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Autonomic and Energy-Efficient Management of Large-Scale
Virtualized Data Centers

Abstract

Large-scale virtualized data centers require cloud providers to implement scalable, au-
tonomic, and energy-efficient cloud management systems. To address these challenges
this thesis provides four main contributions. The first one proposes Snooze, a novel
Infrastructure-as-a-Service (IaaS) cloud management system, which is designed to scale
across many thousands of servers and virtual machines (VMs) while being easy to config-
ure, highly available, and energy efficient. For scalability, Snooze performs distributed VM
management based on a hierarchical architecture. To support ease of configuration and high
availability Snooze implements self-configuring and self-healing features. Finally, for energy
efficiency, Snooze integrates a holistic energy management approach via VM resource (i.e.
CPU, memory, network) utilization monitoring, underload/overload detection and mitiga-
tion, VM consolidation (by implementing a modified version of the Sercon algorithm), and
power management to transition idle servers into a power saving mode. A highly modular
Snooze prototype was developed and extensively evaluated on the Grid’5000 testbed using
realistic applications. Results show that: (i) distributed VM management does not impact
submission time; (ii) fault tolerance mechanisms do not impact application performance and
(iii) the system scales well with an increasing number of resources thus making it suitable
for managing large-scale data centers. We also show that the system is able to dynamically
scale the data center energy consumption with its utilization thus allowing it to conserve
substantial power amounts with only limited impact on application performance. Snooze is
an open-source software under the GPLv2 license.

The second contribution is a novel VM placement algorithm based on the Ant Colony
Optimization (ACO) meta-heuristic. ACO is interesting for VM placement due to its poly-
nomial worst-case time complexity, close to optimal solutions and ease of parallelization.
Simulation results show that while the scalability of the current algorithm implementation
is limited to a smaller number of servers and VMs, the algorithm outperforms the evaluated
First-Fit Decreasing greedy approach in terms of the number of required servers and com-
putes close to optimal solutions. In order to enable scalable VM consolidation, this thesis
makes two further contributions: (i) an ACO-based consolidation algorithm; (ii) a fully de-
centralized consolidation system based on an unstructured peer-to-peer network. The key
idea is to apply consolidation only in small, randomly formed neighbourhoods of servers.
We evaluated our approach by emulation on the Grid’5000 testbed using two state-of-the-art
consolidation algorithms (i.e. Sercon and V-MAN) and our ACO-based consolidation algo-
rithm. Results show our system to be scalable as well as to achieve a data center utilization
close to the one obtained by executing a centralized consolidation algorithm.

Keywords: Autonomic computing, Cloud computing, Scalability, Self-configuration, Self-
healing, Energy efficiency, Ant Colony Optimization, Consolidation, Virtualization



Gestion autonome et économique en énergie des grands centres de
données virtualisés

Résumé
Les grands centres de données virtualisés nécessitent que les fournisseurs de nuages in-

formatiques mettent en œuvre des systèmes de gestion de machines virtuelles passant à
l’échelle, autonomes et économiques en énergie. Pour répondre à ces défis, cette thèse ap-
porte quatre contributions principales. La première est la proposition d’un nouveau système
de gestion de nuages IaaS, Snooze, qui a été conçu pour gérer plusieurs milliers de serveurs
et de machines virtuelles (VMs) tout en étant facile à configurer, hautement disponible et
économique en énergie. Pour le passage à l’échelle, Snooze gère les VM de manière dis-
tribuée sur la base d’une architecture hiérarchique. Pour offrir la facilité de configuration et
la haute disponibilité, Snooze met en œuvre des mécanismes d’auto-configuration et d’auto-
réparation. Finalement, pour l’efficacité énergétique, Snooze est fondé sur une approche
globale à travers la surveillance de la consommation de ressources (i.e. CPU, mémoire,
réseau) des VMs, la détection et la résolution des situations de sous-charge et de surcharge,
la consolidation de VMs (par la mise en œuvre d’une version modifiée de l’algorithme Ser-
con) et la gestion de la consommation d’énergie en faisant passer les serveurs inactifs dans
un mode de faible consommation énergétique. Un prototype modulaire du système Snooze
a été développé et a fait l’objet d’une évaluation approfondie à l’aide d’applications réal-
istes sur la plate-forme Grid’5000. Les résultats montrent que (i) la gestion distribuée des
VMs est sans impact sur le temps de soumission, (ii) les mécanismes de tolérance aux fautes
n’ont pas d’impact sur les performances des applications, et que le système passe à l’échelle
avec le nombre de ressources, ce qui fait qu’il est approprié pour les grands centres de don-
nées. Nous montrons également que le système est capable d’adapter la consommation
énergétique du centre de données par rapport à sa charge permettant donc de substantielles
économies d’énergie avec seulement un impact limité sur les performances des applications.
Snooze est un logiciel libre sous licence GPLv2.

La seconde contribution est un nouvel algorithme de placement de VMs fondé sur la
méta-heuristique d’optimisation par colonies de fourmis (ACO). L’ACO est intéressante
pour le placement de VMs en raison de sa complexité dans le pire cas polynomiale, de ses
solutions proches de l’optimal et de sa facilité de parallélisation. Les résultats de simulation
montrent que le passage à l’échelle de la mise en œuvre actuelle de l’algorithme est limité
à un petit nombre de serveurs et de VMs. Cependant, l’algorithme se comporte mieux que
l’approche gloutonne First-Fit-Decreasing pour le compactage des VMs et qu’il calcule des so-
lutions proches de l’optimal. Pour une consolidation de VMs passant à l’échelle, cette thèse
apporte deux contributions supplémentaires : (i) un algorithme de consolidation fondé sur
l’ACO, (ii) un système de consolidation totalement décentralisé fondé sur un réseau pair-
à-pair non structuré. L’idée clé est d’appliquer la consolidation dans de petits groupes de
serveurs formés aléatoirement. Nous avons évalué notre approche par émulation sur la
plate-forme Grid’5000 en utilisant deux algorithmes de consolidation existants (i.e. Sercon
et V-MAN) ainsi que notre algorithme fondé sur l’ACO. Les résultats montrent que notre
système passe à l’échelle et permet d’obtenir un taux d’utilisation du centre de données
proche de celui qui serait obtenu avec un algorithme de consolidation centralisé.

Mots clés: Système autonome, cloud computing, passage à l’échelle, auto-configuration,
efficacité énergétique, optimisation par colonies de fourmis, consolidation, virtualisation
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TTHIS chapter provides the motivation for this thesis, introduces its objectives, discusses
its contributions and presents the document outline.

1.1 Motivation

Cloud computing has recently emerged as a new computing paradigm in which services
are offered based on the pay-as-you-go model. Customers consuming those services are
charged only for as much as they have used. One particularly cloud service model which
has gained a lot of attraction over the past years is commonly refereed to as Infrastructure-
as-a-Service (IaaS). In IaaS clouds, resources such as compute and storage are provisioned
on-demand by the cloud providers. Thereby, compute capacity is typically provided in the
form of virtual machines (VMs). VMs appear to the customers as if they were real physical
machines (PMs). VMs were made possible through latest advances in server virtualization
technologies which allow to efficiently multiplex PM resources (e.g. CPU, memory, I/O
devices) between multiple VMs.

Since the introduction of cloud computing, many cloud providers (e.g. Amazon, Google,
Rackspace) have appeared and are now offering a tremendous amount of services such as
compute capacity and data storage on demand. In order to support the customers growing
service demands, cloud providers have recently started to deploy an increasing number of
large-scale data centers. Managing such data centers, requires the cloud providers to solve a
number of challenges. Particularly, cloud providers now must design and implement novel
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IaaS cloud computing systems 1 which are capable of operating at large scale. More precisely,
the cloud computing systems must remain scalable in order to support the increasing num-
ber of customers and resources (i.e. VMs and PMs). In addition, besides beeing scalable,
the probability for hardware and software failures increases at scale. Consequently, cloud
management systems must be designed to behave autonomically. This will allow them to au-
tomatically detect failures and initiate a recovery. Moreover, configuring cloud management
systems to operate at large scale requires a substantial amount of highly skilled IT experts.
In order to automate the configuration efforts, IaaS cloud management systems must be
designed with self-configuration aspects in mind thus enabling system configuration with
minimal human intervention. Last but not least, data centers are now hosting equipment
(e.g. storage and compute servers, cooling) requiring huge amounts of energy. For instance,
Google which is a major internet search engine and cloud computing services provider alone
accommodates over 900,000 servers which have consumed approximately 2 billion kWh of
energy in 2010 [195]. While Google’s data centers energy requirements are still less than
1% of the worlds data center energy demands, reducing the energy consumption during
periods of low utilization in data centers is crucial in order to lower the data centers Total
Cost of Ownership (TCO) and carbon footprints in a time where most of the data centers are
still powered by either coal or nuclear power plants [180]. Given the importance of energy
savings, energy-efficient IaaS cloud management systems must be designed.

Several attempts have been made over the past years to design and implement IaaS cloud
management systems to facilitate the creation of private IaaS clouds. Given the increasing
data center scales, such systems are faced with challenges in terms of scalability, autonomy,
and energy-efficiency. However, many of the existing attempts to design and implement IaaS
cloud systems for private clouds are still based on centralized architectures, have limited
autonomy, and lack of energy saving mechanisms. Consequently, they are subject to Single
Point Of Failure (SPOF), limited scalability, and low energy efficiency.

1.2 Objectives

The goal of this thesis is to design, implement, and evaluate an IaaS cloud management
system for large-scale data centers. To achieve its main goal this thesis investigates the
following four sub-goals:

• Scalability: Data centers are now hosting many thousands of servers. For instance,
Rackspace which is a well known Infrastructure-as-a-Service (IaaS) provider accom-
modated approximately 78 000 servers in 2011 [248]. Managing such amount of servers
requires highly scalable IaaS cloud management systems. Consequently, our goal is to
design a system that scales with increasing number of servers (PMs and VMs).

• High Availability: With increasing number of servers, the probability for system com-
ponent (hardware and software) failures increases. In order to support continuous
system operation the IaaS cloud management system should be highly available. Con-
sequently, high availability mechanisms must be implemented. Our goal is to design

1. Cloud computing systems are defined as a software frameworks capable of managing the physical data
center resources.
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a system which integrates such mechanisms.

• Ease of Management: Managing large scale data centers can be a tremendous task
which requires many highly experienced IT experts. Providing an easily configurable
system can significantly reduce the costs and ease the system management. One of
our goals is to design a system which requires minimal human intervention to be config-
ured. Moreover, once the system is deployed and configured, it becomes increasingly
important to perform updates and/or add new servers. In such scenarios servers will
be required to brought offline and added back later. Our goal is to design a system
which is flexible enough to allow for dynamic addition and removal of servers. Finally, as
system components can fail at any time, it is desirable for a system to heal in the event
of failures without human intervention. Consequently, we aim at designing a system
using self-healing mechanisms to enable high availability.

• Energy Efficiency: Over the past years, rising energy bills have resulted in energy
efficiency to become a major design constraint for data center providers. Given that
traditional data centers are rarely fully utilized, significantly energy savings can be
achieved during periods of low utilization by transitioning idle servers in a power
saving state. However, as servers are rarely fully idle, first idle times need to be cre-
ated [81]. Our goal is to design an IaaS cloud management system and VM manage-
ment algorithms which are capable of creating idle times, transitioning idle servers in
a power saving state and waking them up once required (e.g. when load increases).
This will allow to scale the data center energy consumption proportionally to its load.

1.3 Contributions

To tackle the introduced sub-goals this thesis makes the following three contributions:

Snooze: A Scalable, Autonomic, and Energy-Efficient IaaS Cloud Manager. We propose
an autonomic and energy-efficient IaaS cloud management system for large-scale virtualized
data centers called Snooze. For scalability Snooze is based on a self-configuring hierarchi-
cal architecture and performs distributed VM management. Distributed VM management
is achieved by splitting the data center into independently managed groups of PMs and
VMs. Moreover, autonomy features are provided at all levels of the hierarchy, thus allowing
the system to self-configure upon bootup and provide high availability via self-healing in
case of failures. To save energy, Snooze provides a holistic energy-efficient VM management
solution. Particularly, it integrates a power management mechanism which automatically
detects idle PMs, transitions them into a power-saving state (e.g. suspend), and wakes them
up once required. However, before this can be achieved, idle times need to be created as
VMs are typically load balanced across the PMs. To create idle-times, underload detection
and mitigation are performed along with VM consolidation. Both mechanisms aim at releas-
ing lightly utilized PMs (resp. pack VMs on the least number of PMs). To evaluate Snooze,
a prototype has been implemented and extensively evaluated using realistic applications
on the Grid’5000 experimentation testbed. The experimental results have proven our sys-
tem to be scalable, autonomic, and energy-efficient. The core system principles of Snooze
were published in [131, 135, 136]. The scalability and autonomy evaluation was published



4 Chapter 1 – Introduction

in [134]. Finally, the description and evaluation of the energy management mechanisms was
published in [137].

VM Placement via Ant Colony Optimization. One traditional approach to favour idle
times starting from the VM submission in IaaS cloud management systems, is to allocate a
set of VMs to PMs such that the number of required PMs to accommodate the VMs is mini-
mized. This is achieved by implementing the so-called VM placement algorithms. However,
many of the traditional VM placement algorithms consider only a single resource (e.g. CPU)
to evaluate the PM load and VM resource demands. Moreover, they rely on centralized al-
gorithms such as First-Fit Decreasing (FFD) [304] which are known to be hard to distribute/-
parallelize [76]. To solve these limitations, we investigate the use of Ant Colony Optimiza-
tion (ACO) for the VM placement problem and propose an ACO-based VM placement al-
gorithm. ACO is especially attractive for the VM placement problem due to its polynomial
time worst-case complexity and the ease of parallelization. We evaluate the ACO-based ap-
proach by comparing it with the FFD algorithm and the optimal solution as computed using
the IBM ILOG CPLEX optimizer [33]. Simulation results demonstrate that ACO outperforms
the FFD algorithm as it achieves superior energy gains through better PM utilization and re-
quires less PMs. Moreover, it computes solutions which are close to optimal. This work was
published in [133].

VM Consolidation via Ant Colony Optimization. The previous contribution has shown
that even though ACO computes near optimal solutions, the designed algorithm still had
scalability issues in terms of its computing time when considering a large number of PMs
and VMs. Moreover, while addressing the VM placement problem is important in order to
favour idle-time creation starting from the VM submission, VM consolidation algorithms are
required in order to enable continuous consolidation of already placed VMs on the least number
of PMs. This is particularly important in order to avoid resource fragmentation and further
increase the data center resource utilization. To address both aspects this thesis makes the
following two contributions: (1) we adapt our previously proposed ACO-based VM place-
ment algorithm to enable continuous VM consolidation; (2) to tackle the scalability issues we
propose a fully decentralized VM consolidation system based on an unstructured peer-to-
peer (P2P) network of PMs. The key idea of the proposed system to achieve both scalability
and high data center utilization is to apply VM consolidation only in the scope of randomly
formed neighbourhoods of PMs. Considering the computational complexity of dynamic VM
consolidation limiting its application to the scope of the neighbourhoods greatly improves
the system scalability. In addition to that, the randomness of the neighbourhoods facilitates
the convergence of the system towards a global packing efficiency very close to a central-
ized system by leveraging traditional centralized VM consolidation algorithms. Packing
efficiency is defined as the ratio between the number of released PMs to the total number of
PMs. We have implemented a distributed system emulator and validated it using two well
known VM consolidation algorithms: Sercon [224], V-MAN [216], and the ACO-based VM
consolidation algorithm. Extensive experiments performed on the Grid’5000 experimenta-
tion testbed show that once integrated in our fully decentralized VM consolidation system,
traditional VM consolidation algorithms achieve a global packing efficiency very close to a
centralized system. Moreover, the system remains scalable with increasing number of PMs
and VMs. Finally, the ACO-based VM consolidation algorithm outperforms Sercon in the
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number of released PMs and requires less migrations than V-MAN. This results were pub-
lished in [132].

1.4 Outline of the Thesis

This thesis is organized as follows:
• Chapter 2 covers the state of the art. Particularly, it first presents the context of this dis-

sertation by giving a brief introduction to server virtualization, autonomic computing,
and cloud computing. Then, existing energy management approaches in computing
clusters are reviewed. Understanding the energy saving approaches is mandatory to
position the energy management contributions of this work.

• Chapter 3 describes our first contribution: Snooze, an autonomic and energy-efficient
IaaS cloud management system based on a self-configuring and healing hierarchical
architecture. We first provide a high-level system architecture overview. Then, we
detail how the hierarchy and energy-efficient VM management are achieved. This
involves the description of the self-configuration and healing mechanisms as well as
the energy-efficient VM management algorithms. Finally, important implementation
aspects are presented and the results from the experimental evaluation are analyzed.

• Chapter 4 is devoted to VM management via Ant Colony Optimization. We first pro-
vide an introduction to the ACO. Then, the ACO-based VM placement algorithm is
proposed and its evaluation results are presented. Afterwards, the VM placement al-
gorithm is adapted to enable VM consolidation. Moreover, in order to improve its scal-
ability, a fully decentralized VM consolidation system based on an unstructured P2P
network of PMs is proposed. Finally, the evaluation results of the VM consolidation
algorithm as well as the fully decentralized VM consolidation system are presented.

• Chapter 5 concludes this manuscript by summarizing our contributions and present-
ing future research directions.
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THIS PhD thesis proposes a novel autonomic and energy-efficient IaaS cloud manage-
ment system for large-scale virtualized data centers. To provide the necessary back-
ground for our work, in this chapter we presents the state of the art in related fields

which include server virtualization, autonomic computing, cloud computing, and energy-
efficient management of computing clusters. First, the concept of server virtualization is
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detailed. Server virtualization is a fundamental technology which can be used to enable ef-
ficient data center resources utilization. Then, autonomic computing and cloud computing
are presented, two complementary concepts emerged as the result of the massive adaption
of Internet and large-scale distributed systems over the past years. Finally, related work on
energy management in computing clusters is presented.

2.1 Server Virtualization

This section gives a brief introduction into server virtualization. Note, that for the sake of
ease of explanation we focus on CPU virtualization only. Obviously, other hardware subsys-
tems (e.g. memory and I/O devices) need to be virtualized as well to enable complete server
virtualization. First, the history behind server virtualization is presented. Afterwards, privi-
lege levels of the x86 CPU architecture and their application in traditional Operating Systems
(OS’s) as well as virtualized environments are briefly reviewed. Understanding the CPU
privilege levels and their role in virtualized environments is crucial in order to differentiate
between the virtualization techniques. After introducing the privilege levels, the state of the
art virtualized techniques are presented. Finally, VM live migration is introduced as a basic
mechanisms allowing to move VMs between PMs with ideally no service downtime [110].

2.1.1 What is Server Virtualization?

The history of server virtualization goes back to the time of IBM mainframes in the mid
1960s [254]. IBM mainframes were large tightly-coupled multi-processor computer systems
designed for high I/O throughput, security, and reliability. They were typically installed
in large enterprises and governmental organization. During that time IBM was faced with
the challenge of efficiently partitioning their mainframe systems hardware between multi-
ple OS’s (i.e. kernel, libraries, applications). Hosting multiple OS’s on a single mainframe
was mandatory in order to support a broad range of customers applications which were
developed for different OS’s [77]. IBM’s solution to the problem was a software layer be-
tween the physical hardware and the OS’s, the so-called hypervisor/Virtual Machine Mon-
itor (VMM) [153]. OS’s run on top of the VMM which gives them the illusion of beeing
able to control the physical hardware (e.g. CPU, memory, storage, I/O devices) much like
the processes are given the illusion of having the entire CPU and a large amount of virtual
memory by the OS. In other words, a VMM can be seen as an intermediate OS which instead
of switching the physical hardware between processes does it for entire OS’s (see Figure 2.1).

Physical Hardware

Virtual Machine Monitor

OS 1

Apps Apps
OS m

Figure 2.1: Virtual Machine Monitor example



2.1 – Server Virtualization 9

While IBM’s server virtualization efforts finally did not find a broad adaptation due to
the emergence of distributed computing and low cost x86 server/desktop hardware in the
early 1980s, they found their renaissance starting from the 1990s when companies were sud-
denly faced with the issue of having too many underutilized, power-hungry servers. Under-
utilized servers were the result of the adaption of more powerful hardware (i.e. multi-core
machines) and the best practice of providing application isolation by running one applica-
tion per server. In order to provide both, application isolation and efficient server hardware
utilization, VMware introduced the concept of x86 server virtualization in the 1990s [58]
which enabled to create and consolidate multiple virtual servers, the so-called VMs on a
single PM. Each VM is defined by its meta-data describing the VM resource requirements
(e.g. number of cores, memory) and a disk image where the actual OS (i.e. kernel, libraries,
applications), the so-called guest OS resides 1. VMs can be controlled (e.g. started, stopped,
suspended) in the same manner as processes on a non-virtualized system. Similarly, to the
OS’s on the mainframes, guest OS’s are managed by a VMM which controls the PM and
provides guest OS’s the illusion of beeing run on real hardware. This is achieved by mul-
tiplexing servers hardware between the guest OS’s. To provide isolation between the guest
OS’s, VMM integrates security mechanisms which prevent multiple guest OS’s kernels from
modifying each others and VMM own memory. Since its introduction, server virtualization
has become an ubiquitous technology in today’s data centers to enable service isolation and
efficient data center resource utilization.

Server virtualization is not to be confused with emulation. In contrast to virtualization
which involves multiplexing the physical hardware between multiple guest OS’s thus cre-
ating the illusion for the guests to be running on real hardware, emulation provides fully
in-software emulated hardware (e.g. CPU, memory, I/O devices) to the guest OS’s. For ex-
ample, in a virtualized environment the guest OS must support the processor architecture
(e.g. x86) of the host PM as its processor instructions are finally executed on it. In contrast,
emulation enables to run guest OS’s which have been developed for a specific processor ar-
chitectures (e.g. VxWorks for PowerPC) on PM which have a distinct processor architecture
and host OS (e.g. Linux on x86). This is typically achieved by a service, the so-called emu-
lator which runs as an application on top of the PMs OS and emulates the desired hardware
for the guest OS’s (e.g. by implementing every CPU instruction in software) (see Figure 2.2).
Emulation is very flexible as any hardware can be emulated for the guest OS’s. This makes it

Physical Hardware (e.g. x86)

Host OS (e.g. Linux)

Emulator 
(PowerPC)

A
pp

s

Emulator 
(SPARC)

Emulator 
(ARM)

Solaris Windows CEVxWorks

Figure 2.2: Emulation example

1. In this document we use the terms VM and guest OS interchangeably.
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very convenient for developers who would like to debug specific guest OS’s on their desktop
computers (e.g. x86-based systems). However, the flexibility comes at the cost of decreased
performance as all the guest OS hardware commands need to be interpreted and handled
in software. Popular emulators include Quick EMUlator (QEMU) [82] when run in non-
hardware accelerated mode and Bochs [202]. In the following sections we focus on server
virtualization techniques.

2.1.2 Privilege Levels and Virtualization

In this section, we first briefly introduce the concept of privilege levels, also known as
protection rings [261] which is implemented on all the modern x86 CPUs. Then, we discuss
how privilege levels are used in traditional OS’s and what extensions have been recently
made by the major CPU vendors (i.e. Intel and AMD) to support virtualization technologies.

Privilege levels are a fundamental concept integrated into the x86 CPUs to enable secu-
rity in modern OS’s. Particularly, privilege levels allow the OS to prevent users and pro-
cesses with different privileges from obtaining uncontrolled access to the shared physical
resources such as CPU, memory, and I/O. For instance, a user process running on the OS
should not be able to gain direct access to the disk as he then could initiate malicious activ-
ities such as deleting other users file or manipulate the hardware thus harming the system
stability. Indeed, it is the job of the OS to grant/deny access to physical hardware and en-
force the user process requests (e.g. sending data over the network) by interacting with the
hardware. Figure 2.3 visualizes the privilege levels of the x86 architecture.

Physical 
Hardware

OS Kernel

User Processes Level 3

Level 2

Level 1

Level 0

x86 Privilege Levels

Figure 2.3: x86 architecture privilege levels overview

As it can be observed, there exist four privilege levels which are organized in increasing
order form 0 to 3. Processes running on the level 0 and 3 have the highest (resp. lowest)
privileges to access the physical hardware. As of today, the OS kernels of most of mod-
ern OS’s (e.g. Linux, Windows) run in the highest privilege level, while user processes are
typically executed in the lowest privilege level. The intermediate privilege levels remain
unused. In other words, if a user process runs on the CPU, the CPU is in the lowest privilege
level. On the other hand, when the user process instructs the OS (via software interrupt) to
do some privileged instruction (e.g. I/O device access), the CPU switches into the highest
privilege level and hands control over to the OS kernel so that it can perform the privileged
instruction (e.g. by interacting with the OS network driver to send data) on behalf of the user
process. After the OS finishes the critical task execution, the CPU switches back to the lowest
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privilege level and hands control over to the user process. This procedure is also known as
the context-switch.

When a VMM is used to control the physical hardware (i.e. CPU, memory, I/O) it must
operate in the highest privilege level (i.e. 0) in order to: (1) support physical hardware
multiplexing between the guest OS’s; (2) secure the VMM and provide guest OS isolation.
In that case the guest OS’s kernel are obviously not allowed to use the highest privilege
level. However, OS kernels were not designed to operate at any privilege level lower than 0.
Indeed, they need to perform privileged instructions as well. One solution to this problem is
to let the guest OS kernels run in a higher privilege level (e.g. 1) and let the VMM intercept
and handle all the instructions requiring higher privilege level. However, traditional x86
CPU architecture was not designed for virtualization. Particularly, for an x86 architecture to be
virtualizable all instructions which go beyond the scope of a certain privilege level must be
cause a trap into the highest privilege level (i.e. 0). For example, when a guest OS kernel
runs in privilege level 1 and issues an instruction requiring level 0 access it must trap into
level 0. This way, a VMM running at privilege level 0 could handle the privilege instruction
on behalf of the guest OS kernel. Unfortunately, as the x86 architecture was not designed
for virtualization, some privileged instructions do not cause traps into level 0 when executed
from a lower privilege level (e.g. 3). Such instructions are also sometimes referred to as non-
virtualizable instructions. This issue requires either to use emulation or complex mechanisms
inside the VMM (e.g. binary translation [264]) to identify non-virtualizable instructions at
run-time thus allowing the VMM to emulate their behaviour [237].

In order to provide a clean solution to the privilege level issue, recently both major CPU
vendors Intel and AMD have introduced Intel VT-x [282] (resp. AMD-V [13]), extension to
their CPU privilege levels hierarchy by adding one more level, called -1 [237]. This addi-
tional privilege level can be used to run the VMM thus allowing the guest OS kernels to
continues operating in privilege level 0.

2.1.3 Virtualization Techniques

We now present the state of the art server virtualization techniques. Particularly, we dis-
cuss solutions to the previously introduced issue of x86 architecture virtualization. Server
virtualization techniques can divided into three categories: full virtualization, paravirtual-
ization, and OS-level virtualization [225, 290, 295, 215].

2.1.3.1 Full Virtualization

Full virtualization enables to run guest OS’s on top of the existing host OS without the
need to do any modifications to the host OS or guest OS’s kernels. Full virtualization can be
either achieved by means of: binary translation or hardware acceleration. In the following two
paragraphs we will discuss both approaches.

Binary Translation. The main objective of full virtualization with binary translation to is
leverages the host OS I/O device support while providing close to native CPU per-
formance by executing as many CPU instructions on bare hardware as possible. The
architecture of this virtualization technique is shown in Figure 2.4. When the virtual-
ization solution is installed it first loads a driver into the host OS kernel. This driver
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is required by the user space (i.e. privilege level 3) application to gain control over
the physical hardware when needed. For example, when the user space application
is used to start a guest OS it contacts the driver to reconfigure the host OS in order to
start the guest OS kernel in privilege level 1. Moreover, the driver hooks a VMM below
the host OS kernel in order to trap privileged instructions (e.g. network device access)
issued by the guest OS’s. Finally, the VMM integrates binary translation to detect non-
virtualizable instructions at run-time and replace them with VM-safe code. This is
achieved by examining the guest OS kernel binary stream using binary translation.
The main benefit of full virtualization with binary translation is that no modifications
to the host and guest OS kernel need to be done. Indeed, the guest OS kernel drivers
leverage the original host OS kernel driver interfaces. However, the flexibility comes
at the cost of decreased performance due to the need to perform binary translation
and emulation of privileged CPU instructions. Probably the most popular full virtual-
ization solutions supporting binary translation are Microsoft Virtual PC [39], Parallels
Workstation / Desktop [47], VMware Workstation/Fusion/Player [62, 59, 60], and Vir-
tualBox [234]. Note that in contrast to emulation which emulates the entire hardware in
software (e.g. each CPU instruction), full virtualization takes advantage of the physical
hardware to run the guest OS’s. For example, guest OS user processes execute CPU in-
structions directly on the physical CPU. On the other hand, privilege instructions are
emulated by the VMs among other hardware components (e.g. Graphics Processing
Unit). Ultimately, fully virtualization with binary translation can be seen as a hybrid
between emulation and virtualization.
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Guest OS

Apps Level 3Apps

Host Context VMM Context

Level 1

Level 0Le
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l 3

CPUMemoryI/O

Host OS
Kernel

VMM

Host 
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Figure 2.4: Full virtualization with binary translation example

Hardware Acceleration. When full virtualization with hardware acceleration is used, the
Intel VT-x (resp. AMD-V) technology is leveraged to enable physical hardware virtu-
alization without the binary translation overheads. For example, Intel-VT-x introduces
two new CPU modes, namely: root and non-root. Each of the modes provides its own
four privilege levels. The root mode is equivalent to the well-known x86 privilege
level mechanism. On the other hand, the non-root mode introduces a new structure
called Virtual Machine Control Structure (VMCS) which allows to provide fine grained
control over the CPU instructions. The non-root mode therefore has more privileges
than the root mode. It can be seen as one more privilege level, referred to as -1. In
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this new system the guest OS kernel runs in the non-root mode on the privilege level
0, while the VMM runs in the root mode on the privilege level 0 (see Figure 2.5). This
allows the guest OS kernel to operate unmodified without the need for binary transla-
tion for non-virtualizable instructions. The context switch between the root to non-root
modes is called VMEntry (resp. VMExit). VMEntry typically happens when the guest
OS attempts to run a non-privileged instruction. In that case the information (e.g. in-
struction name, exit reason) describing the root of the problem is saved in the VMCS
structure. This information is used by the VMM in the root mode to resolve the issue.
The main drawback of full virtualization with hardware acceleration is that it requires
hardware support which is not available in many of the older servers. Moreover, con-
text switches between the root and non-root modes can be expensive. Most of the
modern VMMs such as Kernel-based Virtual Machine (KVM) [193], Microsoft Hyper-
V [38], VMware ESX/ESXi [292], Xen Hardware Virtual Machine (HVM), VMware
Workstation/Fusion/Player, VirtualBox, and Parallels Workstation / Desktop support
this technique.
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Figure 2.5: Full virtualization with hardware acceleration example

2.1.3.2 Paravirtualization

In contrast to full virtualization which does not require any guest OS kernel modifica-
tions, paravirtualization involve running a lightweight kernel, the so-called VMM on top
of the bare hardware. This eliminates the need of a host OS and thus increases the guest
OS performance as the guest OS’s can now almost naively interact with the bare hardware.
However, this comes at the cost of flexibility as paravirtualization requires the guest OS ker-
nel to be modified to support the VMM. The most prominent paravirtualization solution
is called Xen Paravirtualization (PV) [80]. Its high-level architecture overview is shown in
Figure 2.6. In Xen, the VMM runs in the highest privilege level (i.e. 0). Note, that in Xen
the VMM is really a lightweight kernel and thus does not implement any complex manage-
ment decisions (e.g. admission control, inter-VM CPU scheduling decisions). Consequently,
it only exports a low-level control interface which can be used to enforce such decisions.
In order to provide a management layer, a control VM, also known as Dom0 (Domain 0) is
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started as the first guest OS in the privilege level 1 during the VMM boot process. It is the
job of the Dom0 to implement the appropriate policies and use the VMM control interface to
enforce them. Dom0 is also used to perform other management decisions such as controlling
the guest OS life-cycle (e.g. boot, reboot, shutdown) and physical memory allocations. As
the VMM occupies the highest privilege level, guest OS’s are unable to run without further
modifications (see Section 2.1.2). To solve this issue, Xen moves the guest OS’s to privilege
level 1 (same as Dom0) and requires guest OS’s kernels to be modified in order to enable
the delegation of all the privileged (including non-virtualizable) instructions (e.g. creation
of page tables) to the VMM using Xen specific software interrupts, also known as hyper-
calls. The VMM traps the hypercalls and executes the privileged instructions on behalf of
the guests OS’s either by translating them into the native hardware instructions or using
emulation. Despite its near native performance, the requirement to patch the guest OS ker-
nel limits the application of paravirtualized VMMs to either open-source OS’s (e.g. Linux)
or proprietary OS’s which are tailored towards using a specific VMM interface. Other ex-
amples of paravirtualization-based VMM solutions using similar techniques are Microsoft
Hyper-V and VMware ESX/ESXi.
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Figure 2.6: Paravirtualization example

2.1.3.3 OS-level Virtualization

OS-level virtualization creates multiple containers on the same OS which are managed
by a virtualization layer within the host OS kernel (see Figure 2.7). Containers have their own
resources (i.e. root file system, users, applications, networking settings, and firewall) which
are isolated from each other by the host OS kernel. OS-level virtualization provides close
to native performance. Containers provide near native performance to their applications
and ease the system management. Moreover, they can be migrated in the same manner as
traditional VMs (e.g. in KVM). However. the major drawback of OS-level virtualization is
that the containers are limited to a single host OS kernel. For instance, no modifications to
the kernel can be done (e.g. loading additional modules). Examples of well known OS-level
virtualization solutions are OpenVZ [44] and Linux Containers [37].
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Figure 2.7: OS-level virtualization example

2.1.4 VM Live Migration

Among the traditional VM control operations (e.g. start, reboot, stop, suspend), most
of the aforementioned virtualization techniques offer a feature known as live migration. VM
live migration allows to seamlessly move VMs between PMs (source and destination) either
over local or wide area network (LAN resp. WAN). Seamless live migration refers to a VM
move which is either not noticeable or barely noticeable (i.e. in the order of milliseconds) to
the VMs users. VM live migration can be either triggered manually by the system admin-
istrator or automatically by a cloud management system. In case it is triggered manually it
is up to the system administrator to decide which VMs and to which PMs they have to be
migrated. Otherwise, the cloud management system is in charge of taking live migration
decision based on its high-level objectives. For example, a cloud management system could
decide to consolidate multiple VMs on a fewer number of PMs for energy saving reasons. In
that case it would automatically instruct the PMs to do the appropriate VM live migrations.

In order to achieve seamless live migration, VMs resources (i.e. CPU state, memory
and disk content, networking connections) must be transparently moved from the source
to the destination PM. Independent of the considered resources, VM live migration can be
categorized into three approaches: pre-copy, post-copy, and a hybrid of both [110, 168]. In this
section we focus on the VM memory content live migration approaches and assume a shared
storage to be available in order to avoid VM disk migration (see Figure 2.8). Live migration
without shared storage migration is still an ongoing research topic and is not fully supported
by many of the open-source VMMs (e.g. KVM). Related work on VM disk and networking
resources migration over both, LAN and WAN can be found in [94, 169, 230, 94, 121, 251].

Pre-copy Live Migration. In the pre-copy live migration approach the VMs memory pages
are iteratively copied by the hypervisors over the network from the source to the des-
tination PM while the VM is running. First all VM memory pages are transferred to
the destination PM. Then, the hypervisor examines the VMs memory in order to de-
tect pages which were modified during the previous copy round. In case modified
pages were detected, they are copied to the destination PM in another copy round.
This process (i.e. examine and copy) continues until no memory modifications can be
observed. In that case the VM is stopped by the hypervisor on the source, its CPU
state is transferred to the destination PM and the VM is resumed on the destination
PM. One issue arises when memory modifications are performed faster than memory
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Figure 2.8: Live migration example

pages can be transferred over the network. In that case a situation happens when VM
live migration can last forever (i.e. unable to converge). One solution to mitigate this
issue is to terminate the migration only when a Writable Working Set (WWS) has been
identified and transfer this set only. WWS is defined as a small set of pages which are
constantly modified. If such a WWS exists it is a very good candidate to be transferred
as it would incur a low service downtime. However, a WWS is not guaranteed to be
identified [169]. Another, solution to the convergence issue is to put an upper bound on
the number of copy rounds. In case the upper bound is reached the VM on the source
is stopped by the hypervisor and its CPU state is transferred to the destination PM
along with the modified memory pages. The VM on the destination is then resumed
from the new state. The service downtime in this approach depends on a number
of parameters such as the amount of modified memory pages to be transferred and
network throughput. Both approaches are implemented in Xen hypervisor [110]. Fi-
nally, the convergence issue can be moved to the application level by letting the user
or a management application observe the VM live migration duration and suspend the
VM on the source PM when it reached a predefined timeout. In that case the hypervi-
sor finishes the migration as no memory pages are modified anymore. This approach
is hypervisor agnostic and is suggested in the KVM community [90].

Post-copy Live Migration. In the post-copy live migration [168] approach the VM is first
suspended on the source PM. Then, its CPU state is transferred to the destination PM
and the VM is resumed on the destination PM. As memory pages still reside on the
source PM, page faults are generated on the destination PM when the VM attempts
to access any not-yet available memory page. Each page fault is intercepted by the
hypervisor which instructs the source PM to sent the page involved in the page fault
to the destination PM. This way post-copy live migration guarantees that each page
will be transferred to the destination PM at most once thus reducing the network over-
head. The major drawback of post-copy live migration is the on-demand memory page
transfer. During this time services inside the VM can experience serious performance
degradation. The performance of post-copy live migration can be greatly improved by
proactively pushing pages to the destination PM using adaptive pre-paging [168].

Hybrid Live Migration. The hybrid live migration [231] approach as its name implies
brings together concepts of pre-copy and post-copy live migration. The key idea of
hybrid live migration is to start with VM pre-copy live migration and switch to post-
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copy directly after the first memory pre-copy iteration. First all the VM memory is
copied to the destination PM by the source PM while the VM continues to run on the
source PM. After the first copy phase the VM is suspended on the source PM and its
CPU state including the modified pages is transferred to the destination PM. Then,
the VM is resumed on the destination PM and the post-copy mechanism is enabled
to push memory pages on-demand (i.e. when a page fault occurs) from the source to
destination PM. For the time beeing, no known implementation and evaluation of this
approach for VMs exists. Some work has been started by the authors in [168].

In this thesis we leverage the pre-copy VM live migration mechanism of the KVM hyper-
visor and implement the previously introduced application-level VM live migration conver-
gence enforcement approach.

2.2 Autonomic Computing

This section gives a brief introduction to autonomic computing. We start our discus-
sion with a history of autonomic computing. Then, the self-management properties of auto-
nomic systems are reviewed. Afterwards, the concept of autonomic manager is introduced,
a core architectural component which implements the self-management properties. Finally,
selected autonomic computing systems are reviewed.

2.2.1 What is Autonomic Computing?

Autonomic computing [171] was first introduced by IBM in 2001 as a vision of com-
puting environments which can automatically observe and adapt themselves according to
high-level objectives (e.g. maximize profit). The driving motivation behind the autonomic
computing initiative was the fact that, scale as well as the complexity of today’s large-scale
distributed systems makes it increasing hard to develop, deploy, configure, and maintain
them even for the most experienced system administrators. The term autonomic comput-
ing is inspired from the human nervous system which is capable of autonomously observe
and adapt the human body to its environment without the need for us to concentrate on it.
For example, it autonomously controls our heart rate, body temperature, and blood sugar
level. Similarly, self-managing autonomic computing systems are envisioned to allow users
to focus on what instead of how something is to be done.

2.2.2 Self-Management Properties

According to [191] the building block of any autonomic system is self-management. Self-
management is the ability of an autonomic system to automatically adapt to changes in
its environment without the need of an human intervention. For example, a self-managed
autonomic system is able to update itself and transparently handle failures in its Managed
Elements (MEs) 2. In order to achieve self-management, closed control loops are used. They
are implemented by Autonomic Managers (AMs) which are used to manage one or multiple

2. A managed element can be any hardware (e.g. compute/storage server, router) or software (e.g. operating
system, database, web server) resource [177].
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MEs. Control loops are organized in categories based on their responsibilities. Particularly,
the authors in [177] identify the following four control loop categories: self-configuration,
self-healing, self-optimization and self-protection. They are visualized in Figure 2.9 and
reviewed in this section.

Self-Configuration

Self-Optimization

Self-Healing

Self-Protection

Figure 2.9: Self-management properties overview

Self-Configuration. Large-scale computing infrastructures now require substantial amount
of IT experts (e.g. developers, administrators) to be configured, integrated, and main-
tained. Self-configuration refers to the ability of a system component to seamless inte-
grate into the system. This involves two steps: (1) gathering of information about the
system to be joined; (2) registering itself with the new system. For example, in a tra-
ditional large-scale web cluster farm, for scalability reasons requests are load balanced
across multiple backend web servers. Registering additional backend servers typically
requires modifications to the load balancer in order to make it aware of the new back-
end servers. A self-configuration enabled backend web server has the capability to
automatically learn about the load balancer and register with it.

Self-Optimization. One of the core issues during the deployment of large-scale systems
(e.g. databases, web servers) is the tuning of their performance parameters. For ex-
ample, setting a certain cache size might be a good idea during the initial system de-
ployment. However, at scale the cache size needs to be typically adjusted in order to
keep pace with increasing load. In this context self-optimization refers to the ability of
a system to monitor itself, learn from the past experience, and automatically adjust the
systems parameters in order to satisfy the high-level performance goals (e.g. minimum
energy consumption).

Self-Healing. With the probability for software and hardware failures increasing at scale,
entire departments of developers and system administrators start investing a large
amount of time in the debugging and fixing of problems. For example, complex soft-
ware systems such as the ones involved in the management of entire companies (e.g.
SAP) are composed of many inter-dependent services (e.g. database, printing, billing)
which can be programmed and managed by different developer teams within a com-
pany. Fixing even the smallest bugs or failures in such complex ecosystems of services
can be a very challenging task. On the other hand, hardware (e.g. HDDs) fails con-
stantly and requires system administrators a substantial amount of work to replace it
and reconfigure the system accordingly. Self-healing refers to the ability of the sys-
tem to automatically detect, analyze, and resolve internal problems. For example, in
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the most basic case the system could automatically detect a software bug, download a
patch and apply it.

