, and for the area of etching
needed (at least 1mm2), the e-beam lithography is highly appropriate. The etching can be
realized by the technique of reactive plasma etching. In the past ten years some resonant
gratings with a ”doubly periodic” pattern have been realized. The e-beam lithography was
chosen to write the grating, followed by a dry etching. A detailed work of optical and
geometric characterization of the sample has then followed in order to analyze the effect
of the fabrication defaults on the optical properties of the component72–74. It appears
that narrow spectral width can be achieved (0.28nm at 1550 wavelength) but that the
performances (spectral bandwidth, reflectivity at resonance) are limited by the drift of
one or more parameters during the fabrication process. As a conclusion, the angular
tolerance of the filter must be as great as possible in order to diminish the impact of
fabrication errors (the reflected beam spreads out all the lesser than the angular tolerance
is large).

3.6 Conclusion

This chapter was devoted to the study of the guided mode resonance phenomenon in a
structure including an electro-optic material (LiNbO3) layer. We were able to demonstrate
numerically the possibility to achieve a tunable narrow band filter based on the E-O effect.

The orientation of the crystal with respect to the static electric field has been chosen
such that the greatest E-O coefficient of LiNbO3 is involved. Then we contrasted four
modes with different field profile excited in the equivalent homogeneous planar structure,
in order to figure out the relationship between the tunability of the resonance peak and
the modes.

The performances of the whole structure, including a bidimensional “doubly periodic”
grating pattern have then been analyzed. Consistent with our expectations, the reso-
nance peak showed a narrow filtering band (factor Q can reach 6000 theoretically), an
optimized angular tolerance (0.09 ◦ for TE mode, 0.2 ◦ for TM mode), and a polarization
independence. The polarization independence property, optimized angular tolerance, and
spectral shape of the peak are preserved when a voltage is applied. The resonance peak
shifts linearly with respect to the applied voltage. However, in the range of the material
breakdown limit, the shift extends to less than 10nm. This may be not enough for most
applications, so we move to another E-O material, namely BaTiO3, to search for stronger
tunability. BaTiO3 is moreover a bi-axial anisotropic material, even when no voltage is
applied, which will give more complex behavior with respect to the incidence polarization.
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4.1 Introduction

Barium Titanate (BaTiO3) has attracted a lot of interest since several decades because of
its interesting properties. First, it is chemically and mechanically stable, second, it presents
ferroelectric properties at and above room temperature, and finally it can be easily manu-
factured and used in the form of ceramic polycrystalline samples.75 Polycrystalline barium
titanate displays relatively large temperature coefficient of the electrical conductivity, mak-
ing it a useful material for thermistors and self-regulating electric heating systems.76,77

As a dielectric ceramics, it can be used for capacitors and as a piezoelectric material for
microphones and other transducers.78,79 Crystaline BaTiO3 can also find use in nonlinear
optics because of its high beam-coupling gain and large operating range from visible to
near-infrared.80 BaTiO3 thin films display electrooptic modulation with extremely high
frequency.81 It has been reported as a key component in many application areas due to
its good pyroelectric and ferroelectric properties, such as tunable microwave devices and
memory devices.82–84

BaTiO3 presents also a relatively strong electro-optic effect. In this chapter, we intro-
duce BaTiO3 as the active layer instead of LiNbO3 used in chapter 3, aiming to achieve
greater tunability of the GMR grating. The filter structure and simulation approach used
in this chapter are basically the same as in chapter 3. The main difference is the orien-
tation of the material with respect to the applied static electric field for the purpose of
maximizing the modification of permittivity due to the E-O effect, that has interesting
consequences on the resonant peak characteristics.

First, we present the E-O effect of the BaTiO3 material and the orientation of this
anisotropic material layer, as it was done in the Chapter 3. However, because of the
difference between the crystalline structures of BaTiO3 and LiNbO3, we will consider two
kinds of orientations of the BaTiO3 crystal and compare with LiNbO3. The structure
description is omitted because it is already presented in the previous chapters. After that,
we analyze the behavior of the resonant peak with respect to the applied voltage and with
respect to the polarization of the incident wave. Narrow-band filtering and tunability are
studied at first, followed by the analysis of the sensitivity with respect to the angle and
polarization of the incident wave, addressed to two different filter structures.

4.2 Electro-Optic Effect in BaTiO3

In this part, we introduce the electro-optic properties of BaTiO3, we describe two kinds
of orientations for the crystal and the modification of the permittivity tensor induced by
an external static electric field in both cases.

4.2.1 Optical Properties and E-O Effect

BaTiO3 has a high electro-optic coefficient as compared to many other ferroelectric ma-
terials. It can be grown on Si substrate using a buffer layer such as MgO 85 or TiN 86.

For BaTiO3 crystal with a 4mm point-group symmetry, only five elements of linear
E-O effect tensor are non-null, having only three different values. These elements are as
follows:

r13 = r23, r51 = r42, r33 (4.1)
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As presented in chapter 1, a non-linear, quadratic electro-optic effect (Kerr effect) also
exists in these crystals. This effect is generally concealed in materials presenting a Pockels
effect. For example, the Kerr effect in the ferroelectric, tetragonal state of BaTiO3 (below
the Curie temperature of 120◦C) is usually neglected in applications and even so, good
comparisons between the simulations and the experimental results are obtained30,81. Yet,
in resonant gratings, the slightest variation in the index has to be multiplied by the period
to obtain the variation on the resonant wavelength (see the coupling eq. 1.2). Moreover,
the order of magnitude of the Kerr coefficients87 spur us on analyzing the influence of the
Kerr effect. Note that above 120◦C, BaTiO3 exists in a paraelectric, cubic state (point
group symmetry m3m). As in this state, the BaTiO3 is centro-symmetric, the Pockels
effect is not present, and the Kerr effect is more important than in the tetragonal state.
The non null Kerr coefficients for BaTiO3 in the tetragonal state that are involved in our
non-centrosymmetric configuration are17:

s22 = s11, s32 = s31, s12 (4.2)

Table 4.1 gives the comparison between BaTiO3 and LiNbO3, together with the value
of the electro-optic coefficients and the refractive index.

Table 4.1 : Comparison of the optical properties of BaTiO3 and LiNbO3
87,88.

material LiNbO3 BaTiO3

crystal type negative uniaxial negative uniaxial

symmetry system 3m 4mm

refractive index no=2.211 no=2.437
(1550nm) ne=2.138 ne=2.365

r33=30.8 r33=28
linear E-O r13=8.6 r13=8
(pm/V) r51=28 r51=1300

r22=3.4

quadratic E-O s12 = −3.5± 0.3
(×10−17m2/V 2) s13 = −8.0± 0.7

We observe that the refractive index of BaTiO3 at 1550 nm is larger than that of
LiNbO3, this leads to higher index contrast between E-O and other dielectric layers, which
is suitable for localization of the field of the guided mode predominantly in the E-O layer.
In terms of E-O efficiency, the value of the coefficients r33 and r13 for the two materials are
approximately equal, but the largest one of BaTiO3 r51 (namely, r42) is nearly 400 times
larger than that of LiNbO3. This rarely large electro-optic coefficient is of main interest
to us, thus the E-O properties of BaTiO3 will be discussed in detail in the next section.

For the quadratic E-O coefficients of BaTiO3, we just listed two value of them in
the table. To our knowledge only the values of these two coefficients are reported in the
literatures87. Concerning the s22 coefficient that has not been evaluated in this article,
we will consider that it is null. Yet, we have checked that if s22 has the same order of
magnitude than s12 and s32, it does not lead to a significant modification in the propagation
constants of the modes. We separate the study of the linear and the quadratic E-O effect
in two parts, at first addressing only the linear effect. Further on in sec. 4.7 we study the
influence of the second-order terms on the tunability of the device, taking into account both
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linear and nonlinear effects. This approach makes it possible to compare the magnitude
of the two effects.

