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INTRODUGCTION

Contrary to common sense, scientist is usually thrilled with the
word 'mnomaly’. This paradox could easzily be explained - anomaly means
something abnormal, unexpected, 1.e, unpredicted, novel. When R.Wood
in 1902 observed some unexpected property of diffraction gratings -
diffraction efficiency changes more than 10 times in. the spectral
region not larger than the distance between sodium lines, he called
thag'phenomenon 'anomalous'. This term proves to be so fascinating
that even when some anomalies find their explanation {(become ’normal’
from a theoretical point of viéw} phenomena they represent continue to
be called anomalous.

Explained or not, each more or lesa rapid change 1in diffraction
effjciency of gratings is called anomaly, Great intersst in almost
century lasting Investigation of anomalies could find its explanation
in the following reasona!

1. Their appearance is connected with some physical phenomena that
attract attention by themselves.

2. Many of the anomaliee are cohnected with surface wave excitation
and could provide information for their properties.

3. For the most of grating applications it is more important té ha;a
smooth, rather than very high diffraction efficlency - ancmalies must
be avoided, '

4, It appears that in some cases very high efficiency values could be
anomalous, too., Detailed investigatlions of anomalies could result in
some interesting applications, .

5, Theory of anomalies provides incomparable atimuli for development
of recent numerical methods for analysis of 1Ilight diffraction by
ralief gratings. .

The necesgity n»f the thesls is dune mainly to the lack of
detailed investigation of al)l anomalies. In the last-  years new
anomalies have been discovered that make it possible to develop a new
united classification of anomalies and te determine the connections

that exist between them. The aims of the investigation when wﬁrking ohn
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the thegis were: .

1. DPeveloping progrem packages based on the recently published or
ariginal rigorous methods for analysis of light diffraction by relief
gratings, verification of the computer codes and determination of
their efficiency and regions of application,

2. Theoretical and experimental investigation of some anomalies in
different’ types of gratings {metallic, dielectric and multilayered)
and of the possibility of utilizing anomalous properties,

3. Determination of physical connections between diffefent‘anomalies
and reasong for thelr appearance. This wae done on two levels:

a} phenomenological -~ it enabled +to draw connéctions between
anomalies; -

b) microscopical ~ what are the properties of eleCtromaEnﬂiic‘field in
the near zone of diffraction and how its peculliarities . influence the
far-field diffraction efficiency.

The thesis copsists of 10 chapters divided in- threa parts. The

first part contains three chapters, It deals.with the- gener& fe
of light diffraction by relief gratings (statement-o{‘the.ﬁroblem,

some mpin theorems), historical review of investigatjon :
and their recent classification. Chapter three contsina. & review of
the theoretical metheds, including s detailed presentation of the used
in our laboratory rigorous numerical method.

Part itwo presents: anomalies in bere metallic gratings -
resonance {chapter 5) and non-resonance (chapter 4 and 6) and some
examples of their interaction (chapter 7). It is shown how some
general properties of metallic gratings could be explained from a
microacopical point of view.

gggg,- three analyzes anomalies in corrugated dielectric
waveguides — what is the influence of waveguide mode excitation on the
diffraction efficiency without ([chapter 8) and with {(chapter 10) mode
interactions, Anomaly in the coefficients of mode coupling (planar
Brewster's effect) is studied in chapter 10. Non-resonance anomalies

in bare dielectric gratings are discusses in chapter %.
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PART ONE: [JGHT DIFFRACTION BY RELEF GRATINGS

CHAPTER ONE: BASIC PROPERTIES OF DIFPFRACTION GRATINGS
Statement of the problem of light diffraction by relief

diffraction grating shown schematically in fig.l1.1 is presented in §1.

Main properties of gratings are discbssed including grating eguation,
reciprocity theorem, invariance theorem. §2 contains a brief review of
common properties and peculiarities the spectral dependencies of

metallic gratings having different profiles and groove depths.

sdubrole

Fig.1.1, Schematical representation bfrrelief diffraction grating.

Historical review on grating’ anomalier is pregsented 1in §§.
Recent clasgification of different types of anomalies is given in §4:
I. Resonance anomelies which are accompanied by sharp electromagnetic
field enhancement in the near vicinity of grating surface. They are
due to guided wave excitation along the corrugated surfaces.

I1. Non-resonance anomalies that can be divided in two types:

1. Anomalies in Littrow mount - angular and spectral dependence of
efficiency is smoother than in the lregion of regonance anomalies,
Littrow mount ({sometimes called Bragg-type} anomalies are not
conhected with surface wave excitation but with some peculiarities in
energy flow distribution - formation of curls inside deep grooves.
Usually these anomalies do not lead to any¥ noticeable drop in the
total reflected light.

2. Non-resonance anhomalies that are in connection with the existence

of guided waves but in the interval of parameters where such waves are



forbidden {chapter 5 and 6).

Of course with a suitable choice of conditions it is possible to
have & simultaneocus appearance of &wo or more anomalies, their
interaction and even 'annihilation’.

It is important to note that one and the same pheno&énon could
result in different anomalies in different diffraction orders, That is’
why apomalies in the Oth and -1st orders are considered separately in

the corresponding chapters.

CHAPTER TW0Q: SURFACE WAVES AND RESONANCE ANOMALIES

This chapter explains the mechanism by which surface wave

‘excitatlion leads to ancmalies in the diffraction efficiency. For this
aim a brief review is presented ?f surface waves that propagate along
plane metal-dielectric boundary and in pultilayered planar waveguides.
§2 containa the so called phenomenclogical approach that represents
.surface wave excitetion in corrugated system by a set of zeros o and
poles af of the scattering matrix § [19, 20]. Its components could be
represented in the resonance anomaly region by the phenomenological
formula:
Aa
Su =_.(f9_.._aJ;!_‘:)_ . _ {2.1)
Gb ~ a¥{h} .

where a, is the sinus of angle of incidence. Without corrugation a”=aFf
and there are no anomalies. Existence of grating leads to the
splitting of pole and zeros. Tracing of their trajectories in the
complex a plane as a function of groove depth and/or wavelength is a
strong tool for investigation of ancomaly connections and origin.

When incident wave vecter is not perpendicular to the grooves
(conical diffraction mounting), representation ({2.1) becomes more
complicated. Using reciprocity theorem it is shown how arbitrary
polarized incident wave can be decomposed into two mutually orthogonal
components (in general, elliptically wpolarized), One of them ({with
amplitude pl) is no§ interecting with the surface yave. Thus in the
phenomenological formulae- - (2.1) a new slowly varying term is added,
propoertional to P,

53 discusses the two main features of mode interaction: 1) its
influence on the resonance anomalies and how it can be reflected in
tﬁe rhenomenclogical formulae; 2} energy transfer between interacting‘

modes, variation of their amplitudes in the corrugated region and mode

‘
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coupling equations. A generalization of the phenomenological approach
is propesed that makes it possible any numerical treatment for light
diffraction of plane waves on grating to be utilized for determining
the coupling ccefficients when two modes interact in the corrugated
reglon of a planar waveguide, as follows:

Sclution of eigenproblem means that the determinant of the
matrix inverse te the scattering one has & zero - det(8"1)=0. This
means that the rank of & * is smaller than its order, i.e. a linear
connection exists between jits columns and, in particular, between j-th
diffracted order amplitude (bu) and the resonance amplitude b#'
Varying grating period it is possible to have a second resonance and

; ; - > .
in fhe linear connection bu"cuubp a pole Ku appears:
= c
b,* vy b, . (2.2}
S ¥ - K:; !

