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Abstract 

 

 

Abstract: 
  
 In recent years, bio-based polymers derived from renewable resources have become 
increasingly important as sustainable and eco-efficient products which can replace the 
products based on petrochemical-derived stocks.  
 The objective of our work was to develop novel bio-based reactive systems suitable 
for high performance composite materials especially epoxy systems. The most commonly 
used starting monomer to formulate epoxy networks is the diglycidyl ether of bisphenol A, 
DGEBA, derived from bisphenol A and epichlorohydrin. Bio-based epichlorohydrin is 
commercially available. So the challenge to obtain a fully bio-based epoxy prepolymer is to 
replace bisphenol A by a bio-based precursor.  Another interest for replacing bisphenol A by a 
bio-based precursor is that bisphenol A has been known to have estrogenic properties.   
 In this study, we studied different bio-based epoxy systems and compared them to a 
classical DGEBA based system using, in a first step, isophorone diamine (IPD) as 
conventional curing agent. Bio-based epoxy prepolymers were derived from natural sugars, 
sorbitol and isosorbide respectively. Sorbitol polyglycidyl ether is available commercially, 
while isosorbide diglycidyl ether was synthesized either via conventional epoxidation (i.e. 
using epichlorohydrin) or via the diallyl isosorbide intermediate. Another bio-based epoxy 
prepolymer was derived from cardanol and is also a commercial product.  
 Chemical structure of the bio-based epoxy prepolymers were analyzed by different 
analytical methods, gelation and crosslinking reactions were studied using rheological 
measurements and differential scanning calorimetry, respectively. Properties of the cured 
networks were evaluated using dynamic mechanical analysis and thermo gravimetric analysis. 
Influence of the bio-based epoxy prepolymer structure on the system properties as well as the 
influence of the crosslinking agent structure (either derived from renewable resources or bio-
based ones) was discussed. Water absorption of the bio-based networks was also studied. 
 
Keywords:  
Epoxy networks; bisphenol A; isosorbide; sorbitol; cardanol; structure-properties 
relationships; reactivity; solid-state properties; water absorption 
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Abstract 

 

Résumé: 
 
 Récemment, les polymères obtenus à partir de ressources renouvelables ont connus un 
véritable engouement pour le remplacement de matériaux obtenus à partir de ressources 
pétrolières. L'objectif de notre étude a été de développer de nouveaux systèmes bio-sourcés 
réactifs, plus précisément des systèmes époxy, pour des applications dans le domaine des 
matériaux composites.  
  Le monomère le plus souvent utilisé pour formuler des réseaux époxy est le diglycidyl 
éther de bisphenol A, DGEBA, obtenu à partir du bisphenol A et de 
l’épichlorhydrine. L’intérêt pour le remplacement du bisphénol A par un précurseur bio-
sourcé est accentué par la toxicité de ce dernier. 
             Dans cette étude, nous avons étudié différents systèmes obtenus à partir de 
prépolymères époxy bio-sourcés et les avons comparés à un système classique à base de 
DGEBA en utilisant l'isophorone diamine (IPD) comme agent durcisseur.  
 Parmi les différents prépolymères époxy bio-sourcés étudiés, certains ont été obtenus à 
partir de dérivés polysaccharides tels que le sorbitol et l'isosorbide. Le sorbitol polyglycidyl 
éther est disponible commercialement, tandis que le diglycidyl éther d'isosorbide a été 
synthétisé soit par une voie classique faisant intervenir l’épichlorhydrine soit par 
l'intermédiaire du diallyle isosorbide. Un autre prépolymère époxy dérivé du cardanol a été 
étudié et est aussi un produit commercial. 
 Les structures chimiques de ces prépolymères époxy bio-sourcés ont été analysées. 
Les phénomènes de gélification et de réticulation des systèmes obtenus à partir de ces 
prépolymères et de l’IPD ont été étudiés. L’influence de la structure du prépolymère bio-
sourcé et de l'agent de réticulation (classique ou dérivé de ressources renouvelables) sur les 
propriétés des réseaux ainsi que l'absorption d'eau par ces réseaux ont également été discutés.   
 
Mots-clefs: 
Réseaux époxy; bisphenol A; isosorbide; sorbitol; cardanol; relation structure propriétés; 
réactivité; propriétés des réseaux; absorption d’eau 
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Chapter I Epoxy thermosetting polymers derived 
from renewable resources  
  

 

 This chapter presents the recent advances regarding the field of thermosetting 

polymers from renewable resources, with a particular interest on epoxy networks. With the 

emergence of the concept of sustainable development, researches have been done on the 

synthesis of new bio-based polymeric units which can replace the petroleum-based ones.  

  

I.  Introduction 
 
 In an age of increasing oil prices, global warming, and other environmental problems, 

the replacement of petroleum-based raw materials, especially polymers, by renewable 

resources constitutes a major contemporary challenge in terms of both economic and 

environmental aspects.  

  

 Many investigations have been done on the development of bio-based polymers 

derived from renewable resources such as sugars, polysaccharides, vegetable oils, lignin, pine 

resin derivatives, furans and other monomers [1-4]. These renewable resources can be turned 

into viable macromolecular materials and could be good candidates for the replacement of 

both thermoplastic and thermosetting materials. For instance, vegetable oils, made up of 

triglycerides molecules (Figure 1), can be interesting renewable raw materials [5], cheap and 

abundant, for the production of bio-based polymeric units (Figure 2). Besides, emergence of 

sustainable sugar derived chemicals, such as sorbitol and isosorbide (Figure 3) modified 

products, offers also attractive prospects [6, 7] in terms of new bio-based polymeric units. 

 
Figure 1. Schematic representation of triglyceride molecule 
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Figure 2. General strategies for the synthesis of plant oil-based polymers. [5] 

 

 
Figure 3. Glucose, sorbitol and isosorbide obtained from starch 

 
 Based on their response to temperature, polymers may be classified into two main 

categories: thermoplastic and thermosetting polymers. A thermoplastic behaves like a liquid 

above a certain temperature level, but the heating of a thermoset leads to its degradation 

without going through a fluid state [8].  

 Actually, among all the polymers produced nowadays, 82 % are thermoplastics [9]. 

Therefore, research has mainly concerned bio-based thermoplastics. For instance, 

developments were done on isosorbide-based thermoplastic [7, 10] such as polyester, 

polyamide [10], polycarbonate [11-13]. Biobased thermoplastic polyurethanes were 

synthesized using vegetable oils as raw materials. Renewable diols can be developed from 

oleate derivatives [14, 15] and polymerized using petrochemical-based isocyanate to obtain 

partially bio-based thermoplastics PU [15]. Linear diols and diisocyanates [16] produced 

entirely from renewable lipid sources were also used to obtain fully bio-based functional 

thermoplastics PU [17].  
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 Even if, most of the researches on bio-based polymers were done on the development 

of bio-based thermoplastic, recent researches focused on the development of bio-based 

thermosetting polymers [18].  

 Thermosetting materials [8] are crosslinked polymers that are cured or set using heat, 

or heat and pressure, and/or light irradiation. This leads to a large range of high performance 

products for industry due to their high modulus, strength, durability, and resistance towards 

thermal stress and chemical attacks as provided by their high crosslinking density.  

 For a given application, replacement of petroleum-based thermosetting materials by 

renewable resources should not lead to a decrease in network properties. This chapter will 

therefore focus on the structure-properties relationships in thermosetting polymers derived 

from renewable resources, with a special interest on epoxy thermosets. 

 

 Some standards and methods have been developed to assess the quantity of renewable 

material. The United State Department of Agriculture defines the bio-based content of a 

product as the “amount of bio-based carbon in the material or product as a percent of the 

weight (mass) of the total organic carbon in the product”, and radiocarbon analysis in 

accordance with ASTM D6866-05 standard is a reliable method for experimentally verifying 

the biobased content [19]. 

   

II.  Overview on some thermosetting polymers  
 

 As previously mentioned, thermosets are characterized by a highly crosslinked 

structure of the polymer chains. As a consequence, thermosets cannot be remelted as 

thermoplastics and they are insoluble. As early as 1910, thermoset polymers were 

manufactured from petrochemical phenol and formaldehyde according to the patents of L.H. 

Baekeland; this material – phenol formaldehyde polymer (PF) – became widely known under 

the name Bakelite. In the late 1920s, urea formaldehyde polymer (UF) came on the market 

followed by melamine formaldehyde polymer (MF) at the end of the 1930s (UF and MF 

resins together form the category of amino resins). Unsaturated polyesters (UP), especially in 

the form of fiberglass composites, were first manufactured at large scale in the 1940s (for 

application in the marine industry). Finally, epoxy polymers are relatively new materials 

which have been produced since the mid-1950s. Regarding polyurethanes, they represent an 
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important class of thermoplastics and thermosets depending on the nature of the polyol and 

isocyanate components used.  

 Rapid description of some typical classes of thermosets (phenolic polymers, 

polyurethanes, and epoxy polymers) through their chemistry, properties and resulting 

applications, is given below.  

 

1. Phenol formaldehyde polymers (phenolic polymers) 
 

 Phenolic prepolymers are obtained by step-growth polymerization of a difunctional 

monomer, CH2O, with phenol or substituted phenols. The simplified reaction between phenol 

and formaldehyde is represented in Figure 4.  

 
Figure 4. Reactions phenol/formaldehyde 

 
 Novolacs are obtained by the reaction of phenol and formaldehyde in acidic 

conditions. Novolac oligomers are linear or slightly branched addition products linked by 

methylene bridges. The reaction is usually carried out using a molar ratio CH2O/PhOH close 

to 0.8, to avoid gelation. Resols are obtained by phenol-formaldehyde reaction under alkaline 

conditions and with an excess of formaldehyde, generally from 1.5 – 3.  

  

 Despite the emergence of several new classes of thermosets, high-performance 

polymers and several other new generation materials that are superior in some respects, 

phenolic polymers retain industrial and commercial interest a century after their introduction. 

Phenolic polymers are widely used as commodity and engineered materials in the high 

technology transportation industry. This recognition emerges from the fact that these 

polymers have several desirable characteristics, such as superior mechanical strength, heat 

resistance and dimensional stability, as well as high resistance against various solvents, acids 

and water. They are inherently flame-resistant, and evolve low smoke upon incineration. 

Although phenolics cannot compete with epoxies for superior engineering areas, their 
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composites still find markets in thermo-structural applications in the aerospace and railway 

industries, due to their good heat and flame resistance, excellent ablative properties and low 

cost. Yet, the main drawback of phenolic polymers remains the toxicity of residual 

formaldehyde monomer. 

 

2. Polyurethane thermosets 

 

 The synthesis of polyurethane (PU) can be carried out by the reaction simplified in 

Figure 5 of an isocyanate with a diol (or polyol). If the functionality of the hydroxyl-

containing compounds or the isocyanate is beyond 2, branched and possibly cross-linked 

polymers are produced.  

 
Figure 5. Synthesis of polyurethane where R or R’ are of aliphatic or aromatic nature 

 Polyurethanes are one of the most important and versatile materials with applications 

ranging from flexible foams in upholstered furniture to rigid foams as insulators in walls, 

roofs, and appliances of thermoplastics polyurethane used in medical devices and footwear, 

coatings, adhesives, sealants, and elastomers used on floors and automotive interiors [20]. 

They represent an important class of thermoplastics and thermosets because their mechanical, 

thermal, and chemical properties can be tailored by reactions with various polyols (depending 

on the nature of the polyol: polyether, polyester, polybutadiene… [8]) and isocyanates. PUs 

exhibit better abrasion resistance, toughness, chemical resistance, and mechanical strength 

compared to other polymers such as polyesters and polyesteramides.  

 

 Usually, both isocyanates and polyols are petroleum based, but in recent years, 

vegetable oils, fatty acids and their derivatives have attracted significant attention as raw 

materials for the preparation of polyurethanes [21]. Main developments in PU field have 

concern replacement of petroleum-based polyols by bio-based ones. However, more and more 

researches are conducted on the replacement of existing isocyanates, as practically all the 

isocyanates are declared as carcinogens, mutagens and toxic for reproduction (CMR).  
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3. Epoxy networks 

 
 Epoxy networks are thermosetting materials for which the precursors contain at least 

one epoxy function. The term “epoxy” is referred generally to molecule’s functional groups 

consisting of oxirane rings: 

 

 These epoxy functions are highly reactive. The capability of the oxirane group to 

undergo a large variety of addition and polymerization reactions has been exploited for the 

production of many different epoxy thermosetting materials.   

  

 Epoxy prepolymers are compounds containing a minimum of two functional groups so 

that they can be converted into infusible products through the formation of networks.  

Nowadays, almost 75% of the world production of epoxy prepolymers [9] is based on the 

reaction between Bisphenol A (BPA) and epichlorohydrin, yielding diglycidyl ether of 

bisphenol A (DGEBA), as shown in Figure 6.  

 

 
Figure 6. Synthesis of DGEBA 

 

 In order to convert epoxy prepolymers into infusible thermoset networks it is 

necessary to use crosslinking agents, also referred to as hardeners or curing agents. They may 

either initiate the curing reactions through their catalytic activity (initiators) or may react with 

the epoxy monomer via a polyaddition/copolymerization reaction. Structure of crosslinking 

agents has a considerable effect on the properties of the crosslinked products. Among the 

wide variety of hardeners available nowadays, the main types are amines and anhydrides 

curing agents.  
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a) Epoxy – amine reaction mechanism  
 

The main mechanism is step-polymerization / polyaddition: 

Addition mechanism: 

 Between a primary amine and an epoxy group, the addition mechanism is the more 

important and results, when the epoxy and the amine compounds are multifunctional, to a 

three dimensional network. It is described by the Equations 1 and 2 represented in the 

following Scheme: 

 
Scheme 1. Addition mechanism 

 

 Addition reaction yields secondary (Equation 1) and tertiary (Equation 2) amines. The 

amines differ by their reactivity; usually primary amines are more reactive than secondary 

ones with k2/k1 < 1 [22]. Many factors may influence this ratio, such as hardener nature [23], 

steric hindrance, temperature [24]… These two addition reactions can also be catalysed by –

OH groups, and as the reaction leads to secondary –OH, it is an autocatalytic process. 

 

Etherification mechanism: 

 Etherification is a side reaction between epoxy and hydroxyl groups and is represented 

in the Scheme below:  

 
Scheme 2. Etherification mechanism 
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 Without any catalyst, etherification mechanism is unlikely to occur. Indeed, the 

produced tertiary amine (Equation 2) is not very reactive regarding its steric hindrance. This 

step is promoted by an excess of epoxy [25] and when all amino hydrogen have been 

consumed [26]. 

 

Various amine curing agents: 

 Reactivity of amine increases with its nucleophilic character: aliphatic > cycloaliphatic 

> aromatic. Structures of typical amines hardeners are shown in Figure 7.  

 Aliphatic and cycloaliphatic amines include among others, ethylene diamine (EDA), 

diethylene triamine (DETA), triethylenetetramine (TETA), polyetheramines, isophorone 

diamine (IPD), metaxylilene diamine (MXDA)...  

 Ethylene diamine is highly reactive and yield tightly crosslinked networks owing to 

the short distance between the actives sites. For this reason, the networks exhibit excellent 

solvent resistance and mechanical strength, but limited flexibility.  

 Aromatic polyamines such as 4,4’-diaminophenylmethane (DDM) and 4,4’-

diaminophenylsulfone (DDS) react slowly with the epoxy. All systems cured with these 

hardeners exhibit excellent resistance to a wide variety of chemicals, coupled with 

outstanding temperature stability. Yet, some amines like DDM have been identified as CMR 

and have problems with REACH.  

 

 
Figure 7. Structure of some amine curing agents 

  

b) Epoxy – anhydride reaction mechanism 
  

 Anhydrides curing agents react at high temperatures (higher than 100°C) and require 

the use of initiators such as tertiary amines or imidazole and prolonged periods to reach 

completion. Nevertheless, they provide networks with good dimensional stability and 

insulating and optical properties. The most important dicarboxylic acid anhydrides used as 
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epoxy hardeners are cycloaliphatic, with the notable exception of phthalic anhydride (PA). Its 

hydrogenated derivatives hexahydrophthalic anhydride (HHPA) and tetrahydrophthalic 

anhydride (THPA) are used extensively for electrical applications. Their chemical structures 

are represented in Figure 8.  

 
Figure 8. Structures of PA, THPA and HHPA anhydride curing agents 

 
 The curing mechanism is more complex than that of the amines and consists on a 

chainwise anionic copolymerization comprising initiation, propagation, and termination or 

chain transfer steps [27, 28]. Initiation involves the reaction of the tertiary amine with epoxy 

group, giving rise to a zwitterion that contains a quaterny nitrogen atom and an alkoxide 

anion. The alkoxide reacts at a very fast rate with an anhydride group, leading to species 

containing carboxylate anion as the active center. Propagation occurs through the reaction of 

the carboxylate anion with an anhydride group, regenerating the carboxylate anion.  

 
Scheme 3. Mechanism of anhydride –epoxy anionic copolymerization initiated by tertiary amines according to 

Matejka [28] 
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c) Ionic homopolymerization of epoxy prepolymers 
 

Anionic polymerization: 

 The homopolymerization is promoted by the presence of initiators often called 

“catalytic” curing agents in the literature. In the case of anionic polymerization, 

homopolymerization is promoted by Lewis acid, tertiary amines, imidazole… [29]. Simplified 

mechanism is presented below: 

 

 
Scheme 4. Anionic polymerization mechanism 

 

Cationic polymerization: 

 Cationic polymerization has been intensively investigated using various thermal latent 

cationic catalysts, such as iodonium, ammonium, pyridinium and sulfonium salts (Scheme 5). 

Latent catalysts are inert under normal conditions, but release active species by external 

stimulation. Thus, the use of latent catalysts increases the storage stability and handing of 

thermosetting polymers. It can also be deblocked by UV light. 

 

 
Scheme 5. Thermally induced ring-opening polymerization of internal epoxides initiated by a cationic latent catalyst 

[30] 
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III.  Bio-based Epoxy networks 
  

 An easy way to obtain a partially bio-based DGEBA is to use epichlorohydrin from 

bio-based glycerol, commercially available. However, molar mass of DGEBA is dominated 

by Bisphenol A, which is petroleum-based and known to have estrogenic properties [31]. 

Therefore, the challenge to obtain bio-based epoxy prepolymer is to replace bisphenol A by 

bio-based polyols.  

 Besides, epoxy prepolymers are combined with a large variety of co-reactants, as 

described in the previous section to form tridimensional networks with a broad spectrum of 

performances depending on both the structure of epoxy prepolymer, nature of curing agent, 

the extent and density of crosslinking. Using bio-based curing agents fully bio-based epoxy 

networks can be prepared.  

 Recent advances in the synthesis of epoxy prepolymers from renewable resources are 

discussed below, with a focus on solid-state properties of the resulting bio-based networks 

compared with traditional ones. 

 

1. Biobased epoxy networks derived from vegetable oils  
 

 In the formation of sustainable epoxy monomers, epoxidized plants oils and fatty acids 

have been largely utilized as reported in the literature [1, 3, 18, 32]. Vegetable oils, such as 

linseed oil, soybean oil, castor oil, appear as excellent renewable raw materials for 

thermosetting polymers as they are expected to be inexpensive and abundant.  

 Vegetable oils are already a commercial source of multifunctional monomers and 

oligomers for polyurethane synthesis, and research on the use of vegetable oils as polymer 

precursors has mainly concerns the design of novel biobased polyols derived from them for 

polyurethane applications [20, 33-36]. Nevertheless, they also have been studied as bio-based 

precursors through their epoxidation for the synthesis of bio-based epoxy prepolymers.  

 

a) Vegetable oils 
 

 Natural plant oils such as soybean oil, sunflower oil, palm oil, rapeseed oil, cottonseed 

oil and linseed oil are predominantly made up of triglyceride molecules. The structure of 

these natural products can be schematically depicted by the simple generic triglyceride 
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(Figure 9), where R1, R2 and R3 represent fatty acid chains, which can vary in length (from 

C12 to C22), in the number of C=C insaturations (from zero to six) and in the possible 

presence of other moieties, like -OH or epoxy groups. Figure 10 shows the most frequent fatty 

acid precursors to triglycerides. 

 
Figure 9. Generic triglyceride formula, with R1, R2 and R3: fatty acids 

 
Figure 10. Typical fatty acids borne by vegetable oil triglycerides. 

  

 Main structures of some commonly used vegetable oils are presented in Figure 11. 

 
 

Figure 11. Major structure of some common vegetable oils 

 Triglycerides contain several reactive positions that are suitable sites to chemical 

reactions such as C=C double bonds. These can be used for direct polymerization or to 

modify the triglyceride structure with polymerizable groups to obtain thermosets.  
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b) Preparation of epoxy prepolymers from vegetable oils 
  

 Epoxidation is one of the most important functionalization reaction involving C=C 

double bonds. The unsaturated fatty compounds can be functionalized by epoxidation with 

organic peracids or H2O2. Park et al performed the epoxidation of soybean oil (Figure 12). 

Solution of soybean oil, glacial acetic acid, Amberlite and toluene were heated at a constant 

temperature of 55°C. Then H2O2 was added and the solution was heated at 55°C for 7 h. After 

the reaction was completed the crude product was filtered and washed with distilled water 

until pH 7.0. The oil phase was dried with anhydrous sodium sulphate and then filtered. 

Finally, the toluene was removed in a vacuum oven at 80°C. The yield of the reaction was 89 

% [37].  

 
Figure 12. Epoxidation of soybean oil [37] 

 Vegetable oils differ by the structure of their fatty acids (number of insaturations, 

presence of –OH groups…) therefore the resulting epoxidized vegetable oils differ by the 

number of oxirane groups, molar mass and other moieties like –OH groups, and present 

different reactivities. Some common vegetable oils are presented in Figure 13. Epoxidized 

vegetable oils with higher level of oxirane groups, such as epoxidized linseed oil, ELO, 

should give networks with higher crosslinking densities [38-40].  

 

 
Figure 13. Epoxidized vegetable oils 
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c) Epoxy networks derived from vegetable oils 
 

 Several researchers have investigated the synthesis and mechanical characterization of 

networks based on epoxidized vegetable oil epoxy monomers using various approaches. 

Examples are given below of researches on the replacement, either partial or total, of 

conventional epoxy prepolymers by different epoxidized vegetable oils and the 

characterization of resulting epoxy networks obtained with various curing agents. 

 
 Park et al. [37, 41] synthesized and characterized epoxidized soybean oil (ESO) and 

epoxidized castor oil (ECO) (Figure 13). The cationic polymerization of epoxidized soybean 

oil (ESO) and epoxidized castor oil (ECO) with a latent thermal initiator BPH, which 

structure is shown in Figure 14, was performed at 110°C for 1 h, then at 140°C for 2 h, and 

finally post-cured at 160°C for 1 h.  

 

 
Figure 14. Chemical structure of thermally latent initiators BPH and BQH [30]  

  

 The α-relaxation temperature (Tα) associated to the glass transition temperature (Tg), 

the storage modulus (G’) and the crosslinking density (ρ) calculated using the rubber 

elasticity theory [42], are summarized in Table 1. ECO/BPH exhibits higher Tα as compared 

to ESO/BPH, 43°C and 25°C respectively. It is explained by their different structures and the 

presence of intermolecular interactions such as hydrogen bonding in epoxidized castor oil 

(ECO) due to the presence of –OH groups. On the contrary the rubbery modulus is higher for 

the ESO/BPH network, leading to a crosslinking density (ρ) twice the one of ECO/BPH 

network.  
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Table 1. Results from a dynamic mechanical analysis of the cured Epoxidized Soybean Oil (ESO)/BPH and 

Epoxidized Castor Oil (ECO)/BPH systems [37] 

 
 The authors also focus on the influence of the initiator, using both BPH and BQH 

thermally latent initiator (Figure 14) for the cationic polymerization of epoxidized castor oil 

(ECO) [30]. The results are given in Table 2. 

 

 
Table 2. Results from a dynamic mechanical analysis of cured Epoxidized Castor Oil with either BPH or BQH [30] 

 
The α relaxation is slightly higher for ECO/BPH than for ECO/BQH. It has been attributed to 

the differences in crosslinking density of cured networks, which were induced by the different 

activity of the latent initiator. 

  

 Yet glass transition temperature values obtained for these bio-based epoxy systems are 

very low as compared to a DBEGA-based epoxy system, and pure epoxidized vegetable oils-

based epoxy systems could not lead to high Tg-materials. Therefore many authors studied 

blends of classical epoxy prepolymer such as DGEBA, with various amount of epoxidized 

vegetable oils.  

 Indeed, Park et al. [41, 43] prepared biobased materials from DGEBA and epoxidized 

vegetable oils, such as epoxidized soybean oil (ESO) and epoxidized castor oil (ECO), 

initiated by the thermally latent initiator BPH. Again, the results of α-relaxation temperature 

(Tα) and storage modulus (G’) and crosslinking density (ρ) for these systems are listed in 

Table 3.  
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Table 3. Results from a dynamic mechanical analysis for DGEBA/Epoxidized Vegetable Oils systems [41] 

The Tα (associated to Tg) and crosslinking density (ρ) of the DGEBA/epoxidized vegetable 

oils-based networks are systematically decreased with increasing epoxidized vegetable oils 

content. This can be attributed to the addition of long soft segments of epoxidized vegetable 

oils into the epoxy networks, which decreases its rigidity, resulting in increased motion of the 

macromolecular segments in the DGEBA/epoxidized vegetable oils systems.  

   

 Miyagawa et al. [39] reported the thermophysical and impact properties of networks 

based on Diglycidyl Ether of Bisphenol-F (DGEBF) and different amount of epoxidized 

linseed oil (ELO) presenting high amount of oxirane groups.  

 
Figure 15. Chemical structure of DGEBF and Epoxidized Linseed Oil (ELO) 

 
 Other crosslinking reactions, as compared with Park et al. studies, are involved here, 

as Miyagawa used on one hand an anhydride (Methyltetrahydrophthalic Anhydride, MTHPA)  

as curing agent and an imidazole as initiator [44], and on the other hand a triamine curing 

agent [45].  
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Figure 16. Chemical structure of anhydride curing agent, with methylimidazole initiator, and amine curing agent used 

by Miyagawa [44, 45] 

 
All the partially bio-based networks were characterized and compared with DGEBF-based 

network obtained in the same conditions (curing agent, crosslinking cycle). It appears that the 

storage modulus in the glassy state and glass transition temperature (α-relaxation) decreased 

with increasing the amount of epoxidized linseed oil. Besides, α-relaxation (associated to Tg) 

became very broad. 

 
Figure 17. Evolution of a. storage modulus and b. loss factor with the mount of Epoxidized Linseed Oil (wt%) in 

DGEBF-anhydride cured system 

 
 Another point is the influence of the hardener, anhydride or amine, in Miyagawa 

studies [44, 45]. It appears that a larger decrease of Tα was observed using amine curing 

agent, as shown in Figure 18. This can be attributed to the structure of the aliphatic amine, 

poly(oxypropylene) triamine, used in the study.  
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Figure 18. Change in glass transition temperature of amine-cured epoxy with Epoxidized Linseed Oil (ELO) replacing 
DGEBF (solid line) – compared with anhydride cured epoxy (dashed line) [45] 

 
 Same anhydride curing agent, MTHPA, was used in the study of partial replacement 

of DGEBA by epoxidized soybean oil (ESO) [46]. The DSC thermograms for different 

weight epoxidized soybean oil contents are shown in Figure 19. The addition of epoxidized 

soybean oil to the DGEBA – MTHPA mixture changed the shape of the exothermic peaks. 

Two partially overlapped peaks were clearly distinguished, particularly for epoxidized 

soybean oil contents higher than 40 %. The addition of increasing amounts of epoxidized 

soybean oil also shifted the maximum temperature of the first exothermic event to higher 

values. This result was attributed to the less reactive oxirane rings centrally placed in long 

aliphatic chains of epoxidized soybean oil. 

 
Figure 19.  DSC thermograms of the DGEBA- Epoxidized Soybean Oil (ESO) - MTHPA systems [46] 
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 Even if the comparison is difficult as the synthetic epoxy prepolymer replaced is not the same 

(DGEBA versus DGEBF), it appears that including epoxidized soybean oil leads to a more 

important decrease in Tα (130°C to 75°C), as shown in Figure 20, as compared to other results 

with epoxidized linseed oil (see Figure 17). Nevertheless, the networks obtained with 

epoxidized soybean oil are more homogenous than epoxidized linseed oil-networks with an α-

transition less broad than pure epoxidized linseed oil epoxy networks. Besides, introduction of 

various amount of epoxidized soybean oil seems to have little effect on rubbery moduli.  

 
Figure 20. Evolution of a. storage modulus and b. loss factor with the amount of  Epoxidized Soybean Oil (ESO) 

(wt%) in DGEBA-anhydride cured system [46] 

 Epoxidized linseed oil with a higher amount of oxirane groups leads to epoxy 

networks with higher Tα than epoxidized soybean oil (pure Epoxidized Soybean Oil (ESO) 

networks: Tα = 75°C).  This was confirmed by Boquillon [40] study on pure epoxidized 

linseed oil with different anhydride curing agents. Indeed, epoxidized linseed oil – MTHPA   

network exhibits Tα of 109°C. 

 

 Another study was done on the replacement of epoxy prepolymer blends (composed of 

DGEBA and other petrochemical-based epoxy prepolymers) by different amount of 

epoxidized palm oil (EPO, Figure 13) in anhydride (Methylhexahydrophthalic anhydride, 

MHHPA) cured epoxy systems [47]. It appears that the thermo-mechanical behaviours were 

greatly influenced by the addition of epoxidized palm oil. As an example, the replacement of 

only 12 wt % of epoxy prepolymer blend by epoxidized palm oil brings a decrease on Tα from 

155°C, for neat epoxy system, to 130°C. This can be attributed to the presence of palmitic 
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fatty acid (see structure Figure 10), in epoxidized palm oil structure, that exhibits no oxirane 

groups, and remains as a pending flexible chain in the networks structure.  

 

 Because of the low reactivity of epoxy groups, its tendency for intramolecular 

bonding, and the lack of aromatic cycles (as compared to DGEBA for instance), any 

epoxidized oil leads to poorly cross-linked materials with limited thermal and mechanical 

properties.  

 To alleviate this problem, attempts to chemically modify epoxidized oils have been 

carried out through a two-step procedure [48-50]. This consists to perform transesterification 

reactions of soybean oil with allyl alcohol, followed by their epoxidation using benzoyl 

peroxide, yielding epoxidized allyl soyate (EAS) (Figure 21).  

 
Figure 21. Epoxidized allyl soyate (EAS) [50] 

 Shabeer et al. [50] have used this soy-based epoxy prepolymer as a replacement of 

bisphenol A epoxy prepolymer in anhydride-cured systems. The DSC thermograms (Figure 

22) showed that the onset temperature for curing and the temperatures of maximum exotherm 

heat shifted to higher temperatures for soy epoxy systems when compared with pure 

bisphenol A epoxy systems. This is due to the presence of less reactive internal epoxy groups 

present in soy epoxy prepolymer. Nevertheless, this decrease in reactivity is weaker than the 

one observed for the replacement of DGEBA by conventional epoxidized vegetable oils (see 

Figure 19).  

 
Figure 22. Dynamic thermograms of soy epoxy (EAS) - anhydride systems. (Epon = DGEBA) [50] 
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Concerning the thermo-mechanical analyses (Table 4), it appears that the crosslinking 

densities and the α-relaxation of networks decreased with the addition of soy-based 

prepolymer.  

 
Table 4.  Crosslinking density, Molecular weight between crosslinks, Glass transition temperature of Soy epoxy (EAS) 

anhydride networks [50] (Epon = DGEBA) 

 
 Finally, interesting study have been done by Caillol et al [51] on the synthesis of a 

novel vegetable oil-based polyamine issued from grapeseed oil (GSO). Synthetic route is 

summarized in Figure 23 .  

 
Figure 23. Synthesis of polyamine grapeseed oil (AGSO) : Amination of  grapeseed oil (GSO) using  cysteamine 

chloride (CAHC) by UV initiated thiol-ene coupling [51]  

 
 Polyamine grapeseed oil (AGSO) was employed as a novel curing agent for 

epoxidized linseed oil (ELO), yielding a fully bio-based network. 

 
Figure 24. Crosslinking reaction between epoxidized linseed oil (ELO) and polyamine grapeseed oil (AGSO) [51]

  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter I 

 

 
Page 26 

 

 The α-relaxation temperature of the bio-based network was very low (Tα = -38°C by 

DMA). This value is much smaller than the one obtained for epoxidized linseed oil with an 

anhydride hardener such as MTHPA (Tg = 109°C [40]). This discrepancy was interpreted as a 

direct consequence of the much higher molecular flexibility of the polyamine grapeseed oil 

(AGSO) curing agent compared to MTHPA.  

 

d) Conclusion  
 

 Bio-based epoxy prepolymers can be successfully developed from vegetable oils, and 

hold great potential for renewable resource-based and low cost materials.  

 However, we try to focus on the influence of vegetable oil structures on the solid-state 

properties of resulting materials. Triglycerides are made up of aliphatic chains and, 

consequently, the triglyceride-based materials, are incapable of displaying the necessary 

rigidity and strength required for high-performance applications, for example in composite 

materials. 

 First, it appears that epoxidized vegetable oils are miscible with DGEBA as the 

resulting networks exhibit a single Tg. Nevertheless, formulations with different curing agents 

such as anhydrides, amines and other polymerization such as cationic polymerization always 

lead to materials with a decrease in thermo-mechanical properties as compared with 

traditional epoxy networks, based on DGEBA or DGEBF. It has been shown also that 

developing epoxy networks with high unsaturated fatty acid triglycerides, such as linseed oil, 

brings higher results in terms of Tg than epoxy networks developed from palm oil, which 

exhibits composition with high amount of palmitic fatty acid. Nevertheless, conventional 

epoxy networks have higher properties.  

 As a consequence, most industrial applications for the resulting epoxy materials 

remain limited to non-structural applications like coatings. Still, interesting developments 

remain to be done the synthesis of fully bio-based epoxy networks, with epoxy prepolymers 

and curing agents based on vegetable oils [51]. 
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2. Biobased epoxy networks derived from cardanol  
 

a) Extraction of cardanol from cashew nut shell liquid  
 

 Among different renewable resources, cashew nut shell liquid, an agricultural by-

product abundantly available in tropical countries such as India, Vietnam… is one of the 

major and economical resources of naturally occurring phenols. Cashew nut shell liquid 

(CNSL) can be regarded as a versatile and valuable raw material for wide applications in the 

form of brake linings, surface coatings, paints, and varnishes as well as in polymer 

production. The cashew nut shell liquid contains four major components with an unsaturated 

C15-chain, namely cardanol, cardol, anacardic acid and 2-methylcardol (Figure 25).  

 

 
Figure 25.  Natural compounds present in the cashew nut shell 

 
 Cardanol is obtained by vacuum distillation of cashew nut shell liquid. Cardanol is a 

phenol with a meta-substituted 15 carbon unsaturated side chain. As shown in Figure 25, the 

aliphatic side chain may have one, two or three carbon double bonds. It was found that 
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cardanol and its polymers have attractive structural features for chemical modification and 

polymerization into specialty polymers. 

 

b) Synthesis of cardanol-based monomers  
 

 Cardanol through its interesting structure offers different possibilities for monomers 

synthesis (phenolic polymers, epoxy…) and have been the subject of many investigations.   

 

 Main researches on cardanol focused on its use as an interesting precursor for 

synthesis of phenolic polymers. In the condensation polymerization process, cardanol can be 

condensed with active hydrogen-containing compounds such as formaldehyde at the ortho 

and para positions of the phenolic ring under acidic conditions to yield a series of polymers of 

“novolac” type [52-55]. 

 

 
Figure 26. Cardanol-based novolac-type phenolic resin [52, 53, 55] 

 

 The cardanol-based novolac-type phenolic polymers may be modified by epoxidation 

with epichlorohydrin. Epoxydation of cardanol phenolic prepolymers yields epoxy novolac 

with the aromatic and aliphatic structure shown in Figure 27.  

 
Figure 27. Epoxidation of cardanol novolac-type phenolic resin to obtain cardanol-based epoxidized novolac resin [52, 

54, 55] 

 

 Fewer researches have concerned the direct use of cardanol as monomer for epoxy 

prepolymer synthesis.  
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 First, Patel et al. [56] synthesized the diepoxidized cardanol (DEC) with an epoxy 

equivalent weight of 284.3 g/eq. It exhibits two epoxide groups, one of glycidyl type, 

introduced by reaction of a hydroxyl group in cardanol with epichlorohydrin, while the other 

is produced by epoxidation at the olefinic double bond using preformed peroxyacid.  

 

 
Figure 28. Synthesis of diepoxidized cardanol [56] 

 
 Various cardanol based dimers can also be formed by hydrosilation with silanes [57]. 

Cardanol based dimers may be further reacted to form epoxy prepolymers. Example of epoxy 

derived from cardanol based dimers is presented below.  

 

 
Figure 29. Cardanol-based silane dimers and resulting epoxy prepolymer [57] 

 
 Finally another interesting epoxy prepolymer derived from cardanol is commercially 

available from the company Cardolite (Figure 30) with an epoxy equivalent weight of 490 

g/eq. This di-functional reactive epoxy prepolymer with its phenolic structure and aliphatic 

chain should be used in conjunction with traditional epoxy monomers to increase the 

flexibility, water resistance, and chemical resistance of coatings without adversely affecting 

other properties. 
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Figure 30. Commercial di-functional epoxy derived from cardanol 

  

c) Epoxy networks derived from cardanol  
 

 The investigations done on networks containing cardanol-derived epoxy prepolymers 

mainly concern the influence of epoxidized cardanol used as reactive diluent on the curing 

kinetics of the system.  

 

 Indeed, the curing behavior of DGEBA with various amount of diepoxidized cardanol 

(DEC, see Figure 28), with phthalic anhydride (PA) as curing agent and catalyst triethylamine 

(TEA) was investigated by Patel et al. [56]. Curing characteristics such as the temperatures of 

onset of curing (Ti), peak exotherm (Tp) and completion of curing (Tf) were obtained by DSC 

analyses and summarized in Table 5 with the activation energy (Ea) obtained from the 

Arrhenius plots for these systems. It is observed that the incorporation of diepoxidized 

cardanol with DGEBA lowers slightly the reactivity of the epoxy system with an increase in 

the peak exotherm temperatures and activation energies with the amount of diepoxidized 

cardanol (DEC). 

 

Resin system Proportions T i (°C) Tp (°C) Tf (°C) Ea (kJ/mol) 

DGEBA 100 : 0 95 153 190 78.6 

DGEBA-DEC 90 : 10 95 155 190 81.8 

DGEBA-DEC 80 : 20 98 158 205 84.4 

DGEBA-DEC 70 : 30 100 160 200 87.9 

 
Table 5. Curing characteristics of DGEBA with different amounts of diepoxidized cardanol (DEC) epoxy systems with 

phthalic anhydride (PA) as curing agent and triethylamine (TEA) as catalyst [56] 

 

 Apart from having several outstanding characteristics, traditional epoxy networks 

show low impact resistance. To alleviate this deficiency, one approach is to modify epoxy 
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systems with the incorporation of reactive liquid rubber without significant loss in other 

properties. It is well known that in such systems the additive will phase separate from the 

epoxy matrix and will form spherical particles of a few µm in size. Carboxyl-terminated 

poly(butadiene-co-acrylonitrile) (CTBN) liquid rubber was used with DGEBA and 

epoxidized phenolic novolac prepolymers (see Figure 27). Srivastava et al. [52, 54, 55], tried 

to produce the modified epoxy matrices, based on cardanol, by physical blending with liquid 

rubber (CTBN) [52, 54] and studied the effect of CTBN addition on mechanical properties 

changes in the blends cured with stoichiometric amounts of polyamine curing agent. The 

variation of tensile strength, impact strength and elongation at break is shown in Table 6.  

 A gradual fall in tensile strength was noted with the increase of liquid rubber content, 

due to the increase in the relative amount of dissolved rubber in the matrix. The percent 

elongation-at-break of the blend samples increased continuously with CTBN content. The 

impact strength showed an abrupt increase up to 15 wt % of CTBN, beyond which it dropped 

significantly.  

 Same observation was done with carboxyl-terminated polybutadiene (CTPB) in 

cardanol-based networks [55] with a maximum impact strength with 15 % CTPB added to the 

system.  

 As a remark, no data were available in these studies on the glass transition 

temperatures of the cardanol novolac networks.  

 

Cardanol-based 
epoxidized novolac 

(wt %) 

CTBN 
(wt %) 

Tensile 
Strength 
(MPa) 

Impact 
Strength 
(kJ/m2) 

Elongation 
at break 

(%) 
100 0 283.3 15.6 30.7 

95 5 276.7 23.7 38.6 

90 10 256.8 30.5 47.4 

85 15 191.7 65.6 65 

80 20 187.0 33.8 69.5 

75 25 178.4 20.5 73.2 

 
Table 6. Mechanical properties of pure cardanol-based epoxidized novolac and its blends with CTBN [52] 
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d) Conclusions 
 

 Because of its interesting structure, cardanol has been mainly studied as a precursor 

for phenolic polymers synthesis. Nevertheless, various cardanol-based epoxy prepolymers 

were synthesized, ranging from diepoxidized cardanol to epoxidized cardanol-based novolac 

phenolic polymers, and have mostly been used in coating applications. 

 Few mechanical characterizations on cardanol-based epoxy networks have been 

performed. Blending of reactive-liquid rubber (CTBN) with cardanol-based epoxy novolac 

systems has shown improvement of properties such as an increase in impact strength and 

elongation at break (for CTBN content up to 15 %). 

 Development and thermo-mechanical characterization of pure epoxy system, or blends 

with DGEBA, based on the diepoxidized cardanol epoxy precursor (Figure 30) should be of 

interest.  