4.2.2 Crystal Orientations and Permittivity Variation

We have the choice to orientate the BaTiO3 crystal in such a way that it is isotropic in
the xy plane, as it was the case with LiNbO3 in chapter 3 (Fig. 3.2). In this orientation
the ordinary refractive index no lies in direction perpendicular to the axis z and the
extraordinary refractive index ne direction is parallel to z. When an electrical field along
z is applied, the linear E-O effect modifies the permittivity tensor that takes the form:

ε̃2 =


n2
o

1+r13Ezn2
o

0 0

0 n2
o

1+r13Ezn2
o

0

0 0 n2
e

1+r33Ezn2
e

 , (4.3)

In Fig. 4.1, we show the results of the permittivity change for this type of orientation.
It can be said that all the elements of the permittivity tensor decrease almost linearly as
the static field intensity in the z direction increases. The crystal remains isotropic with
axis along z when an electric field is applied. The variation of ϵzz is larger than that of
ϵxx and ϵyy, which can be explained by the fact that the coefficient r33 is greater than
r13. At the wavelength 1550nm, the permittivity change of ϵxx (or equivalently of ϵyy) is
equal to 0.0049 from 0V to 10V, and the permittivity change of ϵzz is equal to 0.0153.
The tendency of variation is same as for LiNbO3 studied in chapter 3, however the values
of change are even smaller than for LiNbO3, so they can not satisfy our purposes, and we
need to find another working configuration.
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Figure 4.1 : The permittivity tensor variations for first type of BaTiO3 orientation.

From the previous chapters, we know that the applied external electrical field modifies
the index ellipsoid according to the Eq. 1.9. If we want to achieve the strongest E-O
effect under the same electrical field condition, the greatest coefficient must be involved.
The highest E-O coefficient of BaTiO3 is the component r51. Thus, we obviously have to
orient the crystal to make its proper axis x2 (or alternatively x1) collinear to the axis z
along which the electric field is applied. (see Fig. 4.2). In this configuration, the crystal
is anisotropic in the xy plane, even if no static electric field is applied.
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Figure 4.2 : Schema of the material orientation with respect to the applied static electric
field.

In that configuration, when the external voltage is applied along the z direction, the
permittivity tensor of the crystal with respect to the applied external electric field takes
the following form in the (x,y,z) basis:

∆( 1
n2 )1

∆( 1
n2 )2
·
·
·

∆( 1
n2 )6

 =



0 0 r13
0 0 r13
0 0 r33
0 r42 0
r51 0 0
0 0 0


 0

0
EZ

 , (4.4)

and the modified permittivity tensor can be rewritten in following form:

ε̃1 =

n
2
o 0 0

0 n2
e

1−(r42Eznone)2
− r42Ez(none)2

1−(r42Eznone)2

0 − r42Ez(none)2

1−(r42Eznone)2
n2
o

1−(r42Eznone)2

 , (4.5)

We can see that, in addition to its initial anisotropy in the xy-plane without an external
field, the index ellipsoid rotates around the x-axis when a static electric field is applied.
It appears also that the index along x does not change.

In Fig.4.3, we show the numeric results of the permittivity changes for this type of
orientation. For both configurations, the thickness of the BaTiO3 layer is equal to 350nm,
the external electrical field is applied along the z direction and varies from -10V to 10V, so
that the static electric field varies in the range [-2.86, 2.86]×107 V/m, and remains under
the breakdown limits of the material. The values for the reflective index are for a 1550nm
wavelength.
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Figure 4.3 : The permittivity tensor variations for the second type of BaTiO3 orientation
2. , diagonal coefficients of ε̃1.

We can observe in this figure that when an external electric field is applied, ϵxx remains
unchanged, as expected from Eq. 4.5. The change of ϵyy, ϵzz has an approximatively
quadratic relationship with the electric field intensity. The permittivity change of ϵyy
is equal to 0.0983 from 0V to 10V, the permittivity change of ϵzz is equal to 0.1044.
Comparing these values with those obtained in Fig. 4.1, it can be seen that the changes
are more than six times greater in orientation 2 than in orientation 1.

Moreover, in this configuration, two off-diagonal elements, ϵyz = ϵzy, become non-zero
when a static electric field is applied. Their variation with respect to the applied voltage
is shown in Fig.4.4. The value of these two off diagonal elements varies linearly with the
intensity, and the variation is larger than that of the diagonal elements.
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Figure 4.4 : Variation of the out off diagonal elements of the permittivity tensor versus
the external applied voltage.

As a summary, in the first type of orientation, the crystal is uniaxial with isotropy in
the xy plane, and this property is kept when a static electric field is applied along z. On
the contrary, in the second one, the crystal becomes bi-axial, with one of its proper axis
remaining along x, with the same index no.

At the same time, the elements along the diagonal have an approximative quadratic de-
pendence on the applied voltage. These differences will have consequences in the resonant
peak properties, which will be studied in detail in the next section.
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4.3 Study of the Filter Based on E-O Effect in BaTiO3

4.3.1 Filter Structure

In the same manner as for the filter based on LiNbO3 described in chapter 3, we will
use a bi-periodic two dimensional grating in order to study the resonance response of
the waveguide. In order to chose the parameters of the structure, we follow the same
optimization procedure as that described in chapter 3. Figure 4.5 and table 4.2 present
the schema of the structure used in this chapter and the permittivity value for each layer
from bottom to top respectively.

Figure 4.5 : The schematic diagram of the GMR filter based on BaTiO3.

Table 4.2 : Material’s permittivity of each layer.

Layer number Material Permittivity Thickness

0 (substrate) Silica εSiO2 = 2.082

1 ITO εITO = 1.613 50nm

εx,z = 5.939
2 BaTiO3 εy = 5.593 -

3 ITO εITO = 1.613 50nm

4 HfO2 εHfO2 = 3.24 100nm

εHfO2 = 3.24
5 HfO2 and air εair = 1.00 413.7nm

6(superstrate) air εair = 1.00

The main change of the structure is the material of the guided-mode layer. Structures
studied in the following have the similar composition but with different parameters, which
are all given in the Appendix 2. As this filter structure has been explained in chapters 1
and 3, here we directly move to the discussion of the simulation approach.

4.3.2 Modal Structure of the Equivalent Homogenous Planar System

Following what we did for the structure based on LiNbO3, we first search the modes of
the equivalent homogeneous planar structure in order to properly choose the parameters
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of the structure, namely the E-O layer thickness and the grating period. The following
two images (Fig. 4.6) represent the dispersion relationship of the structure described in
the previous paragraph.
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Figure 4.6 : Dispersion relationship respect to α̃0. (a). Dispersion image of TE mode;
(b).Dispersion image of TM mode.

We have plotted in Fig. 4.6 (a) the amplitude of the y component of the reflected
electric field, versus the thickness hBaTiO3 of the BaTiO3 layer and α̃0, the x component
of the incident wave vector normalized with respect to the wavenumber in vacuum, for α̃0

greater than 1. Hence, we can see in Fig. 4.6 (a) the evolution of the effective index of the
guided modes of the equivalent planar structure with respect the hBaTiO3 for TE modes,
representing a resonance of the reflectivity calculated with evanescent incident wave. Note
that when no voltage is applied, the proper axis of the crystal is along the x, y and z axis,
so the modes propagating along x or y are pure TE or pure TM. Fig. 4.6 (b) is similar to
Fig. 4.6 (a) but with the x component of the reflected electric field plotted, instead of the
y component in order to represent the TM modes.

In these two figures, the thickness of the top equivalent layer is fixed at 519nm, and
we set the wavelength equals to 1550nm and α0 meets the condition:

max(nsubstrate, nsuperstrate) < α̃0 < no(BaTiO3),

where n stands for the corresponding refractive index. As the thickness increases, we
observe appearence of greater number of modes in the structure. In addition, as expected,
the effective index of the modes approach to a upper limit, which is equal to the ordinary
reflective index no of BaTiO3 for the TM modes (field along x and z), while for the TE
modes (field along y), it approaches to the extraordinary reflective index ne, as can be
determined by the orientation of the index ellipsoid and shown in the following Fig. 4.7
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Figure 4.7 : Limitation of the effective index of the modes propagating in x direction.
(a). TE mode; (b). TM mode.