Let us suppose that the grating region is extended from x=0 to x=L,

where L>>d. The p-th mode amplitude can be represented in Fourier

serlesg!
. m
oy oo 1 iKx
b, x} = Hl B,IK) e dx (2.3)
where B” U{K} are the Fourier components corresponding to a fixed
»

grating vector K. Using (2.2) the response to the set of amplitudes
{Bﬂ(K}l is:

1.

blx) = 5 | 31K - ’:"Kp iKx g, (2.4)
- M
'ig.2.1. Ratio bx/bo’ calculated u
v the rigorous metod {solid line}) v
nd using eq.{2.2) (represented u
ith crasses with ¢  =0.06201 P '
"241,7107 gm ') as a function of oh .
for a waveguidél with n =1, -l4uu 1ue b s e _
=2.3, n3=1.6, t=0.3 pm, h=0.004 "
iy x=0.6 Hm and angle of
incidence p=30°. . :
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After differentiation of (Z.4) in x the following equation_ is deduced:
®
c

J-%—E—iB(K)«-Ed—neixde=iKpb(x)+c\

fla
o
%
%
i

v K - ®° p Ty uy ?v(x) (2.8

I .
where we have assumed that c#v~const. This statement needs more

precise gnalysis. In fig.2.1 a comparison between the numerically
calculated ratio bv/bﬂ and that obtained from {(2,2) is presented and a
very good agreement is achieved for s large region of X, except for
the near vicinity of pole interaction point where Im{a®) becomes large
enough that the eguation dets™ ! i no longer fulfilled for real values
of a, .

Introducing another -set of slowly varying amplitudes
Q =b exp(—iKZx) in (2.5), the well-known system of coupled mode

o
equations is obtained:

a

db (%) C . iB % : -
—a}"‘—-—‘- = 1 CF”) bp(x) e

" (2.86)
dbp(x) _lﬁpvx

- ° i cpu b“(x) e '

where 6HV=K;—K2 is the deviation from the Bragg condition,

CHAPTER THREE: THEORETICAL HETHODS FOR ANALYSIS OF LIGHT DIFFRACTION
BY RELIEF -GRATINGS

A brief review of different theoretical methods - spproximate

and rigorous, for analysis of plene wave diffraction by relief grating
is presented in &1. It includes different approximate methods based on
the Rayleigh hypothesia, rigorous integral and differential methods.
52 contrins a detailed presentation of an original differential
method — & generalization of the rigorous;differential formalism of
Chandezon et al. (C-method) in two directions: for conical mounting
and for gratings with a ceorrugstion only on .the upper boundary
(fig.1l.1a). The choice of the method has been determlned by its wide
field of application {(metal, dielectric and multicoated very deep
gratings). On the other hand this method does not need so complicated
mathematics and is not so time consuming. The transformation of the

coordinate system!:

u s X
v =y - f(x} (3.1)
W =z

transforms the Maxwell's equations in each of the layers of fig.lb
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into n system of 4 partial differantial equations with non-constant

oefficients:

6Ev BEV . 1 8 H aH

e = f{u) o ‘|‘.lfa.’ﬂ05(u)[ﬂ + ;{—2'-—-5' av F’— Fv——]] ) (3.2a)
aHu "8 3E

CUR Cralil m[ﬂ(ul!! ]+1k niE ~1§—-[8(u) g—«—o a-——-]] y {3.2b}
GHB B'H" . 2 E @E

O e ® t.mo!)(u) T ~1f-'(u)[k wWE + B_ 5——- 3__]] ) {3.2¢c)

c?Eu a jmpo 8 }l aH

SSCH 56[”(“"“3“] - o, b =g T[&(u) L a“]] . (3.2d)

where Hy ts the vacuuwm permembility, k is the wave nuwber, m - the
refractive index and Bix)={1+f- {x)®1"!, 2ix}=f (x)8{(x}., Unlike the
classical diffractien case (.GO:'O) the system (3.2} and the unknown
field components cannot be 8plit up inte two independent sets,
rorresponding tv the two fundamental polarizations.Taking into account
the periodicity of the grating, the solution of {3.2) can be sought in
the form:

F E
2 W
F = Fa = wﬂgHu . (3.3)
F‘ ,-w;tOHv
¥ E
u
there
ik{a “J'Bc"’) .
FP{n,v,w) =z Eh(v) e " vy PRly..a4 . £3.4)
meE-

nd aﬁ:aoﬁt/d. For a numerical treatment a limited number mel[-H,N] of
rders has to be taken into account. If § stands for the truncated
retaor F {3.2)} can be written in a matrix ferm:
. dGJ 4
R vl R GJ ) (3.5)
ere the camponents of R' are obtained subatituting {2) into (1). The
lution of {3.5) can be represented by:

G = ch‘ ativy B, (3.8)

vy = 5 exp{ ird v) . (3.7}
np nmp ®

is a square {8N+4)x{8N+4) matrix with coclumns - the eigenvectors of



...B_.'
. r! are the corregponding eigenvalues and B’ contains the unknown
amplitudes determined by the boundary and outdoing wave conditions, In
the Ouvw coordinate system the boundaries between the layers are
defined by V=l-| and a connection between the unknown amplitudes at the
two s8ides of the j-th boundary is quite simple:

T @1(1 IR (AL S O IR I {3.8)
Using (3 8) a connectlon between the amplitudes in the upper and lower
media can be found., Taking into account the outgoing wave conditions
the system (3.2) is reduced to a more simple linear algebraic system.

The description of the system shown schematically in fig.l.lsa
needs a complication of field representation in the second region. For
‘y<minl{f(x)] the fleld can be expanded in plane waves:

n ~ ~ k3 =

Fo=ov Miyy el e ¢, (3.9)

_where Qn =5 Pexp(ia x) and @i (y) 6 exp(ix ¥, xz—ng-a:. The

unigueness of the solution in the second region connects F: 1y=12 and
B, The boundary conditions at the flat boundaries y= 11,...1 1 make
it possaible to express the diffracted waves amplitudes via the
incident ones.

It has been pointed oyt that the most important criterion of the
quality of a numerical method is its efficiency - ability to deal with
a wide claag.of gratings in a relatively short computation time,
rather than its simplicity. It is #ell known that the computation time
in the matrix operations is proportional to the cube of the matrix
size, 8o the most important factor becomes the convergence rate with
respect to the trundation parameter N, We have -made a set of

calculations in order to perform the limits of method applications for

70 -
Fig.3.1. Convegence rate for g¢r=0° - &0 4 T
{solid line) amnd ¢-260° (dashed £ gp temT
line}. Grating period is equal to IS
the depth - 0.6 um. For ‘pr= 30° S wd.
the results coinside with the case 2 .
¢*=0°, In the in-plane case A=0.86 w 304
pm, 20 ]
10
o —
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fferent types of gratings. It happens that the saturation value is
tained at onme and the same N independent of the angle p- between the
cident wave vector and the plane perpendicular to the grooves
rresponding to the deviation from the classicel diffraction case. As
example in fig.ﬂ.l the ~1lst diffraction order ef{ficiency of a bare
nusoidal Al grating is shown for three different values of ¢/: D%,
“ and 60° For a TH pelarized incident light; the convergence is one
3 the same for the three cases. That is why in the next examples
ly the «classical diffraction case is investigated and the
nclusions are valid for the Chandezon’s formulaiion, toa. A
mparison has been made with the well~ known Rayleigh-Fourier (RF)
n~rigorous method and for metal, dielectric and coated gratings the
Ylowing general conclusions can be drawn:
 The results of Wirgin [67, 68] concerning the wvalidity of Lthe OF
thod for sesinusocidnl gratings . with depth far exceeding the
eoretical limit are confirmed. On the other hand Lthe rigorcus methed
oth in the conical and classical cases) has a faster convergence
ich diminishes much slower than that of the RF method - for gratings
meoderate and high depth values (h/d>0.2) the computer time gain
mpensates the sophistication of the code. In fig.3,2 the convergence
tes of the two methods are compared for an Al grating - fer small N
e results of the RF method are highly oscillating while the rigorous
thod converges much faster.

