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Preface

A fundamental problem in automatic control is the control of uncertain plants in the

presence of input and state or output constraints. An elegant and theoretically most

satisfying framework is represented by optimal control policies which, however,

rarely gives an analytical feedback solution, and oftentimes builds on numerical

solutions (approximations).

Therefore, in practice, the problem has seen many ad-hoc solutions, such as over-

ride control, anti-windup, as well as modern techniques developed during the last

decades usually based on state space models. One of the popular example isModel

Predictive Control (MPC) where an optimal control problem is solved at each sam-

pling instant, and the element of the control vector meant for the nearest sampling

interval is applied. In spite of the increased computational power of control comput-

ers, MPC is at present mainly suitable for low-order, nominally linear systems. The

robust version of MPC is conservative and computationally complicated, while the

explicit version of MPC that gives an affine state feedback solution involves a very

complicated division of the state space into polyhedral cells.

In this thesis a novel and computationally cheap solution is presented for linear,

time-varying or uncertain, discrete-time systems with polytopic bounded control

and state (or output) vectors, with bounded disturbances. The approach is based on

the interpolation between a stabilizing, outer low gain controller that respects the

control and state constraints, and an inner, high gain controller, designed by any

method that has a robustly positively invariant set within the constraints. A simple

Lyapunov function is used for the proof of closed loop stability.

In contrast to MPC, the new interpolation based controller is not necessarily em-

ploying an optimization criterion inspired by performance. In its explicit form, the

cell partitioning is simpler that the MPC counterpart. For the implicit version, the

on-line computational demand can be restricted to the solution of one linear program

or quadratic program.

Several simulation examples are given, including uncertain linear systems with

output feedback and disturbances. Some examples are compared with MPC. The

control of a laboratory ball-and-plate system is also demonstrated. It is believed that

vii



viii Preface

the new controller might see wide-spread use in industry, including the automotive

industry, also for the control of fast, high-order systems with constraints.

Place(s), SUPELEC, Gif sur Yvette

month year October 3, 2012
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Résumé étendu de la thèse

Introduction

Un problème fondamental à résoudre en Automatique réside dans la commande
des systèmes incertains qui présentent des contraintes sur les variables de l’entrée,
de l’état ou la sortie. Ce problème peut être théoriquement résolu au moyen d’une
commande optimale. Cependant la commande optimale (en temps minimal) par
principe n’est pas une commande par retour d’état ou retour de sortie et offre seule-
ment une trajectoire optimale le plus souvent par le biais d’une solution numérique.

Par conséquent, dans la pratique, le problème peut être approché par de nom-
breuses méthodes, tels que ”commande over-ride” et ”anti-windup”. Une autre solu-
tion, devenu populaire au cours des dernières décennies est la commande prédictive.
Selon cette méthode, un problème de la commande optimale est résolu à chaque ins-
tant d’échantillonnage, et le composant du vecteur de commande destiné à l’échelon
curant est appliquée. En dépit de la montée en puissance des architecture de calcul
temps-réel, la commande prédictive est à l’heure actuelle principalement approprié
lorsque l’ordre est faible, bien connu, et souvent pour des systèmes linéaires. La
version robuste de la commande prédictive est conservatrice et compliquée à mettre
en oeuvre, tandis que la version explicite de la commande prédictive donnant une
solution affine par morceaux implique une compartimentation de l’état-espace en
cellules polyédrales, très compliquée.

Dans cette thèse, une solution élégante et peu coûteuse en temps de calcul est
présentée pour des systèmes linéaire, variants dans le temps ou incertains . Les dé-
veloppements se concentre sur les dynamiques en temps discret avec contraintes
polyédriques sur l’entrée et l’état (ou la sortie) des vecteurs, dont les perturbations
sont bornées. Cette solution est basée sur l’interpolation entre un correcteur pour
la région extérieure qui respecte les contraintes sur l’entrée et de l’état, et un autre
pour la région intérieure, ce dernier plus agressif, conçue par n’importe quelle mé-
thode classique, ayant un ensemble robuste positivement invariant à l’intérieur des
contraintes. Une fonction de Lyapounov simple est utilisée afin d’apporter la preuve
de la stabilité en boucle fermée.

1



2 Notation

Contrairement à la commande prédictive, la nouvelle commande interpolée n’est
pas nécessairement fondée sur un critère d’optimisation. Dans sa forme explicite,
la partition de l’espace d’état est plus simple que celle de la commande prédictive.
Pour la version implicite, la demande de calcul en ligne peut se limiter à la solution
d’un ou de deux programmes linéaires.

On donne plusieurs exemples de simulation, y compris pour les systèmes li-
néaires incertains avec retour de sortie et les perturbations. On donne quelques à
titre de comparaison avec la commande prédictive. Une application de ce type de
commande a été commande expérimentée pour un système de positionnement d’une
bille sur une plaque.

Nous pensons que la nouvelle commande peut être largement utilisée dans l’in-
dustrie, y compris l’industrie automobile, ainsi que pour la commande de systèmes
d’ordres élevées avec contraintes.

Contraintes

Les contraintes sont présentes dans tous les systèmes dynamiques du monde réel.
Elles rendent plus complexe la synthèse de lois des commandes, non seulement en
théorie, mais aussi dans le domaine des applications pratiques. Du point de vue
conceptuel, les contraintes peuvent être de nature différente. Fondamentalement,
il existe deux types de contraintes imposées par les limitations physiques et/ou la
performance souhaitée.

– Les contraintes physiques sont dues aux limitations physiques de la partie mé-
canique, électrique, biologique, actionneur, etc. La principale préoccupation
ici est la stabilité du système en présence des contraintes sur les variables
d’entrée et de sortie ou sur l’état. Les variables d’entrée et de sortie doivent
rester à l’intérieur des contraintes afin d’éviter la surexploitation ou de dom-
mages. En outre, la violation des contraintes peut conduire à une dégradation
de performance, à des oscillations ou même à l’instabilité.

– Les contraintes de performance sont introduites lors de la synthèse afin de
satisfaire les exigences de performance, par exemple le temps de montée, le
temps de premier maximum, la tolérance aux pannes, la longévité des équipe-
ments et des problèmes environnementaux, etc.

Contraintes sur l’entrée

Une classe de contraintes couramment imposées tout au long de cette thèse sont
les contraintes sur l’entrée considérées dans le but d’éviter la saturation

– Contraintes sur la norme Euclidienne de la commande

‖u(k)‖2 ≤ umax (0.1)



Notation 3

où u(k) ∈ R
m est la commande du système.

– Contraintes polyédrales sur la commande

u(k) ∈U,U = {u ∈ R
m : Fuu(k)≤ gu} (0.2)

où le matrice Fu et le vecteur gu sont supposés être constants avec gu > 0 de
sorte que l’origine est contenue à l’intérieur deU .

Contraintes sur la sortie

Une autre classe de contraintes présentes dans ce manuscrit sont les contraintes
sur la sortie.

– Contraintes sur la norme Euclidienne de la sortie

‖y(k)‖2 ≤ ymax (0.3)

où y(k) ∈ R
p est la sortie du système.

– Contraintes polyédrales sur la sortie

y(k) ∈ Y,Y = {y ∈ R
p : Fyy(k)≤ gy} (0.4)

où le matrice Fy et le vecteur gy sont supposés être constants avec gy > 0 de
sorte que l’origine est contenue à l’intérieur de Y .

Contraintes sur l’état

Une dernière classe de contraintes présentes dans ce mémoire sont les contraintes
sur l’état.

– Contraintes sur la norme Euclidienne de l’état

‖x(k)‖2 ≤ xmax (0.5)

où x(k) ∈ R
n est l’état du système.

– Contraintes polyédrales sur l’état

x(k) ∈ X ,X = {x ∈ R
n : Fxx(k)≤ gx} (0.6)

où le matrice Fx et le vecteur gx sont supposés être constants avec gx > 0 de
sorte que l’origine est contenue à l’intérieur de X .



4 Notation

Incertitudes

Le problème de la commande sous contraintes peut devenir encore plus diffi-
cile en présence d’incertitudes de modèle, ce qui est inévitable dans la pratique
[143], [2]. Les incertitudes du modèle apparaissent dans certains cas spécifiques,
par exemple quand un modèle linéaire est obtenu par une approximation d’un sys-
tème non linéaire autour d’un point de fonctionnement. Même si ce processus est
assez bien représenté par un modèle linéaire, les paramètres du modèle pourraient
être variants dans le temps ou pourraient changer en raison d’un changement des
points de fonctionnement. Dans ces cas, la cause et la structure des incertitudes du
modèle sont assez bien connus. Néanmoins, même si le processus réel est linéaire,
il y a toujours une certaine incertitude associée, par exemple, à des paramètres phy-
siques, qui ne sont jamais connus exactement. En outre, les processus réels sont
généralement affectés par des perturbations et il est nécessaire de les prendre en
compte dans la conception de la lois de commande.

Il est généralement admis que la principale raison de l’asservissement est de di-
minuer les effets de l’incertitude, qui peut apparaître sous différentes formes telles
que les incertitudes paramétriques, les perturbations additives insuffisances dans les
modèles utilisés servant à la conception de l’asservissement. L’incertitude du mo-
dèle et sa robustesse ont été un thème central dans le développement de lois de
commande en automatique [9].

Une perspective historique

Une manière simple, qui permet de stabiliser un système sous contraintes est de
réaliser la conception de la lois de commande sans tenir compte des contraintes.
Puis, une adaptation de la loi de commande est considérée en considérant la satura-
tion d’entrée. Une telle approche est appelée anti-windup [79], [152], [150], [158],
plus récemment traitée dans [142].

Au cours des dernières décennies, la recherche concernant le sujet de la com-
mande sous contraintes n’a pu déboucher que dans la mesure où ces contraintes ont
pu être prises en compte lors de la phase de synthèse. Par son principe, la commande
prédictive révèle toute son importance dans le traitement des contraintes [32], [100],
[28], [129], [47], [96], [48]. Dans l’approche de la commande prédictive, une sé-
quence de valeurs prédites de commande sur un horizon de prédiction finie est cal-
culée afin d’optimiser la performance du système en boucle fermée, exprimée en
termes d’une fonction de coûts [3]. La commande utilise un modèle mathématique
interne qui, compte tenu des mesures actuelles, prédit le comportement futur du
système réel en fonction du changement des entrées de commande. Une fois que
la séquence optimale d’entrées de la commande a été calculé, seul le premier élé-
ment est effectivement appliquée au système et l’optimisation est répétée à l’instant
suivant avec la nouvelle mesure de l’état [5], [100], [96].



Notation 5

Dans la commande prédictive classique, l’action d’entrée à chaque instant est
obtenue en résolvant en ligne le problème de commande optimale en boucle ouverte
[126], [33]. Avec un modèle linéaire, des contraintes polyédrales, et un coût qua-
dratique, le problème d’optimisation est un programme quadratique. La résolution
du programme quadratique peut être coûteuse en temps de calcul, surtout quand
l’horizon de prédiction est grand, ce qui a traditionnellement limitée la commande
prédictive aux applications avec période d’échantillonnage relativement faible [4].

Dans la dernière décennie, des tentatives ont été faites pour utiliser la commande
prédictive aux processus rapides. Dans [122], [121], [20], [154] il a été montré que la
commande prédictive sous contraintes est équivalente à un problème d’optimisation
multi-paramétrique, où l’état joue le rôle d’un vecteur de paramètres. La solution
est une fonction affine par morceaux de l’état sur une partition polyédrale de l’es-
pace d’état, et l’effort de calcul de la commande prédictive est déplacé hors-ligne.
Cependant, la commande prédictive explicite a aussi des inconvénients. L’obtention
de la solution optimale explicite nécessite de résoudre un problème hors-ligne d’op-
timisation paramétrique, qui est généralement un problème NP-difficile. Bien que le
problème soit traitable et pratiquement résoluble pour plusieurs applications de inté-
ressantes de l’automatique, l’effort hors-ligne de calcul croît exponentiellement plus
vite même que l’augmentation de la taille du problème [84], [85], [83], [64], [65].
C’est le cas d’une grand horizon de prédiction, d’un grand nombre de contraintes et
de systèmes de grande dimension.

Dans [157], les auteurs montrent que le calcul en ligne est préférable dans le cas
des systèmes de grande dimension où la réduction significative de la complexité de
calcul peut être obtenue en exploitant la structure particulière du problème d’opti-
misation à partir d’une solution obtenue à l’étape précédente de temps. La même
référence mentionne que pour les modèles de plus de cinq dimensions, la solution
explicite pourrait ne pas être pratique. Il convient de mentionner que les solutions
approchées explicites ont été étudiées pour aller au-delà de cette limitation ad-hoc
[19], [62], [140].

Notez que, comme son nom l’indique, les commandes prédictives implicites et
explicites classiques sont basées sur des modèles mathématiques qui, invariable-
ment, présentent un décalage par rapport aux systèmes physiques. La commande
prédictive robuste est conçue pour couvrir à la fois l’incertitude des modèles et des
perturbations. Cependant, le robuste MPC présente un grand conservatisme et/ou
grand complexité de de calcul [78], [87].

L’utilisation de l’interpolation dans la commande sous contraintes permettent
d’éviter des procédures très complexes de synthèse est bien connue dans la littéra-
ture. Il y a une longue tradition de développements sur ces sujets étroitement liés à
la commande prédictive, voir par exemple [11], [132], [133], [131]. En effet, l’inter-
polation entre les séquences d’entrée, l’état des trajectoires, les gains de correcteurs
et/ou des ensembles associés aux ensembles invariants, peut être déterminée.



6 Notation

Formulation du problème

Considérons le problème de la régulation d’un système linéaire variant dans le
temps ou incertain

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) (0.7)

où x(k) ∈ R
n, u(k) ∈ R

m and w(k) ∈ R
d sont respectivement, le vecteur d’état, le

vecteur des entrées et le vecteur des perturbations. Les matrices du système A(k) ∈
R
n×n, B(k) ∈ R

n×m et D(k) ∈ R
n×d satisfont





A(k) =
q

∑
i=1

αi(k)Ai, B(k) =
q

∑
i=1

αi(k)Bi, D(k) =
q

∑
i=1

αi(k)Di
q

∑
i=1

αi(k) = 1, αi(k)≥ 0
(0.8)

où les matrices Ai, Bi et Di sont donnés.
Le système est soumis à des contraintes sur l’état, la commande et la perturbation





x(k) ∈ X , X = {x ∈ R
n : Fxx≤ gx}

u(k) ∈U, U = {u ∈ R
m : Fuu≤ gu}

w(k) ∈W, W = {w ∈ R
d : Fww≤ gw}

(0.9)

où les matrices Fx et Fu, Fw et les vecteurs gx, gu et gw sont supposés être constants
avec gx > 0, gu > 0 et gw > 0 tel que l’origine est contenue à l’intérieur de X , U et
W . Les inégalités sont valable sur tous ces éléments.

Ensembles invariants

Avec la théorie de Lyapunov introduite dans le cadre des systèmes régis par des
équations différentielles ordinaires, la notion d’ensemble invariant a été utilisée dans
de nombreux problèmes concernant l’analyse et la commande des systèmes dyna-
miques. Une motivation importante ayant conduit à introduire les ensembles inva-
riants est venu du besoin d’analyser l’influence des incertitudes sur le système. Deux
types de systèmes seront examinées dans la présente section, à savoir, des systèmes
linéaires incertains à temps discret (0.7) et des systèmes autonomes

x(k+1) = Ac(k)x(k)+D(k)w(k) (0.10)

Définition 0.1. Ensemble positif invariant robuste L’ensemble Ω ⊆ X est dit po-
sitif invariant robuste pour le système(0.10) si et seulement si

x(k+1) = Ac(k)x(k)+D(k)w(k) ∈Ω

pour tout x(k) ∈Ω et pour tout w(k) ∈W .
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Par conséquent, si le vecteur d’état du système (0.10) atteint un ensemble posi-
tivement invariant, il restera dans l’ensemble en dépit de la perturbation w(k). Le
terme positivement fait référence au fait que seulement les évolutions du système
(0.10) en temps direct sont considérées. Cet attribut sera omis dans les sections à
venir par souci de brièveté.

Étant donné un ensemble borné X ⊂ R
n, l’ensemble invariant robuste maximal

Ωmax ⊆ X est un ensemble invariant robuste, qui contient tous les ensembles inva-
riants robustes contenues dans X .

Définition 0.2. Ensemble contractif robuste Pour un certain scalaire λ avec 0 ≤
λ ≤ 1, l’ensemble Ω ⊆ X est λ -contractif robuste pour le système (0.10) si et seule-
ment si

x(k+1) = Ac(k)x(k)+D(k)w(k) ∈ λΩ

pour tout x(k) ∈Ω et pour tout w(k) ∈W .

Définition 0.3. Ensemble invariant robuste contrôlée L’ensemble C ⊆ X est in-
variante robuste contrôlée pour le système (0.7) si pour tout x(k) ∈C, il existe une
valeur de commande u(k) ∈U tel que

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) ∈C

pour tout w(k) ∈W .

Étant donné un ensemble borné X ⊂ R
n, l’ensemble invariant robuste contrôlée

maximalCmax ⊆ X est un ensemble invariant robuste contrôlée, qui contient tous les
ensembles invariants robustes contrôlée contenues dans X .

Définition 0.4. Ensemble contractif robuste contrôlée Pour un certain scalaire λ

avec 0 ≤ λ < 1, l’ensemble C ⊆ X est robuste contractif contrôlée pour le système
(0.7) si pour tout x(k) ∈C, il existe une valeur de commande u(k) ∈U tel que

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) ∈ λC

pour tout w(k) ∈W .

De toute évidence, si le facteur contractif λ = 1, la question des concepts de
l’invariance robuste et l’invariance robuste contrôlée se repose.

Pour les système (0.7) et (0.10) deux types d’ensembles convexes sont large-
ment utilisés pour caractériser le domaine d’attraction. La première classe est celle
des ensembles ellipsoïdaux ou ellipsoïdes. Les ensembles ellipsoïdaux sont les plus
couramment utilisés dans l’analyse de stabilité robuste et la synthèse des correc-
teurs des systèmes sous contraintes. Leur popularité est due à l’efficacité des calculs
grâce à l’utilisation de formulations LMI et du fait que leur complexité est fixe par
rapport à la dimension de l’espace d’état [29], [137]. Cette approche, cependant,
peut conduire à des résultats entachés de conservatisme.

La seconde classe est celle des ensembles polyédrales. Avec des contraintes li-
néaires sur les variables d’état et de commande, les ensembles invariants polyédrales
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Fig. 0.1 Ensemble invariant ellipsoïdale.

sont préférés aux ensembles invariants ellipsoïdaux, car ils offrent une meilleure ap-
proximation du domaine d’attraction [35], [55], [21]. Leur principal inconvénient est
que la complexité de la représentation n’est pas fixée par la dimension de l’espace.
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Fig. 0.2 Ensemble invariant polyédrique.

Commande aux sommets

La solution est une extension de la commande aux sommets, développé par Gut-
man et Cwikel (1986) et prolongée par Blanchini (1992) dans le cas des systèmes
incertains. Les conditions nécessaires et suffisantes de stabilisation à l’origine du
système (0.7), (0.9) sont que, à chaque sommet de l’ensemble invariant, il existe
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une commande faisable qui amène l’état de l’intérieur respectif à l’ensemble inva-
riant pour tous les cas d’incertitude ou de variation dans le temps se produisant dans
les matrices du système.
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Fig. 0.3 Commande sommet.

Le principal avantage du système de la commande aux sommets est la taille du
domaine d’attraction, c’est-à-dire l’ensemble CN . Il est clair que l’ensemble inva-
riant contrôlée CN et le domaine faisable pour la commande, pourrait être aussi
grand que tout autres correcteur sous contraintes pourraient avoir. Toutefois, une
faiblesse de la commande aux sommets réside dans ce que l’action de commande
maximale est appliqué seulement à la frontière de l’ensemble faisable, avec une am-
plitude de l’action de commande diminué lorsque l’état se rapproche de l’origine.
Une solution à ce problème consiste à basculer vers un correcteur local plus agressif
qui doit être complété, par exemple, par un mécanisme de type hystérésis afin d’évi-
ter la vibration. Une faiblesse de lois de commande par commutation, c’est que le
signal de commande peut changer brusquement.

Commande interpolée basée sur la programmation linéaire

Solution implicite

Une solution aux faiblesses mentionnées ci-dessus est la loi de commande aux
sommets améliorée qui réalise une interpolation entre le signal de commande ex-
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terne et un correcteur interne plus agressif. Supposons que une loi de commande
interne stabilisant a été conçu dont l’ensemble invariant robuste maximal Ωmax est
un sous-ensemble deCN .

Rappelons que, le MAS Ωmax est l’ensemble polyédrale maximal pour le quel la
loi de commande choisie donne un signal de commande admissible uo tel que x(k)
reste dans Ωmax.

Soit x(k) ∈CN décomposé comme

x(k) = c(k)xv(k)+(1− c(k))xo(k) (0.11)

où xv(k) ∈CN , xo ∈Ωmax et 0≤ c≤ 1. Considérons la loi de commande suivante

u(k) = c(k)uv(k)+(1− c(k))uo(k) (0.12)

où uv(k) est obtenu en appliquant la loi de commande aux sommets, et uo(k) =
Kxo(k) est la loi de commande optimale localement, et qui est faisable dans Ωmax.
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Fig. 0.4 Commande interpolée. Tout l’état x(k) peut être exprimée comme une combinaison
convexe de xv(k) ∈CN et xo(k) ∈Ωmax.

À chaque instant, considérons le problème d’optimisation non linéaire suivant

c∗ = min
c,xv,xo

{c} (0.13)

sujet à 



xv ∈CN ,
xo ∈Ωmax,

cxv+(1− c)xo = x,
0≤ c≤ 1

On montre que le problème d’optimisation non linéaire (0.13) peut être converti
en un problème de programmation linéaire. Il sera prouvé que la loi de commande
(0.11), (0.12), (0.13) est faisable et stabilise asymptotiquement le système en boucle
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fermée avec garanties de robustesse. Le minimum de c(k) est le meilleur choix du
point de vue de la commande, car il donne la mesure de l’action de commande, qui
se rapproche autant que possible de l’action de commande optimale. Il est en outre
montré que le coefficient d’interpolation c∗ est une fonction de Lyapunov.
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Fig. 0.5 Une simulation de la commande interpolée et de la commande prédictive.

Solution explicite

Pour le problème d’optimisation (0.13), les propriétés suivantes peuvent être ex-
ploitées :

– Pour tout x ∈ Ωmax, le résultat du problème d’interpolation optimale est la
solution triviale c∗ = 0 et donc x∗o = x dans (0.13).
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Fig. 0.6 Illustration graphique. Pour tout x ∈CN \Ωmax, la solution optimale du problème (0.13)
est atteinte si et seulement si x est écrit comme une combinaison convexe de xv et xo où xv ∈ Fr(CN)
et xo ∈ Fr(Ωmax).
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– Soit x ∈CN \Ωmax avec une combinaison particulière convexe x = cxv+(1−
c)xo où xc ∈ CN et xo ∈ Ωmax. Si xo est strictement à l’intérieur de Ωmax, on
peut définir

x̃o = Fr(Ωmax)∩ x,xo

x̃o comme l’intersection entre la frontière de Ωmax et le segment reliant x et xo.
En utilisant des arguments de convexité, on a

x= c̃xv+(1− c̃)x̃o

où c̃< c. D’une manière générale, pour tout x ∈CN \Ωmax l’interpolation op-
timale (0.13) conduit à une solution {x∗v ,x

∗
o} avec x∗o ∈ Fr(Ωmax).

– D’autre part, si xv est strictement à l’intérieur deCN , on peut exprimer

x̂v = Fr(CN)∩ x,xv

x̂v à l’intersection entre la frontière de CN et le rayon de raccordement de x et
xv. On obtient

x= ĉx̂v+(1− ĉ)xo

avec ĉ< c, ce qui conduit à la conclusion que la solution optimale {x∗v ,x
∗
o}, il

estime que x∗v ∈ Fr(CN).
De la remarque précédente, nous concluons que pour tout x∈CN \Ωmax le coeffi-

cient d’interpolation c atteint un minimum en (0.13) si et seulement si x est écrit sous
la forme d’une combinaison convexe de deux points, l’un appartenant à la frontière
de Ωmax et l’autre étant sur la frontière deCN .

Il est en outre montré que, si x ∈CN \Ωmax, la plus petite valeur de c sera atteint
lorsque la régionCN \Ω est décomposé en polytopes avec leurs sommets situés, soit
sur la frontière de Ωmax ou sur la frontière de CN . Ces polytopes peuvent être dé-
composée en simplexes, formées chacune par r sommets deCN et n−r+1 sommets
de Ωmax ou 1≤ r ≤ n. Nous allons également prouver que la commande d’interpo-
lation de base donne une solution explicite avec les lois de commande affines par
morceaux dans CN \Ωmax partitionné en simplexes (solution similaire, mais plus
simple que cell de la commande prédictive explicite). A l’intérieur de l’ensemble
Ωmax, la commande interpolée s’avère être la commande optimale sans contrainte
u(k) = Kx(k).

Commande interpolée basée sur la programmation quadratique

L’interpolation entre les régulateurs linéaires

La commande interpolée basée sur l’interpolation (0.11), (0.12), (0.13) se réduit
à l’utilisation de la programmation linéaire, qui est extrêmement simple. Toutefois,
le principal problème en ce qui concerne la mise en ouvre de l’algorithme (0.11),
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Fig. 0.7 Partition de l’espace état de la commande interpolée et la commande prédictive.

(0.12), (0.13) est la non-unicité de la solution. Plusieurs optimas ne sont pas sou-
haitables, car ils pourraient conduire à une commutation rapide entre les différentes
actions de commande optimale lorsque le problème LP (0.13) est résolu en ligne.
Traditionnellement, la commande prédictive a été formulé en utilisant un critère
quadratique [100]. Donc, pour la commande à base d’interpolation, cela vaut la
peine de se tourner vers l’utilisation de la programmation quadratique.

Avant d’introduire une formulation QP, notons que l’idée d’utiliser des formu-
lations QP pour la commande interpolée n’est pas nouvelle. Dans [11], [132], la
théorie de Lyapunov est utilisée pour calculer une borne supérieure de la fonction
de coût à horizon infini.

J =
∞

∑
k=0

{
x(k)TQx(k)+u(k)TRu(k)

}
(0.14)

oùQ� 0 et R≻ 0 sont les matrices d’état et d’entrée. À chaque instant, l’algorithme
dans [11] utilise une décomposition en ligne de l’état actuel, avec chaque compo-
sant se trouvant dans un ensemble distinct invariant. Après quoi le dispositif de
commande correspondant est appliqué à chaque composant séparément, de maniére
à calculer l’action de commande. Les polytopes qu’on utilise comme ensembles
candidats sont invariants. Par conséquent, le problème d’optimisation en ligne peut
être formulé comme un problème QP. Cependant, les résultats de [11], [132] ne
permettent pas d’imposer une priorité parmi les lois de contrôle d’interpolation.

Dans ce manuscrit, nous fournissons une contribution à cet direction de recherche
en tenant compte dans l’interpolation, du fait que une des commandes aura la plus
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grande priorité, tandis que les autres gains joueront le rôle de degrés de liberté de
manière à élargir le domaine d’attraction. Cette approche alternative peut fournir
un cadre approprié pour la conception de lois de commande sous contraintes qui
s’appuie sur la commande optimale sans contraintes (généralement avec un gain
élevé) et par la suite on pourra règle le facteur d’interpolation pour faire face à des
contraintes et des limitations (par interpolation avec les contrôleurs adéquats à faible
gain).

On suppose que l’utilisation des résultats établis dans la théorie de la commande,
on obtient un ensemble de correcteurs sans contraintes asymptotiquement stabilisés
u(k) = Kix(k), i= 1,2, . . . ,r tel que pour les matrices d’état et d’entrée, le problème
d’optimisation suivant

(A j+B jKi)
TPi(A j+B jKi)−Pi �−Qi−K

T
i RiKi,∀ j = 1,2, . . . ,s

est faisable par rapport à la variable Pi ∈ R
n×n.

Notons Ωi ⊆ X un ensemble invariant maximal pour chaque correcteur Ki, et Ω

dans une enveloppe convexe de Ωi. De la convexité de X , il s’ensuie’ que Ω ⊆ X .
Le correcteur de gain élevé dans cette énumération jouera le rôle d’un candidat
prioritaire, tandis que les autres correcteurs de gain faible seront utilisés dans le
schéma d’interpolation pour élargir le domaine d’attraction.

Tout l’état x(k) ∈Ω peut être décomposé comme suit

x(k) = λ1x̂1 +λ2x̂2 + . . .+λrx̂r (0.15)

où x̂i ∈Ωi pour tout i= 1,2, . . . ,r et

r

∑
i=1

λi = 1, λi ≥ 0

Considérons la loi de commande suivante

u(k) = λ1K1x̂1 +λ2K2x̂2 + . . .+λrKr x̂r (0.16)

où ui(k) = Kix̂i est la loi de commande, associé à la construction de l’ensemble
invariant Ωi.

À chaque instant, considère le problème d’optimisation suivant

min
xi,λi

{
r

∑
i=2

x̂Ti Pix̂i+λ 2
i

}
(0.17)

sujet aux contraintes 



x̂i ∈Ωi,∀i= 1,2, . . . ,r
r

∑
i=1

λix̂i = x

r

∑
i=1

λi = 1, λi ≥ 0
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Nous insistons sur le fait que la fonction objectif est construite sur les indices
{2, ...r}, ce qui correspond aux correcteurs de plus faible priorité.

Il sera démontré que le problème d’optimisation non linéaire (0.17) peut être
converti en un problème d’optimisation quadratique. Il sera en outre montré que,
la commande d’interpolation basée sur (0.15), (0.16), (0.17) garantit la faisabilité
récursive et la stabilité asymptotique robuste du système en boucle fermée.
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Fig. 0.8 Ensembles invariant et des trajectoires d’état.
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Fig. 0.9 Commande interpolée basée sur la programmation quadratique.

Il est évident que lorsque x ∈ Ω1, le problème d’optimisation (0.17) admet une
solution triviale, on a {

xi = 0,
λi = 0

pour tout i = 2,3, . . . ,r. D’où x1 = x et λ1 = 1 ou dans une autre perspective,
pour tout x ∈ Ω1, la commande interpolée s’avère être la commande optimal sans
contrainte.
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Commande interpolée entre les correcteurs saturés

Afin d’utiliser le complet potentiel des actionneurs et de satisfaire aux contraintes
d’entrée sans avoir à manipuler une commande inutilement complexe, fondée sur
l’optimisation, une fonction de saturation à l’entrée sera considérée. La saturation
permettra de garantir que les contraintes sur l’entrée du système soient satisfaites.
Dans notre conception, nous exploitons le fait que la commande linéaire saturée li-
néaire peut être exprimée comme une combinaison convexe d’un ensemble de lois
linéaire selon Hu et al. [59]. Ainsi, les lois de commande disponibles dans l’enve-
loppe convexe plutôt que la loi de commande optimale, vont gérer les contraintes
sur les signaux d’entrée.
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Fig. 0.10 Ensembles invariant et trajectoires d’état.
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Fig. 0.11 Interpolation entre les correcteurs saturés.
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Commande interpolée basée sur LMI

Pour les systèmes de dimension élevée, les méthodes fondées sur les ensembles
polyédrales pourraient ne pouvoir s’appliquer, puisque le nombre de sommets ou
de demi-espaces peuvent conduire à une complexité exponentielle. Dans ces cas,
les ellipsoïdes semblent être une classe appropriée d’ensembles candidats pour l’in-
terpolation. Dans ce manuscrit, l’enveloppe convexe d’une famille d’ellipsoïdes est
utilisé pour estimer le domaine de stabilité pour un système de la commande sous
contraintes. Ceci est motivé par des problèmes liés à l’estimation du domaine d’at-
traction de façon à l’agrandir. Afin de décrire brièvement la classe des problèmes,
supposons qu’un ensemble d’ellipsoïdes invariants et un ensemble associé de lois
saturées soient disponibles. Notre objectif est de savoir si l’enveloppe convexe de
l’ensemble de ces ellipsoïdes est invariant par la commande et la façon de construire
une loi de commande pour cette région .

Il est supposé que les contraintes sur l’état X et les contraintes sur l’entréeU sont
symétriques. Il est également supposé qu’un ensemble de correcteurs Ki ∈ R

m×n

pour i = 1,2, . . . ,r sont disponibles tels que les ensembles ellipsoïdales invariants
E(Pi)

E(Pi) =
{
x ∈ R

n : xTP−1
i x≤ 1

}
(0.18)

sont non-vide pour i = 1,2, . . . ,r. Rappelons que pour tout x(k) ∈ E(Pi), il s’ensuit
que sat(Kix)∈U et x(k+1) = Ax(k)+Bsat(Kix(k))∈ X . On note par la suite ΩE ⊂
R
n comme une enveloppe convexe de E(Pi) pour tout i. Il s’ensuit que ΩE ⊆ X ,

depuis E(Pi)⊆ X .
Tout état x(k) ∈ΩE peut être décomposé comme suit

x(k) =
r

∑
i=1

λix̂i(k) (0.19)

avec x̂i(k) ∈ E(Pi) et λi sont les coefficients d’interpolation, qui satisfont

r

∑
i=1

λi = 1, λi ≥ 0

Considérons la loi de commande suivante

u(k) =
r

∑
i=1

λisat(Kix̂i(k)) (0.20)

où sat(Kix̂i(k)) est la loi de commande saturée, ce qui est faisable dans E(Pi).
Le premier correcteur de gain élevé sera utilisé afin de garantir la performance et

sera considéré comme prioritaire, tandis que le reste des correcteurs disponibles (à
faible gain) seront utilisés pour élargir le domaine d’attraction. Pour l’état courant
donné x, considérer la fonction objective suivante
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min
x̂i,λi

r

∑
i=2

λi (0.21)

sujet à 



x̂Ti P
−1
i x̂i ≤ 1,∀i= 1,2, . . . ,r

r

∑
i=1

λix̂i = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r

Il sera montré que le problème d’optimisation non linéaire (0.21) peut être re-
formulée comme un problème d’optimisation LMI. Il sera en outre montré que la
commande d’interpolation basée sur l’utilisation d’une solution du problème d’opti-
misation (0.21) garantit la faisabilité et la stabilité récursive robuste et asymptotique
du système en boucle fermée.

Il est clair que pour tout x ∈ E(P1), le problème d’optimisation (0.21) admet une
solution triviale, c’est {

x̂i = 0,
λi = 0

∀i= 2,3, . . . ,r

pour laquelle x1 = x et λ1 = 1. Ou en d’autres termes, la commande d’interpolation
s’avère être la commande optimal e de haut gain élevé u(k) = sat(K1x).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Fig. 0.12 Ensembles invariant et les trajectoires de l’état.

Commande par retour de sortie

Jusqu’à présent, les problèmes d’asservissement dans l’espace d’état ont été pris
en compte. Cependant, dans la pratique, l’information directe ou la mesure de l’état
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(a) Trajectoires de l’état (b) trajectoires de l’entreé

Fig. 0.13 Commande interpolée basée sur LMI.

complet des systèmes dynamiques peuvent ne pas être disponibles. Dans ce cas, un
observateur pourrait éventuellement être utilisée afin d’estimer l’état. Un inconvé-
nient majeur est l’erreur de l’observateur que l’on doit inclure dans l’incertitude. En
outre, lorsque les contraintes se manifestent, la non-linéarité domine la structure du
système de commande et on ne peut s’attendre que le principe de séparation soit
toujours valide. En outre, il n’existe aucune garantie que les trajectoires en boucle
fermée satisfassent les contraintes.

Nous reviendrons sur le problème de la reconstruction de l’état grâce à la mesure
et le stockage des mesures précédentes appropriées. Même si ce modèle pourrait
être non-minimal du point de vue de la dimension, il est directement mesurable et
fournira un modèle approprié pour la conception de la commande avec des garanties
de satisfaction de contraintes. Enfin, il sera montré comment les principes de la
commande interpolée peut conduire à une commande par retour de sortie.

Formulation du problème

Considérons le problème de la régulation à l’origine en temps discret pour un
système linéaire variant dans le temps ou incertain, décrite par la relation d’entrée-
sortie

y(k+1)+E1y(k)+E2y(k−1)+ . . .+Esy(k− s+1)
= N1u(k)+N2u(k−1)+ . . .+Nru(k− r+1)+w(k)

(0.22)

où y(k) ∈ R
p, u(k) ∈ R

m et w(k) ∈ R
p sont respectivement la sortie, l’entrée et le

vecteur de perturbation. Les matrices Ei for i= 1, . . . ,s et Ni pour i= 1, . . . ,r doivent
avoir des dimensions appropriées.

Pour plus de simplicité, il est supposé que s = r. Les matrices Ei et Ni pour
i= 1,2, . . . ,s satisfont

Γ =

[
E1 E2 . . . Es
N1 N2 . . . Ns

]
=

q

∑
i=1

αi(k)Γi (0.23)
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où αi(k)≥ 0 et
q

∑
i=1

αi(k) = 1 et

Γi =

[
E i1 E

i
2 . . . E is

Ni1 N
i
2 . . . Nis

]

sont les réalisations extrêmes d’un modèle polytopique.
Le système est soumis à des contraintes sur la sortie, la commande

{
y(k) ∈ Y, Y =

{
y ∈ R

p : Fyy≤ gy
}

u(k) ∈U, U = {u ∈ R
m : Fuu≤ gu}

(0.24)

où Y et U sont des ensembles convexes et compactes. Il est supposé que la pertur-
bation w(k) est inconnue, additive et se trouvent dans le polytope W , c’est-à-dire
w(k) ∈W , oùW = {w ∈ R

p : Fww≤ gw} est un C-ensemble.

Cas nominal

Nous considérons le cas où les matrices E j et N j pour j= 1,2, . . . ,s sont connues
et fixes. Le cas où E j et N j pour j = 1,2, . . . ,s sont inconnus ou variables dans le
temps sera traitée dans la section suivante.

Une représentation d’état sera construite selon les principes de [153]. Toutes les
étapes de la construction sont détaillés tels que la présentation des résultats soit
autonomes. L’état du système est choisi comme un vecteur de dimension p× s avec
les composants suivants

x(k) =
[
x1(k)

T x2(k)
T . . . xs(k)

T
]T

(0.25)

où 



x1(k) = y(k)
x2(k) =−Esx1(k−1)+Nsu(k−1)
x3(k) =−Es−1x1(k−1)+ x2(k−1)+Ns−1u(k−1)
x4(k) =−Es−2x1(k−1)+ x3(k−1)+Ns−2u(k−1)
...
xs(k) =−E2x1(k−1)+ xs−1(k−1)+N2u(k−1)

(0.26)

Il sera démontré que le modèle d’état est alors définie sous une forme compacte
d’équation à différence linéaire comme suit

{
x(k+1) = Ax(k)+Bu(k)+Dw(k)
y(k) =Cx(k)

(0.27)

où
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A=




−E1 0 0 . . . 0 I
−Es 0 0 . . . 0 0
−Es−1 I 0 . . . 0 0
−Es−2 0 I . . . 0 0

...
...

...
. . .

...
...

−E2 0 0 . . . I 0




, B=




N1

Ns
Ns−1

Ns−2
...
N2




, D=




I

0
0
0
...
0




,

C =
[
I 0 0 0 . . . 0

]

On note

z(k) = [ y(k)T . . . y(k− s+1)T u(k−1)T . . . u(k− s+1)T ]T (0.28)

Il sera en outre montré que le vecteur d’état x(k) est liée au vecteur z(k) comme suit

x(k) = Tz(k) (0.29)

où
T = [T1 T2]

T1 =




I 0 0 . . . 0
0 −Es 0 . . . 0
0 −Es−1 −Es . . . 0
...

...
...

. . .
...

0 −E2 −E3 . . . −Es



, T2 =




0 0 0 . . . 0
Ns 0 0 . . . 0
Ns−1 Ns 0 . . . 0

...
...

...
. . .

...
N2 N3 N4 . . . Ns




A tout instant k, le vecteur de variables d’état est disponible uniquement si la mesure
et le stockage des mesures précédentes est assuré.
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Fig. 0.14 Ensembles invariant et trajectoires de l’état.
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Fig. 0.15 Trajectoires de sortie. Une simulation de la commande interpolée par retour de sortie
comparée à l’utilisation du filtre de Kalman.

Cas robuste

Une faiblesse de l’approche ci-dessus est que la mesure d’état est disponible si
et seulement si les paramètres du système sont connus. Pour le système incertain ou
variant dans le temps, ce n’est pas le cas. Dans cette section, nous proposons une
autre méthode pour construire les variables d’état, qui n’utilisent pas les informa-
tions sur les paramètres du système. En utilisant l’entrée mesurée, la sortie et leurs
dernières valeurs mesurées, l’état du système est choisi en tant que

x(k) = [y(k)T . . . y(k− s+1)T u(k−1)T . . . u(k− s+1)T ]T (0.30)

Le modèle espace d’état est alors définie comme suit
{
x(k+1) = Ax(k)+Bu(k)+Dw(k)
y(k) =Cx(k)

(0.31)

où

A=




−E1 −E2 . . . −Es N2 . . . Ns−1 Ns
I 0 . . . 0 0 . . . 0 0
0 I . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . I 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0
0 0 . . . O I . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . O 0 . . . I 0




, B=




N1

0
0
...
0
I

0
...
0




, D=




I

0
0
...
0
0
0
...
0




C =
[
I 0 0 . . . 0 0 0 . . . 0

]

Bien que la représentation obtenue soit non-minimale, elle a le mérite de transfor-
mer le problème de la commande par retour de sortie pour des systèmes incertains en



Notation 23

un problème retour d’état, où les matrices A et B sont dans le polytope sans aucune
incertitude supplémentaire et toute commande de retour d’état conçue pour cette
représentation sous la forme u= Kx peut être traduit en un correcteur par retour de
sortie dynamique.
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Notation

The conventions and the notations used in the thesis are classical for the control

literature. A short description is provided in the following.

Sets
R Set of real number

R+ Set of nonnegative real number

R
n Set of real vectors with n elements

R
n×m Set of real matrices with n rows and m columns

Algebraic Operators

AT Transpose of matrix A

A−1 Inverse of matrix A

A≻ (�)0 Positive (semi)definite matrix

A≺ (�)0 Negative (semi)definite matrix

Set Operators

P1∩P2 Set intersection

P1⊕P2 Minkowski sum

P1⊖P2 Pontryagin difference

P1 ⊆ P2 P1 is a subset of P2

P1 ⊂ P2 P1 is a strict subset of P2

P1 ⊇ P2 P1 is a superset of P2

P1 ⊃ P2 P1 is a strict superset of P2

Fr(P) The frontier of P

Int(P) The interior of P

Pro jx(P) The orthogonal projection of the set P onto the x space

xv



xvi Notation

Others
I Identity matrix

1 Matrix of ones of appropriate dimension

0 Matrix of zeros of appropriate dimension

Acronyms

LMI Linear Matrix Inequality

LP Linear Programming

QP Quadratic Programming

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

LPV Linear Parameter Varying

PWA PieceWise Affine





Chapter 1

Introduction

1.1 Constrained uncertain systems

Constraints are encountered in practically all real-world control problems. The pres-

ence of constraints leads to high complexity control problems, not only in control

theory, but also in practical applications. From the conceptual point of view, con-

straints can have different nature. Basically, there are two types of constraints im-

posed by physical limitation and/or performance desiderata.

Physical constraints are due to the physical limitations of the mechanical, elec-

trical, biological, etc controlled system. The main concern here is the stability in

the presence of input and output or state constraints. The input and output vari-

ables must remain inside the constraints to avoid over-exploitation or damage. In

addition, the constraint violation may lead to degraded performance, oscillations or

even instability.

Performance constraints are introduced by the designer for guaranteeing per-

formance requirements, for example transient time, transient overshoot, etc, fault

tolerance, equipment longevity and environmental problems.

The constrained control problem can become even more challenging in the pres-

ence of model uncertainties, which are unavoidable in practice [142], [2]. Model

uncertainties are appear e.g. when a linear model is obtained as an approximation

of a nonlinear system around the operating point. Even if the underlying process is

quite accurately represented by a linear model1, the parameters of the model could

be time-varying or could change due to a change in the operating points. In these

cases, the cause and structure of the model uncertainties are rather well known.

Nevertheless, even when the real process is linear, there is always some uncertainty

associated, for example, with physical parameters, which are never known exactly.

Moreover, the real processes are usually affected by disturbances and it is required

to consider them in control design.

It is generally accepted that a key reason of using feedback is to diminish the ef-

fects of uncertainty, which may appear in different forms as parametric uncertainties

1 Which is actually asking a lot.
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or as additive disturbances or as other inadequacies in the models used to design the

feedback law. Model uncertainty and robustness have been a central theme in the

development of the field of automatic control [9].

A straightforward way to stabilize a constrained system is to perform the control

design disregarding the constraints. Then an adaptation of the control law is consid-

ered with respect to input saturation, such an approach is called anti-windup [79],

[151], [149], [157].

Over the last decades, the research on constrained control topics has developed

to the degree that constraints can be taken into account during the synthesis phase.

By its principle, model predictive control (MPC) approach shows its importance on

dealing with constraints [32], [100], [28], [129], [47], [96], [48]. In the MPC ap-

proach, a sequence of predicted optimal control values over a finite prediction hori-

zon is computed for optimizing the performance of the controlled system, expressed

in terms of a cost function [3]. MPC approach uses an internal mathematical model

which, given the current measurements, predicts the future behavior of the real sys-

tem with respect to changes in the control inputs. Once the sequence of optimal

control inputs has been calculated, only the first element of this sequence is actually

applied to the system and the entire optimization is repeated at the next time instant

with the new state measurement [5], [100], [96].

In classical MPC, the control action at each time instant is obtained by solving an

on-line open-loop finite optimal control problem [126], [33]. With a linear model,

polyhedral constraints, and a quadratic cost, the resulting optimization problem is

a quadratic program. Solving the quadratic program can be computationally costly,

specially when the prediction horizon is large, and this has traditionally limited

MPC to applications with relatively low complexity/sampling interval ratio [4].

In the last decade, attempts have been made to use predictive control in fast pro-

cesses. In [122], [121], [20], [153] it was shown that the constrained linear MPC

is equivalent to a multi-parametric optimization problem, where the state plays the

role of a vector of parameters. The solution is a piecewise affine function of the

state over a polyhedral partition of the state space, and the computational effort

of the MPC is moved off-line. However, explicit MPC implementation approaches

also have disadvantages. Obtaining the explicit optimal MPC solution requires to

solve an off-line parametric optimization problem, which is generally an NP-hard

problem. Although the problem is tractable and practically solvable for several in-

teresting control applications, the off-line computational effort grows exponentially

fast as the problem size increases [84], [85], [83], [64], [65]. This is the case for

long prediction horizon, large number of constraints and high dimensional systems.

In [156], the authors show that the on-line computation is preferable for high

dimensional systems where significant reduction of the computational complexity

can be achieved by exploiting the particular structure of the optimization problem as

well as by early stopping and warm-starting from a solution obtained at the previous

time-step. The same reference mentions that for models of more than five dimen-

sions the explicit solution might be impractical. It worth mentioning that approxi-

mate explicit solutions have been investigated to go beyond this ad-hoc limitation

[19], [62], [140].
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Note that as its name says, most traditional implicit and explicit MPC approaches

are based on mathematical models which invariably present a mismatch with respect

to the physical systems. The robust MPC is meant to address both model uncertainty

and disturbances. However, the robust MPC presents great conservativeness and/or

on-line computational burden [78], [123], [87].

The use of interpolation in constrained control in order to avoid very complex

control design procedures is well known in the literature. There is a long line of de-

velopments on these topics generally closely related to MPC, see for example [11],

[132], [133], [131], where interpolation between input sequences, state trajectories,

different feedback gains and/or associated invariant sets can be found.

The vertex control can be considered also as an interpolation control approach

based on the explicit control values, assumed to be available for the extreme points

of a certain region in the state space [54], [22]. A weakness of vertex control is that

the full control range is exploited only on the border of the feasible positive invariant

set in the state space, and hence the time to regulate the plant to the origin is much

longer than e.g. by time-optimal control. A way to overcome this shortcoming is to

switch to another, more aggressive, local controller, e.g. a state feedback controller

uo = Kx, when the state reaches the maximal feasible set of the local controller. The

disadvantage of such a switching-based solution is that the control action becomes

non-smooth [103].

For LTI systems the vertex control Lyapunov level curves are polyhedra parallel

with the border of the vertex controller feasible set, and as such we will, without

loss of generality, base the new design method on the existence of a polyhedral con-

tractive set for a local control law. This set will be related to the description of the

maximal controlled invariant set. Then we point to the existence of a smooth convex

interpolation between the vertex control action uv and the local control action uo for

the current state x, in the form u(x) = c(x)uv(x)+(1−c(x))uo(x) with 0≤ c(x)≤ 1,

whereby c(x) is minimized in order to be as close as possible to the local optimal

controller. It is shown that with this objective function, there exists a Lyapunov func-

tion for the system controlled by the interpolated controller u, and hence stability is

proven.