 

3. Biobased epoxy networks derived from sugar  
 

 Sugar is a renewable resource that has the potential to be used as an alternative to 

petroleum-based polymers. Investigations were done on the synthesis of epoxides based on 

different carbohydrates based-monomers such as sucrose (Figure 31), sorbitol, maltitol 

(Figure 34) and isosorbide (Figure 37). 

 

a) Epoxy networks derived from sucrose 
 

 Sucrose is a disaccharide composed of glucose and fructose units. The glucose and 

fructose units are joined by an acetal oxygen bridge in the alpha orientation. The structure is 

easy to recognize because it contains the six member ring of glucose and the five member ring 

of fructose. Structure of sucrose is shown in Figure 31. 

 

 
Figure 31. Chemical structure of sucrose 
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 Sucrose–based epoxy monomer, namely, epoxy allyl sucrose (EAS) was prepared by 

epoxydation of octa-O-allyl sucrose by Sachinvala [58-60]. This involves the methallylation 

of sucrose using aqueous sodium hydroxide and methallyl chloride, followed by the 

epoxidation of methallyl intermedium with peracetic acid. The epoxy allyl sucrose was 

obtained as a mixture of structural isomers and diastereoisomers that contained varying 

number of epoxy groups per sucrose (Figure 32).  

 

 
Figure 32. Sucrose base monomers 

 
 Sucrose-based epoxy monomer (EAS, 3.7 epoxy groups per sucrose) was cured with 

diethylenetriamine (DETA) in stoichiometric ratio, and its curing characteristics, glass 

transition temperatures and temperatures of degradation were determined using DSC and 

ATG analyses [58]. These characteristics were compared to those obtained on a classical 

DGEBA/DETA system also in stoichiometric ratio and are summarized in Table 7. 

 

Epoxy Amine 
Curing 

Tpeak (°C) 

∆H 

(kJ/mol) 

Tg 

(°C) 

T (°C) 

Degradation 

Epoxy allyl sucrose DETA 102 98.7 72 327 

DGEBA DETA 97 103.8 134 345 

 
Table 7. Curing, Glass Transition, and thermal degradation characteristic of sucrose-based epoxy and DGEBA with 

diethylene triamine (DETA) [58] 
 
 The peak curing temperature and total heat of cure (∆H) for DGEBA and epoxy allyl 

sucrose based systems were approximately the same. Low Tg in epoxy allyl sucrose sample 

(72°C) can be attributed to flexibility of the chain between crosslinking points. 

Thermogravimetric analyses (TGA) showed that the DETA-cured polymers containing 

sucrose-based monomers degraded at lower temperatures than the DETA thermoset 
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containing DGEBA. This may be attributed to the presence of aromatic structures in DGEBA-

based networks.  

 

 Recently, novel biobased high functionality epoxy prepolymers were synthesized by 

the epoxydation of sucrose ester of vegetable oil fatty acids (linseed oil, safflower oil, and two 

soybean oils with different average degree of substitution) [61]. A general structure of sucrose 

esters of fatty acids (SEFA) is shown in Figure 33. Sucrose esters of fatty acids were 

epoxidized by peracetic acid generated in situ from hydrogen peroxide and acetic acid in the 

presence of ion exchange resin catalyst to produce the epoxidized sucrose esters of fatty acids 

(ESEFA). The conversion of double bonds to epoxides was greater than 99 %.  

 
Figure 33. Structure of sucrose esters of fatty acids (SEFA) [61] 

 
 Compared with the common fatty epoxy compound-epoxidized vegetable oils, 

epoxidized sucrose esters of fatty acids (ESEFA) have a rigid sucrose core which can impart 

hardness to their thermosets, as well as much higher epoxide functionality which can lead to 

rapid gelation and high crosslink densities.  

 Indeed, various epoxidized sucrose esters of fatty acids were crosslinked with a liquid 

cycloaliphatic anhydride (MHHPA) combined with an amine initiator by Pan et al. [62].  

We focused on epoxidized sucrose linseedate (ESL), epoxidized sucrose safflower (ESSF) 

and epoxidized sucrose soyate (ESS). Dynamic mechanical properties and crosslink densities 

of resulting thermosets compared with network obtained from epoxydized soybean oil (ESO) 

under the same conditions are summarized in Table 8 (for an epoxide/anhydride ratio 1:0.5). 
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Epoxy compound Tα (°C) 
E’ (MPa) at 

20°C 

E’ (MPa) at  

Tα + 60°C 

ννννe (x 103 

mol/mm3) 

Epoxidized sucrose linseedate (ESL) 103.7 1500 20.7 1.84 

Epoxidized sucrose safflower (ESSF) 71.3 1103 7.7 0.69 

Epoxidized sucrose soyate (ESS) 48.4 103 5.6 0.50 

Epoxidized soybean oil (ESO) 24.8 36 3.1 0.28 

 
Table 8. Dynamic mechanical properties and crosslink densities of epoxy-anhydride thermosets 

 
The α-relaxation temperatures range from 48°C to almost 104°C with a high Tα value of 

104°C for the network obtained from epoxidized sucrose linseedate (ESL).  

In all the cases, the epoxidized sucrose esters of fatty acids offer Tα higher than the one 

obtained for epoxidized soybean oil (ESO)-based network. Besides, higher moduli in the 

glassy and the rubbery state are obtained for the epoxidized sucrose esters of fatty acids-based 

networks.  

 

b) Epoxy networks derived from maltitol and sorbitol 
 

 
Figure 34. Chemical structure of maltitol and sorbitol 

 
 Natural saccharides such as sorbitol and maltitol (Figure 34) were converted by 

Acierno et al. [63] in multifunctional epoxy monomers to produce epoxy metallyl sorbitol 

(EMSo) and epoxy metallyl maltitol (EMM). By using an aliphatic trifunctional amine, 

diethylene-triamine (DETA), as hardener a new generation of epoxy biobased networks were 

obtained. Epoxy metallyl sorbitol and epoxy metallyl maltitol were prepared using the method 

of Sachinvala [58] previously described for sucrose epoxidation.  

 Dynamic-mechanical properties of bio-based epoxy were compared with traditional 

petroleum-based networks derived from DGEBA prepolymers cured under the same 

conditions. Storage modulus (E’), α relaxation temperatures (Tα) and experimental 
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crosslinking densities (νe), calculated with the rubber elasticity theory [42], were determined 

by DMA. Values are reported in Table 9.  

 

 
Figure 35.  Comparison of  E’ and tanδ vs temperature at 1 Hz for epoxy networks from epoxy metallyl maltitol 

(EMM),  epoxy metallyl sorbitol (EMSO) and DGEBA epoxy prepolymers. 

 

Epoxy 
E’Tα + 30°C 

(MPa) 
Tα (°C) 

ννννe 

(mol/dm3) 

EMM 220 140 16.8 

EMSo 40 90 3.8 

DGEBA 70 150 5.9 

 
Table 9. Dynamic mechanical properties of epoxy metallyl maltitol (EMM), epoxy metallyl sorbitol (EMSo) and 

DGEBA based epoxy networks [63] 

 
 At room temperature, thermosets derived from epoxy saccharides EMSo and EMM 

exhibit a storage modulus higher than DGEBA. Bio-based networks do not show a clear 

glassy plateau but their storage modulus quickly decreases as temperature increases becoming 

lower than that of the DGEBA one for temperatures equal to 80°C and 65°C for epoxy 

metallyl maltitol (EMM) and epoxy metallyl sorbitol (EMSO) respectively. About the rubbery 

region, epoxy metallyl sorbitol and DGEBA get to a plateau steady rubber state indicating the 

stability of networks while epoxy metallyl maltitol based ones show a continuous diminishing 

modulus probably because an highly heterogeneous crosslinked network was formed 

containing regions with different crosslinking density where the branched chains have 

different segmental mobility depending on the amount of crosslinks.  The broadness of the α-

transition for EMM/DETA network confirms the coexistence of regions with different micro-
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structural characteristics. Besides, the conventional DGEBA-based network exhibits the 

higher α-relaxation temperature. 

 

 Other epoxy networks based on sorbitol were studied by Shibata et al. [64]. They have 

prepared biocomposites composed of bio-based epoxy prepolymer derived from sorbitol 

(Sorbitol Polyglycidyl ether SPE, commercial reference: Denacol 614B) with a bio-based 

hardener, tannic acid (TA), and microfibrillated cellulose as filler. The curing reaction of 

sorbitol polyglycidyl ether with tannic acid was performed by solubilizing the two products in 

stoichiometric ratio in ion-exchange water; both compounds were soluble in water. The 

homogenous solution was freeze-dried to remove water and cured at 50°C during 12 h and 

post cured at 200°C for 2 h.  

 
Figure 36. Some of the reagents used in Shibata study : sorbitol polyglycidyl ether (SPE) and tannic acid (TA) [64] 

 The curing conditions were optimized for the improvement of thermal and mechanical 

properties; the most balanced properties were obtained for the SPE/TA cured at 160°C for 2-3 

h at the epoxy/hydroxyl ratio of 1/1. Under these specific conditions the bio-based epoxy 

networks SPE/TA had a glass transition temperature of 80°C (measured by DMA analysis).  
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 The sorbitol polyglycidyl ether used in this study is a commercial one obtained by a 

classical epoxidation involving epichlorohydrin, different from the sorbitol-epoxy prepolymer 

prepared by Acierno [63]. Nevertheless, as no comparison is done with DGEBA cured under 

the same conditions for Shibata study, these two sorbitol polyglycidyl ethers cannot be 

compared.  

 

c) Epoxy networks derived from isosorbide  
 

1,4:3,6-dianhydrohexitols and derivatives 

 

 1,4:3,6-dianhydrohexitols are cereal-based chemicals which exhibit rigid structures, 

chirality and non-toxicity. For these reasons there are expectations that polymers, based on 

these molecules, with high glass transition can be synthesized [10].  

 

 Depending on the chirality, three isomers of the 1,4:3,6-dianhydrohexitols (DAH) 

exist, namely isosorbide, isomannide and isoidide (Figure 37). The 1,4:3,6-dianhydrohexitols 

are composed of two cis-fused tetrahydrofuran rings, nearly planar and V-shaped. The 

hydroxyl groups are positioned on either inside or outside the V-shaped molecule. They are 

designed, respectively, as endo or exo. Isoidide has two exo hydroxyl groups, whereas for 

isomannide they are both endo, and for isosorbide there is one endo and one exo hydroxyl 

group. The three isomers exhibit different reactivities, because of the different reactivities of 

endo and exo hydroxyl groups, which are more or less accessible, and the existence of 

intramolecular hydrogen bonds. 

 

 
Figure 37. Structures of 1,4:3,6-dianhydrohexitols 

 
 Among the three isomers, isosorbide or dianhydrosorbitol (DAS) is the only produced 

at an industrial scale. Isomannide, is less studied because of its lower reactivity. Finally, the 
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third isomer isoidide, which is the more reactive, and thus should be the more attractive, 

remains an expensive monomer because of its difficult extraction from vegetal biomass.  

 Therefore researches on dianhydrohexitol mainly focused on isosorbide. Isosorbide is 

a platform chemical of considerable importance for the future replacement of fossil resource-

based products [65].  

 
Synthesis of isosorbide-based epoxy monomers 

 

 The first polyethers from 1,4:3,6-dianhydrohexitols derivatives were described by 

Morrison et al. [66]. They synthesized polyglycidyl ethers by reacting isosorbide or 

isomannide with an excess of epichlorohydrin in the presence of strong alkali, such as sodium 

hydroxide in a single-stage reactor with continuous removal of water (Figure 38). The epoxy 

monomers obtained were water soluble, with an epoxy equivalent of 0.467 (isosorbide based) 

to 0.475 (isomannide based) per 100 g of prepolymer. 

  

 
Figure 38. Synthesis of poly(glycidyl ether)s according to Ref. [66] 

 
 Pure diglycidyl ethers of isosorbide, isomannide and isoidide were prepared by Zech 

and Maistre [67]. They used sodium hydride as base in diglyme and a large excess of 

epichlorohydrin (Figure 39).  
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Figure 39. Synthesis of pure diglycidyl ether of isosorbide, isomannide and isoidide according to Ref. [67] 

 
 More recently East et al. [6, 68, 69] prepared bis-isosorbide diglycidyl ether by heating 

isosorbide with 50 % sodium hydroxide solution and a large excess of epichlorohydrin, which 

was used to azeotrope off the water. Two equivalent isosorbide were linked by three 

molecules of epichlorohydrin to form the epoxide dimer, as shown in Figure 40.  

 

 
Figure 40. Synthetic route of bisisosorbide diglycidyl ether [6] 

 East et al. also synthesized the pure diglycidyl ether of isosorbide through its allylic 

derivative as shown in Figure 41.  
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Figure 41. Synthesis of isosorbide diglycidyl ether via allylic derivative [6] 

 
 Synthesis using the allylic derivative gives access to the pure isosorbide diglycidyl 

ether though it is not industrially developed as the epoxidation route involving 

epichlorohydrin. 

 

Properties of bio-based epoxy networks derived from isosorbide  

  

 Isosorbide diglycidyl ether was cured with an aliphatic amine, Jeffamine T403, and 

compared with DGEBA cured with the same hardener [6].  

 The tensile modulus and tensile strength of the cured networks were tested. It appears 

that the tensile strength of the DGEBA-based network is only 96 % of the isosorbide-based 

network and impact strength of isosorbide is 40 % higher than the DGEBA-based networks.  

 However, the glass transition of the isosorbide based network as measured by DSC 

method was shown to be 48°C, which is much lower than DGEBA-based network with a Tg 

of 90°C. The authors attributed the decrease of Tg to the isosorbide’s high affinity for water. 

They used different cross-linkers, more hydrophobic, to cure isosorbide epoxy prepolymer, 

such as methyl-5-norbornene-2,3-dicarboxylic anhydride (NMA) with initiator benzyl 
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dimethyl amine (BDMA). They observed in this case a Tg of 113°C. 4,4’-(hexafluoro-

isopropylidene) diphthalic anhydride was also used as a curing  agent and it raised the Tg to 

200°C but it exhibits an important amount of Fluor which affects the non-toxicity advantage 

of the use of isosorbide as epoxy precursor.  

   

4. Other renewable resources for the synthesis of bio-based 
epoxy prepolymers 

 

 This part of the chapter presents other renewable resources such as wood derivatives 

[70] that can also be used as substitutes for BPA allowing reduced waste  

 

 a)  Fujita et al. have developed wood-based epoxy prepolymers synthesized by a 

two-step process from wood powder: liquefied wood was obtained by reacting wood powder 

with resorcinol (see Figure 42 for resorcinol structure) and then the glycidyl etherification of 

liquefied wood was conducted with epichlorohydrin [71]. The flexural strength (150–180 

MPa) and the modulus of elasticity (3.2 GPa) of the highly crosslinked wood-based epoxy 

networks were equivalent to those of the commercially available epoxy monomer, diglycidyl 

ether of bisphenol A (DGEBA). According to authors, the mechanical and adhesive properties 

suggested that the wood-based epoxy networks would be well suited for matrix of natural 

plant-fiber reinforced composites. 

  Same study was done by Fujita et al. replacing the liquefaction solvent, resorcinol, by 

other alcohols such as polyethylene glycol (PEG) and glycerin [72]. The Tg, the tensile 

strength, and the modulus of elasticity of the wood-based epoxy prepolymers cured with 

polyamide amine were higher than those of corresponding PEG-based epoxy monomer.  

 

 The purpose of the latter work was a wood valuation and not a study of the reactivity 

of hydroxyl groups present in wood compounds toward epichlorohydrin. Indeed, the wood 

powder was used without any further purification and hydroxyl groups present in liquefied 

wood can come from various wood components such as cellulose, lignin, and polyphenols.  

 

 b) Polyphenols, and more specifically condensed tannins, extracted from wastes 

produced by the wood and wine industries can be an alternative to BPA to produce epoxy 

prepolymers. Nouailhas et al [73] synthesized bio-based epoxy prepolymers from catechin 
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one repetitive unit in tannins. The reactivity of catechin toward epichlorohydrin to form 

glycidyl ether derivatives was studied using two model compounds, resorcinol and 4-

methylcatechol, which represent the A and B rings of catechin (Figure 42).  

 

 
Figure 42. Structure of catechin, resorcinol, and 4-methylcatechol [73] 

 
 Furthermore, the functionalized catechin, glycidyl ether of catechin (GEC), was cured, 

and some properties of the resulting epoxy network were compared to the standard DGEBA-

based networks. To evaluate the effect of the glycidyl ether of catechin (GEC) content on α-

relaxation temperature and crosslinking density of cured epoxy networks, the storage modulus 

(G’) and loss factor (tanδ) were measured by using DMA. The crosslinking density (ρ) of 

cured specimens was calculated according to rubber elasticity theory. Results of dynamic 

mechanical analyses are summarized in the following table: 

 

Samples Tα (°C) G’(GPa) at 30°C G’(GPa) at Tα+30°C ρρρρ (10-3mol.cm-3) 

DGEBA 209 2.81 0.019 6.06 

75DGEBA/25GEC 221 2.46 0.016 5.12 

50DGEBA/50GEC 202 2.40 0.014 4.48 

 
Table 10. Dynamic mechanical analysis of the DGEBA/GEC (glycidyl ether of catechin)-cured epoxy networks [73] 

 No decrease in the α-relaxation temperature was observed when incorporating glycidyl 

ether of catechin into the DGEBA epoxy formulation up to 50 %. Indeed, the catechin 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter I 

 

 
Page 44 

 

derivatives substituted by a benzodioxane-type function on the B ring have also two 

methyloxirane functions on the A ring and thus participate to the network.  

 This work shows the feasibility of epoxy formulations based on flavonoid building 

blocks. These renewable phenolic resources seem to be promising for the replacement of BPA 

in epoxy formulations. Besides, Nouailhas et al. [74] also studied the development of 

biocomposites obtained from glycidyl ether of catechin (GEC) and flax fibres. 

 

c) Lignin  is the second major component of wood and annual plants, and is a highly 

branched and irregular macromolecule. Its structure varies with the vegetable species, 

although its basic building blocks can be schematically simplified into “C9” units made up of 

phenolic moiety bearing three aliphatic carbons, as represented in Figure 43. Small piece of 

typical structure of lignin polymer is represented in Figure 44. 

 

 
Figure 43. The three fundamental lignin monomer precursors 

 

 
Figure 44. A small piece of lignin polymer 
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Despite the lignin macromolecular irregularities, it presents the advantage of both aliphatic 

and phenolic hydroxyl groups, in variable proportions, which can be exploited to synthesized 

bio-based polymers. Nevertheless, despite the excellent availability of lignin, it has been 

viewed as a waste material or a low-value by-product of pulping. Lignin was so far mainly 

used as energy source in combustion applications. Less than 5 % are being processed for other 

purposes [75].  

 

 d) Diphenolic acid (DPA) is prepared by the reaction of levulinic acid (obtained 

from lignocellulosic feedstocks fractionation) with two molecules of phenol as represented in 

Figure 45.  

 
Figure 45. Diphenolic acid (DPA) synthesis from levulinic acid [76] 

 
It may be a direct replacement for bisphenol A (BPA) in polycarbonates, epoxies, 

polyarylates and other polymers [76]. The acid also has numerous other uses including 

applications in lubricants, adhesives and paints. It can also copolymerize with BPA or can 

replace it in various formulations. It contains a carboxyl group, absent from BPA, which 

confers an additional functionality that could be useful in polymer synthesis. 

 

 e) Terpenes are naturally occurring substances that can be used as a renewable 

feedstock. Structures of the most common monoterpenes are represented in Figure 46.  

 
Figure 46. Structure of the most common monoterpenes 
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Only a few of these molecules have been the subject of extensive studies related to their use 

as monomers, namely α-pinene, β-pinene, limonene, as they can be readily isolated in viable 

amounts [3]. Terpene-phenols are low molar mass oligomers, and can be used for the 

rheological modification of polar polymers. They are used as good tackifiers and heat stability 

in adhesive, coatings, inks, plastic (PVC), rubber (EVA) and others.  

 Epoxidation of terpene and more specifically limonene was also studied as described 

in an US Patent dating from 1968 [77]. 

 
 
 f)  Glycerol, as represented in Figure 47, is also an important bio-based raw 

material. Recently, glycerol also has gained much attention as a 10 % by-product of bio-diesel 

production via the transesterification of vegetable oils.  

 

 
Figure 47. Structure of glycerol 

 
Shibata et al. developed fully bio-based epoxy networks from glycerol polyglycidyl ether 

(GPE) and polyglycerol polyglycidyl ether (PGPE) combined with ε-Polylysine (PL) as 

represented in Figure 48.  

 
Figure 48. Structures of the reagents used in Shibata study [78] 

 
 Table 11 summarizes the Tg measured by DSC for the different networks. PGPE-PL 

network had greater Tg than the GPE-PL network, which can be attributed to greater epoxy 
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functionality of PGPE than GPE. In both case, low Tg values were obtained which can be 

attributed to the long aliphatic structure of ε-Polylysine (degree of polymerization: 25–35).  

 

Epoxy-amine system Epoxy/amine molar ratio Tg [DSC] (°C) 

GPE – PL 1.0/1.0 37 

PGPE – PL 1.0/1.0 47 

 
Table 11. Tg measured by DSC for the cured networks [78] 

 

5. Bio-based epoxy curing agents  

  
 As previously mentioned, epoxy networks are obtained by the reaction of an epoxy 

prepolymers with various co-reactants, hardeners, to form a tridimensional network.  

 We previously mainly focused on the replacement of conventional epoxy prepolymer, 

such as DGEBA, by bio-based epoxy prepolymers, to yield partially bio-based epoxy 

networks using petroleum-derived curing agents such as amines, anhydrides… Replacement 

of petroleum-based curing agents by bio-based ones, will allow preparing fully bio-based 

epoxy networks. Still, research on the development of bio-based amine or other curing agents 

is less abundant than the development of bio-based epoxy prepolymers.  

 
a) Phenalkamines curing agents  

 

 Phenalkamines are obtained from cardanol (Figure 25). Their structure is presented in 

Figure 49. 

 
Figure 49. Structure of phenalkamine 

 
 Phenalkamines can be synthesized via a Mannich reaction to produce a low molar 

mass polymer by condensing one mol of cardanol (C15 alkylphenol), two moles of 

formaldehyde and two moles of a polyamine [79, 80]. The polyamine may be aromatic or 

aliphatic. Commercial phenalkamines are produced using either ethylene diamine 
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(commercial reference: Cardolite NC541) or diethylenetriamine (commercial reference: 

Cardolite NC540).  

 
 Phenalkamines contain aliphatic polyaminic substituents attached to the aromatic ring. 

Their unique structure can explain the fact that they have an unusual combination of desirable 

properties, which can be identified in the resulting cured network. The aromatic backbone is 

responsible for the high chemical resistance that can be seen in these compounds : the side 

chain is very hydrophobic; the phenolic -OH group makes phenalkamines very active even at 

low temperatures, the aminic side is responsible for the high crosslinking density and 

whenever the molar mass is not too high, these curing agents can have a low viscosity (around 

2000 cps at room temperature for Cardolite NC540) [81].  

 

 In other works, commercial phenalkamines such as Cardolite NC-540 were blended 

with a polyamine (DETA, 9 %). Phenalkamines can be used as a curing agent for epoxy 

systems [79, 82-84] for low temperature curing systems.  

 The phenalkamines constitute a new class of low temperature curing agents and can 

improved pot life, and water resistance. They can have applications in many branches of the 

industrial maintenance and maritime industries.  

 

b) Rosin-based curing agents  

 
 Rosin is abundantly available as exudates of pines and conifers or as a byproduct from 

the pulping process. Rosin is a mixture of acidic (ca. 90 %) and neutral (ca. 10 %) 

compounds. The acidic components generally named rosin acids are also a mixture containing 

namely isomeric abietic-type acids (40-60 %) and pimaric-type (9-27 %) acids (on the basis 

of total rosin weight). Due to their large hydrogenated phenanthrene ring structure, rosin acids 

are similar to cyclic aliphatic or aromatic compounds in molecule rigidity. Therefore resulting 

rosin derivatives may serve as alternatives to petroleum-based cyclic aliphatic and aromatic 

monomers used in polymer synthesis. Zhang et al. studied the application of rosin derivatives 

for curing agent applications [85-87]. 

 

 Two rosin-based acid anhydrides, methyl maleopimarate (MMP) and maleopimaric 

acid (MPA) were synthesized (Figure 50).  
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Figure 50. The synthetic route of methyl maleopimarate (MMP) and maleopimaric acid (MPA) [85] 

 
These two rosin-based anhydrides methyl maleopiramate (MMP) and maleopimaric acid 

(MPA) were used as curing agents for DGEBA epoxy prepolymer and respectively compared 

with conventional anhydrides hexahydrophtalic anhydride (HHPA) and trimellitic anhydride 

(TMA) (Figure 51) also used to cure DGEBA. 

 

 
Figure 51. Chemical structure of curing agents used in Zhang et al. study [85] 

 
 Dynamic mechanical analyses were performed on the four different networks. 

Evolution of storage modulus and tanδ with temperature is presented in Figure 52. 

 

O

O

O

O

O

O

HOOC

Hexahydrophthtalic anhydride (HHPA)

Trimellitic anhydride (TMA)

H3COOC

O

O

O

HOOC

O

O

O

Methylmaleopimarate (MMP)

Maleopimaric acid (MPA)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter I 

 

 
Page 50 

 

 
Figure 52. Storage modulus and tanδ versus temperature for DGEBA ( DER332) cured with different curing agents 

[85] – CHDB stands for hexahydrophtalic anhydride (HHPA) and BTCA stands for trimellitic anhydride (TMA) 

  

It appears that the networks cured with rosin-based curing agents exhibited lower moduli in 

rubbery state than networks obtained with their conventional curing agent analogues. Besides, 

DGEBA cured with maleopimaric acid (MPA) had higher Tα than DGEBA cured with 

methylmaleopimarate (MMP). Indeed, the functionality of MPA (f = 3) was higher than that 

of MMP (f = 2), the epoxy networks cured with maleopimaric acid (MPA) possessed higher 

crosslink density than the networks obtain with methylmaleopimarate (MMP). It is also noted 

that the epoxy cured with rosin-based curing agents exhibited higher Tα (ca. 10 %) than the 

epoxy cured with their corresponding commercial counterparts (HHPA and TMA). The bulky 

fused ring structure of rosin probably imposed considerable restriction on the segmental 

mobility between crosslink points, hence resulting in higher Tα according to the authors.  

 Rosin acids have a great potential to replace some of the current aromatic or 

cycloaliphatic compounds in the synthesis of epoxy curing agents.  

 

 More recently, Zhang et al. [88] also used bio-based epoxy curing agent 

(maleopimaric acid, MPA) in combination with rosin-based epoxy prepolymer in order to 

obtain a fully bio-based rosin-based epoxy network. A rosin-based epoxy monomer with three 

functional groups was synthesized as represented in the Figure 53. 
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Figure 53. Synthetic route for maleopimaric acid (curing agent) and its triglycidyl ester (epoxy prepolymer) [88] 

  

 Triglycidyl ester of maleopimaric acid combined with maleopimaric acid as curing 

agent and a catalyst (2 ethyl-4-methylimidazole) were crosslinked for 2h at 120°C, 2h at 

150°C and 2h at 180°C. The α-relaxation temperature and storage modulus of the resulting 

network were measured using DMA as represented in Figure 54. This fully bio-based network 

exhibits high Tα (164°C) and storage modulus (3.2 MPa). Yet, the α-relaxation is broad as 

compared to conventional epoxy networks which means a regular decrease of its modulus (2.5 

MPa at 100°C).  

 

 
Figure 54. DMA of triglycidyl ester of maleopimaric acid crosslinked with maleopimaric acid (MPA) [88] 
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c) Other bio-based curing agents  
 

Tannic acid as bio-based curing agent  

 

 As introduced before, Shibata et al. [64] prepared fully bio-based epoxy networks 

using tannic acid (TA). Commercial tannic acid is a powder comprised of mixture of 

gallotannins from sumac galls, Aleppo oak galls, or sumac leaves. The chemical formula for 

commercial TA is often given as C76H52O46 as shown in Figure 36. But in fact it contains a 

mixture of related compounds. Its structure is mainly based on glucose ester of gallic acid. 

  

 Even if, promising fully bio-based epoxy networks can be obtained using sorbitol 

polyglycidyl ether and tannic acid, with a glass transition temperature of 80°C (see II.3.b), the 

main drawback of tannic acid used as a curing agent is the preparation of homogenous 

systems. Indeed, sorbitol polyglycidyl ether and tannic acid need to be solubilized previously 

in ion-exchange water to obtain a homogenous solution, as both epoxy prepolymer and curing 

agent are soluble in water. Solution was then freeze-dried to remove the water for 24 h. 

 

ε-Polylysine as bio-based curing agent 

  

 The same authors also developed fully bio-based epoxy networks from glycerol 

polyglycidyl ether (GPE) and polyglycerol polyglycidyl ether (PGPE) using ε-Polylysine, PL, 

as represented in Figure 48 as an hardener  [78] as described previously. 

  PL is produced by aerobic bacterial fermentation using Streptomyces albulus in a 

culture medium-containing glucose, citric acid, and ammonium sulfate. PL differs from usual 

proteins in that the amide linkage is not between the α-amino and carboxylic but between the 

ε-amino and carboxyl group. The pendant α-amino groups are expected to react with epoxy 

groups.  

 

Terpene-derived amine as curing agent  

 

 Amine curing agent derived from terpene was also used to crosslink DGEBA 

prepolymer. Indeed, 1,8-diamino-p-menthane, MNDA, (Figure 55) was used by Montarnal et 

al. [89] in 1989. Nevertheless, at that time, the interest of the amine was more in its structure 
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rather than its origin and its utility as a bio-based hardener. Indeed, MNDA is a sterically 

hindered amine and it low reactivity allowed to control the morphology development of 

DGEBA prepolymer toughened with liquid reactive rubber (CTBN) by changing the cure 

schedule.  

 

 
Figure 55. Structure of 1,8-diamine-p-menthane 

 

 

IV.  Current industrial bio-based epoxy systems 
 

 Despite the recent attention of researchers to bio-based epoxy networks, only a few 

commercial formulations have been developed. However the market is moving continuously. 

Different companies claim to sell bio-based epoxies but no detailed information are available 

to consumers as their origin or exact formulations.  

 In this paragraph we introduce some commercial bio-based epoxy development such 

as production of DGEBA using bio-based epichlorohydrin as well as bio-based epoxy 

formulations commercially available for the replacement of DGEBA prepolymer.  

 

1. Production of DGEBA using bio-based epichlorohydrin 

 
 As previously mentioned, diglycidyl ether of bisphenol A (DGEBA) is derived from 

bisphenol A and epichlorohydrin. The conventional, petrochemical process of producing 

epichlorohydrin is the chlorohydrination of allyl chloride, which in turn is made by 

chlorination of propylene. In 2005, Solvay patented the epichlorohydrin production from 

glycerol via 1,3-dichloropropanol (see Figure 56). Production of partially bio-based DGEBA 

is therefore possible.  Bio-based DGEBA is chemically identical with petrochemical DGEBA 

and there is hence no difference in product properties. 

 
Figure 56. Conversion of glycerol into epichlorohydrin according to the Solvay EpicerolTM  process 
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 In March 2007, Dow Epoxy (a business group of Dow) announced that they would 

build a 150 kt p.a. glycerol-to-epichlorohydrin (GTE) plant and 100 kt p.a. liquid epoxy 

monomers (LER) in Shanghai, China [9].  

 In April 2007, Solvay started up its first glycerol-to-epichlorohydrin (GTE) plant in 

Tavaux in France. The nameplate capacity of the plant is 10 kt p.a. The glycerol is derived 

from rapeseed oil.  

 In September 2007, Solvay announced to build a 100 kt p.a. glycerol-epichlorohydrin 

plant on the Map Ta Phut industrial estate in the eastern province of Rayong in Thailand.  

 The production capacity scheduled by Solvay and Dow (200 kt p.a.) translates to 

approximately 600 kt of epoxy monomers, which is a very sizable share of the world-wide 

production of epoxy monomers (1.15 Mt in 2000).  

 

 Nevertheless, the molar mass of DGEBA is dominated by bisphenol A (BPA). Among 

all the BPA substitutes presented above (vegetable oils, polysaccharides…) some are 

industrially produced. Recent industrial development of BPA substitutes and their epoxide 

derivatives production is observed.  

 

2. Industrial bio-based substitutes to DGEBA 
 

a) Derived from vegetable oils  

 
 Arkema produces various types of epoxydized vegetable oil under the tradename 

Vikoflex. For two of these, the type of vegetable oil is reported being soybean oil (Vikoflex 

7170) and linseed oil (Vikoflex 7190). The primary application area of Vikoflex is their use as 

plasticizers for flexible PVC. A further producer of epoxidized soybean oil is Cara 

Plastics/University of Delaware.  

 

b) Derived from polysaccharides 
 

Sorbitol  

 Roquette (Lestrem, France) is the first French manufacturer of starch and derivatives 

and the first worldwide manufacturer of sorbitol, but they do not produce sorbitol 

polyglycidyl ether.  
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 Sorbitol polyglycidyl ethers are commercially available, produced by JSI Co. (Korea) 

and Nagase Chemtex (Japan). The latter produces different grades of sorbitol polyglycidyl 

ether with different epoxy equivalent weigth, viscosity and water solubility. Commercial 

references of sorbitol polyglycidyl ethers are summarized in the following table:  

 

Reference Producer EEW (g/eq) Viscosity (cps, 25°C ) Solubility in water (%) 

EJ 190 JSI Co. 184 4380 N.A. 

Denacol 611 Nagase chemtex 163 10820 48 

Denacol 612 Nagase chemtex 167 11590 42 

Denacol 614 Nagase chemtex 164 17780 78 

Denacol 614B Nagase chemtex 171 4450 94 

Denacol 622 Nagase chemtex 191 11440 insoluble 

 
Table 12. Commercial references of sorbitol polyglycidyl ether 

 
Isosorbide   

 Roquette sells for several years the POLYSORB®
 P, a high-purity grade isosorbide 

specially adapted for polymers manufacture. These patented technologies have allowed 

Roquette to establish several collaborations with major collaborators in the field of 

polymers. Roquette has announced that its isosorbide production capacity located in Lestrem 

(France) will reach several thousand tons in early 2011. Roquette thus strengthens its position 

as world leader for isosorbide, bio-based intermediate for new polymers and 

plasticizers. Nevertheless, the epoxyde derivatives of isosorbide are not yet commercially 

available in a large scale.   

 

c) Derived from cashew nut shell liquid  
 
 Cardolite Corporation manufactures the world’s largest variety of products derived 

from cashew nutshell liquid (CNSL). With over 20 years of experience, Cardolite is the leader 

in the production of quality CNSL based materials used in the epoxy coatings industry and 

offers a line of cardanol derived epoxy monomers and reactive diluent [90].  

 Cardolite® NC-513 and LITE 2513HP are mono-functional reactive epoxy diluents 

that can be used to increase the flexibility, impact resistance, chemical resistance, and water 
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resistance of epoxy coatings. These reactive diluents have very low viscosity and low 

volatility, which make them ideal for helping formulate high solids and solvent free coatings.  

 Cardolite® NC-514 and NC-547 are, respectively, di-functional and tri-functional 

reactive epoxy resins. Structure of these commercial epoxidized cardanol products are shown 

in Figure 57. They are mainly developed for coating in maritime applications. 

 
Figure 57. Structure of cardanol epoxy derivatives commercialized by Cardolite 

 
d) Other commercial bio-based epoxy formulations  

 

 Among the bio-based epoxy formulations available nowadays, the company Amroy 

Europe Oy (Finland) commercialized a liquid epoxy system: EPOBIOX™. This system is 

specially developed for windmill blades and composites industry. It is suitable for infusion, 

laminating and especially for glue applications. According to the technical data sheet, 

EPOBIOX™ is made 70 % from industrially grown and harvested natural oils like, for 

example, epoxidized pine oil waste. This natural prepolymer has a high hydroxyl group 

content and very long polymer with high molar mass. This results in good elongation at break 

and adhesion to all kinds of substrates [91]. 
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Conclusion  
 
 Renewable resources provide a variety of new structures for thermosetting materials, 

including epoxy networks. Traditional thermosets are high performance materials for 

industry, with high modulus strength, durability and resistance towards thermal stress and 

chemical attacks, provided by their high-cross-linking density and the type of chemical 

structure between crosslinks.  

 In the past two decades, developments have been done on bio-based polymers in order 

to replace petroleum-derived precursors and decrease the toxicity of some polymers... Indeed, 

in the case of epoxy, bisphenol-A (BPA) is one of the most commonly used precursors. It is 

used for the synthesis of epoxy prepolymer, DGEBA, and is known to be a toxic compound 

with estrogenic properties. Therefore, in the field of epoxy networks one driving force is the 

replacement of BPA by some bio-based non-toxic precursors. 

 Vegetable oils were the first renewable resources studied, as they are cheap and 

abundant. Unfortunately, because of the low reactivity of aliphatic epoxy groups, any 

epoxidized oil leads to poorly cross-linked materials with limited thermal and mechanical 

properties. Besides, they show a decrease of the network properties because of their long 

aliphatic structure. If epoxidized vegetable oils should be interesting renewable materials for 

adhesives and as plasticizers, they could not lead to high performance materials, or through 

many chemical transformations which will be far from a sustainable approach. Indeed, 

sustainability means also sustainable synthesis of epoxy monomers and hardener. Green 

monomers are not always sustainable.  

 Other bio-based raw materials with interesting structures have been studied such as 

sugar derivatives. These sugar-derived raw materials such as sorbitol and dianhydrohexitols 

provide interesting prepolymers especially in the case of isosorbide which has the opportunity 

to bring a cyclic structure which could lead to high performance materials. Besides, they have 

been declared as non-toxic precursors. Even if, isosorbide epoxide has been the subject of 

recent investigations, many prospects should be done on the understanding of all the 

properties of this monomer and its use as an epoxy prepolymer.  

 The next chapter will focus on the preparation and the characterization of bio-based 

epoxy prepolymers derived from isosorbide and resulting epoxy networks.  
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Chapter II Bio-based epoxy networks derived from 

Isosorbide 

 This chapter is divided in two parts. The first part presents the preparation and 

characterization of bio-based epoxy networks obtained from isosorbide derivatives and 

corresponds to the publication: Chrysanthos M, Galy J, Pascault J-P. Polymer. 

2011;52:3611-20. The second part of this chapter is dedicated to the use of molecular 

modelling for the determination of glass transition temperatures.  

 

Part I. Preparation and properties of bio-based 

epoxy networks derived from isosorbide diglycidyl 

ether  
 

I.Introduction 

 In recent years, bio-based polymers derived from renewable resources [1, 2] have 

become increasingly important as sustainable and eco-efficient products which can replace the 

products based on petrochemical-derived stocks. Of all polymers produced, the main part is 

thermoplastics while the minor part is thermosets, 82 and 18 % respectively [3]. This is one 

important reason why research and development has mainly concerned bio-based 

thermoplastics such as linear polyesters, polyamides, polyurethanes, etc. Thermosets prepared 

from renewable resources have been the subject of more limited investigations [2].  

Epoxy networks are amongst the most popular thermosetting polymers which are used in 

various fields: coatings, adhesives, laminates, electrical castings, etc. because they exhibit a 

broad spectrum of properties, through selection of epoxy prepolymer and curing agent 

composition [4]. The diglycidyl ether of bisphenol A, DGEBA, is by far the most commonly 

used starting monomer to formulate epoxy networks: it represents 75 % of all epoxy 
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precursors [3]. Therefore there is a huge interest in developing a bio-based epoxy oligomer 

able to replace the classical DGEBA and to lead to high performance materials.  

 Until now, numerous bio-based epoxy resins deriving from vegetable oils, such as 

soybean oil, linseed oil and castor oil have been studied [5-10]. These macromonomers have 

long aliphatic chains; therefore they cannot lead to high performance networks and compete 

with DGEBA-based networks. They are used in epoxy formulations as a toughening agent, 

that is, to reduce the inherent brittleness of epoxy networks. Some new bio-based epoxy and / 

or hardeners are prepared from cardanol which give higher network properties [11, 12].   

The objective of our work is to develop novel bio-based reactive systems suitable for high 

performance composite materials.  

 DGEBA is derived from bisphenol A and epichlorohydrin. An easy way to obtain a 

partially bio-based DGEBA is to use epichlorohydrin from bio-based glycerol, an abundant 

and inexpensive polyol. Such bio-based epichlorohydrin is commercially available. However 

the molar mass of DGEBA is dominated by bisphenol A, epichlorohydrin accounts only for 

20 % of the molar mass of DGEBA. So a challenge to obtain a fully bio-based epoxy 

prepolymer is to replace bisphenol A by a bio-based polyol.  Another interest for replacing 

bisphenol A is that bisphenol A has been known to have estrogenic properties [13]. The 

chemical bonds that link bisphenol A in polymer structures are not completely stable and the 

polymer may release, with time, a small amount of bisphenol A, toxic to living organisms.  

 Investigations were done on the use of natural polysaccharides in replacement of 

bisphenol A in the synthesis of bio-based epoxy prepolymers. Sorbitol and maltitol were 

converted in multifunctional epoxy monomers which were used in combination with DETA 

(diethylene triamine) to produce bio-based networks [14]. Glycerol is also an important bio-

based raw material and epoxy precursors such as glycerol polyglycidyl ether (GPE) and 

polyglycerol polyglycidyl ether (PGPE) are industrially available and inexpensive. Such 

products have been used in textile and paper as processing agents and as reactive diluents. 

However, in a recent study these epoxy monomers were reacted with a bio-based curing 

agent, ε-poly(L-lysine) to produce fully bio-based epoxy networks, as well as nanocomposites 

based on montmorillonite [15]. Glucose can be readily hydrogenated and yield sorbitol. 

