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Introduction 1

I Related Work 9

1 Semantic Web Service 10
1.1 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Service-Oriented Computing . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Service-Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3 Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Semantic Web and Description Logics . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Description Logics: An Overview . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Inference in Description Logics . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Semantic Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Semantic Web Service Description at Functional Level . . . . . . . . . . . 26
1.3.2 Some Standard Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



CONTENTS iv

2 Web Service Composition 33
2.1 Functional Level Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2 Matchmaking and Semantic Dependences based Composition . . . . . . . 35
2.1.3 AI Planning and Causality Relationships based Composition . . . . . . . 44
2.1.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Process Level Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.2 Some Reference Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Combining Functional and Process Level of Composition . . . . . . . . . . . . . . 60
2.4 Modeling Web Service Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.2 Choreography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

II Contribution 67

3 A Framework for Semantic Links based Web Service Composition 68
3.1 Semantic Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.2 Semantic Link Valuation and Properties . . . . . . . . . . . . . . . . . . . 70
3.1.3 Semantic Link Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.1.4 Semantic Link Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.5 Ensuring Robustness in Semantic Links . . . . . . . . . . . . . . . . . . . 74
3.1.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Semantic Link Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.1 Notations and Definition of Semantic Link Matrix . . . . . . . . . . . . . 77
3.2.2 Construction of Semantic Link Matrices . . . . . . . . . . . . . . . . . . . 81
3.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Semantic Link Matrix and Web Service Composition . . . . . . . . . . . . . . . . 83
3.3.1 Sequence Composability of Web Services . . . . . . . . . . . . . . . . . . . 84
3.3.2 Modelling Sequence Composability and Expressive Compositions in SLM 85
3.3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Semantic Link and Causal Law based Composition 89
4.1 Semantic Link based Web Service Composition . . . . . . . . . . . . . . . . . . . 90

4.1.1 Disregarding Causal Laws between Web Services . . . . . . . . . . . . . . 90
4.1.2 Web Service Composition as a Revisited AI Planning Problem . . . . . . 91
4.1.3 Modelling Composition as a Partial Ordering of Web Services . . . . . . . 92
4.1.4 A Regression-based Approach for Web Service Composition (Ra4C) . . . 93
4.1.5 Properties of Web Service Compositions Computed with Ra4C . . . . . . 95
4.1.6 Robust Semantic Web Service Composition . . . . . . . . . . . . . . . . . 96
4.1.7 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Causal Law based Web Service Composition . . . . . . . . . . . . . . . . . . . . . 103
4.2.1 Context and Conditional Composition . . . . . . . . . . . . . . . . . . . . 104
4.2.2 Revisited Definitions and Examples of Web Services . . . . . . . . . . . . 107



CONTENTS v

4.2.3 Background: Situation Calculus and Golog . . . . . . . . . . . . . . . . . 108
4.2.4 Specifying Semantic Links with Golog . . . . . . . . . . . . . . . . . . . . 113
4.2.5 Adapting sGolog for Composition of Services . . . . . . . . . . . . . . . . 118
4.2.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Optimizing Semantic Link based Web Service Composition 127
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1.1 Web Service Composition, Semantic Links and Robustness . . . . . . . . 128
5.1.2 Modelling Semantic Link Based Web Services Composition . . . . . . . . 129

5.2 Semantic Link Quality Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2.1 Quality Criteria for Elementary Semantic Links . . . . . . . . . . . . . . . 136
5.2.2 Quality Criteria for Semantic Link Compositions . . . . . . . . . . . . . . 139
5.2.3 Partial Independence of Quality Criteria and their Aggregation Functions 144

5.3 Semantic Link Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.1 Local Selection Based Approach and its Limitations . . . . . . . . . . . . 146
5.3.2 Naive Global Selection Based Approach . . . . . . . . . . . . . . . . . . . 147
5.3.3 Integer Programming Based Global Selection . . . . . . . . . . . . . . . . 149

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.4.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.4.2 Our Contribution in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . 155

III Our Approach in Use 158

6 Industrial Scenarios in Use 159
6.1 A Telecommunication Application: Internet Packages . . . . . . . . . . . . . . . . 160

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.1.3 Open Issues and Challenges for any Telecommunication Operator . . . . . 162

6.2 An E-Tourism Application: The Virtual Travel Agency . . . . . . . . . . . . . . 162
6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.3 Open Issues and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 An E-HealthCare Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3.3 Open Issues and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4 Many Other Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 The Composition Tool: Implementation & Experiments 168
7.1 Architecture and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.1 Repository of Semantic Web Services . . . . . . . . . . . . . . . . . . . . . 171
7.1.2 Domain Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1.3 Service Goal sg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.1.4 Service Discovery and Selection Component . . . . . . . . . . . . . . . . . 172
7.1.5 Semantic Reasoning Component . . . . . . . . . . . . . . . . . . . . . . . 174
7.1.6 Causal Laws Reasoning Component . . . . . . . . . . . . . . . . . . . . . 174
7.1.7 Functional Level Composition Component . . . . . . . . . . . . . . . . . . 175



CONTENTS vi

7.1.8 The Composition Optimization Component . . . . . . . . . . . . . . . . . 177
7.1.9 The BPEL Rendering Component . . . . . . . . . . . . . . . . . . . . . . 178
7.1.10 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2 Results and Empirical Evaluation on Three Scenarios in Use . . . . . . . . . . . . 179
7.2.1 Context of Evaluation: Scenarios, Web Services and System Configuration 179
7.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Exposition of Our Composition Approach . . . . . . . . . . . . . . . . . . . . . . 186
7.3.1 The Ra4C based Composition Performance . . . . . . . . . . . . . . . . . 187
7.3.2 The sslGolog based Composition Performance . . . . . . . . . . . . . . . 191
7.3.3 The Optimization Process Performance . . . . . . . . . . . . . . . . . . . 196
7.3.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Conclusion and Perspectives 201

IV Appendix 207

A Introduction 208
A.1 Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

A.1.1 Découverte de web services . . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.1.2 Composition de web services . . . . . . . . . . . . . . . . . . . . . . . . . 208
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G.2.2 Les modèles élaborés par l’IA . . . . . . . . . . . . . . . . . . . . . . . . . 264
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G.6 Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Bibliography 297



List of Figures

1 Organization and Inter Dependences of the Ph.D Report’s Chapters. . . . . . . . 8

1.1 Diagram of a Service-Oriented Architecture. . . . . . . . . . . . . . . . . . . . . . 12
1.2 Relationships Between Standard Web Service Specifications [56]. . . . . . . . . . 14
1.3 Sample of a TBox and ABox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Part of the Terminological Box T of an ALE Telecom Ontology T . . . . . . . . . 21
1.5 A graphical (hierarchy) View of Ontology depicted in Figure 1.4. . . . . . . . . . 21
1.6 Process and Functional Level Description of Semantic Web Services in an Extended

Service Specification Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 Illustration of a Semantic Web Services. . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 An Ideal Functional Level Composition of two Web Services with Semantic De-
pendences and Causal Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Matchmaking for Discovery and FLC. . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 An Ideal Process Level Composition of two Web Services (A Virtual Travel Agency). 57
2.4 Organization and Inter Dependences of the Ph.D Report’s Chapters (2). . . . . . 66

3.1 Illustration of a Semantic Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Illustration of a Semantic Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Illustration of a Non Robust Semantic Link sla valued by a Subsume Match Level. 74
3.4 Some Important Notations required to formally define SLMs. . . . . . . . . . . . 78
3.5 Illustration of the simplest case of a Web service composition sx◦̂sy. . . . . . . . 83
3.6 Illustration of more complex cases of a Web service composition. . . . . . . . . . 84
3.7 Illustration of a Sequence Composability of Services sx ◦ sy. . . . . . . . . . . . . 85

4.1 Sample of the Assertional Box of the ALE Domain Ontology T . . . . . . . . . . . 92
4.2 Ra4C Result on the Motivating example. . . . . . . . . . . . . . . . . . . . . . . 96
4.3 A Non Robust Composition of the Motivating example. . . . . . . . . . . . . . . 97
4.4 Illustration of Non Determinism on Web Services (Section 4.1). . . . . . . . . . . 106
4.5 A Trivial Composition of two Actions with a Complex Relationship. . . . . . . . 112
4.6 Some Golog Constructs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.7 Architecture/Methodology of the Overall Approach. . . . . . . . . . . . . . . . . 114
4.8 A Sample of a Web Service Composition ω1. . . . . . . . . . . . . . . . . . . . . . 121

5.1 Illustration of a Generic Service Task. . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Illustration of an Abstract Composition. . . . . . . . . . . . . . . . . . . . . . . . 132
5.3 Illustration of a Task and its Collection of Candidate Web Services. . . . . . . . . 133
5.4 Illustration of a Practical Composition. . . . . . . . . . . . . . . . . . . . . . . . 134
5.5 Candidate Semantic Links between Tasks T1 and T2. . . . . . . . . . . . . . . . . 135

ix



LIST OF FIGURES x

5.6 Multi-(Semantically) Linked Web Services. . . . . . . . . . . . . . . . . . . . . . . 139
5.7 Pure Sequential, AND-Branching and OR-Branching Compositions extracted from

c1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.8 Tasks, Candidate Web Services and Semantic Links. . . . . . . . . . . . . . . . . 146
5.9 Illustration of an Incompatibility Constraint. . . . . . . . . . . . . . . . . . . . . 151

6.1 Terminology FL0 for the E-Tourism Use Case. . . . . . . . . . . . . . . . . . . . 164
6.2 A Sample of an E-healthcare Domain Ontology T . . . . . . . . . . . . . . . . . . 166

7.1 The Reference Architecture, Its Innovative Components and their Implementation
(A No Detailed Version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2 WSML Description of the AdslEligibility∗ Service S∗
a . . . . . . . . . . . . . . . . 173

7.3 Architecture of the Semantic Links based Web Service Composition Component. 176
7.4 Architecture of the Semantic Links and Causal Laws based Web Service Compo-

sition Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.5 The Reference Architecture, Its Innovative Components and their Implementation

(A Detailed Version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.6 Computation of the Filling Rate Fr of SLMs with 100 Rows by Varying the Num-

ber of Web Service (with 4 #InputMax and 4 #OutputMax) in #SWs. . . . . . 188
7.7 Computation Time of the Ra4C based Composition Approach with an SLM of

#Rows = 100 and Fr = 15% by Varying the Number of Instances in A. . . . . . 189
7.8 Computation Time of the Ra4C based Composition Approach with #A = 30 and

an SLM of #Rows = 100, mi,j = 1 by Varying the Filling Rate Fr of the SLM. . 189

7.9 Computation Time of the Ra4C based Composition Approach with #A = #Rows
3

and an SLM Defined by mi,j = 1 by Varying the of the Number of Rows in the
SLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.10 Computation Time of the Ra4C based Composition Approach with an SLM of
#Rows = 100, #A = 30 by Varying the Number of Web Services #SWs with ’n’
their Maximum Number of Input and Output Parameters. . . . . . . . . . . . . . 190

7.11 Knowledge Base Loading, DL Reasoning, Axiomatization and Planning Processes
on Scenario ωA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.12 Knowledge Base Loading, DL Reasoning, Axiomatization and Planning Processes
on Scenario ωB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.13 Computation-Time Performance of sslGolog and Ra4C on Scenario ωA. . . . . . 195
7.14 Computation Time for Optimal Practical Composition by Varying the Number of

Abstract Semantic Links (with 100 candidates for each abstract links). . . . . . . 197
7.15 Computation Cost for Optimal Practical Composition by Varying the Number of

Candidate Semantic Links (with 350 abstract semantic links). . . . . . . . . . . . 198
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Abstract

Automated composition of Web services or the process of forming new value added Web ser-
vices is one of the most promising challenges facing the Semantic Web today. Semantics enables
Web service to describe capabilities together with their processes, hence one of the key elements
for the automated composition of Web services. In this Ph.D study we focus on the functional
level of Web services i.e., services are described according i) to some input, output parameters
semantically enhanced by concepts in a domain ontology and ii) to preconditions and side-effects
on the world. Web service composition is then viewed as a composition of semantic links con-
trolled by causal laws. The semantic links refer to semantic matchmaking between Web service
parameters (i.e., outputs and inputs) in order to model their connection and interaction whereas
causal laws are the relationships between actions, action preconditions and side-effects. The key
idea is that the matchmaking enables us, at run time, finding semantic compatibilities among
independently defined Web service descriptions. By considering such a level of composition we
first study semantic links in details, and more specially their properties of validity and robustness.

From this and depending on services expressivity we focus on two different approaches to
perform Web service composition. In the first approach a formal model to perform the auto-
mated composition of Web services by means of semantic links i.e., Semantic Link Matrix is
introduced. This Semantic Link Matrix is required as a starting point to apply problem-solving
techniques such as regression (or progression)-based search for Web service composition. The
model supports a semantic context and focuses on semantic links in order to find correct, com-
plete, consistent and robust plans as solutions. In this part an innovative and formal model for
an Artificial Intelligence planning-oriented composition is presented.

In the second approach, besides semantic links, causal laws are also considered to achieve
compositions of Web services. To this end an augmented and adapted version of the logic pro-
gramming language Golog i.e., sslGolog is presented as a natural formalism not only for reasoning
about the latter links and laws, but also for automatically composing services. sslGolog operates
as an offline interpreter that supports n-ary output parameters of actions to compute conditional
compositions of services. This approach is much more restrictive since assumes more expressivity
on Web service description.

Finally, since Web services have been enhanced with formal semantic descriptions, the quality
of semantic links involved in a composition is used as a innovative and distinguishing criterion to
estimate its overall semantic quality. Therefore non functional criteria such as quality of service
(QoS) are no longer considered as the only criteria to rank compositions satisfying the same goal.
In this part we focus on quality of semantic link based Web service composition. To this end, we
present a general and extensible model to evaluate quality of both elementary and composition
of semantic links. From this, we introduce a global semantic link selection based approach to
compute the optimal composition. This problem is formulated as an optimization problem which
is solved using efficient integer linear programming methods.

Our system is implemented and interacting with Web services dedicated to Telecommuni-
cation scenarios in use. The evaluation results showed high efficiency and effectiveness of the
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suggested approaches.

Keywords

[Service Computing ] Web Service, Service Composition, Composition Optimization;
[Artificial Intelligence] Semantic Web, Knowledge Representation, Automated Reasoning, AI
Planning.



Abstract

La composition automatisée de services Web ou le processus de formation de nouveaux ser-
vices Web à plus forte valeur ajoutée est l’un des plus grand défis auxquels le Web sémantique est
face aujourd’hui. La sémantique permet d’un côte de décrire les capacités des services Web mais
aussi leurs processus d’exécution, d’où un élément clé pour la composition automatique de ser-
vices Web. Dans cette étude de doctorat, nous nous concentrons sur la description fonctionnelle
des services Web c’est-à-dire, les services sont vus comme une fonction ayant des paramètres i)
d’entrée, de sortie sémantiquement annotés par des concepts d’une ontologie de domaine et ii)
des conditions préalables et effets conditionnels sur le monde. La composition de services Web
est alors considérée comme une composition des liens sémantiques où les lois de cause à effets ont
aussi un rôle prépondérant. L’idée mâıtresse est que les liens sémantiques et les lois causales per-
mettent, au moment de l’exécution, de trouver des compatibilités sémantiques, indépendamment
des descriptions des services Web. En considérant un tel niveau de composition, nous étudions
tout d’abord les liens sémantiques, et plus particulièrement leurs propriétés liées à la validité et
la robustesse.

A partir de là et dépendant de l’expressivité des services Web, nous nous concentrons sur
deux approches différentes pour effectuer la composition de services Web. Lors de la première
approche, un modèle formel pour effectuer la composition automatique de services Web par le
biais de liens sémantiques i.e., Matrice de liens sémantiques est introduite. Cette matrice est
nécessaire comme point de départ pour appliquer des approches de recherche basées sur la ré-
gression (ou progression). Le modèle prend en charge un contexte sémantique et met l’accent sur
les liens sémantiques afin de trouver des plans corrects, complets, cohérents et robustes comme
solutions au problème de composition de services Web. Dans cette partie un modèle formel pour
la planification et composition de services Web est présenté.

Dans la seconde approche, en plus de liens sémantiques, nous considérons les lois de causalité
entre effets et pré-conditions de services Web pour obtenir les compositions valides de services
Web. Pour ceci, une version étendue et adaptée du langage de programmation logique Golog (ici
sslGolog) est présentée comme un formalisme naturel non seulement pour le raisonnement sur
les liens sémantiques et les lois causales, mais aussi pour composer automatiquement les services
Web. sslGolog fonctionne comme un interprète qui prend en charge les paramètres de sortie de
services pour calculer les compositions conditionnelles de services. Cette approche (beaucoup
plus restrictive) suppose plus d’expressivité sur la description de service Web.

Enfin, nous considérons la qualité des liens sémantiques impliqués dans la composition comme
critère novateur et distinctif pour estimer la qualité sémantique des compositions calculées. Ainsi
les critères non fonctionnels tels que la qualité de service(QoS) ne sont plus considérés comme
les seuls critères permettant de classer les compositions satisfaisant le même objectif. Dans cette
partie, nous nous concentrons sur la qualité des liens sémantiques appartenant à la composition
de service Web. Pour ceci, nous présentons un modèle extensible permettant d’évaluer la qualité
des liens sémantiques ainsi que leur composition. De ce fait, nous introduisons une approche
fondée sur la sélection de liens sémantiques afin de calculer la composition optimale. Ce prob-
lème est formulé comme un problème d’optimisation qui est résolu à l’aide de la méthode par
programmation linéaire entière.
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Notre système est mis en oeuvre et interagit avec des services Web portant sur de scénarios de
télécommunications. Les résultats de l’évaluation a montré une grande efficacité des différentes
approches proposées.

Keywords

[Calcul basé Service] Service Web, Composition de Web services, Optimisation de compositions;
[Intelligence Artificielle] Web Sémantique, Représentation des connaissances, Raisonnement Au-
tomatique, Planification en Intelligence Artificielle.



Introduction

General Context

Service oriented computing (SOC [158]) is an emerging cross-disciplinary paradigm for distributed
computing that is changing the way software applications are designed, architected, delivered and
consumed. Services are autonomous, platform-independent computational elements that can be
described, published, discovered, orchestrated and programmed using standard protocols to build
networks of collaborating applications distributed within and across organizational boundaries.
Web Services [8] are the current most promising technology to provide the feature richness, flex-
ibility and scalability needed by enterprises to manage the Service oriented architecture (SOA)
and SOC challenges [186]. Therefore Web services provide the basis for the development and
execution of business processes that are distributed over the network and available via standard
interfaces and protocols.

The commonly accepted and minimal framework for services, referred to as SOA, consists
of the following basic roles: i) the service provider, which is the subject (e.g. an organization)
providing services; ii) the service directory, which is the subject providing a repository/registry
of service descriptions, where providers publish their services and requestors find services; and
iii) the service requestor, also referred to as client, which is the subject looking for and invoking
the service in order to fulfil some goals. A requestor discovers a suitable service in the directory,
and then connects to the specific service provider in order to invoke the service.

Research on Web services spans over many interesting issues. In this thesis, we are particularly
interested in automated composition of semantic Web services. This issue falls into the following
Research areas:

• Service Computing : Web Service, Service Composition, Composition Optimization;

• Artificial Intelligence: Semantic Web, Knowledge Representation, Automated Reasoning,
AI (Artificial Intelligence) Planning.

Motivation and Aim

Recent progress in the field of Web services makes it practically possible to publish, locate,
and invoke applications across the Web. This is a reason why more and more companies and
organizations now implement their core business and outsource other application services over
Internet. Thus the ability of efficient selection and integration of inter-organizational services
on the Web at runtime becomes an important issue to the Web service provision. The general
problem is about how to develop mechanisms to automatically locate the correct Web service
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in order to meet the user’s requirements. In some cases, if no single Web service can satisfy
the functionality required by the user, there should be a possibility to combine existing services
together in order to fulfil the request. This new ability is so called Web service composition:

Starting from an initial set of services, Web service composition aims at selecting and
inter-connecting services provided by different partners according to a goal to achieve.

The result of the Web service composition is generated in the user interaction loop on the
basis of the service requests and the available services.

The problem of Web service composition is a highly complex task. Here we underline some
sources of its complexities:

• First, the amount of available Web services is huge, and it is already beyond the human’s
capability to analyze them manually.

• Second, Web services can be created and updated on the fly, thus the composition system
needs to detect the updating at runtime and the decision should be made based on the
up-to-date information.

• Third, the Web services are usually developed by different organizations that use differ-
ent conceptual models for presenting services’ characteristics. This requires utilization of
relevant semantic information for matching and composition of Web services.

The vision that we pursue in this thesis is the folowing:

The realization of Web service composition through the emerging of semantic Web
services.

Closing the gap between Web service composition and automatic reasoning is the aim of the
emerging research area of semantic Web services. This research branch aims to identify ways of
leveraging today’s computational power to automate composition tasks that are currently carried
out manually.

Web service composition enhanced by semantic technologies is currently one of the most
hyped and addressed issue in the two major trends in Web technologies i.e., Web services and
semantic Web [140].

The semantic Web i.e., the Web of meaning is considered as the new vision and extension of
the current Web that tries to give semantic to the Web resources [29].

Semantic Web aims at improving the technology to organise, search, integrate, and evolve
Web-accessible resources (e.g., Web documents, data) by using rich and machine-understandable
abstractions for the representation of resources semantics. Ontologies are proposed as means to
address semantic heterogeneity among Web-accessible information sources and services. They
are used to provide meta-data for the effective manipulation of available information including
discovering information sources and reasoning about their capabilities.

In the context of Web services, ontologies promise to take interoperability a step further by
providing rich descriptions and modelling of service properties, capabilities, and behaviour.

Web services in the semantic Web are enhanced using rich description languages (through
Description Logics DLs [58]) such as the Web Ontology Language (OWL [161]). In this way
semantic Web services [197] are Web services that have been enhanced with formal semantic
descriptions where OWL-S [12], the Web Service Modelling Ontology (WSMO [60]), Semantic
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Annotation for WSDL (SA-WSDL [192]) or the Semantic Web Services Language (SWSL2 [179])
may be used to describe them.

Services requestor (e.g., other services) can, in turn, use these descriptions to reason about
Web services and automate their use to accomplish goals specified by end-users including intel-
ligent and automated discovery, selection, composition and invocation [197].

The aim of this thesis is to consider the Web service composition problem from the semantic
viewpoint, and to propose a framework for supporting the composition process. The semantic
based method ensures the correctness and the completeness of the solution.

Research Questions and Contributions

In this report, we address the following problem:

Automated composition of stateless Web services in the semantic Web and
semantic-based optimization of candidate compositions.

Towards this issue we defend the following thesis:

Causal laws between services and semantic links between their input/output
parameters are key elements for automated composition of stateless Web Ser-
vices and for the optimisation of their candidate compositions.

A major contribution of this thesis is the development and specification of a formal and
generic approach for the automatic composition of Web services on the Semantic Web. In order
to accomplish such advances in the field of semantic Web services and more specially of their com-
position, many open problems have to be solved both on the theoretical and on the practical level.

In this thesis we aim to treat nine questions i.e., seven research questions and two ques-
tions related to the implementation, validation and demonstration of our model in
industrial scenarios in use. On the one hand the seven research questions are structured in
the following four main classes:

• Semantic Composability3 of Web Services or how to ensure composition of Web
services?

• Web Service Composition or how to combine Web services in a suitable way to achieve
a target goal?

• Composition Optimization or how to select an optimal composition among a set of
candidates that achieve the same goal?

• Architecture or how to perform an end-to-end composition of Web services?

On the other hand the two last questions are denoted by the following class:

2http://www.daml.org/services/swsl/
3The reader can interchange the semantic composability term with the data flow term without major modifi-

cation of the meaning.
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• Industrial Scenarios and Implementation or how implementing, validating, and demon-
strating the composition approach in industrial scenarios in use?

In the following we address these different classes with the next questions.

Semantic Composability of Web Services

Q1. How can the semantic composability of Web Services be ensured?

• This thesis’ contribution to answering this question is a novel semantic link concept [114,
115, 113, 119, 112] between Web services which is a composability criterion considered as
the main issue to form new value-added services by composition at functional level. This
criterion is required to semantically link output to input parameters of Web services, and
to ensure correct properties of semantic composability involved between Web services.

Q2. What kind of properties the semantic composability of Web services have to satisfy?

• This thesis’ contribution to answering this question is robustness of its semantic links
[108, 109, 112]. The thesis highlights the issue related to robustness of semantic links and
presents different techniques to solve the problem of robustness in Web service composition.

Q3. How to define a formal and flexible model that ensures correct semantic composability of
Web services and easily supports basic control flow of composition?

• This thesis’ contribution to answering this question is a framework SLM (Semantic Link
Matrix) [114, 115, 113, 119, 112] for pre-computing and capturing relevant semantic links
in a formal and flexible model to achieve Web service composition. Moreover this model
supports expressive compositions of Web services such as sequence, non determinism choice
of service and concurrent execution.

Web Service Composition

Q4. How can we compose Web services with semantic links?

• This thesis’ contribution to answering this question is Ra4C (Regression-based Approach
for Composition) [114, 115, 112] that applies an AI planning-based technique for computing
correct, consistent, complete and optionally robust Web service compositions on an SLM
of a given domain. The result of the latter computing is a partial ordering of Web services
arranged in a simpler version of a workflow that fulfils a given composition goal. The thesis
fits semantic Web service composition to a semantic links composition by means of the
feature of sequence composability between services.

Q5. How can we compose semantic Web services wherein conditions on their functional param-
eters hold?

• This thesis’ contribution to answering this question is a composition approach that considers
semantic links together with causal laws as composability criteria. This approach, which is
based on an adaptation and extension of Golog i.e., sslGolog (Sensing + Semantic Link for
Golog), supports conditional compositions of services.
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Composition Optimization

Q6. How can we compare and select among a huge number of composition solutions that achieve
the same goal?

• This thesis’ contribution to answering this question is a technique for computing the seman-
tic link based optimal Web service composition [110]. To this end, a general and extensible
model to evaluate and estimate quality of both elementary and semantic links based Web
service composition is presented. From this the semantic link based optimal Web service
composition is computed by i) a local, ii) a naive and iii) a global selection approach.

Architecture

Q7. How can we achieve an end to end composition of Web services at functional level?

• This thesis’ contribution to answering this question is a reference architecture [168, 30,
112, 71, 70] wherein Web services can be discovered, selected, composed and executed at
Functional Level. All these components interact with repository of Web services, semantic
reasoners to achieve such a goal.

Industrial Scenarios and Implementation

The two questions related to our industrial context are as follows:

Q8. Are the suggested approaches implemented?

• Our Ph.D work has an efficient implementation in the SME3-Pro4 prototype for automat-
ically computing compositions of Web services and rendering them in a standard format.

Q9. Are the suggested approaches running on real scenarios and scaling large use cases?

• The thesis illustrates our approaches in different levels of scenarios i.e., from scenarios
in Use in Telecom, E-Tourism or E-HealthCare domain, to random scenarios to evaluate
scalability of our approach. Moreover the empirical evaluation illustrates the experiences
made with the application of the proposed techniques and leads to the conclusion that the
concepts presented can be applied to practical problems.

Thesis Outline

Figure 1 illustrates the organization and inter dependences of the different Ph.D report’s Chap-
ters. In more details, this thesis is organized as follows:

• Part I presents the background information to follow the theory in this thesis. Moreover
this part presents related works, that we first analyse with the previous questions Qi,1≤i≤9.
Then we emphasize the main limitations of the latter works by means of the latter ques-
tions. From this, the part draws main requirements that we consider to achieve Web service
composition.

4cf. the SME3-Pro (SeMantic wEb sErvicE PROject) Open Source Project licensed under the GPL license
available at https://sws-orangelabs.elibel.tm.fr/ that is the general framework in which we intend to release the
various prototypes produced by our research in area of Semantic Web services.

https://sws-orangelabs.elibel.tm.fr/
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– Chapter 1 provides an introduction to the main topics and background information of
the thesis i.e., Service-oriented Computing, Web Service, semantic Web and semantic
Web service.

This Chapter represents the foundations of Figure 1.

– Chapter 2 surveys a representative set of existing literature that is related to the
work presented in this thesis. Moreover this Chapter poses six specific technical meta
requirements that need to be met by matchmaking and AI planning based systems to
make automatic web service composition at functional level a real success.

This explains the vertical position of Chapter 2 in Figure 1.

• Part II presents the main contributions of this thesis.

– In Chapter 3, semantic links between parameters of Web services are defined as the
main composabilty criteria to achieve Web service composition. Towards this issue we
focus on functional input and output parameters of services. More particularly we will
consider both standard and non standard matchmaking functions to value semantic
links between parameters of Web services. From this innovative valuation, new issues
related to robustness connections have been identified.

This Chapter addresses questions Q1 and Q2.

Moreover Chapter 3 studies a formal and flexible model for Web service composition.
This model is introduced for facilitating computation (at Design Time) of semantic
links between services and also their composition. This model aims at supporting
expressive (sequence, non determinism and concurrency) compositions of Web services.

This Chapter addresses question Q3. This Chapter represents the first contribution in
Figure 1 and is based on Chapter 2.

– Chapter 4 deals with the problem of service composition i.e., the process of selecting a
set of web services that, combined in a suitable way, are able to perform a composition
goal. Two complementary Web service composition approaches, depending on the
level of Web service description and the composability criteria, are addressed in this
Chapter. AI principles and matchmaking based systems are coupled to solve such
a problem. In more details these two approaches are as follows: the first approach
considers semantic links as a composability criterion, and the other approach works
with semantic links together with causal laws. Both approaches support expressive
compositions of Web services at different levels.

This Chapter addresses questions Q4 and Q5. This Chapter is based on Chapters 2
and 3 in Figure 1.

– Contrary to approaches that compute optimal composition by considering only non
functional parameters (e.g., quality of service), Chapter 5 focuses on functional pa-
rameters of Web services to value semantics of compositions. In particular this Chap-
ter aims at computing semantic links based optimal Web service composition. Starting
from an initial set of web services, the goal of this chapter aims at selecting web ser-
vices and maximizing the overall quality of their inter-connections by means of their
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semantic links according to a goal to achieve. The composition results of Chapter 4
can be inputs of the optimization process.

This Chapter addresses question Q6. This Chapter is based on is Chapters 2, 3 and 4
in Figure 1.

• Part III presents the prototype implementation of the theoretical Part II, running on sce-
narios in use at France Telecom R&D.

– Chapter 6 presents three different scenarios wherein our approach of semantic Web
service composition has been integrated. These three scenarios respectively refer to a
Telecommunication, an E-Tourism and E-HealthCare scenarios.

This Chapter addresses question Q9. This Chapter provides scenarios in use for Chap-
ters 3, 4 and 5 in Figure 1.

– Chapter 7 presents the implementation of our service composition system. We also
present the empirical evaluation of the system performance.

This Chapter addresses questions Q7, Q8 and Q9. This Chapter provides implemen-
tation for Chapters 3, 4 and 5 in Figure 1. Moreover the implementation is performed
on Scenarios in Use of Chapter 6.

• Finally we summarize the thesis, discuss its contributions and provide a discussion of the
method and future directions for this work.
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Chapter 1

Semantic Web Service

This chapter provides an introduction to the main topics and background of the thesis. To
this end Section 1.1 introduces concepts related to service-oriented computing, service-oriented
architecture and web service. In Section 1.2 we briefly review semantic web and its underlying
formal model i.e., Description Logics. Section 1.3 presents semantic web services and its standard
proposals. Finally Section 1.4 concludes this chapter.

1.1 Service

In this section, we introduce Service-Oriented Computing, its Architecture and Web Service. In
the first section we will define Service-Oriented Computing as an emerging computing paradigm
utilizing services to support the rapid development of distributed applications in heterogeneous
environments. From this definition we will focus on a key architecture to realize the Service-
Oriented Computing concept i.e., the Service-Oriented Architecture in the second section. The
latter architecture is not tied to a specific implementation technology. Indeed it may be imple-
mented using a wide-range of technologies. In the third section we will focus on one of these
technologies i.e., Web Services-based SOA.

1.1.1 Service-Oriented Computing

In today’s world, the ability to quickly deliver new applications is increasingly becoming imper-
ative for business organizations. They face rapidly changing market conditions, pressure from
competition and new regulations that demand compliance. These evolving constraints drive the
need for the IT infrastructure to respond aptly in support of new business models and require-
ments. However, most of the enterprise and legacy applications were not designed to enable
rapid adoption and adaptation of functionality. Therefore these become a bottleneck in the al-
ready intricate IT landscape of an organization for efficient and effective application development.

Service-Orientation aims to provide the underlying machinery that can potentially i) over-
come these drawbacks and ii) realize such an“on-demand”IT environment by essentially support-
ing three important requirements [123]: Integration, Virtualization and Management. Integration
in this context refers to the ability to seamlessly combine multiple existing, and often heteroge-
neous, applications and resources across organizations. Virtualization is the ability to provide a
uniform and consolidated access to the applications irrespective of programming language used
for its implementation, server hosting the application, operating system on which it is running,

10
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and so on. And finally, Management is the ability to provide a logical architecture for managing
computing resources using managed objects and their relationships.

The previous requirements are enabled by adopting a programming model called Service-
Oriented Computing (i.e., SOC) [156, 158, 160]. This paradigm utilizes services as the building
blocks for fast, low-cost and efficient (distributed) application development. Services are au-
tonomous, self-describing and platform-agnostic computational entities that can perform various
functions ranging from responding to simple requests to complex enterprise processes.

They allow organizations to expose multiple applications, using standard interface description
languages. In addition they can be accessed and invoked programmatically over the network (In-
ternet or intranet) using widely adopted protocols and languages. Furthermore, SOC enables the
services to be published in repositories and dynamically discovered and assembled for building
massively distributed, interoperable and evolvable systems. Typically, they are built in a way
without preconceiving the context in which they will be used. Consequently, the provider and
consumer of a particular service are loosely coupled, and often inter-organizational.

Moreover, even though there is an abundance of Web-based applications primarily targeted
for humans, services are also meant to be used by other applications (and possibly by other
services) directly, and not only by humans. In other words, the goal of SOC is to enable pure
service-to-service interactions as opposed to only service-to-human interactions.

A key architecture to realize the SOC concept is the Service-Oriented Architecture (i.e.,
SOA). In the same direction as SOC, SOA introduces a new philosophy for building distributed
applications where elementary services can be published, discovered and bound together to create
more complex valued-added services. In the next section, a definition of SOA together with its
main components are remained to the reader.

1.1.2 Service-Oriented Architecture

One of the most widely adopted ways for realizing the SOC model into an architecture is called
a Service-Oriented Architecture [56, 61]. It is in essence a logical way for developing distributed
software system by providing services to end-user applications or to other services via published
and discoverable interfaces. OASIS1 (i.e., the Organization for the Advancement of Structured
Information Standards) defines SOA as follows:

Definition 1. (Service-Oriented Architecture [148])
Service-Oriented Architecture (SOA) is paradigm for organizing and utilizing distributed capabil-
ities that may be under the control of different ownership domains. It provides a uniform means
to offer, discover, interact with and use capabilities to produce desired effects consistent with
measurable preconditions and expectations.

In general, an SOA is composed of three different entities (Figure 1.1):

i) the service provider is any organisation that provides the service, such an entity provides a
specific implementation of the service;

ii) the service requestor (e.g., a client) is an entity which searches for and invokes a particular
service in order to fulfil its goals;

iii) and finally a discovery engine which acts as a repository or a directory of services.

1http://www.oasis-open.org/

http://www.oasis-open.org/
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Figure 1.1: Diagram of a Service-Oriented Architecture.

In such an architecture the different entities act as follows. First a provider publishes information
about the interface description of the service, and about the invocation (e.g., URL, protocols) in
a discovery engine. Then, a client who wants to use a particular service, searches for it in the
repository and then interacts with the service provider (directly or not e.g., through a broker, a
delegator) for service invocation.

Even though this framework is simplistic, it raises very interesting research issues with respect
to:

• specification e.g., how to specify the syntax and semantics of a service unambiguously?

• publication e.g., how to make information about a Web service available?

• discovery e.g., how to find the best service suitable for a particular job?

• composition e.g., how to assemble multiple atomic and composite services for
a particular job?

• selection e.g., how to select “best” services for a given task?

• interoperation e.g., how to solve the problem of heterogeneity at a data level among Web
services?

• mediation e.g., how to provide direct connectivity between service requestors and service
providers?

• interaction e.g., what kind of data and protocol mediators are required by service requestors
and service providers?

• verification e.g., how to validate Web services, their compositions ?

• monitoring/management e.g., how to provide quantified QoS-based services, service assur-
ance to Network Providers? How to manage network resources?

• execution e.g., how to execute services securely?
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As mentioned earlier, the main focus of our work is to develop techniques for automatic com-
position of services defined over the Web.

To conclude, it is obvious that a well-constructed, standards-based Service Oriented Archi-
tecture can empower a business environment with a flexible infrastructure and processing envi-
ronment. SOA achieves this by provisioning independent, reusable automated business process
and systems functions as services and providing a robust and secure foundation for leveraging
these services. Efficiencies in the design, implementation, and operation of SOA-based systems
can allow organizations to adapt far more readily to a changing environment.

SOA is not tied to a specific implementation technology. Indeed it may be implemented using
a wide-range of technologies including Web Services [8], RPC [33], DCOM [67], REST [63] or
CORBA [149]. In our work, we focus on Web Services-based SOA [157], which is described in
the following section.

1.1.3 Web Service

Definitions

Web Services are the current most promising technology based on the concept of SOC and SOA
[203]. According to IBM2, “Web Services are self-contained, modular applications, accessible via
the Web through open standard languages, which provide a set of functionalities to businesses or
individuals”.

This definition places the emphasis on two points. The first point is that a Web service is
seen as an application accessible to other applications over the Web. Secondly, Web services
are open, which means that services have published interfaces that can be invoked by message
passing standards.

This definition is very simple, but not precise enough. For instance, it is not clear what it is
meant by a modular, self-contained application.

A step further in refining the definition of Web service is the one provided by the World Wide
Web consortium (i.e., W3C):

Definition 2. (Web Service)
A Web service is a software system identified by a URI and designed to support interoperable
machine-to-machine interaction over a network. It has an interface defined and described in a
machine-processable format (specifically WSDL [46]). Its definition can be discovered by other
software systems. Other systems may then interact with the Web service in a manner prescribed
by its description using SOAP [81] messages, typically conveyed using HTTP with an XML [37]
serialization in conjunction with other Web-related standards.

The W3C definition stresses that Web services should be capable of being“defined, described,
and discovered,” thereby clarifying how to access the Web services [8] with simple descriptions.
We should also emphasize that Web services do not merely provide static information, but allow
one to affect some action or change in the world (preconditions, effects), e.g., the sale of a product,
the control of a physical device, and so on.

This definition, represented pictorially in Figure 1.2, outlines two fundamental requirements
of Web services:

2IBM Web services tutorial. Online: http://www-106.ibm.com/developerworks/webservices/.

http://www-106.ibm.com/developerworks/webservices/
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Figure 1.2: Relationships Between Standard Web Service Specifications [56].

• they communicate by exchanging data formatted as XML documents using SOAP over
Internet protocols (such as HTTP);

• they provide a service description that, at minimum, consists of a WSDL document (which
unfortunately does not describe Web service semantics);

where, SOAP provides a standard, extensible, and composable framework for packaging and
exchanging XML messages and WSDL describes Web services starting with the messages that
are exchanged between the service requester and provider. Thus, such a description describes a
service in terms of its syntactical functionalities that it exports which can be invoked by syntactic
input/output messages.

UDDI (for Universal Description Discovery and Integration), an open industry initiative,
sponsored by OASIS, was originally proposed as a core Web service standard. It is designed to
be interrogated by SOAP messages and to provide access to Web Services Description Language
documents describing the protocol bindings and message formats required to interact with the
web services listed in its directory. A UDDI business registration consists of three components:

• White Pages: address, contact, and known identifiers;

• Yellow Pages: industrial categorizations based on standard taxonomies;

• Green Pages: technical information about services exposed by the business.

Functional and Process Level Based Web Services: Two Types of Description

In practice, there are two basic types of Web services: functional level based Web services and
process level based Web services. The two previous types of Web services are respectively de-
scribed at Functional level and at Process level.

On the one hand functional level based services are single network-accessible applications that
can be invoked by sending a message. Upon invocation, the service performs its task and (in
some cases) produces a response to the invoker. Thus, there is no ongoing interaction between
the service requestor and the service itself.
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The description of such Web services focuses on their functionality in terms of service name,
operations names, message names (also known as input and output messages/parameters), in-
terface name.

Examples of services that would fall into this category include services which given the zip
code of a city will output the current temperature or given the symbol of a company will provide
the current stock quote.

The process level based Web services, on the other hand, comprise multiple operations that
follow a given overall behaviour. Such services will require an extended interaction between the
service requestor and the set of operations providing a particular functionality.

That is, web services are usually composite i.e., the interaction with them does not only consist
of a single request-response step, but they require to follow a complex protocol in order to achieve
the required result. The steps defining the complex interactions are not necessarily restricted to
a simple sequence but can also consist of arbitrary (conditional and iterative) combinations of
atomic interactions with conditional outcomes. In such a level of description objects manipulated
by web services are typed messages and operations with complex descriptions. To this end
a detailed description of each (relevant part of the) internal behaviour is required e.g., state
transition systems (STS) [129, 169, 170], Finite state automata [26, 74], Mealy machine [95] or
Interface automata [68].

In the same way as the functional level based services, the process level description focuses on
their functionality in terms of service name, operations names, interface name, but also the overall
behaviour i.e., a protocol to interact with operations described in the functional description.

Many e-Commerce sites such as Amazon.com, eBay.com fall into this category. For example,
in order to purchase a digital camera at eBay, a user has to first search for it using different
criteria, possibly read the reviews and analyze user’s ratings, search for relevant accessories, and
then finally provide payment and shipping information to complete the purchase. Such a service
follows a protocol defined by the service provider.

It is obvious that process level based Web services have also functional description of their op-
erations and services. However operations of functional level based services have no behavioural
interactions. This is the main difference between these two levels. In such a case the two levels
can be used as complementary levels to describe more fine-grained Web service.

According to this difference, processes related to, for instance, their discovery, composition
are also different, and then have different issues.

What makes Web Services Attractive?

One of its most appreciated feature is the ability to integrate the Web services developed by
different organizations together to fulfil the user’s requirement. Such integration is based i) on
the common standards of Web service interfaces, regardless of the languages that are used to
implement the Web services, and ii) on the platforms where the Web services are executed.

In general, the Web services have the following features that make them better in integration
inside the heterogeneous environments:

• loosely coupling: In software development, coupling typically refers to the degree to
which software components/modules depend upon each other. Comparing with the tightly
coupled components (such as the Distributed Component Object Model (DCOM) [142] or
the Common Object Request Broker Architecture (CORBA) [149]), the Web services are
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autonomous and can operate independently from one another. The loosely coupled feature
enables Web services to locate and communicate with each other dynamically at runtime.

• universal accessibility: The Web services can be defined, described and discovered
through the Web that enables an easy accessibility. Not only the Web services users can
locate appropriate services, but services can describe and advertise themselves so that they
are possible to bind and interact with each other.

• standard languages: Web services are described by standard XML languages that have
been considered as parts of the Web technology. The Web services standards are of higher
abstraction. Although the cores of Web services may be implemented by different pro-
gramming languages, the interface of Web services are described by uniform standard XML
languages.

The standard may be of the most importance for the success of Web services. In fact, the Web
service community has proposed dozens of standard languages and frameworks to help users to
present the services in a uniformed matter. In this direction the Web service languages proposed
or co-proposed by IBM are considered as the most elaborated and the best described industry
quasi-standard for Web service so far. The IBM Web service languages represent a traditional
view of Web service languages.

Some Limitations

According to the previous view, Web services have simple rather than rich descriptions and data
exchange are syntactic rather than semantic [194].

For Web services to interact properly with each other as part of composite applications that
perform more complex functions by orchestrating numerous services and pieces of information,
the requester and provider entities must agree not only on the service description (i.e., the WSDL
definition) but also on semantics that will govern the interaction between them. Such semantic
consideration seems key for the future of Web services.

Towards this issue, a complete semantic solution requires that semantics are addressed not
only at the terminology level but also at the level that Web services are used and applied in the
context of business scenarios, viz. at the business process-level. This implies that there must
be agreement between a service requester and provider as to the implied processing of messages
exchanged between interacting services that are part of a business process.

It is then widely acknowledged that to enable service-to-service interactions there should
be a provision for services to automatically find, select and communicate with other services,
which in turn requires the services to explicitly specify their “semantics” unambiguously. The se-
mantics of a service should capture various aspects including, for instance, functional properties,
behavioural (control/data-flow) properties, transactional properties, quality of service properties.

Since UDDI-based discovery is mainly based on a syntactic search (i.e., through White, Yel-
low and Green pages), it seems important to consider more sophisticated process to retrieve
relevant services according to the semantic they can express. This could be achieves through
a semantically-enhanced Web service registry to enhance the discovery facilities (through fine-
grained matchmaking) that a typical UDDI registry can offer.
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In the semantic Web where annotations of Web services are possible, a fourth player should be
required in the SOA triangle (Figure 1.1) to details origins and descriptions of schemas/ontologies
used by Web services. Towards this issure we can easily imagine different adaptations of Figure
1.1 e.g., ontology provided and maintained by a third entity.

In the next section we overview the semantic Web and its underlying formal model (i.e.,
Description Logics) which can be used to enhance the semantics of the nowadays syntactic
Web services. This provides some additional and relevant modifications to move the traditional
languages closer to the vision of an openness and interoperability.

1.2 Semantic Web and Description Logics

In this section we focus first on the semantic Web, then introduce its underlying formal model.
In the third section we present some inference models to reason on Description Logics, hence on
the semantic Web. Finally we draw some conclusions in the forth section.

1.2.1 Semantic Web

The Semantic Web [29] is an extension of the current Web in which information is given well-
defined meaning, better enabling computers and people to work in cooperation. This is realized
by marking up Web content, its properties, and its relations, in a reasonably expressive markup
language with a well-defined semantics.

In such a context, some languages also known as semantic web languages are used to represent
information about resources on the Web. This information is not limited to be about Web
resources but can be about anything that can be identified. Uniform Resource Identifiers (URIs)
are used to uniquely identify entities. For example, it is possible to assign a URI to a person, to
the company she works for, to the car she owns. Therefore relations between these entities can
be written and shared on the semantic Web. The stack of languages has been published as W3C
recommendations to be used on Semantic Web. Let’s describe it in the following paragraphs.

RDF, RDF-S

At the bottom layer of the stack, there is the Resource Description Framework (RDF) [38]. RDF
is a simple assertional language that is designed to represent information in the form of triples.
Triples are statements that contain a subject, a predicate and an object.

RDF Schema (RDF-S) [39] is a collection of RDF resources that can be used to describe
properties of other RDF resources. Unlike its name suggests, RDF-S is not a schema that
imposes specific constraints on the structure of a document, but instead it provides information
about the interpretation of the statements given in an RDF data model. In this regard, RDF-S
has similarities to frame based languages.

OWL

The Web Ontology Language (OWL) (formerly DAML) [161], is the most expressive standardized
Semantic Web language that is layered on top of RDF and RDF-S.

OWL can be used to define classes (unary relations) and properties (binary relations) as in
RDF-S but also provides constructs to create new class descriptions as logical combinations (in-
tersections, unions, or complements) of other classes, define cardinality restrictions on properties
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and so on. OWL has three different species: OWL-Lite, OWL-DL and OWL-Full. OWL-Lite and
OWL-DL differ from OWL-Full such that they define certain constraints on RDF and RDF-S so
as to be compatible with the traditional semantics of Description Logics.

It is acknowledged that DLs have heavily influenced the development of the semantic web
languages. For example, RDF-S can even be described as a relatively inexpressive Description
Logic [187] while OWL is in fact an alternative syntax for a very expressive Description Logic
[93]. In the next section we present this family of formal logic.

1.2.2 Description Logics: An Overview

The semantic Web uses Description Logics (DLs) [58] as a formal framework. In this section,
we first give the basic definitions of Description Logics (henceforth DL) [58] by briefly describing
the syntax and semantics of the DL. Then we briefly describe the two main levels of knowledge
we can model by means of DLs.

Basic Definitions

The family of Description Logics (DLs) is a knowledge representation system evolved from early
frame systems [143] and semantic networks [171]. DLs are distinguished from their ancestors by
having a precise semantics which enables the description and justification of automated deduction
processes. In this direction DLs allow to represent domain of interest in terms of concepts
or descriptions (unary predicates) that characterize subsets of the objects (individuals) in the
domain, and roles (binary predicates) over such a domain. Concepts are denoted by expressions
formed by means of special constructors. Let NC be the set of concept names and NR be the set of
roles. Elementary concept descriptions are called atomic concepts. These are defined only by the
word that is their concept name. Let NA be the set of atomic concepts (thus NA ⊆ NC). Concept
descriptions are inductively built from atomic concepts, roles and constructors. Examples of DL
constructors considered in this Ph.D report follow:

• the symbol ⊤ is a concept description which denotes the top concept while the symbol ⊥
stands for the bottom concept;

• the negation restricted to atomic concepts (¬A), e.g., the description ¬FastNetworkConnection
denotes the class of network connections which are not fast (i.e., SlowNetworkConnection);

• concept conjunction (⊓), e.g., the concept description NetworkConnection ⊓ Private de-
notes the class of network connections in the private domain (i.e., private network connec-
tion);

• the universal restriction (∀R.C), e.g., the description ∀mBytes.1M denotes the set of net-
work connection which the bit rates are all 1M i.e, one megabytes by second;

• the cardinality restriction constructs (≥ nR) and (≤ nR), e.g., the description (≥ 1PhoneNum)
denotes the class of individuals having at least one phone number, while the description
(≤ 1Email) denotes the class of individuals that cannot have more than one email address;

• the qualified existential restriction (∃R.C), e.g., the description ∃mBytes.Max denotes the
set of network connection which at least one of their bit rates is Max i.e., bigger than one
megabytes by second;

3A is an atomic concept, C and D are concept descriptions, R is a role and n a positive integer or null. #S

refers to the cardinal of the set S.
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Constructors name Syntax Semantics AL ALE ALN

atomic concept A AI ⊆ ∆I ! ! !

universal concept ⊤ ∆I ! ! !

bottom concept ⊥ ∅ ! ! !

atomic negation ¬ A ∆I\AI ! ! !

intersection D ⊓ C DI ∩ CI ! ! !

limited existential
∃R {x ∈ ∆I |∃y : (x, y) ∈ RI} !

restriction
universal

∀R.C {x ∈ ∆I |∀y : (x, y) ∈ RI → y ∈ CI} ! ! !
restriction
at least cardinality

≥ nR {x ∈ ∆I |#{y|(x, y) ∈ RI} ≥ n} !
restriction
at most cardinality

≤ nR {x ∈ ∆I |#{y|(x, y) ∈ RI} ≤ n} !
restriction

exact cardinality
= n.R {x ∈ ∆I |#{y|(x, y) ∈ RI} = n}

!
restriction
qualified existential

∃R.C {x ∈ ∆I |∃y : (x, y) ∈ RI ∨ y ∈ CI} !
restriction

Table 1.1: DL syntax and semantics of some concept-forming constructs3

with their presence in AL, ALE and ALN .

The first two columns of Table 1.1 illustrates the previous constructors as well as their syn-
taxes. The third column illustrates their semantics. Note that the constructor ∃R is equivalent
to ≥ nR and = n.R is equivalent to (≥ nR) ⊓ (≤ nR).

The various description logics differ from one to another based on the set of constructors they
allow. Table 1.1 shows which constructors are present in two AL (Attributive Language) DLs:

• ALE (Attributive Language and full Existential qualification);

• ALN (Attributive Language and cardinality Number restrictions).

A concept built using the constructors of a description logic L is called an L-concept, its
associated description is called an L-description. For instance, we can model ALE-description of
concept describing network connection with a speed of one megabytes by second (i.e., a concept
illustrated in Figure 1.4)4 as follows:

NetworkConnection ⊓ ∀netSpeed.(Speed ⊓ ∀mBytes.1M)

The semantics of a concept description (third column of Table 1.1) is defined in terms of an
interpretation I = (∆I ,∆I), which consists of a nonempty set ∆I , the domain of the interpre-
tation, and an interpretation function ∆I , which associates to each concept name P ∈ NC a
subset P I of ∆I and to each role name R ∈ NR a binary relation RI ⊆ ∆I ×∆I . Additionally,
the extension of ∆I to arbitrary concept descriptions is defined inductively as shown in the third
column of Table 1.1.

4The Terminology described in Figure 1.4 represents a sample of the domain ontology of the Telecommunication
scenario presented in Chapter 6.
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Terminological and Assertional Knowledge

Given a DL knowledge base two main components can be distinguished: the terminological and
assertional knowledge. The terminological knowledge is also denominated as the Terminological
Box (henceforth TBox). The Assertional Knowledge is also denominated as the Assertional Box
(henceforth ABox). In the following we describe these two levels of knowledge we can model in
a DL knowledge base:

��������	AB	�CDE	

F�����E��	�D�

������AD�D�

E����������	���������	�����

����������	A�BB�C�D�BE�EEEEE EEEEE

EEE������	A�BB�C�D�BE������EE

EEEB���F������F���E������∀ �����������

Figure 1.3: Sample of a TBox and ABox.

• The Terminological Box, noted T , contains
intentional (terminological) knowledge in
the form of a terminology. It defines the
structure of the knowledge domain and con-
sists of a set of asserted axioms, i.e., the
definition of new concepts in terms of other
previously defined concepts.

• The Assertional Box contains extensional
(assertional) knowledge. Such a knowledge
contains a concrete knowledge domain and
asserted axioms about individuals of the
discourse domain, e.g., an individual is an
instance of a concept or an individual is re-
lated to another by a role.

In other words, the TBox contains the definitions of concepts and roles, while the ABox
contains the definitions of individuals (instances). Intentional knowledge is usually thought to
change rarely and extensional knowledge is usually thought to be contingent, or dependent on a
single set of circumstances, and therefore subject to occasional or even constant change. Figure
1.3 illustrates these two main components while Figures 1.4 and 1.5 denote parts of a TBox of a
Telecommunication domain.

In the following both latter levels of knowledge will be required to model our domain:

• T := 〈T ,A〉 of the studied domain

wherein T be the TBox and A be the ABox.

DLs are a family of logics that were developed for not only modelling complex hierarchical
structures and also to provide a specialized reasoning engine to perform inferences on these
structures.

Therefore basic inferences on concept descriptions in a TBox (e.g., subsumption checking)
and on individuals in an ABox (e.g., instance checking) can be performed.

In the following two sections we focus on TBox standard reasoning inferences such as sub-
sumption, and also on some non standard reasoning. These inferences will be key in the
rest of this dissertation since they will be re-used to perform composition of services.
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Offer ≡ ∀priceOffer.Price ⊓ ∀interfacedBy.Service
Commercial offer ≡ ∀comOffer.Offer
NetworkConnection ≡ ∀netPro.Provider ⊓ ∀netSpeed.Speed
SlowNetworkConnection ≡ NetworkConnection ⊓ ∀netSpeed.Adsl1M
FastNetworkConnection ≡ NetworkConnection ⊓ ∀netSpeed.AdslMax
Speed ≡ ∀mBytes.NoNilSpeed
Adsl1M ≡ Speed ⊓ ∀mBytes.1M
AdslMax ≡ Speed ⊓ ∀mBytes.Max
Max ⊑ 1M ⊑ NoNilSpeed
ZipCode ⊏ ⊤, Email ⊏ ⊤, Address ⊏ ⊤, PhoneNum ⊏ ⊤
Invoice ⊏ ⊤, DeliveryID ⊏ ⊤, Service ⊏ ⊤
ZipCode ⊑ ¬Email, Invoice ⊑ ¬Service
IPAddress ≡ Address ⊓ ∀protocol.IP
V oIPId ≡ Address ⊓ ∀network.FTLocal
V ideoDecoder ≡ Decoder ⊓ ∀decrypt.V ideo

Figure 1.4: Part of the Terminological Box T of an ALE Telecom Ontology T .

IsA Relationship

Thing

Network Connection

SlowNetwork Connection

FastNetwork Connection

Address

VoIPIdIPAddress

Decoder

VideoDecoder

ZipCodeInvoice [...] [...]

Figure 1.5: A graphical (hierarchy) View of Ontology depicted in Figure 1.4.

1.2.3 Inference in Description Logics

Here we remind standard inferences in DLs, and finally we describe the notion of difference
between descriptions which is the core operation that we use in our framework.

Standard Inferences

Based on DL semantics and the terminological knowledge T of a knowledge base, basic DL
inferences on T are as follows: satisfiability, subsumption, equivalence and disjointness [58] on
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T .

Definition 3. (Satisfiability, Subsumption, Equivalence and Disjointness)

• Satisfiability. A concept C is satisfiable with respect to T if there exists an interpretation
I of T such that CI is nonempty. In this case we say also that I is an interpretation of
C.

• Subsumption. A concept C is subsumed by a concept D with respect to T iff CI ⊆ DI

for every interpretation I of T . In this case we write T |= C ⊑ D.

• Equivalence. Two concepts C and D are equivalent with respect to T iff CI = DI for
every interpretation I of T . In this case we write T |= C ≡ D.

• Disjointness. Two concepts C and D are disjoint with respect to T iff CI ∩DI = ∅ for
every interpretation I of T .

Such basic inferences are required not only to maintain and to guarantee consisteny of DL
knowledge bases but also to classify them. For instance, the TBox classification aims at placing a
new concept in the suitable place in a taxonomic hierarchy according to the partial order induced
by subsumption relationships among the other defined concepts.

Example 1. (Illustration of Standard Inferences)
With respect to the TBox T in Figure 1.4, we have the following subsumption relationships:

• T |= NetworkConnection ⊐ SlowNetworkConnection;

• T |= NetworkConnection ⊐ FastNetworkConnection;

• T |= Adsl1M ⊏ Speed;

• T |= AdslMax ⊏ Speed;

Moreover we can infer the following pairs of disjoint concepts:

• T |= ZipCode ⊓ Email ⊑ ⊥;

• T |= Invoice ⊓ Service ⊑ ⊥;

The concept ZipCode is disjoint from concept Email since ZipCode is subsumed by the negation
of Email.

In litterature of the semantic Web, DLs such as ALE and ALN are used to encode domain
ontologies since they provide an interesting trade-off between expressivity and complexity. In
the same way we focus on the ALE and ALN DLs to encode our ontologies.

On contrary, the semantics of unrestricted RDF-S and OWL-Full is non-traditional and the
reasoners built for OWL Full fragment tend to be sound but incomplete. Indeed there is no
straight-forward way to extend the existing reasoners to support the full expressivity of OWL-
Full.

Although the previous standard inferences help structuring a knowledge base e.g., by auto-
matically building a (consistent) concept hierarchy, there are still some limitations. Indeed the
standard reasoning are, for example, not appropriate when it comes to (automatically) generating
new concept descriptions (e.g., least common subsumer [47], most specific concept [18], concept
difference [35, 198], concept abduction [55]) from given ones. Therefore, besides the standard
inferences, additional, so called non-standard inferences, are required [102].
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A Non Standard Inference in Description Logics: The Difference Operation

In this section, we focus on one category of non standard inferences i.e., the difference operation
between two concept descriptions. More specifically we investigate on the definitions of semantic
difference [198], syntactic difference [35] and concept abduction [48, 55, 49] in DLs.

The semantic difference, first introduced by [198], enables us to remove from a given descrip-
tion all the information contained in another description. The difference between two concept
descriptions C and D with C ⊑ D is given by the following definition.

Definition 4. (Semantic Difference)
Let C, D be two concept descriptions with C ⊑ D. The semantic difference C −D of C and D
is defined by:

C −D := max
⊒
{B|B ⊓D ≡ C} (1.1)

Roughly speaking, the latter difference is defined as being a description containing all infor-
mation which is a part of the description C but not a part of the description D. This definition
of difference operation requires that the second operand subsumes the first one. However, in case
the operands C and D are incomparable with respect to the subsumption relation (i.e., C is not
subsumed by D), then the difference C −D can be given by constructing the least common sub-
sumer of C and D, that is, C −D := C − lcs(C, D). It is worth noting that, in some description
logics, the set C −D may contain descriptions which are not semantically equivalent.

Example 2. (Redundancies in Semantic Difference [198])
Consider the ALN descriptions C

.
= (∀R.P1)⊓ (∀R.¬P1) and D

.
= (∀R.P2)⊓ (∀R.(≤ 4S)). The

set C −D includes the non equivalent descriptions (∀R.¬P2) and (∀R.(≥ 5S)).

Even if [198] provides sufficient conditions (i.e., structural subsumption relation) to charac-
terize the uniqueness of difference, some TBoxes cannot be considered. [36, 35, 102] proposed a
refinement of the previous definition 4 by taking the syntactic minimum (w.r.t a subdescription
ordering �d [19, 36, 35, 102]) instead of a semantic maximum.

In this way [35] used the subdescription ordering �d to deal with syntactical redundancies and
then find a compact representation of the difference of two concepts in ALC or ALE . Moreover
they defined the difference between two (in)comparable concept descriptions C and D.

Definition 5. (Syntactic Difference [35])
Let C, D be two concept descriptions. The syntactic difference C\D of C and D is defined as the
syntactic minimum with respect to the subdescription ordering �d.

C\D := min
�d

{B|B ⊓D ≡ C ⊓D} (1.2)

Intuitively, the idea is to remove all subdescriptions from C which are either redundant in
C or already present in D. It should be noted that in case of C ⊑ D, and thus, C ⊓ D ≡ C,
the only difference to [198]’s difference operator is that the minimum with respect to �d is used
instead of the maximum with respect to ⊑.

Finally, it should be noted that a priori the syntactic difference between C and D is also
not uniquely determined. By abuse of language and notation, we will still refer to the difference
C\D.

Example 3. (Syntactic Difference Illustration)
Let SlowNetworkConnection and NetworkConnection be two ALE descriptions illustrated in
Figure 1.4. According to Definition 5, the description missing in NetworkConnection to be
SlowNetwork-Connection is referred by
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• SlowNetworkConnection\NetworkConnection := ∀netSpeed.Adsl1M .

Even if Definition 4 captures the real semantic difference between two concept descriptions,
Definition 5 has two main advantages. Firstly it does not contain redundancies in its result and
secondly it is more readable by a human user.

Considering an ALN DL, Concept Abduction [48, 55] is also able to compute a concept
expression B representing what is underspecified in D in order to completely satisfy C taking
into account the information modelled in a TBox T .

Definition 6. (Concept Abduction Problem)
Let L be a DL, C, D be two concepts in L, T be a set of axioms in L and A be a set of
assertions. A Concept Abduction Problem (CAP), denoted as 〈L, D, C, T 〉 consists in finding a
concept B ∈ L such that 〈T ,A〉 |= D ⊓B ⊑ C.

Concept Abduction may appear similar to Concept Difference [198], yet it is not so. In-
deed performing a difference operation requires a subsumption relation between descriptions to
be matched since Concept Difference 4 requires the extra strict condition C ⊑ D. This strict
condition may make Concept Difference 4 hard to use in a matchmaking process (e.g., Inter-
section match level), where descriptions overlap is usually a sufficient condition to start the
process. However Concept Difference 4 and 5 are more accurate than Concept Abduction since
4 and 5 perform an equivalence between two concept descriptions (〈T ,A〉 |= B ⊓ D ≡ C or
B ⊓D ≡ C ⊓D) whereas the Concept Abduction computes a subsumption of concept descrip-
tions (〈T ,A〉 |= B ⊓D ⊑ C).

In the following we suggest to use definition 5 since

i) its result will be reused by human user in our semantic web service composition framework,

ii) its result is more accurate than Concept Abduction,

iii) its result does not contain redundancies,

iv) it is defined for incomparable descriptions without major change of the definition,

v) it is also defined for ALE descriptions logics.

1.2.4 Synthesis

The semantic Web has the potential to provide the web services infrastructure with the semantic
information that it needs. It could provide formal languages and ontologies to reason about
service descriptions, message content, business rules and relations between these ontologies. In
this way, the semantic Web, its underlying formal logic and web services are synergistic: the
semantic web transforms the Web into a repository of computer readable data, while web services
provide the tools for the automatic use of that data.

1.3 Semantic Web Service

Semantic web services result from the integration of semantic metadata, ontologies, formal tools
and the web services infrastructure.

A semantic web service is described as a web service whose internal and external description
is in a language that has well-defined semantics [197]. The result of using the semantic web is an
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unambiguous description of the interface of the Web service which is machine understandable and
provides the basis for a seamless interoperation among different services. Specifically, semantic
web services rely on the semantic web to describe:

• rich functionality of functional level based Web services such as:

– their functional operations and parameters;

– the content of the messages that they exchange.

• behaviour of process level based Web services such as:

– the order of the messages exchanged;

– the state transitions that result from such exchanges.

Figure 1.6 illustrates these two levels of semantics in an extended Web service specification
stack.
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Figure 1.6: Process and Functional Level Description of Semantic Web Services in an Extended
Service Specification Stack.

Therefore, description of semantic Web services is unambiguously computer interpretable,
and facilitates maximal automation and dynamism in web service discovery [24], selection [208],
composition [175], choreography [66], orchestration [32], invocation, monitoring, management,
recovery and compensation.

In parallel, the use of the semantic web to describe web services has wide ranging conse-
quences. It allows the description of additional properties of web services, such as the quality of
service and security constraints in a coherent and uniform way that is universally understood.
Furthermore, and most importantly, the description of the states produced by the execution of
the web service is the basis for the description of its capabilities as a transformation from its
input parameters and preconditions, to its output parameters and effects.

In the rest of this section, we first focus on semantic Web service at functional level. Then
we present the standard language proposals used to describe semantic web services.



CHAPTER 1. SEMANTIC WEB SERVICE 26

1.3.1 Semantic Web Service Description at Functional Level

At functional level, semantic Web services are described in the same way as Web services
i.e., service name, operations names, message names (also known as input and output mes-
sages/parameters), interface name. The major change and benefit is about their description:

In the semantic Web, input and output parameters of Web services are described by
means of DL descriptions in a domain ontology.

The latter parameters (i.e., inputs and outputs) characterize respectively knowledge precondi-
tions and knowledge effects of executing web services5. In contrary effects characterize physical
effects of executing services whereas preconditions characterize the conditions under which a
particular service may be executed.

Input and Output Parameters of Web Services

In the functional level of semantic Web service description, all input and output parameters
of semantic Web services refer to concepts in the TBox T of a domain ontology T . In other
words syntactic Web services have been enhanced with semantic annotation of their functional
parameters.

Example 4. (Some Web Services at Functional Level)
In the following example, we consider six Web services6 defined at functional level i.e., input and
output parameters are annotated by means of concepts in the TBox T (1.4) of a domain ontology
T .

• AdslEligibility-, AdslEligibility and AdslEligibility+, that, starting from a Pho-

neNum, a ZipCode and an Email address, returns respectively the SlowNetworkConnection,
NetworkConnection and FastNetworkConnection of the desired zone;

• VoiceOverIP, that, starting from a PhoneNum and a SlowNetworkConnec-
tion, returns the VoIPId of the ADSL line a Telecom operator needs to install the line;

• TvOverIP, that, starting from a PhoneNum and a FastNetworkConnection, returns a serial
number of a VideoDecoder required to access video over IP;

• a LiveBox service returns the Invoice of the commercial offer the user requested, depending
on a PhoneNum, IPAddress and serial number of a Decoder.

Such services require and provide some information. On the one hand Web services require
some instances (defined in A) of their input parameters (defined in T ) to be executed. On the
other hand Web services return some instances (defined in A) of each output parameters of the
latter services.

Example 5. (A Semantic Web Service at Design and Run Time)
Suppose AdslEligibility be one of the Web services illustrated in the previous example. Such
a Web service (Figure 1.7(a)) is semantically enhanced by means of semantic annotation of its
functional parameters:

1. input parameters i.e., Phone Number, ZipCode, EMail;

5In the rest of the Ph.D report, we assume without loss of generality that each Web service (at functional level)
have one operation. However we keep in mind that Web services may have more than one operation in general.

6The six Web services described in this Chapter represent a sample of the set of 35 Web services defined in
the Telecommunication scenario in Chapter 6.
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2. output parameters i.e., Network Connection,

the whole with respect to the domain ontology T and TBox T (Figure 1.4). Once its execu-
tion is performed we obtain an instance of Network Connection which is in the ABox i.e.,
Id_NC_Fast_1024_EligibleMax (Figure 1.7(b)). To this end the three input parameters of the
service have been first instantiated.

Adsl 

Service
Eligibility

Semantic Annotation of Services with TBox Elements

EMail

ZipCode

PhoneNumber

ConnectionNetwork

(a) Semantic Description of a Web Service.

Adsl 

Service
Eligibility

freddy.lecue@orange−ftgroup.com

+33 299 124 625

Instanciation of functional parameters of

35 512 Id NC Fast 1024 EligibleMax

Services with ABox Elements

(b) Instanciation of a Web Service at Run Time.

Figure 1.7: Illustration of a Semantic Web Services.

Roughly speaking, given a set of instances in an ABox, semantic Web services are able to
generate some instances of (potentially new) concepts, depending on their semantic definitions.

Preconditions and Effects of Web Services

In addition to input and output parameters, preconditions and effects can be required by some
Web services. The latter parameters are modelled as conditions on input and output parameters.

Example 6. (Preconditions of Semantic Web Services)
Suppose Example 4. The AdslEligibility-, AdslEligibility and AdslEligibility+ services
require

• PhoneNum ph to be a French phone number i.e., FrenchPhone(ph);

• ZipCode zc to be a French zip code i.e., FrenchZip(zc);

• Email address to be a valid address i.e., validMail(e).

before execution. Same category of preconditions can be added to preconditions of Web services
presented in Example 4.
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Example 7. (Effects of Semantic Web Services)
Suppose Example 4. The AdslEligibility service returns a NetworkConnection nc of the
desired zone, which is valid after execution i.e., validNC(nc). Same category of effects can be
added to preconditions of Web services presented in Example 4.

Such parameters respectively further restricts the domain on input and output parameter of
Web services. Therefore we limit the set of instances in an ABox that can meet the constraints
of Web services parameters.

Information-Providing and World-Altering Services

In this Ph.D report we will focus on two classes of Web services i.e., information-providing
services and world-altering services.

Definition 7. (Information-Providing Service)
An information-providing service (aka sensing or information-gathering action in AI planning)
is described by means of only input and output parameters.

Definition 8. (World-Altering Service)
A world-altering service requires preconditions and provides side effects.

Roughly speaking world-altering services are services that change the state of the world (e.g.,
any buying service) and information-providing services are services that provide some actions of
sensing to gather relevant information (e.g., a weather forecast service).

1.3.2 Some Standard Proposals

The field of semantic web service, which got under way around 2001 [200, 140], includes substan-
tial bodies of work, such as the efforts around:

• an ontology for Web services:

– OWL for Services i.e., OWL-S (formerly DAML-S) [12];

– the Semantic Web Services Ontology i.e., SWSO [179];

– the Web Services Modeling Ontology i.e., WSMO [60];

• an extension of a Web service standard :

– the Semantic Annotation for WSDL i.e., SA-WSDL (formerly WSDL-S) [192, 59].

These proposals of semantic web service standard attempt to close the gap between the semantic
web and the web services infrastructure.

This section focuses its attention on the previous efforts and their relation. However other
approaches with more limited focus can be found, for instance, among the submissions to Se-
mantic Web Service Challenge 7. In the rest of this section, we briefly describe and give some
relevant references on the most complete framework i.e., OWL-S. Then SWSO and WSMO, are
described and compared with OWL-S. Finally SA-WSDL8 is presented. Table 1.2 summarizes
the functional, process and invocation levels used to describe Web service in the latter standard
proposals.

7http://sws-challenge.org/
8SA-WSDL and WSMO are the languages we used to describe semantic web services involved in

industrial application such as in France Telecom R&D. However it is straightforward to interchange the semantic
web service language we use without loss of generality

http://sws-challenge.org/
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OWL-S

The first major ontology for describing web services is OWL-S9 [12]. As ontology, OWL-S is
based on OWL to define the concept of web service within the semantic web. In addition it
provides a language to describe semantics of actual web services that can be discovered and then
invoked using standards such as WSDL and SOAP. OWL-S uses the semantic annotations and
ontologies of the semantic web to relate the description of a Web service, with descriptions of its
domain of operation.

OWL-S requires that web services be represented by a specification of their capabilities, a rep-
resentation of their interaction protocol and a specification of how to compile the actual messages
to exchange.

To this end, an OWL-S web service is defined as a OWL class with three properties which
relate the Web service to the i) service profile, ii) the service model process and iii) the service
grounding.

The service profile provides a representation of the capabilities of the web service in terms
of the input, preconditions and output, effects transformation that it produces and of a set of
non-functional parameters that specify availability, quality and other properties of the service.

The service model process provides a detailed view of process of the web service from which
the requester can derive the interaction protocol with the provider.

Finally the grounding maps the process model into a WSDL specification of how to interact
with the web service. OWL-S reliance on WSDL provides the bridge between the semantic web
and the web services infrastructure.

9http://www.w3.org/Submission/OWL-S/

http://www.w3.org/Submission/OWL-S/
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SWSO

The Semantic Web Services Framework (SWSF)10 [179], initiated by the Semantic Web Services
Initiative, builds loosely on OWL-S to provide a more comprehensive framework, in the sense of
defining a larger set of concepts. SWSF specifies a Web-oriented language, SWSL, with a logic
programming layer and also a first-order logic layer. Since SWSO is completely axiomatized in
first-order logic, it avoids the need to use hybrid (DL-based and FOL-based) reasoning as is the
case with OWL-S.

In such a framework, Web services are specified by means of three classes i.e., the service
IOPEs, the process model and the service grounding.

It uses SWSL to define an ontology of service concepts (SWSO), and takes advantage of
SWSL’s greater expressiveness (relative to OWL) to more completely axiomatize the concepts.
In the same way as the service profile of OWL-S, the service IOPEs defines IOPEs as concepts of
an ontology. However this level is more expressive since message type exchanged by Web service
can be given.

The process model od SWSO is built on a mature pre-existing ontology of process modelling
concepts, the Process Specification Language (PSL) [42]. This specification is more espressive
than the service model process of OWL-S. For instance OccActivity that satisfies the occurrence
constraints on subactivities, TriggeredActivity as activity which occurs whenever a state condition
is satisfied, can be both expressed in SWSO.

The essence of the service grounding approach of SWSO is to establish a mapping between
selected message-oriented constructs in SWSO and their counterparts in WSDL service descrip-
tions. An extension to BPEL4WS11 [10] is also possible.

WSMO

The Web Services Modeling Ontology (WSMO)12 [60] shares with OWL-S and SWSF the vi-
sion that ontologies are essential to support, for instance, automatic discovery, inter-operation,
composition of Web Services. Therefore, as OWL-S and SWSO, WSMO is an ontology for de-
scribing various aspects related to semantic web services. Moreover, in the same way as SWSF,
the WSMO effort defines an expressive Web-oriented language, WSML [107], which provides a
uniform syntax for sub-dialects ranging from description logic to first-order logic.

Like OWL-S and WSMO, Web services are specified by means of three classes i.e., the service
capability, the process choreography, orchestration and the service grounding.

WSMO declares the service capability i.e., inputs, outputs, preconditions, and results (al-
though using some-what different terminology) associated with services

Unlike OWL-S and SWSO, WSMO does not provide a notation for building up composite
processes in terms of control flow and data flow. Instead, it focuses on specification of internal
and external choreography and orchestration using an approach based on abstract state machines
(with guarded transitions).

The service grounding of WSMO is defined in the same way as the one of OWL-S. This task
is achieved by mediator, which is a key concept in WSMO. In WSMO’s approach, mediators
perform tasks such as translation between ontologies, or between the messages that one web

10http://www.w3.org/Submission/SWSF-SWSO/
11BPEL4WS provides a language for the formal specification of business processes and business interaction

protocols. By doing so, it extends the Web Services interaction model and enables it to support business trans-
actions.

12http://www.w3.org/Submission/WSMO-primer/

http://www.w3.org/Submission/SWSF-SWSO/
http://www.w3.org/Submission/WSMO-primer/
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service produces and those that another web service expects. WSMO includes a taxonomy of
possible mediators that helps to classify the different tasks that mediators are supposed to solve.
The definition of mediators in WSMO calls attention to some important translation tasks asso-
ciated with web services. Not surprisingly, these same translation tasks are needed in support
of interactions with OWL-S described Web Services. Some OWL-S based systems [154, 153, 99]
also make use of mediator components. However, rather than requiring the existence of a distin-
guished type of entity in the Web Services infrastructure, OWL-S takes the view that mediators
are services and as such these mediation services can use the mechanisms provided by OWL-S
for discovery, invocation and composition.

Other distinguishing characteristics include WSMO’s emphasis on the production of a refer-
ence implementation of an execution environment, WSMX, and on the specification of mediators
(i.e., mapping programs that solve the interoperation problems between Web Services).

