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Abstract

Fixed-point operators are ubiquitously used for implementation of signal processing

systems. A good choice of fixed-point word-length formats leads to savings in the

execution cost while not compromising on the accuracy of computation. In spite of

good understanding of the quantization effects, it is estimated that about 25%-50% of

the design time is still spent on achieving an optimized choice of fixed-point word-length

formats in industrial design practices. The word-length optimization problem is known

to be combinatorial in nature and arriving at an optimal solution to this problem is

known to be NP-hard in complexity, given that every additional optimization variable

causes an exponential increase in the combinatorial search space. With many fixed-

point operations involved in executing the signal processing algorithm, the scale of the

word-length optimization problem can easily grow beyond manageable limits.

In this thesis, a system-level approach is considered for solving the word-length

optimization problem, which is a cost minimization problem subject to the system’s

accuracy performance does not deteriorate beyond a user defined limit. At the heart of

this approach is the divide-and-conquer technique where, a large system is hierarchically

decimated at various levels of sub-system abstractions. The smallest sub-system cost is

minimized by solving the classical combinatorial word-length optimization technique.

At the system-level, the results from smaller sub-system optimization problems are

combined to trade-off performance to minimize the overall cost. Thus, the system-level

word-length optimization problem can be thought of as noise-power budgeting problem.

The total quantization noise-power generated within a given sub-system is used as an

optimization variable instead of the fixed-point operator word-lengths for performing

optimizing at the system-level.

The divide-and-conquer approach has been made possible as a result of many sup-

porting contributions. The single noise source model (SNS) is a stochastic model which

can mimic the effects of quantization noise generated within a signal processing system.

This model can be derived analytically with very less simulation effort. Apart from the

conventional characterization of quantization noise-power, the noise-power spectral dis-

tribution and the noise probability density functions are also analytically estimated as

a part of the SNS model. The presence of non-linear operations such as QAM discrimi-

nators makes it difficult to analytically estimate the impact of quantization noise at the

output of the system. Such operators are classified as un-smooth operators contrary to

the smooth operators whose fixed-point behaviors can easily be captured using simple

analytical techniques. The analytical techniques used in the SNS model are applicable

to systems with smooth operators only.

In the presence of un-smooth operators, it is inevitable to use fixed-point simulation.



The heavy penalty of time while performing fixed-point simulation is highly undesirable.

Keeping this as a motivation, a hybrid simulation technique that accelerates fixed-

point simulation by using analytical technique is proposed. This technique uses the

simulate-on-error strategy. The SNS models are used to capture the fixed-point noise

behavior of smooth sub-systems. During simulation, the use of SNS model introduces a

statistically equivalent noise at the output of smooth sub-systems thereby reducing the

effort for simulation of all smooth sub-systems. The errors due to un-smooth operators

are conditional in nature. Occurrence of an un-smooth error can be found on a case

by case basis by checking for relevant conditions. Therefore, it is possible to simulate

the sub-systems under consideration only in the presence of an un-smooth error. This

technique is limited in its application to systems with feed-forward topology. Further,

an attempt to analytically arrive at the un-smooth error statistics in the presence

of cascading decision operators is made. This effort does not supersede the hybrid

technique always as it is only applicable for a certain type of un-smooth operator.

The use of popular heuristics to solve the word-length optimization problem does

not guarantee optimality. In this thesis, a convex optimization framework is proposed

instead. This framework relaxes the discrete levels of noise-powers that can be assigned

to each signal in a combinatorial search space. It considers a convex Pareto-curve to

characterize the quantization noise added due to the use of a particular fixed-point

operator. The word-length optimization problem can then be cast as a convex cost

minimization problem with accuracy constraints. Applying this framework on word-

length optimization problems generates optimal points which are not necessarily feasi-

ble. However, the optimal point is indicative of the vicinity of global optimal solution.

This information is used in the near-optimal word-length optimization algorithm. This

information is used to arrive at the optimal or a near optimal solution by quickly

conducting a local search.
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Chapter 1

Introduction

The rapid growth of semiconductor technology has fuelled large scale innovation in
the electronic product design space. The electronic gadgets available in the market
today are not only useful in their own right but there is intense competition between
various players for making them efficient, multi-functional and less expensive. In order
to keep up with the increasing competition, the product design houses find themselves
in a perpetual cycle of design and product delivery. With every iteration of the cycle,
the designers need to work with increased technological complexity while they aim to
deliver more value for every unit cost they charge from the consumer.

The advances in the telecommunication industry has been able to draw benefits
from the growing semiconductor technology. Smart-phones of the modern day is a
very good example for a complex piece of telecommunication, signal processing and
semiconductor engineering. The modern day telecommunication standards such as
the fourth generation (4G) communication system technology, wireless communication
protocols such as the 802.11x are good examples that demand very high computational
power. In all these technologies, the implementations are expected to comply with the
performance demand of both voice and data traffic. In case of the smart-phone, many
such algorithms are implemented on a single device. Moreover, they are also loaded
with various multimedia features for recording and playing back music and video in
real time. The fact that all this would happen under strict energy, form-factor and
time constraints makes it a remarkable piece of engineering.

Drawing from the smart-phone example, it may be generalized that the design
of any modern day electronic gadget has to be such that the system cost which is
usually measured in terms of silicon area, power profile and the execution time is
kept to a minimum while not compromising on the system performance expressed
in terms of various metrics such as computational accuracy and the response time.
Very often, these goals are conflicting in nature and the designer has to inevitably
make a trade-off between the system performance and its cost. Therefore, it is very
important to make careful choices in every design step to ensure the best possible
performance of the entire system. The choice of operators used to implement these
algorithms has a large impact on the cost-performance trade-off. Floating-point and
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fixed-point operators are two popular choices available for the implementation of all
arithmetic operations. Among them, the fixed-point arithmetic operators are known to
take significantly lesser area, shorter latency and are known to consume lesser power.
Implementation of telecommunication algorithms usually have rigorous performance
parameters to be achieved and demand high computational power. In such cases, the
use of fixed-point operations is a popular and accepted choice.

This thesis addresses the problem of assigning optimal fixed-point number formats
to operations for the implementation of a given signal processing system keeping in mind
both correct functionality and being able to meet the rigorous performance parameters.
In this chapter, an attempt is made to describe the genesis of this problem. In the
following sections, the problem of fixed-point refinement is presented in the context
of a system design flow and the actual problem addressed in this thesis is formally
stated. The contents of the thesis and its structure are briefly discussed and finally the
contributions from this thesis are outlined.

Fixed-Point Refinement

The process of electronic system design consists of many steps and the designer is
expected to make the right choice considering multiple options available in each of these
steps. The advantages of a particular choice which improves the system performance
would invariably be associated with an increase in the system cost which is undesirable.
Therefore, making the right choice usually requires the designer to go through a number
of iterations before arriving at an optimal choice.

Consider the task of implementing a given signal processing algorithm. The various
steps for executing this task is as given in Figure 1.1. The first block is the design
of the algorithm itself and in the context of this thesis, it is a given. The very next
step is the determination of suitable fixed-point representation. Even if optimality is
not a concern, at least an arbitrary assignment of fixed-point formats is a must while
considering its implementation on modern computational platforms. This activity is
the main focus of the thesis. Once a suitable fixed-point format is decided, the system
is implemented and it is checked if the performance of the system meets the user defined
criteria and satisfies the constraints. If the results are satisfactory, the system design
is signed-off. Otherwise, learning from the inadequacies, all the steps starting from
fixed-point refinement has to be repeated to compensate for the same.

The Implementation block is just shown as yet another step among the rest of the
things in the design flow. This is done in order to keep the focus on the problem
considered in this thesis. In practice, this block is complex and could be broken down
into many other similar tasks that solve equally important and difficult optimization
problems. Implementation of a fixed-point design on software and hardware platforms
has been studied extensively.

In case of a software implementation platforms, there are optimizing compilers ded-
icated for specific processor architectures. The modern day compiler infrastructure
provides many options to generate optimal machine code (for e.g. GCC optimiza-
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tion flags [46]) tuned for reducing memory and time of execution. The success of the
SIMD1 technology has brought in the concept of auto-vectorization where vectorized
code is generated automatically by observing data-parallel loops. A good fixed-point
representation can impact the choices made in the later stages.

SatisfactorySatisfactory No Yes

Dynamic Range

Estimation

Word-length

Assignment

Accuracy
Evaluation

Cost
Evaluation

Calculate Performance Attributes

Constraints
Satisfied

Algorithm

Design

Fixed-Point
Refinement

Implementation
Design

Sign-off

Check
Performance

Not

Figure 1.1: Electronic System Design Flow

In case of hardware implementation platforms, a number of high-level synthesis
tools such as Bluespec [8], Impulse C [40] that are commercial and tools such as C-to-
Verilog that are open-source exist for automatic realisation of sequential algorithmic
descriptions into synthesizable RTL2 designs. Given the ease with which fixed-point
arithmetic can be implemented using digital hardware, it is natural to use fixed-point
number representations for hardware implementation. A good fixed-point number for-
mat is therefore inevitable even before an algorithm is presented to such an automatic
high-level synthesis tool.

For any given system that needs to be implemented using fixed-point arithmetic,
there are four sub-tasks as shown in Figure 1.1 that essentially solve one aspect of the
fixed-point refinement process. The first sub-task is that of estimating the dynamic
range of the signals. The second is that of measuring the loss in accuracy due to the
usage of fixed-point numbers and operators. The third problem is that of estimating the
corresponding cost benefits for using a given fixed-point format. The fourth problem
is to balance the loss in accuracy and the gain in system implementation costs while
respecting the design constraints by making an optimal or at least an optimized choice
of fixed-point format. It has been shown that the word-length optimization problem
is an NP-hard [34] combinatorial problem. Usually, such problems are solved by using
heuristic guidelines iteratively. Every iteration during the optimization process can be
very time consuming as it requires the evaluation or estimation of computational accu-

1Single Instruction Multiple Data
2Register Transfer Level
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racy and the total cost every time. In [26], a large number of industrial implementation
efforts were studied and it has been reported that nearly 25% − 50% of the designer’s
effort is spent in determining the fixed-point representation for the system. A broad
overview of techniques for addressing each of these problems is discussed in detail in
Chapter 2.

The Word-length Optimization Problem

The trade-off between the fixed-point word-lengths and the cost incurred can be ex-
pressed in the canonical form as

min (C (w)) subject to λ (w) ≥ λobj , (1.1)

where w is a vector of fixed-point word-lengths of various fixed-point operations in
the system. Each element wj in this vector is an optimization variable. There are
as many wj as the number of operations in the system. C(w) is the cost function
which computes a relevant cost metric as a function of different word-length choices.
λ(w) is the accuracy evaluation function which is also a function of assigned fixed-point
word-lengths and λobj is the accuracy constraint. The inequality in the optimization
constraint is dependent on the metric used for measuring the accuracy. If SQNR1 is
used to quantify the accuracy, it is expected that the metric is higher than a certain
minimum and hence the inequality becomes greater-than-or-equal. On the other hand if
BER or the total quantization noise power is used to quantify accuracy, the user would
set an upper bound on the value and hence the inequality becomes lesser-than-or-equal.

While this problem has been addressed by many approaches in the past, this thesis
focuses on the scalability of such approaches with growing system sizes. As it will be
discussed in the rest of the thesis, the lack of scalability of the existing optimization
techniques proves to be an impediment in applying many of the techniques on large
systems.

In order to address the scalability issues, a divide-and-conquer approach that can
scale well with growing system sizes is proposed to solve the word-length optimization
problem in this thesis. In this approach, the system-level word-length optimization
problem is broken down into smaller sub-problems with each problem addressing the
word-length optimization of a constituent sub-system. Each of these sub-problems is
assigned an accuracy budget measured by quantization noise-power. The sub-problems
attempt to meet the budgeted accuracy constraint while minimizing the sub-system
costs. The system-level word-length optimization problem is then a function of the
accuracy of the sub-system. The optimization problem can then be written as

min (C (q)) subject to λ (q) ≤ λobj , (1.2)

where q is the vector of accuracy of each of the sub-systems. If the system consists of

1Signal to Quantization Noise Ratio: the ratio of signal power and quantization noise power ex-
pressed in decibels (dB)
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N sub-systems, q = [q1, q2, . . . , qN ]. The system cost C and the total system accuracy
measure λ is a function of q.

The sub-system optimization problems can be decomposed further into smaller sub-
system optimization problems. This continues until the problem size is small enough
to be optimized as a classical word-length optimization problem. The sub-problem
corresponding to the sub-system word-length optimization can then be written as

min
(
Ci

(
wi
))

subject to λi

(
wi
)
≤ qi, (1.3)

where wi is the word-length vector of fixed-point operations in the ith sub-system.
Ci(w

i) and λi(w
i) are the corresponding cost and accuracy evaluation functions. qi is

the accuracy evaluation metric expected out of the ith sub-system. It has to be noted
here that the vector wi is a sub-set of the vector w.

Thesis Contributions

The central idea in this thesis rallies around the ability to analytically estimate the
quantization noise power and some of its characteristics at the output of a given signal
processing system. The contributions in this thesis add to the state of the art on various
ways of using the quantization noise characteristics for fixed-point performance analysis
and word-length optimization problems. These contributions can be broadly classified
into three categories.

The Single Noise Source Model

The quantization noise characteristics at the operator is modeled as a random process
and its characteristics are well understood. The single noise source (SNS) model extends
this understanding to the system-level. The total quantization noise at the output of
a system can be modeled as a sum of various random processes. Apart from the
knowledge of quantization noise power, it is also important to understand its spectral
and distribution functions to accurately characterize the random process.

In this thesis, analytical techniques to derive the spectral power density and prob-
ability density functions of the quantization noise at the output of a given system are
derived. Calculation of these parameters can be computationally intensive. However,
the spectral and probability density functions are required to be evaluated only under
certain conditions. Therefore, it continues to remain white with a Gaussian distribution
in general unless mentioned otherwise. A practical approach is therefore to selectively
calculate these parameters only when they are required. An algorithm to identify such
scenarios from a system-level graph is described.

Un-smooth Quantizers

The analytical models describing the quantization noise are based on Widrow’s quan-
tization models and perturbation theory. The models are accurate only when the
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quantization step size is very small in comparison to the dynamic range. As the quan-
tization step-size increases, the noise properties deviate from analytical predictions and
soon become intractable. Such quantizers are referred to as un-smooth quantizers.

In this thesis, an algorithm to identify such un-smooth quantizers is proposed. An
analytical technique for the propagation of quantization noise in the presence of un-
smooth operator is also proposed. In cases when more than one un-smooth operators
are present, it is important to consider the effect of previous quantization errors in order
to calculate the error at the output of an un-smooth quantizer. The experiments for
calculation of quantization errors in presence of previous un-smooth errors was carried
out in collaboration with Aymen Chakari during the preparation of his doctoral thesis.

Apart from un-smooth quantizers, there can be other operators whose behavior
in response to perturbation by quantization noise cannot be captured by analytical
formula. Also, the technique for propagation of error statistics through the system
in presence of un-smooth operators is limited to systems with feed-forward topology.
To address this scenario, a hybrid technique to accelerate the fixed-point simulation
which takes the benefit of analytical techniques by the application of the SNS model
is proposed. The acceleration obtained as a result of this approach can potentially
decrease the total simulation time by several orders of magnitude.

Hierarchical Word-length Optimization

Fixed-point word-length optimization can be broadly approached in two directions de-
pending upon the optimization criteria. It could either be a cost minimization problem
under an accuracy constraint or an accuracy maximization problem under a given cost
constraint. In general, the base-line principle for any product design is that the end
product meets the design expectation. Improvement in its performance is generally sec-
ondary to its functional correctness. Keeping this point of view, the cost minimization
problem rather than the accuracy maximization problem is the subject of this thesis.

Word-length optimization problem is NP-hard in its complexity. As the system
sizes grow, the combinatorial search space grows exponentially with every new opti-
mization variable. All the heuristics proposed to solve this problem work with fixed-
point word-lengths. In this thesis, the word-length optimization problem is viewed as a
system-level quantization noise budgeting problem. To begin with, an adaptation of an
existing greedy word-length optimization algorithm for budgeting the total quantization
noise. Some approximations on the trade-off between quantization noise and the cost
of implementation are made such that the trade-off becomes convex. This relaxation
enables exploitation of the linear quantization noise propagation properties and the
system-level noise-budgeting problem is cast as a convex optimization problem. The
solution obtained by solving the convex optimization problem is used to perform a local
search for suitable word-length assignments which can lead to solutions very close to
optimality. The near-optimal word-length optimization algorithm essentially proposes
a polynomial time heuristic algorithm to solve the otherwise NP-hard problem.
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Thesis Organization

The contents of this thesis is organized in six chapters. This introductory chapter intro-
duces the central theme and organization of this thesis. The second chapter presents a
survey of the relevant literature comprising of accuracy evaluation and word-length op-
timization. It also outlines the challenges involved in performing fixed-point refinement
of large signal processing systems with existing techniques.

The third chapter focuses on the problem of hierarchical accuracy evaluation of
fixed-point systems. The concept of the single noise source (SNS) model is developed
in this chapter as a solution for reducing the complexity of estimating the loss in accu-
racy of a system hierarchically. The various subsections are devoted to the hierarchical
accuracy evaluation methodology and analytical determination of the SNS model pa-
rameters.

The fourth chapter focuses on the un-smooth quantizers and other operators whose
response to perturbation by quantization noise is not captured analytically. This chap-
ter takes a fresh look at the definition of smoothness of quantization noise. Other
sub-sections provide an analytical technique for estimation of probability of error and
hence the total quantization noise power at the output of an un-smooth quantizer. This
chapter also describes the hybrid simulation algorithm for acceleration of fixed-point
simulation in the presence of un-smooth operators.

The fifth chapter focuses on the word-length optimization. It first presents a divide-
and-conquer strategy for performing hierarchical word-length optimization. This algo-
rithm is a simple adaptation of the greedy Min +1 bit algorithm. From the view
point of noise-budgeting, this problem is cast as a convex optimization problem and an
alternate near-optimal word-length optimization algorithm is proposed.

The sixth chapter summarizes the impact of this work and prospects future direc-
tions to take this work forward.

List of Publications
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Chapter 2

Background and Previous Work

Fixed-point and floating-point number formats are two popular binary arithmetic num-
ber formats available on modern day computing platforms. Fixed-point arithmetic
circuits have existed from the earliest of the days ever since electronic computers and
calculators have been in use for computations. Choosing the right format of fixed-point
arithmetic has always been a matter of concern while working with computers to solve
numerical problems. In the early days, the choice of fixed-point arithmetic format was
influenced mostly by memory considerations. Back then, memory was both slow and
expensive and the computational power of the processors were also very low. Most
complex numerical algorithms had to depend on precomputed look-up tables during
computations. Today, the definition of fixed-point number formats is impacted by con-
siderations such as the silicon area, the execution time and the total energy consumption
of the electronic device.

The problem with fixed-point arithmetic has always been that the number of bits
have to be traded-off between the dynamic range and precision of the number. By
using the floating-point format for number representation, both problems of high dy-
namic range and high precision are solved. However, this solution is comes at the cost
of increased complexity of arithmetic circuit in comparison with fixed-point arithmetic
circuits. Owing to its complexity, the floating-point arithmetic operations were tradi-
tionally available as a co-processor system package. This was also the case because, the
need for using floating-point units seldom arise for performing the tasks the early com-
puters were classically required to. Indeed, it was for this reason that the fixed-point
arithmetic units were preferred over floating-point units for integration into the pro-
cessor data path. As the processors became more powerful and more energy efficient,
applications such as multimedia and communication were deployed while the basic
premises of the processor architecture was kept intact for purposes such as backward
compatibility. In all such attempts, the implementation of complex signal processing
algorithms continued using fixed-point arithmetic data-paths for computations. Such
algorithms are complex and demand high computational power and numerical accu-
racy. Although floating-point arithmetic units provide very high accuracy, their use for
purposes of implementing complex signal processing algorithms on embedded systems
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is inefficient due to the large area, long latency and high power consumption costs even
today.

To implement a given signal processing algorithm on fixed-point processing plat-
forms, the numerical aspects of given algorithms has to be suitably tuned such that
the limited precision or limited dynamic range of the fixed-point format does not affect
the performance of the algorithm. The development of computer architecture broadly
reflects the increased trend of using fixed-point operations. Induction of the multi-
media extension instruction set (MMX) in Intel’s architectures and the availability of
a number of processors with wide SIMD1 capable data-paths belonging to the family
of popular digital signal processors are available off the shelf. These have been used
extensively for implementation of various signal processing applications. Likewise, the
fixed-point arithmetic circuits are sought out instead of floating-point circuits for im-
plementation of signal processing algorithms owing to the power dissipation and area
concerns. Therefore, the problem of fixed-point refinement which is also popularly re-
ferred to as the float-to-fix conversion problem focusses on using available fixed-point
data paths for implementation of signal processing algorithms.

The fixed-point refinement problem is often addressed with the aim of reducing
power consumption, reduction in circuit area and efficient re-timing on ASIC2 and
FPGA3 implementations. Also, power consumption and execution time factors are
increasingly being considered for optimization on micro-processor platforms. With the
availability of reconfigurable processor data-paths such as the SIMD, the choice of fixed-
point data types cast their influence on the total power consumption and execution
time of software. Consequently, the focus has shifted from realising just an acceptable
fixed-point implementation to an optimized fixed-point implementation of the system.

The various activities under the fixed-point refinement process has been classified
into four sub-tasks as described in Figure 1.1 in the previous chapter. Each of these
sub-tasks are non-trivial and seek extensive research efforts. Although the problem
of fixed-point refinement seeks a solution to each of the sub-tasks, they cannot be
considered simultaneously due to the enormity of the issues involved. For example, it
is hard to capture the errors caused due to inadequate assignment of dynamic range
and in such circumstances, it is difficult to separate the effect of insufficient precision
causing overflow or saturation errors. The characteristics of such errors cannot be
easily captured with closed form expressions. In a practical step-by-step approach,
the dynamic range is determined to begin with. With sufficient bits assigned to the
integer part, the precision part of the fixed-point format is optimized to reduce costs.
In this chapter, various existing techniques for accomplishing each of these tasks are
considered. This collage of information is used to motivate the need for improved
techniques presented in this thesis.

1SIMD: Single Instruction Multiple Data
2ASIC: Application Specific Integrated Circuit
3FPGA: Field Programmable Gate Array
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2.1 Computation with Binary Arithmetic

Binary number representation is native to almost all digital platforms today. The
use of radix-2 or binary arithmetic is therefore a natural choice. Floating-point and
fixed-point representations are two popularly used number formats for the purpose of
storage and computation. In general, signal processing algorithms are known to be
computationally intensive. For the purpose of efficient implementation of any signal
processing algorithm, the choice of number format plays a very crucial role. Therefore,
it is important to consider both formats before a decision is made.

2.1.1 Fixed-Point Number Format

The layout of the fixed-point number format is as shown in Figure 2.2.

f -bits

20 2−1 2−2 2−f

Binary PointSign

bn+1 bn

2n−2n+1

b−fb−2b−1b0

n-bits

Figure 2.1: Fixed-point number format

This is a signed number format using the 2’s complement place value system. A 1
in the most significant bit represents a negative number. The value of a string of bits
in this format vfi is given as

vfi = vbin × 2−f , (2.1)

where vbin is the integer value of the 2’s complement number from bits 0 through
n + f + 1 (MSB1 through LSB2). This number format consists of one sign bit, n bits
for the integer part and f bits for representation of the fractional part. This is also
popularly referred to as n.f format indicating the integer and fractional bits used
for the fixed-point representation. In a fixed-point system with the n.f format applied
universally, every signal value is represented using (n+f +1) bits. The decimal number
0.1 in binary is written as

0.1(10) = 0.0001100(2). (2.2)

The 1100 indicates that these bits keep recurring infinitely on the right hand side of
the binary number. Consider representing this number in the n.f format which consists
of one sign bit, 3 integer bits and 6 fraction bits. Due to the limited precision in the
fraction bits, the actual number represented is close to 0.1 but is not exactly equal to

1MSB: Most Significant bit
2LSB: Least Significant Bit
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the value of 0.1. Considering the fixed-point error, the number 0.1 is written in the 3.6
format as

0.110 = 0000.0001102 + 0.0062510

= 0
︸︷︷︸

s−bit

000
︸︷︷︸

n−bits

. 000110
︸ ︷︷ ︸

f−bits

+0.0062510. (2.3)

The binary position is virtual and decided by the user who designs the number
format for the given application. In the above example, since the integer part is set
to 0, all the 9 bits could have been assigned to the fractional part thereby increasing
the precision of the number. However, this choice makes it impossible to accommodate
any number whose magnitude is greater than 1. In other words, the number of bits
assigned to the dynamic range is at the cost of loss of precision and vice-versa unless
more bits are added to the number representation on the whole. A good fixed-point
format achieves the right balance between the number of integer and fractional bits
while keeping the total number of bits to the minimum.

2.1.2 Floating-Point Number Format

The floating-point number format is also a signed number representation format based
on the 2’s complement representation. The layout of the floating-point number format
is as shown in Figure 2.2. One bit is dedicated to represent the sign of the number.

MantissaExponentSign

m-bits1-bit e-bits
0 1 e + 1 e + m + 1

Figure 2.2: Floating point number format

The numbers represented in this format are normalized to a leading 1 in the binary
representation and mantissa number of significant bits to the right hand side of the
leading 1 are stored in the mantissa part. The number of shifts required to do the
normalization of the binary representation of the number to the leading 1 is coded
using the 2’s complement notation in the exponent bits. A series of bits represented in
this format is interpreted as the value vfl that can be computed as

vfl = {−1}s × {1 + mbin × 2−m} × 2ebin−b, (2.4)

where mbin and ebin are the value of mantissa and exponent bits respectively coded
in binary with m bits and e bits respectively. The mantissa is positive as the sign of
the number is already taken care of by the sign bit. Depending upon the magnitude
of the number being encoded, it is required to shift the binary representation either
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to the left (if magnitude < 1) or to the right (if magnitude > 1). Here, shifting left
amounts to multiplying the normalized number with negative powers of 2 and shifting
right corresponds to multiplying the normalized number with positive powers of 2.
However, the exponent filed takes on un-signed positive integer values. Therefore the
exponential bias b is subtracted from the actual exponent value to include multiplication
with negative powers of 2.

A number of different possible floating-point number formats depending upon the
choices of number of bits assigned for the mantissa, exponent and the bias. However,
two popular floating point number formats are defined as a part of the IEEE floating
point specification. The single precision floating point format has 8 bits assigned for
the exponential part and 23 bits for the Mantissa. The double precision format assigns
11 bits for the exponent and 52 bits for the mantissa part. Thereby, the single and
double precision formats are 32 bits and 64 bits wide respectively.

Consider representing the decimal number 0.1 in the binary format. The binary
value of this number is given as

0.1(10) = 0.0001100(2)

= {−1}0 × 2−4 × 1.1001100(2). (2.5)

Normalization of this number to the leading 1 in its mantissa part requires a left
shift by 4 binary places. Post normalization, the number of binary digits encoded in
this number can be only as long as m bits. Storing a finite number of bits leads to
loss of precision of the number and it is inevitable. It has to be noted here that the
1.m format removes maximum number of leading zeros and hence provides at least
one extra bit of precision than if the 0.m format were to be used. In this example,
the exponent value needs to represent multiplication with 2−4. The bias is set to 127
and 1023 respectively for single and double precision formats. The binary value of the
exponent is obtained by adding the bias value of the format to the actual power of 2
with which the normalized number needs to be multiplied with.

The floating point number is designed to represent small fractions as well as num-
bers with large magnitude that would occur during scientific computations. In other
words, the number representation must have both a large dynamic range and very good
precision in its representation. Given the number of exponent bits, the bias is set to
the median of the range of values that are represented by the bits. Doing so ensures
that the smallest fraction is as many orders of magnitude smaller than 1 as much as the
order of magnitude of the largest number greater than 1. In this format, representation
of a negative number is trivial as it is sufficient to flip the sign bit alone.

2.1.3 Computation with Fixed-Point and Floating-Point numbers

From the above discussion, it is clear that the floating point number format is better
than the fixed-point format in terms of providing enough dynamic range and precision.
However, this is achieved at the cost of complexity of the arithmetic operators. Addition
and multiplication are two most commonly used operations. The costs of performing
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these operations is therefore considered in this section.

Addition

The fixed-point number is natively in the binary format. Any two fixed-point numbers
can be added together using a simple ripple carry adder circuit after aligning the binary
points of both numbers. The total effort for fixed-point addition ςa

fix is equal to the
effort for binary addition ςa. This is written as

ςa
fix = ςa. (2.6)

On the other hand, the floating point number is in a packed format. First it has to
be un-packed to expose the sign, exponent and mantissa. Then the exponent has to be
normalized by comparing the bits in the exponent part of both numbers and shifting
the mantissa bits such that the exponents are now equal. If the sign bit is set, the
mantissa bits are converted to its 2’s complement form before addition. After addition,
the result of the addition has to be converted to its 2’s complement form if it is found
to be negative. Clearly, the addition of two fixed-point numbers is relatively easier
than adding two floating point numbers. If ςcmp is the effort required for comparison
of the exponents and ςcom is the effort required for calculating the 2’s complement of
the number, the total effort for floating point addition ςa

flt in the worst case is given as

ςa
flt = ςa + ςcmp + 2.ςcom. (2.7)

It is known that the efforts ςa, ςcmp and ςcom are all of the order O(N) where N is
the number of bits assigned to the output of the adder. The time for un-packing the
floating point format is ignored as it is trivial in hardware.

Multiplication

A hardware multiplier circuit that can multiply two signed binary numbers could be
used to multiply two fixed-point numbers. The result of a multiplication has more
number of bits both in its dynamic range and its precision. The binary point position of
the resulting fixed-point number is determined by taking into account the binary point
positions of the two numbers that were multiplied. Usually, a number of least significant
bits of the result are discarded either by various truncation or rounding modes to obtain
the final result. Therefore, the total effort for fixed-point multiplication ςm

fix is ςm: the
time taken for binary multiplication. This is written as

ςm
fix = ςm. (2.8)

For multiplying two floating point numbers, their exponents are simply added and
the mantissa and the sign bit are multiplied. The total effort for floating point multi-
plication ςm

flt is given as
ςm
flt = ςm + ςa. (2.9)
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The multiplier algorithm can be as high as O(N2) and the time for addition is O(N)
where N is the number of bits assigned to the output word-length of the multiplier.

2.1.4 Choice of Number Representation

A good choice for representing numbers must be able to support a wide dynamic range
as well as fine precision. In other words, the number representation gets more versatile
with higher ratio of dynamic range to the precision. Typically, both floating-point and
signed fixed-point number representations are symmetric in their ranges. Therefore, the
dynamic range ratio D, defined as the ratio between the largest and smallest numbers
that can be used for measuring the fidelity of the number representation system. The
dynamic range ratio is also expressed in decibels (dB) by taking 20 times the log10 of
the dynamic range. The dynamic range ratio and its equivalent in decibels is defined
as

D =
max(|x|)

min(|x|)

DdB = 20 × log10(D), (2.10)

where |x| represents the magnitude of the number x and the functions max(|x|) and
min(|x|) respectively represent the maximum and minimum magnitude of values taken
by the number x excluding the value of 0.

Let b bits be assigned to the fixed-point number and n, f be the number of bits
assigned to the integer and fractional bits. The dynamic range is therefore given as

D =

∣
∣
∣
∣

2n−1

2−f

∣
∣
∣
∣

=

∣
∣
∣
∣

2n+f−1

1

∣
∣
∣
∣

DdB = 20 × log10(2) × (b − 1)

= 6 × (b − 1). (2.11)

So, addition or omission of one least significant bit can improve or depreciate the
quality of the numbers represented by 6dB.

In case of the floating-point number representation, the total number of bits is split
among the exponent and the mantissa in the ratio of 1 : 3. Though this is not a hard
and fast rule, this is the usual assumption for floating point numbers. The ratio of the
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power of the largest and the smallest positive numbers is written as

D =
2emax × (2 − 2−m)

2emin × (1 + 2−m)

≃
2emax × 2

2emin

DdB = 20 × log10(2) × (emax − emin + 1)

= 20 × log10(2) × 2
b
4

= 6 × 2
b
4 . (2.12)

Comparing Equations 2.11 and 2.12, it is clear that the dynamic range ratio ex-
pressed in decibels DdB increases exponentially in case of floating-point numbers and
linearly in case of fixed-point numbers with increasing number of bits assigned. The
dynamic range for various bit widths assigned for number representation in both cases
is plotted in Figure 2.3. When the number of bits b is small, the dynamic range of the
floating point number is much inferior to fixed-point numbers. With increasing number
of bits, the dynamic range ratio of the floating point representation turns out to be
better than the fixed-point representation.

Figure 2.3: Dynamic range ratio of fixed-point and floating-point number formats

Under the consideration of designing floating-point numbers with the ratio of 1 : 3
for the exponents and mantissa bits. Until 16 bits, the dynamic range of the fixed-
point representation is better than the dynamic range of the floating-point number
representation. The floating-point number representation takes off exponentially far
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exceeding the dynamic range of fixed-point numbers.
Another consideration for making the choice between the two formats is the increase

in the maximum error with increasing dynamic range of the signal. Consider a given
number of bits assigned for representing the given number. In case of fixed-point
representation, more bits have to be assigned for the integer part to accommodate the
growing dynamic range. This reduces the number of bits in the fractional part and
hence contributes to the decrease in the signal to quantization noise ratio (SQNR) of
the quantized signal. In case of floating-point representation, with increasing dynamic
range the exponent is incremented while the mantissa bits are a constant. Thereby,
the quantization step-size increases in proportion with the increasing dynamic range.
Therefore, the ratio of the SQNR is almost a constant. If the dynamic range of the
signal is small enough, the fixed-point numbers can be designed to have a very low
SQNR in comparison with the corresponding floating-point number format.

Apart from the efficiency of number representation, the cost of using the numbers
also plays an important role. From the discussion in Section 2.1.3, it can be seen that;
although multiplication of floating-point numbers is quite straight forward, addition of
two floating point numbers is costlier than addition of two fixed-point numbers.

Custom Fixed-Point and Floating-Point Representations

In case of software implementation, the word-lengths of both fixed-point and floating-
point representations are fixed or have limited choice. However, the actual format
of the fixed-point representation is flexible to the extent that the binary point is not
fixed. On typical software platforms, the fixed-point word-length sizes are generally a
byte long (8 bits), half-word long (16 bits), one word (32 bits) and as long as double
word (64 bits). The floating point numbers usually come in two formats: either as
single precision or as double precision numbers. Further, it has to be noted that many
processor platforms support SIMD1 vector data operations. Using this, the given data
path can be configured into desired number of bits in multiples of quads (4 bits) or
bytes. The idea behind soft-SIMD [99] is to allow arbitrary word-length size by standard
sized arithmetic data-paths to obtain finer control over fixed-point word-lengths.

The hardware implementation also opens up avenues for creating customized floating-
point units [56; 124]. In [38], the floating point operator specifications are described
using a parameterizable C++ floating point operators library. This is followed by auto-
matic generation of optimal floating point operator implementations in hardware such
that the time taken for computation is small enough to meet the desired frequency
of operation. The impact of the total number of bits assigned to the floating point
operator on the precision and dynamic range of the operation is not as straight forward
as it is in the case of fixed-point number system. Under these circumstances, it be-
comes difficult to make a choice between the fixed-point and the floating-point formats
without explicitly exploring all the options.

Some frameworks such as [6], are based on simulation and they eventually help
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make a choice between the fixed-point and floating-point formats. It provides a param-
eterizable library to study the various trade-offs by way of simulation. In [45; 110] the
dynamic range of the signal is considered to make a decision on the number represen-
tation. The choice of fixed-point number representation works well when the dynamic
range of the computation is not large. Also, it is important that the required preci-
sion is small enough not to overshoot the cost of floating point costs. Many signal
processing applications are linear and such systems can make use of scaling and can
therefore work with normalized dynamic range (say, in the range [−1, 1)1 ). Also, signal
processing applications and especially communication algorithms are designed to work
in the presence of channel noise whose magnitude is much larger when compared to
the quantization noise introduced even when 16 bit quantization is used. Therefore,
the precision required for implementing these algorithms is also not very strict. In
such circumstances it is possible to profitably use the fixed-point numbers effectively.
Therefore, communication and signal processing applications is the chosen area of focus
in this thesis.

Some works such as [52], make use of a hybrid number representation system. Here,
instead of using a floating-point adder tree, the numbers to be added are normalized to
the largest exponent and fixed-point addition is used to add the mantissa. This reduces
the effort of computing the exponents every time. Another idea is to use the dual
fixed-point number representation [41]. In this case, the exponent is reduced to a single
bit and the mantissa consists of a signed fixed-point number. This is again a trade-
off between dynamic range and precision by extending the concept of floating-point
number representation. A third alternative is the use of block floating point number
system. In this case, while a group of numbers share the exponent, the mantissa of such
numbers can be different. Several signal processing algorithms have been implemented
using block floating point numbers [61; 100]. Interestingly, they have found popular use
in high dynamic range computer graphics applications. The DirectX library supports
such a number format. The idea which is common to all these hybrid approaches is to
be able to obtain the advantage of large dynamic range and high precision of the floating
point representation while retaining the flexibility of the fixed-point representation.

2.2 Dynamic Range Estimation

The dynamic range of the signal affects the number of bits in the integer part of the
fixed-point number. The range of any intermediary signal within a system depends
on both the system function and the input signal distribution. In general, the signal
can be multi-modal, asymmetric with non-zero mean. The dynamic range of the input
signals is usually known by observing the representative test cases. In [91], the dynamic
range interval is propagated from the input through every operator present in the
system to the output using interval arithmetic (IA). This method is known to come up
with conservative estimates and it does not take into consideration correlation between

1Right-half open set: A set [a, b) defined on R is a set of real valued numbers consisting of all the
numbers between points a and b on the real number line including a but excluding b.

18



various signals. In [58] it is proposed to use the L1 -norm of the system transfer function
to estimate the dynamic range. The dynamic range estimates obtained by using both IA
and the L1 -norm is equivalent for non-recursive LTI systems. The use of the L1 norm is
one of the most popular techniques for analytical determination of the dynamic range.
Another technique which compensates for the inadequacies of the interval arithmetic
is based on affine arithmetic (AA) as proposed in [29; 42]. This technique essentially
keeps track of the first order correlation between various signals and is known to work
well with linear systems. This would not work well when the signal distributions have
asymmetric variations and when the variables have non-affine relations such as the
relationship between the variables.

One drawback of IA and AA based technqiues is that it captures only the linear
dependencies between signals. Application of these techniques on non-linear systems
is known to provide very poor interval bounds. In [19], this problem is addressed by
sufficiently splitting the input interval into many sub-intervals. The objective in this
work is to be able to estimate the probability density function (PDF) of the signal
distribtuion for each signal. When the interval contains a zero, the entire interval is
split into several small intervals whose width decreases in geometric progression as
the values approach zero. Split and Merge operations of PDF are formally defined
for splitting the PDF and merging them after propagating the split intervals through
systems.

It is straight forward to apply IA and AA based techniques to networks with feed-
forward topologies. In [81], the AA method is extended for bounds analysis of systems
with recursive topologies by adding an AA marker to each quantized signal. The given
LTI system or a linear approximation of the non-linear system is considered in the
state-space framework of modern control system theory and the actual bounds are
calculated by propagating the input signal range by splitting it into multiple intervals.
The classical IA is used to propagate individual split intervals. The actual bounds on
any intermediatory signal is obtained by merging the results obtained by propagating
individual input split interval.

The IA and AA techniques have been used more generically for purposes estimating
numerical bounds on results obtained using computer arithmetic. The GAPPA tool [84]
provides techniques for estimating IA and AA based bounds on polynomial expressions
in order to validate and verify the code. This work can also used for fixed-point refine-
ment purposes.

In [101], a technique based on the Karhunen-Loeve Expansion (KLE) is used to
analytically determine the dynamic range of the signals in LTI systems. In [4], a
technique based on KLE is described to study the propagation of PDF through LTI
systems. This technique essentially propagates the characteristic function of the input
signal distribution through the system function in the frequency domain to obtain the
characteristic function of the output signal.

In [66; 68] the authors propose a simulation based technique to provide for a more
accurate bound on the dynamic range. In their technique, signal statistics are acquired
by performing a high-precision simulation of the system with representative inputs.
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The first four statistical moments are extracted from the simulation data to calculate
the skewness and the Kurtosis of the distribution of each signal. The signal density
function (PDF1) is then characterized using these moments. The actual signal range
is then estimated using the estimated PDF of the signal. The characterization of the
PDF is as good as the input with which the system is tested. In general, it is required
to conduct long simulation so as to characterize the inputs with enough diversity to
represent the real world. In [102] the burden of simulation of all the input data is
reduced by opting to perform a random simulation instead of exhaustive simulation.
The authors exploit the fact that the maxima and minima statistics converge to the
Gumbel distribution [69]. The simulation of the system using high precision arithmetic
operators is carried out a number of times with different data but essentially similar
statistical properties. This generates the required samples for constructing the Gumbel
distributions for minimum and maximum value distributions. The range of the variable
is then determined by considering the mean and standard deviation of the samples. This
technique estimates the variance of the minimum and maximum values or the extreme
values of the signal.

2.3 Accuracy Evaluation

The loss in accuracy is generally determined by computing a metric which can be
obtained by comparing the output of the fixed-point implementation of the system with
the output from a reference implementation. The reference design is implemented using
double-precision floating-point numbers. The error induced into the computation due
to double-precision arithmetic is very small. Thus, the double-precision implementation
is often regarded to be as good as implementation with infinite precision arithmetic.

There can be several metrics that can quantify the error between the outputs ob-
tained using fixed-point systems with respect to the reference outputs. For example,
the bit error rate (BER) is a metric used to measure the performance of communication
systems. The difference in BER can be considered to quantify the effect of quantiza-
tion on the system output. More generally, the ratio between the signal power and
the power of quantization noise, also referred to as signal to quantization noise ratio
(SQNR) is used to measure the impact of fixed-point systems. In case of any signal pro-
cessing system, often one would be interested in knowing the maximum error. In [70],
the maximum quantization error is used as a metric to determine the impact of using
fixed-point arithmetic. Designing filters is one of the most common tasks carried out
for implementation of any signal processing system. In [31], the focus is on fixed-point
filter design. Here, the actual error in the filter response due to quantization of the
filter coefficients is used as a metric for measuring the impact of fixed-point arithmetic.

While using system specific metrics seems straight forward, it has several drawbacks.
In case of a communication systems, a large sample set is required for simulation to
make sure that the degradation in BER is not a random phenomena and it is indeed
occurring due to the use of fixed-point arithmetic. This increases the time spent on
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BER simulation and is prohibitively long especially when performing word-length op-
timization which requires repeated fixed-point accuracy evaluation.

However, a more natural candidate for assessing the loss in accuracy is to measure
the mean square error (MSE) between the quantized signal and the reference. This has
been used in several earlier works such as [109]. The MSE can be expressed explicitly
as a function of assigned fixed-point word-lengths making it easy to obtain analytical
alternatives to simulation. Moreover, it is possible to use the MSE to derive SQNR
and BER for a given system.

The MSE captures the total power in the error signal between the infinite precision
(high precision floating-point) signal and its fixed-point counterpart. Therefore, MSE is
also referred to as the quantization noise power [14]. A number of techniques to evaluate
the quantization noise power due to fixed-point operations have been proposed and used
in the literature.

2.3.1 Simulation Based Techniques

Using fixed-point simulation of systems under consideration, it is possible to determine
the total quantization noise power due to the use of fixed-point numbers using the
technique as depicted in Figure 2.4. The system is implemented using a reference
design usually with very high precision. In case of input x, let y be the reference
output. The loss in precision in such reference implementations is negligible and hence
is approximated to be as good as infinite precision implementation. The system is also
implemented using the proposed fixed-point formats and simulated. For every input
x, let the corresponding output of the fixed-point system be ỳ. Then, the error ey is
obtained as a difference between the output of the fixed-point system with the reference
output.

Implementation

Infinite Precision

Implementation

Finite Precision

ey

x

y

ỳ

Figure 2.4: Measuring errors due to fixed-point

Several system-level design tools such as SPW [35], System-Studio [63], Matlab-
Simulink [82] and Ptolemy [39] provide with fixed-point libraries for performing system-
level simulation in their respective design environments. In [66], gFix ; a parameterizable
fixed-point data-type is proposed. It is also possible to use the sc fixed data type in
the SystemC environment to conduct bit-true simulation of the hardware models. The
ability to perform bit-true simulations by these libraries is made available by means
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of operator overloading. Operator overloading helps capturing the behavior of the
fixed-point operator including the mode of quantization, the number of bits assigned
and also effects such as saturation and overflow. Though using overloaded operators
reduces the effort for setting up the fixed-point design prototype for simulation, the
use of such non-native operations make fixed-point simulation costlier than the native
floating-point simulation [64].

In order to improve the time for fixed-point simulation, in [66], the double precision
floating point data type is used more efficiently. This technique makes use of the
mantissa part only for all the fixed-point simulation needs. This technique restricts the
number of bits assigned to a fixed-point number to 53. In [7], a similar technique is
used for acceleration of the SystemC fixed-point libraries. The performance of fixed-
point data types can be accelerated by using a suitable processor architecture (such as
a DSP1). Techniques proposed in [37; 64] that were primarily designed for automatic
fixed-point code generation can be used to target a given fixed-point format assignment
on DSP platforms for quick execution. Another alternative is to make use of FPGA2s for
hardware acceleration. The System Generator Tool from Xilinx [123] provides a suite of
customizable fixed-point hardware modules commonly used for signal processing. These
modules can be used along with Matlab-Simulink for quick prototyping of algorithms
on hardware.

Simulation-based approaches are universal and can be applied without any restric-
tion on any kind of system. However, the time taken for simulation [37] and the
challenge of generating test vectors representative of the real life scenarios is a chal-
lenge. Nevertheless, ability to perform fixed-point simulations comes in very handy
when there are no other alternatives or to make a first cut estimates of the impact of
fixed-point systems. Several efforts based on simulation have been made in the past to
measure the degradation in accuracy due to the use of fixed-point numbers.

2.3.2 Analytical Accuracy Evaluation

Measuring the errors due to quantization numerically by simulation is easy, but time
consuming. Analytical techniques on the other hand, provide closed form expressions
for calculating the quantization error statistics. As shown in Figure 2.5, the objective
is to analytically determine by such that the output ŷ is statistically equivalent to ỳ

that could be obtained by fixed-point simulation. This technique essentially aims to
analytically calculate the statistical properties of ey and model the additive component
by suitably such that ŷ is statistically equivalent to ỳ.

Such analytical techniques are a result of application of two theories: i) the an-
alytical quantization noise model referred to as the pseudo-quantization-noise (PQN)
model and ii) a noise propagation model based on the application of “perturbation
theory”. The PQN model is based on the study of quantization error statistics and
it explains the statistical properties of errors due to quantization at the output of a
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Infinite Precision

Implementation
ŷ

y

by

x

Figure 2.5: Analytically estimating error due to fixed-point operations

fixed-point quantizer. The linear noise propagation model is used to determine the
impact of computation with finite precision inputs.

It has to be noted that, the efforts to estimate the statistical properties of the error
due to fixed-point implementation with the reference implementation: ey is restricted to
knowing its quantization noise power. That is, to analytically obtain its first and second
moments only. In this thesis, it is extended to include other statistical parameters such
that it can be mimicked in greater detail.

PQN Model

The PQN model is also referred to as Widrow’s quantization noise model [120]. It is a
stochastic model that defines a random process which is statistically equivalent to the
phenomena of uniform quantization. In other words, using the PQN model; the effect
of uniform quantization can be modeled with an additive noise b to obtain x̂ which is
statistically equivalent to the signal x̀ obtained after uniformly quantizing the signal x

as shown in Figure 2.6. The PQN model further imposes conditions under which such
statistical equivalence between the statistics of the noise signal bx and the error ex, the
signals x̂ and x̀ can be established.

!

!

Q

v

x x̀ x x̂

bx

Figure 2.6: Fixed-point simulation vs. analytical quantization noise model

The ability to pre-judge signal statistics of ex: which is dependent on the input
signal and the quantization step-size is a key contribution of the PQN model. The
characteristics of the random variable defined by the PQN model are defined as follows:

• Probability Density Function (PDF): The error signal bx is uniformly distributed
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and its range is determined by the quantization step-size. Mean of the random
variable depends on the quantization mode (truncation, round-off).

• Additive Noise: The error signal b is statistically uncorrelated with the quantized
signal. This means, the statistics of the quantized signal can be obtained by
simply adding the statistics of the pseudo quantization noise bx to the original
signal statistics.

• Power Spectral Density: The power spectral density of the error signal bx is white
and the power is determined by the quantization step-size and the quantization
mode.

The three statistical conditions are met when the quantization step-size is small in
comparison to the dynamic range of the signal. More precisely, it is necessary that the
characteristic function of the PDF of the signal is small enough such that there is no
aliasing of the characteristic functions of the corresponding quantized signal. In such
a situation, the process of quantization is referred to as smooth-quantization. Usage
of the term smooth is to emphasise the fact that change in the actual quantized signal
value is very small and only causes a proportionally small change in the system output.
The actual conditions for each of these properties to hold are described by quantization
theorems in [120].