Self-Protection. Security management is crucial in today’s large-scale systems in order to
protect them and their users against malicious activities (e.g. intrusion attempts, code
injection). Many technologies (e.g. SSL, RSA, firewalls) have been developed in the
past to enable secure user authentication, data transfer, and network communication.
However, the implementation, integration, and maintenance of those technologies in
large computing infrastructures is still a complicated and error prone task which re-
quires a substantial amount of highly educated IT experts. Self-protection refers to the
ability of a system to proactively detect malicious activities from its past experience
and automatically enforce the appropriate protection mechanisms.

2.2.3 Autonomic Managers

Autonomic Managers (AMs) [177] are software agents which implement the previously
introduced self-management properties. They are in charge of managing one or multiple
MEs. AMs can be either embedded into the MEs or run externally. In order for an AM to
manage its MEs it first must be able to collect and store their monitoring information. The
monitoring information gathering is supported by sensors which are exported by the MEs.
Once gathered, monitoring information is stored in a knowledge base. It is then analyzed
in order to decide whether actions need to be taken or not. In case actions need to be taken
a plan must be created, which will generate a set of desired changes to the MEs. Therefore,
a problem specific planning policy is used by the AM. Finally, the plan must be executed
by issuing management commands to the MEs. In order to accept management commands
from AMs, MEs must expose the appropriate actuator interfaces which will enforce the re-
quested changes. To summarize, while the implementation of an AM is certainly control-
loop category dependent and problem specific, all AMs share the following five functional
components: Monitor, Analyze, Plan, Execute, and Knowledge (see Figure 2.10). Together they
form the so-called MAPE-K control loop [173].

To ease the AM understanding we finish this section with a brief example of an AM, able
to self-optimize the server power consumption. The key idea behind our AM is to slow down
the CPU of a server once the servers power consumption exceeds a system administrator
predefined power threshold. Slowing down the CPU inevitably reduces the overall server
power usage. In our example the AM runs as a daemon on the server it manages. The AM
monitoring module periodically observes the servers power consumption by querying the
appropriate power sensor through the server OS sensors Application Programming Interface
(API). The AM stores the sensor information in a knowledge base implemented as a local in-
memory repository and instructs the analyze module to determine whether an action (i.e.
slowdown CPU) needs to be taken. The analyze module estimates the current server power
consumption by taking the average of the 20 most recent power values as received from the
knowledge base. The estimated power value is compared with the threshold. In case the
threshold is exceeded the planning module is called to derive by how much the CPU must
be slown down in order to bring the server power consumption under the threshold according to a
planning policy. For example, a naive policy could be used which would slow down the CPU
by a constant factor (e.g. 1000 MHz). Finally, the planning module instructs the execution
module to call the OS actuator API which will enforce the CPU slowdown.
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Figure 2.10: Autonomic manager example

2.2.4 Autonomic Computing Systems

Since the introduction of autonomic computing much research has been done to design
and implement autonomic computing systems. Autonomic computing systems are software
infrastructures following the vision of autonomic computing. This section briefly reviews
some of these works. In [238], the authors introduce Hasthi, a generic framework for man-
aging large-scale distributed systems according to user-defined management logic. Hasthi
is designed around a self-configuring and healing hierarchical architecture in which one co-
ordinator oversees multiple managers. Each manager is in charge of managing a subset
of resources. Through simulations the authors show that their system is able to provide
self-management for up to 100,000 resources. In [299] the authors present the design and
implementation of a decentralized autonomic system for processing user requests and man-
aging application execution in the context of the In-VIGO grid-computing system [68]. The
proposed system follows the previously introduced principles of autonomic computing and
integrates multiple AMs which each AM beeing in charge of managing a number of MEs
(i.e. applications and resources). When an AM joins an administrative domain of the grid
computing system it contacts its central repository and receives contact information about
a subset of the other AMs in this domain, the so-called neighbourhood. Monitoring infor-
mation is exchanged between the AMs in the same neighbourhood. Each time AMs leave
and join new domains they propagate their previously collected monitoring information to
the new neighbours thus constructing a global view of the system. The authors evaluate
the efficiency, scalability, and robustness of the system on 10 PMs by comparing it with the
previously developed centralized version of the system. They conclude that the new system
is scalable and robust. The major drawback of the system is that at the end each AM requires
to have a global system knowledge thus reducing its scalability. In [274], the authors present
Unity, a self-optimizing multi-agent system for dynamic management of compute resources
between different Application Environments (AEs) based on utility functions. Each AE is as-
sociated with a service-level utility function. AEs send their resource-level utility functions
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to a single resource arbiter. Based on this functions the arbiter decides on the AEs resource
allocations. Small scale experimental results show that utility functions are viable for en-
abling systems self-management. Finally, in [93], the authors present JADE, a general pur-
pose architecture-based autonomic system for managing distributed systems. The key idea
of JADE is to provide self-management properties to any loosely-coupled legacy system (e.g.
web services). In order to achieve this JADE introduces the concept of wrappers. A wrapper is
an abstraction providing a uniform interface to manage any legacy system component (e.g.
tomcat server). Wrappers are collocated with the legacy components. More, one node compo-
nent exist per PM. Node component is a software agent which knows all the wrappers avail-
able on a PM and exports interfaces in order to gather sensor information from the wrapped
legacy components. Finally, multiple autonomic managers exist which implement control-
loops and manage one or multiple node components. The management involves performing
autonomic manager specific self-management tasks (e.g. self-optimization). JADE is exper-
imentally evaluated using a three tier web architecture made of an web server, application
server, and a database. It is shown to provide self-healing and self-protection properties for
the evaluated scenario.

2.3 Cloud Computing

This section briefly introduces cloud computing, a computing paradigm which borrows
ideas from the vision of self-managing autonomic computing systems and complements au-
tonomic systems with a business model which enables to rent resources on-demand. First,
the basic principles behind cloud computing are defined. Afterwards, the cloud character-
istics, service models, and deployment models are presented. Finally, existing attempts to
design and implement IaaS cloud management systems are reviewed.

2.3.1 What is Cloud Computing?

The cloud computing paradigm evolved as the result of the massive adaption of the In-
ternet as well as major advances in the areas of virtualization (e.g. server, storage, network),
grid computing, utility computing, and autonomic computing. Cloud computing borrows
some concepts from autonomic computing in the sense that cloud providers implement au-
tonomic managers in order to automate the management of their systems and provide on-
demand services. However, both of them have different origins and goals. While autonomic
computing was an IBM initiative aiming at reducing the management complexity of large-
scale distributed systems, the primary goal of cloud computing is to reduce the costs of
managing own infrastructures [305]. Many cloud computing definition have been proposed
over the past years [286]. However, as of today still no standard definition exists. In this
work we rely on the definition presented in [221], where Peter Mell and Tim Grance define
cloud computing as:
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“a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteris-
tics, three service models, and four deployment models. ”

2.3.2 Characteristics

According to [221] the five main cloud characteristics are: broad network access, on-demand
self-service, resource pooling, rapid elasticity, and measured service.

Broad network access. Cloud providers services are available over the network (e.g. Inter-
net) and thus can be accessed from any networked device (e.g. laptop, cell phone,
desktop computer, server).

On-demand self-service. Customers can rent resources without the need of personal nego-
tiation with the cloud providers. This can be achieved by the use of cloud providers
APIs accessed over the network.

Resource pooling. Cloud resources are transparently provisioned by the cloud provider
and hosted on its infrastructure which is commonly shared between multiple cus-
tomers. Thereby, the internal structure of the cloud providers infrastructure is un-
known to the customer. Consequently, customer are not aware where the provisioned
resources are exactly running (e.g. on which rack of the cloud data center). For in-
stance, when a customer rents compute capacity in the form of VMs he might know in
which country his VMs are running. However, the knowledge on which rack yet PM
the VMs are hosted is typically not exposed to the customers.

Rapid elasticity. Customers can automatically provision and release resources (e.g. com-
pute or storage capacity) whenever required. For instance, the cloud provider by uti-
lizing the cloud providers APIs resources can be requested in order to deal sudden
resource utilization spikes.

Measured service. Cloud providers monitor the customers resource usage and charge cus-
tomers for the used resources based on a selected business model (e.g. pay-as-you-go).

2.3.3 Service Models

The cloud computing stack categorizes services based on the following three types of
service models [78]: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS). In addition to the three well known cloud service models,
Hardware-as-a-Service (HaaS) is probably the oldest service model which already existed
long before cloud computing arrived. Figure 2.11 visualizes the introduced service models.

HaaS. HaaS offering allows customers to lease hardware resources (e.g. compute, storage,
laptops, screens, desktops) on-demand. This model is particularly interesting either
for private or business customers which do not want to invest in their own hardware.
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Figure 2.11: Cloud service models

For instance, in the most basic example a business customer can simply lease entire
office computer equipment (i.e. desktop computers, screens) from a HaaS provider.
This es especially beneficial for start-ups which do not want to make huge up-front
investments in hardware. One example of an HaaS provider allowing to lease office
computer equipment for small and medium-sized companies is GRENKE [26]. On
the other hand, HaaS providers exist which allow to lease dedicated servers. Exam-
ples of such providers are Hetzner [30], LeaseWeb [36], and OVH [45]. Finally, several
scientific experimentation testbeds have been established over the past years which al-
low researches to request hardware resources once experiments need to be performed.
Some prominent examples of HaaS scientific experimentation testbed providers are
Grid’5000 [97] in France and the National Energy Research Scientific Computing Cen-
ter [42] in US.

IaaS. IaaS clouds allow customers to lease and manage virtual resources (e.g. server, stor-
age, networks) over the Internet. The customers are provided total delegation over the
resources thus being able to install, configure, and operate own software (e.g. OS, ap-
plications) without the need to worry about the underlying cloud computing system.
Indeed, the customers are not given any control of the cloud computing system. For
example, customers can easily provision servers in the form of VMs without the need
to worry on which PMs they are running. Some well known public IaaS cloud com-
puting systems include Amazon Elastic Compute Cloud (EC2) [71], Amazon S3 [11],
Google Compute Engine [23], and Rackspace [50]. Moreover, a number of open-source
IaaS cloud management systems have been developed over the last years to facilitate
the creation of private clouds (see Section 2.3.4). They include CloudStack [275], Euca-
lyptus [19], Nimbus [190], OpenNebula [223], and OpenStack [279].

PaaS. PaaS clouds provide a cloud computing system for the deployment of applications
(e.g. servlets, web services) developed using programming languages and libraries
supported by the cloud provider. This allows customers to focus on application devel-
opment by releasing them from the burden of deploying, managing and scaling own
run-time environments (e.g. application servers). Prominent commercial PaaS offers
include Google App Engine [20], RedHat OpenShift [51], and Windows Azure [64]
which provide scalable environments for the development and deployment of web
applications. Note, that PaaS offers are not necessarily limited to web applications.
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For instance, Amazon Elastic MapReduce [10] allows customers to efficiently process
a large amount of data. Similarly to IaaS clouds a number of open-source PaaS projects
have been started such as AppScale [109], ConPaaS [241], Cloud Foundry [17], and
Cloudify [18].

SaaS clouds. In contrast to PaaS clouds which allow customers to deploy custom applica-
tions, SaaS clouds typically provide a set of already hosted business applications (e.g.
accounting, customer relationship management). Applications are managed by the
cloud providers computing system on behalf of the customer. Applications can be ac-
cessed over the Internet by either using a web browser or another software capable of
accessing their API. Some examples of public SaaS offers are Google Apps (e.g. mail,
sheets, calender) [21], iCloud [32], and Salesforce [52].

2.3.4 Deployment Models

In [78] the authors distinguish between the following four cloud deployment models:
private, public, community, and hybrid clouds (see Figure 2.12).

Private Cloud

Public Cloud

Community 
Cloud

Hybrid 
Cloud

Figure 2.12: Cloud deployment models

Private clouds. Private clouds are cloud computing systems which are deployed on com-
pute and storage infrastructures belonging to a single institution data center and net-
work. Their usage is typically restricted to the scope of the institution. Private clouds
are either managed by the institutions own IT department or a external IT provider
(e.g. IBM). Private clouds can be based either on cloud computing systems developed
in-house or third party commercial (e.g. VMware vCloud [61]) and open-source solu-
tions (e.g. OpenStack, CloudStack, Eucalyptus).

Public clouds. Public clouds are commercial cloud computing systems available to every-
one on the Internet. They are typically operated by a public cloud provider and allow
customers (either individuals or institutions) to easily provision services (e.g. VMs)
without the need to operate their own infrastructure. Thereby, customers are charged
only for what they use. Examples of public cloud providers include Amazon Web
Services [72], Rackspace [50], Google Cloud Platform [22], and Microsoft Azure [64].



2.3 – Cloud Computing 25

Community clouds. Community clouds are cloud computing systems which allow infras-
tructure (e.g. compute, storage) sharing among different individuals or institutions
with common interests. In contrast to public clouds, the access to community clouds
is typically limited to the community members only. For example, a health care com-
munity cloud could be used by hospitals to exchange patients medical information.
Moreover, community clouds can be also established between scientific institutions to
collaborate on projects, share data, and exchange latest research results.

Hybrid clouds. Hybrid clouds are cloud computing systems which allow institutions to
leverage infrastructures from private, public, and community clouds. For example,
a hybrid cloud computing system enables intuition to offload less sensitive data into
the public cloud while preserving sensitive data on its private cloud. Alternatively,
hybrid clouds allow institutions to use their own infrastructure during periods of low
service (e.g. web) load and scale their services during periods of high load by accessing
public clouds.

The contributions presented in this thesis focus at cloud computing systems implement-
ing the IaaS cloud service model. While we do not restrict ourselves to any particular deploy-
ment model, the primary targets of our work are private clouds.

2.3.5 IaaS Cloud Computing Systems

A lot of work has been done in the past on the design and implementation of IaaS
cloud computing systems in order to facilitate the creation of private clouds. Such sys-
tems aim at providing users with VM execution environments while relieving them from
the burden of manually managing those systems yet knowing where individual VMs are
running. Thereby, virtualization technologies such as Xen, KVM, or VMware ESX/ESXi
serve as building block to enable server virtualization and thus efficient data center resource
utilization. Nevertheless, to enable the creation of VM execution environment IaaS cloud
management systems are faced with a number of challenges such as: (1) Scalability; (2) Au-
tonomy; (3) VM life-cycle, storage, and network management; (4) Interoperability.

Scalability is particularly important for IaaS cloud computing systems in order to enable
the management of a large number of PMs, VMs, and users. Autonomy allows IaaS cloud
computing systems to provide self-configuration, optimization, healing, and protection. Particu-
larly, configuring an IaaS cloud computing system can require a substantial amount of highly
skilled IT experts. Self-configuration refers to the ability of an IaaS cloud computing system
to configure itself with minimal human intervention. On the other hand, IaaS cloud data
centers now can host many thousands of servers and VMs. This vast amount of resources
needs to be managed efficiently in order to reduce the costs (e.g. energy) and ease the system
management. Self-optimization enables IaaS cloud computing systems to provide efficient
resource management using algorithms and mechanisms able to dynamically reconfigure
the IaaS cloud computing systems according to the given high-level objectives (e.g. energy
management). Moreover, given that the probability for hardware and software failures in-
creases at scale, IaaS cloud computing systems must automatically detect system component
(e.g. compute nodes) failures and take the appropriate actions (e.g. inform the management
components about failures, perform recovery) in order to enable continues operation. Self-
healing refers to the ability of an IaaS cloud management system to automatically perform
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these tasks without human intervention. Besides beeing able to self-heal, security is a crucial
aspect in order to provide authenticated access to the IaaS cloud computing system, enable
user data isolation, and protect the system against malicious activities (e.g. code injection).
Self-protection refers to the ability of a IaaS cloud computing system to provide the security
mechanisms and automatically protect itself against malicious activities.

Finally, VM life-cycle, storage, and networking management are three fundamental
blocks of any IaaS cloud management system. VM life-cycle management enables users
to control (i.e. boot, reboot, suspend, shutdown) their VMs. VM storage management pro-
vides a common repository for users to store and instruct the system to use VM disk images
during VM deployment. Moreover, storage management implements mechanisms to enable
efficient VM disk image propagation to the compute nodes. This is particularly important in
large IaaS cloud computing where VM disk image need to be made available on hundreds of
compute nodes. Several technologies such as SCP Tsunami [53] and TakTuk [111] have been
developed over the past years which can be leveraged by the storage management mecha-
nism to support efficient VM disk image propagation. Last but not least, interoperability is
an important aspects in IaaS clouds which aims at allowing users to seamlessly transition
between different IaaS cloud providers and reuse their tools. In order to interoperability
IaaS cloud computing systems must expose standard interfaces. Several efforts have been
made over the past years to design such interfaces. For instance, EC2 [9] and Open Cloud
Computing Interface (OCCI) [43].

This section reviews the current efforts on the design and implementation of private IaaS
cloud computing systems with respect to their scalability, autonomy, and interoperability. In
the following discussion we distinguish between four types of IaaS cloud computing sys-
tems: centralized, hierarchical, fully decentralized.

2.3.5.1 Centralized Systems

In this section we review some of the recently proposed centralized IaaS cloud man-
agement systems. In [223], the authors introduce the OpenNebula IaaS cloud computing
system. OpenNebula architecture follows the traditional frontend/backend model where
an agent (e.g. cloud controller) runs on the frontend node, accepts users VM life-cycle re-
quests and delegates them to the backend nodes. Each backend node runs an agent (e.g.
node controller) which receives requests from the frontend node and enforces them by inter-
acting with the hypervisor (see Figure 2.13). Moreover, the agent on the backend reports VM
CPU and memory utilization to the frontend. A similar system can be found in [190], where
the authors introduce the Nimbus IaaS cloud computing system. Neither OpenNebula nor
Nimbus implement any autonomy features. With respect to interoperability, Nimbus pro-
vides the EC2 interface while OpenNebula supports both EC2 and OCCI interfaces. In [275],
CloudStack is presented, a centralized system which allows to create and manage VMs. In
contrast to OpenNebula and Nimbus, CloudStack supports the so-called multi-node con-
figuration. In the multi-node configuration multiple frontend nodes/management servers
can be used to avoid Single Point of Failure (SPOF). However, CloudStack does not inte-
grate any mechanisms to load balance VMs between the management servers nor handle
automatic fail-over of the management servers. Particularly, it is up to the user to decide
which management server to contact for VM submission and the system administrator to
implement management server fail-over mechanisms using tools such as Pacemaker [46],
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Figure 2.13: Centralized architecture example

Heartbeat [29], and Corosync [56]. In addition, as the management servers share a common
MySQL database, MySQL own high availability (HA) solution (e.g. MySQL replication [3])
must be configured to provide database fault-tolerance. In other words, CloudStack does
not provide integrated self-healing mechanisms. Moreover, it also lacks self-configuration, op-
timization, and protection features. Regarding its interoperability, CloudStack implements
the EC2 interface. In [279], the OpenStack an open-source IaaS cloud computing system is
presented. OpenStack services (e.g. database) are designed to support HA. However, sim-
ilarly to CloudStack it is up to the system administrator to setup them in a fault tolerant
manner using the appropriate third party tools. Consequently, no integrated self-healing
mechanisms exists. OpenStack does not provide self-configuration, optimization, and pro-
tection features. For interoperability OpenStack implements the EC2 and OCCI interfaces.
In [167], Entropy is presented. In contrast to the previously introduced systems Entropy
supports self-optimization via for energy conservation. No self-configuration, healing, or
protection mechanisms are provided. Entropy integrates its own user interface using the
btrScript language [222]. Two similar system can be bound in [287, 122], where the authors
introduce pMapper (resp. vGreen). Both systems focus on self-optimization and do not
provide standard interfaces.

Finally, in [289], the design and implementation of the VMware Distributed Resource
Scheduler (DRS) is discussed, a commercial VM management system. VMware DRS pro-
vides self-optimization. Moreover, in its commercial version HA features are available.
VMware DRS does not provide any self-configuration and protection mechanisms. With
respect to its interoperability VMware DRS implements its own interface called vCloud API.
Given the centralized nature of the presented systems they share common drawbacks: SPOF
and/or limited scalability. For example, in [157] VMware DRS is shown to have a limited
scalability for approximately up to 32 PMs and 3000 VMs.

2.3.5.2 Hierarchical Systems

One way to improve the system scalability is to utilize a hierarchical architecture. Only
a few works have investigated the use of hierarchical architectures for VM management.
In [233] the authors introduce Eucalyptus. Eucalyptus is based on static hierarchical architec-
ture. It is composed of three software components: node, cluster, and cloud controllers (see
Figure 2.14(a)). The Node Controller (NC) runs on each PM. NCs interact with the hyper-
visor in order to discover the available PM capacity (e.g. CPU, memory), control VMs (e.g.
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start, stop), and learn about the VM status (e.g. running, terminated) on behalf of the Cluster
Controller (CC). The CC runs on the frontend PM of a cluster. It places VMs on the NCs a
simple round-robin algorithm. VM placement is based on the PM information collected from
the NCs. The Cloud Controller (CLC) manages the CCs and implements the web services-
based user interface. The CLC also interacts with the CCs in order to support monitoring
information retrieval and resource allocation/deallocation enforcement. In its enterprise
version Eucalyptus provides HA features which rely on replicated software components.
For instance, in order to achieve CLC fail-over a redundant CLC must be installed which
will monitor the primary CLC and take over in case of its failure. No evaluation of the HA
mechanisms is publicly available. Finally, Eucalyptus does not support self-optimization,
configuration, and protection. For interoperability Eucalyptus implements the EC2 inter-
face. In [185], the authors introduce Mistral. Mistral is made of multiple controllers, the
so-called Mistral controllers which each controller managing a subset of PMs. The authors
argue that Mistral can be organized in a hierarchical manner to manage allow the manage-
ment of large-scale systems. However, only small scale experiments on 8 PMs and 20 VMs
are conducted to demonstrate the viability of the system. Indeed, no evaluation targeting
its scalability is presented. Finally, the system is limited to self-optimization and does not
implement any of the standard interfaces. No source code is publicly available.

2.3.5.3 Fully Decentralized Systems

Recently several research attempts have been made to design fully decentralized IaaS
cloud computing systems. In [247], the authors introduce Distributed VM Scheduler
(DVMS), a fully decentralized VM manager. PMs are organized in a ring (e.g. Chord [272])
with each PM being controlled by a software agent. For the sake of consistency with the pre-
vious graphs in this work we refer to this software agent as NC (see Figure 2.14(b)) DVMS
targets self-optimization and has been validated by means of simulation only. Another sys-
tem based on a ring architecture is proposed in [258]. Similarly to DVMS it focuses on self-
optimization and has been evaluated by simulation only.

In [216], the authors introduce V-MAN, a fully decentralized VM management system
based on an unstructured P2P network of PMs. Unlike, the previously introduced works
V-MAN is built on top of peer sampling service [183] which periodically constructs random-
ized system topologies in which each PM only knows a subset of other PMs, the so-called
neighbourhood. VM management is applied only within the scope of the neighbourhoods.
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V-MAN is limited to self-optimization. Moreover, it has been validated by simulation only.

2.3.5.4 Summary

Table 2.3.5.4 summarizes the results from our study. Particularly, it presents the systems,
their architectures, autonomy features, user interfaces, and implementation status. As it can
be observed, despite the ambitious vision of autonomic computing, some of its concepts
such as self-configuration, healing, and protection still did not find their way into today’s
cloud computing systems while others (i.e. self-optimization) are now slowly starting to get
adapted. Moreover, only a few systems implementing the self-management properties are
publicly available.

System Architecture Autonomy User Interface Implementation
OpenNebula [223] Centralized None EC2, OCCI Open source
OpenStack [279] Centralized None EC2, OCCI Open source

Nimbus [190] Centralized None EC2 Open source
CloudStack [275] Centralized None EC2 Open source

VMware DRS [289] Centralized Optimization,
Healing

vCloud API Closed source

Entropy [167] Centralized Optimization btrScript Open source
pMapper [287] Centralized Optimization - Simulation
vGreen [122] Centralized Optimization - Closed source

Rouzaud-Cornabas [257] Structured P2P Optimization - Simulation
DVMS [247] Structured P2P Optimization - Simulation

V-MAN [216] Unstructured P2P Optimization - Simulation
Mistral [185] Static Hierarchy Optimization - Closed source

Eucalyptus [233] Static Hierarchy Healing EC2 Open source

Table 2.1: Comparison of the IaaS cloud computing systems

2.4 Energy Management in Computing Clusters

We now review the related work on energy management in computing clusters. Energy
management in computing clusters can be achieved either by means of static or dynamic
power management (SPM resp. DPM) [104]. SPM, sometimes also referred to as low-power
computing is applied at design time of a system. For instance, by improving the CPU mi-
croarchitecture and/or using low-power CPUs. Most recent examples of systems following
this approach are the BlueGene/Q [105] supercomputers which are among the most energy
efficient computing systems available today [57]. On the other hand, DPM techniques are
used to save system power at run-time. This is typically achieved by leveraging low-power
states available on modern server components (e.g. CPUs). The contributions presented in
this thesis belong to the category of DPM. Consequently, we concentrate our discussion on
related DPM techniques.

This section is organizes as follows. First, the terminology is introduced. Then, well-
known server power measurement techniques are reviewed. The ability to measure the
server power consumption is the first step to identify the most power demanding server
components. After identifying the power measurement methods we present a typical server
consumption breakdown by its components and review traditional DPM techniques at
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server and cluster-level in non-virtualized environments. Server-level techniques typically
target power savings on an individual server, while cluster-level approaches focus on DPM
across multiple servers. Finally, DPM techniques in virtualized environments are presented.
Note, that while the traditional DPM available in non-virtualized environments were not ex-
plicitly evaluated in a virtualized environment they could be used to complement the DPM
techniques in virtualized environments.

2.4.1 Terminology

We now introduce the terminology used in this section. Particularly, we define the two
fundamental terms, namely power and energy. Beeing able to distinguish between the two
terms is essential in order to understand the ultimate objectives and differences of (resp.
between) power management and energy management mechanisms in computing clusters.

Electrical power is defined as the rate at which electrical energy is transferred by a circuit.
It is measured in Watt or Joules per second. Electrical power is computed by multiplying the
Current (I) with Voltage (V) (see Eq. 2.1).

P = I ×V (2.1)

Current represents the amount of electrical charge (i.e. number of coulombs) flowing over
the wire per second, referred to as Amperes (Amps). Voltage represents the change in elec-
trical potential energy per unit of charge on the wire. It is measured in joules per coulomb.
There is a direct relationship between I and V in the sense that, the greater the voltage the
more current will flow. On the other hand, energy is a quantity typically measured in Watt-
seconds (Ws). It is defined as power consumed over a period of time (see Eq. 2.2).

E(T) =
∫ T

0
P(t)dt. (2.2)

Given that power is an instant value while energy is the integral of power over a period of
time, computing clusters can either implement power management or energy management
mechanisms. The primary objective of power management is the ability to cap the system
power usage at any discrete point in time. This is typically achieved by defining a power usage
upper bound and integrating mechanisms able to enforce this upper bound by either slow-
ing down or turning off system components or the entire system. The power capping ability
allows data center providers to deploy more servers at a given data center power budget
(e.g. 1 MW) without risking to exceed the data center infrastructure (e.g. power distribu-
tion, cooling) capabilities during periods of high server utilization. Note, that power efficient
systems can significant degrade application performance to achieve their goal. For instance,
an abrupt CPU slowdown on the servers could result in a significant performance (i.e. ex-
ecution time) degradation of running applications [283] thus increasing the overall energy
consumption. On the other hand, the primary objective of energy management technique is
to reduce the energy consumed. Consequently, they aim at reducing the total power consumed
over a period of time without significant applications performance degradation. In order to
achieve this they often rely on low-level mechanisms (e.g. turning off servers) involved in
power management. While the definition of power management and energy management
appears clear in theory, in practise the distinction between the mechanisms is often blurry
as both terms are used interchangeably. The works presented in this section can be used for
both, power and energy management.
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2.4.2 Power Measurement Techniques

This section reviews the state of the art in data center power consumption measurement.
Beeing able to measure the power consumption is the first step towards designing new en-
ergy conservation techniques. We distinguish between power measurement techniques at
three levels: data center, server, and OS level. Data center power measurement techniques
allow to account for the data center IT infrastructure power consumption usage and effi-
ciency. Server level power measurements provide power usage information of the entire
server and its components. OS-level measurements provide the power usage at the level
of individual processes running on a server. Independent of the level power usage can be
accounted by means of direct, indirect, or hybrid power measurements. Direct power mea-
surements are typically performed using hardware which is either embedded into the equip-
ment (e.g. server, servers components) or externally attached. On the other hand, indirect
power measurements are performed by estimating the power usage using power models.
Indirect power measurements are especially beneficial due to their ease of integration (i.e.
no additional hardware is required). Finally, hybrid power measurements combine both,
indirect and direct power measurements.

2.4.2.1 Data center level

One major contributor to today’s data center power consumption is their physical in-
frastructure (e.g. power and cooling equipment) which is used to support the IT equipment
(e.g. compute, storage, network). Studies have shown that physical infrastructure alone can
amount to more then 50% of the total data center power usage [128] (see Figure 2.14).

Figure 2.14: Data center power consumption breakdown [126]

As it can observed, while power efficiency optimization of the IT equipment are certainly
important, physical infrastructure is a very good candidate for power usage optimization
(e.g. cooling equipment update). However, the first step towards beeing able to optimize
the physical infrastructures power usage and compare it with other data centers is the ability
to measure its power efficiency. In 2007, The Green Grid [156] proposed two metrics to account
for the physical infrastructure power efficiency, namely Power Usage Effectiveness (PUE)
and its reciprocal Data Center infrastructure Efficiency (DCiE) (see Eq. 2.3 resp. Eq. 2.4).
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PUE :=
Total DC power

IT equipment power
(2.3) DCiE :=

IT equipment power
Total DC power

× 100 (2.4)

PUE is defined as the ratio of the total power entering the data center to the power used
by the IT equipment. In the ideal world a PUE of 1 is desirable. This would imply that all
power which goes into the data center is consumed by its IT equipment. Obviously, the real-
ity looks different as some power is required to support data centers physical infrastructure.
Moreover, the actual PUE heavily depends on the current IT infrastructure load and physi-
cal infrastructure conditions [228]. For example, when the IT infrastructure is fully utilized
(∼ 99%) it will typically imply a higher IT equipment power usage thus decreasing the data
center PUE. This implies that instant PUE measures are not necessary the same as the ones
over a period of time (e.g. daily, weekly, monthly, or yearly). Modern well-utilized data
centers are able to achieve a PUE close to 1.12 (e.g. Google in the 2nd quarter of 2012 [24]).

DCiE can be used to capture what percentage of the power entering the data center was
consumed by the IT equipment. It is is computed as the ratio of IT equipment power to the
total data center power usage and the result is multiplied by 100 to get the percentage. For
example, a PUE of 1 corresponds to a DCiE of 100% meaning that 100% of data center power
usage was spent to power the IT equipment (a pure hypothetical example). To enable the
computation of PUE and DCiE, power which is entering the data center and the one used by
the IT infrastructure must be measured. Power used by the data center can be captured the
utility meter. IT infrastructure power can be measured at the output of an Uninterruptible
Power Supply (UPS). UPS provides backup power to the IT infrastructure during periods of
power grid outages. It is plugged in between the power grid and the IT infrastructure.

2.4.2.2 Server level

Server level power measurements can be divided into two categories: (1) entire server;
(2) server components. The former approaches target power measurements of the entire
server while the letter aim at taking fine-grained power measurements of the individual
server components. In the following two paragraph both methods are detailed.

Entire server. One way to measure the power consumption of the entire server is to use a
metered Power Distribution Unit (PDU). Metered PDUs are used to power the servers
in most of the modern data centers. They can be easily accessed using the Simple
Network Management Protocol (SNMP) protocol [102]. In case a metered PDU is not
available, power meters such as Watts up PRO [63] can be used. Finally, Advanced
Configuration and Power Interface-enabled Power Supply Units (PSUs) can be lever-
aged to obtain the server power consumption. Alternatively, in case external hardware
is not available, the Intelligent Platform Management Interface (IPMI) [179] can be used
to access the power sensors available on modern servers. IPMI is a standard which is
typically supported by a Baseboard Management Controller (BMC), a hardware chip
which is embedded into most of the modern servers. BMC can be accessed either lo-
cally through the OS or remotely using the dedicated BMC network card. Note, that
a BMC operates independently of the server OS and thus can be accessed despite of
OS failures and without the need of the server to be powered on (i.e. connection to the
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power grid is enough). Finally, server remote management cards such as Dell Remote
Access Controller (DRAC) [218] can be used to obtain the power consumption data.
Figure 2.15 provides a graphical overview of the introduced techniques.

PDU Watt Meter PSU DRACBMC

Figure 2.15: Examples of server-level power measurement techniques

Server components. Often measuring the power usage of the entire server is not accurate
enough. Indeed, in order to get a better understanding where most of the power in a
server is spent, a power consumption breakdown by server components is required.
One naive approach to obtain the server components power usage is to look at the
components data sheets. However, data sheets only provide information regarding the
components designed peak power usage. Moreover, data sheets neither account for the
correlation between server utilization and power consumption nor the average power
consumption. Another, more accurate approach is to plugin a digital meter between
the servers Direct Current (DC) lines and the server components [146]. However, it is
not always possible to separate all the components as many of them share the same
power plane (e.g. some multicore processors and memory chips). Separating DC lines
is at most appropriate in a research environment.
As we have observed, the lack of integrated power measurement hardware can make
the server components power usage measurement a complicated task. Another, more
promising power measurement approach is instead of relying on specific hardware,
to take indirect power measurements. Particularly, most of the m modern CPUs in-
clude additional registers, the so-called hardware performance counters that can be
used to monitor various low-level system events (e.g. TLB misses, cache hits). These
events are exported by the OS and can be leveraged by software (i.e. applications, li-
braries) which integrates power models to estimate the CPU and even the entire server
power consumption [263]. Moreover, the actual servers components utilization can
be used as input for power models [130]. Estimations based on performance coun-
ters and other metrics (e.g. utilization) do not require additional power measurement
hardware. However, their accuracy heavily depends on the underlying power model
and the choice of its parameters (e.g. counters, weights) [114].

After being able to measure the server and its components power consumption, metrics
and benchmarks are needed to compare the energy efficiency of different servers. One metric
which has gained a lot of attention during the last years is FLOPS (Floating Point Operations
Per Second) per watt. FLOPS is particularly a good measure for scientific applications which
generate many floating-point numbers. Consequently, the metric itself is particularly inter-
esting in the area of supercomputing. For example, it is used by The Green500 List [138] to
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rank the most energy efficient supercomputers. Probably the most known benchmark today
implementing the FLOPS per watt metric is SPECpower [200], an industrial effort to develop
a benchmark able to evaluate the performance and energy efficiency of server. Another in-
teresting benchmark is JouleSort [252].

2.4.2.3 OS level

While the power measurements at the server level help to understand the servers hard-
ware power consumption, they are unable to account for the application 3 power usage. Un-
derstanding the application power usage is crucial in order to facilitate application power
efficiency improvements and enable power-aware application scheduling. Power measure-
ments at the OS-level are either based on indirect power measurements using power mod-
els or rely on hybrid approaches thus requiring a combination of indirect and direct mea-
surements. In [124], the authors introduce pTop, a process-level profiling tool. pTop is
implemented as a service at the kernel-level and provides application power usage esti-
mations based on power models which rely on the applications resource (e.g. CPU, mem-
ory) utilization. pTop does not require additional hardware. A similar work can be found
in [232], where the authors introduce PowerAPI, an application power consumption pro-
filing library. In contrast to pTop, PowerAPI is more modular and implemented in user-
space. Closely related works based on indirect application power measurements include
PowerTop [48], JouleMeter [187], and Intel Energy Checker SDK [34]. Considering hybrid
approaches, in [141] PowerScope is proposed, a tool supporting applications energy con-
sumption profiling. In contrast to the previously introduced works, PowerScope requires
additional hardware instrumentation. It is therefore more complicated and less flexible than
approaches which are based on power models. Nevertheless, thanks to hardware instrumen-
tation, hybrid approaches are able to learn an accurate server power model and thus provide
more accurate predictions. For example, JouleMeter is known to output better results once
complemented with an external power meter.

2.4.3 Energy Management in Non-Virtualized Environments

We now discuss the DPM techniques available in non-virtualized environments. First,
we investigate on which hardware subsystem (e.g. CPU, memory) most of the power sav-
ings can be achieved. Being able to understand where most of the power is spent is crucial
in order to design energy saving techniques yielding the most energy savings. Then, we
introduce DPM approaches available at the server and cluster-level. DPM techniques at the
server-level can be divided into two categories: fine-grained and course-grained. Fine-grained
approaches focus at either the server components (e.g. CPU, memory, disk, Network In-
terface Card (NIC)) or software (e.g. file system, compiler). DPM techniques targeting the
server components either slow down (i.e. do less work) or turn off (e.g. shutdown, suspend)
the server hardware. On the other hand, DPM targeting the software attempt to perform
optimizations at the software level. For instance, by integrating energy-aware data layout
policies in the file systems or optimizing the compilers to perform less CPU instructions.
Finally, course-grained server-level DPM approaches attempt to design servers able to en-

3. We define an application as a set of one or multiple processes.
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tirely and rapidly transition between active and low-power states thus avoiding the need of
fine-grained DPM techniques.

2.4.3.1 Power Breakdown by Hardware Subsystem

Figure 2.16 visualizes the peak power usage breakdown by hardware subsystem of a
Google data center (∼ 2007).

Figure 2.16: Google data center peek power breakdown by hardware subsystem [170]

As it can be observed CPU (33%) and memory (30%) require substantial amount of power
and this numbers are most likely to increase in the future. For instance, studies have shown
that in order to power a 2 terabyte in-memory database up to 57% of server power is re-
quired in a server which integrates 128 DDR3 DIMMS [303]. Moreover, given the current
trend of Big Data and the associated need to process large amount of data while achieving
high throughput, the need to save disk power consumption will become more and more im-
portant. Particularly, storage requirements are now taking new dimensions. Yahoo! which
is a major search engine and internet services provider as of today alone accommodates over
170 petabyte of storage [189]. Amazon S3 [11] which is one of the major cloud storage service
providers hosted over 762 billion objects and processed over 500 000 requests per second on
those objects during peek periods of load at the end of 2011 [88]. While the Amazon power
consumption statistics are not publicly available it is clear that hosting such large-scale stor-
age infrastructures requires tremendous amounts of power. Finally, while not explicitly men-
tioned on the Figure 2.16, Power Supply Units (PSUs) also contribute to the overall server
power consumption. Especially low-end PSUs consume a significant amount of the total
server power due to their low Power Efficiency (PE) of approximability 70-75% [280]. On
the other hand, high-end PSUs can achieve power efficiency which goes beyond 90% [176].
The reason for the PE variations lies in the power losses experienced by the PSUs while con-
verting high-voltage Alternating Current (AC) from the power grid to a low-voltage DC as
required by the servers components. Particularly, in order to switch from higher AC volt-
age (e.g. 220 V) to lower DC voltage (e.g. 12 V) additional circuits are required inside the
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PSU. These circuits convert the voltage and inevitably loose some energy in the form of heat,
which then needs to be dissipated by additional fans inside PSU. PE is defined as the ratio
between the DC output to the AC input power. Consequently, for a 90% power efficient
labeled PSU to produce 400 W DC output, approximability 444 W AC input are required,
resulting in 44 W beeing lost in the form of hear. Note, that the PE of a PSU heavily depends
on the power load imposed on the PSU, number of circuits, and other conditions (e.g. tem-
perature). Indeed, a PSU which is labeled as 90% efficient is not necessarily that efficient at
all power loads. For instance, when operated at 50-60% power load a PSU could achieve a
PE of 83.9%. However, when operated at power loads below 30% the PE could degrade to
69% and even more [280] depending on the PSU. For the best PE it is therefore important to
choose PSUs according to the expected load. To reward highly power-efficient PSUs the 80
PLUS Certificate [7] was established which is handed out to PSUs with a minimum power
efficiency of 80% at 20%, 50% and 100% of their rated load.

We can conclude that it is clear that focusing on CPU and memory as the only subsystems
for power-optimizations is not enough anymore. Indeed, a holistic power saving approach
covering all subsystems is desirable in order to achieve the maximum energy savings.

2.4.3.2 Fine-grained server-level DPM

This section reviews the fine-grained server-level DPM techniques with an emphasis on
the server hardware. Particularly, we focus on DPM mechanisms available at the CPU, mem-
ory, disks, and the NIC as they can be leveraged by the contributions presented in this thesis.
Note, that the discussion of server-level DPM approaches targeting the software (e.g. file
systems, compilers) is out of the scope of this work.

CPU. We start our discussion with the power saving techniques available for the CPU. They
can be divided into three categories: Dynamic Voltage and Frequency Scaling (DVFS), Core
Off/On, and Turbo Boost.

