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2.1.2 Transfer of the Poincaré contraction . . . . . . . . . . . . . . . . . . . . . 11

2.2 Contraction of the Koszul resolution . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 From s to h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Removing the finiteness condition . . . . . . . . . . . . . . . . . . . . . . 15

3 Inverting the Cartan-Eilenberg isomorphism 17
3.1 Construction of the quasi-inverse in degrees 1 and 2 . . . . . . . . . . . . . . . . 17

3.1.1 Computation of GB
∗ in low degree . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 G∗ and G∗ in low degrees . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Example: G2 in the abelian case . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Interpretation as an algebraic integration process . . . . . . . . . . . . . . . . . 24
3.2.1 Integration of Lie algebra cocycles in group cocycles . . . . . . . . . . . . 25
3.2.2 Algebraic version of the integration map . . . . . . . . . . . . . . . . . . 28

Bibliography 33

Index 35

iii





Introduction

This text is an abridged english version (no proofs) of the my original thesis manuscript which
is written in french.

Let g be a Lie algebra on a commutative ring K, Ug it’s universal enveloping algebra, and
consider a Ug-bimoduleM to which a right “adjoint” g-moduleMad is canonically associated. It
is well known, since the work of Cartan and Eilenberg, that there exists an antisymmetrisation
map

F∗ : C∗(g;M
ad) → CH∗(Ug;M)

m⊗ g1 ∧ · · · ∧ gn 7→
∑

σ∈Σn

sgn(σ)m⊗ gσ(1) ⊗ · · · ⊗ gσ(n) (0.0.1)

from the Chevalley-Eilenberg complex of g with coefficients in Mad to the Hochschild complex
of Ug with coefficients in M , that induces an isomorphism

H∗(F∗) : H∗(g;M
ad) ∼= HH∗(Ug;M) (0.0.2)

between the Lie algebra homology of g and the Hochschild homology of its universal enveloping
algebra, denoted by HH∗(Ug;M). An analogous statement stands in cohomology. The goal of
this manuscript is to answer the following question :

Question 0.0.0.1. Is there a quasi-inverse map

G∗ : CH∗(Ug;M) → C∗(g;M
ad)

, defined at the chains level, such that the induced map HH∗(Ug;M) → H∗(g;M
ad) provides the

inverse of the preceeding antisymmetrisation map H∗(F∗) ?
In case the answer is positive, can such a quasi-inverse be given by an explicit formula, as
Cartan and Eilenberg did for F∗ ?

In the case when K is a field, the existence of such a G∗ is clear since one can choose adapted
bases of the kernel and image of the differentials. However, it is not obvious whether G∗ can
be defined by an intrinsic and natural formula that doesn’t rely on choices of bases.

For a finite dimensionnal abelian Lie algebra g, Ug can be identified (as an algebra) with
the symmetric algebra Sg and the isomorphism

H∗(F ) : H∗(g;Sg) = Sg⊗ Λng → HH∗(Sg;Sg)

v
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can be seen as a polynomial version of the Hochschild-Kostant-Rosenberg theorem ([Lod98],
[Hal01]) which identifies Kähler forms of a smooth commutative algebra with its Hochschild
homology.

Moreover, Hochschild homology admits an interpretation in terms of derived functor, and
the quasi-isomorphism (0.0.1) comes from the choice of two different resolutions to compute
it: the bar-resolution and the Koszul resolution. In [Con85], A. Connes shows how to build a
Koszul-type resolution CK∗(A) of the A-bimodule A, when A := C∞(V ;C) is the algebra of
complex valued functions on a compact smooth manifold V . CKn(A) is defined as the space
of smooth sections of the pullback of the complexification of the n-th exterior power of the
cotangent bundle of V through the second projection pr2 : V × V → V i.e.

CKn(A) := Γ∞(V × V ;En)

with En := pr∗2(Λ
nT ∗CV ). The differential dK : CKn(A) → CKn−1(A), which has degree −1, is

the inner product ιX by a Euler vector field (vanishing on the diagonal) X : V × V → pr∗2TCV
defined thanks to the choice of a connection on V . To prove the contractibility of the complex
(CK∗(A), d

K) the author exhibits a contracting homotopy s : CK∗(A) → CK∗+1(A) which is
defined by a formula similar to the one defining the usual contraction of the so called Poincaré
lemma, and uses this homotopy to define an isomorphism

F ∗ : HH∗c (A;A
∨)
∼=
→ D∗(V )

between the continuous Hochschild cohomology of A with values in its dual A∨ computed with
the usual continuous Hochschild complex, and D∗(V ), the graded vector space of De Rham
currents on V . This isomorphism can be seen as a continuous cohomological version of the
classical antisymmetrization isomorphism of the H-K-R theorem.

Notice that when V is a Lie group, there exists a canonical connection on V given by left
translations. The case V = (Rm,+) has been treated in [BGH+05] where M. Bordemann, G.
Ginot, G. Halbout, H-C Herbig et S. Waldmann apply Connes’ construction to get a contraction
hK of the continuous Koszul resolution CKc

∗(C
∞(Rm)) := C∞(R2m)⊗ Λ∗(Rm)∨ from wich they

deduce a morphism of resolutions

GB
∗ : (Bc

∗(C
∞(Rm)), dB) → (CKc

∗(C
∞(Rm)), dK)

over the identity of C∞(Rm). Here, (Bc
∗(C
∞(Rm)), dB) denotes the usual continuous bar resolu-

tion of the topological algebra C∞(Rm). More precisely, GB
∗ is given in degree n by

GB
n (φ)(a, b) =

m∑

i1,··· ,in=1

ei1∧· · ·∧ein

∫ 1

0

dt1

∫ t1

0

dt2· · ·

∫ tn−1

0

dtn
∂nφ

∂x1
i1
· · · ∂xn

in

(a, t1a+(1−t1)b, · · · , tna+(1−tn)b, b)

for every n-chain

φ : (Rm)n+2 → R

(a, x1, · · · , xn, b) 7→ φ(a, x1, · · · , xn, b)
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in Bc
n(C

∞(Rm)) := C∞(R×(n+2)m) and for all a and b in Rm. In the above formula, e1, ..., em
stands for the dual base associated to the canonical base of Rm. In fact, GB

∗ is the unique
morphism of C∞(Rm)-bimodules satifying the defining condition

GB
n+1(1⊗ f1 ⊗ · · · fn ⊗ 1) = hK ◦Gn ◦ d

B(1⊗ f1 ⊗ · · · fn ⊗ 1) (0.0.3)

for all f1, ..., fn in C∞(Rm), once GB
0 is fixed. The authors then show that the application

induced in homology by GB
∗ after tensorization with the identity of C∞(Rm) over C∞(R2m) gives

an inverse for the homological continuous H-K-R antisymmetrization map, realizing the complex
of differential forms on Rm with zero differential as a deformation retract of the continuous
Hochschild chain complex of C∞(Rm) with coefficients in itself.

In the more general case 0.0.0.1 we are interested in, the map G∗ we are looking for should
also come from a morphism of resolutions GB

∗ between the bar and Koszul resolutions, no longer
of the algebra of functions on some Lie group V , but of the universal envelopping algebra Ug.
Recall that when g is a finite dimensionnal Lie algebra over K = R, Ug can be identified with the
bialgebra of distributions supported at the neutral element of any Lie group whose associated
Lie algebra is g (see for example[Ser06]). Thus, to apply the method of [BGH+05]and use an
analogue of formula (0.0.3) to define GB

∗ , we need a contracting homotopy hK which may be
obtained by dualizing and localizing at the neutral element the geometric interpretation of the
Koszul resolution given by Connes.

Let’s now give a brief description of each of the three chapters of this manuscript.

Chapter 1

The chapter begins with the definitions of the various chain complexes involved in 0.0.0.1,
followed by a sketch of the proof given in [CE56] that the antisymmetrization map (0.0.2)
is an isomorphism. The first step consists in the comparison of projective resolutions of the
ground ring K in the category of Ug-modules and projective resolutions of Ug in the category
of Ug-bimodules, and is given by the first point of theorem 1.1.2.2 which is itsel a consequence
of a general principle called “change of ring” by the authors. Then, one has to see that
antisymmetrisation map F∗ : C∗(g,M

ad) → CH∗(Ug;M) given by (0.0.1) indeed comes from
a morphism of resolutions FK : CK(Ug) → B∗(Ug), from the Koszul resolution CK∗(Ug) of
Ug obtained by tensoring the Chevalley-Eilenberg resolution of K by Uge := Ug ⊗ Ugop over
Ug, to the usual bar resolution of Ug, denoted by B∗(Ug). Finally, the fundamental lemma of
the calculus of derived functors 1.2.1.1 ensures not only that the antisymmetrisation map F∗
is a quasi-isomorphism, but also that any morphism of resolutions GB

∗ : B∗(Ug) → CK∗(Ug)
will induce a quasi-inverse of F∗. In the last section, we explain how to apply the method of
[BGH+05] described above to build such a GB

∗ from a contraction h of the Koszul resolution.
Note that the same method has been used by Suslin and Wodzicki in
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Chapter 2

This chapter is devoted to the construction of a contraction h of the Koszul resolution. First, we
produce a geometric interpretation of C∗(g), the Chevalley-Eilenberg resolution of the ground
field K = R seen as a trivial g module, when g is a finite dimensionnal Lie algebra. C∗(g)
appears as a subcomplex of the complex of currents supported at the neutral element of the
connected and simply connected Lie group G associated to g by Lie’s third theorem. Then,
we prove that the dual s∨ of the contraction given by the Poincaré lemma existing on the De
Rham complex of germs of differential forms at the neutral element of G restricts to a con-
traction s : C∗(g) → C∗+1(g) of the Chevalley-Eilenberg resolution. These to facts correspond
respectively to propositions 2.1.1.8 and 2.1.2.13. Moreover, proposition 2.1.2.13 gives an ex-
plicit formula (2.1.5) for s, involving the canonical contraction φt of Ug defined thanks to the
Hopf algebra structure of Ug. Section 2.2 is divided in two subsections : the first explains
how to transfer the contracting homotopy s to a contraction h : CK∗(Ug) → CK∗+1(Ug) of the
Koszul resolution CK∗(Ug), and the second shows that formula (2.2.3) still makes sense for an
arbitrary dimensionnal Lie algebra, providing an explicit contraction of C!K∗(Ug) without any
assumption on dimension.

Chapter 3

This last chapter is divided in two distinct but linked sections. In the first one, we give explicit
computations, in degree 1 and 2, of the morphism of resolutions GB

∗ : B∗(Ug) → CK∗(Ug)
deduced from the contraction h obtained in chapter 2 by applying the strategy developped in
1.2.3, i.e. formulae (1.2.5) and (0.0.3).