Similar to the approach in chapter 3, we choose two different points in the dispersion
profile as shown in Fig.4.6. Points A and C stand for the first order mode of the structure
with a 341 nm thick BaTiO3 layer. It is a TE (respectively TM) mode with effective index
α̃0 = 2.01 (respectively 1.87). Points B and D represent the second order modes of the
structure with a thicker 570nm BaTiO3 layer. It is a TE (respectively TM) mode with
effective index α̃0 = 1.67 (respectively 1.56).

Note that similar but different dispersion relations are expected with respect to β̃0, the
y direction component of the incident wave vector normalized with respect to the wave
number in vacuum, the difference being due to the anisotropy of the BaTiO3 layer in the
xy plane, as the following Fig. 4.8 shows:
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Figure 4.8 : Dispersion relationship respect to β̃0. (a). Dispersion image of TM mode;
(b).Dispersion image of TE mode.

The characteristics of the excitation of these eight modes though a grating are studied
in detail in the following.

4.3.3 Summary of the Properties of the Resonance Peaks in the Reso-
nant Grating Structure

To excite the modes at points A and C (Fig. 4.6), we choose a period D = 840nm for
the 2D grating, and D = 956.8nm to excite the modes at point B and D. All the param-
eters of these two structures (called respectively structure 1 and structure 2 throughout
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this chapter)are summarized in the Appendix 2 (structure 1 is described in Fig.5.7 and
structure 2 in Fig. 5.8).

For each structure, because of the anisotropy, we can expect four resonance peaks:

• one for the TE mode propagating along x,

• one for the TE mode propagating along y,

• one for the TM mode propagating along x,

• one for the TM mode propagating along y.

in fig. 4.9, we plot the spectral dependence around the four peaks for the structure
5.8:
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Figure 4.9 : The resonant peak position and the linewidth of the four types of mode; (a).
TE along x direction; (b). TE along y direction; (c). TM along y direction; (d). TM
along x direction.

From the simulated result, we can conclude that:

First, as expected, for one type of mode, the center wavelength of the resonance peak is
different when the mode propagates along x or along y, because of the xy plane anisotropy
of BaTiO3. In particular, BaTiO3 was oriented with its ordinary refractive index no along
the x direction, and extraordinary index ne along y direction, and for BaTiO3, no is larger
than ne. A wave that propagates in the xz plane sees either ne index (TE wave) or no
index (TM wave). A wave that propagates in the yz plane see either the no index (TE
wave), or both ne and no (TM wave). We deduce that the effective index of the TE mode is
greater when it propagates in the y direction than in the x direction. It follows, according
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to the resonant condition, that the wavelength of a TE mode in y direction is larger than
that along x direction, which is confirmed numerically. The oposite behavior is expected
and numerically confirmed for the TM mode.

Second, the width of the resonance peaks is almost the same, independently of the
direction of excitation, but different for the TE and TM modes. The width of a resonance
peak depends mainly on the grating thickness, grating pattern, and profile of the field of
the mode, especially in the grating region. The grating is invariant by a rotation that
changes x in y, the system thickness is the same everywhere. Moreover, we can suppose
that the profile of the field of the mode, especially in the grating region, is similar, if
the mode propagates along x or y, since the anisotropy is weak, and the guided layer
(BaTiO3 layer) is far from the grating region. Theses remarks may explain the similar
spectral width along x or y for the same polarization of mode.

Third, the peak width, corresponding to the TE mode is narrower than for the TM
mode. This fact has already been explained in the chapter 3.

The factors Q (wavelength-to-bandwidth ratio) for these four resonance peaks corre-
sponding to table 4.3 are equal to:

QA =
1670.51

0.08
= 20881 QA′ =

1715.96

0.07
= 24514

QC′ =
1536.18

0.29
= 5297 QC =

1543.77

0.29
= 5323,

which are all extremely high value.
The same calculations were done for the structure 2 (see Fig. 5.8 as shown in Appendix

2).
The following two tables summarize the calculated values of the most important char-

acteristics, namely resonant peak linewidth, tunability, angular tolerance and polarization
independence. The first four columns indicate the incidence polarization, the kind of mode
excited in the structure (TE or TM), the center wavelength of the peak without applied
voltage and also the FWHM of the resonance peak. The next two columns show the an-
gular tolerance with respect to the polar incidence angle θ when the incident wave swing
in the xz plane and yz plane respectively. In the last column, we also give the shift of the
filter center when the applied voltage V is 5V, the details are given in the next subsections.

Table 4.3 : Numerically computed results for the TE and TM modes in the structure 1
(Fig. 5.7 in appendix).

Structure with D= 840nm and 341nm BaTiO3 layer

Peak FWHM Angular Angular Peak
Incidence Mode center (nm) tolerance (x) tolerance (y) shift

(nm) (o) (o) (nm)

1 - A s TE along x 1670.51 0.08 0.06 1.68 24.77

2 - A’ p TE along y 1715.96 0.07 1.73 0.07 0.01

3 - C’ s TM along y 1536.18 0.29 3.42 0.23 4.73

4 - C p TM along x 1543.77 0.29 0.19 3.27 -16.04

Modes 1 to 4 of structure 1 (Table 4.3) correspond to modes A, A’, C’ and C of the
planar structure (see Fig.4.6 and 4.8). In fact, the modes of the structure including the
grating are different from the modes of the equivalent planar structure because of the fact
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that the grating modifies the field of the modes, especially in this configuration where
two counter propagative modes can be excited in each direction. This is why we choose
different notations for the modes.

Table 4.4 : Numerically computed results for the TE and TM modes in the structure
5.8.

Structure with D= 956.8nm and 570nm BaTiO3 layer

Peak FWHM Angular Angular Peak
Incidence Mode center tolerance (x) tolerance (y) shift

(nm) (o) (o) (nm)

1 - B s TE along x 1551.94 0.44 0.39 4.46 6.25

2 - B’ p TE along y 1589.14 0.40 4.06 0.36 0.001

3 - D’ s TM along y 1484.93 0.67 4.42 0.46 1.67

4 - D p TM along x 1494.06 0.67 0.46 7.39 -3.84

Modes 1 to 4 of structure 2 (Table 4.4) correspond to modes B, B’, D’ and D of the
planar structure (see Fig. 4.6 and 4.8).

In the next sections, we present more details regarding the tunability, the angular
tolerance and behavior versus the incident polarization of these resonance peaks.

4.4 Peak Shifts as a Function of the Applied Voltage

In this section, we anylise the tunability performances of the filter based on the BaTiO3.
First, we compare the tunability of the four modes excited in structure 1. Next, structure
1 and 2 are compared, in order to get a physical understanding of the phenomenon in this
anisotropic case.

4.4.1 Comparison of the Tunability for the Four Modes of Structure 1

Fig. 4.10 shows the variation of the resonance peak position in the reflection spectra
when the external applied voltage changes from 0 to 5 V . Fig. 4.10(a), (b), (c) and (d)
correspond respectively to the modes 1, 2, 3 and 4 excited in structure 1.
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Figure 4.10 : Simulated reflection spectra versus the applied voltages.

We find that the TE mode along the x direction (Fig. 4.10a) shows the strongest
tunability (24.77nm) among the four modes, but the same mode along the y direction
(Fig. 4.10b) barely shifts (0.01nm) under the same condition (note the change of the scale
in this figure). On the other hand, the TM mode propagating along x (Fig. 4.10d) shift is
16.04nm to the smaller wavelength, while the TM mode propagating along y (Fig. 4.10c)
shift is only 4.73nm. In addition, in Fig.4.11, we have plotted the shift of the resonance
peaks for the four modes with respect to the applied voltage.
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Figure 4.11 : Resonance peak wavelength versus external static voltage for TE and TM
modes in structure 1.

