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Abstract

This thesis discusses the elastic and inelastic scattering in monolayer graphene, investi-

gated by means of microwave carrier dynamics and noise.

We study in a first part the high frequency properties of graphene field-effect transis-

tors on different substrates. Particular interest lies in the figures of merit like e.g. the

transit frequency fT , defining the transistor’s current amplification capabilities, and the

transconductance gm representing its gate sensitivity. High values are obtained for both

parameters in GHz measurements. We find in particular that these figures remain sub-

stantial even in miniaturised devices.

We introduce top-gated graphene field-effect capacitors as a probe of the elastic scatter-

ing mechanisms in graphene. Employing similar techniques as in the transistor exper-

iments, we are able to directly access the diffusion constant D and its dependence on

carrier density. The latter is the signature of the scattering mechanism present in the

graphene sheet. Our novel GHz experiments reveal a constant transport scattering time

as a function of energy which is in disagreement with conventional theoretical predic-

tions, but supports the random Dirac mass disorder mechanism.

Furthermore, we study inelastic scattering of charge carriers by acoustic phonons in

graphene which is among the first realisations of such an experiment in a genuine two-

dimensional geometry. A broadband cryogenic noise thermometry setup is used to detect

the electronic fluctuations, the current noise, from which we extract the average elec-

tron temperature Te as a function of Joule power P . At high bias we find P ∝ ΣT 4
e as

predicted by theory and which is the tell-tale sign of a 2D phonon cooling mechanism.

From a heat equation analysis of data in a broad bias range, we extract accurate values

of the electron-acoustic phonon coupling constant Σ. Our measurements point to an

important effect of lattice disorder in the electron-phonon energy relaxation.
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Chapter 1

Introduction

In 2010 the Nobel prize in physics was awarded to K. Novoselov and A. Geim from the

University of Manchester for ”groundbreaking experiments regarding the two-dimensional

material graphene” [1]. In their seminal 2004 paper ”Electric Field Effect in Atomically

Thin Carbon Films” [2] and its follow-up [3] they were able to not only obtain atomically

thin carbon layers (coined graphene by Boehm et al. in 1986 according to [4]), but also

to demonstrate that the carriers in this new, purely two-dimensional material behave

like massless Dirac fermions. This new 2D material had been described theoretically

long before the initial experimental discovery, but it was only after the aforementioned

publications that the ”graphene gold rush” [5] truly began: Thanks to the easy technique

of obtaining graphene layers by repeated peeling with ordinary adhesive tape, many

laboratories - including ours, the Laboratoire Pierre Aigrain - begun research into the

film of hexagonally arranged carbon atoms. Prior techniques like the first chemical

exfoliation by Boehm et al. in 1962 [6] or epitaxial growth from silicon carbide wafers

[7] pioneered at Georgia Tech University require more equipment and knowledge than the

simple exfoliation method. The result of any of the above ways of obtaining graphene is

a unique material: Graphene is the first 2D crystal of atomic thickness, while still being

stronger than e.g. steel; it conducts electricity better than most other conventional

conductors; being one atom thin, it is transparent to light 1 and also bendable while

still keeping its unique properties.

It is especially graphene’s high conductivity combined with the Dirac fermion nature of

its charge carrier that has sparked the interest for this work: Use graphene to realise a

sub-nanosecond single charge detector. Although the actual device has not been built

yet, we present in the following key elements needed to predict the capabilities of said

detector and facilitate its design.

1Note that even though monolayer graphene is transparent to light it is also quite absorbing at 2.8%
per layer.

1
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We will begin this thesis by introducing the general properties of monolayer graphene

(MLG), in particular its atomic structure and the resulting linear energy dispersion. The

latter is obtained from a tight binding approximation and allows us to calculate further

properties of interest, as e.g. the density of states and charge carrier concentration

[8, 9]. It is the linear dispersion relation that will lead to the description of charge

carriers in MLG in the framework of the Dirac equation. To point out MLG’s peculiarity

among related materials, we will compare its properties especially to the ones of two-

dimensional electron gases (2DEGs) in semiconductor heterostructures. We will then

briefly introduce the different types of phonons in graphene [10], before we continue

with the description of electronic fluctuations in mesoscopic conductors. Of special

interest here is the so-called shot noise that arises from the granularity of charge carriers

[11, 12]. The chapter concludes with an overview over the state-of-the-art of single

electron detection: The main principles and devices, like e.g. single electron transistors

(SETs) [13] or carbon nanotube field-effect transistors (CNT-FETs) [14], are presented,

as well as a short description of necessary conditions to be met for sub-nanosecond single

charge detection in graphene based detectors.

In chapter 2 we present the main principles of the nano-fabrication of our devices. The

samples are generally made from exfoliated graphene, employing the famous micro-

cleaving technique developed by the Manchester group [2]. Electric contacts and high

frequency waveguides are patterned by means of electron-beam (e-beam) lithography

followed by a metallisation step. If required the graphene flakes can be tailored into

a desired shape using e-beam lithography and reactive ion etching. Depending on the

sample design and purpose, the samples are either back- or top-gated. In the first

case, doped silicon is chosen as substrate separated from the graphene channel by a

silicon oxide layer. In the top-gate design the gate electrode is formed by means of

e-beam lithography after the deposition of a thin AlOx dielectric layer. Furthermore,

we present in this chapter a wet transfer technique developed at Delft university [15]

that allows us to produce stacks of thin exfoliated layers.

Chapters 3 to 5 finally contain the experimental results we could obtain in the areas of

radio-frequency graphene field-effect transistors (RF-GFETs), elastic scattering mecha-

nisms probed in a graphene field-effect capacitor (GFEC) and last but not least inelastic

scattering of charge carriers and acoustic phonons in graphene. We will start each topic

by introducing the necessary formulas and concepts and the device specific fabrication

details. Then, we will present our experimental results and analyse them with respect

to expected behaviour introduced beforehand. In the paragraphs below we will give a

short overview over the main results included in this work.
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Figure 1.1: GHz characteristics of sapphire RF-GFET. a) RF transconductance
as function of Vds at Vg = −4.3 V. b) Current gain as function of frequency at
Vds = −1.1 V and Vg = −5.2 V, Blue squares show raw data with fT ∼ 3 GHz,
red dots correspond to de-embedded data with fT ∼ 80 GHz. The inset displays
the maximum available gain (MAG) and the unilateral power gain U as function of
frequency. The solid line in (b) and the inset indicates a 1/f dependence. c) Scan-
ning electron microscope picture of sample GoS. The graphene layer is highlighted

in green.

Microwave graphene field-effect transistors We start off with a study of the high

frequency comportment of RF-GFETs. Two types of samples are investigated: The first

is a graphene micro-transistor on sapphire substrate [16], the second a graphene nano-

transistor on Si/SiO2. Both samples are top-gated with a thin AlOx dielectric layer

separating the electrode from the channel. Electric contacts are made from Pd, ensur-

ing low interface resistance. Each transistor is situated in a 50 Ω adapted waveguide

allowing for precise scattering parameter measurements in the GHz range. Both tran-

sistors are characterised at DC and RF using a GHz adapted probe station and suitable



4 Chapter 1: Introduction

de-embedding technique. We focus on the RF-GFETs transconductance gm = dIds/dVg,

i.e. the sensitivity of current with respect to changes in gate potential, and the so-called

transit frequency fT = gm/(2πCg) (here, Cg represents the gate capacitance) marking

the limit of current gain. Figs. 1.1(a) and 1.2(a) display the RF transconductance in the

graphene-on-sapphire (GoS) and graphene-on-SiO2 (GoSiO) samples, respectively. For

the first we find gRFm /(2WVds) ≃ 0.14 mSµm−1V−1 outperforming its DC counterpart,

which is not commonly seen in RF-GFETs and attributed to the fully insulating sapphire

substrate removing most parasitic contributions. Normalised to voltage and unit area

we obtain a maximum RF transconductance of gRF,maxm ≃ 1 mSV−1µm−1 for sample

GoSiO, which is close to the maximum reported value for graphene at high frequencies

(see table 3.2) and closing in on Si and II-V structures [17].

As mentioned before, the second most interesting figure of merit of our RF-GFETs is

the transit frequency fT . It is the frequency at which the current gain |H21| becomes

unity and marks the end of a transistor’s current amplification capabilities [18]. In sam-

ple GoS we measure fT ≃ 80 GHz close to the estimated value using gRFm and Cg (see

Fig. 1.1(b)). The gate length here is Lg = 200 nm. It can be shown that fT ∝ L−2
g

(for channel diffusion limited devices [19]), i.e. that reducing Lg remains an option for

further increase of fT . Despite Lg being a crucial element in the design of RF-GFETs,

also the charge carrier mobility µc and the channel width W play a major role in the

transistors RF behaviour. We investigate the effect of scaling on gm and fT in the GoSiO

sample, which has a smaller channel width than GoS as well as a smaller gate length

(Lg = 110 nm). Its transit frequency remains below the one of GoS, but still at a high

level of fT ≃ 17 GHz (see Fig. 1.2(b)). This result is of particular interest with respect

to the establishing of graphene based sub-nanosecond single charge detectors, where a

low current noise SI ∝ W is needed. A short outlook on possible ways to improve

RF-GFET properties concludes the chapter.
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Figure 1.2: a) Maximum RF transconductance as function of gate voltage in
sample GoSiO. Different colours correspond to different bias voltages in the range
Vds = [−0.3, ... , 0.3]V . b) Current gain |H21| as a function of frequency in graphene-
on-SiO2-FET. Different colours correspond to different drain-source voltages. The
inset shows the evolution of the transit frequency fT with drain-source voltage.
c) Scanning electron microscope picture of sample GoSiO. The graphene layer is

outlined in red.
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Figure 1.3: Admittance spectra of sample E9-Zc as function of frequency for three
different carrier densities. The spectra are accurately fitted using the 1D distributed
line model (dashed black lines) and an access resistance Ra = 0.15Rg. Omitting Ra,
one obtains a slight mismatch of the fit at high frequencies as indicated by the solid

lines in panel (b).

Probing elastic scattering in a graphene field-effect capacitor In chapter 4 we

investigate the elastic scattering of carriers in MLG. The existing theoretical proposals

are numerous [20] and outlined in the beginning of this part, following an introduction

of the quantum capacitance CQ, which describes the effect of quantum corrections to the

overall capacitance of a device. We add a new facet to the subject by directly accessing

the diffusion coefficient D in a graphene field-effect capacitor (GFEC) [21]. Contrary

to the more usual three terminal devices comprising drain, source and back-gate, our

samples are two-terminal structures: A very thin AlOx dielectric separates the graphene

channel from the top-gate, the latter allowing both to control the Fermi energy and to

probe the AC admittance parameters Y . It is the thin dielectric (∼ 8 nm) and the small

density of states that allow us to take advantage of the quantum capacitance and its

energy dependence, CQ ∝ ǫF at T = 0 K and CQ = CQ(ǫ, T ) at T 6= 0 K. We are able

to probe simultaneously conductivity σ and capacitance CQ via the complex admittance
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Figure 1.4: Inverse electron compressibility as a function of resistance in Cascade
setup measurements. Each data point corresponds to a different gate voltage, thus
different energy. The slope to each point gives information about the diffusion

coefficient D(ǫ).

parameters in a GHz probe station setup and using appropriate de-embedding analogue

to the one employed in chapter 3. The forward AC admittance signal Y21 exhibits a

high frequency behaviour reminiscent of an evanescent wave effect in planar conductors:

After the crossover of real and imaginary part of the complex admittance, we obtain

ℜ(Y21) = ℑ(Y21) (see Fig. 1.3). The complete spectrum, including crossover and high

frequency evanescent wave signature, can be modelled by a 1-dimensional distributed line

of RC parts [21]. The hitherto calculated Y21 carries in its low frequency development

separately σ and CQ in the real and imaginary part, respectively. Using the so-called

Einstein relation σ(ǫ) = CQ(ǫ)D(ǫ) we can then directly extract the diffusion coefficient

and transport scattering time τtr from our experiments; τtr is the average time needed

to reverse the carriers direction of movement. In MLG the Fermi velocity νF = const.

and thus we can directly convert to τtr via D = ν2F τtr/2. We find values of D in

accord with reported estimates, but differ in the conclusion on the main scattering

mechanism. In contrast to other experiments, our measurements show that in the energy

range investigated here, ǫ ≃ 0–230 meV, the diffusion coefficient is independent of

energy (see Fig.1.4) and therefore also τtr(kF ) = const. This result may be explained

by the so-called random Dirac mass disorder mechanism, where carriers locally acquire

a finite mass, m ∗ (r) 6= 0, while on the average < m∗ >= 0, as usual in MLG [22].

Alternative explanations could be a particular form of ripples or an admixture of several

more conventional mechanisms. Experiments probing diffusion in MLG generally find a
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sublinear dependence of σ on carrier concentration ns; in our case σ ∝ √
ns. Another

more application oriented result of our GFEC experiments concerns the afore mentioned

crossover of ℜ(Y21) and ℑ(Y21): Its frequency ωc = π2σ
2C′

geoL
2 + π2D

2L2 exceeds the Thouless

frequency ωThouless = D/L2 which has the effect that ωc stays finite even at the charge

neutrality point (CNP). In other words, even at the CNP the probing 1D wave can

penetrate the gate region. Therefore RF-graphene devices show no critical slowing down

even at neutrality.

'
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Figure 1.5: Electronic temperature in sample BN1 as function of voltage bias
for a set of gate voltages. Te = SIV/(4kBI) is deduced from the SI(V ) and I(V )
data shown in Fig. 5.18(c) and (b). Unlike SI(V ), Te(V ) is nearly independent of
gate voltage and closely follows the Te ∝

√
V law (black solid line) expected for

2D phonons. A Te ∝ V 2/5 law (grey dashed line) is also plotted to highlight the
difference with a standard 3D-phonons mechanism. Deviations are observed at low

bias where a Te ∝ V behavior is found.

Electronic noise and phonon cooling in graphene Finally in chapter 5, we present

a study of the electronic noise and cooling of hot carriers by acoustic phonons (APs) in

graphene. We detail further the description of phonons, which we will initiate in chap-

ter 1, followed by an introduction to the temperature dependence of electron-acoustic

phonon cooling in 2 dimensions. It will reveal that in graphene the crossover between

regimes takes place at the so-called Bloch-Grueneisen temperature TBG as opposed to

normal 2D systems, where the Debye temperature ΘD is the natural scale [23]. The dif-

ferent scale is a result of the small Fermi surface of graphene, thus a direct consequence

of the linear energy dispersion, vanishing at the K, K ′ points. We will also discuss the

electron-AP cooling in graphene at high and low carrier density [24]; in the first case,

where the MLG is metallic, one expects a cooling power Q = LWΣ(T 4
e −T 4

phonon). Here,

L, W are the samples length and width, respectively, Σ is the electron-AP coupling
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Figure 1.6: (a) and (b): Electron temperature of sample CVD1 (a) and BN1 (b)
plotted as T 4

e (V )/P , where P is the Joule heating per unit area, P = V 2/RLW .
The plateau at high bias is at a value T 4

e /P ≃ 1/Σ. The dip at low V is due to
electron heat diffusion to the leads. Dashed lines are one-parameter fits with Σ as

free parameter.'
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Figure 1.7: Σ as function of carrier density ns for samples BN1 and BN2. The
value of CVD1 is displayed as an indicator.

constant and Te, Tphonon are the average electron and phonon temperature. Such a T 4

dependence is therefore one of the tell-tale signs of a two-dimensional electron-phonon
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interaction, in contrast to a T 5 (T 3) law for a 3D (1D) phonon system. In addition

to Q ∝ T 4, hot carriers and cold phonons are further signatures of the expected 2D

mechanism, as Σ is predicted to be much smaller than the coupling of phonons to the

cold substrate. Experimentally the average electron temperature can be extracted from

noise measurements [25], where an incoming Joule power P = V 2/(LWR) heats the

carriers and a heat balance with the phonon cooling establishes. Here, R ≡ V/I. Using

precise calibration we obtain Te from the current noise SI = 4kBTe/R, where R is the

sample’s differential resistance. The investigated samples are backgated graphene FETs

(GFETs), either on Si/SiO2 or on hBN substrates. The latter is fabricated by means

of a wet transfer technique introduced in chapter 2. Measurements take place at liquid

helium temperature (4 K) and involve a GHz bandwidth amplification line. We find that

in the investigated bias range, which is chosen small enough to discard the contribution

of optical phonons, Te is well fitted by
√
V (see Fig. 1.5). This confirms the 2D phonon

cooling mechanism. Furthermore, as can be seen from Fig. 1.5, the carriers remain much

hotter than the bath. Also, we confirm the cold phonon hypothesis via ”in situ” Raman

spectroscopy. In order to highlight the carrier density dependence of the electron-AP

cooling and to analyse data further including the electron heat diffusion to the leads, we

plot data as T 4
e /P (Fig. 1.6). Using the solution of the heat equation

Lo
2R

L2d
2T 2(x)

dx2
= −V

2

R
+ LWΣ

(

T 4 − T 4
phonon

)

(1.1)

where Lo is the Lorentz number, we accurately fit the average electron temperature with

Σ as only free parameter [26]. In Fig. 1.7 we display Σ as a function of carrier density. At

a reference density ns = 1012 cm−2 predictions for the coupling between carriers and the

longitudinal acoustic branch of 2D phonons [24] are still several times bigger than values

extracted from our experiments. However, using the carrier mobility µc as indicator for

the amount of lattice disorder, our findings suggest an effect of lattice disorder on the

electron-AP coupling. Further experimental and theoretical investigation is needed to

clarify this topic.

At the end of this chapter we present recent measurements showing deviations from the

P ∝ T 4 law towards the charge neutrality point: A P ∝ T 3 dependence arises which

might be explained by a supercollision mechanism including two-phonon processes or

phonon-impurity scattering [27]. Supercollisions are rare events that play a negligible

role in electron scattering but show up strongly in the the electron energy relaxation

close to neutrality.

At the end of this thesis, we briefly review the different charge detection devices in-

troduced priorly in chapter 1 and estimate the single charge detection capabilities of a

similar device based on MLG. A sub-nanosecond single charge detector design proposal
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based on the knowledge acquired during the previous chapters and utilising quantum

Hall edge channels in MLG and an RF-GFET capacitively coupled to the former com-

pletes this section.

Let us however first of all introduce graphene, its atomic and electronic properties, as

well as general concepts and formulas important for this work.

1.1 Graphene: description and properties

1.1.1 Atomic structure'

&

$

%
Figure 1.8: Left: Graphene lattice, made of two inter-penetrating triangular lat-
tices (a1 and a2 are the lattice unit vectors and i ,i=1,2,3, are the nearest neighbour
vectors); Right: Corresponding Brillouin zone. The Dirac cones are located at the

K and K ′ points. From Castro Neto et al. [28].

MLG is a two-dimensional lattice of carbon atoms arranged in a honeycomb like shape.

The atoms are equally distanced giving the honeycomb a side length of aC−C ≃ 1.42Å.

Although exhibiting a certain symmetry, the resulting lattice is not Bravais, but a su-

perposition of two Bravais sub-lattices, formed by atoms of type A and B as shown in

Fig. 1.8. For each sub-lattice the real space unit vectors are given by

a1 =

(

3a

2
,

√
3a

2

)

, a2 =

(

3a

2
,−

√
3a

2

)

(1.2)

and in reciprocal space, also defining the fist Brillouin zone,

b1 =

(

2π

3a
,
2π√
3a

)

, b2 =

(

2π

3a
,− 2π√

3a

)

(1.3)

with a =
√
3 · aC−C. Although the honeycomb lattice is not a Bravais one in itself,

one can construct a Bravais lattice taking a base of two carbon atoms (one from each
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sub-lattice). Then, the unit vectors remain the same as for the sub-lattices. In the

reciprocal lattice we define four high symmetry points K, K′ , M and Γ, which are the

corners of the first Brillouin zone, its centre and the middle of the connection between

two neighbouring atoms. Their importance will reveal later. Last but not least, there is

a third set of vectors which we will use in the following paragraphs:

δ1 =

(

a

2
,

√
3a

2

)

, δ2 =

(

a

2
,−

√
3a

2

)

, δ3 = (−a, 0) (1.4)

Hybridisation of orbitals The electron configuration of a single C atom is 1s22s22p2.

Due to a very small energy separation between 2s and 2p the hybridisations sp, sp2 or sp3

can arise. In the case of graphene, it is sp2 with three orbitals arranged in the graphene

plane at 120 ◦ to each other. These σ-bonds bind the C atoms in plane, whereas the

fourth, unaffected orbital can form a covalent π-bond to the next plane. The electronic

properties are mostly depending on the π electrons, since the σ-bonds are far from the

Fermi level.

1.1.2 Electronic properties

Graphene’s astonishing properties arise from its planar nature and the hexagonal ar-

rangement of its atoms. In the following we will give a short theoretical description of

the tight-binding approach in graphene in nearest-neighbour approximation. This will

be helpful in the following parts where we will briefly study several other important

implications arising from graphene’s particular structure: the linear energy dispersion,

the linear density of states and the massless charge carriers. A more detailed description

can be found e.g. in [29] and references therein.

1.1.2.1 Tight-binding approach

In the tight-binding approach one assumes first of all that at each node in a lattice the

potential is mainly given by the on-site atom and all corrections ∆U(r), establishing

the full periodicity, are small. Secondly, in order to satisfy Bloch’s theorem [30], one

constructs the eigenfunctions of the Hamiltonian as a linear combination of atomic wave

functions [9]:

Ψ(r) =
∑

R

eik·Rφ(r−R) (1.5)

Note that in the general description of a tight-binding model the above mentioned func-

tion φ(r) is not necessarily an atomic wave function but can usually be written as a

linear combination of a small number of such.
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Since graphene contains two atoms per unit cell, the description above has to be slightly

modified. The wave function has two components, to take into account the sub-lattices

A and B [8]:

Ψk(r) = akΨ
A
k (r) + bkΨ

B
k (r) (1.6)

=
1√
N

∑

Rl

eik·Rl
[

akΦ(r−RA
l ) + bkΦ(r−RB

l )
]

(1.7)

Here R
A/B
l is a lattice vector in sub-lattice A or B, N the number of unit cells and the

Φ(r) the wave functions of the 2pz orbitals. The origin of the Bravais lattice is chosen

to coincide with an atom of sub-lattice A.

We can now turn to solving the Schrödinger equation HΨk = ǫkΨk by multiplying it

from the left with Ψ†
k [9]:

Ψ†
kHΨk = ǫkΨ

†
kΨk (1.8)

(

a†k, b
†
k

)

Hk

(

ak

bk

)

= ǫk

(

a†k, b
†
k

)

Sk

(

ak

bk

)

(1.9)

Above Hk is the Hamiltonian matrix

Hk =

(

ΨA†
k HΨA

k ΨA†
k HΨB

k

ΨB†
k HΨA

k ΨB†
k HΨB

k

)

(1.10)

(1.11)

and Sk the wave function overlap matrix

Sk =

(

ΨA†
k ΨA

k ΨA†
k ΨB

k

ΨB†
k ΨA

k ΨB†
k ΨB

k

)

(1.12)

Finally, computing det
(

Hk − ǫλkSk
)

= 0 yields the eigenvalues ǫλk or energy bands. There

are as many bands as there are atoms per unit cell, thus λ = 1, 2 = ± in the case of

MLG. In the end one obtains the energy dispersion relation

ǫλk =
2ǫ0 − ǫ1 ±

√

(−2ǫ0 + ǫ1)2 − 4ǫ2ǫ3
2ǫ3

(1.13)
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with

ǫ0 = HAA
k SAAk (1.14)

ǫ1 = SABk HBA†
k +HAB

k SBA†k (1.15)

ǫ2 = HAA
k

2 −HAB
k HAB†

k (1.16)

ǫ3 = SAAk

2 − SABk SAB†
k (1.17)

(1.18)

H ij
k = Ψi†

kHΨj
k , Sijk = Ψi†

kΨ
j
k (1.19)

1.1.2.2 Nearest neighbour approximation

The computation of the eigenstates can be simplified by considering only nearest neigh-

bours (nn) to a given atom on e.g. sub-lattice A. All 3 nearest neighbours are then

of type B. We defined δi = RBi − RA
l (see Eq.(1.4)) and calculate the off-diagonal

Hamiltonian elements

HAB
k = t

∑

j

eik·δj = tγk (1.20)

Here, t is the nn hopping energy, or transfer integral, of ≃ 2.8 eV [28] and is due

to the perturbation ∆V of the single carbon Hamiltonian by the surrounding atoms:

t ≡
∫

d2rΦ(A)†(r)∆V Φ(B)(r + δ3). Φ(j)(r) is the orbital wave function with respect

to sub-lattice j. Recent calculations show that an extension to next-nearest neighbours

(nnn), thus then of the same sub-lattice, can be omitted since tnnn ≃ 0.1 eV [31]. Owing

to symmetry, we also have HAA
k = HBB

k and HAB
k = HBA†

k . Restricting calculations to

nn, the diagonal elements of H ij
k yield

H ii
k = Ψi†

kHΨi
k = ǫ2pz (1.21)

which will be our energy reference, i.e. ǫ2pz ≡ 0.

Since the wave functions are assumed to be normalised we find the diagonal overlap

elements Siik = 1. The off-diagonals contribute a phase factor as HAB
k above:

Snmk = Ψn†
k Ψm

k · γk (1.22)

The electrons accounting for transport are, as mentioned previously, those of the 2pz

orbitals. These are perpendicular to the sheet, i.e. the spatial extension into the x-y-

plane is very small and we can therefore neglect the off-diagonal elements of Sk.
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1.1.2.3 Electronic band structure

The nn considerations above greatly simplify equation (1.8) and the energy dispersion

(1.13). It reduces now to

ǫλk = ±t

√

√

√

√1 + 4cos

(√
3kxa

2

)

cos

(

3kya

2

)

+ cos2

(√
3kxa

2

)

(1.23)

'

&

$

%Figure 1.9: left: Energy dispersion of graphene monolayer. From Castro Neto et
al [28]. right: Band structure of MLG. From Geim and MacDonald [32]

The energy vanishes at two inequivalent points [29]

K =

(

2π

3a
,

2π

3
√
3a

)

, K′ =

(

2π

3a
,− 2π

3
√
3a

)

(1.24)

They are the corners of the first Brillouin zone and are responsible for one of the re-

markable properties of MLG: valence and conduction band cross. As a consequence,

graphene is often referred to as a semi-metal or zero-gap semiconductor. The band

structure, or energy dispersion, of MLG obtained from Eq.(1.23) is shown in Fig. 1.9.

K and K′ are also-called Dirac points or charge neutral points. They come in pairs

due to time-reversal symmetry (ǫ−k = ǫk) and give rise to a two-fold, so-called valley

degeneracy of the zero-energy states.

Low energy linearisation Fig.1.9 already points out one major feature of the graphene

energy dispersion: the conical shape in the vicinity of the Dirac points and the depen-

dence on the two-dimensional wave-vector k. Before we start the low energy lineari-

sation, it is useful to define an effective tight-binding Hamiltonian matrix with the

previously obtained results:

Hk =

(

0 tγk

tγ†k 0

)

(1.25)
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This highlights again the necessity of including both sub-lattices in the description by

using the spinors

Ψλ
k =

(

aλk

bλk

)

(1.26)

In order to describe the low energy excitations in graphene, i.e. electronic excitations

close to the Fermi level, one has to investigate the states in close vicinity to the Dirac

points K and K′. There, we define the displacement of the wave vector from the charge

neutrality point K(′):

q = k−K(′) | q |≪ K ∼ 1/a (1.27)

For the ease of calculation, we will consider a lattice rotated by 90 ◦ with respect to the

one shown in Fig.1.8 and shift K and K′ 2.

From the effective Hamiltonian (1.25) one immediately recognises that γk is the entity

to be expanded in the low energy linearisation.

γk ≃
(

1 + i(

√
3a

2
qx +

a

2
qy)

)

ei
2π
3 +

(

1 + i(−
√
3a

2
qx +

a

2
qy)

)

e−i
2π
3 + (1− i(aqy))

(1.28)

= −3a

2
(qx + iqy) (1.29)

for K and for K′ analogously

γk =
3a

2
(qx − iqy) (1.30)

The above is achieved with the help of sin(±2π/3) = ±
√
3/2 and cos(±2π/3) = −1/2.

Introducing the valley isospin ξ = ±, where + denotes K and − K′, we can then

reformulate (1.25)

Hξ
q = ξ

(

0 −3
2 ta(qx + iqy)

3
2 ta(qx − iqy) 0

)

= ξ~νF (qxσ
x + ξqyσ

y) (1.31)

where we defined the Fermi velocity

νF =
3ta

2~
≃ 106 m/s (1.32)

and use the Pauli matrices

σx =

(

0 1

1 0

)

and σy =

(

0 −i
i 0

)

(1.33)

2
K

(′) =
(

±
4π

3
√
3a

, 0
)

and δ1 =
(√

3a
2

, a
2

)

, δ2 =
(

−
√
3a

2
,−a

2

)

, δ3 = (0,−a)
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The energy dispersion (1.23) then reads

ǫλq,ξ=± = λ~νF | q | (1.34)

which is now linear in wave vector q for small deviations from the neutrality points (see

Fig.1.9). Here, λ = + denotes the conduction and λ = − the valence band. Note also

that although both neutrality points have the same energy dispersion, charge carriers on

different sub-lattices will propagate with a phase shift in k space of φq = arctan
(

qy
qx

)

.

Also, the Fermi velocity introduced above has been experimentally verified by [3].

Introducing a four-spinor representation of the wave function

Ψk =















ψA+

ψB+

ψB−
ψA−















=
1√
2















1

λeiφk

1

−λeiφk















(1.35)

we can further reformulate the effective Hamiltonian to

Hq = ~νF

(

σ · q 0

0 −σ · q

)

= ~νFα · q (1.36)

where

α =

(

σ 0

0 −σ

)

and σ = (σx, σy) (1.37)

The off-diagonals zeros in Eq. (1.36) indicate the independence of the energy dispersion

cones around the points K and K′. We will therefore consider only one cone in the

applied sections of this work and take into account the two-fold degeneracy by a simple

factor 2.

1.1.3 Dirac fermions in graphene

The effective tight-binding Hamiltonian (1.36) is reminiscent of the Dirac equation in 2

dimensions for particles without mass. We cannot give a full introduction to the Dirac

equation here and refer the interested reader thus to e.g. [33].
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1.1.3.1 Dirac equation in 2D

In two dimensions one needs three mutually anti-commuting objects α1, α2 and β sat-

isfying the Clifford algebra, which are in this case identified as the Pauli matrices

σx =

(

0 1

1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0

0 −1

)

. (1.38)

Hence one obtains the 2D Hamiltonian

H2D = cσ · p+mc2σz where σ = (σx, σy) (1.39)

Substituting the speed of light c by the Fermi velocity νF and assuming zero mass, this is

of the same form as the effective tight-binding Hamilitonian (1.31) at the point K′. An

equally valid choice in the Clifford algebra in 2D is α1 = −σx, α2 = −σy and β = −σz

which then gives the Hamiltonian for K.

1.1.3.2 Band, valley and chirality

Note that in the general Dirac equation σ describes the physical spin of a particle. In

the case of graphene, σ describes the sub-lattice isospin, as introduced in Eq.(1.36). It

is of importance for transport experiments since σ is intimately related the band index

and σ||q. In terms of application of the Dirac equation, an often used operator is the'

&

$

%
Figure 1.10: Left: Relation between band index λ, valley isospin ξ, and chirality η
in graphene. From M. Goerbig [9]. Right: Sketch of the density of states in graphene
in nn-approximation. The dashed lines indicate the density of states obtained in the

low energy linearisation. From M. Goerbig [9].

helicity : It is the projection of the spin onto the direction of propagation of the particle

hp =
p · σ
| p | (1.40)
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with eigenvalues η = ±. In the absence of mass, thus e.g. approximately for neutrinos,

hp commutes with the Dirac Hamiltonian and η is a good quantum number. Since, as

mentioned above, in the case of graphene σ refers to sub-lattice isospin hp is also-called

chirality operator and commutes with the effective Hamiltonian in Dirac representation.

We can therefore reformulate (1.36)

Hξ
p = ξ | p | hp (1.41)

taking into account the K, K′ valley degeneracy via the valley isospin ξ = ±. The band

index λ (see also (1.23)) describing valence and conduction band is fully determined by

chirality and valley isospin:

λ = η · ξ (1.42)

It is displayed in Fig.1.10.

1.1.4 Consequences of Dirac equation in graphene

1.1.4.1 Massless charge carriers

Eq.(1.34) also highlights another of graphene’s surprising properties: The square root

dependence on charge carrier density of the carrier mass. This can easily be seen from

the semi-classical definition of the cyclotron mass [30]

m⋆ =
~
2

2π

∂Ak(ǫ)

∂ǫ
=

~
2

2

∂ | q|2
∂ǫ

=

√
πns
νF

(1.43)

where Ak is the cross section of the Dirac cone in k space. Owing to the near-vanishing

charge carrier density close to the Dirac point, we find massless quasi-particles as charge

carrier in graphene, in contrast to a constant mass m⋆ for conventional free electrons.

Novoselov et al. demonstrated that in MLG m⋆ → 0 [3] for p and n-type carriers. It is

in particular this massless character, which justifies the name Dirac quasi-particle and

leads to a high charge carrier mobility.

If the sub-lattice symmetry is broken, e.g. in case of a potential difference between

A and B sites, carriers become massive again. As discussed in chapter 4, a potential

difference u between the sub-lattices would create a bandgap of the same spacing at

k = 0: ǫ = ±
√

u2 + ~2ν2Fk
2. Hence m⋆ 6= 0 even at k = 0 [29].

The vanishing mass makes graphene favourable for high frequency applications, similar

to the low m⋆ in GaAs and InGaAs heterostructures, as it will result in a high carrier

mobility [34].
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1.1.4.2 Klein tunnelling and absence of backscattering

'

&

$

%

-k k

-σ σ σ
-k

Figure 1.11: 1) Carrier incident on a barrier of height V0. 2) Bandstructure in
the p–n junction. The Fermi levels are uniform and aligned. Filled zones represent
occupied states. 3) Geometric overview of the reflection of the incident wave on the

barrier. Adapted from D. Torrin [35].

In quantum mechanics one finds the probability of particles travelling through a potential

barrier to be decreasing exponentially with the barriers height. In the case of relativistic

particles however, and we shall here for simplicity restrict the description to electrons, a

counter-intuitive effect takes place, the so-called Klein tunneling. Here, the transmission

probability rises with rising potential step, reaching unity for an infinitely high barrier.

This can be explained by the fact that while a potential is repulsive for electrons it is at

the same time attractive for positrons, thus creating positron states inside the barrier.

The greater the barrier height, the greater also the possibility of alignment between

electron and positron state energies, thus the greater the transmission probability. This

phenomenon has been first described by Klein [36] in 1924 and coined Klein paradox.

Although discussed widely, the Klein paradox could not be observed experimentally be-

fore the discovery of MLG [37]. Now, thanks to the Dirac nature of carriers in MLG,

Klein tunnelling and related effects can be studied. We will however not go into detail

on the subject of e.g. Veselago lens or triangular gated graphene [35] here, but focus on

the consequences of Klein tunnelling on the electron transport.
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It is generally found, both theoretically and experimentally (see e.g. [38] and [39] as

well as ([29] and references therein), that carriers incident upon e.g. a p–n junction in

MLG are transmitted perfectly if coming in normal to the boundary. For angles φ ≥ 0,

a transmission probability D depending on φ is found: D(φ) = cos2φ. This can be

understood in terms of chirality of carriers and the conservation of the pseudo-spin. In

order for backscattering to occur, k needs to reverse to −k. At the same time chirality

will change (see Fig. 1.11(2)) which leads to a vanishing probability of reflection. For

finite angles of incidence, the situation is sketched in Fig. 1.11(3) and one obtains the

aforementioned angle dependent transmission probability.

The absence of backscattering upon a potential barrier has consequences especially for

the electronic transport: Even at low carrier concentration, where electron-hole inhomo-

geneities are likely to create random p–n junctions, these barriers remain transparent

to the carriers. The high carrier mobility achievable in graphene devices is thus closely

related to this absence of backscattering.

Despite Klein tunnelling being a promising subject, we will not exploit its effects in this

work, as it requires high purity graphene samples that allow for the device to work in

close vicinity of the charge neutral point. The samples presented during this thesis are

limited by chemical potential fluctuations of the order of several meV. New fabrication

techniques recently introduced at the LPA may allow investigation of this interesting

subject in the near future.

1.1.5 Density of states

The density of states (DOS) ρ(ǫ) is a representation of the number of quantum states

N per k-space unit area S in the vicinity of the energy level ǫ [9, 30]:

ρ(ǫ) =
1

S

∂N

∂ǫ
(1.44)

In the two dimensional MLG one finds the number of states e.g. for the conduction

band (i.e. λ = +)

N+ = g
∑

k , k≤ǫ/~νF

≃ gS

∫ k(ǫ)

0

kdk

2π
(1.45)

and thus for the DOS of the full (positive and negative) energy range

ρ(ǫ) =
g

2π

k(ǫ)

∂ǫ/∂k
=

2 | ǫ |
π(~νF )2

(1.46)

where we have used the inverted low energy linearisation of the dispersion relation (1.34)

and g = 4 due to the 2-fold valley degeneracy and the electron spin.
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Therefore, as also depicted in Fig.1.10 for the full DOS calculated by Hobson and Nieren-

berger [40], the DOS is linear in energy and vanishes at the Dirac point. This is in strong

contrast to conventional 2D metals, where the DOS is constant. We will use the energy

dependence of the DOS in our experiments on GFECs (chapter 4).