DVFS. DVFS is probably the most known CPU DPM techniques available since the
early days of mobile devices (e.g. smart phones, tablets, laptops), desktops, and high-
end servers. The key idea of DVFS is to reduce the CPU frequency and voltage during
periods of low utilization. Reducing frequency and voltage inevitably yields to de-
creased power consumption due to the nature of today’s Digital CMOS circuits (e.g.
CPUs) [239]. Particularly, CMOS circuits power consumption is composed of two
parts: static and dynamic. Static part is mostly the result of leakage current. It can be im-
proved during the CMOS circuit design. On the other hand, dynamic part dominates
the CMOS circuit power consumption as every charge and discharge of its compo-
nents (e.g. gates) requires additional power. The dynamic power consumption can be
approximated by the following equation [181]:

P = C× f ×V2 (2.5)

where C is the switching capacitance, f the switching frequency, and V the supply volt-
age. According to this equation a linear reduction in voltage yields quadratic power
savings. However, decreasing the voltage also lowers the transistors switching speed
which results in a reduced maximum CPU frequency. As a result, to guarantee proper
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CPU functionality the CPU frequency must be lowered to the reduced frequency. Low-
ering the frequency increases the application execution time which has a negative im-
pact on the energy consumption. Moreover, additional energy is required to rise the
frequency and voltage level back when required (e.g. during increased utilization). To
support different frequency/voltage settings CPUs expose a set of performance and
operating states (P-states resp. C-states) to the OS. P-states are the CPUs supported
frequency/voltage pairs when the CPU is turned on. Higher P-states lead to lower
power usage. For example, P3 requires less power than P0. C-states allow to turn
on/off internal CPU components. For example, a CPU in C-state 0 is considered as
turned on (all internal components are active) while a CPU in a higher C-state (e.g. 3)
could have all its internal clocks turned off. Note, that DVFS operates on P-states only
and requires the CPU to be in C0 state. Given the possibly negative effects of frequen-
cy/voltage reduction on application performance (i.e. executing time) it is clear that
deciding on the appropriate P-state is crucial to achieve both, good performance and
decreased energy consumption. Consequently, a lot of research has been done over
the past years to design and evaluate DVFS algorithms able to determine the appro-
priate CPU frequency based on the applications CPU utilization. DVFS algorithms can
be divided into two categories: interval-based and task-based [213]. Interval-based
algorithms divide the application execution time in intervals and attempt to find the
optimal CPU frequency for the upcoming interval based on CPU utilization from the
past intervals. This is typically achieved by keeping track of the applications CPU
utilization data and using prediction algorithms. Interval-based algorithms are sim-
ple, work transparently to the applications and can be implemented in a real system
as they do not require future CPU utilization knowledge. Such algorithms were first
studied in [293, 155]. On the other hand, task-based algorithms [300, 243] assume a
system which is composed of a set of applications with known deadlines (e.g. execu-
tion time and required number of CPU cycles). Once the deadlines are known they
attempt to set the CPU frequency just as high to meet the deadlines. Task-based algo-
rithms are often more energy-efficient than interval-based algorithms as they can pro-
vide a better energy vs. performance trade-off [140]. However, their strong assump-
tions makes them hard to implement and limits their application scope. Consequently,
most of today’s OS’s (Linux, Windows) implement interval-based DVFS algorithms.
For instance, in Linux the CPUfreq 4 infrastructure implements interval-based DVFS al-
gorithms at the kernel level using different governors. Recently, in [203] the authors
evaluate the effectiveness of interval-based DVFS algorithms on multiple generations
of AMD Opteron CPUs using the SPEC CPU2000 benchmark suite [164]. The results
show that while interval-based DVFS algorithms can yield energy savings when used
on older CPUs, energy consumption is increased when modern CPUs are used even with
memory-bound workloads. The authors conclude that saturation of CPU frequencies,
large static power, small dynamic power ranges, and improved sleep-states will fur-
ther lower the benefits of DVFS in the future.

Core Off/On. Given the limitations of DVFS, in [207] the authors propose Per-Core
Power Gating (PCPG). The key idea of PCPG is to allow the deactivation of individual
cores by cutting down their voltage supply during periods of low utilization. PCPG

4. CPUfreq - http://www.kernel.org/doc/Documentation/cpu-freq/

http://www.kernel.org/doc/Documentation/cpu-freq/
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is shown to save 30% more energy than DVFS. Moreover a hybrid approach imple-
menting both techniques resulted in approximability 60% energy savings. PCPG is
now supported by Intel Nehalem microarchitecture based CPUs and can be used by
the OS to turn off/on individual cores. In order to achieve this, CPUs provide an ex-
tended set of C-states. Particularly, a new Deep Power Down state known as C6 is
introduced. When a core enters this state its cache is flushed and the core state is saved
into the shared Last Level Cache (LLC). Power gates are used to completely shutdown
the core. In Linux, the CPUidle infrastructure [235] and its governors are in charge of
detecting idle cores and turning them off, similarly to what CPUfreq does for P-states.
However, before, cores can be turned off, idle times need to be created. In [269], the
authors show that in practise creating idle times on individual cores is hard to achieve
due occurring interrupts and timers. Interrupt, timer, and process consolidation are
used in the Linux kernel scheduler to maximize CPU cores sleep times once enabled.

Turbo Boost. Finally, another promising technique which can be used to save CPU
energy is Intel Turbo Boost [178]. Turbo Boost is integrated in the recent Intel CPUs
(e.g. Core i7). The key idea of Turbo Boost is to opportunistically increase the CPU
frequency and voltage when the basic conditions such as power consumption, temper-
ature, and current draw permit it. Turbo Boost is automatically activated by the CPU
while operating at the lowest performance-state (i.e. P0). In order to achieve this a
dedicated Power Control Unit (PCU) is embedded into the CPU. The PCU adjusts the
frequency/voltage of the processor by monitoring the CPU power consumption, tem-
perature, and current draw within a closed-loop feedback control. Thereby, given that
the constraints are not exceeded the frequency of all the cores can be either increased
or decreased in steps (e.g. 133 MHz for Nehalem architecture) when they are active. In
the case when only one core is active, its frequency can be modified in 266 MHz steps.
Turbo Boost can be seen as a method to overclock the CPU in a controlled manner. It
enables to operate the CPU beyond the base operating frequency thus increase the per-
formance for some applications (e.g. CPU-bound). Increasing the performance allows
the applications to finish faster thus enabling the CPU to enter low-power sleep modes.
A very similar technique is also provided by AMD and is called Turbo Core [12].

Memory. Memory (e.g. DRAM) power management can be achieved either by power-
cycling (e.g. standby) memory chips or slowing them down. In [129], the authors
propose an analytical model for idle time approximation of DRAM chips. They eval-
uate the model using a trace-driven simulation and conclude that the best approach
is to transition the DRAM chips directly into a power-saving state instead of perform-
ing idle-time predictions. Close work can be found in [118], where the authors study
techniques for detecting memory module idleness and perform memory power man-
agement actions (e.g. standby modules). In [204], the authors study the effects of
different page allocation policies on the energy consumption. Simulation results show
that power-aware page allocation can achieve substantial energy savings. In [123], the
authors study dynamic memory power management approaches. Particularly, they
propose a number of techniques which automatically adjust memory module power
states depending on the load. Simulation results show that the proposed techniques
can limit the memory power consumption without significant performance degrada-
tion thus able to save substantial amount of energy. More recently, several works at-
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tempt to exploit techniques able to slowdown the memory modules instead of enter-
ing sleep states. In [114], the authors propose a novel method called Running Average
Power Limit (RAPL) for enforcing memory power limits. The key idea of RAPL is to
maintain an average memory power limit over a sliding time window. To enforce the
limit, Memory Power Limiting (MPL) states are used. Each MPL state results in a dif-
ferent memory bandwidth and power consumption. Experimental results show that
RAPL is able to enforce a memory power limits with minimal performance degrada-
tion. In [120], the authors present MemScale, a system which saves energy by applying
DVFS on the memory controller and dynamic frequency scaling on the memory chan-
nels and DRAM modules. Simulation results show that MemScale yields significant
energy savings.

Disk. One way save disk power is to spin down the device during periods of low utiliza-
tion. Particularly, most of the available disks provide power modes such as: active,
idle, sleeping. When a disk is active its disk platters are spinning and it can serve
I/O requests. On the other hand, when a disk is idle, it is spinning but not serving
requests. Finally, when a disk is sleeping the disk platters are not spinning thus the
disk is unable to serve I/O requests. In [210], the authors study the costs of spinning
down disks on portable computers and conclude that spinning down the disks can
eliminate almost all the consumed energy. In [163], the authors study the problem of
deciding when to spin down the disk. Particularly, they design a spin down predic-
tion algorithm based on machine learning. Using simulations the authors show that
the proposed algorithm can reduce the disk power consumption by half. In [214], the
authors assume a disk which is either spinning or sleeping and propose an adaptive
disk shutdown algorithm to save energy. The algorithm predicts batches of requests
and performs disk shutdown between the batches. Simulation results show that the
algorithm can save disk energy with limited performance degradation. In [161], the
authors present Dynamic Rotations Per Minute (DRPM). The key idea of DRPM is to
dynamically control the speed at which the disk rotates in order to provide fine-grained
power control thus avoiding the need to completely spin down and up the disks. Sim-
ulation results have shown that this technique is especially beneficial with short idle
times. A very similar approach can be found in [101] where the authors propose to use
disks supporting two speeds. Emulation results show that 20 to 30% of energy can be
conserved depending on the load and speed transition overheads. Finally, Solid State
Disks (SSDs) can be used to replace traditional Hard Disk Drives (HDDs) in order to
conserve energy. SSDs are much more performant and energy efficient then HDDs as
they do not integrate any mechanical parts. Indeed, according to [236] the average
power consumption of an SSD is 1.2 W only.

Networking Interface Card. In [227], the authors study the issue of power management in
network equipment (e.g. routers, switches, network interface cards) and argue for two
energy saving mechanisms: (1) Sleep states (e.g. shutdown) for network elements (e.g.
links) during idle times (i.e. when no packets are processed); (2) Rate adaptation (i.e.
slowdown) of network elements depending on the network load, an approach also
known as Adaptive Link Rate (ALR) [158]. Simulation results using real-world traces
of network topology and traffic data the authors show that both techniques can cut
the energy consumption by half for underutilized networks (10-20%). Other works
targeting ALR can be found in [160, 196, 159] where the authors study policies to de-
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termine when to change the link rate and approaches to combine both, sleep states
and ALR. Finally, in [69], the authors propose a system called Somniloguy. The key
idea of Somniloguy is to augment the NIC of desktop computers with a second low-
power microprocessor which is able to serve requests of Internet-enabled applications
(e.g. BiTorrent) even when the host system is transitioned to a sleep state (e.g. shut-
down). In order to achieve this an OS is embedded into the microprocessor which can
run either entire or parts of applications (e.g. file download). In case when the host
initiates a sleep request its network state as well as the state of the selected applica-
tions is synchronized with the microprocessor. Experimental results conducted in a
real environment have shown significant energy savings ranging from 60% to 80%.

2.4.3.3 Course-grained server-level DPM techniques

While a lot of work has been done over the past years to design fine-grained server-level
DPM approaches, not much research has been done on the design of course-grained server-
level DPM techniques. Indeed, this is a challenging task as it typically involves novel server
designs which are capable of rapidly transition between fully active and sleep states. One
prominent example of such an approach can be found in [220], where the authors introduce
PowerNap, a concept which aims at designing Blade servers able to rapidly transition between
full power active and ultra low-power nap state. Particularly, when a server is in an active state
(e.g. receives network packets) it is fully available at its highest performance. On the other
hand, when a server enters the nap state it only activates as much logic as needed to allow a
wake-up when new workload (e.g. network packets) arrives. This design greatly simplifies
the energy management mechanisms of individual server components as they only require
two states: active and nap. The authors show by simulations that servers designed following
the PowerNap principle can reduce average power consumption by 74%. Finally, in [75], the
authors argue that turning off entire servers can have a negative impact on the response
times once they need to be woken up in order to handle traffic spikes. They propose, a new
power-state, called barely-alive. Servers in such state have most of their components (e.g. all
cores) turned off. However, their memory is still reachable using a remote interface and thus
can be leveraged to perform cooperative caching. A middleware is designed to resize the
cooperative cache just as much to guarantee Service-Level Agreements (SLAs). Preliminary
results using a trace-driven simulation show that promising energy savings can be achieved.

2.4.3.4 Cluster-level DPM

In the previous section we have introduced the server-level DPM approches. Server-level
DPM approaches are basic mechanisms which can be used to save energy on an individual
server. However, before such mechanisms can be applied at cluster-level, first idle times need
to be created. Indeed, servers are rarely fully idle thus unless idle times are created, significant
performance degradation is to be expected for the hosted services when server-level DPM
approaches are applied. This section reviews the cluster-level DPM approaches. Cluster-
level DPM approaches aim at creating idle times necessary for the adaptation of server-level
DPM mechanisms. In this section we discusses the energy saving efforts for clusters of web
servers, batch systems, distributed file systems, and cluster computing frameworks (i.e. MPI
and MapReduce).
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Clusters of Web Servers Some work has been done to save energy in the context of clusters
of web servers. In [127], the authors study ways to save energy on clusters of web
servers. In this context they propose coordinated voltage scaling (CVS). The key idea
of CVS is to keep the same average frequency on all the cluster nodes. In order to do
so, a dedicated node is used to periodically collect the CPU frequencies of the cluster
nodes, compute an average frequency and instruct the cluster nodes to adjust their own
frequency to the newly computed one. In [103], the authors present Muse, an market-
based approach for managing resources (e.g. compute, storage) in hosting centers. In
Muse, customers bid for resources depending on the delivered performance. Through
experimental results the authors show that such an dynamic environment can decrease
the energy requirements by 29%. In [162], the authors have designed a web server clus-
ter which distributes the user requests such that the power, energy, throughput, and
latency are optimized. Particularly, the requests are distributed such that the maximum
number of nodes can be turned off. Nodes are automatically turned on when more re-
sources are needed. The authors show that their approaches requires 42% less energy
than a traditional web server with only 0.35% loss in throughput. Finally, in [246] the
authors propose a cluster configuration and load distribution algorithm which turns
off and on servers based on the expected performance and power consumption. The
algorithm is implemented at the application level in a web server as well as OS-level by
modifying the Nomad [244] single system image OS. The results show that significant
power and energy savings can be achieved.

Batch Systems Batch schedulers are job scheduling systems which are commonly used to
manage the resources (i.e. compute and storage) of most of the worlds supercom-
puters. While historically power management was not the primary concern in such
systems, it has gained a lot of attraction over the past years as supercomputers power
requirements are now starting to hit the data centers power budget constraints. A few
works have studied power management in batch systems. In [113], an energy-efficient
framework for grids called GREEN-NET [25] is introduced. GREEN-NET extends the
OAR [96] batch scheduler with a prediction module which makes use of the OAR fu-
ture resource (e.g. physical machine) reservation agenda in order to predict when next
reservations start. An advanced reservation is a certain amount of resources reserved
over a period of time. This way the framework can avoid turning off servers which
will be required in the near future. Moreover, in order to avoid frequent turning off
and on of resources due to fragmentation’s in the reservation agenda, the framework
employs an reservation aggregation mechanisms. The key idea of this mechanism is
to place reservations as close as possible to each other. The prediction part is now in-
tegrated in the production version of OAR which is deployed on the Grid’5000 exper-
imentation testbed [98]. In [302], the Simple Linux Utility for Resource Management
(SLURM) batch scheduler is introduced. SLURM integrates two power saving mech-
anisms: DVFS and node power down [54]. When node power down is used SLURM
will power down the servers after a system administration configured idle time in-
terval. In [149], authors introduce GreenSlot, a parallel batch job scheduler able to
leverage green energy (i.e. solar). Particularly, the key idea of GreenSlot is to schedule
the jobs such that the amount of green energy is maximized while meeting the job’s
deadlines as specified by the users. The authors have implemented GreenSlot as an
extension of the SLURM batch scheduler and evaluated it using realistic applications.
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The results show that GreenSlot can conserve up to 39% of energy and increase the
green energy usage by 117%. Finally, in [182], the Maui scheduler algorithms are pre-
sented. Moab Energy-Aware Resource Management [40] is a commercial version of
the Maui scheduler and integrates power management mechanisms such as workload
consolidation and turning off idle servers.

Distributed File Systems Distributed File System (DFSs) such as Hadoop DFS (HDFS) [276]
and General Parallel File System (GPFS) [259] have gained a lot of attraction over the
past years and are now used to manage petabytes of data distributed across thousands
of servers [189]. Some works have investigated the problem of power management
in DFS. In [189], the authors propose GreenHDFS. The key idea of GreenHDFS is to
split the physical nodes of the Hadoop DFS cluster into two logical zones: hot and
cold. Data which is frequently accessed is moved to the hot zone while data with
less frequent access patterns is moved to the cloud zone. This separation allows to
transition physical nodes from the cold zone into a power saving state (e.g. suspend).
Simulations using Yahoo! traces indicate 26% energy savings while performing cold
zone energy management. A very similar idea can be found in [245] where the authors
have studied energy management in disk array-based servers. Particularly, the main
objective was to concentrate most frequently accessed data (e.g. files) on as few disks
as possible in order create enough idle time for transitioning a large number of disks
into a power saving state, a technique known as Popular Data Concentration. Through
simulations the authors have shown that energy savings are only possible under very
low load. In [206, 73], the authors investigate the energy-efficiency of Hadoop DFS and
extend it with a new data layout and load balancing policy which distributes the data
block replicas such that the maximum number of nodes can be transitioned into a low-
power state while still guaranteeing data availability. This is achieved by maintaining
one replica of each data block in a subset of nodes called Covering Subset (CS). Such
a CS has the nice property that it guarantees data availability even if all nodes which
are not part of it are turned off. Experimental results show that CS can yield energy
savings at the cost of decreased performance. The same idea has been adapted by
the authors in [73]. In [74], the authors argue for a fine-grained power management
approach. Particularly, the key idea is to keep the disks always on and instead power-
cycle individual node components (e.g. slow down CPU, turn off individual cores
and/or memory banks) depending on the current system load. Experimental results
show that such an approach does not require significant changes in the DFS and still
achieves power-efficiency.

Cluster Computing Frameworks Some work has been done on power management in clus-
ter computing frameworks. In this document we review the power management re-
search targeting two prominent parallel computing models: MPI and MapReduce.

MPI. Studies have shown that CPU is not always the primary bottleneck of scien-
tific Message Passing Interface (MPI) application [145]. The key idea to save energy
in such applications is to lower the CPU frequency during memory and/or network
I/O intensive execution periods. For example, given that some phase of an application
is memory bound it is possible to reduce the CPU frequency during the execution of
this phase. Some research has been done in order to exploit this behaviour in order
to conserve energy. In [144, 188, 267] the MPI application is profiled and divided into
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phases. In each phase a different CPU frequency is set depending on its boundness. For
example, during a memory-bound phase the CPU frequency is decreased. A similar
work can be found in [172] where the authors propose a new DVFS algorithm with
on the fly CPU-boundness detection and CPU frequency setting. In [256], the authors
state that the problem of deciding when to change the CPU frequency is NP-hard. To
determine how close existing heuristics are from the optimal solution, a Linear Pro-
gramming (LP) approach is proposed to compute the bound on the achievable energy
savings for MPI applications. Experimental results show that heuristics which utilize
DVFS work well for certain applications while yield less energy savings for others.

MapReduce. MapReduce [117] has recently appeared as a promising parallel pro-
gramming model which allows to efficiently process large amounts of data (e.g. sets
of log files). The key idea behind the MapReduce programming model is to split the
data to be processed into equally sized (e.g. 128MB) chunks and process them (e.g. fil-
ter data) simultaneously on clusters of commodity servers. Recently, several attempts
have been made to improve the energy efficiency of the parallel data processing frame-
works implementing the MapReduce model (e.g. Hadoop MapReduce [278]). In [107],
the authors have studied the performance and energy efficiency of Hadoop MapRe-
duce jobs and proposed quantitative models to facilitate the development and admin-
istration of Hadoop MapReduce clusters. Such models are required in order to answer
questions such as how much energy a job consumes and how many nodes must be as-
signed to a MapReduce cluster to handle that job. In [199], the authors propose All-In
Strategy (AIS), a new MapReduce cluster energy management approach. The key idea
of AIS is to transition entire MapReduce cluster into a low-power sleep state when it is
idle and turn it on only when new workload is to be processed. The authors compare
their strategy with the CS approach presented in [206] and conclude that AIS is often
the better choice. In [296], the authors study the MapReduce performance and energy
efficiency in two cases: (1) varying number of worker nodes; (2) DVFS-enabled worker
nodes to scale the frequency and voltage depending on the worker node load. Exper-
iments conducted on eight power-aware nodes show that substantial energy savings
are possible. However, the energy savings depend on the workload characteristics,
number of worker nodes, and the selected DVFS policy. In [100], the authors investi-
gate the energy-efficiency of MapReduce in a virtualization environment. Particularly,
they propose a VM placement algorithm which aims at collocating MapReduce VMs
with similar run-times as well as complementary resource (e.g. CPU) demands. Col-
locating MapReduce VMs with similar run-times allows to turn off servers directly
once all VMs have finished executing. On the other hand, exploiting complementaries
between the VM resource demands improves the server utilization and avoids VM
performance problems. Indeed, VMs with complementary resource demands mitigate
performance degradation by avoiding bottlenecks on shared server subsystems (e.g.
CPU caches, memory busses). Simulation results show that the proposed VM place-
ment algorithms perform 20-35% better than traditional ones (e.g. Random First-Fit)
in terms of energy savings. In [151], the authors propose GreenHadoop, an extended
version of the Hadoop MapReduce [278] for data centers with green energy (i.e. so-
lar) available. GreenHadoop first estimates future green energy availability and jobs
approximate energy requirements. The estimations are then used to guide MapRe-
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duce job scheduling decisions. Particularly, the jobs are scheduled such that the use
of green energy is maximized while still preserving job execution time boundaries.
Jobs are either delayed until green energy is available or scheduled during periods
of cheap brown energy by respecting their deadlines. Experimental results achieve
substantial energy savings while maximizing the use of green energy as compared to
native Hadoop MapReduce. A closely related work aiming at maximizing the use of
green energy based on predictions in MapReduce clusters can be found in [70]. Finally,
in [106], the authors propose Berkeley Energy Efficient MapReduce (BEEMR). BEEMR
leverages the fact that interactive jobs often operate only on a subset of data. Conse-
quently, they can be processed by a small set of servers while transitioning the remain-
ing servers into a power saving state. On the other hand, less critical jobs can be queued
and executed in batches on the remaining cluster servers using the AIS strategy. This
work combines concepts introduced in [189, 199, 206]. Using real workload-traces from
Facebook the authors show that BEERM can achieve between 40-50% energy savings.

2.4.4 Energy Management in Virtualized Environments

DPM techniques can be categorizes in two types: application-aware and application-
agnostic. Application-aware approaches considered the applications high-level QoS require-
ments (e.g. response time) while performing the VM management tasks. Application-
agnostic approaches consider VMs as black-boxes and thus perform VM management de-
cisions solely based on VMs low-level QoS requirements (e.g. requested number of cores,
RAM, memory, networking resources). Application-agnostic techniques are typically un-
able to provide high-level application QoS guarantees. However, especially in the context
of IaaS clouds (e.g. Amazon EC2) this is not always desirable as the users applications are
typically unknown. In this work we focus on the application-agnostic DPM techniques and
briefly review the application-aware DPM approaches at the end of the section.

2.4.4.1 Problem Statement

Application-agnostic DPM in virtualized environments can be decomposed into three
parts: VM placement, underload and overload management, VM consolidation, and power
management. The former three parts integrate algorithms to favour the creation of idle PMs
and resolve overload situations. The latter part is used to detect idle PMs and transition
them into a low-power state. Idle PMs are PMs which do not accommodate any VMs for a
predefined amount of time. As the major challenges appear in the former three algorithmic
parts we focus our discussion on those.

The problem of VM placement arises when users of a cloud management system attempt
to submit VMs. The cloud management system then must find the appropriate PMs to ac-
commodate the VMs such that the number of used PMs is minimized. This is achieved by
considering the VMs static resource requirements (e.g. number of VCORES, memory). In-
deed, at the time of VM submission no historical VM resource utilization data is available.
In a cloud management system which considers the actual VM resource utilization after the
VM placement, PM underload and overload situations can occur due to inefficient VM re-
source utilization (resp. overcommitted PMs). For example, when a PM is underloaded it is
beneficial to move all its VMs to other PMs in order to transition the underloaded PM into a
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power-saving state (e.g. suspend). This is typically achieved by estimating the VMs resource
utilization based on the previouvly collected VM monitoring data, finding PMs with enough
capacity to accommodate the VMs, and finally moving the VMs (see Figure 2.17).
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Figure 2.17: Underload mitigation and VM live migration example

However, as the result of VM movements, other PMs can become overcommited as they
would be hosting more VMs than their physical resources can accommodate. This can result
in an overload situation during periods of high resource utilization when the aggregated
VM resource utilization exceeds the total PMs physical capacity. Consequently, overload
management mechanisms are required in order to detect overload situations and decide
which VMs and to which PMs they should be migrated from the overload PMs.

Complementary to the VM placement as well as the overload and underload manage-
ment algorithms, VM consolidation can be used to periodically (e.g. daily, weekly) repack al-
ready placed VMs on the least number of PMs. This is especially useful in order to mitigate
resource fragmentation on PMs which are neither underloaded nor overloaded. Resource
fragmentation can prevent new VMs from beeing submitted to the system despite available
capacity. For instance, in the most basic example on a system with two compute nodes A
and B that are equally loaded to 60%, when a user submit a VM requesting 50% of capac-
ity not enough resources are available place the VM on any node. However, given that one
VM can be migrated from node B to A in order to decrease node B load to 50%, the users
VM can be placed on node B. Moreover, repacking already placed VMs on the least number
of PMs also facilitate the creation of idle times which are required in order to power down
over-provisioned PMs.

In contrast to the VM placement problem which does not manipulate already placed
VMs, VM consolidation requires to migrate existing VMs. Particularly, given that VMs are
already assigned to PMs, a new solution (i.e. VM to PM assignment) must be computed
which minimized the number of used PMs. Thereby, depending on the VM consolidation
algorithm multiple solutions could exist which all yield the same number of used PMs. How-
ever, in order to arrive to the new solutions starting from the current VM to PM assignment,
a different number of migrations is required. This adds another dimension to the problem as now
the number of migrations needs to be minimized along with the number of PMs. Minimizing the
number of migrations required to reach the newly computed consolidated state is manda-
tory as every useless VM live migration consumes additional resources (e.g. CPU capacity,
network bandwidths) and yields unnecessary application performance degradation. Conse-
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quently, VM consolidation algorithms must be designed to take the current VM placement
into account while computing a solution. Depending on the system used, VM consolidation
algorithms can be based on either estimated VM resource utilization information or on the static
VM resource requirements as specified by the user during VM submission. Note, that depend-
ing on the cloud management system design, VM consolidation can be also used to resolve
underload/overload situations by simply triggering it in the event of underload or over-
load situations. Obviously this would have a cost in terms of the number of migrations as
potentially VMs from non underloaded/overloaded would need to be migrated.

In the following sections we present the related works targeting VM placement, under-
load & overload management, and VM consolidation. We classify the related works based on
their provided properties and features. First, we present the algorithm used. Different types
of algorithms can be utilized to solve the aforementioned problems. For instance, greedy,
metaheuristic, or mathematical programming (i.e. linear programming and constraint pro-
gramming) algorithms. Then, we study the considered resources. Many algorithms base
their decisions either on a single VM resource (e.g. CPU) or multiple VM resources (e.g.
CPU, memory, network). After knowing which resources are considered it is important to
know how the VM resource utilization is taken into account. In other words, do the algorithms
operate on static or dynamic VM resource demands. Another important aspect is heterogeneity.
Particularly, PMs can be either homogeneous or heterogeneous in terms of their hardware.
It is therefore important to know whether the proposed approaches target homogeneous or
heterogeneous PMs. While the works presented in this section aim at facilitating the creation
of idle times, ultimately power management mechanisms (e.g. DVFS, PM on/off/suspend) are
required in order to save energy. Consequently, we indicate whether power management
mechanisms are available or not in the presented works. Last but not least two aspects are
important: evaluation and workload. Evaluation indicates whether experiments or simula-
tions have been performed to evaluate the algorithms. Workload indicates whenever real
applications, synthetic benchmarks, or application traces were used in the evaluation.

2.4.4.2 VM Placement

The VM Placement Problem (VMPP) can be reduced to an instance of the Multi-
Dimensional Bin Packing Problem (MDBPP) [268] which is known to be NP-hard [284, 266].
When mapped to the MDBPP the PMs represent the bins and the VMs the items to be packed.
Each PM has a predefined static total (e.g. CPU, memory, network) capacity vector and each
VM is assigned with a static requested capacity vector. The goal of VM placement is to
assigned the VMs to PMs such that the number of PMs is minimized. Thereby, PMs can
be either empty or already have some VMs assigned. In this section, we first give a formal
VMPP definition by presenting a Binary Integer Programming (BIP) model. Then, we review
the available algorithms to solve the introduced model.

Formal Problem Definition We now present Binary Integer Programming (BIP) model for
the VMPP problem. The BIP model introduced in this section assumes empty PMs.
However, it can be generalized for the case of pre-filled PMs by simply assuming that
PMs already have VMs assigned. Let P denote the set of PMs and V the set of VMs,
with n = |P| and m = |V| representing the number of PMs and VMs. PMs are rep-
resented by d-dimensional total capacity vectors TCp := {TCp,k}1≤k≤d. In this work
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three dimensions are considered (d = 3). Each dimension k represents the PMs capac-
ity of resource Rk ∈ R with R being defined as R := {CPU, Memory, Network}. VMs
are represented by static requested capacity vectors RCv := {RCv,k}1≤k≤d with each
component specifying the requested VM capacity of resource Rk. Finally, in order to
complete the BIP model, we define the following two decision variables:

1. PM allocation variable yp, equals 1 if the PM p is chosen, and 0 otherwise.

2. VM allocation variable xv,p, equals 1 if the VM v is assigned to the PM p, and 0
otherwise.

The objective is to place the submitted VMs such that, the number of PMs used is
minimized. This is reflected in our objective function (2.6).

Minimize f(P) =
n−1

∑
p=0

yp (2.6)

Subject to the following constraints:

m−1

∑
v=0

RCv,kxv,p ≤ TCp,kyv, ∀p ∈ {0, . . . , n− 1}, k ∈ {0, . . . , d− 1} (2.7)

n−1

∑
p=0

xv,p = 1, ∀v ∈ {0, . . . , m− 1} (2.8)

Constraint (2.7) ensures that the capacity of each PM is not exceeded and constraint
(2.8) guarantees that each VM is assigned to exactly one PM.

Greedy algorithms. We now first discuss the traditional greedy algorithms to solve the
VMPP. Greedy algorithms construct a solution step by step by taking local best deci-
sion. Thereby, already taking decisions are never reverted. Such algorithms are very
good candidates for the VMPP due to their low-degree polynomial-time worst-case
complexity and ease of implementation. However, because of the local decision tak-
ing procedure greedy algorithms do not necessarily yield global optimal solution (i.e.
VM to PM assignment). Greedy algorithms for VMPP can be decomposed into online
and offline algorithms. Online algorithms assign VMs to PMs as they arrive. In other
words, they have no prior knowledge of all the VMs which will be submitted in the
future. On the other hand, offline algorithms do have the knowledge about all the VMs
to be assigned thus they are able to sort them beforehand. One well known online algo-
rithm is First-Fit (FF). The offline version of it is called First-Fit Decreasing (FFD) [304].
In FF, VMs are assumed to arrive sequentially and are placed on the first PM which
can accommodate them, starting from the first PM sorted according to a predefined
metric (e.g. available resources, power efficiency). For example, when a cluster spans
three PM having respectively 30, 50 and 40% of free CPU capacity and a new VM is
to be placed which requires 20% of capacity, this VM is placed on the first PM. Af-
terwards, the algorithm will try to place subsequent VMs starting again from the first
PM. In FFD, when a set of VMs is to be placed the algorithm is improved by presorting
the VMs in decreasing order according to their resource demands prior assignment.
Similarly, PMs can be sorted in decreasing order according to their power efficiency.
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Note, that since VM’s resource demands and PM’s capacities are represented as multi-
dimensional vectors, sorting VMs and PMs requires to choose an ordering function
like the L1 norm [294]. Previous works have shown that FFD requires no more then
11/9 OPT + 1 bins with OPT beeing the optimal number of bin [304]. Other examples
of online algorithms are Best-Fit (BF), Worst-Fit (WF), and Next-Fit (NF). Similarly to
FF they can be easily transformed in offline versions by presorting the VMs. A lot of
work has been done over the past years to apply such algorithms to the VMPP.
In [112], the authors present the worst-case and average-case complexity of the FF, BF,
WF, and NF algorithms. A similar work can be found in [284] where the authors reduce
the VMPP to the MDBPP and prove that it is NP-hard.
In [205], the authors investigate the MDBPP and propose two new greedy algorithms,
namely Choose Pack and Permutation Pack. Simulation results using synthetic bench-
marks show that both algorithms outperform the FF algorithm. This work considers
CPU only and targets homogeneous PMs.
In [209], a framework called EnaCloud is introduced. In contrast to algorithms such as
FF which do not migrate existing VMs during the VM placement, EnaCloud attempts
to displace existing VMs in favour of the to be placed VM. The key idea is that less
utilized VMs are more likely to fill the resource gaps available on the destination PMs.
Particularly, when a new VM is to be placed, EnaCloud attempts displaces less utilized
VMs with the new VM. The displaced VMs are then reinserted into the system using
an algorithm such as FF. Experimental results using synthetic benchmarks show that
proposed algorithm achieves approximability 10% and 13% more energy savings as FF
(resp. BF). This work assumes homogeneous PMs and considers CPU utilization only.
In [99], the authors argue that all existing VM placement algorithms fail to leverage
the Min, Max, and Share (MMS) parameters available on modern hypervisors (e.g.
Xen) thus preventing them from providing differentiation between VM priorities. Min
parameter allows to set a minimum amount of required VM resources. On the other
hand, max allows to set an upper bound on resources a VM is allowed to use. Finally,
share can be used to guide the VMM scheduling decisions. Differentiation between ap-
plications is particularly useful in enterprise data centers where VMs by nature have
different priorities. For instance, the web request load balancer VM is of a higher prior-
ity as a private development server. In that case the load balancer should be assigned
more resources (e.g. CPU) as the development server. However, traditional VM place-
ment approaches ignore theses facts by treating all VMs equal. This can result in a
significant performance degradation depending on the system load. Particularly, the
authors show that MMS parameters become increasingly important at high loads. Con-
sequently, they develop a suite of techniques taking into account the MMS parameters
while performing the VM placement and come up with a novel VM placement al-
gorithm called PowerExpandMinMix. Simulation results using randomly generated
data as well as small scale real data center experiments show that MMS parameters
can improve the data center utilization by 47% and more. This work considers CPU
utilization only and is limited to homogeneous PMs.
In [288], the authors analyze the characteristics of enterprise workloads and attempt
to find correlations between their resource demands. They find that while minimizing
the number of PMs as part of VM placement can yield significant power savings unless
correlations are not taken into account performance degradation can limit the potential
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energy savings and degrade VM performance. Based on their workload characteristics
analysis they propose new algorithms in order to avoid placing positively correlated
VMs on the same PM. Instead, the algorithms collocate negatively correlated VMs.
Negatively correlated VMs have the property that their probability to exhibit a peak
resource utilization at the same time is low (∼1%). Experimental results using CPU
utilization traces prove the viability of the proposed algorithms. The major drawback
of this work is that it considers CPU only and is limited to homogeneous PMs.
In [271, 270], the authors present simulation results for many of the well-known greedy
algorithms (e.g. FF, Choose Pack, Permutation Pack) applied on the MDBPP in the
context of virtualized environments. They find the Choose Pack algorithm to be the
fastest one. This work is further extended in [242, 91] where the authors take into
account DVFS capabilities and power consumption constraints. Simulations using a
mix of application traces and randomly generated input data sets were used to verify
the algorithms. This work targets homogeneous PMs and considers CPU and memory.
It is extended in [270] to consider heterogeneous PMs.
In [212], two new VMPP algorithms are proposed: Dynamic Round Robin (DRR) and
a hybrid algorithm which combines DDR with FF. Simulations are used to compared
both algorithms with the greedy, round robin, and power save algorithms of the Eu-
calyptus cloud management framework. DDR and the new hybrid algorithm are re-
ported to decrease the power requirements by 56.5% (resp. 55.9%) compared to the
traditional round robin algorithm. This work is evaluated using experiments as well
as simulations. It considers CPU utilization only and is limited to homogeneous PMs.
Finally, in [150], the authors propose a new VM placement policy called Cost-
driven Scheduling Policy (CDSP). CDSP considers the energy efficiency, virtualiza-
tion overheads, and SLA violations during the placement. Simulation results based on
Grid’5000 as well as web traces show that the proposed algorithm outperforms simple
algorithms such as round-robin and backfill by 30% in all the mentioned aspects. This
work supports heterogeneous PMs. However, it focuses only on the CPU utilization.

Meta-heuristics. Another category of algorithms suitable for solving the VMPP are meta-
heuristics. Meta-heuristics are probabilistic algorithms which are able to compute near
optimal solutions to complex optimization problems (e.g. bin packing). Examples of
such algorithms include ant colonies [125] and genetic algorithms [152]. In [208], the
authors propose an Ant Colony Optimization (ACO)-based algorithm for solving the
One-Dimensional Bin-Packing Problem (ODBPP). Through simulations and randomly
generated data the authors show that combined with a local search their algorithm
could outperform the evaluated Genetic Algorithm (GA). This work has been further
refined in [95] by proposing an algorithm called AntPacking. AntPacking was shown
to perform at least as good as the best genetic algorithm. In [306], another ACO-based
algorithm for solving the ODBPP is introduced. Simulation results show that the algo-
rithm achieves better solutions than FFD. Finally, in [265] the authors define a generic
ACO algorithm for solving subset selection problems. As all the mentioned algorithms
target the ODBPP they all focuses on a single resource dimension. Finally, in [217], the
authors propose an probabilistic VM placement algorithm. A master PM which ac-
cepts the VM submission request, broadcasts the request to all the PMs in the data
center. Once a PM receives the request it computes an probabilistic assignment func-
tion which is based on the current and maximum allowed PM utilization. Servers for
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which the function returns a value greater zero respond to the master as beeing avail-
able to accommodate the VM. The master then randomly chooses a PM among the
ones which have responded. The major drawback of this algorithm is that it does not
scale due to the need to broadcast VM submission requests. Moreover, as the PMs do
not consider the requested VM capacity during the computation of the probabilistic
assignment function, many rounds are needed to assign the VMs. This work is eval-
uated using simulations and targets only one resource (i.e. CPU). Finally, in [253], the
authors design a genetic algorithm for the VMPP. Using simulations they show that
it can compute better (i.e. utilize less PMs with moderate performance degradation)
solutions (i.e. VM to PM assignments) than traditional greedy algorithms. This work
considers heterogeneous PMs. However, it is focuses on the CPU resource only.

Mathematical programming. Mathematical programming techniques such as Linear Pro-
gramming (LP) [260] and Constraint Programming (CP) [255] can be used to compute
the optimal solution to the VMPP by leveraging LP (resp. CP) solvers. Examples of LP
solvers are IBM ILOG CPLEX [33], Gurobi Optimizer [27], LP Solve [1], and GNU Lin-
ear Programming Kit (GLPK) [4]. The previously introduced BIP model can be imple-
mented with such solvers. On the other hand, prominent CP solvers include IBM ILOG
CPLEX CP Optimizer [31] and Choco [16]. The main advantage of mathematical pro-
gramming techniques over greedy algorithms and meta-heuristics is that they allow to
easily add additional constraints such as VM collocation and anti-collocation. More-
over, knowing the optimal solution can provide good insights on the quality of so-
lutions obtained using greedy algorithms or meta-heuristics. However, mathematical
programming approaches require exponential time to solve the VMPP optimally. Con-
sequently, they scale only to a small number of PMs and VMs. Moreover, the solution
time highly depends on the number of constraints and decision variables [271, 266].

LP, in particular Mixed-Integer-Linear-Programming (MILP) derives an optimal so-
lution to the VMPP using a branch-and-bound [115] algorithm. One example of us-
ing the LP approach for a problem related to VMPP can be found in [219] where the
authors introduce a server consolidation planning tool called ReCon. Server consol-
idation is a process of transforming older servers into VMs and packing the VMs on
less but powerful servers, a procedure also known as Physical-to-Virtual (P2V). Re-
Con allows system administrators to estimate the benefits from server consolidation.
In order to achieve P2V, ReCon collects CPU utilization traces from servers. It then
treats existing servers as VMs and issues VM to target server migration suggestions.
For instance, it can recommend to transform two servers into VMs and collocate them
on single PM. ReCon also supports VM placement constraints such as collocation and
anti-collocation. This is particularly useful when two VMs must be collocated on the
same PM or to prevent certain VMs from beeing collocated together. For instance, for
performance reasons one might want to collocate two VMs. On the other hand, le-
gal obligations might prevent two VMs from beeing collocated. In [253], the authors
solve the VMPP using LP and compare their results with a genetic algorithm. Simu-
lation results show that the genetic algorithms achieves close to optimal results and
requires significant less amount of time than LP. This work considers homogeneous
PMs. Moreover, it targets the CPU resource only. In [87, 266], the authors formulate
the Static Server Allocation Problem (SSAP) which is related to VMPP and compare its
LP solution with the one from FFD. Simulation results show that FFD computes close



2.4 – Energy Management in Computing Clusters 51

to optimal solutions. Moreover, the authors prove that SSAP is strongly NP-hard. The
proposed BIP model for SSAP supports CPU, memory, and networking resources as
well as heterogeneous PMs. However, its evaluation considers CPU traces only and
targets homogeneous PMs.

CP is an alternative approach to LP. Similarly to LP, decision variables, objective func-
tions to minimize or maximize, and constraints must be defined, which are then solved
using a branch-and-bound algorithm. However, in contrast to LP, CP supports logical
constraints and provides arithmetical expressions (e.g. integer division). Moreover, CP
does not assume mathematical properties of the solution space (e.g. linearity) while LP
requires the model to fall in a well-defined category (e.g. MILP). Nevertheless, both
approaches are orthogonal and can be combined in order to achieve better results. For
example, Constraint Satisfaction Problems (CSPs) [281] have been efficiently solved by
such hybrid methods [240]. Not much research has been done so far in order to apply
CP on the VM placement problem. The most prominent work can be found in [167]
where the authors model the VMPP as an instance of the CSP and solve it using CP.
Experimental results show that the CP approach outperforms the FFD heuristic in the
number of used PMs. This work assumes homogeneous PMs and considers CPU and
memory resources.

Table 2.2 summarizes the properties of the presented VM placement algorithms.

Approach Algorithm Considered
resources

Heterogeneity Evaluation Workload

[112, 284] Greedy ODBPP No Analytical
proof

None

[205] Greedy CPU No Simulations Synthetic benchmarks
[209] Greedy CPU No Experiments Synthetic benchmarks
[99] Greedy CPU No Experiments Randomly generated

[288] Greedy CPU No Experiments CPU traces
[271, 270] Greedy,

GA, LP
CPU, memory Yes Simulations Mix of Google traces

and randomly gener-
ated

[91, 242] Greedy, LP CPU, memory No Simulations Randomly generated
[212] Greedy CPU No Experiments

and simula-
tions

Randomly generated

[150] Greedy CPU Yes Simulations Grid’5000 and web
traces

[306, 208, 95] ACO ODBPP No Simulations Randomly generated
[265] ACO Subset selec-

tion
No Simulations Randomly generated

[217] Bernoulli
trial

CPU No Simulations Randomly generated

[253] LP, GA CPU Yes Simulations Application traces
[219] LP CPU No Simulations Application traces

[87, 266] LP CPU, memory No Simulations Application traces
[167] CP CPU, memory No Experiments Synthetic benchmarks

Table 2.2: Comparison of the VM placement approaches
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2.4.4.3 Underload and Overload Management

A lot of work has been done on underload and overload management over the past
years. In [297], the authors introduce Sandpiper a VM management system which is able
to detect and resolve overload situations. Sandpiper overload detection mechanisms flags
a PM as overloaded only if its aggregated resource (i.e. CPU, memory, network) demand
exceeds a predefined threshold for a long enough period of time. This way the system can
avoid performing useless migrations due transient resource demand spikes. Once overload
situations are detected the resolution mechanism is triggered. This mechanism works in two
steps: (1) local VM resource adjustments: (2) VM migrations. The former step attempts to
resolve the overload situations by changing the resource allocation of the VM locally. For
example, by adding more virtual CPUs, network interfaces, or memory depending on the
overloaded resource dimension. Otherwise, if not enough physical resources are available,
a load balancing algorithm is triggered which attempts to migrate the VMs from the most
overloaded PM to the least overloaded ones. Sandpiper resorts on a heuristic which first
sorts the PMs in decreasing order according to their utilization. It then takes the most loaded
PM, sorts its VMs in decreasing order according to their utilization and attempts to assign
this VMs to PMs starting from the least loaded one. If no suitable PM can be found the algo-
rithm proceeds with the next most loaded VM. This process continues for all PMs until their
utilization falls below a predefined threshold. The authors have evaluated Sandpiper in a
realistic environment and shown that VM live migration is a feasible technique for resolving
overload situations. The major drawback of Sandpiper is that it does not consider migrat-
ing VMs away from underload PMs for the purpose of energy savings. Moreover, it targets
homogeneous PMs. Finally, no power management mechanisms (e.g. node off/on) exist.