The second section begins with the study of a commutative diagram of the form

C∗loc(G;R)

T ′

��

T

''NNNNNNNNNNN

C∗(g;R)
G∗

//

I
77ppppppppppp

CH∗(Ug;R)
F ∗

// C∗(g;R)

(0.0.4)

where, again, G is a Lie group with tangent space at its neutral element e equal to g, Cloc(G;R)
is the complex of group cochains on G which are smooth in a neighbourhood of e, and
T : C∗loc(G;R) → C∗(g;R) (resp. I : C∗(g;R) → C∗loc(G;R)) is the morphism of cochain
complexes that can be seen as a “derivation” (resp. integration) transformation of locally
smooth global group cochains (resp. Lie algebra cochains of g) in Lie algebra cochains (resp.
locally smooth group cochains). Theses maps have been studied in [Nee04] in the framework
of infinite dimensionnal Lie groups, for n = 2. The morphism G∗ : C∗(g;R) → CH∗(Ug;R)
induced by GB

∗ , and the antisymmetrisation map F ∗ then appear, via T ′, as algebraic analogues
of geometric maps, respectively I and T . This allows us, thanks to the cubical integration of
Lie cochains formula given in 3.2.1.5, to guess an explicit and closed formula for the morphisms
GB
∗ and G∗ : that’s the content of proposition 3.2.1.8. The end of the chapter is an attempt

to mimick the construction of diagram (0.0.4) in entirely algebraic terms. The Lie group G is
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here replaced by Ĝ, the Malcev group consisting of grouplike elements of the I-adic completion
of Ug with respect to the augmentation ideal I. The continuity and smoothness conditions
defined in 3.2.2, although very restricive, are automatically satisfied when the Lie algebra g is
nilpotent.

The author wants to thank M. Bordemann for his numerous enlightening advices, especially
concerning the use of the eulerian idempotent in the construction of the quasi-inverse G∗.
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Chapter 1

Precise statement of the problem and
strategy of resolution

1.1 The antisymmetrisation map of Cartan-Eilenberg

This section start with a quick recollection on Lie algebra and associative algebra (co)homology
theories, and then moves to a sketch of the proof of the bijectivity of the antisymmetrization
map following [CE56].

1.1.1 Hochschild and Chevalley-Eilenberg’s complexes

No details nor proofs are given here : the reader may found more information on the suject in
the litterature, for instance in [Wei95], [Lod98], [CE56] or [Lan75]. The cohomological versions
of the differents complex appearing here are defined in appendix B.

Hochschild homology

In all this subsection, A is anK-projective associative and unital algebra over some commutative
ring K, and M is an A-bimodule. The notation Aop stands for the opposite algebra of A and
Ae := A⊗Aop denotes its envelopping algebra so that the category of A bimodules is identified
with the one of left Ae-modules.

Definition 1.1.1.1. The homological Hochschild complex of A with coefficients in M , is
the graded K-module CH∗(A;M) defined by

CHn(A;M) := M ⊗ A⊗n

for all integer n, with differential dH of degree −1, defined on n chains by

dH(m⊗ a1 ⊗ · · · an) :=ma1 ⊗ a2 ⊗ · · · an +
n−1∑

i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1

1
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for all m in M and a1, ..., an in A. The Hochschild homology HH∗(A;M) of A with coefficients
in M is the homolgy of this complex i.e.

HH∗(A;M) := H∗(CH∗(A;M), dH)

In the same fashion (see Appendix B or [Lod98]), on can define the cohomological Hochschild
complex of A with values in M , denoted by CH∗(A;M), with differential dH , whose homology
HH∗(A;M) is called Hochschild cohomology of A with values in M .

Hochschild homology is a derived functor and to see why we need to introduce a particular
resolution of the A bimodule A :

Definition 1.1.1.2. The bar-resolution of A is the complex of A-bimodules B∗(A) defined
by

Bn(A) := A⊗n+2

for all integer n, with differential dB defined by

dB(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) :=
n∑

i=0

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ ai+1 ⊗ · · · ⊗ an

for all a0, ..., an+1 in A. The A-bimodule structure on Bn(A) = A⊗n is given by

a(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1)b := (aa0)⊗ a1 ⊗ · · · ⊗ an ⊗ (an+1b)

for all a, b, a0, ..., an+1 in A.

Proposition 1.1.1.3. The bar-resolution of A est is a projective resolution (see [CE56] for
a definition of projective resolution) of the left Ae-module A and the obvious isomorphism of
graded modules

M ⊗Ae B∗(A) ∼= CH∗(A;M)

sends IdM ⊗ dB on dH . Thus

HH∗(A;M) = TorA
e

∗ (A;M)

and similarly

HH∗(A;M) = Ext∗Ae(A;M)

Homology of Lie algebras

In this subsection, g is a Lie algebra over some commutative ring K and N (resp. N’) is left
(resp. right) g-module.

Definition 1.1.1.4. The universal enveloping algebra of g (often abridged in envelop-
ing algebra of g in the following), denoted by Ug, is the quotient of the tensor algebra
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Tg := ⊕n≥0g
⊗n by the idéal I generated by elements of the form g ⊗ g′ − g′ ⊗ g − [g, g′]

when g and g′ run over g, i.e.

Ug := Tg/I , I :=< g ⊗ g′ − g′ ⊗ g − [g, g′] / g, g′ ∈ g >

The product on Ug, denoted by µ, is induced by the concatenation product of Tg, and we will
write xy := µ(x ⊗ y) the product of two elements x and y of Ug. L’unité η : K → Ug provient
de l’inclusion canonique de g⊗0 = K dans Tg.

The augmentation of Ug, is the map ǫ : Ug → K induced by the projection of Tg on its
term K along ⊕n≥1g

⊗n. This algebra morphism makes K into a Ug-module.

The category of left g-modules is canonically isomorphic to the one of left Ug-modules.

Definition 1.1.1.5. The homological Chevalley-Eilenberg complex of g with coefficients
in N is the graded module C∗(g;N) defined by

C∗(g;N) := N ⊗ Λ∗g

for all integer n, with differential dCE defined on n-chains by

dCE(m⊗ g1 ∧ g2 ∧ · · · ∧ gn) :=
n∑

i=1

(−1)i+1m · gi ⊗ g1 ∧ g2 ∧ · · · ∧ ĝi ∧ · · · ∧ gn

+
∑

1≤i<j≤n

(−1)j+1m⊗ g1 ∧ · · · ∧ [gi, gj] ∧ · · · ∧ ĝj · · · ∧ gn ,

for all m in N and for all g1, ... gn in g. Here, Λ∗g stands for the graded commutative
algebra generated by g seen as a graded module concentrated in degree 1, and notation ĝi means
“ommit gi”. The homology of g with coefficients in N , denoted by H∗(g;N), is the graded
K-module

H∗(g;N) := H∗(C∗(g;N), dCE)

The cohomological version will be written H∗(g;N ′) (See appendix B. or [Wei95] for more
details).

When the module M is chosen to be Ug itself for the action given by multiplication, the
Chevalley-Eilenberg C∗(g;Ug) will be denoted by C∗(g) and refered to as the Chevalley-
Eilenberg resolution for the following reason :

Proposition 1.1.1.6. The complex C∗(g) := C∗(g;Ug) is acyclic and its degree 0 homology is
equal to K. Thus, it is a resolution of K in the category of left Ug-modules.

Corollary 1.1.1.7. If g is projective1 over K, then

H∗(g;N) = TorUg∗ (K;N)

et
H∗(g;N ′) = Ext∗Ug(K;N ′)

1K-flat is enough for homology.
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1.1.2 The antisymmetrisation map is a quasi-isomorphism

In this subsection, the Lie algebra g is free over K and M is a Ug-bimodule.

Definition 1.1.2.1. The right g-module adjoint to M is the right g-module Mad whose un-
derlying K-module is M , on which g acts on the right by

m · g := mg − gm

for all Mad and g in g.

We now have two homological invariants associated to the pair (g,M): H∗(g;M
ad) and

HH∗(Ug;M). It turns out that these two graded modules are the same, and this fact is part
of the content of theorem 5.1, chapter XIII, of [CE56]. Let us recall this theorem in a special
form, adapted to our context:

Theorem 1.1.2.2 ([CE56]). Let g be a K Lie algebra, supposed to be free as a K-module.

1. If X∗ is a projective resolution of K as a left Ug-module, then Uge ⊗Ug X∗ is a projective
resolution of Ug as a left Uge-module.

2. As a consequence, the antisymmetrization map F∗ : C∗(g;M
ad) → CH∗(Ug;M) defined in

degree n by

Fn(m⊗ g1 ∧ g2 ∧ · · · ∧ gn) :=
∑

σ∈Σn

sgn(σ)m⊗ gσ(1) ⊗ gσ(2) ⊗ · · · ⊗ gσ(n)

for all m in M and g1, ..., gn in g, is a quasi-isomorphism of chain complexes. .

The proof of this statement given in [CE56] relies on a general principle named “change of
rings” by the authors, which allows the comparison of the derived functors TorA∗ (−;QA) (resp.
Ext∗A(QA;−)) and TorB∗ (−;QB) (resp. Ext∗B(QB;−)), where A and B are two rings linked by
a commutative diagram of the form

A
ǫA // //

E

��

QA

��
B

ǫB // QB

(1.1.1)

Here, QA (resp. QB) is a left A-module (resp. B-module) and ǫA (resp. ǫB) is a morphism
of left A-modules (resp. B-modules). In particular, B is endowed with an A-module structure
via the map E which is supposed to be a ring isomorphism. The next section recalls some
key facts appearing in the proof of 1.1.2.2 and explains why they imply the existence of quasi-
inverse to the antisymmetrization map, and how they can be used to elaborate a strategy for
the construction of an explicit one.
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1.2 Going backward using a contraction

This section begins with a short overview of things that have been developed in great details
by S. Eilenberg and H. Cartan in [CE56]. Here, g is supposed to be free as a K-module.

1.2.1 Derived functors and projective resolutions

In this subsection, A is a ring, M is the category of left A-modules, and A denotes the category
of abelian groups. The computation of derived functors associated to additive functors between
categories of modules (and more generally between abelian categories) relies on the following
well known fondamental lemma:

Lemma 1.2.1.1 (Lemme fondamental.). Let P and Q be two left A-modules, X∗ → P be
a complex of projective left A-modules over P and Y∗ → Q be a (non necessarily projective)
resolution of Q. Then, any A-linear map f : P → Q can be lifted to a morphism of complexes
of A-modules F∗ : X∗ → Y∗ over f : P → Q. Moreover, F∗ is unique up to homotopy.

To any additive and right exact functor T : M → A is associated its n-th left derived
functor LnT which, evaluated on an A-module Q is defined to be ne n-th homology group of
the complex of abelian groups (T (X∗), T (d

X)) image by T of any projective resolution (X∗, d
X)

of Q. The fact that any A-module admits a projective resolution is established in [CE56].
The fact that LnT (Q) is well defined is a consequence of lemma 1.2.1.1: if (X∗, d

X) → Q and
(Y∗, d

Y ) → Q are two projective resolutions of Q, the fundamental lemma asserts the existence
of two lifts FX

∗ : X∗ → Y∗ and GY
∗ : Y∗ → X∗ of the identity map of Q whose composition in

both possible orders as to be homotopic to the identity. This implies that T (FX
∗ ) and T (F Y

∗ )
are quasi-isomorphisms, each one being a quasi-inverse of the other and shows that the value
of LnT on Q doesn’t depend on the choice of a projective resolution of Q.

Definition 1.2.1.2. When the functor T is of the form Q 7→ P⊗AQ, for a given right A-module
P , le n-th derived functor of T evaluated on an A-module Q is denoted by

TorAn (P,Q)

Similarly, if P is a left A-module, the right derived functors of Q 7→ HomA(P,Q) evaluated at
Q are commonly written Ext∗A(P,Q).

1.2.2 Application to the Hochschild/Chevalley-Eilenberg case

The goal of this subsection is to explain why the first part of theorem 1.1.2.2 implies the second
one. Let’s first precise the right Ug-module structure on Uge involved in the statement of 1.1.2.2.