To understand the evolution of the spectral position with the applied voltages, we
study the change of the effective indexes of the modes that exist in the equivalent planar
structure. Fig. 4.12 presents the variation of product of the grating period with these
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effective indexes due the applied voltage, when the modes propagate in the x direction
(β=0) and y direction (α=0) . The modes correspond to the engraved structure listed in
the table 4.3. We observe quite the same variation in fig. 4.12, which means that the peak
shift is mainly due to a modification of the guided mode (no grating effect) propagation
constant.
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Figure 4.12 : Effective index variation due to the external static voltage in the equivalent
plane structure, situations A, A’, C’, C correspond to the situations 1, 2, 3, 4 in the Tab.
4.3.

Moreover, it is possible to directly relate these changes to the variations of the permit-
tivity tensor coefficients (Eq. 4.5), or equivalently the index ellipsoid.

When at first we deal with the case α = 0 (mode propagates along y direction), the TE
mode has its electric field along x, while the TM mode has its electric field along y and z.
When a voltage is applied, as ϵxy and ϵxz remain null, the modes in the structure remain
purely TE and purely TM types. Moreover, the independence versus the applied voltage
of the effective index of the TE mode is easily explained by the fact that it is related to
ϵxx, which does not depend on the applied voltage. On the other hand, the TM mode is
related to ϵyy , ϵyz, ϵzy and ϵzz which change when a voltage is applied, but their effects
may cancel each others, so that the effective index of the TM mode hardly depends on the
applied voltage.

For the β = 0 case (modes propagating along x direction), the TE mode has its electric
field along y, while the TM mode has its electric field along x and z. As ϵyz is not null
when a voltage is applied, the guided modes can not be simply defined as pure TE or TM
mode anymore, there is a mixing between the TE and TM components of the field.

Moreover, as voltage V increases, the material becomes a bi-axial anisotropic material.
One of the proper axis of the crystal remains along x while the two others rotate in the
yz plane. The coefficients of the permittivity tensor of the crystal in its proper axis stand
for a limit for the effective index of the modes that can propagate in this medium. The
coefficients in the plane yz are the eigenvalues for the permittivity tensor in Eq.4.5 and
are given by:

ε2,2/3,3 =
ϵyy + ϵzz

2
±
√
ϵyz2 +

(ϵyy − ϵzz)2

2
. (4.6)

As the applied voltage changes, the variation of D
√
ϵ2,2 and D

√
ϵ3,3 have been plotted

in the Fig. 4.12. We can see that the mode (a) follows the variations of ϵ2,2 while the
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mode (b) follows that of ϵ3,3. Eq.4.6 also gives the explanation of the fact that the shifts
are independent of the sign of the applied voltage. Indeed, ϵyz and the electric field Ez is
implied with a square power. This is also consistent with the quadratic dependence of the
shift versus the applied voltage.

4.4.2 Comparison Between the Tunabilities of the Two Structures

We now compare the tunability of the two structures in order to analyze the influence
of the profile of the mode on the tunability. For both structure 1 and structure 2 we
found a TE and a TM mode propagating along two orthogonal directions. The results are
presented in the table 4.3 and 4.4.

In the last column of these two tables, the shifts of the resonant peaks have been
listed for the applied voltage augmenting from 0 to 5V. However, as the thicknesses of the
layers are different, the static electric field intensity is not the same within the E-O layer,
and the tunability are not directly comparable. In order to have a better comparison,
we have plotted in Fig.4.13, the resonant peaks shifts with respect to the external field
intensity rather than the voltage. In Fig. 4.13(a), the solid line and the dash line represent
respectively the TE mode in the structure 1 and the TE mode in the structure 2. Circle
marks and square marks stand for the modes propagating respectively along x direction
and y direction. The same notations are taken for Fig. 4.13(b) to describe the TM mode.
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Figure 4.13 : Shift comparison of the resonant peaks versus the applied voltages for two
structures.

We observe that the modes of the structure 2 have the same behavior with respect to
the applied electric field as the modes of the structure 1. The only difference is that the
peak shifts are larger in structure 1. This may be related either to the propagation constant
of the modes (greater in structure 1) or to the field profile (first order in structure 1 and
second order in structure 2). Following the conclusion obtained for the previous chapter
on LiNbO3, we believe that the shifts are bigger in structure 1 because the field of the
modes are localized more strongly in the E-O layer (greater propagation constant) than
that of structure 2.

4.5 Angular Tolerances

We use structure 2 to study the angular tolerances of the different modes along the dif-
ferent directions. From the table 4.4, we observe that the angular tolerances for modes
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propagating along x and y are different and depend on the direction of the plane of inci-
dence. For example, for the TE mode along the x direction, when the incident plane wave
swing in the xz plane, the angular half-width reaches 4.46 ◦, however this value reduces to
0.44 ◦ approximately for the yz plane case. As already mentioned in the previous chapter
on LiNbO3, this can be easily explained by considering the coupling Eq. 1.2: the norm

of the in-plane resonant diffraction order wave vector
−−→
kinc +

−→
K varies more rapidly with

respect to the polar incidence angle θ when
−−→
kinc and

−→
K are collinear than when they are

perpendicular.
Nevertheless, because of the anisotropy in the xy plane the behavior of the peaks

with respect to θ is more complex than in the LiNbO3 case. To analyse the different
cases, which contain both TE and TM modes propagating along x or y direction, we have
calculated the modulus of the reflected electric field |E| versus the incidence angle θ and
the wavelength λ, as shown in fig. 4.14, when the incident plane is yz. In this figure, the
bright curves correspond to the different modes presented in Table 4.4.
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Figure 4.14 : Map of the reflected field modulus with respect to the incidence angle θ
and wavelength λ. (a) s polarization incidence, incident wave swings in xz plane; (b)
p polarization incidence, incident wave swings in xz plane; (c) p polarization incidence,
incident wave swings in yz plane; (d) s polarization incidence, incident wave swings in
yz plane.

The modes are identified thanks to their resonance wavelength under normal incidence.
Moreover, depending on the degree of bend of the curve with respect to the incidence angle,
we can distinguish easily the modes with great or weak angular tolerances.

For a detailed explanation for each situation, we zoom into the areas for each resonant
peak under the normal incidence, as shown in Fig. 4.15 and 4.16 and plot the logarithm
of |E|.
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The sub-figures Fig. 4.15(a), (b) represent the situation where the incidence plane wave
is xz and (c), (d) represent the yz plane case. For each image, the bright curve stands for
the resonant peak, and we have represented the resonance wavelength at normal incidence
by a dashed line. The strong dependence of the resonance wavelength with respect to
the angle of incidence in Fig.4.15 (a) and (d) is consistent with the relatively low angular
FWHM of 0.36 ◦ and 0.39 ◦. Similarly, the weak dependence of the resonance wavelength
with respect to the angle of incidence in Fig. 4.15(b) and 4.15(c) is consistent with the
relatively large angular FWHM of 4.46 ◦ and 4.06 ◦.
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Figure 4.15 : The angular tolerances for the TE mode. (a) s polarization incidence,
incident wave swing in xz plane; (b) p polarization incidence, incident wave swing in xz
plane; (c) p polarization incidence, incident wave swing in yz plane; (d) s polarization
incidence, incident wave swing in yz plane.

The analysis of the TM mode is much more complicated, due to the existing crossing
points of the resonances in Fig.4.14(b) close to 1495 nm. Similarly as the TE mode, in
Fig. 4.16 we show the reflected field distribution |E| for the TM modes with s and p
polarization incidences in the xz and yz plane of incidence with respect to θ and λ.
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Figure 4.16 : Same as in Fig.4.15 but for the TM mode. (a) s polarization incidence,
incident wave swing in xz plane; (b) p polarization incidence, incident wave swing in xz
plane; (c) p polarization incidence, incident wave swing in yz plane; (d) s polarization
incidence, incident wave swing in yz plane.
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Figure 4.17 : Two examples of angular dependence with coupling of TM modes. (a) TM
mode along y direction, incident wave swing in xz plane, λ=1484.93nm; (b) TM mode
along x direction, incident wave swing in yz plane, λ=1494.06nm.