In [192], the authors detect underload/overload situations based on static thresholds
(low resp. high) and trigger greedy algorithms to resolve them. For instance, when an PM
overload situation is detected, an overload mitigation algorithm attempts to move some
VMs away in order to resolve the overload situation. This is achieved by first sorting VMs
on the overloaded PM in increasing order according to their utilization. Moreover, destina-
tion PMs are sorted in decreasing order according to their utilization. The algorithm then
attempts to move the least utilized VM to one of the destination PMs starting from the most
loaded PM which still has enough capacity to accommodate the VM. If a destination PM
could be found the VM is placed on the PM and the destination PMs are resorted in de-
creasing order again according to their utilization. This process continues with the next least
loaded VM until the overload situation on the PM is resolved. In case no destination PM
for a VM can be found the authors assume that a new PM can be started to accommodate
the VM. Underload situations are handled as follows. The key idea of the underload miti-
gation algorithm is to first sort all VMs (i.e. across all PMs) in increasing order according to
their utilization. Moreover, similarly to the overload mitigation algorithm PMs, are sorted
in decreasing order according to their utilization. Then, the algorithm starts with the least
loaded VM and attempts to move the VM to a destination PM which has enough capacity
to accommodate it starting from the most loaded PM. A VM is only moved to a PM if this
move increases the variance [154] across the utilizations of all PMs. In case a VM move does
not increase the variance the algorithm continues with the next least utilized VM. The algo-
rithm terminates when the variance starts decreasing. PMs which do not host VMs after this
procedure are powered off. Experimental results prove the viability of the system. The ma-
jor limitations of this work are the restriction to the CPU resource and homogeneous PMs.
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Moreover, no power management mechanisms are integrated.

In [148, 147], the authors present a system able to detect and react to underload/over-
load situations. Particularly, a PM is considered as overloaded if either its CPU or memory
utilization crosses a predefined threshold. Then, a fuzzy controller is used to select the VMs
to be migrated as well as the candidate destination PM to accommodate the VMs. Candidate
PM is chosen such that it corresponds to the least loaded PM with enough capacity for the
selected VM. In case such candidate PM does not exist a new PM is powered on and the
VM is migrated to it. Finally, underload situations are detected by computing the average
resource utilization of all PMs and checking whether it falls below a given threshold or not.
Taking the average utilization of all PMs instead of performing underload detection based
on individual PMs, helps to prevent turning off PMs which have been recently powered on
and thus do not accommodate much load. Once the underload situation was identified, the
fuzzy controller chooses the least loaded PM and attempts to move all its VM away in order
to transition it into a power saving state (i.e. shutdown). In case it is not possible to move all
the VM then no power state transition is performed. Simulation results show that the best
CPU and memory overload thresholds are 85% resp. 95%. Concerning, underload thresh-
olds best choices are 50% and 80%. This system considers CPU and memory resources only.
Moreover, no power management mechanisms are integrated. Finally, only homogeneous
PMs are considered.

In [307], the authors introduce 1000 island, an integrated resource management system
for virtualized data centers. In 1000 islands, a PM is considered as overloaded if the ag-
gregated VM resource (e.g. CPU) utilization including the VMM resource demand exceeds
a given threshold. Particularly, a PM is considered as overload if its aggregated resource
CPU and memory utilized exceeds 99% (resp. 95%). On the other hand, a group of PMs is
considered as underloaded if its CPU and memory utilization falls below 40% (resp. 60%).
To resolve the overload (resp. underload) situations this work builds upon the algorithms
presented in [147]. Simulations and small scale experimental results show that the system
is able to efficiently manage the data center while mitigating SLAs. Similarly to the previ-
ous work only CPU and memory resources are considered. Finally, no power management
mechanisms are integrated. Moreover, the system targets homogeneous PMs.

In [211], the authors introduce the Power-Aware Domain Distribution (PADS) scheme. In
PADS each PM has a reserved local buffer of CPU resources in order to handle transient VM
CPU utilization spikes. PMs are considered overloaded as soon as their hosted VMs start
using resources from the PM local buffer. PADS is triggered periodically and detects over-
loaded PMs based on the local buffer usage. In order to decide which VMs must be moved to
resolve the overload situations PADS supports three candidate VM selection schemes: max-
imum average demand, minimum average demand, and minimum standard deviation of
resource demands. Simulations show that up to 70% of energy can be saved with less than
1% SLA violations by using PADS. The main drawback of PADS is that it considers CPU only.
Moreover, it assumes homogeneous PMs and ignores power management mechanisms.

In [197], the authors introduce vManage. The key idea of vManage is to provide a frame-
work able to coordinate system (e.g. power and/or thermal management) and virtualization
management (e.g. VM placement) solutions. The authors argue for such a coordination as
both system and virtualization management solutions can negatively influence each other.
For instance, when a power manager scales down the CPU frequency in order to enforce
given power budget limits, this typically leads to SLA violations which need to be resolved
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by the virtualization manager. On the other hand, resolution of SLA violations typically
requires increasing the resource capacity (e.g. CPU frequency) and thus affects the power
consumption which increases the temperature. In vManage overload mitigation mecha-
nism is triggered when CPU utilization exceeds 80%. To maintain SLAs, VM migration is
performed. Particularly, the first PM which can provide the required SLA is chosen as the
destination PM. vManage was evaluated on an experimental testbed and shown to reduce
the number of violations by 71% and 10% power savings compared to a non-coordinated
environment. Finally, the number of migrations was reduced by 54%. This system considers
CPU resource only and targets homogeneous PMs.

In [301], the authors introduce an underload/overload mitigation system based on Mul-
tiple Criteria Decision Analysis (MCDA) using the PROMETHEE method [139]. The over-
load/underload detection is based on lower and upper level resource utilization thresholds.
Once a PM is overloaded (i.e. upper threshold is crossed) it computes a set of VMs which
must be migrated in order to resolve the overload situation using the proposed method. Par-
ticularly, a central manager is contacted in order to receive a list of candidate PMs able to
accommodate the VMs. Finally, the VMs are migrated to the candidate PMs. This work is
validated by simulations. It considers CPU, memory. and bandwidth utilization. Homoge-
neous PMs are assumed. No power management mechanisms are evaluated.

In [298], the authors present a cross-layer system for managing the system (e.g. power
management) and virtualization layers (e.g. VM placement). A central controller is used to
collect sensor information from both layers and has a global view of the system. VM live
migrations are triggered in three cases: thermal emergency, resource contention, low energy
efficiency. Thermal emergency happens when a PM is overheated and attempts to move the
most loaded VMs away. Resource contention happens when the aggregated VM resource
utilization exceeds a given threshold. Finally, low energy efficiency is the result of a PM bee-
ing underutilized. The central controller periodically checks the PMs and decides if any of
the introduced cases are present based on predefined thresholds. For instance, when a PM is
overloaded some VMs need to be migrated away. In order to select the VMs to be migrated
the authors first compute an average resource utilization of all the VMs on the overloaded
PM. Then, VMs those resource utilization is above the average are considered as candidates
to be migrated and sorted in increasing order. Finally, destination PMs are selected by con-
sidering their temperature, power, and performance. Given that these three criteria may
have conflicting objectives, the authors apply a multi-objective approach which combines
the objective functions of the three criteria into a single one. Experimental results show that
the proposed system reduces the number of migrations for up to 80%, integrates stable PM
selection, and greatly improves the application performance and the power efficiency.

In [247], the authors present Distributed VM Scheduler (DVMS), a ring-based system
designed to manage underloaded and overloaded PMs. Similarly to the previous works,
overload and underload conditions are detected by the PMs based on thresholds. Once
detected, requests to mitigate them are forwarded to the successor PM in the ring. The suc-
cessor PM attempts to resolve them by applying VM consolidation considering itself and the
predecessor PMs in the chain. The system continues to forward underload/overload miti-
gation requests in the ring until the last PM has been reached or a solution has been found
before. Simulation results show that the system is able to achieve solutions (i.e. number of
used PMs) close to a centralized system. DVMS does not target power management. The
considered resources are CPU and memory. The simulated PMs and VMs are homogeneous.
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Workload in VMs is randomly generated.

In [92], a rule-based approach for detecting underload and overload conditions is pre-
sented. Particularly, lower and upper thresholds for each PM resource dimension (e.g. CPU)
are defined. If the resource utilization in any resources falls below the lower threshold the
PM is considered as underutilized. Otherwise, if the resource utilization exceeds the upper
threshold the PM is marked as overloaded. Any value between the thresholds is consid-
ered as optimal. Once PM underload/overload situations are detected they are resolved us-
ing modified initial VM placement algorithms [91] which take into account the current VM
placement. Using simulations the authors report 61.6% energy savings with limited impact
on VM performance. To conserve energy a node off/on power management mechanism is
simulated. This work targets homogeneous PMs and considers CPU and memory resources.

In [86, 83], the authors propose an adaptive approach for defining underload/overload
thresholds based on historical VM resource utilization data. They argue that such an ap-
proach is necessarily for an environment in which the workloads are dynamic and hard to
predict. In order to resolve overload situations the authors present a number of VM selection
algorithm: Minimum Migration Time (MMT), Random Choice (RC), and Maximum Corre-
lation Policy (MCP). MMT selects a VM which requires the least migration time compared to
the others. Migration time is computed based on VMs memory requirements. RC selects a
VM randomly. Finally, MCP selects the VMs with highest correlation in terms of CPU utiliza-
tion. Indeed, VMs with highest resource utilization correlation have a higher probability to
result in an overloaded PM. Finally, after the VMs are selected the authors apply a modified
version of the Best-Fit Decreasing heuristic to place the VMs on the non-overloaded desti-
nation PMs by considering their power efficiency. Regarding, underload situations a simply
algorithm is used which takes the underloaded PMs and attempts to migrate all VMs away
to other PMs while respecting their upper resource utilization thresholds. Simulation results
show promising results. This work has a number of strong assumptions which could prevent
many of its concepts to be implemented in a real environment. First, the adaptive threshold
mechanism as well as the proposed MCP assume long running VMs due to their require-
ment of historical data. Given that the authors target Amazon EC2 like clouds such data is
hard to obtain as VMs are typically short-lived (e.g. spot instances). Second, the minimum
migration time algorithm attempts to select VMs requiring the least migration time. VM mi-
gration time heavily depends on many parameters such as VM memory page dirtying rate,
efficient storage migration mechanisms, and network conditions which are known to be hard
to estimate beforehand. This work considers the CPU utilization only, targets homogeneous
PMs, and lacks power management mechanisms. Finally, in [84], the same authors propose
an Markov host overload detection algorithm for handling overloaded PMs and evaluate it
using simulations. Ongoing efforts exist to integrated the proposed algorithms in the Open-
Stack cloud management system [85]. However, as of now no working implementation yet
evaluation exists.

Finally, in [289] the VMware Distributed Power Manager (DPM) [289] is presented. DPM
integrates proprietary algorithms to resolve underload and overload situations. The algo-
rithms are triggered periodically and detects underload and overload PMs based on lower
(resp. upper) level thresholds. Particularly, for each resource (i.e. CPU and memory), DPM
attempts to maintain an resource utilization between 45% to 81% on all PMs. In the event of
an underload situation DPM attempts to migrate all VMs to other PMs in order to turn off
the underloaded PM. On the other hand, in the event of an overload situation, DPM attempts
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to migrate some VMs away to resolve the problem. In case VMs can not be placed on any
of the active PMs, DPM turns on new PMs. DPM involves power management mechanisms
which turn off idle PMs and wake them up once required (i.e. when the load increases). The
major drawback of DPM is that it does not consider the network utilization.

Table 2.4.4.3 summarizes the presented works by providing a classification of their prop-
erties and features.

Approach Mitigation Algorithm Considered
resources

Resource
utiliza-
tion

Heterogeneity Power man-
agement

Evaluation Workload

[297] Underload Greedy CPU, memory,
network

Dynamic No None Experiments Mix of synthetic
benchmarks

[192] Underload,
overload

Greedy CPU Dynamic No None Experiments Websphere work-
load simulator

[148, 147] Underload,
overload

Greedy CPU, memory Dynamic No None Simulations Application traces

[307] Overload Greedy CPU, memory Dynamic No None Mix of experi-
ments and sim-
ulations

Application traces

[211] Overload Greedy CPU Dynamic No None Simulation Synthetic bench-
marks

[197] Overload, un-
derload

Greedy CPU Dynamic No DVFS Experiments Web

[298] Thermal
emergency,
underload,
overload

Greedy CPU, memory,
network

Dynamic No None Experiments Synthetic bench-
marks

[92] Underload,
overload

Greedy CPU, memory Dynamic No Node off/on Simulation Synthetic bench-
marks, bioinfor-
matic traces

[289] Underload,
overload

Greedy CPU, memory Dynamic PMs and VMs Node off/on Mix of experi-
ments and sim-
ulations

Synthetic bench-
mark

[86, 83] Underload,
overload

Greedy CPU Dynamic No None Simulation Application traces

[301] Underload,
overload

MCDA CPU, memory,
network

Dynamic No None Simulations Randomly gener-
ated

[247] Underload,
overload

Constraint
program-
ming

CPU, memory Dynamic No None Simulations Randomly gener-
ated

Table 2.3: Comparison of the underload and overload mitigation approaches

2.4.4.4 VM Consolidation

Complementary to the overload and underload management algorithms, VM consola-
tion can be used to continuously remove resource fragmentation on moderately loaded PMs
via repacking of already placed VMs on the least number of PMs. Some works have studied
the problem of VM consolidation.

In [89], the authors present a novel VM consolidation algorithm based on a modified
version of the FFD heuristic. Simulation results show that the proposed algorithm requires
up to 50% less physical resources to maintain SLAs compared to a VM to PM assignment
which is not modified for long periods of time (e.g. several months). The major drawback
of the proposed algorithm is that it does not take into account the current VM placement
while computing the new VM to PM assignments. Consequently, its solutions result in a
large number of VM migrations. This work considers the CPU resource only and targets
homogeneous PMs. Finally, no power management mechanisms exist.

In [287], the authors introduce pMapper, a power and migration-cost aware application
placement framework. pMapper is designed around three main components: performance,
power, and migration manager. Performance manager has a global view of all applications
in the system. It observes the application performance and suggests VM resizing actions.
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Power manager monitors the current power consumption and can suggest power saving
actions such as DVFS. Finally, the migration manager, interacts with the hypervisor in or-
der to trigger VM live migrations. An arbitrator exists to coordinate the management deci-
sions between all the components. pMapper integrates three algorithms: min Power Parity
(mPP), min Power Placement algorithm with History (mPPH), and PMaP. mPP and mPPH
algorithms are integrated into the power manager while the PMaP algorithm resides on the
arbitrator. The mPP algorithm takes as input the VM sizes, current assignment of VMs to
PMs and a power model of all PMs. It then attempts to place the VMs such that the total
power consumed is minimized. This is achieved by first sorts VMs and PMs in decreasing
order according to their utilization (resp. power efficiency). Then, VMs are assigned to the
PMs starting from the most power efficient one using the FF algorithm. The major draw-
back of mPP is that it does not take into account the current VM placement thus its solutions
result in a large number of migrations. To solve this problem the authors propose mPPH,
an extension of the mPP algorithm which considers the current VM placement. Still, despite
the fact that mPPH algorithm takes into account the current VM placement its efficiency
which respect to minimizing the power usage is low. Consequently, the authors propose the
PMaP algorithm which strikes to find a balance between power and migration costs while
minimizing the number of migrations. Most of the pMapper components were evaluated us-
ing simulations. This work considers heterogeneous PMs and focuses on the CPU resource
utilization. While pMapper architecture is designed to support many power management
mechanisms (e.g. DVFS, node off/on) none of them is evaluated.

In [249], a coordinated multi-level power management system for virtualized data cen-
ters is proposed. The key idea of the system is to coordinate the power management deci-
sions taken at different levels (i.e. node, rack, data center) of the system. The authors argue
that coordinating the power management decisions is crucial in order to avoid inter-system
level power management decisions interference’s. Particularly, the proposed system targets
average and peak power management. Its architecture is composed of five nested com-
ponents implementing feedback control loops: Efficiency Controller (EC), Server Manager
(SM), Enclosure Manager (EM), Group Manager (GM), and a Virtual Machine Controller
(VMC). EC and SM are in charge of average and peak power management at the node level,
respectively. For instance, to reduce the average node power consumption, a CPU utilization
reference value can be set on the EC. In the event of a low utilization, the EC feedback control
loop gradually scales down the CPU frequency thus reducing the power consumption. One
key aspect of the system is the nested nature of its system components. Consequently, in the
event of a server power limit violation, instead of directly manipulating the CPU frequency,
the SM changes the CPU utilization reference value of the EC. This allows the EC to scale
down the CPU frequency and thus lower the server power consumption. This avoids the
need of a central coordinator and thus greatly reduces the system scalability and implemen-
tation complexity. Similarly, EM and GM enforce peak power capping’s at the rack and data
center level. Finally, in order to reduce the nodes average power consumption, VMC per-
forms periodic, power-capping aware VM consolidation at the data center level and turns
off the resulting idle nodes. VM consolidation is modeled as a binary integer program and
solved using a not further specified greedy bin-packing algorithm. Using a trace-driven sim-
ulation based on enterprise workloads, the authors show that the proposed system is able to
efficiently coordinate the power management actions at different system levels.

In [167], the authors propose a VM consolidation manager called Entropy. Entropy model
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the VM consolidation problem as an instance of the CSP and solves it using constraint pro-
gramming. VM consolidation is started at the arrival and removal of VMs. Experiments
performed on 39 nodes of the Grid’5000 testbed shows that the constraint programming ap-
proach outperforms the FFD algorithm in the number of used PMs and migrations. The
major advantage of this method is that it allows to easily consider additional VM placement
constraints such as VM collocation and anti-collocation. Entropy treats the VMs as static
boxes which are either fully utilized or not. It targets homogeneous PMs and focuses on
CPU and memory. This work is extended in [165], where the authors evaluate the scalability
of the constraint programming approach. Simulation results show that constraint program-
ming can scale for up to 2000 PMs and 10 000 VMs. This work considers homogeneous
PMs. It treats CPU and memory demands as dynamic (resp. static). In [166], the authors
introduce Plasma, an extension of the Entropy consolidation manager targeting web appli-
cations. Simulation results show that the Plasma algorithm scales for up to 2000 PMs and
4000 VMs. Moreover, experiments on 8 compute PMs hosting 21 VMs running a synthetic
benchmark are performed. Similarly, to the previous work VMs have dynamic CPU and
static memory demands. Power management is not the target of these works.

In [122], an energy-efficient VM management system called vGreen is introduced. The
authors argue that exploiting the VM characteristics (e.g. instructions per cycle, memory
accesses) during VM consolidation is essential in order to achieve energy savings while
limiting the performance degradation. Indeed, collocating VMs with similar characteris-
tics could create contention on shared physical resources (e.g. CPU caches, memory busses)
and thus degrade the performance. Consequently, in contrast to the previous works, vGreen
is designed to capture the Memory Per Cycle (MPS) access and Instructions Per Cycle (IPC)
metrics at the hypervisor level. Particularly, vGreen implements a greedy VM consolida-
tion which computes its solutions based on the two metrics. The authors have implemented
vGreen and evaluated it using synthetic benchmarks on a two PM testbed. The results show
that taking into account VM characteristics can improve the average performance and en-
ergy consumption by 40% compared to the greedy VM scheduling policy (with and without
DVFS) of Eucalyptus. vGreen considers dynamic CPU and memory demands. It targets
homogeneous PMs and does not perform any power management actions (e.g. shutdown).

In [224], the Sercon algorithm is introduced. Sercon modifies the FFD heuristic in order
to minimize the number of migrations, PMs are first sorted in decreasing order according
to their utilization. Then, VMs from the least loaded PM are sorted in decreasing order
according to their utilization. The algorithm then attempts to assign these VMs to the PMs
starting from the most loaded one. In case all VMs could be assigned the algorithm repeats
the procedure with the next least loaded PM. Otherwise, if some VMs could not be assigned
they are left on the PM and the algorithm goes to next least loaded PM and attempts to
move its VMs starting from the most loaded PM. Using simulations the authors show that
the algorithm greatly reduces the number of migrations compared to FFD and requires only
up to 6% more PMs. Sercon considers CPU and memory. It was evaluated in a homogeneous
environment. Power management is not considered in this work.

Finally, in [216], the authors introduce V-MAN. The key idea of V-MAN is to periodically
apply VM consolidation only within the scope of randomly formed subsets of nodes, the
so-called neighbourhoods. V-MAN was evaluated by means of simulations. It is limited to a
single VM consolidation algorithm which considers at most two PMs at a time. Moreover, it
makes its decisions solely based on the number of VMs thus ignoring the actual VM resource
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demands. V-MAN targets homogeneous PMs. Power management was not the target of this
work. Table 2.4.4.4 summarizes the properties and features of the reviewed works.

Approach Algorithm Considered
resources

Resource uti-
lization

Heterogeneity Power management Evaluation Workload

[89] Greedy CPU Dynamic No None Simulation Application traces
[287] Greedy CPU Dynamic Yes DVFS Simulation Synthetic bench-

marks
[249] Greedy CPU Dynamic Yes DVFS, node off/on Simulation Application traces
[122] Greedy CPU, memory Dynamic Yes No Experiments Synthetic bench-

marks
[224] Greedy CPU, memory Static No None Simulation Randomly gener-

ated
[216] Greedy Number of

VMs
Static No None Simulation Randomly gener-

ated
[167] Constraint pro-

gramming
CPU, memory Static No None Experiments

and simulations
Synthetic bench-
marks

[165] Constraint pro-
gramming

CPU, memory Dynamic CPU,
static RAM

No None Simulation Randomly gener-
ated

[166] Constraint pro-
gramming

CPU, memory Dynamic CPU,
static RAM

No None Experiments
and simulations

Synthetic bench-
marks, Randomly
generated

Table 2.4: Comparison of the VM consolidation approaches

2.4.4.5 Application-aware Management of Virtualized Infrastructures

We now present some works targeting application-aware VM management.

In [226], the authors argue that today’s cloud providers SLA model is very limited as
it only provides guarantees in terms of uptime thus ignoring the application-level Quality-
of-Service (QoS) (e.g. response time) requirements. Ignoring application-level QoS require-
ments can become particularly critical for customers of cloud providers which attempt to
minimize the energy costs by consolidating VMs hosting customers applications on the least
number of PMs. Indeed, depending on the application characteristics, VM consolidation
can yield significant performance degradation of the applications in collocated VMs [194].
Consequently, the authors propose Q-Clouds, an QoS-aware cloud system which aims at
providing application-level QoS guarantees thus creating the illusion for the application to
run in isolation. This is achieved by monitoring applications performance and adjusting the
VM resource allocations to mitigate performance degradation due performance interference
cause by collocated VMs. For this, Q-Clouds relies on a Multiple-Input and Multiple-Output
feedback control-loop. Moreover, Q-states are introduced as a notion for the customer to
specific the desired VM performance levels. For instance, the lowest Q-state translates into a
minimum required VM performance (e.g. half a core) at any point in time. Higher Q-states
can be used to request more resources if the customer is willing to pay more. High Q-states
are enforced by Q-Clouds once the applications inside the VM demand for more resources.
In order to support Q-states, Q-Clouds keeps a buffer of resources, the so-called head room
on each PM. Experimental results show that Q-Clouds is able to entirely avoid performance
degradation and improve the system utilization by 35%. The main drawback of Q-Clouds
is that it is considers CPU utilization only and does not integrate any power management
mechanisms (e.g. node off/on). Moreover, no VM consolidation actions were performed
during the experiments.

In [185], the resource management mechanisms of the Mistral VM management system
are presented. Mistrals is designed to balance power usage, application performance, and
costs of system reconfiguration actions. Mistral controllers are triggered periodically and
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checks if some VMs need to be migrated to meet applications performance targets. To esti-
mate the benefits of the adaptation actions Mistral integrates four prediction modules and
one optimization module. The predictions modules are: performance manager, power man-
ager, cost manager, and a workload predictor. Performance and power managers are used
to estimate the application performance (resp. power usage) of a current system configu-
ration (i.e. VM to PM assignment). To estimate the application response time depending
on the workloads, layered queuing network models [186] are used. Power consumption is
estimated using a linear function of CPU utilization which was proposed by the authors
in [130]. Cost manager receives the current configuration and a set of adaptation actions.
Based on this two parameters it estimates the cost of an adaptation action. Finally, the work-
load predictor is used to estimate the stability intervals. A stability interval is defined as the
time between two system reconfigurations. The outputs of all the prediction modules are fed
into the optimization module which decides on the optimal set of actions using a heuristic
algorithm. Mistral targets CPU utilization and is evaluated using homogeneous PMs.

In [108], the authors present a holistic data center management system which federates
IT, power, and cooling management. Each application is assigned with an application-level
performance target (e.g. response time). The goal of the system is to meet this target by the
use of dynamic resource allocation while minimizing over-provisioned resources. Applica-
tions are composed of one or multiple application components which are hosted in VMs.
There exist on application controller per application which monitors the application compo-
nents QoS metrics (e.g. response time). Its task is to guarantee the applications performance
target. Therefore it, periodically estimates an utilization target (e.g. 70% CPU utilization) for
each application components VM based on an integrated performance model. The utiliza-
tion target is then propagated to a node controller which makes the required VM resource ad-
justments to the given utilization target. Node controllers are assigned with each PM and are
in charge of enforcing the applications utilization targets. To save energy a global arbitrator
the so-called pod controller exists. It oversees the node controllers and performs, underload-
/overload mitigation, workload consolidation, and PM power down actions. Once PMs are
powered down this information is communicated to a service called Daffy. Daffy interacts
with the cooling infrastructure in order to adjust the computer room air conditioning blower
power. Experimental results in a real environment show that the solution can reduce the
IT and cooling infrastructure energy consumption by 35% respectively 15%. No details of
the algorithms (e.g. underload/overload management) on the global arbitrator were given.
This work focuses on the CPU resource and assumes homogeneous PMs.

In [285], the authors propose a utility-based dynamic VM provisioning manager based
on constraint programming which aims at balancing the application QoS and energy con-
sumption. Moreover, a consolidation manager is used to minimize the number of PMs via
live migration. Small scale experiments on 3 PMs using synthetic benchmarks are used to
prove the viability of the approach. To evaluate the scalability the authors conduct a sim-
ulation considering 12 PMs and 8 applications. The system considers static CPU and RAM
demands. It targets homogeneous PMs. Power management is used to turn off/on the PMs.

Finally, in [116], the authors provide a framework for managing application QoS in
clouds. The key idea of the system is to assign each application with its own application
manager which will be in charge of managing the applications QoS. Particularly, the appli-
cation manager monitors the applications QoS metrics (e.g. response time) and takes actions
such as scaling up/down the VMs or removing individual application components in or-
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der to achieve the best performance vs. energy tradeoffs. Constraint programming is used
to model the problem. Simulations are conducted to show its viability. Preliminary results
indicate that energy savings are possible. This work considers static CPU and memory de-
mands, focuses on heterogeneous PMs, and lacks power management mechanisms.

Table 2.4.4.5 summarizes the results from our comparison.

Approach Algorithm Considered re-
sources

Resource uti-
lization

Heterogeneity Power manage-
ment

Evaluation Workload

[226] Greedy CPU Dynamic No None Experiments Synthetic
benchmarks

[185] Greedy CPU Dynamic No None Experiments Synthetic
benchmarks

[108] Greedy CPU Dynamic No None Experiments Synthetic
benchmarks

[285] Constraint pro-
gramming

CPU, memory Static No Node off/on Experiments and
simulations

Synthetic
benchmarks

[116] Constraint pro-
gramming

CPU, memory Static No None Simulations Randomly
generated

Table 2.5: Comparison of the application-aware virtualization approaches

2.5 Summary

This chapter has introduced the state of the art of this thesis. It has started with a brief in-
troduction into server virtualization which is a fundamental building block enabling server
consolidation in today’s cloud data centers. Particularly, we have reviewed the history of
server virtualization and presented existing server virtualization and VM live migration
techniques. Then, autonomic computing and cloud computing were introduced, two com-
plementary computing paradigms which emerged during the last years and form the context
of this thesis. The complementaries come from the fact that cloud computing leverages some
of the self-management properties (e.g. self-optimization) of autonomic computing systems.
In both computing paradigms server virtualization is typically used to ease compute infras-
tructure management (e.g. increase security by leveraging VM isolation properties, perform
server consolidation for energy savings and better resource utilization, speed up service de-
ployment). First, autonomic computing was introduced by presenting its history, properties,
architectural components, and a few selected autonomic computing systems. Afterwards,
cloud computing was presented as a promising computing paradigm whose goal is to of-
fer resources (e.g. compute, storage) on-demand based on the pay-as-you-go model. To
be precise, we have first provided a cloud computing definition and introduced the cloud
characteristics, service, and deployment models. Then, existing attempts to design and im-
plement IaaS loud management systems were extensively reviewed with respect to their
scalability and autonomy. Finally, we have conducted an comprehensive review of energy
management approaches in computing clusters. Particularly, after defining the terminology
and presenting traditional power measurement techniques, we have discussed DPM tech-
niques in non-virtualized and virtualized environments. Our study has shown that despite
the fact that a lot of efforts have been made over the past years to design and implement IaaS
cloud management systems, as well energy management techniques in computing clusters,
much work is still left to be done. The three key observations from this chapter are:
• Despite the vision of autonomic computing, existing IaaS cloud management sys-

tems still lack many of the self-management properties such as self-configuration, self-
healing, and self-protection. Moreover, most of the IaaS cloud management systems
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are based on centralized architectures thus limiting their scalability.

• Only a few works targeting energy management in IaaS cloud management systems
have been experimentally validated. Indeed, the few ones which have been experi-
mentally validated were typically limited to one aspect of the problem (e.g. VM consol-
idation). In other words, there is a clear lack of an experimentally validated holistic
energy-efficient IaaS cloud management system which federates the introduced VM man-
agement algorithms (i.e. VM placement, underload and overload management, VM
consolidation, and power management).

• A huge amount of attention has been given to the design of centralized VM manage-
ment algorithms based on greedy algorithms which are known to be hard to paral-
lelize/distribute [76]. A considerable low amount of attention has been given to the
application of algorithms which are by nature of their properties very good candidates
for parallelization and distribution. Examples of such algorithms include ant colonies
and genetic algorithms.
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IN the previous chapter we have presented the context of this work and reviewed the
state of the art on the design and implementation of autonomic and energy-efficient
IaaS cloud management systems. Our analysis has shown that existing IaaS cloud man-

agement systems are either based on centralized architectures or lack autonomy and energy
management mechanisms. To address these limitations, the goal of our first contribution is
to design, implement, and evaluate a novel IaaS cloud management system which: (1) im-
proves the scalability and autonomy issues of centralized IaaS cloud management systems;
(2) provides a holistic energy-efficient VM management solution by integrating advanced
VM management mechanisms such as underload mitigation, VM consolidation, and power
management. To tackle both goals we propose Snooze, a novel autonomic and energy-efficient
cloud management system based on a self-configuring and healing hierarchical architecture.

This chapter presents the design, implementation, and evaluation of Snooze. It is struc-
tured as follows. Section 3.1 introduces the design principles. Section 3.2 presents the system
assumptions, model, and a high-level system architecture overview. Section 3.3 describes the
hierarchy management mechanisms. They involve the self-configuration and healing of the
hierarchy. Section 3.4 introduces the energy-efficient VM management mechanisms and al-
gorithms. Section 3.5 presents selected implementation aspects. Section 3.6 discusses the
evaluation results targeting the scalability, autonomy, and energy efficiency of the system.
Finally, Section 3.7 summarizes the contributions.

3.1 Design Principles

The main goal of this thesis is to design and implement a scalable, autonomic, and
energy-efficient IaaS cloud management system. Thereby, several properties have to be ful-
filled by a cloud management system in order to achieve these goals. First, the cloud man-
agement system architecture has to scale across many thousands of nodes. Second, nodes
and thus framework management components can fail at any time. Therefore, the system
needs to self-heal and continue its operation despite of component failures. Finally, the
cloud management system has to be easily configurable. In order to achieve this, the cloud
management system must satisfy the self-configuration property of an autonomic system as
discussed in Chapter 2.

To achieve scalability and autonomy we have made the key design choice to design a
system based on a self-organizing and healing hierarchical architecture. Our scalability and au-
tonomy design choices are motivated by previous works which have proven that hierarchical
architectures can greatly improve the system scalability. Particularly, the Snooze architecture
is partially inspired from the Hasthi [238] autonomic system which is shown to scale up to
100 000 resources by simulation. However, in contrast to Hasthi whose design is presented
to be system agnostic and utilizes a Distributed Hash Table (DHT) based Peer-to-Peer (P2P)
network, Snooze follows a simpler design and does not require the use of P2P technology.
Moreover, it targets virtualized systems and thus its design and implementation is driven
by the system specific objectives and issues.

Organizing the system hierarchically improves its scalability as components at higher-
levels of the hierarchy do not require global knowledge of the system. The key idea of our system
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is to split the VM management tasks across multiple independent autonomic managers with
each manager having only a partial view of the data center. Particularly, each manager is
only in charge of managing a subset of the data center compute nodes and VMs. A coordinator
is automatically elected among the managers during the hierarchy self-configuration and in
case of a coordinator failure. The coordinator oversees the managers and is contacted by the
clients to submit VMs.

To conserve energy power management mechanisms exists which detect idle compute
nodes, transitions them into a power-saving state, and performs wake ups when needed
(e.g. in case of not enough active nodes are available during VM placement). To favour idle
times, advanced VM management mechanisms are implemented on each manager. They
involve compute node underload mitigation and VM consolidation.

3.2 System Architecture

This section presents the system architecture of Snooze, a novel scalable, autonomic, and
energy-efficient IaaS cloud management for private clouds. First, the assumptions and sys-
tem model are introduced. Then, a high-level system overview is presented.

3.2.1 Assumptions and Model

We assume a data center whose nodes are interconnected with a high-speed LAN such
as Gigabit Ethernet or Infiniband. Multicast support is assumed to be available at network
level. Physical nodes (called nodes) can be either homogeneous or heterogeneous. They are
managed by a virtualization solution (e.g. Xen [80], KVM [193]) which supports VM live mi-
gration. We assume that the same virtualization technology is deployed on all the nodes to
enable advanced VM management mechanisms involving VM live migration. VMs are seen
as black-boxes thus no application-specific knowledge is required to guide the VM manage-
ment mechanisms decisions. Snooze system integrates a leader election algorithm in order
to elect a coordinator among the autonomic managers. In this context network partitioning
can result in a so-called split-brain situation which results the system in having multiple co-
ordinators. Failures that partition the network and thus yield multiple coordinators are not
tolerated. Nodes may fail, following a fail-stop model.

In a virtualized data center multiple VMs are typically collocated on the nodes. Despite
the resource isolation properties of modern virtualization solutions performance isolation is
not always guaranteed. In other words, collocated VMs with correlated resource demands
(e.g. memory bound VMs) can experience a performance degradation as they typically share
the same hardware subsystems (e.g. last level cache). In this work we assume that perfor-
mance isolation is provided by the underlying virtualization solution. Consequently, the VM
management algorithms presented in this work do not take into account complementaries
between the VM resource demands during their decision making processes.

Finally, applications inside VMs can incur dependencies on the VMs. For instance, a web
server VM will typically have a dependency on an application server VM and/or a database
VM. Similarly, security obligations might prevent two VMs from beeing close to each other.
In this work we assume independent VMs. In other words, the proposed VM management
algorithms do not support the specification of VM collocation or anti-collocation constraints
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which could allow to allow/forbid certain VMs to be collocated. Nevertheless, given that
Snooze is flexible enough to support any VM management algorithm nothing prevents the
system from integrating such algorithms in the future.

3.2.2 High-level Overview

The high-level overview of the hierarchical Snooze architecture is shown in Figure 3.1.
It is partitioned into three layers: computing, management, and client. At the computing
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Figure 3.1: Snooze high-level system architecture overview

layer, nodes are organized in a cluster in charge of hosing the VMs. Each compute node is
controlled by a system service 1, the so-called Local Controller (LC) 2. A management layer
allows to scale the system. It is composed of nodes hosting fault-tolerant system services:
one Group Leader (GL) and one or more autonomic managers, the so-called Group Managers
(GMs). System services are organized hierarchically. GL oversees the GMs. It is elected
among the GMs during the hierarchy self-configuration and in the event of a GL failure.
Each GM manages a subset of LCs and VMs. GL receives VM submission requests from
the clients and distributes them among the GMs. Once VMs are submitted clients interact

1. We define a system service as a background process running on the OS.
2. In this document we use the terms LC, compute node, and physical machines (PMs) interchangeably.
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directly with the GMs to control the VMs (e.g. shutdown, reboot). As the GL can change
over the time, a method is required in order for the clients to discover the current GL. This
functionality is provided by the client layer. The client layer is composed of a predefined
number of services, the so-called Entry Points (EPs) which remain updated about the current
GL. All system services are accessible through a RESTful interface. Consequently, any client
software (e.g. Command Line Interface (CLI), web, Cloud Library) can be implemented to
interact with the EPs, GL, and the GMs.

Given a set of physical nodes it is up to the system administrator to decide on the number
of LCs and GMs upon Snooze deployment. For instance, in the most basic deployment
scenario two GMs and one LC are required. One of the GMs will be promoted to a GL as
part of a leader election procedure. System services are flexible enough to co-exist on the
same node. Consequently, it is possible to deploy the entire hierarchically on a single node.

3.2.2.1 Local Controllers

Each LC enforces the VM life-cycle and node management commands coming from its
assigned GM. Examples of such commands include VM start and live migration as well as
node power-cycling (e.g. suspend). LC also monitors VMs, detects overload and underload
situations, and periodically sends VM resource utilization data to its assigned GM. Over-
load/underload indicators are piggybacked with these data. Each LC maintains a repository
with information about the currently running VMs on its node.

3.2.2.2 Group Managers

Each GM is in charge of the management of a subset of LCs. It receives VM resource
utilization data from LCs and stores it in a local repository. Based on this data the GM esti-
mates VM resource utilization and takes VM management decisions involving three tasks:
VM placement, LC overload/underload mitigation, and VM consolidation.

VM placement mechanisms are triggered event-based to handle VM submission requests
arriving from the GL. LC overload and underload mitigation mechanisms are triggered
when overload (resp. underload) events arrive from LCs and aims at moving VMs away
from heavily (resp. lightly) loaded LCs. VM consolidation is performed periodically accord-
ing to the system administrator specified interval. For example, it can be used to optimize
the utilization of moderately loaded LCs on a weekly basis by repacking existing VMs on as
few LCs as possible. Both, overload/underload mitigation and VM consolidation policies
output a migration plan which specifies the new VM to LC assignments. A GM enforces the
migration plans by instructing the LCs it manages to perform VM live migration.

Power management is integrated into each GM to power-cycle and wake up idle LCs.
LCs are woken up in case of either not enough powered-on LCs are available on a GM
during VM placement or overload situation.

GM summary information is periodically sent by each GM to the current GL in order
to support high-level VM to GM distribution decisions (see Section 3.4.2 for more details on
monitoring). Finally, GMs are also contacted by the client software to control (e.g. shutdown)
VMs and retrieve VM information (e.g. resource utilization, status).
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3.2.2.3 Group Leader

The GL manages the GMs. It is in charge of assigning LCs to GMs upon startup, accept-
ing clients VM submission requests, VM networking management and the dispatching of
the submitted VMs among the GMs. Moreover, it receives GM summary information and
stores it in a repository. We now discuss these tasks in more detail.

When LCs are started they need to get a GM assigned. LC to GM assignment decisions
are guided by a LC assignment policy. For example, LC could be assigned to GMs in a
round-robin fashion or based on the current GM utilization. Once the LCs are assigned to
GMs, VMs can be submitted by the clients to the GL. In case client VM submission requests
arrive before LCs are assigned to GMs, an error message is returned. Note, that additional
LCs can join the system at any time without disturbing its normal functioning.

Once a group of VMs (one or multiple) is submitted to the GL, VM to GM dispatching
decisions are taken by the GL. They are implemented using a VM dispatching policy which
decides on the assignment of VMs to GMs. In order to compute this assignment the GM
summary information is used which contains information about aggregated GM resource
utilization. Based on this assignment the GL dispatches the VMs among the GMs. However,
before a VMs can be dispatched to GMs, VM networking needs to be managed in order
for the VMs to become reachable to the outside world after its startup. This process involves
two steps: (1) getting an IP address assigned to the VM; (2) configuring the network interface
based on the assigned IP. The GL is in charge of the former step. Therefore, it maintains a
system administrator configurable subnet from which it is allowed to assign IP addresses.
When VMs are submitted to the GL, each of them automatically gets an IP address assigned
from this subnet. The assigned IP address is embedded in the VMs MAC address. When the
VM boots it decodes the IP from its MAC address and performs the network configuration.

The GL does not maintain a global view of the VMs in the system. Instead, after the VM
dispatching, information about the GMs on which the VMs were dispatched is stored on
the client-side thus allowing the clients to directly interact with the corresponding GMs for
subsequent VM management requests. Despite the lightweight VM dispatching decisions
and no global view of the VMs, the GL scalability can be further improved with replication
and a load balancing layer.