The change of the  grating profile worsens drastically the
vergence of the RF method, not affecting significantly the
tclency of the rigorous methed {fig.3.3).

Even for shallow gratings, above some critical thickness of the
Ling tmux, different for the two methods, the results diverge. This
‘jeulty was reported by Chandezon et al, [956), but without any

anation. Moreover, increasing N the critical thicknesses decrease,

resulis being worse for the RF method. For example, when h/d=0.43
~igarous method is applicable to four times greater values of the
e layer thickness. We have found that this divergence ;s due to
finite compuier. word length: For the propagating diffracticen
s the modulus of the exponential propagation factors is egual to

The evanescent waves are characterized by complex propagation

's and if their real exponents are large enough, in the wmatrix

lications the small members are truncated. For the 32 bits
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Fig.3.2>Convergence L “ ViA
!
rate for RF {dased e VY
. : A
line} and for rigo- VA s
rous methed {solid 5 al~"T % i
line) - sinuscidal Z H L reraso
Al grating 2 .
o

(a} h/d=0,333

FIRST QADER 24 ! "
{b) h/d=D.6 ,

~

Fig.3.3. Like fig.3.2a,
exept for a symmetrical
triasngular profile.

-

FIRST ORDER

computer word length 23 bits are reserved for the mantissa and if
ol
mgxtlm(xm]i = Hﬂ

~N £ m s N

5 , (3.10)
max|Im{r }/k] = H
n L] ™

the max imum available thickness tm“x can be given as

2nt 4 /2<1n{2%®). The values of t
max N max
rigorous method

the rpumerically calculated ¢.283pm pand 0,47ym, respectively,

for the RF (0.27pum) and for the
{0.56um} obtained frpom this inequality are cloae ta

wher

]



h/d=0,34, for example.

§3 contains a short classification of different theoretical
methods for analyeis of mode coupling in corrugated waveguides.
Approximate analytical metheds, usually wvalid in first order
approximation with respect to the modulation depth are considered in
the beginning. First attempte consist of substituting the perturbation
of boundaries with a perturbation of Maxwell’s egquations, Their
solution is searched as a sum of modes of the unperturbed waveguide
{ideal mode approach) or of the planar waveguide with thickness
corresponding to the local thickness (local made approach). The
pericdlicity of the corrugation leads to the coupled mode equations.
Unfortunately, these approaches are valid only fer collinear coupling
because of not taking into account the exact boundary conditions., At'
the other hand, the existence of such analytical method that could
give the mode coupling coefficients in closed form is important in
Integrated optics. In great amount of integrated optical devices the
corrugation depth is much smaller than the period and the waveguide
thickness in order not te modify significantly mode field distribution
and propagation constant, In that case it is.quite useful to obtain
some formulas, although being approximate, but enabling the
calculation of the coupling coefficients without heavy computer codes
and big computers.

As a first step mode coupling by a single step structure on a
wvaveguide with an arbitrary refractive index profile is considered. On
both sides of the step the field is represented as a superposition of
all possible modes (guided and radiated) of a waveguide with a
suitable thickness, propagating in all possible directions, The mode
applitudes are evaluasted using the boundary conditions on the step
boundary., In a first order approximation in step height analytical
expressions are obtained and, in particular, the dependence of the
TEp—reflected mode mmplitude on the amplitude of the TEn-incident one
takes the form:

} s {3.11)

where Sﬂﬁ is a coefficient depending on the waveguide parameters,

CcOos
Yre g
cosy

I~ ]'-0‘: S[.ln ’;’T'En
a s a h L A
H n 2 TEp

rrey

A groove with an arbitrary profile is divided into rectangular

slides with infinitesimal width. Applying consecutively the boundary
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conditions on each of the slide boundaries, the changes of the mode
amplitudes are in a first order approximation in dgroove height

proportional to:

A°+A i
iA#nx

i Aﬂﬂ I f(x) e dx- (3.12)7

A

o

where
A = - 3.13

pn T Ty CO8¥y T 7, cose, ( !

On each of the grooves of the dgrating the amplitude chande is small
but in the case of phase synchronisam the diffracted by the whole
‘grating wave amplitude can become comparable with the incident one.
Using the periodicity. of the corrugatien in x, (3.12} can be

represented as:!

¥ i, 4
. Z —— [e ! - 1] {3.14)
Hn, m
where
d
.1 ~ imKx
Tn ol I f{x} e dx »
0 (3.15)
A - mK b mo= 0, £1, 22, ...

Aun,w = Pun

Considering the Bragfd diffraction case, the only significant term in
the sum (3.14) is the one with a slight deviation from the phase
synchronism condition (A ~0). and equation (3.14) becomes
equivalent to lhﬁﬂﬂ? exp(iAﬂn x). Substituting Aa /d w1th aa#/ax
{poazsible dues to the small amplitude change on a’ 31ngle groove), the

well-known system of coupled mode equations is obtained:

da’ iA
A A e HL=
ax” m o
’ 3.16)
dal - 14 ¢
an = i r" al e H, =
dx np g
The coupling coefficienta I' are
: 0}- n (0} cos{p -y }
TE TE_ h 1 n ( n
Fp- n 3 fn k ——E——m————w ”E(O) £ t 0} e (3,171
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[TH TH

won ) (3.18)

n, (0}
+ - .
rTHﬂrTHn qﬂqﬂ nz(O)COS(wn p#)
h 1 1 * . t
Tor el ) xyt(o)xnn(o) cosp '
0 nl(O) nl(O) u

where qZ:riH# - k“n:(O}. and £{0) and X(0) are the values of TE and TH

mode eigenfunctiensa, calculated on the waveguide surface.

The case with a polarization conversion is more complicated due
to the non-orthogonality of the longitudinal and transverse mode
eigenfunctions and a8 numerical treatment 4is reguired. 9 sgets of
parameters of a step refractive index waveguide were considered: "1=1’
n2={.62, n3=l.515, t=3, 5, 10, 15 and 20 um and n1=1, n2=2.234,
n3=2.216, t=6, 10, 20 and 60 um, including mono and multi mode cases

~{up to 8 modes). Within a 5% relative error the coupling coefficients

can be approximated with the following expression:

TE TH_h 2 i 1 * sin ¥y Yy :

=Dy (1) (S S * (0 . 1.

i T )[n'(ﬁ) na(O)]E”L‘D) ne (®) CoEPy 2.19)
' 1 i

Formulas (3.17) and (3.18) are valid for an arbitrary refractive index
and groove profiles. (3.19) is valid for an arbitrary grating profile,
too. For the case of normal incidenée they coincide with the results
'of the local mode approach and of the "growing-wave" analysis of
Stegeman et al. [114}. For obligue incidence, however, our results
differ slightly from those of Stegeman et al. by the cosine in the
denominator, responsible for the interaction length I=dfcoay for one
groaove.

In many cases the medulation depth is not very small compared to
the period (e.g. grating in- and output couplers), but not big enough
to_ modify significantly waveguide mode structure. When h/d<0.15 it is
possible to use the phencomenclogical approach. These methods could be
divided into two groups with respect to the fleld representation:

1. Based of HRayleigh hypethesis {plane wave expansion)
[111-113]. This is a:very aimple method, but it has two disadvantages
- validity only for ,step~index waveguides and bad convergence rate for
non~sinuscidal grating profiles.