We observe curves having either a strong or a weak dependence with respect to θ,
different for the two incident polarizations and planes of incidence. Contrary to Fig.4.15,
we also observe supplementary curves, starting in fig. 4.16(a) around (θ ∼ ±5 ◦, λ =
1.5µm) and (θ ∼ ±5 ◦, λ = 1.47µm). They are due to the excitation of another mode
(with effective index 2.22 in the plane equivalent structure) with the (1,-1), (1,1), (1,1),
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and (-1,-1) diffraction orders. We plot in fig.4.17 the reflectivity versus θ for an incidence
plane along xz (Fig. 4.17(a)) and yz (Fig.4.17(b)). This correspond respectively to a
cut of Fig.4.16(a) for λ=1484.93nm and Fig.4.16(d) for λ=1494.06nm respectively in s-
polarization. The excitation of the third mode is visible for θ ∼ ±2 ◦ in Fig. 4.17(a) and
θ ∼ ±1.33 ◦ and θ ∼ ±4 ◦ in fig. 4.17(b). These points correspond to the intersection
points between the curves visible in Fig.4.16(a) and in Fig.4.16(d).

4.6 Polarization Dependence

In order to use the greatest E-O coefficient of BaTiO3, we have chosen to orientate the
crystal with its optical axis along y. Hence, the crystal is anisotropic in the xy plane, and
the resonance wavelength depends on the polarization of the incident wave, even when
no voltage is applied. In this section we propose two approaches to try to recover the
property of polarization independence with respect to the incident polarization, at least
when no voltage is applied to the E-O crystal.

4.6.1 Approach i: Grating Period Optimization

The basic idea is to adjust the grating periods along x or y in order to bring together the
two resonance peaks. We know that when the period increases, so does the peak center
wavelength. Take the TM mode in structure 5.7 (table 4.3) as an example. The mode is
excited at λc = 1536.18 nm along y, and λd = 1543.77 nm along x. The center wavelength
λc of the peak corresponding to the mode excited along y is smaller, so we can increase
the period Dy in the y direction to bring together the two resonance peaks.
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Figure 4.18 : Two examples of polarization independence for TM modes. (a) TM mode
for normal incidence with polarization s and p, λpole=1543.8 nm, without applied voltage;
(b) TM mode for normal incidence with polarization s and p, with 1 V external voltage
applied.

For a period Dy = 845.5 nm (Dx remains equal to 840nm), we obtain two peaks, one
for the s-polarization and the other for the p-polarization, that are superimposed when no
voltage is applied, as shown in fig. 4.18(a).

However, the two resonant peaks are separated at about 1 nm when even only 1 V
voltage is applied, as shown in Fig.4.18(b). The reason is that the two TM modes show
different tunabilities, moreover, they are in opposite direction: for the TM mode along
the y direction, the peak center moves to larger wavelengths when the voltage increases,
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while the TM mode along the x direction shifts to smaller wavelengths. Meanwhile, the
magnitude of the shift is also different. In conclusion, this approach is effective only in the
situation without external voltage. In addition, the inevitable errors in the manufacture
process make the accurate control of the period difficult.

4.6.2 Approach ii: Crystal Rotation

The basic idea is to have, when no voltage is applied, the same mode propagation constants
along x and y. To do so, we rotate the crystal in such a way that its optical axis form an
angle of 45 ◦ with respect to both directions of periodicity. Without applied voltage, the
equivalent plane structure contains one quasi-TE mode and one quasi-TM mode, each one
propagating in the x and y directions with the same propagation constant. The important
difference with the previous configurations is that now the waveguide modes are elliptically
polarized.

This peculiarity is quite important for understanding the next results. The following
Fig.4.19 presents the spectral dependence of the reflectivity in the s and p polarizations for
the grating structure under normal incidence without external voltage. The top figure is
for s incident polarization, Rss and Rsp are the energy reflected in the s and p polarizations,
respectively. The bottom figure is for p incident polarization, Rps and Rpp are the energy
reflected in each polarization. The total energy reflected is also plotted. We observe two
peaks both for incidences with s or p polarizations, centered at slightly different wavelength
values, the first one at λpole = 1540.2082nm, and the second one at a distance of 23pm.
The polarization conversion is due to the ellipticity of the waveguide mode polarization.
The splitting of the positions of the maxima indicates that the grating induces coupling
between the modes propagating in direction of x and y. This is possible directly through
the grating orders (+/-1, +/-1), because the resonance effect requires excitation of one
mode through the diffraction orders (+/-1, 0), and of the other mode through order (0,
+/-1).

The mode interaction leads to a creation of two hybrid standing waves having two
different resonant wavelengths. The difference is quite small (but detectable), because
the coupling is weak. The coupling is possible because of the ellipticity of the modes
of the equivalent plane structure (for which there is no coupling), and the fact that the
constants of propagation in directions x and y are the same. In the case of LiNbO3

(chapter 3), the waveguide modes of the unperturbed (by the grating) system propagating
in perpendicular directions had linear polarizations that were mutually orthogonal in both
vectorial and Hermitian sens, thus there was no coupling between them induced by the
grating. In the case of BaTiO3 with the crystal axis in y direction, the constants of
propagation in direction x and y of the modes were different. In these cases, we observed
no coupling between them, even if some of them were elliptically polarized. In the present
configuration, the unperturbed (without the grating) modes propagating in perpendicular
directions are polarized elliptically, so that their polarizations are mutually orthogonal,
but represented as complex vectors. Due to this, the polarizations are not orthogonal in
Hermitian sens. This fact makes the coupling between the modes by the grating orders
possible.
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Figure 4.19 : Reflected energy with incident polarization s (top) and p (bottom), without
applied voltage. Rab stands for the energy reflected in polarization a when the incident
field is b polarized.

The coupling that leads to a splitting of positions of the spectral maxima also leads
to a decrease of the overall reflectivity maximum from the theoretical 100%, obtained
without this coupling. An indeed, the overall energy reflected reaches a maximum of 94.3%,
calculated at 1540.2132 nm. As a consequence, the filter is not polarization independent,
strictly speaking. This can be observed in the reflectivity at the resonance wavelength
when the incident polarization varies. In fig. 4.20, we have plotted the reflectivity at the
resonance wavelength with respect to the angle ψ between the incident electric field and
the x-axis.
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Figure 4.20 : Reflectivity at the resonance wavelength with respect to the angle ψ between
the incident electric field and the s vector.

As observed, without external voltage the polarization dependence is relatively weak.
However, when we apply voltage, the two peaks obtained for different incident polarization
split up strongly, as Fig. 4.21 shows for 3 V voltage used. The splitting is almost 3 nm,
and the maximum values reach again 100%. The explanation is simple and comes from
the rotation of the index ellipsoid with the applied voltage, so that the z axis does no more
remain parallel to the ellipsoid axes.
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Hence, the modes of the plane equivalent structure propagating along x and y have
no more the same propagation constants, thus the large spectral separation of the peaks.
The spectral separation makes it impossible the coupling between the modes propagating
in perpendicular directions, as far as their propagation constants become different. It can
be noticed that the mode excited is either pure TE or pure TM. In fact, the mode excited
is obtained by the combination of two counter-propagative modes (along x and −x on one
hand, and y and −y on the other hand). This combination may lead to pure TE and pure
TM modes.
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Figure 4.21 : Reflected energy with incident polarization s (top) and p (bottom), 3V
applied voltage. Rab stands for the energy reflected in polarization a when the incident
field is b polarized.

