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Introduction

The aim of this thesis is to formulate and prove a homotopy-theoretical generaliza-
tion of classical Morita theory. More precisely, we indicate su�cient conditions for
a strong monad T on a monoidal Quillen model category E in order that the homo-
topy category of T -algebras be equivalent to the homotopy category of modules of
a certain monoid in E .

In order to state our homotopical Morita theorem we rely on the notion of tenso-
rial strength which has been introduced by Anders Kock [Koc72, Koc70] a long time
ago. A strong functor T : A → B between categories A and B, tensored over a closed
symmetric monoidal category E , is a functor equipped with a tensorial strength

σX,A : X ⊗ TA→ T (X ⊗ A)

for any objects X of E and A of A satisfying some natural unit and associativity
axioms. There is a similar notion of strong natural transformation. If A and B are
enriched and tensored over E , then giving a strength for T amounts to giving an
enrichment of T over E . In particular, a given functor extends to a strong functor
if and only if it extends to an enriched functor. We rephrase these constructions of
Kock in a 2-categorical framework. This emphasizes the relative character of the
notion of strength while Kock's original treatment was concentrated on monads. The
2-categorical view point clari�es in particular the four axioms appearing in Kock's
de�nition of a strong monad. We establish in Chapter 3

Theorem. The following 2-categories of tensored E-categories are 2-isomorphic:

(a) The 2-category of strong functors and strong natural transformations of ten-
sored E-categories, StrongCat;

(b) The 2-category of E-functors and E-natural transformations of tensored E-
categories, E−Cat.

The consequence of this 2-isomorphism is an equivalence between the notions of
strong and enriched monads. In particular, under mild conditions the category of
algebras over a strong monad T on E is canonically enriched, tensored and cotensored
over E . This implies that the image T (I) of the unit I of E gets the structure of a
monoid, through its identi�cation with the endomorphism monoid Alg

T
(T (I), T (I))

of the free T -algebra on I. More precisely, the strength of T induces a morphism
of monads λ : − ⊗ T (I) → T which relates the categories of T (I)-modules and
of T -algebras by a canonical adjunction. This can be considered as an embryonic
form of the Morita theorem. And indeed, our homotopical Morita theorem consists
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essentially in �nding the right homotopical hypotheses in order to transform this
formal adjunction into a Quillen equivalence. We prove in Chapter 4

Theorem. (Homotopical Morita theorem) Let E be a co�brantly generated monoidal
model category with co�brant unit I and with generating co�brations having co�brant
domain. Assume given a strong monad (T, µ, η, σ) on E such that

(a) The category of T-algebras AlgT admits a transferred model structure;

(b) The unit ηX : X → T (X) is a co�bration at each co�brant object X in E ;

(c) The tensorial strength

σX,Y : X ⊗ TY
∼
−→ T (X ⊗ Y )

is a weak equivalence for all co�brant objects X,Y in E ;

(d) The forgetful functor takes free cell attachments in AlgT to homotopical cell
attachments in E (cf. De�nition 2.2.7).

Then the monad morphism λ : −⊗T (I) → T induces a Quillen equivalence between
the category of T (I)-modules and the category of T-algebras:

Ho
(
ModT (I)

)
≃ Ho (AlgT )

In the special case where E is the category of Γ-spaces equipped with Bous�eld-
Friedlander's stable model structure [BF78] and T is the strong monad associated
to a well-pointed Γ-theory, this recovers a theorem proved by Schwede [Sch01]. It
was one of the main motivations of this thesis to understand Schwede's theorem as
an instance of a general homotopical Morita theorem.

Hypothesis (d) is di�cult to check in practice since it involves an analysis of
certain pushouts in the category of T -algebras and is not directly expressed by
properties of the monad T . We therefore establish in the last section of Chapter
2 a more accessible form of hypothesis (d) provided that the model category E is
pointed, has a good realization functor for simplicial objects and satis�es a suitable
version of �excision� (see Section 2.5 for precise de�nitions). If this is the case,
hypothesis (d) may be reformulated as follows (cf. Proposition 2.5.5):

(d') The forgetful functor takes free cell extensions in AlgT to co�brations in E ;

(d�) The monad T takes any co�bration X → Y between co�brant objects to
a co�bration T (X) → T (Y ) between co�brant objects and the induced map
T (Y )/T (X) → T (Y/X) is a weak equivalence.

If E is the stable model category of Γ-spaces almost all hypotheses of our ho-
motopical Morita theorem follow from an important result of Lydakis [Lyd99] con-
cerning the homotopical properties of the so-called assembly map. In order to keep
this thesis as self-contained as possible we include a proof of Lydakis' theorem. This
proof is similar but slightly more conceptual than Lydakis' original proof and applies
to Γ-spaces with values in essentially any cartesian Quillen model category for the
homotopy theory of topological spaces.



Chapter 1

Preliminaries

This chapter is devoted to the language of category theory. In Section 1.1 we pro-
vide de�nitions of monoidal categories, symmetric monoidal categories together with
some examples. In Section 1.2, once the notion of closed symmetric monoidal cate-
gory is �xed, we de�ne an enriched category. Then all the basic theory of categories
is translated to the enriched context. In Section 1.3 we de�ne tensored and coten-
sored enriched categories. In Section 1.4 we provide de�nitions for monoid, monads
and their algebras.

For more detailed informations see [Bor94, Mac71].

1.1 Symmetric monoidal categories

De�nition 1.1.1. A monoidal category (E ,⊗, I) is a category E equipped with:

(a) A bifunctor ⊗ : E × E → E called the tensor product;

(b) An object I in E , called the unit;

(c) For every triple of objects (X, Y, Z) in E , an associativity isomorphism which
is natural in X, Y, Z and given by

aXY Z : (X ⊗ Y )⊗ Z −→ X ⊗ (Y ⊗ Z);

(d) For every object X in E , a left unit isomorphism natural in X and given by

lX : I ⊗X −→ X;

(e) For every object X in E , a right unit isomorphism natural in X and given by

rX : X ⊗ I −→ X;

such that the following two diagrams commute:

7
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((X ⊗ Y )⊗ Z)⊗ T
aX⊗Y,Z,T //

aX,Y,Z⊗1

��

(X ⊗ Y )⊗ (Z ⊗ T )

aX,Y,Z⊗T

��

(X ⊗ (Y ⊗ Z))⊗ T

aX,Y ⊗Z,T

��
X ⊗ ((Y ⊗ Z)⊗ T )

1⊗aY,Z,T

// X ⊗ (Y ⊗ (Z ⊗ T ))

Diagram 1.1. Associativity axiom

(X ⊗ I)⊗ Y
aXIY //

rX⊗1 ''OOOOOOOOOOO
X ⊗ (I ⊗ Y )

1⊗lYwwooooooooooo

X ⊗ Y

Diagram 1.2. Unit axiom

De�nition 1.1.2. A symmetric monoidal category (E ,⊗, I, s) is a monoidal cate-
gory (E ,⊗, I) equipped with, for every couple (X, Y ) of objects in E , a symmetry
isomorphism, natural in X, Y and given by

sXY : X ⊗ Y −→ Y ⊗X;

such that the following diagrams commute

(X ⊗ Y )⊗ Z
sXY ⊗1 //

aXY Z

��

(Y ⊗X)⊗ Z

aY XZ

��
X ⊗ (Y ⊗ Z)

sX,Y ⊗Z

��

Y ⊗ (X ⊗ Z)

1⊗sY Z

��
(Y ⊗ Z)⊗X aY ZX

// Y ⊗ (Z ⊗X)

Diagram 1.3.

