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Chapter 1

General Introduction

Abstract

This chapter details the large variety of our research topics: chaos-based communica-
tions using optoelectronic devices. Being at the crossroads of many fields (nonlinear
sciences, photonics, communication theory and cryptography) not only gives the
unique opportunity to understand and quantify the limitations and performances
of existing chaotic cryptosystems, but also to propose new and innovative archi-
tectures. We review the concepts of physical-layer security and their applications
using chaotic optoelectronic systems. We explain the principles of chaos-based com-
munications and highlight the current limitations and challenges addressed in this
thesis.
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1.1 General Context of Physical Layer Security

Optoelectronic technologies have shaped the landscape of the existing optical telecom-
munication networks and have contributed to the information revolution of the last
four decades.

These networks are made of various levels (or layers), each of them being con-
trolled by a particular set of protocols. The typical open systems interconnection
(OSI) representation of a network is composed of seven layers (Fig. 1.1), which all
play a role in communicating between distant systems. Inseparable from the devel-
opment of modern communications, the question of security is of prime importance.
Indeed, the existence of multiple layers in the network offers many possible breaches
for illegitimate users, Eve (eavesdroppers), to steal or alter sensitive information ex-
changed between two legitimate users commonly referred to as Alice (sender) and
Bob (receiver).

Figure 1.1: Schematic diagram of the OSI representation of a communication network.

To prevent the occurrence of such scenarios, mathematical-based cryptography
was invented. It consists of two essential elements: an algorithm that is usually
publically known by both legitimate and illegitimate users and a key that remains
private. The security of this type of scheme depends strongly on the capacity for a
given algorithm to mix the key with a plain message such that the obtained cipher
will not leak information about the key, given knowledge of the algorithm. Today,
there exist many cryptographic techniques that guarantee a high level of security
(e.g. RSA, El-Gamal, PGP, AES, DES)[1]. These mathematical-based approaches
provide a computational level of security and are adapted to the top layers of the
network stack shown in Fig. 1.1.

Only recently, the physical layer has attracted attention. With our current tech-
nological level, it is now possible to harness physical principles existing in the devices
transmitting and receiving the information. For optoelectronic systems, two widely
discussed solutions exist to provide additional security at the physical layer:

• quantum-based communications for quantum key distribution (QKD) with the
guarantee of information-theoretic security [2],
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• chaos-based communications for additional computational security, similar to
that of the conventional mathematical cryptographic schemes.

Current QKD systems still suffer from significant limitations in terms of bit rate
(few tens of kbits/s) and of practical applicability (transmission with unconditional
security only on few tens of km)[3], thus stimulating active research to improve their
performances. Chaos-based communications exploit deterministic noise-like signals
generated by physical nonlinear oscillators to cloak sensitive data. Optoelectronic
devices are extremely popular because of their fast fluctuations, which can securely
transmit data streams at high bit rates (several Gbits/s) over large distances [4].

The development of optical chaos cryptography results from three scientific mile-
stones late in the 20th century: (i) the concept of stimulated emission (discovered
by Einstein in 1917) demonstrated with semiconductor materials in 1962 [5], (ii) the
development of the chaos theory to describe erratic evolutions occurring in nonlin-
ear systems with sufficiently high dimensionality [6], and (iii) the synchronization of
chaotic oscillators proved in the 1990’s [7].

A generic optical chaos-based cryptographic chain consists of a legitimate user
Alice, who injects with an appropriate technique the data to be transmitted in a
chaotic optoelectronic device (E). The system’s output, which bears the message,
is then sent on a public channel wiretapped by an eavesdropper Eve. The channel
couples Alice’s emitter with a legitimate receiver (R) (physical copy of Alice’s sys-
tem) owned by Bob. Bob’s system will synchronize only with the deterministic part
of the signal transmitted, a property known as chaos-pass filtering. He duplicates
Alice’s chaotic carrier and uses a generalized subtraction operation to recover Alice’s
concealed data (Fig. 1.2). This approach was experimentally proposed by R. Roy
and G.D. VanWiggeren in 1998 [8]. The instabilities in optoelectronic oscillators,
traditionally considered as undesirable, were constructively used to disguise data at
the physical level.

Figure 1.2: The physical layer of a communication network in the case of a chaos-based en-
cryption and decryption using optoelectronic devices.

Optical chaos-based cryptography has great potential in terms of additional com-
putational complexity at the physical layer and is ready for real-field applications;
an experiment was conducted on a commercial fiber network in Athens (Greece)
in 2005 with encrypted transmission at high bit rates (Gbit/s) [4]. The chaotic
optoelectronic generators are typically based on edge-emitting semiconductor lasers
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(EEL), a technology also used in diverse industrial and scientific applications, such as
DVD player, bar-code readers, fiber optic networks, printers, metrology, and ultrafast
measurements. Being already widely deployed in optical networks, they subsequently
make good candidates for a large-scale implementation of optical chaos cryptography.
Their ubiquitous presence is explained by their remarkable performance in terms of
electro-optical efficiency, compactness, modulation speed, and lifetime.

1.2 Critical Issues and Challenges

1.2.1 Security of Chaos-Based Encryption

A critical issue, which has marginalized chaos cryptography and slowed down its
deployment, is the analysis of security. It remains an open problem primarily due to
two specific aspects of chaos-based encryption [9]:

• the use of nonlinear functions (or maps) mostly defined on continuous number
sets (sometimes finite number sets) contrary to non-chaos-based encryption
schemes that are exclusively defined on finite number sets.

• the analysis of security is not performed with the typical tools of mathematical
cryptanalysis.

These two fundamental differences do not prevent an analogy between non-chaos-
based and chaos-based encryption techniques; the chaotic system’s parameters and
its nonlinear function are respectively equivalent to a key and an algorithm. This
justifies the existence of the various possible methods of attack on chaos-based cryp-
tosystems described below:

• Attack on the imperfect mixing of information. This type of attack does not
require any a priori knowledge of the parameters (key) or the nonlinear function
(algorithm) and aims at a direct extraction of the message from the chaotic
dynamics [10].

• Attack on the key with partial knowledge of the chaotic cryptosystem. This
type of attack is analogous to those performed in conventional cryptography
techniques, where the algorithm (respectively nonlinear function) is known, the
eavesdropper has access to the encrypted data (respectively chaotic time series
bearing the message), and only the key (resp. parameters) remains unknown.

• Attack with no a priori knowledge of the system. The eavesdropper only has
access to the encrypted data. He must infer the nonlinear function and the
parameters.

The last type of attack tests the intrinsic level of privacy that a chaos-based
cryptosystem can provide. Concerning the optical-chaos generators, no studies have
fully investigated the security of a large class of optoelectronic devices, namely optical
delayed systems, and more specifically external-cavity semiconductor lasers (ECSL).
This may prevent the use of optical chaos-based cryptography in field applications.
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1.2.2 Multiplexing and Multiuser Communications

Over the past two decades, optical chaos-based communications have made tremen-
dous progress on encryption, transmission, and decryption of a single message and
have reached multi-Gbit/s secure communications [11; 12]; however, some limitations
still exist; including the performance in terms of (i) bit error rate (BER) and (ii)
power and spectral efficiency, which are still below those of conventional non-chaos-
based encryption.

To improve the BER, the use of error control correction [13] has been proposed to
improve BER performance [14]. In optoelectronic systems, the main reasons under-
lying BER limitations are the existence of internal or external noise sources (sponta-
neous emission of light or electronic noise, and channel noise, respectively) and the
imperfect match between two twin physical systems (parameter mismatch). In both
cases, perfect chaos synchronization is lost, subsequently leading to an increase of
decryption error.

Improving spectral efficiency would consist of a better use of the available power
and bandwidth by transmitting multiple messages in a same communication channel
using either a single or multiple chaotic optoelectronic devices (see Fig. 1.3).

Figure 1.3: General description of the multiplexing problem using optoelectronic devices. Two
possibilities exist: (a) the use of multiple oscillators (Ei) owned by Alicei to encrypt various data
streams mi and the use of multiple receiver (Ri) to decrypt each message m̂i; (b) the use of
a single emitter shared by the Alices to encrypt their message and a single shared receiver (R)
owned by the Bobs.

In conventional optical communications, various approaches to multiplex data
have been developed, including time- and wavelength-division multiplexing (TDM
and WDM), and more recently code-division multiple access (CDMA) [15]. In the
case of chaotic systems, two approaches have been considered: type-i asynchronous
methods using chaotic systems at the emission but without exploiting synchroniza-
tion, and type-ii synchronous methods using chaotic systems and synchronization.
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The type-i methods are well documented and understood. Their performance has
been tested with various systems and architectures. A detailed review can be found
in [16] and references therein. Most of the single-user optical chaos-based communi-
cations, however, rely on chaos synchronization. Consequently, any development of
multiplexing techniques will naturally fall within the type-ii category. As illustrated
by Fig. 1.3, there are two possibilities to encrypt/decrypt data:

• using multiple chaotic systems to encode the messages of the various Alices.
Then, each output is multiplexed (combined) in a single signal that is sent
trough the communication channel. At the receiver, each Bob has his own
chaotic unit and will decode his corresponding message [Fig. 1.3(a)],

• using a single chaotic unit to encode the messages of the various Alices. A
single multiplexed signal bearing all the messages is sent to a single receiver
where the decryption is performed [Fig. 1.3(b)].

Each possibility highlights fundamental questions concerning the independent
synchronization of emitter-receiver pairs injected by a single multiplexed signal (chaos
multiplexing), the injection and mixing of each message, the realization of the mul-
tiplexing and demultiplexing operations, and the limitations in terms of number of
users, bit rates, and computational complexity of the decryption. Most of these
fundamental questions have not been deeply investigated. As a matter of fact, the
first studies of chaos multiplexing were published late in the 1990’s and focused on
the question of multiplexed synchronization [17; 18] (no information encoded). They
were followed by studies of strategies to encrypt and decrypt multiple messages using
chaos synchronization and innovative encoding techniques [19; 20]. None of them,
however, were exploiting optoelectronic systems with time delays.

1.3 Outline of the Thesis

This thesis focuses on the two major issues developed in the previous section, security
analysis and the development of multi-user architectures with optoelectronic devices.

The present work is organized as follows.
In Chapter 2, we present the basics of chaos theory, synchronization, and cryp-

tography. More specifically, we introduce the fundamental concepts of nonlinear
systems, attractors, bifurcations, and the notions of complexity (Lyapunov expo-
nents, dimension, and entropy). We also highlight the particular class of time-delay
systems, which appears in many areas of engineering and sciences. Such systems
have achieved great success in the development of secure chaos-based communica-
tions because of the large dimension of their attractor and strong entropy (apparent
randomness). We conclude the chapter by detailing the most-encountered chaos-
based cryptographic architectures; they are chaos masking (CMa), chaos shift keying
(CSK), and chaos modulation (CMo).

In Chapter 3, we focus on the generation of optical chaos using optoelectronic
devices. We review the main mechanisms and principles of operation of semicon-
ductor lasers and detail Arrechi’s classification, which justifies most of the schemes
used to generate optical chaos. Finally, we describe typical chaotic optoelectronic
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devices that exploit either internal or external nonlinearities, and we present their
mathematical models.

Security and cryptanalysis of optical chaotic emitter with time-delay are intro-
duced in Chapter 4. The analysis is performed on an edge-emitting laser (EEL) with
an optical feedback, with no prior knowledge of the system. Similar to a situation
often faced by an eavesdropper, only a scalar time series (light intensity) is available.
Here, the security is considered to be the amount of information about the structure
and the parameters that a system leaks in its state variables. In the case of time-
delay systems, as it will be detailed later, the information on the time delay is of
crucial importance to maintain a high level of confidentiality. To extract information
from a time series, techniques and metrics from signal processing and information
theory will be presented as well as the detection of the time-delay signature. In the
case of an EEL with optical feedback, we unveil conditions on the tunable opera-
tional parameters (length of the external cavity, pumping current, and strength of the
retro-injected light) that allow for strong concealment of the time-delay information.
We also highlight the fundamental role of the nonlinear dynamics preceding the ap-
pearance of chaos in this system to explain the diversity of time-delay concealments
previously observed, and to devise strategies to enhance them.

In Chapter 5, we propose a type-ii architecture to multiplex chaotic optical fields
generated by several EELs. We go beyond the traditional approaches of the litera-
ture, consisting of an application of WDM on the top of chaotic lasers. We succeed
in adapting a fundamental result from the theory of synchronization, known as the
active-passive decomposition (APD) using simple optical components. Our solu-
tion consists of mutually coupling the emitters using a shared external cavity. A
multiplexed optical field is subsequently generated and is injected with the proper
coupling strengths into the uncoupled receivers. We derive a general semiclassical
model for our global architecture and prove the possibility to achieve perfect inde-
pendent synchronization of chaos for multiple pairs of lasers, yet sharing a single
optical communication channel. We study the influence of the coupling parameters
and number of units on the quality of synchronization, the spectral properties of the
resulting scheme, and its robustness to parameter mismatch and internal sources of
noise (e.g.: spontaneous-emission noise). Finally, we propose theoretical solutions to
encrypt simultaneously multiple data streams using either the phase or the ampli-
tude of the optical fields composing the multiplex signal associated with the different
lasers.

One of the main issues in multiplexing techniques resides in the generation of
suitable carriers to convey data while remaining separable for independent decryption
of each user’s data stream. Chapter 6 addresses this issue and proposes a type-
ii architecture, inspired by the CDMA approach existing in conventional optical
communications. Briefly described, CDMA is a spread-spectrum technique that
produces and uses carriers (also known as codes), that are separable with respect to
a statistical criterion, which is different from the time of emission or wavelength used
in TDM and WDM, respectively. In this chapter, we show how to generate such codes
using an optoelectronic oscillator (OEO) with multiple nonlinear delayed feedback
loops. We analyze the statistics and complexity of the generated chaos as well
as conditions to achieve orthogonality between each user, a fundamental property
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to ensure linear complexity of the decryption with the number of users [21]. The
main challenge is that optical chaotic systems generate codes that are highly time-
varying, contrary to those of conventional communications designed offline and fixed
during the entire transmission. We demonstrate theoretically that our architecture
can transmit multiple data streams, and we propose different decoding strategies
depending on the level of orthogonality between the codes.

In Chapter 7, we probe new directions to multiplex data with a high degree of
confidentiality using time-delay systems. Similar to the previous chapter, we propose
the use of a single oscillator with multiple delayed feedback loops, except that the
data of each user is now encoded directly on each time-delay. The information sources
being random, the resulting emitter is a stochastic time-delay system. The fast and
random variations of the time delay offer great security with respect to known time-
delay identification techniques used in Chapter 4. We focus on the conditions and
various encryption strategies that will ensure maximum security, and we describe the
method to retrieve the independent variations of each time delay. As a conclusion, we
theoretically demonstrate the transmission at high bit rate of multiple data-streams
by using the model of an optoelectronic oscillator.

Finally, in Chapter 8 we summarize the main results of the thesis and offer some
perspectives and possible directions to investigate.



Chapter 2

Introduction to Chaos Theory,

Synchronization, and

Cryptography

Abstract

In the general introduction, we have presented the various notions necessary for the
achievement of chaos cryptography. In this chapter, we detail fundamental concepts
existing in nonlinear sciences, such as chaos theory and synchronization of periodic or
chaotic oscillators. We also show how the appropriate combination of these two im-
portant notions can lead to innovative physical-layer encryption setups, that ensure
a high level of computational security.
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2.1 Chaos Theory

The theory of chaos is one of these mathematical and physical frameworks that
can instantaneously seize our imagination and interest. It transcends the disciplines:
philosophy, religion, mythology, or science each has its own perspectives on chaos. In
this section, we give some mathematical insight and facts on the theory of chaos. We
will start from a historical point of view that lays the grounds of what is known today
as nonlinear science and chaos theory1. Then, we will present fundamental concepts
such as the theory of dynamical systems, the attractors, bifurcations, route to chaos,
and finally give some notions on complexity. These key concepts are illustrated on
typical nonlinear systems.

2.1.1 Historical Perspective

In ancient Greek mythology, chaos was the “primeval emptiness preceding the genesis
of the universe, turbulent and disordered, mixing all the elements” (adapted from
[25]). From this turmoil, order eventually emerged and shaped the world. Though
naive, this tale connects two key concepts of the modern theory of chaos and makes
them interdependent: order and disorder. Philosopher Aristotle also articulated an
important property that characterizes chaos, and will be later known as the sensi-
tivity to initial conditions (SIC). The conclusion he drew was that ”the least initial
deviation from the truth is multiplied later a thousandfold” [26] (and see Stanford
Encyclopedia). With this statement, Aristotle described a form of exponential di-
vergence with time; a slightly modified (one could say disturbed) original concept or
”truth” may end with a complete different and unexpected final form.

Finding its roots in social sciences and Greek myth, the idea of chaos and SIC were
considered as irrelevant from a scientific point of view for centuries. Only in 1876,
as James Clerk Maxwell was developing his kinetic theory, he argued that a small
variation in the current state makes the prediction of future states impossible. At this
time, however, he was convinced that the key factor rendering this effect visible was
the complexity of the system through its large number of variables. Later in 1892,
the problem of stability was addressed mathematically by Russian mathematician
Aleksandr Lyapunov. For the first time, he calculated the divergence rates between
the evolutions of a dynamical system with different initial conditions. At about
the same time in 1898, French mathematician Jacques Hadamard remarked that a
discrepancy in initial conditions of a system could lead to unpredictable long-term
evolution of dynamical systems. In 1908, another French mathematician, Henri
Poincaré, deepened Hadamard’s idea and concluded that any prediction of future
states was impossible, as a result of his famous study of the stability of the three-
body problems.

Other significant milestones in the theory of dynamical systems were initiated
after Henri Poincaré discoveries. We cite the work of B. Van der Pol and Aleksander
Andronov in the 1920’s and 1930’s on the study of oscillations in relaxed and self-

1Excellent historical introductions to chaos theory can be found on the web site of the Stanford
Encyclopedia, J. Gleick’s book [22], M. Sciamanna PhD thesis [23], and M.W. Lee PhD thesis [24].
Some examples were adapted from these various references.
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sustained oscillators, respectively. In the 1950’s, Kolmogorov, Arnold, and Moser
focused their attention on the persistence of motion of quasi-periodic oscillators and
obtained the fundamental KAM Theorem.1

In the 1960’s, the theory of chaos received unprecedented attention as Edward
Lorenz, a meteorologist at the Massachusetts Institute of Technology (MIT), pro-
posed a graphical representation of SIC in a simplified numerical model of the Earth
atmosphere. Lorenz wanted to analyze data produced by his model on large se-
quences; however, at this time computing power was extremely limited. Therefore,
to obtain large sequences, one had to run multiple sequential simulations. It is pre-
cisely what he did, except that when he initiated the next simulation with the last
results from the previous run with a lower precision, he noticed that the model did
not duplicate the expected evolution that a single simulation would have produced
(see Fig. 2.1).

Figure 2.1: Numerical evidence of the sensitivity to initial condition in the Lorenz system, as
observed historically by Lorenz. Depicted in grey is the evolution with initial condition with
5-digit precision; depicted in red the same evolution with a duplicated initial condition with a
3-digit precision.

Contrary to his expectations, the lower-precision initial conditions would not have
negligible consequences on the system’s dynamics. This discovery and subsequent
work contribute to explain the inaccuracy of long-term weather forecasting and were
summarized by E. Lorenz at the 139th meeting of American Association for the
Advancement of Science (AAAS) with this now famous statement: “Does the flap of
a butterfly’s wings in Brazil set off a tornado in Texas?” [6]. That is how the SIC
was also known as the “butterfly effect”. After this major turn, research on nonlinear
dynamics and chaos theory stepped up.

In 1971, David Ruelle and Floris Takens proposed an alternative mathematical
explanation of the turbulence in fluid dynamics based on the existence of so-called
”strange attractors” [27]. A couple of years later, Tien-Yien Li and James A. Yorke
used the term chaos to describe the erratic and unpredictable behaviors arising in
deterministic nonlinear maps. At the same period, Mitchell J. Feigenbaum unraveled
universality of behavior occurring in a particular class of systems as they transition
to chaos, and derived the Feigenbaum constant [28].

1The KAM Theorem proves the existence of invariant tori (quasi-periodic trajectories) in the
phase space of an integrable hamiltonian system after perturbation.
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2.1.2 Fundamentals of Nonlinear Systems Theory

2.1.2.1 Continuous Systems

A system, in which the state is changing with time, is called a dynamical system or
oscillator. If the system is time-continuous, then the mathematical description of its
evolution is given by an ordinary differential equation (ODE)1 and a set of initial
conditions,

ẋ(t) = f(x(t)), (2.1)

x(t0) = x0, (2.2)

where x ∈ R
n is the state vector, f is a function R

n → R
n, also called vector field,

and x0 ∈ R
n is the initial state vector at initial time t0. The initial conditions of the

system are rarely explicitly given in the representation of a system. If the function
f is nonlinear, then the system is said to be nonlinear, and linear otherwise. We
define the dimension of a nonlinear system as the size of its state vector (number n
of coordinates). This notion of dimension, as discussed later, is of prime importance
to explain the emergence of chaotic behaviors in this type of system.

As an example, consider the nonlinear pendulum. It is comprised of a point mass
m that can swing freely. It is at a distance l from its pivot and subject only to
gravity g. The position of the mass is given by its angle θ, and its speed is given by
v = θ̇. These are the two quantities necessary to describe its evolution,

�

θ̇ = v,

v̇ = −2λω0v + ω2
0 sin θ.

(2.3)

The frequency of the oscillator is 2πω0 =
�

g/l and the damping ratio is denoted by
λ > 0. With the notation of Eq. 2.1, the state vector is given by x = (θ, v)T and the
vector field by f = (fθ, fv)

T = (v,−2λω0v + ω2
0 sin θ)

T .

2.1.2.2 Discrete Systems: Maps

If a system takes its values only at regularly distributed instants, it is called time-
discrete or discrete. Its mathematical representation is given by a map, which reads
with the previous notations of Eqs. 2.1-2.2

xk+1 = f(xk), (2.4)

xk0 = x0, (2.5)

with k the time index, k0 the initial discrete time, and x0 an initial vector.
Concerning nonlinear maps, we cite the logistic map that models the behavior of

predator-pray and was proposed by Robert May [29]. It is a discrete-time analog of
the logistic equation and it reads

xn+1 = µxn(1− xn), (2.6)

where xn represents the population at year n and µ > 0 the rate of maximum
population growth.

1If the system’s mathematical representation does not depend explicitly on time, it is said to be
autonomous.
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2.1.2.3 Time-Delay Systems

In the two previous cases, the evolution of the state depends only on the current state
(continuous time) or previous time (discrete time). Here in time-delay systems, it
depends also of state in the past, a delayed state. They are mathematically described
by delay differential equations (DDE),

ẋ(t) = f(x(t),x(t− τ)) for t > τ, (2.7)

x = ϕ(t) for t ∈ [0, τ ], (2.8)

with ϕ : R → R
n a vectorial function. Contrary to systems described by ODEs, or

maps, it is necessary to specify the initial conditions over a complete interval.
Time-delay or delayed systems have received considerable attention due to their

peculiar properties such as infinite degrees of freedom, very large dimension of the
corresponding attractor, which is often proportional to the time-delay τ .

Historically, one of the first time-delay systems ever exhibited was a Mackey-
Glass system, named after the two physiologist who discovered it [30]. It models
the production of blood cells in the human body and takes into account the delay
existing between the genesis of cells and their maturation before injection in the
blood stream. The system is described by

ẋ(t) = −ax(t) +
bx(t− τ)

1 + x(t− τ)n
, (2.9)

with x ∈ R the state variable, a, b, n ∈ R parameters of the models, and τ the time
delay.

2.1.3 Notion of Stability of Nonlinear Systems

The concept of stability is ubiquitous in dynamical system theory and it underlies
the notions of attractors, bifurcation theory, and synchronization. We focus on
definitions for continuous systems (described by Eq. 2.1) .

A vector xe is an equilibrium point if

f(xe) = 0. (2.10)

It is possible to define several types of stability:

• Lyapunov stability: An equilibrium point is stable in the Lyapunov sense if
for all ε > 0, there exists δ(t0, �) such that

∀t > t0 �x(t0)− xe� < δ(t0, ε) ⇒ �x(t)− xe� < ε. (2.11)

It guarantees that the trajectory of the system in phase space will remain in
the vicinity of the equilibrium point if the initial state belongs to this vicinity.
If δ does not depends on t0, the stability is said to be uniform.

• Asymptotic stability: An equilibrium point is asymptotically stable if

�x(t0)− xe� < δ(ε) ⇒ lim
t→∞

�x(t)− xe� = 0. (2.12)
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Asymptotic stability includes the Lyapunov stability, but imposes for all tra-
jectories initiated in the neighborhood of the equilibrium point to converge
asymptotically to it. Furthermore, a system is globally asymptotically stable
if for all trajectories x(t), lim

t→∞
�x(t)− xe� = 0; in other words the system has

a unique equilibrium point.

A major inconvenient with the definition of stability is that it requires the finding
of the system’s trajectory. Nevertheless, methods exist to determine the stability
considering the system in its differential form Eq. 2.1:

• The indirect Lyapunov method: It consists of analyzing the eigenvalues of
the linearized system at the equilibrium point (∂f/∂x)x=xe . If the linearized
system is uniformly asymptotically stable then the nonlinear system described
in Eq. (2.1) is locally asymptotically stable at equilibrium point xE .

• The direct Lyapunov method: It relies on the Lyapunov theorem, that
provides information on the global asymptotic stability of a system by con-
structing an energy function V (x) and study how its time derivative behaves.
The results can be summarized in Table 2.1 (adapted from [31]).

V (x) −dV (x)/dt Conclusion on stability

Locally definite positive

(ldp)

locally positive stable

ldp and decrescent locally positive uniformally stable

ldp and decrescent ldp asymptotically stable

definite positive and de-

crescent

definite positive globally asymptotically

stable

Table 2.1: Synoptic view on the Lyapunov method and its conclusion on stability.

As an example, we apply the direct Lyapunov method to the relaxed damped
nonlinear oscillator defined by ẍ(t) − 2λω0ẋ(t) + ω2

0 sin(x(t)) = 0, with ω0, λ > 0.
Evidently, the equilibrium point is xe = 0. We consider the Lyapunov function
V (x, t) = 1

2x(t)
2 + ω2

0 cos
2(x(t)) which is positive definite. We have for the time

derivative V̇ (x, t) = ẋ
�
ẍ− ω2

0 sin(x)
�
= −2λω0ẋ

2(t), which is evidently negative
definite. As a consequence, the Lyapunov theorem concludes for a damped oscillator,
that its equilibrium point is globally asymptotically stable.

There exists other types of stability such as the exponential asymptotic stabil-
ity with a corresponding Lyapunov theorem. For more details on the question of
stability, we suggest the reference [32] to the reader.



27

2.1.4 Attractors and Bifurcations Theory

2.1.4.1 Notion of Phase Space

In physics, a space comprising all the accessible states of dynamical system (position
and velocity, to a large sense) is called the phase space. For a time-continuous system
with finite dimension n, the phase space is spanned by the components of its state
vector, in the case of time-delay system its dimension is infinite [33].

The evolution of the dynamical system is represented by a trajectory in phase
space called the orbit. An important property of a deterministic system is that
its trajectory cannot self-intersect; otherwise it would contradict the uniqueness of
evolution of a system for a given initial condition as stated by the Cauchy theorem.

2.1.4.2 Notions of Dissipation and Attractors

As highlighted by Ruelle and Takens [27], a complex time evolution may sometimes
be advantageously represented in the phase space (S). Depending on the dissipation
of a given system, the trajectories in a region of phase space may eventually converge
to a subset A ⊂ S, which is typically referred to as an attractor. In the case of
continuous-time system, the dissipation is defined by analyzing the evolution of a
volume V of phase space,

V̇ (t) =

�

V
∇ · fdx, (2.13)

with ∇ · f the divergence of the vector field f and defined by ∇ · f =
�n

i=1 ∂fi/∂xi
with fi and xi the components of the vector field f and state vector x, respectively.

For the example of the pendulum, the vector field is defined by fx = v and
fv = −γv − ω2

0 sinx; the divergence reads ∇ · f = ∂fθ/∂θ + ∂fv/∂v = −2λω0.
The lack of damping (λ = 0) makes the pendulum a conservative system; otherwise
(λ > 0) the divergence is less than zero, and the pendulum is dissipative.

If the system is a map, the dissipation is defined after the amplitude of the de-
terminant of the Jacobian matrix associated to the discrete vector field: |det(∇xf)|.
If |det(∇xf)| = 1, the system is conservative, else if |det(∇xf)| < 1 the system is
dissipative.

An Example for discrete system is the baker’s map. This transformation is defined
on the unit square mapped to itself and is named after the baker, because it squeezes,
cuts, and stacks iteratively the unit square, as a baker would do with the dough.
Mathematically this system is modelled by

�
xn+1

yn+1

�

=

�
2 0
0 a

��
xn
yn

�

+





0
�

0, xn �
1
2

1
2 , xn > 1

2



 (mod 1). (2.14)

The nonlinearity results in the modulo operation that is responsible for the cut-

and-stack. In this map, the Jacobian matrix is evidently ∇f =

�
2 0
0 a

�

and its

determinant is equal to det(∇f) = 2a. According to the definition, if a ∈ [0, 12 [
the system is dissipative with a squeezing of volume that imposes the trajectories to
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asymptotically converge in a bounded region of the phase space; otherwise if a = 1
2

the map is conservative.

Typically, a nonlinear dissipative system can exhibit basic attractors with four
different geometries: (i) an equilibrium point (EP or fixed point) corresponds to a
stationary evolution of the system, (ii) a limit cycle (LC), which is a closed curve
in the phase space and corresponds to a periodic evolution in the time domain with
frequency f0, (iii) a torus (T), which is also a closed curve in phase space embedded in
a torus and corresponds to a quasi-periodic motion in the time domain, defined by the
coexistence of multiple incommensurate frequencies f0i, and (iv) a strange attractor
which is a complex set with a fractal geometry1 usually associated with unpredictable
and erratic evolution of an oscillator in the time domain, called chaotic fluctuations.

2.1.4.3 Bifurcations Theory

The theory of bifurcations studies the topological changes of a trajectory of a dy-
namical system defined by

ẋ = f(x, λ), f : Rn → R
n, x ∈ R

n, λ ∈ R
p, (2.15)

in response to smooth variations of the system’s parameter λ ∈ R
p, commonly called

the bifurcation parameter. A bifurcation is often seen as a collision or exchange of
stability between two or multiple attractors (equilibrium points, limit cycles, torus),
or two or multiple manifolds2 [35; 36; 37].

When attractors collide, this induces a local topological modification of the phase
space in the immediate vicinity of the collision; this is referred to as a local bifurcation.
However, when two manifolds collide and exchange their stability the phase space
structure may be globally affected; this is referred to as a global bifurcation. The
complexity of the bifurcation is given by its codimension, an integer representing the
number of scalar parameters amongst the vector λ that one must vary to observe a
bifurcation. It represents the codimension of the parameter vector λ.

The last characteristic of a bifurcation is related to the nature of the collision
between the attractors and/or manifolds. The bifurcation is said to be supercritical if
the collision occurs with a stable structure at λ > λc, leading to a smooth transition,
λc being the critical value of parameter for which the bifurcation occurs. On the
other hand, the bifurcation is said subcritical if the collision occurs with an unstable
structure existing for λ > λc; this results in a sudden transition.

Various bifurcations have been studied, especially those with a low codimension
(one or two) as well as global bifurcations. We can cite the most common bifurcations
encountered in dynamical systems:

• Local bifurcations

1A fractal geometry characterized a “rough or fragmented geometric shape that can be split into
parts, each of which is (at least approximately) a reduced-size copy of the whole” as described by
B. Mandelbrot in [34].

2Manifold: In differential geometry, a manifold is a smooth (highly differentiable) mathematical
space.
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– Saddle-node bifurcation: Before the bifurcation, two equilibrium points
(EP) exist. They collide and disappear; no equilibrium points remain after
the bifurcation.

– Transcritical bifurcation: Before the bifurcation, two equilibrium points
exist with different stability. They collide and after the bifurcation their
stability is exchanged.

– Pitchfork bifurcation: A type of bifurcation that occurs in system with
symmetry. The bifurcation can be supercritical, when a stable equilibrium
point EPs becomes unstable and two new stable equilibrium points ap-
pears. The bifurcation can be subcritical when two unstable fixed points
(EPu1, EPu2) coexist with a third stable equilibrium point EPs that re-
spectively disappear and becomes unstable after the bifurcation.

– Hopf Bifurcation: This bifurcation can be supercritical or subcritical.
In the first case, an equilibrium point looses its stability while a limit cycle
is appearing. In the latter case, an unstable limit cycle coexists with a
stable equilibrium point before the bifurcation. After the bifurcation, the
limit cycle disappears and the equilibrium point becomes unstable.

– Period-doubling bifurcation: An existing limit cycle with period T
disappears, a newborn limit cycle appears with period 2T .

– Neimark-Sacker bifurcation: A limit cycle disappears and a torus
attractor emerges.

• Global bifurcations:

– Homoclinic bifurcation: A limit cycle and a saddle point (unstable
equilibrium point) collide together. This results in the appearance of a
homoclinic orbit defined as particular trajectory of the system xH(t) that
satisfies the following limits’ equality,

lim
t→−∞

xH(t) = lim
t→∞

xH(t) = p, (2.16)

with p an equilibrium point.

– Heteroclinic bifurcation: A limit cycle and two or more saddle point
collide together. This results in the appearance of an heteroclinic orbit
xHe(t) that satisfies

lim
t→−∞

xHe(t) = p1 and lim
t→∞

xHe(t) = p2, (2.17)

with p1 �= p2 two equilibrium points.

2.1.5 Chaos Theory

When one is asked to define chaotic behavior, there is no single answer; for G.P.
William, “Chaos is sustained and disorderly-looking long term evolution that satisfies
certain special mathematical criteria and that occurs in a deterministic nonlinear
system” [25]; for E. Lorenz it is also “The property that characterizes a dynamical
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system in which most orbits exhibit sensitive dependence.” In this subsection, we
will give necessary conditions to observe chaotic behaviors in dynamical system.

In the case of a continuous system, there are three basic ingredients to ensure
the emergence of chaotic behaviors: (i) a sufficient dimensionality, (ii) a nonlinearity,
and (iii) a proper set of parameters that will allow the strange attractor to be the
stable limit set.

The condition of dimensionality comes as a corollary of the Bendixon-Poincaré
theorem, which states that given a differential equation ẋ = f(x) in the plane (2D)
and assuming x(t) is a solution curve which stays in a bounded region, then either
x(t) asymptotically converges for to an equilibrium point, or it converges to a single
periodic limit cycle. It is necessary to have a system with dimension greater or
equal to three (which is precisely the case of the Lorenz system studied in the next
paragraph).

The nonlinearity is also necessary to couple the state variables in such a way that
solutions other than the predictable solution of a linear system ẋ(t) = A(t)x(t), with

A ∈ Mn×n(R), of the form x(t) = x0 exp
�� t

t0
A(u)du

�

, appear.

2.1.5.1 Route to Chaos

Contrary to linear systems, nonlinear systems can exhibit various dynamics apart
from chaotic ones (if the dimension is large enough). This diversity and the transi-
tions (bifurcations) occurring between each of them can be probed by making varying
one or several system’s parameters (called bifurcation parameters). This makes it
possible to observe a cascade of bifurcations to stable attractors until a strange at-
tractor is reached. This is called a route to chaos. In the literature, the routes
to chaos are graphically represented by a bifurcation diagram where the system’s
output is plotted as a function of the bifurcation parameter. There exists a large
variety of routes but amongst them, three scenarios are often encountered and may
be considered as universal [38]:

• Intermittency route to chaos: Also called Pomeau-Maneville route to chaos
[39], in this scenario a single bifurcation is responsible for the alternation (or
intermittence) of zones of chaotic (“turbulent”) motion with zones of smooth
regular (“laminar”) motion. As the bifurcation parameter increases, the tur-
bulent zones last longer and eventually, above a critical threshold, the system
is always turbulent (or chaotic). The intermittency route to chaos is classified
into three different types (I,II,III) depending on how the destabilization occurs.

• Ruelle-Takens-Newhouse route to chaos: Also called the quasi-periodic
route to chaos. It consists of the following succession of three bifurcations when
the bifurcation parameter is steadily increased: First, a Hopf bifurcation that
leads to a stable limit-cycle of period T , second a Torus bifurcation that leads
to a quasi-periodic dynamics with two incommensurate frequencies associated
with a torus attractor T 2, and finally a last bifurcation turns the torus T 2

into a new attractor T 3 with three incommensurate frequencies, which rapidly
destabilizes into a strange (chaotic) attractor.
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• Period-doubling route to chaos: Also called Feigenbaum route to chaos,
in this scenario, a steady state is first destabilized through a Hopf bifurcation
resulting in a limit cycle of period T . Then, this limit cycle undergoes a
cascade of period-doubling bifurcations until the n−th limit cycle of period 2nT
destabilized and the strange attractor becomes stable. This route is illustrated
in Fig. 2.2.

Figure 2.2: Experimental bifurcation diagram of an optoelectronic oscillator picturing a period-
doubling route to chaos (courtesy of former UMR 6603 GTL-CNRS Telecom). States and
bifurcation points are indicated on the figure.

2.1.5.2 Strange Attractors

In dissipative systems, the trajectory is asymptotically localized in a bounded region
of the phase space called attractor. When a system exhibits chaotic behaviors, the
time evolution is seemingly random. However, when the system is represented in
the phase space, an ordered geometric structure becomes visible. This structure was
originally called strange attractor by D. Ruelle and F. Takens. To illustrate it, we
consider a celebrated example: the Lorenz system. It is defined as

ẋ = σ(y − x), (2.18)

ẏ = ρx− y − xz, (2.19)

ẋ = xy − βz, (2.20)

with σ the Prandtl number, ρ the Rayleigh number, and β = 4/(1 + a2) with a
a horizontal wavenumber for the convection cells. All the parameters are positive.
This is a simplified model of the convection in the atmosphere. In the phase plane
defined by the coordinates (x, y, z), this system reveals a butterfly shape that later
became emblematic of the chaos theory. Times series and 3D representation of the
attractor are given in Fig. 2.3.

The strange attractor is said to be fractal, if its dimension is non-integer and has
a complex geometry. Considerations on the calculation of dimension of attractor will
be detailed in the following subsection.
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Figure 2.3: Numerical simulation of the Lorenz flow with σ = 10, ρ = 28 and β = 8/3. (a)
The strange attractor with a butterfly shape in the 3D phase space (x, y, z). (b) Time series of
each state variables (adapted from [23]).

2.1.5.3 Sensitivity to Initial Conditions (SIC) and Lyapunov Exponents

In the chaotic regime, there exists one or several directions in phase space for which an
hypervolume of phase space would be stretched as time progresses. As a consequence,
two neighboring trajectories arbitrary close will progressively move away from each
other while remaining on the strange attractor. The system is said to be sensitive
to initial conditions (SIC). Uncertainty of the initial conditions of a given system is
unavoidable due to finite precision of measurement and will be amplified with time,
preventing any possible forecasting. This is one of the fundamental properties of
chaotic systems that E. Lorenz was the first to observe (see Fig. 2.1).

Intuitively, the unpredictability will depend on how fast two close trajectories di-
verge and it is consequently related to the expansion’s speed of the initial hypersphere
in all the directions of the phase space. The expansion rates are usually referred to as
Lyapunov exponents. Mathematically, we consider a trajectory x(t) solution of the
differential system Eq. 2.1 and an elementary perturbation’s vector δx(t) solution
of the linearized equation around the trajectory x(t): δẋ(t) = ∇fxδx(t) and δx(0)
denoting the initial perturbation. The components δxi of the perturbation will be
stretched or contracted with specific rate λi as illustrated in Fig. 2.4.

The rates are defined for a continuous system by

λi = lim
T→∞

1

T
log

��δx(T )�
�δx(0)�

�

. (2.21)

If an iterated map is considered, a small perturbation evolves as δxn = ∇fxn−1δxn.
It is analogous to a geometric series except that the reason will change at every steps.
By analogy to the expression in continuous time, the Lyapunov exponents are defined
by λi = limn→∞ 1/n log (�δxn� / �δx(0)�). The set of all the Lyapunov exponents is
called the Lyapunov spectrum. For a system to be chaotic, the spectrum must have
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at least one positive Lyapunov exponent to guarantee the existence of SIC.

Figure 2.4: Representation of the deformation of a 3D hypersphere along the exten-
sion/contraction direction of the dynamical flow along the trajectory x(t).

Consider the Baker’s Map to illustrate a straightforward calculation of the Lya-
punov spectrum. An infinitesimal sphere is centered on a trajectory point (xn, yn).
The perturbated coordinates along each direction are defined by x̄n = xn + δxn and
ȳn = yn + δyn. The evolution of the perturbation after n iterations of the map
reads δxn = 2nεx0 and δyn = anδy0 with δx0, δy0 the initial perturbations. The
Baker’s map stretches the phase space in the x−direction, while contracting it in
the y−direction. This gives an illustration on how it is possible to have infinitely
diverging trajectories yet confined in finite phase-space volume.

2.1.6 Complexity

The complexity of chaos is characterized by two quantities: dimension and entropy.
This subsection is mainly devoted to their intrinsic definitions and connections with
the Lyapunov spectrum.

2.1.6.1 Dimension and Kaplan-Yorke Conjecture

To characterize the dimension of an attractor and its fractal geometry, one can use the
fractal dimension (also known as Kolmogorov capacity). Self-similar structure such
as fractals do not have an integer dimension such as typical mathematical objects
of Euclidean geometry. To calculate this dimension, the attractor is discretized,
covered with N(ε) hyperboxes of size ε (see Fig. 2.5(a)). The idea behind the fractal
dimension is to observe the evolution of the number of hyperboxes necessary as their
size tends to zero (refinement of the discretization). The definition reads

dc = lim
ε→0

log(N(ε))

log(1/ε)
. (2.22)

There is another approach to calculate the dimension of an attractor. Instead of
discretizing the attractor, the whole phase space is partitioned with hyperboxes of
size ε. In the phase space, the attractor intersects a finite subset of boxes (see Fig.
2.5). We introduce the probability pi that the attractor visit the ith hyperbox and
we define the information dimension,

dI = lim
ε→0

log(I(ε))

log(1/ε)
, (2.23)
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with I(ε) = −�N(ε)
i=1 pi log(pi), the information relative to the attractor geometry

with a precision ε.

Figure 2.5: (a) Discretization of the attractor for the calculation of the fractal dimension in a
3D case. (b) Discretization of the phase space for the calculation of the information dimension.
The attractor (red solid lines) intersects several boxes.

Although based on different calculation principles, these two dimensions are equal
if the attractor visits with identical probability all the hyperboxes, i.e. pi = 1/N(ε).
In most cases, however, this situation is not satisfied and dI ≤ dc.

Numerically, the calculation of the information dimension becomes rapidly in-
tractable as the dimension n of the phase space increases. To overcome this, D.T.
Kaplan and J. Yorke came up with a conjecture linking the information dimension
dI with the Lyapunov spectrum [40],

dI = dKY = j +
1

|λj+1|

j
�

i=1

λi, (2.24)

with j the index that satisfy
�j

i=1 λi ≥ 0 and
�j+1

i=1 λi ≤ 0, and dKY the Lyapunov
or Kaplan-Yorke dimension.

2.1.6.2 Entropy and Pesin Inequality

The Kolmogorov-Sinaï entropy of a dynamical system characterizes how the precision
of the prediction of a future state decreases with time due to the uncertainty of the
initial conditions. It measures the average rate of information loss. Its definition
supposes a partition of the phase state as in the case of the information dimension
dI . In practice, Kolmogorov-Sinaï entropy is defined as

hKS = lim
ε→0

lim
n→∞

1

n
H (B) , (2.25)

with B = {Bi}i=1,...,m a partition of the phase space with diameter ε that captures
the attractor in the phase space during a time interval of length n (more details in
footnote), H (B) = −�m

i=1 µ (Bi) logµ (Bi), µ a probability measure.1

1Notes on Kolmogorov-Sinaï entropy: Entropy for dynamical systems is rigorously defined
in the theoretical framework of measure-preserving dynamical systems. This considers a probability
space (X,A , µ, f) with X the state space, A = {Ai}i=1,...,p a partition of X, µ a probability
measure on X, and f an automorphism of X. Consider the refinement of two partitions C ∨ D =
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This quantity is also linked with the Lyapunov spectrum through the Pesin in-
equality [42] defined as

hKS ≤
�

i|λi>0

λi. (2.26)

2.2 Synchronization

2.2.1 Historical Perspective

Synchronization comes from the greek words “syn” (with) and “chronos” (time),
literally “occurring at the same time”. Synchronization of oscillators is a universal
and ubiquitous phenomenon in nature [43]. It was discovered by Christiaan Huygens
in 1665, who observed perfect in- and out-of-phase oscillations of two pendulum
clocks dynamically coupled by their common support (see Fig. 2.6) and concluded
on the existence of “sympathy on two clocks” [44].

Figure 2.6: Portrait of Christiaan Huygens (a), his drawing of the synchronization experiment
between two clocks located respectively in position A and B in (b), and the experiment revisited
at the School of Physics at Georgia Tech [45] (c).

Approximately two centuries later in 1870, Lord Rayleigh reported for sound
pipes their possibility to sound at unison and the effect of quenching, known as the
suppression of oscillations in interacting systems [46]. In the 1920’s, V. Appleton [47]
and B. van der Pol [48] studied the synchronization phenomenon in triode generators
under the influence of weak synchronization signals. Later in the 1940’s, V. Adler
described the locking phenomenon, a key concept in the synchronization of periodic
oscillator [49]. Synchronization phenomena continue to be reported with spectacular
examples in nature like the synchrony of flashing fireflies [50], chirping crickets [51], or
more recently genetic clocks [52]. Such a phenomenon has also found an application
in telecommunication and is used to synchronize electronic circuits with the phase-

{Ci ∩Dj |C = {Ci}i=1,...,n and D = {Dj}j=1,...,n}i,j , Kolmogorov-Sinaï entropy is defined as

hKS = sup
A

lim
n→∞

1

n
H

�

n−1
�

k=0

f−k(A )

�

.

The supremum is taken over all possible partitions A for the limit of the entropy H of partition
B =

�n−1
k=0 f−k(A ) = {Bi}i=1,...m, that reads H(B) = −

�m
i=1 µ(Bi) log µ(Bi). Assuming B is a

generating partition, the supremum over A corresponds to the limit to zero of diameter of partition
B. This finally leads us to Eq. 2.25. A detailed analysis can be found in [41].
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locked loops (PLL). We recommend to the reader an excellent and more detailed
introduction in [43].

2.2.2 Synchronization of Periodic Oscillators

Historically, the synchronization of periodic oscillators was studied with two types
of interactions or couplings: unidirectional (forcing) or bidirectional (mutual). In
the unidirectional configuration, a master (decoupled) drives the dynamics of a slave
system. Each oscillator is characterized by its free-running frequency ωm and ωs,
: respectively. The coupling strength is denoted η. As a result, the master (ωm)
forces the slave (ωs) to lock on its frequency; this depends on the set of parameters
(ω, η). In this parameter plane, the frequency locking region forms what is known as
an Arnold tongue [53] (see Fig. 2.7(a2)). This triangle-shaped zone illustrates the
increasing of the synchronization frequency range with the amplitude η [Fig. 2.7(a2)].
As a result, the phase of each oscillator are bounded |φm(t)− φs(t)| = constant.1 If
the frequency of master and slave are identical, their phases are also synchronized
φm(t) = φs(t). With a mutual interaction, each system influences the dynamics of
its coupled partner. The frequency of each system is denoted ω1,2 and the coupling
from System 1 to System 2 denoted η1 (respectively η2 for System 2 to System 1)
as depicted in Fig. 2.7(b1). In the context of mutual interactions, the frequency of
each oscillator changes and becomes Ω1,2. If ω1 < ω2, then the frequencies of the
interacting systems typically satisfy ω1 < Ω1,Ω2 < ω2. When the coupling is strong
enough, then there is a mutual frequency locking and Ω1 = Ω2 = Ω and ω1 < Ω < ω2

[see Fig. 2.7(b2)]2. Under these conditions, the phases of each oscillators are also
locked when the oscillators have different frequencies. When the oscillators are nearly
identical, then they can be synchronized in phase or anti-synchronized (as observed
by C. Huygens). This paragraph has been inspired by a detailed description made
in [43].

2.2.3 Synchronization of Chaotic Oscillators

The synchronization of chaotic systems with different initializations was long thought
to be counterintuitive or impossible, especially because of the sensitivity to initial
conditions preventing two identical chaotic systems from displaying perfectly corre-
lated time evolutions. However, in 1983, Fujisaka and Yamada paved the way with
their pioneering studies on chaos synchronization [54; 55; 56] followed by the work
of L. Pecora and T. Carroll, who demonstrate theoretically and experimentally the
existence of complete synchronization with an electronic version of a Lorenz system
[7].

1In the case of unidirectional forced oscillator, the synchronization is seen as a stabilization of
the phase difference between master and slave.

2In particular cases involving complicated interactions between the oscillators, the frequency of
the synchronized system can lie outside of the frequency range [ω1, ω2], an exceptional feat.
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Figure 2.7: Illustration of unidirectional and mutual synchronization of two oscillators, respec-
tively (a1) and (b1). In the unidirectional case, the master (M) pulls the slave’s frequency ωs

(dotted arrow), and eventually under appropriate coupling strength locks it (a2) and ωm = ωs.
In the mutual case, both systems interact resulting in a push-pull effect on the frequency of each
system. Under appropriate coupling conditions, the two systems locks on a single frequency Ω
different from their respective free running frequencies ω1,2.

2.2.4 Mathematical Definition and Types of Synchronization

There exist various types of synchronization. We propose in this subsection a rapid
overview of their mathematical formulations:

• Complete Synchronization: The states of the interacting systems x ∈ R
n

and y ∈ R
n converge asymptotically to the same evolution:

lim
t→∞

�x(t)− y(t)� = 0. (2.27)

This type of synchronization was described in [57].

• Generalized Synchronization: In generalized synchronization, we suppose
that the states of the two interacting systems are functionally synchronized.
There exists a function ψ : Rn → R

n such that

lim
t→∞

�x(t)− ψ(y(t))� = 0. (2.28)

This type of synchronization was proposed for the first time in [58].

• Anticipating Synchronization: In most cases described so far, the interac-
tion between the systems were instantaneous. In practice and particularly in
the optoelectronic systems described in Chapter 3, the interactions are delayed.
This leads to the definition of the anticipating synchronization,

lim
t→∞

�x(t)− y(t− τ)� = 0, (2.29)

with τ the time delay. This type of synchronization was proposed for the first
time in [59].
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• Phase synchronization: It is phenomenologically described for the periodic
oscillators and can also be defined for chaotic systems. It relies on an extension
of the notion of phase based on an analytical signal s(t) derived from the state
of the system x(t),

s(t) = x(t) + ix̃(t) = a(t)eiϕ(t), (2.30)

where x(t) ∈ R, and x̃(t) = 1
πp.v.

� −∞
−∞

x(u)
t−u du analytical transform of x(t)

with p.v. the Cauchy principal value. In this representation, a(t) and ϕ(t) are
the analogs of an amplitude and a phase, respectively. Phase synchronization
condition for chaotic systems is then identical to that of a periodic oscillator
(considering ϕ(t) in each system as the variable to be synchronized).

For a detailed treatment of the synchronization of nonlinear systems, we recommend
to the reader Ref. [60].

The concept of synchronization is of fundamental importance for the chaos-based
cryptographic setups that will be described in the next section.

2.3 Chaos-Based Communications

2.3.1 Principles

A chaos transmission chain consists of two parties, classically named Alice (sender)
and Bob (receiver), who secretly exchange data on a public communication channel.
Alice realizes encryption by embedding a data stream within the noise-like fluctu-
ations generated by her chaotic emitter. Bob possesses an emitter’s copy which
synchronizes under appropriate coupling conditions. The deterministic nature of
chaos implies that the chaotic receiver will only synchronize when the binary symbol
“0” is emitted. This chaos-pass-filtering property [61] allows for the extraction of the
original message.

There exists various methods to realize the message embedding. The most fa-
mous ones are chaos masking (CMa), chaos-shift keying (CSK) and chaos modulation
(CMo).