4.7 Tunability Due to Both Linear and Quadratic Electro-
optic Effects

As discussed in section 2, BaTiO3 in its room-temperature phase presents both linear and
quadratic electro-optic effects. In the previous section we have observed that the linear E-
O effect gives the possibility of tuning the position of the resonant maximum in reflection,
due to the excitation of a TE waveguide mode, within a range of 25 nm with only 5V
external voltage. Although usually second-order effects are weaker than the linear one,
it appears that this is not true in our case. Fig. 4.22 presents the variation versus the
applied voltage of the elements of the matrix of ϵ̃, as it was done in Fig. 4.3, but now taking
into account both linear and quadratic terms in Eq. 1.11. There are several differences
between Fig. 4.3 and Fig. 4.22. At first, taking into account the quadratic effect too,
εxx varies with the applied field, contrary to the linear case. Second, the variations of
the other elements are more than twice stronger than when considering only the linear
effect, except for εzz, which changes only slightly compared to the linear case. Third, the
variation of the off-diagonal term is no more linear. However, the signs of the variations
are the same as in Fig. 4.3, so we can expect the same directions for the shifts of the
resonance wavelengths due to the different modes, and similar spectral response, because
the modal structure without applied voltage is not influenced by the quadratic E-O effect.
This is confirmed by our numerical calculations, as shown in Fig. 4.23.
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Figure 4.22 : Changes of the permittivity tensor with respect to the applied voltage
taking into account both linear and quadratic effects. ϵxx, ϵyy, ϵzz correspond respectively
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Figure 4.23 : Resonant peak wavelength versus external static voltage for TE and TM
modes in structure 1 in two different cases. Case L corresponds to the linear E-O effect
only, in case L+Q both linear and quadratic E-O effect are involved. (a) TE mode in the
structure; (b) TM mode in the structure.

In this figure, we have plotted the shift of the resonant peaks corresponding to the
different modes listed in the Table 4.3 as a function of the applied voltage. For comparison,
both the linear case (case L) and the linear plus quadratic case (case L+Q) are represented.
Contrary to the linear case, we observe a significant shift of the peak of the TE mode that
propagates in the y direction, because of the variation of εxx. For the other modes, that
involve the three coefficients εyy, εzz and εyz, their behavior can be explained by the
variation of the elements ε22 and ε33 of the permittivity tensor in the proper axes of the
index ellipsoid as it was done in subsection 4.4.1. We have found that ε33 decreases less
rapidly in the L+Q case than in the L case, which explains the smaller shift of the quasi
TM-x mode. The most interesting case from a practical point of view is the stronger shift
of the quasi TE-x mode which is related to the faster increase of ε22 in the L+Q case.
For this mode, the shift of the peak reaches 63.9 nm for 4 V applied (from 1670.5 nm to
1734.4 nm) without visible change of its width which remains close to 0.08 nm.
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4.8 ITO Absorption

All the materials we use in our design are practically lossless around 1550 nm, except for
ITO, the extinction index of which we have neglected till now. In non-resonant devices, the
losses in the ITO layers can be neglected in practice, because the electrodes are optically
quite thin. However, when resonant effects are used, even small values of extinction
coefficients can lead to large absorption, in particular if the absorbing layers are put in the
region of the device where the field is strong. Table 4.5 presents the spectral position of the
resonant maximum of the TM-x mode and its maximum values for several different values
of the relative permittivity of the ITO layers and for two different configurations. The first
configuration corresponds to the structure 1 (Fig.5.7) studied in the previous paragraphs
while the second is presented in the following. There are several different values of real
and imaginary parts of the refractive index of ITO known in the literature, depending on
the deposition conditions.

Table 4.5 : Absorption of the ITO layer.

Configuration Index Peak position Line width Efficiency

1 1.27 + 0i 1543.8nm 0.29nm 100%
1.27 + 0.12i 1543.8nm - 0%

1 1.61 + 0.01i 1570.2nm - 0%
1.61 + 0.0003i 1570.2nm 0.46nm 51%

2 1.61 + 0.0003i 1587.7nm 0.47nm 98.88%
1.61 + 0.01i 1587.7nm 0.57nm 84.0%

Figure 4.24 presents the resonant peaks of the TM mode, the refractive index of ITO
corresponds to the first two lines of the table use for the real part the values given by
Luxpop89. If the losses are neglected, the maximum reaches 100%, as the Fig. 4.24 (a)
shown. However, when the losses are taken into account, in the Fig. 4.24 (b), the resonance
peak disappeared and the maximum is replaced by a minimum.
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Figure 4.24 : Resonant peaks of TM mode with configuration described in Fig.5.7. (a).
refractive index nITO = 1.27 + 0i, losses are neglected; (b). refractive index nITO =
1.27 + 0.12i, losses taken into account.

The second two lines of the table 4.5 correspond to another value of the real part of
the refractive index90. We have also plotted the TM mode resonant peaks in Fig. 4.25, it
can be observed that the change of refractive index leads to a shift of the spectral position



4.8 ITO Absorption 77

of the maximum. However, when the true losses are considered, the maximum disappears,
as in the previous case. It is necessary to decrease the losses almost thirty times, to obtain
a peak reaching 51% as Fig. 4.25(b) shows, because the electrodes are attached to the
high-index guiding layer of BaTiO3.
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Figure 4.25 : Resonant peaks of TM mode with configuration described in Fig. 5.9.
(a). refractive index nITO = 1.61+0.01i, true losses are considered; (b). refractive index
nITO = 1.61 + 0.0003i, decrease value of losses.

It is possible to decrease the effect of ITO absorption by removing the electrodes
away from the guiding layer. This can be done by introducing a buffer layer between the
electro-optical layer and the lower electrode. The upper electrode can be deposited over
the grating structure before it is etched. This configuration is sketched in Fig. 4.26 and
is called configuration 2 in the Table 4.5.

Figure 4.26 : Schematic diagram of the configuration described in Fig. 5.10.

As can be observed in Fig. 4.27(a), even with real values of the losses, it is possible
to increase the maximum up to 84%. Moreover, the most interesting case of the quasi
TE-x mode, which exhibits the greatest tuning is fortunately less influenced by the losses
and the reflectivity reaches 93.8% for configuration 2 as Fig. 4.27(b) shows, even when
the imaginary part of the index is equal to 0.01. Another configuration for the electrodes
has been proposed and experimentally studied91, however with larger linewidths and at
smaller wavelengths.
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Figure 4.27 : (a). Resonant peaks of TM mode with configuration described in Fig. 5.9,
refractive index nITO = 1.61 + 0.01i, true losses are considered; (b). Resonant peaks of
TE mode along x direction with configuration 5.9, refractive index nITO = 1.61 + 0.01i,
true losses are considered.

4.9 Conclusion

In this chapter, we have studied numerically a guided mode resonance filter containing an
E-O BaTiO3 layer. We have used two different orientations of BaTiO3 layer, with the
purpose of maximize the influence of E-O effect. The results enabled us to confirm numer-
ically the conception of tunable narrow band filter based on the E-O effect in anisotropic
material. We have compared the resonant resonances due to the excitation of different
kind of guided modes: TE modes and TM modes, first and second order modes with
different propagation constants. Depending on the mode, we have obtained strong or
weak spectral shifts of the resonant peaks, toward greater or smaller wavelengths. These
shifts correspond to the variations of the propagation constant of the guided mode of the
equivalent plane structure (without grating). We have reached nearly 64nm (24 nm if the
quadratic effect is neglected) of tunability for a peak with Q factor of 20000, for 4 V which
is below the BaTiO3 breakdown. The same behavior is observed when taking into account
the linear (Pockels) effect only, or both linear and quadratic effects. This device can find
application such as for example to adjust the wide spectrum laser source to an optimum
wavelength.

The anisotropy of the structure, leads, as expected to a dependence of the peak position
on the polarization of the incident wave. It also leads to a more complex behavior with
respect to the incidence angles than for isotropic structures. All theses points show the
importance of taking into account the anisotropy of the BaTiO3 in the simulations.