Density of charge carriers Integrating the DOS over the whole energy range up to

the Fermi level one finds the density of charge carriers (DOCC)

ns =

∫ ∞

0
ρ(ǫ)f(ǫ)dǫ =

ǫ2F
π(~νF )2

(1.47)

f(ǫ) =

(

1 + e
ǫ−ǫF
kBT

)−1

where f(ǫ) is the Fermi-Dirac distribution. The right hand side of Eq. (1.47) is the

valid solution for zero temperature. The DOCC will reach typical values of ns = 1011–

1013 cm−2 in MLG devices. The lower limit is limited by fluctuations in ǫF

For the ease of calculus we can now express the Fermi energy as function of the charge

carrier concentration:

ǫF = ~νFkF = ~νF
√
πns = 116.3 meV ·

√

ñs (1.48)

kF ≃ 1.77 · 106
√

ñs

ñs =
ns
1012

with ns in units of cm−2.

1.1.6 Charge carrier mobility

A property vital for graphene applications and frequently cited in favour of MLG is its

high room temperature carrier mobility µc. It relates the conductivity σ to the carrier

density ns and is generally a measure of how quickly carriers move in a material under

the influence of an electric field E. From the definition in terms of drift velocity [30]

νd = µcE (1.49)

and the current density

j = nseνd (1.50)

we can immediately obtain the desired formula

σ = nseµc (1.51)
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Figure 1.12: a) Electron mobility versus bandgap in different materials at low
electric fields. From F. Schwierz [41]. b) Comparison of charge carrier mobilities
in GaAs/GaAlAs hetero structures and graphene. Blue and red dots: Evolution of
GaAs mobilities over the years. Adapted from Schlom et al. [42]. Additional solid
lines are experimental graphene mobilities: green) CVD graphene on hBN [43]. ma-
genta) Exfoliated graphene on hBN [44]. brown) Exfoliated graphene encapsulated

in hBN [45]

Given the right choice of substrate and dielectric, room temperature mobilities of the

order of 105 cm2V−1s−1 can be achieved in MLG devices. As can be seen from Fig.

1.12(b) values are still well below record mobilities in e.g. GaAs heterostructures at low

temperatures. However, experiments [41, 43–45] show that MLG mobilities can already

reach considerable values of several 105 cm2V−1s−1 and most notably that µc remain

high even at room temperature, contrary to its semiconductor counterparts, where µc

decreases rapidly with increasing temperature. Record values for MLG are achieved in

pure systems, e.g. in MLG encapsulated in hexagonal boron nitride (see description

below) or in suspended graphene devices. Typical mobilities of MLG devices on Si/SiO2

are of the order of 103–104 cm2V−1s−1 at room temperature. For a more detailed

comparison see [41] and references therein.

1.1.7 Other related materials

Besides the monolayer of graphite, there are several related materials, each with their

own astounding properties.
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Figure 1.13: (a) schematic of the bilayer lattice containing four sites in the unit
cell: A1 (white circles) and B1 (grey) in the bottom layer, and A2 (grey) and B2
(black) in the top layer. (b) schematic of the low energy bands near the K point
obtained by taking into account intra-layer hopping, B1A2 interlayer coupling, A1B2

interlayer coupling and zero layer asymmetry. From Falko et al. [46]

1.1.7.1 Bilayer graphene

Despite the name graphene having been coined for the monolayer, also the bilayer of

graphite shows interesting properties. It consists of two graphene layers in Bernal-

stacking, coupled vertically, which changes the energy dispersion (see Fig.1.13) and

related properties. Its bandstructure can also be calculated by means of a tight-binding

approach, introducing inter-layer hopping between the planes spaced d ≃ 3.34Å. For a

more detailed description see e.g. [29, 46]. The DOS e.g. is now similar to conventional

two-dimensional electron gases (2DEGs), i.e., constant:

ρ(ǫ) =
2m⋆

π~2
(1.52)

Here, the effective mass obtained from bandstructure calculations is m⋆ ≃ 0.03–0.05m0

[29], where m0 is the electron mass. The non-zero mass m⋆ comes alongside a small

separation of the bands, which can be tuned electro-statically. [29, 46].

1.1.7.2 Carbon nanotubes

Carbon nanotubes (CNTs) are essentially rolled up graphene sheets. Their intrinsic

properties mainly stem from the underlying honeycomb lattice arrangement of carbon

atoms and the additional circular confinement. The exact way of rolling up the graphene

sheet into a tube, the resulting diameter and the zigzag or armchair termination define

the microscopic structure and therefore the transport behaviour CNTs. One defines a

circumferential vector Ch = na1+ma2 connecting two equal atoms (in terms of lattice)

[47]. Due to the circumferential confinement only a discrete set of wave vectors k is

allowed in the Brillouin zone, resulting in the point K being include or excluded. This
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determines if a bandgap arises and the CNT becomes semiconducting or if it remains

metallic. Semiconducting CNTs have recently been used to realise field-effect transistors

(see also section 1.4.3).

1.1.7.3 Hexagonal Boron Nitride

Hexagonal boron nitride (hBN) is often also-called white graphene, due to its close match

with the graphene lattice. Indeed, the mismatch between the two lattices is only of about

1.7% with boron and nitride atoms taking the place of the carbon in the sub-lattices.

It is an ionic crystal with strong in-plane bonds. It is relatively inert and expected to

have no dangling bonds or surface charge traps. On the contrary to graphene, hBN is an

insulator with a bandgap of 5.97 eV [48]. Due to the close lattice match, low roughness of

its surface and the reduction of dangling bonds, hBN is becoming increasingly interesting

as a substrate for graphene devices [44].

1.1.8 Differences between MLG and 2D semiconductors

There exists a great number of quasi 2-dimensional systems, which have all been studied

extensively over the last decades. Of special interest are here the semiconductor systems,

i.e. for example inversion layers in Si or GaAs-AlGaAs heterostructures, which are quasi

2D, but exhibit several major differences compared to MLG as pointed out in [29]:

• Contrary to MLG, 2D semiconductor systems have rather large bandgaps, mak-

ing it necessary to distinguish between electron and hole conduction devices. In

graphene, both regimes are accessible within one device and conduction can be

changed from electrons to holes by a gate potential. This gapless energy disper-

sion (see also Fig. 1.9) makes it however difficult to obtain an insulating state,

in contrast to the 2D semiconductors, where the Fermi level can be placed in the

bandgap.

• Additionally to being gapless, graphene’s energy dispersion is also approximately

linear in the vicinity of the Dirac points. 2D semiconductors in constrast exhibit

a quadratic dispersion

ǫ(k) = ǫ0 +
~
2k2

2m⋆
(1.53)

The linearity in graphene has a strong impact on its transport behaviour. Energy

is proportional to
√
ns in MLG, whereas one finds ǫ ∝ ns in 2D semiconductors.
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• The carriers in graphene are chiral with a strong pseudo-spin orbit coupling, as we

have seen in section 1.1.3.2. This leads to effects like the suppression of backscat-

tering.

• Graphene is a true 2D system, with thickness of one atom. 2D semiconductor

electron gases are quasi 2-dimensional as they are governed by 2D quantum physics,

but their thickness is always of several nanometers. Their phonons are therefore

3-dimensional.

• 2D semiconductors have a constant DOS, as predicted by quantum mechanics,

whereas MLG’s DOS is linear in energy.

• Finally, graphene’s carrier are massless in the vicinity of the Dirac points, as estab-

lished theoretically and experimentally. Carriers in semiconductors are always of

finite mass m⋆, its value depending on bandstructure. Typically e.g. m⋆ ≃ 0.07me

and ≃ 0.38me for electrons and holes in GaAs, respectively.

It is interesting to mention that BLG shows properties of MLG and 2D semiconductors

alike [29]: For example the DOS is constant, but carriers are still chiral as the A/B

sublattice symmetry remains.

1.2 Phonon modes in graphene

'

&

$

%Figure 1.14: Phonon modes in graphene. Blue lines are flexuaral phonons and
only of importance in suspended graphene layers. From Falkovsky et al. [49].

In a generic crystal, atoms are not fixed to their lattice position, but can vibrate around

their center of mass. The stable equilibrium position of the mass centres in the lattice

is a result of atomic interactions as e.g. Van-der-Waals forces, covalent bonds or others

[30, 34]. Periodic, elastic displacements of crystal planes can be described by a set of
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1-dimensional equations of motion. The dimensionality of the problem is given by the

number of atoms in the unit cell. In the simplest case of a one-atomic unit cell, the

equation of motion of a given lattice plane s is

M
d2us
dt2

= C(us+1 + us−1 − 2us) (1.54)

with M the mass of the atom, C the force constant between planes s and s± 1 and ui

the displacement of plane i. The solving of the system of equations of motion leads in

the case of a two-atomic unit cell to two sets of dispersion relations in reciprocal space,

called acoustic and optical modes. These names are due to the in-phase (acoustic) or

opposite-phase (optical) vibrations of neighbouring atoms and the possibility to excite

the latter by means of electro-magnetic waves. The energy of these lattice vibrations

is quantised and gives thus rise to a description in terms of harmonic oscillators. A

quantum of of vibrational energy is called a phonon [30, 34].

Let us now turn to the phonon modes in graphene. These have been studied extensively

even before the discovery of stable MLG flakes by Novoselov and Geim in the framework

of e.g. carbon nanotubes. Similar to the electronic properties, lattice vibrational modes

in CNTs can be understood from the ones of their precursor, monolayer graphene. We

will base this brief description of graphene phonon modes on [10] and references therein.

Due to the two-atomic unit cell of MLG, six degrees of freedom arise for lattice vibrations.

It can be shown [10] that the motion of the carbon atoms within their lattice and

couplings to neighbouring atoms can be described by a 3N × 3N dynamical matrix,

where N is the number of atoms in the unit cell. Calculations were performed up to

the fourth-nearest neighbour, sufficiently describing the experimentally found phonon

dispersion. A theoretical sketch of this dispersion can be found in Fig. 1.14. There

is a total of six branches, which in order of increasing energy from the G point are:

Out-of-plane acoustic (ZA), in-plane bond-bending (TA) and in-plane bond-stretching

(LA) acoustic phonons, as well as the corresponding optical phonon modes ZO, TO and

LO.

We will not consider out-of-plane modes in this work. They are mainly important in

suspended graphene samples, whereas the samples we will present throughout this work

are all supported by a substrate. As can be seen from Fig. 1.14, the optical phonon

modes TO and LO have a considerable energy of ∼ 200 meV. Their effect will thus

be accessible only at high electric fields, where carriers have acquired enough energy to

interact with them. They are nevertheless of great importance as their electron-phonon

coupling is strong enough to provide effects visible in DC transport measurements: Here,

the drain-source current of a MLG device will show a current saturation at high field

[50]. We will come back to this effect in chapter 3. Acoustic, in-plane phonons (AP)

have low energies and could potentially show up in measurements even at low electric
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field. However, their coupling to electrons is only weak [24] and special experiments

have to be devised in order to see their effect (see chapter 5).

1.3 Electronics in mesoscopic systems

1.3.1 Length scales of mesoscopic systems

A macroscopic conductor or resistor is defined by the Ohmic relation G = σ SL , where G

is the conductance, S and L represent the conductor’s cross-sectional area and length,

and σ is a material dependent parameter. In a two-dimensional system like MLG, S

can be replaced by the system’s width W . Within the conductor the charge carriers

can undergo elastic scattering processes for which we define the elastic mean free path

lmfp = τ0νF , giving the average distance an electron is travelling between two scattering

processes. τ0 is the time interval between two scattering events and νF the particle’s

velocity. If the conductor’s length L is greater than lmfp, the charge transport will be

diffusive.

Another important length scale is the temperature T dependent phase coherence length

lφ = νF ·τφ ≤ νF · ~

kBT
(in the case of vanishing voltage bias V ). If it exceeds L quantum

effects can be expected, as the phase information of the electron is not randomised. In

the case of graphene lφ is on the nm scale at 300 K and on the µm scale at 4 K (liquid

helium temperature). Typically, the channel length of our MLG devices is of the order of

1–2 µm. At low temperatures, we are thus approaching a quantum system and need to

take into account its stochastic nature, i.e. the granularity of charge. The fact of having

macroscopic sample dimensions on the one hand and quantum effects on the other hand

is the reason to call these kind of systems mesoscopic (from greek meso=between).

Additionally, if one shrinks the system to scales comparable to lmfp or smaller, a phe-

nomena called ballistic transport occurs. The electrons are now no longer scattered but

will always pass the conductor, meaning that the transmission probablity D reaches

unity. We will however only deal with diffusive devices in this work.

1.3.2 Transport in mesoscopic graphene

1.3.2.1 Quantum description of the current and scattering approach

To arrive at a formula predicting the current through a mesoscopic system (which we take

to be 1-dimensional for the sake of simplicity), one starts from a second quantisation

approach with creation and annihilation operators acting on incoming and outgoing
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states of the system [51]. The system is connected to large reservoirs at either side.

Such a system can formally be described by the scattering matrix S formalism:

(

b̂L

b̂R

)

=

(

SLL SLR

SRL SRR

)(

âL

âR

)

(1.55)

Here the operators â and b̂ act on incoming and outgoing waves, respectively and L

(R) denotes the left (right) contact. We will not go into details on the exact quantum

mechanical calculus of the sample current, but refer the interested reader to the review

by Blanter and Büttiker [51]. Let us simply state that the overall current through the

system is in the end given by

I =
e

h

∫

dǫ [fL(ǫ)− fR(ǫ)] ·
∑

n

Dn (1.56)

where fi denotes the Fermi-Dirac distribution of contact i and Dn the transmission

probability of the n-th electronic mode. This is closely related to the Landauer-Büttiker

description of conductance, which is also readily extended to account for multiple elec-

tronic modes in a mesoscopic system [51]

G =
e2

h

∑

n

Dn)
∂I

∂V
(1.57)

where V is the voltage applied to the sample. The above formula is of great help e.g. in

semiconductor 2DEGs.

1.3.2.2 Number of modes in graphene and impact on channel current

In the case of MLG however, there is a large number of modes to take into account;

up to 104 depending on the width of the layer and the carrier concentration ns. There

is also a four-fold degeneracy arising from the electron spin and the two valleys K and

K ′. Near the Dirac point the energy dispersion is linear in wave vector kF , as found

earlier. Combining this fact with Eq. (1.47) we arrive at a relation between the Fermi

wavelength and the density of charge carriers in the sheet:

λF =
2π

kF
=

√

4π

ns
(1.58)

ranging from 10−7m to 10−8m for ns = 1011 to 1013 cm−2. Assuming standard potential

step boundary conditions, we now find the number of electronic modes in the graphene
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layer

M =
2W

λF
=W

√

ns
π

(1.59)

SinceM depends on ns, the number of modes nearly vanishes at the Dirac point. Several

modes are always open, however, making it impossible to create a real OFF-state of the

current. This is due to the minimum conductivity σmin = 4e2/πh generally found in

graphene, whose origin we will not discuss here, but refer the reader to [29] and ref-

erences therein. For typical charge carrier densities (ns = 1011–1013 cm−2) and sheet

width of W = 1 µm, the number of modes is of the order of 20 to 200.

Besides tuning carrier concentration, the second option to control the number of trans-

mission modes is to change the layer’s aspect ratioW/L. In practical that usually means

to use so-called nano ribbons of a width of several hundred nanometers to obtain only a

few modes. Eq. (1.59) also highlights the possibility to modulate the current I flowing in

the channel by changing the carrier density, i.e. by applying an external electric poten-

tial, the gate potential. In experiments we will thus in general deal with a drain-source

current

Ids = I(Vds, Vg) (1.60)

where Vds is the voltage between the contacts and Vg the gate voltage modulating ns.

1.3.3 Noise in mesoscopic systems

The stochastic nature of the charge transport aforementioned (see 1.3.1) leads us to

another important topic in this work: charge fluctuations or electronic noise. They

occur in every conductor as variations of the current around its average value.

1.3.3.1 Thermal noise

The first source of noise in an electric circuit is caused by finite temperature, due to which

the occupation numbers n of the electronic states will fluctuate, even at equilibrium,

where no driving potential difference is applied between the reservoirs. These occupation

numbers are described by the Fermi-Dirac statistics, i.e. in equilibrium all states are

occupied up to the Fermi level and the average number of occupied states is simply

< n(ǫ) >= f(ǫ), where f is the Fermi-function. The probability for a state being

empty is thus 1− f and f for being occupied. At finite temperature these probabilities

deviate from the zero temperature values 0 or 1, as generally described by the Fermi

function. The subsequent random changes in the occupation number of the electronic

states, of variance f(1− f) and caused by the finite temperature of the conductor, then
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give rise to equilibrium current fluctuations δI(t): the charge carriers close to the Fermi

level receive enough energy to contribute to the transport. Thermal noise is also-called

Johnson-Nyquist noise with its spectral density given by [52, 53]

SI =
4kBT

R
(1.61)

This noise source can be suppressed by decreasing the system’s temperature, e.g. by the

use of liquid helium (4.2 K).

1.3.3.2 Shot noise

A second source of noise in mesoscopic systems arises from the quantisation of charge

and the stochastic character of quantum diffusive charge transport: The so-called shot

noise. In order to observe it, the system needs to be in the non-equilibrium or transport

state. The following description is adapted from [11], [54] and [12].

Poissonian noise In 1918 Walter Schottky was the first to investigate current fluctu-

ations in conductors and coined the term shot noise. His result describes the noise due

to uncorrelated variations around an average value, i.e. a random Poissonian process.

Let us consider a flow of particles emitted independently during a time intervall τ . The

average number of events is 〈n〉 = ntτ , where nt is the average number of particles

emitted per unit time. The probability to find exactly n events occurring during the

time τ = 〈n〉/nt is given by the Poissonian distribution

P (n) =
〈n〉n
n!

e−〈n〉 (1.62)

Such uncorrelated events can e.g. be found in vacuum diodes or also tunnel junctions,

where the average current 〈I〉 = e〈n〉/t creates a noise power spectral density (PSD)

S = 2e〈I〉 (1.63)

We will make use of this relation in chapter 5 when calibrating our noise thermometry

setup.

Current correlations and noise In order to derive the above formula (1.63), we have

to study the correlations of the electrical current in our simple 1D model conductor. For

the sake of simplicity we shall only consider a single electronic mode in the following

description. Similar to Eq. (1.56) this can easily be extended to multiple modes.
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The quantity of interest is the correlation function of the current with respect to time

C(t) =
1

T

∫

dt′〈I(t′)I(t+ t′)〉 (1.64)

where T represents a sufficiently long time interval. For a random quantity x(t) fluc-

tuating around its average 〈x〉 by δx(t) = x(t) − 〈x〉, C(t) is a measure of how the

fluctuations evolve in time on average [54].

In a more formal way this can be described in terms of time-dependent current operators

Îm(xm, t). To this effect one has to rewrite the corresponding current operators Î in the

Heisenberg picture [11, 51], and integrate over two different energies (ǫ and ǫ′). Ref-

erences [51] and [11] give the precise formulas of the above mentioned quantities. Our

interest lies however on the noise spectral density of the conductor, which is given by

twice the Fourier integral of the correlation function with respect to the two reservoirs.

In terms of the current I(t) and its average, it yields [11]

Smn(ω) = lim
T→∞

2

T

∫ T/2

−T/2
dt

∫ ∞

−∞
dt′eiωt

′ [〈Im(t)In(t+ t′)〉 − 〈Im〉〈In〉
]

(1.65)

The solution of the above formula requires the evaluation of expectation values of four

annihilation or creation operators, which can be simplified by using Wick’s theorem [55].

Again we refer the interested reader to the reviews [51] and [11] for more details.

It is generally sufficient to calculate the noise in the zero frequency limit [11]. For the

case of a two-probe system only autocorrelation is of importance and we find:

SLL(ω = 0) =
2e2

π~

∫

dǫ{D(ǫ)2[fL(1− fL) + fR(1− fR)]+ (1.66)

+D(ǫ)[1−D(ǫ)] · [fL(1− fR) + fR(1− fL)]}

We can now evaluate (1.66) and obtain [11, 51]

SI(0) =
4e2

h
kBTD

2 +
2e3V

h
D(1−D)coth(

eV

2kBT
) (1.67)

To conclude this short introduction of electronic fluctuations let us have a closer look

at the two limiting cases of the above expression. Taking T = T0, where T0 is the bath

temperature and independent of bias, we will be in the limit of 0 ≤ eV ≪ kBT . Using

the first order approximation coth(x) ≃ x−1, Eq. (1.67) can then be transformed into

SI(0) ≃
4e2

h
kBTD

2 +
2e2

h
D(1−D) · 2kBT (1.68)

= 4e · e
2D

h
· kBT
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where we recover the Johnson-Nyquist formula (1.61) with R = h/e2D.

One can consider another limit, the very hot electron limit, where the electron temper-

ature Te ∼ eV/(2kB). Then, we obtain

SI(0) ≃
2e3V

h
D2 +

2e3V

h
D (1−D) (1.69)

= 2e · e
2V D

h

where we recover the shot noise formula (1.63) with I = e2DV/h.The usefulness of both

limits will reveal in chapter 5.

1.4 Single charge detection

Mesoscopic physics lies, as mentioned in the beginning of the previous section, at the

border of macroscopic and microscopic physics; Quantum effects of the microscopic

world are made visible using macroscopic tools and devices. One of the most interesting

and important challenges here is the emission, manipulation and detection of single

carriers. Many experiments deal e.g. with quantum hall effect edge channels in two-

dimensional electron gases in semiconductor heterostructures. Here, coherent transport

can be achieved, with single electron injection into the channel, as shown recently at

the LPA [56, 57]. It is however not the goal of this section to provide insight into this

field, but merely point out the importance of single charge detectors and highlight the

state-of-the-art.

Sensitive electrometers exist for DC, but difficulties start to arise once repetitive, single-

shot detection is required. Then, one has to deal with the electronic noise proportional

to the bandwidth of the frequency spectrum used in the detector. Nevertheless, such fast

single charge detectors would make the ideal companion of the aforementioned single-

charge emitters: Coupled capacitively to e.g. the edge channel it would be possible to

read out single charge events at high precision. Ideally, the dimensions of the detector

need to remain smaller than the coherence length of the carriers lφ ≤ νF · ~

kBT
, which in

turn translates into the requirement of sub-nanosecond time resolution for the typical

Fermi velocity νF . 105 ms−1 in 2DEGs. A second possibility is to trap the charge

in a quantum confinement for a sufficiently long time in order to gain a good charge

resolution. This second techniques is used throughout many detectors, as we will see in

the following.

The most commonly used technique of detection today is the employing of the field-

effect on a gate electrode of a transistor. Without going into details, which will be

given in chapter 3, the working principle of a generic field-effect transistor (FETs) is the
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following:

A conducting channel is connected to two reservoirs, allowing for a charge transfer

between them. A third electrode, the gate, is coupled capacitively to the channel and

generally modifies its conductance. Thus, in very broad strokes, the current I will

depend on the amount of charge ∆qgate on the gate electrode. We find

I(qgate) = I(0) +
∂I

∂qgate
∆qgate (1.70)

and define our generic signal as the change of current with respect to the change of gate

charge

S =
∂I

∂qgate
=

∂I

∂Vgate

∂Vgate
∂qgate

=
gm
Cgate

= ωT (1.71)

In the last two right-hand side terms we have introduced three quantities crucial to the

description of FETs: The transconductance gm = dI/dVgate, the gate capacitance Cgate

and the transit frequency ωT /(2π). Their exact purpose will reveal in chapter 3, where

we will go into more detail. The last parameter, ωT , identifies the frequency at which the

current gain of a given transistor has decreased to unity. Since the device itself, as well

as all components in the measuring setup exhibit electronic noise, one has to assure a

strong signal S in order to achieve a high resolution. In a later chapter, we will introduce

the current noise spectral density SI of which the square root has to be compared to

S to give an estimate of the charge resolution of a transistor. The maximum charge

resolution is given when the ratio of signal-to-noise reaches 1 and therefore we find

δqrms =

√
SI
S

=

√
SI
ωT

(1.72)

δqrms is in units of e/
√
Hz and signifies the following: Charge fluctuations on the gate

inferior to δqrms will not be visible within the noise background in a single-shot exper-

iment. Only fluctuations ∆q ≫ qrms can be detected without difficulty. There is of

course the possibility of averaging over a sufficient number of events, however this defies

the single-shot approach.

A sensitive single-charge detector is thus characterised by a large transconductance,

small gate capacitance and small intrinsic electronic noise. The first two quantities can

be probed by measuring the device’s high frequency admittance (see chapters 3 and 4),

the last one by means of noise thermometry (see chapters 5). Two kinds of transis-

tors fitting the above mentioned requirements are mainly used today: Single-Electron-

Transistors (SETs) and nano transistors based on quantum-point contacts (QPCs) or

carbon nanotubes (CNTs).
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Figure 1.15: a) Working principle of an SET. b) Working principle of a QPC-FET
or CNT-FET. From [58].

blanck
blanck

Figure 1.16: (a-c) Spaceenergy diagrams of a single-electron transistor in which
electrons are confined between two tunnelling barriers. The gate voltage is increased
from (a) to (c). (d) Current can flow only in the gray-shaded regions, where one of

the energy levels is within the bias window. From Ihn et al. [59].

1.4.1 Single-electron transistors

A single-electron transistor (SET) consists of a conducting island, connected capaci-

tively to two leads, as shown schematically in Fig. 1.15(a), allowing for tunnel events

to happen. Islands can be made from metallisations, commonly Al, or defined electro-

statically in the channel of a metal-oxide semiconductor FET (MOSFET). This spatial

confinement of electrons creates a quantum well and a distribution of discrete energy

levels within. The position of these energy levels can typically be changed by the vari-

ation of a gate potential. Charge transport between the two contacts is then possible

through tunnelling of electrons from a contact into the island and further on into the

second electrode, given a discrete level is within the window of contact potentials (see

Fig. 1.16(a-c)). This results in the so-called Coulomb blockade, which is presented in Fig.

1.16(d): Diamond-shaped regions of suppressed conductance which repeat periodically.

For a more detailed description please refer to e.g. [13]. SETs are typically limited to
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the kHz frequency range, but RF-SETs operating in the MHz region are possible [60] as

well by inserting the SET in a resonating cavity. Charge detection capabilities of such

RF-SETs are of the order of 10−6e/
√
Hz [60].

1.4.2 Quantum-point-contact transistors

In 2DEGs it is possible to control the carrier concentration in a given region by applying

an electro-static potential. This is usually achieved with the help of a capacitively

coupled gate electrode that can increase or reduce the number of carriers in the region

and hence creates a channel of variable transparency. Such gating allows for the creation

of a narrow channel with very low transparency, i.e. transport can be restricted to very

few electronic modes, down to complete closure of the contact. This is called a quantum-

point contact (QPC) (see Fig. 1.15(b)). Charge sensing in a QPC-FET is achieved by

the variation of QPC transparency upon arrival of an additional charge on the gate

electrode [61] and can be used e.g. to establish the so-called full counting statistic [62].

The change in gate potential will be visible in the current across the QPC. Similar

to the SET detectors, an RF version of QPC-FETs exists with a charge resolution of

2 · 10−4e/
√
Hz in a bandwidth of 20 MHz at a temperature of 60 mK [63].

1.4.3 Carbon nanotube transistors

Another possibility for a fast an sensitive charge detector is the carbon-nanotube (CNT)

FET. This kind of device, studied e.g. by Chaste et al. here at the LPA [14, 58, 64],

constitutes the ultimate nano-transistor as it consists of a semiconducting CNT con-

nected to two contacts and capacitively coupled to a gate electrode. The gate potential

will essentially introduce a barrier of variable transparency in the ballistic CNT channel,

whereas the gate charge controls the amount of carriers in the channel. The transit fre-

quency ωT , mentioned previously, is inversely proportional to the gate length L here and

can reach values up to 50 GHz. This is due to the small gate capacitance and the high

transconductance values gm that can be achieved in CNT-FETs [58]. Chaste et al. were

able to extract the aforementioned parameters from RF scattering-parameter character-

isations (see also section 3.2.2.2) and low temperature noise thermometry experiments

(see chapter 5) and estimate a charge sensitivity of 13 · 10−6e/
√
Hz in a bandwidth of

0.8 GHz at liquid helium temperature.
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1.4.4 Sub-nanosecond charge detection in graphene transistors

Very good charge sensitivities and large bandwidths can already be obtained with differ-

ent kinds of detectors, as we have seen previously. However, several drawbacks exist for

each kind: SETs and QPC-FETs operate in the kHz to MHz range and thus limit the

temporal resolution of the detector. CNT-FETs could possibly overcome this problem,

as their bandwidth is in the GHz range. However, CNT-FETs, as well as SETs, exhibit

a large impedance of the order of several kΩ, which makes it difficult to integrate these

devices in a standard 50 Ω high frequency setup. Also, the carriers in CNTs are typically

very hot, giving rise to an unsuppressed shot noise of the form (1.63) [64].

An option to overcome both restrictions, i.e. a device of large bandwidth and low

impedance, could be the use of RF graphene-FETs (RF-GFETs). Typical graphene de-

vices show impedances of the order of several hundreds of Ω [2, 16], much closer to the

standard 50 Ω. Also very high transit frequencies can be achieved: A record 300 GHz

was recently reported by Wu et al. [65]. This is related to the high transconductance

and small gate capacitance achievable in RF-GFETs. As for the current fluctuations ex-

pectations are that current noise remains low, but still finite even in the ballistic regime.

Tworzydlo et al. predicted [66] that due to evanescent wave transport shot noise is sup-

pressed with a corresponding Fano factor of 1/3 at the charge neutral point of ballistic

graphene. This was confirmed experimentally by Danneau et al. [25]. F then decreases

further with increasing carrier density in the ballistic case. In diffusive graphene devices

no ns dependence is expected [67] but other effects like e.g. electron-phonon interactions

may reduce the electronic noise. An additional option for noise reduction in RF-GFETs

stems from the fact that the drain-source current Ids of a RF-GFET is proportional

to the channel width W , as we will discuss in chapter 3. Scaling the channel width

will also decrease the noise level. Besides the RF-GFET design, other detectors based

on graphene have been suggested, as e.g. bolometers taking advantage of the metal-

insulator transition in superconductor-graphene hybrids [68, 69].

Overall, the low intrinsic impedance, good RF performance and a low noise level make

graphene based microwave field-effect transistors suitable candidates for sensitive, sub-

nanosecond charge detectors.

In order to study the fundamental problems involved in the sub nano-second charge

detection we will concentrate in this work on the high frequency dynamics and noise in

graphene field-effect devices. The next chapter will first of all give an overview of the

typical fabrication process of the samples presented in this work. Device-specific details

will be described in the corresponding chapters.

In chapter 3 we will then investigate the high frequency behaviour of RF graphene
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field-effect transistors (RF-GFETs), in order to answer the question of maximum cut-

off frequency in graphene nano-transistors mentioned in 1.4.4. It will be followed by a

study of diffusion mechanisms in graphene devices involving a simplified structure, the

graphene field-effect capacitor (GFEC, chapter 4). Last but not least we will approach

the topic of charge noise in graphene in chapter 5.
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Fabrication of graphene devices

2.1 Obtaining graphene layers

Since the first experimental observation of graphene by Boehm et al. [6] several different

ways have been explored to create stable graphene mono-layers and incorporate them in

devices. Besides early methods of chemically separating or intercalating graphite layers

[70], three main techniques of producing MLG are being used today: Micro-mechanical

cleavage, growth on silicon carbide (SiC) [71, 72] substrates and more recently chemical

vapour deposition (CVD). We will omit the SiC method in the following as only the

other two techniques are used in this work. Other techniques of obtaining MLG exist

and comprise e.g. anodic bonding [73, 74] and epoxy reversed exfoliation [75].

2.1.1 Exfoliation

The key to success for the fabrication of the first graphene devices in 2004 was the use

of an unconventional tool: adhesive tape. In one of their ”Friday evening experiments

[...] where you do just crazy things... ”[76] the Manchester group managed to produce

very thin stacks of graphite layers with their so-called exfoliation technique [2].

Micro-mechanical cleavage, or exfoliation, of bulk graphite has not only been the first

way to isolate stable graphene monolayers on a substrate at ambient conditions, but is

still a widely used, fast and easy approach to obtaining quality MLG. Also, it is not

limited to graphite but a wide selection of layered materials, e.g. hBN, can be treated

this way. This way of producing thin flakes of graphite down to MLG relies on the

rather large separation between graphite layers of more than twice the in plane nearest

neighbour distance and the weak attractive force between them [30].

39
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First, one sticks a piece of graphite (NGS Dragon Seal) to the adhesive tape, in our case

Blue Low Tack tape (Semiconductor Equipment Corp.). Detaching it leaves behind a

layer of carbon, which will then be separated into thinner layers by repeatedly folding

the tape onto itself and peeling away again. This produces an increasing area dotted

with thinner and thinner graphite flakes on the tape. Some of these flakes will have

broken down to single atom thickness after a few times of folding. Finally, the graphite

layers can be transferred to a substrate by simply sticking it to the tape. The carbon

will partly adhere and after detaching the substrate one obtains a surface covered in

graphite pieces and, amongst them, also few-layer graphene (FLG) and MLG. Isolated

flakes can now be localised on the wafer by means of optical microscopy or other imaging

techniques (see also p. 41). The surface area of exfoliated MLG is usually limited to a

few tens of µm2 but sizes up to ∼ 100 µm2 have been reported [45]. Despite the need to

actively search and localise MLG flakes, they remain unchallenged in terms of quality

and electronic properties, such as mobility or low intrinsic doping.

2.1.2 Chemical Vapour Deposition

A second approch to producing MLG is the use of Chemical Vapour Deposition (CVD).

This rather recent technique, first demonstrated in 2008 by Yu et al. [77] for growth on

Ni substrates, consists of growing graphene from gaseous precursors on a metal surface

that acts as catalyst to the reaction. Several methods are available, e.g. different

catalyst substrates, that all result in large, more or less homogeneous films of MLG.

Our CVD samples were produced by collaborators at the Laboratoire de Photonique et

de Nanostructures (LPN) using the growth technique on Cu substrates introduced by

Li et al. [78].

At the LPN, the Cu substrate, cut from a high quality Cu foil (in our case Alfa Aesar 5N

quality), is placed in a furnace, where it is heated to 1040 ◦ C under a flow of 65 sccm H2

at a pressure of 200 Torr. When the Cu reaches the desired temperature, an additional

flow of C3H8 is introduced to the chamber. It pyrolises, decomposing into C and H2

[79], and forms the mono-atomic carbon layer on the Cu surface. During this part of

the cycle, the substrate is exposed to 65 sccm H2 and 35 sccm C3H8 at 200 Torr for 25

min. After cooling down under He atmosphere, a thin layer of PMMA is spun on the

graphene/Cu stack. Note that graphene will form on both sides of the Cu film, but using

the PMMA transfer only one side can effectively be used. One then proceeds to etching

away the Cu in an aqueous solution of iron nitrate, which leaves the PMMA/graphene

stack floating at the solution’s surface. The PMMA/graphene layer can now be ”fished”

from the solution by sliding the desired, final target substrate (e.g. Si/SiO2) under it

and lifting it off the solution. Finally, the iron nitrate residues are rinsed off in several
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de-ionised water baths.

The advantage of CVD grown graphene over its exfoliated counterpart is its sheer size:

while exfoliated flakes remain on the µm2 scale, the size of a CVD grown MLG sheet is

mainly limited by the size of the substrate: CDV graphene layers of sizes ≥ 1 mm2 can

usually be achieved [78]. It is thus easier applicable in large scale production and allows

e.g for a statistical evaluation of the contact resistance (see also chapter 5). However,

due to the transfer from the growth to the final substrate a disadvantage remains: the

pollution of the sheet with polymer residues and an intrinsic doping coming along with

it. An annealing step (see 2.3.3) can help to reduce this problem, though. Recently,

Petrone et al. [80] reported on a new, dry transfer technique which overcomes the

previously outlined problems and results in very high mobility devices.

In general, exfoliated MLG flakes have to be localised manually, e.g. via their
optical contrast.

Optical contrast Despite being of mono-atomic thickness and thus transpar-
ent to the naked eye, one can make MLG visible nonetheless. In conjunction
with a carefully selected oxide thickness of the underlying Si/SiO2, interference
effects create a slight contrast between the flake and the substrate [81]. This
effect can also be used to characterise MLG flakes by comparing their contrast
to that of a verified reference sample. blank space

left: MLG and FLG in sample C16-L. right: Raman spectra of MLG part in C16-L

Raman spectroscopy A way to verify the mono-layer character of a flake is to
analyse its Raman spectra. Without going into detail, one mainly studies here the
intensity and shape of the so-called 2D and G′ peaks, at ∼ 1580 and ∼ 2700 cm−1

respectively. Raman spectroscopy is a useful tool since it allows to distinguish
between mono-, bi- and few-layer grapehen. With increasing number of layers,
the peaks broaden from a single Lorentzian to a superposition of Lorentzian
curves. Also the difference in intensity drastically changes. For a more complete
description of this MLG characterisation tool, please refer to e.g. [82, 83] and
references therein.

Characterisation of graphene layers
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2.2 Manual stacking of thin layers: Wedging transfer

As already mentioned in 1.1.7.3 the electrical properties of a graphene flake will benefit

greatly if placed on top or encapsulated between hexagonal boron nitride (hBN). There-

fore, different methods have thus been developed in the last years to fabricate stacked

graphene-hBN devices (see e.g. [84]). In this work we will use a technique developed at

Delft University [15].