2.3.2 Typical Architectures

2.3.2.1 Chaos Masking (CMa)

This approach was demonstrated for the first time in [62; 63; 64]. Alice adds her
message m(t) at the output yE(t) of her chaotic emitter (E). Generally, the output is
defined as a nonlinear function h of the state variable of the emitter yE(t) = h(xE(t)).
If the nature of the carrier is different from that of the message, it is possible to pre-
condition it and transform it into a physical signal m(t) compatible with the carrier.
The signal s(t) = yE(t)+m(t) is then transmitted into the communication channel.
The chaotic fluctuations of yE(t) act as a deterministic noise that cloak the message
and prevent an eavesdropper to detect its presence easily. It is assumed that the
message’s amplitude remains negligible in comparison to the carrier’s amplitude to
ensure proper concealment and avoid the disturbance in the synchronization process.
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Indeed, the signal s(t) is also used to chaotically synchronize the receiver (R) with
(E). If the message is continuous and has a large amplitude, then the output of the
receiver may significantly differ from the emitter and the recovery of the message
may eventually be compromised. The legitimate receiver Bob recovers an estimate
of the message performing the operation

m̂(t) = s(t)− yR. (2.31)

If the synchronization error is small, then m̂(t) ≈ m(t) and the message is decrypted.
This is illustrated in Fig. 2.8. This method was one of the first proposed, but it lacks
security because of the weak mixing of the message with the chaotic dynamics [65].
One advantage, however, is that any type of message can be transmitted: analogous
or digital. This is not the case with the approach of CSK.

Figure 2.8: Chaos Masking (CMa) architecture.

2.3.2.2 Chaos Shift Keying (CSK)

This approach was demonstrated for the first time in [66; 67] and is tailored for
digital messages with a finite set of values. Typically two binary symbols (often
denoted “0” and “1”) compose the message and activate a switch between two differ-
ent emitters (E1) and (E2).They can be either structurally identical with different
parameters or completely different. Alice encrypts her data-stream by switching be-
tween these two chaotic oscillators depending on the type of bit to be transmitted.
For instance, each time a bit “0” is transmitted, the output of (E1) yE1(t) is sent
in the communication channel, yE2(t) otherwise. At the receiving end, Bob has two
receivers (R1) and (R2), physical copies of (E1) and (E2), respectively. Each time
that (R1) (respectively (R2)) will synchronize with (E1) (respectively (E2)), it means
that m(t) = 0 (respectively m(t) = 1) was transmitted by Alice. Therefore Bob can
recover the message transmitted by Alice considering the errors of synchronization
at each receiver:

m̂ = 0 if yR1 − s = 0 (m = 0 transmitted), (2.32)

m̂ = 0 if yR2 − s = 0 (m = 1 transmitted). (2.33)

This approach is illustrated in Fig. 2.9(a). It is possible to transmit an M -ary
message as well, but it would require 2M emitters and receivers. The complexity of
the decryption in a CSK approach is therefore exponential with the number of users.

It is also possible to simplify substantially the CSK approach and reduce the
number of emitters involved. In the case of binary message, it is possible to consider
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Figure 2.9: (a) Chaos Shift Keying (CSK) with two different emitters, the message m controls
a switch. The decryption is performed by monitoring synchronization errors at each receiver
output. (b) CSK with a single emitter, the message controls the value of a parameter of the
system. The decryption is similar to (a).

a single emitter (E). Alice chooses one parameter θ amongst all of those in (E) and
will modulate its value between two different levels: θ = θ0 (respectively θ = θ1)
when m = 0 (respectively m = 1). To decrypt the message, Bob has a single
receiver, with the parameter θ fixed in either of the two values. In this particular
configuration, the decryption equation is similar to Eq. 2.34. A fundamental limit
of the method is the synchronization time between (E1,E2) and (R1,R2) [or (E) and
(R)] thus reducing the maximum bit rate compared to that of CMa. The security
of this method is also considered weak, as the statistics (average or variance) of the
transmitted signal may drastically change as the switch between the emitters (or
parameters) is performed.

2.3.2.3 Chaos Modulation (CMo)

This approach was demonstrated for the first time in [68; 69]. It consists of the
inclusion of a message m(t) within a signal s(t) that drives both the dynamics of
the chaotic emitter and receiver. This constitutes a particular application of the so-
called active-passive decomposition (APD) [70] where the message does not disturb
the synchronization process. The encryption and decryption are illustrated in Fig.
2.10.

The legitimate receiver Bob recovers an estimate of the message performing a
similar operation to that of the one used in CMa. The estimated message reads

m̂(t) = s(t)− yR. (2.34)
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Figure 2.10: Chaos modulation (CMo) architecture. An additive CMo is illustrated.

2.4 Conclusion

In this chapter, we have reviewed the fundamental concepts of nonlinear sciences
necessary to the realization of chaos-based cryptosystems. In a first section, we have
introduced the theory of Chaos, starting with an historical perspective and details
on fundamental notions that are associated with it; continuous and discrete systems,
the stability of equilibrium points, the classes of attractors and bifurcations. We
also give some insight on complexity theory used to described properties of chaotic
attractors and time-series. Then in a second section, we have given insight on the
theory of synchronization of periodic and chaotic oscillators. Finally in the last
section, we have combined these two theories to explain the principles of chaos-based
communications and some typical architectures; chaos masking (CMa), chaos-shift
keying (CSK), and chaos modulation (CMo).
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Chapter 3

Chaotic Optoelectronic Systems

Abstract

In this chapter, we review the fundamental concepts of the physics of semiconductor
lasers and unveil the existing bridge between lasers and nonlinear science. We focus
our attention on conventional edge-emitting lasers (EEL), which can be modelled
semiclassically using rate equations. We explain how EELs, in certain configura-
tions, become unstable and exhibit complex dynamics. Finally, we describe other
optoelectronic systems typically encountered in the field of optical chaos-based com-
munications such as wavelength, phase, and intensity chaos generators based on
continuous wave EEL laser sources and nonlinear delayed feedback configurations.
We conclude the chapter by showing various realizations of cryptographic setups
with typical encryption approaches (CMa, CSK, and CMo).

43
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3.1 Physics of Lasers

3.1.1 Principles

A laser is a physical system that generates light by amplification of stimulated emis-
sion of radiation (LASER) [71]. Its principle of operation can be phenomenologically
described by a two-level atomic system in a resonant unidirectional (ring) cavity.
The energy of the two-level system is increased by means of optical or electrical exci-
tation, pumping electrons from the ground state of energy E0 to higher-energy states
thus increasing the population in level E1. This configuration is unstable; the system
releases energy by emitting a photon of frequency ω associated with the electronic
transition between the two energy levels. The photon’s energy satisfies �ω = E1−E0,
� being the Planck constant. This phenomenon known as spontaneous emission is a
stochastic process (noise). It initially generates many photons in the resonant cavity
that induce additional electronic transitions as they propagate through the excited
population. This phenomenon is known as stimulated emission. The stimulated
photons share identical physical properties (frequency and phase) with those that
seeded their emission. This repeated interplay between the constantly repopulated
high-energy level and the photons trapped by the resonant cavity leads to what is
known as light amplification.

Below, we give the main steps leading to a comprehensive dynamical model that
reflects the previous phenomenological description of a laser made in a two-level
medium. More details can be found in [23; 72; 73; 74], which have inspired this
section.

3.1.2 Maxwell-Bloch Equations

The dynamics of a laser is described by the dynamical interactions between three
physical quantity: the electric field (E) that propagates in a ring cavity (unidi-
rectional propagation), the macroscopic polarization (P ) of the medium, and the
population inversion N . The laser’s equations are derived within the semiclassical
approach. The large number of photons involved are collectively treated as a single
classical continuous wave, i.e. the electric field (amplitude and phase). The medium,
a collection of two-level systems, is described at the microscopic level using quantum
mechanics. The evolution of the electric field is described by the Maxwell Equations
and the properties the medium by the Bloch Equations. The two sets of equations
are combined at the macroscopic level in the Maxwell-Bloch Equations after a se-
ries of simplifications detailed in the literature [73]. Ultimately, the Maxwell-Bloch
equations for a homogeneously broadened two-level laser read

∂E

∂z
+

η

c

∂E

∂t
= i

k

2ε0η2
P − n

2Tphc
E (3.1)

∂P

∂t
= −i (ωA − ω0)P + i

µ2

�2
EN − P

T2
(3.2)

dN

dt
= −i

1

�
(EP ∗ − E∗P ) +

N0 −N

T1
, (3.3)
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with c the speed of light in vacuum, � the reduced Planck constant, η the refrac-
tive index of the medium, µ0 the magnetic permeability of vacuum, ε0 the electric
permittivity of the vacuum, ω0 the angular oscillation frequency of the electric field
when described as planar wave, k = ηω0/c the wave number, ωA the angular fre-
quency of light associated with a transition (emission or absorption) in the two-level
system, Tph the photon lifetime, T2 the relaxation time of the dipole moment, T1 the
population inversion rate, N0 is the population inversion induced by the pump at
the laser threshold.

This description does not include spontaneous emission (intrinsic noise), but
refined models take into account this effect [72]. In 1975, Haken highlighted a re-
markable analogy between the semiclassical description of a two-level laser and the
equations used by Lorenz (see Chapter 2) to describe the dynamic of the Earth
atmosphere [75].

If the variations of the electric field along the propagation z-axis are neglected
|∂E/∂z| � η/c|∂E/∂t|, the Maxwell-Bloch equations become an ordinary differential
system. Furthermore, considering the proper change of variables

x = T2
µ

�
E, y = i

T2Tphω0µ

�ε0η2
P , z =

T2Tphω0µ
2

2ε0�η2
(N0 −N), and t =

t

T2
, (3.4)

and the new parameters defined by

σ =
T2

2Tph
, β =

T2

T1
, ρ =

T2Tphω0µ
2

2�ε0η2
N0, and δ = (ω0 − ωA)T2, (3.5)

Equations 3.1-3.3 finally read

dx

dt
= σ (y − x) , (3.6)

dy

dt
= − (1− iδ) y + ρx− xz, (3.7)

dz

dt
= −βz +Re (x∗y) . (3.8)

These equations are equivalent to those of Lorenz and the isomorphism previously
detailed between the two models is known as the Haken-Lorenz equivalence. It has
triggered the first investigations dynamical and chaos behaviors in lasers [76].

3.1.3 A Dynamical Classification of Lasers: Arecchi’s Classification

The Maxwell-Bloch equations (3.1)-(3.3) present three characteristic time scales T1,
T2, and Tph respectively affecting the dynamics of the inversion of population N , the
polarization of the medium P , and the electric field E. By comparing their relative
orders of magnitude, Arecchi proposed a dynamical classification of lasers [77; 78].
There are three classes:

• Class-A lasers: They have response times satisfying T1, T2 � Tph, justifying
the adiabatic elimination of the polarization and inversion of population. Con-
sequently, the dynamics of a class-A laser are entirely described by the electric
field equation (cf. Eq.3.1). Examples of class-A lasers are visible He-Ne lasers.
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• Class-B lasers: They have response times satisfying T1, Tph � T2, meaning
that only the polarization may be adiabatically eliminated. The dynamics of a
class-B laser are entirely described by the dynamics of its field and population
inversion. Examples of class-B lasers are Nd-YAG, CO2 and semiconductor
lasers.

• Class-C lasers: They have response times with approximately identical order
of magnitude T1 ≈ T2 ≈ Tph. The three Maxwell-Bloch equations are necessary.
Examples of class-C lasers are the NH3 and infrared He-Ne lasers. They have
sufficient degree of freedom to intrinsically exhibit chaotic behaviors [76; 79].

3.2 Physics of Semiconductor Lasers

3.2.1 Description and Principles

A semiconductor laser is typically made of a semiconductor junction coupled with
an optical resonator, which in the case of an edge emitting laser (EEL) can be a
Fabry-Pérot resonator. A common type of EEL is the double heterostructure laser.
As shown in Fig. 3.1, the gain medium (equivalent of the two-level system in the
previous section) is made of a thin semiconductor layer intercalated between two
cladding layers made of different semiconductor materials. The cleaved facets in the
x− y planes are partially reflecting mirrors resulting in a resonant cavity.

Figure 3.1: Schematic of an edge-emitting laser (EEL) based on the double heterostructure.
Both facets emit coherent light. Electric pumping is provided by the strip contacts on the top
and bottom of the structure.

The principles of operation of a semiconductor laser are similar to those of a two-
level system described in the previous section. The mathematical model remains
semiclassical with a quantum description of the medium, now a semiconductor ma-
terial.
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3.2.2 Physics of Semiconductor Junctions

In this subsection, a simple model for a single-mode EEL is presented. This model
is known as the semiconductor rate equations. A complete and rigorous derivation
of these equations is beyond the scope of this thesis; however, we provide the funda-
mental concepts that allow us to understand the principles of semiconductor lasers.

3.2.2.1 Basics of Semiconductors

A semiconductor material has a temperature-dependent electric conductivity, whose
value lies between those of an isolator and a conductor. The band structure accounts
for the energy levels of the many atoms in the material and their couplings leading
to continua of energy levels, referred to as energy bands, or simply bands [80]. The
bands split into two groups: the conduction bands and valence bands, where the
electrons are distributed as a function of their energy E. This distribution depends
on two factors: the density of states and the probability of occupancy of an electron
at a given energy E. The electron occupancy is given by the Fermi-Dirac distribution,

fc,v(Eec,ev) =
1

1 + e
Eec,ev−EFc,Fv

kBT

, (3.9)

where the indices (c, v) refer to the conduction and valence bands, kB is the Boltz-
mann constant, T is the temperature, Eec,ev and EFc,Fv are the energies of an electron
and the quasi-Fermi levels of each band, respectively.1

The valence and conduction bands are energetically separated by a forbidden
energetic zone called the band-gap with energy Eg = Ec − Ev, the difference of the
minimum and maximum energy level of each band.

3.2.2.2 Light-Matter Interactions and Semiconductor Junctions

In a semiconductor, the stimulated emission competes with other light-matter in-
teractions such as the spontaneous emission, photon absorption, and non-radiative
recombination (see Fig. 3.2).

Figure 3.2: Representation of various light-matter interactions in a semiconductor material [in
the plane energy-wave vector (E,k) using a parabolic approximation for the energy band] (a)
absorption of a photon of energy �ω, (b) spontaneous emission of a photon via electron-hole
recombination, and (c) stimulated emission.

1The difference between the two quasi-Fermi levels gives a measure of how far the semiconductor
is from equilibrium, when EFc = EFv = EF the system is at the equilibrium.
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To ensure lasing, the net rate Rst defined as the difference between the stimulated
emission and absorption process has to be positive for a photon of given energy
�ω. One shows that Rst ∝ fc(Eec) − fv(Eev) [81]; therefore, Rst is positive only
if population inversion is achieved (the occupancy probability of an electron in the
conduction band is greater than that of an electron in the valence band). This
imposes a condition of separation of the quasi-Fermi levels: EFc − EFv > �ω > Eg.
A simple structure that allows population inversion is a p− n homojunction, where
a p−type semiconductor is put in contact with a n−type semiconductor. To emit
light by stimulated emission, an additional layer of intrinsic semiconductor is usually
inserted within the p − n junction and used as an active medium to enhance the
stimulated emission. This forms the double heterostructure described in Fig. 3.1.
The band diagram of a biased double-heterostructure laser is shown in Fig.3.3.

Figure 3.3: Representation of the structure and the band diagram of a double-heterostructure
laser under forward bias V > 0. The dashed lines represent the quasi-Fermi levels EFc,Fv and
the solid lines represent the energy levels Ec,v associated to each band.

The advantages of such a structure are good confinement of the carriers, which
are trapped in a potential well within the active layer (no leakage of electrons in the
p−type layer, or holes in the n−type layer). The active region in the heterostructure
also acts as the core of a waveguide and confines the photons in the transverse
direction because the bandgap being smaller, the refractive index is larger than for
the heterolayers. The cleaved facets at the boundaries of the medium are partially
reflecting and form a Fabry-Perot resonator. The voltage is applied to the structure
to create the inversion of population and generates spontaneous emission to seed the
stimulated emission. Beside sustaining the amplification, the Fabry-Perot resonator
has three other consequences: (i) the selection of the longitudinal modes emitted,
(ii) the selection of the polarization of the emitted light (by its geometry), and (iii)
the generation of supplementary losses of photons (via the partial reflectivity of the
mirrors).
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3.2.3 Semiconductor-Laser Rate Equations

One of the main difficulties encountered in the modelling of a semiconductor laser
using a semiclassical approach is the inhomogeneous broadening1 of the optical transi-
tions and the interactions of the electrons among themselves and with the crystal lat-
tice of the semiconductor material. The dynamics of an semiconductor edge-emitting
laser (ELL) is still performed under the framework of the semiclassical description.
However, the derivation the Maxwell-Bloch equations, also called semiconductor-
laser rate equations, become more complicated especially because of the quantum
description of light-matter interaction with a semiconductor material [80]. There
exists several other approaches to derive these equations, which are precisely derived
in [82; 83].

After a number of assumptions, the description of the system simplifies to two
ordinary differential equations:

dE

dt
=

1

2

�

g(N)− 1

Tph

�

E, (3.10)

dN

dt
=

J

e
− N

T1
− ε0n

2
0

2�ω0
g(N) |E|2 . (3.11)

The quantity denoted g(N) is related to the gain material and is usually approxi-
mated with a first order Taylor expansion because of its weak carrier-density depen-
dence above the lasing threshold. The resulting expression for the gain reads

g(N) = g(Nth) + (1 + iα)gN (N −Nth), (3.12)

where α is the linewidth enhancement factor (or Henry factor) accounting for the
coupling of the phase and amplitude of the complex electric field, which is caused
by a dependence of refractive index on the number of carriers in the gain medium
[84]. The value of α is typically comprised in the range 3− 7 for semiconductor-bulk
lasers [85], Nth is the population inversion at lasing threshold, g(Nth) is the threshold
value of the gain that compensates exactly the losses g(Nth) = 1/Tph, and gN is
the differential gain. When the laser operates above threshold, the gain eventually
saturates. This saturation is phenomenologically included in the differential gain,
which now depends on the photon density in the cavity via

gN =
GN

1 + εs
ε0n2

0
2�ω0

|E|2
, (3.13)

with GN the linear gain and εs the saturation coefficient. Making the changes of
variable Ē =

�

(ε0n2
0/2�ω0)E, Tph = τp, and T1 = τs, we finally obtain the rate

equations for a semiconductor laser

dĒ

dt
=

1

2
(1 + iα)GN,ĒĒ (3.14)

dN

dt
=

J

e
− N

τs
−
�

GN,Ē +
1

τp

�
�
�Ē

�
�2 (3.15)

1Carriers occupy multiple energy levels within the valence or conduction band. Consequently,
the transitions will statistically generate photons with various frequencies centered with respect
to �ω0 = Eg. The imperfect monochromaticity of the laser optical spectrum is known as the
inhomogeneous broadening.
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with GN,Ē = GN (N −Nth) /
�

1 + εs
�
�Ē

�
�2
�

. It is noteworthy mentioning a sim-

ilar version of the rate equations defined for the population at the transparency
N0 and not at the lasing threshold Nth. In these conditions, we have GN,Ē =

GN (N −N0) /
�

1 + εs
�
�Ē

�
�2
�

−1/τp = G
(N0)
N,E −1/τp. This second expression is widely

encountered in the literature and will be used in the thesis.

3.2.4 Typical Dynamics of a Class-B Semiconductor Laser

The rate equations couple the complex electric field (phase ϕ(t) and amplitude Ē(t))
with the population inversion N(t). The third degree of freedom of the EEL, po-
larization P (t), being eliminated from the dynamics of the equations, the system
can not exhibit cannot exhibit complex chaotic dynamics such as those of a Class-C
laser.

As a matter of fact, it exists only two degrees of freedom because the phase ϕ

is completely determined when the amplitude and the carrier density are known.
As a consequence, a semiconductor laser alone cannot exhibit chaos and requires
additional degrees of freedom.

As we will demonstrate it below, an EEL behaves as damped relaxed oscillator.
Towards this end, we consider a small perturbation of the EEL’s state vector from
the steady state (Es, ϕs, Ns):

Ē = Ēs + δĒ, (3.16)

ϕ = ϕs + δϕ, (3.17)

N = Ns + δN. (3.18)

The steady state is obtained by setting to zero the derivatives in Eqs. 3.10-3.11. It
satisfies the following relations

GN (Ns −Nth)

1 + εE2
s

− 1

τp
= 0, (3.19)

J − Ns

τs
− GN (Ns −Nth)

1 + εE2
s

E2
s = 0. (3.20)

Based on these relationships and considering the magnitude of perturbation vector
to be small in comparison with that of the steady state, Eqs. - lead to a linearized
system to describe the evolution of the perturbation.1 The system reads
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 . (3.21)

The determination of the eigenvalues of the transition matrix gives insight on rates
of evolution of each state variable. Their determination is possible by first calculat-
ing the determinant det(λI − ∇fE=Es,ϕ=ϕs,N=Ns) = 0. The resulting characteristic

1The linear transition matrix is obtained by considering the Jacobian matrix ∇fE,ϕ,N of the
vector field of the rate equations.
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polynomial reads

λ
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τpτs

�


 = 0.

(3.22)
This third-order polynomial has three roots λ = 0 and two complex conjugate roots
λ± = ΓRO ± iωRO, with ΓRO the damping ratio and νRO = ωRO/2π the relaxation-
oscillation frequency. Their expressions read

ΓRO =
1

2τs
+

�
GN

2
+

ε

2τp

�
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s

, (3.23)
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. (3.24)

Usually, the saturation gain ε � 1 is neglected in the expression of ωRO; this allows
to derive a simplified expression

νRO =
1

2π

�
1

τpτs
(µ− 1)− µ2

4τ2s

�1/2

with µ = GNτpτs

�

J − N0

τs

�

. (3.25)

These relaxation oscillations physically correspond to an exchange of energy between
the number of photons and the electronic carriers. As an illustration, we simulate
the behavior of an EEL in Fig. ??.

3.3 Generation of Optical Chaos with Laser Diodes

In this section, we review the various systems classically encountered in optical chaos-
based communications. The generators are mostly based on semiconductor technol-
ogy. Being in essence class-B laser, EEL can not be used to generate chaos with
respect to the corollary of the Poincaré-Bendixon theorem (see Chapter 2). As a
consequence, additional degrees of freedom must be added to the laser. Two strate-
gies have been widely discussed in the literature:

• The internal nonlinearity of the semiconductor laser is exploited and additional
degrees of freedom are used (optical or optoelectronic feedback, modulation,
optical injection).

• The semiconductor laser is used as a continuous wavelength (CW) source that
powers an external structure chaotically modulating the properties of the emit-
ted light (amplitude, phase, wavelength, or polarization).

3.3.1 Chaos Generation with Laser’s Intrinsic Nonlinearity

The addition of external degrees of freedom exploiting the internal nonlinearity of a
semiconductor laser comprise essentially four different configurations: (a) the mod-
ulation of the pumping current,(b) the optical injection, and the use of (c) optoelec-
tronic or (d) optical feedback. They are represented in Fig. 3.4.
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Figure 3.4: Schematics of various configurations of semiconductor lasers with additional degrees
of freedom tailored for the generation of optical chaos; (a) modulation of the injection current,
(b) unidirectional optical injection (c) optoelectronic feedback, and (d) delayed optical feedback
also called external cavity. The abbreviations stand for SL: semiconductor laser, CS: current
source, OI: optical isolator for unidirectional transmission, PD: photodiode (adapted from [23]).

The different optoelectronic systems exploiting an internal nonlinearity are de-
scribed by the semiconductor rate equations with additional terms. A single set of
equation can be used: 1

dE

dt
=

1

2
(1 + iα)

�

GN,E − 1

τp

�

E + Fext(t), (3.26)

dN

dt
=

J(t)

e
− N

τs
−GN,E |E|2 . (3.27)

Indeed, depending on the type of configuration, the terms Fext(t) and J(t) will have
different expressions. We detail them below:

• (a) Modulation of the injection current: Under standard operational con-
ditions, the laser is electrically pumped with a DC current. The addition of
an AC component with sufficient amplitude and or large frequency induces
chaotically-pulsed behaviors of the emitted light [86]. In this type of archi-
tecture, however, the dimension of the chaotic pulsing is rather limited [87]
due to the few additional degrees of freedom, compared to system with de-
layed optoelectronic feedback (Configuration (c)). In Configuration (a), we
have J(t) = J0 + J1 sinΩt and Fext(t) = 0, with Ω the angular frequency of
modulation, and J1 the amplitude of modulation.

• (b) Optical injection: This consists of the use of an additional laser (mas-
ter) that unidirectionally injects the laser generating chaos (slave). Similarly
to what is observed in the unidirectional synchronization of oscillators and de-
pending on coupling parameters (strength and frequency), the slave laser can

1Usually in the literature Ē and G
(N0)
N,E are simply noted E and GN,E , respectively.
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lock its phase and frequency to those of the master. Furthermore, a proper
coupling adjustment can induce chaotic behavior through quasi-periodic or
period-doubling routes to chaos [88; 89] (A route to chaos by breaking of a
torus was also reported in [90]). In this configuration, we have J(t) = J0 and
Fext(t) = ηinje

−i∆ωinjtEinj(t), with Einj(t) the complex optical field injected
by the first semiconductor laser, ηinj the injection’s strength, and ∆ωinj the
frequency detuning between the two lasers.

• (c) Optoelectronic feedback: A photodiode detects the light emitted by the
semiconductor, the resulting voltage proportional to the detected light is added
after a certain delay to the current pumping the laser. In this configuration,
we have J(t) = J0(1 + η |E(t− τ)|2) and Fext(t) = 0 with η the optoelectronic
feedback strength and τ the propagation time in the optoelectronic feedback.
Depending on the sign of η, we refer to positive or negative optoelectronic
feedback (POEF and NOEF, respectively). With a POEF, a period-doubling
and quasiperiodic routes to chaos have been reported; they both lead to a
chaotic pulsing (CP) regime of the light intensity [91; 92].

• (d) Optical feedback: A mirror is added at the output of the semiconductor
laser. It forms an external cavity, where the emitted light propagates and is
partially reinjected into the laser cavity. The roundtrip introduces a time delay
to the laser’s dynamics and adds an infinite number of degrees of freedom to
the dynamical equations. The duration of the time delay τ (or length of the
external cavity) with respect to the relaxation oscillation period τRO define
two particular regimes: the long-cavity regime (τ > τRO) and short-cavity
regime (τ < τRO) [93]. In the following, we will mainly focus our attention on
the long-cavity regime. In this configuration, we have J(t) = J0 and Fext =
ηeiω0τE(t− τ) and the system is called the Lang-Kobayashi Equations [94].

There exist various dynamical behaviors that an ECSL can produce; for in-
stance two different chaotic regimes, the low-frequency fluctuations (LFF) char-
acterized by sudden drops of the intensity [95], and the coherence collapse (CC)
regime [96], for which the temporal coherence of laser light suddenly drops. The
chaos in CC regime has also a very large optical linewidth [97]. The origin of
chaos in an ECSL are linked to the stability of its stationary solutions, called
external-cavity modes (ECM). These ECMs only exist by pairs composed of
stable (mode) and unstable (anti-mode) solutions. These ECMs can be de-
duced from solving the Lang-Kobayashi equations with the left-hand side term
equal to zero. We denote |Es|, ϕs = ωst, and Ns the stationary solutions and
inject them in the equations describing an ECSL

gN (Ns −N0)

1 + ε |Es|2
− 1

τp
= −2η cos (ωs + ω0) τ, (3.28)

α

�
gN (Ns −N0)

1 + ε |Es|2
− 1

τp

�

= 2ωs + 2η sin (ωs + ω0) τ, (3.29)

J − Ns

τs
− gN (Ns −N0)

1 + ε |Es|2
|Es|2 = 0. (3.30)
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The solution of this system of equations start first with the determination of
the stationary angular pulsation ωs. It can be obtained by combining Eqs.
3.28 together 3.29 and reformulated as it follows

Ωτ = ω0τ − ητ
�

1 + α2 sin (Ωτ + atan(α)) , (3.31)

with Ω = ωs + ω0. Solutions of this transcendental equation do not have an
analytical expression. However, they can be found numerically and correspond
to the intersection points between the sine and linear parts of Eq. 3.31 as
illustrated in Fig. 3.5(a). When the feedback strength η or the time-delay
τ increase, ECMs disappear and give birth to more ECMs (see Fig. 3.5(b))
through saddle-node bifurcations [98].

Figure 3.5: Graphical representation of the solution of the transcendental equation for the ECM.
The linear and sine parts of the equation are plotted for (a) γ = 1 GHz and (b) γ = 2 GHz
with τ = 2 ns and J = 1.5Jth. The ECM are located ( and represented by a red circle) at
the intersection of the two curves. The other parameters are α = 4, τp = 2 ps, τs = 2 ns,
GN = 7.5×10−13 m3s−1, N0 = 3×1024 m−3, Jth = 1.83×1033 m−3s−1, and ε = 2.5×10−23

m−3.

The expression of ωs can be used to find the expressions of the |Es| and Ns,

|Es|2 =
1

1 + ε
τsgN

�

J − N0
τs

1
τp

− 2η cos (ωs + ω0) τ
− 1

τsgN

�

, (3.32)

Ns = N0 +

�
1

τpgN
− 2η

gN
cos (ωs + ω0) τ

�

1 + ε |Es|2 . (3.33)

When the feedback strength or the time-delay are further increased, the ECMs
undergo a cascade of bifurcations, starting usually with a Hopf bifurcation until
a stable chaotic attractor is reached by the ECSL.

We have depicted in Fig. 3.6(a) the bifurcation diagram of a route to chaos
undergone by an ECSL, when the feedback strength η is taken as the bifurcation
parameter. We also show a chaotic intensity time series I(t) = |E(t)|2 (CC
regime) and the associated RF spectrum in Fig. 3.6(b) and (c), respectively.
Detailed studies on the destabilization of ECM and existence of various routes
to chaos have been reported, for instance, in [99; 100].

The complexity (dimension dKY and entropy hKS) of the chaotic dynamics has
been also characterized for the short- and long-cavity regimes in [101]. The dynam-
ics are typically hyperchaotic, an expression associated with the existence of multiple
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Figure 3.6: Chaos in an ECSL. (a) Diagram of bifurcation that unveils a cascade of bifurcation
until a strange attractor is reached. The bifurcation parameter is the feedback strength η. An
ECM is depicted by a red circle, the Hopf bifurcation that destabilizes the ECM into a limit
cycle (LC) are also marked in red. In (b), a chaotic time series of the intensity I(t) = |E(t)|2 is
represented and in (c) its RF spectrum for η = 7 GHz. The parameters are identical to those of
Fig. 3.5.

positive Lyapunov exponents. This allows the strange attractor to reach very large
dimension (several tens), which is a desirable property for secure chaos-based cryp-
tosystems.

3.3.2 Chaos Generation with External Nonlinearities

In this subsection, we present optoelectronic architectures where the semiconductor
laser is a continuous wave (CW) source, whose properties are modified externally.
Three architectures are presented; wavelength, intensity, and phase chaos generators.

3.3.2.1 Wavelength Chaos Generator

The architecture is described in Fig.3.7 and was presented for the first time in 1998
[102; 103]. In this paragraph, we recall the main characteristic of the system and
give the important steps necessary to understand the derivation of its model. The
wavelength chaos generator (WCG) is composed of a multielectrode tunable DBR1

laser diode and a delayed feedback loop with an optical isolator, a nonlinear element,
an optical delay line, a photodetector, and an RF low-pass filter.

The DBR laser diode has two sections: an active section pumped by current
I0 emits light at central wavelength Λ0, and a passive section with a DBR [see
Fig. 3.7(b)]. The DBR current IDBR = I0 + i(t) controls the refractive index of
the grating and allows for a smooth continuous variation of the laser’s wavelength
around Λ0 (no mode hopping2). The emitted wavelength is Λ(t) = Λ0 + λ(t) with

1DBR stands for distributed Bragg reflectors, an interlacing of semiconductor layers with different
refractive index.

2Mode hopping refers to as sudden jumps between different longitudinal modes in the laser
cavity.
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Figure 3.7: Schematic of the wavelength chaos generator based on a nonlinear fedback DBR
laser diode. (a) Typical architecture with the following notations: OI: an optical isolator to
prevent undesirable optical feedback, P1 and P2 two polarizers; BP the birefringent crystal; PD:
the photodiode, DL: the delay line, RF: the RF low-pass filter. (b) Details on the nonlinear
element, a birefringent crystal sandwiched into two polarizers. The directions of the optical axes
of each optical components are indicated on the figure. (c) Details on the structure of a DBR
laser diode and its two sections; the active section (similar to that of the EEL in Fig. 3.1) and
the DBR section driven by independent electrodes.

λ(t) directly proportional to its driving current λ(t) = Si(t) and S the tuning rate
of the laser diode.

In the delayed feedback loop, the birefringent crystal inserted between the two
polarizers acts as a nonlinear filter that converts the variations of wavelength into
variations of light’s intensity between its input and output:

Pout(t) = Pin(t) sin
2

�
πD

Λ(t)

�

, (3.34)

where D is the difference of optical path in the crystal and Pin(t) the light intensity
at the output of the DBR laser diode. The excursion in wavelength being negligible
compared to the central frequency λ(t) � Λ0, a first-order Taylor expansion of Eq.
3.34 gives

Pout(t) = Pin(t) sin
2

�
πD

Λ0
λ(t)− Φ0

�

, (3.35)

with Φ0 = πD/Λ0. Such an intensity modulation is a direct consequence of the
filter’s structure, where the directions of the optical axes of the two polarizers are
perpendicular and the axes of the first polarizer are inclined by π/4 with respect to
those of the birefringent crystal (Fig.3.7 (c) and for more details see [104]).

The light is linearly converted into a current i(t) = KPin(t) that is delayed by τ and
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finally low-pass filtered before it drives the DBR’s electrode. This leads to

T
di(t)

dt
+ i(t) = GKP0 sin

2

�
πD

Λ0
λ(t− τ)− Φ0

�

, (3.36)

with G and T the gain and response time of the RF low-pass filter, respectively.
By multiplying each side of the equation by SπD/Λ0 we finally obtain an Ikeda-like
equation [105] to describes the WCG

T ẋ(t) + x(t) = β sin2 (x(t− τ) + ϕ0), (3.37)

with x(t) = πD/Λ0λ(t) the dimensionless state variable, β = πD/Λ0SKP0 the
nonlinear gain, and ϕ0 = −Φ0 the phase shift.

3.3.2.2 Intensity Chaos Generator

Intensity chaos generator (ICG) was first presented in 2002 [106] and is depicted
in Fig.3.8. It exhibits a remarkable structural analogy with the WCG, except for
the nonlinear element, the RF filter and the laser diode, which are different. It is
composed of a standard monochromatic EEL laser diode, a Mach-Zehnder modulator,
an optical fiber delay line, a photo-diode, and a RF band-pass filter.

Figure 3.8: Schematic of the intensity chaos generator. (a) Overall architecture with the
following acronyms: MZ: integrated Mach-Zehnder modulator, DL: delay line, PD: photodiode,
RF: RF band-pass filter. (b) Zoom on the structure of an integrated Mach-Zehnder modulator
with its RF and DC electrodes, and two arms (L) and (R).

The nonlinear element is the Mach-Zehnder modulator; it uses the electro-optic
effect that characterizes the dependence of the refractive index n(E) of a material
on an electric field [104]. In each arm of the modulator, the light is phase-shifted
differently before recombining at the output [see Fig. 3.8(b)]. In the left arm (L),
no voltage is applied, and the field undergoes a natural phase shift ∆ϕL = ∆ϕ0.
In the other, a driving electrode imposes a voltage with a varying component V (t)
(RF voltage) and a constant DC level VDC ; this result in a additional phase-shift
δϕR = ∆ϕ0 +∆ϕRF +∆ϕDC . The modulation of input power reads

Pout(t) = Pin cos
2

�
πV (t)

2VπRF

+
πVDC

2VπDC

�

, (3.38)
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with VπRF and VπDC the halfwave voltages ensuring a phase-shift equal to π and
associated with the varying and constant electric fields, respectively.

The modulated light is then delayed by time τ in the delay line before being
converted by the photodiode. The electrical signal is amplified and band-pass filtered.
These steps lead to an integro-differential delay equation (with similar notations to
those of [107])

1

2πfH
V̇ (t)+

�

1 +
fL

fH

�

V (t)+2πfL

� t

t0

V (u)du = gGSP0 cos
2

�
πV (t− τ)

2VπRF

+
πVDC

2VπDC

�

,

(3.39)
with G, fL, and fH the gain, low and high cut-off frequency of the RF filter, S the
photodiode’s sensitivity, P0 the laser’s light intensity, and g an aggregate attenuation
of the feedback loop. A more condensed form of the equation can be obtained
considering that usually fH � fL and changing variables to give

T ẋ(t) + x(t) +
1

θ

� t

t0

x(u)du = β cos2 (x(t− τ) + ϕ0) , (3.40)

with x(t) = πV (t)/(2VπRF ) the dimensional state variable, T = 1/(2πfH) the high
cut-off response time, θ = 1/(2πfL) the low cut-off response time, β = πgGSP0/(2VπRF )
the nonlinear gain, and ϕ0 = πVDC/(2VπDC ) the normalized bias offset.

3.3.2.3 Phase Chaos Generator

Phase chaos generators were successfully implemented in 2004 [108] and later simpli-
fied in 2009 [109]. One of the underlying motivation to develop such an architecture
is mainly due to the experimental complexity associated with the mixing of message
in the optical intensity chaos in the case of an ICG [110]. Its structure, shown in Fig.
3.9(a), is similar to an ICG except that interference is generated with a fiber-based
interferometer before detection with a photodiode and the Mach-Zehnder modulator
is replaced by a standard electro-optic phase modulator [see Fig. 3.9(b)].

Figure 3.9: Schematic of the phase chaos generator using an optoelectronic oscillator with
delayed feedback. (a) Overall architecture with the following abbreviations: PC: polarization
controller, PM: integrated phase modulator, DL: delay line, OC: optical coupler, FBI: fiber-
based interferometer, PD: photodiode, RF: RF band-pass filter. The delays τ and δτ respectively
introduced by DL and FBI are indicated. (b) Details on the structure of an integrated phase
modulator.
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It is composed of a single arm (waveguide) where the phase is modulated through
the electro-optic effect by a time-varying voltage V (t), similarly to what we have in
an ICG: An additional phase shift ∆ϕ = πV (t)/VπRF is generated. We can represent
the complex electric field in a slow-varying approximation by E(t) = E0e

jϕ0 and
assume its amplitude being constant and phase slowly varying. After going through
the phase modulator, the additional phase is added, E(t) = E0e

jϕ0+∆ϕ(t). The
optical field tehn propagates in the delay line for a time τ before being equally split
in the two arms of a fiber-based interferometer. At its output, the electric field reads

E(t− τ) =
E0

2
ejϕ0+∆ϕ(t−τ) +

E0

2
ejϕ0+∆ϕ(t−τ−δτ), (3.41)

with δτ the time difference introduced between the two arms of the fiber-based
interferometer. Photodiode of sensitivity S detects the light intensity and converts
it into a voltage:

VPD(t) = SP0 cos
2

�
πV (t− τ)

2VπRF

+
πV (t− τ − δτ)

2VπRF

+
2πδτ

λ0

�

, (3.42)

with P0 = |E0|2. The electronic part of the feedback is structurally identical to that
of an ICG and therefore leads to a similar adimensionnal model, which reads

T ẋ(t) + x(t) +
1

θ

� t

t0

x(u)du = β cos2 (x(t− τ) + x(t− τ − δτ) + ϕ0) , (3.43)

with ϕ0 = 2πδτ/λ0 and identical notations to those used for Eq. 3.40 for all the
remaining variables and parameters.

3.4 Optical Chaos Synchronization and Cryptography

In this section, we illustrate how the main techniques of chaos-based cryptography
make use of optoelectronic devices. As in Chapter 2, a chaos-based communication
architecture requires three essential features: (i) two identical-twin chaotic systems
(E) and (R), (ii) the possibility to synchronize E and R, and (iii) a decryption
operation to extract the message from the chaotic fluctuations. The introduction of
the chaos synchronization concept has triggered numerous investigations using lasers.
The first noteworthy results were achieved numerically for semiconductor lasers by
Winful and Rahman in 1990 [111], and experimentally for CO2 lasers by Roy and
Thornburg in 1994 [112]. They paved the way to the first optical chaos transmission
chains theoretically devised the same year by P. Colet and R. Roy using coupled solid
state Nd:YAG lasers [113]. Later in 1996, C.R. Mirasso et al . proposed a numerical
study of secure transmission with ECSL at the Gbit/s level [11]. But only in 1998,
G.D. Van Wiggeren and R. Roy successfully implemented experimentally the first
optical cryptographic setup based on chaotic erbium-doped fiber-ring lasers (EFRL)
with an achievable bit rate of 126 Mbit/s [8; 114; 115]. Meanwhile, J.-P. Goedgebuer
et al . achieved secure transmission of a sine-wave message using a wavelength chaos
generator based on an optoelectronic oscillator [102; 116]. These first milestones
ensured successful development of optical-chaos based communications. Shortly after
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these studies, numerous optical configurations involving semiconductor lasers were
proposed. Architectures using optoelectronic feedback were successful in their optical
versions of CMa, CSK and CMo, ensuring Gbits/s data rates [117; 118; 119] .

3.4.1 Communications Architectures for Optoelectronic Devices with
Internal Nonlinearities

In this subsection, we focus on the application of chaos masking (CMa), chaos shift
keying (CSK), and chaos modulation (CMo) using optical chaos generators with
internal nonlinearities. In a chaotic laser diode, there are essentially two possibilities
to encrypt a message: (i) to act on the pumping current or (ii) to act on the optical
output of the laser diode. For CMa and CMo the message is mixed in the optical
carrier, whereas for CSK digital modulations of the current are typically used. This is
has been summarized in Fig. 3.10. It is noteworthy that for CMo using laser diodes,
the system requires feedback (optic or optoelectronic). At the receiver, feedback is
not necessary to ensure a proper decryption; however when it is present, it usually
modifies the conditions of synchronization. This results in the following classification
of communication setups into open-loop and closed-loop configurations.

Figure 3.10: Schematic of the three typical chaos encryption techniques (CMa, CSK, and CMo)
when chaotic optoelectronic devices with internal nonlinearity are used. The open- or closed-loop
configuration depends on the existence of a feedback at the receiver (adapted from [120]).

3.4.1.1 Transmission Chain with an ECSL

In this subsubsection, we consider a transmission chain made with single-mode
external-cavity semiconductor lasers (ECSL). Within the framework of the Lang-
Kobayashi equations and neglecting the spontaneous emission noise, the crypto-
graphic chain is modeled by

dEe

dt
=

1

2
(1 + iα)

�

GN,Ee −
1

τp

�

Ee + Fe(t), (3.44)

dEr

dt
=

1

2
(1 + iα)

�

GN,Er −
1

τp

�

Er + Fr(t), (3.45)

dNe,r

dt
=

Je,r

e
− N

τs
−GN,Ee,r |Ee,r|2 , (3.46)
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where the indices e, r denote variables associated with the emitter or receiver, re-
spectively, and Fe,r(t) is a feedback term that depends on the type of configuration
and encryption used. When no message is encoded, the feedback terms read

Fe(t) = ηee
−iω0eτeEe(t− τe), (3.47)

Fr(t) = ηre
−iω0rτrEr(t− τr) + ηce

−iω0eτcEe(t− τc), (3.48)

with ηe,r
1 the feedback strengths, ηc the injection strength, τe,r the roundtrip times

in the external cavities, and τc the propagation time in the communication channel.
Due to the complexity of the Lang-Kobayashi equations, only necessary conditions on
the complete synchronization between two ECSLs can be derived. Assuming the two
chaotic oscillators identical and in absence of frequency detuning ∆ωe/r = ωr − ωe,
it has been proven [59] that complete synchronization exists as soon as the injection
and feedback strengths satisfy

ηe = ηr + ηc. (3.49)

Under these conditions, the synchronization manifold reads

Er(t) = Ee(t− (τc − τe)), (3.50)

φr(t) = φe(t− (τc − τ))− ω0e(τc − τ), (3.51)

Nr(t) = Ne(t− (τc − τ)). (3.52)

These equations highlight the crucial influence of the transmission time τc in the
synchronization of distant ECSLs: Interestingly when τc < τ , the receiver can an-
ticipate the behavior of the master1. This is known in the literature as anticipating
synchronization [121]. Another type of synchronization exists with unidirectionally
coupled ECSLs, the injection-locking synchronization [122], which is observed when
the injection strength is far greater than the feedback strengths (at the emitter
and/or receiver) ηc � ηe,r. This type of synchronization is more robust than CS,
but remains imperfect [123; 124] though sufficient for optical-chaos transmission.

With chaos synchronization, the encryption or mixing of information in the dy-
namics of an ECSL is the second important issue. CMa is extremely popular and has
led to successful field experiments on the Athens optical-fiber network (Greece) [4].
However, the method systematically disturbs the synchronization process which may
increase the bit error rate (BER). Another popular encryption method is the CSK
technique, because of its simplicity when used with ECSL [125]. Nevertheless, as
any CSK method, the bit-rate will be fundamentally limited by the synchronization
time of the ECSLs. Performance is usually inferior to those of a CMa [126]. When
CMo is used, it generally offers the best level of performances, however, its practical
implementation may become challenging especially to include the message.

Mathematically, the feedback terms have different expressions depending on the
type of encryption used:

1When the communication chain is open-loop, the feedback strength at the receiver is zero
ηr = 0 GHz.

1This does not violate the principle of causality. It simply states the possibility for the signal
driving and synchronizing the two ECSLs to reach the receiver first.
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• CMa encryption: The feedback terms at the emitter and receiver read Fe,CMa(t) =
Fe(t) and Fr,CMa(t) = Fr(t) +m(t− τc), respectively.

• CSK encryption: The feedback terms at the emitter and receiver remain identi-
cal to the case without encryption Fe,r,CSK(t) = Fe,r(t). The pumping current
is modulated.

• CMo encryption: The feedback terms read Fe,CMo(t) = Fe(t) +m(t − τ) and
Fr,CMo(t) = Fr(t) +m(t− τc).

3.4.1.2 Transmission Chain with Semiconductor Lasers with Optoelectronic
Feedback

Communication setups using semiconductor lasers with optoelectronic feedback share
many features with those using ECSLs. The mathematical description is similar to
that of an ECSL chain except for the optical feedback terms Fe(t) = Fr(t) = 0.
The optoelectronic feedback affects the population inversion Ne,r(t) with pumping
currents depending on the delayed electrical field that read

Je(t) = J0e
�
1 + ηe|Ee(t− τe)|2

�
, (3.53)

Jr(t) = J0r
�
1 + ηr|Er(t− τr)|2 + ηc|Ee(t− τc)|2

�
. (3.54)

The complete synchronization manifold has a similar structure to that of Eqs. 3.50-
3.52 with the possibility of anticipation and requires analogous necessary conditions
on the feedback and injection strengths ηe,r,c to that of Eq. 3.49 [127; 128]. The
interest in these systems is that any standard encryption technique can be easily
implemented, especially CMo (the only technique that does not disturb the chaos
synchronization); it now becomes as simple as CMa or CSK with ECSL. The ex-
pressions of the currents Je(t) and Jr(t) for each type of encryption are given by the
following:

• CMa encryption: The pumping current at the emitter and receiver respectively
read Je,CMa(t) = Je(t) and Jr,CMa(t) = J0r(1+ηr|Er(t−τr)|2+ηc|Ee(t−τc)+
m(t − τc)|2). In CMa, the message is optically injected at the chaotic output
of the emitter.

• CSK encryption: The pumping current at the emitter and receiver respectively
read Je,CSK(t) = Je(t) +m(t − τe) and Jr,CSK(t) = Jr(t). The message m(t)
is digital and usually binary.

• CMo encryption: The pumping current at the emitter and receiver respec-
tively read Je,CMo(t) = J0e

�
1 + ηe|Ee(t− τe) +m(t− τe)|2

�
and Jr,CMo(t) =

J0r
�
1 + ηr|Er(t− τr)|2 + ηc|Ee(t− τc) +m(t− τc)|2

�
.

Extensive work by J.-M. Liu and coworkers at the University of California at Los
Angeles (UCLA) has been made with these systems. As a result, multi Gbit/s secure
transmissions were successfully demonstrated [117; 118; 119].
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3.4.2 Communications Architectures for Optoelectronic Devices with
External Nonlinearities

In this subsection, we detail cryptographic setups involving either WCG, ICG, or
PCG. Comparing with a single laser diode, the optoelectronic generators with ex-
ternal nonlinearities offer more possibilities of message’s inclusion due to their block
structure combining various components and internal transmission lines [129]. The
three different chaos generators follow a generic loop structure connecting each of
the following elements: a controlled or passive source, a nonlinear component, a de-
tector, a filter, and a delay line. Subsequently, each connection between components
becomes a potential input Ii to mix a message (i ∈ [1, 5] with controlled source,
i ∈ [1, 4] with a passive source) therefore leading to many possible configurations for
CMo. Each connection is also a potential output Oi that could be used in a CMa
methods. Finally, some components in the loop structure may also have tunable pa-
rameters to be controlled by a user to encode a message, thus giving multiple choices
to implement CSK. Some of these findings are represented in Fig. 3.11. The WCG
is a typical structure with a controlled DBR laser diode; the nonlinear element is a
birefringent crystal, the detector a photodiode, the filter an RF low-pass filter, and
the delay line is an electronic buffer. ICG and PCG are typical architectures that
make use of passive laser sources (standard CW semiconductor EEL).

Figure 3.11: Schematics of the loop structure and the possible locations for a message’s inclusion
and output’s selection (adapted from [129]), depending on the controllability of the source the
loop ends before or just after the source. Inputs and outputs are labelled Ii and Oi, respectively.
The positions of the delay line and the detector are interchangeable, thus ensuring the choice
between an optical and an electrical delay line.

As in the previous case, one of the key issues is the synchronization of chaos
which is necessary in optical chaos-based cryptographic schemes. Independent from
the message’s inclusion, the choice of the output will influence the coupling method
between emitter and receiver. There are two main coupling configurations that are
encountered with optoelectronic devices:

• A diffusive-coupling configuration, a typical closed-loop approach at the receiver
[130].

• An unidirectional-coupling configuration, a typical open-loop approach at the
receiver [7].
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With the optoelectronic cryptosystems presented in this chapter, the latter cou-
pling configuration is often preferred in the literature because of its simpler exper-
imental implementation. As an illustration, ICG is used to implement CMa and
CMo. The two different configurations can be modelled by two unidirectionally cou-
pled integro-delay differential equations:

Teẋe + xe +
1

θe

� t

t0

xe(u)du = se,CMa/CMo(t), (3.55)

Trẋr + xr +
1

θr

� t

t0

xr(u)du = sr,CMa/CMo(t), (3.56)

with se,CMa(t) = β cos2 (xe(t− τ) + ϕ0), se,CMo(t) = β cos2(xe(t−τ)+ϕ0+mCMo(t))
at the emitter and sr,CMa(t) = β cos2(xe(t− τc) + ϕ0) +mCMa(t− τc), sr,CMo(t) =
β cos2(xe(t−τc)+ϕ0+mCMo(t−τc)) at the receiver. When no message is encrypted,
the two systems are driven by an identical signal, though delayed by the transmis-
sion time τc. In the absence of message encryption, parameter mismatch between
the emitter and receiver, and noise during transmission, the delayed synchronization
error defined as e(t) = xr(t)−xe(t−(τc−τ)) follows the dynamics of a damped oscil-
lator and converges asymptotically to zero. Consequently, the two chaotic ICGs are
completely synchronized. For CMa and CMo encryption, the messages are decrypted
using a simple subtraction in both cases:

m̂CMa/CMo(t− τc) = sr(t)− se(t). (3.57)

Such configurations have been experimentally implemented and secure data trans-
missions were achieved using WCG [12], ICG [110], and more recently PCG [109].

In terms of performance, systems based on ICG and PCG have experimentally
reached transmission at 3 Gbit/s with NRZ pseudo-random binary messages with
a BER approximately 10−7 with an optical-fiber channel of a hundred of km [12].
These systems outperform architectures based on an ECSL assuming similar exper-
imental conditions. As an example, at 2.5 Gbit/s the BER of ECSL cryptographic
setups deteriorate significantly to approximately 5× 10−2 (in the same experimental
conditions to those mentioned above) [4].

3.5 Conclusions

In this chapter, we have reviewed the basics of semiconductor lasers and their ap-
plication to various chaos-based cryptographic setups. First, we used a two-level
medium placed in ring cavity to derive the Maxwell-Bloch equations. Then, we pre-
sented some fundamental concepts of the physics of semiconductor materials and
their applications to derive the well known semiconductor-laser rate equations. Af-
ter that, we discussed and modelled the most encountered optoelectronic systems
used to generate optical chaos, exploiting either internal or external nonlinearities.
A semiconductor laser being a crucial element in most of the architectures, our ob-
jective was for the reader to become familiar and understand the origins of simplified
models that will be used extensively throughout the thesis.