SA-WSDL (formerly WSDL-S)

Recently the W3C produced a standard set of “Semantic Annotations for WSDL and XML
Schema” (SA-WSDL). Contrary to OWL-S, SWSO and, WSMO, SA-WSDL is not defined as an
ontology for Web services. SA-WSDL13 [192, 59, 101] is a set of proposed extensions for WSDL,
by which semantic annotations may be associated with WSDL elements such as operations, input
and output type schemas, and interfaces.

SA-WSDL aims to support the use of semantic concepts analogous to those in OWL-S
while being agnostic to the semantic representation language [59].

The way in which SA-WSDL allows one to specify a correspondence between WSDL elements
and semantic concepts is very similar to how the OWL-S grounding works. Indeed, something
very much like OWL-S declarations could be used as the referents of the SA-WSDL attributes.

In the same way as WSMO, the former version of SA-WSDL i.e., WSDL-S [3] can be asso-
ciated with an execution environment and tools known as METEOR-S14 [163], but comparison
with tools and environments is beyond the scope of this Ph.D thesis.

As suggested by [131], using SA-WSDL with OWL-S and other previous semantic web services
frameworks as the source of annotation referents is a direction to couple strength of OWL-S
and weakness of SA-WSDL. The most notable difference between SA-WSDL and the OWL-S
grounding is that with SA-WSDL the correspondence must be given in the WSDL document,
whereas with OWL-S it is given in a separate OWL document. Thus, the aims of SA-WSDL are
compatible with those of OWL-S, but SA-WSDL focuses on the practical advantages of a more
lightweight, incremental approach.

Some Alternative Proposals

Alternative languages for semantic web services such as BPEL4SWS [65] (i.e., a semantic adap-
tation for BPEL), SPATEL [86] (i.e., an naive alternative to OWL-S), USDI [21] are still under
development.

13A W3C recommendation since August 2007, the 28th. http://www.w3.org/TR/2007/REC-sawsdl-20070828/
14http://lsdis.cs.uga.edu/projects/meteor-s/

http://www.w3.org/TR/2007/REC-sawsdl-20070828/
http://lsdis.cs.uga.edu/projects/meteor-s/
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Discussion

SA-WSDL is the first step toward standardizing semantic web service. It forms the basis for
interoperation between the various semantic web service efforts that previously could not seem
to find any common ground. As we have shown, SA-WSDL itself is not a complete technology
for allowing automation. Indeed we have to provide a service ontology and the appropriate
domain ontologies to describe web services. The major semantic web service frameworks (OWL-
S, SWSO and WSMO) have already started to embrace SA-WSDL for grounding (connecting the
semantic framework to the WSDL descriptions of web services). The next step is to rework these
frameworks with SA-WSDL in mind, refactoring them into parts that can be attached using
SA-WSDL annotations. Such a refactored framework based on RDF and OWL would likely be
the basis for further standardization in the W3C.

1.4 Discussion

Services technologies are being shaped by, and increasingly will help shape, modern society as
a whole, especially in vital areas such as dynamic business, health, education and government
services. Applying services technologies leads to reduced complexity and costs, exposing and
reusing core business functionality, increased flexibility, resilience to technology shifts and im-
proving operational efficiency.

For all these reasons, it is expected that the Service Oriented Computing paradigm will exhibit
a steeper adoption curve, as it solves expensive and intractable business and technology prob-
lems, and will infiltrate more of the applications portfolio, than previous application technologies.

As previously said, key to developing service-based applications is the SOA and more spe-
cially web services. Currently, the SOA provides the basic operations necessary to describe,
publish, find and invoke services. However, those basic operations while they help services to be
ubiquitous and universal are not a complete solution.

The AI and semantic Web community has concentrated their efforts in giving richer semantic
descriptions of web services that describe the properties and capabilities of web services in an
computer-interpretable form.

Indeed, for services to be used widely, these additional functionalities have to be considered
for achieving (in parts) dynamic and automated service discovery, composition, and invocation
of services over the Web. Towards these issues, semantics seems an interesting investigation field
to overcome the latter issues. Such concerns are addressed by the semantic web service initiative,
which targets the use of formal languages for semantically describing all relevant aspects of Web
services.

However, it is stems that actual work on semantic web services does not yet overcome the
latter challenges. On the one hand, there are quite a few challenging problems for the near
future as regards the service specification. On the other hand, even if standards for semantic
web services are considered there are still notable challenges including, for instance, dynamic
service discovery, composition, execution, and management.



Chapter 2

Web Service Composition

The full potential of web services as a means of developing dynamic e-Business solutions will
only be realised when applications and business processes will be able to integrate their com-
plex interactions into composite added value services. Web services technologies offer a viable
solution to this problem since they support coordination and offer an asynchronous and message
oriented way to communicate and interact with application logic. Therefore, automated Web
service composition has attracted great interest in the research community.

In our work we will focus on goal-oriented Web service composition. The latter goals is
defined according to Definition 9.

Definition 9. (Goal of a Composition) Given a TBox T of a domain ontology T and its
ABox A, a goal of a Web service composition is defined by a set of n concept descriptions
Ci,1≤i≤n ∈ T . Such a goal consists in discovering by composition of Web services new ABox
elements which are instances of each Ci.

According to Section 1.1.3, Web service can be described at two different levels i.e., the
functional and process level. Therefore these latter levels provide different functionalities to
support efficiently their level of composition i.e.,

• functional level composition;

• process level composition.

Indeed the process related to their composition varies from one level to another one since different
description requirements, results and issues are involved.

In the same way as both levels of Web service description, both previous levels of composition
are complementary, and then can be combined. For instance Web service composition can be
achieved by first a level of functional composition, and then a level of process level composition.
That is why a description and main references on process level of composition models are briefly
reviewed in this Chapter. These models would be selected, depending on the user requirements,
to couple and combine any one of them with our functional level based composition (see Chapters
3, 4, and 5).

This chapter surveys a representative set of existing literature that is related to the work
presented in this thesis. The chapter is divided into five main sections. The first section defines

33
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web service composition at functional level and provides a literature review of the state-of-the-
art i.e., the most closely related work to our Ph.D studies. Moreover this section identifies the
main challenges towards automation of Web service composition. The second section defines web
service composition at process level and briefly focuses on related work. In section 2.3 we focus
on the complementarity feature of the two different approaches. Section 2.4 briefly overviews
two methods to model web service composition i.e., Orchestration and Choreography. Finally
section 2.5 draws some conclusions.

2.1 Functional Level Composition

In this section, we first describe functional level composition (henceforth FLC) in details and
focus on two key concepts to achieve such a level of composition i.e., semantic dependences and
causality relationships between services. Then we will review related works of two main categories
of compositions, which are roots of FLC:

• Matchmaking and semantic dependences based composition;

• AI planning and causality relationships based composition.

Each model together with their advantages and limitations will be studied in a detailed and
critical analysis.

2.1.1 Description

Functional Level Compositions, also known as data flow driven compositions [104, 197, 154, 52,
126] consider composition of web services which are described on a functional view.

As highlight in Section 1.1.3 functional level based Web services are restricted to atomic
interactions i.e., black boxes which are defined only in terms of their input and output parameters
as well as of their preconditions and effects. In this direction FLC addresses the following issue:

FLC addresses the problem of selecting a set of web services that, combined in a suitable
way, are able to perform a composition goal.

In such a context the composition goal is defined as the overall functionality that the com-
posed service should implement, again in terms of its inputs, outputs, preconditions, and effects
(i.e., functional level).

By considering such a level of description, FLC is very much related to traditional AI planning
[187, 52]. The available web services correspond to planning operators that require certain input
parameters and preconditions and provide some output parameters and effects. The planning
results is a partial ordering of web services arranged in a simpler version of a workflow in order to
fulfil the composition goal. In such approaches the resulting partial ordering of services consists
of:

• causal laws between some of its services.

The causal laws are not only i) causality relationships between effects and preconditions of ser-
vices (also known as causality relationships between services) but also ii) complex relationships
between services (e.g., relationships that link an input parameter of a service to an output pa-
rameter of another service under some conditions). Therefore they first ensure that preconditions
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of services are satisfied before any service execution. Moreover they add an explicit and complex
relationship between parameters of different services.

Unlike approaches which have roots in AI planning, other approaches re-use semantic de-
scription of web service to perform automated composition. In such approaches the resulting
composition consists of

• semantic dependences between some of its services. These dependences can be inferred
through semantic matchmaking.

The semantic dependences link functional parameters of services through their output and input
parameters. In other words these dependences are required to semantically link output to input
parameters of Web services. The semantic dependences between web services are considered
as an important issue to form new value-added services at functional level. In this spirit, [52]
combine Web service discovery and FLC together, as complementary processes, to find a chain
of suitable web services.

The Figure 2.1 illustrates an ideal functional composition of Web services that assumes se-
mantic descriptions on input, output parameters together with preconditions and effects on Web
services’ parameters.

The functional description of web services and composition goals can be provided, for instance,
by means of some standard proposals such as the OWL-S Service Profile [12], WSMO Service
Capability [60], or SA-WSDL specification.

2.1.2 Matchmaking and Semantic Dependences based Composition

In this section we first present some backgrounds on matchmaking of semantic web services i.e.,
a key concept to compute compositions of services wherein semantic dependences are involved.
From this definition, we review main related work in matchmaking and semantic dependences
based Composition and closest to our approach i.e., [174], [188], [105] and [15].

These approaches adapt semantic matchmaking for retrieving composition by means of se-
mantic dependences between output and input parameters of web services.

Concepts and Definitions

Here, we will describe how the existing work on DL reasoning and semantic matchmaking have
been used to facilitate semantic web service matchmaking i.e., a key issue in FLC. From this,
we will discuss how the matchmaking task is related to FLC and then explore these functional
parameters matchmaking based-FLC in details.

a) Matchmaking and Semantic Web Service Discovery:

Matchmaking on semantic web services has been first primarily studied in the field of service
discovery. Given a set of service advertisements Sa and a service request Sr, a discovery process
aims at computing subsumption relation between the previous services Sa and Sr in order to
retrieve the most close service of Sr (Figure 2.2(a)). The subsumption relation is valued between
functional parameters of Web services, especially their input and output parameters, which are
defined as concept (using DL descriptions) of a domain ontology T .

The matchmaker, introduced by [152], is the first system that implemented this idea of
semantic based Web service discovery.
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Causality Relationship between Effects and Preconditions of Service
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Figure 2.1: An Ideal Functional Level Composition of two Web Services with Semantic Depen-
dences and Causal Laws.

This matchmaker system uses OWL-S profiles to describe service requests as well as the
services advertised. From this, a service provider publishes an OWL-S description to a common
service repository and a service requester specifies a service profile, still in OWL-S, for the desired
service she wants to dynamically retrieved.

The request profiles Sr are then matched by the service registry to advertised profiles Sa using
DL reasoning (standard DL reasoning such as subsumption in the first version of the matchmaker)
as the core inference service. In particular, the matchmaker computes subsumption relations
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between each individual input, output parameter of the request Sr and the advertisement service
profile Sa.

If the DL concepts of the corresponding parameters are equivalent, there is an Exact and
thus best match. If there is a subsumption relation between Sa and Sr, there is i) a PlugIn
in case Sr is more specific than Sa, and a ii) Subsume in case Sa is more specific than Sa.
Otherwise there is no subsumption relation, then there is no match i.e., Disjoint.

More formally, the basic relations used in the matchmaker of [152] are as follows:

• Exact. If advertisement Sa and request Sr are equivalent concepts, it is called an Exact
match; formally, T |= Sr ≡ Sa.

• PlugIn. If request Sr is sub-concept of advertisement Sa, it is called a PlugIn match;
formally, T |= Sr ⊑ Sa.

• Subsume. If request Sr is super-concept of advertisement Sa, it is called a Subsume
match; formally, T |= Sa ⊑ Sr.

• Disjoint. Otherwise, Sa and Sr are incompatible; formally T |= Sr ⊓ Sa ⊑ ⊥.

Another efficient and less basic approach consists in valuing the Intersection matchmaking
[124] between two service profiles. For example, in case the subsumption relation between the
advertisement and request profiles is not satisfiable, the Intersection matchmaking may be
assigned when their DL intersection is not empty, In other words advertisement and request
descriptions are not disjoint and relaxing some of the constraints on the request may provide
better results. Therefore we may add:

• Intersection. If the request Sr has common descriptions advertisement Sa, it is called a
Intersection match; formally, T 6|= Sr ⊓ Sa ⊑ ⊥.

Even if the latter matchmaker is used for discovery purposes by trying to find a semantic
relation between services (i.e., semantically close services), it can also be adapted for achieving
semantic web service composition at functional level.

b) Matchmaking and Functional Level Composition

In Web service discovery, matchmaking is performed on same categories of parameters i.e.,
pair of inputs, or pair of outputs. On contrary functional level composition of Web services
can be addressed, by studying matchmaking on pairs of distinct output and input parameters
of different Web services Sy and Sx (Figure 2.2(b)). More specifically, the approach consists in
computing a set of pairs as matchmaking tasks to retrieve semantic similarities and dependences
between such parameters of Web services.

From these dependences and given a set of relevant Web services, a process is required to
compose them in order to achieve a given goal e.g., an abstract service defined in terms of input
and output parameters.

In the next section we will focus on related work of web service composition that performs
FLC, mainly, by means of semantic dependences and matchmaking between their functional
output and input parameters. The following four works have been studied in details for this
main reason.
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Matchmaking on same categories of parameters
Input Parameters (attached to a semantic annotation)

Output Parameters (attached to a semantic annotation)

Service

Service

In San

Out Sr

Out Sa

Sr

Sa

In Sr0

In Sri

In Sa0

In Srn

In Sai

(a) Matchmaking for Discovery.

Service

Matchmaking on different categories of parameters
Input Parameters (attached to a semantic annotation)

Output Parameters (attached to a semantic annotation)

Service
Out Sy Out SxSx

In Sx0

In Sxi

In Sxn

Sy

In Sy0

In Syi

In Syn

(b) Matchmaking for FLC.

Figure 2.2: Matchmaking for Discovery and FLC.

A Logic based Approach

Towards the issue of FLC, [174] (also discussed in [175]) introduces a method for automatic com-
position of semantic web services using Linear Logic theorem proving as a composition
mechanism.

On the one hand, Linear Logic is used to formally define static definition of web services
i.e., functional and non functional parameters (e.g., qualitative and quantitative values) of web
services. They restrict the expressivity of functional parameters of services to be inputs and out-
puts, but not preconditions or effects. On the other hand, Linear Logic, as a logic for specifying
concurrent programming, has close relationship [1, 22] with π-calculus (i.e., the formal foun-
dation of many Web service composition languages). Such a logic provides higher expressive
powers in the modelling of dynamic behaviour (mainly sequence and non concurency)
of composite web services than classical logic. However conditional compositions of Web services
are not supported in Linear Logic. Indeed their services consisted only of determinist output
parameters.
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From the service description they elaborate Linear Logic extra logical axioms for each service.
These axioms describe the functional description of services in terms of their input and output
parameters.

Besides the latter axioms, [174] extends their initial Linear Logic theory by introducing ad-
ditional axioms related to semantic similarity between output and input parameters of
services. In their approach the matchmaking functions are restricted to the subsumption relation
i.e., Exact, PlugIn, Disjoint to value this similarity. Such similarities define their composabil-
ity criteria (relations between Web services in a composition) in their model. To this end they
exploit a semantic reasoner to detect the subsumption relationships between functional pa-
rameters at design time i.e., DAML concepts in their approach.

Such relationships are defined as axioms of their model, and can be represented by Linear
Logic implication, thus they can be asserted into their Linear Logic theorem prover as axioms.
This ensures the flexibility of the model.

By considering the two latter axioms their approach is twofold: i) first the process model of a
composite service can be generated directly from the complete proof, and ii) in case all subsump-
tion relations have been detected by the semantic reasoner, the web service composition system
can deal with matchmaking of parameters during the composition process. Thus their Linear
Logic theorem prover can deal with both the service specification and the semantic annotations.

In the same way as [208] the authors focus on non-functional parameters (e.g., quality
of services) to model optimization criteria. In particular they consider the latter parameters
directly in the theorem proving process in order to satisfy the user requirements.

Their method uses DAML-S (the former version of OWL-S) as a semantic web service lan-
guage to describe services and their composition, and then ensures the industrial applicability
of their approach.

A Semi-Automated Approach

FLC of web services has also been discussed in [188]. Their authors provide a composition tool
that supports the end user to compose web services in a semi-automated way.

In such an approach, services are defined as actions with restricted expressivity i.e., input and
output parameters, without notion of preconditions and effects. However the result of this ap-
proach supports expressive compositions such as sequential, conditional and concurrent
compositions.

The end user selects her best web services (depending on her composability criteria e.g.,
semantic connection computed at design time or non functional criteria) for each abstract
activity in the composition.

In their approach the possible semantic connections are restricted to the subsumption relation
i.e., Exact, PlugIn, Subsume and Disjoint. Unlike [174], they extend the composability with the
Subsume matchmaking level. From these different levels of matchmaking type, they introduce a
partial order on them such that the rank of the matches are lowered when the distance between
the two DL descriptions in the ontology tree increases.
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Upon selecting a web service, the services that can produce output that could be fed as the
input of the selected service are listed after filtering based on profile descriptions. The restricted
list of services are selected on semantic matchmaking retrieved between the latter output and
input parameters. The end user can then manually select the service that she wants to fit in at a
particular activity. After selecting all the services, the system generates the composite process.
The final flow specification to semantically link web services is then created in a semi-automated
way. The semi-automation of the composition process limits the flexibility of the model.

The execution is done by calling each service separately and passing the results between
services according to the flow specifications.

In this approach, optimal composition of services is computed by considering local and man-
ual selection of semantic connections. Indeed, during the composition process, the end-user may
only choose the best local semantic web services, depending on its semantic connection with its
previous services.

In their approach the end user is required at each service (industrial applicability in DAML-
S) selection step of the composition process (also described in DAML-S).

The strength of their system is to enable step-wise composition of services, where the filtered
services presented at each step depend on the services chosen at the previous step and their
constraints.

A Basic but Efficient Approach

The authors of [105] have addressed in more detail the problem of interleaving web service dis-
covery and composition by applying a Breadth-first search.

In more details, they consider a restrictive definition of Web services i.e., services with at
most one input and one output parameters, and no preconditions and effects (i.e., the simplest
case for a service composition). In the same way the expressivity of compositions is reduced
since they plan to compute simple workflows wherein only sequence and non determinism are
embedded.

In such a case their breath-first search approach returns a plan of web service restricted to a
sequence of limited web services hence a linear workflow of web services, also defined as a linear
and total order of services. With the aim of generating a composite service plan out of existing
services, [128] propose a composition path, which is a sequence of operators that compute data,
and connectors that provide data transport between operators.

The search for possible services to construct a sequence is based on the following compos-
ability criteria: semantic similarity between output and input parameters. In the
same way as [188], their approach restricts the matchmaking functions to be Exact, PlugIn, Sub-
sume and Disjoint.
To this end they exploit a semantic reasoner to detect the subsumption relationships between
functional parameters at design time.

The lack of expressivity in service and composition is the main limitation to obtain a flexible
model.

In this approach, optimal composition of services is computed by means of on the shortest
composition i.e., the composition wherein the less number of services are involved.
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The industrial applicability of their approach is further restricted since they assume a meta
language based on RDF to describe the services. On contrary the language used to describe the
composite service is independent of the suggested approach by [105].

A Graph Theory based Approach

In [15] (also discussed in [14, 210]) the authors present one of the most advanced approach in
functional semantic dependence based automated web service composition. They introduce
a method for automatic composition of semantic web services using Dynamic Programming
(flexibility) coupled with Graph Theory as a composition mechanism.

In the same way as most of approaches that perform FLC at semantic level, the expressivity
of Web services is reduced to semantic annotations of input and output parameters. Even if
their approach support sequence and concurrency as composition constructs, conditional
compositions cannot hold in the final result (only Web services with determinist output param-
eters).

In a nutshell, their approach is as follows. From an end user goal, described in terms of
both expected output parameters and required input parameters, they aim at computing the
best composition of services that match the user goal. In other words inputs and outputs of the
composite service should match the user-supplied inputs, and expected outputs, respectively.

Towards this issue they consider semantic web service composition as a directed graph wherein
nodes refer to web services. Those nodes are linked by edges referring to a semantic depen-
dence (as a composability) between an output and an input parameter of two web services.
The matching compatibility is valued by standard matchmaking type i.e., Exact, Subsume, PlugIn,
Disjoint [152].

To this end they exploit a semantic reasoner to detect the subsumption relationships
between functional parameters at run time.

From this graph they suggested an approach to retrieve compositions by navigating through
the graph to find the shortest sequences starting from the initial requirements (i.e., end user’s
input parameters) and go forward by chaining services until they deliver the goal (i.e., user’s
expected output parameters). The composition terminates when a set of services that matches
all expected output parameters is found, or the system fails to generate such a composition of
services.

The goal of their approach is to find an optimal composition of services that produces the
desired outputs by considering non functional quality of services together with semantic match-
ing between functional parameters. The optimal composition is selected on the number of
services involved in the final composition. To this end they adapt the Bellman-Ford shortest
(optimal)-path dynamic programming algorithm to find the shortest sequence from initial node
to the termination node. Their exhaustive search of the optimal composition among all the can-
didate compositions, making this approach impractical for large scale composition.

They define the applicability of their work to services described in DAML-S or SA-WSDL.
The computed composite Web service are independent of their approach.
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Synthesis

a) Matchmaking based Discovery vs. Matchmaking based FLC:

As observed in the latter models, achieving matchmaking in FLC requires some adaptations
of the pure matchmaking based discovery process.

First of all, the matchmaking steps we need to perform in FLC are between output parameters
of services and input parameters of other services, and not between same category of parameters
such as in pure matchmaking tasks.

Secondly, FLC aims at retrieving a composition as a partial order of services that achieve
the service request and support expressive compositions such as sequential, conditional and
concurrent compositions. On contrary the matchmaking task aims at discovering “the” best
advertised service that semantically matches with the requested service. Some issues related to
control flow and data flow (semantic dependences) are key in FLC whereas the latter issues do
not need to be considered in the matchmaking task.

Finally, unlike the matchmaking based discovery, other parameters such as precondition and
effect expressions of services need to be considered in FLC.

b) Advantages and Limitations of Matchmaking based FLC:

In this section we sketch advantages and limitations of the previous models along six main
properties:

• Automation of the composition process:
Each model is described according to its Composition mechanism, and Formalism
used to model Web service and and composition results.

• Expressivity of Service and their Composition:
As observed in the latter models, expressivity on Web service description and ex-
pressivity on their composition description is, in many cases, under specified.

– On the one hand input and output parameters based matchmaking is not enough to
compose at functional level since Web services may have same input and output pa-
rameters and different functionalities. Moreover such a limitation can affect the final
composition result, by for instance, retrieving some compositions with open precon-
ditions or inappropriate effects. Therefore preconditions and effects needs also to be
considered in composition process.

– On the other hand structured composite services prescribe the order in which a collec-
tion of activities (here services) take place. They describe how a service is created by
composing the basic activities it performs into structures that express the control pat-
terns, data flow, handling of faults and external events, and coordination of message
exchanges between service instances. In this work, the expressivity of a composition
states the control constructs the composition can handle. We identify the following
three groups of control constructs for assembling primitive actions into a complex
actions that collectively comprise an applications:

∗ Sequential ordering;

∗ Conditional compositions;

∗ Concurrency, namely: parallel split, synchronization and exclusive choice.

These constructs seem the minimum set of composition constructs to model expressive
compositions of Web services.



CHAPTER 2. WEB SERVICE COMPOSITION 43

• Composability criteria used to Relate Some Web Services in a Composition:
Considering semantic dependence as a composability criteria rather than syntactic
equivalence between functional parameters of Web services makes service composition more
robust. Indeed output parameters of a service that does not match exactly the input
parameters of another service can be considered in Web service composition. Therefore
such models are mainly oriented by semantic matchmaking between output and input
parameters of services.

However, computed at design or run time, the semantic dependences are, at best, defined
as an Exact, PlugIn, Subsume or Disjoint matchmaking between two functional parameters
of Web services in the latter models. In case the domain ontology is complex, computing
subsumption relationship between functional parameters at run time can be a challenging
task.

Even if matchmaking based approach solves some heterogeneity problem by using semantic
description of functional parameters, there are still some limitations. For instance it is still
semantically safe to transfer the more specific output to the more general input (i.e., PlugIn
matchmaking), but its seems more challenging to achieve a Subsume match type between
an output and an input parameter of two services . Indeed such a matchmaking should not
be directly applied in a web service composition since the output parameter is not specific
and specified enough (e.g., in this case an input parameter requires more description than
provided by the output parameter) to be exploited by the input parameter. The input
parameter is said to be over specified and the output parameter to be under specified.
Therefore the Subsume matchmaking type cannot be directly used in FLC.

Moreover, as previously studied in section 1.2 there are several proposals such as Abduction
[55], Contraction [49], Difference [35, 198] that can be re-used to extend the matchmaking
functions and then exploit more different levels of semantic similarities and properties (e.g.,
applying contraction between services parameters in case their intersection is empty).

• Flexibility of the composition model:
The flexibility of the model is important to further facilitate extensions and adaptability
to complex systems with standard components of publishing, discovery, execution engine.

• Optimzation:
Besides computing composition of Web services, most of these approaches consider an
optimization process to compute the best composition. Such a process is important to
prune the set of candidate compositions that can achieve a same goal.

On the one hand, services consume resources, such as network bandwidth, and may have a
monetary cost associated with their execution. Therefore, depending on a given criterion
e.g., non-functional parameters (quality of services such as price, execution time, and reli-
ability [208, 13]), number of services involved in the composition, the properties quality of
the best computed composition varies e.g., cheapest (in terms of price), fastest (in terms of
time execution).

On the other hand, the semantic form of web service enables different levels of match-
making between their functional parameters. Therefore different metrics can be used to
optimize service selection as well as the resulting composition. For instance, criteria based
on semantic dependence between Web services, could be also considered to value semantics
of a composition. However the latter approaches are, unfortunately, only non functional
parameters oriented (e.g., quality of service). Even if such an optimization is adapted for
web service compositions, it is far from convenient for “semantic”web service compositions.
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• Industrial Applicability of the approach:
The composition approaches that support standard proposals such as DAML-S, SWSO,
SA-WSDL, WSMO or BPEL4WS (a language appropriate for tasks such as verification)
ensure the industrial applicability of their approach in real scenario. This property is key
to further value and compare approaches e.g., scalability, computation time performance.

The previous six properties of each previous models are summarized in Table 2.1.

2.1.3 AI Planning and Causality Relationships based Composition

In this section we first present some backgrounds on AI planning based composition.
From this definition, we review main related work in AI planning and causality relationships

based composition i.e., approaches that compute composition by means of relationships between
effects and preconditions of web services.

However we do not plan to present an exhaustive list of the methods that meet this AI plan-
ning based model such as rule-based Planning [141, 180], conditional planning [103] or planning
as model checking [169]. On contrary we mainly focus on the closest approaches of our model
i.e., an HTN Planning oriented approach [191], a Situation Calculus oriented approach [139],
an estimated regression planning based approach [135], a conformant Planning approach with
Incomplete Information [89] and a metric planning based approach [4].

Concepts and Definitions

AI Planning [178], in general, can be regarded as an area of study that is concerned with auto-
matic generation of plans that will be able to solve a problem within a particular domain.

Typically, a plan consists of sequence of actions, such that given an initial state or a condition,
a planner will suitably select a set of actions which, when executed according to the generated
plan, will satisfy certain goal conditions.

Web services are an interesting domain for planning research, since they fit the classical model
of discrete actions (i.e., simple procedure calls), but obviously require eliminating closed-world
assumptions since complete information cannot be ensured. Moreover modelling multi branching
plans in service composition is another main requirement.

In the context of web services, a planning domain can be represented by a six-tuple 〈W, S, A,Γ,
s0, G〉, where

• W is the set of available web services,

• S is the set of all possible states of these services (i.e., the world),

• A is the set of actions/functions provided by the services that the planner can perform in
attempting to change the state from one to another in the world,

• Γ ⊆ S ×A×S is the set of state transitions which denote the preconditions and effects for
execution of each action,

• and finally s0 ∈ S and G ∈ S are the initial and goal states, respectively, specified in the
requirement of the web service requesters to indicate that the plan initiates its execution
starting from state s0 and terminates at state G.
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References [174] [188] [105] [15]

Formalism
Linear

Independent
Similarity Graph

Automation
Logic with HTN Theory

Composition/Search Theorem No Breadth-first Dynamic
Mechanism Proving Automation Search Programming

Service
Input X X restricted to 1 X

Expressivity
Precondition 7 7 7 7

(R1)
Output X X restricted to 1 X

Expressivity
Effect 7 7 7 7

Composition Sequence X X X X

Expressivity Non Determinism 7 X X 7

(R2) Concurrency X X 7 X

Semantic
Matchmaking Exact, PlugIn Exact, PlugIn Exact, PlugIn Exact, PlugIn

Composability
Function (R4) Disjoint Subsume, Disjoint Subsume, Disjoint Subsume, Disjoint

Dependences
DL Reasoning

Design Time Design Time Design Time Run Time
(R8)

Flexibility (R6) X 7 7 X

Non functional Local and Manual
Number of Number of

Optimization (R7) Parameter on semantic
services services

(e.g., QoS) connections

Web Services DAML-S DAML-S RDF
DAML-S,

Applicability SA-WSDL
Service Composition DAML-S DAML-S Independent Independent

Table 2.1: Some Matchmaking and Semantic Dependences based FLC Approaches. Legend: 7 = not supported, X= fully supported.
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Given this domain, many approaches have been proposed by applying a variety of planning
techniques that will automatically generate a plan (i.e., a composition) for realizing the goal
requirements.

Most of these systems are directed by causality relationships between effects and precondi-
tions of services (see Section 2.1.1) based AI planning where only preconditions and effects are
considered to represent web services. For instance such a subset is modelled by the Successor
State Axioms in Golog [122].

This is the main conceptual difference with the semantic dependences based FLC.

In the next section we will focus on related work of web service composition that performs
FLC, mainly, by means of causality relationships between effects and preconditions of services.
The following four works have been studied in details for these main reasons.

A Hierarchial Task Network based Approach

In [191] (also discussed in [205]) the authors describe an hand-coded planning systems, Sim-
ple Hierarchical Ordered Planner 2 (SHOP2) to support their composition mecha-
nism. Hand-coded planners such as SHOP2 are domain-independent planning system, which
use domain-specific control knowledge to help them plan effectively.

SHOP2 is based on hierarchical task network (HTN) planning, which is an AI planning
methodology that creates plan by task decomposition.

Since authors of [191] interface the composition problem to an HTN planning approach, Web
services with input, output parameters, preconditions and effects can be considered. However
their expressivity is reduced since they consider Web services to be either information-providing
or world-altering Web services.

Even if SHOP2 [191] supports conditional effects in composition, the returned plan is a
sequence of selected and executed service that achieve the goal. They also do not address methods
to retrieve the whole set of feasible solutions.

Indeed there is no mechanism to handle the control constructs related to concurrency. Such
a limitation in SHOP2 imposes a serious limitation on the usefulness of this methodology.

At the moment this is resolved by enumerating every possible flow in the process using con-
ditional expressions in the method descriptions. This increases the complexity of search space,
and planning.

Planning progresses as a recursive application of the methods to decompose tasks into
smaller and smaller subtasks (composability criteria1), until the primitive tasks, which
can be performed directly using the planning operators, are reached.

In the case where the plan later turns out to be infeasible, SHOP2 will backtrack and try
other applicable methods. Note that semantic dependences between input and output
parameters are also considered to ensure data flow in Web service composition (in
particular the restricted list: Exact, PlugIn, Disjoint).

One difference between SHOP2 and most other HTN planning systems is that SHOP2 plans
for tasks in the same order that they will later be executed. Planning for tasks in the order
they will be performed makes it possible to know the current state of the world at each step in

1Here, the notion of causality relationship between effects and preconditions of Web services is more abstract,
and defined by a process of static decomposition of tasks in smaller subtasks.
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the planning process, which makes it possible for SHOP2’s preconditions evaluation mechanism
to incorporate significant inference and reasoning power, including the ability to call external
programs.

This allows SHOP2 to integrate planning with external information sources as in the Web
environment. In order to do planning in a given planning domain, SHOP2 needs to be given the
knowledge about that domain. SHOP2’s knowledge base contains operators and methods. Each
operator is a description of what needs to be done to accomplish some primitive task, and each
method tells how to decompose some compound task into partially ordered subtasks.

The main disadvantage of this approach is that whilst hand-coded search does help them
plan effectively, it creates a significant overhead. Consequently it requires expertise in both the
domain and specifics of the planner.

Moreover the model together with its composition result are mainly dependent on the knowl-
edge base of the domain i.e., a detailed description of compound tasks decomposed into partially
ordered primitive tasks. Such a constraint puts limitations on level of automation of composi-
tion, and limits the flexibility of the approach since decomposition of web services required to
be known at composition time (i.e., static decomposition tasks process).

In SHOP2 the goal cannot be stated declaratively. SHOP2 has to know in advance which
method it should call. Consequently the planner fails if asked to solve a completely new, unknown
problem for which no method definition exists.

The authors work with these limitations since SHOP2 operate as an online (i.e., run time)
planner. In other words during each service selection step, the service is executed in the real
world. Indeed, to enable information providing from web services at planning time (i.e., composi-
tion time), they require that services to be either exclusively information-providing or exclusively
world-altering.

Even if [191] provide an approach to achieve Web service composition, they do not address
the problem of selecting the optimal composition among a set of candidate compositions.

Since the concept of task decomposition in HTN is very similar to the concept of process
decomposition in OWL-S, the SHOP2 approach is quite adapted and applicable for OWL-
S web services. In this direction, they encode a composition problem as a SHOP2 planning
problem, so SHOP2 can be used with OWL-S web service descriptions to automatically generate
a composition of services.

A Golog based Approach

The authors of [139] (also discussed in [140]) encode composite services in Golog [122], a high-
level logic programming language built on top of the situation calculus. In such an
approach, the composition mechanism follows Breadth first planning approach.

In their Situation Calculus-based framework a service is specified as Golog [122] pro-
cedures and seen by end-users as an atomic action, thus presenting an input/output
behaviour. Moreover they restrict their composition model by assuming a complete indepen-
dence between information providing and world-altering actions (in the same way as [191]).

Such an assumption is very restrictive in the open world of web services . A situation tree
(i.e., a kind of process flow in the theory of Situation Calculus) is associated with each atomic
action. From these atomic actions, the results of their approach is a simple linear sequences of
web services (viewed as a total order).
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Unfortunately alternative and conditional compositions cannot be computed at composition
time since [139] compute only online compositions and then execute services at composition time.

Since concurrency of services in a composition is not handled in such an approach, [165]
suggest to use an extended version of Golog i.e., ConGolog [78] to overcome the problem of
concurrent execution in semantic Web services.

In their approach, the composability criterion is defined by causality relationships between
effects and preconditions of some services.

The composability criteria of the composition problem are encoded by the Successor State
Axioms of the Situation Calculus-based framework, which also provide a solution to the frame
problem2 [176].

Contrary to the semantic matchmaking based composition approaches, semantic dependences
between input and output parameters are not considered. This restricts the data flow to be purely
syntactic.

To support information providing services combined with world altering services, they propose
a middle-ground Golog interpreter that i) interleaves offline (i.e., design time) and online (i.e.,
run time) execution, and ii) operates under an assumption of reasonable persistence of certain
information.

The reasonable persistence of information assumption prevents the planner to change (i.e.
simulate the changes) the information provided from external sources.

In the open and dynamic world of web services, there are many scenarios (e.g., in Telecom-
munication domain) where the reasonable persistence of information, as suggested by [139] (and
re-used by [191]), cannot hold. Indeed information has a limited temporal extent associated
with it, which may affect composition. Therefore we cannot make such an assumption in our
composition issue.

A ConGolog interpreter is augmented with online execution of information-providing services
with offline simulation of world altering services. The approach used to combine online execution
of sensing actions with offline simulation of world altering services is very similar to the [191]’s
approach in spirit.

One advantage of using situation calculus as the underlying logical framework is the addi-
tional expressivity and the ability to do arbitrary reasoning about first-order theories.

The flexibility of their approach is limited by this on-line execution. For instance, Web
service composition conditioned by output parameters of services cannot be supported in this
approach.

The authors of [139] have considered programs that are generic, customizable by end
user (e.g., through preferences) and usable in the context of the Web. In this direc-
tion, their adaptation and extension of the Golog language support a selection criterion (i.e.,
preference) to prune the enormous search space, but no criteria are suggested to distinguished
similar services and compositions.

2The frame problem is one of the central theoretical issues of Artificial Intelligence. Roughly speaking, to most
AI researchers, the frame problem is the challenge of representing the effects of action in logic without having to
represent explicitly a large number of intuitively obvious non-effects [178].
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The applicability of their approach is defined by a relevant subset [144] of DAML-S in terms
of the situation calculus. Atomic service descriptions, preconditions and effects in DAML-S are
mapped to situation calculus constructs. On contrary the composition result is neither a service
(in the sense that it cannot be re-used by another client) and nor mapped to a standard compo-
sition language since the composition is directly executed step by step (i.e., on-line execution).

A Metric Planning based approach

The authors of [4] (also discussed in [5]) study Web service composition with SEMAPLAN by
combining semantic matching and an AI planning algorithm. In such an approach, the com-
position mechanism follows Forward search (aka progression based) approach on a metric
planning problem. Similarly to matchmaking and semantic dependences based composition ap-
proaches they compute overall semantic similarity scores (metric based) between services. In this
direction they address planning with partial semantic matchmaking (i.e., an approach in between
AI planning and Matchmaking based approaches).

In their approach the concept of input is very close to the concept of precondition. In the
same way the notion of output is very close to the notion of effect. In particular semantic
annotation on their input and output parameters are mainly considered to describe Web
services of the domain.

The expressivity of the computed composition is limited to sequential composition, and un-
fortunately no process to model concurrent and conditional compositions is described.

The composability criterion is defined by causality relationships between parameters of
services. Due to the close definition of input, precondition and output, effect, causality rela-
tionships is achieved by semantic relationships between the latter parameters. In particular
they focus on a restricted list of matchmaking functions (i.e., Exact, PlugIn, Subsume and
Disjoint) to elaborate relationships between services.

The flexibility of their approach is limited by the expressivity of both the service description
and the composition constructs they support.

The authors of [4] present a ranking module to select compositions depending on different
criteria. For instance the optimal composition can be selected by means of its plan length (i.e.,
the number of services in the plan), or local selection of semantic relationships between
services (i.e., a semantic cost of the plan).

Their method uses WSDL-S (the former version of SA-WSDL) as a semantic web service
language to describe services they plan to compose. The computed composition can be supported
by any composition language. This ensures the industrial applicability of their approach.

An Estimated Regression Planning based Approach

The author of [135] investigates applicability of estimated regression planners for generating
compositions of web services. Unlike [191] and [139] they focus on their conditional form. The
estimated regression planners use a backward analysis of difficulty of a goal to guide a forward
search through situation space. By extending the Unpop planner [134] the author created the
Optop mechanism i.e., an Opt-based total-order planner.
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In [135], the author introduces a new type of knowledge, called value of an action, essen-
tially representing certain information that is created or learned as a consequence of executing a
particular action.

The main intention of introducing this extension was to have the ability to capture the infor-
mation and the content of messages that are exchanged between the services. Such information
persists and is not treated as a truth literal.

From Web service construction and expressivity perspective, such a feature is required
to distinguish the information transformation and the state change produced by the execution
of the service. The information, which is presented by the input and output parameters
are thought to be reusable, thus the data values can be reused for the execution of multiple
services. Contrarily, the states of the world are changed by the service execution (through
preconditions and effects). The change is interpreted as that the old states are consumed
and the new states are produced.

Contrary to [139], the composition result of [135] supports more expressive compositions.
Indeed the computed composition can be modelled by sequence and non determinism whereas
[135] cannot model such conditional compositions. However composition constructs such as con-
currency is not handled.

In the Optop mechanism, a state of the planner is a situation, which is essentially the current
partial plan. Optop works with classical-planning goals; thus, it checks whether the current
situation satisfies the conjunction of the goal literals given to the planner as input. During its
search, Optop computes a regression match graph as described in [135], which essentially provides
information about how to reach a goal state from the current situation.

The composability criteria used by the regression search is based on causality relationships
between effects and preconditions of services. The planner returns the successor situations that
arises from applying the actions specified by the latter graph in the current situation.

In the same way as [139], they compile composition under the assumption of exact matches
between functional parameters, hence no way to value semantic dependences between web services
at semantic level.

The main motivation for this work is to relax the assumption of complete knowledge required
by classical planners, and to formalize what they do not know and how they could find out more
about the world.

The author of [135] also points out the necessity for planners to support synthesis of branch-
ing (i.e., conditional plans) and looping plans. These ensure the flexibility of their approach.

Even if the Optop planner is quite appropriate not only to compute conditional compositions
of services but also to operate in the open world of Web (by introducing the value of an action),
no optimization criteria is given to select an optimal composition among several candidates.

In such an approach Web services and their composition are represented as PDDL actions,
and unfortunately not by means of a standard proposal such as SA-WSDL, WSMO or OWL-S.
This restricts the industrial applicability of the approach. However some prototype tools can
be tested and used to translate PDDL to DAML 3.

3http://www.cs.yale.edu/homes/dvm/daml/pddl daml translator1.html

http://www.cs.yale.edu/homes/dvm/daml/pddl_daml_translator1.html
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A Conformant Planning based Approach

In the same way as [135], the authors of [89] focus on the automated generation of conditional
compositions of Web services. To this end, they investigate applicability of the (CFF planner
i.e., Conformant Fast Forward planner) [90] i.e., an off-the-shelf planning mechanism that
operate under uncertainty the whole under certain additional restrictions.

In their approach they consider the case where there is no observability, i.e., conformant
planning. At best, observability in their context is partial. This means that “observing” during
service execution may involve requesting additional information from the user, or even crossing
enterprise boundaries.

Besides semantic annotation on their input and output parameters, [89] consider
actions with conditional effects, which would normally allow several conditional effects for
each action, as well as forced preconditions (which must be known to hold, for the action to
be executable).

Contrary to [191], [139] and [135] they consider more expressive composition of Web
services. Indeed their model handle constructs that support sequential, concurrent and con-
ditional compositions.

In [89], the high complexity of planning in web service composition motivates the search for
interesting special cases. In this directions, the authors formalize a special case of Web service
composition, termed “forward effect” where the semantics is an important feature to consider.

Indeed, besides ensuring the causality relationships between effects and preconditions
of services, they model composability between Web services as semantic connection (so,
called partial matches in their work) by “forward effect”.

In the same way as [191], they first argue that exact match cannot be sufficient in Web service
composition based AI planning. Indeed some compositions may require so-called partial matches,
where a service may provide only part of parameters required by another service. Therefore their
core observation is based on a notion of compatible actions (i.e., services) i.e., actions that can
achieve a partial match. Uncertainty is then based on these partial matches between Web ser-
vices. However such match levels are very restrictive to perform composition of services.

From this the authors suggest an innovative approach i.e., considering “limited”partial match
(i.e., a non empty intersection of output parameters to achieve an input parameter of a service)
together with conditional compositions.

Even if [89] suggest partial matches to overcome web service composition, they do not study
in detail the limitation of their matchmaking types e.g., if the partial match of n output param-
eters subsume an input parameter of another service, matchmaking of those parameters is not
appropriate to perform a composition.

Moreover no detail about the computation of partial matches is presented in [89]. No infor-
mation states if DL reasoning is pre-computed or achieved at composition time.

The high flexibility of their approach is mainly due to i) the expressivity they consider to
model Web services and their composition and ii) their two different levels of composability cri-
teria.

No optimization process is provided to reduce the set of possible Web service composition can-
didates.
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Their composition approach is applicable with Web services described in WSMO (through
a PDDL translation), and provide composition of Web services in an independent language that
can be re-used once composition is achieved.

Other AI Planning based Approaches

Note that latter forms of composition model are tightly related to classical planning in AI, and
have been adopted by many other works e.g., [9]. These, although different in the kind of goals
and initial conditions, are all based on the idea of sequential compositions of the available services,
which are considered as black boxes.

Advantages and Limitations of AI Planning based FLC

In the same way as Section 2.1.2 we sketched advantages and limitations of the previous models
along the following six key properties:

• Automation of the composition process.
Each model is described according its Composition mechanism, and Formalism used
to model Web service and composition.

• Expressivity of Service and their Composition:
As observed in the latter models, expressivity on Web service description and ex-
pressivity on their composition description is, in most of cases, under specified.

– On the one hand preconditions and effects of Web services are not enough to compose
at functional level since such a level of composition requires also the knowledge of
the data flow. Therefore input and output parameters as semantic annotations of
parameters need also to be considered in composition process.

– On the other hand (and in the same way as approaches presented in Section 2.1.2),
sequential, conditional and concurrent compositions seem the minimum set of basic
compositions we need to consider. Contrary to the AI planning and causality relation-
ships based composition approaches, concurrency is addressed in most of Matchmak-
ing and semantic dependences based composition approaches. Such expressive level of
composition is often disregarded in AI planning based FLC.

• Composability Criteria Used to Relate Some Web Services in a Composition:
Contrary to the matchmaking based composition approaches, causality relationships be-
tween preconditions and effects of Web services are considered as the main important
feature to ensure composability between Web services in AI planning based composition
approaches. In particular such approaches enable us to compute compositions wherein any
preconditions could be satisfied by an effect of another service. However Web service com-
position could be achieve by coupling the causality relationships with the semantic
dependence between input and output parameters to satisfy both i) flexibility and ii)
data flow.

In the same way as approaches presented in Section 2.1.2, approaches that partially consider
semantic matchmaking between functional parameters do not study in detail the limitations
and properties of the matchmaking types they use to compose services.

• Flexibility of the Composition Model:
The flexibility of the model is important to further facilitate extensions and adaptability
to complex systems with standard components of publishing, discovery, execution engine.
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• Optimzation:
Besides computing composition of Web services, some approaches consider an optimiza-
tion process to compute the best composition. Such a process is important to prune the
set of candidate compositions that can achieve a same goal.

• Industrial Applicability of the approach:
The composition approaches that support standard proposals such as DAML-S, SWSO,
WSMO, or BPEL4WS ensure the applicability of their approach in industrial scenario.
According to the definition of SA-WSDL, preconditions and effects of SA-WSDL services
will not be considered. This remains an important criterion to value this level of composi-
tion approaches.

The six properties of each previous models are summarized in Table 2.2.

2.1.4 Synthesis

Although the previous approaches, combined with semantic reasoning and/or AI planning, offer
practical approaches to perform automation of Web services composition, both latter approaches
encounter some limitations and require some extensions.

On the one hand considering preconditions and effects is one open issue for the Matchmak-
ing and semantic dependences based systems whereas designing correct, complex compositions
(through, for instance, concurrent, conditional compmosition) and data flow are two main re-
quirements for these systems.

On the other hand potentially enormous search space and the difficulty in fully and accu-
rately representing real-world problems are two key challenges for the AI planning and causality
relationships based systems whereas causality relationships, and more generally causal laws are
main requirements for these systems.

Finally, semantic dependences between Web services is reduced to the valuation of standard
matchmaking function (e.g., PlugIn, Subsume, Disjoint) in both approaches.

In this section we posed six specific technical requirements, summarized in Table 2.3, that
need to be met by AI planning and matchmaking based systems to make automatic web service
composition at functional level a real success.

• Automation (RComposition
Automation )

– the Composition Mechanism used to achieve automation of composition;

– the Formalism used to describe the composition problem.

• Expressivity (RExpressivity)

– of service (RService
Expressivity);

– of their composition (RComposition
Expressivity).

• Composability (RComposability) criteria pertaining automatic composition of services, de-
scribed in terms of input, output parameters and preconditions, effects. Such criteria are
used to relate some Web services in a composition:
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References [139] [191] [89] [135] [4]

Formalism
Situation

Hierarchical Conformant Estimated

Calculus
Task Planning Regression Independent

Network (under uncertainty) Planning
Automation

Composition/Search
Golog + Conformant Fast Extension

Forward
World Simplest

SHOP2 [145]
Forward planner of Unpop [134]

Search
Mechanism

Breath First Plan- (CFF) [90] i.e., Optop
(Semaplan)

-ner (wsbfp) [177] (conditional planner) (conditional planner)

Input X X X X X

Precondition X X X X X(close to input)

Service
Output without Effect without Effect X X X

Expressivity
Effect without Output without Output X X X(close to output)

Information- Information-
Information-

Category Providing or Providing or Any Any
Providing

World-Altering World-Altering

Assumption
Persistent Persistent

7 7 7

Expressivity
Information Information

Composition Sequence X X X X X

Expressivity Non Determinism 7 7 X X 7

(R2) Concurrency 7 (Xin [165]) 7 X 7 7

Semantic
Matchmaking

Exact
Exact, PlugIn, Partial

Exact
Exact, PlugIn,

Function (R4) Disjoint Matches Subsume, Disjoint

Dependences
DL Reasoning

7 Design Time ? 7 Design Time

Composability
(R8)

Successor Task/
Causality Relation- Causality Relation-

Causality Relationships
State Method

Forward ships between ships (close to
(Part of Causal Laws)

Axioms Decomposition
Effect Effect and semantic

precondition dependence)

Limited by Limited by
Flexibility (R6) the Online the decomposition X X 7

Execution tasks process

Optimization User Preference 7 7 7
Number of services,
(Local) Semantics

Web Services DAML-S OWL-S WSMO
PDDL

WSDL-S
Applicability

Actions

Service Composition 7 OWL-S Independent
PDDL

Independent
AND/OR Tree

Table 2.2: Some AI Planning and Causality Relationships based FLC. Legend: 7 = not supported, X= fully supported, ? = No
Information.
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– semantic dependences (RSemantic
Composability);

– causal laws (RCausal
Composability).

• Flexibility (RFlexibility) of the composition model.

• Optimization (ROptimization).

• Industrial Applicability (RApplicability) of the approach

– with standard service languages (RService
Applicability);

– with standard composition languages (RComposition
Applicability).

2.2 Process Level Composition

In this section, we first describe process level composition and focus on their behavioural features.
Then we will briefly review some related works in the area of this level composition, that can be
applied with our FLC approach to perform an end-to-end composition of both functional and
process based Web services.

Such a level of composition is not the scope of this Ph.D work, however the reader can be
interested in selecting a process level composer to combine it with, for instance, our functional
level composer described in Chapters 3, 4, and 5. This is the main motivation of this section.

2.2.1 Description

Process Level Compositions (henceforth PLC), also known as process-oriented or control flow
driven compositions [25, 41, 144, 170, 201] consider compositions of web services which are de-
scribed on a process view.

As highlighted in Section 1.1.3 process level based Web services are viewed no more as ca-
pabilities, but as stateful and asynchronous finite state machines, which establish multi-phase
protocols to define agreements and to exchange data, and whose final outcomes may be not
fully predictable i.e., non deterministic. As a consequence, also the generated executable code
responsible of the composition is a complex behaviour, since all possible contingencies occurring
in the interaction with the Web services have to be considered.

Contrary to FLC, process level composition (henceforth PLC) covers a finer-grained phase
of composition. Since web services are usually described by their internal protocol so called
behaviour, PLC aims at describing the following system:

PLC aims at describing a system interacting with all protocols involved in the compo-
sition.

The Figure 2.3 illustrates an ideal process level composition of Web services that cannot
be reduced to an atomic step, but requires instead a sequence of operations, including e.g.,
authentication, submission of a specific request, negotiation of an offer, acceptance (or refusal)
of the offer, and achieving another internal action.

Such a description of web services can be provided, for instance, by means of a subclass of the
Service Model Process in OWL-S. The same entity can be described by the Service Choreography
and Orchestration Model in WSMO, as an activity flow or an interaction pattern.



CHAPTER 2. WEB SERVICE COMPOSITION 56

Requirement Ri Details Description

Formalism
Formalism used to model the Web services

RComposition
Automation

Composition problem.
Composition Technique achieved to compute compositions
Mechanism of Web services.

Level of description used to define Web services.
To this end, four main parameters are conceivable

Web Service i.e., Inputs, Outputs, Preconditions and
RService

Expressivity Effects. Web services can fall into three different

RExpressivity categories i.e., Information-providing, World-
altering services or both.
Level of Web service composition expressivity.

Composition This can be measured by the set of control

RComposition
Expressivity constructs supported by the

composition approach.

Level of matchmaking functions used to value
Semantic semantic dependences between Web services

Dependences parameters. This matchmaking task, valued by a
RSemantic

Composability step of Description Reasoning can be achieved

at design or run time.
RComposability Level of Causal Laws: Causality relationships

between effects and preconditions of services and
Causal Laws complex relationships between services (e.g.,
RCausal

Composability relationships that link an input parameter of a service

to an output parameter of another service under some
conditions).

RFlexibility
Possibility to further extensions and adaptability
to complex systems

ROptimization
Criterion used to select a composition among a
set of candidates that achieve the same goal.

Web Services Standards to which the service can apply to (e.g.,
RService

Applicability OWL-S, WSMO, SA-WSDL, SWSO).

RApplicability Composition
Standards to which the composition

RComposition
Applicability

result can apply to (e.g., OWL-S, WSMO,
BPEL4WS, SWSO).

Table 2.3: Table of Requirements for Functional Level Composition.
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End User

Flight Service

Hotel Service

Flight Request

Flight Ticket

Flight Ack/Nack

Flight Offer/NA

Request

Offer/NA

Ack/Nack

Ticket

Composer
Process Level

Hotel Request

Hotel Ticket

Hotel Ack/Nack

Hotel Offer/NA

Figure 2.3: An Ideal Process Level Composition of two Web Services (A Virtual Travel Agency).

2.2.2 Some Reference Models

Since our main contribution is related to FLC, we do not focus deeply on the process level.
However we briefly describe the three main PLC approaches that can be combined with our FLC
approach to achieve an end-to-end composition.

These models are depending on three different entities to achieve composition, ordered by
their level of abstraction:

• message, conversation level ;

• behavioural level ;

• abstract activities i.e., internal actions, message exchanged.

Composition at Behavioural Level

In [167] and [170] the studied composition of services is based on global goals specifying a complex
behaviour. Such goal are expressed in a request language developed for planning under uncer-
tainty. Moreover they concern the client and all the component services.

From this specification, they present a composition technique that takes as input i) a set of
partially specified services, including one representing the client behaviour, modelled as nonde-
terministic finite state machines, and ii) a global goal expressed as a branching temporal formula.
Finally they return a plan that specifies how to coordinate the execution of various services in
order to realize the global goal.

The plan can then be encoded in standard coordination languages such as BPEL4WS or
OWL-S, and executed by orchestration engines. Note that the composition is mainly concerned
with the global behaviour of the system in which some client desired executions may happen not
to be fulfilled.
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Composition at Message Level

a) A First Approach:

In [95], a formal framework is defined for composing web services from behavioural descrip-
tions given in terms of automata. The possible exchanged messages are the key component of
this approach.

The problem addressed in this work is at the process level, since it considers services that
can perform more complex interactions than a simple invoke-response operation. However, the
composition problem solved by [95] is different from the problem considered by [167] and [170].
Indeed, in the approach [95], the composition problem is seen as the problem of coordinating
the executions of a given set of available services by means of exchanged messages, and not as
the problem ([167] and [170]) of generating a new composite web service that interacts with the
available ones.

Solutions to the former problem can be used to deduce restrictions on an existing (compo-
sition automaton representing the) composed service, but not to generate executable code for
implementing the composition.

b) A Second Approach known as the Mealy Model:

In [41] a framework for modelling and analyzing the global behaviour of service compositions
is presented. Services exchange messages according to a predefined communication topology,
expressed as a set of channels among services: a sequence of exchanged messages (as seen by an
external virtual watcher) is referred to as conversation.

In this framework properties of conversations are studied in order to characterize the be-
haviour of services, modelled as Mealy machines. This model is well known as the Mealy model.
In such a framework, the composition problem takes in input i) a desired global behaviour (i.e.
the set of all possible desired conversations) specified as a Linear Temporal Logic formula, and
ii) a composition infrastructure, that is a set of channels, a set of (name of) services and a set of
messages.

The output of the synthesis is the specification of the Mealy machines of the services such
that their conversations are compliant with the Linear Temporal Logic specification.

Composition at Abstract Activity Level

The work of [26, 27], also known as the Roman model, focuses on activity-based finite state
automata. In this approach, states of the latter automata are abstract activities i.e., internal
actions or message exchanged as well.

In the same way as [167, 170] they elaborate a composition of available behaviours of Web
services in order to obtain a target behaviour. Solutions to this problem can be used to generate
executable code for implementing the composition.

This is the main conceptual common view with the work described in [26, 27]. The behaviours
are modelled with finite state machine and they describe the composition domain as a determin-
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istic PDDL4 formula wherein target and available behaviours are encoded.

In [26, 27] the behaviour of the services is given, and the synthesis phase reuses them trying
to assemble them in order to provide the desired behaviour. The client specification is based
on a branching time-semantics: composition focuses on a tree-based structure, where each node
denotes a choice point on what to do next.

Reference Models [95, 41] [26, 27] [167, 170]
Abstraction Abstract

Level Interaction (Message, Activities
Behaviour

(entities used Conversation) (internal actions,
(for composing) exchanged message)

Composition
Coordinating Execution Generation of a new Behaviour

Goal
Service Mealy

Finite State Machine
Formalism Machine

Its Bounded
Independent

Limitation Abstraction Number of
Services

Level Services

Table 2.4: Some Reference Process Level Composition. Legend: 7 = not supported, * = level of
expressivity.

Process Level Composition and Other Approaches

For further information and models on process level composition, the reader can investigate in
the following relevant works:

• Composition at Message Level: [95, 41, 74, 73, 68, 69, 31, 162].

• Composition at Behavioural Level: [167, 170].

• Composition at Abstract Activity Level: [26, 27, 144, 7].

Note that most methods compare composition of web service as a control or synthesis of
behaviour (automata) product e.g., product machine [74, 73], product of two interface automata
[7], Cartesian product [68, 69, 31], parallel composition of state transition system (extended
version of a finite state machine) [162], or their synchronized product [170].

2.2.3 Synthesis

As introduced in this section, the choice of a PLC approach to perform a combined composition
with FLC, is depending on the abstraction level we plan to support i.e., message, conversation,
behaviour, actions (operations).

However the finer this level the better for a process level composition combined with FLC.
Indeed FLC operates at the most abstract level i.e. service level, and then a combination with
message based PLC since more appropriate to achieve an end-to-end composition.

4PDDL (Planning Domain Definition Language) [76] is an action-centred language, inspired by the well-known
STRIPS formulations of planning problems. At its core is a simple standardisation of the syntax for expressing
this familiar semantics of actions, using pre- and post-conditions to describe the applicability and effects of actions.
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2.3 Combining Functional and Process Level of Composi-
tion

PLC is significantly more complex than FLC, since it is a general form of program synthesis. In-
deed a product of web services, as a product of state transition systems, required to be computed
in many approaches such as [74, 69, 130], hence a space consuming approach.

Towards this issue it is crucial to run PLC over a restricted number of components services.
FLC can be used in this direction by pruning useless discovered services. Indeed the partial
order in which FLC sequentializes the relevant services is a very useful indication to guide PLC
in searching for ways the protocols (behaviour-based description) of service should interact.

Roughly speaking, once FLC has extracted a set of services whose capabilities can be com-
bined together to obtain the capability of the top-level requirement, we can finally try and
combine their actual, stateful implementations.

For instance the behaviour-based description of Web service together with their semantic
description and the partial order of services identified by FLC are used as inputs of the [130]’s
model to perform PLC. The result of this work is a new and executable protocol that interacts
with the existing services to achieve the top-level requirement.

In an alternative approach [30] perform web service composition by applying and interleaving
discovery, FLC and then PLC. Two state-of-the-art FLC [89] and PLC [167] approaches are
coupled with a naive discovery algorithm to perform an end to end composition.

In another direction [111] consider composition of a subset of web services i.e., stateful and
independent web services. Such a composition is achieved by a pre-processing of FLC, followed
by a subset of PLC. Since they consider independence of web services, interleaving and synchro-
nization of actions from different web services are not required and then are not considered in
this subset of PLC.

It is obvious that a combination of FLC and PLC (or any subset) is not always required
e.g., in scenarios where web services do not expose their behaviours (i.e., stateless web services),
composition can be achieved by leaving out the PLC step and adopting only FLC.

Since FLC is required i) to compose stateless services, and also to reduce the complexity com-
putation of PLC or β-composition, we suggest to investigate this important level of composition
in more details.

Before such an investigation, we briefly review two main models to represent web service
composition i.e., Orchestration and Choreography.

2.4 Modeling Web Service Composition

Currently, there are competing initiatives for modelling business process as composite services,
which aim to define and manage business process activities and business interaction protocols
comprising collaborating services. The terms Orchestration and Choreography have been widely
used to describe business interaction protocols comprising collaborating services. In the follow-
ing we shall briefly review these higher-level specifications for modelling web service composition.

However, note that the sharp distinction between orchestration and choreography is rather
artificial [159] and it is widely believed that they should both coalesce in the confines of a single
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language and environment.

2.4.1 Orchestration

Orchestration describes how services can interact with each other at the message level, including
the business logic and execution order of the interactions from the perspective and under control
of a single endpoint. Orchestration refers to an executable business process that may result in
a long-lived, transactional, multi-step process model. With orchestration, the business process
interactions are always controlled from the (private) perspective of one of the business parties
involved in the process.

It is obvious that modelling the business process of functional and process level compositions
can be both achieved by orchestration. On the one hand composition constructs required by FLC
(e.g., basic constructs related to sequence, concurrent execution, non determinism) are largely
embedded in orchestration. On the other hand the message level based orchestration is really
appropriate for PLC.

Currently, orchestration is targeted by a family of XML-based process standard definition
languages most representative of which is the Business Process Execution Language for Web
Services (BPEL4WS) [11].

2.4.2 Choreography

Choreography is typically associated with the public (globally visible) message exchanges, rules of
interaction and agreements that occur between multiple business process endpoints, rather than
a specific business process that is executed by a single party. Choreography is more collaborative
in nature than orchestration. It is described from the perspectives of all parts (common view),
and defines the complementary observable behaviour between participants in business process
collaboration. Choreography tracks the sequence of messages that may involve multiple parties
and multiple sources, including customers, suppliers, and partners, where each party involved
in the process describes the part they play in the interaction and no party owns the conversation.

Modelling the business process of process level composition can be achieved by choreography.
Indeed the choreography of services is mainly interesting in exchanged messages and behavioural
activities in a composition, which ease the PLC modelling.

On contrary, the choreography based approach to model FLC is not appropriate since this
level of composition focuses on atomic interactions.

Service choreography is targeted by Web Services Choreography Description Language (WS-
CDL) [97], which specifies the common observable behaviour of all participants engaged in busi-
ness collaboration.

2.5 Conclusion

Some of the most notable research challenges for the near future for the services composition
layer include composability analysis for substitution, compatibility, and conformance for dynamic
and adaptive processes, adaptive service compositions, autonomic composition of services, and
QoS-aware service compositions.
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This chapter has aimed to give an overview of recent progress in automated Web services
composition techniques. To this end, we introduced Process Level Composition and focus more
specially on functional level composition. The introduction of the Process Level Composition has
been motivated by its complementary feature with the Functional Level. Main methods that
achieve both levels of composition have been studied. In particular we focus our attention on
Matchmaking and semantic dependences based composition and AI planning and causality rela-
tionships based composition to perform functional composition of Web services. From the study
of functional level of composition we suggested six specific technical and meta requirements (i.e.,

RComposition
Automation , RExpressivity, RApplicability, RComposability, RFlexibility and ROptimization) that need

to be met by AI planning and matchmaking based systems to make automatic web service com-
position at functional level a success.

In the following we will investigate on a novel FLC technique that fulfil such requirements.
Not surprisingly, our approach will have roots in both AI planning systems and matchmaking
based approaches to satisfy the latter requirements by:

i) considering an automated process to compute Web service composition. This requirement

RComposition
Automation is studied by two different processes in Chapter 4.

ii) considering world-altering services , but also information-providing services to gather rele-
vant information, and of course a mix of both. Therefore input, output, preconditions and
effects will be considered to compute compositions of services. Moreover the number of func-
tional parameters of the latter services will not be limited, or only in cases of performance
research5. This requirement RService

Expressivity is studied in Chapters 3 and 4.

iii) returning compositions as a partial order of relevant services which supports not only sequen-

tial ordering but also conditional choice and concurrency. This requirement RComposition
Expressivity is

studied in Chapter 4.

iv) considering semantic connection between web services (through their input and output pa-
rameters) as a key concept to perform functional level composition. In a nutshell the tech-
nique relies on domain-dependent ontology for calculating semantic similarity scores (by
means of standard and non standard matchmaking functions studied in Section 1.2.3) be-
tween the concepts in service descriptions, and applies this score to guide the searching
process of the planning algorithm. This requirement RSemantic

Composability is studied in Chapter 3
and Section 4.1.

v) considering causal laws between Web services to achieve composition at functional level.
This requirement RCausal

Composability is studied in Section 4.2.

vi) returning composition of services on the fly. Contrary to many approaches (e.g., [191, 205])
we will not assume any required decompositions, and build semantic connections (more
or less methods and operators of SHOP2) of a composition on the fly. This requirement
RFlexibility is studied in Chapter 3.

vii) presenting a general and extensible model to evaluate quality of both elementary and com-
position of semantic connections. From this, we introduce a global semantic connection se-
lection based approach to compute the optimal composition. Therefore we provide a means

5It is obvious that the number of services together with their number of inputs, outputs, preconditions and
effects have a direct impact on the performance of composition algorithms. However, to the best of our knowledge,
no work focus on a trade-off between service expressivity and composition performance (Chapter 7).
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to value “Semantic” web service composition. This requirement ROptimization is studied in
Chapter 5.

viii) supporting standard description of Web services. This requirement RService
Applicability is studied

in Chapter 7.

ix) producing an abstract composition result as a reusable specification we can adapt for inter-
facing with standard proposals of web services orchestration such as OWL-S, BPEL4WS.
This requirement RComposition

Applicability is studied in Chapter 7.

In the rest of the Ph.D report, we suggest to answer to Question Qi presented in Introduction
of this thesis report. The rest of the Ph.D report is structured as follows (see Figure 2.4).

Contribution

First of all, we focus on the main contributions of this thesis (i.e., Part II).

Chapter 3

Q1. How can the semantic composability of Web Services be ensured?

• In Chapter 3, semantic dependences between Web services are defined as the main com-
posabilty (RSemantic

Composability) criteria to achieve Web service composition. Towards this issue

we focus on functional input and output parameters of services (RService
Expressivity).

Q2. What kind of properties the semantic composability of Web services have to satisfy?

• Contrary to most of approaches presented in Tables 2.2 and 2.1 we will consider more se-
mantic matchmaking levels to direct semantic relations between services i.e., Subsumption,
Intersection [124], Abduction [55], Concept Difference [198].

From this innovative valuation of semantic connections between services, new issues related
to robustness connections have been identified. Therefore our proposal will be also char-
acterized by the fact that semantic robustness of any composition is checked during the
composition process, which is unique to our proposal.

Q3. How to define a formal and flexible model that ensures correct semantic composability of
Web services and easily support basic control flow of composition?

• In Chapter 3 a formal and flexible model (RFlexibility) for Web service composition is
studied. This model is introduced for facilitating computation (at Design Time) of semantic
dependences between services and also their composition. This model aims at supporting
expressive compositions of Web services (RComposition

Expressivity).

Chapter 4

Chapter 4 deals with the problem functional level composition. Two complementary automated
Web service composition approaches (RComposition

Automation ) are presented.

Q4. How can we compose Web services with semantic links?
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• In Chapter 4 the first approach computes compositions depending on the following level
of Web service description: input and output parameters of Web services (a part of
RService

Expressivity). In this direction this approach considers semantic dependences as a com-

posability criterion (RSemantic
Composability). The flexibility (RFlexibility) of the approach is ensured

by the model presented in Chapter 3.

Q5. How can we compose semantic Web services wherein conditions on their functional param-
eters hold?

• In Chapter 4 the second approach computes compositions depending on the following level
of Web service description: input, output parameters, preconditions and effects of Web
services (RService

Expressivity). In this direction this second approach works with semantic de-

pendences together with causal laws (RSemantic
Composability and RCausal

Composability). The flexibility
(RFlexibility) of the approach is ensures by semantic links and causal laws of the problem.

Both approaches support expressive compositions of Web services (RComposition
Expressivity), but with

different levels. AI principles and matchmaking based systems are coupled to solve such a
problem.

Chapter 5

Q6. How can we compare and select among a huge number of composition solutions that achieve
the same goal?

• Contrary to approaches that compute optimal composition by considering only non func-
tional parameters (e.g., quality of service), Chapter 5 focuses on functional parameters
of Web services to value semantics of compositions. In particular this Chapter aims at
computing semantic dependences based optimal Web service composition (ROptimization).
Starting from an initial set of web services, the goal of this chapter aims at selecting web
services and maximizing the overall quality of their inter-connections by means of their se-
mantic dependences according to a goal to achieve. Composition results of Chapter 4 can be
inputs of the optimization process. Therefore RExpressivity, RComposability and RFlexibility

are ensured.

Our Approach in Use

Then Part III presents the prototype implementation of the theoretical Part II, running on
scenarios in use at France Telecom R&D.

Chapter 6

Q9. Are the suggested approaches running on real scenarios and scaling large use cases?

• Chapter 6 presents three different scenarios wherein our approach of semantic Web service
composition has been integrated. These three scenarios respectively refer to a Telecommu-
nication, an E-Tourism and E-HealthCare scenario.

Chapter 7

Q7. How can we achieve an end to end composition of Web services at functional level?

• Chapter 7 presents a reference architecture to achieve an end-to-end composition of Web
services.



CHAPTER 2. WEB SERVICE COMPOSITION 65

Q8. Are the suggested approaches implemented?

• Chapter 7 presents the implementation of our service composition system. Besides sat-
isfying requirements of the formal model, the system satisfies the following requirements:
RService

Applicability and RComposition
Applicability .

Chapter 7 presents the empirical evaluation of the system performance on the three latter
scenarios in Use.

Conclusion

Finally we conclude with the summary, summarizes the thesis, discusses its contributions and
provides a discussion of the method and future directions for this work.
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Chapter 3

A Framework for Semantic Links
based Web Service Composition

In this Chapter, semantic dependences (redefined by semantic links in the Chapter) between
Web services are defined as the main composabilty criteria to achieve Web service composition.

Towards this issue we focus on functional input and output parameters of services and assume
that any output parameter of any service can be semantically compared (e.g., trough subsumption,
difference relationships, see Section 1.2.3) with any input parameter.

To this end, functional input and output parameters of services are referred to concepts
using a common ontology or Terminology T 1 where the OWL-S service profile, WSMO service
capability, SWSO Inputs/Outputs or SA-WSDL (see Section 1.3.2 for further details) can be
used to describe them (through semantic annotations).

The requirement RService
Applicability is address by the industrial applicability of our model to

OWL-S, WSMO, SWSO or SA-WSDL. The requirement RSemantic
Composability is addressed by the

semantic links. The requirement RService
Expressivity is addressed by the functional description

of input and output parameters.

Contrary to most of approaches presented in Tables 2.2 and 2.1 we will consider more semantic
matchmaking levels to direct semantic relations between services i.e., Subsumption, Intersection
[124], Abduction [55], Concept Difference [198].

From this innovative valuation of semantic links between services, new issues related to ro-
bustness links have been identified. Therefore our proposal will be also characterized by the fact
that semantic robustness of any composition is checked during the composition process, which
is unique to our proposal.

Moreover a formal and flexible model (SLM i.e., Semantic Link Matrix) for Web service
composition is studied. This model is introduced for facilitating computation (at Design Time)
of semantic links between services and also their composition. This model aims at supporting
expressive compositions of Web services. On the one hand the requirement RFlexibility is ad-

dressed by the SLM model. On the other hand the requirement RComposition
Expressivity is addressed by

1Distributed ontologies is not considered here but is largely independent of the problem addressed in this Ph.D
study. The interested readers may consult the following book [57] published recently to overcome issue related to
distributed ontologies.

68
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the expressive compositions (i.e., sequential, non determinist choice of Web services, concurrent)
supported by the latter model.

The remainder of this Chapter is as follows. Section 3.1 describes in details semantic links
between Web services. Section 3.2 presents the formal model SLM to deal with semantic Web
service compositions though their semantic links. Section 3.3 describes how the latter model
supports expressive Web service composition. Finally we conclude in Section 3.4.

3.1 Semantic Link

In this section we focus on semantic connections between Web services since they are considered
as the main issue to form new value-added services by composition at functional level. These
connections are required to semantically link output to input parameters (part of Requirement
RService

Expressivity) of Web services (Requirement RSemantic
Composability), and also to value Web service com-

position.

To this end we first introduce the definition of semantic links in Web service composition i.e.,
a formal concept for representing the latter semantic connections.

The remainder of this Chapter is as follows. First of all the definition of semantic link is
introduced in Section 3.1.1. Then, we present how a semantic link can be semantically valued in
Section 3.1.2. In Sections 3.1.3 and 3.1.4 we respectively highlight the issue related to validity
and robustness of semantic links. Section 3.1.5 presents some approaches to ensure robustness
of semantic links. Finally we synthesize in Section 3.1.6.

3.1.1 Definition

Here we address the composition problem as a discovery of semantic connections between Web
services, which justify our focus on semantic links.

In the considered context retrieving a semantic connection between two Web services sx and
sy is similar to discover a semantic similarity between an output parameter Out sy of sy and an
input parameter In sx of sx (or vice versa). Consequently the goal is to find a matchmaking
function between two knowledge representations encoded using the same ontology T .

Semantic links2 (first introduced in one of our published work3 [114]) between Web services
will be in charge of valuating these semantic matchmaking functions. Therefore semantic links
measure the quality of semantic links (i.e., quality of matchmaking functions) between Web
services.

Definition 10. (Semantic Link)
A semantic link 〈sy, SimT (Out sy, In sx), sx〉 is related to a logical dependency among an output
Out sy and input parameter In sx of two different services sy and sx.

Roughly speaking a semantic link (Figure 3.1) describes a semantic relation between an output
parameter Out sy ∈ T of a Web service sy and an input parameter In sx ∈ T of a Web service
sx. Thereby sx and sy are semantically and partially linked according to a matchmaking function
SimT (Out sy, In sx). By definition a semantic link 〈sy, SimT (Out sy, In sx), sx〉 implies that

2In the research area of AI planning, other kinds of links, well known as causal links or protection intervals
[178, 132] are computed to perform planning.

3In this work the term Semantic Link refers to the Causal Link term, first introduced by [114] in the research
domain of Web services. Their semantics are the same, only the terminology has changed from the previous work.
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ServiceService

Semantic Link sla

sx

In sxn

In sx0

In sx

Out sx

In sy0

In syi

In syn

sy

Out sy0

Out sy

Out syn

(SimT (Out sy, In sx))

Figure 3.1: Illustration of a Semantic Link.

i) sy precedes sx since an output of sy is exploited by an input of sx; and ii) no Web service is
interleaved between sx and sy. The matchmaking function SimT informs about the matchmaking
type between the two parameters as concepts Out sy, In sx ∈ T .

Moreover the latter function is useful not only to value the possible semantic connections
between two Web services but also to compare them. Indeed it is obvious that some matchmaking
types will be preferred and other will be disregarded with respect to their semantic quality. Let
sy and sz be two Web services with their respective output parameters Out sy and Out sz.
Suppose sx such that Out sy and Out sz semantically match with In sx, SimT is required to
value the two connections (Out sy, In sx) and (Out sz, In sx) and also to order them.

Example 8. (Semantic Link Illustration)
Suppose AdslEligibility (ELIG) and VoiceOverIP (VOIP) be two Web services introduced
in Example 4 of Section 1.3.1. We assume without loss of generality that the AdslEligibility

service precedes the VoiceOverIP service. According to the previous definition the two latter Web
services are connected by two semantic links i.e.,

(i) sla described by 〈ELIG, SimT (NetworkConnection, SlowNetworkConnection), V OIP 〉
(Figure 3.2(a));

(ii) (slb described by 〈ELIG, SimT (NetworkConnection, PhoneNumber), V OIP 〉 (Figure
3.2(b)).

By (i) and (ii) two semantic connections valued by SimT between an output parameter of
AdslEligibility service and an input parameter of VoiceOverIP service are conceivable. How-
ever it is obvious that the semantic links sla and slb are not valued by the same matchmaking
function with respect to the domain ontology T and TBox T (Figure 1.4).

3.1.2 Semantic Link Valuation and Properties

Despite some existing methods [152, 124], solving a mapping problem is hard because the syntac-
tic form of two knowledge representations rarely matches exactly. Indeed the semantic match-
making SimT computed between an output and input parameter does not always refer to an
Exact match e.g., sla in the previous example.