Quantization Noise Sources

The quantization noise due to quantization of a real valued signal is given readily by
the PQN model, the noise contributions due to coarser quantization of signals already
quantized also follow the dynamics of quantization theorem. The quantization power is
calculated as a function of the first and second order moments of the quantization error
signal. The magnitude of quantization noise injected into the system by various fixed-
point operations is determined by the fixed-point formats and the mode of quantization.
No quantization noise is injected by an operation if the fixed-point format is sufficiently
large.

Signals are subjected to quantization repeatedly in a fixed-point processing system.
The mean and variance of the error due to the second quantization of the signal has also
been studied. When the dynamic range of the signal is sufficiently large, a practical
assumption that least significant bits assume a uniform distribution irrespective of the
macro signal statistics is made [120]. The first two moments of the quantization error
signal due to elimination of precision bits under such an assumption is as given in
Table 2.1. Here, the column continuous refers to the effects of quantization when a
real (or continuous in amplitude) signal is quantized using the weight of the LSB of
the fixed-point format. The column discrete refers to effects of second and subsequent
quantizations where k bits are eliminated from the fixed-point format with (n+k) bits
in the precision. The case of discrete case is that of the second quantization where a
signal that is already quantized (hence discrete in its amplitude) is further quantized
with larger step-size (lesser number of bits).
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Fixed-Point Mode Mean Variance

discrete continuous discrete continuous

Truncation q
2

(
1 − 2−k

)
q
2

q2

12

(
1 − 2−2k

)
q2

12

Rounding q
2

(
2−k
)

0 q2

12

(
1 − 2−2k

)
q2

12

Convergent Rounding 0 0 q2

12

(
1 − 2−2k

)
q2

12

Table 2.1: Mean and variance of quantization error

In the process of fixed-point refinement, the exercise of identifying noise sources has
to be repeated before evaluation of output accuracy for any change in the assignment
of fixed-point format

Noise Propagation

The small change in the output of the system due to fixed-point computations does not
affect the overall macroscopic behavior of the system. The application of perturbation
theory is essentially an attempt to approximately estimate the impact of quantization
under such circumstances. The error due to computation with fixed-point operators
are nothing but small perturbations whose effect on the output can be accounted for
with a good degree of accuracy by linear approximation. Indeed, this approximation
introduces a sense of tolerance towards quantization errors for an application and raises
the question of how small should the quantization step be to be classified as smooth. An
attempt to answer this question is made later in Chapter 4. Mentioned otherwise, it may
be assumed that the quantizers are smooth. Also, the operator itself can be classified
as smooth or un-smooth depending upon its functional behaviour. An operation is
considered to be smooth if the output is a continuous and differentiable function of its
inputs. The noise propagation technique based on perturbation theory, as presented
in this section is applicable to systems consisting of smooth operators and smooth
quantizers only.

Consider a binary operator whose inputs are x and y and the output is z. If the input
signals are perturbed by bx and by to obtain x̂ and ŷ respectively, the output is perturbed
by the quantity bz to obtain ẑ. In other words, as long as the fixed-point operator is
smooth, the impact of small perturbations at the input translates to perturbation at
the output of the operator without any change in its macroscopic behavior. In the
realm of perturbation theory, the output noise bz is a linear combination of the two
input noises bx and by:

bz = ν1bx + ν2by. (2.13)

The underlying assumption here is that the noise terms bx and by are uncorrelated
with one another. This assumption follows from a more fundamental assumption made
in the PQN model about the generation of quantization noise: that the quantization
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noise is independent of the signal. The terms ν1 and ν2 are obtained from a first-order
Taylor approximation [30] of the continuous and differentiable function f :

z = f(x, y) ≃ f(x, y) +
∂f

∂x
(x, y).(x − x) +

∂f

∂y
(x, y).(y − y). (2.14)

Thus, the expression of the terms ν1 and ν2 are given as

ν1 =
∂f

∂x
(x, y) ν2 =

∂f

∂y
(x, y). (2.15)

It has to be noted here that the terms ν1 and ν2 can be time varying. This method
is not limited to binary operations only. In fact, this method can be applied at the
functional level with any number of inputs and outputs. This method can be applied
on all operators on a given data path in order to propagate the quantization noise from
its source to the output.

+

h1

by

b1

b2

bN
hN

h2

Figure 2.7: Propagating quantization noise power to system output

If the output of a system is denoted as signal y, the corresponding noise by due
to quantization is obtained as the sum of contribution by individual noise sources in
the system as shown in Figure 2.7. If hi(n) happens to be impulse response of the
path from the ith noise source to the output of the system, the contribution by the
noise source bi is computed as the convolution sum of the noise source and the impulse
response. If the system consists of N noise sources and µbi

, σ2
bi

are respectively the mean

and the variance of the ith noise source bi, there are N independent paths from each
individual noise source to the system output. For each noise source bi, a time varying
impulse response hi from the noise source to the system output is computed [87]. Its
contribution to the output quantization noise by is obtained as the convolution sum with
the associated time varying impulse response hi. The total noise due to quantization
at the output of the system is given as

by =
N∑

i=1

∞∑

k=−∞

hi(k, n)bi(n − k), (2.16)

where hi(k, n) is the value of the kth time varying impulse response coefficient at the
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nth instant. The output noise power is obtained as the second order moment of the
noise at the output of the system and written as:

E[b2
y] = E

[
Ne∑

i=1

∞∑

k=−∞

hi(k, n)bi(n − k)
]2

=

Ne∑

i=1

∞∑

k=−∞

E[h2
i (k, n)]E[bi(n − k)2]

+

Ne∑

i=1

Ne∑

j=1,j 6=i

∞∑

k=−∞

∞∑

l=−∞

E[hi(k, n)hj(l, n)]E[bi(n − k)bj(n − l)].

(2.17)

This can also be written as a weighted sum of the statistical parameters of the noise
source as

E[b2
y] =

Ne∑

i=1

Kiσ
2
bi

+

Ne∑

i=1

Ne∑

j=1

Lijµbi
µbj . (2.18)

The terms Ki and Lij are constants and depend on the path function hi. This
approach supports recursive/non-recursive systems in case of both LTI (linear time
invariant) and non-LTI systems. The expression of these coefficients is given as

Ki =

∞∑

k=−∞

E
[
h2

i (k)
]
. (2.19)

Lij =

∞∑

k=−∞

∞∑

l=−∞

E [hi(k)hj(l)] . (2.20)

In [88], a method to determine the various path functions from the signal flow graph
of the system is proposed. The given SFG is partitioned into many acyclic subgraphs
for the purpose of analysis. Using the noise propagation model, the path functions
of these sub graphs are determined in the Z-transform domain. The individual path
functions from every noise source to the output is got by combining these sub-graph
path functions by variable substitution.

An affine arithmetic based technique is proposed in [79] and [13] respectively for LTI
and non-LTI systems. An affine form for every noise source in the system is defined
by taking into consideration its mean and variance. Taking advantage of the linear
noise-propagation model, the affine noise forms are propagated through the system by
simulation. The values of Ki and Lij are obtained by observing the affine forms of the
output noise expression. The propagation is performed by a simulation technique. In
case of a recursive system, this has to be repeated a number of times until the affine
forms of the output noise value converges.
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In [108], an analytical expression for the output quantization noise is derived using
a vector format. This technique provides a uniform framework which includes non-
linear, time-varying and recursive systems for estimation of output noise power. The
analytical expressions are determined by performing a single floating point (or high
precision) simulation and the knowledge of the respective path functions obtained by
technique presented in [87]. In case of time varying systems, these expressions take the
ensemble average of the time varying coefficients over the entire length of simulation.
In case of recursive systems, the expression considers a large number of coefficients in
order to approximate the infinite impulse response nature to obtain a pseudo impulse
response character to the path functions.

In [112] the coefficients of the expression for output noise-power in Equation 2.18
are obtained by the second order Taylor-series expansion of the difference between the
fixed-precision and infinite precision expressions. The Taylor coefficients essentially
represent the Ki and Lij coefficients considered by other works. The Taylor coefficients
are obtained by solving a system of linear equations by performing minimum number of
fixed-point and single floating point simulations. This is a one-time effort and once the
coefficients are known, the evaluation of output quantization noise power is as trivial
as evaluating the expression similar to the one in Equation 2.18

Apart from evaluating the exact expressions for the output quantization noise, at-
tempts have been made to identify the bounds on the total output quantization noise
power. In [121], the FRIDGE tool proposes an interval arithmetic based estimation of
errors. Affine arithmetic based techniques have also been utilized to provide tighter
bounds in [71; 73].

Some of the IA and AA based methods such as [19; 81] can be used for estima-
tion of signal bounds analysis of quantized signals also. In [9] a polynomial expression
to represent the bounds is derived and represented using Handleman representations.
Heuristics are defined to estimate the maximum and minimum values of such represen-
tations to derive tighter bounds on signals. This method outperforms the previous IA
and AA based methods for estimation of quantized signal bounds analysis for polyno-
mial evaluations using fixed-point arithmetic.

2.3.3 Other Quantization Effects

Apart from contributing to the quantization error due to fixed-point operations, quan-
tization of system coefficients indeed change the system behavior. Such changes are
particularly important as they can affect the stability of the system under consideration.
These effects are studied essentially under two categories.

The first among them is the impact of quantization of system parameters also
referred to as coefficient quantization. In [80], the effect of coefficient quantization on
the interval bounds of signal at the output is determined. It is clearly and rounding are
clearly established that the coefficient quantization has a larger impact than the data
quantization effects. This paper uses Interval arithmetic based techniques. In [55; 75],
this effect is studied in the z-transform and Fourier transform domain by observing the
sensitivity of each coefficient with respect to the system transfer function. A simple
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simulation based technique to calculate the sensitivity is proposed in [77].
The second effect is due to the non-linearity of the quantization process in the

presence of recursive loops. Such effects under certain conditions such as the ones
discussed in [25; 90] can cause oscillations. Techniques to detect the existence of limit
cycles due to quantization have been proposed in [5; 62; 107]. In these techniques, the
number of bits assigned to operators is limited to a small finite number. The analytical
techniques focus on deriving sufficient conditions for fixed-point quantization such that
limit cycles do not occur [118]. Some other analytical techniques such as [10; 11; 89]
aim at deriving conditions for guaranteeing asymptotic stability of the systems. These
analytical techniques are supported by simulation when it is too complex to derive
analytical expressions. In [78], affine arithmetic based techniques have been used to
accelerate simulation. The simulation based techniques require exhaustive simulation
and therefore can be very time consuming [16].

2.4 Cost Evaluation

The problem of estimating the cost for a given choice of fixed-point word-length is the
other very significant part of the word-length optimization process. After all, it is the
cost which needs to be minimized in order to achieve optimality. Referring back to
Figure 1.1 in Chapter 1, if the estimated cost is not equal to the actual cost, it can
be known only after the system is implemented. Therefore the cost models used for
estimating the impact on system cost due fixed-point word-length choices has to be as
accurate and reliable as possible.

In general, there are a number of NP-complete problems such as scheduling and
resource binding that need to be solved soon after the fixed-point refinement step. It
is therefore difficult to exactly measure the cost. Drawing from the design techniques,
a cost model which reflects the trend in the cost evolution has to be built. Since, this
is a very early attempt to estimate costs in the design process, these are referred to
as high-level cost estimates. These estimates are typically that of area, power and
execution time of the implementation.

In [97], an attempt to derive a generic hardware cost model is made. Here, the area
of each hardware block is parameterized by the fixed-point word-length and stored in a
library. The total area of an implementation which uses the operators of various word-
lengths is obtained by individually looking up this library and adding up the individual
operator costs. Similarly, the library can be parameterize by considering other cost
metrics such as power consumption, energy dissipation, power-delay product etc. as
a function of operator word-lengths [94]. In [111], the cost is modeled as a quadratic
function of fixed-point word-lengths. They use a hardware based resource estimator to
obtain the actual implementation cost for some samples in the word-length space. A
least-square problem is formulated from the data obtained by using the estimator and
the coefficients are obtained by solving the least-square problem.

In [15], a comprehensive cost metric which takes into account the area of fixed-point
arithmetic operator, area of glue logic and the area of registers on FPGA platforms is
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defined. The metric is described as a combination of the infinite norm and the first
norm of the area metric. Although the comprehensive nature of such a metric is helpful
in capturing the actual cost, this technique essentially tries to solve the word-length
optimization problem by taking into consideration resource area estimates by using an
approximate list-based scheduling algorithm. Given the NP-hard nature of the word-
length optimization problem in itself, these techniques donot scale well for use in system
level design.

2.5 Word-Length Optimization

The cost and accuracy of systems implemented using fixed-point arithmetic are func-
tions of the assigned word-lengths. Given that there are a number of options for
choosing the word-length size, the choice of fixed-point formats for each of the signals
has to be done carefully.

For discussion in this section, let w be a vector of word-lengths with each entry cor-
responding to exactly one operation in the fixed-point implementation. Let the closed
form expression for total cost evaluation function of the fixed-point implementation
and its accuracy quantifying metric evaluation function be given as C(w) and λ(w)
respectively.

2.5.1 Problem Variants

The trade-off between implementation cost and the accuracy of computation is essen-
tially made either to achieve the best performance given the constraints on the cost or
to achieve low cost design given that the performance criteria is constrained by a min-
imum bound. Consequently, there can be two variants of the word-length optimization
problem.

Performance Maximization Problem In this problem, the cost of implementation
is the constraint. Given the maximum cost budget Cbudget, the objective is to maximize
the system accuracy λ. This problem can be formally stated as

max (λ (w)) subject to C (w) ≤ Cbudget. (2.21)

Cost Minimization Problem In this problem, the performance is constrained in-
stead of the cost. Given the maximum permissible quantization noise λobjective, the
objective of the optimization problem is to minimize the cost C of its implementation.
This is formally stated as

min (C (w)) subject to λ (w) ≤ λobjective. (2.22)

Selecting between the two versions of optimization problems is driven by design
requirements. The designer may want to choose to solve the Cost Minimization problem
if there are strict accuracy constraints while allowing enough margin for the total cost.
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On the other hand, designers choice could be the Performance Maximization if there
are strict constraints on the cost of implementation while compromising on the accuracy
of computation. In an ideal situation, it is expected that the trade-off curve obtained
by solving either problem for various target constraints are one and the same. This
corresponds to the Pareto-optimal front of the given system. As the solution to either
optimization problems are driven by heuristics, this may not be the behavior in practice.

Optimization Variables

A signal processing system consists of hundreds of fixed-point operations. For example,
a 64-point FFT signal processing algorithm has 960 fixed-point operations including
addition and multiplication with constants. The integer and the fractional parts of
fixed-point format is chosen such that it accommodates the dynamic range of all signals
and has enough precision. On a flexible architecture such as an FPGA or while designing
an ASIC or the modern day DSP architectures with SIMD support, it is possible to have
flexible data widths. To solve the word-length optmization problem, each of the choice
of word-lengths of each of the fixed-point operations has to be assigned optimally.

Let M be the number of signals in the system. If each of these signals can be
assigned N different word-length configurations, there can be NM different word-length
vector combinations. This is referred to as the multiple word-length assignment (MWL)
paradigm for fixed-point refinement. The complexity of evaluating the cost-performance
trade-off for each of these combinations is practically impossible.

Assigning the same word-length format for each signal reduces the complexity of the
word-length optimization problem. This is the popular uniform word-length assignment
(UWL) paradigm for fixed-point refinement. In this approach, all the computations are
carried out with the same word-length. In other words, all the signals and operators
in the system are assigned the same fixed-point format. This approach for fixed-point
design of signal processing systems was predominantly used for implementation on
fixed-width data-path architectures. Then, the integer and fractional parts of the fixed-
point format is chosen such that the dynamic range of all signals are accommodated
and there is enough precision for all signals. If the uniform word-length paradigm were
to be used, the number of word-length combinations that are tried before reaching
optimality is N , where N is the number of word-length configurations realizable on the
given architecture.

2.5.2 Solutions to the Word-length Optimization Problem

In the past, the fixed-point refinement problem was addressed using the uniform word-
length (UWL) paradigm. In the UWL paradigm, all the signals are assigned to the same
fixed-point word-length and the same format. On the contrary, each signal is assigned
a suitable fixed-point format depending on its sensitivity to the system output. It
has been shown that the (multiple word-length) MWL paradigm often provides better
results than the fixed-point formats obtained by using the UWL paradigm [31]. The
benefits of solving the fixed-point refinement problem using the MWL paradigm comes
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at the cost of solving an NP-hard optimization problem. Whereas the fixed-point
refinement solutions is simply O(N), where N is the various choice of word-length
formats if the UWL paradigm is used instead.

Various techniques to solve the word-length optimization problems can be catego-
rized into optimal, stochastic and quick-heuristic based approaches.

Optimal Approach

Attempting to solve the word-length optimization in the true sense of optimality re-
quires exploration of the entire combinatorial search space before the optimal solution
is got. In [50], an attempt is made to narrow down the search space by estimating the
minimum and maximum bounds on the variables. In order to calculate the maximum
bound (MaxWL), the word-lengths of all operations are uniformly increased until the
accuracy criteria is met as described in [23]. In [115], the minimum bound (MinWL)
is calculated by iteratively decrementing the number of bits assigned to each vari-
able. In this process, the variables are uniformly assigned a maximum number of bits.
Typically, word size (32 bits) or double word sizes (64 bits) are assigned or double pre-
cision operations are used. Then, one variable is considered at a time while the other
variables continue to be either assigned the initial number of bits or assigned double
precision floating point format. The number of bits assigned to the chosen variable in
any given time is decremented until the performance becomes inferior to the specified
target computational performance.

The word-length optimization problem is formulated as a mixed integer linear pro-
gramming (MILP) problem for LTI1 systems in [31]. The noise power expression as
a function of assigned bits is exponential in nature. In order to linearize this in the
context of the proposed MILP formulation, as many auxiliary variables as the num-
ber of bits permissible in the constrained search space is introduced. So, if there are
M variables with N different word-length choices, there would be N × M number of
MILP variables. Having such large number of MILP variables can take a long time. A
number of constraints depending upon the implicit dependencies between the signals is
introduced such that the search space of the MILP problem is further reduced. These
constraints are obtained by performing basic checks including word-length propagation
and the constraints imposed by the cost model. Owing to the number of variables and
the fact that such huge number of constraints have to be dealt with, this technique
clearly does not scale very well with large systems.

Moreover, it is known that the multiple variable word-length optimization problem
is non-convex [27] and NP-hard [34]. Therefore, searching in limited search space many
not be really effective and it cannot guarantee that the reduced search space has not
excluded the optimal solution vector.

1Linear Time Invariant
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Quick-heuristics Approach

Given the NP-hard nature of the word-length optimization problem, a number of heuris-
tics have been proposed as a solution to this problem. The computation of the mini-
mum and maximum bounds on the number of bits that can be assigned to the operators
stands out commonly amongst many approaches. In [17], a number of word-length op-
timization heuristics based on different ways of calculating the minimum and maximum
word-lengths are summarized and compared against one another.

Some of these heuristics begin with the determination of minimum word-length
(MinWL). The bit-widths of all the signals are incremented iteratively until the specified
target computational performance is not met. In every iteration, the number of bits
assigned to one of the fixed-point signal variables is increased by b bits. The choice of
this variable is driven by the cost, accuracy trade-off. This technique is common to a
class of algorithms referred to as min +b bits algorithm.

While [31] uses the criteria of minimum cost increment, the maximum improvement
in accuracy is used in [18]. In [50], a heuristic which takes a weighted average of the
loss in precision and the increase in the cost is used for determining the direction
of optimization in each step. In general, using the cost alone is known to take a
large number of iterations whereas, the use of just accuracy requires lesser number
of iterations but is complex due to the fixed-point performance evaluation involved in
every iteration. Using the meta heuristic, the influence of cost factor and the accuracy
factor is weighted such that the number of iterations are minimized at the same time not
compromising on the quality of the solution. In [17; 51], the ratio of the cost derivative
and the accuracy derivative with respect to the changing number of bits is considered.
The signal which gives the best improvement in the accuracy for the smallest increment
in cost is considered.

On the contrary, it is also possible to begin with the maximum bit-width assign-
ment [31] (MaxWL) and decrement one of the bits assigned to the signals iteratively.
The criteria to choose the signal whose bit-width has to be decremented takes into
account the accuracy and cost trade-off is similar to the criteria discussed for algo-
rithms that increment the bits assigned iteratively. This is referred to as the max -1
bit algorithm.

In [116], a hybrid heuristic procedure which combines strategy to both increment
and decrement the number of bits is discussed. After calculating the minimum word-
length combination, all signals are uniformly incremented by one bit until the per-
formance criteria is met. At this stage, the different signals compete to lose one bit
iteratively such that the accuracy criteria is not violated while minimizing the total
cost. In [96], selectively increments or decrements the bit-widths to arrive at an opti-
mal solution. The gradient obtained as the ratio of the change in cost and the change
in accuracy is considered to choose the fixed-point variable whose word-length has to
be modified in each iteration. As long as the accuracy is inferior to the expected levels,
the algorithm is in the increment mode. If the accuracy constraint is over shot, the
direction is reversed and it is in the bit decrement mode. Only those variables which
contribute in the right direction in either of the modes is considered. Other variables are
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moved to the taboo list. Iterations are carried out until all the varaibles are eventually
not added into the taboo list.

In [23], a branch and bound algorithm which computes the solution between the
maximum and the minimum word-length combinations is proposed. This approach is
also the basis for the optimization technique used in [86].

Stochastic Approach

The use of simulated annealing (SA) technique for word-length optimization can be
found in the very early work [20]. In this approach, the word-length optimization prob-
lem is formulated as a MILP and then SA is used to arrive at the solution of the MILP
problem. In simulated annealing, every change in the values assigned to the optimiza-
tion variables is referred to as a movement. Every time a movement is performed, the
error power and the cost of implementation is evaluated. All solutions obtained are pre-
served for comparison with solutions obtained by movements in future. If a movement
generates a superior solution than the best available thus far in any iteration, it is taken
with a probability of 1. Otherwise, a smaller probability is assigned to it depending
upon the quality of the solution obtained. The various movements can be thought of
generating different states in a Markov-chain. This probability decreases with every
passing iteration. If a proper initial solution and a proper annealing function is chosen,
the optimal solution for the given problem can be found quickly. In [72], an adaptive
simulated annealing procedure is proposed along with the use of minimum word-length
determined by the techniques discussed in the previous section. The authors caution
against using this technique for very large designs as it can consume large amounts of
time.

In [92], genetic algorithms (GA) have been adapted for word-length determination
of the LMS filter. In any genetic algorithm, a string of genetic elements are assigned
to each of the optimization variables. These elements contribute to the behavior of the
variables in the system. This string of elements is often referred to as chromosomes. In
every generation, a sub-string from the strings are randomly selected and exchanged
between two possible solutions. The resulting solution is referred to as the child of the
two random solutions. This constitutes the next generation solution. Once the solution
is obtained, the survivability of the solution depends on its performance. A survivability
criteria is determined by evaluating the cost and accuracy of the solution obtained. The
candidates obtained by allowing many generations to breed by tuning the survivability
criteria towards optimality, an optimal solution is obtained. A hybrid technique which
uses both the GA approach along with a gradient based heuristic approach is explored
in [95] leading to faster convergence than just using the GA approach. Another variant
of the GA approach is the multi-objective GA which is useful in case of signal processing
systems with many outputs. In this variant, the GA is guided such that multiple
objectives as defined by the performance criteria for each system output is satisfied.
In [114], this technique is used to determine the coefficients of the FFT butterfly in
the context of an MC-CDMA receiver. Another example of using the multi-objective
GA is found in [1]. Here, the DCT and the FIR filter coefficients jointly participate in
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the evolution of the solution. In [49], it has been found that the GA approach works
well and produces better solutions than the greedy approaches when the problem size
is small.

In [96], a greedy randomized adaptive search procedure (GRASP) based algorithm
is proposed. It is essentially a trade-off between the genetic algorithmic approach
and the quick heuristic approaches. The algorithm begins with minimum word-length
assignment to each of the fixed-point variable. A greedy randomized algorithm is
used instead of a deterministic algorithm in every iteration to pick the next eligible
candidate for word-length increments. While the heuristic algorithms usually decide
upon one of the word-length optimization variables, this algorithm chooses one among
equally eligible variables randomly instead. The randomization reduces the chances of
getting stuck in a local minimum. When the iterations eventually converge onto the
target quantization noise power, a local search using the taboo search algorithm around
the solution thus obtained is performed using a deterministic heuristic. It is observed
that when making the choice of bits assigned to each fixed-point variable, incremental
word-length assignments tend to over optimize the system. That is, while the assigned
fixed-point format does not meet the optimization criteria; the next iteration improves
the fixed-point performance to an extent beyond what is expected. Therefore, the bit-
widths are adaptively incremented or decremented as a part of this heuristic depending
upon the placement of the iteration with respect to the randomized greedy solution
obtained in every optimization step.

Analytical Approaches

In this approach, the attempt is to mathematically obtain the optimal solution for the
given optimizaiton problem. A mathematical treatment to the steepest gradient descent
approach is provided in [21; 44]. The authors proceed to propose their own version of
the steepest descent algorithm which is similar to the ones proposed with minimum
word-lengths but just that the minimum is set to 0 bit to the precision for all signals.
Identifying the similarities between the word-length optimization problem and the bit-
allocation problem in the signal compression domain, this technique is also referred
to as marginal analysis. Both [21; 44] attempt to provide an analytical basis for the
optimization procedure based on Lagrange Multipliers. This is achieved by relaxing the
constraint of assigning integer values thereby making the cost and accuracy evaluation
function convex.

One disadvantage with the Lagrange Multiplier based techinques is the possibility of
having negative values for the word-lengths. The authors suggest that such results may
be arrived at when optimizing for very large quantization noise magnitudes. In [22], the
authors overcome the problem of negative bit-width assignment in [21] by transforming
the word-length optimization problem into a Geometric Programming problem.

In [43], an objective minimization function similar to the distortion and sensitivity
metric is used for performing the cost and performance trade-off. The paper assumes a
quadratic cost model and discusses an iterative algorithm to arrive at the bit-widths of
each participating variable. Sufficient conditions to ensure convergence of the iterations
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onto optimality is also provided. This is superior to using the Lagrange multiplier based
technique as there is no risk of ending up with negative bit-width assignments for the
precision part and sufficient precautions such that the iterations converge is already
taken into account.

In [27], the authors consider the non-linear effect of the noise generation as a func-
tion of the number of bits assigned. They identify this to be a problem where allowing
freedom for all the word-length variables independently causes non-convexity. An al-
gorithm based on sensitivity to quantization noise is used to constrain the word-length
variables such that convexity of the word-length optimization problem is preserved.

2.6 Automatic Fixed-point Refinement

The accuracy evaluation and cost evaluation are just estimates of the system when
eventually implemented. The actual values could be off the estimated marks. The
inability to account for all the factors affecting the design implementation due to the
steps that are carried out post fixed-point is the reason for such deviations. Then, the
designer needs to repeat the entire design flow by suitably adjusting the target accuracy
or target cost or both in order to obtain the designed result. In such circumstances,
the various sub-tasks within the fixed-point refinement step may have to be performed
repetitively until the system parameters converge onto the objectives set out by the
designer. Therefore, development of automatic tools for performing fixed-point design
has evoked a lot of interest among the research community. A number of automatic
fixed-point refinement tools have been designed as a result of various academic research
pursuits. This section focuses on the efforts for automation of the fixed-point refinement
process.

The need for fixed-point refinement framework was felt very early. In [68], the au-
thors propose a pseudo assembly instruction set which is similar to the then popular
DSP platform TMS320C25 from Texas Instruments. The algorithm is first coded us-
ing the proposed pseudo instruction set. A simulator which interprets such a pseudo
assembly program is provided as a part of this fixed-point refinement framework. The
tool then obtains the dynamic range of each of the signals and determines the scal-
ing required for each of the signals. Using this information, the fixed-point number
formats are automatically determined and the native TMS320C25 instructions are au-
tomatically generated. This idea was extended to higher level languages in [67]. In this
approach, the fSig class library designed to collect signal statistics is used for perform-
ing the dynamic range analysis. The collected statistics is used to determine a suitable
fixed-point data type. The gFix library provides the necessary fixed-point operators for
simulation of the fixed-point system. An automated tool using the SUIF [24] compiler
framework is developed for conversion of any given floating point algorithm to work
with fixed-point data types.

Another early attempt is the FRIDGE 1 framework [121]. This effort is based on the
Fixed-C extension to the ISO-C programming language. This extension essentially in-

1Fixed-point pRogramming DesiGn Environment
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troduces the fixed-point data type into the C programming environment. The dynamic
range and the precision bits corresponding to every signal is explicitly annotated. Since
none of the native C compilers provide support true fixed-point formats, the Fixed-C
compiler [59] (FCC) is developed to provide compiler level support for the fixed-point
data type introduced in this framework. A complete fixed-point specification of the pro-
gram requires the fixed-point format of each signal to be defined explicitly. Doing this
manually can be very cumbersome and time consuming. Therefore, this tool captures
the non-exhaustive fixed-point specification provided by designer and suitably assigns
fixed-point formats to the other signals too. To do this, the HYBRIS simulator which
simulates both fixed-point and floating point arithmetic together is developed. The
ICEPACK utility assists in identifying the impact of fixed-point constraints defined by
the user on other signals whose fixed-point formats are not explicitly defined. This is
followed by platform specific code generation which includes ANSI-C for DSP processors
and behavioral VHDL for hardware development. This tool was adopted by Synopsys
in their CoCentric suite used for hardware/software co-desigin and implementation.

Both approaches above are essentially based on simulation and needs user interven-
tion in all the stages of fixed-point design except for setting up a fixed-point simulation
platform. In [28] a quasi simulation approach where the dynamic range and the quan-
tization error due to limited precision is propagated through the operator along with
a high precision simulation. This is achieved by defining a new overloaded operator
which takes care of both functionality and the finite word-length aspect. The fact that
simulation in high precision and fixed-point accuracy is performed together provides
an opportunity to dynamically monitor the range and keep track of the error in accu-
racy. The ability to simultaneously perform fixed-point refinement while performing
simulation overcomes the need for maintaining huge databases of nominal signal values.
It is possible to steer the evolution of the floating point simulation in the direction of
the fixed-point algorithm at junctures where control decisions are to be taken. Thus,
the decision errors induced due to fixed-point computations are already taken care of
at the end of the simulation. Though this method is simple and quickly provides a
way of realising any algorithm in the fixed-point format, this technique is oblivious of
optimality concerns.

In [33], the Synoptix tool begins with a data-flow description of systems in Matlab’s
Simulink environment. The dynamic range of the signal is propagated to calculate
appropriate scaling of the fixed-point formats either by using the L1 norm or otherwise.
Without going into the intricacies of the dynamic range estimation, the authors assume
that the integer and fractional bits are thus specified. The authors assume truncation
mode for all quantization operations for the sake of simplicity. They define one of
the greedy heuristics Max -1bit for automatic word-length optimization. The fixed-
point representation thus obtained is used by a HDL synthesis tool along with custom
fixed-point operator libraries to realise the complete design in hardware. A similar
fixed-point refinement tool based on Simulink is also presented in [111]. The word-
length optimization problem is cast as a mixed-integer linear programming problem
(MILP). In [93], an analytical accuracy evaluation technique which uses a forward error
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propagation is used for fixed-point conversion of algorithms designed in MATLAB to
generate hardware designs using VHDL.

In [85], the problem of source to source transformation of an algorithm expressed
using floating point algorithms is addressed. The ID.Fix tool is implemented using
the GECOS framework and contrary to Simulink descriptions, it works with C or
C++ code with #pragma directives suggesting the dynamic range of the fixed-point
numbers are taken as the input. The signal flow graph of the algorithm is extracted by
inference [47]. A fully automatic analytical technique developed in [87; 108] are applied
on the graph in order to generate the analytical expressions of the loss in accuracy
due to finite precision at the output of the system. A simple cost metric is used to
estimate the cost as a sum of individual operator cost. The modular nature of the tool
and the GECOS platform allows experimentation with optimization heuristics. Many
optimization heuristics have been proposed and used successfully in this context. The
focus on the previous approaches not just realization of the system using fixed-point
arithmetic and rather it is the optimality of the fixed-point solution.

2.7 System Level Approaches

The work in [119] describes a high level synthesis flow of a MIMO-OFDM algorithm
design to hardware functioning in real time using Matlab and custom high level synthe-
sis framework. The authors further propose a dependable and repeatable methodology
to address all the problems in the process of realising an algorithm in hardware. In the
first of its kind of attempt, the authors propose a design flow where the top-level fixed-
point formats are first determined. In this approach, the choices for input and output
fixed-point formats of the sub-systems such as the FFT block, filters and equalizers are
first explored. Once this is established, the individual signal formats are determined in
the next step while respecting the input output fixed-point formats of the sub-system.
In this process, the total quantization noise is continuously monitored during every
fixed-point refinement step. Given the multiple abstractions in which the fixed-point
refinement is carried out, this can be regarded as the first true system level word-length
optimization effort.

As it was mentioned in Chapter 1, it is clear that the word-length optimization
problem is one among many other problems that need to be addressed in a typical
high-level design flow for embedded systems or digital hardware design. Since the
word-length optimization is performed very early in the high-level synthesis flow, there
is no information about the actual behavior of the system when different combinations
of the word-lengths are used. The cost function from the perspective of the word-length
optimization problem is an estimator which looks ahead and predicts the total cost of
the system.

Therefore, the cost function is used during word-length optimization is an over
simplified model of the actual costs. In practice, though the simplified cost function
complies with the macro behavioral model, the actual cost function is seldom as simple
as it is made out to be. This is due to the impact of the choices made during subsequent
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steps such as scheduling, binding which are NP-complete by definition can have a
profound effect on the over all system costs. In other words, the high complexity of the
later steps makes it impossible to accurately quantify the actual cost of implementation
before actually implementing the given system.

Many attempts to jointly solve the word-length optimization problem along with
scheduling and binding problems have been attempted [32]. The scheduling and bind-
ing stages are themselves NP complete problems and hence clearly the joint problem
is also combinatorial in nature and is more complex than these problems considered
individually.

Attempts such as [36] show the efficacy of the platforms which can make good
use of fine grain word-length assignment in the context of of software defined radio is
addressed. It is interesting as it shows that systems which make use of the multiple
word-length fixed-point refinement process can be well exploited. This work focuses
on fixed-point refinement for software defined radio (SDR) algorithms constrained by
the total energy dissipation. In particular, the focus is on design of efficient ASIP1

platforms for SDR algorithms.
This thesis addresses the problem of dividing the given problem at the algorithmic

abstraction by dividing it into a hierarchy of three levels of abstraction. The system
level or the global level encompasses the entire system under consideration. The func-
tional partition level is set one level below the system hierarchy. These sub-systems
can be thought of logical components used in building the system. There can be sub-
systems defined at levels below the functional partition depending upon the complexity
of optimization and accuracy evaluation. Here, the functionality of the partition is
divided into many smooth clusters consisting of operations whose response to quanti-
zation noise behavior can be captured analytically. In the third level, are the actual
fixed-point operations that eventually realise the sub-systems. The fixed-point refine-
ment problem is essentially that of arriving at the optimal assignment of word-lengths.
The main focus of this work is on designing custom data paths for ASIP in order to
realise the algorithms refined in fixed-point effectively.

2.8 Summary

The use of fixed-point refinement has immense practical benefits especially for signal
processing applications. Previous attempts to address the problem of automatic fixed-
point refinement discussed in this chapter have several limitations. To begin with, the
analytical techniques for accuracy evaluation are limited to certain operators classified
as smooth. Therefore, it is inevitable to use simulation based techniques in the presence
of operators that are not smooth. Secondly, the word-length optimization algorithms
do not scale well with growing system sizes and the increasing number of variables
participating in the optimization. Though the work in [36] addresses this problem
by proposing a hierarchical divide-and-conquer technique, it is limited to performance
evaluation only.

1Application Specific Instruction Processor
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In this thesis, shortcomings of some of these techniques are addressed. The focus
in this thesis is on the scalability of the word-length optimization technique and the
associated accuracy evaluation problem. In the interest of time, other implementation
issues such as coefficient quantization, limit cycles and the estimation of dynamic range
of the signal are not addressed in this thesis. Also, the intricacies of a realistic cost
estimation function are approximated with simple affine cost models.
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Chapter 3

Single Noise Source Model

Each fixed-point operation in a given application can be a potential source of quan-
tization noise in fixed-point system implementation. Using the analytical techniques
based on PQN (Pseudo Quantization Noise) model that were discussed in the previous
chapter, it is required to calculate the noise power at each of the operator noise sources
and their respective path gains to arrive at an analytical expression for quantization
noise at the system output. With growing system size, the number of operators and
hence the number of noise sources and the respective paths to the output increase and
quickly become very large in number. Consequently, even evaluation of quantization
noise power at the output of the system takes longer with every new quantization noise
source introduced into the system. Moreover, the number of optimization variables in-
crease with the number of noise sources leading to increased complexity of word-length
optimization as the evaluation of fixed-point precision accuracy has to be carried out
more often.

In this chapter, the problem of estimating the error due to quantization at the
output of a large system is considered. The idea of hierarchical decomposition of the
given signal processing system is proposed to overcome the problem of long accuracy
performance estimation time. Moreover, this way of decomposition of a system into sub-
system hierarchies forms the basis of divide-and-conquer approach to solve the word-
length optimization algorithm presented in chapter 5. From the hierarchical system
view point, large system is broken down into a hierarchy of sub-systems arranged
in multiple levels. The single-noise-source (SNS) model is conceptualized to extend
the basic operator level noise-power estimation technique to the hierarchical entities
describing the system.

The SNS model is essentially an attempt to model the errors due to quantization
noise as a random process and to derive the relevant parameters which can mimic the
random process without having to perform fixed-point simulation.
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3.1 Hierarchically Defined Systems

The evaluation of accuracy at the output of a fixed-point system is one of the most
important performance metric for the performance of a fixed-point system. The use of
linear noise propagation models presents an opportunity to calculate the total quan-
tization noise power at the output as a function of the quantization noise power at
each of the operator sources. In the hierarchical approach, the system is decomposed
into many smaller sub-systems. Thereby, all the operators and the corresponding noise
sources are clustered into groups defined by the sub-system boundary.

3.1.1 Hierarchical Decomposition

Sub-system Level 2

S0

I1

O1

S1
2 S2

2

S2
1

S1
1

S3
1I2

S0

S2
1 S3

1S1
1

S1
2 S2

2

Sub-system Level 1

System Level

Figure 3.1: Hierarchical decomposition of the system S0

Consider a hierarchically defined system as shown in Figure 3.1. The system S0

has two inputs I1, I2 and an output O1. The system is decomposed into two levels of
hierarchies. At the system-level, S0 is divided into sub-systems S1

1 , S2
1 and S3

1 . In the
next level, the sub-system S1

1 is further sub-divided into S1
2 and S2

2 . The hierarchical
decomposition is also shown as a tree with nodes representing sub-systems at different
hierarchical levels. Each node represents the system or the sub-system-level abstraction.
The edges point to nodes in the direction of decomposition of the system size with
lesser complexity. While the root node is only one and it represents the entire system
under consideration, all nodes in each successive hierarchical level together represent
the system. With every successive hierarchical level, the number of nodes increases and
the complexity of each of the nodes reduces progressively relative to its parent node.

The smallest sub-systems that are not divided into sub-hierarchies any further are
found at the leaf positions in this tree and are hence referred to as leaf-sub-system.
In this example, the sub-systems S1

2 , S2
2 , S2

1 and S3
1 are leaf-sub-systems. Hierarchical

decomposition of the system is primarily governed by the complexity of accuracy eval-
uation of the smallest sub-system. Theoretically, the division of the given system into
sub-systems can be extended all the way down to the operator level. Dividing the sys-
tem into many small sub-systems can sometimes be counter productive as the number
of sub-systems that needs to be considered at the successive higher level of abstraction
can be very large while the complexity of the leaf level sub-system can be very trivial
(such is the case when the decomposition is performed to the level of an operator).
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Therefore, a good balance between the complexity of each leaf-level sub-system and
the number of sub-systems needs to be identified. Apart from the complexity concerns,
there can be operators whose response to quantization noise input cannot be modeled
analytically. Such types of operators is not made a part of any sub-system. While there
is nothing wrong in principle to have any type of operator within a given sub-system,
it is not possible to arrive at an analytical expression at the sub-system-level in the
presence of operators whose response to quantization noise input cannot be modeled
analytically. Thereby, fixed-point simulation will become necessary if such operators
are included within the sub-system. Keeping this in mind, the sub-systems are defined
such that it is possible to arrive at the parameters of the random process mimicking
the quantization noise errors analytically and doing so using the techniques presented
in Chapter 2 becomes manageable in terms of its complexity.

Signal Flow Graph (SFG) Representation

Signal processing systems can be graphically represented by using signal flow graphs
(SFG). A signal flow graph defined at the operation level consists of various operators
as nodes inter connected by directed edges pointing in the direction of signal flow.
The SFG of a hierarchically decomposed system, essentially consists of its sub-systems.
Depending upon the level of abstraction chosen to build the SFG, it is represented
by the sub-systems defined at the chosen hierarchy interconnected with directed edges
pointing in the direction of the flow of the signal. Such an SFG has lesser nodes when
compared to the SFG defined using the basic operations. From Widrow’s quantization
noise theory, it is clear that the quantization noise can be considered to be statistically
uncorrelated with the signal and that it is additive in nature. Therefore, the fixed-point
system can be represented by augmenting the SFG with quantization noise sources.
Such a noise source represents the total quantization noise generated due to fixed-point
operations within the given sub-system. This noise source is referred to as the single-
noise-source (SNS). Modeling the characteristics of such noise sources is discussed in
the major portion of this chapter starting from Section 3.2.

The Augmented-SFG graph representing the fixed-point system is constructed from
the system SFG by adding a quantization noise source corresponding to each sub-
system. The noise generated within each of the sub-systems is added at the output
of the respective sub-system. Thus, there are as many quantization noise sources as
the number of sub-systems defined in hierarchy at a given level of abstraction. In case
of the example considered in Figure 3.1, the Augmented-SFG representing the fixed-
point implementation of the system is shown in the Figure 3.2. The Augmented-SFG
is obtained by adding the noise generated from within the leaf level sub-systems, it
corresponds to the lowest or the finest hierarchical definition. The quantization noise
sources at higher levels of abstraction can be derived as a function of the leaf level
sub-system output quantization noise. Deriving the noise level at higher abstractions
makes it possible to construct the Augmented-SFG at higher levels of abstractions. In
this example, the quantization noise sources b1

2, b2
2, b3

1 and b2
1 are augmented to the

leaf-level sub-system graph at the lowest level in the hierarchy. At one level higher
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Figure 3.2: Augmented-SFG

in the hierarchy, noise sources b1
2 and b2

2 are no longer considered explicitly but are
abstracted away as noise b1

1. At the system-level, none of the sub-system noise sources
are identified but for their combined effect as noise b0.

3.1.2 Evaluating Output Quantization Noise

The focus of quantization noise analysis is on evaluation of the first order and second
order moments of quantization noise at the system output in order to calculate the total
output noise-power. Higher moments and other statistical properties are seldom an
object of study. Given the properties of each quantization noise sources, the knowledge
of the path function from each of the noise sources to the output is sufficient to calculate
the total noise power. Therefore, in the classical analytical approach, the path function
from the noise source to the output of the system Hb needs to be computed. In the
hierarchical approach, this path function is equivalently obtained by considering the
sub-system functions.

Consider calculating the impact of a noise source b in the sub-system S1
2 on the

system output from the example in Figure 3.1. The transfer function Hb corresponding
to the path from noise source b to the output is equivalently given by transfer functions
Hb12

, H2
2 and H2

1 in cascade as defined in the hierarchical system decomposition as
shown in Figure 3.3.

Finding the transfer function from an operator source to the system output requires
enumerating all the paths from the given operator to the output. In case of the classical
approach, the procedure for enumerating all the paths has to be repeated as many
times as the number of fixed-point operations. In the hierarchical approach, the noise
power due to quantization from every fixed-point operation needs to be propagated only
to the sub-system output individually. The path from the sub-system output to the
system output is common and remains the same for all fixed-point operations within
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Figure 3.3: Propagation of noise b across hierarchies

the given sub-system. Therefore, the actual complexity of arriving at an expression for
quantization noise power at the system-level output is greatly reduced.

In the example considered, if the transfer function Hb21
is frequency selective, the

spectral characteristics of the quantization noise due to noise source b at the output
of the sub-system S1

2 is already non-white. Moreover, the total noise at the output
of sub-system S1

2 comprises of contributions from all operator level noise sources in
the system including contribution from noise source b. Therefore, if the path to the
output across transfer functions H2

2 and H2
1 also happens to be frequency selective,

mere calculation of the sub-system noise power is not sufficient. It is also necessary to
know the power spectral density of quantization noise at the output of the sub-system
S1

2 for calculating the total output noise power.

Evaluate-Propagate-Add Strategy

An evaluate-propagate-add strategy which exploits the linearity property of noise prop-
agation is used to calculate the output quantization noise of a given system. The noise
contribution due to fixed-point operators in each of the sub-systems is evaluated. In
practice, this amounts to the derivation of an analytical expression for calculating the
total quantization noise-power at the output of each leaf-level sub-system participating
in the SFG. This depends on the word-length assignments of the operators in the sub-
system. The knowledge of other relevant parameters such as the spectral characteristics
and the probability distribution function of the noise signal is essential to propagate
the noise to the output of the system through the rest of the sub-systems. Derivation of
all relevant parameters required for noise propagation is made as a part of the evaluate
phase.

The quantization noise from each single-noise-source is injected into the system
through the respective noise sources in the Augmented-SFG of the system and propa-
gated to the output. That is, the noise generated in each of the sub-systems is consid-
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ered one at a time and propagated through other sub-systems that lie on the path from
the noise-source to the output to measure its impact on the total output quantization
noise. After carrying out this process for every sub-system participating in the SFG of
the system, the total quantization noise at the output is calculated by adding up the
individual noise source contributions from every sub-system. Clearly, the use of this
technique requires that the noise-propagation through each and every operator in the
system should be modeled analytically. The propagation model of quantization noise
is linear and it can be modeled with sufficient accuracy using a first order propagation
model as given by Equation 2.14 in Section 2.3.2.

In systems whose signal flow graph has a feed-forward topology, a clear order of
precedence already exists and this order dictates the order in which the noise generated
within every sub-system has to be propagated. In case of systems with feed-back,
the presence of loops introduces cyclic dependencies. In order to continue using the
evaluate-propagate strategy, the augmented SFG cannot be used directly and it requires
a transformation to make it feed-forward noise propagation SFG while respecting the
sub-system boundaries.

Consider the graph shown in Figure 3.4. This graph shows four leaf-level sub-
systems with sub-systems S2

L and S3
L connected with cyclic dependency. Let α and β

be the transfer functions of the sub-system S2
L and S3

L respectively.

+

+

+ ++

β

b1
L b2

L

b3
L

b4
L

t + br

y + byx + bx
S1
L S2

L

S3
L

S4
L

α

Figure 3.4: Augmented SFG of with cyclic dependency

Drawing from the standard result in feed-back control theory, the gain G of the
system with forward gain α and feed-back gain β connected in a positive feed-back
configuration is given as

G =
α

1 − αβ
. (3.1)

The passage of quantization noise through the sub-systems forming the loop is
given by the path gain G defined in Equation 3.1. Exploiting the linearity property
of quantization noise propagation models yet again, the noise introduced into the sys-
tem is considered one by one. This effectively breaks up the cyclic dependencies and
transforms the feed-back signal flow graph into a feed-forward noise-propagation SFG
incorporating the quantization noise corresponding to each individual sub-system in the
cyclic loop. Considering the injection points of these noise sources for the example in
Figure 3.4, the equivalent noise propagation SFG is obtained as a feed-forward network
as shown in Figure 3.5.
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3.2 The Single Noise Source Model

The total quantization noise measured at the output of any fixed-point sub-system
in the signal flow graph of a given system has two sources. One of them is the noise
generated by the fixed-point operators within the sub-system under consideration. This
corresponds to the noise source added into the SFG to obtain the augmented SFG as
described in the previous section. The second source is the noise generated due to
fixed-point quantization noise generated in other sub-systems and propagated through
the sub-system under consideration.

The pseudo-quantization noise (PQN) model proposed by Widrow for operator
quantization noise statistically mimics the errors generated by fixed-point operators.
In other words, the error injected into the system by a fixed-point operator can be
generated by a random process with attributes defined by Widrow’s model. By ab-
stracting away all the operator level noise sources within a sub-system, the Single Noise
Source (SNS) model extends the idea of PQN model by treating the total quantization
noise generated within a given sub-system as a random process. Also, the SNS model
provides a technique for transformation of the random process representing the quan-
tization noise at the input of the sub-system under consideration to its contribution
at the sub-system output. Therefore, the objective of the SNS model is to define the
parameters of the random process such that it is statistically equivalent to the error
due to quantization when fixed-point operations are used.