The Hopf algebra structure on Ug

For a complete exposition of the facts developped below, the reader may consult [Kas95].
Appendix A. is a quick recollection of the main properties of Hopf algebras that are used in
this document.
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We have already defined the augmentation morphism ǫ : Ug → K and the product µ :
Ug⊗2 → Ug in section 1.1.1.

Definition 1.2.2.1. The coproduct of Ug is the unique morphism of algebras ∆ : Ug → Ug⊗Ug
satisfying

∆(g) := g ⊗ 1 + 1⊗ g

for all g in g ⊂ Ug. The antipode S : Ug → Ugop is the unique algebra isomorphism satisfying

S(g) = −g

for all g in g. The augmenation of the algebra Uge is the morphism of left Uge-modules ρ :
Uge → Ug defined by ρ(x⊗ y) := µ(x⊗ y) for all x in Ug and y in Ugop.

Notation 1.2.2.2. In the following, iterated coproducts are written using Sweedler’s nota-
tion: the k-times iterated coproduct of an element x of Ug reads

∑

(x)

x(1) ⊗ x(2) ⊗ · · · ⊗ x(k+1) := (∆⊗ Id⊗k−1) ◦ (∆⊗ Id⊗k−3) ◦ · · · ◦ (∆⊗ Id) ◦∆(x) ∈ Ug⊗k+1

In particular,

∆(x) =
∑

(x)

x(1) ⊗ x(2)

Proposition 1.2.2.3. The six-tuple (Ug, µ, η,∆, ǫ, S) is a cocommutative connected Hopf alge-
bra2.

We are now ready to introduce the change of rings morphsim:

Definition 1.2.2.4. The morphism of algebras E : Ug → Uge is defined by

E := (Id⊗ S) ◦∆

The change of resolutions

The commutative square

Ug ǫ //

E
��

K

η

��
Uge

ρ // Ug

(1.2.1)

satisfies technical conditions E.1) et E.2) of the “change of ring” theorem 6.1 of Cartan-Eilenberg
and this implies point 1) of theorem 1.1.2.2. In particular, the complex of Ug-bimodules (Uge⊗Ug

C∗(g), Id⊗ dCE) is a projective resolution of Ug.

2See [Qui69] for a definition of connected.
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Definition-Proposition 1.2.2.5. The projective resolution (Uge ⊗Ug C∗(g), Id ⊗ dCE) is iso-
morphic to the complex of Ug-bimodules (CK∗(Ug), d

K) defined in degree n by

CKn(Ug) := Ug⊗ Λng⊗ Ug

and

dK(x⊗ g1 ∧· · ·∧ gn ⊗ y) :=
n∑

i=1

(−1)i+1(xgi ⊗ g1 ∧· · ·∧ ĝi ∧· · ·∧ gn ⊗ y − x⊗ g1 ∧· · ·∧ ĝi ∧· · ·∧ gn ⊗ giy)

+
∑

1≤i<j≤n

(−1)j+1x⊗ g1 ∧ · · · ∧ [gi, gj] ∧ gi+1 ∧ · · · ∧ ĝj ∧ · · · ∧ gn ⊗ y

for all x, y in Ug and g1, ..., gn in g. This acyclic complex is called the Koszul resolution
of Ug.

Thus, we have a “smaller” complex than the usual one CH∗(Ug;M) to compute the Hochschild
homology of Ug with coefficients in M , which is obtained by tensoring the Koszul resolu-
tion by M over Uge. One easily checks that this smaller complex is itsel isomorphic to
C∗(g;M

ad), the Chevalley-Eilenberg complex of g with coefficients in the adjoint module Mad.
Moreover, we have seen that lemma 1.2.1.1 implies the existence of morphisms of complexes
FK
∗ : CK∗(Ug) → B∗(Ug) et G

B
∗ : B∗(Ug) → CK∗(Ug) lifting the identity map of Ug, and induc-

ing quasi-isomorphisms F∗ : C∗(g;M
ad) → CH∗(Ug;M) and G∗ : CH∗(Ug;M) → C∗(g;M

ad)
inverse of each other at the homology level. In fact, an explicit example of such a FK

∗ is given
by the antisymmetrization map :

Proposition 1.2.2.6. The map FK
∗ : CK∗(Ug) → B∗(Ug) defined on n-chains by

FK
∗ (x⊗ g1 ∧ g2 ∧ · · · ∧ gn ⊗ y) :=

∑

σ∈Σn

sgn(σ)x⊗ gσ(1) ⊗ gσ(2) ⊗ · · · ⊗ gσ(n) ⊗ y

for all x, y in Ug and g1, ..., gn in g is a morphism of complexes of Ug-bimodules over Ug
lifting the identity map of Ug → Ug. In addition, the quasi-isomorphism F∗ : C∗(g;M

ad) →
CH∗(Ug;M) induced by FK

∗ is exactly the antisymmetrization map of theorem 1.1.2.2.

The fact that the antisymmetrization map F∗ of theorem 1.1.2.2 comes from a morphism
of resolutions as two immediate consequences, according to lemma 1.2.1.1 : F∗ is necessarily a
quasi-isomorphism, and any explicit lift GB

∗ : B∗(Ug) → CK∗(Ug) of the identity map of Ug will
induce one of its explicit quasi-inverses. The following subsection explains how to build such a
lift assuming that an explicit contracting homotopy of the Koszul resolution is known.

1.2.3 How to define a quasi-inverse ?

The Lie algebra g is still assumed to be free over K so that the previous considerations apply.
Suppose that a contraction h : CK∗(Ug) → CK∗+1(Ug) is given, that is a degree +1 graded
map satisfying

hdK + dKh = IdCK∗(Ug) (1.2.2)
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Define isomorphisms of chain complexes θ and θ′ by

θ : C∗(g;M
ad)

∼=
→ M ⊗Uge CK∗(Ug)

m⊗ g1 ∧ g2 ∧ · · · ∧ gn 7→ m⊗ 1⊗ g1 ∧ · · · ∧ gn ⊗ 1
(1.2.3)

and
θ′ : CH∗(Ug;M) → M ⊗Uge B∗(Ug)

m⊗ x1 ⊗ · · · ⊗ xn 7→ m⊗ 1⊗ x1 ⊗ · · · ⊗ xn ⊗ 1
(1.2.4)

The following proposition shows how to build morphsim of resolutions GB
∗ : B∗(Ug) →

CK∗(Ug):

Proposition 1.2.3.1. The graded liner map GB
∗ : B∗(Ug) → CK∗(Ug) defined by induction on

the homological degree n by

GB
0 := Id : Ug⊗ Ug → Ug⊗ Ug

and

GB
n (x⊗ x1 ⊗ · · · ⊗ xn ⊗ y) := x

(
hGn−1d

B(1⊗ x1 ⊗ · · · ⊗ xn ⊗ 1
)
y , ∀n > 1 (1.2.5)

for all x, y, x1, ..., xn in Ug, is a morphism of complexes of Ug-bimodules inducing, when
tensored by the identity map of M over Uge and via the identifications θ and θ′ given by (1.2.3)
et (1.2.4), a quasi-isomorphism

G∗ : CH∗(Ug;M) → C∗(g;M
ad)

inverse of F∗ in homology. Similarly, applying the functor HomUge(−,M) to GB
∗ brings a quasi-

inverse to the cohomological antisymmetrization map F ∗ in the cohomological framework:

G∗ : C∗(g;Mad) → CH∗(Ug;M)

It is now clear that all we need to define an explicit quasi-inverse to the antisymmetrization
map is an explicit contracting homotopy h of the Koszul resolution of Ug. The next chapter is
devoted to the construction of such an h.



Chapter 2

A contracting homotopy for the Koszul
complex

In this chapter, we restrict to the case K = R for which the existence of a quasi-inverse G∗ of
the antisymmetrization map F∗ is garanted by the fact that R is a field. However, the second
part of question 0.0.0.1 is still non trivial.

2.1 Contraction of the Chevalley-Eilenberg resolution

In the whole section, g is a finite dimensionnal Lie algebra over R with m := dimg. G is a
Lie group with neutral element e, product µG : G × G → G, and is tangent space TeG is
supposed equal to g. Such a Lie group exists by Lie’s third theorem. The diagonal G is the
map ∆G : G → G×G that sends every element z of G to (z, z) in G×G.

The contracting homotopy of the Koszul resolution h we are looking for will be built from
a contracting homotopy s of the Chevalley-Eilenberg resolution C∗(g), and to define this last,
we need to understand it geometrically.

2.1.1 Geometric interpretation of C∗(g)

It is well known (see [Lod98], [FOT08] and [Nee04] for arbitrary coefficients) that the coho-
mological Chevalley-Eilenberg complex with trivial coefficients C∗(g;R) is isomorphic to the
De Rhamc omplex of left invariant differential forms on the Lie groupG. To give an analogous
interpretation of the Chevalley-Eilenberg resolution C∗(g), one may observe that Ug can be
thought of as the continuous dual of the space of germs of functions at e on G, that is as the
dual of germs 0-differential forms on G. Let’s get this more precise.

Punctual distributions and differential operators

The universal enveloping algebra Ug is a Hopf algebra that admits at least two geometric
interpretations, the first in terms of punctual distributions on G supported at the neutral
element e, the second in terms of left invariant differential operators on G. Denote by C∞e (G)

9
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the algebra of germs of functions at e on G obtained by quotienting the algebra of real valued
smooth functions on G by the equivalence relation for which two function are said equivalent
when their restrictions to some open set of G containing e are equal. C∞e (G) has a unique
maximal ideal which consists of all the functions vanishing at e. The diffeomorphism of G
corresponding to left multiplication by some fixed element z will be written Lz : G → G.

Definition 2.1.1.1. A punctual distribution at e on G is a linear form D on C∞e (G),
continuous for the m-adic topology. This means that there exists an integer r such that D is
zero on mr. The set of puntctual distributions at e, temporarily denoted by U , is a bialgebra
with product · given by the convolution of distributions:

D ·D′(f̄) = D ⊗D′(f ◦ µG) := D(z 7→ D′(f ◦ Lz))

for all germ f̄ at e, and for all distributions D and D′. The coproduct δ : U → U ⊗ U is
defined by

δ(D)(f̄) = D(f ◦∆G)

for all germ f at (e, e) on the group G×G and for all punctual distributrion D on G. Note that
in the preceeding formula, U ⊗ U has been identified with the algebra of punctual distributions
at (e, e) on G×G.

Proposition 2.1.1.2. The bialgebras Ug and U are isomorphic.

Definition 2.1.1.3. Let g be a vector in g. Le left invariant vector field generated by
g, denoted by Xg, is the vector field Xg : G → TG defined by

Xg(a) := TeLa(g)

for all a in G.
Let U ′ be the unital subalgebra of EndR(C

∞(G)) (whose product is given by the composition
of linear endomorphisms of C∞(G), the vector space of real valued smooth funtions on G)
generated by left invariant vector fields, that is vector fields of the form Xg for some g in g.

A differential operator is sum of functions and of compositions of vector fields. Thus U ′

is the algebra of left invariant differential operators on G (scalars correspond to left invariant,
i.e. constant, functions on G)

Remark 2.1.1.4. See for example [God04] for a more precise definition of differential opera-
tors.

Proposition 2.1.1.5. The map Ug → U ′ assigning to each monomial g1g2 · · · gn in Ug the left
invariant vector field Xg1 ◦Xg2 ◦ · · · ◦Xgn is an isomorphism of algebras.