It is shown that from a computational point of view the minimization of the

interpolating coefficient c can be done by linear programming. It is further shown

that that the minimization can be done off-line, yielding a polyhedral partition of the

feasible region, with an affine control law for each polyhedron, while guaranteeing

the global continuity of the state feedback. Thus, our controller can be compared

from the structural point of view with explicit MPC where the feasible set in the

state space is also partitioned into polyhedra, each of which with its own affine state

feedback control law.

The interpolation based on an LP (linear programming) problem between the

global vertex controller and the local more aggressive controller is the first aim of

the thesis. Then as in the traditional MPC approach, which is formulated using a

quadratic criterion [100], we will show how an interpolation based control prob-

lem for linear systems can be set up as a quadratic program. All the interpolation

schemes via LP or QP computations are based on the use of polyhedral sets. For
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high dimensional systems, the polyhedral based control methods might be imprac-

tical, since the number of vertices or half-spaces may lead to an exponential com-

plexity. In these cases, the ellipsoids seem to be the suitable class of sets in the

interpolation. It will be shown that the convex hull of a set of invariant ellipsoids is

controlled invariant. A continuous feedback control law is constructed based on the

solution of an LMI problem at each time instant. For all interpolation optimization

based schemes, a proof of recursive feasibility and robust asymptotic stability will

be provided.

1.2 Organization of the thesis

The thesis (except the present chapter) is partitioned into four parts and appendices

Part I contains two chapters introducing the theoretical foundations for the rest

of the thesis. In Chapter 2, basic set theory elements are discussed with the accent

on the (controlled) invariant set. The advantages as well as disadvantages of differ-

ent families of sets and their use in control will be considered, which is instrumental

for the presentation of the main results of the thesis. Chapter 3 reviews the main ap-

proaches to optimal and constrained control with emphasis on vertex control, which

is one of the main ingredients of an interpolation based control scenario.

Part II consists of three chapters and provides a novel and computationally at-

tractive solution to a constrained control problem. This part presents several origi-

nal contributions on constrained control algorithms for discrete-time linear systems.

Chapter 4 is concerned only with the nominal state-input constrained systems where

there are no disturbances and no model mismatch. In this chapter a series of generic

interpolation based control schemes via linear programming, quadratic program-

ming or linear matrix inequality are introduced. Further, in Chapter 5, we extend the

interpolation technique for the discrete time linear uncertain or time-varying sys-

tems subject to bounded disturbances. To complete the presentation, in Chapter 6,

the output feedback case is considered. This last feature is very important, since

state feedback is rarely used in (constrained control) practice. For all algorithms

proposed in this part, the proofs of recursive feasibility and asymptotic stability are

given.

Part III contains two chapters applying the theoretical results discussed in Part II

to one practical application proposed in the literature and one benchmark. In Chap-

ter 7 the interpolation based control via linear programming is used for stabilizing a

ball and plate laboratory system. Then in Chapter 8, the explicit interpolation based

control approach is implemented on a non-isothermal continuous stirred tank reac-

tor.

Part IV consists two sections which completes the thesis with conclusions and

future directions.
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Chapter 2

Set Theoretic Methods in Control

The first aim of this chapter is to briefly review some of the set families used in

control and to comment on the strengths and weaknesses of each of them. The tools

of choice throughout the manuscript will be ellipsoidal and polyhedral sets due to

their combination of numerical applicability and flexibility in the representation of

generic convex sets. After the geometrical nomenclature, the concept of robustly

invariant and robust controlled invariant sets are introduced. Some algorithms are

proposed for computing such sets. The chapter ends with an original contribution

on estimating the domain of attraction for time-varying and uncertain discrete-time

systems with a saturated input.

2.1 Set terminology

For completeness, some standard definitions of set terminology will first be intro-

duced in this section. For a detailed reference, the reader is referred to the book

[77].

Definition 2.1. (Closed set) A set S is closed if it contains its own boundary. In

other words, any point outside S has a neighborhood disjoint from S.

Definition 2.2. (Closure of a set) The closure of a set S is the intersection of all

closed sets containing S.

Definition 2.3. (Bounded set) A set S ⊂ R
n is bounded if it is contained in some

ball BR = {x ∈ R
n : ‖x‖2 ≤ ε} of finite radius ε > 0.

Definition 2.4. (Compact set) A set S⊂ R
n is compact if it is closed and bounded.

Definition 2.5. (Support function) The support function of a set S⊂R
n, evaluated

at z ∈ R
n is defined as

φS(z) = sup
x∈S

zT x

33
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2.2 Convex sets

2.2.1 Basic definitions

The fact that convexity is a more important property than linearity has been rec-

ognized in several domains, the optimization theory being maybe the best example

[128], [30]. We provide in this section a series of definitions which will be useful in

the sequel.

Definition 2.6. (Convex set) A set S ⊂ R
n is convex if for all x1 ∈ S and x2 ∈ S, it

holds that

αx1 +(1−α)x2 ∈ S, ∀α ∈ [0, 1]

The point

x= αx1 +(1−α)x2

where 0 ≤ α ≤ 1 is called a convex combination of the pair (x1,x2). The set of all

such points is the segment connecting x1 and x2. In other words a set S is said to be

convex if the line segment between any two points in S lies in S.

The concept of convex set is closely related to the definition of a convex func-

tions1.

Definition 2.7. (Convex function) A function f : S→ R with S ⊆ R
n is convex if

and only if the set S is convex and

f (αx1 +(1−α)x2)≤ α f (x1)+(1−α) f (x2)

for all x1 ∈ S, x2 ∈ S and for all α ∈ [0, 1].

Definition 2.8. (C-set) A set S ⊂ R
n is a C−set if it is a convex and compact set,

containing the origin in its interior.

Definition 2.9. (Convex hull) The convex hull of a set S⊂R
n is the smallest convex

set containing S.

It is well known [158] that for any finite set S = {s1,s2, . . . ,sr} with r ∈ N, the

convex hull of the set S is given as

Convex Hull(S) = {s ∈ R
n : s=

r

∑
i=1

αisi : ∀si ∈ S}

where
r

∑
i=1

αi = 1 and αi ≥ 0.

1 One can understand the link straightforwardly by the fact that the epigraph of a convex function

is a convex set.
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2.2.2 Ellipsoidal set

Ellipsoidal sets or ellipsoids are one of the famous classes of convex sets. Ellipsoids

represent a large category used in the study of dynamical systems and the control

fields due to their simple numerical representation [29], [80]. Next we provide a

formal definition for ellipsoidal sets and a few properties.

Definition 2.10. (Ellipsoidal set) An ellipsoidal set E(P,x0) ⊆ R
n with center x0

and shape matrix P is a set of the form

E(P,x0) = {x ∈ R
n : (x− x0)

TP−1(x− x0)≤ 1} (2.1)

where P ∈ R
n×n is a positive definite matrix.

If the ellipsoid is centered in the origin then it is possible to write

E(P) = {x ∈ R
n : xTP−1x≤ 1} (2.2)

Define Q=P
1
2 as the Cholesky factor of matrix P, which satisfies QTQ=QQT =

P. With the matrix Q, it is possible to show an alternative dual representation for an

ellipsoidal set

D(Q,x0) = {x ∈ R
n : x= x0 +Qz}

where z ∈ R
n such that zT z≤ 1.

Ellipsoidal sets are probably the most commonly used in the control field since

they are associated with powerful tools such as the Lyapunov equation2 or Linear

Matrix Inequalities (LMI) [137], [29]. When using ellipsoidal sets, almost all the

optimization problems present in the classical control methods can be reduced to the

optimization of a linear function under LMI constraints. This optimization problem

is convex and is by now a powerful design tool in many control applications.

A linear matrix inequality is a condition of the type [137], [29]

F(x)≻ 0

where x ∈ R
n is a vector variable and the matrix F(x) is affine in x, that is

F(x) = F0 +
n

∑
i=1

Fixi

with symmetric matrices Fi ∈ R
m×m.

LMIs can either be understood as feasibility conditions or constraints for opti-

mization problems. Optimization of a linear function over LMI constraints is called

semidefinite programming, which is considered as an extension of linear program-

ming. Nowadays, a major benefit in using LMIs is that for solving an LMI problem,

2 A quadratic Lyapunov function can be associated to stable linear dynamics. Consequently, the

ellipsoids are natural representations of the quadratic Lyapunov function level sets.
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several polynomial time algorithms were developed and implemented in free avail-

able software packages, such as LMI Lab [43], YALMIP [94], CVX [49], SEDUMI

[147] etc.

The Schur complement formula is a very useful tool for manipulating matrix in-

equalities. The Schur complement states that the nonlinear conditions of the special

forms {
P(x)≻ 0

P(x)−Q(x)TR(x)−1Q(x)≻ 0
(2.3)

or {
R(x)≻ 0

R(x)−Q(x)P(x)−1Q(x)T ≻ 0
(2.4)

can be equivalently written in the LMI form

[
P(x) Q(x)T

Q(x) R(x)

]
≻ 0 (2.5)

The Schur complement allows one to convert certain nonlinear matrix inequal-

ities into a higher dimensional LMI. For example, it is well known [80] that the

support function of the ellipsoid E(P,x0), evaluated at the vector f is

φE(P,x0)(z) = f T x0 +
√

f TP f (2.6)

then it is obvious that the ellipsoid E(P) in (2.2) is a subset of the polyhedral set3

P( f ,1) = {x ∈ R
n : | f T x| ≤ 1}

with f ∈ R
n if and only if

f TP f ≤ 1

or by using the Schur complement this condition can be rewritten as [29], [57]

[
1 f TP

P f P

]
� 0 (2.7)

Obviously an ellipsoidal set E(P,x0)⊂R
n is uniquely defined by its matrix P and

by its center x0. Since matrix P is symmetric, the complexity of the representation

(2.1) is
n(n+1)

2
+n=

n(n+3)

2

The main drawback of ellipsoids is however that having a fixed and symmetrical

structure they may be too conservative and this conservativeness is increased by the

related operations. It is well known [80]4 that

• The convex hull of of a set of ellipsoids, in general, is not an ellipsoid.

3 A rigorous definition of polyhedral sets will be given in the section.
4 The reader is referred to [80] for the definitions of operations with ellipsoids.
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• The sum of two ellipsoids is not, in general, an ellipsoid.

• The difference of two ellipsoids is not, in general, an ellipsoid.

• The intersection of two ellipsoids is not, in general, an ellipsoid.

2.2.3 Polyhedral set

Polyhedral sets provide a useful geometrical representation for the linear constraints

that appear in diverse fields such as control and optimization. In a convex setting,

they provide a good compromise between complexity and flexibility. Due to their

linear and convex nature, the basic set operations are relatively easy to implement

[82], [154]. Principally, this is related to their dual (half-spaces/vertices) represen-

tation [101], [31] which allows choosing which formulation is best suited for a par-

ticular problem.

This section is started by recalling some theoretical concepts.

Definition 2.11. (Hyperplane) A hyperplane H ⊂ R
n is a set of the form

H = {x ∈ R
n : f T x= g} (2.8)

where f ∈ R
n is a column vector and g ∈ R is a scalar.

Definition 2.12. (Half-space) A closed half-space H ⊂ R
n is a set of the form

H = {x ∈ R
n : f T x≤ g} (2.9)

where f ∈ R
n is a column vector and g ∈ R is a scalar.

Definition 2.13. (Polyhedral set) A convex polyhedral set P(F,g) is a set of the

form

P(F,g) = {x ∈ R
n : Fix≤ gi, i= 1,2, . . . ,n1} (2.10)

where Fi ∈ R
1×n denotes the i−th row of the matrix F ∈ R

n1×n and gi is the i−th

component of the column vector g ∈ R
n1 . The inequalities here are element-wise.

A polyhedral set contains the origin if and only if g≥ 0, and includes the origin

in its interior if and only if g> 0.

Definition 2.14. (Polytope) A polytope is a bounded polyhedral set.

Definition 2.15. (Dimension of polytope) A polytope P⊂ R
n is of dimension d ≤

n, if there exists a d−dimension ball with radius ε > 0 contained in P and there

exists no (d+ 1)−dimension ball with radius ε > 0 contained in P. A polytope is

full dimensional if and only if d = n.

Definition 2.16. (Redundant half-space) For a given polytope P(F,g), a polyhe-

dral set P(F ,g) is defined by removing the i− th half-space Fi from matrix F and
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the corresponding component gi from vector g. The facet (Fi,gi) is redundant if and

only if

gi < gi (2.11)

where
gi = max

x
{Fix}

subject to: Fx≤ g

Definition 2.17. (Face, facet, vertex, edge)A (n−1)−dimensional face F i
a of poly-

tope P(F,g)⊂ R
n is defined as a set of the form

F i
a = {x ∈ P : Fix= gi} (2.12)

and can be interpreted as the intersection between the polytope and a non-redundant

supporting hyperplane

F i
a = P∩{x ∈ R

n : Fix= gi} (2.13)

The non-empty intersection of two faces of dimension (n−1) leads to the descrip-

tion of (n−2)− dimensional face. The faces of the polytope P with dimension 0, 1

and (n−1) are called vertices, edges and facets, respectively.

One of the fundamental properties of polytopes is that it can be presented in

half-space representation as in Definition 2.13 or in vertex representation as follows

P(V ) =

{
x ∈ R

n : x=
r

∑
i=1

αivi, 0≤ αi ≤ 1,
r

∑
i=1

αi = 1

}

where vi ∈ R
n×1 denotes the i− column of matrix V ∈ R

n×r.
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(a) Half-space representation (b) Vertex representation

Fig. 2.1 Exemplification fo the equivalent of half-space and vertex representations of polytopes.

This dual (half-spaces/vertices) representation has very practical consequences

in methodological and numerical applications. Due to this duality we are allowed to

use either representation in the solving of a particular problem. Note that the trans-

formation from one representation to another may be time-consuming with several
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well-known algorithms: Fourier-Motzkin elimination [37], CDD [41], Equality Set

Projection [63].

Recall that the expression x =
r

∑
i=1

αivi with a given set of vectors {v1,v2, . . . ,vr}

and
r

∑
i=1

αi = 1, αi ≥ 0

is called the convex hull of a set of vectors {v1,v2, . . . ,vr} and will be denoted as

x= Conv{v1,v2, . . . ,vr}

Definition 2.18. (Simplex) A simplex S ∈R
n is an n−dimensional polytope, which

is the convex hull of n+1 vertices.

For example, a 2D−simplex is a triangle, a 3D−simplex is a tetrahedron, and a

4D−simplex is a pentachoron.

Definition 2.19. (Redundant vertex) For a given polytope P(V ), a polyhedral set

P(V ) is defined by removing the i−th vertex vi from the matrix V . The vertex vi is

redundant if and only if

pi < 1 (2.14)

where
pi = min

p
{1T p}

subject to: V p= vi

Definition 2.20. (Minimal representation) A half-space or vertex representation

of polytope P is minimal if and only if the removal of any facet or any vertex would

change P, i.e. there are no redundant facets or redundant vertices.

Clearly, a minimal representation of a polytope can be achieved by removing

from the half-space (vertex) representation all the redundant facets (vertices).

Definition 2.21. (Normalized representation) A polytope

P(F,g) = {x ∈ R
n : Fix≤ gi, i= 1,2, . . . ,n1}

is in a normalized representation if it has the following property

FiF
T
i = 1

A normalized full dimensional polytope has a unique minimal representation.

This fact is very meaningful in practice, since normalized full dimensional polytopes

in minimal representation allow us to avoid any ambiguity when comparing them.

Next, some basic operations on polytopes will be briefly reviewed. Note that al-

though the focus lies on polytopes, most of the operations described here are directly

or with minor changes applicable to polyhedral sets. Additional details on polytope

computation can be found in [158], [52], [42].
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Definition 2.22. (Intersection) The intersection of two polytopes P1 ⊂R
n, P2 ⊂R

n

is a polytope

P1∩P2 = {x ∈ R
n : x ∈ P1,x ∈ P2}

Definition 2.23. (Minkowski sum) The Minkowski sum of two polytopes P1 ⊂R
n,

P2 ⊂ R
n is a polytope

P1⊕P2 = {x1 + x2 : x1 ∈ P1,x2 ∈ P2}

It is well known [158] that if P1 and P2 are presented in vertex representation, i.e.

P1 = Conv{v11,v12, . . .v1p},
P2 = Conv{v21,v22, . . .v2q}

then the Minkowski can be computed as

P1⊕P2 = Conv{v1i+ v2 j}, ∀i= 1,2, . . . , p, ∀ j = 1,2, . . . ,q

Definition 2.24. (Pontryagin difference) The Pontryagin difference of two poly-

topes P1 ⊂ R
n, P2 ⊂ R

n is a polytope

P1⊖P2 = {x1 ∈ P1 : x1 + x2 ∈ P1,∀x2 ∈ P2}
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(a) Minkowski sum P1⊕P2 (b) Pontryagin difference P1⊖P2.

Fig. 2.2 Minkowski sum and Pontryagin difference of polytopes.

Note that the Pontryagin difference is not the complement of the Minkowski sum.

For two polytopes P1 and P2, it holds only that (P1⊖P2)⊕P2 ⊆ P1.

Definition 2.25. (Projection) Given a polytope P ⊂ R
n1+n2 the orthogonal projec-

tion onto the x1−space R
n1 is defined as

Projx1
(P) = {x1 ∈ R

n1 : ∃x2 ∈ R
n2 such that [xT1 xT2 ]

T ∈ P}

It is well known that the Minkowski sum operation on polytopes in their half-

plane representation is complexity-wise equivalent to a projection [158]. Current

projection methods for polytopes that can operate in general dimensions can be
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grouped into four classes: Fourier elimination [69], block elimination [12], vertex

based approaches and wrapping-based techniques [63].

x
1

x
2

x
1

x
2

x
1

x
2

P

Proj
x

1

(P)

Fig. 2.3 Projection of a 2-dimensional polytope P onto a line x1.

It is straightforward to see that the complexity of the representation of polytopes

is not a function of the space dimension only, but it may be arbitrarily big. For the

half-space (or alternatively vertex) representation, the complexity of the polytopes

is a linear function of the number of rows of the matrix F (the number of columns of

the matrix V ). As far as the complexity issue concerns, it is worth to be mentioned

that none of these representations can be regarded as more convenient. Apparently,

one can define an arbitrary polytope with relatively few vertices, however this may

nevertheless have a surprisingly large number of facets. This happens, for example

when some vertices contribute to many facets. And equally, one can define an ar-

bitrary polytope with relatively few facets, however this may have relatively many

more vertices. This happens, for example when some facets have many vertices [42].

The main advantage of the polytopes is their flexibility. It is well known [31] that

any convex body can be approximated arbitrarily close by a polytope. Particularly,

for a given bounded, convex and closed set S and for a given ε with 0 < ε < 1, then

there exists a polytope P such that

(1− ε)S⊆ P⊆ S

for an inner ε−approximation of the set S and

S⊆ P⊆ (1+ ε)S

for an outer ε−approximation of the set S.
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2.3 Set invariance theory

2.3.1 Basic definitions

Set invariance is a fundamental concept in analysis and controller design for con-

strained systems, since the constraint satisfaction can be guaranteed for all times if

and only if the initial states are contained in an invariant set. Two types of systems

will be considered in this section, namely, discrete-time uncertain nonlinear systems

x(k+1) = f (x(k),w(k)) (2.15)

and systems with additional external control inputs

x(k+1) = f (x(k),u(k),w(k)) (2.16)

where x(k) ∈ R
n, u(k) ∈ R

m and w(k) ∈ R
d are respectively the system state, the

control input and the unknown disturbance. It is assumed that f (0,0,0) = 0 and

f (0,0) = 0.

The state vector x(k), the control vector u(k) and the disturbance w(k) are subject

to constraints 



x(k) ∈ X

u(k) ∈U

w(k) ∈W

∀k ≥ 0 (2.17)

where the sets X ⊂R
n,U ⊂R

m andW ⊂R
d are assumed to be closed and bounded.

It is also assumed that the sets X ,U andW contain the origin their respective interior.

Definition 2.26. Robust positively invariant set [23], [70] The set Ω ⊆ X is robust

positively invariant for the system (2.15) if and only if

f (x(k),w(k)) ∈Ω

for all x(k) ∈Ω and for all w(k) ∈W .

Hence if the state vector of system (2.15) reaches a robust positively invariant

set, it will remain inside the set in spite of disturbance w(k). The term positively

refers to the fact that only forward evolutions of the system (2.15) are considered

and will be omitted in future sections for brevity.

Given a bounded set X ⊂ R
n, the maximal robustly invariant set Ωmax ⊆ X is a

robustly invariant set, that contains all the robustly invariant sets contained in X .

Definition 2.27. Robust contractive set [23] For a given scalar number λ with 0≤
λ ≤ 1, the set Ω ⊆ X is robust λ−contractive for the system (2.15) if and only if

f (x(k),w(k)) ∈ λΩ

for all x(k) ∈Ω and for all w(k) ∈W .
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Definition 2.28. Robust controlled invariant set [23], [70] The setC⊆ X is robust

controlled invariant for the system (2.16) if for all x(k) ∈ C, there exists a control

value u(k) ∈U such that

x(k+1) = f (x(k),u(k),w(k)) ∈C

for all w(k) ∈W .

Given a bounded set X ⊂R
n, the maximal robust controlled invariant set Cmax ⊆

X is a robust controlled invariant set and contains all the robust controlled invariant

sets contained in X .

Definition 2.29. Robust controlled contractive set [23] For a given scalar number

λ with 0≤ λ < 1 the setC⊆ X is robust controlled contractive for the system (2.16)

if for all x(k) ∈C, there exists a control value u(k) ∈U such that

x(k+1) = f (x(k),u(k),w(k)) ∈ λC

for all w(k) ∈W .

Obviously, in Definition 2.27 and Definition 2.29 if the contraction factor λ = 1

we will, respectively retrieve the robust invariance and robust controlled invariance.

2.3.2 Problem formulation

From this point on, we will consider the problem of computing an invariant set for

the following discrete time linear time-varying or uncertain system

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) (2.18)

where x(k) ∈R
n, u(k) ∈R

m, w(k) ∈R
d are, respectively the state, input and distur-

bance vectors.

The matrices A(k) ∈ R
n×n, B(k) ∈ R

n×m, D(k) ∈ R
n×d satisfy





A(k) =
q

∑
i=1

αi(k)Ai, B(k) =
q

∑
i=1

αi(k)Bi, D(k) =
q

∑
i=1

αi(k)Di

q

∑
i=1

αi(k) = 1, αi(k)≥ 0
(2.19)

where the matrices Ai, Bi and Di are the extreme realizations of A(k), B(k) and D(k).

Remark 2.1. Note that the numbers of the extreme realizations of A(k), B(k) and

D(k) can be different as
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



A(k) =
q1

∑
i=1

αi(k)Ai, B(k) =
q2

∑
i=1

βi(k)Bi, D(k) =
q3

∑
i=1

γi(k)Di

q1

∑
i=1

αi(k) = 1,αi(k)≥ 0, ∀i= 1,2, . . . ,q1

q2

∑
i=1

βi(k) = 1,βi(k)≥ 0, ∀i= 1,2, . . . ,q2

q3

∑
i=1

γi(k) = 1,γi(k)≥ 0, ∀i= 1,2, . . . ,q3

(2.20)

In this case the form of (2.20) can be translated into the form of (2.19) as follows.

For simplicity we consider here the case when D(k) = 0,∀k ≥ 0, but the extension

to the case when D(k) 6= 0 is straightforward.

x(k+1) =
q1

∑
i=1

αi(k)Aix(k)+
q2

∑
j=1

β j(k)B ju(k)

=
q1

∑
i=1

αi(k)Aix(k)+
q1

∑
i=1

αi(k)
q2

∑
j=1

β j(k)B ju(k)

=
q1

∑
i=1

αi(k)

{
Aix(k)+

q2

∑
j=1

β j(k)B ju(k)

}

=
q1

∑
i=1

αi(k)

{
q2

∑
j=1

β j(k)Aix(k)+
q2

∑
j=1

β j(k)B ju(k)

}

=
q1

∑
i=1

αi(k)
q2

∑
j=1

β j(k)
{
Aix(k)+B ju(k)

}

=
q1

∑
i=1

q2

∑
j=1

αi(k)β j(k)
{
Aix(k)+B ju(k)

}

Consider the polytope Pc, the vertices of which are given by taking all possible

combinations of {Ai,B j} with i= 1,2, . . . ,q1 and j = 1,2, . . . ,q2. Since

q1

∑
i=1

q2

∑
j=1

αi(k)β j(k) =
q1

∑
i=1

αi(k)
q2

∑
j=1

β j(k) = 1

it is clear that {A(k),B(k)} can be expressed as a convex combination of the vertices

of Pc.

The state, the control and the disturbance are subject to the following polytopic

constraints 



x(k) ∈ X , X = {x ∈ R
n : Fxx≤ gx}

u(k) ∈U,U = {u ∈ R
m : Fuu≤ gu}

w(k) ∈W,W = {w ∈ R
d : Fww≤ gw}

(2.21)

where the matrices Fx, Fu, Fw and the vectors gx, gu, gw are assumed to be constant

with gx > 0, gu > 0, gw > 0 such that the origin is contained in the interior of X , U

and W . Recall that the inequalities are element-wise.
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2.3.3 Ellipsoidal invariant sets

Ellipsoidal sets are the most commonly used for robust stability analysis and con-

troller synthesis of constrained systems. Their popularity is due to computational

efficiency via the use of LMI formulations and the complexity is fixed with respect

to the dimension of the state space [29], [137]. This approach, however may lead to

conservative results.

For simplicity, in this subsection, the case of vanishing disturbances is consid-

ered. In other words, the system under consideration is

x(k+1) = A(k)x(k)+B(k)u(k) (2.22)

Due to the symmetric properties of ellipsoids, it is clear that the ellipsoidal in-

variant sets are less conservative in the case when the constraints on the state and

control vector are symmetric, i.e.

{
x(k) ∈ X , X = {x : |Fix| ≤ 1}, ∀i= 1,2, . . . ,n1

u(k) ∈U, U = {u : |ui| ≤ uimax},∀i= 1,2, . . . ,m
(2.23)

where uimax is the i−component of vector umax ∈ R
m×1.

Let us consider now the problem of checking robust controlled invariance. The

ellipsoid E(P) = {x ∈ R
n : xTP−1x≤ 1} is controlled invariant if and only if for all

x ∈ E(P) there exists an input u= Φ(x) ∈U such that

(Aix+BiΦ(x))TP−1(Aix+BiΦ(x))≤ 1 (2.24)

for all i= 1,2, . . . ,q, where q is the cardinal of the set of vertices in Pc.

It is well known [27] that for the time-varying or uncertain linear discrete-time

system (2.22), it is sufficient to check condition (2.24) only for all x on the bound-

ary of E(P), i.e. for all x such that xTP−1x = 1. Therefore condition (2.24) can be

transformed into

(Aix+BiΦ(x))TP−1(Aix+BiΦ(x))≤ xTP−1x, ∀i= 1,2, . . . ,q (2.25)

One possible choice for u= Φ(x) is a linear state feedback controller u=Kx. By

denoting Aci = Ai+BiK with i= 1,2, . . . ,q, condition (2.25) is equivalent to

xTAT
ciP

−1Acix≤ xTP−1x, ∀i= 1,2, . . . ,q

or

AT
ciP

−1Aci � P−1
, ∀i= 1,2, . . . ,q

By using the Schur complement, this condition can be rewritten as

[
P−1 AT

ci

Aci P

]
� 0, ∀i= 1,2, . . . ,q
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The condition provided here is not linear in P. By using the Schur complement

again, one gets

P−AciPA
T
ci � 0, ∀i= 1,2, . . . ,q

or [
P AciP

PAT
ci P

]
� 0, ∀i= 1,2, . . . ,q

By substituting Aci = Ai+BiK with i= 1,2, . . . ,q, one obtains

[
P AiP+BiKP

PAT
i +PKTBT

i P

]
� 0, ∀i= 1,2, . . . ,q

Though this condition is nonlinear (in fact bilinear since P and K are the un-

knowns). Still it can be re-parameterized into a linear condition by setting Y = KP.

The above condition is equivalent to

[
P AiP+BiY

PAT
i +Y TBT

i P

]
� 0, ∀i= 1,2, . . . ,q (2.26)

Condition (2.26) is necessary and sufficient for ellipsoid E(P) with linear state

feedback u = Kx to be robustly invariant. Concerning the constraint satisfaction

(2.23), based on equation (2.7) it is obvious that

• The state constraints are satisfied in closed loop if and only if E(P) is a subset of

X , hence [
1 FiP

PFT
i P

]
� 0, ∀i= 1,2, . . . ,n1 (2.27)

• The input constraints are satisfied in closed loop if and only if E(P) is a subset

of a polyhedral set Xu where

Xu = {x ∈ R
n : |Kix| ≤ uimax}

for i= 1,2, . . . ,m and Ki is the i−row of the matrix K ∈ R
m×n, hence

[
u2
imax KiP

PKT
i P

]
� 0,

By noticing that KiP= Yi with Yi is the i−row of the matrix Y ∈ Rm×n, one gets

[
u2
imax Yi
Y T
i P

]
� 0 (2.28)

Define a row vector Ti ∈ R
m as follows

Ti = [0 0 . . . 0 1︸︷︷︸
i−th position

0 . . . 0 0]

It is clear that Yi = TiY . Therefore equation (2.28) can be transformed into
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[
u2
imax TiY

Y TT T
i P

]
� 0 (2.29)

With all the ellipsoids satisfying invariance condition (2.26) and constraint sat-

isfaction (2.27), (2.28), we would like to choose among them the largest ellipsoid.

In the literature, the size of ellipsoid E(P) is usually measured by the determinant

or the trace of matrix P, see for example [150]. Here the trace of matrix P is cho-

sen due to its linearity. The trace of a square matrix is defined to be the sum of the

elements on the main diagonal of the matrix. Maximization of the trace of matri-

ces corresponds to the search for the maximal sum of eigenvalues of matrices. With

the trace of matrix as the objective function, the problem of choosing the largest

robustly invariant ellipsoid can be formulated as

J = max
P,Y
{trace(P)} (2.30)

subject to

• Invariance condition (2.26)

• Constraints satisfaction (2.27), (2.29)

It is clear that the solution P, Y of problem (2.30) may lead to the controller K =
YP−1 such that the closed loop system with matrices Aci = Ai+BiK, i= 1,2, . . . ,q

is at the stability margin. In other words, the ellipsoid E(P) thus obtained might not

be contractive (although being invariant). Indeed, the system trajectories might not

converge to the origin. In order to ensure x(k)→ 0 as k→ ∞, it is required that for

all x on the boundary of E(P), i.e. for all x such that xTP−1x= 1, to have

(Aix+BiΦ(x))TP−1(Aix+BiΦ(x))< 1 ∀i= 1,2, . . . ,q

With the same argument as above, one can conclude that the ellipsoid E(P) with

the linear controller u= Kx is robust contractive if the following set of LMI condi-

tions is satisfied

[
P AiP+BiY

PAT
i +Y TBT

i P

]
≻ 0 ∀i= 1,2, . . . ,q (2.31)

2.3.4 Polyhedral invariant sets

The problem of invariance description using polyhedral sets is addressed in this sec-

tion. With linear constraints on state and control variables, polyhedral invariant sets

are preferred to the ellipsoidal invariant sets, since they offer a better approximation

of the domain of attraction [35], [55], [21]. To begin, let us consider the case, when

the control input is in the form of state feedback u(k) =Kx(k). Then the closed loop

system of (2.18) is in the form

x(k+1) = Ac(k)x(k)+D(k)w(k) (2.32)
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where

Ac(k) = A(k)+B(k)K = Conv{Aci}

with Aci = Ai+BiK, i= 1,2, . . . ,q.

The state constraints of the closed loop system are in the form

x ∈ Xc, Xc = {x ∈ R
n : Fcx≤ gc} (2.33)

where

Fc =

[
Fx
FuK

]
, gc =

[
gx
gu

]

The following definition plays an important role in computing robustly invariant

sets for system (2.32) with constraints (2.33).

Definition 2.30. (Pre-image set) For the system (2.32), the one step admissible pre-

image set of the set Xc is a set X1
c ⊆ Xc such that for all x ∈ X1

c , it holds that

Acix+Diw ∈ Xc

for all w ∈W and for all i= 1,2, . . . ,q.

The pre-image set Pre(Xc) can be defined by [26], [22]

X1
c =

{
x ∈ Xc : FcAcix≤ gc−max

w∈W
{FcDiw}

}
(2.34)

for all i= 1,2, . . . ,q.

Example 2.1. Consider the following uncertain system

x(k+1) = A(k)x(k)+Bu(k)+Dw(k)

where
A(k) = α(k)A1 +(1−α(k))A2

B=

[
0

1

]
, D=

[
1 0

0 1

]

with 0≤ α(k)≤ 1 and

A1 =

[
1.1 1

0 1

]
, A2 =

[
0.6 1

0 1

]

The constraints on the state, on the input and on the disturbance (2.21) have the

particular realization given by the matrices
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Fx =




1 0

0 1

−1 0

0 −1


 , gx =




3

3

3

3




Fu =

[
1

−1

]
, gu =

[
2

2

]

Fw =




1 0

0 1

−1 0

0 −1


 , gw =




0.2

0.2

0.2

0.2




or equivalently −3≤ xi ≤ 3, i= 1,2 and −2≤ u≤ 2 and −0.2≤ wi ≤ 0.2, i= 1,2.

The robust stabilizing feedback controller is chosen as

K = [−0.3856 −1.0024]

With this feedback controller the closed loop matrices are

Ac1 =

[
1.1000 1.0000

−0.3856 −0.0024

]
, Ac2 =

[
0.6000 1.0000

−0.3856 −0.0024

]

The state constraint set Xc is

Xc =
{
x ∈ R

2 : Fcx≤ gc
}

where

Fc =




1.0000 0

0 1.0000

−1.0000 0

0 −1.0000

−0.3856 −1.0024

0.3856 1.0024



, gc =




3.0000

3.0000

3.0000

3.0000

2.0000

2.0000




By solving the LP problem (2.11), it follows that the half-spaces [0 1]x ≤ 3

and [0 −1]x≤ 3 are redundant. After eliminating these redundant half-spaces, the

state constraint set Xc is presented in minimal normalized half-space representation

as

Xc =
{
x ∈ R

2 : F̂cx≤ ĝc

}

where

F̂c =




1.0000 0

−1.0000 0

−0.3590 −0.9333

0.3590 0.9333


 , ĝc =




3.0000

3.0000

0.9311

0.9311




Based on equation (2.34), the one step admissible pre-image set X1
c of the set Xc

is defined as
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X1
c =




x ∈ R

2 :




F̂c

F̂cA1

F̂cA2


x≤




ĝc

ĝc−max
w∈W

{F̂cw}

ĝc−max
w∈W

{F̂cw}








(2.35)

After removing redundant inequalities, the set X1
c is represented in minimal nor-

malized half-space representation as

X1
c =





x ∈ R
2 :




1.0000 0

−1.0000 0

−0.3590 −0.9333

0.3590 0.9333

0.7399 0.6727

−0.7399 −0.6727

0.3753 −0.9269

−0.3753 0.9269




x≤




3.0000

3.0000

0.9311

0.9311

1.8835

1.8835

1.7474

1.7474








The sets X , Xc and X1
c are depicted in Figure 2.4.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x
2

X

X
c

X
c

1

Fig. 2.4 One step pre-image set for example 2.1.

It is clear that the set Ω ⊆ Xc is robustly invariant if it equals to its one step

admissible pre-image set, that is for all x ∈Ω and for all w ∈W , it holds that

Aix+Diw ∈Ω

for all i= 1,2, . . . ,q. Based on this observation, the following algorithm can be used

for computing a robustly invariant set for system (2.32) with respect to constraints

(2.33)
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Procedure 2.1: Robustly invariant set computation [45], [71]

• Input: The matrices Ac1,Ac2,. . .,Acq, D1,D2,. . .,Dq and Xc = {x ∈ R
n : Fcx≤ gc}

and the set W.

• Output: The robustly invariant set Ω .

1. Set i= 0, F0 = Fc, g0 = gc and X0 = {x ∈ R
n : F0x≤ g0}.

2. Set Xi = X0.

3. Eliminate redundant inequalities of the following polytope

P=





x ∈ R
n :




F0

F0Ac1

F0Ac2

...

F0Acq



x≤




g0

g0−max
w∈W

{F0D1w}

g0−max
w∈W

{F0D2w}

...

g0−max
w∈W

{F0Dqw}








4. Set X0 = P and update consequently the matrices F0 and g0.

5. If X0 = Xi then stop and set Ω = X0. Else continue.

6. Set i= i+1 and go to step 2.

The natural question for procedure 2.1 is that if there exists a finite index i such

that X0 = Xi, or equivalently if procedure 2.1 terminates after a finite number of

iterations.

In the absence of disturbances, the following theorem holds [24].

Theorem 2.1. [24] Assume that the system (2.32) is robustly asymptotically stable.

Then there exists a finite index i= imax, such that X0 = Xi in Procedure 2.1.

Remark 2.2. In the presence of disturbances, a necessary and sufficient condition for

the existence of a finite index i is that a minimal robustly invariant set5 [76], [127],

[116] is a subset of Xc. We will come back to this problem later in Chapter 6, when

we deal with a peak to peak controller.

Apparently the sensitive part of procedure 2.1 is step 5. Checking the equality of

two polytopes X0 and Xi is computationally demanding, i.e. one has to check X0⊆Xi
and Xi ⊆ X0. Note that if at the step i of procedure 2.1 the set Ω is invariant then the

following set of inequalities

5 The set Ω is minimal robustly invariant if it is a robustly invariant set and is a subset of any

robustly invariant set.



52 2 Set Theoretic Methods in Control




F0Ac1

F0Ac2

...

F0Acq


x≤




g0−max
w∈W

{F0D1w}

g0−max
w∈W

{F0D2w}

...

g0−max
w∈W

{F0Dqw}




is redundant with respect to the set Ω

Ω = {x ∈ R
n : F0x≤ g0}

Hence the procedure 2.1 can be modified for computing a robustly invariant set

as follows

Procedure 2.2: Robustly invariant set computation

• Input: The matrices Ac1,Ac2,. . .,Acq, D1,D2,. . .,Dq, the set Xc = {x ∈ R
n : Fcx ≤

gc} and the set W .

• Output: The robustly invariant set Ω .

1. Set i= 0, F0 = Fc, g0 = gc and X0 = {x ∈ R
n : F0x≤ g0}.

2. Consider the following polytope

P=





x ∈ R
n :




F0

F0Ac1

F0Ac2

...

F0Acq



x≤




g0

g0−max
w∈W

{F0D1w}

g0−max
w∈W

{F0D2w}

...

g0−max
w∈W

{F0Dqw}








and iteratively check the redundancy of the subsets starting from the following

set of inequalities

{x ∈ R
n : F0Ac jx≤ g0−max

w∈W
{F0D jw}}

with j = 1,2, . . . ,q.

3. If all of the inequalities are redundant with respect to X0, then stop and set

Ω = X0. Else continue.

4. Set X0 = P

5. Set i= i+1 and go to step 2.

It is well known [45], [76], [27] that the set Ω resulting from procedure 2.1

or procedure 2.2, turns out to be the maximal robustly invariant set for for system

(2.32) with respect to constraints (2.21), that is Ω = Ωmax.
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Example 2.2. Consider the uncertain system in example 2.1 with the same con-

straints on the state, on the input and on the disturbance. Applying procedure 2.2,

the maximal robustly invariant set is obtained after 5 iterations as

Ωmax =





x ∈ R
2 :




−0.3590 −0.9333

0.3590 0.9333

0.6739 0.7388

−0.6739 −0.7388

0.8979 0.4401

−0.8979 −0.4401

0.3753 −0.9269

−0.3753 0.9269




x≤




0.9311

0.9311

1.2075

1.2075

1.7334

1.7334

1.7474

1.7474








The sets X , Xc and Ωmax are depicted in Figure 2.5.
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Fig. 2.5 Maximal robustly invariant set Ωmax for example 2.2.

Definition 2.31. (One step robust controlled set) Given the polytopic system

(2.18), the one step robust controlled set of the set C0 = {x ∈ R
n : F0x ≤ g0} is

given by all states that can be steered in one step in to C0 when a suitable control

action is applied. The one step robust controlled set denoted as C1 can be shown to

be [26], [22]

C1 =

{
x ∈ R

n : ∃u ∈U : F0(Aix+Biu)≤ g0−max
w∈W

{F0Diw}

}
(2.36)

for all w ∈W and for all i= 1,2, . . . ,q

Remark 2.3. If the set C0 is robustly invariant, then C0 ⊆ C1. Hence C1 is a robust

controlled invariant set.

Recall that the set Ωmax is a maximal robustly invariant set with respect to a

predefined control law u(k) = Kx(k). Define CN as the set of all states, that can be
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steered to Ωmax in no more than N steps along an admissible trajectory, i.e. a trajec-

tory satisfying control, state and disturbance constraints. This set can be generated

recursively by the following procedure:

Procedure 2.3: Robust N-step controlled invariant set computation

• Input: The matrices A1,A2,. . .,Aq, D1,D2,. . .,Dq and the sets X , U , W and the

maximal robustly invariant set Ωmax

• Output: The N-step robust controlled invariant set CN

1. Set i = 0 and C0 = Ωmax and let the matrices F0, g0 be the half space repre-

sentation of the set C0, i.e. C0 = {x ∈ R
n : F0x≤ g0}

2. Compute the expanded set Pi ⊂ R
n+m

Pi =





(x,u) ∈ R
n+m :




Fi(A1x+B1u)
Fi(A2x+B2u)

...

Fi(Aqx+Bqu)


≤




gi−max
w∈W

{FiD1w}

gi−max
w∈W

{FiD2w}

...

gi−max
w∈W

{FiDqw}








3. Compute the projection of Pi on R
n

Pn
i = {x ∈ R

n : ∃u ∈U such that (x,u) ∈ Pi}

4. Set

Ci+1 = Pn
i ∩X

and let the matrices Fi+1, gi+1 be the half space representation of the setCi+1,

i.e.

Ci+1 = {x ∈ R
n : Fi+1x≤ gi+1}

5. If Ci+1 =Ci, then stop and set CN =Ci. Else continue.

6. If i= N, then stop else continue.

7. Set i= i+1 and go to step 2.

Since Ωmax is a robustly invariant set, it follows that for each i, Ci−1 ⊆Ci and there-

fore Ci is a robust controlled invariant set and a sequence of nested polytopes.

Note that the complexity of the set CN does not have an analytic dependence on

N and may increase without bound, thus placing a practical limitation on the choice

of N.

Example 2.3. Consider the uncertain system in example 2.1. The constraints on the

state, on the input and on the disturbance are the same.

Using procedure 2.3, one obtains the robust controlled invariant setsCN as shown

in Figure 2.6 with N = 1 and N = 7. The setC1 is a set of all states that can be steered
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in one step in Ωmax when a suitable control action is applied. The set C7 is a set of

all states that can be steered in seven steps in Ωmax when a suitable control action is

applied. Note that C7 =C8, therefore C7 is the maximal robust controlled invariant

set.
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Fig. 2.6 Robust controlled invariant set for example 2.3.

The set C7 is presented in minimal normalized half-space representation as

C7 =





x ∈ R
2 :




0.3731 0.9278

−0.3731 −0.9278

0.4992 0.8665

−0.4992 −0.8665

0.1696 0.9855

−0.1696 −0.9855

0.2142 0.9768

−0.2142 −0.9768

0.7399 0.6727

−0.7399 −0.6727

1.0000 0

−1.0000 0




x≤




1.3505

1.3505

1.3946

1.3946

1.5289

1.5289

1.4218

1.4218

1.8835

1.8835

3.0000

3.0000








2.4 On the domains of attraction

This section presents an original contribution on estimating the domain of attraction

for uncertain and time-varying linear discrete-times systems in closed-loop with a

saturated linear feedback controller and state constraints. Ellipsoidal and polyhedral

sets will be used for characterizing the domain of attraction. The use of ellipsoidal

sets associated with its simple characterization as a solution of an LMI problem,
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while the use of polyhedral sets offers a better approximation of the domain of

attraction.

2.4.1 Problem formulation

Consider the following time-varying or uncertain linear discrete-time system

x(k+1) = A(k)x(k)+B(k)u(k) (2.37)

where 



A(k) =
q

∑
i=1

αi(k)Ai, B(k) =
q

∑
i=1

αi(k)Bi

q

∑
i=1

αi(k) = 1, αi(k)≥ 0
(2.38)

with given matrices Ai ∈ R
n×n and Bi ∈ R

n×m, i= 1,2, . . . ,q.

Both the state vector x(k) and the control vector u(k) are subject to the constraints

{
x(k) ∈ X , X = {x ∈ R

n : Fix≤ gi},∀i= 1,2, . . . ,n1

u(k) ∈U, U = {u ∈ R
m : uil ≤ ui ≤ uiu},∀i= 1,2, . . . ,m

(2.39)

where Fi ∈R
n is the i−th row of the matrix Fx ∈R

n1×n, gi is the i−th component of

the vector gx ∈ R
n1 , uil and uiu are respectively the i− th component of the vectors

ul and uu, which are the lower and upper bounds of input u. It is assumed that the

matrix Fx and the vectors ul ∈R
m, uu ∈R

m are constant with ul < 0 and uu > 0 such

that the origin is contained in the interior of X and U .

Assume that using established results in control theory, one can find a feedback

controller K ∈ R
m×n such that

u(k) = Kx(k) (2.40)

robustly quadratically stabilizes system (2.37). We would like to estimate the do-

main of attraction of the origin for the closed loop system

x(k+1) = A(k)x(k)+B(k)sat(Kx(k)) (2.41)

where the state vector and the control vector are subject to the constraints (2.39).

2.4.2 Saturation nonlinearity modeling- A linear differential

inclusion approach

In this section, a linear differential inclusion approach used for modeling the satu-

ration function is briefly reviewed. This modeling framework was first proposed by
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Hu et al. in [57], [59], [60]. Then its generalization was developed by Alamo et al.

[6], [7]. The main idea of the differential inclusion approach is to use an auxiliary

vector variable v ∈ R
m, and to compose the output of the saturation function as a

convex combination of the actual control signals u and v.

u

sat(u)

u
u

u
l

Fig. 2.7 The saturation function

The saturation function is defined as follows

sat(ui) =





uil , if ui ≤ uil
u, if uil ≤ ui ≤ uiu
uiu, if uiu ≤ ui

(2.42)

for i = 1,2, . . . ,m and uil and uiu are respectively, the upper bound and the lower

bound of ui.

To underline the details of the approach, let us first consider the case when m= 1.

In this case u and v will be scalars. It is clear that for any arbitrarily u, there exist v

and β such that

sat(u) = βu+(1−β )v (2.43)

where 0≤ β ≤ 1 and

ul ≤ v≤ uu (2.44)

or equivalently

sat(u) ∈ Conv{u,v} (2.45)

Figure 2.8 illustrates this fact.

Analogously, for m= 2 and v such that

{
u1l ≤ v1 ≤ u1u

u2l ≤ v2 ≤ u2u
(2.46)

the saturation function can be expressed as
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u
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u v u
u

u
u

uu
l

sat(u) = u
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Fig. 2.8 Linear differential inclusion approach.

sat(u) = β1

[
u1

u2

]
+β2

[
u1

v2

]
+β3

[
v1

u2

]
+β4

[
v1

v2

]
(2.47)

where
4

∑
i=1

βi = 1, βi ≥ 0 (2.48)

or equivalently

sat(u) ∈ Conv

{[
u1

u2

]
,

[
u1

v2

]
,

[
v1

u2

]
,

[
v1

v2

]}
(2.49)

Denote now Dm as the set of m×m diagonal matrices whose diagonal elements

are either 0 or 1. For example, if m= 2 then

D2 =

{[
0 0

0 0

]
,

[
1 0

0 0

]
,

[
0 0

0 1

]
,

[
1 0

0 1

]}

There are 2m elements in Dm. Denote each element of Dm as Ei, i = 1,2, . . . ,2m

and define E−i = I−Ei. For example, if

E1 =

[
0 0

0 0

]

then

E−1 =

[
1 0

0 1

]
−

[
0 0

0 0

]
=

[
1 0

0 1

]
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Clearly if Ei ∈Dm, then E−i is also in Dm. The generalization of the results (2.45)

(2.49) is reported by the following lemma [57], [59], [60]

Lemma 2.1. [59] Consider two vectors u ∈ R
m and v ∈ R

m such that uil ≤ vi ≤ uiu
for all i= 1,2, . . . ,m, then it holds that

sat(u) ∈ Conv{Eiu+E−i v}, i= 1,2, . . . ,2m (2.50)

Consequently, there exist βi with i= 1,2, . . . ,2m and

βi ≥ 0 and
2m

∑
i=1

βi = 1

such that

sat(u) =
2m

∑
i=1

βi(Eiu+E−i v)

2.4.3 The ellipsoidal set approach

The aim of this subsection is twofold. First, we provide an invariance condition

of ellipsoidal sets for discrete-time linear time-varying or uncertain systems with a

saturated input and state constraints [56]. This invariance condition is an extended

version of the previously published results in [59] for the robust case. Secondly, we

propose a method for computing a nonlinear controller u(k) = sat(Kx(k)), which

makes a given ellipsoid invariant. For simplicity, consider the case of bounds equal

to umax, namely

−ul = uu = umax

and let us assume that the polyhedral constraint set X is symmetric with gi = 1, for

all i= 1,2, . . . ,n1. Clearly, this assumption is nonrestrictive as long as

Fix≤ gi⇔
Fi

gi
x≤ 1

for all gi > 0.