That is why SimT aims at expressing which matching type is used to chain Web services. As
previously presented in Section 2.1, many Web service composition such as [210, 191, 45, 174, 40]
reduced this function to the four well known matchmaking functions introduced by [152] (and
presented in Section 2.1.2) with the extra match level Intersection of [124]:
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(a) A Semantic Link sla from the Motivating Example.
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Connection

VoIPIdSlow
Network
Connection

PhoneNumber

(SimT (NetworkConnection, PhoneNumber))

Semantic Link slb

(b) A Semantic Link slb from the Motivating Example.

Figure 3.2: Illustration of a Semantic Link.

• Exact (≡) If the output parameter Out sy of sy and the input parameter In sx of sx are
equivalent concepts; formally, 〈T ,A〉 |= Out sy ≡ In sx.

• PlugIn (⊑) If Out sy is sub-concept of In sx; formally, 〈T ,A〉 |= Out sy ⊑ In sx.

• Subsume(⊒) If Out sy is super-concept of In sx; formally, 〈T ,A〉 |= Out sy ⊒ In sx.

• Intersection (⊓) If the intersection of Out sy and In sx is satisfiable; formally, 〈T ,A〉 6|=
Out sy ⊓ In sx ⊑ ⊥.

• Disjoint (⊥) Otherwise Out sy and In sx are incompatible i.e., 〈T ,A〉 |= Out sy⊓In sx ⊑
⊥.

For instance, the PlugIn match means that an output parameter of a service sy is subsumed
by an input parameter of the succeeding service sx whereas the Subsume match means that an
output parameter of a service sy subsumes an input parameter of the succeeding service sx.

In the following the five previous semantic matching functions considered to value semantic
links will be ordered to ease their comparison. Such an ordering is required to infer which
semantic matching function i.e., semantic link is more general or specific than another. To
do this we suggest to first order them with the logical implication operator ⇒ as presented in
theorem 1. Second the semantic matching functions will be discretized according to the previous
partial order (Table 3.1).

The discretization of the matchmaking function enables us to estimate and represent the
semantic quality of a semantic links.
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Theorem 1. (Partial Order on Semantic Matchmaking Functions)
The partial order on the matchmaking functions Exact, PlugIn, Subsume, Intersection is de-
fined by the relations (i) and (ii) where ⇒ refers to the binary and logical implication between
Out sy\set{⊥} and In sx\set{⊥}

4

(i) Exact ⇒ PlugIn ⇒ Intersection

(ii) Exact ⇒ Subsume ⇒ Intersection

Proof. The proof of this theorem is divided into four different steps. Each step follows a trivial
logical implication.

Match Type Logic meaning Discrete SimT (Out sy, In sx)

Exact (≡) 〈T ,A〉 |= Out sy ≡ In sx 1
Plug-in (⊑) 〈T ,A〉 |= Out sy ⊑ In sx

3
4

Subsume (⊒) 〈T ,A〉 |= Out sy ⊒ In sx
1
2

Intersection (⊓) 〈T ,A〉 6|= Out sy ⊓ In sx ⊑ ⊥
1
4

Disjoint (⊥) 〈T ,A〉 |= Out sy ⊓ In sx ⊑ ⊥ 0

Table 3.1: Discretization of Semantic matching functions described by SimT .

The function of matchmaking described by SimT (Out sy, In sx) between an output parame-
ter Out sy of sy and an input parameter In sx of sx is close to the degreOfMatch(Out sy, In sx)
function introduced by [152].

However this function is considered in Web service composition and not in discovery. More-
over SimT is extended with the Intersection matchmaking function to consider more degrees of
semantic matching.

The suggested approach introduced also a partial order based on the logical implication
relation to compare semantic links and their values.

3.1.3 Semantic Link Validity

According to the previous matchmaking functions, a valid semantic link is defined by means of
Definition 11.

Definition 11. (Valid Semantic Link)
A semantic link 〈sy, SimT (Out sy, In sx), sx〉 is valid iff SimT (Out sy, In sx) 6= Disjoint i.e.,
〈T ,A〉 6|= Out sy ⊓ In sx ⊑ ⊥.

Roughly speaking, a valid semantic link between two Web services describes a potential match
[49] between two parameters (i.e., 〈T ,A〉 6|= Out sy ⊓ In sx ⊑ ⊥), hence a valid and potential
link between these Web services to form a composition.

Definition 12. (Valid Web Service Composition)
A valid composition of Web services consists of only valid semantic links.

Example 9. (Valid Semantic Link Illustration)
Consider the previous example with the semantic links sla and slb. It is trivial that the match-
making function referred by sla is Subsume whereas the matchmaking function referred by slb is
Disjoint. Indeed

4Since ∀out sy ,⊥ ⊑ out sy ; ⊥⊓ out sy , we required to consider any out sy different from ⊥ in our theorem.
In the same way any In sx is different from ⊥.
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• 〈T ,A〉 |= NetworkConnection ⊒ SlowNetworkConnection;

• 〈T ,A〉 |= NetworkConnection ⊓ PhoneNumber ⊑ ⊥,

with respect to the domain ontology T .
According to definition 11 sla is a valid semantic link whereas slb is not.

3.1.4 Semantic Link Robustness

The five match levels are far from enough to bring Web service composition as a semantic links
composition to its full potential.

The Exact match is clearly appropriate to chain two Web service parameters since they refer
to equivalent concepts. The PlugIn match is also a possible match to plug an output parameter in
an input parameter of another Web service since the output parameter provides more information
than the input parameter required. The Disjoint match informs about the incompatibility of two
Web service parameters hence an invalid semantic link.

Even if the matchmaking Exact, PlugIn, and Disjoint can be used without any change to value
semantic links in a Web service composition, the match levels Intersection and Subsume need
some refinements to be fully efficient for semantic links composition. Suppose a semantic link
〈sy, SimT (Out sy, In sx), sx〉 valued by a Subsume match level i.e., 〈T ,A〉 |= Out sy ⊒ In sx.

It is obvious that such a semantic link should not be directly applied in a Web service com-
position since the output parameter Out sy is not specific and specified enough to be exploited
by the input parameter In sx. We say also that In sx is over specified and Out sy is under
specified. In other words the output parameter Out sy requires an Extra Description to obtain
a composition of these two Web services.

In the same way a semantic link valued by an Intersection match needs a comparable re-
finement. That is, two different kinds of semantic links require more attention: robust and non
robust semantic links.

Definition 13. (Robust Semantic Link)
A semantic link 〈sy, SimT (Out sy, In sx), sx〉 is robust if and only if SimT (Out sy, In sx) is
either Exact or PlugIn.

Example 10. (Some Limits of standard Matching functions)
Let sla illustrated in Figure 3.2(a) be the valid semantic link defined by:

• 〈ELIG, SimT (NetworkConnection, SlowNetworkConnection), V OIP 〉

By definition 13 the valid semantic link sla is not robust (Figure 3.3). Indeed the match level of
sla is Subsume since

• 〈T ,A〉 |= NetworkConnection ⊒ SlowNetworkConnection.

It is obvious that this semantic link cannot be applied in a composition since the output pa-
rameter NetworkConnection is under specified to be exploited by the input parameter SlowNet-

workConnection. The output parameter NetworkConnection requires an Extra Description to
enable a composition of these two services.

Once the definition of robust semantic links introduced the notion of robust composition of
Web services is as follows.

Definition 14. (Robust Web Service Composition)
A composition of Web services is robust if and only if all its semantic links are robust.
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Figure 3.3: Illustration of a Non Robust Semantic Link sla valued by a Subsume Match Level.

Robust semantic links in a Web service composition are key components since they enable
us to obtain robust Web service composition. In the opposite Web service composition with non
robust semantic links can fail since some information is missing.

3.1.5 Ensuring Robustness in Semantic Links

A possible way to state the problem we obtain for non robust semantic links 〈sy, SimT (Out sy,
In sx), sx〉 valued with an Intersection or a Subsume match level is to find the information con-
tained by the input parameter In sx and not by the output parameter Out sy. In other words
some descriptions have to be retrieved to transform a non robust semantic link in its robust form.

To do this, we exploit a non-standard inference match level for DLs i.e., the difference (well
known as subtraction operation) introduced by [35] for comparing DL descriptions and adapt it
to the problem of semantic matching between Web service parameters.

The difference operator, introduced by [102] and explained in Section 1.2.3, enables us to
remove from a given description all the information contained in another description. The dif-
ference between two concept descriptions C and D with C ⊑ D is given by (3.1).

C\D := min
�d

{B|B ⊓D ≡ C ⊓D} (3.1)

In other words, B represents an explanation on why D is not classified by C with respect to
T . Thus they defined the difference between two (in)comparable concept descriptions C and D
as (3.1).

Remark 1. Considering an ALN DL, Concept Abduction [48, 55] is also able to compute a
concept expression B representing what is underspecified in D in order to completely satisfy C
taking into account the information modelled in a TBox T .

As suggested and argued in Section 1.2.3 we focus on (3.1) to define Difference in ALE
descriptions logics. The latter difference operator will be used to overcome the problem of
robustness in Web service composition.

In this direction the Concept Difference is primarily performed to capture in a logical way
the reason why an output parameter Out sy of a sy and an input parameter In sx of sx may
not be chained by a robust semantic link.

The idea behind our approach is the following. In case a semantic link 〈sy, SimT (Out sy, In sx),
sx〉 is valid (not valued by a Disjoint matchmaking) but not robust (i.e., valued by neither an
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Exact nor a PlugIn matchmaking), we compare Out sy and In sx to obtain two kinds of infor-
mation:

(i) the Extra Description In sx\Out sy that refers to information required but not provided
by Out sy in order to semantically link it to the input In sx of sx;

(ii) the Common Description Out sy ⊓ In sx that refers to information required by In sx and
effectively provided by Out sy.

As previously said semantic links concerned by the computation of concept difference are links
valued by either a Subsume or an Intersection matching i.e., non robust semantic links. In the
Subsume case we compute the Extra Description B contained in In sx such that the matching
between B⊓Out sy and In sx be Exact. By (3.1) this Extra Description In sx\Out sy is defined
by min�d

{B|B ⊓Out sy ≡ In sx} since Out sy ⊒ In sx. In case the semantic link is valued by
an Intersection match (i.e., ¬(Out sy ⊓ In sx ⊑ ⊥)) we compute the Extra Description B that
is not specified in Out sy to reach a PlugIn match between B ⊓Out sy and In sx.

Example 11. (Extra Description Illustration)
Let slb illustrated in Figure 3.3 be the non robust semantic link defined by:

• 〈ELIG, SimT (NetworkConnection, SlowNetworkConnection), V OIP 〉.

Such a semantic link requires a semantic refinement to be robust enough in order to be applied in
a composition of Web services. On the one hand the description missing in NetworkConnection
to be plugged in the input parameter SlowNetworkConnection is referred by the Extra Descrip-
tion i.e., SlowNetworkConnection\NetworkConnection i.e., ∀netSpeed.Adsl1M . On the other
hand the common description defined by the conjunction of the output parameter of ELIG and the
input parameter of VOIP is referred by the information required by SlowNetworkConnection and
effectively provided by NetworkConnection. In this way we remark that the intersection between
the output parameter NetworkConnection and the Extra Description SlowNetworkConnection\
NetworkConnection i.e., ∀netSpeed.Adsl1M is an Exact match with SlowNetworkConnection.

Example 12. (Common Description Illustration)
Let slb be the non robust semantic link illustrated in Figure 3.3. The Common Description is not
empty since this is defined by SlowNetworkConnection⊓NetworkConnection i.e., ∀netPro.Pro−
vider ⊓ ∀netSpeed.Speed.

We illustrated the rationale of our approach by computing what is required in order to replace
a non robust semantic link by its robust form. In particular, we are able to change an Intersection
by a PlugIn match, and a Subsume by an Exact match in order to obtain robust semantic links
(modelled with Xin Table 3.2). We could also consider other substitutions of matchmaking
functions e.g., find a way to change a Subsume by a PlugIn match, or an Intersection by an Exact
match and so on. However these substitutions are out of interest in Web service composition
since

(i) some substitutions required the computation of Out sy\In sx (modelled with 7i) in Table
3.2) e.g., from PlugIn to Exact;

(ii) some others are not relevant because they implied a loss of matchmaking quality (modelled
with 7ii) in Table 3.2) e.g., from PlugIn to Subsume.

Table 3.2 summarizes these different levels of substitution. Suppose the substitution of a
PlugIn by an Exact match in order to improve a semantic link valued by a PlugIn match level.
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The case under consideration is i) since we have to compute B′ such that Out sy ≡ B′ ⊓ In sx.
B′ is defined by Out sy\In sx to model the exact match. Unfortunately the description B′

cannot be added to In sx since input parameters of services are supposed static without possi-
ble alteration. In the opposite output parameters of services may be enhanced by some Extra
Descriptions5 (Out sy ⊓B) in order to be chained with input parameters of other services. Now
suppose the case ii) wherein the Subsume match is replaced by a PlugIn match. Consequently,
the Extra Description B′ is computed as B′ ⊏ B such that B is defined by In sx\Out sy. By the
way B′ ⊓Out sy ⊑ In sx whereas B ⊓Out sy ≡ In sx. It is obvious that B is more appropriate
than B′. The former enables an Exact match whereas the latter changes the Subsume by the
PlugIn match.

Substituted Potential Substitute Match Type
Match Type Exact PlugIn Subsume Intersection

Exact - 7ii) 7ii) 7i),ii)

PlugIn 7i) - 7i),ii) 7i)

Subsume X 7ii) - 7ii)

Intersection 7i) X 7i) -

Table 3.2: Substitution of Match Levels for Web Service Composition. Legend: 7 = not sup-
ported, X= fully supported.

In case some semantic links 〈sy, SimT (Out sy, In sx), sx〉 are not robust enough but valid,
we are able to compute an Extra Description from In sx in order to substitute the previous
link by its robust form. In other words semantic links valued by a Subsume or an Intersection
match level move to robust semantic links in case their Extra Descriptions are provided. The
latter description is essential to compute a robust service composition. The Extra Description
returned by difference (3.1) is not only necessary to explain where a semantic link composition
may fail but also why a semantic link failed and how to improve it. A composition failure is
due to non robust semantic links since the matchmaking between Web services parameters is not
robust enough.

3.1.6 Synthesis

Limitation of Semantic Links

In computing semantic link, a single output from one service can be related to only a single
input to a possible following service (see Definition 10 of semantic link). In our approach this is
a necessary restriction. It appears that our use of DL for describing inputs and outputs would
allow generalizations of inputs and outputs to be matched. For instance a conjunction of output
parameters from different Web services could be semantically matched to one (or more) input
parameter(s) of a (or more) services. To this end the semantic link definition requires to be
extended. Such an extension is straightforward.

5As we will study more precisely in Section 4.1, the Extra Description could be known, for instance, i) by
discovering Web services that provide such a description as output parameter or ii) by requesting the end-user to
provide such a description.
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Some Concluding Remarks

Till now, we have specified the formal context for semantic Web service composition at functional
level. In this direction semantic links (Requirement RSemantic

Composability) between functional input and

output parameters of Web services (Requirement RService
Expressivity) have been introduced, defined

and illustrated on several semantic Web services. The latter links are considered as a key concept
to form compositions of semantic Web services.

The main difference with techniques described in Section 2.1 is related to the semantic level of
potential links between Web services. Contrary to [139] that considers preconditions and effects
of Web services, here we focus more on utilization of output parameters by input parameters of
other Web services by means of semantic links. Moreover the semantic links consider different
semantic levels (Equivalence, Subsumption, Intersection[124], Abduction [55], Difference [198])
of direct relations between Web services whereas [139, 140] check only Satisfiability between some
effects and preconditions of Web services.

Moreover we presented important criteria related to validity and robustness of semantic links.
Such criteria can be used to detect mismatching between Web services. More precisely valid se-
mantic links refer to semantic links that can be useful for any Web service composition whereas
robust semantic links are required to form robust Web service composition. In addition we ad-
dressed different solutions to ensure robustness of semantic links such as the Concept Abduction
or Concept Difference. Therefore mismatched connections between Web services can be repaired
through a fine-grained process of mediation (actually finer that the WSMO mediation).

From these definitions we will define a composition of Web services at functional level as

A plan of services wherein all services are semantically well ordered and well linked by
semantic links (robust or not but valid).

3.2 Semantic Link Matrix

In this section, we introduce a formal model so called Semantic Link Matrix (henceforth SLM).
Such a model aims at easing the automated process of Web service composition and at improv-
ing its performance i) by computing, ii) by storing and iii) by classifying all valid semantic link
(Requirement RSemantic

Composability) between a set of Web services in a simple, intuitive and flexible
way (Requirement RFlexibility).

In this section we do not address Web service composition but the problem of:

Elaborating and computing a formal and flexible model which consists of relevant, pre-
computed and valid semantic links we can potentially find in a composition.

The rest of this Section is organized as follows. Section 3.2.1 introduces important notations
related to the formal model SLM and gives a detailed definition of the model. The construction
of the SLM is detailed in Section 3.2.2. Finally we synthesizes in Section 3.2.3.

3.2.1 Notations and Definition of Semantic Link Matrix

The Semantic Link Matrix, introduced in this section, aims at suggesting a model for composing
a finite set of semantic Web services SWs.
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To this end the latter set of services is supposed to be discovered in a relevant way, given a
composition goal. In other words we assume that a process of discovery such as [197, 24] has
been performed in order to first retrieve a finite set of Web services SWs.

Given this set of Web services, we aim at first computing a formal model to organize these
Web services (Section 3.2) and then using this model to achieve a composition of a subset of the
latter discovered services (Chapter 4).

In the following we first give some notations and then we focus on the Semantic Link Matrix.

Some Notations

Since the definition of SLMs requires some new but simple definitions i.e., a) Out(sy), b) In(sy),
c) Input(SWs), d) Output(SWs) and e) β, we suggest to introduce and illustrate them in the
following.

Suppose SWs be the set of Web services with the upcoming services sx and sy. From this,

a) Out(sy) refers to the set of output parameters of the Web services sy;

b) In(sy) is the set of input parameters of the Web services sy;

c) Input(SWs) refers to the set of all input parameters of all services included in the set SWs;

d) Output(SWs) refers to the set of all output parameters of all services included in the set SWs.

e) β will refer to the composition goal in the rest of the Ph.D report. In our approach β is simply
viewed as a subset of the TBox T . These concepts have to be reached i.e., our ultimate issue
is to find a composition of Web services which are able to find an instance of each concept in
β. β will be required and used during the AI planning-based composition (Section 4.1).
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Figure 3.4: Some Important Notations required to formally define SLMs.
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Example 13. (Out(sy), In(sy), SWs, Input(SWs) and Output(SWs))
Let the motivating example 4 be in Section 1.3.1 and its set of relevant Web services SWs be
defined by AdslEligibility, VoiceOverIP, TvOverIP and LiveBox services. Table 3.3 and
Figure 3.4 illustrates the previous defined elements related to SWs.

Services sx
AdslEligibility Sa VoiceOverIP TvOverIP LiveBox
− + Sb Sc Sd

Input(sx)
{PhoneNum,

{PhoneNum, {PhoneNum, {PhoneNum,

ZipCode, Email}
SlowNetwork- FastNetwork- IPAddress,
Connection} Connection} Decoder}

Output(sx)
{Slow

{NC}
{Fast-

{V oIPId} {V ideoDecoder} {Invoice}
NC} NC}

Input(SWs)
{PhoneNum, ZipCode,Email, SlowNetworkConnection,

FastNetworkConnection, IPAddress, Decoder}

Output(SWs)
{Invoice, FastNetworkConnection, NetworkConnection,

V oIPId, V ideoDecoder, SlowNetworkConnection}

Table 3.3: Out(sx), In(sx), Input(SWs) and Output(SWs) in the Motivating Example.

Definition of Semantic Link Matrix

In the following we define an SLM as a matrix containing all enabled, legal and valid transitions
for a Web service composition goal. Non valid semantic links are disregarded from an SLM point
of view since a semantic link valued by a Disjoint match level (Table 3.1) refers to an inconsistency
between two output and input parameters of Web services. In contrary all valid semantic links
between two output and input parameters of Web services are explicitly represented with a
value pre-computed by means of the SimT function (Table 3.1). The latter value is based on
the semantic quality of the valid semantic link. The more valid semantic links, the better the
functional composition.

Definition 15. (Semantic Link Matrix SLM)
The set of p × q Semantic Link Matrices6 is defined as matrices Mp,q(P(SWs × (0, 1])). Their
columns cj,j∈{1,...,q} are labelled by concepts in (Input(SWs)∪β) ⊆ T i.e., the inputs parameters
of services Input(SWs) in SWs and the concepts described by the goal set β ⊆ T . Rows ri,i∈{1,...,p}

are labelled by Input(SWs), the inputs parameters of services in SWs. Each entry mi,j of an SLM
M is defined as a set of pairs (sy, score) ∈ SWs × (0, 1] such that

(sy, score) := (sy, SimT (Out sy, cj)) if sy ∈ SWs, Out sy ∈ Out(sy) (3.2)

with ri ∈ T ∩ In(sy) ⊆ Input(SWs) is the label of the ith row.
with cj ∈ T ∩ (Input(SWs)∪β) is the label of the jth column.

A SLM is seen as a matrix with entries in P(SWs×(0, 1]). Each entry of an SLM refers to a set
of pairs (sy, score) such that the score refers to a semantic similarity SimT (Out sy, cj) between
an output parameter Out sy ∈ T of a service sy and an input parameter cj ∈ Input(SWs)∪β of
another service in SWs. Indeed columns cj of the SLM are labelled by all input parameters of
the relevant Web services SWs.

6P(S) refers to power set of S.
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Remark 2. (SLM or a Matrix of Valid Semantic Links)
Since all entries of SLMs are defined on P(SWs × (0, 1]), possible values of semantic links are
defined in (0, 1]. According to Table 3.1, the only possible matchmaking functions met by the
semantic links are Intersection, Subsume, PlugIn and Exact. According to Definition 11, only
valid semantic links can be referred in an SLM.

Remark 3. (Key Feature of SLMs)
The innovative feature of SLMs is to label rows and columns together with the same set of concepts
in T i.e., input parameters of Web services in SWs. The link between a row and column of such
a matrix is defined by a possible semantic link between an output parameter of a service and a
column of the matrix.

All SLMs in Mp,q(P(SWs × (0, 1])) of a given domain are defined by means of their number
p of rows and number q of columns. SLMs of a domain are also related to the pre-defined goal
β. By considering #(β) be the cardinality of goals we have the following relations:

p = #(Input(SWs)) (3.3)

q = p + #(β)−#(β ∩ Input(SWs)) (3.4)

Definition 16. (Dimension of SLMs)
In compliance with [20] the dimension of a semantic link matrix in Mp,q(P(SWs×(0, 1]) is defined
by:

dimP(SW s×(0,1])Mp,q(P(SWs × (0, 1])) = p× q. (3.5)

In the general case, SLMs are not square matrices since q > p.

i/j index 1 2 3 4 5 6 7 8
ri.label Email Decoder FastNC IPAddress PhoneNum SlowNC ZipCode
cj.label Email Decoder FastNC IPAddress PhoneNum SlowNC ZipCode Invoice

Table 3.4: Labels of the rows ri and columns cj of the 7× 8 matrixM.

Example 14. (Illustration of SLMs indexes and labels)
Suppose the motivating example 4 be in Section 1.3.1 with the following six Web services:

• AdslEligibility (Sa),

• AdslEligibility- (S−
a ),

• AdslEligibility+ (S+
a ),

• VoiceOverIP (Sb),

• TvOverIP (Sc),

• LiveBox (Sd),

as elements of SWs.
Suppose {Invoice} be the only concept in goal β.
The number of rows and columns are respectively equal to 7 and 8 (Table 3.4) according to

equalities (3.3), (3.4) and definition of SLMs.
Therefore rows and columns of the SLM M of this domain are respectively indexed by:
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• {1, ..., 7}, {1, ..., 8},

and labelled by:

• concepts ri,i∈{1,...,7}, cj,j∈{1,...,8} of the TBox T .

For instance the row r1 and the column c1 are labelled by the concept Email whereas the row
r3 and column c3 are labelled by the concept FastNetworkConnection (Table 3.4).

3.2.2 Construction of Semantic Link Matrices

The Algorithm 1 presents the different steps of the SLM construction [117]. Such a construction
consists in discovering a semantic similarity score between the output parameters of all services
sy ∈ SWs and the input parameters of another service in SWs. In case the value score is not
null, the pair (sy, score) is added in the SLM. To do this, all input parameters of SWs are parsed
two times (p times in line 4 and q times in line 6) to build the p × q matrix. Moreover all
output parameters of SWs are parsed (line 8) to value the matchmaking function (Table 3.1) of
a potential valid semantic link.

Algorithm 1: Semantic Link Matrix Construction.

Input: SWs, T .1

Result: The Semantic link matrixM of the domain.2

begin3

foreach row ri of the SLM M do4

foreach column cj of the SLM M do5

foreach Web service sy ∈ SWs do6

if ri ∈ In(sy) then7

if ∃Outsy
∈ Out(sy) &SimT (Out sy, cj) 6= 0 then8

mri,cj
← mri,cj

∪ (sy, SimT (Out sy, cj));9

returnM;10

end11

According to Algorithm 1 the Semantic link matrix construction is mainly function of the car-
dinality of Output(SWs) and Input(SWs). The algorithmic complexity of the SLM construction
is then

θ(#(Input(SWs))×#(Input(SWs))×#(SWs)) (3.6)

so cubic in the worst case [117]. However an optimal process of the SLM construction can be
computed in

θ(#(Input(SWs))×#(Output(SWs))) (3.7)

or θ(Max{#(Input(SWs)),#(Output(SWs))}
2) (3.8)

so square in case #SWs ≪ #(Input(SWs)).

Example 15. (Semantic link matrix illustration with Tables 3.3, 3.4)
Suppose the motivating example with the set of Web services SWs in Table 3.3. We can easily
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compute the SLM of the domain according to algorithm 1 and Table 3.4 to obtain an SLM M
with entries in P(SWs × {

1
4 , 1

2 , 3
4 , 1}).

M =













∅ ∅ {(S−
a , 1

2 ),(Sa, 1
2 ),(S+

a ,1)} ∅ ∅ {(S−
a ,1),(Sa, 1

2 ),(S+
a , 3

4 )} ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ {(Sd,1)}

∅ {(Sc, 3
4 )} ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ {(Sd,1)}

∅ {(Sc, 3
4 )} {(S−

a , 1
2 ),(Sa, 1

2 ),(S+
a ,1)} {(Sb, 1

4 )} ∅ {(S−
a ,1),(Sa, 1

2 ),(S+
a , 3

4 )} ∅ {(Sd,1)}

∅ ∅ ∅ {(Sb, 1
4 )} ∅ ∅ ∅ ∅

∅ ∅ {(S−
a , 1

2 ),(Sa, 1
2 ),(S+

a ,1)} ∅ ∅ {(S−
a ,1),(Sa, 1

2 ),(S+
a , 3

4 )} ∅ ∅













The entry m5,3 (i.e., mPhoneNum,FastNC) is equal to {(S−
a , 1

2 ), (Sa, 1
2 ), (S+

a , 1)}. Indeed a Web
service Sa with one input parameter PhoneNum (row 5) and an output NetworkConnection se-
mantically similar to FastNetworkConnection (column 3) exists in SWs. 〈Sa, SimT (Network-
Connection, FastNetworkConnection), Sb〉 is a valid semantic link since the matchmaking func-
tion valued by SimT (NetworkConnection, FastNetworkConnection) is a Subsume match level
i.e., 1

2 .

Proposition 1. An entry mi,j of a semantic link matrixM∈ Mp,q(P(SWs× (0, 1])) is different
from the empty set if and only if the following conditions is satisfied:

• ∃sy ∈ SWs with at least one input ri.label ∈ T and one output Out sy ∈ Out(sy) ∩ T such
that SimT (Out sy, cj.label) 6= 0 (SLM definition).

3.2.3 Synthesis

Semantic Link Matrix and Scalability

Since the flexibility feature of Web service composition model is supposed to be fundamental in
volatile environments such as the Web services area (Requirement RFlexibility), the SLM model
aims at being as flexible as possible.

Indeed dynamic process of Web service discovery could be applied to modify an SLM of given
domain. In this direction the SLM model is quite appropriate to support fundamental criteria
such as alteration and modification (e.g., insertion, deletion, or update) of Web services in SWs,
hence a flexibility of the model. Each new update of SWs is supported by an SLM revision
together with a revision of the domain ontology T . For instance the integration of a new Web
service is related to the insertion of new labelled rows and columns in the worst case. In the
alternative case the integration of a Web service means a simple insertion of this service in the
relevant entry(ies) of the specific SLM.

Therefore incremental systems wherein new Web services are progressively added, are sup-
ported by the SLM model. In the same way deletion of Web services in a given SLM can be
easily performed as well.

The set of Web services SWs involved in the SLM is closed in order to limit its dimension.
This assumption seems appropriate to perform Web service composition with a bounded number
of Web services such as required in real and industrial scenarios. Even if the SLM dimension
and its computation is only square with the number of input parameters of SWs, such a level of
complexity may be a real issue to scale with more complex cases of composition e.g., hundreds of
thousands of Web services involved in a composition. Computing the SLM in such a domain can
really weaken the model used by our composition approach, presented in Section 4.1. One possible
direction to overcome this issue is to consider SLMs with a major part of empty entries since SLMs
are sparse in most of cases. In such a case the SLM model is replaced by a more subtle model i.e.,
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lists of semantic links wherein we store only valid semantic links. The space complexity of this
model is then drastically reduced. However our composition approach presented in Section 4.1
will require some minor changes since our composition method assumes an SLM of the domain.
We remark that scenarios that require a composition of hundreds of thousands of Web services
is more than improbable in real industrial scenario since its execution will be a real open issue.

Goal-Independent Semantic Link Matrix

The Definition 15 can be detached to the concept of goal in order to provide a goal-independent
SLM definition. In this direction we provide a context adapted for Web service composition and
for no predefined goals. This is quite appropriate for adaptability of our model in any composition
problem.

Some Concluding Remarks

In this section, we introduced a formal model so called Semantic Link Matrix and its construc-
tion process. Such a model aims at preparing the automated process of Web service composi-
tion i) by computing, ii) by storing and iii) by classifying all valid semantic link (Requirement
RSemantic

Composability) between a set of Web services in a simple, intuitive and flexible way (Requiere-
ment RFlexibility).

The key contribution of the SLM is a formal and semantic model to control a set of Web
services SWs which is relevant for a composition goal.

In the following section, we describe how the SLM of a given domain can support expressive
Web service composition.

3.3 Semantic Link Matrix and Web Service Composition

The concept of semantic link introduced in Section 3.1 is quite appropriate to model trivial
composition such as the composition illustrated in Figure 3.57.

ServiceService
Valid Semantic Link sln

In syi

In syn

Out syi
In sxi

Out sy1
In sx0

sx

Out syn

Out sy0

sy

Valid Semantic Link sl1

Valid Semantic Link sli

In sxn
Out syn−1

Out sx

In sy0

Figure 3.5: Illustration of the simplest case of a Web service composition sx◦̂sy.

7In such a level of composition, all input parameters of a Web service sx can be provided by some output
parameters of the direct Web service predecessor sy .
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Unfortunately Web service composition is more subtle than the latter trivial case of com-
position. Indeed, in real scenarios a composition of Web services can be designed by means
of the simple sequence construct (Figure 3.5), but also by means of more complex constructs
such as the non deterministic choice of Web service or the concurrency constructs (Requirement

RComposition
Expressivity) as well (Figure 3.6).

Service

Service

Service

Non Determinist Choice of Services

Conjunction of Services

Valid Semantic Link sl1

Out sy1,1

Out sy1,0

Out sx
sx

In sx0

sy1

In sy1,n

In sy1,i

In sy1,0

Out sy2,0
In sx1

In sy2,0

In sy2,i

In sy2,n

sy2
or sy3

sy2
∨ sy3

sy1
∧ (sy2

∨ sy3
)

Valid Semantic Link sl0

Figure 3.6: Illustration of more complex cases of a Web service composition.

By classifying all valid semantic links in the SLM (see Section 3.2), we are ensured to discover
all compositions of Web services which are related by semantic links.

By introducing the SLM model we consider a simpler composition problem i.e., the semantic
link composition. Therefore the Web service composition is mapped to a semantic link com-
position wherein semantic links inform about semantic connections between Web service. The
solutions of Web service composition will be mainly oriented by the SLM of the domain.

In this section we describe how the latter model can support not only trivial composition
(Figure 3.5) but also expressive compositions of Web services (Requirement RComposition

Expressivity).

The rest of this Section is organized as follows. Section 3.3.1 introduced the concept of
Sequence Composability between Web services. In Section 3.3.2 we describe how expressive Web
service composition can be modelled by the semantic link matrix of a given domain. Finally
Section 3.3.3 synthesizes the Section.

3.3.1 Sequence Composability of Web Services

It is straightforward to identify a semantic link as a very basic composition of two Web services
since the latter link describes a simple sequence of two Web services. From this we can easily
extend the basic composition to the trivial composition sx◦̂sy wherein sx◦̂sy (Figure 3.5) simply
means that sy precedes sx and there exists a strictly positive value of SimT between each input
parameter of sx and some output parameters of sy.
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Such simple compositions come from a special case of the sequence composability definition
introduced by [114].

Definition 17. (Sequence Composability)
The sequence composability (Figure 3.7) between two Web services sy and sx is defined as a
composition sx ◦ sy if and only if an output of sy is exploited by an input of another Web service
sx.

ServiceService
Valid Semantic Link sli

In syi

In syn

Out syi
In sxi

sxsy

In sxn
Out syn−1

Out sx

Out sy1
In sx0

Out sy0

Out syn

In sy0

Figure 3.7: Illustration of a Sequence Composability of Services sx ◦ sy.

3.3.2 Modelling Sequence Composability and Expressive Compositions
in SLM

As previously mentioned basic and trivial compositions of Web services are the first and the most
intuitive categories of compositions. That is why it seems relevant to make sure that SLMs are
able to simply retrieve these models of compositions. In other words a SLM of a given domain
have to satisfy the sequence composability definition introduced in the beginning of this section.

Theorem 2. (Sequence Composability and SLMs)
Let M be an SLM, and sx, sy be two Web services in SWs. sx and sy are sequence-composable
iff the following condition holds:

• ∃i ∈ {1, .., p}, ∃j ∈ {1, .., q}, ∃v ∈ (0, 1] such that (sy, v) ⊆ mi,j. cj.label and ri.label are
respectively inputs of sx i.e., In(sx) and sy i.e., In(sy).

Proof. Consider the proof of theorem 1 as the following two implications.

(⇒) Let sx, sy be two Web services in SWs andM be an SLM with entries in P((SWs∪T )×(0, 1]).
Moreover, we consider the Sequence-composability of sx and sy such that an output of the
Web service sy is consumed by the input of another Web service sx i.e., sx ◦ sy. Ac-
cording to the SLM definition, input parameters of sx are labelled in M as concepts
in T . Thus we may suppose {1, ..., psx

} as the index of the sx input parameters in M
without loss of generalities. According to the Sequence-composability definition, ∃j ∈
{1, ..., qsx

} such that SimT (Out sy, cj.label) > 0 since an output Out sy ∈ Out(sy) of one
Web service sy is consumed by an input cj.label of another web service sx. Consequently
〈sy, SimT (Out sy, cj.label), sx〉 is a valid semantic link. According to the property 1.i), an
entry mi,j fromM is different from the empty set. Finally ∃i ∈ {1, ..., psx

} ⊆ {1, ..., p},∃j ∈
{1, ..., qsx

} ⊆ {1, ..., q} such that (sy, SimT (Out- sy, cj.label)) ⊆ mi,j with cj.label ∈ In(sx)
and ri.label ∈ In(sy).
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(⇐) Suppose ∃i ∈ {1, ..., p},∃j ∈ {1, ..., q},∃score ∈ (0, 1] such that (sy, score) ⊆ mi,j with
cj.label ∈ In(sx) ⊆ T and ri.label ∈ In(sy) ⊆ T . According to definition 2 and property
1.i), an entry mi,j from M is different from the empty set. Thus ∃sy ∈ SWs with at least
one input ri.label ∈ T and one output Out sy ∈ T such that SimT (Out sy, cj.label) 6= 0.
Since cj.label ∈ In(sx), two Web services sx and sy in SWs exist such that an output of the
Web service sy is consumed by an input of another Web service sx. Thus sx and sy are
sequence-composable.

By the Sequence Composability theorem of SLMs we proved that SLMs are
able to not only store valid semantic links between Web services but also sequence
composable Web services.

Example 16. (Sequence Composability in SLMs)
LetM be the SLM illustrated in Example 15. Sb and Sa are sequence-composable in SWs iff Sb ◦
Sa. Indeed there exists a pair (i, j) = (5, 6) inM such that (r5.label, c6.label) = (PhoneNum, SlowNC).
In the considered case (S−

a , 1) ⊆ m5,6 where c6.label is SlowNC ∈ In(Sb) ⊆ T and r5.label is
PhoneNum ∈ In(Sc) ⊆ T . Therefore an output of Sa is exploited by the input of Sb since
SimT (Out Sa, In Sb) 6= 0.

In case of more complex compositions, several services can be required to be chained with sx

in order to produce all input parameters of sx e.g., Figure 3.6. So concurrency between some
services needs to be considered. In case a service is in several entries of the same column, this
means that concurrency can be required to compose with such a service.

Example 17. (Concurrency in SLMs)
LetM be the SLM. The intersection of entries m3,2 and m5,2 is {(Sc,

3
4 )}. This simply means that

Web service Sc requires two input parameters r3.label i.e., FastNC and r5.label i.e., PhoneNum
to be achieved. In other words a composition that requires the Web service Sc have to provide
two output parameters which will be exploited by the input parameters of Sc.

Besides to model sequence composability and concurrency in Web service composition, SLM is
also able to model the multiple choice. This case of non determinist compositions are conceivable
in case an the number of elements in an entry of an SLM is strictly greater than one.

Example 18. (Non Deterministic Choice in SLMs)
Let M be the SLM. The entry m1,3 of M is {(S−

a , 1
2 ), (Sa, 1

2 ), (S+
a , 1)}. The latter set identifies

that three Web services Sa, S−
a and S+

a are able to provide an output parameter semantically
close to the concept FastNC i.e., c3.label. In other words a composition that requires the input
parameter FastNC may choose between three different Web services.

According to the previous features of SLM, sequence, choice (aka Non Determinism) and
concurrency of Web services can be retrieved and then used to model compositions returned by
our approach (Requirement RComposition

Expressivity).

3.3.3 Synthesis

Some Concluding Remarks

As studied in this Section, the SLM model aims at supporting not only trivial composition and
basic composition such as sequence composable Web services but also more expressive composi-
tions of Web services (Requirement RComposition

Expressivity) such as non deterministic choice of services,
or concurrent composition of services.
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3.4 Conclusion

In this Chapter the semantic link concept as been introduced as the main composabilty criteria
to achieve Web service composition. Towards this issue we focused on functional input and output
parameters of services. The requirement RService

Applicability is addressed by the industrial applica-

bility of our model to OWL-S, WSMO, SWSO or SA-WSDL. The requirement RSemantic
Composability

is addressed by the semantic links. The requirement RService
Expressivity is addressed by the func-

tional description of input and output parameters.

In addition we studied non standard matchmaking functions to direct semantic relations
between services i.e., Intersection [124], Abduction [55], Concept Difference [198]. From this
innovative valuation of semantic links between services, new issues related to robustness links
have been identified.

From the definition of semantic link, a formal and flexible model (SLM i.e., Semantic Link
Matrix) for Web service composition has been studied. The SLM model is used to pre-chain
Web services according to the semantic similarity computed on semantic links (actually all valued
possible interactions between all relevant Web services). This model facilitates composition of
Web services by considering the latter computation achieved. We remarked that the required
background for Web service composition at functional level i.e., valid semantic links and their
semantic dependency can be known by means of SLMs of the domain. Indeed this model aims
at supporting expressive compositions of Web services. On the one hand the requirement
RFlexibility is addressed by the SLM model. On the other hand the requirement RComposition

Expressivity

is addressed by the expressive compositions (i.e., sequential, non deterministic, concurrent) sup-
ported by the latter model.

Table 3.5 describes in details the requirements supported by the model introduced in Chapter
3.

By considering Web services described by means of their input and output parameters, Web
service composition can be studied as a semantic links composition.

Chapter 4 suggests two approaches that apply AI planning techniques to computing a partial
ordering of Web services arranged in a simpler version of a workflow that fulfils a composition
goal and Requirement RComposition

Expressivity.

According to the latter formal model together with its semantic links, the Chapter 4 first
presents a composition approach, which is mainly oriented by i) the SLM of a given domain, and
ii) its valid semantic links together with their values since all Web services are semantically well
ordered in the robust SLM model. The resulting ordering will be i) composed of Web services, ii)
semantic dependences i.e., semantic links [114] and iii) as robust as possible (Definition 3.1.4 in
Section 3.1). Requirement RService

Expressivity is supported in part (input and output parameters), and
non determinism is focused on Web services (i.e., non deterministic choice of service to perform
a task) and not on their parameters.

In addition the Chapter 4 studied another approach to compute conditional compositions
of Web services. Here Web services are described by means of their input, output parameters,
together with their preconditions and effects (full part of RService

Expressivity). The conditional com-
positions will be computed by means of i) their semantic dependences and ii) the causal laws
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Requirement Ri Details
Chapter 3

Section 3.1 Section 3.2 Section 3.3

Formalism

RComposition
Automation

7
Composition
Mechanism

In this Chapter, two main functional parameters

RService
Expressivity

have been studied to describe Web services i.e., Inputs
and Outputs, annotated by concepts using a

common domain ontology. Information-providing services.
RExpressivity The SLM model supports

sequence composability of

RComposition
Expressivity 7 services, non determinism

choice of services
and concurrent compositions.

Semantic dependence through (valid and robust)
semantic links. Valuation with basic matchmaking

RSemantic
Composability

functions i.e., Exact, PlugIn, Subsume, Disjoint
RComposability and extra functions i.e., Intersection, Abduction

and Difference to compute robust semantic links.
Computation at Design Time.

RCausal
Composability 7

RFlexibility 7 Supported by the SLM model.

ROptimization 7

Applicable to the OWL-S service profile, WSMO
RService

Applicability service capability, SWSO Inputs/Outputs or

RApplicability SA-WSDL (see Section 1.3.2 for further details).

RComposition
Applicability 7

Table 3.5: Table of Requirements supported by Chapter 3. Legend: 7 = not addressed.

(RCausal
Composability, see Section 2.1.1 for further details). By studying conditional compositions non

determinism of output parameters of Web services will be considered.



Chapter 4

Semantic Link and Causal Law
based Composition

In this chapter, we describe two complementary approaches for web Service composition. Both
approaches focus on requirement RComposition

Automation to achieve composition.

• The first approach focuses only on semantic links between output and input parameters
of Web services as composabilty criteria. Preconditions of all Web services involved in a
composition are supposed true before execution (e.g., satisfied by some effects of some pre-
ceding Web services in the composition, or true in the initial situation). Towards this issue
we suggest to apply AI planning techniques on a flexible model i.e., the SLM (Semantic
Link Matrix in Chapter 3) of a given domain. The result is a partial ordering of Web
services arranged in a simpler version of a workflow that fulfils a given composition goal.
This ordering will be composed of i) Web services and ii) their semantic links (as robust
as possible - See Definition 13).

In this approach a part of requirement RService
Expressivity is ensured since only input and output

parameters are required. The requirement RSemantic
Composability is supported since semantics

links are considered as composability criteria. Finally the control constructs supported by
the formal SLM model satisfies the requirement RComposition

Expressivity.

Even if the first approach is quite appropriate in some scenarios (e.g., Web services descrip-
tion using SA-WSDL), there are some limitation. For instance we cannot restrict Web services
to be described by only their functional input and output parameters. Indeed some industrial
applications may require to compose Web services by means of their input, output parameters
(e.g., SA-WSDL based Web service description), and of relationships between services, precon-
ditions and effects (e.g., WSMO or OWL-S based Web service description). This is a related to
the open world of Web services.

• The second approach does not longer consider assumption defined in Section 4.1.1 (as-
sumption that any precondition of any service is automatically true in any time of the
composition). Towards this issue, semantic links between output and input parameters
together with causal laws (i.e., causality relationships between effects and preconditions of
services and complex, explicit relationships between services - see Section 2.1.1 and Fig-
ure 2.1) are considered and integrated to compute compositions of Web services in this

89
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approach. Information-providing or/and world-altering services can be supported in this
approach. Section 4.2 presents an augmented and adapted version of the logic programming
language Golog [121] i.e., sslGolog as a natural formalism not only for reasoning about the
latter links and laws, but also for automatically composing services. sslGolog operates as
an offline interpreter that supports conditional compositions of services.

In this approach the requirement RService
Expressivity is supported by a high level of Web service

description i.e., input, output parameters and preconditions, effects. Both the require-
ment RSemantic

Composability and RCausal
Composability are considered as composability criteria. Finally

the requirement RComposition
Expressivity is supported by considering sequential and conditional

compositions.

The main distinctions between these two approaches is about requirements RService
Expressivity,

RComposability and RComposition
Expressivity.

The remainder of this Chapter is as follows. Section 4.1 presents the first ap-
proach whereas Section 4.2 presents the second approach. Finally Section 4.3 draws
some concluding remarks.

4.1 Semantic Link based Web Service Composition

In this section we focus on a automated (requirement RComposition
Automation ) semantic link

based Web service composition (requirement RSemantic
Composability). Web services are de-

scribed by means of their input and output parameters (a part of requirement
RService

Expressivity). More formally we suggest to apply AI planning techniques on a flex-
ible model i.e., the SLM of a given domain. The latter model ensures to obtain
expressive composition of Web services (requirement RComposition

Expressivity).

The remainder of this Chapter is as follows. First of all, Section 4.1.1 states about the status
of causal laws in this composition approach. Section 4.1.2 revisits Web service composition as
an AI planning problem. In Section 4.1.3 we formalize compositions constructs to efficiently
model Web service composition. Section 4.1.4 describes in details the composition process. In
Section 4.1.5 we give some main properties of the computed compositions. Section 4.1.6 focuses
on robustness in Web service composition. Finally Section 4.1.7 gives some limitations of the
model and concludes.

4.1.1 Disregarding Causal Laws between Web Services

As previously said in Section 2.1, causal laws can be used as a composability criterion to compute
Web service composition. On the one hand the causal laws ensure that preconditions of services
are satisfied before any Web service execution (i.e., causality relationships). On the other hand
they add more explicit and complex relationships between parameters (under some conditions)
of different Web services than semantic links.

In this approach we assume for sake of simplicity that:

• causality relationships are trivial i.e., preconditions of all Web services involved in a compo-
sition are true (e.g., a priori, satisfied by effects of other services or in the initial situation)
in the composition;
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• complex relationships between services (e.g., relationships that link an input parameter of
a service to an output parameter of another service under some conditions) are disregarded.

Disregarding open issues related to preconditions, effects and causal laws in this work, first
does simplify the composition process, second enables us to highlight open issues related to
semantic composability (and its data flow) of Web services such as robustness, and third allows
scaling up to large sets of capabilities; in turn, a relevant part of the interaction taking place
amongst services is ignored.

4.1.2 Web Service Composition as a Revisited AI Planning Problem

From an SLM of a given domain with its valid semantic links, together with basic AI planning
techniques such as regression, or progression-based search we aims at computing complete, cor-
rect, consistent and robust plans as solutions of a composition problem.

The method consists in computing a (or some) composition(s) of services that produces in-
stances of the desired concepts in β ⊆ T depending on some individuals in an ABox A (e.g.,
Figure 4.1) of the ontology T .

To this end, we suggest to compute a (or more) solution of the AI planning-based Web service
composition problem (Definition 18).

Definition 18. (AI Planning-based Web Service Composition Problem)
An AI planning-based Web service composition problem [54, 144, 167, 174] is defined as a triple
Π = 〈SWs,A, β〉. The set of Web services SWs refers to planning operators (i.e., available
actions), A and β are respectively an adaptation of the initial states and goal of the AI planning
problem.

The main differences with AI planning problem concern first the description of goals and
Initial states, second addition of assumptions on the planning operators, the composition goal
and initial conditions. The latter assumptions are required to stage with open issues related to
the AI planning-based Web service composition [195].

In this direction the set of Web services SWs is closed by assumption. Moreover the output
parameters of Web services are not consumed, and then can be re-used by several different Web
services in the composition.

Unlike goals which are described as fluent with a first-order logic representation in AI planning
domain, the goal β is clearly described as a set of defined concepts in a TBox. β informs about
composition (or plan) directions in order to retrieve some individuals of concepts in β. The DL-
based description of β allows to make reasoning such as satisfiability, subsumption, abduction,
and concept difference especially to infer some properties between concepts in β and parameters
of Web services in T .

The Initial state of our problem is modelled as a set of instances in an ABox A. In other
words A informs about initial conditions by defining some instances of concepts we can use to
instantiate input parameters of some Web services.

Then a composition of Web services is computed in a well-defined domain: goals are explic-
itly given, initial state is well defined and Web services are strictly defined at functional level.
Therefore non determinism, implicit goals, fuzzy Web service descriptions and behaviours are not
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considered in our composition approach. It does seem possible to directly apply (some) current
AI planning methods to our specific problem (see Chapter 2).

A-I freddy.lecue@orange-ftgroup.com : Email

A-II +33299124625 : PhoneNum

A-III 35512 : ZipCode

Figure 4.1: Sample of the Assertional Box of the ALE Domain Ontology T .

4.1.3 Modelling Composition as a Partial Ordering of Web Services

Before mapping a Web service composition as a simpler form of an AI planning problem, we
suggest to briefly overview the way we model a composition of Web services. Considering SWs

be the set of available and relevant services, the composition result is a partial ordering (◦, SWs)
of services in SWs arranged in a simpler workflow (mainly sequence, concurrency and non de-

terminism operators - Requirement RComposition
Expressivity) in order to fulfil the composition goal β. The

latter ordering of Web services is intertwined with valid semantic links. As emphasized by Chap-
ter 3 a composition is then defined as a plan of services wherein all services are semantically well
ordered and well linked by semantic links.

Example 19. (Semantic links and Ordering on Web Services)
Suppose Sa and Sb be two Web services illustrated in Example 4 and Table 3.3. Since Sb and
Sa are sequence composable i.e., Sb ◦ Sa, Sa required to be executed first in order to provide the
input parameter required by Sb.

The partial ordering (◦, SWs) returned by our FLC approach consisted of Web services
together with some characteristic elements i.e., predecessors and successors. In a nutshell a Web
service sx is a predecessor of another Web service sy i.e., sy ◦ sx in case sx provides at least one
output parameter to sy. Reciprocally sy is a successor of sx.

Since the order is not necessarily a total order some Web services in (◦, SWs) can be incompa-
rable i.e., two Web services cannot be ordered since none of both requires the achievement of the
other service. In this direction concurrency of Web services sx and sy are conceivable in service
composition in case i) sx and sy are incomparable and ii) their output parameters are used by
input parameters of a same service. Therefore the partial ordering of Web services models not
only sequences of comparable Web services but also the concurrent execution of incomparable
Web services.

The following definition is introduced to model a partial order of Web services by means of
sequence, non determinist choice and concurrency1.

Definition 19. (Main Constructs for Web service composition)
Let 〈SWs,A, β〉 be the AI planning-based Web service composition problem, constructs of Web
service composition and their priority order are ∧ > ∨ > ◦, such that:

• ∧ is the conjunction operator i.e., the concurrency construct (or AND-Branching);

• ∨ is the disjunction operator i.e., the non determinist choice construct;

1Such constructs are supported by the SLM model introduced in Chapter 3.
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• si◦sj refers to the sequence construct. Such a construct models sequence-composability (Def-
inition 17). Therefore si◦sj is possible only if ∃Co, Ci ∈ T such that 〈sj , SimT (Co, Ci), si〉
is a valid semantic link.

Example 20. (Semantic Links and Partial Ordering on Web Services)
Let Sy1

, Sy2
, Sy3

and Sx be the four Web services illustrated in Figure 3.6, the partial order
(◦, {Sy1 , Sy2 , Sy3 , Sx}) is defined by

(i) Sx ◦ Sy1
;

(ii) and Sx ◦ (Sy2
∨ Sy3

).

The reduced form is Sx ◦ (Sy1 ∧ (Sy2 ∨ Sy3)).

4.1.4 A Regression-based Approach for Web Service Composition (Ra4C)

In this section we focus on a AI planning based search. More specifically we apply a Regression-
based Approach for Composition i.e., Ra4C. The suggested composition process is presented
and detailed in Algorithm 2.

In a nutshell the composition process follows a recursive and regression-based search from
the set of concepts in β (concepts that do not have any individuals in the ABox A) with initial
conditions in A.

The main idea consists in controlling and parsing the SLM of a given domain in an adequate
way to obtain a composition of services and their semantic links that will satisfy the goal com-
position. The latter goal is satisfied in case the composition candidate retrieves (one or more)
individual(s) of all concepts in the goal β.

The Ra4C approach requires a first call of the Algorithm 2 as follows Ra4C(M, ∅, 〈SWs,A, β〉, ∅).
This step is required to compute automated Web service compositions that provide (one or more)
individual(s) of concepts in the goal β. In the trivial case (line 7) wherein all concepts in β have
already individuals in A, the goal β is obviously fulfilled by the initial condition. The automated
process of composition is then stopped since trivially satisfied by A. In the more complex case
(line 10) wherein the ABox A does not contains any individuals of the concept βi in β, the
composition process needs to retrieve at least one Web service sx in SWs with βi defined as one
of its output parameters. In other words a Web service discovery process eased by the SLM of
the domain is performed. In case of a discovery success (line 14), the process is iterated with
the sx input parameters as new goals (line 23) of AI planning-based Web service composition.
Alternatively (line 26), the process is stopped and the (or a part of the) plan is reduced to an
incorrect composition ∅ since the current goal is considered as open i.e., no composition or indi-
viduals in A can solve the current goal. All the previous process is executed recursively (line 25)
until the concepts in β and new goals (recursive goals as input parameters of services involved
in the composition) have individuals in A (stop condition in line 7). Therefore the Algorithm
2 returns a disjunction of consistent plans consisted of valid and sequence-composable semantic
links i.e., a (or more) composition(s) of Web services semantically chained by semantic links.

Computational Complexity of Ra4C

Formally the computational complexity of the Ra4C process is polynomial with the number of
Web services and their numbers of functional (i.e., here input since we perform a regression-
based search) parameters. The latter complexity is obviously related and very depending on the
filling rate of the SLM. It is obvious that the sparser the SLM the faster the Ra4C process is.
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Algorithm 2: Regression-based Approach for Composition Ra4C.

Input: A SLMM ([mi,j ]), a (or disjunction of) plan(s) π, an AI planning based Web1

service composition problem 〈SWs,A, β〉, a set of solved goals βsv, a set of non
valid goals βnv.

Result: A disjunction of consistent plans π.2

begin3

// Temporary set of pairs in SWs × (0, 1].4

Sc ← ∅;5

// Stop condition of the Ra4C algorithm.6

if ∃ck ∈ A such that ((ck is an individual of Ck) & (SimT (Ck, β) 6= 0)) then7

π ← β;8

// Web services discovery with β output.9

foreach Ii ∈ Input(SWs) do10

if ∃(sy, v) ∈ mIi,β then11

Add((sy, v), Sc);12

// Plan for Web service composition.13

if Sc 6= ∅ then14

foreach pair (sy, v) ∈ Sc such that sy ∈ SWs do15

π ← π ∨ sy ;16

foreach In sy ∈ In(sy) do17

if β ∈ βsv then18

// Case of Inconsistent plan. Detection of Loops.19

π ← π ∧ ∅;20

Add(β, βnv);21

else22

Add(β, βsv);23

Π← 〈SWs,A, In sy〉;24

π ← π ◦ (
∧

In(sy)Ra4C(M,π,Π,βsv));25

else26

// Non correct plan since there is an open goal (input).27

π ← π ∧ ∅;28

return π;29

end30

Experiment results of this approach are presented in Chapter 7.

In the Ra4C process we assumed without loss of generality, and for sake of simplicity that
β refers a unique concept we want to instantiate, and not as a set of concepts. Even if we do
not investigated on a subtle method to perform a composition with multi goals, the practical
computation of a composition with n concepts in β is linear with n. However it could be even less
in general case e.g., some goals can be satisfied by a composition of services satisfying another
goal.
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4.1.5 Properties of Web Service Compositions Computed with Ra4C

In the same direction as pure AI planning problem and their solutions (aka., plan), the set of
computed compositions by the Algorithm 2 has some interesting properties [75] related to their
consistency, completeness and correctness. Such properties are depending on i) the set of Web
services SWs involved, ii) the set of concepts β as goal and iii) the ABox A of the given domain.
In the following we briefly describe the properties related to these compositions of Web services.

Consistency

The consistency property in Web service composition is a necessary condition to obtain exe-
cutable solutions. This condition is satisfied by compositions containing no cycle in the ordering
constraints and no semantic link conflicts [178]. Such compositions are computed by means of
the Ra4C algorithm. Indeed the latter algorithm identifies cycles and conflicts to dispose of
inconsistent semantic links. This inconsistency is tackled by a simple update of solved goals (line
23). Therefore a goal is not resolved twice or more times during the composition process.

Example 21. (Set of consistent compositions)
Let M be the SLM illustrated in Example 15, and Π = 〈{Sa−, Sa, S+

a , Sb, Sc, Sd},A, {Invoice}〉
be the planning-oriented service composition problem we plan to solve. In a nutshell the goal
of the composition is to compute a partial ordering of services that enable us to provide an
Invoice, given some elements in the ABox and some available and relevant Web services. More
specifically, by considering A illustrated in Figure 4.1, the composition goal is to obtain an Invoice
of a customized service. In a previous step the end user has selected a set of offers (i.e., services)
she wants to subscribe, together with some information such as her email address, Phone number
and the ZipCode of the desired phone line. From this the composition result of Ra4C is a
disjunction of nine consistent compositions (or simpler plans) depicted in Figure 4.2:

πSx,Sy
:= Sd ◦

[

PhoneNum

∧ (Sc ◦ (Sx(Email, PhoneNum, ZipCode) ∧ PhoneNum))

∧ (Sb ◦ (Sy(Email, PhoneNum, ZipCode) ∧ PhoneNum))
]

wherein Sx and Sy can be any Web service in {Sa, S−
a , S+

a }.

Correctness

Adapted from the AI planning research area [178], we define a correct composition as a com-
position wherein every input of every Web service can be provided by an output parameter of
another Web service or by an individual occurring in the ABox A. In other words correctness
of resulting compositions is guaranteed in case they do not contain any open inputs. In our
approach, all non correct compositions are identified in the Ra4C process in line 26 of algorithm
2. Therefore compositions with open inputs are removed from the set of potential solutions.

Example 22. (Set of correct compositions)
The nine composition results returned by Algorithm 2 are correct since none of them contains
any open goals and inputs.
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Goal
Composition

Valid Semantic LinksA service such that Sx, Sy ∈ {S−a , Sa, S
+
a }

Output Parameters of Web services

Input Parameters of Web services

Invoice

Semantic Link sl1

VideoDecoder

XNetworkConnection

ZipCode

XNetworkConnection

Email

ZipCode

VoIPId

Decoder

PhoneNum

Email

PhoneNum

PhoneNum

IPAddress

Sx

Sy

Sc

Sb

Semantic Link sl4

Semantic Link sl3

Sd

FastNC

SlowNC

PhoneNum

Invoiceb : PhoneNum

a : Email

c : ZipCode

Goal β

ABox A

PhoneNum

Goal β
ABox A

X ∈ {Slow,Fast, ∅}

Semantic Link sl2

Sx, Sy

Figure 4.2: Ra4C Result on the Motivating example.

Completeness

Here we study the completeness properties of compositions computed by Algorithm 2.
By definition, an SLM contains all required information about complete plans since

an SLM explicitly stores all valid semantic links between sequence composable services
(see Section 3.3).

According to the Ra4C process the compositions refinement follows a backward chaining
strategy from the goal β to initial states A by means of a domain SLM and its semantic
links. Therefore by definition of SLM, all compositions of services consist of valid semantic
links 〈sy, SimT (Out sy, β), sx〉 hence complete compositions.

Example 23. (Set of complete compositions)
The set of compositions returned by Ra4C is complete by definition.

By means of the Ra4C process a set of correct, complete and consistent compositions is
returned. However the Algorithm Ra4C does not study how to overcome the issue of robustness
in Web service composition. This issue is addressed in the next Section.

4.1.6 Robust Semantic Web Service Composition

Even if Ra4C is able to compute correct, complete and consistent compositions of Web services,
some of them can be not robust enough. Indeed some compositions returned by Ra4C can
contain non robust semantic links (Definition 13) hence non robust compositions (Definition 14).

Example 24. (Non Robust Composition of Web Services)
Suppose πSa,Sa

(from πSx,Sy
in Example 21) be a composition result illustrated in Figure 4.3. Its
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formalization is as follows:

πSa,Sa
:= Sd ◦

[

PhoneNum

∧ (Sc ◦ (Sa(Email, PhoneNum,ZipCode) ∧ PhoneNum))

∧ (Sb ◦ (Sa(Email, PhoneNum, ZipCode) ∧ PhoneNum))
]

Such a composition of Web services is not robust since three of its four semantic links are not
robust i.e., sl1, sl2 and sl4.

VoiceOverIP

TVOverIP

LiveBoxAdsl 

EMail

ZipCode

PhoneNumber

PhoneNumber

PhoneNumber

Network
Connection

Network
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Figure 4.3: A Non Robust Composition of the Motivating example.

In the considered case a complete automation of semantic Web service composition is still
not a reality, especially when a Web service composition comprises non robust semantic links.

An intuitive but naive method would be to not consider non robust semantic links i.e.,
semantic links valued by a Intersection and Subsume match level. Therefore the composi-
tion approach would be the same as proposed by the Ra4C process with a restricted SLM
in Mp,q(P(SWs × {1, 3

4})). It is obvious that such a method is far from convenient since it
would consider no more than two matchmaking levels to value semantic links, hence a loss of
expressivity in semantic links.

Another approach consists in replacing non robust semantic links of a composition with their
robust forms as suggested in Section 3.1.5. Therefore mismatched connections between Web ser-
vices can be repaired through a fine-grained process of mediation (actually finer that the WSMO
mediation). The Web service composition process is still automatic in case the Extra Description
required by the non robust semantic links is automatically computed.

In the following we study two main methods to obtain this Extra Description i.e.,

• the first method performs robust Web service composition in an automated way. This case
is denoted as the Perfect Case.

• the second method acts in a semi-automated way by relaxing constraints to the end-user.
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The Perfect Case

An intuitive method to immediately compute the Extra Description consists in discovering ser-
vices that return this description by means of their output parameters.

To this end, the Extra Description of non robust semantic links is first computed according
to Concept Difference (or Concept Abduction).

The computed Extra Description is then exposed as a goal of a Web service discovery process.
The latter process will be in charge of discovering relevant Web services. Such services will be
able to provide the Extra Description as output parameters.

It is obvious that the Extra Description can be reached by one or a conjunction of Web
services, depending on the Extra Description and the discovery process.

The main constraint of this method is related to the computational complexity of the process.
Indeed all input parameters of new discovered Web services have to be considered as a new
composition goal. Such goals have to be either known at run time or linked to an output
parameter of another Web service through a robust semantic link in the final composition. The
latter consideration limits the scalability of the approach in case i) the discovery process is time
consuming and ii) the number of discovered services is large.

In this approach, the more non robust semantic links in a composition the more large the
number of services in this composition. Such a solution can be employed and implemented in
any composition approach, but its computational complexity is its main drawback.

An Alternative Approach: Relaxing Constraints

In case wherein no service can reach the Extra Description there is no way to automatically
compute this description. In this direction all available information does not guarantee to find a
robust Web service composition.

Consequently, the latter description has to be computed by relaxing some constraints during
the composition process.

Indeed relaxing some constraints and obtaining a composition of robust semantic links is an
interesting trade-off to reach composition. These constraints still guarantee the original feasible
solutions and yield additional feasible solutions. Constraints Bi,1≤i≤n

in Web service composition
refer to the Extra Description. More formally the set of relaxing constraints B is expressed by
Definition 20 where 〈sy, SimT (Out sy, In sx), sx〉 refers to semantic links in the composition
model.

Definition 20. (Set of Relaxing Constraints)
The set of relaxing constraints B is defined by

inf
⊑
{In sx\Out sy|〈sy, SimT (Out sy, In sx), sx〉 is a valid semantic link}\set {⊤} (4.1)

Intuitively, the set of relaxing constraints B of a Web service composition is defined as being
the set of descriptions able to change non robust semantic links into their robust forms. B gathers
the most specific descriptions of the set {In sx\Out sy} where 〈sy, SimT (Out sy, In sx), sx〉 is
a valid semantic link. The latter consideration implies that a same description (i.e., the most
specific) can be used by a finite set of non robust semantic links to change them into their robust
forms. The descriptions used to perform these changes will be the most specific descriptions of
the Extra Description. B does not only explain why the composition process failed but also gives
a solution of the robustness problem of semantic links hence a way to reach robust Web service
composition.
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Proposition 2. (Constraints for Robust Semantic Links)
The set of relaxing constraints B of a Web service composition with only robust semantic links is
the empty set.

Proof. Let π be a service composition constituted of only robust semantic links sli,1≤i≤n
, defined

by 〈sy, SimT (Out sy, In sx), sx〉i. By definition, the match level between Out sy and In sx is
either Exact or PlugIn, hence Out sy ≡ In sx or Out sy ⊑ In sx. By difference (3.1) we obtain
in the two cases that In sx\Out sy ≡ ⊤ i.e., B is defined by the empty set.

Once the set of Extra Descriptions is computed through Concept Difference, the set of re-
laxing constraints B (Definition 20) is computed to be suggested to the end user in order to be
relaxed. This user is then responsible to provide the Extra Description required by the system
in order to elaborate the final and robust Web service composition, hence satisfying the initial
user request. The suggested method has the advantage of relaxing constraints on the end user
side.

In the motivating example, Web services and user’s requirements are both not specified enough
to focus on the Extra Description and also advantages of relaxing constraints. The relaxing task
is of the utmost importance in real scenarios of composition since Web service composition often
requires some refinements such as relaxing constraints to turn into an automated composition.

Example 25. (Relaxed Semantic links)
The motivating example exposes a Web service composition through 4 semantic links sli,1≤i≤4

(Figure 4.3). Three of the four valid semantic links are not robust. Indeed

• the semantic links sli,1≤i≤2
are valued by a Subsume match;

• the semantic link sl3 is valued by an Intersection. match.

No Web service may provide the Extra Description necessary to form robust semantic links.
A Relaxing constraints needs to be applied to obtain a composition of robust semantic links. The
discovery of the Extra Descriptions B gives directions to obtain robust semantic links.

According to the Definition 20, B is constituted of an union of three differences in DL i.e.,
the difference between the concepts

i) FastNetworkConnection and NetworkConnection to change sl1 by a semantic link valued by
an Exact match;

ii) SlowNetworkConnection and NetworkConnection to change sl2 in the same way as sl1;

iii) IPAddress and VoIPId to replace sl3 by a semantic link valued by a PlugIn match.

Since sl4 is a robust semantic link and ∀netSpeed.AdslMax ⊏ ∀netSpeed.Adsl1M , B is
defined by {∀netSpeed.AdslMax, ∀protocol.IP}.

The Web service composition can be automatically computed in case the Extra Description
is provided by the end user, other services or any third party, depending on the application we
want to automate. For instance ∀netSpeed.AdslMax, ∀protocol.IP can be provided by another
Web service in case we want to automate the composition process of the motivating example.
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An Approach for Robust Semantic Web Service Composition: Robust Ra4C

The composition approach used and extended in this Section is based on the model Ra4C
introduced in Section 4.1.4, but can be easily applied with many other approaches
of functional level composition e.g., [210, 105, 190].

From i) some user constraints, ii) a set of Web services and iii) a goal to achieve the Ra4C
approach computes a composition consisted of valid but not necessarily robust semantic links.
Indeed some solution proposals may refer to non robust compositions since some semantic links
can be valued by a Subsume match level. It is obvious that this approach and most of the func-
tional level composition methods need refinements to perform robust Web service composition.
The algorithm suggested in this section aims at extending not only the Ra4C approach but also
any other functional level composition method in order to overcome the robustness problem in
Web service composition.

The main idea is as follows: the set of relaxing constraints B is progressively evaluated
throughout the computation of composition by Ra4C. This method is suitable especially to
compare different descriptions and then rapidly prune the worst solutions.

Algorithm 3 differs from Ra4C and other composition approaches, primarily because it does
explore non robust semantic links and stop a composition process in case its Extra Description
is more specific than one of the pre-computed solutions. The more specific Extra Description
the more description have to be provided to enable automation of the composition. That is why
the best Web service compositions are supposed to be compositions with the most general Extra
Descriptions, i.e., with the least constraints.

The Algorithm 3 consists of the following steps. First (line 4 and 5) in the trivial case
wherein the algorithm Ra4C returns a robust composition, the process is stopped. In the more
complex case (from line 7), each composition result (line 9) is analysed by algorithm 3. During
the computation of each composition result πi (line 9), the Extra Description of each non robust
semantic link involved in πi is computed. By assuming B be the Extra Description of the best
current robust composition, we compare the current Extra Description Bπi

and the best current
Extra Description B (lines 12 and 14). In case Bπi

(line 12) is more specific than B, this means
that B is the most appropriate Extra Description. The more the composition process proceeds
the more specific will be Bπi

. Indeed more non robust semantic links can be involved in the
composition πi. That is why we stop the process of computing the Extra Description of πi.
Otherwise in case Bπi

is more general than B (line 14) we continue the process of valuating the
Extra Description of Bπi

. At the end of the algorithm 3 (line 18), the best robust Web service
composition together with its Extra Description are returned. Roughly speaking the set Bπ
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required by non robust semantic links of the composition π is returned to the end user.

Algorithm 3: Robust Regression based Approach for Composition (Robust Ra4C).

Input: A composition process Ra4C.1

Result: The best compositions and their Extra Descriptions.2

begin3

if Ra4C returns a robust composition πi then4

return {(πi, ∅)};5

else6

Bπ0 ← compute Extra Description of π0;7

sol← {(π0,Bπ0)};8

foreach πii6=0
do9

while πi computation is in progess by Ra4C do10

Bπi
← current Extra Description of πi;11

if Bπi
⊏ sol.B then12

stop πi computation;13

if Bπi
⊒ sol.B then14

continue to build πi;15

if πi is valid then16

sol← sol ⊔ {(πi,Bπi
)};17

return sol;18

end19

According to the set of available Web services i.e., commercial offers pre-selected by the end
user, all semantic links are computed first and then Concept Difference reasoning is applied to
non robust semantic links.

The computational complexity of the introduced method is the same as approaches without
relaxation (e.g., Ra4C) since the Concepts Differences are solved in a pre-processing phase for
each non robust semantic links we consider in the composition. Therefore the computational
complexity of the pre-processing step is mainly depending on the match levels of non robust
semantic links, and particularly on the computational complexity of all Concepts Differences.

In case the Difference is processed at run time, the overall algorithm would no longer be a
polynomial time algorithm (with an oracle for subsumption), especially due to the additional
complexity caused by the computation of the difference.

Example 26. (Computing the Best Robust Composition)
According to the Algorithms 2 and 3, the different Extra Description of the nine compositions
BπSx,Sy

can be computed with Sx, Sy ∈ {S
−
a , Sa, S+

a }. The results are depicted in Table 4.1.
According to this Table, it is obvious that the two best robust compositions are πS+

a ,S+
a

and πS+
a ,S−

a

since they have the most general Extra Description. However the latter compositions are not
robust enough and require some Extra Description {∀protocol.IP}.
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πSx,Sy

Semantic Link Value
BπSx,Sysl1 sl2 sl3 sl4

πSa,Sa
⊒ ⊒ ⊑ ⊓ {∀netSpeed.AdslMax, ∀protocol.IP}

πSa,S−
a

⊒ ≡ ⊑ ⊓ {∀netSpeed.AdslMax, ∀protocol.IP}

πSa,S+
a

⊒ ⊑ ⊑ ⊓ {∀netSpeed.AdslMax, ∀protocol.IP}

πS−
a ,Sa

⊒ ⊒ ⊑ ⊓ {∀netSpeed.AdslMax, ∀protocol.IP}

πS−
a ,S−

a
⊒ ≡ ⊑ ⊓ {∀netSpeed.AdslMax, ∀protocol.IP}

πS−
a ,S+

a
⊒ ⊑ ⊑ ⊓ {∀netSpeed.AdslMax, ∀protocol.IP}

πS+
a ,Sa

≡ ⊒ ⊑ ⊓ {∀netSpeed.Adsl1M, ∀protocol.IP}

πS+
a ,S−

a
≡ ≡ ⊑ ⊓ {∀protocol.IP}

πS+
a ,S+

a
≡ ⊑ ⊑ ⊓ {∀protocol.IP}

Table 4.1: Extra Description Bπ(Sx,Sy)
of the Motivating Example.

4.1.7 Synthesis

Some Limitations of the Ra4C Approach

In computing the SLM, a single output from one service can be related to only a single input to a
possible following service (see Definition 10 of semantic link). Since our approach is SLM oriented,
this is a necessary restriction to compute first correct, consistent and complete compositions and
then robust compositions.

It appears that our use of Description Logics for describing inputs and outputs would allow
more generalizations of inputs and outputs to be matched. For instance a conjunction of output
parameters from different Web services could be semantically matched to one (or more) input
parameter(s) of a (or more) services. To this end the semantic link definition requires to be
extended. Even if such an extension is straightforward, its SLM adaptation is more complex
and even inappropriate for Web service composition. Indeed considering such an extension of
semantic links does not longer require a simple matrix but, obviously, a more complex model.
However the latter remark seems to be a very interesting idea to follow in order to improve the
computational complexity of the composition process.

Another weakness of the latter approach may concern the potential involvement of the end-
user during the computation of robust Web service compositions hence a supervision of the robust
composition process.

Since the introduced approach is depending on the semantic descriptions of the functional
input and output parameters of Web services, such an approach fails in case the latter description
is not known.

Towards this issue, the approach presented in Section 4.2 extends expressivity of Web services,
formally by considering preconditions and effects of Web services. This ensures to consider more
composability criteria for Web service composition.

Some Concluding Remarks

In this section we suggest to study AI planning based Web service composition. More specifically,
we first presented the Ra4C process, which is able to compute correct, consistent and complete
services composition by means of an SLM and an automated regression-based approach (require-
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ment RComposition
Automation ). Instead a regression-based approach, other problem-solving techniques -

called heuristic reasoning - may be applied [75] such as a progression-based approach [116].

The introduced approach focuses on i) input and output parameters as Web service descrip-
tion (a part of requirement RService

Expressivity) and ii) semantic links (requirement RSemantic
Composability)

as composability criteria.

Besides an automated method for Web service composition we overcome the problem of ro-
bustness in service composition by means of the Robust Ra4C algorithm. Contrary to Ra4C
which does not consider non robust semantic links as a special case of semantic links, we have
considered a method to obtain more robust compositions of Web services on the fly i.e., through-
out the computation of potential (and non robust) compositions. This approach can be easily
adapted to many other approaches of functional level composition.

The result of the Ra4C process and its robust form (Robust Ra4C) is a set of service composi-
tions we can model as a partial order of services interleaved by semantic links. The application of
the latter approaches on the flexible SLM model ensures to obtain expressive composition of Web
services (requirement RComposition

Expressivity) i.e. non deterministic choice of Web services, sequential and
concurrent compositions. Indeed an SLM contains all required information about complete plans.

Given an SLM of a domain, most of its entries are not all necessarily required to perform
“only one”composition goal. However, given different goals, its SLM can be re-used together with
an AI planning approach without new pre-computation of semantic links to achieve these goals.
In this direction only the goal columns of the SLM are required to be updated. This obviously
improves the performance of the composition approach in case more than one composition goal
requires to be achieved in a domain. In case two composition goals are given on the fly with two
different domains, the composition approach is the same but the SLM requires to be updated
(Requirement RFlexibility - very simple in most of cases, see Section 3.2) with the relevant Web
services.

4.2 Causal Law based Web Service Composition

In this section we focus on a automated (requirement RComposition
Automation ) semantic link (require-

ment RSemantic
Composability) and causal law (requirement RCausal

Composability) based Web service compo-
sition. To this end Web services are defined in a high level of description i.e., by means of their
input, output parameters and preconditions, effects (requirement RService

Expressivity). The require-

ment RComposition
Expressivity is supported by considering sequential and conditional compositions. In the

same direction as approach presented in the previous section, the hard assumption related to
the persistence of information (see Section 2.1.3 and models presented by [139] and [191]) is
disregarded.