2. Modal methods - solution of rigorous boundary problem is
searched numerically as a sum over modes of unperturbed wavegulde {in
general it can be graded index).
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Other two groups of methods could be specified according, to the way
the coupling coefficients mre calculated:

1. Numerical determination of mode propagation constant in the
coupling region. After that coupling coefficienté are calculated using
the relation I'=2kIm(a®) [47, 113},

2, Application of the phenomenclogical approach presented in &3
of Chapter two,

Comparison was made between the results obtained using the last
method and using_ analytical formulas {(3.17) - {3.18). A very good
coincidence is observed for three~ and multilavered waveguiées in the
case of shallew corrugation when formulas (3.17) - (3.19) are valid.

Although in the numerical treatment rigorous .electromagnetic
theories can be used, they presume an approximation which is fulfilled
if groove depth is small cempared to the wgveguide thickness -
influence of the cdrrugation on mode Ppropagation constants awey from
rhase matching conditions is negligible. When the grating is deep
enough, mode propagating constants are changed significantly even
without mode interaction. Moreover, coupling becomes strong even when
rhase matching is not ensured. In that case different modes of the
corrugated waveguide do not correspend at all to the modes of planar
system. The only possibility is to search for a rigorous solution for
energy transfer in different directions in waveguiding layer,
substrate and cladding [105, 114, 1158]).
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PART TWO: ANOMALIES B BARE METALLIC GRATINGS

This part of the thesis contains a detailed study of different
anomalies in diffraction characteristics of bare metallic gratings.
Thin dielectric layer on the metallic substrate does not lead to new
anomalies but to & =slight shift of their position, depth and half
width. Thicker lavers could suppori leaky waveguide modes, excitation
of which could lead to appearance of new anomalies, like resonance
anomalies in corrugated dielectric waveguides {(Part three}. These
snomalies ih metallic gratings covered with a dielectriec layer are
studied in details and we should not discuss them.

The following remark has to be mentioned here: Further on
appearance of curls in energy flow distribution is discussed in
details. Usually existence of curls in vector field {of a vector A}
means that rota=0. This is not the case with Poynting vector P of
electromagnetic field in lossless media free of charges and currents:
rotP=0. By ’curls' for the =zsake of brevity we are naming regions of

closed vector lines,

CHAPTER FOUR: LITTROW MOUNT ANOMALIES - PERIODICITY OF
PROPERTIES AS A FUNCTION OF GROOVE DEPTH

It is well-known that there is a «quasi periodicity of

diffraction efficiency of grating supporting two diffraction orders.
Existence of very high efficiency in Littrow muunhQis accompanied by a
zero of the zercoth reflected order. Effort of Hessel and Oliner [28)
to explain this 'anomaly' (called perfect blazing in Littrow mount or
Bragg Lype anomaly} by surface wave excitation failed and later they
proposed another interpretation - zeroth order zeros in Littrow mount
are connected with improper poles of the scattering matrix. These
poles are cbtained when incident and reflected waves are exchanged,
i.e. non-phvsical radiation conditions are implied. It is shown in the
ihesis that this correspondence between zeros of the reflected order
and improper pole does not contain any explanation and happens always
when incident and reflected waves are exchanged:

Mathematically this exchange is expressed as a change of the
, bperpendicular to the
grating plane. If zeroth order amplitude is zero (b;:@) for ao:n; with

sign of 1incident wave vector coemponent x,

. . i . N
non-zero incident wave (aozll then formal exchange of incident and
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reflected wave {(carried out with the change of sign of xo) means that

there is a reflected wave without an incident one, i.e. an

eigensolution existe represented by a pole of the improper scattering

matrix, This fact is of great importance for the results presented in

the next two chapters, where it is shown that a close connection

éxists between resonance and non-resonance non-Littrow  mount

anomalies.

Tseng et al. {301 have shown that small variation of h around
the value hL responsible for perfect blazing moves the zero a: in the

complex ao—plane along a trajectory perpendicular to the real axis. We

were able to follow this trajectory in a very large groove depth

‘interval and we found out that it is a straight line, tending towards

minus imaginary infinity as grating tendas towards flat
{(fig.4.1):

surface
z .

a — 4 - iw . {4.1)

- This fact " has twe direct consequences that

explain two
vwell-known hypctheses:

1) Up to pow it was assumed that perfect blazing in Littrow mount is a

phenomenon, different from other anomalies. And indeed, resonance

anomalies are localized for flat surfaces near the real aowaxis

their position corresponds with surface wave propagation comnstants,

0.25 T

T i

1

€

~ }
bo} \ Fig.4.l. Trajectory of a  in the
—~=10.75 1 H complex a-plane when groove depth is
c | varied: d=0.5 pm,  A=0.6328 pum, TH
’ polarization. Solid line -
] infinitely conducting substrate,
dashed line - aluminum grating
{n=1.378+17.618), dotted line- real

. axis.
-21.25 T—— T
0.57 0.61 0.65

Re( o)
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while the ’'starting’ point of Littrow mount perfect blazing lies in
—iw.
2) Littrow mount anomalies appear only in deep gratings, when a:
apprecaches the real axis and has some influence on diffraction
efficiencies.

Increasing the groove depth, a: approaches the real axis with

rate determined by the following connections:

Re (a: ) =a

21 z ' (4.2)

— Im(ao) f~1 ~ -1
where f—i is the ~ist Fourier component of grating profile functicn.
These equations are fulfilled only till the zero is lying away from
the ~real axis. When Im(a;) becemes small encugh 1its decresing rate
depends on the polarization. For a fixed value of h it crosses the
real axis - perfect blazing in the -~lst order appears. After that
Im(a:) incremses in a pogitive direction, zeroth order efficiency is
growing and -1sit order efficiency decreases,.

Physical explanation of these peculiarities could be found on a

microgscopical level. Above a flat perfectly conducting surface energy
flow is parallel te the surface. Its intensity is zero at equidistant

planes. Their position above the surface 1is determined by the

'equations:
vo© = (Bmbl) grEe 0 om0, 1, 2, e {(4.3a)
Q

for TM polarization, and

Fig.4.2. Energy flow distribution!
(a) h/d=0.02, (b) h/d=0.08.



yZE = 2m§t{_;’_: , m=0,1, 2, ... . . {4.3b)

for TE polarization.

For small carrugation, the lines {that represent the
crogs-section of energy flow surfaces with plane perpendicular te the
grating} in the near vicinity of the surface are parallel to it
{fig.4.2a), Vertical component of Poynting vector P, becomes different
from zero except for the positions above the tops and bottoms of the
grooves. In the thesis it 1is shown that each plane, defined by
eq.{4.3) is split intoc two, the splitting increases with h. Between
each couple of planes P has a negative sign {(fig.4.2b}. As a result
curls are formed arouns the points where ,Pl:O. Increasing groove
depth, ares occupied by the curls increases. They block energy flow in

positive x direction increasing -lst order efficlency. 1t is important

-1

Fig.1.3. Like in fig.4.2, except
for (a} h/d=0.24, {b} h/d=0.38
and {¢) h/d=0.52.
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to note that independent of groove depth value the centers of the
lowest curls are situated at almost the same distance from grating
surface. When the centers of the lowest bottom curls lie on the line
connecting the groove tops, the entire upper medium is occupied by
curls - there is now energy transfer towards reflected wave, i.e.
perfect blazing in Littrow mount occurs. Taking into account eq.4.3,

groove depth values responsible for perfect blazing are determined by:

h = y:E'T" . {4.4)
This eguation is an approximation, but a rather good one - numerical

results almost coincide with it., Moreover, it provides an explanation
why perfect blazing in TE polarization is achieved at almost twice

deeper gratings (compare eq,4,3a and 4.3b).