For a matrix H ∈ R
m×n, define Xc as an intersection between the state constraint

set X and the polyhedral set F(H,umax) = {x : |Hx| ≤ umax}, i.e.

Xc =



x ∈ R

n :




Fx
H

−H


x≤




1

umax
umax







We are now ready to state the main result of this subsection

Theorem 2.2. If there exist a symmetric matrix P ∈ R
n×n and a matrix H ∈ R

m×n

such that
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[
P {Ai+Bi(E jK+E−j H)}P

P{Ai+Bi(E jK+E−j H)}T P

]
� 0, (2.51)

for ∀i = 1,2, . . . ,q, ∀ j = 1, . . . ,2m and E(P) ⊂ Xc, then the ellipsoid E(P) is a ro-

bustly invariant set for the system (2.41) with constraints (2.39).

Proof. Assume that there exist a matrix P and a matrix H such that condition (2.51)

is satisfied. Based on Lemma 2.1 and by choosing v= Hx, one has

sat(Kx) =
2m

∑
j=1

β j(E jKx+E−j Hx)

for all x such that |Hx| ≤ umax. Subsequently

x(k+1) =
q

∑
i=1

αi(k)

{
Ai+Bi

2m

∑
j=1

β j(E jK+E−j H)

}
x(k)

=
q

∑
i=1

αi(k)

{
2m

∑
j=1

β jAi+Bi

2m

∑
j=1

β j(E jK+E−j H)

}
x(k)

=
q

∑
i=1

αi(k)
2m

∑
j=1

β j

{
Ai+Bi(E jK+E−j H)

}
x(k)

=
q

∑
i=1

2m

∑
j=1

αi(k)β j

{
Ai+Bi(E jK+E−j H)

}
x(k) = Ac(k)x(k)

where

Ac(k) =
q

∑
i=1

2m

∑
j=1

αi(k)β j

{
Ai+Bi(E jK+E−j H)

}

From the fact that

q

∑
i=1

2m

∑
j=1

αi(k)β j =
q

∑
i=1

αi(k)

{
2m

∑
j=1

β j

}
= 1

it is clear that Ac(k) belongs to the polytope Pc, the vertices of which are given by

taking all possible combinations of Ai+Bi(E jK+E−j H) where i = 1,2, . . . ,q and

j = 1,2, . . . ,2m.

The ellipsoid E(P) = {x ∈ R
n : xTP−1x ≤ 1} is invariant, if and only if for all

x ∈ R
n such that xTP−1x≤ 1 it holds that

xTAc(k)
TP−1Ac(k)x≤ 1 (2.52)

With the same argument as in Section 2.3.3, it is clear that condition (2.52) can

be transformed to [
P Ac(k)P

PAc(k)
T P

]
� 0 (2.53)



2.4 On the domains of attraction 61

The left-hand side of equation (2.52) can be treated as a function of k and reaches

the minimum on one of the vertices of Ac(k), so the set of LMI conditions to be

satisfied for invariance is the following

[
P {Ai+Bi(E jK+E−j H)}P

P{Ai+Bi(E jK+E−j H)}T P

]
� 0,

for all i= 1,2, . . . ,q and for all j = 1,2, . . . ,2m. �

Note that conditions (2.51) involve the multiplication between two unknown pa-

rameters H and P. By denoting Y = HP, the LMI condition (2.51) can be rewritten

as

[
P (AiP+BiE jKP+BiE

−
j Y )

(PAT
i +PKTE jB

T
i +Y TE−j B

T
i ) P

]
� 0, (2.54)

for ∀i = 1,2, . . . ,q, ∀ j = 1,2, . . . ,2m. Thus the unknown matrices P and Y enter

linearly in the conditions (2.54).

Again, as in Section 2.3.3, in general one would like to have the largest invariant

ellipsoid for system (2.37) under the feedback u(k) = sat(Kx(k)) with respect to

constraints (2.39). This can be achieved by solving the following LMI problem

J = max
P,Y
{trace(P)} (2.55)

subject to

• Invariance condition

[
P (AiP+BiE jKP+BiE

−
j Y )

(PAT
i +PKTE jB

T
i +Y TE−j B

T
i ) P

]
� 0, (2.56)

for all i= 1,2, . . . ,q and for all j = 1,2, . . . ,2m

• Constraint satisfaction

– On state [
1 FiP

PFT
i P

]
� 0, ∀i= 1,2, . . . ,n1

– On input [
u2
imax Yi
Y T
i P

]
� 0, ∀i= 1,2, . . . ,m

where Yi is the i− th row of the matrix Y .

Example 2.4. Consider the following linear uncertain discrete-time system

x(k+1) = A(k)x(k)+B(k)u(k)

with
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A(k) = α(k)A1 +(1−α(k))A2

B(k) = α(k)B1 +(1−α(k))B2

and

A1 =

[
1 0.1

0 1

]
, A2 =

[
1 0.2

0 1

]
, B1 =

[
0

1

]
, B2 =

[
0

1.5

]

At each sampling time α(k) ∈ [0, 1] is an uniformly distributed pseudo-random

number. The constraints are

−10≤ x1 ≤ 10,−10≤ x2 ≤ 10,−1≤ u≤ 1

The robustly stabilizing feedback matrix gain is chosen as

K = [−1.8112 −0.8092]

By solving the optimization problem (2.55), the matrices P and Y are obtained

P=

[
5.0494 −8.9640

−8.9640 28.4285

]
, Y = [0.4365 −4.2452]

Hence

H = YP−1 = [−0.4058 −0.2773]

Based on the LMI problem (2.31), an invariant ellipsoid E(P1) is obtained under

the linear feedback u(k) = Kx(k) with

P1 =

[
1.1490 −3.1747

−3.1747 9.9824

]

Figure 2.9 presents the invariant sets with different control laws. The set E(P)
is obtained with the saturated controller u(k) = sat(Kx(k)) while the set E(P1) is

obtained with the linear controller u(k) = Kx(k).
Figure 2.10 shows different state trajectories of the closed loop system with the

controller u(k) = sat(Kx(k)) for different realizations of α(k) and different initial

conditions.

In the first part of this subsection, Theorem 2.2 was exploited in the following

manner: if the ellipsoid E(P) is robustly invariant for the system

x(k+1) = A(k)x(k)+B(k)sat(Kx(k))

then there exists a stabilizing linear controller u(k) = Hx(k), such that the ellipsoid

E(P) is robustly invariant with respect to the closed-loop system

x(k+1) = A(k)x(k)+B(k)Hx(k)

The matrix gain H ∈ R
m×n is obtained by solving the optimization problem (2.55).

Theorem 2.2 now will be exploited in a different manner. We would like to design

a saturated feedback gain u(k) = sat(Kx(k)) that makes a given invariant ellipsoid
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Fig. 2.9 Invariant sets with different control laws for example 2.4. The set E(P) is obtained with

the saturated controller u(k) = sat(Kx(k)) while the set E(P1) is obtained with the linear controller

u(k) = Kx(k).
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Fig. 2.10 State trajectories of the closed loop system for example 2.4.

E(P) contractive with a maximal contraction factor. This invariant ellipsoid E(P)
can be inherited for example together with a linear feedback gain u(k) =Hx(k) from

the optimization of some convex objective function J(P)6, for example trace(P). In

the second stage, based on the gain H and the ellipsoid E(P), a saturated controller

u(k) = sat(Kx(k)) which aims to maximize some contraction factor 1− g is com-

puted.

It is worth noticing that the invariance condition (2.30) corresponds to the one in

condition (2.54) with E j = 0 and E−j = I−E j = I. Following the proof of Theorem

2.2, it is clear that for the following system

6 Practically, the design of the invariant ellipsoid E(P) and the controller u(k) =Hx(k) can be done

by solving the LMI problem (2.30).



64 2 Set Theoretic Methods in Control

x(k+1) = A(k)x(k)+B(k)sat(Kx(k))

the ellipsoid E(P) is contractive with the contraction factor 1−g if

{
Ai+Bi(E jK+E−j H)

}T

P−1
{
Ai+Bi(E jK+E−j H)

}
−P−1 �−gP−1

for all i= 1,2, . . . ,q and for all j= 1,2, . . . ,2m such that E j 6= 0. By using the Schur

complement, this problem can be converted into an LMI optimization as

J = max
g,K
{g} (2.57)

subject to

[
(1−g)P−1 (Ai+Bi(E jK+E−j H))T

(Ai+Bi(E jK+E−j H)) P

]
� 0

for all i = 1,2, . . . , p and j = 1,2, . . . ,2m with E j 6= 0. Recall that here the only

unknown parameters are the matrix K ∈ R
m×n and the scalar g, the matrices P and

H being given in the first stage.

Remark 2.4. The proposed two-stage control design presented here benefits from

global uniqueness properties of the solution. This is due to the one-way dependence

of the two (prioritized) objectives: the trace maximization precedes the associated

contraction factor.

Example 2.5. Consider the uncertain system in example 2.4 with the same con-

straints on the state vector and on the input vector. In the first stage by solving

the optimization problem (2.30), one obtains the matrices P and Y

P=

[
100.0000 −43.1051

−43.1051 100.0000

]
, Y = [−3.5691 −6.5121]

Hence H = YP−1 = [−0.0783 −0.0989].
In the second stage, by solving the optimization problem (2.57), one obtains the

feedback gain K

K = [−0.3342−0.7629]

Figure 2.11 shows the invariant ellipsoid E(P). This figure also shows the

state trajectories of the closed loop system under the saturated feedback u(k) =
sat(Kx(k)) for different initial conditions and different realizations of α(k).

For the initial condition x(0) = [−4 10]T Figure 2.12(a) presents the state tra-

jectory of the closed loop system with the saturated controller u(k) = sat(Kx(k))
and with the linear controller u(k) = Hx(k). It can be observed that the time to reg-

ulate the plant to the origin by using the linear controller is longer than the time to

regulate the plant to the origin by using the saturated controller. The explanation for

this is that when using the controller u(k) = Hx(k), the control action is saturated

only at some points of the boundary of the ellipsoid E(P), while using the controller
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Fig. 2.11 Invariant ellipsoid and state trajectories of the closed loop system for example 2.5.

u(k) = sat(Kx(k)), the control action is saturated not only on the boundary of the

set E(P), the saturation being active also inside the set E(P). This effect can be

observed in Figure 2.12(b). The same figure presents the realization of α(k).
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Fig. 2.12 State and input trajectory of the closed loop system as a function of time for example 2.5.

The solid blue lines are obtained by using the saturated feedback gain u(k) = sat(Kx(k)), and the

dashed red lines are obtained by using the linear feedback controller u(k) = Hx(k) in the figures

for x1, x2 and u.

2.4.4 The polyhedral set approach

In this section, the problem of estimating the domain of attraction is addressed by

using polyhedral sets. For a given linear state feedback controller u(k) = Kx(k), it

is clear that the largest polyhedral invariant set is the maximal robustly invariant

set Ωmax. The set Ωmax can be readily found using procedure 2.1 or procedure 2.2.

From this point on, it is assumed that the set Ωmax is known.
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Our aim in this subsection is to find the the largest polyhedral invariant set char-

acterizing an estimation of the domain of attraction for system (2.37) under the

saturated controller u(k) = sat(Kx(k)). To this aim, recall that from Lemma (2.1),

the saturation function can be expressed as

sat(Kx) =
2m

∑
i=1

βi(EiKx+E−i v),
2m

∑
i=1

βi = 1, βi ≥ 0 (2.58)

with ul ≤ v≤ uu and Ei is an element of Dm
7 and E−i = I−Ei.

With equation (2.59) the closed loop system can be rewritten as

x(k+1) =
q

∑
i=1

αi(k)

{
Aix(k)+Bi

2m

∑
j=1

β j(E jKx(k)+E−j v)

}

=
q

∑
i=1

αi(k)

{
2m

∑
j=1

β jAix(k)+Bi

2m

∑
j=1

β j(E jKx(k)+E−j v)

}

=
q

∑
i=1

αi(k)
2m

∑
j=1

β j

{
Aix(k)+Bi(E jKx(k)+E−j v)

}

or

x(k+1) =
2m

∑
j=1

β j

q

∑
i=1

αi(k)
{
(Ai+BiE jK)x(k)+BiE

−
j v

}
(2.59)

The variables v∈R
m can be considered as an external controlled input for system

(2.59). Hence, the problem of finding the largest polyhedral invariant set Ωs for sys-

tem (2.41) boils down to the problem of computing the largest controlled invariant

set for system (2.59).

System (2.59) can be considered as an uncertain system with respect to the pa-

rameters αi and β j. Hence the following procedure can be used to obtain the largest

polyhedral invariant set Ωs for system (2.59) based on the results in Section 2.3.4

7 The set of m×m diagonal matrices whose diagonal elements are either 0 or 1
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Procedure 2.4: Invariant set computation

• Input: The matrices A1, . . . ,Aq, B1, . . . ,Bq, the gain K and the sets X , U and the

invariant set Ωmax

• Output: An invariant approximation of the invariant set Ωs for the closed loop

system (2.41).

1. Set i = 0 and C0 = Ωmax and let the matrices F0, g0 be the half space repre-

sentation of the set C0, i.e. C0 = {x ∈ R
n : F0x≤ g0}

2. Compute the expanded set Pi j ⊂ R
n+m for all j = 1,2, . . . ,2m

Pi j =




(x,v) ∈ R

n+m :




Fi{(A1 +B1E jK)x+B1E
−
j v}

Fi{(A2 +B2E jK)x+B2E
−
j v}

...

Fi{(Aq+BqE jK)x+BqE
−
j v}


≤




gi
gi
...

gi








3. Compute the projection of Pi j on R
n

Pn
i j = {x ∈ R

n : ∃v ∈U such that (x,v) ∈ Pi j},∀ j = 1,2, . . . ,2m

4. Set

Ci+1 = X

2m⋂

j=1

Pn
i j

and let the matrices Fi+1, gi+1 be the half space representation of the setCi+1,

i.e.

Ci+1 = {x ∈ R
n : Fi+1x≤ gi+1}

5. If Ci+1 =Ci, then stop and set Ωs =Ci. Else continue.

6. Set i= i+1 and go to step 2.

It is clear that Ci−1 ⊆ Ci, since the set Ωmax is robustly invariant. Hence Ci is a

robustly invariant set. The set sequence {C0,C1, . . . ,} converges to Ωs, which is the

largest polyhedral invariant set.

Remark 2.5. Each one of the polytopes Ci represents an invariant inner approxima-

tion of the domain of attraction for the system (2.37) under the saturated controller

u(k) = sat(Kx(k)). That means the procedure 2.4 can be stopped at any time be-

fore converging to the true largest invariant set Ωs and obtain a robustly invariant

approximation of the set Ωs.

It is worth noticing that the matrix H ∈ R
m×n resulting from optimization prob-

lem (2.55) can also be employed for computing the polyhedral invariant set ΩH
s with

respect to the saturated controller u(k) = sat(Kx(k)). Clearly the set ΩH
s is a subset

of Ωs, since the vector v is now in the restricted form v(k) = Hx(k), but this can be
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an important instrument design tool. In this case, from the equation (2.59) one gets

x(k+1) =
2m

∑
j=1

β j

q

∑
i=1

αi(k)
{
(Ai+BiE jK+BiE

−
j H)x(k)

}
(2.60)

Define the set XH as follows

XH = {x ∈ R
n : FHx≤ gH} (2.61)

where

FH =




Fx
H

−H


 , gH =



gx
uu
ul




With the set XH , the following procedure can be used for computing the polyhedral

invariant set ΩH
s .

Procedure 2.5: Invariant set computation

• Input: The matrices A1,A2,. . .,Aq and the set XH and the invariant set Ωmax

• Output: The invariant set ΩH
s

1. Set i = 0 and C0 = Ωmax and let the matrices F0, g0 be the half space repre-

sentation of the set C0, i.e. C0 = {x ∈ R
n : F0x≤ g0}

2. Compute the set Pi j ⊂ R
n+m

Pi j =




x ∈ R

n :




Fi(A1 +B1E jK+B1E
−
j H)x

Fi(A2 +B2E jK+B2E
−
j H)x

...

Fi(Aq+BqE jK++BqE
−
j H)x


≤




gi
gi
...

gi








3. Set

Ci+1 = XH

2m⋂

j=1

Pn
i j

and let the matrices Fi+1, gi+1 be the half space representation of the setCi+1,

i.e.

Ci+1 = {x ∈ R
n : Fi+1x≤ gi+1}

4. If Ci+1 =Ci, then stop and set Ωs =Ci. Else continue.

5. Set i= i+1 and go to step 2.

Since the matrix
2m

∑
j=1

β j

q

∑
i=1

αi(k)
{
(Ai+BiE jK+BiE

−
j H)

}
has a sub-unitary joint

spectral radius, procedure 2.5 terminates in finite time [27]. In other words, there ex-

ists a finite index i= imax such that Cimax =Cimax+1.
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Example 2.6. Consider again the example 2.4. The constraint on the state vector and

on the input vector are the same. The controller is K = [−1.8112 −0.8092].
By using procedure 2.4 one obtains the robust polyhedral invariant set Ωs as

depicted in Figure 2.13. Procedure 2.4 terminated with i = 121. Figure 2.13 also

shows the robust polyhedral invariant set ΩH
s obtained with the auxiliary matrix

H where H = [−0.4058 − 0.2773] and the robust polyhedral invariant set Ωmax

obtained with the controller u(k) = Kx.
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Fig. 2.13 Robustly invariant sets with different control laws and different methods for example 2.6.

The polyhedral set Ωs is obtained with respect to the controller u(k) = sat(Kx(k)). The polyhedral

set ΩH
s is obtained with respect to the controller u(k) = sat(Kx(k)) using an auxiliary matrix H.

The polyhedral set Ωmax is obtained with the controller u(k) = Kx.

The set ΩH
s and Ωs are presented in minimal normalized half-space representa-

tion as

ΩH
s =





x ∈ R
2 :




−0.8256 −0.5642

0.8256 0.5642

0.9999 0.0108

−0.9999 −0.0108

0.9986 0.0532

−0.9986 −0.0532

−0.6981 −0.7160

0.6981 0.7160

0.9791 0.2033

−0.9791 −0.2033

−0.4254 −0.9050

0.4254 0.9050




x≤




2.0346

2.0346

2.3612

2.3612

2.3467

2.3467

2.9453

2.9453

2.3273

2.3273

4.7785

4.7785







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Ωs =





x ∈ R
2 :




−0.9996 −0.0273

0.9996 0.0273

−0.9993 −0.0369

0.9993 0.0369

−0.9731 −0.2305

0.9731 0.2305

0.9164 0.4004

−0.9164 −0.4004

0.8434 0.5372

−0.8434 −0.5372

0.7669 0.6418

−0.7669 −0.6418

0.6942 0.7198

−0.6942 −0.7198

0.6287 0.7776

−0.6287 −0.7776

0.5712 0.8208

−0.5712 −0.8208




x≤




3.5340

3.5340

3.5104

3.5104

3.4720

3.4720

3.5953

3.5953

3.8621

3.8621

4.2441

4.2441

4.7132

4.7132

5.2465

5.2465

5.8267

5.8267








Figure 2.14 presents state trajectories of the closed loop system with the con-

troller u(k) = sat(Kx(k)) for different initial conditions and different realizations of

α(k).
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Fig. 2.14 State trajectories of the closed loop system with the controller u(k) = sat(Kx(k)) for

example 2.6.



Chapter 3

Optimal and Constrained Control - An

Overview

In this chapter some of the approaches to constrained and optimal control are briefly

reviewed. This review is not intended to be exhaustive but to provide an insight into

the existing theoretical background on which, the present manuscript builds on. The

chapter includes the following sections

1. Dynamic programming.

2. Pontryagin’s maximum principle.

3. Model predictive control: implicit and explicit solutions.

4. Vertex control.

3.1 Dynamic programming

The purpose of this section is to present a brief introduction to dynamic program-

ming, which provides a sufficient condition for optimality.

Dynamic programming was developed by R.E. Bellman in the early fifties [13],

[14], [15], [16]. It provides insight into properties of the control problems for various

classes of systems, e.g. linear, time-varying or nonlinear. In general the optimal

solution is found in open loop form, without feedback.

Dynamic programming is based on the following principle of optimality [17]:

An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision.

To begin, let us consider the following optimal control problem

min
x,u

{
N−1

∑
k=0

L(x(k),u(k))+E(x(N))

}
(3.1)

subject to

71
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



x(k+1) = f (x(k),u(k)), k = 0,1, . . . ,N−1

u(k) ∈U, k = 0,1, . . . ,N−1

x(k) ∈ X , k = 0,1, . . . ,N

x(0) = x0

where

• x(k) ∈ R
n and u(k) ∈ R

m are respectively the state and control variables.

• N > 0 is called the time horizon.

• L(x(k),u(k)) is the Lagrange objective function, which represents a cost along

the trajectory.

• E(x(N)) is the Mayer objective function, which represents the terminal cost.

• U and X are the sets of constraints on the input and state variables, respectively.

• x(0) is the initial condition.

Define the value function Vi(x(i)) as follows

Vi(x(i)) = min
x,u

{
E(x(N))+

N−1

∑
k=i

L(x(k),u(k))

}
(3.2)

subject to 



x(k+1) = f (x(k),u(k)), k = 0,1, . . . ,N−1

u(k) ∈U, k = i, i+1, . . . ,N−1

x(k) ∈ X , k = i, i+1, . . . ,N

for i= N,N−1,N−2, . . . ,0.

Clear Vi(x(i)) is the optimal cost on the remaining horizon [i, N], starting from

the state x(i). Based on the principle of optimality, one has

Vi(x(i)) = min
u(i)
{L(x(i),u(i))+Vi+1(x(i+1))}

By substituting

x(i+1) = f (x(i),u(i))

one gets

Vi(z) = min
u(i)
{L(x(i),u(i))+Vi+1( f (x(i),u(i)))} (3.3)

subject to {
u(i) ∈U,

f (x(i),u(i)) ∈ X

The problem (3.3) is much simpler than the one in (3.1) because it involves only

one decision variable u(i). To actually solve this problem, we work backwards in

time from i= N, starting with

VN(x(N)) = E(x(N))

Based on the value function Vi+1(x(i+1)) with i= N−1,N−2, . . . ,0, the opti-

mal control values u∗(i) can be obtained as
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u∗(i) = argmin
u(i)
{L(x(i),u(i))+Vi+1( f (x(i),u(i)))}

subject to {
u(i) ∈U,

f (x(i),u(i)) ∈ X

3.2 Pontryagin’s maximum principle

The second milestone in the optimal control theory is the Pontryagin’s maximum

principle [125], [34], offering a basic mathematical technique for calculating the

optimal control values in many important problems of mathematics, engineering,

economics, e.t.c. This approach, can be seen as a counterpart of the classical cal-

culus of variation approach, allowing us to solve the control problems in which the

control input is subject to constraints in a very general way. Here for illustration, we

consider the following simple optimal control problem

min
x,u

{
N−1

∑
k=0

L(x(k),u(k))+E(x(N))

}
(3.4)

subject to 



x(k+1) = f (x(k),u(k)), k = 0,1, . . . ,N−1

u(k) ∈U, k = 0,1, . . . ,N−1

x(0) = x0

For simplicity, the state variables are considered unconstrained. For solving the

optimal control problem (3.4) with the Pontryagin’s maximum principle, the follow-

ing Hamiltonian Hk(·) is defined

Hk(x(k),u(k),λ (k+1)) = L(x(k),u(k))+λT (k+1) f (x(k),u(k)) (3.5)

where λ (k) ∈R
n with k= 1,2, . . . ,N are called the co-state or the adjoint variables.

For problem (3.4), these variables must satisfy the so called co-state equation

λ ∗(k+1) =
∂Hk

∂ (x(k))
, k = 0,1, . . . ,N−2

and

λ ∗(N) =
∂E(x(N))

∂ (x(N))

For given state and co-state variables, the optimal control value is achieved by

choosing control u∗(k) that minimizes the Hamiltonian at each time instant, i.e.

Hk(x
∗(k),u∗(k),λ ∗(k+1))≤ Hk(x

∗(k),u(k),λ ∗(k+1)), ∀u(k) ∈U
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Note that a convexity assumption on the Hamiltonian is needed, i.e. the function

Hk(x(k),u(k),λ (k+1)) is supposed to be convex with respect to u(k).

3.3 Model predictive control

Model predictive control (MPC), or receding horizon control, is one of the most

advanced control approaches which, in the last decades, has became a leading in-

dustrial control technology for constrained control systems [32], [100], [28], [129],

[47], [96], [53]. MPC is an optimization based strategy, where a model of the plant

is used to predict the future evolution of the system, see [100], [96]. This prediction

uses the current state of the plant as the initial state and, at each time instant, k, the

controller computes a finite optimal control sequence. Then the first control action

in this sequence is applied to the plant at time instant k, and at time instant k+1 the

optimization procedure is repeated with a new plant measurement. This open loop

optimal feedback mechanism1 of the MPC compensates for the prediction error due

to structural mismatch between the model and the real system as well as for dis-

turbances and measurement noise. In contrast to the maximal principle or dynamic

programming solutions which are open loop optimal, the receding horizon principle

behind MPC brings the advantage of the feedback structure.

But again the main advantage which makes MPC industrially desirable is that it

can take into account constraints in the control problem. This feature is very impor-

tant for several reasons

• Often the best performance, which may correspond to the most efficient opera-

tion, is obtained when the system is made to operate near the constraints.

• The possibility to explicitly express constraints in the problem formulation offers

a natural way to state complex control objectives.

• Stability and other features can be proved, at least in some cases, in contrast to

popular ad-hoc methods to handle constraints, like anti-windup control [51], and

override control [143].

3.3.1 Implicit model predictive control

Consider the problem of regulating to the origin the following discrete-time linear

time-invariant system

x(k+1) = Ax(k)+Bu(k) (3.6)

where x(k) ∈ R
n and u(k) ∈ R

m are respectively the state and the input variables,

A ∈ R
n×n and B ∈ R

n×m are the system matrices. Both the state vector x(k) and the

control vector u(k) are subject to polytopic constraints

1 It was named OLOF (Open Loop Optimal Feedback) control, by the author of [38]
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{
x(k) ∈ X , X = {x : Fxx≤ gx}
u(k) ∈U,U = {u : Fuu≤ gu}

∀k ≥ 0 (3.7)

where the matrices Fx, Fu and the vectors gx, gu are assumed to be constant with

gx > 0, gu > 0 such that the origin is contained in the interior of X and U . Here the

inequalities are taken element-wise. It is assumed that the pair (A,B) is stabilizable,

i.e. all uncontrollable states have stable dynamics.

Provided that the state x(k) is available from the measurements, the basic finite

horizon MPC optimization problem is defined as

V (x(k)) = min
u=[u0,u1,...,uN−1]

{
N

∑
t=1

xTt Qxt +
N−1

∑
t=0

uTt Rut

}
(3.8)

subject to 



xt+1 = Axt +But , t = 0,1, . . . ,N−1

xt ∈ X , t = 1,2, . . . ,N

ut ∈U, t = 0,1, . . . ,N−1

xt = x(k)

where

• xt+1 and ut are, respectively the predicted states and the predicted inputs, t =
0,1, . . . ,N−1.

• Q ∈ R
n×n is a real symmetric positive semi-definite matrix.

• R ∈ R
m×m is a real symmetric positive definite matrix.

• N is a fixed integer greater than 0. N is called the time horizon or the prediction

horizon.

The conditions on Q and R guarantee that the function J is convex. In term of

eigenvalues, the eigenvalues of Q should be non-negative, while those of R should

be positive in order to ensure a unique optimal solution.

From the control objective point of view, it is clear that the first term xTt Qxt
penalizes the deviation of the state x from the origin, while the second term uTt Rut
measures the input control energy. In other words, selecting Q large means that, to

keep V small, the state xt must be as close as possible to the origin in a weighted

Euclidean norm. On the other hand, selecting R large means that the control input

ut must be small to keep the cost function V small.

An alternative is a performance measure based on l1−norm

min
u=[u0,u1,...,uN−1]

{
N

∑
t=1

|Qxt |1 +
N−1

∑
t=0

|Rut |1

}
(3.9)

or l∞−norm

min
u=[u0,u1,...,uN−1]

{
N

∑
t=1

|Qxt |∞ +
N−1

∑
t=0

|Rut |∞

}
(3.10)
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Based on the state space model (3.6), the future state variables are expressed

sequentially using the set of future control variable values





x1 = Ax0 +Bu0

x2 = Ax1 +Bu1 = A2x0 +ABu0 +Bu1

...

xN = ANx0 +AN−1Bu0 +AN−2Bu1 + . . .+BuN−1

(3.11)

The set of equations (3.11) can be rewritten in a compact matrix form as

x= Aax0 +Bau= Aax(k)+Bau (3.12)

with
x= [xT1 xT2 . . . xTN ]

T

u= [uT0 uT1 . . . uTN−1]
T

and

Aa =




A

A2

...

AN


 , Ba =




B 0 . . . 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B . . . B




The MPC optimization problem (3.8) can be expressed as

V (x(k)) = min
u
{xTQax+uTRau} (3.13)

where

Qa =




Q 0 . . . 0

0 Q . . . 0
...

...
. . .

...

0 0 . . . Q


 , Ra =




R 0 . . . 0

0 R . . . 0
...

...
. . .

...

0 0 . . . R




and by substituting (3.12) in (3.13), one gets

V (x(k)) = min
u
{uTHu+2xT (k)Fu+ xT (k)Yx(k)} (3.14)

where

H = BT
aQaBa+Ra, F = AT

aQaBa and Y = AT
aQaAa (3.15)

Consider now the constraints on state and on input along the horizon. From (3.7)

it can be shown that {
Fa
x x≤ gax

Fa
u u≤ gau

(3.16)

where
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Fa
x =




Fx 0 . . . 0

0 Fx . . . 0
...

...
. . .

...

0 0 . . . Fx


 , gax =




gx
gx
...

gx




Fa
u =




Fu 0 . . . 0

0 Fu . . . 0
...

...
. . .

...

0 0 . . . Fu


 , gau =




gu
gu
...

gu




Using (3.12), the state constraints along the horizon can be expressed as

Fa
x {Aax(k)+Bau} ≤ gax

or

Fa
x Bau≤−F

a
x Aax(k)+gax (3.17)

Combining (3.16), (3.17), one obtains

Gu≤ Ex(k)+S (3.18)

where

G=

[
Fa
u

Fa
x Ba

]
, E =

[
0

−Fa
x Aa

]
, S=

[
gau
gax

]

Based on (3.13) and (3.18), the MPC quadratic program formulation can be de-

fined as

V1(x(k)) = min
u

{
uTHu+2xT (k)Fu

}
(3.19)

subject to

Gu≤ Ex(k)+W

where the term xT (k)Yx(k) is removed since it does not influence the optimal ar-

gument. The value of the cost function at optimum is simply obtained from (3.19)

by

V (x(k)) =V1(x(k))+ xT (k)Yx(k)

A simple on-line algorithm for MPC is

Algorithm 3.1. Model predictive control - Implicit approach

1. Measure the current state of the system x(k).
2. Compute the control signal sequence u by solving (3.19).

3. Apply first element of the control sequence u as input to the system (3.6).

4. Wait for the next time instant k := k+1.

5. Go to step 1 and repeat
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Example 3.1. Consider the following discrete time linear time invariant system

x(k+1) =

[
1 1

0 1

]
x(k)+

[
1

0.7

]
u(k) (3.20)

and the MPC problem with weighting matrices Q= I and R= 1 and the prediction

horizon N = 3.

The constraints are

−2≤ x1 ≤ 2,−5≤ x2 ≤ 5,−1≤ u≤ 1

Based on equation (3.15) and (3.18), the MPC problem can be described as a QP

problem

min
u={u0,u1,u2}

{
uTHu+2xT (k)Fu

}

with

H =




12.1200 6.7600 2.8900

6.7600 5.8700 2.1900

2.8900 2.1900 2.4900


 , F =

[
5.1000 2.7000 1.0000

13.7000 8.5000 3.7000

]

and subject to the following constraints

Gu≤ S+Ex(k)

where

G=




1.0000 0 0

−1.0000 0 0

0 1.0000 0

0 −1.0000 0

0 0 1.0000

0 0 −1.0000

1.0000 0 0

0.7000 0 0

−1.0000 0 0

−0.7000 0 0

1.7000 1.0000 0

0.7000 0.7000 0

−1.7000 −1.0000 0

−0.7000 −0.7000 0

2.4000 1.7000 1.0000

0.7000 0.7000 0.7000

−2.4000 −1.7000 −1.0000

−0.7000 −0.7000 −0.7000




, E =




0 0

0 0

0 0

0 0

0 0

0 0

−1 −1

0 −1

1 1

0 1

−1 −2

0 −1

1 2

0 1

−1 −3

0 −1

1 3

0 1




, S=




1

1

1

1

1

1

2

5

2

5

2

5

2

5

2

5

2

5



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For the initial condition x(0) = [2 1]T and by using the implicit MPC method,

Figure 3.1 shows the state and input trajectory of the closed loop system as a func-

tion of time.

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

Time (Sampling)

x
1

0 2 4 6 8 10 12 14 16 18 20

−0.5

0

0.5

1

Time (Sampling)

x
2

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

Time (Sampling)

x
1

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

Time (Sampling)

x
1

0 2 4 6 8 10 12 14 16 18 20

−0.5

0

0.5

1

Time (Sampling)

x
2

0 2 4 6 8 10 12 14 16 18 20

−0.5

0

0.5

1

Time (Sampling)

x
2

0 2 4 6 8 10 12 14 16 18 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time (Sampling)

u

0 2 4 6 8 10 12 14 16 18 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time (Sampling)

u

0 2 4 6 8 10 12 14 16 18 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time (Sampling)

u

(a) State trajectory (b) Input trajectory.

Fig. 3.1 State and input trajectory of the closed loop system as a function of time for example 3.1.

3.3.2 Recursive feasibility and stability

Recursive feasibility of the optimization problem and stability of the resulting

closed-loop system are two important aspects when designing a MPC controller.

Recursive feasibility of the optimization problem (3.19) means that if the prob-

lem (3.19) is feasible at time instant k, it will be also feasible at time instant k+1. In

other words there exists an admissible control value that holds the system within the

state constraints. The feasibility problem can arise due to model errors, disturbances

or the choice of the cost function.

Stability analysis necessitates the use of Lyapunov theory [73], since the presence

of the constraints makes the closed-loop system nonlinear. In addition, it is well

known that unstable input-constrained system cannot be globally stabilized [144],

[97], [138]. Another problem is that the control law is generated by the solution

of the optimization problem (3.19) and generally there does not exist any simple2

closed-form expression for the solution, although it can be shown that the solution

is a piecewise affine state feedback law [20].

Recursive feasibility and stability can be assured by adding a terminal cost func-

tion in the objective function (3.8) and by including the final state of the planning

horizon in a terminal positively invariant set. Let the matrix P ∈R
n×n be the unique

solution of the following discrete-time algebraic Riccati equation

P= ATPA−ATPB(BTXB+R)−1BTPA+Q (3.21)

2 Simple here is understood in terms of linear feedback gains as it is the case for the optimal control

for unconstrained linear quadratic regulators [68].
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and the matrix gain K ∈ R
m×n is defined as

K =−(BTPB+R)−1BTPA (3.22)

It is well known [8], [86], [89], [90] that matrix gain K is a solution of the opti-

mization problem (3.8) when the time horizon N = ∞ and there are no constraints

on the state vector and on the input vector. In this case the cost function is

V (x(0)) =
∞

∑
k=0

{
xTk Qxk+uTk Ruk

}

=
∞

∑
k=0

xTk
(
Q+KTRK

)
xk = xT0 Px0

Once the stabilizing feedback gain u(k) = Kx(k) is defined, the terminal set

Ω ⊆ X can be computed as a maximal invariant set associated with the control law

u(k) = Kx(k) for system (3.6) and with respect to the constraints (3.7). Generally,

the terminal invariant set Ω is chosen to be in the ellipsoidal or polyhedral form3.

Consider now the following MPC optimization problem

min
u=[u0,u1,...,uN−1]

{
xTNPxN +

N−1

∑
t=0

{
xTt Qxt +uTt Rut

}
}

(3.23)

subject to 



xt+1 = Axt +But , t = 0,1, . . . ,N−1

xt ∈ X , t = 1,2, . . . ,N

ut ∈U, t = 0,1, . . . ,N−1

xN ∈Ω

x0 = x(k)

then the following theorem holds [100]

Theorem 3.1. [100] Assuming feasibility at the initial state, the MPC controller

(3.23) guarantees recursive feasibility and asymptotic stability.

Proof. See [100]. �

The MPC problem considered here uses both a terminal cost function and a ter-

minal set constraint and is called the dual-mode MPC. This MPC scheme is the most

attractive version in the MPC literature. In general, it offers better performance com-

pared with other MPC versions and allows a wider range of control problems to be

handled. The downside is the dependence of the feasible domain on the prediction

horizon. Generally, for a large domain one needs to employ a large prediction hori-

zon.

3 see Section 2.3.3 and Section 2.3.4.
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3.3.3 Explicit model predictive control - Parameterized vertices

Note that the implicit model predictive control requires running on-line optimiza-

tion algorithms to solve a quadratic programming (QP) problem associated with

the objective function (3.8) or to solve a linear programming (LP) problem with

the objective function (3.9), (3.10). Although computational speed and optimiza-

tion algorithms are continuously improving, solving a QP or LP problem can be

computationally costly, specially when the prediction horizon is large, and this has

traditionally limited MPC to applications with relatively low complexity/sampling

interval ratio.

Indeed the state vector can be interpreted as a vector of parameters in the opti-

mization problem (3.23). The exact optimal solution can be expressed as a piecewise

affine function of the state over a polyhedral partition of the state space and the MPC

control computation can be moved off-line [20], [28], [141], [117]. The control ac-

tion is then computed on-line by lookup tables and search trees.

Several solutions have been proposed in the literature for constructing a poly-

hedral partition of the state space [20], [141], [117]. In [20], [18] some iterative

techniques use a QP or LP to find feasible points and then split the parameters space

by inverting one by one the constraints hyper-planes. As an alternative, in [141] the

authors construct the unconstrained polyhedral region and then enumerate the others

based on the combinations of active constraints. When the cost function is quadratic,

the uniqueness of the optimal solution is guaranteed and the methods proposed in

[20], [18], [141] work very well, at least for non-degenerate sets of constraints [153].

It is worth noticing that by using l1− or l∞−norms as the performance measure,

the cost function is only positive semi-definite and the uniqueness of the optimal

solution is not guaranteed and as a consequence, neither the continuity. A control

law will have a practical advantage if the control action presents no jumps on the

boundaries of the polyhedral partitions. When the optimal solution is not unique, the

methods in [20], [18], [141] allow discontinuities as long as during the exploration

of the parameters space, the optimal basis is chosen arbitrarily.

Note that based on the cost function (3.9) or (3.10) the MPC problem can be

rewritten as follows

V (x(k)) = min
z

cT z (3.24)

subject to

Glz≤ Elx(k)+Sl

with

z= [ξ T
1 ξ T

2 . . .ξ T
Nξ

uT0 uT1 . . .uTN−1]
T

where ξi, i= 1,2, . . . ,Nξ are slack variables and Nξ depends on the norm used and

on the time horizon N. Details of how to compute vectors c, Sl and matrices Gl , El

are well known [18].

The feasible domain for the LP problem (3.24) is defined by a finite number of

inequalities with a right hand side linearly dependent on the vector of parameters

x(k), describing in fact a parameterized polytope [93]
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P(x(k)) = {z : Glz≤ Elx(k)+Sl} (3.25)

For simplicity, it is assumed that for all x(k) ∈ X , the polyhedral set P(x(k)) is

bounded. With this assumption, P(x(k)) can be expressed in a dual (generator based)

form as

P(x) = Conv{vi(x(k))}, i= 1,2, . . . ,nv (3.26)

where vi are the parameterized vertices. Each parameterized vertex in (3.26) is char-

acterized by a set of saturated inequalities. Once this set of active constraints is

identified, one can write the linear dependence of the parameterized vertex in the

vector of parameters

vi(x(k)) = G
−1
li E lix(k)+G

−1
li Sli (3.27)

where Gli, E li, W li correspond to the subset of saturated inequalities for the i−th

parameterized vertex.

As a first conclusion, the construction of the dual description (3.25), (3.26) re-

quires the determination of the set of parameterized vertices. Efficient algorithms

exist in this direction [93], the main idea being the analogy with a non-parameterized

polytope in a higher dimension.

When the vector of parameter x(k) varies inside the parameters space, the ver-

tices of the feasible domain (3.25) may split or merge. This means that each pa-

rameterized vertex vi is defined only over a specific region in the parameters space.

These regions VDi are called validity domains and can be constructed using simple

projection mechanisms [93].

Once the entire family of parameterized vertices and their validity domains are

available, the optimal solution can be constructed. It is clear that the space of feasible

parameters can be partitioned in non-degenerate polyhedral regions Rk ∈ R
n such

that the minimum

min
{
cT vi(x(k))| vi(x(k)) vertex of P(x(k)) valid over Rk

}
(3.28)

is attained by a constant subset of vertices of P(x(k)), denoted v∗i (x(k)). The com-

plete solution over Rk is

zk(x(k)) = Conv{v∗1k(x(k)),v
∗
2k(x(k)), . . . ,v

∗
sk(x(k))} (3.29)

The following theorem holds regarding the structure of the polyhedral partitions

of the parameters space [118]

Theorem 3.2. [118] Let the multi-parametric program in (3.24) and vi(x(k)), i =
1,2, . . . ,nv be the parameterized vertices of the feasible domain (3.25), (3.26) with

their corresponding validity domains VDi. If a parameterized vertex takes part in

the description of the optimal solution for a region Rk, then it will be part of the

family of optimal solution over its entire validity domain VDi.

Proof. See [118]. �

Theorem 3.2 states that if a parameterized vertex is selected as an optimal candi-

date, then it covers all its validity domain.
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It is worth noticing that the complete optimal solution (3.29) takes into account

the eventual non-uniqueness of the optimum, and it defines the entire family of

optimal solutions using the parameterized vertices and their validity domains.

Once the entire family of optimal solutions is available, the continuity of the

control law can be guaranteed as follows. Firstly if the optimal solution is unique,

then there is no decision to be made, the explicit solution being the collection of the

parameterized vertices and their validity domains. The continuity is intrinsic.

Conversely, the family of the optimal solutions can be enriched in the presence

of several optimal parameterized vertices





zk(x(k)) = α1kv
∗
1k+α2kv

∗
2k+ . . .+αskv

∗
sk

αik ≥ 0, i= 1,2, . . . ,s

α1k+α2k+ . . .+αsk = 1

(3.30)

passing to an infinite number of candidates (any function included in the convex

combination of vertices being optimal). As mentioned previously, the vertices of

the feasible domain split and merge. The changes occur with a preservation of the

continuity. Hence the continuity of the control law is guaranteed by the continuity

of the parameterized vertices. The interested reader is referred to [118] for further

discussions on the related concepts and constructive procedures.

Example 3.2. To illustrate the parameterized vertices concept, consider the follow-

ing feasible domain for the MPC optimization problem

P(x(k)) = P1∩P2(x(k)) (3.31)

where P1 is a fixed polytope

P1 =




z ∈ R

2 :




0 1

1 0

0 −1

−1 0


z≤




1

1

0

0








(3.32)

and P2(x(k)) is a parameterized polyhedral set

P2(x(k)) =

{
z ∈ R

2 :

[
−1 0

0 −1

]
z≤

[
−1

−1

]
x(k)+

[
0.5

0.5

]}
(3.33)

Note that P2(x(k)) is an unbounded set. From equation (3.33), it is clear that

• If x(k) ≤ 0.5, then −x(k)+0.5 ≥ 0. It follows that P1 ⊂ P2(x(k)). The polytope

P(x(k)) = P1 has the half-space representation as (3.32) and the vertex represen-

tation

P(x(k)) = Conv{v1, v2, v3, v4}

where

v1 =

[
0

0

]
, v2 =

[
1

0

]
, v3 =

[
0

1

]
, v4 =

[
1

1

]
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• If 0.5≤ x(k)≤ 1.5, then−1≤−x(k)+0.5≤ 0. It follows that P1∩P2(x(k)) 6= /0.

Note that for the polytope P(x(k)) the half-spaces z1 = 0 and z2 = 0 are redun-

dant. The polytope P(x(k)) has the half-space representation

P(x(k)) =




z ∈ R

2 :




0 1

1 0

−1 0

0 −1


z≤




0

0

−1

−1


x(k)+




1

1

0.5

0.5








and the vertex representation

P(x(k)) = Conv{v4, v5, v6, v7}

with

v5 =

[
1

x−0.5

]
, v6 =

[
x−0.5

1

]
, v7 =

[
x−0.5

x−0.5

]
,

• If 1.5 < x(k), then −x(k)+ 0.5 < −1. It follows that P1 ∩P2(x(k)) = /0. Hence

P(x(k)) = /0.

In conclusion, the parameterized vertices of P(x(k)) are

v1 =

[
0

0

]
, v2 =

[
1

0

]
, v3 =

[
0

1

]
, v4 =

[
1

1

]
,

v5 =

[
1

x(k)−0.5

]
, v6 =

[
x(k)−0.5

1

]
, v7 =

[
x(k)−0.5

x(k)−0.5

]
,

and the validity domains

VD1 = [−∞ 0.5], VD2 = [0.5 1.5], VD3 = (1.5 +∞]

Table 3.1 presents the validity domains and their corresponding parameterized

vertices.

Table 3.1 Validity domains and their parameterized vertices

VD1 VD2 VD3

v1, v2, v3, v4 v4, v5, v6, v7 /0

Figure 3.2 shows the polyhedral sets P1 and P2(x(k)) with x(k) = 0.3, x(k) = 0.9

and x(k) = 1.5.

Example 3.3. Consider the discrete time linear time invariant system in example 3.1

with the same constraints on the state and input variables. Here we will use an MPC

formulation, which guarantees recursive feasibility and stability.

By solving equations (3.21) and (3.22) with weighting matrices
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Fig. 3.2 Polyhedral sets P1 and P2(x(k)) with x(k) = 0.3, x(k) = 0.9 and x(k) = 1.5 for example

3.2. For x(k) ≤ 0.5, P1 ∩P2(x(k)) = P1. For 0.5 ≤ x(k) ≤ 1.5, P1 ∩P2(x(k)) 6= /0. For x(k) > 1.5,

P1∩P2(x(k)) = /0

Q=

[
1 0

0 1

]
, R= 0.1

one obtains

P=

[
1.5076 −0.1173

−0.1173 1.2014

]
, K = [−0.7015 −1.0576]

The terminal set Ω is computed as a maximal polyhedral invariant set in Section

2.3.4

Ω =





x ∈ R
2 :




0.7979 −0.6029

−0.7979 0.6029

1.0000 0

−1.0000 0

−0.5528 −0.8333

0.5528 0.8333



x≤




2.5740

2.5740

2.0000

2.0000

0.7879

0.7879








Figure 3.3 shows the state space partition obtained by using the parameterized

vertices framework as a method to construct an explicit solution to the MPC problem

(3.23) with prediction horizon N = 2.