The main differences with the approach suggested in Section 4.1, are about:

• Requirement RService
Expressivity. This section focuses on compositions with more expressive

description of Web services2. Indeed we cannot limit longer Web services to be described
by only input an output parameters (Section 4.1). Therefore, by considering preconditions

2Such a level of description restricts and then specializes the application domain of Web services due to the
addition of constraints on the functional parameters e.g., preconditions that need to be satisfied
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and effects we ensure the executability of a service, and can reason about the world state
after its execution. In such a context compositions comprise not only information-providing
services but also world-altering Web services (i.e., services which require preconditions and
provide side effects), and of course a mix of both3.

• Requirement RComposability. Composability criteria related to their semantic links (re-
quirement RSemantic

Composability) and causal laws (requirement RCausal
Composability) are both concerned

in the following section whereas only semantic links was concerned in Section 4.1 (See
assumption in Section 4.1.1). Considering both composability criteria in Web service com-
position further restricts the set of potential compositions of Web services. Indeed the latter
criteria are appropriate to prune large domains wherein many compositions are possible.

• Requirement RComposition
Expressivity. In this Section the computed compositions can be modelled

by sequential and conditional composition. Here the non determinism holds on condi-
tional output parameters provided by Web services rather than on the choice of Web
services that can be composed. Contrary to the approach of Section 4.1, concurrency is
not addressed in this second approach.

According to these new requirements, another formalism and methodology are required to
capture and exploit i) the expressive description of Web services and ii) the composability
criteria related to both semantic links and causal laws to be compliant with Requirements
RComposability and RService

Expressivity. To this end an augmented and adapted version of the logic
programming language sGolog [103] (i.e., an offline interpreter that supports Requirement

RComposition
Expressivity) i.e., sslGolog is presented as a natural formalism not only for reasoning about

conditional parameters of Web services, the semantic links and causal laws, but also for auto-
matically composing services. From this, we compute Web service composition as legal execution
of services conditioned on the possible output parameters.

In more details, our extension aims at

• supporting n-ary information providing services in Web service composition;

• automating branching conditional output to input parameters by means of their valid
(or/and robust) semantic links together with their causal laws.

The rest of this section is organized as follows. First of all Section 4.2.1 draws the context
of this Section and describes the level of non determinism we consider in this approach. Section
4.2.2 refines the definitions of Web services described in Section 3.2. Section 4.2.3 reviews briefly
the situation calculus together with its causal laws and Golog. Section 4.2.4 extends Golog
with semantic links axioms to cope with valid services. In section 4.2.5 we introduce sslGolog
(= Golog + sensing + semantic link) and extend the standard backward chaining approach to
compute Web service composition. Finally Section 4.2.6 highlights some limitations and gives
some concluding remarks.

4.2.1 Context and Conditional Composition

Here, we remind the context of this Chapter, which is different of the context of Section 4.1.
Then we present the subtle meaning differences between the non determinism on Web services
(presented in Section 3.3) and the non determinism on conditional output parameters provided
by Web services (presented in this Section).

3See Section 1.3.1 for more information about such Web services.



CHAPTER 4. SEMANTIC LINK AND CAUSAL LAW BASED COMPOSITION 105

Our Context: Incomplete Information

Towards the issue of this Section, we conceive Web service composition as a planning and exe-
cution task, in the same way as first introduced by [139]. In such an approach the actions4 can
be complex and non deterministic [138].

As a planning task, Web service composition is then a particular context in that it is planning
with very incomplete information. In this direction the context of this Section assumes domains
with incomplete information. Contrary to Section 4.1 we draw an important difference between
information-providing services and world-altering services. Here, information-providing services
(i.e., information sensors) are required to provide further information and then to deal with the
domains of incomplete information.

Moreover world-altering services are required to state about the world. In this direction we
assume that Web service composition requires not only information-providing services but also
world-altering services, and mix of both. Therefore, besides input and output parameters of
services which act as knowledge preconditions and effects, Web services can be actions described
by means of non-knowledge preconditions and (side-)effects acting in the world in a planning
context. In this direction Web services can have precondition on their input parameters, and
effects of their output parameters. The requirement RService

Expressivity is then supported.

Non Determinism in Web Service Composition

a) Non Determinism on output parameters of Web services (addressed in this Section)

In this Section the non determinism of actions concerns the semantic description of Web ser-
vices’ output parameters. Given a service that provides an output parameter (defined through its
semantic description), the latter parameter can be instantiated by any instance of any subsumed
concept.

Example 27. (Non Determinism on Parameters of Web Services)
Let AdslEligibility be the Web service Sa described in Example 5 and Figure 1.7(a). Such
a service returns a NetworkConnection of a given zone. According to the domain ontology
in Figure 1.4 it is obvious that Sa can return an instance of SlowNetworkConnection (Figure
4.4(b)) or FastNetworkConnection (Figure 4.4(c)) as well. Indeed the latter concepts are related
to NetworkConnection by the subsumption relation i.e.,

SlowNetworkConnection ⊑ NetworkConnection

FastNetworkConnection ⊑ NetworkConnection

Given these relationships, the service Sa is said non determinist.

Given an output parameter and depending on the application context, any Web service can
return different information for this parameter, which may cause different compositions. Here we
consider that these compositions so called conditional compositions need to be studied in order to
overcome main issues in Web service composition. In other words any relevant composer needs
to adapt its methodology to consider such non determinist Web services in the composition
result. To this end all potential output parameter of services will be semantically “branched” (or
linked) to other services. Towards this issue conditional compositions aims at supporting non
determinism on parameters of of Web services.

Note that this level of non determinism is not addressed in Section 4.1.
4Throughout this section, ”action” and ”service” are used synonymously.
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(c) Instanciation of a Web Service at Run Time (2).

Figure 4.4: Illustration of Non Determinism on Web Services (Section 4.1).

b) Non Determinism on Web services supported by Section 4.1

In Section 4.1, non determinism is not addressed on conditional parameters but on choice of
Web services. In other words, given an input parameter of a Web service, several Web services
(that compute the same category of output parameters) could be (semantically) linked to the
latter input parameters according to several semantic links. This means that a Web services
could be linked to many other services, but only one have to be selected. The non determinism
on Web service acts on this feature.

Example 28. (Non Determinism of Web Services)
Suppose Sa, S−

a , S+
a and Sc be four Web services described in Example 4 and Table 3.3. According

to Section 4.1, Sc can be composed with

• Sa, then Sc ◦ Sa;

• S−
a , then Sc ◦ S−

a ;
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• or S+
a , then Sc ◦ S+

a .

This defines the non determinist choice on Web service Sa, S−
a , S+

a to compose with Sc.

4.2.2 Revisited Definitions and Examples of Web Services

Since we consider information-providing together with world-altering services to perform com-
position we suggest to revisit Web services of Table 3.3. In this direction we follow Examples 6
and 7 illustrated in Section 1.3.1.

In addition to functional input and output parameters and semantic links (see Section 4.1)
with some Web services, Web services are further described by means of some i) preconditions,
effects, ii) causal laws i.e., causality relationships between effects and preconditions of service, and
complex relationships between services. In this direction the revisited Web services, illustrated
in Tables 4.2 and 4.3, can have causal laws i.e.,

i) causality relationships between effects and preconditions since these services may have

• precondition axioms (e.g., the input parameter of VoiceOverIP∗ S∗
b in Table 4.2 have

to be a valid network connection);

• effect axioms (e.g., the output parameter of VoiceOverIP∗ S∗
b in Table 4.2 have to be

a valid VoIPId).

ii) explicit and complex relationships with parameters of other services (e.g., a phone number
needs to be attached to the output parameter of VoiceOverIP∗ S∗

b in Table 4.2);

According to Table 4.3, the Delivery service Sf is the only service with conditional effects.

Remark 4. (Complex Relationships between Web services)
By considering causal laws related to complex and explicit relationships between Web services,
some input parameters are then implicit. According to Tables 4.2 and 4.3 the VoiceOverIP∗ and
TvOverIP∗ services link their input parameters to a parameter which is Phone Number. This
parameter is not defined as an input parameter in VoiceOverIP∗ and TvOverIP∗ but required as
an implicit parameter through a causal law.

The formal definition of axioms related to preconditions and causal laws will be detailed in
the next section.

Definition 21. (Output Parameters of Services)
The nth parameter of Web service sx is noted as

output(sx(y1, ..., yn), n) (4.2)

wherein (y1, ..., yn)5 refers to input parameters of Web services sx.

This formalism is suggested in this section since it is more appropriate to model output
parameters of Web services based AI planning actions.

In Tables 4.2 and 4.3 as well as in the rest of this section, output parameters of any services
sx will be refined by means of Definition 21.

In addition we formalize the knowledge of a referent [177] by Definition 22.

5Throughout this section, (y1, ..., yn) and ~y are used synonymously.
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Definition 22. (Knowledge of a Referent)
When the value of a term is known, we use the notation Kref(v). This informs about the
knowledge of a value vi for the term v.

The latter definition is used to model, for instance, information which is required by Web
services, before their executions.

Services sx
AdslEligibility∗ VoiceOverIP∗ TvOverIP∗ Billing

S∗

a S∗

b
S∗

c Sd

P
a
ra

m
et

er
s

Input(sx)
{ph : PhoneNumber,

{snc : SlowNet- {fnc : FastNet-
zc : ZipCode,

workConnection} workConnection}
{d : Decoder}

e : Email}
output(sx(~y), n) output(S∗

a(ph, zc, e), 1) output(S∗

b
(snc), 1) output(S∗

c (fnv), 1) output(Sd(d), 1)
i.e., Output(sx) i.e., {nc : NC} i.e., {vid : V oIPId} i.e., {vd : V ideoDecoder} i.e., {i : Invoice}
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Kref(Network- Kref(Network-
Connection(x)) Connection(x))
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between Effects composition composition composition composition
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l Complex
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if snc related to a if fnc related to a if d related to a
Relationships Phone Number ph Phone Number ph Phone Number ph

between then vid is then vd is then i is
Actions related to ph related to ph related to ph

Table 4.2: Revisited Description of Web services defined in Table 3.3

In Tables 4.2 and 4.3 we focused on specific inputs, outputs, preconditions, effects and causal
laws of a reduced set of Web services. Input, output parameters together with preconditions and
effects of AdslEligibility∗ S∗

a are illustrated in Figure 7.2 of Chapter 7.

4.2.3 Background: Situation Calculus and Golog

The situation calculus and Golog are used as logic formalisms to describe Web service composition
and compute its solutions. The expressive power and formal semantics of Golog provide the
theoretical foundations i) for reasoning on causal laws, and ii) for the encoding of semantic links.

Situation Calculus

Since the suggested approach is based on the Situation Calculus formalism, we preferred intro-
ducing the latter formalism in this Section rather than in part I (Related Work part).

There are a number of ways of making the planning based composition precise, but perhaps
the most appealing is to formulate a specification in terms of a general theory of action. One
candidate language for formulating such a theory is the situation calculus [177]. We will not
go over the language here, but only review important components of the language. Briefly, the
situation calculus is a first-order language with some limited second-order features specifically
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n.a

Decoder d
n.a n.a

between then d id is
Actions is related to d

Table 4.3: Illustration of New Services with Extended Descriptions.

designed for representing dynamically changing worlds in which all changes are the result of
named actions. In the following action will refer to service (and vice versa) without loss of
generality. The language has a special constant S0 used to denote the initial situation where no
actions have occurred yet. There is a distinguished binary function symbol do where do(a, s)
denotes the successor situation to s resulting from performing action a. The state of the world is
expressed in terms of functional and relational fluents relativized to a particular situation s, e.g.,
F (~y, s). A special predicate Poss(a, s) is used to state that action a is executable in situation s.
Actions may have sensing results, and the function sr(a, s) denotes the sensing result of action
a when executed in situation s [183].

Within this language, we can formulate domain theories which describe how the world changes
as the result of the available actions. One possibility is a variant of the basic action theory [176]
of the form D:

D = Σ ∪ Duna ∪ Dap ∪ DS0
∪ Dss ∪ Dsr (4.3)

• Σ is the set of domain-independent, foundational axioms for situations. In a nutshell this
set consists of four axioms i.e., i) a unique names axiom for situations, ii) the second axiom
is second order induction on situations (i.e., the domain closure axiom for situations), iii)
the third and forth axioms are related to an ordering relation on situations. They provide
the basic properties of situations in any domain specific axiomatization of particular fluents
and actions.

• Duna is the set of unique name axioms for primitive actions, stating that the actions of the
domain are pair wise unequal. For distinct action function symbols a and b,

a(x1, ..., xn) 6= b(y1, ..., yn). (4.4)

Identical action terms have identical arguments:

x1 = y1 ∧ ... ∧ xn = yn ← a(x1, ..., xn) = a(y1, ..., yn) (4.5)
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• Dap is the set of action precondition axioms, one for each primitive action a, characterizing
Poss(a, s) i.e., the preconditions of a. Formally, an action precondition axiom is a sentence
of the form:

Poss(a(x1, ..., xn), s) ≡
∏

a

(x1, ..., xn, s), (4.6)

where a is an n-ary function symbol, and
∏

a(x1, ..., xn, s) is a formula that is uniform in s
and whose free variables are among x1, ..., xn, s. The uniformity requirement on

∏

a ensures
that the preconditions for the executability of the action a(x1, ..., xn) are determined only
by the current situation s, not by any other situation.

Example 29. (Illustration of Dap)
Let VoiceOverIP∗ S∗

b be the service illustrated in Table 4.2. This service is defined in the same
way as VoiceOverIP in Example 4 and Table 3.3 but does not require PhoneNumber as input
parameter but only a SlowNetworkConnection. From this, in the Telecommunication world, we
might typically have preconditions on this action as follows:

Poss(VoiceOverIP∗(x), s) ≡

validNetworkConnection(x, s)∧

supportConnectionType(x, s) (4.7)

In other words VoiceOverIP∗ is possible in situation s in case its parameter x is a valid network
connection, and x is supported by the action VoiceOverIP∗.

• DS0
is a set of axioms describing the initial situation S0 and axioms not mentioning situ-

ations at all. DS0
is then a set of first order sentences that are uniform in S0. Thus, no

sentence of DS0
quantifies over situations, or mentions Poss, the ordering of situations or

the function symbol do, so that S0 is the only term of sort situation mentioned by these
sentences. DS0 will function as the initial theory of the world (i.e., the one we start of with,
before any actions have been “executed”). Often, we shall call DS0

the initial database.

Example 30. (Illustration of DS0)
Given a Telecommunication world, some “timeless” facts like isZipCode(35512), isEmailAddress
(freddy.lecue@orange-ftgroup.com) are known in situation S0. As we will see in the fol-
lowing, such facts are inferred from instance checking through DL reasoning. Moreover some
facts are true in situation S0 e.g., FrenchPhone(+33299124625, S0), FrenchZip(35512, S0),
validMail(freddy.lecue@orange-ftgroup.com, S0).

• Dss is the set of successor state axioms, one for each fluent F in the domain, of the form

F (~y, do(a, s)) = v ≡ ΦF (~y, a, v, s) (4.8)

where ΦF (~y, a, v, s) is a formula uniform in s, all of whose free variables are among
a, s, y1, ..., yn. The latter axioms state the conditions under which the fluent has a specific
value at situation do(a, s) as a function of situation s. These axioms take the place of the
so-called causal laws, which are causality relationships between effects and preconditions,
and complex relationships between actions and constraints between actions preconditions
and effects. Moreover they also provide a solution to the frame problem [176].
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Example 31. (Illustration of Dss)
An example of such an axiom is as follows:

phoneNumberOf(output(VoiceOverIP∗ (x), 1), ph nb, do(VoiceOverIP∗ (x), s))←

Poss(VoiceOverIP∗ (x), s) ∧

phoneNumberOf(x, ph nb, s)∨

phoneNumberOf(output(VoiceOverIP∗ (x), 1), ph nb, s) (4.9)

wherein x, s, ph nb are some variables.
Axiom (4.9) says that ph nb will be the phone number of the output parameter provided

by VoiceOverIP∗ in the successor situation do(VoiceOverIP∗ (x), s) if VoiceOverIP∗ was a
possible action in situation s and ph nb was the phone number of x (i.e., the input parameter of
VoiceOverIP∗) in situation s, or ph nb was already the phone number of the output parameter
provided by VoiceOverIP∗. Such an axiom can be illustrated by means of Figure 4.5.

• Dsr is a set of sensing-result axioms (SRAs), one for each sensing action symbol a, of the
form sr(a(~x), s) = r ≡ Θa(~x, r, s). SRAs relate sensing output parameters with fluents.

Example 32. (Illustration of Dsr)
Let AdslEligibility Sa be exactly the service illustrated in Example 4 and Table 3.3. The
referent of the output parameter NetworkConnection of this service is known by means of the
latter axiom. AdslEligibility is a binary sensing action such that sr(AdslEligibility, s) be
NetworkConnection(x, s).

The set of sensing-result axioms are, in many cases, attached to appropriate Kref -terms
[177]in the form of Kref(v, s). Kref(v, s) is a situation-based adaptation of Definition 22,
which informs about the knowledge of a value vi for the term v in situation s.

Example 33. (Knowledge Referent)
Suppose the VoiceOverIP∗ action defined in Table 4.2. Such a service requires a SlowNetwork-

Connection as input parameter. Since AdslEligibility is a binary sensing action such that
sr(AdslEligibility, s) be NetworkConnection(x, s) (see Example 32), its referent can be bound
to the input parameter SlowNetworkConnection of action VoiceOverIP∗.

Therefore these axioms further constrain, in particular, the set of action precondition axioms
Dap.

Example 34. (Illustration of Further constraints on Dap)
Suppose example 29. The revisited preconditions of the VoiceOverIP∗ S∗

b action are as follows:

Poss(VoiceOverIP∗(x), s) ≡

validNetworkConnection(x, s)∧

supportConnectionType(x, s)∧

KRef(NetworkConnection(x), s) (4.10)

In other words VoiceOverIP∗ is possible in situation s in case its parameter x is a valid net-
work connection and x is supported by the action VoiceOverIP∗. Moreover an axiom related to
the preconditions of action VoiceOverIP∗ is defined by Kref(NetworkConnection(x), s). Ac-
cording to the latter constraint, knowing the referent of NetworkConnection(x) in situation s is
not a truth about the physical world, but about the knowledge base of the composer executing
the action VoiceOverIP∗.

The referent of NetworkConnection(x) can be known in situation s in case the action Ad-

slEligibility was possible and has been executed in a previous situation.
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Figure 4.5: A Trivial Composition of two Actions with a Complex Relationship.

Golog

Golog [121] is a high-level logic programming language for the specification and execution of
complex actions in dynamic domains. It builds on top of the situation calculus by providing
extra logical constructs for assembling primitive situation calculus actions, into complex actions
δ. Constructs of Golog are defined in Figure 4.6.

a - primitive actions
δ1; δ2 - sequences
φ? - tests
δ1|δ2 - nondeterministic choice of actions
(πx)δ(x) - nondeterministic choice of arguments
δ∗ - nondeterministic iteration
if φ then δ1 else δ2 endif - conditionals
while φ do δ endwhile - while loops
proc δ(x) endproc - procedure

Figure 4.6: Some Golog Constructs.

The constructs illustrated in Figure 4.6 can be used to write programs in the language of
the domain theory. More specifically they can be used to specify Web service compositions with
their semantic links and causal laws.

Example 35. (Web service composition with Golog)
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Let the following example6 be a composite Web service.

getNetworkConnection(~x);

if slow then voiceOverIP ∗(~y) else tvOverIP (~y) endif (4.11)

This example expresses that a service (actually a method getNetworkConnection of a ser-
vice) is responsible of first computing the network connection of a given geographical zone. In
case the network connection is considered as slow we apply the service voiceOverIP∗ otherwise
tvOverIP∗. This illustrates a conditional composition of Web services.

Given a domain theory, D and a Golog program δ, its execution must find a sequence
of actions ~a such that: D |= Do(δ, S0, do(~a, S0)) denotes that the Golog program δ, start-
ing execution in S0 will legally terminate in situation do(~a, S0), where do(~a, S0) abbreviates
do(an, do(an−1, ..., do(a1, S0))).

4.2.4 Specifying Semantic Links with Golog

Since any basic action theory of the form D is under specified to model semantic links between
actions, this section is motivated towards an appropriate extension of basic action theories D to
model semantic links between actions. Indeed D does not have an explicit account of semantic
link between parameters of actions, a key concept for any service composer since such links are
considered as an important issue [108] to form valid Web service compositions. For instance any
regressable Web service composition (sentence in Situation Calculus) in [139, 193] is entailed
by D, without considering any axiom related to semantic links. Such a limitation makes Web
service composition very hard to achieve since a composition does not require only causal laws
to express the logical dependence between actions and their effects and preconditions, but also
semantic links between output and input parameters of actions. By extending Golog to enable
Golog programs to specify semantic links together with causal laws, we overcome the latter issue.

Methodology: Situation Calculus and DL Reasoning for Web service composition

We suggest to operate with i) DL reasoning to infer semantic links between actions (as presented
in Chapter 3) and ii) situation calculus to represent Web service compositions and infer them
through reasoning on their axioms in D.

In the same way as [139], we define through the situation calculus formalism (e.g., Golog)
actions a(x1, ..., xn) in situation s. The parameters of such actions are variables representing the
inputs of the actions. Indeed parameters of actions cannot be restricted to constants since i)
output parameters of actions are depending on their inputs and ii) we want to distinguish output
parameters coming from two (or more) different executions of an action with distinct input
parameters. Each variable can be instantiated by entities; a variable enables us to denote the
same entity in the state preceding and the state following the execution of the action. Moreover
these variables xi will be mapped to concepts Xi in a separated Terminological Box of a DL
knowledge base. In this direction a relation Instance() is introduced, and Instance(X, x, s)
means that x is an instance of concept X in situation s.

Example 36. (Formalization of an Action (Service))
Let VoiceOverIP∗ be an action that requires only an instance of a SlowNetworkConnection (at-
tached to a phone number - see Example 31) as input and returns an VoIPId as output (Figure

6Notation: Fluents are in situation-suppressed form. Variables are universally quantified unless otherwise
noted.
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Figure 4.7: Architecture/Methodology of the Overall Approach.

4.5). By considering a DL knowledge base T , concepts such as VoIPId, SlowNetworkConnec-
tion and NetworkConnection (i.e., subsumer of SlowNetworkConnection) are defined in its
Terminological Box (Figure 1.4); the Assertional Box contains instances of these concepts.

Since the semantic descriptions of action parameters are outside of the situation calculus
formalization, DL reasoning (e.g., through subsumption) with the latter descriptions is required
to be performed. This is achieved in the approach we follow along this section illustrated in
Figure 4.7.

Then, situation calculus axioms related to these DL reasoning results are generated and
integrated in the action theories D to achieve Web service composition. The axiom DV refers
to semantic links we infer in a first step of DL reasoning on the Terminological Box; the axiom
DS0

is in part inferred from DL reasoning on the Assertional Box and initial conditions in the
composition problem.
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Valid Action and its Semantic Links

We introduce a new distinguished fluent in the situation calculus called V alid(a, s) e.g., each
input parameter of action a is related to an output parameter of another action in situation s.
We contrast this with Poss(a, s) i.e., action a is physically possible in situation s. We further
restrict the cases in which an action is executable by requiring not only that an action a is
Poss(a, s) but further that it is V alid(a, s) i.e.,

executable(a, s)
.
= Poss(a, s) ∧ V alid(a, s) (4.12)

This further constrains the search space for actions when realizing a Golog program. The set
of V alid fluents, one for each action, is referred to as DV . V alid(a, s) ≡ true unless otherwise
noted. The constraints of action a and its input parameters xi,1≤i≤n are expressed in the situation
calculus as necessary conditions for an action a to be valid, DV :

V alid(a(x1, ..., xn), s)←
n
∧

i=1

ΩSLC(xi)
a , (4.13)

where the ith semantic link constraints of a are defined by Ω
SLC(xi)
a = SemanticLink(Yi, Xi, s)∧

Instance(Yi, xi, s). SemanticLink is a distinguished predicate7, relating two DL descriptions Yi

and Xi in situation s. More precisely, Yi is the set of DL descriptions satisfied by the referent
bound to variable xi in situation s. SemanticLink(Yi, Xi, s) aims at computing the existence or
absence of a semantic match between Yi and Xi. Since we consider valid Web service composition
(Definition 12 in Section 3.1) the latter semantic match is restricted to its valid match types (i.e.,
match types that define valid semantic links, Definition 11) i.e.,

• Exact (i.e., T |= Yi ≡ Xi);

• PlugIn (i.e., T |= Yi ⊑ Xi);

• Subsume (i.e., T |= Xi ⊑ Yi);

• Intersection (i.e., T 6|= Yi ⊓Xi ⊑ ⊥).

Axioms related to the validity of semantic links are then required to infer valid Web service
compositions.

To this end all valid semantic links between actions are computed either in a pre-processing
step or when needed (due to its complexity in large problem) by means of an external Descrip-
tion Logics reasoner such as Fact++ [92]. Formally a set of semantic links between two DL
descriptions are inferred from the valid match type mt as follows:

SemanticLink(Y, X, s)← V alidmatchType(mt, s),∀s (4.14)

where V alidmatchType(mt) is satisfiable in case mt is a valid match type, hence a valid semantic
link between Y and X. By means of (4.14) it is straightforward to compute all valid semantic
links in any situation s. Having computed DV , we include it in D. Henceforth, all reference to
D includes DV .

Example 37. (Valid Action (Service) in Golog)
Here we illustrate valid actions with the simple composition in Figure 4.5. According to a first

7Here, the Definition 10 of semantic link has been adapted by the SemanticLink predicate for encoding in
the Situation Calculus formalism.



CHAPTER 4. SEMANTIC LINK AND CAUSAL LAW BASED COMPOSITION 116

step of DL reasoning and from axiom (4.15), semantic links valued by a Subsume match type
are inferred. In other words any pair of output and input parameters of services that match
with a Subsume match type are computed by means of axiom (4.15). For instance the pair
(NetworkConnection, SlowNetworkConnection) is retrieved.

SemanticLink(NetworkConnection,SlowNetworkConnection, s)←

V alidmatchType(Subsume, s) (4.15)

From this, we can infer the validity of action VoiceOverIP∗ by means of axiom 4.13. There-
fore we obtain axiom (4.16). More specifically the input parameter x of VoiceOverIP∗ have
to be an instance of a concept semantically close to (here Subsume) the input parameters that
VoiceOverIP∗ requires. The semantic closeness is valued by the valid match types we approve,
here Subsume.

V alid(VoiceOverIP∗ (x), s)←

SemanticLink(Y, SlowNetworkConnection, s) ∧

Instance(Y, x, s) (4.16)

In addition to the previous axioms, axioms related to causal laws (i.e. successor state axiom)
(4.17) and (4.18) are also required. Indeed a composer executing VoiceOverIP∗ under some
conditions (see body of (4.17) and (4.18)) causes its output parameter i) to be related to a phone
number ph nb ( through Golog reasoning on causal laws) and ii) to be an instance of VoIPId

( through DL reasoning) in the successor state.

phoneNumberOf(output(VoiceOverIP∗ (x), 1), ph nb, do(VoiceOverIP∗ (x), s))←

Poss(VoiceOverIP∗ (x), s) ∧

V alid(VoiceOverIP∗ (x), s) ∧

phoneNumberOf(x, ph nb, s)∨

phoneNumberOf(output(VoiceOverIP∗ (x), 1), ph nb, s) (4.17)

wherein x, s, ph nb are some variables.
Here axiom (4.17) is an extension of axiom (4.9). By extending (4.9) we ensure that action

VoiceOverIP∗ is valid.

Instance(VoIPId, output(VoiceOverIP∗ (x), 1) , do(VoiceOverIP∗ (x), s))←

Poss(VoiceOverIP∗ (x), s) ∧

V alid(VoiceOverIP∗ (x), s) ∧

phoneNumberOf(x, ph nb, s)∨

Instance(VoIPId, output(VoiceOverIP∗ (x), 1) , s) (4.18)

wherein x, s, ph nb are some variables.
Let nc, ph be respectively two instances (i.e., elements in the ABox) of NetworkConnection

and PhoneNumber in situation s i.e., Instance(NetworkConnection, nc, s) and Instance(Phone-
Number, ph, s) hold in any situation s. Semantic links valued by a Subsume match type are iden-
tified by (4.15) and valid actions by (4.16). Therefore V alid(VoiceOverIP∗ (nc), s) is inferred.
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Finally, some facts related to output(VoiceOverIP∗ (nc), 1) are inferred from (4.17) and (4.18).
Note that the NetworkConnection nc is bound to the SlowNetworkConnection parameter of
VoiceOverIP∗, as there exists a semantic link between them.

Remark 5. (Valid Action: Extension to Other Actions)
As previously said Example 37 focuses on a simple composition of two services and on a validity
of a service VoiceOverIP∗. However considering a composition of more Web services requires
that any involved service satisfies the definition of valid action. In this direction a related work
needs to be achieved on S∗

a, S∗
b , S∗

c , Sd, Se, Sf , Sg and Sh in case they are all involved in the
final composition.

In the Telecommunication scenarios considered in this work, the DL descriptions of parameters
do not use the relations that the Golog reasoning (as phoneNumberOf in (4.18) and (4.17)) will
infer. This ensures that subsumption reasoning has not to use the facts that are true in a given
state but use only the axioms declared in the Tbox. Furthermore this ensures that DL reasoning
is independent of the situation calculus states and can thus be performed by an independent
external DL reasoner.

Besides extending expressivity of Web services by considering their preconditions, effects and
causal laws, the semantic link definition, introduced in Chapter 3, has been refined by means of
axiom (4.13) especially to support trivial semantic links in S0. Therefore input parameter xi of
action a can be bound not only to any output parameter of any action but also to instances in
initial situation S0.

Example 38. (Valid Action in Situation S0)
According to Example 37, the VoiceOverIP∗ service is valid since its input parameter is semanti-
cally related to an output parameter of another service AdslEligibility. In case such a service
is not available but an instance of a NetworkConnection or SlowNetworkConnection is available
in situation S0, the VoiceOverIP∗ service is still valid. Indeed the latter instance can be bound
to the input parameter of VoiceOverIP∗ .

Restricting the Search Space of Web Service Composition

In this section the semantic link between Web services together with causal laws are used to
restrict the search space in Web service composition. Indeed composing Web services with such
constraints is restrictive, but ensures to compute only valid and possible compositions of Web
services. In case one prefers retrieving compositions of robust services (more restrictive than
valid; see Definition 13), (4.13) can be adapted by simply replacing the predicate V alidmatchType

in (4.14) by RobustmatchType (i.e., match types that define robust semantic links, Definition 13)
which returns true in case mt is a robust match type (i.e., Exact or PlugIn), and false otherwise
(Intersection or Subsume).

The search space can be further reduced by adding some customizing constraints e.g., Desirable
[139] or Preferred [193] actions.

Some Concluding Remarks

The definition of valid actions DV may simply be added to any existing situation calculus ax-
iomatization. In case some semantic links change (e.g., due to unavailable actions), the affected
V alid fluents in DV can be re-generated by DL reasoning and then elaborated by a simple local
rewrite.

The V alid axiom is easily implemented as an augmentation of most existing Golog interpreters
such as sGolog [103]. It reduces the search space for terminating situations, rather than pruning
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situations after they have been found. Our approach has advantages over other approaches to
determine sequences of valid actions wherein causal laws (requirement RCausal

Composability) together

with semantic links (requirement RSemantic
Composability) hold (axiom (4.12)).

4.2.5 Adapting sGolog for Composition of Services

Since Web service composition is defined as planning with very incomplete information, condi-
tions that hold or not at any point in the plan (composition) cannot be logically determined by
the background domain theory D\Dsr such as the subset of theory introduced by (4.3). Towards
such a limitation, incorporating information-providing actions in Web service composition and
axiom Dsr seem an appropriate solution. In building a Golog interpreter that incorporates such
actions, the interplay between sensing and execution of world-altering actions can be complex
and a number of different approaches have been discussed. While [77] and [177] advocate the
use of an online interpreter to reason with sensing actions, [103] suggests the use of an offline
interpreter sGolog with conditional plans. In our approach online interpreters are disregarded for
our composition task. Indeed they are incomplete since no backtracking is allowed at execution
time, which is a hard limitation. Moreover the latter interpreters operate under an assumption of
reasonable persistence [139] of information being sensed (see Section 2.1.3 and models presented
by [139] and [191]).

Even if an offline interpreter is computationally expensive due to the much larger search space,
it enables us to generate conditional plans without the hard constraint of reasonable persistence of
information, if sensing actions are involved. Thus off-line interpreters seem the most appropriate
to reason about sensing and hence retrieving all conditional compositions whatever information
being sensed. However as focused by [103], Golog is under specified to support conditional
compositions. Indeed Golog, running offline, is bound to fail since it cannot decide between
different conditional branches. Towards this issue we present an offline interpreter sslGolog i.e.,
an extension of sGolog that i) supports n-ary sensing actions to compute conditional Web service
compositions and ii) elaborates a strategy for automated branching by means of semantic links
and causal laws.

Towards these issues we first present General Conditional Action Trees i.e., trees that model
situations wherein a non determinism (or conditional) choice is available. From this definition
we introduce sslGolog i.e., an extension of Golog that support General Conditional Action Trees.
Then, we adapt Backward Chaining based AI planning for sslGolog in order to achieve Web ser-
vice composition. From the sslGolog result (which is a conditional composition of Web services)
we present how the composition is executed. Finally we expose some limitations and possible
extensions.

General Conditional Action Trees

In this section, we augment the situation calculus with general conditional action trees (General
CAT i.e., GCAT). Instead of having only linear action histories (i.e., situations [177]) or binary
trees of actions (i.e., CAT [103] containing if -then-else clauses), we have also n-ary trees of
actions (i.e., GCAT containing switch-case clauses). GCATs are plans with branches, wherein
their nodes are situations and the root represents the initial situation. Every edge is labelled
with a primitive action, which indicates how a situation is obtained from its predecessor. In
addition, whenever branching occurs, the corresponding node/situation is labelled by a formula,
whose truth value at execution time determines which branch is selected.

In addition to primitive actions, a GCAT may include a special constant ǫ, denoting the
empty GCAT, and two constructors a.g and the multi-branching node, where a is an action and
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g is a GCAT. The multi-branching node has the form [φv, (v1, g1), (v2, g2), ..., (vm, gm)], where
φv is a multi-branch-formula determining which branch is to be executed (i.e., by retrieving vi

such that φv(vi, s) be true), and g1, g2, ..., gm are respectively the v1-, v2-,... and vm-branch.

Remark 6. (Simplification for the Multi-Branching Node)
Logically, the multi-branching node is a (m + 1)-ary function. In the following we restrict m to
be 2 without loss of generality.

The introduction of the multi-branch construct first guarantees multiple branching in Web
service compositions and second ensures that sslGolog, running offline, succeeds.

Example 39. (Branch Formula and Execution)
Let g = a1.a2.[φv, (v3, a3), (v4, ǫ)].a5 and let φv denoting true if v is v4 at do(a2, do(a1, s)), and
false otherwise. Then g = a1.a2.[(v4, a5)] at execution time. Note that g is depending on φv.

Since the sslGolog interpreter produces GCATs we introduce the function gdo, which takes a
GCAT g, a situation s and returns a situation which is obtained from s using the actions along a
particular path in g. gdo follows a particular branch in the n-ary tree conditioned on the possible
outcome of sensing actions (i.e., value of the corresponding multi-branch formula) relative to the
current situation. Formally we have:

gdo(ǫ, s) = s.
gdo(a, s) = do(a, s).
gdo(a.g, s) = gdo(g, do(a, s)).
gdo([φv, (v1, g1),(v2, g2)], s) =

if φv(v1, s) then gdo(g1, s)
else if φv(v2, s) then gdo(g2, s).

The term gdo is required in the following to extend the do term and then supporting multi-
branching and then n-ary conditional composition of Web services.

sslGolog

Programs in sslGolog are the same as sGolog augmented by n-ary sensing actions for both
formulas and terms. The main difference with sGolog is that the interpreter now produces
GCATs instead of CATs. When constructing a GCAT, new branches i.e., constructs of the
form [φv, (v1, g1), (v2, g2)] need to be introduced. However such constructs require a value
to be branched (especially to value φv(vi, s)). That is why we suggest a new special action
multibranch on(v), whose “effect” is to introduce a new GCAT [φv, ǫ, ǫ] for enabling a branching
to v. Thus any information-providing action can be followed (not necessarily directly) by first, a
multibranch on(v) action and second, a switch(case(v1, e1), case(v2, e2)) action for simulating
conditional branching of term v to v1 or v2. The simulation of switch-case by if -then-else is
straightforward.

Automated branching in a GCAT can be ensured by the axiom of valid actions. Any action
in each sub-branch can use the sensed value (i.e., output parameter of an action) as an input by
means of their semantic links. The causal laws need also to hold. Alternatively [103, 199, 182]
required the end-user to provide the branching strategy.

Since sslGolog aims at producing GCATs ready for execution, any term v involved in a
branching multibranch on(v) has to be known. To this end, an appropriate Kref -term [177]
(see Section 4.2.3) is attached to the definition of multibranch on. As previously said Kref(v, s)
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informs about the knowledge of a value vi for the term v in situation s. For instance a sensing
action can retrieve a value vi for v, which is a potential output parameter of this action. Techni-
cally, the sslGolog interpreter is defined in a way very similar to Golog and sGolog. We introduce
macro Do(δ, s, g), expanding into a formula of the situation calculus augmented by GCATs. It
may be read as “executing the program δ in situation s results in GCAT g”. Note that the last
argument of the original Do of Golog and sGolog is respectively a situation and a CAT rather
than a GCAT. Do(δ, s, g) is defined as follows:

Do(a, s, g)
.
= executable(a, s) ∧ g = a, ∀a primitive action.

Do(multibranch on(v), s, g)
.
= Kref(v, s) ∧ g = [φv, ǫ, ǫ].

Do(switch(case(v1,e1), case(v2, e2)), s, g)
.
=

Do((?(case(v, v1)) ; e1), s, g) ∨
Do((?(case(v, v2)) ; e2), s, g).

Do(switch(g1), s, g2)
.
= g1 = ǫ ∧ g2 = ǫ.

where Do(?(case(v, vi)), s, g) holds in case vi is a potential value for the term v. Do(β, s, g) with
β being (δ1; δ2), (δ∗), (φ?), (δ1|δ2) or (proc δ endproc) is defined as in [103], by simply changing
the CAT c by GCAT g.

It is straightforward to prove that the Golog and the sslGolog interpreter coincide in case
we confine ourselves to Golog programs without sensing, and occurrences of the special actions
multibranch on and switch.

Adapting Backward Chaining for sslGolog

We suggest four new axioms for regression-based planners to elaborate Web service composition
with conditional branches in sslGolog:

• Axiom 4.19;

• Axiom 4.20;

• Axiom 4.21;

• Axiom 4.22.

First of all, axiom (4.19) is required to introduce a branching node during backward chaining
based search. To this end, branch denotes what is a true in branches. Even if all branches have
same facts A in axiom (4.19), backward chaining can be followed differently in each branch.

holds(A,do(W, s))←

holds(A branch A, do(W, s)) ∧

W = (multibranch on(X); switch(case(X1, W1), case(X2, W2))) (4.19)

For any axiom holds(A, do(a, s))← holds(A′, s), two further axioms are required:

holds(A branch B, do(multibranch on(v); switch(case(v1, w; a), case(v2, y)), s))←

holds(A′ branch B, do(multibranch on(v); switch(case(v1, w), case(v2, y)), s)) (4.20)

holds(B branch A, do(multibranch on(v); switch(case(v1, x), case(v2, w; a)), s))←

holds(B branch A′, do(multibranch on(v); switch(case(v1, x), case(v2, w)), s)) (4.21)
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By means of axioms (4.20) and (4.21), successor state axioms can be used along any branch.
In addition to the previous axioms each conditional action requires a further successor state
axiom. By considering actions such as AdslEligibility in Figures 4.5 and 4.8, this axiom is in
the form of (4.22).

holds(SlowNetworkConnection(nc) branch FastNetworkConnection(nc),

do(multibranch on(nc) ; switch(case(slow, x), (fast, y)), s)←

Instance(PhoneNumber, ph nb, s) ∧

Instance(Zipcode, code, s) ∧

Instance(Email, em, s) (4.22)

Such axioms are required to instantiate variables i) X of the action multibranch on(X), ii)
X1 and X2 of the multi-branching node switch(case(X1, W1), case(X2, W2)) in (4.19).
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Figure 4.8: A Sample of a Web Service Composition ω1.

Example 40. (Backward chaining based search and sslGolog)
Here we aim at modelling a subscription process for an Internet Access with TV or Voice over IP.
To this end a composition of actions (more actions than in Figure 4.5) are required. Therefore
we consider further actions such as TVOverIP∗, Availibility, Billing, Delivery illustrated
in Tables 4.2 and 4.3. The following sslGolog program (illustrated in Figure 4.88)

8This figure illustrates all semantic links involved in the composition, but only a part of causal laws. On the
one hand causality relationships between effects and preconditions of actions are not modelled. On the other hand
the complex relationships related TvOverIP∗, Billing services are not illustrated for ease of reading. Details of
these causal laws are described in Tables 4.2 and 4.3.
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proc ω1

AdslEligibility ; multibranch on(NetworkConnection) ;
switch([case(slow, VoiceOverIP∗ ; Availability),

case(fast, TVOverIP∗ ; Billing ; Delivery ;
multibranch on(Delivery effect);
switch([case(success , Sg),

case(failure , Sh)]))])
endproc

has been inferred by means of our extended backward chaining based search (i.e., axioms (4.19),
(4.20), (4.21), and axiom (4.22) for conditional actions). To this end we used AX the founda-
tional axioms of our extended situation calculus.

In this example we considered the following links and laws to perform Web service composition:

• semantic links between actions AdslEligibility and VoiceOverIP∗ i.e., axiom (4.16)),
VoiceOverIP∗ and Availability, AdslEligibility and TVOverIP∗, TVOverIP∗ and Bil-
ling, Billing and Delivery;

• causal laws between actions:

– causality relationships between effects and preconditions of actions (e.g., axiom (4.10)
in Example 34). Since the actions VoiceOverIP∗ and TVOverIP∗ require the referent
of NetworkConnection(x) to be known, their preconditions axioms are in part defined
by Kref(NetworkConnection(x), s);

– explicit and complex relationships between actions (e.g., axiom (4.9)).

The AdslEligibility action is the only binary sensing action such that sr(AdslEligibility, s)
be NetworkConnection((x), s) (see Examples 32 and 33).

The backward chaining consists in applying (4.19), twice (4.20) for Availability and V oice-
OverIP ∗, twice (4.21) for Billing and TV OverIP ∗, once (4.22) and then checking facts in S0.

The classic Golog interpreter, running offline, tries to logically derive a linear sequence of
primitive actions which are legally executable and representing only an execution trace of ω1. The
selected sequence is only known at runtime after the execution of the sensor NetworkConnection,
which is the main issue. sslGolog, running offline, builds conditional compositions for any branch
points (i.e., conditioned-on fluents) and then for those that do not adhere to the reasonable
persistence of information. Retrieving such compositions is a real issue in the area of web
services, especially because of its dynamic environment.

Executing Web Service Composition

Towards the issue of Web service composition execution, we adapt sslGolog to find the appropri-
ate terminating GCAT by combining online execution of sensing actions with offline simulation
of world-altering actions. To accommodate both backtracking and online sensing we assume that
the truth value of a certain fluent, say F (~x, s) can be determined by executing an external func-
tion call (external to sslGolog), a. The call is denoted by exec(a(~x), s). Whenever the execution
succeeds, F is true; otherwise, it is false. Since Prolog answers queries with free variables by
returning possible values for these variables, this technique is equally suitable for sensed func-
tional fluents. The use of external function calls with the asumption of reasonable persistence of
information, allows us to extend the successor state axiom of a fluent F (~x):

F (~x, gdo(a(~x), s)) ≡ exec(a(~x), s) (4.23)

The set of rules that calls action a externally is also required.
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Example 41. (Interleaving offline and online execution)
Let ω1 be the Web service composition computed in example 40. In this example we as-
sume that AdslEligibility, TVOverIP∗, Billing are pure information-providing ser-
vices whereas Delivery is a world-altering Web service. In such a configuration and by
using AX ′ i.e., AX with axiom (4.23), we obtain (by random selection of conditional output
parameters; here fast for NetworkConnection):

AX ′ |= Do(ω1, S0, g) with
g = AdslEligibility . TVOverIP∗ . Billing . Delivery .

[Delivery effect , [success , α][failure , β]].

Branching on NetworkConnection is no more required in the resulting WSC since the selection
has been performed during execution of the information-providing action AdslELigibility. Only
the world-altering Web service Delivery required to be executed in the next step.

In details, axioms (4.24) and (4.25) are required for such an execution.

Do(multibranch on(nc); switch(case(slow,W1), case(fast,W2)), s, nc;G1)←

sr(NetworkConnection, s) = SlowNC∧

Do(W1, do(nc, s), G1) (4.24)

Do(multibranch on(nc); switch(case(slow,W1), case(fast,W2)), s, nc;G2)←

sr(NetworkConnection, s) = FastNC∧

Do(W2, do(nc, s), G2) (4.25)

In the same way we have

• Do(a, s, a) for atomic actions;

• Do(a; b, s, a; b)← Do(a, s, ga), Do(b, do(a, s), gb) for sequences;

and so on.

Once the conditional compositions are determined, we execute Web services only when needed
since the reasonable persistence of information is a hard assumption we cannot consider in
Telecommunication domain. In case the reasonable persistence of information is violated, the
composition does not require to be re-planned from scratch but only to be executed online (for
services with conditional effects) from the previous conditional composition.

4.2.6 Synthesis

Limitations, Solutions and Extensions

In our work, branching is limited to an enumeration of possible results of a sensing action
(i.e., known a priori through semantic description of actions). However, it is still possible to
handle branching on more restricted sensed values e.g., a sensing action on the netSpeed of a
SlowNetworkConnection and a branch on netSpeed.256KBS. An intuitive solution consists
in considering a specialized match type for semantic links wherein SlowNetworkConnection is
involved. For instance we will consider

SlowNetworkConnection ⊐ NetworkConnection ⊓ netSpeed.256KBS (4.26)
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as one of possible and valid match types between two actions.

The main direction for continuing this work is to combine our work and the approach of [182]
to cope first with more large and complex composition, and second with more complex structures
like loops and concurrency.

Some Concluding Remarks

In the same direction as Section 4.1 we suggest to study automated (requirement RComposition
Automation )

AI planning based Web service composition.

More specially, the approach presented in this section has been directed to meet an interesting
challenge facing Web service composition i.e., how to effectively compute a (conditional) com-
position of Web services with expressive descriptions (i.e., services described with input, output
parameters and preconditions, effects - compliant with Requirement RService

Expressivity).

In addition we consider a Web service composition that deals with semantic links (Require-
ment RSemantic

Composability through DL reasoning) and causal laws (Requirement RCausal
Composability

through AI planning) between Web services. To this end, we suggested adding explicit DL
reasoning (e.g., Subsumption) between input and output parameters of services (semantic links)
to the situation calculus. Therefore we refine the definition of executable services to cope with
both links and laws. This work presents an augmented version of the logic programming language
Golog i.e., sslGolog (supporting requirement RComposition

Expressivity with sequential and conditional com-
positions) that provides a natural formalism for automatically reasoning about the semantic links
and causal laws, and so composing services. Such a version of Golog extends sGolog by support-
ing conditional n-ary parameters of actions to reason about them. Considering conditional plans
is obviously flexible and adapted to the open world of Web services.

Finally, online execution of information-providing services with offline simulation of world-
altering services are combined to obtain conditional Web service compositions ready for execution.

Even if using conditional plans includes sometimes unrealistically high number of alterna-
tive paths as the conditional plans should cover all the possible alternatives, the DL reasoning
based semantic link axioms can be used i) to reduce the search space ii) to reduce the number
of these alternative plans by retrieving more relevant WSC, iii) to improve performance of WSC
(see the experimental evaluation of the proposed approach in Section 7.3.2 of Chapter 7). Thus
approaches that consider semantic links and causal laws such as ours, are more restrictive than
approaches which consider only semantic links or causal laws.

In comparaison with the work of [139] (see Section 2.1.3), our offline interpreter i) overcomes
the assumption related to the reasonable persistence of information, ii) supports information-
providing as well as world-altering Web services, iii) provides a strategy for automated branching
output parameters (as sensed values) to input parameters by means of DL reasoning and their
valid semantic links (Requirement RSemantic

Composability), iv) couples with DL reasoning and Golog
reasoning to deal with expressive description of Web services. Moreover, instead of producing
a linear sequence of services (such as many Golog-based approach), our approach computes
Web service composition as legal execution of services conditioned on the possible n-ary output
parameters of information-providing actions along the way.
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4.3 Conclusion

In this chapter we presented two approaches to overcome Web service composition in the seman-
tic Web. Both approaches focus on requirement RComposition

Automation to achieve composition.

Towards this issue we i) study two levels expressivity for Web services description, ii) con-
sider different levels of composability criteria, iii) model composition with different compositions
constructs, the whole by disregarding the hard assumption related to persistence of information.
Indeed expressivity of Web services may vary depending on the application domain. Indeed some
industrial applications may require to compose Web services which are described by means of
input and output parameters (e.g., SA-WSDL based Web service description), or of relationships
between actions, preconditions and effects, or of both (e.g., WSMO or OWL-S based Web service
description).

The first approach, presented in Section 4.1, couples the matrix of semantic links (i.e., SLM
in Section 3.2) and AI planning techniques in order to achieve composition. In such an approach
they focus on a part of Requirement RService

Expressivity to perform composition i.e., input and out-
put parameter of Web services. In this direction semantic links between Web services are used
as composability criteria (Requirement RSemantic

Composability). The result of this composition process
is a partial ordering of Web services arranged in a simpler version of a workflow that satisfies
Requirement RComposition

Expressivity by supporting composition constructs such as Sequence, Non De-
terminism of services, concurrency.

Unlike the approach presented in Section 4.1 that disregards preconditions and effects on
parameters of Web services, the second approach (Section 4.2) considers them together with
semantic annotation on input and output parameters. This composition approach deals with
information-providing and world-altering services as well. This ensures to support the full
part of requirement RService

Expressivity. In addition semantic link (RSemantic
Composability) and causal laws

(RCausal
Composability) are both regarded as composability criteria. The augmented and adapted ver-

sion of the logic programming language Golog [121] i.e., sslGolog has been presented as a natural
formalism not only for reasoning about the latter links and laws, but also for automatically
composing services. Such a language supports sequential and conditional composition as Re-
quirement RComposition

Expressivity.

In both approaches, valid and/or robust semantic Web service compositions have been ad-
dressed in details.

Table 4.4 describes in details the requirements supported by the models introduced in Chap-
ter 4.

Since our approach has been directed to meet semantic links based Web service composition
with causal laws, it becomes conceivable to further exploit semantic links between their func-
tional parameters. More specifically the quality of semantic links (robust or valid) involved in a
composition can be then used as a innovative and distinguishing criterion to estimate its over-
all semantic quality. Therefore, in the following section we will study in more details semantic
quality of semantic link based semantic Web service composition.
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Requirement Ri Details
Chapter 4

Section 4.1 Section 4.2

Formalism Independent
Situation

RComposition
Automation

Calculus
Composition

(Robust) Ra4C
Golog +

Mechanism sslBackward Chaining

In both Sections, input and output parameters are
supported to describe Web services. Such parameters

are annotated by concepts Preconditions and effects

RService
Expressivity

using a common domain can be considered to
ontology. Information- ensure possible and valid

providing services. compositions of services.
RExpressivity Information-providing and

World-altering services.
The supported control

The supported control
constructs are as follows:

constructs are as follows:
RComposition

Expressivity sequence, non determinism
sequence and

choice of Web services
conditional compositions.

and concurrent compositions.

Semantic links ar required in this approach.
In particular, their valuation is based on

RSemantic
Composability

matchmaking functions i.e., Exact, PlugIn, Subsume,
Disjoint, Intersection, Abduction and Difference.

However this set can be further extended.
RComposability Computation at Design Time

Causality relationships
between effects and precon-

RCausal
Composability 7 ditions of services. Complex

and explicit relation-
ships between services.

Supported by the
Supported by the

RFlexibility SLM model.
semantic links and
causal law axioms.

ROptimization 7

Applicable to the OWL-S service profile, WSMO
RService

Applicability SA-WSDL service capability

RApplicability specification. SWSO Inputs/Outputs.

RComposition
Applicability 7

Table 4.4: Table of Requirements supported by Chapter 4. Legend: 7 = not addressed.



Chapter 5

Optimizing Semantic Link based
Web Service Composition

Contrary to Chapter 4 which considers Web service composition as a process, here we consider
and study the result of the composition process. This result is also known as the composite
Web service. Throughout the Chapter, composition and composite Web service are used synony-
mously.

According to Chapter 4, composite Web services can be computed by considering:

• semantic links between functional output and input parameters of their Web services;

• and causal laws.

as composability criteria.

Even if the approach presented in Section 4.2 is appropriate to constrain and restrict the set
of service compositions by extending the definition of an executable service (i.e., possible and
valid in Equation (4.12)), there are still many (e.g., more than one) candidate compositions that
can be returned by this approach, and a fortiori by approach presented in Section 4.1 (which is
less restrictive).

In some cases, some of these candidate composite services are “unsuitable” to achieve a given
goal since most of their semantic links are not robust (see Definition 13). Such composite services
which do not provide acceptable qualities1 of semantic links might be as useless as services that
do not provide the desired functionality.

Towards these issues

i) of further pruning the set of numerous candidates;

ii) and of selecting the most suitable compositions,

we suggest to exploit the quality of semantic links (through their estimation and ranking; see
Table 3.1) involved in the service compositions.

1As previously said in Chapter 3 this quality is valued by matching functions such as Exact, PlugIn, Subsume,
Intersection and Disjoint.
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This chapter is then interesting in computing semantic link based optimal Web service com-
position, hence satisfying the requirement ROptimization. Starting from an initial set of web
services, the goal of this chapter aims at

selecting web services and maximizing the overall quality of their inter-connections
by means of their semantic links according to a goal to achieve. Such a selection is
achieved by taking into account preferences and constraints defined by the end-user.

Unlike most approaches [28, 206, 208] which focus on the quality of composition by means of
non functional criteria such as the quality of service (QoS), here the quality of semantic links is
considered. Such a criterion can be viewed as an innovative and distinguishing functional crite-
rion to estimate the overall semantic quality of web service compositions. By considering such a
new criterion, we extend the family of criterion that can be used to value different Web service
compositions satisfying the same goal. The problem of optimization in service composition is
addressed with respect to this functional criterion.

The remainder of this chapter is organised as follows. In Section 5.1 we briefly sketch the main
required background of this chapter and review in more details the semantic link composition
model we will focus on. Section 5.2 presents a general and extensible model to evaluate and
estimate quality of both elementary and semantic links based Web service composition. Section
5.3 formulates the problem of the semantic link based optimal Web service composition and
focuses on three approaches to solve it i.e., i) a local2, ii) a naive and iii) a global selection
approach. The local and naive approaches have been introduced to compare the characteristics
of their optimal compositions and also their computation time performance with solutions of our
global selection approach. The latter method is described through an integer linear programming
approach that efficiently solves the optimization problem of selection. Finally section 5.4 draws
some conclusions and talks about possible future directions.

5.1 Background

In this section we first briefly sketch the main background of the chapter i.e., semantic link based
Web service composition (Section 4.1), and (robust) semantic links. Then, we model in further
details the semantic link based Web service composition at different levels of abstraction.

5.1.1 Web Service Composition, Semantic Links and Robustness

In this chapter we assume that a non empty set of Web service compositions have been discovered
to achieve a target goal. Such a set of compositions have been computed by considering i) se-
mantic links (Requirement RSemantic

Composability), or ii) semantic links (Requirement RSemantic
Composability) and

causal laws (Requirement RCausal
Composability) as composability criteria. In other words, the method

presented in this chapter can re-use compositions resulting of approaches which are presented in
Sections 4.1 and 4.2 of Chapter 4.

Since we plan to achieve semantic link based optimal Web service composition (Require-
ment ROptimization), Chapter 3 is the main required knowledge for the understanding of this
Chapter. In more details, we required knowledge about the following main definitions, theorem
and properties of Chapter 3:

2By local approaches, we refer to approaches in which the semantic links are selected individually and locally
in the composite service
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• the Semantic Links Definition (Definition 10 that formalizes inter-connections between Web
services; see an illustration in Figure 3.1);

• the Matching Types Definition: Exact (≡), PlugIn (⊑), Subsume(⊒), Intersection (⊓)
and Disjoint (⊥) (Section 3.1.2) which are employed to value semantic link between Web
services. The partial order (Theorem 1) of the latter Matching Types as well as their
valuation (discretization of match types in Table 3.1) are required in this Chapter;

• the properties on Semantic Links, which depends on the match type used to value them
i.e., Validity (Definition 11), Robustness (Definition 13);

• the properties on semantic links based Web service composition i.e., Validity (Definition
12), Robustness (Definition 14).

Such properties and definitions can be used together to semantically value and compare not
only different individual semantic links but also different Web service compositions satisfying the
same goal. For instance, these compositions can be (semantically) compared by means of the
following criteria (ordered by computational time complexity):

• an overall Matching Quality of semantic links;

• a degree of Validity ;

• a degree of Robustness;

• the Common Description rate which is defined as the rate of common description in the
two parameters of the semantic links;

• the Extra Description rate which is defined as the rate of extra description required to
change a semantic link into its robust form.

In the following, we will focus on a specific subset of these criteria i.e. Matching Quality, Ro-
bustness and Common Description rate to value semantic links and their composition. Roughly
speaking the Robustness criterion has been preferred to the Validity criterion since the latter cri-
terion is too restrictive to value semantic links. The Common Description rate can be changed
with the Extra Description rate since these two rates are complementary. The higher Extra
Description rate the lower Common Description rate and vice versa.

5.1.2 Modelling Semantic Link Based Web Services Composition

In this section we first briefly remind main results about composite service specifications, and
more specifically the constructs which are used to model these (expressive) compositions (Re-

quirement RComposition
Expressivity). Then we describe two different levels of abstraction to model compo-

sitions i.e., the abstract (or generic) and practical levels. These two levels of composition will be
used along this Chapter to present our approach.

Composite Service Specifications

In this chapter and in the same way as in Chapter 4 (see Sections 4.1 and 4.2), the process model
of Web service compositions and their semantic links are graphically specified by means of a
statechart [83].
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This choice has been motivated by several reasons. First, statecharts possess a formal se-
mantics, which is essential for analyzing composite service specifications. Second, statecharts are
a well-known and well-supported behaviour modelling notation. Finally, statecharts offer most
of the control-flow constructs found in existing process modelling languages and they have been
shown to be suitable for expressing typical control-flow dependencies. Hence, it is possible to
adapt the semantic based service selection mechanisms developed using statecharts to fit other
alternative languages.

In more details, states of a statechart refer to Web services. Transitions are labelled with
semantic links between Web services. In addition some basic composition flow constructs such
as sequence (i.e., linear compositions), conditional branching (i.e., OR-Branching), concurrent
threads (i.e., AND-Branching) can be found3. To simplify the presentation and align our work
with composition constructs introduced by Definition 19 and supported by our approaches of
Sections 4.1 and 4.2, we initially assume that all considered statecharts have no structured loops
(acyclic4), or inter-thread synchronization.

In case a composition (through its graphical representation i.e., statechart) contains cycles,
a technique for unfolding it into its acyclic form needs to be applied beforehand. Thus such
cyclic compositions can be represented by a sequential flow by unfolding the cycles. Roughly
speaking our approach is similar to what is proposed by [209]. If a composition contains cycles,
these need to be “unfolded” so that the resulting composition has a finite number of practical
compositions and semantic links. The method used to unfold a composition is to examine the
logs of past executions to determine the maximum number of times that each cycle is taken. The
states appearing between the beginning and end of a cycle are then cloned as many times as the
transition causing the cycle is taken5. This unfolding method works if the beginning and end of
each cycle in the composition can be identified.

Generic Service Tasks, Abstract Semantic Links and their Abstract Composition

Here, we focus on an abstract (or generic) level to model compositions. Such compositions are
defined by a composition of generic service tasks.

Definition 23. (Generic Service Tasks)
Generic service tasks are semantically defined in the same way as semantic Web services (i.e.,
input, output parameters and preconditions, effects), but in an abstract way.

The Definition 23 means that a non pre-defined Web service is selected to achieve the given
generic service task. The generic service task is then abstracted since it is not instantiated.

Example 42. (Illustration of a Generic Service Task)
Figure 5.1 illustrates a generic service task. Such a task VoiceOverIPT starts from a Net-

workConnection and a Phone Number, returns the Address of the ADSL line a Telecom op-
erator needs to install the line. Contrary to the service VoiceOverIP, the generic service task
VoiceOverIPT cannot be executed since no implementation has been discovered.

In the following we will use the term Tasks to refer to Generic Service Tasks.

3These constructs are considered, in our Ph.D thesis, as essential to model Web service composition.
4This is the case in our thesis since the compositions of Web services computed in Chapter 4 are devoid of

cycles.
5The idea of cloning the states in a loop for the purpose of transforming a cyclic statechart into an acyclic one

has been proposed by [79]
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Phone VoiceOverIPT

Figure 5.1: Illustration of a Generic Service Task.

A composition of the latter tasks, so called abstract composition is defined in the same way
as semantic link based Web service composition. Indeed abstract compositions have abstract
semantic links between their tasks whereas Web service compositions have semantic links between
their Web services. The main difference is about the term used to formalize their links. The
meaning of these links is the same. Therefore abstract semantic links slAi,j (here between Task Ti

and Task Tj) are used in an abstract composition specification to capture the data manipulation
perspective. Specifically, they can be used to express branching conditions.

Definition 24 is used to formalize an abstract composition.

Definition 24. (Abstract Composition)
An abstract composition is specified as a collection of tasks described in terms of service ontolo-
gies and combined according to a set of control-flow and abstract semantic link (or data-flow)
dependencies.

Remark 7. (Abstract Composition Specifications)
In the same way as Web service composition, the process model of abstract compositions and
their abstract semantic links are graphically specified by means of a statechart.

In more details, states of a statechart refer to tasks. Transitions are labelled with abstract
semantic links between tasks.

Example 43. (Process Model of an Abstract Composition)
Suppose Ti,1≤i≤8 be eight tasks involved in an abstract composition. The process model of this
abstract composition is illustrated in Figure 5.2. The abstract composition consists in a sequence
of tasks intertwined of an OR-Branching and an AND-Branching wherein nine abstract semantic
links are involved. In other words, given the conditional output parameter of task T1, either the
latter output parameter is bound to the input parameter of T2 or it is bound to the input parameter
of T4. Therefore two potential and conditional compositions are possible i.e., one that contains
T2 and another one that contains T4. From the task T5, its output parameter is semantically
linked an input of tasks T6 and T7 i.e., T6 and T7 are done concurrently.

From this we define practical composition which is a concretization of an abstract composition.

Web Services, Semantic Links and their Practical Composition

Here, we focus on a practical level to model compositions. Such compositions are defined by a
composition of Web services.

An Abstract composition can become practical in case we discover a non empty set of candi-
date Web services that can execute each task of the abstract composition.

To this end any Web service si that can execute Ti have to meet the following requirements.
First of all si achieves the same overall functionality defined by Ti. Secondly, any functional input
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Figure 5.2: Illustration of an Abstract Composition.

(output) parameters of Ti has semantic similarity (i.e., a satisfiable conjunction) with one of the
si’s input (output) parameter. Finally, the service si has exactly the same preconditions and
effects as task Ti. Therefore a collection of Web services that meet i) the (overall) functionality
and ii) the semantic description of a given task can be selected to achieve a given task of an
abstract composition.

Example 44. (Task and a Candidate Web Services)
According to the previous definition, it is obvious that service VoiceOverIP (illustrated in Section
1.3.1 and s2 in Figure 5.3) is a candidate to achieve task VoiceOverIPT in Example 42. Indeed
they have the same overall functionality i.e., computing an address given a network connection
and a phone number. Both service and task have same preconditions and effects. Moreover there
are semantic relationships between parameters of the service and task (see Figure 5.3) i.e.,

• they have the same semantic description for the input parameter Phone Number i.e., Exact;

• the input parameter SlowNetworkConnection of VoiceOverIP (s2) is subsumed by Net-

workConnection i.e., the input parameter of task VoiceOverIPT ;

• the output parameter Address of VoiceOverIPT subsumes the output parameter VoIPId of
VoiceOverIP.

In the previous example we focused on a unique candidate Web service to achieve a task.
However there are many cases wherein a collection of candidate services could achieve a same task.
Indeed some services with common functionality, preconditions and effects although different
input and output parameters can be used to achieve a target task in the abstract composition. For
instance we can imagine many different levels (but semantically close) of functional description
to model tasks that achieve a same functionality in the open world of Web services.

Example 45. (Illustration of a Task and its Collection of Candidate Web Service)
Figure 5.3 illustrates a collection of services that are candidates to achieve task VoiceOverIPT

i.e., {s2, s
′
2, s

′′
2}.

The concept of Practical Composition defined below captures the various ways of performing
a given abstract composition.
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Figure 5.3: Illustration of a Task and its Collection of Candidate Web Services.

Definition 25. (Practical Composition)
A set of pairs c = {< T1, s1 >, < T2, s2 >, ..., < Tn, sn >} is a practical composition of an
abstract composition cA iff:

• {T1, T2, Tn} is the set of tasks in cA.
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• For each pair < Ti, si > in c, service si belongs to the service class associated with task Ti.
In other words, service si provides operation semantically close to the operation required by
task Ti.

The abstract semantic links of an abstract composition are instantiated by semantic link of
a practical composition.

It should be noted that, according to definition 25, each task can be executed by a number
of alternative Web services, but it is not possible for a Web service to execute a combination of
tasks in a “single shot”. To express that a combination of tasks can be executed by a single Web
service, these tasks need to be assembled into a single one.

Remark 8. (Practical Composition Specifications)
In the same way as Web service composition, the process model of practical compositions and
their semantic links are graphically specified by means of a statechart.

In more details, states of a statechart refer to Web services. Transitions are labelled with
semantic links between tasks.

Example 46. (Process Model of a Practical Composition)
Suppose Example 43 and its abstract composition illustrated in Figure 5.2. Figure 5.4 illustrates
one of its practical composition6. Web services si,1≤i≤8 are selected candidate services to achieve
respectively tasks Ti,1≤i≤8 in the abstract composition.

T: Task

Connection

Slow

s: Web
Candidate

Service

Network

Connection

Candidate

Semantic Link sl Input Parameter Output Parameter

Network

s4

s8s1 s5

s2 s3

OR-Branching
AND

Branching

s6

s7

sl15,7

sl12,3

sl11,4

sl15,6

sl17,8

sl16,8

T4

T2 T3 T6

T7

T8T1 T5

sl11,2 sl13,5

sl14,5

slki,j

Figure 5.4: Illustration of a Practical Composition.

The example 46 illustrates a practical composition wherein si,1≤i≤8 are involved. More specif-
ically we obtained a practical composition wherein tasks Ti have been concretized by one of their
candidate Web services e.g., here si for each task Ti. Since a task can be achieved by more than
one Web service, they have a large number of potential practical composition that can achieve
the same goal. Indeed, it is possible to obtain different practical composition in different ways
by allocating different Web services to the basic tasks in the abstract composition.

6Here, we intentionally illustrate a process model of a composition with Web services of Section 1.3.1. The
introduced composition is a particular case of the composition computed in Example 24 and illustrated in Figure
4.3. Indeed s1 is AdslEligibility, and s2 is VoiceOverIP.
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In the following we address the issue of composing a large and changing collection of semantic
web services. In our approach Web services belonging to the required tasks are selected at
composition time, only based on their semantic links with other Web services. Thus each abstract
semantic link slAi,j between two tasks Ti, Tj of an abstract composition needs to be concretized.

Ideally, a relevant link is selected among its n candidate semantic links slk,1≤k≤n
i,j between two

of their services to obtain a practical composition.

Example 47. (Tasks, Candidate Web Services and Semantic Links)
Suppose the semantic link sl1,2 between Tasks T1 and T2 of the practical composition in example
46 (Figure 5.4). Moreover we assume that T1 can be achieved by the candidate Web service s1 i.e.,
AdslElegibility; T2 by candidate Web services s2 i.e., VoiceOverIP, s′2 i.e., VoiceOverIP’, s′′2
i.e., VoiceOverIP” (Figure 5.3). Therefore the tasks T1 and T2 can be related by three candidate
semantic links (Figure 5.5) i.e.,

i) sl11,2 between s1 and s2;

ii) sl21,2 between s1 and s′2;

iii) sl31,2 between s1 and s′′2 .

The semantic link sl21,2 is more robust than sl11,2 and sl31,2. Indeed sl21,2 is valued by an Exact
matching type whereas sl11,2 is valued by a Subsume matching type, and sl31,2 is valued by an
Intersection match type.

T: Task
Candidate

Service

Candidates Candidates
Candidate Semantic Links

Candidate
Semantic Link sl Input Parameter Output Parameter s: Web

T1 T2

sl11,2
s2

s2′

s2′′

s1

Network
Connection

sl21,2

sl31,2

∀netSpeed.Adsl1M

NetworkConnection

SlowNetworkConnection

IPAddress

Address

V oIPId
i.e., Subsume

i.e., Exact

i.e., Intersection

slki,j

Figure 5.5: Candidate Semantic Links between Tasks T1 and T2.

Depending on the selected Web services to achieve tasks, the latter tasks can be related by
different semantic links, which are differently valued (e.g., through their robustness, matching
quality). In the following we introduce a quality model to value semantic link based Web service
composition.
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5.2 Semantic Link Quality Model

In the composition model presented in the previous section, candidate services are typically
grouped together in tasks of an abstract composition. Different semantic links can be used
between tasks, depending on the selected Web services. A way to differentiate their semantic
links (e.g., sl11,2, sl21,2 and sl31,2 in Example 47) consists in considering their different functional
properties. For this purpose, we adopt a semantic link quality model based on a set of quality
functional criteria that are applicable to any semantic link, for example, their robustness.

In this section, we first present the quality criteria in the context of elementary semantic
links, before turning our attention to composite semantic links through aggregation functions
for sequential, AND-Branching and OR-Branching compositions. For each criterion, we provide
a definition, provide rules to compute its value for a given semantic link and we indicate mo-
tivations. Finally we study the partial independence of the different quality criteria and their
aggregation functions.

5.2.1 Quality Criteria for Elementary Semantic Links

We consider three generic quality criteria for elementary semantic links slki,j defined by 〈si, SimT

(Out si, In sj), sj〉
k: its i) Robustness, ii) Common Description rate, and iii) Matching Quality.

i) Robustness.
Given a semantic link slki,j between two Web services si and sj , the Robustness qr of slki,j is

equal to 1 in case the link slki,j is robust (see Definition 13), and 0 otherwise.

Example 48. (Robustness)
Suppose Example 47 and its graphical representation in Figure 5.5. According to the defini-
tion of robustness quality, we have:

• qr(sl
1
1,2) = 0 since sl11,2 is not a robust semantic link;

• qr(sl
2
1,2) = 1 since sl21,2 is a robust semantic link;

• qr(sl
3
1,2) = 0 since sl11,2 is not a robust semantic link.

As presented in Chapter 3 such a feature is key to ensure the robustness of a link in a overall
composition. Here, our system advertises the robustness of semantic links by pre-computing
them.

ii) Common Description rate.
Given a semantic link slki,j between si and sj , the Common Description rate qcd ∈ (0, 1]
measures “a” degree of similarity between an output parameter of si and an input parameter
of sj . This rate is computed using the following expression:

qcd(sl
k
i,j) =

|Out si ⊓ In sj |

|In sj\Out si| + |Out si ⊓ In sj |
(5.1)

where expressions in between | refer to the size of ALE concept descriptions ([102] p.17)
i.e., |⊤|, |⊥|, |A|, |¬A| and |∃r| is 1; |C ⊓D|

.
= |C| + |D|; |∀r.C| and |∃r.C| is 1 + |C|. For

instance |Adsl1M | is 3 in ontology illustrated in Figure 1.4.

Example 49. (Common Description rate)
We still assume Example 47 and its Figure 5.5. According to the definition of common
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description rate, we obtain for sl11,2

qcd(sl
1
1,2) =

|NetworkConnection ⊓ SlowNC|

|SlowNC\NetworkConnection| + |NetworkConnection ⊓ SlowNC|

=
|∀netPro.Provider ⊓ ∀netSpeed.Speed|

|∀netSpeed.Adsl1M | + |∀netPro.Provider ⊓ ∀netSpeed.Speed|

=
(1 + 1) + (1 + (1 + 1))

(1 + (1 + (1 + 1))) + (1 + 1) + (1 + (1 + 1))

=
5

9
(5.2)

By performing the same operation on sl21,2, we have qcd(sl
2
1,2) = 1.

In the same way we obtain for sl31,2:

qcd(sl
3
1,2) =

|NetworkConnection ⊓ ∀netSpeed.Adsl1M |

|∀netSpeed.Adsl1M\NetworkConnection| + |NetworkConnection ⊓ ∀netSpeed.Adsl1M |

=
|∀netSpeed.Speed|

|∀netSpeed.Adsl1M | + |∀netSpeed.Speed|

=
(1 + (1 + 1))

(1 + (1 + (1 + 1))) + (1 + (1 + 1))

=
3

7
(5.3)

The presented criterion estimates the common description rate which is well specified for
upgrading a non robust semantic link into its robust form. Indeed, in case a semantic
link is not robust enough, it seems important to distinguish non robust semantic links by
valuing the degree of robustness of these links by a non binary criterion. This is achieved by
computing the rate of common description. In equation (5.1), Out si ⊓ In sj is supposed to
be satisfiable since only relevant links between two services are considered in our model. In
the same way as the Robustness, the latter rate is provided on requests by the system.

iii) Matching Quality.
The Matching Quality qm of a semantic link slki,j is a value in (0, 1] defined by SimT (Out si,

In sj) i.e., either 1 (Exact), 3
4 (PlugIn), 1

2 (Subsume) or 1
4 (Intersection). The Disjoint match

type is not considered since it refers to irrelevant semantic links between two services in a
composition. Therefore Out si ⊓ In sj is supposed to be satisfiable.

Example 50. (Matching Quality)
According to the Example 47, Figure 5.5 and the definition of matching quality, we have:

• qm(sl11,2) = 1
2 ;

• qm(sl21,2) = 1;

• qm(sl31,2) = 1
4 .

Contrary to the common description rate, the matching quality does not estimate similarity
between functional parameters of semantic links but gives an general overview of their se-
mantic relationships. Indeed the degree of similarity is, here, more general and indexed on
discretized values. By introducing such a criterion, we are motivated towards another level
of semantic valuation. In the same way as the Robustness and the common description rate,
our system advertises the matching quality of semantic links by pre-computing them.
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Abstract
Semantic slA

1,2 slA
1,4 slA

2,3 slA
3,5 slA

4,5 slA
5,6 slA

5,7 slA
6,8 slA

7,8

Link slAi,j
Candidates sl1

1,2 sl2
1,2 sl3

1,2 sl1
1,4 sl1

2,3 sl2
2,3 sl3

2,3 sl1
3,5 sl1

4,5 sl1
5,6 sl1

5,7 sl1
6,8 sl1

7,8

Quality qr 0 1 0 0 1 0 1 1 0 0 1 0 1
Vector qcd

5

9
1 3

7

5

9
1 3

5

3

4
1 6

7

3

5

2

7

1

5

3

4

q(slki,j) qm
1

2
1 1

4

1

2
1 1

4

3

4
1 1

2

1

2

3

4

1

4

3

4

Table 5.1: Quality Values of Candidate Semantic Links.

Remark 9. (Extension of the Semantic Link Quality Model with Contraction [50])
In case we consider Out si ⊓ In sj to be not satisfiable, it is straightforward to extend and adapt
our quality model by computing contraction [50] between Out si and In sj. Thus, the three
quality criteria can be updated in consequence.

Given the above quality criteria, the quality vector of a semantic link slki,j is defined as follows:

q(slki,j) =
(

qr(sl
k
i,j), qcd(sl

k
i,j), qm(slki,j)

)

(5.4)

Example 51. (Abstract Semantic Links and Some of their Candidates)
Table 5.1 illustrates the quality values of different candidate semantic links we consider in this
Section.

Even if we illustrated the latter quality criteria by a unique semantic link between Web
services, the generalization to n semantic links is straightforward. In case of services si and sj

related by more than one semantic link,

• the value of Robustness is established by choosing the minimum of robustness values
of the semantic links involved between si and sj . Indeed a robust composition of Web
services is defined as a composition of Web services wherein all its semantic links are
robust (Definition 14);

• the overall value of Common Description rate is elaborated by computing their average.
Indeed we assume that the common description rate of all semantic links between two
different services have same importance. Therefore we can sketch the average rate of
common description the target inter-connection between two services has for each of these
semantic links. Note that the average can be changed by a weighted average as well.

• the Matching Quality of several semantic links between two services is defined as their
product since we would like to easily identify compositions with low or high number of
semantic links together with their matching quality. The more semantic links in the com-
position the highest the probability to obtain relevant inter-connection between services.