The following technical lemma is a bridge betwenn the two geometric interpretations of the
product of Ug :

Lemma 2.1.1.6. Let x be an element of Ug, g an element of g and f a germ of function at e
on G. Then, by propsition 2.1.1.2:

x(Xgf) = xg(f)
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Inclusion dans le complexe des courants

Denote by Ωn
e (G) the vector space of germs of n-differential forms at e on G.

Definition 2.1.1.7. A n-current supported at e is a linear form on Ωn
e (G). The com-

plex of currents (supported at e) on G is the graded vector space Λ∗eG := Ω∗e(G)∨ :=
HomR(Ω

∗
e(G),R) endowed with the differential d∨DR, dual of the usual De Rham differential on

forms.

The Chevalley-Eilenberg resolution C∗(g) can be seen as a subomplex of Λ∗eG in the following
manner: Let x⊗ g1 ∧ · · · ∧ gn be an elementary tensor in Ug⊗ Λng. Define

R(x⊗ g1 ∧ · · · ∧ gn)(ω̄) := x (z 7→ ωz(Xg1(z), · · ·Xgn(z)))

for all germ of n-form ω̄.

Proposition 2.1.1.8. The map

R : C∗(g) → Λ∗(G)
x⊗ g1 ∧ · · · ∧ gn 7→

(
ω̄ 7→ R(x⊗ g1 ∧ · · · ∧ gn)(w)

)

is an injective morphism of chain complexes.

Remark 2.1.1.9. [D. Calaque]
Recall that m is the maximal ideal of C∞e (G) consisting of germs of functions vanishing at

e.
Since Ω∗e(G) is a complex of left C∞e (G)-modules, the m-adic topology on C∞e (G) induces a

m-adic topology on each Ω∗e(G) by declaring that the family of submodules (mnΩ∗e(G))n≥0 forms
a basis of neighbourhoods of 0. The map R identifies the Chevalley-Eilenberg resolution with
the subcomplex of continuous punctual currents on G that is the subcomplex of linear forms
on Ω∗e(G) that are continuous for the m-adic topology.

2.1.2 Transfer of the Poincaré contraction

In this subsection, we show that the contracting homotopy of Ω∗e(G) given by the Poincaré
lemma induces, by dualization and restriction, a contracting homotopy of the Chevalley-
Eilenberg resolution C∗(g) that can be rewritten using only the Hopf algebra structure on
Ug.

Exactness of Λ∗eG

The complex of germs of differential forms at a point p of a smooth manifold M is always exact:
this is the so called “Poincaré lemma”.

Lemma 2.1.2.1. Let M be a smooth manifold and U be an open subset of M . Suppose that U
can be contracted to on of its points p, which means that there exists a smooth homotopy (fixing
p) ϕ : [0, 1] × U → U between the identity map on U and the constant map which sends every
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element of U to p. For all n-differential form ω defined on an open subset V of G containing
U , define the (n− 1)-form sω on U by

sω =

∫ 1

0

dt ι ∂
∂t
ϕ∗ω

where ιX stands for the inner product with a vector field X. Then, the degree −1 map

s : Ω∗p(M) → Ω∗p(M)
ω̄ 7→ sω

(2.1.1)

is a contracting homotopy of the complex Ω∗p(M), i.e.

sdDR + dDRs = IdΩ∗

p(M)

Since any point of a smooth manifold admits a contractible neighbourhood we have the
following corollary:

Corollary 2.1.2.2. For all point p of a smooth manifold M , the complex Ω∗p(M) is contractible.
A contracting homotopy is given by the map s of lemma 2.1.2.1. Dually, the homotopy s induces
a contracting homotopy s∨ of the complex of punctual currents Λ∗eG.

When M = G, a special contraction is given by the exponential map. Let V be an open
subset of g containing 0 on which the exponential map exp : V → U is a diffeomorphism on its
image U := exp(V ). Denote by ln : U → V its inverse.

Definition 2.1.2.3. The canonical contraction associated to G is the smooth map ϕ :
[0, 1]× U → U defined by

ϕ(t, a) := exp(t lna)

for all t in [0, 1] and a in U .

An algebraic contracting homotopy for C∗(g)

To be able to get an algebraic expression of the contracting homotopy induced on C∗(g) by
s∨, we need to extend the dictionary between geometry and algebra outlined in the previous
section.

Definition 2.1.2.4. Let f : V → W be a smooth map between two open subsets V and W of two
smooth manifolds M and N . If p is a given point in V , the linear map f∗ : Cp(M)∨ → Cf(p)(N)∨

induced by f at p is defined by
f∗D(h̄) := D(h ◦ f)

for all linear form D on C∞p (M) and for all germ of function h̄ in Cf(p)(N). In the case when
M = N = G and p = e = f(e), f∗ restricts to an endomorphism of the coalgebra Ug, still
denoted by f∗.

Another feature we’ll need in the following is the notion of convolution of linear endomor-
phisms of Ug:
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Definition 2.1.2.5. Let f and g be two R-linear endomorphisms of Ug. Their convolution
prodct is the linear endomorphism f ⋆ g defined by

f ⋆ g := µ(f ⊗ g)∆

Clearly, (EndR(Ug),+, ⋆) is an associative algebra with unit given by ηǫ. The canonical pro-
jection of Ug is the linear map pr : Ug → Ug defined by

pr :=
∑

k≥1

(−1)k+1

k
(Id− ηǫ)⋆k

Proposition 2.1.2.6. The canonical projection takes its values in g ⊂ Ug and satisfies the
following identities

pr⋆p ◦ pr⋆q =

{
pr⋆p si p = q

0 sinon
(2.1.2)

for all integers p and q, and

pr|g = Idg

Remark 2.1.2.7. When p runs over all integers, the pr⋆p’s form a family of orthogonal idem-
potents named eulerian idempotents in [Lod98] and [Reu93].

Proposition 2.1.2.8. Let t be a real number in [−1, 1]

1. The endomorphism of coalgebra (ϕt)∗ : Ug → Ug induced by the differential map

ϕt : U → U
a 7→ ϕ(t, a)

where ϕ is the canonical contraction defined in 2.1.2.3, is equal to the endomorphism of
coalgebra φt defined by

φt =
∑

n≥0

tn

n!
pr⋆n

2. For all s in [−1, 1],

φs ◦ φt = φst

In particular, the antipode S = φ−1 satisfies

S ◦ φt = φ−t

3. For all s in [−1, 1],

φt ⋆ φs = φs+t
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The proof of the preceeding proposition is based on the two following lemma which give the
translations of ln : U → V and exp : V → U in the algebraic framework. Recall that when
one forgets the Lie bracket on g, one gets an abelian Lie algebra, still denoted by g, which is
the tangent space at 0 of the Lie group (g,+)., and whose universal envelopping algebra is the
symmetric algebra Sg.

Lemma 2.1.2.9. The isomorphism of coalgebra ln∗ : Ug → Sg induced by the logarithm is
given by

ln∗ =
∑

k≥0

1

k!
pr⋆k (2.1.3)

where the convolution ⋆ is taken in HomR(Ug, Sg).

Lemma 2.1.2.10. The isomorphism of coalgebras exp∗ : Sg → Ug induced by the exponential
map V ⊂ g → U ⊂ G is the symmetrization map of Poincaré-Birkhoff-Witt β : Sg → Ug : its
value on every monomial g1g2 · · · gp of lengh p is given by

exp∗(g1g2 · · · gp) =
∑

σ∈Σp

gσ(1)gσ(2) · · · gσ(p) =: β(g1g2 · · · gp) (2.1.4)

where Σp stands for the group of permutations of the set {1, 2, · · · , p}.

Definition 2.1.2.11. Let t be a real number. At : Ug
⊗2 → Ug is the bilinear map defined by

At(x, y) := At(x⊗ y) :=
∑

(x)

φ−t(x
(1))φt(x

(2)y)

for all x and y in Ug.

Proposition 2.1.2.12. For all x in Ug, g in g, and for all real number t:

At(x, g) ∈ g

Theorem 2.1.2.13. Let g be a finite dimensionnal Lie algebra over R and G be a Lie group with
Lie algebra g. The contracting homotopy s∨ of Λ∗eG defined in 2.1.2.2 thanks to te canonical
contraction ϕ of G restricts, via the injection R : C∗(g)Λ

∗
eG defined at the begining of the

chapter, to a contracting homotopy s of the Chevalley-Eilenberg resolution. Moreover, s is
given on p-chains by

s(x⊗ g1∧ g2∧ · · ·∧ gp) =
∑

(x)

∫ 1

0

dtφt(x
(1))⊗pr(x(2))∧At(x

(3), g1)∧ · · ·∧At(x
(p+2), gp) (2.1.5)

for all x in Ug and g1, ..., gp in g.
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2.2 Contraction of the Koszul resolution

The first part of this section shows how to use the contraction s of the Chevalley-Eilenberg
resolution defined in (2.1.5) to obtain another contracting homotopy h, but this time for the
Koszul resolution CK(Ug. The second part deals with the suppression of the finiteness hypoth-
esis on the dimension g that has been assumed until now, arguing that formula (2.1.5) still
makes sens in arbitrary dimension

2.2.1 From s to h

Notations are the same as those of section 1.2.2. In particular, the map E : Ug → Uge defined by
E := (Id⊗S)∆ makes the diagram (1.2.1) commute, and fully determines the right Ug-module
on Uge. Moreover, the map

θ′′ : CK∗(Ug) → Uge ⊗Ug C∗(g)
x⊗ g1 ∧ · · · ∧ gn ⊗ y 7→ x⊗ y ⊗ 1⊗ g1 ∧ · · · ∧ gn

(2.2.1)

is an isomorphism of complexes of Ug-bimodules, and it could seem natural to define the
contracting homotopy h we are looking for by transporting the map IdUge ⊗ s to CK∗(Ug) via
θ′′. Unfortunately, IdUge ⊗ s is not well defined on Uge ⊗Ug C∗(g) since s is not Ug-linear. To
fix this, we can proceed in the same way that we did in 1.2.3 to force the Uge-linearity of the
map GB

∗ . Define a degree +1 linear map h̃ : Uge ⊗Ug C∗(g) → Uge ⊗Ug C∗(g) by

h̃(x⊗ y ⊗ z ⊗ g1 ∧ · · · ∧ gn) :=
∑

(x)

1⊗ x(1)y ⊗ s(x(2)z ⊗ g1 ∧ · · · ∧ gn) (2.2.2)

for all x, y, z, w in Ug and g1, ..., gn in g.

Proposition 2.2.1.1. The map h̃ is a well defined contracting homotopy of the complex Uge⊗Ug

C∗(g).

Corollary 2.2.1.2. Let g be a finite dimensionnal Lie algebra over R. The degree +1 graded
linear map h : CK∗(Ug) → CK∗(Ug) defined in degree n by

h(x⊗g1∧· · ·∧gn⊗y) :=

∫ 1

0

dtφt(x
(1))⊗prx(2)∧At(x

(3), g1)∧· · ·∧At(x
(n+2), gn)⊗φ1−t(x

(n+3))y

(2.2.3)
for all x, y in Ug and g1, ..., gn in g is a contracting homotpoy of the Koszul resolution C∗(g).