2.2.0.1 Wedging transfer setup

The employed method to transfer arbitrary thin films, in our case MLG and hBN flakes,

from a donor to a target substrate calls for the following material: an optical microscope,

a syringe pump, a micro-positioner and a cellulose based polymer. The complete setup is

shown in Fig.2.1. It is crucial to use large working distance objectives in the microscope

(MITUTOYO MF-U ), in our case MITUTOYO M plan APO SL x20 and x80. The

polymer is cellulose acetate butyrate (CAB), dissolved in ethyl acetate. The setup is

completed by a Cascade micro-positioner and a Razel R-99 reversible syringe pump.'

&

$

%Figure 2.1: Transfer Setup

2.2.0.2 Wedging transfer technique

Preparation Before depositing graphene or hBN flakes on the donor substrate, both

donor and, if possible, target wafer are cleaned chemically (acetone, IPA) and exposed

to a strong O2 plasma (RIE) for several minutes. Prior to the cleaning step a grid

of Cr/Au localisation marks has been prepared on the donor, via UV-lithography and

Joule evaporation (see p. 49). The plasma renders the SiO2 surface hydrophilic and
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removes any organic residue. The donor is then cleaned again in a second, lower power

O2 plasma oven. We have found that this second plasma exposure enhances the lift-off

of the polymer, possibly due to a condensation of water on the surface.

Now, exfoliated hBN or graphite is deposited on the donor as described in 2.1.1 and

suitable flakes are localised optically. Using a spin coater at very high speed (see table

2.2.0.2 ) the polymer solution is then spun over the substrate. In our opinion spin

coating the CAB is favourable compared to the suggested dipping into the solution, as

it results in a thinner CAB layer. It is thus more transparent and more easily removed

from the target after the transfer. An additional useful feature are the imprints of the

Cr/Au marks left in the thin CAB film, which greatly aid in finding and placing the

flake to be transferred.

Transfer The target substrate is now placed in de-ionised water under the microscope.

After removing the edges of the CAB film, which opens a path for the water to separate

the polymer from the substrate, the donor is slowly dipped into the same beaker. This

needs to be done very slowly and at a low angle in order to give the water ample time

to lift the CAB layer off the donor. All thin layers, graphene or hBN, remain attached

to the polymer and are now floating on the water. The desired flake is localised and

moved above the target structure by means of the micro-positioner. Slowly lowering the

water level and keeping its position steady, the flake is then precisely deposited on the

target. The precision is of the order of a few µm. Once the transfer is completed, water

residues are removed by baking the target substrate above 80 ◦C or simply leaving it to

dry overnight. Finally the CAB layer is dissolved in ethyl acetate. An overview of the

wedging transfer process and details for each step can be found in table 2.2.0.2.
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step description tool(s) notes

1 CAB preparation magnetic mixer dissolve CAB in ethyl
acetate ∼ 30 mg/mL,
mix well (1–2 h)

2 substrate(s) preparation RIE Corail 200R 3–5 min O2 plasma,
60 W, P . 12 nbar

3 substrate(s) preparation Harrick plasma oven 5–10 min O2 plasma,
200 W, P . 10 µbar

4 exfoliation & localisa-
tion

graphene/hBN &
Semiconductor
Equipment Corp ”Blue
Low Tack” & Olympus
microscope

see 2.1.1

5 spin coating spin coater & CAB 10 s, 8000 rpm,
5000 rpm/s

6 donor preparation remove CAB around
substrate edges

7 lift-off de-ionised water separate CAB from
donor, low angle

8 positioning microscope &
micro-positioner

move flake over target

9 deposition microscope &
micro-positioner &
syringe pump

lower water level & de-
posit flake on target

10 drying heater plate ≥ 10 min. at ≥ 80 ◦ C

11 CAB removal ethyl acetate ≥ 1 h

Table 2.1: Wedging transfer of graphene or hBN flakes.

2.3 Device fabrication

This section will describe the different procedures employed to realise the graphene

based microwave devices studied during this theses. For the purpose of simplicity and

completeness we will follow the production steps of a top-gated device based on exfoliated

graphene and point out the differences to the fabrication of CVD and graphene-on-hBN

samples where necessary. A short description of the main fabrication tools, such as

electron-beam lithography, UV-lithography and metal evaporation, will also be given

(see p. 49).
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substrate size (mm2) oxide thickness(nm) ρ(Ωcm)/σ

doped Si/SiO2 8× 8 1000 ∼ 10−3

high resistivity Si/SiO2 8× 8 90 ≥ 20000

sapphire circular � = 9.5 mm ∅ ∅

Table 2.2: Different substrates and their characteristics.

2.3.1 Substrate preparation

2.3.1.1 Choice of substrate

Before carrying out the actual exfoliation and deposition of MLG, the backing substrate

has to be chosen and prepared. Depending on the intended measurements we have used

doped Si/SiO2, highly resistive Si/SiO2 and also sapphire substrates in this work. See

2.2 for a list of their individual characteristics. The pre-deposition steps are the same for

all substrates: The substrates are cleaned and a grid of metallised crosses and numbers

is produced on the surface. This grid will serve as orientation marks in the following

steps, as e.g. during the localisation of graphene flakes.

2.3.1.2 Cleaning

As a first step, the substrates undergo a cleaning procedure of 10 minutes in acetone

and isopropyl alcohol (IPA), respectively, in conjunction with ultrasound. After drying

with nitrogen gas follows a 10–15 minute O2 plasma treatment. UV-lithography (see p.

49) and Joule evaporation (∼ 2 nm Cr, 50–100 nm Au) are then used to create a grid

of crosses and numbers on the wafer. The spacing of 500 µm horizontally and 400 µm

vertically between crosses was chosen with respect to the field of view of our microscope

and the mounted ALTRA 20 CCD camera.

2.3.2 Deposition and localisation

For a successful deposit of exfoliated MLG the underlying substrate has to be vigorously

striped of all organic residues, as an insufficiently cleaned wafer will result in graphene

flakes prone to detaching and crumbling during the following production steps. There-

fore, we expose the substrates to a strong O2 plasma at very low pressure (∼ 12 nbar)

for ∼ 5 minutes prior to depositing the exfoliated graphene as described in the end of

2.1.1. With the help of the localisation grid we can now search optically for suitable

flakes. Please see 41 for more information about the optical discrimination of MLG. Due
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Figure 2.2: Fabrication steps of a top-gated graphene device. a) Exfoliated
graphene flake C16-A on Si/SiO2. b) GDSII mask with underlying micrograph
of targeted graphene flake. c) GDSII FET structure design. The flake has been
dry etched into a handle shape. Contacts (green) will be made from Pd, the gate
electrode (blue) from Cr/Au. The separating AlOx layer is not shown. Ground
plane dimensions: 550 µm × 400 µm. Note that this design was adapted for Janis
microwave probe heads. d) SEM micrograph of graphene FET C16-A. The handle
shape and gate electrode (here gold) were superposed manually to indicate their lo-
cation. e) Micrograph of a complete graphene FET. Note the larger design adapted

for the pitch of Cascade microwave probe heads.

to the well defined grid, we can calculate the coordinates of the graphene flakes with

respect to a chosen origin (here, the first cross bottom left) at a precision of ±10 µm.

2.3.3 GHz adapted coplanar waveguide

The final aim is to measure our graphene devices in a macroscopic GHz frequency setup.

It is therefore necessary to provide a) an interconnect between the micrometer sized RF

environment and the nanometer sized graphene and b) a good match to the standard

50 Ω impedance of our high frequency equipment. We achieve this by creating a coplanar

waveguide around the MLG as shown in Fig. 2.2, which gradually decreases in size all

the whilst keeping 50 Ω impedance.

Pre-contacts The first step in the production of the coplanar waveguide, is to define

the so-called pre-contacts by means of e-beam lithography. The pre-contacs consist of

the ground and preliminary drain electrodes (light grey structures in Fig. 2.2 (b)), as

well as a set of localisation marks in a 100x100 µm2 window around the MLG flake.



Device fabrication 47

step description duration temperature gas flux

◦ C sccm

1 flush 2 min ∅ Ar 1500

2 heat up 20 min 300 Ar 1500

3 anneal 2–5 h 300 Ar & H 1500 & 800

4 cool down 60 min ∅ Ar 1500

Table 2.3: Thermal annealing under H2/Ar atmosphere of graphene devices.

Joule evaporation of ∼ 2 nm chromium (Cr) and 100–150 nm gold (Au) is used to

metallise the structures. After the lift-off process, optical imaging allows to determine

the position of the MLG with respect to the localisation marks at a sub-micron precision.

These images, imported into the GDSII lithography database, will then serve to design

the desired etching masks, small contact electrodes and top-gates; in short the overall

functional design of the device.

blank space

Etching In some cases, e.g. when the MLG is surrounded by thicker graphene layers

or if a specific shape is desired, it is necessary to cut the MLG sheet. This can be

done by exposing the areas to be eliminated to a strong O2 plasma for 5–8 s. Prior

to this, one needs create an etching mask by means of e-beam lithography and diluted

PMMA, opening windows where etching is to occur. Also, it is advisable to reduce

the exposure dose and developing time, as the plasma will also attack the edges of the

windows. A slightly underexposed PMMA will minimise the risk of unwanted etching

into the graphene channels. After removal of the remaining PMMA the samples can be

checked for successful etching and then undergo the creation of the contact electrodes.

Note that in the case of CVD graphene devices a first etching step has to occur before

the pre-contacts, in order to open windows for the metallisations. Due to the rather

large scale production (30–40 devices on one sheet), the finer etching of the graphene

channels is automated and wider contact electrodes will prevent a possible mismatch

with the graphene sheets. Graphene-on-hBN samples require no different treatment.

Contacts After having isolated the MLG, or having brought it into the desired shape,

the contact electrodes are formed. We use again e-beam lithography, diluted PMMA and

a carefully calibrated exposure dose, in order to prevent proximity effects. The contacts

are usually 1–1.5 µm wide, but are generally tailored and orientated to suit the MLG
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flake. One of the electrodes connects the graphene channel to the drain, the second

one establishes a connection to the ground (source). After developing the polymer, the

groves in the PMMA are filled with 100–150 nm palladium (Pd) by means of e-gun

evaporation and a lift-off in acetone is performed (see also 49).

Hydrogen/Argon annealing As reported in [85], a thermal treatment under H/Ar

atmosphere enhances graphene device properties, as e.g. the graphene-metal interface

or the sheet resistance. Especially the latter is important in our case, since several

lithography steps are necessary and each one leaves behind PMMA residues. See table

2.3.3 for a description of the annealing process. It occurs in general after the contact

electrode creation.

Dielectric and top-gate The final step of the fabrication process is to create a top

gate, separated from the graphene channel by a thin dielectric: We use a very thin

(≤ 2 nm) layer of Al, deposited on the sample via Joule evaporation. The Al film is then

oxidised in the evaporator chamber for 15–30 min. at an oxygen pressure P ≃ 10−4 mbar.

Several steps of deposition and oxidation assure a thin but electrically tight dielectric.

In general we achieve a thickness of 8–10 nm. The relative dielectric constant of such

a AlOx layer is ∼ 7. The top-gate electrode is finally formed by means of e-beam

lithography and Joule Cr/Au evaporation. Top-gate sizes depend on the type of device

and the length of the graphene channel, defined by the Pd contacts (see chapters 3 and

4).
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Micro- and nano-structures are generally created by means of a type of lithog-
raphy and a subsequent metallisation. During this work, we have employed
electron-beam (e-beam) and ultraviolet light (UV) lithography, as well as Joule
and e-beam evaporation.
The principle of operation of e-beam lithography is the precise exposure of a
polymer solution to a beam of electrons. The exposure degrades the poly methyl
methacrylate (PMMA) chains, making it possible to remove only the exposed
parts during the developing process. With our Raith e-Line e-beam lithography
setup we can create structures at a resolution of ∼ 15 nm. Table 2.4 and Fig.2.3
(steps 1–4) summarise a typical process.

blank space

step description tool(s) notes

1 substrate preparation acetone & IPA 1–5 min, if possible

2 spin coating spin coater & PMMA 30 s, 4000 rpm,
4000 rpm/s, PMMA
AZ6 →∼ 550 nm or
∼ 260 nm if diluted

3 baking heater plate 10 min., 165 ◦ C

3(b) Al coating Joule evaporator ≥ 15 nm, sapphire
substrates

4 e-beam lithography Raith e-Line small structures:
7.5 µm aperture,
20 kV, 250 µC/cm2

large structures:
120 µm aperture,
20 kV, 260 µC/cm2

5 developing MIBK & IPA small structures:
1.5 min.MIBK/30 sIPA

6 large structures:
2 min.MIBK/30 sIPA

The developing agent is methyl isobutyl ketone (MIBK) diluted with IPA at a
ratio 1 : 3.

E-beam Lithography

Table 2.4: Typical e-beam lithography process.
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E-beam lithography is a very precise, but rather time consuming technique. For
repetitive structures with no need for nano-metric resolution optical lithography
is a good choice to speed up the process. Here, the use of UV light and a
shadow mask (created once beforehand by means of e-beam lithography) made
from a quartz sheet and Al metalisations, allow for a fast production of e.g. the
localisation marks at a resolution of ∼ 2 µm. The basic working principle is the
same as for e-beam lithography: UV light changes the properties of a polymer
layer and the exposed or shadowed parts can be eliminated during the developing.
We have used the so-called negative lithography process for our samples, where
it is the shadowed parts that are removed in the end. Table 2.5 gives a summary
of a typical localisation marks lithography.
make blank space

step description tool(s) notes

1 substrate preparation acetone & IPA &
ultrasound

5–10 min

2 substrate preparation Harrick plasma oven 10–15 min O2 plasma,
200 W, P . 10 µbar

3 spin coating spin coater 30 s, 4000 rpm,
4000 rpm/s, resin
AZ5214E →∼ 1.4 µm

4 pre-bake heater plate 1 min.50 s, 125 ◦ C

4 align & expose SüssMicroTec MJB4
mask aligner

12 s

5 reversal bake heater plate 1 min.50 s, 125 ◦ C

6 flood exposure SüssMicroTec MJB4
mask aligner

30 s

7 developing AZ726 & de-ionised
H2O

35 s & ≥ 30 s

UV-lithography

Table 2.5: Typical UV-lithography process.
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As indicated in Fig. 2.3 the last steps of a typical nano-fabrication are the
metallisation of the created structures and the lift-off of the unwanted parts. Two
of the most common ways are evaporation by Joule heating and by electron gun.
To obtain a long mean free path of the metal atoms, evaporation systems need
a high vacuum (P≤ 10−5 mbar) and thus generally require two-stage pumping.
Both consists of heating a small piece of metal (in our case Al, Cr, Au and Pd) to
the point of sublimation by either sending a large current through a molybdenum
or tungsten crucible (Joule) or irradiating it with a beam of high energy electrons
(e-gun). The latter is especially needed for metals like Pd or Ti.

Joule evaporation

metal pressure velocity current thickness

(mbar) (nm/s) (A) (nm)

Cr 10−5 ≤ 0.01 65 1–2

Au 2× 10−6 0.15 75 100–150

Al 5× 10−6 ≤ 0.01 50 < 2

E-gun evaporation

metal pressure velocity current thickness

(mbar) (nm/s) (mA) (nm)

Pd 8× 10−7 0.15 45 100–150

Al 8× 10−7 0.1 50 < 2

Lift-off After the successful evaporation, the unexposed, metal covered resin
parts are removed by a lift-off in acetone. Preferably this is done at ambient
temperature over night, or for at least several hours. If however necessary, the
process can be sped up to about 15 min. by heating the acetone to 45 ◦ C.

Metallisation

Table 2.7: Typical e-gun evaporation parameters.





Chapter 3

Microwave graphene field-effect

transistors

The discovery of semiconductors and the invention of the field-effect-transistor (FET)

have greatly shaped today’s way of life and technology. The first device based on semi-

conductors was a Germanium bipolar transistor developed at Bell Laboratories in 1947

[86], leading to a Nobel prize for Shockley, Bardeen and Brattain in 1956.

Metal-oxide-semiconductor field-effect transistors (MOSFETs) only played a minor role

in the early days of semiconductors, but became more and more popular in the course of

the years, taking the lead during the 1980’s. This was in particular due to the scalability

of MOSFET devices to smaller planar sizes. The probably most well known statement

about the scalability issue is the so-called Moore’s law : the number of components on

an integrated circuit (IC) doubles every 12 months. With planar scales reaching pre-

dicted technological obstacles also vertical scalability becomes a new challenge. Suitable

candidates for such new concepts could be layered materials like graphene or carbon

nanotubes (CNTs).

An example is the carbon nanotube FET (CNT-FET) which followed the discovery of

the carbon nanotube in 1991 by Ijima. As pointed out e.g. in J. Chaste’s PhD thesis

[58], expectations were high for CNTs playing a major role in micro-electronics due to

their high current transport ability and gate sensibility, outshining standard metal-oxide-

semiconductor field-effect transistors (MOSFETs) and high electron mobility transistors

(HEMTs). CNT-FETs can operate at high frequencies, the GHz regime, again making

them suitable for fast micro-electronics and moreover, as will be revealed in the follow-

ing, ultra-fast, sensitive charge detectors. Additionally, due to the small tube diameter

they are the ultimate nano-MOSFET.

Another example for new candidates in micro-electronics are graphene FETs (GFETs)

and top-gated graphene-oxide FETs (RF-GFETs). As already pointed out in chapter 1

53
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graphene shows, just as CNTs, a large mobility and is predicted to have low charge noise

(this subject will be addressed in detail in chapter 5). Graphene FETs have much lower

impedance than their CNT counterparts, making impedance matching a less sensitive

issue than in CNT-FETs [58], and a much greater and tunable number of conduction

channels (4 in CNTs). Furthermore, due to graphene’s planar nature gate access is op-

timal as well as the control of device geometry.

Let us now briefly study the main characteristics and working principle of field-effect'

&

$

%

Figure 3.1: Schematic overview of a) Metal-oxide-semiconductor FET (MOSFET).
From F. Schwierz [86] b) High-electron-mobility transistor (HEMT). From Ellinger
et al. [87]. c) Carbon-nanotube FET (CNTFET). From Chaste et al. [58]. d) Back-
gated graphene FET (GFET) e) Top-gated metal-oxide-graphene FET (RF-GFET).

d) and e) from F. Schwierz [41].

transistors, taking as a first example a standard Si/SiO2 n-typemetal-oxide-semiconductor

FET (MOSFET), schematically shown in Fig. 3.1(a). It is governed by the following

principles [86]: Two n-doped regions of silicon are separated by a p-doped channel (or



55

vice versa in a p-type MOSFET). If a sufficiently large voltage is applied to the gate

situated above the the channel, an inversion layer is created and the channel becomes

conductive. Thus, a current can flow if a bias voltage is applied between source and

drain. Through variation of the gate voltage Vg it is then possible to create an ON-

state, where current flows and an OFF-state, where the channel is completely depleted

of n-type carriers, thus blocking the current. Most commonly used are so-called enhance-

ment MOSFETs, which are in the OFF-state at zero gate voltage. Semiconductors other

than Si are used, such as Ge and GaAs for example as well as different gate dielectrics.

The Si/SiO2 combination remains however the industrially most important. Also, more

complicated transistor designs are used, as e.g. double- and tri-gate structures, enhanc-

ing the transistors’ properties and scalability. A similar type of transistor relies on the

effect of a Schottky diode between gate and channel and is called metal-semiconductor

FET (MESFET). It is not displayed among Figs. 3.1. The difference to MOSFET

devices is the direct contact of the metal gate with the semiconductor channel. Fig.

3.1(b) is yet a third type of transistor, the high electron mobility transistor (HEMT)

[87], often employed for high frequency applications. In a HEMT, a heterojunction of

semiconductors with different bandgaps creates a two-dimensional electron gas (2DEG)

in the channel region with considerably high carrier mobilities and velocities. Upon

application of a bias voltage between drain and source a current is established, which

can be controlled by the gate potential to create ON and OFF states. Previously, we

have already briefly introduced the carbon-nanotube FET (CNTFET) (see Fig. 3.1(c)).

Here, a semiconducting carbon-nanotube is used as channel, connected to two leads and

separated from the gate by a thin oxide. It is thus a metal-oxide-CNT-FET and due to

the semiconducting nature of the CNT total current suppression is possible. Switching

speeds are in the GHz frequency range [58]. Fig. 3.1(e) depicts a top-gated metal-

oxide-graphene FET (RF-GFET) which relies on the same principles as MOSFETs and

CNTFETs but has a monolayer graphene (MLG) channel. Similarly, a non-RF graphene

transistor will simply be called GFET throught this work. It is a back-gated devices

as shown in Fig. 3.1(d), where a doped silicon substrate acts as gate electrode and is

separated from the MLG by a layer of SiO2. In both cases, the gate electrode controls

the charge carrier concentration in the MLG channel, effectively varying the current be-

tween drain and source. Let us now point out a few differences between RF-GFETs and

conventional MOSFETs. While MOSFETs are suitable for logical applications due to

the possibility of distinct current-ON and current-OFF states, the drain-source current

cannot be completely suppressed in a RF-GFET. Extensive research into the creation of

a bandgap in graphene is thus under way: The use of bi-layer graphene or the reduction

of the channel width into the nanometer region, i.e. the creation of so-called graphene

nano-ribbons, are highly investigated routes [88–92]. If a sufficient ON/OFF ratio can

be achieved, logical transistors with clock speeds higher than today’s silicon technology
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are possible (see table 3.2), since RF-GFETs are closing in on MOSFETs in terms of

transit frequency fT . A second possible application of RF-GFETs are high frequency

low-noise amplifiers (LNAs). Here however, graphene transistors still suffer from their

low power gain and maximum frequency fmax as compared to their silicon counterparts.

This chapter follows however the spirit of [58], i.e. we will not be as much interested

in the micro-electronic applicability of GFETs, but in their use as fast single charge

detectors for mesoscopic science, where one most prominently is in need of high transit

frequency and a low charge noise.

In this section, after a short description of charge detection in CNT nano-FETs, we will

first introduce the concepts necessary to understand and model charge detection at high

frequencies in GFETs, in particular the transconductance gm and cut-off frequency fT .

The following part will then describe how we access these quantities in our experiments.

Finally, we will discuss the results in the light of ultra fast charge detectors.

3.1 Single charge detection in CNT nano-FETs

'
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%Figure 3.2: SEM micrograph of a double-gated CNT-FET with gate length Lg =
300 nm. Adapted from Chaste et al. [58].

Chaste et al. have studied in detail the DC and RF behaviour of CNT-FETs and in par-

ticular their use as fast single charge detectors[58]. From high frequency measurements

at room and liquid helium temperature they were able to extract the cut-off frequency

of CNT-FETs, their input charge noise and finally estimate the CNT-FETs charge sen-

sitivity δqrms =
√
SI/ωT = 13 µe/

√
Hz [14]. These results have been obtained with a

GHz setup of bandwidth 0.8 GHz. Chaste et al. found cut-off frequencies as high as

50 GHz (see also section 3.2.3.1) and concluded that CNT-FETs suitable for fast single

charge detection [58].
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However, despite being the ultimate nano-detector, their small size also carries disad-

vantages, like the high impedance and large contact resistance, which makes it difficult

to measure and integrate into a standard RF setup.

3.2 Important concepts and formulas

Some important quantities describing FET behaviour, as e.g. the transit frequency

fT , have already been mentioned throughout this thesis. Let us now introduce more

formally the concepts and formulas that will allow us to quantify our RF-FET properties

and compare them to other transistors. First, the DC transport characteristics will be

mentioned, followed by a brief description of radio frequency (RF) properties.

3.2.1 DC characteristics of graphene FETs

As pointed out in chapter 1 section 1.3.2.2, the current through the sample Ids is governed

by the electric field applied between the contacts (drain and source) and, as mentioned

previously, the gate potential changing the charge carrier density.

3.2.1.1 Drain-source dependence

'
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%
Figure 3.3: a) Conductivity as function of back-gate voltage at Vds = 0. Note
that here the notation differs from the rest of this work. b) I − V characteristics
for different gate voltages in a 4-point measurement. The mobility of this device is

µc ≃ 14 000 cm2V−1s−1. Both graphs from Barreiro et al. [50]

The dependence of drain-source current on drain-source voltage Vds can be divided in

two regimes: A bias voltage region of linear behaviour and a saturation region, where

Ids does not increased linearly with Vds any more (see Fig. 3.3(b)).

In the linear regime, the sample’s Ids−Vds characteristic follows Ohm’s law, i.e. increases
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with a constant slope, for a fixed gate potential. Note that this assumes negligible

interface resistance [50] between the metal contact and the graphene in a two-point

device. Four-point measurements as performed by [50] circumvent this problem. The

slope of the I − V curve expresses the drain-source conductance

gds(Vds, V
∆
g ) =

∂Ids(Vds, V
∆
g )

∂Vds

∣

∣

∣

∣

V ∆
g =const.

(3.1)

which nearly vanishes at the Dirac point due to the density of charge carriers dropping

to its minimal value. V ∆
g signifies now and in the following the change of gate voltage

Vg with respect to the charge neutrality point (CNP): V ∆
g = Vg − VCNP .

As can be seen in Fig. 3.3(b) [50], the graphene I − V characteristic deviates from the

linear Ohmic behaviour from a certain threshold voltage onwards. The current starts

to saturate to a value Isat, which can nevertheless be modulated by gate voltage. This

(incomplete) saturation is attributed to the scattering of electrons with optical phonons:

Once the accelerating electric field provides enough energy, electrons can activate an

optical phonon and are subsequently backscattered. This effectively decreases the to-

tal current Ids. The fact that the saturation remains incomplete in graphene devices

is due to elastic scattering events in addition to the scattering of electrons with opti-

cal phonons [50]. In other words, considerable current saturation can only be achieved

in high mobility samples. Otherwise, the electron elastic mean free path remains sub-

stantially shorter than the optical phonon activation length and only little inelastic

electron-optical phonon scattering occurs. Thus, the charge carrier mobility µc(V
∆
g ),

effectively a measure of sheet quality, also provides insight into the dominant scattering

mechanism. A more detailed study of scattering mechanisms in graphene will follow in

chapter 4. An interesting side note is the possibility to observe Zener-Klein tunnelling

in the I–V curves close to the CNP. Vandecasteele et al. [93] showed that a power law

I ∝ V α correctly models the characteristics and stems from defect related Zener-Klein

tunnelling.

3.2.1.2 Gate dependence

The charge carriers in graphene form effectively a two dimensional electron gas with

certain particularities due to graphene’s planar nature and honeycomb arrangement

(see chapter 1). One of these particular features is the possibility to tune the charge

carrier density by field-effect [2]: The gate voltage V ∆
g modulates the charge density and

therefore the Fermi energy ǫF . This behaviour is displayed in Fig. 3.3(a).

In back-gated GFETs it is usually assumed that ns ∝ V ∆
g . This is not generally valid

for top-gated RF-GFETs, however we will neglect the effect of electron compressibility
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here and assume perfect coupling of ns and V
∆
g . The aforementioned correction due to

electron compressibility will be discussed in more detail in chapter 4. Note also that as

mentioned before V ∆
g = Vg − VCNP .

The carrier concentration can be estimated from the empirical formula

ns(V
∆
g ) =

√

n20 +
(

C ′
gV

∆
g /e

)2
(3.2)

where n0 is the minimum sheet carrier density, C ′
g the gate capacitance per unit area and

Vg the gate voltage with respect to the Dirac point [94]. Typically, n0 ≃ 2.2 · 1011 cm−2

for graphene on SiO2 [95, 96]. This is generally attributed to the presence of electron-

hole puddles in the graphene sheet, making the exact value of n0 dependent on graphene

quality.

3.2.1.3 Drain-source current Ids

Eq. (1.51) leads us now directly to the dependence of drain-source current on Vds and

Vg:

Ids
(

Vds, V
∆
g

)

=
W

L

√

n20 +
(

C ′
gV

∆
g /e

)2
µc(V

∆
g )eVds (3.3)

W,L are sample width and length, respectively, µc the charge carrier mobility and e the

electron charge. Note that this description remains valid only in the ohmic regime.

3.2.1.4 DC-transconductance

As pointed out above, the drain-source current depends on the applied gate voltage.

The sensibility of current variation with respect to gate voltage is generally expressed

by the transconductance at fixed drain-source voltage [86]

gm(Vds, V
∆
g ) =

∂Ids
∂V ∆

g

∣

∣

∣

∣

Vds=const.

(3.4)

The highest reported values of gm per unit gate width for RF-GFETs are [17]: 0.15 mSµm−1

for SiC grown, 0.02 mSµm−1 for CVD grown and 1.27 mSµm−1 for exfoliated graphene.

The highest obtained value for a III-V device is 1.62 mSµm−1 as of November 2011 [17].

CNT-FETs reach transconductance values of the order of 11.4 mSµm−1 (see also table

3.2).

Besides a few exceptions [17], the transconductance of RF-GFETs remains still lower

than in MOSFETs. Note also the dependence of gm on gate length and carrier mobility:

gm ∝ µcL
−1
g . This will be of importance in the assessment of the transit frequency fT .
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3.2.1.5 Voltage gain

Another important property of transistors is their voltage gain

GV =
δVout
δVin

=
δVds
δVg

=
gm
gds

∝ Vds
V ∆
g

(3.5)

where we have used Eq. (3.4) and Eq. (3.1). In RF-GFETs the voltage gain remains

still below 1, in contrast to e.g. silicon MOSFETs or CNTFETs. Also GFETs based on

bilayer graphene show substantial voltage gain, as shown e.g. by Szafranek et al. [92]

who measured GbilayerV ≃ 35.

3.2.1.6 Gate capacitance

Contrary to CNTFETs, where the gate capacitance is between a cylinder (the CNT)

and a plane (the gate), capacitance calculation in GFETs is fairly simple: That of two

planes separated by a dielectric.

Cgeo = ǫ0ǫr
LW

t
(3.6)

where t is the distance between MLG and gate, ǫ0 and ǫr are the vacuum and relative per-

mittivity, respectively. In our devices we generally use the high-κ dielectric aluminium

oxide with ǫr ≃ 7 at a thickness of the order of 10 nm. The value ǫr ≃ 7 is within

the range outlined e.g. by Gloss et al. [97] of ǫAlOx
r ≤ ǫAl2O3

r = 4.5–8.9 for ultra-thin

AlOx layers. For the devices presented in this chapter, the total gate capacitance is thus

typically of the order of a few fF.

Note that here we assume the total gate capacitance Cg to be dominated by the geo-

metrical capacitance, as we generally have ns ≫ n0, and we neglect corrections due to

electron compressibility, which may dominate close to the Dirac point. This particular

issue will be addressed in more detail in chapter 4.

SiO2 hBN Al2O3 HfO2

ǫr 3.9 [98] 3–4 [44] 4.5–8.9 [97] 25 [98]

Table 3.1: Comparison of different gate dielectrics for RF-GFETs.
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3.2.2 RF characteristics of graphene FETs

Let us now turn to the high frequency properties of GFETs. In the following we will

always work in the linear response regime, i.e. the intrinsic properties of our transistor

as e.g. gm or Cg will remain unchanged when changing the excitation magnitude.

3.2.2.1 Small signal equivalent circuit

'
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%Figure 3.4: Small signal equivalent circuit for graphene FETs

Contrary to DC measurements, where the characteristics only depend on the geometries

of channel and gate and the device’s dependence on drain-source and gate voltage, the

whole device layout is important in RF experiments, in particular at GHz frequencies.

There, contributions due to coupling between gate and drain/source can occur, as well

as parasitic contributions due to the environment. Fig. 3.4 shows the simplest small

signal equivalent circuit of a graphene FET (see also [18]). Here, the label ”gs” denotes

gate-source, ”gd” gate-drain and ”ds” drain source couplings. The superscript 0 points

out the parasitic contributions. gm is the transconductance.

The currents I1 and I2 can be calculated by short circuit analysis, where one considers

a shunt across one of the voltage sources and calculates the current flow in the circuit.

This technique will be used in the following calculation of admittance parameters (see

3.2.2.3).

3.2.2.2 Scattering parameters

A versatile tool to study the high-frequency properties of a given object, without any

prior specification, is the technique of the so-called scattering parameters (S-parameters).

They have been very briefly introduced in chapter 1 Eq. (1.55). We will now adapt this

formalism for an AC-voltage signal incident on a two-terminal electric device. In more

general terms, the frequency dependent elements of the scattering matrix S describe the
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%Figure 3.5: Left: Scattering matrix S and applied voltages and currents. Right:
Admittance matrix Y and corresponding currents and voltages

transmission between ports and the reflection at each individual port:

(

b1

b2

)

=

(

S11 S12

S21 S22

)(

a1

a2

)

(3.7)

The scattering parameter approach is in principle valid for any number of ports. How-

ever, in Eq. (3.7) we only consider two ports, for the sake of simplicity and applicability

to our measurements.

Here, the elements of S are

Sij =

(

bi
aj

)

ai=0

, i, j = 1, 2 (3.8)

wherein ai and bi are defined by

a1 =
V +
1√
Z0

= I+1
√

Z0 , a2 =
V −
2√
Z0

= I−2
√

Z0 (3.9)

b1 =
V −
1√
Z0

= I−1
√

Z0 , b2 =
V +
2√
Z0

= I+2
√

Z0 (3.10)

Ii and Vi are the incoming/outgoing current and voltage at port i, Z0 = 50 Ω is the

standard input and output impedance of our measuring system.

3.2.2.3 Y-parameters

Although S-parameters are widely used to characterise RF components, the use of ad-

mittance parameters is more beneficial for our devices [86]. They offer the possibility

to easily subtract parallel elements, such as the parasitic contributions to the device

capacitance. As can be seen from Fig. 3.4, the parasitic contributions (highlighted in

red) are in parallel to the intrinsic circuit elements (green in the diagram). For our
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considered two-port, 4-terminal system the admittance matrix is defined by

(

I1

I2

)

=

(

Y11 Y12

Y21 Y22

)(

V1

V2

)

, Vi = V +
i + V −

i , i = 1, 2 (3.11)

where

Yij =

(

Ii
Vj

)

Vk 6=j=0

i, j = 1, 2 (3.12)

The Y -parameters can easily be derived from S-parameters via the following relations:

Y11 =
1

Z0
· (1− S11)(1 + S22) + S12S21
(1 + S11)(1 + S22)− S12S21

, Y12 =
1

Z0
· −2S12
(1 + S11)(1 + S22)− S12S21

(3.13)

Y21 =
1

Z0
· −2S21
(1 + S11)(1 + S22)− S12S21

, Y22 =
1

Z0
· (1 + S11)(1− S22) + S12S21
(1 + S11)(1 + S22)− S12S21

Performing the aforementioned short circuit analysis of the equivalent circuit model, the

admittance parameters can be linked to the elements in the circuit: Placing a short at

port 1 (port 2), i.e. V1 = 0 (V2 = 0), and calculating currents I1 and I2, we obtain (see

3.12)

Y11(ω) = jω
(

C0
gs + Cgs + C0

gd + Cgd
)

Y12(ω) = −jω
(

C0
gd + Cgd

)

(3.14)

Y21(ω) = gm − jω
(

C0
gd + Cgd

)

Y22(ω) = R−1
ds + jω

(

C0
gd + Cgd + C0

ds

)

where j signifies the imaginary unit.

3.2.2.4 RF-transconductance

As discussed previously in the DC description, the drain-source current depends on both

the drain-source and gate voltages. In order to quantify the change of Ids with respect

to Vg, we introduced the transconductance gDCm (see Eq. (3.4)).

At high frequencies the transconductance gRFm can be extracted from Eq. (3.14):

gRFm = ℜ (Y21) (3.15)

It is often slightly inferior to its DC counterpart in RF-GFETs. Note that in CNTFETs

gRFm > gDCm due to capacitive shunting of the interface resistance between nanotube

and metal electrode. For a comparison of typical transconductance values for different

materials see table 3.2.
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3.2.3 Current gain and characteristic frequencies
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%Figure 3.6: Simplified model of a transistor. The transfer function is given by
T = Vds/V

∆
g .

In order to understand another couple of figures of merit, the cut-off frequency fT and

maximum frequency fmax, it is helpful to study a simplified schematic of a transitor

shown in Fig. 3.6. It contains only the drain-source resistance Rds, the gate-drain

capacitance Cgd and the current generator gmVg, which models the impact of gate po-

tential on the channel conductance. The transfer function can then be derived by circuit

analysis as described in 3.2.2.3 and yields

T =
Vds
V ∆
g

= gmRds
1− jω/ωT
1 + jω/ωRC

∝ GV (3.16)

with the two cut-off frequencies ωT = gm/Cgd and ωRC = (RdsCgd)
−1 and the voltage

gain gmRds.

In the case of high-impedance samples with rather small gate-drain capacitance, which

typically describes back-gated samples, the response is mainly characterised by ωRC . It

is the frequency at which half of the original power is attenuated. Thus, these samples

are rather dissipative and mainly governed by the channel resistance Rds.

3.2.3.1 Transit frequency fT

Of greater interest to us is the transit frequency ωT = gm/Cgd. Its importance is best

highlighted by considering the short circuit current gain of a given transistor [18]

|H21| =
∣

∣

∣

∣

Y21
Y11

∣

∣

∣

∣

= 1 + j
ωT
ω

(3.17)

which describes the gain in drain-source current due to the effect of the gate potential.

As one can immediately see from (3.17),

fT =
gm

2πCgd
(3.18)
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characterises the frequency at which the device’s gain becomes inferior to 1. It thus

defines the limit of current amplification capability of the transistor. Eq. (3.18) is yet

another reason to engineer large transconductance values and reduce the gate capac-

itance to a minimum. The transit frequency is of special relevance for logic devices.

Here, the output current due to gate switching must be large enough to control the next

gate in line, i.e. sufficient current gain is needed. We will see later that 2πfT also has

great impact on the charge resolution of a RF-GFET (see chapter 5).