Chapter 4

Security Analysis of Chaotic

Optical Systems: The

External-Cavity Semiconductor

Laser

Abstract

A critical issue in optical chaos-based communications is the possibility for an eaves-
dropper to identify the parameters and the nonlinear function of a chaotic emitter
and, hence, to break its security. In this chapter, we first recall various methods to
break and identify a key parameter that threatens the security of time-delay chaotic
systems: the time-delay. We introduce standard methods such as the autocovariance
function (ACF), delayed-mutual information (DMI), local linear models (LLM), and
global nonlinear models (GNM). Then, we focus our attention on a chaotic emitter
that consists of a semiconductor laser with optical feedback, and the identification of
its time delay corresponding to the external-cavity round-trip time, using the previ-
ously described methods applied to a chaotic time-series with no a priori knowledge
on the ECSL. We unveil the key influence of the experimentally tunable parame-
ters, i.e., the feedback rate, the pumping current, and the time-delay value, in the
identification process. Finally, we demonstrate that the time delay can be efficiently
concealed and connect this result with the successive appearance of time scales in
the system dynamics as it undergoes its route to chaos.

This chapter is mainly based on the two following publications:

• D. Rontani, A. Locquet, M. Sciamanna, and D.S. Citrin, “Loss of time-delay
signature in the chaotic output of a semiconductor laser with optical feedback,”
Opt. Lett. 32, 2960-2962 (2007).

• D. Rontani, A. Locquet, M. Sciamanna, D.S. Citrin, and S. Ortin, “Time-
delay identification in a chaotic semiconductor laser with optical feedback: A
dynamical point of view,” IEEE J. Quantum Electron. 45, 879-891 (2009).
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4.1 Introduction

4.1.1 Security of Chaos-Based Cryptosystems

Security provided by most current software-based mathematical cryptosystems does
not ensure information-theoretic security [1] except for the so-called one time pad
(Vernam cipher) [131]. The computational complexity offered by these mathematical
algorithms is what the chaotic oscillators aim at achieving using laws of physics. In
a chaos-based cryptographic setup, the key corresponds to the set of parameters and
the algorithm to the nonlinear dynamical representation of the system.

As recalled in the general introduction, two strategies exist for an eavesdropper
to break a chaotic cryptosystem: (i) a direct retrieval of the embedded data stream
in the chaotic carrier or (ii) a reconstruction of the chaotic dynamics with an a
posteriori retrieval of the message. Under certain circumstances the eavesdropper
can exploit her complete knowledge of the chaos-generating process (white box),
partial knowledge (gray box), or total lack of knowledge (black box) to perform his
attacks.

In the white-box case, the structure of the chaotic emitter is known; only the
parameter set (the key) is unknown. In this case, the question of robustness of
synchronization is central. On the one hand, a lack of robustness of synchronization
will imply that even a legitimate receiver will not be able to synchronize and recover
the encrypted message. On the other hand, if synchronization is too robust, an
eavesdropper will easily synchronize even with a significantly different key.

Within this context, countless methods have been developed to break typical
encryption schemes (CMa, CSK, or CMo) such as autocorrelation and spectral anal-
ysis [10], return-maps [132; 133], and parameter identification using synchronization
[112]. However, in many situations the eavesdropper has only a partial or no infor-
mation on the structure of the cryptosystem. He can only process a single time series
wiretapped from the communication channel. The time series constitutes incomplete
information on its underlying chaotic generation process. Under certain conditions
known as the embedding theorem [134; 135]; however, it is possible to construct an
isomorphic representation of the system’s dynamics in an alternate phase space. For
example, in the delay reconstruction method, the system is described by a delayed
vector [x(t), x(t− τ∆), . . . , x(t− (m− 1)τ∆)] with m the embedding dimension and
τ∆ a time-interval delay. This isomorphic representation is an embedding if m > 2dc,
where dc is the fractal dimension of the attractor. This alternate representation of the
system shares the same invariants (entropy, dimension, Lyapunov spectrum) [136]
and allows for an eavesdropper to extract sensitive information from the cryptosys-
tem. This approach has been successfully used to crack low-dimensional chaos-based
cryptosystems [137; 138].

4.1.2 Security of Time-Delay Systems

The aforementioned reconstruction of the dynamics in a black-box context is tractable
only for low-dimensional systems [139; 140]. Consequently, the use of high-dimensional
chaotic systems should provide a higher level of computational security that renders
difficult the use of embedding techniques. A simple method to design such chaotic
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systems is the introduction of a time delay in the dynamics. As a matter of fact,
many optical chaotic systems possess this feature, such as wavelength chaos genera-
tors (WCG) [102; 103; 116], intensity chaos generators (ICG) [12; 106], and semicon-
ductor lasers with optical (ECSL) [94] or optoelectronic (OECSL) feedback [117] (see
Chapter 3). It has been proven that high dimension and entropy occurs in these types
of systems [33; 101; 141]. However, the complexity can be threatened by knowledge
of the time delay. In delayed hyperchaotic systems, the security assumption is based
on the computational complexity to reconstruct a high-dimensional attractor from
the time series. Indeed, knowing the time delay used by a hyperchaotic generator, an
eavesdropper can reconstruct the dynamics of the system in a reduced-dimensional
phase space [142], thus allowing low-complex computational reconstruction methods
to be efficient [143; 144]. The key behind the success of such breaking techniques
relies on the knowledge of the time delay, which can be inferred from the time series
using statistical signal analysis [145]. Concealing the time delay is therefore fun-
damental to preserve the computational security of a chaotic system. We illustrate
in Fig. A.2 a security leak resulting from the knowledge of the time delay, when a
WCG is analyzed.

Figure 4.1: Identification of the nonlinear function of the optoelectronic WCG with knowledge
of the time delay. The gray dots represent the discretized time series, in the projected plane
(ẋ(t), x(t − τ∗)). (a) τ∗ = τ (b) τ∗ = 1.1τ �= τ . Depicted in the solid red line is the shape
of the theoretical nonlinear function of the WCG. The parameters used in the simulation are
T = 10 µs, β = 30, ϕ0 = π/4, and τ = 500 µs.

In Fig. A.2(a), the time delay is known. As a result, the time series, when pro-
jected in the plane (ẋ(t), x(t− τ∗)), is distributed along a geometric structure with a
shape depending on the system’s nonlinear function. In Fig. A.2(b), however, even
a 10% error in the time delay results in an apparent random distribution in the pro-
jected phase space. As a consequence, the time delay critically affects the knowledge
that one can extract from the system in the reduced phase space (ẋ(t), x(t − τ∗)).
Time-delay identification should therefore be considered as an additional argument
to appreciate the level of security of optical chaos-based communications, besides
chaos complexity and robustness of synchronization. The security threat associated
with the time delay has triggered strategies to counter its straightforward estima-
tion; random commutations [146] and stochastic evolution of the time delay [147] are
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two examples. These methods will prevent an eavesdropper to access the time-delay
information using standard statistical estimation from a time series transmitted in
the communication channel (described in the next section).

4.1.3 System Investigated: the ECSL

4.1.3.1 Interest in ECSL and Security Issues

Semiconductor lasers with an external cavity (ECSL) have been considered as rich
sources of optical chaos, with well-known chaotic regimes such as the so-called co-
herence collapse [96] and low-frequency fluctuation (LFF) regimes [148]. These two
regimes have received considerable attention, since they represent key elements of
optical secure chaotic communications, as illustrated in the previous chapters. Their
omnipresence in optical setup is explained by high modulation speed of the system,
and the generation of high-dimensional and complex chaos [101], which make the
ECSL a suitable chaotic optical system for secure communications.

Nevertheless, it is also essential that an ECSL’s time delay should not be easily
identifiable from the analysis of its time series. Until recently, ECSLs with a single
optical feedback were considered as weakly secure [149; 150], such that the use of
several external cavities has been suggested [150]. Interestingly, the security was
systematically investigated for parameters values that ensures high chaos complex-
ity (dimension and entropy) by analogy with situations occurring in optoelectronic
systems such as WCG or ICG. In fact, in laser diodes with optical feedback, high-
dimensional chaos is typically found where the optical feedback strength (η) is large,
but then the time-delay value is easily retrieved from the analysis of the chaotic
output using straightforward techniques. As a matter of fact, the highest level of
security with respect to time-delay identification may not correspond to parameter
regions where the complexity of the ECSL is maximum. This is what we propose to
theoretically investigate in the next section.

4.1.3.2 Modeling & Framework of Analysis

Before investigating the theoretical estimation of the time delay, we consider a model
of an chaotic ECSL owned by a legitimate user Alice. The ECSL is composed of a
single-mode semiconductor laser with coherent optical feedback and is represented
in Fig.4.2.

Figure 4.2: Experimental scheme of an external cavity laser (ECSL). It is composed of a laser
diode (LD) electrically pumped by a current source (CS). The external cavity is composed of a
variable attenuator (VA) and a mirror (M). A beam-splitter (BS) and a photodiode (PD) are
used by the eavesdropper (Eve) to record the intensity time series and post-process it.
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The system is modeled by the Lang-Kobayashi rate equations [94]. To reiterate,
they are

dE (t)

dt
=

1

2
(1 + iα)

�

GN,E − 1

τp

�

E (t) + ηE (t− τ) e−iω0τ + F (t) , (4.1)

dN (t)

dt
= J − N

τs
−GN,E |E|2, (4.2)

where E(t) = |E| eiϕ(t) is the slowly varying complex electric field, N is the av-
erage carrier density in the active region, α is the linewidth-enhancement factor
that describes the amplitude-phase coupling, GN,E = gN (N − N0)/(1 + ε |E|2) is
the optical gain where ε is the saturation coefficient, N0 is the carrier density at
transparency, ω0 is the angular frequency of the solitary laser, η is the feedback
rate, τp is the photon lifetime, τs is the carrier lifetime, Jth is the threshold current,
p is the pumping factor, and τ is the delay corresponding to the round-trip time
of light in the external cavity. The Langevin force F (t) models the spontaneous-
emission noise. Its polar decomposition in amplitude and phase is given by the two
terms F|E|(t) = 2βN(t)/E(t) +

�

2βN(t)ζ|E|(t) and Fϕ(t) = 1/E(t)
�

2βN(t)ζϕ(t),
where β is the spontaneous-emission rate. The variables ζ|E|(t) and ζϕ(t) rep-
resent uncorrelated white Gaussian noise that satisfies

�
ζ|E|(t)

�
= �ζϕ(t)� = 0,

�

ζ|E|(t)ζ
∗
|E|(t

�)
�

=
�
ζϕ(t)ζ

∗
ϕ(t

�)
�
= δ (t− t�), and

�
ζ|E|(t)ζ

∗
ϕ(t

�)
�
= 0.

The ECSL transmits its chaotic time series in an optical communication channel.
We assume that an eavesdropper (Eve) can wiretap the channel and retrieve the total
information on the transmitted time series. In our case, the security of the ECSL
is investigated under favorable conditions where the eavesdropper wiretaps directly
the optical channel, recording and analyzing the intensity time series defined as
I(t) = |E(t)|2.

4.2 Time-Delay Identification

In this section, we present standard techniques to recover the time-delay information:
the autocovariance function (ACF), the delayed entropy and mutual information (DE
and DMI), local linear models (LLM), and global nonlinear model (GNLM) such as
neural networks [136]. These methods are sensitive to the presence of particular time
scales in a given time series, such as a time delay. Each method will eventually detect
the signature of a particular time-scale through a local resonance (extremum), which
will later be referred to as a peak or valley. Finally, the time location of a peak or
valley will be considered as a possible estimation of the time delay.

4.2.1 Autocovariance Function (ACF)

If we consider a stochastic process X(t), the autocorrelation function is defined by
the real function

RX(t1, t2) = E(X(t1)X(t2)), (4.3)
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where E(·) is the mathematical expectation operator.1 If we suppose that the process
is wide-sense-stationary (WSS),2 it is possible to define the autocovariance function
(ACF)

ΓX(θ) = E ((X(t)− µX)(X(t+ θ)− µX)) , (4.4)

with µX = E(X(t)) the mean of the stochastic process. If we consider the process
to be ergodic,3 it is possible to replace the mathematical expectancy by the time
average �X(t)� = limT→∞ 1/2T

� T
−T X(t)dt and compute the ACF from an single

time series,
ΓX(θ) = �(X(t)− µX)(X(t+ θ)− µX)�. (4.5)

For a given value of θ, we can geometrically interpret the ACF as a measure of the
tendency of the cloud (X(t), X(t− θ)) of points to be aligned along a straight line.
The ACF thus measures a linear relationship between X(t) and X(t− θ).

4.2.2 Delayed Entropy (DE) & Delayed Mutual Information (DMI)

The entropy and mutual information are metrics originally used in information the-
ory [2]. Given two continuous variables X and Y with joint probability density
function (pdf) fX,Y (x, y), and marginal pdfs fX(x) and fY (y), the entropy and mu-
tual information are respectively defined by

H(X) = −E (ln(fX(X)) , (4.6)

I(X,Y ) = E

�

ln

�
fX,Y (X,Y )

fX(X)fY (Y )

��

. (4.7)

In our context, the two variables X and Y are obtained by sampling the random
process X(t) at two times t and t+θ, and such a process is assumed to be stationary
and ergodic. The probability density functions fX(t),X(t+θ), fX(t), and fX(t+θ) will

be estimated by their respective histogram f̂X(t),X(t+θ), f̂X(t), and f̂X(t+θ) computed
from their time series. They lead to the approximate entropy and mutual information
estimator, also called delayed entropy (DE) and delayed mutual information (DMI),

Ĥ(θ) = −E

�

ln(f̂X(t)(X)
�

, (4.8)

Î(θ) = E

�

ln

�

f̂X(t),X(t+θ)(X,Y )

f̂X(t)(X)f̂X(t+θ)(Y )

��

. (4.9)

The entropy corresponds to an average measure of disorder in a given system or
random variable. The mutual information corresponds intuitively to the quantity of
information that the two random variables X(t) and X(t + θ) share. In time-delay

1If we consider a random variable X defined on the probability space (Ω,F , P ) with P a measure
of probability, then the expectancy operator is defined by E(X) =

�

Ω
XdP . If the variable X admits

a pdf fX(x), then E(X) =
�

R
xfX(x)dx.

2Wide-sense-stationary (WSS): A stochastic process X(t) is WSS if its mean is constant
E(X(t)) = µX and its autocorrelation depends only on θ = t1 − t2, RX(t1, t2) = RX(θ) =
E(X(t)X(t+ θ)).

3Ergodicity: A random process is ergodic if its averaging over a time and over its probability
space are equal.
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systems, the presence of a delayed feedback term induces a nonlocal time dependence
in the time evolution of its state variables. The integral definition of the estimators
under consideration allows for the detection of nonlocal time dependencies that are
linear for the ACF and nonlinear for the DMI.

4.2.3 Local Linear Models (LLM)

The use of local linear models (LLMs) was first suggested for single time-delay scalar
systems in [151; 152] and for vectorial systems in [142] and can be generalized to
systems with multiple delays. A vectorial system with p time delays is considered,

ẋ(t) = f(x(t),x(t− τ1), . . . ,x(t− τp)), (4.10)

with x ∈ R
n, the state vector of the system. As a consequence, each coordinate of the

reduced phase space Σ = (ẋ(t),x(t),x(t− τ1), . . . ,x(t− τ)) is functionally related.
This compels the system’s attractor projection to lie within a surface S ⊂ Σ. In
practice, the continuous space and most of the coordinates of the state vector are
inaccessible; that is why we consider a discrete series of scalar measurements {xk}k∈N
sampled from the system’s output. A delayed phase space is then built with the
coordinates

Σd,{τi}i=1,...,N
= (xk+1, xk, . . . , xk−(m+1), xk−τ1 , . . . ,

xk−τ1−(m+1), . . . , xk−τp , . . . , xk−τp−(m+1)).
(4.11)

The number m of additional coordinates is necessary to take into account the vari-
ables (state vector components) that are not captured by the time series and has to
satisfy m > 2n. It is assumed that the projection of the reconstructed attrac-
tor Sd in Σd,{τi}i=1,...,N

will have close geometric properties to those of the sur-
face S associated to the true projected attractor. When the time delays are un-
known and a candidate for the reconstructed phase space is considered, Σd,{θi}i=1,...,N

,
it would correspond to the discretization of a true projected phase space Σθ =
(ẋ(t),x(t),x(t− θ1), . . . ,x(t− θN )) where the functional relationship is not ensured
and therefore the attractor is not projected on a surface S. This property is used to
retrieve the information concerning the time delay. We first use a family of hyper-
planes {Lk,{τi}i=1,...,N

}k∈N defined in each point of the reconstructed discrete phase
space Σd,{θi}i=1,...,N

, leading to the local linear models. The average quadratic er-
rors are computed between this family and the projected attractor. When the set
{θi}i=1,...,N is equal to {τi}i=1,...,N , this error becomes minimal and this is how a
single or multiple time delays can be retrieved. This method allows one to detect
when the projected attractor lies on the surface S, a situation occurring only in Σ.

4.2.4 Global Nonlinear Models (GNLM)

The principles of a global nonlinear model (GNLM) are similar to those used for
the LLM approach; however, instead of minimizing the quadratic error with a set of
local planes, a global nonlinear function is used. A class of global discrete nonlinear
functions, such a modular neural networks (MNN), has been proposed in [153] to
identify a single time delay. We illustrate the MNN approach in this subsection.
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The neural network aims at mimicking the structure of the equations of the
nonlinear system under consideration. Toward this end, it incorporates two modules,
(i) one for the non-delayed part (ND) of the system and a second one for its delayed
part (D). A feedforward neural network is used for each of the modules. The first
non-delayed module is fed with input data xND = (xn, . . . , xn−(mND+1)) whereas the
second module is fed with xD = (xn−θ, . . . , xn−θ−(mD+1)), with the number of inputs
mND and mD of each module independently chosen , and θ being a candidate time
delay. The output of the modular neural network is defined by

yNN = fND(xND) + fD(xD), (4.12)

with fND and fD the nonlinear function associated to each module. These func-
tions result from the particular topology of the neural network activated after being
trained. Comparing to standard feedforward neural networks, the modular approach
results in more flexibility for the network, with each module interacting with each
other. Each module can then specialize in the reproduction of the behavior of the
non-delayed and delayed vector fields of the real time-delay system. To perform the
identification, the forecasting error σ(θ) = ||xn−yn,NN || is computed. A given value
θ∗ is considered to be an estimation of the true time delay τ , if the forecasting error
is globally minimized.

4.3 Security Analysis of the ECSL

4.3.1 Influence of the Operational Parameters

In this subsection, we focus our attention on the capacity of an ECSL to produce
consistent time-delay signatures (TDS) using ACF and DMI estimators. We illus-
trate the key role of (i) the feedback strength η, (ii) the pumping current J , and (iii)
the time delay τ in the estimation of the time delay.

4.3.1.1 Influence of the Feedback Strength

The feedback strength η controls the optical power reinjected in the laser cavity and
hence drives the contribution of the delayed intensity I(t− τ) to the time evolution
of I(t) wiretapped by an eavesdropper. As a matter of fact, the time-delayed feed-
back term ηE (t− τ) e−iω0τ is linearly introduced in the Lang-Kobayashi equations;
it is thus expected that the stronger η is, the larger the information shared between
I(t − τ) and I(t) will be. The structure of the Lang-Kobayashi equations is such
that the separation of the delayed and non-delayed part is pretty straightforward.
This specificity can qualitatively explain the particular interplay of time scales, the
relaxation-oscillation period τRO and the time delay τ , each associated to the re-
spective parts of the equation. Figure 4.3 pictures a case of time-delay identification.
Each line displays the recorded time series; the ACF and DMI computed for a given
value of η. Large values of η lead to a strongly developed chaotic regime (Fig. 4.3(j))
for which a sharp signature of the time delay is observed. It has a large amplitude
and a precise location in both the ACF and DMI (see Fig. 4.3(k)-(l)), and is a typical
situation reported in the literature [149].
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Figure 4.3: Intensity time series produced by an ECSL and recorded by the eavesdropper (1st
column), autocovariance function (2nd column) and delayed mutual information (3rd column)
for increasing value of the feedback rate η = 2 GHz (1st row), 5 GHz (2nd row), 10 GHz (3rd
row), and 15 GHz (4th row) with a time-delay value τ = 5 ns and τRO = 0.75 ns. The vertical
red dashed and purple dashed lines give the time location of τRO and τ , respectively.

The autocovariance also reveals the presence of signature at integer multiples of
the time delay with the remarkable property that the ratio of the amplitude between
consecutive signatures is approximately constant, ΓI(kτ)/ΓI((k + 1)τ) ≈ γ < 1 and
leads to an exponential decrease of the signatures with the multiplicity order. This
also reveals that the ECSL uniformly destroys the information between the intensity
and its successive delayed versions. The progressive decrease in feedback strength
first induces a decrease of the signature’s amplitude while preserving the exponential
decrease of amplitude for the signature in both estimators at the multiples of the
time delay (Fig 4.3(h)-(i)), until it reaches a minimum value (Fig. 4.3(e)-(f)). Then,
a qualitative change of behavior appears in the estimator for relatively weak feedback
strengths; instead of a sharp peak emerging from a noisy background, the estimators
present oscillations with an approximate period equal to τRO. They are locally
amplified in the vicinity of integer multiple of the time delay τ (Fig. 4.3(b)-(c)).
They also complicate the time-delay identification; the location and amplitude are
perturbed, and the estimation of the time delay will be at the precision of τRO/2.
As a consequence, at weak feedback strengths a relative increase of the ECSL’s
security is observed, a phenomenon that was not hitherto reported. It is however
still possible to retrieve a trustworthy estimation of the time delay, through the
local amplification of the oscillations of the estimators. At this point, no benefit in
security can be achieved by further reducing the feedback strength; if it is too weak,
the ECSL is not chaotic any more.
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4.3.1.2 Influence of the Pumping Current

All parameters being fixed except the time delay, the scenario of progressive loss of
the clarity of time-delay signatures with decreasing feedback strength is relatively
universal. In the previous subsubsection, the choice of the relaxation oscillation pe-
riod τRO = 0.75 ns corresponded to a level of pumping current close to the threshold
(5 % above threshold current), the internal ECSL’s parameters remaining identical.
To investigate the influence of the pumping current J , we analyze quantitatively
the location and amplitude of the time-delay signature when the feedback varies for
three different pumping currents. The findings are reported in Fig. 4.4.

Figure 4.4 is obtained by considering the signature with the largest amplitude (in
the ACF and DMI) in a vicinity W (τ) of the theoretical time-delay location. The
curves associated with different pumping currents (triangles, circles, and squares) all
present similar tendencies: V-shaped where the amplitude starts decreasing until it
reaches a global minimum followed by an increasing phase as the feedback strength
increases (Fig. 4.4(a)-(c)). Qualitatively, the decreasing region of the curve corre-
sponds to a weak chaotic regime, where the laser’s intrinsic nonlinearity and the
delayed feedback term have equivalent driving actions. Under these conditions, the

Figure 4.4: Impact of the feedback strength η and pumping current pJth on the ampli-
tude and time location of the most significant peak in the vicinity W (τ) = [4.5 ns; 5.5 ns]
of the time delay τ = 5 ns. Sub-figures (a)-(b) give respectively the amplitude and time
location of maxθ∈W (τ) |ΓI(θ)|; (c)-(d) gives respectively the amplitude and time location of

maxθ∈W (τ) |Î(θ)|. The solid lines with gray-triangles (�), red-circles (�), and purple-squares
(�) stands for p = 1.05, 1.26, and 1.72, respectively. These three different values of p corre-
spond to the relaxation oscillation periods τRO = 0.75 ns, 0.33 ns, and 0.2 ns, respectively. In
sub-figures (b)-(d), the dot-dashed lines give the time location of the time delay τ = 5 ns.
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estimators (ACF, DMI,...) may still exhibit structural relationships within the inten-
sity time series associated with the relaxation-oscillation dynamics and the influence
of the delayed injected optical field. As the feedback is increased, the influence of
the relaxation oscillation becomes weaker and the signature of the relaxation oscilla-
tions tends to disappear. When the global minimum is achieved, the driving action
are conforming. Then the increase of feedback strength makes the influence of the
delayed optical field more significant, thus leading the amplitude of the time-delay
signature to steadily increase. The increasing of the pumping current, however, shifts
and opens the V-shape of the curve; the global minimum of the amplitude of time-
delay signature increases and occurs for larger values of feedback strength. This
implies that large pumping currents have a detrimental effect on the security of the
ECSL. With the values of pumping used in Fig. 4.4, the relaxation-oscillation peri-
ods are respectively τR0 = 0.75 ns, 0.33 ns, and 0.2 ns. As a consequence, for weak
feedback strengths, the disturbance of the oscillations in the estimators observed in
Fig 4.3 will be reduced because of the precision of the time delay signature modulo
τRO/2. This effect is illustrated in Fig. 4.4(b)-(d). The maximum shift in the loca-
tion of the estimated time delay is about τRO/2, for the weakest possible feedback
strengths that allow the ECSL to be chaotic. As the feedback strength increases, the
locations of the signature have similar evolutions and ultimately only a small time
shift persists.

In summary, this first analysis shows the key role of two operational parameters
(feedback strength η and pumping current J) in the characteristics of the time-delay
signature (amplitude and location). Qualitatively, it is suggested that a combination
of weak feedback strength (still ensuring a chaotic regime of the ECSL) combined
with a pumping current close to threshold ensures the strongest loss of information
about the time delay. However, the concealment is not perfect and it is still easy
for an experienced eavesdropper to recover the time-delay signature using standard
techniques such as ACF or DMI. Amongst the operational parameters, there is still
the time-delay that can be tuned. In the next subsection, we will address specifically
the role of this parameter and show how a proper choice could lead to optimized
time-delay concealment leading to a complete loss of signature.

4.3.2 Optimized Time-Delay Concealment: Influence of the Time
Delay Relatively to the Relaxation-Oscillation Period

The previous section has clearly identified a form of competition at weak values
of feedback strength η between two primary time scales existing in an ECSL: the
relaxation-oscillation period and the time delay. This competition results in the
coexistence of two signatures with dual features: a localized and impulsional shape
for the time delay and a delocalized and oscillating shape for the relaxation-oscillation
period. The idea behind an optimization of the concealment consists of bringing the
two time scales close to each other such that it becomes difficult to identify the origin
of each contribution. A new scenario of identification is considered in Fig. 4.5 with
the value of the time delay τ = 1.2 ns and the other parameters kept identical to
those of Fig. 4.3.

Following the line of reasoning of the previous subsection, we show that the effect
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Figure 4.5: Scenario of identification with close time scales. The ECSL’s intensity time series
(1st column), autocovariance function (2nd column), and delayed mutual information (3rd col-
umn) are plotted for increasing value of the feedback strength η = 2 GHz (1st row), 5 GHz (2nd
row), 10 GHz (3rd row), and 15 GHz (4th row) with a time delay τ = 1.2 ns and τRO = 0.75 ns.
The vertical red dashed and purple dashed lines give the time location of τRO and τ , respectively.

of the coexistence of two time scales at weak feedback and weak pumping is stronger.
When the time delay is close to the free-running relaxation-oscillation period, this
may have an even stronger effect on the time-delay signature. Figure 4.5 illustrates
this fact. At large feedback strength, the reduction of the time separation between
τ and τRO does not produce a qualitative change of the time-delay identification;
both estimators exhibit sharp time-delay signature with a precise time-location close
to the theoretical time-delay (Fig. 4.5(k)-(l)). Then, a diminution of the feedback
strength leads to a decrease in the signature’s amplitude (Fig. 4.5(h)-(i)), as reported
in Fig. 4.3. Then for a sufficiently small value of the feedback strength, the effect of
the relaxation oscillation dynamics is enhanced. This leads to a time-delay signature
hardly retrievable [Fig. 4.5(e)-(f)], whereas it is still possible to retrieve it when
the two time scales are sufficiently disparate (Fig. 4.3(e)-(f)). We notice first that
the transition between the pulse-like shape and oscillating shape of the estimator
(at η = 5 GHz) corresponds to a particularly adapted situation to conceal the time-
delay signature. Finally, the time-delay signature is completely lost; only oscillations
are visible in the estimator and they correspond roughly to the relaxation-oscillation
period [Fig. 4.5(b)-(c)]; exponentially-damped oscillations are visible in the ACF
and DMI with an approximate period of τRO.

The ACF and DMI are relatively simple estimators, and the loss of time-delay
signature from the analysis of intensity time series may be connected to intrinsic
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limitations of the identification methods. To guarantee the robustness of the con-
cealment, other identification methods have been tested such as the LLM and GNLM.
The analysis tends to confirm that in the case of close values of τ and τRO, weak
feedback strengths η and weak pumping currents J the time delay is not retrievable
even with those methods. Figure 4.6 illustrates this fact by presenting the evolution
of the forecasting error of a modular neural network (MNN) as a function of the
candidate time delay θ.

Figure 4.6: Identification with close time scales using a modular neural network (MNN) gener-
ated with the following parameters: τ = 1.2 ns, τ = 0.75 ns, and η = 2 GHz. The evolution of
the forecasting error σ(θ) is plotted as a function of θ with an resolution of 5 ps. The vertical
purple and red dashed lines give the time location of the delay and the relaxation oscillation
period, respectively.

Figure 4.6 presents the results of a time-delay extraction based on a MNN com-
posed of six neurons in the first layer and three neurons in the second layer for the
delayed module (D) and only one neuron for the non-delayed module (ND). The
plot of the forecast error reveals only a minimum for values close to θ = 0 ns, that
corresponds to the linear correlation time [153]. We do not observe, however, any
other minimum in the vicinity of the time delay τ .

4.4 Dynamical Origin of the Time-Delay Concealment

The previous section has shown that the identification of the time delay strongly
depends on the operational parameters of the ECSL: the feedback rate η, the pump-
ing current (J), and the value of τ relatively to τRO. At high feedback strength,
the estimators always possess a predictable behavior: a pulse-like shape with a clear
time-delay signature. However, this regularity disappears, when the feedback rate is
weak.

The detection of the relaxation-oscillation dynamics in the estimator at weak
injection strength suggests a closer analysis of the time scales involved in the early
stages of the ECSL dynamics. We show that the route to chaos and the frequency
generated during the cascade of bifurcations shaped the estimators at weak feedback
strength, when the ECSL becomes chaotic for the first time. The feedback strength
η will be taken as the bifurcation parameter in the following investigations.
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4.4.1 Interpretation of a Disparate Time-Scales Scenario

In this subsection, we consider the case studied in subsection 4.3.1.1 for which the
time delay and the relaxation-oscillation period are disparate, τ = 5 ns and τRO =
0.75 ns.

The dynamics associated with this scenario are depicted in Fig. 4.7. The bifurca-
tion diagram of the ECSL’s intensity reveals a quasiperiodic (QP) route to chaos [Fig.
4.7(a)]; the stationary solution of the ECSL, an external cavity mode (ECM), is first
destabilized through a Hopf bifurcation (H1) and induces time-periodic dynamics
[Fig. 4.7(a1)], at frequency fH1 ≈ fRO = 1.34 GHz (Fig. 4.7(b1)). This periodic-
ity is revealed by both estimators (ACF and DMI): the signature of the time scale
τH1 = 1/fH1 manifests with oscillations [Fig. 4.7(a1)-(d1)]. An increase of feedback
strength destabilizes the limit cycle into a torus [Fig. 4.7(b2)] and produces new
frequencies in the power spectrum [Fig. 4.7(c2)].

One strong frequency component appears separated from fH1 by ∆f = 0.19 GHz,
which is a value close to the external-cavity frequency fEC = 1/τ = 0.2 GHz. As a
result, this new time-scale signature is superimposed on the top of the previous ones
and induces a slow undamped periodic modulation of both the ACF and DMI [Fig.
4.7(d2)-(e2)]. A further increase of feedback strength is followed by the appearance of
numerous new frequencies that increases the attractor complexity [Fig. 4.7(b3)-(c3)].
Nevertheless, the strong frequency components still have the identical frequency
locations, thus guarantee the persistence of a global order of the time series over
the long term even if on a short time the complexity (disorder) is increased. This
is manifested in the estimators by a strong modulation [Fig. 4.7(d3)-(e3)]. Finally,
the torus destabilizes into a chaotic attractor, whose structure in the projected space
retains a vestige of the torus geometry [Fig. 4.7(b4)]. The strong aperiodicity of
ECSL’s chaotic regime induces the progressive loss of correlation within the intensity
time series, which appears with a damp modulated shape of the estimators (Fig.
4.7(d4)-(e4)).

In conclusion, from the study of this scenario, it appears that the behavior of the
estimators (ACF,DMI) is strongly conditioned by the time scales that concentrate
most of the spectral energy during the cascade of bifurcations until the appearance
of chaos. In this particular scenario, these are the undamped relaxation-oscillation
period τH1 = 1/fH1 ≈ τRO born from the Hopf bifurcation (H1) and a frequency
at fH1 − ∆f with ∆f = 0.19 GHz. Interestingly, the time delay is given by τ ≈
1/∆f . The presence of two strong frequency components will induce a beating in
the estimators behavior. Fast oscillations are observed at the composite frequency
fH1−∆f/2 with a slow modulation at frequency ∆f/2 (or period 2τ), responsible for
the maximum of modulation at every multiple of τ . It is noteworthy to mention the
typicality of such a scenario in ECSLs, when the time scales τRO and τ are sufficiently
separated. It is also representative of what could be considered as a weakly-secure
regime for an ECSL. Indeed, the time delay appears early in the dynamics after
a torus bifurcation (in Figs. 4.3-4.7), while the ECSL is still predictable. The
frequencies fH1 and fH1 − ∆f persist in the early stages of the chaotic dynamics
at weak feedback strengths. As a consequence, a sufficient condition to conceal the
time-delay signature relies on its absence in the early stages of the ECSL’s dynamics
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Figure 4.7: Dynamical interpretation of security in a case of disparate time scales. The time
delay is τ = 5 ns and τRO = 0.75 ns (a) A quasiperiodic route to chaos is observed; a projection
of the attractor in the (|E|, N) plane (first row), power spectrum |FT (I(t))|2 (second row),
autocovariance (third row), and delayed mutual information (fourth row) for increasing value of
the feedback rate. Each column (numbered from 1 to 4) corresponds to the feedback strengths
η = 0.35 GHz, 0.55 GHz, 0.85 GHz, and 1 GHz, respectively. The vertical purple and red dashed
lines give the time location of τRO and τ , respectively.
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that will ensure in the weakly chaotic regime no information on the time delay. This
is a situation encountered in many cases when the time scales τRO and τ are close
to each other.

4.4.2 Interpretation of a Close Time-Scales Scenario

Similar to the previous section, the influence of the bifurcation cascade is investigated
when the two time scales τRO and τ have close values. In this case, the analysis is
performed using parameters identical to those in Fig. 4.5. The cascade of bifurcations
is first analyzed in Fig. 4.8(a), and it shows a Period-Doubling route to chaos. Similar
to what was observed in Fig. 4.7, we notice that the frequencies generated by the
ECSL nonlinear dynamics also significantly influence the shape of the estimators.
The progressive increasing in feedback strength leads to time-periodic dynamics of
the ECSL [Fig. 4.8(b1)] with a frequency fH1 = 1.34 GHz [Fig. 4.8(c1)] and induces
an oscillating behavior of the estimators [Fig. 4.8(d1)-(e1)]. At a larger feedback
strength, a period-doubling bifurcation is observed and leads to the appearance of a
new frequencies f = fH1/2 [Fig. 4.8(c2)]. The coexistence of these two time scales
modulates the shape of the estimators [Fig. 4.8(d2)-(e2)], making 2τH1 = 2/fH1

and its multiples the time-locations of the strongest contributions in the time-delay
estimators. Further increase of the feedback strength η leads to the appearance
of many frequencies in the ECSL’s power spectrum, and has two effects on the
estimators: a global amplitude’s decrease, and an enhancement of the modulation
[Fig. 4.8(d3)-(e3)]. Then, the appearance to many frequencies in the spectrum leads
to a chaotic regime, which shows up as of exponentially damped oscillations at a
frequency approximately equal to fH1 in both estimators [Fig. 4.8(d4)-(e4)].

In contrast to the previous case, the time delay does not appear early in the
ECSL’s dynamics after the occurrence of the first bifurcations nor in the power
spectrum, which contains a single strong frequency component at approximately
fH1. This prevents a clear time-delay signature to appear in the estimators at low
feedback rates. The only information given by the estimator is a measure of the
undamped oscillation frequency fH1, which in the case presented, is close to the
relaxation-oscillation frequency fRO = 1/τRO.

4.4.3 Summary

In conclusion and based on the two scenarios illustrated in Figs. 4.7-4.8, the cascade
of bifurcations plays a significant role in the behavior of the time-delay estimators.
The first bifurcation usually leads to oscillations in the estimators at a fundamental
frequency, and subsequent bifurcations shape them. The diversity of time-delay
identification scenarios appearing at weak feedback strength is a direct consequence of
the many existing route to chaos. Furthermore, it appears that a sufficient condition
to conceal the time-delay signature is that it must not appear early in the route to
chaos (as observed in Fig. 4.7(c2)). For an experienced eavesdropper, however, the
information on the relaxation oscillations may still be of interest, especially if the
emitter is guessed to be an ECSL. In many scenarios investigated, the oscillations in
the estimator had always a period approximately equal to τRO and were related to the
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Figure 4.8: Dynamical interpretation of security in a case of close time scales. The time delay
is τ = 1.2 ns and τRO = 0.75 ns (a) A period-doubling route to chaos is observed as well as a
projection of the attractor in the (|E|, N) plane (first row), power spectrum |FT (I(t))|2 (second
row), ACF (third row), and DMI (fourth row) for increasing value of the feedback rate. Each
column (numbered from 1 to 4) corresponds to the feedback strengths η = 0.6 GHz, 0.8 GHz,
1.2 GHz, and 1.5 GHz, respectively. The vertical purple and red dashed lines give the time
locations of τRO and τ , respectively.
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frequencies with a strong concentration in spectral-energy density. Amongst them,
the frequency emerging from the first Hopf bifurcation seems somehow preserved in
the power spectrum during the entire route to chaos. This further motivates the
study of its influence and role on the ECSL security.

4.4.4 Security and Frequency Concentrating a High Energy Level

In the previous illustrations, the time (or frequency) scale appearing on the first
Hopf bifurcation τH1 (or fH1 = 1/τH1) remained dominant in the ECSL dynamics
even when the system becomes chaotic, because it systematically concentrates a
significant amount of spectral energy. Its presence seems to be responsible for the
fast oscillating behavior of the time-delay estimators that persists during the entire
cascade of bifurcations and can blur or even mask the time-delay signature (Figs.
4.7-4.8). The frequency fH1 also seems to be close to fRO. However, a detailed study
has shown that fH1 can be significantly shifted from fRO. Figure 4.9 displays the
evolution of fH1 as a function of τ (time delay) for a given value of τRO. The evolution
is not monotonic; fH1 periodically oscillates around fRO (horizontal purple dashed
line). The period is close to τRO, and the oscillations’ amplitudes are slowly damped.
Similar conclusions have been obtained for other sets of parameters than those used
in this manuscript in previous studies on ECSL dynamics [154; 155; 156]. In our
context, this interesting property could be used to increase the ECSL’s security.
The use of frequency fH1 shifted from the relaxation-oscillation frequency could
potentially lead to fast oscillating estimators to prevent an eavesdropper to gain
insight on τRO or τ .

Figure 4.9: Evolution of the first Hopf frequency fH1 as a function of the time delay τ for τRO =
0.75 ns. The horizontal and vertical dot-dashed lines represent, respectively, the relaxation
oscillation frequency fRO = 1/τRO and multiples of the relaxation-oscillation period τRO. The
scenarios of Figs. 4.7 and 4.8 are indicated.

Our previous choice of parameters (in the disparate and close time-scales scenar-
ios), as indicated in Fig. 4.9, coincidentally leads to situations where fH1 ≈ fRO.
However, there are also situations, where the evolution of fH1 can be significantly
shifted from fRO, when τ and τRO are close (situation corresponding to optimized
time-delay concealment). Using this particular feature, it would be possible to design
an ECSL-based chaotic emitter with an ever greater security with no leakage of the
time-delay and relaxation-oscillation information.
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We have to be cautious in our conclusions: a strong shift of fH1 with respect to
fRO is a criterion that guarantees strong security only if fH1 concentrates most of
the spectral energy until weakly-developed chaos is reached. This would result in
estimators with oscillating signatures associated with τH1 = 1/fH1. As a matter of
fact, due to the extremely complicated behaviors of the Lang-Kobayashi equations,
making such a prediction is extremely difficult. It is usually necessary to simulate
the system to determine a posteriori the route to chaos and the corresponding level
of security achieved by an ECSL-based emitter.

We illustrate this fact in Fig. 4.10. We consider for instance two close values
for the time delay and the relaxation-oscillation period, respectively, taken equal to
τ = 0.85 ns and τRO = 0.75 ns (a scenario where a strong level of security is achieved
due to the proximity of the time scales). In this scenario, the route to chaos does
not correspond to a standard route (QP or PD). The ECSL is destabilized through a
Hopf bifurcation before it locks on a limit cycle with a frequency fH1b and undergoing
the cascade of bifurcations. Such a situation is illustrated in the bifurcation diagram
in Fig. 4.10(a). After a first Hopf bifurcation, a limit cycle LC1 is generated with
frequency fH1 = 1.64 GHz shifted from fRO = 1.33 GHz [Fig. 4.10(b1)-(c1)]. As the
feedback strength is increased, LC1 is replaced by two news branches associated with
a new limit cycle LC1b with a different frequency fH1b = 1.02 GHz [Fig. 4.10(b2)-
(c2)]. Then, LC1b is destabilized with the ECSL locking on a PD limit cycle with
fundamental frequency fPD = 0.88 GHz (Fig. 4.10(b3)-(c3)). Finally, the system
enters in a weakly developed chaotic regime that inherits the spectral contents of this
last stable attractor (Fig. 4.10(b4)-(c4)). In this scenario, the ECSL has undergone
discontinuous variations of its frequency that concentrates the largest amount of
spectral energy. These variations have visible consequences on the estimators (Fig.
4.10(d1)-(d4) and (e1)-(e4)); the oscillatory shape is not related to any a priori
known frequencies such as fRO, fEC , or fH1. This particular route to chaos leads to
nontrivial variations of the estimators such that it is virtually impossible to identify
the time delay or the relaxation-oscillation period from either the ACF or DMI [Fig.
4.10(d4) and (e4)].

In conclusion, we have shown that the frequencies that appears in the cascade
of bifurcations and concentrates most of the spectral energy are responsible for the
oscillatory behavior observed in the weakly chaotic regimes. In numerous situations,
the frequency fH1 of the first Hopf bifurcation controls these oscillations. It appears
they can be made to be frequency shifted with respect to the relaxation-oscillation
frequency fRO and therefore enhance the security of an ECSL-based chaotic emitter
by hiding its key information. Nevertheless, it is not systematically responsible
for the fast oscillatory shape of the estimators as suggested by the last scenario
investigated. Various frequencies arise from the cascade of bifurcations occurring in
the ECSL, shape, and modify the oscillations in the time-delay estimators. They are
in every cases responsible for blurring the time-delay signature when the feedback
rate is taken relatively weak and the ECSL weakly chaotic. Finally, the diversity
of routes to chaos also explains why there are so many differences in the behaviors
of the estimators at weak feedback strength (where the influence of the route is
still significant) by opposition to the strong feedback regime, where the estimators’
behaviors are predictable.
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Figure 4.10: Dynamical interpretation of security in a case of close time scales, not controlled
by the first Hopf bifurcation frequency fH1. The time delay is τ = 0.85 ns and τRO = 0.75 ns
(a) A nontrivial route to chaos is observed. Projection of the attractor in the (|E|, N) plane
(first row), power spectrum |FT (I(t))|2 (second row), ACF (third row), and DMI (fourth row)
for increasing value of the feedback rate. Each column (numbered from 1 to 4) corresponds to
the feedback strengths η = 0.6 GHz, 0.8 GHz, 1.2 GHz, and 1.5 GHz, respectively. The vertical
purple and red dashed lines give the time locations of τRO and τ , respectively.
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4.5 Influence of Internal Parameters: Gain Saturation
and Noise

In this section, we discuss the potential influence of two internal laser’s parameters
(spontaneous emission noise and gain compression coefficient), easily understood in
the framework we have developed. In this context, we will analyze results on security
and how some of the dynamical interpretations hold in this particular context.

4.5.1 Influence of the Spontaneous-Emission Noise

The results of the previous sections are based on a fully deterministic model of the
ECSL. However, the stochastic processes modelled by the Langevin force appearing
in Eqs. 4.1-4.2 may affect our results. Indeed, this additional stochastic part of the
Lang-Kobayashi equations blurs the cascade of bifurcations that has already proven
to be directly responsible for the concealed time-delay signatures observed in the
time-delay estimators. When the feedback strength is weak, the noise acts as a
major driving force for the dynamics that weakly excites the intrinsic nonlinearity
of the ECSL. This stochastic excitation, however, does not influence the time-delay
identification; the signature is still blurred by the time-scales related to the cascade
of bifurcations. Larger feedback strength values make the noise effect negligible in
comparison with the delayed-feedback term and a clear signature with an impulsional
shape is observed, similar to the noiseless case. Figure 4.11 shows this result using
the ACF, which is comparable to the third column of Fig. 4.3.

Figure 4.11: Influence of the rate of spontaneous emission β on the time-delay identification.
The spontaneous emission rate is taken equal to β = 10−3 s−1. Each column is associated
with a given feedback strength. From left to right, η = 2.5 GHz, 5 GHz, 10 GHz, and 15 GHz.
The time delay and the relaxation period are equal to τ = 5 ns and τRO = 0.75 ns. They are
represented by the purple and red dashed lines, respectively.

In conclusion, the presence of noise does not threaten or enhance significantly
the security of the ECSL in terms of time-delay identification.

4.5.2 Influence of Gain Saturation

Gain saturation ε is phenomenologically introduced in the rate equations by con-
sidering an explicit intensity dependence of the gain. Since it modifies significantly
the ECSL’s nonlinearity, it may significantly affect security in terms of time-delay
estimation.

It has already been reported that the saturation gain has a stabilizing effect on
the ECSL dynamics [157]. As a consequence, reducing the value of ε will favor the
driving action of GN,|E|2E(t) relative to the feedback term ηeiω0τE(t− τ). In terms



86

of time-delay identification, the consequences would be a persistence at larger feed-
back strength of the competition between the time scales generated by the cascade
of bifurcations with the time delay, thus increasing the range for which an ECSL
exhibits a high level of security. Figure 4.12 presents these results; two different
identification scenarios based on the ACF are considered for various choices of τRO

and τ for increasing values of the saturation gain ε. The first row shows simula-
tions with close time scales (τRO = 0.2 ns and τ = 1 ns). For η = 10 GHz and a
strong saturation gain ε, a clear time-delay signature is observed, as expected [Fig.
4.12(a4)]. A progressive disappearance of the time-delay signature at this feedback
level, however, was not expected and yet it is observed, as the saturation gain is
weakened (Fig. 4.12(a3)-(a2)-(a1)). These results hold also in a disparate time-scale
scenario described above (second row of Fig. 4.12); the slow modulation at a period
close to 2τ is also progressively weakened, thus increasing security even in a disparate
time-scale scenario.

In conclusion, decreasing values of the gain saturation favor the fast time scales
emerging from the laser’s intrinsic nonlinearities with respect to the delay time scale.
This has also proven to enhance the range of feedback rate and separation of time-
scales to conceal the time delay.

Figure 4.12: Influence of the gain saturation ε on the time delay signature for two different
scenarios. The first row corresponds to a (relatively) close time-scale scenario with τRO = 0.2 ns
and τ = 1 ns at η = 10 GHz. The second row is a disparate time-scale scenario with τRO =
0.75 ns and τ = 1 ns. The vertical purple and red dashed lines represent the relaxation oscillation
period and the time delay, respectively. Each column corresponds to a increasing values of the
saturation gain. From left to right : ε = 0 m3, 0.625 m3, 1.25 m3, and 2.5 m3. The purple and
red vertical dashed lines gives the locations of the relaxation oscillation period and time delay,
respectively.

4.6 Conclusion

In this chapter, we have analyzed the security of an ECSL in terms of time-delay
identification using typical time-delay estimators (ACF and DMI). The key role of the
feedback strength η, the pumping current J , as well as the choice of the time-delay τ

relative to the relaxation-oscillation period τRO, has been underlined. It appears that
the maximum of security, corresponding to the loss of time-delay signature, occurs
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for moderate feedback strength and pumping current combined with close values of
the two time-scales τ and τRO. The efficiency of the time-delay concealment finds
its origin in the specific nonlinear dynamics and time scales generated in the ECSL’s
bifurcation cascade preceding chaos. Indeed, chaos is reminiscent of the time scales
involved in the early stage of the laser dynamics, such as the undamped relaxation
oscillation time and possibly PD and QP dynamics. The time-delay estimators ex-
hibit complex modulated shapes showing these different ECSL dynamics time scales.
In case the time delay τ and the relaxation oscillation period τRO are close to each
other, the time-delay information is efficiently concealed thanks to a shift of the first
Hopf frequency fH1 with respect to the relaxation oscillation frequency fRO. The
laser output at the Hopf frequency starts pulsing at a frequency that is neither close
to fRO = 1/τRO nor f = 1/τ . We have also found that a suitable choice of internal
parameters could lead to wider regions of operational parameter values that ensure
security. It appears that the decrease in gain saturation coefficient allows to use more
distant values of τ and τRO and to increase the pumping factor while maintaining
time-delay concealment. The robustness of our results has been checked with other
signal processing techniques such as neural networks and filling-factor methods. We
expect our results to be of interest to design an optical chaotic emitter with optimal
concealment of its most critical parameters, hence also improving security in optical
chaos-based communications.
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Chapter 5

Multiplexing Chaotic Light

Abstract

We theoretically analyze the possibility of multiplexing multiple chaotic optical fields
with a strong spectral overlap. Instead of considering regular wavelength-division
multiplexing (WDM) or time-division multiplexing (TDM) approaches on top of
chaotic systems, we propose a radically different perspective relying on one of the
fundamental concepts of the theory of synchronization, which is the active passive
decomposition (APD). We numerically show that the combination of mutually cou-
pled lasers at the emitter with a unidirectional injection into decoupled receivers
can be used to multiplex and demultiplex chaotic optical fields. The separation is
realized through complete chaos synchronization by each receiver, even when the
various free-running lasers operate at identical frequencies. This offers new perspec-
tives in high spectral efficiency and multiplexed transmission of information. We
also demonstrate theoretically the possibility of encrypting and decrypting multiple
data streams, when they are properly embedded in the phase or the amplitude of
the various multiplexed optical fields.

This chapter is based on the following publication:

• D. Rontani, A. Locquet, M. Sciamanna and D.S. Citrin,“Spectrally Efficient
Multiplexing of Chaotic Light”, Opt. Lett. 35, pp. 2016-2018 (2010)
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5.1 Introduction

In this chapter, we aim at presenting an alternative view of the problem of multi-
plexing chaotic light fields generated by optoelectronic devices such as edge-emitting
lasers (EEL). When more than two lasers are involved with a single available op-
tical channel, it is necessary to multiplex the chaotic signals of the various users.
In conventional optical communications, time- and wavelength-division multiplexing
(TDM and WDM) are well-known protocols that make use of different time slots and
wavelength bands, respectively, to convey each user’s signal. In each case, either a
given user has access to the whole channel bandwidth but only during specific time
intervals (TDM) or has permanent access to a frequency slot (WDM).

Applying WDM to optical chaotic communications has already been proposed.
This is commonly referred to as chaotic WDM in the literature and can be achieved
using either multiple chaotic single-mode lasers operating at detuned wavelengths
[158; 159] or multi-mode lasers [160; 161; 162]. In both cases, the lasers at the
receiving end synchronize their chaotic fluctuations with those of the same-frequency
emitter. Though interesting, chaotic WDM has the disadvantage of requiring a large
frequency separation between channels to avoid interference between each user’s wide
spectrum [163], or in other words, a high degree of synchronization between the
respective emitter/receiver pairs. Consequently, chaotic WDM is far less spectrally
efficient than conventional WDM, thus obviating its practical deployment. Although
it has not been studied in the context of optical chaos-based communications, the
application of the other typical multiplexing approach, TDM, would not lead to any
improvement of the spectral efficiency.

Other than the spectral inefficiency of such approaches, one of the main concerns
was to find how to exploit in the best possible way the specificity of chaotic opto-
electronic devices and go beyond the classical paradigms of WDM or TDM. This has
led us to an analogue of the code-division multiple access (CDMA) approach, where
discrimination between users’ signals is made at a statistical level. As will be later
illustrated, this separation is performed through the independent chaos synchroniza-
tion of the various emitter/receiver pairs.