3.2.2.4 Entry Points

In Snooze, the GL is automatically elected among the GMs during the system startup
and in case of a GL failure. Consequently, a GL can change over time. In order for the
clients to instruct a GL to start VMs, they must be provided a way to discover the current GL.
In order to achieve this we introduce a predefined number of EPs. EPs are system services
which typically reside on nodes of the same network as the GMs and have a notion to remain
updated about the current GL (see the following section for more details). EPs are contacted
by the clients whenever they need to submit VMs to discover the current GL.
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3.3 Hierarchy Management

This section describes how the Snooze system hierarchy is constructed and maintained.
First, the heartbeat mechanisms are introduced. Then, the self-configuration and healing
mechanisms are presented. Self-configuration refers to the ability of the system to dynami-
cally construct the hierarchy during startup. On the other hand, self-healing allows to auto-
matically reconstruct the hierarchy in event of system services or node failures.

3.3.1 Heartbeats

To support self-configuration and healing, Snooze integrates bi-directional heartbeat pro-
tocols at all levels of the hierarchy. The GL periodically sends its identity to a dedicated GL
heartbeat multicast group containing all EPs and GMs. GL heartbeats allow the EPs to re-
main updated about the current GL. GL heartbeats are also required by the LCs and GMs to
discover the current GL during boot time and in the event of GM (resp. GL) failures. Indeed,
the current GL needs to be discovered by the LCs upon initialization in order to get a GM
assigned. On the other hand, GMs must inform the current GL about their presence in order
to enable VM dispatching by the GL. In the event of a GM failure, LCs need to contact the
GL in order to get a new GM assigned. Finally, in the event of a GL failure, GMs need to
inform the newly elected GL about their presence.

One heartbeat multicast group exists per GM on which it announces its presence to its
assigned LCs. It is used by the LCs to detect a GM failure. Finally, in order for the GL
and GMs to detect GM (resp. LCs) failures unicast-based heartbeats are used. They are
piggybacked by the GMs and LCs along with their monitoring data which is periodically
sent to the GL (resp. GM).

3.3.2 Self-Configuration

When a system service is started on a node it is statically configured to become either
a LC or a GM. When the services boot, the first step in hierarchy construction involves the
election of a GL among the GMs. After the GL election, other GMs need to register with it.
For a LC to join the hierarchy, it first needs to discover the current GL and get a GM assigned
by contacting the GL. Once it is assigned to a GM, it can register with it. We now describe
all these steps in more details.

When a GM starts, the GL election algorithm is triggered. Currently, our GL election
algorithm is built on top of the highly available and reliable coordination system Apache
ZooKeeper [174]. It follows the recipe proposed by the ZooKeeper community in [66]. The
key idea of the algorithm is to construct a chain between the GMs in which each GM watches
its predecessor GM. The GM with the lowest Unique Identifier (UID) becomes the GL. GL
election works as follows. Each GM contacts the ZooKeeper service upon startup to get a
UID and have the ZooKeeper service create an entry associating the GM UID with its net-
work address. The ZooKeeper service guarantees that the first GM contacting it receives the
lowest UID. After the entry creation each GM first attempts to find an entry in the ZooKeeper
service with the next lower UID. To do so, a list of entries is retrieved by leveraging the
ZooKeeper API and sorted by the GM in decreasing order. If an entry with a lower UID
exists, the GM starts watching it and joins the GL heartbeat multicast group to get informed
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Figure 3.2: Snooze self-configuration: GM and LC join example

about the current GL, otherwise it becomes the GL and starts announcing its presence by
sending GL heartbeat messages on the GL heartbeat multicast group. Once the GMs which
were not promoted to be a GL receive a GL heartbeat message, they register with the GL by
sending their UID and network address (see Figure 3.2(a)).

The join process of a LC works as follows. Each time a LC starts it subscribes to the GL
heartbeat multicast group in order to discover the current GL. When a GL heartbeat message
arrives, the actual join process is started by sending a GM assignment request to the GL. The
GL distinguishes between two scenarios. In the first scenario a LC joins the system as part of
its usual boot process. In the second scenario a LC joins the system as the result of a power
management activity. For instance, when a GM wakes up an LC which was previously in
a power saving state. To support the former scenarios the LC can be assigned to any GM.
However, to enable the latter scenario, the LC must be assigned to exactly the same GM which
triggered the LC wake up. Otherwise, the GM will not be able to start VMs on the newly woken
up LC. Indeed, the LC will be out of its management scope. In order to avoid such a situation
when a GL receives a LC to GM assignment request it queries the GMs for the status of the
joining LC. In case any GM replies to the GL that it was previously in charge for the joining
LC, the GL returns the network address of the GM to the LC, which then initiates the actual
GM registration process by sending its description (i.e. UID, network address, available
capacity) to the GM (see Figure 3.2(b)). Finally, the LC unsubscribes from the GL heartbeat
multicast group and starts listening for its assigned GM heartbeat messages to detect GM
failures. Moreover, it periodically sends VM resource utilization data to its assigned GM.

In case none of the GMs was previously in charge for the LC, the GL triggers the system
administrator selected GM assignment policy which assigns the LC to a GM according to its
high-level objective (e.g. round robin). The network address of the assigned GM is returned
to the LC and the previously introduced GM registration procedure is started.

The aforementioned mechanisms allow Snooze to provide autonomy via self-
configuration thus significantly reducing the system configuration efforts. Indeed, the hi-
erarchy is constructed fully automatically without human intervention.

3.3.3 Self-Healing

Self-healing is performed at all levels of the hierarchy. It involves the detection of and
recovery from LC, GM, and GL failures.

LC failures are detected by their assigned GM based on a unicast heartbeat timeout.
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Once a LC failure is detected, the GM gracefully removes the failed LC from its repository in
order for it not to be considered in future VM management tasks. Note, that in the event of
a LC failure, the VMs it hosts are terminated. IP addresses assigned to the terminated VMs
must be recycled by the GL in order to avoid IPs leakage. Therefore, IPs of the terminated
VMs are added to a list of recyclable addresses which exists on each GM. This list is peri-
odically sent to the GL. Upon reception of the terminated VM IPs, the GL adds the IPs back
to its pool of managed addresses. Note, that for the time being Snooze does not handle the
recovery of terminated VMs. However, snapshot features of hypervisors can be used by LCs
in order to periodically take VM snapshots. This will allow the GM to reschedule the failed
VMs on its remaining active LCs.

GM failures are detected by the GL and LCs based on unicast (resp. multicast) heartbeat
timeouts. When a GM fails all its knowledge (e.g. VMs and their assigned IP addresses, LC
network addresses) is lost and the GM is removed from the GL repository in order to prevent
the GL from sending VM submission requests to dead GMs. LCs which were previously
managed by the failed GM start the rejoin procedure. Similar to the join procedure a rejoin
involves the assignment of a GM to the LC. However, during the rejoin, LCs knowledge
about the currently running VMs must be transferred to the newly assigned GM. Otherwise,
clients will fail to manage their VMs (see Section 3.5.2 for more details). Finally, as every GM
is beeing watched by its successor GM in the ZooKeeper service, a failure event is triggered
on the successor GM. Upon a GM failure the successor GM relies on the Apache ZooKeeper
service in order to discover a new predecessor GM and start watching it. This is achieved
by using the GM discovery procedure described in Section 3.3.2. Note, that in case this
procedure is not done, due to the nature of the GL election algorithm a successor GM will
never be able to become a GL in the future (see the GL failure recovery description below).

GL failure is detected by its successor GM based on a timeout triggered by the
ZooKeeper service. When a GL fails, first a new GL must be elected among the GMs. The
newly elected GL then must be discovered and joined by the remaining GMs. Moreover,
LCs which were previously assigned to the GM becoming the new GL must rejoin the hi-
erarchy. Note, that in the event of a GL failure all its knowledge about the existing GMs as
well as the VM networking information (i.e. assigned IP addresses) is lost. Consequently,
this knowledge must be rebuilt in order for the system to remain in a consistent state. This
steps are achieved as follows.

Upon GL failure, the successor GM in the chain becomes the new GL as its UID is the next
lowest one (see Figure 3.3(a)). When a GM is promoted to be a GL, it gracefully terminates
all its tasks such as the heartbeat and summary information sending. Moreover, it cleans its
internal LC and VM knowledge. Afterwards, the GM switches to GL mode, and starts send-
ing its network address to the GL heartbeat multicast group. The switch to GL mode yields
two effects: (1) the newly elected GL must be detected and joined by the remaining GMs; (2)
LCs which were previously managed by the GM must rejoin the hierarchy to another GM.

In order to detect the new GL, GMs always keep listening for GL heartbeat messages.
Upon reception of a new GL network address they trigger the GL rejoin procedure (see
Figure 3.3(b)). In contrast to the previously introduced GM join procedure, a GM rejoin
requires additional data to be sent. Particularly, in order to rebuild GLs VM networking
knowledge, each time a GM registers with a new GL it attaches IPs of its active VMs to its
description thus allowing the GL to reconstruct its view of already assigned IPs. Moreover,
GM summary information is periodically sent back to the new GL (see Section 3.4.2 for more
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Figure 3.3: Snooze self-healing: GM failure and GL switch example

details) thus allowing it to rebuilt its GM resource utilization knowledge.

Finally, as a GM has been promoted to become the new GL it stopped sending heartbeat
messages to its heartbeat multicast group. LCs which were previously assigned to it thus
fail to receive the heartbeat messages and consider it as failed. They rejoin the hierarchy by
following the GM failure recovery procedure.

The aforementioned mechanisms enable Snooze to satisfy the self-healing property of au-
tonomic computing systems. Particularly, they allow Snooze to automatically detect system
component failures and repair the system in order to continue normal functioning without
external intervention.

3.4 Energy-Efficient VM Management

We now present the core VM management mechanisms and algorithms of Snooze.
Snooze provides a holistic energy management solution for IaaS clouds by integrating VM
resource utilization monitoring and estimations, underload/overload mitigation mecha-
nisms, and VM consolidation, and finally power management within one system. Power
management is used to transition idle PMs in to a power saving state during periods of
low utilization. In this section first, the notations and metrics are introduced. Then, we
describe the VM resource utilization monitoring and estimation, VM dispatching and place-
ment, LC overload and underload mitigation, migration plan enforcement, and finally the
power management mechanisms.

3.4.1 Notations and Metrics

Let LCs denote the set of LCs and VMs the set of VMs, with n = |LCs| and m = |VMs|
representing the amounts of LCs and VMs, respectively.

Available resources, CPU, memory, network Rx, and network Tx are part of the set R
with d = |R| (d = 4). VM CPU utilization is measured in percentage of the total LC capacity. For
example, if a LC has four physical cores (PCORES) and a given VM requires two virtual cores
(VCORES), the maximum CPU requirement of the VM would be 50%. Memory is measured
in KiloBytes and network utilization in Bytes/sec.
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VM is represented by its requested and used capacity vectors (RCv resp. UCv). RCv :=
{RCv,k}1≤k≤d reflects the VM resource requirements at submission time. Each vector com-
ponent defines the requested capacity for resource k ∈ R. The used capacity vector UCv :=
{UCv,k}1≤k≤d contains estimated VM resource utilization at a given time. It is computed
based on the monitored VM resource utilization.

LCs are assigned with static and used capacity vectors. The static capacity vector repre-
sents the total amount of resources available on a LC l. It is defined as Cl := {Cl,k}1≤k≤d.
Used capacity vector represents the estimated LC resource utilization. It is defined as cl and
is computed by summing up the used VM capacity vectors: cl := ∑

∀v∈LCl

UCv.

We introduce Ml := {MIDl,k}1≤k≤d as the node resource capping vector which puts
an upper bound on the maximum aimed LC utilization for each resource k with 0 ≤ MIDl,k ≤ 1.
In other words we keep a limited amount of available resources to compensate for over-
provisioning. This is required in order to mitigate performance problems during periods
of high resource contention. Once Ml is in place, the static LC capacity vector is com-
puted as Cl := Cl �Ml . � denotes elementwise vector multiplication. LCl is considered
to have enough capacity for VMv if either cl + RCv ≤ Cl holds during VM placement or
cl + UCv ≤ Cl during overload/underload mitigation or consolidation.

Introducing resource utilization upper bounds leads to situations where VMs can not be
hosted on LCs despite enough resources being available. For example when MIDl,CPU = 0.8
and only two PCORES exist, VM requiring all of them can not be placed (i.e. 2 VCORE / 2
PCORE≤ 0.8 does not hold). Therefore, we define the notion of packing density (PD) which
is a vector of values between 0 and 1 for each resource k. It can be seen as the trust given
to the user’s requested VM resource requirements and allows VMs to be hosted on LCs despite
existing MID capping’s. When PD is enabled, Snooze computes the requested VM resource
requirements as follows: RCv := RCv � PD.

LCs, GMs, and VMs need to be sorted by many VM management algorithms. Sorting
vectors requires them to be first normalized to scalar values. Different sort norms such as
L1, Euclid or Max exist. In this work the L1 norm [294] is used.

3.4.2 Resource Monitoring and Estimations

VM and LC resource utilization changes over time. In order to support VM management
decisions such as VM dispatching, placement, underload/overload mitigation, and VM con-
solidation, VM and LC monitoring is performed at all layers of the system. At the computing
layer VMs are monitored and VM resource utilization is periodically transferred by the LCs
to the assigned GM.

At the management layer, GMs periodically send summary information to the GL. GM
summary information includes the aggregated resource utilization for all the LCs a GM man-
ages. Aggregated resource utilization captures the total active, passive, requested and used
capacity of a GM. Aggregated resource utilization is used by the GL to guide VM to GM
dispatching decisions. Active and passive capacity are static vectors that represents the total
amount of LC resources available on active (resp. passive) LCs. Active and passive LCs are
nodes which are powered on (resp. power-cycled). Active and passive capacity vectors are
computed by summing up the Cl vectors of all the powered on (resp. power-cycled) LCs.
Requested capacity is a vector that represent the total amount of LC resources requested by
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the VM at submission time. It is computed by aggregating the RCv vectors of all the VMs.
Used capacity is a vector that represents the total amount of used LC resources as estimated
by the LC. It is computed by summing up the cl vectors of all the active LCs.

Finally, VM resource utilization estimations are essential for most of the tasks involved
in VM management on a GM. For instance, a GM requires the knowledge of the used ca-
pacity of its assigned LCs when generating the GM summary information to be sent to the
GL generation. The overload and underload mitigation detection decisions are based on the
LC used capacity vectors. Finally, VM used capacity vectors are required by all of the VM
management algorithms in order to sort LCs and VMs. VM used capacity can be either com-
puted by simply considering the average of the n most recent VM resource utilization values
for each resource k. Alternatively, more advanced algorithms (e.g. based on Autoregressive-
Moving-Average) can be used. In this work the former approach is taken.

3.4.3 VM Dispatching and Placement

When a client attempts to submit VMs to the GL, a dispatching policy is used to distribute
them among the GMs. For example, VMs could be distributed in a capacity-aware round-
robin or first-fit fashion. A dispatching policy takes as input the submitted VMs and the list
of available GMs including their associated aggregated resource utilization data and outputs
a dispatching plan which specifies the VM to GM assignments. Particularly, the dispatching
policy assigns sets of VMs to GMs. Priority is given to assign VMs to GMs with enough
available active capacity in order to minimize the number of passive LCs to be woken up by
the GMs during VM placement. Note, that aggregated resource utilization is not sufficient
to take exact dispatching decisions. For instance, when a client submits a VM requesting 2GB
of memory and a GM reports 4GB available it does not necessary mean that the VM can be
finally placed on this GM as its available memory could be distributed among multiple LCs
(e.g. 4 LCs with each 1 GB of RAM). Consequently, a list of candidate GMs is provided by
the VM dispatching policy. Based on this list, a linear search is performed by the GL during
which it sends VM placement requests to the GMs.

Finally, once a GM receives a request from the GL to start VMs it triggers the VM place-
ment algorithm to compute a VM to PM allocation. At this stage any traditional VM place-
ment algorithm such as Round-Robin or First-Fit Decreasing (FFD) can be used. The current
Snooze implementation integrates both the algorithms. It is up to the system administrator
to choose which algorithms will be used to perform VM dispatching and VM placement.

3.4.4 Overload and Underload Mitigation

Because of the fluctuating VM resource consumption and the systems ability to overcom-
mit resources, resource contention can occur when the aggregated resource utilization of the
VMs exceeds the total LC capacity, the so-called overload condition. Moreover, for energy
efficiency reasons, once a LC has become idle (i.e. underloaded) it could be transitioned into
a lower power-saving state to save energy. In order to handle both cases, Snooze integrates
overload and underload mitigation mechanisms which involve the detection and resolution
of overload (resp. underload) situations.

Overload and underload detection is performed locally by each LC. For each VM a sys-
tem administrator predefined amount of resource (i.e. CPU, memory, network Tx, network
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Rx) utilization vectors is first collected based on which the average VM resource utiliza-
tion vector is computed by the LC. Computing the average VM resource utilization allows
the system to avoid many false-positive overload/underload alerts which would have been
triggered due to transient resource utilization spikes if instant values were taken. In other
words, computing the average VM resource utilization attempts to smooth the VM resource
utilization data. After the LC has computed the average VM resource utilization for each
managed VM, it computes the used LC capacity vector by summing up the average VM re-
source utilization vectors and applies a Threshold Crossing Detection (TCD) mechanism on
it. The TCD mechanism defines two thresholds: 0 ≤ MINk ≤ 1 and 0 ≤ MAXk ≤ 1 for each
resource k and applies them on the used LC capacity vector. If the estimated resource uti-
lization for at least one k falls below MINk the LC is considered as underloaded, otherwise
if it goes above MAXk, the LC it is flagged as overloaded (see Figure 3.4).

MINk

MIDk

MAXk

PM

Figure 3.4: Snooze thresholds example

In the event of an overload situation VMs must be moved to a more lightly loaded nodes
in order to mitigate performance degradation. In the event of an underload situation, for en-
ergy saving reasons it is beneficial to move VMs to moderately loaded LCs in order to tran-
sition the underutilized LCs into a lower power state. Consequently, two types of mitigation
policies are supported at the GM level: overload and underload mitigation. In order to
compute solutions, in a reasonable amount of time both policies are currently implemented
using greedy algorithms with a polynomial worst-case complexity.

The Snooze VM overload mitigation algorithm is shown in Algorithm 1. The key idea of
the algorithm is to move just as many VMs away as needed to resolve the overload situation.
The algorithm takes as input the overloaded LC along with its associated VMs and a list of
LCs managed by the GM. It outputs a migration plan. The overload mitigation policy first
estimates the used LC capacity and computes the LC static capacity vector. It then gener-
ates the overloaded capacity delta (i.e. difference between used and static capacity vector).
Afterwards, it gets the VMs assigned to the overloaded LC, sorts them in increasing order
based on used capacity and computes a list of candidate VMs to be migrated. The routine
to compute the migration candidates first attempts to find the most loaded VM among the
assigned ones whose used capacity equals or is above the overloaded capacity delta. This
way a single migration will be sufficient to move the LC out of the overload state. Other-
wise, if no such VM exists, it starts adding VMs to the list of migration candidates starting
from the least loaded one until the sum of the used VM resources equals or is above the
overload capacity delta. Finally, the destination LCs are sorted in increasing order based on
used capacity and their status (i.e. active, passive). The sorting procedure favours active
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LCs over passive ones. This away useless PM wake ups are avoided. Migration candidates
are assigned to LCs starting from the first one if enough capacity is available. Moreover, the
new VM to LC mappings are added to the migration plan. In case PMs need to be woken up,
Snooze first performs the PM wake ups using the appropriate system administrator speci-
fied mechanisms (e.g. IPMI [35], Wake-on-Lan (WOL) [65]). It then enforces the migration
plan by performing the VM live migrations.

Algorithm 1 Snooze VM overload mitigation
1: Input: Overloaded LC with the associated VMs and resource utilization vectors

UC, list of destination LCs
2: Output: Migrating Plan MP
3: c← Estimate used LC capacity
4: m← Compute static LC capacity
5: o← Compute the amount of overloaded capacity (c, m)
6: VMssource ← Get VMs from LC
7: Sort VMsource in increasing order
8: VMcandidates ← computeMigrationCandidates(VMssource, o)
9: Sort destination LCs in increasing order

10: for all v ∈ VMcandidates do
11: LC f it ← Find LC with enough capacity to host v (v, LCs)
12: if LC f it = ∅ then
13: continue;
14: end if
15: Add (v, LC f it) mapping to the MP
16: end for
17: return MP

The underload mitigation algorithm is shown in Algorithm 2. In contrast to the overload
mitigation algorithm, the underload mitigation does not require to compute a VM migration
candidate set. Instead, the algorithm follows an all-or-nothing approach in which either all
or none of the VMs executing on a node are moved. Moving a subset of VMs does not
contribute to the energy saving objective (i.e. create idle times) and thus is avoided. The
algorithm takes as input the underloaded LC and its associated VMs along with the list of
LCs managed by the GM. It first retrieves the VMs from the underloaded LC and sorts them
in decreasing order based on the used capacity. Similarly, LCs are sorted in decreasing order
based on the used capacity. Then, VMs are assigned to LCs with enough spare capacity
and added to the migration plan. If some VMs could not be assigned the migration plan is
cleaned and the algorithm is aborted. Otherwise, a non-empty migration plan is returned.
Snooze enforces the migration plan via VM live migration and transitions the PM in to a
lower system administrator specified power state (e.g. shutdown) once all VMs have been
migrated to save energy.

Note that despite our efforts to mitigate the effect of transient resource spikes via ag-
gregation of VM resource utilization data, the proposed mechanisms have a cost in terms
of energy and performance (i.e. executing time). For instance, when an overload situation
occurs, VMs need to be migrated from the overloaded node to less loaded nodes. VM live
migration requires resources on the source node as well as on the destination nodes. This it
can negatively impact the performance of collocated VMs on the nodes involved in live mi-
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Algorithm 2 Snooze VM underload mitigation
1: Input: Underloaded LC with the associated VMs and resource utilization vectors UC,

list of destination LCs
2: Output: Migration Plan MP
3: VMcandidates ← Get VMs from underloaded LC
4: Sort VMcandidates in decreasing order
5: Sort LCs in decreasing order
6: for all v ∈ VMcandidates do
7: LC f it ← Find LC with enough capacity to host v
8: if LC f it = ∅ then
9: Clear MP

10: break;
11: end if
12: Add (v, LC f it) mapping to the MP
13: end for
14: return MP

gration. Moreover, VM live migration also has an impact on the performance of applications
hosted on the VMs. Consequently, the benefits of the underload and overload mitigation
mechanisms heavily depend on the application workloads. Nevertheless, as we our evalua-
tion will show, energy savings can be achieved especially in the context of web applications.

3.4.5 VM Consolidation

In the previous section we have introduced the Snooze overload and underload miti-
gation mechanisms. While such mechanisms are certainly important to resolve underload
and overload situations, resource fragmentation can still happen due to differences in VM
resource demands when nodes are neither underutilized nor overloaded. In Snooze each
GM integrates a VM consolidation engine which can be enabled by the system administra-
tor to periodically perform these tasks. Consolidation is performed by GMs concurrently
and independently within their set of PMs. Note, that VM consolidation has a cost in terms
of both energy and performance (i.e. execution time) on the overall system (resp. applica-
tions inside the VMs). Consequently, choosing the appropriate interval is crucial in order to
achieve both, energy savings and limited impact on application performance. For instance,
performing VM consolidation should be avoided during periods of high utilization.

VM consolidation is a multi-objective variant of the multi-dimensional bin-packing prob-
lem which is known to be NP-hard [284, 266]. Snooze is not limited to any particular VM
consolidation algorithm. Indeed, thanks to its flexible design any VM consolidation algo-
rithm can be integrated. However, because of the NP-hard nature of the problem and the
need to compute solutions in a reasonable amount of time it currently implements a simple
yet efficient two-objective polynomial time greedy consolidation algorithm which minimizes
the number of LCs along with the number of migrations. Particularly, a modified version of
the Sercon [224] algorithm is integrated which differs from the original one in its termination
criteria and the number of VMs which are removed in case not all VMs could be migrated
from a LC. Sercon follows an all-or-nothing approach and attempts to move VMs from the
least loaded LC to a non-empty LC with enough spare capacity. Either all VMs can be mi-
grated from a host or none of them will be. Migrating only a subset of VMs does not yield



78 Chapter 3 – Snooze: A Scalable, Autonomic, and Energy-Efficient IaaS Cloud Manager

to a smaller number of LCs and thus is avoided. The pseudocode of the modified algorithm
is shown in Algorithm 3.

Algorithm 3 Snooze VM consolidation
1: Input: List of LCs with their associated VMs and resource utilization vectors UC
2: Output: Migration Plan MP, nUsedNodes, nReleasedNodes
3: MP← ∅
4: nUsedNodes← 0
5: nReleasedNodes← 0
6: localControllerIndex← |LCs| − 1
7: while true do
8: if localControllerIndex = 0 then
9: break;

10: end if
11: Sort LCs in decreasing order
12: LCleast ← Get the least loaded LC (localControllerIndex)
13: VMsleast ← Get VMs from LCleast
14: if VMsleast = ∅ then
15: localControllerIndex← localControllerIndex - 1
16: continue;
17: end if
18: Sort VMsleast in decreasing order
19: nPlacedVMs← 0
20: for all v ∈ VMsleast do
21: Find suitable LC to host v
22: if LC = ∅ then
23: continue;
24: end if
25: LCleast ← LCleast ∪ {v}
26: Add (v, LCleast) mapping to the MP
27: nPlacedVMs← nPlacedVMs + 1
28: end for
29: if nPlacedVMs = |VMsleast| then
30: nReleasedNodes← nReleasedNodes + 1
31: else
32: Remove VMsleast from LCleast and MP
33: end if
34: localControllerIndex← localControllerIndex - 1
35: end while
36: nUsedNodes← |LCs| - nReleasedNodes
37: return MP, nUsedNodes, nReleasedNodes

The algorithm receives the LCs including their associated VMs. LCs are first sorted in
decreasing order based on their used capacity. Afterwards, VMs from the least loaded LC are
sorted in decreasing order, placed on the LCs starting from the most loaded one and added
to the migration plan. If all VMs could be placed the algorithm increments the number of
released nodes and continues with the next LC. Otherwise, all placed VMs are removed
from the LC and migration plan. The procedure is then repeated with the next loaded LC.
The algorithm terminates when it has reached the most loaded LC and outputs the migration
plan, number of used nodes, and number of released nodes.
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3.4.6 Migration Plan Enforcement

Overload and underload mitigation as well as VM consolidation algorithms output a
migration plan which specifies the new mapping of VMs to LCs. This mapping is used by
Snooze to transition the system from its current to the optimized state. The migration plan
is enforced only if it potentially yields less active LCs. Enforcing the migration plan computed
is straightforward as it only involves moving VMs from their current location to the given
one. Note that our algorithms do not introduce any sequential dependencies or cycles of VM
migrations. Particularly, VMs are migrated to an LC if and only if enough capacity is available on
it without requiring other VMs to be moved away first.

3.4.7 Power Management

In order to save energy, idle nodes need to be transitioned into a lower power state after
the migration plan enforcement. Therefore, Snooze integrates a power management service,
which can be enabled by the system administrator to periodically observe the LC utilization
and trigger power-saving actions once they become idle.

The following power saving actions can be enabled if hardware support is available:
shutdown, suspend to ram, disk, or both. Different shutdown and suspend drivers can be
plugged in to support any power management tool. For example, shutdown can be im-
plemented using IPMItool [201] or by simply calling the Linux native shutdown command.
To enable PM power on, wake up drivers exist. Currently, two wake up mechanisms are
supported in Snooze: IPMI and WOL.

Power management works as follows. Snooze can be configured by the system adminis-
trator to keep a number of reserved LCs always on in order to stay reactive during periods
of low utilization. Other LCs are automatically transitioned into a lower power state after a
predefined idle time threshold has been reached (e.g. 180 sec) and marked as passive. Pas-
sive LCs are woken up by the GMs either upon VM submission or overload situation when
not enough active capacity is available to accommodate the VMs. In both cases when a GM
triggers a passive LC wake up it must to wait for the LCs to come online and register with the
GM until it can attempt to start designated VMs on them, otherwise the VM start requests
will fail. Indeed, the LCs will be not reachable. In this context two aspects are important: (1)
a time interval needs to be defined to inform the GM for how long it needs to wait until it can
attempt to start VMs on the woken up LCs; (2) in order for the GM to successfully start VMs
on the woken up LCs, LCs must be assigned to exactly the same GM which triggered the wake ups.
In order to enable the former aspect a system administrator configurable wake up timeout
exist on each GM. To support the latter aspect, the GL is designed to assign LCs to the same
GM which triggered the wake up (see Section 3.3.2).

Finally, care must be taken during the VM submission when the GL computes a VM to
GM assignment based on the aggregated GM resource utilization information. Depending
on the implemented VM placement algorithm, computing the VM to GM assignment can
take considerable amount of time. During this time, concurrently operating power man-
agement modules on the GMs can detect and transition idle PMs into a low-power state
even though the PMs will be required shortly after the VM to GM assignment computation.
In order to prevent such race conditions, a GL freezes the GMs power managers prior to
computing the VM to GM assignment and unfreezes them afterwards.
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3.5 Implementation

We have developed a Snooze prototype from scratch in Java. It currently comprises ap-
proximately 15 000 lines of highly modular code. This section presents a few but impor-
tant implementation aspects. They involve the VM life-cycle management and monitoring,
command line interface (CLI), asynchronous VM submission processing, live migration con-
vergence enforcement, and repositories. Note, that the Snooze is programmed in a highly
modular manner and thus does not depend on the choices made so far (e.g. a particular
database). Since May 2012 Snooze is distributed in open-source under the GPL v2 license
at http://snooze.inria.fr.

3.5.1 VM Life-Cycle Enforcement and Monitoring

Different tools can be used to control the VM life-cycle management as well as to collect
monitoring information. For example, life-cycle management commands can be either en-
forced by directly contacting the hypervisor API or using an intermediate library such as lib-
virt [250], which provides a uniform interface to most of the modern hypervisors. Similarly,
VM resource utilization data can be obtained from different sources (e.g. libvirt, Ganglia [5],
Munin [41]). Snooze provides abstractions to integrate any VM life-cycle management and
monitoring solution but currently relies on libvirt. Libvirt is particularly interesting as it
can be used for both, VM life-cycle management and transparent VM resource utilization
monitoring. This way dependencies on third party tools (e.g. Ganglia) can be minimized.

3.5.2 Command Line Interface

A Java-based CLI is implemented on top of the RESTful interfaces exported by Snooze
system services. The CLI supports the definition and management of virtual clusters (VCs).
VCs are constructed on the client side to represent collections of one or multiple VMs. VCs
are used by the CLI to group VMs and perform collective VM commands such as startup
of multiple VMs. Moreover, visualizing and exporting the current hierarchy organization in
the GraphML format is supported by the CLI. Both, the visualization and the exporting are
implemented using the Java Universal Network/Graph framework [184]. Before VMs can
be submitted into the system a VC needs to be defined and filled with at least one VM by
specifying a path to the VM description. Currently, the libvirt [250] templates are accepted
by the CLI. The meta-information (e.g. name, VM template paths) about VCs is store locally
on the client side in the Extensible Markup Language (XML) format.

When a user attempts to start a VC, the CLI first transparently discovers an active EP by
walking through the EPs list specified in its configuration file. This list must be statically
configured during the CLI setup. Given that an active EP exists, a GL lookup is sent in order
to receive the current GL network address. Finally, the request to submit the VC is delegated
to the GL which dispatches the VMs on the available GMs. The response provides the fol-
lowing information: assigned VM IP addresses, network addresses of the GMs managing
the VMs, VM status (e.g. RUNNING) and an error code which indicates problems during
the submission. Examples of problems include not enough compute resource or errors in the
VM description (e.g. bad path to the VM disk image). The CLI displays the response to the
user. The GM network addresses on which the VMs were dispatched are stored in the CLI

http://snooze.inria.fr
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repository, thus allowing the CLI to directly contact the GM whenever VC/VM management
commands need to be performed.

CLI

Entry point

Group leader

Group manager Group manager Group manager

1) Get GL

2) Start VMs

3) Control VMs

Local controllers Local controllers Local controllers

Figure 3.5: Snooze VM submission example

The following VM management commands are currently supported: start, destroy, shut-
down, suspend, resume and info. All commands can be executed either for an individual
VM or a VC. When applied to a VC, the command is applied to all VMs belonging to the VC.
The info command allows to retrieve the VM information which includes VM UID, assigned
IP address, network address of the LC and GM in charge of managing the VM, and the VM
status. Finally, it is important to mention that on GM failures the CLI repository information
becomes obsolete. When the CLI attempts to contact a GM managing a given VM which
is not reachable, it queries the EP in order to discover the current GL. Afterwards, a GM
discovery request including the VM UID is sent to the GL. Upon reception of the request,
the GL queries the currently active GMs in order to find the one assigned to the VM, and
returns the result to the CLI. Thus the VM management command can be performed on the
new GM. On the other hand, in the event of an LC fails all the knowledge about the LC
including its VMs is removed from the GM. In case the client contacts a GM which does not
have knowledge about a certain VM it responds to the client that with the appropriate error
code (i.e. VM information not available).

3.5.3 Asynchronous VM Submission Processing

In order to stay scalable with an increasing number of client requests, VM submissions
are processed asynchronously by the GL as well as the GMs. Particularly, when any client
software attempts to submit VMs to the GL, it receives a task identifier (TID) and is required
to periodically poll the GL for the response (i.e. long-polling design pattern). VM submission
requests are queued on the GL and processed sequentially. for each VM submission request,
the GL performs the VM dispatching on behalf of the client by instructing the GMs to place
the VMs. Thereby, it receives a TID from each of the GMs upon VM placement request
submission and polls the GMs for responses. GMs perform the VM placement tasks on
behalf of the GL. When a GL collects responses from all GMs it associates a submission
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response with the client TID and the request is considered as finished.

Note that, client VM submission requests are queued on the GL and processed sequen-
tially. Each GM implements a state machine which starts rejecting VM submission requests
when it becomes busy. A GM is considered busy when it performs one of the following
tasks: GL request processing, overload/underload mitigation, VM consolidation, or power manage-
ment. The GL periodically retries sending VM placement requests to GMs according to the
system administrator specified interval and number of retries. An error code is associated
with the client request by the GL if after this period no VMs could be placed. This way
infinite loops are avoided.

3.5.4 Live Migration Convergence Enforcement

Snooze overload/underload mitigation and VM consolidation algorithms require VM
live migrations. Migrations can happen either sequentially or in parallel. In the former case
only one VM is moved from the source to the destination LC at a time, while the latter allows
multiple VMs to be migrated concurrently. Given that modern hypervisors (e.g. KVM) sup-
port parallel migrations there is no reason not to do so given that enough network capacity
is available. This is what Snooze does.

VM live migration involves the transfer of a large amount of memory pages across the
data center network links. Depending on the hypervisor, the live migration technique and
the live migration termination criteria it can take a significant amount of time to finish the mi-
gration of the VMs to be consolidated. For example, in KVM live migration can last forever
if the number of pages that got dirty is larger than the number of pages that got transferred
to the destination LC during the last transfer period. In order to detect and resolve such
situations, for each migration Snooze spawns a watchdog thread. Watchdog threads enforce
convergence after a system administrator predefined convergence timeout given the migra-
tion is still pending. Therefore it suspends the migrating VM thus preventing further page
modifications. The hypervisor is then able to finish the migration and restart the VM on the
destination LC.

3.5.5 Repositories

Each system service implements a repository for data storage. For example, the GL stores
GM descriptions, GM resource utilization and VM networking information. Each GM main-
tains a local view of its managed LCs and their associated VM resource utilization data.
LCs store information (e.g. UID, assigned IP address) about the currently running VMs.
Snooze is not limited to a particular repository implementation. Consequently, different
storage backends (e.g. MySQL [2], Apache Cassandra [198], MongoDB [67]) can be inte-
grated. However, it currently relies on an in-memory storage based on a ring buffer. In
other words, the repository keeps a limited amount of data and starts overwriting the least
recently used data once the limit is reached. It is up to the system administrator to set the
appropriate limit during the Snooze deployment for each GM.
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3.6 Evaluation

This section presents the experimental results from the Snooze evaluation. A Snooze
prototype was developed and evaluated on the Grid’5000 experimentation testbed. To em-
phasize the features of Snooze our evaluation is structured into two parts. The first part
targets the scalability and autonomy of the system. The second part is devoted to the the
energy management mechanisms.

3.6.1 Scalability and Autonomy

In order to test the scalability of the system we have performed two evaluations: (1) VM
submission time with increasing number of VMs; (2) amount of heartbeat and resource uti-
lization data; (3) CPU and memory load consumption. VM submission time is an important
metric to evaluate as it greatly impacts the users system experience. Heartbeat and resource
utilization data are continuously exchanged between the system services (i.e. GL, GM and
LC) and thus consumes additional network capacity. Finally, the GL and GM CPU and
memory load scalability is evaluated in two scenarios: (1) during VM submission; (2) with
increasing number of nodes hosting GMs (resp. LCs) services. The former scenario is im-
portant in order to get an insight about how the GL resource requirements scale with a large
number of GMs. The latter shows how the GL and GM resource requirements scale with
a large number of nodes. Finally, the impact of the autonomy (i.e. self-configuration and
healing) mechanisms on the application performance is analyzed by injecting system com-
ponent failures. Understanding whether the system is able to sustain system component
failures and which implications such failures have on the overall application performance
is important as the number for software and hardware failures increases at scale. In the
following sections we first present the system setup and then discuss the results from the
scalability and autonomy evaluation.

3.6.1.1 System Setup

In order to evaluate the scalability and autonomy of the Snooze framework we have de-
ployed it on a 144 nodes cluster of the Grid’5000 experimentation testbed [98]. Each node is
equipped with one quad-core Intel Xeon X3440 2.54 GHz CPU, 16 GB of RAM, and a Gigabit
Ethernet interconnect. Note, that while the hardware in this experiment is homogeneous
nothing prevents the system from beeing deployed in a heterogeneous environment. The
operating system on each server is Debian with a 2.6.32-5-amd64 kernel. All tests were run
in a homogeneous environment with qemu-kvm 0.14.1 and libvirt 0.9.6-2 installed on all
machines. Each VM is using a QCOW2 3 disk image with the corresponding backing image
hosted on a NFS server. Debian is installed on the backing image and uses a ramdisk in order
to speed up the boot process. Finally, the NFS server is running on one of the EPs with its
file tree being exported to all LCs. During all experiments, the LC assignment, VM dispatch-
ing, and VM placement policy were set to round robin thus resulting in a balanced hierarchy
in terms of LC assignments as well as VM locations. Underload (resp. overload) mitiga-
tion, VM consolidation, and powered management mechanisms were disabled. Indeed, this
study is focused on the scalability and autonomy evaluation of the system.

3. The QCOW2 Image Format - http://people.gnome.org/∼markmc/qcow-image-format.html
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3.6.1.2 Submission time: centralized vs. distributed

VM submission time was evaluated by starting a large number of VMs. It is is defined as
the time between initiating the VM submission request and receiving the reply on the client
side. VM submission involves assigning IP addresses to VMs, dispatching VMs to the GMs,
placing VMs on the LCs and returning the response to the client.

Two deployment scenarios were considered: centralized and distributed. In the former the
EP, GL, GM as well as the Apache ZooKeeper service were co-located on a single node while
136 other nodes were hosting the LC services. This allowed us to emulate the traditional
frontend/backend-model as close as possible. Emulating the frontend/backend-model is
interesting as this is how most of the existing IaaS cloud management systems are designed.
Consequently, it can serve as a baseline for comparison with our more distributed approach.

To evaluate the potential overheads of being distributed, Snooze was configured in a
distributed manner on 144 nodes. Two nodes served as the EPs with each of the nodes
hosting a replica of the Apache ZooKeeper service. Six nodes were used as GMs and each
of the remaining 136 nodes had a LC service installed. Note, that one of the GMs became
the GL during startup. Finally, in both scenarios a given number of VMs was submitted
simultaneously to the system, ranging from 0 to 500. Each VM required one virtual core
and 2 GB of RAM. VMs were hosting the OS and basic system services (e.g. sshd). All VM
templates and disk images were pre-created on the NFS-server and submissions happened
sequentially directly after the predecessor VMs were terminated. 500 VMs were a good
tradeoff (i.e. ∼4 VMs per LC) in order not to risk application performance degradation due
to possible resource overcommit.

The experimental results of this evaluation are plotted in Figure 3.6. As it can be ob-
served, the submission time increases approximately linearly with the number of VMs in
both the centralized and distributed deployment. However, more interesting is the fact that
besides minor measurement errors, submission times in both scenarios are nearly equivalent
thus indicating the good scalability of the system as no overhead of being distributed can be ob-
served. Finally, submission of 500 VMs were finished in less than four minutes which proves
that our prototype is robust enough to manage such amounts of VMs.
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3.6.1.3 Heartbeat and Resource Monitoring Information Overhead

We evaluate the heartbeat and monitoring information overhead of the framework by
measuring the network utilization at the nodes hosting the Snooze system services. To iso-
late the heartbeat and monitoring traffic the framework was deployed with one EP, one GL,
one GM, and one LC. No VMs were running on the system. Each service was hosted on a
dedicated node. Heartbeat intervals of the GL as well as of the GM were set to 3 seconds.
Moreover, a fixed-amount of aggregated resource utilization and heartbeat data was sent by
the GM (resp. LC) periodically in 10 second intervals. Time intervals were derived empiri-
cally. Accounting the monitoring information is important as it is involved in the process of
failure-detection (see Section 3.3.1).
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Figure 3.7: Snooze network load scalability

Figure 3.7 depicts the correlated incoming and outgoing network traffic of the nodes
hosting the GL, GM and LC services. As it can be observed, the GL heartbeat multicast
messages only account to approximately 2.5 kB/s thus not putting any significant pressure
on the network. On the other hand, GL incoming traffic is mainly dominated by the received
GM summary information which amounts to approximately 4.5 kB/s and is sent using the
Transmission Control Protocol (TCP).

When considering the network load scalability of the GMs, heartbeats are sent from the
each GM to its LCs and vice versa. Similarly to the GL, GM heartbeat messages are multicast
based while LC monitoring information is periodically sent using TCP. For scalability and
system design reasons, only one TCP connection exists per LC to its assigned GM over which
all nodes, VM and heartbeat monitoring information is sequentially transmitted. Thus when
no VMs are active, still a fixed amount of data (i.e. heartbeat) is periodically sent by each LC
(see Figure 3.7). Particularly, as the LC monitoring information is of the same structure as
the one from a GM, approximately 4.5 kB/s are arriving at the GM. Similarly, the heartbeat
information sent by the GM and GL is equivalent in terms of size (i.e. ∼2.5 kB/s).
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3.6.1.4 CPU and Memory Load Scalability

This section presents the results from the GL (resp. GM) CPU and memory load evalua-
tion. First, the GL node CPU and memory load captured during VM submission is discussed.
Afterwards, the GL (resp. GM) node CPU and memory load obtained with an increasing
number of GM (resp. LC) nodes is presented.