3.2.3.2 Maximum oscillation frequency fmax

Another figure of interest in a transistor is its unilateral power gain U and the associ-

ated maximum oscillation frequency fmax [86], which describes up to which point the

transmitted power ratio is greater than 1:

fmax ≃ fT

2
√

2πfTRgCgd
(3.19)

The above equation is an approximated evaluation. More detailed expressions can be

found in [18, 86].

There is no general rule as to which values fT and fmax should have, but as a rule of

thumb it is generally accepted that for RF-FETs fmax should be comparable to fT [86].

Also, these two maximum frequencies should be considerably higher than the desired

operating frequency [86].

It is also clear from Eq. (3.19) that in order to obtain a large fmax the drain-source

conductance must be minimised in addition to a large transconductance.

3.2.3.3 Recent achievements in terms of fT in GFETs and other materials

As mentioned previously, one expects fT ≃ fmax for good RF FETs. However, for the

development of a single charge detector the transit frequency fT is most important. A

sensitive charge detection on the sub nano-second time scale (see chapter 1) calls for a

fT ≫ 1 GHz in addition to a low current noise (see chapter 5).

Different attempts using diverse materials such as CNTs, nano wires or semiconductor

hetero-structures have been made, in particular here at the Laboratoire Pierre Aigrain,

where J. Chaste et al. investigated ultra-fast CNT based single charge detectors [58].

As shown in [14, 58] transit frequencies up to 50 GHz could be estimated with single

nanotube nano-FETs. Higher values are possible with more conventional micro-scale Si

or III-V devices: fT s up to 485 GHz and 628 GHz have been demonstrated for Si and

InAs FETs, respectively [17] (see also table 3.2).
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graphene CNT Si III-V

mobility (cm2V −1s−1) ≥ 106[45] 1400 1.5 · 105

max. gRFm /W (mSµm−1) 1.27 [99] 11.4[100] 1.3 1.62

fT (GHz) 300 [65] 50 [58] 485 628

estimated:
1400

fmax (GHz) 44 [65] - - 1100

Table 3.2: Overview of important properties of different materials for RF transi-
tors. Values are measured at room temperature and according to [17] if not stated

otherwise.

Figure 3.7: Cut-off frequencies for different FETs as a function of gate length.
From F. Schwierz [41].

As for the case of graphene, transit frequencies of 210 GHz and 300 GHz have been

reported by [101] and [102] (see Fig. 3.8). While [102] uses a self-aligned nano-wire as

gate, very recently similar values of fT = 300–350 GHz have been reported by researchers

at IBM [65] for CVD based RF-GFETs with conventional 40 nm long gates 1. However,

the still modest values of fmax (see table 3.2), i.e. the low power gain, and the lack

of a significant bandgap make the development of RF applications involving graphene

a difficult, yet highly active subject. As we saw earlier fmax gives information about

the power gain of a given RF-GFET. A large maximum oscillation frequency is thus

necessary for the use of RF-GFETs as RF amplifiers. Great effort is invested here

especially at IBM (US). On the other hand, graphene based logic applications are highly

1Note that these fT values, while being most impressive, are obtained by extrapolation.
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Figure 3.8: a) Micrograph and current gain measurement of an RF-GFET with a
self-aligned nanowire as gate electrode. fT reaches 300 GHz. From Liao et al. [102].
b) Micrograph and current gain of an RF-GFET with 40 nm long gate, entirely
fabricated on a SiC terrace. The transit frequency reaches 210 GHz. From Lin et

al. [101].

sought after as well. The creation of a bandgap in the otherwise linear band structure

is thus another vibrant subject. Besides the creation of nano-ribbons, the use of bilayer

graphene may lead to a break through in this area. An electrically tunable bandgap

can be opened here and good current ON/OFF ratio can be obtained, as shown e.g. by

Szafranek et al. [90–92].

In the light of the above mentioned efforts towards high-speed graphene electronics, it

is not the aim of this work to improve the standard, but to investigate the possibilities

of RF-GFETs as robust and sensitive charge detectors.

3.3 Experimental techniques

In the following section we will present experimental data of two RF-GFETs. They will

be use exemplary, as we have studied several similar devices with similar DC and RF

properties. A more systematic study of effect of scaling on the transconductance and

transit frequency could not be carried out due to technical problems unresolvable at the
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time. The collaboration with Karlsruhe Institute of Technology in Germany provides us

therefore with the means to further compare the DC and high frequency behaviour of

top-gated graphene FETs.

3.3.1 Device fabrication'

&

$

%Figure 3.9: Left: Schematic overview of a top-gated GFET on a Si/SiO2 substrate.
Right: Micrograph of complete GFET

Our GFETs are fabricated from exfoliated graphene on two different highly resistive

substrates. The main production steps follow the description in 2: After exfoliation

and optical localisation of the graphene flakes the pre-contacts are patterned (see Fig.

2.2(b)). The flakes are then brought into a desirable shape by means of dry etching (see

Fig. 2.2(c) and (d)). After the Pd contact electrodes are defined and metallised, a thin

layer of AlOx is formed and lastly the top-gate electrode is created (golden structure

in Fig. 2.2(d)). The Pd metallisation was carried out by means of e-gun evaporation

in the Paris-Centre clean-rooms (Salle Blanche Paris Centre (SBPC) facility): First at

the Ecole Supérieure de Physique et de Chimie Industrielles under the supervision of

T. Kontos and later at Paris Diderot University in collaboration with the Matériaux et

Phénomènes Quantiques group. A more detailed overview of the characteristics of the

samples presented in this work can be found in table 3.3

3.3.1.1 Substrates

The substrates used for our RF-GFETs are either undoped silicon of high resistivity or

sapphire wafers. This choice is due to the high-frequency measurements to be performed
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Figure 3.10: a) Schematic overview and micrograph of graphene-on-sapphire RF-
GFET. b) Micrographs of graphene-on-SiO2 RF-GFET. The graphene flake is indi-

cated in red.

sapphire
RF-GFET

Si/SiO2

RF −GFET
units

oxide/substrate thickness 330 190 µm

contacts Ti/Al (10/120) Pd (100) nm

dielectric AlOx (25) AlOx (5) nm

gate length Lg 200 110 nm

channel dimensions (L×W ) 1× 3.7 0.3× 0.9 µm× µm

gate capacitance Cg ∼ 3.5 ∼ 2.6 fF

carrier mobility µc 200–500 ≤ 300 cm2V−1s−1

max. gDCm 0.22 2.3 mS µm−1 V−1

max. gRFm 0.25 1 mS µm−1 V−1

fT 80 17 GHz

fmax 3 GHz

Table 3.3: Overview of RF-GFET characteristics

on the chips, which calls for an avoidance of electrical conduction via the substrate. Oth-

erwise, charging effects in the silicon could open a pathway for the RF signal and make

it more likely for the electromagnetic waves to travel through the substrate instead of

the device. This was previously shown for RF carbon nanotube FETs at our lab [58].

The main properties of the two highly resistive types of substrate can be found in table

2.2. The oxide thickness of the silicon type wafer was chosen with respect to the en-

hanced contrast predicted for graphene [81].
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Sapphire is another very good choice of substrate regarding RF applications, as it is

completely insulating and devoid of trapped charges which are likely to induce extrin-

sic noise.. However, this property also complicates the fabrication process of sapphire

based GFETs: It is necessary to provide a means of charge evacuation during e-beam

lithography, due to which an Al evaporation step has to occur prior to each lithography

(see also table 2.4). The Al layer is subsequently removed chemically (KOH solution).

3.3.1.2 Pd contacts'
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Figure 3.11: Estimation of contact resistance from Rchannel(L) measurements in
back-gated CVD samples of channel width W = 1 µm [103]. The charge carrier

density is of the order of 1013cm−2.

As mentioned in chapter 2, we use palladium (Pd) as contact metallisation. This renders

the production more intricate (Pd needing to be deposited by means of e-beam evap-

oration), but also has one advantage over standard Cr/Au or Ti/Au contacts: a lower

interface resistance. Fig. 3.11 shows a statistical analysis of Pd contacted, back-gated

GFETs of various channel lengths Lmade from CVD graphene (provided by A. Madouri,

LPN). Extrapolating to zero channel length we find a contact resistance Rc ≃ 360 Ω.

We conclude that compared to typical channel resistances of the order of kΩ, Rc remains

negligible [103]. These measurements were carried out by Andreas Inhofer during his BSc

internship at our laboratory. The charge carrier density is estimated at ns ≃ 1013 cm−2

from Hall bar measurements on similar CVD sheets performed at LPN.

3.3.1.3 Coplanar waveguide

All RF-GFETs are embedded in a coplanar waveguide, as described in subsection 2.3.3.

It serves to avoid mismatch with the standard 50 Ω impedance of RF equipment and to

allow a lossless propagation of electromagnetic waves. It also provides the possibility to
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Figure 3.12: GHz verification of coplanar waveguide structure: Drain and gate
are connected to create a through line.

establish a connection between the macroscopic probe heads and the microscopic sample

contacts. Hence the progressive scaling from 400 µm appropriate for the probe heads

to ∼ µm of the contact electrodes. We tested the quality of the structures in terms

of GHz frequencies by establishing a connection between drain and gate electrode: a

custom made through line. From Fig 3.12 it is clear that our waveguides are of good

quality and allow a nearly lossless propagation: The magnitude of the transmitted signal

(parameter S21) decreases by only 6% over a frequency range of 20 GHz. This highlights

again the importance of the high resistivity of our substrates for RF experiments: For

a given material resistivity ρ the dielectric relaxation frequency is given by

fdr =
1

2πǫ0ǫrρ
(3.20)

This is the frequency above which the free carriers in the substrate cannot follow the

signal excitation any more. For a highly doped Si substrate of ρ = 1 mΩcm we obtain

thus fdr ≃ 150THz, whereas in the case of highly resistive (ρ = 20 kΩcm) substrates

this frequency drops to fdr ≃ 8MHz. Hence the advantage of high resistivity Si/SiO2.

For more details on the RF measurement techniques please refer to subsection 3.3.2

below.

3.3.1.4 Gate dielectric

The gate dielectric of our RF-GFETs is a thin layer of Al2O3, as mentioned previously

in chapter 2. To ensure a pin-hole free dielectric we employ a multi-step process: less
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than 2 nm of Al are deposited on the sample per step. This means that we can convert

the Al layer to Al2O3 at the full layer depth by in-situ oxidation. The resulting 5–25 nm

thin film is a high-κ dielectric with ǫr ≃ 7.

3.3.2 Experimental setup

3.3.2.1 RF probe station setup

Sample characterisation at room temperature is performed on a Cascade Summit 9000

probe station (Fig. 3.13(a) and (b)). The DC and AC voltages are supplied via a

bias-T connected to each probe head. We use two Yokogawa 7651 voltage sources to

polarise the drain and gate, respectively. DC currents are measured with a Keithley

2000 multimeter, via the voltage drop at a bias resistance (see Fig3.13(d)). The AC

excitations and subsequent S-parameter measurements are performed using a Anritsu

37369C vector-network analyser (VNA).

DC measurements As displayed in Fig. 3.13(d), we supply a drain-source current Ids

to the sample by applying a bias voltage Vbias to the series combination of the sample

and a bias resistance Rbias. Ids and the sample resistance Rds are then calculated

from the voltage drop across Rbias, typically 4.9 kΩ. On the gate side the resistance

Rgate, typically 3.2 MΩ, allows us to detect leak currents towards the drain and prevent

dielectric break-down.

RF measurements High-frequency S-parameter characterisation is carried out in a

frequency range of 0.1 GHz up to 20 GHz. The VNA’s two ports are connected to the

sample’s source and gate electrode via the bias-Ts and probe heads. The excitation levels

are kept inferior to the thermal energy of 25 meV (at 300K) to ensure linear conditions.

Typically, each data point is averaged 100 times at 1600 points per bandwidth.

3.3.2.2 Cryogenic probe station setup

We also have the possibility to carry out RF experiments at low temperatures using a

Janis cryogenic, variable temperature probe station (see Fig. 3.13 (c)). Here, a flow

of cooling agent (liquid nitrogen or helium) and a heatable chip holder allow to vary

the temperature in the range T ≃ 4.2 K(liquid helium) to T ≃ 400 K in vacuum. The

calibration and measuring procedures remain unchanged. Data presented in this chapter

was obtained essentially on the Cascade room temperature setup, however. RF-GFET
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(a)

(b)

(c)

(d)

Figure 3.13: a) Cascade probe station. b) Cascade probe heads with a device
under test. c) Janis cryogenic probe station. d) Schematic circuit diagram of the

probe station setups.

measurements at low temperature are less stable and more difficult to perform and do

not generate new physical insight, as could be shown in [16].
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3.3.2.3 Calibration

Both probe systems have to be calibrated thoroughly in order to take into account any

spurious contribution of cables, connectors and the electrical environment of the device

under test (DUT) and finally subtract them from the measured signal. This is done in

a first step by means of a calibration pad and secondly by means of a dummy structure.

Short-open-load-through calibration The first step of calibration consists of the

subtraction of all spurious contributions up to the tips of the probe heads. To this

purpose we use a standard short-open-load-through (SOLT) procedure for the required

frequency range and at low input power (typically −27 dBm).

Dummy structure In order to also eliminate any parasitic contributions on-chip, we

use a dummy structure. This device is fabricated in the exact same way as the actual

DUT, but leaving out the graphene layer, i.e. no graphene mediated transmission can

occur. After conversion from S to Y -parameters, all parasitic on-chip contributions can

be subtracted from the measured signal:

(

Y exp
11 Y exp

12

Y exp
21 Y exp

22

)

=

(

Y DUT
11 Y DUT

12

Y DUT
21 Y DUT

22

)

+

(

Y dummy
11 Y dummy

12

Y dummy
21 Y dummy

22

)

(3.21)

The dummy subtraction is possible and easy in this case, since all parasitic contributions

are in parallel to the intrinsic ones (see Fig. 3.4). This dummy-subtraction approach

is especially important for the extraction of e.g. the cut-off frequency fT or the device

capacitance in chapter 4.

3.4 Results

We will now turn to the result obtained on two kinds of samples. For each type we will

show data of one exemplary device: first a large, double gated graphene-on-sapphire

(GoS) RF-GFET [16], then a small single gate graphene-on-SiO2 (GoSiO) device. The

graphene-on-sapphire results have been obtained in collaboration with the Karlsruhe

Institute of Technology (KIT): Sample fabrication was carried out at KIT, measurements

at LPA.

This section deals at first with the stationary electronic properties of the samples: I-V-

characteristic, channel resistance and DC transconductance. In a second step, the RF

characteristics will be presented, followed by a short conclusion of the obtained results

and a description of the evolution of fT in GFETs over the years.
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3.4.1 Graphene-on-sapphire micro-transistor

'

&

$

%Figure 3.14: SEM picture of GoS sample. The graphene layer is highlighted in
green.

3.4.1.1 DC characteristics'
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%
Figure 3.15: DC characteristics of sapphire RF-GFET. a) Ids and Rds as function
of gate voltage, measured at Vds = 10 mV. b) I-V characteristics for different gate
voltages in the range Vg = [−2, ... ,−0.25]V in 0.25 V steps. c) Maximum DC
transconductance versus drain-source voltage. The black line is a guide for the eye.

All samples are first of all characterised at continuous voltage, before being examined

at high frequency. This provides information e.g. about the devices’ conductance and
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the position of the charge neutrality point with respect to gate voltage. Knowing the

DC behaviour then helps in determining the AC experimental parameters.

I-V characteristic The I − V characteristics can be found in Fig. 3.15(b) for the

GoS device.

The sample exhibits a non-linear Ids(Vds) at high electric field as expected from section

3.2.1.1. Despite the high current of ∼ 5.5 mA through the sample, the saturation is

however not complete. A lack of full saturation at high field is commonly observed in

GFETs [50, 94].

In Fig. 3.15(a) we present the sample’s drain-source resistance Rds as a function of gate

voltage Vg. Note that we use ”raw” gate voltage Vg here and not V ∆
g , i.e. it is not with

respect to the Dirac point. As a matter of fact, the charge neutrality point was not in the

range of applied gate voltage. We nevertheless can state that the sample’s impedance

remains low at Rds ≃ 100–200 Ω. We find sample GoS to be n-doped, in agreement

with the expectations for Al as contact metal: The work function of aluminium is lower

than carbon’s with a difference of 720 meV between the two (see Fig. 3.16). Additional

doping is present in GoS, which is generally a contribution of impurities at the substrate-

channel interface. As a result of the strong doping, the charge neutral point could not

be reached with this sample.'
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Figure 3.16: Extract of the periodic table of elements. First row: symbol of
elements, second row: ionisation energy, third row: work functions, fourth row:
electron affinities, all given in eV/atom. From [104]. Highlighted are carbon (cyan)
and suitable contact metals with work functions smaller (yellow) and bigger (green)

than carbon.
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Charge carrier mobility We estimate charge carrier mobilities from Eq. (1.51) as

µc = e−1σ/ns, where the carrier density is obtained from Eq. (3.2). For the device

under investigation we find 200 ≤ µc ≤ 500 cm2V−1s−1.

Transconductance and voltage gain Although the Dirac point was out of reach

and therefore saturation of the transconductance gDCm could not be obtained, the value

reaches nevertheless a valuable maximum of gmaxm /(2WVds) = 0.22 mSµ−1V−1. A factor

2 intervenes here, due to the double gate design. The maximum transconductance is

plotted in Fig. 3.15(c) versus drain-source voltage. It increases with bias as expected

from Eq. (3.3) and 3.4. However, as pointed out before, this only remains valid in the

limit of Ohmic behaviour. Beyond this regime, Ids starts to saturate which in turn also

means a saturation of gm. An onset of this behaviour can be seen in Fig. 3.15(c), when

data deviates from the solid line indicating the linear regime [16].

Using conductance values gds extracted from Fig. 3.15(b) (e.g. gds ≃ 8.6 mS and

5 mS) in conjunction with the corresponding maximum transconductance (Fig. 3.15(c),

gm ≃ 0.9 mS and 1.5 mS), the voltage gain (see (3.5)) reaches valuesGV = gm/gds ≃ 0.1–

0.3. Compared to e.g. CNT-FETs, where GV can reach values ≥ 1 [58], this remains

to be improved. Conventional MOSFET amplifiers can exceed these values by orders of

magnitude.

3.4.1.2 RF characteristics

In this section we will be interested in the high frequency behaviour of our graphene

transistor. The focus will lie on the RF transconductance and the cut-off frequency fT .

The high frequency transconductance can be extracted from the complex admittance

parameter Y21 as shown in section 3.2.2.4: gRFm = ℜ (Y21). The intrinsic values are

obtained via the de-embedding procedure described earlier.

From the transconductance and the gate capacitance we can then estimate the cut-off

frequency and compare to experimental results.

Transconductance and gain For our GoS sample, the maximum RF transconduc-

tance is displayed in Fig. 3.17(a) as a function of Vds. It reaches values of the order of

1 mS at Vg = −4.3 V and Vds = ±1 V, thus gm/(2WVds) ≃ 0.14 mSµm−1V−1. Slightly

off the presented data points we were able to reach even higher RF transconductance:

gRF,maxm /W ≃ 0.25 mSV−1µm−1 at Vg = −5.2 V and Vds = −1.1 V. Comparing to its

DC counterpart,where gDCm = 0.22 mSµ−1V−1, we find gRFm to be superior to gDCm , a

fact that is not commonly seen in RF-GFETs. This excellent agreement between the

DC and RF behaviour could be due to the fully insulating sapphire substrate and the
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Figure 3.17: GHz characteristics of sapphire RF-GFET. a) RF transconductance
as function of Vds at Vg = −4.3 V. b) Current gain as function of frequency at
Vds = −1.1 V and Vg = −5.2 V, Blue squares show raw data with fT ∼ 3 GHz,
red dots correspond to de-embedded data with fT ∼ 80 GHz. The inset displays
the maximum available gain (MAG) and the unilateral power gain U as function of

frequency. The solid line in (b) and the inset indicates a 1/f dependence.

resulting suppression of substrate losses.

The transconductance values also allow us to estimate the mobility. From Eq. (3.3) we

find

µc = gm
LgLchannel
C ′
gVds

≃ 500 cm2V−1s−1 (3.22)

at the maximum RF transconductance point and omitting minimum charge carrier den-

sity effects. C ′
g is the gate capacitance per unit area (see table 3.3).

Transit frequency As mentioned previously, the cut-off frequency can be estimated

from fT = gm/(2πCg). Using the above mentioned transconductance value and the

geometrically estimated gate capacitance one expects fT ∼ 70 GHz for sample GoS at

[Vg = −5.2 V , Vds = −1.1 V].

The cut-off frequency obtained experimentally is a close match to this value: f expT ≃
80 GHz. We extract it from the measured current gain |H21| shown in Fig. 3.17(b).

A clear 1/f behaviour of |H21| is observable and Fig. 3.17(b) additionally highlights

the necessity of de-embedding for the extraction of intrinsic values: Raw data reveals a

transit frequency of ∼ 3 GHz, whereas we obtain the intrinsic fT close to the estimate

after de-embedding Y DUT = Y measured − Y dummy.
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As a short, preliminary conclusion we can state that RF-GFETs seem to make good

candidates for charge detectors. It is possible to reach high transit frequencies, while

keeping the device impedance low and close to the standard 50 Ω. However, for the issue

of sensitive charge detection, we not only require a high fT but also low current noise SI .

It will thus be necessary to further reduce the sample’s width (for GoS W = 3.7 µm),

since SI ∝ Ids ∝W , in order to enhance the charge resolution δqrms (see chapter 1 and

beginning of this chapter) while keeping fT >> 1 GHz.

Therefore, let us now turn to the smaller sample GoSiO (W = 1 µm), where we will study

the effect of scaling on the important transistor properties and in particular on the RF-

GFETs transit frequency. Actually, the graphene-on-SiO2 RF-GFETs, for which GoSiO

stands exemplary, have been fabricated measured earlier than the GoS sample. Data

analysis is therefore less controlled than in the more advanced graphene-on-sapphire

devices.

3.4.2 Graphene-on-SiO2 nano-transistor

'

&

$

%Figure 3.18: SEM picture of GoSiO sample. The graphene layer is highlighted in
red.

As mentioned just above, this sample is of smaller lateral and channel size (L ×W =

0.3 µm× 0.9 µm), in addition to its smaller gate (Lg = 110 nm).

3.4.2.1 DC characteristics

I-V characteristic Sample GoSiO exhibits a non-linear Ids(Vds) at high bias just as

previously sample GoS. In this smaller sample however, the saturation is more pro-

nounced and we find Ids ≃ 0.8 mA at highest applied Vds (Fig. 3.19(a)). GoSiO’s

drain-source resistance is shown in Fig. 3.19(b) with the maximum Rds about twice the

value of the larger GoS sample. This is consistent with expectations from Eq. (3.3)

(Ids ∝W ).
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Vg = [0, ... ,1] V

Figure 3.19: a) I-V characteristics of graphene-on-SiO2-FET. Different colours
correspond to different gate voltages. b) Channel resistance Rds as function of gate
voltage. Different colours correspond to different bias voltages. c) DC transcon-
ductance as function of gate voltage. Different colours correspond to different bias

voltages.
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With the Dirac point at positive gate voltage, sample GoSiO is p-doped, as expected

from the Pd contacts (see Fig. 3.16). Doping remains lower than in the sapphire sup-

ported sample due to the smaller work function difference of 150 meV, hence bringing

the charge neutrality point into gate reach.

Transconductance and gain Sample GoSiO exhibits a lower ”raw” DC transcon-

ductance than GoS, as visible in Fig. 3.19(c), where gDCm is diplayed as a function of

gate voltage for different Vds. However, normalised to gmaxm /(WVds) we find that GoSiO’s

maximum values are one order of magnitude higher: gmaxm /(WVds) = 2.3 mSµ−1V−1.

This high transconductance value exceeds even standard 45 nm node CMOS devices.

Here maximum reported values are gm ≃ 0.95 mSµm−1 at Vds = 1V in an n-channel

MOSFET [105] and 0.69 mSµm−1 at Vds = 5V in an InAlN/GaN HEMT on SiC sub-

strate [106]. Normalised with respect to applied drain-source voltage these values are

considerably lower (0.95 mSµm−1V−1 and ≃ 0.14 mSµm−1V−1) than the DC transcon-

ductance in our GoSiO sample. Again as in the sapphire supported device, gDCm increases

with Vds in the limit of Ohmic behaviour. Beyond we again observe a saturation of the

transconductance (not shown).

Fig. 3.19(c) reveals another particular feature of GoSiO, which is the shift of gmaxm with

respect to gate voltage for different Vds. This is likely to be due to the unbalanced

voltage bias across the channel length: We only apply a change in chemical potential to

the drain, while keeping the source contact at ground. The working point has therefore

to be chosen carefully depending on drain-source voltage.

The voltage gain is estimated as described earlier and we obtain gds ≃ 2.8 mS for the

GoSiO sample.

Charge carrier mobility As in the previous sample we extract the carrier mobility

from the DC measurements: µc ≤ 300 cm2V−1s−1 in GoSiO. This is however a quite

optimistic estimate. Since we will later be interested in the RF properties, we can also

approximate µc from the dependence of gm on Vds, revealing a much lower value:

µc ≃
L

WC ′
g

dgm
dVds

≃ 130 cm2V−1s−1 (3.23)

Here, we neglected the finite charge carrier population n0 at the Dirac point for the sake

of simplicity and used the maximum RF transconductance shown in Fig. 3.20.
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Figure 3.20: a) gm = ℜ (Y21) as function of frequency. Different colours correspond
to different gate voltages in the range Vg = [0, ... , 1]V at a bias voltage Vds = −0.2V .
b) Maximum RF transconductance as function of gate voltage. Different colours

correspond to different bias voltages in the range Vds = [−0.3, ... , 0.3]V .

3.4.2.2 RF characteristics

Transconductance and gain Fig. 3.20(a) shows the real part of the forward ad-

mittance as a function of frequency from 0.1 to 60 GHz in sample GoSiO. These mea-

surements were carried out at the Institut d’Electronique de Microelectronique et de

Nanotechnologie (IEMN). The transconductance gRFm remains stable up to f ≃ 20 GHz
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and starts to deteriorate at higher frequencies. Fig. 3.20(a) also shows the control

of gate voltage over the gate sensitivity: different colours correspond to different gate

voltages in the range Vg = 0 – 1 V at a bias voltage Vds = 0.2 V. The constant

value of gRFm at f ≤ 20 GHz is displayed in Fig. 3.20(b) as a function of Vg for dif-

ferent Vds ∈ [−0.3, ... , 0.3]V. The maximum RF transconductance is inferior to its

DC counterpart, but shows the same shift of working point with respect to gate volt-

age. Normalised to voltage and unit area we obtain a maximum transconductance of

gRF,maxm ≃ 1 mSV−1µm−1 for sample GoSiO, which is close to the maximum reported

value for graphene at high frequencies (see table 3.2) and closing in on Si and II-V

structures.
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Figure 3.21: Current gain |H21| as a function of frequency in graphene-on-SiO2-
FET. Different colours correspond to different drain-source voltages. The inset shows

the evolution of the transit frequency fT with drain-source voltage.

Transit frequency The derived DC and RF properties allows us now again to give an

estimate of the transit frequency of our SiO2 supported RF-GFET. Transconductance

and geometrical gate capacitance (table 3.3) suggest fT ∼ 18.4 GHz for sample GoSiO

at the working point [Vg = 0.6 V , Vds = 0.3 V]. The cut-off frequency we obtain

experimentally from the current gain is again a close match at f expT ≃ 17 GHz. Fig.

3.21 displays the evolution of |H21| with frequency for three drain-source voltages. As

expected from Eq. (3.18) transit frequency increases with bias, ranging from virtually

zero to 17 GHz. To emphasise the impact of current saturation on fT we show the

evolution of transit frequency with drain-source voltage in the inset of Fig. 3.21. The
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maximum transit frequency is already reached at low bias Vds ≃ 200 mV, i.e. a low power

consumption favourable for detector applications. The maximum oscillation frequency

fmax remained very low (not shown here), due to an unfavourable gate design entailing

a significant gate access resistance. The GoSiO device was the first RF-GFET to be

realised, contrary to the line of presentation in this thesis. The gates of the following

devices, RF-GFETs as well as GFECs (chapter ??), have been adapted accordingly.

Together with the inset of Fig. 3.17(b) the two plots in Fig. 3.21 point out the challenge

graphene application research faces: The increase of transit and maximum oscillation

frequency towards their theoretical limit. Current saturation hinders the further increase

of fT , whereas it is beneficial for fmax (see Eq. (3.19)). However, fmax remains still very

low in RF-GFETs and a way has to be found to at least match both frequencies in order

to build powerful graphene amplifiers. Requirements for a low noise graphene amplifier

(LNGA) are a large fmax and low charge noise SI , whereas logic applications would need

a high fT and well defined ON/OFF states. Band gap engineering is therefore a major

concern in this section of graphene research.

3.5 Synopsis and conclusion

The statement above is of great concern for logic application and amplifier graphene

research. In our case of a sub-nano second charge detector however, fmax and band gap

are of very little importance. Our main concern is the increase of transit frequency fT

in conjunction with a low current noise SI .

As we have found in the introductory part of this chapter, the transit frequency is

proportional to transconductance gm and inversely proportional to gate capacitance

Cg. Thus, it is clear that fT ∝ L−2
g . While this opens a clear path towards high

transit frequencies by decreasing the gate length Lg, it omits the importance of graphene

quality. The cut-off frequency also depends on charge carrier mobility, since gm ∝ µc.

This explains why GoSiO’s transit frequency remains inferior to the one of sample GoS,

although gate length differs by a factor 2. The improvement of sample quality, i.e. charge

carrier mobility, remains therefore a main issue, even for charge detectors. As pointed

out above, a sensitive charge detection requires not only a large transit frequency, but

also a low electronic noise SI . A route to minimising SI is, as mentioned in the end of

the GoS section, the reduction of channel width W .

Our experiments provide evidence that a good RF performance can be kept in scaled

RF-GFETs. Transit frequency drops in the process but still remains in the GHz range

and promising for sub-nano second charge detection. We are sure that engineering

the RF-GFETs parameters and optimising the graphene sheet quality will provide fast

and reliable graphene based single charge detectors. Necessary steps will include the
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improvement of graphene quality, i.e. carrier mobility, for example by using hBN as a

substrate. Furthermore, a buried gate design (see Fig. 3.22) where a thin hBN layer

serves as dielectric and substrate at the same time, would additionally allow for thermal

annealing further improving sample quality. Research into such graphene transitors is

currently in progress in collaboration with the IEMN.

However, we have not pursued this avenue of direct optimisation of RF-GFETs, but we

have instead investigated the physics of diffusive charge transport under the gate and the

electronic noise of a graphene transistor. To this end, we will in the following chapters

study two very simple structures, a graphene capacitor and a graphene resistor, that

will provide direct access to diffusion and electronic noise in graphene, respectively.

Nevertheless, the results obtained in this chapter on GHz behaviour of graphene FETs

will be important in the following to give a conclusive prediction of the charge sensitivity

δqrms of RF-GFETs.
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Probing elastic scattering in a

graphene field-effect capacitor
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Figure 4.1: a) Conductivity as function of back-gate voltage Vg at Vds = 0. From
Novoselov et al. [2]. b) Conductivity as function of back-gate voltage Vg for different

impurity densities. From Tan et al. [107].

Extensive attention has been given to the subject of diffusion in graphene devices in the

past years. These efforts started nearly as early as 2004, when Novoselov et al. demon-

strated the first graphene field-effect device. In their seminal paper [2] they presented

amongst others a measurement of the conductivity σ with respect to back gate voltage

Vg (see Fig. 4.1(a)) and found σ to be linearly dependent on Vg. The charge carrier

density ns is controlled capacitively in a back-gated GFET, i.e. σ ∝ ns ∝ Vg. The linear

87
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Figure 4.2: a) Conductivity as function of back-gate voltage Vg in a four-point
measurement at zero bias and T = 300 K in MLG on SiO2. The line is a theoretical
calculation. From Barreiro et al. [50]. b) Conductivity as function of charge carrier
density for different concentrations of hydrogen adsorbates in MLG on SiO2. From
Ni et al. [108]. c) Conductivity as function of Vg at several magnetic fields. From

Monteverde et al. [109].

behaviour with respect to Vg therefore translates into a linear dependence as a function

of ns. These findings were later confirmed by different groups, as e.g. by Tan et al. [107]

or Chen et al. [110]. In their experiments they varied the amount of charged impurities

(substrate impurities or added potassium atoms, respectively) in a graphene flake and

recorded σ(ns). As can be seen from Fig. 4.1(b), Tan et al.’s measurements suggest

that these charged impurities are responsible for the linear dependence due to scatter-

ing of carriers on these charged centres. Chen et al. conclude from their experiments

that charged impurities and their induced carrier density inhomogeneities contribute

strongly to the observed σ(ns) behaviour. Their results also contradict early theories

that favoured short range scatterers; such mechanism would give a constant conductiv-

ity. We will detail this more in 4.1.3.

More recent measurements [50, 108, 109] paint however a slightly different picture: In

Figs. 4.2 the conductivity deviates from a linear dependence and enters a sub-linear

regime at higher carrier concentration or gate voltage, respectively. This contradicts the
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early experiments and puts the explanation of charged, long range impurities being the

core diffusion mechanism in graphene into question. A short range mechanism seems

more likely for MLG on SiO2. Therefore, several different mechanism have been sug-

gested to model diffusive electron transport in MLG, as e.g. impurities with a resonant

mid-gap state (resonant scatterers) or out-of-plane corrugations of the graphene sheet,

so-called ripples. Ni et al. and Monteverde et al.’s results point mainly towards the

resonant scatterer scenario [108, 109]. Theoretical descriptions of said mechanisms pro-

duce a sub-linear dependence as observed in the experiments and will be presented in

greater detail in section 4.1.3. As of today, no conclusive answer can however be given

as to which of the mechanisms is the dominant one in MLG.

In this chapter, we will add another facet to this subject by directly measuring the dif-

fusion coefficient D and the transport scattering time τtr in a GHz admittance study of

a graphene field-effect capacitor (GFEC) [21]. Contrary to the GFET devices used in

the experiments mentioned above, which have three terminals (source, drain and back-

gate), our GFECs are 2-terminal objects with a close vicinity top-gate. Due to the very

thin dielectric, our experiment will be particularly sensitive to changes in the density

of states, which will intervene in the description of the sample capacitance. Back-gated

GFETs with a typical oxide thickness of 300 nm cannot sense these changes in the DOS

directly and need additional tools to determine them. The combination of two simple

techniques – a graphene capacitor design on the one hand, and high frequency admit-

tance probing on the other hand – will allow us in the end to directly access information

about diffusive charge transport in graphene.

This chapter is arranged as follows: First, we will give a brief introduction to the different

diffusion mechanisms discussed in literature, the quantum capacitance phenomena and

other important formulas. GFEC specific fabrication details and a description of the

experimental setup follow the introductory part. We will then present and discuss our

experimental data and draw conclusions with respect to diffusion mechanisms.

4.1 Important concepts and formulas

In chapter 1 we have introduced a Dirac representation of the graphene Hamiltonian

(Eq.(1.36)), which emphasised the importance of taking into account both sub-lattices

and valleys: H is a 4x4 matrix; the wavefunctions 4-dimensional spinors. In the limit of

low energies, however, a description in terms of 2-dimensional spinors is sufficient and

inter-valley coupling can be neglected.

Extending the present description of a perfect crystal by the introduction of disorder,

one immediately recognises that several scenarios are possible. The disorder potential
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can be scalar, i.e. act on the diagonals of the 4x4, respectively 2x2 matrix, or act as

a gauge field. Another possibility is a behaviour ∝ σz, in the case of a local non-zero

carrier mass. A detailed overview can e.g. be found in [20].

Before we investigate these different sources of diffusion in more detail, let us first con-

sider more general subjects, as for example the description of the quantum corrections

to the charging of a capacitor at low DOS or the transport scattering time τtr in the

Boltzmann approach.

4.1.1 Quantum capacitance - electron compressibility

An important quantity in our top-gated GFECs is the so-called quantum capacitance CQ

or electron compressibility CQ/e
2 ≡ dns/dµ. Both are a measure of the effect of quantum

corrections to the overall capacitance, which can in turn generally be described by a series

combination of geometrical capacitance Cgeo and the afore mentioned correction CQ. We

will use both nomenclatures interchangeably, although the term quantum capacitance

can strictly speaking only be applied in the limit of zero temperature. The electron

compressibility describes the effect to be introduced below for finite temperatures.

Let us consider a capacitor formed by a metal gate electrode and a mesoscopic conductor,

separated from the former by a thin dielectric layer. A potential difference ∆V shall

be applied to the two plates. At T = 0 and ∆V = 0 all states of both the metal plate

and the quantum conductor will be filled up to the Fermi level (Fig. 4.3(a)). Due to

its metal nature the gates DOS is very large, whereas the it is relatively small in the

mesoscopic conductor. When applying a gate voltage ∆V 6= 0 all states are shifted

upwards by the amount of energy equal to the electrostatic work e∆V (Fig. 4.3(b)),

which is determined by Cgeo. Additionally, charges are accumulated at both sides of

the capacitor. In order to accommodate these charges the chemical potential µ has to

change. This means additional work needs to be done on the system. Due to its large

DOS the metal’s chemical potential remains quasi unaffected, whereas the chemical

potential changes drastically in the conductor (Fig. 4.3(c)).

Thus, we can split the applied voltage ∆V into to two contributions:

∆V = ∆Vel−stat +∆Vchem (4.1)

with

∆Vel−stat =
∆q

Cgeo
(4.2)

and [111]

∆Vchem =
∆µ

e
=

1

e

dµ

dns
∆ns =

1

e2
dµ

dns
∆q =

∆q

e2ρ(E)
(4.3)
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Figure 4.3: (a) Capacitor at ∆V = 0. (b) Capacitor at ∆V 6= 0: electro-static
effect. (c) Capacitor at ∆V 6= 0: effect on the chemical potential µ.

at zero temperature.