Sorbitol polyglycidyl ether (SPE) is also a commercial multifunctional epoxy monomer used 

for similar applications as GPE and PGPE; SPE and GPE have been associated to tannic acid 

to obtain bio-based networks and biocomposites with microfibrillated cellulose [16].  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter II 

 

 
Page 65 

 

 Synthesis of polyglycidyl ether derived from 1,4:3,6-dianhydrohexitols are well 

described in patent literature [17-21]. The double dehydration of sorbitol yields isosorbide 

(1,4:3,6-dianhydro-D-sorbitol (DAS)), commercially available in industrial quantities. The 

present study describes bio-based epoxy networks derived from this molecule. It was 

epoxidized using two different routes. The resulting isosorbide diglycidyl ether (or Diglycidyl 

Ether of DAS, DGEDAS) was characterized and bio-based epoxy networks containing this 

isosorbide diglycidyl ether were prepared using one amine curing agent, isophorone diamine 

(IPD). There structures were evaluated and compared to a conventional epoxy network based 

on DGEBA cured by IPD. 

 

II. Experimental section 

1. Materials 

 Figure 1 shows the structure of the reagents used in this study. The conventional 

petroleum-based epoxy monomer used was a diglycidyl ether of bisphenol A (DGEBA) 

supplied by Huntsman (Araldite 5085), with an epoxide equivalent weight (EEW) of 180 

g/eq. The cycloaliphatic diamine curing agent used was isophorone diamine (IPD) supplied 

by Aldrich; the amine equivalent weight (AEW) is 42 g/eq. Isosorbide with a high purity, 

commercialized under the trade name Polysorb P has been kindly supplied by Roquette Frères 

(Lestrem, France). Epichlorohydrin and sodium hydroxide were purchased from Aldrich. All 

chemicals were used as received. 

 
Figure 1. Structure of the reagents used in this study 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter II 

 

 
Page 66 

 

2. Synthesis of isosorbide diglycidyl ether 
 
 In the present work, the synthesis of the diglycidyl ether of isosorbide (DGEDAS) was 

performed using two different routes. The syntheses were performed in Huntsman laboratory 

(Basel) in the frame of a collaborative program. The most convenient route is that of the 

reaction of the isosorbide directly with epichlorohydrin. The synthesis is well described in the 

literature [19-22] and the synthetic route is presented in Scheme 1. It is based on the 

traditional and industrial route to produce DGEBA.  

 A flask fitted with a Dean-Stark water-separator tube was charged with isosorbide (4.0 

moles) and epichlorohydrin (40.0 moles). The mixture was stirred under nitrogen flow; the 

reaction flask temperature was 115°C. When the reaction was steadily refluxing, an aqueous 

solution of sodium hydroxide (8.0 moles) was added drop by drop to the flask. Gradually 

water began to appear as an upper layer in the Dean-Stark tube and the reaction was left to 

proceed steadily. The whole addition step took about 12 hours. Water and epichlorohydrin 

were drained off under reduced pressure (230 mbar at 70-80°C and 96 mbar at 65°C 

respectively).  

 The diglycidyl ether of isosorbide thus obtained, DGEDASn, was a viscous liquid with 

an epoxide equivalent weight of 184 g/eq, and a hydroxyl number IOH = 105 mg/gKOH as 

determined by titrimetry. The yield of the reaction was 96-98 %. We will see that this 

synthesis of the diglycidyl ether of isosorbide does not give pure diglycidyl ethers since 

oligomers may be formed by concomitant reaction of the epoxy function with unreacted 

isosorbide.  

 
Scheme 1. Synthetic route of isosorbide diglycidyl ether via epichlorohydrin 

 

 Another synthetic route, based on the method of sucrose epoxidation developed by 

Sachinvala et al, [23] was then performed on isosorbide by Feng et al, [22]. As compared to 
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the first synthetic route discussed above, this one is not industrially exploited. It involved a 

two-step sequence via allylic derivative (Scheme 2). Diallyl isosorbide ether was prepared by 

heating the isosorbide (0.4 moles) with allyl bromide (0.88 moles) at 65°C under drop by drop 

addition of a solution of sodium hydroxide (0.88 moles).  The reaction was stopped and 

cooled at room temperature before washing it with dichloromethane. Freshly prepared diallyl 

isosorbide was then added slowly to a solution of peracid in dichloromethane. The reaction 

was stirred at a temperature of 0°C-10°C for 94 hours. The cold solution was filtrated and 

washed with a solution of 10 % sodium bisulfite followed by saturated sodium bicarbonate 

and distilled water. The organic layer was then dried over anhydrous magnesium sulphate. 

Preparative chromatography was used to purify the synthesized product. The monomer of 

isosorbide diglycidyl ether (DGEDAS0) is thus obtained as a viscous liquid with an epoxide 

equivalent weight of 143 g/eq; the yield of the reaction was 60 %.  

 
Scheme 2. Synthetic route of isosorbide diglycidyl ether via allylic derivative 

 

3. Preparation of epoxy networks  
  
The formulations used in this study were based on three different epoxy monomers 

DGEBA, DGEDAS0 and DGEDASn cured with the same cycloaliphatic amine, IPD.  

To prepare the different networks, the amine curing agent was added to the epoxy prepolymer 

in different amounts in order to vary the stoichiometric ratio r = nah/ne where nah is the amino 

hydrogen equivalent and ne the epoxy equivalent. The epoxy prepolymers and the curing 

agent, which are all liquid at room temperature, were mixed vigorously and rapidly at room 

temperature, in order to form a homogenous system. The obtained mixture was poured into a 

PTFE coated mould and cured at 80°C for 1 h followed by 2 h at 180°C. Networks were 

stored in dry conditions in order to avoid absorption of atmospheric moisture. 
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4. Measurements 
 
Size Exclusion chromatography (SEC) was used to measure the molar mass 

distribution of the epoxy prepolymers. Tetrahydrofuran (THF) was used as the eluent at a 

flow rate of 1 mL/min. The separation was done on a set of three columns (Waters HR0.5, 

HR1 and HR2), with a peak detection based on the signal of a refractive index detector 

(Shimadzu RID-10A).    

 The positive-ion electrospray ionization time-of-flight (ESI-TOF) mass spectra were 

acquired by injecting the sample (solubilised in acetone and diluted 100 times in methanol) 

into the ESI- TOF mass spectrometer (Waters LC-ToF). The spray tip potential was +3200 V 

and the nozzle potential was +60 V. All the significant peaks present in the mass spectra 

corresponded to species ionized with sodium (M+Na+). 

 Fourier Transform Infrared Spectroscopy (FTIR) of the samples was operated on a 

Nicolet 550 infra-red spectrophotometer, using KBr pellet, in the wavelength range of 500-

4000 cm-1. The spectra were acquired using 32 scans at a resolution of four wavenumbers. 
 1H and 13C NMR were recorded at frequencies of 400 and 100.6 MHz, respectively, 

using a Bruker AVANCE 400 NMR spectrometer. Deuterated chloroform (CDCl3) was used 

as a solvent.                             

 Thermogravimetric analysis (TGA) was carried out on a TGA Q500 (TA Instruments, 

DE, U.S.A.). 10 mg of the sample was loaded in an open platinum pan, and heated from 25°C 

to 500°C under dry nitrogen at constant heating rates of 10°C/min.  

 Differential scanning analysis (DSC) measurements were carried out on a DSC Q10 

(TA Instruments). The samples were heated at a rate of 10°C/min from -70°C to 200°C under 

a nitrogen gas atmosphere.  A second heating scan with the same conditions was performed 

after cooling down the samples.  

 Rheological properties were measured using an ARES Rheometer from TA 

Instrument equipped with parallel plates with 0.5-1 mm spacing and 50 mm diameter. The 

reactive mixture was put quickly on the preheated plate (at 80°C) and a multifrequency sweep 

was started when the temperature equilibrium was reached again. The gel time was 

determined according to the Winter-Chambon criterion that implies the independence of the 

loss factor, tan δ (= G’’/G’), as a function of frequency [24]. 
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 Density of the different epoxy-amine networks was obtained using classical 

Archimedes method of immersion of the networks in water. Weight measurements were done 

quickly (<1min) in order to avoid water absorption by the networks.   

 Dynamic mechanical analysis (DMA) was performed with an ARES Rheometer from 

TA Instrument using the torsion mode to determine the storage (G′), and loss (G″) moduli as 

well as tan δ as a function of temperature. Samples (30x10x2 mm3) were heated from −100°C 

to 200°C using a heating rate of 3°C/min in a forced convection oven using a nitrogen stream. 

The sample was deformed sinusoidally with controlled strain amplitude of 0.5 % at a fixed 

frequency of 1 Hz.  

 

III. Results and discussion 

1. Characterization of isosorbide diglycidyl ether  

a) SEC characterization 
 

 For first information on molar mass distribution, the epoxy prepolymers were analysed 

by SEC. The SEC chromatograms of the two diglycidyl ether of isosorbide, DGEDAS0 and 

DGEDASn, synthesized via two different routes, are presented in Figure 2 as well as the 

chromatogram of DGEBA for comparison. Whereas the SEC chromatogram of DGEDASn, 

obtained via the traditional synthesis route, underlines the presence of oligomers through 

numerous elution peaks, only one of those peaks is present in the DGEDAS0 chromatogram, 

at an elution volume of 27.2 ml. This peak corresponds to the pure monomer of diglycidyl 

ether of isosorbide. The molar mass, calculated from a high molar mass DGEBA (eew = 475 

– 550 g/eq) calibration curve, was found equal to 267 g/mol, while the theoretical value is 

equal to 258 g/mol. By comparing the area of the monomer peak present in DGEDAS0 and 

DGEDASn chromatograms, the proportion of monomer in the DGEDASn sample is equal to 

30 %. The other part of DGEDASn is composed of oligomers of higher molar mass, as it can 

be observed in more condensed DGEBA.  
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Figure 2.  SEC chromatograms of the epoxy prepolymers DGEBA, DGEDASn and DGEDAS0 (c = 4 mg/ml). 

 

b) Electro-Spray mass spectroscopy characterization 
 

 The epoxy molecule DGEDASn was analysed by Electro-Spray mass spectroscopy, to 

obtain more precise information on molar mass. ESI-TOF mass spectrum is presented in 

Figure 3; it shows a high number of peaks which indicates the presence of numerous 

oligomers. The formulae corresponding to some of these species were confirmed by exact 

molar mass analysis and are given in Table 1 (A represented the isosorbide segment and B the 

epichlorohydrin segment). Linear oligomers (n = 0, 1, 2) but also branched oligomers (2A + 

4B, 3A + 5B, 3A + 6B…) are found, having the chemical structure shown in Figure 4. This 

result can be explained by a competition during the reaction with epichlorohydrin between the 

secondary hydroxy groups of isosorbide and the secondary hydroxy groups formed after a 

first reaction of isosorbide diglycidyl ether with isosorbide. The molar mass of the linear 

diglycidyl oligomers is given by M = 258 + n x 202. Electro-Spray analysis gives information 

on the molar mass of the oligomer species of DGEDASn but, in the conditions used, the 

magnitude of the peaks is not quantitative and therefore cannot be linked to the amount of 

each species. 
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Figure 3. ESI-TOF mass spectrum (positive ion mode) of DGEDASn 

 
Molar Mass (g/mol) Formula Structure 

258 C12H18O6 A+2B (n = 0) 

404 C18H28O10 2A+2B 

460 C21H32O11 2A+3B (n = 1) 

516 C24H36O12 2A+4B 

662 C30H46O16 3A+4B (n = 2) 

718 C33H50O17 3A+5B 

774 C36H54O18 3A+6B 

 
Table 1 : Molar mass values of some DGEDAS oligomers revealed by ESI-TOF 
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Figure 4.  Structures of the oligomers of DGEDASn revealed by ESI-Tof 

 

c) FTIR characterization 
 

 Fourier transform infrared (FTIR) spectroscopy was used to identify the molecular 

structure and the chemical bonds of the three different epoxy prepolymers. Referring to the 

FTIR spectra of DGEDAS0 and DGEDASn shown in Figure 5, the different peaks indicate the 

presence of -OH group (3470 cm-1), -CH bond (2930, 2870 cm-1 and 1460, 1370 cm-1), -CO- 

bond form aliphatic ether (1090 and 1020 cm-1) as well as epoxide group (910 cm-1).  The 

main difference between DGEDAS0 and DGEDASn is the very weak intensity of the –OH 

peak in DGEDAS0 (due to residual moisture) which indicates the absence of –OH group in 

DGEDAS0. DGEBA (not shown here) mainly differs from DGEDAS by the presence of 

aromatic structures: -C=C bond (1607, 1579 and 1508 cm-1) and aromatic C-O (1243 cm-1). 
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(a)  

(b)  

Figure 5 : FTIR spectra of (a) DGEDAS0, (b) DGEDASn 
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d) NMR characterization 
 

 Figures 6 and 7 show the 1H NMR and 13C NMR spectra of the diglycidyl ether of 

isosorbide monomer (DGEDAS0); the proton and carbon assignments are indicated. The 

epoxy protons H1a, H1b and H2, give the signals between 2.5 and 3.1 ppm. The peaks 

between 4.4 and 4.6 ppm are assigned to the protons common to the two isosorbide cycles, 

H*. Because of the conformation of the cycle and thus the non-equivalence of the protons of 

the isosorbide cycle [25] and the H3 protons, the peaks between 3.3 and 4.1 ppm 

corresponding to these protons are difficult to assign precisely. The integrated values for the 

different signals are in good agreement with the structure shown in Scheme 1. The 13C NMR 

spectrum shows very well-defined peaks: the carbons of the epoxy ring, C1 and C2, show 

signals at 44 and 50.5 ppm respectively. The carbon, C3, belonging to the glycidyl ether unit 

has a resonance at 70 ppm. Then the different carbons, from the isosorbide cycle, are 

observed between 71 and 86 ppm. 

  

 
Figure 6. 1H NMR spectra of DGEDAS0 
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Figure 7. 13C NMR spectra of DGEDAS0 

 

 Figures 8 and 9 show the 1H NMR and 13C NMR of the diglycidyl ether of isosorbide 

oligomer (DGEDASn). Because of the broad molar mass distribution of the oligomers, the 

proton NMR interpretation of the DGEDASn spectrum becomes complex. Based on the 

previous assignments of peaks, the integration (I) of signals between 2.6 and 3.2 ppm (protons 

from epoxy cycle and hydro ether unit) and the peaks at 4.5 and 4.7 ppm (H* from the protons 

common to the two isosorbide cycle) can be used to calculate R, the ratio of epoxy cycle to 

isosorbide cycle.  However the average degree of polymerization, n, can not be calculated due 

to the presence of branched oligomers and as a consequence DGEDASn has a mean 

functionality higher than 2. 

The ratio R of epoxy cycle to isosorbide cycle is given by the following equation: 

number of epoxy cycle (I protons from epoxy cycle)/3
R=

number of isosorbide cycle (I protons H* from isosorbide cycle)/2
=  (Equation 1) 

 

Protons I (Integration value) 

H1a + H1b 1.063 + 1.000 

H2 1.008 

H* (common to the isosorbide cycle) 0.842 + 0.806 

Ratio R 1.24 

 
Table 2. Determination of R using 1H NMR 
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Using the proton integration values (Table 2) a value of R = 1.24 is found.  

 The carbon NMR spectrum of DGEDASn is also more complicated. In addition to the 

resonances assigned previously, new peaks appear at 69 ppm (Ca) and 79 ppm (Cb). These 

peaks give indication on the structure of some oligomers included in the product: the peak at 

69 ppm is assigned to Ca-OH peak from the hydroxy ether segment that links two isosorbide 

cycles.  This peak shifts to 79 ppm with an epichlorohydrin recombination. So the 13C NMR 

confirms the presence of branched oligomers, previously observed by ESI-TOF mass 

spectroscopy. 

 A quantitative carbon NMR was also carried out using an “inverse gate decoupling” 

sequence in order to calculate R the ratio of epoxy cycle to isosorbide cycle. Using conditions 

leading to quantitative carbon NMR signals, integration values of the carbons are available 

(Table 3). The ratio of epoxy cycle to isosorbide cycle R is given by the following equation: 

 

number of epoxy cycle (I carbons from epoxy cycle)/2
R=

number of isosorbide cycle (I carbons C* from isosorbide cycle)/2
=  (Equation 2) 

 
 

Carbons I (Integration value) 

C1 2.000 

C2 2.020 

C* (common to the isosorbide cycle) 1.558+1.590 

Ratio R 1.27 

 
Table 3. Determination of R using 13C NMR 

 

 The value obtained for R, 1.27, is very close to the one given by 1H NMR. Integration 

values of the signals corresponding to Ca and Cb are 1.052 and 0.803 respectively; it means 

that in the oligomers (n > 0) the number of branched units represents 43 % and the number of 

linear units (hydroxy ether) represents 57 %. 
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Figure 8. 1H NMR spectra of DGEDASn 

 

 
Figure 9. 13C NMR spectra of DGEDASn 

 

e) TG analysis 

 The mass loss as a function of temperature for DGEBA, DGEDASn and DGEDAS0 

prepolymers and their derivatives are shown in Figures 10 (a) and (b). The reference DGEBA 

thermally degrades mainly through a simple step process with an initial degradation (T5%) 

close to 250°C and a maximum rate at 320°C.  The TGA curve of the monomer of diglycidyl 
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ether of isosorbide (DGEDAS0) shows a continuous single step degradation process well 

before DGEBA. It begins after 130°C and with a maximum rate equal to 260°C. In the case of 

diglycidyl ether of isosorbide oligomer (DGEDASn), degradation begins like DGEDAS0 

around 130°C but with two distinct stages of degradation with maximum rate at 250°C and 

410°C. In the first step, the sample lost 30 % of its weight, and in the second step it lost the 

remaining weight. It revealed that the first step decomposition of the DGEDASn is the 

monomer decomposition. Therefore, DGEDASn contains 30 % of monomer DGEDAS0, 

which confirms the previous results of SEC analysis. Higher molar mass compounds (n=1, 2 

and branched oligomers) are more stable or not so volatile. 

(a)  

(b)  

Figure 10. (a) TGA and (b) DTGA curves of DGEBA, DGEDAS0 and DGEDASn 
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2. Curing behaviour  
 
 Gel time was determined by rheological measurements, at a temperature equal to 80 

°C, for the three reactive systems considered, i.e. epoxy prepolymer with IPD at nah/ne = 1 

calculated from the amino-hydrogen and epoxy equivalent experimental values.  

 As an example, Figure 11 shows the evolution of the loss factor tanδ as a function of 

time, in a multifrequency mode (from 1 rad/s to 50 rad/s) for the system DGEDAS0-IPD. The 

gel time, tgel, is determined by the crossover of the loss factor curves at various frequencies. 

Table 4 summarizes the gel time for the three different reactive systems. It appears that the 

new bio-based reactive system DGEDASn reacted with IPD has shorter gel time than the 

traditional one DGEBA-IPD, whereas the system DGEDAS0 - IPD has almost the same gel 

time as DGEBA – IPD. Different hypotheses can explain the shorter gel time of the system 

based on the oligomeric bio-based prepolymer: first the epoxy-amine reaction can be 

catalysed by the hydroxyl groups of this oligomer, secondly the functionality of this 

compound is probably higher than 2 due to branched molecules which means a conversion at 

the gel point lower than 0.58-0.60 [26].  At the gelation point, the storage and loss modulus 

can be described by a power law as a function of the pulsation: G’(ω) ∝ G’’( ω) ∝ ω∆ , 

where ∆ is the relaxation exponent that can be predicted by Rouse’s percolation theory. So at 

gelation tanδ is independent on frequency and its value is:  δgel = π.∆/2.    (Equation 3) 

The values obtained for the relaxation component, ∆, are similar for DGEBA-IPD and 

DGEDAS0-IPD networks (Table 4), these values are in agreement with data reported in the 

literature on diepoxy-diamine systems [4]. The value obtained for DGEDASn-IPD system is 

lower and equal to 0.5; for this system gelation occurs when G’ = G’’. 
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Figure 11. Loss factor tanδ, isotherm at 80°C, example of the reactive system DGEDAS0 – IPD 

 

System tgel (min) tanδδδδgel ∆∆∆∆    

DGEBA – IPD  16 1.5 0.63 

DGEDASn – IPD  7 1.0 0.50 

DGEDAS0 – IPD  18 1.6 0.64 

 
Table 4.  Gel time data for the reactive systems DGEBA/IPD, DGEDASn/IPD and DGEDAS0/IPD 

 

 Figure 12 shows the non-isothermal DSC thermograms of the three different epoxy 

precursors reacted with IPD at nah/ne = 1. The glass transition temperature of the systems 

before reaction, Tg0, is the lowest for the system based on DGEDAS0, this monomer has a 

lower molar mass as compared to the two others. The peak maximum temperature, Tpeak, and 

the total heat of reaction (∆H) obtained from the DSC analysis are summarized in Table 5. 

There are no large differences between the three systems. DGEBA-IPD and DGEDAS0-IPD 

thermograms have similar shape, with a main peak at 114 and 108°C respectively, and a 

shoulder on the high temperature side. This shoulder is explained by the different reactivity of 

the amino groups of IPD. In the third system, DGEDASn-IPD, the exothermic peak of 

reaction is more symmetric, Tpeak is slightly lower, confirming the highest reactivity of this 

system as compared to the two others which can be explained also by the fact that due to 

branching there are two different types of epoxy groups; cycloaliphatic and aliphatic epoxy 

groups, as shown in Figure 4. The values of the enthalpy of reaction are the same for the three 
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systems and in the range of the classical value obtained for epoxy-amine reaction at a 

stoichiometric ratio of 1.  

 

 
Figure 12. DSC thermograms of dynamic curing of DGEBA, DGEDASn, and DGEDAS0 with IPD (heating rate 

10°C/min), r = 1 
 

 

System Tg0 (°C) ∆H (J/g) ∆H (kJ/ee) Tpeak (°C) 

DGEBA – IPD -35 415 92 114 

DGEDASn – IPD -36 404 91 104 

DGEDAS0 – IPD -60 547 89 108 

 
Table 5. DSC results for DGEBA/IPD, DGEDASn/IPD and DGEDAS0/IPD 

 

3. Influence of stoichiometry on the value of Tg 
 

 The effect of variation of the amino hydrogen-to-epoxy ratio, r = nah/ne, on Tg is 

examined in this study as an indicator of possible side reactions. Indeed it has been shown 

that assuming the only mechanism is epoxy-amine addition without side reaction, the 

maximum attainable Tg coincides with the stoichiometric composition [27]. For each epoxy 

prepolymer the variation of the ratio nah/ne was studied between 0.5 and 1.5. 

For the three systems, the variation of the glass transition temperature, measured during a 

second DSC run, is plotted versus r in Figure 13. In each case, the curves exhibit a maximum 

Tg for r equal to 1, which means that the only mechanism occurring during the cross linking 
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of the reactive systems is the amine-epoxy addition. No side reaction, such as etherification, 

occurs during the cross linking.  

 The Tg obtained for both bio-based reactive systems are lower than the Tg observed for 

the conventional DGEBA – IPD system. This observation can not be attributed to incomplete 

curing as no residual heat was observed by DSC after the curing cycle and FT-IR showed no 

peak at 910 cm-1. A similar result was found by Feng et al who noticed a decrease of Tg about 

40°C on networks synthesized from diglycidyl ether of isosorbide and Jeffamine T403, an 

aliphatic curing agent [22]. Because of the short and cyclic structure of the monomer present 

in the bio-based epoxy resin, higher Tg were expected for those systems. It was shown for 

aliphatic and aromatic polyesters that isosorbide structure is much more rigid than usual diols 

like ethane diol or butane diol [28]. In our case we have to compare the effect of bisphenol A 

and isosorbide, a comparison could be done from linear polycarbonate synthesized from these 

two diols [29]. It seems that in this case the isosorbide structural unit brings a lower 

contribution to Tg, with a decrease of 15°C as compared to bisphenol A-based polycarbonate. 

Besides, for epoxy networks Tg depends on the chain stiffness, through the structure of the 

epoxy prepolymer and hardener, and also on the crosslink density, ν, given by their respective 

concentrations [4, 30]. Many methods based on physical or empirical approaches have been 

developed for the prediction of Tg. The relation established by DiMarzio is well adapted to 

epoxy-amine networks: 

υFK

T
T

DM

gL

g −
=

1
   (Equation 4) 

where KDM is the DiMarzio universal constant, F is a flex parameter and TgL is the glass 

transition of a hypothetical linear polymer; TgL represents the copolymer effect and can be 

calculated using an additivity law. The low molar mass of the isosorbide based monomer and 

thus the increase of the proportion of hardener, IPD, can explain the lower Tg obtained for the 

DGEDAS0 – IPD networks compared to the one of DGEBA – IPD network.  For 100 g of 

epoxy monomer we need 24 g of IPD in the case of DGEBA (r = 1), and 30 g of IPD in the 

case of DGEDAS0. The mass fraction of IPD increased from 19.3 % in DGEBA – IPD to 23.1 

% in DGEDAS0 – IPD, so the contribution of the hardener to Tg is greater in the case of 

DGEDAS0 – IPD than DGEBA – IPD.  

There is no large variation in Tg for the two bio-based systems: on the one hand the molar 

mass distribution is very different as well as the epoxy equivalents, but on the other hand the 

highest functionality of DGEDASn may explain why the Tg based on this prepolymer shows 
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only a slight decrease as compared to DGEDAS0; moreover the variation of Tg versus a/e is 

less pronounced.  

 
Figure 13. Glass transition temperature versus r for networks based on DGEBA, DGEDASn and DGEDAS0 in 

combination with IPD 
 

4. Thermo-mechanical properties of the networks 
 

 The dynamic mechanical properties of the networks were investigated using DMA. In 

Figures 14 (a), (b) the storage modulus (G’) and the loss factor (tanδ) of the two bio-epoxy 

based networks are compared with the DGEBA based one.  

 A typical plot of the storage modulus G’ and tanδ as a function of temperature exhibits 

two relaxations. The main transition, α in the high-temperature region, is associated with the 

glass transition; the secondary relaxation β, below 0°C is assigned to short molecular segment 

motion, hydroxyl ether groups in the particular case of epoxy-amine networks [31]. The 

values of Tβ, Tα, G’R are reported in Table 6.  

 There is no significant difference in the sub-Tg behaviour between the three types of 

networks: Tβ are in the same range of temperatures, around -50°C, but the magnitude of the 

relaxation is higher for the isosorbide based networks (Table 6). It is linked to the 

concentration of the relaxing species per unit volume, hydroxy ether units, that is for the same 

reason explained previously higher in DGEDAS0-IPD networks as compared to DGEBA-IPD 
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network. For DGEDASn – IPD networks, the hydroxy ether groups can come initially from 

the oligomers and from the epoxy-amine reaction, their concentration in the final network 

should be more or less the same as in DGEDAS0 – IPD network. 

  Tα follows the same trend as the Tg measured by DSC: the highest value, 155°C, is 

obtained for the DGEBA – IPD network, then a decrease of Tα is observed for the bio-based 

networks which reach 112 and 96°C, for DGEDAS0 – IPD and DGEDASn – IPD respectively. 

The DGEDASn – IPD network has the highest rubbery modulus, followed by the DGEDAS0-

IPD and the DGEBA – IPD networks with equivalent rubbery moduli. This means that the 

network in which the molecular motion occurs at the lowest temperature has also the shortest 

chains between crosslinks. This behaviour is linked to the branched structure of the 

DGEDASn oligomer and to its high functionality as compared to DGEDAS0. 

 According to the rubber elasticity theory, the following equation is employed to 

describe the relationship between Mc (average molar mass of the segment between 

crosslinking points) and storage modulus (G’) of a thermoset above the Tg [32] : 

G’ = dRT/Mc   (Equation 5) 

where G’, d, R, T are the storage modulus at Tg+30K, the density of the polymer, the gas 

constant (8.314 J/mol.K) and the temperature (K) respectively. The values of molar mass 

between crosslinking, calculated as cited above, are summarised in Table 6.  They are 

compared to the theoretical value calculated from the molar mass of the epoxy prepolymer 

and curing agent, Mcth.  

Mcth = (Mamine + 2Mepoxy)/3  (Equation 6) 

The molar mass of the epoxy prepolymer was calculated from the value of the epoxy 

equivalent and assuming a functionality of 2. Theoretical and experimental results concerning 

Mc are in agreement for the networks based on pure monomers (DGEBA and DGEDAS0) 

which have a functionality of 2. For the network based on DGEDASn oligomer a significant 

difference is noticed between the experimental value and the theoretical value. This difference 

is due to the wrong functionality used to calculate the theoretical Mc and thus confirms 

indirectly the complex chemical structure of DGEDASn. There are two types of crosslink 

points in DGEDASn based networks (Figure 4): 
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(a)  

 

(b)  

Figure 14. Storage modulus versus temperature (a) and tan δ versus temperature (b) for DGEBA, DGEDASn and 
DGEDAS0 cured with IPD 

 
 

System 
Tββββ 

(°C) 

Tαααα 

(°C) 

G’R (MPa) 

(at Tg+30°C) 

d 

(g/cm3) 

M c 

(g/mol) 

M cth 

(g/mol) 

DGEBA – IPD  -46 155 17.1 1.13 250 300 

DGEDASn – IPD  -42 96 24.7 1.24 170 302 

DGEDAS0 – IPD  -40 112 16.6 1.25 260 247 

 
Table 6. Dynamic mechanical analysis of the networks: DGEBA/IPD, DGEDASn/IPD and DGEDAS0/IPD for r=1 

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

-100 -50 0 50 100 150 200

S
to

ra
g

e
 m

o
d

u
lu

s,
 G

' (
P

a
) 

Temperature (°C) 

DGEBA - IPD
DGEDAS0 - IPD
DGEDASn - IPD

DGEBA - IPD

DGEDAS0 - IPD

DGEDASn - IPD

0.001

0.01

0.1

1

-100 -50 0 50 100 150 200

Ta
n

δδ δδ

Temperature (°C) 

DGEBA - IPD

DGEDAS0 - IPD

DGEDASn - IPD

DGEBA - IPD

DGEDAS0 - IPD

DGEDASn - IPD

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter II 

 

 
Page 86 

 

5. Thermal stability of the networks 
 

 The mass loss as a function of temperature for DGEBA, DGEDAS0 and DGEDASn 

cured with IPD are shown in Figure 15. The network DGEBA-IPD thermally degrades 

through a simple step process with an initial degradation (T5%) close to 330°C and a 

maximum rate at 370°C. The TGA curve of the network obtained with DGEDASn combined 

with IPD shows also a simple step process with an initial degradation and a maximum rate, 

respectively at 330°C and 380°C, very close to the values observed for DGEBA-IPD network. 

The DGEDAS0-IPD network exhibits poorer thermal stability compared to the other 

networks, with an initial degradation (T5%) at 305°C and a maximum rate at 350°C. It is 

probably related to the low thermal stability observed on the DGEDAS0 prepolymer (Figure 

10).  

 
Figure 15. TGA curves of networks based on DGEBA, DGEDAS0 and DGEDASn in combination with IPD 
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IV. Conclusion of Part I 

 
 In this work, two novel bio-based epoxy prepolymers were successfully synthesized 

from renewable resources (isosorbide) via two different routes. The chemical structures were 

studied in detail using SEC, ESI-TOF MS, 1H and 13C NMR, and FT-IR analysis. Diglycidyl 

ether of dianhydro-sorbitol (DGEDAS) was obtained either as a pure monomer or as an 

oligomeric resin of higher functionality. Reactivity and physical properties of these new 

epoxy prepolymers cured with isophorone diamine (IPD) were compared with a traditional 

petroleum-derived epoxy prepolymer (DGEBA) cured with the same hardener and under the 

same conditions. The system based on the oligomeric resin is more reactive than the two 

others, which behaves similarly. In all cases the maximum glass transition temperature was 

obtained using a stoichiometric ratio equal to 1 which means that only epoxy-amine reactions 

occur. Networks synthesized from the bio-based epoxy prepolymers have high glass transition 

temperature, yet lower than the DGEBA based network. However they have higher rubbery 

modulus due either to the lower molar mass or to the higher functionality of the prepolymer. 

These results suggest that isosorbide-based epoxy precursors could be good candidates to 

replace bisphenol A-based epoxy prepolymers. However storage of these bio-based 

prepolymers must be done in dry conditions because these compounds are hygroscopic and 

the presence of water may deteriorate the properties of the networks, depending on the type of 

hardener used [22]. 
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Part II. Molecular modelling of bio-based polymer 

derived from isosorbide 
 

I. Introduction  

 
 In the first part of this chapter, we presented two different bio-based epoxy 

prepolymers derived from isosorbide and obtained through two different synthetic routes: 

DGEDAS0 and DGEDASn that differ by the presence of oligomers and –OH groups for 

DGEDASn. Glass transition temperatures and thermo-mechanical properties of the resulting 

networks obtained with IPD were evaluated using differential scanning calorimetry (DSC) 

and dynamic mechanical analysis (DMA). It appears that DGEDASn – IPD and DGEDAS0 – 

IPD present lower glass transition temperatures than a conventional DGEBA – IPD network 

(around 40°C less).  

 We also presented the DiMarzio relation (Equation 4) as a first approach on Tg 

prediction. Indeed, as previously mentioned, glass transition of epoxy networks mainly 

depends on two parameters: the crosslinking density and the chain stiffness (which represents 

the mobility of the chain between two crosslinking points) [4].   

 We decided to overcome the crosslinking parameter and use molecular modelling to 

simulate the glass transition, TgL, of a hypothetical linear epoxy chain representing the 

copolymer effect between the epoxy and hardener monomers. This will allows us to 

understand the difference between the chain stiffness of the conventional network obtained 

with DGEBA and the ones obtained with isosorbide epoxy prepolymers. To overcome also 

the influence of oligomers (higher functionality, presence of –OH groups) molecular 

simulation will be only performed on DGEDAS0 and DGEBA epoxy monomers in 

combination with IPD.  

 

 Linear epoxy-amine chains were constructed using the structures of the two different 

epoxy prepolymers studied, the diglycidyl ether of isosorbide (DGEDAS0) and the diglycidyl 

ether of bisphenol A (DGEBA) with isophorone diamine (IPD) as a chain extender. Semi-

empirical modelling, using group contribution, and molecular dynamics (MD) simulations 

were performed on these two linear chains.  
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 The theoretical values of TgL obtained by molecular modelling of these two linear 

chains will give an overview on the influence of molecular structure of epoxy prepolymers on 

Tg (influence of the copolymer effect) and will be compared to the experimental values 

obtained by DSC analyses and DMA analyses of the two epoxy networks.  

 

II. Molecular modelling  

 
 In recent years, the rapidly increasing power of computational hardware and software 

has encouraged attempts to study the glass transition by fully atomistic simulations. Such 

simulations can be used to probe the details of the physical processes taking place at length 

scales which cannot be probed by thermodynamic and kinetic theories which are based on a 

more global description of the system at larger length scales. Almost any parameter can be 

modelled using atomistic simulation, provided a suitable force field is used and the atomic 

structure is known. Concerning the glass transition prediction, an objective of such work is to 

predict Tg by identifying the temperature at which discontinuities occur in the properties 

obtained directly from the results of the simulations [33].  

 

1. Group contribution and molecular dynamics simulations 
 

 In our study we decide to focus on two different molecular modelling approaches: the 

group contribution and the molecular dynamics methods.  

 

 The group contribution method applies the theory developed by Van Krevelen and 

Fedors [33, 34]. The group contribution method uses the principle that some simple aspects of 

the structures of chemical components are always the same in many different molecules. So 

by following this principle, a wide variety of properties of a polymer can be predicted only by 

knowing its repeating unit. This method is empiric, rapid, and uses data collected on several 

polymers that have been extensively studied.  
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 On the other hand, molecular dynamics (MD) is a more convenient method for 

simulation of relatively complex molecules such as polymers [35]. An appropriate forcefield 

is required to describe the interactions between atoms. COMPASS forcefield [36-38] was 

used in this study as it has been specially developed for dense organic systems, such as 

polymers. Molecular dynamic simulations allow the construction of a VT (Volume-

Temperature) diagram for the epoxy-amine chains and thus the determination of Tg as 

represented in Figure 16. 

 

 
Figure 16. Simulation of diagram volume-temperature (VT) – determination of Tg 

 

Remark: Additional theoretical background on molecular modelling is given in Annex A, with 

the principle of molecular simulation, forcefields and molecular dynamics.  

 

2. Molecular modelling applied on polymers  
 

 In the field of polymers, most of molecular simulation studies have been focused on 

thermoplastic materials such as polyarylethersulfone [39], poly(methylmethacrylate) [40], 

polystyrene, polycarbonate… 

 

 Concerning epoxy, Barton et al [41], illustrated the use of molecular dynamics 

simulations to calculate Tg from the variation of the specific volume with the simulation 

temperature for linear epoxy polymers. For their simulation, the authors used the 

conventional Diglycidyl Ether of Bisphenol A (DGEBA) as epoxy prepolymer and 1,2-
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dianiloethane (DAE) as curing agent which has only two reactive hydrogens in order to 

prevent crosslinking. All property calculations were performed by two methods: the group 

contribution method based on the work of van Krevelen and direct atomistic simulation 

(Molecular dynamics simulation) using the linear epoxy unit as represented in Figure 17. 

Good correlation between the simulated and experimental values of Tg were observed.  

 
Figure 17. Structure of the reagents used in Barton study [41] and the corresponding linear epoxy unit  (dimer) used 

for molecular modelling study  
 

 When networks (crosslinked materials) are considered for molecular modelling, there 

are various constraints and approximations which need to be applied to make the task 

achievable. The most striking drawback is the complexity of the crosslinking reactions and 

the sheer sizes of the species involved.  

  

 Liu et al. [42] develop a protocol for predicting the glass transition temperatures of 

epoxy-based thermoset materials as a function of their composition and using group 

interaction modelling and atomic additivity method. For a linear polymer, it is easy to define 

the repeat unit if the monomer compositions are known. Thus, the cohesive energy and the 

number of degrees of freedom can be easily calculated via a range of means. However, for a 

crosslinked system, it is difficult to define the repeat unit because of the variation in crosslink 

density at different spots. Thus, Liu et al. arbitrarily broke the crosslinked system into small 

fragments of epoxy and amine moieties. The individual cohesive energy and degree of 

freedom can generally be identified for each moiety. Knowing the composition of these 

moieties, the average cohesive energy and degree of freedom values can be calculated and can 
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be used to determine Tg by group modelling method. Nevertheless, many approximations 

need to be done to quantify the different and numerous repeating moieties that need to be 

taken into account for cohesive energy calculation.  

  

 Other methods were used for modelling network polymers and by far the most 

common one is to create a unit cell which could be considered representative of the polymer 

bulk:  

 

� Fan et al. [43] “manually” created a unit cell representing a small fragment of DGEBA 

– TETA network. This fragment of fully cured network consists of 12 molecules of DGEBA 

and 4 molecules of TETA. Totally 628 atoms were assembled in a cubic cell to represent a 

piece of the network with a density equal to the experimental value. Molecular dynamics 

(MD) simulations were performed on this sample to determine Tg. Results were in good 

agreement with experimental values.  

 

� Wu et al [44] developed a new method for the construction of atomistic polymer 

network and applied it to epoxy resin system based on DGEBA – IPD. Crosslinked polymer 

was constructed dynamically using a “home-made” algorithm that performs the reaction of 

epoxy groups with primary amine hydrogens to form secondary amines hydrogen which can 

in turn react with epoxy groups. To facilitate the procedure, four aspects were assumed: (1) 

epoxy prepolymer component is less mobile than curing agent component; (2) primary amine 

hydrogen has the same reactivity to the secondary amine hydrogen; (3) the etherification 

reactions can be neglected; and (4) the reactions are diffusion-controlled one. 

 

 
Figure 18. Modelling of functional groups used in the construction procedure [44] 

 

 However, there are lots of issues on the identification of the reactive sites and covalent 

bonds formed between the prepolymer and the curing agent, besides computational 
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requirements are very important and construction of polymer networks most often implies 

development of home-made software. 

 In our case, we decide to model the two linear epoxy polymers obtained from 

DGEDAS0 and DGEBA epoxy prepolymers combined with IPD. Determination of the TgL of 

these linear epoxy polymers will give us a comparison of the chain stiffness of the different 

systems.  

 

III. Experimental section: protocols 

 

 All simulations were performed using Materials Studio [45] (Accelrys version 5.0) and 

the fully atomistic forcefield COMPASS. The repeating units of the different linear chains 

studied were built knowing the structure of the two epoxy prepolymers, DGEBA and 

DGEDAS0, and the curing agent IPD (see Figure 1). The two repeating units are shown in 

Figure 19. It was supposed that only the primary amines from IPD reacted to form the linear 

polymer.  

 
Figure 19. Linear epoxy repeat unit for 1: DGEBA – IPD and 2: DGEDAS0 – IPD  

1. Group contribution method 
 
 The Synthia [46] module of the Materials Studio software was used to calculate the 

glass transition temperature and the densities of the polymer modelled. This module uses the 

group contribution theory from Van Krevelen and Fedors [33]. Group interaction modelling 

uses the intermolecular energy of interaction between groups of atoms in adjacent polymer 
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chains as a basis for predicting some properties of bulk polymers as a function of chemical 

composition and molecular structure.  

 Group contribution method simulations were directly performed on the two linear epoxy 

repeating units (see Figure 19). In this study, only density and glass transition temperature 

were considered while the group contribution method gives access to more than 30 polymer 

properties. 

2.  Molecular dynamics method 
 

 The general procedure for the construction and equilibration of amorphous cells is the 

following. First, the repeat units (Figure 19) were built and the polymer chains were 

constructed at length of 30 repeat units corresponding to a molecular weight of 12800 g/mol 

(for DGEDAS0 – IPD) to 15300 g/mol (for DGEBA – IPD). This was done using the Build 

function of the Materials Studio Visualizer. The chains were constructed with a random 

torsion between successive repeating units. Then a step of geometry optimization was 

performed with Forcite Plus module with a medium quality and the smart algorithm method 

from Accelrys. After this optimization, the chains were packed with Amorphous Cell module. 