Consider, a sub-system B with input x and output y implemented using opera-
tors with infinite precision. It is expected that the input and output of this system
is perturbed by the quantization noise when their fixed-point counter parts are used.
When the conditions for PQN modeling for quantization noise are satisfied, the quan-
tization noise and the signal are uncorrelated with one another. Therefore, as shown
in Figure 3.6; the input quantization noise component bx and the output quantization
noise by are uncorrelated with the input signal x and output signal y respectively. The
noise by is obtained as a sum of the noise resulting from the propagation of the noise
bx through the sub-system and propagation of noise generated within the sub-system
bg due to fixed-point operations. These two components are marked as bt

s and b
g
s in

Figure 3.7
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Figure 3.6: Abstraction of the Single Noise Source (SNS) model

3.2.1 Single Noise Source Model Parameters

Any random process is completely characterised by its power, spectral distribution
and density distribution properties. Therefore, apart from knowing the noise-power at
the output of a given sub-system, the SNS model also incorporates the noise power
spectral density (PSD) and noise probability density function (PDF) properties. The
knowledge of these properties is essential for propagation of quantization noise through
sub-systems that are frequency selective (sub-systems with memory elements such as
filters) and operators whose output is sensitive to the value of the signal (such as the
zero detector or a QAM1-discriminator). In other words, the noise-power, PSD and
PDF of the noise by should be such that they statistically match up with the fixed-point
error properties obtained by fixed-point simulation.

The various parameters of the single noise-source model can be split into two cat-
egories depending on whether it is used for evaluation of the total quantization noise
contribution of the block or it serves the purpose of propagating the input quantization
noise. For the purpose of illustration, consider the SNS model for a single input, single
output system is as shown in Figure 3.7. The schematic of the SNS parameters model
has two branches: one corresponding to the noise contributed by the input quantiza-
tion noise and the other branch corresponding to the noise generated within the given
sub-system.

Noise Power: The noise-power bg is representative of all the operator level noise-
sources contained within the given sub-system. The value of the noise power of the
source bg is set to the sum of contribution of all individual noise sources within the
fixed-point sub-system. The total noise variance is calculated by using the technique

1QAM: quadrature amplitude modulation
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described in the Chapter 2. The noise power contribution due to the input noise bx is
similarly calculated by considering the functionality of the given sub-system and added
separately to the total noise power by as

by = bg
s + bt

s. (3.2)

Noise Power Spectral Density (PSD): From Widrow’s PQN model, it is known
that the operator level noise sources are spectrally white. However, the frequency
selective path functions from each operator noise source modulates their spectral char-
acteristics. Therefore, if the sub-system is frequency selective (i.e. it consists of delay
elements ), the noise generated from each of the operator sources is spectrally modu-
lated. In other words, although the noise bg is white; it is not necessary that the noise
b
g
s continues to be white. The spectral properties of the noise b

g
S depends on the fre-

quency selectivity of the paths in the sub-system and is captured by the Generate Filter
block shown in Figure 3.7. This filter is derived out of the sub-system functionality and
essentially defines a transfer function which can be analytically evaluated to calculate
the power spectral density of the output quantization noise. Similarly, the spectral
effects on the noise bx associated with the input signal x is captured by the Transmit
Filter in the SNS model to generate the signal bt

s. This filter is the response of the
sub-system to input quantization noise and it is practically defined by the magnitude
spectrum of the system transfer function. Techniques for determination of the various
auto and cross noise spectral distributions are discussed in Section 3.3.

Probability Density Function (PDF): The quantization noise at the operator
source is known to be uniformly distributed according to Widrow’s quantization noise
model. At the output of any given sub-system, a number of such independent or
uncorrelated with one another, scaled and uniformly distributed noise variables are
added together. The shape of the output quantization noise depends on the relative
noise-powers of each of the sources and their path functions. Under the assumption
that distribution of errors is unimodal, the 4th moment of the quantization noise is
chosen as the metric or a measure of its PDF. The Noise Shaping block shown in

b
g
s

+

Noise

Shaping
G̃

Generate
Filterbg

bx by
btsTransmit

Filter

T̃

Figure 3.7: Inside the single noise source(SNS) model
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Figure 3.7 captures this parameter at the output of any given sub-system. Analytical
techniques for determining the 4th moment of the noise generated within the sub-system
at its output and techniques to propagate it through the rest of the sub-systems to the
system output is discussed in Section 3.4.

Simulating the Random Process

It has to be noted here that the single noise source model captures the various param-
eters of the random process to accurately characterize the quantization noise. Deriving
these parameters analytically is considered in the rest of this chapter. The schematic
in Figure 3.7 can be used when either the quantization noise is spectrally white or the
distribution can be approximated to be a Gaussian. In scenarios when neither of the
two conditions hold, techniques such as [60] describe methods for actual generation of
the random processes with specified spectral and distribution characteristics. Discus-
sion of these techniques for the purpose of generation of noise is out of scope of this
thesis.

Multiple Input Multiple Output Case

xM

Common OperatorsFan-in cone 2Fan-in cone 1

x1

y1

y2

y3

yN−1

yN

xp

x2

xq

Figure 3.8: Subsystem with multiple inputs and outputs

Without loss of generality, we can consider the application of SNS model for a
sub-system with M inputs and N outputs outputs as shown in Figure 3.8. In such a
sub-system, the quantization noise at each of N outputs is influenced by one or more
inputs. Moreover, the outputs share various operators and data-paths between them.
The first output y1 is fed from some or all of the inputs starting from x1 through xq.
The last output yN are fed from some or all of the inputs starting xp through xM .
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Each of the outputs is affected by all the operators that lie in the path from each of the
inputs to the respective output. These operators are considered a set and are referred
to as Fan-in cone or simply cone1.
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Figure 3.9: Single Noise Source Model for Multi Input Multi Output sub-system

The components of the SNS model for such a multi-input, multi-output sub-system
is shown in the Figure 3.9. The SNS model essentially treats such systems as a collec-
tion of many multiple-input, single-output systems. The quantization noise at any of
the outputs is obtained by adding up the contribution of each of the operator in the
respective cones. The power, spectral characteristics and the shape of the total noise
is captured by the respective bg, Generate filter and Noise Shaping blocks SNS com-
ponents. The difference lies in the Transmit Filter part. As several inputs contribute
to the output, the transmit filter is a multi-input filter. The inputs coming into the
Transmit Filter could be correlated with one another. So, while deriving the transfer
function, special attention for this has to be given. This is repeated for every set of
operator cones to obtain the total quantization noise at the respective outputs to obtain
the SNS model for the sub-system with multiple-input and multiple-output. Clearly,
there are as many SNS component sets as the number of outputs.

Cross Correlation In Figure 3.8, the area shared between two output cones (shaded
along both directions) represents those operators participating in computation of out-
puts y1 and yN . If some of those operators are a source of quantization noise, then

1This is a popular terminology in the area of logic circuit analysis and is used here in a similar
sense. The difference is just that the operators take the place of logic gates.
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the total quantization noise at the output are correlated with one another. Therefore,
the cross correlation between any pair of outputs needs to be calculated to completely
define the output quantization noise of the given multi-output sub-system. Hence, the
calculation of Cross Spectrum1 is also very much a part of the SNS model.

3.3 Estimating Spectral Properties

In this section, the spectral components of the SNS model that affect the spectral
characteristics of the output quantization noise at each of the outputs is studied in
more detail. To begin with, a technique for deriving both Transmit and Generate
filters in case of a given computational sub-system is studied. Analytical expressions
for deriving the autocorrelation spectra of every output is studied in case of both LTI
and non-LTI systems. This is extended to cover the derivation of cross-correlation
spectra of any pair of signals at the output of the sub-system under consideration.
The computational complexity of deriving these filters is estimated. Using the linear
noise propagation model with respect to the input quantization noise as described in
Chapter 2, it is possible to calculate the noise at the ith output as

byi
(n) =

M∑

q=1

hi
q(n) ⋆ bxq(n)

︸ ︷︷ ︸

Transmit Filter

+
P∑

p=0

hi
p(n) ⋆ bgp(n)

︸ ︷︷ ︸

Generate Filter

, (3.3)

where hi
q(n) and hi

p(n) are the impulse responses from the qth input to the ith output and

from the pth noise source emanating from one of the operators within the sub-system to
the ith output respectively. Also, ⋆ represents the linear convolution operation. bxq(n)
is the noise associated with the qth input and bgp(n) is the noise generated from the pth

operator noise source.
The Transmit Filter and Generate Filter terms contributing to the output quan-

tization noise are marked in Equation 3.3. Due to linear noise propagation models,
the nature of both Transmit Filter and Generate Filter is similar. The only difference
that need to be considered is that the inputs to the Transmit Filter can be correlated
with one another whereas the operator noise sources are independent and their effect
is captured as one single noise source at the input of the Generate Filter.

3.3.1 Estimating Auto-Correlation Spectrum (PSD)

Consider estimating by(n), the noise signal at the ith output of a sub-system with M

inputs. Taking into account the similarities between the Transmit Filter and Generate
Filter blocks, the source of quantization noise can either be the noise presented at
the input or the noise generated due to a fixed-point operator. Let hq(n)2 be the
time-varying impulse response of the path function from the qth noise source to the

1Frequency domain representation of Cross Correlation between two signals
2The index i is dropped for the sake of simplicity of notation.
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ith output. To account for noise propagation through time varying and non-linear
systems, the pseudo impulse response hq can be time varying in nature (as discussed in
Chapter 2). The total quantization noise defined in Equation 3.3 after expanding the
convolution is the sum effect of all quantization noise sources at the output. It is then
written as

by(n) =
M∑

q=1

∞∑

k=−∞

hq(k, n)bq(n − k), (3.4)

where hq(k, n) is the value of the kth coefficient at any time n of the time-varying impulse
response hq(n). In case of an LTI system, the value of this coefficient does not vary
and is simply written as h(k). The noise power spectral distribution at the sub-system
output is the magnitude response obtained by calculating the Fourier transform of the
autocorrelation function. The auto-correlation function of the ith output quantization
noise is given as

R(m) = E[by(n)b∗y(n + m)]

= E











M∑

q=1

∞∑

k=−∞

hq(k, n)bq(n − k)







{
M∑

r=1

∞∑

l=−∞

h∗
r(l, n + m)b∗r(n + m − l)

}



=

M∑

q=1

M∑

r=1

E

[{
∞∑

k=−∞

hq(k, n)bq(n − k)

}{
∞∑

l=−∞

h∗
r(l, n + m)b∗r(n + m − l)

}]

=

M∑

q=1

M∑

r=1

Rqr(m), (3.5)

where Rqr(m) is the correlation between the contributions to the ith output from the
qth and the rth noise sources as shown in Figure 3.10. It has to be noted here that
this requires the evaluation of autocorrelation and cross-correlation terms between the
various time varying coefficients of the impulse response along the qth and the rth path.

h r
(k

, n
)

q

r

i
hq(k, n)

Figure 3.10: Estimating cross-correlation spectra between any two pairs

53



Considering all the coefficients of the time-varying impulse response hq(k, n) to
be stationary, the ith output noise power spectral density can be computed from the
Fourier transform of R(m) and is written as

S(ejω) =
∞∑

m=−∞

R(m)e−jωm

=

∞∑

m=−∞

M∑

q=1

M∑

r=1

Rqr(m)e−jωm

=
M∑

q=1

M∑

r=1

∞∑

m=−∞

Rqr(m)e−jωm

︸ ︷︷ ︸

Sqr(ejω)

. (3.6)

The output quantization noise PSD can thus be calculated by superposition of the
PSD calculated from any two quantization noise inputs from qth and rth noise sources.

Consider evaluating the quantization noise PSD Sqr(ejω). In terms of its correlation
function, it can be expanded as

Sqr(ejω) =

∞∑

m=−∞

Rqr(m)e−jωm

=
∞∑

m=−∞

E

[
∞∑

k=−∞

∞∑

l=−∞

hq(k, n)h∗
r(l, n + m)bq(n − k)b∗r(n + m − l)

]

e−jωm.

(3.7)

From the PQN model, it follows that the quantization noise and the signal are
uncorrelated. Thus, the partial output PSD Sqr(ejω) can be written as

Sqr(ejω) =

∞∑

m=−∞

∞∑

k=−∞

∞∑

l=−∞

E[hq(k, n)h∗
r(l, n + m)]

︸ ︷︷ ︸

R
qr
hkhl

(m)

E[bq(n − k)b∗r(n + m − l)]
︸ ︷︷ ︸

Rbqbr (k+m−l)

e−jωm,

(3.8)

where R
qr
hkhl

(m) is the correlation function between the values assumed by the kth and

the lth coefficients of hq(n) and hr(n) respectively and Rbqbr
(m) is the cross correlation

function between the qth and rth input quantization noise sources. The time varying
coefficients of the impulse response hq(k, n) can be written as a sum of zero mean
random process by separating the mean of the random process explicitly as

hq(k, n) = µq(k) + h̃(k, n), (3.9)
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where µq(k) and h̃q(k, n) corresponds to the mean of the random process of the kth

coefficient of the time varying impulse response h(k, n) and the zero mean time varying
components respectively. Assuming that the random process corresponding to coeffi-
cients of time-varying impulse response is stationary, the mean value of the coefficients
does not change with time and are therefore a constant. Let µq(k) and µr(l) be the
mean value of the kth and the lth coefficients in the time-varying impulse response for
path q and path r respectively. The correlation between the kth and lth coefficients can
then be written and expanded as

R
qr
hkhl

(m) = E[{h̄q(k, n) + h̃q(k, n)}{h̄∗
r(l, n + m) + h̃∗

r(l, n + m)}]

= µq(k)µ∗
r(l) + E[h̃q(k, n)h̃∗

r(l, n + m)]

+µr(l)E[h̃q(k, n)]
︸ ︷︷ ︸

=0

+E[h̃∗
r(l, n + m)]

︸ ︷︷ ︸

=0

. (3.10)

By substituting the expression for R
qr
hkhl

(m) in Equation 3.8, the autocorrelation

function at the ith output due to contribution from the noise source q and r can be
written as

Sqr(ejω) =
∞∑

m=−∞

∞∑

k=−∞

∞∑

l=−∞

µq(k)µ∗
r(l)Rbqbr

(k + m − l)e−jωm

︸ ︷︷ ︸

S̄qr(ejω)

+
∞∑

m=−∞

∞∑

k=−∞

∞∑

l=−∞

E[h̃q(k, n)h̃∗
r(l, n + m)]Rbqbr

(k + m − l)e−jωm

︸ ︷︷ ︸

S̃qr(ejω)

.

(3.11)

The expression in Equation 3.11 for autocorrelation essentially consists of two terms.
S̄qr(e

jω) corresponds to the average value of the coefficients and S̃qr(e
jω) corresponds

to the coefficients with zero mean random process.
By considering p = k + m − l, the expression for S̄qr(e

jω) can be written as

S̄qr(e
jω) = H̄q(e

jω)H̄∗
r (ejω)

∞∑

p=−∞

Rbqbr
(p)ejωp

S̄qr(e
jω) = H̄q(e

jω)H̄∗
r (ejω)Sbqbr

(ejω), (3.12)

where the transfer function H̄(ejω) and H̄∗(ejω) are obtained by performing the DTFT1

1Discrete Time Fourier Transform
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on the average of the values of each of these coefficients as

H̄k(e
jω) =

∞∑

n=−∞

µk(n)e−jωn.

The result obtained in Equation 3.12 corresponds to the standard result obtained
in case of LTI systems.

The time varying coefficients in Equation 3.11 need not be independent. By choosing
to use equivalent expressions in the frequency domain representation, the evaluation of
the time varying part can be simplified as it also makes use of the symmetry properties
of correlation coefficients. The indexes k and l correspond to the kth and the lth

coefficients respectively.
Consider the contribution of the time varying coefficients to the output noise power

density spectrum:

S̃qr(e
jω) =

∞∑

k=−∞

∞∑

l=−∞

E[h̃q(k, n)h̃r(l, n + m)]Rbqbr
(k + m − l)e−jωm. (3.13)

For every coefficient pair of coefficients (k, l), the coefficient pair (l, k) needs to be
considered to evaluate S̃qr(e

jω). Taking the difference between the coefficient indices
as ∆ = |l−k|, the expression for the total output noise spectrum can be split into three
cases and can be written as

S̃qr(e
jω) = S̃1

qr(e
jω) + S̃2

qr(e
jω) + S̃3

qr(e
jω). (3.14)

The first case corresponds to the correlation of impulse response coefficients when
the indices (l, k) are equal. The first component can then be written as

S̃1
qr(e

jω) =

∞∑

k=−∞

∞∑

m=−∞

Rh̃k
q h̃k

r
(m)Rbqbr

(m)e−jωm

︸ ︷︷ ︸

H̃kk
qr (ejω)⋆Sbqbr (ejω)

. (3.15)

The second case is when the indices (l, k) are chosen such that (l − k) is positive.
The second component can then be written as

S̃2
qr(e

jω) =
∞∑

k=−∞

∞∑

∆=1

∞∑

m=−∞

R
h̃k

q h̃k+∆
r

(m)Rbqbr
(m − ∆)e−jωm

︸ ︷︷ ︸

H̃
k,k+∆
qr (ejω)⋆Sbqbr (ejω)e−jω∆

. (3.16)
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The third case is when the indices (l, k) are chosen such that (l − k) is negative.
The third component can then be written as

S̃3
qr(e

jω) =
∞∑

k=−∞

∞∑

∆=1

∞∑

m=−∞

R
h̃k+∆

q h̃k
r
(m)Rbqbr

(m + ∆)e−jωm

︸ ︷︷ ︸

H̃
k+∆,k
qr (ejω)⋆Sbqbr (ejω)ejω∆

. (3.17)

In the above equations for S̃1
qr(e

jω), S̃2
qr(e

jω) and S̃3
qr(e

jω), the terms Sbqbr
(ejω) is

the cross correlation spectrum between the noise signals from sources q and r. H̃
k,l
qr (ejω)

is the cross correlation spectrum between the kth and the lth coefficients of the impulse
response h̃q and h̃r respectively and is given as

H̃k,l
qr (ejω) =

∞∑

m=−∞

Rh̃k
q h̃l

r
(m)ejω. (3.18)

A commonly occurring condition is when there is only one input signal in a given
sub-system or when the path from a given input to the output is not shared by other
inputs. In such cases, there is a single path from the input source q to output i

that needs to be considered. The output autocorrelation spectrum in this case can be
written as S̃qq(ejω). The contribution to output power spectral density by zero mean
time varying coefficient part is written as

S̃qq(ejω) =
∞∑

k=−∞

H̃kk
qq (ejω) ⋆ Sbqbq

(ejω) +
∞∑

k=−∞

∞∑

∆=1

H̃k,k+∆
qq (ejω) ⋆ Sbqbq

(ejω)e−jω∆

+

{
∞∑

k=−∞

∞∑

∆=1

H̃k,k+∆
qq (ejω) ⋆ Sbqbq

(ejω)e−jω∆

}∗

=
∞∑

k=−∞

H̃kk
qq (ejω) ⋆ Sbqbq

(ejω)

+2Re

{
∞∑

k=−∞

∞∑

∆=1

H̃k,k+∆
qq (ejω) ⋆ Sbqbq

(ejω)e−jω∆

}

. (3.19)

The total output power spectral density Sqq(ejω) is given by

Sqq(ejω) = H̄q(e
jω)H̄∗

q (ejω)Sbqbq
(ejω) +

∞∑

k=−∞

H̃kk
qq (ejω) ⋆ Sbqbq

(ejω) +

2Re

{
∞∑

k=−∞

∞∑

∆=1

H̃k,k+∆
qq (ejω) ⋆ Sbqbq

(ejω)e−jω∆

}

. (3.20)
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When there are many inputs, the total expression Sqr(ejω) is given as

Sqr(ejω) = H̄q(e
jω)H̄∗

r (ejω)Sbqbr
(ejω) +

∞∑

k=−∞

H̃kk
qr (ejω) ⋆ Sbqbq

(ejω) +

+
∞∑

k=−∞

∞∑

∆=1

H̃k,k+∆
qr (ejω) ⋆ Sbqbr

(ejω)e−jω∆

+
∞∑

k=−∞

∞∑

∆=1

H̃k+∆,k
qr (ejω) ⋆ Sbqbr

(ejω)ejω∆. (3.21)

The total output autocorrelation spectrum S(ejωm) is obtained by plugging the ex-
pression for Sqr(ejω) in Equation 3.21 (which is equivalent to the expression in Equa-
tion 3.11) into Equation 3.6. The fact that for every pair of inputs signals (q, r), there
exists two terms corresponding to (q, r) and then (r, q), the output autocorrelation
power spectral density S(ejω) is written as

S(ejω) =
M∑

q=1

Sqq(ejω) +
M∑

q=1

M∑

r=q+1

{
Sqr(ejω) + Srq(ejω)

}
. (3.22)

Consider evaluating the expression for Sqr(ejω) + Srq(ejω) with q 6= r. It can be
obtained by suitably substituting for q and r in Equation 3.21. The total expression
can be split as contribution from the average terms and the zero mean time varying
random process. Then, using the complex conjugate property of the power spectral
density1, the expression for autocorrelation spectrum can be written as

Sqr(ejω) + Srq(ejω) = 2.Re
{
H̄q(e

jω)H̄∗
r (ejω)Sbqbr

(ejω)
}

+2.Re

{
∞∑

k=−∞

H̃k,k
qr (ejω) ⋆ Sbqbr

(ejω)

}

+2.Re

{
∞∑

k=−∞

∞∑

∆=1

H̃k,k+∆
qr (ejω) ⋆ Sbqbr

(ejω)e−jω∆

}

+2.Re

{
∞∑

k=−∞

∞∑

∆=1

H̃k+∆,k
qr (ejω) ⋆ Sbqbr

(ejω)ejω∆

}

.

(3.23)

The expression for S(ejω) in Equation 3.22 provides the final expression for evalu-
ating the auto-correlation spectrum of the signal at any output. The total expression
can be expanded by substituting Equation 3.20 for Sqq(ejω) and Equation 3.23 for the
expression Sqr(ejω)) + Srq(ejω). In the case of LTI systems, the coefficients do not

1Complex conjugate property: Sxy(ejω) = S∗

yx(ejω)
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not change with time. Therefore, the h̃q(k, n) does not exist. The PSD of the total
quantization noise at the output is then written as

S(ejω) =

M∑

q=1

|Hq(e
jω)|2Sbqbq

(ejω) + 2.Re

M∑

q=1

M∑

r=q+1

{
H̄q(e

jω)H̄∗
r (ejω)Sbqbr

(ejω)
}

.

(3.24)

3.3.2 Estimating Cross-Correlation Spectrum

The various sub-system outputs that share the operators between them can be cor-
related with one another. The study of cross correlation spectrum between pairs of
the outputs become important when some computation is performed on such pairs of
outputs outside of the sub-system. On the other hand, any pair of inputs in case of a
sub-system with multiple inputs could be correlated. Estimating the cross-correlation
spectrum thus becomes necessary when two inputs to a sub-system share at least one
common noise source outside the sub-system.

If there are Mi number of sources contributing to the ith output and Mj number
of noise sources contributing to the jth output, the total cross correlation between any
two outputs i and j is given as

R(m) = E[byi
(n)b∗yj

(n + m)]

= E











Mi∑

q=1

∞∑

k=−∞

hqi(k, n)bq(n − k)













Mj∑

r=1

∞∑

l=−∞

h∗
rj (l, n + m)b∗r(n + m − l)











=

Mi∑

q=1

Mj∑

r=1

∞∑

k=−∞

∞∑

l=−∞

hqi(k, n)h∗
rj (l, n + m)bq(n − k)b∗r(n + m − l)

=

Mi∑

q=1

Mj∑

r=1

Rqirj

(m), (3.25)

where Rqirj
(m) is the cross correlation between the components of the output i and j

contributed by the qth and the rth sources. The noise source q is propagated to the ith

output through the impulse response hqi . All the impulse responses considered between
two sources (q, r) contributing to outputs (i, j) (i.e. hqi , hri , hqj and hrj ) in the above
expression are as shown in Figure 3.11.

The cross-correlation spectral characteristics C(ejω) between outputs i and j is
obtained by computing the Fourier transform of the cross correlation function R(m) in
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Figure 3.11: Estimating cross-correlation spectra between any two pairs

Equation 3.25. It is obtained as

C(ejω) =
∞∑

m=−∞

R(m)e−jωm

=

Mi∑

q=1

Mj∑

r=1

∞∑

m=−∞

Rqirj

(m)e−jωm

︸ ︷︷ ︸

Cqirj
(ejω)

. (3.26)

Following a procedure similar to that followed for calculating the auto correlation
power spectral density, time-varying coefficients of the path functions are assumed to
be stationary and they are treated as sum of mean value and a zero mean random
process. The output cross correlation spectral density Cqirj

(ejω) between any pair of
outpus (i, j) due to inputs (q, r) is written as

Cqirj

(ejω) =

∞∑

m=−∞

∞∑

k=−∞

∞∑

l=−∞

E[hqi(k, n)h∗
rj (l, n + m)]

︸ ︷︷ ︸

R
qirj

hkhl
(m)

E[bq(n − k)b∗r(n + m − l)]
︸ ︷︷ ︸

Rbqbr (k+m−l)

e−jωm

=
∞∑

k=−∞

∞∑

l=−∞

∞∑

m=−∞

E[h̄qi(k, n)h̄∗
rj (l, n + m)]Rbqbr

(k + m − l)e−jω

+

∞∑

k=−∞

∞∑

l=−∞

∞∑

m=−∞

E[h̃qi(k, n)h̃∗
rj (l, n + m)]Rbqbr

(k + m − l)e−jω, (3.27)

where the kth and the lth terms corresponds to the impulse response of the path from
source q to output i and source r to j respectively. The contribution from time varying
coefficients is split into three cases depending upon the indices (k, l) in order to be able
to compute the spectrum in the Fourier domain as it was done for Equation 3.14. The
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cross correlation spectrum is therefore given as

Cqirj

(ejω) = H̄qi(ejω)H̄∗
rj (e

jω)Sbqbr
(ejω) +

∞∑

k=−∞

H̃
k,k

qirj (e
jω) ⋆ Sbqbr

(ejω)

+
∞∑

k=−∞

∞∑

∆=1

H̃
k,k+∆
qirj (ejω) ⋆ Sbqbr

(ejω)e−jω∆

+

∞∑

k=−∞

∞∑

∆=1

H̃
k+∆,k

qirj (ejω) ⋆ Sbqbr
(ejω)ejω∆, (3.28)

where H̃
k,l

qirj (e
jω) has the same definition as given in Equation 3.18.

The number of inputs Mi and Mj need not be the same and therefore, the cross
spectral density need not be real. The total cross correlation spectral density Sij(e

jω)
is calculated by evaluating the Equation 3.28 for every combination of the pair (q, r)
in Equation 3.26. The expression in Equation 3.26 cannot be simplified any further
without making assumptions about the nature of input signals.

3.3.3 Cross-correlation Spectrum with Input Signals

Though the simple case of re-convergence can be handled easily by simply calculating
the cross-correlation spectrum as discussed in the previous section, there can be sce-
narios where there is late re-convergence. Figure 3.12 shows one such scenario. In this
scenario, the two outputs s1

i and s1
j emanating from the sub-system S1 passes through

sub-systems S2, S3 and S4 respectively before re-converging into sub-system S5.

r

S3

S4

S1

S2

S5x y

i

j

p
q

Figure 3.12: Illustrating re-convergence of signals in a hierarchical system

In a hierarchical method, it is required to characterize each subsystem thoroughly
by means of the signal and quantization noise properties at its input and output. Such
characterization should ideally be able to cover any usage scenario of the sub-system.
In other words, it is important to be able to derive the required parameters from the
sub-system parameters.

Consider calculating the cross correlation spectrum Sqr(e
jω) between the two inputs

of the sub-system S5 in Figure 3.12. To do this, it should be possible to calculate the
cross correlation between the signals q and r by using the individual or mutual spectral
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properties of any input signal or between any pair of input signals exposed by the
sub-systems defined in the hierarchy. In order to do this, consider calculating the cross
correlation between the output signal q and input signal p of the sub-system S3. Let
h3(n) be the time varying impulse response between the signals q and p. The cross
correlation spectrum Sqp(e

jω) is given as

Sqp(e
jω) =

∞∑

m=−∞

∞∑

k=−∞

E
[
h3(k, n)bp(n − k)b∗p(n + m)

]
e−jωm

=

∞∑

k=−∞

µh3(k)ejωk
∞∑

m=−∞

Rbpbp
(k + m)e−jω(m+k)

= H̄3
∗
(ejω)Sbpbp

(ejω), (3.29)

where H̄3(e
jω) is the Fourier transform of the time varying impulse response h3(n).

Clearly, this cross correlation spectrum depends on the impulse response of the sub-
system of the path function between signals p and q.

The input-output cross correlation spectrum for sub-systems S4 and S2 are similarly
calculated and the cross correlation spectrum Sij(e

jω) is calculated as described in the
previous section. With this information, the cross correlation between the two inputs
(q, r) is calculated by using the chain rule1 for cross spectral densities as

Sqr(e
jω) =

{

Sqp(e
jω)S∗

pi(e
jω)
}

S∗
rj(e

jω)

Spp(ejω)Sij(ejω)
. (3.30)

The simplicity of the above expression is that all the cross spectral density variables
are obtained with local sub-systems of every sub-system. The above expression is
valid only if the sub-systems transfer functions are mutually independent. If there is
dependency, the cross correlation terms cannot be calculated this simply. Instead, it
is more involved and takes the form of Equation 3.28 as derived in case of calculating
cross spectral characteristics.

3.3.4 Complexity Analysis

The expressions for evaluating the correlation spectral densities of the signals as de-
scribed in the previous sections are evaluated at discrete frequency points. Therefore,
the number of FFT points used to evaluate these expressions determines the accuracy
of the spectral characteristics. At the heart of expressions for determining spectral
characteristics in Equations 3.20 and 3.26 is the computation of the FFT which is in
turn used for calculating the convolution sum. The total time for calculating all the

1Chain rule: Sxy(ejω) =
Sxi(e

jω)S∗yj(ejω)

Sij(ejω)
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spectral coefficients for a sub-system with M inputs and N outputs is given as

T =
M∑

q=1

M∑

r=1

N∑

i=1

N∑

j=1

T i,j
q,r

= O(M2.N2.T i,j
q,r), (3.31)

where T
i,j
q,r corresponds to the time required to evaluate the correlation between the

ith and the jth outputs due to inputs (q, r). When i == j, this corresponds to the
time taken by the expression for autocorrelation. Otherwise, it is the time taken for
calculating the cross-correlation terms.

Consider estimating one of the terms T
i,j
q,r. This essentially consists of two parts:

i) the evaluation of the contribution by the mean of the coefficients T̄
i,j
q,r and ii) the

contribution by the time varying component T̃
i,j
q,r. Therefore, T i,i can be written as

T i,j
q,r = T̄ i,i

q,r + T̃ i,i
q,r. (3.32)

The time taken for the mean component is obtained as the total time taken for
obtaining the expression for H̄q,r(e

jω) for each pair of inputs (q, r). To evaluate a
given H̄q,r(e

jω), it is sufficient to calculate Hq(e
jω) and Hr(e

jω) that are obtained by
calculating the Nfft-point FFT on the mean value sequence of the filter taps. This is
then multiplied point-wise with the input correlation PSD. Therefore, the complexity
of calculating T̄

i,j
q,r can be written as

T̄ i,j
q,r = O(Nfft). (3.33)

Similarly, the time taken by the time varying component is obtained as the total
time required to derive H̃

k,l
q,r for all coefficient pairs (k, l) occurring in the time-varying

impulse response of each pair (q, r) of input paths. To obtain this, the cross correlation
between the time varying filter coefficients h̃k

q (n) and h̃l
r(n) needs to be evaluated.

If Ns number of samples are used in a simulation-based approach, there are usually
as many samples that need to be considered for each of the coefficients. Therefore, the
computation of cross-correlation coefficient for each time-lag takes order of O(Ns) in

time. If this has to be repeated for all Ns time lags, the complexity of evaluating R
k,l
q,r is

of the order of O(N2
s ). However, this sequence is used to calculate the Nfft-point FFT,

where usually Nfft is much lesser than Ns. Therefore, not all Ns points are required
to be calculated. In fact, a down sampled version of the correlation time lag sequence
is sufficient to compute the Nfft-point FFT. Therefore, the effort for calculating the

function H̃
k,l
q,r(ejω) is given as O(Nfft.Ns). However, the O(Ns) arises out of computing

the correlation between various time varying filter coefficients and it is a one time effort.
Therefore, this is not the dominating factor for the over all time complexity of T̃

i,j
q,r.

The function H̃
k,l
q,r(ejω) is convolved with a scaled version of the input noise correlation

PSD which. While scaling the input PSD takes O(Nfft) time, the circular convolution
operation takes the time of order of O(N2

fft. Suppose, if there are NQ and NR number
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of coefficients on the qth and the rth path respectively, these operations are repeated
NQ.NR number of times. Therefore, the time T̃

i,j
q,r is given as

T̃ i,j
q,r = O((Nfft + N2

fft).NQ.NR). (3.34)

By comparing Equations 3.33 and 3.34, it can be clearly seen that computation of
the time varying coefficients have a higher time complexity. The contribution by the
time-varying coefficients is large when the variance of the coefficients is comparable to
the mean term. Owing to the high complexity of computing the contribution by the
time-varying part, it may be ignored when the mean is sufficiently large.

3.3.5 Experiments with a Time Varying Filter

The expression for estimating auto-correlation power spectrum in Equations 3.21 and
the expression for estimating the cross-correlation spectrum in Equation 3.28 have
similar forms as they are obtained by calculating the cross correlation spectral density
of the filter coefficients. A simple FIR filter with two-taps whose coefficients are time
varying is chosen to evaluate these expressions. This FIR filter is representative of the
path functions h

q
i (e

jω) between any noise source q and the ith output participating in
the evaluation of the cross correlation and auto correlation power spectrum.

Having more than one tap only increases the number of cross-correlation spectral
terms to H̃

k,l
qr (ejω). To keep the experiment simple and yet not losing generality, a

two-tap filter as shown in Figure 3.15 with time varying coefficients is considered. The
values taken by these coefficients are separated into the mean terms and the zero mean
time varying terms. In order to be realisitic, a finite correlation between the zero mean
time varying terms in introduced between the coefficients. The noise variance of these
coefficients is comparable to their mean.

Since this example consists of one output only, it is enough if the Equation 3.20 is
evaluated. It is required to calculate the cross-correlation spectra H1,m(ejω), Hm,1(e

jω)
between the coefficients h1(n) and hm(n) and the auto-correlation spectra H1,1(e

jω)
and Hm,m(ejω).

Each of the spectral evaluations of coefficient has two parts: i) corresponding to
the mean and ii) corresponding to the time vayring part. The power spectral density
of the quantization noise signal propagated through the two tap filter with 3 delay
elements.

The Figure 3.14 shows the contribution by time varying coefficients with zero mean.
It is clear that the analytical evaluation estimates the PSD smoothly whereas the PSD
obtained by simulation broadly follows the trend set by the PSD curve that is obtained
analytically.

To put this in perspective, consider the total PSD 3.15 at the output by taking
into consideration the mean terms. The contribution to the total PSD due to the time
varying part alone is labeled in the Figure 3.14 as TV Coefficients Only. The error
between the PSD estimated by analytical technique and the actual PSD obtained by
simulation is not large. In other words, estimation of quantization noise PSD using the

64



y + by

x + bx

m- delays

h(m,n)h(1, n)

Figure 3.13: Schematic of a time varying FIR filter

Figure 3.14: Output noise power spectral density, zero mean time varying coefficients

techniques presented in this section is fairly accurate.

3.4 Noise PDF Shaping

The probability density function (PDF) of quantization errors is the third parameter
discussed in the context of the single noise source (SNS) model in Chapter 3.2.1. The
PDF provides the information about the probability with which quantization error with
a given magnitude would occur while performing fixed-point arithmetic. This informa-
tion is useful in scenarios where it is required to calculate the probability of occurrence
of an error with value greater than or lesser than a given threshold. Such scenarios
commonly occur in many signal processing systems. The boundaries of QAM1 decision

1Quadrature-Amplitude Modulation: a transmission scheme
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Figure 3.15: Output Noise Power Spectral Density, in perspective with non-zero mean
time varying coefficients

operator, the saturation and over-flow boundaries of fixed-point adders, multipliers are
common examples for such threshold values.

In this section, the probability density function (PDF) of the quantization noise at
the output of a signal processing system is the subject of study. The noise shaping
component is responsible for arriving at the exact PDF shape of the quantization noise
at the output of sub-system. The shape of the PDF of any random signal is completely
defined by its central moments. Analytical evaluation of the mean and variance of
quantization noise is already known. In order to define the shape of the PDF, it is
necessary to determine other higher moments. While it is impractical to evaluate all
moments, it is well known that the shape of the PDF is predominantly defined by the
first few moments.

Consider evaluating the third moment. Arguable, the third moment or the mea-
sure of skewness is mostly zero for quantization noise. The third moment is non-zero
only when the distribution is asymmetric about its mean. There can be two scenarios
where such asymmetry can occur. One of the scenarios is when there are multi-modal
distributions or when the noise at source itself is asymmetric in nature. In statistics,
multi-modal PDF occurs mainly by mixing population from various sets with different
modes. In signal processing algorithm, which is predominantly data flow in nature
(contrary to control and data flow), the output is usually an arithmetic function of
various signals. Therefore, the quantization noise is a usually mapped to a unidimen-
sional real or a complex number and not a mix of various quantization noise sources.
Therefore, only those kind of systems whose quantization noise distribution is unimodal
are considered in this thesis. The quantization noise source at the source is known to
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be uniformly distributed. In Chapter 2, it was already discussed that the noise propa-
gation model is linear. Therefore, it can be concluded that the noise at the output of
a signal is always symmetric about its mean.

All higher odd moments of the quantization noise is zero when the quantization
noise is symmetric and hence need not be considered in this discussion. The other
higher moments would progressively add less information to the noise PDF as long as
it is unimodal. Therefore, Kurtosis value of the distribution which is obtained as a
function of the fourth moment is proposed to be used as a metric for quantifying the
PDF shape.

3.4.1 A Motivating Example

A simple experiment highlights the importance of considering the quantization noise
PDF. Consider a simple baseband transmitter receiver system as shown in Figure 3.16.
A number of BPSK1 symbols are transmitted through a static but noisy channel. At
the receiver side, the signal is suitably amplified (so as to equalize the channel gain)
and a BPSK discriminator is used to determine the received symbol. The discriminator
output is compared with the transmitted signal to determine the symbol error rate.

Channel

Ŝ

Tx Rx

bch bq

EqualizerS

Figure 3.16: A baseband BPSK transmitter receiver experiment

In double precision, the BER is not zero due to the finite quantity of noise bch

added by the channel. In case of a fixed-point receiver system, Figure 3.17 shows the
BER plot for different quantization noise power bq having the shape characterised by
different Kurtosis values. The Gaussian shape has a Kurtosis value of 3 and the uniform
distribution has a Kurtosis of 1.8. It is observed that the impact of considering the
quantization noise shape is negligible when the actual quantization noise-power is very
low and it tends to impact the result when the noise power is significantly large.

Therefore, the assumption that quantization noise is approximated by uniformly
distributed by only considering the quantizer with the largest step-size or on the other
hand considering it to be distributed with the shape of a Gaussian by attributing it to
the central limit theorem may not always be accurate.

1Binary Phase Shift Keying: a transmission scheme
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Figure 3.17: Impact of quantization noise PDF shape on BER

3.4.2 Evaluating Output Kurtosis

The noise propagation model in [87] is based on perturbation theory, which uses a
linear model for noise propagation to compute the total output noise power. Every
noise source (bgj

), which is distributed uniformly, passes through a path function (Hj)
to reach the output. The shape of the distribution is preserved if the path gain is
a constant but changes according to the impulse response and the signal flow graph
topology if the path is frequency selective.

Linear Combination of Input Noise Sources

Consider the evaluation of Kurtosis of the output quantization noise of a leaf-level sub-
system. This requires the evaluation of the 4th and the 2nd moments. All noise sources
due to fixed-point operation are spectrally white and uniformly distributed. If there
are N operator level noise sources, consider evaluating by(n): the total quantization
noise generated within the sub-system. It is obtained as the sum of scaled and delayed
versions of the quantization noise source due to each fixed-point operation as

by(n) =
N∑

j=1

byj
(n)

=
N∑

j=1

∞∑

k=−∞

hj(k, n)bgj
(n − k), (3.35)
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where hj(k, n) is the kth time varying coefficient of the jth path from noise source bgj

to the output. By definition of the PQN model, the operator level noise sources are
uncorrelated with one another. Therefore, the delayed version of the operator noise
source are also remain uncorrelated.

The total quantization noise at the output is therefore a sum of scaled versions of
the input quantization noise and can be written as

by(n) =
N∑

j=1

M∑

k=1

bj,k(n), (3.36)

where bj,k corresponds to the jth noise source scaled by the filter coefficient hj(k, n): the
kth filter coefficient which delays the signal by k-samples in time. If the system under
consideration is LTI, the value of hj(k, n) is time invariant. Then, the uniform shape
of the noise is preserved while the actual range of the noise is scaled depending upon
the coefficient value. If the system under consideration is non-LTI, it is clear from the
linear noise propagation model that the noise propagation path continues to be linear
but is time varying. The uniform shape is more or less preserved if the variation of
hj(l, n) is very small in comparison to the mean. Otherwise, the PDF value can even
be Leptokurtic1 in nature.

Analytical Evaluation

Consider evaluating the Kurtosis of the quantization noise at the output of a leaf level
sub-system. The Kurtosis value of any distribution is defined as the ratio between µ4,
its fourth central moment and µ2

2, square of its second central moment. Alternatively,
Excess Kurtosis can also be used in place of Kurtosis and is defined to be numerically
3 lesser than the Kurtosis value. Excess Kurtosis is calculated as the ratio of κ4, the
fourth Cumulant and κ2

2, the square of the second cumulant.
By using the additive property of cumulants [65], the fourth cumulant is easily

obtained by scaling and adding the fourth cumulant of the noise at the source. The
fourth cumulant and the second cumulant at the of the output quantization noise can
then be written as

κ4(by) =
N∑

j=1

∞∑

k=−∞

κ4(bj,k).

κ2(by) =
N∑

j=1

∞∑

k=−∞

κ2(bj,k).

The value κ4(bj,k) is obtained as a function of the moments of bj(n) and hj(l, n).

1Kurtosis of the distribution is greater than 3.
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In case of LTI systems, the expression for cumulants can be simplified and written as

κ4(by) =
N∑

j=1

∞∑

l=−∞

h(l)4κ4(bj).

κ2(by) =

N∑

j=1

∞∑

l=−∞

h(l)2κ2(bj).

It has to be noted here that this simplification is valid only when the noise sources
bj(n) are uncorrelated with one another and their spectral characteristics is white.

3.4.3 Experiments: Estimating PDF Shape

Quantization noise at the output of an FIR filter

In order to illustrate the use of analytical expression in Equation 3.36, a simple FIR
filter is considered. This example corresponds to the propagation of quantization noise
from one of the noise sources to the output of the sub-system. Consider an FIR filter
with 32 taps. From Equations 3.37, the PDF shape of the output quantization noise
of the filter is obtained propagating the Kurtosis and variance of a uniform random
variable through the filter taps with 32 different powers. If all the coefficients were
to take comparable values, the output noise shape was expected to be a Gaussian
(obtained from central limit theorem). Let 4 of the coefficients be relatively large in
comparison with the rest of the coefficients. The noise source bj,k corresponding to
each of these coefficients have higher power and therefore alter the shape of the output
quantization noise. In this example, the addition of PDFs with large noise power due to
the coefficients with higher value makes the output quantization noise PDF Mesokurtic
(i.e. Kurtosis less than 3). It has to be kept in mind that the quantization noise power
is independent of its distribution characteristics.

Figure 3.18: Computing PDFs obtained analytically and by simulation

The noise PDF at the output of the FIR filter is shown in Figure 3.18. The figure
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also shows the Gaussian component in the signal. Since the output PDF is Mesokurtic,
the output PDF can therefore be obtained as a weighted sum a Gaussian and a uniform
random variable. If the output were to be Leptokurtic (i.e. Kurtosis greater than 3),
the PDF can be obtained as a weighted sum of a suitable Leptokurtic distribution (such
as a parametrized Laplacian) and the Gaussian. Another option is to obtain the desired
Kurtosis of the PDF by using a parameterized generalized Gaussian distribution [98].
In Figure 3.18, the shape of the total noise obtained by simulation and that obtained
analytically are matched very closely.

When the four coefficients with higher coefficient values are taken away from the
summation, what remains is a sum of 28 identically distributed, uncorrelated random
variables. Their sum is therefore a Gaussian. The Gaussian thus obtained by simulation
and by analytical technique is shown also shown in the Figure 3.18. Comparing the
total noise shapes with the Gaussian shape, if it were to be blindly assumed that the
output is a Gaussian disregarding the actual shape, it is clear from the PDF plots that
the error at the output of an un-smooth operator such as a discriminator placed at the
mean value of the output PDF can have be sensitive to the input error PDF shape.
This qualitatively explains the results of the experiment in the Section 3.4.1.
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Figure 3.19: V-BLAST: data-flow model and associated smooth blocks

The V-BLAST algorithm [122] is the earliest of algorithms used for detection in
the in MIMO1 wireless systems. In this experiment, it is assumed that there are four
transmit and four receive antennas. The signal flow graph in Figure 3.19 represents
the flow of signals in a 4 receiver antenna V-BLAST detector. Each slicer decodes the
output corresponding to one antenna. Since the symbols transmitted are decoded one
after another, an error earlier on in this chain can affect the symbols detected later.

The path from the fourth antenna (block B4) to the first (block B1) consists of
several arithmetic computations. The arithmetic blocks can be grouped together and
the quantization noise can be modeled with the help of SNS model. The un-smooth
decision operators at the output of every arithmetic cluster essentially determine the
boundaries of the arithmetic clusters. None of the clusters have memory elements and
therefore the output quantization noise in case of all clusters is white in noise density
spectrum.

1MIMO: Wireless communication systems with multiple receiver and transmit antennas
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Figure 3.20: V-BLAST: Effect of quantization noise PDF shaping on BER

The quantization noise is generated with different Kurtosis values using the SNS
models for each of sub-system separated by the un-smooth operator. Three PDF shapes
are considered for conducting the experiment. The first two cases consider Gaussian
and uniform PDF distribution for the quantization noise. The third case considers the
PDF which has the shape confirming to the Kurtosis value. The total symbol error
rate (SER) is shown in Figure 3.20. The SER obtained by using fixed-point simulation
along with SER for various kurtosis is plotted for different channel noise conditions.
The fractional bits in the fixed-point for all operations were assigned to 4−bits. The
kurtosis of the output quantization noise was obtained analytically. It has to be noted
here that both Rij and yi are random variables and the Kurtosis of the output is
hence usually more than 3. The Kurtosis at the output is obtained analytically for the
non-linear division and multiplication operator by first obtaining the noise propagation
expression for the output quantization noise and then taking the ratio of the moments
defining Kurtosis. It can be observed that when the Single Noise source model is shaped
with appropriate Kurtosis, the SER curve confirms more closely to the curve obtained
by fixed-point simulation. Although the SER curves obtained by shaping the SNS
model noise as uniform or Gaussian closely follows the trend obtained by fixed-point
simulation, paying enough attention to the PDF shape brings the SNS model closer to
the actual fixed-point simulation.
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3.5 Application of the SNS model

Thus far, analytical formulas for deriving some of the statistical parameters of the
quantization noise at the output of a given sub-system and its computational complexity
were discussed. These parameters completely define the Single Noise Source (SNS)
parameters at the sub-system-level. Owing to the high computation effort, deriving
the entire SNS model often proves to be difficult. In this section, practical aspects
of the application of SNS model for hierarchical accuracy evaluation are considered
and an approach to selectively evaluate the SNS parameters based on the need of the
sub-system characteristics is presented.

3.5.1 A Synthetic Example

i2

S1

S4

S2 S3

S5

e12

e14

e23

e4u eu5

e42

o1

o2

i1

Figure 3.21: Application of the SNS model

Consider applying the SNS model on the signal flow graph (SFG) of the system
whose sub-system topology is shown in the Figure 3.21. This example, represents a
typical SFG one would encounter in a practical signal processing system although it is
randomly constructed. There are five sub-systems and all the sub-systems are made of
smooth operators. Sub-systems S1 and S5 are frequency selective (the corresponding
nodes in the graph are shaded to indicate frequency selectivity) whereas sub-systems
S2, S3 and S4 do not change the frequency distribution of the noise power. Conse-
quently, both outputs o1 and o2 display a frequency selective behavior. In other words,
the quantization noise at both outputs need not be spectrally white. Therefore, in
order to be consistent with the notation, they are also shaded. An un-smooth operator
appears between the sub-systems S4 and S5.

To incorporate the fact that the input can also be quantized, the input pads are also
considered to be nodes of the sub-system. The only difference between the inputs and
the rest of the sub-systems is that while the SNS parameters of the leaf-level sub-systems
are derived as a function of its functionality, the noise characteristics are either user
defined or derived from data that are typically used for fixed-point simulation. As there
could be more than one input to a given leaf-level sub-system, each input corresponds
to a node in the SFG. Likewise, there can be more than one output for a given sub-
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system and their spectral characteristics could be completely different. Therefore, each
output pad is also considered as a node. In the example considered, there are two input
nodes i1, i2 and two output nodes o1, o2. When it is not mentioned otherwise, the input
quantization noise is typically considered to be white and uniformly distributed with
the power determined by bits assigned for the fractional part.