The control law over the state space partition is



86 3 Optimal and Constrained Control - An Overview

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x
2

1
2

3

4

5

6

7

Fig. 3.3 State space partition for example 3.3. Number of regions Nr = 7.

u(k) =





−0.70x1(k)−1.06x2(k) if




−0.80 0.60

0.80 −0.60

0.55 0.83

−0.55 −0.83

−1.00 0.00

1.00 0.00



x(k)≤




2.57

2.57

0.79

0.79

2.00

2.00




(Region 1)

−0.56x1(k)−1.17x2(k)+0.47 if




0.43 0.90

−1.00 0.00

0.80 −0.60


x(k)≤




1.14

2.00

−2.57




(Region 4)

−0.56x1(k)−1.17x2(k)−0.47 if



−0.43 −0.90

1.00 0.00

−0.80 0.60


x(k)≤




1.14

2.00

−2.57




(Region 7)

−1 if




0.37 0.93

1.00 0.00

−0.55 −0.83


x(k)≤




1.29

2.00

−0.79




(Region 2)

1 if



−0.37 −0.93

−1.00 0.00

0.55 0.83


x(k)≤




1.29

2.00

−0.79




(Region 5)

−1 if




0.71 0.71

0.27 0.96

−1.00 0.00

1.00 0.00

−0.43 −0.90

−0.37 −0.93



x(k)≤




2.12

1.71

2.00

2.00

−1.14

−1.29




(Region 3)

1 if




−0.71 −0.71

−0.27 −0.96

1.00 0.00

−1.00 0.00

0.43 0.90

0.37 0.93



x(k)≤




2.12

1.71

2.00

2.00

−1.14

−1.29




(Region 6)

For the initial condition x(0) = [−2 2.33], Figure 3.4 shows the state and input tra-

jectory as a function of time.
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(a) State trajectory (b) Input trajectory.

Fig. 3.4 State and input trajectory of the closed loop system as a function of time for example 3.3.

3.4 Vertex control

The vertex control framework was first proposed by Gutman and Cwikel in [54]. It

gives a necessary and sufficient condition for stabilizing a discrete time linear time

invariant system with polyhedral state and control constraints. The condition is that

at each vertex of the controlled invariant set4 CN there exists an admissible control

action that brings the state to the interior of the set CN . Then, this condition was

extended to the uncertain plant case by Blanchini in [22]. A stabilizing controller is

given by the convex combination of vertex controls in each sector with a Lyapunov

function given by shrunken images of the boundary of the set CN [54], [22].

To begin, let us consider now the system of the form

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) (3.34)

where x(k) ∈ R
n, u(k) ∈ R

m and w(k) ∈ R
d are, respectively the state, input and

disturbance vectors.

The matrices A(k) ∈ R
n×n, B(k) ∈ R

n×m and D(k)⊂ R
n×d satisfy





A(k) =
q

∑
i=1

αi(k)Ai, B(k) =
q

∑
i=1

αi(k)Bi, D(k) =
q

∑
i=1

αi(k)Di

q

∑
i=1

αi(k) = 1, αi(k)≥ 0
(3.35)

where the matrices Ai, Bi and Di are given. A somewhat more general uncertainty

description is given by equation (2.20) in Chapter 2 which can be transformed to the

one in (3.35).

The state variables, the control variables and the disturbances are subject to the

following polytopic constraints

4 See Section 2.3.4
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



x(k) ∈ X , X = {x ∈ R
n : Fxx≤ gx}

u(k) ∈U, U = {u ∈ R
m : Fuu≤ gu}

w(k) ∈W, W = {w ∈ R
d : Fww≤ gw}

(3.36)

where the matrices Fx, Fu, Fw and the vectors gx, gu and gw are assumed to be

constant with gx > 0, gu > 0, gw > 0 such that the origin is contained in the interior

of X , U and W . Using the results in Section 2.3.4, it is assumed that the robust

controlled invariant set CN with some fixed integer N > 0 is determined in the form

of a polytope, i.e.

CN = {x ∈ R
n : FNx≤ gN} (3.37)

Any state x(k) ∈CN can be decomposed as follows

x= sxs+(1− s)x0 (3.38)

where 0≤ s≤ 1, xs ∈CN and x0 is the origin. In other words, the state x is expressed

as a convex combination of the origin and one other point xs ∈CN .

Consider the following optimization problem

s∗ = min
s,xs
{s} (3.39)

subject to 



sxs = x

FNxs ≤ gN
0≤ s≤ 1

The following theorem holds

Theorem 3.3. For all state x ∈ CN and x is not the origin, the optimal solution of

the problem (3.39) is reached if and only if x is written as a convex combination of

the origin and one point belonging to the boundary of the set CN .

Proof. It the optimal solution candidate xs is strictly inside the set CN , then by set-

ting

x∗s = Fr(CN)∩ x,xs

i.e. x∗s is the intersection between the boundary of CN and the line connecting x and

xs, one obtains

x= s∗x∗s +(1− s∗)x0 = s∗x∗s

with s∗ < s. Hence for the optimal solution x∗s , it holds that x∗s ∈ Fr(CN). �

Remark 3.1. The optimal solution s∗ of the problem (3.39) can be seen as a measure

of the distance from state x to the origin.

Remark 3.2. The optimization problem (3.39) can be transformed to an LP problem

as

s∗ = min
s
{s} (3.40)

subject to
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Fig. 3.5 Graphical illustration of the proof of theorem 3.3.

{
FNx≤ sgN
0≤ s≤ 1

Clearly, for the given state x the solution to the optimization problem (3.40) is

s∗ = max{
FN

gN
x} (3.41)

where the ratios FN
gN

are element-wise. It is well known [95], [23] that with s∗ given

as in (3.41), s∗ is the Minkownski functional. The level curves of the function s∗ are

given by scaling the boundary of the set CN .

Hence the explicit solution of the problem (3.39) is a set of n−dimensional pyra-

mids P
( j)
C , each formed by one facet of CN as a base and the origin as a common

vertex. By decomposing further these pyramids P
( j)
C as a sequence of simplicies

C
( j)
N , each formed by n vertices {x

( j)
1 , x

( j)
2 , . . . , x

( j)
n } of the base of P

( j)
C and the ori-

gin, having the following properties

• C
( j)
N has nonempty interior.

• Int(C
( j)
N )∩ Int(C

(l)
N ) = /0,∀ j 6= l.

•
⋃
j

C
( j)
N =CN .

Let

U ( j) = [u
( j)
1 u

( j)
2 . . . u

( j)
n ]

be the m× n matrix defined by chosen admissible control values5 satisfying (3.34)

at the vertices {x
( j)
1 , x

( j)
2 , . . . , x

( j)
n }.

5 By an admissible control value we understand any control value that is the first of a sequence

of control values that bring the state from the vertex to the interior of the feasible set in a finite

number of steps, see [54].
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Fig. 3.6 Graphical illustration of the simplex decomposition.

Remark 3.3. Maximizing the control action at the vertices v ∈ R
n of the controlled

invariant set CN can be achieved by solving the following optimization problem

J = max
u
‖u‖p (3.42)

subject to

{
FN(Aiv+Biu)≤ gN −max

w∈W
{FNDiw},∀i= 1,2 . . . ,q

Fuu≤ gu

where ‖u‖p is the p−norm of the vector u. Since the set CN is robust controlled

invariant, problem (3.42) is always feasible.

For all x(k) ∈CN , there exists an index j corresponding to a simplex decompo-

sition of CN such that x(k) ∈C
( j)
N and hence x∗s (k) is on the base of C

( j)
N . Therefore

x∗s (k) can be written as a convex combination of {x
( j)
1 , x

( j)
2 , . . . , x

( j)
n }, i.e.

x∗s (k) = β1x
( j)
1 +β2x

( j)
2 + . . .+βnx

( j)
n (3.43)

with 



βi ≥ 0,∀i= 1,2, . . . ,n
n

∑
i=1

βi = 1

By substituting x(k) = s∗(k)x∗s (k) in equation (3.43), one obtains

x(k) = s∗(k){β1x
( j)
1 +β2x

( j)
2 + . . .+βnx

( j)
n }

By denoting

γi = s∗(k)βi,∀i= 1,2, . . . ,n



3.4 Vertex control 91

one gets

x(k) = γ1x
( j)
1 + γ2x

( j)
2 + . . .+ γnx

( j)
n (3.44)

with 



γi ≥ 0,∀i= 1,2, . . . ,n
n

∑
i=1

γi = s∗(k)
n

∑
i=1

βi = s∗(k)

Remark 3.4. Let {x1,x2, . . . ,xnc} be the vertices of the polytope CN and nc be the

number of vertices. It is well known [54] that the optimization problem (3.40) is

equivalent to the following LP problem

min
γi
{γ1 + γ2 + . . .+ γnc} (3.45)

subject to 



γ1x1 + γ2x2 + . . .+ γncxnc = x(k)
γi ≥ 0,∀i= 1,2, . . . ,n
nc

∑
i=1

γi ≤ 1

Equation (3.44) can be rewritten in a compact form as

x(k) = X ( j)γ

where

X ( j) = [x
( j)
1 x

( j)
2 . . . x

( j)
n ]

γ = [γ1 γ2 . . . γn]
T

Since C
( j)
N has nonempty interior, matrix X ( j) is invertible. It follows that

γ = {X ( j)}−1x(k) (3.46)

Consider the following control law

u(k) = γ1u
( j)
1 + γ2u

( j)
2 + . . .+ γnu

( j)
n (3.47)

or

u(k) =U ( j)γ (3.48)

By substituting equation (3.46) in equation (3.48) one gets

u(k) =U ( j){X ( j)}−1x(k) = K( j)x(k) (3.49)

with

K( j) =U ( j){X ( j)}−1 (3.50)

Hence for x ∈C
( j)
N the controller is an linear feedback state law whose gains are

obtained simply by linear interpolation of the control values at the vertices of the

simplex.
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u= K( j)x, ∀x ∈C
( j)
N (3.51)

The piecewise linear control law (3.51) was first proposed by Gutman and Cwikel

in [54] for the discrete-time linear time-invariant system case. In the original work

[54], the state feedback control (3.51) was called the vertex controller. The extension

to the uncertain plant case was proposed by Blanchini in [22].

Remark 3.5. Clearly, once the piecewise linear function (3.51) is pre-calculated, the

control action can be computed by determining the simplex that contains the current

state, which gives an explicit piecewise linear control law. An alternative approach

for computing the control action is based on solving on-line the LP problem (3.45)

and then apply the control

u(k) = γ1u1 + γ2u2 + . . .+ γncunc (3.52)

where u1,u2, . . . ,unc are the stored control values at the vertices x1,x2, . . . ,xnc .

The following theorem holds

Theorem 3.4. For system (3.34) and constraints (3.36), the vertex control law (3.47)

or (3.51) guarantees recursive feasibility for all x ∈CN .

Proof. A basic explanation is provided in the original work of [54]. Here a new and

simpler proof is proposed using convexity of the set CN and linearity of the system

(3.34). For recursive feasibility, one has to prove that for all x(k) ∈CN

{
Fuu(k)≤ gu
x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) ∈CN

For all x(k) ∈CN , there exists an index j such that x(k) ∈C
( j)
N . It follows that

Fuu(k) = Fu{γ1u
( j)
1 + γ2u

( j)
2 + . . .+ γnu

( j)
n }

= γ1Fuu
( j)
1 + γ2Fuu

( j)
2 + . . .+ γnFuu

( j)
n

≤ γ1gu+ γ2gu+ . . .+ γngu

≤ gu
n

∑
i=1

γi ≤ s∗(k)gu ≤ gu

and

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k)

= A(k)
n

∑
i=1

γix
( j)
i +B(k)

n

∑
i=1

γiu
( j)
i +D(k)w(k)

=
n

∑
i=1

γi{A(k)x
( j)
i +B(k)u

( j)
i +D(k)w(k)}+(1− s∗(k))D(k)w(k)

One has
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FNx(k+1) =
n

∑
i=1

γiFN{A(k)x
( j)
i +B(k)u

( j)
i +D(k)w(k)}+(1− s∗(k))FND(k)w(k)

≤
n

∑
i=1

γigN +(1− s∗(k))FND(k)w(k)

≤ s∗(k)gN +(1− s∗(k))FND(k)w(k)

Since the set CN is robust controlled invariant and containing the origin in its

interior, it follows that

max
w∈W

{FNDiw(k)} ≤ gN

Hence

FNx(k+1)≤ s∗(k)gN +(1− s∗(k))gN ≤ gN

or in other words, x(k+1) ∈CN . �

In the absence of disturbances, i.e. w(k) = 0, ∀k≥ 0, the following theorem holds

Theorem 3.5. Consider the uncertain system (3.34) with input and state constraints

(3.36), then the closed loop system with the piecewise linear control law (3.47) or

(3.51) is robustly asymptotically stable.

Proof. A proof is given in [54], [22]. Here we give an alternative proof providing a

geometrical insight into the vertex control scheme. Consider the following positive

definite function

V (x) = s∗(k) (3.53)

V (x) is a Lyapunov function candidate. For any x(k) ∈ CN , there exists an index j

such that x(k) ∈C
( j)
N . Hence

x(k) = s∗(k)x∗s (k), and u(k) = s∗(k)u∗s (k)

where the control action u∗s (k) is given by 3.43

u∗s (k) = β1u
( j)
1 +β2u

( j)
2 + . . .+βnu

( j)
n

It follows that

x(k+1) = A(k)x(k)+B(k)u(k)
= A(k)s∗(k)x∗s (k)+B(k)s∗(k)u∗s (k)
= s∗(k){A(k)x∗s (k)+B(k)u∗s (k)}= s∗(k)xs(k+1)

where xs(k+ 1) = A(k)x∗s (k) +B(k)u∗s (k) ∈ CN . Hence s∗(k) gives a possible de-

composition (3.38) of x(k+1).
By using the interpolation based on linear programming (3.40), one gets a differ-

ent and optimal decomposition, namely

x(k+1) = s∗(k+1)x∗s (k+1)

with x∗s (k+ 1) ∈CN . It follows that s∗(k+ 1) ≤ s∗(k) and V (x) is a non-increasing

function.
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From the fact that the level curves of the function V (x) = s∗(k) are given by

scaling the boundary of the feasible set, and the contractiveness property of the

control values at the vertices of the feasible set guarantees that there is no initial

condition x(0) ∈ CN such that s∗(k) = s∗(0) = 1 for sufficiently large and finite k,

one concludes that V (x) = s∗(k) is a Lyapunov function for all x(k) ∈ CN . Hence

the closed loop system with the vertex control law (3.51) is robustly asymptotically

stable. �

Example 3.4. Consider the discrete time system in example 3.1 and 3.3

x(k+1) =

[
1 1

0 1

]
x(k)+

[
1

0.7

]
u(k) (3.54)

The constraints are

−2≤ x1 ≤ 2, −5≤ x2 ≤ 5,−1≤ u≤ 1 (3.55)

Based on procedure 2.3 in Section 2.3.4, the controlled invariant set CN is com-

puted and depicted in Figure 3.7.
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Fig. 3.7 controlled invariant set CN and state space partition of vertex control for example 3.4.

The set of vertices of CN is given by the matrix V (CN) below, together with the

control matrix Uv

V (CN) =

[
2.00 1.30 −0.10 −2.00 −2.00 −1.30 0.10 2.00

1.00 1.70 2.40 3.03 −1.00 −1.70 −2.40 −3.03

]
(3.56)

and

Uv =
[
−1 −1 −1 −1 1 1 1 1

]
(3.57)

The vertex control law over the state space partition is
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u(k) =





−0.25x1(k)−0.50x2(k), if x(k) ∈C
(1)
N or x(k) ∈C

(5)
N

−0.33x1(k)−0.33x2(k), if x(k) ∈C
(2)
N or x(k) ∈C

(6)
N

−0.21x1(k)−0.43x2(k), if x(k) ∈C
(3)
N or x(k) ∈C

(7)
N

−0.14x1(k)−0.42x2(k), if x(k) ∈C
(4)
N or x(k) ∈C

(8)
N

(3.58)

with

C
(1)
N =



x ∈ R

2 :




1.00 0.00

−0.45 0.89

−0.83 −0.55


x≤




2.00

0.00

0.00







C
(2)
N =



x ∈ R

2 :




0.71 0.71

0.45 −0.89

−0.79 0.61


x≤




2.12

0.00

0.00







C
(3)
N =



x ∈ R

2 :




0.79 −0.61

0.45 0.89

−1.00 −0.04


x≤




0.00

2.10

0.00







C
(4)
N =



x ∈ R

2 :




1.00 0.04

−0.83 −0.55

0.32 0.95


x≤




0.00

0.00

2.25







C
(5)
N =



x ∈ R

2 :



−1.00 0.00

0.45 −0.89

0.83 0.55


x≤




2.00

0.00

0.00







C
(6)
N =



x ∈ R

2 :



−0.71 −0.71

−0.45 0.89

0.79 −0.61


x≤




2.12

0.00

0.00







C
(7)
N =



x ∈ R

2 :



−0.79 0.61

−0.45 −0.89

1.00 0.04


x≤




0.00

2.10

0.00







C
(8)
N =



x ∈ R

2 :



−1.00 −0.04

0.83 0.55

−0.32 −0.95


x≤




0.00

0.00

2.25







Figure 3.8 presents state trajectories of the closed loop system for different initial

conditions.

For the initial condition x(0) = [−2.0000 3.0333]T , Figure 3.9 shows the state

trajectory, the input trajectory and the interpolating coefficient s∗ as a function of

time. As expected s∗(k) is a positive and non-increasing function.

From Figure 3.9(b), it is worth noticing that using the vertex controller, the con-

trol values are saturated only on the boundary of the set CN , i.e. when s∗ = 1. And

also the state trajectory at some moments is parallel to the boundary of the set CN ,

i.e when s∗ is constant. At these moments, the control values are also constant due

to the choice of the control values at the vertices of the set CN .
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Fig. 3.8 State trajectories of the closed loop system for example 3.4.
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(a) State trajectory (b) Input trajectory and interpolating coefficient

Fig. 3.9 State trajectory, input trajectory and interpolating coefficient of the closed loop system as

a function of time for example 3.4.
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Interpolation based control





Chapter 4

Interpolation Based Control – Nominal State

Feedback Case

This chapter presents several original contributions on constrained control algo-

rithms for discrete-time linear systems. Using a generic design principle, several

types of control laws will be proposed for time-invariant models, their robust ver-

sion being investigated in the next chapters.

The first control law is based on an interpolation technique between a global

vertex controller and a local controller through the resolution of a simple linear

programming problem. An implicit and explicit solutions of this control law will

be presented. The second control law is obtained as a solution of a quadratic pro-

gramming problem. Then to fully utilize the capacity of actuators and guarantee the

input constraints, a saturation function on the input is considered. For the third con-

trol law, it is shown that the convex hull of a set of invariant ellipsoids is invariant. A

method for constructing a continuous feedback law based on interpolation between

the saturated controllers of the ellipsoids will also be presented.

For all the types of controllers, recursive feasibility and asymptotic stability will

be proved. Several numerical examples are given to support the algorithms with

illustrative simulations.

4.1 Problem formulation

In this chapter, we consider the problem of regulating to the origin the following

discrete-time linear time-invariant system

x(k+1) = Ax(k)+Bu(k) (4.1)

where x(k) ∈ R
n and u(k) ∈ R

m are respectively the state and the input, A ∈ R
n×n

and B ∈ R
n×m are the system matrices. Both the state vector x(k) and the control

vector u(k) are subject to polytopic constraints

99
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{
x(k) ∈ X , X = {x ∈ R

n : Fxx≤ gx}
u(k) ∈U, U = {u ∈ R

m : Fuu≤ gu}
∀k ≥ 0 (4.2)

where the matrices Fx, Fu and the vectors gx, gu are assumed to be constant with

gx > 0 and gu > 0 such that the origin is contained in the interior of X and U .

Recall that the inequalities are taken element-wise. We assume that the states of the

system are measurable. We also assume that the pair (A,B) is stabilizable, i.e. all

uncontrollable states have stable dynamics.

4.2 Interpolation based on linear programming - Implicit

solution

Define a linear controller K ∈ R
m×n, such that

u(k) = Kx(k) (4.3)

quadratically stabilizes the system (4.1) with some desired performance specifica-

tions. The details of such a synthesis procedure are not reproduced here, but we

assume that feasibility is guaranteed. Based on procedures 2.1 or 2.2, a maximal

invariant set Ωmax can be computed in the form

Ωmax = {x ∈ R
n : Fox≤ go} (4.4)

when applying the control law u(k) = Kx(k). Furthermore with some given and

fixed integer N > 0, based on procedure 2.3 one can find a controlled invariant set

CN in the form

CN = {x ∈ R
n : FNx≤ gN} (4.5)

such that all x∈CN can be steered into Ωmax in no more than N steps when a suitable

control is applied. As in Section 3.4, the polytope CN is decomposed into a set of

simplicies C
( j)
N , each formed by n vertices of CN and the origin. For all x(k) ∈C

( j)
N ,

the vertex controller

u(k) = K( j)x(k), ∀x(k) ∈C
( j)
N (4.6)

can be applied with K( j) defined as in (3.50). From Section 3.4, it is clear that the

closed loop system (4.1) with vertex control is asymptotically stable for all initial

states x ∈CN .

The main advantage of the vertex control scheme is the size of the domain of

attraction, i.e. the set CN . It is clear that the controlled invariant set CN , that is

the feasible domain for the vertex control, might be as large as that of any other

constrained control scheme. However, a weakness of vertex control is that the full

control range is exploited only on the border of the set CN in the state space, with

progressively smaller control action when state approaches the origin. Hence the

time to regulate the plant to the origin is often unnecessary long. A way to over-

come this shortcoming is to switch to another, more aggressive, local controller, e.g.
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a state feedback controller u(k) = Kx(k), when the state reaches the maximal in-

variant set Ωmax of the local controller. The disadvantage of this solution is that the

control action becomes non-smooth [103].

In this section, a method to overcome the non-smooth control action [103] will

be proposed. For this purpose, any state x(k) ∈CN can be decomposed as follows

x(k) = c(k)xv(k)+(1− c(k))xo(k) (4.7)

with xv ∈CN , xo ∈Ωmax and 0≤ c≤ 1. Figure 4.1 illustrates such a decomposition.
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Fig. 4.1 Interpolation based control. Any state x(k) can be expressed as a convex combination of

xv(k) ∈CN and xo(k) ∈Ωmax.

Consider the following control law

u(k) = c(k)uv(k)+(1− c(k))uo(k) (4.8)

where uv(k) is obtained by applying the vertex control law (4.6) at xv(k) and uo(k) =
Kxo(k) is the control law (4.3) that is feasible in Ωmax.

Theorem 4.1. For system (4.1) and constraints (4.2), the control law (4.8) guaran-

tees recursive feasibility for all initial states x(0) ∈CN .

Proof. For recursive feasibility, one has to prove that

{
Fuu(k)≤ gu
x(k+1) = Ax(k)+Bu(k) ∈CN

for all x(k) ∈CN . For the input constraints

Fuu(k) = Fu {c(k)uv(k)+(1− c(k))uo(k)}
= c(k)Fuuv(k)+(1− c(k))Fuuo(k)
≤ c(k)gu+(1− c(k))gu = gu
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and

x(k+1) = Ax(k)+Bu(k)
= A{c(k)xv(k)+(1− c(k))xo(k)}+B{c(k)uv(k)+(1− c(k))uo(k)}
= c(k){Axv(k)+Buv(k)}+(1− c(k)){Axo(k)+Buo(k)}

Since Axv(k)+Buv(k) ∈ CN and Axo(k)+Buo(k) ∈ Ωmax ⊆ CN , it follows that

x(k+1) ∈CN . �

In order to approach as much as possible to the unconstrained local controller,

the minimization of the interpolating coefficient c(k) needs to be considered. This

can be done by solving the following nonlinear optimization problem

c∗ = min
xv,xo,c

{c} (4.9)

subject to 



FNxv ≤ gN
Foxo ≤ go
cxv+(1− c)xo = x

0≤ c≤ 1

Denote rv = cxv ∈ R
n, ro = (1− c)xo ∈ R

n. Since xv ∈ CN and xo ∈ Ωmax, it

follows that rv ∈ cCN and ro ∈ (1− c)Ωmax or equivalently

{
FNrv ≤ cgN
Foro ≤ (1− c)go

With this change of variables, the nonlinear optimization problem (4.9) is trans-

formed into a linear programming problem as follows

c∗ = min
rv,c
{c} (4.10)

subject to 



FNrv ≤ cgN
Fo(x− rv)≤ (1− c)go
0≤ c≤ 1

Remark 4.1. It is interesting to observe that the proposed interpolation scheme, by

the minimization of the interpolation coefficient is the antithesis of the maximization

of c. It is obvious that in the latter case c = 1 for all x ∈ CN and the interpolating

controller (4.8) turns out to be the vertex controller.

Theorem 4.2. The control law using interpolation based on linear programming

(4.10) guarantees asymptotic stability for all initial states x(0) ∈CN .

Proof. First of all we will prove that all solutions starting in CN \Ωmax will reach

the set Ωmax in finite time. For this purpose, consider the following non-negative

function
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V (x(k)) = c∗(k), ∀x(k) ∈CN \Ωmax (4.11)

V (x(k)) is a candidate Lyapunov function. For any x(k) ∈CN \Ωmax, one has

x(k) = c∗(k)x∗v(k)+(1− c∗(k))x∗o(k)

and consequently

u(k) = c∗(k)uv(k)+(1− c∗(k))uo(k)

It follows that

x(k+1) = Ax(k)+Bu(k)
= c∗(k)xv(k+1)+(1− c∗(k))xo(k+1)

where
xv(k+1) = Ax∗v(k)+Buv(k) ∈CN

xo(k+1) = Ax∗o(k)+Buo(k) ∈Ωmax

Hence c∗(k) gives a feasible decomposition (4.7) of x(k+1). By using the interpo-

lation based on linear programming (4.10), a possibly different and optimal decom-

position is obtained, namely

x(k+1) = c∗(k+1)x∗v(k+1)+(1− c∗(k+1))x∗o(k+1)

where x∗v(k+ 1) ∈ CN and x∗o(k+ 1) ∈ Ωmax. It follows that c∗(k+ 1) ≤ c∗(k) and

V (x(k)) is a non-increasing function and a Lyapunov function in the weak sense as

the inequality is not strict.

Using the vertex controller, an interpolation between the vertices of the feasible

controlled invariant set CN and the origin is obtained. Conversely using the con-

troller (4.7), (4.8), (4.10) an interpolation is constructed between the vertices of the

feasible controlled invariant set CN and the vertices of the invariant set Ωmax which

contains the origin as an interior point. This last property proves that the vertex con-

troller is a feasible choice for the interpolation based technique. From these facts we

conclude that

c∗(k)≤ s∗(k)

for any x(k) ∈CN , with s∗(k) obtained as in (3.40), Section 3.4.

Since the vertex controller is exponentially stable, the state reaches any bounded

set around the origin in finite time. In our case this property will imply that using the

controller (4.7), (4.8), (4.10) the state of the closed loop system reaches the invariant

set Ωmax in finite time or equivalently that there exists a finite k such that c∗(k) = 0.

The proof is complete by noting that inside Ωmax, the LP problem has (4.10) the

trivial solution c∗ = 0. Hence the controller (4.7), (4.8), (4.10) turns out to be the

local controller. The feasible stabilizing controller u(k) = Kx(k) is contractive, and

thus the interpolation-based controller assures asymptotic stability for all x ∈CN . �

Since r∗v(k) = c∗(k)x∗v(k) and ro(k) = (1− c∗(k))x∗o(k), it follows that

u(k) = urv(k)+uro(k) (4.12)
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where urv(k) is obtained by applying the vertex control law at r∗v(k) and uro(k) =
Kro(k).

A simple on-line algorithm for the interpolation based controller is given here.

Algorithm 4.1: Interpolation based control - Implicit solution

1. Measure the current state of the system x(k).
2. Solve the LP problem (4.10).

3. Compute urv in (4.12) by solving an LP-program or otherwise determine in which

C
( j)
N simplex rv belongs and using (3.51), or explicitly solve the LP-program

(3.45) and then using (3.52).

4. Implement as input the control value (4.12).

5. Wait for the next time instant k := k+1.

6. Go to step 1 and repeat.

Remark 4.2. From the computational complexity point of view, we note that at each

time instant algorithm 4.1 requires the solution of the LP problem (4.10) of dimen-

sion n+1 with n being the dimension of state and another LP problem to find urv
1.

Clearly, this extremely simple optimization problem is comparable with a one-step

ahead MPC.

4.3 Interpolation based on linear programming - Explicit

solution

4.3.1 Geometrical interpretation

This subsection is dedicated to the computation and structural implications of the

interpolation based on linear programming (4.10), which can be assimilated to a

multi-parametric optimization by the fact that the current state plays the role of a

vector of parameters. The control law can be pre-computed off-line in an explicit

form as a piecewise affine state feedback over a polyhedral partition of the state

space, thus avoiding real-time optimization.

Remark 4.3. The following properties can be exploited during the construction stage

• For all x ∈ Ωmax, the result of the optimal interpolation problem has the trivial

solution c∗ = 0 and thus x∗o = x in (4.7).

• Let x∈CN \Ωmax with a particular convex combination x= cxv+(1−c)xo where

xc ∈CN and xo ∈Ωmax. If xo is strictly inside Ωmax, define

1 In the implicit vertex control case.
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Fig. 4.2 Graphical illustration for remark 4.3. For all x ∈ CN \Ωmax, the optimal solution of the

problem (4.10) is reached if and only if x is written as a convex combination of xv and xo with

xv ∈ Fr(CN) and xo ∈ Fr(Ωmax).

x̃o = Fr(Ωmax)∩ x,xo

i.e. x̃o is the intersection between the boundary of Ωmax and the segment connect-

ing x and xo. Using convexity arguments, one has

x= c̃xv+(1− c̃)x̃o

with c̃< c. In general terms, for all x ∈CN \Ωmax the optimal interpolation (4.7),

(4.8), (4.10) leads to a solution {x∗v ,x
∗
o} with x∗o ∈ Fr(Ωmax).

• On the other hand, if xv is strictly inside CN , by setting

x̂v = Fr(CN)∩ x,xv

i.e. x̂v is the intersection between the boundary of CN and the ray connecting x

and xv. One obtains

x= ĉx̂v+(1− ĉ)xo

with ĉ < c, leading to the conclusion that for the optimal solution {x∗v ,x
∗
o}, it

holds that x∗v ∈ Fr(CN).

From the previous remark we conclude that for all x∈CN \Ωmax the interpolating

coefficient c reaches a minimum in (4.10) if and only if x is written as a convex

combination of two points, one belonging to the boundary of Ωmax and the other on

the boundary of CN .

Theorem 4.3. For a given x∈CN \Ωmax, the convex combination x= cxv+(1−c)xo
gives the smallest value of the interpolating coefficient c if and only if the ratio
‖xv−x‖
‖x−xo‖

is maximal, where ‖·‖ denotes the vector norm.

Proof. One has
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x= cxv+(1− c)xo
⇒ xv− x= xv− cxv− (1− c)xo = (1− c)(xv− xo)
⇒‖xv− x‖= (1− c)‖xv− xo‖

Analogously, it holds that

‖x− xo‖= c‖xv− xo‖

leading to
‖xv− x‖

‖x− xo‖
=

(1− c)‖xv− xo‖

c‖xv− xo‖
=

1

c
−1

Apparently, c is minimal if and only if 1
c
−1 is maximal, or in other words

‖xv−x‖
‖x−xo‖

reaches its maximum. �

4.3.2 Analysis in R
2

In this subsection an analysis of the LP problem (4.10) in the R2 parameter space is

presented with reference to Figure 4.3. The discussion is insightful in what concerns

the properties of the partition in the explicit solution. The problem considered here

is to decompose the polyhedral X1234 such that the explicit solution c∗ = min{c} is

given in the decomposed cells.

X
1

X
2

X
3

x

x
o x

o

’

x
v

’

T

X
4

Fig. 4.3 Graphical illustration in the R
2 case.

For illustration we will consider four vertices Xi, i = 1,2,3,4 and any point

x ∈ Conv(X1,X2,X3,X4)
2. Denote Xi j as the segment connecting Xi and X j, for

i, j = 1,2,3,4 and i 6= j. The problem is reduced to find the expression of a convex

2 this schematic view can be generalized to any pair of faces of CN and Ωmax
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combination x = cxv+(1− c)xo, where xv ∈ X12 ∈ Fr(CN) and xo ∈ X34 ∈ Fr(Ω),
providing the minimal value of c.

Without loss of generality, we suppose that the distance from X2 to X34 is larger

than the distance from X1 to X34 or equivalently that the distance from X4 to X12 is

smaller than the distance from X3 to X12.

Theorem 4.4. Under the condition that the distance from X2 to X34 is larger than the

distance from X1 to X34, or the distance from X4 to X12 is smaller than the distance

from X3 to X12, the decomposition of the polytope X1234 = X124∪X234, is the result

of the minimization of the interpolating coefficient c.

Proof. Without loss of generality, suppose that x ∈ X234. Then x can be decomposed

as

x= cX2 +(1− c)xo

where xo ∈ X34, see Figure 4.3. Another possible decomposition is

x= c
′
x
′

v+(1− c
′
)x
′

o

where x
′

o is any point in X34 and x
′

v is any point in X12, see Figure 4.3.

It is clear that if the distance from X2 to X34 is larger than the distance from X1 to

X34 then the distance from X2 to X34 is larger than the distance from any point x
′

v in

X12 to X34. As a consequence, there exists a point T ∈ X2,x such that

∥∥∥x− x
′

v

∥∥∥
∥∥x− x

′
o

∥∥ =
‖x−T‖

‖x− xo‖
≤
‖x−X2‖

‖x− xo‖

Together with theorem 4.3, one obtains

c< c
′

or X234 represent a polyhedral partition of the explicit solution to problem (4.10).

Analogously one can prove that X124 is polyhedral partition of the explicit solution

to problem (4.10). �

Theorem 4.4 states that the minimal value of the interpolating coefficient c is

found with the help of the decomposition of the polyhedral X1234 as X1234 = X124∪
X234.

Remark 4.4. A singular case where the assumption of the previous case is not ful-

filled is represented by the segments X12 parallel with X34. In this case, any convex

combination x= cxv+(1− c)xo gives the same value of c. Hence the partition may

not be unique.

Remark 4.5. From theorem 4.4, it is clear that one can subdivide the region CN \
Ωmax into partitions as follows
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• For each facet of the maximal admissible set Ωmax, one has to find the furthest

point on the boundary of the feasible set CN on the same side of the origin as the

facet of Ωmax. A polyhedral partition is obtained as the convex hull of that facet

of Ωmax and the furthest point inCN . By the bounded polyhedral structure ofCN ,

the existence of such a vertex CN as the furthest point is guaranteed.

• On the other hand, for each facet of the feasible setCN , one has to find the closest

point on the boundary of the set Ωmax on the same side of the origin as the facet

of CN . A polyhedral partition will be in this case the convex hull of that facet of

CN and the closest point in Ωmax. In this case again the existence of some vertex

Ωmax as the closest point is guaranteed.

Remark 4.6. In the n dimensional state space, it may happen that the decomposition

of the state space according to the remark 4.5 does not cover the entire set CN , as

will be shown in the following example. The feasible outer set CN and the feasible

inner set Ωmax are given by the following vertex representations, displayed in Figure

4.4.
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Fig. 4.4 Graphical illustration for remark 4.6. The white set is the feasible outer set CN . The red

set is the feasible inner set Ωmax.

By solving the parametric linear program (4.10) in its explicit form, the state

space partition is obtained. Figure 4.5 shows two polyhedral partition of the state

space partition. The red one is the set Ωmax. The blue one is the set, obtained by the

convex hull of two points from the inner set Ωmax and two points from the outer set

CN .
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Fig. 4.5 Graphical illustration for remark 4.6. The partition is obtained by two vertices of the inner

set and two vertices of the outer set.

In conclusion, in the n−dimensional state space if x ∈ CN \Ωmax, the smallest

value c will be reached when the region CN \Ωmax is decomposed into polytopes

with vertices either on the boundary of Ωmax or on the boundary of CN . These poly-

topes can be further decomposed into simplices, each formed by r vertices ofCN and

n− r+1 vertices of Ωmax where 1≤ r ≤ n. An example of a state space partition is

given in Figure 4.6.
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Fig. 4.6 Simplex based decomposition as an explicit solution of the LP problem (4.10).
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4.3.3 Explicit solution of the interpolation-based control scheme

Now suppose that x belongs to the simplex formed by n vertices {x1,x2, . . . ,xn}
of CN and the vertex xo of Ωmax (the other cases of n+ 1 vertices distributed in a

different manner in between CN and Ωmax can be treated similarly). In this case, x

can be written as a convex combination of n vertices {x1,x2, . . . ,xn} and xo, i.e.

x=
n

∑
i=1

αixi+αi+1xo, (4.13)

with
n+1

∑
i=1

αi = 1, αi ≥ 0 (4.14)

For a given x∈CN \Ωmax, based on equations (4.13) and (4.14), the interpolating

coefficients αi, ∀i= 1,2, . . . ,n+1 are defined uniquely as

[
α1 α2 . . . αn αn+1

]T
=

[
x1 x2 . . . xn xo
1 1 . . . 1 1

]−1 [
x

1

]
(4.15)

with an invertible matrix [
x1 x2 . . . xn xo
1 1 . . . 1 1

]

since a nonempty simplex is formed by n+1 linear independent vertices.

On the other hand, from equation (4.7), the state x can also be expressed as

x= cxv+(1− c)xo

with 0≤ c≤ 1.

Due to the uniqueness of the combination, it follows that αi+1 = 1− c and

xv =
n

∑
i=1

αi

c
xi

whenever c 6= 0, i.e. for all x ∈CN \Ωmax.

By applying the vertex control law, one obtains

uv =
n

∑
i=1

αi

c
ui

and

u= cuv+(1− c)uo =
n

∑
i=1

αiui+αn+1uo.

or in a compact matrix form
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u=
[
u1 u2 . . . un uo

]




α1

α2

...

αn

αn+1




Together with equation (4.15), one can obtain a piecewise affine form

u =
[
u1 u2 . . . un uo

][ x1 x2 . . . xn xo
1 1 . . . 1 1

]−1 [
x

1

]

= Lx+ v

where the matrix L ∈ R
m×n and the vector v ∈ R

m are defined as

[L v] =
[
u1 u2 . . . un uo

][ x1 x2 . . . xn xo
1 1 . . . 1 1

]−1

Globally over the entire set CN \Ωmax the controller is an affine state feedback

whose gains are obtained simply by linear interpolation of the control values at the

vertices of each simplex. It is worth noticing that the generalization of a simplex-

based partition can be highly improved from the complexity point of view by merg-

ing of the elementary simplex cells found above [44], [50], [81], [85].

This is not surprising as long as in general terms the interpolation based on linear

programming is parameterized in terms of the state vector and leads to a multi-

parametric optimization problem. The expected result is a decomposition of the

state space corresponding to the distribution of the optimal pairs of extreme points

(vertices) used in the interpolation process.
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Algorithm 4.2: Interpolation based control - Explicit solution

Input: Given the sets CN , Ωmax, the optimal feedback controller K over Ωmax and

the control values at the vertices of CN .

Output: State space partition, the feedback control laws over the partitions of CN .

1. Solve the LP (4.10) by using explicit multi-parametric programming by exploit-

ing the parameterized vertices formulation, see Section 3.3.3. As a result, one

obtains the state space partition of CN .

2. Decompose each polyhedral partition of CN \Ωmax in a sequence of simplices,

each formed by s vertices of CN and n− s+ 1 vertex of Ωmax, where 1 ≤ s ≤ n.

The result is a the state space partition over CN \Ωmax in the form of simplices

C(k).

3. The control law over Ωmax is u= Kx.

4. In each simplex C(k) ⊂CN \Ωmax the control law is defined as:

u(x) = Lkx+ vk

where Lk ∈ R
m×n and vk ∈ R

m×1 are defined as

[
Lk vk

]
=

[
u
(k)
1 u

(k)
2 . . . u

(k)
n+1

][
x
(k)
1 x

(k)
2 . . . x

(k)
n+1

1 1 . . . 1

]−1

with
{
x
(k)
1 , x

(k)
2 , . . . x

(k)
n+1

}
are vertices ofC(k) that define a full-dimensional sim-

plex and
{
u
(k)
1 , u

(k)
2 , . . . u

(k)
n+1

}
are the corresponding control values at vertices

{
x
(k)
1 , x

(k)
2 , . . . x

(k)
n+1

}
.

Remark 4.7. Based on remark 4.4, it is worth noticing that by using explicit multi-

parametric programming, the vertices of the state space partition ofCN \Ωmax might

not be the vertices ofCN or Ωmax, which might happen for example when some facet

of CN is parallel with a facet of Ωmax.

Remark 4.8. It can be observed that algorithm 4.2 uses only the information about

the state space partition of the explicit solution of the LP problem (4.10). The ex-

plicit form of c, rv and ro as a piecewise affine function of the state is not used.

The sensitive part of algorithm 4.2 is step 2. It is clear that the above simplex-

based partition over CN \Ωmax might be very complex. Also the fact that for all

facets of the inner invariant set Ωmax, the local controller is in the form u = Kx is

not exploited. In addition, as practice usually shows, for each facet of the outer con-

trolled invariant set CN , the vertex controller is usually constant. In these cases, the

complexity of the explicit piecewise affine solution of a multi-parametric optimiza-

tion problem might be reduced as follows.
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Consider the case when the state space partition P(k) of CN \Ωmax is formed by

one vertex xv of CN and one facet Fo of Ωmax. Note that based on remark 4.5 such

a partition always exists as an explicit solution to the LP problem (4.10). For all

x ∈ P(k) it follows that

x= cxv+(1− c)xo = cxv+ ro

with xo ∈ Fo and ro = (1− c)xo.

Let uv ∈ R
m be the control value at the vertex xv and denote the explicit solution

of c and ro to the LP problem (4.10) for all x ∈ P(k) as

{
c= F

(c)
k x+g

(c)
k

ro = F
(o)
k x+g

(o)
k

(4.16)

with F
(c)
k ∈ R

n, g
(c)
k ∈ R and F

(o)
k ∈ R

n×n, g
(o)
k ∈ R

n. The control value for x ∈ P(k)

is computed as

u= cuv+(1− c)Kxo = cuv+Kro (4.17)

By substituting equation (4.16) into equation (4.17), one obtains

u= uv

(
F
(c)
k x+g

(c)
k

)
+K

(
F
(o)
k x+g

(o)
k

)

or equivalently

u=
(
uvF

(c)
k +KF

(o)
k

)
x+

(
uvg

(c)
k +Kg

(o)
k

)
(4.18)

The fact that the control value is a piecewise affine (PWA) function of state is con-

firmed. Clearly, the complexity of the explicit solution with the control law (4.18) is

lower than the complexity of the explicit solution with the simplex based partition,

since one does not have to divide up the facets of Ωmax (and facets ofCN , in the case

when the vertex control for such facets is constant) into a set of simplices.

4.3.4 Interpolation based on linear programming - Qualitative

analysis

Theorem 4.5 below shows the Lipschitz continuity of the control law based on linear

programming (4.7), (4.8), (4.10).

Theorem 4.5. Consider the control law resulting from the interpolation based on

linear programming (4.7), (4.8), (4.10). This control is Lipschitz with Lipschitz con-

stant M = maxk ‖Lk‖, where k ranges over the set of indices of partitions and ‖·‖
denotes the Euclidean norm.

Proof. For any two points xA and xB in PN , there exist r+1 points x0,x1, . . . ,xr that

lie on the segment, connecting xA and xB, and such that xA = x0, xB = xr and
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(xk−1,xk) = xA,xB
⋂

Fr(P(i))

(the intersection between the line connecting xA,xB and the boundary of some par-

tition P(i), see Figure 4.7).
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Fig. 4.7 Graphical illustration of the construction related to Theorem 4.5.

Due to the continuity property of the control law, one has

‖(LAxA+ vA)− (LBxB+ vB)‖
= ‖(L0x0 + v0)− (L0x1 + v0)+(L1x1 + v1)− . . .− (Lrxr+ vr)‖
= ‖L0x0−L0x1 +L1x1− . . .−Lrxr‖

≤
r

∑
k=1

‖Li(xk− xk−1)‖ ≤
r

∑
k=1

‖Lk‖‖(xk− xk−1)‖

≤max
k
{‖Lk‖}

r

∑
k=1

‖(xk− xk−1)‖=M ‖xA− xB‖

where the last equality holds, since the points xi with i= 1,2, . . . ,r are aligned. �

Theorem 4.5 states that the interpolating controller (4.7), (4.8), (4.10) is a Lips-

chitz continuous function of state, which is a strong form of uniform continuity for

function.

Example 4.1. Consider the following discrete-time linear time-invariant system

x(k+1) =

[
1 1

0 1

]
x(k)+

[
1

0.3

]
u(k) (4.19)

The constraints are

−10≤ x1(k)≤ 10, −5≤ x2(k)≤ 5, −1≤ u(k)≤ 1 (4.20)

Using linear quadratic (LQ) local control with weighting matrices Q = I and

R= 1 the local feedback gain is obtained
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K = [−0.5609 −0.9758] (4.21)

The invariant set Ωmax and the controlled invariant setCN with N = 14 are shown

in Figure 4.1. Note thatC14 =C15. In this case C14 is the maximal controlled invari-

ant set. Ωmax is presented in minimal normalized half-space representation as

Ωmax =





x ∈ R
2 :




0.1627 −0.9867

−0.1627 0.9867

−0.1159 −0.9933

0.1159 0.9933

−0.4983 −0.8670

0.4983 0.8670



x≤




1.9746

1.9746

1.4115

1.4115

0.8884

0.8884








(4.22)

The setCN can be presented in vertex representation by a set vertices ofCN , given

by the matrix V (CN)
V (CN) = [V1 −V1] (4.23)

V1 =

[
10.0000 9.7000 9.1000 8.2000 7.0000 5.5000 3.7000 1.6027 −10.0000

1.0000 1.3000 1.6000 1.9000 2.2000 2.5000 2.8000 3.0996 3.8368

]

and the corresponding control values at the vertices of CN

Uv = [U1 −U1] (4.24)

U1 =
[
−1 −1 −1 −1 −1 −1 −1 −1 1

]

Using algorithm 4.2, the state space partition is obtained in Figure 4.6. Merging

the regions with identical control laws, the reduced state space partition is obtained

in Figure 4.8. This figure also presents different state trajectories of the closed-loop

system for different initial conditions.
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Fig. 4.8 State space partition and different state trajectories for example 4.1 using algorithm 4.2.

Number of regions Nr = 11.
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Figure 4.9(a) shows the Lyapunov function as a piecewise affine function of state.

It is well known3 that the level sets of the Lyapunov function for vertex control

are simply obtained by scaling the boundary of the set CN . For the interpolation

based control method (4.7), (4.8), (4.10), the level sets of the Lyapunov function

V (x) = c∗ depicted in Figure 4.9(b) have a more complicated form and generally

are not parallel to the boundary of CN . From Figure 4.9, it can be observed that the

Lyapunov level sets V (x) = c∗ have the outer set CN as an external level set (for

c∗ = 1). The inner level sets change the polytopic shape in order to approach the

boundary of the inner set Ωmax.
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(a) Lyapunov function c∗ (b) Lyapunov level curves

Fig. 4.9 Lyapunov function and Lyapunov level curves for the interpolation based control method

for example 4.1.

The control law over the state space partition is

3 see Section 3.4
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u(k) =





−1 if




0.45 0.89

0.24 0.97

0.16 0.99

−0.55 0.84

0.14 0.99

−0.50 −0.87

0.20 0.98

0.32 0.95

0.37 −0.93

0.70 0.71




x(k)≤




5.50

3.83

3.37

1.75

3.30

−0.89

3.53

4.40

2.73

7.78




−0.38x1(k)+0.59x2(k)−2.23 if




0.54 −0.84

−0.37 0.93

−0.12 −0.99


x(k)≤



−1.75

2.30

−1.41




−0.02x1(k)−0.32x2(k)+0.02 if




0.37 −0.93

0.06 1.00

−0.26 −0.96


x(k)≤



−2.30

3.20

−1.06




−0.43x1(k)−1.80x2(k)+1.65 if




0.16 −0.99

0.26 0.96

−0.39 −0.92


x(k)≤



−1.97

1.06

0.38




0.16x1(k)−0.41x2(k)+2.21 if




0.39 0.92

−1.00 0

0.37 −0.93


x(k)≤



−0.38

10.00

−2.73




1 if




−0.14 −0.99

−0.37 0.93

−0.24 −0.97

−0.71 −0.71

−0.45 −0.89

−0.32 −0.95

−0.20 −0.98

−0.16 −0.99

0.50 0.87

0.54 −0.84




x(k)≤




3.30

2.73

3.83

7.78

5.50

4.40

3.53

3.37

−0.89

1.75




−0.38x1(k)+0.59x2(k)+2.23 if




0.12 0.99

0.37 −0.93

−0.54 0.84


x(k)≤



−1.41

2.30

−1.75




−0.02x1(k)−0.32x2(k)−0.02 if




0.26 0.96

−0.06 −1.00

−0.37 0.93


x(k)≤



−1.06

3.20

−2.30




−0.43x1(k)−1.80x2(k)−1.65 if




0.39 0.92

−0.26 −0.96

−0.16 0.97


x(k)≤




0.38

1.06

−1.98




0.16x1(k)−0.41x2(k)−2.21 if




1.00 0

−0.37 0.93

−0.39 −0.92


x(k)≤




10.00

−2.73

−0.38




−0.56x1(k)−0.98x2(k) if




0.16 −0.99

−0.16 0.99

−0.12 −0.99

0.12 0.99

−0.50 −0.87

0.50 0.87



x(k)≤




1.97

1.97

1.41

1.41

0.89

0.89




(4.25)
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In view of comparison, consider the explicit model predictive control method

with a prediction horizon of 14 steps, Figure 4.10(a) presents the state space par-

tition with a number of regions Nr = 137. Merging the polyhedral regions with an

identical piecewise affine control function, the reduced state space partition is ob-

tained in Figure 4.10(b).
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(a) Before merging (b) After merging

Fig. 4.10 State space partition before and after merging for example 4.1 using the explicit model

predictive control method. Before merging, number of regions Nr = 137. After merging Nr = 97.