This construction was done at the density calculated by Synthia. The result of this packing is 

presented in Figure 20.  

 
Figure 20. Results of Amorphous Cell Construction (using DGEBA – IPD linear epoxy repeat unit) 
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 Next, each cell was equilibrated with a 300 ps Forcite dynamics simulation at 500 K. 

This molecular dynamic simulation was done in the NPT (constant number of particle, 

pressure and temperature) thermodynamic ensemble to let the system find its equilibrium 

density. This step is essential in order to be sure that systems are well equilibrated and that all 

problems and artifacts that could come during the construction phase are overcome.  

 After the equilibration of the cells, the main simulation was performed. This 

simulation consists on a succession of several molecular dynamic steps of 300 ps. During the 

first 100 ps, the temperature is regulated with a velocity-scale thermostat (temperature 

difference maximum of 10 K). This thermostat leads to a quick change of the temperature and 

is efficient to reach the system equilibrium. During the last 200 ps, the temperature is 

controlled with a Nose-Hoover thermostat. This last step is not good at equilibrating a system 

but it is a better thermostat during MD calculation step. All along the MD simulation, the 

pressure is controlled at 1 bar. The starting temperature is 500 K. At the end of each step, the 

temperature is decreased by 10 K. The final temperature is 300 K and the total time of the 

simulation is approximately 7 ns, taking into account the equilibrium time.  

 

3. Extracting results from simulation 
 

 During the simulation of the specific volume-temperature diagram, the different 

parameters were calculated at each step of iteration of the simulation (1 fs). Every 1250 steps 

(1.25 ps), a frame is saved. This frame contains the coordinates, velocities and forces applied 

on each atom of the system. Then the specific volume and the temperature of the system were 

calculated at each frame. And at the end of the simulation a study table and a chart plotting 

volume vs. temperature are displayed. The specific volume is averaged over each tenth of 

degrees and plotted vs. the temperature.  

 The glass transition temperature is the intersection of the linear regressions of the two 

parts of the charts. These two parts correspond to the two state of the polymer material: the 

glassy state and the molten or rubber-like state. The difference between these two steps leads 

to a change of the thermal expansion coefficient of the material and then a change in the slope 

of the volume-temperature chart. 
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IV. Results and discussion  

1. Group contribution results  
 
 Using group contribution of the two linear polymers considered, the glass transition of 

the epoxy-amine linear chain (TgL) and their density were calculated. The values are 

summarized in the following table: 

 

Repeating unit TgL (°C),  Synthia d (g/cm3) 

DGEBA – IPD  100 1.09 

DGEDAS0 – IPD  73 1.16 

  
Table 7. Synthia simulation results for DGEBA – IPD and DGEDAS0 – IPD linear repeating unit 

 

 It appears that the glass transition of the linear chain predicted by group contribution is 

lower for DGEDAS0 – IPD than for DGEBA – IPD. Besides, as the experimental values for 

the corresponding networks (Table 6), the density of DGEDAS0 – IPD is higher than the one 

of DGEBA – IPD which could be explained by the higher proportion of -O- and N in the 

repeating unit DGEDAS0 – IPD. These theoretical values of density will be used for the 

construction of a “packing cell” of the linear chain using Amorphous Cell module, on which 

Molecular Dynamic will be performed.  

 

2. Molecular dynamics (MD) results  
 
Determination of glass transition temperatures using MD simulations 
 
 Specific volume of the linear epoxy-amine chains at each temperature were calculated 

and plotted in Figure 21 (a) and (b). An increase in the volume with temperature and a change 

in the slope of the specific volume curves were observed. The change in the slope of the 

volume curves defines the values of the glass transition temperature of the linear epoxy-amine 

chains. As represented in Table 8, TgL values were 170°C for DGEBA – IPD and 147°C for 

DGEDAS0 – IPD. Molecular dynamics method gives a higher value of TgL for DGEBA – IPD 

than for DGEDAS0 – IPD.  
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 Higher values of TgL are obtained by molecular dynamics (MD) than using the group 

contribution method (Synthia module). Indeed, it was observed that the assigned cooling rate 

affects the predicted value from MD simulations [47]. The mobility of the polymer chains 

rapidly decreases when the polymer melt is cooled below Tg, and sufficient long time is 

needed for the equilibrium structure. Higher cooling rate in the simulation can increase the 

departure from the equilibrium state, which results in higher value of glass transition from 

Molecular Dynamics simulations.  

 

(a)  

 

(b)  
Figure 21. Specific volume-temperature curve of DGEDAS0 – IPD (a) and DGEBA – IPD (b) linear chains 

 (same scale) 
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Linear epoxy polymers TgL (°C) (MD) 

DGEBA – IPD 170 

DGEDAS0 – IPD 147 

 
Table 8. Simulated values of TgL for DGEBA – IPD and DGEDAS0 – IPD linear epoxy polymers 

 Using group contribution method and molecular dynamic it is possible to compare the 

TgL values obtained for the corresponding DGEDAS0 – IPD and DGEBA – IPD epoxy linear 

polymers. This gives indication on one parameter for the determination of the networks Tg: 

the chain stiffness.  

Influence of crosslink density 

 The second parameter of interest for the understanding of the variation of Tg of the 

networks is the crosslink density (ν). This crosslink density is the tertiary amine concentration 

(assuming fully cure and no free chain ends). Knowing the respective amount of IPD and 

epoxy prepolymer, for a formulation having a stoichiometric ratio of a/e = 1, the value of ν 

can be determined theoretically. Indeed, each mole of IPD brings two moles of tertiary amine.   

νth = (2d)/(MIPD + Mepoxy)   (Equation 7) 

 

 As represented in Table 9, a lower theoretical crosslink density is obtained for 

DGEBA – IPD network than for DGEDAS0 – IPD network.   

 

Networks ννννth (10-3 mol/cm3) 

DGEBA – IPD 2.4 

DGEDAS0 – IPD 3.1 

 
Table 9. Theoretical crosslinking densities for DGEBA – IPD and DGEDAS0 – IPD network 

 Crosslink density influence on the glass transition temperature of DGEBA – IPD and 

DGEDAS0 – IPD networks is compensated by the influence of chain stiffness, regarding the 

experimental values of Tg for DGEDAS0 – IPD and DGEBA – IPD.  
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Determination of linear thermal expansion coefficient using MD simulations 

 

 The volumic coefficient of thermal expansion (α) was derived through a similar 

method as the simulation process for Tg. Using the volume of the unit cells obtained from the 

cooling-down process, the volumic coefficient of thermal expansion can be approximated 

simply as follows [48]: 
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��
	
��

��
	≅ 	

1

��
	
∆�
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	= 	�� 	
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Where V0 and ρ0 are the initial volume and density of a unit cell at the reference temperature, 

and ν is the specific volume of a unit cell. ∆ν/∆T is the slope of the linear regression of the 

specific volume-temperature relationship. From the two slopes of the specific volume-

temperature curves for DGEDAS0 – IPD and DGEBA – IPD, the coefficients of volumic 

thermal expansion in the glassy and rubbery states were estimated. Assuming the sample is 

isotropic, the linear coefficient of thermal expansion can be calculated (β = α/3) and are 

summarized in Table 10.  

 
Linear chains β1 (ppm/K) before Tg β2 (ppm/K) after T g 

DGEBA – IPD 1.8 32.8 

DGEDAS0 – IPD  15.4 30.9 

 
Table 10. Linear coefficients of thermal expansion determined using MD of DGEBA – IPD and DGEDAS0 – IPD 

linear chains 
 

 Therefore, according to MD, the thermal expansion coefficients of DGEDAS0 – IPD 

linear chains are higher in the glassy state than the thermal expansion coefficients of DGEBA 

– IPD, while in the rubbery state they are similar. 

 The origin of this difference is not clearly understood. This is why the linear 

coefficient of thermal expansion β of the networks was measured by TMA (thermo 

mechanical analysis) as reported in Annex B. Similar values were obtained in the glassy state 

(60 – 65 ppm/K) for the two networks and slightly higher value in the rubbery state for 

DGEBA – IPD (195 ppm/K) than for DGEDAS0 – IPD (170 ppm/K). 

 Nevertheless, the thermal expansion coefficients found by Molecular Dynamic 

simulation of linear-epoxy amine chains are very low as compared to experimental values 

obtained for the corresponding networks (DGEBA – IPD and DGEDAS0 – IPD). 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter II 

 

 
Page 100 

 

 Comparison can not be done between the values of the coefficients of thermal 

expansion experimentally measured for the respective networks and the ones modelled for the 

corresponding linear epoxy polymers.   

 As a remark, Fan et al. [43] modelled the thermal expansion coefficients of a DGEBA 

– TETA (aliphatic amine: triethylamine) network and obtained a good accordance with the 

experimental values. On the opposite, Soni et al. [49] observed that the coefficients of thermal 

expansion modelled for DGEBA – poly(oxypropylene) diamine networks were at least 30 % 

lower than their corresponding experimental results.  

 

V. Conclusion of Part II 

 
 Many parameters should be taken into account when predicting the glass transition of 

an epoxy – amine network. The two most important ones are the crosslinking density and the 

chain stiffness between crosslinking points representing the copolymer effect. 

 In our study, we decided to overcome the influence of crosslinking density, in order to 

reduce computational requirements and overcome the difficult modelling of networks, by 

modelling linear epoxy-amine chains. The glass transition, TgL, of these theoretical linear 

chains build from the structure of epoxy and amine studied, isosorbide diglycidyl ether 

(DGEDAS0) and diglycidyl ether of bisphenol A (DGEBA) with isophorone diamine (IPD), 

should give information on the epoxy-amine chain structure influence on Tg.  

 It appears that values of TgL are higher for DGEBA – IPD than for DGEDAS0 – IPD 

linear chains, for the two molecular modelling methods used: molecular dynamics (MD) and 

group contribution method (Synthia). These results are in good agreement with the 

experimental observation of Tg higher for DGEBA – IPD networks. Even if direct comparison 

cannot be done between the experimental glass transition of the two networks studied and the 

glass transition of linear epoxy-amine chains, first approach on glass transition prediction 

confirms that the chain stiffness in DGEBA – IPD network is more important than the one of 

DGEDAS0 – IPD between two crosslinking points. Besides, even if theoretical values of 

crosslinking densities are higher for DGEBA – IPD and DGEDAS0 – IPD, this does not 

compensate the influence of chain stiffness.  
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Conclusion  
 
 Within this first Chapter, we focused on the replacement of the conventional DGEBA 

epoxy prepolymer in a classical epoxy-amine system (with isophorone diamine as a curing 

agent) by bio-based epoxy prepolymers derived from isosorbide. Two different epoxy 

prepolymers have been successfully prepared by Huntsman from isosorbide using two 

different synthetic routes.  

 We focused in the first part of this Chapter on the characterization of these two 

DiGlycidyl Ether of Dianhydro-Sorbitol. A complete structural characterization was realized 

using complementary analytical methods. DGEDAS0 and DGEDASn differ, as underlined 

many times in this chapter, by the presence of numerous oligomers in DGEDASn and the 

resulting higher functionality of this bio-based epoxy prepolymer obtained by the 

conventional epoxidation with epichlorohydrin. Reactivity of the different formulations and 

network characterizations, mainly by DSC and DMA, were studied. It appears that the 

isosorbide based networks exhibit good properties but yet lower Tg are observed. Knowing 

the short and cyclic structure of isosorbide, higher values for glass transition of networks were 

expected.  

 The second part of this chapter therefore consists in a first approach on Tg prediction 

of DGEDAS0 – IPD and DGEBA – IPD. By modelling linear chains for these two epoxy-

amine systems to overcome the crosslinking density parameter, a first trend on the Tg 

comparison between the two systems was possible. The results of molecular modelling 

showed that the chain flexibility between crosslinking points was more important for 

DGEDAS0 – IPD than for DGEBA – IPD; this result could partially explained why the glass 

transition of DGEDAS – IPD networks were lower than DGEBA – IPD network.   

 In the next chapter, we will focus on other bio-based epoxy prepolymers, 

commercially available, that could be interesting also for the replacement of DGEBA and 

exhibit various structures. These other bio-based epoxy prepolymers will be compared to 

DGEDAS0 and DGEBA prepolymers.  
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Chapter III Influence of the bio-based epoxy 

prepolymer structure on network properties 

 

I. Introduction   
 

 In the previous Chapter, we studied epoxy prepolymers synthesized from isosorbide 

by different synthetic routes [1-6]. The most convenient synthetic route is that of the reaction 

of isosorbide with epichlorohydrin, which is industrially exploited for the synthesis of 

DGEBA but gives access to numerous oligomers. The pure diglycidyl ether of isosorbide 

(DGEDAS0) has been prepared via a synthetic route involving the allylic derivatives.  

 In this Chapter, DGEDAS0 was compared with two other bio-based epoxy 

prepolymers DGECAR (Diglycidyl Ether of Cardanol) and SPGE (Sorbitol PolyGlycidyl 

Ether). Indeed, bio-based prepolymer derived from cardanol have been studied [7-9] and give 

interesting network properties. Besides, the use of sorbitol, another natural polysaccharide, 

has also been studied for the replacement of bisphenol A with the synthesis of bio-based 

epoxy prepolymer [10, 11]. SPGE and DGECAR have also the advantage to be commercially 

available. The chemical structures of these three different monomers were analysed by SEC, 

ESI-TOF MS, FT-IR, 1H RMN and 13C RMN analyses.  

 Three bio-based epoxy networks containing these epoxy prepolymers were prepared 

using isophorone diamine (IPD). Gelation and crosslinking reactions of the different systems 

were studied using rheological measurements and differential scanning calorimetry (DSC). 

Thermal stability and structure of the epoxy networks were also evaluated using 

thermogravimetric analyses (TGA) and dynamic mechanical analyses (DMA) respectively.  

 Influence of the epoxy prepolymer structures on network properties were evaluated 

and compared to a conventional epoxy network based on DGEBA cured with IPD. 
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II. Experimental section 

1. Materials 

Simplified chemical structure of the reagents used in this study is reported in Figure 1. 

The conventional petroleum-based epoxy monomer used was a diglycidyl ether of bisphenol 

A (DGEBA) supplied by Hunstman (Araldite 5085), with an epoxide equivalent weight 

(EEW) of 180 g/eq. Sorbitol polyglycidyl ether (SPGE) with an epoxy equivalent weight of 

191 g/eq has been supplied by Nagase Chemtex (reference Denacol 622). The bio-based 

epoxy prepolymer derived from cardanol (DGECAR) was obtained from Cardolite (reference 

NC514) with an epoxy equivalent of 490 g/eq. These three epoxy prepolymers are 

commercially available.  

Another bio-based epoxy prepolymer derived from natural sugars, isosorbide 

diglycidyl ether (DGEDAS0) was synthesized by Huntsman via the diallyl isosorbide 

intermediate using isosorbide with a high purity commercialized by Roquette Frères [12]. As 

discussed in the previous chapter (Chapter II. Part I) this synthetic route is different from the 

one industrially used (e.g. synthesis of DGEBA and other commercial epoxy prepolymers 

using epichlorohydrin). The monomer thus obtained has an equivalent weight of 143 g/eq. 

The cycloaliphatic diamine curing agent used was isophorone diamine (IPD) supplied by 

Aldrich, with an amine equivalent weight (AEW) of 42 g/eq.  

 

 
Figure 1. Simplified structure of the reagents used in this study 
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2. Preparation of epoxy networks  

The formulations used in this study were based on the three different bio-based epoxy 

prepolymers SPGE, DGEDAS0, and DGECAR and the conventional epoxy prepolymer 

DGEBA cured with the same cycloaliphatic amine, IPD, at different stoichiometric ratios r = 

nah/ne (except for DGEBA – IPD where r was equal to 1). The epoxy prepolymer SPGE and 

DGECAR are liquid at room temperature and were mixed vigorously with IPD at room 

temperature and cured in a PTFE coated mould at 80°C for 1h followed by 2 h at 180°C. All 

the networks were stored in dry conditions in order to avoid absorption of atmospheric 

moisture.  

 

3. Measurements 

 The analytical methods used for the characterization of the epoxy prepolymers were 

the same as the ones described in Chapter II, i.e. Size Exclusion Chromatography, Fourier 

Transform Infrared Spectroscopy, Mass Spectroscopy, Thermal Gravimetric Analyses. 

 The reactivity of the formulations was evaluated trough DSC and gel time 

measurements. The thermo-mechanical properties and thermal stability of the different cured 

network were measured by DMA and TGA. These methods were also described in Chapter II. 

 In addition elemental analysis was realized on one of the epoxy prepolymer, SPGE, at 

the Service Central d’Analyses (SCA) of Solaize, in order to quantify Carbon, Oxygen, 

Hydrogen, Nitrogen and Chlore contents.  

   

III. Results and discussion  

1. Characterization of the different epoxy prepolymers 

a) SEC characterization 

 
To obtain information on molar mass distribution, the epoxy prepolymers were 

analysed by SEC. The SEC chromatograms of the three bio-based epoxy prepolymers are 

presented in Figure 2 as well as the chromatogram of DGEBA for comparison.  
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Figure 2 SEC chromatograms of the epoxy prepolymers DGEBA, DGEDAS0, SPGE and DGECAR 

 

 SEC chromatograms of the two commercial bio-based epoxy prepolymers, DGECAR 

and SPGE, underline the presence of oligomers through numerous elution peaks, whereas 

only one elution peak is present in the DGEDAS0 chromatogram at an elution volume of 27.2 

mL, corresponding to the pure monomer of diglycidyl ether of isosorbide. The molar masses 

of the different epoxy prepolymers were calculated using a calibration curve (details are given 

in Annexe B) obtained from a high molar mass DGEBA (eew = 475 – 550 g/eq). Using this 

calibration curve DGEDAS0 molar mass was found equal to 267 g/mol, while the theoretical 

value is equal to 258 g/mol. Molar masses of different peaks are indicated in Figure 2. The 

oligomers of highest molar mass were observed in the SEC chromatogram of DGECAR.  

 

b) Electro-Spray mass spectroscopy characterization 

 

 The different bio-based epoxy prepolymers were analysed by Electro-Spray mass 

spectroscopy for more precise information on molar mass than SEC.  

 ESI-TOF mass spectrum of DGEDAS0 is presented in Figure 3 and confirms the 

presence of the pure diglycidyl ether of DAS without any oligomers. Indeed, the only peak is 

15 17 19 21 23 25 27

R
I

Elution Volume (mL)

DGEBA

DGEDAS

SPGE

DGECAR

267 g/mol

340 g/mol

624 g/mol

281

745 g/mol

344501

416

489

794

1120 g/mol
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present at M + Na = 281 g/mol, corresponds to the molar mass of the DGEDAS0 (M = 258 

g/mol).    

 
Figure 3. ESI-TOF mass spectrum (positive ion mode) of DGEDAS0 

 

 ESI-TOF mass spectra of SPGE and DGECAR are presented in Figure 4 and Figure 5 

respectively, and confirm the SEC observation of various oligomers present in both bio-based 

commercial epoxy prepolymers.  

 The ESI-TOF mass spectrum of SPGE also reveals that many of the oligomers present 

in the SPGE contain chlorine groups (see Figure 4). This was confirmed by the technical 

datasheet of this commercial epoxy prepolymer that indicated a high chlorine content of 19.1 

% and by our own elemental analysis which gave a chlorine amount of 19.5 %. This high 

chlorine content can be explained by the synthesis method with epichlorohydrin (Epi). 

Traditional epoxidation involves a great excess of Epi on polyol (i.e. 30 mol Epi / 1 mol 

polyol). This is very useful for the epoxidation of BPA for instance, but when the reactivity of 

the –OH groups strongly decreases, as for sorbitol, where most of the hydroxyl groups are 

secondary hydroxyl groups, the reaction rate decreases. Formation of chlorohydrines is 

represented in Scheme 1. 
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Scheme 1. Formation of chlorohydrines 

 

  The new -OH groups originated in the Epi-n are susceptible to be epoxidated and the 

lateral extension chain is then operative. According to the length and the position of chlorine 

with respect to the -OH group the epoxy ring can be closed or not (1-4 position) and then 

residual chlorine is always present [13]. Only under very strict reaction conditions the 

problem is minimized.  

 Concerning the last bio-based epoxy prepolymer analysed, the diglycidyl ether of 

cardanol (M = 508 g/mol) is present, with numerous oligomers, in the ESI-TOF mass 

spectrum of DGECAR at M + Na = 531 g/mol (Figure 5). 

 

 
Figure 4. ESI-TOF mass spectrum (positive ion mode) of SPGE 
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Figure 5. ESI-TOF mass spectrum (positive ion mode) of DGECAR 

 
 Finally, Electro-Spray analyses confirm that the DGEDAS0 is composed of the pure 

monomer of diglycidyl ether of isosorbide and reveal the presence of numerous chlorinated 

oligomers in SPGE epoxy prepolymer. Nevertheless, in the conditions used, the magnitude of 

the peaks is not quantitative and therefore cannot be linked to the amount of each species. 

 

c) FTIR characterization  

 

 Fourier transform infrared (FTIR) spectroscopy was used to identify the molecular 

structure and the chemical bonds of the three different bio-based epoxy prepolymers. The 

FTIR spectra of DGEDAS0, SPGE and DGECAR are shown in Figure 6 (a), (b) and (c) 

respectively.  The different peaks indicate the presence of –OH group (3470 cm-1), -CH 

bond (2926, 2877 cm-1 and 1430, 1340 cm-1), -CO- bond aliphatic ether (1100 and 1040 cm-1) 

as well as epoxide group (910 cm-1). The main difference between the different IR spectra is 

the very weak intensity of –OH absorption in DGEDAS0 (mainly due to residual moisture) 

which indicates the absence of –OH group in DGEDAS0 compared to the high intensity of the 

–OH peak for SPGE due to the uncomplete epoxidation of sorbitol as explained in the 

previous paragraphe. In addition, the aromatic structure of DGECAR was confirmed by the -

C=C bond (1601 and 1583 cm-1) and aromatic -CO (1244 cm-1). Besides, concerning SPGE 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter III 

 

 
Page 112 

the peak at 703 cm-1 can be attributed to C-Cl. Nevertheless, it is difficult to quantify the 

chlorinated compound by infrared spectroscopy.  

 

(a)  

(b)  
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(c)  
Figure 6. FTIR spectra of (a) DGEDAS0, (b) SPGE, (c) DGECAR 

 

d)  TG analysis  

 
 The mass loss (measured under inert atmosphere) as a function of temperature for 

DGEDAS0, SPGE, DGECAR and DGEBA epoxy prepolymers and their derivatives are 

shown in Figure 7 (a) and (b). The initial degradation temperature (T5%) and the temperature 

at a maximum rate of degradation (Tmax) of the different prepolymers studied are summarized 

in Table 1. DGEBA, DGEDAS0 and SPGE thermally degrade mainly through a simple step. 

The monomer of diglycidyl ether of isosorbide degrades before DGEBA, with a maximum 

rate at 260°C. The more thermally stable epoxy prepolymer is DGECAR, which is mainly 

composed of high molar mass compounds. Nevertheless it begins to thermally degrade around 

210°C. Lower mass species degrades earlier and may be residual moisture (as it begins to 

degrades at low temperatures) or lower molar mass impurities.  
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(a)  

(b)  
Figure 7. (a) TGA and (b) DTGA curves of DGEBA, DGEDAS, SPGE, DGECAR 

 
 

Epoxy prepolymers T(5%) (°C) Tmaximum rate (°C) 

DGEBA 250 320 

DGEDAS0 200 260 

SPGE 270 340 

DGECAR 212 440 

 
Table 1. Thermal analysis data for the different epoxy prepolymers 
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2. Curing behaviour 

 

 The two main events that occur during the crosslinking polymerization reaction of 

thermosets are gelation, and vitrification. For epoxy-amine systems there are two specific 

temperatures Tggel and Tg∞, between which the crosslinking process brings successively 

gelation and vitrification [14]. Tggel is the temperature at which gelation and vitrification 

simultaneously occur and Tg∞ is the maximum Tg attainable. Beyond Tg∞, no more 

vitrification phenomenon is observed. Below Tggel though, the vitrification occurs before the 

gelation.  

 
Figure 8. Time – temperature –transformation diagram 

 
Curing behaviour of the four reactive systems, i.e. epoxy prepolymer combined with 

IPD at nah/ne = 1 were studied by rheological measurements and DSC analyses.  Then the 

influence of the stoichiometric ratio was studied for formulations based on DGEDAS0 and 

SPGE.    

a) Determination of gel time  

 
Gel times (tgel), corresponding to the appearance of a three-dimensional chemical 

network were determined by rheological measurements, at a temperature equal to 80°C, for 

the four reactive systems.  
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As an example, Figure 9 (a) and (b) shows the evolution of the loss factor tanδ as a 

function of time, in a multifrequency mode (from 1 rad/s to 50 rad/s and from 5 rad/s to 100 

rad/s) for the systems DGECAR – IPD and SPGE – IPD. As a remark, the frequency range 

study for SPGE – IPD was expanded to 100 rad/s to facilitate the determination of gel time; 

further determination of gel time for the other systems will be performed in this frequency 

range. The gel time, tgel, was determined by the crossover of the loss factor curves.  

The gel times values are summarized in Table 2 and show that the bio-based system 

SPGE – IPD has the shortest gel time, whereas the other systems DGEDAS0 – IPD, 

DGECAR – IPD and the conventional epoxy – amine system DGEBA – IPD have almost the 

same gel time. The short gel time of SPGE – IPD system can be explained by the 

functionality of the epoxy prepolymer, higher than 2, and the presence of numerous hydroxyl 

groups which can catalysed the epoxy-amine reaction. The storage and loss moduli can be 

described at the gelation point by a power law as a function of the pulsation: 

 G’(ω) ∝ G’’( ω) ∝ ω∆ , where ∆ is the relaxation exponent that can be predicted by 

Rouse’s percolation theory. So at gelation tanδ is independent on frequency and its value is:  

∆gel = π.∆/2   (Equation 1) 

The values obtained for the relaxation component ∆ are similar for DGEBA – IPD, 

DGEDAS0 – IPD and DGECAR – IPD systems (Table 2) and in agreement with data reported 

in the literature on diepoxy-diamine systems [15-17]. The value obtained for SPGE – IPD 

system is much lower and equal to 0.29. In this case, the relaxation component value is very 

low. This value is out of the range generally reported in the literature for the value of ∆. This 

low value can be linked to the difficult determination of ∆ due to short gel time (around 5 

min) as it can be seen in Figure 9 (b). Yet other parameters may affect the determination of 

the relaxation parameter such as the high chlorine amount and the isothermal temperature Ti 

(80°C) lower than the maximum glass transition temperature as it will be discussed in the next 

sections.  
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(a)  

(b)  

Figure 9. Loss factor tanδ, isotherm at 80°C for the reactive systems : (a) DGECAR – IPD (b) SPGE - IPD 
 
 

System tgel (min) tanδ ∆ 

DGEBA – IPD 16 1.5 0.63 

DGEDAS0 – IPD 18 1.6 0.64 

SPGE – IPD 4.8 0.5 0.29 

DGECAR – IPD 19 1.7 0.66 

 
Table 2 Gel time data for the different reactive systems 
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Determination of activation energy Ea 

 Gel times were measured at different temperatures and the activation energy was 

calculated for DGEDAS0 – IPD and SPGE – IPD formulations. Data from literature were 

taken for DGEBA – IPD because this system has already been the subject of numerous 

investigations [18].  

 The evolution of gel times with temperatures were studied for SPGE – IPD and 

DGEDAS0 – IPD systems in the temperature range of 40 – 80°C and 60 – 100°C respectively. 

Gel times and relaxation components obtained at various temperatures are presented in Table 

3 and Table 4 for SPGE – IPD and DGEDAS0 – IPD systems respectively.  

 

T i(°C) tgel (min) tanδgel ∆ 

40 72.5 1.7 0.66 

60 16.0 1.2 0.55 

80 4.7 0.5 0.29 

 
Table 3. Gel time data for SPGE – IPD at various temperatures 

 
 

T i(°C) tgel (min) tanδgel ∆ 

60 62.1 1.4 0.62 

80 18.0 1.6 0.64 

90 9.6 1.3 0.58 

100 5.6 0.6 0.36 

 
Table 4. Gel time data for DGEDAS0 – IPD at various temperatures  

 
 Gel times are lower for SPGE – IPD system than DGEDAS0 – IPD (at 60°C and 

80°C). Besides the relaxation component ∆ of SPGE – IPD that was very low at 80°C (0.29) 

is in a classical range at lower temperatures (e.g. 0.66 for Ti = 40°C). Same observation is 

done for DGEDAS0 – IPD. Indeed, the relaxation component ∆ is around 0.6 for temperatures 

between 60°C and 90°C and lower (∆100 = 0.36) for higher temperature (where gel time is 

shorter: around 5.6 min). 

 As theory says that the conversion at the gel point is constant for such epoxy-amine 

systems, the gel times obey an Arrhenius law as a function of temperature (Figure 10). 

Activation energy (Ea) was determined from the slope (Ea/R) of the lntgel = f(1/T) curves, and 

are summarized in Table 5. Values of activation energy are in the same range for SPGE – IDP 
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and DGEDAS0 – IPD, 63 and 62 kJ/mol, respectively. These values are equivalent to the one 

found in literature for DGEBA- IPD (63 kJ/mol [18]) and are all in the range of classical 

values for epoxy-amine system.  

 

 
Figure 10. Arrhenius plot of the gelation phenomena for SPGE – IPD and DGEDAS0 – IPD 

 

Systems Ea (kJ/mol) Ref. 

DGEBA – IPD 63 [18] 

DGEDAS0 – IPD 62 - 

SPGE – IPD  63 - 

 
Table 5. Values of activation energy 

 
 As a conclusion, it appears that gel times determination is correct with classical values 

of Ea found for the different systems. Yet, the values of relaxation component ∆ are in some 

cases lower than classical values observed in the literature. In the case of SPGE – IPD this 

could find explanation in the particular nature of the epoxy prepolymer with high chlorine. 

Besides, sometimes the low gel times may falsify the correct determination of the relaxation 

component. Yet, another explanation resides in the choice of the isothermal temperature. As it 

will be outlined below, correct determination of the exponent ∆ needs to be made at a 

temperature Ti higher than the maximum glass transition temperature Tg∞ to avoid vitrification 

[16, 19]. 
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b) DSC calorimetry study 

 
The curing behaviours of the different systems were also studied by DSC. The 

resulting thermograms of the four systems under stoichiometric ratio are represented in Figure 

11. The glass transition temperature of the systems before reaction, Tg0, the peak maximum 

temperature, Tpeak, and the total heat of reaction (∆H) obtained from the DSC analyses are 

summarized in Table 6. Tg0 is the lowest for the system based on DGEDAS0. This monomer 

has a lower molar mass as compared to the other prepolymers. Tgo is almost the same for the 

other systems. DGEBA – IPD and DGEDAS0 – IPD systems have almost the same enthalpy 

of reaction, in the range of the classical value obtained for an epoxy –amine reaction at a 

stoichiometric ratio of 1. The other systems based on reactive precursors SPGE and DGECAR 

present lower values of enthalpy of reaction, around 80 kJ/ee for SPGE – IPD and 70 kJ/ee for 

DGECAR – IPD respectively. Besides, the exothermic peak of reaction Tpeak is lower for 

SPGE – IPD confirming the highest reactivity of this system. 

 

 
Figure 11. DSC thermograms for the different epoxy-amine systems 
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System Tg0 (°C) ∆H (J/g) ∆H (kJ/ee) Tpeak (°C) 

DGEBA – IPD -35 415 92 114 

DGEDAS0 – IPD -60 547 89 108 

SPGE – IPD -41 338 79 101 

DGECAR – IPD -41 127 68 116 

 
Table 6. DSC results for the four epoxy-amine systems 

 

3. Determination and evolution of glass transitions with 

conversion 

 

 As mentioned previously, the different networks were obtained after crosslinking of 

the different reactive systems at 80°C for 1 h followed by 2 h at 180°C. The final glass 

transition temperature Tg∞ was measured during a second DSC run to ensure complete curing 

of the network. The different values of glass transition obtained for the different systems are 

represented in Table 7. 

 The Tg∞ obtained for the three bio-based networks, DGEDAS0 – IPD, SPGE – IPD 

and DGECAR – IPD, are in all cases, lower than the Tg∞ of conventional DGEBA – IPD 

network equal to 145°C. These observations cannot be attributed to incomplete curing as no 

residual heat was observed by DSC after the curing cycle and no evolution of Tg between the 

first and second DSC runs was observed. Concerning DGECAR – IPD this low Tg value (Tg∞ 

= 22°C) can be explained by the flexibilizing effect of the long aliphatic chain present in 

DGECAR structure (see Figure 1) and its high epoxy equivalent (higher molar mass between 

cross-linking). Regarding the low Tg∞ value of DGECAR – IPD it appears that the diglycidyl 

ether of Cardanol is not an epoxy prepolymer suitable for high performance applications.  

 In the case of SPGE, its aliphatic structure can explained the lower value of the glass 

transition of SPGE – IPD network (Tg∞ = 100 °C) compensated by the high functionality of 

SPGE epoxy prepolymer, which brings higher crosslinking density and therefore increased Tg 

value. 

 The glass transition of DGEDAS0 – IPD network is also lower than the Tg∞ of 

DGEBA – IPD network. As it was described in the previous chapter, epoxy networks based 

on isosorbide epoxy prepolymer exhibit lower Tg∞ values than expected which can be 

attributed to the higher flexibility of the linear segment between crosslinking points flexibility 
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as compared to conventional DGEBA – IPD system. This point was discussed more deeply in 

the Chapter II, Part II.  

 

Networks Tg∞ (°C) 

DGEBA – IPD 145 

DGEDAS0 – IPD 102 

SPGE – IPD 100 

DGECAR - IPD 22 

 
Table 7. Glass transition values determined by DSC  

 
 
Use of modified DiBenedetto equation for the determination of Tg = f(x) 
 

 Variation of glass transition Tg with the conversion rate x can be modelled by the Di 

Benedetto equation modified by Pascault and Williams [20] and represented below :  

��	�	���

���	�	���
=	

�	


��
���	
   (Equation 4) 

With   
 = 	
∆���

∆���
 

 Tg0 and Tg∞ are the glass transition of the initial blend (before any reaction) and the 

totally crosslinked network, respectively. 

 ∆Cp0 and ∆Cp∞ are the change in heat capacity of glass transition of the initial blend 

and the crosslinked network, respectively. 

 All these values were taken from DSC runs and are reported in Table 8.  

 

Systems Tg0 (°C) ∆Cp0 Tg∞ (°C) ∆Cp∞ λ 

DGEBA – IPD -30 0.12 145 0.10 0.36 

DGEDAS0 – IPD -60 0.13 102 0.07 0.58 

SPGE – IPD -41 0.14 100 0.09 0.62 

DGECAR – IPD -41 0.13 22 0.10 0.79 

 
Table 8. Experimental values for Di Benedetto equation 
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 Evolution of glass transition with conversion modelled by the Di Benedetto equation 

for the four epoxy-amine systems studied is represented in Figure 12.  

 
Figure 12.  Evolution of glass transition with conversion. Modified Dibenedetto equation 

 

 These curves are useful to determine Tggel at a conversion x = xgel. Theoretical values 

of xgel are obtained using the Flory-Stockmayer theory:  

����	
� =	




����
�����
�
   (Equation 5) 

Where fA and fB are the functionalities of the two components.  

In our case, fA = 4 (IPD tetra-functional amino-hydrogen) and fB = 2 (di-functional epoxy for 

DGEBA, DGEDAS0 and DGECAR). It gives a conversion at gelation equal to 0.577. As the 

functionality of SPGE epoxy prepolymer is unknown (higher than 2), determination of 

theoretical value Tggel (at x = 0.577) using Di Benedetto curve was not performed for SPGE – 

IPD system.  

 The values of Tggel using this approach are around 10°C for DGEDAS0 – IPD system, 

around -10°C for DGECAR – IPD system and 25°C for DGEBA – IPD system.  

� These results can explain the difficult determination of the relaxation component ∆. 

Indeed, this confirms that the isothermal temperatures Ti for gel time’s determination were 

lower than Tg∞. In this case, mobilities of macromolecular chains with long relaxation times 

occur and these chains behave as in a vitreous state. Besides, in some cases, the ∆T = Ti – 
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Tggel is low and impact also the correct determination of ∆ [16], as Tggel is the temperature at 

which gelation and vitrification simultaneously occur. Nevertheless, it is not always possible 

to obtain gel times at Ti > Tg∞, where only gelation occurs, especially for such systems that 

exhibit short gel times at high temperatures. 

�  

4. Influence of stoichiometry on the value of Tg∞  

 It has been shown that assuming the only mechanism is epoxy-amine addition without 

side reaction, the maximum attainable Tg∞ coincides with the stoichiometric composition [18]. 

Therefore, the effect of variation of the amino hydrogen-to-epoxy ratio, r = nah/ne on Tg∞ is 

examined in this study as an indicator of possible side reactions.  

 The variation of the ratio nah/ne was studied between 0.5 and 1.5 for DGEBA – IPD, 

DGEDAS0 – IPD and SPGE – IPD. This study hasn’t been performed on DGECAR – IPD 

regarding the low Tg∞ value of the corresponding network. Glass transitions were measured 

during a second DSC run and the variations of Tg∞ with the stoichiometric ratio are plotted in 

Figure 13.  

 For the systems based on DGEBA and DGEDAS0 combined with IPD, the curves 

exhibit a maximum Tg∞ for r equal to 1, which means that the only mechanism occurring 

during the cross-linking of the reactive systems is the amine-epoxy addition. No side reactions 

such as etherification occur during the cross-linking. Nevertheless, the DGEDAS0 – IPD 

networks still exhibit lower Tg∞ value compared with the conventional DGEBA – IPD 

networks whatever the stoichiometric ratio studied.  
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Figure 13. Glass transition temperature versus r for networks based on DGEBA, DGEDAS0 and SPGE combined with 

IPD 

  

 Concerning, the SPGE – IPD epoxy-amine system, an augmentation of Tg∞ with r is 

observed which is an unexpected behaviour and reveals possible side reactions. Besides after r 

= 1.25, Tg∞ became difficult to measure by DSC. To obtain these values, DMA were 

performed on networks of higher stoichiometric ratio r.  

 

5. Thermo-mechanical properties of the networks 

a) Thermo-mechanical properties of the networks at r = 1 

 
First, the dynamic mechanical properties of the different networks in stoichiometric 

ratio (r equal to 1) were investigated using DMA. In Figure 14 and Figure 15, the storage 

modulus (G’) and the loss factor (tanδ) of the different bio-based epoxy networks are 

compared with the DGEBA based one. As previously mentioned in Chapter II, the main 

transition α, in the high-temperature region is associated with the glass transition, whereas the 

secondary relaxation β, below 0°C, is assigned to short molecular segment motion, and more 

precisely hydroxyl ether groups’ motion in the case of epoxy-amine networks [21]. Values of 

Tβ, Tα and G’ are reported in the Table 9. 
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Figure 14: Storage modulus versus temperature for DGEBA, DGEDAS0, SPGE and DGECAR cured with IPD 

 
Figure 15: Tanδ versus temperature for DGEBA, DGEDAS0, SPGE and DGECAR cured with IPD  
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System Tβ (°C) Tα (°C) 
G’ (MPa) 

(at Tα+30°C) 

d 

(g/cm3) 

νννν 

(10-3 mol/cm3) 

Mc 

(g/mol) 

DGEBA – IPD  -41 155 17.1 1.13 4.5 250 

DGEDAS0 – IPD  -42 112 16.6 1.25 4.8 260 

SPGE – IPD  -52 120 29.3 1.24 8.3 150 

DGECAR – IPD  - 50 3.2 1.06 1.1 970 

 
Table 9: Dynamic mechanical analyses of the networks 

 
 

There is no significant difference regarding the secondary relaxation β for DGEBA 

and DGEDAS0 based networks, with Tβ around -40 °C. SPGE-based network exhibits a lower 

β relaxation temperature at -52°C. Sub-Tg relaxation is not visible in the DGECAR-IPD 

network analysis, which can be explained by a lower concentration of hydroxyl ether groups 

due to its high value of epoxy equivalent (eew = 490 g/eq) resulting in a very weak magnitude 

of the sub-Tg relaxation. Indeed, magnitude of the sub-Tg relaxation is linked to the 

concentration of the relaxing species per unit volume. Besides, the α-transition begins at a 

lower temperature for this system (< 0°C) and therefore can mask the sub-Tg transition.  

Tα follows the same trend as the Tg measured by DSC. The highest value of Tα is 

measured for the classical DGEBA-IPD network (Tα = 155 °C). Lower and closed values of 

Tα are obtained for the bio-based networks DGEDAS0 – IPD and SPGE – IPD, respectively 

110°C and 120°C. DGECAR – IPD exhibits the lowest Tα (around 50°C) and the lowest 

rubbery modulus, due to the flexibility of the long aliphatic chain within the cardanol epoxy 

prepolymer structure. DGEBA – IPD and DGEDAS0 – IPD have equivalent rubbery moduli, 

around 17 Mpa. The highest rubbery modulus (29.3 MPa) is obtained for the network based 

on SPGE, which has a high functionality.  