Combining the equations above we arrive at

∆V = ∆q

(

1

Cgeo
+

1

e2ρ(ǫ)

)

(4.4)
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This looks like the series combination of two capacitances and we therefore define the

so-called quantum capacitance depending on the density of states:

CQ = e2ρ(ǫ) (4.5)

4.1.1.1 Geometrical versus quantum capacitance

'
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%

Figure 4.4: Left: Electron compressibility CQ at 0 K (blue) and 300 K (red) in
graphene. The finite temperature gives rise to a correction at low energy. Right:
Total capacitance as a function of gate voltage. The energy dependent quantum
capacitance gives rise to a dip in the vicinity of the Dirac point. Away from the
CNP a plateau starts to form, due to the series combination C−1

g = C−1
geo + C−1

Q .
From Ponomarenko et al. [112].

The geometric part of the total capacitance of a graphene based device is particularly

easy to calculate. It is simply a capacitor made of two plates:

Cgeo = ǫrǫ0
LgWg

d
(4.6)

with Lg and Wg the gate length and width, respectively and d the oxide thickness. ǫr

and ǫ0 are the relative and absolute permittivity.

Following a model derived by D. Jena et al. [113], we will now focus on the quantum

capacitance and it’s behaviour for finite temperature in the graphene monolayer.

Then, one needs to take into account the Fermi-Dirac distributions for both left and

right contact in the density of charge carriers (1.47). Doing so, one arrives at the charge

density Q:

Q = e · nS = e

∫ ∞

0
ρ(E) [f(E + µ)− f(E − µ)] dE (4.7)

=

∫ ∞

0

|E|
(νF~)2π

[

(

e
E+µ
kBT + 1

)−1

−
(

e
E−µ
kBT + 1

)−1
]

dE (4.8)
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Using this, one finds the electron compressibility per unit area of a graphene sheet at

T 6= 0 (including spin and K −K ′ degeneracy) [113]

CQ =
2e2kBT

π(νF~)2
ln

[

2 + 2 cosh

(

µ

kBT

)]

(4.9)

Under the condition µ ≫ kBT ≃ 25 meV at T = 300 K this reduces to the expected

DOS dependent formula of the quantum capacitance

CQ ≃ 2e2

π(νF~)2
µ = e2ρ(ǫF ) (4.10)

A comparison of the zero temperature limit, i.e. the quantum capacitance, and the

electron compressibility at finite temperature is shown on the left-hand side of Fig. 4.4:

The blue line indicates the DOS dependent zero temperature approximation, which is

linear in energy. In red we see the effect of finite temperature (T = 300 K) on the electron

compressibility. Note the minimum of 10 fFµm−2 which is equivalent to an effective

AlOx thickness of ∼ 9 nm. This temperature effect was confirmed experimentally e.g.

by [112].

4.1.2 Boltzmann equation and transport scattering time

The transport or Boltzmann equation is an approach to describing the effects of external

fields, temperature gradients and scattering on the charge carriers in a conductor by

looking at the local distribution of carriers fk(r) and its temporal change. It states that

for any given wave vector k and at any point in the phase space the overall change of

fk is zero [114]:
∂fk
∂t

∣

∣

∣

∣

diff.

+
∂fk
∂t

∣

∣

∣

∣

field

+
∂fk
∂t

∣

∣

∣

∣

scatt.

= 0 (4.11)

This is not the equilibrium state f0k, where fields and temperature gradients would

be absent, but the steady state. Since we are dealing with electrons, the equilibrium

distribution is given by the Dirac statistic. At constant temperature, one can then

calculate the conductivity of a given conductor with respect to the external electric

field and intrinsic scattering contributions from its corresponding current density [114].

Within this approach it is useful to introduce the transport scattering time τtr, which

is the average time to reverse a carriers motion. For the case of a degenerated two-

dimensional gas of electrons, we then obtain [29]

σ(ǫ) =
e2

2

∫

dǫρ(ǫ)ν2F τtr(ǫ)

(

−df
dǫ

)

(4.12)
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Above, f signifies the Fermi distribution. Assuming elastic scattering processes, the

transport scattering time[114] is given by

1

τtr
∝
∫

(1− cosΘ)|F (Θ)|2dΩ′ (4.13)

which is the inverse average time it takes to reverse the direction of motion of a carrier. Θ

is the angle between initial state k and final state k′; |F (k,k′)|2 = |F (Θ)|2 the scattering
amplitude and dΩ′ is a solid angle element after the scattering event in k′ direction. For

scattering on impurities in two dimensions one obtains in detail [115]

1

τtr
=

2π

~
ni
ρ(ǫF )

4

∫

dΩ

2π
(1− cosΘ)|〈final|V̂ |initial〉|2 (4.14)

Here, ni is the density of impurities, ρ the density of states and V̂ the scattering potential.

A special feature of graphene is the absence of backscattering already introduced in

chapter 1. This is now taken into account in the transport scattering time by using

|〈final|V̂ |initial〉|2 = |Ṽ (q)|2cos2Θ = |Ṽ (q)|2 1 + cosΘ

2
(4.15)

where q = k′ − k is the transferred momentum [115] between final and initial state.

Since we are considering elastic scattering k′ = k = kF and thus q = 2kF sin(Θ/2).

Finally, we arrive at

1

τtr
=

2π

~
ni
ρ(ǫF )

4

∫

dΩ

2π
(1− cosΘ)

1 + cosΘ

2
|Ṽ (q)|2 (4.16)

for the transport scattering time in graphene, depending on the exact scattering potential

Ṽ (q) and at kBT ≪ ǫF . It will be the aim of the following part to introduce the existing

proposals for Ṽ (q) in graphene.

4.1.3 Mechanisms of diffusion in graphene

We will now turn to the description of mechanisms of diffusion in a 2D monolayer

graphene sheet. Several theories have been suggested to explain the linear or sub-

linear dependence on charge carrier density of the conductivity σ(ns). They can mainly

be classified into two groups, one where σ ≃ const. and the second resulting in a

linear dependence of σ on ns. Intermediate situations are also considered in which sub-

linear conductivity behaviour is obtained. Please see Fig. 4.6 for an overview of theory

predictions of σ(ns). A more detailed discussion, including references below and further

papers, can be found in the review by Abergel et al. [20].
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Figure 4.5: a) Conductivity as function of back gate voltage in a MLG on SiO2.
From Novoselov et al. [116]. b) Conductivity as function of carrier density in a MLG

on hexagonal boron nitride. From Dean et al. [44].
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Figure 4.6: Conductivity as function of carrier density for different diffusion mech-
anisms.

Local impurity The local impurity scattering theory is the prime example for a de-

scription finally yielding σ(ns) = const.. Here [117], one considers uncharged impurities

distributed at a density ni in the graphene lattice. The scattering potential u can be

either short or long range compared to the lattice constant. Both cases can be calculated

in a self-consistent Born approximation (SCBA), which gives access to DOS or localised

conductivity within a disordered system. Shon et al. find that in a 2D graphene sheet

with local impurities the transport scattering time is given by

1

τtr
=
πniu

2

2~
ρ(ǫ) (4.17)
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where the graphene DOS ρ ∝ |ǫ| ∝ kF .

Thus, for local impurities one expects [117]

τtr ∝
1

kF
and σ ≃ const. (4.18)

which is not seen experimentally.

Therefore, recent calculations [118] suggest a slightly modified behaviour. Aleiner et al.

argue that due to graphene’s Dirac like energy spectrum SCBA is not appropriate when

calculating the effects of local impurities. Using their so-called ultraviolet logarithmic

corrections method, they find

τtr ∝
ln(kF )

kF
and σ ∝ ln(ns) (4.19)

Charged impurity A second diffusion mechanism widely discussed in literature is the

scattering of carriers on charged impurities. Nomura et al. [119] argue that a possible

explanation for the enhancement of scattering at low carrier densities could be due to

charged impurities in the substrate, close to the graphene sheet. The scattering potential

entering in the Boltzmann integral (4.16) is then given by

Ṽ (q) =
2πe2

q
with q = 2kF sin(Θ/2) (4.20)

Evaluation of the integral yields in the end

τtr(kF ) =
ns
ni

4~2νF
πe4

· k−1
F =

4~2νF
niπ2e4

· kF (4.21)

where we have used ns = ǫ2/(π~2ν2F ) and ni is the density of impurities. Only charged

defects within a Fermi wavelength from the graphene plane are of importance to the

scattering, as the more remote scatterers’ contribution is decreased by a factor exp(−qd).
Here, d is the distance to the MLG. Screened charged defects will generate the same

kind of qualitative behaviour [119].

In the case of scattering on charged impurities we have thus τtr ∝ kF ∝ √
ns. Also, we

found ρ ∝ √
ns in chapter 1. The Einstein relation (4.33) then gives us the conductivity

signature for this kind of scattering:

σ(ns) ∝ ρτtr ∝ ns (4.22)

This seems to agree with early results found in graphene on SiO2 devices (Fig. 4.5(a)).

However, a more recent study of the effect of substrate and dielectric on diffusion by

Ponomarenko et al. [120] comes to the conclusion that charged impurities are not the

primary scattering mechanism in graphene.
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Resonant scattering Another way to recover a sub-linear behaviour of the conduc-

tivity for massless Dirac fermions is the use of a strong, resonant short-range scattering

potential [121]. These so-called midgap states [122] are bound states due to vacancies,

cracks or boundaries in the graphene layer whose energies can coincide with the energy

of the Dirac fermions. They have to be treated by taking into account the phase shift

they induce on the wave function. Doing so, one obtains

τtr =
kF

πνFni
ln2(kFR0) (4.23)

for the transport scattering time. R0 is the vacancy radius and ni the density of impu-

rities. The above formula is valid for a DOS ρ ∝ kF , i.e. at T = 0 or at high carrier

density for samples at finite temperature. One finally recovers a sub-linear behaviour of

the conductivity [123]

σ ≃ 2e2

πni
nsln

2(ns) (4.24)

It coincides well with experimental data for graphene contaminated with H-atoms for

example [121].

Ripples In theoretical descriptions exfoliated graphene is often assumed to be a per-

fectly smooth, planar film of carbon atoms. It is however also usually deposited on a

substrate that does not necessarily exhibit the same smoothness. SiO2 e.g. is known to

have a rather rough surface owing to thermal oxidation of the silicon. Additionally, as

argued in [123], the MLG will behave like a free-standing membrane during the exfolia-

tion and deposition process. It is then subject to thermal fluctuations perpendicular to

the graphene plane, which are then captured during the attachment to the substrate via

Van-der-Waals forces. This can be described in the framework of a gauge-field modifying

the nearest and next-nearest neighbour hopping. An estimate can be given by using a

height-correlation function g(x) = 〈 (z(x0+x)−z(x0))2 〉 ∝ x2H [124, 125] of the ripples,

yielding [123]

σ ∝ ln−2(ns) for 2H = 1 (4.25)

and

σ ∝ n2H−1
s for 2H > 1 (4.26)

where H characterises the dimension of the ripples. In the case of SiO2 substrate the

height correlation function is mainly due to the surface roughness and then 2H ≃ 1

[123, 124]. The resulting conductivity estimate does not explain the experimental data,

however.
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Random Dirac mass disorder Lastly there is the possibility of explaining the dif-

fusive electronic transport in MLG by a random potential [22]. A difference in potential

between the two sub-lattice sites leads to the opening of a gap and makes the carriers

massive (see chapter 1, 1.1.4.1). A random distribution of impurities, e.g. adsorbants

like H-atoms, can then create random gap fluctuations throughout the sample. This

means the Dirac fermions locally acquire a fluctuating, non-zero mass while on average

m⋆ = 0 [22]. Recent theoretical and experimental work by Cheianov et al. and Haberer

et al. suggests that the necessary sub-lattice symmetry-breaking can occur due to long-

range ordering of adatom adsorption on graphene [126, 127].

In Ziegler’s paper [22], the introduced random Dirac mass fluctuations have a Gaus-

sian distribution with variance g around the average value 0. Intervalley scattering is

ignored, i.e. only one Dirac cone is taken into account. Treating the random mass self-

energy η in the framework of perturbation theory of Green’s function, Ziegler finds that

conductivity scales linearly with energy (see Fig. 4.7)

σ ∝ ǫF ∝ √
ns (4.27)

From the given formulas we gather that g is a dimensionless parameter in the calcula-'

&

$

%Figure 4.7: Conductivity as a function of chemical potential ǫF as result of random
Dirac mass. From K. Ziegler [22]

tions, whereas the energy ǫ and the self-energy η are reduced variables in units m−1.

The diffusion coefficient is finally given as

D =
g

4π(η + ǫ)
≃ geπ/g

4π
(4.28)
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The last term is an approximation for small energies ǫ, where the self-consistent Green’s

function can be expressed as η ≃ e−π/g, thus as dimensionless parameter. Qualitatively,

we may expect the diffusion coefficient to be independent of energy and only a function

of the variance of mass disorder g.

Unfortunately we are not able to resolve the apparent unit mismatches and can only

speculate on the exact value of D. In order to obtain the right dimensionality [D] =

m2s−1, we suggest that in the above limit, ǫ≪ η, the diffusion coefficient is

D = 4πg · ~ν
2
F

U
(4.29)

with U being the magnitude of the random potential creating the Dirac mass fluctuations

and g ≃ 1–2. Quantitatively, we predict therefore diffusion coefficients of the order of

D ≃ 300–600 m2s−1. Again we would like to stress the suggestive nature of the above

formula.

Mechanism Scattering time Conductivity Reference

Local impurity τ ∝ k−1
F σ ∝ const. [117]

Local impurity τ ∝ ln(kF )k
−1
F σ ∝ ln(ns) [118]

Dirac mass disorder τ ∝ const. σ ∝ √
ns [118]

Charged impurity τ ∝ kF σ ∝ ns [118]

Resonant scattering τ ∝ kF ln
2(kF ) σ ∝ nsln

2(ns) [118]

Ripples τ ∝ k2H−1
F σ ∝ n2H−1

s [118]

Table 4.1: Main scattering mechanism suggested for graphene, in order of increasing
carrier density dependence: Fermi wave vector dependence of transport scattering time

τtr(kF ) and carrier density dependence of conductivity σ(ns).

Table 4.1 summarises the different suggested scattering mechanisms and their predictions

for τtr(kF ) and σ(ns). The transport scattering time is closely related to the diffusion

coefficient D, as will reveal in the following section.

4.1.3.1 Einstein relation

At thermal equilibrium two contributions enter the description of the current through

a sample under bias: On the one hand electrons move due to the external electric field.
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On the other hand, their movement is hindered by scattering processes. The overall

current density can thus be expressed as

j = σE − eD
dns
dx

(4.30)

Here, we have introduced the diffusion coefficient D and assume only one-dimensional

transport for the sake of simplicity. In the equilibrium state, the electric field and

the diffusion term will cancel to give j = 0. Therefore, also the chemical potential

µ = µ0(ns) + eV (x) will be static, i.e.

dµ(x)

dx
= 0 =

dµ0
dns

dns
dx

+ e
dV

dx
(4.31)

Hence we find, in conjunction with (4.30),

σ(ǫ) = e2D(ǫ)
dns
dµ0

(4.32)

where dns/dµ0 is the electron compressibility introduced in section 4.1.1. For the zero

temperature limit we can thus write down the following Einstein relation:

σ(ǫ) = CQ(ǫ)D(ǫ) = e2ρ(ǫ)
ν2F
2
τtr(ǫ) (4.33)

where ρ(ǫ) is the DOS, νF the Fermi velocity and τtr the transport scattering time

introduced above. It is therefore possible to directly extract information about the

diffusion if the conductivity and DOS are well known. The relation given above is in

the zero temperature limit. At finite temperature CQ has of course to be replaced by

the electron compressibility and ν2F τtr(ǫ)/2 by its thermal average. As mentioned at the

end of the last section on scattering mechanisms, τtr is directly proportional to D due

to the constant Fermi velocity in graphene.

Following this rather theoretical description of concepts, mechanisms and important

formulas concerning elastic scattering in a graphene field-effect capacitor, we will now

turn to the more experimentally motivated modelling of the GFEC in terms of a 1-

dimensional distributed line model.

4.2 Working principle of a graphene field-effect capacitor

As mentioned in the beginning of this chapter, we will investigate the effects and mecha-

nism of diffusion in MLG in a simple, but slightly out-of-the-ordinary device: A graphene

field-effect capacitor (GFEC). Contrary to the more common back-gated GFETs, a

GFEC device is a purely AC-coupled system, best suited for the studying of elastic
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Figure 4.8: Top: Vertical sketch of the GFEC layout. The MLG layer is indicated
in grey, gate and drain electrode in yellow and red, respectively. In green we highlight
the simple RC circuit one could expect in such a system. Bottom: 1 dimensional

distributed line model.

scattering as there is no dissipation from DC currents. The general device structure is

displayed in Fig. 4.8: A capacitor is formed between a MLG sheet and a metal top-

gate electrode, allowing only AC currents to pass. The plates are separated by a thin

dielectric, whose thickness is chosen small enough for the electron compressibility CQ to

dominate the device capacitance.

It is the purpose of this section to describe the implications of the aforementioned two-

terminal design and to model its high-frequency behaviour.

4.2.1 2-terminal design

The devices under test are plane-plane capacitors, the bottom plane being the graphene

sheet and the upper one the top-gate. It is thus a two-terminal design where the top-gate

electrode will serve two purposes at a time: It will impose the gate potential, thus change

Fermi energy in the MLG and hence the name GFEC, but also probe the capacitor’s

RF properties via an AC signal. Such a Y-parameter experiment is thus essentially the

RF equivalent of a 4-point DC measurement. In more conventional 3-terminal devices

(drain, source and back-gate) used to characterise diffusion one assumes ns ∝ Vbackgate.
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Since there the backgate electrode (the doped silicon substrate) is usually at a distance of

several hundred nano-meters from the MLG channel, quantum corrections to the density

of states can be neglected in these devices. In the case of a top-gate in close vicinity to

the channel, as it is the case in our samples, the electron compressibility will however

play an important role (see 4.1.1). This has to be taken into account in the calculation

of the charge carrier concentration and chemical potential. Here, Vg will not be directly

proportional to the carrier density but rather to the chemical potential ǫ ∝ √
ns. Due

to the finite oxide thickness this is actually hard to achieve in experiments, especially

at high ns. We will rather deal with a mixed chemical potential and carrier density

bias scenario. However, we can deduce ǫ from the measured compressibility CQ(Vg) and

express all measured quantities directly as a function of chemical potential ǫF using the

relation

ǫF (Vg) = e(Vg − VCNP )−
∫ Vg

VCNP

eCQ
Cgeo − CQ

dV (4.34)

where Vg − VCNP = V ∆
g is the gate voltage with respect to the charge neutrality point

(CNP). In general one can of course calculate the compressibility CQ. We will however

gain access to it by measuring the GFEC’s admittance, as will reveal below.'

&

$

%Figure 4.9: SEM micrograph of sample E9-Zc showing the Pd drain, the gold
top-gate and the outline of the MLG flake as well as electrical environment.

4.2.2 Evanescent waves in a capacitor

An important question regarding data analysis will be how to model the GFEC correctly.

Here, we will be especially interested in the RF admittance, described in the previous

chapter.

From the device structure (see Fig. 4.8) one expects it to act like an RC circuit of sorts.

Two possibilities of modelling the sample exist however: Either one treats resistance and

capacitance as lumped, separate entities, or one assumes them to be distributed along

the channel underneath the gate. The simpler view of lumped components is indicated

in green in the top panel of Fig. 4.8, the 1-dimensional distributed elements model in
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the lower panel.

For the RC circuit model, one calculates the admittance

Y (ω) =
I(ω)

V (ω)
= 0 + jωCg +RdsC

2
gω

2 + ... (4.35)

where j signifies the imaginary unit.

The 1D line model exhibits an admittance of

Y (ω) =
cω

k
tanh (jkL) r = (σW )−1 (4.36)

k =
√

−jrcω c = CgW

that can be derived as detailed in appendix B. There are three features of Eq.(4.36)

worth special attention:

• At very high frequencies, ω → ∞, the complex impedance can be written as

Z(ω) = Y −1(ω) ≃ (1− j)

√

r

2cω
(4.37)

signifying an equal real and imaginary part. This behaviour with respect to fre-

quency is reminiscent of the evanescent wave regime, where an RF wave can only

penetrate a part of the transmitting conductor. In the case of our 1 dimensional

model a similar effect occurs: The probing AC wave will decay rapidly with increas-

ing frequency (highlighted in blue in Fig. 4.8(right)). Analogue to the skin effect we

define a penetration depth δ =
√

2/(rcω). In the current limit of ℜ (Y ) = ℑ (Y ),

it is thus δ ≪ L, where L is the total length of the line.

• At low frequencies we can approximate the impedance to leading contributions by

Z ≃ k

cω

(

1

jkL
+
jkL

3

)

=
L

3
r + (jωLc)−1 (4.38)

Here, coth(x) = 1/x + x/3 − x3/45 + ... was used and we find that this limit is

characterised by δ ≫ L.

• Finally, there is the crossover of real and imaginary part of the admittance spec-

trum. It occurs at the crossover frequency

ωc ≃
π2σ

2C ′
gL

2
=

π2σ

2C ′
geoL

2
+
π2D

2L2
(4.39)
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which can thus also give insight into diffusion via the diffusion coefficient D (see

4.1.3.1). C ′
g is the total gate capacitance and C ′

geo the geometric capacitance per

unit area, respectively. The first term is the normal cut-off of a capacitor, whereas

the second term on the right-hand side is a mesoscopic correction due to the finite

DOS. Note that the last term on the right-hand side D/L2 ≃ ωThouless is also a

measure of the Thouless energy often encountered in mesoscopic physics. Using

typical chemical potential values of the order of ǫ ∼ 100 meV, we can estimate D

from (4.33) and (1.46) to D = µc|ǫ|/(2e) ∼ 150 cm2s−1 for standard mobilities of

a few thousand cm2V −1s−1. The Thouless frequency would thus be in the vicinity

of fThouless ≃ 10 GHz for a sample of length L = 10 µm.
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Figure 4.10: Real and imaginary part of the forward admittance of an RC circuit
and a 1-dimensional distributed line model. Note that the plots are not necessarily

to scale. The plot shows the qualitative behaviour.

Comparing the admittance of the RC circuit and 1D distributed line model (see Fig.

4.10), we note a distinct difference at high frequency: The 1D line model shows the

afore mentioned decaying wave effect, whereas the lumped RC components view would

result in a large gap between real and imaginary parts of Y . In the lumped components

view, the imaginary part vanishes in the high frequency limit, whereas the real part will

ultimately be limited by the series resistance.

Note that both models assume homogeneous transport circumstances along the width of

the sample, in contrast to finite frequency effects in RF resistors, where the AC current

distribution is generally two-dimensional.

To differentiate between the two possible models introduced above, it is necessary to

investigate the devices at GHz frequencies: No clear discrimination is possible below the
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crossing over of ℜ(Y ) and ℑ(Y ). Even assuming negligible conductivity at the CNP,

frequencies 2πf ≫ 0.5π2 · ωThouless = 0.5π2D/L2 are needed. As we have estimated

above this requires us to choose f = 0.1–10 GHz as our typical, experimental frequency

range.

During data analysis we will make use of the fact that at frequencies below the crossover,

conductivity σ and electron compressibility CQ (as energy dependent part of the total

gate capacitance) are readily separated into real and imaginary part of the admittance

signal. We will therefore have direct access to both quantities at the same energy,

imposed by the gate potential, and can deduce the desired diffusion coefficient D(ǫ) or

transport scattering time τtr, respectively

4.3 Experimental techniques

'
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%
Figure 4.11: a) Schematic overview of graphene field-effect capacitor. b) Micro-
graph of complete GFEC. c) SEM micrograph of GFEC. The contact electrode is
highlighted in cyan, the gate in yellow. The graphene sheet is marked in red and

extends under the gate electrode, as indicated by the red diagonal stripes.

4.3.1 Device fabrication

The devices presented in this chapter were fabricated from exfoliated graphene deposited

on highly resistive Si/SiO2 substrates. Deposition, localisation and characterisation of
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the graphene sheets were performed as described earlier in chapter 2. Equally, chapter

2 points out the main lines alongside which the GFEC devices were fabricated: The

coplanar waveguide surrounding the MLG flakes, the annealing steps as well as contact

and gate patterning. As in the FET devices, it is equally important to minimise losses

due to substrate conduction. Parasitic substrate contributions can be strong at mi-

crowave frequencies and effectively shunt the capacitor signal. We therefore use Si/SiO2

substrates with resistivity ρ ≥ 20kΩcm. Also, we again use Pd for the contact met-

allisation in order to reduce the interface resistance and induce only small doping: Pd

hole-dopes the interface region and remaining in hole-doped gate range (Vg ≤ VCNP ) we

can neglect the arising interface resistance [128]. Our devices will therefore be operated

at hole doping. The chosen MLG flakes are tailored into a rectangular shape prior to

contact patterning by means of reactive ion etching (RIE). Please refer to chapter 2 for

more details. The rectangular shape greatly simplifies the calculation of the geometric

capacitance between graphene and top-gate.

AlOx dielectric We use aluminium oxide (AlOx) as dielectric layer separating the

capacitor plates. As detailed in chapter 3 we obtain a typical layer thickness of 8–10 nm

by multiple step Al evaporation and oxidation. The relative dielectric constant of such

a thin AlOx film was estimated at 7 by [58].

4.3.2 Experimental setup

4.3.2.1 Probe station setup

The characterisation of our GFECs was mainly performed at room temperature using

the probe station setup previously described in chapter 3, with the difference that no

DC current can flow in this device configuration. Therefore there is only need for one

voltage source controlling the gate potential Vg. The small AC signal is fed into the line

via bias-Ts on each side, i.e. source-drain and source-gate. The VNA can then probe the

S-parameters as a function of frequency for different Vg imposed by the voltage source.

Finally, the conversion to admittance parameters (see chapter 3) allows again for a

precise de-embedding via a short-open-load-through calibration and a dummy structure.

The parasitic contribution due to a parallel gate-drain coupling is C0 ≃ 1.8 fF. The used

frequency range is 0.1–16 GHz and linear response conditions are secured by probing the

devices well below the thermal noise floor with an AC excitation VAC ∼ 1–10 mV. The

gate range was Vg = 0–1 V corresponding to a chemical potential range 0–230 meV or an

average electron and hole concentrations of ns = 2.5 · 1011–4 · 1012 cm−2. The non-zero

starting concentration is estimated from the omnipresent charge puddles in graphene.
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We will however later on assume ns ≃ 0 at the CNP for simplicity. Besides the room

temperature experiments we could also carry out one low temperature measurement

using the Janis cryogenic probe station.

4.4 Results and discussion

We have fabricated and measured several samples of different sizes and chemical dopings.

In this section, we will however concentrate on results [21] obtained on two exemplary

samples: E9-Zc and C7-F. Their sizes were L ×W ≃ 3 × 1 µm2 (E9-Zc, see Fig. 4.9)

and L×W ≃ 2× 0.6 µm2 (C7-F) with a dielectric layer of ∼ 8 nm AlOx.

4.4.1 Admittance spectra

Let us first of all have a look at one of the admittance spectra recorded at an arbitrary

carrier density: Fig. 4.12 shows real and imaginary part of Y (ω). At low frequency

we find a linear increase of ℑ(Y ) and nearly zero real part (highlighted in green). This

corresponds to the purely capacitive response expected at low frequencies. At high

frequencies, however, the spectrum shows signs of a decaying wave effect. This points to

a description by the one-dimensional distributed line model introduced earlier, instead of

a lumped components model. We would like to stress that the one-dimensional character

of the probing AC field penetrating the capacitor should not be confused with the two-

dimensional electronic diffusion probed by this AC field. The possibility to use a 1D

probing field greatly simplifies the analysis of the GFEC response. In the case of a three-

terminal device with source, drain and gate, the current distribution is two-dimensional

making the analysis of high frequency experiments much more complicated. Last but

not least we find the crossover frequency ωc as pointed out earlier. For sample E9-Zc it is

plotted in Fig. 4.14. The correction 0.5π2D/L2 to the cut-off frequency 0.5π2σ/(C ′
geoL

2)

of a capacitor dominates at the CNP and at low temperature. There, the conductivity is

at its lowest value σmin and close to zero for experimental considerations. It can hence

be neglected in terms of ωc. Under these conditions ωc becomes another direct measure

of the diffusion coefficient D, which is an example of a mesoscopic effect (the Thouless

energy ~D/L2) showing up in a macroscopic measurement (the cut-off frequency of a

capacitor). For sample E9-Zc we find ωc/2π ≃ 3.1 GHz and therefore have a first

estimate of the diffusion constant: D ≃ 350 cm2s−1. This is of course only a rough

estimate as the conductivity never completely vanishes in graphene. However it shows

that even at charge neutrality the cut-off frequency stays finite and above the value

expected for σmin; the inclusion of the Thouless frequency D/L2 in ωc protects it from

vanishing at the CNP.
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Figure 4.12: Admittance of graphene GFEC as function of frequency at arbitrary
carrier concentration. The highlighted regions show the low and high frequency
behaviour and the crossover of real and imaginary part at ωc. These observations

justify the use of the 1D distributed line model.

Fig. 4.13 displays three admittance spectra for different carrier densities in sample E9-

Zc: At the CNP (panel a), at medium (panel b) and at higher carrier concentration

(panel c). The low frequency development (4.38) of the forward admittance of the 1D

line model

Y (Vg) ≃
(

L

3
r(Vg)−

j

ωLc(Vg)

)−1

(4.40)

allows us to extract conductivity and capacitance values separately at each imposed gate

voltage (see Figs. 4.16 and 4.17): real and imaginary part of Y (ω) are recorded sepa-

rately and contain only σ and Cg, respectively. The requirements to access information

about the diffusion via the Einstein relation (4.33) are therefore fulfilled.
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Figure 4.13: Admittance spectra of sample E9-Zc as function of frequency for three
different carrier densities. The spectra are accurately fitted using the 1D distributed
line model (dashed black lines) and an access resistance Ra = 0.15Rg. Omitting Ra,
one obtains a slight mismatch of the fit at high frequencies as indicated by the solid

lines in panel (b).

Although found at low frequencies, the full Y-spectra can be reproduced in good agree-

ment by plugging the extracted values σ(Vg) and Cg(Vg) =
(

C−1
geo + C−1

Q (Vg)
)−1

into the

complete formula (4.36). A minor disagreement still occurs (solid lines in Fig. 4.13(b))

especially at high frequencies, which can be explained by taking into account an access

resistance Ra comprising both interface resistance and the sheet resistance of the un-

gated graphene. We estimate Ra ≃ 0.15Rg. Sample C7-F exhibits similar behaviour

with a higher cut-off partly due to the smaller gate length (Figs. 4.15). Also, the diffu-

sive correction to ωc is much higher, shifting the crossover point beyond the investigated

frequency range of 0.1–15 GHz.
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Figure 4.14: Gate voltage dependence of the crossover frequency ωc/2π of sample
E9-Zc estimated from the crossing of real and imaginary part of the admittance

spectra Y .'
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Figure 4.15: Admittance spectra of sample C7-F as function of frequency for
different carrier densities. a) At room temperature (300 K). b) At low temperature

(77 K).
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Figure 4.16: Gate capacitance Cg and charge relaxation conductance R−1
g of

sample E9-Zc as function of top-gate voltage Vg. The values are extracted from
the low frequency fits to the corresponding admittance spectra. Labels (a), (b)
and (c) refer to the panels in Fig. 4.13, i.e. to the charge carrier densities
0, 0.65, and 1.7 × 1012 cm−2. The solid line is a fit to the capacitance using
Eq.(4.9) and Cgeo = 19.2 fF. The dashed line is a guide for the eye representing an

electron-hole symmetric resistance fitted to the hole values.
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Figure 4.17: Gate capacitance Cg per unit area and charge relaxation conductivity
σ of sample C7-F as function of top-gate voltage Vg for T = 300 K and 81 K. The
values are extracted from the low frequency fits to the corresponding admittance
spectra. The dashed lines are fits to the capacitance using the series combination of

Cgeo and CQ.

4.4.2 Conductivity and gate capacitance

From the fits to the full sets of Y-spectra we obtain the total gate capacitance Cg and

sample conductance R−1
g as a function of gate voltage. Both are shown in Fig. 4.16 for

sample E9-Zc which was measured at room temperature. We identify Vg = 0.67 V as
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the charge neutrality point from the broad minimum both Cg and R
−1
g exhibit there. In

rough agreement with the work function difference for graphene and Pd (see table 3.16)

E9-Zc is p-doped; there seems to be additional chemical doping present, since the shift

of 600 meV cannot be completely accounted for by the Pd contact. The dashed line in

Fig. 4.16 indicates the expected resistance in an electron-hole symmetric scenario. The

measured R−1
g deviates from the expectation at high electron concentration, which we

assign to the formation of a p-n junction in the access region (the contact and ungated

graphene). It is therefore favourable to work in the p-doped region of gate voltages and

we shall focus on this part of the admittance set in the following. At large hole density

the fit to the capacitance data using the series combination C−1
g = C−1

geo + C−1
Q allows

an accurate determination of the geometrical capacitance: C ′
geo = 6.4 ± 0.5 fFµm−2

in sample E9-Zc and C ′
geo = 8.3 ± 0.5 fFµm−2 in C7-F (see Fig. 4.17). This is in

agreement with the rough estimate from geometry C ′
geo = ǫ0ǫrt

−1
ox ≃ 7 fFµm−2 for an

oxide thickness tox ≃ 8 nm. The small mismatch in geometrical capacitance between

room and low temperature experiment of C7-F displayed in Fig. 4.17, is attributed to

a small variation in the de-embedding.

Sample C7-F was measured at room and liquid nitrogen temperature using both the'

&

$

%

σ 
(m

S)

0
1
2
3
4
5
6
7
8

ns×1012 (cm-2)
10 0

 81K
 300K

Figure 4.18: Conductivity as a function of carrier density in sample C7-F at
T = 300 K and 81 K.

Cascade (300 K) and Janis (300 K and 81 K) probe station. The spectra shown in Fig.

4.15 were obtained on the latter. Spectra for the Cascade measurements are very similar

and not shown here. Despite the Pd contact, sample C7-F is slightly n-doped as can be

seen from Fig. 4.17: the CNP is estimated at Vg = −0.25 V and −0.4 V at 300 K and

81 K, respectively. The measurements were performed successively without changes to

the environment other than temperature. Decreasing the temperature has thus changed
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the doping further away from undoped, pristine graphene. Additionally, there is no

improvement in terms of electron compressibility, which would be expected to create a

much sharper dip of the total capacitance in the vicinity of the CNP, due to the stronger

effect of the small graphene DOS. While the room temperature capacitance is reproduced

with good accuracy up to a small window around the CNP, the low temperature data

deviates from theoretical expectations not only close to the CNP but also in the electron

doped regime. At low carrier densities, the difference between data and theory is likely

be due to inhomogeneities in the chemical doping in the MLG sheet. Unfortunately, this

problem could not be resolved by cooling the device to liquid nitrogen temperature.

Carrier mobility A slight improvement can nevertheless be found in the hole mobility

of C7-F when cooling the sample. It then yields µc ≃ 5600 cm2V−1s−1 at 81 K as

compared to ≃ 4600 cm2V−1s−1 at 300 K at a typical carrier density ns ≃ 1012 cm−2.

We will thus expect to find also an improvement in terms of diffusion in sample C7-

F. Sample E9-Zc was of similar quality with ≃ 3100 cm2V−1s−1 at 300 K and ns ≃
1012 cm−2. One has to keep in mind that the usual assumption of a linear proportionality

ns ∝ Vbackgate is not valid here, due to the close vicinity top-gate geometry of our GFECs.

To obtain the charge carrier concentration we must now rather use Eq.(4.34) to calculate

the energy ǫ(Vg) and then find ns ∝ ǫ(Vg)
2 (see Eq.(1.47)):

ns =
1

π(~νF )2

(

eV ∆
g −

∫ Vg

VCNP

eCQ
Cgeo − CQ

dV

)2

(4.41)

Electron compressibility In the same way as for the carrier density, we can now also

express the experimental Cg(Vg) as a function of the chemical potential ǫF . Of special

interest here is the electron compressibility CQ(ǫF ) extracted from the total capacitance,

plotted in Figs. 4.19 (Janis setup) and 4.20 (Cascade setup). The room temperature

results are well explained by the theoretical estimate from Eq.(4.9). Particularly reas-

suring is the fact that all three 300 K measurements closely match, as CQ only depends

on ǫ and T and not on sample geometry or other device characteristics. Deviations

from theory are observed in both samples and setups. They are a result of experimental

uncertainties and disorder contributions. A quantitative estimate of the latter was not

possible due to the uncertainties in the experimental data.

In principle, the precision of the electron compressibility measurements should enhance

with increasing sample size (more accurate de-embedding), thinner gate oxide (reduced

electrostatic gate impedance) and lower temperatures (larger contrast in CQ). We have

tested the latter, as pointed out beforehand, on sample C7-F. Further reduction of the

dielectric thickness was not a suitable option, due to the possibility of pin-hole forma-

tion in the AlOx; sample sizes are depending on successful exfoliation of MLG only. As
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Figure 4.19: Electron compressibility as a function of energy at T = 300 K (Cas-
cade setup). The solid line is the theoretical expectation for CQ(ǫ, 300K) ( Eq.(4.9)).
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Figure 4.20: Electron compressibility as a function of energy at T = 300 K and
81 K in sample C7-F (Janis setup). The dashed lines represent the electron com-

pressibilities CQ(ǫ, T ) expected from Eq.(4.9).

discussed previously, low temperatures did not have the expected effect on the electron

compressibility in sample C7-F. In fact, the extracted CQ(ǫ, 81 K) largely deviates from

the theoretical expectation (dashed blue line in Fig. 4.20). Owing to the liquid nitro-

gen temperatures, measurements at 81 K are more difficult to perform, including the

calibration and de-embedding of the system. We have therefore focussed on the room
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temperature setup, where the aforementioned processes are more reliable.