Assume si and sj be two Web services where n semantic links sl(i,j)u,1≤u≤n are involved
between them (Figure 5.6). The quality vector q(sli,j) of the general (aggregation of the sl(i,j)u)
semantic link between si and sj is defined by (5.5)7.

q(sli,j) =
(

min
1≤u≤n

qr(sl(i,j)u),
1

n

n
∑

u=1

qcd(sl(i,j)u),

n
∏

u=1

qm(sl(i,j)u)
)

(5.5)

7The choice of the minimum on robustness, average on common description rate and product on matching

quality is based on different heuristics.
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Figure 5.6: Multi-(Semantically) Linked Web Services.

Note that the method for computing the value of the quality criteria is not unique e.g.,
valuation of Match level. Other computation methods can be designed to fit the needs of specific
applications.

Although the adopted quality model has a limited number of criteria (for the sake of illus-
tration), it is extensible: new functional criteria can be added without fundamentally altering
the semantic link selection techniques built on top of the model. For instance the Common
Description rate qcd can be changed by the Extra Description rate qed in (5.6) i.e., the rate of
description missing to upgrade the semantic links in their robust forms.

qed(sl
k
i,j) =

|In sj\Out si|

|In sj\Out si| + |Out si ⊓ In sj |
(5.6)

Moreover, it is also possible to extend the quality model to integrate non functional service
characteristics such as those proposed by [150].

The global semantic link selection presented in Section 5.3 is independent of these computation
methods.

5.2.2 Quality Criteria for Semantic Link Compositions

The quality criteria defined above in the context of elementary Web services, are also used to
evaluate the quality of any practical composition c of semantic links

c = {< T1, s1 >, < T2, s2 >, ..., < Tn, sn >} (5.7)

They are computed by aggregation functions. In the following we illustrate the quality criteria
on the practical composition c1, which is defined by

c1 = {< T1, s1 >, < T2, s2 >, < T3, s3 >, < T4, s4 >, < T5, s5 >,

< T6, s6 >, < T7, s7 >, < T8, s8 >} (5.8)

Implicitly the composition c1 consists of sl11,2, sl11,4, sl12,3, sl13,5, sl14,5, sl15,6, sl15,7, sl16,8 and sl17,8

semantic links.
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Since we focus on practical composition of semantic Web service, we extend the previous
quality criteria for such compositions. In this direction Table 5.2 summarizes aggregation func-
tions to evaluate composition. An explanation, formalization, motivation and illustration8 of
each criterion’s aggregation function follows:

i) Robustness.

• On the one hand the robustness Qr of both a sequential cSequence and an AND-
Branching composition cAND is defined as the minimum of the semantic links slki,j ’s

robustness qr(sl
k
i,j) involved in the sequential cSequence or AND-Branching cAND com-

position.

Qr(cSequence) = Qr(cAND)

= min
slki,j

{qr(sl
k
i,j)} (5.9)

Indeed a robust composition of Web services is defined as a composition of Web services
wherein all its semantic link are robust (Definition 14).

• On the other hand the robustness of an OR-Branching semantic link composition cOR

is a sum of qr(sl
k
i,j) weighted by pslki,j

.

Qr(cOR) =
∑

slki,j

qr(sl
k
i,j).psli,j

(5.10)

Therefore each conditional branch is weighted by pslki,j
i.e., the probability that the

semantic link slki,j be chosen at run time. This probability is inferred from logs of
previous computed compositions. This ensures to obtain a linear function of the latter
qualities wherein conditional OR-branches cOR are weighted.

Example 52. (Robustness of Sequential and AND-Branching Composition)
Let c1

Sequence be the sequential composition. Such a composition extracted from c1 is defined
by {< T1, s1 >, < T2, s2 >, < T3, s3 >, < T5, s5 >, < T6, s6 >, < T8, s8 >} and illustrated
in Figure 5.7(a). According to the aggregation function illustrated in Table 5.2, the overall
robustness of such a sequential composition is defined by

Qr(c
1
Sequence) = min{qr(sl

1
1,2), qr(sl

1
2,3), qr(sl

1
3,5), qr(sl

1
5,6), qr(sl

1
6,8)}

= min{0, 1, 1, 0, 0}

= 0 (5.11)

By computing the robustness Qr(c
1
AND) (see Table 5.2) of the AND-Branching composition

c1
AND, extracted from c1, defined by {< T5, s5 >, < T6, s6 >, < T7, s7 >} and illustrated in

Figure 5.7(b) we obtain 0.

Example 53. (Robustness of OR-Branching Composition)
Let c1

OR be the OR-Branching composition. Such a composition extracted from c1 is defined
by {< T1, s1 >, < T2, s2 >, < T4, s4 >} and illustrated in Figure 5.7(c). Assuming that each

8Our illustrations are performed on different standard compositions described in Figure 5.7. These compositions
are extracted from composition illustrated in Figure 5.4.
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OR-branch of c1
OR has the same probability (i.e., pslki,j

= 1
|slki,j |

for each semantic link slki,j

of c1
OR) to be used, the overall robustness of such an OR-Branching composition is defined

by (5.12) (see aggregation function illustrated in Table 5.2).

Qr(c
1
OR) =

1

2
× (qr(sl

1
1,2)) +

1

2
× (qr(sl

1
1,4))

=
1

2
× (0)

= 0 (5.12)

ii) Common Description rate.

• On the one hand the Common Description rate Qcd of both a sequential cSequence and
an AND-Branching composition cAND is defined as the weighted average of its semantic
links sli,j ’s Common Description rate qcd(sl

k
i,j).

Qcd(cSequence) = Qcd(cAND)

=
1

|slki,j |

∑

slki,j

qcd(sl
k
i,j) (5.13)

In this direction all different rates are considered with same importance, depending on
the involvement of the semantic links on the overall composition. Therefore the overall
common description rate of the latter compositions cSequence or cAND is depending on
a linear function of semantic links’ common description rate. Indeed all different rates
involved in the composition cSequence or cAND require to be considered together i) in
the same way and ii) in a linear function. We can sketch the average rate of common
description the composition has for each of these semantic links.

• On the other hand the common description rate Qcd of an OR-Branching semantic link
composition cOR is a sum of qcd(sl

k
i,j) weighted by pslki,j

.

Qcd(cOR) =
∑

slki,j

qcd(sl
k
i,j).psli,j

(5.14)

Therefore each conditional branch is weighted by pslki,j
i.e., the probability that the

semantic link slki,j be chosen at run time.

Example 54. (Common Description rate of Sequential and AND-Branching Com-
position)
Let c1

Sequence be the sequential composition illustrated in Figure 5.7(a). According to the
aggregation function illustrated in Table 5.2, the overall common description rate of such a
sequential composition is defined by

Qcd(c
1
Sequence) =

1

5
× (qcd(sl

1
1,2) + qcd(sl

1
2,3) + qcd(sl

1
3,5) + qcd(sl

1
5,6) + qcd(sl

1
6,8))

=
1

5
× (

5

9
+ 1 + 1 +

3

5
+

1

5
)

=
151

225
(5.15)

By computing the common description rate Qcd(c)
1
AND (see Table 5.2) of the AND-Branching

composition c1
AND illustrated in Figure 5.7(b) we obtain 31

70 .
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Example 55. (Common Description rate of OR-Branching Composition)
Let c1

OR be the OR-Branching composition illustrated in Figure 5.7(c). Assuming that each
OR-branch of c1

OR has the same probability, the overall robustness of such an OR-Branching
composition is defined by (5.16).

Qcd(c
1
OR) =

1

2
× (qcd(sl

1
1,2)) +

1

2
× (qcd(sl

1
1,4))

=
1

2
× (

5

9
) +

1

2
× (

5

9
)

=
5

9
(5.16)

iii) Matching Quality.

• The matching quality Qm of a sequential cSequence and AND-Branching semantic link
composition cAND is defined as a product of qm(slki,j).

Qm(cSequence) = Qm(cAnd)

=
∏

slki,j

qm(slki,j) (5.17)

Contrary to the robustness and common description rate of sequential and AND-
Branching composition, the overall matching quality of the latter composition is de-
pending on a nonlinear function of semantic links’ matching quality. All different (non
empty) matching qualities involved in the composition cSequence or cAND require to
be considered together in such a non linear aggregation function to make sure that
compositions that contains semantic links with low or high matching quality will be
more easily identified, and then pruned. Even if robustness and matching quality are
closed functional criteria, their aggregation functions are not. Therefore the aggregation
functions of robustness and matching quality focus on different properties.

• On the other hand the matching quality Qm of an OR-Branching semantic link com-
position cOR is a sum of qm(slki,j) weighted by pslki,j

.

Qm(cOR) =
∑

slki,j

qm(slki,j).psli,j
(5.18)

Therefore each conditional branch is weighted by pslki,j
i.e., the probability that the

semantic link slki,j be chosen at run time.

Example 56. (Matching Quality of Sequential and AND-Branching Composi-
tion)

Let c1
Sequence be the sequential composition illustrated in Figure 5.7(a). According to the

aggregation function illustrated in Table 5.2, the overall matching quality of such a sequential
composition is defined by

Qm(c1
Sequence) = qm(sl11,2 × qm(sl12,3)× qm(sl13,5)× qm(sl15,6)× qm(sl16,8)

=
1

2
× 1× 1×

1

2
×

1

4

=
1

16
(5.19)
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Composition
Quality Criterion

Construct
Robustness Common Descritption rate Matching Quality

Qr Qcd Qm

Sequential/ minslki,j
{qr(sl

k
i,j)}

1
|slki,j |

∑

slki,j
qcd(sl

k
i,j)

∏

slki,j
qm(slki,j)AND- Branching

OR-Branching
∑

slki,j
qr(sl

k
i,j).pslki,j

∑

slki,j
qcd(sl

k
i,j).pslki,j

∑

slki,j
qm(slki,j).psli,j

Table 5.2: Quality Aggregation Rules for Semantic Link Composition.

By computing the overall matching quality Qm(c1
AND) (see Table 5.2) of the AND-Branching

composition c1
AND illustrated in Figure 5.7(b) we obtain 3

8 .

Example 57. (Matching Quality of OR-Branching Composition)
Let c1

OR be the OR-Branching composition illustrated in Figure 5.7(c). Assuming that each
OR-branch of c1

OR has the same probability, the overall matching quality of such an OR-
Branching composition is defined by (5.20).

Qm(c1
OR) =

1

2
× (qm(sl11,2)) +

1

2
× (qm(sl11,4))

=
1

2
× (

1

2
) +

1

2
× (

1

2
)

=
1

2
(5.20)

Using the above aggregation functions, the quality vector of a practical semantic link com-
position is defined by (5.21).

Q(c) = (Qr(c), Qcd(c), Qm(c)) (5.21)

All the previous criteria ql,l∈{r,cd,m} are said “positive” [209] i.e., the higher the value Ql for

c the higher its lth quality.
Although the introduced quality model for semantic link composition has specific function

aggregations (i.e., Qr, Qcd, Qm which are based on heuristics), it is straightforward i) to adapt
these functions depending on the formalization requirements (e.g., other heuristics) and ii) to
extend the number of aggregation functions in case one considers more than three quality criteria.
For instance the quality Qcd of sequential, AND-Branching and OR-Branching compositions can
be computed by valuing the upper bound of common description of their semantic links.

5.2.3 Partial Independence of Quality Criteria and their Aggregation
Functions

The three introduced quality criteria used to value Web service composition focus on an unique
criterion of semantic composability i.e., the semantic link. Therefore Robustness, Common De-
scription rate and Matching Quality may seem highly dependent but they are not, especially
their aggregation functions.

On the one hand we address (not formally) the (relative) independence of these criteria. First
of all the independence of i) Robustness and Common Description rate criteria, ii) Matching
Quality and Common Description rate criteria are both established on individual semantic links,
hence on their composition. On the other hand the independence of iii) Matching Quality and
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Robustness is established on their composition. Indeed robustness and matching quality are
highly dependent since a semantic link with a matching quality higher than 3

4 is automatically
known as robust.

Robustness and Common Description Rate

The Robustness and Common Description Rate have no direct relationship between them. Indeed
a robust semantic link with very few common descriptions can be retrieved in a composition. In
the same composition, a non robust semantic link with a higher rate of common description can
be retrieved as well. This ensures their independence.

Common Description Rate and Matching Quality

In the same way as the previous pair of quality criteria, the common description rate has not
direct impact on the matching quality and vice versa.

Example 58. (Independence of Common Description Rate and Matching Quality)
As we remark the quality of matching of two semantic links can be very different (e.g., from
single to double for sl11,2 and sl31,2), and have a common description rate very close (see (5.2)
and (5.3)). In the same way we can also obtain a low level of quality of matching and a high
level of common description, and vice versa. Therefore such criteria are obviously independent.

Matching Quality and Robustness

Even if criteria qr, qm used to value a single semantic link have some dependences, their aggre-
gated values of compositions Qr, Qm for Sequential, and AND-Branching are independent since
their values are computed from different aggregation functions i.e., minimum for Qr, product for
Qm. Thus a composition c with a high robustness may have either a high or low overall matching
quality as well.

In the special case of a composition with only OR-Branching, the matching quality can be
inferred from robustness and vice versa. A way to overcome this special case is to consider, for
instance, the minimum of robustness values of the OR-Branching composition.

5.3 Semantic Link Selection

In the following we study the optimal composition9 as the selection of semantic links that optimize
the overall quality of the composition. First of all we briefly remind the main concepts and
limitations of the local selection based approach. Then we focus on the naive global approach
and its exhaustive search. Finally we overcome issues related to local and naive based approaches
by presenting a novel integer linear programming (IP) [204, 96] based global selection. This is
performed by a selection of semantic links without generating all practical compositions. This
approach i) further constrains semantic links, and ii) meets a given objective (a quality threshold).
Moreover such an approach avoids some obvious computational problems associated with the
naive approach.

9The relation of quality of composition with quality of services is not addressed in this thesis, but addressed
in Future Work.
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5.3.1 Local Selection Based Approach and its Limitations

In order to select the optimal practical composition, we can make the selection by local opti-
mization approach. Therefore the selection is locally optimized at each abstract semantic link
slAi,j of the composition. Roughly speaking the selection is done on candidate semantic links that
have the highest quality vector for each abstract semantic link. The selection process ends with
a practical composition wherein all semantic links are the best local links. Nevertheless the local
optimization approach has two shortcomings.

First, the local selection of a candidate semantic link slki,j enforces a specific service for both
tasks Ti and Tj . Such a selection constrains not only i) the services for Ti and Tj but also ii)
the output parameter of semantic link slki,j and iii) the input parameter of slki,j . Thus, these
constraints can no longer ensure to select neither the best links for its closest abstract semantic
links slAα,i and slAj,β nor the optimal semantic links based composition. In other words the
practical composition created by local optimization may not be the best semantic composition
we can choose. The quality value of the composition which is formed by semantic links, may not
be the global optimum composition.

Example 59. (A Drawback of the Local Selection Based Approach)
Suppose cA be the sequential composition of T1, T2 and T3 illustrated in Figure 5.8 (i.e., a part of
the abstract and sequential composition illustrated in Figure 5.7(a)). The best local selection for
abstract semantic link slA1,2 is sl21,2 for any quality criterion. The resulting composition c1 consists

of sl21,2 and sl22,3. This composition is valued by a quality vector (0, 4
5 , 1

4 ). A concurrent practical

composition c2 which consists of sl11,2 and sl12,3 is valued by a quality vector (0, 7
9 , 1

2 ). However c1

does not lead to the optimal composition for each criterion. Indeed the overall matching quality
value of the practical composition c1 is lower than the practical composition c2. In such cases the
local selection based approach is not appropriate.

T: Task
Candidate and Abstract
Semantic Link sl s: Web

Service

Candidates Candidates Candidates
CandidatesCandidates

Input Parameter Output Parameter
slki,j, slAi,j

T1 T2 T3

s2 s3s1

slA2,3slA1,2

s′2

s′′2

q(sl11,2) = (0, 5
9,

1
2)

q(sl32,3)

q(sl12,3) = (1, 1, 1)

q(sl22,3)

= (1, 1, 1) = (0, 3
5
, 1

4
)

= (0, 3
7
, 1

4
) = (1, 3

4,
3
4)

q(sl21,2)

q(sl31,2)

Figure 5.8: Tasks, Candidate Web Services and Semantic Links.

Secondly, during the selection of semantic links, the local optimization approach can consider
constraints on individual abstract semantic links, but it cannot consider global constraints, i.e.,
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constraints that cover multiple (or all) abstract semantic links in the composite service. Also,
although it is always able to select a semantic link with maximal common description rate or
maximal matching quality for each abstract semantic link, it fails when both the common de-
scription rate and maximal matching quality need to be considered at a global level. The global
quality constraints may be then not satisfied, leading to a suboptimal composition (could lead
to a global constraint violation). For instance, a global constraint with a common description
rate higher than 70% and a matching quality higher than 10% cannot be enforced.

In the rest of this section we study global based approaches that overcome the previous
shortcoming to select practical compositions.

5.3.2 Naive Global Selection Based Approach

For each abstract semantic link slAi,j in an abstract composition, there is a set of candidate se-

mantic links slk,1≤k≤n
i,j that can instantiate abstract semantic link slAi,j . Assigning a candidate

semantic link slki,j to each abstract semantic link slAi,j in an abstract composition leads to a pos-
sible practical composition. In the (naive) global selection based approach, all possible practical
compositions are generated (at least conceptually speaking) and the one which maximizes the
user’s preferences while satisfying the imposed constraints is then selected.

Example 60. (A Set of Possible Practical Compositions)
Assume an abstract composition cA illustrated in Figure 5.2. Moreover we assume all candidate
semantic links defined in Table 5.1. According to this Table we can obtain three practical com-
positions c1, c2 and c3 for cA. Each of these compositions requires the same semantic link for
abstract semantic links slA1,4, slA3,5, slA4,5, slA5,6, slA5,7, slA6,8, slA7,8 i.e., sl11,4, sl13,5, sl14,5, sl15,6, sl15,7,

sl16,8, sl17,8. On the contrary the semantic links required by slA1,2 and slA2,3 differs for c1, c2 and
c3. Indeed c1, c2 and c3 require respectively:

• sl11,2 for slA1,2 and sl12,3 for slA2,3;

• sl21,2 for slA1,2 and sl22,3 for slA2,3;

• sl31,2 for slA1,2 and sl32,3 for slA2,3.

Even if slA1,2 and slA2,3 can be both instantiated by three semantic links, we do not obtain nine
potential practical compositions of Web services. Indeed, defining a service for a given task (e.g.,
s2 for T2) directly constrains the incoming and outgoing semantic links (e.g., sl11,2 for slA1,2 and

sl12,3 for slA2,3).

In the naive approach the selection of a practical composition relies on the application of a
Multiple Criteria Decision Making technique (MCDM) [85] on a quality matrix

Q = (Qλ
l ; 1 ≤ λ ≤ p, l ∈ {r, cd,m}) (5.22)

of the abstract composition. In this matrix, a row λ corresponds to the quality vector of a
possible practical composition (actually the λth practical compositions among the p potential
compositions) for the abstract composition. The previous vector has been computed by merging
the quality vectors of some candidate semantic links. This has been achieved by means of aggre-
gation functions illustrated in Table 5.2. Each column l ∈ {r, cd,m} of the matrix corresponds
to a quality dimension. They respectively refer to Robustness, Common Description rate and
Matching Quality.



CHAPTER 5. OPTIMIZING SEMANTIC LINK BASED WEB SERVICE COMPOSITION148

Example 61. (Quality Matrix of a Set of Possible Practical Compositions)
The quality matrix Q of compositions c1, c2 and c3 illustrated in Example 60 is defined as follows:

Q =

(

Q1
r Q1

cd Q1
m

Q2
r Q2

cd Q2
m

Q3
r Q3

cd Q3
m

)

=

(Qr(c
1) Qcd(c

1) Qm(c1)
Qr(c

2) Qcd(c
2) Qm(c2)

Qr(c
3) Qcd(c

3) Qm(c3)

)

(5.23)

i.e.,

Q =

(

0 0.6189 0.0087
0 0.6227 0.0058
0 0.5875 0.0051

)

(5.24)

From this matrix , the naive process of selection requires a step of Simple Additive Weighting
(SAW) [85] to select an optimal practical composition. The two phases required by SAW are:

1. Scaling Phase. We first scale the values of each quality criterion. Since the suggested
criteria are positive (see Section 5.2.2), quality values Qλ

r , Qλ
cd, Q

λ
m are scaled according to

(5.25).

∼
Q

λ

l =

{

Qλ
l −Qmin

l

Qmax
l

−Qmin
l

if Qmax
l −Qmin

l 6= 0
l ∈ {r, cd, m}

1 if Qmax
l −Qmin

l = 0
(5.25)

In (5.25), Qmax
l is the maximal value of the lth quality criteria whereas Qmin

l is the minimal
value of the lth quality criteria. This scaling phase complexity is linear in the number
of abstract semantic links in the composite service. By applying this equation on Q, we
obtain a matrix

∼
Q= (

∼
Q

λ

l ; 1 ≤ λ ≤ p, l ∈ {r, cd,m}) (5.26)

in which each row
∼
Q

λ

corresponds to a practical composition cλ while each column
∼
Ql

corresponds to a quality dimension.

Example 62. (Scaling Phase Illustration)
Here we apply equation 5.25 to quality matrix Q previously computed in Example 61. There-

fore we obtain
∼
Q in equations (5.27) and (5.28).

∼
Q=













∼
Q

1

r

∼
Q

1

cd

∼
Q

1

m
∼
Q

2

r

∼
Q

2

cd

∼
Q

2

m
∼
Q

3

r

∼
Q

3

cd

∼
Q

3

m













(5.27)

i.e.,

∼
Q=

(1 0.8920 1
1 1 0.1944
1 0 0

)

(5.28)

Note that we can compute the value of Qmax
l and Qmin

l in these equations without gener-
ating all possible practical compositions. For example, in order to compute the maximum
common description rate (i.e., Qmax

cd ) of all the practical compositions, we select the seman-
tic link with the highest rate of common description for each abstract semantic link slAi,j
and sum up all these rates to compute Qmax

cd . The computation cost of Qmax
l and Qmin

l is
thus polynomial.
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2. Weighting Phase. The following formula is used to compute the overall quality score for
each practical composition cλ:

Score(cλ) =
∑

l∈{r,cd,m}

(∼
Q

λ

l × ωl

)

(5.29)

ωl ∈ [0, 1] is the weight assigned to the lth quality criterion and
∑

l∈{r,cd,m} ωl = 1. In this

way preferences on quality of the desired practical compositions (i.e., balance the impact
of the different criteria) can be done by simply adjusting ωl e.g., the Common Description
rate could be weighted higher.

The global naive approach will choose the practical composition which has the maximal value
of Score(cλ) (i.e., max(Score(cλ))). If there is more than one practical composition which has
the same maximal value of Score(cλ), then a practical composition will be selected from them
randomly.

5.3.3 Integer Programming Based Global Selection

The naive global selection approach by exhaustive searching outlined above requires the gener-
ation of all possible practical compositions. Let |slAi,j | be the number of abstract semantic links
in a composition and n be the minimal number of candidate services by task, the total number

of practical semantic link compositions is at least n2.|slAi,j |, making this approach impractical for
large scale compositions.

Accordingly, we propose a method based on Integer Programming for selecting an optimal
practical composition without generating all possible compositions. The main idea is as follows:

The suggested problem requires an objective function maximizing the overall quality
subject to semantic links constraints.

In the following we suggest to adopt global optimization to select the practical composition
to overcome the latter issues.

There are three inputs in an IP (Integer linear Programming) problem: an objective function,
a set of integer decision variables (restricted to value 0 or 1), and a set of constraints (equalities or
inequalities), where both the objective function and the constraints must be linear. IP attempts
to maximize or minimize the value of the objective function by adjusting the values of the
variables while enforcing the constraints. The outputs of an IP problem are as follows:

• the maximum (or minimum) value of the objective function;

• the values of variables at this maximum (minimum).

The problem of selecting an optimal practical composition is mapped into an IP problem.

Objective Function

Here we suggest to first formalize the objective function of the IP problem. In the same way
as the naive approach, the robustness, common description rate and matching quality values of
the p potential practical compositions i.e., Qλ,1≤λ≤p

l,l∈{r,cd,m} have been first determined by means of

aggregation functions in Table 5.2. We also rely on MCDM and SAW techniques to determine
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the desirability of a practical composition. In addition we use the function (5.30) to formalize
the objective function of the IP problem. This is based on (5.25) and (5.29).

max
1≤λ≤p

(

∑

l∈{r,cd,m}

(∼
Q

λ

l × ωl

)

)

(5.30)

where ωl ∈ [0, 1] and
∑

l∈{r,cd,m} ωl = 1. ωl is the weight assigned to the lth quality criterion.
The objective function will be the score of the best practical composition of Web services i.e.,

the best weighted sum of the scaled values of quality dimension.

Integer Variables & Constraints of IP Problem

The remainder of this subsection describes the integer variables and constraints of the IP problem.
For every candidate semantic link slk,1≤k≤n

i,j of an abstract semantic link slAi,j , we include

an integer variable yk
i,j in the IP problem indicating the selection or exclusion of semantic link

slki,j . By convention yk
i,j is 1 if the kth candidate semantic link slki,j is selected to concretize

slAi,j between tasks Ti and Tj , 0 otherwise. The semantic links which are selected to achieve
abstract semantic links of the abstract composition are the outputs of the IP problem. They will
form an optimal practical composition satisfying (5.30) and meeting the following constraints:
Allocation Constraint, Incompatibility Constraint, Robustness Constraint, Common Description
Rate Constraint, Matching Quality Constraint, Local Constraint.

• Allocation Constraint.

For each abstract semantic link slAi,j between two tasks Ti and Tj , there is a set of potential

semantic slki,j that can be assigned (allocated) depending on selected Web services in Ti and
Tj . However only one candidate semantic link should be selected for each abstract semantic

link slAi,j between tasks Ti and Tj . Given that the integer variables yk,1≤k≤n
i,j denotes the

selection of semantic link slk,1≤k≤n
i,j for abstract semantic link slAi,j , the constraint formalized

in (5.31) must be satisfied:
n
∑

k=1

yk
i,j = 1, ∀slAi,j (5.31)

where n is the number of candidate semantic links for slAi,j .

Example 63. (Allocation Constraint)
Suppose the abstract sequential composition of tasks T1, T2 and T3 illustrated in Figure 5.8.
Three candidate semantic links can be applied between tasks T1 and T2 i.e., sl11,2, sl21,2 and
sl31,2. Since only one candidate semantic link between two tasks will be selected, we have
the following allocation constraint:

y1
1,2 + y2

1,2 + y3
1,2 = 1 (5.32)

In the same way we obtain the allocation constraint

y1
2,3 + y2

2,3 + y3
2,3 = 1 (5.33)

for abstract semantic link slA2,3.
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• Incompatibility Constraint.

Since the selection of a candidate semantic link slki,j for slAi,j enforces a specific Web service
for both tasks Ti (e.g., si) and Tj (e.g., sj), the number of candidate semantic links con-
cretizing the closest abstract semantic links of slAi,j (i.e., slAα,i and slAj,β) is highly reduced.

Indeed the candidate semantic links for slAj,β have to use only one of the output parameters

of sj . Therefore the semantic link used by abstract semantic link slAj,β is defined by slk2

j,β

i.e., 〈sj , SimT (Out sj , In sβ), sβ〉
k2 . In the same way the candidate semantic links for slAα,i

have to use only one of the input parameter of si. Therefore the semantic link used by
abstract semantic link slAα,i is defined by slk1

α,i i.e., 〈sα, SimT (Out sα, In si), si〉
k1 . Figure

5.9 illustrates this constraint.

A constraint (5.34) for each pair of incompatible candidate semantic links (slk1
i,j , sl

k2

j,β) is
required in our IP problem. Such a constraint is formalized as follows:

yk1
i,j + yk2

j,β ≤ 1, ∀slAi,j ∀sl
A
j,β (5.34)

Example 64. (Incompatibility Constraint)
Suppose the composition in Figure 5.8. According to (5.34), the six incompatibility con-
straints are:

i) y1
1,2 + y2

2,3 ≤ 1 iii) y2
1,2 + y1

2,3 ≤ 1 v) y3
1,2 + y1

2,3 ≤ 1
ii) y1

1,2 + y3
2,3 ≤ 1 iv) y2

1,2 + y3
2,3 ≤ 1 vi) y3

1,2 + y2
2,3 ≤ 1

Indeed (sl11,2, sl
2
2,3) is a pair of incompatible candidate semantic links since i) the selection

of one semantic link for slA1,2 reduces the set of possible service for T2, hence the set of

possible semantic links for slA2,3 and ii) task T2 cannot be performed by two distinct services
sa and sb.

In other words either sl11,2 or sl22,3 is selected, but not both i.e., either y1
1,2 or y2

2,3 is equal
to one but not both.

We have the same explanation for the five other constraints.

T: Task
Candidate, Abstract
Semantic Link sl

Candidates Candidates
Candidates

Candidates
Candidates

Candidates
Candidates

Incompatibility ConstraintsInput Parameter Output Parameter s: Web
Service

sβ

slki,j, slAi,j

Tα Ti

sα

slAα,i

si

Tj

sj

slAi,j

sl1i,j

slki,j

sl1α,i

slk1

α,i sy

TβslAj,β

slk2

j,β

sl2j,β

sx

sv

su

st

sz

Constraints imposed by selection of slki,j Selected Candidate Semantic Link

Figure 5.9: Illustration of an Incompatibility Constraint.

Besides (5.31) and (5.34), IP constraints on each quality criterion of the whole abstract
composition are required. Here, we focus on the sequential and AND-Branching compositions,
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but a similar (straightforward) formalization for OR-Branching compositions and a fortiori their
combinations (depending on the target problem) is required.

• Robustness Constraint.

Let rk
i,j be a function of (i, j, k) representing the robustness quality of a semantic link

slki,j . Constraint (5.35) is required to capture the robustness quality of a semantic link
composition.

Qr =
1

|slAi,j |

∑

slAi,j

n
∑

k=1

rk
i,j .y

k
i,j (5.35)

An additional constraint of (5.35) i.e., (5.36) can be used to constrain the practical com-
position to be robust. This hard constraint ensures to compute robust composition of Web
services.

1

|slAi,j |

∑

slAi,j

n
∑

k=1

rk
i,j .y

k
i,j = 1 (5.36)

• Common Description Rate Constraint.

Let cdk
i,j be a function of (i, j, k) representing the Common Description rate of a link slki,j .

Its constraint is defined in the same way as (5.35) and (5.36) by replacing Qr by Qcd, rk
i,j

by cdk
i,j . Therefore:

Qcd =
1

|slAi,j |

∑

slAi,j

n
∑

k=1

cdk
i,j .y

k
i,j (5.37)

An additional constraint of (5.37) i.e., (5.38) can be used to constrain the common descrip-
tion rate of the practical composition to not be lower than L.

1

|slAi,j |

∑

slAi,j

n
∑

k=1

cdk
i,j .y

k
i,j ≥ L, L ∈ [0, 1] (5.38)

• Matching Quality Constraint.

Among the criteria used to select semantic links, the Matching quality is associated with
a nonlinear aggregation function (see Table 5.2). A transformation in a linear function
is then required to capture it in the IP problem. Assume mk

i,j be a function of (i, j, k)

representing the Matching quality of semantic link slki,j . The overall Matching quality of
the practical composition is formalized by (5.39).

Qm =
∏

slAi,j

(

n
∏

k=1

(mk
i,j)

yk
i,j

)

(5.39)
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The Matching quality constraints can be linearised by applying the logarithm function ln.
The equation (5.39) then becomes:

ln(Qm) =
∑

slAi,j

(

n
∑

k=1

ln(mk
i,j).y

k
i,j

)

(5.40)

since
∑n

k=1 yk
i,j = 1 and yk

i,j = 1 or 0 for each semantic link slki,j . ln(Qm) is formalized to
capture the Matching quality in our work.

Changing a nonlinear constraint in its linear form requires also to update and to linearise
the objective function. Therefore, equation (5.41) is replaced by equation (5.42) in (5.25).

Qλ
m −Qmin

m

Qmax
m −Qmin

m

(5.41)
ln(Qλ

m)− ln(Qmin
m )

ln(Qmax
m )− ln(Qmin

m )
(5.42)

• Local Constraint.

The IP problem can also include local selection and encompass local constraints. Such
constraints can then predicate on properties of a single semantic link and can be formally
included in the model. In case a target semantic link slAi,j requires its local common
description rate to be higher than a given value v, this constraint is defined by (5.43).

n
∑

k=1

cdk
i,j .y

k
i,j > v, v ∈ [0, 1] (5.43)

Local constraints such as (5.43) can be applied on any quality criterion. Such constraints
are enforced during the semantic links selection. Those which violate the local constraints
are filtered from the list of candidate semantic links, reducing the number of variables of
the model.

The proposed method for translating the problem of selecting an optimal execution composi-
tion into an IP problem is generic and, although it has been illustrated with criteria introduced
in Section 5.2, other criteria of semantic quality to value semantic links can be accommodated.

Computational Complexity

The computational cost of local optimization is polynomial whereas the optimization problem
formulated in Section 5.3.3, which is equivalent to Integer Linear Programming and multiple
knapsack problems [196], is NP-hard [43, 155]. In case the number of abstract and candidate
semantic links in the system is expected to be very high (the order of millions or higher), finding
the exact optimal solution to the optimization problem takes exponential run-time complexity
in the worst case, and is not practical. Instead our approach scales well by running a heuristic
based IP solver wherein hundreds of abstract and candidate semantic links are involved (see the
Experiments Chapter 7 and the Section 7.3.3). This is a suitable upper bound for practicable
industrial applications. The computational performance of our approach can be further improved,
for instance, by dividing the problem into several global selection problems.
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5.4 Conclusion

5.4.1 Synthesis

Limitation and Future Work

Since several practical compositions maximizing the overall quality of semantic links may be com-
puted, the main direction for future work is to consider also optimality for quality of service to
further optimize them. The latter notion of optimality for quality of service is, at least in part,
driven by empirical analysis of usage of compositions rather than by comparing input-output
specifications.

Another issue with global planning is that users are required to provide relatively complex
inputs (i.e., global constraints and trade offs).

Finally it would be interesting to focus on a process that reduces the number of services
(ideally to one) in any composition, then reducing the number of semantic links and enhancing
the semantic link based composition. This can be performed by discovering more general services
that achieve a set of (or cluster of) tasks in the abstract composition.

Concluding Remarks

This Chapter has been directed to meet a main challenge facing semantic links based web service
composition i.e., how effectively compute optimal compositions of semantic links. Starting from
an initial set of web services, the suggested approach aims at selecting web services and maxi-
mizing the overall quality of their inter-connections by means of their semantic links according
to a goal to achieve. The requirement ROptimization is ensured by this approach.

To this end we have first presented a general and extensible model to evaluate quality of
both elementary and composition of semantic links. The latter model considers Robustness,
Common Description Rate and Matching Quality as main attributes to such an evaluation of
semantics. Therefore, contrary to most of approaches which focus on non functional criteria
such as the quality of service (QoS), we consider the quality of semantic links as an innovative
and distinguishing functional criterion to estimate the overall semantic quality of web service
compositions. The latter quality is measured along two perspectives:

• Quality Semantic Criteria. As we discussed in earlier section, semantic quality of
composite service is measured by a set of quality criteria. And since there are often trade offs
among different quality criterion (e.g., Common Description Rate and Matching Quality),
it is important that the system is able to find a combination of these dimensions that fits
the user’s preferences.

• Ability to satisfy user’s requirements. Although good semantic quality composite
service requires optimal semantic quality of links, the satisfaction of end users’ constraints
is an equally important aspect. There are two kinds of constraints: constraints on a single
abstract semantic link and constraints on multiple abstract semantic links. The system’s
ability to accept both kinds of constraints is key to satisfying user requirements.

Then the limitations and the inappropriate status of the local based approach has been pre-
sented. Therefore we determine the best concretization of a composite service as a problem of
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global semantic link selection. First we focused on a naive global approach as well as its limi-
tations due to an expensive algorithm. Towards such issues the latter problem is formalized as
an optimization problem aiming to i) maximize an objective function of the available semantic
links attributes (i.e., functional quality criteria) and ii) meet the constraints specified for some
of the attributes. In particular, constraints of allocation and incompatibility between semantic
links are required in such a problem. Moreover there are the global constraints, i.e. assertions on
the overall semantic quality attribute values. Local constraints, i.e. constraints on each abstract
semantic link composing the composite service, need to be checked when choosing the set of
candidate semantic link to bind. Towards this issue Integer Programming techniques are used to
compute optimal practical composition of services. However other global optimization techniques
[94] such as genetic algorithms, evolutionary algorithms or other heuristics based approaches can
be applied to achieve our problem.

Our global selection based approach is not only i) more suitable than approaches in which the
semantic links are selected individually and locally in the composite service but also ii) outper-
forms the naive global approach. As we will see in Section 7.3.3 of Chapter 7 the experimental
results show an acceptable computation cost of the IP-based global selection for a high number
of abstract and candidate semantic links.

Table 5.3 describes in details the requirements supported by the model introduced in Chapter
5.

5.4.2 Our Contribution in a Nutshell

In this part (Part II), we addressed Web service composition according to six meta requirements:

RComposition
Automation , RExpressivity, RComposability, RFlexibility, ROptimization, RApplicability.

Towards the issue of automated composition (RComposition
Automation ), we presented two complemen-

tary AI planning based composition approaches that deals with different levels of Web service
description (RExpressivityService) and different composability criteria (RComposability). In par-
ticular we further studied the requirement RComposability along two composability criteria i.e.,
semantic links (RSemantic

Composability) and causal laws (RCausal
Composability) to achieve automation of Web

service composition.

The set of computed compositions, also known as composite Web services are defined with
expressive control constructs such as sequence, non determinism and concurrency constructs
(RComposition

Expressivity). The requirement RComposition
Applicability is studied in Chapter 7.

Finally a process of optimization (ROptimization) is suggested to select optimal composition
in the latter set of composite Web services.

The composition and optimization approaches satisfy requirement RFlexibility by focusing on
upgradeable models. The requirement RService

Applicability is supported by interfacing our approach by
standard proposals of Section 1.3.2.

Table 5.4 describes in details the requirements supported by our overall approach introduced
in the contribution part (i.e., Chapters 3, 4 and 5 of Part II).
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Requirement Ri Details
Chapter 5

Section 5.2 Section 5.3

Formalism

RComposition
Automation

7
Composition
Mechanism

In this Chapter, input and output parameters are
required (with semantic annotation). However

RService
Expressivity

preconditions and effects can be further considered
to ensure possible and valid compositions

of Web services. Information-providing and World-

RExpressivity
altering Web services.

The supported control
constructs are as follows:

RComposition
Expressivity 7 sequence, non

determinism, conditional
and concurrent compositions.

Semantic links ar required in this approach.
In particular, their valuation is based on

RSemantic
Composability

matchmaking functions i.e., Exact, PlugIn, Subsume,
RComposability Disjoint, Intersection, Abduction and Difference.

However this set can be further extended.
Computation at Design Time

RCausal
Composability Causal laws are supported by the approach.

Supported by the (flexible and extendable)
RFlexibility semantic quality model for elementary semantic

links and their composition (heuristics-based).

Local and global based
optimization techniques.

Semantic links based. Integer Programming techniques

ROptimization
More specially their are used to compute optimal

Robustness, Common practical composition of services.
Description rate, However other global

and Matching Quality optimization techniques [94]
can be applied

Applicable to the OWL-S service profile, WSMO
RService

Applicability service capability, SWSO Inputs/Outputs or

RApplicability SA-WSDL (see Section 1.3.2 for further details).

RComposition
Applicability 7

Table 5.3: Table of Requirements supported by Chapter 5. Legend: 7 = not addressed.
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Requirement Ri Details
Part II

Chapter 3 Chapter 4 Chapter 5

Formalism
Independent or

7
Situation Calculus

7
R

Composition
Automation Composition

(Robust) Ra4C or

Mechanism
sslGolog +

Backward Chaining

Semantic Annotated
Semantic Annotated Input, Output

Input and Output
parameters, preconditions and effects.

RService
Expressivity parameters.

Information-providing and World
Information-providing

altering Web services.
services.

RExpressivity The SLM model supports sequence composability Sequential,
of services, non determinism choice of conditional

R
Composition
Expressivity

of Web services and
Sequential and

non determinism
concurrent compositions

conditional
and concurrent

of Web services.
compositions.

compositions
of Web services.

Semantic dependence through (valid and robust)
semantic links. Valuation with basic matchmaking

RSemantic
Composability

functions i.e., Exact, PlugIn, Subsume, Disjoint
RComposability and extra functions i.e., Intersection, Abduction

and Difference to compute robust semantic links.
Computation at Design Time.

Supported by compositions computed with
RCausal

Composability
7 sslGolog. See Section 4.2 for further

details.

Supported by
Supported by the Supported by the

RFlexibility the SLM model.
semantic link and semantic (link)

and causal law axioms. quality model.

ROptimization 7
Semantic links

based.

Applicable to the OWL-S service profile, WSMO service capability,
SWSO Inputs/Outputs (see Section 1.3.2 for further details).

RService
Applicability SA-WSDL

SA-WSDL
SA-WSDL

RApplicability specification.
is depending

specification.
on the approach.

R
Composition
Applicability

BPEL4WS through the BPEL Rendering Component.
(See Table 7.1 and Section 7.1.9 of Chapter 7.)

Table 5.4: Table of Requirements supported by the Contribution Part (i.e., Part II). Legend: 7

= not addressed.
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Chapter 6

Industrial Scenarios in Use

In this Chapter we present three different scenarios wherein our approach of semantic Web ser-
vice composition described in the previous chapters (Part II) has been integrated.

These three scenarios respectively refer to:

• a Telecommunication scenario which has been conceived as an hot, reference and best
practice (for service-oriented applications) by business units of France Telecom
R&D (especially due to some key requirements). This first scenario is running in the
information system of France Telecom.

• an E-Tourism scenario. This scenario has been studied and implemented in the European
project and Network of Excellence Knowledge Web1.

• an E-HealthCare scenario, which is has been conceived with some R&D engineers in France
Telecom.

In our Ph.D work, we focused on these scenarios since they refer to different application do-
mains (showing the adaptation of our approach to multiple domains) wherein i) the number of
semantic Web services is large, ii) the domain ontologies can be easily discovered or built, iii) the
computation of robust or valid composition at hand is difficult, and iv) the return on investment
can be quite fast.

Our system SME3-Pro2 (which consists in naive Discovery, Composition and Execution) pre-
sented along this Ph.D report is implemented and interacts with Web services dedicated to these
different scenarios. Details about the experiments evaluation of our approach on these three
different scenarios are presented in Chapter 7.

In the remainder of this Chapter we present in more details i) an introduction of each sce-
nario, ii) the suggested approach , iii) their motivation and description, and iv) their open issues
and challenges.

1http://knowledgeweb.semanticweb.org/
2cf. the SME3-Pro (SeMantic wEb sErvicE PROject) Open Source Project licensed under the GPL license

available at https://sws-orangelabs.elibel.tm.fr/ that is the general framework in which we intend to release the
various prototypes produced by our research in area of Semantic Web services.
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Note that we focus on the Telecommunication scenario since i) it has been illustrated with our
composition approach along this Ph.D report (Web services together with its domain ontology
have been first presented in Chapter 1), and ii) it is a real scenario in use in the information
system of France Telecom.

6.1 A Telecommunication Application: Internet Packages

The approach presented in this work is being exploited in the VoIE (Voice over Ip Expertise)
Project, conceived by France Telecom R&D.

In the domain of Internet packages, commercial offers proposed by Telecommunication oper-
ators are used to be composed of a set of more technical, optional offers. From now Telecom-
munication operators such as France Telecom suggest only a few restricted set of pre-existing
commercial offers. These offers are well known as All in one or again Global Internet Access3.
The end users can then choose a pre-existing commercial offer among the available offers. Even if
designing pre-defined packaged offers have at least one significant benefit for Telecommunication
operators i.e., ease to maintain, this approach is far from convenient for end users. Indeed this set
of pre-existing commercial offers does not still satisfy the end user constraints and preferences.
Moreover such a method is far from being convenient to support dynamic generation of Internet
packages.

6.1.1 Motivation

The main motivation of our work is to give to the end user the possibility to create their own
commercial offers according to their real needs, without any kind of assistance. Such an issue is
really challenging in the domain of Telecommunication since it addresses other industrial issues
related to dynamic and preference-based packaging. Moreover our proposal aims at improving
the return on investment (ROI) of any Telecommunication operator by reducing the Time-to-
product (dynamic and automated process), Time-to-market, with lower price (repetitive tasks),
better quality, better precision, better end-user satisfaction (no constraint-based packages), the
whole with more creativity.

In the case under consideration the result of a dynamic and automated generation of com-
mercial offers is a complete customized offer wherein the end user is only in charge of selecting
the offer(s) she wants to subscribe. For instance the (non exhaustive set of) offers may be as
follows:

• ADSL eligibility (ELIG);

• LiveBox;

• Voice over IP (VOIP);

• Address Book (AB);

• Visiophone (VP);

• Television over IP (TVIP);

• Internet telephony (IPTV);

3http://www.orange.com/english/home.php
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• Voice Messaging (VM);

• High Definition television (HDTV);

• High speed WiFi (HSW);

• Email service (EMS);

• Virtual Drive (VD).

6.1.2 Our Approach

With the aim of dynamically generating customized packages each of the latter offers are inter-
faced by a semantic Web service (e.g., IPTVService interfaces the IPTV offer), facilitating flexible
and scalable applications through the loosely coupled features of Web services. The semantic
features of semantic Web services enable us not only to represent knowledge and improve expres-
sivity levels of their functional parameters i.e., IOPEs, but also to reason about those parameters
and their potential semantic connections. Here we focus on this last aspect and will provide some
practical examples of our approach. The ultimate goal is to provide a correct composition of the
latter Web services in regard to their semantic connections.

According to a semantic context, Figure 1.4 describes a subset of defined concepts in the
ALE domain ontology T (305 defined concepts and 117 object properties) used to describe the
domain. All input and output parameters of semantic Web services refer to concepts of the
ontology T . The description Logic (DL) ALE is used to model our domain due to its interesting
trade-off between expressivity and complexity. This scenario together with the following two use
this same schema. In the following example, we consider six Web services i.e., a subset of the 35
Web services included in the real scenario:

• AdslEligibility-, AdslEligibility and AdslEligibility+, that from a PhoneNum, a
ZipCode and an Email address, return respectively the SlowNetworkConnection4, Net-
workConnection and FastNetworkConnection5 of the desired zone. These three Web
services have been first introduced in Example 4 of Chapter 1;

• VoiceOverIP, that from a PhoneNum and a SlowNetworkConnec-
tion, returns the VoIPId of the ADSL line a Telecommunication operator needs to install
the line;

• TvOverIP, that from a PhoneNum and a FastNetworkConnection, returns a serial number
of a VideoDecoder required to access video over IP;

• a LiveBox service returns the Invoice of the commercial offer the user requested, depending
on a PhoneNum, IPAddress and serial number of a Decoder.

We reduced the number of 35 services to 6 service by simply reducing the number of offer the
end-user can select. This set is very flexible and can be adapted with further optional offers.

Example 65. (A Motivating Illustration)
Suppose a client wants to customize and create her own internet package from a set of available
technical and optional offers.

The client is then in charge of selecting the offer she is interesting in, for instance,

4- since the connection returned by AdslEligibility- is slower than AdslEligibility+.
5+ since the connection returned by AdslEligibility+ is faster than AdslEligibility-.
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• AdslEligibility to retrieve information about her connection details;

• VoiceOverIP for Internet telephony;

• TvOverIP to obtain the Television access via her internet connection;

• and LiveBox to get the invoice and technical details of her customized internet package.

Our goal consists in retrieving a correct composition i.e.,

A partial order amongst the selected offers (i.e., services) since the selected offers
required to be ordered.

Indeed some constraints between services are in place to perform the customized internet
package. For instance the service AdslEligibility is required to be executed first since such a
service is required to obtain technical details about the internet connection the user could receive.
Then the services VoiceOverIP and TvOverIP might be launched depending on the result of the
AdslEligibility service. Finally the LiveBox service is in charge of aggregating information
provided by the VoiceOverIP and TvOverIP services to calculate and send the final invoice to the
client.

The latter partial order is defined by means of semantic constraints between services. In
this scenario the semantic constraints are mainly guided by the functional parameters of services
i.e., input and output parameters. Since the main idea is to customize commercial offers in an
automated way, it seems conceivable to suggest a solution that computes compositions of services
in a dynamic way, depending on the selected offers.

6.1.3 Open Issues and Challenges for any Telecommunication Operator

In such a scenario automation of Web service composition is a real and still an open issue, not
only for France Telecom but also for any other Telecommunication operator since the number of
offers i.e., Web services the user can choose is more and more increasing.

Even if this number of services is relatively reduced in our scenario, it can be conceivable that
a service be offered by any Telecommunication operator or other service provider.

In this way the end-user will be able to compose its own internet package from varied services
providers. Such cases will cause a duplication of services (from different sources) involved in the
compositions, hence an exponentially increase of the number of service compositions. Indeed the
more offers the harder the composition will be. That is why we suggest to compose automatically
Web services depending on the user requirements (through the commercial offer she subscribed)
and the service compatibilities (i.e., through their semantic connections).

6.2 An E-Tourism Application: The Virtual Travel Agency

This reference scenario takes some inspiration from the Virtual Travel Agency scenario (VTA)
proposed in Deliverable [166] of the European project and Network of Excellence Knowledge
Web. Here we rephrase and extend it in order to better highlight the need for composing Web
services at semantic level, and the added value of doing so.
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6.2.1 Motivation

The Virtual Travel Agency (VTA) is an e-Tourism service provider which offers travel book-
ing services to the end user by using and interacting with other, more basic e-Tourism service
providers.

The functionality of the VTA is that of a traditional travel agency:

• getting a request from a customer;

• dealing with different e-Tourism providers to put together an appropriate offer covering the
customer request;

• arranging all the booking (and payment) with the different providers;

• and transparently offering the final trip arrangement to the customer.

While conceptually simple, this scenario, in its whole description, is quite complex; even in
a very simple situation where the user only intends to consider trains and flights as possible
transportation means, and where the administration only may provide credit cards and cheques
as possible payment means.

6.2.2 Our Approach

In the same way as the Telecommunication scenario, the problem is mapped to a composition of
semantic Web services. Therefore functional parameters of services are described by DL concepts
(for instance, Trip, Itinerary, Date, TransportationMean, Price, PaymentMean, CarrierName,
Time, Payment Authorization) , here in an FL0 (less expressive than ALE) domain ontology
(here 60 defined concepts and 19 object properties). Figure 6.1 described a sample of the ontology
we used in the scenario. We briefly describe five Web services among the 45 services involved in
the implemented scenario.

• Two Travel information services: one regarding trains, the other flights; each of these,
receiving a request for a specific destination, returns a possible ticket to be bought, com-
pleted with its price;

• The Administration service, which represents the employer’s administration; once received
a request for a work trip and a possible ticket, it evaluates it, and if the budget is sufficient
and the request is consistent, provides either a cheque or a credit card with which the ticket
can be booked;

• Two Payment services, one handling credit cards, the other handling cheques.

Here we assume that the available e-Tourism providers should be located dynamically by the
VTA, with no need for prior agreements, and that the business process of the VTA should be
composed dynamically based on the request received and the available providers.

Example 66. (A Motivating Illustration)
The customer wants to make a trip to a given location (e.g., Rennes, France) for a given period
of time (e.g., staying there from August 10 to August 15). The customer sends his request to the
VTA, which has to build a package including a travel to/from Rennes and an accommodation for
all the nights spent in Rennes. Clearly, the hotel has to be booked according to the flight (i.e., if
the flight arrives on August 9, then the hotel has to be booked from August 9).
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Location ⊑ ⊤, Date ⊑ ⊤, Time ⊑ ⊤, CarrierName ⊑ ⊤
PaymentMean ⊑ ⊤, TransportationMean ⊑ ⊤, Price ⊑ ⊤
Trip ⊑ ∀from.Location ⊓ ∀to.Location ⊓ ∀when.Date

⊓∀by.TransportationMean
Ticket ⊑ ∀from.Location ⊓ ∀to.Location ⊓ ∀when.Date

⊓∀time.T ime ⊓ ∀with.CarrierName ⊓ ∀cost.Price
BookedT icket ≡ Ticket ⊓ ∀paid with.PaymentMean
PaymentAuthorization ⊑ ∀with.PaymentMean ⊓ ∀cost.Price
Train ⊑ TransportationMean
F light ⊑ TransportationMean
TrainTrip ≡ Trip ⊓ ∀by.Train
F lightTrip ≡ Trip ⊓ ∀by.F light
TrainT icket ⊑ Ticket
F lightT icket ⊑ Ticket
CreditCard ⊑ PaymentMean
Check ⊑ PaymentMean
CreditCardAuthorization ⊑ PaymentAuthorization⊓ ∀with.CreditCard
CheckAuthorization ⊑ PaymentAuthorization ⊓ ∀with.Check

Figure 6.1: Terminology FL0 for the E-Tourism Use Case.

The VTA should take care of locating the necessary tourism service providers (e.g., suitable
flight providers for the trip, hotels in Rennes...) and contact them. Finally, a suitable offer will
be returned to the customer and upon acknowledgement either both the accommodation and the
travel shall be booked or none, which requires a weak form of transactionality for the composed
service.

6.2.3 Open Issues and Challenges

In such a scenario automation of Web service composition is an open issue, not necessarily
for Telecommunication operators but more for service providers, as well as contents providers.
In the same way as the Telecommunication scenario the more services the more complex is
the composition process. Moreover expressivity of services (i.e., complexity of their functional
descriptions) has a crucial impact on the composition performance (in terms of computation
time).

These challenging issues are addressed with an automated process of composition.

In addition to the latter issue, issues related to trust and reputation management (e.g., by
regulating the service requester’s access to the service provider), negociation, security need to be
studied in further details.

6.3 An E-HealthCare Application

This last introduced scenario takes place in the e-HealthCare area. In such a context we focus on
the medical devices. A medical device is an object which is useful for diagnostic or therapeutic
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purposes. The medical devices have become an increasingly important health care area in rela-
tion to their impact on health and health care expenditure. The sector covers some 8000 types of
products, ranging from simple bandages and spectacles, through life maintaining implantable de-
vices, equipment to screen (e.g., high-tech sphygmomanometer) and diagnose disease and health
conditions, to the most advanced diagnostic imaging and minimal invasive surgery equipment.

In this scenario we are interested on the latter sophisticated medical devices i.e., devices that
return some (medical, analysis) results depending on some parameters.

Moreover we assume (wrongly now but rightly in the very next future) that such devices are
all electronic, not expensive and easy to operate by any end-users (such as patients their family).

6.3.1 Motivation

The idea behind this scenario is as follows “Providing a distant follow-up of patients”. By pro-
viding such a new way of follow-up we aim at reducing the extra number of consultations,
examinations, medical check-ups and consequently their price. Indeed a long-standing clinical
observation in hospital is no longer a realistic issue for cost reasons since the elderly.

Towards such issues we focus on providing an automated way to order and compose medical
devices, given a goal and some requirements. This will automate inter-operation between medical
devices.

6.3.2 Our Approach

In the same way as the Telecommunication scenario, we suggest to interface devices with Web
services. This ensures to easily work in heterogeneous environments and various domains of
application. Thus telemedical collaborations are possible through the Web service paradigm. A
solution of such a problem consists in implementing a composite and value-added Web service
that can automate the patient follow-up by a reliable Web service interoperation, hence a long
distance follow-up. Therefore the problem is turned into a problem of semantic Web service
composition. Functional parameters are then described by DL concepts. Figure 6.2 describes a
subset of defined concepts in the ALE domain ontology T (105 defined concepts and 37 object
properties) used to describe the domain. In the following example, we illustrate three Web
services of the set of 12 Web services included in the real scenario:

• A sphygmomanometer service is a Web service that interfaces a blood pressure meter, used
to measure blood pressure of a given patient;

• A thermometer service is a service that interfaces a thermometer which is used for mea-
suring human body temperature;

• A Blood glucose monitor service is used for testing the concentration of glucose in the
blood of a patient;

Example 67. (A Motivating Illustration)
Suppose a patient that accepts a long distance follow-up of this disease at home. In such a case
all required medical devices together with their Web services interfaces are installed at her home.
Once the material is ready to be used, the patient can be “ connected” to these devices through
sober sensors. Therefore the health of the patient can be frequently sensed by medical devices.
The result of this different sensors is sent to hospital, for instance to the E-mail address of the
assigned physician. In case of critical values of the blood pressure’s, body temperature’s and
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Figure 6.2: A Sample of an E-healthcare Domain Ontology T .

glucose rate’s patient the emergency services are contacted through, one more time, a relevant
Web service.

The distance follow-up is concretized by an inter-operation of medical devices (through their
Web service interfaces) wherein i) the patient and some nurses are required to correctly use devices
and ii) physicians can interpret results of the inter-operation of devices (e.g., some complex
graphics).

6.3.3 Open Issues and Challenges

Open issues and challenges are same as the first two scenarios. However one more significant
problem could arises i.e., the end user confidence in these new technologies is crucial to its success.

6.4 Many Other Potential Applications

The spectrum of applications seems very wide. Indeed we could easily give some nowadays exam-
ples such as: enterprise portals, Capitalization of knowledge, E-commerce, E-learning, E-work,
E-business, E-health, E-government and E-administrations, natural language processing and ma-
chine translation, information retrieval, integration data and services, social networks, systems
recommendations and collaborative filtering, extraction of actionable knowledge, economic intel-
ligence and others.

6.5 Conclusion

In this Chapter three scenarios in use have been presented. The first scenario operates in a
Telecommunication domain whereas the two others acts respectively in area of E-Toursim and
E-Healthcare. Each of these use cases requires automated composition of Web services in a
semantic context. The semantic expressivity and number of Web services vary from a scenario
to another i.e.,

i) one in the Telecommunication domain (the extended version of the motivating scenario in
Section 6.1) where the number of potential Web services (#S∗

Ws) is 35 and the TBox of the
ALE Ontology consists of 305 defined concepts and 117 object properties;
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ii) another in the E-Tourism domain where #S∗
Ws is 45 and the TBox of the ALE Ontology

consists of 60 defined concepts and 19 object properties;

iii) and finally one in the E-HealthCare domain where #S∗
Ws is 12 and the TBox of the ALE

Ontology consists of 105 defined concepts and 37 object properties.

All these scenarios have been tested with our composition approach proposed in Chapters 4
and 5. Results of experiments are presented in Chapter 7. In the next Chapter we draw some
evaluation results that show high efficiency and effectiveness of our composition model.



Chapter 7

The Composition Tool:
Implementation & Experiments

In this Chapter we discuss the prototype tool that we developed to compute automated semantic
Web service compositions and its optimal composition in our framework.

In addition to a reference architecture, we give an evaluation of its main components by
analyzing their experimental results on different levels of scenarios (i.e., scenarios in use from
Chapter 6 and random scenarios).

The components we plan to study in more details are components that implement our com-
position model i.e., works presented in the Part II i.e.,

• Chapter 3 and its SLM model ;

• Chapter 4 and its two composition approaches;

• Chapter 5 and its optimization process.

The remainder of this Chapter is described as follows. Section 7.1 presents the reference
architecture used to achieve optimal composition of Web services. Moreover a detailed view of
its core components and their implementation is presented. Section 7.2 describes some experi-
mental results obtained by running our reference architecture on the three scenarios of Chapter
6. Roughly speaking this section studies the impact (in terms of computation time performance)
of each (innovative or not) component on the reference architecture. Section 7.3 mainly focuses
on the computation time performance and scalability of the two composition approaches and
the optimization process in more general scenarios. Moreover this section sketches the main fea-
tures that characterize each of the latter components. Finally Section 7.4 draws some concluding
remarks on the suggested architecture, their innovative components and the experimental results.

7.1 Architecture and Implementation

Along this Ph.D report we studied functional level based semantic Web service composition.
Starting from an initial set of relevant Web services, such a level of composition aims at selecting
and inter-connecting web services according to a goal to achieve.

168
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To this end we focus more particularly on two different approaches to achieve such a level
composition. Depending on:

• the level of Web service description (Requirement RService
Expressivity) and their interfaces to

standard proposals (Requirement RService
Applicability);

• the composability criteria (Requirement RComposability) pertaining automatic composi-
tion of services, described in terms of input, output parameters and preconditions, effects.
Such citeria are used to relate some Web services in a composition i.e., Requirements
RSemantic

Composability and RCausal
Composability;

the two automated (Requirement RComposition
Automation ) and flexible (Requirement RFlexibility) ap-

proaches return a partial order of Web services with different expressivity of their computed
compositions (Requirement RComposition

Expressivity). From this order of services a component which
is responsible of optimization (Requirement ROptimization) is required to compute an opti-
mal composition in terms of semantics of its links. Finally, as we will see in this Section, the
optimal composition is rendered in a standard BPEL4WS composite service (Requirement

RComposition
Applicability).

All these different components are presented, ordered, implemented (as core components) and
tested in our high level reference architecture. This architecture is depicted in Figure 7.1.

In a nutshell, the reference architecture consists of the following components:

• a Repository of Semantic Web Services that contains available services together with their
(syntactical and semantic) functional description;

• a Domain Ontology that contains descriptions of concepts, instances, respectively defined
in its TBox and Abox;

• a Service Goal which will be realized by the composition result;

• a Service Discovery and Selection component that discovers the most relevant Web service
to compose and satisfy the service goal;

• a Semantic Reasoning component that computes semantic links and value robustness, va-
lidity, matching quality and common description rate of Web service compositions;

• a Causal Laws Reasoning component in order to reason on causal laws between Web ser-
vices;

• a Functional Level Composition component that can achieve composition with two different
methods, depending on the composability criteria;

• a component dedicated to the Composition Optimization;

• a final component responsible of BPEL Rendering to easily implement, execute, reuse the
resulting composition of Web services.

In the rest of this section we present in more details these latter components and their
implementation.
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7.1.1 Repository of Semantic Web Services

Description

According to the reference architecture depicted in Figure 7.1, an important and required com-
ponent is the Repository of semantic Web services. This repository is defined as the set S∗

Ws of
services. This repository of services implements our different scenarios, and can be seen, there-
fore, as an advanced version of UDDI.

In the suggested framework each entry of the UDDI registry represents a service in terms
of both its syntactic interface through a WSDL document, and its semantic description1, which
can be expressed in any language that allows to express semantics. In this direction we focus on
semantic and syntactic-based service descriptions. We recall that in our framework the focus is
on semantics that a service can express.

Input of the Component: Some services and a domain ontology.
Output of the Component: The set S∗

Ws of services.

Implementation

The repository of semantic Web services has been implemented by means of jUDDI i.e., an open
source Java implementation of the Universal Description, Discovery, and Integration (UDDI)
specification for Web Services. In the prototype implementation semantic Web services are
defined through the WSML specification. As an example, the functional description (through
its WSML interface) of service AdslElegibility∗ S∗

a can be consulted in Figure 7.2). In the
previous WSML illustration, the service is described by means of its input, output parameters
and preconditions, effects (Requirement RService

Expressivity).

7.1.2 Domain Ontology

Description

The Domain Ontology contains descriptions of concepts (in its TBox, Figure 1.4) used to seman-
tically annotate Web services in their semantic forms. Moreover the domain ontology contains
instances which are defined in its Abox.

Input of the Component: None.
Output of the Component: Semantic description of the domain.

Implementation

In this prototype, we achieve semantic description of Web services by means of WSMO.

1More specifically, we exploit the UDDI tModel data type to provide the technical specifications of services
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7.1.3 Service Goal sg

Description

In our prototype, the end-user is in charge of specifying her goal service sg in terms of a pair
〈A, β〉. Roughly speaking sg (i.e., an abstract services defined in terms of their input and output
parameters) is described completely and sufficiently by instances and concepts chosen from the
ontology.

In particular the terms A refers to instances occurring in the ABox of the domain ontology
and β is defined as a subset of concepts in the TBox T of this same ontology. The parameters of
sg may refer to concepts in the TBox T of the domain ontology, or can use some extra concepts
that will extend the initial TBox T .

The successful composition of Web services require instances of A as input parameters, and
concepts of β as output parameters. In our approach, the goal is to retrieve some instances of β
by achieving a composition of Web services.

Input of the Component: Domain Ontology.
Output of the Component: Service Goal sg.

Implementation

From this, the goal sg is translated into a WSML document (through a sg Parsing step in
Figure 7.1), expressed by means of its functional parameters. Therefore both the services in
the repository and the goal service sg are described at semantic level, using the same WSML
formalism.

7.1.4 Service Discovery and Selection Component

Description

Given a set of available (not necessarily relevant) Web services in the repository and a service
goal to achieve, the composition component requires an important first component i.e., the Web
service Discovery and Selection component. This component is in charge of retrieving relevant
Web services SWs depending on the composition goal sg (provided by end-user). The output set
SWs of this component is defined as a subset of the initial set of available Web services S∗

Ws.
Since the discovery component aims at comparing the semantics of functional parameters,

some closed interactions with the Semantic Reasoning Component are performed.

Input of the Component: The service goal sg, the set S∗
Ws of services.

Output of the Component: A relevant set SWs of services.

Implementation

This discovery component is implemented in our reference architecture by a naive algorithm.
Roughly speaking the set S∗

Ws is discovered by means of a breadth first forward search. At each
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wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace{ _"https://sws-orangeLabs.elibel.tm.fr/Sm3e-Pro/ontologies/internetPack#",

dc _"http://purl.org/dc/elements/1.1#",

foaf _"http://xmlns.com/foaf/0.1/",

wsml _"http://www.wsmo.org/wsml/wsml-syntax#",

loc _"http://www.wsmo.org/ontologies/location#"}

/************* SaStar ONTOLOGY ***************/

ontology _"https://sws-orangeLabs.elibel.tm.fr/Sm3e-Pro/ontologies/SaStar_Ontology"

nfp

dc#title hasValue "WSML ontology of SaStar i.e., AdslEligibilityStar"

dc#subject hasValue "InternetPackage"

dc#description hasValue "Fragments of the InternetPackage Ontology"

dc#contributor hasValue

{ _"https://sws-orangeLabs.elibel.tm.fr/Sm3e-Pro/~fael8534/foaf.rdf"}

dc#date hasValue _date(2007,08,28)

dc#format hasValue "text/html"

dc#language hasValue "en-US"

dc#rights hasValue _"https://sws-orangeLabs.elibel.tm.fr/privacy.html"

wsml#version hasValue "$Revision: 1.1 $"

endnfp

concept ZipCode

zone ofType Country

concept Email

type ofType Any

concept PhoneNum

zone ofType Country

concept NetworkConnection

type ofType Any

netSpeed ofType Speed

nonFunctionalProperties

dc#description hasValue "concept of a NetworkConnection"

endNonFunctionalProperties

/************** WEB SERVICE ****************/

WebService _"https://sws-orangeLabs.elibel.tm.fr/Sm3e-Pro/services/SaStar"

importsOntology

_"https://sws-orangeLabs.elibel.tm.fr/Sm3e-Pro/ontologies/IPDO.wsml"

capability _"https://sws-orangeLabs.elibel.tm.fr/Sm3e-Pro/Eligibility#SaStarCap"

sharedVariables {?pn, ?zc, ?em}

//Preconditions in WSMO refer to Input parameters in the Web Service Specification

precondition definedBy

?pn memberOf PhoneNum

and

?zc memberOf ZipCode

and

?em memberOf Email.

//PostConditions in WSMO refer to Output parameters in the Web Service Specification

postcondition definedBy

?nc memberOf NetworkConnection.

//Assumptions in WSMO refer to Preconditions in the Web Service Specification

assumption definedBy

?pn [zone ofType France]

and

?zc [zone ofType France]

and

?em [type ofType Valid].

//Effects in WSMO refer to Postconditions in the Web Service Specification

effect definedBy

?nc [type ofType Valid].

Figure 7.2: WSML Description of the AdslEligibility∗ Service S∗
a.
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step, the set of all semantic output parameters produced by the services discovered so far is
passed as input to the UDDI registry search, so to discover every service that can be possibly
activated by combining results of previously discovered services. Service collection stops either
when the sets of output parameters cover those in the output portion of the service goal, or when
no new service is returned by UDDI search, i.e., when a fix point is reached.

7.1.5 Semantic Reasoning Component

Description

The reference architecture is completed with a Semantic Reasoning component (required by Re-
quirement RSemantic

Composability), which provides a vital infrastructural support to two components
of the architecture i.e., i) the Service Discovery and Selection Component and ii) the Functional
Level Composition component.

The main function of this component is to infer some properties on functional input and
output parameters (defined as concepts of the TBox T ) of semantic Web services. The reasoning
component can check, for instance, satisfiability or subsumption of Web service parameters by
means of a DL reasoner. Therefore semantic links between Web services can be semantically
valued.

Input of the Component: Domain ontology, (semantic descriptions of)
input and output of services.

Output of the Component: Semantic links between services.

Implementation

In our approach we adopt the WSMO4J implementation for WSMO parsing of the domain
ontology and make use of the open source Fact++ DIG reasoner2 [92] (Pellet [189] or RacerPro
[82] can be used as well to compute standard reasoning and the MAMAS-tng3) to compute non
standard reasoning such as Concept Abduction [48]. Concept Difference is computed by means
of an internal France Telecom component. The power of such a component is therefore crucial
to the performance of the overall architecture.

7.1.6 Causal Laws Reasoning Component

Description

The Causal Laws Reasoning component aims at first relating effects of services and preconditions
of other Web services (i.e., causality relationships). In other words this component discovers pos-
sible Web services i.e., services with no open preconditions (see Section 4.2 for more details).
Secondly the Causal Laws Reasoning component required the complex relationships between
Web services to relate some of their parameters.

This component has a direct interaction with the Functional Level Composition component
in cases of i) Web services described by their inputs, outputs, preconditions, effects and ii) causal

2http://owl.man.ac.uk/factplusplus/
3http://dee227.poliba.it:8080/MAMAS-tng/DIG
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laws Requirement RCausal
Composability used as a composability criterion.

Input of the Component: Preconditions and effects of services,
complex relationships between services.

Output of the Component: Causal laws between services.

Implementation

The implementation of this component is based on a Golog formalism, especially for the axiom-
atization of the causal laws in sslGolog.

7.1.7 Functional Level Composition Component

The Functional Level Composition Component is the core module of the reference architec-
ture. This component is responsible of the computation of Web service compositions. From a
set of relevant Web services SWs, it computes a set of compositions Scandidate

WSC that achieve the
service goal sg. Two different composition approaches can be performed depending on the level
of Web service description (Requirement Requirement RService

Expressivity).

Input of the Component: A relevant set SWs of services,
the service goal sg.

Output of the Component: A set of compositions Scandidate
WSC .

Semantic Links based Web Service Composition

a) Description:

On the one hand the Functional Level Composition component can be achieved by defining
the semantic links as the only composability criterion (Figure 7.3).

In such a case the component which is responsible of this composition consists in three im-
portant components i.e., the SLM Construction component , the Ra4C component and the
robustness verification component (Algorithm 3 in Chapter 4). The different processes of these
components have been first presented in Section 4.1.

First of all the SLM Construction component elaborates the SLM (algorithm 1) of the com-
position problem by considering the service goal sg and the set of Web service SWs returned by
the Service Discovery and Selection component. The SLM Construction component is related
to the Semantic Reasoning Component since its construction requires valuation of semantic links.

Then the Ra4C component is responsible of computing correct, complete, consistent and
(optionally robust) composition of Web services according to the SLM of the domain and the
service goal sg.

Finally the robustness feature of Web service composition is ensured by means of the Robust-
ness Verification component together with the Semantic Reasoning component. In this case a
non standard reasoning such as Concept Difference or Concept Abduction is required.
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Semantic
Reasoning

Functional

(Chapters 4, 5)
Composition

Level

SLM
Construction
(Chapter 4) (Chapter 5.1)

Impl:java,Impl:java,
perl−based

Standard Components

Impl := Implementation used

Innovative Models presented in this Ph.D Work
and Tested Components

perl−based

Impl:Fact++ Impl:java,
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Legend

Robustness

Semantic Links
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Figure 7.3: Architecture of the Semantic Links based Web Service Composition Component.

a) Implementation:

This component has been implemented using Java, C++, Prolog and Perl.

Semantic Links and Causal Laws based Web Service Composition

a) Description:

On the other hand the Functional Level Composition component can be achieved by defining
the semantic links and causal laws as both composability criteria (Figure 7.4).

In such a case the component which is responsible of this composition consists in two im-
portant components i.e., the sslGolog component and the Backward Chaining component. The
different processes of these components have been first presented in Section 4.2.

In this composition approach the composition problem is first modelled in the sslGolog lan-
guage i.e., Web services are modelled as actions, axioms related to the initial situation, causal
laws, preconditions and semantic links are characterized.

Then, an adaptation of the Backward Chaining based planner for sslGolog is interacting with
axioms of the composition problems to compute conditional compositions of Web services. This
will ensure to compute compositions with semantic links together with causal laws.
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sslGolog is interacting with the Semantic Reasoning Component, especially to compute values
(i.e., semantic match types) of semantic links between Web services. Note that robustness of Web
service composition is ensured in case the set of axiom of sslGolog contains the RobustmatchType

axiom instead of the ValidmatchType axiom. Moreover sslGolog is interacting with the Causal
Laws reasoning component, especially to compute causal laws between Web services.
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(Chapter 5.2)
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Figure 7.4: Architecture of the Semantic Links and Causal Laws based Web Service Composition
Component.

b) Implementation:

The implementation of sslGolog is based on an extension of Golog (in Eclipse Prolog) wherein
axioms related to valid and robust actions are defined. Moreover axioms related to General
Conditional Action Trees (i.e., mb on, switch) have been implemented in sslGolog. The latter
axioms ensures to compute conditional compositions of Web services.

7.1.8 The Composition Optimization Component

Description

Since the Functional Level Composition component aims at computing a set of compositions
Scandidate

WSC that achieved the same service goal, a component responsible of composition selection
is required to prune the latter set and then obtain a unique composition of services. The latter
composition consists of Web services defined in the new set Sr

Ws. Both components described
in Section 7.1.7 can be used to compute the set of candidate Web service compositions Scandidate

WSC .

This component makes sure the end-user has the most optimal composition (Requirement
ROptimization). Here, the optimization is oriented by the semantic quality of compositions i.e.,
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quality of their semantic links. Thus we assumed that robustness, common description rate and
matching quality of each semantic link have been inferred by means of the semantic reasoning
component (in a pre-processing step).

Input of the Component: A set of compositions Scandidate
WSC ,

an obejtive function,
some end-user constraints.

Output of the Component: An optimal composition consisting of a set
of services defined in Sr

Ws.

Implementation

The reference architecture interfaces this components by an optimization problem through an
Integer Linear Programming problem. Therefore, first the Integer Linear Programming model
formulation is computed, and the optimization problem is solved by running CPLEX, a state of
the art integer linear programming solver based on the branch and cut technique 4[204].

7.1.9 The BPEL Rendering Component

Description

Once a correct, consistent, complete, optimal (and optionally robust) composition of semantic
Web services is returned by the Composition Optimization component, the resulting composition
is rendered in a BPEL4WS [10] composite service.

Input of the Component: A composition of Web services.
Output of the Component: A BPEL4WS description of the composition.

Implementation

This rendering component is required to model a Web service composition in a standard format
(Requirement RComposition

Applicability), which can be easily deployed and executed. The BPEL4WS output
file consisted of sequences, concurrent and conditional branches of Web services, non determin-
ist choice of Web services (Requirement RComposition

Expressivity) and assignments between parameters of
services (in case of semantic links).

7.1.10 Synthesis

Here, we presented the reference architecture (Figure 7.5) wherein our innovative components
have been integrated with standard components.

On the one hand each standard component of the reference architecture (i.e., the repository of
semantic Web services, the Service Discovery and Selection component, the semantic reasoning
component and the BPEL rendering component) relies on powerful state-of-the art technologies

4LINDO API version 5.0, Lindo Systems Inc. http://www.lindo.com/
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and tools. On the other hand Functional Level Composition is performed by means of our ap-
proach (an adapted regression based approach; an extension of Golog), as well as the Composition
optimization.

The remaining code, which includes the various algorithms developed for the architecture
as well as the interfacing to the external tools, is realized in Java and ANSI C, for maximum
portability. To enable the direct end to end utilization of our architecture, we also included a
component responsible of final automated deployment. To this end we assume the presence of an
Active Web Flow engine running over a local Apache Tomcat platform. Table 7.1 summarizes
the Requirement RApplicability.

Requirement Ri Details Chapter 7

Applicable to the OWL-S service profile, WSMO service capability,
RService

Applicability
SWSO Inputs/Outputs, SA-WSDL sepecification,

RApplicability depending on the composition approach.

R
Composition
Applicability

BPEL4WS through the BPEL Rendering Component.