X ⊗ I
sXI //

rX
##GG

GG
GG

GG
G I ⊗X

lX{{ww
ww

ww
ww

w

X
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Diagram 1.4.

X ⊗ Y

sXY ""FFFFFFFF X ⊗ Y

Y ⊗X

sY X

<<xxxxxxxx

Diagram 1.5.

Example 1.1.3. We give some basic examples of symmetric monoidal categories:

• (Set,×, 1), category of sets with the cartesian product;

• (Top,×, 1), category of topological spaces with the product;

• (CGTop,×, 1), category of compactly generated topological spaces with the
product;

• (Cat,×, 1), category of categories with the cartesian product;

• (Ab,⊗,Z), category of abelian groups with the tensor product;

• (ModR,⊗, R), category of R-modules, where R is a commutative ring, with
the tensor product;

• (G−ModR,⊗, R), category of graded R-modules, where R is a commutative
ring, with its usual tensor product;

• (DG−ModR,⊗, R), category of di�erential graded R-modules, where R is a
commutative ring, with its usual tensor product.

A non-symmetric example is the category of R-bimodules over a non commutative
ring R, with the tensor product ⊗R.

De�nition 1.1.4. A symmetric monoidal category E is closed if for each object X
in E , the functor −⊗ Y : E → E has a right adjoint E (Y,−).

In particular, we have a bijection

E (X ⊗ Y, Z) −→ E (X, E (Y, Z))

Example 1.1.5. All symmetric monoidal categories given in Example 1.1.3 are
closed, except (Top,×, 1).

In fact, for a topological space Y, the functor −⊗ Y cannot have a right adjoint
since it does not preserve regular epimorphisms.

De�nition 1.1.6. A monoidal category E is biclosed when, for each object X of E ,
both functors
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−⊗X : E → E and X ⊗− : E → E

have a right adjoint.

Example 1.1.7. The non-symmetric monoidal category of R-bimodules over a non
commutative ring R is biclosed.

In a symmetric monoidal category, a consequence of the symmetry is that both
functors −⊗X and X ⊗− are naturally isomorphic. Therefore, one obtains:

Lemma 1.1.8. [Bor94] A closed symmetric monoidal category E is biclosed.

Remark 1. A left unit morphism lX : I ⊗X → X is dual to the morphism

jX : I → E (X,X)

In particular, there are isomorphisms

E (X,X) ∼= E (I ⊗X,X) ∼= E (I, E (X,X))

Similarly, the right unit isomorphism rX : X ⊗ I → X is dual to the morphism

iX : X → E (I,X)

In particular, there are isomorphisms

E (X,X) ∼= E (X ⊗ I,X) ∼= E (X, E (I,X))

We provide de�nitions of the evaluation and the composition morphisms, which
are closely related.

De�nition 1.1.9. Let E be a closed symmetric monoidal category.

An evaluation morphism, called ev consists in giving, for every pair of objects
(X, Y ) in E , a morphism

evX : E (X, Y )⊗X → Y

in E .

By adjunction, the morphism ev is dual to the identity morphism

IdE(X,Y ) : E (X, Y ) → E (X, Y )

Remark 2. We will need in Chapter 3 the morphism

γY : X → E (Y,X ⊗ Y )

which is by adjunction dual to the identity morphism IdX⊗Y : X ⊗ Y → X ⊗ Y .
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Remark 3. We exhibit the universal property of the tensor-cotensor adjunction

−⊗ Y : C ⇆ D : Hom(Y,−)

The component ηX : X → Hom (Y,X ⊗ Y ) of the unit has the universal property
that every morphism f : X → Hom (Y, Z) is given in one unique way as a morphism

X
ηX−→ Hom (Y,X ⊗ Y )

Hom(Y,g)
−−−−−→ Hom (Y, Z)

for a morphism g : X ⊗ Y → Z.
Hence, one has f = ĝ = Hom (Y, g) ◦ ηX . Note that η is the dual of the co-

evaluation morphism, precisely γ.
Similarly, the component εZ : Hom (Y, Z) ⊗ Y → Z of the counit has the uni-

versal property that every morphism g : X ⊗ Y → Z is given in one unique way as
a morphism

X ⊗ Y
f⊗Y
−−→ Hom (Y, Z)⊗ Y

εZ−→ Z

for a morphism f : X → Hom (Y, Z).
Hence, one has g = f̂ = εY ◦ f ⊗ Y . Note that ε is the evaluation morphism,

precisely ev.

De�nition 1.1.10. Let E be a closed symmetric monoidal category.
A composition morphism, called c consists in giving, for every triple of objects

(X, Y, Z) in E , a morphism

cXY Z : E (Y, Z)⊗ E (X, Y ) −→ E (X,Z)

in E such that the following diagram commutes

E (Y, Z)⊗ E (X, Y )⊗X
1⊗ev //

c⊗1

��

E (Y, Z)⊗ Y

ev

��
E (X,Z)⊗X ev // Z

Diagram 1.6.

for all objects X,Y,Z in E .
The adjoint of the composition morphism is twice the evaluation morphism

ĉ = ev ◦ 1⊗ ev

Remark 4. Similarly, a composition morphism is determined by an evaluation mor-
phism, such that the following diagram commutes:

E (X, Y )⊗ E (I,X)
cIXY // E (I, Y )

E (X, Y )⊗X

1⊗iX ∼=

OO

ev // Y

iY∼=

OO
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This is a consequence of the compatibility of the unit and the associativity mor-
phisms.

In fact, by adjunction we obtain

E (X, Y ) ĉ //

E(1,iY ) ((PPPPPPPPPPPP
E (E (I,X) , E (I, Y ))

E(iX ,1)vvnnnnnnnnnnnn

E (X, E (I, Y ))

it is equivalent to

E (X, Y )
E(rX ,1) //

E(1,iX) ((QQQQQQQQQQQQQ
E (X ⊗ 1, Y )

∼=vvmmmmmmmmmmmmm

E (X, E (I, Y ))

which is equivalent to the commutativity of the following diagram

(X ⊗ Y )⊗ I
aXY I //

rX⊗Y
''OOOOOOOOOOOO

X ⊗ (Y ⊗ I)

1⊗rYwwoooooooooooo

X ⊗ Y

The commutativity of the last diagram is a consequence of the unit axiom of a
monoidal category. For more details, see [EK66]. Associativity of the composition
corresponds to the associativity of the monoidal structure.

1.2 Enriched categories

In this section, we introduce the notion of enriched categories. Almost all concepts
and results of ordinary category theory can be extended to an E-enriched context
(cf. [Bor94, Kel82]).