VM Submission In this experiment we evaluate the scalability of the GL during VM sub-
mission by analyzing the CL node CPU and memory load obtained from the VM submission
experiment described in Section 3.6.1.2. The GL node CPU and memory load during VM
submission is shown in Figure 3.8. We notice that there is a short spike in CPU load and
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Figure 3.8: Snooze GL node CPU and memory load during VM submission

memory usage at the beginning of the experiment. Indeed the GL service needs to be started
first. Afterwards, the actual VC submission is started. After the boot period the system
settles at a fixed memory amount of approximately 327 MB (including OS services) which
remains constant with the number of VMs submitted. Similarly, small CPU load spikes can
be clearly observed during periods of VM submissions which are as well independent of the
number of VMs and never exceed 10% of CPU utilization. Both results emphasize the good
scalability of the GL service.

Increasing Numbers of GMs and LCs In order to get more insights into the GL as well
as GM CPU and memory scalability with an increasing number of GMs resp. LCs, we have
evaluated Snooze with different numbers of nodes hosting GMs and LCs. In the first ex-
periment, the amount of nodes hosting LCs was fixed while the number of nodes hosting
the GMs was dynamically doubled every minute until 128 nodes were reached. In the sec-
ond experiment, one node was hosting the GM service while the number of nodes hosting
LCs was increased up to 128. In both experiments one node served as the GL. Figure 3.9
depicts the results from the first evaluation. While the GL service scales well with respect
to CPU utilization (i.e. small spikes during GM joins), because GM summaries are stored
in-memory, the memory usage increases linearly with the number of GMs.

Figure 3.10 presents the results from the second experiment. Apart from a similar in-
crease in memory consumption, the GM shows good CPU load scalability with increasing
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Figure 3.9: Snooze GL node CPU and memory load with increasing number of GMs

number of LCs. Note, that the in-memory storage is implemented using a ring-buffer. Con-
sequently, after some time the least recently used summaries will be overwritten. Never-
theless, The in-memory storage can be replaced by a distributed storage (e.g. [198, 67]) thus
improving its scalability.
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Figure 3.10: Snooze GM node CPU and memory load with increasing number of LCs

3.6.1.5 Impact of Self-Configuration and Healing on Application Performance

To evaluate the impact of the self-configuration and self-healing mechanisms on applica-
tion performance, the system was configured in a distributed manner with the same config-
uration as described in Section 3.6.1.2. Three types of VMs with the following applications
were created: (1) VMs hosting the MPI-implementation of the NAS Parallel Benchmark (NPB)
v3.3 [79], that represent high performance computing (HPC) workloads; (2) VMs hosting
the Linux, Apache, MySQL, PHP (LAMP) stack running the Pressflow v6 content management
system (CMS) [6], that represent scalable servers workloads; (3) VMs hosting the Apache
Hadoop MapReduce [277] framework v0.20.2 to evaluate data analysis workloads. For MPI
we have selected the FT benchmark from NPB, because of its heavy use of collective com-
munication thus leading to high average network utilization (approximately 100 Mbit/s per
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VM). The benchmark was run with the Class A problem size across 100 VMs and the total
execution time was measured. For server workloads, the throughput (i.e. maximum num-
ber of requests per second) of Pressflow v6 was analyzed. To generate load the Apache HTTP
server benchmark [8] was used, with concurrency set to 100 and number of requests to 1000.
To represent data analysis workloads we have selected the I/O-intensive Terasort bench-
mark from the Hadoop MapReduce benchmark suite and run it on 100 Hadoop VMs. Each
Hadoop VM had two virtual cores, 4 GB of RAM, and 45 GB disk space. VM disk images
were hosted locally on the LCs. Hadoop MapReduce was configured with one map and one
reduce slot per VM. Hadoop Distributed File System (HDFS) served as the storage backend.
It was configured with a default block size of 128 MB and a replication level of three. Terasort
execution time was evaluated while running with 10 GB of input data using 1000 mappers
and 500 reducers.

To get an insight in the actual impact of self-configuration and self-healing on application
performance, system service failures were injected randomly during the benchmark execu-
tion. Three types of failures were injected: single GM failure, catastrophic GM failures (i.e.
half of GMs fail) and a GL failure. FT and Apache benchmark measurements were repeated
five times and the average values were taken while the Teragen benchmark was run twice.
The results of this evaluation are shown in Figure 3.11(a), 3.11(b), and 3.11(c).
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Figure 3.11: Impact of Snooze fault tolerance mechanisms on application performance

As it can be observed, apart from small measurement errors neither in the MPI nor in the
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web-based or MapReduce benchmark any performance degradation can be observed. This
is not surprising as the heartbeat overhead is negligible. Moreover, due to the ZooKeeper
service supporting the GL election process, the GMs required only a few dozen of second
to recover from a GL failure, resulting in a low amount of network traffic. Similarly, the
amount of data sent when a GM rejoins the new GL is approximately 100 bytes. Last but not
least, in the event of a GM failure data needs to be transferred by LCs to the current GL and
the new GM. In our experiment, a few dozen of kB were transferred thus not requiring sub-
stantial amounts of network capacity. Consequently, no overhead due to self-configuration
and healing can be observed on the applications.

3.6.2 Energy Efficiency

This sections presents the energy management mechanisms and algorithms evaluation.
First, the experiment setup is detailed which involves the description of the evaluation sce-
nario and application used. Then, the system setup is presented and the Snooze configura-
tion parameters are introduced. Finally, the results from the evaluation are discussed.

3.6.2.1 Experiment Setup

Our study is focused on evaluating the energy and performance benefits of the Snooze
energy-saving mechanisms using an elastic web application. Elastic web applications are
particularly interesting to evaluate as they are the most representative workloads in the
cloud context. Thereby, we define an elastic web application a an web application which
is able to dynamically request more VMs based on its current load. Consequently, to make
the study realistic, we have set up our experiment in a way that reflects a real-world web
application deployment: An extensible pool of VMs, each hosting a copy of a backend web
application running on a HTTP server, while a load-balancer accepts requests coming from
an HTTP load injector client (see Figure 3.12).

Apache 
BenchmarkBfire engine

Power measurements

Benchmark node

Balancer node

HAProxy 
load-balancer

Log

HTTPPoll

Snooze data center

VMs

Start VMs

Figure 3.12: Energy management: Bfire experiment setup

The backend application consists of a single HTTP endpoint, which triggers a call to
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the stress tool [55] upon each request received. Each stress test loads all VM cores during
one second and uses 512 MB of RAM. The load-balancer tool used is HAProxy v1.4.8, which
is a state-of-the-art load-balancer used in large-scale deployments [28]. HAProxy is configured in
HTTP mode, four concurrent connections maximum per backend, round-robin algorithm,
and a large server timeout to avoid failed requests. Finally, the load injector tool is the well-
known Apache benchmark tool [8]. It is configured to simulate 20 concurrent users sending
a total number of 15000 requests. According to our experiments these parameters provide
the best trade-off between the experiment execution time and the effectiveness of illustrating
the framework features. The initial deployment configuration of the backend VMs is done
using the Bfire tool [14], which provides a domain-specific language (DSL) for declaratively
describing the provisioning and configuration of VMs on a cloud provider. Bfire also allows
the monitoring of any metric and provides a way to describe elasticity rules, which can
trigger up- or down-scaling of a pool of VMs when a Key Performance Indicator (KPI) is
below or over a specific threshold. This tool is currently developed by INRIA within the
BonFIRE project [15]. A thin wrapper was developed to make Bfire Snooze compatible (i.e.
allowing the Bfire tool to interact with the Snooze RESTful API to provision VMs). The
experiment lifecycle is as follows: our Bfire DSL is fed into the Bfire engine, which initially
provisions one backend VM on one of the physical nodes. At boot time, the backend VM
will automatically register with the load-balancer so that it knows that this backend VM
is alive. Once this initial deployment configuration is ready, the Bfire engine will start the
Apache benchmark against the load-balancer. During the whole duration of the experiment,
Bfire will also monitor in a background thread the time requests spent waiting in queue at
the load-balancer level (i.e. before being served by a backend application). Over time, this
KPI will vary according to the number of backend VMs being available to serve the requests.
In our experiment, if the average value of the last 3 acquisitions of that metric is over 600ms (an
acceptable time for a client to wait for a request), then a scale-up event is generated, which
increases the backend pool by four new VMs at once. If the KPI is below the threshold, then
nothing happens. This elasticity rule is monitored every 15 seconds, and all newly created
VMs must be up and running before it is monitored again (to avoid bursting). Meanwhile,
an additional background process is registering the power consumption values coming from
the PDUs to which the physical nodes are attached.

3.6.2.2 System Setup

To evaluate the Snooze energy management mechanisms we have deployed it on 34
power metered HP ProLiant DL165 G7 nodes of the Grid’5000 experimental testbed with one
EP, one GL, one GM and 31 LCs. All nodes are equipped with two AMD Opteron 6164 HE
CPUs each having 12 cores (in total 744 compute cores), 48 GB of RAM, and a Gigabit Eth-
ernet connection. They are powered by six APC AP7921 power distribution units (PDUs).
Power consumption measurements and the benchmarking execution are done from two ad-
ditional Sun Fire X2270 nodes in order to avoid influencing the measurement results (see
Figure 3.13). The load balancer and load injector are running on the Sun Fire X2270 nodes.

The node operating system is Debian with a 2.6.32-5-amd64 kernel. All tests were run
in a homogeneous environment with qemu-kvm 0.14.1 and libvirt 0.9.6-2 installed on the
machines. Each VM is using a QCOW2 disk image with the corresponding backing image
hosted on a Network File System (NFS). Incremental storage copy is enabled during live
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Figure 3.13: Energy management: data center setup

migration. Debian is installed on the backing image. The NFS server is running on the
EP with its directory being exported to all LCs. VMs are configured with 6 VCORES, 4GB
RAM and 100 MBit/sec network connection. Note that libvirt currently does not provide
any means to specify the network capacity requirements. Therefore, Snooze wraps around
the libvirt template and adds the necessary network capacity (i.e. Rx and Tx) fields.

Tables 3.6.2.2, 3.6.2.2, 3.6.2.2, and 3.6.2.2 show the threshold, estimator, scheduler, and
power management settings used in the experiments.

Resource MIN, MID, MAX
CPU, 0.2, 0.9, 1

Memory 0.2, 0.9, 1
Network 0.2, 0.9, 1

Table 3.1: Threshold settings

Parameter Value
Packing density 0.9

Monitoring backlog 15
Resource estimators average

Consolidation interval 10 min

Table 3.2: Estimator settings

Policy Algorithm
Dispatching RoundRobin
Placement FirstFit
Overload see Algorithm 1

Underload see Algorithm 2
Consolidation see Algorithm 3

Table 3.3: Scheduler settings

Parameter Value
Idle time threshold 2 min
Wake up threshold 3 min

Power saving action shutdown
Shutdown driver system
Wake up driver IPMI

Table 3.4: Power management settings

Our evaluation is focused on the performance (i.e. response time) of the Apache bench-
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mark, the power consumption of the nodes, the number of VMs and live migrations. More-
over, we visualize all the events (i.e. Bfire, relocation, consolidation, power management)
which were triggered in our system during the experiments. Two scenarios are evaluated:
(1) No energy savings, to serve as a baseline; (2) Energy savings enabled (i.e. underload re-
location, VM consolidation, and power management). In both scenarios overload detection
is enabled. The evaluation results are discussed below.

3.6.2.3 Elastic VM Provisioner Events

The elastic VM provisioner (i.e. Bfire) events without and with energy savings enabled
(red resp. green colored) are shown in Figure 3.14. Bfire distinguishes between three types
of events: READY, SCALING, SCALED. The experiment starts by provisioning one backend
VM which results in the provisioner to become READY. READY means that Bfire could suc-
cessfully start the first VM on Snooze. When it becomes ready we start the actual benchmark
which soon saturates the VM capacity. Bfire reacts by SCALING up the number of VMs to
four. It takes approximately five minutes to provision the VMs. This is reflected in the
subsequent SCALED event which signals the VM provisioning success. The same process
happens until the end of the benchmark execution. In total four SCALING (resp. SCALED)
are triggered which result in 17 VMs to be provisioned by the end of the Apache benchmark.
Note that the experiment with energy savings enabled lasts a bit more (1.2% of time) than without
energy savings because of the need to power on nodes and lightly increased response time
(see the following paragraphs).
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Figure 3.14: Energy management: elastic VM provisioner events

3.6.2.4 Apache Benchmark Performance

The Apache benchmark results (i.e. response time for each request) are depicted in Fig-
ure 3.15. As it can be observed, response time increases with the number of requests in
both cases (i.e. without and with energy savings). This is not surprising as the VMs get
overloaded with increasing number of requests. Note, that each request arrival results in
the stress benchmark to be executed on the VMs which saturates the available CPU and
memory resources. However, more interestingly is the fact that response time is not signifi-
cantly impacted when energy savings are enabled. Particularly, in both scenarios a response time
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Figure 3.15: Energy management: Apache benchmark response time

peek exists at the beginning of the experiment. Indeed, one backend VM is quickly satu-
rated. However, when times passes only minor performance degradation can be observed.
The main reason for the minor performance degradation lies in the fact that once energy
savings are enabled, servers are powered down, thus increasing the time requests remain in
the HAProxy queue until they can be served by one of the backends. Moreover, Bfire dy-
namically increases the number of VMs with growing load. Increasing the number of VMs
involves scheduling, powering on LCs as well as a software provisioning phase in which
tools are installed on the scheduled VMs in order to register with HAProxy. This requires
time and thus impacts application performance (i.e. requests are queued). Performance
could be further improved by taking proactive scaling up decisions. Finally, underload relo-
cation and consolidation are performed which involve VM migration which contributes to
the performance degradation.

3.6.2.5 System Power Consumption and Events

The system power consumption without and with energy savings is depicted in Fig-
ure 3.16. Without energy savings our experimental data center first consumes approxi-
mately 5.7 kW of idle power. With the start of the benchmark the load increases to 6.1 kW
and falls back with the end of the evaluation. Note that our experiments did not fully stress
all the 744 compute cores which would have resulted in even higher power consumption (∼
7.1 kW) but would also have made harder to conduct the experiment due to the increased
execution time.
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Figure 3.16: Energy management: power consumption
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Snooze overcommits nodes by allowing them to host more VMs than physical capacity
allows it. This leads to overloaded situations requiring VMs to be live migrated. In this
context we distinguish between two types of events: overload relocation (OR) and migration
plan enforced (MPE). The former is triggered in case of overload situation and results in a
migration plan which needs to be enforced. MPE events signal the end of the enforcement
procedure. Figure 3.17 shows the event profile including the number of migrations.
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Figure 3.17: Energy management: Snooze system events without energy savings

As it can be observed the first two OR events trigger five migrations. This is due to
the fact that the First-Fit placement is performed upon VM submission. This leads to an
overload situation on the LCs which needs to be resolved. However, as time progresses the
number of migrations decreases as VMs are placed on more lightly loaded LCs.

With energy savings enabled, when the experiment starts the system is idle, and thus
the nodes have been powered down by Snooze, reducing the power consumption to ap-
proximately one kW (see Figure 3.16). When the benchmark is started the system reacts by
taking actions required to provision just as many nodes as needed to host the VMs. This
results in the power consumption following the system utilization (i.e. increasing number
of VMs). Note that the power consumption never drops to the initial value (i.e. one kW) as
the Snooze management nodes (i.e. EP, GL, GM) as well as VMs are kept in the system in
order to illustrate the framework mechanisms. Consequently, once idle they still consume
additional power. In a production environment VMs would be shutdown by the customers
thus resulting in additional power savings.

Particularly, the following actions presented in Figure 3.18 are performed: (1) detect LC
underload and overload; (2) trigger underload and overload relocation (UR resp. OR) algo-
rithms; (3) enforce migration plans (MPE); (4) perform periodic consolidation (C); (5) take
power saving actions such as power up and down (PUP resp. PDOWN) depending on the
current load conditions. In order to get an insight in the system behaviour we have captured
all these events.

During the benchmark execution the first OR event appears as the system becomes over-
loaded. The overload situation is resolved by powering up one LC and migrating five VMs.
Then consolidation is started which migrates two VMs. The system continues to react to
OR/UR events and adapt the data center size according to the current load (i.e. PUP and
PDOWN events follow) until the end of the benchmark. Note that the number of migrations
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Figure 3.18: Energy management: Snooze system events with energy savings enabled

decreases with the benchmark execution time as the HAProxy load decreases with increasing
number of backend VMs thus resulting in less OR events. Towards the end of the benchmark
UR happens and results in a series of PDOWN events. Finally, consolidation is started and
improves the VM placement by migrating one VM. This shows that relocation and consolidation
are complementary.

Putting all the results together, data center energy consumption measured during the
benchmark execution without and with power management enabled amounted to 3.19 kWh
(34 nodes), respectively 1.05 kWh (up to 11 nodes), resulting in 67% of energy being saved. We
estimated that for the same workload with a smaller data center size of 17 nodes, the energy
gains would have been approximately 34%.

3.7 Summary

In this chapter we have presented the design, implementation, and evaluation of a novel
autonomic and energy-efficient IaaS cloud management system for large-scale virtualized
data centers called Snooze. In contrast to existing works, Snooze employs a self-configuring
and healing hierarchical architecture in which the VM management tasks are distributed across
multiple autonomic managers, the so-called GMs. Each GM has only a partial view of the
system and thus manages only a subset of the data center compute nodes. A fault-tolerant GL
exists which accepts client VM submission requests, handle the VM networking, and dis-
patches the submitted VMs among the GMs. This allows Snooze to remain scalable as the
GL does not require global system knowledge. Indeed, the GL dispatching decisions are
solely based on the aggregated resource utilization data as received from the GMs. Finally,
Snooze provides a unique holistic energy-efficient VM management solution via integrated
advanced VM management mechanisms such as underload/overload mitigation, VM con-
solidation, and power management. This mechanisms allow Snooze to scale the data center
power consumption proportionally to its load.

Snooze was implemented from scratch in Java and currently comprises approximately 15
000 lines of highly modular code. It has been extensively evaluated on the Grid’5000 exper-
imentation testbed using realistic scientific and web applications and shown to be scalable,
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autonomic, and energy-efficient. Particularly, our experimental results have shown that: (1)
submission time is not impacted by performing distributed VM management; (2) system au-
tonomy properties do not impact application performance; (3) the system scales well with
increasing number of resources thus making it suitable for managing large-scale virtualized
data centers; (4) the advanced VM management mechanisms allow Snooze to scale the data
center proportionally to its load thus achieving substantial energy savings for the evalu-
ated web application. Thanks to its flexible implementation, Snooze can by used either as
a research testbed to experiment with novel VM management algorithms in a realistic en-
vironment or serve as an cloud management system in virtualized data centers. Since May
2012 Snooze is distributed in open-source under the GPL v2 license at http://snooze.inria.fr.
It is known to be used by researchers (e.g. IRIT, LIFL) to experiment with advanced VM
management algorithms and has been successfully validated on experimentation testbeds at
EDF R&D and Medio Seattle.

http://snooze.inria.fr
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TWO key algorithms to favour the creation of server idle-times in IaaS cloud manage-
ment systems are VM placement and consolidation. VM placement and consolidation
are NP-hard [284, 266] combinatorial optimization problems and thus are expensive

to compute in time and space. Consequently, a number of VM placement and VM consol-
idation algorithms have been proposed over the past years aiming at computing approxi-
mate solutions in polynomial time. However, many of the proposed algorithms consider
only a single resource dimension (i.e. CPU) and rely on centralized greedy heuristics which
are known to be hard to distribute/parallelize [76]. This chapter investigates the use of
the Ant Colony Optimization (ACO) meta-heuristic to compute solutions for the aforemen-
tioned problems and proposes novel ACO-based VM placement and consolidation algo-
rithms. ACO is especially attractive for VM placement and consolidation due to its polyno-
mial time worst-case complexity, ease of parallelization, and near optimal solutions. Indeed,
by nature ants have the property to work independently.
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This chapter is organized as follows. Section 4.1 gives a brief introduction to Ant Colony
Optimization. The ACO-based VM placement algorithm and its evaluation are presented in
Section 4.2. In Section 4.3 we describe our approach for VM consolidation and its evalua-
tion. Note that these sections rely on the notations previously introduced in Section 2.4.4.2.
Finally, Section 4.4 summarizes this chapter.

4.1 Ant Colony Optimization

Ant Colony Optimization is a meta-heuristic, which was initially introduced as Ant Sys-
tems (AS) in 1992 within the PhD thesis of the Italian researcher Marco Dorigo [125]. Ini-
tially, it was developed to solve the Travelling Salesman Problem. However, since then
it has been successfully adapted to solve many other complex combinatorial optimization
problems (e.g. vehicle routing, graph coloring, and bin packing). The main inspiration to
develop this system was the natural food-discovery behaviour of real ants. Because of the
limited abilities of the ants to see and hear their environment they have developed a form
of indirect communications (also called Stigmergy) by use of a chemical substance referred
as pheromone. This substance is deposited by each ant on the path it traverses and evapo-
rates after a certain period of time. Other ants can smell the concentration of this substance
and tend to favour paths probabilistically according to the amount of pheromone deposited
on them. Surprisingly, after some time the entire ant colony converges towards the shortest
path to the food source. This behaviour was studied by biologists in numerous controlled
experiments [119] and can be explained as follows. At the beginning, when starting from
the nest the ants choose a random path to follow. However, on the shortest path to the food
source the ants will return faster. Consequently, this path will have a stronger pheromone
concentration thus being more attractive for subsequent ants to follow it. When time passes,
pheromone concentration on the shortest paths will continue to increase, while on the longer
ones it will keep falling, making them less and less attractive.

4.2 VM Placement Algorithm

This section presents the design of our ACO-based VM placement algorithm. First, the
design principles of the algorithm are discussed. Then, algorithm design principles, as-
sumptions, components, and the pseudocode are introduced. Finally, the evaluation results
are discussed.

4.2.1 Design Principles

The proposed algorithm is based on the ACO principles in which multiple agents (i.e. ar-
tificial ants) compute solutions probabilistically and simultaneously within multiple cycles.
Thereby, they communicate indirectly by depositing a chemical substance called pheromone
on paths they traverse. However, as the VM placement does not incorporate the notation of a
path, in our algorithm the ants deposit pheromone on each VM-PM pair within a pheromone
matrix. In each cycle the ants receive VMs, and start constructing local solutions (i.e. VM
to PM assignments) by the use of a probabilistic decision rule which describes the desir-
ability for an ant to choose a particular VM as the next one to pack in its current PM. This
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rule is based on the current pheromone concentration information on the VM-PM pair in
the pheromone matrix and a heuristic information which guides the ants towards choosing
VMs leading to better overall PM utilization. Hence, the higher the amount of pheromone
and heuristic information is associated with an VM-PM pair, the higher the probability that
it will be chosen. Figure 4.1 visualizes the solution construction process of a single ant. The
ant starts with four VMs, opens a PM, computes the probabilities for each of the VMs using
the probabilistic decision rule, and starts assigning the VMs to the newly opened PM accord-
ing to the computed probabilities. Once the PM is full it opens a new PM, recomputes the
probabilities for the remaining VMs, and continues the same assignment procedure until all
the VMs are assigned. At the end of each cycle, local solutions are compared and the one re-
quiring the least number of PMs is saved as the new globally optimal solution. Afterwards,
the pheromone matrix is updated to simulate pheromone evaporation and reinforce VM-PM
pairs which belonged to the so-far best solution. This is achieved by the use of the so-called
pheromone update rule. The stochastic nature of the algorithm allows it to explore a large
number of potential solutions. Moreover, the algorithm is well suited for parallelization.

VM 1 VM 2 VM 3 VM 4

Pr = 0.1
Pr = 0.4 Pr

 =
 0

.2

Pr =
 0.3

VM 1 VM 3

Ant 1

VM 2 VM 4

PM 1

VM 1 VM 3
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New
PM 2

Ant 1

Pr = 0.3 Pr = 0.6

Figure 4.1: ACO-based VM placement: example

4.2.2 Assumptions

We consider the offline version of the VM placement problem. In other words, the pro-
posed algorithm is assumed to be triggered during the VM submission on a set of VMs and
outputs a solution consisting of VM to PM assignments such that the number of PMs is min-
imized. PMs can be either pre-filled or empty. In this work we assume empty PMs (i.e. PMs
which do not host any VMs). Note, that any VM placement algorithm can be generalized to
support pre-filled PMs by simply applying it on pre-filled PMs. The algorithm is evaluated
using homogeneous PMs and heterogeneous VMs. However, nothing prevents it to be also
used with heterogeneous PMs. Finally, we assume independent VMs thus no placement
such as collocation and anti-collocation are considered.
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4.2.3 Algorithm Description

We now present the VM placement algorithm. First, the definition of the probabilistic
decision rule is given. Then, the pheromone trail update mechanisms is described. Finally,
the algorithm pseudocode code is presented.

4.2.3.1 Probabilistic Decision Rule

We define the probability for an ant to choose an VM v as the next one to pack in its
current PM p as follows.

Prv
p :=

[τv,p]α × [ηv,p]β

∑u∈Np
[τu,p]α × [ηu,p]β

, ∀v ∈ Np (4.1)

whereby, τv,p denotes the pheromone based desirability of packing VM v into PM p and ηv,p
the VMs heuristic information. Moreover, two parameters α, β≥ 0 are used in order to either
emphasize more the pheromone or the heuristic information. Finally, Np defines the set of
all VMs which qualify for inclusion into the current PM p (see Eq. 4.2). These are all VMs
which have not been assigned to any PM yet and do not violate the PM capacity constraints
in all dimensions. lp represents the total used PM capacity. It is computed as the sum of all
VM requested capacity vectors: lp := ∑

∀v∈V
RCv.

Np := {v |
n−1

∑
p=0

xv,p = 0∧ lp + RCv ≤ TCp} (4.2)

As our objective is to minimize the number of PM (i.e. maximize the resource utilization), we
define the heuristic information to favour VMs which utilize the PMs better. This is achieved
by defining ηv,p as the inverse of the scalar valued difference between the static capacity of
PM v and the load of PM after packing the VM v ∈ Np.

ηv,p :=
1

|TCp − (lp + RCv)|1
(4.3)

In order to compute the ratio defined by equation 4.3 the resulting d-dimensional resource
demand vector needs to be mapped to a scalar value. In this work the L1-norm [294] is used.
However, alternative methods such as taking the arithmetic mean are possible.

4.2.3.2 Pheromone Trail Update

After all ants have finished building a solution, pheromone trails on all VM-PM pairs
need to be updated in order to help guiding the algorithm towards the optimal solution. A
pheromone trail update rule τv,p exists and is used in order to simulate pheromone evapo-
ration and reinforce VM-PM pairs which belonged to the so far best solution. In this work
we follow the MAX-MIN Ant System (MMAS) [273] approach in which only the iteration’s-
best ant (i.e. ant whose solution’s objective function value is minimal) is allowed to deposit
pheromone. The pheromone update rule is defined in Eq. 4.4.

τv,p := (1− ρ)× τv,p +4τbest
v,p , ∀ (v, p) ∈ V × P (4.4)
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whereby, the constant ρ, 0 ≤ ρ ≤ 1 is used to simulate pheromone evaporation. Hence,
higher values for ρ lead to increased evaporation rate. Moreover, some VM-PM pairs need
to be reinforced. Thereby,4τbest

v,p is defined as the iteration’s-best VM-PM pheromone amount.
Hence, if some VM belongs to a PM of the so far best solution Sbest, its pheromone amount
is reinforced. Consequently, only VM-PM pairs which are part of Sbest will be reinforced
and thus become more attractive. Others, which are not part of Sbest will continue loosing
pheromone according to the pheromone evaporation rate ρ. A solution S := [xv,p]|V|×|P| is
defined as a binary matrix whose elements represent the mapping of VMs to PMs.

The ultimate goal of our ACO-based algorithm is to minimize the amount of PMs, thus
increasing the average utilization of each PM. Hence, we target to favour solutions which uti-
lize the least number of PMs. Therefore, we define the amount of pheromone iteration’s best
ant deposits on the VM-PM pair to be inverse proportional to the value of the objective func-
tion f applied on the iteration’s best-solution Sbest. Thereby, only VM-PM pairs which are
marked as allocated in Sbest will be reinforced.

4τbest
v,p :=

{
1

f (Sbest)
if xv,p = 1

0 otherwise
(4.5)

Finally, because only the iteration’s-best ant is allowed to deposit pheromone, early stagna-
tion of the search is most likely to happen, thus leading to a situation in which all ants
always choose the same VMs. This reduces the ability of the algorithm to explore alternative
solutions. In order to limit this effect, MMAS introduces lower and upper bounds for the
pheromone values τv,p. Hence, τv,p is restricted to the range [τmin, τmax]. Analogously, we de-
fine τmax as τmax := 1

f (Sbest)×(1−ρ)
and τmin as τmin := τmax

g , respectively with factor g > 1 [273]
.

4.2.3.3 Pseudocode

The pseudocode of the ACO-based algorithm is depicted in Figure 4. The algorithm
takes as input the set of VMs and PMs, including their static requested (resp. total) capacity
vectors RCv and TCp, respectively. Moreover, a set of parameters (i.e. α, β, ρ, g, τmax,
nCycles, nAnts) is required for initialization. First, the parameters are initialized and the
pheromone trails of all the VM-PM pairs are set to τmax (line 4). The algorithm then iterates
until the specified number of cycles nCycles (lines 5 to 35). In each iteration an ant a opens
a PM p and starts building a solution Sa (lines 6 to 20). This is achieved by first initializing
the set of VMs IS, the elements of the binary solution matrix Sa and the PM-index variable
p. The algorithm then enters a loop and starts assigning the VMs to the PMs (lines 9 to
19). The current PM p is being filled until its resources are saturated. This is achieved by
initializing the set Nv with all VMs which are not yet assigned to any PM and do not violate
the capacity constraints of the current PM (line 10). If this set is not empty, the probabilistic
decision rule Prv

p is used to select one VM v out of the set to be packed in the current PM
p, stochastically (line 12). The VM is then marked as allocated in the solution matrix by
setting the appropriate value in the matrix Sa to 1, removed from the set of VMs IS and
the PM utilization is updated (lines 13 to 15). This process is performed as long as there
are still VMs left to be assigned and enough capacity available in the current PM (line 9
and 10). Afterwards, when the PM capacity is saturated (i.e. Nv becomes empty) the PM-
index variable is incremented and the packing process is continued until all VMs are placed
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Algorithm 4 ACO-based VM placement
1: Input: Set of VMs V and set of PMs P with their associated resource demand

vectors RCv and TCp respectively, Set of parameters
2: Output: Global best solution Sbest
3:

4: Initialize parameters, Set pheromone value on all VM-PM pairs to τmax
5: for all q ∈ {0 . . . nCycles− 1} do
6: for all a ∈ {0 . . . nAnts− 1} do
7: IS := V; p := 0
8: Sa := [xv,p := 0], ∀v ∈ {0, . . . , m− 1}, ∀p ∈ {0, . . . , n− 1}
9: while IS 6= ∅ do

10: Np := {v | ∑n−1
p=0 xv,p = 0∧ lp + RCv ≤ TCp}

11: if Np 6= ∅ then
12: Choose VM v ∈ Nv stochastically according to probability Prv

p :=
[τv,p]α×[ηv,p]β

∑u∈Np [τu,p]α×[ηu,p]β

13: xv,p := 1
14: IS := IS− {v}
15: lp := lp + RCv
16: else
17: p := p + 1
18: end if
19: end while
20: end for
21: Compare ants solutions Sa according to the objective function f → Save cycle

best solution as Scycle
22: if q = 0∨ IsGlobalBest(Scycle) then
23: Save cycle best solution as new global best Sbest
24: end if
25: Compute τmin and τmax
26: for all (v, p) ∈ V × P do
27: τv,p := (1− ρ)× τv,v +4τbest

v,p
28: if τv,p > τmax then
29: τv,p := τmax
30: end if
31: if τv,p < τmin then
32: τv,p := τmin
33: end if
34: end for
35: end for
36: return Global best solution Sbest

(lines 9 to 19). After all ants have constructed their solutions Sa, a comparison is performed
and the cycle’s best solution is saved (line 21) as Scycle. Two criteria: amount of utilized PMs
and amount of failed VM allocations are used in order to judge about the cycle best solution.
While the first one seems natural, the second one is a result of two solutions which equal



4.2 – VM Placement Algorithm 103

in terms of utilizing all available PMs but differ in the utilization efficiently of the PMs. For
instance, two solutions would use the same number of PMs, but the first one would fail
allocating resources for 10% of the requests while the second one would satisfy all requests.
Finally, if this is the first cycle, the cycle best solution becomes the global best one. Otherwise,
a comparison is done with the current global best solution. If the cycle best solution yields to
an improvement it becomes the new global best one (lines 22 to 24). Afterwards, the values
for τmin and τmax are computed (line 25) and the pheromone trails on all VM-PM pairs (v, p)
are updated using the pheromone update rule τv,p (lines 26 to 34). In order to respect the
specified lower and upper bounds for τv,p two conditions exist. First condition guarantees
that the upper bound is respected. Hence, if some VM-PM pair received a higher pheromone
amount than τmax, it is reinitialized to τmax (lines 28 to 30). Similarly, when the pheromone
amount of some VMs falls below the predefined lower bound τmin it is updated accordingly
(lines 31 to 33). The algorithm terminates after nCycles and returns the so far global best
solution Sbest (line 36).

4.2.4 Evaluation

This section present the performance evaluation of the proposed ACO-based VM place-
ment algorithm. In order to gain a first insight into the performance of the algorithm at large
scale before implementing it in a real environment, we have decided to conduct simulation-
based experiments. An VM placement simulator was developed and used to compare our
ACO-based VM placement algorithm with the frequently applied FFD heuristic. In order
to improve the performance a multithreaded version of the algorithm was developed. Fur-
thermore, the FFD heuristic was modified to to capture the multidimensional nature of the
problem. Particularly, the VM requested capacity vectors were sorted in decreasing order
according to the L1-norm [294].

4.2.4.1 System Setup

We simulated a cluster composed of homogeneous PMs with each having a static re-
source capacity of 10000 MIPS, 24 cores, 50 GB of RAM, 1 TB storage and 10 GBit/sec net-
work connection. The amount of PMs was set to the amount of VMs in order to support the
worst packing scenario, in which only one VM is assigned per PM. In total, up to 600 VMs
were simulated with each requiring either 1000, 2000, 3000 or 5000 of MIPS, 2 cores, 4 GB of
RAM, 200 GB of storage and 1 GBit/sec of network bandwidth.

4.2.4.2 Power Consumption Model

In order to estimate the energy consumed by a placement, we approximate the power of
a PM as a linear function P(u) [130] in its current utilization u ∈ [0, 1] (see Eq. 4.6).

P(u) = (Pmax − Pidle)× u + Pidle (4.6)

with Pidle and Pmax being the average power values when the system is idle and fully utilized,
respectively. Both values have been fixed to 171 and 218 Watt, for all simulations according
to the measurements performed on our own testbed. The testbed we use is equipped with
one Dell PowerEdge 1950 server plugged into a Sentry POPS (Per Outlet Power Sensing)
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switched Cabinet Distribution Unit (CDU). The server comprises 4 GB RAM and two Intel
Xeon 5148 2.33 GHz CPUs, each with two cores. Idle power was derived by measuring the
power drawn by the server when it only hosts the OS and the least amount of required sys-
tem services (e.g. udev, sshd). Average peak power consumption was measured by running
the stress benchmark application, with parameters set to stress all the system components.

4.2.4.3 Energy Consumption Estimation

For estimating the energy consumed by a placement a time period t was defined and
set to 24 hours. Consequently, the energy values represent the power drawn by the cluster
at the utilization given by the placement over the period of 24 hours. It was assumed that
empty PMs are turned off after the VM placement. Hence, their idle power is not part of the
total placement energy consumption. In particular, energy consumed by a placement was
computed according to Eq. 4.7.

E(P) :=

{
t×∑n−1

p=0 P( |lp|1
d ) if |lp|1 6= 0

0 otherwise
(4.7)

Note, that because of the non-proportional power usage (i.e. high idle power) of tradi-
tional servers, no matter which energy model is used, turning off/suspending PMs always
yield energy savings assuming that the algorithm is triggered during appropriate time peri-
ods (e.g. low utilization). Moreover, since the packing is based on VMs requested capacity,
we assume that placed VMs will not suffer from significant performance degradation. Given
such assumptions, consolidating the VM of two PMs at 0.3 and 0.7 utilization, respectively,
onto one server running at peak utilization (i.e. 1) is advantageous.

4.2.4.4 ACO Parameters

The parameters of the ACO-based algorithm were derived empirically through numer-
ous simulations and finally set as depicted in Table 4.1. Note, that the amount of cycles
and ants were initialized to 2 and 5, respectively. According to our experiments, no im-
provements in the solutions quality (i.e. number of provisioned PMs) could be observed
with greater number of ants and cycles. Nevertheless, as our results will show the resulting
solutions are still close to the global optimum.

Table 4.1: ACO-based VM placement: algorithm parameters
α β ρ g τmax nCycles nAnts
1 2 0.7 2 3 2 5

4.2.4.5 Experiment Results

We run the simulation for up to 600 VMs and measured the number of provisioned PMs,
energy consumption of the placement and the average execution times for both algorithms
(i.e. FFD and ACO-based). In addition, in order to judge the quality of the solutions, optimal
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solutions were computed by integrating the previously introduced BIP model into the high-
performance Mixed-integer linear programming (MILP) solver IBM ILOG CPLEX v12.2 [33].
The solver was set to emphasis optimality and run in parallel mode with 4 threads.

In order, to derive the actual energy savings, the amount of energy spent for comput-
ing the placement was estimated by multiplying the execution time of the algorithm with
average power drawn (i.e. 198 Watt) of the system during the simulation. The resulting
amount of energy spent for the simulation was included into the final energy consumption
of the placement and accounted not more than 400 Wh. Therefore, it did not impact the
total energy results of the algorithms which were in the order of kWh. The final numerical
simulation results are depicted in Table 4.2.4.5.

VMs Algorithm Provisioned PMs Execution time Energy con-
sumption (=
kWh)

Gain (= %)

100 FFD 30 0.39 sec 139.62
ACO 28 37.46 sec 131.41 5.88
CPLEX 28 0.451 sec 131.41 5.88

200 FFD 59 0.58 sec 275.13
ACO 56 4.51 min 262.83 4.47
CPLEX 55 1.27 sec 258.71 5.96

300 FFD 88 0.77 sec 410.65
ACO 84 15.04 min 394.28 3.98
CPLEX 83 2.86 sec 390.12 4.99

400 FFD 117 1.03 sec 546.16
ACO 112 34.23 min 525.75 3.73
CPLEX 110 5.07 sec 517.43 5.26

500 FFD 146 1.39 sec 681.67
ACO 139 1.17 h 653.17 4.18
CPLEX 138 9.41 sec 648.84 4.81

600 FFD 175 1.75 sec 817.19
ACO 167 2.01 h 784.75 3.96
CPLEX 165 12.95 sec 776.14 5.02

Table 4.2: ACO-based VM placement: numerical simulation results

Figure 4.2 visualizes the results. As it can be observed, the computation time required to
derive the placement and thus the energy spent in computation are higher using the ACO-
based approach. This is because of our implementation which is far from being optimal while
the used LP-solver (i.e. CPLEX) is highly optimized. In particular, 1.75 sec were required to
compute the placement for the highest number of VMs (i.e. 600) by the FFD and 2.01 hours
by the ACO-based algorithm, resulting in 0.09 Wh and 397.98 Wh of energy spent in com-
putation. Nevertheless, the solutions of the ACO-based approach utilize significantly lower
number of PMs and thus yield to superior average PM utilizations and energy gains. Particularly,
on average 4.7% of PMs and 4.1% of energy were saved by applying the ACO approach.
Moreover, the solutions computed by the ACO-based approach are nearly optimal (i.e. small
deviation of 1.1%). In addition, complexity of both evaluated algorithms is quadratic in the
number of VMs, while CPLEX despite being highly efficient is exponential in the worst-case.
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Finally, it is worth mentioning that under a constrained number of PMs such as it is the case
in a real system, FFD would need a longer time to place the VM as it requires higher num-
ber of PMs to place the same number of VMs. Consequently, the number of VMs which are
required to reside in queues (i.e. non-allocatable) is higher when the FFD approach is applied.
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Figure 4.2: ACO-based VM placement: number of utilized PMs and energy consumption

4.3 VM Consolidation Algorithm and System

In the previous section we have introduced a novel ACO-based VM placement algo-
rithm. Our results have shown that while the ACO-based algorithm computes near optimal
solutions, its scalability is limited to a small number of PMs and VMs. Moreover, while
providing a solution to the VM placement problem is important, once VMs are allocated to
PMs, VM consolidation should be performed in order to: (1) remove resource fragmentation
after a number of VMs have been added and removed to (resp. from) from the system; (2)
facilitate the creation of idle times in order to create opportunities to transition servers into a
low-power state. In order to enable VM consolidation as well as to improve the ACO scala-
bility this section makes the following two contributions. First, we adapt our previously pro-
posed ACO-based VM placement algorithm to the VM consolidation problem. Particularly,
the new algorithm takes the current VM placement into account and attempts to minimize
the number of migrations in order to arrive to the consolidated state. Second, we propose a
novel fully decentralized VM consolidation system based on an unstructured P2P network
of PMs. Both contributions are presented in the following sections. We start our discussion
with the introduction of the assumptions. Then, the ACO-based VM consolidation algo-
rithm is presented. Afterwards, the fully decentralized VM consolidation system is detailed.
Finally, the evaluation results of both contributions are discussed.
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4.3.1 Assumptions

This work considers the VM consolidation problem. Particularly, VMs are assumed to be
already placed on the PMs and VM consolidation is triggered periodically according to the
system administrator specified interval to repack the VMs on the least number of PMs while
minimizing the number of migrations. Our VM consolidation decisions are based on the re-
quested VM capacity as specified during VM deployment. Note, that given the appropriate
VM resource demand estimation mechanisms can be provided the proposed system could
be adapted to consider the estimated VM resource demands. This could further improve
the data center resource utilization as it would enable more dense VM packing. Similarly to
the previously introduced VM placement algorithm, PMs are assumed to be homogeneous
while VMs are heterogeneous. VM live migration is assumed to be available.