Table 7.1: Table of Requirements supported by Chapter 7.

While we described our architecture instantiation supporting semantic and specific require-
ments and implementations of services, we stress that the architecture design is language-
independent. Indeed different instantiations are also possible as well.

In the following section all components involved in the reference architecture depicted in
Figure 7.1 have been evaluated in some practical experimentations.

7.2 Results and Empirical Evaluation on Three Scenarios
in Use

This section describes some experimental results obtained by running our implemented prototype
system (see our reference architecture in Figure 7.1) on the three scenarios of Chapter 6 i.e., the
Telecommunication, the E-Tourism and the E-Healtcare scenarios. More specially, this section
studies and evaluates the impact and difference, in terms of computation time performance, of
each (innovative or not) component on the reference architecture.

7.2.1 Context of Evaluation: Scenarios, Web Services and System Con-
figuration

Main Features of Scenarios in Use

First of all, we remind the reader the main features of the tested France Telecom scenarios:

i) the Telecommunication scenario is defined by

• a number of potential Web services (#S∗
Ws) equal to 35;

• a TBox of the ALE Ontology with up to 305 defined concepts and 117 object properties;

ii) the E-Tourism scenario is defined by
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• a number of potential Web services (#S∗
Ws) equal to 45;

• a TBox of the ALE Ontology with up to 60 defined concepts and 19 object properties;

iii) the E-HealthCare scenario is defined by

• a number of potential Web services (#S∗
Ws) equal to 12;

• a TBox of the ALE Ontology with up to 105 defined concepts and 37 object properties;

Here we describe the input parameters of each scenario. Therefore, we especially focus on
features about Web services of the scenarios:

• #S∗
Ws. This cardinal is the number of available Web services for a given composition

problem. This number is given by the Repository of Web Services;

• #InputMax. This cardinal refers to the maximum number of parameters used to describe
functional input parameters of Web services. In the considered scenarios, Web services in
S∗

Ws have at most three input parameters, and at least one input parameter;

• #OutputMax. This cardinal refers to the maximum number of parameters used to describe
functional output parameters of available services. In the considered scenario, Web services
in S∗

Ws have at most three output parameters, and at least one output parameter.

Moreover, since the composition problem is depending on a service goal sg := 〈A, β〉, we also
focus on features about this service goal:

• #A. This denotes the number of instances used to define the input parameters of the
service goal sg;

• #β. This denotes the number of concepts used to define the output parameters of the
service goal sg.

The context and details of the three scenarios in use are summarized in Table 7.2.

A
re

a Main Description of
Application Domain

Parameters Main Parameters
Telecom E-Tourism E-HealthCare
#T := 305 #T := 60 #T := 105

#S∗

Ws 35 45 12

C
o
n
te

x
t Web #InputMax [1;3] [1;3] [1;3]

#OutputMax [1;3] [1;3] [1;3]
services Precondition Axioms 4 4 4

Effect Axioms 4 4 4

Goal sg
#A 3 2 2
#β 1 1 1

Table 7.2: Context and Details of Scenarios in Use.

Web Service Description

The three previous scenarios have been tested by our implemented prototype system with two
different levels of Web service description. Such a consideration ensures to compare results of
the two Functional Level Composition approaches using the same reference architecture.

Therefore, on the one hand we assume that Web services used input and output parameters
to describe their functionality. The composability criteria of this composition problem are the se-
mantic links. On the other hand we assume that Web services used both input, output parameters
and preconditions, effects. In such a case we assume that compositions of service are computed
by means of both semantic links, and causal laws between services and their parameters.
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System Configuration

In this set of experiments the PC used for running the prototype system had the following
configuration: Intel(R) Core(TM)2 CPU, 1.86GHz with 512 RAM. The PC runs Linux-gnu
(2.6.12-12mdk) and Java 2 Edition v1.5.0 11.

7.2.2 Experimental Results

Since our experimentation use the same Service Discovery and Selection component and operates
on two levels of Web service description, we suggest to study the computation time performance
of the following processes:

• Service Discovery and Selection process;

• semantic links based web service composition process;

• semantic links and causal laws based web service composition process

Service Discovery and Selection

In addition to the evaluation of the Service Discovery and Selection component, the main in-
termediate result #SWs is valued and given before the composition process of each considered
scenario:

• #SWs. This is the number of relevant Web services returned by the Service Discovery and
Selection process. This set is parsed and used by the SLM construction component.

The Table 7.4 sketches the main results concerning the computation time performances of
the service discovery and selection process on the three scenarios in use.

A
re

a Description of
Application Domain

Process
Process

Telecom E-Tourism E-HealthCare
#T := 305 #T := 60 #T := 105

Service Discovery Discovery (ms) 48.1 54.2 29.5
and Selection #SWs 14 22 9

Table 7.3: Service Discovery and Selection on Scenarios in Use.

The Service Discovery and Selection process takes a negligible time i.e., below
0.1 second in two thirds of scenarios.

The computation time performance is not very high since the number of available Web services
is at worst 35 i.e., no complex problem of discovery.

Semantic Link based Web Service Composition

Here, we specially focus on compositions wherein semantic links are involved (Sections 4.1).
Therefore we investigate on the computation time of processes achieved by the following compo-
nents:

• the SLM Construction and Semantic Reasoning components (Chapter 3);

• the Ra4C component (Section 4.1);
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• the Ra4C component coupled with Robustness Verification (Section 4.1.6);

• the component responsible of the Composition Optimization process (Chapter 5).

Since the FLC based approach operates with an SLM of a given domain, we also focus on
information and parameters that characterize any SLMs:

• #Rows. This represents the number of rows of the SLM;

• #Columns. This represents the number of columns of the SLM;

• Filling Rate Fr (%). This rate is given by #{NonEmptyEntryset}
#Rows×#Columns ;

• mi,j . This is defined as the average of elements by non empty entry in the SLM;

In addition we characterized the main parameter of the Ra4C composition process

• the number of candidate compositions returned by the composition process i.e., #Scandidate
WSC .

These candidate compositions are correct, complete and consistent compositions.

The composition process “Robust Ra4C” is characterized by:

• Scandidate
WSC (the same as returned by Ra4C);

• Bπ and its cardinal #Bπ. This represents the number of Extra Description that Ra4C
requires to compute robust compositions.

The Optimization process of the composition is characterized by the following pa-
rameters:

• the number of abstract semantic links involves in the composition;

• the number of potential candidate links that can achieve an abstract link;

• #Sr
Ws i.e., the number of Web services involved in the optimal semantic composition;

The Table 7.4 sketches the main results concerning the computation time performances of
our reference architecture on the three scenarios in use.

The whole execution of the reference architecture takes from 0.4 to 1.1 seconds depending on
the different scenarios in use.

In the semantic link based web service composition based approach, the SLM
construction coupled with the semantic reasoning process are the most time-
expensive phases.

For instance it takes 1.1 seconds (i.e., 94.4 % of the overall process) to parse and organize 22
Web services in a 10 matrix whereas the Ra4C process takes less than 10 ms (i.e., less than 1 %
of the overall process) to compute robust compositions of Web services. We obtain such results
since the SLM construction is also responsible of high interacting with the Semantic Reasoning
Component to classify and to order semantic links.

Fortunately we remark that SLMs of our scenarios are relatively sparse i.e., approximately
80% of entries are empty. That is why the Ra4C process is quite fast in the presented scenarios.

The robustness computation does not really perturb the composition process. This sounds
correct since robustness is checked only for non robust semantic links.
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A
re

a Main
Description of Main

Application Domain
Parameters

Parameters & Processes
Telecom E-Tourism E-HealthCare

& Processes #T := 305 #T := 60 #T := 105

SLM Construction +
412.1 1080.2 290.5

Semantic Reasoning (ms)
File Size (bytes) 2865 3190 1304

SLM #Rows 7 10 5

C
o
m

p
o
si

ti
o
n #Columns 8 11 6

Parameters Filling Rate Fr (%) 23.2% 14.5% 20%
mi,j 1.9 1.1 1.16

Ra4C
Ra4C (ms) 4.8 9.4 1.8

Candidate compositions (#Scandidate
WSC ) 9 2 2

Ra4C Ra4C + Robustness (ms) 8.8 10.4 2.3
+ Robustness min #Bπ 1 0 5

Optimization (ms) <1 <1 <1

O
p
ti
m

iz
a
ti
o
n Composition # Abstract Semantic

6 4 5
Links

# Candidate Semantic
1.5 1.25 1.2

Optimization Links (Average)

#Sr
Ws

(from Ra4C) 8 5 7
(from Ra4C+Robustness) 6 5 5

End to End Composition + Discovery
465 1143.8 321.8

Composition Process (ms)

Table 7.4: Ra4C based Web Service Composition Tested on Three Scenarios in Use. Legend: 7

= not supported, X= fully supported.

The Optimization process takes a negligible time i.e., below one millisecond
in two thirds of scenarios.

The computation time performance of this component is not very high since the number of
candidate Web services for optimization is at worst 9 i.e., no complex problem of optimization.

Semantic Link and Causal Law based Web Service Composition

Here, we specially focus on compositions wherein semantic links and causal laws are involved.
Web services are then further described by means of preconditions, effects axioms. Therefore we
investigate on the computation time of the following processes:

• the processes in charge of Semantic reasoning5:

– the Knowledge Base Loading ;

– the DL Reasoning process.

• the sslGolog based FLC axiomatization (Section 4.2);

• the Backward Chaining approach (Section 4.2);

• the Optimization Composition process (Chapter 5).

5The pre-processing steps Knowledge Base Loading and DL Reasoning are in charge of inferring semantic link
axioms between functional input and output parameters in this approach.
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In addition to the evaluation of the latter components, main intermediate results are valued
and given during the composition process of each considered scenario. To this end, we study
the same parameters and intermediate results as the previous section i.e., #Scandidate

WSC , #Bπ, the
number of abstract semantic links, the number of potential candidate links, and #Sr

Ws.
Moreover we will also focus on the axiomatization of sslGolog which is characterized by

• #Axioms i.e., the number of axioms defined in sslGolog. In the three scenarios we have the
following rates of axioms: initial situation (20%), causal laws (40%) relating Web services,
and semantic link (40%) axioms.

• and its computation time in milliseconds.

The Table 7.5 sketches the main results concerning the computation performances of our
approach on the three scenarios in use.

A
re

a Main
Description of Main

Application Domain
Parameters

Parameters & Processes
Telecom E-Tourism E-HealthCare

& Processes #T := 305 #T := 60 #T := 105

R
ea

so
n
.

Knowledge Base Knowledge Base
205.1 345.6 76.4

Loading Loading (ms)
DL Reasoning DL Reasoning (ms) 95.5 220.5 40.5

sslGolog
sslGolog Axiomatization (ms) 55.4 150.8 41.1

C
o
m

p
. #Axioms 69 122 42

Backward Computation Time (ms) 230.6 550.4 210.1
Chaining Candidate compositions (#Scandidate

WSC ) 5 1 1

O
p
ti
m

iz
a
ti
o
n Optimization (ms) <1 0 0

Composition # Abstract Semantic
6 4 5

Links
# Candidate Semantic

1.5 1.25 1.2
Optimization Links (Average)

#Sr
Ws (from Ra4C) 8 5 7

End to End Composition + Discovery
634.7 1321.5 397.6

Composition Process (ms)

Table 7.5: sslGolog based Web Service Composition Tested on Three Scenarios in Use.

The conditional planner coupled with sslGolog computes compositions of Web services wherein
all their services are valid and possible. This is one of the main advantages of this approach.

The whole execution of the reference architecture takes from 0.6 to 1.3 seconds depending
on the scenario in use. Not surprisingly, this is less faster than the Ra4C based end to end
composition since sslGolog considers a more expressive level of Web service description. Moreover
semantic links together with causal laws are both used as composability criteria.

In the semantic link and causal law based web service composition based ap-
proach, the Backward Chaining, is the most time-expensive phases.

Indeed the Backward Chaining computation time is more than 30 % in general. The process
related to Knowledge Base Loading and DL Reasoning takes less than 50 % of the process which
is quite important. For instance it takes 0.55 second (i.e., 41.6 % of the overall process) to
compute the composition result of a problem with 22 Web services in sslGolog.

On contrary the axiomatization step is one of the less time-expensive phases (i.e., less than
12 % in general).
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In the same way as the previous Section, the Optimization process takes a
negligible time i.e., below one millisecond in two thirds of scenarios.

The computation time performance of this component is not very high due to the few number
of candidate compositions.

7.2.3 Synthesis

This first set of experiments has been designed to evaluate an end to end composition with its
main components (i.e., Service Discovery and Selection, FLC and Composition Optimization) in
real scenarios. More specially two different composition components have been tested to achieve
FLC, mainly depending on the level of Web service description and their composability criteria.
The performance of both composition approach is still very good for a once-for-all composition
task: to compare, a BPEL4WS programmer would take some hours of work to discover Web
services, to ensure semantic links (and causal laws), and (especially) to manually build the
BPEL4WS orchestrator.

Not surprisingly, retrieving Web service composition with causal laws and
semantic links is more restrictive than computing compositions with only se-
mantic links.

Indeed the Ra4C based composition approach returns more candidate compositions Scandidate
WSC

than the sslGolog based composition approach.

The semantic link and causal law based web service composition is then more
appropriate to compose Web services an higher level of description and then
select finer grained compositions of Web services (i.e., services which are both
valid and possible).

Even if this approach is more time consuming it also reduces the set of potential candidate
compositions by ensuring that composition satisfying causal laws and semantic links. In this
direction the approach reduces the number of compositions required by the optimization step
and hence highly reduces the computation time of this step.

Applying the Ra4C based approach on Web service with a high level of de-
scription leads to candidate Web service composition with violated causal laws
(e.g., open preconditions).

Indeed this approach can compute composition with open preconditions, and cannot satisfy
causal laws between services. Two thirds of candidate compositions do not satisfy causal laws.
This is the main drawback of Ra4C.

7.3 Exposition of Our Composition Approach

In this section we conducted a second step of experiments using the implemented prototype
system (depicted in Figure 7.1) to focus on the computation time performance and scalability of
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the Functional Level Composition and Composition Optimization components. In other words
we turn our attention to different large scale scenarios, which have been randomly generated.

As observed in the previous section and Chapters 4 and 5, the performance of the main
reference architecture’s components are related to different criteria, for instance

• the SLM size in the Ra4C based composition;

• the ratio of Knowledge Base Loading, DL Reasoning, sslGolog Axiomatization, Backward
Chaining in the ssl based composition;

• the number of abstract and candidate semantic links in the Optimization process;

Here we suggest to study in details the (positive or negative) impact of these parameters on the
main reference architecture’s components.

The system configuration used for such experiments is the same as the first step of experiments
i.e., Intel(R) Core(TM)2 CPU, 1.86GHz with 512 RAM. The PC runs Linux-gnu (2.6.12-12mdk)
and Java 2 Edition v1.5.0 11.

7.3.1 The Ra4C based Composition Performance

In the following we suggest to study which parameters have the most (positive and negative)
impact on the computation time performance of the Ra4C based Composition.

Context of Evaluation

In this experiment SLMs together with their service goal sg := 〈A, β〉 have been randomly
generated. We assume, without loss of generality, that the generated service goals are not trivial
i.e., β cannot be directly satisfied by the initial conditions A. In other words the goal β can only
be satisfied by a composition of at least one semantic Web service.

Given this context, we will draw some hard dependences between the computation time
performance of the Ra4C process and the following three parameters:

• the parameters of the service goal sg i.e., its number of instance in A and its number of
goal in β.

• the main features of SLMs i.e., their #Rows, #Columns, the number of relevant Web
service #SWs (and implicitly the number of parameters required to describe Web services)
define in the SLM;

• the filling rate of the SLM Fr and the average of elements by non empty entry mi,j in this
same SLM.

Results

According to the practical experiments we first draw some trivial but important results concerning
the properties of SLMs:

• the more Web services in SWs the higher the filling rates of SLMs with a fixed
size of rows and columns (Figure 7.6). Technically, we fixed the number of rows #Rows
of the SLM, #A and #β and computed the filling rates Fr depending on the number of
relevant Web services #SWs (and their number of functional parameters).
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Figure 7.6: Computation of the Filling Rate Fr of SLMs with 100 Rows by Varying the Number
of Web Service (with 4 #InputMax and 4 #OutputMax) in #SWs.

• the more Web services in SWs the higher the average of elements by non empty
entry mi,j in the SLM. This dependence is linear. Technically, we fixed the number of
rows #Rows of the SLM, #A and #β and computed mi,j depending on the number of
relevant Web services #SWs (and their number of functional parameters).

We can conclude by interpreting these first trivial results that the less Web services (and
its number of functional parameters) involved in the SLM the less complex and the
sparser the SLM. Therefore the Service Discovery and Selection has a key role to reduce the
complexity of the SLM.

By running our composition approach on random SLMs and service goal, we also obtain the
following more subtle and interesting results:

• the more expressive is the initial conditions A of the AI planning-based Web
service composition 〈SWs,A, β〉 the faster is the composition process (Figure
7.7). Technically, we fixed the number of rows #Rows of the SLM, #β, the number of
relevant Web services #SWs (and their number of functional parameters) and evaluated
the computation time performance of the Ra4C process, depending on #A.

• the sparser the SLM the faster is the Ra4C process (Figure 7.8 and 7.9). Technically,
we fixed the number of rows #Rows of the SLM, #A, #β and computed the computation
time performance of Ra4C, depending on the filling rates Fr to obtain results in Figure
7.8.

The results of Figure 7.9 has been obtained by fixing #A, #β and evaluating the compu-
tation time performance of the Ra4C process, depending on the filling rates Fr and the
number of rows #Rows of the SLM.

• the less number of functional parameters by Web services the faster is the Ra4C
process (Figure 7.10). Technically, we fixed the number of rows #Rows of the SLM, #A,
#β and evaluated the computation time performance of Ra4C depending on the number
of functional parameters by Web services to obtain such results.

According to the previous results, the SLM formalism coupled with the Ra4C composition
approach scales very well in case i) SLMs are relatively sparse (i.e., a filling rate Fr ≤ 40%) and
ii) the initial condition A of the composition problem is expressive enough (i.e., #A > 1

3#Rows).
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Figure 7.7: Computation Time of the Ra4C based Composition Approach with an SLM of
#Rows = 100 and Fr = 15% by Varying the Number of Instances in A.
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Figure 7.8: Computation Time of the Ra4C based Composition Approach with #A = 30 and
an SLM of #Rows = 100, mi,j = 1 by Varying the Filling Rate Fr of the SLM.

Most of scenarios (i.e., scenarios presented in these Ph.D studies and others confidential) we
study in this Ph.D thesis meet these constraints. For example, as observed in Table 7.4, the
three scenario in use are in such a configuration. The Telecommunication scenario considers the
composition problem 〈SWs,A, β〉 wherein #A is 3, the number of row of the SLM is 7, and its
filling rate Fr is 23.2%.
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Some Concluding Remarks on Performance of Ra4C

As previously observed in Chapter 4 and confirmed in experimental results (Table 7.4):
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The performance of the Ra4C based composition is mainly depending on

i) the number of instances defined in the initial situation of the composition
problem;

ii) the size of the target SLM and then its filling rate;

iii) the number of Web services and their number of functional parameters.

The SLM is a very interesting feature to perform Web service composition not only with good
properties (correctness, completeness, robustness, consistency) but also with good performance
since the SLM model is responsible of retrieving and pre-compile all relevant semantic
links (at design time) we could encounter in a composition of services.

Once the SLM model is computed the composition process speed-up since
semantic reasoning has been first achieved in a pre-processing step.

Moreover such a matrix can be re-used without major changes for close composition problem.
Therefore this ensures the flexibility of this approach.

As studied in Chapter 4.1,

The main limitation is related to the levels of Web service description and
composability criteria (here restricted to semantic links).

The efficiency of the composition process Ra4C is related to the performance
of the discovery process i.e., the set of discovered Web services.

Indeed the less Web services involved in the set of relevant Web services SWs (and in the
SLM), the smaller the size of the SLMs and faster the process of composition Ra4C. In this
experimental result we study Web service composition by applying a very naive algorithm of
Web service discovery. One way to easily improve the computation-time performance of the
process Ra4C consists first in applying a more efficient Service Discovery and Selection process
e.g., [24].

7.3.2 The sslGolog based Composition Performance

In the following we establish if our approach of conditional planning by using semantic links
together with causal laws to control search and establish composition is efficient. To this end we
study in details the computation time performance and scalability of the main processes required
by the sslGolog based composition approach i.e.,

• the processes in charge of Semantic reasoning :

– the Knowledge Base Loading process;

– the DL Reasoning.

• the sslGolog Axiomatization;
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• the Backward Chaining approach (we modified to support sslGolog).

In addition we compare the computation time performance of the overall composition process
with the pure sGolog, first introduced by [103] to compose Web service.

Context of Evaluation

In this experiment, parameters of services are referred as DL concepts in an ALE Ontology (305
concepts and 117 properties). This experimentation consists of two different classes of scenarios:

• Ten scenarios ωA
i,1≤i≤10 wherein i×7 services are involved. Each service is described with 2

input, 2 output parameters and 4 precondition and 4 effect axioms. Moreover we have the
following rates of axioms: initial situation (20%), causal laws (40%) relating Web services,
and semantic link (40%) axioms. The number of axioms is defined by i × 7 × 5. Here we
simply evaluate performance of each component of the composition approach;

• Ten scenarios ωB
i,1≤i≤10 wherein 49 services described with i input, i output parameter(s)

and 4 preconditions, effects axioms. The number of initial situation, causal laws relating
Web services, and semantic link axioms is i × 49 × 5. However, here, we changed the
rate of its axioms. The rate of initial situation is still 20%, whereas the rate of causal
laws axioms is (i × 49 × 5) − ( 2

100 × i × 49 × 5) and the rate of semantic link axioms is
(i× 49× 5) + ( 2

100 × i× 49× 5). Here we evaluate impact of semantic links axioms on the
composition process.

Semantic links and causal laws are then both involved and used to compute compositions of
Web services.

In both classes of scenarios the main steps of the composition process is as follows. The
Knowledge Base of the ontology (actually its Terminological and Assertional Box) is loaded,
and then DL reasoning, sslGolog axiomatization and conditional planning through Backward
Chaining take place. In both classes of scenarios the DL reasoning is done at design time, all
semantic matches are computed before running the conditional planner. It is straightforward to
apply DL reasoning on demand e.g., retrieving the match type of a semantic link at run time.

Results

According to the practical experiments we obtain the following results concerning the sGolog
based approach.

• not surprisingly, the Backward Chaining process is more time consuming than
the three other processes of the sslGolog based composition (Figure 7.11 and 7.12).
In general Knowledge Base Loading, DL Reasoning and sslGolog Axiomatization are still
linear with the number of Web services and their input and output parameters descriptions;

• the DL reasoning has direct positive impact on the planning performances (Fig-
ure 7.11 and 7.12). Our approach still outperforms the sGolog based approach. Indeed
sslGolog i.e., sGolog coupled with information on semantic links scales better than sGolog
(without DL reasoning on semantic links). Indeed the composition approach is directed by
semantic links, which rapidly prunes the search space in a composition problem. Therefore
the planning task still scales well if semantic links are known at composition
time;

• the more Web services, the more computation time of DL reasoning in com-
parison to the Knowldege Loading and Axiomatization (Figure 7.11);
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• in the same way as the Ra4C based approach, the more Web services, the less the
computation time performance (Figure 7.13). Indeed the rate of semantic links and
causal laws required in this case increases with the number of Web services.
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Figure 7.11: Knowledge Base Loading, DL Reasoning, Axiomatization and Planning Processes
on Scenario ωA.

• in the same way as the Ra4C based composition, the more input and output param-
eters by Web services and semantic links axioms the worst the computation
time performance (Figure 7.12). In scenario ωB , DL reasoning requires more time than
in scenario ωA since more DL reasoning are computed e.g., for 49 services and 9 input and
9 output parameters, (9× 49)2 subsumption tests are performed in the worst case.

As previously remarked, the Ra4C based approach does not consider causal laws, and so
scales very well.

• It is obvious that composing Web service with semantic link and causal laws is
more computation time consuming than composing Web services with only its
semantic links (Figure 7.13). However many composition scenarios cannot be performed
by the Ra4C based approach i.e., scenarios that consider preconditions, effects on Web
services, and semantic links, causal laws involved in the composition. It is obvious that
considering causal laws in a composition is the hard task to achieve.

According to the previous results, the sslGolog based approach scales well in case i) the
number of Web services is less than 70, ii) the number of input and output parameters is 2,
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Figure 7.12: Knowledge Base Loading, DL Reasoning, Axiomatization and Planning Processes
on Scenario ωB .

iii) the number of precondition and effect axioms is 4, iv) the number of initial situation (20%),
causal laws (40%) relating Web services, and semantic link axioms (40%) is 350. Unfortunately
we did not focus on more complex scenarios. However, this seems an interesting trade-off to
achieve composition with semantic links and causal laws.

As observed in Table 7.5, the three scenarios in use work with a more restrictive configuration.

Some Concluding Remarks on Performance of sslGolog based Approach

Even if using conditional plans includes sometimes unrealistically high number of alternative
paths, the DL reasoning based semantic link and causal laws axioms are used i) to reduce the
search space ii) to reduce the number of these alternative plans by retrieving more relevant
composition of Web services, iii) to improve performance of the composition process.

As previously observed in Section Table 7.5 and confirmed in experimental results, the per-
formance of the sslGolog based composition is mainly depending on

i) DL Reasoning ;

ii) Backward Chaining.

Indeed the Knowledge Base Loading and sslGolog Axiomatization processes are much less time
computation consuming.



CHAPTER 7. THE COMPOSITION TOOL: IMPLEMENTATION & EXPERIMENTS 195

 100

 1000

 10000

7 14 21 28 35 42 49 56 63 70

A
vg

. C
P

U
 T

im
es

 (
m

s)
 w

ith
 a

 L
og

ar
ith

m
 S

ca
le

Number of Web services involved in Composition

sslGolog
Ra4C

Figure 7.13: Computation-Time Performance of sslGolog and Ra4C on Scenario ωA.

The sslGolog based approach is a very interesting approach to perform Web service compo-
sition wherein input, output parameters, preconditions, effects, semantic links and causal laws
are required to achieve the composition process.

There is a trade-off between semantic links and causal laws expressivity since

• the more input and output parameters, the more semantic
links and the more the computation time of DL reasoning (in
Figure 7.12, the available number of semantic links and causal laws
axioms are the same but not their numbers of useful and used axioms);

• the more causal laws the more the computation time of the
Backward Chaining approach;

A limitation of this composition approach is related to the overall computation time. Since
this approach is mainly depending on DL reasoning,

The main limitation is related to the number of Web services’ parameters and
expressivity of ontology we use to describe services.
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In case Knowledge Base loading and DL reasoning on functional parameters has been first
pre-compiled (for instance in an SLM), the computation time of the overall composition process
is highly reduced.

In further experiments, we plan to investigate a trade-off between DL expressivity and AI
planning for Web service composition.

7.3.3 The Optimization Process Performance

In the following we suggest to study the scalability of the Optimization Composition approach
(i.e., the global selection based approach by Integer Linear Programming). In addition this
experiment aimed at comparing the three selection approaches previously described in Chapter
5 i.e.,

• local optimization based approach;

• global selection by exhaustive search;

• global selection by integer programming.

with respect to the computational overhead involved by their selection phase. The idea is to
provide a basis for determining when should global selection be preferred over local optimiza-
tion. Accordingly, we measured the computation time performance (in milliseconds) of selecting
candidate semantic links to create practical compositions under the three different selection
approaches. For each test case, we executed the process 10 times and computed the average
computation cost.

Finally this experiment also evaluates and compares the semantic quality of different practical
composition of Web services computed by local optimization and global optimization.

Context of Evaluation

In our experiments we assumed that robustness, common description rate and matching quality
of each semantic link have been inferred in a pre-processing step of semantic reasoning and
calculated using the formulas presented in Section 5.2.

On the one hand, the global selection process is invoked only once during a composite service
execution. In the case of local optimization, on the other hand, if we assume that the number of
abstract links that are executed is n, then the semantic links selector is invoked n times to select
a candidate semantic link for each abstract link.

The experiments involved composite Web services with varying the numbers of abstract and
candidate semantic links. The composite services were created by randomly defining abstract
and candidate links in the composite service. The number of abstract links varied from 100 to
500 with steps of 25 (e.g., 100, 125, ... 500). Also, we varied the number of candidate semantic
links per abstract link from 10 to 150 with steps of 10.

Results

Figures 7.14 and 7.15 plot computation time (in milliseconds) of selecting semantic links for Web
service composition. In this experiment, we varied the number of abstract links and the number
of candidate links per abstract link. In the three approaches, we observe that:

• the computation time increases when the number of abstract links increases
and the number of candidate links increases.
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The computation time of global selection by exhaustive search is very high even
in very small scale in aspect of the number of abstract semantic links and their candidate links.
Although the computation time cost of global selection by IP is higher than that of
local optimization, it still acceptable if the number of abstract links and candidate links is
not very large. For example, finding the optimal solution to the optimization problem takes
10 seconds for a composition of 450 abstract semantic links with 100 candidate links (i.e., 10
candidate services by task). This is almost 4 times higher than the local optimization approach
(2.65 seconds).
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Figure 7.14: Computation Time for Optimal Practical Composition by Varying the Number of
Abstract Semantic Links (with 100 candidates for each abstract links).

Tables 7.6 and 7.7 present experiment results on composites’robustness (i.e., Qr in [0, 1]),
common description rate (i.e., Qcd in (0, 1]) and matching quality (i.e., Qm in (0, 1]) of practical
composition of Web services, where we vary the number of abstract semantic links.

The experiment results show that the global selection approach yields significantly better
semantic quality than the local optimization approach. For example, the common description
rate is consistently higher when using global planning approach than the common description
rate of the local optimization approach.

Some Concluding Remarks on Performance of the Optimization Composition Ap-
proach

The optimization problem formulated in Chapter 5, which is equivalent to an Integer linear
programming problem, is NP-hard [155]. In case the number of abstract and candidate semantic
links in the system is expected to be very high (of the order of millions or higher), finding the
exact optimal solution to such a problem takes exponential run-time complexity in the worst
case, so no practical.
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Figure 7.15: Computation Cost for Optimal Practical Composition by Varying the Number of
Candidate Semantic Links (with 350 abstract semantic links).

Composite Web Qr(c) Qcd(c) Qm(c)
Service c

Global Local Global Local Global (×10−7) Local (×10−7)

1 0 0 0.85 0.71 8.12 0.31
2 0 0 0.67 0.61 0.53 0.12
3 0 0 0.50 0.3 9.44 9.34
4 0 0 0.78 0.6 23.53 2.5
5 0 0 0.81 0.76 100.44 19.4
6 0 0 0.77 0.77 0.01 0.01
7 0 0 0.71 0.56 1.1 1.01
8 0 0 0.80 0.78 12.1 0.91
9 0 0 0.67 0.6 0.08 0.03
10 0 0 0.77 0.5 0.12 0.02

Table 7.6: Experimental Results on Semantic Quality of Composite Services (Composite Web
services have 20 Abstract Semantic Links).

Our approach scales well by running a heuristic based IP solver wherein hun-
dreds of abstract and candidate semantic links are involved. This is a suitable
upper bound for practicable industrial applications.

From the experimental results, we conclude that the IP based global selection approach leads
to significantly better semantic quality of Web service composition with little extra computation
cost. For example, a composite service with 250 abstract links and 100 candidate links per
abstract link spends: 1) 1.9 seconds for selecting Web services using global selection; 2) 0.9
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Composite Web Qr(c) Qcd(c) Qm(c)
Service c

Global Local Global Local Global (×10−16) Local (×10−16)

1 0 0 0.52 0.49 81.2 3.11
2 0 0 0.61 0.58 4.31 0.34
3 0 0 0.98 0.7 1.34 1.10
4 0 0 0.39 0.28 3.31 0.78
5 0 0 0.78 0.7 1.45 0.98
6 0 0 0.31 0.28 1.12 0.01
7 0 0 0.68 0.60 101.33 14.65
8 0 0 0.45 0.39 45.33 44.55
9 0 0 0.90 0.78 8.54 7.56
10 0 0 0.70 0.60 34.11 31.67

Table 7.7: Experimental Results on Semantic Quality of Composite Services (Composite Web
services have 50 Abstract Semantic Links).

seconds using local optimization.
These results reinforce the conclusions of the analytical considerations of Chapter 5.

If there is no requirement for specifying global constraints, then local opti-
mization is preferable.

Global planning is superior when it comes to selecting semantic links that satisfy certain
global constraints and which optimize global tradeoffs. Given the fact that, a global selection
approach considers both local and global selection constraints, the results clearly demonstrate
the benefit of using a IP-based method for global semantic links selection, even if we take into
consideration the modest selection overhead.

The evaluation and theoretical results showed that our global selection based
approach is not only more suitable than the local approaches, but also out-
performs the naive approach.

As highlight in Chapter 5, in case of higher number of abstract and candidate links, the prob-
lem can be, for instance, divided in several global selection problems. Alternatively, suboptimal
solutions satisfying revisited quality thresholds can be sufficient.

7.3.4 Synthesis

In this section we conducted a second step of experimentation using the implemented prototype
system (depicted in Figure 7.1) to evaluate the computation time performance and scalability of
components of the reference architecture presented in Chapters 4 and 5 i.e., the two Functional
Level Composition based approaches and the Composition Optimization method.

From this experimentation we obtained valuable experimental results on the latter compo-
nents. For instance we retrieved parameters that have a direct and important impact of the
Ra4C based composition approach. Moreover we study computation time performance of Web
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service compositions that require semantic links and causal laws as composability criteria. Fi-
nally we established a trade-off between the number of abstract semantic links and the number
of candidate links for the optimization based composition method.

According to these experimentations, we can draw the best practices for Web
service composition in Table 7.8.

Process Parameters
Computation Time in ms

(0, 1000] (1000, 2000] (2000, 5000] (5000, 10000]

Semantic Links based
Nb services 69 74 78 83

Web Service Composition
Nb Inputs,

4 4 4 4
Outputs

Semantic Links and
Nb services 35 53 65 71
Nb Inputs,

2 2 2 2
Causal Laws based Outputs

Web Service Composition
Nb Preconditions,

4 4 4 4
Effects Axioms

Composition
Nb Abstract

220 260 350 450
semantic links

Optimization
Nb Candidate

100 100 100 100
semantic Link

Table 7.8: Best Practices for Web Service Composition.

7.4 Conclusion

In this Chapter we discussed the prototype tool that we developed to compute automated seman-
tic Web service compositions and its optimal composition in our framework. In this direction we
presented a reference architecture to realize Web service composition (Figure 7.5). This reference
architecture support requirements RApplicability introduced in Chapter 2.

In addition our Web service composition model have been evaluated on two different ex-
perimentations. The first experiments have been directed by three scenarios in use in France
Telecom whereas the second experiments study computation time performance and scalability of
the innovative components of the reference architecture.

From a general point of view:

Even if our approaches scale well in France Telecom scenarios with its best
practices, scalability [51] of Web service composition is still an open issue for
very complex and expressive scenarios e.g., large number (e.g., thousands) of
Web services, semantic links and their candidates with expressive descriptions.

Both experiments reinforce the conclusions of the analytical considerations of Chapters in Part
II by demonstrating the benefit of the different innovative components in different scenarios.



Conclusion and Perspectives

In this chapter, we will summarize our Ph.D work. Then we sketch our main contributions and
align them to Chapters of this Ph.D work and to our own publications, in which the results have
been published. Furthermore, we will give some ideas that can be of further research interest.

Summary and Contributions

In this thesis we have made several contributions to the field of service-oriented computing and
semantic Web services, aiming at resolving an open issue that has emerged in recent couple of
years: Semantic Web service composition wherein services are characterized in terms of their
functional properties.

In more details we described two complementary approaches to automatic Web service com-
position. Our approaches have been directed to meet the main challenges in service composition.
First, both approaches are autonomous so that the users do not require to analyze the huge
amount of available services manually. Second, they have good scalability and flexibility so that
the composition is better performed in a dynamic environment. Third, they solve the heteroge-
neous problem because the Semantic Web information is used for matching and composing Web
services. The applicable scenario for this approach is: given the specification of available Web
services and user’s requirement, an automated agent or program can generate a composition of
available services which satisfies the requirement of the user. The result generation process is
fully autonomous without the intervention from the user. The process generation should rely on
the specification of Web services, including its functionalities attributes.

In this Ph.D work, we focused on the following key points:

Analysis of Related Work

First of all we have studied and analyzed related work in the field of automated Web service
composition in order to draw main requirements and then to address this issue. Therefore the
first part of our Ph.D study focused on these following six meta requirements; namely

• Automation (RComposition
Automation ) to achieve automation of composition;

• Expressivity (RExpressivity) to support expressive descriptions of Web services (RService
Expressivity)

on the one hand, and expressive descriptions of compositions (RComposition
Expressivity) on the other

hand;

201
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• Composability (RComposability) criteria pertaining automatic composition of services, de-
scribed in terms of input, output parameters and preconditions, effects. Such citeria are
used to relate some Web services in a composition i.e., RSemantic

Composability and RCausal
Composability;

• Flexibility (RFlexibility) to ensure adaptability of our composition model;

• Optimzation (ROptimization) to compute optimal compositions of Web services;

• Industrial Applicability (RApplicability) to ensure applicability of our approach to standard

proposals i.e., RService
Applicability and RComposition

Applicability .

Part II of this Ph.D thesis addressed all these requirements for the success of Functional Level
Composition of Web services.

Semantic Link and SLM

The thesis introduced the semantic link concept between Web services as a composability cri-
terion in Web service composition. This connection (Requirement RSemantic

Composability), considered
as the main issue to form new value-added services by composition at functional level, is re-
quired to semantically link output to input parameters of Web services (a part of Requirement
RService

Expressivity). This is detailed in Section 3.1 of this Ph.D report.

The thesis highlighted the issue related to robustness of semantic links and presents different
techniques to solve the problem of robustness in Web service composition. This was detailed in
Sections 3.1.4 and 3.1.5 of this Ph.D report.

The thesis laid out a framework SLM (i.e., the Semantic Link Matrix) for pre-computing and
capturing all relevant semantic links in a formal and flexible (Requirement RFlexibility) model
to achieve Web service composition. Moreover such model supports expressive compositions of
Web services (Requirement RComposition

Expressivity). This was detailed in Section 3.2 of this Ph.D report.

Web Service Composition

The thesis fits semantic Web service composition to a semantic links composition by means of
the feature of sequence composability between services. Towards this issue we suggested to ap-
ply an AI planning-based technique for computing correct, consistent, complete and optionally
robust Web service compositions (Ra4C) on an SLM of a given domain. The result of the latter
computing is a partial ordering of Web services arranged in a simpler version of a workflow (Re-

quirement RComposition
Expressivity) that fulfils a given composition goal. This was detailed in Section 4.1

of this Ph.D report.

The thesis provided a composition approach that considers semantic links together with
causal laws as composability criteria. This approach required a more expressive level of Web
services description. Indeed functional input and output parameters of Web services have re-
spectively preconditions and effects on the application domain. Towards this issue an augmented
and adapted version of the logic programming language Golog i.e., sslGolog is presented as a
natural formalism not only for reasoning about the latter links and laws, but also for automati-
cally composing services. This approach supports Requirements RService

Expressivity, RComposition
Expressivity and

conditional compositions of services. This is detailed in Section 4.2 of this Ph.D report.
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Web Service Composition Optimization

The thesis provided a technique for computing semantic link based optimal Web service compo-
sition (Requirement ROptimization). To this end innovative and distinguishing criteria have been
introduced to estimate the overall semantic quality of any composition. Therefore non functional
criteria such as quality of service (QoS) are no longer considered as the only criteria to rank com-
positions satisfying the same goal. Roughly speaking, a general and extensible model to evaluate
and estimate quality of both elementary and semantic links based Web service composition was
presented. From this the semantic link based optimal Web service composition was computed by
i) a local, ii) a naive and ii) a global selection approach. The latter approach was formulated as
an optimization problem which was solved using efficient integer linear programming methods.
This was detailed in Chapter 5 of this Ph.D report.

Implementation, Experimentation and Evaluation

The thesis elaborated an architecture wherein Web services can be discovered, selected, and
composed at Functional Level. This was detailed in Chapter 7 of this Ph.D report.

Our Ph.D work has an efficient implementation and it provides a promising solution for Web
Service composition problems. The thesis presents an open source prototype tool that implements
our technique for automatically computing compositions of Web services and rendering them in a
standard format (Requirement RComposition

Applicability). This was detailed in Chapter 7 of this Ph.D report.

The thesis illustrated our approaches in different levels of scenario i.e., from scenario in Use
in Telecom, to more experimental scenarios in domains of E-Tourism, E-HealthCare domain, and
to random scenario to evaluate scalability of our approach. As highlighted by Chapter 6, the
spectrum of applications seems wider.

Concluding Remarks

The empirical evaluation of the system performance presented in Chapter 7
illustrated the experiences made with the application of the proposed tech-
niques and leads to the conclusion that the concepts presented can be applied
to practical and industrial scenarios in use e.g., Dynamic and automated con-
figuration of Web services in the France Telecom’s information system.

In addition we have drawn best practices for Web Service Composition in Table 7.8.

On the one hand this confirms that Web service composition can be real-
ized in Industrial scenarios and in a semantic context, the whole with basic
composition constructs.

On the other hand composition of thousand of Web services is not yet a real-
ity since the latter hard level of composition requires first solutions to other
issues related to discovery, selection, interoperation, mediation, interaction,
verification, monitoring/management and also execution.
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Impact of our Contributions

The presented thesis provided conceptual and technical contributions that have been reviewed,
approved and published in major conferences (see publications in Table 7.9 aligned with our
contributions) of the following Research areas:

• Service Computing : Web Service, Service Composition, Composition Optimization;

• Artificial Intelligence: Semantic Web, Knowledge Representation, Automated Reasoning,
AI Planning.

In addition parts of this Ph.D works have been incorporated in several European projects
such as the European Union Project EU-IST-2004-507482 Knowledge Web and European Union
Project EU-IST-2006-027617 Spice (see the Industrial Activities column of Table 7.9).

Perspectives

The field of semantic Web services composition is a relatively new research area, and there are
several interesting research questions that have not been addressed by the present thesis. How-
ever, the framework presented in this thesis may be seen as a starting point for future work. In
particular, we identified the following research and development activities that may be carried
out based on this thesis (ordered from Micro to Macro levels).

A future direction of this work, which is unfortunately out of the scope of the Web services
research area, consists in extending our framework with distributed ontologies. Indeed the se-
mantic annotations of Web services do not share the same and unique ontology. The ontology
interoperability is a big issue for future success of semantic Web services and their composition.

Extra Properties on Semantic Links

A first interesting issue is related to some inappropriate properties of the DL difference operator
we used in our Ph.D work to achieve robustness and to model the quality of elementary semantic
links. Indeed this DL difference can be compared to a simple syntactic difference.

More Expressive Web Service Description

One of the most interesting future direction could be to consider more expressive description of
Web services. Indeed some standard proposals such as WSMO suggest to reason on the service
goal to achieve discovery, selection and composition tasks. This can be helpful to distinguish
some identical functional description of Web services, and then to integrate them in a composition
process.

More Expressive Composition Constructs

The main direction for continuing the work in Section 4.2 is to combine our work and the approach
of [182] to cope first with more large and complex composition, and second with more complex
structures like (infinite) loops.
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Table 7.9: Published Works during the Ph.D Thesis.
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Automation of Robust Web Service Composition

The main weakness of the robust compositions computation presented in Section 4.1 concern the
potential involvement of the end user during the computation of robust Web service compositions
hence a supervision of the robust composition process.

Improving Quality of Composition

Coupling Quality of Service and Semantic Links

An interesting future direction consists in studying non functional parameters such as quality of
services together with functional parameters to perform composition of Web services. An open
issue will be related to the computation and evaluation of the optimal compositions depending
on two level parameters.

Coupling Composition and Discovery

Finally it would be interesting to focus on a process that reduces the number of services (ideally to
one) in any composition, then reducing the number of semantic links and enhancing the semantic
link based composition. This can be performed by discovering more general service that achieve
a set of (or cluster of) tasks in the abstract composition. We denote by Macro composition of
Web services this process.

Experimentation and Evaluation

Last but not of least importance, it could be interesting to apply a efficient discovery component,
in order to obtain more relevant and useful semantic links.
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Appendix A

Introduction

Après avoir introduit le contexte dans lequel se situe notre problème de composition de web
services, nous présenterons notre modèle de composition lors des chapitres suivants. Chacun des
chapitres suivants traitera un élément spécifique du problème de composition de services web1.

A.1 Contexte

A.1.1 Découverte de web services

Nous proposons d’intégrer en amont de notre processus de composition, le prototype BCov[24] de
découverte dynamique de web services sémantiques. La découverte de web services est vue dans
BCov comme une nouvelle instance du cadre général de la réécriture de concepts en utilisant
une terminologie T , appelée découverte des meilleures couvertures. Étant donnée une requête
utilisateur, BCov recherche les sous-ensembles de services qui couvrent au mieux cette requête.
La notion de proximité sémantique entre une requête et des services est formellement définie
en s’appuyant sur l’opérateur de différence sémantique[198] entre concepts définis en logique de
description. Elle consiste à minimiser les différences entre une requête et ses réécritures poten-
tielles, maximisant ainsi l’information commune entre elles. L’intérêt de cette approche réside
dans l’utilisation d’un critère de découverte qui est plus souple que les relations de subsomption
ou d’équivalence utilisées habituellement dans les approches de découverte de services existantes.
De plus, le calcul sous forme conceptuelle des informations communes ainsi que des différences
sémantiques entre la requête et les services découverts, rend cette approche très adaptée pour la
recherche de services où il n’existe pas d’annuaire centralisé de services.

A.1.2 Composition de web services

Ce travail aura comme point de départ les techniques développées par BCov[24]. Ainsi nous allons
étudier la possibilité de composer dynamiquement des web services décrits comme des sources
paramétrées de données XML. Afin de répondre à une requête, un ou plusieurs services peuvent
être dynamiquement invoqués; c’est l’une des raisons pour laquelle l’exploitation unifiée de don-
nées et de services nous parait essentielle. Un point de départ plus orienté sur l’orchestration de
services est offert par Bcov. En effet, le fait que Bcov découvre des ensembles de services, et non
pas un service isolé à chaque fois, permet de considérer la découverte correspondante comme le
point de départ pour de nouvelles compositions. Il faudra par la suite trouver un ordonnancement

1Dans la suite document nous confondrons web services, services web et services.
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de l’exécution des services découverts tout en tenant compte des contraintes d’orchestration de
ces services.

Notre modèle de composition

Lors de cette partie, nous traiterons le problème de composition de web services tel un problème
de planification de tâches. Résoudre un problème de composition de web services s’identifie à
la résolution d’un but précis au moyen de la connaissance d’un état du monde donné (base de
connaissance KB). Ainsi un web service composé d’autres services peut être vu comme une boite
noire agissant sur l’état du monde avec l’unique but de composer pour mieux résoudre. Notre
solution sera influencée par la “composition au niveau fonctionnel” introduite lors du chapitre
2. En effet la “composition au niveau fonctionnel” a pour but de découvrir les web services
correspondants à un certain schéma de planification. Le but étant de rechercher un“Workflow”ou
“diagramme d’états” mettant en jeux les différents services pertinents avec l’objectif de résoudre
un but précis.

Cependant, afin de modéliser notre problème de composition tel un problème de planification,
il est essentiel de présenter notre critère de sélection de services permettant l’enchâınement de
ceux-ci. Ainsi le chapitre E présentera la fonction SimT entre deux services comme une com-
binaison linéaire d’une fonction de comparaison de concepts (chapitre C), et d’une fonction de
comparaison de services (chapitre D). Au préalable le chapitre 5B présentera notre modèle général
D4AC (acronyme de “Decomposition for Automatic Composition”), permettant l’analyse d’une
requête utilisateur, et la réduction du problème de composition en sous problèmes plus simples.
Le chapitre F aura pour but d’expliciter le processus de construction de la matrice de liens séman-
tiques, utile pour résoudre le problème de planification. Le chapitre G présentera l’algorithme
permettant de construire le plan solution optimal résolvant le problème de composition de web
services.



Appendix B

Décomposition du problème de
composition

B.1 Introduction

Lors de ce chapitre, nous analyserons l’algorithme permettant la décomposition du problème de
composition. Le chapitre est décomposé en trois sections. La deuxième section fait référence aux
notations employées. La section B.3 introduit l’algorithme général de composition automatique
de web services noté D4AC1. L’algorithme général sera décomposé en cinq sous parties distinctes.
Chacune de ces sous parties sera introduite séparément dans les sous parties de la section B.3.

B.2 Notations

Dans cette section, nous introduisons les notations employées, ainsi que les concepts utiles et
nécessaires à la compréhension de l’algorithme général D4AC.

B.2.1 Formalisme pour les Web Services

Chaque web service peut contenir les définitions de différentes opérations, identifiables par leur
nom, leurs paramètres, et états du monde dans lesquels elles agissent. Pour des raisons de
simplicité d’écriture nous confondrons “opération” d’un Web Service et Web Service. Nous sup-
posons donc que chaque web service représente une unique opération, et chaque opération est
représentée par un unique service web. Ainsi une opération d’un Web Service ou Web Service
sera explicité par son nom, la connaissance de ses paramètres (entrées, sorties), ainsi que par ses
pré-conditions et effets (i.e: post-conditions). Ainsi nous proposons le formalisme suivant:

WebServiceName (Parameters, WorldState) (B.1)

(B.1) permet d’introduire un service web comme une entité ayant des connaissances sur ses
paramètres (“Parameters”) et sur l’état du monde (“WorldState”) dans lequel il peut agir. Les
paramètres seront représentés par les entrées et sorties du service web, alors que l’état du monde
du service sera représenté par ses pré-conditions et effets. Nous pouvons donc détailler (B.1) au

1D4AC: Decomposition for Automatic Composition.
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moyen de (B.2):

WebServiceName (Inputs, Outputs, PreConditions, Effects) (B.2)

avec Inputs, Outputs ⊂ Parameters et PreConditions, Effects ⊂ WorldState. (B.2) per-
met d’introduire un service web comme une entité capable de produire un (ou des) résultat(s)
concret(s) Outputs en fonction d’Inputs nécessaire(s). Les pré-conditions (i.e PreConditions)
renseignent sur l’état dans lequel le monde doit se trouver avant l’invocation d’un service. Les
Effets (i.e Effect) renseignent sur l’état du monde après l’invocation du service.

Nous pouvons donc définir un service web comme une application WebServiceName définie
par:

WebServiceName :

{

Inputn → Outputm

(i1, ..., in)→ps (o1, ..., om)
(B.3)

Nous remarquons que WebServiceName possède n paramètres d’entrée notés i1, ..., in et m
paramètres de sortie notés o1, ..., om. De plus →ps indique la présence de pré-conditions et effets
relatifs au service web WebServiceName. Ainsi si l’on applique le formalisme (B.3) au service
web FindCinema (B.4), alors le service web peut être représenté par l’application suivante:

FindCinema :

{

GeographicArea→ Cinema

instanceGa →
ps (instanceC)

(B.4)

où “FindCinema” représente un service de recherche de cinémas retournant une instance du
concept Cinema en fonction d’une instance du concept d’entrée de type GeographicArea.

Nous avons délibérément défini (B.1), (B.2) et (B.3) afin d’obtenir un control suffisant sur les
entrées, sorties, pré-conditions et effets (IOPE) de chaque service web.

Conditions sur les paramètres (entrées et sorties) du Web Service

Les entrées et sorties d’un Web Service doivent être identifiables au moyen d’un concept2 encadré
par une ontologie propre. Ainsi les différents paramètres d’une opération d’un Web service
peuvent être représentés par des instances de différents concepts appartenant à des ontologies
différentes. Les paramètres des services web seront représentés au moyen de concepts décrits
avec une famille de logique de description de type ALN ou FL0. Par exemple le service web
“FindCinema” fait référence à un unique paramètre d’entrée (noté instanceGa) représenté par
le concept “GeographicArea”, appartenant à l’ontologie LocationOntology. Ainsi “FindCinema”
nécessite une instance du concept “GeographicArea”. L’unique paramètre de sortie (instanceC)
est représenté par une instance du concept Cinema, présent dans l’ontologie CinemaOntology.
“FindCinema” retournera une instance du concept “Cinema” si les pré-conditions sont validées.
Ainsi les entrées et sorties d’un Web Service sont clairement définies en termes de concepts
d’une ontologie spécialisée. La conceptualisation des entrées et sorties permettra de faciliter la
“composition au niveau fonctionnel”.

Conditions sur l’état du monde (pré-conditions et effets) du Web Service

Afin de faciliter le raisonnement sur les pré-conditions et effets, ceux-ci seront représentés au
moyen de la Logique des Prédicats du Premier Ordre. En effet, les pré-conditions et effets
des Web Services permettent d’estimer l’état du monde lors d’une situation donnée. Il est donc

2Élément d’un thesaurus ou d’une ontologie.
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essentiel de pouvoir raisonner à l’aide de ces estimateurs du monde. Ainsi nous adoptons le
formalisme suivant pour définir l’état du monde (pré-conditions et effets) d’un service web:

{

PreCondition(WebServiceName, PC1, ..., PCn)← PC1V alid(PC1), ..., PCnV alid(PCn).

Effect(WebServiceName, E1, ..., En).

(B.5)
(B.5) permet de donner un sens concret à →ps . En effet un web service est défini tout d’abord
par ses paramètres mais aussi par les états du monde par lesquels il passe. Il est donc nécessaire
d’intégrer les pré-conditions et effets dans la définition d’un service web. Par exemple le Web
Service “FindCinema” déclare deux prédicats P1 (pré-conditions sur le service) et E1 (effets sur
le service). Ainsi P1 et E1 référencés par ps de →ps sont définis par:











P1(FindCinema, instanceGa)← Exist(FindCinema),

GeographicAreaV alid(instanceGa).

E1(FindCinema, instancec).

Ainsi P1 nous informe que l’opération FindCinema doit exister et que le paramètre représenté
par une instance de GeographicArea doit être valide avant invocation du service. E1 nous informe
que le paramètre de sortie représenté par une instance de Cinema est valide après invocation.

B.3 Décomposition pour une meilleure composition

B.3.1 Introduction

Idée générale

Le but de l’algorithme 4 est de proposer un processus de composition de services web. Ainsi
l’algorithme a pour objectif de présenter notre approche. L’algorithme compose les services web
retrouvés au moyen de BCov [24]. La composition est automatisée dans le but de résoudre une
requête Q. En effet la composition est guidée par une requête Q, et aidée par une terminologie
T et un ensemble de services web SWebServices. Notons que chaque requête Q présente trois
grandes catégories d’informations:

• ce que veut explicitement l’utilisateur: le but global de la requête;

• ce que veut implicitement l’utilisateur: les buts locaux de la requête;

• ce que connâıt l’utilisateur: les instances de certains concepts de la requête;

Le but global de la requête est résolu par composition des buts locaux. L’idée générale est
donc de décomposer le but explicite en buts implicites afin de mieux composer. Ainsi chaque
sous but (but local) sera résolu indépendamment des autres. Nous traitons donc le problème de
composition de services web comme un problème de décomposition. Notre algorithme repose donc
sur le paradigme“Diviser pour mieux régner”. Une fois la décomposition effectuée, le“Workflow”
sera créé lors de l’assemblage et de la composition des flows intermédiaires de chaque but résolu.
Pour résumer, l’algorithme utilise la “composition au niveau fonctionnel” pour résoudre les buts
locaux, puis les flows intermédiaires proposés seront composés afin d’obtenir un “Workflow”
cohérent avec la requête Q de l’utilisateur.

Nous proposons dans ce chapitre de tout d’abord découvrir les services web pertinents au
moyen de BCov [24], puis de décomposer le but global de la requête Q en buts locaux, et enfin
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de résoudre chaque but local à l’aide des services découverts. Cette solution consiste à découvrir
avant de décomposer. Nous pouvons facilement imaginer une variante de cette solution. En effet,
tout d’abord nous décomposerions le but global de la requête Q en buts locaux, puis lors de la
création des flows intermédiaires, nous rechercherions les services web pertinents permettant de
résoudre le but local. Cette solution consiste à décomposer pour mieux découvrir. La première
solution a l’avantage de découvrir les services web une et une seule fois. La deuxième solution
a l’avantage d’être plus dynamique mais de complexité plus importante (à cause de l’appel de
BCov pour résoudre chaque sous but).

Conditions nécessaires

On suppose que les termes utilisés dans la requête Q sont identifiables au moyen des instances
et concepts des ontologies proposées. De plus, les concepts qui représentent les entrées et sorties
des services appartiennent à des concepts propres aux ontologies proposées. En outre chaque
service web ne référence qu’une et unique opération (nous utiliserons le formalisme (B.1) section
B.3 page 211). Enfin, les concepts des ontologies Ti ⊂ T seront exprimées dans une logique de
description de type ALN ou FL0

3[91].

B.3.2 Algorithme général

Notre algorithme D4AC présente le plan général de la composition de services web. Il se décom-
pose en cinq parties conjointement liées. Chaque partie traite et résoud un nouveau problème lié
à la composition automatique de services web. Cet algorithme ne présente que le plan général
de la composition de services web retrouvés par BCov [24].

Algorithm 4: Décomposition pour une meilleure Composition: D4AC

Données: une requête: Q,1

un ensemble de services Web: SWebServices = {Ws1, ...,Wsn},2

un ensemble d’ontologies: T = {T1, ..., Tn},3

un algorithme de découverte de services web BCov.4

Résultat: le Workflow W résolvant la requête Q par composition d’éléments de5

SWebServices.

début6

(0) Analyse de la requête Q au moyen de T (traitement de la langue et découverte du7

but global);

(1) Recherche des services web pertinents à la requête Q à l’aide de BCov(T, Q);8

(2) Analyse du but global de la requête Q et décomposition en buts locaux;9

(3) Recherche des flows intermédiaires pour chaque but local;10

(4) Intégration des flows intermédiaires dans le Workflow final W ;11

fin12

3Naturellement la puissance d’expressivité accrue significativement et inévitablement la complexité informa-
tique.
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Tout d’abord, nous nous intéresserons aux quatre parties majeures de l’algorithme D4AC. Ces
quatre parties seront dénotées (0), (2), (3), (4). Comme nous l’avons expliqué en fin de section
B.3.1, nous traiterons le problème de découverte de services web en amont de la décomposition
en buts locaux. Notons que le processus de décomposition est à la base de notre modèle. En
effet, plus nous décomposons le but général, plus nous élaguons l’espace de recherche des services
web pertinents pour chaque sous but.

Dans ce chapitre, nous ne détaillerons pas la partie (1) de l’algorithme D4AC, qui consiste à
découvrir les services web pertinents répondant «au mieux» à la requête Q selon une terminologie
T , et une logique de description ALN ou FL0 (voir section A.1.1 page 208).

Analyse de la requête Q (0)

Cette partie consiste à rechercher le but global βG de la requête Q et à construire une base
de connaissance KB afin de découvrir les buts locaux à résoudre. βG permet de déterminer
l’intention de l’utilisateur grâce à la requête Q posée. En effet la connaissance de βG n’est pas
nécessaire à le réussite de D4AC. Notons que les buts locaux ne proviennent pas uniquement et
nécessairement de la décomposition du but global βG, mais peuvent aussi être connus à l’aide de
KB.

Dans le but de traiter une requête en langue naturelle, nous proposons d’utiliser le modèle
proposé par [53, 87] lors du projet MKBEEM 4. En effet [53, 87] permettent la transformation
d’une requête utilisateur explicité en langue naturelle en une formule ontologique de type ALN .
Cet outil est donc assimilé à un outil de traitement de la langue. Il nous permet donc la con-
struction d’une base de connaissance KB renseignant sur les concepts et instances présents dans
la requête Q.

La connaissance de la base KB est un atout majeur pour la décomposition en buts locaux.
Ainsi, par exemple la requête Qtest suivante renseigne sur la base de connaissance KB explic-

itée par le tableau B.1:

Réserver un ticket pour le film recommandé par Tim dans le cinéma
le plus proche de ma localisation5, le 1ier juillet 2005 à partir de 17 h.

Concept Instance
Document Ticket
Movie ∅
Person Tim
Cinema ∅
Location ∅
Date 1ier juillet 2005
Hour 17h
PhoneNumber +33677777777

Table B.1: KB pour Qtest.

4Acronyme de Multilingual Knowledge-Based European Electronic Marketplace.
5PhoneNumber est une instance connue lors de la requête Q de l’utilisateur.
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Analyse du but global de la requête Q et Décomposition en buts locaux (2)

L’algorithme 5 a pour effet la recherche des buts locaux. Cette recherche est aidée par la base de
connaissanceKB. Cette base permet donc de renseigner sur les instances et concepts connus par le
système et couverts par la requête Q. Notons que si des concepts ou instances ne sont pas couverts
par βLV , alors ceux-ci seront stockés dans l’ensemble des buts locaux non valides noté βL\βLV
permettant ainsi la connaissance des buts valides et non valides de KB. La connaissance de KB a
pour effet de décomposer la requête Q en buts locaux valides. Nous supposons dans cette partie
qu’il est pertinent de connâıtre toutes les instances des concepts présents dans la requête Q et donc
dans KB. En effet chaque requête posée résoud un problème donné. Mais chaque résolution de
problème fait intervenir la résolution de nouveaux sous problèmes. Cette affirmation est légitime
puisque le but de la composition est de résoudre un problème général en décomposant ce même
problème. Il est donc important et nécessaire de découvrir les sous problèmes engendrés par le
problème général. Plus la décomposition en sous problème est fine, plus la composition pourra
être efficace. L’algorithme 5 a pour but de découvrir les buts valides βLV qui correspondent à de
nouveaux problèmes plus spécifiques. Nous supposons que la découverte de nouveaux problèmes
revient à rechercher les instances non initialisées lors de la requête Q. En effet, si une requête
générale émet un besoin général, elle émet aussi des besoins plus spécifiques. Ces besoins seront
essentiels pour permettre la composition automatique.

Nous proposons d’analyser le tableau B.2 afin de se rendre compte des buts locaux valides
découverts à l’aide de l’algorithme 5 et de la requête Qtest. L’algorithme 5 propose trois buts
locaux à résoudre afin de faciliter le processus de composition automatique. Ces trois sous buts
ont pour objectif de résoudre les instances inconnues de concepts connus de la requête Q.

Algorithm 5: Analyse du but global de la requête Q et décomposition en buts locaux (2)

Données: un ensemble d’ontologies: T = {T1, ..., Tn},1

une base de connaissance KB.2

Résultat: l’ensemble des buts locaux valides βLV et non valides βL\βLV3

début4

βLV ← ∅5

//Décomposition de la requête Q en buts locaux au moyen de KB6

pour chaque instance i de KB faire7

//Validation de l’existence d’une instance du concept représenté par bl ∈ βL8

si i = ∅ alors9

Ajouter ((i, Concept(i)), βLV );10

sinon11

Ajouter ((i, Concept(i)), βL\βLV );12

fin13

fin14

fin15

La décomposition ainsi effectuée permettra l’analyse des buts. On peut supposer que cette
connaissance est une aide non négligeable à la composition de services.
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Concept Instance βL ∈ βLV

Document Ticket %

Movie ∅ Résoudre Film !

Person Tim %

Cinema ∅ Résoudre Cinema !

Location ∅ Résoudre Localisation !

Date 1ier juillet 2005 %

Hour 17h %

PhoneNumber +33677777777 %

Table B.2: βL pour Qtest.

Recherche des flows intermédiaires pour chaque but local (3)

L’algorithme recherchant les flows intermédiaires permettant de résoudre les buts locaux sera
présenté lors des chapitres F et G. Cet algorithme procède par “châınage arrière”. En effet, à
partir de buts locaux valides, l’algorithme recherche les flows résolvant les buts intermédiaires.
En d’autres termes, à partir des effets escomptés, la partie (3) de l’algorithme D4AC recherche
les pré-conditions pouvant affecter l’état du monde afin d’atteindre les effets de chaque but local.
La recherche des pré-conditions permet de déterminer l’état dans lequel doit être le monde pour
pouvoir valider le but. Si toutes les pré-conditions satisfaisant le but local sont vérifiées par
le flow intermédiaire alors celui-ci est retourné comme proposition d’un flow intermédiaire. Ce
processus est itéré pour chaque but local retrouvé auparavant à l’aide de l’algorithme 5. Notons
que la construction des flows intermédiaires sera effectuée par la résolution d’un problème de
planification que nous présenterons lors du chapitre G.

Intégration des flows intermédiaires dans le Workflow final (5)

Cet algorithme est basé sur l’heuristique suivante: afin de finaliser la composition de services web
au moyen de la connaissance des flows intermédiaires, nous supposons que le service permettant
la composition finale est le service comportant le plus de paramètres d’entrées dans la base de
connaissance. Cependant l’intégration n’est pas l’étape essentielle au processus de composition.

B.4 Synthèse

Nous avons introduit dans ce chapitre l’algorithme général permettant la composition automa-
tique de web services dans le but de résoudre une requête utilisateur Q. Cependant cet algorithme
repose sur une construction de flows intermédiaires permettant de résoudre les buts locaux. Afin
de détailler cette phase, nous avons délibérément détacher l’algorithme de construction de flows
intermédiaires, de l’algorithme général. Ainsi le chapitre C détaillera notre fonction de Matching
de concepts. Le chapitre D présentera notre fonction de Matching de services. Le chapitre E
construira une fonction de similitude de deux services au moyen de la fonction de Matching de
concepts et de la fonction de Matching de services. En effet lors de la construction du plan
validant la composition de services, il est fort probable qu’un service donné puisse être composé
avec un nombre conséquent de services découverts par BCov. Il est donc important de construire
une fonction permettant de donner une valeur de composition entre deux services susceptibles
d’être composés. Le chapitre F introduira l’algorithme de construction de la matrice de liens
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sémantiques (ou Matrice de Matching). Enfin le chapitre G traitera de l’algorithme permettant
la construction de flows intermédiaires à l’aide des buts locaux.



Appendix C

Fonction de comparaison de
concepts

C.1 Introduction

Le but d’établir une similarité sémantique de concepts d’une ontologie est de refléter exactement
la notion de ”proximité” entre ces concepts (i.e. les noeuds sémantiques de l’ontologie représen-
tant ces concepts). Nous parlerons de “proximité sémantique” des concepts. Cette métrique
nous permettra ainsi de représenter efficacement la notion de proximité sémantique entre deux
noeuds (ou concepts) d’une terminologie donnée. Cette métrique aura pour but de permettre la
comparaison de concepts de paramètres de différents web services.

C.2 Définition

La notion de distance (métrique) pour les mathématiques est une notion très ancienne provenant
de l’époque d’Aristote et d’Euclid. Une distance δ entre deux points a et b est généralement
décrite par les trois axiomes suivants:

1. Définition positive: ∀a, b : δ(a, b) ≥ 0 et δ(a, b) = 0 si et seulement si a = b;

2. Symétrie: δ(a, b) = δ(b, a);

3. Inégalité triangulaire: ∀a, b, c : δ(a, b) ≤ δ(a, c) + δ(c, b).

Nous pouvons par exemple citer une mesure bien connue de distance pour l’espace euclidien, la
distance euclidienne, qui est représentée par la somme des différences quadratiques des éléments
considérés dans l’espace en question.

C.3 État de l’art

C.3.1 Distance conceptuelle

[172] proposent une métrique appelée“distance conceptuelle”. La distance conceptuelle entre deux
noeuds (ou concepts) est définie comme le nombre minimal d’arcs séparant deux noeuds (ou con-
cepts). Cette méthode a l’avantage d’expliciter une réelle notion de distance, puisque la distance
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conceptuelle vérifie les propriétés de “Définition positive”, “Symétrie”, et “Inégalité triangulaire”.
Cette distance possède l’avantage d’expliciter les notions de proximité ou d’éloignement séman-
tique des concepts. Par exemple (figure C.1), la distance conceptuelle entre ”French Cinema” et
”Commercial Cinema” est de 1. La distance conceptuelle entre “French Cinema” et “Cinema” est
de 2, et la distance conceptuelle entre “French Cinema” et “Familial Cinema” est de 3.

Cette métrique est utilisée par [45] afin de comparer les concepts des paramètres des services
web.

Figure C.1: Taxonomie portant sur le Cinéma.

C.3.2 Probabilité de liens

La méthode de la “probabilité de liens” est très proche de la distance conceptuelle de [172]. Cette
méthode ne considère pas tous les arcs (ou arrêtes) comme equi-distants. En effet, chaque arc (ou
arrête) est pondérée par une “Probabilité de liens”. Ainsi la distance en est modifiée. L’intuition
de cette métrique est que la distance entre un noeud père et un noeud fils devrait être ”plus
courte” si la probabilité du noeud père est “proche” de la probabilité du noeud fils.

C.3.3 Couverture de descendance

La métrique de “couverture de descendance” d’un lien est définie comme la différence du rapport
des descendants subsumés par le noeud père et ceux subsumés par le noeud fils. Cette méthode
prend en compte l’ensemble des concepts subsumés par les deux concepts à comparer. Par cette
méthode, on explicite la proximité hiérarchique (ou structurelle) des concepts. Ainsi sur la figure
C.1, la distance de Couverture de descendance entre “Cinema” et “French Cinema” est:

d(Cinema, FrenchCinema) =
4

5
−

0

5
=

4

5

La distance de Couverture de descendance entre “Commercial Cinema” et “Cinema” est définie
par:

d(Cinema, CommercialCinema) =
4

5
−

2

5
=

2

5

L’intuition à la base de cette métrique est la suivante: la distance entre un noeud père et fils
devrait être ”plus faible” si le pourcentage des descendants subsumés par le noeud père est proche
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de celui du noeud fils. Cette métrique a été proposée du fait que la majorité des descendants du
noeud père sont en général des descendants du noeud fils.

C.3.4 L’opérateur “Différence”: un opérateur de soustraction pour la
logique de description

[198] décrit l’opérateur de différence à l’aide de la définition 1.

Définition 1. (opérateur de différence)
Soit C, D deux descriptions de concepts telles que C ⊆ D. La différence C−D noté diff⊇(C, D)de
C et D est définie par C −D := max⊇{B|B ∩D ≡ C}

De plus, il définit la subsomption structurelle comme suit:

Définition 2. (subsomption structurelle)
La relation de subsomption d’une logique de description L est dite structurelle si et seulement si
pour n’importe quelle clause A ∈ L et n’importe quelle description B = B1 ∩ ... ∩ Bm ∈ L, nous
avons l’équivalence suivante A ⊇ B ⇔ ∃1 ≤ i ≤ m : A ⊇ Bi.

La différence (définie par [198]) entre deux descriptions C et D est définie comme étant une
description contenant toute l’information contenue dans une description C mais aucune informa-
tion de la description de D. Cet opérateur de différence exige que la deuxième opérande subsume
la première. Cette métrique est applicable aux concepts décrits dans une logique de description
possédant la propriété de subsomption structurelle (par exemple FL0) afin de raisonner sur les
propriétés des concepts.

Cependant cette méthode a le désavantage de ne pas être applicable aux concepts décrits
dans une logique de description de forte expressivité (par exemple ALN ).

C.3.5 Distance sémantique pour les graphes conceptuels

Étant donnés deux concepts C1 et C2 possédant respectivement les types T1 et T2, [72] proposent
une modification de la distance sémantique de“Sowa”entre C1 et C2. L’objectif de cette méthode
est de rechercher et trouver le concept C3 généralisant C1 et C2 ayant un type T3 moins spécifique
et moins contraignant qui subsume les types T1 et T2. La distance sémantique entre C1 et C2

est définie comme la somme des distances de C1 à C3 et de C2 à C3. Très proche de la distance
conceptuelle, cette méthode est plus adaptée aux graphes conceptuels. Il est clair que cette
métrique respecte les propriétés de distance, à savoir“définition positive”, “symétrie” et“inégalité
triangulaire”.

C.3.6 Matching sémantique

[44] décrivent la similitude entre deux attributs (ou concepts) en utilisant quatre types distincts
de sélections, à savoir:

i) le Matching lexicographique;

ii) le Matching sémantique;

iii) le Matching de types;

iv) le Matching structurel.
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La similarité lexicographique capture la similitude des noms utilisés pour représenter les con-
cepts (par exemple “FamilyCinema, FCinema”). Ainsi deux concepts auront une forte similitude
si ceux-ci contiennent un maximum de sous châınes lexicales communes. La similarité sémantique
se base aussi sur une comparaison lexicale avec un découpage préalable des concepts à comparer
afin d’analyser et comparer les sous châınes de ces deux concepts. Le Matching de types se base
sur la relation de subsomption de types, ainsi par exemple (Figure C.1.):

• Mt(Cinema, FamilialCinema) > Mt(FamilialCinema, Cinema);

Ce type de Matching est proche de la distance sémantique et conceptuelle. Le matching structurel
fait référence à une variante de la “Couverture de descendance” (voir section C.3.2 page 219).

Ainsi [72] définissent la notion de similitude entre deux concepts comme un combinaison
linéaire des quatre fonctions de Matching prédéfinies auparavant.

C.3.7 Remarques

Il est trivial que la “Distance conceptuelle”, la “Probabilité de liens” et la “Distance sémantique
pour les graphes conceptuels” sont assimilables à des distances. En effet ces trois métriques
respectent les propriétés de la distance définies auparavant (i.e. “définition positive”, “symétrie”
et “inégalité triangulaire”). Cependant les métriques suivantes:

• l’opérateur de soustraction;

• la couverture de descendance;

• le matching sémantique.

ne font pas références à des distances puisque la première est un simple opérateur de comparaison,
alors que les deux suivantes ne respectent pas les propriétés de symétrie et d’inégalité triangulaire.

C.4 Notre modèle

C.4.1 Notre métrique de calcul de similitude de concepts

Dans cette sous section, nous décrivons la métrique employée pour comparer deux concepts
appartenant à la même ontologie. Notre modèle reposera sur une variante de la “Distance con-
ceptuelle” avec prise en compte de l’opérateur de soustraction diff⊇. Ainsi nous présentons
notre métrique permettant de calculer la similitude de deux concepts appartenant à une même
ontologie.

Sim⊇(C, D) =
1

α + β
(

α

1 + #(diff⊇(C, D))
+

β

1 + δc(C, D)
) (C.1)

où α, β ∈ [0, 1] et α + β = 1;
où diff⊇ représente l’ “opérateur Différence”;
où δc représente la “Distance conceptuelle”.

Nous n’assimilerons pas Sim⊇(C, D) à une métrique de distance mais à une métrique de
calcul de similitude entre deux concepts. Cette application a pour but d’estimer le degré de
similitude entre deux concepts appartenant à une même ontologie, et dont le concept C est
subsumé par le concept D. La deuxième condition est imposée par l’opérateur de soustraction.
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Cependant, il est possible d’étendre notre métrique à tous concepts C et D (si C et D sont
incomparables) d’une même ontologie à condition que la différence descriptive soit définie par:

diff⊇(C, D) := C − lcs(C, D)

avec lcs représentant le “least common subsumer”1. Nous ne détaillerons pas plus la notion
de “least common subsumer” puisque nous supposons que les concepts C et D sont comparables
(i.e. C ⊆ D).

Pour une logique de description de typeALN , la différence descriptive (ou opérateur de differ-
ence) peut ne pas prendre en compte les inconsistances non triviales (i.e. celles qui apparaissent
dans une conjonction de descriptions non équivalentes à ⊥), ainsi Sim⊇(C, D) serait définie avec
(α, β) = (0, 1). Cependant notre fonction de similitude peut s’appliquer avec (α, β) = ( 1

2 , 1
2 )

pour des concepts décrits dans une logique de description de type FL0.

Paramètres α et β

Les paramètres α et β ont pour rôles de favoriser (ou défavoriser) une des deux métriques
introduites dans (C.1) (diff⊇ ou δc). Par exemple, si l’on suppose (α, β) = (1, 0) (resp.
(α, β) = (0, 1)), alors nous ignorerons la “Distance conceptuelle” (resp. “Différence con-
ceptuelle”) au profit de la “Différence conceptuelle” (resp.“Distance conceptuelle” ). Dans la
majorité des cas il est préférable d’utiliser (C.1) avec (α, β) = (1

2 , 1
2 ). α et β représentent des

réels de l’intervalle [0, 1]. Cependant il peut être intéressant de pouvoir personnaliser Sim⊇ afin
de favoriser une métrique donnée.

La Distance conceptuelle δc(C, D)

Expliquée et détaillée par [100, 172], la distance conceptuelle entre deux noeuds (ou concepts)
est définie comme le nombre minimal d’arcs séparant deux noeuds (ou concepts). Ainsi pour
deux concepts C et D présents dans une même ontologie T , δc(C, D) sera d’autant plus faible
(resp. importante) que C et D sont proches (resp. éloignés) dans la taxonomie.