4.4.3 Diffusion coefficient D(ǫ)

A direct way of accessing information about diffusion in our graphene field-effect capac-

itor is the use of the Einstein relation (4.33)

σ(ǫ) = CQ(ǫ)D(ǫ) = CQ(ǫ, T )
ν2F
2
〈τtr(ǫ)〉T (4.42)

The conductivity σ and electron compressibility CQ are measured simultaneously but

separately for different chemical potentials ǫF . We can thus directly deduce the diffusion

coefficient D(ǫ) and transport scattering time τtr from the ratio of σ and CQ. For this

purpose we plot the inverse electron compressibility (CQLW )−1 = C−1
g − C−1

geo versus

the charging resistance Rg for the measurements on the Cascade and Janis setup (Figs.

4.21 and 4.22). The ratio

α(ǫ) =
(CQ(ǫ)LW )−1

Rg(ǫ)
∝ ωc (4.43)

is then directly proportional to the diffusion coefficient, since

D(ǫ) =
σ

CQ
=

L

3W
R−1C−1

Q =
L2

3

(CQLW )−1

Rg
=
L2

3
α(ǫ) (4.44)

The factor 3 intervenes due to low frequency development (4.38) which allowed us to

extract σ and CQ. In both samples E9-Zc and C7-F and at room and liquid nitrogen

temperature we find a linear dependence of CQ(Rg) (see Figs. 4.21 and 4.22), which

corresponds to an energy-independent diffusion coefficient D: the ratio α(ǫ) remains

the same throughout the investigated energy range. For sample E9-Zc we obtain D ≃
180 cm2s−1, which corresponds to a scattering length

l = νF τtr =
2D

νF
≃ 40 nm (4.45)

Sample C7-F exhibits a diffusion coefficient of D ≃ 540 cm2s−1 (Cascade setup) and

≃ 600 cm2s−1 (Janis setup), thus l ≃ 100 nm and 120 nm at room temperature. At

liquid nitrogen temperature mobility enhances, which in turn also improves the diffusion

coefficient: At 81 K we obtain D ≃ 840 cm2s−1 and l ≃ 170 nm. The above values are

within the range of values extracted by other methods (see e.g. [109]). Since the Fermi

velocity νF is independent of energy in graphene, the thermal average of the transport

scattering time 〈τtr〉T is directly proportional to D. Therefore we find [21]

〈τtr〉T = const. (4.46)
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This result coincides with the sub-linear dependence of conductivity on carrier density,

most notably in our room temperature experiments (see Figs. 4.16 and 4.18). The

T = 81 K measurement shows a less pronounced, but still visible sub-linearity (see Fig.

4.18). The finite temperature does not alter the linear behaviour of CQ at high ns but

merely prevents the carrier density from attaining its minimum value, as displayed in

Fig. 4.4. The constant transport scattering time therefore leads us to an equivalent

σ ∝ √
ns (4.47)

dependence.

In section 4.2.2 we also found that the the Thouless frequency ωThouless ≃ D/L2 inter-

venes in the crossover of real and imaginary part of the admittance. From the extracted

values of the diffusion coefficient we can therefore estimate fThouless ≃ 0.7 GHz in sam-

ple E9-Zc as well as fThouless ≃ 2.4 GHz and 3.2 GHz in sample C7-F at room and

liquid nitrogen temperature, respectively. A measurement of the correlation energy Ec

of the conductance fluctuations in graphene providing also the Thouless energy from

Ec ≃ EThouless = ~D/L2 [129] comes to the conclusion that in MLG D ∝ √
ns. In our

opinion however, the presented data points are not conclusive and a D ≃ const estimate

could be equally valid.

As presented in the beginning of this chapter, most of the scattering mechanisms dis-

cussed in literature predict a linear or slightly sub-linear dependence of the conductivity

on charge carrier concentration (see table 4.1). Our τtr = const. findings can thus not

be explained by charged impurities, resonant scatterers or standard ripples. Choosing

a peculiar value H = 3/4 in the ripple scenario would account for our σ ∝ √
ns results

but differs from the experimentally established height correlations H ≃ 1/2 for rough

SiO2 substrates and H ≃ 1 for free standing membranes [130]. Nevertheless the effect

of ripples cannot be dismissed in graphene devices on SiO2, as shown by Xu et al. [131],

who found large ripples to be omnipresent. Furthermore, these ripples exhibit a lower

conductance than flat parts of MLG.

In the overview over scattering mechanisms, we encountered one particular mechanism

resulting in τtr = const. and σ ∝ √
ns, the random Dirac mass disorder. According to

Ziegler [22] the randomly distributed impurities create gap fluctuations and thus carriers

acquire locally a finite mass. In this context D can be approximated from theory by

D ≃ geπ/g

4π
(4.48)

in the vicinity of the CNP, i.e. for small energies ǫ, where g is the variance of the Dirac

mass. Our samples therefore exhibit variances g ≃ 1 (E9-Zc), g ≃ 0.66 (C7-F, 300 K)

and g ≃ 0.61 (C7-F, 81 K). As pointed out in the presentation of this mechanism, we
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were unable to solve the matter of dimensionality. The precise meaning of the above

Dirac mass disorder values remains therefore elusive.

Yet a third possibility is an admixture of different mechanisms with various strengths.

Following Matthisen’s rule one can construct an effective conductivity

σ−1 =
∑

σ−1
i (4.49)

for example adding local, charged and resonant scatterers:

σ−1(ns) = σ−1
local + σ−1

charged + σ−1
resonant =

1

α ln(ns)
+

1

β ns
+

1

γ nsln2(ns)
(4.50)

Depending on the precise mixture, i.e. values of α, β, γ, and given minor experimental

uncertainties, this could be another valid option to explain τtr = const.

Overall, diffusion remains a highly debated subject in graphene research as discrepancies

between theory and data have yet to be resolved. We have added a new facet to the

picture of diffusion in graphene by directly probing the transport scattering time in a

simple capacitor geometry. More data and experiments are needed in order to clarify

scattering mechanisms in graphene.

One possibility is to change the underlying substrate and/or dielectric. During his MSc

internship at the LPA, Q. Wilmart could make a first step in this direction: He fabri-

cated graphene-hBN field-effect capacitors, where the usual AlOx dielectric is replaced

by a thin hexagonal boron nitride sheet [132]. The graphene flake was priorly exfoliated

on highly resistive Si/SiO2 substrate and after the manual stacking of hBN on the MLG

(see chapter 2), the capacitor was established following the procedure outlined earlier

in this chapter. However admittance measurements did not reveal major improvements,

as there are technical challenges yet to be overcome: The drain electrode is metallised

before the hBN deposition, leading to a large height step (∼ 100 nm) at its bound-

ary. The subsequently placed hBN sheet does not fold along this edge, leaving a void

space between dielectric / gate electrode and graphene flake. Precise de-embedding and

measurements, especially of the capacitive signal, are therefore not possible. A way of

overcoming this drawback could be yet again the inversion of the structure, as suggested

once before for RF-GFETs: The gate electrode is buried in the SiO2 substrate and a

thin hBN film place on top of it. Then the subsequently transferred MLG sheet can

be contacted without disturbing the plane-plane capacitor configuration and remains

additionally accessible for thermal annealing and/or purposeful contamination.
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Figure 4.21: Inverse electron compressibility as a function of resistance in Cascade
setup measurements. Each data point corresponds to a different gate voltage, thus
different energy. The slope to each point gives information about the diffusion

coefficient D(ǫ).
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Figure 4.22: Inverse electron compressibility as a function of resistance in sample
C7-F at room and liquid nitrogen temperature.



Chapter 5

Electronic noise and phonon

cooling in graphene

In general today’s standard semiconductor MOSFETs work at biases high enough to

provoke electron-phonon interactions in their channel. It is thus of great importance to

study these interactions and understand their role in the electronic transport.

In this context noise measurements can yield information about the physics involved

in electronic transport that is not readily available from standard DC transport mea-

surements. It can reveal the role of disorder, scattering or carrier statistics in a given

structure. Contrary to e.g. GaAs heterostructures, where optical phonons arise at com-

paratively low energies, their threshold is quite high in MLG. They intervene therefore

only at high electrical fields in clean materials and will therefore be neglected through-

out this chapter. Their acoustic counterparts however, remain elusive due to their weak

coupling to the carriers. Using noise thermometry, we can nevertheless investigate the

effect of acoustic phonons on the cooling of carriers in graphene.

In this chapter we will first introduce the background of electron-acoustic phonon scatter-

ing and its signature in different temperature regimes. A short description of electronic

noise in MLG will be given, as well as an overview of hot electron and noise exper-

iments in different materials. This introductory part is followed by the presentation

of experimental techniques, where we detail the device fabrication, the cryogenic noise

thermometry setup and the device characterisation process. We will end the chapter

with a presentation of the results and their discussion with respect to electron-acoustic

phonon cooling [26].

119
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5.1 Important concepts and formulas

5.1.1 Phonons in graphene

'

&

$

%
Figure 5.1: Phonon dispersion in MLG. Lines highlighted in blue are out-of-
plane (ZO and ZA) phonons which are of little importance in supported graphene.

Adapted from [49].

We have already briefly introduced the phonon dispersion of graphene in chapter 1.

A sketch of it is shown in Fig. 5.1 for different directions in the Brillouin zone. The

accuracy of this theoretical prediction, which had been established long before Novoselov

and Geim’s discovery, has been proven for the optical branches experimentally e.g. via

Raman spectroscopy [82, 83]. Associated with the large sound velocity of νs ≃ 2 ·
104 ms−1 (for the case of the longitudinal branch) optical phonons (OPs) have a rather

high energy of ∼ 160–200 meV, as compared to e.g. GaAs where OPs start as low as

∼ 35 meV [18]. The sound velocity in GaAs is νs ≃ 5110 ms−1. The carriers in MLG

couple strongly to OPs at high electric fields as already presented in chapter 3.

Acoustic phonons Acoustic phonons (APs) are nearly omnipresent in MLG, as can

be seen from the corresponding branches in Fig. 5.1; their energy is arbitrarily small

in the middle of the zone (point G). Nevertheless little influence of APs on charge

carrier mobility can be observed in electric DC transport measurements, as pointed

out previously in Fig. 1.12(b). We thus expect a low coupling of APs to carriers in

graphene, as compared to their optical counterparts. A more detailed estimation of the

electron-AP coupling constant Σ is given below.
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5.1.2 Electron-acoustic phonon coupling in graphene

5.1.2.1 Temperature dependence of electron-phonon scattering in 2D

'

&

$

%
Figure 5.2: Illustration of high-temperature and low-temperature electron-phonon
scattering behaviour in typical metals (a-c) and graphene (d-f). From M. Fuhrer

[23].

We will now consider the very basic, but important issue of electron-phonon coupling in

2 dimensions, for which MLG is the prime example.

Normal metals First of all, however, let us turn to the description of electron-phonon

scattering and its temperature dependence in normal metals, by which we mean metallic

systems with large Fermi surface. Here, the typical scale is the so-called Debye temper-

ature ΘD given by the maximum phonon wavevector qD. It sets the crossover between

the high temperature resistivity ρ(T ) ∝ T for T ≥ ΘD and the low temperature limit
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ρ(T ) ∝ Tα for T < ΘD. The coefficient α is 5 for 3D metals and 4 for 2D metallic sys-

tems, i.e. 2D systems with high carrier concentration and large Fermi surface [23]. For

T ≥ ΘD all phonon modes are thermally populated and the maximum phonon vector is

qD =
kBΘD

~νs
(5.1)

where νs is the phonon velocity in the metal. Scattering of electrons by phonons is the

main source of resistivity at T ≥ ΘD in normal metals, as these interactions redirect the

electron wave vector kF from one point on the Fermi surface to another within reach of

the phonon space (see Fig. 5.2(a)). Due to their bosonic nature the number of excited

phonons in each mode is proportional to T , hence the ρ(T ) ∝ T result [34]. For T below

ΘD the phonon surface shrinks (Fig. 5.2(b) and (c)), leaving a maximum phonon vector

qD = kBT/(~νs). Therefore, only a smaller part of the Fermi surface remains available

to the scattering processes, reducing the allowed scattering angles. This ”freezing out”

of phonon modes and the reduction of available scattering angles is responsible for the

observed ρ ∝ T 5 dependence in 3D metals [23]. Typical Debye temperatures, below

which the resistivity increases rapidly with temperature, are e.g. 170 K for Au or 428 K

for Al [34].

'

&

$

%

Figure 5.3: (a) Temperature dependence of the resistivity for different charge
carrier densities. (b) The temperature dependent part of the resistivity ∆ρ(T ) scales
as T 4 in the low T range and smoothly crosses over into a linear T dependence at
higher T . The dashed lines represent fits to the linear T and T 4 dependencies,

respectively. From Efetov et al. [133]

Graphene In a 2D metal with small Fermi surface, thus e.g. graphene, one expects

in turn ρ ∝ T 4 at T < ΘD, in particular in MLG below ΘD ≃ 2300 K, i.e. up to room
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temperature and beyond [133]. This is however not observed in experiments. Recent

measurements by Efetov and Kim [133] rather find the transition in resistivity to take

place around 10–30 K ≪ ΘD. How can this be explained?

The key element, as pointed out in [133] and [23], is the small Fermi surface of MLG.

Fig. 5.2(d-f) illustrates the transition: At T ≥ ΘD all redirections of the electron wave

vector are possible, since the Fermi surface is much smaller than the available phonon

space (kF ≪ q). Even below ΘD, this remains valid in graphene, thus explaining the

ρ(T ) ∝ T behaviour at room temperature. It is only after decreasing below the so-called

Bloch-Grüneisen temperature

TBG =
2νs
νF

ǫF
kB

≃ 54
√

ñs K < ΘD (5.2)

that the previous situation is restored: The Fermi surface available to scattering events

reduces (see Fig. 5.2(e-f)) and one finds ρ(T ) ∝ T 4 [23, 133]. This means that for

T ≤ TBG the maximum phonon wave vector is qmax ≤ 2kF , due to the restriction of

available Fermi surface. We can hence define our low temperature limit as the situation

where kF ≫ q, i.e. the electron energy is much bigger than the phonon energy:

~νF · kF ≫ ~νs · q (5.3)

Here, the electron energy is either given by the chemical potential µ or the temperature,

~kF νF ∝ max{kBTe, µ}. Note also that in contrast to ΘD the Bloch-Grüneisen tem-

perature can be tuned through the variation of the carrier density. The afore mentioned

change of temperature dependence of the resistivity, ρ ∝ T 4 to ρ ∝ T , was confirmed

experimentally by Efetov and Kim [133]. Subtracting a constant contribution ρ0 stem-

ming from scattering on static impurities and point defects in the lattice, the resulting

∆ρ(T ) = ρ(T )−ρ0 is reproduced well by a resistivity calculated from Boltzmann theory:

∆ρ(T ) =
8D2ǫF

e2~ρgrνsν3F
fs (TBG/T ) (5.4)

where ρgr ≃ 7.6–9.6 · 10−7 kgm−2 (theoretical and experimental value, respectively)

[134] represents the graphene mass density, νF = 106 ms−1 and νs = 2 ·104 ms−1 are the

Fermi and sound velocity in graphene, respectively and D is the acoustic deformation

potential coupling electrons and APs. Typical theoretical values of D are in the range

∼ 4 eV [135, 136] and 10–30 eV [29, 137, 138], whereas experimentally D = 7.5 eV [139]

and D ∼ 17 – 29 eV [133, 140, 141] are found for few-layer and monolayer graphene,

respectively. A recent theoretical paper suggests an effective D = 6.8 eV [142] due to the

different acoustic phonon modes. The generalised Bloch-Grüneisen function fs (TBG/T )
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is given by the integral

fs(ψ) =

∫ 1

0

ψx4
√
1− x2eψx

(eψx − 1)2
dx (5.5)

Eq. (5.4) differs from the standard 3D metal case as it involves TBG instead of ΘD

and also contains x4 rather than x5, which is a manifest of the 2D nature of carriers

and phonons in MLG. Furthermore, the absence of backscattering discussed earlier in

chapter 1 is introduced by the factor
√
1− x2. Using D = 25 eV, as found by Efetov

and Kim, Eq. (5.4) can be approximated by ∆ρ ≃ 0.58 Ω · fs (TBG/T )
√
ñs. The

limits for T ≪ TBG and T ≥ TBG are highlighted in table 5.1. They are obtained

using ψ = TBG/T = 2~νskF /(kBT ) in Eq. (5.5), yielding fs(ψ → 0) ≃ 0.196/ψ and

fs(ψ → ∞) ≃ 24ζ(4)/ψ4, where ζ is the Riemann-Zeta function (ζ(4) = π2/90). The

crossover between regimes occurs for TBG/T ≃ 4.

Efetov and Kim use an electrolytic gate to obtain large carrier densities, which enables

them to increases TBG up to very high temperatures and map the crossover between

regimes. Their method excludes however explicitly the effects of disorder by removal

of ρ0 and requires carrier concentrations of the order of ns ∼ 1014 cm−2. It will be

shown in the following that disorder can in general not be subtracted and an unexpected

temperature dependence is found at low ns. In order to access these effects, we are in

need of a different way of investigating the electron-AP coupling: Instead of probing

the temperature dependence of resistivity, we will study the energy relaxation of charge

carriers, i.e. their energy transfer to acoustic phonons.

5.1.2.2 Electron-acoustic phonon energy relaxation in graphene

Several theoretical papers have dealt with the aforementioned energy transfer from elec-

trons to acoustic phonons in graphene in the low (T ≤ TBG) [137] and high (T ≥ TBG)

temperature limits [138]. A recent numerical calculation of the heat conductance due

to the electron - 2D acoustic phonon interaction shows the whole range, including the

crossover region around TBG [24] (see Fig. 5.4). It maps the heat conductance

Ge−AP (µ, T ) =
∂Q

∂∆T

∣

∣

∣

∣

∆T=0

(5.6)

as a function of the ratio of thermal energy to chemical potential. Ge−AP is therefore

directly related to the cooling power Q, that is the amount of energy transferred from

electrons to APs per unit area. At low temperatures is generally of the form

Q = VdimΣ
(

T δe − T δphonon

)

(5.7)
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Figure 5.4: a) Thermal conductance as function of chemical potential µ and tem-

perature T in units of G0 = LW · D2kB

2π2ρgr~
5ν6

F

|µ|4. The dashed lines indicate the

analytical approximations [137] and [138], the solid line the full numerical estimate.
From Viljas et al. [24]. b) Chemical potential µ in K as function of temperature for

carrier densities as noted in the plot. From Falkovsky et al. [143].

where Vdim stands for the volume of the sample and Σ characterises the electron-phonon

coupling strength. As mentioned in the section above, the exponent δ depends on the

dimensionality of the system; δ = 5 is generally accepted for 3D metals and δ = 3 for

1D systems like e.g CNTs. The latter dependence has been investigated e.g. by Wu et

al. [144] who confirm δ = 3 in CNTs by noise thermometry. In 2D, thus in graphene,

one expects δ = 4 [24, 138]. In the high temperature regime in MLG the cooling power

takes the form [24, 138]

Q ∝ g(µ, Te)(Te − Tphonon) (5.8)

where g(µ, Te) is an asymmetric function specifying the coupling[24]

g(µ, Te) =
D2kB

30πρ~5ν6F

(

15µ4 + 30(πµkBTe)
2 + 7(πkBTe)

4
)

, T ≥ TBG (5.9)

From the point of view of the cooling power Q, one expects then the following temper-

ature dependences:

• In the low temperature limit, where kBTe ≪ µ, Ge−AP ∝ T 3. Hence Q ∝ T 4.

• In the intermediate range TBG ≤ Te ≪ µ/kB, where we have kBTBG

|µ| = 2νF νs
~kF νF

≃
0.04, the cooling power should be linear in temperature: Q ∝ T , as can be seen

from the lowest order approximation of Eq. (5.9).
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• In the high temperature limit kBTe ≫ µ, Ge−AP ∝ T 4 and therefore Q ∝ T 5. Note

however that this regime will not be approached in this work and is mentioned

only for completeness.

Falkovsky et al. [143] numerically calculated the chemical potential µ for a set of carrier

densities as a function of temperature, as displayed in Fig. 5.4(b). At low sample

temperatures one finds e.g. µ ≃ 430 K at ns = 1011 cm−2. Our samples are generally

in the metallic regime, i.e. degenerated and at high carrier densities ns ∼ 1012 cm−2

Following the µ ∝ √
ns law, we therefore estimate µ ∼ 1300 K for our samples. Typical

experimental average electron temperatures Te will be . 400 K. Therefore, data analysis

will generally deal with the low temperature limit, kBTe ≪ µ, and the cooling power is

then expected to follow the aforementioned

Q = LWΣ
(

T 4
e − T 4

phonon

)

(5.10)

dependence. For this limit, an analytical expression for the coupling constant of electrons

with longitudinal-acoustic (LA) phonons can be obtained [24]:

ΣLA =
π2D2|µ|k4B
15ρgr~5ν3F ν

3
s

(5.11)

with ρgr, νF , νs and D as introduced below Eq. (5.4).

Using a rather low value D = 10 eV in (5.11), one estimates a LA phonon coupling

constant of

ΣLA ≃ 10
√

ñs mW ·m−2K−4 (5.12)

The carrier density ns is to be given in units of cm−2.

Table 5.1 summarises the expressions in the high and low temperature regime of both

methods allowing to access electron-AP interactions: The energy relaxation of carriers

Q and its counterpart in resistivity ∆ρ. For the sake of easy comparison, we transform

∆ρ to a power per unit area by multiplying with the squared current density J2 =

(nseνF )
2 = (k2F eνF /π)

2. Additionally, we used the evaluation of the Riemann-Zeta

function ζ(4) = π4/90.
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Te ≪ TBG TBG ≤ Te ≪ kBǫF

J2 ·∆ρ(Te) = 12π2

90 · D2

ρgrνs
· kF ·

(

kBTe
~νs

)4
= 1

4π · D2

ρgrνs
· k4F · kBTe

~νs

Q
LW = π2ν2s

15ν2
F

· D2

ρgrνs
· kF ·

(

kBTe
~νs

)4
= ν2s

2πν2
F

· D2

ρgrνs
· k4F · kBTe

~νs

Table 5.1: Comparison of limiting cases of the temperature dependence of resistivity
[133] and the energy transfer from carriers to APs [24]. For the transformation of ∆ρ

to units of power per unit area we use J2 = (k2F eνF /π)
2.

5.1.3 Heat equation in presence of acoustic phonon cooling
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Figure 5.5: a) Competing routes for the energy relaxation in graphene: Electron-
AP coupling followed by AP-substrate interaction and in parallel direct coupling
of electrons to the substrate. RK and R)e−K are the Kapitza resistances for
AP-substrate and electron-substrate coupling. b) Temperature profiles Te(x) for
different bias voltages obtained from the solution of Eq. (5.13) under the assumption

of cold contacts and cold phonons, T (x/L = ±0.5) = 0 and Tphonon = 0.

Besides the already discussed cooling by APs, carriers can relax their energy via other,

competing routes. Of main interest here is the electron heat diffusion to the leads,

described by the Wiedemann-Franz law. An overview of the cooling processes is shown

in Fig. 5.5. The effectiveness of the different cooling mechanisms is described in terms

of the Kapitza interface resistance RK in Fig. 5.5(a), whereas we will rather express

this via the coupling constant Σ in the following description. In more general terms,

we are interested in the effect of bias voltage V in combination with the two cooling

mechanisms. We therefore have to solve the heat equation

Lo
2R

L2d
2T 2

e (x)

dx2
= −V

2

R
+ LWΣ

(

T 4
e − T 4

phonon

)

(5.13)

where the left-hand side describes the heat conduction of carriers to the contacts via

the Wiedemann-Franz law, the first term on the right-hand side the incoming Joule

power and the second right-hand side term the effect of AP cooling. This is again a
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1-dimensional description, as we assume homogeneity along the width of the sample,

similar to the GFECs 1D line model. Lo =
π2k2B
3e2

is the Lorenz number and x denotes

the coordinate along the graphene channel. Thanks to the T 2
e and T 4

e dependences,

we obtain an analytical solution in the case of cold contacts (Te(±0.5L) = 0) and cold

phonon bath (Tphonon = 0). The solution only depends on a single parameter Σ, the

electron-acoustic phonon coupling constant, which sets the two characteristic scales of

the system: the temperature T 2
Σ = V√

LWΣR
and the voltage VΣ = Lo/(

√
4LWΣR).

T 2
Σ = 4

√

P/Σ is the maximum temperature reached in the absence of electron heat

conduction, whereas VΣ defines the crossover between the electron cooling at low bias

and the phonon mediated cooling at high bias. The temperature profile calculated

from (5.13) is pseudo-parabolic at low bias and evolves towards a uniform temperature

Te(x) = TΣ at high bias. The spatial average 〈Te〉, intervening in the noise description

further below, is then calculated numerically. It is the average electron temperature

that is probed by our noise thermometry experiments. For a more detailed description

of the solution of (5.13), please see Appendix D.

5.1.4 Noise in diffusive graphene devices

In the introduction of this work (section 1.3.3) it was pointed out that there are two main

intrinsic sources of noise in a mesoscopic system: thermal and shot noise. Additional

contributions to the noise can arise from e.g. flicker or random telegraph noise. We will

introduce the first of these additional source but omit the second due to lack of relevance

in this work.

In chapter 1, we derived the noise power spectral density S(ω) in terms of current

operators for finite frequencies. We found that the S(ω) can be calculated as the Fourier

transformation of the current correlation function (Eq.(1.65)). Using Wicks theorem

[55], one may in the end obtain a general result for the autocorrelated electronic noise

in a two-terminal system evaluated for a chemical potential step ∆µ = eV , at finite

temperature T and frequency ω. We will not go into more detail on this subject here

but refer the interested reader to the reviews by Blanter and Büttiker [51] or Martin

[11].

Let us simply state the final zero frequency limit of the electronic noise, describing the

crossover between thermal and shot noise:

SI(0) =
4e2

h
kBTD

2 +
2e3V

h
D(1−D)coth(

eV

2kBT
) (5.14)
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The above equation is valid for a mono-mode conductor, but can be extended to multiple

modes by summing over all modes n and their corresponding Dn (see also chapter 1,

1.3.3).

Thermal noise In the equilibrium state, where there is no potential difference between

the contacts, we obtain the pure thermal limit. As pointed out in chapter 1 agitations

of carriers in a two-terminal conductor of resistance R give rise to a current noise δI(t),

the so-called Johnson-Nyquist noise of spectral density

SI =
4kBT

R
= 4GnoisekBT (5.15)

Here, the last representation is probably the most common, showing the origin of thermal

noise in conductance fluctuations due to dissipative processes in the sample. Generally

in a two-terminal system one uses Gnoise(ω) = Gds(ω). It has however recently been

shown [64] that a more general relation has to be employed in three-terminal, mono-

mode nano-transistors: There, corrections from the small DOS to the drain-source con-

ductance have to be taken into account Gnoise(ω) = Gds(ω) + O(C−1
Q ) due to the close

vicinity of the top-gate electrode. It reveals that O(C−1
Q ) = 2gmCg/CQ, where gm is the

device’s transconductance and Cg and CQ the gate and quantum capacitance, respec-

tively. In our experiments however, these corrections can be neglected as we will use

back-gated devices with a dielectric thickness on the µm scale. Also, frequencies remain

small enough to use the static conductance Gds = R−1
ds in calculations.

5.1.4.1 Shot noise

The second source of electronic noise, shot noise, results from the stochastic nature

of electron transport and the granularity of charge. It is a quantum effect stemming

from fluctuations in the number of transmitted carriers. It reveals from the general zero

frequency limit (5.14) in the limit T → 0. We then find

SI =
2e3V

h
D(1−D) = 2eI(1−D) (5.16)

In the case of low transmission (D ≪ 1) this is equal to the result found by Schottky

[145] in 1918

SI = 2e 〈I〉 (5.17)



130 Chapter 5: Electronic noise and phonon cooling in graphene

who derived this formula classically, assuming the intervals between particle arrivals to

be Poissonian. It is therefore also referred to as the Poisson limit.

5.1.4.2 Fano factor

It has proven useful, especially in mesoscopic physics, to express noise information in

terms of the so-called Fano factor F . It is defined as the ratio between zero frequency

shot noise and Poisson noise [11]:

F ≡ SI(ω = 0)

2e〈I〉 (5.18)

which, in a one-mode conductor, is proportional to 1 −D. A ballistic system, i.e. unit

transmission, does not exhibit noise and therefore then F = 0.

The Fano factor will thus taken on values between zero (transparent channels) and unity

(poor transmission) and can be expressed in a more generalised form [51]

F ≡
∑

nDn(1−Dn)
∑

nDn
(5.19)

taking into account all available channels and their transmission probability Dn. It is

generally referred to as real Fano factor as compared to the pseudo Fano factor F̃ which

we will introduce below. In the case of low transmission D ≪ 1, which can e.g be

achieved easily in tunnel junctions, we recover the full shot noise and F = 1. We will

take advantage of this fact during the calibration of our setup.

As pointed out by Blanter and Büttiker [51] (see also references therein), the Fano factor

can be ≪ 1 in certain systems, i.e. the shot noise is partly suppressed. Depending on

the length L of the sample with respect to the characteristic lengths for elastic and

inelastic scattering of the carriers, several typical values and dependences will arise: For

L ≪ le−e, where le−e is the electron-electron scattering length, only elastic scattering

among the carriers occurs and the system behaves like a non-interacting population of

electrons, which in turn reduces the shot noise and leads to F = 1/3 (see [51] or also

[146]). Once L ≥ le−e, a homogeneous population of hot electrons establishes due to

inelastic scattering among the electrons. This creates additional electronic noise and the

Fano factor rises to F =
√
3/4 [51, 146]. Beyond this regime, when the characteristic

length of electron-phonon interaction le−ph is reached, the noise decreases with system

length and F → 0 (see e.g. graph in [146]).

The aforementioned case F = 1/3, is a quantum interference effect first explained by

[147]: In a diffusive, phase coherent conductor conductance is given by the amount and

transparency of its open channels. As it is diffusive only few channels are open with

transmission 1, all others are assumed to be closed. Evaluation of quantum transport
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calculus then results in

SI =
2

3
eV 〈Gnoise〉 = 2e〈I〉 · 1

3
(5.20)

The second case of F =
√
3/4 was studied theoretically by Nagaev [148] and Nazarov

et al. [149] and verified experimentally by Steinbach et al. [146]. Here, L ≥ le−e in

the diffusive conductor, i.e. inelastic electron-electron scattering causes a redistribution

of energy: Carriers thermalise and the only energy loss is provided by heat conduction

to the contacts, described by the Wiedemann-Franz law [34] and introduced earlier in

5.1.3. A spatial temperature profile Te(x) establishes. This does however not cause a

change in conductance as the average momentum of the electron gas remains unaltered.

Nevertheless a positive contribution to the electronic noise arises, since the energy relax-

ation participates in the distribution of states f (see (1.66)). The noise spectral density

can then be described similar to the thermal noise, exchanging T for the spatial average

of the electron temperature < Te >, SI = 4GdskB < Te(x) > or also SI = 2eIF̃ with

a pseudo Fano factor F̃ =
√
3/4 ≃ 0.43 [148]. It is this pseudo Fano factor F̃ that

intervenes in the analysis of our experiments; for the sake of simplicity will however

refer to it simply as Fano factor F .

In the last regime, all carrier energy is removed by electron-phonon interactions and

the only remaining source of noise is of the Johnson-Nyquist type. Hence SI becomes

independent of I and therefore F → 0.
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Figure 5.6: Schematic presentation of the Fano factor in graphene as a function of
bias voltage. The solid line indicates the diffusive and the dashed line the ballistic

case, respectively. Both are for the limit of high carrier concentration.

Fano factor in graphene As pointed out in the paragraphs above, the system size

L determines the amount of noise suppression and thus the value of F . With respect to

our experiments, we are however more interested in the scaling of F with bias voltage

V . In graphene, the characteristic length scales are functions of the Fermi energy, hence
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tunable, allowing us to keep a constant system length L. In particular the electron mean

free path lmfp can be estimated from the Drude conductivity [150]:

σ = nseµc =
2e2

h
kF lmfp

lmfp =
µc~

e

√
πns =

µc
eνF

ǫF (5.21)

A schematic overview of the expected F (V ) behaviour can be found in Fig. 5.6: The

solid line indicates the diffusive and the dashed line the ballistic case, respectively, both

in the limit of high carrier concentration. Close to zero bias we find F ≃ 1/3 in the

diffusive case, as carriers are essentially non-interacting and one retrieves the result

mentioned earlier. This has been predicted numerically [67] and experimentally values

close to 1/3 are obtained from noise measurements [25]. In general, as pointed out

by [25], F . 1/3 at low bias in diffusive graphene with little ns dependence, whereas

F = 0 in ballistic samples at high carrier concentration. Approaching the CNP in

ballistic graphene Danneau et al. [151] confirm the predicted F = 1/3 value [66]. Above

a certain threshold voltage, carriers interact inelastically and we obtain the universal

F ≃
√
3/4. Note that currently there is no full theory of electron-electron interactions

describing both the doped regime and the region close to the CNP in graphene. In the

diffusive, doped regime, we can however assume that results will be similar to other

metallic disordered systems (see e.g. [146]).

Beyond this regime, electron-phonon interactions will intervene in the Fano factor. In

a first stage cooling of carriers by APs dominates over the heat conduction. This effect

is later replaced by the electron-OP interaction, when carriers acquire sufficient energy

to overcome the optical phonon threshold energy. Both processes effectively cool the

carriers and reduce thus the Fano factor. The latter OP cooling will introduce a very

efficient noise reduction, as OPs are interacting strong enough to be visible even in DC

transport measurements [50]. To our knowledge, no precise voltage dependence has been

presented yet and the sketched ”cosmology” in Fig. 5.6 is of rather predictive nature at

medium to high bias:

• At medium to high bias, where electron-AP cooling dominates over the heat con-

duction to the contacts but no OPs are present yet, the average electron temper-

ature is given by Te ∝
√
V . We therefore predict a Fano factor F (V ) ∝ 1/

√
V .

• At high bias and high electric field the cooling of carriers is dominated by OPs.

Their strong interaction will cause current saturation, i.e. no further increase of

SI ∝ I and hence one expects the Fano factor to reach the macroscopic limit

F = 0 at very high voltage. For the transition we predict a F ∝ 1/V dependence.

The samples we present in the following are however highly diffusive and we will
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therefore not have access to this regime; it requires electron temperatures in excess

of ~ΩOP /kB ≃ 160 meV/kB ≃ 1900 K.

The two sources of electronic fluctuations, thermal agitations and granularity of charge,

outlined in the paragraphs above are however not the only ones present in an electronic

system. Another source of noise is the so-called 1/f noise, which we will introduce

briefly in the following.

5.1.4.3 1/f noise and Hooge parameter

1/f or flicker noise is a type of random fluctuations found in a broad variety of systems,

ranging from the rotation of the earth to fluctuations of current in microelectronic devices

[152]. Such noise in current or voltage is always related to a direct current because its

source are resistance fluctuations in the conductor. They translate into current or voltage

fluctuations via Ohm’s law. Electronic 1/f noise has first been observed by J.B. Johnson

in 1925 [153], when he studied the fluctuations of emission of electrons of a thermionic

tube. Within the spectral density he found a contribution decreasing with frequency,

which was later coined flicker noise. The origins of flicker noise is not always fully

understood, but e.g. for metals it has been shown that 1/f noise is closely related to

the motion of defects and impurities [54]. We shall not go into detail on this particular

and very rich subject, but merely introduce the so-called Hooge relationship [154]

SV V (f)

V 2
=

αH
N · f (5.22)

with αH ≃ 2 · 10−3 the empirical Hooge constant and N the number of charge carriers

contributing to the resistance. In our case of biased graphene samples, we will thus

expect a 1/f contribution to SI proportional to I2ds. This contribution will be all the

more significant for higher bias and small sample sizes, where there are less carriers

present in the channel.

The Hooge parameter has recently been characterised in graphene devices by measuring

the 1/f noise up to the kHz region: Liu et al. [155] find αH ∼ 10−4 in backgated MLG

devices on Si/SiO2 substrate. In a second study [156] the same group could establish

that αH ∼ 2 ·10−3 in top-gated MLG devices with HfO2 dielectric on Si/SiO2 substrate.

Additionally, Zhang et al. [157] show that in graphene αH ∝ ns and suggest that

αH also depends on electron mobility and the exact scattering mechanism. They also

present a model describing a variety of noise measurements by different groups based on

the above suggestions. The scope of this chapter is however the frequency independent

shot noise of GFETs and we will restrict the discussion of flicker noise to the above
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mentioned. Flicker noise is nevertheless one of the motivations for measurements in the

GHz frequency range; there its contribution is only minor.

5.2 Hot electrons and electronic noise experiments

The electronic noise, i.e. essentially fluctuations of electron occupation numbers around

the average value, can be derived rather simply from the impedance of a conductor,

if the former is in equilibrium. Then, one can use the Johnson-Nyquist relation (see

chapter 1) where noise is directly related to the average current. The situation becomes

more complicated for non-equilibrium systems, where a so-called hot electron population

can arise if carriers (in principle electrons or holes, though we will use the term ”hot

electrons” only for simplicity) do not thermalise well with the phonons of the conductor

or surrounding bath; that is, when the electron-electron scattering time τe−e is much

shorter than the average energy loss time [158]. Then, one has to use different methods

than the average current to probe the electron temperature or the noise itself, in order

to gain information about the system’s noise behaviour [54].