The comparison of the interpolation based control method and the explicit MPC

in terms of the number of regions before and after merging is given in Table 4.1.

Table 4.1 Number of regions for the interpolation based control method versus the explicit MPC

for example 4.1.

Before Merging After Merging

Interpolation based control 25 11

Explicit MPC 137 97

Figure 4.11(a) and Figure 4.11(b) show the control value as a piecewise affine

function of state with the interpolation based control method and the MPC method,

respectively.

For the initial condition x(0) = [−2.0000 3.3284]T , Figure 4.12(a) and Figure

4.12(b) show the results of a time-domain simulation for these two control laws.

As a final analysis element, Figure 4.13 presents the interpolating coefficient

c∗(k) as a function of time. As expected this function is positive and non-increasing.

It is interesting to note that c∗(k) = 0, for all k≥ 15 implying that from time instant

k = 15, the state of the closed-loop system is in the invariant set Ωmax, and as con-

sequence optimal in the MPC cost function terms. The monotonic decrease and the

positivity confirms the Lyapunov interpretation given in the present section.
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Fig. 4.11 Control value as a piecewise affine function of state for example 4.1 with the interpola-

tion based control method and the MPC method.
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(a) State trajectory (b) Input trajectory

Fig. 4.12 State and input trajectory for example 4.1. The dashed red curve is obtained by using the

explicit MPC method and the solid blue curve is obtained by using the interpolation based control

method.
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Fig. 4.13 Interpolating coefficient c∗ as a function of time example 4.1.

4.4 Performance improvement for the interpolation based

control

The interpolation based control method in Sections 4.2 and Section 4.3 can be seen

as an approximation of model predictive control, which in the last decade has re-
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ceived significant attention in the control community [62], [83], [140], [131], [19],

[66]. From this point of view, it is worthwhile to obtain an interpolation based con-

troller with some given level of accuracy in terms of performance compared with

the optimal MPC one. Naturally, the approximation error can be a measure of the

level of accuracy. The methods of computing bounds on the approximation error is

by now well known in the literature, see for example [62], [19] or [140].

Obviously, the simplest way of improving the contraction factor of the interpola-

tion based control scheme is to use the intermediate s-step controlled invariant sets

Cs with 1 ≤ s < N. Then there will be not only one level of interpolation but two

or virtually any number of interpolation as necessary from the performance point of

view. For simplicity of the presentation, we provide in the following a brief study of

the case when one intermediate controlled invariant set Cs will be used. Let this set

Cs be polyhedral in the form

Cs = {x ∈ R
n : Fsx≤ gs} (4.26)

and satisfying Ωmax ⊂Cs ⊂CN .

Remark 4.9. It has to be noted however that, the expected increase in performance

comes at the price of complexity as long as this intermediate set needs to be stored

along with its vertex controller.

The vertex controller can be applied for the polyhedral set Cs, since Cs is con-

trolled invariant. For further use, the vertex control law applied for the set Cs is

denoted as us.

Using the same philosophy as in Section 4.2, the state x will be decomposed as

follows

1. If x ∈CN and x /∈Cs, then x is decomposed as

x= c1xv+(1− c1)xs (4.27)

with xv ∈CN , xs ∈Cs and 0 ≤ c1 ≤ 1. The corresponding control action is then

computed as

u= c1uv+(1− c1)us (4.28)

2. Else x ∈Cs is decomposed as

x= c2xs+(1− c2)xo (4.29)

with xs ∈Cs, xo ∈Ωmax and 0≤ c2 ≤ 1. The control action is computed then as

x= c2us+(1− c2)uo (4.30)

Depending on the value of x, at each time instant, either the interpolating co-

efficient c1 or c2 is minimized in order to be as close as possible to the optimal

controller. This can be done by solving the following (in a parallelized manner)

nonlinear optimization problem
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Fig. 4.14 Two-level interpolation for improving the performance.

1. If x ∈CN \Cs

c∗1 = min
xv,xs,c1

{c1} (4.31)

subject to 



FNxv ≤ gN
Fsxs ≤ gs
c1xv+(1− c1)xs = x

0≤ c1 ≤ 1

2. Else x ∈Cs

c∗2 = min
xs,xo,c2

{c2} (4.32)

subject to 



Fsxs ≤ gs
Foxo ≤ go
c2xs+(1− c2)xo = x

0≤ c2 ≤ 1

or by changing variables rv = c1xv and rs = c2xs, the nonlinear optimization prob-

lems (4.31) and (4.32) can be transformed in the LP problems as
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1. If x ∈CN \Cs

c∗1 = min
rv,c1

{c1} (4.33)

subject to 



FNrv ≤ c1gN
Fs(x− rv)≤ (1− c1)gs
0≤ c1 ≤ 1

2. Else x ∈Cs

c∗2 = min
rs,c2

{c2} (4.34)

subject to 



Fsrs ≤ c2gs
Fo(x− rs)≤ (1− c2)go
0≤ c2 ≤ 1

The following theorem shows recursive feasibility and asymptotic stability of the

interpolation based control (4.27), (4.28), (4.29), (4.30), (4.33), (4.34)

Theorem 4.6. The control law using interpolation based on the solution of the LP

problems (4.33), (4.34) guarantees recursive feasibility and asymptotic stability of

the closed loop system for all initial states x(0) ∈CN .

Proof. The proof of the theorem is omitted here, since it follows the same steps as

those presented in the feasibility proof 4.1 and the stability proof 4.2 in Section 4.2.

�

Remark 4.10. Clearly, instead of the second level of interpolation, the MPC ap-

proach can be applied for all state inside the set Cs. This has very practical con-

sequences in applications, since it is well known that the main issue of the MPC

method for the nominal discrete-time linear time-invariant systems is the trade-off

between the overall complexity (computational cost) and the size of the domain of

attraction. If the prediction horizon of the MPC method is short then the domain

of attraction is small. If the prediction horizon is long then the computational cost

may be very burdensome for the available hardware. Here the MPC method with

the short prediction horizon (equal to one, strictly speaking) is used for the perfor-

mance and then for enlarging the domain of attraction, the interpolation based on

linear programming (4.33) is used. In this way one can achieve the performance and

the domain of attraction with a relatively small computational cost.

For the continuity of the control law (4.27), (4.28), (4.29), (4.30), (4.33), (4.34),

the following theorem holds

Theorem 4.7. The control law from the interpolation based on linear programming

(4.33), (4.34) can be represented as a continuous function of the state.

Proof. Clearly the discontinuity of the control law may arise only on the boundary

of the intermediate setCs, since for all x ∈CN \Cs or for all x ∈Cs, the interpolation

based controller (4.27), (4.28), (4.33) or (4.29), (4.30), (4.34) is continuous
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It is clear that for all x ∈ Fr(Cs), the LP problems (4.33), (4.34) have a trivial

solution

c∗1 = 0, c∗2 = 1

Hence the control action for the interpolation based on 4.27), (4.28), (4.33) is

u = us and the control action for the interpolation based on (4.29), (4.30), (4.34) is

u = us. These control actions coincide and turn out to be the vertex controller for

the set Cs. Hence the continuity of the control law is guaranteed. �

Remark 4.11. It is interesting to note that by using N − 1 intermediate sets Ci to-

gether with the sets CN and Ωmax, a continuous minimum-time controller is ob-

tained, i.e. a controller that steers all state x ∈CN in Ωmax in no more than N steps.

Concerning the explicit solution of the interpolation based controller using the

intermediate set Cs, with the same argument as in Section 4.3, it can be concluded

that

• If x ∈ CN \Cs (or x ∈ Cs \Ωmax), the smallest value c1 (or c2) will be reached

when the region CN \Cs (or CS \Ωmax) is decomposed into partitions in form

of simplices with vertices either on the boundary of CN or on the boundary of

Cs (or on the boundary of Cs or on the boundary of Ωmax). The control law in

each partition is piecewise affine function of state whose gains are obtained by

interpolation of control values at the vertices of the simplex.

• If x ∈Ωmax, then the control law is the optimal unconstrained controller.

Example 4.2. Consider again the discrete-time linear time-invariant system in ex-

ample 4.1 with the same state and control constraints. The local feedback controller

is the same as in example 4.1

K = [−0.5609 −0.9758] (4.35)

With the local controller K, the sets Ωmax, Cs with s = 4 and CN with N = 14 is

constructed. The representation of the sets Ωmax and CN can be found in example

4.1. The set of vertices Vs of the polytope Cs is

Vs =

[
10.00 −5.95 −7.71 −10.00 −10.00 5.95 7.71 10.00

−0.06 2.72 2.86 1.78 0.06 −2.72 −2.86 −1.78

]
(4.36)

and the set of the corresponding control actions at the vertices Vs is

Us =
[
−1 −1 −1 −1 1 1 1 1

]
(4.37)

Using explicit multi-parametric linear programming, the state space partition is

obtained in Figure 4.15(a). Merging the regions with identical control laws, the re-

duced state space partition is obtained in Figure 4.15(b). This figure also shows state

trajectories of the closed-loop system for different initial conditions.

Figure 4.16 shows the control value as a piecewise affine function of the state

with two-level interpolation.
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Fig. 4.15 State space partition before and after merging for example 4.2. Before merging, the

number of regions is Nr = 37. After merging, Nr = 19.
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Fig. 4.16 Control value as a piecewise affine function of state for example 4.2 using two-level

interpolation.

For the initial condition x(0) = [9.9800 − 3.8291]T , Figure 4.17 shows the

results of a time-domain simulation. The two curves correspond to the one-level

and two-level interpolation based control, respectively

Figure 4.18 presents the interpolating coefficients as a function of time. As ex-

pected c∗1 and c∗2 are positive and non-increasing. It is also interesting to note that

c∗1(k) = 0 for all k ≥ 10, indicating that x is inside Cs and c∗(k) = 0 for all k ≥ 14,

indicating that state x is inside Ωmax.

4.5 Interpolation based on quadratic programming

The interpolation based control method in Section 4.2 and Section 4.3 makes use

of linear programming, which is extremely simple. However, the main issue regard-

ing the implementation of the algorithm 4.1 is the non-uniqueness of the solution.

Multiple optima are undesirable, as they might lead to a fast switching between the
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Fig. 4.17 State and input trajectories for example 4.2. The dashed red curve is obtained by using

the one-level interpolation based control, and the solid blue curve is obtained by using the two-level

interpolation based control.
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Fig. 4.18 Interpolating coefficients as a function of time for example 4.2.

different optimal control actions when the LP problem (4.10) is solved on-line. Tra-

ditionally model predictive control has been formulated using a quadratic criterion

[100]. Hence, also in interpolation based control it is worthwhile to investigate the

use of quadratic programming.

Before introducing a QP formulation let us note that the idea of using QP for

interpolation control is not new. In [11], [132], Lyapunov theory is used to compute

an upper bound of the infinite horizon cost function

J =
∞

∑
k=0

{
x(k)TQx(k)+u(k)TRu(k)

}
(4.38)

where Q� 0 and R≻ 0 are the state and input weighting matrices. At each time in-

stant, the algorithm in [11] uses an on-line decomposition of the current state, with

each component lying in a separate invariant set, after which the corresponding

controller is applied to each component separately in order to calculate the control

action. Polytopes are employed as candidate invariant sets. Hence, the on-line opti-

mization problem can be formulated as a QP problem. The approach taken in this
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section follows ideas originally proposed in [11], [132]. In this setting we provide a

QP based solution to the constrained control problem.

This section begins with a brief summary of the work of Bacic et al. [11], [132].

For this purpose, it is assumed that using established results in control theory (LQR,

LMI based, etc), one obtains a set of unconstrained asymptotically stabilizing feed-

back controllers u(k) = Kix(k), i = 1,2, . . . ,r such that the corresponding invariant

sets Ωi ⊆ X

Ωi =
{
x ∈ R

n : F
(i)
o x≤ g

(i)
o

}
(4.39)

are non-empty for i= 1,2, . . . ,r.

Denote Ω as a convex hull of the sets Ωi, i = 1,2, . . . ,r. It follows that Ω ⊆ X ,

since Ωi⊆X for all i= 1,2, . . . ,r. Any state x(k)∈Ω can be decomposed as follows

x(k) = λ1x̂1 +λ2x̂2 + . . .+λrx̂r (4.40)

where x̂1 ∈Ωi for all i= 1,2, . . . ,r and

r

∑
i=1

λi = 1, λi ≥ 0

With a slight abuse of notation, denote xi = λix̂i. Since x̂i ∈ Ωi, it follows that

xi ∈ λiΩi or equivalently

F
(i)
o xi ≤ λig

(i)
o (4.41)

for all i= 1,2, . . . ,r.

Consider the following control law

u(k) =
r

∑
i=1

λiKix̂i =
r

∑
i=1

Kixi (4.42)

where u(k) = Kixi(k) is the control law, associated to the invariant construction of

the set Ωi. One has

x(k+1) = Ax(k)+Bu(k) = A
r

∑
i=1

xi(k)+B
r

∑
i=1

Kixi(k)

=
r

∑
i=1

(A+BKi)xi(k)

or

x(k+1) =
r

∑
i=1

xi(k+1) (4.43)

where xi(k+1) = Acixi(k) and Aci = A+BKi.

Denote a vector z ∈ R
rn as follows

z=
[
xT1 xT2 . . . xTr

]T

From equation (4.43), it follows that
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z(k+1) = Φz(k) (4.44)

where

Φ =




Ac1 0 . . . 0

0 Ac2 . . . 0
...

...
. . .

...

0 0 . . . Acr




With the given state and control weighting matrices Q ∈ R
n×n and R ∈ R

m×m,

consider the following quadratic function

V (z) = zTPz (4.45)

where matrix P ∈ R
rn×rn, P≻ 0 is chosen to satisfy

V (z(k+1))−V (z(k))≤−x(k)TQx(k)−u(k)TRu(k) (4.46)

From equation (4.44), the left hand side of inequality (4.46) can be rewritten as

V (z(k+1))−V (z(k)) = z(k)T (ΦTPΦ−P)z(k) (4.47)

The right hand side of inequality (4.46) can be rewritten as

−x(k)TQx(k)−u(k)TRu(k) = z(k)T (Q1 +R1)z(k) (4.48)

with

Q1 =−




I

I
...

I


Q

[
I I . . . I

]
, R1 =−




KT
1

KT
2
...

KT
r


R

[
K1 K2 . . . Kr

]

From equations (4.46), (4.47) and (4.48), one gets

ΦTPΦ−P� Q1 +R1

or by using the Schur complement, one obtains

[
P+Q1 +R1 AT

c P

PAc P

]
� 0 (4.49)

Clearly, problem (4.49) is linear with respect to the matrix P. This problem is

feasible since matrix Φ has a sub-unitary spectral radius. One way to obtain matrix

P is to solve the following LMP problem

min
P
{trace(P)} (4.50)

subject to constraints (4.49).
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At each time instant, for a given current state x, consider the following optimiza-

tion problem

min
xi,λi

[
xT1 xT2 . . . xTr

]
P




x1

x2

...

xr


 (4.51)

subject to 



F
(i)
o xi ≤ λig

(i)
o ,∀i= 1,2, . . . ,r

r

∑
i=1

xi = x

r

∑
i=1

λi = 1, λi ≥ 0

and implement as input the control action u=
r

∑
i=1

Kixi.

Theorem 4.8. [11], [132] The control law using interpolation based on the solution

of the problem (4.51) guarantees recursive feasibility and the closed loop system is

asymptotically stable for all initial states x(0) ∈Ω .

Proof. See [11], [132].

Using the approach in [11], [132], it can be observed that, at each time instant

we are trying to minimize x1, x2, . . ., xr in the weighted Euclidean norm sense. This

is somehow a conflicting task, since

x1 + x2 + . . .+ xr = x

In addition, if the first controller is an optimal controller and play the role of a

performance controller, and the remaining controller is used to enlarge the domain

of attraction, then one would like to be as close as possible to the first controller, i.e.

to the optimal one. This means that in the interpolation scheme (4.40), one would

like to have x1 = x and

x2 = x3 = . . .= xr = 0

whenever it is possible. And it is not trivial how to do this with the approach in [11],

[132].

Below we provide a contribution to this line of research by considering one of

the interpolation factors, i.e. control gains to be a performance related one, while

the remaining factors play the role of degrees of freedom to enlarge the domain of

attraction. This alternative approach can provide the appropriate framework for the

constrained control design which builds on the unconstrained controller (generally

with high gain) and subsequently need to adjusted them to cope with the constraints

and limitations (via interpolation with adequate low gain controllers). From this

point of view, in the remaining part of this section we try to build a bridge between

the linear interpolation scheme presented in Section 4.2 and the QP based interpo-

lation approaches in [11], [132].
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For the given set of state and control weighting matrices Qi ∈ R
n×n, Ri ∈ R

m×m

and Qi � 0, Ri � 0, consider the following set of quadratic functions

Vi(xi) = xTi Pixi, ∀i= 2,3, . . . ,r (4.52)

where matrix Pi ∈ R
n×n and Pi ≻ 0 is chosen to satisfy

Vi(xi(k+1))−Vi(xi(k))≤−xi(k)
TQixi(k)−ui(k)

TRiui(k) (4.53)

From inequality (4.53) and since xi(k+1) = Acixi(k), it follows that

AT
ciPiAci−Pi �−Qi−KT

i RiKi

By using the Schur complement, one obtains

[
Pi−Qi−KT

i RiKi A
T
ciPi

PiAci Pi

]
� 0 (4.54)

Since matrix Aci has a sub-unitary spectral radius, inequality (4.54) is always

feasible. One way to obtain matrix Pi is to solve the following LMI problem

min
Pi
{trace(Pi)} (4.55)

subject to constraint (4.54).

Define the vector z1 ∈ R
(r−1)(n+1) as follows

z1 = [xT2 xT3 . . . xTr λ2 λ3 . . . λr]
T

With the vector z1, consider the following quadratic function

V1(z1) =
r

∑
i=2

xTi Pixi+
r

∑
i=2

λ 2
i (4.56)

We underline the fact that the sums are built on indices {2, ...r}, corresponding to

the more poorly performing controllers. At each time instant, consider the following

optimization problem
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min
z1

{V1(z1)} (4.57)

subject to the constraints





F
(i)
o xi ≤ λig

(i)
o ,∀i= 1,2, . . . ,r

r

∑
i=1

xi = x

r

∑
i=1

λi = 1, λi ≥ 0

and apply as input the control signal u=
r

∑
i=1
{Kixi}.

Theorem 4.9. The control law based on solving on-line the optimization problem

(4.57) guarantees recursive feasibility and asymptotic stability for all initial states

x(0) ∈Ω .

Proof. Theorem 4.9 makes two important claims, namely the recursive feasibility

and the asymptotic stability. These can be treated sequentially.

Recursive feasibility: It has to be proved that Fuu(k) ≤ gu and x(k+ 1) ∈ Ω for

all x(k) ∈Ω . It holds that

Fuu(k) = Fu
r

∑
i=1

λiKix̂i =
r

∑
i=1

λiFuKix̂i

≤
r

∑
i=1

λigu = gu

and

x(k+1) = Ax(k)+Bu(k) =
r

∑
i=1

λiAcix̂i(k)

Since Acix̂i(k) ∈Ωi ⊆Ω , it follows that x(k+1) ∈Ω .

Asymptotic stability: Consider the positive function V1(z1) as a candidate Lya-

punov function. It is clear that, if xo1(k),x
o
2(k), . . . ,x

o
r (k) and λ o

1 (k),λ
o
2 (k), . . . ,λ

o
r (k)

is the solution of the optimization problem (4.57) at time instant k, then

xi(k+1) = Acix
o
i (k)

and

λi(k+1) = λ o
i (k)

for all i= 1,2, . . . ,r is a feasible solution to the optimization problem (4.57) at time

instant k+ 1. Since at each time instant we are trying to minimize V (z), it follows

that

V1(z
o
1(k+1))≤V1(z1(k+1))

therefore

V1(z
o
1(k+1))−V1(z

o
1(k))≤V1(z1(k+1))−V1(z

o
1(k))



4.5 Interpolation based on quadratic programming 131

together with inequality (4.53), one obtains

V1(z
o
1(k+1))−V1(z

o
1(k))≤−

r

∑
i=2

(
xTi Qixi+uTi Riui

)

ThereforeV (z) is a Lyapunov function and the interpolation based controller assures

asymptotic stability for all x ∈Ω . �

Clearly, the objective function (4.57) can be written as

min
z1

{zT1 Hz1} (4.58)

where

H =




P2 0 . . . 0 0 0 . . . 0

0 P3 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . Pr 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 1




And the constraints of the optimization problem (4.57) can be rewritten as





F
(1)
o (x− x2− . . .− xr)≤ (1−λ2− . . .−λr)g

(1)
o

F
(2)
o x2 ≤ λ2g

(2)
o

...

F
(r)
o xr ≤ λrg

(r)
o

−λi ≤ 0, ∀i= 2, . . . ,r

λ2 +λ3 + . . .λr ≤ 1

or, equivalently

Gz1 ≤ S+Ex (4.59)

where
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G=




−F
(1)
o −F

(1)
o . . . −F

(1)
o g

(1)
o g

(1)
o . . . g

(1)
o

F
(2)
o 0 . . . 0 −g

(2)
o 0 . . . 0

0 F
(3)
o . . . 0 0 −g

(3)
o . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . F
(r)
o 0 0 . . . −g

(r)
o

0 0 . . . 0 −1 0 . . . 0

0 0 . . . 0 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . −1

0 0 . . . 0 1 1 . . . 1




S=
[
(g

(1)
o )T 0 0 . . . 0 0 0 . . . 0 1

]T

E =
[
−(F

(1)
o )T 0 0 . . . 0 0 0 . . . 0 0

]T

Hence, the optimization problem (4.57) is transformed into the quadratic pro-

gramming problem (4.58) subject to the linear constraints (4.59).

It is worth noticing that for all x ∈ Ω1, the QP problem (4.58) subject to the

constraints (4.59) has a trivial solution, namely

{
xi = 0,

λi = 0
∀i= 2,3, . . . ,r

Hence x1 = x and λ1 = 1. That means, inside the invariant set Ω1, the interpolating

controller turns out to be the optimal unconstrained controller.

An on-line algorithm for the interpolation based controller via quadratic pro-

gramming is

Algorithm 4.3: Interpolation based control via quadratic programming

1. Measure the current state of the system x(k).
2. Solve the QP problem (4.58) subject to the constraints (4.59).

3. Apply the control input (4.42).

4. Wait for the next time instant k := k+1.

5. Go to step 1 and repeat.

Remark 4.12. Note that algorithm 4.3 requires the solution of the QP problem (4.58)

of dimension (r−1)(n+1) where r is the number of interpolated controllers and n

is the dimension of state. Clearly, solving the QP problem (4.58) can be computa-

tionally expensive when the number of interpolated controllers is big. In practice, it

is usually enough with r = 2 or r = 3.

Example 4.3. Consider again the discrete-time linear time-invariant system in exam-

ple (4.1) with the same state and control constraints. Two linear feedback controllers

are chosen as
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{
K1 = [−0.0942 −0.7724]
K2 = [−0.0669 −0.2875]

(4.60)

The first controller u(k)=K1x(k) is a high controller and plays the role of the perfor-

mance controller, while the second controller u(k) = K2x(k) will be used to enlarge

the domain of attraction.

Figure 4.19(a) shows the invariant sets Ω1 and Ω2 correspond to the controllers

K1 and K2 respectively. Figure 4.19(b) shows different state trajectories of the closed

loop system for different initial conditions. The state trajectories are obtained by

solving on-line quadratic programming problem (4.58) subject to the constraints

(4.59).
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(a) Feasible invariant sets (b) State trajectories

Fig. 4.19 Feasible invariant sets and state trajectories of the closed loop system for example 4.3.

The sets Ω1 and Ω2 are presented in minimal normalized half-space representa-

tion as

Ω1 =




x ∈ R

2 :




1.0000 0

−1.0000 0

−0.1211 −0.9926

0.1211 0.9926


x≤




10.0000

10.0000

1.2851

1.2851








and
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Ω2 =





x ∈ R
2 :




1.0000 0

−1.0000 0

−0.2266 −0.9740

0.2266 0.9740

0.7948 0.6069

−0.7948 −0.6069

−0.1796 −0.9837

0.1796 0.9837

−0.1425 −0.9898

0.1425 0.9898

−0.1117 −0.9937

0.1117 0.9937

−0.0850 −0.9964

0.0850 0.9964

−0.0610 −0.9981

0.0610 0.9981

−0.0386 −0.9993

0.0386 0.9993

−0.0170 −0.9999

0.0170 0.9999




x≤




10.0000

10.0000

3.3878

3.3878

8.5177

8.5177

3.1696

3.1696

3.0552

3.0552

3.0182

3.0182

3.0449

3.0449

3.1299

3.1299

3.2732

3.2732

3.4795

3.4795








With the weighting matrices

Q2 =

[
1 0

0 1

]
, R2 = 1

and by solving the LMI problem (4.55), one obtains

P2 =

[
5.1917 9.9813

9.9813 101.2651

]
(4.61)

For the initial condition x(0) = [6.82 1.889]T , Figure 4.20(a) and 4.20(b)

present the state and input trajectory of the closed loop system as a function of

time. The solid blue line is obtained by solving the QP problem (4.58). The dashed

red line is obtained by solving the QP interpolation using algorithm in [132].

For the algorithm in [132], the matrix P in the optimization problem (4.50) is

computed as

P=




4.8126 2.9389 4.5577 13.8988

2.9389 7.0130 2.2637 20.4391

4.5577 2.2637 5.1917 9.9813

13.8988 20.4391 9.9813 101.2651




for the following weighting matrices

Q=

[
1 0

0 1

]
, R= 1
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(a) State trajectory (b) Input trajectory

Fig. 4.20 State and input trajectory of the closed loop system for example 4.3. The solid blue

line is obtained by solving the QP problem (4.58). The dashed red line is obtained by using the

algorithm in [132].

The interpolating coefficient λ2 and the Lyapunov function V (z) as a function of

time are depicted in Figure 4.21. As expected V (z) is a positive and non-increasing

function.
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Fig. 4.21 Interpolating coefficient λ2(k) and Lyapunov function V (z) as a function of time for

example 4.3.

4.6 An improved interpolation based control method in the

presence of actuator saturation

In this section, in order to fully utilize the capability of actuators and guaran-

tee the input constraints satisfaction without handling an unnecessarily complex

optimization-based control, a saturation function on the input is considered. Satu-

ration will guarantee that the plant input constraints are satisfied. In our design we
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exploit the fact that the saturating linear feedback law can be expressed as a convex

hull of a group of linear feedback laws according to Hu et al. [59]. Thus, the aux-

iliary control laws in the convex hull rather than the actual control law will handle

the input constraints.

For simplicity, only the single-input single-output system case is considered here,

although extensions to the multi-input multi-output system case are straightforward.

Since the saturation function on the input is considered, the system (4.1) becomes

x(k+1) = Ax(k)+Bsat(u(k)) (4.62)

Clearly, the use of a saturation function is an appropriate choice only for the input

constraints (4.2) in a form

u(k) ∈U,U = {u ∈ R : ul ≤ u≤ uu} (4.63)

where ul and uu are respectively the lower and upper bounds of input u. It is assumed

that ul and uu are constant with ul < 0 and uu > 0 such that the origin is contained

in the interior of U . Recall that the state constraints remain the same as in (4.2).

From Lemma 2.1, Section 2.4.1, recall that for a given stabilizing controller

u(k) = Kx(k), the saturation function4 can be expressed as

sat(Kx(k)) = α(k)Kx(k)+(1−α(k))Hx(k) (4.64)

for all x such that ul ≤Hx≤ uu and with a suitable choice of 0≤ α(k)≤ 1. The vec-

tor H ∈ R
n can be computed using theorem 2.2. Based on procedure 2.5 in Section

2.4.1, a polyhedral set ΩH
s can be computed, with invariance properties with respect

to the dynamics

x(k+1) = Ax(k)+Bsat(Kx(k)) (4.65)

It is assumed that a set of asymptotically stabilizing feedback controllers Ki ∈R
n

is available as well as a set of auxiliary vectors Hi ∈ R
n for all i = 1,2, . . . ,r such

that the corresponding invariant sets Ω
Hi
s ⊆ X

ΩHi
s =

{
x ∈ R

n : F
(i)
o x≤ g

(i)
o

}
(4.66)

are non-empty for i= 1,2, . . . ,r.

With a slight abuse of notation, denote Ωs as a convex hull of the sets Ω
Hi
s . It

follows that Ωs ⊆ X , since Ω
Hi
s ⊆ X for all i= 1,2, . . . ,r.

Any state x(k) ∈Ωs can be decomposed as follows

x(k) =
r

∑
i=1

λix̂i(k) (4.67)

where x̂i(k) ∈Ω
Hi
s for all i= 1,2, . . . ,r and

4 See Section 2.4.1 for more details.
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r

∑
i=1

λi = 1, λi ≥ 0

Consider the following control law

u(k) =
r

∑
i=1

λisat(Kix̂i(k)) (4.68)

Based on Lemma 2.1, one obtains

u(k) =
r

∑
i=1

λi(αi(k)Ki+(1−αi(k))Hi)x̂i(k) (4.69)

where 0≤ αi ≤ 1 for all i= 1,2, . . . ,r.

Similar with the notation employed in the Section 4.5, we denote xi = λix̂i. Since

x̂i ∈Ω
Hi
s , it follows that xi ∈ λiΩ

Hi
s or

F
(i)
o xi ≤ λig

(i)
o , ∀i= 1,2, . . . ,r (4.70)

From equations (4.67) and (4.69), one obtains





x=
r

∑
i=1

xi

u=
r

∑
i=1

(αiKi+(1−αi)Hi)xi
(4.71)

As in Section 4.5, the first controller, identified by the high gain K1 will play the

role of a performance controller, while the remaining low gain controllers will be

used to enlarge the domain of attraction.

With the control input as in the form (4.71), it is clear that u(k) ∈ U , ∀k ≥ 0.

Hence sat(u(k)) = u(k). It follows that

x(k+1) = Ax(k)+Bsat(u(k)) = Ax(k)+Bu(k)

= A
r

∑
i=1

xi(k)+B
r

∑
i=1

(αiKi+(1−αi)Hi)xi(k)

=
r

∑
i=1

xi(k+1)

where

xi(k+1) = {A+B(αiKi+(1−αi)Hi)}xi(k)

or

xi(k+1) = Acixi(k) (4.72)

with Aci = A+B(αiKi+(1−αi)Hi).
For the given state and control weighting matrices Qi ∈ R

n×n and Ri ∈ R, con-

sider the following set of quadratic functions
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Vi(xi) = xTi Pixi, i= 2,3, . . . ,r (4.73)

where matrix Pi ∈ R
n×n, Pi � 0 is chosen to satisfy

Vi(xi(k+1))−Vi(xi(k))≤−xi(k)
TQixi(k)−ui(k)

TRiui(k) (4.74)

By using the same arguments as in the previous section, inequality (4.74) can be

rewritten as

AT
ciPiAci−Pi �−Qi− (αiKi+(1−αi)Hi)

TRi(αiKi+(1−αi)Hi)

Denote Yi = (αiKi+(1−αi)Hi), by using the Schur complement, the above con-

dition can be transformed into

[
Pi−Qi−Y T

i RiYi A
T
ciPi

PiAci Pi

]
� 0

or, equivalently [
Pi AT

ciPi
PiAci Pi

]
−

[
Qi+Y T

i RiYi 0

0 0

]
� 0

Denote Q
1
2
i and R

1
2
i as the Cholesky factor of the matrices Qi and Ri, which satisfy

(Q
1
2
i )

TQ
1
2
i = Qi and (R

1
2
i )

TR
1
2
i = Ri. The previous condition can be rewritten as

[
Pi AT

ciPi
PiAci Pi

]
−

[
(Q

1
2
i )

T Y T
i (R

1
2
i )

T

0 0

][
Q

1
2
i 0

R
1
2
i Yi 0

]
� 0

or by using the Schur complement, one obtains




Pi AT
ciPi (Q

1
2
i )

T Y T
i (R

1
2
i )

T

PiAci Pi 0 0

Q
1
2
i 0 I 0

R
1
2
i Yi 0 0 I



� 0 (4.75)

The left hand side of inequality (4.75) is linear in αi, and hence reaches its min-

imum at either αi = 0 or αi = 1. Consequently, the set of LMI conditions to be

checked is following (4.75) and the fact that Yi = αiKi+(1−αiHi)
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






Pi (A+BKi)
TPi (Q

1
2
i )

T (R
1
2
i Ki)

T

Pi(A+BKi) Pi 0 0

Q
1
2
i 0 I 0

R
1
2
i Ki 0 0 I



� 0




Pi (A+BHi)
TPi (Q

1
2
i )

T (R
1
2
i Hi)

T

Pi(A+BHi) Pi 0 0

Q
1
2
i 0 I 0

R
1
2
i Hi 0 0 I



� 0

(4.76)

Condition (4.76) is linear with respect to the matrix Pi. One way to calculate Pi is

to solve the following LMI problem

min
Pi
{trace(Pi)} (4.77)

subject to constraint (4.76).

Once the matrices Pi with i= 2,3, . . . ,r are computed, they can be used in practice

for real-time control based on the following algorithm, which can be formulated as

an optimization problem that is efficient with respect to structure and complexity.

At each time instant, for a given current state x, minimize on-line the quadratic cost

function

min
xi,λi

{
r

∑
i=2

xTi Pixi+
r

∑
i=2

λ 2
i } (4.78)

subject to the linear constraints





F
(i)
o xi ≤ λig

(i)
o ,∀i= 1,2, . . . ,r

r

∑
i=1

xi = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r.

Theorem 4.10. The control law based on solving the optimization problem (4.78)

guarantees recursive feasibility and asymptotic stability of the closed loop system

for all initial states x(0) ∈Ωs.

Proof. The proof of this theorem is similar to the one of theorem 4.9. Hence it is

omitted here. �

Example 4.4. Consider again the discrete-time linear time-invariant system in exam-

ple (4.1) with the same state and control constraints. Two linear feedback controllers

are chosen as {
K1 = [−0.9500 −1.1137]
K2 = [−0.4230 −2.0607]

(4.79)
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Based on theorem 2.2, two auxiliary matrices are computed as

{
H1 = [−0.1055 −0.2760]
H2 = [−0.0669 −0.2875]

(4.80)

With the auxiliary matrices H1 and H2, the invariant sets Ω
H1
s and Ω

H2
s are re-

spectively constructed for the saturated controllers u = sat(K1x) and u = sat(K2x),
see Figure 4.22(a). Figure 4.22(b) shows different state trajectories of the closed

loop system for different initial conditions.
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(a) Feasible invariant sets (b) State trajectories

Fig. 4.22 Feasible invariant sets and state trajectories of the closed loop system for example 4.4.

The sets Ω
H1
s and Ω

H2
s are presented in minimal normalized half-space represen-

tation as

ΩH1
s =





x ∈ R
2 :




0.3933 −0.9194

−0.3933 0.9194

−0.0403 −0.9992

0.0403 0.9992

−0.0791 −0.9969

0.0791 0.9969

−0.1238 −0.9923

0.1238 0.9923

−0.1787 −0.9839

0.1787 0.9839

−0.2515 −0.9679

0.2515 0.9679

−0.3571 −0.9341

0.3571 0.9341




x≤




3.6367

3.6367

2.6637

2.6637

2.5901

2.5901

2.5977

2.5977

2.7012

2.7012

2.9371

2.9371

3.3844

3.3844








and



4.7 Convex hull of ellipsoids 141

ΩH2
s =





x ∈ R
2 :




−0.0170 −0.9999

0.0170 0.9999

−0.0386 −0.9993

0.0386 0.9993

−0.0610 −0.9981

0.0610 0.9981

−0.0850 −0.9964

0.0850 0.9964

−0.1117 −0.9937

0.1117 0.9937

−0.1425 −0.9898

0.1425 0.9898

0.7948 0.6069

−0.7948 −0.6069

−0.1796 −0.9837

0.1796 0.9837

1.0000 0

−1.0000 0

−0.2266 −0.9740

0.2266 0.9740




x≤




3.4795

3.4795

3.2732

3.2732

3.1299

3.1299

3.0449

3.0449

3.0182

3.0182

3.0552

3.0552

8.5177

8.5177

3.1696

3.1696

10.0000

10.0000

3.3878

3.3878








With the weighting matrices

Q2 =

[
1 0

0 1

]
,R2 = 0.001

and by solving the LMI problem (4.77), one obtains

P2 =

[
5.4929 9.8907

9.8907 104.1516

]

For the initial condition x(0) = [−9.79 −1.2]T , Figure 4.23 presents the state

and input trajectory of the closed loop system as a function of time. The solid blue

line is obtained by using the interpolation based control method 4.78, while the

dashed red line is obtained by using the saturated controller u= sat(K2x), which is

the controller corresponding to the largest invariant set.

The interpolating coefficient λ2 and the objective function as a Lyapunov func-

tion are shown in Figure 4.24.

4.7 Convex hull of ellipsoids

In this section, the convex hull of a family of ellipsoids is used for estimating the

stability domain for a constrained control system. This is motivated by problems

arising from the estimation of the domain of attraction of stable dynamics and the
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Fig. 4.23 State and input trajectory of the closed loop system as a function of time for example

4.4. The solid blue line is obtained by using the interpolation based control method 4.78, while the

dashed red line is obtained by using the saturated controller u= sat(K2x).
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Fig. 4.24 Interpolating coefficient and Lyapunov function as a function of time for example 4.4.

control design which aims to enlarge such a domain of attraction. In order to briefly

describe the class of problems, let us suppose that a set of invariant ellipsoids and

an associated set of saturated control laws are available. The questions whether the

convex hull of this set of ellipsoids is invariant and how to construct a control law

for this region are our objectives.

The fact that the convex hull of a set of invariant ellipsoids is also invariant is well

known in the literature, for nominal continuous-time linear time-invariant systems,

see [58], and for nominal discrete-time linear time-invariant systems, see [11]. In

these papers, a method to construct a continuous feedback law based on a set of

linear feedback laws was proposed to make the convex hull of a set of invariant

ellipsoids invariant. The main contribution of this section is to provide a new type

of interpolation based controller, that makes invariant the convex hull of invariant

ellipsoids.

It is assumed that the polyhedral state constraints X and the polyhedral input con-

straints U are symmetric. It is also assumed that a set of asymptotically stabilizing

feedback controllers Ki ∈ R
m×n and using theorem 2.2, a set of auxiliary matrices
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Hi ∈ R
m×n for i = 1,2, . . . ,r are available such that the corresponding ellipsoidal

invariant sets E(Pi)
E(Pi) =

{
x ∈ R

n : xTP−1
i x≤ 1

}
(4.81)

are non-empty for i = 1,2, . . . ,r. Recall that for all x(k) ∈ E(Pi), it follows that

sat(Kix)∈U and x(k+1) =Ax(k)+Bsat(Kix(k))∈X . Denote ΩE ⊂R
n as a convex

hull of E(Pi) for all i. It follows that ΩE ⊆ X , since E(Pi)⊆ X .

Any state x(k) ∈ΩE can be decomposed as follows

x(k) =
r

∑
i=1

λix̂i(k) (4.82)

with x̂i(k) ∈ E(Pi) and λi are interpolating coefficients, that satisfy

r

∑
i=1

λi = 1, λi ≥ 0

Consider the following control law

u(k) =
r

∑
i=1

λisat(Kix̂i(k)) (4.83)

where sat(Kix̂i(k)) is the saturated control law, that is feasible in E(Pi).

Theorem 4.11. The control law (4.83) is guaranteed to be recursively feasible for

any conditions x(0) ∈ΩE .

Proof. Starting with the decomposition (4.82), the control law obtained by the cor-

responding convex combination of the control actions is leading to the expression

in (4.83). One has to prove that u(k) ∈U and x(k+1) = Ax(k)+Bu(k) ∈ΩE for all

x ∈ΩE . For the input constraints, from equation (4.83) and since sat(Kix̂i(k)) ∈U ,

it follows that u(k) ∈U .

For the state constraints, it holds that

x(k+1) = Ax(k)+Bu(k)

= A
r

∑
i=1

λix̂i(k)+B
r

∑
i=1

λisat(Kix̂i(k))

=
r

∑
i=1

λi(Ax̂i(k)+Bsat(Kix̂i(k)))

One has Ax̂i(k)+Bsat(Kix̂i(k))∈ E(Pi)⊆ΩE for all i= 1,2, . . . ,r, which ultimately

assures that x(k+1) ∈ΩE . �

As in the sections 4.5 and 4.6, the first high gain controller will be used for

the performance, while the rest of available low gain controllers will be used to

enlarge the domain of attraction. For the given current state x, consider the following

objective function
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min
x̂i,λi

{
r

∑
i=2

λi} (4.84)

subject to 



x̂Ti P
−1
i x̂i ≤ 1,∀i= 1,2, . . . ,r

r

∑
i=1

λix̂i = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r

Theorem 4.12. The control law using interpolation based on the objective function

(4.84) guarantees asymptotic stability for all initial states x(0) ∈ΩE .

Proof. Let λ o
i be the solutions of the optimization problem (4.84) and consider the

following positive function

V (x) =
r

∑
i=2

λ o
i (k) (4.85)

for all x ∈ΩE \E(P1). V (x) is a Lyapunov function candidate.

For any x(k) ∈ΩE \E(P1), one has





x(k) =
r

∑
i=1

λ o
i (k)x̂

o
i (k)

u(k) =
r

∑
i=1

λ o
i (k)sat(Kix̂

o
i (k))

It follows that

x(k+1) = Ax(k)+Bu(k)

= A
r

∑
i=1

λ o
i (k)x̂

o
i (k)+B

r

∑
i=1

λ o
i (k)sat(Kix̂

o
i (k))

=
r

∑
i=1

λ o
i (k)x̂i(k+1)

where x̂i(k+1) = Ax̂oi (k)+Bsat(Kix̂
o
i (k)) ∈ E(Pi) for all i= 1,2, . . . ,r.

By using the interpolation based on the optimization problem (4.84)

x(k+1) =
r

∑
i=1

λ o
i (k+1)x̂oi (k+1)

where x̂oi (k+1) ∈ E(Pi). It follows that

r

∑
i=2

λ o
i (k+1)≤

r

∑
i=2

λ o
i (k)

and V (x) is a non-increasing function.
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The contractive invariant property of the ellipsoid E(Pi) assures that there is no

initial condition x(0) ∈ΩE \E(P1) such that
r

∑
i=2

λ o
i (k+1)≤

r

∑
i=2

λ o
i (k) for all k ≥ 0.

It follows that V (x) =
r

∑
i=2

λ o
i (k) is a Lyapunov function for all x ∈ΩE \E(P1).

The proof is completed by noting that inside E(P1), the feasible stabilizing con-

troller u= sat(K1x̂) is contractive and thus the interpolation based controller assures

asymptotic stability for all x ∈ΩE . �

If we denote xi = λix̂i, then since x̂i ∈ E(Pi), it follows that xTi P
−1
i xi ≤ λ 2

i . The

non-linear optimization problem (4.84) can be rewritten as follows

min
xi,λi

{
r

∑
i=2

λi}

subject to 



xTi P
−1
i xi ≤ λ 2

i ,∀i= 1,2, . . . ,r
r

∑
i=1

xi = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r

or by using the Schur complement

min
xi,λi

r

∑
i=2

λi (4.86)

subject to 



[
λi xTi
xi λiPi

]
� 0,∀i= 1,2, . . . ,r

r

∑
i=1

xi = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r

This is an LMI optimization problem.

In summary, at each time instant the interpolation based controller involves the

following steps
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Algorithm 4.4 Interpolation based control - Convex hull of ellipsoids

1. Measure the current state of the system x(k).
2. Solve the LMI problem (4.86). In the result, one gets xoi ∈ E(Pi) and λ o

i for all

i= 1,2, . . . ,q.

3. For xoi ∈ E(Pi), one associates the control value uoi = sat(Kix
o
i ).

4. The control signal to be applied to the plant u(k) is found as a convex combina-

tion of uoi

u(k) =
r

∑
i=1

λ o
i (k)u

o
i

Remark 4.13. It is worth noticing that for all x(k) ∈ E(P1), the LMI problem (4.86)

has a trivial solution

λi = 0, ∀i= 2,3, . . . ,r

Hence λ1 = 1 and x= x̂1. In this case, the interpolation based controller turns out to

be the saturated controller u= sat(K1x).

Example 4.5. Consider again the discrete-time linear time-invariant system in ex-

ample (4.1) with the same state and control constraints. Three linear feedback con-

trollers are chosen as




K1 = [−0.9500 −1.1137],
K2 = [−0.4230 −2.0607],
K3 = [−0.5010 −2.1340]

(4.87)

Based on theorem 2.2 and the optimization problem (2.55), three auxiliary ma-

trices are found as 



H1 = [−0.1055 −0.2760],
H2 = [−0.0669 −0.2875],
H3 = [−0.0727 −0.4148]

(4.88)

With these auxiliary matrices, three invariant ellipsoids E(P1), E(P2), E(P3) are

computed corresponding to the saturated controllers u= sat(K1x), u= sat(K2x) and

u= sat(K3x). The invariant sets and their convex hull are depicted in Figure 4.25(a).

Figure 4.25(b) shows state trajectories of the closed loop system for different initial

conditions.

The matrices P1, P2 and P3 are

P1 =

[
42.2661 2.8153

2.8153 4.7997

]
, P2 =

[
100.0000 −3.0957

−3.0957 8.1243

]
,

P3 =

[
100.0000 −19.4011

−19.4011 9.5408

]

For the initial condition x(0) = [−0.64 −2.8]T , Figure 4.26 presents the state

trajectory, the input trajectory and the Lyapunov function of the closed loop system
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Fig. 4.25 Feasible invariant sets and state trajectories of the closed loop system for example 4.5.

as a function of time. As expected, the Lyapunov function, i.e. the objective function

is positive and non-increasing.
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(a) State trajectory (b) Input trajectory and Lyapunov function

Fig. 4.26 State trajectory, input trajectory and Lyapunov function of the closed loop system as a

function of time for example 4.5.





Chapter 5

Interpolation Based Control – Robust State

Feedback Case

In this chapter, the problem of regulating a constrained discrete-time linear time-

varying or uncertain system to the origin subject to bounded disturbances is ad-

dressed. The robust counterpart of the interpolation technique generalizes the results

presented in the previous chapter, recursive feasibility and robust asymptotic stabil-

ity being preserved. It is shown that in the implicit case, depending on the shape of

invariant sets, i.e. polyhedral or ellipsoidal, and depending on the objective func-

tions, i.e. linear or quadratic, two LPs or one QP or one LMI problem is solved at

each time instant. In the explicit case, the control law is shown to be a piecewise

affine function of state.

5.1 Problem formulation

Consider the problem of regulating to the origin the following discrete-time linear

time-varying or uncertain systems subject to additive bounded disturbances

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) (5.1)

where x(k) ∈ R
n, u(k) ∈ R

m and w(k) ∈ R
d are respectively the state, the input

and the disturbance vectors. The system matrices A(k) ∈ R
n×n, B(k) ∈ R

n×m and

D(k) ∈ R
n×d satisfy





A(k) =
q

∑
i=1

αi(k)Ai, B(k) =
q

∑
i=1

αi(k)Bi, D(k) =
q

∑
i=1

αi(k)Di,

q

∑
i=1

αi(k) = 1, αi(k)≥ 0
(5.2)

where the matrices Ai, Bi and Di are given. A somewhat more general uncertainty

description is given by equation (2.20) in Chapter 2 which can be transformed to the

one in (5.2).

149
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The state, the control and the disturbance are subject to the following polytopic

constraints 



x(k) ∈ X , X = {x ∈ R
n : Fxx≤ gx}

u(k) ∈U, U = {u ∈ R
m : Fuu≤ gu}

w(k) ∈W, W = {w ∈ R
d : Fww≤ gw}

(5.3)

where the matrices Fx, Fu and Fw and the vectors gx, gu and gw are assumed to be

constant with gx > 0, gu > 0, gw > 0 such that the origin is contained in the interior

of X , U and W . The inequalities here are component-wise.

In this chapter, it is assumed that the states of the system are measurable.