To help understand our approach, we first reinterpret the classical paradigm
of unidirectional synchronization of chaotic EELs in the theoretical framework of
active-passive decomposition (APD).

5.2 Optical-Chaos Synchronization Revisited

In this section, we show the close analogy that exists between APD, as established
by Kocarev et al. in [70], and the classical problem of unidirectional synchronization
of chaotic EELs [59; 121]. We first introduce the concept of APD, and then we show
to what extent the result holds for a configuration involving EELs.

5.2.1 Active Passive Decomposition (APD)

Historically, APD is a generalization of the master-slave decomposition (MSD) in-
troduced by Pecora and Carroll in [7]. Here, we recall this important milestone by
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considering two systems: the emitter (E) and the receiver (R) with identical struc-
tures and parameters. These systems are described by their respective state variables
xE ∈ R

n and xR ∈ R
n; their dynamics are controlled by ODEs. Then, each system

is decomposed into two interconnected subsystems, (Em,Es) and (Rm,Rs), as illus-
trated in Fig. 5.1(a); the subscripts m and s denote master and slave, respectively.

The state variables are also decomposed into xj = (xjm ,xjs)
T with j = E,R.

The dynamical representation of such system reads

(E,R)

�

ẋjm = fjm(xjm ,xjs)

ẋjs = fjs(xjm ,xjs)
. (5.1)

To completely synchronize both E and R, a subsystem Rm identical to Em is
constructed [see Fig. 5.1(b)], upon which Eq. 5.1 becomes

(E)

�

ẋEm = fEm(xEm ,xEs)

ẋEs = fEs(xEm ,xEs)
, and (R)

�

ẋRm = fRm(xEm ,xRs)

ẋRs = fRs(xEm ,xRs)
. (5.2)

The subsystems Es and Rs are synchronized, if and only if the equilibrium points
of Em and Rm are stable. In other words, the Lyapunov exponents of subsystem Rs

conditioned to the trajectories of subsystem Em have to be negative [7]. However,
this method makes chaos synchronization possible only if MSD exists, where one
subsystem has stable fixed points. This consequently limits the application of such
a decomposition to a reduced number of chaotic systems. Furthermore, the number
of possible MSD per system is limited.

Figure 5.1: Illustration of the concept of master-slave decomposition (MSD) of (a) a single
nonlinear system (E) into two interconnected subsystems (Em,Es) and of (b) two systems (E)
and (R) potentially to ensure chaos synchronization.

As proposed by Kocarev et al. in [70], APD is a generalization of the MSD
framework. Emitter E, which is usually in its autonomous form, is rewritten into a
non-autonomous form1 as

ẋE = f(xE , s(t)), (5.3)

1See Chapter 2 for the definitions of autonomous and non-autonomous forms.
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with s(t) = h(xE) (or ṡ(t) = h(xE , s(t))), f : Rn × R
p → R

n, and h : Rn → R
p (or

R
n × R

p → R
p if s(t) is described by a differential equation).

If receiver R is built with an identical structure to that of emitter E and coupled
with the same signal s(t), its non-autonomous form reads

ẋR = f(xR, s(t)). (5.4)

It is possible for E and R to be synchronized; the conditional Lyapunov exponents of
Eq. 5.3 have to be negative (whatever the driving signal s(t) is). This also means that
when E is not driven (s(t) = 0), it will tend to a stable equilibrium point. In other
words, E is a damped or passive oscillator. This explains the APD appellation; the
system is decomposed into its passive and active driving parts through the nonlinear
functions f and h. A graphical representation of APD is given in Fig. 5.2.

Figure 5.2: Illustration of the concept of active-passive decomposition (APD), where a Driver
(D) injects emitter E and receiver R. They may under certain conditions chaotically synchronize.

5.2.2 Application to the Synchronization of Chaotic Lasers

The synchronization of chaotic EELs has been thoroughly investigated in the liter-
ature [59; 121], with details under which conditions it can be achieved. Amongst
the many existing optical configurations of EELs used to exhibit chaos (see Chapter
3), the ECSL has proven to be of particular interest. It injects coherently and uni-
directionally a receiver laser as depicted in Fig. 5.3. Each device can be modelled
within the framework of the well known Lang-Kobayashi equations [94]. With similar
notation to that used in Chapter 3, one has

dEm

dt
=

1

2
(1 + iα)

�

GNm,Em − 1

τp

�

Em + ηme−iω0mτEm(t− τ), (5.5)

dEs

dt
=

1

2
(1 + iα)

�

GNs,Es −
1

τp

�

Es + ηce
−iω0mτcEm(t− τc), (5.6)

dNm,s

dt
= J − γsNm,s −GNm,s,Em,s |Em,s|2 , (5.7)

with index (m, s) referring to as master (or emitter) and slave (or receiver), respec-
tively. The lasers used in this setup are class-B, which means that in the absence of
an additional degree of freedom such as an external feedback they exhibit damped
relaxed oscillations before emitting a stable constant output. An EEL is therefore
passive, and in the proposed configuration of Fig. 5.3, the feedback term is considered
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as the driving signal or the active part. By symbolically rearranging Eqs. 5.5-5.7,
the model reads

Ėm = fE
�
Em, Nm, ηme−iω0mτEm(t− τ)

�
, (5.8)

Ės = fE
�
Es, Ns, ηce

−iω0mτcEm(t− τc)
�
, (5.9)

Ṅm,s = fN (Em,s, Nm,s) . (5.10)

Rigorously, master and slave lasers can be synchronized if they are physical twins1

driven by identical signals. In our configuration, however, the time delays (τ and
τc) are different in the general case. This issue can be simply solved by rewriting
the equations of the master and slave lasers in shifted time frames: t → t − τc and
t → t−τ , respectively. The two feedback signals now read ηme−iω0m∆τEm(t−∆τ) and
ηce

−iω0m∆τEm(t−∆τ) with ∆τ = τc − τ . Consequently, for the two driving signals
to be equal and to ensure complete synchronization, one has necessary to satisfy
ηc = ηm, which is known as the necessary conditions of anticipating synchronization
[121]. Therefore, the synchronization manifold reads2

Es(t) = Em(t−∆τ), (5.11)

ϕs(t) = ϕm(t−∆τ)− ω0m∆τ mod(2π), (5.12)

Ns(t) = Nm(t−∆τ). (5.13)

The unidirectional coupling configuration is described in Fig. 5.3.

Figure 5.3: Illustration of an active-passive decomposition (APD) realized with a single pair of
semiconductor laser. The master’s optical field is used to drive both the master and the slave.
EEL LD: Edge-emitting laser diode, CS: current source, OI: optical isolator, Mf : mirror, VAm,
VAc: variable attenuator.

APD constitutes a powerful framework to investigate this classical synchroniza-
tion problem. However, it only provides structural information about the nature of
the driving signal, but not on the coupling values (sufficient conditions). Therefore
APD, like other typical methods to determine synchronization conditions, gives nec-
essary conditions for synchronization. Identifying synchronization of chaotic ECSLs
as an APD-like problem (for the first time to the best of our knowledge) is a first im-
portant step before realizing the multiplexing of chaotic optical signals, as described
in the next section.

1It is important to avoid parameter mismatch and noise to guarantee complete chaos synchro-
nization.

2The additional term ω0m∆τ is a direct consequence of the time-reference shifts.
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5.3 Optical Chaos Multiplexing

5.3.1 Model

In this section, we propose a new method to multiplex various chaotic optical signals
produced by semiconductor lasers with identical free-running optical frequencies.
Hitherto, optical-chaos multiplexing and demultiplexing techniques proposed in the
literature have used lasers with different free-running frequencies [158; 163; 164],
similar to the conventional WDM. In our approach, we propose to go further than
this classical paradigm and make the multiplexing and demultiplexing possible using
only the properties of chaos synchronization with lasers operating at identical free-
running frequencies. Using simple optical components, we create a delayed optical
analogy of APD. On the emitting side, a single signal ET (t) resulting from the
mixing of chaotic electromagnetic fields Em

k (t) produced by multiple semiconductor
lasers Mk (k = 1, . . . , n) being globally mutually coupled, is retro-injected with
different feedback strengths and time-delays in each master laser Mi. Consequently,
signal ET (t) is perceived by each master as a specific multiplexed signal Em

T,k(t).
The signal ET (t) is then coherently and unidirectionally transmitted on an optical
channel. On the receiving side, there are n independent semiconductor lasers Sk

(k = 1, . . . , n) which operate under exactly the same conditions as the respective
Mk. More specifically, they are injected with identical strength and the time-delay
topologies are preserved. This implies that each slave Sk is injected by a delayed
version of Em

T,k(t), namely Es
T,k(t).

Figure 5.4 shows a two-user setup composed of two mutually coupled master
lasers (M1,M2) unidirectionally coupled with two slave lasers (S1,S2). Each master
is subjected to delayed optical feedback from mirror Mrf and to delayed optical
injection from the other master. A linear combination of the two masters’ delayed
complex optical fields is thus injected into each master, but with specific strength
(different variable attenuators), phase, and delay (different optical paths) for each
field. The same linear combinations are then optically injected, after propagation on
a shared optical channel, into the uncoupled slave semiconductor lasers S1 and S2.

Figure 5.4: Multiplexing scheme based on semiconductor lasers optically-coupled in an APD
fashion. LD: laser diode (labeled M1, M2 for the masters and S1, S2 for the slaves), CS: current
source, Mr, Mrf : mirrors, VA1,VA2: variable attenuators, BS: 50/50 beam splitter, OI: optical
isolator.
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The complete system is modeled assuming single-mode semiconductor lasers and
the theoretical framework of Lang-Kobayashi [94]. The system of equations reads

dEm
k

dt
=

1

2
(1 + iαm

k )Gm
k Em

k + Fm
k +

n�

j=1

ηmjke
−iωm

0jτ
m
jk+i∆ω

m/m
jk t

Em
j

�
t− τmjk

�
,(5.14)

dNm
k

dt
= Jm

k − γmskN
m
k − (Gm

k + 1/τmpk)|Em
k |2, (5.15)

dEs
k

dt
=

1

2
(1 + iαs

k)G
s
kE

s
k + F s

k +
n�

j=1

ηcjke
−iωs

0jτ
c
jk+i∆ω

m/s
jk t

Em
j

�
t− τ cjk

�
, (5.16)

dN s
k

dt
= Js

k − γsskN
s
k − (Gs

k + 1/τ spk)|Es
k|2, (5.17)

where the subscript k denotes the kth lasers pair (Mk/Sk) and subscripts m, s denote
master or slave variables, respectively. E

m,s
k = |Em,s

k |eiφm,s
k is the slowly-varying

complex electric field and N
m,s
k the carrier number. Gm,s

k = g
m,s
k (Nm,s

k −N
m,s
0k )/(1+

ε
m,s
k |Em,s

k |2) − 1/τm,s
pk is the nonlinear gain with gm,s

k the differential gain, Nm,s
0k

the carrier number at transparency, εm,s
k the gain-saturation coefficient, and τpk the

photon lifetime. α
m,s
k is the linewidth enhancement factor, γ

m,s
sk the carrier decay

rate, Jm,s
k the pumping current density, and ω

m,s
0k the free-running laser frequency of

the kth free running laser. τmjk (τ cjk), η
m
jk (ηcjk), and ∆ω

m/m
jk = ωm

0j − ωm
0k (∆ω

m/s
jk =

ωm
0j −ωs

0k) are the flight time, injection strength, and detuning between the j-th and
the k-th master laser (the jth master laser and the kth slave laser). Spontaneous-

emission noise is modeled by Langevin sources Fm,s
k =

�

2βm,s
k Nm,s

k ζm,s
k with βsp

the spontaneous-emission rate and ζm,s
k independent Gaussian white noises with unit

variance.

5.3.2 Necessary Conditions for Synchronization

Assuming identical perfectly reflecting mirrors and identical optical coupling efficien-
cies in all laser cavities, the geometry of the system in Fig. 5.4 leads to the following
relations between flight times and coupling strengths

τmjk = τmkj = τmjj +∆τmkj/2, (5.18)

ηmkj = ηmjk =
�

ηmkkη
m
jj , (5.19)

with ∆τmjk = −∆τmkj = τmjj − τmkk.
The scheme has been devised in such a way that each laser in a pair (master

or slave) is subjected to n master electric fields, Em
k (k = 1, . . . , n), with the same

relative time shift. Mathematically, this means that τmjj − τmkj = τ cjj − τ ckj .
Interestingly, due to the coupling strength and geometry, each laser pair (Mk,Sk)

perceives its own multiplexed signal E
m,s
T,k (t) derived from a unique mathematical

multiplexed chaotic optical field that reads

ET (t, θ,σ, µ) =
n�

j=1

�

ηmjje
iωm

0j(θ+∆τmσj/2)+it∆ωµ
jσEm

j (t− θ −∆τmσj/2), (5.20)
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Figure 5.5: Theoretical synchronization diagrams without spontaneous-emission noise (βsp =
0 s−1). The synchronization diagrams present the evolutions of (Im1 (t), Is1(t − ∆τ1)) in (a),
(Im2 (t), Is1(t −∆τ1)) in (b), (Im1 (t), Is2(t −∆τ2)) in (c), and (Im2 (t), Is2(t −∆τ2)) in (d). The
numerical values are Jm

1 = Js
1 = 2.75Jth, Jm

2 = Js
2 = 2.5Jth, and ηm11 = ηc11 = 10 GHz,

ηm22 = ηc22 = 15 GHz, ηm12 = ηm21 = ηc12 = ηc21 =
�

ηm1 ηm2 , and τm11 = 1 ns, τm22 = 4 ns, τ c11 = 1 ns
and τ c22 = 4 ns. The internal parameters are taken different for each pair : αm,s

1 = 5, αm,s
2 = 4,

τ
m,s
p1 = 2 ps, τm,s

p2 = 1 ps, γm,s
s1 = 2 ns, γm,s

s2 = 1 ns, εm,s
1 = 5 × 10−7, εm,s

2 = 2.5 × 10−7,

g
m,s
1 = 1.5× 10−4 s−1, gm,s

2 = 1× 10−4 s−1, Nm,s
01 = 1.5× 108, Nm,s

02 = 2× 108.

with θ = τmkk or τ ckk and µ = m/m or m/s. This optical field ET (t) can be used to
derive the expression of the multiplexed field injected into the kth laser pair; Mk is in-
jected by Em

T,k(t) =
�
ηmkkET (t, τ

m
kk, k,m/m) and Sk by Es

T,k(t) =
�
ηckkET (t, τ

c
kk, k,m/s).

Each pair (Mk,Sk) can exhibit a regime of complete synchronization in the pres-
ence of identical internal parameters, and bias current, and in the absence of noise,

and frequency detuning ∆ω
m/s
kk = 0. These necessary conditions are completed by

the following injection-strength constraint ηmjk = ηcjk (equivalent to ηmkk = ηckk with
respect to the geometry adopted in our setup) which naturally extends the single
master/slave case [59; 121; 122; 123]. Moreover, non-zero flight times are responsible
for specific time lags ∆τk in the synchronization manifold of Mk/Sk defined by

Es
k(t) = Em

k (t−∆τk), (5.21)

φs
k(t) = φm

k (t−∆τk)− ωm
0k∆τk(mod 2π), (5.22)

N s
k = Nm

k (t−∆τk). (5.23)

The expression of the time lags can be simply deduced from the analysis of each
electrical field injected into a given pair, namely Em

T,k(t) and Es
T,k(t) for the kth pair.

The time lags are simply deduced from the necessary conditions of synchronization
and read

∆τk = τ ckk − τmkk. (5.24)

A simulation of two laser pairs (n = 2) is reported in Fig. 5.5. It shows the
anticipating synchronization manifolds under ideal conditions. The time lags ∆τk
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are here both equal to zero due to additional symmetry between the emitting and
receiving ends.

An additional aspect of our architecture is its spectral efficiency, since the free-
running lasers operate at identical wavelengths. However, when the chaotic regimes
appear, the optical spectrum of each laser is broadened and can exhibit bandwidth
of hundred of megahertz. If conventional WDM were applied on top of an optical
chaos-based architecture, each chaotic optical spectrum would have to be sufficiently
separated to be properly discriminated.

5.3.3 Spectral Efficiency

The proposed architecture can alleviate the spectral constraint existing in WDM
by using a different method to separate multiple carriers with significant spectral
overlap, i.e. the use of independent chaos synchronization between the different pairs
Mk/Sk. Figure 5.6 shows, in the case of two pairs of lasers, the optical spectrum
of each master field

�
ηm11E

m
1 (t) and

�
ηm22E

m
2 (t) and the formal multiplexed signal

ET (t). The bandwidth is defined as the spectral width 20 dB below the maximum
value of the optical spectrum. Under these conditions, the total bandwidth occupied
by the multiplexed field ET is comparable to the bandwidth of a single chaotic optical
field. Taking numerical values similar to those used for Fig. 5.5, the bandwidths are
∆fET

≈ ∆fEm
1

≈ ∆fEm
2

≈ 25 GHz. This means that for one data stream encoded
per laser, potentially twice the amount of information per Hz could be conveyed in
a single optical channel.

Figure 5.6: Theoretical optical spectra in the case of two pairs of lasers. The spectra of
�

ηm11E
m
1 (t),

�
ηm22E

m
2 (t), and ET (t) are plotted. The parameters are assumed identical to

those used for Fig. 5.5. The inset shows the free-running optical spectrum of each laser (no
coupling considered). The spectra are numerically computed with Welch’s method.

5.3.4 Discussion on the Influence of Parameters on the Stability of
Chaos Synchronization

The necessary conditions for the existence of chaos synchronization between external-
cavity semiconductor lasers exhibited in the previous subsection do not guarantee
the stability of the synchronization manifold. As far as ECSLs are concerned, the
value of the operational and coupling parameters in this regard are of fundamental
importance as detailed in [122; 123; 165]. The particular form of the semiclassical
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model described by Eqs. 5.5-5.7 requires a numerical investigation of sufficient con-
ditions for stability. Under the necessary conditions of synchronization for a single
pair of ECSL, it is assumed that the master and slave are identical and driven under
similar conditions. The synchronization properties depend on the pumping current
Jm and the feedback strength ηm (the coupling strength is ηc = ηm, according to the
necessary conditions). The plane (Jm, ηm) is therefore a privileged 2D parametric
plane to analyze the stability and quality of complete chaos synchronization. In our
context, however, it becomes much more complicated. Assuming the necessary con-
ditions of the APD configuration are fulfilled, there is still a 4D parameter space to
investigate: (Jm

1 , Jm
2 , ηm11, η

m
22). In this chapter, we will not give a fully detailed pic-

ture of the synchronization regions, but general tendencies on the parameter range
that ensure a stable synchronization manifold. We consider a completely symmetric
case in terms of the feedback strength (ηm11 = ηm22) and cavity length (∆τm12 = 0),
where only the pumping currents are varying at various levels of feedback strength.
The quality of synchronization is measured by the correlation coefficient

Ckk (θ) =
�[Imk (t− θ)− �Imk (t)�] [Isk(t)− �Isk(t)�]�

��
Imk (t− θ)−

�
Imk

��2
�1/2 ��

Isk(t− θ)−
�
Isk
��2

�1/2
, (5.25)

with I
m,s
k = |Em,s

k |2 the optical intensity and θ = ∆τk corresponding to the maximum
correlation between Mk/Sk.

Figure 5.7 displays the evolution of cross-correlation of two pairs of lasers in the
plane (Jm

1 /Jth,1, J
m
2 /Jth,2) [with Jth,1/2 the threshold currents of each laser pair] for

increasing levels of feedback; each row corresponds to a pair of lasers.
Figure 5.7 reveals that the synchronization of chaos is stable for a large range of

Figure 5.7: Evolution of the cross-correlation coefficients C11(∆τ1) (1st row) and C22(∆τ2)
(2nd row) in the plane (Jm

1 /Jth,1, J
m
2 /Jth,2) for increasing values of the feedback strength

ηm11,22 (coupling strength) in a symmetric-coupling configuration: (a) ηm11 = ηm22 = 5 GHz, (b)
ηm11 = ηm22 = 10 GHz, (c) ηm11 = ηm22 = 12.5 GHz, and (d) ηm11 = ηm22 = 15 GHz. The internal
parameters of the EELs are identical to those used for Fig. 5.5.
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operational parameters; it also highlights the existence of mixed regimes, where only
one of the two pairs of lasers is synchronized whereas the other is weakly correlated.
Interestingly, when the feedback is increased symmetrically for both masters (the cou-
pling being adjusted accordingly), the zone of weak correlation shrinks dramatically
for each pair. The analysis provides insight into the evolution of the general behavior
of the synchronization region as the feedback strengths and pumping currents are
increased. Figure 5.7 also differs from most of the plots presented in [122; 123; 165],
because the necessary conditions (ηmkk = ηckk) are always satisfied in our simulations.
This is why a large region of the parameter plane exhibits a maximum level of cor-
relation (C11(∆τ1) ≈ C22(∆τ2) ≈ 1). This study remains nonexhaustive, since the
investigation is limited to particular 2D intersections of the 4D parametric plane.
Still, it confirms that the existence of multiplexed synchronized states is not a be-
havioral artefact of the architecture’s dynamics and that it does exist in a large
region of operational parameters. As a consequence, it should be relatively easy to
observe demultiplexed synchronization experimentally.

Finally, it is worth mentioning that interest in our architecture also relies on the
freedom in the choice of internal parameters for the various master lasers. As long
as systems within a given pair Mk/Sk are physical twins, a complete freedom in
the choice of the type of lasers is allowed. It is even possible to consider frequency
detuned masters (free-running frequencies ωm

0i �= ωm
0j for i �= j) although for spectral-

efficiency purposes the frequencies should be close to each other.

5.3.5 Robustness of Synchronization

In this subsection, we quantify the robustness of the synchronization with respect
to two major impairments: noise and parameter mismatch. Essentially, the results
show that the robustness is similar to that of the complete synchronization of a
single-master/single-slave configuration.

5.3.5.1 Influence of Spontaneous-Emission Noise

In the previous subsection, perfect synchronization was observed for both pairs of
lasers Mk/Sk. However, the model did not take into account the existence of the
intrinsic noise source due to spontaneous emission. In this subsection, we consider
that the spontaneous-emission rate has the numerical value βsp = 1000 s−1, typi-
cally encountered in the literature [11]. Figure 5.8 represents the synchronization
diagrams (Im,s

k , I
m,s
j ) with k, j = {1, 2}. The introduction of noise destroys the per-

fect synchronization observed in Fig. 5.5 since now C11(∆τ1) ≈ C22(∆τ2) ≈ 0.97, but
the trajectories in the plane (Imk , Isk) remain relatively close to the noiseless synchro-
nization manifolds [Figs. 5.8(a)-(b)]. These correlation levels are suitable to ensure
chaos-based communications with a level of performance comparable to single-user
architectures: fast transmissions with low bit-error rates (Gbit/s with BER lower
than 10−7 [4]).

The level of decorrelation between the two different pairs remains small and is
barely affected [C12(∆τ1 − ∆τ2) ≈ 0.07] by the presence of spontaneous-emission
noise.
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Figure 5.8: Robustness of the synchronization with respect to the presence of intrinsic noise
(spontaneous emission βsp = 1000 s−1) in the case of two pairs of lasers. The parameters are
identical to those used for Fig. 5.5.

5.3.5.2 Influence of Parameter Mismatch

We determine that perfect synchronization remains robust to parameter mismatch
between lasers in a given pair Mk/Sk, if the mismatch levels are comparable to
those encountered in a single-emitter/single-receiver laser configuration. This is
highlighted in Fig. 5.9. Additionally, it must be noted that our APD-based cou-
pling configuration does not limit the amount of mismatch between two different
pairs (so long as they remain in chaotic regimes).

Figure 5.9: Robustness of the synchronization with respect to parameter mismatch in the case
of two lasers, illustration of the pair M2/S2. The error of synchronization e(%) = |Is2−Im2 |/|Im2 |
is function of (a) the influence of the laser’s internal parameters and (b) the influence of the
external parameters (pumping current and injection/coupling strengths). The parameters are
identical to those used for Fig. 5.5.
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5.3.6 Generalization of the Architecture

As an illustration, the case of two laser pairs has been presented, but it is possible
to generalize our architecture to a larger number of lasers. As many units as desired
can be introduced through the use of additional beam splitters as illustrated in Fig.
5.10.

The necessary conditions for synchronization remain unchanged when the num-
ber of users increases. Interestingly, the overall energy carried by the multiplexed
optical field ET (t) increases in the shared cavity with the number of lasers; master
and slave Mk/Sk in each pair will be coupled more strongly. Therefore, it is expected
that the size of the parameter region that ensures synchronization will increase with
the number of lasers. For instance, the pumping currents region {Jm

k }k=1,...n that
ensures the various pairs of lasers to be synchronized would become larger at given
coupling strengths. We have numerically verified this assumption by doubling the
number of pairs (n = 4). Assuming a configuration with symmetric couplings (sim-
ilar to Fig. 5.7), we find that for ηkk = 7.5 GHz (j = k, . . . , 4) smaller pumping
currents (Jm

k /Jth,k ∈ [1.1, 1.25]) can be used to ensure the chaos synchronization of
the different pairs of lasers, although such a range of values did not work when two
pairs of lasers were considered. In terms of robustness, an increase in the number
of units is not fundamentally limited by parameter mismatch. As illustrated in the
previous subsection, parameter mismatch matters only within a given pair. The ro-
bustness to spontaneous-emission noise has also been demonstrated with four pairs
of lasers. If the amount of noise in the overall architecture increases, so does the
amplitude of the multiplexed field ET (t). As a consequence, we still achieve good
levels of chaos synchronization between the masters and slaves of the various pairs
of lasers.

Figure 5.10: Possible generalization of our multiplexed architecture with a larger number of
lasers. They share the cavity thanks to additional beam-splitters. LD: laser diode (labeled Mj

and Sj for the masters and slaves, respectively), CS: current source, Mr,Mrf : mirrors, VAj,m/s:
variable attenuators, BS: 50/50 beam splitter, OI: optical isolator, OC: optical coupler, Mod:
amplitude/ phase modulator.

However, it requires the use of larger coupling strengths to achieve a high level
of correlation compared to the case with two pairs. For instance, with n = 4,
a symmetric coupling configuration, and a range of pumping current Jm

k /Jth,k ∈
[1.45, 1.85], it requires coupling strengths of ηkk = 20 GHz to achieve Ckk(∆τk) ≈
0.92 (on average) with the spontaneous-emission rate taken identical for the various
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lasers βsp = 1000 s−1.

This quick analysis highlights the potential of our architecture for multi-user
communications. Nevertheless, the synchronization properties should be thoroughly
investigated to find the sets of parameters that guarantee the best level of perfor-
mance. An increasing number of lasers will also make the experimental realization
of our setup more difficult.

5.4 Multiplexing of Information

This study is a first inquiry into the design of a multiplexed optical chaos-based
transmission chain based on the use of multiple ECSLs. In this section, we describe
how information can be encrypted while exploiting our APD structure. We propose
a generalization of chaos-shift keying (CSK) and chaos modulation (CMo). The
messages will be either encrypted on the pumping currents for CSK, on the phase
(or amplitude) of each optical field composing the multiplexed field ET (t) for CMo.

We detail the extent to which multi-user CSK and CMo encryptions are suited
to our initial architecture. To reach this conclusion, we build on existing single-
user methods (CMa, CSK, and CMo), analyze if their generalization to a multi-user
transmission is possible, and determine their performance levels.

5.4.1 Multiplexed Optical Chaos Masking

Chaos masking (CMa) is a straightforward chaos-based encryption for single-message
transmission. With optical systems, it is realized through an optical addition of
uncoded binary message m(t) at the output of a chaotic ECSL [166; 167]. The
decryption results from the perturbation induced on the chaos synchronization at the
receiving end. However, transmission of multiple messages appears to be impossible
if the messages have identical properties. For instance, a two-user CMa would imply
the optical addition of two uncoded messages m1(t)+m2(t) to the multiplexed optical
field at the output of the shared cavity, before its injection into the optical channel.
The main issue under these conditions is that part of the information on each message
is lost. For instance, if two binary messages are used by each user independently,
their sum results in four different levels labelled 00, 01, 10, and 11.1 These various
values allow for the recovery of m1 and m2 independently, except in the case {01, 10},
for which the indeterminacy cannot be removed. Furthermore, when the number of
units is increased, the number of bits that cannot be decoded increases accordingly.
For instance with three binary messages, it is only possible to make the distinction
between four levels out of eight: 000, 111, {001, 010, 100}, {011, 101, 110}. As a
consequence, CMa cannot be transposed to a multi-user context, if uncoded data are
used with our architecture.

1We suppose that each user is not aware of the presence of other users on the channel. If this
is the case, there exist advanced coding techniques used in the framework of the multiple-access

binary erasure channel to overcome such a limitation [2; 168]. In most of chaos-based communication
schemes, however, users transmit uncoded messages. As a consequence, CMa is here inadequate
compared to CSK or CMo, as illustrated below.
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5.4.2 Multiplexed Optical Chaos-Shift-Keying

Chaos-shift-keying (CSK) encryption is performed through the digital modulation
of the pumping current of each ECSL [169; 170; 171]. The multiplexed field carries
implicit information on each message. Every time the pumping current of the kth
master laser switches between one of its two levels {Jm

k,0(t), J
m
k,1(t)}, the optical field

Em
k (t) is associated with a different chaotic attractor. Figure 5.11 shows a possible

implementation of a CSK encryption method based on our original APD-based ar-
chitecture. As a consequence, the multiplexing field summing n optical fields results

Figure 5.11: Theoretical multiplexed chaos shift-keying scheme. The two lasers are coupled in
an APD fashion. Each master Mi is subjected to current Jm

k,0/1 with k = 1, 2. Only two receivers

are used for the decryption; this corresponds to the case of a linear decryption later described in
this chapter. LD: laser diode (labeled Mk and Sk for the masters and slaves, respectively), CS:
current source, Mr,Mrf : mirrors, VA1,VA2: variable attenuators, BS: 50/50 beam splitter, OI:
optical isolator.

from 2n combinations of different chaotic attractors. For the decryption, 2n receivers
are used (the kth master is duplicated twice, each twin operating at Jm

k,0 and Jm
k,1,

respectively). Their outputs are summed to generate the 2n possible combinations.
The messages bits minimize the expression

{mi}i∈[[1,n]] = min
{Js

i }i∈[[1,n]]

|ET (t)|2 − |ED(t)|2 , (5.26)

with

ED(t) = ED(t, θ,σ, µ) =

n�

j=1

�

ηmjje
iωs

0j(θ+∆τsσj/2)+it∆ωµ
jσEs

j (t− θ−∆τ sσj/2). (5.27)

The squared amplitude of the field corresponds to the detection by a photodiode.
The main problem with this decryption approach would be its computational com-
plexity, which grows exponentially fast with the number n of users. Generating all
the different candidate fields ED(t) will rapidly become unrealistic from an exper-
imental point of view (because of the 2n possibilities). Our exponentially complex
decryption transposes results on a two-user CSK approach with electronic systems
[172] to ECSLs. We propose another solution that consists of using a suboptimal
decryption.
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We consider only n receivers (instead of 2n) set at one of the two pumping
currents {Jm

i,0/1}i=1··· ,n used to encode the various messages. At slave laser Sk, Bobk

monitors either of the two currents (depending on the configuration we chose),

ID,k(t) ∝
�

|ET (t, τ
c
kk, k,m/s)|2 − ηmkk |Es

k(t− τmkk)|2
�

, (5.28)

ID,k(t) ∝
�
�ET (t, τ

c
kk, k,m/s)−

�
ηmkke

iωs
0kτ

m
kkEs

k(t− τmkk)
�
�
2
. (5.29)

In Eq. 5.28 two photodiodes are necessary per legitimate user Bobk, whereas in Eq.
5.29 only one photodiode is used. This latter technique, however, requires an optical
subtraction. To recover Alicek’s transmitted message, Bobk simply needs to compare
the average evolution of the current ID,k(t). Without loss of generality, we assume
that Sk is pumped with the current Js

k = Jm
k,0 corresponding to the current used by

the master Mk to encode the bit of information 0. Every time master Mk encodes
a 0, its chaotic attractor coincides with that of Sk. Consequently, the contribution
of optical field Em

k will be cancelled out by Es
k, thus inducing a decrease in the

average value of the intensity ID,k. When a bit 1 is encoded, Mk and Sk are on
different chaotic attractors. The field Es

k contributes constructively to the total
intensity ID,k(t) at the detector and will have a higher average value compared to
the previous case.

To illustrate this approach, we propose the encryption/decryption of two bit
streams m1(t) and m2(t). Figure 5.12 shows how to multiplex and demultiplex two
data streams at 500 Mbit/s. It appears that Eq. 5.28 achieves clearer decryption
than Eq. 5.29. In this approach, in the decryption of some bits, the differences in
intensity levels of ID,k are not sharp and may induce bit errors. Nevertheless, the
complexity of the decryption remains linear with the number of users. This makes
such an approach a realistic technique, when the number of lasers is increased.

The CSK method, however, has fundamental limitations. The first one is relative
to the bit rate, which is limited by the resynchronization time.

Every time the pumping current is switched, it takes a certain duration (few
nanosecond in ECSLs, depending on the parameters used) for the system to jump

Figure 5.12: Theoretical multiplexing/demultiplexing of two binary messages m1 and m2 at
500 Mbit/s encoded on two pumping current levels for each laser diode Jm

1/2 ∈ {Jm
1/2,0, J

m
1/2,1}.

The intensity of each detector ID,k has been normalized with respect to its maximum value.
The blue and red dashed lines represent the original messages encoded by Alice1 in (a) and by
Alice2 in (b), on their respective laser M1 and M2. The numerical values are similar to those
used for Fig. 5.5.
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from a chaotic attractor and stabilize on another (time also associated to the re-
laxation oscillations of the free-running laser). The second limitation concerns the
choice of the message amplitude. In a linearly complex decryption, the amplitude
has to be large enough to guarantee the detectability of the encoded bits. This
must be done in a way that the values of pumping current ensure sufficiently high
synchronization levels in the pairs of laser Mk/Sk when the pumping currents Jm

k

and Js
k matched each other. Otherwise, the discrimination between synchronized

and unsynchronized states, used in the decryption, would become inefficient. In our
simulations and with our choice of parameters, the bit rate tops around 500 Mbit/s
with the pumping current modulation for the encryption satisfying the following ra-
tio Jm

1,1/J
m
1,0 ≈ Jm

2,1/J
m
2,0 ≈ 3/2. An increase of bit rate makes the linearly complex

decryption inefficient; the discrimination between two pumping levels is not observed
with the parameters under consideration, even with a large ratio Jm

k,0/J
m
k,1.

To a certain extent, CSK has been successfully transposed to a multi-user con-
text with the main advantage of its structural simplicity. Nevertheless, its level of
performance is limited.

5.4.3 Multiplexed Optical Chaos Modulation

In contrast to the previous approach, chaos modulation (CMo) aims at encoding
the messages such that they participate in the dynamics of each emitter Mk. As a
consequence, the encoding can be only performed on the amplitude or the phase of
the optical fields that couple the emitters together and inject the receivers. If done
properly, the encryption does not disturb the synchronization and the quality of the
decryption as well as the bit-rate can be enhanced, compared to CSK. Indeed in
the case of single emitter and a single receiver, CMo has already proven to be more
efficient than CSK [117]. However, even if it presents theoretical advantages, CMo
requires a modification of the multiplexed architecture presented in Fig. 5.4. The
inclusion of phase/amplitude modulators in the emitter’s shared optical cavity is not
straightforward because of the following reasons:

• The modulators would contaminate the optical fields of each master, and have
an averaging effect in the encoding information similar to that of the multi-
plexed chaos masking.

• The modulation speed will be limited to that of the cavity length, since it is
necessary to wait for the multiplexed light field to make a complete round trip in
the shared cavity before the modulator switches its state, thus limiting the bit
rate in most situations. In the case of a single-emitter/single-receiver, a phase
modulator has been placed in the cavity and the so-called on-off phase-shift
keying (OOPSK) was derived [173]. It was praised for its relative security, but
the modulation speed was bounded at a hundred of Mbit/s where traditional
chaos-based encryption techniques reach multiple Gbit/s.

To solve this problem, we must design a structure based on the physical model
described by Eqs. A.9, where the the kth data stream is encoded only onto the kth
master optical field Em

k (t). A theoretical structure is proposed for two users in Fig.
5.13 (and is easily generalized to a larger number).
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Figure 5.13: Theoretical multiplexed chaos modulation scheme. The two lasers are coupled
in an APD fashion. Each modulator is included to affect only its designated field. LD: laser
diode (labeled M1, M2 for the masters), CS: current source, Mr,Mrf : mirrors, VA1,VA2: variable
attenuators, BS: 50/50 beam splitter, OI: optical isolator, OC: optical coupler, Mod: amplitude/
phase modulator.

Although, such a setup may be difficult to realize experimentally, it still gives us
a driving principle to make a multiplexed CMo with an encryption on the amplitude
or the phase of the optical field. The optical circulators introduced in the various
arms of the shared external cavity allow each message to be encoded only on single
master field Em

k .

The multiplexed field therefore reads

ET,CMo(t, θ,σ, µ) =

n�

j=1

�

ηmjje
iωm

0j(θ+∆τmσj/2)+it∆ωµ
jσ+ψm,j(t−θ−∆τmσj/2)

×(1 + am,j(t− θ −∆τmσj/2))E
m
j (t− θ −∆τmσj/2),

(5.30)

with am,j(t) and ψm,j(t) the jth message encoded either on the amplitude or the
phase of the optical field Em

j , respectively.

Under these conditions, the inclusion of the various messages does not disturb
the decryption process. With a multiplexed CMo, the masters do not switch be-
tween different chaotic attractors, thus removing the limitations imposed by the
resynchronization time in the CSK approach. As a consequence, higher bit rates and
quality of chaos synchronization are achieved. In the case of chaotic lasers, the de-
cryption relies mostly on intensity measurements acquired by photodiodes. However
with multiplexed optical fields such as ET (t, θ,σ, µ), inevitable interferences between
the master fields Ek

m will render the decryption sightly more difficult. As in the
case of the multiplexed version of CSK, it is possible to design both exponentially
and linearly complex decryption approaches. We illustrate each by considering an
encryption on the phase.
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5.4.3.1 Exponentially Complex Decryption Strategies

Without loss of generality, we consider the case of two pairs of lasers Mk/Sk coupled
as described in Fig. 5.13. Assuming a binary encryption on the phase of each master
field, there are four possible message combinations (also called states) labeled: 00,
01, 10, and 11. Each pair of lasers is completely synchronized, but the receiver has
no knowledge of the encrypted messages. To decrypt them, different combinations
of messages are formed at the receiver end to create candidate multiplexed fields
ED,b1b2∈{00,01,10,11}(t, θ,σ, µ). These fields will be then compared to the original
multiplexed signal ET,CMo(t). When one of the combinations at the receiver matches
that of the emitter, then the difference is minimum, and it means that the state
b1b2 with bj = {0, 1} and j = {1, 2} (formally associated with the four possible
combinations made out of the two binary phased-encoded messages ψm

1 and ψm
2 ) was

originally encoded at the emitter. The existence of such a minimum naturally leads to
a decoding method via threshold detection. In our example, if we consider a detector
composed of two photodiodes (to detect independently ET,CMo(t) and ED,b1b2(t)
before being subtracted, then the output of the detector is a current intensity). The
intensity at the output of this type of detector reads

ID,b1b2 ∝ ηm11(|Em
1 |2 − |Es

1|2) + ηm22(|Em
2 |2 − |Es

2(t)|2) + 2
�

ηm11η
m
22

×
�
|Em

1 Em
2 | cos(ϕm

1 + ψm
1 − ϕm

2 − ψm
2 )− |Es

1E
s
2| cos(ϕs

1 + ψm
1,b1 − ϕs

2 − ψm
2,b2)

�
,

(5.31)

with Em
1,2 = Em

1,2(t − ∆τ1,2), E
s
1,2 = Es

1,2(t), and ψm
1,2 ∈ {ψm

1,0/1, ψ
m
2,0/1} the bi-

nary messages.1 Figure 5.14 reports a decryption scenario realized with identical
parameters to those used for Fig. 5.5.

Each row presents the output of a different detecting circuit ID,00, ID,01, ID,10,
and ID,11 (if two bits are encrypted, four detectors are necessary). When the inten-
sity of a given detector is minimum with respect to the others, it means that the
corresponding pair of bits was encoded at the emitter end. Assuming no noise in the
transmission and no parameter mismatch within a given pair of lasers, the messages’
retrieval is error free.

The computational complexity (2n for a binary message and n users) of this
decryption method grows exponentially fast and will rapidly limit the number of
users. This has motivated the derivation of linearly complex decryption similar to
what was done for the CSK in the previous subsection.

Similar results to those of Fig. 5.14 can be achieved if the encryption is performed
on the optical field’s amplitude.

5.4.3.2 Linearly Complex Decryption Strategies

To overcome the computational limitations in terms of users, the recovery should
be performed independently on each message. We have derived decoding equations

1It is possible to consider another type of detection such as the balanced homodyne detection.
Before being independently detected, each multiplexed field recombines on a 50/50 beam splitter.
The decoding equations, however, are more complex.
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Figure 5.14: Theoretical multiplexing of two binary phased-encoded messages ψm
1 and ψm

2 at
1 Gbit/s. The messages are jointly decrypted by four decoding circuits. The recovery of the bits
is given by b1b2 = min (ID,00, ID,01, ID,10, ID,11). The normalized intensity are represented on
each row. The parameters are identical to those used for Fig. 5.5.
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similar to Eqs. 5.28-5.29, which can be used to recover the binary messages

ICMo
D,k ∝

�
�
�ET (t, τ

c
kk, k,m/s)−

�
ηmkke

−jωs
0kτ

m
kk+ψm

k,0/1(1 + amk,0/1)E
s
k(t− τmkk)

�
�
�

2
,(5.32)

ICMo
D,k ∝ |ET (t, τ

c
kk, k,m/s)|2 −

�
�
�

�
ηmkke

−jωs
0kτ

m
kk+ψm

k,0/1(1 + amk,0/1)E
s
k(t− τmkk)

�
�
�

2
.(5.33)

These equations correspond to two different methods of detection. Equation 5.32
corresponds to an optical subtraction of the fields ET and Es

k followed by a detection
by a single photodiode. On the contrary, Eq. 5.33 uses two photodiodes; first each
optical field (ET and Es

k) is detected independently, then the two electrical currents
are subtracted. After numerical simulations, it appears that the first method gives
better results when the encoding is performed on the phase; the other detection
performs better on an amplitude encoding.

The detection is threshold-based, similar to the case of exponentially complex
decryption. For each laser Sk, the legitimate user Bobk chooses one fixed value of
phase ψm

k (or amplitude amk ) among the interval {ψm
k,0, ψ

m
k,1} (or {amk,0, amk,1}). Every

time Alicek is transmitting the bit arbitrary chosen by Bobk, the average value of
the intensity at the kth detector (ID,k) will drop out, thus allowing for a particular
user to detect his data-stream. However, the detection is not as sharp as in the
exponentially complex case, since only a fraction of the multiplexed signal will be
cancelled out.

As a consequence, the method appears not to be sufficiently sensitive to discrim-
inate multiple-level message (M-ary). In addition, the encoding range is intrinsically
limited either by the phase or amplitude; phase information can be encoded only
within the range [−π, π] and amplitude information has to remain small to ensure
its proper concealment in the optical chaotic carrier.

We present in Fig. 5.15 the transmission of two binary messages at 1 Gbit/s. The
output of each detector is represented by a solid line, whereas the original messages,
encoded on two difference phase levels {0, π}, are represented on the same figure in
dashed lines. The decryption is realized with Eq. 5.32.

Figure 5.15: Theoretical multiplexing/demultiplexing of two binary phase-encoded messages
ψm
1 and ψm

2 at 1 Gbit/s. The intensity of each detector ID,k has been normalized with respect
to its maximum value. Ten decoded bits are represented. The blue and red dashed lines represent
the original messages encoded by Alice1 in (a) and by Alice2 in (b), on their respective laser M1

and M2. The parameters are identical to those used for Fig. 5.5.

The decryption of each message shows the sudden dropouts of the detectors’
intensity when Alicek’s encoded bits ψm

k,0/1 match the preset value (in our simulation



110

ψm
k,0) used by Bobk. The level of intensity seems close to zero, but it is mainly a

scaling effect due to the normalization by the highest level of ID,k reached during
the whole transmission. The small variations at these low levels of intensity result
from the non-cancelled part that is still present in the detection.

5.5 Conclusion

In summary, we have analyzed the possibility of multiplexing multiple chaotic op-
tical fields generated by semiconductor lasers. We have theoretically devised an
architecture based on a shared external cavity, which allows for the various lasers to
be globally mutually coupled. The multiplexed field obtained in the cavity results
from the superposition of the fields generated by the various lasers at the emitter.
This signal is then sent through a communication channel and injects slave lasers
(physical copies of the masters used at the emitter end) at the receiver end; this is an
optical analogue of an APD with multiple time-delay systems. We demonstrate that
each pair master/slave can be chaotically synchronized when the necessary coupling
conditions, which naturally extend the single-emitter/single-receiver case, are satis-
fied. A rapid analysis also shows a wide range of operational parameters (pumping
currents and coupling strengths) ensuring the stability of the chaos synchronization
manifold for each pair of lasers. The robustness of synchronization with respect to
intrinsic noise and parameter mismatch is similar to that of a single pair of lasers.
Therefore, the robustness is good enough to envisage the development of multiplexed
optical chaos-based communications.

Concerning the transmission aspects, we proposed extending the classical encryp-
tion techniques of CMa, CSK, and CMo to a multi-user context. It appears that only
CSK and CMo are adequate for the uncoded messages used. The multi-user CSK
approach consists of the digital modulation of the laser pumping currents between
two different levels to encrypt the messages. They are retrieved at the receiving end
using either low- or high-computational complexity decryption. The latter method
involves the use of multiple receivers (2×n with n users) and the computation of all
the possible combinations of signals at the receiver end that, when subtracted from
the multiplexed field, lead to minima. The complexity increases exponentially fast
with the number of users, thus limiting the number of messages that can be transmit-
ted and decoded. This has motivated the development of a decryption method with
a linear computational complexity; an identical number of emitters and receivers
(with identical sets of parameters to those of the emitters) is used. The multiplexed
field is compared individually to the various receivers’ fields and each message is
retrieved by a threshold-based detection. The complexity increases linearly with the
number n of users, but CSK is still limited to hundreds of Mbit/s per user due to per-
turbations of the synchronization at the reception (intrinsically associated with the
encryption). The multi-user CMo approach consists of the independent modulation
of each laser field’s amplitude or phase. It relies on identical decryption strategies to
those developed for multi-user CSK. Nevertheless, transmissions at the Gbit/s data
rates are achieved. This paves the way towards highly efficient multiplexed optical
chaos-based communications.



Chapter 6

Multiplexing Chaos Using

Optoelectronic Oscillators

Abstract

This chapter is dedicated to the analysis and design of an optoelectronic device to
multiplex optical chaos and transmit multiple messages. The proposed architec-
ture is derived from an existing single-loop electro-optic oscillator (EOO). We use
a single chaotic optoelectronic oscillator with multiple delayed feedback loops to
generate multiple orthogonal optical carriers tailored for a secure multiplexed en-
cryption of several data streams with a decryption whose computational complexity
increases linearly with the number of users. Similar to code-division multiple access
(CDMA) in optical communications, chaotic signals generated by the Mach-Zehnder
modulator (present in each delayed feedback loop) are used as orthogonal spread-
ing sequences (codes) to transmit multiple messages. Chaos synchronization is then
used to reproduce identical chaotic codes at the receiver’s end to be later used in a
correlation-based detector to recover the various messages independently. We apply
numerically this method and successfully decrypt multiple digital data streams at
high bit rates (multi Gbit/s).

This chapter is based on the following publication:

• D. Rontani, A. Locquet, M. Sciamanna, D.S. Citrin, and A. Uchida “Generation
of Orthogonal Codes with Chaotic Optical Systems”, Opt. Lett. 36, pp. 2287-
2289 (2011).
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6.1 Introduction

Chaos-based communications are spread-spectrum techniques that provide physical-
layer security but have low spectral efficiency, unless multiple data streams are en-
coded simultaneously. A possible solution consists of transposing the concept of
code-division multiple access (CDMA) with orthogonal carriers to the context of
chaos-based communications, using signals generated by chaotic optoelectronic de-
vices with identical structures. In conventional multi-user communications, CDMA
makes use of multiple fixed binary pseudo-random signals also called codes to spread
out the spectrum of various binary data streams, as illustrated in Fig. 6.1.

Figure 6.1: Illustration of the principles of CDMA on a binary sequence of bits of period Tb

which is spectrally spread by a fixed pseudo-random sequence of period Ts < Tb.

Then, the spread data streams are recombined into a single signal and overlap
spectrally. To recover them, a correlation-based detector [21] is used at the receiver,
assuming the fixed codes to be accessible. Though orthogonality (decorrelation)
between each user’s code is not necessary, it is desirable as it guarantees for the
decryption a linear computational complexity with the number of users (or messages).

Transposing the principles of CDMA to the context of chaos-based communica-
tions is naturally suggested by the spectral properties of the chaotic signals that can
be considered as time-varying non-binary spreading sequences (time-varying codes)
because of their large bandwidth compared to that of the message to be transmit-
ted. In a single-user chaos-based cryptsystem, chaos synchronization is then used
at the receiver to reproduce the chaotic signal (spreading sequence) and recover the
message. Although chaos-based cryptography bares some similarities with a CDMA
technique, its adaptation to the transmission of multiple messages is difficult, mostly
because of the time-varying nature of the generated codes (continuously changing
for every bit of transmitted messages), which requires generating processes that per-
manently guarantee orthogonality. This design constraint has already proven to be
particularly challenging, when multiple chaotic Lorenz systems with identical struc-
ture and various set of parameters were used [19]. Indeed, the existence of general
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synchronization (GS) between chaotic signals generated by each system was respon-
sible for significant cross-correlation levels. It was also proven that orthogonality
was hardly achieved as the number of chaotic Lorenz systems (or users) increases.
To overcome this issue, complexifying the emitters’ structure was necessary and a
cascaded Lorenz structure was proposed.

In this chapter, we propose to address the generation of orthogonal chaotic codes
by exploiting the statistical properties of chaotic signals generated by a modified
version of a single delayed electro-optic generator (EOO) [102; 116], ultimately aiming
at the simplest possible transposition of CDMA to the context of optical chaos-based
communications. Then, we devise strategies to encrypt and decrypt the various
messages.

6.2 Description and Modeling of the Optoelectronic
Oscillator with Multiple Loops

In this section, we propose two different architectures based on an EOO with multiple
feedback loops that are suited for multi-user communications. The first one uses
multiple photodetectors and the second one uses a single photodetector, the latter
being tailored for the transmission of information with an optical channel. We derive
the models associated to each configuration to determine the simplest architecture
that can be used to transpose CDMA.

6.2.1 Configuration (1) with Multiple Photo-Detectors

In Configuration (1), an EOO-based architecture with multiple delayed feedback
loops (each of them comprises its own photodetector) is proposed for the emitter
(E). Figure 6.2 depicts a realization of the modified EOO with n = 2 feedback loops
associated with different cosine-square nonlinearities. It is composed of a monochro-
matic (wavelength λ0 = 2π/ν0) CW semiconductor laser diode with optical power
P0 divided in the n separate arms, where the light is modulated by a Mach-Zehnder
modulators (MZj) with respective constant-valued rf and dc half-wave voltages Vπrfj

and Vπdcj
and biased by voltage Vdcj . The optical signals travel through different

optical fibers DLj with fixed time delays Tj . Before being recombined, they are inde-
pendently detected by multiple photodetectors PDj (of efficiency S), one per optical
arm. The resulting electrical signals are combined into a single electrical multiplexed
signal. It is then amplified with gain G and filtered by a band-pass filter with low
and high cut-off frequencies fL and fH . The total attenuation of each loop is denoted
gj < 1 and is obtained, for instance, by using a voltage divider Dj .