5.2.1 Measurement techniques

The different methods that can be employed to investigate a material’s hot electrons

and their energy relaxation towards equilibrium can be roughly divided into two groups:

Transport and optical techniques. An overview is given e.g. in [158] and references

therein.

Transport techniques generally aim at generating a hot electron population by supplying

electrical power greater than the power loss via electron-phonon relaxation, establishing

an average electron temperature Te ≫ TL. TL is here the lattice temperature which

is usually close to the bath temperature T0. Typical transport measurements supply

power via a DC field or short electrical pulses and investigate the energy loss via acoustic

phonons. The energy relaxation of carriers can then be probed by different means. Initial

ideas involved the determination of the power loss from carrier mobility µc. However,

µc not only depends on Te but to some extend also on TL, making this method less

reliable [158]. Instead, Shubnikov-de-Haas oscillations in weak magnetic fields can be

used to determine Te very accurately, as their amplitude depends strongly on it. A

third, commonly employed technique is the use of superconducting bolometers. Here, a

short electro-magnetic pulse creates a hot electron population in the sample, which has

the bolometer attached to the opposite side of its substrate. Energy loss is provided by

interaction with phonons, which travel nearly ballistically to the detector. The bolometer
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consists usually of a thin metal layer (commonly Al) evaporated on the substrate, with

a certain superconducting transition temperature Tc. Close to Tc the small temperature

increase due to the arriving phonons will create a detectable change in resistivity. This

technique requires the use of cryogenics in order to achieve T ≃ Tc ∼ 1–4 K. Last but not

least, one can investigate Te and the energy relaxation by means of noise thermometry.

It consists in the measurement of current or voltage fluctuations of the hot electron

sample, which has been suggested first by Arai [159] and then exploited experimentally

in many studies. A more in depth description of this technique in connection with

graphene samples will be given below (5.3.6).

The second group of methods involves optical measurements, which are generally used

to probe the energy relaxation of hot electrons via optical phonons. Widely used are

photoluminescence spectroscopy as well as ”pump-probe” techniques like e.g. Raman

spectroscopy. These techniques give access to the hot carrier relaxation time which is

the product of the thermal resistance and the electronic specific heat. The electric mea-

surements have the advantage to give direct access to the thermal relaxation resistance.

Since the focus of this work lies on electrical measurements, we will not dwell on the

non-electric group of methods but refer the interested reader to [158] and references

therein.

5.2.2 Metals

Hot electron populations in metals are generally difficult to probe at room temperature.

Supposing a thin metallic film on an insulating substrate, one can assume the system

to be composed of three parts: the hot electrons population, a phonon system in the

film and a second phonon system in the substrate. These three systems are then cou-

pled, allowing for the energy relaxation of hot electrons towards the metal phonons and

of the latter to the substrate phonons. If the coupling between the first two systems

is weak a temperature difference between electrons and phonons will arise. At room

temperature this difference is however very small and detectable signals would require

power levels so high they would vaporise the film [160]. At low temperatures, typically

below a few hundred mK, the thermal resistance increases and one can establish a hot

electron population in the metal. It can subsequently be investigated e.g. by means

of noise thermometry [146, 160]. Due to its small thickness the boundary resistance

between metal and substrate phonons can be neglected, establishing Tphonon ≃ T0. Sub-

sequently, by probing the current or voltage noise in the sample, the average electron

temperature can be extracted from the balance between incoming power and energy

loss (see also 5.3.6). Wellstood et al. [160] and Steinbach et al. [146], as well as other
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groups not mentioned here for shortness, showed that the cooling power in a metal-

lic film follows a Q ∝ Σ(T 5
e − T 5

phonon) law, with an electron-phonon coupling constant

Σ ≃ 5·108 Wm−3K−5. For the 1-dimensional case of a metallic wire [161] found similarly

Q ∝ ΣT 3 with Σ ≃ 5 · 109 Wm−1K−3.

5.2.3 Two-dimensional electron gases

In 2DEGs formed at the interface of semiconductor hetereostructures hot electron pop-

ulations can arise e.g. from electrical heating, similar to the way described priorly for

metallic films. Electrical power dissipated in the 2DEG heats up the carriers above

Tphonon, especially if the sample is cooled to low temperatures. Electron heat diffusion

to the cold contacts also provides a cooling pathway but can be suppressed by the choice

of sample geometry. A theoretical description of the expected cooling power and its tem-

perature dependence was brought forward by Price [162]: For a piezo-electric coupling

of carriers to acoustic phonons he found Q ∝ T 5
e − T 5

phonon and Q ∝ T 7 for deforma-

tion potential coupling. This could be confirmed by several groups, e.g. [163], [164] or

[165], using Shubnikov-de-Hass oscillations, weak localisation or the thermopower of a

1D constriction.

Besides the above mentioned techniques noise thermometry is often employed to study

the electron temperature in 2DEGs. Of particular interest is here the Fano factor

F = SI/(2eI). F depends on the number of transmission channels as well as their

transparency (see 5.1.4.2). Hence, QPC are often used here, as they allows for a precise

variation of the number of channels [166, 167]. More information on this subject can be

found in review [51].

5.2.4 Carbon nanotubes

In CNTs, the physics of carrier excitations and fluctuations can e.g. be studied by

probing its resistivity or conductance. Park et al. [168] and Zhou et al. [169] found

that the electronic properties of CNTs (metallic or semiconducting) are strongly related

to the interaction of carriers with acoustic and optical phonons of the CNT lattice. At

low bias APs dominate, while they are replaced by OPs at high bias, both limiting

e.g. mobility and resistivity in their respective regime. At low bias the electron-AP

scattering represents the lower limit of the carriers’ mean-free path, while at high bias

the electron-OP interaction results in a current saturation.

Using noise thermometry techniques, a deeper understanding of the phonon and other

effects can be gained. Herrmann et al. [170] as well as Wu et al. [171] could effectively

employ current noise measurements to investigate the Fano factor in CNT-FETs with
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Figure 5.7: Joule power PJoule = I ∗ Vds as function of electron temperature
Te = (FeVds)/(2kB) in carbon nanotubes. Solid and dashed lines are theoretical
estimates for acoustic and optical phonon interactions, respectively. From Wu et al.

[144].

metallic contacts and confirm the variation of shot noise from the ballistic (no shot noise,

F = 0) to the diffusive (full shot noise, F = 1/3) regime. Also, the cooling of electrons

by acoustic and optical phonons has been studied by Wu et al. by means of noise

thermometry. They find in particular a Q = LΣ(T 3
e − T 3

phonon) cooling power (see Fig.

5.7), where L is the tube’s length and Σ the electron-AP coupling constant. Contrary

to the Tphonon assumption we made earlier for the heat equation in graphene, Wu et al.

find Te ≃ Tphonon in CNTs and extract a coupling constant Σ ≃ 3 nWm−1K−3.

To estimate the final charge detection capabilities of a CNT-nano-FET, Chaste et al. [64]

measured the dynamic properties and current noise spectra in the same fashion to the one

described in 5.3.6. They found a hot electron population to arise at low bias voltages

which manifests as a quasi unitary Fano factor. At higher bias the noise saturates

and F drops to values ≤ 1. The current noise cannot be described by the standard

Johnson-Nyquist formula, but by an extension of it which also takes into account the

transistor’s sensitivity to gate potential, the transconductance gm. From the obtained

noise values and the CNT-FET’s transconductance and gate capacitance, Chaste et al.

finally estimate a charge resolution ≤ 13·10−6 e/
√
Hz. Even smaller values were achieved

by Andresen et al. [172]; here δqrms ≃ 2.3 · 10−6 e/
√
Hz.
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Figure 5.8: a) Mapping of average Fano factor as function of bias and gate voltage
in a ballistic sample of ratio W/L = 24. From [151]. b) Shot noise as function of
bias voltage close to CNP in a diffusive sample. c) Average Fano factor as function

of gate voltage. Both b) and c) from [173]

5.2.5 Graphene

First shot noise experiments in graphene devices were performed by DiCarlo et al. [173]

for diffusive and by Danneau et al. [151] for ballistic graphene samples. The latter use a

600–850 MHz bandwidth dedicated noise measurement setup, calibrated in-situ against

the white noise of a tunnel junction. As can be seen from Fig. 5.8(a) the Fano factor

rises to F ≃ 1/3 at the Dirac point at slightly elevated bias and descends towards 0 with

increasing carrier density. Danneau et al. take this as a confirmation of the ballistic

nature of the electronic transport and the presence of evanescent waves in the vicinity

of the CNP. They find no temperature dependence of the shot noise, which rules out

inelastic electron-phonon effects. In the case of diffusive MLG samples DiCarlo et al.

confirm the predicted ns independence of F of diffusive MLG devices [67]. They use

the cross-correlation of two current channels at f = 1.5 MHz to extract SI (Fig. 5.8(b))

and subsequently F (Fig. 5.8(c)). Further studies include shot noise characterisation of

graphene nano-ribbons [174], where the Fano factor drops to very low values, and high

bias measurements of the shot noise in bilayer graphene devices [175]. Both experiments

were performed on setups similar to the one in [151].

The topic of hot electrons in graphene has also seen a boost of interest recently due to

the realisation of hot electron based detectors [176–180]. Taking advantage of the weak

coupling of carriers to APs in MLG very sensitive hot-electron bolometers and calorime-

ters can be built: For example, Yan et al. present in their work an optical bolometer

based on a graphene bilayer that already surpasses conventional Bi/Nb devices [179].

Fong et al. present experiments on MLG bolometers that could lead to a sensitive mi-

crowave photodetector [180].
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The presence of a hot electron population in graphene devices under bias as a conse-

quence of weak electron-AP coupling leads to two questions: What is the signature of

a 2D acoustic phonon interaction? Furthermore, as mentioned above, the electron-AP

is supposedly small, but can one find an experimental value for it and how will it com-

pare to theory? We have already answered the first question from a theoretical point

of view in section 5.1.2.2: In 2 dimensions one expects the cooling power to have a T 4

dependence. Also the second question could be answered theoretically for the case of

LA-phonon interaction, in which case Viljas et al. estimate the coupling constant at

ΣLA ≃ 10
√

ns/1012 mW ·m−2K−4 with ns in units of cm−2. It will be the subject of

the following parts of this chapter to verify said predictions experimentally.

5.3 Experimental techniques

We present in the following measurements of two types of samples: On the one hand a

sample obtained from CVD graphene and on the other hand two samples incorporating

a stack of exfoliated hBN and graphene. We will label them CVD1, BN1 and BN2

respectively in the following. In this section we will present first of all specific fabrica-

tion details and then turn to a description of the noise thermometry setup, comprising

the sample holder, the amplification line as well as the calibration and measurement

procedure.

5.3.1 Device fabrication

All three samples sit atop a doped Si/SiO2 substrate which is used as backgate in the

experiments. The oxide thickness is 1 µm which results in a gate capacitance per unit

area of ∼ 35 aFµm−2.

CVD graphene samples The CVD sample presented here is one of several devices

fabricated from a CVD graphene sheet grown at the Laboratoire de Photonique et Nanos-

tructures. The graphene layer was produced and transferred to the substrate as outlined

in chapter 2. Its size of ∼ 0.8 cm2 allowed us to create a large number of devices from

the same sheet with variation of channel length and width. After being transferred from

the Cu to the Si/SiO2 and an initial H/Ar annealing, the sheet is etched into rectan-

gles of 100 × 100 µm2 size, freeing the substrate around them for metallisation. After

forming the first elements of the waveguide (ground planes and drain accesses) by means

of e-beam lithography and Cr/Au evaporation (see chapter 2), the remaining graphene

rectangles are patterned into the required handle shape, defining channel length, width
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and creating large contact pads for the next step. Here, the drain and source contacts

are created, using e-beam lithography and Pd evaporation. A final H/Ar annealing

allows for a low contact resistance (see below).

sample L×W (µm2) R(kΩ) ns(10
12 cm−2) µc(cm

2V −1s−1)

BN1 2.2× 5.7 2.8–3.8 1–2 350

BN2 2.2× 2.7 1.3–2.3 0–2 3000

CVD1 1× 1 1.67 & 10 –

Table 5.2: Characteristics of the graphene samples. L is the sample length, W the
sample width and R the drain-source resistance.
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Figure 5.9: a) Micrograph of hexagonal boron nitride platelets after exfoliation for
sample BN1. b) AFM phase profile showing the outline of the chosen hBN with the
MLG on top (black shape). c) Coloured SEM micrograph of BN1. The MLG flake
is highlighted in red, the underlying hBN in green itself supported by the Si/SiO2

substrate (blue). Pd contacts are coloured yellow.



Experimental techniques 141

Graphene-on-hBN samples The graphene-on-hBN samples are fabricated in a sim-

ilar way as their CVD counterparts, with a few differences: Prior to transfer of the

graphene flake, hBN platelets are deposited on the substrate by exfoliation from a high

quality powder (St. Gobain ”Très BN”, see Fig. 5.9(a)). Among these platelets we

optically choose suitable ones of typically 10 µm diameter and ∼ 30 nm thickness. We

then form the first waveguide elements by e-beam and evaporation and manually place

an exfoliated MLG flake on top of the hBN (Fig. 5.9(b)). Here, we employ the wet

transfer technique introduced in chapter 2. The MLG is then tailored into the desired

shape and the drain-source Pd contacts are patterned (Fig. 5.9(c)). The fabrication is

finalised by an H/Ar annealing step.

5.3.2 Sample holder
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Figure 5.10: Picture and circuit diagram of sample holder A3mod. The substrate
wire-bonded in the sample holder holds tunnel junctions for setup calibration. The

circuit diagram contains a coloured SEM micrograph of sample BN1.

We use a custom made sample holder, calculated and fabricated by A. Denis at the

laboratory’s electronics workshop, shown in Fig. 5.10. It comprises DC polarisations of

gate and drain electrode with integrated capacitive shunts to ground to avoid external

high frequency contributions from the DC lines. The RF output is decoupled from the

DC by a 4.7 nF capacitance; an effective 50 Ω to ground provide a match to the RF

equipment. The samples, their underlying substrate cut to ∼ 2× 2 mm pieces, are fixed

on the gate access using Ag paste and wire-bonded to the corresponding metallisations

of the sample holder.
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5.3.3 Cryogenic setup

The sample, embedded in the sample holder, is then mounted into the cryogenic noise

setup. The total setup, shown in Fig. 5.11, consists of the sample holder, a first cryogenic

low noise amplifier (LNA), two room temperature amplifiers, an oscilloscope as well as

two voltage sources and two voltage meters. It follows the principles established by

Chaste et al. [58] and mostly incorporates the same equipment. The voltage fluctuations

in the sample’s channel are amplified by a nominal 33 dB by the first Miteq AMFK-2F-

001-020 LNA, which is at liquid helium temperature (4.2 K) together with the sample

holder. The signal then passes through a second Miteq LNA at room temperature and

finally a Agilent Sonoma-310 amplifier before being recorded by the Agilent Infinium

54854A oscilloscope. A 3 dB attenuator between each amplifier stage reduces standing

wave interferences in the cables. In total we achieve an amplification of ∼ 82 dB over

a bandwidth of ∼ 1 GHz as displayed in Fig5.13(a). See table 5.3 for more details

on the amplifiers. The two Yokogawa 7651 control the drain-source and gate voltage,

respectively; the Keithley 2000 voltmeters are used to record the bias and gate voltage.

stage model T (K) gain (dB) ∆f (GHz)

1 Miteq AMFK-

2F-001-020

4 30 0.04–2 GHz

2 Miteq AMFK-

2F-001-020

300 32 0.04–2 GHz

3 Agilent

Sonoma-310

300 32 0.04–1 GHz

Table 5.3: List of amplifiers in the cryogenic setup. The gains were established
experimentally by [58].

The amplified electronic noise of the sample is registered as time dependent voltage

signal V (t) by the oscilloscope. We use sets of 25 000 samples at a rate of 5 Giga

samples/second, which after transformation results in a resolution of 153 kHz in the

chosen bandwidth f = 0–2.5 GHz. As described earlier, we can obtain SV V by Fourier

transforming the time dependent signal. Here, we use the fast Fourier transformation

(FFT) function of the oscilloscope with a Hanning-window correction to account for the

finite sampling. It is this FFT spectrum, at given Vds and Vg, that is averaged 2000

times before being analysed.

A particular issue is the effective 50 Ω RF-shunt in front of the amplification line. In
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combination with the internal 50 Ω impedance of the first amplifier, noise power is

equally divided over both elements. The maximum attainable resolution of our setup is

therefore also greatly reduced. However, we avoid impedance mismatch and subsequent

reflection problems, as can be seen from the reflection coefficient Γ = (Rin−Z0)/(Rin+

Z0) [181], where Z0 = 50 Ω and Rin is the parallel combination of Rds and 50 Ω. It is

this match of impedances that allows us to operate at a very large bandwidth in our

experiments, a feature that will be of great advantage in the following.

5.3.3.1 Noise calibration

The setup is calibrated with the white noise of a custom-made Al-AlOx-Al tunnel junc-

tion (TJ). Their fabrication process is outlined in Appendix C. The noise of a tunnel

junction is Poissonian, i.e. the stochastic tunnelling events are uncorrelated and the

Fano factor is 1. The measured voltage power spectral density SV V is thus directly

proportional to the drain-source current:

STJV V ∝ 2eIds (5.23)

Taking advantage of this dependence, we proceed with the calibration as follows: The

SV V spectra are recorded for different Ids and are obtained by averaging the fast Fourier

transformed V (t) signal 2000 times, using a frequency range of 0–2.5 GHz, as detailed

above. At each recorded frequency, we perform a linear fit of the SV V data as a function

of Ids, as shown in Fig. 5.12. The total noise power is given by the white noise of the

tunnel junction and the additional noise of the subsequent amplification line, Smeas.V V =

STJV V + Samp. lineV V . The intersection of the linear fit to SV V (Ids) with SV V = 0 represents

thus the current −Inoise producing the equivalent voltage noise as the total cryogenic

setup. We will use this quantity, Inoise, in the analysis of our noise spectra; for sample

holder A3mod it is plotted in Fig5.13(c). From this we can also calculate the equivalent

total noise temperature Tnoise of our setup (Fig. 5.13(b)), by equating shot and Johnson-

Nyquist noise and assuming a Fano factor of 1:

Tnoise(ω) = 4.2 K + T amp. linenoise =
2eInoise(ω)Rin

4kB
(5.24)

Here, kB is the Boltzmann constant and the intervening Rin ≃ 50 Ω is the input

impedance of the amplification line. In the usable bandwidth 0.04–1 GHz of our ampli-

fication line we therefore estimate an equivalent noise temperature of T amp.linenoise ≃ 8.3 K.

Finally, we also obtain the total amplification G of the line, shown as a function of

frequency in Fig. 5.13(a). G is calculated from the slope of the SV V (IDS) linear fits,
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since the voltage power spectral density arriving at the oscilloscope is given by

SoutV V = G ·
(

2eIds

(

50 Ω

2

)2

+ Samp. lineV V

)

(5.25)

The total gain is G ∼ 82 dB in the frequency range 0.04–1 GHz.
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Figure 5.11: Schematics of the cryogenic setup.

blank space



146 Chapter 5: Electronic noise and phonon cooling in graphene

'

&

$

%

Noise calibration using Al/AlOx/Al tunnel junction
blank

S V
V (

μV
2 /H

z)

0

5

Ids (μA)
−60 −40 −20 0

0.3 GHz SVV  linear fit
0.6 GHz SVV  linear fit
0.9 GHz SVV  linear fit

0.3 GHz SVV  linear fit
0.6 GHz SVV  linear fit
0.9 GHz SVV  linear fit

S V
V (

μV
2 /H

z)

−20

0

20

40

60

80

100

Ids (μA)
0 200 400

0.3 GHz SVV  linear fit
0.6 GHz SVV  linear fit
0.9 GHz SVV  linear fit

Figure 5.12: Calibration procedure: Voltage power spectral density as function of
drain source current at three different frequencies in the calibration tunnel junction
and corresponding linear fits. Left: Full Ids range. Right: Zoom of region where
the linear fits attain SV V = 0. The corresponding value of Ids = INoise (see Fig.

5.13(c)).

Figure 5.13: Calibtration: a) Overall setup gain as function of frequency. b)
Equivalent noise temperature of cryogenic setup. c) Equivalent noise current.



Experimental techniques 147

5.3.4 Conversion from voltage to current noise spectral density

In order to extract information and draw conclusions regarding e.g. the Fano factor,

we need to convert the measured voltage noise spectral density SV V to current noise

spectral density SI . It is here that the calibration intervenes:

SI(ω) =

(

SV V (ω , Ids)

SV V (ω , Ids = 0)
− 1

)

· 2eInoise(ω) (5.26)

in units of A2Hz−1. It can be derived from the fact that the total output voltage noise

arriving at the oscilloscope is SoutV V = SsampleV V +Samp.lineV V and the relation SV V = SIR
−2
input

connecting voltage and current noise. Rinput is given by the parallel combination of the

sample resistance Rds, the effective 50 Ω to ground in the sample holder and the internal

50 Ω of the first amplifier. In general Rds ≫ 50 Ω, so that typically Rinput ≃ 25 Ω. Using

the two equations, we then arrive at

SsampleI =
(

SoutV V − Samp.lineV V

)

R2
input =

(

SoutV V

Samp.lineV V

− 1

)

Samp.lineI = (5.27)

=

(

SoutV V

Samp.lineV V

− 1

)

2eInoise

For convenience of analysis and to account for changes in the spectrum due to the

substitution of the TJ with the sample, we replace Samp.lineV V (ω) by SsampleV V (ω , Ids = 0).

A difference between the two is an indicator of problems within the setup, as e.g. badly

connected cables. The TJs sit atop a highly resistive Si/SiO2 substrate in contrast to the

samples, where we use doped silicon substrates. An effective screening due to currents

in the doped silicon in the area beneath the sample could therefore arise and not be

taken into account by the calibration. A direct comparison of through line experiments

(i.e. S-parameter measurements of coplanar waveguides with connected drain and gate

pads, Fig. 5.14) on doped and resistive substrates shows that such an effect is of minor

importance: the doped silicon layer induces a capacitive decrease of the transmitted

signal of . 10% in the frequency range of interest f = 0–1 GHz. Note that here both

electrodes contribute to the screening, in contrast to our samples, where one electrode

is connected to ground. Therefore, we only have to take half of the effect into account,

i.e. the calibration process and the change of substrate induces an uncertainty of . 5%.
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Figure 5.14: Comparison of through line tests on doped and resistive substrate in
the frequency range of interest for our noise measurements

5.3.5 DC characterisation

In our noise thermometry measurements we record the DC characteristics of the samples

in much the same way as described in the previous chapters on RF-GFETs and GFECs:

We applied a voltage Vyoko to the ensemble of bias resistance Rbias, sample holder resis-

tance Rsh = 100 Ω and the sample (Rds). The voltage at the sample holder drain-source

input is labelled Vbias and is measured with a Keithley 2000 voltmeter. Knowing the

exact value of Rbias = 4735 Ω, we extract the drain-source current and resistance from

this measurement:

Rds =
Vbias

Vyoko − Vbias
Rbias −Rsh Ids =

Vyoko − Vbias
Rbias

(5.28)

These DC measurements will allow is in the following to extract the samples’ I-V curves

and draw first conclusions on the presence of optical phonons.

The backgate is controlled by the second Yokogawa source which applies Vg on the

ensemble of gate resistance 4.6 MΩ and the sample’s gate. The voltage usually entirely

drops across the gate resistance; it is verified with the second voltmeter to prevent oxide

breakdown. This procedure is especially important when using thin oxides. In our case

of tox. = 1 µm no real danger of breakdown prevails in the accessible gate range of

Vg = ±32 V. As detailed in the previous chapters, the sweeping of gate voltage allows

us also to deduce the carrier density ns ≃ e−1CgVg, where Cg is the gate capacitance.

Finally, we can extract mobility values from the dependence of conductivity on gate

voltage

µc =
1

Cg

∂σ

∂Vg
(5.29)

This remains valid as long as there is no important contact resistance contribution.

To ensure this being the case for our samples, A. Inhofer [103] performed a statistical

analysis of the resistance of CVD-grown samples with various channel lengths. The

results, presented earlier in chapter 3 and also in Fig. 5.15, show that interface resistance

can be neglected compared to typical sample resistance (see table 5.2).
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Figure 5.15: Estimation of contact resistance from Rchannel(L) measurements in
back-gated CVD samples of channel width W = 1 µm [103].

5.3.6 Experimental investigation of electron-acoustic phonon cooling

After this introduction to formulas, mechanisms and the cryogenic setup, let us briefly

summarise how we intend to extract information from our noise thermometry exper-

iments and what signatures we are looking for in terms of electron-acoustic phonon

coupling in graphene. As depicted schematically in Fig. 5.16, the applied bias V ≡ Vds

supplies a power P = V 2/R to the electrons in the MLG channel (grey). The electrons

will therefore acquire a temperature Te corresponding to their energy, which will in turn

be responsible for the current noise SI . It is thus from the noise spectral density that

we can extract the electron temperature and try to confirm the P ∝ ΣT 4 dependence of

the cooling power due to electron-acoustic phonon interaction. For a direct coupling of

electrons in the channel with substrate phonons, we rather expect the cooling power to

have a T 5 dependence. The scenario we envision is sketched in Fig. 5.17: Electrons will

interact with the 2D acoustic phonons of the MLG at a certain strength. The phonons

in turn are coupled to the substrate, which is at liquid helium temperature T0 = 4.2 K.

The theoretical prediction by Viljas et al. [24] for the e-AP interaction and [182] for the

coupling of APs to the substrate tell us that Σe−AP ≪ ΣK . The index K denotes the

coupling at the graphene-SiO2 thermal boundary, also-called Kapitza boundary. We will

therefore expect hot electrons (Te ≫ T0) and a cold phonon population (Tphonon = T0)

in addition to the T 4 law. According to calculations by Persson et al. [183] contributions

that arise due coupling of the MLG to the surrounding gas or to the underlying (Re−K

in Fig. 5.17) substrate can be neglected.



150 Chapter 5: Electronic noise and phonon cooling in graphene

'

&

$

%

Figure 5.16: Principle of electron-acoustic phonon cooling experiment.

electrons
Te

I I

phonons
Tphonon

Re-apP

RKP

substrate
T0

Re-K

P

Figure 5.17: Simple model of heat transfer from electrons to phonons to substrate.
Analog [160].

5.4 Results and discussion

Let us now turn to the results obtained for three different samples using the cryogenic

setup and techniques described above. We will first of all present and analyse the DC

characteristics and current noise spectra of the samples BN1, BN2 and CVD1. Then, we

will show how the signatures of the 2D electron-acoustic phonon cooling emerge from the
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electron temperature curves and analyse our findings with respect to the electron-AP

cooling constant Σ [26]. As a final part to this section on experimental results, we will

discuss additionally the Fano factor in our samples, as well as new effects close to the

charge neutrality point.

5.4.1 DC characteristics'

&

$

%

Figure 5.18: (a) Typical excess noise Sm
I (V ) spectra in sample BN1; it is a white

noise with a superimposed 1/f contribution and fitted by Sm
I = SI + C/f laws

(solid lines). (b) and (c) show the I(V ) and SI(V ) data for different gate voltages
in sample BN1 from which we deduce Te. The circles point out the I(V ) and SI(V )

values of the spectra shown in (a).

blank space
blank space

Figure 5.19: a) I–V characteristics of sample BN2 for several gate voltages. b)
DC drain-source resistance as function of gate voltage in sample BN2 for a range of

bias voltages.
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As pointed out in the beginning of this chapter, optical phonons (OPs) cause a saturation

of the drain-source current in MLG devices. However, this effect starts from a certain

threshold voltage as the OP energy is ∼ 200 meV (see also Fig. 1.14). In order to

study the acoustic phonon effect only, we deliberately restrict our measurements to a

bias range where OPs can be neglected. The linear I–V characteristics of our samples

are indicators of the required absence of OP scattering. In Fig. 5.18(c) we display the

I–V curves of sample BN1 for three gate voltages, in Fig. 5.19(a) for sample BN2. Their

linearity is a first sign for a cooling mechanism other than by OPs. In Fig. 5.19(b) we

plot the drain-source resistance of sample BN2 as a function of gate voltage Vg. The

charge neutrality point is at Vg ≃ 12 V

5.4.2 Current noise spectra
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Figure 5.20: Hooge parameter C = αHI
2/N in sample BN2 from C/f +SI fits as

function of drain-source current. Solid lines are quadratic fits to the data.

Employing the noise measurement techniques described previously and after conversion

from voltage to current noise spectral density, we obtain typical current noise spectra as

shown in Fig. 5.18(a). Here, SI is displayed for three different bias voltages as a function

of frequency. At low bias (blue spectrum) the spectrum remains flat without prominent

variation, as e.g. 1/f noise. As introduced earlier, flicker noise is proportional to I2 and

in addition to the frequency independent shot noise. Therefore, a clear 1/f contribution

to the spectra arises at higher bias (orange and purple spectra). It is here that the large

bandwidth of our setup comes in handy: Despite a low resolution, especially at low bias,

we are now able to precisely and quantitatively separate the white shot noise from the
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flicker noise contribution by fitting the spectra with

SmI =
C

f
+ SI (5.30)

where additionally C = αI2/N in accordance with Hooge’s relationship (see Fig. 5.20).

Here, N is the number of carriers. The fits appear as solid lines in Fig. 5.18(a). It is

especially important to perform these fits for small samples size, since C ∝ 1/N and

therefore in particular for sample CVD1, and at high bias, since C ∝ I2.

From the 1/f component of the current noise spectra, we extract a Hooge constant αH

of the order of 2 · 10−4 at ns ≃ 1 · 1012 and 8 · 10−6 at ns ≃ 8 · 1010, close to the CNP 1.

This is in accordance with the reported αH ∝ ns dependence, mentioned earlier [157].

The frequency independent shot noise part SI of the spectra is displayed as a function of

drain-source voltage in Fig. 5.18(c) for three gate voltages. It is again a typical example

for all measured samples and gate voltages. Schottky’s formula SI = 2eIF̃ , where F̃

denotes a pseudo Fano factor, predicts a linear increase of SI in an undisturbed system.

However SI(V ) in Fig. 5.18(c) is clearly sub-linear, i.e. a noise reduction mechanism is

present. The noise level also depends on gate voltage, thus carrier concentration, with

larger noise at higher ns. As pointed out above, optical phonons are out of reach in the

investigated bias range and acoustic phonon cooling remains a valid candidate for the

present effect.

5.4.3 Electron temperature Te

From the measured shot noise (Fig. 5.18(c)) we can now extract the average electron

temperature as a function of bias

Te(V ) =
SI(V )R(V )

4kB
(5.31)

which we display in Fig. 5.21 for BN1 and in 5.22 for BN2 for several gate voltages. In

both cases Te reaches values of several hundred K within the investigated bias range of

linear I–V 2. This is well above bath temperature (4.2 K) and indicates a hot electron

population; a signature of acoustic-phonon cooling we were looking for. Fig. 5.21 also

indicates the corresponding energy, which remains well below the OP activation energy

of ∼ 200 meV and suggests again the absence of OP cooling.

The main signature we are expecting for a 2D AP-cooling mechanism is, as described

earlier, a T 4
e dependence of the cooling power. In the absence of heat conduction to the

1Note that the estimate is less accurate at neutrality due to underestimation of ns and therefore also
of α ∝ Cns.

2Here R signifies strictly speaking the differential resistance which may differ from the standard
Ohmic resistance in sample BN2 where I-V curves become slightly non-linear (see Fig. 5.19).
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leads, i.e. neglecting the left-hand side in Eq. (5.13), one expects a T ∝
√
V dependence

of right-hand side temperature term of (5.13). If the cooling were to involve 3D-phonons,

the same reasoning leads to a T ∝ V 2/5 dependence. As can be seen from Figs. 5.21

and 5.22, we obtain a very good agreement of data with the T ∝
√
V expectation for a

2D acoustic-phonon effect, up to a small region around zero bias, where heat conduction

to the contacts is of greater importance and we rather find T ∝ V . A more detailed

discussion of this effect will be given later on. 3D-phonons can be disregarded in the

cooling of electrons in our graphene samples, as is visible from the T ∝ V 2/5 lines in

Figs. 5.21 and 5.22.

We have thus found two of the signatures mentioned previously for 2D acoustic-phonon

cooling of electrons in graphene: The hot electrons and the T 4
e dependence of cooling

power [26].

5.4.4 Raman verification of cold phonon hypothesis
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Figure 5.23: (a): Raman shift of the 2D-band of a graphene sample similar
to CVD1, as function of the cryostat temperature T0. The slope is (−0.051 ±
0.008) cm−1K−1. Excitation laser at 532 nm , P = 25 kWcm−2. No laser power de-
pendence was observed in this range. (b): Raman shift of the 2D band as function of
the bias voltage for T0 = 100 K (blue symbols) and T0 = 300 K (red symbols). The
slopes are (−0.3± 0.3) cm−1V−1 and (−0.9± 0.3) cm−1V−1 respectively. The bias-
induced phonon heating is therefore below 30 K/V. Similar results and conclusions

were drawn from measurements on the G band (not shown).

Another signature we pointed out in section 5.3.6 was a cold phonon population. We

have already used this assumption in the solution of the heat equation and we will now
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present quantitative reasoning as well as experimental data to support it.

The sought after ΣT 4
e law for the electron-AP cooling is similar to the black body

radiation of phonons to the helium bath or Si/SiO2 substrate (both at T0 = 4.2 K). In

the black body radiation case one also expects a ΣKT
4
phonon law, where ΣK is the coupling

constant related to the thermal boundary resistance. Such a mechanism would occur in

a hot phonon regime, i.e. Tphonon ≃ Te ≫ T0. The corresponding coupling constant is

however several orders of magnitude larger than Σ for AP cooling [182, 184]. Further, as

both mechanisms appear in series and with the same power law in the electronic cooling,

one obtains an effective coupling constant

Σ̃ =
(

Σ−1
K +Σ−1

)−1 ≃ Σ (5.32)

This justifies the cold phonon assumption made earlier from a order of magnitude point

of view.

In order to confirm the cold phonon hypothesis also experimentally, we have performed

Raman spectroscopy experiments on sample BN1 in collaboration with F. Vialla, D.

Brunel and C. Voisin from the LPA ”Optique cohérente et non-linéaire” group. The

down-shift of the Raman G and 2D peak positions is recorded as a function of sample

temperature or bias voltage, respectively, using an excitation laser of wavelength 532 nm

and power 25 kWcm−2, as well as a nitrogen cooled CCD camera Princeton Instruments

Spec-10:100BR. The bias is supplied in the same way as in the noise measurements. The

experimental procedure follows the description by Calizo et al. [185]: First a calibration

of the signal is performed at V = 0 by measuring the Raman shift for different sample

temperatures. Then, we repeat the experiment but keep the substrate temperature at

a constant level T0. Instead of creating a thermal phonon population, we now apply a

bias to the sample, which in turn creates hot electrons interacting with the graphene

phonons. We can thus extract the phonon temperature that is equivalent to the same

change in Raman signal as the one created by the bias voltage by comparing both exper-

iments. Indeed, one can extract information about acoustic phonons from this kind of

optical measurement as optical phonons decay into acoustic phonons with anharmonic

decay rates [50].

In our calibration experiment the position of the Raman 2D-peak shifts 0.051±0.008 cm−1K−1

downwards upon increasing the sample temperature from 100 to 380 K (Fig. 5.23(a)).

This is in good agreement with previous measurements by e.g. [185]. Secondly, we have

kept the sample at a fixed temperature of T0 = 100 (blue symbols) and 300 K (red sym-

bols) and varied the bias voltage. As one can see from Fig. 5.23(b), a similar decrease

of Raman shift occurs, which is attributed to an increase of AP bath temperature. We

find thus slopes of −0.3 ± 0.3 cm−1K−1 at T0 = 100 K and −0.9 ± 0.3 cm−1K−1 at

T0 = 300 K, from which we deduce that the bias induced phonon heating remains below
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30 K/V. Measurements of the Raman G-peak are similar and not shown here.

To put it in a nutshell, we have found yet a third key element signalling the presence of

2D AP cooling: the cold phonon population. It also validates leaving out Tphonon in the

solution of the heat equation and strengthens the T 4
e evidence we found in the previous

paragraph.

5.4.5 Acoustic phonon coupling constant Σ

Besides the acoustic-phonon cooling discussed above, electron heat conduction to the

contacts is the second cooling mechanism in our devices, mainly contributing at low bias.

The balance between these two mechanisms and the incoming Joule power per unit area

P = V 2/(LWR) determines the average electron temperature Te in our samples. Above,

we have neglected the heat conduction contribution, i.e. the left-hand side term of Eq.

(5.13). We will now present data analysis using the complete heat equation. To this end

we plot in Figs. 5.24 and 5.25 temperature data in the form T 4
e /P , in order to enhance

the carrier density dependence of the electron-AP coupling constant Σ. In this particular

representation the high bias plateaus are a first estimate of Σ, since there T 4
e /P ≃ 1/Σ.

They directly reflect the Te ∝
√
V dependence found earlier. A T 5/P representation of

the data does not produce a saturation behaviour (see appendix F). The dips towards

lower bias are caused by the here dominating electron heat diffusion to the contacts,

reflecting the low bias Te ∝ V dependence in Figs. 5.21 and 5.22. As one can see from

Figs. 5.21(a) and (b), the electron heat conduction is more prominent in sample CVD1.