2.2.2 Removing the finiteness condition

In all the above discussion, the dimension Lie algebra is always assumed to be finite in order use
the geometric interpretation of C∗(g), that is its inclusion R in the complex of currents Λ∗eG,
to induce a contracting homotopy s on it by applying the Poincaré lemma to the canonical
contraction ϕ. Note that we never had to show that s satisfies sd + ds = Id − ηǫ since the
dual identity was given by the usual Poincaré lemma. However, formula (2.1.5) makes sense in
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arbitrary dimension and a natural question one could ask is whether it still defines a contracting
homotopy of C∗(g). The answer is given by the following theorem: 2.1.2.13 :

Theorem 2.2.2.1. Let g be a Lie algebra over R. A contracting homotopy s : C∗(g) → C∗(g)
of the Chevalley-Eilenberg resolution C∗(g) is given by

s(x⊗ g1 ∧ · · · ∧ gn) :=
∑

(x)

∫ 1

0

dt φt(x
(1))⊗ pr x(2) ∧ At(x

(3), g1) ∧ · · · ∧ At(x
(n+2), gn)

for all x in Ug and g1, ..., gn in g.

which as corollary

Corollary 2.2.2.2. Let g be a Lie algbra over R. Formula (2.2.3) defines a contracting homo-
topy h of the Koszul resolutionCK∗(Ug).

Remark 2.2.2.3. The preceding corollary implies the acyclicity of the Koszul resolution with
no need of point 1. of theorem 1.1.2.2.

The proof of theorem is based on the following lemmas, which are algebraic analogues of
usual identities in ordinary differential calculus.

Lemma 2.2.2.4. Let t belong to [−1, 1], g be in g and x in Ug. Then

1.
d

dt
φt = φt ⋆ pr = pr ⋆ φt

2.
d

dt
At(x, g) = pr(xg) +

∑

(x)

[At(x
(1), g), pr x(2)]

Lemma 2.2.2.5. Let g, h be two elements of g, and x dansbe an element of Ug. Then, for all
real number t:

−
∑

(x)

[At(x
(1), g), At(x

(2), h)] = At(xg, h)− At(xh, g)− At(x, [g, h])

Thus, when the ground ring is R, we have built an explicit contracting homotopy h of the
Koszul resolution that allows us to apply the strategy developped in 1.2.3 to get a quasi-inverse
to the anisymmetrization map of Cartan and Eilenberg.



Chapter 3

Inverting the Cartan-Eilenberg
isomorphism

This chapter is divided in two sections. In the first one, we give explicit computations, in
degree ∗ = 1 and ∗ = 2, of the morphisms of complexes G∗ : CH∗(Ug;M) → C∗(g;M

ad) and
G∗ : C∗(g;Mad) → CH∗(Ug;M), quasi-inverses of the antisymmetrization map respectively in
the homological and cohomological framework (see 1.2.3), and both induced by the morphism of
resolution GB

∗ , itself obtained by applying the strategy developed in 1.2.3.1 and whose definition
involves the contractiong homotopy h of chapter 2. In section 2, we show that when M = R, the
map G∗ can be see as an analogue of the integration of Lie algebra 2-cocycles in locally-smooth
group group cochain map described in [Nee04] and [Cov10]. In what follows, g is a Lie algebra
over R and M is a Ug-bimodule.

3.1 Construction of the quasi-inverse in degrees 1 and 2

To obtain G∗ : CH∗(Ug;M) → C∗(g;M
ad), we need to make the morphism of resolutions

GB
∗ : B∗(Ug) → CK∗(Ug) of proposition 1.2.3.1 more explicit.

3.1.1 Computation of GB
∗ in low degree

GB
∗ and G∗ are defined in 1.2.3 with the contraction h : CK∗(Ug) → CK∗(Ug) defined by formula

(2.2.3). Recall that GB
0 := IdUg⊗Ug. Let x, y, z and w be elements of Ug. The image of x⊗y⊗z

by GB
1 can be computed via (1.2.5):

GB
1 (x⊗ y ⊗ x) :=x(hG0d

B(1⊗ y ⊗ 1))z

=x(h(y ⊗ 1− 1⊗ y))z

=

∫ 1

0

dt xφt(y
(1))⊗ pr y(2) ⊗ φ1−t(y

(3))z − x⊗ pr 1⊗ yz

17
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which implies, since pr 1 = 0:

GB
1 (x⊗ y ⊗ z) =

∫ 1

0

dt xφt(y
(1))⊗ pr y(2) ⊗ φ1−t(y

(3))z (3.1.1)

Similarly, using denitions and formula (3.1.1), we get:

GB
2 (x⊗ y ⊗ z ⊗ w) =x

(
hGB

1 d
B(1⊗ y ⊗ z ⊗ 1)

)
w

=x
(
hGB

1 (y ⊗ z ⊗ 1− 1⊗ yz ⊗ 1 + 1⊗ y ⊗ z)
)
w

=

∫ 1

0

dt x

(

h
(
yφt(z

(1))⊗ pr z(2) ⊗ φ1−t(z
(3))

)

−

A
︷ ︸︸ ︷

h
(
φt((yz)

(1))⊗ pr((yz)(2))⊗ φ1−t((yz)
(3))

)

+

B
︷ ︸︸ ︷

h
(
φt(y

(1))⊗ pr y(2) ⊗ φ1−t(y
(3))z

)
)

w

Let’s show that A et B are zero. First, notice that relation (2.1.2) implies

φt ◦ pr = pr ◦ φt = t pr

which, combined with point 1. of lemma 2.2.2.4, points 2. and 3. of proposition 2.1.2.8, and
using the fact that φt is a coalgebra endomorphism, gives:

A = t

∫ 1

0

ds φst((yz)
(1))⊗ pr((yz)(2)) ∧ As

(
φt((yz)

(3)), pr((yz)(4)
)
⊗ φ1−t((yz)

(5))

= t

∫ 1

0

ds φst((yz)
(1))⊗ pr((yz)(2)) ∧ φ−st((yz)

(3))φs(
d

dt
φt((yz)

(4)))⊗ φ1−t((yz)
(5))

= t

∫ 1

0

ds φst((yz)
(1))⊗ pr((yz)(2)) ∧

d

du
φs(u−t)((yz)

(3))|u=t ⊗ φ1−t((yz)
(4))

= t

∫ 1

0

sds φst((yz)
(1))⊗ pr((yz)(2)) ∧ pr((yz)(3))⊗ φ1−t((yz)

(4))

As ∆ is cocommutative, A is invariant under the action of the transposition (1 2) ∈ Σ2, thus

−A = sgn ((1 2))A = (1 2)A = A

i.e.

A = 0

B = 0 can be shown in the same way, replacing yz by y. Finally, we have
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GB
2 (x⊗ y ⊗ z ⊗ w) =

∫ 1

0

dt x

(

h
(
yφt(z

(1))⊗ pr z(2) ⊗ φ1−t(z
(3))

)
)

w

=

∫ 1

0

∫ 1

0

ds dt xφs(y
(1)φt(z

(1)))⊗ pr(y(2)φt(z
(2))) ∧ As(y

(3)φt(z
(3)), pr z(6))⊗

⊗ φ1−s(y
(4)φt(z

(4)))φ1−t(z
(5))w (3.1.2)

3.1.2 G∗ and G∗ in low degrees

The quasi-isomorphismG∗ : CH∗(g;M) → C∗(g;M
ad) corresponds to Id ⊗ GB : M ⊗Uge

B∗(Ug) → M ⊗Uge CK∗(Ug) via the isomorphisms θ and θ′ defined in (1.2.3) and (1.2.4).
A direct computation using (3.1.1) and (3.1.2) gives the expression of G1 and G2 on elementary
tensorss :

Proposition 3.1.2.1. The quasi-inverse G∗ : CH∗(Ug;M) → C∗(g;M
ad) of the antisym-

metrization map F∗ of theorem 1.1.2.2 induced by the contracting homotopy h of corollary
2.2.1.2 satisfies

G1(m⊗ x) =

∫ 1

0

dt φ1−t(x
(1))mφt(x

(2))⊗ pr x(3)

and

G2(m⊗x⊗y) =

∫ 1

0

∫ 1

0

dsdtφ1−s(x
(1)φt(y

(1)))φ1−t(y
(5))mφs(x

(2)φt(y
(2)))⊗pr(x(3)φt(y

(3)))∧As(x
(4)φt(y

(4)), pry(6))

for all m in M , x and y in Ug.

The cohomological version G∗ : C∗(g;Mad) → CH∗(Ug;M), for which Mad is endowed with
its left Ug-module structure, is obtained by transporting the quasi-isomorphism

Hom∗Uge(CK∗(Ug),M)
≃
→ Hom∗Uge(B∗(Ug),M)

f 7→ f ◦GB
∗

via the isomorphisms of complexes of Ug-bimodules

Hom∗Uge(B∗(Ug),M)
∼=
→ CH∗(Ug;M) := {Hom(Ug⊗n,M)}n≥0

f 7→
(
x1 ⊗ · · · ⊗ xn 7→ f(1⊗ x1 ⊗ · · · ⊗ xn ⊗ 1)

)

and

C∗(g;Mad) := {Hom(Ug⊗n,M)}n≥0
∼=
→ Hom∗Uge(CK∗(Ug),M)

f 7→
(
x⊗ x1 ∧ · · · ∧ xn ⊗ y 7→ xf(x1 ∧ · · · ∧ xn)y

)

Thus G∗ can also be given explicitely in low degrees, still thanks to relations (3.1.1) and (3.1.2):
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Proposition 3.1.2.2. The morphisms of cochain complexes G∗ : C∗(g;Mad) → CH∗(Ug;M),
quasi-inverse of the cohomological antisymmetrization map F ∗ induced by GB

∗ , satisfies

G1(f1)(x) :=

∫ 1

0

dt φt(x
(1))f1(x

(2))φ1−t(x
(3))

and

G2(f2)(x⊗y) =

∫ 1

0

∫ 1

0

dsdtφs(x
(1)φt(y

(1)))f
(
pr(x(2)φt(y

(2)))∧As(x
(3)φt(y

(3)),pr y(6))
)
φ1−s(x

(4)φt(y
(4)))φ1−t(y

(5))

for all 1-cochain f1 in C1(g;Mad), for all 2-cochain f2 in C2(g;Mad), and for all x, y in Ug.