These two attenuations induce different frequencies of oscillation ωj for the cosine-
square nonlinearities1 because they reduce the electrical voltage V (t) before driving

1The term frequency of oscillation ωi of the nonlinearity is interpreted as a frequency in the
following sense: with a simple delayed nonlinear feedback defined by f(x(t − T )) = β cos2(x(t −
T ) + ϕ0), when x(t − T ) varies by an amount of π/β the nonlinear function f oscillates once.
Consequently, by modifying the nonlinear function with the inclusion of an additional internal gain
ωj , the nonlinear function f(x(t− T )) = βj cos

2(ωjx(t− T ) + ϕ0j) oscillates once if x(t− T ) varies
by an amount of π/βjωj . In this framework, we can either consider that the required amount of
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Figure 6.2: Chaotic CDMA system used as the emitter (E) in a transmission chain. As an
illustration, a single optoelectronic oscillator with two feedback loops and two photodetectors
is presented. LD: laser diode, MZj=1,2: Mach-Zehnder modulator, DLj=1,2: optical delay line,
PDj=1,2: photodetector, RF: band-pass amplifier, Dj=1,2: voltage divider ensuring reduction
factor gj=1,2 < 1, mj=1,2: messages to be encrypted.

the respective Mach-Zehnder modulator MZj .
The voltage output of the RF band-pass filter V (t) and its input Vin(t) (sum of

the voltage generated by the n photodetectors) are related by

�

1 +
fL

fH

�

V (t) +
1

2πfH

dV (t)

dt
+ 2πfL

� t

t0

V (s)ds = GVin(t) = G

n�

j=1

Vin,j(t). (6.1)

Following the filter (labeled RF in Fig. 6.2), each electric branch of the loop has a
specific voltage divider Dj that attenuates the voltage V (t) by the parameter gj < 1.
At the output of the j−th photodetector, the voltage Vin,j(t) = SGIs,j(t) with Is,j(t)
the optical intensity at the output of MZj . Adopting similar notations to those used
in [107], we derive a dimensionless dynamical model that reads

τ
dx

dt
+ x+

1

θ

� t

t0

x (u) du =

n�

j=1

βj cos
2
�
ωjxTj + ϕ0i

�
, (6.2)

with x(t) = g1
πV (t)
2Vπrf1

the dimensionless state variable, xTi = x(t−Ti) the delayed vari-

able, ωj =
gjVπrf1

g1Vπrfj
the frequency of oscillation of the jth nonlinearity, βj = g1

πGSPj

2Vπrf1

the nonlinear gain of the jth loop, and ϕ0j =
πVdcj

2Vπdcj
the phase-shift associated to the

dc bias of the MZj . The multiplexed signal s(t) =
�n

j=1 βj cos
2
�
ωjxTj + ϕ0j

�
will

be transmitted into an electrical communication channel. Without loss of generality,
we have chosen to use V1(t), the voltage applied to the RF electrode of modulator
MZ1 and its associated reduction factor g1, as references to derive the dimensionless
model.

Interestingly, this design prevents the creation of interferences during the de-
tection. The total feedback signal s(t) is the sum of the feedback signals sj(t) =
βj cos

2(ωjxTj +ϕ0j). These signals, assuming they satisfy adequate statistical prop-
erties, are natural candidates for the chaotic codes that will simultaneously carry

variation for x(t−T ) is smaller (clearly a gain effect) or that the nonlinear function oscillates faster.
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the various data streams. However, the architecture is inadequate for an application
in optical networks because the multiplexed signal is electrical. To circumvent this
issue, the feedback signal have to be optically combined before being detected, as
described below.

6.2.2 Configuration (2) with a Single Photodetector

In this subsection, we propose a solution to overcome the main drawback of the pre-
vious architecture: the electrical nature of the multiplexed signal s(t) to be transmit-
ted. The solution consists of a recombination of the optical fields from the various
feedback loops before being detected by a single photodetector; the multiplexed sig-
nal is optical and couples both the emitter and receiver. The physics associated
to the detection of multiple optical fields may under certain conditions lead to the
creation of interference1, which is not desirable for communication purposes. We
propose two configurations (2a) and (2b) that use an optical multiplexed signal and
are both described in Fig. 6.3.

In Configuration (2a), a single monochromatic light source is used (or multiple
light sources with identical wavelength λ0 = 2π/ν0 if additional optical power is nec-
essary to power the architecture). As previously, each loop contains a Mach-Zehnder
modulator MZj , an optical delay line DLj which delay the jth optical field by Tj .
A polarization controller PCj is added to the various loops to choose polarization
direction of the jth electromagnetic field Eje

iφj−2πνjt and possibly minimize the in-
terference. Their complete avoidance, however, is impossible as soon as the number
of loops is greater than two. Configuration (2b) uses either multiple laser diodes with
different wavelengths λj = 2π/νj (with sufficiently large frequency detuning) or mul-
tiple incoherent laser diodes with identical wavelength λ0 to prevent the appearance
of interferences.

The use of a single photodetector impacts the derivation of the mathematical
model for our architecture. The feedback signal will undergo significant changes
with the appearance of potential interference terms (depending on the configuration
(2a) or (2b) and the number of loops). First, we give an expression for the jth
electric field at the output of MZj ; it reads

Ej,out(t) = Ej cos

�
πVj(t− Tj)

2VπRFj

+
πVDCj

2VπDCj

�

eiφj−2πνjt, (6.4)

with Vj(t) referring to as the amplified voltage applied to the RF electrode of MZj .
Assuming that the n optical fields interfere when detected by the single photodetec-

1Recall on interference on a photodetector. If two optical fields E1e
iφ1−iω1t and

E2e
iφ2−iω2t are summed, their photodetection reads

ID ∝ |E1|
2�cos2(ω1t)�τd + |E2|

2�cos2(ω2t)�τd + 2E1 ·E2�cos(ω1t− φ1) cos(ω2t− φ2)�τd , (6.3)

with �·�τd the time-average operator performed on duration τd the integration time of the pho-
todetector. The observation of interference requires three conditions: 1) the use of identical light
sources (same optical frequency) or with different optical frequencies but with the following con-
dition |ν1 − ν2| � 1/τd, 2) a strong temporal coherence of the light sources, 3) the use of parallel
polarization (optical field with orthogonal polarization do not interfere).
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Figure 6.3: Chaotic CDMA systems used for the emitter (E). A single optoelectronic oscillator
with two feedback loops and a single photodetector is used as an illustration. In configuration
(a), the polarizations of the optical fields are rotated to minimize interference between the differ-
ent optical arms powered by a single monochromatic source (λ0 = 2π/ν0). In configuration (b),
multiple monochromatic sources operating at different wavelength (λj = 2π/νj) are used to pre-
vent interferences on the photodetector. LD: laser diode, MZj=1,2: Mach-Zehnder modulator,
DLj=1,2: optical delay line, PCj=1,2: polarization rotator, OC: optical coupler, PD: photode-
tector, RF: band-pass amplifier, Dj=1,2: voltage divider ensuring reduction factor gj=1,2 < 1,
mj=1,2: messages to be encrypted.

tor, the intensity Is(t) at the output of the photodetector reads

Is(t) =
n�

j=1

|Ej |2�cos(2πνjt)�τd cos2
�
πVj,Tj

2Vπrfj

+
πVdcj

2Vπdcj

�

+
n�

j,k=1,j �=k

Ej ·Ek cos

�
πVj,Tj

2Vπrfj

+
πVdcj

2Vπdcj

�

cos

�
πVk,τk

2Vπrfk

+
πVdck

2Vπdck

�

× �cos(φj − 2πνjt) cos(φk − 2πνkt)�τd ,

(6.5)

with τd the integration time of the photodetector. During τd, we have

�cos2(2πνjt)�τd = 1/2, (6.6)

�cos(φj − 2πνjt) cos(φk − 2πνkt)�τd =

�

cos (φj − φk) if νj = νk = ν0,

0 otherwise.
(6.7)

We denote the optical power associated to the jth optical field by Pj = |Ej |2/2 and
the factor Cij = cos(αj − αk) cos(φj − φk), with αj the polarization direction of the
jth linearly-polarized optical field with a reference direction. In Configuration (2a),
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interference appears and the dynamical model will have an additional component in
its feedback term by comparison with Configurations (1) and (2b).

Therefore, we can derive its model

τ
dx

dt
+ x+

1

θ

� t

t
x(u)du =

n�

j=1

βj cos
2(ωjx (t− Tj) + ϕ0j)

+

n�

j,k=1

�

βjβkCjk cos
�
ωjxTj + ϕ0j

�
cos (ωkxTk

+ ϕ0k) .

(6.8)

As detailed previously, interference is inseparable from a detection by a single detec-
tor of multiple fields with similar properties (wavelength and polarization detection).
Indeed, if more than two feedback loops are considered, it would require for the vari-
ous polarization directions between the coherent light beams to satisfy simultaneously
αj−αk = π/2 (modπ) j, k ∈ {1, n}. This would be equivalent to guarantee the linear
independence of a set of n vectors in a two-dimensional space, which is impossible.

Configuration (2b) has a similar model to that of Configuration (1) because the
various wavelengths prevent the existence of interference. However, if the adimen-
sional models are identical, Configuration (2b) has the spectrum of the multiplexed
signal s(t) defined over multiple wavelengths. This makes Configuration (2b) similar
to a WDM architecture, which is not a major drawback except for security rea-
sons. Indeed, the multiplexing operation being only realized at the RF level, an
eavesdropper could devise a spectral attack for which each optical component of s(t)
could be independently attacked thanks to the use of frequency filters. Nevertheless,
Configuration (1) and (2b) are of great interest to determine the potential of such
multiloop architectures for multiplexing purposes. Towards this end, we will start by
analyzing the statistical properties of the multiplexed signal s(t) and the existence
of orthogonality between its components sj(t), a desired properties to ensure simple
decryption strategies.

6.3 Statistical Properties

In this section, we will analyze from a theoretical and a numerical point of view
the properties of an EOO with a single and multiple delayed feedback loops. The
statistical and spectral properties of the multiplexed signal s(t), the state variable of
the system, and the existence of orthogonality between components sj(t) are detailed.
Before, analyzing the case of multiple loops, we recall known properties of single-loop
EOO and see how the theoretical framework of [141] may apply.

6.3.1 Case of a Single Feedback Loop

Systems described by a delay-differential equation (DDE) with a single cosine-square
(or cosine) nonlinearity can generate high-dimensional chaos with Gaussian statistics
[116]. We propose in this subsection to recall the origins of such statistics (a question
thoroughly studied by Dorizzi et al. in [141]). They are linked to the fast oscillations
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of the cosine-square feedback that destroy the internal correlations on short time
scales. Mathematically, the solution of the DDE can be represented under an integral
form. For instance with a WCG1, it reads

x (t) =

� t

t0

e
−u
τ
β

τ
sin2(x(t− u− T ) + ϕ0)du. (6.9)

In this functional relation, x(t − T ) becomes less correlated to x(t) as the feedback
function oscillates and when the delay T is large. In this particular situation, the
feedback is often referred to as a “random-like driving force”. Indeed, the feedback
function f : x(t) → β sin2(x(t) + ϕ0) has fast variations such that its values remains
correlated only during a single oscillation of f , corresponding to the time for which
x(t) varies from an amount πτ/β. The integral solution and the concept of oscilla-
tions of function f are shown in Fig. 6.4(a). It also unveils inhomogeneities in the
width of the oscillations, which are due to the irregular variations of x(t). We denote
εk = [tk, tk+1] the length of the kth oscillation. For large values of the nonlinear gain
β, the duration of these oscillations becomes smaller and satisfies |εk| � 1. This
allows Eq. 6.9 to be rewritten with the approximation

x(t) ≈
∞�

k=0

e−
tk
τ Xk(t) with Xk(t) =

� tk+1

tk

β

τ
sin2 (x(t− u− T ) + ϕ0) du. (6.10)

The processes Xk(t) are considered approximately independent and identically dis-
tributed (iid). The durations εk are supposed to be approximately equal to an
average value ε (both are reasonable assumptions when β is large). It was proven
that a modified version of the Central-Limit Theorem could be used to prove that
x(t) has Gaussian statistics1 [141].

To the extent of our knowledge, this theory has not been applied to an integro-
delay differential system. However, systems such as the ICG also exhibit Gaussian
statistics, which is a strong indication that similar mechanisms of destruction of
correlation may occur. Indeed, it is possible to give an integral representation for
the state variable x(t) of an ICG [174]

x (t) =

� t

t0

�
1

τ
e

−u
τ − 1

θ
e

−u
θ

�

β cos2(x(t− u− T ) + ϕ0)du, (6.11)

assuming the characteristic times linked by the following relationship θ � τ and
t � τ to neglect the transient evolution as in [174]. The integral representation of
x(t), which is depicted in Fig. 6.4(b), presents remarkable similarities with that of
the WCG. By adopting similar notations, we can also consider the state variable x(t)
to be an infinite sum of independent stochastic processes:

x(t) ≈
∞�

k=0

�

e−
tk
τ

τ
− e−

tk
θ

θ

�

Xk(t) with Xk(t) =

� tk+1

tk

β cos2(x(t− u− T ) + ϕ0)du.

(6.12)

1The WCG is described by an Ikeda-like equation τ ẋ+ x = β sin2(x(t− T ) + ϕ0).
1The state variable x(t) is a deterministic value. Nevertheless, it can be considered as stochastic

process for the sake of explaining its statistical properties.
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Figure 6.4: Interpretation of the integral solution of (a) a delay differential equation describing
a WCG (adapted from [141]) and (b) an integro-delay differential equation of an ICG, in both
case with a single feedback loop and a cosine-square nonlinearity. A variation of x(t−T ) of π/β
achieved in the time interval εn is associated with an oscillation of the feedback function. The
sum of the gray and red shaded regions represent x at time t for a WCG and an ICG, respectively.

The application of a modified Central-Limit Theorem under similar assumptions to
those used in [141] will also lead to the generation of Gaussian statistics. This has
been observed both numerically and experimentally.

6.3.2 Case of Multiple Feedback Loops

In our context, the addition of multiple loops is associated with the use of cosine-
square nonlinearities with different frequencies of oscillation ωj , phase shifts ϕ0j , and
time delays Tj (j = 1, . . . , n). In this subsection, we propose to address the question
of statistical properties from a qualitative point of view. In the case of configurations
(1) and (2) highlighted in the previous section, the nonlinear feedback is composed
of a sum of cosine-square functions with possibly cross-product of cosine functions
if interference exists in the system. Contrary to the case of single-loop systems, the
feedback function is not necessarily periodic1 but it still presents fast oscillations.
The destruction of the correlation is realized at multiple time scales, when the cosine
square functions have different frequencies ωj . As an illustration, we consider a
feedback without interference s(t) =

�n
j=1 βj cos

2(ωjx(t− Tj) + ϕ0j) and identical
time delays (Tj = T for all j). Assuming the product of frequencies and nonlinear
gains are ordered ω1β1 > · · · > ωnβn, when x(t− T ) varies from an amount π/ω1β1,
the function β cos2(ω1x(t−T )+ϕ01) oscillates once, thus destroying the correlation
existing between x(t) and x(t−T ). Meanwhile, the other nonlinear functions oscillate

1The sum of two periodic function does not result in a periodic function.
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�
ωjβj

ω1β1

�

times, destroying at finer time scales the existing correlations. Consequently,

if we consider time intervals εk = [tk, tk+1] (k ∈ N) for which x(t) varies from
π/βω1, then the processes Xk(t) =

� tk+1

tk
s(t− u)du can be considered statistically

independent.

An equation similar to Eq. 6.12 can be used to theoretically guarantee the ex-
istence of Gaussian statistics for systems with multiple loops. When multiple time
delays are considered, a similar approach can be used as well. The nonlinear feedback
function under consideration still acts similar to a random-like driving force, when
the nonlinear gains βj are sufficiently large. Figure 6.5 shows this property with two
nonlinearities. Numerical simulations confirm the first theoretical conjectures; they
reveal a time series [Fig. 6.5(a)] with an approximately Gaussian probability density
function (pdf) for x(t) [Fig. 6.5(b)] in the case of an EOO with two feedback loops
and no interference. When interference exists in the feedback, its oscillating proper-
ties qualitatively change (the modified Central-Limit theorem cannot be rigorously
applied anymore), thus inducing distribution with an imperfect Gaussian shape, es-
pecially if the number of loops and the values of βj and ωj are not large enough.
Nevertheless, it is still possible to ensure approximate Gaussian statistics, as plotted
in Fig. 6.5(c)-(d), in which we have simulated Configuration (2a) with four feedback
loops and interference.

Next, we investigate the internal correlations existing within x(t) and s(t) in
the case without interference with two feedback loops (T1 = T2, and β1 = β2).
We define their normalized autocovariance functions by ρxx(u) = Γxx(u)/Γxx(0) =

Figure 6.5: (a)-(b) Time series of x(t), (c)-(d) probability density function of x(t) (gray solid
line) with a variance and the corresponding theoretical Gaussian distribution with identical mean
and variance (red solid line), in the case of an EOO in Configuration (1) or (2b) with two feedback
loops without interference (a)-(b) and with four feedback loops with interference (c)-(d). In (a)-
(b), parameters are τ = 25 ps, θ = 5 µs, T1 = T2 = 30 ns, βi|i=1,2 = 5, ϕ0i|i=1,2 = −π/4,
ω2 = 2ω1 = 2, and time step ∆t = 5 ps. In (c)-(d), parameters are τ = 25 ps, θ = 5 µs,
Tj = 30 + 15(j − 1) ns, βj = 5, ϕ0j = −π/4, ωj = 1 + 2(j − 1), Cij = cos((i − j)π4 ) with
i �= j = 1, . . . , 4.
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�(x(t)− �x�)(x(t+ u)− �x�)�/�(x(t)− �x�)2� and ρss(u) = Γss(u)/Γss(0) = �(s(t)−
�s�)(s(t+u)−�s�)�/�(s(t)−�s�)2� where �·� denotes the time average. The normalized
autocovariance ρxx(u) decreases exponentially fast [Fig. 6.6(c)] as a consequence of
x(t) being a filtered version of s(t). It also reveals typical correlation revivals at lags
equal to multiple of the time delay T (because of the values of β we used), see Fig.
6.6(a).

Figure 6.6: Normalized autocovariance functions ρxx and ρss of x(t) in (a) and s(t) in (b),
respectively. A zoom of their behavior in the vicinity of the zero lag is provided in (c) and (d),
respectively. The parameters for the simulation are τ = 25 ps, θ = 5 µs, T1 = T2 = 30 ns,
βi|i=1,2 = 5, ϕ0i|i=1,2 = −π/4, ω2 = 2ω1 = 2, and time step ∆t = 5 ps.

The multiplexed signal s(t) looses its memory faster than x(t) and may be consid-
ered approximately white, ρss(u) going to zero in approximately 25 ps and remaining
totally flat except for the lag u = 0 [see Fig. 6.6(b)] and the associated zoom [see
Fig. 6.6(d)].

These results demonstrate that an EOO with multiple delayed cosine-square feed-
back nonlinearities with different frequencies of oscillation bares similar statistical
and spectral features to those of an EOO with a single delayed feedback, especially
when no interference exists in the feedback term. These properties will be later ex-
ploited for the derivation of signals to carry the digital messages associated with the
various users Alicej (j = 1, . . . , n).

6.4 Orthogonality

Orthogonality is studied between the various components comprising the multiplexed
signal s(t), which will be used as chaotic codes for the transmission of messages. In
this section, we restrict ourselves to a feedback signal without interference, such as
in Configurations (1) and (2b). Each code is an optical signal that propagates in its
optical loop and is defined by sj(t) = βj cos

2(ωjxT+ϕ0j) (j = 1, . . . , n). To guarantee
a reasonable level of security, we consider that all these codes have approximately
the same variance, which consists of using identical nonlinear gains (βj = β). Indeed,
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with identical variance for the codes, we prevent a potential eavesdropper to identify
the presence of multiple carriers in the multiplexed signal s(t). We propose to employ
these chaotic codes to transmit multiple messages. Our approach will be similar to
CDMA except that the codes are time-dependent chaotic waveforms that change for
every transmitted bit (or symbol) of duration Tb. Furthermore, to ensure a linear
computational complexity for the decryption, the generated chaotic codes have to be
orthogonal at all times. In this section, we provide analytical and numerical insight
on this issue before devising strategies of encryption and decryption.

6.4.1 Analytical Results

We make the assumption that the state variable of the EOO with multiple feedback
is a Gaussian random variable.1 We consider that the length or duration of the
code Tb is such that it is possible to assimilate the calculations over an infinite time
duration with those on Tb. We consider two codes si(t) = β cos2(ωix(t−Ti)+ϕ0i) and
sj(t) = β cos2(ωjx(t − Tj) + ϕ0j). Our objective is to calculate the crosscovariance
between them. The crosscovariance is defined as

Γsisj = (si(t)− �si�) (sj(t)− �si�) , (6.13)

= �si(t)sj(t)� − �si� �sj� , (6.14)

with Γsisj = Γsisj (0). From Section 6.3, we assume that x(t) is purely Gaussian at
every time scale with mean mx = 0 and variance σ2

x. We define its characteristic
function:

ψx(u) = eimxu−1/2σ2
xu

2
. (6.15)

By stationarity of the process x(t), the variable xTi = x(t − Ti) and x(t) will have
the same statistical properties.

We evaluate first �si�:

�si� =
�
β cos2 (ωixTi + ϕ0i)

�
,

(a)
=

�
β

2
(1 + cos (2ωixTi + 2ϕ0i)

�

,

(b)
=

β

2
+

β

2
E (cos (2ωixTi + 2ϕ0i)) ,

(c)
=

β

2
+

β

2
Re

�
ψx(2ωi)e

i2ϕ0i
�
,

�si� =
β

2

�

1 + cos 2ϕ0ie
−2σ2

xω
2
i

�

. (6.16)

(a) comes from the power reduction formula: cos2(x) = 1/2(1 + cos(2x)); (b) comes
from the ergodicity of x(t) (or x(t−Ti)) and the linearity of the expectancy operator
E(·); (c) comes from the characteristic function ψx(u) of a random variable.

1The state variable is a deterministic quantity with respect to our physical model. However,
in a first approximation it is considered as a random variable for the analytical calculations to be
tractable.
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We consider the least favorable case for the decorrelation of the chaotic codes,
meaning Ti = Tj = T for all i, j. Then, we calculate the analytical expression of
�si(t), sj(t)� using 1D statistics:

�si(t), sj(t)� = E (si(t)sj(t)) ,

= β2
E
�
cos2(ωixTi + ϕ0i) cos

2(ωjxTj + ϕ0j)
�
,

�si(t), sj(t)� =
β2

8

�

cos(2ϕ0i + 2ϕ0j)e
−2(ωi+ωj)

2σ2
x + cos(2∆ϕ0ij)e

−2∆ω2
ijσ

2
x

�

,

+
β2

4

�

1 + cos 2ϕ0ie
−2ω2

i σ
2
x + cos 2ϕ0je

−2ω2
jσ

2
x

�

. (6.17)

The same steps to those of the derivation of �si� were used: ergodicity of x(t), power
reduction formula, trigonometric identities, and the linearity of E(·).

It is finally possible to derive the expression of the cross-covariance between two
different codes by combining the expressions of Eqs. 6.16 and 6.17. It reads:

Γsisj =
β2

8

�

1− e−4ωiωjσ
2
x

�

×
�

cos(2∆ϕ0ij) + cos(2ϕ0i + 2ϕ0j)e
−4ωiωjσ

2
x

�

e−2∆ω2
ijσ

2
x . (6.18)

The analytical expression of the cross-covariance shows that

Γsisj ∼
∆ωij→∞

β2

8
cos 2∆ϕ0ije

−2∆ω2
ijσ

2
x , (6.19)

if we assume that all the parameters are fixed except for ∆ωij . As a consequence,
when the frequency detuning ∆ωij increases the correlation between two given chaotic
codes tends to decrease exponentially fast.

The nonlinear gain β appears explicitly as a multiplicative factor in Γsisj and im-
plicitly in the expression the variance σ2

x ∝ β2. (A parabolic dependence is observed
similar to [141]). By denoting cβ the proportionality coefficient, we end up with

Γsisj ∼
β→∞

β2

8
cos 2∆ϕ0ije

−2∆ω2
ijcββ

2

. (6.20)

Since the increase (or decrease) of an exponential function is faster than any poly-
nomial function (limβ→∞ βne−β2

= 0), hyperchaotic regimes generate by large val-
ues of β also leads to better orthogonality between the chaotic codes at fixed de-
tuning. Another tunable parameter that can ensure orthogonality is the relative
phase shift ∆ϕ0ij = ϕ0i − ϕ0j and respective phase of each chaotic code. They
are involved in the cross-covariance expression through the multiplicative factor
cos(2∆ϕ0ij) + cos(2ϕ0i + 2ϕ0j)e

−4ωiωjσ
2
x . It is possible to ensure perfect orthogo-

nality between the codes when each term in this sum is equal to zero, leading to
∆ϕ0ij = (2p + 1)π/4 and ϕ0i + ϕ0j = (2p + 1)π/4 with p ∈ Z. This equalities can
make only two codes to be orthogonal, but it does not ensure orthogonality of a set
of codes of arbitrary large cardinality. Therefore, the phase shift ∆ϕ0ij is not the
most an appropriate parameter to ensure orthogonality compared to the detuning in
frequencies of oscillation ∆ωij .
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Finally, the duration Tb also plays a fundamental role in achieving orthogonality,
defined with cross-covariance measurements. Therefore, obtaining a soundable cross-
covariance estimation requires the two chaotic codes (si,sj) to fluctuate sufficiently
enough, in other terms Tb should be greater than several times the maximum decor-
relation time of the two chaotic codes. In addition to that and because the chaotic
codes are both seeded by the same x(t), each code can exhibit different evolutions
only if x(t) also fluctuates sufficiently enough. Quantitatively, we have noticed that
it is not possible to rely on cross-covariance measurements if Tb is smaller than ap-
proximately twice the decorrelation time of x(t).

In conclusion, this analytical study has demonstrated the existence of a particular
set of parameters that guarantees the various codes sj(t) to be orthogonal with
each other, the role of the frequency detuning ∆ωij being crucial. In the following
subsection, we propose a numerical investigation to supports our theoretical findings.

6.4.2 Numerical Results

The orthogonality is studied as a function of the frequency detuning ∆ωij = ωi−ωj ,
the nonlinear gain β, the relative phase difference ∆ϕ0ij = ϕ0i−ϕ0j with a short bit
duration Tb. To numerically evaluate the orthogonality, we consider the normalized
cross-covariance coefficient

ρsisj = Γsisj/(ΓsisiΓsjsj )
1/2, (6.21)

calculated on a finite period Tb. To ensure that orthogonality exists for all times
with the time-varying codes, we repeat and average the cross-covariance measures
over 5000Tb. Figure 6.7 plots |ρsisj | for a bit duration Tb = 0.4 ns (the bit duration

Figure 6.7: Evolution of correlation coefficient ρsωi
sωj

in parameter space (∆ωij ,β) in (a) and

in (∆ωij ,∆ϕ0ij) with β = 5, T = 30 ns in (b) for Tb = 0.4 ns. The results are averaged over
5000Tb. The other parameters are identical to those of Fig. 6.5
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in the OC-48 standard) in two different parameter planes (∆ωij ,β) in Fig. 6.7(a),
and (∆ωij ,∆ϕ0ij) in Fig. 6.7(b). Figure 6.7(a) maps |ρsisj | with ∆ϕ0ij = 0 and
shows the dependence of orthogonality on the nonlinear gain β. Indeed, the frequen-
cies of oscillations of the nonlinear functions satisfy π/βωi,j , which makes the code
correlated enough at weak values of β even if the detuning is significant. It also
shows that orthogonality becomes almost perfect when the nonlinear gain is strong
enough and the detuning sufficiently large, as forecasted by the analytical results
(calculated under the assumption that Tb → ∞). However, when setting aside the
frequency detuning ∆ωij , the relative phase shift ∆ϕ0ij could also be advantageously
used to generate independent codes. That is why we mapped the evolution of |ρsisj |
in (∆ωij ,∆ϕ0ij) with β = 5 to ensure a hyperchaotic regime. Figure 6.7(b) shows
only four narrow zones of orthogonality when ∆ωij = 0. They become wider as
the detuning is increased and ultimately lead to almost perfect orthogonality at any
point of the parameter space (∆ωij ,∆ϕ0ij). At zero detuning, the cross-covariance
between two different codes is maximum for a phase shift ∆ϕ0ij = kπ/2, k ∈ N, lead-
ing to the striped zones. Their existence is related to the construction of the codes
that satisfy si|ωi,ϕ0i

= si|ωi,ϕ0i+kπ/2, thus explaining the stripes at zero detuning.
These two analyses confirm that one of the most interesting parameter, which easily
ensures orthogonality between two arbitrary codes si(t) and sj(t), is the frequency
detuning ∆ωij .

In conclusion, the numerical findings support the theoretical results highlighted
in the previous subsection. We have a guarantee that almost-perfect orthogonality is
achievable with the proper set of parameters even on short durations (Tb = 0.4 ns).
This makes the codes restricted to this time interval suitable carriers to be digitally
modulated and convey independently various messages. The strategies to encrypt
and decrypt information will be detailed in the next section.

6.5 Multiplexing of Information

In this section, we describe how messages can be encrypted and decrypted. A first
decryption strategy makes use of orthogonality and covariance measurements, then
we devise a decryption method based on covariance or least-square optimization,
when orthogonality is not satisfied but linear independence is still ensured between
the various codes. These methods are tailor-made for Configurations (1) and (2b)
but inadequate if interference exists in the multiplexed feedback signal s(t). As a
consequence, we detailed how decryption could be achieved in Configuration (2a),
where interference constitutes a major challenge as they couple the square-roots of
the codes sj together.

6.5.1 Architecture & Chaos Synchronization

We consider two EOOs: an emitter (E) and a receiver (R) that are subjected to an
identical driving signal s(t), but delayed by the transmission time Tc in the case of
R.
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The equations of the chaotic transmission chain read

τ ẋE(t) + xE(t) +
1

θ

� t

t0

xE(s)ds = s(t), (6.22)

τ ẋR(t) + xR(t) +
1

θ

� t

t0

xR(s)ds = s(t− Tc). (6.23)

This transmission chain constitutes an active-passive decomposition (APD). The left-
hand sides of Eqs. A.30-A.31 are typical of second-order damped oscillators. This
architecture is depicted in Fig. 6.8 for Configuration (2a) and two feedback loops.

Figure 6.8: Chaotic CDMA transmission chain using for the emitter (E) and receiver (R) a
single optoelectronic oscillator with two feedback loops and a single photodetector in the case of
Configuration (2a). The structure of the decoding box depends on the presence of interferences
or not. LD: laser diode, MZj=1,2: Mach-Zehnder modulator, DLj=1,2: optical delay line, λ/2:
halfwavelength plate, OC: optical coupler, PD: photodetector, RF: band-pass amplifier, Dj=1,2:
voltage divider ensuring reduction factor gj=1,2 < 1, mj=1,2: messages to be encrypted.

By translating the time reference frame of (E) by Tc, the dynamics of the lagged-
synchronization error eTc(t) = y(t)− x(t− Tc) can be derived:

τ ėTc(t) + eTc(t) +
1

θ

� t

t0

eTc(s)ds = 0, (6.24)

and equivalently represented by the damped oscillator

ëTc(t) + 2λω0ėTc(t) + ω2
0eTc(t) = 0 with







2λω0 =
1

τ
,

ω2
0 =

1

θτ
.

(6.25)

This proves the asymptotic convergence to zero of the synchronization error and
guarantees chaos synchronization between (E) and (R) for any set of parameters.
This is of paramount importance to guarantee that the receiver can reproduce the
chaotic code and ultimately decrypt the various messages.

6.5.2 Encryption

To encrypt her message, each user Alicej (j ∈ [[1, N ]]) modulates digitally the non-
linear gain β of its associated code sj(t) during the time Tb. Typically, in secure
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chaos-based communication, the modulation depth is taken small with respect to
the amplitude of the chaotic signal to prevent any direct recovery from the observa-
tion of the multiplexed signal s(t). Moreover, in our there has to be an upper limit
on the modulation depth to preserve orthogonality and thus message decoding.

Mathematically, the digital data stream mj(t) is composed of a series of bits m
(k)
j ∈

{−1; 1} such that

mj(t) =
∞�

k=0

m
(k)
j rect(t− kTb), (6.26)

with rect(t− kTb) = H(t− kTb)−H(t− (k + 1)Tb) and H the Heaviside function.
These messages are finally embedded in the multiplexed feedback signal s(t) that
becomes

s(t) =
n�

j=1

βj(1 + δmj(t)) cos
2 (ωjxT + ϕ0j), (6.27)

with δ a multiplicative factor that satisfies |δ| � 1. In practice, this modulation can
be realized by the adjunction of an additional amplitude modulator in each optical
arm, between the CW laser source and the Mach-Zehnder modulator MZj .

The gain modulation of the codes, which have a very large bandwidth and linear
statistical independence or orthogonality (for a proper choice of parameters), is simi-
lar to digital modulation and spread-spectrum techniques encountered in CDMA [21].
Consequently, analogous strategies of decryption based on covariance measurements
can be inferred in our context, as illustrated in the following subsection.

6.5.3 Decryption without Interferences

Various decryption approaches are presented in this section. They all exploit the sta-
tistical independence (partial or quasi-total) between the various chaotic codes sj(t)
composing the randomly multiplexed feedback term s(t). At the receiving end, each
legitimate user Bobj will generate a copy of the code employed by Alicej to recover a
targeted information. We denote this code’s duplicate s�j(t) = β cos2(ωjxR(t− T ) +
ϕ0j)

6.5.3.1 Decryption by Covariance

This methods relies on the calculation of cross-covariance between each duplicated
code s�i and the multiplexed signal s(t).

Γss�i
=

�
(s(t)− �s�)

�
s�i(t)−

�
s�i
���

,

(a)
=

N�

j=1

(1 + δmj(t))�(sj(t)− �si�)
�
s�i(t)−

�
s�i
��
�,

Γss�i
(0) =

N�

j=1

(1 + δmj(t))Γsjs�i
.

Now, if we assume E and R to be chaotically synchronized, it implies the code
si and its duplicates s�i to be equal. Consequently, the cross-covariance becomes
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Γss�i
=

�N
j=1(1 + δmj(t))Γs�js

�
i
. The cross-covariance between s(t) and s�i can be

expressed in terms of the cross-covariance Γs�js
�
i
of the duplicated codes generated by

the various Bobs. This expression offers to the legitimate users Bobs two possibilities:
(i) decrypting their own message independently from the evolution of others or (ii)
decrypting jointly all the messages at every bit period Tb.

The first approach requires that the decorrelation or orthogonality between the
various codes is strong enough to neglect the contribution of other users, mean-
ing that |Γs�js

�
i
| � |Γs�is

�
i
|. This leads to an approximate expression of Γss�i

, where

the contribution of all the messages mj(t) (j �= i) can be neglected: Γss�i
� (1 +

δmi(t))Γs�is
�
i
+
�N

j=1,j �=i Γsjs�i
. Finally the approximate decoding equation reads:

δmi(t) �
1

Γs�is
�
i



Γss�i
−

N�

j=1

Γs�js
�
i



 . (6.28)

Equation 6.28 is similar to that in [19] except that we are considering autocovariance
and not autocorrelation. We demonstrate numerically in Fig. 6.9 that it is possible to
transmit two data streams at 2.5 Gbit/s (OC-48 standard) with Configuration (2a).
In the simulations, we have chosen δ = 1/32, which does not significantly disturb
the multiplexed signal waveforms (good concealment) and the value of the nonlinear
gain of each chaotic code (quasi-perfect orthogonality guaranteed). Furthermore,
to avoid the appearance of interference, the polarization of the optical field of the
two loops are set to be orthogonal (a half-wavelength plate is inserted in one optical
arm).

Figure 6.9: Numerical simulation of a multiplexed transmission two different messages for the
simultaneous transmission of two binary messages at 2.5 Gbit/s (OC-48 standard) per user. The
purple dashed line indicates the threshold used to discriminate different bit values. the dashed
and solid lines represent the encrypted and decrypted messages, respectively. The simulation’s
parameters are βi|i=1,2 = 5, ϕ0i|i=1,2 = −π/4, θ = 10 µs, τ = 25 ps, T = 30 ns, ∆ω12 = 2,
and δ = 1/32.

It requires to neglect the messages sent by Alicej �=i. If they were not neglected,
then the left hand of the decoding equation would be written as

δmi(t) (1 + λij) with λij =

N�

j=1,j �=i

mj(t)Γs�js
�
i
(0)

mi(t)Γs�js
�
i
(0)

. (6.29)
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Equation 6.29 shows the effect of other messages and their associated spreading codes
(mj and sj , respectively). To ensure a systematic error-free decryption it is important
to guarantee that the factor λij will not affect the sign of the decrypted message.
This naturally imposes the condition |λij | < 1, which by triangular inequalities leads
to a sufficient (weaker) condition

�

i �=j

�
�
�Γs�isj

�
�
�

�
�
�Γs�isi

�
�
�

< 1. (6.30)

This ensures an error-free decryption of Alicei’s message and also gives an upper
bound for the number of users who can transmit simultaneously decodable messages.1

One may see orthogonality and the decryption strategy as limiting design con-
straints. They can be alleviated, but they will ultimately result in an increase in
computational complexity for the decryption. It is still possible to decrypt the mes-
sage while keeping the contributions of the various Alices. Therefore, the various
cross-covariance Γss�j

(j = 1, . . . , N) are now related by the linear system







...
Γss�i

...







=







...
· · · Γs�isj

· · ·
...













...
1 + δmi(t)

...







, (6.31)

which is written in the condensed form y = Γ(1 + δm) with m,1,y ∈ R
N and

Γ ∈ MN,N (R), the covariance matrix. In this new framework, one has to invert
the covariance matrix to retrieve the various messages. This matrix is square, real
valued, and symmetric; therefore it is diagonalizable in an orthonormal basis. If the
N codes are orthogonal (or quasi-orthogonal), then the covariance matrix is already
diagonal and invertible, the general decoding equation Eq.6.31 degenerates into Eq.
6.28. Orthogonality between codes {sj}j∈[1,n], however, is not necessary to retrieve
the various messages without error. Linear independence, a weaker constrain, is
sufficient to avoid the existence of null eigenvalue that will prevent the inversion
of Γ. In our context, this gives more flexibility for the choice of parameters of the
chaotic codes. Finally, the generalized decoding equation reads

δm = Γ�−1(y)− 1, (6.32)

with Γ� the covariance matrix calculated with the duplicated codes s�j(t). The com-
putational complexity of the decryption is that of the inversion of a square matrix
of size N , which is O(N3) if a Gauss-Jordan elimination is used. The complexity
becomes polynomial.

6.5.3.2 Decryption by Least-Square Optimization

Another method to decrypt the various data consists of a least-square regression.
This method allows for all the messages of various users to be retrieved at once. The

1Equations 6.29-6.30 are derived following the method described in [19]. Their mathematical ex-
pressions are similar to those of [19], except that covariance functions are used instead of correlation
functions.
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method is pretty similar to the previous one, except that the matrices and vectors
involved are different. In this approach, we consider that we have at our disposal Nb

samples every time-slots for which a bit is encoded.

s =
�
s(0) · · · s(Nb−1)

�T
, (6.33)

=

�
N�

j=1
(1 + δmj)s

(0)
i · · ·

N�

j=1
(1 + δmj)s

(Nb−1)
j

�T

, (6.34)

=
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(0)
1 · · · s

(0)
N

...
. . .

...

s
(Nb−1)
1 · · · s

(Nb−1)
N




 (1+ δm) , (6.35)

= H (1+ δm) , (6.36)

with s ∈ R
Nb , 1,m ∈ R

N and H ∈ MNb,N (R). Similarly to susbection 6.5.3.1, the
codes generated by the Alices are replaced in H by their duplicate generated by the
Bobs (this is possible due to the chaos synchronization between (E) and (R)). We
denotes H� this matrix with duplicated codes. Contrary to Eq. 6.32, Matrix H

� is
not square in general and therefore not invertible. This is the standard problem of
least-square regression that can be solved by considering the pseudo inverse of H�

(which exists if rank(H�) = N). The decoding equation finally reads

δm =
�
H�TH�

�−1
H�y − 1. (6.37)

This methods has similar level of complexity to that of Eq. 6.32 and is not bounded in
terms of number of users, as long as linear independence is achieved for the sampled
chaotic codes. With this method, we also manage to achieve transmission at 2.5
Gbit/s with a number of users comparable to that of the covariance-based decryption
method.

The various decryption strategies highlighted in the previous subsection are ef-
ficient only if interference does not exist within the multiplexed signal s(t) as in
Configurations (1) and (2b). In the case of Configuration (2a), however, a new
decoding equation must be determined, as illustrated in the following subsection.

6.5.4 Decryption with Interferences

In this subsection, we detail a possible strategy to decrypt multiple data streams,
when Configuration (2a) is under consideration. This configuration is ideal for op-
tical communications and uses a single wavelength (thus ensuring optical spectrum
efficiency). However, the presence of interference makes the previous decryption
strategies unusable. Therefore, we have to devised decryption techniques adapted
to this specific configuration. In Configuration (2a), the message inclusion is similar
to that of Fig. 6.8 (optical injection of each message in the separate arms) and the
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multiplexed signal becomes

s(t) =
n�

j=1

(1 + δmj)βj cos
2(ωjxTj + ϕ0j)+

�

1�j,k�n

Cjk

�

βjβk(1 + δmj)(1 + δmk) cos(ωjxTj + ϕ0j) cos(ωkxTk
+ ϕ0k),

(6.38)

with |δ| � 1 and xTj,k
= x(t− Tj,k). Similar to the case without interferences (Con-

figurations (1) and (2b)), the multiplexed signal is used to synchronize an emitter
and a receiver, and Bobi can generate at the receiving end the duplicated codes
s�i = βi cos

2(ωiyTi + ϕ0i). Interference creates a natural crosstalk between the vari-
ous messages, making the decoding equation 6.28 inefficient, even when the carrier
{si}i∈[[1,n]] is a set of orthogonal signals. Here, we propose a modified decoding equa-
tion to decrypt accurately each message. We first introduce the set of root-square
codes {ri}i∈[[1,n]] defined by:

ri =
�

βi cos(ωixTi + ϕ0i). (6.39)

At the receiving end, Bobi will perform the crosscovariance measure between his
generated waveform and the multiplexed signal s:

Γss�i
=

n�

k=1

(1 + δmk)Γsks
�
i
+

�

1�j,k�n

Cjk

�

(1 + δmj)(1 + δmk)Γrkrjs
�
i
, (6.40)

= (1 + δmi)Γsis�i
+

n�

k=1
k �=i

(1 + δmk)Γsks
�
i

+
�

1�j,k�n

Cjk

�

(1 + δmj)(1 + δmk)Γrjrks
�
i

� �� �

I

�

{rj ,rk}(j,k)∈[[1,n]]2

�

. (6.41)

We rewrite the last term of the crosscovariance measurement by highlighting the
message δmi:

I
�

{rj , rk}(j,k)∈[[1,n]]2
�

(a)
=

�

(1 + δmi)

n�

j=1
j �=i

2Cij

�

(1 + δmj)Γs�irirj

+
�

1�j,k�n
j,k �=i

Cjk

�

(1 + δmj) (1 + δmk)Γs�irjrk
, (6.42)
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I
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≈
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1 +
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,(6.43)

(c)
≈ δmi

n�

j=1
j �=i

CijΓs�irirj
+

�

1�j,k�n

CjkΓs�irjrk
. (6.44)

In Equality (a), we have separated the terms factorized by
√
1 + δmi from those

which are not. Then, in Approximation (b), we consider a Taylor expansion of the
square function thanks to the factor |δ| � 1. In approximation (c), we neglect all
the contributions coming from δmj with j �= i and the cross-products of messages
mjmk (j, k �= i), which are a O(δ2). We finally obtain a linear expression in δmi.
Since the codes and square-root codes are not perfectly orthogonal, we have to keep
the contributions of Γs�irjrk

to ensure a reliable decryption.

In a similar way, it is possible to simplify the second term of Eq. 6.41 by neglecting
the cross-covariance factorized by δmk (k �= i). Therefore, the second term becomes

n�

k=1,k �=i

(1 + δmk) Γs�isk
≈

n�

k=1,k �=i

Γs�isk
. (6.45)

Finally, the approximate value of the cross-covariance Γss�i
becomes linear in the

messages δmi and reads

Γss�i
≈ δmi



Γs�isi
+

n�

k=1,k �=i

CikΓs�irirk



+
n�

k=1

Γs�isk
+

�

1�j,k�n

CjkΓs�irjrk
. (6.46)

The chaos synchronization of Emitter (E) and Receiver (R) allows for each user
Bobk to replicate the code sj . However, duplicating the square-root codes is more
challenging, since it would require additional photodiodes (n(n− 1)/2) at the recep-
tion to generate the interference terms between all the pairs of optical fields. We
assume that that r�j =

�
βj cos(ωjyTj +ϕ0j) = rj and s�j = βj cos

2(ωjyTj +ϕ0j) = sj
for j = 1, . . . , n. After simplifications and injection of the duplicated codes, the
decoding equation Eq. 6.41 becomes

δmi ≈
1

Γs�is
�
i
+

n�

k=1,k �=i

CikΓs�ir
�
ir

�
k



Γss�i
−

n�

k=1

Γs�is
�
k
−

�

1�j,k�n

CjkΓs�ir
�
jr

�
k



 . (6.47)

The decryption equation (6.47) is very similar to Eq. (6.28) with no interference,
except for the correcting terms at the numerator and denominators.
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We have tested the modified decryption equation by simulating the encryption
and decryption of four messages at 2.5 Gbits/s in an architecture with a single pho-
todiode and four feedback loops. The results are shown in Fig. 6.10. The recovered
messages present a slightly larger dispersion when compared to those recovered in
non-interference architectures. Assuming the Taylor expansion of Γss�i

to remove the
square-root functions of the messages, the left-hand side of Eq. 6.47 can be more
rigorously written δmi(1 + γik) with

γik =
n�

k=1
k �=i

mkΓs�is
�
k

miΛik
+

n�

k=1
k �=i

mkCik
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Γs�ir

�
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+

�

1�j,k�n
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2miΛik
(mk +mj +
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2
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�
jr

�
k
,

(6.48)

with Λik = Γs�is
�
i
+

n�

k=1
k �=i

Cik

�

1 + δmk
2

�

Γs�ir
�
ir

�
k
. This is similar to the expression δmi(1+

λik) in Eq. 6.29. It is important that the factor γik does not induce a sign change
otherwise it will induce error in the decryption in the message bit mi. This naturally
imposes the condition |γik| < 1. A sufficient condition for the decryption can be
deduced by considering a stronger constrain on γik; by introducing the absolute
values within γik and applying the triangular inequality, we deduce the following
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Moreover, we have |Λik| <
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a sufficient condition for the decryption to be possible:
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The form of the sufficient condition is pretty similar to that of the case without
interference (Eq. 6.30). It highlights the undesired effects of the interference cross-
covariance terms that may rapidly saturate the inequality in Eq. 6.50. Therefore to
ensure a satisfying level of performance with this decryption method, the codes and
the square-root codes have to be quasi-orthogonal.

In summary, we have demonstrated theoretically how to decrypt messages when
interference exists in the multiplexed feedback signal s(t), which drives the dynamics
of the emitter and the receiver. With proper adjustments, a new decoding equation
was derived and it ensures a comparable level of performance to the case without
interference. However, one of the main difficulty for the decryption would be the
reproduction of interference patterns at the receiver end, a major challenge for an
experimental realization.
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Figure 6.10: Theoretical multiplexing of four binary messages mi at 2.5 Gbit/s (25 bits are
represented for each messages). The messages are independently decrypted and requires 4
decoding circuits. In each panel, the dashed line represent the originally-encrypted messages
(mj) and the solid gray lines represent the decrypted message (m̂j) using decoding equation Eq.
6.47. The numerical values are βj = 5, Cij = cos((i− j)π4 ), θ = 25 ps, τ = 5 µs, Tj = 30 ns,
δ = 1

32 , and ∆ωij = 2 with i, j = 1, . . . , 4 and i �= j.
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6.6 Conclusion

In this chapter, we have demonstrated that a single electro-optic oscillator (EOO)
with multiple delayed feedback loops can be used to generate orthogonal chaotic
codes. This allows to transpose efficiently code-division multiple access (CDMA)
concept in the framework of optical chaos-based communications. Several configura-
tions were illustrated to ensure and prevent optical interference during the transmis-
sion: Configuration (1) using multiple photodetectors and Configurations (2a)-(2b)
using a single photodetector.

The pseudo-random sequences (codes) used to spread the data-streams result, in
our context, from the output of Mach-Zehnder modulators. Each of them generates
a cosine-square nonlinearity with a specific frequency of oscillation (denoted ωj).

The statistical properties of the different chaotic codes are controlled by three
different parameters: the nonlinear gain (βj), the frequency (ωj), and the off-set
phase (ϕ0j). We have proven that for a sufficiently large frequency detuning ∆ωij =
ωi−ωj and nonlinear gain βj , the codes are orthogonal and can be used to transmit
and recover, with a linear computational complexity, binary messages without cross-
talk in configurations (1) and (2b). We numerically demonstrate encryption and
decryption of several messages at high bit rate (2.5 Gbit/S, OC-48 standard). In
case of imperfect orthogonality, we have also shown that it was still possible to
decrypt the messages by considering a joint decryption, using either a covariance-
matrix approach or least-square optimization. In both cases, however, the decryption
involves the inversion of square matrices, increasing the computational complexity.

Finally, we focus our attention on Configuration (2a) that systematically exhibits
interference when more than two feedback loops are considered. We have devised a
decryption strategy with a linear computational complexity that guarantees an error-
free decryption when the messages have sufficiently small amplitudes. However, it
makes the structure of the decoder far more complex and requires to duplicate specific
interference patterns at the receiver. We numerically achieve similar performance to
that of configurations (1) and (2b) in terms of transmission.

As a consequence, our approach may constitute a first significant step for the
application of code-division multiple access concepts to optical chaos-based commu-
nications.
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Chapter 7

Multiplexing Chaos Using

Stochastic Time-Delays

Architectures

Abstract

This chapter investigates an efficient and fast bit-multiplexed encryption scheme
exploiting hyperchaotic regimes of a single nonlinear oscillator with multiple time-
delay feedback loops. This structure is of particular interest because the data stream
of each user Alicei (i = 1, . . . n) is encrypted through a digital modulation of the
various time delays and decrypted using chaos synchronization and cross-correlation
metrics. In this chapter, we will describe our particular structure, the mechanisms
for encryption and decryption, and give the fundamental limitations in terms of
bit rate and number of users. Our approach is numerically illustrated for a chaotic
electro-optic oscillator structure based on a standard continuous-wave semiconductor
laser subjected to multiple nonlinear feedback loops. We numerically demonstrate
successful data transmission and recovery between multiple users at several Gbits/s
on a single communication channel.

This chapter is based on the following publication:

• D. Rontani, M. Sciamanna, A. Locquet, and D.S. Citrin, “Multiplexed encryp-
tion using chaotic systems with multiple stochastic-delayed feedbacks”, Phys.
Rev. E 80, 066209 (2009).
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7.1 Introduction

The following chapter focuses on multi-user chaos-based communications using time-
delay systems. Our primary objective is to make better use of the wide bandwidth
provided by the chaotic oscillator, but also to increase significantly the level of secu-
rity compared with the other architectures presented in this thesis.

In the two previous chapters, we have proposed architectures to multiplex optical
chaotic signal and encrypt multiple messages in a CDMA fashion. Although, they
allow fast and reliable Gbit/s transmissions, the level of security was not significantly
enhanced compared to that of existing single-message chaos-based transmissions.
When it comes to fixed time-delay systems, the computational security relies on the
concealment of the time-delay information [149; 151; 152; 175] (and see Chapter 4).
A natural idea to increase the security of the time-delay information is to make the
delay time-varying. Following this line of reasoning, several strategies have been
devised to increase the level of security:

• Periodic time-varying delays [176]: This was the first attempt to counter time-
delay identification based on typical estimators (ACF, DMI, LLM, and GNM).

• Chaotic time-varying delays [177]: The optical path of an optoelectronic gen-
erator was controlled by a delayed-differential equation, thus leading to chaotic
modulations of the time delay.

• Stochastic time-varying delays [147]: This was introduced as the strongest
concealment of time delay thus ensuring the highest level of security. Existing
time-delay identification methods fail, thus maintaining a high level of security.

• Stochastic commutating delays [146]: A nonlinear system was used with a pro-
grammable time-delayed feedback. The time-delay switches randomly between
two different values.

These different configurations were first studied for the generation of highly secure
chaotic carriers, but rapidly the idea that time-delay modulation could be used as a
transmission vector was proposed in [178] with chaotic logistic maps. In the proposed
setup, a user Alice encrypts her message m(t) as an additional modulation of a state-
dependent time delay τ(t) = g(xE(t), t) +m(t) with xE ∈ R

m the state variable of
emitter (E) and g : Rm → R a continuous function. The state xE(t−τ(t)) drives the
dynamics of both the emitter owned by Alice and the receiver owned by a legitimate
receiver Bob,

Alice: ẋE(t) = f (xE(t),xE(t− τ(t))) , (7.1)

Bob: ẋR(t) = f (xR(t),xE(t− τ(t))) , (7.2)

where xE ,xR ∈ R
m is the state variable of (E) and (R) and f : Rm → R

m is the
vector field associated with the nonlinear oscillator. To decrypt the message, Bob
considers the metrics

M(ε) = ε− |xE(t− τ(t))− xR(t− θ)|, (7.3)
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where θ ∈ [0, τm] with τm = max τ(t). By maximizing M(ε) during the duration of
a bit transmitted, the authors of [178] obtain an estimation of the unknown value
of τ(t). Then due to chaos synchronization at the receiver, they generate τ0,R(t) =
g(xR(t), t) = τ0(t) and recover the values of the message by simple subtraction. This
method was adapted to the transmission of a single message, but either the structure
or the metrics used did not allow for the transmission of multiple data-streams.