This can easily understood from Eq. (5.13): The phonon cooling will be of greater

importance the larger the sample area. Due CVD1’s small size, phonon cooling remains

comparatively weaker than in BN1 and BN2, but also exhibits a smoother crossover

between the two regimes.

Using the solution of (5.13), we can now fit the temperature data under consideration

of both AP cooling and heat conduction (solid lines in Figs. 5.21(a), (b) and 5.22).

The only free parameter is the phonon coupling constant Σ and data is well fitted over

the whole bias range. The fact that theory, with one single free parameter, accounts

for both the plateau region and the dip is a strong confirmation of the model and the

underlying 2D acoustic phonon mechanism. At high bias we do however also observe

small negative deviations of data from the theoretical prediction; they may be caused by

the onset of an additional cooling mechanism. It is possible that electrons couple here

to optical phonons or phonons from the Si/SiO2 substrate despite their still low average

energy. Unfortunately, our experimental resolution at high bias is not good enough to

give an conclusive answer to this question and further studies will be necessary to shed

light on this particular subject.
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Error bars in Figs. 5.21(a) and (b) are calculated from the deviation of the C/f+SI fits

with respect to the SI -spectra presented earlier. We calculate the deviations according

to

σSI
=

√

√

√

√

1

Nf

Nf
∑

i=0

(

SmI (V, fi)−
[

C(V )

fi
+ SI(V )

])2

(5.33)

where i runs along the number of frequencies Nf recorded in the measurements and

fi denotes the precise frequency at each step. We then transfer this error in spectral

density to an error in temperature by equating

σSI
(f)

C(V )/f + SI(f)
≡ δTe

Te
(5.34)

Due to the T 4/P representation, a factor 4 intervenes additionally. Finally, we decrease

the total error by a factor
√
2, as there are two erroneous quantities at play here. It is

important to note that high bias and small sample size introduce a more pronounced

1/f contribution. This is why we see errorbars growing stronger in the CVD1 sample.

Samples BN1 and BN2 are much larger and 1/f subtraction is less important here.

From the fits to the temperature data and the simultaneously recorded DC character-

istics, we can now extract quantitative values of the acoustic-phonon coupling constant

Σ as a function of carrier density. For all three samples this is plotted in Fig. 5.26.

Note that we were not able to sweep CVD1’s carrier density; the value of Σ(CV D1)

is thus merely an indicator in the plot. Hall-bar measurements on similar CVD sheets

by Madouri et al. at the LPN allows us to estimate CVD1’s carrier density to a few

1013 cm−2. For samples BN1 and BN2 we use (3.2) to obtain ns.

According to theory (see 5.1.2), longitudinal acoustic phonons (LA) are coupled to elec-

trons via the deformation potential D. D ranges typically from 10 to 30 eV in experi-

mental studies, but a recent theoretical work by Kaasbjerg et al. [142] suggests an even

lower value of 6.8 eV. The cooling power of the 2D electron-LA interaction is predicted

to follow a P ∝ ΣLAT
4 law, with ΣLA ∝ D2√ns in the non-degenerate metallic regime.

In the high temperature regime and close to the CNP deviations from the T 4 dependence

are expected, which we will discuss in greater detail in the following. The ΣLA ∝ √
ns

expectation is fulfilled for carrier densities not too close to the Dirac point, as can be

seen from Fig. 5.27. Here, we plot the extracted AP coupling constant as a function of
√
ns and find reasonable qualitative agreement with the theoretical prediction down to

carrier concentrations ns ≃ 2.5 · 1011 cm−2.

As calculated earlier, we quantitatively estimate ΣLA ≃ 10
√
ñs mW ·m−2K−4 for a

deformation potential D = 10 eV. Despite the qualitative confirmation of the T 4 law

and the Σ ∝ √
ns dependence, we find a smaller coupling constant in our samples

than predicted by theory: At a carrier density of 1012 cm−2, sample BN1 exhibits
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Σ = 0.5 mW ·m−2K−4 and BN2 Σ = 2 mW ·m−2K−4. Simple experimental uncer-

tainties are not large enough to explain this discrepancy. Our experimental data rather

suggests an effect of lattice disorder on the electron-phonon coupling: The carrier mo-

bility can generally be used as a measure of crystal quality, since disorder, i.e. defects

of any kind in the crystalline structure, introduces scattering centres and leads to a

decrease of µc. Generally, electronic and phononic disorder are not necessarily the same,

however due to the 2D nature of graphene, we can use the electronic disorder as a mea-

sure of lattice disorder. Following this reasoning, it is clear from Fig. 5.26 that the

lattice disorder, expressed by µc, plays an important role in the electron-AP coupling:

Increasing crystal quality, i.e. improving carrier mobility, goes along with an increase of

Σ in direction of the theoretical value. This disorder effect, not taken into account in

theory [24] yet, could be a manifestation of e.g. reduced phonon lifetime. Indeed, lattice

disorder is known to affect phonon heat conduction due to phonon-impurity scattering

[182]. A second possibility is a change in phonon DOS: In graphene the phonon DOS is

similar to the electron DOS, i.e. linear and vanishing at zero energy. Localised phonon

states introduced by disorder in the lattice can lead to the opening of a gap at low

energy, as e.g. discussed in [186] for the case of graphene ripples. According to [158]

the phonon cooling is proportional to the phonon DOS at the electronic temperature

Te. A reduces coupling constant Σ could thus be related to a depletion or the opening

of a gap in the phonon DOS due to disorder in the lattice. A more thorough theoretical

investigation is needed to explain the found mismatch between experiments and theory.
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Figure 5.24: (a) and (b): Electron temperature of sample CVD1 (a) and BN1 (b)
plotted as T 4

e (V )/P , where P is the Joule heating per unit area, P = V 2/RLW .
The plateau at high bias is at a value T 4

e /P ≃ 1/Σ. The dip at low V is due to
electron heat diffusion to the leads. Dashed lines are one-parameter fits with Σ as

free parameter.
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Figure 5.25: a) Electron temperature of sample BN2 plotted as T 4
e (V )/P and

their one-parameter fits. b) Sample BN2’s drain-source resistance as function of Vg
to indicate metallic regime (green circle) and CNP (pink circle).
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Figure 5.26: Σ as function of carrier density ns for samples BN1 and BN2. The
value of CVD1 is displayed as an indicator as its carrier concentration was ns ≃

1013 cm−2.
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ns for sample BN2. The red line

indicates the predicted ΣLA ∝ D2
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ns behaviour.
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5.4.6 Fano factor analysis
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Figure 5.28: Fano factor as a function of gate voltage Vg and drain-source voltage
Vds (previously called V ) in sample BN2 at T = 4.2 K. The plot consists of three

measurements, hence the fringes at Vg = ±35 V.
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Figure 5.29: Fano factor as function of bias voltage of samples CVD1, BN1 and
BN2 at high carrier concentrations. The inset shows a zoom of data around zero bias.
The dashed lines are obtained from the solution of the heat equation and indicate
the theoretical expectation from the electron-electron interaction regime onwards.
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Let us now turn to the analysis of noise data in a mesoscopic physics spirit. The

quantity of interest is here the Fano factor, giving the ratio between shot noise SI and

the Poissonian limit 2eI. As pointed out before, one expects F to be independent of

ns in diffusive graphene samples with values F . 1/3 at low bias [25]. In Fig. 5.28

we present a measurement of the Fano factor in sample BN2 as a function of gate and

drain-source voltage. Despite the carrier density dependence of the previously analysed

quantities like e.g. the coupling constant Σ, the Fano factor F stays constant over the

whole gate range. This is in agreement with theoretical predictions by Lewenkopf et al.

[67] for the case of strong disorder. We observe F ≃ 0.3 in BN2 close to V = 0 and a

power law decrease of F with increasing bias. Note that Fig. 5.28 is composed of three

successive experiments, hence the slight mismatches at Vg±35 V. We do not observe the

dip F → 0 towards zero bias as reported by [25], which is in part due to the insufficient

resolution of our setup at low bias. A second reason is the sample’s size: As can be

seen from Fig. 5.29, both hBN based samples display no dip, whereas CVD1 transits

from the power law to a decreasing F towards V = 0. In the analysis of the average

electron temperature with respect to the heat equation we already pointed out that

electron heat conduction to the leads is of greater importance in CVD1, due to its small

size. In the same way, we explain the presence of the dip and maximum in CVD1’s Fano

factor by the stronger influence of electron-electron interactions as compared to BN1

and BN2, where electron-phonon cooling dominates the noise behaviour. Nevertheless

phonon contributions are strong enough even in CVD1 to prevent F from reaching
√
3/4

expected for a gas of interacting electrons. Both hBN curves follow the theoretical line

with good agreement. It is obtained from the solution of the heat equation and the

Johnson-Nyquist relation, thus only predicting inelastic behaviour. F = 1/3 for the

case of elastic scattering cannot be treated in the framework of the heat equation. For

all three samples, we find F ∝ 1/
√
V for voltages above a few tens of mV, below which

the aforementioned elastic regime begins. We attribute this F ∝ 1/
√
V dependence to

the inelastic scattering of carriers with acoustic phonons, as this effect is dominating

the noise behaviour in our samples. To our knowledge, this has not been studied yet.

In samples of sufficient quality and above the threshold of optical phonon activation

energy, we predict a further reduction of the Fano factor due to electron-OP interaction

in addition to the near-omnipresent electron-AP scattering. Note in particular that we

display unscaled data in Fig. 5.29. A direct comparison requires a voltage scaling by

VΣ (see Eq. (5.13)). VΣ differs only slightly for the curves of BN1 and BN2 shown in

Fig. 5.29 (V BN1
Σ ≃ 3.5 mV and V BN2

Σ ≃ 2.3 mV), but is about a factor 5 larger in

sample CVD1 (V CV D1
Σ ≃ 15 mV). Hence the possibility to observe the regime below the

phonon cooling with greater precision in CVD1. As visible from the inset of Fig. 5.29,

F tends to its limit value 1/3 at vanishing bias in all three samples.
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5.4.7 Deviations from the T 4 law at low carrier densities'
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Figure 5.30: a) Average electron temperature in the representation T 4
e /P for

several gate voltages in sample BN2. The dashed black line is a guide for the eye,
indicating the expected behaviour for a Q ∝ Te cooling at low carrier density, as
predicted by [24]. b) Average electron temperature plotted as T 3

e /P as function of
drain-source voltage V for several gate voltages in sample BN2. c) Corresponding
I–V characteristics. d) Coupling constant A as function of carrier density extracted

from the plateau values of (b).

As a last part of this chapter, we would like to present the currently ongoing investigation

into the electron-AP coupling at low carrier densities. Previously, we have found that in

the metallic regime, where ns is very large, the cooling power has a T 4 dependence. At

low carrier densities, i.e. towards the CNP and therefore kBTe ≪ |µ|, theory predicts a

transition to Q ∝ T [24, 138] for the electron cooling by APs in graphene without lattice

disorder. We do however not observe such a cooling dependence in our disordered

samples.

Electron-acoustic phonon coupling beyond TBG A recently presented theory [27]

by Song et al. discusses exactly the effects of disorder on the electron-AP cooling. They

study disorder assisted and two-phonon scattering of carriers in graphene. We will not

go into detail on this particular subject, but shall merely introduce the key points of
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different gate voltages in sample BN2. Upper panel: High carrier density; data
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Figure 5.32: a) Kinematics of supercollisions and normal collisions at T > TBG.
Phonon momenta are constrained by the Fermi surface for normal collisions (white
arrows), and totally unconstrained for supercollisions (qph ), with the recoil mo-
mentum (qrecoil) transferred to the lattice via disorder scattering or carried away
by a second phonon. b) Feynman diagrams for disorder assisted electron-phonon

scattering processes. Adapted from [27].
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their description: Disorder assisted and two-phonon effects do not require the same mo-

mentum conservation as the standard electron-phonon interactions and therefore do not

limit the amount of energy carried away by the interaction. Fig. 5.32(a) visualises the

disorder-assisted effect opening the full Fermi-surface to the cooling. Such collisions are

estimated to occur less frequently than the electron-one-phonon kind, but drastically

change the cooling power to a Q ∝ T 3
e −T 3

phonon dependence. The supercollision scatter-

ing is not restricted to graphene, but a general effect also known e.g. in semiconductor

physics. There however the low threshold of OPs obscures its trace. The presence of

supercollisions along with the T 3 behaviour in MLG can either be explained by a short

range potential accounting for mass disorder or by ripples in the graphene sheet. Both

ways present accessible, but competing routes for the cooling. All aforementioned de-

pendencies are under the assumption of Tphonon ≪ Te.

Deviations from the Q ∝ T 4
e law at low carrier concentration should be visible at higher

bias, where phonon cooling dominates, similar to the electron-AP cooling in the metallic

regime. Effectively, no plateaus are observed any more in the T 4
e /P representation when

Vg approaches the CNP (Vg = 12V ). Temperature data rises further above, but stays

still below the aforementioned Q ∝ Te prediction. In order to verify the Q ∝ T 3
e hy-

pothesis, we plot the average electron temperature of sample BN2 in the representation

T 3
e /P , presented in Fig. 5.30(b). The accompanying I–V characteristics (Fig. 5.30(c))

give a rough estimate of the bias region dominated by electron-AP interactions: Depend-

ing on gate voltage, an onset of saturation behaviour can be seen, especially towards

high carrier concentrations. We remind that the CNP is in the vicinity of Vg = 12 V in

this sample. For each carrier density we restrict the analysis to the linear region of Fig.

5.30(b).

The plateaus towards higher bias in the representation T 3
e /P suggest a cooling power

dependence Q ∝ T 3
e at low carrier densities. A comparison, how the cooling power

evolves from T 4
e in the metallic regime to T 3

e at low ns is shown in Fig. 5.31 for sample

BN2. The T 3
e dependence could be a signature of disorder-assisted or two-phonon pro-

cesses, as predicted by [27]. In general the cooling due to supercollisions takes the form

Q ∝ LWAT 3
e , where the prefactor A contains the coupling constant λ ∝ D2. A’s exact

make-up depends however on the type of disorder present in the sample. For a simple

impurity scattering scenario Song et al. find

A =
32ζ(3)

π2
1

kF l

ν2s
ν2f

D2

ρgrνs

ǫ2F
~2ν2F

k3B
~3ν3F

(5.35)

where l is the mean free path and all other parameters as introduced earlier. Evalu-

ating (5.35) we obtain A ≃ 2.3 WK−3m−2 · ns/(kF l). From Fig. 5.30(b) we estimate

A ≃ 0.45 WK−3m−2, which is of the right order of magnitude depending on the ratio

ns/(kF l) (see Fig. 5.30(d)). In general kF l ∼ 10 [187]. Besides the precise value of λ,
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the plateaus in Fig. 5.30(b) suggests that supercollisions are becoming the dominant

cooling pathway with decreasing ns, effectively replacing the electron-one-AP interac-

tion studied previously in this chapter. More evidence for the supercollision theory has

recently been presented by Graham et al. [187], posted to arXiv towards the end of

the manuscript preparation, who study the energy relaxation rate by means of pho-

tocurrent measurements. At the LPA further investigation into this subject is currently

undertaken by S.-H. Jhang.

5.5 Synopsis and conclusion

In this chapter we have investigated the energy relaxation of hot carriers in a MLG sheet

sitting on different substrates by means of noise thermometry. It effectively allowed us

to study the elusive effect of electron-acoustic phonon cooling even in low mobility

samples in the metallic regime. In the samples the carriers are heated by supplying

electrical power to the device. Three pathways to loosing the acquired energy exist:

First, carriers can conduct heat, i.e. their energy, to the contacts. This regime is

well described by the Wiedemann-Franz law and goes approximately along with the

standard diffusive noise suppression of 1/3. With increasing bias, thus supplied power,

electron-acoustic phonon scattering becomes the dominant source of cooling and noise

levels drop further. The AP interaction has a ΣT 4
e signature, where Σ is the carrier

density dependent AP coupling constant. The third cooling mechanism only arises at

high electrical fields: Carriers interact strongly with optical phonons once they have

reached the necessary energy. This third mechanism was absent in the experiments

presented in this chapter, either due to low sample mobility or by restriction of the

applied bias voltage. Our experiments confirm the T 4
e signature, as well as the presence

of a hot electron population, which points to a weak electron-AP coupling. The latter

is estimated theoretically at ΣLA ≃ 10 mW ·m−2K−4 at a typical carrier concentration

of ns = 1012 cm−2 and for a deformation potential of D = 10 ev. Our experimental

values differ by nearly one order of magnitude, but also suggest an effect of lattice

disorder on said coupling: Taking the carrier mobility as indicator of the 2D crystals

quality, i.e. reference of the intrinsic disorder, Σ increases towards the theoretical value

with increasing mobility, thus decreasing disorder. Further theoretical and experimental

investigation into this particular topic are needed to clarify the role of lattice disorder

on electron cooling in graphene.

The aforementioned temperature signature of the electron cooling changes when the

system approaches the charge neutrality point. Here, at low ns, we find Q ∝ T 3
e .

Several theoretical predictions exist for this regime; only one coinciding with our findings
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however: so-called supercollision effects allow for a greater energy transfer by disorder-

assisted or two-phonon scattering processes. Said collisions occur less frequently but

dominate the cooling. We see strong evidence for the supercollision theory in our noise

measurements: In the representation T 3
e /P plateaus arise at high bias in the vicinity of

the CNP.

More data is still needed to pinpoint the value of the deformation potential D in our

devices. We have found evidence of a
√
ns dependence of the coupling constant Σ, yet

data remains insufficient to extract a precise value of D. Furthermore, an analytical

expression of Σ only exists for LA phonons, but TA phonons may contribute to cooling

as well. We hope that our work is a motivation for further theoretical investigation of

electron-phonon interactions in graphene and the role of disorder.



Chapter 6

Outlook: An RF-GFET based

sub-nanosecond single charge

detector

The major topic when talking about future graphene applications is of course its use in

field-effect transistors and the building of logical integrated circuits. As pointed out in

the course of this work however, this requires a sufficient bandgap in order to create dis-

tinct ON and OFF states, which is still missing in graphene devices. Ways to overcome

this obstacle have recently been presented, as e.g. the realisation of a vertical graphene

heterostructure by Britnell et al. [188], where a thin hBN or MoS2 layer creates a tunnel

barrier between two MLG sheets. Furthermore, Yang et al. proposed a combination of

graphene and Si to exploit properties of both materials and create a Schottky-barrier

triode [189]. Further efforts are made in the field of RF low-noise amplification, where

recent results are promising for future applications [65].

In this work, we have pursued a different goal: Characterising the properties of graphene

field-effect transistors with respect to their use as ultra-fast single charge detectors. This

was motivated by the work of Chaste et al. on carbon nanotube charge detectors, here

at the Laboratoire Pierre Aigrain. Using CNT-FETs ultimate charge resolutions of

δqrms = 13 µe/
√
Hz at 0.8GHz bandwidth [64] or, in an even narrower window of

0.85MHz, of δqrms = 2.3 µe/
√
Hz [172] can be achieved. Similar sensitivities are found

in e.g. InAs/InP nanowires [190], where δqrms = 2.5 µe/
√
Hz in the MHz range. Fur-

thermore sensitivities of δqrms ≤ 10 µe/
√
Hz can be achieved in electro-statically defined

Si quantum dots [191] and δqrms ≤ 1 µe/
√
Hz in Al-SETs [60].

Such charge detectors can then be used e.g. to detect the time-resolved charging events

of a quantum dot (QD). Gustavsson et al. [62, 192] used a GaAs heterostructure quan-

tum point contact (QPC) coupled to a QD to count the electrons passing through the

169
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QD. This allowed them to investigate the so-called full counting statistic, which gives

insight into third and higher order moments of the charge distribution. The first moment

of the distribution is the current, the second one is the shot noise. The third moment

will reveal information about the time-reversal symmetry breaking. Typical times of

the single charge events are on the ms scale. In a double QD experiment single elec-

tron interferences were also accessible [192] and similar experiments are carried out in

graphene QD-QPC structures (see e.g. [193]). The above measurements rely on the sen-

sitive charge detection capabilities in a relatively narrow bandwidth, keeping the noise

level well below the single-event signal to be detected, but also limiting the temporal

resolution to the above mentioned ms time-scale.

Detection of e.g. single charge wavepackets in a GaAs heterostructure quantum Hall

edge channel in a coherent fashion require much faster detection. Here, one has to re-

solve events below the spacing given by Heisenberg’s uncertainty principle ∆E∆t ∼ h,

which results in a temporal resolution of τ . 0.15 ns or bandwidth of f & 1 GHz at

typical dilution fridge temperatures of T = 50 mK.

From the results obtained throughout this work, in particular in chapters 3 and 5, we

can now try to estimate the charge resolution δqrms achievable with a RF-GFET. It

involves the transit frequency fT and the current noise SI as presented in Eq. (1.72)

δqrms =

√
SI
ωT

(6.1)

As pointed out in Eq. (3.3), the current Ids is proportional to the samples width W ,

therefore also the current noise SI ∝ I ∝ W . Hence, in order to be able to estimate

with a certain accuracy, we need to use values of similarly sized devices. In chapter

3 we found a maximum cut-off frequency of fT = 80 GHz in our GoS sample sized

L ×W = 1 × 3.7 µm2. For the current noise, presented in chapter 5, we will base our

estimate on the noise spectral density measurements of sample BN2, sized L ×W =

2.2 × 2.7 µm2. Here, we find values of the order of SI ≃ 5 pA2Hz−1/2 at medium

bias and carrier density. Inserting both in the above equation (as both samples are of

comparable width) we expect a µm wide RF-GFET to have a charge resolution of

δqrms ≃ 28 µe/
√
Hz (6.2)

in a multi-GHz bandwidth. This is already within reach of the capabilities of some

of the above mentioned detectors. Contrary to the even more powerful SET devices,

RF-GFETs have a much larger bandwidth and low impedance, though. Implementation

into standard RF environments is thus easier. Furthermore, a reduction of channel

width alongside with an increase of fT would push the boundary towards the desired

sensitivity. Already transit frequencies as high as 300 GHz are reported [65] in devices of



171

widths W ∼ 20 µm. The scaling of channel width may degrade this figure, as we could

see in chapter 3. Nevertheless we believe that the constant progress in graphene research

will soon allow to build graphene based devices capable of sub-nanosecond single charge

detection. Engineering the RF-GFETs parameters to produce e.g. SI ≃ 10 pA2/
√
Hz

(high mobility → stronger noise) in a bandwidth of 1 GHz and simultaneously a transit

frequency fT ≃ 250–300 GHz, the detectors resolution would already attain δq⋆ ≃ 0.33 e

at ∆f = 1 GHz.

With these numbers in mind, one can readily imagine an integrated all-graphene coherent'
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Figure 6.1: Proposal for an all-graphene coherent single-charge detector. A mag-
netic field induces edge states in the upper device part. Travelling carriers will be
detected at two separate moments in time by the double gate RF-GFET. The gate
electrodes are floating and couple the QHE device capacitively to the RF-GFET.

single-charge detector probing charges in a quantum Hall edge channel. Fig. 6.1 shows a

proposal for such a device: A perpendicular magnetic field induces chiral edge channels

in the upper graphene sheet. Injected carriers will thus travel in only one direction

and provoke a response in the RF-GFET by capacitively coupling. The trace of one

carrier will be picked up twice, at moments t and t′, allowing for a precise signal-echo

detection. The capacitance values CFETg and CQHEg of the RF-GFET and QHE part,

respectively, have to be kept in balance in order to be able to precisely account for a

single charge. Using an estimated edge channel carrier velocity νQHE ∼ 105 ms−1 and a

gate, respectively detector length of Lg = LQHE = 2 µm, we find a detection time τ ∼
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2·10−11 s. Precise detection will thus require a sufficient charge resolution at f ≃ 8 GHz.

Carrier velocities are only estimated, as there is no precise measurement of νQHE for

graphene edge channels yet. From 2DEG experiments however, it is known that νQHE ∝
B−1 [194, 195] and ν ≃ 104–105 ms−1. We therefore suppose this to hold in graphene

as well. Evidently δq⋆ worsens when increasing the bandwidth as suggested above.

However, with the proposed signal-echo technique a much smaller frequency interval

centred around 8 GHz could be chosen, restoring the previous, favourable state. A

powerful oscilloscope of bandwidth ∆f = 16 GHz and suitable ultra-low noise amplifiers

of ∆f = 12 GHz were recently bought; it is thus the author’s hope that the graphene

coherent single charge detection can be put into action soon at the Laboratoire Pierre

Aigrain.



Appendix A

Appendix - Hexagonal Boron

Nitride ”Très BN”

A.1 Characterisation of hexagonal boron nitride
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Figure A.1: Photo-luminescence spectra of three different hBN sources excited
with a laser emitting at 6.4 eV (193 nm) at low temperature (5 K): single-crystal
hBN (red), hBN powder ”Très BN” by St. Gobain (black) and reference hBN powder

by Aldrich (green)
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In our sample fabrication we use, if required, an hBN layer as supporting substrate

for the MLG. As pointed out in chapter 1 this enhances graphene’s electrical properties.

Best results are generally obtained when using layers exfoliated from hBN single-crystals.

However, such crystals are hard to come by. Instead, we have pursued the approach of

using a high-quality hBN powder as source for our samples. It can be treated much the

same way as graphite or hBN single-crystals.

In Fig. A.1 we present a comparative photo-luminescence (PL) study of an hBN single-

crystal (red), hBN powder ”Très BN” by St. Gobain (black) and a reference hBN

powder by Aldrich (green). The experiment was carried out by A. Pierret et al. at

the Office national d’études et recherches aérospatiales (ONERA). The plot shows the

PL spectra of the three hBN sources excited with a laser emitting at 6.4 eV (193 nm)

at low temperature (5 K). Without going into details on the particularities of these

measurements or the theory behind it, the following conclusions can be drawn [196]:

• The energy interval up to 5 eV, the so called defect band, gives insight into the

amount of defects in the sample. Here, the single-crystal shows only minimal in-

tensity, pointing to a minimal amount of defects in the lattice. As for the powders,

the Très BN sample has a slightly higher PL intensity than the crystal, whereas

the Aldrich powder displays a strong response in this region.

• In the energy range 5–6 eV, the so called edge band, excitons are excited and

responsible for the observed PL peaks: At 5.5 eV bound state excitons arise,

whereas the peak at higher energy is due to free excitons. A small linewidth of

these peaks points to a higher crystal quality [196]. The single crystal, displays

nearly only bound state excitons (due its high quality nearly all quasi-particle

excitations are captured by defects). The peaks of the Très BN powder are almost

equally fine with a balanced population of free and bound states. The exciton

peaks of the Aldrich powder are much wider.

We can therefore summarise that the amount of defects in our Très BN powder is small

compared to similar commercially available powders. Its quality is closer to the single-

crystal than to the Aldrich powder.



Appendix B

Appendix - Admittance of a

1-dimensional distributed line

For one of the infinitesimal elements, including a resistance part rdx and an element

of the series combination of capacitances cdx, we find two equations describing its be-

haviour:

−∂V
∂x

= RI (B.1)

∂I

∂x
=

∂

∂x

∂q(t)

∂t
=

∂

∂x

∂

∂t
(CdxV ) = C

∂V

∂t
(B.2)

Together they form the differential equation'

&

$

%
∂2I

∂x2
+RC

∂I

∂t
= 0 (B.3)

modelling the element. Eq. B.3 is of course solved by the time and length coordinate

dependent current

I(x, t) = I0e
j(kx−ωt) (B.4)
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with the parameter k2 = −jRCω.
We are however interested in the admittance of our device, i.e. we need knowledge of

I(0, t) and V (0, t), the time-dependent current and voltage at x = 0, respectively. The

measurements will effectively be taken at the border of the gate electrode, thus only the

behaviour at x = 0 is of interest.

For a sample of gate length L we thus find

I(0, t) = I0

(

ejkL − e−jkL
)

e−jωt (B.5)

V (0, t) =
I0k

cω

(

ejkL + e−jkL
)

e−jωt (B.6)

and finally the admittance

Y =
I(0, t)

V (0, t)
=
cω

k
tanh (jkL) (B.7)



Appendix C

Appendix - Tunnel junction

fabrication

Our cryogenic setup is calibrated against the white noise of custom-made Al-AlOx-Al

tunnel junctions. The following table details the fabrication process. Note that the

MMA+PMMA layer allows for the formation of a void underneath the PMMA bridge,

which is then utilised to create two overlapping electrodes via the angled evaporation.

We would like to thank the group of B. Huard, and in particular E. Flurin, for providing

their expertise.
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step description tool(s) notes

1 cleaning acetone, IPA and
Harrick plasma oven

5–10 min

2 substrate preparation heater plate 2 min 180◦ C

3 spin coating spin coater & MMA 60 s, 8000 rpm,
4000 rpm/s

4 MMA bake heater plate 2 min 180◦ C

5 spin coating spin coater & MMA 60 s, 8000 rpm,
4000 rpm/s

6 MMA bake heater plate 2 min 180◦ C

7 spin coating spin coater & PMMA 60 s, 8000 rpm,
4000 rpm/s

8 PMMA bake heater plate 2 min 180◦ C

9 lithography Raith e-line small structures: 7.5 µm
aperture, 20 kV,
280 µCcm−2

10 lithography Raith e-line large structures: 120 µm
aperture, 20 kV,
280 µCcm−2

11 developing MIBK & IPA 35 s MIBK & 20 sIPA

12 angled Al evaporation evaporator Plassy 130 nm at −35◦5

13 oxidation evaporator Plassy in situ

14 angled Al evaporation evaporator Plassy 130 nm at +35◦5

15 lift-off acetone & IPA several hours & 30 s

Table C.1: Fabrication of Al-AlOx-Al tunnel junctions.



Appendix D

Appendix - Solution of the heat

equation in presence of acoustic

phonon cooling

In order to fit the electron temperature curves obtained experimentally and draw con-

clusions on the electron-phonon coupling constant, we have to solve the heat equation

Lo
2R

L2d
2T 2(x)

dx2
= −V

2

R
+ LWΣ

(

T 4 − T 4
phonon

)

(D.1)

Here, the left-hand side describes the Wiedemann-Franz law of electron heat diffusion

to the leads, V 2/R is the incoming Joule power and the second term on the right-hand

side gives the cooling due to electron-acoustic phonon (AP) interaction. Lo =
π2k2

b

3e2
is

the Lorenz number, L and W the samples length and width, respectively and R its

resistance. The electron-acoustic phonon coupling constant is Σ.

Let us now assume that the acoustic phonons are perfectly coupled to the substrate and

therefore Tphonon = 0.

Without dissipation to the leads, i.e. vanishing left-hand side of (D.1), and Tphonon = 0

the electrons would reach a temperature given by

T 4(x) =
V 2

LWΣR
(D.2)

and we define therefore

T 2
Σ =

V√
LWΣR

(D.3)

Defining a second temperature

T 2
L =

Lo
2LWΣR

(D.4)

179



180 Chapter D: Appendix - Solution of the heat equation in presence of acoustic
phonon cooling'

&

$

%

T/T
Σ

0

0.2

0.4

0.6

0.8

1

x/L
−0.4 −0.2 0 0.2 0.4

 V/V*=25
 V/V*=5
 V/V*=1
  V/V*=0.2
2
4
2
4
2
4

(a)

T e
/T Σ

0

0.2

0.4

0.6

0.8

1

V/VΣ
−400 −200 0 200 400

(b)(a)

Figure D.1: a) Temperature profiles Te(x) for different bias voltages obtained
from the solution of Eq. (D.1). b) Average electron temperature 〈Te(x/L)/TΣ〉 as

function of reduced bias voltage V/VΣ.

we can now introduce the dimensionless variables

U(x) =
T 2(x)

T 2
Σ

and UL(V ) =
T 2
L

T 2
Σ

=
Lo

2V
√
LWΣR

(D.5)

that, upon using them in (5.13), reduce the heat equation to

L2UL
d2U(x)

dx2
= U2(x)− 1 (D.6)

Taking advantage of

U ′′(x) =
dx

dU

(

(U ′)2

2

)

(D.7)

and simple integration rules for differential equations, as well as shuffling all terms

depending on U on one side, we arrive at

x

L
=

√

3UL
2

∫

U
(x)U0

dU
√

(U0 − U)(3− U2 − UU0 − U2
0 )

(D.8)

where x runs from −0.5L to 0.5L and U0 = U(0). The integral can be solved analytically

G (U(x), U0) = 2

√

2

3U0 +
√
3
√

4− U2
0
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3
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(D.9)

where Γ(φ, k) signifies the elliptic integral of the first kind.

The value of UL(V ) is fixed by the boundary condition that T = 0 at the samples
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contacts, i.e. U(±0.5L) = 0. This condition defines the upper limit U0 and therefore we

can find UL(U0) by solving (D.6) under the condition U(x) = 0 and x = 0.5L. Thus

UL(U0) =
1

6
G (0, U0)

2 (D.10)

For each bias voltage V we can now solve (D.6) for T (x) and plot the temperature

profiles as shown in Fig.D.1(a). The crossover between electron heat dissipation and

phonon mediated cooling is marked by the voltage scale VΣ = Lo/(
√
4LWΣR).

Finally we obtain the average electron temperature for a given bias voltage by computing

the integral

〈Te〉 = TΣ

∫ L/2

−L/2

√

U(x)dx (D.11)
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Appendix - Full current noise

spectra
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Figure E.1: Current noise spectra as function of frequency for different bias volt-
ages in sample BN1 at Vg = 18 V.
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Figure E.2: Current noise spectra as function of frequency for different bias volt-
ages in sample BN2 at Vg = −28 V.
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Appendix - Electron temperature

in representation T 5/P
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%
Figure F.1: (a) and (b): Electron temperature of sample CVD1 (a) and BN1 (b)
plotted as T 5

e (V )/P . Contrary to the T 4
e (V )/P representation, no plateaus at high

bias can be observed.

Even though we find a small negative slope in the high bias data of the T 4
e /P repre-

sentation, one can can easily convince oneself that the observed mechanism is truly 2D

and hence the cooling power ∝ T 4
e : Plotting the average electron temperature in the

representation T 5/P (Fig.s F.1(a) and (b)), there is no saturation behaviour at high

bias. T 4
e is thus better fit to the data, which points strongly to the aforementioned 2D

acoustic phonon effect.
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[24] J. K. Viljas and T. T. Heikkilä, “Electron-phonon heat transfer in monolayer

and bilayer graphene”, Phys. Rev. B 81, 245404 (Jun 2010).

[25] R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmile-

hto, A. F. Morpurgo and P. J. Hakonen, “Evanescent wave transport and

shot noise in graphene: ballistic regime and effect of disorder”, Journal of Low

Temperature Physics 153, no 5-6, 19 (2008).

[26] A. C. Betz, F. Vialla, D. Brunel, C. Voisin, M. Picher, A. Cavanna,

A. Madouri, G. Fève, J.-M. Berroir, B. Plaçais and E. Pallecchi, “Hot
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(2010).

[36] O. Klein, “Die Reflexion von Elektronen an einem Potentialsprung nach der

relativistischen Dynamik von Dirac”, Zeitschrift für Physik, Volume 53, Issue 3-4,

pp. 157-165 53, 157–165 (March 1929).



Bibliography

[37] M. I. Katsnelson, K. S. Novoselov and A. K. Geim, “Chiral tunneling and

the Klein paradox in graphene”, Nature Physics 2, no 9, 15 (2006).

[38] V. V. Cheianov and V. I. Fal’ko, “Selective transmission of Dirac electrons

and ballistic magnetoresistance of n-p junctions in graphene”, Phys. Rev. B 74,

041403 (Jul 2006).

[39] B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang and

D. Goldhaber-Gordon, “Transport Measurements Across a Tunable Potential

Barrier in Graphene”, Phys. Rev. Lett. 98, 236803 (Jun 2007).

[40] J. P. Hobson and W. A. Nierenberg, “The Statistics of a Two-Dimensional,

Hexagonal Net”, Phys. Rev. 89, 662–662 (Feb 1953).

[41] F. Schwierz, “Graphene transistors.”, Nature Nanotechnology 5, no 7, 487–496

(2010).

[42] D. G. Schlom and L. N. Pfeiffer, “Oxide electronics: Upward mobility rocks!”,

Nature Materials 9, no 11, 881–883 (2010).

[43] W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie and

A. Zettl, “Boron Nitride Substrates for High Mobility Chemical Vapor Deposited

Graphene”, Applied Physics Letters 98, no 24, 242105 (2011).

[44] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei,

K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard and J. Hone, “Boron

nitride substrates for high-quality graphene electronics”, Nature Nanotechnology

5, 722–726 (October 2010).

[45] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell,

R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe,

T. Taniguchi and et al., “Micrometer-scale ballistic transport in encapsulated

graphene at room temperature.”, Nano Letters 11, no 6, 2396–2399 (2011).

[46] E. McCann, Abergel and V. I. Fal’ko, “The low energy electronic band struc-

ture of bilayer graphene”, The European Physical Journal - Special Topics 148,

no 1, 91–103 (September 2007).

[47] J.-C. Charlier, X. Blase and S. Roche, “Electronic and transport properties

of nanotubes”, Rev. Mod. Phys. 79, 677–732 (May 2007).

[48] K. Watanabe, T. Taniguchi and H. Kanda, “Direct-bandgap properties and

evidence for ultraviolet lasing of hexagonal boron nitride single crystal”, Nature

Materials 3, 404–409 (June 2004).



Bibliography BIBLIOGRAPHY 191

[49] “Symmetry constraints on phonon dispersion in graphene”, Physics Letters A 372,

no 31, 5189 – 5192 (2008).

[50] A. Barreiro, M. Lazzeri, J. Moser, F. Mauri and A. Bachtold, “Transport

Properties of Graphene in the High-Current Limit”, Phys. Rev. Lett. 103, 076601

(Aug 2009).
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