Remark 3.1.2.3. Let f : g → Mad be a 1-Lie algebra cocycle. In [Dix74], J. Dixmier explains
how to associate a 1-cocycle de Hochschild f̂ : Ug → M to f . f̂ satisfies the following defining
conditions:

f̂(xy) = xf(y) + f(x)y , ∀ x, y ∈ Ug (3.1.3)

and
f̂(g) = f(g) , ∀g ∈ g. (3.1.4)

Since G1 is a morphism of cochain complexes, G1(f) is a Hochschild cocycle i.e. satisfies
(3.1.3), and thus

f̂ = G1(f)

3.1.3 Example: G2 in the abelian case

In this subsection, g is assumed to be abelian ([x, y] = 0 for all g and h in g). In that case, the
eneloping algebra Ug is the symmetric algebra Sg and is graded by the lengh of monomials.
Moreover, the canonical projection pr is exactly the projection proj : Sg → g of 2.1.2.9, which
is a derivation of the algebra Ug along ǫ that is:

pr(xy) = ǫ(x) pr y + ǫ(y) pr x

for all x and y in Ug. Denote by |x| the degree of an element x of Ug = Sg. One easily checks
that the operators pr and φt satisfy

prx =

{
x si |x| = 1
0 sinon

and
φt(x) = t|x|x

for all real number t. In particular, thanks to point 3. of proposition 2.1.2.8:

t|x
(1)|s|x

(2)|x(1)x(2) = φs ⋆ φt(x) = φs+t(x) = (s+ t)|x|x
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By cocommutativity of the coproduct and since pr is a derivation along ǫ, this gives

pr(u φt(v
(1))) ∧ pr(v(2)) = ǫ(u)pr(φt(v

(1))) ∧ pr(v(2)) + ǫ(φt(v
(1)))pr(u) ∧ pr(v(2)) = pr u ∧ pr v

for all u an v inUg. Thus, by 3.1.2.2,

G2(f2)(x⊗ y) =

∫ 1

0

∫ 1

0

t|y
(1)|+|y(3)|+|y(4)|+|y(5)|(1− t)|y

(6)|s|x
(1)|+|y(1)|+|x(4)|+|y(4)|+1(−s)|x

(3)|+|y(3)|(1− s)|x
(5)|+|y(5)|

x(1)y(1)f
(
pr(x(2)φt(y

(2))) ∧ x(3)y(3)x(4)y(4)pr (y(7))
)
x(5)y(5)y(6)ds dt

=

∫ 1

0

∫ 1

0

(st)|y
(1)|s|x

(1)|+1(1− s)|x
(3)|(1− st)|y

(3)| x(1)y(1)f
(
pr(x(2)) ∧ pr (y(2))

)
x(3)y(3)ds dt

for every 2-Lie algebra cochain f : Λ2g → Mad and for all x, y in Sg. Using the change of
variable u := st, we get

G2(f)(x⊗ y) =

∫ 1

0

ds

∫ s

0

du u|y
(1)|s|x

(1)|(1− s)|x
(3)|(1− u)|y

(3)| x(1)y(1)f
(
pr(x(2)) ∧ pr (y(2))

)
x(3)y(3)

As, for all integers p and q

∫ s

0

duup(1− u)q =
p!q!

(p+ q + 1)!
−

p
∑

i=0

p!q!

(p− i)!(q + i+ 1)!
sp−i(1− s)q+i+1

we have

G2(f)(x⊗y) =

∫ 1

0

ds

(
|y(1)|! |y(3)|!

(|y|+ 1− |y(2)|)!
s|x

(1)|(1− s)|x
(3)| x(1)y(1)f

(
pr(x(2)) ∧ pr (y(2))

)
x(3)y(3)

−

|y(1)|
∑

i=0

|y(1)|! |y(3)|!

(|y(1)| − i)!(|y(3)|+ 1 + i)!
s|x

(1)|+|y(1)|−i(1− s)|x
(3)|+|y(3)|+1+ix(1)y(1)f

(
pr(x(2)) ∧ pr (y(2))

)
x(3)y(3)

)

=
|y(1)|! |y(3)|! |x(1)|! |x(3)|!

(|y|+ 1− |y(2)|)!(|x|+ 1− |x(2)|)!
x(1)y(1)f

(
pr(x(2)) ∧ pr (y(2))

)
x(3)y(3)

−

|y(1)|
∑

i=0

|y(1)|! |y(3)|!(|x(1)|+ |y(1)| − i)!(|x(3)|+ |y(3)|+ 1 + i)!

(|y(1)| − i)!(|y(3)|+ 1 + i)!(|x|+ |y|+ 2− |x(2)| − |y(2)|)!
x(1)y(1)f

(
pr(x(2)) ∧ pr (y(2))

)
x(3)y(3)

=

(
1

(|y|+ 1− |y(2)|)!(|x|+ 1− |x(2)|)!
−

|y(1)|
∑

i=0

(|x(1)|+|y(1)|−i

|y(1)|−i

)(|x(3)|+|y(3)|+1+i

|y(3)|+1+i

)

(|x|+ |y|+ 2− |x(2)| − |y(2)|)!

)

|y(1)|! |y(3)|! |x(1)|! |x(3)|! x(1)y(1)f
(
pr(x(2)) ∧ pr (y(2))

)
x(3)y(3)
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Since pr vanishes on every element of lengh non equal to 1, we can assume that |x(2)| = |y(2)| = 1
in the preceeding equality, which leads to

G2(f)(x⊗y) =

(
1

|y|! |x|!
−

|y(1)|
∑

i=0

(|x(1)|+|y(1)|−i

|y(1)|−i

)(|x(3)|+|y(3)|+1+i

|y(3)|+1+i

)

(|x|+ |y|)!

)

|y(1)|! |y(3)|! |x(1)|! |x(3)|!

x(1)y(1)f
(
pr x(2) ∧ pr y(2)

)
x(3)y(3)

Since |y(1)| + |y(3)| + 1 = |y| and |x(1)| + |x(3)| + 1 = |x|, the change of variable j := |y(1)| − i
gives :

G2(f)(x⊗y) =

(
1

|y|! |x|!
−

|y(1)|
∑

j=0

(
|x(1)|+j

j

)(
|x(3)|+|y|−j
|y|−j

)

(|x|+ |y|)!

)

|y(1)|! |y(3)|! |x(1)|! |x(3)|! x(1)y(1)f
(
pr x(2)∧ pry(2)

)
x(3)y(3)

Thus:

Proposition 3.1.3.1. If g is an abelian Lie algebra over R, M a Ug-bimodule, and f : Λ2g →
Mad a 2-cochain of Lie algebra with values in Mad, then

G2(f)(x⊗y) =

(
1

|y|! |x|!
−

|y(1)|
∑

j=0

(
|x(1)|+j

j

)(
|x(3)|+|y|−j
|y|−j

)

(|x|+ |y|)!

)

|y(1)|! |y(3)|! |x(1)|! |x(3)|! x(1)y(1)f
(
pr x(2)∧pr y(2)

)
x(3)y(3)

for all x and y in Ug = Sg.

Corollary 3.1.3.2. Under the hypothesis of previous proposition, if we ask in addition for the
bimodule structure on M to be trivial (xm = mx = ǫ(x)m for all x in Sg and m in M), then

G2(f)(x⊗ y) =

{
1
2
f(x ∧ y) si |x| = |y| = 1

0 sinon.
(3.1.5)

for all x and y in Ug = Sg.

The case of the Heisenberg algebra: It is well known ([Wei95], [Lod98], [CE56]) that to every

2-cocycle of Lie algebra f : Λ2 → Mad can be associated an abelian extension of Lie algebras

0 → Mad → h → g → 0

such that the Lie bracket on the vector space h ∼= Mad ⊕ g is given by

[(0, X), (0, Y )] := (f(X ∧ Y ), [X, Y ])
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for all X and Y in g. Similarly (see [Lan75]), the second cohomology group HH2(Ug;M)
classifies singular extensions (always split over the field R) of the form

0 → M → H → Ug → 0

We are now going to describe the the extension encoded by the Hochschild 2-cocycle G2(f) :
Ug⊗2 → M associated to a special Lie cocycle: the Heisenberg cocycle. Let g :=< X, Y > be
the abelian Lie algebra of dimension 2 generated by X and Y , and denote by M = RZ the
trivial bimodule of dimension 1 with generator Z.

Definition 3.1.3.3. The Heisenberg cocycle is the Lie algebra cocycle cH : Λ2g → M = RZ
defined by

cH(X ∧ Y ) = Z

The corresponding central extension is

0 → RZ → h → g → 0

whose middle term h is called the Heisenberg algebra of dimension 3).

Let H := RZ ⊕ Sg be the extension of associative algebra Sg = Ug with kernel RZ cor-
responding to G2(cH). The family of monomials (XαY β)α,β≥0 is a base of the R-vector space
Sg, so that the associative product on H is fully determined by the values of G2(cH) on such
monomials. Thanks to (3.1.5), we see that

G2(cH)(X
αY β ⊗XγY δ) =







1
2
Z si (α, β) = (1, 0) et (γ, δ) = (0, 1)

−1
2
Z si (α, β) = (0, 1) et (γ, δ) = (1, 0)

0 sinon.

for all α, β, γ and δ in N. For λ and µ in R, denote by λZ + µXαY β the element (Z,XαY β)
of H = RZ ⊕ Sg and by · the product on H. Then

(λZ + µXαY β) · (XγY δ) =







λZ + µXαY β si γ + δ = 0
λ
2
Z + µXY si (α, β, γ, δ) = (1, 0, 0, 1)

λ
2
Z + µXY si (α, β, γ, δ) = (0, 1, 1, 0)

µXα+γY β+δ dans les autres cas.

(3.1.6)

A direct inspection shows that the R-linear injective map i : h → H defined by

i(X) = X , i(Y ) = Y , et i(Z) = Z

is a Lie algebra morphism (the bracket on H being the commutator associated to the product
·). By universal property of the universal enveloping algebra, i induces a surjective morphism
of associative algebras

p : Uh ։ H
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Let’s determine the kernel of p. To do so, notice that by the Poincaré-Birkhoff-Witt theorem,
the family (ZαXβY γ)α,β,γ≥0 is a base of the real vector space Uh. Any element B of Ug can be
written uniquely as a linear combination

B :=
∑

α,β,γ≥0

Bα,β,γZ
αXβY γ ,

where (Bα,β,γ)α,β,γ≥0 is a family of real numbers, a finite number of them being non zero .
Suppose that p(B) = 0. Then

p(B) =
∑

α,β,γ≥0

Bα,β,γp(Z
αXβY γ) =

∑

α,β,γ≥0

Bα,β,γ

α fois
︷ ︸︸ ︷

Z · Z · · ·Z ·

β fois
︷ ︸︸ ︷

X ·X · · ·X ·

γ fois
︷ ︸︸ ︷

Y · Y · · ·Y = 0

But according to (3.1.6), Z · A = 0 for all A in the augmentation ideal S̄g ⊂ H of Sg. Thus,

∑

β,γ≥0

B0,β,γ

β fois
︷ ︸︸ ︷

X ·X · · ·X ·

γ fois
︷ ︸︸ ︷

Y · Y · · ·Y +
∑

α≥1

Bα,0,0

α fois
︷ ︸︸ ︷

Z · Z · · ·Z = 0

Applying (3.1.6) again, we get

∑

β,γ≥0

B0,β,γX
βY γ +

1

2
(B0,2,0 +B0,1,1 +B0,0,2 + 2B1,0,0)Z = 0

which implies that B1,0,0 = 0 and

B0,β,γ = 0 , ∀β, γ ≥ 0 .

Thus, p(B) = 0 if and only if B belongs to the ideal of Uh generated by ZX and ZY , denoted
by < ZX,ZY > i.e. Ker p =< ZX,ZY >. We have proven

Proposition 3.1.3.4. The singular extension H of the associative algebra Sg associated to the
Hochschild cocycle G2(cH), where cH is the Heisenberg cocycle defined in 3.1.3.3, is isomorphic
to the quotient of Uh by the ideal generated by ZX and ZY :

H ∼= Uh/< ZX,ZY >

3.2 Interpretation as an algebraic integration process

In this section, we explain how the quasi-isomorphism of cochain complexes G∗ : C∗(g;Mad) →
CH2(Ug;M) of proposition 3.1.2.2 can be seen as an infinitesimal version of the integration
map desribed in degree 2 in [Nee04] and [Cov10], which assign to every 2-cocycle of Lie algebra
ω : Λ2g → R, a 2-cocycle of group Is(ω) : G

×2 → R, smooth in a neighbourhood of the neutral
element e of G. Here, G is a Lie (or Fréchet-Lie) group with Lie algebra g.
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To simplify formulas, we restrict to trivial bimodule M = R on which the action of Ug is
given by

xm = mx = ǫ(x)m

for all x in Ug and m in R. The left g-module on Rad then satisfies

g ·m = 0

for all g in g and m in R.
Let’s now recall the simplicial integration of Lie 2-cocycles “à la van Est” when g is finite

dimensionnal.