Fig.4.4. Like in fig.4.2, except W

for {(a}) and (b) h/d=0.72 (ir non-
Littrow mount), f(c) h/d=1.44.
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Further increase of groove depth causes bottom curls to go
deeper and deeper. The distance between the centers of bottom and top
curls decreases and they are unfolded - energy flow in positive
direction increases. Energy flow distribution becomes more and more
alike the distribution above shallow gratings, but only odutside the
grooves. When h~2yo the centers of the top and bottom curls lie on one
and the same line (fig.4.4a) and curls above the groove tops
disappear. In that case the grating acts like a plane mirror. Inside
each groove there is a totally hidden curl that separates energy flow
above the grating from the groove bottoms. These curls are very stable
~ changing angle of incidence in a large interval causes no change in
ihe flow distribution., This property called ‘'antiblazing' (118) is
important for some effects discussed in the next two chapters.

Increasing  grecove depth leads to a rvrepeating of fig.4.2. to
fig.4.4 process, except for the lowest,curls going deeper and deeper,
"Perfect blazing followed by -antiblazing etc. could be detected
{fig.4.4c) again. '

It is shown in the thesis that when the grating supports s
single order,; in the near zone curls are formed pericdically in the
same manner like in figs. 4.2 - 4.4, They lead to a periodical
behavior of the phase of reflected wave. It must be.péinted out that
perfect conductlivity is not a limitation neither of the method nor of
the resultes - it is assumed in order to make the picture of flow
distribution more clear as there are no lines (finishind at the
surface. For finitely conducting gratings the behavior of flow
distribution is almost the same. Horeover, in chapter 9 it is
demonstrated that such formation of curls is typical for some peculiar

cases of light diffraction by dielectric gratings, too.

CHAPTER FIVE: RESONANCE ANOHMALIES IN METALLIC GRATINGS
Quasi-periodicity of properties of metallic gratings in Littrow

mount, discussed in details in the previous chapter is a general
property of gratings. - it appears for other incident angles and even
‘In, grazing incidence (f}g.ﬁ.l). Moreover,  diffraction losses of
éurfaca plasmon'-that propagates alond the corrugated metal-air
in@erfacé are quasi-periodical function of groove depth. These losases
were determined’ selving tha homogeneous proﬁlem and the ratio between

enérgy flow carried by the radiation order and by the surface wave, Tt -



1.0
Z Fig.5.1. Diffraction characteristics
£ as a function of groave depth: solid
G- 05 line - Littrow wmount efficiency,
= dashed line - efficiency for a=0,99
¢ N . and dotted line - diffraction losses
1) "‘-,\ o ‘.‘ cof surface plasmon.
0 SESLR, -
0 0.65 1.3
h/d

is shown in the thesis that the quasi-periodicity of the losses is due
to formation of curls inside the deep grooves. As & diresct
consequenhce, there is a gquasi-pericdicity of imaginary part of plasmon
propagation constant and loops are formed in its trajectery in the
complex a0~plane as a function of groove depth (Fig.5.2). In the
regions where IReap{<1 eigenvalue is transferred into a zero of the
zeroth crder amplitude a: - large losses lead to delocalization of
surface wave.

Some points of the trajectory of fig,5.2 lead to anomalies that
are discussed in the next chapter. They appear in the regions [Imap|<1

" where there is no surface wave and are of non-resonance type.

It is well-known that grating multiplies the poles [19, 20]. In
particular, similar loops are formed near the point 1-2/d due to
plasmon excitation through the +1lst diffraction order. In that case
the existence of pole is accompanied by a zera., When this zero lies
near the real a, ~axis the reflection of the grating is very small -
total absorption of light can occur under certain conditions. This

phenomenon was discovered by Maystre and Petit in 1976 [38] for

0.09 : : Fig.6.2. Trajectory of a® (heavy
line} and of a® (thin line) when
groove depth is increased. The cut
in the complex plane that

corresponds to the change of sign

of T, {121] is presented with dash

-0.13 v . v line.
0.75 0.90 1.05
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Fig.5.3. Energy flow distribution in the three cases of
total absorption of light by aluminum grating: {(a) h/d=0.1,
6=14.82°, {b) h/d=0.79, §=14,93". {(c) h/d=1.2, 6=16.06° (132].

a b c

ghallow gratings. In the thesis 3jt is shown that total absorption
occurs in deep gratings as well. For aluminum grating it happens three
times when the groove deﬁth is increased (h/d=0,1, 0.69 and 1.2). In
deep gratings there are one or two curls in each groove that separate

energy flow above the tops from groove bottoms. Just above the tops
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energy flow distribution is one and the same in the three cases
(fig.5.3). Flow lines are turning to the negative direction of x-axis,
corresponding to surface wave excitation through the =-Ist diffraction

crder. The lines are compressed resulting in enhancement of local

Ly Y
I
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\i}{s;;%!\m\\_‘\\‘
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p ta=2 =0
lema. e 30)

a : b
Fig.5.4. 2-D distribution of electromagnetic field
energy, corresponding to fig.5.3a and b.

electromagnetic field energy. Such enhancement was well-known for
total absorption of light in shallew grating and was utiliged in
nonlinear second harmonic excitaetion [123 - 127] and luminiscence
{128] and SERS [129 -~ 131)., We have shown that total absorption of
light is accompanied by field enhancement in deep gratings, too, DPue
to the peculiar behavior of energy flow (compression of lines above
the tops is separated from the bolioms)}, field enhancement now is
localized only on the tops of the grooves (fig.5.4).

Diffraction efficiency anomalies in the -1st order of aluminum
grating in conical diffraction are discussed in the last section of
chapter five, As this anomaly is well investigated, our interest |is
attracted by the occurrence of anomaly in TE fundamental polarization
when going away from the in-plane case (fig.5.5). In classical case
{¢-=0)} the incident wave vector is perpendicular to the grooves. TE
polarized wave has an electric field vector perpendicular to the
plasmon electric vector and there is no anomaly due to plasmon
excitation ({fig.5.5a8). As angular deviation from in-plane casge |is

growing, anomaly appears in TE polarized light as well, The dip in the
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Fig.5.5. Experimental angular dependence of diffraction efficiency
(heavy line)} and ellipticity {thin line} for different angular
deviation ¢+ from classical diffraction case. Solid line - TE

polarization, dashed line - TM polarization.

angular dependence (varying the other angle of incidence) for TH
polarizaticn decreases and for TE polarization deepens (fig.5.5b),
Interesting phenomenon 1is a sharp increase of ellipticity of
diffracted wave in the anomalous region, although incident wave is

linearly polarized.

CHAPTER SIX: NON-RESONANCE ANOHALIES IN HETALLIC GRATINGS IN
NON-LITTROW MOUNTING

The main difference between resonance and non-resonance

anomalies appears in electromagnetic energy distribution - resonance
ancmalies are characterized with large (one order and more) field
enhancement in the vicinity of grating surface, while in the case of
non-resonance anomalies such phenomenon is nol observed, From a
fhenomenological point of view resonance anomalies are gonnected with
a pole of the scattering makbrix. This pole is usually accompanied hy a
zero of the corresponding diffraction order amplitudé, but the pole is
responsible for rgsonance‘field enhancement. Non-resonance anomalies
are due to appearance of a zero without a pole. One such ancmaly was
considered in chapter four - zeroth order zerc in Littrow mount that
lead to perfect blazing in the +«lst order. This ancmaly is not

accompanied by a pole - the trajectory of the zero starts from -i® for
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fiat surface. The anomalies discussgsed in this section are of another
type - they are also due to a zercth order zero without a pole, but
the trajectory of such a zero alternatively consists of poles
(fig+5.2). We should now consequently discuss some peculiar points of
this-trajectory. It is cbvious that such anomalies appear only for TH
polarization in the case of bare metallic gratings.

