Empreintes de l'Énergie Noire sur la structuration de l'Univers - Archive ouverte HAL Access content directly
Theses Year : 2012

Empreintes de l'Énergie Noire sur la structuration de l'Univers

(1)
1
Vincent Bouillot
  • Function : Author
  • PersonId : 936241

Abstract

This thesis is dedicated to the research of specific imprints of Dark Energy in both linear and non-linear gravitational collapse processes through theoretical and numerical developments. Indeed, many aspects of cosmology has been tackled: first, to study the influence of various complex Dark Energy models on the halo clustering, we develop in a covariant formalism the usual linear cosmological perturbation theory. It gives an extent of the classical Sasaki-Mukhanov equations to scalar fields coupled with multiple cosmological fluids. The result is the description of the evolution of linear perturbations of complex Dark Energy models with a minimal number of degrees of freedom. In the last decade, the number and quality of cosmological observations on the matter distribution in the Universe as well on the velocity fields have increased exponentially. In particular, recent measurements show the existence of abnormally high velocity fields with respect to the linear theory in $\Lambda$CDM. The explanation of this cosmic flow excess at intermediate scales is the main contribution of this thesis: reinterpreting the anomalous cosmic flow (Watkins et al.) measured at scales ~50 Mpc/h as a rare event realization in linear theory, we propose a new cosmological probe. This probe uses the scale of convergence of the measured cosmic flow with the theoretical one. We develop the sensibility on this new cosmological probe in three competitive Dark Energy models. Those results, based on analytical methods, are compared with measures issued from state-of-the-art numerical simulations we're deeply involved in. Then, starting from those numerical simulations, we investigate the dynamical origin of such a cosmic flow: we prove this movement to be due to an asymmetry of the three-dimensional matter distribution at higher scales (80 Mpc/h). This asymmetry is shown by introducing an original estimator of the matter field, which quantify the deviation from symmetry of a given field. Finally, we demonstrate that the spatial arrangement of the environments presenting such an anomalous cosmic flow in the Universe is correlated with the density peak distribution. This correlation indicates in a local way the structures distribution responsible for the anomalously high cosmic flow. An another way to understand Dark Energy is to use density field instead of velocity fields. In particular, we characterize the density field in terms of correlation function. In this thesis, we present many promising results to understand the role of Dark Energy in halo and galaxy clustering from correlation function measurements issued from the Dark Energy Universe Simulation Series (DEUSS). On the one hand, this is achieved by introducing a mass segregation for correlation functions. On the other hand, this is reached by considering the difference between comoving space and redshifts space. The emphasize is laid on two particular sides of this problematic. First, we underline the impact of correlation measures on the bias in cosmology: it give many results on the dependence of this bias on the cosmological model and the redshift. Then, those measurements prove that the imprint of Dark Energy on the non-linear regime of structures formation in the Universe, already shown on the continuous matter field, remains on dark matter halo correlation function. Finally, this thesis presents a lot of improvements done in numerical cosmology. In particular, the realization of the DEUSS: Full Universe Runs simulations, first numerical modeling of the whole observable Universe from Big Bang to nowadays, triggers the optimization of all cosmological codes used. This set of simulations has already given striking results, using an unprecedented statistics. The numerical methods used to follow the gravitational collapse of a density field and detect structures and their various optimizations are presented in a numerical part at the end of the thesis.