3.5.2 Selective Evaluation of Spectral Parameters

Using the evaluate-propagate-add strategy discussed in Section 3.1.2, the quantization
noise generated from within each of the sub-systems needs to be propagated through
other sub-systems until the system output is reached. The determination of various
noise properties of such single-noise-sources is driven by the sensitivities of the sub-
systems through which a given noise source is passed.

In the above example, consider the quantization noise at the outputs of sub-system
S1. There are two outputs along the edges e12 and e14. The noise signal corresponding
to the output along the edge e12 is propagated through S2 and S3. Since both S2

and S3 are neither frequency sensitive nor sensitive to its level, it is sufficient if the
quantization noise power at the output along the edge e12 is determined. Whereas, the
output along the edge e14 passes through S4, an un-smooth operator and the sub-system
S5. Clearly, the propagation of quantization noise is affected by both its frequency and
PDF characteristics. Therefore, the determination of autocorrelation PSD and the
PDF of the signal at the output of S1 along the edge e14 is necessary. Also, the noise
at the output of S1 along the edge e14 re-converges onto S2 after passing through
S4. Therefore, it is also necessary to calculate the cross correlation and input-output
correlation between the signals corresponding to the noise signals along edges e12, e14

and e14, e42 respectively.
Similarly, consider the outputs of sub-system S4 along edges e42, e4u. They do not

converge anywhere in the sub-system graph and hence the cross correlation between the
signals along these two edges is not necessary. The sub-system S4 is not frequency sen-
sitive and therefore, it is not necessary to calculate the spectral properties of the noise
generated within or for the transmission of the signal. The input spectral characteris-
tics is propagated without any modification. However, it is necessary to calculate the
output PDF of the output along the edge e4u as it feeds into the un-smooth operator.

The propagation of quantization noise through the un-smooth operator can be car-
ried out by using simulation and the signal and noise characteristics at the output of
the un-smooth operator can be determined by using the results obtained thereof. It
is necessary to calculate the spectral characteristics at the output of the un-smooth
operator as the sub-system S5 is frequency selective.

Application of the SNS model to the above example is an illustration of the fact that
the determination of all the SNS is not always necessary. Broadly, it can be said that
the spectral characteristics of the noise single-noise-source need to be determined only
if at least one of the sub-systems through which it needs to be propagated is frequency
sensitive. Similarly, the distribution properties (PDF) of the noise signal needs to be
studied only if un-smooth operators are encountered along the noise propagation path
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and not otherwise. Therefore, unless mentioned otherwise, it can be assumed that the
quantization noise is white and has a Gaussian distribution with a specified noise power
that can be calculated by the techniques presented in Table 2.1. A data structure of the
SNS parameters corresponding to every node is maintained and initialized to defaults.
The data structure is as shown in Figure 3.22. In this figure, a sub-structure which
refers to the selective evaluation of the spectral parameters of the node is highlighted.
The structure essentially consists of a number of lists for the purpose of book keep-
ing of the selective evaluations pertaining to its corresponding node. These flags are
empty by default indicating that none of the spectral parameters need to be evaluated.
The parameters of the SNS model corresponding to every sub-system is marked for
evaluation and added onto the lists only if there is any expected deviation from this
default behavior. In the following sections, procedures for selectively evaluating the
various SNS parameters for a given SFG are defined. The spectral parameters and the
distribution (noise shape) parameters are considered separately for evaluation.
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GenAutoCorrelation

TransmitCorrelation
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InputputXCorr
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List of input-output pairs requiring evaluationg of cross correlation

List of output pairs requiring evaluationg of cross correlation

List of input-output pairs requiring evaluation of TransmitF ilter

List of input pairs requiring consideration of cross correlation

List of outputs requiring evaluation of GenerateF ilter

Figure 3.22: Sub-system Node data structure, selective spectral evaluation flags

A set of algorithms to mark these sepctral flags is detailed towards the end of
this thesis in Appendix 6. In these algorithms are based on popular graph traversal
algorithms. The need for evaluating various spectral parameters is determined by
looking into the topology of signal flow graphs without needing any simulation.

3.5.3 Selective Determination of PDF Parameter

The PDF of quantization noise is not a matter of concern if the system does not
contain any un-smooth operator. However, the presence of an un-smooth operator
requires the total noise PDF at the input of all un-smooth operators be known. So,
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clearly, only those sub-systems or more specifically those outputs of the sub-system
whose paths terminate into the input of an un-smooth operator needs to be considered
for evaluation of the noise PDF. The output of the un-smooth operator may be obtained
by simulation or other alternative methods. It is unlikely that they can be evaluated
analytically. Moreover, due to the non-linearity of the un-smooth operator, it is not
possible to use the evaluate-propagate-add technique beyond one un-smooth operator.
Therefore simulation is resorted to under such circumstances. More about this and the
un-smooth effects are discussed in the next Chapter.

In the graph in Figure 3.21, the outputs of sub-systems S1 and S4 along edges
e14 and e4u only needs to be considered. Once the quantization noise shape has been
determined at the input of the un-smooth operator, the un-smooth operator and the
fixed-point accuracy of sub-system S5 is obtained by simulation.

Calculating PDF at the Input of an Un-smooth Operator

The analytical expression for evaluation of Kurtosis at the output of the sub-system as
discussed in Section 3.4 is applicable only when the noise is uncorrelated with itself in
time or with other noise signals. This situation is unlike the spectral characteristics,
where such correlations can be taken care of in the frequency domain. It is only in
the case where the noise sources are emanating from various sub-systems are neither
autocorrelated nor cross-correlated the 4th cumulant of the total quantization noise
due to all the contributing sub-systems can be added to obtain the total Kurtosis value
analytically.

More generally, the quantization noise sources at the input of every Generate Filter
is spectrally white. During the quantization noise evaluation, this noise is propagated
through the Generate Filter followed by the Transmit Filters or path gains of other
sub-systems that are encountered on the path to the system output. Taking advantage
of the hierarchical decomposition, the individual path functions from every sub-system
can be quickly determined as large parts of the path function are obtained from the
Transmit Filter of the sub-systems in the path.

In the graph shown in Figure 3.21, let G4
1(e

jω) be the Generate Filter of the sub-
system corresponding to the node S1 on its output along edge e14 and T 14

4 (ejω) be the
path gain of the sub-system corresponding to node S4 between its input along edge e14

and its output e4u. Likewise, let Gu
4(ejω) be the gain of the noise due to quantization

in the sub-system corresponding to the node S4. The spectral distribution of Gu
4(ejω)

is flat as there are no memory elements in the sub-system S4. The total noise due to
quantization bu(n) at the input of the smooth operator is given as

bu(n) = g14(e
jω) · G4

1(e
jω) · T 14

4 (ejω) + g4u(ejω) · Gu
4(ejω)

= g14(e
jω) · H1(e

jω) + g4u(ejω) · Gi
4(e

jω), (3.37)

where g14(e
jω) and g4u(ejω) are spectrally white noise sources corresponding to the

total quantization noise at the operator sources in sub-systems S1 and S4 along the
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path S1 → S4 → (UnsmoothOperator). The transfer function H1(e
jω) is obtained

by multiplying the Generate Filter G4
1(e

jω) and the Transmit Filter T 14
4 (ejω). With

the availability of the time-varying impulse response whose input is a spectrally white
noise source, the quantization noise PDF shape can be determined by the analytical
technique to propagate 4th cumulants presented in Section 3.4.

3.5.4 Examples: Application of Selective Evaluation

Using the information derived from the sub-systems interconnection topology, the kind
of operators used to build the system and the knowledge of the input quantization
noise properties, it is possible to carefully choose the parameters to be evaluated. Some
examples are considered to illustrate the application of selective derivation of the SNS
model parameters.

Fast Fourier Transform (FFT)

!

"!by
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Butterfly
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Figure 3.23: Hierarchical decomposition of a 4-point radix-2 FFT

Consider the 4-point radix-2 structure of the FFT algorithm as shown in Figure 3.23.
It is customary to define the entire structure using the two-input two-output butterfly
structure. Also, efforts to optimize the implementation of this popular algorithm such
as [53] focuses on improving the butterfly structures. Therefore, it is easy to see the
various butterfly structures as sub-systems in hierarchy to compute FFT as shown in
Figure 3.23.

Consider the inputs and outputs of one of the sub-systems. The expression for
output quantization noise is derived as

bm = bx + by

bn = (bx − by)ω
r
N . (3.38)

Here, ωr
N is referred to as the twiddle factor and is a constant. Following the

discussion about constant multiplications in Section 2.3.3 and to keep the analysis
simple, the twiddle factors are quantized in both infinite precision simulation and fixed-
point simulation. The analytical expressions are compared against the errors obtained
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by performing fixed-point simulation. The quantization noise power expressions are
derived as

E[|bm|2] = E[|bx|2] + E[|by|2], (3.39)

E[|bn|2] = (E[|bx|2] + E[|by|2]).|ω′r
N |2, (3.40)

where E[x] operator represents the expectation of the random variable x. The two
outputs depend on both the inputs and are hence correlated with one another. However,
both the outputs from of any sub-systems are never used together for any computation
in the succeeding sub-systems. Therefore, it is not necessary to calculate the co-variance
between the two outputs of the sub-system. Also, there are no memory elements or
un-smooth operators. This means, that it is not necessary to derive any of the spectral
and PDF parameters of the sub-system.

Band-pass filter

Band-Pass Filter

S0

S1
1 Hl(e

jω)S2
1

Hh(e
jω) y′ + by′

x + bx y + by

High-Pass Filter Low-Pass Filter

Figure 3.24: Hierarchical Decomposition of a Band-pass Filter

Consider a band-pass filter implemented using a cascade of high-pass and low-pass
FIR1 filters as shown in Figure 3.24. Hierarchically, the system consists of two sub-
systems corresponding to the two filters. Both sub-systems S1

1 (a high-pass filter) and
S2

1 (a low-pass filter) have memory and are hence frequency selective.
In the case of the sub-system S1

1 , the spectral characteristics of the output noise by′

is dissimilar from that of the input quantization noise bx and has a particular power
spectral density function shaped by the filter Hh. Similarly, in the case of sub-system
S2

1 , the power spectral density of the input quantization noise by′ is shaped by the
filter Hl. Hence, it is important to consider the frequency characteristics of both the
sub-systems. The absence of un-smooth operators in the systems makes it unnecessary
to derive the PDF parameters of the quantization noise.

The power spectral density of the output noise of both sub-systems S1
1 and S2

1

are defined using Transmission filters: H
tf
h (ejω), H

tf
l (ejω) and the Generation filters:

H
gf
h (ejω), H

gf
l (ejω) respectively. Assuming a simple tapped-delay line implementation

of the FIR filters; while the Transmission filters are obtained as the magnitude response
of the filters. The transmission and generation filters are analytically derived as

1Finite Impulse Response
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H
tf
h (ejω) = |Hh(ejω)|2

H
tf
l (ejω) = |Hl(e

jω)|2, (3.41)

where Ĥh(ejω) and Ĥl(e
jω) in this case are the magnitude spectra obtained by eval-

uating transfer function Hh(ejω) and Hl(e
jω) respectively. The noise generated due

to quantization in the adders and multipliers pass through to the output without any
attenuation or delay. The spectral parameters participating in the quantization noise
generation and propagation for this example can be visualized as shown in the Fig-
ure 3.25.

H
gf
h (ejω) = 1

H
gf
l (ejω) = 1. (3.42)

Low-Pass Filter
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Figure 3.25: Single Noise Source components of the bandpass filter

The PSD of the output signals in each of the sub-system blocks can be calculated
using the transmit and generate filters defined in Equations 3.41 and 3.42 as

Sby′by′
= H

tf
h (ejω).Sbxbx

(ejω) + H
gf
h (ejω).Sbg1bg1(e

jω) (3.43)

Sbyby
= H

tf
l (ejω).Sby′by′

(ejω) + Hlgf(ejω).Sbg2bg2(e
jω), (3.44)

where Sbg1bg1(e
jω) and Sbg2bg2(e

jω) are the PSD of the total quantization noise gen-
erated within the sub-system S1

1 and S2
1 respectively. While the SNS model of the

individual sub-systems can be calculated independently, the evaluation of noise is per-
formed sequentially respecting the topological dependencies. In a feed-forward fashion,
the output of the first sub-system is calculated before calculating the noise power at
the output of the second sub-system.

The PSD information is recorded in the frequency domain by using discrete Fourier
transform (DFT) coefficients. Representation using the DFT coefficients makes it easy
to carry out filtering. The number of DFT points are defined by the user such that
all the nuances of the frequency selectivities of the sub-systems are captured. Hence,
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as discussed in Section 3.3.4, choosing greater number of FFT points will make the
spectral representation more accurate at the expense of increased computational cost.

Filter with saturated arithmetic

The bits assigned for the integer part of the fixed-point format limits the dynamic
range of the signal. In the saturation mode, the signal is clipped to the maximum and
minimum values. Clearly, as long as the signal is within the saturation boundaries,
the quantization error value propagates to the output with no modification. When the
signal value crosses the saturation boundary, the error due to clipping of the waveform
makes it dependent on the signal. The saturation operator is thus classified as an
un-smooth operator.

+ +

x x x

+ +

x x

y + by

x + bx

ŷ′

S !
1

S2
1

S0

x̄ + bx̄

y′ + by′

Figure 3.26: FIR with a saturation operator

Theoretically, saturation could occur soon after every adder in the filter data-path.
Practically, it is impossible to check for saturation at the output of every operator. For
the purpose of illustration, one of the filter sections is chosen and checked for saturation
errors. Consider the FIR filter structure shown which includes a saturation operator
as shown in Figure 3.26. The saturation operator sets limits on the maximum and
minimum values a signal can take. These values can be called saturation boundaries.
If the signal in infinite precision is already taking this value, the perturbation due to
quantization will cause saturation of the signal. That is, the error value of the signal
after saturation depends on the signal value and the noise power. The relationship be-
tween the actual error and the quantization noise power is not linear. This is referred to
as un-smooth behavior. The lack of analytical techniques to model the un-smoothness
in the saturation operator results in severing of the FIR filter into two sub-systems not
including the saturation operator.

The first sub-system is a truncated FIR filter with M memory elements and its SNS
model can be derived as it was done in the previous example. The quantization noise
power spectrum at the output by′ and bx̄is given as

Sbx̄bx̄
= e−jωMSbxbx

(3.45)

Sby′by′
= |H1(e

jω)|2Sbxbx
. (3.46)

Here, H1(e
jω) is the transfer function corresponding to the truncated filter with M

memory elements and Sbxbx
is the PSD of the input signal.
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It can be easily seen that the two outputs are correlated with one another. The error
bx̄ is a delayed version of the input quantization error signal bx. The cross-correlation
between bx̄ and by′ is calculated and it can be written analytically as

Sbx̄by′
= e−jωMH∗

1 (ejω)Sbxbx
(ejω). (3.47)

The second sub-system consists of N −M memory elements with two inputs x̄ and
y′ and one output y. Let H2(e

jω) be the transfer function between one of its inputs x̄

and the output y. The transfer function between the second input y′ and the output
is 1 as it does not involve any memory elements or scaling.

In the absence of saturation errors, the output PSD of the quantization noise at the
output of the second system can be calculated analytically. The PSD of the quantization
error signal by at the output of sub-system S2

1 is given as

Sbyby
(ejω) = Sby′by′

+ |H2(e
jω)|2Sbx̄bx̄

+ H∗
2 (e−jω)Sby′bx̄

(ejω) + H2(e
jω)Sbx̄by′

. (3.48)

However, the lack of analytical models to capture the effects of saturation errors
makes it imperative to use simulation for evaluation of fixed-point effects in cases where
un-smooth operators are used. A hybrid approach which utilizes both partial analytical
models along with fixed-point simulation is described in Chapter 4.

3.6 Summary

In this chapter, the problem of hierarchical decomposition of accuracy evaluation of
large signal processing systems implemented using fixed-point operators is considered.
The need for a hierarchical method is driven by the fact that the existing analytical
methods have scalability issues with systems having a large number of operator noise
sources. The hierarchical decomposition of the system into various sub-system hierar-
chies makes it possible to adopt a divide and conquer strategy to tackle the problem of
fixed-point performance evaluation.

The framework of the Single Noise Source (SNS) model is then introduced to address
the problem of accuracy evaluation of a hierarchically defined system as a function of
noise-power at the output of its sub-systems. Qualitatively, this model is an extension
to the idea behind the pseudo quantization noise (PQN) model which uses additive
noise in order to introduce quantization errors instead of simulation with fixed-point
simulation. The SNS model is also used similarly by using the proposed evaluate-
propagate-add technique. However, using the PQN model is quite straight forward
owing to its uniform distribution and white PSD characteristics. In case of the SNS
model, the spectral and the distribution characteristics of the additive noise has to be
derived from the respective sub-system parameters.

Analytical techniques to evaluate the auto-correlation and cross-correlation power
spectrum and the probability distribution function of the total quantization noise gen-
erated within the given sub-system are discussed. The complexity of deriving these
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characteristics are also discussed. Depending upon the topology of the interconnect
between the sub-systems and the sub-system functionalities, it can be computation-
ally difficult to evaluate all the SNS parameters. In order to reduce this overhead,
an algorithm for selective evaluation of the SNS model parameters is also proposed.
By using this procedure, it is assumed that output quantization noise has white spec-
tral power distribution, uncorrelated with other noise signals and has Gaussian PDF
characteristics unless otherwise mentioned.

Using the parameters specified by the SNS model, it should be possible to generate
particular random processes such that it is statistically same as the quantization errors
generated by simulating a fixed-point implementation of the system. Usually, owing to
the large number of quantization noise sources it is expected that the quantization noise
PDF is a Gaussian. Under such circumstances, it is quite easy to generate the particular
random process with a specified spectral characteristics. On the other hand, the PDF
shape can be ignored when there are no un-smooth operators. In this thesis, the focus is
on proving the utility of the newly conceived SNS model. Actual generation of a random
process mimicking the quantization noise is not trivial when the random process has
a specified noise spectrum and non-Gaussian PDF. Under such circumstances, some of
the techniques discussed in works such as [60] must be used. Exploration of techniques
for generation of particular random processes is out of scope of this work.

82



Chapter 4

Un-smooth Operators

The use of fixed-point arithmetic operations leads to errors in computation with refer-
ence to the results obtained by using infinite precision operations. Quantization errors
whose characteristics cannot be captured by the application of Pseudo Quantization
Noise (PQN) model discussed in Chapter 2 are classified as un-smooth quantization
errors. The PQN model works well when the step-size is comparatively smaller than
the overall dynamic range of the signal as in the case of fixed-point arithmetic opera-
tions. In case of un-smooth quantization, the quantization step-sizes are very large and
often comparable to the dynamic range of the signal being quantized. This violates the
assumptions made for deriving the PQN model and hence the estimates obtained by
using the PQN model can be very far from reality.

Any analytical model attempting to predict the error statistics at the output of an
un-smooth quantization requires the knowledge of input signal and associated quanti-
zation noise characteristics. Moreover, in the presence of many un-smooth quantizers,
the quantization error statistics are not only correlated with the signal but also with
errors due to previous un-smooth quantizers. The lack of analytical techniques for noise
propagation across un-smooth operations is one of the constraints on the seamless ap-
plication of the Single Noise Source model described in Chapter 3.

In this chapter, the dynamics of quantization is re-looked at and an attempt to
formally define the un-smooth quantizer is made in Section 4.1. With this definition, a
technique to identify un-smooth quantizers in the context of the given signal and system
characteristics is also proposed in Section 4.2. An analytical technique to estimate the
error and the corresponding noise PDF at the output of an un-smooth quantizer which
takes into account both: the signal statistics and the accumulated quantization noise
statistics is devised in Section 4.5.

The un-smooth quantizer is just one type of un-smooth operation. The presence
of other operations such as min(), max(), etc. in the system continue to challenge
the ability to generate complete analytical expression for quantifying the impact of
using fixed-point operators. For such cases, a hybrid technique to perform fixed-point
performance analysis in the presence of un-smooth operators is proposed in Section 4.6.
At the heart of this technique is the use of the Single Noise Source (SNS) model for
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analytical evaluation of quantization errors due to smooth quantizers. This technique
essentially uses the analytical techniques wherever possible in order to accelerate fixed-
point simulation.

4.1 Dynamics of Uniform Quantization

The process of quantization is by definition un-smooth in the strict sense. The dis-
continuities at the boundary of every quantization bin is the source of un-smoothness.
To determine the applicability of the PQN model to study the process of quantization,
the relationship between the dynamic range α of the input signal and the quantization
step-size q needs to be considered. When the quantization step size is much smaller
than the dynamic range of the signal (i.e. q << α), it is possible to model the er-
rors introduced due to quantization using the PQN model. The small relative size is
responsible for all the properties of the additive PQN model for quantization errors.

In case of un-smooth operators, the quantization step q is large and is often compa-
rable to the dynamic range of the signal α. Under these circumstances, the properties
of quantization error including the noise shape, its additivity property and its inde-
pendence with input signal statistics are questionable. In general, these aspects of the
quantization noise are known to vary with changing input signal PDF and also with
quantization step-size.

In this section, the dynamics of quantization of real signals in the characteristic
function domain is briefly recalled. This analysis is then applied to quantized signals
to appreciate the quantization process during repeated quantization.

4.1.1 Quantization in Characteristic Function Domain

The phenomena of quantization is similar to the Nyquist sampling. While the Nyquist
sampling is defined along the time axis, quantization can be thought of as sampling
along the amplitude axis of the signal. Thereby, the PDF of the signal and its charac-
teristic function (CF) are analogous to the time domain signal and its Fourier domain
representation. Carrying the same analogy further, the quantization step q is similar
to the Nyquist sampling period T .

The CF Φx(u) of the original signal x repeats itself along the CF domain axis u, the
quantization radian frequency with the interval Ψ = 2π

q
. Figure 4.1 shows aliasing of the

characteristic functions of the quantized signal when quantized with step-size is greater
than or equal to qb. The quantization bandwidth of the signal which is being quantized
is defined as the quantization radian frequency 2π

qb
corresponding to the step-size qb at

which aliasing starts to occur between successive characteristic function images. The
quantization bandwidth Wx of a signal x is a function of the quantization step size and
the characteristic function of the signal being quantized. It can be written as

Wx =
2π

qb

such that Φx(u) = 0 ∀ u ≥ 2π

qb

. (4.1)
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Figure 4.1: Quantization theorems 1 & 2: characteristic function domain

When the quantization step is small enough, the radian frequency is large not to
allow overlapping of the Φx(u). As the quantization step size increases, the repetition is
more frequent causing aliasing and hence the recovery of the original PDF from the CF
becomes impossible. This observation is referred to as the first quantization theorem
(QT1). In other words, this is nothing but the application of Nyquist sampling theorem
along the amplitude axis of the signal. In Figure 4.1, q1 is the largest quantization step-
size such that QT1 is satisfied.

In the study of quantization effects, correctness of the PQN model is of inter-
est rather than the exact recovery of the continuous signal. The second quantization
theorem (QT2) relaxes the conditions set by QT1 further and allows overlap of the re-
peating images of the CF of the signal. The second quantization theorem (QT2) states
the conditions under which the moments of the original signal can be recovered from
the quantized signal. In Figure 4.1, the largest quantization step-size that can satisfy
the condition in QT2 is denoted as qb.

The moments of the quantized signal x̀ is given by

E{x̀r} = E{xr} + Sr + Rr, (4.2)

where Sr is the rth moment of the quantization error signal and Rr corresponds to the
covariance between the rth moment of the input signal x and the quantization error.
When QT1 or QT2 are satisfied, the value of the residue coefficient Rr takes a value
of 0 for all r. In other words, the PQN model can be used to analytically determine
the effect of quantization noise. The quantization step-size as large as qb marks the
boundary between the applicability and non-applicability of the PQN model. When
the quantization step-size is increased beyond this boundary, the value of Rr becomes
non-zero and results in deviation from the PQN model.

In practice, the input signal assumes a finite set of values and is hence limited in
the PDF domain. Theoretically, this renders the CF of the signal band unlimited. In
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other words, unlike the case depicted in Figure 4.1, the CF actually is theoretically
zero only at infinity. Quantization theorems QT3 and QT4 pitches in with conditions
when any arbitrary moment of the quantization noise and the signal can be mutually
orthogonal (i.e. Rr in Equation 4.2 is 0 for any r) and the shape of the quantization
noise continues to be uniformly distributed irrespective of where the CF goes to 0.
Accordingly, the PQN model is applicable on a quantizer with step-size q if the input
characteristic function and its derivatives take up the value of 0 at all points corre-
sponding to the multiples of the quantization radian frequency: Ψ = 2π

q
. A formal and

rigorous description of the quantization theorems and their corollaries are described
in [120].

4.1.2 Dynamics of Double Quantization

Any system in practice consists of many quantizers that cause repeated quantization
along a fixed-point data path. While the quantization theorems are well defined for
the first quantization, the applicability of the PQN model for the double quantization
phenomena is not rigorously defined. In Chapter 3, it was assumed that all quantizers
comply with the conditions for PQN always. In order to justify that assumption,
consider the double quantization as shown in Figure 4.2. Without loss of generality,
simple rounding mode is considered for both quantizers. Although the total noise
power is affected due to a finite non-zero mean, the dynamics of the quantization is not
impacted in the truncation modes.

Q2
x Q1

x̀1 x̀2

Figure 4.2: Double quantization

In [120], the PDF of the quantized signal at the output of the first quantizer QK1:
fx̀1(x) is obtained by the area sampling process as

fx̀1(x) = (fx(x) ∗ fn1(x))· cq1(x)

=
∞∑

m=−∞

δ(x − m· q1)

∫ m·q1+
q1
2

m·q1−
q1
2

fx(α)dα, (4.3)

where δ is the impulse function, fxk
(x) and fn1(x) are respectively the PDFs of input

signal x and the quantization noise at the first quantizer Q1. cq1(x) is the train of
impulses corresponding to the quantizer Q1 spaced q1 units apart given as

cq1(x) =

∞∑

m=−∞

q1· δ(x − m· q1). (4.4)
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The second quantizer input is the signal x̀1, which is discrete in nature. However,
the dynamics of quantization of discrete PDF signals is unchanged. Due to the discrete
amplitude of the input signal, it is sufficient to consider the error due to quantization
at the discrete points. The discrete PDF1 of the quantization noise fn2(x) can be
written by further discretizing the range with the quantization step size of the previous
quantizer q1 as

fn2(p) =

{
1
k

−k
2 ≤ p < k

2
0 elsewhere

(4.5)

where p = x
q1

is the discrete variable corresponding to x and k is the ratio of quantization

step-sizes k = q2

q1
. When binary arithmetic circuits are used, it has to be noted that the

step-sizes of the successive quantizations are multiples of powers of 2. In other words,
sampling the impulse train of the quantizer cq1(x) at the rate of k gives cq2(x). Its
discretized version can be written as

cq2(p) =

∞∑

m=−∞

k· δ(p − m· k). (4.6)

The PDF of the signal x̀2 can be constructed as in Equation 4.3 and can be written
as

fx̀2(p) = (fx̀1(p) ∗ fn2(p))· cq2(p).

=





∞∑

β=−∞

fn2(p − β)· fx̀1(β)



 · cq2(p).

=






p+ k
2∑

β=p− k
2

1

k
· fx̀1(β)




 · cq2(p).

=






p+ k
2∑

β=p− k
2

1

k
· fx̀1(β)




 ·

∞∑

m=−∞

k· δ(p − m· k).

=
∞∑

m=−∞

δ(p − m· k)

m·k+ k
2∑

β=m·k− k
2

fx̀1(β). (4.7)

The PDF of the signal x2 as a function of the discrete PDF fx̀1(p) where β counts k

discrete samples of PDF of signal x̀1 centred around m ·k for all m. It can be simplified

1Discrete PDF is also called as probability mass function (PMF).
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as a function of the signal in infinite precision as

fx̀2(
x

q1
) =

∞∑

m=−∞

δ(
x

q1
− m· q2

q1
)·

m· q2
q1

+
q2
2q1∑

x
q1

=m·
q2
q1

−
q2
2q1

fx̀1(
x

q1
).

fx̀2(x) =

∞∑

m=−∞

δ(x − m· q2)

m·q2+
q2
2∑

x=m·q2−
q2
2

fx̀1(x). (4.8)

Now, consider the case when a single quantizer Q2 with step size q2 = k.q1 is used to
obtain x̀2. The PDF of the signal directly can be obtained directly from Equation 4.3
as

fx̀2′(x) =

∞∑

m=−∞

δ(x − mq2)

∫ mq2+
q2
2

mq2−
q2
2

fx(α)dα. (4.9)

The quantization step-size of quantizer Q2 is an integer multiple of the step-size of
the first quantizer Q1. Hence, the total area covered by the integral between the ranges
(− q2

2 , q2

2 ) is as good as adding up k samples of the PDF fx̀1(x) in the range. That is,

∫ mq2+
q2
2

mq2−
q2
2

fx(α)dα =

m·q2+
q2
2∑

x=m·q2−
q2
2

fx̀1(x). (4.10)

By comparing Equations 4.9 and 4.8, it is clear that the PDF of the quantized signal
in case of double quantization is the same as it is in the case of single quantization.

This result means that the quantization theorems are applicable even in the double
quantization case as if it is being applied on the original signal. In other words, the
PQN model can be applied to estimate the total quantization noise statistics at the
output of any quantizer irrespective of whether the quantizer is acting on a continuous
signal or an already quantized signal.

4.2 Defining Un-smooth Quantization

In the light of the characteristic function domain behavior of quantizers, it is easy
to reason out why the PQN model fails when the quantization step-size is large and
comparable to the dynamic range. In general, as the quantization step size increases,
the separation between the various images of the characteristic function as shown in
Figure 4.1 decreases. In practice, the signal PDF is limited in its range and hence the
unlimited in its characteristic domain representation. Therefore, the aliasing between
successive images in the characteristic function domain occurs at even small step-sizes.
However, the magnitude of aliasing remains small and hence the estimates of moments
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obtained by the PQN model is not very far from the actual errors. However, the alias-
ing increases with growing step size also grows and the estimates as described by the
PQN statistics starts deviating from the observed error statistics significantly. The
un-smooth quantization can therefore be described as

Definition: A quantizer is un-smooth if the deviation of its actual
error statistics is unacceptably large from the error statistics as de-
termined by the PQN model.

It has to be noted that unless the characteristic function is band-limited, the error
in estimation is always present. The magnitude of this error increases with increasing
step-sizes. The acceptability of the error is therefore a user defined parameter. The
trade-off here is that if a large deviation is acceptable, many quantizers in the system
can be regarded as smooth. On the other hand, being very strict about the errors
makes most quantizers un-smooth.

Given that one of the quantizers in the system is considered smooth, the smoothness
of other quantizers can be deduced with the knowledge of the bandwidth of the signal
in its characteristic function domain.

Theorem: If a quantizer Qref with step-size qref quantizing the signal
ωref with quantization-bandwidth Wref as defined in Equation 4.1 is
considered smooth, any other quantizer Qk with step size qk quan-
tizing the signal ωk whose quantization-bandwidth is also smooth if
qref

Wref
≥ qk

Wk
.

Proof: The quantization bandwidth defines the spread of the characteristic
function and the quantization step-size determines the rate at which the repli-
cas of the characteristic functions are found along the frequency axis. The
reference quantizer Qref is given as smooth. This essentially means that the
replicas of the characteristic function are separated enough not to cause sig-
nificant aliasing.
If the quantizer Qref is used to quantize a signal ωk whose quantization-
bandwidth Wk ≤ Wref , the replicas of the characteristic function are relatively
spaced farther apart than in the given reference case. Therefore, it continues
to be smooth. Further, if the quantization step-size of the quantizer is further
reduced to qk such that qk < qref , the replicas of the characteristic function
are separated even further.
Thus, with reference to the given smooth quantizer it is sufficient to check for
the conditions given in the theorem statement to deduce smoothness of other
quantizers with respect to a given smooth quantizer for reference.

It has to be noted that this theorem provides sufficient conditions and it is not the
necessary condition. That is even when Wk > Wref , it is possible that the quantization
is smooth. In such cases, the definition of un-smoothness has to be checked.

89



4.2.1 DCT Based Image Compression

To illustrate the effects of un-smoothness, an experiment which demonstrates the effect
of error between the estimates suggested by the analytical PQN model and actual
quantization error is presented. This experiment is derived by reducing the process
of DCT-based1 image compression. The experimental setup is as shown in the block
diagram in Figure 4.3.

!"

#

$

%

&!#

#

$

%

&!#

X64

X1

X2

X̀64

X̀1

X̀2

x1

x2

x64 x̂64

x̂1

x̂2
Q2

Q1

Q64

Figure 4.3: Quantization in JPEG

According to the JPEG image compression standard, in the image encoding phase,
forward discrete cosine transform (FDCT) is performed on 8 × 8 blocks of pixels
corresponding to the vector x = {x1, x2, ...x64} to obtain the transform coefficients
X = {X1, X2...X64}. These coefficients are scaled down by the respective quantizer
step-sizes as given by the quantization matrix specified in the JPEG standard. These
scaled down coefficients are encoded using Huffman codes and packaged into a com-
pressed file. In the image decoding phase, the Huffman codes are decoded to obtain
scaled down transform coefficients. These coefficients are scaled up by the respective
scaling factor to obtain X̀ = {X̀1, X̀2...X̀64} and the inverse discrete cosine transform
(IDCT) is applied to reconstruct the original image.

The up-scaling and down-scaling of DCT coefficients correspond to rounding quan-
tization whose step-size corresponds to the coefficients of the quantization matrix as
described in the JPEG standard. That is, the kth coefficient Xk is quantized by a
quantizer Qk with step-size qk to obtain X̀k as shown in Figure 4.3. The image com-
pression standard exploits the fact that natural images tend to be band-limited for
specifying the value of quantization step size. Therefore, the quantization step-sizes
are smaller for low frequency components and larger for high frequency components.
That is q64 > q63 > . . . > q2 > q1.

This experiment measures the effects of quantization of transform coefficients on
quality of the image. The FDCT and IDCT makes use of double precision arithmetic
and hence the errors introduced during transforms computation are negligible. The
later stages involving entropy coding does not introduce any loss of information.

In this experimental setup, the input vector x is derived from a Gaussian random
number generator. Consequently, the transform coefficients also have Gaussian distri-

1JPEG, MPEG-1,2,4 are popularly used DCT-based image compression standards
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bution with the same signal power. Amongst these 64 quantizers, some of them exhibit
smooth quantization while others exhibit un-smooth properties.
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Figure 4.4: Application of PQN model in the place of quantization in JPEG

Consider the application of the PQN model for all the quantizers. According to
the PQN model, a uniform noise source bk corresponding to quantization step-size

qk in rounding mode has a power of qk
2

12 with zero mean. An additive noise source
corresponding to these characteristics is statistically equivalent to actually performing
the quantization Qk. If a quantizer Qk is considered smooth, a random value from the
uniform noise source bk is generated and added to Xk to obtain X̄k. If it is considered
un-smooth, the quantization operation corresponding to Qk is actually performed.

This is applied to the example under consideration as shown in Figure 4.4. De-
pending upon the tolerance of error, some of the quantizers can be considered smooth
and an additive random noise with appropriate noise-power is used in place of the
quantizer. The boundary between smooth and un-smooth quantization is marked by
the change in using the real quantizer instead of the estimates derived from the PQN
model. In the Figure 4.4, this boundary is defined such that quantizer with step-size
qs is smooth. This corresponds to the sth coefficient. The statistics of all the transform
coefficients have a Gaussian distribution and have the same power. Also, the quan-
tization step-size for coefficients whose index is less than s have smaller quantization
step-sizes. Therefore, all quantizers whose index is smaller than s are smooth and
quantizers Q1 through Qs can be approximated by additive quantization noise whereas
the quantizers qs+1 through Q64 continue are preserved for the purpose of performing
quantization operation.

If the quantizer under consideration is indeed smooth, adding the noise generated
from the random noise source bk will not affect the reconstruction of the image. In other
words, the error between the reconstructed image obtained by actually performing the
quantization step and by adding quantization noise bk will be statistically equivalent.
In cases where quantizers though un-smooth are replaced by the PQN noise source, the
error statistics between the original and the reconstructed image deviates largely from
the actual error due to quantization.
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Figure 4.5: Quantization in JPEG

4.2.2 Defining the Un-smooth Boundary

The graph in Figure 4.5 shows the increase in average noise power (in decibels) as
the quantizers starting from the smallest step size is considered smooth. That is, all
quantizers are considered smooth starting from the quantizer with the smallest step
size in ascending order. Thereby, the experiment is carried out by considering all
the quantizers to be smooth eventually. In other words, the smoothness constraint is
relaxed to allow more and more deviation of error statistics from the PQN model. In
every step, one more quantizer is replaced by the corresponding PQN noise model. The
results obtained is compared with the result obtained by simulation.

Here, the signal power of input to each transform coefficient is the same and hence
normalization of input signal power is not necessary to study the impact of quantization
step-size. To begin with, the quantization step sizes are small enough not to cause
a large error between the original and the reconstructed image. As the smoothness
constraint becomes more and more lenient, the gap between the average noise obtained
by the selective use of PQN model on small quantizers begin to widen even as all the
quantizers are considered smooth.

Clearly, depending upon the users tolerance to error in estimation, it is possible to
define a quantization step-size by following the curve obtained in Figure 4.5 beyond
which the estimation of error could be unacceptable. For example, in the case of this
experiment with DCT coefficients, if about 5% relative error in estimation is tolerated
by the application, the corresponding quantization step-size is 81 units. This step-size
corresponds to the quantizer Q34. From the graph in Figure 4.5, if any quantizer with
index lesser than 34 such as quantizer Q27 is chosen, the relative error in estimation of
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quantization noise decreases. Whereas if any other quantizer with index greater than
3 such as the quantizer Q36 is chosen, the relative error would only increase.

4.3 Identifying Un-Smooth Operators

In a practical scenario, a fixed-point system consists of a number of quantization oper-
ations. The analytical estimates obtained by the use of PQN model can be erroneous
when it is applied on un-smooth quantizers. Therefore, it is required to classify the
quantizers as smooth or un-smooth based upon the characteristics of the signal being
quantized and the quantization step-size.

The Algorithm 4.1 is based on computation of the characteristic function and pro-
poses a technique to check for the applicability of the PQN model in case of any uniform
quantization operator. This algorithm identifies the boundaries of quantization step-
size such that the PQN model can be applied to model the error behavior.

Algorithm 4.1 :: Identify Un-Smooth Boundaries

1: G(V,E) = GetSystemGraph();
2: for all Qi quantizers in G(V,E) do
3: Obtain experimental PDF fxi

(xi);
4: b = GetMaxBits(); \∗ Maximum number of bits assignable ∗\
5: εb

i = 0
6: Qb

i = b; \∗ Assuming that the quantizer is smooth ∗\
7: while εb

i < τi do
8: εb

i = EvaluateDeviation(fxi
, 2−b);

9: if εi ≥ τi then
10: Qb

i = b + 1; \∗ Oi becomes un-smooth at b ∗\
11: break;
12: end if
13: b = b − 1 \∗ Decrement the number of bits assigned ∗\
14: end while
15: end for

The algorithm begins by considering all the quantization operations in the system
graph G(V,E) consisting of V operators interconnected by E edges. An operator is
represented by one of the nodes with multiple input edges and a single output edge.
Such an operation, when implemented using finite precision can essentially be repre-
sented using the schematic of the operator followed by the quantizer. The schematic of
an operation in infinite precision and finite precision are as show in Figure 4.6.

In a fixed-point implementation, the inputs to the operators are also quantized.
The effect of input quantization is covered by the quantizers present at the output of
the operator nodes from which the signal emanates. Therefore, one quantizer can be
associated with every signal. The effect of quantized inputs has an effect on the error
behavior of the quantizer at the output of the given operator. In this scenario, it is

93



Finite Precision (b bits)

Qb
i

Vi Vi

Infinite Precision

Figure 4.6: Operator Oi in infinite precision and finite precision with b-bits

possible to have double quantization effects. However, it is clear from Equations 4.8
and 4.9 that repeated quantization does not fundamentally change the quantization
dynamics. Hence, to evaluate smoothness of each quantization, it is sufficient to work
with the infinite precision data statistics at all points of interest. A technique to
determine the same is presented in Algorithm 4.1.

The algorithm begins by considering all quantizers Qi to be smooth. An infinite
precision1 simulation consisting of an exhaustive set of test vectors is used to capture
the PDF characteristics: fxi

(xi) of the signal at the input of the ith quantizer Qi.
Alternatively, the signal PDF can also be estimated by using some of the techniques
presented in Section 2.2.

The test for deviation in error begins with the assignment of maximum number of
bits to the quantizer under consideration. The deviation εb

i of the ith signal with b bits
of quantization is evaluated either by simulation or analytically as described in [120].
The term τi is the tolerance to error in estimation which is defined by the user. This
can be set specifically for a given quantizer or it can be universally set to one single
value applicable to all quantizers in the system. While the deviation from PQN model
is smaller than τi, the number of bits assigned continues to be decremented by 1 and the
deviation from PQN model is re-evaluated for the newly assigned word-length. When
the loop exits, the value of Qi

b holds the value of b at which the quantization turns
out to be un-smooth. Alternatively, a binary search procedure can be adopted instead
of decrementing one bit at a time in order to reduce the number of times the loop is
executed.

When the error deviation is larger than the tolerance, it means that the quantizer
which was smooth until the previous quantization step trial is now un-smooth. In other
words, this transition marks the boundary between smooth and un-smooth quantization
step-sizes for the signal associated with the ith signal. Therefore, Qb

i is assigned the
value of (b + 1) to mark the smallest word-length under which this quantizer can be
considered smooth.

To understand the behavior of the deviation from PQN model, consider a signal
normalized in the range [−1, 1). Its fixed-point format is as given in Figure 4.7. Fig-
ure 4.8 shows the magnitude of relative error between the analytical PQN model and
the error estimates obtained by simulation. For the sake of illustration, three relatively
simple PDF (viz. Gaussian, Laplacian and uniform) are considered.

1Double precision floating point simulation is used as an approximation to infinite precision.
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Figure 4.7: Fixed-point representation of signal with dynamic range [−1, 1)

Figure 4.8: Relative Error Magnitude (in dB) between PQN and simulation

The relative error between PQN and simulation is the highest for the Laplacian,
the deviation is a little less for the Gaussian and very small and negligible in case of
the uniform signal distributions. The uniform distribution has values spread across
the range [−1, 1) and hence quantization with the largest number of bits preserves the
uniform shapes and the value of −1 or 1 contributes to the total noise power. Whereas,
in case of the Gaussian, the values are denser near the value of 0 and therefore it gets
zeroed out when large quantization step-sizes are used. This results in large deviation
between the PQN error estimates and the errors observed by simulation. This effect
is more pronounced in case of the Laplacian as more values than in the case of the
Gaussian are closer to 0. As the quantization step-size is reduced (i.e. more bits are
assigned for precision), the values are not zeroed out and hence converge to similar
behavior.

In the above algorithm, the statistics of the value taken by every signal associated
with a quantization operator in the system needs to be recorded. Indeed, storing
the values of all signals through the entire length of simulation can consume a lot of
memory and time and may not be practically feasible. It is sufficient to capture the
signal statistics of only those signals which are associated with quantizers suspected to
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be un-smooth.

4.4 Un-smooth Quantization Errors

It is common to find smooth and un-smooth quantizers coexisting in a number of signal
processing systems. In communication systems for example, they are most commonly
found in receiver algorithms in the form of QAM decision operators and co-exist with
other smooth fixed-point arithmetic operators. While the smooth quantization errors
can be estimated using the additive PQN model, the response of QAM slicers to pertur-
bation by quantization noise can be non-linear and therefore can cause large deviation
from the estimates obtained by the application of the PQN model. Therefore, it is
important to understand the genesis of errors due to un-smooth quantizers. In par-
ticular, since the smooth quantization operators co-exist with un-smooth quantization
operators, estimating the error statistics at the output of an un-smooth quantization
operator due to perturbation of the signal at its input becomes necessary.

4.4.1 The Decision Operator

αr

Decision boundary (-3,3)

(0,0)

(1,-1)

Decision boundary (-1,1)

αi

Region: R1,−1

Figure 4.9: 16-QAM Constellation diagram

The decision operator or the slicer, used for discriminating between different values
post equalization in a digital communication system is a very good example for an
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un-smooth quantizer. The constellation diagram of a 16-QAM scheme is as shown in
Figure 4.9. Behavior of a QAM slicer used to discriminate the values of a given signal
x into the QAM constellation symbols given by the set S = {S1, S2..., SL},∀Si ∈ RN

(where N is the dimensionality of the signal transmitted1) is defined as

x̃ = Si if x ∈ Ri, (4.11)

where Ri is the region defined as the neighbourhood of the constellation point Si. The
region Ri is a space in RN and essentially consists of the set of values taken by x

that can be discriminated as Si. In Figure 4.9, the region R1,−1 is the area covered
by the rectangle around the constellation point (1,−1). Likewise, the boundary of the
QAM constellation symbol (−1, 1) and (−3, 3) is also defined by dashed lines. The
area contained within these boundaries is referred to as the region R−1,1 and R−3,3

respectively.
Interestingly, the QAM decision operator bears a lot of similarities with the quan-

tizer encountered in the study of finite precision arithmetic. The functioning of the
QAM slicer is similar along both the real (along the horizontal directions) and imagi-
nary (along the vertical directions) axes. The behavior of the QAM slicer along any of
the axes can be thought of as comprising of a quantizer Q with step-size q followed by a
saturation operator S with dynamic range α as shown in Figure 4.10. The quantizer Q

is rounding in nature and centered around the constellation points. The dynamic range
α is the maximum difference between any two constellation points. When the dynamic
range of the input signal is comparable to the dynamic range of the saturation operator
(i.e. max(x) − min(x) ≃ α) the saturation operator may be ignored (i.e. x̃ ≃ x̀) and
the decision operator can be approximated as a quantizer.

x̃

Q

q

S

α

x x̀

Figure 4.10: Quantization model of the Strong Decision Operator

While the behavior of the QAM decision operator is the same as in the case of a
quantizer which is used to model the finite precision arithmetic, the error characteristics
are not un-smooth. The difference between the QAM decision operator and the smooth
quantizer that is usually encountered in finite precision implementation is that of the
large relative step-size with respect to the signal. While the quantization step-size due
to finite precision is usually orders of magnitude smaller than the dynamic range, the
quantization step-size in the case of decision operator is often comparable to the signal
itself. Therefore, the decision operator is un-smooth.

1N = 2 for QAM signals
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4.4.2 Response to Perturbation

In the case of un-smooth operators, the output error statistics does not comply with the
PQN model. Hence, the impact of quantization noise at the output of an un-smooth
quantizer can be quantified only by comparing the response of the un-smooth operator
to the input values in case of finite precision and its infinite precision counterparts.
The effect of perturbation due to accumulated quantization noise at the input of a
un-smooth quantizer is depicted in the Figure 4.11.

xb

ql qr ql qr

Quantization Boundary

V1 V2

xa

Figure 4.11: Response to perturbation at un-smooth boundary; Case A: x = xa, Case
B: x = xb

A signal x is input to the un-smooth operator whose output is either the value V1 or
V2 depending upon the value of x. Here, two scenarios in which a signal x assumes values
xa and xb in infinite precision are depicted. In a fixed-point implementation, the signal
x is perturbed due to accumulated quantization noise. Let ql and qr be the maximum
probable negative and positive distortions. In cases when the signal assumes a value
sufficiently far from the boundary as depicted in Case A: (i.e. x = xa), the perturbation
magnitude ql or qr is not large enough to make the signal cross the boundary. Hence, the
value assigned by the un-smooth operator in both infinite precision and finite precision
is V2 and no error is propagated. On the other hand, if any double precision value
x is close enough to the boundary as depicted in Case B: (i.e. x = xb), a positive
perturbation due to quantization error could push the actual fixed-point value across
the boundary and cause the output to be V2 instead of V1 thus causing the fixed-point
implementation behave differently from the infinite precision system behavior.

4.5 Computing Error Probability

The effect of quantization can be measured by defining a metric which compares the
values of various signals in the system when fixed-point operators are used with the
values assigned to them in the ideal case where infinite precision operators are used. In
case of smooth quantizers, the errors are small and therefore conveniently captured by
the quantization noise. In the case of un-smooth quantizers, the power of errors does
not confirm with the analytical PQN error model. Therefore, it becomes important
to obtain the probability density function of error at the output of the un-smooth
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operator. Moreover, the error power can be derived very easily if the PDF of the
error is available. Computing the error probability at the output of the quantizer is
therefore more fundamental than directly deriving noise-power of the error signal due
to quantization.

4.5.1 Decision Error Statistics

To study the impact of accumulated smooth quantization noise on the first decision
output, a signal processing system which has one un-smooth operator U1 at the output
of the smooth system x̂ is considered. Such scenarios commonly occur when considering
a communication receiver systems as shown in Figure 4.12.

Smooth

System

x̂ x̃i2

i1

iN

bx U1

Figure 4.12: System with one un-smooth operator at the output

The value of any signal x̂fp(n) at the output of the smooth system fixed-point block
is obtained by perturbation of x̂ip(n) due to quantization noise bx(n). Therefore, it can
be written as

x̂fp(n) = x̂ip(n) + bx(n). (4.12)

The decision error rate due to additive quantization noise can be arrived at by
comparing the fixed-point output x̃fp(n) with that of output obtained by system with
infinite precision x̃ip(n).