La Différence descriptive diff⊇(C, D)

Expliquée et détaillée par [198], la différence conceptuelle entre deux concepts est définie comme
le nombre maximal de propriétés (ou rôles) n’appartenant pas à D mais appartenant à C. Ainsi
pour deux concepts C et D présents dans une même ontologie T , #(diff⊇(C, D)) sera d’autant
plus faible (resp. importante) que C et D sont proches (resp. éloignés) en terme de différence
conceptuelle.

C.4.2 Exemple

Supposons les trois concepts “Cinema”, “FrenchCinema” et “CommercialCinema” appartenant à
la même taxonomie T (Figure E.1 section E.3 page 243). Nous définissons ces trois concepts
dans une logique de description ALN illustrés en figure C.22

Calculons Sim⊇(CommercialCinema, Cinema) et Sim⊇(FrenchCinema, Cinema) avec
(α, β) = ( 1

2 , 1
2 ). On obtient respectivement:

1Informellement, le lcs d’un ensemble de concepts correspond à la description la plus spécifique qui subsume
tous les concepts donnés[17].

2Les exemples sont délibérement simples pour permettre un bonne compréhension de la fonction de similitude
de concepts.
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Cinema ≡ (≥ 1 hasAddress) ∩ (≥ 1 hasLocation) ∩ (≥ 1 hasName)
∩(≥ 1 hasSceancePrice)

CommercialCinema ≡ (≥ 1 hasAddress) ∩ (≥ 1 hasLocation)
∩(≥ 1 hasName) ∩ (≥ 1 hasSceancePrice)
∩(≥ 15 hasAdvertisingContract)

FrenchCinema ≡ (≥ 1 hasAddress) ∩ (≥ 1 hasLocation)
∩(≥ 1 hasName) ∩ (∀ playMovies.French)
∩(≥ 1 hasSceancePrice)
∩(≥ 15 hasAdvertisingContract)

FamilyCinema ≡ (≥ 1 hasAddress) ∩ (≥ 1 hasLocation)
∩(≥ 1 hasName) ∩ (≥ 1 hasSceancePrice)
∩(≤ 14 hasAdvertisingContract)

ItalianCinema ≡ (≥ 1 hasAddress) ∩ (≥ 1 hasLocation)
∩(≥ 1 hasName) ∩ (∀ playMovies.Italian)
∩(≥ 1 hasSceancePrice) ∩ (∀hasEmployee.Italian)
∩(≥ 15 hasAdvertisingContract)

Figure C.2: Exemple d’une Terminologie ALN portant sur le Cinéma.

• Sim⊇(CommercialCinema, Cinema) = 1
2 = 0.5;

• Sim⊇(FrenchCinema, Cinema) = 1
3 ≃ 0.33.

Ainsi Sim⊇(CommercialCinema, Cinema) ≥ Sim⊇(FrenchCinema, Cinema), nous pou-
vons donc conclure que que le concept “CommercialCinema” est plus proche de “Cinema” que
“FrenchCinema” au sens de notre métrique.

Si nous calculons le degré de similitude des concepts: “Cinema”, “CommercialCinema”,
“ItalianCinema”,“FrenchCinema”, et“FamilyCinema”, nous obtenons les résultats présentés dans
le tableau C.1.

(α, β) = (1, 0) (α, β) = (0, 1) (α, β) = (1
2 , 1

2 )
Sim⊇(C, D) C CC IC C CC IC C CC IC

Cinema 1 N/A N/A 1 N/A N/A 1 N/A N/A
CommercialCinema 0.5 1 N/A 0.5 1 N/A 0.5 1 N/A

ItalianCinema 0.25 0.33 1 0.33 0.5 1 0.29 0.41 1
FrenchCinema 0.33 0.5 N/A 0.33 0.5 N/A 0.33 0.5 N/A
FamilyCinema 0.5 N/A N/A 0.5 N/A N/A 0.5 N/A N/A

Table C.1: Sim⊇ portant sur quelques exemples.

C.5 Synthèse

Nous avons présenté notre fonction de similarité entre deux concepts C et D notée Sim⊇(C, D).
Cette fonction est applicable avec (α, β) = (0, 1) pour des concepts définis dans une logique
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de description de type ALN . Pour des concepts définis dans une logique de description de type
FL0, le couple (α, β) n’est soumis à aucune condition.



Appendix D

Fonction de comparaison de
services

D.1 Introduction

Dans ce chapitre nous présentons notre fonction de comparaison de services. Ce modèle nécessite
la prise en compte de fonctions de Matching (voir tableau D.1) de services afin de composer au
mieux les services web. Les fonctions de Matching présentées dans ce tableau sont issues du
domaine de l’ingénierie logicielle, qui propose des fonctions de correspondance entre composants
logiciels (en termes de leurs entrées et sorties). Ainsi nous comparons le problème de composition
de services web avec le problème de composition de composants logiciels. Après avoir introduit
le problème de Matching de composants logiciels, nous présenterons une étude comparative des
deux problèmes cités ci-dessus. Ensuite nous présenterons une liste de fonctions de Matching
permettant la comparaison fonctionnelle de services web. En effet l’enchâınement de deux services
web sera vu comme un matching de deux services spécifiques. Ainsi nous introduisons la fonction
de comparaison de services.

D.2 Composants et ingénierie logiciels

D.2.1 Introduction

Durant les années 90, la communauté de recherche informatique portant sur l’ingénierie logicielle
a consacré de nombreux efforts afin de permettre la réutilisation [185] des composants logiciels.
La réutilisation efficace des composants logiciels fiables fournissant une fonctionnalité donnée ex-
ige évidemment des moyens efficaces afin de localiser de tels composants. Une approche manuelle,
dans laquelle l’ingénieur logiciel doit passer en revue (probablement un grand nombre de) des
bibliothèques de composants pour localiser les éléments les plus pertinents est peu appropriée.
C’est pourquoi des efforts importants de recherche ont été initiés afin d’obtenir des spécifications
formelles de fonctionnalité de composants et de description formelle du composant recherché.
Ceci dans le but de permettre la réutilisation automatique des composants pertinents et appro-
priés. Nous pouvons voir que le problème de recherche automatique de composants logiciels est
fortement lié au problème de recherche automatique de services web et donc lié à la composition
automatique de services web.

225
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D.2.2 Spécification des fonctions de Matching

La spécification des fonctions de Matching a été proposée dans de nombreux travaux e.g. [104,
185, 207] afin d’évaluer les relations entre composants logiciels et une requête donnée Q représen-
tant les besoins de l’utilisateur. Les fonctions de Matching permettent donc de lier sémantique-
ment des composants logiciels et une requête donnée Q dans le but d’une découverte automatique
et pertinente des composants logiciels. Ainsi s’il y a relation de correspondance entre un com-
posant C et une requête Q, cela signifie que le composant C peut être utilisé pour résoudre le
problème schématisé par Q. [88] propose le formalisme suivant:

“la fonctionnalité d’un programme C est spécifiée en termes de pré-conditions
initiales Cpre

1 (i.e. les conditions qui doivent être vérifiées avant l’exécution
du programme C) et de post-conditions Cpost (i.e. les conditions qui

seront vérifiées après l’exécution du programme C).”

La relation entre les conditions préalables et les post-conditions d’un programme donné est
donc formulée comme suit:

Cpre{Q}Cpos

Ce formalisme peut être interprété comme:

“Si l’affirmation Cpre est vraie avant déclenchement d’un programme Q,
alors l’affirmation Cpost sera vraie après son exécution”[88].

Basée sur ce type d’axiomatisation, la majeure partie des travaux effectués dans l’ingénierie
logicielle indique qu’un composant C peut être vu un comme un 2-tuple des attributs (Cpre, Cpost),
avec Cpre représentant les conditions préalables du composant et Cpost les post-conditions. De
même, une requête Q est spécifiée par un 2-tuple (Qpre, Qpost). Les conditions préalables et les
post-conditions de la requête donnent une caractérisation du composant désiré en termes de ses
conditions préalables et post-conditions.

[207] explorent différentes notions de fonctions de Matching pour rechercher les composants
logiciels pertinents et utilisables pour résoudre une requête Q (ou correspondant au mieux aux
attentes de Q: en termes des pré-conditions et post-conditions). Toutes les conditions préalables
et post-conditions sont représentées par des formules de logique du premier ordre.

D.3 Matching de composants logiciels et Composition de
services web

Le problème de Matching de composants logiciels consiste à retrouver un composant logiciel con-
cret C étant donné un composant logiciel abstrait (ou requête) Q dont le degré de correspondance
soit maximal. Si l’on suit le formalisme introduit par [104, 185, 207], le problème de Matching
de composants logiciels consiste à retrouver un composant C (défini par (Cpre, Cpost)) ayant
un maximum de correspondances avec le composant Q (défini par (Qpre, Qpost)). Cpre et Qpre

définissent respectivement les pré-conditions de C et Q alors que Cpost et Qpost font respective-
ment référence aux post-conditions de C et Q. Afin de trouver un maximum de correspondances

1Les conditions préalables de la requête peuvent être interprétées comme la description des états initiaux du
composant recherché.
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[104, 185, 207] font référence à treize types de Matching distincts. Les différentes fonctions de
Matching font référence à une application Match définie par:

Match :

{

Component ∗ Component→ {True, False}

(c1, c2)→ boolean

Ainsi l’application notée “Match” permet d’évaluer la correspondance des composants logi-
ciels.

Chacune des treize fonctions de Matching présentées par [104, 185, 207] possède sa propre
spécificité. Certaines fonctions de Matching favorisent la correspondance des pré-conditions des
deux composants à comparer, alors que d’autres favorisent la similarité des post-conditions.

Nous pouvons illustrer une fonction de Matching présentée par [207] notée Mexact−pre/post

faisant référence à un Matching exact des pré-conditions et post-conditions de la requête “Q” et
du composant logiciel “C”. Ainsi la fonction Mexact−pre/post appliquée à S et Q sera évaluée à
True si et seulement si les pré-conditions de la requête Q correspondent complètement avec les
pré-conditions du composant retrouvé et si les post-conditions de la requête Q correspondent
complètement avec les post-conditions du composant C retrouvé. Toutes les autres fonctions de
Matching proposées évaluent différents types de correspondances.

Nous remarquons que le problème de Matching de composants logiciels est relativement proche
de notre problème de composition de services web. En effet, composer deux services Ws1 et
Ws2 revient à retrouver un service web Ws2 ayant un maximum de similarité2 avec un service
Ws′1 ayant comme post-conditions les pré-conditions de Ws1. Cependant afin d’expliquer notre
démarche, il est essentiel de faire l’analogie des deux problèmes de façon formelle.

D.3.1 Formalisme pour la composition de services web

Ayant introduit le formalisme d’un web service en page 211, nous pouvons analyser la composition
de deux services web Ws1 et Ws2

3 comme étant une application Ws1oWs2 définie par:

Ws1oWs2 :

{

Inputn2 → Outputl1

(i21, ..., i
2
n)→ps (o1

1, ..., o
1
l )

(D.1)

où Ws1 et Ws2 sont respectivement définis par:

Ws1 :

{

Inputm1 → Outputl1

(i11, ..., i
1
m)→ps (o1

1, ..., o
1
l )

(D.2)

Ws2 :

{

Inputn2 → Outputm2

(i21, ..., i
2
n)→ps (o2

1, ..., o
2
m)

(D.3)

Notons que nous avons uniquement considéré un composition simple de services ne faisant
intervenir que deux services. Ce modèle s’étend à des compositions plus complexes (voir Fig-
ure D.1). Ainsi pour des raisons de lisibilité et de compréhension nous ne présenterons et
n’illustrerons que le problème de composition de deux web services dont les post-conditions
de Ws2 satisfont les pré-conditions de Ws1. Le cas général s’étend aisément à partir de ce qui a
été présenté auparavant.

Nous pouvons donc remarquer que le problème de composition de services web consiste donc
à trouver un Matching entre le domaine Outputm2 et le domaine Inputm1 . Nous pouvons donc

2Voir “Fonction de Similarité” SimT page 241.
3Nous supposons dans ce cas que toutes les post-conditions de Ws2 satisfont toutes les pré-conditions de Ws1.
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Figure D.1: Composition de deux services et généralisation.

reformuler le problème de composition de services en un problème de Matching de domaines.
Ainsi résoudre le problème de composition Ws1oWs2 revient à trouver un Matching entre les m
paramètres de sorties (ou post-conditions) (o2

1, ..., o
2
m) du service web Ws2 et les m paramètres

d’entrées (ou pré-conditions) (i11, ..., i
1
m) du service web Ws1. Ce problème revient à rechercher

un service web Ws2 ayant des post-conditions correspondant avec les pré-conditions d’un service
web Ws1. Autrement dit résoudre le problème précédant revient à trouver un service web Ws2

dont les post-conditions correspondent4 avec les pré-conditions d’un service noté Ws′1 explicité
par InverseS(Ws1). Nous définissons l’application InverseS par:

InverseS :

{

Inputn ∗ Outputm → OutputCardKB ∗ Inputn

((i1, ..., in), (o1, ..., om))→ps ((KB1, ...,KBCardKB), (i1, ..., in))
(D.4)

où KBi représente un élément de la base de connaissance KB. La présence des éléments de KB
dans les pré-conditions de l’image d’un service S par InverseS permettra par la suite de favoriser
une composition avec des services ayant des pré-conditions déja connues.

Ainsi l’application InverseS permet de transformer le problème de composition de services en
un problème de Matching de services. Ainsi pour résumer, composer deux services Ws1 et Ws2

revient à trouver un Matching adéquat entre InverseS(Ws1) et Ws2. La figure D.2 explicite le
formalisme exploité.

Afin d’expliciter notre nouveau problème, nous introduisons la définition d’un service abstrait
de référence pour la composition noté SARC .

4La notion de Correspondance fait référence aux applications Match présentées dans le tableau D.1.
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Définition 3. Un Service Abstrait de Référence pour la Composition noté SARC(S) est défini
comme un service abstrait, image de S par l’application InverseS. Ainsi les effets de SARC(S)
sont exactement les pré-conditions de S, et les pré-conditions de SARC(S) sont initialisées aux
éléments de KB.

De même nous définissons l’application Inverseit

S restreignant le domaine image du service
retourné à it.

Inverseit

S :

{

Inputn ∗ Outputm → OutputCardKB ∗ Input

((i1, ..., in), (o1, ..., om))→ps ((KB1, ...,KBCardKB), it)
(D.5)

Par exemple l’image du service web (B.3) par Inverseit

S sera vue comme un service ayant
CardKB pré-conditions (KB1, ...,KBCardKB) et une post-condition it.

Définition 4. Un Service Aide à la Composition noté Sit

AIC(S) est défini comme un service

abstrait, image de S par l’application Inverseit

S . Ainsi les effets de Sit

AIC(S) sont réduits au

singleton it, et les pré-conditions de Sit

AIC(S) sont initialisées aux éléments de KB.

Remarque: Un web service image de S par l’application SARC possède plus d’effets qu’un
web service image de S par l’application Sit

AIC .

Figure D.2: Transformation du problème de composition en un problème de Matching.

Nous avons donc introduit le problème de Matching de services au niveau fonctionnel (i.e.
Pré-conditions/Post-conditions). Comme nous avons introduit un problème de Matching, il
est essentiel de proposer des fonctions de Matching afin de pouvoir résoudre le problème de
composition de services. Les choix des fonctions de Matching sont présentés dans le tableau D.1.
Dans la section suivante nous présenterons les différentes fonctions de Matching utilisées. De
plus nous présenterons un ordre partiel sur celles-ci ainsi que deux sous-ordres totaux sur deux
sous ensembles distincts.
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D.4 Matching et Composition de services web

Dans le but d’obtenir une composition automatisée et pertinente, il est essentiel de composer les
services web à l’aide de bonnes propriétés de Matching. [45, 106, 152] proposent de composer deux
services Ws1 et Ws2 si et seulement si les pré-conditions de Ws1 (resp Ws2) correspondent 5

avec les post-conditions de Ws2. Ceci dans un but d’obtenir un composition du type Ws1oWs2.
Cependant leur modèle ne repose que sur trois types de Matching (basé sur la subsomption
de concepts). Adopter un tel modèle ne permet malheureusement pas d’appliquer un grand
nombre de fonctions de Matching. C’est pourquoi nous redéfinissons le problème de composition
de services afin de concevoir plus de trois types de fonctions de Matching. En effet la nouvelle
définition du problème permet de prendre en compte plus de paramètres que dans les cas proposés
par [45, 106, 152] (notamment la prise en compte des pré-conditions de Ws1 et des post-conditions
de Ws2 pour une composition du type Ws1oWs2). Leur modèle ne repose que sur la relation de
subsomption des post-conditions de Ws2 et des pré-conditions de Ws1. Cependant en prenant
en compte plus de paramètres, nous nous exposons à une multiplicité des fonctions de Matching.
Il est donc important de personnaliser nos fonctions de Matching pour obtenir une table de
Matching pertinente, non redondante et utile à une composition efficace de services web.

Dans cette section, nous analyserons chacune des fonctions de Matching proposées et intro-
duirons les spécificités de chacune. Basées sur la logique propositionnelle, nous présentons les
fonctions de Matching étudiées dans la table D.1 (Domaine des services web).

Match(S, Q) Définition
1.Mexact−pre/post(S,Q) (Spre ↔ Qpre) ∧ (Qpost ↔ Spost)
2.Mexact−pre−α(S,Q) (Spre ↔ Qpre) ∧ (Qpost → Spost)
3.Mexact−post−α(S,Q) (Spre → Qpre) ∧ (Qpost ↔ Spost)
4.Mplug−in(S, Q) (Spre → Qpre) ∧ (Qpost → Spost)
5.Mplug−in−post(S, Q) (Qpost → Spost)

Table D.1: Résumé des fonctions de matching proposées.

Tout d’abord, remarquons que les fonctions de Matching 1, 4 et 5 ont été étudiées dans
le domaine des composants logiciels (i.e. C ↔ S où S dénote un composant logiciel). Nous
ne détaillerons pas les modifications employées. En effet quelques modifications ont dû être
effectuées afin que ces fonctions de Matching aient un sens dans le domaine des services web.
À ces trois premières fonctions de Matching, nous avons ajouté deux fonctions de Matching
distinctes et pertinentes pour notre domaine d’application notées:

• Mexact−pre−α;

• Mexact−post−α.

Ces deux différentes fonctions de Matching permettent d’obtenir un control plus fin sur les pré-
conditions et effets des services web à retrouver. Nous pouvons noter que notre problème de
composition de services web s’est partiellement transformé en un problème de découverte de
services web (i.e. via un problème de Matching de services web). En effet, dans un but de
composer les services les plus pertinents, nous procédons par découverte de services au moyen
de fonctions de Matching.

5Pour définir Correspondance, [45, 106, 152] définissent trois types de Matching: ExactMatch, GenericMatch
et SubsumeMatch. [45] définit un quatrième type de Matching basé sur la comparaison de concepts n’appartenant
pas à une même ontologie.
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Pour l’illustration des différentes fonctions de Matching proposées, nous raisonnerons sur les
concepts et non sur les pré-conditions et post-conditions. Ceci pour des raisons de compréhension
et de lisibilité. Les différentes fonctions de matching proposées raisonnent sur les pré-conditions
et post-conditions des services web. Celles-ci sont donc exprimées avec la logique des prédicats
du premier ordre.

D.4.1 Détails des différentes fonctions de Matching

La fonction de Matching Mexact−pre/post

[207] identifie la fonction de Matching exacte (1ere ligne du tableau D.1) entre un service S et
un service Q comme l’équivalence des pré-conditions de Q et S ainsi que l’équivalence des post-
conditions Q et S. Ainsi les effets désirés de Q sont vérifiés par le service S puisque équivalents.
Puisque l’équivalence entre les composantes fonctionnelles de Q et S est une condition forte, il
est nécessaire de prendre en compte des notions de fonctions de Matching beaucoup plus souples.
Cependant, il n’est pas nécessaire d’avoir une équivalence totale entre les pré-conditions de Q et
S puisque le problème de composition est en fait essentiellement renfermé dans les effets de Q et
S.(voir section D.3.1 page 227).

Dans les exemples qui suivent, nous supposons les relations de subsomption de la figure D.3
(ou figure E.1).

DistrictCinema ⊆ Cinema ⊆ EntertainementP lace
Location ⊆ GeographicArea

Figure D.3: Quelques relations de subsomption.

1. Exemple:

Si l’on suppose trois services distincts tels que:

• Ws1(pre Location, post Cinema);

• Ws2(pre Location, post Cinema);

• Ws3(pre GeographicArea, post Cinema).

Nous pouvons remarquer que la fonction de Matching Mexact−pre/post appliquée à Ws1 et
Ws2 retournera “True”, alors que la même fonction retournera “False” pour Ws2 et Ws3

(resp Ws1 et Ws3).

2. Exemple:

Si l’on suppose trois services distincts tels que:

• Ws1(pre Cinema, post Price);

• Ws2(pre Location, post Cinema);

• Ws3(pre Location, post GeographicArea).

avec KB = Location.

Nous pouvons remarquer que la fonction de Matching Mexact−pre/post appliquée à
InverseCinema

S (Ws1) et Ws2 retournera “True”, alors que le même Matching retournera
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“False” pour Ws2 et Ws3 (resp Ws1 et Ws3). Ainsi nous pouvons conclure que Ws1 et
Ws2 sont composables via la composition Ws1oWs2 puisque
Mexact−pre/post(InverseCinema

S (Ws1), Ws2) = True.

La fonction de Matching Mexact−pre−α

Dans Mexact−pre−α (2ieme ligne du tableau D.1), Q sera assimilé à des services web ayant des
pré-conditions équivalentes et des post-conditions plus fortes i.e. les post-conditions du service
recherché Q impliquent les post-conditions du service S.

1. Exemple:

Si l’on suppose deux services distincts tels que:

• Ws3(pre GeographicArea, post Cinema);

• Ws4(pre GeographicArea, post EntertainementPlace).

Nous pouvons remarquer que la fonction de Matching Mexact−pre−α appliquée à Ws4 et
Ws3 retournera “True” si Q = Ws3 et S = Ws4, alors que le même Matching retournera
“False” pour Q = Ws4 et S = Ws3.

2. Exemple:

Si l’on suppose deux services distincts tels que:

• Ws3(pre EntertainementPlace, post Price);

• Ws4(pre Location, post Cinema).

avec KB = Location.

Nous pouvons remarquer que la fonction de Matching Mexact−pre−α appliquée à
InverseEntertainementP lace

S (Ws3) et Ws4 retournera “True”, alors que le même Matching
retournera “False” pour InverseLocation

S (Ws4) et Ws3. Ainsi nous pouvons conclure que
Ws3 et Ws4 sont composables via la composition Ws3oWs4 puisque
Mexact−post−α(InverseEntertainementP lace

S (Ws3), Ws4) = True.

La fonction de Matching Mexact−post−α

Dans Mexact−post−β (3ieme ligne du tableau D.1), Q sera assimilé avec des services web ayant
des pré-conditions plus fortes et des post-conditions équivalentes i.e. les conditions préalables du
service S impliquent les conditions préalables du service recherché Q.

1. Exemple:

Si l’on suppose deux services distincts tels que:

• Ws1(pre Location, post Cinema);

• Ws5(pre GeographicArea, post Cinema).

Nous pouvons remarquer que la fonction de Matching Mexact−post−α appliquée à Ws1 et
Ws5 retournera “True” si Q = Ws5 et S = Ws1, alors que la même fonction retournera
“False” pour Q = Ws1 et S = Ws5.
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2. Exemple:

Si l’on suppose deux services distincts tels que:

• Ws1(pre Cinema, post Price);

• Ws5(pre GeographicArea, post Cinema).

avec KB = Location.

Nous pouvons remarquer que la fonction de Matching Mexact−post−α appliquée à
InverseCinema

S (Ws1) et Ws5 retournera “True”, alors que la même fonction retournera
“False” pour Ws5 et InverseCinema

S (Ws1). Ainsi nous pouvons conclure que Ws1 et Ws5

sont composables via la composition Ws1oWs5 puisque
Mexact−post−α(InverseCinema

S (Ws1), Ws5) = True.

La fonction de Matching Mplug−in

Pour la fonction de Matching Plug-in Match (4ieme ligne du tableau D.1), Q sera assimilé avec des
services web ayant des pré-conditions plus fortes et des post-conditions plus faibles i.e. les post-
conditions du service recherché Q impliquent (et satisfont, en conséquence) les post-conditions
du service S, et les conditions préalables du service S impliquent les conditions préalables du
service recherché Q.

1. Exemple:

Si l’on suppose trois services distincts tels que:

• Ws1(pre GeographicArea, post Cinema);

• Ws3(pre GeographicArea, post Cinema);

• Ws4(pre Location, post EntertainementPlace).

Nous pouvons remarquer que la fonction de Matching Plug-in (ou“generic Match”) Mplug−in

appliquée à Ws1 et Ws4 retournera “True” si Q = Ws1 et S = Ws4, alors que la même
fonction retournera “False” pour Q = Ws4 et S = Ws1.

2. Exemple:

Si l’on suppose trois services distincts tels que:

• Ws1(pre EntertainementPlace, post Price);

• Ws3(pre GeographicArea, post Cinema);

• Ws4(pre Location, post Cinema).

avec KB = Location.

Nous pouvons remarquer que la fonction de Matching Mplug−in appliquée à
InverseEntertainementP lace

S (Ws1) et Ws4 retournera “True”, alors que la même fonction
retournera “False” pour Ws4 et Ws3 (resp Ws1 et Ws3). Ainsi nous pouvons conclure que
Ws1 et Ws4 sont composables via la composition Ws1oWs4 puisque
Mplug−in(InverseEntertainementP lace

S (Ws1), Ws4) = True.
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La fonction de Matching Mplug−in−post

La fonction de Matching Mplug−in−post (5ieme ligne du tableau D.1) ne considère pas les condi-
tions préalables pour déterminer un Matching. Dans ce Matching nous nous intéressons seulement
aux résultats de l’exécution du service. Dans ce cas, la relation qui doit être validée entre S et Q
concerne la relation sur les post-conditions de S et Q. Les post-conditions de Q doivent impliquer
les post-conditions de S i.e. la garantie des post-conditions de S. Cette notion est également
considérée dans [164].

1. Exemple:

Si l’on suppose trois services distincts tels que:

• Ws1(pre Location, post Cinema)

• Ws4(pre GeographicArea, post EntertainementPlace);

• Ws3(pre GeographicArea, post Cinema).

Nous pouvons remarquer que la fonction de Matching Mplug−in−post appliquée à Ws1 et
Ws4 retournera “True” si Q = Ws1 et S = Ws4, alors que la même fonction retournera
“False” pour Q = Ws4 et S = Ws1.

2. Exemple:

Si l’on suppose trois services distincts tels que:

• Ws1(pre EntertainementPlace, post Price)

• Ws4(pre GeographicArea, post EntertainementPlace);

• Ws3(pre GeographicArea, post Cinema).

avec KB = Location.

Nous pouvons remarquer que la fonction de Matching Mplug−in−post appliquée à
InverseEntertainementP lace

S (Ws1) et Ws4 retournera “True”, alors que la même fonction

retournera “False” pour InverseGeographicArea
S (Ws4) et Ws3. Ainsi nous pouvons conclure

que Ws1 et Ws4 sont composables via la composition Ws1oWs4 puisque
Mexact−post−α(InverseEntertainementP lace

S (Ws1), Ws4) = True.

D.4.2 Construction d’un ordre partiel sur les fonctions de Matching

Après avoir introduit un certain nombre de fonctions de Matching utiles et nécessaires pour la
composition de services web, il est essentiel de pouvoir ordonner ces fonctions de Matching afin de
déterminer quelles fonctions sont plus générales ou spécifiques. Ainsi, dans un but de construire
un ordre partiel sur les fonctions de Matching proposées dans le tableau D.1, nous introduisons
le théorème suivant.

Theorème 1. Étant données les cinq relations de Matching introduites dans la tableau D.1,
nous avons les relations suivantes:

i) Mexact−pre/post RMexact−pre−α RMplug−in RMplug−in−post

ii) Mexact−pre/post RMexact−post−α RMplug−in
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avec R représentant une relation binaire (i.e. l’implication logique notée →).

Proof. La preuve du Théorème 1 se décompose en cinq étapes. Ainsi nous allons décomposer i)
et ii) et prouver chacune des cinq implications.

1. Prouvons tout d’abord que Mexact−pre/post →Mexact−pre−α est vraie,
i.e (Spre ↔ Qpre) ∧ (Qpost ↔ Spost)→ (Spre ↔ Qpre) ∧ (Qpost → Spost) est vraie
i.e (Qpost ↔ Spost)→ (Qpost → Spost) est vraie
i.e ¬(Qpost ↔ Spost) ∨ (Qpost → Spost) est une tautologie

Ainsi montrons que (¬(Qpost ↔ Spost) ∨ (Qpost → Spost)) est une tautologie
(¬(Qpost ↔ Spost) ∨ (Qpost → Spost))
⇔ (¬((¬Qpost ∨ Spost) ∧ (¬Spost ∨Qpost)) ∨ (¬Qpost ∨ Spost))
⇔ (¬((¬Qpost∧¬Spost)∨(¬Qpost∧Qpost)∨(Spost∧¬Spost)∨(Spost∧Qpost))∨(¬Qpost∨Spost)
⇔ (¬((¬Qpost ∧ ¬Spost) ∨ (Qpost ∧ Spost))) ∨ (¬Qpost ∨ Spost)
⇔ ((Qpost ∨ Spost) ∧ (¬Qpost ∨ ¬Spost)) ∨ (¬Qpost ∨ Spost)
⇔ ((Qpost∧¬Spost)∨(Qpost∧¬Qpost)∨(Spost∧¬Spost)∨(Spost∧¬Qpost))∨(¬Qpost∨Spost)
⇔ ((Qpost ∧ ¬Spost) ∨ (¬Qpost ∧ Spost)) ∨ (¬Qpost ∨ Spost)
⇔ ((Qpost∧¬Spost)∨(¬Qpost∧Spost))∨(¬Qpost∧(Spost∨¬Spost))∨(Spost∧(¬Qpost∨Qpost))
⇔ ((Qpost ∧ ¬Spost) ∨ (¬Qpost ∧ Spost)) ∨ (¬Qpost ∧ ¬Spost) ∨ (Qpost ∧ Spost)
⇔ (Qpost ∧ (Spost ∨ ¬Spost)) ∨ (¬Qpost ∧ (Spost ∨ ¬Spost)))
⇔ Qpost ∨ ¬Qpost

⇔ True

2. Prouvons que Mexact−pre−α →Mplug−in est vraie,
i.e ((Spre ↔ Qpre) ∧ (Qpost → Spost))→ (Spre → Qpre) ∧ (Qpost → Spost) est vraie
i.e (Spre ↔ Qpre)→ (Spre → Qpre) est vraie
i.e ¬(Spre ↔ Qpre) ∨ (Spre → Qpre) est une tautologie
Or cette proposition est bien une tautologie, puisque démontrée dans 1).

3. Prouvons que Mplug−in →Mplug−in−post est vraie,
i.e ((Spre → Qpre) ∧ (Qpost → Spost))→ (Qpost → Spost) est vraie
i.e ¬((Spre → Qpre) ∨ (Qpost → Spost)) ∨ (Qpost → Spost) est une tautologie

Ainsi montrons que ¬((Spre → Qpre)∨(Qpost → Spost))∨(Qpost → Spost) est une tautologie
¬((Spre → Qpre) ∨ (Qpost → Spost)) ∨ (Qpost → Spost)
⇔ ¬((¬Spre ∨Qpre) ∨ (¬Qpost ∨ Spost)) ∨ (Qpost → Spost)
⇔ (Spre ∧Qpre) ∨ (Qpost ∨ ¬Spost) ∨ (¬Qpost ∨ Spost)
⇔ (Spre ∧Qpre)∨ (Qpost ∨¬Spost)∨ (¬Qpost ∧ (Spost ∨¬Spost))∨ (Spost ∧ (Qpost ∨¬Qpost))
⇔ (Spre ∧Qpre) ∨ (Qpost ∨ ¬Spost) ∨ (¬Qpost ∨ Spost) ∨ (¬Qpost ∨ ¬Spost) ∨ (Qpost ∨ Spost)
⇔ (Spre ∧Qpre) ∨ (Qpost ∧ (Spost ∨ ¬Spost)) ∨ (¬Qpost ∧ Spost ∨ ¬Spost)
⇔ (Spre ∧Qpre) ∨ (Qpost ∨ ¬Qpost)
⇔ True

4. Prouvons que Mexact−pre/post →Mexact−post−α est vraie,
i.e ((Spre ↔ Qpre) ∧ (Qpost ↔ Spost))→ ((Spre → Qpre) ∧ (Qpost ↔ Spost)) est vraie
i.e (Spre ↔ Qpre)→ (Spre → Qpre) est vraie
i.e ¬(Spre ↔ Qpre) ∨ (Spre → Qpre) est une tautologie
Or cette proposition est bien une tautologie, puisque démontrée dans 2).

5. Prouvons que Mexact−post−α →Mplug−inest vraie,
i.e ((Spre → Qpre) ∧ (Qpost ↔ Spost))→ (Spre → Qpre) ∧ (Qpost → Spost)) est vraie,
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i.e (Qpost ↔ Spost)→ (Qpost → Spost) est vraie
i.e ¬(Qpost ↔ Spost) ∨ (Qpost → Spost) est une tautologie
Or cette proposition est bien une tautologie, puisque démontrée dans 1).

Le théorème 1 nous permet de construire un ordre partiel sur les fonctions de Matching
proposées. Cet ordre repose sur la relation d’implication notée → (voir figure D.3). Cependant,
dans un but de comparer toutes les fonctions de Matching proposées, il est nécessaire d’avoir un
ordre total. Ainsi nous décomposons l’ordre partiel introduit en deux sous ordres totaux. Ainsi
nous définissons deux sous ordres totaux sur deux ensembles distincts de fonctions de Matching
notés E et F . Ainsi nous notons E (et respectivement F ) comme suit:

E = {Mexact−pre/post, Mexact−pre−α Mplug−in Mplug−in−post}

F = {Mexact−pre/post, Mexact−post−α, Mplug−in, Mplug−in−post}

E et F représentent deux ensembles finis de fonctions de Matching.
Une fois introduit E et F , nous définissons l’ordonnancement des éléments de E et F comme

suit:

• Mexact−pre/post →Mexact−pre−α →Mplug−in →Mplug−in−post

• Mexact−pre/post →Mexact−post−α →Mplug−in →Mplug−in−post

Propriété 1. La relation d’ordre → sur E et F est une relation d’ordre total.

Proof. La relation d’ordre → sur E et F est une relation d’ordre total si deux éléments quelcon-
ques x et y de E (resp F ) sont comparables, c’est à dire si nous avons une des deux situations
suivantes: x→ y ou bien y → x. La relation→ étant transitive, nous avons une relation→ entre
chaque élément de E ou F .

Propriété 2. La relation d’ordre → sur E ∪ F est une relation d’ordre partiel.

Proof. Procédons par contraposée. Supposons que la relation d’ordre → sur E ∪ F est une
relation d’ordre total. Alors ∀(x, y) ∈ E ∪ F , nous avons une des deux possibilités suivantes:

• x→ y;

• ou y → x.

Cependant ∃(a, b) ∈ E ∪ F tel que a 9 b et b 9 a. En effet a = Mexact−pre−α et b =
Mexact−post−α ne sont pas comparables. Nous avons donc montré qu’il existe au moins un couple
(a, b) ∈ E ∪F où a et b ne sont pas comparables. La relation d’ordre → sur E ∪F est donc une
relation d’ordre partiel.

La figure D.3 explicite les deux ordres totaux (et donc l’ordre partiel) sur E et F . Nous avons
décomposé E ∪F afin de pouvoir comparer et ordonnancer les fonctions de Matching proposées.
En effet, nous ne pouvons pas comparer deux services web à l’aide d’une seule fonction de
Matching. Il est donc nécessaire de proposer plus d’une fonction de Matching. L’augmentation
de ce nombre de fonctions de Matching réduit considérablement le non déterminisme au niveau
de la composition des services web. Plus nous avons de fonctions de Matching et plus les services
web auront des possibilités de correspondre entre eux, en fonction des spécificités des fonctions
de matching. Nous avons défini cinq fonctions différentes de Matching mais il serait envisageable
d’étendre ce nombre afin de pouvoir faire correspondre un maximum de services et de pouvoir
pondérer chaque couple de services web.



APPENDIX D. FONCTION DE COMPARAISON DE SERVICES 237

Figure D.4: Treillis des fonctions de Matching.

D.4.3 Pondération des fonctions de Matching

D.4.4 Introduction de fp

Après avoir introduit les différents types de fonctions de Matching nécessaires pour la composition
de services, nous construisons une fonction de pondération notée fp permettant de pondérer les
différentes fonctions de Matching. La figure D.4 explicite la fonction de pondération fp des
fonctions de Matching. La pondération des fonctions de Matching est faite en accord avec l’ordre
partiel sur les fonctions de Matching. Ainsi nous définissons fp comme une application:

fp :







































MatchingFunction→ [0, 1]

mf → 0.8 if mf = Mexact−pre/post

0.6 if mf = Mexact−pre−α or mf = Mexact−post−α

0.4 if mf = Mplug−in

0.2 if mf = Mplug−in−post

0 otherwise

(D.6)

Analysons l’application fp décrite en (D.6) et Figure D.4. fp est une application définie de
MatchingFunction dans [0, 1], ainsi à chaque fonction de Matching décrite précédemment, est
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associée une valeur réelle de l’intervalle [0, 1]. Notons que plus la fonction de Matching M est
contraignante, plus l’image de M par fp sera élevée. Ainsi deux services Ws1 et Ws2 ayant
une valeur de vérité “Vraie” pour la fonction de Matching Mexact−pre/post auront un poids de
correspondance fp(Mexact−pre/post) = 0.8 correspondant à la valeur maximale. Cette application
fp est essentielle pour permettre la comparaison des fonctions de Matching. Notons que fp est
assimilée à une application linéaire.
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Figure D.5: Pondération des fonctions de Matching de E ∪ F .

Nous définissons le degré de similitude entre deux services Ws1 et Ws2 par la fonction
SimS(Ws1, Ws2). Cette fonction permet de déterminer quelle fonction de Matching utilisée
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ainsi que sa valeur.

Définition 5. SimS(Ws1, Ws2) = argMax(fp(M))

Propriété 3. (Nullité de SimS)
SimS(Ws1(pa1

, pa2
), Ws2(pb1 , pb2)) = 0 si et seulement si pb2 9 pa2

.

Proof. Traitons les deux implications afin de montrer l’équivalence de la propriété 3.

(→) Supposons l’existence de deux services Ws1 et Ws2 définis par Ws1(pa1
, pa2

) et
Ws2(pb1 , pb2) avec pa1

∈ Pre(Ws1), pb1 ∈ Pre(Ws2), pa2
∈ Post(Ws1), pb2 ∈ Post(Ws2).

Nous avons l’égalité suivante SimS(Ws1(pa1
, pa2

), Ws2(pb1 , pb2)) = 0 impliquant
argMax(fp(M)) = 0 d’après la définition 3. Cependant argMax(fp(M)) est évaluée à nulle si
et seulement si M /∈ {Mexact−pre/post, Mexact−post−α, Mexact−pre−α Mplug−in Mplug−in−post}
et en particulier M ne satisfait pas les conditions de Mplug−in−post (la fonction de Matching
la moins contraignante). Donc d’après la définition de Mplug−in−post, la relation pb2 → pa2

n’est pas satisfaite donc pb2 9 pa2
.

(←) Supposons l’existence de deux services Ws1 et Ws2 définis par Ws1(pa1 , pa2) et
Ws2(pb1 , pb2) avec pa1 ∈ Pre(Ws1), pb1 ∈ Pre(Ws2), pa2 ∈ Post(Ws1), pb2 ∈ Post(Ws2).
Nous avons la relation suivante pb2 9 pa2

. Afin d’évaluer SimS(Ws1(pa1
, pa2

), Ws2(pb1 , pb2)),
nous devons évaluer argMax(fp(M)) d’après la définition 3. Nous pouvons remarquer
d’après le tableau D.1 qu’aucune fonction de Matching ne satisfait la relation pb2 9 pa2

.
En effet l’équivalence satisfait l’implication, et donc ne satisfait pas la non implication. De
même l’implication ne satisfait pas la non implication. Ainsi d’après la définition de fp,
fp(M) = 0. Donc d’après la définition 3, SimS(Ws1(pa1

, pa2
), Ws2(pb1 , pb2)) = 0.

D.4.5 Exemple simple

Supposons un service Ws′ défini par:

• Ws′(pre Cinema, post Prix ).

qui en fonction d’un cinéma (nom, adresse, identifiant unique...), nous retourne les prix que celui-
ci pratique. Ainsi les pré-conditions de ce service renseigne sur le Cinéma et le post-conditions
nous renseignerons sur les Prix en vigueur au sein de ce même cinéma. Dans le but de connâıtre
les informations sur les prix en vigueur pratiqués par un cinéma donné, il est donc nécessaire de
connâıtre le Cinéma dont on veut connâıtre les prix. Afin de connâıtre cette dernière information,
il est nécessaire de composer Ws′ avec un autre service dans le but de connâıtre le Cinema en
question. Ainsi en utilisant le formalisme introduit en section D.3.1 page 228, nous construisons
un service d’aide à la composition noté SCinema

AIC (Ws′).
Ainsi SCinema

AIC (Ws′) = InverseCinema
S (Ws′) par définition. Donc SCinema

AIC (Ws′) a pour effet
les pré-conditions de Ws′, et des pré-conditions que nous initialisons à ∅. Ainsi SCinema

AIC (Ws′)
est défini par:

SAIC(Ws′) :

{

Input→ Output

∅ →ps Cinema

Dans le but de composer le service Ws′, nous cherchons un service Q ayant un maximum de
correspondance avec SCinema

AIC (Ws′).
Supposons deux services distincts tels que:
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• Ws1(pre Location, post DistrictCinema);

• Ws2(pre Location, post EntertainementPlace).

Nous recherchons le service Wsi ayant le plus de similitudes avec SCinema
AIC (Ws′). Afin de déter-

miner le degré de similitude, nous utilisons la fonction SimS(Ws1, Ws2) qui renvoie une valeur
de Matching. Ainsi:

• SimS(SCinema
AIC (Ws′), Ws1) = 0.4 car SAIC(Ws′) et Ws1 ont une valeur de vérité “Vraie”

avec la fonction de correspondance Mplug−in;

• SimS(SCinema
AIC (Ws′), Ws2) = 0 car aucune fonction de Matching ne peut s’appliquer à

SCinema
AIC (Ws′) et Ws2.

Nous pouvons donc conclure que SCinema
AIC (Ws′) et Ws1 matchent avec une valeur maximale

et donc par conséquence que Ws′ est composable avec Ws1 par la fonction de composition:

Ws′oWs1

D.5 Synthèse

Nous avons défini dans ce chapitre un ordre partiel sur les fonctions de Matching. Il était
essentiel d’ordonner ces fonctions afin d’affiner la composition automatiques de services web et
de permettre un choix fonctionnel de services lorsque celui-ci se présente.

Nous basons notre modèle de sélection de services sur deux paramètres:

• une métrique de Matching inspirée du domaine de l’ingénierie logicielle (Matching de com-
posants logiciels) (Chapitre D);

• un calcul de distance entre concepts (Chapitre C).



Appendix E

Fonction de Similarité SimT

E.1 Introduction

Dans ce chapitre nous présentons la fonction de calcul de similarité notée SimT , permettant de
pondérer la similitude de deux services web Ws et Wsk. Cette fonction détermine tout d’abord
la similarité des services au moyen de la fonction SimS , puis détermine la similarité des concepts
représentant les pré-conditions de Ws (resp. post-conditions) et les concepts représentant les
pré-conditions de Wsk (resp. post-conditions). Cette dernière similarité est évaluée au moyen
de la fonction SimC (et donc au moyen de Sim⊇).

E.2 Fonction de calcul de similarité: SimT

E.2.1 Définition

Étant données deux fonctions de similarité SimS (Calcul de similarité de deux services) et SimC

(Calcul de similarité de concepts), nous introduisons SimT avec la définition suivante.

Définition 6. (Fonction de calcul de similarité: SimT )
Si SimS(Ws(pa, pb), Wsk(pc, pd)) > 0 alors

SimT (Ws(pa, pb), Wsk(pc, pd)) =

SimS(Ws(pa, pb), Wsk(pc, pd)) + SimC(Ws(pa, pb), Wsk(pc, pd)) (E.1)

Sinon SimT (Ws(pa, pb), Wsk(pc, pd)) = 0

Nous définissons donc la fonction de calcul de similarité SimT comme un application linéaire
de SimS et SimC où la fonction SimC est définie par:

SimC(Ws(pa, pb), Wsk(pc, pd)) =

1

10
(

1

#(pdi
⊆ pbj

)

∑

pdi
⊆pbj

Sim⊇(pdi
, pbj

) +
1

#(pai
⊆ pcj

)

∑

pai
⊆pcj

Sim⊇(pai
, pcj

)) (E.2)

La fonction SimC définit la similitude conceptuelle des pré-conditions de Ws et de Wsk, ainsi
que celles des post-conditions de Ws et de Wsk. De plus SimC se base sur la fonction Sim⊇

définie en section C.4.1 page 221.
Le calcul de similarité SimT dépend donc de la similitude des deux services web Ws et Wsk,

ainsi que de la proximité des paramètres de chacun des services web Ws et Wsk.
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E.2.2 Propriétés essentielles

Propriété 4. (Domaine image de SimC)
La fonction de similarité SimC est une application à valeurs dans l’intervalle [0, 1

5 ].

Proof. Par définition Sim⊇ est à valeurs dans [0, 1]. En effet Sim⊇(pai
, pcj

) a pour valeur
maximale 1 lorsque pai

est sémantiquement équivalent à pcj
, et pour valeur minimale 0 lorsque

pai
et pcj

ne sont pas comparables par l’opérateur de subsomption. On a donc Sim⊇(pai
, pcj

) ∈
[0, 1] ∀pai

, pcj
∈ T .

Ainsi nous avons la relation suivante:
0 ≤ Sim⊇(pai

, pcj
) ≤ 1

⇔ 0 ≤
∑

pai
⊆pcj

Sim⊇(pai
, pcj

) ≤ #{pai
⊆ pcj

}

⇔ 0 ≤ 1
#{pai

⊆pcj
}

∑

pai
⊆pcj

Sim⊇(pai
, pcj

) ≤ 1

⇔ 0 ≤ 1
10 ( 1

#{pai
⊆pcj

}

∑

pai
⊆pcj

Sim⊇(pai
, pcj

) ≤ 1
10

SimC est une fonction composée d’un produit de deux fractions du même type que ci-dessus.
Ainsi nous déduisons que le domaine image de SimC est [0, 1

5 ].

Propriété 5. (Domaine image de SimT )
La fonction de similarité SimT est une application à valeurs dans l’intervalle [0, 1].

Proof. Par définition SimS est à valeurs dans ImSimS
= {0, 0.2, 0.4, 0.6, 0.8}. De plus d’après

la propriété 4, SimC est à valeurs dans [0, 1
5 ]. Ainsi le domaine image de SimT est défini par:

ImSimT
= [min(ImSimS

) + min(ImSimC
), max(ImSimS

) + max(ImSimC
)]

puisque SimT = SimS + SimC . D’où DSimT
= [0, 1].

SimT est évaluée à zero si et seulement si SimS = 0. En effet la similarité finale SimT

n’a pas de sens si SimS = 0, puisque cela signifie #{pai
⊆ pcj

} = 0 et #{pdi
⊆ pbj

} = 0.
Ainsi SimC n’est pas calculable puisque le calcul de SimC implique un calcul d’un rapport avec
dénominateur nul. C’est pourquoi nous définissons SimT selon la définition 6.

Propriété 6. (Validité de SimT )
SimT (Ws(pa, pb), Wsk(pc, pd)) = 0 si et seulement si pai

9 pcj

Proof. Traitons les deux implications afin de montrer l’équivalence de la propriété 6.

(→) Supposons l’existence de deux services Ws1 et Ws2 définis par Ws1(pa, pb) et
Ws2(pc, pd) avec pa ∈ Pre(Ws1), pc ∈ Pre(Ws2), pb ∈ Post(Ws1), pd ∈ Post(Ws2).
Nous avons l’égalité suivante SimT (Ws1(pa, pb), Ws2(pc, pd)) = 0, alors d’après la
définition 6, SimS(Ws(pa, pb), Wsk(pc, pd)) = 0. Nous avons cette dernière égalité si et
seulement si pb2 9 pa2 d’après la propriété “Nullité de SimS”.

(←) Supposons l’existence de deux services Ws1 et Ws2 définis par Ws1(pa, pb) et
Ws2(pc, pd) avec pa ∈ Pre(Ws1), pb ∈ Pre(Ws2), pc ∈ Post(Ws1), pd ∈ Post(Ws2).
Nous avons la relation suivante pa 9 pb. Afin de calculer SimT , il est nécessaire de
connâıtre au préalable SimS , comme l’exige la définition 6. Or d’après la propriété“Nullité
de SimS”, SimS(Ws(pa, pb), Wsk(pc, pd)) = 0 puisque pa 9 pb. Donc d’après la
définition 6, SimT (Ws(pa, pb), Wsk(pc, pd)) = 0.
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E.3 Exemple

Dans le but d’illustrer notre fonction de similarité SimS , nous présentons un exemple. Dans
l’exemple suivant, nous supposons une ontologie unique. Le domaine d’application concerné est
le cinéma. Afin de simplifier la compréhension de l’exemple, nous présentons les trois taxonomies
utilisées (Figure E.1) issues de l’ontologie relative au domaine du cinéma.

Figure E.1: Taxonomie portant sur le Cinéma.

De plus nous présentons les six concepts décrits en Logique de description ALN illustrés en
figure E.2.

Nous avons décrit le domaine dans lequel nous allons travailler. Nous allons maintenant
détailler la fonction de similarité SimT au moyen d’un exemple.

Exemple

Tout d’abord supposons deux services web Ws1 et Ws2 décrits au moyen de la connaissance de
leurs pré-conditions et effets. Ainsi Ws1 et Ws2 sont décrits par:

• Ws1(in FrenchCinema, in Movie, in Date, out Price, out GeographicArea);

• Ws2(in Cinema, out SpecialPrice, out Location, out OpeningHour).

Nous nous apprêtons à calculer la similarité des deux services au sens de notre fonction de
similarité SimT . D’après la définition 6 (voir (E.1)), SimT est vue comme la somme de deux
composantes SimS et SimC . Cependant la valeur de SimC est déterminée par la connaissance
de SimS (toujours d’après la définition 6). Ainsi nous proposons de calculer la fonction SimS

grâce à la connaissance de Ws1 et Ws2.

Match(Ws1, Ws2) Valeur de vérité Poids fp(M)
1.Mexact−pre/post(Ws1, Ws2) False 0.8
2.Mexact−pre−α(Ws1, Ws2) False 0.6
3.Mexact−post−α(Ws1, Ws2) False 0.6
4.Mplug−in(Ws1, Ws2) True 0.4
5.Mplug−in−post(Ws1, Ws2) True 0.2

Table E.1: fp(M) pour Ws1 et Ws2.
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Cinema ≡ (≥ 1 hasAddress) ∩ (≥ 1 hasLocation) ∩ (≥ 1 hasName)
∩(≥ 1 hasSceancePrice)

FrenchCinema ≡ (≥ 1 hasAddress) ∩ (≥ 1 hasLocation)
∩(≥ 1 hasName) ∩ (∀ playMovies.French)
∩(≥ 1 hasSceancePrice)
∩(≥ 15hasAdvertisingContract)

SeancePrice ≡ (= 1 hasName) ∩ (= 1 hasV alue.Int)
∩(≥ 1 belongs.Cinema)

StudentSeancePrice ≡ (= 1 hasName) ∩ (= 1 hasV alue.Int)
∩(≥ 1 belongs.Cinema)∩ (∀ isCustomer.Student)

GeographicArea ≡ (= 1 hasName) ∩ (= 1 isInCountry)
Location ≡ (= 1 hasName) ∩ (= 1 isInCountry)

∩(= 1 hasAltitude) ∩ (= 1 hasLatitude) ∩ (= 1 hasLongitude)

Figure E.2: Exemple d’une Terminologie T portant sur le Cinéma.

Figure E.3: Matching entre Ws1 et Ws2.

1. Calcul de SimS

D’après la définition 5 du chapitre 7,
SimS(Ws1, Ws2) = argMax(fp(M)) avec
M la fonction de Matching appropriée. Les
résultats de fp(M) sont illustrés dans le
tableau E.1. Si l’on se réfère au tableau,
nous concluons aisément que

SimS(Ws1, Ws2) = 0.4

qui est une valeur strictement positive.

Explicitons le tableau E.1. La fonction Mexact−pre/post possède une valeur de vérité “False”
puisque les pré-conditions de Ws1 et Ws2 ne sont pas équivalentes (il en est de même pour
les post-conditions). La fonction Mexact−pre−α (resp Mexact−post−α) possède une valeur
de vérité “False” puisque les pré-conditions (resp. post-conditions) de Ws1 et Ws2 ne
sont pas équivalentes. La fonction Mplug−in possède une valeur de vérité “True” puisque
les pré-conditions de Ws1 sont plus spécifiques que les pré-conditions de Ws2 (i.e. les
pré-conditions de Ws1 impliquent les pré-conditions de Ws2). De plus les post-conditions
de Ws2 sont plus spécifiques que les post-conditions de Ws1. La fonction Mplug−in−post

possède une valeur de vérité “True” puisque la fonction Mplug−in possède une valeur de
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vérité“True”(implication logique dû à la proposition d’ordre total et partiel sur les fonctions
de Matching).

2. Calcul de SimC

D’après la définition de SimC définie en (E.2), le calcul de SimC s’obtient via la connais-
sance de la fonction de similarité des concepts Sim⊇. Ainsi nous introduisons le tableau
E.2 renseignant sur la similitude des concepts. Notons que la définition de SimC introduit
des comparaisons de concepts pai

subsumé par pcj
. Nous supposons que le calcul de Sim⊇

est effectué avec les valeurs (α, β) = (1
2 , 1

2 ). Ainsi d’après la connaissance de Sim⊇, de la
description des concepts, ainsi que de la taxonomie, nous obtenons les résultats Sim⊇(pai

,
pcj

) avec pai
faisant référence à une pré-condition de Ws1 (resp. post-condition de Ws2)

et pcj
faisant référence à une pré-condition de Ws2 (resp. post-condition de Ws1).

(α, β) = (1
2 , 1

2 )
Sim⊇(px, py) Cinema SceancePrice GeoArea

FrenchCinema 0.33 N/A N/A
SpecialSceancePrice N/A 0.41 N/A

Location N/A N/A 0.37

Table E.2: Sim⊇ portant sur les pré-conditions et effets de Ws1 et Ws2.

En décomposant le formalisme introduit en (E.2) pour définir SimC , nous obtenons re-
spectivement les deux sommes sur les pré-conditions et effets suivantes:
∑

pdi
⊆pbj

Sim⊇(pdi
, pbj

) = 0.41 + 0.37 avec pdi
∈ Post(Ws2) et pbj

∈ Post(Ws1);
∑

pai
⊆pcj

Sim⊇(pai
, pcj

) = 0.33 avec pai
∈ Pre(Ws1) et pcj

∈ Pre(Ws2);

Ainsi d’après (E.2)

SimC =
1

10
(
1

2
(0.41 + 0.37) + 0.37) = 0.076

3. Calcul de SimT

D’après la définition 6, SimT = SimS + SimC = 0.476.

4. Remarques

Notons que SimT (Ws2, Ws1) = 0 puisque d’après la définition 6 si SimS(Ws2, Ws1) = 0
alors SimT (Ws2, Ws1) = 0. Nous remarquons donc que notre fonction de similarité SimT

n’est pas symétrique. Il est trivial de montrer que la fonction de similarité SimT n’est pas
symétrique. En effet SimT , est composée de deux fonctions SimC et SimS qui sont toutes
deux non symétriques.

E.4 Synthèse

Ce chapitre nous a permis de définir la fonction de similarité notée SimT , permettant d’évaluer
la similarité de deux services Ws1 et Ws2 en prenant en compte la similitude des concepts de
leurs pré-conditions et effets. Cette fonction de similitude est à la base de notre modèle de
composition, puisqu’à partir de celle-ci et de la définition de Sit

AIC(S) (définition 4 chapitre D),
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nous pouvons effectuer un choix fonctionnel en cas de multiples compositions possibles (i.e si
un service peut être composé avec plusieurs autres services). Le chapitre suivant introduira la
matrice de Matching (ou Matrice de liens sémantiques), élément de base pour la résolution d’un
problème de planification que nous définirons lors du chapitre G.



Appendix F

Construction de la matrice de
liens sémantiques

F.1 Introduction

Dans ce chapitre, nous présenterons et introduirons la matrice de Matching M permettant
d’aider au processus de composition automatisée de web services. De plus nous présenterons
deux algorithmes permettant la construction d’une telle matrice.

F.2 Matrice de Matching (ou liens sémantiques) M

Étant donnés une fonction de similitude SimT sur les web services à paramètres dans une on-
tologie T et un ordre total sur les fonctions de Matching, nous introduisons l’algorithme de
construction de la matrice M à double entrée. Au préalable, nous définirons formellement la
matrice de Matching notée M .

Définition 7. (Matrice de Matching)
Soit Mp,q(SWebServices ∗ [0, 1])l l’espace des matrices p × q à coefficients dans (SWebServices ∗
[0, 1])l. Une Matrice de Matching M ∈ Mp,q(SWebServices ∗ [0, 1])l représente une matrice
à plusieurs entrées. Chaque entrée est assimilée à un ensemble de couples (Ws, score) ∈
SWebServices ∗ [0, 1] où Ws représente un service web découvert et disponible, et score sera
analysé comme un coefficient de Matching, explicité par:

score = SimT (s(KB, j), M(i, j).sx) avec i ∈ {1, ..., p} et j ∈ {1, ..., q}

Nous définissons donc M comme à une matrice à multiples entrées.

Exemple 1.
Si l’on considère la matrice M1 ∈M2,2(SWebServices ∗ [0, 1]) suivante:

M1 =

(

{(∅, 0)} {(S1, 0.5)}
{(S2, 0.8)} {(∅, 0)}

)

Nous analysons M1 comme un matrice à coefficients dans SWebServices ∗ [0, 1] où M1(1, 1) et
M1(2, 2) ont un score nul et un ensemble de services web correspondant à l’ensemble vide. La
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valeur de M1(1, 1) signifie qu’il n’existe pas de services web sémantiquement comparables1 à un
service web ayant des pré-conditions p1 et effets e1. De même, la valeur de M1(2, 2) signifie qu’il
n’existe pas de services web sémantiquement comparables à un service ayant des pré-conditions
p2 et effets e2. Contrairement aux valeurs de M1(1, 1) et M1(2, 2), M1(1, 2) et M1(2, 1) ont
un score non nul et un ensemble de services non vide. Cela signifie qu’il existe un service web S1

(resp. S2) sémantiquement comparable à un service web ayant des pré-conditions p1 (resp. p2)
et effets e2 (resp. e1).

Nous introduisons formellement la Matrice de Matching nulle pour des raisons requises par
les algorithmes présentés en section suivante.

Définition 8. (Matrice de Matching nulle)
Une Matrice de Matching M ∈Mp,q(SWebServices ∗ [0, 1])l est nulle si et seulement si

M(i, j) = {(∅, 0)} ∀i ∈ {1, ..., p}, ∀j ∈ {1, ..., q}

Cette matrice sera notée M∅.

La Matrice de Matching nulle permettra d’initialiser l’environnement.

Définition 9. (Matrice de Matching non nulle)
Une Matrice de Matching M ∈Mp,q(SWebServices ∗ [0, 1])l est non nulle si et seulement si

∃i ∈ {1, ..., p}, ∃j ∈ {1, ..., q} tel que M(i, j) 6= {(∅, 0)}

Définition 10. (Éléments non nuls de la matrice de Matching)
Un élément M (i, j) de la matrice de Matching M est non nul si et seulement si M (i, j) 6=
{(∅, 0)}.

Propriété 7. Une matrice de Matching M ∈ Mp,q(SWebServices ∗ [0, 1])l est non nulle si et
seulement s’il existe un élément non nul de la matrice de Matching M .

Proof. Traitons les deux implications afin de montrer l’équivalence de la propriété 7.

(←) Supposons qu’il existe un élément non nul de la matrice de Matching M . Alors d’après la
définition 10, il existe i ∈ {1, ..., p} et j ∈ {1, ..., q} de sorte que M (i, j) 6= {(∅, 0)}. Donc
d’après la définition 9, la matrice de Matching M ∈ Mp,q(SWebServices ∗ [0, 1])l est non
nulle.

(→) Supposons que M ∈ Mp,q(SWebServices ∗ [0, 1])l soit non nulle, alors d’après la définition
10, il existe donc un élément non nul de la matrice de Matching M .

F.3 Construction de la matrice M liant les pré-conditions

L’algorithme 6 et 7 (resp. 6 et 8) présentent le processus de construction de la Matrice de
Matching. L’algorithme 6 a pour but de créer et initialiser les éléments de la liste L (nécessaire
pour l’algorithme 8) et la matrice M alors que l’algorithme 7 construit la matrice M pas à pas.
L’algorithme 7 introduit le processus näıf de construction de M , alors que l’algorithme 8 fournit
un processus optimisé de construction de M .

1La comparaison sémantique se fait à l’aide de la fonction de similitude SimT .
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F.3.1 Idée générale

L’idée générale de la construction d’une matrice M est d’obtenir un matrice à p lignes2 et
q colonnes3 permettant d’aider à la construction d’un plan satisfaisant un but précis. Pour
satisfaire une telle ambition, il est nécessaire d’avoir connaissance d’un ensemble d’ontologies T ,
d’un ensemble de services SWebServices, d’un ensemble de buts locaux βL, ainsi qu’une fonction de
similitude SimT définie lors du chapitre E. L’ensemble des ontologies T permet la comparaison
des concepts décrits en Logique de description. L’ensemble des services permettra la construction
d’un plan de services. L’ensemble des buts locaux indique la direction à suivre pour résoudre
le but final et global. Enfin la fonction de similitude permet de comparer un service abstrait à
pré-condition et post-condition unique avec un service appartenant à SWebServices dans le but
d’obtenir un indice reflétant le degré de similitude des deux services comparés. Ainsi un service
S de SWebServices sera composable avec un service S′ de SWebServices si S ⊆M(pa, pb).set avec
pb ∈ PreCondition(S′).

F.3.2 Algorithme de création et d’initialisation

Algorithm 6: Instanciation des paramètres nécessaires à la construction de la Matrice M .

Données: un ensemble de services Web: SWebServices = {Ws1, ...,Wsn},1

un ensemble d’ontologies: T = {T1, ..., Tm},2

l’ensemble des buts locaux βL = {bl1 , ..., blp}.3

Résultat: L instanciée et initialisée,4

M instanciée et initialisée.5

début6

//Initialisation de la liste L7

L ← ∅8

pour chaque but local bi ∈ βL faire9

Ajouter(bi, L);10

fin11

//Initialisation de la matrice M12

pour chaque pré-condition pa distincte de
⋃n

i=1 pre(Wsi) faire13

pour chaque pré-condition pb distincte de
⋃n

i=1 pre(Wsi) ∪ βL faire14

M (pa, pb)← {(∅, 0)};15

fin16

fin17

fin18

1. Preuve d’arrêt:

L’arrêt de la première boucle (Initialisation de la liste L) de l’algorithme 6 est assuré
puisque βL est un ensemble fini de buts locaux. Par conséquent, l’analyse d’un ensemble
fini s’arrête en temps fini.

L’ensemble des services web appartenant à SWebServices et l’ensemble des buts locaux βL

sont finis par construction. De plus l’ensemble des pré-conditions et effets de chaque service

2p = Card(Preconditions(SWebServices)).
3q = p + Card(βl) − Card(βl ∩ Preconditions(SWebServices)).
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web est fini par définition. En effet chaque service web est défini comme une entité présente
sur le web avec un ensemble fini de pré-conditions et effets. Ainsi l’arrêt de la boucle portant
sur l’Initialisation de la matrice M est assuré. L’arrêt de l’algorithme 6 est ainsi prouvé.

2. Preuve de correction:

L’objectif principal de l’algorithme 6 est de créer et d’ initialiser la liste L et la matrice
M . Ces deux tâches sont effectuées lors des deux premières boucles. En effet après avoir
initialisé la liste L à ∅, l’algorithme 6 initialise la L en ajoutant tous les buts locaux bi ∈ βL

à la liste L. Il en est de même pour la matrice de Matching M qui est instanciée et
initialisée à la matrice de Matching nulle M∅. Notons que M ∈Mp,q(SWebServices ∗ [0, 1])l

où l = 1 et p et q sont définis par:

p = Card(

n
⋃

i=1

pre(Wsi)) (F.1)

q = Card(

n
⋃

i=1

pre(Wsi) ∪ βL) (F.2)

La preuve de la correction de l’algorithme 6 est achevée puisque nous avons montré que
l’instanciation et l’initialisation de L et M sont effectuées correctement. En effet tous les
éléments de M sont initialisés à l’élément vide {(∅, 0)} du fait du parcours de la matrice
ligne par ligne puis colonne par colonne.

3. Analyse de la complexité:

L’initialisation de la liste L s’effectue en temps linéaire en fonction de la taille de βL. Ainsi
la complexité de l’instanciation de la liste L est de θ(Card(βL)).

L’initialisation de la matrice de Matching M s’effectue en temps quadratique en fonction
de p et q. Ainsi la complexité de l’initialisation de M est de l’ordre de θ(pq). La complexité
du processus d’instanciation et d’initialisation est donc dans le pire des cas quadratique ou
θ(pq).

Notations:
Pour des raisons de lisibilité, nous introduisons quelques notations qui seront utilisées dans

les algorithmes suivants. Tout d’abord, chaque matrice de Matching M sera un élément de
Mp,q(SWebServices ∗ [0, 1])l, où p représente son nombre de ligne et q son nombre de colonne.
Ainsi pour chaque matrice de Matching M , nous définissons p (resp. q) par la formule (F.1) en
section F.1 page 250 (resp. (F.2) en section F.1 page 250).

F.3.3 Algorithme de construction de Ess(Ws(pa, pb))

L’ensemble Ess(Ws(pa, pb)) représente un ensemble permettant de déterminer quels services
web seront présents dans la matrice de Matching M en ligne pa et colonne pb. Cet ensemble
permet donc de déterminer les liens sémantiques (liens service-service) entre chaque service de
SWebServices. De plus Ess ne présentera que des services web ayant une similarité strictement
positive avec un service de type Ws(pa, pb). Nous donnons une définition formelle de Ess lors
de la définition 11.
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Définition 11. (Ensemble de services similaires de Ws)
Nous définissons l’ensemble des services similaires de Ws noté Ess(Ws) comme:

Ess(Ws) = {Wsk | SimT (Ws(pa , pb), WSk) > 0}

avec pa ∈ Precondition(Ws), pb ∈ Postcondition(Ws) et Ws ∈ SAIC . (F.3)

Algorithm 7: Construction de l’ensemble Ess pour le service Ws(pa, pb).

Données: un ensemble de services Web: SWebServices = {Ws1, ...,Wsn},1

un ensemble d’ontologies: T = {T1, ..., Tm},2

un service web Ws(pa, pb).3

Résultat: Ess(Ws(pa, pb))4

début5

Ess(Ws(pa, pb))← ∅;6

pour chaque service web Wsk ∈ SWebServices faire7

si SimT (Ws(pa , pb), Wsk) > 0 alors8

Ajouter(Wsk, Ess(Ws(pa, pb)));9

fin10

fin11

Retourner Ess(Ws(pa, pb));12

fin13

1. Preuve d’arrêt:

Tout comme l’initialisation de l’ensemble Ess(Ws(pa, pb)) à ∅ la fonction “Ajouter” est
une opération s’effectuant en temps fini. Le parcours de l’ensemble des services web de
SWebServices s’effectue en temps fini puisque celui-ci est fini par construction. De plus le
test de similarité est une opération déterministe. Nous déduisons donc que l’algorithme 7
s’arrête en temps fini.

2. Preuve de correction:

Si l’on suppose SWebServices = ∅, alors aucun service similaire n’est retrouvé donc
Ess(Ws(pa, pb)) = ∅, ce qui est correct. S’il existe un service Wsk web appartenant
SWebServices tel que SimT (WS(pa , pb), Wsk) > 0, alors celui-ci est ajouté a l’ensemble
Ess(Ws(pa, pb)). Ainsi Wsk vérifie bien les conditions de l’ensemble des services similaires
Ess(Ws(pa, pb)) (définition 11). Ainsi nous avons prouvé la correction de l’algorithme.

3. Analyse de la complexité:

La complexité de l’algorithme est fonction du nombre de services web présents dans l’ensemble
SWebServices. Ainsi

Complexite(Algorithme 7) = θ(n)

qui est donc linéaire en nombre de services web de SWebServices.

F.3.4 Algorithme näıf de construction de la matrice M

Propriété 8. (Éléments non nuls de la Matrice de Matching)
Un élément m de M ∈Mp,q(SWebServices ∗ [0, 1])l noté M(i, j) avec i ∈ {1, ..., p}, j ∈ {1, ..., q}
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est non nul si et seulement si

∃s ∈ SWebServices tel que SimT (M(i, j).sx, s) > 0

avec i ⊂ Precondition(sx) et j ⊂ Postcondition(sx). (F.4)

Proof. Traitons les deux implications afin de montrer la propriété 8.

(←) Supposons que ∃s ∈ SWebServices tel que SimT (M(i, j).sx, s) > 0, alors d’après la déf-
inition 11, Card({s | SimT (M(i, j).sx, s) > 0}) > 0, et par conséquent Ess(Ws) 6= ∅.
Ainsi d’après l’algorithme 8, on itère sur chaque élément de Ess(Ws), et chaque élément
M (i, j) vérifiant M (i, j) = (∅, 0) est modifié pour être différent de l’élément nul (∅, 0).
Ainsi M (i, j) n’est plus assimilé à un élément nul. Si nous nous trouvons dans le cas
M (i, j) 6= (∅, 0) alors la propriété est vérifiée.

(→) Supposons qu’il existe un élément m de M ∈ Mp,q(SWebServices ∗ [0, 1])l noté M(i, j)
avec i ∈ {1, ..., p}, j ∈ {1, ..., q} non nul. Ainsi M(i, j) 6= (∅, 0). Par conséquent, ∃s ∈
SWebServices et un réel r ∈ ℜ∩[0, 1] tels que M(i, j) = (s, r). Nous pouvons donc conclure
que SimT (M(i, j).sx, s) = r avec i ∈ Precondition(sx) et j ∈ Postcondition(sx). Ainsi
nous avons prouvé l’existence d’un service s ∈ SWebServices tel que SimT (M(i, j).sx, s) >
0.



APPENDIX F. CONSTRUCTION DE LA MATRICE DE LIENS SÉMANTIQUES 253

Algorithm 8: Construction näıve de la matrice M liant les pré-conditions de SWebServices.

Données: un ensemble de services Web: SWebServices = {Ws1, ...,Wsn},1

un ensemble d’ontologies: T = {T1, ..., Tm},2

la matrice M initialisée.3

Résultat: la matrice M liant les pré-conditions des services de SWebServices.4

début5

pour chaque pré-condition pa distincte de
⋃n

i=1 pre(Wsi) faire6

pour chaque pré-condition pb distincte de
⋃n

i=1 pre(Wsi) ∪ βL faire7

si pb ∈ KB tel que pb soit instancié alors8

M (pa, pb) = (KB, 1);9

sinon10

si Ess(Ws(KB, pb)) 6= ∅ alors11

pour chaque Wsk ∈ Ess(Ws(KB, pb)) faire12

si pa ∈ Preconditions(Wsk) alors13

si M (pa, pb) = (∅, 0) alors14

M (pa, pb)← (Wsk, SimT (WS(KB, pb), Wsk));15

sinon16

M (pa, pb)←M (pa, pb)∪(Wsk, SimT (WS(KB, pb), Wsk));17

fin18

fin19

fin20

fin21

fin22

fin23

fin24

retourner M ;25

fin26

Analyse de l’algorithme:
Nous introduisons l’algorithme näıf de construction de la matrice M . La matrice M a pour

but d’aider à la construction du plan, et donc du workflow permettant la composition de services
web. Le désavantage de ce type de construction est le parcours entier de la matrice M . De plus
à chaque itération, nous devons construire et analyser l’ ensemble Ess(Ws(KB, pb)) dont le coût
de construction est non négligeable. L’algorithme 8 aura pour but d’optimiser la construction de
la matrice de Matching M .

1. Preuve d’arrêt:

L’algorithme 8 est décomposé en trois boucles distinctes. La première boucle a pour ef-
fet d’itérer sur l’ensemble distinct des pré-conditions pa de

⋃n
i=1 pre(Wsi). L’ensemble

SWebServices est un ensemble fini par définition (i.e. son cardinal est n). De plus le nombre
de pré-conditions par services web de SWebServices est fini par définition. Ainsi cette boucle
s’effectue en temps fini. La seconde boucle itère sur l’ensemble distinct des pré-conditions
pb de

⋃n
i=1 pre(Wsi) ∪ βL. Cependant l’ensemble des buts locaux βL est aussi fini par

construction. Comme l’union de deux ensembles finis est fini, nous pouvons conclure que
la deuxième boucle s’effectue en temps fini. En outre le test Ess(Ws(KB, pb)) 6= ∅ est
déterministe. La boucle portant sur les éléments de Ess s’effectue en temps fini puisque



APPENDIX F. CONSTRUCTION DE LA MATRICE DE LIENS SÉMANTIQUES 254

Ess est un ensemble fini. Nous pouvons remarquer que toutes les opérations de l’algorithme
8 s’effectuent en temps fini, et par conséquent s’arrêtent. Nous pouvons donc conclure que
cet algorithme s’arrête.

2. Preuve de correction:

Cet algorithme a pour but de construire la matrice élément par élément. Trois cas sont
envisageables. Le premier laisse un élément (pa, pb) ∈ M à sa valeur initiale (∅, 0) si
et seulement si Ess(Ws(KB, pb)) = ∅ ou pa /∈ pre(Ess). En effet, il semble correct de
n’affecter aucune valeur à un couple (pa, pb) n’ayant aucun service similaire4. Dans le cas
contraire, la valeur de M (pa, pb) est modifiée afin de renseigner sur l’existence d’un (ou
plusieurs) service(s) similaire(s). Enfin si pb ∈ KB alors la valeur de (pa, pb) ∈ M est
modifiée pour obtenir (KB, 1).

3. Analyse de la complexité:

La complexité de l’algorithme 8 est fonction de deux étapes importantes. L’étape 1 est
fonction du nombre pré-conditions pa distinctes de

⋃n
i=1 pre(Wsi). Supposant p l’ensemble

des pré-conditions des services web de
⋃n

i=1 pre(Wsi) et q l’ensemble des pré-conditions pb

distinctes de
⋃n

i=1 pre(Wsi) ∪ βL, nous avons la relation suivante: p ≤ q. De plus p, q et
Card(βl) sont reliés par la relation suivante:

q = p + Card(βl)− Card(βl ∩ Preconditions(SWebServices))

Soit n le cardinal de SWebServices, alors la complexité de l’algorithme 8 est de l’ordre de
θ(pqn), soit dans le pire des cas cubique, en θ(q3).

F.3.5 Algorithme optimisé de Construction de la matrice M

L’algorithme 9 optimise l’algorithme précédant. La matrice n’est plus construite élément par
élément mais suivant un ordre précis. Cet ordre consiste à remplir la matrice en partant d’un
but de βL et d’itérer jusqu’à obtention d’éléments de KB.

4Nous entendons par service similaire, un service web ayant des pré-conditions proche de pa et des post-
conditions proche de pb (pour simplifier).
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Algorithm 9: Construction optimisée de la matrice M liant les pré-conditions de
SWebServices.

Données: un ensemble de services Web: SWebServices = {Ws1, ...,Wsn},1

un ensemble d’ontologies: T = {T1, ..., Tm},2

la liste L et la matrice M initialisées.3

Résultat: la matrice M liant les pré-conditions des services de SWebServices.4

début5

Copier(L, Ltemp);6

tant que L 6= ∅ faire7

e← Premier(L);8

si e ∈ KB tel que e soit instancié alors9

pour chaque ligne l ∈ {1, ..., p} de M faire10

M (l, e) = (KB, 1);11

fin12

sinon13

//e ∈ (βL ∪
⋃n

i=1 pre(Wsi) ∪ βL14

Rechercher WSk tel que SimT (WS(KB , e), WSk) > 015

pour chaque WSk retrouvé faire16

pour chaque pré-condition pc distincte de WSk faire17

si pc /∈ Ltemp alors18

si M (pc, e) = (∅, 0) alors19

M (pc, e)← (Wsk, SimT (WS(KB , e), Wsk));20

sinon21

M (pc, e)←M (pc, e) ∪ (Wsk, SimT (WS(KB , e), Wsk));22

fin23

Ajouter(pc, L);24

Ajouter(pc, Ltemp);25

fin26

fin27

fin28

fin29

Supprimer(e, L);30

fin31

Retourner M ;32

fin33

Propriété 9. (Domaine de définition de L)
∀e ∈ L, nous avons une des trois possibilités suivantes:

i) e ∈ KB;

ii) e ∈
⋃n

i=1 pre(Wsi);

iii) e ∈ βL.