De�nition 1.2.1. Let E be a monoidal category. An enriched category C over E
consists in giving:

(a) A class Ob (C) of objects;

(b) For every pair of objects (X, Y ) in C, an internal object C (X, Y ) in E ;

(c) For every triple of objects (X, Y, Z) in C, a composition morphism in E

cXY Z : C (Y, Z)⊗ C (X, Y ) −→ C (X,Z) ;

(d) For every object X in C, a unit morphism in E

jX : I −→ C (X,X) ;

such that the following coherence diagrams commute:
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(C (Z, T )⊗ C (Y, Z))⊗ C (X, Y ) a //

c⊗1
��

C (Z, T )⊗ (C (Y, Z)⊗ C (X, Y ))

1⊗c
��

C (Y, T )⊗ C (X, Y )

c
**UUUUUUUUUUUUUUUUU

C (Z, T )⊗ C (X,Z)

c
ttiiiiiiiiiiiiiiiii

C (X, T )

Diagram 1.7.

I ⊗ C (X, Y ) l //

jY ⊗1

��

C (X, Y )

Id

��

C (X, Y )⊗ Iroo

1⊗jX

��
C (Y, Y )⊗ C (X, Y ) c // C (X, Y ) C (X, Y )⊗ C (X,X)coo

Diagram 1.8.

An enriched category C over E is also called a E-category.

Example 1.2.2. Taking enriched categories over di�erent examples of monoidal
categories E given in Example 1.1.3, we recover some familiar categories.

• Set−category is an ordinary (locally small) category;

• Ab−category is a linear category;

• Cat−category is a 2-category;

• DG−ModR-category is a di�erential graded category.

We further generalize other basic concepts and results of ordinary category theory
to the enriched context.

De�nition 1.2.3. Let A and B be two categories enriched over a monoidal category
E .

A E-functor (F, ϕF ) consists in giving:

(a) A functor F : A −→ B;

(b) For every object X in A, an object FX in B;
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(c) For every pair of objects (X, Y ) in A, a morphism in E

ϕF : A (X, Y ) −→ B (FX,FY )

called the enrichment morphism such that the following diagrams commute:

A (X,X)
ϕF // B (FX,FX)

I

jX

ddJJJJJJJJJJJJJJ
jFX

99rrrrrrrrrrrrrrr

Diagram 1.9. Unit axiom

A (Y, Z)⊗A (X, Y )
cXY Z //

ϕF⊗ϕF

��

A (X,Z)

ϕF

��
B (FY, FZ)⊗ B (FX,FY )

cFXFY FZ // B (FX,FZ)

Diagram 1.10. Composition axiom

De�nition 1.2.4. Let A and B be two categories enriched over a monoidal category
E and F,G : A → B two E-functors.

A E-natural transformation α : F −→ G consists in giving, for every object X
in A, a morphism

αX : I −→ B (FX,GX)

in E such that the following diagram commutes

I ⊗A (X, Y )
αY ⊗ϕF // B (FY,GY )⊗ B (FX,FY )

c

��
A (X, Y )

l−1

OO

r−1

��

B (FX,GY )

A (X, Y )⊗ I
ϕG⊗αX // B (GX,GY )⊗ B (FX,GX)

c

OO



1.2. ENRICHED CATEGORIES 15

Diagram 1.11.

for all objects X,Y in E .

Kelly [Kel82] observed that one can write the ordinary E-naturality condition
(De�nition 1.2.4) in the more compact form. We have the following de�nition:

De�nition 1.2.5. Let E be a closed symmetric monoidal category. Consider two
E-categories C and D and two E-functors F,G : C → D.

A E-natural transformation α : F −→ G consists in giving a family of morphisms
αA : FA −→ GA in D, indexed by the objects in C and such that the following
diagram

C (A,B)
ϕF //

ϕG

��

D (FA, FB)

D(1,αB)

��
D (GA,GB)

D(αA,1) // D (FA,GB)

Diagram 1.12.

commutes in E .

The composition of two enriched natural transformations is an enriched natural
transformation using De�nition 1.2.5.

Lemma 1.2.6. [Bor94] If E is a closed symmetric monoidal category, then the
category E is itself a E-category.

Remark 5.
A E-category C admits itself an underlying category C0 in the ordinary sense such
that

(a) Ob (C0) = Ob (C)

(b) MorC0 (X, Y ) = E (I, C (X, Y ))

Remark 6.

(a) Every enriched natural transformation induces a natural transformation be-
tween underlying functors (De�nition 1.2.5 with the functor (−)o everwhere).

(b) Notation: we say that the natural transformation (αX)0 : F0X ⇒ G0X extends
to an enriched natural transformation αX : FX ⇒ GX

We generalize the case of adjoint functors to the enriched context.
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De�nition 1.2.7. Let E be a closed symmetric monoidal category, A and B two
E-categories.

A couple of E-functors F : A → B, G : B → A de�nes a E-adjunction, with F
left adjoint to G and G right adjoint to F, when for every pair of objects (A,B) ∈
Ob (A )×Ob (B ) there are isomorphisms in E :

B (F (A) , B) ∼= A (A,G (B));

which are E-natural in A and B.

Proposition 1.2.8. [Bor94] Let E be a closed symmetric monoidal category. Let A
and B be two E-categories and G : B → A a E-functor. The following are equivalent:

(a) Functor G has a left E-adjoint F : A → B;

(b) For every object A in A, there is an object F (A) in B with isomorphisms

B (F (A) , B) ∼= A (A,G (B))

which are E-natural in B ∈ B.

1.3 Tensored and cotensored enriched categories

In this section, we provide de�nitions of tensored and cotensored E-categories.

De�nition 1.3.1. Let E be a closed symmetric monoidal category and C a E-
category.

The category C is called E-tensored if, for every object A in C, the functor

C (A,−) : C → E

admits a left adjoint

−⊗ A : E → C

such that:

(a) For every object A in C, there is an isomorphism

I ⊗ A ∼= A,

natural in A;

(b) For every pair of objects (X, Y ) in E and every object A in C, there is an
isomorphism

(X ⊗E Y )⊗ A ∼= X ⊗ (Y ⊗ A)

which is natural in X, Y, A.
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De�nition 1.3.2. Let E be a closed symmetric monoidal category and C a E-
category.

The category C is called E-cotensored if the functor

C (A,−) : C → E

admits a right adjoint:
A(−) : E → C

such that:

(a) For every object A in C, there is an isomorphism

AI ∼= A,

natural in A;

(b) For every pair of objects (X, Y ) in E and every object A in C, there is an
isomorphism:

AX⊗EY ∼=
(
AX

)Y

natural in X, Y, A.

Remark 7. Putting C = E , it follows from De�nition 1.3.1 and 1.3.2 that E is tensored
and cotensored over itself.

Proposition 1.3.3. Let E be a closed symmetric monoidal category and C a E-
category. Then

(a) C is tensored if and only if every E-functor C (X,−) : C → E, for an object X
in C, has a left E-adjoint −⊗X : E → C;

(b) C is cotensored if and only if every E-functor C (X,−) : C → E , for an object
X in C, has a right E-adjoint X− : E → C.

Proposition 1.3.4. [Bor94] Let E be a closed symmetric monoidal category. Let A
and B be cotensored E-categories and G : B → A a E-functor.

Then G has a left E-adjoint functor if and only if

(a) The functor G preserves cotensors;

(b) The underlying functor G0 : B0 → A0 has a left adjoint.

1.4 Monoids, monads and their algebras

Monads are important in the theory of adjoint functors and they generalize closure
operators on partially ordered sets to arbitrary categories. The notion of algebras
over a monad generalizes classical notions from universal algebra, and in this sense,
monads can be thought of as "theories".