According to the rubber elasticity theory, the following equations are employed to 

describe the relationship between Mc (average molar mass of the segment between 

crosslinking points) and ν (crosslinking density) with storage modulus (G’) of a thermoset 

above the Tg [22]:  

G’ = dRT/Mc    (Equation 2) 

ν = G’/RT  (Equation 3) 

Where G’, d, R, T are the storage modulus at Tg + 30K (MPa), the density of the network 

(g/cm3), the gas constant (8.314 J/mol.K) and the temperature (K), respectively. The values of 
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molar mass between crosslinking points (Mc) and crosslinking density (ν) are presented in 

Table 9. The shortest values of Mc and as a consequence the highest value of crosslinking 

density are obtained for SPGE – IPD because of SPGE high functionality. Besides, highest 

value for Mc is obtained for DGECAR – IPD networks.  

 

b) Thermo-mechanical properties of SPGE – IPD networks at different 

stoichiometry  

 
Previous DSC analyses have underlined an unexpected evolution of glass transition 

temperature Tg∞ with the stoichiometric ratio, r = nah/ne, for the networks obtained with SPGE 

combined with IPD. As the determination of Tg was difficult for r > 1.25 (glass transition not 

well defined in DSC runs), and to confirm this unexpected behaviour, dynamic mechanical 

analyses were performed for the SPGE – IPD networks at various r (from r = 0.75 to r = 2). 

The storage modulus (G’) and the loss factor (tanδ) versus temperature of the different SPGE 

– IPD networks are plotted in Figure 16 and Figure 17 respectively.  

 Tβ are in the same range, around -50°C, for all the different networks studied. A huge 

augmentation of Tα with r is observed, and confirms the unexpected behaviour revealed by the 

previous DSC analyses. Values of Tβ and Tα are summarised in Table 10 and the evolution of 

Tg measured by DMA is represented in Figure 18. Tα varies from 68°C to 208°C. It increases 

strongly up to r = 1.25, and then more slowly up to r = 2. In addition, the tanδ peak becomes 

broader and for the highest value of r, two peaks can be distinguished: one near 120°C and the 

other one occurring between 187°C and 208°C, depending on r. This behaviour with two 

distinct Tα is typical of heterogeneous networks having phases of different crosslink density.  
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Figure 16. Storage modulus versus temperature for SPGE cured with IPD at different stoichiometry r 

 
 

 
Figure 17. Tanδ versus temperature for SPGE cured with IPD at different stoichiometry r 

 
R = nah/ne Tβ (°C) Tα (°C) tanδ max  ∆Tα (°C) 

0.75 -50 68 0.57 27 

1 -47 120 0.41 35 

1.25 -49 170 0.42 51 

1.5 -49 187 0.41 53 

1.75 -48 197 0.42 43 

2 -49 208 0.43 33 

 
Table 10. Tβ and Tα values for SPGE – IPD networks at different stoichiometry 
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Figure 18. Evolution of Tα (measured by DMA) associated to Tg with r 

 

For the networks with r > 1.25, values of rubbery moduli are not obtained as the 

rubbery region is not reached. It can be explained by the augmentation of Tα getting closer to 

the degradation temperature. For SPGE – IPD networks the degradation temperature seems to 

be very low (around 230°C). This will be confirmed later by thermogravimetric analyses.  

 Nevertheless for r = 0.75, r = 1 and r = 1.25, storage modulus G’ in the rubbery state 

can be measured, and according to the rubber elasticity theory (Equation 2 and Equation 3), 

molar mass between crosslinking points (Mc) and crosslinking density (ν) can be calculated. 

Results are summarized in Table 11. For r = 0.75, a higher molar mass between crosslinking 

points is observed. Mc decreases with the augmentation of r. Thus, crosslinking density 

increases with the amine proportion in the system (with r > 1, nah > ne). This can explain why 

an augmentation of glass transition is observed with r, as higher crosslinked network leads to 

higher Tg.  

 

r = nah/ne Tβ (°C) Tα (°C) 
G’ (MPa) 

(at Tα+30°C) 

d 

(g/cm3) 

νννν 

(10-3 mol/cm3) 

M c 

(g/mol) 

0.75 -50 68 12.4 1.27 4.0 315 

1 -52 120 29.3 1.24 8.3 150 

1.25 -49 170 38.5 1.22 10.0 122 

 
Table 11. Dynamic mechanical analyses of SPGE – IPD networks at r=1 and r=1.25 
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 To the best of our knowledge such behaviour, i.e. increase of Tg and decrease of Mc 

with an increase of r in epoxy-amine systems, is not reported in literature. In classical 

systems, the excess of amine hardener results in chain extension and lead to networks with a 

lower Tg and higher Mc. Different hypotheses can explain this unexpected behaviour: 

� First, secondary –OH groups in sorbitol structure (Figure 1), which as underlined 

previously are more difficult to epoxidized and may remain in the sorbitol polyglycidyl ether 

structure, can be involved in etherification reaction (Scheme 2, Chapter II). As a remark, this 

etherification reaction does not consume amines.  

� Secondly, we remind that the particularity of the SPGE is to have a high chlorine 

content (∼19 wt%) with the presence of numerous chlorohydrine segments (Scheme 1). In the 

presence of an excess of amine and due to its catalytic effect (basic catalyst), Cl can be 

involved in some side reactions or strong ionic interactions: 

R-Cl + R’-NH2 � R’RNH2
+ Cl- 

 

Evolution of chlorine content in the networks  

 In order to explain the unexpected evolution of Tg with r, it has been considered 

previously that the high chlorine content could be at the origin of other side reactions and shift 

the stoichiometric ratio. Reacting with other organic compound during the cure epoxy-amine 

reaction Cl may evaporates (HCl, Cl2 can be formed), which should bring a decrease of Cl 

content in the resulting epoxy-amine networks.  

 We wanted to know if some Cl were released by a reaction. Therefore, the evolution of 

Cl content in different epoxy-amine networks obtained from SPGE – IPD with different 

stoichiometric ratio were studied by elemental analyses. These measured chlorine contents 

were compared with the theoretical ones calculated knowing the different amount of epoxy 

and amine for each composition (epoxy prepolymers were also previously characterized by 

elementary analyses). The theoretical evolution of Cl with r and the experimental values 

obtained by elemental analyses are plotted in Figure 19. 
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Figure 19. Evolution of chlorine content with r 

  

 It appears that measured chlorine contents are in good agreement with the theoretical 

values calculated for each nah/ne ratio considered which means that Cl remains in the network 

structure and can be linked by strong ionic interactions for instance.  

 Then, in order to obtain new elements for the interpretation of this behaviour, we 

realized DSC measurements on the different systems. The thermograms are reported in Figure 

20. For the stoichiometric ratio equal to 0.5 and 1, classical thermograms are obtained, with 

the same shape as DGEBA – IPD thermograms (Figure 11). At higher stoichiometric ratio a 

second exothermic peak appears at high temperature (194°C). At the same time, the first peak 

becomes less broad but more intense. Secondary reaction occurs at high temperatures for 

SPGE – IPD systems with the increase of r. 

 
Figure 20. DSC thermograms for SPGE – IPD systems at different stoichiometric ratio r 
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r = a/e Tg0 (°C) ∆H (J/g) ∆H (kJ/ee) Tpeak (°C) 

0.5 -41 229 49 101 

1 -41 338 79 101 

1.5 -48 384 98 105  

2 -53 372 103 107 /194 

 
Table 12. DSC results for SPGE – IPD systems at different stoichiometry  

 

6. Thermal stability of the networks  

a) Thermal stability of the networks at r = 1 

 The mass loss as a function of temperature for DGEBA, DGEDAS0, SPGE and 

DGECAR cured with IPD and their derivatives are shown in Figure 21 (a) and (b). The 

network DGEBA – IPD thermally degrades through a single step process with an initial 

degradation (T5%) close to 330°C and a maximum rate at 370°C. DGEDAS0 – IPD mainly 

thermally degrades through a simple step process with an initial degradation (T5%) at 305°C 

and a maximum rate at approximately 350°C. SPGE – IPD network exhibits poorer thermal 

stability compared with the other networks. Indeed the initial degradation is close to 260°C 

with a maximum rate at 270°C.   

Finally, the DGECAR – IPD networks is the more thermally stable network, but degradation 

does not undergo a simple step process, with two maximum rates at 350 °C and 440 °C.  
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(a)  

(b)  

Figure 21. (a) TGA and (b) DTGA curves of DGEBA, DGEDAS0, SPGE, DGECAR networks with IPD 
 
 

 

Networks T(5%) (°C) Tmaximum rate (°C) 

DGEBA – IPD  325 370 

DGEDAS0 – IPD  305 340/370 

SPGE – IPD  265 270 

DGECAR – IPD  315 350/440 

 
Table 13. Thermal analysis data for the different epoxy networks  
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b) Thermal stability of the SPGE – IPD networks at different 

stoichiometry 

 

 The influence of the stoichiometric ratio r on the thermal stability of the SPGE – IPD 

networks has been studied. The TGA analyses performed on SPGE – IPD at r = 1, r = 1.5 and 

r = 2 are represented in Figure 22. It appears that the stoichiometric ratio has no influence on 

the initial degradation temperature (around 260°C). This observation confirms the hypothesis 

of degradation at 230°C during DMA analyses that prevents the observation of a rubbery 

plateau. TGA analyses were performed under N2 atmosphere and therefore the temperature of 

degradation was higher than the one observed during DMA analyses.  

 Nevertheless, a shift of the maximum rate temperature to higher temperature is 

observed for SPGE – IPD network with a stoichiometric ratio r = 2. Two peaks are observed 

on the derivative curve of the SPGE – IPD network at r = 1.5.  

 

(a)  

(b)  
Figure 22. (a) TGA and (b) DTGA curves of SPGE – IPD networks with different stoichiometric ratio r 
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Networks T(5%) (°C) Tmaximum rate (°C) 

SPGE – IPD r = 1  265 270 

SPGE – IPD r = 1.5  260 270/305 

SPGE – IPD r = 2  265 310 

 
Table 14. Thermal analysis data for SPGE – IPD networks at various stoichiometry 

 
 

 Conclusion 

 
In this part of the work, three different bio-based epoxy precursors were analysed: two 

bio-based epoxy commercially available, derived from sorbitol and cardanol, and a novel 

epoxy monomer successfully synthesized from isosorbide. The chemical structures of these 

different bio-based epoxy prepolymers were studied by SEC, ESI-TOF MS, FT-IR analyses 

and compared with conventional DGEBA epoxy prepolymer. Different structure of the epoxy 

prepolymers have been underlined: phenolic structure with a long aliphatic chain for the 

epoxy derived from cardanol, multifunctional short aliphatic structure for the sorbitol 

derivatives, and short and cyclic aliphatic structure for isosorbide diglycidyl ether. Besides, it 

appears that the commercial epoxy prepolymer derived from sorbitol contains a high 

chlorinated content which have been explained by the synthetic route (conventional 

epoxidation through epichlorohydrin).      

Reactivity and physical properties of these new bio-based epoxy prepolymers cured 

with isophorone diamine (IPD) were compared to a traditional petroleum-derived epoxy 

prepolymer (DGEBA) cured in the same conditions with isophorone diamine (IPD). The 

system based on sorbitol polyglycidyl ether (SPGE) combined with IPD is more reactive than 

the other systems. Indeed, SPGE – IPD exhibits the lower gelation time at 80°C, whereas the 

diglycidyl ether of cardanol (DGECAR) has the longer gel time. Networks obtained from the 

isosorbide and sorbitol bio-based epoxy prepolymer exhibits interesting glass transition, 

around 100°C, yet lower than the DGEBA based networks (145°C). Higher rubbery modulus 

is obtained for the SPGE – IPD network. Sorbitol Polyglycidyl Ether and Diglycidyl Ether of 

Isosorbide could be good candidate for the replacement of bisphenol A-based prepolymers. 

However, a particular behaviour of the networks based on SPGE was evidenced, not yet 

clearly understood: a significant increase in Tg as well as in crosslinking density has been 
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observed in networks synthesized with an excess of hardener. This is opposite to the general 

trend observed in epoxy-amine network. We believe this behaviour is linked to the presence 

of chlorohydrines in the prepolymer. Finally, even if the cardanol based epoxy networks have 

low glass transition temperatures, cardanol-based epoxy prepolymers can also be interesting 

for uses as bio-based flexibilizers. 

In the next chapter, focus will be put on the influence of crosslinking agent on the 

network properties of bio-based networks obtained using the epoxy prepolymers described in 

this chapter.  
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Chapter IV Influence of the curing agent structure 

on network properties  

 

 This chapter is dedicated to the study of the influence of the curing agent structure on 

the network properties and it is divided in two parts. The first part deals with various 

formulations with other curing agents, either aromatic or aliphatic amines, and their influence 

on the reactivity of the system and the resulting network properties. The second part of this 

chapter focuses on the use of a specific amine curing agent developed for rapid cure during 

processing of composite materials.   

   
 

Part I. Influence of the structure of amine curing 

agents 

I. Introduction  
  

 Focus has been put in the previous chapters on the characterization of partially bio-

based epoxy networks obtained by replacing the petroleum epoxy-based prepolymer DGEBA 

by bio-based ones. Epoxy prepolymers derived from isosorbide and synthesized through two 

different routes have been studied and combined with isophorone diamine (IPD) curing agent 

(Chapter II.). Other bio-based epoxy prepolymers derived from sorbitol and cardanol have 

also been tested with IPD (Chapter III.). In this Chapter we focus on the influence of 

crosslinking agent structure. Therefore, other formulations comprising the bio-based epoxy 

prepolymers previously characterized and different curing agents were characterized.   

 The curing agents used differ by their structure, as they are either aliphatic such as 

polyetheramine (Jeffamine D230), m-Xylylene diamine (MXDA), or cycloaliphatic such as 

isophorone diamine (IPD), or aromatic such as 4,4’-methylene bis (3-chloro-2,6-

diethylaniline) (MCDEA), diethyl toluene diamine (DETDA). Bio-based curing agents were 

also tested such as phenalkamine (NC540) or tannic acid (TA). Phenalkamines are derived 

from Cashew Nut Shell Liquid and have already been used as curing agent for conventional 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter IV 

 

 
Page 140 

epoxy prepolymer such as DGEBA [1, 2]. Tannic acid obtained from wood derivative is of 

interest as it presents another reaction mechanism (epoxy – phenoxy reaction). Tannic acid 

has already been tested by Shibata [3] in combination with sorbitol diglycidyl ether 

prepolymer. The use of these bio-based curing epoxy curing agents is of interest as it can lead 

to 100 % bio-based epoxy networks. The aim of this first part of the chapter is to present the 

various formulations. Reactivity study of the different systems and glass transition 

temperatures of their respective networks were analysed and are presented below.  

 

II. Experimental section 

1. Structure of curing agents  

  

 The epoxy prepolymers used in this study are the ones previously characterized: the 

isosorbide-based epoxy prepolymers (DGEDAS0 and DGEDASn) the sorbitol polyglycidyl 

ether (SPGE) and the cardanol-based epoxy prepolymer (DGECAR).  

 The different curing agents used are presented in Table 1. The IPD, MXDA, DETDA 

and TA curing agents were obtained from Aldrich. The Jeffamine D230 was provided by 

Huntsman, and the phenalkamine NC-540 was kindly supplied by Cardolite Corporation. All 

the curing agents were used as received.  
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Name Structure 

Molar 

Mass 

(g/mol) 

Functionality 

IPD, isophorone 

diamine 

 

170 4 

Jeffamine D230, 

polyetheramine 
 

230 4 

MXDA , m-

xylylene diamine  
136 4 

MCDEA , 4,4’-

methylene bis (3-

chloro-2,6-

diethylaniline) 
 

379 4 

DETDA , diethyl 

toluene diamine  

 

178 4 

NC-540, 

phenalkamine 
 

Active Hydrogen 

equivalent (AHEW) = 81 

TA , tannic acid 

 

Hydroxyl value 

 IOH = 68,05 g/eOH 

 
Table 1. Structure of the different curing agent studied 
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2. Preparation of epoxy networks  

 

 To prepare the different networks, the curing agents were added to the epoxy 

prepolymers at stoichiometric ratio r = nah/ne = 1.   

 Liquid amine curing agents (IPD, D230, MXDA, DETDA and NC540) and epoxy 

prepolymers were mixed vigorously and rapidly at room temperature, in order to form a 

homogenous system. MCDEA amine curing agent, solid at room temperature, was added to 

the epoxy prepolymer at room temperature. MCDEA was soluble in DGEDASn epoxy 

prepolymer at room temperature (contrary to DGEBA). 

 Tannic Acid (TA) is a wood derivative that presents a lots of phenoxy groups. The 

reaction of epoxy prepolymer with TA is described by the epoxy-phenoxy mechanism 

represented in Scheme 1.  

 
 

Scheme 1. Epoxy-phenoxy mechanism (with R-OH: phenoxy groups) 
 
 TA was tested as a curing agent for SPGE epoxy prepolymer. TA is solid at room 

temperature and was not soluble in SPGE at room temperature and even after a heating of the 

reactive mixture at 80°C. We decided to solubilize the TA in a low viscosity reactive bio-

based diol in order to obtain reactive liquid mixture. Therefore, TA curing agent was 

previously solubilized in 1,3-Propane-diol (PDO, Figure 1) (1:1 by weight). The TA/PDO 

blend was then used as curing agent in combination with SPGE epoxy prepolymer in a 

stoichiometric ratio nOH/ne = 1 (taking hydroxyl value of PDO into account for nOH 

calculation). As a remark, the reactive mixture was homogenous (no phase separation or 

precipitation is observed).  

 

 

Figure 1. Structure of 1,3-Propane-diol PDO 
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III. Characterization of bio-based epoxy systems 

with various curing agents  

1. Reactivity of the different systems 

a) Bio-based systems with conventional curing agents 

 
 DSC calorimetry study was performed on the systems obtained with bio-based epoxy 

prepolymers and conventional curing agents. Figure 2 and 3 show the DSC thermograms of 

the formulations realized with petroleum-based curing agents. Results of the DSC analyses 

are summarized in Table 2. As a reminder, DSC data results for DGEBA – IPD, DGEDAS0 – 

IPD and DGEDASn – IPD are also summarized in this table for comparison.  

 

 
Figure 2. DSC thermograms of dynamic curing of epoxy-amine systems formulated with DGEDASn and different 

curing agents 
 
 
 
 

-0.5

0

0.5

1

1.5

2

-100 -50 0 50 100 150 200 250

H
e

a
t 

F
lo

w
 (

W
/g

)

Temperature (°C)

DGEDASn - D230

DGEDASn - MXDA

DGEDASn - MCDEA

DGEDASn - DETDA

DGEDASn - D230

DGEDASn - MXDA

DGEDASn - MCDEA

DGEDASn - DETDA

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter IV 

 

 
Page 144 

 
Figure 3. DSC thermograms of dynamic curing of epoxy-amine systems formulated with DGEDAS0 and SPGE with 

different curing agents  
 
 

Systems Tg0 (°C) ∆H (J/g) ∆H (kJ/ee) Tpeak (°C) 

DGEBA – IPD -35 415 92 114 

DGEDASn – IPD -36 404 91 104 

DGEDASn – D230 -48 347 86 120 

DGEDASn - MXDA -38 438 96 104 

DGEDASn – MCDEA -19 NA NA >250 

DGEDASn – DETDA -30 NA NA 190 

DGEDAS0 – IPD -60 547 89 108 

DGEDAS0 – D230 -70 443 100 124 

DGEDAS0 – MXDA -56 600 102 102 

SPGE - IPD -41 338 79 101 

SPGE - MXDA -47 477 108 104 

 
Table 2. DSC results for the different epoxy-amine systems 

 
 Concerning Tg0, first observation is that the systems containing DGEDAS0 exhibit the 

lower Tg0, up to -70°C for DGEDAS0 – D230. Indeed, epoxy-amine systems with D230 as 

curing agent have the lowest Tg0 because of its flexible chemical structure. On the opposite, 

the systems obtained with the aromatic curing agents MCDEA and DETDA have the higher 

values of Tg0. More precisely, DGEDASn – MCDEA has a Tg0 of -19°C higher than 
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DGEDASn – DETDA Tg0 at -30°C, this difference is due to the higher molar mass of 

MCDEA as compared with DETDA.  

 Concerning the total heat of reaction ∆H it appears that the values are all comprised 

between 90 and 100 kJ/ee, which are classical values for epoxy-amine systems in 

stoichiometric ratio; except for SPGE-based systems. Indeed, SPGE combined with IPD has a 

low exothermy of 79 kJ/ee whereas SPGE – MXDA has the highest ∆H value (108 kJ/ee). It 

appears also that the epoxy-amine systems with IPD always present the lowest values (around 

90 kJ/ee) whereas systems using MXDA as curing agent are the most exothermic systems 

(around 100 kJ/ee).  

 It is known that the reactivity of amino curing agent depends on the chemical structure 

as follows: aliphatic > cycloaliphatic > aromatic. In addition steric hindrance reduces the 

reactivity of amino groups.  

 In our series of epoxy systems, we retrieve this trend. IPD and MXDA give the more 

reactive systems, followed by D230, then DETDA and MCDEA give the less reactive 

systems. Indeed, the peak maximum temperature Tpeak of DGEDASn – DETDA is 190°C and 

is even higher than 250°C for DGEDASn – MCDEA. In particular MCDEA has a very low 

reactivity due to chlorine groups and steric hindrance. As a remark, this high value of Tpeak 

explains why determination of ∆H was not done for these two systems. These systems will 

require high temperature curing cycle to complete crosslinking reaction.  

 

b) Fully bio-based systems 

 
 Fully bio-based systems were studied using the commercial epoxy prepolymers 

DGECAR and SPGE. DGECAR was combined with the phenalkamine curing agent NC540 

and SPGE was combined with NC540 and also the reactive mixture TA/PDO. Their curing 

behaviours were followed by DSC analyses (Figure 4); DSC results are summarized in Table 

3. For comparison results of DGECAR – IPD and SPGE – IPD systems studied by DSC are 

also listed in this table.   
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Figure 4. DSC thermograms of dynamic curing of epoxy-amine systems with bio-based curing agents 

 
 

Systems Tg0 (°C) ∆H (J/g) ∆H (kJ/ee) Tpeak (°C) 

DGECAR – IPD  -41 127 68 116 

DGECAR – NC540 -44 122 71 110 

SPGE – IPD  -41 127 79 101 

SPGE – NC540 -43 294 81 99 

SPGE – TA/PDO -42 NA NA 208 

 
Table 3. DSC results for fully bio-based systems 

 
 First, not much difference is observed in the Tg0 values (around -40°C).  For instance, 

SPGE epoxy prepolymer combined with IPD, NC540 or the reactive mixture TA/PDO always 

presents a Tg0 value around -42°C.  

 Besides not much difference is also observed in the total heat of reaction of SPGE- 

based system using either IPD or NC540 as curing agent (around 80 kJ/ee) and in the 

maximum peak temperature (around 100°C). The lowest exothermy of reaction is observed 

with DGECAR epoxy prepolymer (around 70 kJ/ee), which could perhaps indicate that the 

system is out of stoichiometry. 

 Using the reactive mixture TA/PDO as a curing agent for SPGE epoxy prepolymer, we 

obtained a system with a very low reactivity as compared to the others, with Tpeak at 208°C. 
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This system needs a high curing temperature but has the advantage of a high stability and long 

pot-life at room temperature.    

2. Determination of gel time  

 
 Determination of gelation times were performed on SPGE and DGECAR based 

systems using rheological measurements at 80°C. Results are summarized in Table 4 with 

values of relaxation component ∆.  

 As a remark, SPGE – MXDA gel time at 80°C was around 3 min and is too short for a 

correct determination of ∆ exponent. Same observation was done for SPGE – NC540 with a 

gel time at 80°C around 1.5 min.  The use of NC540 as curing agent leads to a decrease in gel 

time which could be explained by the different functionality (fa) of this amine as compared 

with the other curing agents. Indeed, gel time at 80°C is 4.5 min for DGECAR – NC540 while 

it was 19 min for DGECAR – IPD.    

 
Systems fa tgel (min) tanδgel ∆ 

SPGE – IPD 4 5 0.5 0.29 

SPGE – MXDA 4 3 NA NA 

SPGE – NC540  3 + 1 OH 1.5 NA NA 

DGECAR – IPD 4 19 1.7 0.66 

DGECAR – NC540 3 + 1 OH 4.5 1.8 0.68 

 
Table 4. Gel time data for the different reactive systems at 80°C with fa: functionality of the amine 

 

3. Determination of glass transition temperatures 

 
 The curing behaviour study was helpful for the choice of a correct curing cycle 

temperature for the fully bio-based systems that contains uncommon curing agents such as 

NC540, TA/PDO. Systems using NC540 as curing agent were crosslinked in an oven for 1h at 

80°C and 2 h at 180°C. SPGE – TA/PDO system was cured 2 h at a high temperature (180°C) 

as the system exhibits a high Tpeak (208°C). The other curing agents are conventional ones and 

we chose the curing cycle suitable as summarized in Table 5. All the reactive systems were 

crosslinked and their glass transitions temperature were determined in the second run of DSC 

analyses to check if complete crosslinking was reached. Curing cycle and Tg values for all the 

networks studied are summarized in Table 5.  
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 Results show that the DGEBA – IPD network has the highest glass transition 

temperature at 150°C. Interesting result was also found for the DGEDASn – MCDEA network 

with a Tg at 120°C. Yet this system requires a long curing cycle: 10 h at 170°C. Higher glass 

transition temperature was observed in the literature for DGEBA - MCDEA network (Tg = 

177°C [4]). DGEDASn – DETDA network exhibit a lower Tg (Tg = 112°C) than DGEBA – 

DETDA (Tg = 175°C found in literature [5]). Among all the classical curing agents used, the 

D230 curing agent leads to networks with the lowest Tg, 48°C for DGEDASn – D230 and 

52°C for DGEDAS0 – D230. These low values of Tg can be attributed to the aliphatic 

structure of D230 that brings flexibility to the network. Yet, DGEBA crosslinked with D230 

exhibit higher value (Tg = 80°C according to literature [6]) than the DGEDAS-based networks 

with the same curing agent. Again, lower Tg values were obtained for DGEDASn and 

DGEDAS0 crosslinked with MXDA (Tg = 74 and 79°C respectively) than for conventional 

network DGEBA – MXDA (Tg = 120°C according to Williams et al. [7]). 

 
Systems Curing cycles Tg (°C) 

DGEBA – IPD 1 h at 80°C + 2 h at 180°C 150 

DGEDASn – IPD 1 h at 80°C + 2 h at 180°C 91 

DGEDASn – D230 2 h at 80°C + 2 h at 180°C 48 

DGEDASn – MXDA  1 h at 80°C + 2 h at 160°C 74 

DGEDASn – MCDEA 10 h at 170°C 120 

DGEDASn – DETDA 2 h at 180°C 112 

DGEDAS0 – IPD 1 h at 80°C + 2 h at 180°C 102 

DGEDAS0 – D230 2 h at 80°C + 2 h at 180°C 52 

DGEDAS0 – MXDA 1 h at 80°C + 2 h at 160°C 79 

SPGE – IPD  1h at 80°C + 2 h at 180°C 100 

SPGE – MXDA  1h at 80°C + 2 h at 160°C 67 

SPGE – NC540 1h at 80°C + 2 h at 180°C 76 

SPGE – TA/PDO 2 h at 180°C 41 

DGECAR – IPD  1 h at 80°C + 2 h at 180°C 22 

DGECAR – NC540  1h at 80°C + 2h at 180°C 33 

 
Table 5. Glass transition temperature values determined by DSC analyses 
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 Glass transition temperatures for the different networks studied can be classified for 

each epoxy prepolymer as followed:  

� DGEDASn – D230 < DGEDASn – MXDA < DGEDASn – IPD < DGEDASn – 

DETDA < DGEDASn – MCDEA  

� DGEDAS0 – D230 < DGEDAS0 – MXDA < DGEDAS0 – IPD 

� SPGE – MXDA < SPGE – IPD  

 IPD curing agent leads to networks with higher Tg than the one obtained using MXDA 

and then D230. 

 Another observation is that regardless of the crosslinking agent used, the DGEDASn – 

based networks always present Tg lower than the ones of DGEDAS0 – based networks.  

 Concerning the fully bio-based networks, very low Tg were obtained for DGECAR – 

based networks. DGECAR – NC540 presents a Tg of 33°C; which is a higher value than 

DGECAR – IPD glass transition temperatures of 22°C. On the contrary, SPGE – IPD’s Tg is 

higher than the one of SPGE – NC540 network, respectively 100°C and 76°C.  

 As a remark, Shibata et al [3] prepared a network based on another epoxy prepolymer 

derived from sorbitol (Denacol 614B) with TA. TA and sorbitol-based epoxy prepolymer 

were solubilized in water, freeze-dried and cured for 2 h at 180°C; resulting network presents 

a Tg of 84°C. The lower value obtained in our case can be attributed to the use of PDO to 

solubilize the TA as PDO is a short and aliphatic diol and brings flexibility to the network.  

 

4. Thermo-mechanical properties of the networks  

 
 Thermo-mechanical properties of SPGE – MXDA, SPGE – NC540 and DGECAR – 

NC540 networks synthesized in stoichiometric ratio were determined by DMA. The tanδ and 

storage modulus evolution with temperature are represented in Figure 5 and Figure 6 

respectively.  

 Values of Tβ, Tα and G’ are reported in Table 6 with calculated values of Mc and ν. 
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Figure 5. Tanδ versus temperature for SPGE – MXDA, SPGE – NC540 and DGECAR – NC540 networks 

 

 
Figure 6. Storage modulus versus temperature for SPGE – MXDA, SPGE – NC540 and DGECAR – NC540 networks 
 

 It appears that the different values of Tα measured by DMA follow logically the same 

trend as the values measured by DSC. Indeed, the DGECAR – NC540 network exhibits the 

lowest glass transition temperature value (Tα = 43°C), even lower than the Tα measured for 

DGECAR – IPD system (Tα = 50°C). The highest Tα is obtained for SPGE – NC540 network 

(Tα = 85°C) closed to the Tα of SPGE – MXDA network (Tα = 77°C).  

 Besides, an important observation is that the α-transition of SPGE – NC540 is the 

largest, which implies that a less homogenous network is obtained for SPGE – NC540. 

0.01

0.11

0.21

0.31

0.41

0.51

0.61

0.71

0.81

0.91

-100 -50 0 50 100 150 200

Ta
n

δδ δδ

Temperature (°C)

SPGE - MXDA

SPGE - NC540

DGECAR - NC540

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

-100 -50 0 50 100 150 200

S
to

ra
g

e
 m

o
d

u
lu

s,
 G

' (
P

a
)

Temperature (°C)

SPGE - MXDA

SPGE - NC540

DGECAR - NC540

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter IV 

 

 
Page 151 

Indeed, ∆T for SPGE – NC540 transition is 48°C whereas it was 35°C for SPGE – IPD one 

and 20°C for SPGE – MXDA.   

 Concerning the rubbery modulus, the lowest value is obtained for DGECAR – NC540 

network (3.8 MPa); this rubbery modulus is closed to the one obtained for DGECAR – IPD 

network (3.2 MPa, Chapter II). These low rubbery moduli are due to the DGECAR long chain 

flexibility.  

 Another point is the low value of modulus in the glassy state (0.7 GPa at -100°C) as 

compared with classical epoxy-amine network (around 2 GPa). 

 The higher value of crosslinking density is obtained for SPGE – NC540; more than 

twice the value obtained for SPGE – IPD. Crosslinking point of different nature may be at the 

origin of the low value of molar mass between crosslinking and the heterogeneity of the 

network. This could also be explained by the influence of the high chlorine content of SPGE 

epoxy prepolymer as underlined in Chapter III. The higher molar mass between crosslinking 

is obtained for DGECAR – based network using either IPD or NC540 as curing agent.  

 

 
Table 6. Thermo-mechanical properties of SPGE – MXDA, SPGE – NC540 and DGECAR – NC540 networks 

 
 
 

IV.Conclusion of Part I 
 

 In this part of our study, various formulations were characterized using the epoxy 

prepolymers previously studied (SPGE, DGEDAS0, DGEDASn and DGECAR) combined 

with different curing agent either petroleum based ones or bio-based ones such as NC540 and 

TA/PDO.  

 Different reactivity and glass transition range were obtained by changing the curing 

agent. Nevertheless, higher Tg is always obtained using DGEBA as epoxy prepolymer. 

Networks Tβ (°C) Tα (°C) 
tanδ 

max 

∆T 

(°C) 

G’ (MPa) 

(at Tα+30°C) 

d 

(g/cm3) 

νννν 

(10-3 mol/cm3) 

M c 

(g/mol) 

SPGE – IPD  -52 120 0.41 35 29.3 1.24 8.3 150 

SPGE – MXDA -44 77 0.59 20 30.1 1.31 9.5 137 

SPGE – NC540 -45 85 0.28 48 63.5 1.25 19.7 63 

DGECAR – IPD  NA 50 1.21 20 3.2 1.06 1.1 970 

DGECAR – NC540 NA 43 0.77 23 3.8 1.07 1.3 810 
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Interesting formulations are obtained using SPGE as epoxy prepolymer as it has the advantage 

of been commercially available contrary to the present position of DGEDAS epoxy 

prepolymers. 

 Concerning the choice of a curing agent, TA/PDO brings flexibility to the network 

because of the use of PDO for solubilisation of TA. Further investigations should be 

performed either on the direct solubilisation of TA in epoxy prepolymer or the choice of 

another reactive diol for TA solubilisation. The phenalkamine NC540 is also of interest, as it 

can be used to enhance the system reactivity even at moderate temperature.  

 Finally, SPGE – MXDA and SPGE – IPD are interesting systems, still investigations 

should be performed for complete understanding of SPGE reaction mechanism.   

 
 

Part II. Synthesis of epoxy networks by dual 

crosslinking reactions  

 

I. Introduction   
  

 In the previous chapters we studied the replacement of DGEBA by bio-based epoxy 

prepolymers derived from isosorbide, sorbitol and cardanol. IPD was mainly used because it 

is a conventional curing agent widely used for the preparation of epoxy-amine networks. 

Therefore, it was very useful for a first investigation on the influence of bio-based epoxy 

prepolymer structure on network properties. 

 Nevertheless, the main goal of the NAFI project was to develop a bio-based epoxy 

composite material for the production of ski boards. A bio-based epoxy prepolymer should 

replace the classical DGEBA while linen fibres were supposed to replace glass fibres. This 

last topic was investigated by our colleagues at CERMAV, Chomarat and Rossignol. On our 

side we focused on the organic matrix. The industrial constraints for a high productivity 

imposed to have short curing cycle under press (10 min at 110°C), but also long pot-life of the 

reactive formulation (90 min at 25°C). These two characteristics are a priori antagonist. This 

is why a very specific curing agent was formulated by Huntsman, and is currently used for the 

manufacturing of ski boards in association to DGEBA. This epoxy-amine system has the 
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double function of leading to a high performance structural material and of bonding this 

laminate material to the other components of the ski boards.  

 In this part of the chapter, the industrial formulation will be characterized and we will 

explain the particularity of the curing agent used. Then, the classical DGEBA will be replaced 

by the isosorbide-based epoxy prepolymers presented in the previous chapters. 

 

II. Experimental section  

1. Materials 

  

 In this part of our study we focused on the specially formulated epoxy-amine system 

used by Rossignol, composed of DGEBA epoxy prepolymer (Araldite 5085) and an amine 

curing agent formulated by Huntsman, Aradur 1019 called HA1 in this study.  

 The epoxy prepolymers used in this study, DGEBA, DGEDAS0, and DGEDASn, have 

been previously described. The HA curing agent has been supplied by Huntsman Advance 

Materials (Basel, Switzerland). According to the MSDS datasheet, HA is a liquid curing agent 

mainly composed by two aliphatic amines; its composition is presented in Table 7. It is 

important to notice that both HA1 and HA2 have a tertiary amine. 

 

Name wt % Structure 
Molar mass 

(g/mol) 
functionality 

HA1:  

N(3-dimethylaminopropyl)-1,3-

propylenediamine 

30 

 

Ma1 = 159 fa1 = 3 

HA2:  

3-[[3-(dimethylamino)propyl]- 

amino]propiononitrile 

70 

 

Ma2 = 155 fa2 = 1 

 
Table 7. Composition of HA curing agent 

  
  
 
 
 
 

                                                 
1 HA acronym stands for Huntsman Amine 
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2. Network synthesis 

a) Determination of the stoichiometric ratio r = nah/ne for the epoxy-

amine reference system  

 
 The epoxy-amine reference formulation is 100 phr of DGEBA combined with 15 phr 

of HA. Knowing the proportion of epoxy prepolymer and amine in the reference system, 

together with HA composition, it is possible to calculate the stoichiometric ratio r = nah/ne 

with the following equation:  
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= 0.27   (Equation 1) 

 

Where:  ma1, ma2 and me: mass of HA for the two amines and mass of DGEBA  

  fa1 and fa2: functionality of the two different amines 

  Ma1 and Ma2: amines molar masses  

  EEW: DGEBA equivalent weight 

 The ratio r is less than 1, which means that this system is formulated with a large 

epoxy excess.  

 

b) Formulations studied 

 
 The formulations used in this study were based on the three different epoxy 

prepolymers DGEBA, DGEDAS0 and DGEDASn cured with HA. To prepare the networks, 

the amine curing agent was added to the epoxy with the stoichiometric ratio of r = 0.27, in 

order to have a good comparison between the DGEBA – HA system and the two bio-based 

ones obtained by replacing DGEBA by DGEDAS0 and DGEDASn respectively. The reactive 

liquid mixture was mixed vigorously at room temperature and cured in PTFE coated moulds 

for 1 h at 80°C. Table 8 recapitulates the composition of the different systems studied:  
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Epoxy-amine system r = nah/ne 
Epoxy 

proportion 

Amine 

proportion 

DGEBA – HA 0.27 100 phr 15 phr 

DGEDAS0 – HA 0.27 100 phr 29.7 phr 

DGEDASn – HA 0.27 100 phr 15 phr 

 
Table 8. Compositions of the different formulations studied 

 
 

III. Results and discussions 

1. Epoxy-amine reaction mechanism; special case of HA 

curing agent 

  
 As described in the first chapter2, between a primary amine and an epoxy group, the 

addition mechanism is the more important. Nevertheless under specific conditions other 

reactions may occur such as etherification or homopolymerization. Etherification mechanism 

is unlikely to occur for temperatures lower than 150°C and without the use of catalyst. 

Etherification, which represent the first step of homopolymerization mechanism, is promoted 

by an excess of epoxy [8] or when all amino hydrogen have been consumed [9]. 

Homopolymerization is also promoted by the presence of a catalyst such as tertiary amine 

[10]. 

 Tertiary amines could therefore act as catalyst and can accelerate the polyaddition 

reactions, promote the reaction between the hydroxyl groups and the epoxy groups and also 

the epoxy groups homopolymerization reaction [10].  

 The curing agent, HA, considered in this study presents a specific structure with the 

presence of tertiary amines that may act as catalyst for reaction such as homopolymerization 

which will compete with the classical epoxy-amine addition reaction. Besides, the epoxy-

amine system, DGEBA – HA, is formulated with an excess of epoxy (r = 0.27). Dual 

polymerization may be observed with a competition between classical epoxy-amine addition 

(at low temperature) and homopolymerization of epoxy cycle at higher temperature [11]. 

 First, in order to focus on the influence of homopolymerization, systems obtained 

using only tertiary amines as catalysts were studied. Then, reactivity of the HA-based systems 

                                                 
2 See Chapter I, Epoxy-amine reaction mechanism  
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were studied by DSC and gel time measurements. The evolution of the epoxy conversion 

were measured by infrared spectroscopy. Finally, the glass transition temperatures were 

evaluated by dynamic mechanical analyses. 

 

2. Tertiary amines used as curing agent  

  

 Galante et al. [10] have studied the influence of homopolymerization by using tertiary 

amines, benzyldimethylamine (BDMA, 0.06 mol/epoxy equivalent), in the 80°C – 140°C 

temperature range. They noticed that an increase in the polymerization temperature produced 

an increase in the macroscopic gel conversion and a decrease in the glass transition 

temperature of regions of high crosslink density. This was ascribed to the increase in the ratio 

of intramolecular chain transfer over propagation rates, leading to shorter primary chains. 

Particular evolution of Tg with the curing temperature was observed: higher Tg obtained for 

networks crosslinked at lower temperature (Figure 7). 

 
Figure 7. Evolution of both Tg’s as a function of conversion for specimens cured at 80°C and 140°C. Results from 

DSC and TMA techniques are plotted [10] 
 
 In order to focus only on the influence of homopolymerization initiated by tertiary 

amine in HA curing agent, the same study as Galante was performed. Epoxy prepolymers 

(DGEBA, DGEDAS0 and DGEDASn) were combined with tertiary amine BDMA (Table 9) 
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with the same proportion as in Galante’s study (BDMA 0.06 mol/epoxy eq.). Another tertiary 

amine, Dimethylbutylamine (DMBA), was tested as its structure is closed to the HA tertiary 

amine structure (see Table 7). The crosslinking was carried out at temperatures comprised in 

the range 80°C to 140°C.  

 
Name Structure Molar mass (g/mol) 

BDMA : 

N,N - Dimethylbenzylamine 

 

135 

DMBA  : 

N,N - Dimethylbutylamine  
101 

 
Table 9. Description of tertiary amines used  

 
 

a) Study of reactivity by DSC 

 
 Figure 8 shows the non-isothermal DSC thermograms of the different epoxy 

prepolymers (DGEBA, DGEDAS0, DGEDASn) reacted using BDMA as catalyst. The glass 

transition temperatures of the systems before reaction, Tg0, the peak maximum temperatures, 

Tpeak, and the total heat of reaction (∆H) obtained from the DSC analyses are summarized in 

Table 10. It appears that Tg0 shows the same trend as in IPD-based systems.  

 An important observation concerning the calorimetry study of these three systems is 

that DGEBA – BDMA and DGEDAS0 – BDMA exhibit very low total heat of reaction as 

compared with DGEDASn – BDMA. Indeed, the –OH groups present in DGEDASn oligomers 

may catalyze the homopolymerization initiated by BDMA tertiary amines.   