4.3.2 Algorithm Description

This section presents the adaptation of the ACO-based VM placement algorithm to en-
able VM consolidation while minimizing the number of migrations. Particularly, we detail
the modifications done to the objective function, heuristic information, pheromone evapora-
tion rule, and the algorithm pseudo-code.

4.3.2.1 Objective Function

The Objective Function (OF) we attempt to maximize is defined by Eq. 4.8. It takes as
input the set of PMs and a migration plan MP. Migration plan denotes the ordered set of
new VM to PM assignments.

max f(P, MP) := (nReleasedPMs)e ×Var((|lp|1)p∈P)
g × (

1
|MP| )

m (4.8)

Contrary, to the OF of the VM placement algorithm which solely focused on minimizing
the number of PMs, the new OF is designed to favour the number of released PMs, the
variance [154] of the scalar valued PM used capacity vectors lp, and smaller migration plans.
In other words, the higher the number of released PMs and the variance between the PMs
used capacity vectors, the better it is. Indeed, one of our objectives is to release as many
PMs as possible. Releasing PMs also helps to increase the variance which is an important
indicator for increased resource utilization. Particularly, a high variance shows that some
PMs are more utilized than others. We use the L1 norm [294] to compute the scalar values.
The second objective is to minimize the number of migrations. Consequently, we favour
migration plans with the least number of migrations. This is reflected by defining the OF
to be inverse proportional to the migration plan size. Migration plans with high number
of migrations (i.e. VM-PM pairs) will lower its value, while smaller migration plans will
increase it.

Three parameters, e, g, m > 0, are used to either give more weight to the number of
released PMs, the PM load variance or the migration plan size.
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4.3.2.2 Probabilistic Decision Rule

We now present the definition of the probabilistic decision rule which gives the proba-
bility for an ant to choose a VM v to be migrated to PM p. Note, that we rely on the same
probabilistic decision rule as used by the previously introduced VM placement algorithm.
For the sake of the ease of readability and completeness we present it again in Eq. 4.9.

Prv
p :=

[τv,p]α × [ηv,p]β

∑v∈Vp
[τv,p]α × [ηv,p]β

, ∀v ∈ V, ∀p ∈ P (4.9)

where τv,p represents the amount of pheromone associated with a particular VM-PM pair.
The probabilistic decision rule relies on a set Vp which represents the the set of VMs hosted
by a PM p. ηv,p denotes the heuristic information. Its definition is shown in Eq. 4.10.

ηv,p, :=

{
κv,p
|MP| if lp + RCv ≤ TCp

0 otherwise
(4.10)

The key idea of the heuristic information to emphasize VM to PM migrations which yield
in: (1) high PM used capacity and (2) are part of a small migration plan. Consequently, ηv,p
is defined as the ratio between κv,p and the migration plan size in case the VM fits into the
PM, and 0 otherwise. We use the constraint lp + RCv ≤ TCp to prevent new VMs from
exceeding the total PM capacity.

To reward VMs which fill the PMs better κv,p is defined as the inverse of the scalar valued
difference between the static PM capacity and the utilization of the PM after placing VM v.
Consequently, VMs which yield to better PM used capacity result in higher κv,p value. Its
definition is shown in Eq. 4.11. Note, that κv,p is the equivalent of the ηv,p in the previously
introduced VM placement algorithm.

κv,p :=
1

|TCp − (lp + RCv)|1
(4.11)

Finally, two parameters, α, β ≥ 0 are used to either emphasize the pheromone or heuristic
information.

4.3.2.3 Pheromone Trail Update

After all ants have computed a migration plan, the pheromone trail update rule is used
to reward VM-PM pairs which belong to the smallest migration plan (MPgBest) as well as
to simulate pheromone evaporation on the remaining VM-PM pairs. The pheromone trail
update rule τv,p is defined in Eq. 4.12.

τv,p := (1− ρ)× τv,p + ∆best
τv,p

, ∀(v, p) ∈ V × P (4.12)

where ρ, 0 ≤ ρ ≤ 1 is used to control the evaporation rate. Consequently, higher values
for ρ yield to faster pheromone evaporation. In order to reward VM-PM pairs which belong
to the best migration plan, ∆best

τv,p
is defined as the cycle-best VM-PM pheromone amount.

Particularly, VM-PM pairs which belong to the best migration plan receive an increasing
pheromone amount and thus become more attractive during subsequent cycles. Other pairs,
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which are not part of the best migration plan continue loosing pheromone and thus become
less attractive.

The goal of the algorithm is to release as many PMs as possible using the least number
of migrations. Consequently, it attempts to maximize the OF f . Therefore, ∆best

τv,p
is defined to

give f (P, MPgBest) pheromone amount to VM-PM pairs (v, p) which belong to MPgBest, and
0 otherwise.

∆best
τv,p

:=
{

f(P, MPgBest) if (v, p) ∈ MPgBest
0 otherwise

(4.13)

Finally, to bound the pheromone amount on the VM-PM pairs, τv,p is restricted to [τmin, τmax].

4.3.2.4 Pseudocode

The pseudo-code is shown in Algorithm 5. It takes as input the set of PMs P including
their associated VMs and a set of parameters (e.g. τmax, α, β, nCycles, nAnts) (line 1). The
algorithm then sets the pheromone value on all the VM-PM pairs to τmax and iterates over
a number of nCycles (lines 5 to 35). In each cycle multiple (nAnts) ants compute migration
plans concurrently in parallel (lines 7 to 21). The migration plans accommodate at most |VM|
migrations (line 10). Particularly, first the ants compute a probability pv,p for migrating a VM
v to PM p for all VMs and PMs (line 11). Based on the computed probability they choose a
VM-PM pair (v, p) stochastically and add it to the migration plan (lines 12 to 13). The source
and destination PM capacity is then updated by removing the selected VM from the source
and adding it to the destination PM (line 14). Afterwards, a score is computed by applying
the OF (see Eq. 4.8) on the set of PMs P and the migration plan (MPtmp) (line 15). Finally, if
the newly computed score is greater than the local best score the local best score is updated
and the VM-PM pair (v, p) is added to the local migration plan (lines 16 to 19). Note, that
a VM is allowed to appear multiple times in the migration plan as long as it yields to a
better score. After all ants have finished computing the migration plans, they are compared
according to the OF f . The cycle best migration plan is selected and saved as MPcBest (line
22). If the cycle best migration plan is also the global best one, it becomes the new global
best one (lines 23 to 25). Finally, the pheromone values on all VM-PM pairs are updated by
applying the pheromone trail update rule (see Eq. 4.12) and enforcing the τmin, τmax bounds
(lines 26 to 34). The algorithm terminates after nCycles and returns the global best migration
plan MPgBest (line 36).

4.3.3 System Description

In order to improve the scalability of VM consolidation algorithms such as the one pre-
sented in the previously section, we have designed a novel fully decentralized VM consol-
idation system based on an unstructured P2P network of PMs. This section is devoted to
the description of this system. First, the design principles are discussed. Afterwards, the
neighbourhood topology construction mechanism is detailed. Finally, the VM consolidation
process is presented.
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Algorithm 5 ACO-based VM consolidation
1: Input: Set of PMs P with their associated VMs, Set of parameters
2: Output: Global best migration plan MPgBest
3:

4: MPgBest := ∅
5: Set pheromone value on all VM-PM pairs to τmax
6: for all q ∈ {0 . . . nCycles− 1} do
7: for all a ∈ {0 . . . nAnts− 1} do
8: ScorelBest := 0
9: MPtmp, MPa := ∅

10: while |MPtmp| < |VMs| do
11: Compute Prv

p, ∀v ∈ V, ∀p ∈ P
12: Choose (v, p) randomly according to the probability Prv

p
13: Add (v, p) to the migration plan MPtmp
14: Update PMs used capacities
15: Scoretmp := f (P, MPtmp)
16: if Scoretmp > ScorelBest then
17: ScorelBest:= Scoretmp
18: MPa := MPa ∪ {(v, p)}
19: end if
20: end while
21: end for
22: Compare ants migration plans and choose the best one according to the objec-

tive function f (P, MPa)→ Save cycle best migration plan as MPcBest
23: if f (P, MPcBest) > f (P, MPgBest) then
24: MPgBest := MPcBest
25: end if
26: for all (v, p) ∈ V × P do
27: τv,p := (1− ρ)× τv,p +4τbest

v,p
28: if τv,p > τmax then
29: τv,p := τmax
30: end if
31: if τv,p < τmin then
32: τv,p := τmin
33: end if
34: end for
35: end for
36: return Global best migration plan MPgBest

4.3.3.1 Design Principles

The key idea of our system to achieve scalability as well as high packing efficiency is to
apply VM consolidation only in the scope of small, randomly formed neighbourhoods of
PMs. Limiting VM consolidation to a small set of nodes greatly decreases its computation
time, while the randomized neighbourhoods allow the system to achieve a high packing effi-
ciency by periodically applying the VM consolidation algorithms in the scope of the neighbourhoods.
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As the neighbourhoods are modified periodically and randomly the entire system tends to
converge towards a high packing efficiency by solely making local VM consolidation deci-
sions within neighbourhoods without the need of a central server.

In order to enable the construction of random neighbourhoods we rely on the Cyclon
protocol [291]. Cyclon is an epidemic membership protocol which allows to periodically
construct randomized P2P overlays in which each PM has only a partial system view, the
so-called neighbourhood. This property allows the system to scale with increasing number
of PMs as it does not rely on a central server.

4.3.3.2 Neighbourhood Construction Mechanism

We now briefly discuss how the neighbourhoods are constructed. Our neighbourhood
construction mechanism is based on the Cyclon membership protocol. Cyclon has been de-
signed for fast information dissemination while dealing with a high number of PMs that can
join and leave the system. It is based on a periodic and random exchange of neighbourhood
information among the peers, the so called shuffling operation. Each peer maintains a local
list of neighbours, called cache entries. A cache entry contains the address (IP/port) and the
age value of a neighbour. The role of the age field is to bound the time a neighbour is chosen
for shuffling thus facilitating the early elimination of dead peers. The shuffling operation is
repeated periodically according to a parameter λt > 0 on each PM. Each time a shuffling
operation is performed the PM obtains a new partial view of the system, the so-called neigh-
bourhood. The resulting system topology can be viewed as a directed graph where vertices
represent PMs and edges the relations. For example, X −→ Y means Y is a neighbour of X.
Note, that the relations are asymmetric (i.e. Y is a neighbour of X does not imply that X is a
neighbour of Y). More details on the system topology construction can be found in [291].

4.3.3.3 VM Consolidation Process

Each PM periodically triggers a VM consolidation process within its neighbourhood in
order to optimize the VM placement. Locks are associated with all PMs in order to avoid
concurrent access to PM resources in case of multiple ongoing consolidations. The VM con-
solidation process is composed of the following six steps:

1. First, PM p which initiates the consolidation checks whether it is not involved in an
on-going consolidation. If not it attempts to acquire a lock for each member (including
itself) of its neighbourhood. Otherwise, the consolidation is aborted. Acquiring a lock
is a non-blocking operation. If it does not succeed, the member will not participate in the
consolidation process.

2. For each successful lock acquisition, PM p requests from the corresponding neighbour
PM its total capacity, currently packed VMs and their requested capacity vectors.

3. The VM consolidation algorithm is started once all the resource information is received
from the locked members. It outputs a migration plan which corresponds to the or-
dered set of the new VM-PM assignments. Any VM consolidation algorithm can be
used in this operation.

4. An actuation module on the PM enforces the migration plan by sending migration
operations to the PMs hypervisors.
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5. After the actuation all locks are released.

6. Each PM which does not accommodate VMs anymore power-cycles itself in order to
save energy.

We now illustrate how the VM consolidation process works. Figure 4.3 depicts one ex-
ample system topology which is constructed using the Cyclon protocol. It is composed of
six PMs and eleven VMs that are distributed among the PMs. The neighbourhood size is
two. For the sake of simplicity a single resource “number of cores” is considered in this
example: physical (PCORES) and virtual (VCORES). PMs are homogeneous and have five
PCORES. VMs can request one, two or three VCORES. The total capacity of PMs in the sys-
tem is 30 PCORES. 19 PCORES are currently utilized, which corresponds to an utilization of
approximately 63%.
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5 {2,6}
6 {1,4}

Figure 4.3: Fully decentralized VM consolidation: example system topology

Starting from the initial state as shown in Figure 4.3, PM4 initiates the first consolidation
with its neighbours PM3 and PM5. The result of this consolidation is shown in Figure 4.4 (1).
VM11 has been migrated from PM4 to PM5 and VM6 & VM7 have been migrated from PM4
to PM3. PM5 and PM3 resources are now better utilized than in the previous configuration.
In Figure 4.4 (2), PM2 triggers a consolidation with its neighbours PM1 and PM6. VM4
has been migrated from PM2 to PM1. PM1 is now fully utilized and PM2 has become idle.
Finally, in Figure 4.4 (3) PM6 starts another consolidation with PM1 and PM4. VM5 has been
moved from PM4 to PM6. The node PM4 has now become idle and PM6 better utilized. The
final system state with two released PMs (PM2 and PM4) is shown in Figure 4.4 (4). It results
in a new, almost global optimal data center utilization of approximately 95%.

4.3.4 Evaluation

This section presents the evaluation of the proposed VM consolidation algorithm and the
fully decentralized VM consolidation system. First, the prototype implementation principles
are introduced. Afterwards, the system setup is detailed and the results are discussed.
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Figure 4.4: Fully decentralized VM consolidation: process example

4.3.4.1 Prototype Implementation

To validate our work we have implemented a distributed Python-based VM consolida-
tion system emulator which integrates the Cyclon membership protocol [291]. Each PM is
emulated by a daemon which listens for TCP connections to communicate with other PMs.
One node serves as the introducer to bootstrap the system. To prevent concurrent access to
PMs the prototype implementation integrates a distributed locking mechanism. PMs shut-
down themselves when they do not host any VMs. VMs are represented by their requested
capacity vectors. Each PM writes events (e.g. migration, consolidation, shutdown) in a lo-
cal SQLite database during the experiment execution. Once the experiment is finished all
databases are collected and merged into a single one for post-analysis. Emulator modules
such as the introducer mechanism, consolidation algorithms, scheduler for shuffling and
consolidation are defined in a configuration file for the ease of replacement. The current
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implementation integrates four VM consolidation algorithms: the FFD [304], Sercon [224],
V-MAN [216] state of the art algorithms and the introduced migration-cost aware ACO-
based algorithm. FFD is an VM placement algorithm which is often applied in the context
of VM consolidation. Consequently, it serves as the baseline for comparison in our work. In
contrast, Sercon, V-MAN and our algorithm are VM consolidation algorithms which were
specifically designed to reduce the number of migrations.

4.3.4.2 System Setup

We have deployed the emulator on 42 servers of the Grid’5000 testbed in France. All
servers are equipped with two CPUs each having 12 cores (in total 1008 cores). This allowed
us to emulate one PM per core. In other words, throughout all the experiments each server
hosts 24 emulator instances (one per core) which represent the emulated PMs. The emulator
considers three types of resources: CPU, memory, and network. It supports six kinds of
VM instances: nano, micro, small, medium, large and xlarge, which are represented by their
corresponding requested capacity vectors: (0.2, 0.5, 0.1), (1, 1, 1), (2, 1, 1), (4, 2, 2), (8, 4, 4) and
(16, 8, 4) respectively. PMs have a total capacity of (48, 26, 20). They host 6 VMs, one of each
type at the beginning of the experiment. Consequently, in total 6048 VMs are emulated. The
experiment runs for six minutes. Consolidation is triggered by the PMs concurrently and
independently every 30 seconds. The neighbourhood size is set to 16 PMs and the shuffling
operation is triggered every 10 seconds by the PMs. Table 4.3 provides a summary of the
introduced system parameters and their corresponding values. The ACO parameters shown
in table were derived empirically through numerous experiments. We run the emulator once
for each of the evaluated algorithms: FFD, Sercon, V-MAN and the proposed ACO-based
algorithm. The evaluation is focused on: (1) analysis of the number of active PMs (packing
efficiency) and migrations; (2) scalability of the system; and (3) comparison of the packing
efficiency with the centralized topology for all the VM consolidation algorithms.

Table 4.3: Fully decentralized VM consolidation: system parameters
Parameter Value
Number of PMs and VMs 1008 (resp. 6048)
Experiment duration 360s
Consolidation interval 30s
Shuffling interval 10s
Neighbourhood size 16 PMs
Considered resources CPU, memory and network
PM total capacity vector (48, 26, 20)
VM requested capacity vectors (0.2, 0.5, 0.1), (1, 1, 1), (2, 1, 1),

(4, 2, 2), (8, 4, 4), (16, 8, 4)
ACO parameters: α, β, ρ, τmin, τmax, e, g,
m, nCycles, nAnts

0.1, 0.9, 0.1, 0.2, 1, 5, 3, 1, 2, 2
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4.3.4.3 Number of Active PMs and Migrations

In this section we analyze the number of active PMs and migrations resulting from the
evaluated algorithms. First, the number of active PMs is analyzed. The results of this evalu-
ation are shown in Figure 4.5. As it can be observed the consolidation phase starts at the 30th
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Figure 4.5: Fully decentralized VM consolidation: number of active PMs

second. FFD performs the worst as it only manages to release 246 nodes. V-MAN achieves
the best result with 323 released PMs which is closely followed by the ACO-based algorithm
with 322 released PMs. Note, that Sercon performs worse than V-MAN and ACO.

Figure 4.6 depicts the number of migrations with the progress of the experiment. As it
can be observed the number of migrations quickly converges towards zero with Sercon, V-
MAN and the ACO algorithm thus demonstrating the good reactivity of our system. Note,
that the ACO algorithm requires more migrations than Sercon. Indeed, it trades the number
of migrations for the amount of released PMs (see Figure 4.5). Finally, V-MAN performs the
worst among the three VM consolidation algorithms. FFD yields in a tremendous amount of
migrations (in total 96494). We explain this with the fact the algorithm is not designed to take
into account the current VM-PM assignment. Particularly, due to its static nature it assumes
that the PMs do not host any VMs prior computing the new VM-PM assignment resulting
in a permanent movement of most of the VMs in each VM consolidation iteration.

4.3.4.4 Scalability

To evaluate the scalability of our system we have varied the number of PMs from 120 to
1008 and analyzed the obtained packing efficiency. The results are summarized in Table 4.4.
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Figure 4.6: Fully decentralized VM consolidation: number of migrations

As it can be observed, except the outlier with V-MAN at 504 PMs, the packing efficiency does
not change significantly with increasing numbers of PMs and VMs, thus demonstrating the
good scalability of our system.

Table 4.4: Fully decentralized VM consolidation: scalability
Algorithm PMs VMs Released PMs Migrations per VM Packing effi-

ciency (%)

FFD

120 720 29 26 24.1
240 1440 58 26 24.1
504 3024 124 27 24.6
1008 6048 246 26 24.4

ACO

120 720 36 5 30.0
240 1440 77 7 32.0
504 3024 161 8 31.9
1008 6048 322 9 31.9

V-MAN

120 720 39 3 32.5
240 1440 79 5 32.9
504 3024 122 4 24.2
1008 6048 323 4 32.0

Sercon

120 720 37 1 30.8
240 1440 74 1 30.8
504 3024 155 1 30.7
1008 6048 311 1 30.8



4.3 – VM Consolidation Algorithm and System 117

Another important metric to evaluate is the maximum number of migrations per VM during
the whole duration of the experiment. In other words, due to the fully decentralized nature
of the system and the random neighbourhood construction, VMs could traverse multiple
PMs during subsequent consolidation rounds. As our results show, the maximum number
of migrations per VM highly depends on the current VM-PM assignment and the VM con-
solidation algorithm, less on the number of PMs and VMs. Particularly, in the current setup,
Sercon requires at most one migration per VM. On the other hand, V-MAN results in at most
5 and ACO needs at most 9 migrations. Finally, FFD as it does not consider the current
VM-PM assignment yields to the largest number of migrations.

4.3.4.5 Comparison with a Centralized System Topology

Table 4.5 depicts the results from the comparison of the number of migrations and pack-
ing efficiency of our approach with the centralized topology for 1008 PMs and 6048 VMs. To
simulate a centralized topology we have run the VM consolidation algorithms (FFD, Sercon,
ACO) on a single PM. Note that, V-MAN is a decentralized algorithm thus its evaluation
is not part of the centralized topology evaluation. As it can be observed the ACO-based

Table 4.5: Fully decentralized VM consolidation: centralized vs. unstructured P2P
Topology Algorithm Migrations Released PMs Packing efficiency (%)

Centralized
FFD 6040 249 24.7

Sercon 1920 320 31.7
ACO - - -

P2P
FFD 96494 246 24.4

V-MAN 4189 323 32.0
ACO 4015 322 31.9

Sercon 1872 311 30.8

VM consolidation algorithm is unable to compute a solution in a reasonable amount of time
when used in the centralized topology for this kind of scale. Sercon on the other hand out-
performs FFD in both the number of migrations (1920 vs. 6040) and released PMs (320 vs.
249). This is not further surprising as in contrast to FFD, Sercon is designed to minimize the
number of migrations. More interestingly, our fully decentralized VM consolidation system
achieves almost equivalent packing efficiency for the evaluated algorithms when compared
to the centralized topology. When considering the number of migrations, FFD achieves the
worst result with 96494 migrations. We explain this with the fact that the algorithm by na-
ture does not take into account the current VM-PM assignments. Consequently, its solutions
result in a permanent reassignment of VMs within neighbourhoods during subsequent con-
solidation rounds.

Our ACO-based algorithm outperforms FFD as well as Sercon in the number of released
PMs and performs equal with V-MAN. However, the gains in the number of released PMs
come at the cost of an increased number of migrations. For example, when compared to
Sercon twice as many migrations are required. On the other hand, when considering V-
MAN more than 150 migrations are saved by the ACO algorithm. This demonstrates that
the ACO algorithm can serve as a competitive alternative to the other evaluated algorithms
in the fully decentralized VM consolidation system.
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4.4 Summary

In this chapter we have presented three novel contributions. The first contribution is
a nature-inspired VM placement based on the ACO. To the best of our knowledge this is
the first work to apply ACO on the Multi-dimensional Bin Packing Problem. Moreover,
it is the first work to evaluate the benefits of ACO in the context of VM placement. We
have compared the proposed algorithm with the traditional FFD greedy algorithm. Both
algorithms have been implemented and validated by means of simulations. The simulation
results demonstrate that the ACO-based approach provides superior energy gains than the
FFD algorithm and computes near optimal (1.1% deviation) solutions as computed using
the IBM ILOG CPLEX optimizer. Particularly, on average 4.7% of PMs and 4.1% of energy
were saved by applying the ACO-based algorithm compared to FFD. Nevertheless, despite
its polynomial-time worst-case complexity our current implementation is limited to smaller
number of PMs and VMs.

Motivated by the fact that our VM placement algorithm did not scale do a higher num-
ber of PMs and VMs, as well as the need to consider the VM consolidation problem in order
to further consolidate already placed VMs this chapter has made two further contributions:
(1) we have adapted our VM placement algorithm to the VM consolidation problem; (2)
we have proposed a fully decentralized VM consolidation system based on an unstructured
P2P network of PMs. The key idea of the fully decentralized VM consolidation system is
to periodically and randomly form neighbourhoods of PMs. VM consolidation is applied
periodically only within the scope of the neighbourhoods thus allowing the system to scale
with increasing number of PMs and VMs as no global system knowledge is required. More-
over, the randomized neighbourhood construction property facilitates the VM consolidation
convergence towards a global packing efficiency very similar to a centralized system by lever-
aging existing centralized VM consolidation algorithms.

A distributed Python-based VM consolidation-enabled Cyclon P2P system emulator was
implemented and used it to evaluate two state of the art VM consolidation algorithms,
namely Sercon and V-MAN along with our ACO-based VM consolidation algorithm. The
evaluation was conducted on the Grid’5000 testbed which allowed to emulate up to 1008
PMs and 6048 VMs. The results show that the proposed fully decentralized VM consolida-
tion system achieves a global packing efficiency very close to a centralized topology for all
the evaluated algorithms. Moreover, the system remains scalable with increasing numbers
of PMs and VMs. Finally, the proposed ACO-based VM consolidation algorithm outper-
forms FFD and Sercon in the number of released PMs and requires less migrations than
FFD and V-MAN when used in our fully decentralized VM consolidation system. Table 4.6)
summarizes the evaluation results.

Table 4.6: Fully decentralized VM consolidation: evaluation summary
Criteria Best algorithm 2nd 3rd 4th

#Migrations Sercon ACO V-MAN FFD
Packing efficiency V-MAN ACO Sercon FFD
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THIS chapter wraps up the contributions of this thesis and presents future research di-
rections.

5.1 Contributions

Cloud computing has recently emerged as a new computing paradigm which allows
customers to lease services based on the pay-as-you-go model. Customers are charged for
only what they use. To support the customers growing service demands cloud providers
are now building an increasing number of large-scale data centers. Managing such data cen-
ters is a challenging task as it involves the design of novel cloud management frameworks
and algorithms which are not only able to operate at scale but also lower the data center en-
ergy consumption during periods of low resource utilization. This thesis has focused on the
IaaS cloud service model whose goal is to offer compute infrastructure by provisioning VMs
on-demand. Particularly, in this thesis we have investigated the challenge of designing,
implementing, and evaluating an autonomic and energy-efficient IaaS cloud management
system for private clouds. In order to achieve this goal, Chapter 2, has first introduced the
context of this work, namely server virtualization, autonomic computing, cloud computing,
and energy management in computing clusters. Then, it has reviewed the related work on
the design and implementation of autonomic, scalable, and energy-efficient IaaS cloud man-
agement systems and highlighted their limitations. Based on the lessons learned this thesis
has proposed the following three novel contributions:

Snooze: A Scalable, Autonomic, and Energy-Efficient IaaS Cloud Manager. In order to
address the scalability, autonomy, and energy efficiency limitations of existing IaaS cloud
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management systems, this thesis has proposed Snooze, a novel scalable, autonomic, and
energy efficient IaaS cloud management system for private clouds. In contrast to existing
IaaS cloud management systems which are mostly based on centralized architectures and
lack of autonomy and energy efficiency mechanisms, for scalability Snooze employs a self-
configuring and healing hierarchical architecture for the VM management system and performs
distributed VM management. To conserve energy Snooze provides a unique holistic energy-
efficient VM management solution. Particularly, Snooze provides VM placement, ships with in-
tegrated VM resource (CPU, memory, network Rx, network Tx) utilization monitoring and
estimation mechanisms, performs event-based underload and overload detection via data
aggregation and smoothing while considering all resource dimensions, implements polyno-
mial times greedy algorithms to resolve underload and overload situations, incorporates a
modified version of the Sercon [224] algorithm for periodic VM consolidation which is the
first real implementation of the algorithm, and finally performs power management by au-
tomatically detecting and power-cycling idle PMs. Idle PMs are woken up either in case not
enough online PMs are available during VM placement or overload situations.

Snooze was extensively evaluated on more than 140 nodes of the Grid‘5000 experimenta-
tion testbed using realistic applications. It was shown to be scalable, autonomic, and energy
efficient. Thanks to its flexible design, Snooze allows researchers to plugin and experiment
with novel VM management algorithms in a realistic environment. Moreover, the VM re-
source utilization data exported by Snooze can be exploited by elastic cloud services able
to scale up and down VMs on-demand depending on the services QoS requirements (e.g.
response time, deadlines) and current VM resource utilization. The software prototype has
been distributed in open-source under the GPL v2 license at http://snooze.inria.fr since May
2012. It is known to be used by researchers (e.g. at IRIT Toulouse, LIFL) to experiment
with VM management algorithms and has been successfully validated on experimentation
testbeds at EDF R&D and Medio Seattle. Recently, an engineer was hired by Inria as part of
the Snooze technological development action to support the development of the system.

VM Placement via Ant Colony Optimization. One issue which arises during the VM sub-
mission in IaaS cloud management systems is to place the VMs on PMs such that the number
of PMs is minimized. Minimizing the number of PMs during VM submission is an NP-hard
combinatorial optimization problem and thus is expensive (in time and space) to compute
with increasing numbers of PMs and VMs. Many of the existing VM placement algorithms
are limited to a single resource (e.g. CPU) and rely on centralized greedy algorithms such
as First-Fit Decreasing (FFD) which are known to be hard to distribute/parallelize [76]. To
address those limitations we have investigated the use of Ant Colony Optimization (ACO)
for VM placement and proposed a novel ACO-based VM placement algorithm. ACO is es-
pecially attractive for VM placement due to its polynomial time worst-case complexity, close
to optimal solutions, and the ease of parallelization. The proposed algorithm was compared
with the FFD algorithm by means of simulations. Moreover, the optimal solution was com-
puted using the IBM ILOG CPLEX optimizer. The results have shown that the proposed
algorithm outperforms FFD in the number of released PMs and computes close to optimal
(i.e. 1.1% deviation) solutions at the cost of increased execution time.

VM Consolidation via Ant Colony Optimization. The previous contribution has shown
that ACO is able to compute close to optimal solutions. However, the scalability of the

http://snooze.inria.fr
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proposed algorithm was limited to a small number of VMs and PMs. Moreover, while con-
sidering the VM placement problem is important, once VMs are placed, VM consolidation
should be performed to remove resource fragmentation and thus improve the overall data
center resource utilization. This can be achieved by continuously repacking already placed
VMs on the least number of PMs. To tackle both issues this thesis has made two novel
contributions. The first contribution has adapted the previously proposed ACO-based VM
placement algorithm to enable VM consolidation while minimizing the number of migrations. In
order to improve the scalability of the algorithm, the second contribution has proposed a
novel fully decentralized VM consolidation system based on an unstructured P2P network of PMs.
Considering the complexity of the VM consolidation problem, the key idea of the system
is to apply VM consolidation only within small sets of PMs, the so-called neighbourhoods.
This allows the system to scale with increasing numbers of PMs and VMs as no global sys-
tem knowledge is required. Finally, in order to facilitate the VM consolidation convergence
towards a global packing efficiency very similar to a centralized system, neighbourhoods are
randomly modified via exchange of contact information between PMs. To evaluate both con-
tributions we have developed a distributed emulator of the proposed fully decentralized VM
consolidation system and deployed it on the Grid’5000 experimentation testbed. The emu-
lator integrates two state of the art VM consolidation algorithms (i.e. Sercon and V-MAN) as
well as the proposed ACO-based VM consolidation algorithm. It was used to emulate up to
1008 PMs and 6048 VMs. Our results have shown that the proposed system achieves good
scalability and a packing efficiency very close to the one achieved with a centralized system.

5.2 Perspectives

As part of our research we have identified a number of future research directions. They
can be divided in to five categories: (1) Improving the Snooze software; (2) Further evalua-
tion of Snooze; (3) Autonomy; (4) Improved VM management mechanisms; (5) Energy and
thermal aware data center management.

Improve the Snooze Software. We have identified two improvement directions for the
Snooze software. First, the Snooze usability could be improved in order to make it more user
friendly. Second, some of the its implementation limitations should be resolved in order to
reach a broader community. Regarding the usability, in order to make Snooze interoperable
with a wide range of tools developed for open-source and proprietary cloud management
systems over the past years, well-known cloud management interfaces such as EC2 [9] and
OCCI [43]) should be implemented on top of the Snooze own RESTful interface. In addition,
recently a unified IaaS cloud management interface called Apache Libcloud [143] was intro-
duced. Providing a Snooze driver for Libcloud could make Snooze more attractive for users
which have already developed tools leveraging this interface. Last but not least, a graphical
user interface could further increase the system usability.

We now present a number of improvements which could be done to the current pro-
totype implementation. The first improvement involves the VM resource utilization data,
storage, and networking management. VM resource utilization data is used to enable the
VM management mechanisms (e.g. VM consolidation) decisions. It is currently stored in-
memory. Consequently, the amount of data which can be preserved is limited. This lim-
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itations can be resolved by integrating more scalable storage solutions such as MySQL [2]
or Apache Cassandra [198]. Besides VM resource utilization data management, VM stor-
age management is mandatory to automate the VM disk image propagation to PMs during
the VM submission. For the time beeing, Snooze does not integrate any VM storage man-
agement mechanisms and assumes that the VM disk images are either hosted on a shared
storage such as Network-File-System (NFS) or copied manually by the user to the compute
nodes prior initiating VM submission. Finally, VM networking management is mandatory
in order for the VMs to become reachable to the outside workload after they have booted. In
order to achieve this, VMs need to get an IP address assigned. This can be achieved using
different techniques (e.g. DHCP, manually). Currently, the Snooze VM networking manager
assigns IP addresses manually to the VMs. This requires VMs to integrate a special contex-
tualisation script which will perform the network configuration. It would be interesting to
integrate alternative, more transparent IP address assignment approaches (e.g. DHCP).

The second improvement involves the VM live migration mechanisms. VM live migration
allows Snooze to seamlessly move VMs between the PMs. In order to enable VM live migra-
tion, the NFS storage is required as most of the today’s open-source hypervisors (e.g. KVM)
do not support VM storage live migration. However, NFS results in a bottleneck which be-
comes critical especially when data intensive VMs are deployed. It is therefore interesting to
investigate VM live migration with alternative, more distributed file systems such as Glus-
terFS, XtreemFS [175], or BlobSeer [229]. For instance, BlobSeer is known to have support for
transparent VM storage live migration [230]. Finally, when VM live migrations are triggered
concurrently, they all compete for the networking bandwidth. Given that each VM live mi-
gration has its own networking bandwidth demand, starvation can happen thus preventing
certain VMs from beeing migrated. In order mitigate VM live migration starvation, live mi-
gration bandwidth capping features of the hypervisors should be used. Moreover, servers
hosting the GM services could be placed in separate Virtual Local Area Networks (VLANs)
thus providing networking bandwidth isolation.

The third improvement aims at enabling Snooze multi-site deployment. More precisely,
today’s cloud providers operate multiple clusters, possibly distributed in geographically
different locations. For the time beeing, Snooze was validated on a single cluster. More-
over, it required IP multicast to be enabled on the networking infrastructure. In this con-
text it is interesting to investigate how Snooze should be modified in order to remove this
limitation. For instance, multicast could be implemented over messaging systems such as
RabbitMQ [49] or ActiveMQ [142].

The fourth improvement related to the security of the system. For the time beeing Snooze
does not integrate any security mechanisms such as user or system services authentication.
This makes it vulnerable to attackers which could compromise a deployment by injecting
malicious system services. For example, a deployment could be taken over by injecting fake
LC or GM services. Security mechanisms should be integrated to mitigate such situations.
Finally, a number of IaaS cloud management systems such as CloudStack [275], Eucalyp-
tus [19], Nimbus [190], OpenNebula [223], and OpenStack [279] have been developed over
the past years. In order for Snooze to reach a broader community it would be beneficial to
integrate it with such systems. This would allow to take advantage of their tools ecosystem,
mechanisms (e.g. storage management), as well as complement them with autonomy and
energy efficiency mechanisms.

In order to improve Snooze and develop its open-source community, recently an engineer
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was hired in the framework of the Snooze technological development action.

Further Evaluation of Snooze. We have identified a number of future evaluation opportu-
nities. The first additional evaluation concerns the scalability of the system. We would like
to deploy and evaluate Snooze on a larger number of PMs and VMs. In addition, it would
be interesting to study the system stabilization time after a GL failure. While from our ex-
perience Snooze required only a few seconds to stabilize, we would like to evaluate and
quantify the overheads more precisely. Ultimately, a direct scalability comparison with ex-
isting open-source IaaS cloud management systems (e.g. OpenStack) could bring interesting
results. To the best of our knowledge no such evaluation has been performed yet. Indeed,
not even among the existing IaaS cloud stacks (e.g. CloudStack, OpenNebula, Nimbus). The
second evaluation targets the energy management mechanisms which were evaluated using
a web application. It could be interesting to investigate how the energy management mecha-
nisms would impact the energy and performance of scientific and data analysis applications
such as MPI (resp. MapReduce). We have already started to work on scientific data analy-
sis applications as part of a summer research internship at the Lawrence Berkeley National
Laboratory in 2012 and plan to continue this activities in the future.

Moreover, the energy and performance overheads of different VM live migration tech-
niques should be investigated. Particularly, in our experiments the pre-copy VM live migra-
tion technique was used. However, alternative live migration approaches (e.g. post-copy,
hybrid) could potentially yield better performance and more energy savings. Finally, due to
hardware restrictions on our testbed we could only use one power management technique
(i.e. shutdown). Alternative power management methods such as suspend or hibernate
could be evaluated in order to improve the wake up times. This could help to further lower
the energy consumption and improve the performance. Finally, Snooze has been tested in
a homogeneous environment. Given that nothing prevents it to be deployed in a heteroge-
neous environment it would be interesting to evaluate the effects of such a deployment on
its VM management mechanisms.

Autonomy. Snooze implements a number of self-management properties (e.g. self-
configuration and healing) which can be further improved. The first improvement could
be done to support VM failure recovery. Particularly, when a LC fails all VMs which it hosts
are also terminated. It would be interesting to extend the LCs such that they can period-
ically take VM snapshots on stable storage. This would allow the GMs to automatically
restart VMs of the failed LCs on the remaining active LCs.

Another improvement involves the hierarchy management. Particularly, after some time
the Snooze hierarchy can become unbalanced if Snooze system services (e.g. GMs, LCs) are
shutdown either for maintenance reasons or due to failures. For instance, once a GM is shut-
down all its managed LCs will join another GM. However, once a new GM is booted no new
LCs will be assigned to it, unless new PMs are added to the cluster which are configured as
LCs. After some time this behaviour will result in some GMs being heavily loaded while
others remaining underutilized. Consequently, mechanisms and algorithms able to rebal-
ance the hierarchy must be investigated. For example, a control-loop could be integrated on
the GL which would instruct the GMs to perform hierarchical rebalancing actions based on
the observed aggregated GM resource utilization. Ultimately, Snooze could be made even
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more autonomic by removing the distinction between GMs and LCs. Consequently, the decisions
when a PM should play the role of GM or LC in the hierarchy would be taken by the system
instead of the system administrator upon configuration. Finally, in the current implementa-
tion a failing GM is never replaced by another one. Consequently, after a failure of the last
GM the system will becomes unreachable. In this context it would be interesting to inves-
tigate automatic promoting of LCs to GMs or booting additional GMs. This will allow the
system to operate even in such catastrophic scenarios. Last but not least, for energy saving
reasons the GL could be enabled to automatically disable and enable parts of the hierarchy
via shutdown (resp. wake up) of idle GMs.

Improved VM Management Mechanisms. A number of improvements can be done in
the context of VM management mechanisms. The first improvement is related to the ag-
gregated resource utilization. Particularly, the GL VM dispatching algorithm considers the
available aggregated resource utilization of the GMs to determine GMs with enough resources
to accommodate the VMs. However, aggregating resource utilization is not sufficient to take
exact VM dispatching decisions. For example, when a GM reports to have 4 GB of avail-
able memory and a user submits a VM requesting 2 GB of memory, it does not necessary
mean that the GM will finally be able to accommodate the VM. Indeed, the 4 GB could be
the result of four LCs each running on PMs with 1 GB of memory. Currently, the GL VM
dispatching algorithm returns a list of candidate GMs which are contacted by the GL until
one with enough resources is found. Obviously this is not the most scalable approach. It
would be interesting to investigate how this behaviour could be improved. For example,
by studying metrics which could better capture the aggregated utilization or provide more
detailed information thus allowing for more intelligent GL decisions.

The second improvement concerns the handling of dependent VMs. Particularly, many
of the traditional VM management algorithms (e.g. FFD) as well as the ones proposed in
Chapter 4 assume independent VMs. However, in a real environment VMs are inherently
dependent. For example, in a web hosting environment, multiple web server VMs could
have a dependency on a database VM. Similarly, VMs hosting scientific applications (e.g.
MPI) can be subject to dependencies due to communicating applications. Ignoring such
dependencies during VM management decisions could seriously degrade the VM perfor-
mance and availability. Just consider the backend web server VMs and the database VM
running on the same PM. In case of a PM failure the entire web hosting environment would
become unreachable. In order to consider VM dependencies, VM management algorithms
must be extended with support for collocation and anti-collocation constraints. This is an
interesting area of research which has not received enough attention in the area of greedy
algorithms and meta-heuristics yet. One possible direction to explore is graph theory. Partic-
ularly, algorithms which are capable of finding cliques in graphs could be the right direction
to investigate.

The third improvement aims at mitigating the performance interference of collocated VMs.
Despite the resource isolation properties server virtualization technologies, collocation of
VM with similar characteristics (e.g. memory intensive) on the same PM can lead to perfor-
mance degradation as they typically share the same cache [226]. In this context it is interest-
ing to investigate the complementaries between VM resource demands in order to support
more accurate VM to PM assignment decisions (e.g. collocate CPU and data intensive VMs).
To achieve this machine learning techniques could be leveraged to cluster VMs with comple-
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mentary resource demands. Once such cluster are determined VM management algorithms
which support collocation and anti-collocation placement constraints could be used to per-
form the VM to PM assignments.

The fourth improvement targets the overload management. Particularly, one interesting
issue which arises in the context of overload management is when PMs get concurrently
overload along multiple resource (e.g. CPU and memory). In such scenarios a decision must be
taken by the VM management algorithms on how to sort VMs from the overload node in order
to determine potential VMs which must be moved in order to avoid the overload situation.
Sorting VMs along one dimension would certainly neglect other dimensions. On the other,
giving equal weight to the dimensions (as done in our work) could yield sub-optimal results
as well. Better metrics are required in order to take more intelligent decisions.

The fifth improvement focuses on VM consolidation. VM consolidation is often used
to create idle times by migrating existing VMs on the least number of PMs. Thereby, VM
consolidation algorithms are triggered periodically according to a predefined consolidation
interval. However, static consolidation intervals can yield significant performance degra-
dation when VM consolidation is triggered during periods of high utilization [262]. It is
therefore important to investigating approaches for accurate time interval estimations. Not
much work has been done in this area yet.

The sixth improvement concerns the data center network topology. Particularly, VM man-
agement algorithms could be extended to take the data center network-topology into ac-
count while computing the VM to PM assignments. This would allow to reduce the VM
live migration time as well as energy consumption by selecting network links with the best
performance vs. energy trade-offs.

The seventh improvement involves the resource reservation. Most of the modern hyper-
visors (e.g. KVM, Xen) allow VMs to specific a min and max amount of allocated resources.
Once specified the hypervisor will guarantee that VMs always receive the minimum amount
of resources. Moreover, VMs are allowed to dynamically increase their resource allocation
until the maximum specified capacity. This mechanisms could be leveraged by the VM man-
agement algorithms (e.g. VM consolidation) to assign VMs to PMs such that the minimum
resource allocations are guaranteed even during periods of high resource contention.