3.2.1 Integration of Lie algebra cocycles in group cocycles

Let G be a Lie group with neutral element e and Lie algebra g. For n ≥ 1, denote by Cn
loc(g;R)

the R-vector space of smooth group n-cochains, defined in a neighbourhood of e, with values
in the trivial G module R. We refer to [Nee04] and appendix B. for a definition of Cn

loc(g;R)
and of the associated differential dG : Cn

loc(g;R) → Cn+1
loc (g;R). Let T : Cn

s (G;R) → Cn(g;R)
be the derivation map defined by

T (f)(g1 ∧ · · · ∧ gn) :=
∑

σ∈Σn

sgn(σ)(gσ(1) ⊗ · · · ⊗ gσ(n))(f)

for all local smooth group n-cochain f : G×n → R, an for all g1, ..., gn in g ⊂ Ug. Here
(g1 ⊗ g2 ⊗ · · · gn) is considered as a punctual distribution supported at (e, · · · , e) on G×n via
the isomorphism:

U(g⊕n) ∼= (Ug)⊗n

For example, when f is 2-cochain in C2(g;R) we have

T (f)(g1 ∧ g2) = (g1 ⊗ g2 − g2 ⊗ g1)(f) = d2(e,e)f((g1, 0), (0, g2))− d2(e,e)f((g2, 0), (0, g1))

Proposition 3.2.1.1. The map T : (Cn
loc(G;R), dG)n>0 → (Cn(g;R), dCE)n>0 is a morphism of

cochain complexes.

We now want to describe the image of T : Given a Chevalley-Eilenberg cochain f : Λng → R

is it possible to build a local smooth group n-cochain G̃n(f) : G×n → R whose image under T
is f ? When n = 2, the answer is given by van Est’s method.

The dual/left-invariant version of the injective morphism R : C∗(g) → Λ∗G of proposition
2.1.1.8, studied for example in [Nee04] and [FOT08], is the isomorphism of cochain complexes

R′ : C∗(g;R)
∼=
→ Ω∗inv(G) defined by

R′(ω)z(X1(z), X2(z),· · ·, Xn(z)) := ωinv
z (X1(z), X2(z),· · ·, Xn(z)) := ω(TzLz−1X1(z),· · ·, TzLz−1Xn(z))

for all z in U , for all X1, ..., Xn vector fields on G, and for all Chevalley-Eilenberg 2-cochain
ω : g ∧ g → R. Here, Ω∗inv(G) is the complex of left invariant differential forms1. Note that the

1i.e forms ω such that L∗
z
ω = ω for all z in G.
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inverse of R′ is nothing but the evaluation map eve at e. Now, let V be a convex open subset
of g = Rn containing 0, equipped with a diffeomorphism ϕ : U → V sending e to 0, where U is
an open subset of G containing e. The following lemma gives a section of T :

Lemma 3.2.1.2. [Lemme V.2 de [Nee04], version simpliciale] If U ′ is an open subset of U such
that U ′U ′ ⊂ U and ϕ−1(U) is a convex open subset of g containing 0, and if T0ϕ

−1 = Idg, then
the map

Is : C
2(g;R) → C2

loc(G;R)
ω 7→

(
(z1, z2) 7→

∫

∆2 γ
∗
z1,z2

ωinv
)

where for every (z1, z2) in U ′ × U ′, γz1,z2 : ∆
2 → U ⊂ G is the smooth 2-simplex defined by

γz1,z2(s, t) := ϕ
(
s ϕ−1

(
z1ϕ(tϕ

−1(z2))
)
+ t ϕ−1

(
z1ϕ((1− s)ϕ−1(z2))

))

is left inverse to T i.e.
T ◦ Is = IdC∗(g;R)

Moreover, Is sends Lie algebra 2-cocycles (resp. 2-cocoundaries) to group 2-cocyles (resp.group
coboudaries).

We now provide a cubical analogue of this lemma, based on the choice of particular n-cubes
in G :

Definition 3.2.1.3. Let Un ⊂ U be an open subset whose preimage by ϕ is a star shapen

open of g centered in 0 and such that

n times

︷ ︸︸ ︷

UnUn · · ·Un ⊂ U . For all (z1, · · · , zn) in U×nn , γn
z1,··· ,zn

:
[0, 1]n → U ⊂ G is the smooth n-cube defined by unduction on n by

γn
z1,··· ,zn

(t1, · · · , tn) := ϕt1

(

z1γ
n−1
z1,··· ,zn−1ϕtn (zn)

(t1, · · · , tn−1

)

n > 1 (3.2.1)

and
γ1
z (t) := ϕt(z) (3.2.2)

where, for all 0 ≤ t ≤ 1, ϕt : U → U is the smooth map defined by

ϕt(z) := ϕ−1(tϕ(z)) (3.2.3)

for all z in U .

Remark 3.2.1.4. The map ϕt defined in (3.2.3) coincides with the map ϕt of proposition
2.1.2.8 when one chooses ϕ to be the logarithm.

Lemma 3.2.1.5. [Lemme V.2 de [Nee04], cubical version] The map

Ic : C
∗(g;R) → C∗loc(G;R)

ω ∈ Cn(g;R) 7→
(

(z1, · · · , zn) 7→
∫

[0,1]n
(γn

z1,··· ,zn
)∗ωinv

)

∈ Cn
loc(G;R)

is a morphism of cochain complexes, right inverse to T i.e.

Ic ◦ dCE = dG ◦ Ic (3.2.4)

and
T ◦ Ic = IdC∗(g;R) (3.2.5)
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To make the link between the integration map Ic and the morphism of complexes G∗ defined
in 3.1.2.2 more precise, let’s introduce operators Γ et B defined as follows:

Definition 3.2.1.6. Let n be an integer, j be an element of {1, · · · , n}, and t1, ..., tn ve real
numbers in [0, 1]. The operators Γt1,··· ,tn : Ug⊗n → Ug and Bj

t1,··· ,tn : Ug⊗n → Ug are defined by

Γt1,··· ,tn(x1, · · · , xn) := Γt1,··· ,tn(x1 ⊗ · · · ⊗ xn) := φt1

(
x1φt2

(
x2φt3(· · ·φtn−1(xn−1φtn(xn)) · · · )

))

(3.2.6)
for all x1, ..., xn in Ug, and

Bj
t1,··· ,tn := Γ−t1,t2,··· ,tn ⋆

∂

∂tj
Γt1,··· ,tn (3.2.7)

Here, the convolution product ⋆ on HomR(Ug
⊗n, , Ug) is the one associated to the coproduct

x1 ⊗ · · · ⊗ xn 7→ (x
(1)
1 ⊗ · · · x

(1)
n )⊗ (x

(2)
1 ⊗ · · · ⊗ x

(2)
n ) on Ug⊗n.

Remark 3.2.1.7. Γt1,··· ,tn is the morphism of punctual distributions coalgebras (γn(t1, · · · , tn))∗ :
Ug⊗n → Ug induced (in the sens of 2.1.2.4) by the smooth map γn(t1, · · · , tn) : U

′×n → U that
sends each (z1, · · · , zn) to γn

z1,··· ,zn
(t1, · · · , tn).

The next proposition, linking T ′, Ic and G∗, generalizes formulae given for G1 and G2 in
3.1.2 and provides a closed formula for Gn for arbitrary n.

Proposition 3.2.1.8. If ϕ : U → V is the logarithm map defined on an openU of G with values
a convex open V of g containing 0, the the morphism of cochain complexes G∗ : C∗(g;R) →
CH∗(Ug;R) satisfies

G∗ = T ′ ◦ Ic (3.2.8)

i.e. the image by Gn of a n-cochain ω in Cn(g;R) satisfies

Gn(ω)(x1 ⊗ · · · ⊗ xn) =

∫

[0,1]n
dt1 · · · dtn ω

(

B1
t1,··· ,tn

(x
(1)
1 , · · · , x(1)

n ), · · · , Bn
t1,··· ,tn

(x
(n)
1 , · · · , x(n)

n )
)

(3.2.9)

The proof of the preceeding proposition is a direct consequence of the following lemma,
which provides a general closed formula to compute G∗ for for an arbitrary bimodule M :

Lemma 3.2.1.9. Let g be a Lie algebra over R and M be a Ug-bimodule. Then, 3.2.1.8, for
all integer n and for all x, y, x1, ..., xn in Ug,

GB
n (x⊗x1⊗· · ·⊗xn⊗y) =

∫

[0,1]n
dt1· · ·dtn xΓt1,···,tn(x

(1)
1 ,· · ·, x(1)

n )⊗ B1
t1,···,tn

(x
(2)
1 ,· · ·, x(2)

n ) ∧· · ·

· · ·∧Bn
t1,···,tn

(x
(n+1)
1 ,· · ·, x(n+1)

n )⊗ Γ−t1,t2,···,tn(x
(n+2)
1 ,· · ·, x(n+2)

n )x
(n+3)
1 x

(n+3)
2 · · · x(n+3)

n y (3.2.10)
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Concluons cette sous-section en en résumant les principaux résultats établis à la commuta-
tivité du diagramme Finally, we can summarize the results of this subsection in the commuta-
tivity of the following diagram

C∗(g;R)

G∗

''NNNNNNNNNNN

Ic //

Id

**
C∗loc(G;R) T //

T ′

��

C∗(g;R)

CH∗(Ug;R)

F ∗

77ppppppppppp

(3.2.11)

in the category of cochain complexes.

3.2.2 Algebraic version of the integration map

Malcev completion of Ug

Denote by I := Kerǫ the augmentation ideal of Ug, In its n-th power, and consider the inverse
system of projections

R = Ug/I և Ug/I2 և Ug/I3 և · · · և Ug/In և Ug/In+1 և · · ·

Definition 3.2.2.1. The completion of Ug, denoted by Ûg, is defined by

Ûg := lim
←
n

Ug/In

Proposition 3.2.2.2. The connected cocommutative Hopf algebra structure (µ, η,∆, ǫ, S) on
Ug induces a onnected cocommutative Hopf algebra structure on Ûg denoted in the same way.
The primitive elements of Ûg assemble in a Lie subalgebra ĝ of Ûg which contains g.

Definition 3.2.2.3. The Malcev group associated to g, denoted by Ĝ, is the subset of 1+ Î ⊂
Ûg consisting of grouplike elements x that is elements verifing:

∆x = x⊗ x ∈ Ûg⊗̂Ûg

Proposition 3.2.2.4. The exponential map

exp := ĝ → Ĝ
g 7→ exp(g) := eg :=

∑

n≥0
1
n!
gn

is a bijection.

The inclusion
Ĝ →֒ Ûg

induces, by universal property of the group algebra , a morphism of associative algebras

RĜ → Ûg
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and thus a morphism of cochain complexes

Q : CH∗(Ûg;R) → C∗(Ĝ;R) = CH∗(RĜ;R)

The obvious map Ug → Ûg induces

P : CH∗(Ûg;R) → CH∗(Ug;R)

The situation is then

C∗(Ĝ;R)

CH∗(Ûg;R)

P

��

Q

OO

C∗(g;R)

G∗

xxppppppppppp

CH∗(Ug;R)

F ∗

88ppppppppppp

(3.2.12)

To define the maps T and Ic of the preceeding subsection, we had to restrict to local smooth
group cochains. The goal of the following subsection is to give an analogue of smoothness in
the algebraic framework.