In this section, we provide de�nitions of monoids, monads and their algebras and
indicate some elementary properties, with special emphasis on the case where the
base category is regular and the monad preserves re�exive coequalizers.
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De�nition 1.4.1. A monoid (M,m, n) in a monoidal category C consists in giving:

(a) An object M in C;

(b) Unit and multiplication morphisms n : I −→M and m :M ⊗M −→M such
that the following diagrams commute:

I ⊗M
n⊗M //

l

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

M ⊗M

m

��

M ⊗ I
M⊗noo

r

}}||
||

||
||

||
||

||
||

||
|

M

Diagram 1.13.

(M ⊗M)⊗M
a //

m⊗M

��

M ⊗ (M ⊗M)
M⊗m // M ⊗M

m

��
M ⊗M

m // M

Diagram 1.14.

Some basic examples of monoids are:

Example 1.4.2.

• A monoid in (Set,×, 1) is just a monoid in the ordinary sense;

• A monoid in (Top,×, ∗) is a topological monoid;

• A monoid in (Ab,⊗,Z) is a ring;

• A monoid in (ModR,⊗, R) is a R-algebra.

De�nition 1.4.3. Let (M,m, n) and (M ′,m′, n′) be two monoids in a monoidal
category C.

A morphism of monoids f : M → M ′ is such that the following diagrams com-
mute:
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M
f // M ′

I

n′

CC����������������

n

[[7777777777777777

Diagram 1.15.

M ⊗M
f⊗f //

m

��

M ′ ⊗M ′

m′

��
M

f // M ′

Diagram 1.16.

The monoids and the morphisms of monoids in a monoidal category C constitute
a category, written Monoids (C).

De�nition 1.4.4. A monad (T, µ, η) in a category C consists in giving:

(a) A functor T : C → C;

(b) Natural transformations η : IdC −→ T and µ : TT −→ T called the unit and
the multiplication of the monad, such that the following diagrams commute:

T
ηT //

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

TT

µ

��

T
Tηoo

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

T

Diagram 1.17.

TTT
µT //

Tµ

��

TT

µ

��
TT

µ // T
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Diagram 1.18.

Remark 8. A monad (T, µ, η) in a category C is a monoid in the category of endo-
functors of C, where the monoidal structure is given by composition of endofunctors.

De�nition 1.4.5. Let (T, µ, η) and (S, ξ, ζ) be two monads in a category C.
A morphism of monads λ : S → T consists in giving a natural transformation

λ : S → T such that the following diagrams commute:

S
λ // T

I

η

??�������������

ζ

__?????????????

Diagram 1.19.

SS
λ◦λ //

ξ

��

TT

µ

��
S

λ // T

Diagram 1.20.

The monads and the morphisms of monads in a monoidal category C constitute
a category, written Monads (C).

We can translate the notion of a monad to the enriched context.

De�nition 1.4.6. A E-monad (T, µ, η, ϕ) in a E-category C consists in giving:

(a) A E-functor (T, ϕ), where T : C → C and ϕT : E(A,B) → E(TA, TB) denotes
the enrichment morphism;

(b) E-natural transformations η : IdC −→ T and µ : TT −→ T , such that the
following diagrams commute:

T
ηT //

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

TT

µ

��

T
Tηoo

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

T
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Diagram 1.21.

TTT
µT //

Tµ

��

TT

µ

��
TT

µ // T

Diagram 1.22.

Every monoid admits an induced monad. We have the following lemma:

Lemma 1.4.7. Let E be a symmetric monoidal category and suppose that (M,m, n)
is a monoid in E .

Then we can construct a E-monad (−⊗M, η, µ) with η and µ given by:

X
ηX //

r−1

��?
??

??
??

??
??

? X ⊗M

X ⊗ I

X⊗n

??������������

Diagram 1.23.

(X ⊗M)⊗M
µX //

a

��?
??

??
??

??
??

?
X ⊗M

X ⊗ (M ⊗M)

X⊗m

??������������

Diagram 1.24.

De�nition 1.4.8. Let (T, µ, η) be a monad on a category C.
An algebra on a monad (T, µ, η) is a pair (C, ξC) consisting of an object C of C

together with a morphism ξC : TC → C such that the following diagrams commute:
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TTC
µC //

T (ξC)

��

TC

ξC

��
TC

ξC // C

Diagram 1.25.

C
ηC //

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

TC

ξC

��
C

Diagram 1.26.

An algebra on a monad (T, µ, η) is also called a T-algebra.

De�nition 1.4.9. Let (T, µ, η) be a monad on a category C. Given two T-algebras
(C, ξC) and (D, ξD) on C, a morphism

f : (C, ξC) → (D, ξD)

of T-algebras is a morphism f : C → D in C such that the following diagram
commutes

TC
T (f) //

ξC

��

TD

ξD

��
C

f // D

Diagram 1.27.

T -algebras and morhisms of T -algebras constitute a category AlgT (i.e. CT ), also
called the Eilenberg-Moore category of the monad.

The following proposition characterizes the forgetful functor UT from the cate-
gory of T -algebras to the underlying category.
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Proposition 1.4.10. [Bor94] Let (T, µ, η) be a monad on a category C. Consider
the forgetful functor

UT : AlgT −→ C

(C, ξC) −→ C(
(C, ξC)

f
−→ (D, ξD)

)
−→

(
C

f
−→ D

)

Then:

(a) UT is faithful;

(b) UT re�ects isomorphisms;

(c) UT has a left adjoint FT given by:

FT : C −→ AlgT

C −→ (TC, µC)(
C

f
−→ C ′

)
−→

(
(TC, µC)

T (f)
−−→ (TC ′, µC′)

)

Moreover, the unit of the adjunction η : IC → UTFT = T and the counit ε :
FTUT → IAlgT is given by ε(C,ξC) = ξC .

Lemma 1.4.11. ([Bor94]) Let (T, µ, η) be a monad on a category C.
For every T-algebra X, the following diagram is a coequalizer in AlgT :

TTX
µX //

T (ξX)
// TX

ξX // X

Diagram 1.28.

Moreover, the forgetful functor UT : AlgT → C takes this coequalizer to a split
coequalizer in C

TTX
µX //

T (ξX)
// TX

ηTX

~~ ξX // X

ηX

~~

Diagram 1.29.

De�nition 1.4.12. A coequalizer diagram

A
f //
g

// B

h

~~
e // C
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Diagram 1.30.

in a category C is said to be re�exive if there is a map h : B → A such that g◦h = IdB
and f ◦ h = IdB.

Proposition 1.4.13. [Lin69a] Let (T, µ, η) be a monad on a cocomplete category
C. Then the following are equivalent:

(a) The category of T-algebras has re�exive coequalizers;

(b) The category of T-algebras is cocomplete.

Proposition 1.4.14. [Lin69a] Let (S, µ̃, η̃) and (T, µ, η) be monads on a category
C. Suppose that the category of T -algebras AlgT has re�exive coequalizers.

Given a monad morphism ϕ : S → T , the induced functor G : AlgT → AlgS has
a left adjoint

F : AlgS → AlgT

Proof. For any S-algebra (X, ξX : SX → X), the T -algebra F (X, ξX) = (FX, ξFX)
is given by the following re�exive coequalizer in AlgT :

TSX
TξX //

TϕX

##HHHHHHHHHHHHH TX // FX

TTX

µX

;;vvvvvvvvvvvvv

where the common section is given by T η̃X : TX → TSX.