 Besides, the cure reaction of DGEDAS0 – BDMA system exhibits two very distinct 

exothermic peaks at 112°C and 194°C with enthalpy of reaction equal to 28 J/g and 20 J/g. 

The second exothermy observed for DGEDAS0 – BDMA may be attributed to side reaction. 

The origin of this second exotherm peak has not been studied more deeply in the frame of this 

work.    
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Figure 8. DSC thermograms for the epoxy-BDMA systems 

 
 

Systems Tg0 (°C) ∆H (J/g) Tpeak (°C) 

DGEBA – BDMA -22 40  102 

DGEDAS0 – BDMA -57 28– 20 112 - 194 

DGEDASn – BDMA -37 120  104 

 
Table 10. DSC results for DGEBA, DGEDAS0 and DGEDASn cured with BDMA tertiary amine curing agent. 

 
 
 Regarding the very low value of ∆H of reaction obtained for DGEBA and DGEDAS0 

epoxy prepolymers combined with BDMA, focus was put on DGEDASn to study the 

influence of tertiary amine used as independent curing agent.  

 Following figure compares the DSC calorimetry study of the two systems DGEDASn 

– BDMA and DGEDASn – DMBA. Results of the DSC study are summarized in Table 11. 

 First, the tertiary amine used does not have an influence on the Tg0 value of the 

systems. Indeed, the proportion of curing agent is too low (0.06 mol/eq) to have an influence 

on Tg0. Concerning the total heat of reaction, it appears that DGEDASn – DMBA has an 

higher value: more than twice the value obtained for DGEDASn – BDMA system. DGEDASn 

– DMBA is slightly more reactive than DGEDASn – BDMA with a lower value of Tpeak.   
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Figure 9. DSC thermograms for the DGEDASn – tertiary amines systems  

 
 

Systems Tg0 (°C) ∆H (J/g) Tpeak (°C) 

DGEDASn – BDMA -37 120 104 

DGEDASn – DMBA  -37 280 100 

 
Table 11. DSC results for DGEDASn cured with BDMA and DMBA tertiary amine curing agents 

 

b) Glass transition temperatures for epoxy networks obtained using 

tertiary amines  

 
 The DGEDASn – BDMA and DGEDASn – DMBA systems were crosslinked in an 

oven at 80°C and 140°C. After 2 h, a network was obtained for the two systems considered. 

The glass transition temperatures of the two systems cured at different temperatures were 

determined by DSC. Values of Tg are summarized in Table 12. Tg values were measured at 

the second run. 

 

Systems Curing cycles Tg (°C) (DSC) 

DGEDASn – BDMA  
2 h at 80°C 68 

2 h at 140°C 40 

DGEDASn – DMBA  
2 h at 80°C * 76 

2 h at 140°C 66 

 
Table 12. Tg of DGEDASn – BDMA and DGEDASn – DMBA networks crosslinked at various temperatures 

* residual heat of reaction at 1st scan 
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 For DGEDASn – BDMA networks there is few difference between the Tg measured 

during the first and second DSC run. Nevertheless, for DGEDASn – DMBA network obtained 

after 2 h at 80°C, the first run in DSC (between -70°C to 250°C) exhibit a small exothermic 

phenomenon. Indeed, Tpeak of this exotherm corresponds to the peak maximum temperature 

observed during the DSC calorimetry study of DGEDASn – DMBA system (Figure 10). 

Therefore, this exotherm represents a residual ∆H of reaction. 

 

 
Figure 10. DSC curing study: first and second DSC runs for DGEDASn – DMBA (2h at 80°C) 

 
 
 Tg of networks obtained at lower temperature are higher than the Tg of networks 

obtained at higher temperature. This phenomenon is more visible for DGEDASn – BDMA 

system than DGEDASn – DMBA with an important difference: 28°C for DGEDASn – BDMA 

and 10°C for DGEDASn – DMBA. 

 Yet, as described by Galante study [10], higher Tg are observed for networks obtained 

at lower temperature for epoxy networks crosslinked using tertiary amine as curing agent.  

 Contrary to classical epoxy-amine systems, the structure of networks obtained through 

homopolymerization reactions is dependent upon the temperature of curing.  
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3. Study of the reactivity of HA – based systems 

 
 After a first study of the influence of homopolymerization using only tertiary amines, 

the dual polymerization induced by HA curing agent was investigated.  

 

a) DSC calorimetry study 

 
 Figure 11 shows the DSC thermograms of the three different epoxy prepolymers 

combined with HA. The glass transition temperatures Tg0 before reaction, the peak maximum 

temperatures (Tpeak) and the total heat of reaction (∆H) obtained from these analyses are 

summarized in Table 13. 

 Tg0 is the lowest for the system DGEDAS0 – HA, around -60°C, whereas the other 

systems exhibit Tg0 at -40°C. This low value of Tg0, was also observed for DGEDAS0 – IPD 

system, and can be explained by the lower molar mass of DGEDAS0 prepolymer as compared 

to the others.  

 The two systems DGEBA – HA and DGEDAS0 – HA have almost the same peak 

maximum temperatures, around 120°C, whereas Tpeak is lower for DGEDASn – HA (Tpeak = 

98°C) and in the same range as DGEDASn – DMBA (Table 11). Moreover, the shape of the 

exothermic peak is different; it is less broad than the two others. This high reactivity is 

explained by the chemical structure of DGEDASn with numerous oligomers bearing –OH 

groups which are known to catalyse the epoxy-amine reaction.  

 The exothermic peak of the DGEDAS0 – HA system shows a shoulder on the low 

temperature side while the one of DGEBA – HA system is broader and shows a “classical 

shape”.  

 Concerning the total heat of the reaction, it appears that the DGEBA – HA system 

presents the highest exothermy (around 430 J/g) whereas the two other systems exhibit lower 

∆H (318 J/g and 307 J/g for DGEDAS0 – HA and DGEDASn – HA respectively).  
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Figure 11. DSC thermograms of dynamic curing of DGEBA, DGEDAS0 and DGEDASn with HA (heating rate 

10°C/min), r=1 
 

Systems Tg0 (°C) ∆H (J/g) Tpeak (°C) 

DGEBA – HA -40°C 430 125 

DGEDAS0 – HA -60°C 318 98 / 120 

DGEDASn – HA -40°C 307 98 

 
Table 13. DSC results for DGEBA – HA, DGEDAS0 – HA and DGEDASn – HA  

 

b) Study of gelation 

 
 Gel times were determined by rheological measurements at different temperatures, for 

the three reactive systems considered. 

  The limiting factor in this study was the choice of the temperature range. Indeed, for 

high crosslinking temperature, the gelation times are too short and the measurements are little 

reliable because of the time needed to reach a thermal equilibrium. Beside for low cure 

temperature, vitrification may perturb the gelation time determination. Therefore the study of 

variation of gelation times with temperatures were performed for DGEBA – HA and 

DGEDAS0 – HA in the temperature range of 60°C – 80°C.  

 As an example, Figure 12 shows the evolution of the loss factor tanδ as a function of 

time, in a multifrequency mode (from 1 rad/s to 100 rad/s) for the system of reference 

DGEBA – HA, at 60°C.  
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Figure 12. Loss factor tanδ, isotherm at 60°C, example of DGEBA – HA 

 
  
 The gel time, tgel, is determined by the crossover of the loss factor curves at various 

frequencies. The gel times for the three different systems, the value of tanδ at gel point and 

the relaxation component ∆ are summarized in Table 14 for various temperatures.  

 In all cases, short gel times were observed. For the DGEDASn – HA system the 

gelation time is too short (around 9 minutes at 60°C) to allow a correct determination of gel 

time for higher temperatures.  

 This low value of gel time for DGEDASn – HA may be explained by the catalysis 

effect of –OH groups present in the oligomer structures. The other system based on isosorbide 

epoxy prepolymer, DGEDAS0 – HA has the higher value of gel time for each temperature of 

crosslinking considered. This observation is different of the one done on DGEDAS0 – IPD 

and DGEBA – IPD systems that exhibit almost equivalent gel times at 80°C. 

 Concerning the relaxation component ∆ the values obtained are around 0.6, these 

values are slightly lower than data on diepoxy-amine systems, where ∆ was around 0.7 [12]. 

Exception should be done for the high temperature measures (at 80°C: ∆ equal to 0.53 for 

DGEBA – HA and 0.40 for DGEDAS0 – HA) where the gel time is short and determination 

of ∆ is less reliable.  
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Systems T of measure 
(°C) 

tgel (min) tanδgel ∆ 

DGEBA – HA 
60 12.8 1.2 0.56 
70 7.4 1.4 0.61 
80 4.9 1.1 0.53 

DGEDAS0 – HA 
60 27.1 1.5 0.63 
70 12.5 1.3 0.58 
80 7.6 0.7 0.40 

DGEDASn – HA 60 9.5 1.3 0.58 
 

Table 14. Gel time data for the reactive systems DGEBA – HA, DGEDAS0 – HA and DGEDASn – HA  
 

c) Determination of activation energy 

  
 We check if the gel times obey an Arrhenius law as a function of a temperature by 

plotting lntgel = f(1/T) (Figure 13). It appears that activation energy could be determined. It 

was not straight forward; as we showed previously that homopolymerization depend on 

curing temperature.  Activation energy Ea of 47 kJ/mol was found for DGEBA – HA system 

and of 62 kJ/mol for DGEDAS0 – HA. The Ea value obtained for DGEDAS0 – HA is closed 

to the one obtained for classical epoxy-amine systems (around 60 kJ/mol [13, 14]). In contrast 

the value obtained for DGEBA – HA is low. However, complex and competitive mechanisms 

occur in the systems based on HA. The amount of homopolymerization versus epoxy-amine 

addition is dependent on temperature and epoxy monomer structure. For a comparison, an 

activation energy of 63 kJ/mol was found in the literature for the epoxy-amine system 

DGEBA – IPD [15].  

 

 
Figure 13. Arrhenius plot of the gelation phenomena for DGEBA – HA and DGEDAS0 – HA  
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d) Reaction kinetic followed by IR 

 
 Infrared spectroscopy was used to follow the epoxy-amine crosslinking reaction. The 

epoxide groups’ reduction has been monitored in real time during the samples heating at 

different temperatures. In order to estimate the conversion degree, α, of epoxide groups with 

respect to their initial concentration, the following relationship has been applied:  

� =	
�� − ��

��
= 1 −

��

��
 

Where C represents the concentration of epoxide groups and the subscripts 0 and t denote, the 

initial and the generic reaction time t, respectively. According to the Lambert-Beer law, the 

relation between the conversion degree and the absorbance A (at 916 cm-1 for the epoxide 

group) can be obtained. Furthermore, because of the reduction of film thickness during the 

curing cycle, a correction of the absorbance area has to be done. To this end, the area 

corresponding to the absorbance of epoxide group must be normalized by using the area of an 

internal reference. To this end, the stretching of aromatic groups at 1509 cm-1 was used, so 

that the epoxide conversion degree could be assessed according to the following relationship: 

� = 	
!�

"#$
− !�

"#$

!�

"#$
																			where																					!

"#$
=	

!"#$

!#)�"
												 

 This FT-IR study of reaction kinetic was only performed on DGEBA – HA because of 

the difficulty to find for DGEDAS0 – HA and DGEDASn – HA systems an internal reference 

such as aromatic groups present in DGEBA – HA system.  

 Figure 14 shows some of the FT-IR spectra of DGEBA – HA during the cure at 80°C 

as an example. The arrow indicates the time evolution of the spectra. Using the previous 

equations, the evolution of the conversion degree of epoxide groups was obtained at different 

temperature and the resulting trend is shown in Figure 15.  
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Figure 14. Superposition of FT-IR spectra at various times during DGEBA – HA cure at 80°C (between 500 cm-1 and 

1700 cm-1) 
 

 
Figure 15. Evolution of conversion at different temperatures for DGEBA – HA system 

 

 Knowing the evolution of conversion with time at different temperatures, it is 

therefore possible to determine the conversion xgel where gelation occurs. An important 

observation is that xgel at 60°C, around 0.3, is different of xgel at 80°C, around 0.5. This should 

not occur for classical epoxy-amine systems where conversion at gelation is constant. This is 

explained by the influence of the reactions such as homopolymerization which extent depends 

on reaction temperature.  
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4. Relation between crosslinking cycle and glass transition 

temperature for HA systems 

 

 DGEBA – HA networks, at a ratio r = 0.27, were cured at different temperatures, 1h at 

80°C, 1h at 110°C and 1h at 150°C. In order to follow the evolution of glass transition 

temperatures with the cure temperatures, thermo-mechanical analyses were performed on 

DGEBA – HA networks. Results of DMA analyses are presented in Figure 16.  Values of Tα, 

G’ in the rubbery region, (Mc) and the crosslinking density (ν) [16] are summarized in Table 

15. 

(a)  
 

(b)   
Figure 16. Storage modulus versus temperature (a) and tanδ versus temperature (b) for DGEBA cured with HA at 

different temperatures  
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Curing cycle 
Tα 

(°C) 

tanδ 

max 

∆Tα 

(°C) 

G’ (MPa) 

(at Tα +30°C) 

d 

(g/cm3) 

νννν 

(10-3 mol/cm3) 

M c 

(g/mol) 

1 h at 80°C 90 0.70 10 10.7 1.17 3.3 357 

1 h at 110°C 70 0.77 16 7.1 1.17 2.3 511 

1 h at 150°C 67 1.45 10 3.3 1.16 1.1 1081 

 
Table 15. Dynamic mechanical analyses of DGEBA – HA networks cured at different temperatures 

 
 There is a huge influence of the reaction temperature on the network properties. The 

first observation is that α-relaxation associated to the glass transition temperature Tg 

decreased with increasing the cure temperature. Indeed, network cured 1 h at 150°C exhibits 

lower α-relaxation temperature, 67°C, than network cured 1 h at 80°C, 90°C. Besides, 

networks cured at lower temperature have higher rubbery moduli. These networks are more 

densely crosslinked, with lower molar mass between crosslinking points, than networks 

obtained at a higher temperature. 

 Concerning the homogeneity of the networks, the more heterogeneous network is the 

one obtained at 110°C as the α-relaxation is larger (∆Tα = 16°C). As a remark, this 

temperature is used in the industrial process of manufacturing ski boards. 

 Same observation was done for the DGEDAS-based networks. For instance, 

DGEDAS0 – HA network crosslinked for 2 h at 80°C had a higher Tg than the network 

crosslinked for 2 h at 140°C. Values of Tg measured by DSC for DGEDAS0 – HA networks 

are represented in Table 16.  

 

Crosslinking cycle Tg (°C) 

2 h at 80°C 68 

2 h at 140°C 55 

  
Table 16. Tg values of DGEDAS0 – HA networks (DSC) 

 

 As underlined by our previous study using BDMA and DMBA, such evolution of 

glass transition with curing temperature is attributed to the influence of homopolymerization 

initiated by tertiary amines that compete with classical polycondensation mechanism in our 

system.  
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IV. Conclusion of Part II 
  

 In this part of our study, we focused on the characterization of the commercial epoxy-

amine system based on diglycidyl ether of Bisphenol A combined with a curing agent 

formulated for processing of composite material by Huntsman.  

 This curing agent (called HA in the study) is composed of two aliphatic amines. These 

aliphatic amines contain primary and secondary amines but also tertiary amines that act as 

catalysts in the epoxy-amine reaction and also promote homopolymerization reaction. This 

epoxy-amine system was characterized and the two bio-based epoxy prepolymers DGEDAS0 

and DGEDASn were also studied in combination with HA under the same conditions. 

DGEBA – HA system exhibits interesting reactivity (Tpeak = 125°C, higher than DGEBA – 

IPD: Tpeak = 114°C) with a high exothermy. Concerning the gelation times, they are shorter 

than the values obtained for the curing agent IPD with low energy activation, 47 kJ/mol for 

DGEBA – HA.  

 The impact of HA tertiary amines induced reactions are also underlined in the study of 

dynamic mechanical properties with Tα values higher when the system is cured at low 

temperatures (e.g. 80°C) than at high temperatures (e.g. 140 - 150°C), and simultaneously 

higher crosslink density.  

 
 
 

 

 
 
 

 

 

 
 
 
 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter IV 

 

 
Page 170 

Conclusions  

 
 Within this Chapter we focused on the influence of curing agents using different 

formulations with various curing agents either aliphatic, cycloaliphatic or aromatic ones and 

studied the influence of their structure on the properties of the resulting systems. These 

hardener were either conventional ones (from petroleum resources) or bio-based ones.  

 Besides, we also characterized the Rossignol epoxy – amine system composed of 

DGEBA and a curing agent HA. This curing agent promotes dual polymerization with 

polyaddition and homopolymerization. The epoxy – amine system, HA combined with 

DGEBA, is highly suitable for Rossignol process with adapted pot-life, glass transitions and 

also interesting properties for composites application (that are not analysed in our study).  

 The replacement of DGEBA by one of the bio-based epoxy prepolymers is not 

sufficient to obtain an epoxy-amine network with interesting properties for Rossignol 

applications. Formulation study with appropriate curing agents is needed to approach the 

desired properties. 

 In terms of reactivity, the maximum peak temperatures Tpeak, the exothermies of 

reaction ∆H and also the gel times and the activation energies should be compared. In terms 

of solid-state properties, the glass transition temperatures Tg and the rubbery moduli G’R, 

should be taken into account. Below are summarized the main results concerning DGEBA – 

HA reactivity and solid-state properties.  

 

Main characteristics of DGEBA – HA systems: the target  

 Reactivity:  Tpeak = 125°C 
   ∆H = 430 J/g 
   tgel = 13 min at 60°C; 5 min at 80°C 
   Ea = 47 kJ/mol 
 
 Solid-state properties: (for a curing at 110°C, close to industrial conditions) 
   Tα = 70°C 
   G’R = 7.1 MPa 
   Mc = 511 g/mol 
 

 Replacing the current system with a bio-based system should bring similar properties. 

Therefore, DGECAR is not an appropriate bio-based epoxy prepolymer for the application as 

it leads to low Tg networks. Concerning the curing agents, aromatic amines can be excluded, 

as they have low reactivity, as well as the D230 curing agent that has also a low reactivity as 
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it is a sterically hindered amine. IPD and MXDA are interesting as curing agents as well as 

NC540. MXDA is slightly more reactive than IPD.  

 

Bio-based competing systems:  

SPGE – IPD  

 Reactivity:  Tpeak = 101°C 
   ∆H = 338 J/g 
   tgel = 16 min at 60°C; 5 min at 80°C 
   Ea = 63 kJ/mol 
 
 Solid-state properties: (for a curing of 1 h at 80°C and 2 h at 180°C) 
   Tα = 120°C 
   G’R = 29 MPa 
   Mc = 150 g/mol 
Yet, the network may be too dense, too brittle  
 

 
SPGE – MXDA  
 Reactivity:  Tpeak = 104°C 
   ∆H = 438 J/g 
   tgel = 3 min at 80°C 
 
 Solid-state properties: (for a curing of 2 h at 80°C and 2 h at 180°C) 
   Tα = 77°C 
   G’R = 63.5 MPa 
   Mc = 137 g/mol 
Yet, the network may also be too dense with a low value of molar mass between crosslinking 
points.  
 

 It is difficult to use only a binary system epoxy – amine. The use of epoxy prepolymer 

blends should be of interest in order to obtain an appropriate reactivity, glass transition 

temperature and Mc. Therefore, use of DGECAR in combination with SPGE will increase Mc 

but also increase gel time and decrease the Tg of the network (e.g. SPGE+DGECAR / MXDA 

or SPGE+DGECAR / IPD)  

 Concerning the isosorbide-based epoxy prepolymers, DGEDAS0 is of interest as it 

leads to high Tg (Tα = 110°C, G’R= 16.6 MPa, Mc = 260 g/mol with IPD) but its reactivity is 

too low (tgel = 18 min with IPD). DGEDAS0 can be combined with NC540 to decrease gel 

time and increase Mc.  

 

 In the next chapter, water resistance of the different systems previously characterized 

will be discussed.  
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Chapter V. Water absorption of bio-based networks 

derived from sorbitol, isosorbide and cardanol  

  

 

I. Introduction   
 

 In many applications the epoxy networks may be exposed to moist conditions or a 

humid environment (boat, pipes, tanks, etc…). To improve the performances of epoxy 

networks at harsh, humid environment, it is essential to obtain a clear picture of water 

diffusion in the material. Indeed, the problem of moisture absorption in epoxy networks is one 

of significant technical importance. The absorbed moisture has deleterious effects on the 

physical properties of the material. Some of these effects are a decrease of the glass transition 

temperature, Tg, and of the Young modulus, a change in deformation mechanisms, moisture-

induced swelling and swelling stresses, the creation of microcracks and crazes, and sometimes 

chain scission through hydrolysis reaction. The topic of moisture absorption in epoxies has 

been studied for several decades.  

 In this chapter, we first summarized the models which have been proposed to describe 

water absorption and we will show the influence of the chemical structure. Then, the water 

uptake will be measured by a gravimetric method for a series of bio-based epoxy networks 

and the results will be discussed. Isosorbide and sorbitol are sugar-derived diol and polyol, 

and are highly soluble in water. Such high affinity with water may impact the resistance of the 

resulting epoxy networks to water. With the phenolic structure of cardanol, cardanol-based 

epoxy networks should be more resistant to water. To our knowledge, water sorption of bio-

based epoxy networks is not yet reported in the literature.  

 As for the other properties measured in the previous chapters, the networks based on 

DGEBA and IPD will be considered as a reference network.  
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II. Water sorption behaviour in epoxy networks 
 

1. Water-epoxy network interactions  

 
 Water diffusion in a network and more precisely in epoxy-network may be described 

by two main approaches [1]:  

 - (a) The “volumic” approach states that the water equilibrium concentration is mainly 

governed by the available free volume [2] or that water molecules occupy mainly the 

microvoids, internodular areas and morphological defects [3-6] which can offer preferential 

ways for their diffusion.  

 - (b) The “interaction” approach: Water is a highly polar molecule and specific water 

epoxy interactions occur. A vast majority of epoxies are crosslinked with amine-based curing 

agent that results in tertiary and secondary amines. These species are also polar and 

demonstrate an affinity for water. Water molecules are neither distributed randomly in the 

network nor concentrated in its morphological defects, but rather linked by strong hydrogen 

bonds mainly to hydroxyl groups [7] or tertiary amines ones [8] (Figure 1). The contribution 

of both groups could be interdependent.  

 
Figure 1. Three possible types of hydrogen bonds involving the hydroxyl of an amine-cured epoxy [9] 

 

 In the “volumic” approach the water absorption is controlled by the physical state of 

the network, whereas in the “interaction” approach it is the chemical structure of the network 

that matters.  

 These two approaches may be complementary as “volumic” approach fails to explain 

why free-volume rich substances such as silicone hydrocarbons are hydrophobic.  According 

to Soles [9, 10] topology (nanopores), polarity and molecular movements should be taken into 

account to described water diffusion in epoxy networks. Water traverses the epoxy through 
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the network of nanopores, which are also coincident with the polar hydroxyls and tertiary 

amines. In this respect, the nanopores provide access to the polar interaction sites (Figure 2).  

 

 
Figure 2. Water diffusion in epoxy-amine networks through the nanopores where specific interactions between the 

water and polar hydroxyls and amines regulate transport [9] 
 

2. Nature of sorbed water  

 
 Based on the results of dielectric studies [11], time-resolved FTIR [12] and NMR 

water molecules sorbed in epoxy network were classified into free and bound water :  

 - The term “free water” represents water that has diffused in the free volume of 

network and could be at the origin of clusters.  

 - Two types of bound water were found in epoxy networks using NMR. The binding 

types are classified as Type I or Type II bonding, depending on difference in the bond 

complex and activation energy [13]. The activation energy of Type I and Type II bound water 

is ∼10 and ∼15 kcal/mol, respectively. Type I bonding corresponds to a water molecule 

which forms a single hydrogen bond with the epoxy network. This water molecule possesses 

lower activation energy and is easier to remove from the network. Type II bonding is a result 

of water molecule forming multiple hydrogen bonds with the network. This water molecule, 

therefore, possesses higher activation energy and is correspondingly harder to remove (Figure 

3).  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter V 

 

 
Page 176 

 
Figure 3. Nature of water sorbed according to Zhou [13] (a) type I, (b) type II  

 
 Nevertheless, the exact nature of the interaction between water and epoxy network is 

still not clearly understand and the theory of free and bound water is controversial. The 

formation of hydrogen bonding between water and the matrix is supported by many authors 

[14]. Some suggested that interactions could occur with the hydroxyl groups resulting from 

the oxirane group opening during epoxy-amine addition [15] and with the tertiary amines 

[16]. 

 

3. Physical consequences of water absorption  

 

a) Swelling 

 According to Zhou [13], only the bounded water molecule of type I, that are only 

partially linked to the network can bring swelling of the network, whereas the water molecule 

of type II reinforced the chains cohesion and should not lead to swelling. The water molecules 

that occupy the free volume of the network should not also bring swelling.  

 

b) Plasticization  

 Plasticization is a result of the diffusion of water which consequence is the decrease in 

glass transition temperature of the networks.  

 Using the classical hypotheses of the free volume theory, the glass transition 

temperature for a polymer (p) and solvent (s), with a free fraction of volume v is given by the 

Kelley and Bueche model [17]: 

 

Tg =	
(1-v)pTgp�	vαsTgs
(1-v)αp	�	vαs
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 Where Tgp and Tgs are the glass transition temperatures of the dry polymer and the 

solvent and αp and αs are the respective coefficients of free volume expansion. Glass transition 

temperature of water is not clearly defined; some authors assumed it is comprised between 

100 K and 150 K [18]. 

 

 This relationship can be simplified assuming the validity of the Simha-Boyer rule [19],      

αTg = const., which leads to : 

1
Tg
=	

1
Tgp

�Av 

Where : �	 = 	 �
���

−	 �
���

 

 This equation underlines the fact that the plasticizing effect increases with the 

equilibrium water content and with the initial glass transition Tgp of the network in the dry 

state.  

 

c) Degradation of the network 

 Sorbed water may have more severe consequences to the network integrity. Indeed, 

although relatively short-term exposure can lead to plasticization, more prolonged aging or 

thougher conditions (higher temperatures) can lead to crack growth and degradation of the 

network [20].  

 Such phenomenon may be caused by differential swelling either due to a gradient of 

water concentration in the network that enhance formation of water clusters [6] and craze 

initiation [5] or to the presence of hydrophobic loads.  

 Hydrolysis reactions may also be at the origin of network degradation:  

∼X-Y∼ + H2O � ∼X-OH + HY∼ 

 This hydrolysis brings chain cuts, diminution of crosslinking density and is complex to 

quantify.   
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4. Diffusion kinetics  

 
 The most commonly used model for the sorption behaviour in epoxy networks is the 

Fick diffusion model and more precisely the Fick’s second law that represents the diffusion of 

water in the direction of the concentration gradient, which, in the unidimensional case, may be 

written as:  

∂C
∂t

	=	D	
∂2C
∂x2

 

 

Where: D is the diffusion coefficient, x the coordinate along the sample’s thickness (h) and C 

the water concentration.  

  
 The resolution of this equation, with approximation at short times (when C ≤ 0.5 C∞ , 

gives :  

��

��
=	

4

ℎ√#
$%&' 

Where M∞ is the mass of water absorbed at saturation and Mt is the weight of water at time t.   

 

 Using this equation, the diffusion coefficient D may be calculated from the slope of 

the curve representing the evolution of weigth gain, Mt, as a function of the √t/h. 

 

5. Effect of the network structure on the water sorption  

 

 The molecule architecture in an epoxy network can be varied via different methods: 

-the chemical structure of monomers 

-the stoichiometric ratio between curing agent and epoxy prepolymer 

-the conversion reached after different curing cycles 

 Below are given some typical examples of water sorption behaviour for the different 

cases cited above.  
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a) Influence of chemical structure 

 Zinck et al. [21] have investigated the influence of the chemical structure of epoxy 

network on the sorption behaviour and water-absorption consequences on mechanical 

properties. They studied two types of epoxy networks obtained with DGEBA combined with 

an aromatic diamine, 4,4’ methylenebis[2,6-diethyleneaniline] (MDEA) and an anhydride 4-

methyl 1,2,3,6-tetrahydrophtallic (MTHPA). 

 
Figure 4. Structure of methylene diethyleneaniline (MDEA) and methyl tetrahydrophtallic (MTHPA) 

 
Sorption experiments were carried out on these samples. Weight gains for immersion in water 

at 60°C are presented in Figure 5. The initial portion of the curves is linear, followed by 

equilibrium, highlighting behaviour close to Fickean sorption. Diffusivity values are 

underlined in Table 1. The lower diffusivity observed for the amine based network was 

explained on the basis of a more rigid network as compared to the anhydride based system. 

Amine based networks containing also hydroxyl –OH groups show a more important weight 

gain at the equilibrium than anhydride based ones that leads to a plasticization of higher 

magnitude. Besides, the plasticization the degradation is reversible for the anhydride based 

network but irreversible for the amine based network, as the initial value of the glass 

transition temperature was not recovered after water desorption (samples stored in oven at 

60°C for 4 months).  

 
Figure 5. Water sorption kinetics for MTHPA (squares) and MDEA (circles) based DGEBA networks at 60°C as a 

function of t1/2 [21] 
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Table 1. Diffusivity, weight gain at equilibrium, specific volume and glass transition temperature for MTHPA and 
MDEA based polyepoxide networks dry and at equilibrium sorption at 60°C. [21] 

 
 
 Influence on the network structure on hydrogen bonding with water has also been 

presented in Zinck work [21]. In fact, hydroxyl groups in epoxide amine networks are 

involved in different types of hydrogen bonding interactions: 

  1- OHpolymer – N intra-segmental bonds 

 2- intramolecular dimeric associations between 2 hydroxyl groups linked to the same 

nitrogen atom, OHpolymer – OHpolymer .  

 Such interactions are indeed affected in the presence of water. Therefore the sorbed 

water modifies/disrupts the OHpolymer – N hydrogen bonds to form OHwater – OHpolymer 

hydrogen bonds (and probably OHwater – N hydrogen bonds).  

 Water molecules can establish interactions of sufficient intensity to modify 

substantially the stronger OHpolymer – OHpolymer and OHpolymer – N pre-existing hydrogen bonds. 

Intensity of water bonds in the case of epoxide aromatic amine networks is less important (as 

represented in Figure 6). The curing agent structure can therefore impart the interaction of 

water within the network.  

 
Figure 6. Network crosslinks for (a) anhydride, (b) aliphatic and (c) aromatic amine based polyepoxide networks 
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 Li et al. [22] also studied the influence of the network structure on the water sorption. 

Indeed, water sorption behaviour of six epoxy systems with different chemical structure of 

amines and epoxies were monitored at five temperatures ranging from 35 to 75°C. Three 

different epoxy prepolymers were studied the diglycidyl ether of bisphenol A (DGEBA), the 

triglycidyl-p-aminophenol epoxy prepolymer (TGAP) and the tetraglycidyl-4,4’-

diaminodiphenylmethane epoxy prepolymer (TGDDM) as represented in Figure 7. These 

epoxy prepolymers were combined with two different curing agents 4,4’-diamino-

diphenylsulfone (DDS) and 4,4’-diamino-diphenylmethane (DDM) represented in Figure 8.  

 Among the different conclusions of their work, it appears that:  

 - The equilibrium water contents of networks are strongly dependent on the chemical 

structures of epoxy prepolymers and curing agents. Networks cured with same curing agent 

(no matter DDS or DDM) followed the equilibrium water content sequence TGAP > TGDDM 

> DGEBA, while for the same epoxy prepolymer, DDS-cured network always had a higher 

equilibrium water content than DDM-cured network.  

 - The polarity of the system is a decisive predictor of equilibrium water contents. 

Increase the polarity of the epoxy prepolymers and curing agents results in higher equilibrium 

water sorption. 

According to the authors, the free volume fraction is not a decisive factor in governing the 

equilibrium water content. 

 

 
Figure 7. Structure of epoxy prepolymers used in Li study (DGEBA, TGAP, TGDDM) 
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Figure 8. Structure of curing agents used in Li study (DDS and DDM) 

 

b) Influence of stoichiometric ratio 

 
 Carfagna et al. [8] studied the influence of stoichiometric ratio of an epoxy – amine 

system on the water sorption of its network. Epoxy networks based on diglycidyl ether of 

bisphenol-A (DGEBA) epoxy cured with different amounts of triethylenetetramine (TETA) 

have been characterized. The authors observed an increase of water uptake at 20°C (S20) and 

70°C (S70) and a decrease of glass transition temperatures for the samples cured with an 

increased content of amino hardener as represented in Table 2. It was attributed to the high 

hydrophilic character of the amine.  

 

Amount of TETA T g dry (°C) Tg wet* (°C) S70 (%) S20 (%) 

5 phr 109 105 1.92 1.50 

14 phr 142 109 3.30 3.90 

25 phr 95 59 8.66 10.80 

 
Table 2. Some physical properties of DGEBA epoxy resin cured with different amounts of TETA [8]  

(*: wet glass transition of networks saturated at 70°C) 
 
 The system crosslinked with a large excess of diamine (25 phr), when immersed in 

liquid water, sorbs 10.80 and 8.66 % of water which is much higher than the two other 

compositions. The strong influence of stoichiometry may be related to the increase of the 

number of hydrogen sites due to the presence of unreacted amines.  

 

  Tcharkhtchi [18] studied the water sorption of diglycidyl ether of butane diol 

(DGEBD) – DETDA network with different amine/epoxide molar ratio (r).  It appears that for 

the samples free of unreacted epoxides (r > 1), the process of water sorption is Fickian. For 

the samples having an excess of epoxide groups (r < 1), a two-step process was observed. The 

second step was attributed to epoxide hydrolysis.  

 Besides, the main hydrophilic site in epoxy-amine is the amino-alcohol group:  
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 The contribution of this group to water absorption depends on its neighbour, and 

considering there is no other hydrophilic site (i.e. of different nature), the equilibrium water 

concentration should be proportional to the hydroxyl concentration. Yet, it appears that the 

dependence is rather parabolic than linear as represented in Figure 9. This could be explained 

by the fact that water can be double bonded. A pair of close hydroxyl groups could be, then a 

favourable site for water absorption.  

 As a remark, Tcharkhtchi observed a very small volume change but without clustering 

or microvoids. 

 
Figure 9. Number of sorbed water moles per kg against hydroxyl concentration [18] 

  

� Water sorption in epoxy network is strongly linked to the network structure. Many 

parameters can enhance the inherent affinity of water with the network such as: presence of 

hydrophilic sites due to available amine sites for non-stoichiometric systems, higher hydroxyl 

concentration and their proximity in the network structure.  
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III. Experimental section  

1. Materials 

  

 The various epoxy prepolymers and curing agents studied in this section have been 

already described in the previous chapters. First, the influence of curing agent on water 

absorption will be studied. The water sorption of isosorbide-based networks obtained with 

either diamines, tertiary amines or HA curing agent (dual polymerization) will be studied. 

Then the influence of the epoxy prepolymer structure will be discussed using sorbitol and 

cardanol derived epoxy prepolymer. All the epoxy networks were prepared as described in the 

previous chapters.  

 

2. Measurements 

 

 Water resistance of the different networks was monitored in this Chapter using: 

 Gravimetric measurements: Samples of approximately 2-3 mm thick were immersed 

in distilled water at room temperature and weighted periodically. The samples were removed 

from the water and wiped to remove excess water. As a remark, samples were stored under 

inert atmosphere before the test in order to avoid initial water absorption. For some systems, 

the whole sorption kinetic was followed whereas for other systems a comparison was 

established with the water absorption amount after 5 days of immersion. Besides, gravimetric 

measurements were also performed on samples stored in controlled atmosphere (T = 20 ± 1°C 

and 50 ± 5 % RH) 

 Glass transition temperatures of the aged networks were determined by DSC analyses.  

Indeed, with the samples regularly weighted to follow the water sorption kinetic, one piece for 

each system considered was used to follow the evolution of Tg. Regularly, small part of this 

“test piece” were cut and used to measure Tg by DSC analyses. These measures allow us to 

follow the evolution of Tg with the water absorption.   

 Structural characterization: The fracture surfaces of some epoxy – amine networks 

were observed by scanning electron microscopy (SEM, Philips XL 20). The samples were 

immersed in liquid nitrogen and fractured; one part of the sample was stored under inert 
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atmosphere whereas the other one was immersed in water for 10 min (Figure 10). The fracture 

areas were coated with gold. The 2 areas of fracture were then observed by SEM.  

 

 
Figure 10. Preparation of samples for SEM analyses 

 
 
 

IV. Water Absorption of Isosorbide-based epoxy 

networks 
 
 The first bio-based epoxy prepolymer studied were the isosorbide-based epoxy 

DGEDASn and DGEDAS0 (the purified form of DGEDASn).  

 

1. Influence of the curing agent structure on the water 

absorption 

  

 For a first estimation of the stability of the bio-based networks towards water 

absorption, the weight gain of a serie of DGEDASn – based networks was measured at room 

temperature. Various curing agents were used: diamine, tertiary amines as well as dual curing 

agent (HA).  

 

a) DGEDAS networks obtained with diamine curing agents 

 
 Water sorption of DGEDAS-based networks obtained with diamines such as IPD, 

D230, MXDA, MCDEA and DETDA were characterized. The percent weight gain obtained 

after 5 days of immersion in distilled water at room temperature are summarized in the 
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following table. We report also the values of initial glass transition temperatures and the data 

related to DGEBA based network cured with IPD.  

 

Networks 
Tg (°C) 

initial 

wt % water 

(5 days) 
Comments 

DGEBA - IPD 150 1 Reference system 

DGEDAS0 – IPD 102 26  

DGEDAS0 – D230 52 29  

DGEDAS0 - MXDA 79 ND Some fragments after 5h of immersion 

DGEDASn – IPD 91 ND Light swelling, fragmentation after 1h 

DGEDASn – D230 48 ND Medium swelling, fragmentation after 30 min 

DGEDASn – MCDEA 120 8.4  

DGEDASn - DETDA 112 29  

  
Table 3. Water absorption of different DGEDAS-based networks after 5 days of immersion in distilled water at room 

temperature 
 

 All networks synthesized from DGEDAS show very high water absorption, even some 

of them show degradation. The lower water absorption is observed for MCDEA (8.4 wt %) 

that has an aromatic structure and contains Cl atoms. As underlined in Zinck study [21] the 

use of aromatic curing agent decrease the polarity of the network structure. 

 An unexpected behaviour is observed with the fragmentation of some DGEDASn and 

DGEDAS0-based networks cured with MXDA, IPD or D230. Fragmentation starts from the 

edges of the sample and propagates to the core of this one. If the fragmentation is rapid it 

seems that no further evolution of the fragments is visually observable. This unexpected 

behaviour underlines the high affinity of these networks with water.  

 On the opposite, the reference network DGEBA – IPD has a very good resistance to 

water as it absorbs 1 wt % of water. 

 Even when fragmentation was not observed, the amount of water absorbed for 

DGEDAS networks were very important. This very bad water resistance for these bio-based 

networks was unexpected. It appears that it could be the main drawback of these materials.  

 

 

 

 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter V 

 

 
Page 187 

Influence of DGEDAS structure  

 

 Even if DGEDAS-based networks present high affinity with water as compared with 

conventional network such as DGEBA – IPD, it appears that DGEDAS0 have better water 

resistance than DGEDASn. DGEDAS0 and DGEDASn epoxy prepolymers differ by the 

presence of numerous oligomers in DGEDASn composition. These oligomers contain –OH 

groups. It is well known that the presence of –OH groups enhance the water absorption of the 

resulting networks. Different –OH groups can be observed in network structures, the one 

already present within the oligomers structure and the one formed during the epoxy-amine 

addition mechanism. It appears that the –OH groups already present in DGEDASn structure 

increase its affinity with water.  

Remark: Investigations were performed to block these oligomers –OH groups by 

reaction with p-tolyl isocyanate (pTI) in order to obtain a free –OH epoxy prepolymer. 

Results of this experiment are described in the Annex D. Nevertheless, the resulting epoxy 

prepolymer exhibit an important viscosity and network was not obtained using this epoxy 

prepolymer.  

 

Influence of stoichiometry  

 

 The influence of stoichiometry for DGEDASn – D230 and DGEDASn – IPD were 

evaluated. Results of water immersion in distilled water at room temperature are presented in 

Table 4. Whatever the stoichiometric ratio, the fragmentation is observed in all cases. The 

only difference can be observed in the swelling of DGEDASn – D230 networks at different 

stoichiometry.  

 

Networks r 
Tg (°C) 

initial 

Beginning of 

fragmentation 
Swelling 

Number of 

fragments 

Size of 

fragments 

DGEDASn – IPD  

0.5 39 1 h Light - Small 

1 91 1 h Light -/+ Small 

1.5 70 1 h Light + Small 

DGEDASn – D230 

0.5 15 30 min Light - (4 parts) Big  

1 48 30 min Medium ++ Small 

1.5 25 30 min Important  +++ Small 

 
Table 4. DGEDASn – IPD and DGEDASn – D230 networks at different stoichiometry immersed in water.  
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b) DGEDAS based networks obtained with tertiary amine (BDMA) or 

HA curing agent  

 

 In order to focus on the special case of homopolymerization and its consequence on 

water absorption of the network, DGEDASn combined with BDMA (to focus on 

homopolymerization only) and HA (special curing agent: dual polymerization) were studied. 

DGEBA – HA is presented here as a reference.   

 

 DGEBA – HA and DGEDASn – HA systems were prepared at the specific 

stoichiometric ratio r = 0.27 and crosslinked at two different temperatures. Their behaviours 

in water are summarized in Table 5. 