Continuous cochains

One can define a topology on g and Ug making the inclusion g →֒ Ug continuous thanks to the
augmentation ideal I. A basis of neighbourhood of 0 in Ug is given by the powers Ik of I et l’on
obtient une base de voisinages de tout autre point par translation. The tensor product Ug⊗n

can be equipped with a product topology for which a basis of neigbourhoods of O is given by
the powers Jk , k ≥ 0 of the augmentation ideal2 J defined as follows

J := I ⊗ Ug⊗(n−1) + Ug⊗ I ⊗ Ug⊗(n−2) + · · ·+ Ug(n−1) ⊗ I ⊂ Ug⊗n (3.2.13)

This topology on Ug and its tensor powers is called I-adic topology.

Proposition 3.2.2.5. Suppose that R is given the usual topology. Then, a Hochschild n-cochain
ω : Ug⊗n → R is saidcontinuous with respect to the I-adic topology if there exists an integer
r such that

ω(Jk) = {0R}

In the case of g, there is also a natural filtration:

Definition 3.2.2.6. The lower central filtration associated to g is the decreasing sequence
of ideals

D1(g) := [g, g] ⊂ · · · ⊂ Dk(g) ⊂ Dk+1(g) ⊂ · · ·

2Where the augmentation is ǫ⊗n : Ug⊗n → R⊗n ∼= R.
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defined by
Dk(g) := [Dk−1(g), g]

for all k ≥ 2.
g is said to be nilpotentwhen Dk(g) = {0} for some integer k.
Declaring this sequence to be a basis of neignbourhoods of 0 defines a topology on g called

the D-adic topology. One can extend this topology to every Λng to define the graded vector
subspace Cn

c (g;R) of the Chevalley-Eilenberg complex of g consisting of Lie algbra cochains that
are continous with respect to the D-adic topology.

Proposition 3.2.2.7. The differentials dH et dCE restricts to the subspaces defined above to
give (CH∗c (Ug;R), dH) et (C∗c (g;R), dCE) which subcomplexes respectively of (CH∗(Ug;R), dH)
and of (C∗(g,R), dCE).

The link between I and D adic topologies is given by the following proposition:

Proposition 3.2.2.8. The D-adic topology is the one induced by the I-adic topology on Ug via
the inclusion g →֒ Ug.

The previous proposition relies on the following lemma

Lemma 3.2.2.9. The canonical projection pr : Ug → g is continuous. As a consequence, the
morphism of coalgebras φt : Ug → Ug and all its derivatives dn

dtn
φt are also continous.

Proposition 3.2.2.10. Les morphisms F ∗ : CH∗(Ug;R) → C∗(g;R) and G∗ : C∗(g;R) →
CH∗(Ug;R) restrict to the subcomplexes of continuous cochains to give an equivalence

CH∗c (Ug;R)
F ∗

⇄
G∗

C∗c (g;R)

Let’s now precise the topology on the completed algebra Ûg.

Definition 3.2.2.11. TheÎ-adic topology on Ûg is the one generated by the basis of neighbour-
hood of zero given by the powers of the augmentation ideal Î with

Î := lim
←
n

I/In ⊂ Ûg

The completed tensor powers3 Ûg
⊗̂n

of Ûg can be topologized in the same way as above. Contin-

uous Hochschild cochains ω : Ûg
⊗̂n

→ R form a cochain complex CH∗c (Ûg;R) with differential
dH obtained by completion of the usual dH .

Proposition 3.2.2.12. The restriciton morphism P : CH∗(Ûg;R) → CH∗(Ug;R) induces an
isomorphism of cochain complexes

P : CH∗c (Ûg;R)
∼=
→ C∗c (Ug;R)

3See [Qui69]
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Thus, (3.2.12) can be enriched in

C∗(Ĝ;R)

CH∗c (Ûg;R)

P

��

Q

OO

C∗c (g;R)

G∗

wwppppppppppp

CH∗c (Ug;R)

P−1

OO
F ∗

77ppppppppppp

(3.2.14)

The last step deals with the notion of smoothness at 1 ∈ Ĝ :

Definition 3.2.2.13. Let p be an integer. A n-cochain of group f : G⊗n → R is saidp-smooth
at 1 when there exist p multilinear and symmetric maps

Dif : (ĝ⊕n)⊗̂i → R , i ∈ {1, · · · , p} ,

and a continuous map O : ĝ⊕n → R, satisfying conditions

1.

f(eg1 , · · · , egn) = f(1, · · · , 1) +
n∑

i=1

Dif
(
(g1, · · · , gn)⊗ · · · ⊗ (g1, · · · , gn)

)
+O(g1, · · · , gn)

(3.2.15)
for all (g1, · · · , gn) in ĝ⊕n,

2. and

lim
t→0

1

tp
O(g(t)) = 0 (3.2.16)

for all polynomial arc g : [−1, 1] → ĝ⊕n such that g(0) = 0.

The map Dif is calledthe i-th différential of f . A smooth cochain is a cochain which is
p-smooth at 1 for all p.

Proposition 3.2.2.14. Smooth cochains at 1 on Ĝ form a subcomplex of C∗(Ĝ;R), denoted
by C∗s (Ĝ;R). Moreover, the restriction map Q : CH∗(Ûg;R) → C∗(Ĝ;R) restricts to

Q : CH∗c (Ûg;R) → C∗s (Ĝ;R)

Definition 3.2.2.15. La version algébrique de l’application d’intégration est le morphisme de
complexes de cochâınes Ic : C

∗
c (g;R) → C∗s (Ĝ;R) défini par

Ic := Q ◦ P−1 ◦G∗
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Proposition 3.2.2.16. The map T ′′ : C∗s (Ĝ;R) → C∗c (ĝ;R), defined in degree n by

T ′′(f)(g1 ∧ · · · ∧ gn) := n!
∑

σ∈Σn

sgn(σ)Dnf((gσ(1), 0, · · · , 0)⊗̂ · · · ⊗̂(0, · · · , 0, gσ(n)))

for all g1, ..., gn in ĝ, is a morphism of cochain complexes inducing, via the canonical map
g → ĝ, a morphism of cochain complexes T : C∗s (Ĝ;R) → C∗c (g;R). Moreover

T ◦ Ic = IdC∗

c (ĝ;R)

We finally established the existence of morphism of complexes T et Ic such that

C∗(Ĝ;R)
T

&&NNNNNNNNNNN

CH∗c (Ûg;R)

P

��

Q

OO

C∗c (g;R)

G∗

wwppppppppppp

Ic

ffNNNNNNNNNNN

CH∗c (Ug;R)

P−1

OO
F ∗

77ppppppppppp

is commutative.

The nilpotent case

When g is nilpotent, we have the following result, due to P.F Pickel ( [Pic78]):

Proposition 3.2.2.17. If g is a nilpotent Lie algebra over Q, then the morphisms

P : CH∗(Ûg;R) → CH∗(Ug;R)

and
Q : CH∗(Ûg;R) → C∗(Ĝ;R)

are quasi-isomorphisms.

Remark 3.2.2.18. When g is nilpotent,

1. (a) ĝ = g and Ĝ = G = {eg , g ∈ g} ([Qui69]),

(b) Every Chevalley-Eilenberg cochain is continuous.

2. In [Tam03], D. Tamarkin uses the fact that when H∗(g;R) has finite type, the restriction
map P : CH∗(Ûg;R) → CH∗(Ug;R) is necessarily a quasi-isomorphism.
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[God04] R. Godement. Introduction à la théorie des groupes de Lie. Springer-Verlag, Berlin,
2004. Reprint of the 1982 original.

[Hal01] G. Halbout. Formule d’homotopie entre les complexes de Hochschild et de de Rham.
Compositio Math., 126(2):123–145, 2001.

[Kas95] C. Kassel. Quantum groups, volume 155. Springer, 1995.

[Lan75] S. Mac Lane. Homology. Springer-Verlag, 1975.

[Lod98] J.-L. Loday. Cyclic homology. Springer-Verlag, 1998.

[Nee04] K.-H. Neeb. Abelian extensions of infinite-dimensional Lie groups. ArXiv Mathe-
matics e-prints, February 2004.

[Pic78] P. F. Pickel. Rational cohomology of nilpotent groups and Lie algebras. Comm.
Algebra, 6(4):409–419, 1978.

[Qui69] D. Quillen. Rational homotopy theory. The Annals of Mathematics, 90(2):pp. 205–
295, 1969.

33

http://arXiv:math/0504276v1
http://arXiv:math/0504276v1


34 BIBLIOGRAPHY

[Reu93] C. Reutenauer. Free Lie algebras, volume 7 of London Mathematical Society Mono-
graphs. New Series. The Clarendon Press Oxford University Press, New York, 1993.
Oxford Science Publications.

[Ser06] J.-P. Serre. Lie algebras and Lie groups, volume 1500 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 2006. 1964 lectures given at Harvard University,
Corrected fifth printing of the second (1992) edition.

[Tam03] D. E. Tamarkin. Formality of chain operad of little discs. Lett. Math. Phys., 66(1-
2):65–72, 2003.

[Wei95] C.A. Weibel. An introduction to homological algebra. Cambridge Univ Pr, 1995.



Résumé : Le but de ce travail est d’expliquer en quoi l’application de d’antisymétrisation
de Cartan-Eilenberg F ∗, qui permet d’identifier la cohomologie de Chevalley-Eilenberg d’une
algèbre de Lie g à la cohomologie de Hochschild de son algèbre enveloppante Ug, est l’analogue
algébrique de l’application usuelle de dérivation de cochâınes de groupe lisses au voisinage de
l’élément neutre d’un groupe de Lie, et comment un de ses quasi-inverses peut être construit et
compris comme une application d’intégration de cocycles de Lie. De plus, nous montrons qu’un
tel quasi-inverse, bien que provenant d’une contraction d’origine géométrique, peut s’écrire de
manière totalement intinsèque, en n’utilisant que la structure d’algèbre de Hopf cocommutative
connexe sur Ug.

Mots clés : Algèbre de Hopf - (co)homologie de Hochschild - algèbre de Lie - (co)homologie
de Chevalley-Eilenberg - (co)homologie de groupe - homotopie - complétion I-adique - expo-
nentielle

Summary : This thesis aims at explaining why Cartan and Eilenberg’s antisymmetrisation
map F ∗, which provides an explicit identification between the Chevalley-Eilenberg cohomology
of a free lie algebra g and the Hochschild cohomology of its universal enveloping algebra Ug, can
be seen as an algebraic analogue of the well-known derivation map from the complex of locally
smooth group cochains to the one of Lie algebra cochains, and how one of its quasi-inverses
can be built and thought of as an integration of Lie algebra cochains in Lie group cochains
process. Moreover, we show that such a quasi-inverse, even if it is defined thanks to a Poincaré
contraction coming from geometry, can be written using a totally intrinsic formula that involves
only the connex cocommutative Hopf algebra structure on Ug.

Key words : Hopf algebra - Hochschild (co)homology - Lie algebra - Chevalley-Eilenberg
(co)homology - group (co)homology - homotopie - I-adic completion - exponential map
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