Chapter 2

Model category theory

In this chapter we recall the basic theory of model categories. In Section 2.1, we give
the basic de�nitions and examples of model categories. The following Section 2.2
is devoted to a standard method of constructing a model category, called Quillen's
small object argument [Qui67]. It leads to the theory of co�brantly generated model
categories. Quillen functors, their derived functors and homotopy category are stud-
ied in Section 2.3. In Section 2.4 we review the basic notions and results on monoidal
model categories. In the last section, we provide notions of realisation functor and
excision in pointed model category in order to reformulate hypothesis (d) of the
main theorem, Theorem 4.3.1. For more detailed informations on model category
theory see [Qui67, Hov99, GS07, DS95].

2.1 Model categories

Quillen was the �rst to introduce model categories in [Qui67] and, with slightly
modi�ed axioms, in [Qui69]. The terminology has changed over the years, especially
after publication of the in�uential books of Hovey [Hov99] and Hirschhorn [Hir03].

In this section we give some preliminary de�nitions and the de�nition of a model
category with some basic examples.

De�nition 2.1.1. A morphism f : X → X ′ is a retract of g : Y → Y ′ if there is a
commutative diagram

X
i //

f

��

Y
r //

g

��

X

f

��
X ′ i′ // Y ′ r′ // X ′

Diagram 2.1.

in which we have ri = IdX and r′i′ = IdX′.

25
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De�nition 2.1.2. A morphism i : A → B has the left lifting property with respect
to p : X → Y (resp. p has the right lifting property with respect to i) if in any
commutative diagram of unbroken arrows

A
f //

i

��

X

p

��
B

g //

h

=={
{

{
{

{
{

{

Y

Diagram 2.2.

there is a diagonal �ller h : B → X such that hi = f and ph = g.

De�nition 2.1.3. A (Quillen) model category consists of a category E equipped
with three subcategories cofE , weE , fibE , containing all objects of E and whose mor-
phisms are called respectively, co�brations, weak equivalences, �brations, such that
the following �ve axioms are satis�ed:

QM1 E has �nite limits and colimits;

QM2 (2 out of 3) For composable maps f and g, if two among f, g and fg are in weE
then so is the third;

QM3 (Retracts) Given maps f and g in E such that f is a retract of g; if g is a
�bration, a co�bration or a weak equivalence, then so is f .

QM4 (Lifting) The maps in cofE ∩ weE have the left lifting property with respect to
the maps in fibE ; the maps in cofE have the left lifting property with respect
to the maps in weE ∩ fibE ;

QM5 (Factorization) Any map in E factors as a map in cofE ∩ weE followed by a
map in fibE , as well as a map in cofE followed by a map in weE ∩ fibE .

The morphisms in cofE ∩weE are called acyclic co�brations and morphisms in weE ∩
fibE are called acyclic �brations.

Remark 9. Quillen [Qui67] makes a di�erence between model categories and closed
model categories. Nowadays, a Quillen model category is understood to ful�ll the
axioms QM1-QM5 of [Qui69] which implies closedness in the sense of [Qui67]. More-
over it is often the case that in QM1, existence of all colimits and limits is required
and in QM5, the factorizations are supposed to be functorial.

Example 2.1.4. Here are some standard examples of model categories. For more
details see [Hov99, DS95, GS07].

• ModR category of R-modules, where R is a Frobenius ring;

• Ch(R) category of chain complexes of modules over a ring;

• Top category of topological spaces;

• SSet category of simplicial sets (cf. Section 4.4).
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2.2 Co�brantly generated model categories

Proving that a particular category has a model structure is always di�cult. There
is, however, a standard method, initiated by Quillen himself [Qui67] and elaborated
by Bous�eld, Smith and others. This method is based on Quillen's small object
argument and leads to the concept of a co�brantly generated model category. If
a model structure is co�brantly generated, the �brations (resp. acyclic �brations)
are completely determined by the right lifting property with respect to a set of
so-called generating acyclic co�brations (resp. generating co�brations). Moreover,
the factorizations can be made functorial. Most of the model categories occuring in
literature are co�brantly generated.

De�nition 2.2.1. Let C be a cocomplete category and I a class of maps in C.

(a) A map is I-injective if it has the right lifting property with respect to the maps
in I. The class of I-injective maps is denoted I-inj.

(b) A map is an I-co�bration if it has the left lifting property with respect to I-
injective maps. The class of I-co�brations is denoted I-cof.

(c) I-cell is the subcategory of I-cof containing those morphisms that can be ob-
tained as (possibly tran�nite) composition of pushouts of maps in I.

Remark 10. For more details on the concept of trans�nite composition, as well as
on the concept of relative smallness (sometimes also called sequential smallness) cf.
[Hov99, Hir03, SS00].

The reason for considering the theory of trans�nite compositions and relative
I-cell complexes is Quillen's small object argument.

Theorem 2.2.2. Small object argument([Hov99, Hir03, SS00])
Let C be a cocomplete category and I a set of maps in C whose domains are

small relative to I-cell. Then there is a functorial factorization of any map f in C
as f = gh where g is in I-inj and h is in I-cell.

De�nition 2.2.3. A Quillen model category E is co�brantly generated if E is cocom-
plete and if there exists sets I (resp. J) of co�brations (resp. acyclic co�brations)
whose domains are relatively small with respect to I-cell (resp. J-cell), such that
fibE = J-inj and weE ∩ fibE = I-inj.

Remark 11. For a speci�c choice of I and J as in the de�nition of a co�brantly
generated model category, the maps in I will be referred to as generating co�brations
and those in J as generating acyclic co�brations. In co�brantly generated model
categories, a map may be functorially factored as an acyclic co�bration followed
by a �bration and as a co�bration followed by an acyclic �bration. Moreover, any
co�bration (resp. acyclic co�bration) is a retract of a morphism in I-cell (resp.
J-cell).

The following theorem gives two di�erent cases where one can lift a model cate-
gory on E to one on AlgT .
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Theorem 2.2.4. [SS00]
Let E be a co�brantly generated model category with generating set I (resp. J) of

co�brations (resp. acyclic co�brations). Let T be a monad on E such that AlgT is
cocomplete. Let IT (resp. JT ) denote the image under the free functor FT : E → AlgT
of I (resp. J). Assume that the domains of the morphisms in IT (resp. JT ) are
relatively small with respect to IT -cell (resp. JT -cell). Then AlgT is a co�brantly
generated model category with generating set IT (resp. JT ) of co�brations (resp.
acyclic co�brations) provided one of the following two conditions is satis�ed:

(a) JT -cell ⊂ weAlgT (where weak equivalences in AlgT are those whose underlying
map is a weak equivalence in E);

(b) Every T-algebra admits a �brant replacement; every �brant T-algebra admits
a path-object (cf.De�nition 2.2.5).