5.2 Interpolation based on linear programming

Starting from the assumption that an unconstrained robust asymptotically stabilizing

feedback controller u(k) = Kx(k) is available such that the corresponding maximal

robustly invariant set Ωmax ⊆ X

Ωmax = {x ∈ R
n : Fox≤ go} (5.4)

is non-empty. Furthermore with some given and fixed integer N > 0, based on pro-

cedure 2.3 presented in section 2.3.4 one can find a robust controlled invariant set

CN in the form

CN = {x ∈ R
n : FNx≤ gN} (5.5)

such that all x ∈CN can be steered into Ωmax in no more than N steps when suitable

control is applied. The polytope CN can be decomposed into a set of simplices C
( j)
N ,

each formed by n vertices ofCN and the origin. For all x ∈C
( j)
N , the vertex controller

u(k) = K( j)x(k) (5.6)

can be applied with K( j) ∈R
m×n is defined as in (3.50). In Section 3.4, it was shown

that the system (5.1) in closed loop with vertex control is robustly asymptotically

stable1 for all initial states x ∈CN .

In the robust case, similar to the nominal case presented in in Chapter 4, Section

4.2, the weakness of vertex control is that the full control range is exploited only on

the border of the set CN in the state space, with progressively smaller control action

when state approaches the origin. Hence the time to regulate the plant to the origin

is longer than necessary.

Here we provide a method to overcome this shortcoming, where the control ac-

tion is still smooth. For this purpose, any state x(k) ∈CN is decomposed as

1 Here by robust asymptotic stability we understand that the state converges asymptotically to a

minimal robust positively invariant set [127], [116], [76], which replaces the origin as attractor for

the system (5.1) in closed loop with the vertex controller.
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x(k) = c(k)xv(k)+(1− c(k))xo(k) (5.7)

where xv ∈CN , xo ∈Ωmax and 0≤ c≤ 1.

Consider the following control law

u(k) = c(k)uv(k)+(1− c(k))uo(k) (5.8)

where uv(k) is obtained by applying the vertex control law (5.6) for xv(k) and

uo(k) = Kxo(k) is the control law that is feasible in Ωmax.

Theorem 5.1. For system (5.1) and constraints (5.3), the control law (5.8) guaran-

tees recursive feasibility for all initial states x(0) ∈CN .

Proof. For recursive feasibility, it has to be proved that

{
Fuu(k)≤ gu
x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) ∈CN

for all x(k) ∈CN . While the feasibility of the input constraints is proved in a similar

way to the nominal case2, the state constraint feasibility deserves an adaptation.

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k)
= A(k){c(k)xv(k)+(1− c(k))xo(k)}+B(k){c(k)uv(k)+(1− c(k))uo(k)}+D(k)w(k)
= c(k)xv(k+1)+(1− c(k))xo(k+1)

where

xv(k+1) = A(k)xv(k)+B(k)uv(k)+D(k)w(k) ∈CN

xo(k+1) = A(k)xo(k)+B(k)uo(k)+D(k)w(k) ∈Ωmax ⊆CN

It follows that x(k+1) ∈CN . �

As in Section 4.2, in order to be as close as possible to the optimal unconstrained

local controller, one would like to minimize the interpolating coefficient c(k). This

can be done by solving the following nonlinear optimization problem

c∗ = min
xv,xo,c

{c} (5.9)

subject to 



FNxv ≤ gN
Foxo ≤ go
cxv+(1− c)xo = x

0≤ c≤ 1

Define rv = cxv and ro = (1− c)xo. Since xv ∈CN and xo ∈Ωmax, it follows that

rv ∈ cCN and ro ∈ (1− c)Ωmax or equivalently

2 See proof of theorem 4.1 in section 4.2
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{
FNrv ≤ cgN
Foro ≤ (1− c)go

With this change of variables, the nonlinear optimization problem (5.9) is trans-

formed into a linear programming problem as follows

c∗ = min
rv,c
{c} (5.10)

subject to 



FNrv ≤ cgN
Fo(x− rv)≤ (1− c)go
0≤ c≤ 1

Theorem 5.2. The control law using interpolation based on linear programming

(5.10) guarantees robust asymptotic stability3 for all initial states x(0) ∈CN .

Proof. The proof of this theorem is omitted here, since it is the same as the proof of

theorem 4.2, Section 4.2. �

An on-line algorithm for the interpolation based controller via linear program-

ming is

Algorithm 5.1: Interpolation based control - Implicit solution

1. Measure the current state of the system x(k).
2. Solve the LP problem (5.10).

3. Implement as input the control action (5.8).

4. Wait for the next time instant k := k+1.

5. Go to step 1 and repeat.

Although the dimension of the LP problem (5.10) is n+1, where n is the dimen-

sion of state, the complexity of the control law (5.8) is in direct relationship with

the complexity of the vertex controller and can be very high, since in general the

complexity of the set CN is high in terms of vertices. Also it is well known [25] that

the number of simplicies of vertex control is typically much greater than the number

of vertices. Therefore a question is how to achieve an interpolating controller whose

complexity is not correlated with the complexity of the involved sets.

It is obvious that vertex control is only one possible choice for the global outer

controller. One can consider any other linear or non-linear controller and the princi-

ple of interpolation scheme (5.7), (5.8), (5.10) holds as long as the convexity of the

3 Here by robust asymptotic stability we understand that the state of the closed loop system with

the interpolation based controller converges to the minimal robustly positively invariant set despite

the parameter variation and the influence of additive disturbances.
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associated controlled invariant set is preserved. A natural candidate for the global

controller is the saturated controller u = sat(Ksx) with the associated invariant set

Ωs computed using procedure 2.4 in Section 2.3.4. The experience usually shows

that by properly choosing the saturated gain Ks ∈ R
m×n, the associated invariant set

Ωs may approach the invariant sets other constrained controllers might have.

In summary with the global saturated controller u(k) = sat(Ksx(k)) the interpo-

lation based control law (5.7), (5.8), (5.10) involves the following steps

1. Design a local gain K and a global gain Ks, both stabilizing with some desired

performance specifications. Usually K is chosen for the performance, while Ks is

designed for the quality of its domain of attraction.

2. Compute the invariant sets Ωmax and Ωs associated with the controllers K and

Ks respectively. The set Ωmax is computed using procedure 2.2 in Section 2.3.4,

while the set Ωs is computed using procedure 2.4. in the same section.

3. Implement the control law (5.7), (5.8), (5.10).

Practically, the interpolation scheme using the saturated controller shows to be sim-

pler than the interpolation scheme using vertex control, while the domain of attrac-

tion remains typically the same. In order to complete the picture of the available

possibilities in the choice of control policies in the interpolation scheme, we pro-

vide below an alternative for choosing the global controller. With this aim, some

geometrical properties of the solution of the LP problem (5.10) will be recalled.

Remark 5.1. In the robust case, similar to the nominal case presented in Section 4.3

1. If x ∈ Ωmax the result of the optimal interpolation problem has a trivial solution

xo = x and thus c∗ = 0 in (5.10).

2. If x ∈CN \Ωmax, the interpolating coefficient c will reach a minimum in (5.10) if

and only if x is written as a convex combination of two points, one belonging to

the boundary of Ωmax and the other on the boundary of CN .

As a consequence of remark 5.1, the vertex control law is only one of the can-

didate of the controller at the boundary of CN . It is clear that any control law that

steers the state on the boundary of CN towards the interior of CN will make the

interpolation based control (5.7), (5.8), (5.10) robustly asymptotically stable.

An intuitive approach is to devise a controller, that pushes the state away from the

boundary of the controlled invariant setCN as far as possible in a contractive sense.

In order to give a precise definition of far, the following definition is introduced

[95], [23].

Definition 5.1. (Minkowski functional) [95], [23] Given aC−set S, the Minkowski

functional ΨS of S is defined as

ΨS(x) = min
µ
{µ ≥ 0 : x ∈ µS} (5.11)
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It is well known [95] that the function ΨS is convex, positively homogeneous of

order one, i.e. for any scalar t ≥ 0, it holds that ΨS(tx) = tΨS(x). Furthermore it is a

norm if and only if the set S is 0−symmetric. Its level surfaces are given by scaling

the boundary of the set S. Thus such boundary defines the shape of the function.

Figure 5.1 depicts the set S (the red line) and the level surfaces corresponding to

Ψ = 0.6 and Ψ = 0.3.

x
2

x
1

Ψ = 1

Ψ = 0.6

Ψ = 0.3

Fig. 5.1 Minkowski functional.

So at each time instant, we will try to minimize the Minkowski functional for the

state xv at the boundary of the feasible invariant setCN . This can be done by solving

the following linear program [27]

µ∗ = min
u,µ
{µ} (5.12)

subject to 



FN(Aixv+Biu)≤ µgN−maxFNDiw

Fuu≤ gu
0≤ µ ≤ 1

for all i= 1,2, . . . ,q and for all w ∈W .

Remark 5.2. The minimization of the Minkowski functional can be interpreted in

terms of a one-step Model Predictive Control method.

Remark 5.3. The non-uniqueness of the solution is a main issue regarding the im-

plementation of the global control based on the LP problem (5.12). This issue might

arise from the degeneracy of the LP problem (5.12). Multiple optima are undesir-

able, as they might lead to a fast switching between the different optimal control

actions when the LP problem (5.12) is solved on-line [105], [75]. Note that for ver-

tex control there is no such problem.
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In summary, the interpolation based controller involves the following steps

Algorithm 5.2: Interpolation based control - Implicit solution

1. Measure the current state of the system x(k).
2. Solve the LP problem (5.10). In the result one gets xv, xo and c∗ with xv ∈ Fr(CN),

xo ∈ Fr(Ωmax) and x= c∗xv+(1− c∗)xo.

3. For xv ∈ Fr(CN), the control value uv is obtained by solving the LP problem

(5.12).

4. Implement as input the control signal u= c∗uv+(1− c∗)uo.

5. Wait for the next time instant k := k+1 and the associated state measurements.

6. Go to step 1 and repeat.

It is worth noticing that for algorithm 5.2, at each time instant, two linear pro-

grams have to be solved sequentially, one is of dimension n+ 1 and the other is of

dimension m+ 1 where n and m are respectively, the dimension of state and con-

trol input. Hence algorithm 5.2 is more computationally demanding than algorithm

5.1. However if the number of vertices of the feasible set CN exceeds the number

of facets, algorithm 5.2 is preferable, due to the storage complexity of the global

vertex controller used in the evaluation of the control action in equation (5.8) in the

algorithm 5.1.

Remark 5.4. Concerning the explicit solution of the interpolation based control with

the global vertex controller, using the same argument as in Section 4.3, it can be

concluded that

• If x ∈ CN \Ωmax, the smallest value of the interpolating coefficient c will be

reached when the region CN \Ω is decomposed into partitions in form of sim-

plices with vertices either on the boundary ofCN or on the boundary of Ωmax. The

control law in each partition is piecewise affine function of state whose gains are

obtained by interpolation of control values at the vertices of the simplex.

• If x ∈Ωmax, then the control law is the optimal unconstrained controller one.

Example 5.1. Consider the following uncertain discrete-time system

x(k+1) = A(k)x(k)+B(k)u(k) (5.13)

where {
A(k) = α(k)A1 +(1−α(k))A2

B(k) = α(k)B1 +(1−α(k))B2

and

A1 =

[
1 0.1

0 1

]
, A2 =

[
1 0.2

0 1

]
, B1 =

[
0

1

]
, B2 =

[
0

1.5

]

At each time instant α(k) ∈ [0, 1] is an uniformly distributed pseudo-random num-

ber. The constraints are
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−10≤ x1 ≤ 10, −10≤ x2 ≤ 10,

−1≤ u≤ 1
(5.14)

The stabilizing feedback gain for states near the origin is chosen as

K = [−1.8112 −0.8092]

Using procedure 2.2 and procedure 2.3 in Chapter 2, one obtains the sets Ωmax

and CN as shown in Figure 5.2. Note that C27 =C28, in this case C27 is a maximal

robustly invariant set for system (5.13).
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Fig. 5.2 Feasible invariant sets for example 5.1.

The set Ωmax is presented in minimal normalized half-space representation as

Ωmax =





x ∈ R
2 :




−0.9130 −0.4079

0.9130 0.4079

0.8985 −0.4391

−0.8985 0.4391

1.0000 0.0036

−1.0000 −0.0036

0.9916 0.1297

−0.9916 −0.1297




≤




0.5041

0.5041

2.3202

2.3202

1.3699

1.3699

1.1001

1.1001








The set of vertices of CN is given by the matrix V (CN) below, together with the

control matrix Uv at these vertices

{
V (PN) = [V1 −V1]
Uv = [U1 −U1]

where
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V1 =

[
10.0000 9.7000 9.1000 8.2000 7.0000 5.5000 3.7000 2.3000 −10.0000

0 1.5000 3.0000 4.5000 6.0000 7.5000 9.0000 10.0000 10.0000

]

U1 =
[
−1 −1 −1 −1 −1 −1 −1 −1 −1

]

Solving explicitly the LP problem (5.10) by using multi-parametric linear program-

ming, a state space partition is obtained as depicted in Figure 5.3(a). The number of

polyhedral partition is Nr = 27. Merging the regions with the identical control law,

one obtains the reduced state space partition (Nr = 13) in Figure 5.3(b). In the same

Figure, different trajectories of the closed loop system are presented for different

initial conditions and different realizations of α(k).
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Fig. 5.3 Explicit solution before and after merging for the interpolation based control method and

different trajectories of the closed loop system for example 5.1.

The control law over the state space partition with 13 regions is
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u(k) =





−1 if




0.93 0.37

0.78 0.62

0.64 0.77

−0.91 −0.41

−0.90 0.44

0.58 0.81

0.71 0.71

0.86 0.51

0.20 −0.98

0.98 0.20




x(k)≤




9.56

9.21

9.28

−0.50

2.32

9.47

9.19

9.35

2.00

9.81




−1 if




0.90 −0.44

−0.00 1.00

−0.59 −0.81


x(k)≤



−2.32

10.00

−2.14




−0.92x1(k)−1.25x2(k)+2.31 if




0.90 −0.44

0.59 0.81

−0.66 −0.75


x(k)≤



−2.32

2.14

−0.95




−0.00x1(k)−0.20x2(k)+1.00 if




0.66 0.75

−1.00 0.00

0.27 −0.96


x(k)≤




0.95

10.00

−2.75




0.17x1(k)−0.80x2(k)+2.72 if




1.00 0.00

0.23 −0.97

−0.27 0.96


x(k)≤



−1.37

−2.31

2.75




0.11x1(k)−0.56x2(k)+2.13 if




0.99 0.13

0.20 −0.98

−0.23 0.97


x(k)≤



−1.10

−2.00

2.31




−1.81x1(k)−0.81x2(k) if




−0.91 −0.41

0.91 0.41

0.90 −0.44

−0.90 0.44

1.00 0.00

−1.00 −0.00

0.99 0.13

−0.99 −0.13




x(k)≤




0.50

0.50

2.32

2.32

1.37

1.37

1.10

1.10




(due to symmetry of the explicit solution, only the control law for seven regions are

reported here)

The interpolating coefficient and the control input as a piecewise affine function

of state is depicted in Figure 5.4. It is worth noticing that c∗ = 0 inside the set Ωmax.

For the initial condition x0 = [2.2954 9.9800]T , Figure 5.5(a) and Figure 5.5(b)

show the state and input trajectories as a function of time. The solid blue line is ob-

tained by using the interpolation based control method and confirms the stabilizing

as well as good performances for regulation. As a comparison, Figure 5.5(a) and

Figure 5.5(b) also show the state and input trajectories obtained by using algorithms
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(a) Interpolating coefficient (b) Control input

Fig. 5.4 The interpolating coefficient and the control input as a piecewise affine function of state

for example 5.1.

proposed by Kothare et al. in [78]. Note that algorithms in [78] require a solution of

a semidefinite problem.
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Fig. 5.5 State and input trajectories as a function of time for example 5.1. The solid blue line is

obtained by using the interpolation based control method, and the dashed red line is obtained by

using the method in [78].

Figure 5.6 presents the interpolating coefficient and the realization of α(k) as a

function of time. As expected c∗(k) is a positive and non-increasing function.

The following state and control weighting matrices were used for the LMI based

MPC algorithm in in [78]

Q1 =

[
1 0

0 1

]
, R= 1

Example 5.2. This example extends the study of the nominal case. The discrete-time

linear time-invariant system with disturbances is given as

x(k+1) =

[
1 1

0 1

]
x(k)+

[
1

1

]
u(k)+w(k) (5.15)

The state-input constraints and disturbance bounds are
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Fig. 5.6 Interpolating coefficient and the realization of α(k) as a function of time for example 5.1.

−5≤ x1 ≤ 5, −5≤ x2 ≤ 5

−1≤ u≤ 1

−0.1≤ w1 ≤ 0.1, −0.1≤ w2 ≤ 0.1

(5.16)

An LQ gain with weighting matrices

Q=

[
1 0

0 0

]
, R= 0.001

leads to a local unconstrained feedback gain

K = [−0.9970 −0.9990]

The following saturated controller u(k) = sat(Ksx(k)) is chosen as a global con-

troller with the linear gain

Ks = [−0.1408 −0.3968]

Using procedure 2.2 and procedure 2.4 for the control laws u(k) = Kx(k) and

u(k) = sat(Ksx(k)) respectively, the maximal invariant sets Ωmax and Ωs are com-

puted. The result is depicted in Figure 5.7(a). Note that the set Ωs is actually the

maximal domain of attraction for the system (5.15) with constraints (5.16), which

can be verified by comparing the equivalence between the set Ωs and its one-step

robust controlled invariant set. Figure 5.7(b) presents different state trajectories for

different initial conditions and different realizations of w(k). It can be observed that

the trajectories do not converge to the origin but to a minimal robust positively in-

variant set of the system x(k+1) = (A+BK)x(k)+w(k) that contains the origin in

the interior.

The sets Ωmax and Ωs are presented in minimal normalized half-space represen-

tation as
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Fig. 5.7 Feasible invariant sets and different trajectories of the closed loop system for example

5.2.

Ωmax =




x ∈ R

2 :




−0.7064 −0.7078

0.7064 0.7078

1.0000 −0.0020

−1.0000 0.0020


x≤




0.7085

0.7085

0.8060

0.8060








Ωs =





x ∈ R
2 :




1.0000 0

−1.0000 0

0.7071 0.7071

−0.7071 −0.7071

0.4472 0.8944

−0.4472 −0.8944

0.3162 0.9487

−0.3162 −0.9487

0.2425 0.9701

−0.2425 −0.9701

0.1961 0.9806

−0.1961 −0.9806




x≤




5.0000

5.0000

4.1719

4.1719

3.4435

3.4435

3.2888

3.2888

3.3955

3.3955

3.6281

3.6281








For the initial condition x(0) = [−5.0000 4.7000]T , Figure 5.8 shows the state and

input trajectory as a function of time.

Figure 5.9 presents the interpolating coefficient c∗(k) and the realization of w(k)
as a function of time.

5.3 Interpolation based on quadratic programming for uncertain

systems

The non-uniqueness of the solution is the main issue regarding the implementation

of the interpolation via linear programming in Section 5.2. Hence, as in the nominal

case, it is also worthwhile in the robust case to have an interpolation scheme with

strictly convex objective function.
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(a) State trajectory (b) Input trajectory

Fig. 5.8 State and input trajectory of the closed loop system as a function of time for example 5.2.
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Fig. 5.9 Interpolating coefficient and the realization of w(k) as a function of time for example 5.2.

In this section, we consider the problem of regulating to the origin system (5.1)

in the absence of disturbances. In other words, the system under consideration is of

the form

x(k+1) = A(k)x(k)+B(k)u(k) (5.17)

where the uncertainty description of A(k) and B(k) is as in (5.2).

For a given set of robust asymptotically stabilizing controllers u(k) = Kix(k),
i= 1,2, . . . ,r and corresponding maximal robust positively invariant sets Ωi ⊆ X

Ωi = {x ∈ R
n : F

(i)
o x≤ g

(i)
o } (5.18)

denote Ω as a convex hull of Ωi. It follows from the convexity of X that Ω ⊆ X ,

since Ωi ⊆ X for all i= 1,2, . . . ,r.

By employing the same design scheme in Section 4.5, the first high gain con-

troller in this enumeration will play the role of a performance controller, while the

remaining low gain controllers will be used in the interpolation scheme to enlarge

the domain of attraction. Any state x(k) ∈Ω can be decomposed as follows

x(k) = λ1(k)x̂1(k)+λ2(k)x̂2(k)+ . . .+λr(k)x̂r(k) (5.19)

where x̂i(k) ∈Ωi for all i= 1,2, . . . ,r and



5.3 Interpolation based on quadratic programming for uncertain systems 163

r

∑
i=1

λi(k) = 1, λi(k)≥ 0

Consider the following control law

u(k) = λ1(k)K1x̂1(k)+λ2(k)K2x̂2(k)+ . . .+λr(k)Kr x̂r(k) (5.20)

where ui(k) = Kix̂i(k) is the control law, associated to the invariant construction of

the set Ωi. With a slight abuse of notation, denote xi = λix̂i. Since x̂i ∈Ωi, it follows

that xi ∈ λiΩi or equivalently that the set of inequalities

F
(i)
o xi ≤ λig

(i)
o (5.21)

is verified for all i= 1,2, . . . ,r.

It holds that

x(k+1) = A(k)x(k)+B(k)u(k) = A(k)
r

∑
i=1

xi(k)+B(k)
r

∑
i=1

Kixi(k)

=
r

∑
i=1

(A(k)+B(k)Ki)xi(k)

or

x(k+1) =
r

∑
i=1

xi(k+1) (5.22)

with xi(k+1) = Acixi(k) and Aci = (A(k)+B(k)Ki).
For the given set of state and control weighting matrices Qi ∈ R

n×n, Ri ∈ R
m×m

with Qi � 0, Ri ≻ 0, consider the following set of quadratic functions

Vi(xi) = xTi Pixi, ∀i= 2,3, . . . ,r (5.23)

where Pi ∈ R
n×n and Pi ≻ 0 is chosen to satisfy

Vi(xi(k+1))−Vi(xi(k))≤−xi(k)
TQixi(k)−ui(k)

TRiui(k) (5.24)

Since xi(k+1) = Acixi(k), it follows that

AT
ciPiAci−Pi �−Qi−KT

i RiKi

By using the Schur complement, one obtains

[
Pi−Qi−KT

i RiKi A
T
ciPi

PiAci Pi

]
≻ 0 (5.25)

Since matrix Aci has a sub-unitary joint spectral radius, problem (5.25) is always

feasible [91]. It is clear that this problem reaches the minimum on one of the vertices

of Aci. Therefore the set of LMI conditions to be satisfied is following
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[
Pi−Qi−KT

i RiKi (A j+B jKi)
TPi

Pi(A j+B jKi) Pi

]
≻ 0, ∀ j = 1,2, . . . ,q (5.26)

One way to obtain matrix Pi is to solve the following LMI problem

min
Pi
{trace(Pi)} (5.27)

subject to constraints (5.26).

Define the vector z ∈ R
(r−1)(n+1) as follows

z= [xT2 . . . xTr λ2 . . . λr]
T (5.28)

With the vector z, consider the following quadratic function

V (z) =
r

∑
i=2

xTi Pixi+
r

∑
i=2

λ 2
i (5.29)

We underline the fact that the sum is built on the indices {2,3, . . . ,r}, which cor-

respond to the more poorly performing controllers. Simultaneously, the cost func-

tion is intended to diminish the influence of these controller actions in the interpo-

lation scheme toward the unconstrained optimum with λi = 0. At each time instant,

consider the following optimization problem

min
z
{V (z)} (5.30)

subject to the constraints 



F
(i)
o xi ≤ λig

(i)
o

r

∑
i=1

xi = x

r

∑
i=1

λi = 1, λi ≥ 0

and apply as input the control action u=
r

∑
i=1

Kixi.

Theorem 5.3. The interpolation based controller obtained by solving on-line the

optimization problem (5.30) guarantees recursive feasibility and robust asymptotic

stability for all initial states x(0) ∈Ω .

Proof. The proof of this theorem follows the same argumentation as the one of

theorem 4.9. Hence it is omitted here. �

As in Section 4.5, the objective function in (5.30) can be rewritten in a quadratic

form as

min
z
{zTHz} (5.31)

with
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H =




P2 0 . . . 0 0 0 . . . 0

0 P3 . . . 0 0 0 . . . 0
...

...
. . .

... 0 0 . . . 0

0 0 . . . Pr 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0
...

...
. . .

... 0 0 . . . 0

0 0 . . . 0 0 0 . . . 1




and the constraints of the optimization problem (5.30) can be rewritten as

Gz≤ S+Ex(k) (5.32)

where

G=




−F
(1)
o −F

(1)
o . . . −F

(1)
o g

(1)
o g

(1)
o . . . g

(1)
o

F
(2)
o 0 . . . 0 −g

(2)
o 0 . . . 0

0 F
(3)
o . . . 0 0 −g

(3)
o . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . F
(r)
o 0 0 . . . −g

(r)
o

0 0 . . . 0 −1 0 . . . 0

0 0 . . . 0 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . −1

0 0 . . . 0 1 1 . . . 1




S=
[
(g

(1)
o )T 0 0 . . . 0 0 0 . . . 0 1

]T

E =
[
−(F

(1)
o )T 0 0 . . . 0 0 0 . . . 0 0

]T

Hence the optimization problem (5.30) is transformed into the quadratic pro-

gramming problem (5.31) subject to the linear constraints (5.32).

It is worth noticing that for all x ∈ Ω1, the QP problem (5.31) subject to the

constraints (5.32) has a trivial solution, that is

{
xi = 0,

λi = 0,
∀i= 2,3, . . .r

Hence x1 = x and λ1 = 1 for all x∈Ω1. This means that, inside the robustly invariant

set Ω1, the interpolating controller turns out to be the optimal one in the sequence

1,2, . . . ,r.

In summary, an on-line algorithm for the interpolation based controller via

quadratic programming is
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Algorithm 5.3: Interpolation based control via quadratic programming

1. Measure the current state of the system x(k).
2. Solve the QP problem (5.31).

3. Implement as input the control action u=
r

∑
i=1

Kixi.

4. Wait for the next time instant k := k+1.

5. Go to step 1 and repeat.

Example 5.3. Consider the linear uncertain discrete time system in example (5.1)

with the same state and control constraints. Two linear feedback controllers are cho-

sen as {
K1 = [−1.8112 −0.8092]
K2 = [−0.0786 −0.1010]

(5.33)

The first controller u(k) = K1x(k) plays the role of a performance controller, while

the second controller u(k) =K2x(k) will be used for extending the domain of attrac-

tion.

Figure 5.10(a) shows the maximal robustly invariant sets Ω1 and Ω2 correspond

to the controllers K1 and K2 respectively. Figure 5.10(b) presents different state tra-

jectories of the closed loop system for different initial conditions and different real-

izations of α(k).
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(a) Feasible invariant sets (b) State trajectories

Fig. 5.10 Feasible invariant sets and different state trajectories of the closed loop system for ex-

ample 5.3.

The sets Ω1 and Ω2 are presented in minimal normalized half-space representa-

tion as

Ω1 =





x ∈ R
2 :




1.0000 0.0036

−1.0000 −0.0036

0.9916 0.1297

−0.9916 −0.1297

0.8985 −0.4391

−0.8985 0.4391

−0.9130 −0.4079

0.9130 0.4079




x≤




1.3699

1.3699

1.1001

1.1001

2.3202

2.3202

0.5041

0.5041







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Ω2 =





x ∈ R
2 :




0.9352 0.3541

−0.9352 −0.3541

0.9806 0.1961

−0.9806 −0.1961

−0.5494 −0.8355

0.5494 0.8355

1.0000 0

0 1.0000

−1.0000 0

0 −1.0000

−0.6142 −0.7892

0.6142 0.7892




x≤




9.5779

9.5779

9.8058

9.8058

8.2385

8.2385

10.0000

10.0000

10.0000

10.0000

7.8137

7.8137








With the weighting matrices

Q2 =

[
1 0

0 1

]
, R2 = 0.001

and by solving the LMI problem (5.27), one obtains

P2 =

[
17.5066 7.9919

7.9919 16.7525

]

For the initial condition x(0) = [0.3380 9.6181]T , Figure 5.11(a) and 5.11(b)

show the state and input trajectories as a function of time. Figure 5.11(a) and 5.11(b)

also show the state and input trajectories, obtained by using algorithm proposed by

Pluymers et al. in [123].
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(a) State trajectory (b) Input trajectory

Fig. 5.11 State and input trajectories of the closed loop system as a function of time for example

5.3. The solid blue line is obtained by using the proposed interpolation based control method, and

the dashed red line is obtained by using the method in [123].

The following parameters were used for the approach in [123]. The state and

control weighting matrices Q= 1, R= 0.001.

Figure 5.12(a), 5.12(b) and 5.12(c) present the interpolating coefficient λ2(k),
the objective function i.e. the Lyapunov function and the realization of α(k) as a
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function of time. It is worth noticing that here λ2(k) is allowed to increase (see for

example at time instant k = 7).
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(a) Interpolating coefficient (b) Lyapunov function
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Fig. 5.12 Interpolating coefficient, Lyapunov function and α(k) realization as a function of time

for example 5.3.

5.4 An improved interpolation based control method in the

presence of actuator saturation

In this section, in order to fully utilize the capability of actuators and guarantee the

input constraints, a saturation function is applied to the input channel. As in the pre-

vious section, we consider the case when w(k) = 0 for all k≥ 0. For simplicity, only

the single input - single output system case is considered here, although extension

to the multi-input multi-output system case is straightforward.

Since the saturation function on the input is applied, the dynamical system under

consideration is of the form

x(k+1) = A(k)x(k)+B(k)sat(u(k)) (5.34)

It is assumed that the input constraints are in the form

u(k) ∈U,U = {u ∈ R : ul ≤ u≤ uu} (5.35)
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where ul and uu are respectively the lower and the upper bound of the input u. It

is also assumed that ul and uu are constant with ul < 0 and uu > 0 such that the

origin is contained in the interior of U . With respect to the the state constraints,

their formulation remains the same as in (5.3).

From Lemma 2.1, Section 2.4.1, recall that for a given stabilizing controller

u(k) = Kx(k) and for all x such that ul ≤ Hx ≤ uu, the saturation function can be

expressed as

sat(Kx) = β (k)Kx(k)+(1−β (k))Hx(k) (5.36)

with a suitable choice of 0 ≤ β (k) ≤ 14. The instrumental vector H ∈ R
n can be

computed based on theorem 2.2. Based on procedure 2.5 in Section 2.4.1, an asso-

ciated robust polyhedral set ΩH
s can be computed, that is invariant for the system

x(k+1) = A(k)x(k)+B(k)sat(Kx(k)) (5.37)

These design principles can be exploited for a given set of robust asymptotically

stabilizing controllers u(k) =Kix(k) in order to obtain a set of auxiliary vectors Hi ∈

R
n with i= 1,2, . . . ,r and a set of robustly invariant sets Ω

Hi
s ⊆ X in the polyhedral

form

ΩHi
s = {x ∈ R

n : F
(i)
o x≤ g

(i)
o } (5.38)

Let us denote ΩS as a convex hull of the sets Ω
Hi
s . By the convexity of X , it

follows that ΩS ⊆ X , since Ω
Hi
s ⊆ X for all i= 1,2 . . . ,r.

Any state x(k) ∈ΩS can be decomposed as follows

x(k) =
r

∑
i=1

λix̂i(k) (5.39)

where x̂i(k) ∈Ω
Hi
s for all i= 1,2, . . . ,r and

r

∑
i=1

λi = 1, λi ≥ 0

As in the previous section we remark the non-uniqueness of the decomposition.

Consider the following control law

u(k) =
r

∑
i=1

λisat(Kix̂i(k)) (5.40)

Based on Lemma 2.1, one obtains

u(k) =
r

∑
i=1

λi(βiKi+(1−βi)Hi)x̂i(k) (5.41)

where 0≤ βi ≤ 1 for all i= 1,2, . . . ,r.

4 See Section 2.4.1 for more details.
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With the same notation as in the previous sections, let xi = λ x̂i. Since x̂i ∈ Ω
Hi
s ,

it follows that xi ∈ λΩ
Hi
s or

F
(i)
o xi ≤ λg

(i)
o , ∀i= 1,2, . . . ,r (5.42)

From equations (5.39) and (5.41), one gets





x=
r

∑
i=1

xi

u=
r

∑
i=1

(βiKi+(1−βi)Hi)xi
(5.43)

The first high gain controller plays the role of a performance controller, while

the remaining low gain controllers will be used to enlarge the domain of attraction.

When the control input is of the form (5.43), it is clear that u(k)∈U and sat(u(k)) =
u(k) as long as there is no active constraint. It follows that

x(k+1) = A(k)x(k)+B(k)sat(u(k)) = A(k)x(k)+B(k)u(k)

= A(k)
r

∑
i=1

xi(k)+B(k)
r

∑
i=1

(βiKi+(1−βi)Hi)xi(k)

=
r

∑
i=1

xi(k+1)

with

xi(k+1) = {A(k)+B(k)(βiKi+(1−βi)Hi)}xi(k)

or

xi(k+1) = Acixi(k) (5.44)

with Aci = A(k)+B(k)(βiKi+(1−βi)Hi).
For the given set of state and control weighting matrices Qi ∈ R

n×n and Ri ∈ R,

consider the following set of quadratic functions

Vi(xi) = xTi Pixi, i= 2,3, . . . ,r (5.45)

where matrix Pi ∈ R
n×n, Pi ≻ 0 is chosen to satisfy

Vi(xi(k+1))−Vi(xi(k))≤−xi(k)
TQixi(k)−ui(k)

TRiui(k) (5.46)

DenoteYi = βiKi+(1−βi)Hi. Based on equation (5.44), one can rewrite inequal-

ity (5.46) as

AT
ciPiAci−Pi �−Qi−Y T

i RiYi

By using the Schur complement, the previous condition can be transformed into

[
Pi−Qi−Y T

i RiYi A
T
ciPi

PiAci Pi

]
� 0

or
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[
Pi AT

ciPi
PiAci Pi

]
−

[
Qi+Y T

i RiYi 0

0 0

]
� 0

Denote Q
1
2
i and R

1
2
i as the Cholesky factor of the matrices Qi and Ri, which satisfy

(Q
1
2
i )

TQ
1
2
i = Qi and (R

1
2
i )

TR
1
2
i = Ri. The previous condition can be rewritten as

[
Pi AT

ciPi
PiAci Pi

]
−

[
(Q

1
2
i )

T Y T
i (R

1
2
i )

T

0 0

][
Q

1
2
i 0

R
1
2
i Yi 0

]
� 0

or by using the Schur complement, one obtains




Pi AT
ciPi (Q

1
2
i )

T (R
1
2
i Yi)

T

PiAci Pi 0 0

Q
1
2
i 0 I 0

R
1
2
i Yi 0 0 I



� 0 (5.47)

Clearly, the left-hand side of inequality (5.47) reaches the minimum on one of

vertices of Aci, Yi, so practically the set of LMI conditions to be checked is the

following








Pi (A j+B jKi)
TPi (Q

1
2
i )

T (R
1
2
i Ki)

T

Pi(A j+B jKi) Pi 0 0

Q
1
2
i 0 I 0

R
1
2
i Ki 0 0 I



� 0




Pi (A j+B jHi)
TPi (Q

1
2
i )

T (R
1
2
i Hi)

T

Pi(A j+B jHi) Pi 0 0

Q
1
2
i 0 I 0

R
1
2
i Hi 0 0 I



� 0

(5.48)

for all j = 1,2, . . . ,q and for all i= 2,3, . . . ,r.

Condition (5.48) is linear with respect to the matrix Pi. One way to calculate Pi is

to solve the following LMI problem

min
Pi
{trace(Pi)} (5.49)

subject to constraint (5.48).

Once the matrices Pi with i= 2,3, . . . ,r are computed, they can be used in prac-

tice for real-time control based on the resolution of a low complexity optimization

problem.

At each time instant, for a given current state x, minimize on-line the following

quadratic cost function subject to linear constraints
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min
xi,λi

{
r

∑
i=2

xTi Pixi+
r

∑
i=2

λ 2
i } (5.50)

subject to 



F
(i)
o xi ≤ λg

(i)
o ,∀i= 1,2, . . . ,r

r

∑
i=1

xi = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r.

Theorem 5.4. The control law based on solving the optimization problem (5.50)

guarantees recursive feasibility and asymptotic stability of the closed loop system

for all initial states x(0) ∈ΩS.

Proof. The proof is omitted here, since it is the same as the one of theorem 4.9. �

An on-line algorithm for the interpolation based controller between several satu-

rated controllers via quadratic programming is

Algorithm 5.4: Interpolation based control via quadratic programming

1. Measure the current state of the system x(k).
2. Solve the QP problem (5.50).

3. Implement as input the control action u=
r

∑
i=1

λisat(Kixi).

4. Wait for the next time instant k := k+1.

5. Go to step 1 and repeat.

Example 5.4. We recall the linear uncertain discrete time system

x(k+1) = (α(k)A1 +(1−α(k))A2)x(k)+(α(k)B1 +(1−α(k))B2)u(k) (5.51)

in example (5.1) with the same state and control constraints. Two linear feedback

controllers in the interpolation scheme are chosen as

{
K1 = [−1.8112 −0.8092],
K2 = [−0.3291 −0.7908]

(5.52)

Based on theorem 2.2, two auxiliary matrices are computed as

{
H1 = [−0.4058 −0.2773]
H2 = [−0.0786 −0.1010]

(5.53)

With these auxiliary matrices H1 and H2, the robustly invariant sets Ω
H1
s and

Ω
H2
s are respectively constructed for the saturated controllers u= sat(K1x) and u=
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sat(K2x), see Figure 5.13(a). Figure 5.13(b) shows different state trajectories of the

closed loop system for different initial conditions and different realizations of α(k),
obtained by solving the QP problem (5.50).
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(a) Feasible invariant sets (b) State trajectories

Fig. 5.13 Feasible invariant sets and state trajectories of the closed loop system for example 5.4.

The sets Ω
H1
s and Ω

H2
s are presented in minimal normalized half-space represen-

tation as

ΩH1
s =





x ∈ R
2 :




0.9986 0.0532

−0.9986 −0.0532

0.9791 0.2033

−0.9791 −0.2033

0.9999 0.0108

−0.9999 −0.0108

−0.4254 −0.9050

0.4254 0.9050

−0.6981 −0.7160

0.6981 0.7160

−0.8256 −0.5642

0.8256 0.5642




x≤




2.3467

2.3467

2.3273

2.3273

2.3612

2.3612

4.7785

4.7785

2.9453

2.9453

2.0346

2.0346








and

ΩH2
s =





x ∈ R
2 :




0.9352 0.3541

−0.9352 −0.3541

0.9806 0.1961

−0.9806 −0.1961

−0.5494 −0.8355

0.5494 0.8355

1.0000 0

0 1.0000

−1.0000 0

0 −1.0000

−0.6142 −0.7892

0.6142 0.7892




x≤




9.5779

9.5779

9.8058

9.8058

8.2385

8.2385

10.0000

10.0000

10.0000

10.0000

7.8137

7.8137







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With the weighting matrices

Q2 =

[
1 0

0 1

]
,R2 = 0.001

and by solving the LMI problem (4.77), one obtains

P2 =

[
17.7980 7.8968

7.8968 16.9858

]

For the initial condition x(0) = [−4.1194 9.9800]T , Figure 5.14 shows the state

and input trajectory of the closed loop system as a function of time.
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Fig. 5.14 State and input trajectory of the closed loop system as a function of time for example

5.4.

Figure 5.15 presents the interpolating coefficient λ2(k), the objective function i.e.

the Lyapunov function and the realization of α(k) as a function of time.

5.5 Interpolation via quadratic programming for uncertain

systems with disturbances - Algorithm 1

Note that all the development in Sections 5.3 ad 5.4 avoided handling of additive

disturbances due to the impossibility of dealing with the robustly asymptotic sta-

bility of the origin as an equilibrium point. In this section, an interpolation based

control method for system (5.1) with constraints (5.3) using quadratic programming

will be proposed to cope with the additive disturbance problem.

It is clear that when the disturbance is persistent, it is impossible to guarantee

the convergence x(k)→ 0 as k→ +∞. In other words, it is impossible to achieve

asymptotic stability of the closed loop system to the origin. The best that can be

hoped for is that the controller steers any initial state to some target set around the

origin. Therefore an input-to-state (ISS) stability framework proposed in [61], [99],

[88] will be used for characterizing this target region.



5.5 Interpolation via quadratic programming - Algorithm 1 175

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Time (Sampling)

λ
2

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Time (Sampling)

λ
2

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Time (Sampling)

λ
2

0 5 10 15 20 25 30

0

200

400

600

800

1000

1200

1400

Time (Sampling)

O
b

je
ct

iv
e 

fu
n

ct
io

n

0 5 10 15 20 25 30

0

200

400

600

800

1000

1200

1400

Time (Sampling)

O
b

je
ct

iv
e 

fu
n

ct
io

n

0 5 10 15 20 25 30

0

200

400

600

800

1000

1200

1400

Time (Sampling)

O
b

je
ct

iv
e 

fu
n

ct
io

n

(a) Interpolating coefficient (b) Lyapunov function
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Fig. 5.15 Interpolating coefficient, Lyapunov function and α(k) realization as a function of time

for example 5.4.

5.5.1 Input to state stability

The input to state stability framework provides a natural way to formulate questions

of stability with respect to disturbances [145]. This framework attempts to capture

the notion of bounded disturbance input - bounded state.

Before using the concepts in the specific case of the interpolation schemes, a

series of preliminary definitions is introduced.

Definition 5.2. (K −function) A real valued scalar function φ : R≥0 → R≥0 is of

class K if it is continuous, strictly increasing and φ(0) = 0.

Definition 5.3. (K∞−function) A function φ : R≥0 → R≥0 is of class K∞ if it is a

K −function and φ(s)→+∞ as s→+∞.

Definition 5.4. (K L−function) A function β : R≥0 ×R≥0 → R≥0 is of class

K L if for each fixed k ≥ 0, it follows that β (·,k) is a K function and for each

fixed s≥ 0, it follows that β (s, ·) is decreasing and β (s,k)→ 0 as k→ 0.

The ISS framework for autonomous discrete-time linear time-varying or uncer-

tain systems, as studied by Jiang and Wang in [61], is briefly reviewed next.

Consider system (5.1) with a feedback controller u(k) = Kx(k) and the corre-

sponding closed loop matrix

x(k+1) = Ac(k)x(k)+D(k)w(k) (5.54)

where Ac(k) = A(k)+B(k)K.
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Definition 5.5. (ISS stability) The dynamical system (5.54) is ISS with respect to

disturbance w(k) if there exist a K L−function β and a K −function φ such that

for all initial states x(0) and for all admissible disturbances w(k), the evolution x(k)
of system (5.54) satisfies

‖x(k)‖ ≤ β (‖x(0)‖,k)+φ

(
sup

0≤i≤k−1

‖w(i)‖

)
(5.55)

The function φ(·) is usually called an ISS gain of system (5.54).

Definition 5.6. (ISS Lyapunov function) A function V : Rn→ R≥0 is an ISS Lya-

punov function for system (5.54) is there exist K∞−functions γ1, γ2, γ3 and a

K −function θ such that

{
γ1(‖x‖)≤V (x)≤ γ2(‖x‖)
V (x(k+1))−V (x(k))≤−γ3(‖x(k)‖)+θ(‖w(k)‖)

(5.56)

Theorem 5.5. System (5.54) is input-to-state stable if it admits an ISS Lyapunov

function.

Proof. See [61], [99], [88]. �

Remark 5.5. Note that the ISS notion is related to the existence of states x such that

γ3(‖x‖)≥ θ(‖w‖)

for all w ∈W . This implies that there exists a scalar d ≥ 0 such that

γ3(d) = max
w∈W

θ(‖w‖)

or d = γ−1
3

(
max

w(k)∈W
θ(‖w(k)‖)

)
. Here γ−1

3 denotes the inverse operator of γ3.

It follows that for any ‖x(k)‖> d, one has

V (x(k+1))−V (x(k))≤−γ3(‖x(k)‖)+θ(‖w(k)‖)≤−γ3(d)+θ(‖w(k)‖)< 0

Thus the trajectory x(k) of the system (5.54) will eventually enter the region

Rx = {x ∈R
n : ‖x(k)‖ ≤ d}. Once inside, the trajectory will never leave this region,

due to the monotonicity condition imposed on V (x(k)) outside the region Rx.

5.5.2 Cost function determination

The main contribution presented in the following starts from the assumption that

using established results in control theory, one disposes a set of unconstrained robust

asymptotically stabilizing feedback controllers u(k) = Kix(k), i = 1,2, . . . ,r, such
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that for each i the joint spectral radius of the parameter varying matrix Aci(k) is less

than one where Aci(k) = A(k)+B(k)Ki.

For each controller u(k) = Kix(k), a maximal robustly positively invariant set Ωi

can be found in the polyhedral form5

Ωi =
{
x ∈ R

n : F
(i)
o x≤ g

(i)
o

}
(5.57)

for all i = 1,2, . . . ,r, such that for all x(k) ∈ Ωi, it follows that x(k+ 1) ∈ Ωi in

closed loop with the control law u(k) = Kix(k) ∈U for all w(k) ∈W . With a slight

abuse of notation, denote Ω as a convex hull of the sets Ωi, i= 1,2, . . . ,r. It follows

that Ω ⊆ X as a consequence of the fact that Ωi ⊆ X for all i= 1,2, . . . ,r.

Any state x(k) ∈Ω can be decomposed as follows

x(k) =
r

∑
i=1

λi(k)x̂i(k) (5.58)

with x̂i(k) ∈Ωi and
r

∑
i=1

λi(k) = 1, λi(k)≥ 0

One of the first remark is that according to the cardinal number r and the dispo-

sition of the regions Ωi, the decomposition (5.58) is not unique.

Denote xi(k) = λi(k)x̂i(k). Equation (5.58) can be rewritten as

x(k) =
r

∑
i=1

xi(k)

Hence

x1(k) = x(k)−
r

∑
i=2

xi(k) (5.59)

Since x̂i ∈Ωi, it follows that xi ∈ λiΩi, or in other words

F
(i)
o xi ≤ λig

(i)
o (5.60)

Consider the following control law

u(k) =
r

∑
i=1

λi(k)Kix̂i(k) =
r

∑
i=1

Kixi(k) (5.61)

where Kix̂i(k) is the control law, associated to the construction of the set Ωi.

From equations (5.59), (5.61), one gets

u(k) = K1x(k)+
r

∑
i=2

(Ki−K1)xi(k) (5.62)

5 See procedure 2.2 in Chapter 2
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It holds that

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k)

= A(k)
r

∑
i=1

λi(k)x̂i(k)+B(k)
r

∑
i=1

λi(k)Kix̂i(k)+D(k)w(k)

=
r

∑
i=1

{(A(k)+B(k)Ki)λi(k)x̂i(k)+λi(k)D(k)w(k)}

or equivalently

x(k+1) =
r

∑
i=1

xi(k+1) (5.63)

with

xi(k+1) = Act(k)xi(k)+D(k)wi(k) (5.64)

where Aci(k) = A(k)+B(k)Ki and wi(k) = λiw(k) for all i= 1,2, . . . ,r.

From equation (5.63), one obtains

x1(k+1) = x(k+1)−
r

∑
i=2

xi(k+1)

Therefore

x(k+1)−
r

∑
i=2

xi(k+1) = Ac1(k)x1(k)+D(k)w1(k)

= Ac1(k){x(k)−
r

∑
i=2

xi(k)}+D(k)w1(k)

Hence

x(k+1) = Ac1(k)x(k)+
r

∑
i=2

xi(k+1)−Ac1(k)
r

∑
i=2

xi(k)+D(k)w1(k)

From equation (5.64), one gets

x(k+1) = Ac1(k)x(k)+
r

∑
i=2

B(k)(Ki−K1)xi(k)+D(k)w(k) (5.65)

Equation (5.65) describes the one-step state prediction of system (5.1). Define

the vectors z and ω as {
z=

[
xT xT2 . . . xTr

]T

ω =
[
wT wT

2 . . . wT
r

]T

Based on equations (5.64), (5.65), one has

z(k+1) = Φ(k)z(k)+Γ (k)ω(k) (5.66)

where
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Φ(k) =




Ac1(k) B(k)(K2−K1) . . . B(k)(Kr−K1)
0 Ac2(k) . . . 0
...

...
. . .

...

0 0 . . . Acr(k)


 ,

Γ (k) =




D(k) 0 . . . 0

0 D(k) . . . 0
...

...
. . .

...

0 0 . . . D(k)




From equation (5.2), it is clear that Φ(k) and Γ (k) can be expressed as a convex

combination of Φ j and Γj, respectively





Φ(k) =
q

∑
j=1

α j(k)Φ j

Γ (k) =
q

∑
j=1

α j(k)Φ j

(5.67)

where
q

∑
j=1

α j(k) = 1, α j(k)≥ 0 and

Φ j =




A j+B jK1 B j(K2−K1) . . . B j(Kr−K1)
0 A j+B jK2 . . . 0
...