As discussed in Section 4.4.2, the drift in signal value in a fixed-point system is a
function of the quantization noise power associated with the signal. When the signal
value is close to the decision boundary and the quantization noise power is sufficiently
large, the drift caused due to the perturbation can be such that it crosses over the
decision boundary generating different outputs in comparison with the output produced
by a system with infinite precision implementation. If the quantization noise power is
sufficiently large, there can also be chances where the drift in the signal value can cross
multiple boundaries. This is perceived as a decision error at the output.

Let Pi,j be the probability that the decisions x̃ip = Si and x̃fp = Sj as defined in
Equation 4.11. Consider a case when the input value which happens to be in the region
Ri is perturbed by the noise bx such that it now happens to be in a different boundary
Rj .
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Pi,j = Prob{(x̂ip ∈ Ri) ∩ (x̂ip + bx ∈ Rj)}. (4.13)

Let fb(b) and fx(x) be probability density functions of the noise bx and the infinite
precision signal x̂ip respectively. The probability Pi that the signal x̂ip gives a decision
x̃ip = Si is obtained by integrating the PDF over region of interest Ri and is given by

Pi =

∫

Ri

fx(x)dx. (4.14)

Consider an instance when the signal x takes the value xi such that x̃ = Si. That
is, xi ∈ Ri. With the knowledge of PDF of the quantization noise bx, it is possible to
calculate the error probability Pxi,j which is the error due to perturbation of the signal
with value xi which leads to symbol Si in infinite precision but leads to symbol Sj in
finite precision due to fixed-point noise bx as

Pxi,j = Prob{x̂ip + bx ∈ Rj

∣
∣x̂ip ∈ Ri}.

The quantization noise is uncorrelated with the signal [120] and hence the two events
can be expanded in terms of probability density function as

Pxi,j = lim
ǫ→0

∫ xi+
ǫ
2

xi−
ǫ
2

fx(xi)dxi·
∫

Rj

fb(b − xi)db. (4.15)

Considering all the points in region Ri, the total error probability Pi,j is given by

Pi,j =

∫

Ri

Pxi,jdxi.

Pi,j =

∫

Ri

[

fx(xi)

∫

Rj

fb(b − xi)db

]

dxi. (4.16)

By re-arranging the terms in Equation 4.16, the error Pi,j can be written as

Pi,j =

∫

Ri

∫

Rj

fx(xi)fb(b − xi)dbdxi. (4.17)

From Equation 4.17, the addition of quantization noise and the signal at the input
of the decision operator can be identified region wise. fTi

(b) is the actual signal being
presented at the input of the decision operator corresponding to all values taken by infi-
nite precisoin signal in region Ri. For any region Ri, the PDF of the total quantization
noise contribution is given as

fTi(b) =

∫

Ri

fx(xi)fb(b − xi)dxi. (4.18)

The total probability of error Pi,j can be written in terms of fTi(b) by substituting
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the same in Equation 4.14 as

Pi,j =

∫

Rj

fT i(b)db. (4.19)

The error matrix obtained by calculating Pi,j is essentially the joint probability
distribution of the decision outputs with and without fixed-point noise. That is

fx̃ip,x̃fp
(x̃ip = Si, x̃fp = Sj) = Pi,j . (4.20)

The actual output signal probability distribution in the case of fixed-point noise
can be obtained as marginal distributions of the joint distribution obtained thus far.

Probability Mass Function

The quantization error is best described by its probability distribution. Since the
output of the decision operator is discrete, the error distribution is referred to as the
probability mass function (PMF). The range of the PMF of the error at the output
of the decision operator depends on the values assigned to the decision symbol set S.
Further, it is assumed that on the decision set S ∈ {S1, S2, ..., SL} it is possible to
define a distance measure (di,j) between any two values in S. It is also required that
this distance operation is closed in the space where the symbols themselves are defined.
For example, the distance measure can be simple euclidean distance between the two
values as defined in Equation 4.21.

di,j = Si − Sj . (4.21)

The individual decision errors are represented by discrete time delta function δ(x̃)1.
The strength of the delta function is made proportional to the probability of error. The
decision error PMF fx̃(x̃) is obtained as

fx̃(x̃) =
L∑

j=1

L∑

i=1

fx̃ip,x̃fp
(x̃ip = Si, x̃fp = Sj)· δ(x̃ − di,j). (4.22)

The function δ(x̃ − di,j) is a shifted version of the δ function in the two dimensional
space. The range of this space consists of L × L discrete points as defined by various
permutations of the output symbol set S consisting of L elements. Each x̃i,j corresponds
to the error in decision generated for every pair (i, j) and the function fx̃ip,x̃fp

(x̃ip =
Si, x̃fp = Sj) is nothing but the error probabilities obtained as Pi,j in Equation 4.17.

The correctness can be observed by comparing the PMF obtained by analytical
expression and the result obtained by simulation. One way to theoretically verify the
correctness of the expression in Equation 4.22 is to check if the sum of all individual
probabilities is 1.

1Kronecker delta function
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By substituting Equation 4.19 for Pi,j and given that x and b are independent, the
sum of all values in the PMF is given as

L∑

i=1

L∑

j=1

Pi,j =

L∑

i=1

∫

Ri

fX(xi)·
L∑

j=1

∫

Rj

fB(b − xi)· db

︸ ︷︷ ︸

=1

· dxi. (4.23)

By definition, the area under a PDF is always 1. The inner most summation in
Equation 4.23 is only a shifted version of the PDF of the quantization noise variable.
Therefore it evaluates to 1. Applying the same principle on the outer summation,
the sum of probability Pi,j over the range L × L evaluates to 1. In other words, the
probability mass funtion of decision errors given in Equation 4.22 is a valid PMF.

Total Decision Error Probability

This study of decision errors with L regions throws up L2 different combinations of
probabilities to be calculated. Among these, the L probabilities where the decision
operators give the same output in both fixed precision and infinite precision case are
not errors. The rest are errors and contribute to the total error rate due to quantization.

The error at the output of the slicer is obtained by summing up all the Pij ∀ (i, j) ∈
[1, L] and given by

Perror =
L∑

i=1

L∑

j 6=i,j=1

Pi,j . (4.24)

The final expression for total error probability is then obtained by plugging in
Equation 4.16 into Equation 4.24 as

Perror = 1 −
L∑

j=1

Pj,j . (4.25)

Complexity Analysis

To calculate the strength of the discrete Dirac function for every possible error Pi,j

at the output of the first decision operator requires the knowledge of signal statistics
apart from the statistics of the accumulated quantization error. The signal statistics
is acquired by carrying out one high precision simulation or alternatively by using
some semi-analytical techniques based on such as [4] as discussed in Section 2.2. The
quantization noise statistics can be derived analytically by using the single noise source
(SNS) model described in Chapter 3.

If there are N symbols generated at the output of the decision or un-smooth quan-
tization operator, N(N − 1) number of combinations need to be considered to obtain
the total error. For each of the combinations, it is required to evaluate the double
integral in Equation 4.17. Numerical evaluation of the double integral could be quite
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complex and its computational complexity depends on the number of samples used to
represent the actual PDF. Clearly, the complexity of calculating the error probability
at the output of an un-smooth operator is of the order O(N2).

4.5.2 Propagating Decision Errors

Very often, it may be the case that there are more than one un-smooth quantizer in
the system. The technique for deriving the error probabilities in the previous section is
used to analytically determine un-smooth error statistics only in the absence of other
un-smooth errors. To make this method practically useful, it is necessary to develop
techniques for propagating such errors through other smooth and un-smooth operators
is equally important.

x̂N+1

y2

yM

x̂1

x̃N+1

x̃N

x̃1

x̃2

x̂N

x̂2

g(y1, . . . , yM , x̃1, . . . , x̃N)

Smooth Block

y1

Figure 4.13: Propagating PMF across un-smooth operators

Consider the system level block diagram as shown in Figure 4.13. This block di-
agram consists of all possible scenarios in which un-smooth quantizer is used. There
are N + 1 un-smooth operators shown in the block diagram. The computational block
evaluates a smooth function g() with N +M inputs of which, the N inputs are sourced
from the outputs of un-smooth quantizers.

In a fixed-point implementation of the system, the input vector y = [y1, . . . , yM ]
are perturbed by the quantization noise vector b = [b1, . . . , bM ] where each element in
the vector corresponds to the noise perturbation of the input signal with the respective
index. Let vectors yip and yfp be the values taken by M inputs to the function g()
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in infinite precision and finite precision implementations respectively. Likewise, the
values assumed by the decision inputs x̃ = [x̃1, . . . x̃N ] in a fixed-point system can be
different when compared to the values taken in an infinite precision implementation.
Let vectors x̃ip and x̃fp be the values assumed by these decision outputs in infinite
precision and finite precision implementations respectively. Correspondingly, let x̂

ip
N+1

and x̂
fp
N+1 respectively be the infinite and finite precision values of the signal at the

output of the smooth block g(). Then, the expression for the signal x̂
fp
N+1 at the output

of the smooth block is given as

x̂
fp
N+1 = g(yfp

1 , . . . , y
fp
M , x̃

fp
1 , . . . , x̃

fp
N ),

= g(yip
1 , . . . , y

ip
M , x̃

ip
1 , . . . , x̃

ip
N )

+G(b1, . . . , bM , x̃
ip
1 , x̃

fp
1 , . . . , x̃

ip
N , x̃

fp
N ) + bg,

= x̂i
N+1 + gb(b, x̃ip, x̃fp) + bg, (4.26)

where bg is the noise added by the smooth quantizers used in the fixed-point imple-
mentation of the function block g() and gb() is the corresponding noise propagation
function.

Given that g() is a smooth function, the noise propagation function gb() is linear
with respect to the perturbation vector b. The propagation of errors at the output
of N un-smooth decision operators through the function g() may not be characterized
linearly without losing generality. Therefore, the noise propagation function gb() has
to be evaluated for each and every type of error that can occur at the output of each
of the N decision operators.

Consider an instance where x̃ip and x̃fp takes on particular values of x̃IP and x̃FP

respectively. The signal x̃fp
N+1 is then given as

x̂
fp
N+1 = x̂

ip
N+1 + g

IP,FP
b (b) + bg,

= x̂
ip
N+1 + bf , (4.27)

where the noise propagation function g
IP,FP
b is derived from the function gb() in Equa-

tion 4.26 by using the particular values of x̃IP and x̃FP in the place of x̃ip and x̃fp

respectively. Therefore, the function gb() reduces to a function of perturbation vector
b only. It addresses the issue of propagating the perturbations associated with the in-
put signals y through the function g() for a given combination of input decision vector
combination in infinite and finite precision implementations. The decision input vectors
in finite and infinite precision jointly represent a scenario C of input conditions. The
noise generated due to fixed-point operations in implementing the function g() and the
propagation of the input perturbations can be summed up and collected at the output
of the function g() as noise bf .

If there can be Lk decision symbols that can be assigned to the output of the kth
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decision output, the vector x̃ can assume as many as C = ΠN
k=1Lk unique combinations.

Let the vector C
κ
N be defined as C

κ
N = [x̃IP , x̃FP ] where the elements of the vector take

on different particular values. The number of unique combinations of the vector C
κ
N are

as many as C × C. The particular choice of x̃IP and x̃FP represents one combination
C

κ
N which can completely define the input scenario of choice.

The probability of error at the output of the (N +1)th decision operator for a given

combination of decision input vector combinations C
κ
N is calculated as P

Cκ
N

ij which can
be calculated by using the technique presented in the previous section as

P
Cκ

N

i,j =

∫

Ri

∫

Rj

(f
Cκ

N
x (x)fb(b − x)db)dx, (4.28)

where P
Cκ

N

i,j is the probability that the value of x̃N+1 which takes the value Sj in infinite
precision and the value of Si in a finite precision implementation under the given input

decision scenario defined by C
κ
N . The function f

Cκ
N

x (x)ip corresponds to the PDF of

the signal x̂
ip
N+1 for the scenario C

κ
N and the function fB(b) corresponds to the total

quantization noise PDF bf obtained in the Equation 4.27.
The total error of probability can be calculated by considering the effect of all

possible scenarios on the output decision. That is, by taking a weighted summation of
the probability of occurrence of all possible vectors C

κ
N and their impact on the output

of the decision errors as

Pi,j =

C×C∑

κ=1

P
Cκ

N

i,j ·PCκ
N

,

=
K∑

κ=1

∫

Ri

∫

Rj

PCκ
N

(f
Cκ

N

X (x)fb(b − x)dbdx), (4.29)

where PCκ
N

is the probability of occurrence of the decision output scenarios as given by
the vector C

κ
N .

Calculating PCκ
N
: Independent Decision Errors

The probability of occurrence of the scenario C
κ
N is obtained as the joint probability

that a combination of decision operator outputs occurs according to the description of
the scenario. That is,

PCκ
N

= P ((x̃fp
1 == S1

i , x̃
ip
1 == S1

j ) ∧ . . . ∧ (x̃fp
N == SN

i , x̃
ip
N == SN

j )), (4.30)

where St
i and St

j represent the value taken by the tth decision operator in infinite and
finite precision implementations respectively. The ∧ operation represents logical and
operation. In other words, PCκ

N
is the probability of occurrence of the κth scenario. If
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the elements of the vector x̃ are un-correlated with one another, the joint probability
is obtained as

PCκ
N

= ΠN
t=1P (x̃ip

t == St
i , x̃

fp
t == St

j). (4.31)

That is, it is sufficient to know the error probabilities as discussed in Section 4.5.1
at the output of each decision operator.

Calculating PCκ
N
: Dependent Decision Errors

In practice, there can be instances where some of the decision outputs are correlated
with one another. The correlation is determined by the signal flow topology and the
correlation that exists between the input test vectors used to perform the high precision
simulation for acquiring the signal PDF. Under such circumstances, the influence of
each of the decision outputs on other decision outputs need to be considered in order
to calculate the joint probability of occurrence of the decision outputs in the scenario
C

κ
N .

Let C
κ
P be defined as a sub-scenario: a subset of the scenario C

κ
N . Then, the

elements of the vectors x̃ip and x̃fp are of length P (P ≤ N) and have the same value
as the first P elements defined in the vector C

κ
N . The joint probability PCκ

N
can be

evaluated by considering the conditional probabilities as

PCκ
N

= P ((x̃fp
N == Si, x̃

ip
N == Sj) | C

κ
N−1)·PCκ

N−1
.

= P ((x̃fp
N == Si, x̃

ip
N == Sj) | C

κ
N−1)·

P ((x̃fp
N−1 == Si, x̃

ip
N−1 == Sj) | C

κ
N−2)·

...

·P ((x̃fp
2 == Si, x̃

ip
2 == Sj) | C

κ
1)·P ((x̃fp

1 == Si, x̃
ip
1 == Sj))

︸ ︷︷ ︸

PCκ
1

.

= ΠN−1
i=0 P ((x̃fp

N−i == Si, x̃
ip
N−i == Sj) | C

κ
N−i−1). (4.32)

From Equations 4.31 and 4.32, it is clear that the calculation of the probability of
the scenario PCκ

N
requires the knowledge of the error probabilities and joint probabilities

of the N decision inputs. This requires that the probability of error values P (x̃ip ==
Si, x̃

fp == Sj) of the decision outputs be computed apriori. This essentially means
that, the probability of error at the output of every decision operator in the system
has to be calculated in precedence order starting from the input to the output of the
system. To do this, such dependencies must be traced by parsing the system graph
soon after identification of the un-smooth operators.

When the decision inputs are not correlated with one another, the joint probability
is obtained as a simple product of the various individual decision scenarios in infinite
and finite precisions. On the other hand when decision operator outputs are correlated
with one another, the calculation of the error PMF for the first slicer is obtained by
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technique described in Equation 4.22 in the previous section. The subsequent quantizer
PMF is calculated by calculating the joint probability of errors successively as described
in Equation 4.32. In the process, the intermediate results obtained during calculation of
PMF at the output of a given un-smooth quantizer is re-used for calculation of scenario
probabilities in successive quantizers.

Calculating PCκ
N
: Generic Case

Smooth

Block

x̃M

x̃1
N1−1

x̃1
N1

x̃1
1

x̃2
N2

x̃2
N2−1

x̃2
1

Figure 4.14: Propagating correlated and un-correlated un-smooth errors

For the sake of illustrating the generic nature of the proposed error PMF propaga-
tion technique, consider a smooth sub-system block which has two groups of un-smooth
inputs where the signal in one of the groups is independent of signals from the other
but is correlated with a signal in the same group as shown in Figure 4.14. Let the
signal of the decision operator at the otuput of the smooth block be x̃M . That is, the
N inputs are segregated into two independent groups consisting of N1 and N2 decision
operators. Any ith un-smooth operator is dependent on (i − 1)th operator in the re-
spective clusters. That is (x̃1

N1
→ x̃1

N1−1 → . . . → x̃1
1) and (x̃2

N2
→ x̃2

N2−1 → . . . → x̃2
1),

where → indicates the dependency between two un-smooth quantizers.
The objective is to be able to analytically calculate the probability of occurrence

of all possible scenarios resulting from N1 + N2 number of inputs. The various input
scenarios are defined by all possible un-smooth operator inputs. That is the scenario
PCκ

N1+N2
considers the different combinations of values from N1 +N2 un-smooth inputs.

Since the two groups of signals are uncorrelated with one another, the probability of
occurrence of these scenarios can be obtained by the product of scenarios of the groups
separately and scenarios PCκ

N1
and PCκ

N2
are expanded as given by Equation 4.32 indi-

vidually. Therefore, the total probability of input scenario considering all the different
un-smooth operator inputs can be calculated as
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PCκ
N1+N2

= PCκ
N1

PCκ
N2

.

=
{

ΠN1−1
i=0 P ((x̃fp

N1−i == Si)&&(x̃ip
N1−i == Sj) | C

κ
N1−i−1)

}

·
{

ΠN2−1
i=0 P ((x̃fp

N2−i == Si)&&(x̃ip
N2−i == Sj) | C

κ
N2−i−1)

}

. (4.33)

Complexity Analysis

The calculation of one conditional probability as shown in Equation 4.28 is similar to
the derivation of the probability Pi,j of the first decision operator as discussed in the
previous section. The effort to calculate the joint probability can be measured in units
of evaluating the integral numerically which calculates the values of Pi,j for a given
scenario. The number of times this has to be calculated depends on the number of
unique scenarios.

The number of unique scenarios grows exponentially with the number of un-smooth
decision inputs that need to be taken into consideration. In both correlated and un-
correlated un-smooth cases, evaluation of these many integrals is inevitable given the
number of combinations these errors would generate. Suppose if there are Lk number of
symbols at the output of the kth un-smooth quantizer, it contributes to Lk unique sce-
nario combinations. Considering all the combinations of un-smooth operator outputs,
there can be C = ΠN

k=1Lk of them in total. Therefore, the complexity of calculating
the error probabilities at the output of the (N + 1)th quantizer which depends on the
previous N un-smooth quantizers is of the order of O(C2), where C has an exponential
complexity.

4.5.3 Computing Probability of Error in Communication Systems

Estimating BER in a matched receiver

Consider a baseband communication system with a matched filter receiver as shown in
Figure 4.15. The quantization noise in the system is shown as an additive source in the
signal flow graph.

x̂fp(n)

Modulator

De-

Receiver

Matched Filter

Channel
Noise

Modulator

Quantization
Noise

y(n) x̃(n)x(n) x̂ip(n)

Figure 4.15: Base-band communication: matched filter receiver system

In Figure 4.16, the error PMF obtained by taking the Euclidean difference between
the symbols obtained at the output of the decision operator in infinite precision and
finite precision is shown. The 16-QAM scheme is chosen for transmission of data in
this experiment. The channel noise power has unit variance and the quantization noise
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Figure 4.16: Probability Mass Function of signl x̃(n) at the output of the decision
operator

power is equal to 0.5. The error PMF at the output of the slicer which is obtained by
simulation closely matches with the PMF obtained analytically. The maximum error
between probability mass function obtained by simulation and by analytical formula is
not more than 3%.

Estimating Error PMF for MIMO Sphere Decoder (V-Blast)

X̂4
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X̂2

X̂3

Figure 4.17: V-Blast: data-flow model and associated smooth blocks

The signal flow graph of the V-BLAST algorithm used for MIMO decoding as shown
in Figure 4.17 is considered. The V-BLAST algorithm with four Receiver antennas has
four un-smooth quantizers or decision operators. The symbols participating in the
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system are drawn from an unbiased BPSK source. It is assumed that these symbols are
transmitted through an additive white Gaussian noisy channel. The inputs yi in case
of computational block corresponding to every antenna is therefore a Gaussian noise.
For the sake of simplicity, it is assumed that the channel matrix is an upper triangular
R matrix. Therefore, all inputs yi for all values of i have the same standard deviation.

In general, this is not true as the channel matrix is not upper-triangular. Practically,
the channel matrix H is QR-decomposed as H = QR, where Q is an orthogonal matrix
and R is the upper triangular matrix. The input signals received are multiplied by the
transpose of the orthogonal matrix before processing it with the V-BLAST computation
SFG shown in Figure 4.17. This changes the noise power of the input yi in V-BLAST.
However, this experiment does not make any assumption about the equality of channel
noise and hence, this is representative of the processing carried out in practice.

The total cumulative noise-perturbation is considered to have a Gaussian distribu-
tion with zero mean in case of all four antennas. In order to keep the experimentation
simple in terms of numerical evaluation, the actual Kurtosis values are ignored and a
standard Gaussian is used for the quantization noise. Therefore, The Gaussian input
signal PDF and quantization noise PDF are given as

fyi
(y) =

1√
2πσch

{

e
−

(y)2

2σ2
ch

}

fB(bx) =
1√

2πσq

{

e
−

(bx)2

2σ2
q

}

, (4.34)

where σch and σq are the standard deviation of the noisy channel and quantization
noise respectively.

Figure 4.18: Decision Error rate of V-BLAST at antenna 4

To obtain the results, the standard deviation of channel noise is set to 1 and the
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Figure 4.19: Decision Error rate of V-BLAST at antenna 3

Figure 4.20: Decision Error rate of V-BLAST at antenna 2

quantization noise power is varied from 0.1 in steps of 0.1 upto 0.8. The corresponding
increase in bit error rate contributed only due to quantization noise is plotted along
the vertical axis as BERQ. The results obtained by using the analytical technique and
by simulation for the decision error at the output of each of these antennas are given
in Figures 4.18, 4.19, 4.20 and 4.21.
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Figure 4.21: Decision Error rate of V-BLAST at antenna 1

The PMF of the decision operator output corresponding to the 4th antenna is ob-
tained by evaluating the expression in Equation 4.22 for various error values. In order
to generate all possible scenarios at the input of computational block corresponding
to antenna 3, it is required to consider the (P 4

i,j) values of antenna 4. The probabil-

ity (P 4
i,j , P

3
i,j) of scenarios at the input of smooth block corresponding to antenna 2

is obtained by applying Equation 4.32. The probability of different scenarios at the
input of computational block corresponding to antenna 1, that is the joint probability
of (P 4

i,j , P
3
i,j , P

2
i,j) is obtained similarly. The total PMF of the signal at the output is

calculated by plugging in the probability numbers into Equation 4.29.
The results obtained analytically closely match the results obtained by simulation.

The deviation from simulaiton results changes differ between the different antennas. In
most cases, this is not beyond 5% in magnitude. The accuracy of results obtained by
analytical technique depends on the resolution with which the signal and noise PDF
is discretized. Also, the results obtained by simulation heavily depends on the number
of sample points used. The deviation between the results obtained by analytical and
simulation are essentially due to this experimental artefact. The quality of the result
increases with increasing resolution of the discretization of PDFs and the number of
points used for simulation. The increase in BERQ in successive antennas is due to the
addition of quantization noise as a result of using fixed-point arithmetic. The accuracy
of results obtained depend heavily on the numerical integration technique for calculating
Equations 4.22 and 4.28. In this experiment, the integration was carried out numeri-
cally by discretizing the signal and quantization noise PDF and calculating region-wise
convolution effectively evaluating fTi

(b) for every region for all combinations.
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4.6 The Hybrid Technique

Thus far, the idea of un-smoothness has been discussed in the realm of quantizers
with large step-sizes alone. However, there are other operators whose response to
perturbation by quantization noise cannot be always captured by analytical expressions.
These operators can be commonly found in situations where data statistics are used
for influencing the control-flow. The Min() and Max() operators are good examples
for such kind of un-smooth operators. These operators are used to determine the
minimum and maximum values respectively from a pool of data inputs. There are no
external control inputs in this case to influence the behavior of the operator. Even then,
statistical prediction of the outcome of minimum value and maximum value operator
in spite of the knowledge of signal statistics is difficult when there are more than two
inputs [103].

Apart from the challenges posed by un-smooth operators whose fixed-point behav-
ior does not have an analytical model, it is also possible that the response to fixed-point
inputs for certain types of sub-systems cannot be modeled analytically. Such situations
can arise when designing mixed-signal systems where some of the sub-systems are imple-
mented using analog circuits and they interact with digital inputs and outputs. Under
such circumstances the sub-system functionality has to be given a black-box treatment
and therefore it becomes inevitable to use fixed-point simulation for evaluating the
performance of fixed-point sub-systems.

During fixed-point simulation, all operations are simulated using a fixed-point li-
brary. If the system under consideration consists of smooth operators only, it is possible
to avoid performing fixed-point simulation by using the analytical techniques discussed
in Chapter 3. However, the presence of even one un-smooth operator or sub-system
whose fixed-point behavior cannot be captured makes the use of fixed-point simulation
for the entire system inevitable. In such situations, a few un-smooth operators become
obstacles for taking the benefit of analytical models.

Therefore, the focus here is on using the analytical SNS model selectively along
with floating-point simulation to reduce the total fixed-point simulation time. In this
section, sub-systems or operators whose response to fixed-point behavior is not derived
analytically are referred to as un-smooth blocks or un-smooth operators respectively.

The SNS model is selectively applied only to those sub-systems which consist of
smooth operators only. The perturbations generated by the SNS model is statistically
equivalent to the fixed-point error obtained by simulation. The same effect is recreated
by adding the perturbations generated by the SNS model to the nominal signal recorded
during simulation in infinite precision. Thereby, using the SNS model instead of fixed-
point computation greatly reduces the computational effort even while keeping the
experiment statistically consistent. This reduction in the time/ resource spent on fixed-
point computation is realised as acceleration of fixed-point simulation.

The idea of accelerating fixed-point simulation requires careful consideration before
application on practical systems. These considerations are first discussed in the rest of
this section before presenting the details of the algorithm 4.3 in Section 4.7.
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4.6.1 Preparation for Hybrid Evaluation
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Figure 4.22: A representative signal processing system

Consider a representative signal processing system with two un-smooth operators
and seven smooth blocks as shown in Figure 4.22. It is possible to derive the single
noise source model for analysis of quantization noise contribution at the output of each
smooth block. With the help of the transmit filter of the SNS model, these values
can be propagated through other smooth blocks as long as no un-smooth operator
is encountered. The first step in applying the selective evaluation is to partition the
given graph into smooth clusters separated by un-smooth operators. In the example
considered in Figure 4.22, there are no un-smooth operators in between blocks B1 and
B2. Therefore, they can be clustered together. An erroneous un-smooth input to a
smooth blocks affects the output of other smooth blocks. For example, blocks B3 and
B5 cannot be combined together as B3 has an input from both un-smooth operators U2

and U1 and B5 does not have any un-smooth input. Likewise, B4, B5 and B6 cannot
be combined together as it might be required to perform simulation of B5 and also B6

due to an un-smooth error whereas B4 does not require simulation. The cluster graph
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obtained by combining smooth blocks is also shown in Figure 4.22.
The contribution in this part of the thesis is not about the most efficient way of

identifying these clusters. Rather, it is about applying the hybrid simulation technique
on a given signal flow graph where arithmetic clusters are clearly identified and sepa-
rated from un-smooth operators. The idea behind using the proposed hybrid technique
is to make maximum use of the available SNS model for propagating and estimating
the fixed-point noise behavior of all smooth blocks B1 to B7 instead of performing
fixed-point simulation of the entire system.

4.6.2 Acceleration by Selective Evaluation

The hybrid technique is proposed to accelerate the process of fixed-point simulation.
When the hybrid technique is applied instead of fixed-point simulation, not all fixed-
point operations are simulated. Instead the decision to perform fixed-point simulation
or to use the analytical method in each iteration is subject to the signal conditions
prevailing during that particular simulation. The decision to simulate is taken only if
there is a likelihood of occurrence un-smooth errors. This reduction in simulation effort
effectively leads to acceleration of the fixed-point simulation process.
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Figure 4.23: Decision flow diagram for conditional evaluation

The decision flow diagram shown in Figure 4.23 describes the decision making pro-
cess. This decision tree is executed at the input of every un-smooth operator once
corresponding to every iteration of fixed-point simulation. In a given iteration, the
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cluster graph under consideration is traversed. During this traversal, if an un-smooth
operator or an un-smooth block is encountered, it is checked if an un-smooth error can
occur in the presence of quantization noise obtained by the Single Noise Source model.
This check takes into account the signal conditions prevailing in the particular iteration
of interest. If the output is not susceptible for an error, the nominal values obtained
at the output of the un-smooth operator are valid and there is no need to perform
simulation.

Min

x1x1 x2

Case A

x2

x1

Two Input Min() operator Case B

x2

Figure 4.24: Min(): an un-smooth operator

In some cases, it is possible to deduce that un-smooth errors cannot occur owing
to the nominal value and the quantization noise power obtained by the SNS models at
the input of the given un-smooth operator. One such scenario in the case of un-smooth
quantizers is described in Figure 4.11(case B). Another example with respect to the
Min() operator which takes two inputs is shown in Figure 4.24.

Here again, two scenarios are considered. In case A, nominally x1 is smaller than
x2 and the two values are separated enough for the quantization noise not to affect
output. In case B, nominally, x2 is smaller than x1 but they are closely spaced for the
given quantization noise power. In this scenario it is hard to say without simulation
which of the two inputs is chosen as minimum. If x1 is chosen instead of x2, it leads
to an error which cannot be determined without actually knowing the values taken by
the signals.

If the susceptibility to un-smooth error is indeterminable, a random number is
generated using the random process defined by the SNS model and it is checked if an
un-smooth error occurs by simulating the un-smooth operator only. If there are no
un-smooth errors, the nominal value at the un-smooth output is valid and the noise
can be propagated analytically. Otherwise, the rest of the system has to be simulated
at least for that particular iteration in which the un-smooth error has occurred.

4.6.3 Lifetime of an Un-smooth Error

In a system with no memory, the un-smooth error does not affect successive iterations.
Therefore, it is not required to consider the occurrences of un-smooth errors in pre-
vious iterations during simulation. In such simple cases, the application of selective
fixed-point simulation is straight forward. The nominal data acquired during the high
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precision simulation serves as a reference value of the signal during every simulation
iteration. The output of the smooth clusters in finite precision can be obtained by
perturbing the nominal output.

However, the presence of memory in practical systems requires that the effect of an
un-smooth error is considered not only in the simulation iteration in which the error
occurred but in successive iterations where the effect of un-smooth errors continue to
influence the computations. The number of iterations an un-smooth error affects the
output of a smooth cluster is referred to as the Lifetime of the un-smooth error of
the given un-smooth block. The Lifetime of a cluster can be determined by observing
the topology of the interconnect between various operations within the cluster. The
Lifetime of a cluster between any of the inputs and outputs is defined as the number
of memory elements in the path between them. If a cluster has more than one input
and output, each combination can have a particular value of Lifetime.

Considering the topology of the interconnect between clusters and the decision op-
erators, two unique scenarios: one without any feed-back and the other with feed-back
are considered. These scenarios are representative of all possible practical scenarios of
interconnect between sub-systems. These two scenarios are represented by two topolo-
gies in Figure 4.25. In both cases, there are two smooth clusters (C1 and C2) and
two un-smooth operators U1 and U2. The topology of the individual clusters (C1 and
C2) could be either feed-forward (FF) or feed-back (FB) in nature. In either case, the
first cluster C1 does not require simulation. The second cluster needs to be simulated
depending upon the values of the signal at the output of un-smooth operator U1.

hf(n)

Case A

Case B

U2

U1 U1

C2

U1

C1

C1
C2

M delays

D-delays

1-delay

Figure 4.25: Two topologies: Case A: feed-forward and Case B: feed-back

If the second cluster C2 has a feed-forward topology, the effect of decision error at
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the input is flushed out after a deterministic number of samples. This can be determined
by counting the number of delays on the path from the input to the output of the second
cluster C2. If the cluster C2 has a feed-back structure such as an IIR1 filter, the error
remains in the sub-system indefinitely. In such cases, the pseudo-impulse response2 of
the path function between the input and the output of cluster C2 provides the number
of iterations after which the effect of the un-smooth error can be ignored. The Lifetime
M , of the cluster C2 in case A between clusters U1 and U2 is determined by evaluating
the pseudo-impulse response of the path path function if it consists of feed-back loops
or by the number of memory elements on the longest delay path between the input and
the output if the topology of cluster C2 is feed-forward. In other words, the cluster C2

needs to be simulated for M subsequent samples starting from the sample in which the
error was generated in un-smooth operator U1. If another un-smooth error occurs at
the output of U1 before M samples have passed, the simulation continues until M more
samples have passed from that instant. If the cluster C2 does not contain any memory,
M takes a value of 0. Then, the cluster is simulated only for that sample where the
error occurs.

The evaluation of Lifetime of clusters for case B is different from case A as a loop
which feeds back the decision output of the un-smooth operator U2 back into cluster
C2 exists. Let the feed-back path function hf (n) consist of D delay elements witin the
cluster and one delay element outside of it. An error at the output of the operator U2

affects the output of the cluster C2 from the next sample. This is because the error is
held in the delay outside the cluster during the present cycle. Hence, the simulation of
cluster C2 following an error at the output of un-smooth error U2 in the next iteration.
In a signal processing system, a feed-back loop must contain a delay element to avoid
race conditions (sometimes also referred to as negative edge cycles [104]). Therefore,
the value of the Lifetime for the feed-back path is at least 1 when there is a decision
output is in the feed back path. For case B considered in Figure 4.25, the Lifetime of
the corresponding cluster is D + 1. The extra 1 unit for the Lifetime in this case is
contributed by the delay in the feed-back path outside the cluster. That is, the system
in case B requires D + 1 successive samples to be simulated starting from the sample
when an error occurs at the output of U2.

4.6.4 The Simulation Subgraph

Having determined the Lifetime of un-smooth errors across each input-output pair of
all systems, the next task is to identify the sub-graph of the given cluster graph which
requires fixed-point simulation in the event of an un-smooth error. The extent to
which an un-smooth error affects the rest of the system depends upon its locality. The
subgraph consisting of nodes and edges that get affected due to an error at the output
of a particular un-smooth operator can be deduced by analysing the cluster graph. A
procedure for obtaining the subgraph of the node starting from the un-smooth operator

1Infinite Impulse Response
2pseudo-impulse-response is an equivalent representation of the given filter with an FIR filter
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node where the decision error has occurred is given in Algorithm 4.2.

Procedure 4.2 :GetSubgraph (t, H)

1: \∗ Classify Edges into: forward edges (Ef ) and backward edges (Eb) ∗\
2: [EfEb] = GetDfsEdges(H);
3: \∗ Get the forward subgraph for node t ∗\
4: Tt = GetSubBFStree(H, Ef , t);
5: V = {}; \∗ Start with an empty list L ∗\
6: for all Vi in Tt do
7: L = L + Vi; \∗ All nodes in the forward path are marked ∗\
8: end for \∗ Nodes in the loop need to be marked too ∗\
9: Et = GetOutEdges(t);

10: for all e ∈ Et do
11: if e ∈ Eb then
12: ν = e.GetDestinationNode(); \∗ Get the back edge node in ν ∗\
13: L = L+ GetSubgraph(ν); \∗ Mark subgraph of ν for simulation ∗\
14: end if
15: end for
16: Return L;

The signal flow graph is a directed graph and therefore it is possible to identify the
forward edges (Ef ) and backward edges (Eb) using the BFS1 algorithm. Once the edges
are identified, the BFS tree is defined by the forward edges in a connected signal flow
graph. In case of signal flow graph which does not contain loops, the subgraph can be
easily identified by considering the connected nodes between the given node t in the
BFS tree formed by the forward edges in the BFS graph.

The back edges are considered for identifying the subgraph of the nodes present in
a signal flow graphs with feed-back loops. If one of the edges emanating from the node
under consideration is also a back edge of the signal flow graph, the subgraph of the
destination node is also marked for simulation.

In the signal flow graph example considered in Figure 4.22, all the edges except the
edge joining nodes Ṽ2 and C3 are BFS-forward edges. Consider two different cases: in
the first case, an error occurs at the output of the un-smooth operator Ṽ1 and in the
second an error occurs at the output of the un-smooth operator Ṽ2. The subgraphs of
nodes Ṽ1 and Ṽ2 are shown in Figure 4.26.

In the first case (subgraph of Ṽ1), there are no back edges emanating from node Ṽ1.
Therefore, the nodes in the subgraph are marked for simulation. In the second case, the
edge joining nodes Ṽ2 and C6 is a forward edge. The back edge Ṽ2 → C3 is considered
and the other nodes are marked for simulation following the subgraph of node C3.

The nodes C3, C4 and C5 would already be simulated by the time node Ṽ2 is sim-
ulated and hence they are marked for simulation in the next iteration. Whereas, the
simulation of node C6 begins with the present iteration itself. This is also the expected

1Breadth First Search
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Figure 4.26: subgraph of nodes Ṽ1 and Ṽ2

behavior as an error in the given iteration at the output of node Ṽ2 is separated by at
least one delay element in the feed-back loop and hence does not affect the computations
in the present iteration.

4.7 Hybrid Simulation Algorithm

The hybrid simulation algorithm is given in Procedure 4.3. It essentially consists of
two main phases. The first among them is the Pre-processing phase. This is a one
time effort and is unique for a given signal flow graph and a given set of input data.
The second phase is where the actual hybrid simulation is performed. This phase is as
good as the fixed-point simulation process in its functionality and therefore, this phase
is repeated for every given word-length assignment.

4.7.1 Pre-processing Phase

The pre-processing step is a one-time effort for a given signal flow graph of the algo-
rithm, a given set of input test vectors and for a given minimum number of bits assigned
to each of the operations. In the case of a given signal flow graph, certain operations
such as Min() or Max() that do not have an analytical model to predict the response
to perturbation are by definition un-smooth. In addition, Algorithm 4.1 Identifying
Un-smooth Boundaries, is used for determining the bounds on the word-length formats
where the PQN model can be applied. With the knowledge of minimum number of
bits that can be assigned to each of the operations in the system, the operators can be
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Algorithm 4.3 :Accelerated Evaluation

1: \∗ Pre-Processing: ∗\
2: Identify un-smooth Boundaries; \∗ Execute Algorithm 4.1 ∗\
3: for all nodes Vi in G(V,E) do
4: \∗ Identify un-smooth operators: Large step-size or by definition ∗\
5: if (minBits ≤ Vi.unsmoothBitBoundary) || (Vi is un-smooth) then
6: Vi.unsmooth = true;
7: end if
8: end for
9: H(C, Ṽ, Ẽ) = GetClusterGraph(G(V,E));

10: for all Cluster Ci ∈ H do
11: Ci.DeriveSNSModel(); \∗ SNS model for Analytical Noise Propagation ∗\
12: Ci.EstimateLifetimeValue(); \∗ Latency to purge an un-smooth error ∗\
13: Ci.SimMode = false; \∗ In Analytical mode by default ∗\
14: Ci.ResetLifetimeCounter(); \∗ No un-smooth errors ∗\
15: end for
16: for all un-smooth operators Ṽi ∈ H do
17: S(V,E) = GetSubTree(Ṽi, H) \∗ Get the sub-graph of each un-smooth operator ∗\
18: Ṽi.S = S(V,E); \∗ Store the sub-graph for use during simulation ∗\
19: end for
20: \∗ Hybrid Simulation: ∗\
21: for all n ∈ N : Input test-vector do
22: while Entire H(C, Ṽ, Ẽ) is not simulated do
23: T = GetReadyNodes(H(C, Ṽ , Ẽ)); \∗ Nodes whose tokens are available ∗\
24: for all t ∈ T do
25: \∗ Check if the node t is an un-smooth operator ∗\
26: if (ti ∈ Ṽ ) && (ti.SimMode == false) then
27: SimMode = EvaluateDecisionTree(t, n,H);
28: if SimMode == true then
29: SetSimMode(t); \∗ Set subgraph of node t to simulation mode ∗\
30: end if
31: else
32: \∗ Check if the cluster is in simulation mode ∗\
33: if ti.SimMode == true then
34: SimErrorProp(t, H);
35: else
36: SNSErrorProp(t);
37: end if
38: end if
39: end for
40: end while
41: Mark H(C, Ṽ, Ẽ) as un-simulated;
42: end for
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classified as smooth or un-smooth. This process generally requires one high-precision
simulation of the signal flow graph with the given input test vectors. The acquired
high-precision data corresponding to signals at the boundary of un-smooth operators
are stored for future reference and the rest of the acquired data is discarded. The
hybrid technique can then be used without having to repeat this pre-processing steps
for any number of repeated evaluations with different fixed-point formats as long as the
fixed-point quantizers continue to be smooth. In case of the example in Figure 4.22,
there are two un-smooth operators and the data corresponding to the input and the
output of these un-smooth operators need to be stored.

All the smooth operators are collected together to form smooth clusters. The orig-
inal graph G(V,E) with V nodes, where each node corresponds to a smooth sub-
system and is interconnected by E edges is transformed to an equivalent Cluster Graph
H(C, Ṽ, Ẽ). The cluster graph consists of C smooth clusters, Ṽ un-smooth operators
or un-smooth blocks and Ẽ edges inter connecting the clusters and the un-smooth oper-
ators. In the system considered in Figure 4.22, the blocks B1, B2 are clustered to form
cluster C1 while the other blocks are individual clusters C2 to C6. The single noise
source (SNS) model corresponding to each of the clusters Ci in the graph is derived.
This activity can be completely parallelized. The subgraph corresponding to each of the
un-smooth operator is identified by executing Algorithm 4.2. Also, a double-precision
simulation is carried out and the nominal values of the signals at the input and output
of un-smooth blocks are stored in a signal database.

4.7.2 Hybrid Simulation Phase

To effectively apply the proposed selective simulation technique, it is assumed that the
default system behavior is a small perturbation from the values obtained during infinite
precision and there shall be no errors at the output of un-smooth operators. Therefore,
counter to keep track of the lifetime of the error in every cluster is reset to zero and the
associated flag suggesting simulation mode is set to false. The idea here is to treat the
occurrence of an error as a pathological case and that the analytical models are good
enough otherwise.

The cluster graph H(C, Ṽ , Ẽ) represents the signal flow graph. The simulation of
a signal flow graph is often considered as a system processing tokens. Where, each
input test case is treated as a token. Therefore, one token is consumed and one token
is generated at the output of every sub-system in every iteration. The set of N test
vectors is considered one by one for simulation of the algorithm. In other words, the
test vector set consists of N tokens and one token is considered in every iteration and
is processed through the signal flow graph.

The input token activates a set of nodes T in the cluster graph H. These nodes
consume the input token and produce one token at their outputs. The new set of ready
nodes T are the ones for which the available tokens are sufficient for processing. This
process is repeated while the entire signal flow graph H(C, Ṽ , Ẽ) is not covered. When
the entire signal-flow graph is covered once, it marks the end of passing one token
through the system. The same procedure is repeated for the next token and repeated

122



until all tokens are processed.

Checking for Un-smooth Errors

To decide whether an error can occur at the output of the un-smooth operator, the
decision tree in Figure 4.23 is traversed by considering the reference signal at the input
of every un-smooth operator.

The algorithm for evaluating the decision tree is provided in Procedure 4.3a. Here,
the first step is to first identify the clusters from which the un-smooth operator is
drawing its inputs. This is obtained by simply looking at the in-edges of the node
representing the un-smooth operator t. Then, the reference samples corresponding to
the iteration under consideration is obtained from the data-base. Let Ci be the cluster
whose output is fed into the un-smooth operator t. Because of quantization noise, the
nominal reference value of a signal xi(n) while processing the nth token corresponding
to the output of the cluster Ci would be perturbed by quantization noise bxi

due to
smooth fixed-point quantization. If there is a possibility of an un-smooth error, then
a random value is generated from a random process corresponding to the SNS model
of the cluster Ci and assigned to bxi

. If this perturbation is large enough to cause an
error at the output of the un-smooth operator, then SimMode is set to true. It is set
to false otherwise.

Procedure 4.3a :EvaluateDecisionTree(t, n,H)

1: \∗ Identify cluster at the input of un-smooth operator t ∗\
2: Ci = GetFeedinCluster(t, H);
3: xi(n) = GetReferenceSample(n); \∗ Obtain nth reference sample ∗\
4: if SusceptibleToUnsmoothError(xi, bxi

) then
5: bxi

= GenerateRandomQNoise(Ci);
6: x̀i = xi + bxi

;
7: if t(x̀i) 6= t(xi) then
8: SimMode = true;
9: else

10: SimMode = false;
11: end if
12: else
13: SimMode = false;
14: end if
15: Return SimMode;

Therefore, in scenarios such as case A in Figure 4.24, it is possible to set the flag
SimMode to false right away. Whereas, in case B, the random values have to be
simulated to check whether an un-smooth error occurs. Even in this case, the flag
SimMode is set to true only if an error actually occurs and not otherwise.
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4.7.3 Propagating Simulation Mode

The correctness of the proposed hybrid algorithm heavily depends on performing sim-
ulation of the sub-systems whenever un-smooth errors are present. Only those subsys-
tems that get affected by the un-smooth error shall be simulated. Such sub-systems are
already identified during the pre-processing phase. The occurrence of an un-smooth
error means that an input which is not the same as in the case of high precision is
being presented at the input of the subsequent node. This potentially also means that
the output of the subsequent clusters can also change and hence the clusters in entire
subgraph is potentially presented with a different input.

Procedure 4.3b :SetSimMode(t)

1: S(V,E) = t.S; \∗ Obtain the sub-graph for node t ∗\
2: for all Vi ∈ S(V,E) do
3: Vi.SimMode = true;
4: Vi.SetLifetimeCounter(); \∗ Sets the latency count to Mi ∗\
5: end for

Such sub-systems lie on the path starting from the node at which the un-smooth
error occurred to the output of the system need to be simulated. When an un-smooth
error occurs, the SimMode flag of all nodes (clusters) that belong to the subgraph of that
un-smooth operator are marked true as shown in Procedure 4.3b. It means that the
noise has to be propagated through all those nodes by simulation. Along with setting
the flag, the Lifetime Counter, which essentially reflects the extent to which the error
continues to affect the computations of the given cluster, is set to the pre-computed
value as obtained in the pre-processing phase.

4.7.4 Evaluating Quantization Noise

The idea of conditional evaluation of sub-systems is central to the proposed hybrid
simulation algorithm. If there are no un-smooth errors, the quantization noise behavior
of the given system can be evaluated by the application of the SNS model to the
reference values obtained by the high precision simulation data. In the hybrid approach,
simulation is performed on sub-system only when there is a deviation from the reference
values caused by the occurrence of un-smooth errors.

Procedure 4.3c :SNSErrorProp(t, n)

1: bi = GetInputQnoiseParams(t);
2: bo = EvalOutputQNoise(t, bi); \∗ Evaluation by analytical method ∗\

The quantization noise statistics obtained by the application of the SNS model is
sufficient to statistically represent the quantization noise behavior when there are no un-
smooth errors. The function GetInputQnoiseParams() obtains the quantization noise
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accumulated at the input of the sub-system and then evaluates the quantization noise
at the output by using the function EvalOutputQNoise() as shown in Procedure 4.3c.

Procedure 4.3d :SimErrorProp(t, H)

1: bi = GetInputQnoiseParams(t);
2: bo = Simulate(t, bi); \∗ Evaluation by simulation ∗\
3: t.DecrementLifetimeCounter();
4: SetSimMode(t, H); \∗ Subgraph is simulated as long as errors are present ∗\
5: if t.GetCounterValue() == 0 then
6: t.SimMode = false;
7: end if

When an un-smooth error occurs at the input of any cluster, it would be marked
with a SimMode flag in Algorithm 4.3 to indicate the need for simulation. During
simulation, it is also necessary to keep an account of the propagation of the injected
un-smooth error. Therefore, in Procedure 4.3d, the Lifetime Counter associated with
the cluster is decremented. As long as the cluster is simulated, an erroneous value (i.e.
which is not the same as the reference value) continues to persist in the node t. Finally,
the output of node t can potentially affect the computations of the nodes belonging to
the subgraph of node t. Therefore, the flag SimMode is broadcasted to all the subgraph
nodes as long as simulation continues.

When the Lifetime Counter becomes equal to zero, the erroneous value is purged
out and the un-smooth operator outputs are similar to the value obtained in the ref-
erence simulation. Therefore, the flag SimMode of node t is reset. This change in the
simulation mode flag should not be broadcasted to the subgraph of the node as there
can be clusters in which the errors generated previously may continue to persist.

4.8 Performance of the Hybrid Technique

The time taken for performance evaluation is of interest when comparing the proposed
hybrid technique with fixed-point simulation.