Remark 12. The proof of Theorem 2.2.4 is given in [Hov99, Hir03, SS00]. In par-
ticular, the condition (b) implies (a) by an idea contained in [Qui67]. One way to
obtain the relative smallness of the domains of the morphisms in IT (resp. JT ) is
to ask that E is locally �nitely presentable, that the domains of the morphisms in
I (resp. J) are �nitely presentable (this applies in particular to the example of
simplicial sets) and that T preserves �ltered colimits (this is sometimes expressed
in litterature by saying that T has �nite rank).

We recall here the notions of �brant and co�brant replacement in a model cate-
gory.

De�nition 2.2.5. Let ∅ and ∗ be initial and terminal objects of a model category
E . An object X is co�brant if the unique map ∅ → X is a co�bration and dually,
an object X is �brant if the unique map X → ∗ is a �bration.

More generally, a co�brant replacement for X consists of a weak equivalence
Xc → X with Xc co�brant and dually a �brant replacement for X consists of a weak
equivalence X → Xf with Xf �brant. Moreover, such replacements always exist by
the axiom QM5.

Lemma 2.2.6. ([Hov99], [Hir03])Patching lemma of Reedy
Consider the following commutative cube

Y ′ //

��

Z ′

��

X ′

==||||||||
//

��

T ′

>>}}}}}}}}

��

Y // Z

X

==||||||||
// T

>>||||||||

Diagram 2.3.
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in a model category E such that top and bottom squares are pushouts, X → Y and
X ′ → Y ′ are co�brations and the three vertical arrows X ′ → X, Y ′ → Y , T ′ → T are
weak equivalences between co�brant objects. Then the fourth vertical arrow Z ′ → Z,
is also a weak equivalence between co�brant objects.

We shall need in Chapter 4 a slightly more general form of Reedy's patching
Lemma where the pushouts are replaced by certain special homotopy pushouts which
we call homotopical cell attachments.

De�nition 2.2.7. A commutative square

X //

��

T

��
Y // Z

is called a homotopical cell attachment if X, Y, T, Z are co�brant, the vertical maps
X → Y and T → Z are co�brations and the comparison map T ∪X Y → Z is a
weak equivalence.

Remark 13. If the comparison map is an isomorphism, i.e. the square is a pushout,
we simply say that it is a cell attachment. In other words, top and bottom squares
in Reedy's patching lemma are supposed to be cell attachements. Observe that in
a cell attachment the co�brancy of T → Z is automatic (i.e. a property) while in a
homotopical cell attachment the co�brancy of T → Z is a requirement (i.e. part of
the structure).

Lemma 2.2.8. The patching lemma of Reedy remains true if top and bottom square
are just supposed to be homotopical cell attachments.

Proof. This follows from Lemma 2.2.6 and the 2 out of 3 property of weak equiva-
lences and the fact that pushouts are functorial.

Lemma 2.2.9. ([Hov99], [Hir03])Telescope lemma of Reedy
Consider the following commuting diagram of (possibly trans�nite) sequences of

composable maps

A0
i0 //

f0

��

A1
i1 //

f1

��

A2
i2 //

f2

��

....

B0
j0 // B1

j1 // B2
j2 // ....

Diagram 2.4.

where each fn is a weak equivalence, each in and jn is a co�bration and each Ai
and Bi are co�brant. Then the colimit of this diagram is a weak equivalence between
co�brant objects.
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2.3 Quillen functors and homotopy category

In this section we recall some basics about Quillen adjunctions, Quillen equivalences
and the homotopy category of a model category.

De�nition 2.3.1. Let C and D be two model categories and F : C ⇄ D : G an
adjoint pair, with F the left adjoint and G the right adjoint. We say that:

(a) A functor F : C → D is a left Quillen functor if F preserves co�brations and
acyclic co�brations;

(b) A functor G : D → C is a right Quillen functor if G preserves �brations and
acyclic �brations.

De�nition 2.3.2. We say that (F,G) is a Quillen adjunction if F is a left Quillen
functor or, equivalently, if G is a right Quillen functor.

Lemma 2.3.3. [Hov99]Brown's Lemma
In any model category the following properties hold:

(a) Any morphism between co�brant objects factors as a co�bration followed by a
retraction of an acyclic co�bration;

(b) Any morphism between �brant objects factors as a section of an acyclic �bra-
tion followed by a �bration.

Corollary 2.3.4. [Hov99]

(a) Any functor between model categories that takes acyclic co�brations to weak
equivalences (e.g. a left Quillen functor) takes weak equivalences between co�-
brant objects to weak equivalences;

(b) Any functor between model categories that takes acyclic �brations to weak
equivalences (e.g. a right Quillen functor) takes weak equivalences between
�brant objects to weak equivalences.

De�nition 2.3.5. A Quillen adjunction is a Quillen equivalence if for all co�brant
objects X in C and all �brant objects Y in D, a morphism X → GY is a weak
equivalence in C if and only if the adjoint morphism FX → Y is a weak equivalence
in D.

De�nition 2.3.6. [GS07, DS95] The homotopy category of E is a category Ho (E)
with same objects as E , and with Hom-sets given by

Ho(E)(X, Y ) = E(Xc, Yf )/ ∼

where ∼ denotes Quillen's left, resp. right homotopy (which coincide here).

Any Quillen adjunction F : C ⇄ D : G induces a derived adjunction

LF : Ho (C) ⇄ Ho (D) : RG
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between the homotopy categories (once a co�brant replacement functor for C and a
�brant replacement functor for D have been chosen). It can be shown that a Quillen
adjunction (F,G) is a Quillen equivalence if and only if the derived adjunction
(LF,RG) is an ordinary equivalence of categories.

The following theorem gives an interpretation of the homotopy category Ho(E)
of a Quillen model category E in terms of a universal property.

Theorem 2.3.7. [GS07, DS95]
The homotopy category Ho(E) of a Quillen model category E is the localization

γ : E → Ho(E) of E with respect to weE . Moreover, a morphism of E belongs to weE
if and only if γ(f) is an isomorphism.

2.4 Monoidal model categories

We review in this section the basic notions and results on monoidal model cate-
gories. The de�nition of a monoidal model category involves constraints on the
compatibility of the model structure with the closed symmetric monoidal structure.
The compatibility is expressed by pushout and unit axioms given below. These
conditions su�ce to ensure that the homotopy category inherits a closed symmetric
monoidal structure compatible with the localization functor.

De�nition 2.4.1. [Hov99, SS00] A monoidal model category E is a category full-
�lling:

(a) E is a closed symmetric monoidal category;

(b) E is a model category;

(c) For any pair of co�brations f : X → Y and g : X ′ → Y ′, the induced map

f2g : (X ⊗ Y ′)
⊔

X⊗X′

(Y ⊗X ′) → Y ⊗ Y ′

given by the pushout diagram:

X ⊗X ′
f⊗X′

//

X⊗g

��

Y ⊗X ′

j0

�� Y⊗g

��

X ⊗ Y ′
j1 //

f⊗Y ′

--

X ⊗ Y ′
⊔
X⊗X′ Y ⊗X ′

f2g

((
Y ⊗ Y ′
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Diagram 2.5.

is also a co�bration. If in addition one of the maps f or g is a weak equivalence,
then so is the map f2g;

(d) There exists a co�brant replacement of the unit Ic → I such that for any
co�brant object X, the map Ic ⊗X → I ⊗X ≃ X is a weak equivalence.