...
. . .

...

0 0 . . . A j+B jKr


 , Γj =




D j 0 . . . 0

0 D j . . . 0
...

...
. . .

...

0 0 . . . D j




For the given state and input weighting matrices Q ∈ R
n×n, R ∈ R

m×m, Q � 0

and R� 0, consider the following quadratic function

V (z) = zTPz (5.68)

where matrix P ≻ 0 is chosen to satisfy

V (z(k+1))−V (z(k))≤−x(k)TQx(k)−u(k)TRu(k)+θω(k)Tω(k) (5.69)

where θ ≥ 0.

Based on equation (5.66), the left hand side of inequality (5.69) can be written as

V (z(k+1))−V (z(k)) = (Φz+Γ ω)TP(Φz+Γ ω)− zTPz

=
[
zT ωT

][ΦT

Γ T

]
P
[

Φ Γ
][ z

ω

]
−
[
zT ωT

][P 0

0 0

][
z

ω

]
(5.70)

And the right hand side



180 5 Interpolation Based Control – Robust State Feedback Case

−x(k)TQx(k)−u(k)TRu(k)+θω(k)Tω(k)
= z(k)T (−Q1−R1)z(k)+θω(k)Tω(k)

=
[
zT ωT

][−Q1−R1 0

0 θ I

][
z

ω

] (5.71)

where

Q1 =




I

0
...

0


Q

[
I 0 . . . 0

]
,

R1 =




KT
1

(K2−K1)
T

...

(Kr−K1)
T


R
[
K1 (K2−K1) . . . (Kr−K1)

]

From equations (5.69), (5.70), (5.71) one gets

[
ΦT

Γ T

]
P
[

Φ Γ
]
−

[
P 0

0 0

]
�

[
−Q1−R1 0

0 θ I

]

or equivalently [
P−Q1−R1 0

0 θ I

]
−

[
ΦT

Γ T

]
P
[

Φ Γ
]
� 0 (5.72)

Using the Schur complement, equation (5.72) can be brought to



P−Q1−R1 0 ΦTP

0 θ I Γ TP

PΦ PΓ P


� 0 (5.73)

From equation (5.72) it is clear that the problem (5.73) is feasible if and only

if the joint spectral radius of matrix Φ(k) is less than one, or in other words, all

matrices Aci(k) are asymptotically stable.

The left hand side of the inequality (5.73) is linear with respect to αi(k) . Hence

it reaches the minimum if and only if αi(k) = 0 or αi(k) = 1. Therefore the set of

LMI conditions to be checked is as follows



P−Q1−R1 0 ΦT

j P

0 θ I Γ T
j P

PΦ j PΓj P


� 0 (5.74)

for all j = 1,2, . . . ,q.

Remark 5.6. The results presented here are based on the common Lyapunov func-

tion (5.68) but they can be relaxed by using a parameter dependent Lyapunov func-

tion concept, see [36].
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Structurally, problem (5.74) is linear with respect to the matrix P and to the scalar

θ . It is well known [88] that in the sense of the ISS gain having a smaller θ is a

desirable property. The smallest value of θ can be found by solving the following

LMI optimization problem

min
P,θ
{θ} (5.75)

subject to constraint (5.74).

5.5.3 Interpolation via quadratic programming

Once the matrix P is computed as a solution of the problem (5.75), it can be used

in practice for real time control based on the resolution of a low complexity op-

timization problem with respect to structure and complexity. The resulting control

law can be seen as a predictive control type of construction if the function (5.68) is

interpreted as an upper bound for a receding horizon cost function.

Define the vector z1 and the matrix P1 as follows

z1 =
[
xT xT2 . . . xTr λ2 λ3 . . . λr

]T

P1 =

[
P 0

0 I

]

With the vectors z1 and matrix P1, at each time instant, for a given current state

x, minimize on-line the following quadratic cost function

V1(z1) = min
z1

{zT1 P1z1} (5.76)

subject to linear constraints





F
(i)
o xi ≤ λig

(i)
o ,∀i= 1,2, . . . ,r

r

∑
i=1

xi = x,

λi ≥ 0,∀i= 1,2, . . . ,r
r

∑
i=1

λi = 1

and implement as input the control action u= K1x+
r

∑
i=2

(Ki−K1)xi.

Theorem 5.6. The control law using interpolation based on the solution of the prob-

lem (5.76) guarantees recursive feasibility and the closed loop system is ISS for all

initial states x(0) ∈Ω .

Proof. Theorem 5.6 stands on two important claims, namely the recursive feasibility

and the input-to-state stability. These can be treated sequentially.
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Recursive feasibility: It has to be proved that Fuu(k) ≤ gu and x(k+ 1) ∈ Ω for

all x(k) ∈Ω . It holds that

Fuu(k) = Fu
r

∑
i=1

λi(k)Kix̂i(k) =
r

∑
i=1

λi(k)FuKix̂i(k)

≤
r

∑
i=1

λi(k)gu = gu

and
x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k)

=
r

∑
i=1

λi(k){(A(k)+B(k)Ki)x̂i(k)+D(k)w(k)}

Since (A(k)+B(k)Ki)x̂i(k)+D(k)w(k) ∈Ωi ⊆Ω , it follows that x(k+1) ∈Ω .

ISS stability: From the feasibility proof, it is clear that if xoi (k) and λ o
i (k), i =

1,2, . . . ,r are a solution of the optimization problem (5.76) at time instant k, then

xi(k+1) = Aci(k)x
o
i (k)+D(k)wi(k)

and λi(k+ 1) = λ o
i (k) is a feasible solution at time instant k+ 1. By solving the

quadratic programming problem (5.76), one gets

V1(z
o
1(k+1))≤V1(z1(k+1))

and by using inequality (5.69), it follows that

V1(z
o
1(k+1))−V1(z

o
1(k)) ≤V1(z1(k+1))−V1(z

o
1(k))

≤−x(k)TQx(k)−u(k)TRu(k)+θω(k)Tω(k)

Hence V1(z1) is an ISS Lyapunov function of the system (5.66). It follows that

the closed loop system with the interpolation based controller is ISS. �

Remark 5.7. Matrix P can be chosen as follows

P=




P11 0 . . . 0

0 P22 . . . 0
...

...
. . .

...

0 0 . . . Prr


 (5.77)

In this case, the cost function (5.76) can be written by

V1(z1) = xTP11x+
r

∑
i=2

xTi Piixi+
r

∑
i=2

λ 2
i

Hence, when the current state x is in the set Ω1, the optimization problem (5.76) has

the trivial solution as {
xi = 0,

λi = 0
∀i= 2,3, . . . ,r
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and thus x1 = x and λ1 = 0. Therefore, the interpolation based controller turns out to

be the optimal unconstrained controller u= K1x. It follows that the minimal robust

positively invariant set R∞ of the system

x(k+1) = (A(k)+B(k)K1)x(k)+D(k)w(k)

is an attractor of the closed loop system with the interpolating controller. In the other

words, all trajectories will converge to the set R∞.

In summary, the interpolation based controller via quadratic programming in-

volves the following steps

Algorithm 5.5: Interpolation based control via quadratic programming - Algo-

rithm 1

1. Measure the current state of the system x(k).
2. Solve the QP problem (5.76).

3. Implement as input the control action u= K1x+
r

∑
i=2

(Ki−K1)xi.

4. Wait for the next time instant k := k+1.

5. Go to step 1 and repeat.

Example 5.5. This example is based on a nominal case. Consider the following dis-

crete time system

x(k+1) =

[
1 1

0 1

]
x(k)+

[
0

1

]
u(k)+w(k) (5.78)

The constraints on the state variables, the control variable and the disturbances

are {
−5≤ x1 ≤ 5, −5≤ x2 ≤ 5, −1≤ u≤ 1

−0.1≤ w1 ≤ 0.1, −0.1≤ w2 ≤ 0.1

Two linear feedback controllers are chosen as

{
K1 = [−0.6136 −1.6099]
K2 = [−0.1686 −0.4427]

(5.79)

The first controller u= K1x is an LQ controller with the weighting matrices Q= I,

R= 0.01. The second controller u= K2x is used to enlarge the domain of attraction.

The sets Ω1 and Ω2 are presented in minimal normalized half-space representation

as

Ω1 =




x ∈ R

2 :




−0.3561 −0.9344

0.3561 0.9344

0.7128 0.7014

−0.7128 −0.7014


x≤




0.5804

0.5804

1.4811

1.4811







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Ω2 =





x ∈ R
2 :




1.0000 0

−1.0000 0

−0.3559 −0.9345

0.3559 0.9345

0.7071 0.7071

−0.7071 −0.7071

−0.2207 −0.9754

0.2207 0.9754

−0.0734 −0.9973

0.0734 0.9973




x≤




5.0000

5.0000

2.1110

2.1110

3.4648

3.4648

2.2049

2.2049

2.7213

2.7213








With the weighting matrices Q = I and R = 0.01, by solving the optimization

problem (5.75) with a block diagonal matrix P, one obtains

P1 =

[
2.7055 1.7145

1.7145 2.8068

]
, P2 =

[
2.6609 3.7471

3.7471 21.9710

]

and θ = 88.0236.

Figure 5.16 shows the maximal robust positively invariant sets Ω1, Ω2, associ-

ated with the feedback gains K1 and K2, respectively. This figure also presents state

trajectories of the closed loop system for different initial conditions and different

realizations of w(k).
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Fig. 5.16 Feasible invariant sets and state trajectories of the closed loop system for example 5.5.

For the initial condition x0 = [−3.0654 2.9541]T , Figure 5.17 and Figure 5.18

present the state and input trajectories of the closed loop system as a function of

time. The solid blue line is obtained by using the interpolation based control method

and confirms the stabilizing as well as good performances for regulation.

Needless to say the literature on robust MPC for linear systems is very rich

nowadays, and one needs to confront the solutions in terms of complexity and per-

formance. In order to compare the proposed technique and the simulation results,
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we choose one of the most attractive solutions, which is the tube MPC in [87]. The

dashed red lines in Figure 5.17 and Figure 5.18 are obtained by using this technique.
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Fig. 5.17 State trajectories as functions of time for example 5.5. The solid blue line is obtained by

using the interpolation based control method, and the dashed red line is obtained by using the tube

model predictive control method in [87].
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Fig. 5.18 Input trajectories as functions of time for example 5.5. The solid blue line is obtained by

using the interpolation based control method, and the dashed red line is obtained by using the tube

model predictive control method in [87].

The following parameters were used for the tube MPC. The minimal robust pos-

itively invariant set R∞ was constructed for system

x(k+1) = (A+BK1)x(k)+w(k)

using a method in [127]. The set R∞ is depicted in Figure 5.19. The setup of the MPC
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Fig. 5.19 Minimal invariant set for example 5.5.

approach for the nominal system of the tube MPC framework is Q = I, R = 0.01.

The prediction horizon N = 10.

The objective function V1(z1) is depicted in Figure 5.20(a). It is worth noticing

that V1(z1) is only an ISS Lyapunov function. This means, when the state is near to

the origin, the function V1(z1) might be increasing at some time instants as shown

in Figure 5.20(b).
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(a) ISS Lyapunov function (b) Non-decreasing effect of the ISS Lyapunov function

Fig. 5.20 ISS Lyapunov function and non-decreasing effect of the ISS Lyapunov function as a

function of time for example 5.5.

The realization of disturbances w(k) and the interpolating coefficient λ2 are re-

spectively, depicted in Figure 5.21(a) and Figure 5.21(b) as a function of time.
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(a) w(k) realization (b) Interpolating coefficient λ2(k)

Fig. 5.21 w(k) realization and interpolating coefficient λ2(k) as a function of time for example

5.5.

5.6 Interpolation based on quadratic programming for uncertain

systems with bounded disturbances - Algorithm 2

In this section, an alternative approach to constrained control of uncertain systems

with bounded disturbances will be proposed. Following [130], any state x is decom-

posed as

x=
r

∑
i=1

xi (5.80)

where xi ∈ R
n with i = 1,2, . . . ,r are slack variables. The corresponding control

value is of the form

u=
r

∑
i=1

Kixi (5.81)

with Ki ∈ R
m×n are given such that the joint spectral radius of matrices Aci(k) is

sub-unitary where

Aci(k) = A(k)+B(k)Ki,∀i= 1,2, . . . ,r

One has

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k)

= A(k)
r

∑
i=1

xi(k)+B(k)
r

∑
i=1

Kixi(k)+D(k)w(k)

or equivalently

x(k+1) =
r

∑
i=1

xi(k+1)

where {
x1(k+1) = (A(k)+B(k)K1)x1(k)+D(k)w(k)
xi(k+1) = (A(k)+B(k)Ki)xi(k),∀i= 2,3, . . . ,r

(5.82)
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Therefore x1(k+ 1) = x(k+ 1)−
r

∑
i=2

xi(k+ 1). From the first equation of (5.82),

one gets

x(k+1)−
r

∑
i=2

xi(k+1) = Ac1(k)

(
x(k)−

r

∑
i=2

xi(k)

)
+D(k)w(k)

or

x(k+1) = Ac1(k)x(k)+B(k)
r

∑
i=2

(Ki−K1)xi(k)+D(k)w(k)

Together with the second equation of (5.82), one obtains an augmented system





x(k+1) = Ac1(k)x(k)+B(k)
r

∑
i=2

(Ki−K1)xi(k)+D(k)w(k)

xi(k+1) = Aci(k)xi(k),∀i= 2,3, . . . ,r

or in a matrix form




x(k+1)
x2(k+1)

...

xr(k+1)


= Λ(k)




x(k)
x2(k)

...

xr(k)


+Ξ(k)w(k) (5.83)

with

Λ(k) =




Ac1(k) B(k)(K2−K1) . . . B(k)(Kr−K1)
0 Ac2(k) . . . 0
...

...
. . .

...

0 0 . . . Acr(k)


 , Ξ(k) =




D(k)
0
...

0




Clearly Λ(k) and Ξ(k) can be respectively, expressed as a convex combination

of Λ j and Ξ j, i.e.

Λ(k) =
q

∑
j=1

α j(k)Λ j, Ξ(k) =
q

∑
j=1

α j(k)Ξ j (5.84)

where
q

∑
j=1

α j(k) = 1, α j(k)≥ 0 and

Λ j =




A j+B jK1 B j(K2−K1) . . . B j(Kr−K1)
0 A j+B jK2 . . . 0
...

...
. . .

...

0 0 . . . A j+B jKr


 , Ξ(k) =




D j

0
...

0




The constraints on the augmented state
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xs =




x

x2

...

xr




are [
Fx 0 . . . 0

FuK1 Fu(K2−K1) . . . Fu(Kr−K1)

]
xs ≤

[
gx
gu

]
(5.85)

For system (5.83) with constraints (5.85), using procedure 2.2, Chapter 2, one

can compute the maximal robust positively invariant set Ψa ⊂ R
rn in the form

Ψa = {xs ∈ R
rn : Faxs ≤ ga} (5.86)

such that for all xs(k) ∈Ψa, it follows that xs(k+ 1) ∈Ψa and u(k) = K1x(k) +
r

∑
i=2

(Ki−K1)xi(k) ∈U . Define Ψ ∈R
n as a set obtained by projecting the polyhedral

set Ψa onto the state space x.

Theorem 5.7. For the given system (5.1), the polyhedral set Ψ is robust controlled

positively invariant and admissible with respect to the constraints (5.3).

Proof. Clearly, for all x(k) ∈Ψ , there exist xi(k) ∈ R
n with i= 2,3, . . . ,r such that

• The augmented state xs(k) is in Ψa.

• The control action u(k) = K1x(k)+
r

∑
i=2

(Ki−K1)xi(k) is in U .

• The successor augmented state xs(k+1) is in Ψa.

Since xs(k+1) ∈Ψa, it follows that x(k+1) ∈Ψ . Hence Ψ is a robust positively

invariant set. �

Following the principle of the construction introduced in the Section 5.5, for the

given state and input weighting matrices Q ∈ R
n×n and R ∈ R

m×m, consider the

following quadratic function

V (xs) = xTs Pxs (5.87)

where the matrix P ∈ R
rn×rn and P≻ 0 is chosen to satisfy

V (xs(k+1))−V (xs(k))≤−x(k)
TQx(k)−u(k)TRu(k)+ τw(k)Tw(k) (5.88)

The left hand side of inequality (5.88) can be rewritten as

V (xs(k+1))−V (xs(k))

=
[
xTs wT

][ΛT

ΞT

]
P
[

Λ Ξ
][ xs

w

]
−
[
xTs wT

][P 0

0 0

][
xs
w

]
(5.89)

and the right hand side
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−x(k)TQx(k)−u(k)TRu(k)+ τw(k)Tw(k) =
[
xTs wT

][−Q1−R1 0

0 τI

][
xs
w

]

(5.90)

where

Q1 =




I

0
...

0


Q

[
I 0 . . . 0

]
,

R1 =




KT
1

(KT
2 −KT

1 )
...

(KT
r −KT

1 )


R
[
K1 (K2−K1) . . . (Kr−K1)

]

Substituting equations (5.89) and (5.90) into equation (5.88), one gets

[
ΛT

ΞT

]
P
[

Λ Ξ
]
−

[
P 0

0 0

]
�

[
−Q1−R1 0

0 τI

]

or equivalently [
P−Q1−R1 0

0 τI

]
−

[
ΛT

ΞT

]
P
[

Λ Ξ
]
� 0

or by using the Schur complement, one obtains



P−Q1−R1 0 ΛTP

0 τI ΞTP

PΛ PΞ P


� 0 (5.91)

The left hand side of inequality (5.91) reaches the minimum on one of the vertices

of Λ(k), Ξ(k) so the set of LMI conditions to be satisfied is the following



P−Q1−R1 0 ΛT

j P

0 τI ΞT
j P

PΛ j PΞ j P


� 0,∀ j = 1,2, . . . ,q (5.92)

Again, one would like to have the smallest value of τ . This can be done by solving

the following LMI optimization problem

min
P,τ
{τ} (5.93)

subject to constraint (5.92)

Let P be the solution of the problem (5.93). At each time instant for a given

current state x, minimize on-line the following quadratic cost function subject to

linear constraints
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min
xs
{xTs Pxs} (5.94)

subject to

Faxs ≤ ga

The control input is in the form

u= K1x+
r

∑
i=2

(Ki−K1)xi (5.95)

Theorem 5.8. The control law (5.95) where xs is a solution of the quadratic pro-

gramming problem (5.94) guarantees recursive feasibility and the closed loop sys-

tem is ISS for all initial states x(0) ∈Ψ .

Proof.

Recursive feasibility: One has to prove that u(k) ∈ U and x(k+ 1) ∈Ψ for all

x(k) ∈Ψ .

Since for all x(k) ∈Ψ , there exist xi(k) with i = 2,3, . . . ,r such that xs(k) ∈Ψa.

Hence the optimization problem (5.94) is always feasible. From equation (5.95), it

follows that

u(k) = K1x(k)+
r

∑
i=2

(Ki−K1)xi(k) ∈U

With this control input, it holds that xs(k+1) ∈Ψa. Hence x(k+1) ∈Ψ .

ISS stability: Since matrix P is a solution of the LMI problem (5.93), it is clear

that the objective function is an ISS Lyapunov function, which then subsequently

guarantees the ISS stability. �

An on-line interpolation based control via quadratic programming is

Algorithm 5.6: Interpolation based control via quadratic programming

• Measure the current state of the system x(k).
• Solve the QP problem (5.94).

• Implement as input the control action u= K1x+
r

∑
i=2

(Ki−K1)xi.

• Wait for the next time instant k := k+1.

• Go to step 1 and repeat.

Example 5.6. Consider the following uncertain linear discrete-time system

x(k+1) = A(k)x(k)+B(k)u(k)+w(k) (5.96)

where
A(k) = α(k)A1 +(1−α(k))A2,

B(k) = α(k)B1 +(1−α(k))B2
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and

A1 =

[
1 0.1

0 1

]
, B1 =

[
0

1

]
,

A2 =

[
1 0.2

0 1

]
, B2 =

[
0

2

]

At each sampling time α(k) ∈ [0, 1] is an uniformly distributed pseudo-random

number.

he constraints are

−10≤ x1 ≤ 10, −10≤ x2 ≤ 10, −1≤ u≤ 1,

−0.1≤ w1 ≤ 0.1, −0.1≤ w2 ≤ 0.1

Two feedback controllers are chosen as

{
K1 = [−1.8112 −0.8092],
K2 = [−0.0863 −0.1647]

(5.97)

Figure 5.22(a) presents the robust controlled invariant set Ψ , obtained by pro-

jecting the augmented invariant set Ψa onto the x parameter space. This figure also

shows the maximal robustly invariant sets Ω1 and Ω2 obtained by using the single

controllers K1 and K2. It can be observed that the set Ψ is different from the convex

hull of the sets Ω1 and Ω2. Figure 5.22(b) presents different state trajectories of the

closed loop system for different initial conditions and different realizations of w(k).
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(a) Feasible invariant sets (b) State trajectories

Fig. 5.22 Feasible invariant sets and state trajectories of the closed loop system for example 5.6.

The set Ψ is presented in minimal normalized half-space representation as
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Ψ =





x ∈ R
n :




−0.9806 −0.1961

−0.9578 −0.2873

−0.3711 −0.9286

−0.3583 −0.9336

−0.3428 −0.9394

−0.3307 −0.9437

0.9578 0.2873

0.3711 0.9286

0.3583 0.9336

0.3307 0.9437

0.3428 0.9394

0.9806 0.1961

1.0000 0

−1.0000 0

0.9950 0.0995

−0.9950 −0.0995




x≤




9.6979

9.5495

5.0013

4.9198

4.9974

5.1290

9.5495

5.0013

4.9198

5.1290

4.9974

9.6979

10.0000

10.0000

9.8509

9.8509








With the weighting matrices

Q=

[
1 0

0 1

]
, R= 1

and by solving the optimization problem (5.93) with a block diagonal matrix P, one

obtains

P=

[
P1 0

0 P2

]

with

P1 =

[
65.9170 17.5264

17.5264 7.6016

]
, P2 = 105

[
1.2839 0.7525

0.7525 0.7869

]
,

and τ = 120.0136.

For the initial condition x(0) = [9.6528 1.0137]T , Figure 5.23 shows the state

and input trajectories of the closed loop system as a function of time. The solid blue

lines are obtained by using interpolation based control method. The dashed red lines

are obtained by using the controller u(k) = K2x(k). From the figures, it is clear that

the performance of the closed loop system with the interpolation based controller is

better than the closed loop system with the single feedback u(k) = K2x(k)
The ISS Lyapunov function and its non-decreasing effect where states near the

origin are depicted in Figure 5.24(a) and Figure 5.24(b), respectively.

Figure 5.25 shows the α(k) and w(k) realizations as a function of time.
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Fig. 5.23 State and input trajectory of the closed loop system as a function of time for example

5.6. The solid blue lines are obtained by using interpolation based control method. The dashed red

lines are obtained by using the controller u(k) = K2x(k).
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(a) ISS Lyapunov function (b) Non-decreasing effect

Fig. 5.24 Lyapunov function and its non-decreasing effect as a function of time for example 5.6.
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Fig. 5.25 α(k) and w(k) realizations as a function of time for example 5.6.

5.7 Convex hull of invariant ellipsoids for uncertain systems

5.7.1 Interpolation based on LMI

In this subsection, a set of quadratic functions will be used for estimating the do-

main of attraction for a constrained discrete-time linear time-varying or uncertain
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systems. It will be shown that the convex hull of a set of invariant ellipsoids is in-

variant. The ultimate goal is to design a method for constructing a constrained feed-

back law based on an interpolation technique for a given set of saturated feedback

laws.

In the absence of disturbances, the system considered is of the form

x(k+1) = A(k)x(k)+B(k)u(k) (5.98)

It is assumed that the polyhedral state constraints X and the polyhedral input con-

straintsU are symmetric. Using established result in control theory and theorem 2.2,

one obtains a set of asymptotically stabilizing feedback controllers Ki ∈ R
m×n and

a set of auxiliary matrices Hi ∈ R
m×n for i= 1,2, . . . ,r such that the corresponding

ellipsoidal invariant sets E(Pi)

E(Pi) =
{
x ∈ R

n : xTP−1
i x≤ 1

}
(5.99)

is non-empty for i = 1,2, . . . ,r. Recall that for all x(k) ∈ E(Pi), it follows that

sat(Kix) ∈U and x(k+1) = A(k)x(k)+B(k)sat(Kix(k)) ∈ X . Denote ΩE ⊂R
n as a

convex hull of E(Pi). It follows that ΩE ⊆ X , since E(Pi)⊆ X .

Any state x(k) ∈ΩE can be decomposed as follows

x(k) =
r

∑
i=1

λix̂i(k) (5.100)

with x̂i(k) ∈ E(Pi) and λi are interpolating coefficients, that satisfy

r

∑
i=1

λi = 1, λi ≥ 0

Consider the following control law

u(k) =
r

∑
i=1

λisat(Kix̂i(k)) (5.101)

where sat(Kix̂i(k)) is the saturated control law, that is feasible in E(Pi).

Theorem 5.9. The control law (5.101) guarantees recursive feasibility for all x(0)∈
ΩE .

Proof. The proof of this theorem is the same as the proof of theorem 4.11 and is

omitted here. �

As in the previous Sections, the first feedback gain in the sequence will be used

for satisfying performance specifications near the origin, while the remaining gains

will be used to enlarge the domain of attraction. For the given current state x, con-

sider the following optimization problem
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min
x̂i,λi

{
r

∑
i=2

λi} (5.102)

subject to 



x̂Ti P
−1
i x̂i ≤ 1,∀i= 1,2, . . . ,r

r

∑
i=1

λix̂i = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r

Theorem 5.10. The control law using interpolation based on the objective function

in (5.102) guarantees robust asymptotic stability for all initial states x(0) ∈ΩE .

Proof. Let λ o
i be the solutions of the optimization problem (5.102) and consider the

following positive function

V (x) =
r

∑
i=2

λ o
i (k) (5.103)

for all x ∈ΩE \E(P1). V (x) is a Lyapunov function candidate.

For any x(k) ∈ΩE , one has





x(k) =
r

∑
i=1

λ o
i (k)x̂

o
i (k)

u(k) =
r

∑
i=1

λ o
i (k)sat(Kix̂

o
i (k))

It follows that

x(k+1) = A(k)x(k)+B(k)u(k)

= A(k)
r

∑
i=1

λ o
i (k)x̂

o
i (k)+B(k)

r

∑
i=1

λ o
i (k)sat(Kix̂

o
i (k))

=
r

∑
i=1

λ o
i (k)x̂i(k+1)

where x̂i(k+1) = A(k)x̂oi (k)+B(k)sat(Kix̂
o
i (k)) ∈ E(Pi) for all i= 1,2, . . . ,r.

By using the interpolation based on the optimization problem (5.102)

x(k+1) =
r

∑
i=1

λ o
i (k+1)x̂oi (k+1)

where x̂oi (k+1) ∈ E(Pi). It follows that

r

∑
i=2

λ o
i (k+1)≤

r

∑
i=2

λ o
i (k)

and V (x) is a non-increasing function.
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The contractive invariant property of the ellipsoid E(Pi) assures that there is no

initial condition x(0) ∈ΩE \E(P1) such that
r

∑
i=2

λ o
i (k+1) =

r

∑
i=2

λ o
i (k) for all k ≥ 0.

It follows that V (x) =
r

∑
i=2

λ o
i (k) is a Lyapunov function for all x ∈ΩE \E(P1).

The proof is complete by noting that inside E(P1), the robust stabilizing con-

troller u= sat(K1x̂) is contractive and thus the interpolation based controller assures

robust asymptotic stability for all x ∈ΩE . �

With a slight abuse of notation, denote xi = λix̂i. Since x̂i ∈ E(Pi), it follows

that xTi P
−1
i xi ≤ λ 2

i . The non-linear optimization problem (5.102) can be rewritten as

follows

min
xi,λi

{
r

∑
i=2

λi}

subject to 



xTi P
−1
i xi ≤ λ 2

i ,∀i= 1,2, . . . ,r
r

∑
i=1

xi = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r

or by using the Schur complement

min
xi,λi

r

∑
i=2

λi (5.104)

subject to 



[
λi xTi
xi λiPi

]
� 0,∀i= 1,2, . . . ,r

r

∑
i=1

xi = x

r

∑
i=1

λi = 1

λi ≥ 0,∀i= 1,2, . . . ,r

This can be cast in terms of an LMI optimization. In summary, at each time

instant the interpolation based controller involves the following steps
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Algorithm 5.7 Interpolation based control - Convex hull of ellipsoids

1. Measure the current state of the system x(k).
2. Solve the LMI problem (5.104). In the result, one gets xoi ∈ E(Pi) and λ o

i for all

i= 1,2, . . . ,q.

3. For xoi ∈ E(Pi), one associates the control value uoi = sat(Kix
o
i ).

4. The control value u(k) is found as a convex combination of uoi

u(k) =
r

∑
i=1

λ o
i (k)u

o
i

5.7.2 Geometrical properties of the solution

The aim of this section is to highlight the properties of the solution of the optimiza-

tion problem (5.104).

Define a vector x2r ∈ R
n and a set Ω2r ⊂ R

n as follows





x2r =
r

∑
i=2

λixi

Ω2r = Convex hull(E(Pi)), i= 2,3, . . . ,r

The following theorem holds

Theorem 5.11. For all x(k) /∈ E(P1), the solution of the optimization problem

(5.104) is reached if x(k) is written as a convex combination of two points xo1 and

xo2r, where x
o
1 ∈ Fr(E(P1)) and xo2r ∈ Fr(Ω2r).
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Fig. 5.26 Graphical illustration of the construction related to theorem 5.11.
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Proof. Suppose that x is decomposed as x = λ1x1 +λ2rx2r, where x1 ∈ E(P1) and

x2r ∈ Ω2r. If x2r is strictly inside Ω2r, by setting xo2r = Fr(Ω2r)∩ x,x2r (the inter-

section between the boundary of Ω2r and the line connecting x and x2r), one has

x= λ o
1 x

o
1 +λ o

2rx
o
2r with λ o

2r < λ2r which leads to a contradiction from the optimiza-

tion point of view. Thus the first conclusion is that in general terms, for the optimal

solution one has (xo1,x
o
2r), where xo2r ∈ Fr(Ω2r).

Analogously, if x1 is strictly inside E(P1), by setting xo1 = Fr(E(P1))∩ x,x1 (the

intersection between the boundary of E(P1) and the line connecting x and x1) one

obtains x= λ o
1 x

o
1+λ o

2rx
o
2r where λ o

1 ≥ λ1 and λ o
2r ≤ λ2r. This is again a contradiction

leading to the conclusion that for the optimal solution (xo1,x
o
2r), one has xo1 ∈ E(P1).

�

Remark 5.8. For all x(k) ∈ E(P1) the result of the optimization problem (5.104) has

a trivial solution x1(k) = x(k) and thus λ1 = 1 and λ2r = 0.

For all x(k) /∈ E(P1), the fact that xo2r belongs to the boundary of Ω2r implies that

either xoi ∈ Fr(E(Pi)) or xoi = 0. Or by denoting x̂i = λixi, one concludes that the

optimal solutions of the problem (5.104) satisfy

x̂Ti P
−1
i x̂i = λ 2

i ,∀i= 2,3, . . . ,r

and for all x(k) /∈ E(P1)
x̂T1 P

−1
1 x̂1 = λ 2

1

Hence for all x(k) /∈ E(P1), the optimal solution of the problem (5.104) satisfy

x̂Ti P
−1
i x̂i = λ 2

i ,∀i= 1,2, . . . ,r

Example 5.7. Consider the uncertain linear discrete-time system in example (5.1)

with the same state and control constraints. Two linear feedback controllers is cho-

sen as {
K1 = [−0.6451 −0.7740],
K2 = [−0.2416 −0.7824]

(5.105)

Based on theorem 2.2, two auxiliary matrices are defined as

{
H1 = [−0.0816 −0.1186]
H2 = [−0.0884 −0.0683]

(5.106)

With the auxiliary matrices H1 and H2, two invariant ellipsoids E(P1) and

E(P2) are respectively constructed for the saturated controllers u = sat(K1x) and

u = sat(K2x), see Figure 5.27(a). Figure 5.27(b) shows the state trajectories of the

closed loop system for different initial conditions and different realization of α(k).
The matrices P1 and P2 are

P1 =

[
100.0000 −64.4190

−64.4190 100.00000

]
, P2 =

[
100.0000 −32.2659

−32.2659 100.0000

]
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(a) Feasible invariant sets (b) State trajectories

Fig. 5.27 Feasible invariant sets and state trajectories of the closed loop system for example 5.7.

For the initial condition x(0) = [−2.96 − 8.08]T , Figure 5.28 shows the state

and input trajectory of the closed loop system as a function of time.
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Fig. 5.28 State and input trajectory of the closed loop system as a function of time for example

5.7.

Figure 5.29 presents the interpolating coefficient λ2(k) as a Lyapunov function

and the realization of α(k) as a function of time. As expected, the function λ2(k) is

positive and non-increasing.
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Fig. 5.29 Interpolating coefficient and α(k) realization as a function of time for example 5.7.



Chapter 6

Interpolation Based Control – Output Feedback

Case

So far, in this manuscript, state feedback control problems have been considered.

However, in practice, direct information (measurement) of the complete state of dy-

namic systems may not be available. In this case, an observer could possibly be

used for the state estimation. A serious drawback of the observer-based approaches

is the observer error, which one has to include in the uncertainty. In addition, when-

ever the constraints become active, the nonlinearity dominates the properties of the

state feedback control system and one cannot expect the separation principle to hold.

Moreover there is no guarantee that the constraints will be satisfied along the closed-

loop trajectories.

In the chapter, we revisit the problem of state reconstruction through measure-

ment and storage of appropriate previous measurements. Even if this model might

be non-minimal, it is directly measurable and will provide an appropriate model for

the control design with constraint handling guarantees. Finally it will be shown how

the interpolation-based control principles can lead to an output-feedback control

design procedure.

6.1 Problem formulation

Consider the problem of regulating to the origin the following discrete-time linear

time-varying or uncertain system, described by the input-output relationship

y(k+1)+E1y(k)+E2y(k−1)+ . . .+Esy(k− s+1)
= N1u(k)+N2u(k−1)+ . . .+Nru(k− r+1)+w(k)

(6.1)

where y(k) ∈ R
p, u(k) ∈ R

m and w(k) ∈ R
p are respectively the output, the input

and the disturbance vector. The matrices Ei for i = 1, . . . ,s and Ni for i = 1, . . . ,r

have suitable dimensions.

For simplicity, it is assumed that s = r. The matrices Ei and Ni for i = 1,2, . . . ,s

satisfy

201
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Γ =

[
E1 E2 . . . Es

N1 N2 . . . Ns

]
=

q

∑
i=1

αi(k)Γi (6.2)

where αi(k)≥ 0 and
q

∑
i=1

αi(k) = 1 and

Γi =

[
E i

1 E i
2 . . . E i

s

Ni
1 Ni

2 . . . Ni
s

]

are the extreme realizations of a polytopic model.

The output and control vectors are subject to the following hard constraints

{
y(k) ∈ Y, Y =

{
y ∈ R

p : Fyy≤ gy
}

u(k) ∈U, U = {u ∈ R
m : Fuu≤ gu}

(6.3)

where Y and U are C-sets. It is assumed that the disturbance w(k) is unknown,

additive and lie in the polytope W , i.e. w(k) ∈W , where W = {w ∈R
p : Fww≤ gw}

is a C-set.

6.2 Output feedback - Nominal case

In this section, we consider the case when the matrices E j and N j for j = 1,2, . . . ,s

are known and fixed. The case when E j and N j for j = 1,2, . . . ,s are unknown or

time-varying will be treated in the next section.

A state space representation will be constructed along the lines of [152]. All the

steps of the construction are detailed such that the presentation of the results are self

contained. The state of the system is chosen as a vector of dimension p× s with the

following components

x(k) =
[
x1(k)

T x2(k)
T . . . xs(k)

T
]T

(6.4)

where 



x1(k) = y(k)
x2(k) =−Esx1(k−1)+Nsu(k−1)
x3(k) =−Es−1x1(k−1)+ x2(k−1)+Ns−1u(k−1)
x4(k) =−Es−2x1(k−1)+ x3(k−1)+Ns−2u(k−1)
...

xs(k) =−E2x1(k−1)+ xs−1(k−1)+N2u(k−1)

(6.5)

The subcomponents of the state vector can be interpreted exclusively in terms of

the input and output contributions as
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x2(k) =−Esy(k−1)+Nsu(k−1)
x3(k) =−Es−1y(k−1)−Esy(k−2)+Ns−1u(k−1)+Nsu(k−2)
...

xs(k) =−E2y(k−1)−E3y(k−2)− . . .−Esy(k− s+1)+
+N2u(k−1)+N3u(k−2)+ . . .+Nsu(k− s+1)

One has

y(k+1) =−E1y(k)−E2y(k−1)− . . .−Esy(k− s+1)
+N1u(k)+N2u(k−1)+ . . .+Nsu(k− s+1)+w(k)

or, equivalently

x1(k+1) =−E1x1(k)+ xs(k)+N1u(k)+w(k)

The state space model is then defined in a compact linear difference equation

form as follows {
x(k+1) = Ax(k)+Bu(k)+Dw(k)
y(k) =Cx(k)

(6.6)

where

A=




−E1 0 0 . . . 0 I

−Es 0 0 . . . 0 0

−Es−1 I 0 . . . 0 0

−Es−2 0 I . . . 0 0
...

...
...

. . .
...

...

−E2 0 0 . . . I 0




, B=




N1

Ns

Ns−1

Ns−2

...

N2




, D=




I

0

0

0
...

0




,

C =
[
I 0 0 0 . . . 0

]

The model (6.6) has been elaborated such that the state to be available by simple

storage of input values and output signal measurements. One natural question is if

this important advantage will be paid in terms of dimensions. In comparison with

classical state space representations, the model (6.6) is minimal in the single-input

single-output case. However, in the multi-input multi-output cases, this realization

might not be minimal, as shown in the following example.

Consider the following single-input multi-output discrete-time system

y(k+1)+

[
−2 0

0 −2

]
y(k)+

[
1 0

0 1

]
y(k−1) =

[
0.5

2

]
u(k)+

[
0.5

1

]
u(k−1)+w(k)

(6.7)

Using the above construction, the state space model is given as follows

{
x(k+1) = Ax(k)+Bu(k)+Dw(k)
y(k) =Cx(k)

where
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A=




2 0 1 0

0 2 0 1

−1 0 0 0

0 −1 0 0


 , B=




0.5

0.5

0.5

−1.5


 , E =




1

1

0

0


 ,

C =

[
1 0 0 0

0 1 0 0

]

This realization is not minimal, since it unnecessarily replicates the common poles

of the denominators in the input-output description. There exists an alternative lower

dimensional construction like

A=

[
0 −1

1 2

]
, B=

[
0.5

0.5

]
, D=

[
0

1

]
,C =

[
0 1

1 0

]

Denote

z(k) = [ y(k)T . . . y(k− s+1)T u(k−1)T . . . u(k− s+1)T ]T (6.8)

Based on equation (6.4) the state vector x(k) is related to the vector z(k) as follows

x(k) = Tz(k) (6.9)

where

T = [T1 T2]

T1 =




I 0 0 . . . 0

0 −Es 0 . . . 0

0 −Es−1 −Es . . . 0
...

...
...

. . .
...

0 −E2 −E3 . . . −Es



, T2 =




0 0 0 . . . 0

Ns 0 0 . . . 0

Ns−1 Ns 0 . . . 0
...

...
...

. . .
...

N2 N3 N4 . . . Ns




From equation (6.9), it becomes obvious that at any time instant k, the state vari-

able vector is available exclusively though measurement and storage of appropriate

previous measurements.

Our main objective remains the treatment of the constraints (6.3). After simple

set manipulations, these can be translated in state constraints of the type xi(k) ∈ Xi
where Xi is given by





X1 = Y

X2 = Es(−X1)⊕NsU

Xi = Es+2−i(−X1)⊕Xi−1⊕Ns+2−iU, ∀i= 3, . . . ,s

(6.10)

In summary, the constraints on the state are x ∈ X , where X = {x : Fxx≤ gx}.

Example 6.1. Consider the following discrete-time system

y(k+1)−2y(k)+ y(k−1) = 0.5u(k)+0.5u(k−1)+w(k) (6.11)
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The constraints on output and input and on disturbance are

{
−5≤ y(k)≤ 5

−5≤ u(k)≤ 5

and

−0.1≤ w(k)≤ 0.1

The state space model is given by

{
x(k+1) = Ax(k)+Bu(k)+Dw(k)
y(k) =Cx(k)

where

A=

[
2 1

−1 0

]
, B=

[
0.5

0.5

]
, E =

[
1

0

]
,

and

C =
[

1 0
]

The state x(k) is available though the measured input, output and their past mea-

sured values as follows

x(k) = Tz(k)

where

z(k) =
[
y(k) y(k−1) u(k−1)

]T
,

T =

[
1 0 0

0 −1 0.5

]

The constraints on the state according to (6.10) are

{
−5≤ x1 ≤ 5

−7.5≤ x2 ≤ 7.5

Using the linear quadratic regulator with the weighting matrices

Q=CTC =

[
1 0

0 0

]
, R= 0.1

as the local controller, the feedback gain is obtained

K =
[
−2.3548 −1.3895

]

Algorithm 5.1 in Section 5.2 will be employed with the global vertex controller

in this example. Using procedures 2.2 and 2.3 Chapter 2, one obtains the set Ωmax

and CN as shown in Figure 6.1(a). Note that C3 =C4, in this case C3 is a maximal

invariant set for system (6.11). Figure 6.1(b) presents different state trajectories for

different initial conditions and different realizations of w(k).
The set of vertices of CN is given by the matrix V (CN) below, together with the

control matrix Uv
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(a) Feasible invariant sets (b) State trajectories

Fig. 6.1 Feasible invariant sets and state trajectories for example 6.1.

V (CN) =

[
−5 −0.1 5 0.1 −0.1 −5 0.1 5

7.5 7.5 −2.6 7.2 −7.2 2.6 −7.5 −7.5

]

and

Uv =
[
−5 −5 −5 −4.9 5 5 5 4.9

]

The set Ωmax is presented in minimal normalized half-space representation as

Ωmax =





x ∈ R
2 :




1.0000 0

0 1.0000

−1.0000 0

0 −1.0000

−0.8612 −0.5082

0.8612 0.5082



x≤




5.0000

7.5000

5.0000

7.5000

1.8287

1.8287








For the initial condition x(0)= [−0.1000 7.5000]T , Figure 6.2 shows the output

and input trajectory of the closed loop system as a function of time.
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(a) Output trajectory (b) Input trajectory

Fig. 6.2 Output and input trajectory of the closed loop system for example 6.1.

The interpolating coefficient and the realization of w(k) as a function of time are

depicted in Figure 6.3. As expected the interpolating coefficient, i.e. the Lyapunov

function is positive and non-increasing.
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(a) Interpolating coefficient (b) w(k) realization

Fig. 6.3 Interpolating coefficient and realization of w(k) for example 6.1.

In order to provide a term of comparison for the present approach, we present a

solution based on the well-known steady state Kalman filter. Figure 6.4(a) shows the

output trajectories using the constrained output feedback approach and the Kalman

filter + constrained state feedback approach. It is obvious that, the minimal robust

positively invariant set for the Kalman filter based approach is larger than the mini-

mal robust positively invariant set of the approach, presented in this section.

For the sake of completeness of the comparison, we mention that, the Matlab

routine with the command ’kalman’ was used for designing the Kalman filter. The

process noise is a white noise with an uniform distribution and no measurement

noise was considered.

The disturbance w is a random number with an uniform distribution, wl ≤w≤wu

where wl =−0.1 and wu = 0.1. The variance of w is given as

Cw =
(wu−wl +1)2−1

12
= 0.0367

The estimator gain of the Kalman filter is obtained as

L= [2 −1]T

The Kalman filter is used to estimate the state of the system and then this esti-

mation is used to close the loop with the interpolated control law. In contrast to the

output feedback approach, where the state is exact with respect to the measurement,

in the Kalman filter approach, an extra level of uncertainty is introduced around

the state trajectory by mixing the additive disturbances in the estimation process.

Thus there is no guarantee that the constraints are satisfied in the transitory stage.

This constraint violation effect is shown in Figure 6.4(b). Figure 6.4(c) presents the

output trajectories of our approach and the Kalman filter based approach.
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(a) State trajectories (b) Constraints violation
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(c) Output trajectories

Fig. 6.4 Comparison between the output feedback approach and the Kalman filter based approach

for example 6.1.

6.3 Output feedback - Robust case

A weakness of the approach in Section 6.2 is that the state measurement is available

if and only if the parameters of the system are known. For uncertain or time-varying

system, that is not the case. In this section, we provide another method for con-

structing the state variables, that do not use the information of the system parameter.

Based on the measured plant input, output and their past measured values, the state

of the system (6.1) is chosen as

x(k) = [y(k)T . . . y(k− s+1)T u(k−1)T . . . u(k− s+1)T ]T (6.12)

The state space model is then defined as follows

{
x(k+1) = Ax(k)+Bu(k)+Dw(k)
y(k) =Cx(k)

(6.13)

where
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A=




−E1 −E2 . . . −Es N2 . . . Ns−1 Ns

I 0 . . . 0 0 . . . 0 0

0 I . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...

0 0 . . . I 0 . . . 0 0

0 0 . . . 0 0 . . . 0 0

0 0 . . . O I . . . 0 0
...

...
. . .

...
...

. . .
...

...

0 0 . . . O 0 . . . I 0




, B=




N1

0

0
...

0

I

0
...

0




, D=




I

0

0
...

0

0

0
...

0




C =
[
I 0 0 . . . 0 0 0 . . . 0

]

From equation (6.2), it is clear that matrices A and B belong to a polytopic set

(A,B) ∈ ∆ (6.14)

where

∆ = Convex hull{(A1,B1),(A2,B2) . . . ,(Aq,Bq)}

The vertices (Ai,Bi) are obtained from the vertices of (6.2).

Although the obtained representation is non-minimal, it has the merit that the

original output-feedback problem for the uncertain plant has been transformed into

a state-feedback problem where the matrices A and B lie in the polytope defined by

(6.14) without any additional uncertainty and any state-feedback control which is

designed for this representation in the form u= Kx can be translated into a dynamic

output feedback controller.

Based on equation (6.3), it is clear that x(k) ∈ X ⊂ R
nx , with nx = n(q+ p).

Explicitly, X is given by

X = Y ×Y ×·· ·×Y︸ ︷︷ ︸
s times

×U×U×·· ·×U︸ ︷︷ ︸
s times

= {x ∈ R
nx : Fxx≤ gx}

Example 6.2. Consider the following transfer function

P(s) =
k1s+1

s(s+ k2)
(6.15)

where k1 = 0.787, 0.1≤ k2 ≤ 3. Using a sampling time of 0.1 and Euler’s first order

approximation for the derivative, the following input-output relationship is obtained

y(k+1)− (2−0.1k2)y(k)+(1−0.1k2)y(k−1) =
= 0.1k1u(k)+(0.01−0.1k2)u(k−1)+w(k)

(6.16)

The signal w(k) represents the process noise with−0.01≤w≤ 0.01. The following

constraints are considered on the measured variables

{
−10≤ y(k)≤ 10

−5≤ u(k)≤ 5
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The state x(k) is constructed as follows

x(k) = [y(k) y(k−1) u(k−1)]T

Hence, the state space model is given by

{
x(k+1) = Ax(k)+Bu(k)+Dw(k)
y(k) =Cx(k)

where

A=



(2−0.1k2) −(1−0.1k2) (0.01−0.1k1)

1 0 0

0 0 0


 , B=




0.1k1

0

1


 , D=




1

0

0




C =
[

1 0 0
]

Using the polytopic uncertainty description, one obtains

A= αA1 +(1−α)A2

where

A1 =




1.99 −0.99 −0.0687

1 0 0

0 0 0


 , A2 =




1.7 −0.7 −0.0687

1 0 0

0 0 0




At each time instant 0≤ α ≤ 1 and −0.01≤ w≤ 0.01 are uniformly distributed

pseudo-random numbers. Algorithm 5.1 in Section 5.2 will be employed with a

global saturated controller in this example. For this purpose, two controllers have

been designed

• The local linear controller u(k) = Kx(k) for the performance. In this example,

the peak to peak controller1 is chosen

K = [−22.7252 10.7369 0.8729]

• The global saturated controller u(k) = sat(Ksx(k)) for the domain of attraction

Ks = [−4.8069 4.5625 0.3365]

It is worth noticing that, this controller can be described in the output-feedback

form as

K(z) =
−22.7894+10.7369z−1

1−0.8729z−1

and respectively

Ks(z) =
−4.8069+4.5625z−1

1−0.3365z−1

1 The control law peak to peak is developed in the next Section 6.4.
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Overall the control scheme is described by a second order plant and two first

order controllers, which provide a reduced order solution for the stabilization prob-

lem.