Often diffraction gratings are used in grazing incidence for
improving grating dispersion. Unfortunately as angle of incidence
tends to 90 the zeroth order efficiency tends to unity and -lst order
efficiency rapidly decreases., Numerical optimizetion of blazed and
sinusoidal aluminum gratings was done [139] dnd the results could be
sumnmarized as follows:

1. "Sinuscidal profile is preferable when grating supports two
.Qiffraction orders.

2, Increase of groove density leads to & higher diffraction
efficiency, but shifts the working spectral region towards shorter
wavelength and increases sensibility to groove depth values,

3. Diffraction efficiency in TM polarization exceeds more than 10
times the efficiency in TE polarization.

4, Maximum efficiency in grazing incidence is obtained at about 20%
modulation depth (fig.8.1), while in Littrow mount the corresponding
h/d value is 40%

The last two properties could easily be understoed Jjust
following the trajectory of fig.5.2. Let us fix the view point at
ao=sin89°. The real part of a: becomes almost equal to a  when

h/d~0,22., Then a maximum in the ~1st order efficiency could be

o

Fig.6.1. Diffraction efficiency
vs, modulation depth h/d -~
sinuaoidal Al gr&ting[ angle of

20

incidence 89°,

abwclae srficlency %
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expected, Its value is determined mainly by Im(a:} and whep absorption
losses in the metal are growing Im(a;} becomes greater and -1lst order
efficiency decreases, As far as such a trajectory (fig.5.2) is typical
only for TM pelarization and for TE polarization there is no zeroth
order zero lying in the viecinity of a TH -1st order efficiency is
much higher.

Further increase of h/d moves a: away from a0=sin89°. zeroth
order amplitude increases (as it depends on the difference ao—a:} and
~tst order efficiency decreases {fig.6.1}. Because the trajectory of
the wzero (1: is almost parallel to the real a axis Whe!’] h/d~0.2,
groove depth dependence of efficiency is rather smooth. This fact
could be of great practical interest as it is wvery difficult to
produce a grating wilh preliminary fixed groove depth.

Tracing the trajectory with increase of groove depth, it crosses
the real axis when h/d~0.39. The c¢ross-point a:i corresponds to thev
so-called 'perfect blazing in mon-Littrow mount' discovered in 1980
[37). We were able to find its proper explanation (fig.5.2)} and to
show why perfecit blazing in TE polarization exists only in Littrow
nount.. It is interesting to note that perfect blazing -in Littrow and
non-Littrow mount are exhibited at almost one and the same grocove
depth values thus angular interval with high diffraction efficiency is
enlarged. The results are guite different for +two polarizations
(fig.6.2}):

1. TH pelarization (h=0.194pum, d=0.5um). Three zeroih order zeros are
found at a_=0.82 (a:l). 0.63 (n:) and 0.44 (symmetrical to a:i with

respect to a:). Thus zeroth order efficiency is almost zero in a large

ci4
-~
é Fig.6.,2, %Zeroth order efficiency
‘;L: as a function of an=sineo. Selid
; 0.07 line - TM polarization, h/d=0.388,
‘g dashed line TE polarization, h/d=
o 1.32. a/d=1.2656,
b4

0 0y

0.30 G.65 1.00
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angular interval leading te high (>85%) effidiency in the -ist order.
2. TE polarization (h=0,66um, d=0.5pm). There is no perfect blazing in
non~Littrow mount and the angular intervel with low zeroth order
efficiency is much narrower.

With further increase of h/d the trajectory of a: CroSses
again the real axis again at uc=0.9993 {fig.5.2 and 6.1 with
h/d=0.6%). Zeroth order efficiency again becomes nil. Efficiency ir
the ~1st order depends on the greoove profile. Symmetrical triangular
profile results in very high efficiency (fig.6.3b and 6.4b).
Unfortunately groove depth is very large {h/d=0.69). For sinusoidsal
profile with that greoove depth value -1st order amplitude is almost
zero in a lerge angular interval {(’antiblazing' of gratings [1411})
and, in particular, in grazimg incidence ({fig.6.2a and &§.4a).

Superposition of those two phenomena fzero of the zeroath and -lst

Fig.6.3. bDiffraction efficency in the
0~th {solid ‘line) and -1st [dashed
line} order and total diffracted
energy (dotied line) as a function of
modulation depth h/d for Al grating

with {a} sinusoidal, and [b}

symmetrical triangular preofile. d=0.5

t gwm, 1=0,6328um, TH polarigzation,
S e=BT.85%,
B S .
Y 08 o 0d 49 02 08 07 4% 39
hg

abwplule witiclency %

T
5zp £50

wavelangth  pm

Fig.6.4, Like Fig.6.3, but as a function of wavelengith when
h/d=0.69.
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order amplitudes) lead to almost total absorption of incident light by
a grating supporting two diffraction orders. It appears when the
trajectory of o_: in fig.5.2 lies to the left of the cut and there is
no pole. That is why there is no field enhancement - this ancmaly is
of non-resonance type. Contrary to the cases of totu1‘é1baorpti0n
discussed in Chapter 5 now there is no surface wave excitation and-
energy flow lines are not compression of flow lines near the grating
surface.

CHAPTER SEVEN: ANOMALIES INTERACTION IN METALLIC GRATINGS

This chapter deala with the influence of simultaneous

.appearance of twoe anomalies on the diffraction characteristica. It is
well known that interaction of eigenscolutions lead to splitting and
repelling of trajectories of the corresponding eigenvalues due to
orthogonality requirements. Such a behn:.rior is characteristic not only
for the poles of the scattering matrixz, but of zeroth reflected order
zeros as well, as shown in $1. The reason is that these zZeros are in a
peculiar manner eigenvalues, but of the non-physical problem {Chapter
four). Such an interaction between the trajectories of the zeros is
gquite important, as far as in many of the ancmalies the influence of
Fhe zeros is greater than that of the poles. .

Simultaneous excitation of 4wo oppositely propagating surface
plasmons along shallow gratings and its influence on anomalies in
feflectivity is discussed in #%2. Energy transfer between the two
gurface waves leads to a sharp increase of imaginary parts of their
Propagation constants. The pele moves away from the real axis and
surface wave excitation becomes more difficult and anomaly dip in the
reflectivity becomes less noticeable in thespectral interval
corresponding to the interaction region - the so-called forbidden
w~-mini gap is formed. . ) ’

It was shown in 1987 [145, 146} that under certain conditions
k-mini gap could be formed - interval of angles of ipncidence where
anomaly is not so manifested, Tran et al., [147) fSund a connection
that determined the formation of a definite type of dap depending on
the ratic between -radiation and absorption losses and direct coupling
strength between the twe surface waves., CQur aim was to find the
physical Ybackdround of thia 1link. For £hat sake a tracing of

trajectories of 'zeros and poles as a function of wavelength for -
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fferent sgroove depth values and prefiles is presented near normal
cidence. Coupling between incident and surface waves is direct
wraugh the :ist Fourter compenents of grating profile f‘11 ¥, Coupling
ween opprositely propagating surface plasmons is of fwo types:
ect [ecarried out through the second Fourier components of the

Tile fgz’ if any) and indirect [through 2fﬂ}. We are dealing with
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aluminum grating with period d=0.63 pm and profile function:

h h
1 27 2, fAn d _
f(x)-§~sin(~a x) + §~51n[wa[x + g §]] y q=0, 1 ., {7.1)
If g=0 then f{x) is antl symmetrical, and 1f g=1 - symmetrical. At

first h2 is nil and coupling between incident and surface waves is
much stronger than between the surface waves, provided the grating is
shallow, Thus the repelling of trajectories of the poles {fig.7.1a) is

determined predominantly by radiation and diffraction losses, but not

Fig.7.2. Like fig.7.1, except fo profile given by eq.
{7.1) with hz=0'02 pin,

0.021
h1=0.08
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by a plasmon coupling even near normal incidence. Similar behavior
have the zeros except for the groove depth value hi=0.06 pm. Then
their trajectories are lying near the real axis and in the vicinity of
a0=0 their separation becomes so small that even weak indirect
coupling leads to the repelling: angular interval arocund a0=0 exlsts
without real zeros, the value of minimum in the reflectivity increases
and k-minji gap is formed {fig.7.1b).