Remark 14. The condition (c) is called the pushout-product axiom of Hovey. The
condition (d) is automatically satis�ed if the unit I is co�brant.

Some of the examples of monoidal model categories are:

Example 2.4.2.

(i) The category of unbounded chain complexes of R-modules, for a commutative
ring R, Ch (R) is a monoidal model category;

(ii) The model category of simplicial sets SSet forms a monoidal model category;

(iii) The model category of pointed simplicial sets SSet∗ forms a monoidal model
category;

(iv) The model categories of k-spaces and compactly generated spaces K and T are
monoidal model categories.

The model category of topological spaces Top is not a monoidal model category
since it is not closed, i.e. there are no internal hom's without some extra-conditions.

The following proposition provides a co�brantly generated model structure on
the category of modules over a monoid.

Proposition 2.4.3. ([BM09], Proposition 2.7 (a)) Let E be a co�brantly generated
monoidal model category.

Let M be a well-pointed monoid in E i.e. a monoid whose unit: I → M is a
co�bration in E .

Then there is a co�brantly generated model structure on the category of left (right)
M-modules ModM , where a map is a weak equivalence or a �bration if and only if
it is a weak equivalence or a �bration in E .

We recall the de�nition of the monoid axiom which has an important role in
lifting the model category structure to monoids and modules.

De�nition 2.4.4. [SS00] A monoidal model category E satis�es the monoid axiom
if every map in

({cofE ∩ weE} ⊗ E)− cell

is a weak equivalence.
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Remark 15. Schwede-Shipley [SS00] showed that the monoid axiom implies the ex-
istence of a transferred model structure on the category of monoids in E , as well
as a transferred model structure on the category of modules over a general (non
necessarily well-pointed) monoid.

De�nition 2.4.5. A E-model category C over a monoidal model category E is a
category full�lling:

(a) The category C is enriched, tensored and cotensored over E ;

(b) C is a model category;

(c) For any pair of co�brations f : X → Y in E and g : X ′ → Y ′ in C, the induced
map

f2g : (X ⊗ Y ′)
⊔

X⊗X′

(Y ⊗X ′) → Y ⊗ Y ′

given by the pushout diagram

X ⊗X ′
f⊗X′

//

X⊗g

��

Y ⊗X ′

j0

�� Y⊗g

��

X ⊗ Y ′
j1 //

f⊗Y ′

--

X ⊗ Y ′
⊔
X⊗X′ Y ⊗X ′

f2g

((
Y ⊗ Y ′

Diagram 2.6.

is a co�bration in C. If in addition one of the maps f or g is a weak equivalence,
then so is the map f2g;

(d) There exists a co�brant replacement of the unit Ic → I in E such that for any
co�brant object X of C, the map Ic ⊗X → I ⊗X ≃ X is a weak equivalence
in C.

For E = SSet these are precisely Quillen's simplicial model categories.

2.5 Realisation and excision in model categories

This �nal section of Chapter 2 aims to reformulate hypothesis (d) of our main
theorem (cf. Intorduction) so as to make it easier to check. In order to do so we
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need quite a bit of additional material on model categories. The leading idea is well
known in category theory: extend properties of free T -algebras to all T -algebras by
means of their canonical presentation, cf. Lemma 1.4.11. In the model-theoretical
context, we focus on T -algebras freely generated by co�brant objects of E and want
to extend their properties to all co�brant T -algebras, provided a transferred model
structure on AlgT exists. This can be done by prolonging the canonical presentation
of a T -algebra to a simplicial �resolution�, often called bar resolution.

De�nition 2.5.1. The bar resolution B.(A) of a T -algebra A is a simplicial object
in AlgT which in degree n is de�ned by the formula Bn(A) = (FTUT )

n+1(A).
The simplicial face operators are de�ned by

∂i = (FTUT )
n−iε(FTUT )iA : Bn(A) → Bn−1(A) (for 0 ≤ i ≤ n)

and the simplicial degeneracy operators are de�ned by

si = (FTUT )
n−1FTηUT (FTUT )iA : Bn(A) → Bn+1(A) (for 0 ≤ i ≤ n)

Here εA : FTUT (A) → A denotes the counit of the adjunction FT : E ⇆ AlgT : UT
which coincides on the underlying object UT (A) with the map ξA : T (A) → A
de�ning the T -algebra structure of A.

Lemma 1.4.11 implies that the underlying simplicial object UTB.(A) in E is split
over UT (A), i.e. admits an extra simplicial degeneracy in each degree prolonging
the split coequalizer of Diagram 1.28 to the left. This implies (cf. e.g. [May72])
that UTB.(A) contains UT (A) as a simplicial deformation retract. We now assume
that the monoidal model category E has a standard system of simplices C : ∆ → E
in the sense of Berger-Moerdijk, cf. the appendix of [BM06]. This allows us to
realise the simplicial object UTB.(A) in E . We denote its realization by B(A) =
|UT (B.(A))|C . It follows from Lemma A.7 in [BM06] that B(A) contains A as a
deformation retract with respect to the interval given by the 1-truncation C0 ⇉

C1 → C0 of the cosimplicial object C. In particular, the canonical map B(A) →
UT (A) is a weak equivalence in E .

We now axiomatise Segal's [Seg74] notion of "good simplicial space" as follows.

De�nition 2.5.2. A simplicial object X. in a model category E is good if all objects
Xn are co�brant in E and all degeneracy operators si : Xn → Xn+1, 0 ≤ i ≤ n, are
co�brations in E .

A (colimit-preserving) realisation functor for simplicial objects is good if any
degree-wise weak equivalence between good simplicial objects in E realises to a weak
equivalence in E .

Observe that in a model category in which the co�brations are precisely the
monomorphisms (like for instance in the Quillen model category of simplicial sets) all
simplicial objects are good, since all objects are co�brant and degeneracy operators
always act as split monomorphisms. It is well known that the canonical realisation
functor for simplicial objects in simplicial sets is good. The canonical realisation
functor for simplicial objects in topological spaces is also good, cf. [May72].

The main technical result of this section reads then as follows, where for sim-
plicity we call a co�bration strong if domain and codomain are co�brant:



2.5. REALISATION AND EXCISION IN MODEL CATEGORIES 35

Proposition 2.5.3. Let T be a monad on a pointed model category E such that the
unit ηX : X → T (X) is a co�bration for each co�brant object X and such that T
preserves the zero-object. Assume furthermore that E has a good realisation functor
and that for each strong co�bration X → Y in E , the image T (X) → T (Y ) is a
strong co�bration and the induced map T (Y )/T (X) → T (Y/X) is weak equivalence.

Then, for any map of T -algebras f : W → W ′ for which UT (f) is a strong co�-
bration and UT (W

′/W ) is co�brant, the induced map UT (W
′)/UT (W ) → UT (W

′/W )
is a weak equivalence in E .

Proof. The bar resolution applied to the sequence W → W ′ → W ′/W de�nes a
sequence B.(W ) → B.(W

′) → B.(W
′/W ) whose underlying sequence is a sequence

of good simplicial objects in E , as follows from the assumptions made on T and
on f . The quotient UTB.(W ′)/UTB.(W ) in E is also good and contains the con-
stant simplicial object UT (W ′)/UT (W ) as a simplicial deformation retract 1. Since
the realisation functor commutes with quotients we thus get a weak equivalence
B(W ′)/B(W ) → UT (W

′)/UT (W ).
The canonical map UTB.(W

′)/UTB.(W ) → UTB.(W
′/W ) is degree-wise of the

form T n+1(Y )/T n+1(X) → T n+1(Y/X) for some strong co�bration X → Y and
hence a degree-wise weak equivalence by an easy induction. Since both simplicial
objects are good and the realisation functor is also good, we get by realisation a
weak equivalence B(W ′)/B(W ) → B(W ′/W ).