 

Networks Curing cycles 
Tg (°C) 

initial 

wt % water 

(5 days) 
Comments 

DGEBA – HA  1 h at 80°C 90 0.9 Reference system 

DGEDASn – BDMA  1 h at 80°C 68 ND 
Fragmentation  

DGEDASn – BDMA 1 h at 140°C 40 ND 

DGEDASn – HA  1 h at 80°C 61* ND 
Fragmentation after 15 min 

DGEDASn – HA 1 h at 140°C  ND 

 
Table 5. Behaviour of DGEDASn – BDMA and DGEDASn – HA networks immersed in water 

 

 Whatever the curing temperature, DGEDASn – BDMA and DGEDASn – HA have 

poor water resistance. The main difference for DGEDASn – HA cured 1 h at 80°C and 1h at 

150°C remains in the size of the fragments. Indeed, the fragments are smaller for the network 

crosslinked for 1h at 80°C than for 1 h at 140°C.  

 As a comparison, DGEBA – HA sample retains its original form and no swelling is 

visually observed.  

 

 Besides, HA curing agent induced dual polymerization with both addition and 

homopolymerization mechanisms. Depending on the cure temperature either addition or 

homopolymerization is enhanced which could impart the number of –OH groups formed 

during polymerization. According to Rozenberg, homopolymerization reduced -OH groups 

formation as compared with classical epoxy-amine formation [23]. Yet, whatever the cure 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Chapter V 

 

 
Page 189 

temperature of the networks, HA curing agent contains tertiary amines that enhance water 

affinity of the network. 

 As a remark, no swellings of the networks were visually observed before their rapid 

fragmentations.  

 

2. Water sorption of DGEDASn – HA and DGEDASn – 

IPD networks 

a) Water sorption kinetics 

 
 Even if DGEDASn – IPD exhibited higher resistance to water than DGEDASn – HA, 

these networks still have high affinity to water and fragmentation was observed in both cases 

when networks were immersed in water. In order to follow the water sorption kinetics, 

networks were aged under more gentle conditions in a controlled atmosphere (T = 20 ± 1°C 

and 50 ± 5 % RH) to follow the water absorption kinetics of the networks.  

 For each system, 3 samples of 30 x 20 x 2 mm3 were aged during 60 days in these 

conditions and regularly weighted.  

 The water sorption kinetics for DGEDASn – HA and DGEDASn – IPD are represented 

in Figure 11.  

 

 
Figure 11. Water sorption kinetics for DGEDASn – HA and DGEDASn – IPD networks  

(Samples stored at RT, RH = 50%) 
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 The water sorption kinetics of these two different networks confirm the lower 

resistance to water of the DGEDASn – HA network compared to DGEDASn – IPD one. The 

use of HA as a curing agent enhance the affinity of water for the network.  

Whatever the curing agent used the amount of water absorbed by the networks remains very 

high (more than 2 % weight gain for DGEDASn – IPD and more than 3 % for DGEDASn – 

HA) for a gravimetric study under such moderate moisture conditions.  

 

b) Evolution of Tg with ageing  

 
 Such affinity of the DGEDASn-based networks with water may induce plasticization 

of the networks. Therefore, the evolution of Tg with ageing of DGEDASn – HA and 

DGEDASn – IPD networks under controlled atmosphere (20 ± 1°C and 50 ± 5 % RH) was 

followed.  

  

 As an example Figure 12 represents the DSC thermogram obtained for DGEDASn – 

HA network. As represented, two different runs were performed: one between -60°C and 

250°C and the other, after a quick cooling, between 25°C and 150°C. The first DSC run 

shows the Tg of the network (around 30°C) and a light endothermic phenomenon around 

110°C that may represents the evaporation of water already absorbed by the network. The 

second run shows the Tg of the network after evaporation of water (around 61°C). As a 

remark, this DSC thermogram is obtained for DGEDASn – HA network prepared the same 

day (t = 0 + ε) and already presents a plasticization effect with a decrease of Tg from 61°C to 

30°C.  This observation underlined the very high affinity of DGEDASn – HA network with 

water.  
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Figure 12. DSC plot for DGEDASn – HA network (t = 0) 
 
 For comparison, Figure 13 represents the DSC plot of DGEDASn – IPD (at t = 0). It 

appears that no evolution of Tg is observed between the first and the second run. Besides, no 

endothermic phenomenon is observed during the first run. Unlike, DGEDASn – HA no water 

was absorbed at t = 0 + ε for DGEDASn – IPD network.   

 

 
 

Figure 13. DSC plot of DGEDASn – IPD network (t = 0) 

 

 Same DSC analyses were performed every week of the ageing of DGEDASn – IPD 

and DGEDASn – HA networks at 20 ± 1°C and 50 ± 5 % RH. Figure 14 and Figure 15 

represent the evolution of the first DSC run plot with the time of ageing for DGEDASn – HA 

and DGEDASn – IPD respectively. Besides, Tg measured in the first runs and in the second 

runs for all the DSC analyses performed are summarized in Table 6.  

 

 It appears that at every step of the DGEDASn – HA network’s ageing an endothermic 

phenomenon is observed around 110°C. Even if some of the DSC analyses do not allow a 
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correct determination of Tg, a decrease of Tg is observed for DGEDASn – HA network till 

10°C approximately. This plasticization effect seems to be reversible till 3.4 % weight gain by 

water. Indeed, from this point the Tg in the second runs decreased from 60°C to 50 – 55°C. 

This may be explained by either irreversible hydrolysis (damage) of the network or by 

insufficient water evaporation during the first run because of the high amount of water 

absorbed.  

 
Figure 14. Evolution of Tg with the time of ageing for DGEDASn – HA – First DSC run 

 
  

 Concerning the Tg evolution of DGEDASn – IPD network, a plasticization of the 

network is also observed with a decrease of Tg from 101°C to 40 – 60°C. For high amount of 

water absorbed, Tg became difficult to measure in the first run and two transitions seem to be 

observed. Unlike DGEDASn – HA, no endothermic peak is clearly identified near 100-110°C, 

this should be explained by a higher Tg value as compared with the one obtained for 

DGEDASn – HA.  Glass transition can overlap the endothermic phenomenon of water 

evaporation which can also explain why Tg is difficult to measure. Finally, the plasticization 

is reversible as the Tg measured in the second runs were around 100°C; which correspond to 

the Tg of the DGEDASn – IPD in its “dry state”. It means that no hydrolysis reactions 

occurred during the hygrothermal aging.   
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Figure 15. Evolution of Tg with the time of ageing for DGEDASn – IPD – First DSC run 

 
 

 DGEDASn - HA DGEDASn - IPD 

Days 
% weight 

gain 

Tg 

(DSC 1st run) 

Tg 

(DSC 2nd run) 

% weight 

gain 

Tg 

(DSC 1st run) 

Tg 

(DSC 2nd run) 

0 0.00 28 61 0.00 99 101 

8 2.00 10 50 1.05 78 100 

14 2.55 17 63 1.43 98 102 

21 2.95 13 60 1.76 41/71 101 

29 - 18 55 - 43/71 101 

34 3.45 12 52 2.17 42/71 100 

42 3.70 11 50 2.38 44/68 101 

48 3.50 13 51 2.44 40/62 102 

 
Table 6. Evolution of Tg measured by DSC for DGEDASn – HA and DGEDASn - IPD 

 
 The main conclusion is that networks obtained with DGEDASn epoxy prepolymers 

and either HA or IPD as a curing agents are not resistant to water even under atmospheric 

moisture conditions and have to be stored under inert atmosphere to prevent plasticization of 

the networks. This phenomenon is important with a significant drop in the glass transition 

temperature values.   
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c) Evolution of the surface: observation by SEM  

 
 Finally to understand the important fragmentation of the DGEDASn – HA networks in 

water, SEM observation of the DGEDASn – HA sample surface before and after immersion in 

water for 10 min (beginning of fragmentation) were performed.  

 Figure 16 represents the SEM images of two fracture surfaces: one stored under inert 

atmosphere and the other immersed in water for 10 min. In both cases, images of the edge and 

the core of the samples were obtained.  

 

 
Figure 16. SEM images of the fracture surface of DGEDASn – HA networks. Before and after immersion in water for 

10 minutes 
 
  

 If no specific differences are observed in the middle of the fracture surface (fracture 

surface characteristic of a brittle material), the edge seems to present the first water “erosion” 

effect. Therefore, enlargements of this area were performed and are represented in Figure 17. 

Initiation of edge degradation is observed after 10 min of water immersion. Enlargement of 

the zone shows that two different areas may be observed: one that presents a mirror aspect 

and the other one that presents some “cavities”. Heterogeneous diffusion of water in the 

epoxy network may be at the origin of these two areas.  
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Figure 17. SEM images: focus on the edge of the fracture areas for DGEDASn – HA networks before and after ageing 

in water 
 
 Same observations were obtained by Morgan et al. [5] but for tetraglycidyl-4,4’-

diaminodiphenylmethane (TGDDM) epoxy prepolymer and 4,4’-diamino-diphenylsulfone 

(DDS) networks (see Figure 7 and Figure 8 for TGDDM and DDS structures) immersed in 

water at higher temperature. Scanning Electron micrographs of the cavity obtained by Morgan 

are represented in Figure 18. According to Morgan, the cavity regions that may contain high 

water content would be favourable sites for craze initiation and subsequent propagation. The 

dilatational changes produced in the epoxy by the crazing process enhance the accessibility of 

moisture to sorption sites within the epoxy to a greater extent than crack propagation alone.  

 
Figure 18. Scanning electron micrographs of fracture surfaces of wet epoxy network according to Morgan [5] (∼∼∼∼ 4 

wt% water absorbed)  
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 Finally, the higher affinity of DGEDASn – based network chemical structure with 

water enhance the water absorption and therefore the quick degradation observed in our case 

under low temperature (RT).   

 

3. Conclusion on water absorption of isosorbide-based 

networks 

 

 To replace bisphenol A by an isosorbide-based segment has strong consequences on 

the water resistance of the networks synthesized from this bio-based prepolymer, with 

sometimes deterioration of the networks. The reasons for this unexpected behaviour are not 

clear and more experiments are needed to conclude. Yet, it appears that networks obtained 

with DGEDAS0 exhibit lightly better water resistance that the ones obtained with DGEDASn; 

water affinity of the network being increased by the presence of numerous oligomers with –

OH groups. 

  The following hypotheses can be done to explain the very low water resistance of 

DGEDAS-based network by comparing the simple cases of DGEBA – IPD and DGEDAS0 – 

IPD having 1 wt % and 26 wt % water sorption respectively: 

 -Aliphatic ether cycle (i.e. isosorbide) increases the polarity of the material, contrary to 

aromatic units present in DGEBA structure. Moreover, the conformation of the isosorbide 

segments between crosslinking points is very particular and may favour water interactions 

with closed hydrophilic groups (such as –OH groups) and strong hydrogen bonding, that 

enhance water affinity of the structure.   

 
Figure 19. Structure between crosslinking points for 1: DGEBA – IPD and 2: DGEDAS0 - IPD 
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 -Finally, the free volume aspect was not discussed in our study. Yet, high free volume 

structure can increase water affinity and propagation in the networks.  

 
 

V. Influence of the epoxy prepolymer structure on 

water absorption of the networks  
 
 Other bio-based epoxy prepolymers were studied in order to obtain bio-based epoxy 

networks with good water resistance.  

  

1. SPGE-based networks 

  

 SPGE are commercially available with different grades. The reference Denacol 622 is 

a water insoluble Sorbitol Polyglycidyl Ether. The networks based on this prepolymer were 

studied in the Chapters III and IV. Water resistance of the SPGE-IPD epoxy networks were 

studied. It appears that contrary to isosorbide-based epoxy networks sorbitol-based ones do 

not degrades in water. Therefore, gravimetric studies were performed on the SPGE-IPD 

immersed in distilled water at room temperature. As it was underlined in the third Chapter, the 

SPGE-based systems exhibit particular behaviour with an increase of Tg with the 

stoichiometric ratio r. The influence of r on water resistance a SPGE – IPD network at a 

stoichiometric ratio r > 1 was studied (r = 1.25). Water sorption kinetics of the two SPGE – 

IPD networks are represented in Figure 20 with the water sorption kinetics of DGEBA – HA 

network as a reference.  

 

 SPGE – IPD (r = 1) has equivalent water resistance as DGEBA – HA with M∞ around 

5 wt % at RT. We observed also that SPGE – IPD networks with r > 1 has a lower water 

resistance than SPGE – IPD at r = 1, with M∞ around 20 %. Usually with an excess of amine, 

the water absorbed is increased but in our case there is also an increase of Tg, which means 

that a more dense network (see Chapter III) was obtained. This underlined the particularity of 

SPGE-based systems out of stoichiometry (r > 1). SPGE – IPD networks obtained with an 

excess of amine include more hydrophilic groups, probably due to Cl-induced side reactions.  
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Remark:  Bio-based networks obtained using another SPGE reference, Denacol 614B, 

were studied in terms of water resistance. Indeed, this epoxy prepolymer is as DGEDAS0 and 

DGEDASn almost entirely soluble in water. Water resistance of the network (immersed in 

distilled water at room temperature) obtained with this epoxy prepolymer is presented in 

Annex D. Very high water absorption was observed (up to 25 wt % water sorption).  

 
 

 
Figure 20. Water sorption kinetics for SPGE - based networks, with DGEBA - HA as a reference  

(Samples immersed in distilled water) 
 
 

2. DGECAR-based networks 

 
 Cardanol-based epoxy prepolymer, DGECAR, was also studied in combination with 

IPD or NC540 in the previous chapters. Because of its phenolic structure good water 

resistance were expected. Therefore, in our study the water resistance of DGECAR-based 

networks was also characterized. Water sorption kinetics of DGECAR – IPD and DGECAR – 

NC540 networks are represented in Figure 21, with DGEBA – HA sorption kinetic as a 

reference.  

 

 It appears that DGECAR either combined with a classical curing agent IPD or with 

bio-based curing agent NC540 exhibit better water resistance than the DGEBA – HA network 

with a maximum water gain around 1 wt %.  
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Figure 21. Water sorption kinetics for DGECAR-based networks with DGEBA – HA as a reference  

(Samples immersed in distilled water) 
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 Conclusions 

 
 In this Chapter we focus on the water absorption of the different bio-based networks 

previously studied. Indeed, water resistance of epoxy networks is an important factor as such 

networks are known to absorb water that could impact the network properties (plasticization, 

degradation…).  

 First, in order to focus on the influence of crosslinking agent on water affinity with the 

network, different DGEDAS-based networks were studied combined with conventional 

diamines but also tertiary amines and HA curing agent. It appears that these networks exhibit 

very poor water resistance whatever the curing agent used. Indeed, with some curing agents 

(aliphatic and cycloaliphatic) fragmentation was observed. The use of tertiary amine and HA 

curing agent with its particular mechanism of dual polymerization even lower the water 

resistance of the networks. It has been also shown in this chapter that the –OH groups present 

in the structure of the various oligomers of DGEDASn increase the affinity of the networks 

with water. Besides, another important factor should be the free-volume contribution. The free 

volume of these networks has not been measured, yet it should be important as even with a 

high amount of water absorbed no swelling is visually observed. The “free-volume” 

contribution combined with the high hydrophilicity of the DGEDAS structure could increase 

water affinity of the networks. Nevertheless, investigations remain to be done to fully 

understand and also to decrease the high water affinity of these networks with water.  

 Finally, even combined with more hydrophobic curing agents, the DGEDAS-based 

networks absorb an important amount of water.  

 Different bio-based epoxy prepolymers were also tested such as SPGE and DGECAR, 

to focus on the influence of the epoxy prepolymer structure on the water resistance. The 

networks obtained from SPGE exhibit good water resistance. Finally, DGECAR-based 

networks are the more hydrophobic networks because of its phenolic structure.  
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General conclusion 
 
 Throughout this thesis we have studied and characterized novel bio-based epoxy 

networks. Indeed, as discussed in the first chapter of this manuscript the development of 

biopolymers and in particular epoxy thermosetting polymers has recently attracted remarkable 

popularity. Nature offers a huge variety of renewable precursors for the synthesis of attractive 

precursors that differ in their structure. We study throughout this manuscript the structure-

properties relationships of some interesting bio-based precursors.  

 Among them, isosorbide appears as an interesting bio-based diol candidate. Derived 

from starch, with a short and cyclic structure, isosorbide is produced in a high purity level by 

Roquette Frères. In the context of this work, Huntsman and Roquette epoxidized the 

isosorbide through two different synthetic routes. The second chapter was dedicated to the 

study of these two bio-based epoxy prepolymers derived from isosorbide (DGEDAS0 and 

DGEDASn). Characterization of these two prepolymers was performed. Reactivity and 

network properties when combined with a conventional amine curing agent (Isophorone 

Diamine, IPD) were also studied. It appeared that DGEDAS-based epoxy systems lead to 

interesting bio-based networks yet with lower values of Tg than conventional epoxy – amine 

system.  

 Other bio-based epoxy prepolymers were already commercially available such as 

sorbitol and cardanol-based epoxy prepolymers. These epoxy precursors differ by their 

structure: cycloaliphatic for the isosorbide diglycidyl ether (DGEDAS), polyfunctional and 

aliphatic for the sorbitol polyglycidyl ether (SPGE) and with phenolic moieties for the 

cardanol-based epoxy prepolymer (DGECAR). The third chapter was a study of the influence 

of epoxy prepolymer structure on the network properties using the three different bio-based 

epoxy prepolymers: DGEDAS0, SPGE and DGECAR. As expected and due to the presence of 

long aliphatic chain within its structure, DGECAR-based networks exhibit low Tg. Similar 

glass transition values were obtained at stoichiometric ratio for DGEDAS0 and SPGE based 

networks. Yet, this study underlines an unusual behaviour of SPGE – IPD systems through an 

increase of Tg with the stoichiometric ratio. Higher amount of amine leads to more densely 

crosslinked networks with higher Tg. High chlorine content of SPGE epoxy prepolymer 

(around 19 wt%) should be at the origin of this observation, through side reactions / 

interactions when amine are in excess that increase the crosslinking points. 
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 This study on epoxy prepolymers was completed in the fourth chapter by the 

formulation of bio-based epoxy systems using various curing agents. Either conventional 

curing agent (derived from petroleum resources) or bio-based ones were studied to focus also 

on the influence of the curing agent structure on the systems reactivities and solid-state 

properties. Besides, the specially formulated curing agent HA was also studied. Using this 

curing agent, that promote both classical epoxy-amine addition and homopolymerization, the 

structure of the networks are dependent upon the curing temperature.  

 Finally, in the last part of the manuscript, Chapter V, we presented the first 

investigations on the water absorption of the bio-based networks derived from isosorbide, 

sorbitol and cardanol. The isosorbide-based networks, which appeared promising in terms of 

reactivity and thermo-mechanical properties as compared to DGEBA–based networks, 

revealed a very dramatic water resistance, not yet clearly understood, which appears as the 

main drawback of these materials.  

 This work clearly underlined the fact that the well-known DGEBA cannot be easily 

replaced by any other bio-based prepolymers. The replacement by a given type of bio-based 

prepolymer essentially depends on the applications targeted. In most cases, the whole reactive 

system must be re-formulated to fit the reactivity and solid-state properties required.  

 

Further investigations  
 

 Complementary studies can be performed on the four bio-based epoxy prepolymers 

studied, DGEDAS0, DGEDASn, SPGE and DGECAR. Indeed, the high water affinity of the 

isosorbide-based networks can be a huge problem for many applications; yet the dry networks 

present interesting properties that can be useful for the replacement of conventional epoxy 

systems in other applications in which the materials will not be exposed to moisture 

conditions. Otherwise, combination of isosorbide-based epoxy prepolymers with others 

reactive products more hydrophobic could be a good compromise as far as it does not impact 

drastically the “bio-based added value” of isosorbide-based epoxy prepolymers.  

 Prospects should be done also on the understanding of the particular behavior of SPGE 

based prepolymers and the influence of this high chlorine content. What chemical reactions 

can be involved between chlorinated compound and amines that influence on the network 

structure and therefore the network properties? Further investigations on the effect of such 
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high chlorine content on the reactivity of the system and the network properties should be 

done.  

  Other bio-based epoxy precursors can be also considered. Indeed, Diphenolic Acid 

(DPA) derived from levunic acid, and other bio-based precursors, presented in Chapter I, that 

exhibit interesting phenolic structure such as tannin-derived polyols (e.g. catechin) can also be 

attractive candidates for the replacement of Bisphenol-A.  

 
Figure 1. Structure of Diphenol Acid (DPA) 

 
Figure 2. Structure of tanins and catechin  

 

 Finally, as underlined in our first chapter fewer investigations have concerned the 

replacement of current amino-curing agents (or anhydride curing agents) by bio-based ones 

but should be of interest to obtain fully bio-based epoxy systems. 

 
 Concerning the NAFI project, important study remains to be done on the matrix-linen 

fibres interfaces for the different systems characterized. Nevertheless, one partially bio-based 

epoxy system was tested with success by Rossignol: DGEBA (80 wt %) + DGEDASn (20 wt 

%) with HA as curing agent. Nevertheless, its bio-based content is low and further 

formulations can be done to raise this bio-based content knowing the properties of the 

different epoxy prepolymers and systems studied.  
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Annex A: Additional theoretical background: 

Theory on molecular modelling   

 
 The high speed digital computer has changed the way to visualize organic chemistry. 

The ability to predict the outcome, in a quantitative sense, of a chemical reaction and to 

visualize organic molecules in three dimensions is more accessible. This computational 

approach to chemistry is being used extensively in drug design, protein mutagenesis, 

biomimetics, catalysis, polymer properties prediction … 

 

 

 

 In our study, we have used both group contribution method and molecular dynamics. 

The following part of the Annexes gives theoretical background concerning the Molecular 

Modelling.   

 

 

 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Annexes 

 

 
Page 209 

I. Classical simulations theory  
 
 This method considers the molecule or macro-molecule as a classic mechanical 

system. Simulation time depends mainly on the computer power.  

 Atomistic simulation is an empiric method based on the hypothesis that atomic nuclei 

of chemical group of the same nature should have the same energy potential (similar 

electronic environments) whether it is found in a molecule or another.  

 Therefore in atomistic simulation, each atom is described in terms of charge, valence, 

Van der Waals radius… All these parameters will describe the behaviour of the atom during 

the simulation. They are determined using ab initio calculations or by successive 

confrontations between simulations results and experimental values.  

 Atomistic simulation fundamental principle consists to apply classic quantum 

mechanics to describe a system dynamic using the Newton’s equation of motion:  

−
��

���
= m�

����

�	�
 

The potential V is an empirical fit to the potential energy surface, commonly called a 

forcefield.  

 

II. Forcefields  
 
 A crucial part of any simulation is the choice of forcefield. The forcefield describes 

approximately the potential energy surface on which the atomic nuclei move. Forcefields are 

usually tuned for particular groups of systems, so the choice of forcefield will depend on the 

type of structure that is being investigated.  

 Forcefields commonly used employ a combination of internal coordinates and terms 

(bond distances, bond angles, torsions, etc.), to describe that part of the potential energy due 

to interactions between bonded atoms, and non-bonded terms to describe the Van der Waals, 

electrostatic, etc. interactions between atoms. The functional forms range from simple 

quadratic forms to Morse functions, Fourier expansions, Lennard-Jones potentials, etc. 

  

 The potential energy of a system can be expressed as a sum of valence (or bond), 

crossterm, and non-bond interactions:  

Vtotal = Vvalence + Vcrossterm + Vnon-bond 
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Valence interactions 

The energy of valence interactions is generally accounted for the diagonal terms :  

 -bond stretching (bond) 

 -valence angle bending (angle) 

 -dihedral angle torsion (torsion) 

 -inversion, also called out-of-plane interactions (oop) terms, which are part of nearly 

all forcefields for covalent systems 

Vvalence = Vbond + Vangle + Vtorsion + Voop 

 

Valence cross-terms  

Modern (second-generation) forcefields generally achieve higher accuracy by including cross-

terms to account for such factors as bond or angle distortions caused by nearby atoms. These 

terms are required to accurately reproduce experimental vibrational frequencies and therefore, 

the dynamic properties of molecules. In some cases, research has also shown them to be 

important in accounting for structural deformations. Cross terms can include the following: 

stretch-stretch, stretch-bend-stretch, bend-bend, torsion-stretch, torsion-bend-bend, bend-

torsion-bend, and stretch-torsion-stretch.  

 

Non-bond interactions  

The energy of interactions between non-bonded atoms is accounted for by two terms: Van der 

Waals interaction terms and electrostatic energy term (Coulomb): 

Vnon-bond = VVan der Waals + Velectrostatic 

  

 For our simulations, we used the commercial forcefield provided by Accelrys, 

COMPASS (Condensed Phase Optimized Molecular Potentials of Atomic Simulation 

Studies).  COMPASS represents a technology break-through in forcefield methods. It is the 

first ab initio forcefield that enables accurate and simultaneous prediction of gas-phase 

properties (structural, conformational, vibrational, etc…) and condensed-phase properties 

(equation of state, cohesive energies, etc…) for a broad range of molecules and polymers. 
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III. Molecular dynamics  
  

 Once an energy expression and, if necessary, an optimized structure have been defined 

for the system of interest, a dynamics simulation can be run1. Example of optimized structure 

is given in Figure 1.  

 

 
Figure 1. example of Amorphous Cell construction results (DGEBA – IPD) 

 

 The bases of this simulation are the classical equations of motion which are modified, 

when appropriate, to deal with the effects of temperature and pressure on the system. The 

main product of a dynamic run is a trajectory file that records the atomic configuration, 

atomic velocities and other information at a sequence of time steps which can be analysed 

subsequently.  

 Integrating Newton’s equation of motion allows us to explore the constant-energy 

surface of a system. However, most natural phenomena occur under specific conditions where 

the system is exposed to external pressure and/or exchanges heat with the environment. Under 

these conditions, the total energy of the system is no longer conserved and extended forms of 

molecular dynamics are required.  

 Several methods are available for controlling temperature and pressure. Depending on 

which state variables (the energy E, enthalpy H, number of particles N, pressure P, stress S, 

                                                 
1 Construction of molecular structure and optimization of this structure (by energy minimization) performed 
using Accelrys modules are not detailed in this section  
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temperature T, and volume V) are kept fixed, different statistical ensembles can be generated. 

A variety of structural, energetic, and dynamic properties can then be calculated from the 

averages or the fluctuations of these quantities over the ensemble generated. Both isothermal 

(where heat is exchanged with a temperature bath to maintain a constant thermodynamic 

temperature) and adiabatic (where no heat exchange occurs) ensembles are available:  

 Constant temperature, constant pressure (NPT)  

 Constant energy, constant volume (NVE) also referred to as microcanonical ensemble 

 Constant pressure, constant enthalpy (NPH)  

 Constant pressure, constant volume (NVT) also referred to as canonical ensemble 
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Annex B: Additional results for Chapter II  

 

 This Annex gives complements on the molar mass distribution analysis of DGEDASn 

and more precisely the determination of a calibration curve more suitable for DGEDASn 

oligomers mass attribution. Besides, purification of DGEDASn epoxy prepolymers by 

solubilisation in different solvent has been studied. Finally, additional NMR analyses (H-H 

COSY NMR) have been performed on DGEDASn and DGEDAS0 epoxy prepolymers.  

 

I. Complements on DGEDASn mass distribution  

1. Use of calibration curve for SEC chromatography   

 
Size Exclusion Chromatography (SEC) was performed in THF as elution solvent to 

determine the molar masses of the different epoxy prepolymers studied in our project (See 

Chapter II).  

 For instance, Figure 2 represents the SEC chromatogram of DGEDASn epoxy 

prepolymer. This epoxy prepolymer presents a large mass distribution and the aspect of the 

chromatogram seem to be the same as the one obtained for solid DGEBA epoxy prepolymers. 

In order to improve mass attribution, a new calibration is needed (rather than the classical 

calibration based on polystyrene standards).  

 

 
Figure 2. SEC chromatogram of DGEDASn epoxy prepolymer 

0

5

10

15

20

25

15 17 19 21 23 25 27 29

R
I

Elution Volume (mL)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Annexes 

 

 
Page 214 

 A new calibration curve was then obtained using a DGEBA solid epoxy prepolymer 

with an epoxy equivalent of 475 – 550 g/ee (commercial reference: DER 671). This 

commercial DGEBA epoxy prepolymer presents an elution curve similar to the one obtained 

for DGEDASn, and attribution of its elution peaks is possible. SEC chromatogram of DER 

671 represented in Figure 4.  

 

 
Figure 3.Chemical structure of DER 671 epoxy prepolymer 

 

 
Figure 4. SEC of chromatogram of DER 671 

 
 
 Using this SEC chromatogram and the molar mass peaks attribution, the following 

SEC calibration curve was obtained. This calibration curve was useful to obtain 

approximation on molar mass attribution of the different epoxy prepolymers studied in our 

project.  
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Figure 5. SEC calibration curve obtained from DER 671 

 

2. Separation of DGEDASn oligomers by selective solubility  

 
The various mass spectroscopy analyses performed on DGEDASn epoxy prepolymer 

have underlined the presence of numerous oligomers. In the beginning of the project, the only 

available isosorbide-based epoxy prepolymer was DGEDASn. In order to reduce the mass 

distribution of DGEDASn and obtain a “pure” epoxy prepolymer (composed of the n = 0 

monomer) selective solubility tests were performed on DGEDASn.  

 Various solvents were tested. For each solvent tested, 1g of DGEDASn epoxy 

prepolymer was mix under quick agitation with 5 ml of solvent. The solution was filtered and 

the solvent was evaporated to obtain the soluble compound. These soluble extracts were then 

tested by SEC analyses to determine which part of DGEDASn was solubilized in the solvent 

tested. The solubility results with various solvents are represented in Table 1. 

 Superposition of the different SEC analyses is represented in Figure 6.  
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Solvent Solubility 

Water Total 

THF Total 

Methanol Partially 

Ethanol Partially 

Cyclohexane Partially 

Isopropanol Partially 

Ethyl Acetate Partially 

 
Table 1. Solubility of DGEDASn in various solvents 

 
 

 
 

Figure 6. SEC chromatograms superposition of the different extracts 
 

 It is difficult to obtain a selective solubility for most of the solvent tested except for 

cyclohexane. Indeed, only one compound of DGEDASn is soluble in cyclohexane as 

underlined by SEC analysis. As it corresponds to the lowest molar mass compound present in 

DGEDASn, this compound should be the pure diglycidyl ether of isosorbide. To confirm this, 

further NMR analyses were performed on this compound.  
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 Isopropanol is also an interesting solvent as it allows the elimination of DGEDASn 

oligomers of higher molar mass weights.  

 

3. NMR analyses of the oligomeric compound soluble in 

cyclohexane  

 
 The compound solubilized in cyclohexane has been studied by proton NMR (Figure 

7). It appears that its NMR spectrum exhibits better resolution that the one obtained for 

DGEDASn. Complementary 13C NMR (Figure 8) and DEPT 135 NMR analyses (Figure 9) 

have been performed on this sample.  

Attributions of the different NMR peak are represented in the Figures. All these NMR 

analyses confirmed that the product solubilized by cyclohexane is only DGEDAS0.   

 

 
1H NMR 

 
Figure 7. 1H NMR spectrum of the compound solubilized in cyclohexane 
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13C NMR   

 
Figure 8. 13C NMR spectrum of the compound solubilized in cyclohexane 

 
 
DEPT 135 NMR 
 

 
Figure 9. DEPT 135 NMR spectrum of the compound solubilized in cyclohexane 
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 Selective solubilisation of DGEDASn in cyclohexane allows us to obtain the pure 

diglycidyl ether of isosorbide DGEDAS0 from DGEDASn. Yet, different epoxidation route 

was performed on isosorbide to have access to the pure diglycidyl ether of isosorbide. This 

synthetic route is more restrictive than the one used to obtained DGEDASn but it has been 

shown (see Chapter II) that the product synthesized is only composed of DGEDAS0.   

 
 

II. Complement on NMR characterization for 

DGEDAS0, DGEDASn 

 
 This part of the Annex presents complementary NMR analyses performed on 

DGEDAS0 and DGEDASn for a better attribution of the chemical shifts especially the ones 

between 3.2 and 4 ppm.  

 

 Peaks corresponding to the epoxy protons (signals between 2.5 and 3.1 ppm) and the 

protons common to the two isosorbide cycles (signals between 4.4 and 4.6ppm) are isolated 

and thus easily assigned.  In comparison, assignments of the other protons, on the isosorbide 

cycles and in H3 position, are difficult because of the conformation of the cycle and thus the 

non-equivalence of these protons. 

 In order to reconsider the H3 protons attribution, complementary H-H COSY was 

done on the DGEDAS0 monomer and is represented in Figure 10.  

 It appears that the H2 protons are coupled with the other epoxy protons (H1a and H1b) 

and that coupling with the H3 protons appears at different positions. This observation 

confirms that the conformation of the isosorbide cycles leads to non-equivalence of these 

protons. It is not possible, to assign separately the remaining protons of the isosorbide cycle 

and the protons in H3 positions. H3 protons signal is divided and overlaps with isosorbide 

protons between 3.3 and 4.1 ppm.  
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Figure 10. H-H COSY of DGEDAS0 

 
  

 Concerning the 1H NMR results of DGEDASn prepolymer, same conclusion as 

DGEDAS0 can be done concerning H3 protons, as shown by H-H COSY (Figure 11). Besides 

due to the broad molar mass distribution of the oligomers, protons are moreover difficult to 

assign.   
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Figure 11. H-H COSY of DGEDASn 

 
 
 

III. Dilatometric measurements of DGEDAS0 – IPD 

and DGEBA – IPD networks  
 

1. Measurements  

 
 The coefficient of linear thermal expansion β was measured at a heating rate of 

3°C/min on a Mettler TA (Q400) thermal mechanical analyser. Since β is very small and 

assuming the sample is isotropic, the coefficient of volume expansion α is given by: α = 3β.  
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2. Results 

 Thermo-mechanical analyses were performed on the bio-based network DGEDAS0 – 

IPD and the network of reference DGEBA – IPD. TMA curves are represented in Figure 12. 

Besides, the resulting coefficients of linear thermal expansion (β) determined from the slopes 

of the dimension change curves are summarized in Table 2.  

 
Figure 12. TMA analyses of DGEBA – IPD and DGEDAS0 – IPD networks 

 
 

Networks β1 (10-6.K -1) before Tg β2 (10-6.K -1) after Tg 
DGEBA – IPD 60 195 

DGEDAS0 – IPD  65 170 
 

Table 2. Thermal expansion coefficient for DGEBA – IPD and DGEDAS0 – IPD networks before and after Tg 

 
 It appears that the coefficients of linear thermal expansion of the two networks in the 

glassy state are slightly lower for DGEBA – IPD network (60.10-6.K-1) than DGEDAS0 – IPD 

network (65.10-6.K-1). The coefficients of linear thermal expansion differ in the rubber state. 

Indeed, DGEBA – IPD exhibit higher value than DGEDAS0 – IPD. 
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Annex C: Additional results for Chapter III 

  

 In Chapter III, the influence of the epoxy prepolymer structure on the reactivity of the 

systems and the network properties have been studied. Comparison was done between the 

isosorbide diglycidyl ether DGEDAS0, and two commercial bio-based epoxy prepolymers: the 

sorbitol polyglycidyl ether (SPGE) and the diglycidyl ether of cardanol (DGECAR). The 

SPGE prepolymer chosen for the study was the commercial reference Denacol 622. 

Nevertheless, other commercial grades of SPGE are available and differ in the EEW, the 

viscosity and the chlorine content. This annex presents additional analyses performed on 

SPGE – IPD systems and the characterizations of the other grades of Sorbitol Polyglycidyl 

Ether commercially available. 

 

I. Additional results on SPGE (Denacol 622)- IPD 
 

a) Variation of gel time with r for SPGE – IPD system 

 
 Variation of gel time at a temperature, 80°C, with the stoichiometric ratio r = nah/ne 

was performed for SPGE – IPD system. The gel time data are summarized in Table 3. It 

appears that the augmentation of amine proportion (r > 1) doesn’t have an important impact 

on gel time. Gel times are higher for r = 2 than r = 1, yet the difference is weak and could be 

the result of the high temperature used for the experiment.  

   

 
r = nah/ne tgel (min) tanδgel ∆ 

1 4.73 0.50 0.29 

1.5 5.01 0.87 0.45 

2 5.90 0.84 0.44 

 
Table 3. Gel time data for SPGE – IPD system at 80°C at various stoichiometry 
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II. Other commercial references for Sorbitol 

Polyglycidyl Ether (SPGE)  
 

 As presented in the first Chapter, various commercial references are available for 

Sorbitol Polyglycidyl ether (Table 4). Among these different grades, we focused on the 

Nagase Chemtex reference: Denacol 622, as this epoxy prepolymer presents the advantage of 

being insoluble in water (according to TDS). This epoxy prepolymer, called SPGE in our 

project, was studied in combination IPD and its reactivity, curing behaviour and Tg of the 

resulting networks were studied using DSC, gel time determination, TMA… 

 

Reference Producer 
EEW 

(g/eq) 

Viscosity  

(cps, 25°C ) 

Solubility in water 

(%) 

Chlorine 

content (%) 

EJ 190 JSI Co. 184 4380 N.A. N.A. 

Denacol 611 Nagase chemtex 163 10820 48 13.5 

Denacol 612 Nagase chemtex 167 11590 42 13.7 

Denacol 614 Nagase chemtex 164 17780 78 11.2 

Denacol 614B Nagase chemtex 171 4450 94 10.1 

Denacol 622 Nagase chemtex 191 11440 insoluble 19.1 

 
Table 4. Commercial references of Sorbitol Polyglycidyl ether 

 
 In this part of the Annexes, the characterization of the other grades of sorbitol 

polyglycidyl ether is described: Mass distribution, TGA analyses, determination of Tg0 of the 

Denacol 611, 612, 614, 614B, 622. Finally, Denacol 614B – IPD system will be compared 

with Denacol 622 – IPD system (already presented in Chapter III) in terms of reactivity and 

glass transition temperatures of the resulting networks.   

1. Characterization of the different SPGE grades 

a) SEC characterization  

 
 The mass distribution of the different grades of sorbitol polyglycidyl ether 

commercialized by Nagase Chemtex was studied by SEC using THF as elution solvent. The 

SEC chromatograms of these different grades are represented in Figure 13. It appears that the 

different epoxy prepolymers studied exhibit almost the same mass distribution; exception 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Annexes 

 

 
Page 225 

made of Denacol 622 (SPGE, in Chapter III) with a more important part of higher molar mass 

oligomers. Denacol 622 is among the more viscous SPGE-epoxy prepolymer (viscosity more 

than 11000 cps at 25°C) and exhibits higher EEW. On the contrary, Denacol 614B is 

composed of the lower molar mass oligomers as underlined in its SEC chromatography and 

by its low viscosity (around 4400 cps at 25°C).   

 
 

Figure 13. SEC chromatograms of Denacol epoxy prepolymers 
 

b) Determination of Tg0 

 
 Determination of Tg0 was performed for the different sorbitol polyglycidyl ether 

grades by DSC analyses. The DSC thermograms of the different epoxy prepolymers are 

represented in Figure 14 and values of Tg0 summarized in Table 5. 
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Figure 14. Determination of Tg0 for sorbitol polyglycidyl ether different grades 

 
 

Epoxy prepolymer Tg0 (°C) 
Denacol 611 -38 
Denacol 612 -38 
Denacol 614 -34 

Denacol 614B -45 
Denacol 622 (SPGE) -40 

 
Table 5. Tg0 of the different grades of sorbitol polyglycidyl ether 

 

 It appears that the different epoxy prepolymers exhibit equivalent Tg0 around -40°C, 

except for Denacol 614 that has the higher Tg0 and Denacol 614B that has the lower Tg0 

around -34°C and -45°C respectively. Indeed, Denacol 614 exhibits the higher viscosity and 

Denacol 614B the lower one. 

c) Thermogravimetric analyses 
 

 The mass loss (under inert atmosphere) as a function of temperature for the different 

sorbitol polyglycidyl ether grades and their derivatives are represented in Figure 15 (a) and 

(b). The initial degradation temperature (T5%) and the temperature at a maximum rate of 

degradation (Tmax) of the different grades are shown in Table 6. The main observation is the 

slightly higher Tmax of degradation of Denacol 622 as compared to the others which 

underlined the presence of less volatile oligomers in Denacol 622 epoxy prepolymer (higher 

molar mass compounds).  
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(a)  

(b)  

Figure 15. (a) TGA and (b) DTGA curves of Denacol epoxy prepolymer 
 

Epoxy prepolymer T(5%) (°C) Tmaximum rate (°C) 

Denacol 611 270 320 

Denacol 612 275 310 

Denacol 614 255 315 

Denacol 614B 250 322 

Denacol 622 270 340 

 
Table 6. Thermal analysis data for the different epoxy prepolymer 
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2. Study of Denacol 614B – IPD system 

 
 The epoxy prepolymer Denacol 622 was the sorbitol polyglycidyl ether with the 

higher molar mass oligomers, the higher EEW, an acceptable viscosity, not too important as it 

is with Denacol 614 (around 17000 cps at 25°C). Besides, it has the advantage to be insoluble 

in water as compared with the others. Therefore, Denacol 622 was chosen for our comparison 

between the different bio-based epoxy prepolymers (Chapter III). Nevertheless, as compared 

with Denacol 622, the other sorbitol-based epoxy Denacol 614B is almost totally soluble in 

water and has the advantage to present lower chlorine content (10.1 %). Therefore, is should 

of interest to compared the reactivity of Denacol 622 and Denacol 614B – based systems 

combined with IPD, and the glass transition temperature obtained for the resulting networks.  

a) DSC calorimetry study  

 
 The DSC thermograms of Denacol 614B – IPD and Denacol 622 – IPD systems at a 

stoichiometric ratio r = 1 are summarized in Figure 16. The values of Tg0, ∆H and Tpeak of 

these systems are summarized in Table 7.  