We believe that this detailed study ofBaTiO3 based guided-mode resonance filter paves
the way for further studies, including experimental studies, particularly as we have shown
that the deterioration of the spectral selectivity and efficiency caused by the absorption
losses of ITO can be reduced by choosing a suitable design.
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5.1 Conclusion

In the introduction, we have raised four pivotal questions that have guided our study, and
now we fell capable to give the answers and explanations. This has become possible because
of the preliminary work made to extend the existing numerical code for modelization of
diffraction by gratings having 2D periodicity to the case when one or more of the plane
layers in the structure are made of anisotropic materials.

• How does the applied voltage affect the permittivity of E-O materials within differ-
ent crystal orientations? What is the impact on the guided modes of the structure?

Two different typical electro-optic materials, Lithium Niobate and Barium Titanate,
have been chosen because of their large E-O coefficients. According to their differ-
ent crystalline structure and symmetry type, different orientations of the crystal
with respect to the static electric field have been chosen such that the greatest E-O
coefficient can be involved.

For the LiNbO3 case, we have considered only the linear E-O effect, and we have
chosen the orientation to make the c-axis of LiNbO3 parallel to the static electric
field direction. Under this condition, the orientation of the index ellipsoid does not
change with the static field, but the values of the ellipse’s radii vary. Hence, LiNbO3

still keeps its uniaxial negative characteristic with optical axes along z, but with
different refractive index values. The conservation of the isotropy in the xy plane
is very interesting for our filtering application purpose, especially concerning the
property of polarization independence.

For the BaTiO3 case, its largest E-O coefficient is the off-diagonal element r51 (r42),
so we have oriented the crystal to make its proper axis x2 collinear to the axis z along
which the electric field is applied. In this orientation, there is an initial anisotropy
in the xy-plane without an external field, and the index ellipsoid rotates around the
x-axis when static electric field is applied. For the permittivity tensor, ϵ11 remains
unchanged, the change of ϵ22, ϵ33 has an approximatively quadratic relationship with
the electric field intensity. The changes are several times larger than that in LiNbO3

case.

Also for BaTiO3 case, when quadratic E-O effect was also taken into account, with
the same configuration and same orientation, ϵ11 varies with the applied field, con-
trary to the linear case, the variations of the other elements are more than twice
stronger than when considering only the linear effect, except for ϵ33, which changes
only slightly compared to the linear case. Meanwhile, the variation of the off-diagonal
term is no more linear.

These peculiarities of BaTiO3 strongly affect the polarization response of the device.

• What is the magnitude of the tunability achievable?

We have confirmed numerically the interest of using an E-O material to tune the
center wavelength of a narrow band filter. When the electric field was applied to
the E-O layer, the wavelength of the resonant peaks center shifts in the spectrum
as the external voltage changes. It can be conclude that, for the GMR filter with
LiNbO3 layer, the magnitude of the tunability is linear with respect to the applied
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voltage, and in the range of the material breakdown limit, the shift extends to less
than 10nm; the BaTiO3 case is more complicated, we have observed strong or weak
spectral shifts of the resonant peaks, toward greater or smaller wavelengths. It can
reach nearly 64nm (24 nm if the quadratic effect is neglected) of tunability for a
peak with Q factor of 20000, for 4 V applied to a layer of BaTiO3on having 341nm
thickness, which is below the breakdown intensity.

• How can the tunability be maximized? What are the favorable configurations? Is it
possible to exhibit key parameters involved in the tunability?

It has been confirmed that the peak shift is mainly due to a modification of the
guided mode propagation constant, which is the consequence of the variation of the
permittivity tensor caused by the applied electric field. Yet, to these questions, we
can not give a simple answer, for certain. According to our analysis of different
E-O materials and grating configurations, we have found that it not sufficient to
only maximize the E-O change of the permittivity tensor components by a proper
orientation of the crystal axis, because different guided modes (propagating in dif-
ferent direction and having different polarization) are affected in a different manner
by these changes of permittivity. Even when we take advantage of the largest E-O
coefficient, different modes exist in the structure that show different tunabilities, as
observed for the BaTiO3. The conclusion is that each configuration requires for
separate study of tunability.

• How does the anisotropy of the structure impacts the properties of the GMR filter,
in particular: resonant peak linewidth and tunability maximum, angular tolerance
and polarization independence?

As expected, the anisotropy of the structure leads to a dependence of the peak
position on the polarization of the incident wave, and also to a more complex behavior
with respect to the incidence angles than for isotropic structures.

Concerning the question of tunability, in the LiNbO3 case, the resonance peaks for
both the TE and the TM mode shift to the shorter wavelength direction as the
applied voltage increases and the shifts are linear with respect to the voltage. We
have also found that, under the same intensity condition, the shift of the TM mode
is larger than TE mode. In the BaTiO3 case, because of the anisotropy of the
structure, the same TE and TM modes propagating along two orthogonal directions
have different propagating constants. Among them, TE mode along the x direction
shows the strongest tunability, but the same mode along the y direction barely shifts
under the same condition. On the other hand, the TM mode propagating along
x direction shifts obviously (24nm under 5V voltage) to the smaller wavelength,
while the shift of the same mode propagating along y direction is only about quarter
of that. However, the quadratic E-O effect makes some changes to these values.
Contrary to the linear case, we can observe a significant shift of the peak of the
TE mode propagating in the y direction, because of the variation of ϵ11. The shift
of the quasi TM mode along x direction becomes smaller in this case, because the
components of the permittivity tensor decrease less rapidly than in the linear case.
The most interesting case from a practical point of view is the stronger shift of the
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quasi TE mode along x direction: it still holds the strongest shift without visible
change of its width, and the value of the shift is twice than before.

Concerning the question of angular tolerance, for both the LiNbO3 and BaTiO3

cases, we have observed that the angular tolerance is stronger when the incident
wave varies in a plane perpendicular to the direction of propagation of the mode
as compared to the case when the incident wave varies in a plane parallel to the
direction of propagation of the mode. Moreover, the anisotropy in the BaTiO3 case
leads to a more complex behavior since the modes propagating along the x and y
directions can not have the same propagation constant.

Concerning the question of polarization independence, in the LiNbO3 case, the po-
larization independence character of the double periodic grating has been well main-
tained, even when external electric voltages were applied. However, in the BaTiO3

case, the anisotropy contains two parts, one is the intrinsic anisotropy due to the
orientation of the crystal, and another is the derivation of the permittivity ellipsoid
coming from the electric field. This anisotropy causes the resonance wavelength
to depend on the polarization of the incident wave, and is resposible to different
tunability values when the voltage applied.

5.2 Perspectives

Although we have done detailed numerically studies of E-O material based guided-mode
resonance filter, there still exist several critic problems unsolved and other possibility for
further research. Generally speaking, they can be organized into three main points:

• The problem of polarization dependence
The tunable GMR filter based on BaTiO3 shows a strong tunability, but it suffer
from the polarization dependence. At the end of the chapter 4, we have attempted
two approaches to solve this problem, but both of them failed. The method of
grating period optimization can superpose the resonant peaks in the spectrum for
incidence with s or p polarization when there is no external electric field, however,
when the voltage is applied, the two resonant peaks split. Thus, this approach is
effective only in the situation without external voltage. Meanwhile, it is difficult to
make the accurate control of the period in practice. The second approach is the
crystal rotation. As observed, without external voltage the polarization dependence
is relatively weak. However, when we apply static voltage, the two peaks obtained for
different incident polarization split up strongly. We intend to find a better solution
to make the filter being polarization independent with or without applied voltage,
and maintain appropriate tunability.

• Filter Fabrication
The work in this thesis is mainly numerical, some reality factors have been neglected.
When we want to manufacture the tunable GMR filter, there are two key factors
that must be considered.

The first is the problem of crystal growth on an amorphous material. Whereas
epitaxial growth may partially solves this problem, recently wafer bonding and ion
slicing process has been proposed to cut thin layers (680nm in particular) from a
bulk crystal of an E-O material, and to deposit electrodes, amorphous buffers and
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other layers71. Although this method has been applied to LiNbO3, future work is
required to study the possibility to apply this method to BaTiO3.