Using procedure 2.2 and procedure 2.4 and corresponding to the control laws

u(k) = Kx(k) and u(k) = sat(Ksx(k)), the maximal robustly invariant sets Ωmax and

Ωs are computed and depicted in Figure 6.5(a). The blue set is Ωmax and the red set

is Ωs . Figure 6.5(b) presents the projection of the sets Ωmax and Ωs onto the (x1,x2)
state space.
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(a)Feasible sets (b) Projection onto (x1,x2) space

Fig. 6.5 Feasible invariant sets for example 6.2.

For the initial condition x(0) = [6.6970 7.7760 5.0000]T , Figure 6.6 presents

the output and input trajectory of the closed loop system as a function of time.
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Fig. 6.6 Output and input trajectory of the closed loop system for example 6.2.

Finally, Figure 6.7 shows the interpolating coefficient, the realization of α(k) and

w(k) as a function of time.
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Fig. 6.7 Interpolating coefficient and realization of α(k) and w(k) for example 6.2.

6.4 Some remark on local controllers

In this section, we will revisit and provide a novel method for the local control

design problem. It is clear that the local controller can be any feasible and stabilizing

controller. Usually, one would like to ensure a certain level of optimality for the local

controller, since when the state of the system reaches the local feasible invariant set,

the interpolating controller turns out to be the local controller. Note that the local

controller will not encounter constraints. Therefore it can be designed as e.g. an

optimal controller, or as a controller satisfying some performance specifications,

e.g. a QFT controller.

In the presence of persistent bounded disturbances, a controller with a good dis-

turbance rejection ability might be desirable. The measure of disturbance rejection

can be defined as the peak value of the state variable over the peak value of the dis-

turbance. This basic idea will be exploited in the design procedure presented in the

remainder of this chapter.

6.4.1 Problem formulation

Consider the problem of regulating to the origin the following discrete-time linear

time-varying and uncertain system
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x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k) (6.17)

where x(k) ∈ R
n, u(k) ∈ R

m are respectively the measurable state variable and the

control variable. The matrices A(k) ∈ R
n×n, B(k) ∈ R

n×m and D(k) ∈ R
n×d satisfy





A(k) =
q

∑
i=1

αi(k)Ai, B(k) =
s

∑
i=1

αi(k)Bi, D(k) =
q

∑
i=1

αi(k)Di,

q

∑
i=1

αi = 1, αi ≥ 0,∀i= 1, . . . ,q
(6.18)

where the matrices Ai, Bi and Di are given.

Both the state and control are subject to the following constraints:

{
x(k) ∈ X , X = {x ∈ R

n : |Fx| ≤ 1}
u(k) ∈U, U = {u ∈ R

m : |ui| ≤ uimax}
∀k ≥ 0 (6.19)

where uimax is the i− th component of the vector umax ∈ R
m. The matrix F and

the vector umax are assumed to be constant with umax > 0 such that the origin is

contained in the interior of X and U .

The signal w(k) ∈ R
d represents the additive disturbance input. Using a change

of variables

D1(k) = D(k)P
1
2 and w1(k) = P−

1
2 w(k)

for an appropriate matrix P, one can always assume that w(k)Tw(k)≤ 1.

6.4.2 Robustness analysis

Before going to the synthesis problem, let us consider the analysis problem of the

following discrete-time system2

x(k+1) = H(k)x(k)+D(k)w(k) (6.20)

where matrix H(k) ∈ R
n×n satisfies

H(k) =
q

∑
i=1

αi(k)Hi

where
q

∑
i=1

αi(k) = 1, αi(k)≥ 0,

and the matrices Hi are extreme realizations of H(k). It is assumed that w(k)Tw(k)≤
1 and ρ(H(k))< 1, where ρ(H(k)) is the joint spectral radius of matrix H(k). This

2 The autonomous version of equation (6.17)
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condition implies that when w(k) = 0, system (6.20) is robustly asymptotically sta-

ble.

Recall that the ellipsoid set E(P) is robust positively invariant for system (6.20),

if the condition x(0) ∈ E(P) implies x(k) ∈ E(P), ∀k ≥ 1. In other words, starting

from any point in E(P), the state of the system will never leave this set under any

admissible uncertainty and disturbance. The following theorem provides a necessary

and sufficient condition for invariance of ellipsoid E(P) for the system (6.20).

Theorem 6.1. The ellipsoid E(P) is invariant for system (6.20) if and only if there

exists a positive definite matrix P ∈ R
n×n satisfying the following LMI conditions



(1− τ)P 0 PHT

i

0 τI DT
i

HiP Di P


� 0

for all i= 1,2, . . . ,q and for some number 0 < τ < 1.

Proof. Define the following quadratic function

V (x(k)) = x(k)TP−1x(k)

For the invariant property of the set E(P) = {x(k)∈R
n :V (x(k))≤ 1}, it is required

that V (x(k+ 1)) ≤ 1 for all possible state trajectories and disturbance realizations.

That is

(Hx+Dw)T P−1 (Hx+Dw)≤ 1

for all x and w such that xTP−1x≤ 1 and wTw≤ 1 or

[
x

w

]T [
HTP−1H HTP−1D

DTP−1H DTP−1D

][
x

w

]
≤ 1 (6.21)

for all x and w such that

[
x

w

]T [
P−1 0

0 0

][
x

w

]
≤ 1 (6.22)

and [
x

w

]T [
0 0

0 I

][
x

w

]
≤ 1 (6.23)

By using the S−procedure [124], [67] with two quadratic constraints, the condi-

tions (6.21), (6.22), (6.23) can be equivalently rewritten as

[
HTP−1H HTP−1D

DTP−1H DTP−1D

]
�

[
τ1P

−1 0

0 τ2I

]
(6.24)

for some values of τ1 ≥ 0, τ2 ≥ 0, such that τ1 + τ2 ≤ 1.

As a consequence of the fact that P−1 ≻ 0, it follows that HTP−1H ≻ 0 and

DTP−1D ≻ 0. Hence τ1 and τ2 must be strictly positive. It is clear that if the in-
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equality (6.24) holds for some τ0
1 < 1− τ2, then it also holds for τ1 = 1− τ2, since

for all τ0
1 < 1− τ2 [

τ0
1P
−1 0

0 τ2I

]
�

[
(1− τ2)P

−1 0

0 τ2I

]

Hence, it is nonrestrictive to use τ1 = 1− τ2. Condition (6.24) is thus equivalent to

the LMI [
(1− τ)P−1 0

0 τI

]
−

[
HT

DT

]
P−1

[
H D

]
� 0

where τ = τ2, 0 < τ < 1. By using the Schur complement one has



(1− τ)P−1 0 HT

0 τI DT

H D P


� 0

or [
τI DT

D P

]
−

1

1− τ

[
0

H

]
P
[

0 HT
]
� 0

or, equivalently 

(1− τ)P 0 PHT

0 τI DT

HP D P


� 0 (6.25)

Clearly, the left hand side of condition (6.25) reaches the minimum on one of the

vertices of H(k), D(k), so the set of LMI conditions to be satisfied is the following



(1− τ)P 0 PHT

i

0 τI DT
i

HiP Di P


� 0 (6.26)

for all i= 1,2, . . . ,q and for some number 0 < τ < 1. �

Theorem 6.1 states that for all admissible uncertainties and disturbances, the set

E(P) = {x : xTP−1x≤ 1} is invariant, where P is a solution of (6.26).

Remark 6.1. It has to be mentioned that the LMI conditions for ellipsoidal sets to

be minimal invariant for continuous-time linear time-invariant systems have been

presented in [1] and for discrete time linear time invariant systems in [104], [74].

By the previous theorem we extended the results in [1], [104], [74] to discrete-

time linear time-varying and uncertain systems. In addition, the LMI conditions

(6.26) are applicable for different types of invariant ellipsoids, e.g. minimal invariant

ellipsoids, maximal invariant ellipsoids, etc.

Remark 6.2. It is clear that ellipsoid E(P), resulting from problem (6.26) might not

be contractive although being invariant. In order to ensure such additional properties

it is required that for all x(k) ∈ E(P) = {x(k) :V (x(k))≤ 1} to have

V (x(k+1))−V (x(k))< 0 (6.27)
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or in other words, the Lyapunov function V (x(k)) is strictly decreasing. By using

the same argument as the proof of theorem 6.1, condition (6.27) can be transformed

into 

(1− τ)P 0 PHT

i

0 τI DT
i

HiP Di P


≻ 0 (6.28)

for all i= 1,2, . . . ,q and for some number 0 < τ < 1.

6.4.3 Robust optimal design

The peak value of the state variable over the peak value of the disturbance is defined

as follows.

J =
‖x‖∞

‖d‖∞

(6.29)

The existence of an invariant ellipsoid E(Pp) can be used as an upper bound of the

peak to peak value in (6.29). Based on Theorem 6.1, a linear feedback controller u=
Kpx, which minimizes the size of the invariant ellipsoid E(Pp), can be designed for

system (6.17) with constraints (6.19) by solving the following optimization problem

min
Pp,Yp

{trace(Pp(τ))} (6.30)

subject to

• Invariance condition




(1− τ)Pp 0 PpA
T
i +Y T

p B
T
i

0 τI DT
i

AiPp+BiYp Di Pp


� 0 (6.31)

• Constraint satisfaction 3

+) On state: [
1 fiPp

Pp f
T
i Pp

]
� 0 (6.32)

where fi is the i− th row of the matrix F .

+) On input: [
u2
imax KipPp

PpK
T
ip Pp

]
� 0, ∀i= 1,2, . . . ,m

or [
u2
imax Yip
Y T
ip Pp

]
� 0, ∀i= 1,2, . . . ,m (6.33)

3 see Section 2.3.3
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with Yp = KpPp ∈ R
m×n, Kip is the i− th row of the matrix K and Yip = KipPp is

the i− th row of the matrix Y . The trace of a square matrix is defined to be the sum

of the elements on the main diagonal of the matrix. Minimization of the trace of

matrices corresponds to the search for the minimal sum of eigenvalues of matrices.

It is important to note that when τ is fixed, the optimization problem (6.30),

(6.31), (6.32) is an LMI problem, for which nowadays, there exist several effective

solvers, e.g. [94], [49].

Remark 6.3. At the same time, optimizing the peak to peak feedback gain Kp can

lead to a maximal invariant ellipsoid E(Pm) ⊂ X , such that for all x(k) ∈ E(Pm), it

follows that x(k+1) ∈ E(Pm) and u(k) = Kpx(k) ∈U . This can be done by solving

the following LMI problem

max
Pp
{trace(Pm(τ))} (6.34)

subject to the constraints (6.32) and (6.33).

Remark 6.4. Recall that the ellipsoid E(Pp) is the limit set of all trajectories of the

system (6.17) with the feedback gain u = Kpx, i.e. all trajectories starting from the

origin, are bounded by E(Pp) and all trajectories, starting outside E(Pp) converge

to E(Pp). On the other hand, the set E(Pm) is the admissible ellipsoid, which maxi-

mizes the cost function (6.34) for system (6.17) with the feedback gain u= Kpx.

Remark 6.5. Aside performance (here in the sense of disturbance rejection), another

desideratum in the control design is the approximation by invariant ellipsoids of the

maximal domain of attraction. It is well known that by using the LMI technique,

one can determine the largest invariant ellipsoid E(P) with respect to the inclusion

of some reference direction defined by x0, meaning that the set E(P) will include

the point θx0, where θ is a scaling factor on the direction pointed by the vector x0.

Indeed, θx0 ∈ E(P) implies that θ 2xT0 P
−1x0 ≤ 1 or by using the Schur complements

[
1 θxT0

θx0 P

]
� 0 (6.35)

Therefore the following LMI optimization problem can be used to obtain an in-

variant ellipsoid E(Pi), that contains the most important extension on a certain di-

rection defined by the reference point xi

max
Pi,Yi,θ

θ(τ) (6.36)

subject to constraints (6.28), (6.32), (6.33), (6.35).

Example 6.3. Consider the following discrete-time linear time varying system

x(k+1) = A(k)x(k)+B(k)u(k)+Dw(k) (6.37)

where
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A(k) = α(k)A1 +(1−α(k))A2, B(k) = α(k)B1 +(1−α(k))B2

with

A1 =




2.0200 1.0200 −0.9800

−0.9600 2.0400 2.0400

1.0600 3.0600 1.0600


 , A2 =




1.9800 0.9800 −1.0200

−1.0400 1.9600 1.9600

0.9400 2.9400 0.9400




B1 =




1.0100 0.0100

0.0200 1.0200

1.0300 1.0300


 , B2 =




0.9900 −0.0100

−0.0200 0.9800

0.9700 0.9700


 , D=




1

1

1




The constraint on the disturbance is w(k)Tw(k) ≤ 1. For simplicity, we do not

consider any constraints on state or on input. By solving the LMI problem (6.30) a

robust peak to peak controller u(k) = Kpx(k) is obtained with

Kp =

[
−1.9751 −1.0497 1.0249

0.9953 −1.9906 −2.0047

]

together with the invariant ellipsoid E(Pp) where

Pp =




1.0206 1.0311 1.0417

1.0311 1.0522 1.0732

1.0417 1.0732 1.1048




Figure 6.8 shows the projection of ellipsoid E(Pp) on the (x1,x2) state space.

This figure also shows the state trajectory (x1,x2) of the closed loop system as a

function of time corresponding to a certain initial point inside E(Pp). From Figure

6.8, it can be observed that the state trajectory travels closed to the boundary of the

projection of the set E(Pp).
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Fig. 6.8 Optimal robustly invariant ellipsoid and state trajectory for example 6.3.
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Chapter 7

Ball and plate system

The main purpose of this chapter is to apply the algorithms discussed in the pre-

vious chapters for the constrained control of the ball and plate experiment with an

actuation on the angles of the plate. The presence of constraints on the positions

of the ball and the angle of the plate makes the experiment an adequate benchmark

test for the proposed theories and have been used in previous constrained control

experiments, see for example [28].

7.1 System description

The ball and plate benchmark is depicted in Figure 7.1. The system consists of a

mechanical plate, two actuation mechanisms for tilting the plate around two orthog-

onal axes and a ball position sensor. The entire system is mounted on a mechanical

(steel) base plate and is supported by four vertical springs and a central joint. The

motors are operated in angular position mode for the simplicity of the modeling and

control. A pulse-width modulated signal is employed for this purpose. The servos

are powered by a 6V DC power supply.

A resistive touch sensitive glass screen that is actually meant to be a computer

touchscreen was used for sensing the ball position. It provides an extremely reliable,

accurate, and economical solution to the ball position sensing problem. The screen

consists of three layers: a glass sheet, a conductive coating on the glass sheet, and a

hard-coated conductive top-sheet.

7.2 System identification

For the identification purpose, the following notations will be used

• xr(m) − position of the ball along the x−axis,

• yr(m) − position of the ball along the y−axis,

221
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Fig. 7.1 Ball and plate system

• xmax = 0.1056m − maximum position of the ball on the x−axis,

• ymax = 0.0792m − maximum position of the ball on the y−axis,

• urx(rad) − angle of the plate around the x−axis,

• ury(rad) − angle of the plate around the y−axis,

• uxmax =±
π
6
rad − maximum angle of the plate w.r.t. the x−axis,

• uymax =±
π
6
rad − maximum angle of the plate w.r.t. the y−axis,

• g= 9.8m/s2 − acceleration due to gravity,

• x= xr

xmax
− scaled position of the ball along the x−axis, −1≤ x≤ 1,

• y= yr

ymax
− scaled position of the ball along the y−axis, −1≤ y≤ 1,

• ux =
urx

uxmax
− scaled angle of the plate around the x−axis, −1≤ ux ≤ 1,

• uy =
ury

uymax
− scaled angle of the plate around the y−axis, −1≤ uy ≤ 1.

7.2.1 The identification procedure

The dynamical model of the ball and plate system can be derived by Newton’s sec-

ond law. It is well known [46] that under the assumptions of negligible friction

between the ball and the plate and the motor friction and for small ux and uy, the

dynamics of the ball and plate system can be modeled as

{
ẍ= 5xxmax

7uxmax
gsin(ux)≈

5xxmax
7uxmax

gux

ÿ=
5xymax
7uymax

gsin(uy)≈
5yymax
7uymax

guy
(7.1)

However it was experienced experimentally that model (7.1) is not accurate

enough for capturing the dynamics of the ball and plate system. The experimen-
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tal time response is four times slower than what is given by the simulation model

(7.1).

It is assumed that the ball and plate system is a collection of decoupled dynam-

ics operating simultaneously, one is along the x−axis and the other one is along

the y−axis. Hence, similar but independent systems can be used for modeling the

ball motion in each coordinate. The problem of identifying only the system along

the x−axis, based on data from experiments, is discussed here. The identification

problem of the system along the y−axis can be developed along the same lines.

x
r

u
x

r

Fig. 7.2 Ball and plate system along the x−axis.

With a slight abuse of notation, x is also denoted as a scaled position of the ball.

The scaled difference equation of the ball and plate along the x−axis is described as

follows
x(k+1)+a1x(k)+ . . .+anx(k−n+1) =
= b1ux(k)+b2ux(k−1)+ . . .+bmux(k−m+1)

(7.2)

where x(k) is the position of the ball at time instant k, ux(k) is the angle of the plate

at time instant k, n is the unknown number of poles for the model dynamic, m− 1

is the unknown number of zeros, a1, a2, . . . , an and b1, b2, . . . , bm are the unknown

coefficients of the model.

For simplicity, it is assumed that m= n. With this assumption, equation (7.2) can

be rewritten as

x(k+1) =−a1x(k)− . . .−anx(k−n+1)+
+b1ux(k)+b2ux(k−1)+ . . .+bnux(k−n+1)

or in a compact matrix form

x(k+1) = Φ(k)θ (7.3)

where
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Φ(k) = [−x(k) . . . − x(k−n+1) ux(k) . . . ux(k−n+1)]
θ = [a1 a2 . . . an b1 b2 . . . bn]

T

Using equation (7.3), one has





x(k+2) = Φ(k+1)θ
x(k+3) = Φ(k+2)θ
...

x(k+N+1) = Φ(k+N)θ

or in matrix form, the regression can be expressed as

X = Φθ (7.4)

where

X =
[
x(k+1) x(k+2) . . . x(k+N+1)

]T
,

Φ =




x(k) . . . x(k−n+1) ux(k) . . . ux(k−n+1)
x(k+1) . . . x(k−n+2) ux(k+1) . . . ux(k−n+2)

...
. . .

...
...

. . .
...

x(k+N) . . . x(k+N−n+1) ux(k+N) . . . ux(k+N−n+1)




and N+ n+ 1 is the length of the collected data. In general, the number of equa-

tions N in (7.4) is much bigger than the number of unknown parameters ai, bi,

i = 1,2, . . . ,n. Hence, the parameters ai, bi, i = 1,2, . . . ,n, as well as the order of

system n can be obtained using the least square method minimizing the following

loss function

min
θ ,n

E(θ ,n) (7.5)

where

E(θ ,n) = (X−Φθ)T (X−Φθ) (7.6)

When n is fixed, it is well known that the optimization problem (7.5) admits a

unique solution [92]

θ = (ΦTΦ)−1ΦTX (7.7)

Once the matrices Φ and X are defined and the order of the system n is fixed, the

parameters of the system θ is easily found by using equation (7.7).

7.2.2 Identification of the ball and plate system

For the ball and plate system, the identification experiment was carried out by apply-

ing a random binary input signal, independently on each axes. This input signal was

generated by using Microchip dsPIC33F micro-controller hosted on FLEX boards.

The touchscreen was used for sensing the ball position. For recording the scaled
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position of the ball x and the scaled angle of the plate ux, the program packet Sci-

cos/Scilab was used.

It is clear that if the full control range ux is exploited, the ball will quickly hit the

border of the plate. On the other hand if ux is small, the dynamics of the ball and

plate become highly nonlinear due to friction. Here we chose the scaled input level

in between−0.45 and 0.45. For the sampling period Ts = 0.1sec, Figure 7.3 presents

the stored input ux and measured output x. The data has been obtained during 86sec.
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Fig. 7.3 Actual angle of the plate and actual position of the ball.

Figure 7.4 shows the scaled actual angle of the plate and scaled actual position

of the ball, selected from the data in Figure 7.3, when the ball did not hit the border

of the plate.
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Fig. 7.4 Actual angle of the plate and actual position of the ball when the ball did not hit the border

of the plate.
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Based on the data in Figure 7.4 and depending on n, the coefficients ai, bi, i =
1,2, . . . ,n are obtained. For choosing the reasonable order for the system, the loss

function E(θ ,n) is plotted in Figure 7.5 as a function of order.
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Fig. 7.5 Loss function value as a function of order

From Figure 7.5, it can be observed that the loss function presents a steeper

decrease from order 2 to order 3 than from order 3 to order 4. Another observation

is that from the order 4, the loss function value decreases very slowly and is almost

constant. It follows that the order of the system can be taken as either 3 or 4 with an

appropriate degree of precision.

The Nyquist plot of the ball and plate can also be used to choose the right order

of the model and to find the unknown coefficients ai, bi, i = 1,2, . . . ,n. However

due to frictions and the small size of the plate and by consequence to the constraint

activation, the frequency experiments were very difficult to realize. We therefore did

not integrate any frequency experiment in the present identification process.

For validation of the ball and plate system model, we tested the third and the

fourth order models. The results are satisfactory for both models without visible

dynamical difference. Here we will present the numerical result for the third order

model, as this will be chosen for the design purposes in the second part of the paper.

Based on equation (7.7) and data shown in Figure 7.4, the dynamic of the ball

and plate system along the x−axis is obtained

x(k+1)−1.6736x(k)+0.3632x(k−1)+0.2959x(k−2) =
= 0.0157ux(k−1)+0.0701ux(k−2)

(7.8)

It is worth noticing that the ball and plate model (7.8) is an input-delay system

with one step time delay. According to Figure 7.6, the predicted positions using

model (7.8) are close to the actual position of the plate.

For validating model (7.8), another experiment was carried out. The random bi-

nary sequence is applied as an input signal and the open-loop trajectories of the

experiment and of the simulation model compared for a validity check.
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Fig. 7.6 Comparison between the actual position of the plate and predicted position using model

(7.8)
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Fig. 7.7 Validation of model (7.8).

Figure 7.7 supports the claim that that model (7.8) is accurate enough for captur-

ing the dynamics of the ball and plate system.

Analogously, the scaled difference equation of the ball and plate along the y−axis

is described as follows

y(k+1)−1.6736y(k)+0.3632y(k−1)+0.2959y(k−2) =
= 0.0209uy(k−1)+0.0935uy(k−2)

(7.9)
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7.3 Controller design

In this section, we concentrate only on the controller design for the ball and plate

system along the x−axis. A controller along the y−axis can be easily obtained using

similar arguments.

7.3.1 State space realization

Equation (7.8) can be rewritten as

x(k+1) = 1.6736x(k)−0.3632x(k−1)−0.2959x(k−2)+
+0.0157ux(k−1)+0.0701ux(k−2)

The state variables are defined as




x1(k) = x(k)
x2(k) = x(k−1)
x3(k) = x(k−2)
x4(k) = u(k−1)
x5(k) = u(k−2)

With these state variables, the state space model is

xn(k+1) = Axn(k)+Bux(k) (7.10)

where

xn(k) =
[
x1(k) x2(k) x3(k) x4(k) x5(k)

]T

A=




1.6736 −0.3632 −0.2959 0.0157 0.0701

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0




B=
[

0 0 0 1 0
]T

The state space model (7.10) is non-minimal. One can easily find a third order

minimal state space realization for system (7.8). However using model (7.10) all the

state variables are available through output and input measurement and storage of

appropriate previous measurements. Referring to the discussion in Section 6.3, this

is an important aspect in the constrained control design, as the construction of an

estimation for a state constrained dynamics is avoided.

The constraints on the state variables and on the input variables are

−1≤ x1(k)≤ 1, −1≤ x2(k)≤ 1, −1≤ x3(k)≤ 1

−1≤ x4(k)≤ 1, −1≤ x5(k)≤ 1, −1≤ ux(k)≤ 1
(7.11)
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7.3.2 Interpolation based control

The explicit interpolation based control described in Section 4.3 will be used for

the ball and plate system. With this aim, we firstly choose the local feedback gain

ux(k) = Kxn(k) as

K = [−9.0103 4.5692 2.2384 −0.5503 −0.5303] (7.12)

It is worth noticing that this controller is equivalent to the output controller

K(z) =
−9.0103+4.5692z−1 +2.2384z−2

1+0.5503z−1 +0.5303z−2
(7.13)

The plant is third order and the local controller is second order. A reduced order

controller is obtained, which proves to be an advantage from the point of view of

real-time implementation (sampling time of 0.1sec).

For the controller ux(k) = Kxn(k) and by using procedure 2.2, the maximal in-

variant set Ωmax is obtained for the system (7.10) with constraints (7.11). Based

on the set Ωmax, the controlled invariant set CN with N = 8 is computed. Note that

C8 =C9. In this caseC8 is a maximal controlled invariant set. The sets Ωmax andCN

are illustrated in Figure 7.8, cut through x4 = 0 and x5 = 0.

Fig. 7.8 Feasible sets for the ball and plate system. Ωmax is the blue set, when applying the control

law ux = Kxn. The controlled invariant set CN is the red set.

Figure 7.9 shows the feasible sets obtained by projecting the feasible setsCN and

Ωmax onto the x1− x2 state space.

The number of vertices of the set CN is 148 and these are not reported here. The

control values at vertices are found by maximizing the control action at the vertices

of the feasible invariant set CN , while keeping the state inside the set.

Since we do not dispose of an embedded LP solver within the existing platform,

the implicit version of the interpolation based control can not be deployed for the
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Fig. 7.9 Feasible sets for the ball and plate system in the x1− x2 state space.

ball and plate system and an explicit form needs to be constructed. For the ex-

plicit version, after merging the regions with the identical control it was found that

the explicit interpolation based controller computed here coincides with a saturated

controller

ux(k) =





−1, if u1(k)≤−1

u1(k), if −1≤ u1(k)≤ 1

1, if u1(k)≥ 1

(7.14)

where

u1(k) =−9.01x(k)+4.57x(k−1)+2.24x(k−2)−0.55ux(k−1)−0.53ux(k−2)

Analogously, along the y−coordinate, the explicit interpolation based controller

is described by

uy(k) =





−1, if u2(k)≤−1

u2(k), if −1≤ u2(k)≤ 1

1, if u2(k)≥ 1

(7.15)

where

u2(k) =−6.54y(k)+3.33y(k−1)+1.63y(k−2)−0.54uy(k−1)−0.52uy(k−2)

7.4 Experimental results

The result of the implementation of the interpolation based control law is reported

in Figure 7.10, Figure 7.11 and Figure 7.12.

Finally we point the reader to the video recording of the experiment publicly

available at: http://www.youtube.com/watch?v=P91cStkCKu4.
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Fig. 7.10 Interpolation based control for the ball and plate system along the x−coordinate. Exper-

imental result.
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Fig. 7.11 Interpolation based control for the ball and plate system along the y−coordinate. Exper-

imental result.
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Fig. 7.12 Interpolation based control for the ball and plate system in the space coordinates x− y.

Experimental result.



Chapter 8

Non-isothermal continuous stirred tank reactor

This chapter deals with the control of a non-isothermal continuous stirred tank re-

actor (CSTR). The aim of this chapter is not to repeat the theoretical results for the

controller design discussed in the previous chapters, but is to show how the inter-

polation based control approach works for uncertain and multi-input multi-ouput

systems.

8.1 Continuous stirred tank reactor model

The case of a single non-isothermal continuous stirred tank reactor [136], [72], [98]

is studied in this chapter. The reactor is the one presented in various works by Perez

et al. [119] and [120] in which the exothermic reaction A →B is assumed to take

place. The heat of reaction is removed via the cooling jacket that surrounds the

reactor. The jacket cooling water is assumed to be perfectly mixed and the mass of

the metal walls is considered negligible, so that the thermal inertia of the metal is

not considered. The reactor is also assumed to be perfectly mixed and heat losses

are regarded as negligible.

The continuous linearized reactor model is the following [98]

ẋ= Acx+Bcu (8.1)

where x = [x1 x2]
T with x1 is the reactor concentration and x2 is the reactor tem-

perature, u= [u1 u2]
T with u1 is the feed concentration and u2 is the coolant flow.

Depending on the operating points, matrices Ac and Bc are defined as follows

Ac =



−F

V
− k0(t)e

− E
RTs − E

RT 2
s
k0(t)e

− E
RTsCAs

−∆Hrxn(t)k0(t)e
− E
RTs

ρCp
−F

V
− UA

VρCp
−∆Hrxn(t)

E
ρCpRT 2

s
k0(t)e

− E
RTsCAs


 ,

Bc =

[
F
V

0

0 −2.098×105 Ts−365
VρCp

] (8.2)

233
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Fig. 8.1 Continuous stirred tank reactor.

The operating parameters are shown in table 8.1

Table 8.1 The operating parameters of non-isothermal CSTR

Parameter Value Unit

F 1 m3/min

V 1 m3

ρ 106 g/m3

Cp 1 cal/g.K

∆Hrxn 107−108 cal/kmol

E/R 8330.1 K

ko 109−1010 min−1

UA 5.34×106 cal/K.min

The linearized model at steady state x1 = 0.265kmol/m3 and x2 = 394K and

under the uncertain parameters k0 and−∆Hrxn will be considered. The system (8.1)

is discretized with a sampling time of 0.15min in order to obtain the following

uncertain system [155]

{
x(k+1) = A(k)x(k)+Bu(k)
y(k) =Cx(k)

(8.3)

where

A(k) =

[
0.85−0.0986β1(k) −0.0014β1(k)
0.9864β1(k)β2(k) 0.0487+0.01403β1(k)β2(k)

]
,

B=

[
0.15 0

0 −0.912

]
, C =

[
1 0

0 1

]
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and the parameter variation bounded by

{
1≤ β1(k) =

k0

109 ≤ 10

1≤ β2(k) =−
∆Hrxn

107 ≤ 10

Matrix A(k) can be written as

A(k) = α1(k)A1 +α2(k)A2 +α3(k)A3 +α4(k)A4

where

A1 =

[
0.751 −0.0014

0.986 0.063

]
, A2 =

[
0.751 −0.0014

9.864 0.189

]

A3 =

[
−0.136 −0.014

9.864 0.189

]
, A4 =

[
−0.136 −0.014

98.644 1.451

]

and
4

∑
i=1

αi(k) = 1, αi(k)≥ 0.

The constraints on input and state are

{
−0.5≤ x1 ≤ 0.5, −20≤ x2 ≤ 20

−0.5≤ u1 ≤ 0.5, −1≤ u2 ≤ 1
(8.4)

8.2 Controller design

Algorithm 5.1 in Section 5.2 will be employed with the global vertex controller in

this example. The local feedback controller u(k) = Kx(k) is chosen as

K =

[
−2.7187 0.0259

17.2865 0.1166

]

For this controller and based on procedure 2.2, the robust maximal invariant set

Ωmax is computed. Based on the set Ωmax and by using procedure 2.3, the N−step

controlled invariant set CN with N = 7 is defined. Note that C7 = C8. In this case

C7 is a maximal controlled invariant set for system (8.3) with constraints (8.4). The

sets Ωmax and CN are depicted in Figure 8.2.

The set Ωmax is presented in minimal normalized half-space representation as

Ωmax =




x ∈ R

2 :




−1.0000 0.0095

1.0000 0.0067

1.0000 −0.0095

−1.0000 −0.0067


x≤




0.1839

0.0578

0.1839

0.0578








The set of vertices of CN together with the vertex control matrix Uv are
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Fig. 8.2 Feasible invariant sets for the interpolation based control method.

V (CN) =

[
0.3401 0.2385 −0.0822 −0.3401 −0.2385 0.0822

−20.0000 −1.8031 20.0000 20.0000 1.8031 −20.0000

]

Uv =

[
−0.5000 −0.5000 0.3534 0.5000 0.5000 −0.3540

1.0000 1.0000 1.0000 −1.0000 −1.0000 −1.0000

]

Solving the LP problem (5.10), Section 5.2 explicitly by using multi-parametric

linear programming, one obtains the state space partition in Figure 8.3.
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Fig. 8.3 State space partition of the CSTR system.

Figure 8.4 show the control inputs as a piecewise affine function of state.

The control law over state space partition is
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Fig. 8.4 Control inputs as a piecewise affine function of state of the CSTR system.

u(k)=





[
−0.50

1.00

]
if




1.00 0.01

−1.00 −0.02

−1.00 0.02


x(k)≤




0.23

0.04

−0.28




[
−1.56 0.03

0.00 0.00

]
x(k)+

[
−0.07

1.00

]
if




1.00 −0.02

1.00 0.02

−1.00 −0.01


x(k)≤




0.28

0.21

−0.06




[
−9.71 −0.10

0.00 0.00

]
x(k)+

[
1.63

1

]
if



−1.00 −0.02

1.00 0.01

−1.00 −0.01


x(k)≤



−0.21

0.21

−0.07




[
−0.57 −0.03

7.75 0.06

]
x(k)+

[
0.96

0.44

]
if




1.00 0.01

−1.00 −0.06

0 1.00


x(k)≤




0.07

−0.82

20.00




[
0 0

9.94 0.17

]
x(k)+

[
0.5

−1.35

]
if




1.00 −0.01

1.00 0.06

−1.00 −0.02


x(k)≤



−0.18

0.82

−0.04




[
0.50

−1.00

]
if



−1.00 −0.01

1.00 0.02

1.00 −0.02


x(k)≤




0.23

0.04

−0.28




[
−1.56 0.03

0.00 0.00

]
x(k)+

[
0.07

−1.00

]
if



−1.00 0.02

−1.00 −0.02

1.00 0.01


x(k)≤




0.28

0.21

−0.06




[
−9.71 −0.10

0.00 0.00

]
x(k)+

[
−1.63

−1

]
if




1.00 0.02

−1.00 −0.01

1.00 0.01


x(k)≤



−0.21

0.21

−0.07




[
−0.57 −0.03

7.75 0.06

]
x(k)+

[
−0.96

−0.44

]
if



−1.00 −0.01

−1.00 0.06

0 −1.00


x(k)≤




0.07

−0.82

20.00




[
0 0

9.94 0.17

]
x(k)+

[
−0.5

1.35

]
if



−1.00 0.01

−1.00 −0.06

1.00 0.02


x(k)≤



−0.18

0.82

−0.04




[
−2.72 0.03

17.29 0.12

]
x(k)+

[
0

0

]
if




−1.00 0.01

1.00 0.01

1.00 −0.01

−1.00 −0.01


x(k)≤




0.18

0.06

0.18

0.06


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Figure 8.5 presents state trajectories of the closed loop system for different initial

conditions and different realizations of α(k).
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Fig. 8.5 State trajectories of the closed loop system.

For the initial condition x(0) = [0.2000 − 15.0000]T , Figure 8.6 and Figure

8.7 show the state and input trajectories of the closed loop system as a function

of time. The solid blue lines are obtained by using the interpolation based control

method, while the dashed red lines are obtained by using an algorithm, proposed

by Kothare et al. in [78]. From Figure 8.7 and Figure 8.8, it can be observed that

there is no much difference between the performance of the interpolation controller

and the performance of the Kothare et al. controller. But the point here is that, the

algorithm in [78] requires a solution of a semidefinite problem. In our algorithm, the

control action is computed on-line by lookup tables and search trees. In addition, the

feasible set of Kothare’s algorithm is smaller than the feasible set of our algorithm,

as can be seen in Figure 8.8.

Figure 8.9 presents the interpolating coefficient, i.e. the Lyapunov function, while

the realizations of αi(k), i = 1,2,3,4 as a function of time are depicted in Figure

8.10.
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Fig. 8.6 State trajectories as a function of time. The solid blue lines are obtained by using the

interpolation based control method, while the dashed red lines are obtained by using an algorithm,

proposed by Kothare et al. in [78].
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Fig. 8.7 Input trajectories as a function of time. The solid blue lines are obtained by using the

interpolation based control method, while the dashed red lines are obtained by using an algorithm,

proposed by Kothare et al. in [78].



240 8 Non-isothermal continuous stirred tank reactor

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−20

−15

−10

−5

0

5

10

15

20

x
2

x
1

Interpolation based
control approach

Kothare’s approach

Fig. 8.8 Feasible sets of interpolation based control algorithm and algorithm in [78].
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Fig. 8.9 Interpolating coefficient as a function of time.
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Fig. 8.10 The realization of α(k) as a function of time.
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Chapter 9

Conclusions and Future directions

9.1 Conclusions

The central idea behind the present manuscript was to develop a framework for the

synthesis of robust constrained (output) feedback controllers. The thesis presents

the results for linear discrete-time systems. The main contributions of the thesis are

summarized below.

9.1.1 Domain of attraction

Contributions to the analysis of constrained control dynamics:

• Improve the existing methods for computing an invariant ellipsoid for uncertain

systems, by using the linear differential inclusion framework for modeling the

saturated function proposed by Hu et al. [59].

• Propose a new method for designing a saturated control law based on LMI syn-

thesis based on the same modeling framework.

• Present a new method for computing an polyhedral invariant set for a system with

a saturated controller. This polyhedral invariant set may be suitable for interpola-

tion based control via linear programming, when the vertex control scheme might

exhibit high complexity.

9.1.2 Interpolation based control

To overcome the performance weakness of the classical vertex controller on the one

hand and the complexity of predictive control laws on the other hand, we propose

interpolation, based on linear programming between the global vertex controller

and a local more aggressive controller. This interpolation scheme shares a few ba-

243
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sic principles which qualifies it as a generic one. It can be applied efficiently with

discrete-time linear uncertain or time-varying systems subject to bounded distur-

bances. A few fundamental contributions were presented:

• A simple Lyapunov function is used for the proof of closed loop stability using

the interpolation index as main ingredient.

• In comparison with the MPC method, the interpolation based control has ex-

tremely simple and fast LP-computations in the implicit case, and hence requires

less complex on-line computations. For the explicit interpolation based control

method, the control value is a piecewise affine function of state defined over a

polyhedral subdivision of the feasible set with in general fewer subdivisions than

explicit MPC.

• The solution of the interpolation via linear programming might not be unique due

to the semi-positive definiteness of the objective function, i.e. the interpolating

coefficient. Hence, the interpolation via quadratic programming was proposed in

order to guarantee the uniqueness of the optimal solutions by adapting the QP

results of Rossiter et al. [132], [123].

• For the interpolation based on quadratic programming, in order to fully utilize

the capability of actuators and guarantee the satisfaction of input constraints, a

saturation function on the input is considered for the control law deployment.

This saturation function will guarantee the constraint satisfaction of the input of

the controlled plant. Hence, an interpolation scheme between several saturated

controllers is obtained.

• In the presence of bounded disturbances, an input to state stability (ISS) frame-

work is employed. Two control algorithms were proposed. The first one is based

on the interpolation approach and the optimization problem can be placed in the

class of a semi-quadratic optimization problem. The second one is based on the

linear decomposition principle. In this case, the on-line optimization problem can

be formulated as a quadratic programming problem.

9.1.3 LMI synthesis condition

By preserving an optimization-based control framework for constrained dynamical

systems the LMI routines have been investigated, often with an interpolation back-

ground in the synthesis procedure

• A necessary and sufficient condition for invariance of ellipsoid for a discrete-time

linear uncertain or time-varying system with bounded disturbances was provided.

• A control synthesis procedure was presented, which aims to minimize the peak

value of the state variable over the peak value of the disturbance.

• For high dimensional systems, the polyhedral based control methods might be

impractical, since the number of vertices or half-spaces may lead to an expo-

nential complexity. For these cases, ellipsoids seem to be the suitable class of

sets in the interpolation. It was shown that the convex hull of a set of invariant



9.2 Future directions 245

ellipsoids for discrete time linear uncertain or parameter-varying systems with

saturated controllers is controlled invariant. A continuous feedback control law

is constructed based on solving an LMI problem at each time instant. Some geo-

metrical properties of this algorithm were highlighted.

9.2 Future directions

By using interpolation based control method, several potentially interesting future

research topics can be identified. In this section a few of the most interesting re-

search directions are highlighted.

9.2.1 Interpolation based control for non-linear system

When applying the interpolation based control technique, we limited ourselves to

linear systems. There are two main reasons for this. Firstly, it is easy to compute an

invariant set for linear systems. Secondly, for the recursive feasibility and asymp-

totic stability proof of the interpolation based control scheme, the linearity of the

systems and the convexity of the feasible regions bring important structural advan-

tages.

The analysis and control design become significantly more difficult, as soon as

we renounce at linearity and enlarge the class of dynamics to include nonlinear

models. To the best of the author’s knowledge, there is no constructive procedure

for computing the feasible invariant sets for non-linear systems. In addition, these

sets are generally non-convex. As such, even if the interpolation principle does hold,

the practical computation of the level sets and the associated vertex control will not

be straightforward.

However, if the linear assumptions are relaxed but a certain structure is preserved,

the situation is completely different for example by restricting the attention to the

class of homogeneous non-linear systems.

Definition 9.1. (Positively homogeneous system) The system

x(k+1) = f (x(k),u(k)) (9.1)

is positively homogeneous of degree p if for any real scalar λ it holds that

f (λx,λu) = λ p f (x,u)

For system (9.1) it is assumed that f (0,0) = 0. Below we provide some of our

preliminary results on the analysis and control design for the class of homogeneous

systems. With this aim, the following definition is introduced.
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Definition 9.2. (Star-shape set) [134], [135], [146] A star-shape set S is a con-

nected and generally non-convex set for which exists a non-empty kernel

kern(S) = {s ∈ S : s+λ (x− s) ∈ S,∀x ∈ S,λ ∈ [0, 1]}

A set is radiant or star-shaped at the origin if 0 ∈ kern(S). This point represents a

center point and the star shapeness property assures that any segment of line starting

from the center to an arbitrary point of the set is included in the set.

x
2

x
1

x
2

x
1

x
2

x
1

Fig. 9.1 Example of star-shaped set.

The following theorem holds true

Theorem 9.1. For system 9.1, if the set S is controlled invariant, then it is radiant

(i.e. star-shaped set at the origin).

Proof. It has to be proved that any segment of line starting from the origin to an ar-

bitrary point of S is included in the set S. For this purpose, it is sufficient to prove that

any segment connecting the origin and any point on the boundary of S is contained

in S.

Consider any point x ∈ S and let x̃ be the unique intersection of the ray starting

from the origin and passing though x with the boundary of the set S. Clearly, from

the convexity argument, it is possible to write

x= λ x̃ (9.2)

with 0≤ λ ≤ 1.

Consider the following control law

u= λ ũ (9.3)

where ũ is the control action that pushes x̃ inside S. It follows that

x(k+1) = f (x(k),u(k)) = f (λ x̃(k),λ ũ(k)) = λ p f (x̃(k), ũ(k)) ∈ S
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Hence S is a radiant set. �

Remark 9.1. It is clear that for the system 9.1 if the order p≥ 1, then the control law

(9.2), (9.3) guarantees asymptotic stability for all states x(0) ∈ S, since λ will be a

Lyapunov function. Hence we obtain a classical vertex control law for the class of

homogeneous systems.

There still remains two open questions for the constrained homogeneous system

1. Although the star-shaped topology of the controlled invariant set S being known,

tractable procedures for calculating such sets with arbitrary precision are not

known.

2. Clearly, as for the linear system case, with the vertex control law, the full control

range is exploited only on the border of the set S, with progressively smaller

control action when state approaches the origin. Therefore the time to regulate

the plant to the origin is longer than necessary. An interesting and open question

is how to interpolate between the global vertex control with some local more

aggressive controller to get a better performance.

9.2.2 Obstacle avoidance

So far, the convex state and input constraints have been considered. Non-convex

polyhedral constraints, defined as the non-convex union of a finite number of poly-

hedral sets, arise naturally in problems such as obstacle avoidance, which is inher-

ently non-convex. The importance of this problem is stressed with applications in

several engineering fields (see, for example, managing multiple agents [102], pedes-

trian behavior in the crowd [40], telescope manipulation [139] and so on) and has

been addressed using different approaches: dynamic programming [148], optimal

control, Lyapunov methods, viability theory [10]. Translated in the predictive con-

trol framework, the obstacle avoidance it is known to be a difficult problem, since it

leads to non-convex constraints handling [39].

Clearly, for linear systems, by using the interpolation based control approach it

can be shown that the optimal decomposition at time instant k is a feasible decompo-

sition at time instant k+1. Hence the objective function is a Lyapunov function or in

the other words, asymptotic stability is guaranteed. However due to the non-convex

state and control constraints, the feasible sets are generally non-convex. That may

lead to an infeasibility problem. This issue should be further investigated.
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82. Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi-parametric toolbox (mpt). Hybrid

Systems: Computation and Control pp. 121–124 (2004)
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Abstract : 

A fundamental problem in automatic control is the control of uncertain plants in the presence of input and state 
or output constraints. An elegant and theoretically most satisfying framework is represented by optimal control 
policies which, however, rarely gives an analytical feedback solution, and oftentimes builds on numerical 
solutions (approximations). 
 
Therefore, in practice, the problem has seen many ad-hoc solutions, such as override control, anti-windup, as 
well as modern techniques developed during the last decades usually based on state space models. One of the 
popular example is Model Predictive Control (MPC) where an optimal control problem is solved at each 
sampling instant, and the element of the control vector meant for the nearest sampling interval is applied. In spite 
of the increased computational power of control computers, MPC is at present mainly suitable for low-order, 
nominally linear systems. The robust version of MPC is conservative and computationally complicated, while 
the explicit version of MPC that gives an affine state feedback solution involves a very complicated division of 
the state space into polyhedral cells.  
 
In this thesis a novel and computationally cheap solution is presented for linear, time-varying or uncertain, 
discrete-time systems with polytopic bounded control and state (or output) vectors, with bounded disturbances. 
The approach is based on the interpolation between a stabilizing, outer controller that respects the control and 
state constraints, and an inner, more aggressive controller, designed by any method that has a robustly positively 
invariant set within the constraints. A simple Lyapunov function is used for the proof of closed loop stability.  
 
In contrast to MPC, the new interpolation based controller is not necessarily employing an optimization criterion 
inspired by performance. In its explicit form, the cell partitioning is simpler that the MPC counterpart. For the 
implicit version, the on-line computational demand can be restricted to the solution of one linear program or 
quadratic program. Several simulation examples are given, including uncertain linear systems with output 
feedback and disturbances. Some examples are compared with MPC. The control of a laboratory ball-and-plate 
system is also demonstrated. It is believed that the new controller might see wide-spread use in industry, 
including the automotive industry, also for the control of fast, high-order systems with constraints. 
 
Résumé : 

Un problème fondamental à résoudre en Automatique réside dans la commande des systèmes incertains soumis à 
des contraintes portant sur ses entrées, ses états ou ses sorties. Ce problème peut être théoriquement résolu au 
moyen d’une commande optimale. Cependant la commande optimale par principe n’offre que très rarement une 
solution sous forme de commande par retour d’état ou retour de sortie et ne fournit souvent une trajectoire 
optimale que par l’intermédiaire d’une résolution numérique approchée. 
 
Par conséquent, dans la pratique, le problème peut être approché par de nombreuses méthodes, telles que la 
commande dite « override » ou utilisant des dispositifs « d’anti-windup ». Une autre solution, qui a gagné en 
popularité au cours des dernières décennies, est la commande prédictive. Cette méthode propose de résoudre un 
problème de commande optimale à chaque instant d’échantillonnage, appliquant uniquement le premier 
échantillon de la séquence de commande obtenue selon le principe de l’horizon glissant. En dépit de 
l’augmentation de la puissance de calcul temps-réel, la commande prédictive est à l’heure actuelle 
principalement indiquée lorsque l’ordre du système est faible, bien connu, et souvent dans un cadre linéaire. La 
version robuste de la commande prédictive s’avère souvent conservatrice et complexe à mettre en œuvre, alors 
que la version explicite de la commande prédictive donnant une solution affine par morceaux implique un 
fractionnement de l’espace d’état en régions polyédrales, fractionnement souvent complexe. 
 
Dans cette thèse, une solution élégante et peu coûteuse en temps de calcul est présentée dans un contexte de 
systèmes linéaires, variant dans le temps ou incertains. Les développements se concentrent sur les systèmes à 
temps discret avec contraintes polyédrales sur l’entrée et l’état (ou la sortie), sujets à des perturbations bornées. 
Cette solution est fondée sur l’interpolation entre un correcteur stabilisant dédié à la région extérieure qui 
respecte les contraintes sur l’entrée et l’état, et un autre relatif à la région intérieure, ce dernier ayant un gain plus 
élevé, conçu par n’importe quelle méthode classique, ayant un ensemble robuste positif invariant associé à 
l’intérieur des contraintes. Une simple fonction de Lyapunov est utilisée afin d’apporter la preuve de la stabilité 
en boucle fermée. 
 