In this chapter, we will show how time-delay systems (under certain conditions)
can be used favorably to overcome simultaneously these two major limitations in
chaos multiplexing. We use a single chaotic oscillator with n time-delay feedback
loops, each of the time delays being digitally modulated by a specific user. This
approach, which is neither the overlay of TDM nor of WDM on top of a conven-
tional chaotic system, uses a single chaotic oscillator that ensures the simultaneous
encryption of n messages in a single wide-spectrum chaotic carrier. This is therefore
beneficial to achieve higher spectral efficiency on the communication-channel band-
width in comparison with WDM. Extraction of the various messages can be realized
either with a high complexity (HC) or low complexity (LC) decryption strategy based
on finite-time cross-correlation measurements. Additionally, the stochastic modula-
tions of the time delays at the rate of the messages participate in the dynamical
evolution of the chaotic oscillator and contribute to enhancing greatly the security
of transmissions. We numerically apply our multiplexing/demultiplexing technique
to an optoelectronic chaos generator based on a well-tested and reliable physical
model and demonstrate theoretically multi-Gbit/s transmission per user. A discus-
sion on the performances (spectral efficiency, bit rate) and on the limitations of the
architecture will be presented as well.

7.2 Description of the Architecture

Our setup is described in Fig. 7.1. It is composed of two parts, a global emitter (E)
and a global receiver (R). These two systems are unidirectionally coupled via a single
communication channel and also share identical structural properties. Both use a
single nonlinear oscillator described by their respective state variable: xE ∈ R

p and
xR ∈ R

p. In E, the nonlinear oscillator is fed back by n time-delayed feedback loops.

As illustrated in Fig. 7.1, at the emitter end, every legitimate user Alicei pos-
sesses a specific loop incorporating a specific nonlinearity NLi, which processes the
nonlinear oscillator’s state vector hAi(xE(t)), with hAi a continuous nonlinear func-
tion defined on R

p → R
n. The second element of the feedback loop is a tunable

delay line DLi that controls the variable time delay τi(t). This quantity is digitally
modulated by Alicei to encode her data stream. Finally, the various contributions
of all the users are summed in a single multiplexed signal s(t) that reads

s(t) =
n�

i=1

hAi(xE(t− τi(t))). (7.4)

The multiplexed signal s(t) is generally vectorial (s(t) ∈ R
m); however, the scalar

case (m = 1) will be considered to simplify the notation and calculations.
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Figure 7.1: Architecture to multiplex multiple digital data streams using a single chaotic oscil-
lator with multiple feedback loops. NLi: the ith nonlinearity, DLi: variable delay line modulated
by Alicei, DL∗

i : variable delay line used by Bobi to search for a maximum of cross-correlation.
mi: message encrypted by Alicei, m∗

i : message decrypted by Bobi (i=1,. . . ,n), Ωk: time during
which a symbol (or bit) of the message mi is maintained constant.

For example, let us consider an optoelectronic oscillator such as those described
in the previous chapter. The multiplexed signal with variable delays now reads

T ẋ(t) + x(t) +
1

θ

� t

t0

x(u)du =
n�

i=1

βi cos
2 (x(t− τi(t) + ϕ0i), (7.5)

assuming no use of voltage dividers before injecting the various Mach-Zehnder mod-
ulator MZi (see Chapter 6).

The structure initially proposed in Fig. 7.1 can be slightly modified by consider-
ing an additional nonlinear function h : Rm → R

n applied to the sum of the delayed
feedback signals hAi(x(t− τi(t)). This leads to a new multiplexed signal

s(t) = h

�
n�

i=1

hAi (x(t− τi(t))

�

. (7.6)

A particular example was proposed in [144] using a wavelength chaos generator with
multiple electronic loops. It results in a single cosine nonlinearity applied to a sum
of delayed variables,

T ẋ(t) + x(t) = β cos2

�
n�

i=1

x(t− τi(t)) + ϕ0

�

. (7.7)

In this example, the nonlinear functions are hAi(y) = 1 and h(y) = β cos2(y + ϕ0).
This signal is then sent through the communication channel and will couple the

global receiver R. The nonlinear oscillator located in R is a physical twin of that of
E. Consequently, the dynamics of E and R are described by the equations

ẋE(t) = f (xE(t), s(t)) , (7.8)

ẋR(t) = f (xR(t), s(t)) , (7.9)

where f : (Rp,Rm) → R
p is the nonlinear function of the nonlinear oscillator.
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Assuming both systems are damped oscillators when no feedback signal is in-
jected1, E and R are passive systems. Therefore, the multiplexed feedback signal
s(t) is, in our case, an active part that will drive the dynamics of E and R. Under
these conditions, the APD’s requirement are fully satisfied for the two systems to be
completely chaotically synchronized,

lim
t→∞

�xE(t)− xR(t)� = 0. (7.10)

The chaos synchronization is one of the key features used in the extraction of the
various messages by the legitimate users Bobi (i = 1, . . . , n). In Receiver R, each Bob
has a loop sharing similar features to that of his corresponding Alice, except that his
loop does not feed back the nonlinear oscillator. Bobi’s loop is also composed of the
same nonlinearity NLi described by a nonlinear function hBi = hAi : R

m → R
p and

a tunable delay line DL∗
i generating candidate time delays τ∗i (t) different a priori

from τi(t). Each loop process the state variable xR as it follows hBi(xR(t− τ∗i (t))).
These open loops at Receiver R are used to reproduce what the Alices are doing at
Emitter E. Recovery of the information is then possible by analyzing the evolution
of particular metrics (based on correlation or L2-norm).

In the two following sections of this chapter, we will describe precisely the mech-
anisms used by Alices and Bobs respectively to encrypt and decrypt the multiplexed
data in our architecture. One of the objectives is to guarantee a low level of computa-
tional complexity for the decryption, while maintaining a good level of computational
security.

7.3 Encryption Strategies

In this section, we describe how the Alices encode their respective messages. Each
user has at his disposal a random source of information composed of Mi different

symbols c
(µi)
i (µi = 1, . . . ,Mi). These symbols’ values are mapped onto a specific

interval of value ∆i (i = 1, . . . , n), later referred to as an encryption slot where the
time delay τi(t) varies. In the context of digital communications, the variation of τi(t)
must be time-discrete in their interval of definition ∆i. We define the period of time

when a symbol c
(µi)
i is maintained constant by Ts and the associated time intervals

Ωk = [kTs, (k + 1)Ts] (k ∈ N), later referred to as a time-slot. The mathematical
formulation of a digital time-delay encryption by Alicei therefore reads

τi(t) =
∞�

k=0

τi|Ωk
(H(t− kTs)−H(t− (k + 1)Ts)), (7.11)

where τi|Ωk
is the encoding value of the kth symbol generated by Alicei in the time

slot Ωk, and H(t) is the Heaviside function.

The method of encryption of a single user is now described. It is noteworthy to
mention a simplification in our encryption compared to what is done in [178]; the
time-delay modulation will be solely induced by the various information sources (no

1Mathematically this is equivalent to the asymptotic convergence of each state to zero.
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additional state dependence is considered). Among the advantages is a simplifica-
tion of the decryption process with the use of more conventional metrics such as
correlation and norm 2.

Inherent to the presence of multiple users, there are several possibilities to realize
the multiplexed encryption. Indeed, each loop has two degrees of freedom: the
nature of the nonlinearity (NLi) used and the encryption slots (∆i). As it will be
detailed later, it is important to perform carefully the encryption by incorporating
into it a discrimination criterion, otherwise the decryption would not be possible:
the Bobs could not recover their data. Essentially, we propose two different types of
encryption.

7.3.1 Encryption with Multiple Disjoint Encryption Slots

This first encryption method consists of disjoint encryption slots (∆i ∩ ∆j = ∅ for
all i �= j) with the freedom for the various users to choose their nonlinear function
hAi .

1 Each interval is centered on a specific value: ∆i = [τi0 − ∆τi
2 , τi0 +

∆τi
2 ], where

∆τi is the width of ∆i. Figure 7.2 illustrates this approach.

Figure 7.2: Graphical representation of the time-delay encryption realized by two different
users Alicei and Alicej in their respective encryption slots ∆i and ∆j to be multiplexed. Two
consecutive symbols are encrypted for each users τi|Ωk

and τj|Ωk
.

7.3.2 Encryption with Multiple Overlapping Encryption Slots

This second encryption method consists of the use of encryption slots that can (par-
tially or totally) overlap (∆i ∩ ∆j �= ∅ for all i �= j). Under these conditions, the
encryption performed by each Alice necessary relies on different nonlinear functions
as a discriminant criterion incorporated in the encryption. Figure 7.3 illustrates this
approach with a single encryption slot shared by all the users.

1The use of identical nonlinearities for all the Alices is possible (hAi
= hAj

for all (i, j)).



143

Figure 7.3: Graphical representation of the time-delay encryption realized by two different users
Alicei and Alicej in their respective encryption slots ∆i and ∆j that completely overlap. Two
consecutive symbols τi|Ωk

and τj|Ωk
are encrypted for each user.

7.4 Decryption Strategies and Complexity Issues

There are many degrees of freedom to encrypt multiple data streams with our ar-
chitecture; however, demultiplexing at Receiver R places restriction on how these
can be chosen. Decrypting the multiplexed data stream is equivalent for each Bobi

to recover the time-delay modulation τi|Ωk
for all i = 1, . . . , n and Ωk, k ∈ N. To

achieve this goal, the Bobs first generate independently or jointly the candidate time
delay τ∗i|Ωk

by means of their tunable delay line DL∗
i . Second, they consider an opti-

mization problem defined with respect to appropriate metrics. Its solution will serve
as a decryption for the multiplexed data streams. In the forthcoming subsections,
we will detail necessary conditions for the decryption to be possible, as well as the
various metrics and optimization approaches that can be used.

7.4.1 Necessary Conditions for Decryption

In the case of disjoint encryption slots, the distance between the intervals ∆i is
the discriminating criterion, whereas in the case of overlapping encryption slots the
nonlinearity is used to identify the contributions associated to the various users.
In both case, the criterion has to ensure the statistical independence between the
nonlinear signals hAi(xE(t − τi(t)) for all i = 1, . . . , n and all time. This results in
additional constrains on the class of systems that can be used with our architecture,
when the encryption slots ∆i overlap. Independently of the encryption technique
used, there is a set of universal conditions that are necessary for a proper decryption:

Condition (i) (Reproducibility): Emitter E and Receiver R have to be com-
pletely synchronized.

Condition (ii) (Unicity): The decryption is performed by the resolution of an
optimization problem with a unique global extremum to ensure the unicity of
the decrypted message for the various legitimate users, Bobs.

Condition (iii) (Metric Resolvability): Two symbols used by a given user, when
encoded on time delays belonging to to the same encryption slot, have to be
separable in the framework of the metrics we choose.
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7.4.2 Choices of Metrics

We call a metric a mathematical operation that maps a vector space to the set of
real numbers R. In our case, we can use either the L2-norm or the autocorrelation.
Both are based on the definition of an inner product on a functional space.

We consider two signals (φi, φj), with finite energy (belonging to L2(R)), and we
define the inner product by

�φi, φj� =
�

R

φi(t)φj(t)dt. (7.12)

There is, however, a need for an inner product also defined on finite set Ωk,

�φi, φj�Ωk =

�

Ωk

φi(t)φj(t)dt. (7.13)

If the signals depend upon time as a consequence of the definition of the inner prod-
uct, it is possible to define cross-correlation measurements on infinite and finite sets,
Γ and ΓΩk . More precisely, we have Γφi,φj

(0) = �φi, φj� and ΓΩk
φi,φj

(0) = �φi, φj�Ωk .
If the two signals are time delayed with each other then the scalar product becomes

�φi(t− τi), φj(t− τj)� =
�

R

φi(t−∆τij)φj(t)dt = Γφi,φj
(∆τij), (7.14)

with ∆τij = τi − τj .
The L2-norm is simply defined in terms of the inner product by

||φi||Ωk
2 =

�
�φi, φi�Ωk

�1/2
. (7.15)

7.4.3 Decryption with High Computational Complexity

We consider the architecture described in Fig. 7.1 with n different users Alicei and
the metrics on the finite time slot Ωk defined above. Emitter E is fed back with
s(t) =

�n
i=1 sAi,τi .

We assume that R is perfectly synchronized with E (Condition (i)) and that the
set (Ts, sAi ,∆i) used by each Alice is also known by their respective Bob.

Collectively for each symbol slot Ωk, the Bobs generate a single candidate mul-
tiplexed waveform with a set of known delays (τ∗i|Ωk

)i∈[[1,n]] that may not correspond
to the delay used by the Alices,

s∗(t) =
n�

i=1

hAi(xR(t− τ∗i (t))) =
n�

i=1

sAi,τ∗i
. (7.16)

The objective for Bobi is to recover Alicei symbols encoded onto the set of time
delays (τi|Ωk

)i∈[[1,n]]. If this condition is fulfilled, then the two signals s(t) and s∗(t)
will be equal on every time slot Ωk. A closer look at the signals s(t) and s∗(t) shows
that the only difference relies on the value of the time delays. Adjusting the time
delay used in s∗(t) allows the decryption to be possible only if the set of time delays
leading to s(t) = s∗(t) is unique (Condition (ii)). The unicity originally comes from
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the construction of the chaotic carriers sAi,τi and a proper use of encryption inter-
vals ∆i (disjoint with any nonlinear function or overlapping with adequate nonlinear
functions). Indeed, the set of carriers B = (sAi,τi)i∈[[1,n]] may be viewed as a vector
basis in which s(t) is trivially decomposed. The signal s∗(t) is also trivially decom-
posed into a candidate basis B∗ = (sAi,τ∗i

)i∈[[1,n]] with unitary coefficients. Both
bases are constructed with the same linearly independent functions except for the
time delays that differ. The proper use of encryption slots ∆i and nonlinear func-
tions further guarantees that for all (i, j), it is not possible to find τ∗j ∈ ∆j such that
sAi,τi = sAj ,τ∗j

. As a consequence,

s(t) = s∗(t) ⇒
n�

i=1

(sAi,τi − sAi,τ∗i
) = 0, (7.17)

⇒ sAi,τi = sAi,τ∗i
for [[1, n]] . (7.18)

Finally, based on the previous discussion and the one-to-one equality of vectors of
bases B∗ and B, we can conclude that

∀i ∈ [[1, n]] sAi,τi = sAi,τ∗i
is equivalent to τi = τ∗i . (7.19)

In a high-complexity (HC) decryption scheme, all the possible delay values are ex-
plored and tested in the product encryption space

�n
i=1∆i, as illustrated in a sim-

plified situation in Fig. 7.4.

Figure 7.4: Graphical representation of a high complexity time-delay decryption realized by two
different users Bobi and Bobj in the product encryption slot ∆i×∆j . The recovery of each time-
delay is realized jointly and is represented by a red circular mark located at [θi, θj ] = [τ̂i|Ωk

, τ̂j|Ωk
].

The unique combination of time delays that belongs to the different encryption
intervals and corresponds to a good estimation of the original message (τi|Ωk

)i∈[[1,n]]
encrypted by the Alices is retrieved by solving either of the two following optimization
problems (depending on the chosen metrics):

(τ̂i|Ωk
)i∈[[i,n]] = argmin

(τ∗
i|Ωk

)i∈[[i,n]]∈
n
�

i=1
∆i

�s− s∗�Ωk
2 , (7.20)

or
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(τ̂i|Ωk
)i∈[[i,n]] = argmax

(τ∗
i|Ωk

)i∈[[i,n]]∈
n
�

i=1
∆i

�s, s∗�Ωk . (7.21)

After decryption, the estimated values are transferred to the targeted users Bobi.
The main disadvantage of this type of decryption is its exponential computational
complexity. If we consider that each Alice can encrypt M different values of time
delay by interval, this results in the computation of Mn operations for each time-
slot Ωk. This rapidly limits either the number of symbols used (the bit rate) or the
number of users (the spectral efficiency).

To overcome this problem, we present in the next subsection a decryption method
that is computationally linear with the number of users.

7.4.4 Decryption with Low Computational Complexity

We have seen that the linear independence of the different nonlinear signals sAi,τi|Ωk

is used to ensure the recovery of a unique set of time delays (τ̂i|Ωk
)i∈[1,n] in each

encryption slot ∆i and time slot Ωk corresponding to the actual time-delay values
(τi|Ωk

)i∈[1,n]. But this property, although it allows for the decryption to be possi-
ble, does not provide low complexity calculations for the decryption. Decrypting
at a lower computational complexity is possible if each Bobi can extract his own
information independently while having just the multiplexing signal s(t) at disposal
and Alicei’s key. Furthermore, in the previous subsection we have shown that the
total minimization (or maximization) of the global optimization problem result in
the recovery of all the time delays at once. All the basis vectors participate in this
minimization process, but it appears that the recovery of a single delay of a basis
signal sAi,τi reduces the difference between s and s∗ (i.e., increase the correlation).
With this phenomenon, each Bob can recover his own information independently.
Mathematically, we can write both cases as

�
s, sAi,τ∗i

�Ωk =
�
sAi,τi , sAi,τ∗i

�Ωk +

n�

j=1,j �=i

�
sAj ,τj , sAi,τ∗i

�Ωk , (7.22)

�
�s− sAi,τ∗i

�
�Ωk

2
=

�
�
�
�
�
�

sAi,τi − sAi,τ∗i
+

n�

j=1,,j �=i

sAj ,τj

�
�
�
�
�
�

Ωk

2

. (7.23)

On the right-hand side of both equations, there is the resonant (antiresonant) part
�
sAi,τi , sAi,τ∗i

�Ωk (or sAi,τi − sAi,τ∗i
if L2-norm is considered) that will be identified

and lead after optimization to the value of Alicei’s encrypted time delay in the time
slot Ωk. The other part will be referred to as the background and corresponds to
the crosstalk and contribution of all other users. The principles of decryption using
correlation metrics are illustrated in Fig. 7.5.
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Figure 7.5: Graphical representation of the time-delay decryption realized by two users Bobi
and Bobj . (a) Configuration associated with multiple disjoint encryption slots ∆i and ∆j used
by Alicei and Alicej , respectively. (b) Configuration with a single encryption slot ∆0 share by
the different user at the emission and the reception. For the given time-slot Ωk, each Bob is
detecting a resonance to recover his time-delay. The cross-correlation measurements are used
for the metrics.

In Fig. 7.5(a), using either the cross-correlation measurement or L2-norm, we
observe either a local maximum or minimum in each encryption interval ∆i. Each
user Bobi solves his own optimization problem by searching a maximum (or mini-
mum) in his specific encryption slot ∆i for each time slot Ωk. The recovery of each
symbol emitted by Alicei is described as

τ̂i|Ωk
= argmax

τ∗
i|Ωk

∈∆i

�

s, sAi,τ∗i|Ωk

�Ωk

, (7.24)

or

τ̂i|Ωk
= argmin

τ∗
i|Ωk

∈∆i

�
�
�
�
s− sAi,τ∗i|Ωk

�
�
�
�

Ωk

2

. (7.25)

The linear complexity comes from the reduction in size of the interval explored for the
decryption. However, the reduction in complexity is responsible for the appearance
of a correlation background (L2-norm background) that limits the number of users,
as detailed in the following sections.

7.5 Application to Optoelectronic Oscillators

7.5.1 Encryption and Decryption with Multiple Disjoint Intervals

In this section, we follow the theoretical framework presented in the previous section
and numerically apply our approach to a transmission chain composed of two coupled
optoelectronic oscillators subjected to four delayed feedback loops to transmit n = 4
independent messages. The oscillators can be built using two configurations: (i)
an intensity chaos generators based on multiple Mach-Zehnder modulators in their
nonlinear regimes and subjected to single time-delay feedback, or (ii) a single Mach-
Zehnder fed back by multiple electronic delay loops. The total feedback signal is
denoted s(t); unidirectionally injects both E and R. The coupled oscillators are
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modeled by the set of integro-differential delay equations similarly to the previous
chapter,

T ẋE + xE +
1

θ

� t

t0

xE(u)du = s(t), (7.26)

T ẋR + xR +
1

θ

� t

t0

xR(u)du = s(t), (7.27)

where

s(t) = s1(t) =
n�

i=1

βi cos
2 (xE,τi + ϕ0i), (7.28)

s(t) = s2(t) = β cos2





n�

j=1

xE,τj + ϕ0



 , (7.29)

xE , xR ∈ R are the dimensionless driving voltages of E and R, respectively, T is the
high cutoff response time, θ is the low cutoff response time, βi is the normalized
feedback strength of the ith Mach-Zehnder modulator, and ϕ0i is its normalized
offset phase. The set of delay integro-differential equations Eqs. 7.26-7.27 can be
rewritten in ordinary differential form if the variable change yE,R =

� t
t0
xE,R(u)du is

introduced, and thus the above theory can be applied. With the notations used in
the first section, for Configuration (i) we have hAi(xE,τi) = βi cos

2(xE,τi + ϕ0i) and
h(y) = 1 and for Configuration (ii) hAi(xE,τi) = xE,τi and h(y) = β cos2(y + ϕ0).

7.5.1.1 Simulation of a High Computational Complexity Case

We have simulated the system with the following numerical values: T = 25 ps,
θ = 10 µs, βi = 30, ϕ0i =

2iπ
4 , ∆i = [20i ns, 20i + 10 ns], and a symbol duration of

Ts = 1 ns (i = 1, . . . , 4). Each user Alicei has a data source Mi = 4 symbols (to
ensure tractable computational levels) associated with corresponding time delays in
the encryption slot ∆i. We have considered the two type of signals s1(t) and s2(t);
in both cases error-free decryption were achieved as long E and R were completely
synchronized. The use of a multiplexed signal with the form of s2(t) allows only
high-complexity decryption to work, because the function h(y) = β cos2(y + ϕ0)
is not bijective on the interval of definition of y =

�n
j=1 xE,τj thus preventing its

inversion, necessary for a low complexity decryption.

7.5.1.2 Simulation of a Low Computational Complexity Case

We have considered a system with multiple nonlinearities with numerical values for
the parameters similar to the previous subsubsection with a multiplexed signal of
the form s(t) = s1(t).

Figure 7.6 shows the numerical results with ideal transmission conditions: no
noise and no distortion induced by the communication channel. The symbols are
maintained constant during symbol time slots of duration Ts = 1 ns. This leads to 1
Giga symbols/s transmission per user and appears to be the lower bound of Ts when
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four users send their messages. This corresponds to an equivalent 5 Gbits/s trans-
mission per user considering that each symbol requires 5 bits to be encoded. The
first and the second rows in Fig. 7.6 represent the data randomly generated by each
user Alicei and the data recovered by the corresponding receiver Bobi, respectively.
The third row displays, for each user, the relative errors ei = (τi − τ̂i)/τi in symbols
recovery, which are all on average smaller than 0.5%. The decryption errors are due
to uncertainties generated by the finite-time calculation of cross-correlation on the
time slots Ωk.

This intrinsically limits the resolution of the cross-correlation. However these
errors can be suppressed, if the Bobs know a priori the sets of possible symbols used
by the Alices, as would be expected when digital symbols are used, and if the duration
of Ωk are long enough. This proves that near-perfect decryption is achieved for four
digital messages and also that these can be encoded on a large number of symbols.
Correct decryption at a given symbol rate 1/Ts also depends on the number of users
n. It affects the amplitude of the background fluctuations present in the correlation
�s, sBi,τ∗i

�Ωk , thus increasing the probability to infer an incorrect value of τi|Ωk
from

τ∗i|Ωk
. This usually induces a decrease in the largest achievable bit rate when the

number of users increases. As an illustration, maintaining identical parameters to
those above, we achieve a maximum of six users, resulting in an equivalent aggregate
bit rate of 30 Gbits/s.

7.5.2 Encryption and Decryption with Overlapping Intervals

In this subsection, we use the theoretical framework presented in the previous chap-
ter, where an intensity chaos generator has multiple feedback loops with cosine func-
tions with different oscillation frequencies ωi. We still consider an architecture with

Figure 7.6: Simultaneous decryption of four messages composed of Mi = 32 symbols (i =
1, . . . , 4) at 1 Giga symbols/s per user. The equivalent bit rate is 5 Gbits/s per user. The first
line represents the input messages mi, the second line the recovery messages m̂i, and the third
line relative error ei on each decrypted symbol in percentage. The equivalent aggregate bit rate
is 20 Gbits/s. The metrics used are cross-correlation measurements.
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four delayed feedback loops to transmit n = 4 independent messages. The system
are modelled similar to Chapter 6 except that the time delays are time varying,

T ẋE + xE +
1

θ

� t

t0

xE(u)du =

4�

j=1

βi cos
2(ωixE(t− τi(t)) + ϕ0i), (7.30)

T ẋR + xR +
1

θ

� t

t0

xR(u)du =

4�

j=1

βi cos
2(ωixE(t− τi(t)) + ϕ0i). (7.31)

In this example, we consider the extreme case where the encryption slots completely
overlap ∆i = ∆. As we explain it later, this configuration appears to particularly
interesting for security since the symbols used by the various users have identical
values. The following numerical values are used in the simulation: βi = 30, ϕ0i = iπ4 ,
∆ = [20 ns, 30 ns], and ∆ωij,i �=j = ωi−ωj = 1 (i = 1, · · · , 4). With these values, the
frequency detuning is large enough to ensure the decorrelation between the various
carriers sAi(t) = β cos2(ωixE(t − τi(t)) + ϕ0i), thus leading to tractable decryption
of each message independently.

Figure 7.7 shows an effective transmission at 5 Gbit/s per user with a low level
of relative error when compared to those of disjoint intervals.

Figure 7.7: Simultaneous decryption of four messages composed with overlapping encryption
slots. The structure of the figure is equivalent to that of Fig. 7.6. The equivalent aggregate bit
rate is also 20 Gbits/s. The metrics used are cross-correlation measurements.

As explained above, the discrimination criterion relies here on the nonlinear func-
tions that must produce the statistically decorrelated carriers to recover each mes-
sage. With OEO-based architectures, the use of a cosine-square nonlinearity with
different frequencies of oscillations gives a simple and flexible method to generate
decorrelated carriers. However, in the general case producing such carriers is not
easy and does not straightforwardly lead to the results observed with OEO. As an
example, a numerical simulation was carried out with a Mackey-Glass system with
two feedback loops to generate the signals used as carriers (similar to what was done
with Eqs. 7.30-7.31). It resulted in systematic high BER if overlapping intervals
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were considered due to the high correlation levels between the two carriers even
when strongly mismatched parameters were used in each feedback loop.

7.6 Performance and Limitations

In this section, we analyze the performance and limitations of the proposed architec-
ture when realized with an optoelectronic oscillator with multiple nonlinear delayed
feedback loops. The performance of the system is characterized by the spectral effi-
ciency and security in terms of time-delay identification. One of the key issues is the
limitation on the number of users and on the bit rate due to the metrics used (for in-
stance, correlation measurements). Indeed, the extraction of meaningful information
is closely associated with the duration of a symbol Ts.

7.6.1 Spectral Properties and Efficiency

One of the principal objectives of multiplexed chaos-based architectures is the im-
provement of spectral efficiency. In the case of a single user, the proposed time-delay
encryption technique can increase the intrinsic spectral efficiency of the carrier sig-
nal s(t). In the case of an OEO, the increase of symbol rate (1/Ts) and number
of symbols M , as illustrated in Fig. 7.8, leaves the bandwidth (defined at -20 dB)
unchanged. This is an extremely interesting feature of the proposed method in the
case of a single message encrypted. However, when multiple users are consider, the
use of several loops will affect the spectral properties of the multiplexed signal s(t).

Figure 7.8: Power spectral density of the multiplexed carrier s(t) in the case of a single user
for an optoelectronic oscillator. (a) Influence of the symbol rate Fs = 1/Ts for M = 2; (b)
influence of the number of symbol at fixed symbol rate Fs = 1 GHz. The simulations have
been realized with the following numerical values: T = 25 ps, θ = 5 µs, β = 5, ϕ0 = π/4 and
∆ = [20 ns, 30 ns].

Although additional feedback loops induce an increase of bandwidth (see Fig.
7.9), there is a relative increase of spectral efficiency. In the context of optoelectronic
oscillators, we monitor the evolution of the spectral properties of s(t) as the number
of loops increases. We notice that the bandwidth remains relatively unaffected by
an increase in the number of loops, either with multiple disjoint (Fig. 7.9(a)) or
overlapping encryption slots (Fig. 7.9(a)). Meanwhile, the quantity of transmitted
information has been multiplied by four. If we denote Wn the bandwidth of the
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architecture with n feedback loops and suppose that all the users at emitter transmit
with identical bit rates Bn = B, then the relative increase of efficiency between a
single and n users is E = nW1/Wn − 1. In our cases, the bandwidths W1 and W4

are respectively measured as the spectral width 20 dB below the maximum value of
the PSD. In each case, identical numerical values to those of Figs. 7.6 and 7.7 are
used in the simulations. The bandwidths W1 and W4 are respectively measured 20
dB below the maximum value of the estimated PSD. When each of the four users is
transmitting at 5 Gbit/s (Fs = 1GHz, Mi = 32), the percentage of relative increase
of spectral efficiency is approximately 100 % when disjoint intervals are used and
approximately 300 % when they completely overlap. These large values found their
explanation first in the relatively small increase of bandwidth of the multiplexed
signal when the number of loops in the case of disjoint encryption intervals and
second in the relative decrease in bandwidth observed with overlapping encryption
slots.

Figure 7.9: Analysis of the spectral efficiency of the architecture. The power spectral density
of the multiplexed carrier s(t) is represented for n = 1, . . . , 4 users with identical 5 Gbit/s bit
rate per user, when the encryption slots ∆i are (a) disjoint or (b) overlapping. The numerical
values used are βi = β = 20, ϕ0i = iπ/4.

7.6.2 Bit-Rate Limitations with Low-Complexity Decryption

A possible solution to increase the bit-rate while using a low complexity decryption
consists of minimizing the fluctuations of the metric’s background (correlation or
L2-norm) that represents the primary source of errors when the bit rate increases, as
illustrated in Fig. 7.10(a). In some cases such as the ICG, it is possible to improve
the quality of the decoding by considering a modified optimization problem that will
reduce the metric’s fluctuations. It is assumed for the term �sBj ,τj , sBi,τ∗i

�Ωk to have
approximately the same behavior for every pair (τ∗i , τj) ∈ ∆i × ∆j . Consequently,
even without knowing which symbols are transmitted by the other users Alicej ,
Bobi can boldly assume that τj0 is always transmitted to attenuate strongly the

variations of the term
n�

j=1,j �=i

�
sBi,τ∗i

, sAj ,τj

�Ωk . If correlation measurements are used
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as a metric, the optimization problem to solve becomes1

τ̂i = arg max
τ∗i ∈∆i







�
s, sBi,τ∗i

�Ωk −
�

sBi,τ∗i
,

n�

j=1,j �=i

sBj ,τj0

�Ωk






. (7.32)

Figure 7.10(b) shows the elimination of the false positive detected by the optimiza-
tion method (Eq. 7.24) in Fig. 7.10(a), the decrease in average of the correlation
background value and minimization of its large fluctuations. However, it does not
allow us to cancel all the false detection generated by a significant increase in bitrate
(short values for Ts). For instance, when the transmission conditions are optimal,
with n = 4 the BER is null when each user transmit at 1 Gsymbols/s and the
standard optimization problem of Eq. 7.24 is used. If the symbol rate is doubled,
then the BER is approximately 10−1. Using the modified optimization problem (Eq.
7.32 and keeping the numerical values used previously, it allows one to improve on
average the BER by a factor of approximately 2 − 3. Figure 7.10 illustrates these
results. Figure 7.10(a) depicts the evolution of �s, sB1,θ�Ωk for a time delay encrypted
τ1|Ωk

= 21.5625 ns. A sharp peak is located at θ = 21.6250 ns but its amplitude is
not a global extremum. In this particular case, the peak detected for the decryption
correspond to τ̂1|Ωk

= 27.6250 ns thus leading to a decryption error. By considering

the correcting quantity �s−�4
j=2 sBj ,τj0 , sB1,θ�Ωk , we observe a significant reduction

of the oscillations of the correlation background as well as an enhancement of the
peak located at θ = 21.6250 ns that becomes the global extremum. As a conse-
quence, the message encrypted by Alice1 is properly decrypted. The improvement of
the BER is illustrated in Fig. 7.10(c); the five previously corrupted bits are properly
recovered, when Eq. 7.32 is used.

There exists a lower bound for the symbols’ duration Ts under which systematic
errors are generated with a LC decryption. This limit depends on the number of
points to compute the metric (sampling rate) and on the typical time of fluctuations
of signals sAi(t). If one still wants to increase the bit rate at a fixed value of Ts, he
has to increase the density of symbols used per encryption slot without violating the
resolvability condition of the metric (necessary to ensure proper decryption). In our
approach, the density of symbol in a given interval ∆i is analog to the constellations
used in conventional digital communications (e.g. quadrature amplitude modula-
tion (QAM), phase-shift keying (PSK)). However, instead of being limited by the
amount of energy attributed to each symbol, we are limited by the time separation
in an encryption interval. In conventional digital communications, it is known that
when the signal-to-noise ratio (SNR) is increased, the BER decreases thus leading
to enhanced decryption.2 When the channel is noisy, the symbols occupy a larger
area in the energy plane (see Fig. 7.11(a)). Without channel coding, the symbols’

1The L2-norm can also be used as a metric for

τ̂i = arg min
τ∗

i
∈∆i
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.

2We do not account for the use of error control coding, that can optimize the BER at a given
energy level. We simply give a general tendency of the BER as a function of the SNR.
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Figure 7.10: Decryption using the modified optimization problem with correlation measurements
and a four-users architecture with Mi = 32 symbols (i = 1, . . . , 4) at 2 Giga symbols/s per user.
(a) Decryption of the message transmitted by Alice1 using the LC optimization based on the
evolution of �s, sB1,θ�Ωk . (b) Decryption using the modified LC optimization based on the

evolution of �s −�4
j=2 sBj ,τj0 , sB1,θ�Ωk . (c) Decrease of BER between the original (first row)

and modified (second row) optimization problem on a sequence of 50 bits.

spheres must not intersect for the decryption to be error free. Therefore at a constant
energy level, this limits the size of the constellation. However, with more energy per
symbol (increase of SNR) it is possible to increase the size of the constellation and
still maintain error-free decryption (see Fig. 7.11(b)). By analogy, the increase of
energy per symbol in a constellation corresponds to enlarge the encryption slot ∆i.

The noise induced by the communication channel scatters the position of each
symbol in the quadrature plane (P,Q). In our architecture, we suppose first that
the transmission is noiseless; otherwise it would disturb the chaos synchronization
between E and R. In our case, the noise source comes from the computation of the
metric. For instance, correlation measurements are calculated on finite time-slots
Ωk, therefore their resolution is limited. This loss of resolution can be interpreted
as a noisy effect or uncertainty on the measurement. For the simulations in Fig.
7.6 the relative error of decryption is a few percent and it increases if the symbols’
durations are reduced, because it becomes close to the limit in resolution of the
metric. This naturally imposes a certain separation between the different symbol to
ensure a proper decryption.

As an illustration, by considering an interval ∆i with average length 1280 ns and
M = 256 symbols, we maintain a density of 3.2 symbol/ns identical to the one used
with M = 32 and an average length of the encryption slots of 10 ns. These values
have proven to work well at 1 Gsymbol/s. Now, the binary representation of the
alphabet requires 8 bits thus leading to a cumulative bit rate of 32 Gbit/s with four



155

users instead of the 20 Gbit/s previously reached with a 5 bits binary representation.

Figure 7.11: Analogy between constellation of symbols in M -ary digital coding and M -ary time-
delay encoding with M = 8. (a) A 4-QAM is represented in the plane of the two quadrature
(P,Q) with energy Es and 8-QAM with energy 2Es (b) Time-delay encoding in ∆i with Mi = 4
and in 2∆i with Mi = 8. The noise in the case of time-delay-based decoding is related to the
limit of resolution of correlation measurements calculated on time slot Ωk.The noisy symbols
are represented by disc, whose radius correspond at the scattering at 3σ induced by a Gaussian
noise N(0,σ2).

7.7 Security and Cryptanalysis

The security (with respect to time-delay identification) in our approach benefits from
the fast stochastic and independent oscillations of each time delay on which data is
encoded. It is known that fixed time-delay systems face security flaws when the
values of the time delays are known. Despite their high dimensionality, an eaves-
dropper can attack these systems in a low-dimensional space corresponding to its
actual state space dimension and where the nonlinear function of the system is iden-
tifiable at a low computational cost, thus allowing for an easy reconstruction of the
emitter dynamics by analyzing the time series of the transmitted signal. Our ap-
proach corresponds to a generalization of time-delay commutations with a the single
feedback case (n = 1, M1 = 2) proposed in [146], except that in our architecture
the commutations are controlled by sources of information. In a single feedback
loop case with random commutation, it has been shown that a commutation time
Ts smaller than the smallest symbol value could prevent an eavesdropper from se-
quentially cracking the cryptosystem using sections of the transmitted time series of
length Ts where the delays are maintained constant.

More precisely, by considering a system with a single discrete time-varying time
delay τ1 ∈ [τ10 −∆τ1/2, τ10 +∆τ1/2] and Ts > min∆1 τ1(t), an eavesdropper can
theoretically perform a time-delay estimation on each time-slot Ωk = [kTs, (k +
1)Ts]. Indeed, the detection of the a resonance associated to τ1 is possible only if
this value belongs to Ωk mod (Ts). Assuming now that the commutation time is
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faster than the smallest value of τ1(t), then it will be necessary for Eve to use at
least �(max∆1 τ1 −min∆1 τ1)/Ts� intervals to perform the detection of a resonance
associated to a time delay used to encrypt a message. Meanwhile, the time delay
undergoes many variations, such that an eavesdropper will detect the time-delay
signatures but not their respective time of emission. This principle remains true in
the multi-users case. Thus, to fulfill security requirements in our case, it is necessary
for the symbol duration to satisfy the inequality

Ts < min
i,k

τi|Ωk
, (7.33)

which naturally generalizes [146] and gives an upper bound to the symbol duration
for the all time delays to be simultaneously concealed, when s(t) is analyzed. In the
most favorable scenario for the eavesdropper, a symbol’s identification is possible,
but the actual message remains unknown.

As an illustration, we have performed a security analysis in terms of time-delay
identification using delayed mutual information (DMI, see Chapter 4). Our find-
ings are presented in Fig. 7.12. We study an intensity chaos generator (ICG)
with a single stochastic-delayed loop and analyze the impact on security of the fre-
quency of commutation (Fs = 1/Ts), the number of symbols (M), and the nonlin-
ear gain (β). Figure 7.12(a) presents a typical timedelay identification performed
by an eavesdropper ignoring the exact moments of the time-delay commutations
with frequency Fs satisfying the condition in Eq. A.42 and M = 4. Interest-
ingly, linear combinations of the time delays are also observed (marked by red bul-
lets). To understand the orgin of these side signatures, we consider the two-delay
case (τ10 and τ11 with M1 = 2). The multiplexed signal s(t) is formally equiva-
lent to a system with two loops and constant time delays activated by a function
α0(t) = {0, 1} that switches only at times t = kTs and keeps its value constant other-
wise: s(t) = α0(t)[β cos2(xE(t− τ10)+ϕ0)]+ (1−α0(t))[β cos2(xE(t− τ11)+ϕ0)]. In
such a system with multiple loops, it is known that combinations of time delays will
be observed. This is why linear combinations (τ11 ± τ10) of time delays are detected
in our architectures when DMI is used.

At weak nonlinear gain β and a low symbol density (0.2 symbol/ns) and only
two symbols (M1 = 2), the frequency of commutation does not erase the time-delay
signatures; it even enhances their amplitude (Fig. 7.12(b)). The number Mi of
symbols used to encode Alicei’s data source plays an fundamental role in the ar-
chitecture’s security. Indeed, if a realistic data source is employed, it may present
repetitive patterns. This is particularly true in the case of binary data streams. The
consecutive repetition of the same bit during many periods Ts increases the probabil-
ity for an eavesdropper to access information about the system and the transmitted
messages. However, if instead of encoding a binary digit of information on two
time-delay values, blocks of log2Mi bits are used; they can capture large repeti-
tive structures of bits and encode them as single time-delay values. Furthermore,
if the density of symbols per encryption slot is increased, the individual symbol
signatures become more fuzzy (Fig. 7.12(c)). Finally, as Mi/|∆i| is growing and
if Ts is small enough, it increases the number of values to commute between and,
thus, the fast digital random commutations can be considered as acting close to a
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Figure 7.12: Security of our architecture based on an OEO for a single user (see Eq. 7.26).
(a) Side time-delay signatures marked by red dots when M1 = 4, Fs = 1 GHz, β = 5, and
ϕ0 = π/4. (b) Influence of the commutation frequency frequency Fs = 1/Ts with M1 = 2,
β = 5, ϕ0 = π/4. (c) Influence of the density of symbols M1/|∆1| with Fs = 1 GHz, β = 5,
ϕ0 = π/4, and |∆1| = 10 ns. (d) Influence of the nonlinear gain β with Fs = 1 GHz, M1 = 4,
and ϕ0 = π/4.
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continuous-valued continuous-time stochastic process for which security with respect
to correlation-based (or DMI-based) attacks has been demonstrated [176].

Therefore, this suggests that the Alices should employ sets of symbols as large
and dense as possible to tend to a stochastic evolution of the delay. Nevertheless,
the decryption method intrinsically limits the density of symbols to be encoded per
finite-size encryption slot beacuse of its finite resolution (see Condition (iii)), and
the equivalent achievable bit rate. As far as OEO with fixed delayed feedback loop
are concerned (ICG, WCG, or PCG), the increase of the feedback gain β leads
to the decrease of the magnitude of the time-delay signature without its complete
cancellation. With randomly commutated time delays, however, the signature totally
disappears even when the density of symbol is not high (Fig. 7.12(d)). Thus, a trade-
off can be found between the nonlinear strength, the commutations’ rate, and the
symbol density to ensure fast and secured transmission.

The analysis above has unveiled the driving principles that ensure a high level
of security for a single stochastic delayed feedback system. They can be applied
individually to the case of multiple users. As an illustration, in Fig. 7.13 we have
numerically investigated the security of the structure described by Eq. 7.26 in the
case of disjoint and overlapping intervals. The density of symbols is 3.2 symbols/ns,
the nonlinear gain is strong β = 20, and the frequency of commutation is fast Fs =
1/Ts = 1 GHz.

Figure 7.13: Security analysis of the architecture based on the delayed-mutual information
estimator (DMI) with n = 4 users and (a) disjoint or (b) totally overlapping encryption slots.
The nonlinear gain is identical for all nonlinear function in (a) and (b), Fs = 1 GHz, βi = 20,
Fs = 1 GHz and Mi = 32, thus leading to a density of 3.2 symbols/ns.

In these conditions, we see that no time-delay signatures are retrieved while
using DMI regardless of the type encryption chosen. However, the case for which
encryption slots ∆i completely overlaps will provide a higher level of security. Indeed,
if an eavesdropper perform a time-delay estimation based on the signal s(t) and that
he can (in the best-case scenario) recover the time delays used to encode the symbols,
he cannot determine a priori how many users are using a given set of symbols, when
the symbols are emitted and by whom. Consequently, this encryption is more secure
than its counterpart with disjoint encryption slots for which the users can be more
easily identified based on the time-delay values.
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7.8 Conclusions

In this chapter, we have demonstrated the ability of a cryptosystem to encrypt n

different messages using a single nonlinear oscillator subjected to n time-delayed feed-
back loops and to decrypt these messages using a synchronization-based technique.
Our method combines the randomness of the data sources and the hyperchaotic
behavior of time-delay systems in an efficient and secure way. The messages are en-
crypted through digital modulation of the time delays of each loop while respecting
certain rules to guarantee the decryption at the receiving end. Two types of encryp-
tion have been devised to encode the message’s symbol onto a time-delay: the use
of (i) disjoint encryption slots ∆i or (ii) overlapping intervals. In Configuration (i)
freedom is given to the choice of the nonlinear function that carries the modulated
time-delay information, whereas for Configuration (ii) the nonlinear function have
to ensure proper decorrelation between the various carrier and ensure a decryption
without crosstalk.

When applied to an optoelectronic oscillator, such as the intensity chaos genera-
tor, our approach has proven to theoretically achieve multi-Gbit/s transmission with
multiple users while preserving a low level of computation complexity for the decryp-
tion, linearly increasing with the number of users. The increase of spectral efficiency
of the architecture is significant as the number of user increases, the use of overlap-
ping encryption intervals ensuring a higher level of performance. Furthermore, the
level of security is considerably enhanced, the existing method of identification (ACF,
DMI, LLM, or GNM) does not reveal any leak of information on the modulation of
the time delay if the density of symbols is large and the period of switching is smaller
that the minimum time-delay value used by the users to encrypt the data. Therefore,
this may offer perspectives towards efficient multi-user chaos-based communications
with a high level of security.
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Chapter 8

Conclusion

Abstract

We recall our main results on security of optical-chaos cryptography, multiplexing,
and multi-user private communications. We also propose perspectives and future
directions for our research.

161



162

8.1 Summary of the Results

Optical chaos-based communications have attracted considerable attention since
high-bit-rate physical-layer security has been achieved by exploiting the natural in-
stabilities existing in optoelectronic systems. This type of communication exploits
the noise-like appearance of a chaotic carrier to conceal an information-bearing mes-
sage. Then, with the property of chaos synchronization the message is decrypted at
the receiving end. The type of systems used as crypto-generators are mainly edge-
emitting lasers (EEL) or vertical-cavity surface-emitting lasers (VCSEL) in various
configurations (optical or optoelectronic feedback, current modulation, optical injec-
tion), optoelectronic oscillators (wavelength, intensity, or phase chaos generators),
and erbium-doped fiber ring lasers (EDFRL).

Within this particular framework, a particular focus was given to fundamental
properties of optical chaos synchronization, bifurcation mechanisms, and dynami-
cal regimes of these various systems transmitting a single data stream, while using
conventional chaos encryption techniques (chaos masking (CMa), chaos-shift keying
(CSK), or chaos modulation (CMo)).

We have identified two open problems of fundamental importance that may pre-
vent a large-scale deployment of optical-chaos cryptography in current optical net-
works: the quantification of security of optical cryptosystems and the possibility
to multiplex multiple chaotic optical signals to simultaneously transmit several data
streams in a single communication channel with a high level of privacy.

In this thesis, we addressed the questions of security for the class of external cavity
semi-conductor lasers (ECSL) and of multiplexing using different systems (ECSL,
or electro-optic chaos generators) and demonstrated theoretically the possibility of
multi-user communications.

8.1.1 Security Analysis of Chaotic Optoelectronic Devices

In Chapter 4, we have analyzed the security of an ECSL in terms of time-delay
identification. Indeed, the use of a time-delay system is known as a simple method
to generate high-dimensional chaos, which is a desirable property to prevent the
most threatening attacks (reconstruction or forecasting techniques) performed by an
eavesdropper. The resulting computational security depends on the knowledge of
the time delay by the eavesdropper. Therefore, it is critical to conceal this value to
avoid attacks on the system in a low-dimensional phase space. With optoelectronic
devices, the time-delay identification is performed on the light intensity wiretapped
from the communication channel and analyzed by standard time-delay estimators
such as the autocovariance function (ACF), the delayed-mutual information (DMI),
or global nonlinear models (GNM). First, we have demonstrated the key role of
the tunable and operational ECSL parameters on the time-delay concealment: the
feedback strength (η), the pumping current (J), and the choice of the time-delay
(τ , TD) value in comparison with the relaxation-oscillation period (τRO, ROP). We
have also highlighted the scenarios of difficult time-delay identification (TD signature
invisible or strongly perturbated in the estimators) that occur for a combination of
relatively weak feedback rates, weak pumping currents, and close values of the two
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time-scales TD and ROP. Second, we linked the origin of the difficult identifications
with the specific nonlinear dynamics and time-scales appearing in the ECSL during
its bifurcation cascade leading to chaos. At weak feedback rates, the ECSL’s chaotic
dynamics is reminiscent of the time scales involved in the early stages of its dynamics,
such as the undamped relaxation-oscillation (UROP) time-scale and possibly time
scales of Period-Doubling and Quasi-Periodic dynamics (if these routes are taken
by the ECSL). In these chaotic regimes, the time-delay estimators exhibit complex
modulated shapes typical of the presence of those various ECSL time scales. When
TD and ROP are close to each other, the true value of the time delay is efficiently
concealed in various ways: (1) significant shift of the location of the strongly-damped
TD signature and (2) complete disappearance of the time-delay signature replaced
by relaxed oscillations. The choice between these two generic types of concealment
is made by the system as it undergoes its route to chaos. If the time delay does
not appear in the early stages of the ECSL dynamics, Scenario (2) will be observed.
Otherwise, it will be Scenario (1) that ensures an imperfect concealment (an expe-
rienced eavesdropper could still infer partial knowledge on the TD). The influence
of some of the internal parameters of the lasers has been also investigated. We have
identified that they may impact the range of the operational parameters for which
a good time-delay concealment is ensured. Finally, the robustness of our results has
been checked with other signal processing techniques such as neural networks, filling-
factor methods, or statistics of extrema. Our results are of particular interest for
designing a chaotic emitter based on an ECSL with the best concealment of its crit-
ical system parameters, hence also improving overall security in optical chaos-based
communications using semiconductor-laser technologies.

8.1.2 Chaos Multiplexing and Multi-User Communications

In the second topic of the thesis, we studied various configurations and encryption
methods to increase the spectral efficiency of optical chaos-based cryptosystems. We
have devoted our attention to fundamental properties of chaos-synchronization of
multiple chaotic lasers, and optoelectronic systems with multiple delayed nonlinear
feedbacks. We have also addressed key issues on multiplexing and demultiplexing of
digital information with these different architectures.

In Chapter 5, we have reported the possibility to multiplex chaotic optical fields
generated by multiple edge-emitting semiconductor lasers (EELs). At the emission,
the various optical fields are combined inside a shared external optical cavity into a
single multiplexed signal. Each master laser (Mk, k = 1, . . . , n) at the emitting side
is optically injected by the other lasers with specific coupling strengths and time de-
lays. The multiplexed signal is then unidirectionally sent through an optical channel
and injects decoupled slaves lasers (Sk). The EELs are damped-relaxed or passive
oscillators that require external degrees of freedom to exhibit chaotic behavior. The
multiplexed electric field is considered as a driving signal for both the master and
the slave of a given pair Mk/Sk. Our architecture, which is a generalization of the
classical single-emitter/single-receiver synchronization problem, can be seen as an
active-passive decomposition (APD) problem. Under the right necessary coupling
conditions, we have demonstrated that each pair of lasers could completely syn-



164

chronize with specific lag times. These coupling conditions correspond to a similar
injection strength of the multiplexed field to the master and to the slave of a given
pair; the time lag being the time difference between the flight time in the commu-
nication channel with the optical delay associated to the corresponding arm of the
shared cavity. The system being modelled in the Lang-Kobayashi framework, we un-
veiled several properties on the stability of the synchronization manifolds. Through
a numerical analysis, we have shown that:

• The region in the 2n−dimension operational parameters space (pumping cur-
rents of each master and injection strengths), for which complete chaos synchro-
nization is achieved for each pair, is large. We also highlighted the existence
of hybrid regimes where only specific pairs of lasers are synchronized.

• The synchronization manifold is robust with respect to intrinsic noise source
(such as the spontaneous-emission noise), but the quality of synchronization
degrades.

• The synchronization manifold is robust with respect to parameter mismatch
(both internal and operational) between the master and the slave lasers of a
given pair. Similar performance to those of the single-emitter/single-receiver
case were observed. However, there are no limitations in the amount of mis-
match between two different pairs.