4.8.1 Fixed-point Simulation Effort

The computational effort involved in carrying out a fixed-point simulation is essentially
that of performing all the computations in the system under consideration for each
of the input test vectors using operators with assigned fixed-precision. In a system,
if there are m different types of operators O = {O1, O2, . . . Om} and if the test suite
consists of Nt number of test vectors, the total time (Tsim) spent on simulation for
estimation of fixed-point performance is given by
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Tsim = Nt·
m∑

i=1

Ni· τi,

= Nt· tsim, (4.35)

where τi is the time taken for simulating an operation of type Oi, Ni is the number of
such operators in the system and tsim is the time taken for simualation of all operations
corresponding to one of the inputs in the test vector. It has to be noted that in a
practical scenario, some of the operator types in O could be un-smooth or could be
rendered un-smooth due to the assigned precision and the signal characteristics.

4.8.2 Hybrid Simulation Technique Effort

In the proposed hybrid approach, a finite amount of time is spent for the pre-processing
overhead which includes identification of un-smooth operators, graph transformations
and derivation of the SNS model for smooth clusters. Once the hybrid evaluation
begins, parts of the system is simulated depending upon the occurrence of un-smooth
errors. The total time for executing all the test cases can therefore be written as

Thyb = tsns + (Na· tana + Ns· t̃sim), (4.36)

where tsns is the time for performing the single noise source analysis. Some Na of
the total number of test vectors Nt are those cases in which there are no un-smooth
errors and thus do not require any fixed-point simulation. The rest Ns are those that
require parts of the system to be simulated depending upon the point of occurrence of
un-smooth error. While tana is the time required to generate random numbers, the time
for simulation in each individual case could vary. Here, t̃sim is the average simulation
time required for simulating all those cases which require partial or complete simulation
in fixed-point over Ns samples.

The value assumed by tana is very small in comparison to actual simulation as it
involves generation of random numbers which can also be pre-computed. Also, the
random numbers are used only in case the double precision reference signal happens to
be in the error boundary according to the single noise source model and the generated
signal. The value of t̃sim takes on a value anywhere between 0 and tsim and is influenced
by the number of decision errors when evaluating the input test vectors. Therefore,
t̃sim ≤ tsim.

With the application of the proposed hybrid technique, some of the samples Ns

are simulated while the others Na are handled analytically. In other words, the total
number of samples is split between simulation and analytical modelling based evaluation
(Nt = Ns + Na). The time spent on pre-processing tsns is a one-time effort performed
once for a given signal flow graph. Thus in successive optimization efforts, this factor
does not have any contribution to the time taken. Therefore, the total time spent on
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simulation by using the proposed Hybrid approach can be approximated as

Thyb ≈ Na· tana + Ns· t̃sim. (4.37)

The benefit obtained by following the hybrid approach can be quantified by an
improvement factor (IF ) which is defined as

IF = Na· tana + Ns· t̃sim.

=
Nt· tsim

Na· tana + Ns· t̃sim
. (4.38)

Typically, decision errors due to quantization noise is not very common and therefore
Ns << Na. Otherwise, the correctness of the system functionality using fixed-point
operations is not acceptable (i.e. the performance of such system implemenations is
not acceptable when there are too many errors due to fixed-point operations and such
systems are not designed in practice). As a result, it can be seen that the improvement
factor can take potentially large values. The maximum value of the improvement factor
(IF) is limited by the generation of random numbers and checking for un-smooth errors.
It is given by

IFmax =
tsim

tana
. (4.39)

The value IFmax is influenced by the number of un-smooth operators in the sys-
tem. Large systems with relatively small number of un-smooth operators tend to have
high improvement factors. As the precision of the fixed-point numbers increase, the
improvement facto tends to the value of IFmax. On the other hand, the improvement
factor IF decreases in value as the number of bits in precision is reduced until it as-
sumes a value of 1. At that point, an un-smooth error occurs in the case of every input
test vector.

4.8.3 Equivalence with Fixed-point Simulation

In the Hybrid approach, the noise at the output of a sub-system can be evaluated by
simulation (when an error occurs on one of its un-smooth inputs) or the analytical
models when there are no un-smooth errors. When an un-smooth error occurs during
fixed-point simulation, it is because of quantization noise. As discussed in Section 4.5,
the errors at the output of the un-smooth operator can be estimated with the knowledge
of the signal and noise PDF. Therefore, it is possible to obtain the error probability
using the Hybrid simulation approach by using the SNS model which is statistically
equivalent to the quantization error. Thus, the errors obtained at the output of any
of the un-smooth operators by employing the Hybrid approach are also statistically
equivalent to un-smooth errors obtained by performing fixed-point simulation.

The proposed Hybrid simulation approach is after all only an alternative, but a fast
alternative to performing fixed-point simulation of the system. Therefore, the statis-
tical moments: mean, variance and higher order moments of the un-smooth outputs
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can be obtained by a weighted average of the ratio of number of points evaluated by
simulation and by analytical evaluation. In this thesis, the equivalence between the
proposed Hybrid simulation approach and the fixed-point simulation errors is obtained
by comparing the final metric at the system output used to measure accuracy of the
system.

4.9 Application of Hybrid Technique

To show the effectiveness of the hybrid approach, the results obtained by applying
the proposed technique on several synthetic and practical examples are presented. To
begin with, a synthetic example is considered to illustrate the feed-forward topology
shown in Figure 4.25. To illustrate the case where decision output is fed-back, the
classical decision feed-back equalizer is considered. Then, the edge detection algorithm
using the morphological operators [74] is studied. This example has the Min() and
Max() operators as a part of morphological transformations. The third case is the
SSFE algorithm [76]. This algorithm consists of many QAM slicers that are used for
successive interference cancellation technique to equalize the MIMO baseband signals.

The proposed hybrid simulation technique is essentially as a faster alternative for
fixed-point simulation. Therefore, it is as important to justify the statistical equiva-
lence of this technique with fixed-point simulation as it is to show the improvement
factors (IF) obtained. The results presented in each of the examples include plots to
show the statistical equivalence between the proposed hybrid technique with fixed-point
simulation and the improvement factors obtained thereof. The statistical equivalence is
subject between the two approaches is subject to small errors due to the limited number
of points considered for simulation and errors in estimation between the analytical and
actual quantization errors.

4.9.1 Feed-forward Example

Consider the application of the hybrid technique on the feed-forward topology (case
A) shown in Figure 4.25. The smooth clusters C1 and C2 are essentially linear filters.
The quantization noise generation characteristics of each of these filters is obtained by
the application of the Single Noise Source (SNS) model. The errors obtained at the
output of each of the un-smooth operators by simulation and by employing the hybrid
technique for various input bit-widths is shown in Figure 4.27. The input word-length
is quantized is plotted on the x-axis and the symbol error rate at the output of each
un-smooth operator is plotted on the y-axis. It has to be noted that the quantization
noise contribution for precision value greater than 7 bits does not cause any error
at the output of the second cluster and therefore not represented on the logarithmic
scale. This figure essentially shows the equivalence between the hybrid technique and
fixed-point simulation.

The improvement in time measured by the improvement factor as a result of using
the hybrid technique for various quantization over fixed-point simulation is shown in
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Figure 4.27: Feed-forward case: un-smooth error rates

Figure 4.28. It can be seen that the improvement factor indicates several orders of
magnitude speed up in the time required for carrying out simulation. The speed up
factor grows in magnitude as the quantization noise reduces.

4.9.2 Decision Feed-back Equalization

Decision feed-back equalizer (DFE) is a popular adaptive equalization technique used
in various scenarios requiring error recovery. In this thesis, a basic is considered. The
block diagram of this DFE is shown in Figure 4.29 is considered. It essentially consists
of two arithmetic blocks, one feed-forward and the second feed-back marked as clusters
C1 and C2. Both these blocks are essentially tapped-delay lines whose weights are
adapted according to the LMS (least-mean-square equalization) algorithm by taking
into consideration the values stored in the registers of the delay line in both feed-
forward and feed-back blocks. The decision error is fed-back into the DFE through the
feed-back path.

Figure 4.30 shows the equivalence between fixed-point simulation and the hybrid
approach which makes use of the Single Noise Source model. The quantization noise
generated from within the clusters is added using the SNS model at the adder that
appears before the decision operator. Two sets of experiments are conducted where
the fixed-point operations are uniformly assigned the same word-lengths. In the first
case, the precision bits were set to 4 bits and it was changed to 6 bits in the second
case. The relative error between the results obtained by fixed-point simulation and the
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Figure 4.28: Feed-forward case: evolution of improvement factor (IF)
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Figure 4.29: Decision Feedback Equalizer: Block Diagram

Hybrid simulation approach is as small as 2.5% and 4.2% in cases when 6 and 4 bits
precision assigned to the fixed-point operations.

In Figure 4.31, the improvement factors obtained under various channel SNR condi-
tions is shown. To better illustrate the trend, another experiment with 5-bit precision
assigned uniformly across all fixed-point operations is considered. When the number of
bits is less, the quantization noise is high and can hence cause more un-smooth errors.
With increasing word-lengths, the number of un-smooth errors decreases. Therefore,
as the word-lengths of fixed-point operations increase the number of instances which
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Figure 4.30: DFE: hybrid simulation equivalence with fixed-point simulation

require simulation decreases thereby contributing to a increase in the improvement fac-
tor (IF). This trend is also seen across varying channel noise. That is, the improvement
factor increases with decreasing noise in the channel. The IF values achieved indicate
speedup as high as two orders of magnitude.

4.9.3 Edge Detection

Detection of edges in a given image is a problem very frequently encountered in many
image processing applications. Identifying edges in the image helps in object identifi-
cation, motion tracking and image enhancement amongst many other applications of
profound consequences. It is also often performed on blurred images in order to sharpen
or restore image quality [113]. There are many edge detection schemes used in practice.
For this experiment, one of the popular schemes which uses the SOBEL edge detec-
tor [105] followed by thresholding and morphological Erosion are applied successively
on the input image in order to identify the edges. The schematic of the edge detection
algorithm is shown in Figure 4.32.

The SOBEL edge detector is essentially a 2-dimensional linear high-pass filter. The
quantization noise due to fixed-point effects can be captured using the SNS model.
This is followed by image thresholding which detects the level of intensity of each pixel
and transforms the image into a binary image according to the user defined threshold
level. This transformation due to the threshold operator Thresh is given as
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Figure 4.31: DFE: evolution of improvement factor (IF)
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Figure 4.32: Edge Detection Schema

q(x, y, τ) =

{
0, p(x, y) < τ

1, p(x, y) ≥ 0
(4.40)

where p(x, y) is the intensity value of the pixel at the position (x, y)1 and τ is the
threshold level which can either be user specified or calculated as the mean of the
filtered image signal. The morphological Erosion operator is nothing but the Min()
operator applied using a user defined kernel throughout the image. In this experiment,
the diamond kernel is used for carrying out the experiment. The bi-dimensionality of
this kernel makes the edge detection sensitive to edges aligned in both vertical and
horizontal detections.

Consider the application of the proposed Hybrid technique on this edge detection
scheme. Of the three different operations considered, the thresholding operator and
thinning sub-system are un-smooth. The SOBEL filtering is smooth and hence captured

1Here, x is the horizontal coordinate and y is the vertical coordinate
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by the SNS model. The morphological transformations are particularly known to take
a long time due to the sorting operation involved in determining the value of every
pixel.

A double-precision simulation of the test images is carried out and the values at
the output of the filter and the threshold operator is stored. Using the proposed
hybrid simulation, if an error at the output of the threshold occurs, the morphological
transformation corresponding to only that error has to be carried out. Hence, saving
precious processing time in case of threshold values coinciding with that of the double
precision simulation.

Figure 4.33: Coins image and its edges

Figure 4.34: Edges obtained by: A. Simulation (left) B. Hybrid approach (right)

Three representative image test cases: Lena, Cameraman and Coins from the stan-
dard image processing test suite are considered in this experiment. These images are
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Figure 4.35: Edge detection: errors comparison

filtered through a Gaussian low-pass filter to emulate the blurring effect. The blurred
image of Coins and its edges detected by using the edge detection considered in this
example is shown in Figure 4.33. The edges of the Coins image detected using same
schema which uses fixed-precision arithmetic with 5 bits in precision and the corre-
sponding hybrid technique are shown in Figure 4.34. By visual inspection of the edges,
it is clear that the edge quality of these images obtained in both cases are close. In
order to have a better understanding, the plots in Figure 4.35 show the number of er-
rors occurring after thresholding in comparison with the double precision case for both
fixed-point and the proposed hybrid technique. The number of errors in both cases
are of the same order with very little difference for various fixed-point precisions. Thus
validating the statistical equivalence of the hybrid approach with fixed-point simulation
for the case of this experiment.

Figure 4.36 shows the improvement factor obtained for various test cases and dif-
ferent levels of quantization of the unit normalized image input signal. The maximum
relative error between the results obtained by fixed-point and Hybrid simulation is
about 6%. As the number of precision bits increase, the image representation tends
to be closer to the double precision case. Therefore, the improvement factor increases
by several orders of magnitude with increase in precision. In this experiment, the
improvement factor obtained indicate a speedup of three orders of magnitude.
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Figure 4.36: Edge detection: improvement factor (IF)

4.9.4 MIMO decoding with SSFE

MIMO1 system for wireless communication promises improved efficiency communica-
tion efficiency [106] and has been widely studied and used in practical systems. The
SSFE 2 [76] algorithm is a sphere decoding technique used for equalization of the re-
ceived symbol and signal detection thereof. This technique belongs to a larger class of
Successive Interference Cancellation techniques.

The schematic in Figure 4.37 shows the data-flow of the SSFE algorithm and its
building blocks for a 4-transmit and 4-receive antenna case. The schematic is essentially
performing the inversion of the R matrix obtained by performing the QR-decomposition
of the channel matrix. As many smooth operation clusters as the number of receive
antennas (one cluster corresponding to each antenna) along with those many QAM
slicers numbered 4 down to 1 are shown in the schematic. This algorithm presents a
case where un-smooth errors participate in computations and affect the output of other
un-smooth operators. By changing the configuration of the algorithm, it is possible to
vary the number of un-smooth operators.

The SSFE algorithm can be used in different configurations depending upon the
number of constellation points explored at the output of each decision. The [4221] con-
figuration is shown in Figure 4.38 with every number in the array indicating the number
of constellation points explored at the output of every decision block corresponding to
slicers sl1 to sl4. That is, at the output of the slicer sl4, four neighbouring constella-
tions are explored and hence there are four branches in the corresponding SSFE tree
topology. Similarly, two neighbouring symbols are explored at the output of slicer sl3

1Multiple Input Multiple Output Antenna
2Selective Spanning with Fast Enumeration
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Figure 4.37: SSFE data flow model and associated smooth clusters

is indicated by two edges from each node corresponding to the slicer nodes sl3 in the
SSFE tree diagram. The other two slicers explore only one symbol and therefore it is
indicated by just one edge in the SSFE tree diagram.

Consider the application of the proposed hybrid technique on this experiment. The
smooth clusters are easily identified and the SNS model is derived in each case. Due
to the absence of any memory elements within the smooth clusters, the power spectral
density of the SNS models are white and are shaped by the number of errors added.
There is just one operation in the smooth cluster corresponding to antenna 4 and hence
the quantization noise PDF is uniformly distributed. The smooth cluster corresponding
to antenna 1 on the other hand has 12 operators and hence can potentially consist of
as many noise sources. Depending upon their relative powers, the noise shape is deter-
mined by matching the Kurtosis value and noise power using the technique described
in Chapter 3. A double-precision simulation is carried out on all input test cases and
the values at the input of every un-smooth operator is stored (i.e. x̂4, x̂3, x̂2 and x̂1 in
this case) for use with the SNS model during hybrid simulation.

Figure 4.39 shows the degradation of BER1 with decreasing channel noise in case
of double precision simulation, fixed-point simulation and the hybrid technique for the
[4 2 2 1] SSFE configuration. While it is expected that the fixed-point BER is inferior
to the ones obtained by double precision, it can be seen that the difference between
the BER obtained in cases of fixed-point simulation and hybrid technique is negligibly
small. Two uniform precision assignments of 8 bits and 10 bits are considered for
comparison purposes. The data obtained indicate that the error is only as large as 10%

1Bit Error Rate
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Figure 4.38: SSFE data flow with configuration [4221]

even in case of 8-bit (lower precision) precision assignment.
The improvement factor is dependent on the number of un-smooth (QAM decision)

errors and hence the amount of noise in the system. The improvement factor in terms
of performance evaluation time which as a function of the channel SNR is plotted in
Figure 4.40 for three different precision assignments: 5-bits, 8-bits and 10-bits. It is
seen that the improvement factor (IF) increases with reduction in channel noise and
quantization noise. The increasing trend on the log scale as seen in Figure 4.40 is an
indicator of the improvement that can be obtained in case of low BER simulations.
The improvement factor achieved is as high as three orders of magnitude under low
noise conditions.

The number of un-smooth errors is also correlated to the number of un-smooth
operators. When there are many un-smooth operators, the number of instances where
un-smooth error can actually occur also increases contributing to the overall increase
in the number of un-smooth errors. Three configurations of the SSFE algorithm are
considered to study the effect of varying the number of un-smooth operators with 14-
bit precision fixed-point numbers. The results are summarized in the Table 4.1. The
time taken (in number of seconds) for fixed-point and Hybrid simulation approaches
are marked in the FP and Hy columns respectively.

Comparing the three configurations, the number of un-smooth operators at the
antenna 4 remains a constant but are varied for other antennas. The total number of
un-smooth operators for every configuration is shown in Table 4.2. With increase in
the number of un-smooth operators, the number of smooth clusters also increase. This
clearly causes an increase in the time required for fixed-point simulation. However, this
also means that there are more points where un-smooth errors can occur and results in
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Figure 4.39: BER degradation in SSFE for configuration [4 2 2 1]

SNR m = [1, 2, 2, 4] m = [1, 1, 2, 4] m = [1, 1, 1, 4]

FP Hy IF FP Hy IF FP Hy IF

19 dB 128 110e-3 1.1e+3 113 72e-3 1.5e+3 98 54e-3 1.8e+3

21 dB 128 96e-3 1.3e+3 113 72e-3 1.5e+3 98 39.e-3 2.5e+3

23 dB 129 98e-3 1.3e+3 113 67e-3 1.6e+3 102 31e-3 3.2e+3

25 dB 128 97e-3 1.3e+3 113 67e-3 1.6e+3 98 32e-3 3.0e+3

Table 4.1: Comparative study of execution times for different SSFE configurations

increased time for performing Hybrid simulation. Thus, although the numerator of the
improvement factor in Equation 4.38 increases, there is also a corresponding increase
in the denominator.

The results shown in Table 4.1 indicated that the relative increase in the denom-
inator is greater than in the relative increase in the numerator of the expression for
improvement factor in Equation 4.38. Therefore, while the consistency in increasing
trend in the improvement factor across many configurations reinforces the rational be-
hind using the hybrid approach, it is observed that the improvement factor decreases
with increasing number of un-smooth operators.

138



Figure 4.40: Improvement factor for SSFE configuration [ 4 2 2 1]

Configuration Antenna 4 Antenna 3 Antenna 2 Antenna 1 Total

m = [1, 2, 2, 4] 4 2 2 1 64

m = [1, 1, 2, 4] 4 2 1 1 32

m = [1, 1, 1, 4] 4 1 1 1 16

Table 4.2: Number of Un-smooth operators in SSFE

4.10 Summary

The problem of evaluating the loss in performance of fixed-point systems when un-
smooth operators are used for implementing signal processing systems is the focus of
this chapter. Un-smooth operators are the ones whose response to fixed-point noise
perturbation cannot be captured by the analytical techniques discussed in Chapter 2.

This chapter begins with a formal definition of un-smooth operators. Based on
this definition, an algorithm to classify given quantizers into smooth or un-smooth is
proposed. This algorithm is based on deducing the characteristic functions of the signals
and requires just one high-precision simulation for estimation of signal statistics. As a
second contribution in this chapter, a technique for accurate estimation of errors due to
un-smooth quantization is developed. This technique is applicable in case of quantizers
of any step-size. Though accurate and complete, the complexity of this technique is high
and often requires efficient implementation of multi-dimensional numerical integration
for its effective use in reducing the time. One drawback in this technique is that it is
not applicable on systems with un-smooth operators in its feed-back loop.
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As the third contribution in this chapter, a hybrid technique for accelerated simu-
lation of fixed-point system is proposed. This technique makes use of the classification
of operators as smooth or un-smooth and uses the analytical SNS model described in
Chapter 3 to evaluate the impact of finite precision on smooth operators while per-
forming simulation of the un-smooth operators during fixed-point simulation. In other
words, parts of the system are selective simulated only in cases when un-smooth errors
occur. The response to quantization noise follows analytical models otherwise. Thus,
the effort for fixed-point simulation is greatly reduced.

The hybrid technique comes with a pre-processing overhead of identifying the un-
smooth operators, identifying smooth clusters and deriving the SNS model. This over-
head is a one time effort and can be used repeatedly for any assigned signal precision.
This pre-processing overhead is often small in comparison to the time required for fixed-
point simulation. The use of simulation for propagation of errors across simulation does
not require the user to understand or characterise the non-linearities associated with
un-smooth operators. The hybrid technique accelerates the process of fixed-point sim-
ulation by selectively applying the single-noise-source model. This algorithm is capable
of working with topologies with feed-back, unlike the completely analytical technique.
Several examples, from general signal processing, communication and image processing
domains are considered for evaluation of the proposed hybrid technique. The acceler-
ation in time taken measured in terms of improvement factor is seen to be orders of
magnitude lower than the time required for fixed-point simulation.

The use of this technique for performance evaluatoin during word-length optimiza-
tion has bearings on the choice of word-length optimization heuristic. Since the im-
provement factor is higher when high precision fixed-point word-length are used, it is
better to choose the heuristic where the word-lengths descend from a high value in
successive iteration. This is in contrast with the heuristic which suggests the ascent of
word-lengths where the quantization noise remains high during many iterations. This
results in smaller improvement factors and therefore does not take full benefit of the
proposed Hybrid simulation approach.

140



Chapter 5

Hierarchical Word-length
Optimization

Fixed-point refinement of signal processing systems presents a vast combinatorial op-
timization space that needs to be explored before arriving at optimal word-lengths.
The solution space is known to increase exponentially with growing complexity of sig-
nal processing systems. A canonical representation of the word-length optimization
algorithm was introduced in Chapter 1. The NP-hard nature [34] of the word-length
optimization problem makes it difficult to guarantee optimality unless the entire search
space is explored.

The use of heuristics has been the primary technique for solving the problem thus
far. These heuristics include greedy approaches [18] such as the popular Min +1 bit
and Max −1 bit techniques. Genetic algorithms and simulated annealing approaches
have also been experimented [2; 3]. In [21], an analysis of the gradient-based greedy
approaches is made by applying the popular Lagrange Multipliers. The Marginal Anal-
ysis technique based on this analysis has been proposed for word-length optimization.
This technique is similar to the classical Min +1 bit algorithm except that the precision
bits are incremented starting from 0 bits instead of minimum number of bits. In case
of all such heuristic driven algorithms, increase in the number of variables is known to
cause an increase in the time taken together with risks of reduced chances of finding
the optimal solution. Therefore, this problem is more visible when complex systems
with a large number of variables participate in the word-length optimization problem.
Scalability aspects of the optimization algorithms is one of the important considerations
in this thesis.

In this chapter, the first contribution addresses the complexity aspect by propos-
ing a divide and conquer strategy to solve the word-length optimization problem in
Section 5.1. This section describes the constraints on hierarchical decomposition of
the system and techniques to decompose the word-length optimization problem ac-
cording to the sub-system decomposition in order to reduce the complexity of large
word-length optimization problems. An adaptation of the popular greedy Min +1 bit
algorithm approach is proposed for solving the hierarchical word-length optimization
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problem.
The second contribution addresses the combinatorial nature of the word-length

optimization problem. In Section 5.4, an alternate convex optimization framework
for word-length optimization is proposed. This technique uses the quantization noise-
power instead of the number of bits as the optimization variable. The choice of using
noise-power as the optimization variable helps in relaxing the integer nature of bit
widths and uses an approximate, yet continuous Pareto-front for making the cost-
precision trade-off. The quantization noise-budgeting problem which happens to be
convex is formulated by applying the integer relaxation of the variable is proposed.
This problem is equivalent to the word-length optimization problem in the sense that
the solution to this problem is indicative of the optimal solution to the original word-
length optimization problem. A standard convex optimization solver is used to solve
the noise-budgeting problem to obtain optimality. In Section 5.4.5, the result obtained
from solving the noise-budgeting problem is used to realise the fixed-point word-lengths
that generates as much quantization noise as it is budgeted.

5.1 Divide and Conquer Approach

The classical word-length optimization problem described in Chapter 1 is combinatorial
in nature. Although this problem is solvable when the problem size is small by an
exhaustive search, the search space is known to grow exponentially with the addition
of every new optimization variable. The divide-and-conquer approach proposed in this
thesis aims at reducing the complexity of this problem.

The proposed divide-and-conquer approach essentially consists of three steps: di-
viding the given problem into smaller sub-problems, solving the simplified problem
and combining the solution in order to solve the original bigger problem. The hier-
archical decomposition of the given optimization problem is dealt with in Section 3.1.
Classical word-length optimization approaches is used for solving the smaller problems.
Finally, the hierarchical word-length optimization algorithm is proposed to perform the
combination step.

5.1.1 Problem Division

It is clear from the discussion in the chapter 3 that the total noise power at the output
of a system is given as a function of all sub-system output noise powers. The use of
single-noise-source (SNS) model and the noise power contribution at various sub-system
output is therefore sufficient to evaluate degradation in accuracy due to fixed-precision
operations. Given the SNS model for all sub-systems, it is easy to compute the output
quantization noise power. Also, the total cost of the system which is obtained by adding
up the individual sub-system costs can be expressed as a function of quantization noise-
power. Therefore, quantization noise-power is chosen as the optimization variable for
solving the hierarchical word-length optimization problem.
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Using quantization noise power at the sub-system output as an optimization vari-
able, the cost minimization problem can be stated as

minimize (C (p)) subject to λ (p) ≤ λobj , (5.1)

where p is a vector of total noise power at the output of each sub-system. Applying
Equation 5.1 recursively starting from the topmost level to all levels in the sub-system
hierarchy, it is possible to divide the global optimization problem into smaller and more
manageable sub-problems.

Consider the hierarchical decomposition of the word-length optimization problem
for the system shown in Figure 5.1. It consists of many sub-systems that have been
decomposed into three levels of sub-system hierarchy. The sub-system components and
their topological interconnect is also shown in Figure 5.1. The hierarchical decompo-
sition of large systems is influenced by three factors which includes considerations of
complexity, presence of un-smooth operators and architectural choice.

Presence of un-smooth operators

The first consideration arises from the fact that the use of quantization noise-power
as an accuracy evaluation metric is not always possible. In the presence of un-smooth
operators, it is difficult to continue using the quantization noise power metric to prop-
agate the impact of fixed-point operations on the system output. Consequently, the
global optimization problem cannot be expressed as a cost minimization problem sub-
ject to performance constraints as a function of sub-system quantization noise-power
as given in Equation 5.1. Therefore, the sub-systems in a hierarchically decomposed
system may not contain an un-smooth operator.

In the example of the system in Figure 5.1, the first sub-system level comprises of
the four sub-systems separated by un-smooth operators as shown in Figure 5.2.

Number of optimization variables

Hierarchical decomposition of a signal processing system was discussed in Chapter 3 in
Section 3.1. The large system under consideration is broken down hierarchically into
a number of sub-systems as long as the complexity of individual sub-systems is not
manageable. In the context of this chapter, each node corresponding to a sub-system is
an optimization problem which is essentially a sub-problem of the global optimization
problem. The number of edges fanning out of a node is the number of variables the
optimization problem corresponding to that node has to deal with. Therefore, the
hierarchical decomposition of large systems tends to be influenced by the complexity
and size of individual systems.

In the example of the system in Figure 5.1, large sub-systems: S1
1 and S3

1 are
further sub-divided into many smaller sub-systems. Here, S

j
i represents the jth sub-

system problem defined at the ith hierarchical level. The levels pf hierarchy begins
with 0 which represnts the entire system. In the second level, the sub-system S4

2 is
decomposed to obtained the sub-systems in the third level. Whereas, small sub-systems
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Figure 5.1: System Level Hierarchical Decomposition for Word-length Optimization
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Figure 5.2: Word-length Optimization Problem: division into sub-problems

such as S2
1 and S3

2 are small enough and are not decomposed further. Each of these
nodes in Figure 5.2 represent a smaller word-length optimization problem.

In this example, the performance evaluation function λ(p) evaluates the system
output accuracy performance metric which is essentially not quantization noise power.
The vector p = [p1

1, p
2
1, p

3
1, p

4
1] is the output quantization noise of the sub-systems
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S1
1 , S2

1 , S3
1 , S4

1 respectively. Here, for the sake of simplicity in illustration, there is just
one fan-out from every sub-system. This need not be true in general. When there
are multiple fan-outs from a sub-system, the quantization noise at each of the outputs
will have to be considered and hence an element corresponding to each of the outputs
is added into the vector p. The global word-length optimization problem is obtained
by using the appropriate cost function C(p) and the fixed-point accuracy evaluation
function λ(p) into Equation 5.1. Similarly, the nodes in lower hierarchical levels rep-
resent the decomposition of the sub-problems into progressively smaller sub-problems
of word-length optimization. When each of these problems is individually solved and
their solution combined, the global system level problem is also solved. The solution
thus obtained need not be the most optimal in general as nothing can be conclusively
said about the quality of the leaf level problems themselves. Various factors including
the way a sub-system is defined can have an impact on the final solution.

Architectural Choices: Resource Sharing

A third constraint is that of the implementation architecture. In the design of a micro-
architecture, resource sharing refers to the fact that a hardware primitive such as an
adder or a multiplier is shared to perform many computations to implement a given sig-
nal processing algorithm. The degree of freedom to choose between different fixed-point
word-lengths for executing an operation heavily depends on this choice. An optimiza-
tion problem has as many degrees of freedom as the number of variables participating
in the optimization. Two paradigms for word-length optimization: i) uniform word-
length assignment, ii) multiple word-length assignment discussed in Chapter 2 is worth
recalling here. The uniform word-length optimization problem has only one degree of
freedom as all the operations have a single fixed-point word-length format assigned.
On the other extreme, the multiple word-length optimization problem has as many
degrees as the number of operations in the signal processing algorithm. As the re-
sources are shared, say for example there happens to be just one binary adder and one
binary multiplier for the implementation of the algorithm, the problem of word-length
optimization for a system with such constraints can have a maximum of 6 variables
corresponding to two inputs and one output of the multiplier and adder. Similarly, if
there are two types of binary adders and two binary multipliers with different fixed-
point configurations, there can be 12 variables. Essentially, resource sharing reduces
the degrees of freedom available for the optimization problem. More sharing leads to
lesser number of variables in the optimization problem and vice-versa.

Complex signal processing systems are typically built using standard signal process-
ing primitives such as the Fast-Fourier-Transform (FFT) algorithm, filters and equal-
izers. Some practical scenarios such as the use of FFT algorithm in a MIMO-OFDM
transceiver design, the use of FIR filters for discrete-time wavelet-based dyadic decom-
position and reconstruction of images can be found in practice. Many architectural
choices exist for implementing a given signal processing algorithm. One of the pos-
sibilities is to use an instance of the block primitive and all operations are executed
on that one instance whenever it requires to be executed. Other possibility includes

145



having more than one instance of the primitive to perform the computations in parallel.
In general, there can be as many as the parallelism of the signal processing algorithm
allows. An extreme possibility is that each instance of the algorithm representing more
than one sub-systems in the signal processing algorithm has a dedicated computational
resource. This is referred to as the full parallel hardware architecture in this thesis.
Architectural decision can be based on various other factors and it is not the focus of
this thesis.

Resource sharing in the context of hierarchical decomposition of systems occurs
when one instance of an algorithm such as a filter or an FFT is used for implementation
of various sub-system blocks of the system. The implementation of the algorithm
may be in hardware or software. If it is a hardware implementation, it is used in
a time-multiplexed fashion whenever it is called. If it is a software implementation,
usually it is implemented as a function call. Then, the data-types of the variables
used for calling the function and local variables within the function are implemented
are fixed. Like in the case of operator level resource sharing, the functionality of the
system is not altered by sharing the same fixed-point implementation of the algorithm.
It is assumed that such constraints are imposed by the designer and that; when an
implementation is shared across two sub-systems, they essentially use the same fixed-
point implementation. Therefore, they essentially represent one set of optimization
variables rather than two. In effect, sharing resources reduces the number of variables
participating in the system.

In this section, the objective is to study the impact of resource sharing on the com-
plexity of the word-length optimization problem. The hierarchical decomposition in
Figure 5.2 assumes that there is no resource sharing between implementations of differ-
ent sub-systems. Two scenarios can occur when two or more sub-systems participate
in resource sharing. To illustrate these two scenarios, consider adding the following
architectural resource sharing constraints.

• Scenario 1: Sub-systems S2
3 and S3

3 share the same primitive

• Scenario 2: Sub-systems S1
3 and S2

2 share the same primitive

The first scenario is that all the sub-systems sharing the resource are at the sub-
system same level. In such cases, the number of optimization variables reduces by the
extent of resource sharing. Consider the implementation of the sub-system S4

2 in full
parallel hardware. The node corresponding to this sub-system has three edges fanning
out and hence, the word-length optimization problem to optimize the node correspond-
ing to S4

2 essentially consists of three optimization variables. If the first constraint
constraint from the above list is considered, the number of variables reduces just to
two. In other words, since the sub-systems S2

3 and S3
3 are essentially implemented

using the same primitives and are optimized jointly, which effectively reduces the num-
ber of variables to two. The hierarchical graph transformation corresponding to this
constraint is as shown in Figure 5.3.

The second scenario is when sub-systems that share resources are present in different
hierarchical levels. Then, it affects the hierarchical decomposition of the system. Then,
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Figure 5.4: Resource sharing Scenario 2

the output noise-power contributed by the primitive participates in the optimization of
more than one sub-system simultaneously. It is therefore not possible to keep the two
optimization variables independent. Since the optimization problem they contribute are
also different, the uniqueness of the implementation requires that the impact of fixed-
point quantization of the primitive be taken care of simultaneously while solving both
problems. Therefore, it is required to modify the hierarchy to reflect this consideration.
In such cases, the hierarchy needs to be collapsed between the levels in which the sub-
system are participating in resource sharing.

In case of the example in Figure 5.1, consider adding the second resource sharing
constraint mentioned above. From Figure 5.3, S1

3 and S2
2 are at different levels and

belong to different parents at the second level. When this resource sharing constraint
is applied, the noise power output from sub-systems S1

3 and S2
2 have to be considered

simultaneously. This is possible by collapsing the third level and replacing S4
2 by nodes

corresponding to its sub-problems. Since the parents of the combined node S1
3 and S2

2

are different in the original hierarchical decomposition, they also have to be merged.
That is, nodes S1

1 and S3
1 also have to be merged. This transformation is as shown in

Figure 5.4. It has to be noted here that it not only collapses the node S4
2 but also does

not let splitting of node S1
1 and S3

1 .
In summary, having architectural resource sharing constraints can have a profound

impact on the decomposition structure and the number of optimization variables at
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each level in the hierarchy.

5.1.2 Conquering Sub-problems

The optimization problem can be recursively divided until the leaf-level problem size is
reached. The size of a leaf-level optimization sub-problem is small enough to be solved
by using classical word-length optimization technique. The minimum cost of the global
system is achieved by ensuring minimum cost of each of the leaf-level sub-systems. The
leaf-level sub-system optimization sub-problem can be written in the canonical form as

min(Ci(wdi
)) subject to λi(wdi

) < pi, (5.2)

where Ci and λi are the cost and performance functions of the ith leaf-level sub-system.
These are functions of the various word-lengths wdi

assigned to the fixed-point op-
erations in the ith sub-system. pi is the noise power budgeted assigned to the ith

sub-system.
In other words, implementation costs of the ith sub-system is minimized under the

accuracy constraint pi. Essentially, the divide-and-conquer approach for solving the
global optimization problem is a problem of optimal noise-power budgeting to each of
the sub-system blocks such that the minimum performance criteria at the global system
output is satisfied.

5.1.3 Combining to Solve the Global Problem

In the proposed divide-and-conquer approach, the solution to the word-length opti-
mization problem is constructed in a bottom-up fashion. The optimal noise power at
the output of every sub-system evolves over the course of the word-length optimization
iteratively. In every iteration, a sub-system noise-power is assigned to each of the sub-
systems and all the sub-system optimization problem as described in Equation 5.2 is
solved.

The guiding philosophy behind the proposed hierarchical optimization approach
is to optimize the sub-systems contained within the system in order to optimize the
system in totality. In this section, an algorithm that outlines the contours of an iterative
hierarchical optimization technique is presented. This algorithm is suitable for use in
solving the hierarchical word-length optimization problem iteratively and independent
of the actual heuristic used for driving the optimization. The various steps involved in
performing word-length optimization using the divide and conquer approach explained
in the previous sections are given in the algorithm outlined in Procedure 5.1 and 5.1a.

The function GetHierarchicalSystemTree() returns the tree T (V,E) by hierarchically
decomposing the system level word-length optimization problem. In case of the example
show in Figure 5.1, the tree in Figure 5.4 is returned. Each node in V in the tree
corresponds to a sub-system optimization problem. The edges E denote the parent-
child relationship between the nodes in the tree and always point from the parent node
to one of the child nodes. If there are no out-edges from a node Vp, it represents a leaf
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level sub-system optimization problem. The leaf level sub-system optimization problem
is intended to be solved by using classical word-length optimization techniques. On the
other hand, a node which is not at the leaf level is always connected by edges in E to
its children nodes. The number of edges going out from a node is the total number of
optimization variables that participate in the optimization problem corresponding to
that node.

Indeed, the benefit of the hierarchical decomposition is best obtained by wisely
choosing the sub-system boundaries. In this thesis, the proposed technique for hier-
archical word-length optimization is the first step in this direction. The idea is to be
able to apply the proposed technique to any given hierarchical decomposition of the
optimization problem defined by the user.

The hierarchical word-length optimization tree is rooted at VR: the node corre-
sponding to the system-level noise budgeting problem. Starting from the root node
VR, the tree branches out progressively into smaller problems of lesser complexity and
eventually to the leaf-level problems whose complexity is small enough to be managed
by classical word-length optimization techniques. The root of the tree VR is obtained
by calling the function GetTreeRoot(). The optimization process is iterative in nature
and it requires the previous states of the optimization process to be saved in order
to guide the decisions taken during subsequent iterations. The previous states consist
of the cost and the quantization noise power of the sub-system variables participating
in the optimization problem. For example, in the example shown in Figure 5.4, the
global problem S0 has three sub-systems S4

1 , S2
1 and the composite sub-system (S1

1 , S3
1).

Hence, three cost and performance parameters define the state of the optimization prob-
lem. Likewise, the problem corresponding to the composite system (S1

1 , S3
1) has four

sub-systems, And knowing the output noise power and cost of these sub-systems is
sufficient to define the optimization state of the composite sub-system (S1

1 , S3
1). In case

of the leaf-level sub-system optimization problem such as S3
2 , the classical word-length

optimization is used and hence the word-lengths of each of the fixed-point operations
and the associated cost define their optimization state. To begin with, there is no
previous state for any of the optimization problems as their optimization has not been
attempted. In other words, none of the nodes in the tree have been visited and the
noise-power at the output of any of the sub-system is unknown. The procedure Opti-
mizeSubsystems() is first called with the root node VR, the hierarchically decomposed
optimization problem tree T (V,E) and the system level accuracy performance metric
λglobal.

Procedure 5.1 : Divide-and-Conquer Word-length Optimization

1: \∗ Decompose the system-level optimization problem into a hierarchy of sub-problems ∗\
2: T (V,E) = GetHierarchialSystemTree();
3: VR = GetTreeRoot(T (V,E))
4: \∗ Begin with the global quantization noise budgeting problem ∗\
5: [Cost, Performance] = OptimizeSubsystems(VR, T (V,E), λobj);
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Procedure 5.1a : OptimizeSubsystems(Vr,Tree,λtarget)

1: \∗ Check if this node has previous states ∗\
2: if notVisited(Vr) then
3: [p̂] = GetInitialPowerBudget(Vr, Tree, λtarget);
4: for all Nodes Vd where Edge: Vr 7→ Vd ∈ E do
5: if isLeafNode(Vd) == true then
6: \∗ Vd is small enough to be optimized ∗\
7: [cd, pd] = ClassicalWLOpt(Vd,p̂d);
8: else
9: \∗ Recursive call to optimize node Vd by optimizing its sub-systems ∗\

10: [cd, pd] = OptimizeSubsystems(Vd,T (V,E),p̂d);
11: end if
12: end for
13: p = [p1 . . . pn]; \∗ Say, there are n children: Vd nodes ∗\
14: c = [c1 . . . cn];
15: \∗ Store the state for use in next iterations ∗\
16: Vr.state = [c,p];
17: else
18: \∗ Carry forward previous state from the previous optimization attempt ∗\
19: [c,p] = GetState(Vr);
20: end if
21: Ctotal = GetTotalCost(c);
22: λtotal = GetTotalPerformance(p);
23: \∗ Visit each child Vd of Vr in order of signal flow precedence ∗\
24: while [λtotal, Ctotal] is not an acceptable trade-off point do
25: \∗ Continue with states in the previous iteration ∗\
26: [c,p] = GetState(Vr);
27: \∗ Estimate new power budgets ∗\
28: [p̂] = RefineHeuristicsPowerBudget(Vr, Tree, Ptarget, p, c);
29: for all Nodes Vd where Edge: Vr 7→ Vd ∈ E do
30: if isLeafNode(Vd) == true then
31: \∗ Vd is small enough to be optimized ∗\
32: [cd, pd] = ClassicalWLOpt(Vd,p̂d);
33: else
34: \∗ Recursive call to optimize node Vd by optimizing its sub-systems ∗\
35: [cd, pd] = OptimizeSubsystems(Vd,T (V,E),p̂d);
36: end if
37: end for
38: p = [p1 . . . pn]; \∗ Say, there are n children: Vd nodes ∗\
39: c = [c1 . . . cn];
40: Vr.state = [c,p];
41: Ctotal = GetTotalCost(c);
42: λtotal = GetTotalPerformance(p);
43: end while
44: return [Ctotal, λtotal]
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Procedure 5.1a traverses the tree T (V,E) recursively starting from the root node:
from which it is first invoked in Procedure 5.1. The first step in this procedure is to
check if a history is available for the optimization problem corresponding to node Vr.
In other words, if it is being visited the first time. In case the node is being visited
for the first time, an initial noise-power budget p̂ is assigned to the sub-systems. The
technique used to make this assignment is a part of the heuristic used for solving the
word-length optimization problem. The corresponding sub-system cost is calculated
in case of every sub-system by either recursively calling the OptimizeSubsystems() or
by calling the classical word-length optimization algorithm function ClassicalWLOpt().
The resulting noise power vector p and sub-system cost vector c is recorded as the
state of the optimization problem corresponding to node Vr. If it is not the first call to
optimize the problem corresponding to node Vr, the stored state is read back.

The total cost and performance of the optimization problem is evaluated using the
sub-system cost and noise power vectors. While the present trade-off point for the
optimization problem corresponding to the node Vr is not satisfactory, the noise-power
budgets are refined and a new vector p̂ is determined. Once again, it is attempted to
realise the newly assigned noise budget by optimizing its sub-systems. A new vector
of noise power: p and sub-system cost c is obtained. The total cost and performance
Ctotal and λtotal is evaluated and the new state of optimization is recorded. The whole
process repeats in the while-loop as long the trade-off points attained is not satisfactory.

Storing the states of the optimization problem is critical in this process. If this
state information is not stored, every call to OptimizeSubsystems() will have to perform
optimization of each sub-system from the beginning. As the heuristic used or the step-
size between iterations does not change, the optimization problem treads the same
evolutionary path every time it is executed. Therefore, the state information is saved
for every optimization problem in order to save time. This also helps store the fixed-
point word-lengths. When the optimization iteration terminates, one has to just lookup
the states of the leaf-level optimization problem to obtain the fixed-point formats of
each operation.

5.2 Adapting a Greedy Algorithm

Two popular word-length optimization algorithms Min +1 bit, Max −1 bit also referred
to as the middle-ascent and steepest-descent respectively, belong to the class of greedy,
multi-variable optimization heuristics [18]. Both algorithms use the actual fixed-point
precision word-length of various operators as optimization variables. They use an iter-
ative procedure for word-length refinement which is similar to the framework outlined
in Procedure 5.1a to refine the word-lengths.

In this thesis, the Min +1 bit algorithm is chosen for adaption to the hierarchical
optimization technique. This is chosen owing to its simplicity and popularity. Since
the noise power is used as the optimization variable instead of the number of precision
bits, this algorithm is referred to as the Max −δP dB algorithm. Here, δP is the noise
power step expressed in decibels and hence “dB” is used in the place of bits.
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5.2.1 Initialization: maximal value of pi

The initialization step defines GetInitialPowerBudget(), which assigns the maximum
noise power value for each noise source pi. The maximum initial noise power at the
output of a sub-system is that value which can individually reach the total accuracy
target independent of other noise sources. That is, for finding the maximal value of a
variable pi, the other noise sources pj ,∀j 6= i are set to zero. This is formally stated as

max (pi) such that
pj = 0 ∀j 6= i

λ(p) ≥ λtarget,
(5.3)

where λtarget is the maximum acceptable noise-power at the system output. The actual
values of various Pi is different from one another depending upon the path function
from a given sub-system.

5.2.2 Iterative Optimization

In every iteration of the while-loop in procedure OptimizeSubsystems(), the sub-system
cost and performance are used to calculate the total system cost and performance. The
call to RefineHeuristicsPowerBudget() in every iteration re-adjusts the noise power
budgets.

To find the best direction for convergence onto the optimal noise power distribution
of the variables, the opportunity to decrease the noise power of each variable Pi by a
value δp is explored. Let pk and ck be the quantization noise power and cost vector
obtained at the kth iteration. Let δpi

be a vector having all its element null except the
element i which is equal to the noise step δp. The change in system performance at the
kth iteration ∆λi(pk) is calculated by evaluating the different between the total system
performance in the previous interaction and the total system performance due to the
change in the sub-system noise-power assignment. This is written as

∆λi(pk) = λ (pk − δpi
) − λ (pk). (5.4)

The corresponding change in cost ∆ci(p(k)) can be evaluated as a difference in the
total system cost in the previous iteration and the total system cost resulting due to
change in noise-power assignment. This is written as

∆ci(pk) = c (pk − δpi
) − c (pk), (5.5)

where κi, the gradient of change corresponding to each of the ith sub-system is the ratio
of the change in performance and the change in cost of the ith sub-system.

κi(k) =
∆λi(pk)

∆ci(pk)
. (5.6)

In every successive iteration, the overall system performance improves which means
that the sub-system noise levels decreases while the cost of the total system increases.
All the κi are sorted in descending order such that the first element in the sorted list
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corresponds to that sub-system which improves the noise performance of the overall
system at the smallest expense of the cost.

The step change in noise power δP is set to a convenient value by comparing the
orders of magnitude of noise power allowed in the system. If the step is too small
in magnitude, too many iterations are required whereas if it is too big, the solution
obtained could be far from optimality.

5.2.3 Optimality of the Noise-Budgeting Technique

The hierarchical optimization strategy presented in the previous section essentially
relies upon the ability of the classical word-length optimization technique. Therefore,
it is first important to discuss the classical word-length optimization process before
dwelling into the proposed hierarchical technique.

Given the NP-hard nature of the classical word-length optimization problem, none
of the existing techniques can achieve true optimality of the word-length optimization
choices. Therefore, it is expected that the hierarchical technique would at best be only
as optimal as the classical optimization algorithm used to optimize its sub-systems.
Moreover, the choice of the noise step δpb, the choice of initial power distribution
and the heuristics used to refine the noise-power budgets in the proposed hierarchical
method casts its effects on the result obtained.

In this section, the optimality of the greedy algorithms in general and the Min +1
bit algorithm in particular is considered. The combinatorial nature of the word-length
optimization problem is well known. The hierarchical formulation of the optimization
problem does not affect this nature.

Classical Word-Length Optimization

In the classical word-length optimization problem, word-lengths are used as optimiza-
tion variables. The integer values of the fixed-point word-length discretizes the quantity
of noise injected into the sub-system. The noise-power at the sub-system output, which
is a function of the input noise-sources also takes on discrete values.

In the greedy heuristic such as the Min +1 bit algorithm, the initialization step is
set to the minimum number of bits such that only the minimum accuracy criteria is
met individually by each of the fixed-point variables. This is similar to Equation 5.3
described in the initialization condition in the Max -δpb algorithm. It is written as

min (wi) such that
wj = max bits ∀j 6= i

λ(w) ≥ λtarget,
(5.7)

where max bits is the maximum bits that can be assigned to the fixed-point numbers.
This is usually dependent on the platform on which the system is implemented and
typically the word size of 32 bits is used for this purpose. The word-lengths wj of
all signals thus obtained after initialization are the minimum fixed-point word-lengths
assignable to each of the operations. The performance and cost of such a fixed-point
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system are evaluated. Clearly, the minimum word-length vector wmin has the smallest
cost but its accuracy is very compromised.

The objective of the Min +1 bit algorithm is to iteratively improve the precision of
the fixed-point operations such that the required accuracy performance is satisfied. The
iterative fixed-point refinement process comprising of cost and performance evaluation
in every iteration is shown in Figure 5.5.