It has to be pointed out that existence of forbidden gap for the
anomaly in the reflectivity in this case does not correspond to a
forbidden gap in the surface plasmon propagating constant a® - pole
trajectories do not exhibit any noticeable peculiarities. Thus it
could be risky to determine the wvalues of real and imaginary part of
aP from experimental results for position, half width and mininum’
value of the reflectivity dip.

When direct coupling between surface waves is greater (h]zﬁ)
repelling of the pole trajectories appears (fig.7.2a), practically
independent on the strength of indirect coupling. In agreement with
general theoretical principles, strong interaction between zercs could
be found, too. In the vicinity of ao=0 tréjectories of the zeros
approach the trajectories of the poles and mutual annihilation leads
to a formation of spectral interval without anomalies - w-mini gap
region appears (fig.7.2b). A peculiar mechanism of transition between
two types of gaps with the increase of h2 is discussed in the thesis,

Ancmaly intermctions in deep metallic gratings is analyzed in
§3, For shallow grooves repelling of trajectories could be noticed
only in the near vicinity of their "intersection" points. For deep
gratings interaction region is much larger. It is shown in the thesis
how different types of coupling between poles and zeros determines
short- and long-wavelength limits of different anomalies:

-1, Brewster's effect [resonant total absorption of light} in deep
gratings exists when A/de(1.19, 1.40): bDecreasing the wavelength, the
loops in the trajectory of the zero shrink in the vicinity of ao=0.
Thus the groove depth interval with high absorption values increases
{vertical part of*'the dependence in fig.7.3 and T.4).

2. Perfect blazing in non-Littrow mount exists for A/d=[1.04, 1.48).
3. Grazing incidence zZeroth order 2zero could be found in large
spectral interval A/de(1.04, 2}, but it leads to almost total

absorption of light conly when it is accompanied by a -lst order zero
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PART THREE: ANOMALIES N DIELECTRIC GRATINGS

CHAPTER EIGHT: RESONANCE ANOHMALIES IN CORRUGATED OPTICAL
PLANAR WAVEGUIDES

In multilayered dielectric gratings resonance anomalies are due

to guided wave excitation. Two are the main differences with bare
metallic gratings:

1. Corrugated waveguides can support:  both TM and TE modes thus
resonance anomalies appear in both polarizations.

2. Much =maller value of lesses in optical dielectric waveguides
cempared to metallic substrate enables the existence of pole a® to
manifest itself rather more noticeably - anomalies consist of pesaks
and“ﬂips, contrary to resonance anomallies in metallic gratings where

these peaks could not be detected or are rather weak.

Fig.8.1. Reflectivity in conical

mounting of corrugated wavefuide,

n1=n3=1, n2=2.3, t=0.1lym, d=0.3um,

h=0.044m, A=0.6pm, unpolarized
light,

The peak is muqh more pronounces when it is accompanied by a low
valued background. Most peculiar is the behavior of reflectivity
{(fig.8.1). Two cases are discussed in the thesis in details - grating
supporting only the zeroth orders in the claddiﬂg and in the
substrate, and having more diffraction orders. Phenomenological
approach makes it possible to draw some general rules connecting
symmetry of the system with the main characteristics of_ anomaly,
provided only the Seroth orders are propagating:

{a) symmetry with respect to horizontal axis (e.g. symmetrical
waveguide with anti-symmetrical #groove profile on upper and lower
boundary) - reflectivity minimum is always zero.

{h) _suymmelrv with respect to vertical plane (e.g. asymmetrical
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waveguide with symmetrical corrugation} - reflectivity maximum reaches
100%, at least theoretically.

{¢) symmetry with respect to horizontal plane (it is difficult %o
produce such a waveguide) - reflectivity changes from ¢ to 100% in the
anamalous~region,

Of course, these conclusions are valid only for lossless waveguldes
and for plane incident wave.

§2 presents experimental results of resonance anomaly in graded-
index waveguide. After a gdrating with 0.3 um period was recorded
interferometricaily in a layer of positive photoresist Shipléy AZ1350,
it was transferred into the glass -substrate using ion-beam milling.
Monomode waveguide was made In the corrugated substrate using ion-
exchange 1in molien AgNO3. Angular and spectral dependencies of
reflectivity in the region of waveguide qode excitation are shown in_
fig.B.2, Half width of the maximum ie about 3 nm - much narrower than
the other tunable reflection optical filters.

If the period of the grating is larger and higher orders are
propagating, the rules that are connecting the properties of anomaly
with‘ symeetry of the Bystem are valid only for shallow grooves, A

demonatration of this fact is presented in §3 of chapter 8., It is
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inteéresting to note thaft fTor shallow grooves waveguide mode excitation
ts accompanied by a peak in the efficiency of non-zero orders, but
these peaks are only a few percent high., It is possible, in principle,
to increase drastically the efficiency in reflected orders by
increasing groove depth and imposing a multilayered dielectric
reflection coating upon gratlng surface. Unfortunately from a
practical ﬁoint of wview, & coating with optical thickness enough to
increase significantly reflectivity and diffraction efficiency could
support great number of waveguilde modes. Contrary to the planér.case,
grating enables to excite these modes by a plane incident wave - a lot
of resonance anomalies appear as deep minima (fig.8.3). In the thesis
a detailed study is presented for different wavelength values and
polarizations. For example, decreasing the wavelength the number of
anomalies increases due to the increase of number of modes and

decrease of grating vector.

CHAPTER NINE: NON-RESONANCE ANOHALIES IN DIELECTRIC GRATINGS

Another possible way to increase diffraction efficiency in

reflected non-zeroth orders 'is to decrease the number of propagating
diffraction orders. The best soluticn is to retain only two orders, as
it iz in the tase of Ffine pitch metallic gratings. This is possible if

the dielectric grating is used with light incident from the substrate
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side under the angle higher than the critical one for total internal
reflection. Provided the period is small enough, there i3 no
propagating order in air and in the substrate only two orders exist.
Like metallic gratings supporting two orders, highest diffraction
efficiency 1is obtained in Littrow mount. Increasing grdbbe depth,
diffraction efficiency behavior is quasi periodical (fig.9.1), simlilar:
to the metallic grating (chapter 4)}. Here again a formation of curls
in energy flow distribution is found that determines the efficlency
tehavior. As both media are dielectric, flow lines penetrate' Ruch
deeper in the lower medium and are larger than the curls ;ﬂ ﬁétéllic
gratings. Thus groove depih value responsible for perfect 'ﬁlazing
-{when the center of the lowest curl is lying on the 1ine.doﬁﬁecting
groove tops) is higher {(fig.9%.1) than for metallic gratings. Tﬁlé,is a
great limitation to the practical usage of such gratings -~ it 13 very

Fig.9.1. Groove depth depepdencg of

-lat order efficiency of dielecric
grating with light incident from the
aubstrate side (n=1.5), Solid liﬂe -
TE polarization nonﬂpnqéuuﬁ-(l=0.553
um), dotte curve - THM polarization
(A=0.550 pm); dashed line —‘TE pola-
rization {1r=0.650 pam}, border line -~
TM polarization (A=0.650 um). d=0.26

pm, Littrow mount.

gbsolute efficiency

) . i i Fig.9.2. Spectral’ dependence of
P diffraction grating with refractive
index of the upperﬁmedium 1.5, Secon
medium 1is air (dotted 1line - TE

RN Y

e q polarization, dashed line - TM

polarization), or aluminum (solid

] 3 line - TE polarization, border line-

weo L ‘ . , X T polarigation}. d=0.26um, h=0.24
o 200 w00 w0 209

jm, Littrow mount.

wavaiongth [em]
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difficult to manufacture grating with small period (d~0.25 pm) and
high modulation depth (h/d~1). The main advantage lies in the fact
that here ahbsolute efficiency could reach 100% value - losses #&re much
lower than in metallic gratings.