Finally, we addressed the question of multiplexing information. We adapted
conventional encryption techniques for digital messages to the multi-user case. Only
CSK and CMo could be applied to our context, where uncoded messages are used.
The use of CMa resulted in a partial loss of information (some combinations of
bit/symbol could not be recovered). With EEL systems,

• CSK is performed by modulating the pumping current of each laser between two
different levels (Jm

k,0 and Jm
k,1). Subsequently, each master Mk (k = 1, . . . , n)

jumps from a chaotic attractor to another one depending on the pumping cur-
rent. The resulting multiplexed field can therefore be generated by 2n different
combinations of chaotic attractors (associated with each master laser) and will
lead to an exponentially complex decryption, possible by the existence of chaos
synchronization. However, the transition between a combination of attractors
to another one is bounded by the resynchronization time, which intrinsically
limits the maximum achievable bitrate (several hundreds of Mbit/s per user in
our context). Different decryption strategies can be devised with either a linear
or exponential computational complexity. The use of 2n receivers was first pro-
posed (for each master Mk, two slaves Sk,0 and Sk,1 respectively pumped with
the currents Jm

k,0 and Jm
k,1). Candidate combinations (2n) are generated and

subtracted from the multiplexed field before being detected by a photodiode.
A minimum is observed, when a combination of n pumping currents at the
receiving end matches the one used at the emitting end, and it serves as the
decrypted values for the n messages at once. The complexity of this method
is exponential. Another possibility consists of using n receivers and set each
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of them with either one of the two pumping currents (Js
k = Jm

k,0/1) used by
their corresponding master. To recover the kth message, the kth optical field
is then subtracted from the multiplexed field and the result is photodetected.
The messages are recovered because of dropouts in the amplitude of the de-
tector’s output (when the pumping current of kth slave matches that of the
kth master) that correspond to the cancellation of kth master field from the
multiplexed field. This method is suboptimal and does not ensure a perfect
discrimination threshold between the transmitted bits, but its computational
complexity is linear with the number of messages.

• CMo is performed by encoding each user’s message either on the amplitude
or the phase of the optical field of his corresponding master. This requires
the modification of the original setup by including an optical circulation. The
main advantage over the CSK method is that the various messages participate
to the dynamics of each emitter Mk and therefore a single chaotic attractor is
used per laser. This prevents the limitations in terms of bit rate and quality
of synchronization imposed by the resynchronization time in CSK. In terms of
decryption, the CMo suffers from the same computational complexity issues
as those of CSK and the decryption strategies are essentially identical to those
exposed hereinbefore. We demonstrated numerically the possibility to encrypt
two messages at 1 Gbit/s using either exponentially- or linearly-complex de-
cryption.

Our architecture could be easily generalized to a larger number of users and han-
dle private communications for large optical networks. It constitutes a first natural
extension of the classical paradigm of private transmission of a single message using
chaotic optoelectronic devices.

In Chapter 6, we have proposed to go beyond the traditional optical chaos cryp-
tography relying essentially on CMa, CSK, or CMo. We were aiming at applying
code-division multiple access (CDMA) approaches to chaotic optoelectronic devices.
CDMA is a multiplexing technique widely employed in conventional communications
and contrary to time- or wavelength- division multiplexing (TDM or WDM), it of-
fers the entire channel’s bandwidth at all times for every user. The discrimination
is made at the statistical level and not by the time of emission (TDM) or the fre-
quency range (WDM). In conventional multi-user communications, CDMA makes
use of multiple fixed pseudo-random binary signals (known as codes) to spread out
the spectrum of various data streams, which then are modulated and summed to
overlap spectrally. At the receiver, the codes are available and used to recover the
data with correlation-based detection. These codes are orthogonal (with respect to a
particular inner product) and guarantee a linear complexity of decryption. These are
desirable properties that we have transposed to the context of optical chaos-based
communications. The main issue was the time-varying nature of the chaotic codes
employed, changing for every bit transmitted. We proposed to use an electro-optic
oscillator (EOO) with multiple delayed feedback loops, with a different cosine-square
nonlinearity generated by each Mach-Zehnder modulator. Each of these nonlineari-
ties will be used as a chaotic code to spread, modulate, and transmit a specific user’s
data stream. The chaotic codes have to be recombined into a single multiplexed
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signal before being reinjected in the dynamics of the EOO. Two configurations have
been investigated:

• Configuration (1) uses multiple photo-detectors, one per optical arm. This
results in an electrical multiplexed signal comprised of a sum of cosine-square
nonlinearities.

• Configuration (2) uses a single photo-detector. This results in a single opti-
cal multiplexed signal that is later electro-optically converted. Depending on
the characteristic of the optical sources and optical arms used, interference
may (Configuration (2a)) or not (Configuration (2b), with multiple CW laser
sources emitting at different frequencies) appear, thus affecting the dynamics
of the EOO architecture. In this configuration, the multiplexed signal is not
necessarily a sum of cosine square functions.

For each configuration, the multiplexed signal is then transmitted to a physical copy
of the EOO emitter. Chaos synchronization is ensured thanks to an APD-like struc-
ture of the overall transmission chain. In the various configurations, obtaining or-
thogonality (decorrelation) between the different codes is desirable to allow a large
number of users to communicate and ensure a linearly-complex correlation-based
decryption. The statistical properties of the code are controlled by the following pa-
rameters the external gain (βi), the frequency of the nonlinearity (ωi, physically an
internal gain), and a phase-shift (ϕ0i). We unveil that a combination of large values
of βi and frequency detuning (∆ωij = ωj −ωi) ensures a quasi perfect orthogonality.
We also devised several decoding strategies and demonstrated numerically private
multi-user transmissions at 2.5 Gbit/s per user (bit rate of the OC-48 standard).
When interference is considered in the model, performance slightly degrades but the
independent recovery of multiple messages is still possible, providing an adaptation
of the decoding formula.

Finally in Chapter 7, we proposed an architecture that encompasses the two
aspects developed in this thesis: the security in term of time-delay concealment and
the multi-user communications. We consider a nonlinear oscillator with multiple
delayed nonlinear feedback loops, whose time delays are digitally modulated on M

different levels (associated with M−ary messages) by legitimate users Alicei (i =
1, . . . , n). Each time-delay varies discretely in a specific encryption slot (∆i, i =
1, . . . , n). Two encryption strategies were devised:

• Configuration (1): disjoint encryption intervals are used, with no restriction
on the choice of the nonlinear functions.

• Configuration (2): overlapping encryption intervals are used, the nonlinear
functions are carefully chosen.

Each time-delay-modulated nonlinearity carries a specific user’s data stream; they
are all combined into a single multiplexed signal that drives the dynamics of both
the emitter (E) and receiver (R). The decryption strategies for legitimate users to
exchange securely information rely on the calculation of a particular metric (cross-
correlation or L2−norm) between the multiplexed signal and the various candidate
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carriers, identical to those used by Alicei except for the knowledge of the time delay.
The time delays can be inferred jointly (exponentially complex calculations) or in-
dependently (linearly complex calculations) by finding the maximum (or minimum)
argument of the metric. The principle of our architecture has been numerically ver-
ified by simulating an electro-optic oscillator (EOO): A four-users-transmission at
5 Gbits/s per user was achieved. The security was also evaluated using standard
time-delay estimators such as the delayed mutual information (DMI). We have high-
lighted the key roles of the density of symbols per encryption slot (M/|∆i|) and the
symbol rate on the security. When these two encryption parameters are properly
chosen, the time-delay signatures (associated with M different levels) were perfectly
concealed.

Our method combines the randomness of the data sources and the hyperchaoticity
of time-delay systems, and offers perspectives in terms of bit rate, spectral efficiency,
and privacy enhancement for future multi-user optical chaos-based communications.

8.2 Perspectives

In future research, we will complement the two axes developed in this thesis: (1)
security analysis and (2) chaos multiplexing and multi-user communications. The
following section presents various points that could lead to complementary results in
our current research.

8.2.1 Perspectives on Security Analysis

• Our security analysis has revealed that ECSL, contrary to common knowledge,
can exhibit a high level of confidentiality with respect to the time-delay iden-
tification. This result has been interpreted from a dynamical point of view;
however, there are still configurations that require additional study. Configu-
rations for which the relaxation-oscillation period τRO is greater than the time
delay τ (the so-called short-cavity regime) have to be investigated and their
level of security has to be compared to the cases studied in the thesis where
τRO was smaller than τ (the so-called long-cavity regimes). The short-cavity
configurations could be more efficient than the long-cavity ones by ensuring for
instance a larger parameter range (feedback strength and pumping current)
for the time-delay signature concealment. The identification of the complete
structure of the ECLS and its remaining parameters based on the analysis of
a single scalar intensity time series is also a possible direction.

• Our findings are based on theoretical and numerical simulations; the realization
of an experimental setup to implement the optimized concealment scenarios
would allow us to quantify performance in real conditions.

8.2.2 Perspectives on Chaos Multiplexing and Multi-User
Communications

• Multiplexing optical chaos using ECSL. Our setup has highlighted for the
first time a method to multiplex optical signals generated by coupled ECSLs.
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The synchronization and the evolution in size of the parameter space (allowing
the existence of synchronization) with an increasing number of lasers is cru-
cial to the generalization of our multiplexing architecture. Our architecture
could be also used to generate orthogonal optical signals to perform CDMA-
like encryption, similar to our work with chaotic electro-optical oscillators with
multiple loops. The difference would be that signals are generated by multiple
chaotic oscillators. This would require a detailed analysis of the influence of
internal and coupling parameters on the orthogonality.

The realization of an experimental setup starting with two pairs of lasers con-
stitutes a major perspective of our work. This investigation could also trigger
the application of our approach to other types of systems that are known to be
less sensitive to external perturbations such as integrated external-cavity lasers
or lasers with optoelectronic feedback. Finally, a detailed security analysis has
to be performed to quantify the potential enhancement of privacy due to the
use of multiple coupled systems with the various encryption setups studied:
CMa, CSK, and CMo.

• Generation of Code using Electro-optic Generators. We have proposed
various configurations for a multiplexing architecture based on electro-optic os-
cillators (EOO) with multiple feedback loops. The complexity of the decoding
equation in the configuration with interference and the limitations in term of
bit rate are two significant limitations that results mainly from our encryption
strategy. Investigating alternate structures of EOO to prevent interference and
new encryption strategies are important issues that deserve additional studies.
Hitherto, our encryption and decryption methods have been tested only in op-
timal transmission conditions. Performance of the architecture must also be
evaluated in more realistic condition, in the presence of noise and parameter
mismatch, to probe the fundamental limits. This would pave the way toward
successful implementation of an experimental setup.



Appendix A

Résumé de Thèse en Français

A.1 Introduction Générale

Les technologies optoélectroniques ont fortement contribué au développement des
télécommunications optiques modernes (par exemple, sources laser, amplificateurs
performants et compacts, et fibres optique). Ces réseaux possèdent une structure
par couches, comme définie par la représentation OSI (open system interconnexion),
comprenant une couche physique de bas niveau (associée au support physique du sig-
nal, optique ou électrique), et des couches haut niveaux : liaison de données, réseau,
transport, session, présentation et application. Cette architecture modulaire offre
cependant de nombreuses failles de sécurité menaçant l’intégrité du réseau de com-
munication. L’essentiel des efforts de protection des systèmes de communication s’est
attaché à l’utilisation et à l’amélioration constante de techniques de cryptographie
mathématique. Dans cette approche, un algorithme mélange un message clair (plain
text) avec une clé (key) afin que deux parties légitimes (dénomées traditionellement
Alice et Bob) puissent échanger des données cryptées (cipher text) difficilement in-
terprétables par un espion (dénommé Eve). Ce n’est que récemment que la couche
physique a suscité l’intérêt de la communauté scientifique. Il est à présent possi-
ble d’utiliser directement les propriétés physiques du signal porteur d’information
afin d’apporter un niveau de confidentialité supplémentaire. Deux solutions ont été
largement étudiées :

• Les Communications Quantiques utilisant la nature probabiliste des pho-
tons (assurée par la mécanique quantique) afin de transmettre des informa-
tions sensibles tout en guarantissant une sécurité inconditionnelle (au sens de
la théorie de l’information) [3].

• Les Communications Chaotiques utilisant les instabilités existant dans
certaines sources optiques afin de générer des signaux pseudo-aléatoires de
forte complexité dans lesquels des informations seront cachées. Cette approche
garantit une sécurité algorithmique similaire à celle produite par certaines
méthodes mathématiques (RSA et PGP par exemple) [9].

A l’heure actuelle, les systèmes de communication quantiques, malgré leur haut
degré de confidentialité, n’offrent malheureusement que des débits limités (quelques
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kbit/s) sur de courtes distances (quelques dizaines de km) et sont essentiellement
utilisés pour l’échange de clés (quantum key distribution ou QKD). Les systèmes op-
tiques chaotiques, au contraire, ont de larges bandes passantes, permettant l’échange
de données à haut-débit (plusieurs Gbit/s) sur de larges distances [4].

Une architecture de communication par chaos optique comprend deux oscilla-
teurs chaotiques structurellement identiques (paramètres et non-linéarité) propriétés
respectives d’Alice et Bob, et situés à chacune des extrémités d’un canal de com-
munication optique. En début de chaîne, Alice encode son message et l’incorpore
au moyen d’une méthode appropriée au signal chaotique avant d’injecter le résultat
de l’encryption dans le canal. En fin de chaîne, le récepteur de Bob se synchronise
uniquement sur le chaos produit par Alice (la partie déterministe du signal) et une
opération de soustraction est ensuite utilisée pour extraire les données encryptées.
La Figure A.1 synthétise ces différentes informations.

Figure A.1: Principe des communications sécurisées au niveau de la couche physique utilisant
des systèmes optoélectroniques chaotiques.

Le développement des communications chaotiques optiques résulte de trois phénomènes
physiques: (i) l’émission stimulée mise en évidence par Einstein (le principe physique
utilisé dans les lasers), (ii) la théorie du chaos donnant un cadre mathématique aux
comportements erratiques de certains systèmes non-linéaires, et enfin, (iii) la syn-
chronisation des systèmes chaotiques. Malgré leurs performances en terme de com-
plexité algorithmique et leurs larges bandes passantes, les communications par chaos
optique demeurent marginales principalement en raison des difficultés à caractériser
leur sécurité et à les utiliser dans un contexte multi-utilisateurs.

La recherche effectuée dans le cadre de cette thèse a contribué à l’avancement de
ces deux questions ouvertes. Ce résumé vise à en rappeler les principaux résultats.

Dans la premiere section, nous nous sommes intéressés à la sécurité d’une classe
particulière de générateur optique, celle des lasers à semi-conducteur à cavité externe
(ECSL). Nous nous proposons de prendre la place d’Eve et d’attaquer ce système
dans un contexte d’analyse difficile, celui pour lequel aucune information n’est a
priori disponible. L’intensité optique en sortie du laser chaotique est enregistrée et
analysée par le biais de techniques d’outils statistiques des séries temporelles. Dans le
cadre de la thèse, la sécurité est comprise comme étant la quantité d’information pou-
vant être extraite de certains paramètres critiques du système (analogue d’une clé de
cryptage mathématique) ou de la fonction non-linéaire du système (analogue de d’un
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algorithme de cryptage). Un ECSL est un système possédant un delai, un paramètre
critique pour la sécurité. Nous avons donc étudié l’influence des paramètres ajusta-
bles de l’ECSL sur l’identification de son délai: l’intensité de la rétroaction optique,
la valeur du délai et le courant électrique alimentant le laser (aussi appelé courant de
pompe). Dans un deuxième temps, nous avons interprété ces résultats sur la base des
régimes dynamiques précédant l’apparition du chaos dans la cascade de bifurcations
que l’ECSL subit avant d’entrer dans un régime chaotique.

Dans la deuxième section, nous proposons une architecture pour multiplexer des
signaux chaotiques optiques produits par des ECSL. Nous démontrons la supéri-
orité de cette approche en terme d’efficacité spectrale relativement aux méthodes
de multiplexage en longueur d’onde (WDM) appliquées aux communications op-
tiques par chaos (aussi connues sous le nom de chaotic WDM ) [158; 161; 162]. Nous
avons adapté un concept fondamental de la théorie de la synchronisation: la décom-
position active-passive (active-passive decomposition, (APD)) [70] en utilisant des
composants optiques simples. Nous démontrons la possibilité de multiplexer et dé-
multiplexer deux signaux chaotiques optiques par synchronisation (en utilisant deux
émetteurs et deux récepteurs). Les performances et la robustesse de cette structure
sont analysées ainsi que la possibilité d’encrypter et de décrypter des messages.

Dans la troisième section, nous avons utilisé une classe de systèmes optoélectron-
iques différente de celle des deux premières sections, avec l’objectif d’utiliser un seul
oscillateur chaotique pour encoder plusieurs messages au lieu d’en considérer un par
message. A cette fin, nous avons modifié une structure d’un générateur de chaos
électro-optique existant dans la littérature [106] en lui ajoutant plusieurs boucles de
rétroaction non-linéaires utilisées pour l’encryptage des messages via, par exemple,
la modulation du gain non-linéaire de boucle. Nous avons analysé différentes con-
figurations possibles pour transmettre plusieurs messages, ainsi que les propriétés
des signaux chaotiques générés au sein de chaque boucle. Nous avons expliqué dans
quelle mesure l’orthogonalité (ou décorrelation) entre les différents signaux peut être
utilisée avantageusement pour déterminer des équations de décryptage de faible com-
plexité algorithmique. Enfin, nous avons analysé comment la prise en compte de
phénomènes d’interférences entre signaux porteurs influait sur la récupération des
messages.

Dans la quatrième et dernière section, nous avons proposé une nouvelle méth-
ode de multiplexage des données en utilisant des systèmes à délais. Les systèmes
considérés possèdent de multiples boucles de rétroactions (similaires aux systèmes
étudiés précédemment) et les messages sont encodés par des modulations digitales
des délais dans des intervalles de valeurs disjoints ou superposés. Les messages sont
des sources d’information et, à ce titre, assurent une modulation aléatoire du délai,
permettant ainsi un accroissement de la sécurité vis-à-vis de l’identification du délai.
Nous avons proposé plusieurs méthodes de décryptage de complexité algorithmique
exponentielle ou linéaire avec le nombre d’utilisateurs. Enfin, nous avons démontré la
possibilité de communications multi-utilisateurs à très haut débits (plusieurs Gbits/s
par utilisateurs).
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A.2 Analyse de la Sécurité d’un Laser à
Semi-Conducteur à Cavité Externe

Introduction

Il existe plusieurs possibilités pour un espion s’il désire casser les protection apportées
par un système chaotique. Essentiellement, il peut soit tenter (i) une extraction
directe du message à partir de la série temporelle qu’il analyse, ou (ii) reconstuire la
dynamique du système chaotique et extraire le message a posteriori. De plus, sous
certaines conditions, l’espion peut aussi exploiter sa connaissance complète (scénario
“boîte blanche”) ou partielle (scénario “boîte grise”) de la nature du système chaotique,
le cas le plus défavorable étant l’absence totale de connaissance (scénario “boîte
noire”).

Le scénario considéré est celui de la boîte noire, notre objectif étant de casser
complètement le système en reconstruisant sa dynamique. Dans le cas des systèmes
à délais tels qu’un laser à cavité externe (ECSL), ces méthodes sont totalement in-
efficaces [136] à cause des large dimensions des attracteurs chaotiques étudiés [101].
Cependant, la connaissance du délai peut menacer la complexité et la sécurité du
système car l’espion peut alors reconstruire la dynamique dans un sous-espace des
phases de faible dimension [142]. Nous illustrons une fuite de sécurité dans un sys-
tème de type générateur de chaos en longueur d’onde [12].

Figure A.2: Identification de la fonction non-linéaire d’un générateur de chaos en longueur
d’onde décrit par une équation de type Ikeda, T ẋ(t) + x(t) = β sin2(x(t − τ) + ϕ0). le nuage
de points gris représente la série temporelle discrétisée et projetée dans un sous-espace des
phases (ẋ(t), x(t − τ∗)). (a) le délai est connu par l’espion τ∗ = τ (b) τ∗ = 1.1τ �= τ
est inconnu (ou imperfectement connu). La ligne solide rouge donne la forme de la fonction
mathématique existant dans le générateur de chaos en longueur d’onde. Les paramètres utilisés
dans la simulations sont T = 10 µs, β = 30, ϕ0 = π/4, and τ = 500 µs.

La valeur du délai peut être déduite à partir de l’observation d’une série tem-
porelle. Cela a donc conduit à l’établissement de stratégies pour contrer son identifi-
cation: utilisation de commutations aléatoires [146] ou encore une évolution purement
aléatoire [147] de la valeur du délai. Dans cette section, nous étudions la sécurité
de l’ECSL au travers du prisme de l’identification du délai. Nous montrerons que
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certains régimes peuvent assurer un haut degré de confidentialité de l’information du
délai.

Contexte Théorique

Dans cette étude, nous considérons un générateur de chaos composé d’un laser à
semi-conducteur soumis à une rétroaction cohérente (Alice) dont l’intensité optique
est détectée et analysée par un espion (Eve). Ces informations sont brièvement
résumées sur la Figure A.3

Figure A.3: Description d’un schéma expérimental de laser à cavité externe (ECSL). Le généra-
teur de chaos d’Alice est composé d’une diode laser (LD) pompée électriquement par une source
de courant stabilisée (CS). La cavité externe est composée d’un atténuateur variable (VA), et
d’un miroir (M). L’espion (Eve) utilise un séparateur de faisceau (BS) et un photo-détecteur
(PD).

le système est modélisé par les Equations de Lang-Kobayashi [94] connues pour
reproduire avec fidélité les régimes dynamiques d’un ECSL observés expérimentale-
ment. Les équations sont données ci-dessous,

dE (t)

dt
=

1

2
(1 + iα)

�

GN,E − 1

τp

�

E (t) + ηE (t− τ) e−iω0τ + F (t) , (A.1)

dN (t)

dt
= J − N

τs
−GN,E |E|2, (A.2)

avec E(t) = |E| eiϕ(t) l’enveloppe lentement variable du champs électrique (|E|(t)
est l’amplitude et ϕ(t) la phase), N l’inversion moyenne de population dans la ré-
gion active, α le facteur d’élargissement de raie ou facteur de Henry (mesurant la
sensibilité de la phase à une variation d’amplitude du champs électrique), GN,E =
gN (N − N0)/(1 + ε |E|2) est le gain optique non-linéaire avec gN le gain linéaire,
ε le coefficient de saturation, N0 la densité de porteur à la transparence, ω0 est
la fréquence angulaire du laser sans rétroaction (ω0τ est la phase à l’origine), η

la force de rétroaction optique, τp le temps de vie des photons, τs le temps de
vie des porteurs, Jth le courant de seuil d’oscillation laser, p le facteur de pompe
et τ le délai correspondant à un aller-retour dans la cavité externe. La force de
Langevin F (t) modélise le bruit d’émission spontanée. Sa décomposition en coordon-
nées polaires (amplitude et phase) s’écrit F|E|(t) = 2βN(t)/E(t) +

�

2βN(t)ζ|E|(t)

et Fϕ(t) = 1/E(t)
�

2βN(t)ζϕ(t). Il est important de noter que ce modèle représente
le comportement d’un laser monomode. En l’absence de rétroaction optique, le laser
à semi-conducteur possède les propriétés dynamiques d’un oscillateur non-linéaire
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amorti. En effet, avant de rejoindre son point d’équilibre, le laser présente un régime
transitoire d’oscillations amorties aussi appelées dans la littérature oscillations de
relaxation (relaxation oscillations, (RO)) et correspondant à un échange d’énergie
entre les porteurs électroniques et les photons. La fréquence νRO = 1/τRO de ces os-
cillations est déterminée par une analyse de stabilité linéaire du laser sans rétroaction
et est fonction des différents paramètres internes. Elle s’écrit sous la forme suivante:

νRO =
1

2π

�
1

τpτs
(µ− 1)− µ2

4τ2s

�1/2

avec µ = gNτpτs

�

pJth −
N0

τs

�

. (A.3)

La sortie de l’ECSL chaotique est injectée dans un canal de communication
optique. Nous supposons que l’espion (Eve) peut sans restrictions intercepter et
réaliser l’acquisition de la série temporelle générée par Alice. Typiquement, Eve
essaie de reconstruire la dynamique de l’ECSL en utilisant des méthodes dites de
“plongement” (embedding techniques) [136]. Cette approche est inefficace si la di-
mension de l’attracteur du système chaotique excède cinq. Les dispositifs optoélec-
troniques à délai, tels que les ECSL, exhibent des attracteurs de très large di-
mension (plusieurs dizaines) prévenant l’utilisation de plongements pour casser le
cryptosystème. Cependant la connaissance du délai, comme rappelée précedem-
ment, conditionne fortement la sécurité et retire les restrictions de reconstruction
par plongement. Il est possible d’extraire la valeur du délai à partir d’une série
temporelle en utilisant des méthodes telles que les fonctions d’autocovariance (ACF)
et d’information mutuelle retardée (DMI). D’autres méthodes existent telles que les
modèles linéaires locaux (LLM) ou non-linéaires globaux (GNM) [136]. L’ACF nor-
malisée d’une série temporelle X(t) est définie par

ΓX =
1

σ2
X

�(X(t)− µX)(X(t+ θ − µX)�, (A.4)

avec µX = �X(t)�, σ2
X = �(X(t)− µX)2�, et �·� dénotant la moyenne temporelle. La

DMI est une métrique utilisée en théorie de l’information [2]. En supposant qu’une
série temporelle X(t) et sa version retardée X(t− θ) soient des processus aléatoires,
la DMI est définie par

I(θ) = E

�

ln

�

f̂X(t)X(t−θ)

f̂X(t)f̂X(t−θ)

��

, (A.5)

avec f̂X(t)X(t−θ), f̂X(t), et f̂X(t−θ) les densités de probabilité estimées à partir de la
série temporelle.

Identification du Délai dans les Equations de Lang-Kobayashi

Dans notre travail de thèse, nous avons démontré que contrairement à ce qui était
communément admis, un ECSL a la capacité de masquer son information du délai
(dénommée signature) vis à vis d’estimateurs classiques tels que l’ACF et la DMI.
Nous avons identifié le rôle clé des paramètres opérationels de l’ECSL dans l’identification
du délai: (i) la force de rétroaction optique η, (ii) le courant de pompe J = pJth et
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enfin (iii) la valeur du délai τ relative à celle de la période des oscillations de relax-
ation τRO. La force de rétroaction η contrôle la contribution de l’intensité retardée
I(t− τ) dans l’évolution de l’intensité I(t). L’introduction du champs électrique re-
tardée ηe−iωOτE(t−τ) dans les équations de Lang-Kobayashi A.1-A.2 étant linéaire,
il est attendu qu’une augmentation de la valeur η conduise à un accroissement de
l’information partagée entre I(t) et I(t − τ). La Figure A.4 supporte clairement
cette tendance en présentant un scénario d’identification du délai pour des valeurs
croissante de η.

Pour de larges valeurs de η, les séries chaotiques analysées offrent une signature
claire du délai: des “pics” de forte amplitude dans l’ACF et la DMI et dont les
positions donnent une estimation de τ et de ses multiples (Fig. A.4(k)-(l)). Une
diminution progressive de cette valeur entraîne dans un premier temps une décrois-
sance de l’amplitude du “pic” (Fig. A.4(h)-(i)) jusqu’à ce qu’un minimum global pour
l’amplitude du pic soit atteint (Fig. A.4(e)-(f)). Dans un deuxième temps et pour
des valeurs de η plus faibles, un changement qualitatif est observé: les estimateurs
présentent des oscillations rapides dont la période est approximativement égale à
τRO et modulées lentement avec une période proche de la valeur τ (Fig. A.4(b)-(c)).
Nous remarquons que dans ce dernier cas, la signature du délai n’est plus aussi claire,
une partie de l’information a été perdue. Les oscillations dans les estimateurs, qui
finissent inévatiblement par apparaître, constituent un élément clé dans la dissimu-
lation du délai et ont leurs propriétés intimement liées aux paramètres opérationels

Figure A.4: Séries temporelles chaotiques de l’intensité optique générées par un ECSL et en-
registrées par un espion (1ère colonne), ACF (2ème colonne), et DMI (3ème colonne) pour

des valeurs croissantes de la force de rétroaction η = 2 GHz (1ère ligne), 5 GHz (2ème ligne),

10 GHz (3ème ligne), and 15 GHz (4ème ligne) avec τ = 5 ns et τRO = 0.75 ns. Les lignes
verticales pointillées rouge et violette donnent les positions de τRO et τ , respectivement.
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de l’ECSL.

L’influence du courant de pompe sur la signature du délai est étudiée dans la
Figure A.5; elle illustre l’évolution de l’extremum (ou pic) le plus significatif dans
un voisinage du délai W (τ) en terme d’amplitude et de position pour chacun des
estimateurs ACF et DMI. Ce pic correspond à l’estimation du délai. Pour différentes
valeurs du courant de pompe, la force de rétroaction η varie et révèle l’existence
systématique d’un minimum global de l’amplitude de la signature (Fig. A.5(a)-(c)).
Il est à noter que lorsque le courant de pompe augmente, la valeur du minimum global
augmente également, l’identification du délai est donc plus aisée dans ces conditions.
Pour des valeurs modérées de η, deux échelles de temps coexistent (délai et période
des oscillations de relaxation) et induisent un biais dans la position du pic estimant le
délai. Celui-ci conduit à une surestimation de la valeur du délai de l’ordre de τRO/2
quelque soit la valeur du courant de pompe. Par la suite, elle décroît rapidement
avec l’augmentation de η (Fig. A.5(a)-(c)).

L’étude de l’influence de ces deux paramètres pose les bases d’un possible masquage
du délai par l’exploitation d’une forme de compétition entre deux échelles de temps

Figure A.5: Impact du courant de pompe J = pJth et de la force de rétroaction η sur
l’amplitude et la localisation de l’extremum le plus significatif dans un voisinage du délai avec
τ = 5 ns et W (τ) = [4.5 ns; 5.5 ns]. Les figures (a)-(b) donnent l’amplitude et la localisation
de maxθ∈W (τ) |ΓI(θ)|, respectivement. Les figures (c)-(d) donnent les mêmes informations mais

avec maxθ∈W (τ) |Î(θ)|. Les lignes en trait plein avec les marqueurs triangulaires gris, (�), les
marqueurs circulaires rouges (�), et les marqueurs carrés violets (�) sont associés respective-
ment aux facteurs de pompe p = 1.05, 1.26 et 1.72. Ces trois valeurs de p correspondent à
différentes valeurs de la période des oscillations de relaxation τRO = 0.75 ns, 0.33 ns, et 0.2 ns,
respectivement. Dans les Figures (b)-(d), les lignes pointillées donnent la localisation exacte du
délai τ .
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existant dans la série temporelle: une échelle dont la valeur est proche de celle des
oscillations de relaxation (ET1) et le délai (ET2). Lorsque la rétroaction est faible
(modérée), la signature du délai dans l’ACF ou la DMI est faible, cependant le délai
reste toujours identifiable.

Optimisation de la Dissimulation du Délai & Interprétation Dynamique
des Résultats

Qualitativement, la non-linéarité interne du laser et la rétroaction optique ont des
influences comparables sur l’évolution de la dynamique de l’ECSL dans les régimes
chaotiques faiblement développés (faibles valeurs de η). Les perturbations observées
sur la signature du délai peuvent être interprétées sur la base des multiples échelles
de temps existant dans l’ECSL. Ainsi, dans les régimes “faiblement” chaotiques, la
période des oscillations de relaxation auto-entretenues (ET1) et le délai (ET2) sont
conjointement favorisés. ET1 introduit des corrélations de courtes portées provo-
quant des oscillations dans l’ACF et la DMI. Ainsi, la dissimulation du délai consiste
à placer l’ECSL dans un régime tel que ET1 et ET2 interagissent fortement. En
terme des paramètres opérationnels, cela correspond à de faibles valeurs de η, pJth
et une valeur τ proche de τRO. La Figure A.6 illustre un tel scénario.

Dans ce scénario, la séparation entre le délai et la période des oscillations de
relaxation est de 0.45 ns. Comme dans la Figure A.4, l’utilisation de larges valeurs

Figure A.6: Scénario d’identification du délai avec des échelles de temps ET1 et ET2 proches.
l’intensité de l’ECSL, l’ACF, et la DMI sont tracées (colonnes de gauche à droite) pour des
valeurs croissante de force de rétroaction η = 2 GHz, 5 GHz, 10 GHz, et 15 GHz (de la première
à la dernière ligne) avec un délai τ = 1.2 ns et une période des oscillations de relaxation τRO =
0.75 ns. Les lignes pointillées rouge et violette donnent les positions respectives de τRO et τ .
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de η conduit invariablement à une identification aisée du délai (signature impulsion-
nelle de grande amplitude et de position précise) (Fig. A.6(l)-(k)). La diminution
progressive de η entraîne une décroissance de l’amplitude de la signature (Fig. A.6(h)-
(i)). Le comportement de la signature est encore identique à celui observé dans le
scénario précédent, mais diffère si η diminue. Progressivement, l’échelle de temps
ET1 domine dans les estimateurs et conduit à la disparition progressive du délai
(Fig. A.6(e)-(f)), puis totale (Fig. A.6(b)-(c)) au profit d’une détection de l’échelle
de temps ET1 (oscillations de relaxation entretenues) differente de τRO. Il apparaît
que l’utilisation de faibles valeurs de η entraîne une grande diversité de comporte-
ments des estimateurs ACF et DMI. Les régimes dynamiques sont alors faiblement
chaotiques et possèdent une réminescence de la structure du dernier attracteur sta-
ble avant la transition vers le chaos. La route vers le chaos d’un ECSL varie très
fortement en fonction des paramètres internes et opérationels considérés. La nature
des attracteurs et leur contenu spectral peut donc fortement changer et influencer
significativement le comportement des estimateurs (ACF ou DMI). Une illustration
de l’influence de la route vers le chaos sur l’estimation du délai est donnée dans
la Figure A.7. Elle illustre dans quelle mesure l’absence de composantes spectrales
associées au délai fEC = 1/τ assure sa dissimulation dans les régimes chaotiques.
Elle présente une route vers le chaos par doublement de période en prenant la force
de rétroaction η comme paramètre de bifurcation. Elle montre également pour dif-
férents points de la route (colonnes de gauche à droite) une projection de l’attracteur
chaotique dans le plan (|E|, N), le spectre RF, l’ACF et la DMI, tous trois calculés
à partir de la série temporelle de l’intensité optique I(t). Au cours de la route,
un mode de cavité externe (solution stationnaire d’un ECSL, aussi dénomé external
cavity mode ou ECM) est destabilisé au profit d’un cycle limite [Fig. A.7(b1)]. Sa
fréquence fH1 = 1.34 GHz est identifiée par le spectre RF [Fig. A.7(c1)] et par les
estimateurs ACF et DMI [Fig.A.7(d1)-(e1)]. Elle est en outre proche de la fréquence
des oscillations de relaxation fRO = 1.33 GHz. L’ECSL subit ensuite une première
bifurcation flip conduisant à un cycle limite de période double [Fig. A.7(c2)], détec-
tée par chacun des estimateurs [Fig. A.7(d2)-(e2)], avant de subir une cascade de
bifurcations. La géométrie de l’attracteur devient plus complexe [Fig. A.7(b1)-(b4)]
à mesure que le contenu fréquentiel s’enrichit. Lorsque la transition vers le chaos
s’opère, une réminescence du dernier attracteur non-étrange est présente dans la
géométrie du système. Fréquentiellement, cela se traduit par une persistence de la
concentration en énergie spectrale des fréquences apparues au cours de la cascade de
bifurcations [Fig. A.7 (c4)]. Temporellement, on observe par une décorrelation lente
de l’intensité chaotique avec une forme de fonction d’ACF proche de celle associée
au dernier attracteur stable [Fig. A.7]. Les régimes chaotiques obtenus, et qualifiés
de faiblement développés, sont aussi ceux pour lesquels la sécurité est maximale si
aucune fréquence liée au délai n’apparaît au cours de la route. La diversité des routes
vers le chaos explique ainsi celle des scénarios de dissimulation observée à de faibles
valeurs de force de rétroaction optique η.



179

Figure A.7: Interpretation dynamique de la sécurité dans un scénario d’échelles de temps
proches. Le délai vaut τ = 1.2 ns et la période des oscillations de relaxation τRO = 0.75 ns.
Une route vers le chaos par doublement de période est observée en (a). La figure présente une
projection de l’attracteur chaotique dans le plan (|E|, N) (première ligne), la densité spectrale
de puissance |FT (I(t))|2 (deuxième ligne), l’ACF (troisième ligne) et la DMI (quatrième ligne)
pour des valeurs croissantes de force de rétroaction η. Chaque colonne (numérotée de 1 à 4)
correspond à une valeur de η = 0.6 GHz, 0.8 GHz, 1.2 GHz, et 1.5 GHz. Les lignes verticales
pointillées de couleur violette et rouge donnent respectivement les valeurs théoriques du délai et
de la période des oscillations de relaxation utilisées dans les simulations.
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Conclusion

Dans cette première partie de la thèse, nous avons étudié la sécurité en terme
d’identification du délai d’une classe de générateur de chaos optique : celle des lasers
soumis à rétroaction optique (ECSL). En effet, le délai est un paramètre critique
pour la sécurité des crypto-systèmes chaotiques retardés. Nous avons découvert le
rôle clé joué par les paramètres opérationels de l’ECSL : la force de rétroaction op-
tique η, le courant de pompe J et le délai introduit par la cavité externe du laser τ .
Nous avons montré qu’une combinaison particulière de ces paramètres pouvait con-
duire à des comportements chaotiques assurant une dissimulation quasi-parfaite de
l’information du délai (vis-à-vis des méthodes d’analyse de séries temporelles). Nous
avons également interprété ces résultats sur la base des dynamiques non-linéaires
présentes dans la cascade de bifurcations précédant l’apparation du chaos.

A.3 Multiplexage de Chaos Optique

Introduction

Dans cette section, nous résumons les résultats de la thèse relatifs au multiplexage
de signaux chaotiques optiques et à la transmission multiplexée d’information sur
base de nouvelles architectures. Les motivations ayant conduit à l’émergence des
concepts de multiplexage en cryptographie par chaos sont identiques à celles des
communications conventionnelles : transmission simultanée de plusieurs messages
avec un seul canal de communication de disponible et l’efficacité spectrale (ou quan-
tité d’information potentiellement transmissible par Hz). Dans les réseaux optiques,
les méthodes de multiplexage temporel et fréquentiel (en anglais, time-division mul-
tiplexing ou TDM et wavelength-division multiplexing ou WDM) sont couramment
utilisées [104], mais ne présentent pas d’intérêt scientifique en terme d’efficacité spec-
trale pour les systèmes chaotiques optiques. Cependant la technique de WDM a été
utilisée avec des lasers chaotiques multimodes [160; 161; 162] ou avec plusieurs lasers
monomodes décalés en fréquence [158; 159; 164]. Nous proposons dans cette partie
d’aller au-delà du paradigme de TDM et WDM en exploitant un des concepts fonda-
mentaux en synchronisation du chaos : la décomposition active-passive (en anglais,
active- passive decomposition ou APD) formalisée dans [70]. La partie active de
l’oscillateur chaotique possède au moins un exposant de Lyapunov positif, la partie
passive a des exposants de Lyapunov conditionels négatifs. Deux systèmes chaotiques
(émetteur et récepteur), décrits par des équations dynamiques identiques aux condi-
tions initiales différentes, peuvent ainsi se synchroniser si leurs parties actives sont
soumises à la même influence. Les EELs sont des oscillateurs non-linéaires amortis,
autrement dits des systèmes passifs. Nous avons soulignée l’analogie existante entre
la synchronisation retardée d’ECSLs et le cadre théorique de l’APD. Cela nous a
permis de proposer une architecture de mutiplexage comprenant plusieurs ECSLs à
l’émission et à la réception.
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Cadre Théorique et Modélisation

Nous proposons une méthode de multiplexage de signaux optiques chaotiques générés
par des lasers à semi-conducteur ayant des fréquences optiques identiques. En util-
isant des composants optiques simples, nous proposons une analogie optique d’une
décomposition active-passive. A l’émission, un champ optique multiplexé ET (t)
(résultant de la superposition des champs chaotiques Em

k (t) de chaque laser Mk

(k = 1, . . . , n)) injecte toutes les diodes lasers maîtres avec des délais et forces
d’injection spécifiques. Le champ optique ET (t) est ainsi perçu par Mk comme
étant un champ multiplexé spécifique Em

T,k(t). Le signal ET (t) se propage égale-
ment dans un canal de communication optique, afin d’injecter unidirectionellement
n lasers esclaves découplés. Plus spécifiquement, les lasers esclaves Sk (k = 1, . . . , n)
sont injectés avec des délais et couplages identiques à ceux du laser maître Mk cor-
respondant. Cela implique que chaque laser Sk est injecté par une version retardée
de ET (t) qui sera notée Es

T,k(t).

Figure A.8 représente une configuration à deux lasers mutuellement couplés
(M1,M2) injectant unidirectionellement deux lasers découplés (S1,S2).

Figure A.8: Illustration de l’architecture de multiplexage de chaos optique basée sur une dé-
composition active-passive (APD) utilisant des lasers à semi-conducteur. Les lasers maîtres et
esclaves sont respectivement labélisés M1,2 et S1,2. Les abbréviations utilisées sont CS: source
de courant, Mr, Mrf : miroir, VA1,2 : atténuateur variable, BS : séparateur de faisceaux 50/50,
OI : isolateur optique.

Chaque laser est soumis à l’influence de son propre champ optique retardé et
réfléchi par le miroir Mrf , ainsi qu’au champ optique issu de l’autre laser maître.
La combinaison linéaire des deux champs retardés est ainsi injectée dans chaque
maître, avec une force, une phase et un délai déterminés (contrôlés respectivement
par des atténuateur variables et des chemins optiques différents). Le mélange optique
est également transmis unidirectionellement dans le canal de communication pour
injecter la paire de lasers esclaves.

L’architecture complète est modélisée en considérant des hypothèses identiques
à celles issues du le formalisme des équations de Lang-Kobayashi [94]. En supposant
que les lasers sont monomodes, l’architecture est décrite par le système d’équations
suivant
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k + 1/τ spk)|Es
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L’indice k correspond à la kième paire de lasers (Mk/Sk), les exposants m et s la-
belisent les variables d’état associées aux lasers maître et esclave. L’approximation
lentement variable du champ optique est décrite par Em,s

k = |Em,s
k |eiφm,s

k et l’inversion
de population par Nm,s

k . Le gain non-linéaire du laser est décrit par Gm,s
k = g

m,s
k (Nm,s

k −
N

m,s
0k )/(1+ε

m,s
k |Em,s

k |2)−1/τm,s
pk , avec gm,s

k le gain differentiel, Nm,s
0k l’inversion popu-

lation à la transparence, εm,s
k le coefficient de saturation de gain et τpk le temps de vie

des photons. αm,s
k est le factor de Henry, γm,s

sk l’inversion de temps de vie des porteurs,
Jm,s
k la densité de courant de pompe et ω

m,s
0k la pulsation angulaire du kième laser.

τmjk (respectivement τ cjk), η
m
jk (respectivement ηcjk) et ∆ω

m/m
jk = ωm

0j − ωm
0k (respec-

tivement ∆ω
m/s
jk = ωm

0j−ωs
0k) sont les temps de propagation, les forces d’injection, et

les décalage sen fréquence entre le jième et le kième laser maître (respectivement le
jième laser maître et le kième laser esclave). Le bruit d’émission spontanée est mod-

elisé par des forces de Langevin Fm,s
k =

�

2βm,s
k Nm,s

k ζm,s
k avec βsp, le taux d’émission

spontané, et ζm,s
k es bruits blancs gaussiens de variance unité statistiquement inde-

pendents.
La géométrie de l’architecture décrite par la Figure A.8 impose des contraintes

structurelles aux délais de propagation et aux forces de couplage de l’émission :

τmjk = τmkj = τmjj +∆τmkj/2, (A.10)

ηmkj = ηmjk =
�

ηmkkη
m
jj , (A.11)

avec ∆τmjk = −∆τmkj = τmjj − τmkk.
La configuration est telle que la topologie des délais introduite à l’émission est

préservée à la réception. Mathematiquement, cela se traduit par la relation

τmkk − τmjk = τ ckk − τ cjk. (A.12)

Ces différentes contraintes permettent d’exprimer le champ optique multiplexé par
une formulation mathématique compacte

ET (t, θ,σ, µ) =
n�

j=1

�

ηmjje
iωm

0j(θ+∆τmσj/2)+it∆ωµ
jσEm

j (t− θ −∆τmσj/2), (A.13)

avec θ = τmkk ou τ ckk, σ = k et µ = m/m ou m/s. Le champ optique ET (t) peut
ainsi être utilisé pour déterminer l’expression du champ multiplexé injecté dans la
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kième paire de lasers : Mk est soumis à Em
T,k(t) =

�
ηmkkET (t, τ

m
kk, k,m/m) et Sk à

Es
T,k(t) =

�
ηckkET (t, τ

c
kk, k,m/s).

Synchronisation Multiplexée et Efficacité Spectrale

Chaque paire de lasers (Mk,Sk) peut être complètement synchronisée si les paramètres
internes et opérationel des lasers sont identiques. Il faut également négliger la

présence du bruit et ne considérer aucun décalage en fréquence ∆ω
m/s
kk = 0. En

procédant de façon analogue au cas d’une seule paire de lasers [59; 121; 123], nous
avons démontré que les conditions nécessaires de synchronisation pour chaque paire
impliquaient l’égalité des forces d’injection

ηcjk = ηmjk pour tous j, k aussi équivalent à ηckk = ηmkk pour tous k. (A.14)

Cependant, ces conditions ne donnent pas d’information sur les valeurs des paramètres
de couplage garantissant la stabilité de la synchronisation. Les temps de propogation
non-nuls, inhérents à la cavité optique partagée et au canal de communication, in-
duisent des délais ∆τk dans la synchronisation de la kième paire de laser. On définit
alors les variétés de synchronisation associées à (Mk,Sk) par l’ensemble d’équations
suivant :

Es
k(t) = Em

k (t−∆τk), (A.15)

φs
k(t) = φm

k (t−∆τk)− ωm
0k∆τk(mod 2π), (A.16)

N s
k = Nm

k (t−∆τk). (A.17)

L’expression du délai à la synchronisation peut être simplement déduit en comparant
les champs optiques injectants Mk et Sk : respectivement Em

T,k(t) =
�

ηmkkET (t, τ
m
kk, k,m/m)

et Es
T,k(t) =

�
ηckkET (t, τ

c
kk, k,m/s). Il est alors aisé de déduire l’expression suivante

pour les délais à la synchronisation :

∆τk = τ ckk − τmkk. (A.18)

Une simulation de notre architecture est réalisée pour deux paires de lasers (n = 2)
et apparaît en Figure A.9.

En l’absence de bruit, nous observons un diagramme de synchronisation linéaire
[Fig. A.9(a1)-(a4)] correspondant à une synchronisation complète pour chaque paire.
La présence de bruit d’émission spontanée détruit l’état de synchronisation parfaite,
néanmoins, les deux systèmes restent partiellement synchronisés. En considérant un
taux d’émission spontanée typique égal à βsp = 1000 s1 , on constate que le coefficient
de corrélation moyen entre les différentes variables d’état de Mk et Sk est d’environ
0.95. Ce niveau est suffisant pour guarantir des communications chaotiques avec un
faible taux d’erreur binaire (BER).

L’efficacité spectrale de notre architecture est également un atout important. Si
des schémas classiques de multiplexage en longueur d’onde (WDM) étaient appliqués
à des architectures de communications par chaos, les spectres optiques nécessiteraient
d’être suffisamment distants les uns des autres afin d’éviter toutes interférences et
d’assurer leur séparation à la réception. En effet, les lasers à semi-conducteurs à
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Figure A.9: Diagrammes de synchronisation théoriques sans bruit d’émission spontanée (βsp =
0 s−1). Les diagrammes de synchronisation présentent les évolutions de (Im1 (t), Is1(t − ∆τ1))
en (a1), (Im2 (t), Is1(t − ∆τ1)) en (a2), (Im1 (t), Is2(t − ∆τ2)) en (a3), et (Im2 (t), Is2(t − ∆τ2))
en (a4). Les valeurs numériques utilisées sont Jm

1 = Js
1 = 2.75Jth, Jm

2 = Js
2 = 2.5Jth,

ηm11 = ηc11 = 10 GHz, ηm22 = ηc22 = 15 GHz, ηm12 = ηm21 = ηc12 = ηc21 =
�
ηm1 ηm2 , τm11 = 1 ns,

τm22 = 4 ns, τ c11 = 1 ns et τ c22 = 4 ns. Les paramètres internes sont choisis différemment pour
chaque paire : α

m,s
1 = 5, α

m,s
2 = 4, τ

m,s
p1 = 2 ps, τ

m,s
p2 = 1 ps, γ

m,s
s1 = 2 ns, γ

m,s
s2 = 1 ns,

ε
m,s
1 = 5 × 10−7, εm,s

2 = 2.5 × 10−7, gm,s
1 = 1.5 × 10−4 s−1, gm,s

2 = 1 × 10−4 s−1, Nm,s
01 =

1.5× 108, Nm,s
02 = 2× 108.

cavité externe en régime chaotique ont des spectres optiques très large de l’ordre de
plusieurs dizaines de GHz. Une telle approche ne résulterait pas en une améliora-
tion de l’efficacité spectrale. Cependant, notre architecture permet de lever cette
contrainte en autorisant la séparation par synchronisation de plusieurs signaux chao-
tiques avec de forts recouvrements spectraux. Nous avons comparé la bande passante
du signal ET (t) avec

�
ηmkkE

m
k (t) dans le cas où notre architecture était composé de

deux paires d’EELs. Nous avons constaté que les étalements spectraux étaient ap-
proximativement identiques, ce qui nous a permis d’envisager de transmettre deux
fois plus de bit d’information par Hz.

Communications Chaotiques Multiplexées

Nous avons présenté différentes stratégies permettant le multiplexage de plusieurs
messages binaires. Elles constituent une évolution des méthodes existantes pour le
cas d’une seule paire émetteur/récepteur et sont connues sous les appelations de
chaos masking (CMa), chaos-shift keying (CSK), et chaos modulation (CMo).

La technique de CMa consiste en l’addition d’un message binaire à la sortie du
système chaotique optique à base d’ECSL [166]. Le message ne participant pas à la
dynamique de l’ECSL et induit des perturbations à la synchronisation au niveau du
récepteur. Cela permet de retrouver l’information initialement encodée. Les mes-
sages encryptés étant non codés, le CMa ne peut être utilisé avec notre architecture.
En effet, l’addition de deux messages binaires m1 et m2, aux propriétés identiques,
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induiraient une perte d’information : il devient impossible de distinguer le couple de
valeurs m1m2 = {01, 10}. Le nombre de combinaisons de bits indistinguables aug-
mentant avec le nombre de paires de lasers, une version multiplexée du CMa semble
inappropriée pour effectuer une transmission d’information avec notre architecture.

La technique de CSK consiste en la commutation d’un paramètre θE de l’émetteur
entre deux états {θ0, θ1} au rythme d’un message et à l’utilisation d’un récepteur avec
une valeur de paramètre fixée θR = θ0 ou θ1. Lorsque l’émetteur et le récepteur sont
synchronisés, cela signifie que les valeurs de θE et θR coincident et donc qu’un bit “0”
a été transmis. Le cas contraire correspondrait à un bit “1”. Cette méthode a été mise
en oeuvre dans les ECSLs en modulant le courant de pompe à l’émission [169] et elle
peut être appliquée à notre architecture en modulant le courant de pompe de chaque
laser maître Mk (k = 1, . . . , n). Cependant le décryptage doit être adapté au contexte
multi-utilisateur. A cette fin, nous avons présenté deux stratégies : une première pos-
sédant une grande précision mais une complexité algorithmique exponentielle avec le
nombre de messages transmis (CE) et une seconde avec une présicion réduite mais
une complexité algorithmique linéaire (CL). Cette méthode d’encryptage a l’avantage
d’être facilement implémentable avec une technologie à base d’ECSL, le courant de
pompe étant un paramètre facilement modifiable. Cependant, le CSK est limité en
terme de débit de transmission notamment à cause du temps de re-synchronisation
inhérent aux commutations. En considérant des paramètres identiques à ceux em-
ployés dans la Figure A.9, nous avons ainsi pu démontrer une transmission de deux
messages (n = 2) à 1 Gbit/s avec une stratégie de décryptage CE et à 500 Mbit/s
pour une stratégie de décryption CL.