Cette thèse est consacrée à la recherche d'empreintes spécifiques relatives à la nature de l'Énergie Noire dans les processus d'effondrements gravitationnels linéaire et non-linéaire au travers de développements théoriques et numériques. Ainsi, plusieurs aspects de la cosmologie ont été abordés: tout d'abord, afin d'étudier l'influence de nombreuses formes complexes d'Énergie Noire sur la structuration, le développement de la théorie des perturbations dans un formalisme covariant a permis d'étendre les équations classiques de Sasaki-Mukhanov aux cas de champs scalaires couplés et en présence de multiples fluides cosmologiques. Ces travaux permettent de décrire l'évolution des perturbations linéaires de modèles d'Énergie Noire complexes en minimisant le nombre de degrés de liberté. Ces dernières années ont vu le nombre et la qualité des observations augmenter de manière vertigineuse, tant sur la distribution de la matière dans l'Univers que sur le champ de déplacement de celle-ci. En particulier, ces observations ont permis de mettre en évidence un champ de vitesse local anormalement élevé par rapport à la prédiction du modèle standard $\Lambda$CDM. L'explication de cet excès des champs de vitesse à des échelles intermédiaires constitue l'apport principal de ces travaux de recherche: en réinterprétant les mesures anormales de champs de vitesse de Watkins et al. sur des distances intermédiaires (50 Mpc/h) en termes d'événement rare dans le cadre de la théorie linéaire, nous avons proposé une nouvelle sonde cosmologique consistant à mesurer l'échelle à laquelle le flot moyen rejoint en amplitude ce que l'on attend en théorie linéaire. Nous montrons la sensibilité de cette nouvelle sonde cosmologique dans trois modèles d'Énergie Noire concurrentiels. Ces résultats, développés par des méthodes analytiques, sont comparés à des mesures effectuées sur des simulations numériques hautes performances auxquelles nous avons pris une part importante. Dans un second temps, à partir de ces simulations numériques, nous montrons que l'origine dynamique d'un tel mouvement d'ensemble local résulte d'une asymétrie de la distribution de matière à plus grande échelle (80 Mpc/h). Cette asymétrie est mise en évidence grâce à l'introduction d'un estimateur original du champ de matière quantifiant l'écart à la symétrie d'un champ. Finalement, nous démontrons que l'arrangement spatial des environnements présentant un champ de vitesse anormal dans l'Univers est corrélé avec la distribution des pics de densité. Cette corrélation nous indique de manière locale la distribution de structures responsables du mouvement d'ensemble anormalement élevé. Une caractérisation différente de l'Énergie Noire fait appel au champ de densité dans l'Univers. En particulier, nous caractérisons ce champ de densité en terme de fonctions de corrélation et étudierons les effets des champs de vitesse sur ceux-ci au travers des distorsions dans l'espace des redshifts. Nous présentons donc plusieurs résultats prometteurs à partir des fonctions de corrélation issues des simulations Dark Energy Universe Simulation (DEUSS) pour trois modèles concurrentiels d'Énergie Noire, en distinguant espace comobile et espace des redshift d'une part et corrélation suivant la masse des halos d'autre part. Deux aspects seront particulièrement abordées dans ce travail. Tout d'abord, nous soulignons l'impact de ces mesures sur le biais en cosmologie: ils permettront donc de déduire de nombreux résultats sur la dépendance de ce dernier sur le modèle cosmologique et le redshift. Dans un second temps, ces mesures permettent de montrer que l'empreinte de l'Énergie Noire sur le régime non-linéaire de formation des structures dans l'Univers, déjà mise en évidence sur les champs continus de matière, demeure lorsque l'on mesure la fonction de corrélation à partir des traceurs du champs, à savoir les halos de matière noire. Finalement, cette thèse a vu la réalisation des simulations DEUS: Full Universe Runs, première modélisation de tout l'Univers observable, du Big Bang jusqu'à aujourd'hui. Cette série de modélisations ayant demandé de nombreuses optimisations des codes cosmologiques existants, a permis de mettre en évidence quelques résultats marquants, faisant appel à la statistique inégalée de cette nouvelle série de simulations. Les méthodes numériques permettant le suivi dynamique de l'effondrement gravitationnel et la détection de structures ainsi que les efforts d'optimisations menés durant cette thèse sont présentés dans une partie numérique en fin de thèse.
Fichier principal
Vignette du fichier
Thesis_Vincent_Bouillot.pdf (16.1 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-00783033 , version 1 (31-01-2013)

Identifiers

  • HAL Id : tel-00783033 , version 1

Cite

Vincent Bouillot. Empreintes de l'Énergie Noire sur la structuration de l'Univers. Cosmologie et astrophysique extra-galactique [astro-ph.CO]. Observatoire de Paris, 2012. Français. ⟨NNT : ⟩. ⟨tel-00783033⟩
574 View
1099 Download

Share

Gmail Facebook Twitter LinkedIn More