Spectral dependence of efficiency in Littrow mount is presented
in fig.9.2 for a fixed groove depth value, It looks like efficiency in
TE polarization for metallic gratings and this could easily be
understood taking into account that much broader @maximum for TM
polarization of metallic grating is due to the existence of
non-Littrow perfect blazing (see chapter 6). This phenomenon is
conhected in a peculiar manner with existence of surface plasmon on
bare plane metal-air interface. As far as such surface waves could not
probugate along the interface between two dielectrics, non-Littrow
perfect blazing is not detected in fig.9.2 for the case of dielectric

grating,

CHAPTER TEN: ANOMALIES AND MODE INTERACTION IN GORRUGATED
PLANAR WAVEGUIDES

This chapter'presents results on two aspects of moede coupling in

corrugated planar waveguides: .

1. Influence of simultanecus excitation of more than one mode on the
.resonance anomalies,

2. Brewster's effect in corrugated waveguides -~ anomaly in the
coupling coefficients of mode interaction in the corrugated region of
a planar waveguide.

For multilayered planar waveguide it is possible to have
differently polarized modes with equivalent propagation constants,
provided the parameters are properly chosen, In §1 this possibility is
utilized to obtain resonance anomalies in the reflectivity for the two
fundamental polarizations - important when working in unpolarized
 light.

If phage conditions for mode excitation are satisfied near
normal incidence, then two oppositely propagating modes are excited
simultaneously. This mounting enables %o use the narrow band
reflection filter {chapter 8} dlrectly as a selectable mirrer {for
example, in laser resonators). Anomaly 'interaction leads to appearance
of twe peaks. At a certain set of parameters annihilation of poles and

zeros happens, like formation of we-minigap in metallie gratings.
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Fortinately, for symmetrical corrugation profile only ane peak is
formed in spectral dependence of the reflectivity.

Brewster's effect in corrugated planar waveguides is discussed
in §3. When TE modes are coupled in a corrugsated region of a planar
waveguidey at a given angle between their directions of propagation
the coupling vanishes. This phenomenon has been known for years, but
there is nor proper understanding, neither a commeon opinion on this
angle value.

The form of the angular dependencies in (3,17} - (3-1?) has two
direct consequences:

(i} co- and contra-linear interactions are carried out with a
polarization conservation, and

(ii) if the angle between Lhe directions of propagation is egual to
n/2 the coupling between TE modes vanishes. From eq. {3.11) is follows_
that the effect is valid for both the coupling of mcedes with the same,
and with different orders. Furthermore, even on a single step boundary
{eq.{3.11)}) TE mode coupling vanishes as. the angular difference
becomes 90°., As far as the existence of grating leads to a
constructive (or destructive) interference between the diffracted on
each groove modes, it is obvious that in the case of the zero coupling
on a single boundary no interaction would appear throughout the whole
cerrugated region.

In the thesis it is shown that Brewster's effect in corrugated
waveguides could be directly utilized to suppress the undesired
depolarization in some integrated optiéal devices.
Schematically presented in fig.10.1 Tbeamsplitter and polarizer
consists of three gratings, the firs used for light coupling into the
wavegulde, and the other gratings are crogsed under the angle. of a/2.

Measured depolarization in direction perpendicular to the initial

Fig.10.1. Schematical represntation

of integrated-optical coupler,

beam-splitter and poelarizer, based

on relief diffraction gratings upon
a planar waveguide.
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direction of propagation is less than IX - only TE - TH mode
conversion is observed, although mode propagation censtants are almost
one and the sgame for the two polarization and phase conditions are
satisfied for excitation of both modes,

Increasing the groove depth, expressions (3.17)-{(3.19) for the
coupling coefficients obtained in the first order appreoximation are no
longer valid and the use of the rigorous method becomes necessary. A
monomade waveguide has been considered (nl=1, n:=2.3, n3=1.6, t=0,07
#m}. In order to avoild the influence of the cther types of coupling,
its thickness has been taken to be less than the TH mode cut-off. The
nunerical results are shown in fig.10,2 fer a sinuscidal Hroove
profile. As the corrugatien depth is increased the effective
refractive index of the mode is changed, too, because h becomes
comparable to the waveguide thickness. Within a relative error of 0,1X%
it has been shown that even for deep gratings (h/t>0.5) the Brewster's
law analogy exists; the value of the zZero-coupling angle ¥y depends on
the groove depth and for relatively small h its deviation from 45° is
proporiional to n? (fig.iO.Z), due to the invariance of the phenomenon

to the change of the h sign.

8, v
178
o
Fig.10.2. Groove depth dependence .
"y
of TE mode propagation conztant
»,/k and Brewster's angle 6, -
A=0.6 um. i
1%
s
a5

[ LX) a6t (1] wte hlpm}
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CONCLUSION
The present thesis is devoted to theoretical and experimental
investigations on diffraction grating anomalies. Hain results of the

thesia could be grouped in the following directions:

I. Some new anomalies in diffraction efficiency of metallic and.
dielectric relief gratings are predicted theoretically and confirmed
experimentally, as followa: .

1. Resonance total absorption ef light in deep metallic gratings
supporting a single propagating order,

2. Non-regonance total abscrption of light by metallic gratings
with two propagating orders..

3. 'Antiblazing’ of metallic gratings -« diffraction efficiency
of a deep metallic grating is almost =zero in the entire angular
interval, provided it is zero in Littrow mount.

4. Total delocalization of surface plasmon on corrugated
metal-nir interface when radiation (diffraction) losses are high -
then eigensolution of the system i not existing.

5. Resonance anomaly in the reflectivity of corrugated
wavegulides. .

6. 'Perfect blazing' for bare dielectric gratings when light is
incident from the asubstrate side. . .

Some possibilities for utiligation of these effects are discussed,

II. Connections are revealed that exist between these new anomalies
and already known ones, as well as between known but unidentified
anomalies {’perfect blazing' in Littrow and non-Littrow mount and
Brewster's effect Iln shallow metallle gratings). Determination of such
connections enables to identify different ancmalies, l.e. to link them
with {or to distinguish them definitely from) some phenomena on flat
surfaces (waveguide modes in optical waveguides and surface planon
wave on metal-air interface). ‘

III. Physical reasons for appearance of anomalies are found in the
behavier of electromagnetic field characteristics in the vicinity of
grating surface and their influence on the far-field parameters. It is
shown that curls are formed in energy flow distribution . At a given
groove depth value the lowest curls are totally hidden inside the
grboves and energy flow above the groove top is similar to the flow

above flat surface - quasi-periodicity of phases and efficiencies of
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the propagating orders and of the diffraction losses of surface wave is induced.
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