 
Figure 16. DSC thermograms for Denacol 614B – IPD and Denacol 622 (SPGE) – IPD system 

 
 
 
 

 

 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-100 -50 0 50 100 150 200

H
e

a
t 

F
lo

w
 (

W
/g

)

Temperature (°C)

Denacol 614B - IPD
Denacol 622 - IPD

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0051/these.pdf 
© [M. Chrysanthos], [2012], INSA de Lyon, tous droits réservés



Annexes 

 

 
Page 229 

System Tg0 (°C) ∆H (kJ/g) ∆H (kJ/ee) Tpeak (°C) 

Denacol 614B – IPD  -30 305 65 93 

Denacol 622 (SPGE) – IPD -41 338 79 101 

 
Table 7. DSC results for Denacol 614B – IPD and Denacol 622 (SPGE) – iPD systems  

 

 It appears that Tg0 of Denacol 622 – IPD is lower than the one obtained for Denacol 

614B – IPD system. Denacol 614B – IPD is more reactive than Denacol 622 – IPD with a 

lower value of Tpeak, 93°C and 101°C respectively.  

 Concerning the exothermy of the systems, it appears that Denacol 614B – IPD exhibits 

lower ∆H as compared with Denacol 622 – IPD.  

 

b) Determination of glass transition temperatures 

 

 Values of glass transition temperatures were obtained by DSC analyses. Not much 

difference is observed for the glass transition temperatures of Denacol 614B – IPD and 

Denacol 622 – IPD networks; the two networks exhibit equivalent Tg around 100°C.  

 Nevertheless, to focus on the influence of the chlorine content on the network 

properties the evolution of Tg with r for Denacol 614B – IPD, could be of interest for further 

investigations.  
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Annex D: Additional results for Chapter IV 

 This part of the annexes is dedicated to the additional results related to the chapter IV. 

First, complementary result on DGEDASn – D230 system is given with the study of the 

influence of stoichiometry on glass transition temperatures for this system.  

 

I. DGEDASn – D230 system 

1. Influence of stoichiometry on glass transition temperatures  

 As it was done for IPD curing agent, the influence of stoichiometry on glass transition 

was studied using D230 as curing agent for DGEDASn epoxy prepolymer. Different 

DGEDASn – D230 networks were prepared at various stoichiometry r = nah/ne to verify that 

this system presents only addition mechanism when combined also with another curing agent 

than IPD. The Tg of the networks were determined at each ratio r by DSC. The evolution of Tg 

with r is plotted in Figure 17. As for DGEDASn – IPD, the maximum Tg attainable is for r = 1. 

This confirms that for DGEDASn- D230 epoxy-amine system no side reactions occur.  

 

 
Figure 17. Glass transition temperature versus r for DGEDASn – D230 networks 

 
 Using an aliphatic curing agent such as D230, a maximum Tg is always obtained for a 

stoichiometric ratio r = 1, which confirms that DGEDAS based prepolymers are not at the 

origin of side reactions; the only parameter that could promote such side reactions should be 

the curing agent.  
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Annex E: Additional results for Chapter V 

 
 Annex E gives additional results for the chapter V dedicated to the study of water 

absorption of the different systems. First, trial to reduce the hydrophilicity of DGEDASn is 

presented with the reduction of –OH groups initially present in DGEDASn oligomers 

structure. Then, various formulations based on DGEBA – HA (epoxy-amine system used in 

Rossignol application) containing different amount of DGEDASn will be characterized. 

Finally, study on sorbitol based epoxy network (Denacol 614B – IPD) affinity with water will 

be discussed in this annex.  

 

I. Influence of the polarity of immersion solvent   
 
 To study the influence of the polarity of the immersion solvent, DGEDASn – HA 

networks were immersed in various solvents that exhibit different polarity. The Table 8 

presents the different solvent tested and their respective polarity according to Hansen 

solubility parameters [1].  

 

Solvent Polarity 

Water 16.0 

Methanol 12.3 

Ethanol 8.8 

THF 8.2 

 
Table 8. Solvent polarity 

 

 As previously described, networks break up totally in water. Concerning methanol, 

fragments are observed after 3 h of immersion. Nevertheless, the fragmentation is less rapid 

than in water and the sample’s core remains. No significant change is observed after one 

week. Using ethanol as immersion solvent brings very few fragmentation. No significant 

change is also observed after a week. Finally, no fragmentation is observed in THF.  

 For every solvent tested, the solution of immersion was collected, filtered and the 

solvent was evaporated at 70°C. Solubilized compound in methanol represents almost 1 % of 

the initial sample weight and less than 0.1 % of the network was solubilized in ethanol.  
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 Solubilized products were analysed by SEC.  Nevertheless, products resulting from the 

solubilisation in water, and methanol were not soluble in THF. Collected compound using 

ethanol as solvent was however soluble in THF and was analysed by SEC. The SEC 

chromatograms of this compound and the one of DGEDASn are shown in Figure 18.  

 First, it appears that a single product is predominantly solubilized in ethanol as SEC 

chromatogram presents a major peak at an elution volume of 23.3 mL. This product can 

correspond to one oligomer of DGEDASn at an elution volume of 23.6 mL. The molar mass 

of these two compounds were calculated using a high molar DGEBA calibration curve2 and 

were found equal to 503 g/mol and 466 g/mol respectively. The oligomer of 466 g/mol can be 

the DGEDASn oligomer at n = 1 (2A + 3B)3. The product solubilized in ethanol had 37 g/mol 

more than 2A + 3B DGEDASn oligomer. No further information on this product structure was 

obtained.   

 

 
Figure 18. Superposition of SEC chromatograms of the solubilized compound in Ethanol and the epoxy prepolymer 

DGEDASn 

 
 
 
 
 
 
 

                                                 
2 See Calibration curve in Annexe B 
3 See Chapter II 
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II. Reduction of the hydrophilicity of DGEDASn 
 
 It has been underlined in the chapter IV, that the –OH groups present in the DGEDASn 

oligomers structure, as shown in Figure 19, increased the affinity of water of the DGEDASn-

based networks.  

 

 
 

Figure 19. Structure of oligomers in DGEDASn (see Chapter II) 
 
 Therefore in order to improve water resistance of the DGEDASn-based networks trial 

was done to block the –OH groups by reaction of p-totyl isocyanate (pTI) with DGEDASn in 

stoichiometric ratio as represented in Figure 20. As a remark, a hydroxyl number IOH = 105 

mg/gKOH was determined by titrimetry for DGEDASn.  

 
 

 
Figure 20. Structure of PTI (p-tolyl isocyanate) and reaction with –OH groups  

 
 The pTI was mixed vigorously with the epoxy prepolymer DGEDASn at 60°C. The 

addition of pTI to DGEDASn was followed by FT-IR a drop of reactive mixture was put 

between two KBr pellets and heated at 60°C. Figure 21 represents the evolution of pTI 

addition on DGEDASn followed by FT-IR. It appears that the –OH groups decreased (3400 

cm-1) with the N=C=O groups (2270 cm-1). After 30 min, the N=C=O absorption band 
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disappeared. Besides, the FT-IR analysis shows that the epoxy groups were not affected by 

the addition of pTI.    

 

 
Figure 21. Evolution of pTI addition on DGEDASn followed by FT-IR 

 
 
 We manage to block the –OH groups of DGEDASn oligomers, nevertheless, the 

viscosity of the resulting product was too high to correctly use it, and therefore no crosslink 

with amine curing agents were performed.  

 

III. Incorporation of DGEDAS n in DGEBA – HA 

formulations – Influence on the water affinity of 

the networks  
 
 For the NAFI project application (ski boards) it was interesting to incorporate bio-

based epoxy prepolymer DGEDASn in their formulation. Nevertheless, it has been underline 

that DGEDASn has an important affinity with water. Therefore, investigations were 

performed to determine the correct amount of DGEDASn that could be incorporated in the 

formulation without an important loss of properties.  
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1. DSC calorimetry study  

 
 Various formulations were studied comprising from 20 wt % to 80 wt % of 

DGEDASn, and were compared with fully DGEBA – HA and DGEDASn – HA systems. This 

systems were prepared in order to keep the epoxy/amine ratio equal to r = 0.27 (specific 

stoichiometric ratio of DGEBA – HA system as explained in Chapter IV). The DSC 

thermograms of the different systems studied are superposed in Figure 22, and their curing 

characteristics are summarized in Table 9.  

 
Figure 22. DSC calorimetry study of DGEBA – HA formulations with different amount of DGEDASn  

 
 

% DGEDASn Tg0 (°C) ∆Hreaction (J/g) Tpeak (°C) 

0 -40 430 125 

20 -40 372 108 

50 -38 323 98 

80 -42 297 96 

100 -30 307 98 

 
Table 9. DSC curing data of DGEBA – HA formulations with different amounts of DGEDASn 
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It appears that the increasing amount of DGEDASn incorporated to the system shifted the 

maximum peak temperature to lower values (down to 98°C from 50 % of DGEDASn added to 

the formulation). Besides, the reactions became less exothermic with the increasing 

incorporation of DGEDASn.  

2. Determination of Tg 

 
 The glass transition temperatures of the different systems were determined using DSC 

analyses and are summarized in Table 10. Their evolution with the amount of DGEDASn is 

represented in Figure 23. It appears that Tg decreased up to ∼60°C from 50 wt % of 

DGEDASn incorporated. The addition of 20 % of DGEDASn in the system allows keeping a 

Tg acceptable for ski board application.   

 
% DGEDASn Tg (°C) 

0 90 

20 81 

50 60 

80 64 

100 60 

 
Table 10. Evolution of glass transition temperatures with DGEDASn % 

  

 
Figure 23. Evolution of Tg with the amount of DGEDASn in the DGEBA – HA system 
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3. Water affinity of the networks  

 
 For first information on water affinity of DGEBA – HA systems with different 

amounts of DGEDASn, normalized samples were aged in distilled water at room temperature 

and their weight gain absorption after 5 days of immersion are summarized below (Table 11). 

Besides, the evolution of water absorption after 5 days with the amount of DGEDASn 

incorporated to the system is represented in Figure 24.  

 
 

% DGEDASn Weight gain (%) 

0 0.94 

10 1.65 

20 2.96 

30 6.47 

40 11.98 

50 15.01 

80 Fragmentation 

100 Fragmentation 

 
Table 11. Water absorption after 5 days of immersion in distilled water at RT for DGEBA – HA networks with 

different amount of DGEDASn   
 
 

 
Figure 24. Evolution of water absorption of DGEBA – HA networks containing DGEDASn in function of the amount 

of DGEDASn in the formulations   
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 It appears that degradation occurs for networks containing more than 50 % of 

DGEDASn epoxy prepolymer. Besides, the evolution of water absorption with the amount of 

DGEDASn seems to be parabolic rather than linear.  

  
 Water absorption kinetics were performed for some DGEBA – DGEDASn networks 

(20 wt% of DGEDASn and 50 wt % of DGEDASn) immersed in distilled water at room 

temperature and they were compared to DGEBA – HA as a reference. Both partially bio-

based epoxy systems exhibit higher water absorption than the reference DGEBA – HA. If the 

water sorption curve of DGEBA – DGEDASn (20 %) – HA seems to be Fickian it is not the 

case for the water sorption of DGEBA – DGEDASn (50 %) – HA. Some irreversible 

hydrolysis of the network has occurred.  

 
 

 
Figure 25. Water soption kinetics for DGEBA – HA with different amount of DGEDASn  

(Samples immersed in distilled water) 
 
 Therefore, it appears that the DGEBA – HA system comprising 20 wt % of DGEDASn 

could be a good compromise to keep interesting network properties and avoid water 

degradation.  
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IV. Comparison of the water absorption of Denacol 

614B – IPD and Denacol 622 (SPGE) – IPD 

networks 
 
 Finally, investigation was also performed on the water sorption kinetic on the other 

sorbitol polyglycidyl ether reference (Denacol 614B), that is an epoxy prepolymer soluble in 

water, with a lower Cl content than the Denacol 622 used in our study. Water sorption 

kinetics (Figure 26) performed on the networks immersed in distilled water at room 

temperature show that the Denacol 614B – IPD is more sensitive to water than Denacol 622 – 

IPD network. This could be explaining by more hydrophilic groups (such as –OH) as Denacol 

622 and Denacol 614B differs by their epoxy equivalent. Besides, as underlined in Table 4, 

Denacol 614B contains less Cl content that could act as hydrophobic groups and are more 

important in Denacol 622 reference. Influence of the Cl content on the network structure and 

the resulting water affinity is again underlined.  

 

 

 
Figure 26. Water sorption kinetics for Denacol 614B – IPD and Denacol 622 (SPGE) – IPD  

(Samples immersed in distilled water) 
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Extended abstract in French – Résumé étendu  

I. Introduction 
 
 Récemment, les polymères obtenus à partir de ressources renouvelables font l’objet de 

nombreuses investigations [1-3]. Le remplacement des matériaux plastiques actuels par des 

matériaux bio-sourcés est intéressant à la fois du fait de la diminution des ressources 

pétrolières mais aussi à cause de la toxicité de certains précurseurs communément utilisés. En 

effet, parmi les matériaux thermodurcissables [4], et plus précisément les réseaux époxy, le 

monomère le plus utilisé est le Diglycidyl Ether de Bisphénol A [5], dérivé de ressources 

pétrolières et dont la toxicité du précurseur, Bisphénol A, a été démontrée.   

 

 
Figure 1. Synthèse du DGEBA principal prépolymère époxy à partir du Bisphénol A 

 
  

 Dans le cadre du remplacement des réseaux époxy obtenus à partir de DGEBA par des 

réseaux bio-sourcés, les premières ressources testées ont été les huiles végétales [6-8].   

 

 
Figure 2. Structure des principales huiles végétales époxidées étudiées en remplacement de DGEBA 
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 Abondantes et intéressantes aussi en termes de coût, les huiles végétales peuvent être 

époxydées (Figure 2) et ont été utilisées pour le développement de matériaux époxy. 

Néanmoins, les propriétés thermomécaniques des réseaux ainsi obtenus (Tg, modules…) sont 

faibles du fait de la structure de ces triglycérides (longues chaines aliphatiques). Ces 

matériaux peuvent difficilement concurrencer ceux obtenus à partir de DGEBA et être utilisés 

pour des applications de hautes-performances comme dans les composites. 

 

 Récemment, d’autres précurseurs bio-sourcés ont été testés pour la synthèse de 

monomères époxy tels que le cardanol dérivé de noix de cajou (Figure 3) dont la structure 

aromatique avec une longue chaine aliphatique peut s’avérer intéressante [9].   

 
Figure 3. Structure du cardanol  

 
 
 De même, des précurseurs dérivés des polysaccharides tels que le sorbitol [10] et 

l’isosorbide [11, 12] (Figure 4) ont aussi étés testés. L’isosorbide présente une structure courte 

et cyclique qui laisse envisager des propriétés intéressantes [13].  
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Figure 4. Glucose, sorbitol et isosorbide dérivés de l’amidon  

 
 
 Nous nous sommes intéressés dans notre étude, au remplacement du prépolymère 

époxy DGEBA par des prépolymères époxy obtenus à partir de l’isosorbide (selon deux voies 

de synthèse) et des prépolymères époxy bio-sourcés commerciaux dérivés du sorbitol et du 

cardanol.  

 

II. Prépolymères époxy bio-sourcés 
 

1. Différents prépolymères époxy étudiés 

  

a) Prépolymères époxy dérivés de l’isosorbide 

 
 L’isosorbide est produit par la société Roquette, néanmoins son dérivé  époxydé n’est 

pour le moment pas disponible commercialement. La synthèse du diglycidyl éther 

d’isosorbide a été réalisée selon deux voies de synthèses distinctes représentées ci-dessous 

[14]. Une voie classique, industriellement utilisé pour la production de la majorité des dérivés 

époxidés, faisant intervenir l’épichlorhydrine (Figure 5) permet d’obtenir l’isosorbide 

époxydé DGEDASn avec un équivalent époxy de 184g/eq. La deuxième synthèse, via la 

formation d’un dérivé allylique (Figure 6), est plus contraignante mais permet d’obtenir le pur 

diglycidyl éther d’isosorbide DGEDAS0 (sans les différents oligomères potentiellement 

obtenus lors d’une époxydation classique comme c’est le cas pour DGEDASn). DGEDAS0 est 

obtenu avec un équivalent époxy de 143 g/eq.  
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Figure 5. Synthèse de l’isosorbide diglycidyl ether – voie classique avec épichlorhydrine 

 
Figure 6. Synthèse de l’isosorbide diglycidyl ether – intermédiaire allylique 

 

b) Prépolymères époxy bio-sourcés commerciaux 

 
 Le sorbitol époxydé (SPGE) ainsi que le cardanol époxydé (DGECAR) sont des 

produits industriels dont la structure simplifiée est représentée ci-dessous avec des équivalents 

époxy respectifs de 191 g/eq et de 490 g/eq.  

 

 
Figure 7. Structures simplifiées du sorbitol polyglycidyl éther SPGE et du diglycidyl éther of cardanol DGECAR 
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2. Caractérisations des différents prépolymères époxy 

bio-sourcés 

 
 Les différents prépolymères époxy utilisés ont été caractérisés (GPC, ESI-TOF, RMN 
1H et 13C, FT-IR, ATG…). Parmi les différentes analyses menées sur ces prépolymères époxy, 

l’étude de la distribution de masses par chromatographie d’exclusion stérique (GPC) et 

spectroscopie de masse Electro-Spray (ESI-TOF) est développée ci-dessous.  

a) GPC  

 La distribution de masses des deux prépolymères dérivés de l’isosorbide a été étudiée 

par GPC (Figure 8) et comparée à celle du prépolymère DGEBA. Le prépolymère DGEDASn 

présente une large distribution de masse mettant en évidence la présence de nombreux 

oligomères. A contrario, le chromatogramme de DGEDAS0 met en évidence un unique 

composé, le diglycidyl éther d’isosorbide pur. 

 
Figure 8. Chromatogrammes GPC des deux isosorbides époxydés DGEDASn et DGEDAS0  

 
 
 Les chromatogrammes GPC des deux prépolymères commerciaux SPGE and 

DGECAR sont représentés en Figure 9 et mettent aussi en évidence la présence de nombreux 

oligomères pour SPGE et DGECAR.  
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Figure 9. Chromatogrammes GPC de SPGE, DGECAR, DGEDAS0 et DGEBA 

 

b) Analyses Electro-Spray  

 
 La spectroscopie de masse de DGEDAS0 met en évidence un seul composé tandis que 

celle de DGECAR souligne la présence de nombreux oligomères. Les analyses Electro-Spray 

apportant le plus d’information sont celles de DGEDASn et SPGE et sont discutées ci-

dessous : 

 
 DGEDASn : 

 La présence de nombreux oligomères dans la composition de DGEDASn a été mis en 

évidence par GPC. Cette observation a été confirmée par spectroscopie de masse (Electro-

Spray, Figure 10). Les composés sont cationisés sous la forme [M+Na]+. La formule brute 

correspondant aux principaux pics a été confirmée par une mesure de masse exacte. Les 

valeurs de masses obtenues peuvent être reliées à des structures probables d’oligomères 

(Figure 11). Les attributions sont données dans le Tableau 1.  

 

15 17 19 21 23 25 27

R
I
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Figure 10. Spectre Electro-Spray de DGEDASn 

 
 

Masses Molaires 
(g/mol) 

Formules Structures 

258 C12H18O6 A+2B (n = 0) 
404 C18H28O10 2A+2B 
460 C21H32O11 2A+3B (n = 1) 
516 C24H36O12 2A+4B 
662 C30H46O16 3A+4B (n = 2) 
718 C33H50O17 3A+5B 
774 C36H54O18 3A+6B 

 
Tableau 1. Principaux oligomères de DGEDASn révélés par spectroscopie de masse (Electro-Spray)  

 

 
Figure 11. Structures des principaux oligomers de DGEDASn mises en évidence par ESI-Tof 
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 SPGE : 

 Une observation intéressante peut être faite à partir de l’analyse d’Electro-Spray de 

SPGE (Figure 12), à savoir la présence de nombreux oligomères chlorés. Une analyse 

élémentaire complémentaire a confirmé ce taux important de chlore dans SPGE soit 19.5 % 

massique. Ceci peut s’expliquer par la méthode de synthèse (via l’épichlorhydrine) et la faible 

réactivité des –OH secondaires présents dans la structure du sorbitol qui rendent l’étape de 

déchlorination plus difficile ; le chlore reste dans la structure du prépolymère époxy (Scheme 

1).  Ce taux de chlore important doit avoir une influence sur les propriétés du prépolymère 

SPGE (réactivité et structure du réseau époxy obtenu).  

 

 
Figure 12. Spectre ESI-TOF de SPGE 

 

 
Scheme 1. Formation de chlorhydrines 
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III. Etude des différents systèmes époxy-amines 

bio-sourcés 
 

 Différents systèmes époxy-amines ont été étudiés à partir de ces prépolymères époxy 

bio-sourcés. Dans cette partie du résumé étendu sont abordées l’étude de la réactivité de ces 

différents systèmes par DSC, l’étude des transitions vitreuses obtenues pour les différents 

réseaux par DSC ainsi que celle de leurs propriétés thermomécaniques (Tα, modules…) par 

DMA.  

1. Influence de la structure du prépolymère époxy 

 
 Pour s’intéresser à l’influence de la structure du prépolymère époxy, un durcisseur 

classique a été utilisé : l’isophorone diamine IPD (Figure 13). Les différents systèmes ont été 

formulés pour avoir un rapport stœchiométrique r = nah/ne = 1. Les réseaux étudiés ont été 

obtenus après une réticulation en étuve 1 h à 80°C suivi de 2 h à 180°C. 

 

 
Figure 13. Structure du durcisseur isophorone diamine IPD 

 

a) Etude de la réactivité des systèmes  

 

 Les thermogrammes DSC des différents systèmes réactifs obtenus avec IPD comme 

durcisseur sont représentés Figure 14. Les résultats de ces analyses sont résumés dans le  

Tableau 2. Il apparait que les Tg0 sont de l’ordre de -40°C, exception faite du système 

DGEDAS0 – IPD avec une Tg0 à -60°C du fait de la masse molaire plus faible du prépolymère 

DGEDAS0. Les enthalpies de réactions pour DGEBA – IPD, DGEDAS0 – IPD et DGEDASn 

– IPD sont autour de 90 kJ/eq de l’ordre de systèmes époxy-amine classiques. Dans le cas de 

SPGE – IPD et DGECAR – IPD les enthalpies de réactions obtenues sont plus faibles. La 

température maximale de réaction Tpeak la plus faible est obtenue pour le système SPGE – 

IPD.   
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Figure 14. Thermogrammes DSC en montée en température (10°C/min) des différents systèmes 

 

Systèmes Tg0 (°C) ∆H (J/g) ∆H (kJ/ee) Tpeak (°C) 

DGEBA – IPD -35 415 92 114 

DGEDASn – IPD -36 404 91 104 

DGEDAS0 – IPD -60 547 89 108 

SPGE – IPD -41 338 79 101 

DGECAR – IPD -41 127 68 116 

 

Tableau 2. Résultats d’analyse DSC pour les différents systèmes époxy-amines étudiés 
 
 

b) Influence de la stœchiométrie sur les valeurs de Tg 

 
 Il a été prouvé que la valeur maximale de Tg est obtenue pour le rapport 

stœchiométrique r = 1 dans l’hypothèse où l’unique mécanisme intervenant est celui 

d’addition époxy-amine classique [15]. Nous nous sommes donc intéressés à l’évolution de la 

Tg avec le rapport r. Les Tg des différents réseaux ont été mesurées par DSC et leur évolution 

est représentée en Figure 15.  

 La première observation est que pour r = 1, la plus haute Tg est obtenue pour le réseau 

non bio-sourcé DGEBA – IPD. Pour les systèmes DGEBA – IPD, DGEDAS0 – IPD et 

DGEDASn – IPD on se trouve dans le cas d’un mécanisme d’addition époxy amine 
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uniquement où le maximum de Tg est obtenu pour un rapport stœchiométrique r = 1. On 

observe une évolution inattendue de Tg avec r pour les réseaux SPGE – IPD.  Nous en avons 

déduit que le taux important de Cl dans le prépolymère SPGE devait avoir une influence sur 

la formation du réseau en impliquant de fortes intéractions ioniques.  

 

 
Figure 15. Evolution de la Tg avec le rapport r 

 
 

c) Propriétés thermo-mécaniques des réseaux 

 
 Pour r=1 
 
 Les propriétés mécaniques dynamiques ont été mesurées en torsion sur des 

échantillons conservés en dessiccateur après leur réticulation en étuve. Les évolutions du 

modules de conservation G’ et du facteur de perte tanδ en fonction de la température pour les 

différents réseaux sont représentées en Figure 16 et Figure 17. La relaxation α, ayant lieu aux 

plus hautes températures, est associée à la transition vitreuse, tandis que la seconde relaxation 

β plus faible en amplitude a lieu aux plus faibles températures et est attribuée aux 

mouvements locaux de groupes moléculaires, plus particulièrement les groupes hydroxyl 

éther dans le cas des réseaux époxy-amine. Selon la théorie de l’élasticité caoutchoutique, il 

est possible de déterminer la masse molaire moyenne entre nœuds Mc selon la relation : 

G’ = dRT/Mc 
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où d est la densité du réseau, R la constante des gaz parfaits et G’ le module de conservation à 

Tg + 30°C.  

 Les valeurs de Tβ, Tα, G’ et Mc sont reportées dans le Tableau 3. Pas de différence 

majeure n’est observée concernant Tβ pour les réseaux DGEBA – IPD, DGEDAS0 - IPD, 

DGEDASn – IPD et SPGE – IPD, entre -40°C et -50°C. La transition sous-vitreuse β n’est pas 

observée pour DGECAR – IPD ce qui peut s’expliquer par une faible intensité de la transition 

du fait qu’il y ait globalement moins de groupements hydroxy-éther en raison de la valeur 

élevée de l’équivalent époxy du prépolymère DGECAR. Les valeurs de Tα sont en adéquation 

avec les valeurs de Tg mesurées précédemment par DSC. La plus faible valeur de module est 

obtenue pour le réseau DGECAR – IPD ce qui s’explique par la présence de chaine 

aliphatiques flexibles dans la structure du prépolymère DGECAR. La valeur de masse entre 

nœuds la plus haute est obtenue pour DGECAR – IPD (970 g/mol) tandis que le réseau avec 

la plus faible masse molaire entre nœuds est celui dérivé du sorbitol.  

 

 
Figure 16. Evolution du module de conservation G’ pour les différents systèmes époxy-amine à r = 1 
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Figure 17. Evolution du facteur de perte tanδ pour les différents systèmes époxy-amines à r = 1 

 
 

Systems 
Tββββ 

(°C) 

Tαααα 

(°C) 

G’R (MPa) 

(at Tg+30°C) 

d 

(g/cm3) 
M c (g/mol) 

DGEBA – IPD  -46 155 17.1 1.13 250 

DGEDASn – IPD  -42 96 24.7 1.24 170 

DGEDAS0 – IPD  -40 112 16.6 1.25 260 

SPGE – IPD -52 120 29.3 1.24 150 

DGECAR – IPD  - 50 3.2 1.06 970 

 
Tableau 3. Analyses dynamiques mécaniques des différents réseaux (r = 1) 

 
 
 Evolution des propriétés thermomécaniques avec r 
 
 Les propriétés thermomécaniques ont été mesurées pour les réseaux SPGE – IPD à 

différentes stœchiométries. La principale observation est l’augmentation de Tα avec r, soit 

l’augmentation de la Tg,  ce qui confirme les précédents résultats obtenus par DSC.  
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2. Influence de la structure du durcisseur  

 Plusieurs durcisseurs classiques commerciaux ainsi que des durcisseurs plus 

spécifiques dérivés de ressources renouvelables tels que l’acide tannique (TA) et un 

durcisseur amine obtenu à partir du cardanol (NC540) ont été utilisés. Ces différents 

durcisseurs sont décrit dans le Tableau 4.  

 

Non Structure 
Masse 

molaire 
(g/mol) 

Fonctionalité 

IPD, isophorone 
diamine 

 

170 4 

Jeffamine D230, 
polyetheramine 

 
230 4 

MXDA , m-
xylylene diamine 

 
136 4 

MCDEA , 4,4’-
methylene bis (3-

chloro-2,6-
diethylaniline) 

 

379 4 

DETDA , diethyl 
toluene diamine  

 

178 4 

NC-540, 
phenalkamine 

 

Active Hydrogen 
equivalent (AHEW) = 81 

TA , tannic acid 

 

Hydroxyl value 
 IOH = 68,05 g/eOH 

 
Tableau 4. Structure des différents durcisseurs amines utilisés 
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a) Etude de la réactivité des systèmes 

  
 L’étude de la réactivité des différents systèmes a été réalisée par le biais d’analyses 

DSC pour des rapports stœchiométriques r = nah/ne = 1 dans le cas des durcisseurs amines, et r 

= nOH/ne = 1 dans le cas de l’acide tannique. Il est à noter que pour notre étude, l’acide 

tannique a été préalablement dissous dans  du propane diol (PDO). L’indice hydroxyl du PDO 

a été aussi pris en compte lors du calcul des proportions Prépolymère époxy / Durcisseur.  

 Les principaux résultats de ces analyses DSC sont repris dans le Tableau 5. 

 
Système Tg0 (°C) ∆H (J/g) ∆H (kJ/ee) Tpeak (°C) 

DGEBA – IPD -35 415 92 114 

DGEDASn – IPD -36 404 91 104 

DGEDASn – D230 -48 347 86 120 

DGEDASn - MXDA -38 438 96 104 

DGEDASn – MCDEA -19 NA NA >250 

DGEDASn – DETDA -30 NA NA 190 

DGEDAS0 – IPD -60 547 89 108 

DGEDAS0 – D230 -70 443 100 124 

DGEDAS0 – MXDA -56 600 102 102 

SPGE - IPD -41 338 79 101 

SPGE - MXDA -47 477 108 104 

SPGE – NC540 -43 294 81 99 

SPGE – TA/PDO -42 NA NA 208 

DGECAR – IPD  -41 127 68 116 

DGECAR – NC540 -44 122 71 110 

 
Tableau 5. Résultats d’analyse DSC pour les différents systèmes époxy-amines étudiés 

 
 On retrouve la réactivité connue des différents durcisseurs amines classiques pour les 

prépolymères bio-sourcé, comme classée ci-dessous en fonction de leur structure chimique: 

aliphatique > cyclo-aliphatique > aromatique. 

 Il apparait aussi que l’acide tannique nécessite une température de réticulation 

importante.  
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b) Détermination des températures de transitions vitreuses  

 
 Les différents systèmes étudiés ont été réticulé et les températures de transitions 

vitreuses des réseaux ainsi obtenus ont été mesurés et sont répertoriés dans le tableau ci-

dessous. Il apparait que quel que soit le durcisseur utilisé les valeurs de Tg obtenues sont 

toujours plus faibles pour les réseaux obtenus à partir de prépolymère époxy bio-sourcés que 

pour les réseaux dérivés de la DGEBA. De même, les faibles valeurs de Tg obtenues pour les 

réseaux dérivés du cardanol époxydé excluent l’utilisation de ce dernier pour des applications 

composites.  

 
Système Cycle de réticulation Tg (°C) 

DGEBA – IPD 1h à 80°C + 2h à 180°C 150 

DGEDASn – IPD 1h à 80°C + 2h à 180°C 91 

DGEDASn – D230 2h à 80°C + 2h à 180°C 48 

DGEDASn – MXDA  1h à 80°C + 2h at 160°C 74 

DGEDASn – MCDEA 10h à 170°C 120 

DGEDASn – DETDA 2h à 180°C 112 

DGEDAS0 – IPD 1h à 80°C + 2h à 180°C 102 

DGEDAS0 – D230 2h à 80°C + 2h à 180°C 52 

DGEDAS0 – MXDA 1h à 80°C + 2h à 160°C 79 

SPGE – IPD  1h à 80°C + 2h à 180°C 100 

SPGE – MXDA  1h à 80°C + 2h à 160°C 67 

SPGE – NC540 1h à 80°C + 2h à 180°C 76 

SPGE – TA/PDO 2h à 180°C 41 

DGECAR – IPD  1h à 80°C + 2h à 180°C 22 

DGECAR – NC540  1h à 80°C + 2h à 180°C 33 

 
Tableau 6. Températures de transitions vitreuses des différents réseaux 

 

c) Propriétés thermomécaniques des réseaux 

 
 Les Figure 18 et Figure 19 représentent respectivement l’évolution du module de 

conservation et du facteur de perte en fonction de la température obtenus par analyse DMA 

pour certains réseaux intéressant. Les résultats de ces analyses sont répertoriés en Tableau 7. 

Ceci confirme la faible valeur de Tα obtenue pour le réseau DGECAR – NC540. De plus une 
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certaine hétérogénéité du réseau SPGE – NC540 est mis en évidence par la transition α très 

élargie (∆T important).  

 
Figure 18. Evolution de G’ en fonction de la température pour SPGE – MXDA, SPGE – NC540, DGECAR – NC540 

 
 

Figure 19. Evolution de tanδ avec la température pour SPGE – MXDA, SPGE – NC540, DGECAR – NC540  
  
 

 
Tableau 7. Résultats d’analyses dynamiques mécaniques de SPGE – MXDA, SPGE – NC540 et DGECAR – NC540 
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(g/mol) 

SPGE – MXDA -44 77 0.59 20 30.1 1.31 137 

SPGE – NC540 -45 85 0.28 48 63.5 1.25 63 

DGECAR – NC540 NA 43 0.77 23 3.8 1.07 810 
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3. Durcisseur amine particulier – polymérisation duale 

 Un durcisseur particulier a aussi été utilisé dans le cadre de notre projet. Ce durcisseur 

a été spécialement formulé par Huntsman pour l’application Rossignol. La particularité de ce 

durcisseur est qu’il se compose de deux amines (monofonctionnelle et trifonctionnelle) ainsi 

que la présence d’amines tertiaires (Tableau 8). Ces amines tertiaires catalysent la réaction 

d’homopolymérisation des groupes époxy et conduisent ainsi à une polymérisation duale 

(addition époxy-amine et homopolymérisation).  

 

Non % Structure 

Masse 

Molaire 

(g/mol) 

fonctionnalité 

HA1:  

N(3-dimethylaminopropyl)-1,3-

propylenediamine 

30 

 

Ma1 = 159 fa1 = 3 

HA2:  

3-[[3-(dimethylamino)propyl]- 

amino]propiononitrile 

70 

 

Ma2 = 155 fa2 = 1 

 
Tableau 8. Description du durcisseur HA 

 
 L’influence de l’homopolymérisation catalysée par les amines tertiaires a été mise en 

évidence par une analyse des propriétés thermomécaniques. Ainsi comme représenté sur les 

figures ci-dessous et souligné dans le Tableau 9, on observe que les réseaux obtenus avec le 

durcisseur HA ont une Tα plus faible pour une température de réticulation importante (150°C) 

qu’à plus faible température de réticulation (80°C). On peut faire la même observation sur les 

réseaux obtenus à partir de DGEDAS0 – HA avec une Tg (mesurée par DSC) plus faible pour 

les réseaux obtenus à plus haute température de réticulation (Tableau 10).  
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Figure 20. Evolution du module de conservation pour les réseaux DGEBA – HA réticulés à différentes températures. 

 

 
Figure 21. Evolution du facteur de perte tan δ pour les  réseaux DGEBA – HA réticulés à différentes températures 

 
 
Cycle de 

réticulation 

Tα 

(°C) 

tanδ 

max 

∆Tα 

(°C) 

G’ (MPa) 

(at Tα +30°C) 

d 

(g/cm3) 

νννν 

(10-3 mol/cm3) 

M c 

(g/mol) 

1 h à 80°C 90 0.70 10 10.7 1.17 3.3 357 

1 h à 110°C 70 0.77 16 7.1 1.17 2.3 511 

1 h à 150°C 67 1.45 10 3.3 1.16 1.1 1081 

 
Tableau 9. Propriétés thermomécaniques des réseaux DGEBA – HA en fonction de la température de réticulation  
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Cycle de réticulation Tg (°C) 

2 h à 80°C 68 

2 h à 140°C 55 

 
Tableau 10. Evolution de la Tg (mesurée par DSC) pour le système DGEDAS0 – HA en fonction de la température de 

réticulation  
 

4. Tenue à l’eau des réseaux  

 Le dernier point abordé a été la tenue à l’eau des différents réseaux obtenus à partir 

d’isosorbide, de sorbitol et de cardanol époxydé. En effet, les matériaux époxy sont connus 

pour être sensibles au vieillissement humide, celui-ci pouvant avoir d’importantes 

conséquences sur les propriétés des matériaux : plastification, dégradation… Il était alors 

intéressant de s’intéresser à la tenue à l’eau de ces nouveaux matériaux.  

 

a) Réseaux à base d’isosorbide époxydé 

  

 La tenue à l’eau des réseaux époxy obtenus à partir d’isosorbide et différents 

durcisseur (rapport stœchiométriques r = nah/ne = 1) a été étudiée. Après 5 jours d’immersion 

dans de l’eau distillée à température ambiante le % d’eau absorbé par les différents 

échantillons est reporté dans le tableau suivant.  

 

Réseau 
Tg (°C) 

initiale 

% d’eau 

absorbée  

(5 jours) 

Observations  

DGEBA – IPD  150 1 
Systèmes référence 

DGEBA – HA  90 0.9 

DGEDAS0 – IPD 102 26  

DGEDAS0 – D230 52 29  

DGEDAS0 – MXDA  79 ND Quelques fragments après 5h d’immersion 

DGEDASn – IPD 91 ND Léger gonflement, fragmentation aprés1h 

DGEDASn – D230 48 ND Gonflement moyen,  fragmentation après 30 min 

DGEDASn – MCDEA 120 8.4  

DGEDASn – DETDA  112 29  

DGEDASn – HA 61 ND Fragmentation après 15 min 

Tableau 11. Tenue à l’eau des réseaux à base d’isosorbide 
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 Il apparait que les réseaux époxy à base d’isosorbide sont très hydrophiles et absorbent 

jusqu’à 30 % massique d’eau. L’absorption d’eau est réduite en utilisant un durcisseur 

aromatique tel que MCDEA, mais reste importante (8.4 %) comparée à l’absorption mineure 

des réseaux de référence (< 1 %). On observe même dans certains cas une dégradation des 

réseaux avec la fragmentation de ceux-ci.  

 

 La très mauvaise tenue à l’eau des réseaux à base d’isosorbide apparait alors comme le 

principal inconvénient de ces matériaux.  

 

 Afin de suivre la cinétique d’absorption de l’eau de ces réseaux, des conditions de 

vieillissement plus « douces » ont été choisies. Le comportement des réseaux DGEDASn – 

HA et DGEDASn –IPD en chambre climatique (25°C, 50 % Humidité) a ainsi été suivi. Il 

apparait que l’utilisation du durcisseur IPD diminue légèrement l’absorption d’eau par rapport 

au durcisseur HA. Néanmoins, la quantité d’eau absorbée dans de telles conditions reste très 

importante (environ 3.5 % après un mois de stockage) et entraine une plastification 

importante des réseaux. Ces matériaux restent très sensibles à l’humidité atmosphérique.  

 

 

 
Figure 22. Cinétique d’absorption d’eau en atmosphère humide pour DGEDASn – HA et DGEDASn – IPD  

(Tamb, Hum. 50 %) 
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b) Réseaux à base de sorbitol époxydé et de cardanol 

 
 A l’opposé, les réseaux obtenus à partir de sorbitol époxydé présentent une tenue à 

l’eau intéressante voire équivalente à celle du réseau DGEBA – HA.  

 

 
Figure 23. Cinétique d’absorption d’eau pour SPGE – IPD (r = 1 et r = 1.25).  

Echantillons en immersions dans de l’eau distillée à Tamb. 
 
 Les réseaux obtenus à partir de cardanol présentent une excellente tenue à l’eau ce qui 

peux s’expliquer par la structure phénolique du prépolymère époxy dérivé du cardanol. 

Néanmoins ces réseaux ont de très faibles Tg.  

 
Figure 24. Cinétique d’absorption d’eau pour DGECAR – IPD et DGECAR – NC540  

Echantillons en immersions dans de l’eau distillée à Tamb. 
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 Conclusions 

 Deux types d’isosorbide époxydé ont été synthétisés, un isosorbide époxydé oligomère 

et un comprenant uniquement le diglycidyl éther d’isosorbide pur. Ces deux prépolymères 

époxy ont été polymérisés en utilisant un durcisseur amine classique (IPD) et comparés aux 

deux principaux prépolymères époxy disponibles sur le marché, dérivés du sorbitol et du 

cardanol. Le comportement particulier du sorbitol époxydé est à noter avec une augmentation 

de la Tg avec le rapport stœchiométrique. Cette augmentation de la Tg a été attribuée au fort 

pourcentage de Cl résiduels. De plus, les réseaux dérivés du cardanol sont à écarter du fait de 

leur faible Tg. L’influence de la structure du durcisseur a aussi été étudiée en utilisant 

différent durcisseurs à la fois classiques (mais présentant différentes structures) ainsi que bio-

sourcés tels que l’acide tannique et le cardanol amine. L’évolution des réactivités des 

différents systèmes avec les durcisseurs associés est classique et fonction du durcisseur. Il 

apparait aussi que quel que soit le durcisseur, de plus faibles Tg sont obtenues pour les réseaux 

bio-sourcés. Enfin, la tenue à l’eau des réseaux dérivés de sorbitol, isosorbide et cardanol a 

été étudiée et met en évidence la très forte hydrophilie des réseaux à base d’isosorbide 

représentant ainsi le principal inconvénient de ces matériaux. En contrepartie, bien qu’ayant 

une faible Tg les réseaux à base de cardanol présentent une excellente tenue à l’eau. Un 

important travail de formulation reste à faire pour obtenir les propriétés nécessaires à une 

application composite.  
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