The second is the absorption of the electrode material ITO. All the materials we use
in our design are practically lossless around 1550nm, except for ITO. In non-resonant
devices, the losses in the ITO layers can be neglected in practice. However, when
resonant effects are used, even small values of extinction coefficients can lead to large
absorption, in particular if the absorbing layers are put in the region of the device
where the field is strong. At the end of the chapter 4, we have tried to introduce a
buffer layer between ITO and E-O layer, the refractive efficiency can be controlled
in an acceptable range, but more work focused on the configuration design should
be done to improve the efficiency performance.

• Choice of Other E-O Materials
In this thesis, we focused on LiNbO3 and BaTiO3. In fact, there are also many other
E-O material who have impressive E-O effect performance, all of them could be used
to realize the goal of tunable filtering. Among them, liquid crystals or polymers of
liquid crystals show a sufficient potential. The refractive index can highly change
when a voltage is applied. Some research works have to be done in this area.
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Appendix 1. S - Matrix
Construction

From the Eq. 2.36 and 2.33 in chapter 2 , we can easily get

U(p+1) = R
(p)
udD

(p+1), (5.1)

D(0) = T
(p)
dd D

(p+1) (5.2)

If there is no incident waves in medium 0, then we can expand U(p+1) and D(p+1) by

using divided matrix t(p) =

[
t
(p)
11 t

(p)
12

t
(p)
ud t

(p)
22

]
, then we get following relationship between layers

p+ 1th and pth:

U(p+1) = t
(p)
11 ϕ

(p)
+ U(p) + t

(p)
12 ϕ

(p)
− D(p)

D(p+1) = t
(p)
21 ϕ

(p)
+ U(p) + t

(p)
22 ϕ

(p)
− D(p)

(5.3)

Underling the condition of Eq. 5.1, 5.2 and 5.3, by replacing all the U(p), we get:

t
(n)
11 ϕ

(n)
+ R

(n−1)
ud [ϕ

(n)
− ]−1 + t

(n)
12 = R

(n)
ud ∗ [t(n)21 ϕ

(n)
+ R

(n−1)
ud [ϕ

(n)
− ]−1 + t

(n)
22 ] (5.4)

In this equation, a new notation Ω is introduced, where Ω(p) = ϕ
(p)
+ R

(p−1)
ud [ϕ

(p)
− ]−1. Then

we can solve the equation and obtain the first part of S - Matrix:

R
(p)
ud = [t

(p)
11 Ω

(p) + t
(p)
12 ][t

(p)
21 Ω

(p) + t
(p)
22 ]

−1 (5.5)

Using the Eq.5.3 again , replacing D(p+1) by t
(p)
21 ϕ

(p)
+ U(p) + t

(p)
22 ϕ

(p)
− D(n) ,and replacing

U(p) with R
(p−1)
ud D(p), then we get the relation of T

(p)
dd and T

(p−1)
dd ,

T
(p)
dd (t

(p)
21 Ω

(p) + t
(p)
22 ) = T

(p−1)
dd [ϕ

(p)
− ]−1 (5.6)

Solving this equation, we get the second part of S - Matrix:

T
(p)
dd = T

(p−1)
dd [ϕ

(p)
− ]−1(t

(p)
21 Ω

(p) + t
(p)
22 ) (5.7)

Taking advantage of the similar approach, the other two parts of S - Matrix can be
achieved and shown in Eq.2.36.

99





Appendix 2. Schema of Structures

This appendix provides a summary of the structures mentioned in the thesis. For each
structure, the graphic symbol recalls the structure serial number, type, and the purpose
for which the structure has been studied. Patterns specify the parameters of structures.

Figure 5.1 : Structure 1.1 - simple guided mode resonant grating model in the Chapter
1.

Figure 5.2 : Structure 3.1 - equivalent structure in the Chapter 3.
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Figure 5.3 : Structure 3.2 - GMR grating with LiNbO3 correspond to point A in the
reflected field map Fig. 3.5. - research the influence of the profile of the guided mode field,
also be used to analysis the GMR filter characters in the Chapter 3.

Figure 5.4 : Structure 3.3 - GMR grating with LiNbO3 correspond to point B in the
reflected field map Fig. 3.5. - research the influence of the profile of the guided mode field

Figure 5.5 : Structure 3.4 - GMR grating with LiNbO3 correspond to points C and D in
the reflected field map Fig. 3.5. - research the influence of the profile of the guided mode
field



Figure 5.6 : Structure 4.1 - equivalent structure in the Chapter 4.

Figure 5.7 : Structure 4.2 - GMR grating with BaTiO3 correspond to point A in the
reflected field map Fig. 4.6. - to analysis the tunability and peak linewidth and angular
tolerance characters for the first order modes in the Chapter 4.

Figure 5.8 : Structure 4.3 - GMR grating with BaTiO3 correspond to point B in the
reflected field map Fig. 4.6. - to analysis the tunability, peak linewidth and angular
tolerance characters for the second order modes in the Chapter 4.



Figure 5.9 : Structure 4.4 - GMR grating composed with BaTiO3 layer and ITO layer
with absorption. - to test the affect on the resonant peak caused by ITO layer with different
coefficients k.

Figure 5.10 : Structure 4.5 - optimized GMR filter configuration with BaTiO3 layer
and ITO layer. - to decrease the influence of ITO absorption on reflective efficient by
optimize the stack composition.



Summary

Tunable Resonant Narrow-Band Filter Based on Electro-optic Materials

A resonant grating filter is a simple structure composed of a stack of a few dielectric
layers on which a sub-wavelength grating is engraved. Their main interest is the narrow
spectral FWHM they can achieve: in practice, quality factors greater than 7000 have
already been obtained. The potential application fields are: optical telecommunications,
spectroscopy, lasers, sensoring, etc. We aim to develop the potential of resonant grating
filters by studying the tunability of their center wavelength by electro-optic effect. We
chose two materials, Lithium Niobate and Barium Titanate, because of their large electro-
optic coefficients. We developed a numerical tool based on the Fourier Modal Method
including anisotropic materials. This is indispensable to analysis the effects related to
the incident polarization. We compared several configurations, allowing a strong (up to
90nm) or weak tunability, independent or not versus the incident polarization. For each
case, a physical interpretation is given for the facts that are observed. Last, we conclude
by practical considerations concerning the feasibility of the structures and the influence of
the absorption losses.

Key words: Diffraction gratings, guided mode resonance, tunable filter, electro-optical
effect, angular tolerance, polarization independence

Réseaux Résonnants Accordables pour Filtrage Optique à Bande Étroite

Un filtre à réseau résonnant est une structure simple composée d’un empilement de
quelques couches de matériau diélectrique sur lequel est gravé un réseau sub-longueur
d’onde. Leur atout principal est la finesse spectrale accessible: en pratique, des facteurs de
qualité supérieurs à 7000 ont déjà été obtenus. Les domaines d’applications concernés sont
les télécommunications optique, la spectroscopie, les lasers, la détection...Nous souhaitons
développer le potentiel des filtres à réseau résonnants en étudiant la possibilité d’accorder
leur longueur d’onde de centrage par effet électro-optique. Nous avons choisi deux matéri-
aux électro-optiques, le Niobate de Lithium et le Titanate de Baryum, en raison de leurs
fortes propriétés électro-optiques. Nous avons développé un outil numérique basé sur la
Méthode Modale de Fourier incluant des matériaux anisotropes. Ceci est indispensable
pour analyser les effets liés à la polarisation de l’onde incidente. Nous avons comparé
différentes configurations, permettant une accordabilité forte (jusqu’à 90nm) ou faible, in-
dépendante ou non de la polarisation. Pour chaque cas, une interprétation physique des
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effets observés est donnée. Enfin, nous concluons par des considérations pratiques concer-
nant la fabricabilité des structures et l’influence des pertes par absorption.

Mot clés: Réseaux de diffraction, résonance de mode guidé, filtre accordable, effet
électro-optique, tolérance angulaire, indépendance polarisation