Performance constraint met

Initialize
[Set Bits]

Perf

Eval

Cost

Eval

Optimize
[Set Bits]

Exit

Figure 5.5: Iterative Fixed-point refinement

In every iteration, the performance and the cost of the fixed-point system with
assigned fixed-point word-lengths are evaluated. The fixed-point operator which con-
tributes minimal increase in the overall cost while giving the best performance is chosen.
The accuracy performance of the system is expected to improve in every iteration until
it satisfies the specified performance criteria. It has to be noted here that the exit
condition is merely taking care of meeting the performance criteria. It can so happen
that many bit-increments may result in the same performance and cost trade-offs. But
choosing one over the other can indeed be sub-optimal for the scenarios presented in
successive iterations. In such a circumstance, the Min +1 bit algorithm does not search
all possible options but goes with just one of the available options without checking
for its consequences in successive iterations. Therefore, by following the Min +1 bit
algorithm it is not possible to guarantee that minimum cost is achieved. It also means
that there is a chance that solution obtained is indeed optimal. However, nothing can
be said about it unless all other options are explored. In other words, it is just that
optimality cannot be proved even when an optimal solution is obtained.

The two-input butterfly computation structure commonly used in FFT computation
is considered as an example to illustrate the effects of the Min +1bit heuristic. In
particular, this experiment shows the impact of a bad decision which is made in the
initialization step.

Figure 5.6 shows all possible cost and accuracy trade-off points with energy cost
on the x-axis and the quantization noise power on the y-axis in the log-scale. Each of
these points corresponds to the various cost vs. output noise-power trade-off for the two
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Figure 5.6: Cost vs. Accuracy trade-off for an FFT butterfly using Min +1 bit word-
length optimization algorithm

input butterfly. The Convex-Hull boundary marked on the figure is a convex polygon
surrounding all the trade-off points. The convex-polygon is obtained by considering the
points on a linear scale. However, in order to distinctly show all the trade-off points, the
graph is plotted on the semi-logarithmic scale with the vertical axis on the logarithmic
scale. The choice of logarithmic scale is the reason why the polygon is not closed in
Figure 5.6.

The optimal choice for any given accuracy constraint is obtained by choosing the
points closest to the origin. The boundary of the Convex-hull nearest to the origin
contain many such points and can hence be considered the Pareto-optimal front of the
two-input butterfly.

The iterative refinement of the Min +1 bit algorithm is performed with two different
starting points and the evolution of the solution is marked on the graph. The trajectory
of evolution of the cost and noise-power at different operating points explored in every
successive iteration is plotted. The heuristic used to initialize and optimize the initial
word-length or noise power assignment governs the optimality of the result obtained.
In the first case (optimization evolution 1), the evolutionary trajectory eventually con-
verges with the Pareto-optimal boundary line and eventually satisfying the accuracy
constraint. As the solution in this case lies along the Pareto-optimal curve, the cost C1

is the smallest cost of the fixed-point implementation such that the input noise-power
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constraint is satisfied. The second case (optimization evolution 2) shows that the evo-
lution trajectory runs parallel to the Pareto-optimal curve. The cost C2 obtained in
the second iteration is larger than cost C1 and is therefore clearly sub-optimal. This is
in spite of the fact that the initial starting point in the second case was much closer to
the Pareto-optimal curve than in the first case. In fact, the initialization as suggested
by Equation 5.7 was performed in the second case.

This is an example of the un-guided behavior of the greedy algorithm. Clearly, the
initial condition plays an important role in arriving at an optimal solution. It is not
possible to determine the initial condition from where optimality can be guaranteed
by following the Min +1 bit heuristic. In other words, starting from a point which
may lead to optimality is a matter of chance. The reason for this kind of behavior is
the non-convexity of the cost vs. fixed-point word-length trade-off and that the word-
length optimization is an integer programming problem and the word-lengths cannot
take real numbered values.

5.2.4 Hierarchical Optimization

The convergence of the loop onto the exit condition is decided by the kind of choices
presented for carrying out the cost vs. accuracy trade-off in every iteration. In the
hierarchical setup, as the smaller problems are solved, the cost-performance trade-off
points of the sub-systems placed one level above the hierarchy are evaluated. The
system level choices depends on the cost-performance trade-off analysis of the sub-
systems. If the choice of word-lengths of the sub-systems is not optimal due to the use
of classical word-length optimization for sub-system optimization, it wrongly influences
the system level trade-off balance. The effect of sub-optimal choices can accumulate
across various hierarchies and take the working point very far away from the optimal
choice. Consequently, it is not necessary for the hierarchical and the classical flat word-
length optimization routines generate the same result. However, the divide and conquer
nature of the hierarchical procedure reduces the total number of global iterations. Thus
reducing the number of iterations required for performing the optimization.

Combinatorics of the Noise-Budgeting Problem

The discrete combinatorial nature of the original word-length is the result of the integer
word-length assignment. Although the hierarchical approach defined in Equation 5.1
introduces a real valued optimization variable: the sub-system quantization noise-power
instead of integer word-lengths, the optimization problem continues to preserve the
discrete combinatorial optimization nature of the original problem. This is because of
the actual values of noise-power assigned to hierarchical optimization variables take on
discrete values depending upon the word-length assignments. For example, consider the
case of hierarchical decomposition of the FFT algorithm. If the two-input-two-output
butterfly is considered to be a sub-system with which the FFT of any size can be built,
Figure 5.6, shows the various discrete points of the average quantization noise power
at the output of the butterfly for different word-length combinations.
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Input Constraints

Apart from the constraint on the total output performance, the fixed-point format of
the input signals has to be taken into account while performing the optimization. Such
input constraints arise in many practical scenarios in systems implemented using digital
hardware or software interfacing with ADC1 whose bit-widths are determined by other
considerations such as standardization, analog circuit design etc. The presence of input
quantization means two things: i) there is already some quantization noise that would
contribute to the total output quantization noise, and ii) some of the signal formats
are already fixed and they do not participate in the optimization.

Due to input quantization, the actual noise at the output added by the fixed-
point operations within the sub-system is much less than the target total quantization
noise power. So, the actual optimization has to be performed by setting the target
quantization noise power to the difference between the total output quantization noise
power and the contribution to the noise power due to quantized input. The input
constraint contributes to a certain amount of quantization noise at the system output.
The noise-power corresponding to this is the least magnitude of noise-power that can
be achieved by using a fixed-point system. The corresponding cost of the system can
be obtained by propagating the bit-widths across operators in the given system. Also,
the input constraint narrows down the combinatorial search space.

Precedence Constraints

Each sub-system word-length optimization problem is solved for a specified noise budget
independently of the other. When all the sub-systems are optimized, each of the sub-
system signals are assigned a certain precision such that the noise-power criteria of sub-
systems are satisfied. At this stage, even though the sub-systems are set to function at
optimal word-lengths independently, they have to be made compatible with one another
so that they work as a system. The compatibility issue arises of different word-lengths
assigned to signals at the interface of each of these sub-systems. In other words, the
noise contribution from each sub-system must be capable of generating the budgeted
amount of noise-power into the system even in the presence of input biases from other
sub-systems.

sBSub-System Sub-System

A B

sA

Figure 5.7: Mismatch between assigned word-length formats

1Analog to Digital Converters
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Consider two sub-systems A and B with a common signal s as shown in Figure 5.7.
While the signal s is an output from sub-system A, it is also an input to sub-system
B. The sub-systems A and B are optimized independently and therefore the signal s
participates in the optimization of both and can be assigned two different bit-widths
in either cases sA and sB respectively. Depending upon the number of bits assigned to
signal s, two scenarios occur when combining the various sub-systems

• Case 1: sA ≥ sB

• Case 2: sA < sB

In the first case, the signal s has the same number of bits assigned to it by both
the sub-systems or it is quantized with larger quantization step-size in sub-system B
than in sub-system A. This incompatibility can be resolved by inserting a quantizer
with suitable step-size. In the second case, the signal is already quantized with a
larger step-size. Over-riding one of the decisions by assigning sA or sB bits affects the
quantization noise and cost trade-off in both sub-systems.

The word-length mismatch problem can be overcome by optimizing sub-systems in
a precedence order defined by the signal flow in the system. The sub-systems among
which the quantization noise power has to be distributed can be carried out in the
order of precedence defined by the flow of the signal in the system. Thereby, the in-
put constraints of every sub-system is defined by its predecessor sub-systems in every
iteration and the word-length of such signals is determined during the optimization of
the sub-system from where the signal emanates. In example considered in Figure 5.7;
since the signal sA emanates from the sub-system A, the responsibility of finding op-
timal word-length for this signal is with the optimization procedure for sub-system A.
Thereby eliminating the causation of the condition in where sA < sB.

5.3 Fixed-Point Refinement of a MIMO-OFDM Receiver

In this thesis, the example of a MIMO-OFDM receiver is chosen for word-length opti-
mization. The high-level block diagram of the receiver system is shown in Figure 5.8.
The parameters of this transmission scheme are summarized in Table 5.1. The rest of
the conditions are assumed to be ideal.

Parameters Value Description

Receive Antennas 4 Number of antennas in the receiver

Transmit Antennas 4 Number of antennas in the transmitter

Number of Sub-carriers 64 Total number of sub-carriers in the OFDM symbol

Number of data carriers 48 Sub carriers used for actual data transmission

Cyclic Prefix 16 Cyclic repetition of time domain samples in order
to avoid inter symbol interference

Table 5.1: Transmission scheme parameters of OFDM-MIMO
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Figure 5.8: 4 × 4 MIMO-OFDM receiver system

This system consists of various functions involving arithmetic and decision oper-
ations. Functionally, there are three sub-systems: the FFT sub-system, the QR-
decomposition sub-system and the V-BLAST sub-system. In the scheme of OFDM
transmission, a 64 sub-carrier 4×4 MIMO, 16-QAM transmission scheme is considered.
Four antennas are shown in the figure and the samples received are lined up in blocks of
64 by the serial to parallel converter: S2P blocks. The S2P block does not perform any
computation and hence does not require any quantization noise considerations. The
FFT sub-system computes 64 point fast Fourier transform. The QR-decomposition
sub-system decomposes the 4×4 channel matrix into two matrices, Q and R which are
4×4 orthogonal matrix and a 4×4 upper triangular matrix. The V-BLAST sub-system
performs the basic sphere decoding of the received signals to recover the transmitted
16-QAM symbols.

Each functional sub-system can be further decomposed into multiple levels of hi-
erarchy. As a first step, these functional sub-systems are individually analyzed for
suitability of applying the proposed divide-and-conquer technique. The hierarchical
decomposition analysis and the optimization of the whole receiver system is presented
towards the end of this chapter.

5.3.1 FFT

The radix-2 FFT is one of the widely employed signal processing algorithms. The
signal flow graph of a N -point FFT and its hierarchical decomposition is shown in
Figure 5.9. Here, the decimation in frequency [90] version of the FFT algorithm is
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considered. Figure 5.10 shows the hierarchical decomposition tree of the FFT word-
length optimization problem.
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Figure 5.9: Hierarchical Decomposition of the FFT algorithm
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Figure 5.10: Hierarchical Decomposition tree of the FFT algorithm

An N -point, radix-2 FFT algorithm has log2(N) stages. Each stage can be thought
of as a sub-system with N inputs and N outputs. Each of the stages are composed of N

2
butterfly operations. The operations performed in every successive stage are equivalent
to performing the computations in the first stage of the FFT algorithm two times but
with half the number of inputs. Thus, the rth stage of an N -point FFT consists of 2r−1

first stages of an N
2r−1 -point FFT. It is clear from Figure 5.9 that the output from the

first stage feeds into two independent N
2 FFTs and this repeats in successive stage.

The N -outputs of every stage are correlated with one another. In case of the
first stage of an N -point FFT, the ith butterfly outputs are captured as the ith and
the {i + N

2 }th output of the first stage as More precisely, the first N
2 outputs are

correspondingly correlated with the next N
2 outputs. Utilizing this homogeneity in

the FFT structure, the first stage of the FFT operation is split into two sub-systems:
upper-half consisting of all the addition operations and the lower-half consisting of the
subtraction and complex multiplication of the butterfly operation. These are marked
as blocks Bu

1 and Bl
1 in Figure 5.9. Each of these sub-system blocks feed into the first

stage of N
2 -point FFT. Following this scheme across all stages, the rth stage of the

160



N -point FFT consists of 2r sub-systems with 2r−1 sub-systems corresponding to the
upper-half and an equal number of lower-half sub-systems.

In the hierarchical decomposition scheme, an N -point FFT consists of 2(N − 1)
number of sub-systems. This introduces 2(N − 1) number of sub-system noise power
variables in the optimization problem. Each of the sub-system noise power variables
corresponds to the average noise power of all its outputs. A simple average is feasible
as the sub-system outputs of both upper-half and lower-half sub-system types are
uncorrelated. In contrast, the classical flat-approach requires each operation to be an
optimization variable. Each butterfly consists of at least three operations corresponding
to one complex addition, one complex subtraction and one complex multiplication.
Therefore, the classical word-length optimization algorithm has 3N

2 log2(N) number of
variables.

5.3.2 QR Decomposition

The CORDIC algorithm [83] is used to perform QR decomposition of a given matrix H.
In order to perform the decomposition, the CORDIC algorithm is used in two modes.
In the vector mode, the CORDIC algorithm is used to measure the angle of a given
vector. Input to the CORDIC algorithm in this mode is an ordered pair (X,Y ) and
the output is the corresponding polar co-ordinate representation (r, θ). In the rotation-
mode, it is used to rotate a given vector by a specified angle. Input to the CORDIC
algorithm in this mode is an ordered pair (Xi, Yi) which is rotated by an angle θ to
produce another (Xo, Yo) in rectangular co-ordinate representation. The schematic of
typical usage of the CORDIC algorithm for performing QR-decomposition is shown in
Figure 5.11.

Ỹ0
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θ
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CORDIC

X̃i

Figure 5.11: CORDIC for QR decomposition

The CORDIC algorithm involves repeated application of a computational transform
so as to generate the desired coordinate transformations. Using a very high precision
arithmetic system, the quality of the result improves with successive iterations. The
computation and signal flow graph in both types of the CORDIC algorithm used for
QR decomposition is essentially the same and is given as
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xi = xi−1 + di· yitan(φi); (5.8)

yi = yi−1 − di·xitan(φi); (5.9)

where (xi, yi) corresponds to the output of the ith iteration and φi corresponds to the
angular step. The expression for tan(φi) is approximated by 1

2i . The signal-flow graph
for one iteration of the CORDIC algorithm is as shown in Figure 5.12. This is repeated
many number of times to achieve the required accuracy of angle of rotation of the
vectors under consideration.
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Figure 5.12: Computation data-flow in the vector mode CORDIC algorithm

In the vector-mode, the decision di is of unit magnitude whose sign is the same as
Yi−1. The sign of Yi in successive iterations contributes to the angle of rotation θ. In
the rotation-mode, the di is extracted from the sign information stored in the input θ.

The schematic in Figure 5.13 shows the signal flow graph for using the CORDIC
algorithm to generate the Q and R matrices from the input matrix H such that

H = Q · R (5.10)

The signal-flow-graph in Figure 5.13 generates the upper triangular R matrix. The
Q matrix is obtained by successively multiplying the Q′ matrix constructed after every
vector mode operation. The SFG for the construction of Q is obtained by constructing
the SFG for matrix multiplication and is not shown here. Also, the quantization noise
introduced by the process of matrix multiplication is ignored in this experiment for the
sake of simplicity.

The SFG for QR-decomposition of a 4×4 matrix essentially consists of three stages
applied on the matrix H successively one after another. These three stages, which
eventually generate the R matrix are shown in Figure 5.14. This also corresponds to
the hierarchical decomposition of the SFG presented in Figure 5.13. The hierarchical
decomposition tree of the word-length optimization problem is shown in Figure 5.15.

There are 32 iterations of the signal flow graph in Figure 5.12 used to perform
every CORDIC rotation. A CORDIC vector operation is followed by as many CORDIC
rotation operations as the number of columns in the matrix under consideration. One
of the outputs of the CORDIC operator in the vector mode is ideally 0. Due to the
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Figure 5.13: QR decomposition using CORDIC operations
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Figure 5.14: Hierarchical decomposition of the QR algorithm
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Figure 5.15: Hierarchical decomposition tree of the QR algorithm

errors due to CORDIC rotations, this value need not be zero. Since these output does
not affect the computation, the non-zero values of these outputs can be disregarded.
Mathematically, the non-zero output of the vector mode calculates the magnitude v

and the angle θ of the vector represented by the two inputs as

v(x, y) =
√

x2 + y2 (5.11)

θ = tan−1(
y

x
) (5.12)

The rotation mode CORDIC operator consists of two outputs (c, d) representing
the rotated input vector (x, y) by an angle θ. The mathematical expression is written
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as

c(x, y, θ) = x · cos(θ) + y · sin(θ)

d(x, y, θ) = y · cos(θ) − x · sin(θ) (5.13)

The metric for evaluating the accuracy of QR decomposition is the difference be-
tween the original matrix H and Ĥ obtained as Ĥ = Q ·R. The mean of the variance of
each element of the matrix ∆H = H − Ĥ is used as the metric in this experiment. In
this experiment, the entire CORDIC algorithm is used as operators instead of adders,
multipliers and decision operators. These algorithms are essentially binary operators
with two inputs and one output for the output v in the vector mode and outputs c and
d in the rotation mode. Consider the computation of the correlation ρcd between the
output of the rotation mode CORDIC operator.

ρcd = E(c(x, y, θ) · d(x, y, θ)) − E(c(x, y, θ)) · E(d(x, y, θ))

= E((x · y){cos2(θ) − sin2(θ)} + {y2 − x2}(sin(θ). · cos(θ))
−E(x) · E(y){E(cos2(θ)) − E(sin2(θ))}
−E(y)2E(sin(θ))E(cos(θ)) + E(x)2E(sin(θ))E(cos(θ))

= {E(x · y) − E(x)E(y)} · {E(cos2(θ)) − E(sin2(θ))}
+{E(y2 − x2) − E(y)2 + E(x)2} · {E(cos(θ)) · E(sin(θ))} (5.14)

From the SFG, the input x and y to the first CORDIC operators are independent
from each other. Therefore, the value of ρcd is always 0. Consequently, a noise power
for each of the CORDIC operator outputs v, c and d is assigned. Since θ is shared by
many rotation mode CORDIC operators, it is assumed that the rotation mode CORDIC
operator have the same quantization noise behavior. Therefore, 9 noise powers in 3× 3
configuration (one each for v, c and d occurring 3 times) for the first stage, 6 noise
powers for the second and 3 noise powers for the third stage can be assigned. A flat
approach therefore consists of 18 variables.

5.3.3 V-BLAST Decoding

The V-BLAST algorithm for a 4 antenna receiver consists of as many sub-systems.
These sub-systems are separated from one another by a discriminator as shown in
Figure 5.16. The computations of these sub-systems essentially consist of calculating
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the inverse of the H to recover the transmitted signal x̃ first by inverting Q as

y = H · x
ý = QT · y

= {QT · Q} · y
= I · R · x
= R · x (5.15)

The inversion of matrix R is obtained starting from the 4th antenna to obtain x̃4.
This result is used to determine the value of x̃3. Both x̃4 and x̃3 is used to determine
the value of x̃2. Further, the values of x̃4, x̃3 and x̃2 is used to determine x̃1 as shown
in Figure 5.16.
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Figure 5.16: 4 × 4 V-BLAST algorithm

The decomposition tree of the V-BLAST algorithm is shown in Figure 5.17. It is
clear from this tree diagram that the hierarchical word-length optimization problem has
four optimization variables. In the flat approach, this algorithm consists of as many
variables as the number of fixed-point operations which is 38 in number.

V-BLAST

INV2 INV3 INV4
INV1

Figure 5.17: Hierarchical decomposition tree of the V-BLAST algorithm

5.3.4 Results: Flat vs. Hierarchical Optimizaiton approaches

In this section, the performance of the proposed hierarchical optimization algorithm in
Section 5.2 and the classical Min +1 bit algorithm are compared in terms of the final
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cost vs. accuracy trade-off achieved. As discussed in Section 5.2.3, both algorithms are
iterative in nature and the exit condition requires that the quantization noise power
criteria is met in both cases. The greedy nature of these algorithms and the non-convex
nature of the word-length problem does not provide any control over the convergence
of the solution. Therefore, very often these algorithms end up optimizing the fixed-
point system with a better accuracy performance than what is required by the problem.
Such solutions wastefully increase the cost while offering better accuracy when it is not
required. These trade-off points can be thought of as solutions obtained for word-length
optimization problems with a tighter accuracy constraint. In this thesis, such solutions
are referred to as over-optimized solutions.

The FFT, QR decomposition and the V-BLAST algorithms are considered for il-
lustrating the efficiency of the divide-and-conquer strategy. All experiments are carried
out in the Matlab environment. In case of the FFT algorithm, it is possible to derive
fully analytical expressions for estimation of quantization noise power using techniques
described in Section 2.3.2. The QR algorithm uses CORDIC operations for performing
rotations. The CORDIC operator is a fast and inexpensive way of either determining
the magnitude of a given complex vector or to rotate the given vector by a given angle.
It uses simple shifting and scaling operations to achieve this instead of using complex
trigonometric functions. As a consequence, there is an error associated with the values
obtained by the CORDIC algorithm with respect to trigonometric calculations. This
effect together with degradation due to fixed-point quantization is studied exhaustively
by simulation in this thesis. A detailed profiling of such operations is presented in
Section 5.4.6. The input vector set with as many as 105 samples is considered for char-
acterisation of CORDIC operations by simulation. These samples are sourced from
a sample space which is distributed uniformly in the range [−1, 1). The V-BLAST
algorithm is implemented in Matlab and the Hybrid technique described in Section 4.6
is used to perform fixed-point performance evaluation. Here, 104 input samples from
an unbiased 16-QAM source is considered for performing simulation using the Hybrid
technique.

For all simulation based evaluations, sufficient number of points are used
It has to be noted here that the graph depicting the cost of the fixed-point system

in Figure 5.18 is normalized with respect to the cost obtained by the flat approach. In
Figure 5.19, the assigned target is set to the 100% mark. Due to the combinatorial
nature of both hierarchical as well as flat approach, the actual performance obtained
is 100% or better in which case, the performance graph raises to a point which is
lesser than 100%. As shown in Figure 5.20, the number of iterations required for
performing the global iterations reduces by nearly an order of magnitude in all the 5
cases considered. The optimization processes of each of the sub-systems in the MIMO-
OFDM receiver is considered individually in the following sections.

FFT

In case of the FFT algorithm, the number of variables used for solving the global
optimization problem is reduced by order of O(log2(N)). The FFT algorithm with 4, 8
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Figure 5.18: Comparison between cost of implementation obtained: flat vs. hierarchical
optimization techniques

Figure 5.19: Comparison between target performance achieved: flat vs. hierarchical
optimization techniques

and 16 points are considered. The total cost of implementation of the FFT algorithm
and its total quantization noise performance obtained in all three cases showcase three
different scenarios. In the FFT-4 case, the cost and the implementation are comparable
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Figure 5.20: Comparison between the number of iterations: flat vs. hierarchical opti-
mization techniques

with one another. In case of FFT-8, the cost in the hierarchical case is nearly 1.6 times
higher than in the cost obtained by performing the classical word-length optimization.
This is because of the over-optimization of performance by the hierarchical technique.
In the third case of FFT-16, the quality of the results obtained in terms of cost vs.
performance trade-off is diagonally opposite to that of case FFT-8. That is, the cost
of implementation obtained by using the hierarchical optimization is as less as half the
value obtained by the cost of fixed-point system optimized using the flat approach.
In other words, the flat approach unnecessarily improves the over-optimizes the FFT
algorithm in the third case. Optimizations of FFT algorithms with higher number of
points are not considered in the interest of time required by the flat approach.

The reduction in number of iterations and the cost vs. performance trade-off
achieved eventually is evident from the graphs shown in Figure 5.21 for the FFT-
16 algorithm. The non-convexity of flat-optimization and hierarchical optimization is
clearly visible by the shape of the curve traced by both curves. The starting points of
both algorithms are different and it is dependent upon the maximum noise-power the
sub-system power is allowed during the initialization phase. In this experiment, the
noise-power step-size was set to 6dB. Given the nature of the greedy heuristic adopted,
it is not clear if the starting point or the actual choices available during iteration or
the step-size is the reason for this difference in behavior. It could be a combination of
all the three.

The actual execution times for word-length optimization on an Intel based Apple
MacBook Pro [57] took approximately 8 minutes using the hierarchical approach while
it took 33 minutes for the flat approach for the FFT-4 algorithm. The execution time
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Figure 5.21: FFT-16: evolution of cost vs. performance trade-off

of FFT-8 and FFT-16 was 25 minutes and two hours respectively using the hierarchical
approach. The flat approach took about six hours and upto about 14 hours respectively
for FFT-8 and FFT-16 algorithms.

QR Decomposition

In case of the QR decomposition algorithm, the CORDIC operations used in both
vector and rotation mode are used as basic operators. The number of variables in the
flat approach is small for the Min +1 bit algorithm and is easily manageable by the
flat approach. However, by adopting the divide-and-conquer strategy, this is reduced
to just three variables. When the number of variables is less, the chances of occurrence
of variables with similar trade-offs is greatly reduced. Under such circumstances, the
performance of the Min +1 bit algorithm is generally better. This is reflected in the
quality of solution obtained in both hierarchical and flat approach. Although the cost
and performance are comparable, the total number of iterations required by the flat
approach is greatly reduced.

The evolution of cost vs. accuracy trade-off in both hierarchical and flat approaches
for the QR algorithm is shown in Figure 5.22. Because of the hierarchical approach,
it is possible to take giant strides in every step with respect to the total quantization
noise power to reach the desired quantization noise-power target. It is also because of
these giant strides that the algorithm over-optimizes in its penultimate step to achieve
a lower noise power level at the expense of higher cost. Thereby, making the solution
obtained by the hierarchical process inferior to the one obtained by the flat approach.

The actual execution times for word-length optimization of the QR-decomposition
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Figure 5.22: QR: evolution of cost vs. performance trade-off

algorithm on an Intel based Apple MacBook Pro [57] took about 18 minutes using the
hierarchical approach while it took about 90 minutes for the flat approach.

V-BLAST

The V-BLAST algorithm consists of 38 additions and multiplications. Therefore, the
classical approach for solving the word-length optimization problem consists as many
optimization variables. The four sub-systems of the V-BLAST algorithm leaves just
four variables. The cost achieved by using the hierarchical approach is about 80% of
the cost obtained by flat approach. The performance of both fixed-point systems are
comparable. This is also particularly true because, the target BER is a small quantity.
Therefore, the difference seen is not huge. From the graph in Figure 5.20, there is
nearly two orders of magnitude savings in the number of global iterations.

The evolution of cost vs. accuracy trade-off in both hierarchical and flat approach
for the QR algorithm is shown in Figure 5.23. The bit error rate (BER) of the V-
BLAST algorithm is a non-linear metric with respect to the quantization noise-power
due to the presence of un-smooth operations. The steady increase in cost without any
change in the BER is essentially because of this non-linearity. Indeed, this is the reason
why there are steep drops as far as the flat optimization process is concerned. In the
hierarchical technique, the noise added is substantial to make a change in the BER in
every step. This is again due to the relatively large step size of 6dB chosen for the
hierarchical optimization.

The hierarchical approachis effective in reducing the total number of global it-
erations. This reduces the time required for carrying out word-length optimization.
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Figure 5.23: V-BLAST: evolution of cost vs. performance trade-off

Although the quality of the optimized solution obtained by the hierarchical and flat
approaches are comparable, there are no good reasons to believe that one will always
out perform the other. The quality of the solution is driven by the heuristics and in-
fluenced by the choices made during sub-system optimization. Since it is impossible to
give any guarantee on the optimality of the sub-system optimization solution, nothing
much can be said about the quality of the global optimization problem. In the next
section, a convex optimization framework is proposed as an alternative heuristic to
word-length optimization. Although the basic nature of the word-length optimization
problem remains unchanged, an attempt to provide bounds on the quality of solution
using the convex optimization framework is attempted.

The actual execution times for word-length optimization of the V-BLAST algorithm
on an Intel based Apple MacBook Pro [57] took about 10 minutes using the hierarchical
approach while it took about 14 hours for the flat approach to converge.

5.4 Convex Optimization Framework

From discussions in the previous section, it is clear that the global optimization problem
is combinatorial in nature and there is no guarantee that the greedy heuristic will
arrive at the optimal solution. In this section, an alternative technique for word-length
optimization based on the principles of Convex optimization theory is proposed.
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5.4.1 Previous Work

Analytical techniques such as [21], have attempted to cast the classical word-length op-
timization problem as a convex optimization problem. The cost minimization problem
is written as

minimize

M∑

i=1

ωibi subject to
1

3

∑

κi2
−2bi ≤ κobj , (5.16)

where bi is the number of bits corresponding to the ith signal, κi is the path gain
from the ith signal to the output and ωi is the cost of using bi bits for the ith signal.
The path gain is calculated analytically by techniques discussed in Chapter 2.

The Objective Function

The authors in [21], relax the integer constraint on the number of bits bi on any ith

signal and make them real valued. Due to this relaxation, the cost estimation function
(objective function) of the minimization problem in Equation 5.16 is convex when the
weights are kept constant throughout the optimization process. It has to be noted that
the actual cost function is not this simple always. In a more practical scenario, it is not
possible to express the cost function by scalar multiplication of weights as expressed in
the minimization problem in Equation 5.16. Even if this were to be possible, the cost
weights (ωi) need not be the same for all possible word-length assignments.

To illustrate this, consider the cost of a binary operator such as a two input adder.
One way of implementing such a fixed-point adder is to perform addition by using a
full adder circuit with as many bits as the maximum bits assigned to either inputs and
then discard the resulting bits either by truncation or rounding. Suppose the average
energy dissipated as a function of number of bits is used as the cost metric. The total
cost Ca of using such an adder circuit depends on the number bits assigned to each of
the inputs signals and it is written as

Ca ∝ max(b1, b2), (5.17)

where ∝ represents proportionality and b1, b2 are the word-lengths assigned to the
inputs of the adder. Although the objective function in Equation 5.16 is convex, it
does not represent the actual cost function.

The Constraint Function

There can be more than one quantization noise source along a given path to the out-
put. The noise contribution by each fixed-point quantization noise source is not just
a function of that particular fixed-point word-length. Consider the data path shown
in Figure 5.24, the quantization noise power added by two quantizers is shown in the
equivalent additive PQN model.
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Figure 5.24: Quantization noise sources along a data-path

As given in Table 2.1, the amount of quantization noise added by the second quan-
tization in the quantizer Q2: the value of δq does not depend on the number of bits
assigned at the output of Q2 alone. It is indeed a function of both quantization step
sizes q1, q2 and is given as

δq(q1, q2) =

{
q2
2

12 − q2
1

12 q2 > q1

0 otherwise.
(5.18)

Only when q1 << q2, the value of δq approaches the value of
q2
2

12 .
Clearly, it is only under such conditions that the constraint function in the mini-

mization problem formulation in Equation 5.16 can be approximated to be convex by
ignoring the noise contribution by the quantizer Q1. In practice, this can happen in
scenarios where the difference between two quantizers is very large such as a data-path
where a multiplier is followed by an adder. In cases where the difference between the
two step-size is as small as 1 bit, ignoring the quantization noise contribution by the
first quantizer introduces an error of nearly 25% in the estimation.

In summary, the problem formulation as given in Equation 5.16 would only work
well if the quantization step sizes between successive quantization are relatively large
and the cost function was as simple as a bit-count. It fails to capture all the nuances
of the quantization dynamics with respect to both the cost objective function and the
performance constraint function.

5.4.2 The Noise Budgeting Problem

In the hierarchical approach described in section 5.1, the word-length optimization
problem attempts to budget the total noise-power at the system output to noise-power
contribution from every sub-systems. The noise-budgeting view-point can be scaled
down to the operator level. The cost minimization problem can then be written as
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min(C(q)) subject to λ(q) < λobj , (5.19)

where q = [q1, q2 . . . qN ] corresponds to the noise-power injected into the system by
N different operators used to implement the fixed-point design. The use of symbol
qi instead of pi is to differentiate it from the fact that this problem deals with the
quantization noise injected at each operator level and not at the sub-system output.
In order to solve the noise budgeting problem, it is necessary to study the trade-off
behavior cost and noise-power of all types of operators in the sub-system for various
choices of fixed-point configurations.

It is possible to profile both the cost and quantization noise contribution as a func-
tion of given fixed-point word-lengths assigned to their inputs and outputs. All basic
operators used in the design and implementation practices of signal processing appli-
cations are simple with few inputs and outputs. Therefore, it is relatively easy to
conduct an exhaustive profiling by considering all possible combinations of fixed-point
word-length on each individual operator. These operators can be something as common
as an adder or a multiplier or it could be any special operator such as the CORDIC
operator.

By conducting an exhaustive profiling of the entire fixed-point combinatorial space
for every type of operations used in the implementation of fixed-point system, it is
possible to arrive at a function which relates the cost of using a fixed-point operator
as a function of its quantization noise power. This function can be used for making
the trade-off between the quantization noise contribution and the cost of the given
operator.

Operator Level Trade-Off

Consider a fixed-point operation of type d with N inputs and M outputs. In order
to exhaustively profile the cost vs. accuracy trade-off of this operator, a word-length
vector wd of size N + M is considered. Let W be the number of different word-
lengths that can be assigned to each of the signals of this operation. The complexity
of exhaustively searching through the entire search space of one such operator is of the
order O((N + M)W ). For example, consider the case of a binary adder which can be
assigned anywhere between 2 bits and 16 bits to its fractional part. Then, N = 2,
M = 1 and W = 14 which leads to 314 unique permutations of the word-length vector
wd. It is possible to evaluate the cost and accuracy of every operator type d because: i)
the vector wd word-length vector is not expected to be large, ii) functions evaluating
cost and noise-power are relatively simple and iii) the number of different types of
operators are few in number.

Figure 5.25 shows all the points considered during an exhaustive search of a binary
adder. Three signals: two inputs and one output of the binary adder were assigned all
permutations of bit-widths ranging from 1 bit to 24 bits. The performance of every
fixed-point operation can be obtained either by simulation or by analytical techniques.
Energy dissipation cost of the fixed-point operator is obtained by looking up from a

174



hardware library developed during the thesis work [54]. The total energy dissipation
cost of the given implementation E is obtained as

E =

N∑

i=1

Ei
op·ni

op, (5.20)

where N is the number of different types of operators qualified by their fixed-point
word-lengths and Ei

op is the corresponding energy dissipation obtained by looking up

the library and ni
op is the number of the ith type of fixed-point operator.

To build the library, the energy dissipation of binary adders and multipliers with var-
ious fixed-point configurations is build on the targeting the ASIC platform of 130nm.
The energy consumption estimates are obtained by using Prime Time from Synop-
sys [117] and the estimates obtained are in Joules. To make the measured energy dissi-
pation data agnostic, a random input test vector set which is uniformly distributed and
which spans the entire range of the assigned binary fixed-point range is used. Therefore,
the energy dissipation values correspond to the average energy dissipated.

Figure 5.25: Adder: cost vs. accuracy trade-off in the semilog scale

In the above figure, the y-axis shows the energy dissipation cost and the x-axis shows
the quantization noise introduced by the operator for each of the points considered.
The y-axis is plotted on a linear scale for measuring the energy dissipation cost and
the x-axis is plotted on the logarithmic scale to plot quantization noise.

The convex-hull is a convex polygon encompassing all the points considered during
the exhaustive search. This polygon is drawn around the points plotted on a graph with
linear scale on either axes. The logarithmic scale for x-axis is chosen for the purpose
of illustration and for clear visibility of all points. In Figure 5.26, the convexity of
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the polygon is clearly visible when the linear scale for representing noise-power on the
x-axis is chosen.

Figure 5.26: Adder: cost vs. accuracy trade-off in the linear scale

Identifying Pareto front

The choice of points that form the Pareto front should be chosen such that they do not
make sub-optimal choices. For example, consider points P1 and P2 that contribute equal
quantization noise-power but with different costs as shown in Figure 5.25. Although
both points lie on the convex hull, it is clear that the cost of P1 is higher than P2

and therefore choosing P1 is sub-optimal. Similarly, consider points P3 and P4 that
also lie on the convex hull and have the same cost. The point P3 cannot be an optimal
choice because it contributes higher quantization noise power than P4 for the same cost.
Hence, it is clear that those points that lie along the convex-hull closer to the origin
are the ones representing the minimum cost for a given quantization noise-power. The
line joining all such points mark the Pareto-front of the operator under consideration.

In Figures 5.25 and 5.26, the Pareto-front for the adder used in this thesis is shown.
It has to be noted that there are several more combinations of the word-lengths that
can be assigned to the operator. Those combinations that do not contribute to the
total quantization noise of the fixed-point system are not shown in the plot for the sake
of clarity. For any combination of input bit-widths, the output word-length such that
the total quantization noise is 0 can be obtained by simply propagating the assigned
bits across the operators. Moreover, increasing cost which does not improve accuracy
is not useful. Hence, the points corresponding to 0 noise-power are neither considered
nor marked on the graph.

176



5.4.3 Relaxation for convexity

The Pareto-front boundary marked in Figure 5.25 is a continuous line Φ(q) as a func-
tion of quantization noise power q obtained by connecting successive points along the
convex-hull with straight lines. These lines are also the lines of the convex polygon.
Therefore, the function Φ(q) traces a piece-wise linear curve. Using some of the fixed-
point configurations of the adder, only some points on the points on this line can be
realized. On the contrary, if all the points on the continuous line were to be realizable,
it would provide the optimal cost vs. accuracy trade-off. Therefore, the idea here is
to relax the constraint on the integer nature of the bits such that all points on the
Pareto-front become valid. Then, the word-length optimization problem can be solved
by using standard convex optimization techniques to realise an optimal working point
on the continuous Pareto-front. Eventually, the discrete points realizable by using inte-
ger word-lengths nearest to the Pareto-front under integer word-length constraint can
be chosen for actual realization of a system with integer word-lengths.

If q is the quantization noise contributed by the operation under consideration, let
κ be the corresponding minimum cost of the operator. The value of κ can be obtained
by looking up the Pareto-curve and is given as

κ = Φ(q) (5.21)

The cost function in the minimization problem in Equation 5.23 is essentially the
sum of individual operator costs. This assumption is still not representative of different
practical cost function scenarios such as the impact of binding and scheduling and other
resource sharing overheads. However, it is more realistic than just counting the number
of bits. This cost metric is applicable to the energy dissipation cost of parallel hardware
designs considered in this thesis. So, consider a system consisting of N operators. The
total system cost can be written as

Ci(q) =
N∑

i=1

κi,

Ci(q) =
N∑

i=1

Φi(qi), (5.22)

where Φi(.) is the function capturing the Pareto-front of the of the ith operator.

5.4.4 Convexity of the noise budgeting problem

In order to use convex optimization techniques to solve the minimization problem in
Equation 5.19, it is important to check if the problem considered is indeed a convex
optimization problem. In the light of the previous section, minimization problem of ith

sub-system with N quantization noise sources can now be written as
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minimize





N∑

j=1

Φi(qi)



 subject to λ(q) ≤ λobj , (5.23)

where λ(q) is the total quantization noise at the output of the system, obtained from
Equation 5.25 and λobj is the target accuracy objective. The minimization problem is
a convex optimization problem if both objective and constraint functions are convex.

From first principles, a function f(x) is convex if the domain dom(f) is a convex
set and for all m, n ∈ dom(f) and η ∈ (0, 1) the following relation holds [12]

η· f(m) + (1 − η)· f(n) ≥ f(η·m + (1 − η)·n) (5.24)

Performance Evaluation Function

Using the linear noise propagation model described in Chapter 2, the total noise power
at the output of the system is the sum of all operator noise powers scaled by their
respective path gains. The total noise at the output of the system as a function of the
noise power vector q is given as

λ(q) =

N∑

i=1

βiσ
2
i

︸ ︷︷ ︸

σ2

+

(
N∑

i=1

αiµi

)2

︸ ︷︷ ︸

µ2

, (5.25)

where σi and µi are the variance and the mean of the quantization noise power qi

generated by the ith operator. The function λ(q) is a function of all the noise-power
generated within the system. Let qσ

i be the standard deviation of the quantization
errors and q

µ
i =

√
µi of the ith operator. The noise source qi consists of contribution

from the respective variance and mean components as

qi = qσ
i + q

µ
i

= σ2
i + µ2

i (5.26)

The total quantization noise power function λ(q) at the output of the system can
also be split into two and expressed as the sum of two functions λσ(qσ) and λµ(qµ),
where qσ = [qσ

1 , qσ
2 . . . qσ

N ] is a vector of the noise source components corresponding to
contribution by noise variance component and qµ = [qµ

1 , q
µ
2 . . . q

µ
N ] is a vector of noise

contribution by the mean component. The total noise-power as a function of the mean
and variance components of the operator noise-sources is written as
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λ(q) = λσ(qσ) + λµ(qµ)

=
N∑

i=1

βiq
σ
i +

(
N∑

i=1

αi

√

q
µ
i

)2

=

N∑

i=1

βiq
σ
i +

N∑

i=1

N∑

k=1

αiαk

√

q
µ
i q

µ
i

(5.27)

If the function λ(q) is convex, it has to satisfy the condition for convexity in Equa-
tion 5.24. The expression corresponding to the right-hand-side (RHS) of the convexity
condition is written as

λ(ηm + (1 − η)n) =

=

N∑

i=1

βi(η·mσ
i + (1 − η)·nσ

i ) +

N∑

i=1

N∑

k=1

αiαk

√

(η·mµ
i + (1 − η)·nµ

i )(η·mµ
k + (1 − η)·nµ

k),

(5.28)

where m = [m1, m2, . . . ,mN ] and n = [n1, n2, . . . , nN ] are two combinations of
the quantization noise power source vector q such that it is an optimal solution to
the noise budgeting problem for two corresponding accuracy constraints λm

obj and λn
obj

respectively. The gain βi = E[h2
i ] is the expectation of the impulse response of the

path function from the ith source to the output. Therefore, βi cannot be negative.
The square-root operation for the mean part makes the noise estimation function non-
convex. Therefore, in general the constraint function is not convex. In the case of
convergent rounding, mean of the quantization noise is exactly zero. It is very close to
zero even if it is the case of simple rounding. That is, the noise contribution due to
mean is either zero or is negligibly small in the rounding. In such a scenario, continuing
with evaluation of the expression in Equation 5.28 it can be written as

λ(ηm + (1 − η)n) =

= η

(
N∑

i=1

βim
σ
i +

)

+ (1 − η)

(
N∑

i=1

βin
σ
i

)

= η·λ(m) + (1 − η)·λ(n) (5.29)

Therefore, it can be concluded that the accuracy evaluation function in the rounding
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case is not only convex but is also affine. Considering the result in Equation 5.29, the
technique described henceforth is strictly applicable only to quantization carried out in
the convergent rounding mode. However, as the magnitude of rounding is very small in
the simple rounding case, this result approximately holds true even for simple rounding
mode. In the truncation mode, the noise power contribution by the mean component
is comparable to the variance component. Therefore, this proposal is not applicable for
truncation mode quantization.

Cost Function

In this section, the cost function defined in Equation 5.23 will be proved to be a convex
function. The function Φ(x) is obtained by an exhaustive profiling of the operator
and considering the Pareto-front obtained by constructing a convex polygon around
the points thus obtained on the cost vs. accuracy axes. Therefore, it is convex by
definition. The convexity of the function κi = Φi(qi) for every operator i implies that

Φi(η· qm
i + (1 − η)· qn

i ) ≤ η·Φi(q
m
i ) + (1 − η)·Φi(q

n
i ) (5.30)

Now, consider evaluating the right-hand-side of Equation 5.24 with respect to the cost
estimation function C(q).

C(ηm + (1 − η)n)

=

N∑

i=1

Φi(ηqm
i + (1 − η)qn

i )

≤
N∑

i=1

ηΦi(q
m
i ) + (1 − η)Φi(q

n
i )

= η

N∑

i=1

Φi(q
m
i ) + (1 − η)

N∑

i=1

Φi(q
n
i )

= ηC(m) + (1 − η)C(n) (5.31)

Therefore, the cost function at the sub-system level is convex.

5.4.5 Near-Optimal Word-length Optimization Algorithm

Using the relaxation technique discussed in the previous section, the problem of cost
minimization subject to accuracy constraint of a fixed-point system can be casted as
a convex optimization problem. In this section, a word-length optimization algorithm
that captures the various steps of the convex relaxation process in order to use stan-
dard convex optimization solvers and apply the result obtained on the word-length
optimization problem is presented.
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Consider any ith sub-system within the given system. The algorithm in Proce-
dure 5.2 describes different steps to use the convex optimization framework for solving
the sub-system word-length optimization problem.

Procedure 5.2 : Near-Optimal Word-length Optimization

1: Si(V,E) = GetSubSystemGraph()
2: Nt = GetOperatorTypes(Si(V,E))
3: for all ni Operator types ni ∈ Nt = [n1, n2, . . . , nt] do
4: dbj = ExtractOperatorPoints(ni, WdMin, WdMax)
5: Φj = GetConvexParetoFront(dbj)
6: end for
7: Ci = GetCostExpression(S(V,E))
8: λi = GetNoisePowerExpression(S(V,E))
9: P = ConstructMinimizationProblem (db,λobj ,Ci, λi)

10: q̄opt = Solve(P)
11: W̄dopt = GetFinitePrecisionWordlengths(W̄din, q̄opt, q̄opt, Pobj ,db)

The first step in solving the word-length optimization problem is to obtain the
data flow graph S(V,E) consisting of V nodes and E edges by calling the function
GetSubSystemGraph(). The graph S is a directed graph with one operator at each
node position, the edges connect various operators and point in the direction of the
data-flow in the algorithm. The various operator types are enumerated for studying
the cost and accuracy trade-off behavior. The function ExtractOperatorPoints()
conducts an exhaustive search of the operator and returns all the feasible operating
points which will be stored in the operator database db. As described in section 5.4.3,
the convex Pareto-front Φi of every type of operator is deduced from the trade-off
points by the function GetConvexParetoFront().

Analytical expressions for the sub-system cost and noise power is determined by
the techniques presented in Chapter 2 and analytical expressions for the same are ob-
tained by calls to functions GetCostExpression(), GetNoisePowerExpression()
respectively. The word-length optimization problem is expressed using the standard
optimization modeling language such as “CVX” and solved by employing any stan-
dard solvers such as “SeDumi” or “SDPT3”. This step is performed in the function
ConstructMinimizationProblem() to obtain the minimization problem P. The
procedure Solve() essentially calls the solver to solve the minimization problem P.
Solving the convex optimization problem, the minimum cost of implementation is ob-
tained such that the performance constraint is satisfied. The values of noise powers of
each operator which gives the minimum cost is got in the vector q̄opt. The individual
operator cost can be deduced by performing an inverse of the operator level pareto
curve (i.e. Φi(qi) for the ith operator). In the final step, the procedure GetFinite-
PrecisionWordlengths() realises the budgeted optimal noise-power using fixed-point
operators.
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Realising Noise-power Using Fixed-Point Operators

Due to the discrete nature of the fixed-point word-length assignment, as discussed in
section 5.4.2, the noise-power corresponding to the optimal trade-off point need not
always be realizable using fixed-point operators. Therefore, a feasible point (Wd) from
the operator trade-off database in the locality of the optimal point such that all the
input constraints are satisfied need to be considered.

Feasible trade-off points for using the fixed-point operator in various input and out-
put bit-precision configurations is already pre-computed and stored in the respective
operator databases. When the optimal noise-power suggested by the convex optimiza-
tion solver coincides with one of the feasible points in the operator data-base, the
operator precision at its output is precisely found. In such circumstances, Wdi is set to
the fixed-point word-length corresponding to the exact match. If that is not the case,
the nearest feasible point is chosen such that it does not affect the sub-system output
accuracy constraint greatly.

The Pareto-optimal curve of an adder is plotted in Figure 5.27. This figure also
shows the actual trade-off points corresponding to three instance of using the adder
with different input quantization constraints. The semilogarithmic scale is chosen to
clearly identify the various trade-off points.

Figure 5.27: Finding Feasible operating points

Consider a particular case of an adder where the quantization noise assigned by the
convex optimization process is 3· 10−4. The minimum cost as attained by the convex
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optimization algorithm is obtained by calculating the inverse of the convex-pareto curve
as Ccvx = Φ(3· 10−4). Clearly, this is not a feasible point. Further, suppose the input
constraints to this operator is (7, 7) (i.e. both inputs are quantized by 7 bits). With the
input constraints applied, it is clear that the trade-off point must lie on the vertical line
corresponding to the input constraints (7, 7). After translation, the cost of the operator
is Cconstraint. The point is still non-feasible as fractional word-length assignment is not
possible. Therefore, the nearest feasible point satisfying the noise-power constraint
is chosen. Two points (7, 7, 4) and (7, 7, 5) exist in the vicinity corresponding to this
quantization noise-power.

Here, the cost Ccvx < Cconstraint < C774 < C775. The choice of the point C775

satisfies the budgeted quantization noise power but the cost incurred in the process is
higher. On the other hand, the choice of point C774 does not satisfy the quantization
noise-power constraint.