Finally, in Chapter 4 we have introduced a novel ACO-based VM placement algorithm.
Our simulation results have shown that the proposed algorithms outperform the commonly
used FFD algorithms in the number of released PMs and computes close to optimal solu-
tions. However, despite its polynomial time worst-case complexity, the algorithm scalability
was still limited only to a small number of PMs and VMs. It would be interesting it improve
the algorithm prototype implementation and integrate it into Snooze. Moreover, given the
scalability limitations of the ACO-based VM placement algorithm and the need to support
VM consolidation in order to further consolidate already placed VMs this thesis has been
two novel contributions: (1) ACO-based VM consolidation algorithm; (2) full decentralized
VM consolidation system based on an unstructured P2P network of PMs. It could be inter-
esting to investigate, how the neighbourhood construction schema of the fully decentralized
VM consolidation system can be enhanced in order to create neighbourhoods taking into
account the physical distance between the PMs. Ultimately, both works could be integrated
into the Snooze cloud management system.
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Energy and Thermal Aware Data Center Management. A number of improvements can
be done in order to enable energy and thermal aware data center management with Snooze.
The first improvement involves the power usage monitoring. Particularly, for the time being
the Snooze VM management algorithms decisions are solely based on the VM CPU, memory,
and networking utilization data. In other words, they do not take into account the PM/VM
power consumption. The reason for this is two fold: (1) no PM/VM power consumption
data is fed into the system; (2) no algorithms are implemented able to exploit such data.
Providing the PM/VM power consumption data to the system and considering it in the VM
management algorithms could further improve the Snooze energy efficiency. The power
measurement techniques discussed in Chapter 2 can be leveraged in order to obtain both,
the PM and VM power usage data.

The second improvement aims at leveraging fine-grained power management mecha-
nisms. A number of such mechanisms have been proposed over the past years. Examples of
such techniques include DVFS, Intel Turbo Boost, Core Off/On, and more recently Intel Run-
ning Average Power Limit (RAPL). Integrating such mechanisms in Snooze could further
complement its course-grained power management mechanisms (e.g. suspend, shutdown).
For example, the GM could be extended to enforce CPU and memory power consumption
capping’s via DVFS (resp. RAPL). Especially Core Off/On and RAPL have not been ex-
plored enough yet in the context of virtualized environments.

The third improvement aims at leveraging green energy. Particularly, data centers are
now starting to investigate alternative power sources such as green energy (i.e. solar, wind)
to complement the traditional brown energy sources (i.e. nuclear and coal plants). One chal-
lenge which arises in this context is how to perform VM management such that the amount
of green energy is maximized while still beeing able to provide performance guarantees.

Finally, hot spot avoidance is an important issue in today’s data centers. Hot spots are
regions in a data center which experience an unusual increase in temperature (e.g. due to
cooling infrastructure issues). The Snooze VM monitoring and management features could
serve as a building block for researchers to experiment with thermal management algorithms.
Particularly, Snooze is flexible enough to be enhanced to monitor PMs temperature and au-
tomatically migrate VMs away from PMs experiencing sudden temperature increases.
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Appendix A
Résumé en français

A.1 Motivation

Le cloud computing est récemment apparu comme un nouveau paradigme de
l’informatique selon lequel les services sont proposés suivant le modèle de paiement à
l’utilisation. Les clients qui utilisent ces services sont facturés uniquement sur ce qu’ils ont
consommé. Un modèle particulier de service de cloud très prisé ces dernières années est
qualifié d’Infrastructureas-a-Service (IaaS). Dans les clouds IaaS, les ressources de calcul et de
stockage sont fournies à la demande par les prestataires de cloud. Ainsi, la capacité de calcul
est généralement fournie sous la forme de machines virtuelles (VM). Les VMs se présentent
aux clients comme si elles étaient de véritables machines physiques (PM). L’utilisation de
VMs a été rendue possible par les progrès des technologies de virtualisation de serveurs qui
permettent de multiplexer efficacement les ressources des PMs (e.g. processeurs, mémoire,
dispositifs d’entrée/sortie).

Depuis l’apparition du cloud computing, de nombreux prestataires de cloud (e.g. Ama-
zon, Google, Rackspace) sont apparus et offrent actuellement une multitude de services
comme la capacité de calcul et le stockage des données à la demande. Pour répondre à la
demande grandissante de services de la part des clients, les prestataires de cloud ont récem-
ment commencé à déployer un nombre croissant de centres de données de grande ampleur.
Leur gestion exige des prestataires de cloud qu’ils relèvent plusieurs défis. Notamment, les
fournisseurs de cloud doivent aujourd’hui concevoir et mettre en œuvre des systèmes de
gestion de clouds IaaS innovants capables de fonctionner à grande échelle. Les systèmes de
cloud computing doivent en particulier passer à l’échelle pour supporter le nombre croissant
de clients et de ressources (c’est-à-dire les VMs et les PMs). En outre, le risque de défaillances
matérielles et logicielles augmente avec la taille des centres de données. Par conséquent, les
systèmes de gestion du cloud doivent être conçus pour un fonctionnement autonome, ce qui
leur permettra de détecter automatiquement les défaillances et de lancer une restauration.
En outre, l’administration système de clouds de grande taille requiert plusieurs experts in-
formaticiens hautement qualifiés. Pour automatiser les tâches de configuration, les systèmes
de gestion de clouds IaaS doivent intégrer des mécanismes d’auto-configuration afin de per-
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mettre une configuration du système nécessitant une intervention humaine minimale. Enfin,
les centres de données hébergent actuellement de l’équipement (e.g. serveurs de stockage et
de calcul, système de climatisation) qui consomme une quantité d’énergie très importante.
Par exemple, Google, moteur de recherche sur Internet dominant et prestataire de services
de cloud, héberge à lui seul plus de 900 000 serveurs qui ont consommé environ 2 milliards
de kWh d’électricité en 2010 [195]. Alors que les besoins énergétiques des centres de données
de Google sont encore inférieurs à 1% des besoins énergétiques de l’ensemble des centres de
données du monde, réduire la consommation énergétique durant les périodes de faible util-
isation des centres de données est capital pour réduire le coût total de propriété (TCO) des
centres de données et leur empreinte carbone à une époque où la plupart des centres de
données sont toujours alimentés par des centrales au charbon ou nucléaires [180]. Compte
tenu de l’importance des économies d’énergie, il faut concevoir des systèmes de gestion de
clouds IaaS efficaces en énergie.

Ces dernières années, plusieurs tentatives ont été faites pour concevoir et mettre en œu-
vre des systèmes de gestion de clouds IaaS visant à faciliter la création de clouds IaaS privés.
Compte tenu de l’ampleur croissante des centres de données, ces systèmes font face à des dé-
fis en termes de passage à l’échelle, d’autonomie et d’efficacité énergétique. Cependant, de
nombreuses tentatives faites pour concevoir et mettre en œuvre des systèmes de gestion de
clouds IaaS reposent toujours sur des architectures centralisées, ont une autonomie limitée
et n’intègrent pas de mécanismes d’économie d’énergie. Par conséquent, ils constituent un
point unique de défaillance, ne passent pas à l’échelle et ont une faible efficacité énergétique.

A.2 Objectifs

L’objectif de cette thèse est de concevoir, de mettre en œuvre et d’évaluer un système de
gestion de clouds IaaS pour les centres de données de grande envergure. Pour atteindre son
objectif principal, cette thèse explore les quatre objectifs secondaires suivants:

• Passage à l’échelle: les centres de données hébergent désormais plusieurs milliers
de serveurs. Par exemple, Rackspace, prestataire de service de cloud IaaS renommé
hébergeait environ 78 000 serveurs en 2011 [248]. La gestion d’un tel nombre de
serveurs exige des systèmes de gestion de clouds IaaS passant à l’échelle. Par con-
séquent, notre objectif consiste à concevoir un système en adéquation avec le nombre
croissant de serveurs (PM et VM).

• Haute disponibilité: avec un nombre croissant de serveurs, le risque de défaillance
des composants du système (matériels et logiciels) augmente. Afin d’assurer un fonc-
tionnement du système sans interruption de service, le système de gestion de clouds
IaaS devra être hautement disponible. Par conséquent, il faut mettre en œuvre des mé-
canismes de haute disponibilité. Notre objectif est de concevoir un système intégrant
ces mécanismes.

• Facilité d’administration: gérer des centres de données de grande envergure peut
s’avérer être une lourde tâche nécessitant plusieurs experts informaticiens très expéri-
mentés. Fournir un système facile à configurer peut réduire considérablement les coûts
et faciliter la gestion du système. L’un de nos objectifs est de concevoir un système
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dont la configuration nécessite une intervention humaine minimale. En outre, une
fois le système déployé et configuré, il faut effectuer des mises à jour et/ou ajouter de
nouveaux serveurs. Dans ce genre de scénarios, des serveurs devront être déconnec-
tés et réintégrés ultérieurement. Notre objectif est de concevoir un système suffisam-
ment flexible pour supporter l’ajout et la suppression dynamiques de serveurs. Enfin,
comme les composants du système peuvent défaillir à tout moment, il est souhaitable
que le système puisse être réparé sans intervention humaine en cas de défaillance. Par
conséquent, nous cherchons à concevoir un système utilisant des mécanismes d’auto-
réparation pour permettre la haute disponibilité du service cloud IaaS.

• Efficacité énergétique: ces dernières années, l’augmentation des factures énergétiques
a fait de l’efficacité énergétique une contrainte de conception majeure pour les cen-
tres de données. Comme les centres de données sont rarement utilisés au maximum
de leur capacité, il est possible de réaliser des économies d’énergie significatives du-
rant les périodes de faible utilisation en faisant passer les serveurs inactifs dans un
mode d’économie d’énergie. Cependant, comme les serveurs sont rarement totale-
ment inutilisés, il faut d’abord créer des périodes d’inactivité [81]. Notre objectif est
de concevoir un système de gestion de clouds IaaS et des algorithmes de gestion de
VMs capables de créer des périodes d’inactivité, de faire passer automatiquement les
serveurs inactifs en mode d’économie d’énergie et de les réveiller lorsque c’est néces-
saire (e.g. lorsque la charge augmente). Ceci permettra d’adapter la consommation
énergétique du centre de données à sa charge.

A.3 Contributions

Pour atteindre les objectifs présentés, cette thèse apporte les trois contributions exposées
dans ce paragraphe.

A.3.1 Snooze: un gestionnaire de clouds IaaS passant à l’échelle, autonome et
économique en énergie.

L’objectif principal de cette thèse est de concevoir et de mettre en œuvre un système
de gestion de clouds IaaS passant à l’échelle, autonome et économique en énergie. Pour
obtenir le passage à l’échelle et l’autonomie, nous avons fait le choix de conception décisif
de construire un système de gestion de clouds IaaS reposant sur une architecture hiérar-
chique auto-(re)configurable et auto-réparante. Nos choix de conception pour le passage
à l’échelle et l’autonomie sont motivés par des travaux antérieurs qui ont montré que les
architectures hiérarchiques peuvent améliorer considérablement le passage à l’échelle des
systèmes. L’architecture de Snooze s’inspire en partie du système autonome Hasthi [238]
qui a montré, à l’aide de simulations, sa capacité à gérer jusqu’à 100 000 ressources. Cepen-
dant, contrairement à Hasthi dont la conception est présentée de façon générique, indépen-
damment de tout système particulier, et qui utilise une table de hachage distribuée (DHT)
reposant sur un réseau pair-à-pair (P2P), Snooze a une conception plus simple et ne né-
cessite pas l’utilisation de la technologie P2P. En outre, il cible des systèmes virtualisés, sa
conception et sa mise en œuvre sont donc conditionnées par les objectifs et les problèmes
spécifiques à ce type de systèmes.
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Organiser le système de manière hiérarchique favorise son passage à l’échelle car les
composants aux niveaux les plus élevés de la hiérarchie n’ont pas besoin d’une connais-
sance globale du système. L’idée au cœur de notre système consiste à répartir les tâches
de gestion des VMs entre plusieurs gestionnaires autonomes indépendants ayant chacun
uniquement une vision partielle du centre de données. Notamment, chaque gestionnaire a
seulement à gérer un sous-ensemble des nœuds de calcul du centre de données et des VMs.
Un coordinateur est choisi automatiquement parmi les gestionnaires durant la configura-
tion automatique de la hiérarchie et en cas de défaillance du coordinateur. Le coordinateur
supervise les gestionnaires et il est contacté par les clients qui soumettent leurs VMs.

Pour économiser l’énergie, il existe des mécanismes de gestion de l’énergie sur chaque
gestionnaire autonome qui détectent les nœuds de calcul inactifs, les fait passer en mode
d’économie d’énergie et les réveille en cas de besoin (e.g. s’il n’y a pas assez de nœuds actifs
lors du placement de VMs). Pour favoriser les périodes d’inactivité, des gestionnaires au-
tonomes mettent en œuvre des mécanismes avancés de gestion de VMs comme la résolution
des situations de sous-utilisation des ressources et le regroupement de VMs.

Dans les paragraphes suivants, nous présentons l’architecture hiéarchique du système
Snooze et les mécanismes de gestion dynamique de la hiérarchie. Nous décrivons également
les algorithmes et mécanismes de gestion de VMs que nous avons conçus pour améliorer
l’efficacité énergétique du centre de données.

A.3.1.1 Architecture du système

L’architecture du système Snooze est décomposée en trois couches: calcul, administra-
tion et client. Dans la couche de calcul, les nœuds hébergeant les VMs sont organisés en une
grappe. Chaque nœud de calcul est contrôlé par un service système appelé contrôleur local
(LC). La couche d’administration permet le passage à l’échelle du système. Elle est com-
posée de nœuds hébergeant des services système tolérants aux fautes: le coordinateur des
gestionnaires de groupe (GL) et un ou plusieurs gestionnaires autonomes, à savoir les ges-
tionnaires de groupe (GM). Les services du système sont organisés de manière hiérarchique.
Le GL surveille les GMs. Il est choisi parmi les GMs lors de l’auto-configuration de la hiérar-
chie et suite à la défaillance du GL. Chaque GM gère un sous-ensemble des LCs et des VMs.
Le GL reçoit les requêtes de soumission de VMs émanant des clients et les répartit entre les
GMs. Une fois les VMs soumises, les clients interagissent directement avec les GMs con-
cernés pour contrôler leurs VMs (e.g. arrêt, ré-initialisation). Comme le GL peut changer au
cours du temps, une méthode est nécessaire pour que les clients puissent découvrir automa-
tiquement le GL actif. Cette fonctionnalité est fournie par la couche client. Cette dernière est
composée d’un nombre prédéfini de services appelés points d’entrée (EP) qui connaissent à
tout moment l’identité du GL courant. Tous les services du système sont accessibles via une
interface RESTful. Par conséquent, n’importe quel logiciel client (e.g. interface en ligne de
commande (CLI), web, bibliothèque de cloud) peut être implémenté pour interagir avec les
EPs, le GL et les GMs.

Pour des questions de performance et de passage à l’échelle tous les composants du
système ont des rôles spécifiques (e.g. le GL et les GMs n’hébergent pas de VMs). Pour
un ensemble de nœuds physiques donné, c’est l’administrateur du système qui décide du
nombre de LCs et de GMs pour le déploiement de Snooze. Par exemple, dans le scénario de
déploiement le plus élémentaire, on a besoin de deux GMs et d’un LC. L’un des GMs sera
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promu au rang de GL par l’exécution d’un algorithme d’élection. Les services du système
sont suffisamment flexibles pour coexister sur le même nœud. Par conséquent, il est possible
de déployer toute la hiérarchie sur un seul nœud physique.

Contrôleurs locaux. Chaque LC gère le cycle de vie des VMs qu’il héberge et exécute les
commandes de gestion des nœuds que lui envoie le GM qui lui a été assigné. Des ex-
emples de ces commandes comprennent le démarrage et la migration à chaud des VMs
ainsi que la régulation de l’état des nœuds (e.g. mise en mode d’économie d’énergie).
Le LC surveille également les VMs qu’il héberge, détecte les périodes de surcharge et
de sous-utilisation et envoie régulièrement des données sur l’utilisation des ressources
par les VMs qu’il exécute au GM désigné. Des indicateurs de surcharge/de sous-
utilisation sont envoyés en même temps que ces données. Chaque LC conserve dans
un espace de stockage local les informations relatives aux VMs qui s’exécutent sur le
nœud qu’il gère.

Gestionnaires de groupe. Chaque GM est chargé de la gestion d’un sous-ensemble des LCs.
Il reçoit les données sur les ressources utilisées par les VMs en provenance de ces LCs et
les stocke localement. À partir de ces données, le GM estime l’utilisation des ressources
par les VMs et prend des décisions relatives à la gestion de VMs qui implique trois
types d’actions : placement des VMs, résolution des situations de surcharge et de sous-
utilisation d’un LC et regroupement de VMs.
Les mécanismes de placement des VMs sont déclenchés lors du traitement des requêtes
de soumission des VMs en provenance du GL. Les mécanismes de résolution des situa-
tions de surcharge et de sous-utilisation des LC sont déclenchés lorsque des indicateurs
de surcharge (ou de sous-utilisation) arrivent des LCs et ont pour objectif de déplacer
les VMs des LCs fortement (ou faiblement) chargés. Le regroupement des VMs est
effectué périodiquement selon l’intervalle de temps spécifié par l’administrateur du
système. Cet algorithme peut être utilisé par exemple pour optimiser l’utilisation des
LCs modérément chargés sur une base hebdomadaire en regroupant les VMs exis-
tantes sur le moins de LCs possible. Les deux politiques de résolution des situations
de surcharge/sous-utilisation et de regroupement des VMs génèrent un plan de migra-
tion qui spécifie les nouvelles affectations des VMs sur les LCs. Un GM met en œuvre
le plan de migration en indiquant aux LCs qu’il gère d’effectuer la migration à chaud
des VMs concernées.
La gestion de l’énergie est intégrée dans chaque GM pour la mise en veille des LCs
inactifs et les réveiller. Des LCs sont réveillés lorsqu’un GM n’a pas assez de LCs
actifs pour traiter une requête de placement de VMs ou pour résoudre une situation
de surcharge.
Chaque GM envoie périodiquement un résumé des informations qu’il possède au GL
courant pour lui permettre de décider de l’allocation des VMs nouvellement créées aux
GMs. Le résumé des informations d’un GM comprend l’agrégation des informations
d’utilisation des ressources pour l’ensemble des LCs qu’il gère. Enfin, les clients con-
tactent les GMs en charge de la gestion de leurs VMs pour les contrôler (e.g. arrêter) et
récupérer les informations les concernant (e.g. utilisation des ressources, état).

Coordinateur des gestionnaires de groupe. Le GL gère les GMs. Il a la charge d’affecter les
LCs aux GMs au démarrage, d’accepter les requêtes de soumission de VMs en prove-
nance des clients, d’administrer le réseau permettant aux VMs de communiquer entre
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elles ou avec l’extérieur, et de répartir les VMs soumises sur les GMs. De plus, il reçoit
les résumés des informations en provenance des GMs et les stocke localement. Nous
allons à présent détailler davantage ces tâches.
Lorsque les LCs démarrent, ils doivent être affectés à un GM. Les décisions
d’affectation d’un LC à un GM sont guidées par une politique d’affectation de LCs.
Par exemple, un LC peut être affecté à un GM selon une politique round-robin ou en
fonction de l’utilisation courante des GMs. Une fois les LCs affectés aux GMs, des
VMs peuvent être soumises par les clients au GL. Si des requêtes de soumission de
VMs par des clients arrivent avant l’affectation des LCs aux GMs, un message d’erreur
est retourné. Il faut noter que des LCs supplémentaires peuvent intégrer le système à
tout moment sans perturber son fonctionnement normal.
Lorsqu’un groupe de VMs (contenant une ou plusieurs VMs) est soumis au GL, les
décisions de répartition des VMs sur GMs sont prises par le GL. L’affectation des VMs
aux GMs est effectuée selon une politique de répartition des VMs. Le calcul de cette
affectation utilise les informations envoyées par les GMs. Suivant cette affectation, le
GL répartit les VMs sur les GMs. Cependant, avant de pouvoir affecter les VMs aux
GMs, il faut gérer leur connexion réseau pour que le monde extérieur puisse accéder
aux VMs après leur démarrage. Cette procédure comporte deux étapes: (1) obtenir
l’affectation d’une adresse IP à la VM; (2) configurer l’interface réseau selon l’adresse
IP affectée. Le GL se charge de la première étape. Aussi, il gère un sous-réseau que
l’administrateur système peut configurer, à partir duquel il est autorisé à attribuer des
adresses IP. Lorsque les VMs sont soumises au GL, chacune d’elles reçoit automatique-
ment une adresse IP attribuée dans ce sous-réseau. L’adresse IP attribuée est intégrée
dans l’adresse MAC des VMs. Lorsque la VM démarre, elle décode son adresse IP à
partir de son adresse MAC et procède à la configuration du réseau. Le GL ne conserve
pas de vision globale des VMs dans le système. Après avoir réparti les VMs, les in-
formations relatives aux GMs sur lesquels les VMs ont été placées sont stockées par le
client, ce qui permet aux clients d’interagir directement avec les GMs concernés pour
les requêtes de gestion de VMs ultérieures. Même si les décisions de répartition des
VMs ont un faible coût et que le GL ne possède pas de vision globale de l’ensemble des
VMs, il est toutefois possible d’améliorer son passage à l’échelle en le dupliquant et en
appliquant une politique d’équilibrage de la charge.

Points d’entrée. Dans Snooze, le GL est automatiquement choisi parmi les GMs au démar-
rage du système et un nouveau GL est élu en cas de défaillance du GL courant. Aussi,
un GL peut changer au cours du temps. Pour que les clients puissent ordonner à un
GL de démarrer des VMs, un moyen de déterminer le GL courant est nécessaire. Pour
ce faire, nous introduisons un nombre prédéfini d’EPs. Les EPs sont des services sys-
tème qui résident généralement sur les nœuds dans le même réseau que les GMs et
sont capables de connaître l’identité du GL courant (voir le paragraphe suivant pour
de plus amples détails). Les clients qui veulent soumettre des VMs contactent un des
EPs pour déterminer l’identité du GL courant.

A.3.1.2 Gestion de la hiérarchie

Ce paragraphe décrit comment la hiérarchie du système Snooze est construite et
préservée pendant le fonctionnement du système. Tout d’abord, nous présentons les mé-
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canismes d’envoi de messages de bon fonctionnement (heartbeats). Ensuite, nous exposons
les mécanismes d’auto-configuration et d’auto-réparation. L’auto-configuration est la ca-
pacité du système à construire de manière dynamique la hiérarchie lors du démarrage du
système. L’auto-réparation permet de reconstruire automatiquement la hiérarchie en cas de
défaillance des services système ou des nœuds.

Messages de bon fonctionnement. Pour supporter l’auto-configuration et l’auto-
réparation, Snooze intègre des protocoles d’envoi de messages de bon fonctionnement
bi-directionnels à tous les niveaux de la hiérarchie. Le GL envoie régulièrement son
identité à un groupe de diffusion spécifique contenant tous les EPs et les GMs. Les
messages du GL permettent aux EPs de tenir à jour l’identité du GL courant. Les
messages du GL sont également nécessaires aux LCs et aux GMs pour déterminer
le GL courant au démarrage et en cas de défaillance du GM (ou du GL). En effet,
le GL courant doit être connu des LCs lors de leur initialisation pour être affectés à
un GM. Les GMs doivent également informer le GL courant de leur présence pour
permettre la distribution des VMs aux GMs par le GL. En cas de défaillance d’un
GM, les LCs qui y sont rattachés doivent contacter le GL pour obtenir une nouvelle
affectation de GM. Enfin, en cas de défaillance du GL, les GMs doivent informer le GL
nouvellement élu de leur présence. Il existe un groupe de diffusion des messages de
bon fonctionnement par GM sur lequel il annonce sa présence aux LCs qui lui sont
affectés. Il est utilisé par les LCs pour détecter la défaillance du GM auquel ils sont
rattachés. Enfin, pour détecter la défaillance d’un GM (respectivement d’un LC), le GL
(respectivement les GMs) s’appuient sur des messages de bon fonctionnement qui leur
sont envoyés directement par les GMs (respectivement les LCs). Les messages de bon
fonctionnement sont transmis en même temps que les informations de surveillance
des VMs envoyés périodiquement par les GMs (respectivement les LCs) au GL
(respectivement au GM qui leur est assigné).

Auto-configuration. Lorsqu’un service système démarre sur un nœud, il est configuré de
manière statique pour devenir soit un LC soit un GM. Lorsque les services démarrent,
la première étape dans la construction de la hiérarchie implique l’élection d’un GL
parmi les GMs. Après le choix du GL, les autres GMs doivent s’enregistrer auprès
de lui. Pour qu’un LC intègre la hiérarchie, il doit d’abord déterminer quel est le GL
courant et le contacter pour se voir affecter un GM. Une fois affecté à un GM, il peut
s’enregistrer auprès de celui-ci. Nous allons à présent décrire toutes ces étapes de façon
plus détaillée.
L’auto-configuration de la hiérarchie Snooze fonctionne de la manière suivante.
Lorsqu’un GM tente pour la première fois d’intégrer le système, un algorithme
d’élection est déclenché pour choisir le GL parmi les GMs. Actuellement, l’algorithme
d’élection du GL repose sur le système de coordination à haute disponibilité
ZooKeeper [174] d’Apache. S’il existe un GL, le GM s’enregistre auprès de lui et
commence à envoyer ses messages de bon fonctionnement. Sinon, il devient le nou-
veau GL et commence à envoyer ses messages de bon fonctionnement en tant que GL.
Lorsqu’un LC démarre, il doit intégrer la hiérarchie. Aussi, les informations relatives
au GL courant ainsi qu’au GM auquel il va être rattaché sont requises. Pour obtenir les
informations du GL, il se met à l’écoute des messages de bon fonctionnement émis par
le GL sur un groupe de diffusion spécifique. Lorsqu’il reçoit un tel message, il contacte
le GL pour se voir attribuer un GM. Différentes politiques d’attribution des LCs aux
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GMs peuvent être appliquées par le GL. Par exemple, les LCs peuvent être affectés aux
GMs selon une politique round robin ou selon la charge courante des GMs (e.g. affecta-
tion aux GMs les moins chargés). Enfin, le LC commence à interagir avec le GM qui lui
est attribué. Il se met à l’écoute des messages de bon fonctionnement du GM considéré
et commence à lui envoyer les siens.

Auto-réparation. L’auto-réparation s’effectue à tous les niveaux de la hiérarchie. Elle im-
plique la détection et la réparation automatique des défaillances des LCs, des GMs et
du GL.
Les défaillances d’un LC sont détectées par le GM qui lui est affecté lorsqu’il ne reçoit
plus les messages de bon fonctionnement que le LC lui envoie périodiquement. Une
fois la défaillance d’un LC détectée, le GM enlève le LC fautif de sa liste de LCs pour
qu’il ne soit pas pris en considération dans les prochaines tâches de gestion de VMs.
Il faut noter qu’en cas de défaillance d’un LC, les VMs qu’il héberge sont arrêtées bru-
talement. Actuellement, Snooze ne traite pas la restauration des VMs dont l’exécution
est interrompue, mais les LCs peuvent utiliser les fonctionnalités de sauvegarde d’état
offertes par les hyperviseurs pour sauvegarder régulièrement des points de reprise des
VMs. Ainsi, le GM pourra redémarrer les VMs victimes de la défaillance sur les LCs
actifs restants.
Les défaillances du GM sont détectées par le GL et les LCs lorsqu’ils ne reçoivent pas
les messages de bon fonctionnement qui leur sont destinés directement ou qui sont en-
voyés à un groupe de diffusion auquel ils appartiennent. Lorsqu’un GM est défaillant,
il est supprimé de la liste des GMs gérés par le GL afin que ce dernier ne lui transmette
plus de requêtes de soumission de VMs. Les LC gérés par le GM fautif lancent une
procédure de réintégration. Comme la procédure d’intégration, une réintégration im-
plique l’affectation d’un GM au LC. Cependant, pendant sa réintégration, un LC doit
en plus transmettre au GM qui lui est nouvellement affecté les informations qu’il pos-
sède sur les VMs en cours d’exécution sur le nœud qu’il gère pour que ce GM puisse
mettre à jour les informations qu’il détient.
La défaillance du GL est détectée suite à l’absence dans un délai prévu des messages
de bon fonctionnement normalement transmis au groupe de diffusion dont font par-
tie les GMs. Lorsque le GL est défaillant, il faut d’abord élir un nouveau GL parmi
les GMs. Le GL nouvellement élu doit ensuite être découvert par les GM restants qui
doivent s’enregistrer auprès de lui. Enfin, les LCs qui étaient précédemment affectés
au GM devenu le nouveau GL doivent amorcer la procédure de réintégration dans la
hiérarchie pour se rattacher à un autre GM. En cas de défaillance d’un GL, toutes ses
informations sur les GMs existants sont perdues. C’est pourquoi il faut reconstruire
ces informations pour que le système reste cohérent. Nous utilisons le service Apache
ZooKeeper pour élir un nouveau GL parmi les GMs. Lorsqu’un GM existant devient
le nouveau coordinateur des gestionnaires de groupe, il passe en mode GL et com-
mence à envoyer ses messages de bon fonctionnement en tant que GL. Pour détecter
le nouveau GL, les GMs sont constamment à l’écoute des messages de bon fonction-
nement du GL. Sur réception de l’identité du nouveau GL, chacun d’eux déclenche la
procédure de réintégration de GM. Contrairement à la procédure d’intégration de GM
présentée précédemment, une réintégration de GM nécessite l’envoi de données sup-
plémentaires. En outre, les GMs renvoient régulièrement le résumé des informations
qu’ils détiennent au nouveau GL, ce qui lui permet de reconstruire ses informations
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relatives à l’utilisation des ressources.

A.3.1.3 Efficacité énergétique dans la gestion de machines virtuelles

Les décisions pour la gestion des VMs sont prises à deux niveaux: celui du GL et celui
des GMs. Au niveau du GL, l’affectation des VMs aux GMs s’effectue en s’appuyant sur
le résumé des informations sur l’utilisation des ressources transmis par les GMs au GL.
Par exemple, les VMs peuvent être réparties sur les GMs selon une politique round-robin
ou first-fit prenant en compte la capacité des GMs. Dans nos travaux, nous utilisons une
politique round-robin. Ainsi, le GL favorise les GMs disposant d’une capacité active (cor-
respondant aux nœuds qui exécutent des VMs ou qui sont en attente de VMs à exécuter)
suffisante et prend en considération la capacité passive (correspondant aux nœuds placés en
mode d’économie d’énergie) uniquement lorsqu’il n’y a pas suffisamment de capacité active
disponible. Le résumé des informations fourni par les GMs au GL ne suffit pas à prendre des
décisions de répartition exactes. Par exemple, lorsqu’un client soumet une VM demandant
2 GB de mémoire et qu’un GM indique que 4 GB sont disponibles, cela ne signifie pas néces-
sairement que la VM sera placée sur ce GM car sa mémoire disponible peut être distribuée
entre plusieurs LCs (e.g. 4 LCs avec chacun 1 GB de RAM). Aussi, une liste de GMs poten-
tiels est retournée par la politique de répartition. Suivant cette liste, une recherche linéaire
est effectuée pour la transmission des requêtes de placement de VMs aux GMs.

C’est le GM qui prend les décisions pour le placement effectif des VMs en suivant quatre
types de politiques: placement, déplacement en cas de surcharge d’un nœud, déplacement
en cas de sous-utilisation d’un nœud, et enfin regroupement. Les politiques de placement
(e.g. round-robin ou first-fit) sont déclenchées par événement pour placer les VMs entrantes
sur les LCs. De même, les politiques de déplacement sont mises en œuvre lorsque des situa-
tions de surcharge (ou de sous-utilisation) sont signalées par des LCs et elles ont pour objectif
de déplacer les VMs des nœuds très (peu) chargés vers d’autres nœuds pouvant les accueil-
lir. Par exemple, en cas de surcharge, les VMs doivent être transférées vers un nœud moins
chargé pour pallier une baisse de performance. Au contraire, en cas de sous-utilisation,
pour économiser de l’énergie, il est souhaitable de déplacer les VMs vers des LCs modéré-
ment chargés afin de créer une période d’inactivité suffisante pour pouvoir faire passer les
LCs inactifs d’un centre de données modérément chargé en mode économie d’énergie (e.g.
arrêt).

Pour compléter les politiques de placement et de déplacement déclenchées par événe-
ment, il est possible de spécifier des politiques de regroupement de VMs qui seront appelées
périodiquement suivant un intervalle de temps spécifié par l’administrateur système afin
d’optimiser encore davantage le placement des VMs sur des nœuds modérément chargés.
Par exemple, un algorithme de regroupement des VMs peut être activé sur un rythme heb-
domadaire pour optimiser le placement des VMs en regroupant les VMs sur le moins de
nœuds possible.

Enfin, pour économiser de l’énergie, les nœuds inactifs doivent être placés dans un mode
d’économie d’énergie. Aussi, Snooze intègre sur chaque GM un module de gestion du mode
de fonctionnement des serveurs, qui une fois activé par l’administrateur système, permet de
surveiller périodiquement l’activité des serveurs gérés par les LCs et de déclencher des ac-
tions visant à économiser l’énergie (e.g. arrêt d’un serveur) lorsque des serveurs sont inactifs.
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A.3.1.4 Évaluation

Pour évaluer Snooze, un prototype a été mis en œuvre et évalué de manière approfondie
sur la plate-forme d’expérimentation Grid’5000 à l’aide d’applications réalistes exécutées
sur une grappe comprenant plus de 140 nœuds. Les résultats expérimentaux ont montré
que notre système passe à l’échelle, est autonome et permet d’économiser de l’énergie. Les
principes de conception du système Snooze ont été publiés dans [131, 135, 136]. L’évaluation
du passage à l’échelle et de l’autonomie a été publiée dans [134]. Enfin, la description et
l’évaluation des mécanismes de gestion de l’énergie ont été publiées dans [137].

A.3.2 Placement des VMs via l’optimisation par colonie de fourmis

Une approche traditionnelle pour économiser de l’énergie consiste à favoriser les péri-
odes d’inactivité des nœuds dans un centre de données modérément chargé. Lors de
la soumission de VMs dans les systèmes de gestion de clouds IaaS, il s’agit d’attribuer
un ensemble de VMs à des PMs de sorte à minimiser le nombre de PMs nécessaires à
l’hébergement des VMs. C’est possible en mettant en œuvre ce que l’on appelle des al-
gorithmes de placement de VMs. Cependant, bon nombre des algorithmes de placement de
VMs classiques ne prennent en considération qu’une seule ressource (e.g. le processeur) pour
évaluer la charge des PMs et les demandes de ressources des VMs. En outre, ils reposent sur
des algorithmes centralisés comme le First-Fit Decreasing (FFD) [304] connus pour être diffi-
ciles à distribuer/paralléliser [76]. Pour pallier ces limitations, nous avons étudié l’utilisation
de l’optimisation par colonie de fourmis (ACO) pour résoudre le problème du placement de
VMs et proposé un algorithme de placement de VMs reposant sur l’ACO. L’ACO est partic-
ulièrement intéressante pour le problème du placement de VMs en raison de sa complexité
dans le pire cas polynomiale et de sa facilité de parallélisation.

L’algorithme proposé repose sur les principes de l’ACO où plusieurs agents (c’est-à-dire
les fourmis artificielles) calculent en parallèle des solutions probabilistes en plusieurs cy-
cles. Ainsi, ils communiquent de manière indirecte en déposant une substance chimique
appelée phéromone sur chaque paire VM-PM dans une matrice de phéromone. Lors de
chaque cycle, les fourmis reçoivent les VMs et commencent à construire des solutions lo-
cales (c’est-à-dire des affectations d’une VM à une PM) en utilisant une règle de décision
probabiliste qui représente le désir qu’a une fourmi de choisir une VM donnée comme la
prochaine à placer sur son PM courant. Cette règle repose sur les informations courantes
sur la concentration de phéromone sur la paire VM-PM dans la matrice de phéromone et
sur une information d’heuristique qui guide les fourmis dans leurs choix de VM pour par-
venir à une meilleure utilisation générale des PMs. Ainsi, plus la quantité de phéromone
et l’information d’heuristique associées à une paire VM-PM sont élevées, plus la probabil-
ité que cette paire soit choisie est forte. À la fin de chaque cycle, les solutions locales sont
comparées et celle qui nécessite le nombre le plus faible de PMs est conservée comme la
nouvelle solution globalement optimale. Ensuite, la matrice de phéromone est mise à jour
pour simuler l’évaporation de la phéromone et renforcer les paires VM-PM qui appartien-
nent à la meilleure solution calculée jusqu’à présent. La nature stochastique de l’algorithme
lui permet d’explorer un grand nombre de solutions potentielles. En outre, l’algorithme est
aisément parallélisable.

Nous avons évalué l’approche reposant sur l’ACO en la comparant à l’algorithme FFD et
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à la solution optimale calculée à l’aide de la solution d’optimisation IBM ILOG CPLEX [33].
Les résultats de simulation démontrent que l’ACO surpasse l’algorithme FFD car il permet
d’obtenir des économies d’énergie plus importantes grâce à une meilleure utilisation des
PMs et nécessite moins de PMs. En outre, il calcule des solutions proches de l’optimal. Ces
travaux sont publiés dans [133].

A.3.3 Regroupement de VMs via l’optimisation par colonie de fourmis

La contribution précédente a montré que même si l’ACO calcule des solutions proches
de la solution optimale, l’algorithme conçu ne passe pas bien à l’échelle en termes de temps
de calcul avec un nombre élevé de PMs et de VMs. En outre, alors que la résolution du prob-
lème de placement de VMs est importante pour favoriser la création de périodes d’inactivité
lors de la soumission de VMs, des algorithmes de regroupement de VMs sont nécessaires
pour permettre en continu le regroupement sur le plus petit nombre possible de PMs des
VMs en cours d’exécution. C’est particulièrement important pour éviter la fragmentation
des ressources et augmenter encore davantage l’utilisation des ressources du centre de don-
nées. Pour traiter ces deux aspects, cette thèse apporte les deux contributions suivantes:
(1) nous avons adapté notre algorithme de placement de VMs fondé sur l’ACO proposé
précédemment afin de permettre le regroupement de VMs en continu ; (2) pour résoudre les
problèmes de passage à l’échelle, nous avons proposé un système de regroupement de VMs
totalement décentralisé reposant sur un réseau pair-à-pair non-structuré de PMs.

L’idée essentielle au cœur du système proposé pour permettre à la fois le passage à
l’échelle et une utilisation élevée des ressources dans les centres de données consiste à appli-
quer le regroupement de VMs seulement dans des groupes de PMs constitués aléatoirement.
Etant donnée la complexité des algorithmes de regroupement dynamique de VMs, limiter
son application à des petits groupes de PMs améliore considérablement le passage à l’échelle
du système. En outre, le caractère aléatoire de la formation des groupes de PMs facilite la
convergence du système vers un compactage global très proche de celui qui serait obtenu à
l’aide d’un système centralisé exploitant des algorithmes de regroupement de VMs central-
isés traditionnels. L’efficacité du compactage est définie comme le rapport entre le nombre
de PMs libérés et le nombre total de PMs. Pour permettre la construction de groupes de PMs
aléatoirement, nous nous appuyons sur le protocole Cyclon [291]. Cyclon est un protocole
épidémique qui permet de construire périodiquement des réseaux logiques P2P aléatoires
où chaque PM n’a qu’une vue partielle du système, appelée voisinage. Cette propriété per-
met au système de passer à l’échelle avec le nombre de PMs car il ne repose pas sur un
serveur central.

Nous avons mis en œuvre un émulateur de notre système distribué et nous l’avons
validé à l’aide de deux algorithmes de regroupement de VMs bien connus, Sercon [224]
et V-MAN [216], et l’algorithme de regroupement de VMs reposant sur l’ACO. Les nom-
breuses expérimentations menées sur la plate-forme d’expérimentation Grid’5000 montrent
qu’une fois intégrés dans notre système de regroupement de VMs totalement décentralisé,
les algorithmes traditionnels de regroupement de VMs parviennent à une efficacité de com-
pactage global très proche d’un système centralisé. De plus, le système passe à l’échelle avec
le nombre de PMs et de VMs. Enfin, l’algorithme de regroupement de VMs fondé sur l’ACO
se comporte mieux que l’algorithme Sercon pour ce qui concerne le nombre de PMs libérés
et exige moins de migrations de VMs que l’algorithme V-MAN. Ces résultats ont été publiés



158 Chapter A – Résumé en français

dans [132].

A.4 Aperçu de la thèse

Cette thèse est organisée de la manière suivante:
• Le chapitre 2 présente l’état de l’art. Notamment, il présente tout d’abord le contexte

de cette thèse en introduisant brièvement la virtualisation des serveurs, l’informatique
autonome et le cloud computing. Ensuite, les approches existantes de gestion de
l’énergie dans les grappes de calculateurs sont étudiées. Comprendre les approches
proposées pour économiser l’énergie est indispensable pour les comparer à nos con-
tributions sur la gestion de l’énergie.

• Le chapitre 3 décrit notre première contribution : Snooze, un système de gestion de
clouds IaaS autonome et économique en terme de consommation d’énergie, reposant
sur une architecture hiérarchique auto-configurable et auto-réparante. Nous donnons
tout d’abord un aperçu de l’architecture du système. Ensuite, nous expliquons de
manière détaillée d’une part la gestion de la hiérarchie des services système et d’autre
part la gestion des VMs pour économiser l’énergie dans le centre de données. Ceci im-
plique la description des mécanismes d’auto-configuration et d’auto-réparation ainsi
que des algorithmes de gestion de VMs pour l’efficacité énergétique. Enfin, les aspects
importants de la mise en œuvre sont présentés et les résultats de l’évaluation expéri-
mentale sont analysés.

• Le chapitre 4 est consacré à la gestion des VMs par une approche fondée sur
l’optimisation par colonie de fourmis. Tout d’abord nous présentons une introduction
à l’ACO. Ensuite, nous décrivons l’algorithme de placement de VMs fondé sur l’ACO
et présentons les résultats d’évaluation. Ensuite, l’algorithme de placement de VMs est
adapté pour permettre le regroupement de VMs. En outre, pour améliorer le passage à
l’échelle, nous proposons un système de regroupement de VMs totalement décentral-
isé reposant sur un réseau P2P non-structuré de PMs. Enfin, les résultats d’évaluation
de l’algorithme de regroupement de VMs et du système de regroupement de VMs
totalement décentralisé sont présentés.

• Le chapitre 5 conclut ce manuscrit en résumant nos contributions et en présentant
quelques directions de recherche.
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