Enfin, nous avons appliqué la technique de CMo qui consiste à inclure un message
dans la dynamique du système. Celui-ci participe constructivement au comporte-
ment chaotique du système et n’est donc plus considéré comme une pertubation
à la synchronisation (cas du CMa et du CSK). Le décryptage dans le CMo mul-
tiplexé est identique à celui du CSK multiplexé sans être limité par le temps de
re-synchronisation. La différence fondamentale s’effectue à l’encryptage : chaque
message est encodé sur l’amplitude ou la phase du champ optique Em

k (t) sans af-
fecter les champs optiques provenant des autres lasers maîtres. Le champ multiplexé
ET (t) présente une nouvelle expression,

ET,CMo(t, θ,σ, µ) =

n�

j=1

�

ηmjje
iωm

0j(θ+∆τmσj/2)+it∆ωµ
jσ+ψm,j(t−θ−∆τmσj/2)

× (1 + am,j(t− θ −∆τmσj/2))E
m
j (t− θ −∆τmσj/2),

(A.19)

avec am,j(t) (respectivement ψm,j(t)) le jième message encodé sur l’amplitude (re-
spectivement la phase) du champ optique Em

j . Afin de se conformer à cette nouvelle
formulation mathématique, il est nécessaire de modifier l’architecture présentée en
Figure A.8. Nous introduisons chaque modulateur (de phase/amplitude) dans une
circulation optique afin que seul le champ du laser maître Mk soit affecté par le kième
message mk. Cette circulation est composée de deux coupleurs optiques, d’un iso-
lateur optique et du modulateur. Une représentation schématique de l’architecture
modifiée est donnée en Figure A.10 pour une transmission CMo multiplexée de deux
messages.
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Figure A.10: Schéma théorique de multiplexage par modulation de chaos (CMo). Les deux
lasers maîtres sont mutuellement couplés et les lasers esclaves découplés de telle façon que la
structure soit une décomposition APD. Chaque modulateur n’affecte que le champ optique qui
lui est assigné. Les abbréviations sont les suivantes LD : diode laser EEL (labelisée M1,2 ou S1,2

pour les masters et esclaves, respectivement), CS : source de courant, Mr,Mrf : miroir, VA1,2

: atténuateur variable, BS : séparateur de faisceau 50/50, OI : isolateur optique, OC : coupleur
optique, Mod : modulateur de phase/amplitude.

Le désavantage de ce type d’encryptage, lorsqu’il est appliqué à des ECSLs, est
l’introduction d’une complexité structurelle supplémentaire. Néanmoins, les perfor-
mances en terme de débit et précision de la décryption (dans les deux stratégies)
est supérieure à celle du CSK. Nous avons simulé une transmission de deux mes-
sages encodés sur la phase optique de chaque laser maître Mk, chaque message ψm

k

etant encodé sur deux valeurs de phase différentes {0, π} correspondants aux deux
valeurs binaires {0, 1}. Afin de récupérer chaque message, une photodiode mesure la
différence de champ optique entre le champ multiplexé Es

T (t) et le champ Es
k(t) et

produit une intensité électrique qui satisfait l’expression suivante :

ICMo
D,k ∝

�
�
�ET (t, τ

c
kk, k,m/s)−

�
ηmkke

−jωs
0kτ

m
kk+jψm

k,0/1Es
k(t− τmkk)

�
�
�

2
. (A.20)

Nous présentons dans la Figure A.11 une transmission de deux messages binaires à 1
Gbit/s avec une stratégie de décryptage à complexité linéaire. L’évolution temporelle
de la sortie de chaque photodétecteur est représentée sur la figure par un trait continu
gris, alors que les messages originellement encodés sur les deux états de phase {0, π}
sont représentés en pointillés colorés.

Le décryptage (ou détection des messages) est basée sur une détection de seuil.
Pour chaque laser Sk, l’utilisateur légitime Bobk choisit une valeur fixe de phase pour
ψm
k dans l’intervalle {ψm

k,0, ψ
m
k,1}. Ainsi, chaque fois qu’Alicek transmettra un bit

d’information correspondant au choix arbitraire fait par Bobk, la valeur moyenne du
courant électrique généré par le kième détecteur (ICMo

D,k ) chutera brutalement. Cela
permettra à Bobk de détecter les différents bits de message transmis. Cependant,
la détection n’est pas aussi précise que dans une stratégie de décryptage exponen-
tiellement complexe. En effet, dans la stratégie linéaire illustrée, seule une fraction
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Figure A.11: Multiplexage/démultiplexage théorique de deux messages binaires encodés sur
la phase optique ψm

1 et ψm
2 à 1 Gbit/s. Le courant généré par chaque détecteur ICMo

D,k a été
normalisé par rapport à sa valeur maximale. Dix bits décodés sont représentés. Les lignes
pointillées bleue et rouge correspondent aux messages encryptés par Alice1 en (a) et Alice2 en
(b). Les paramètres de simulation sont identiques à ceux utilisés dans la Figure A.9.

du champ multiplexé ET (t) est soustrait en cas de correspondance, alors que dans le
cas exponentiel la totalité du champ aurait été soustraite.

Conclusion

Nous avons exposé une nouvelle architecture de multiplexage de chaos optique basée
sur l’utilisation de lasers émettant par le côté (EEL) couplés mutuellement par une
cavité externe partagée. Nous avons également prouvé que la synchronisation du
chaos pouvait être utilisée comme critère de séparation de différentes porteuses op-
tiques, même si celles-ci possèdent un fort recouvrement spectral. Les conditions et la
robustesse de la synchronisation du chaos pour chaque paire de lasers maître/esclave,
Mk/Sk (k = 1, . . . , n), ont été étudiées. Enfin, nous avons proposé une généralisation
de méthodes d’encryptage classiques chaos-shift keying (CSK), et chaos modulation
(CMo) pour une seule paire d’utilisateurs Alice/Bob, au contexte multi-utilisateurs.

A.4 Multiplexage de Chaos et Génération de Codes
Optiques Orthogonaux

Introduction

Ce chapitre de thèse est dédié à l’analyse et la réalisation d’un système de multiplex-
age de chaos optique basé sur des dispositifs optoélectroniques afin de transmettre
simultanément plusieurs messages. L’architecture proposée est issue d’un générateur
de chaos en intensité [116]. Dans notre cas, nous utilisons cette même structure
à base d’OEO mais en y ajoutant plusieurs boucles de rétroaction retardées. Ceci
nous permettra par la suite de générer des signaux chaotiques orthogonaux et de
transmettre de façon sécurisée plusieurs messages simultanément tout en garantis-
sant un décryptage de complexité linéaire. En adoptant une philosophie identique
à celle utilisée dans les méthodes de multiplexage par code (code-division multiple
access ou CDMA) [21], les signaux chaotiques générés par des modulateurs de Mach-
Zehnder (présents dans chaque boucle) sont utilisés comme séquences d’étalement
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orthogonales (ou codes). Bien que la notion d’orthogonalité parfaite (ou décorrelation
totale) entre chaque code ne soit pas nécessaire dans les approches de type CDMA,
elle demeure une propriété essentielle à la simplicité algorithmique du décryptage.
La transposition du CDMA en utilisant des signaux chaotiques est ambitieuse, car
les codes fixes utilisés doivent être remplacés par des signaux variant dans le temps.
Au niveau du récepteur, la synchronisation du chaos est utilisée pour reproduire les
codes chaotiques afin de pouvoir réaliser une détection par corrélation (similaire à
la méthode développée en [19]). Nous avons appliqué numériquement cette méth-
ode et démontré la possibilité de transmettre plusieurs messages à très haut débit
(multi-Gbit/s).

Architecture et Modélisation

Plusieurs architectures à base d’oscillateur électro-optique (OEO) à plusieurs boucles
de rétroactions retardées sont possibles. Elles sont représentées en Figure A.12. On
distingue deux classes, l’une utilisant un seul photodétecteur (Configuration 1) et
l’autre en utilisant plusieurs (Configurations 2a et 2b).

Figure A.12: Configurations des émetteurs pour la transposition du CDMA avec OEO et deux
boucles de rétroaction. La Configuration (1) possède deux photodétecteurs alors que les Config-
urations (2a)-(2b) n’en ont qu’un. LD : diode laser, MZj=1,2 : modulateur de Mach-Zehnder,
DLj=1,2 : ligne à retard optique, PDj=1,2 : photodétecteur, RF : filtre RF passe-bande, Dj=1,2

: diviseur de tension associé au facteur d’atténuation gj=1,2 < 1.

Dans la Configuration 1, l’émetteur est composé d’une source laser CW monochro-
matique (LD) d’une puissance optique P qui est divisée dans plusieurs bras optiques.
Dans chacun d’eux, la lumière est modulée en amplitude par un modulateur de Mach-
Zehnder (MZi) polarisé par la tension constante Vdci et de tensions demi-onde Vπrfi

(RF) et Vπdci
(DC). Le champ optique linéairement polarisé se proprage dans dif-

férentes fibres optiques (DLi) induisant un retard Ti pour être finalement détecté par
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un photodétecteur (PDi) d’efficacité S. Les différent signaux électriques sont ensuite
recombinés en un seul signal multiplexé s(t) qui est amplifié par un filtre passe-bande
(RF) de gain G et de fréquences de coupures basses fL et haute fH . L’atténuation
totale de chaque boucle est denotée gi < 1 et est obtenue par des diviseurs de ten-
sion (Di). Cela permet de modifier la fréquence d’oscillation ωi de la non-linéarité
en cosinus carré associée au modulateur MZi. En effet, les diviseurs Di diminuent
la tension V (t) de sortie du filtre RF avant qu’elle ne soit appliquée à l’électrode
de contrôle du modulateur MZi. En adoptant l’approche et des notations similaires
à celles utilisées dans [106], il est possible de déterminer un modèle mathématique
pour les Configurations (1) et (2b) :

τ ẋ(t) + x(t) +
1

θ

� t

t0

x(u)du =

n�

i=1

βi cos
2(ωix(t− Ti) + φ0i), (A.21)

avec x(t) = πg1V (t)/2Vπrf1
la variable d’état du système, xTi = x(t−Ti) la variable

d’état retardée, θ = (2πfL)
−1, τ = (2πfH)−1, βi = g1GSPiπ/2Vπrf1

le gain non-
linéaire, φ0i = πVdci/2Vπdc1

un offset de phase et ωi = gi/g1Vπrf1
/Vπrfi

un gain
interne modifiant la fréquence de la non-linearité de la ième boucle de rétroaction. La
présence systématique d’interférences optiques au niveau de l’unique photodétecteur
utilisé dans la Configuration (2b) requiert une modification de l’équation A.21 dès que
le nombre de boucles de rétroaction est supérieure à deux. Le modèle mathématique
devient :

τ ẋ(t) + x(t) +
1

θ

� t

t0

x(u)du =
n�

i=1

βi cos
2(ωixTi + φ0i)

+
n�

j,k=1

�

βjβkCjk cos(ωjxTj + φ0j) cos(ωkxTk
+ φ0k),

(A.22)

avec Cjk = cos(αj − αk) cos(ϕj − ϕk), où αj et ϕ0j sont respectivement la direction
de polarisation et le déphasage du champ optique dans la j-ème boucle de rétraction
optoélectronique.

Propriétés Statistiques et Orthogonalité

Les systèmes chaotiques à base d’oscillateurs électro-optiques (OEO) à une seule
boucle de rétroaction possèdent des statistiques approximativement gaussiennes pour
leur variable d’état. L’origine d’une telle propriété réside dans les oscillations rapides
de la fonction cosinus carré du terme de rétroaction : elles détruisent les corrélations
internes de la variable d’état sur des échelles de temps très courtes. Il est ainsi
possible d’écrire la variable d’état x(t) comme la limite d’une série de variables
aléatoires identiquement distribuées :

x(t) =

∞�

n=0

�
1

τ
e−tn/τ − 1

θ
e−tn/θ

�

Xn(t), (A.23)
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avec Xn(t) =
� tn+1

tn
β cos2(x(t− u− T ) + φ0)du et εn = [tn, tn+1] la largeur de la

n-ième oscillation de la fonction non-linéaire (résultante d’une variation de x(t− T )
de π/β). L’application d’une version modifiée du théorème Centrale-Limite prouve
l’existence d’une statistique gaussienne (approximative) [141]. Dans le cas des Con-
figurations (1) et (2b), l’ajout de plusieurs boucles de rétroaction (fonctions cosinus
retardées de fréquences d’oscillation ωj) ne modifie pas fondamentalement le mécan-
isme de destruction des corrélations aux courtes échelles de temps. En réordonnant,
les produits ω1β1 < · · · < ωnβn, lorsque la quantité x(t − T1) varie de π/ω1β1,
la fonction s1(t) = β1 cos

2(ω1xT1 + φ01) oscillera une fois. Les autres fonctions

sj(t) = βj cos
2(ωjxTj + φ0j) oscilleront en moyenne

�
ωjβj

ω1β1

�

et détruiront alors les

corrélations à des échelles de temps plus fines. Par conséquent et considérant la
largeur de l’oscillation de s1(t) (la plus “lente” des fonctions) εn,1 = [tn,1, tn+1,1], il
est à nouveau possible de représenter la variable d’état x(t) comme une somme de
variables aléatoires

x(t) =

∞�

n=0

�
1

τ
e−tn,1/τ − 1

θ
e−tn,1/θ

�

Sn(t), (A.24)

avec Sn(t) =
� tn+1,1

tn,1

�n
i=1 βi cos

2(ωix(t− u− Ti) + φ0i)du. Cette forte analogie avec

le cas d’une unique boucle de rétroaction explique l’origine de statistiques gaussiennes
pour la variable d’état des Configurations (1) et (2b). La Configuration (2a), en
revanche, ne permet pas d’avoir une somme de variables indépendantes, à cause
des interférences présentes : il n’est plus possible d’appliquer le théorème Centrale-
Limite et celai entraîne un écart au caractère gaussien. Ces propriétés statistiques
sont illustrées dans la Figure A.13 et vont permettre par la suite d’analyser les
paramètres critiques garantissant l’orthogonalité entre les codes chaotiques.

Figure A.13: Fonction de densité de probabilité de la variable d’état x(t) (ligne continue grise)
et la distribution gaussienne théorique associée (ligne pointillée rouge) dans le cas d’un OEO
avec deux boucles de rétroaction (n = 2), sans interférences en (a) et avec interférences en (b).
Les paramètres utilisés pour (a) sont τ = 25 ps, θ = 5 µs, T1 = T2 = 30 ns, βi|i=1,2 = 5,
φ0i|i=1,2 = −π/4, ω2 = 2ω1 = 2. Les paramètres utilisés pour (b) sont τ = 25 ps, θ = 5 µs,
Tj = 30 + 15(j − 1) ns, βj = 5, φ0j = −π/4, ωj = 1 + 2(j − 1) et Cij = cos((i − j)π4 ) avec
i �= j = 1, . . . , 4.

Notre architecture suggère un choix naturel pour les codes chaotiques : les signaux
en sorties des boucles de rétroaction, soit

si(t) = βi cos
2(ωixTi + φ0i). (A.25)
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En considérant x(t) comme un processus stochastique stationnaire au sens large
(wide-sense stationnary ou WSS) suivant une loi gaussienne, il est possible d’analyser
les conditions d’orthogonalité entre deux codes différents si(t) et sj(t). L’orthogonalité
entre deux signaux est typiquement définie par l’annulation d’un produit scalaire
également interprétable en terme d’intercovariance comme il suit :

Γsisj =
�
si(t)− µsi , sj(t)− µsj

�
=

� ∞

−∞
(si(t)− µsi)(sj(t)− µsj )du, (A.26)

avec µsi,j =
�∞
−∞ si,j(u)du. En supposant que x(t) est ergodique, l’espérance mathé-

matique E(·) et l’opérateur de moyenne temporelle �·� donneront des résultat iden-
tiques. Cela permettra ainsi de donner une expression analytique de l’intercovariance.
Elle satisfait la relation suivante (considérant des délais identiques) :

Γsisj =
βiβj
8

�

1− e−4ωiωjσ
2
x

��

cos 2∆φ0ij + cos(2φ0i + 2φ0j)e
−4ωiωjσ

2
x

�

e−2∆ω2
ijσ

2
x ,

(A.27)
avec ∆ωij = ωi − ωj le décalage en fréquence d’oscillation, ∆φ0ij = φ0i − φ0j le
déphasage entre les fonctions non-linéaires et σ2

x la variance de x(t). Générale-
ment, les codes si(t) sont choisis avec des gains non-linéaires identiques βi = β
afin qu’ils aient tous des variances approximativement identiques (une propriété
désirable pour des questions de sécurité). Sous ces conditions, il est ainsi possible
d’analyser l’impact des différences de paramètres. Lorsque le décalage en fréquence
∆ωij augmente (en considerant les autres paramètres fixes), l’intercovariance satisfait

Γsisj ∼ e−2∆ω2
ijσ

2
x et révèle une décroissance exponentielle de la corrélation entre deux

codes. Le gain non-linéaire β apparaît quant à lui explicitement en facteur multipli-
catif ainsi qu’implicitement dans la variance de la variable d’état : σ2

x = cββ
2 avec

cβ > 0, un coefficient de proportionalité. Une augmentation du gain non-linéaire seul

conduit à l’expression suivante Γsisj ∼ β2

8 cos 2∆φ0ije
−2∆ω2

ijcββ
2

, démontrant aussi
la possibilité d’assurer asymptotiquement une orthogonalité quasi-parfaite. Enfin,
les phases respectives φ0i,0j et le déphasage relatif ∆φ0ij peuvent être ajustés aux
valeurs respectives, φ0i + φ0j = (2p+ 1)π/4 et ∆φ0ij = (2p+ 1)π/4 avec p ∈ Z, afin
d’assurer l’orthogonalité. Cependant, il n’existe pas de famille {φ0i}i=1,...,n permet-
tant d’assurer l’orthogonalité systématique des codes si n > 2. Ainsi le décalage ∆ωij

et β offrent plus de flexibilité pour la génération de codes chaotiques orthogonaux.
Ces résultats ont été confirmés par des simulations numériques présentées en Figure
A.14. Dans les plans de paramètres (∆ωij ,β) et (∆ωij ,∆φ0ij), l’intercovariance nor-
malisé ρsisj = Γsisj/(ΓsisiΓsjsj )

1/2 est calculée sur une durée finie Tb, correspondant
aux futures durées de modulation utilisées pour la transmission de données. Les
résultats sont ensuite moyennés sur 5000Tb afin de statistiquement réduire les effets
de possibles outliers.

Il est également important de souligner l’influence de la durée Tb sur l’orthogonalité.
En effet, les intercovariances sont calculables seulement pour des valeurs de Tb suff-
isamment longues. Tb doit être au moins deux fois plus large que le temps de décor-
relation de x(t), sans quoi les calculs n’auraient plus de sens.
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Figure A.14: Coefficient d’intercovariance normalisé |ρsisj | entre les codes chaotiques si et sj
dans les plans de paramètres (∆ωij ,β) en (a) et (∆ωij ,∆/phi0ij) en (b). Les simulations ont
été réalisées sur une structure à deux boucles de rétroaction sans interférences avec des valeurs
de paramètres identiques à celles de la Figure A.13(a). Les résultats sont moyennés sur 5000Tb

avec Tb = 0.4 ns.

Multiplexage d’information

Les codes orthogonaux peuvent finalement être utilisés pour multiplexer et démulti-
plexer plusieurs messages dans l’esprit du CDMA. Pour cela, chaque gain non-linéaire
βi est modulé digitalement à la fréquence 1/Tb par le ième message binaire mi. Ainsi,
le signal s(t) peut s’écrire pour les Configurations (1)-(2b) et (2a) par les expressions
suivantes :

s1,2b(t) =

n�

i=1

βi(1 + δmi) cos
2(ωixTi + φ0i), (A.28)

s2a(t) =
n�

i=1

βi(1 + δmi) cos
2(ωixTi + φ0i) (A.29)

+
�

1�i,j�n

�

βiβj(1 + δmi)(1 + δmj) cos(ωixTi + φ0i) cos(ωjxTj + φ0j),

avec mi(t) = ±1 et δ l’amplitude de modulation satisfaisant |δ| � 1, permettant de
préserver l’orthogonalité entre les codes et d’assurer une dissimulation efficace des
messages.

Une chaîne de transmission complète pour une Configuration (2a) avec deux
boucles de rétroaction est présentée en Figure A.15. Elle correspond à une structure
de décomposition active-passive (APD) : les deux OEO sont ainsi soumis au même
signal s1,2a,2b(t), au temps de transmission Tc prêt. Ainsi, les équations de la chaîne
de transmission sont données par

τ ẋE(t) + xE(t) +
1

θ

� t

t0

xE(s)ds = s1,2a,2b(t), (A.30)

τ ẋR(t) + xR(t) +
1

θ

� t

t0

xR(s)ds = s1,2a,2b(t− Tc). (A.31)
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Figure A.15: Chaîne de transmission chaotique pour communications multiplexées. L’émetteur
(E) et le récepteur (R) sont composés d’un OEO avec deux boucles de rétroaction et d’un seul
photodétecteur [Configuration (2a)]. La structure du bloc de décodage dépend de la présence ou
non d’interférences optiques. LD : diode laser, MZj=1,2 : modulateur de Mach-Zehnder, DLj=1,2

: ligne à retard optique, λ/2 : lame demi-onde, OC : coupleur optique, PD : photodétecteur,
RF : filtre passe-bande, Dj=1,2 : diviseur de tension et mj=1,2 : message à encrypter.

Le décryptage des messages dépend du type de configuration et de métrique
utilisée (covariance ou norme euclidienne). Il requiert la duplication des codes au
récepteur, une étape clé exploitant la synchronisation du chaos existnat entre E et
R. Nous présentons ici les méthodes de décryptage pour des configurations avec et
sans interférences basées sur des calculs d’intercovariance.

Pour les Configurations (1) et (2b), les messages sont récupérés en considérant
l’équation de décodage suivante :

δmi(t) ≈
1

Γs�is
�i



Γss�i
−

N�

j=1

Γs�js
�
i



 , (A.32)

avec s�i,j(t) = βi,j cos
2(ωi,jxR(t−Tij)+φ0i,0j), les réplicats respectifs des codes si,j(t).

L’équation A.32 est similaire à celle utilisée dans la référence [19], à l’exception des
mesures d’intercovariance utilisées. Le membre de gauche de l’équation A.32 s’écrit
rigoureusement

δmi(t)(1 + λij) avec λij =

N�

j=1,j �=i

mj(t)Γs�js
�
i

mi(t)Γs�is
�
i

. (A.33)

Les effets des autres messages et de leurs codes (mj(t) et sj(t), respectivement) sont
ainsi mis en évidence. Afin d’assurer un décodage sans erreur du message mi(t)
par Eq. A.32, il est important de garantir que le facteur λij n’affecte pas son signe.
Ainsi, la condition |λij | < 1 doit être satisfaite ; ce qui est le cas lorsqu’il existe une
orthogonalité quasi-parfaite entre les différents codes composant le signal multipléxé
s(t). Au regard de cette condition, le nombre d’utilisateurs pouvant communiquer
simultanément est d’autant plus large que l’on s’approche de l’orthogonalité entre
les différents codes. La Figure A.16 présente la transmission multiplexée de deux
messages à 2.5 Gbit/s par utilisateur en utilisant une architecture à rétroaction sans
interférences.

La présence d’interférences dans le signal de feedback requiert une modification
de l’équation de décodage, ainsi qu’une duplication des codes “racines” définis par
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Figure A.16: Simulation numérique d’une transmission multiplexée de deux messages binaires à
2.5 Gbit/s (standard OC-48). Les lignes solides bleue et rouge désignent les messages encryptés
par Alice1,2 et les lignes solides grises ceux décryptés par les Bob1,2. Les paramètres utilisés sont
βi|i=1,2 = 5, φ0i|i=1,2 = −π/4, θ = 10 µs, τ = 25 ps, Ti|i=1,2 = 30 ns et ∆ω12 = 2.

rj(t) =
�

βj cos(ωjxE(t − Tj) + φ0j). Le décryptage du message mi est réalisé par
le calcul de l’intercovariance entre s(t) et s�i(t) suivi d’un développement au premier
ordre en δ. L’équation de décodage devient ainsi

δmi ≈
1

Γs�is
�
i
+

n�

j=1,j �=i

CijΓs�ir
�
ir

�
j



Γss�i
−

n�

j=1

Γs�is
�
j
−

�

1�j,k�n

CjkΓs�ir
�
jr

�
k



 , (A.34)

avec r�j le réplicat de rj au récepteur. Le membre de gauche de l’équation de
décryptage possède également une forme rigoureuse δmi(t)(1+γij) analogue à A.33,
celle-ci étant détaillée dans le manuscrit de thèse. Une simulation numérique a
également prouvé que l’architecture avec interférences a la capacité de transmettre
plusieurs messages à 2.5 Gbit/s avec des performances comparables à celles du cas
sans interférences.

Conclusion

Dans ce chapitre, nous avons démontré qu’un OEO avec plusieurs boucles de rétroac-
tion retardées pouvait être utilisé pour générer des codes orthogonaux chaotiques.
Nous avons ainsi pu transposer une technique CDMA aux communications optiques
chaotiques. Les séquences pseudo-aléatoires (codes) utilisées pour l’étalement spec-
tral des messages sont produites par les modulateurs de Mach-Zehnder de chaque
boucle. A chacun d’eux est associé une non-linéarité de type cosinus carré dont les
paramètres, gain non-linéaire (βj), fréquence d’oscillation (ωj), offset de phase (ϕ0j)
et délai (τj), contrôlent les propriétés statistiques du code. S’ils sont tous générés à
partir de x(t−T ), il apparaît qu’un décalage en fréquence ∆ωij = ωi−ωj et un gain
βj suffisament larges en assurent l’orthogonalité. Il devient alors possible de réaliser
un encryptage et un décryptage à très haut débit (numériquement 2.5 Gbit/s par
utilisateur). En cas d’orthogonalité imparfaite, le décryptage des messages requiert
l’utilisation de la matrice de covariance de tous les codes ou une minimisation par
moindres carrés ; alors la complexité algorithmique du décryptage augmente.
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A.5 Architectures à Délais Aléatoires pour
Communications Chaotiques Multiplexées.

Introduction

Ce chapitre de thèse est dédié à l’utilisation d’une nouvelle classe de systèmes à délais
multiples pour des applications de cryptographie multiplexée par chaos. Notre ob-
jectif premier est l’accroissement de l’efficacité spectrale et de la sécurité. Précédem-
ment, nous avions proposé des architectures pour multiplexer plusieurs messages en
utilisant des extensions de techniques d’encryptage classiques (CMa, CSK ou CMo)
ou en adaptant des idées issues des approches CDMA, tout en assurant des débits
de plusieurs Gbit/s par utilisateur. Néanmoins, le niveau de sécurité n’avait pas
été amélioré, en particulier en ce qui concerne la dissimulation du (ou des) délai(s).
Lorsque ces derniers sont fixes, l’essentiel de la sécurité algorithmique est basé sur
la dissimulation de leur valeur [151; 152] (voir également Chapitre 4). Une idée na-
turelle pour améliorer la sécurité des systèmes à délais est de les faire varier au cours
du temps. Cette ligne de raisonnement a conduit au développement de plusieurs
stratégies : l’utilisation d’un délai variant périodiquement [147], aléatoirement (con-
tinûment) [178] ou par commutations aléatoires entre deux états [146]. Les deux
dernières approches ont conduit à un haut degré de confidentialité de l’information
du délai au regard des techniques d’estimation classiques. Parallèlement, l’idée selon
laquelle une modulation du délai pouvait servir de vecteur de communication est
apparue rapidement et a été démontrée avec des applications logistiques [176]. Nous
avons décidé d’appliquer cette idée au contexte multi-utilisateurs, afin d’assurer des
transmissions multiplexées à haut-débit et haute sécurité.

Description de l’Architecture

Notre architecture est décrite dans la Figure A.17. Elle se décompose en deux sys-
tèmes, un premier constituant l’émetteur global (E) et un second pour le récepteur
global (R). Ces deux systèmes sont couplés unidirectionellement via un unique canal
de communication et présentent une similarité structurelle : chacun d’eux utilise un
unique oscillateur non-linéaire décrit par les variables d’état xE ∈ R

n et xR ∈ R
n. A

l’émetteur E, l’oscillateur est rétro-injecté par n boucles retardées et assignées spéci-
fiquement à chaque utilisateur Alicei. Une boucle est composée d’une non-linéarité
spécifique NLi qui agit sur la variable d’état de l’émetteur hAi(xE(t)) et d’une ligne
à retard ajustable DLi contrôlant le délai variable τi(t) modulé digitalement. Les
contributions de chaque utilisateur sont ensuite additionnées pour former un unique
signal multiplexé s(t) satisfaisant

s(t) =
n�

i=1

hAi(xE(t− τi(t))). (A.35)

Le signal s(t) est généralement vectoriel (s(t) ∈ R
m) mais nous nous restreindrons

au cas scalaire (m = 1) afin de simplifier les notations et calculs.
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En supposant un temps de transmission négligeable entre l’émetteur et le récep-
teur, le signal s(t) injecte les deux systèmes de manière analogue

ẋE = fE(xE , s(t)) and ẋR = fE(xR, s(t)). (A.36)

L’hypothèse supplémentaire selon laquelle E et R se synchronisent provient de la
structure APD employée.

L’encryptage de chaque message mi est réalisé au travers de la modulation du
ième délai τi(t) au rythme de l’apparition des symboles (cµi

1 , . . . , c
µi

Mi
) dans un in-

tervalle spécifié au préalable ∆i = [τi0 − ∆τi/2; τi0 − ∆τi/2], appelé “intervalle
d’encryptage”. Les symboles sont générés séquentiellement pour chaque utilisateur
dans une fenêtre temporelle denotée Ωk = [kTs, (k+1)Ts], où k est l’indice correspon-
dant au kième symbole et Ts sa durée. Ainsi, chaque délai est modulé digitalement
comme il suit

τi(t) =
�

k∈N

τi|Ωk
(H(t− kTs)−H(t− (k + 1)Ts), (A.37)

avec H la fonction de Heaviside et τi|Ωk
l’encodage du kième symbole généré par

Alicei.

Stratégies d’Encryptage et de Décryptage

L’encryptage d’une information binaire sur la valeur du délai a été proposé dans un
schéma de communication à utilisateur unique [178]. Cependant, notre approche
présente l’avantage de pouvoir encrypter de multiples messages M -aires. Notre en-
cryptage s’avère plus simple que dans [178] grace à des modulations du délai in-
duite seulement par les variations des messages. Cela a permis une simplification du
décryptage via des métriques standards (corrélation, norme euclidienne). Plusieurs
stratégies d’encryptage existent grace aux degrés de liberté de chaque boucle de
rétroaction : le type de non-linéarité (NLi) et (2) l’intervalle d’encryptage (∆i). Il
est crucial d’inclure dans l’encryptage un critère de discrimination, sans lequel il
serait impossible pour les Bobs de décrypter leur message.

Figure A.17: Architecture utilisant un unique oscillateur chaotique avec de multiples de boucles
de rétroaction afin de multiplexer des messages digitaux. NLi : la ième non-linéarité, DLi : ième
ligne à retard variable modulée digitalement par Alicei, DL∗

i : ligne à retard variable utilisée par
Bobi afin de rechercher le maximum d’intercorrélation. mi : message encrypté par Alicei, m∗

i :
message décrypté par Bobi (i =, . . . , n), Ωk : durée pendant laquelle un symbole (ou un bit) du
message mi est maintainu constant.
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Figure A.18: Représentation graphique de l’encryptage par modulation du délai réalisé par
deux utilisateurs différents Alicei et Alicej dans leurs intervalles d’encryptage respectifs ∆i et
∆j , disjoints en (a) et totalement superposés en (b). L’encryptage de deux symboles successifs
τi,j|Ωk,k+1

est illustré pour chaque utilisateur.

Nous avons proposé deux types d’encryptage différents. Le premier consiste en
l’utilisation d’intervalles d’encryptage disjoints (∆i ∩∆j = ∅ pour tout i �= j) asso-
ciée à une liberté quasi-totale dans le choix de la fonction non-linéaire hAi . Cette
méthode est illustrée dans la Figure A.18(a). Le second type d’encryptage consiste
en l’utilisation d’intervalles d’encryptage (partiellement ou totalement) superposés
(∆i∩∆j �= ∅ pour tout i �= j) avec des fonctions non-linéaires spécifiques. La Figure
A.18(b) illustre cette approche avec un seul intervalle d’encryptage partagé par tous
les utilisateurs.

Le décryptage de chaque message revient pour Bobi à retrouver les modulations
discrètes du délai τi|Ωk

utilisées par Alicei pour tout Ωk. Pour ce faire, les Bobs
commencent par générer indépendemment ou conjointement des délais candidats τ∗i
(i = 1, . . . , n) grâce à une ligne à retard réglable dénotée DL∗

i . Ensuite, ils résolvent
un problème d’optimisation défini sur une “métrique” appropriée (norme euclidienne
ou corrélation). Afin de garantir que la solution du problème d’optmisation corre-
sponde bien aux valeurs du (ou des) délai(s) initialement encryptées, il est nécessaire
que l’encryptage respecte la série de conditions suivante (en plus du critère de discrim-
ination évoqué précédemment) : (i) l’émetteur E et le récepteur R doivent être com-
plètement synchronisés, (ii) la solution au problème d’optimisation doit être unique
(extremum global) et enfin (iii) deux symboles dans un intervalle d’encryptage donné
doivent être séparables via la métrique considérée. La norme euclidienne et la corréla-
tion sont toutes deux construites à partir d’un produit scalaire sur un espace fonction-
nel. Pour deux signaux (ϕi, ϕj) d’énergie finie (ou appartenant à L

2(R)), le produit
scalaire est simplement défini par �ϕi, ϕj�Ωk

=
�

Ωk
ϕi(t)ϕj(t)dt; ce qui permet de

déduire l’expression de la norme euclidienne, ||ϕi||Ωk
= �ϕi, ϕi�1/2Ωk

. Les métriques
étant définies, il est à présent possible de préciser les stratégies de décryptage en
supposant que les triplets de valeurs (Ts, hAi ,∆i) sont partagés entre les Alicei et
les Bobi (i = 1, . . . , n) en plus des trois conditions (i)-(iii). Les Bobi peuvent ainsi
estimer indépendamment les symboles τi|Ωk

des Alicei en détectant quelle valeur de

τ∗i|Ωk
maximise l’intercorrélation �sBi,τ∗i

, s�Ωk avec sBi,τ∗i
= hAi(xR(t− τ∗i )) = sAi,τ∗i

.
Les Bobi peuvent également estimer conjointement le vecteur de délais employé par
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Figure A.19: Représentation graphique du décryptage des délais realisé par deux utilisateurs
Bobi et Bobj . En (a), un décryptage avec une complexité linéaire est illustré pour une configu-
ration avec des intervalles d’encryptages disjoints ∆i et ∆j . En (b), un décryptage à complexité
exponentielle est présenté. Sur une période donnée Ωk, chaque Bob détecte une résonance afin
d’estimer son délai. Une mesure d’intercorrélation est utilisée comme métrique.

les Alicei en cherchant à maximiser l’intercovariance �s∗, s�Ωk avec s∗ =
�n

i=1 sBi,τ∗i
.

Les problèmes d’optimisation sont ainsi formulés :

τ̂i|Ωk
= argmax

τ∗
i|Ωk

∈∆i

�

s, sBi,τ∗i|Ωk

�Ωk

décryptage indépendant, (A.38)

(τ̂i|Ωk
)i∈[[i,n]] = argmax

(τ∗
i|Ωk

)i∈[[i,n]]∈
n
�

i=1
∆i

�s∗, s�Ωk décryptage conjoint. (A.39)

La Figure A.19 illustre graphiquement les solutions des problèmes d’optimisation
indépendant (de complexité linéaire) et conjoint (de complexité exponentielle) par
détection d’une résonance dans les mesures d’intercorrélation.

Nous proposons par la suite d’exploiter ce cadre théorique et de simuler numérique-
ment une chaîne de transmission composée de deux OEO unidirectionnellement cou-
plés. L’émetteur est soumis à l’effet de quatre boucles de rétroaction, permettant
ainsi une transmission de quatres messages simultanément. Les OEO utilisés sont
analogues à ceux présentés dans le chapitre précédent : générateurs de chaos en in-
tensité basés sur l’utilisation de plusieurs modulateurs de Mach-Zehnder. La chaîne
de communication peut ainsi être modélisée par le système d’équations couplées

T ẋE + xE +
1

θ

� t

t0

xE(u)du = s(t), (A.40)

T ẋR + xR +
1

θ

� t

t0

xR(u)du = s(t− τc), (A.41)

avec τc le délai de transmission du signal, s(t) =
�n

i=1 βi cos
2(x(t− τi(t)) + ϕ0i) le

signal multiplexé, xE , xR ∈ R les variables d’état adimensionnées, fH = 1/(2πT ) et
fH = 1/(2πθ) les fréquences de coupure basse et haute, βi le gain non-linéaire nor-
malisé de la ième boucle et ϕ0i l’offset de phase normalisé. Il est possible de reformulé
le système A.41-A.41 en un système d’équations différentielles à délai via le change-
ment de variable yE,R = 1/T

� t
t0
xE,R(u)du. Ainsi, notre stratégie d’encryptage peut
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Figure A.20: Décryptage simultané de quatre messages composés chacun de Mi = 32 symboles
(i = 1, . . . , 4) à 1 Gsymboles/s par utilisateur, soit après quantification 5 Gbits/s par utilisateur,
soit en cumulé 20 Gbits/s. La métrique utilisée pour le décryptage est l’intercorrélation. La
première ligne de la figure représente les messages mi encryptés par les Alicei, la seconde ligne
les messages m̂i décryptés (ou estimés) par les Bobi et la troisième ligne les erreurs relatives ei
de décryptage de chaque symbole.

être appliquée. Nous avons simulé le système avec les intervalles d’encryptage dis-
joints ∆i = [20i ns, 20i + 10 ns] dans lesquels Mi = 32 symboles sont considérés
et encodés à un débit de 1 Gsymbole/s, soit Ts = 1 ns. Les densités dans chaque
intervalle (3.2 symboles/ns) garantissent la séparabilité de chaque symbole par les
mesures d’intercorrélation réalisées par les différent Bobs (condition (iii)). Les 32
symboles nécessitent une quantification sur 5 bits conduisant une transmission de 5
Gbits/s/utilisateur, soit en cumulé à 20 Gbits/s. La Figure A.20 illustre l’encryptage
et le décryptage simultanés de quatre utilisateurs Alices et Bobs dans des conditions
de transmissions optimales (pas de bruit, pas de distorsion dûes au canal). Les er-
reurs relatives de décryptage e = (τi − τ̂i)/τi sont également représentées et sont en
moyenne inférieures à 0.5% pour ces niveaux de densité de symboles et de débit. Ces
imprécisions systématiques dans le décryptage sont dues aux incertitudes associées
aux calculs des intercorrélations sur des intervales de durée finie Ωk. Cependant,
elles peuvent être supprimées si Alicei communique à Bobi l’ensemble des symboles
utilisés. Les performances du décryptage sont également impactées par le nombre n

d’utilisateurs (ou de boucles) qui va accroître le bruit d’intercorrélation et augmenter
le risque de détecter un extremum ne correspondant pas à une signature de τi|Ωk

dans
l’intervalle ∆i.

Sécurité et Cryptanalyse

Dans notre architecture, la sécurité bénéficie des variations aléatoires et indépen-
dantes des délais de chaque boucle de rétroaction. Comme illustré dans le Chapitre
4, les systèmes à délais fixes possèdent des défauts de sécurité dès que leurs valeurs
sont connues. En effet, et malgré les larges dimensions d’attracteurs, un espion peut
réussir à attaquer ce type de système dans un espace des phases de dimension réduite



200

correspondant à la dimension de la représentaton d’état et dans lequel la fonction
non-linéaire peut être identifiable pour un faible coût algorithmique. Ainsi, il devient
possible de reconstruire la dynamique du système par simple analyse de la série tem-
porelle. Cependant, le problème de l’identification du délai devient beaucoup plus
complexe si celui-ci varie de manière erratique dans le temps.

Notre approche correspond à une généralisation d’un système proposé dans [146],
qui comprenait un délai unique commutant entre deux états (n = 1,M1 = 2 avec les
notations utilisées dans ce chapitre). Contrairement à cette première étude, notre
architecture a ses commutations de délais contrôlées par des sources d’information
et se font sur plus de deux états. L’analyse de sécurité d’un système à délai commu-
tant aléatoirement a démontré qu’un temps de commutation Ts inférieur à la plus
petite valeur prise par le délai permettait d’éviter qu’un espion attaque le système
facilement.

Dans notre architecture, le résultat se généralise aisément et s’exprime mathé-
matiquement sous la forme suivante :

Ts < min
i,k

τi|Ωk
. (A.42)

Il devient ainsi impossible pour un espion de réaliser une estimation du délai (ou
symbole) choisi par Alicei dans l’intervalle Ωk = [kTs, (k+1)Ts]. En effet, la détection
d’une résonance associée à τi|Ωk

est possible seulement si cette valeur appartient à
l’intervalle de valeur Ωk mod Ts = [0, Ts]. Dans le cas contraire, le délai τi(t)
serait modulé plusieurs fois. Ainsi, dans le meilleur des cas un espion détecterait
les signatures des symboles sans pouvoir déterminer leur temps d’émission, et donc
décoder les messages. Ce principe demeure vrai dans le contexte multi-utilisateurs,
comme décrit par Eq. A.42.

A titre d’illustration, nous avons réalisé une analyse numérique de la sécurité par
mesure d’information mutuelle retardée (DMI, voir Chapitre 4). Le système considéré
est toujours un générateur de chaos en intensité à plusieurs délais aléatoires. Les
résultats sont présentés en Figure A.21.

La densité de symbole utilisée est importante, 3.2 symboles/ns, le gain non-
linéaire de chaque boucle élevé, βi = β = 20 et la fréquence de commutation rapide,
Fs = 1/Ts = 1 GHz. Dans ces conditions, nous observons qu’aucune signature des
délais n’est visible lorsque l’estimateur DMI est utilisé. Des résultats similaires ont
été observés lorsque les intervalles d’encryptage ∆i sont complètement superposés.
Il est également important de souligner le rôle du nombre de symboles vis-à-vis de
la sécurité. En effet, si une source d’information réelle est employée, celle-ci peut
générer des bits avec des patterns répétitifs, en particulier dans le cas de sources
binaires. La répétition sur plusieurs périodes Ts d’une même valeur d’un bit ac-
croît la probabilité qu’un espion puisse accéder à une partie du message transmis.
Cependant, si l’on choisit d’encoder des blocs de log2Mi bits, alors il devient possi-
ble de capturer des structures binaires répétitives plus larges et de les encoder sur
une unique valeur de délai. De plus, si la densité de symboles Mi/|∆i| par inter-
valle d’encryptage ∆i est large, les signatures associées aux différents délais τi|Ωk

(i = 1, . . . , n et k ∈ N) deviennent relativement indiscernables. En effet, le nombre
de symboles est suffisamment grand, il devient possible de considérer les commuta-
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Figure A.21: Analyse de sécurité par information mutuelle retardée (DMI) d’une architecture de
communication pour n = 4 utilisateurs avec intervalles d’encryptage disjoints ∆i = [20i ns, 20i+
10 ns] avec i = 1, . . . , n. Le nombre de symboles employés est Mi = 32 (densité de symboles
3.2 symboles/ns) avec un débit de 1 Gsymboles/s, les autres paramètres étant identiques à ceux
utilisés en Figure A.20.

tions aléatoires rapides comme un processus stochastique continu, pour lequel le très
haut niveau de sécurité vis-à-vis de l’estimation du délai a déjà été démontré [176].

Conclusion

Dans ce chapitre, nous avons démontré la capacité d’un crypto-système chaotique à
encrypter n différents messages en utilisant un unique oscillateur non-linéaire soumis
à n boucles de rétroaction retardées et à décrypter ces messages à l’aide de la synchro-
nisation du chaos. Notre approche associe l’aléatoire de la source d’information aux
comportements hyperchaotiques des systèmes à délai : les messages sont encryptés
via une modulation digitale du délai de chaque boucle en respectant certaines rè-
gles garantes d’un décryptage sans erreur au récepteur. Deux types d’encryptage
sont possibles afin d’associer chaque symbole du message d’un utilisateur Alicei
(i = 1, . . . , n) avec une valeur de délai : l’utilisation d’intervalles d’encryptage (i)
disjoints ou (ii) partiellement/totalement superposés. En appliquant notre méth-
ode à un oscillateur optoélectronique,nous avons atteint des débits théoriques de
plusieurs Gbit/s par utilisateur tout en préservant un faible niveau de complexité
algorithmique pour le décryptage.

A.6 Conclusion Générale

Notre travail de thèse a concentré son effort sur deux problèmes ouverts des commu-
nications chaotiques optiques : le premier concerne la quantification de la sécurité
des crypto-systèmes chaotiques optiques et le second la possibilité de multiplexer et
transmettre simultanément plusieurs messages avec un haut niveau de sécurité.

Analyse de Sécurité

La sécurité de l’ECSL a été évaluée en terme d’identification du délai. L’utilisation de
systèmes à delais est une approche simple pour générer du chaos de haute dimension,
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ce qui permet d’éviter un cassage du crypto-système par des méthodes de faible
complexité. Le maintien de ce niveau de sécurité algorithmique dépend fortement
de la méconnaissance du délai par l’espion. Avec des systèmes tels que les ECSLs,
le délai est identifié à partir de la série temporelle de l’intensité optique en utilisant
des estimateurs tels que la fonction d’autocovariance (ACF), l’information mutuelle
retardée (DMI) ou encore les modèles non-linéaires globaux.

Nous avons ainsi révélé le rôle clé des paramètres opérationnels de l’ECSL sur
la dissimulation de la signature du délai : la force de rétroaction (η), le courant
de pompe (J) et le choix du délai (τ , TD) vis-à-vis de la période des oscillations
de relaxation (τRO, ROP). Nous avons identifié que les situations conduisant à une
identification difficile du délai (signature TD invisible ou fortement perturbée) ap-
paraissent pour une combinaison de force de rétroaction et courant de pompe faibles
et pour des valeurs proches des échelles de temps TD et ROP. L’impossibilité de
détecter la signature du délai dans ces conditions s’est montrée robuste vis-à-vis de
toutes les méthodes d’estimation connues : les statistiques d’extrema, les modèles
linéaires locaux et non-linéaires globaux (réseaux de neurones). Enfin, nous avons
connecté l’origine des scénarios d’identification du délai d’un ECSL aux échelles de
temps apparaissant dans la cascade de bifurcations, qui précédent le régime chao-
tique. Nos résultats sont d’importance pour la conception d’un émetteur chaotique
à base d’ECSLs de haute sécurité pour des applications de cryptographie par chaos
optique.

Multiplexage de Chaos et Communications Multi-Utilisateurs

La seconde partie de notre étude s’est attachée à étudier plusieurs configurations et
méthodes d’encryptage innovantes afin d’accroître l’efficacité spectrale des crypto-
systèmes par chaos optique. Nous avons concentré notre attention sur les propriétés
fondamentales de la synchronisation du chaos entre plusieurs lasers à semi-conducteur
et sur les questions de multiplexage/démultiplexage de plusieurs messages digitaux.

Nous avons commencé par étudier la possibilité de multiplexer plusieurs champs
optiques chaotiques générés par des lasers à semi-conducteur émettant par le côté
(edge-emitting semiconductor lasers ou EEL). A l’émission, plusieurs EELs “maîtres”
sont globalement mutuellement couplés via une cavité externe partagée. Les champs
optiques de tous les EELs forment ainsi un unique champs optique multiplexé in-
jectant chaque laser maître (Mk, k = 1, . . . , n) avec une force de couplage et un
délai spécifique. Celui-ci est ensuite injecté unidirectionnellement dans des EELs
esclaves découplés (Sk). Notre architecture est une généralisation du problème de
synchronisation d’une seule paire d’ECSL et peut être interprétée, dans une cer-
taine mesure, comme une décomposition active-passive (APD). Ainsi, nous avons
démontré que sous des conditions adéquates de couplage, que chaque paire de lasers
pouvait présenter de la synchronisation anticipative complète avec des délais spéci-
fiques. Nous avons également addressé la question du multiplexage d’information en
adaptant les techniques d’encryptage du chaos shift keying (CSK), et chaos modula-
tion (CMo) au contexte multi-utilisateurs. L’encryptage pour une méthode de CSK
multiplexée consiste en une modulation du courant de pompe de chaque laser. Le
décryptage est rendu possible par la synchronisation du chaos pour chaque paire de
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lasers lorsque les courants de pompe ont des valeurs identiques. Différentes stratégies
de décryptage ont été proposées avec des complexités algorithmiques respectivement
exponentielles et linéaires. Les débits atteints (en simulations numériques) sont de
l’ordre de plusieurs centaines de Mbits/s par utilisateur et sont limités par le temps
de resynchronisation lorsque le courant de pompe est modulé.
Afin de palier à ce problème de débit, une méthode de CMo multiplexée a égale-
ment été proposée. Chaque utilisateur encrypte son information sur l’amplitude ou
la phase du champ optique de son laser Mk. L’emploi de cette méthode requiert
cependant l’utilisation d’une circulation optique modifiant légèrement la structure
initialement proposée. L’avantage majeur de cette méthode en comparaison du CSK
est la participation du message à la dynamique du système, ainsi qu’à l’abscence de
pertes de synchronisation entre les lasers maîtres et esclaves d’une même paire. Cela
permet de lever en partie les limitations en terme de débit. En utilisant un décryptage
de complexité exponentielle ou linéaire, nous avons vérifié numériquement qu’il était
possible d’encrypter et décrypter deux messages à 1 Gbit/s. Nous avons par la suite

proposé d’aller au-delà des méthodes d’encryptage typiques utilisées en cryptographie
par chaos (CMa, CSK et CMo). Notre objectif consistait à transposer une technique
de multiplexage par code (code-division multiple access ou CDMA) au cadre de la
cryptographie par chaos en utilisant des oscillateurs électro-optiques. Le CDMA
utilise des séquences pseudo-aléatoires binaires fixes (appelées codes) et orthogonales
(vis-à-vis d’un produit scalaire), afin d’étaler spectralement les différents messages et
de réaliser une superposition spectrale autorisant une séparation de chaque message à
la réception par corrélation. L’utilisation de signaux chaotiques (variant pour chaque
bit transmis) comme codes requiert une orthogonalité (ou décorrelation) à tout in-
stant. Cette contrainte a été satisfaite lorsque les signaux des sorties des boucles
de rétraoactions d’un oscillateur électro-optique (OEO) sont utilisés comme codes
chaotiques. Chaque boucle de rétroaction contient un modulateur de Mach-Zehnder
associé à une non-linéarité en cosinus carré avec une pulsation spécifique. Les dif-
férents codes modulent indépendamment chaque messages avant d’être recombinés
en un unique signal multiplexé agissant sur la dynamique des OEOs à l’émission
et à la réception. Cela assure une synchronisation complète du chaos. Nous avons
également analysés l’influence des différents paramètres des codes sur l’orthogonalité
et démontré le rôle clé du décalage en pulsation (∆ωij) des fonctions non-linéaires et
de leur gain (βj). Nous avons proposé plusieurs stratégies de décryptage et simuler
des transmission à très haut débit dans le contexte multi-utilisateurs.

Enfin et pour conclure, nous nous sommes intéressés à une architecture combi-
nant les deux directions empruntées dans ce manuscrit de thèse. Elle consiste en
un oscillateur non-linéaire avec de multiples boucles de rétroactions, dont les délais
sont modulés digitalement sur M niveaux (en rapport aux messages M−aires) par
l’utilisateur légitime Alicei (i = 1, . . . , n). Chaque délai varie discrètement dans un
intervalle d’encryptage ∆i pouvant être disjoints ou superposés. Ils sont porteurs
de des informations encodées par les utilisateurs et affectent les non-linéarités des
boucles de rétroaction utilisées comme signaux pour la transmission d’un message.
Les signaux de chaque boucle sont ensuite recombinés en un unique signal multiplexé
qui gouverne les dynamiques de l’émetteur et du récepteur afin de les synchroniser
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chaotiquement (dans de bonnes conditions de couplage). Les stratégies de décryptage
reposent sur les calculs de métriques (intercorrélation ou norme euclidienne) entre le
signal multiplexé et différents signaux candidats (même non-linéarités que celles util-
isées à l’émission par les Alicei mais avec des valeurs de délais candidats). Les valeurs
des différents délais utilisés à l’émission peuvent ainsi être estimées conjointement
(calculs exponentiellement complexes) ou indépendamment (calculs de complexité
linéaire) en détectant un extremum (maximum ou minimum) dans les métriques.
Des simulations ont été réalisées avec un modèle d’OEO en démontrant la possibil-
ité d’une transmission d’information simultanée de quatre messages à 5 Gbits/s par
utilisateur. La sécurité de la méthode proposée a été évaluée vis-à-vis de l’estimation
du délai par information mutuelle retardée. Un haut niveau de sécurité, signatures
des délais totalement invisibles, a été observé. Cette méthode associant l’aléa des
sources d’information à l’hyperchaoticité des systèmes à délais offre des perspectives
inédites en terme de débit, d’efficacité spectrale et d’amélioration de la sécurité pour
de futures architectures de communications multi-utilisateurs par chaos.
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