Proof. Par construction, la liste L initiale ne contient que des éléments e appartenant à l’ensemble
des buts locaux βL (voir Algorithme 6). La propriété est donc vraie pour le cas initial.
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Supposons que ∃e ∈ L et Wsk ∈ SWebServices tels que

∃pre1 ∈
n
⋃

i=1

pre(Wsi), SimT (WS(pre1 , e), Wsk) > 0

Alors dans ce cas de figure l’algorithme 9 propose d’ajouter à L l’ensemble des pré-conditions de
Wsk. Ainsi la liste est composée d’éléments de βL et Precondition(SWebServices).

Supposons que KB ∩ Precondition(SWebServices) 6= ∅, alors ∃e tel que e ∈ KB et e ∈
Precondition(SWebServices).

Propriété 10. (Non redondance des éléments de M )
Soit un matrice de matching M ∈Mp,q(SWebServices ∗ [0, 1])l

Soit m1, m2 ∈M(i, j), alors m1 6= m2 ∀i ∈ {1, ..., p}, ∀j ∈ {1, ..., q}

Proof. Raisonnons par l’absurde. Supposons qu’il existe deux éléments m1 et m2 de Mi,j tels
que m1 = m2. Ainsi il existe un service web noté sx tel que δ = SimT (s(i , j), sx) > 0. On a
donc m1 = (sx, δ) et m2 = (sx, δ). Il est possible d’arriver à cette configuration si et seulement
si j a été insérer deux fois (pour un duplicata) dans la liste L cependant le test:

j /∈ Ltemp

permet de ne pas ajouter un élément (ou pré-condition) j si celui-ci a déjà été présent (ou est
présent) dans la liste L. La liste Ltemp permet donc de contrôler ces cas de disfonctionnement
de l’algorithme 9. On a donc prouvé que m1 6= m2.

Analyse de l’algorithme et optimisation:
Afin d’optimiser les performances de l’algorithme de construction de la matrice de Matching

M , nous avons introduit un copie de la liste L notée Ltemp. Celle-ci est en expansion croissante.
En effet, son nombre d’éléments crôıt au fur et à mesure du déroulement de l’algorithme. Cette
liste Ltemp tend vers son optimum global lorsque la matrice M finale est retournée, c’est à dire
à la fin de l’exécution de l’algorithme. L’utilité d’une telle liste provient du fait qu’elle renseigne
sur les pré-conditions rencontrées au cours de l’exécution de l’algorithme 9 (contrairement à la
liste L qui renseigne seulement sur les pré-conditions à traiter). Cette liste permet donc de ne pas
traiter des pré-conditions déjà traitées et qui ne seraient plus présentes dans la liste L. La liste
Ltemp possède un rôle de control au sein de l’algorithme 9, elle permet donc la non duplication
des informations nécessaires à la construction de la matrice de Matching M .

En plus d’obtenir une optimisation, la liste Ltemp permet de traiter les cas difficiles de boucles
infinies ce qui ne rendraient pas l’algorithme de construction de M déterministe. Par exemple
supposons deux services s1 et s2 appartenant à SWebServices tels que:

• s1(in Location, in i2,..., in in , out Cinema, out o2,..., on);

• s2(in Cinema, in i′2,..., in i′n , out Location, out o′2,..., o′n).

Il est évident que s1 et s2 sont composables infiniment (voir figure F.1). Ainsi il serait intéressant
de traiter ce cas de composition afin d’obtenir un algorithme déterministe pour la composition.
La liste Ltemp permet d’éliminer le cas des boucles infinies. En effet la liste Ltemp a pour but de
tester les nouvelles pré-conditions et donc de ne pas traiter les pré-conditions présentes (et donc
déjà traitées) dans Ltemp.

Une telle matrice n’est pas construite itérativement élément par élément, mais récursivement
via les éléments utiles de la matrice M .



APPENDIX F. CONSTRUCTION DE LA MATRICE DE LIENS SÉMANTIQUES 257

Figure F.1: Cas critique de la composition de services.

1. Preuve d’arrêt:

Afin de prouver l’arrêt de l’algorithme, décomposons l’algorithme en sous parties dans le
but d’obtenir un analyse plus fine. Ainsi nous décomposons l’algorithme 9 en trois sous
parties indépendantes. Considérons tout d’abord la seconde partie notée ligne 10. Cette
partie fait référence à une boucle sur un nombre fini de lignes de la matrice M . Par
construction, la matrice M est finie en nombre de lignes et de colonnes, donc cette boucle
s’arrête lorsqu’elle atteint la dernière ligne p de la matrice M . Ainsi si e ∈ KB alors
l’algorithme 9 s’arrête.

Si l’on suppose que e /∈ KB, alors nous nous trouvons dans la partie notée ligne 16. Cette
partie fait référence à une recherche de services au moyen d’une double boucle. La recherche
de services web représentée par “Rechercher Wsk” s’effectue en temps fini, et l’arrêt est
vérifié du fait de l’aspect déterministe de la recherche de services web. Ainsi le processus
de recherche s’effectue en temps fini et s’arrête. Ensuite, nous itérons sur le nombre de
services web découverts qui est supposé fini puisque la recherche de services s’effectue sur
un ensemble de services web SWebServices de cardinalité n. De plus chaque service web
appartenant à SWebServices est fini dans son nombre de paramètres (i.e. pré-conditions et
effets). Ainsi l’itération sur le nombre de pré-conditions des services web découverts est un
processus fini qui s’arrête. Enfin l’ajout s’effectue en temps fini. Le cas où e /∈ KB est donc
un cas s’effectuant en temps fini.

Traitons maintenant le cas ligne 7 qui englobe les deux cas traités auparavant. L’itération
s’effectue sur la longueur de la liste L. En effet, tant que la liste possède des éléments, le
processus de construction de la matrice s’effectue. Nous remarquons que la liste L atteindra
la liste vide en un temps fini puisqu’à chaque étape de la construction de la matrice M ,
un élément de la matrice est supprimé, ce qui réduit la taille de la matrice M de un.
Même si, à chaque étape de la construction de M , un ou plusieurs éléments peuvent être
ajoutés, l’ajout n’est pas infini. En effet, le nombre de services web est fini, tout comme
leurs nombres de pré-conditions et effets, ce qui implique que la découverte de nouveaux
services aura une fin, et ainsi la réduction de la liste L sera assurée par la suppression d’un
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de ses éléments à chaque étape. L’arrêt de l’algorithme 9 est donc assuré par l’arrêt des
trois étapes traitées ci-dessus.

2. Preuve de correction:

La correction de l’algorithme 9 est vérifiée si et seulement si chaque élément de la matrice
M est instancié par un ensemble de couple (S, score) où S représente un ensemble de
services web alors que score représente le score pour un élément donné de la matrice. Par
l’algorithme 6, la matrice M est instanciée puis initialisée. Cependant montrons que chaque
élément de la matrice M est modifié par l’algorithme 9 via un modification correcte. Un
élément de la matrice M est modifié par l’algorithme 9 si et seulement s’il vérifie un des
deux cas suivant:

• e ∈ KB;

• e ∈
⋃n

i=1 pre(Wsi) ∪ βL.

Le premier cas reflète la présence de e dans la base de connaissance KB, ainsi une instance
de e est connue. Ainsi:

∀X ∈ {1, ..., p}, M (X, e).score = 1 et M (X, e).set = KB

Le deuxième cas reflète la présence de e dans l’ensemble des buts locaux βL ou
⋃n

i=1 pre(Wsi),
ce qui signifie qu’une instance de e est à trouver. Trouver une instance de e revient donc à
trouver un service web vérifiant les post-conditions e. Ainsi dans le but de trouver e, nous
recherchons les services web ayant une similitude SimT strictement positive avec un service
ayant les effets e. Il est donc correct de rechercher les services web au sens de la similitude
SimT définie auparavant. Une fois ces services retrouvés, le processus itère sur ceux-ci, puis
sur les lignes et colonnes de la matrice de Matching M , afin de modifier les éléments de la
matrice M susceptibles de satisfaire une similarité SimT strictement positive. Le troisième
cas reflète l’absence de e dans l’ensemble des buts locaux βL. Cette absence implique que
e appartient à une pré-condition d’un service web. Il est donc pertinent de ne pas calculer
la similarité classique entre un service ayant un effet e et un service web mais de calculer
la similarité suivante:

SimT (Spre
AIC(WS(pre , e)), WSk)

Cette similarité permet de calculer la similarité entre un service web ayant des effets pre et
des pré-conditions à déterminer avec un service proche WSk. Ce dernier cas est nécessaire
pour la construction de la matrice de Matching M puisqu’il permet de prendre en compte
les services inverses au sens des pré-conditions. Afin d’achever la preuve de la correction
de l’algorithme 9, nous introduisons le cas de non-determinisme. En effet plusieurs services
web peuvent apparâıtre pour un élément de la matrice M , il est donc nécessaire de prendre
en compte la multiplicité des services web à l’aide du test suivant:

M (pc, e) 6= (∅, 0)

En effet un tel test permet de vérifier l’existence d’un service web pour un élément donné
de la matrice M . Si ce test est vérifié, nous procédons par un simple ajout afin de mettre
à jour la matrice M . Une fois la liste L vide, nous retournons la matrice M considérée
comme finale et correcte.

3. Analyse de la complexité:

La complexité de l’algorithme 9 est fonction des trois étapes introduites lors de la preuve de
l’arrêt. L’étape ligne 10 est fonction du nombre de lignes de la matrice M . Ainsi si e ∈ KB,
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la complexité est évaluée à θ(p). Si nous reprenons le formalisme introduit dans l’analyse
de complexité de l’algorithme 8 alors la complexité de l’étape ligne 16 est de l’ordre de
θ(np)) dans le pire des cas. L’étape ligne 7 consiste à dérouler tous les éléments de la liste
L soit dans la pire des cas tous les effets, pré-conditions des services web ainsi que les buts
locaux, d’où θ(q)). Ainsi la complexité finale de l’algorithme 9 est de l’ordre de θ(npq))
soit dans le pire des cas cubique. Cependant dans le cas général, la taille de la liste L ne
tend pas vers q. Ainsi cet algorithme possède un complexité moins importante que celle
de l’algorithme 8. Nous pouvons conclure que la construction de la matrice M à l’aide de
l’algorithme 9 est plus efficace.

F.4 Construction de M sur un exemple simple

Dans cette section, nous présenterons un exemple de construction de la matrice M portant sur
le domaine du cinéma.

Tout d’abord supposons un ensemble de services web SWebServices tel que:

SWebServices = {s1, s2, s3, s4, s5, s6, s7 }

où les sept différents services web sont explicités par leurs entrées et sorties5 respectives. Ainsi
nous définissons les sept services web comme suit:

• s1(in Movie, in UserProfile, out Cinema);

• s2(in GeographicArea, in MovieGenre, out FamilyCinema);

• s3(in FrenchMovie, in GeographicArea, out FrenchCinema);

• s4(in PhoneNumber, out Location);

• s5(in Director, out Black&WhiteMovie);

• s6(in Director, out ColorMovie);

• s7(in Year, out LocalMovie).

Nous considérons un unique but local noté bl ∈ βL. Le but sera d’obtenir un Cinéma (son
adresse, nom...). De plus nous considérons la base de connaissance KB définie dans le tableau
F.1.

Concept Instance
Director Tom Paul
UserProfile my profile
MovieGenre Comics
Year 2005
PhoneNumber +33677777777

Table F.1: Base de connaissance KB.

5Afin de simplifier au maximum la construction de la matrice de Matching M , nous confondrons Pré-conditions
(resp. Post-conditions) et Input (resp. Output).
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Afin de nous borner à la construction de la matrice de Matching M , nous n’expliciterons
pas les détails du calcul de similitude. Cependant la connaissance de la table de similitude
est essentielle pour la construction de la matrice KB. Ainsi nous présentons les résultats de la
similitude des services web. Le tableau F.2 explicite6 les résultats nécessaires au cas e ∈ βL de
l’algorithme 9. Le tableau F.2 indique les services capables de résoudre le but “Cinema”.

SimT s1 s2 s3

Ws(KB, Cinema) 0.9 0.7 0.6

Table F.2: Résultats nécessaires pour le cas e ∈ βL de l’algorithme 9.

Le tableau F.3 explicite les résultats nécessaires au cas e /∈ βL de l’algorithme 9.

SimT s4 s5 s6 s7

WsX(KB, Movie) 0.6 0.5 0.3
WsY (KB, GA) 0.8
WsT (KB, F renchMovie) 0.5

Table F.3: Résultats nécessaires pour le cas e /∈ βL de l’algorithme 9.

Les résultats des tableaux F.2 et F.3 ont été obtenus à l’aide des ontologies du domaine,
de la description des concepts, et de la fonction de similitude simT . L’élément “KB” dans le
tableau F.3 signifie que nous posons des contraintes sur les services à retrouvé (au niveau des
pré-conditions de ceux-ci). Cependant il est fort possible d’imposer aux services à retrouver de
vérifier des propriétés plus complexes afin d’élaguer l’espace de recherche et donc d’affiner la
recherche.

Nous avons donc défini le contexte dans lequel nous travaillons. Avant de construire défini-
tivement la matrice de Matching M , nous devons utiliser l’algorithme 6 qui est un pré requis de
l’algorithme 9 afin de créer et initialiser les outils nécessaires à la construction de M . L’algorithme
6 produit donc la liste:

L = {Cinema}

Avant de construire la matrice M initialisée à M∅, déterminons p et q référençant respectivement
le nombre de lignes et de colonnes de M . p est déterminé à l’aide de la formule (F.1). Nous
obtenons ainsi p = 8. q est déterminé à l’aide de la formule (F.2). Nous obtenons ainsi q = 9.
Ainsi M ∈ M8,9(SWebServices ∗ [0, 1]). M est donc représenté par une matrice nulle noté M∅

avec huit lignes et neuf colonnes où les lignes et colonnes ont les correspondances suivantes:

• La pré-condition “Director” identifie indépendamment la ligne 1 et la colonne 1;

• La pré-condition “Movie” identifie indépendamment la ligne 2 et la colonne 2;

• La pré-condition “UserProfile” identifie indépendamment la ligne 3 et la colonne 3;

• La pré-condition “GeographicArea” identifie indépendamment la ligne 4 et la colonne 4;

• La pré-condition “MovieGenre” identifie indépendamment la ligne 5 et la colonne 5;

• La pré-condition “PhoneNumber” identifie indépendamment la ligne 6 et la colonne 6;

6Les résultats du tableau F.2 et F.3 sont calculés à l’aide de la fonction de calcul de similitude simT .
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• La pré-condition “FrenchMovie” identifie indépendamment la ligne 7 et la colonne 7;

• La pré-condition “Year” identifie indépendamment la ligne 8 et la colonne 8;

• Le but local bl “Cinema” identifie la colonne 9.

Après avoir introduit les éléments nécessaires à la construction de la matrice de Matching
M , nous pouvons élaborer la construction effective de M à l’aide de l’algorithme 6 et des outils
présentés jusqu’ici. Ainsi déroulons l’algorithme 9 afin de construire la matrice M finale.

F.4.1 Étape 1: L = {Cinema}

D’après l’algorithme 9 e ← Cinema, cependant e est assimilé à un but local puisque e ∈ βL.
Ainsi nous considérons le cas ligne 10. Ensuite, nous recherchons tous les services web Wsk tels
que:

SimT (WS(KB , e), Wsk) ≥ 0

Ces services sont retrouvés à l’aide du tableau F.2 Ainsi WS(KB , e) possède une similitude
positive avec s1, s2, et s3. Donc pour chacune des pré-conditions pc de ces trois services, nous
remplissons la matrice M si et seulement si pc /∈ Ltemp. Ainsi grâce au service web s1 retrouvé,
nous obtenons:

• M (Movie, Cinema) ← (s1, 0.9);

• M (UserProfile, Cinema) ← (s1, 0.9).

Nous itèrons ce processus pour trouver M (GeographicArea, Cinema), M (MovieGenre, Cin-
ema), M (FrenchMovie, Cinema).

Ainsi à la fin de cette étape, les listes sont respectivement:

L = {Movie, UserProfile, GeographicArea, MovieGenre, FrenchMovie}

Ltemp = {Cinema, Movie, UserProfile, GeographicArea, MovieGenre, FrenchMovie}

F.4.2 Étape 2

Si nous considérons la nouvelle liste L, alors e est assimilé à l’élément “Movie” qui ne fait pas
partie de la base de connaissance KB, ni de l’ensemble des buts locaux βL. Ainsi nous nous
trouvons dans le cas où e /∈ βL et e /∈ KB. Nous recherchons donc tous les services web Wsk tels
que:

SimT (Se
AIC(WS(e, post)), WSk) ≥ 0 i.e SimT ((WS(KB, e)), WSk) ≥ 0

Grâce au tableau F.3, nous retrouvons les services s5, s6, et s7 ayant une similitude SimT

positive avec (WS(pre, Movie). Donc pour chacune des pré-conditions pc de ces trois services,
nous remplissons la matrice M si et seulement si pc /∈ Ltemp. Ainsi grâce au service web s5

retrouvé, nous obtenons:

• M (Director, Movie) ← (s5, 0.6).

Nous itérons ce processus pour trouver M (Year, Movie).
Ainsi à la fin de cette étape, les listes sont respectivement:

L = {UserProfile, GeographicArea, MovieGenre, FrenchMovie, Director, Y ear}
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F.4.3 Étape 3

Si nous considérons la nouvelle liste L, alors e est assimilé à l’élément “UserProfile” qui ne fait
pas partie de la base de connaissance KB. Ainsi d’après l’algorithme 9:

M (l, e) = (KB, 1) ∀l ∈ {1, ..., p}

F.4.4 Résultat final

Dir Movie UP GA MG PN FM Year Cinema
Dir (KB, 1) {(s5, 0.6) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (∅, 0)

(s6, 0.5)}
Movie (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (s1, 0.9)
UP (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (s1, 0.9)
GA (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) {(s2, 0.7)

(s3, 0.6)}
MG (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (s2, 0.7)
PN (KB, 1) (∅, 0) (KB, 1) (s4, 0.8) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (∅, 0)
FM (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (s3, 0.6)
Year (KB, 1) (s7, 0.3) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (s7, 0.5) (KB, 1) (∅, 0)

Table F.4: Matrice M finale.

Nous avons traité tous les cas possibles de l’algorithme, à savoir “e ∈ KB”, “e ∈ βL”, et
“e /∈ KB et e /∈ βL”. Nous ne traiterons pas toute la liste L pour des raisons de place cependant
nous décrivons la matrice finale M en figure F.4.

F.5 Synthèse

Dans ce chapitre nous avons introduit la matrice de liens sémantiques permettant de résoudre le
problème de composition de services. La construction d’une telle matrice nécessite la connaissance
d’une fonction de similitude SimT introduite lors du chapitre précédant. Le chapitre suivant aura
pour but de résoudre le problème de composition de services au moyen de la matrice de liens
sémantiques. Afin de résoudre un tel problème, nous comparons notre problème à un problème
de planification.



Appendix G

Construction du plan final

G.1 Introduction

Après avoir introduit le processus de construction de la matrice de matching (ou de liens sé-
mantiques) M aidant à la composition automatisée de services web, nous proposons d’étudier
l’algorithme permettant la composition finale des services web retrouvés. L’algorithme proposé
s’appuie sur le domaine de la planification en IA. Ainsi nous proposons de résoudre un problème
de planification pour résoudre notre problème de composition. Tout d’abord nous présenterons
les définitions importantes relatives au domaine de la planification en IA, ensuite nous analy-
serons notre problème de planification. Enfin nous présenterons notre algorithme de résolution
de composition de services.

G.2 La planification dans le cadre de l’IA

G.2.1 La planification en IA

La planification portant sur le domaine de l’intelligence artificielle a débuté dans le courant de
l’année 1963 lors de la présentation de GPS (General Problem Solver) par [146]. En général,
un planificateur IA produit un ensemble d’actions ordonnées ayant pour but la modification de
l’état du monde afin d’obtenir l’état du monde désiré.

Le problème de planification est vu comme un problème de construction automatique ou
semi-automatique d’ordre sur les actions disposées de sorte que l’exécution de ces actions a pour
but de modifier l’état initial du monde en un autre état appelé état final du monde dans lequel
certains buts ont été réalisés. Cet ordre est typiquement assimilé à un “ordre partiel”. En effet,
l’ordre retrouvé peut être assimilé à un ordre partiel où des séquences d’actions sont effectuées
en parallèle. Ainsi ces séquences peuvent être effectuées dans n’importe quel ordre tout en
permettant la réalisation des buts désirés. Le planificateur ou générateur de plans est le système
qui le produit.

Problème de planification

Le processus de planification nécessite:

• une description du problème à résoudre:

– une description de l’état initial du monde en question (l’état initial),

263
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– une description du but à atteindre (le but),

– une description des opérations qu’il est possible de réaliser dans le monde (parfois de
différentes granularités : actions, opérateurs, procédures, tâches...);

• une procédure formalisée qui manipule ces descriptions afin de produire un plan solution;

• si possible, des connaissances permettant de guider la recherche d’un plan solution (con-
naissances indépendantes ou liées au domaine ou au problème posé).

Propriétés des plans

Un plan est correct si et seulement si son exécution permet, partant de l’état initial, d’atteindre
le but.

Un plan est complet si et seulement si chaque pré-condition d’une étape du plan est satisfaite
par un effet d’une étape antérieure du plan (aucune pré-condition n’est dite “ouverte”). Plus
formellement, une étape du plan Si satisfait les pré-conditions p d’une étape du plan Sj si
Si ≺ Sj avec p ∈ EFFECTS(Si).

Un plan est consistant si et seulement s’il n’y a pas de contradictions lors de l’ordonnancement1

des contraintes. Il y a contradiction si Si ≺ Sj et Sj ≺ Si.
Un plan est une solution au problème de planification si et seulement si celui-ci est correct,

complet et consistant.

Propriétés des planificateurs

Un planificateur est sain si et seulement si, étant donné un problème de planification, et étant
donné le formalisme de description de problèmes, tous les plans qu’il est susceptible de produire
pour résoudre ce problème sont des plans solutions.

Un planificateur est complet si et seulement si, étant donné un problème de planification,
et étant donné le formalisme de description de problèmes, il produit un plan solution lorsqu’il
existe.

Un planificateur est optimal (suivant un critère particulier qui mesure la qualité des plans) si
et seulement si les plans solutions qu’il produit sont optimaux selon ce critère (nombre d’actions,
nombre de niveaux, degré de parallélisme, temps d’exécution, quantité de ressources consommées,
qualité de Matching...).

G.2.2 Les modèles élaborés par l’IA

Calcul de situation (Planification déductive)

En calcul de situation[133], une situation représente l’état du monde à l’instant t (l’état du
monde est exprimé en termes de fonctions et de relations relatives à une situation particulière)
et une action représente une opération permettant de changer de situations. Dans le calcul de
situations, nous nous intéressons à l’état du monde après avoir accompli des actions.

1. Description des actions

Chaque action a est représentée par deux ensembles distincts:

• l’ensemble des possibilités où chaque élément est de la forme
preconditions⇒ Possible(a, s) signifiant que l’action a est possible dans la situation
s;

1≺ est une relation transitive permettant d’ordonnancer le plan.
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• l’ensemble des effets où chaque élément est de la forme Possible(a, s) ⇒ effet
signifiant que l’effet décrit les changements résultant de l’action a.

Synthèse de plans: Système STRIPS

STRIPS [64]2 a été adopté par la communauté de recherche comme la base des formalismes de
planification utilisée aujourd’hui. Différentes extensions [125, 136] de cette planification existe
mais la description de haut niveau présentée dans STRIPS est commune à toutes ces approches.

Dans STRIPS le monde est décrit en terme de son état. Ainsi le monde est décrit au moyen
de trois listes de variables: une liste de pré-conditions, une liste d’éléments à effacer, et une liste
d’éléments à ajouter. La liste des pré-conditions permet de vérifier ce qui doit être vérifié avant
toute action. Les listes des éléments à effacer et à ajouter renseignent sur les modifications de
l’état du monde.

1. Représentation des états

Un état E du monde de la planification est représenté par un ensemble fini de formules
atomiques (conjonction d’atomes clos) sans symbole de variables et de fonctions. Tout état
ne contient pas de propositions négatives. STRIPS satisfait l’hypothèse du monde fermé:
“toute proposition qui n’est pas exprimée dans un état est fausse dans cet état”. Une formule
atomique de base est aussi appelée un fluent.

2. Représentation du but

Il est représenté par un état partiellement spécifié. Un état satisfait le but s’il contient tous
les atomes du but. (ex: Cinema∩ cheap est un but, Cinema∩ cheap∩ commercial est un
état satisfaisant le but). Tout but ne contient pas de propositions négatives.

3. Représentation des opérateurs

Un opérateur o est un modèle d’action. Il est représenté par son nom et un triplet <
pr, ad, de > où pr, ad et de sont des ensembles finis de formules atomiques. Prec(o),
Add(o), Del(o) dénotent respectivement les ensembles pr, ad, de de l’opérateur o. Une
action, dénotée par a, est une instance de base d’un opérateur o (toutes les variables de o
sont instanciées).

4. Représentation des actions

Chaque action (ou schéma d’action) est spécifiée par un nom, un ensemble de pré-conditions
et un ensemble d’effets. Les pré-conditions doivent être satisfaites avant l’action et les effets
sont impliqués après l’action.

Action(aller(a, x, y),
PRECOND: lieu(a, x) ∧ acote(x; y)
EFFECT: ¬lieu(a, x) ∨ lieu(a, y))

Figure G.1: Exemple d’action avec le formalisme STRIPS.

2STandford Research Institute Problem Solver.
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5. Résultat d’une action

L’application de l’action a sur un état s donne un état s′ qui est le même que s sauf qu’il
a été agrémenté des litéraux positifs des effets dans s′ et réduit des litéraux négatifs des
effets de s′.

6. Problème de planification

Un problème de planification est un triplet < O, I, B > où :

• O dénote un ensemble fini d’opérateurs utilisables dans le domaine de la planification
considéré,

• I est l’état initial du problème, il est représenté par un ensemble fini de fluents,

• B est le but du problème, il est représenté par un ensemble fini de fluents.

7. Solution au problème de planification

Une solution au problème de planification est un plan solution.

Décomposition en tâches hiérarchisées: Système NOAH

La planification hiérarchique HTN[181]3 est une méthodologie de planification (type Intelligence
Artificielle) qui construit un plan par décomposition de tâches. C’est un processus dans lequel le
système de planification décompose des tâches en plus petites sous tâches jusqu’à obtention de
tâches primitives (ou services primitifs). Ainsi ces dernières pourront être exécutées directement.
Ce découpage en sous tâches permet d’obtenir la connaissance de l’état du monde à chaque étape.
La planification hiérarchique est caractérisée par le fait qu’elle construit le plan d’actions à des
niveaux successifs de détail ou d’abstraction. La motivation principale, qui a conduit à cette
approche, est la réduction de l’espace de recherche à chaque étape d’affinement du plan, donc un
gain d’efficacité.

G.2.3 Méthode de planification

Dans la suite du chapitre nous utiliserons le formalisme introduit par STRIPS.

Planification linéaire (ordre total)

Le planificateur le plus simple est le planificateur linéaire: il procède par exploration de l’espace
des états à l’aide d’un algorithme de recherche.

Châınage avant (data-driven)

La planification ”en avant” explore un espace d’états. Le planificateur effectuant une telle plan-
ification est appelé “progressif ”. Le “Châınage avant” a pour but de considérer des séquences
d’actions jusqu’à ce que nous trouvions une séquence qui mène à l’état de solution. Cependant
l’application d’une telle méthode est difficile car le nombre d’actions possibles est souvent grand
(en général, de nombreuses actions sont applicables à un état donné ce qui implique un facteur
de branchement élevé).

3hierarchical planning formalism: HTN
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Méthodes de recherche Espace de recherche

Planification “avant” États
Planification “arrière” Objectifs
Planification non linéaire Plans

Table G.1: Modèle de planification et espaces de recherche.

Châınage arrière (goal-driven ou regression du but)

La planification en châınage arrière explore un espace d’objectifs à partir de l’objectif original
vers un but correspondant à l’état initial. Le planificateur effectuant une telle planification est
appelé “régressif”.

STRIPS effectue une planification linéaire par “châınage arrière”, pour cela elle utilise une
structure de pile pour organiser les sous problèmes et sélectionner lequel poursuivre.

Châınage avant vs Châınage arrière

En général, il y a beaucoup moins d’actions pertinentes pour un but donné qu’il n’y a d’actions
applicables. Ainsi le facteur de branchement pour le châınage arrière est moindre par rapport
à la planification ”en avant”. Parfois nous ne pouvons pas connâıtre toutes les variables pour
complètement instancier un opérateur en châınage arrière. Néanmoins les longueurs des solutions
(en nombre d’actions) sont identiques.

Un plan séquentiel P est une séquence finie (éventuellement vide) d’actions notée
< a1, a2, ..., an > (notée <> si P est la séquence vide).

Planification non linéaire (ordre partiel)

Le vrai problème posé par l’interférence entre buts ne se trouve pas au niveau des actions elles-
mêmes, mais de leur ordre. La planification non linéaire consiste à trouver d’abord les sous plans
pour chaque but, et ensuite trouver l’ordre qui convient. La planification non linéaire explore
un espace de plans. Dans la planification non linéaire, les plans représentent des ordres partiels.
L’idée générale est le “least committment”, c’est-à-dire ne pas faire de choix avant que ce soit
vraiment nécessaire.

G.2.4 Synthèse

La planification est un problème très difficile, car il n’y a pas de limite supérieure à la complexité
du plan nécessaire pour réaliser un but donné.

G.3 Composition de services et planification en IA

G.3.1 Formalisme du problème de composition automatique de ser-
vices

Le problème de composition automatique de services web sera vu comme un problème de plani-
fication < SWebServices, KB, βG > (voir figure G.2) où :

• SWebServices dénote un ensemble fini de services web utilisables dans le domaine de la
planification considéré;
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• KB est la base de connaissance, il est représenté par un ensemble fini de concepts et
d’instances;

• βG est le but du problème, il est représenté par un ensemble fini de concepts.

βG étant décomposable en sous buts locaux βLi
, le problème de composition automatique de

services web se ramène à un problème de planification non linéaire de < SWebServices, KB, βG >
où βG = {βLi

| βLi
∈ βL}. Ainsi résoudre le probème de planification < SWebServices, KB, βG >

revient à résoudre le problème de planification non linéaire de < SWebServices, KB, βLi
> avec

βLi
∈ βL. En effet la planification par réduction de problème semble appropriée à notre problème

de composition. Il est donc plus facile de résoudre un problème complexe en le réduisant en un
ensemble de sous problèmes plus faciles à résoudre.

Figure G.2: Problème de planification.

Définition 12. (Plan vide) Un plan vide noté <> est l’unique plan ne contenant aucune étape
et ne résolvant aucun but.

Propriété 11. Le problème de planification < SWebServices, KB, ∅ > possède un unique plan
solution optimal <>.

Proof. Montrons que <> est un plan correct, complet, consistant et optimal du problème <
SWebServices, KB, ∅ >.

Notons qu’à partir de l’état initial représenté par la base de connaissance, il est possible
d’atteindre le but ∅, puisque ce but est toujours satisfait quelque soit le plan envisagé. Ainsi
nous avons montré que partant de l’état initial le plan <> permet d’atteindre le but final ∅. Le
plan <> est donc un plan correct pour le problème de planification < SWebServices, KB, ∅ >.

Le plan <> est complet pour le problème de planification < SWebServices, KB, ∅ >, puisque
celui-ci n’est constitué d’aucune étape. En effet le plan n’est constitué d’aucune pré-condition
“ouverte”.
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Le plan <> ne contenant aucune étape, aucune contradiction lors de l’ordonnancement des
contraintes ne peut être référencée. Ainsi le plan <> est consistant.

Montrons que le plan <> est l’unique plan résolvant le problème de planification
< SWebServices, KB, ∅ >. D’après la définition du“Plan vide”, <> est l’unique plan ne contenant
aucune étape et ne résolvant aucun but. Ainsi par analogie, <> est l’unique plan résolvant le
problème de planification < SWebServices, KB, ∅ >.

Le plan solution du problème de planification < SWebServices, KB, ∅ > étant unique, il est
optimal.

G.3.2 Solution envisagée

Ayant connaissance de l’ensemble des buts locaux βL, notre planificateur procèdera par“châınage
arrière”, procédant par l’exploration de l’espace des objectifs, par régression jusqu’à découverte
des états initiaux (i.e. les pré-conditions du plan sont satisfaites soit par la base de connaissance
KB, soit par un service web (une action)). De plus, le plan retourné devra être solution, et
optimal au sens de la métrique SimT introduite lors du chapitre E.

Définition 13. (Plan complet)
Un plan est complet si et seulement si chaque pré-condition d’une étape du plan est satisfaite par
un effet d’une étape antérieure du plan ou si elle est satisfaite par la base de connaissance KB
(aucune pré-condition n’est dite “ouverte”). Plus formellement, une étape du plan Si satisfait les
pré-conditions p d’une étape du plan Sj si Si ≺ Sj avec p ∈ EFFECTS(Si) ou si p ∈ KB.

Nous avons donc introduit la notion de plan complet, définition sensiblement différente de
celle introduite par la communauté de planification en IA. Cependant les définitions de correction
et consistance d’un plan sont rigoureusement identiques à celles introduites par la communauté
de planification en IA. De même un plan est une solution au problème de planification si et
seulement si celui-ci est correct, complet et consistant.

Définition 14. (Service web post-pertinent4)
Une service web est post-pertinent pour réaliser un objectif donné si une des propositions de ses
effets correspond à une proposition d’un sous objectif.

D’après la définition précédente les services web entrant en ligne de compte dans le plan
solution sont ceux qui ont le potentiel de réaliser un but ou sous but. Leurs pré-conditions
définiront les sous buts du prochain problème à résoudre.

Définition 15. (Service web pre-pertinent)
Une service web est pre-pertinent pour réaliser un objectif donné si toutes les propositions de ses
pré-conditions sont satisfaites par un ensemble fini d’éléments de KB.

Ainsi d’après la définition précédente, un plan complet est constitué de services web pre-
pertinents permettant de résoudre un but ou sous but du plan.

Définition 16. (Service web pertinent)
Une service web est pertinent si et seulement si celui-ci est pre-pertinent et post-pertinent.

Propriété 12. Un plan est complet si et seulement il est constitué de services web pertinents,
et/ou pre-pertinents, et post-pertinents.

Proof. Traitons les deux implications de la propriété.

4Définition proche d’“action pertinente” introduite par la communauté de planification en IA
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→ D’après la définition 13, un plan est complet si chaque pré-condition d’une étape du plan
est satisfaite par un effet d’une étape antérieure du plan ou si elle est satisfaite par la base
de connaissance KB. Supposons deux cas:

1) Supposons qu’une pré-condition d’une étape du plan est satisfaite par un effet d’une
étape antérieure du plan alors d’après la définition 14, il existe un service web post-
pertinent satisfaisant la pré-condition de cette étape.

2) Supposons qu’une pré-condition d’une étape du plan est satisfaite par la base de
connaissance KB alors d’après la définition 15, il existe un service web pre-pertinent
satisfaisant la pré-condition de cette étape.

← Supposons deux cas:

1) Supposons que le plan proposé ne soit constitué que de services web pertinents alors
d’après les définitions 14, 15 et 16, tous ces services ont des pré-conditions satisfaites
par KB et ont au moins un effet correspondant à une proposition d’un sous objectif.
Ainsi chaque sous objectif est résolu par exactement un service web pertinent du fait
de sa définition. Ainsi chaque pré-condition d’une étape du plan est satisfaite par la
base de connaissance KB d’après la définition 15. Ainsi le plan est complet.

2) Supposons que le plan proposé ne soit constitué que de services web pre-pertinents et
post-pertinents alors d’après la définition 14, et 15 il existe des services web dont les
effets satisfont les pré-conditions d’un sous objectif et il existe des services web dont
les pré-conditions sont satisfaites par KB. Cependant cette dernière affirmation valide
la définition de plan complet.

Recherche des services web pertinents, pre-pertinents, et post-pertinents

Afin de trouver un plan solution à notre problème de planification, il est essentiel de retrouver les
services web pertinents, pre-pertinents, et post-pertinents permettant d’assurer la complétude du
plan. Afin de retrouver ces services web, nous proposons un algorithme procédant par “châınage
arrière”. Ainsi, à partir des objectifs à atteindre nous construirons le plan complet à l’aide de
la matrice de Matching M renseignant sur les liens sémantiques à mettre en oeuvre. Nous
rappelons que les liens sémantiques sont pondérés, et que chaque valeur non nulle d’un élément
M (i, j) de la matrice de Matching M signifie l’existence d’un service web Wsx dont les effets
sont plus spécifiques (ou équivalents: dépendant de la fonction de Matching appliquée) que les
pré-conditions incarnées par j. Autrement dit il existe un service web Wsx tel que

Wsx
j
−→Ws(j, ?)

signifiant qu’il existe un lien sémantique entre Wsx et Ws(j, ?).

Définition 17. (Liens sémantiques) Les liens sémantiques mettent en évidence la manière dont
le plan satisfait les buts à partir des conditions initiales (figure G.3).

Un lien sémantique s’écrit comme Si
c
−→ Sj et se lit “les post-conditions de Si satisfont les

pré-conditions de Sj”. Les liens sémantiques sont utiles pour mémoriser les buts de chaque étape
du plan. Dans ce cas précis, le but de Si est de satisfaire les pré-conditions c de Sj .

D’après la définition précédente, nous pouvons affirmer que la matrice de Matching M peut
être assimilée à la matrice des liens sémantiques.
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Propriété 13. Les services web pertinents, pre-pertinents, et post-pertinents sont connus au
moyen de la matrice de Matching M (ou matrice des liens sémantiques).

Proof. Trivial d’après la construction de la matrice de Matching. M.

Figure G.3: Liens sémantiques.

G.4 Construction du plan final

Étant donnée la matrice des liens sémantiques M , nous présentons l’algorithme permettant de
construire la composition optimale de services web au sens de la fonction de similitude SimT

introduite lors du chapitre E. Nous proposons un algorithme procédant par “châınage arrière”
pour résoudre le problème de planification < SWebServices, KB, βG >. Le planificateur proposé
devra posséder les propriétés de complétude, consistance, correction et d’optimalité (au sens de la
fonction SimT présentée en chapitre E). Dans le but d’obtenir un tel planificateur nous proposons
d’étudier les algorithmes permettant de retrouver le plan optimal, ainsi que l’ensemble des plans
consistants. La présentation de ces deux algorithmes permettra d’introduire l’algorithme P4OS
proposant un plan solution et optimal lorsque celui-ci existe.

G.4.1 Évaluation du plan optimal

Étant donnée une matrice de matching (ou matrice de liens sémantiques), nous présentons
l’algorithme permettant de retrouver le poids du plan optimal au sens de la fonction de sim-
ilarité SimT . Nous introduisons cet algorithme dans le but de retrouver le plan optimal mais
non nécessairement solution pour notre problème de planification. Cet algorithme évalue donc
le poids du plan optimal au moyen de la matrice de matching présentée lors du chapitre F.
Afin d’éliminer les problèmes de boucles5 nous introduisons un liste V B permettant de traiter
les répétitions de buts (voir figure G.4). Cette liste a pour effet de renseigner sur les buts en
cours de résolution sur une même branche de l’arbre de planification. Ainsi si un but a déjà été

5Nous ferons l’analogie entre le problème des boucles d’un problème de composition automatique de services
web et l’anomalie de Sussman[147, 178] pour un problème de planification.
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rencontré, alors l’algorithme est renseigné sur l’existence d’une boucle ce qui permet de rendre
l’algorithme déterministe.

Figure G.4: Détection de boucles pour notre problème de planification.
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Algorithm 10: Evaluation du plan optimal: Eval

Données: un ensemble de services Web: SWebServices = {Ws1, ...,Wsn},1

la matrice de liens sémantiques M ,2

la base de connaissance KB,3

l’ensemble des buts locaux βL,4

un liste de buts résolus V B.5

Résultat: le poids du plan optimal.6

début7

si β ∈ KB alors8

poids ← 1;9

supprimer (β, βL);10

sinon11

St ← ∅;12

//Découverte des services resolvant le but β.13

pour chaque i ∈
⋃n

i=1 pre(Wsi) faire14

si M (i, β) 6= (∅, 0) alors15

si M (i, β).set /∈ St alors16

Ajouter(M (i, β).set, St);17

fin18

fin19

fin20

si St 6= ∅ alors21

si β ∈ V B alors22

poids ← poids ∗ 0;23

sinon24

Ajouter(β, V B);25

poids26

←MaxSt
( 1
#pre2

S

∑

preS
M (prej , β).score ∗ (

∑

preS
(Eval(prej , V B))));

fin27

sinon28

poids ← poids ∗ 0;29

fin30

fin31

fin32

1. Preuve d’arrêt:

L’algorithme suivant est constitué d’une unique boucle ainsi que de plusieurs tests condi-
tionnels. Tout d’abord le test d’appartenance de β à la base de connaissance s’effectue en
temps fini puisque la base de connaissance est assimilée à un ensemble fini par définition.
La suppression d’un élément dans un ensemble fini et l’affectation sont deux opérations
s’effectuant en temps fini.

Notons que l’unique boucle permettant la “Découverte des services résolvant le but β”
s’effectue sur l’ensemble des pré-conditions de services web qui est apparenté à un ensemble
fini (la preuve a été faite dans le chapitre F lors de la construction de la matrice M). La
boucle précédente contient une imbrication de tests. Le premier test est une différence,
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qui est une opération s’effectuant en temps fini. Le deuxième test est assimilé à un test
d’appartenance, s’effectuant aussi en temps fini, tout comme la fonction “Ajouter”.

Enfin l’opération principale fait appel de nouveau à la fonction Eval. Cette fonction est
donc assimilé à une fonction récursive, itérant sur les pré-conditions de services appartenant
à St. L’arrêt de la fonction récursive est assurée puisque le cas difficile des boucles est
contrôlé par la liste V B (liste des buts déjà rencontrés au cours du parcours en profondeur).
De plus si le but appartient à la base de connaissance, alors le poids est assimilé à 1. Si
l’ensemble St est vide alors le poids est initialisé a 0, tout comme dans le cas où le but à
traiter appartient à V B. Ainsi comme l’ensemble des services web et leurs pré-conditions
sont des ensembles finis, et comme le cas des boucles sont contrôlés alors la fonction de
récurrence s’effectue en temps fini.

2. Preuve de correction:

L’algorithme 10 a pour but de retourner le poids du plan solution optimal. Montrons que
cet algorithme produit cet effet.

Soit l’hypothèse de récurrence (HR) suivante:

PoidsMax = MaxSt
(

1

#pre2
S

∑

preS

M (prej , β).score ∗ (
∑

preS

(Eval(prej , V B))))

Nous procéderons par récurrence sur l’ensemble des services présents dans St. L’étape
d’initialisation consiste à vérifier (HR) pour un ensemble St vide. Ainsi, nous supposons
St = ∅ d’après l’algorithme 10. Le poids du plan optimal est donc égal à zéro ce qui
est conforme à l’hypothèse de récurrence puisque aucun service ne peut satisfaire le but à
résoudre.

Nous supposons St un ensemble à n + 1 éléments. De plus nous supposons que l’hypothèse
de récurrence est vérifiée pour les n premiers éléments. Ainsi il existe un plan solution
optimal vérifiant l’hypothèse de récurrence (HR). Donc il existe sx ∈ St tel que sx fasse
partie du plan solution optimal. Si nous supposons notre n+1ieme élément s faisant partie
de St alors celui-ci fera partie du plan si et seulement si

1

#pre2
s

∑

pres

M (prej , β).score ∗ (
∑

pres

(Eval(prej , V B))) >

1

#pre2
sx

∑

presx

M (prej , β).score ∗ (
∑

presx

(Eval(prej , V B))) (G.1)

Ainsi le poidsmax du plan solution sera dépendant de s et non de sx. Dans le cas contraire
le poidsmax du plan solution sera dépendant de sx et non de s. La fonction étudiée étant
une fonction récursive, le processus est itéré jusqu’à qu’il n’y ait plus de pré-conditions à
résoudre. Cependant des cas de boucles peuvent se produire si nous n’incluons pas le test
β ∈ V B. En effet dans le cas de non présence d’un tel test, le processus peut boucler sur
une pré-condition qui cherche à être satisfaite et qui n’appartient pas à KB.

3. Analyse de la complexité:

Nous supposons que le coût algorithmique d’un test conditionnel tel l’égalité, et l’appartenance
s’effectue en temps constant. La découverte des services résolvant le but β est effectuée
au sain d’un boucle itérant sur le nombre de pré-conditions de l’ensemble des services
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SWebServices
6. Ainsi cette opération s’effectue en θ(p). Dans le pire des cas si l’on suppose

n services ayant chacun p pré-conditions et q effets et si l’on suppose m le nombre maximal
d’itérations alors la complexité de l’algorithme est en θ((np)m), d’où θ(expm ln(np)) donc
exponentiel dans des cas non rencontrés en pratique puisqu’ils relatent de cas inconsistants.

6Par définition p = Card(
⋃n

i=1
pre(Wsi)).
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G.4.2 Construction de plans consistants

Algorithm 11: Construction de plans consistants (CPC).

Données: un ensemble de services Web: SWebServices = {Ws1, ...,Wsn},1

la matrice de liens sémantiques M ,2

la base de connaissance KB,3

l’ensemble des buts locaux βL,4

une variable locale de sous-buts en cours de traitement V B,5

un plan initialisé à ∅.6

Résultat: l’ensemble des plans consistants.7

début8

si β ∈ KB alors9

Concaténation(plan, (β));10

sinon11

St ← ∅;12

//Découverte des services resolvant le but β.13

pour chaque i ∈
⋃n

i=1 pre(Wsi) faire14

si M (i, β) 6= (∅, 0) alors15

si M (i, β).set /∈ St alors16

Ajouter(M (i, β).set, St);17

fin18

fin19

fin20

si St 6= ∅ alors21

pour chaque s ∈ St faire22

plan ← Concaténation(plan, (
∨

St
s ≻));23

pour chaque pre(s) faire24

si β ∈ V B alors25

Concaténation(plan, ∅);26

Ajouter(V B, βLNV );27

sinon28

Ajouter(β, VB);29

plan ← Concaténation(plan,(
∧

pre(s) CPC(plan, pre(s), VB)));30

fin31

fin32

fin33

sinon34

Concaténation(plan, ∅);35

fin36

fin37

retourner plan;38

fin39

L’algorithme 11 permet la construction de l’ensemble des plans consistants pouvant résoudre
notre problème de planification. Cependant les plans proposés ne sont pas nécessairement so-
lution puisqu’ils peuvent ne pas être corrects et/ou complets. La correction et la complétude
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des plans sont assurées par l’algorithme général P4OS, qui vérifie les bonnes propriétés d’un
plan solution. Tout comme dans l’algorithme 10 nous prenons en compte les cas de boucles ne
rendant pas déterministe la recherche de plans consistants au moyen d’une liste de buts en cours
de résolution V B.

Définition 18. (Priorité des opérateurs)

Étant donné un formalisme de description de problèmes de planification, nous avons l’ordre
de priorité sur les opérateurs suivant:

∧ > ∨ > ≻

∧ représente la multiplicité des paramètres d’entrées pour un service donné;
∨ représente la multiplicité des services pour un but ou sous but unique;
a ≻ b si et seulement si les effets de b satisfont les pré-conditions de a.

1. Preuve d’arrêt:

L’algorithme 11 est constitué d’une unique boucle ainsi que de plusieurs tests conditionnels,
tout comme l’algorithme d’évaluation du plan solution optimal. Comme pour les autres
algorithmes, nous supposons que les tests d’appartenance et d’égalité s’effectuent en temps
fini. De plus l’ensemble KB est un ensemble fini, donc le parcours de cet ensemble fini
s’effectue en temps fini. La découverte des services résolvant le but β s’effectue en temps
fini (voir preuve d’arrêt de l’algorithme 10). Ainsi l’algorithme 11 s’arrête si et seulement si
les opérations effectuées à partir du test St 6= ∅ s’effectuent en temps fini. L’ensemble St est
fini par construction donc le parcours d’un tel ensemble s’effectue en temps fini. Il en est
de même pour l’ensemble des pré-conditions des services de St qui est constitué d’un sous
ensemble fini de services de SWebServices. L’ajout et la concaténation sont des opérations
s’effectuant en temps fini donc par conséquent s’arrêtent.

Enfin l’opération principale fait appel de nouveau à la fonction CPC (Construction des
plans consistants). Nous sommes donc dans le cas d’une fonction récursive nécessitant des
instructions d’arrêt. Les deux principales conditions d’arrêt portent sur l’appartenance du
sous but β à la base de connaissance. La deuxième condition d’arrêt est rencontrée lorsque
que St est assimilé à l’ensemble vide. Cependant, afin de ne pas boucler indéfiniment, il
est nécessaire de s’assurer de la réduction du nombre d’appels de la fonction CPC. Cette
réduction est assurée grâce au test d’appartenance de β à V B permettant de gérer les cas
de boucles. Ce cas permet donc de réduire constamment le nombre d’appels de la fonction
CPC puisque le nombre de services web est fini (tout comme le nombre de pré-conditions).

2. Preuve de correction:

L’algorithme 11 a pour but de retourner l’ensemble des plans consistants. Montrons que
cet algorithme produit cet effet.

Traitons tous d’abord les deux cas triviaux:

• si le but local à résoudre appartient à la base de connaissance alors celui-ci peut être
resolu par hypothèse. De plus le plan proposé est consistant puisqu’il n’y a pas de
contradictions lors de l’ordonnancement.

• si le but local à résoudre ne peut être résolu par aucun des services (St = ∅) alors le
plan est initialisé au plan vide qui est consistant par définition.

Traitons le cas où le but local n’appartient pas à la base de connaissance et St 6= ∅:
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• Ainsi il existe un service s ∈ St ayant p pré-conditions telles que le plan résultant
sera sous la forme: P := s ≻ CPC(p1) ∧ ...,∧CPC(pp)

7. Ainsi construire un tel plan
consiste à analyser récursivement chacune des pré-conditions pi comme un sous but.
Le résultat final sera une disjonction de plans consistants.

La fonction étant une fonction récursive, le processus est itéré jusqu’à qu’il n’y ait plus
de pré-conditions à résoudre. Cependant des cas de boucles peuvent se produire si nous
n’incluons pas le test β ∈ V B. En effet dans le cas de non présence d’un tel test, le processus
peut boucler sur une pré-condition qui cherche à être satisfaite et qui n’appartient pas à
KB (Voir G.4). De plus la présence du test β ∈ V B assure la consistance de l’ensemble des
plans retournés.

3. Analyse de la complexité: même complexité que l’algorithme 10

Nous supposons qu’un test conditionnel tel l’égalité, et l’appartenance s’effectue en temps
constant. La découverte des services résolvant le but β est effectuée au sain d’un boucle
itérant sur le nombre de pré-conditions de l’ensemble des services SWebServices

8. Ainsi cette
opération s’effectue en θ(p). Dans le pire des cas si l’on suppose n services ayant chacun
p pré-conditions et q effets et si l’on suppose m le nombre maximal d’itérations alors la
complexité de l’algorithme est en θ((np)m), d’où θ(expm ln(np)) donc exponentiel dans des
cas non rencontrés en pratique puisqu’ils relatent de cas inconsistants.

G.4.3 Construction du plan solution optimal: P4OS

L’algorithme P4OS permet la construction d’un plan solution optimal pour notre problème de
planification. Il construit un plan solution optimal pour chacun des sous buts de βL.

7Nous avons simplifié CPC(P , pi, V B) par CPC(pi).
8Par définition p = Card(

⋃n
i=1

pre(Wsi)).
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Algorithm 12: Construction du plan solution optimal: P4OS.

Données: un ensemble de services Web: SWebServices = {Ws1, ...,Wsn},1

la matrice de liens sémantiques M ,2

la base de connaissance KB,3

l’ensemble des buts locaux βL.4

Résultat: le plan solution optimal.5

début6

plan ← ∅P ;7

pour chaque but local β ∈ βL faire8

planα ← (ConstruirePlan(∅, β, ∅));9

plan possible ← planα.Eval(planα);10

tant que ∃∅ ∈ plan possible faire11

planα ← planα\plan possible;12

si planα 6= ∅P alors13

plan possible ← planα.Eval(planα);14

sinon15

Pas de plan solution optimal;16

fin17

fin18

//Construction d’une conjonction de plans indépendants.19

plan ← ET(plan, plan possible);20

fin21

retourner plan;22

fin23

Le plan final est une conjonction (ou ordre partiel) de plans solutions optimaux. De plus
l’algorithme 12 possède la propriété de planificateur complet et optimal (voir propriété “Planifi-
cateur complet et optimal”).

Définition 19. (Objectif et plans indépendants) Deux sous objectifs G1 et G2 sont indépendants
si deux plans P1 et P2 peuvent être calculés indépendamment l’un de l’autre pour réaliser G1

et G2 respectivement, et en exécutant les deux plans dans n’importe quel ordre, par exemple P1

suivi de P2. Nous réalisons G1 ∧G2 par le plan P1 ∧ P2.

1. Preuve d’arrêt:

L’instanciation du plan au plan vide s’effectue en temps fini. L’arrêt de la première boucle
(Parcours de la liste des buts locaux ) de l’algorithme 12 est assurée puisque βL est un
ensemble fini de buts locaux. Par conséquent, l’analyse d’un ensemble fini s’arrête en
temps fini.

Par construction, planα représente un ensemble fini de plans dont chacun contient un
nombre fini d’éléments ∅. Ainsi la boucle sur les éléments ∅ des éléments de planα s’effectue
en temps fini. La suppression d’un plan plan possible à un ensemble de plan planα est
une opération s’effectuant en temps constant et par conséquent en temps fini. Ainsi cet
algorithme s’effectue en temps fini puisque les fonctions Eval et ConstruireP lan s’arrêtent
au bout d’un temps fini.
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2. Preuve de correction:

Supposons la fonction Eval retournant le plan ayant un poids maximal au sens de notre
métrique SimT introduit lors du chapitre E. De plus considérons ConstruireP lan la fonc-
tion permettant de construire un ensemble de plan consistants (non nécessairement solu-
tions) en fonction de la matrice de Matching M (ou matrice de liens sémantiques) et d’un
but β à résoudre. L’algorithme propose de retourner le plan solution optimal permettant
la composition de services web. Ainsi le plan retourné est par définition:

i) complet;

ii) correct;

iii) consistant;

iv) optimal.

Montrons que l’algorithme proposé retourne un plan complet, correct, consistant, et opti-
mal.

Tout d’abord supposons que l’ensemble des buts locaux soit instancié à l’ensemble vide,
ainsi la liste de buts locaux βL est nulle. Le problème de planification se schématise sous
la forme < SWebServices, KB, ∅ >. Le plan solution à ce problème est le plan <> qui
est complet, correct, consistant, et optimal d’après la propriété 12. Comme le plan a été
initialisé au plan vide alors l’algorithme retourne le plan vide qui est un plan solution et
optimal.

Si l’on suppose qu’il existe au moins un élément β dans la liste de buts locaux βL, alors
planα est instancié à un ensemble de plans au moyen de la fonction ConstruireP lan. Par
définition, la fonction ConstruireP lan construit des plans consistants au problème de plan-
ification < SWebServices, KB, β >. Afin de proposer un unique plan optimal au problème
de planification, l’ensemble des plans consistants planα est élagué par la fonction Eval qui
ne retourne que le plan optimal au problème de planification < SWebServices, KB, β >.
Ainsi nous avons un plan consistant et optimal à notre problème de planification. Cepen-
dant le plan proposé n’est pas nécessairement solution. En effet certains sous buts du plan
proposé peuvent ne pas être résolus.

Un plan possédant un élément ∅ signifie l’existence d’un sous but ne pouvant être résolu.
Ainsi il existe un service web s présent dans le plan tel qu’il existe une de ses pré-conditions
non résolue. Un tel plan n’est donc pas complet et non correct. Afin d’éliminer les plans non
corrects et complets, nous proposons d’éliminer les plans contenant des éléments nuls. Ainsi
pour chaque plan consistant et optimal proposé, nous vérifions la présence d’un élément
nul. Ainsi s’il n’existe aucun plan consistant et optimal ayant les propriétés de correction
et complétude alors il n’existe pas de plan solution au problème de planification.

Si l’on suppose que le plan plan possible est un plan solution optimal au problème <
SWebServices, KB, β > avec β ∈ βL, alors la solution finale du problème
< SWebServices, KB, βL > est une conjonction de plans solutions optimaux indépendants.

Ainsi si le problème de planification < SWebServices, KB, βL > possède un plan solution
optimal alors celui-ci est retrouvé par l’algorithme 12.

3. Analyse de la complexité:

L’initialisation de la liste L s’effectue en temps linéaire en fonction de la taille de βL. Ainsi
la complexité de l’instanciation de la liste L est de l’ordre de θ(Card(βL)).
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L’initialisation de la matrice de Matching M s’effectue en temps quadratique en fonction
de la taille de p et q. Ainsi la complexité de l’initialisation de M est de l’ordre de θ(pq).
La complexité du processus d’instanciation et d’initialisation est donc dans le pire des cas
quadratique ou de l’ordre θ(pq). Cependant, les algorithmes 10 et 11 étant exponentiels, il
en est de même pour celui-ci. Nous insistons sur le fait que le “Pire cas” est en pratique
inconsistant. Ainsi les algorithmes 10, 11 et 12 obtiennent des résultats corrects en pratique.

Propriété 14. L’algorithme 12 retourne un plan solution optimal résolvant la composition au-
tomatique de services web.

Proof. Par définition un plan est un plan solution si et seulement si celui-ci est complet, consis-
tant, correct et optimal.

1) Complétude: l’algorithme 12 retourne un plan complet puisqu’il élimine les plans non com-
plets de l’espace des plans solutions (voir preuve de correction de l’algorithme 12).

2) Consistance: l’algorithme 12 appelle la fonction ConstruireP lan retournant des plans con-
sistants au problème de planification.

3) Correction: d’après le processus de construction du plan, tous les sous buts sont résolus. En
effet le plan proposé est consistant. En particulier les buts appartenant à βL sont résolus,
ainsi le plan proposé est correct puisqu’il satisfait tout les buts de βL à l’aide de la base de
connaissance KB.

4) Optimalité: l’algorithme 12 appelle la fonction Eval retournant des plans optimaux au prob-
lème de planification.

Remarque:
Le plan solution proposé par l’algorithme 12 est représenté par un conjonction de plans

indépendants résolvant des buts indépendants. En effet chaque but local de la liste des buts
locaux est résolu indépendamment des autres buts. Nous parlerons de plans indépendants ou
plans avec ordre partiel.

Propriété 15. (Planificateur complet et optimal)
L’algorithme 12 possède un rôle de planificateur complet et optimal.

Proof. Par définition l’algorithme 12 propose un plan solution (complet, consistant et correct)
lorsque celui-ci existe (voir preuve de correction). De plus le plan solution proposé est optimal
(voir preuve de correction). Ainsi l’algorithme propose un plan complet et optimal lorsque celui-
ci existe. Ainsi l’algorithme 12 remplie les conditions nécessaires d’un planificateur complet et
optimal.

G.5 Exemple

G.5.1 Contexte

Considérons l’exemple traité depuis le début de ce document. Nous considérons donc l’ensemble
de services web pertinents SWebServices auquel nous ajoutons un service s8 (afin d’obtenir un
plan non solution dans l’ensemble des plans consistants) tel que:

• s8(in Cinema, out Movie).
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Ainsi l’ensemble de services web pertinents est assimilé à l’ensemble suivant:

SWebServices = {s1, s2, s3, s4, s5, s6, s7, s8}

Nous supposons la même base de connaissance KB. Ayant ajouté un service web s8, nous
devons calculer la nouvelle matrice de Matching M mise à jour (voir tableau G.3) à l’aide du
tableau G.2.

SimT s5 s6 s7 s8

WsX(KB, Movie) 0.6 0.5 0.3 0.9

Table G.2: Résultats nécessaires pour le cas e /∈ βL.

Dir Movie UP GA MG PN FM Year Cinema
Dir (KB, 1) {(s5, 0.6) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (∅, 0)

(s6, 0.5)}
Movie (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (s1, 0.9)
UP (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (s1, 0.9)
GA (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) {(s2, 0.7)

(s3, 0.6)}
MG (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (s2, 0.7)
PN (KB, 1) (∅, 0) (KB, 1) (s4, 0.8) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (∅, 0)
FM (KB, 1) (∅, 0) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (s3, 0.6)
Year (KB, 1) (s7, 0.3) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (s7, 0.5) (KB, 1) (∅, 0)
Cinema (KB, 1) (s8, 0.9) (KB, 1) (∅, 0) (KB, 1) (KB, 1) (∅, 0) (KB, 1) (∅, 0)

Table G.3: Matrice M finale.

G.5.2 Modélisation du problème

Étant donnée la matrice des liens sémantiques M , nous utiliserons l’algorithme présenté en
section précédente permettant de construire la composition optimale de services web au sens
de la fonction de similitude SimT . Nous résoudrons donc le problème de planification suivant:
< SWebServices, KB, βG > où βG = Cinema.

Recherchons le plan solution optimal résolvant ce problème de planification à l’aide des algo-
rithmes présentés en section précédente.

G.5.3 Recherche du plan optimal

Nous décrivons les résultats obtenus par les trois algorithmes afin d’expliquer le fonction de
l’algorithme général.

L’algorithme 11 produit un ensemble de plans consistants décrits en figure G.5.
Si l’on développe l’ensemble des plans, nous obtenons six plans distincts décrits en figure G.6.
Ainsi l’algorithme 11 retrouve six plans consistants pour notre problème de planification.

L’algorithme Eval permet d’évaluer le poids de chacun des plans afin de classer les plans en
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Plan ≡ s1 ≻ (UP ∧ (s5 ≻ D ∨ s6 ≻ D ∨ s7 ≻ Y ∨ s8 ≻ ∅))
∨ s2 ≻ (MG ∧ (s4 ≻ PN))
∨ s3 ≻ (s2 ≻ (MG ∧ s4 ≻ PN)) ∧ (s7 ≻ Y )

Figure G.5: Plans consistants retournés par l’algorithme 11.

Plan ≡ s1 ≻ (UP ∧ (s5 ≻ D)) (P1)
∨ s1 ≻ (UP ∧ (s6 ≻ D)) (P2)
∨ s1 ≻ (UP ∧ (s7 ≻ Y )) (P3)
∨ s1 ≻ (UP ∧ (s8 ≻ ∅)) (P4)
∨ s2 ≻ (MG ∧ (s4 ≻ PN)) (P5)
∨ s3 ≻ (s2 ≻ (MG ∧ s4 ≻ PN)) ∧ (s7 ≻ Y ) (P6)

Figure G.6: Plans consistants développés.

fonction de leur poids (nous rappelons que le poids est calculé en fonction du calcul de simi-
larité SimT entre services châınés). L’algorithme Eval permet donc d’évaluer chacun des plans
proposés par l’algorithme 11.

Ainsi nous obtenons:

• Eval(Plan) = Poids(P1) = 1
22 (0.9 + 0.9)(1 + 0.6

1 ∗ 1) = 0.72

• Eval(Plan\P1) = Poids(P2) = 1
22 (0.9 + 0.9)(1 + 0.5

1 ∗ 1) = 0.67

• Eval(Plan\(P1 ∪ P2)) = Poids(P5) = 1
22 (0.7 + 0.7)(1 + 0.8

1 ∗ 1) = 0.63

• Eval(Plan\(P1 ∪ P2 ∪ P5)) = Poids(P3) = 1
22 (0.9 + 0.9)(1 + 0.3

1 ∗ 1) = 0.58

• Eval(Plan\(P1 ∪ P2 ∪ P5 ∪ P3)) = Poids(P4) = 1
22 (0.9 + 0.9)(1 + 0.9

1 ∗ 0) = 0.45

• Eval(Plan\(P1∪P2∪P5∪P3∪P4)) = Poids(P6) = 1
22 (0.6+0.6)(( 0.8

1 ∗1)+( 0.5
1 ∗1)) = 0.39

L’algorithme général a pour but de retourner le plan optimal solution. En l’espèce la plan
solution optimal de notre problème de planification est P1. Il est clairement optimal puisque ce
plan a été retrouvé par l’algorithme Eval (algorithme 10). De plus celui-ci est consistant par
construction (algorithme 11), correct et complet d’après l’algorithme 12.

G.6 Synthèse

Lors de ce chapitre nous avons présenté un algorithme ayant un rôle de planificateur complet et
optimal. Ainsi par définition, s’il existe un plan solution optimal résolvant le problème de plan-
ification, alors l’algorithme présenté retourne ce plan. Nous notons que les problèmes critiques
de boucles (assimilés à l’anomalie de Sussman9) ont été traités ainsi l’algorithme proposé est

9Anomalie de Sussman: un plan pour atteindre un sous but est défait pour atteindre un autre sous but .



APPENDIX G. CONSTRUCTION DU PLAN FINAL 284

déterministe.
Améliorations:

Dans le but d’optimiser l’algorithme, il serait intéressant de prendre en compte les buts déjà
résolus βLV . Ainsi le processus de planification n’est pas de nouveau exécuté si celui-ci appartient
à l’ensemble des buts résolus. De même, il serait intéressant de prendre en compte une liste de
buts non resolvables βLNV permettant d’élaguer l’espace des plans tentant de résoudre des sous
buts n’ayant pas de solution.
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Toumani. On automating web services discovery. VLDB J., 14(1):84–96, 2005.

[25] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic
composition of e-services that export their behavior. In 1st Int. Conf. on Service Oriented
Computing (ICSOC), pages 43–58, 2003. volume 2910.

[26] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Mas-
simo Mecella. Automatic service composition based on behavioral descriptions. Int. J.
Cooperative Inf. Syst., 14(4):333–376, 2005.

[27] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, and Diego
Calvanese. Synthesis of underspecified composite -services based on automated reasoning.
In ICSOC, pages 105–114, 2004.

[28] Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, and Ralf Steinmetz.
Heuristics for qos-aware web service composition. In ICWS, pages 72–82, 2006.

[29] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American,
284(5):34–43, May 2001.

http://www.w3.org/TR/wsa-reqs/


BIBLIOGRAPHY 287

[30] Piergiorgio Bertoli, Jörg Hoffmann, Freddy Lécué, and Marco Pistore. Integrating discovery
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[57] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),
2007.

[58] Baader F. and Nutt W. Basic description logics. In The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press, 2003.

[59] J. Farrell and H. Lausen. Semantic annotations for wsdl and xml schema. Technical
report, W3C Candidate Recommendation, January 2007. http://www.w3.org/TR/2007/

CR-sawsdl-20070126/.

[60] Dieter Fensel, Michael Kifer, Jos de Bruijn, and John Domingue. Web service modeling
ontology (wsmo) submission, w3c member submission. http://www.w3.org/Submission/
WSMO/, June 2005.

[61] Donald F. Ferguson and Marcia L. Stockton. Service-oriented architecture: Programming
model and product architecture. IBM Systems Journal, 44(4):753–780, 2005.

http://www.w3.org/TR/2007/CR-sawsdl-20070126/
http://www.w3.org/TR/2007/CR-sawsdl-20070126/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/


BIBLIOGRAPHY 289

[62] R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter, P. Leach, and T. Berners-Lee.
RFC 2616: Hypertext Transfer Protocol – HTTP/1.1. Technical report, IETF, 1999.

[63] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architecture.
In ICSE ’00: Proceedings of the 22nd international conference on Software engineering,
pages 407–416, New York, NY, USA, 2000. ACM.

[64] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971.

[65] Agata Filipowska, Armin Haller, Monika Kaczmarek, Tammo van Lessen, Joerg Nitzsche,
and Barry Norton. Super research deliverable D1.3: Process Ontology Language and
Operational Semantics for Semantic Business Processes. Technical report, 2007.

[66] Howard Foster, Sebastián Uchitel, Jeff Magee, and Jeff Kramer. Compatibility verification
for web service choreography. In ICWS, pages 738–741, 2004.

[67] I. R. Frank. E. DCOM: Microsoft Distributed Component Object Model. 1997.

[68] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web services. In
WWW, pages 621–630, 2004.

[69] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web services. In
WWW, pages 621–630, 2004.

[70] Raul Garcia-Castro and et al. Deliverable D1.2.4 (WP1.2) of European Union Project EU-
IST-2004-507482 Knowledge Web: Architecture of the Semantic Web Framework v-1.0.
Technical report, January 2007.

[71] Raul Garcia-Castro and et al. Deliverable D1.2.5 (WP1.2) of European Union Project EU-
IST-2004-507482 Knowledge Web: Architecture of the Semantic Web Framework v-2.0.
Technical report, December 2007.

[72] B.J Garner, D. Lukose, and E. Tsui. Parsing natural language through pattern correlation
and modification. In Proceedings of the 7th International Workshop on Expert Systems,
May 1987.

[73] Cagdas E. Gerede, Richard Hull, Oscar H. Ibarra, and Jianwen Su. Automated composition
of e-services: lookaheads. In ICSOC, pages 252–262, New York, NY, USA, 2004. ACM
Press.

[74] Cagdas Evren Gerede, Oscar H. Ibarra, Bala Ravikumar, and Jianwen Su. Online and
minimum-cost ad hoc delegation in e-service composition. In IEEE SCC, pages 103–112,
2005.

[75] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice. Morgan
Kaufmann Publishers, May 2004.

[76] Malik Ghallab et. al. PDDL-The Planning Domain Definition Language V. 2. Technical
Report, report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and
Control, 1998.

[77] G. De Giacomo and H.J. Levesque. An incremental interpreter for high-level programs with
sensing. In H. Levesque and F. Pirri, editors, Logical Foundations for Cognitive Agents,
Contributions in Honor of Ray Reiter, pages 86–102. Springer-Verlag, 1999.



BIBLIOGRAPHY 290

[78] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Congolog, a concurrent
programming language based on the situation calculus. Artif. Intell., 121(1-2):109–169,
2000.

[79] Michael Gillmann, Gerhard Weikum, and Wolfgang Wonner. Workflow management with
service quality guarantees. In SIGMOD Conference, pages 228–239, 2002.

[80] Javier Gonzalez-Castillo, David Trastour, and Claudio Bartolini. Description logics for
matchmaking of services. In Applications of Description Logics ADL, 2002.

[81] M. Gudin, M. Hadley, and et al. Simple object access protocol.
http://www.w3.org/TR/soap/, 2003.
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composition. In Proceedings of the 18th European Conference on Artificial Intelligence,
pages ???–???, 2008.
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Résumé 
Automated composition of Web services or the process of forming new value added Web services is 
one of the most promising challenges facing the Semantic Web today. Semantics enables Web service 
to describe capabilities together with their processes, hence one of the key elements for the automated 
composition of Web services. In this Ph.D study we focus on the functional level of Web services i.e., 
services are described according i) to some input, output parameters semantically enhanced by concepts 
in a domain ontology and ii) to preconditions and side-effects on the world. Web service composition is 
then viewed as a composition of semantic links controlled by causal laws. The semantic links refer to 
semantic matchmaking between Web service parameters (i.e., outputs and inputs) in order to model 
their connection and interaction whereas causal laws are the relationships between actions, action 
preconditions and side-effects. The key idea is that the matchmaking enables, at run time, finding 
semantic compatibilities among independently defined Web service descriptions. By considering such a 
level of composition we first study semantic links in details, and more specially their properties of 
validity and robustness. 
From this and depending on services expressivity we focus on two different approaches to perform Web 
service composition. In the first approach a formal model to perform the automated composition of Web 
services by means of semantic links i.e., Semantic Link Matrix is introduced. This Semantic Link 
Matrix is required as a starting point to apply problem-solving techniques such as regression (or 
progression)-based search for Web service composition. The model supports a semantic context and 
focuses on semantic links in order to find correct, complete, consistent and robust plans as solutions. In 
this part an innovative and formal model for an Artificial Intelligence planning-oriented composition is 
presented. 
In the second approach, besides semantic links, causal laws are also considered to achieve compositions 
of Web services. To this end an augmented and adapted version of the logic programming language 
Golog i.e., sslGolog is presented as a natural formalism not only for reasoning about the latter links and 
laws, but also for automatically composing services. sslGolog operates as an offline interpreter that 
supports n-ary output parameters of actions to compute conditional compositions of services. This 
approach is much more restrictive since assumes more expressivity on Web service description. 
Finally, since Web services have been enhanced with formal semantic descriptions, the quality of 
semantic links involved in a composition is used as a innovative and distinguishing criterion to estimate 
its overall semantic quality. Therefore non functional criteria such as quality of service 
(QoS) are no longer considered as the only criteria to rank compositions satisfying the same goal. 
In this part we focus on quality of semantic link based Web service composition. To this end, we 
present a general and extensible model to evaluate quality of both elementary and composition of 
semantic links. From this, we introduce a global semantic link selection based approach to compute the 
optimal composition. This problem is formulated as an optimization problem which is solved using 
efficient integer linear programming methods. 
Our system is implemented and interacting with Web services dedicated on Telecommunication 
scenarios in use. The evaluation results showed high efficiency and effectiveness of the suggested 
approaches. 
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Résumé  
La composition automatisée de services Web ou le processus de formation de nouveaux services Web à 
plus forte valeure ajoutée est l'un des plus grand défis auxquels le Web sémantique est face aujourd'hui. 
La sémantique permet d'un côte de décrire les capacités des services Web mais aussi leurs processus 
d'exécution, d'où un élément clé pour la composition automatique de services Web. Dans cette étude de 
doctorat, nous nous concentrons sur la description fonctionnelle des services Web c'est-à-dire, les 
services sont vus comme une fonction ayant des paramètres i) d'entrée, de sortie sémantiquement 
annotés par des concepts d'une ontologie de domaine et ii) des conditions préalables et effets 
conditionnels sur le monde. La composition de services Web est alors considérée comme une 
composition des  liens sémantiques où les lois de cause à effets ont aussi un rôle prépondérant. L'idée 
maîtresse est que les liens sémantiques et les lois causales permettent, au moment de l'exécution, de 
trouver des compatibilités sémantiques, indépendamment des descriptions des services Web. En 
considérant un tel niveau de composition, nous étudions tout d'abord les liens sémantiques, et plus 
particulièrement leurs propriétés liées à la validité et la robustesse. 
A partir de là et dépendant de l'expressivité des services Web, nous nous concentrons sur deux 
approches différentes pour effectuer la composition de services Web. Lors de la première approche, un 
modèle formel pour effectuer la composition automatique de services Web par le biais de liens 
sémantiques i.e., Matrice de liens sémantiques est introduite. Cette matrice  est nécessaire comme point 
de départ pour appliquer des approches de recherche basées sur la régression (ou progression). Le 
modèle prend en charge un contexte sémantique et met l'accent sur les liens sémantiques afin de trouver 
des plans corrects, complets, cohérents et robustes comme solutions au problème de composition de 
services Web. Dans cette partie un modèle formel pour la planification et composition de services Web 
est présenté. 
Dans la seconde approche, en plus de liens sémantiques, nous considérons les lois de causalité entre 
effets et pré-conditions de services Web pour obtenir les compositions valides de services Web. Pour 
ceci, une version étendue et adaptée du langage de programmation logique Golog (ici sslGolog) est 
présentée comme un formalisme naturel non seulement pour le raisonnement sur les liens sémantiques 
et les lois causales, mais aussi pour composer automatiquement les services Web. sslGolog fonctionne 
comme un interprète qui prend en charge les paramètres de sortie de services  pour calculer les 
compositions conditionnelles de services. Cette approche (beaucoup plus restrictive) suppose plus 
d'expressivité sur la description de service Web. 
Enfin, nous considérons la qualité des liens sémantiques impliqués dans la composition comme critère 
novateur et distinctif pour estimer la qualité sémantique des compositions calculées. Ainsi les critères 
non fonctionnels tels que la qualité de service(QoS) ne sont plus considérés comme les seuls critères 
permettant de classer les compositions satisfaisant le même objectif. Dans cette partie, nous nous 
concentrons sur la qualité des liens sémantiques appartenant à la composition de service Web. Pour 
ceci, nous présentons un modèle extensible permettant d'évaluer la qualité des liens sémantiques ainsi 
que leur composition. De ce fait, nous introduisons une approche fondée sur la sélection de liens 
sémantiques afin de  calculer la composition optimale. Ce problème est formulé comme un problème 
d'optimisation qui est résolu à l'aide de la méthode par programmation linéaire entière. 
Notre système est mis en œuvre et interagit avec des services Web portant sur de scénarios de  
télécommunications. Les résultats de l'évaluation a montré une grande efficacité des différentes 
approches proposées. 