Formulating the word-length optimization in the convex optimization framework
and the use of convex optimization technique ensures global optimality of the solution
obtained. However, optimality is achieved only for the relaxed noise-budgeting problem
where an imaginary convex Pareto-front is used in optimization. The point of optimal-
ity, though not always feasible indicates the locality of the optimal working point. By
choosing the word-lengths close to this locality, it is possible to determine the word-
lengths that are near optimality. As shown in the previous section, every operator has
two feasible points at the most around the point indicated by the convex optimization
procedure which need to be considered. Among the two options, it is safe to take a
conservative approach keeping in mind the accuracy satisfiability condition. An algo-
rithm which always chooses the conservative choice for word-length determination is
presented in Procedure 5.2a.

Procedure 5.2a : GetFinitePrecisionWordlengths()

1: T (V ) = TopologicalSort(Si(V,E))
2: for all vi ∈ T (V ) do
3: dbi = GetOperatorDB(vi)

4: [Wdi] = LookupDB(dbi, qi
opt, W̄d

i
in)

5: end for

In order to satisfy the input constraints and the propagation of bit-widths across
operators, it is important that all operators in the sub-system graph is topologically
sorted such that the operators whose input constraints are already known are considered
first. By resolving the output fixed-point bit-widths of these operators in turn generate
the input constraints for the successive operators. The topological sorting is performed
by calling the function TopologicalSort().

The function GetOperatorDB() returns the database corresponding to the given
operator type. It has to be noted that this database is constructed during the step
where the convex Pareto-front of the operator trade-off is determined at the time of
constructing the convex noise-budgeting problem. It is a one-time effort for a given

183



type of operator implementation.
In the function LookupDB(), the actual cost of the operator generating the given

noise-source with the specified input word-length constraints is determined. In other
words, a choice of the actual or most feasible fixed-point configuration is made. Clearly,
with any given input constraints, it is possible to propagate the word-lengths across the
signal processing system without generating any error from within the system. That is,
the fixed-point operator precision is set such that the quantization step-size is not more
than the input quantization step-size. This corresponds to 0 noise-power for a given
input constraint. If the output quantization step is made suitably larger, quantization
noise with a given power can be introduced.

For example, consider a binary multiplier with input word-lengths (a, b). If the
quantization noise contribution is assigned a value q, then the number of bits cmul

assigned to the output of the fixed-point multiplier is given as

cmul =

⌈(

−1

2
· log2

(

12·
{

q +
2−2·(a+b)

12

}))⌉

(5.32)

This is obtained from the quantization noise power contribution as given in Ta-
ble 2.1. If the quantization noise q == 0, then c = a + b which corresponds to bit
propagation through the multiplier without causing any more quantization. In case of
an adder, Equation 5.32 has to be suitably modified to obtain the quantization.

In the light of Procedure 5.2a, consider determining the word-lengths of the oper-
ators graph shown in Figure 5.28. The input constraints to the sub-system are user
defined. Thus, the bits b1, b2, b3, b4 in the Figure 5.28 are user given. The values of the
noise contribution q1, q2, q3 of three operators are obtained by solving the convex opti-
mization problem. In order to realise the noise-power q1, two feasible points qb1,b2,bl

a1

and qb1,b2,bh
a1

around the value of q1 needs to be considered. Here the superscript l rep-
resents the greater of the two possible fixed-point word-length assignments possible and
the superscript h represents the lesser. In other words, choosing the word-length corre-
sponding to superscript l adds lower quantization noise power than budgeted while the
word-length corresponding to the superscript h adds higher quantization noise power
than budgeted. Similarly, to realise noise-power q2, two feasible points qb3,b4,bl

a2
and

qb3,b4,bh
a2

are considered. Considering all the combinations of the two inputs, the search
space for the multiplier has four different choices at the input. Each of the input com-
binations can potentially require two feasible points to be considered as shown in the
table.

The proposed word-length selection algorithm chooses the combination in the first
row of the table as the input bits to the multiplier and chooses the conservative option
for the multiplier also. That is, noise-power q1 is realised using the adder with bit-widths
(b1, b2, ba1 = bl

a1) such that the actual quantization noise power contribution is lesser
than q1. The noise-power q2 is realised using adder with bit-widths (b3, b4, ba2 = bl

a2)
which is also lesser than q2. With these choices, the choice for the fixed-point multiplier
noise q3 is realised with input bl

a1, b
l
a2 and output bl

m1. Under these circumstances, the
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Figure 5.28: Propagating bits across noisy operators

total quantization noise contribution by the multiplier is lesser than q3.
The choice of word-lengths is subjected to input constraints which are determined

either by user input of by the word-length assignments of other operators preceding a
given operator. If at every operator, a choice of operating point which always generates
lesser than the budgeted noise power, the choice is sub-optimal. This effect can easily
accumulate over successive decision causing an increase in the cost of the system at
the expense of improved accuracy which is anyway not required. On the other hand, if
the choice is always such that the smaller word-length is chosen; that is, if the noise-
power actually introduced is greater than or equal to the budgeted noise power, the
power constraint will not be satisfied. Both extremes are not desirable and the optimal
solution lies somewhere in between making such extreme choices. In other words, the
choice of word-lengths must be such that some of the choices must offset the effect of
remaining word-length choices.

Impact on the Combinatorial Search Space

In the classical word-length optimization, the fixed-point operation is free to take on
any of the N word-lengths. So, the combinatorial search space consists of as many as
Nm different unique combinations. In the convex optimization framework, the relaxed
cost vs. performance curve for every fixed-point operation is used to determine the
optimal noise-budgets such that the cost of the system on the whole is minimum. In
the Near-optimal word-length optimization algorithm, the infeasibility problem of the
convex solution is cured by traversing the graph and making suitable choices for fixed-
point word-lengths.

As discussed in the previous section, there are two options to choose from in case of
each fixed-point operation. Each of the combination of fixed-point word-length of the
adders can influence the choice of multiplier word-length and therefore, there can be two
choices for the word-length of the multiplier for every adder word-length combination.
The table shown in Figure 5.28 show a particular choice for the fixed-point word-length
of the multiplier. In Figure 5.29, it is possible to see eight possible unique word-length
assignment to the multiplier. This corresponds to 23 combinations when there are three
fixed-point operations (i.e. two adders and one multiplier). In this figure, the nodes
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Figure 5.29: Tree representation of all available fixed-point word-length choices

whose input fixed-point constraints are fixed is shown as filled nodes (filled in black)
and the shaded nodes indicate the different fixed-point options available. Two choices
available for each of the choices are represented by two edges emanating from a node.
When another adder and multiplier is added in the computation graph the number of
options for fixed-point word-length assignment also increases. It can be seen that the
number of options available for the word-length combination of second multiplier can
be as many as 32. This corresponds to 25 corresponfing to five variables (i.e. three
adders and two multipliers).

One of the advantages of using the Near-optimal word-length optimization algo-
rithm is that the search spaces shrinks from Nm to 2m. This shrinkage is due to the
binary nature of the choice for the word-length of each fixed-point operation. It has
to be noted here that the nature of the problem continues to be exponential in nature
inspite of the shrinking in its search space.

Proximity to Optimality

In Procedure 5.2, the choice that can generate quantization noise which is lesser than
or equal to the budgeted noise-power is chosen. The choices made is marked along
the tree shown in Figure 5.30. In this figure, the word-lengths taken are indicated by
taking the left edge at any node. As a consequence of choosing the left edge, the left
most node ends up being the choice for all fixed-point operations. On the contrary, if
the right edge were to be chosen consistently, the right most node would have been the
choices. It is clear that the optimum choice for fixed-point word-lengths lies somewhere
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between choosing the left edge or the right edge.
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Figure 5.30: Choosing the left-edge always

By choosing the left edge consistently for all fixed-point word-length, it can be
said that the actual minimum cost Copt is not greater than the cost Cnearopt obtained
by following the Near-optimal word-length optimization procedure. In other words,
Cnearopt is an upper bound on the actual minimum cost Copt for all possible choices of
fixed-point (in rounding mode) word-length assignments. This is written as

sup
w∈Nm

+

{Copt} ≤ Cnearopt, (5.33)

where w is the vector of word-lengths corresponding to all fixed-point operations whose
space is defined m-dimensional and can be assigned any positive integers (N+). This
bound can be improved by using techniques such as branch-and-bound while making
the word-length choices for each fixed-point variable, In this thesis, the experiments
conducted consistently chose the left edge. The improvement in cost obtained over the
classical greedy approaches is sufficient to indicate the usefulness of this method.

5.4.6 Results: Convex Optimization vs. Greedy Approach

Signal processing algorithms used in the example of MIMO-OFDM and also the entire
system as a whole is considered for the application of the proposed convex optimization
framework. The time taken and the quality of results obtained by application of the
proposed convex optimization approach is compared with the time taken and the results
obtained by the Min +1 bit greedy heuristic.
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To begin with, in order to apply the proposed convex optimization technique, six
types of operators have to be profiled exhaustively. The Pareto-front of each of these
operators is obtained by the technique described in Section 5.4.3.

Adders and Multipliers

The binary adder and the binary multiplier are most commonly used in the design
of signal processing systems. It is imperative to evaluate the Pareto-front of these
operators for analysis of any signal processing algorithm. The Pareto-front of the
adder is already shown in Figure 5.25. Similarly, the Pareto-front of the multiplier is
obtained by exhaustively searching for all points. In the examples considered in this
thesis, apart from the multipliers, there are several multiplications that need to be made
with constants in algorithms such as FFT. The Pareto-front of each for multiplication
with constant is arrived at in a similar fashion. This addresses the problem of coefficient
quantization and takes into account the number of bits assigned to coefficients. In this
thesis, the range of fractional bits assigned to the adder and multipliers is chosen to be
between 2 and 24 bits.

CORDIC operators

The CORDIC operator consists of many addition and scaling operations and is also
followed by decision. The presence of decision operation makes it difficult to arrive at
an analytical formula for the error due to quantization at the output of one CORDIC
operation. However, the CORDIC operation is not complex and is easy to simulate.
Therefore, it is considered as one of the basic operation and is studied exhaustively
and a corresponding noise-power variable is introduced into the convex optimization
problem. Further, 32 stages are considered in every CORDIC operation and a uniformly
distributed random sequence is used to perform simulation. For various assigned fixed-
point word-lengths, the output quantization noise is measured by simulation and its
cost is tabulated.

The CORDIC operator is used in two modes. In the vector mode, it calculates the
magnitude of the vector represented by the two inputs and determines the angle of
the vector. In the rotation mode, a given vector is rotated by the angle obtained from
previous vector mode operation. In the experimental setup, the simulation results are
compared with the analytical model for performing rotations and vectoring discussed in
Section 5.3.4. CORDIC operations in vector mode and in rotation mode for both out-
puts are exhaustively explored and all the points are plotted in Figures 5.31, 5.32, 5.33.
In this thesis, the range of fractional bits assigned to the CORDIC operations is between
2 and 12 bits.

In all the cases, the guiding principle behind choosing the Pareto-optimal front is
decided by the considerations of optimality as discussed in Section 5.4.2.
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Figure 5.31: Pareto-front : magnitude of CORDIC operator in vector mode

Figure 5.32: Pareto-front : x-axis of CORDIC operator in rotation mode
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Figure 5.33: Pareto-front : y-axis of CORDIC operator in rotation mode

Optimization with CVX

The main task here is to write the routines for evaluating performance and cost eval-
uation as a function of the vector q in each case. It has to be written such that an
analytical expression can be constructed by the CVX environment as it parses the con-
vex optimization problem. A detailed guide for this coding style is given by the authors
of CVX in [48].

Once the optimal noise power distribution is available, the assigned quantization
noise is realised using the procedure described in Section 5.4.5. The total quantization
noise and the cost is evaluated after all the operators have been assigned a fixed-point
format. The results corresponding to four benchmark algorithms participating in the
MIMO-OFDM receiver algorithm are presented below.

The cost of fixed-point system obtained in the flat approach and by the application
of convex optimization framework can be observed in Figure 5.34. Clearly, the improve-
ment in the over all cost increases with the system size in case of the FFT algorithm.
In case of the QR algorithm, the cost improvement is achieved but to a lesser extent.

The use of Pareto-front for optimization and then searching for the fixed-point so-
lution in the locality of the solution is the main reason for achieving the cost improve-
ment. The greedy heuristic always latches on to a feasible point in every iteration.
Some suboptimal choices made during early iterations can cause a cascading effect and
it may so happen that none of the choices presented is optimal in the later iterations.
Since the direction of optimization is always towards incrementing the bits assigned,
the optimization process may never recover from suboptimal choices made during early
iterations. On the other hand, in the convex optimization approach, the Pareto-front
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Figure 5.34: Comparisons: cost of implementation

Figure 5.35: Comparisons: performance achieved

is used and the actual fixed-point determination is carried out as a final step. By then
the actual quantization noise power from each of the source is well established. It has
to be noted here that if fractional word-length assignment were to be possible, then
the solution obtained by the convex optimization problem solver is truly optimal. The
sub-optimality factor creeps into the proposed convex optimization framework when
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the noise power is realised as fixed-point operators. As suggested in Section 5.4.5, a
branch-and-bound algorithm can further reduce this sub-optimality and can potentially
take the solution much closer to optimality.

The actual quantization noise achieved by both the processes are shown in Fig-
ure 5.35. The desired quantization noise power generated by the fixed-point design is
set to 100%. The actual quantization noise power is achieved and it is usually lower
than the desired noise power. In all the cases shown in Figure 5.35, the quantization
noise power target is nearly reached by the convex optimization framework. Whereas,
the classical approach tends to over-optimize. This is due to the fact that the clas-
sical approach moves from one fixed-point format to the next and thereby accruing
sub-optimality in every iteration.

5.4.7 Optimizing MIMO-OFDM Receiver

The complete functional block diagram of the MIMO-OFDM Receiver algorithm is
given in Figure 5.41. Although the results of the FFT and QR decomposition can
be shared between different smooth blocks of the V-BLAST sub-system, they can
be functionally separate. That is, these sub-systems can have different fixed-point
implementations. For the sake of clarity, the dependency between the output of un-
smooth operators and the smooth blocks is not marked explicitly. It is easy to follow
this dependency by following the labels given to these signals. In the previous section
presenting the results of the convex optimization framework, the V-BLAST example
was not presented. This is due to a practical limitation with the tools used for evaluating
the proposed convex optimization approach. The use of the convex approach using the
CVX package is limited to those scenarios where the performance and cost evaluation
functions can be expressed analytically. The presence of un-smooth operator makes it
impossible to code both the hybrid simulation approach or the analytical approach for
performance evaluation. Therefore, the convex framework implemented using the CVX
package could not be applied to the V-BLAST algorithm. It should be noted here that
there is not such limitation of this nature in theory. It is just that the developing a
convex optimization solver which can be used generically is out of the scope of this
thesis work. In this thesis, an alternative approach which uses the greedy heuristic
presented in Section 5.2 and the convex framework are used together to optimize the
V-BLAST algorithm and also the entire MIMO-OFDM receiver.

MIMO-OFDM Receiver: Hierarchical Decomposition

The functional sub-systems of the MIMO-OFDM receiver were studied in Section 5.3.
The global problem is that of word-length optimization of the MIMO-OFDM receiver
algorithm. The receiver is decomposed into four sub-systems at the QAM slicer bound-
aries corresponding to the estimation of the symbol received by each Antenna. To
arrive at this estimation, it is required to calculate the FFT from all four antennas
and to evaluate the QR decomposition and execute the corresponding block from the
V-BLAST block diagram. These sub-systems within each of the antenna blocks are
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marked FFT1 through FFT4 corresponding to the FFT after each antenna, QR to per-
form the QR decomposition and INV1 through INV4 to perform the V-BLAST blocks
respectively. The hierarchical decomposition of the receiver algorithm is as shown in
Figure 5.36.

Antenna-4

INV1FFT4

FFT2 FFT1

QR

FFT3
INV2FFT4

FFT2 FFT1

QR

FFT3
INV3FFT4

FFT2 FFT1

QR

FFT3
INV4FFT4

FFT2 FFT1

QR

FFT3

Receiver

Antenna-1 Antenna-2 Antenna-3

Figure 5.36: MIMO-OFDM receiver: hierarchical decomposition

Each of these sub-system blocks can be sub-divided further as discussed in Sec-
tions 5.3.1, 5.3.2, 5.3.3. Hence, they are not shown as leaf-level sub-systems. In a
parallel hardware implementation, the hardware corresponding to this decomposition
consists of 16 FFT operations and 4 QR operations. However, it is unlikely that such
redundancy is ever provided in hardware. Therefore, it is assumed that there is one
unique FFT block processing the input received by each antenna and the QR decom-
position module is shared across all 4 antennas. The hierarchical decomposition after
applying the resource sharing constraint results in the hierarchical decomposition as
shown in Figure 5.37

QR INV1 INV2 INV3 INV4FFT1FFT2FFT3FFT4

Receiver

Figure 5.37: Hierarchy after considering resource sharing by FFT and QR modules

The optimization problem at the global level has 9 optimization variables. While
the optimization of each of the sub-systems can be carried out using the convex-
optimization framework, the global optimization requires the use of the greedy heuristic
discussed in Section 5.2. The 3 dB step-size was chosen to carry out the adaptation of
the greedy heuristic.

The target performance set was a degradation of 5% in BER of the receiver over
the BER obtained in double precision. The evolution of the total cost starting from
the maximum noise power until the constraint is satisfied is shown in Figure 5.38. To
understand the numbers better, the cost of each sub-system and the overall cost is
normalized to 100%.
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Figure 5.38: Relative cost of the sub-systems in every successive iteration

There is about 40% increase in the cost to achieve the targeted 5% degradation in
BER with respect to the initial (minimum) cost. In terms of relative cost, consider
the number of arithmetic operations in each block. Considering 32 rotations and two
operations per rotations, there are 18 such modules present in the signal flow graph of
QR decomposition. In contrast, there are 64× log2(64) additions and 64× log2(64)×0.5
constant multiplications that are realised using additions with the FFT. The V-Blast
algorithm has an average of 10.5 operations per antenna block. Therefore, the QR
module consumes the maximum energy followed by the FFT blocks and then the V-
BLAST blocks. This is also reflected in the actual final costs of each of the blocks as
shown in Figure 5.39 .

The process of optimization takes 20 steps and the evolution of the trade-off between
the cost and the symbol error rate is shown in Figure 5.40. In the 10th iteration, the
choices made cause retrograde in the advancement of the optimization. Due to the dis-
crete and non-convex nature of the combinatorial iterations, several undesired scenarios
can occur during the course of iterations. It is possible that for some of the options, a
change in the total cost does not result in any change for the total quantization noise
power. Due to the influence of the un-smooth operator, it is also possible that some
of the options do not show a change in the BER. Under such circumstances a random
step is chosen which can result in such retrograde steps. The effect of this retrograde
step is also reflected in the relative cost graph in Figure 5.38 between iterations 10 and
12.

With the help of the CVX based approach, the MIMO-OFDM receiver was opti-
mized in about four hours time in Matlab running on an Intel based MacBook Pro from
Apple [57]. Due to the complexity of the complete system, it was not possible to carry

194



Figure 5.39: Cost of individual sub-systems after reaching target SER (Symbol Error
Rate)

Figure 5.40: Evolution of SER vs. Cost trade-off

out the word-length optimization using the flat approach.
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5.5 Summary

The cost minimization by choice of appropriate word-lengths of fixed-point operations
is considered. Large word-length optimization problems present a huge combinatorial
search space in which the optimal working point is contained. Searching the entire
space for finding out the optimal working point is daunting and virtually impossible.
Therefore, popular solutions use heuristics hoping to find the optimal working point.
Thus far, there has been no claim or proof for the optimality of the techniques.

With growing system sizes, the complexity of the word-length optimization problem
becomes unmanageable with any of the existing techniques. This is due to the scala-
bility issue with existing algorithms. In order to continue to use the existing heuristics,
a divide-and-conquer method for solving the cost minimization problem is proposed.
The proposed hierarchical technique utilizes the total noise-power contribution at the
output of every sub-system due to fixed-point operations as the optimization variable
in this process. The number of iterations required for solving large word-length opti-
mization problems is reduced by several orders of magnitude by adopting the proposed
hierarchical method while the quality of the results remains comparable to what would
have been obtained by using a classical flat approach.

The sub-optimal nature of the greedy word-length optimization algorithms is dis-
cussed. It is observed that the non-convexity of the trade-off between the number of
bits and the cost is the reason for the under-performance of the greedy algorithm. A
novel technique which makes use of principles from the convex optimization framework
is proposed to perform the word-length optimization. In this technique, several re-
laxations and assumptions are made such that the word-length optimization problem
is rendered convex. A near-optimal word-length assignment technique is proposed to
translate the results obtained by solving such a convex optimization problem onto re-
alisable fixed-point solutions. This technique uses the popular CVX toolbox in Matlab
for the purposes of optimization. This complexity of this technique to solve the word-
length optimization is polynomial in time. Also, the results obtained outperforms the
results obtained by using the popular Min +1bit algorithm. Therefore, the proposed
framework is not only faster but also generates better quality results.

The proposed framework has a practical limitation which strictly requires analyt-
ical functions for the performance and cost evaluation functions of sub-systems. This
limitation is imposed by the use of CVX toolbox. The advantage however is that
the solution is obtained very quickly due to analytical functions. In this thesis, the
OFDM-MIMO receiver algorithm is chosen to demonstrate the efficacy of the proposed
optimization techniques. This algorithm has several hundreds of fixed-point operations
and is a classic case which demonstrates the scalability of classical word-length opti-
mization techniques. Here, the hierarchical word-length optimization is applied at the
top-most level and the novel convex optimization approach is applied for sub-systems
in subsequent levels. The word-length optimization of this algorithm takes about four
hours when the proposed optimization techniques are applied in the Matlab environ-
ment.
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Chapter 6

Conclusions and Future Work

The use of fixed-point platforms has been there since very early days of computers. In
fact, they were the first circuits to be used for computation when digital computers
were first designed. Limited by the technology of the day, to realise fixed-point opera-
tions using electronic circuits itself was a formidable challenge. With advancing silicon
process technology, the transistor sizes shrunk and paved way for more complex digital
circuits enabling the innovation of floating-point units. Although the floating-point
format was designed and has been standardized since many decades, the fixed-point
circuits continued to be used due to the speed and simplicity advantage they provided.
The design of fixed-point algorithms essentially focusses on trading off dynamic range
and precision to the total implementation cost such that the computational performance
is not compromised.

In the recent years, fixed-point arithmetic circuits have been increasingly used for
the implementation of signal processing systems on embedded systems. Design of
portable electronic devices imposes severe constraint on the power profile of electronic
devices. Efforts for power conservation in particular has been the focus of industry and
academia in the recent years. While several popular power optimization techniques
such as power-gating, voltage frequency scaling etc. have mostly been at the circuits
level, a new dimension to this problem is added by choosing to optimize energy by
using suitable fixed-point formats.

The problem of word-length optimization or fixed-point refinement of signal pro-
cessing algorithms has caught the attention of many research group over the past decade
across the world. There are essentially two paradigms for word-length optimization.
They are the uniform word-length (UWL) optimization paradigm and the multiple word
length (MWL) optimization paradigm. While the former design approach explores a
limited number of options, the latter proves to be more effective as it essentially reaches
out to a large design space. In this thesis the MWL optimization paradigm is addressed.
This problem is combinatorial in nature and is known to be NP-hard. Several tech-
niques based on greedy heuristics and genetic algorithms have been suggested in the
past for performing word-length optimization. This problem in general essentially con-
sists of three sub-aspects: i) the problem of dynamic range evaluation, ii) the problem
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of accuracy evaluation, and iii) algorithm for word-length optimization. Solving the
last two problems among these three sub-problems has been the focus in this thesis.

The ubiquitous use of fixed-point operations requires study of algorithms in vari-
ous domains. Broadly, the algorithms implemented using fixed-point platforms can be
modeled as either pure data-flow-graphs (DFG) or control-data-flow-graphs (CDFG).
The presence of control signals among many data signals makes the flow of data inde-
terministic. Although the treatment of CDFG class of algorithms is in the best interest
to this field, the indeterministic nature of data flow in the presence of control makes
it difficult for application of analytical techniques. On the other hand, a large class
of signal processing algorithms can be modeled using pure DFG structures. Keeping
this in view, the focus of this thesis narrows down to fixed-point refinement of signal
processing algorithms.

Although this thesis only partly addresses the fixed-point refinement issue, the tar-
get class of algorithms to which the proposed techniques can be applied to has a huge
impact on the way modern electronic systems are designed. Using signal processing im-
plementations on resource constrained platforms poses a challenge in several important
technological domains such as wireless or wireline communication systems, multimedia,
entertainment systems etc. Here, all the contributions made in this thesis are briefly
reviewed and the scope for future work is discussed.

Summary of Contributions

Contributions in this thesis have been presented in the previous three chapters. In this
section, key ideas in this thesis that have paved way to solve some interesting challenges
are summarized and an attempt to provide a high level perspective to the contributions
is made.

Stochastic Modeling of Quantization Noise

The first contribution made in this thesis is inspired by the idea behind the pseudo
quantization noise (PQN) model. The applicability of PQN model is one of the funda-
mental assumptions made during linear analysis of quantization noise in a fixed-point
system. Quantization is by definition, non-linear due to the discontinuity. However,
it is still amenable to linear analysis when it satisfies the conditions required set by
the PQN model (also referred to as quantization theorems). All instances when fixed-
point operations satisfy the conditions for the application of PQN model are referred
to as smooth operations. The PQN model essentially models the fixed-point errors as a
particular random process which is spectrally white, uncorrelated with the signal and
has a uniform distribution whose mean and power are determined by the quantization
step-size.

While the PQN model addresses the characteristics of quantization noise generated
at the output of a fixed-point quantizer, the single noise source model (SNS) scales up
this idea to be applied to abstractions of fixed-point systems at large. The SNS model
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is essentially about deriving the characteristics of errors due to fixed-point quantization
operations at the output of a given system. The usefulness of this approach is that it
enables the treatment of large signal processing systems at sub-system level abstrac-
tions rather than requiring to deal with individual fixed-point operations. This has a
profound impact on the scalability of techniques used for fixed-point refinement.

The SNS model essentially consists of three aspects: i) total quantization noise
power, ii) spectral distribution of noise power and its spectral correlation with other
signals, iii) the noise shape describing its spatial distribution (PDF). While the de-
termination of quantization noise power has been addressed in previous works, this
thesis presents analytical expressions for deriving the spectral shape and noise PDF.
With relevant examples, the efficacy of using these parameters for modeling fixed-point
effects is demonstrated in Chapter 2.

Although a one-time effort, the complexity of deriving each of the SNS model pa-
rameters can be high depending upon the system functionality. However, it is enough
to derive only the relevant SNS parameters are derived. In case of systems that are not
sensitive to either the signal level or the signal frequency, it is sufficient to work with
only the noise power parameter.

Performance Evaluation with Unsmooth Operations

The smooth quantization operations which behave according to the PQN model tend
to be more accurate when the step-sizes are smaller. When the quantization step-size
is large enough, the behavior suggested by PQN model is no longer valid. Under such
circumstances, quantization is said to be un-smooth. This is essentially due to the fact
that the signals in practice are time-limited and are therefore band-unlimited in the
characteristic function domain. Depending upon the accuracy of estimation required
by the quantization noise itself, it is possible to define a boundary for every given
quantization operation to say if it is smooth or un-smooth. An algorithm to perform
this classification is also presented.

Apart from quantization with large step-sizes, other operations such as Min(),
Max(), QAM slicers and essentially any other operation which does not have a lin-
ear noise propagation model is considered un-smooth. In the presence of un-smooth
such as a QAM slicer, a fully analytical technique for evaluating quantization errors is
presented. This method requires the knowledge of the PDF of both signal and noise
at the input of every un-smooth operation. The evaluation of error due to fixed-point
is made by essentially propagating the errors due to fixed-point operations through
various operations. Two separate cases where the decision outputs from QAM slicers
may be correlated or un-correlated with one another are considered. This technique is
applied for analysis of the errors at the output of various QAM-slicers in the V-BLAST
algorithm.

The strategy for propagation of quantization noise through un-smooth operations
fails when the system is recursive in nature. Another alternative to the rather time con-
suming analytical approach which can also work in the presence of decision feed-back
loops in the algorithm is proposed. This is referred to as the Hybrid approach. This
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approach is the first of its kind to use analytical techniques for fixed-point accuracy
evaluation for accelerating fixed-point simulation. This technique selectively simulates
parts of the system only when an un-smooth error occurs. The given system is divided
into many smooth clusters consisting of many sub-systems with smooth quantization
operations. These smooth clusters are separated by un-smooth operations. The appli-
cation of SNS model on each of the smooth clusters captures the statistical behavior of
quantization noise accurately. This characterization is used to generate random num-
bers to mimic quantization errors rather than perform fixed-point simulation. Thereby,
avoiding wasting precious time simulating fixed-point numbers. This technique also in-
volves book keeping of un-smooth errors for switching between simulation and analytical
evaluation modes.

Several examples including the decision feed-back equalizer are studied in this con-
text. This technique is essentially based on floating-point simulation and the use of
SNS model. It yields several orders of magnitude improvement in the time taken for
fixed-point simulation even while being statistically consistent with fixed-point simula-
tion.

Hierarchical Approach

The scalability of the fixed-point refinement process essentially depends on both, the
functional complexity of the algorithm and the degree of freedom available for the
choice of word-length assignment. Two scalability problems that arise as the system
grows in its size are addressed in this thesis.

The first among them is the accuracy evaluation in fixed-point systems. The
evaluate-propagate-add strategy discussed in Section 3.1.2 addresses this problem with
the help of the SNS model. In this approach, the given system is functionally decom-
posed into several sub-systems with reduced functional complexity. The SNS model
is used to evaluate the quantization at the output of each of these sub-systems. This
makes it possible to explore opportunities for parallelize evaluation of fixed-point noise
at the system output. Moreover, when the word-length assignment to any of the opera-
tions changes (say, during iterative optimization), the evaluation of output quantization
noise power can be performed by evaluation and propagation of output quantization
noise for only those sub-systems where the word-length has been changed.

The second problem is the scale of scalability of the word-length optimization algo-
rithm. As the number of variables participating in the optimization problem increase,
the optimization process takes longer to converge. The number of variables depends
both on the number of operations and the degree of freedom available to make fixed-
point word-length choices. For example, there is only one degree of freedom when the
uniform word-length (UWL) paradigm is used and the number of degrees of freedom
increases as the operators are allowed to have different choices of word-lengths. Ideally,
it should be possible to assign each fixed-point operation a word-length by uniquely
considering their impact. Therefore, to consider that there are as many degrees of
freedom as the number of fixed-point operations is idealistic.

In this thesis, a hierarchical approach for addressing the increasing complexity of
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the word-length optimization problem is devised. In this approach, the sub-system
boundaries are identified by the functional decomposition as it is done for accuracy
evaluation. The degrees of freedom for assignment of word-lengths is determined by
considering the resource sharing constraints. A bottom up approach using the well
known divide-and-conquer strategy is proposed for hierarchical optimization of the
given system.

Several examples: sub-systems obtained from a MIMO-OFDM receiver system is
used for evaluating the impact of hierarchical decomposition on the word-length op-
timization problem. The results indicate a reduction in the number of iterations by
at least one order of magnitude. The actual time taken including the sub-problem
optimization takes significantly lesser time than the flat optimization approach.

Given the NP-hard nature of the word-length optimization problem, the heuristics
suggest an exit clause to terminate iterations. When the iteration terminates, it is not
necessarily true that the assignment of word-lengths is optimal. This is due to the non-
convex behavior of the cost and accuracy trade-off. In this thesis, a convex optimization
based framework is proposed for solving the word-length optimization problem. The
combinatorial problem is transformed to an equivalent convex optimizatoin problem
by relaxing the integer constraint on the word-length assignments. Further, the fixed-
point design space of each type of operation such as a basic operator such as a binary
adder is explored exhaustively. The search space is characterized with a scatter plot of
cost vs. accuracy for each feasible fixed-point design. A Pareto-front is constructed by
choosing a part of the convex polygon covering all the feasible fixed-point design points
explored. This Pareto-front is convex (by definition) and is used as the trade-off instead
of the actual feasible points during optimization process. The transformed problem is
now called the noise-budgeting problem. Here, the objective is to distribute the total
quantization noise among different operator level noise source optimally. The CVX
toolbox in Matlab is used to solve the noise-budgeting problem thus formulated. The
solution obtained by this process suggests the quantization noise that can be injected
into the system at the point in the system graph corresponding to the fixed-point
operator under consideration.

The solution obtained by solving the noise-budgeting problem uses the relaxed ver-
sion of the original problem. Therefore, the solution is only indicative of the locality
of the solution and not by itself the actual solution. A near-optimal word-length as-
signment algorithm presents a technique which essentially searches for nearby points
that can be realised using fixed-point operations with integer word-lengths. The near-
optimal word-length assignment algorithm essentially checks for just two possible word-
length values that can be assigned to each fixed-point operation. There by the search
space reduces from the original case where any arbitrary word-length assignment were
to be possible. Using the convex framework for word-length optimization, it has been
possible to define the supremum value of the minimum cost by always taking the con-
servative choice.
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Perspectives

In this thesis, the scalability issues with respect to the fixed-point performance eval-
uation and word-length optimization have been the main drivers. The contributions
made in this thesis have been able to diligently address them and propose workable
solutions to address these issues. The three aspects that have been addressed in this
thesis aid one another in improving the time and quality of the fixed-point refinement
process.

A MIMO-OFDM receiver algorithm described in Section 5.3 is considered. This
choice is repersentative of the typical signal processing algorithms that are being de-
ployed on silicon in the present day consisting of thousands of fixed-point operations.
The use of analytical techniques that existed prior to the contributions in this thesis
is not possible for as they are not applicable in the presence of un-smooth operations.
Therefore, fixed-point simulation has to be inevitably used for evaluating the impact
of fixed-point operations on this system. The performance evaluation by fixed-point
simulation of such a system consisting of thousands of fixed-point variables takes a very
long time.

The application of evaluate-propagate-add helps in evaluating the performance of the
system by evaluating the output quantization noise of smaller sub-systems. However,
the applicability of this approach is limited to the FFT and QR sub-systems due to
the presence of un-smooth operations in the V-BLAST sub-system. It is possible to
accrue the quantization errors up until the input of V-BLAST and only the V-BLAST
sub-system requires to be simulated. This is made possible as the quantization noise
properties can be captured fairly accurately by application of the single-noise-source
models at the output of FFT and QR sub-systems. The Hybrid approach pitches in at
this point to improve this process further by improving the time taken for fixed-point
simulation of the V-BLAST sub-system by over two orders of magnitude over fixed-
point simulation in the presence of un-smooth operations. Thus, the different techniques
proposed in this thesis can improve the time taken for performance evaluation of fixed-
point systems. This essentially means that by using the techniques proposed in this
thesis, computers can now take on larger systems than what was possible by the classical
flat analytical approach or fixed-point simulation based approaches for performance
evaluation.

The large number of fixed-point optimization variables poses a challenge during
the actual word-length optimization process. If each of these fixed-point operations
have to be assigned a word-length by due consideration of their impact on the out-
put, it is virtually impossible with classical word-length optimization techniques. The
Hierarchical technique for word-length optimization presented in this thesis provides
a divide-and-conquer approach for word-length optimization of such large problems.
The total number of optimization variables is greatly reduced due to the hierarchical
decomposition of the problem. The sub-problems are simple enough to be optimized
with classical techniques. The number of iterations required for optimization of these
sub-systems reduces by several orders of magnitude. In case of the V-BLAST sub-
system, a two orders of magnitude reduction is obtained. Indeed, in case of just the
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V-BLAST sub-system case, a reduction in time of nearly four orders of magnitude has
been achieved by using both the Hybrid technique for performance evaluation and the
Hierarchical technique for word-length optimization.

The Convex-optimization based framework for word-length optimization is not only
generates solutions that are better in terms of its quality but are also faster than
the iterative hierarchical optimization technique. The total optimization time for the
entire MIMO-OFDM receiver takes only about four hours on an Apple Mac-book PRO
platform for assigns word-lengths to each of the thousand fixed-point operations giving
them the due consideration. Optimization of such a huge system is almost unimaginable
in practice without the use of the convex optimization and hierarchical techniques
proposed in this thesis.

Future directions

The thesis centrally focuses on the problem of scalability by addressing system-level
issues. While some ideas explored in this thesis ended up solving the problems that
were intended to be solved in the first place, some assumptions that were made in the
course of this study need to be questioned again. In this section, limitations of the
proposed solutions are explored and some of the key assumptions are questioned to
define possible scope for future work.

The single noise source (SNS) model is derived and used in this thesis for studying
the average case performance of fixed-point systems. This could also be used for study-
ing the worst case/ corner case scenarios. The quantization noise PDF at the operator
source is known from the PQN model. In order to make the worst case analysis, it
would just be enough to propagate the PDF to that point of interest in the signal flow
graph. This needs to be compared with the traditional PDF propagation approaches
based on methods such as PCE1. As the proposed PDF propagation by evaluating
Kurtosis works well, it is likely that this method will simplify the evaluation of worst
case scenarios at every point in the signal flow graph.

The convex optimization framework requires zero mean noise sources for the op-
timization problem to work. It is required to extend this to include the case when
quantization noise sources have non-zero mean. The near-optimal word-length opti-
mization algorithm uses a conservative approach. A branch-and-bound algorithm can
be used instead to take the solution closer to the to optimality. Secondly, the effect of
hierarchical grouping of sub-systems on the quality of convex optimization approach.
Further study is required to understand this.

This thesis uses a simplified energy cost model which provided a good first cut
estimate on the system implementation cost. However, it does not capture several
artefacts during a semi-custom design flow on hardware. Several decisions taken during
various stages such as scheduling, binding and place and route has a profound impact
on the performance of the circuit. There can be cases in practical circuits where the
extra bits added to a particular operator required a long routing making the system

1Polynomial Chaos Expansion
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effectively slow. In such cases, removing some of the bits might speedup the circuit
without compromising too much on accuracy. Therefore, it will be worth trying to
formulate a joint optimization problem to solve some of these problem together.

While the previous suggestion refers to a specific kind of problem explanation, what
is essentially required is a more specific cost model. In this thesis, the cost is just a
function of number of bits. A high-level model for capturing the cost metric will can
have a huge impact on the quality of the result obtained eventually. This requires
modeling of some of the algorithms used down the chain in the high-level synthesis
(HLS) tool flow in order to abstract away relevant artefacts for the purposes of use
during word-length optimization.

The hierarchical decomposition and resource sharing has a profound impact on how
quickly a given algorithm can be solved. The decision to share resources between sub-
systems is user defined. This has close connections to the resource binding problem in
the HLS tool flow. With prior information about binding, it is possible to influence
the time taken for optimization. At the same time, by choosing to have a lot of
independence, it is possible to influence the binding phase.

It is quite an engineering effort to realise the various ideas presented in this thesis as
a tool chain. Such a tool can indeed be a part of a larger support high level synthesis
tool. The ID.Fix project, a part of the GeCoS framework is in its early stages of
development. This ideas generated during this thesis is intended to be a part of the
ID.Fix infrastructure for automatic fixed-point refinement.
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Appendix A: Selective Evaluation
of Spectral Parameters

In this appendix, algorithms for performing selective evaluation of spectral parameters
of the Single Noise Source (SNS) model discussed in Section 3.5 is presented. The
spectral parameters are evaluated selectively by taking the frequency sensitivities of
various sub-systems into consideration.

Consider a directed acyclic graph H(V,E), which captures the connectivity between
the leaf-level sub-systems. The procedure to do the selective evaluation is as shown
in the procedure A.1. Let GetOutputNodes(H(V,E)) be the function which returns a
list of output nodes. Likewise, let GetPaths(H, i, j be a function which enumerates all
the paths between any two nodes Vi, Vj in the graph H(V,E). This function returns
an exhaustive list of paths which connect any two nodes Vi, Vj in the SFG H(V,E). If
the two nodes are connected, there can be one or more paths and the function returns
null if the two nodes are not connected. In this procedure, all paths P̄ij between the
ith sub-system and the jth nodes are enumerated. In a connected system graph, some
of the sub-system outputs may not be connected to all the outputs. For example, in
the graph shown in Figure 3.21, S2 is not connected to o2. Therefore, the path vector
has to be checked for null before proceeding.

Procedure A.1 : Selective Evaluation of Spectral SNS Parameters

1: Initialize(H(V,E)); \∗ Initialize the data structure to default behavior ∗\
2: V̄o = GetOutputNodes(H(V,E)); \∗ returns {o1, o2} for example 3.21 ∗\
3: \∗ Search all paths from every node to every output in the SFG ∗\
4: for all nodes: Vi in the graph H(V,E) do
5: for all nodes: Vj ∈ V̄o do
6: P̄ij = GetPaths( H(V,E), Vi, Vj);
7: if P̄ij 6= 0 then
8: AnnotateACorrParams(P̄ij , Vi, Vj , H(V,E));
9: AnnotateXCorrParams(P̄ij , Vi, Vj , H(V,E));

10: end if
11: end for
12: end for
13: EvaluateSpectralParams();
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The spectral parameters can be divided into two broad categories. One set of pa-
rameters required for determining the autocorrelation power spectrum and the other
defining the cross correlation spectrum between outputs of any node considered in pairs.
Once all the paths from a given node to the output are enumerated, the functions An-
notateACorrParams() and AnnotateXCorrParams() are called to mark the required
auto correlation properties and cross correlation properties respectively. These proce-
dures check if the autocorrelation or cross-correlation properties require to be marked
for every node that lies along every path.

Once the nodes are annotated with the spectral information that needs to be evalu-
ated, the function EvaluateSpectralParams() evaluates the expressions for the autocor-
relation and cross correlation spectrum of those signals which are marked during the
annotation process parameters as discussed in Section 3.3.

Annotating Auto-correlation Parameters

The number of paths between sub-system Vi and output Vj in the vector P̄ij is at least
equal to the out-degree of the node Vi. The procedure A.2 presents an algorithm to
identify the sub-system nodes in a given SFG for evaluation of auto-correlation power
spectral density.

In the graph shown in Figure 3.21, consider the paths from node S1 to output o1.
There are two edges fanning out of the node S1 and hence there are two paths from
the node S1 to node o1. One, which is along the edge e12 and the nodes S2 and S3 and
the other which is along edge e14 and the nodes S4, S2 and S3. So, k can take on two
values in this example.

The contribution of any operator noise source g to the sub-system output is non-
white only if the corresponding path to the output is frequency selective. Even a single
path from any of the operator noise sources to the kth output that containing memory
elements makes the path frequency selective. Therefore, Ck(ν, e) which is a graph con-
sisting of all elements in the sub-system belonging to the fan-in cone of the kth output
of the node Vi is extracted. The presence of memory elements in Ck(ν, e) makes it im-
perative to evaluate the auto-correlation function of the kth output. This corresponds
to the Generate Filter in the single noise source model as shown in Figure 3.7.

The noise generated at the kth output propagates along pk
ij all the way to the

jth node. In each node that is encountered along this path, the actual transmission
path qik in each of nodes is added to the TransmitCorrelation list of the corresponding
nodes. The input output signal pairs marked in the TransmitCorrelation list defines the
Transmit Filter component of the SNS model of the sub-system of the corresponding
node.

Annotating Cross-correlation Parameters

The cross-correlation parameters need to be evaluated if there are multiple outputs
emanating from the same noise source and they re-converge later in the graph. This
condition is detected by checking for intersection among the paths between any two
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Procedure A.2 : AnnotateACorrParams(P̄ij , Vi, Vj , H(V,E))

1: for all Paths: pk
ij ∈ P̄ij do

2: \∗ Marking spectral characteristics for Generate Filter ∗\
3: \∗ Get the kth output Cone ∗\
4: Ck(ν, e) = GetOutputCone(k, Vi);
5: \∗ Check if there are memory elements in the Cone ∗\
6: if Memory element ∈ Ck(ν, e) then
7: Vi.GenAutoCorrelation += k;
8: end if
9: \∗ Marking spectral characteristics for Transmit Filter ∗\

10: \∗ Go to the next node in the path pk
ij ∗\

11: Vi = GetNextNode(pij , Vi); \∗ The next node is now Vi ∗\
12: while Vi 6= Vj do
13: Vk = GetNextNode(pij , Vi); \∗ Get the node next to Vi ∗\
14: \∗ Get path in the sub-system Vi between input i and output k ∗\
15: qik = GetSubsystemPath(Vi, i, k);
16: \∗ Checking if this path is frequency selective ∗\
17: if Memory element ∈ qik then
18: \∗ Transmit Filter of Vi needs evaluation ∗\
19: Vi.TransmitCorrelation+= (i, k);
20: end if
21: Vi = Vk; \∗ The next node is now Vi ∗\
22: end while
23: end for

nodes. And cross correlation properties are always defined in pairs. Therefore, all
combination of two paths from the path vector P̄ij is considered. If there are N such

paths in the vector, there are N.(N−1)
2 number of paths.

Let GetPathNodes(pk
ij) be a function which returns all the nodes including Vi and

Vj along the kth path between them. Consider any pair (k, l) of paths from the vector
P̄k,l and let V̄k,l be the list of nodes common to both paths. Apart from the nodes
Vi and Vj , there can be more than one node in this list. In such a case, the paths
re-converge more than once.

Between any two paths (k, l) considered in pairs, it has to be checked if there are
common noise sources to the multi-output sub-system Vi. This is known by checking if
any of the operator noise sources have a path to both these outputs. If this correlation
does not exist, the two noise source in spite of them being from the same sub-system
are uncorrelated and hence nothing else needs to be done in this case and the loop is
iterated to consider the next pair of paths. Otherwise, the two outputs of the sub-
system Vi are correlated with one another. Therefore, the flag SrcCorr is set and the
OutputXCorr list is appended with the pair (k, l).

Consider any intermediate node Vk,l other than Vi and Vj and that the SrcCorr flag
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Procedure A.3 : AnnotateXCorrParams(P̄ij , Vi, Vj , H(V,E))

1: \∗ Consider various paths in P̄ij in pairs ∗\
2: for all Pairs : (pk

ij , p
l
ij) such that pk

ij , p
l
ij ∈ P̄ij do

3: \∗ Check for cross-correlated output pairs of node Vi ∗\
4: Ck(ν, e) = GetOutputCone(k, Vi);
5: Cl(ν, e) = GetOutputCone(l, Vi);
6: \∗ Check for common operators shared between cones (k, l) of node Vi ∗\
7: if {νk ∈ Ck} ∩ {νl ∈ Cl} 6= {0} then
8: Vi.OutputXCorr += (k, l); \∗ add pair (k, l) to cross-correlation list ∗\
9: else

10: continue; \∗ No common nodes. Hence, no cross correlation ∗\
11: end if
12: \∗ Check for correlation with input signals ∗\
13: \∗ Get the nodes common in both paths ∗\
14: V̄k,l = GetPathNodes(pk

ij)
⋂

GetPathNodes(pl
ij);

15: for all nodes: Vk,l ∈ V̄k,l and Vk,l 6= Vi and Vk,l 6= Vj do
16: Vk = GetPrevNode(pk

ij , Vk,l);

17: Vl = GetPrevNode(pk
ij , Vk,l);

18: Vm = GetNextNode(pk
ij , Vk,l);

19: Vn = GetNextNode(pl
ij , Vk,l);

20: \∗ Require the input correlation between inputs (k, l) ∗\
21: Vk,l.InputXCorr += (k, l);
22: \∗ If there is divergence again, mark output cross-correlation ∗\
23: if m 6= n then
24: Vk,l.OutputXCorr += (m, n);
25: end if
26: \∗ Proceed backward from Vk,l along pk

ijuntil it reaches Vi. ∗\
27: while Vk 6= Vi do
28: V

k̀
= GetPrevNode(pk

ij , Vk);
29: \∗ Mark for input-output cross correlation ∗\
30: Vk.TransXCorr += (k, k̀);
31: Vk = V

k̀
;

32: end while
33: \∗ Proceed backward from Vk,l along pl

ijuntil it reaches Vi. ∗\
34: while Vl 6= Vi do
35: V

l̀
= GetPrevNode(pl

ij , Vl);
36: \∗ Mark for input-output cross correlation ∗\
37: Vl.TransXCorr += (l, l̀);
38: Vl = V

l̀
;

39: end while
40: end for
41: end for
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of the node Vk,l is set. It is clear that the input edges of the node Vk,l along the kth and
lth paths have emanated from the same source. Therefore, the corresponding inputs
are correlated. So, the InputXCorr list of the node Vk,l is appended with (k, l). Here,
(k, l) are the indices of the nodes occurring prior to the node Vk,l along the paths k and
l respectively. If the paths k and l re-converge more than once the outputs of the node
Vk,l along the two paths considered are correlated and hence the list OutputXCorr is
also appended with (m, n). Here, m, n are the indices of the nodes succeeding the node
Vk,l along the paths k and l respectively.

The kth and the lth output of node Vi is correlated. To propagate this information
to the input of the node Vk,l, it is necessary to keep the cross correlation information
between the input and the output along the paths k and l. This is done by tracing the
path back from node Vk,l to node Vi. All the successive indices k̀ and l̀ occurring prior
to Vk,l along paths k and l are appended in the TransXCorr list of the nodes Vk and
Vl respectively.
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[101] Emre Özer, Andy P. Nisbet, and David Gregg. A stochastic bitwidth es-
timation technique for compact and low-power custom processors. ACM Trans-
actions on Embedded Computer Systems, 7:34:1–34:30, 2008. 19
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