The weak equivalences B(W ′)/B(W ) → B(W ′/W ),B(W ′/W ) → UT (W
′/W )

and B(W ′)/B(W ) → UT (W
′)/UT (W ) together with the 2 out of 3 property of

weak equivalences �nally give the required weak equivalence UT (W ′)/UT (W ) →
UT (W

′/W ).

In order to extend the result of the preceding proposition to general free cell
attachments in AlgT we need to impose a further condition on the pointed model
category E .

De�nition 2.5.4. A pointed model category E satis�es excision if for any map
f : Y1 → Y2 of strong co�brations X → Y1 and X → Y2

Y1
f // Y2

X

bbEEEEEEEEEEE

<<yyyyyyyyyyy

f : Y1 → Y2 is a weak equivalence if and only if f/X : Y1/X → Y2/X is a weak
equivalence.

Observe that the "only if" part is true in any pointed model category. "Excision"
holds typically in Top∗ after Bous�eld localisation with respect to a generalised
homology theory.

1This is actually not true in general, but it holds in the case we are interested in e.g. in the
category of Γ-spaces (with values in simplicial sets).
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Proposition 2.5.5. Let E be the pointed model category with good realisation functor
and with excision. Let T be a monad which preserves the zero-object and whose unit
is a co�bration at each co�brant object. Then the following are equivalent:

(a) The forgetful functor functor takes free cell attachments in AlgT (as described
below) to homotopical cell attachments in E (cf. De�nition 2.2.7).

(b) The forgetful functor takes free cell extensions in AlgT to co�brations in E and
for any strong co�bration X → Y in E , the image T (X) → T (Y ) is a strong
co�bration and the induced map T (Y )/T (X) → T (Y/X) is a weak equivalence.

Proof. A free cell attachment is by de�nition a pushout diagram in AlgT of the form

FT (X) //

��

W

��
FT (Y ) // W ′

for any strong co�bration X → Y in E where we assume furthermore that UT (W )
is co�brant. We call the induced map W → W ′ a free cell extension.

If the forgetful functor UT takes this pushout to a homotopical cell attachment in
E , then by de�nition (cf. De�nition 2.2.7) the underlying map UT (W ) → UT (W

′) is
a strong co�bration in E , hence (a) implies the �rst half of (b). If we takeW to be the
zero-object ∗ of AlgT , then W ′ may be identi�ed with FT (Y )/FT (X) = FT (Y/X).
Moreover, the pushout of UTFT (X) → UTFT (Y ) along UTFT (X) → UT (∗) = ∗ yields
the quotient UTFT (Y )/UTFT (X), whence (since T = UTFT ) a weak equivalence
T (Y )/T (X) → T (Y/X) so that (a) implies also the second half of (b).

Now assume that (b) holds and consider the free cell attachment above. We
have to show that its image under UT is a homotopical cell attachment in E , i.e.
that the comparison map UT (W ) ∪TX T (Y ) → UT (W

′) is a weak equivalence in
E . This comparison map is a map of co�brations under UT (W ). By excision, it
is thus equivalent to show that the quotient map (UT (W ) ∪TX T (Y ))/UT (W ) →
UT (W

′)/UT (W ) is a weak equivalence.
Since the free cell attachment W → W ′ has an underlying co�bration, and

since the quotient W ′/W in AlgT is isomorphic to FT (Y )/FT (X) = FT (Y/X)
and hence has an underlying co�brant object T (Y/X), the preceding proposition
gives a canonical weak equivalence UT (W ′)/UT (W ) → UT (W

′/W ). By the 2 out
of 3 property of weak equivalences, it su�ces thus to show that the aforemen-
tioned quotient map (UT (W )∪TX T (Y ))/UT (W ) → UT (W

′)/UT (W ) composed with
UT (W

′)/UT (W ) → UT (W
′/W ) is a weak equivalence. This composite map may be

identi�ed with the canonical map T (Y )/T (X) → T (Y/X), which is a weak equiva-
lence by assumption.



Chapter 3

Tensorial strength

This chapter is devoted to some �strong� constructions obtained by using the notion
of tensorial strength. This concept has been introduced by Anders Kock [Koc72,
Koc70]. Our main contribution consists in rephrasing the main constructions of Kock
from a 2-categorical view point. This has the advantage to emphasize the relative
character of Kock's construction which originally has only been applied to enriched
monads and not to enriched functors. The 2-categorical view point illustrates very
clearly the correspondence betwen strength and enrichment.

In Section 3.1, we de�ne the notions of a strong functor, strong natural trans-
formation and strong monad. In the following section, Section 3.2, we study the
correspondence between the tensorial strength and the enrichment. This allows us
to closely relate strong and enriched functors as well as strong and enriched natural
transformations. In Section 3.3 we obtain a 2-isomorphism between the 2-category
of strong functors and natural transformations and the 2-category of E-functors and
E-natural transformations. The consequence is an equivalence between strong and
enriched monads. In Section 3.4 we use the context of Day convolution to construct
strong monads on the category EA of functors from A to E .

3.1 Strong...

In this section, using the concept of a tensorial strength, we introduce the notion
of a strong functor, followed by the notions of strong natural transformation and
strong monad [Koc72, GLLN02].

3.1.1 Strong functors

We start by transposing the notion of a functor to the strong context.

De�nition 3.1.1. Let E be a closed symmetric monoidal category. Let A and B be
two E-categories tensored over E .

A strong functor (T, σ) consists in giving:

(a) A functor T : A → B;

37
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(b) For every object X in E and A in A, a tensorial strength

σX,A : X ⊗ TA→ T (X ⊗ A)

natural in both variables, such that the following diagrams commute:

I ⊗ TA
σI,A //

lTA
''OOOOOOOOOOOOOO

T (I ⊗ A)

T (lA)
wwooooooooooooo

TA

Diagram 3.1. Unit axiom

(X ⊗ Y )⊗ TA
aX,Y,A //

σX⊗Y,A

��

X ⊗ (Y ⊗ TA)
X⊗σY,A // X ⊗ T (Y ⊗ A)

σX,Y ⊗A

��
T ((X ⊗ Y )⊗ A)

TaX,Y,A // T (X ⊗ (Y ⊗ A))

Diagram 3.2. Associativity axiom

Remark 16.

(a) One can assume that the tensor is strictly associative. Indeed, by the coher-
ence theorem of Maclane (cf. [Mac71]), Diagram 3.2 can be replaced by the
following one:

X ⊗ Y ⊗ TA
X⊗σY,A //

σX⊗Y,A ''OOOOOOOOOOOO
X ⊗ T (Y ⊗ A)

σX,Y ⊗Awwoooooooooooo

T (X ⊗ Y ⊗ A)

Diagram 3.3.

(b) A strong functor T consists in giving a functor T0 : A0 → B0 on the underlying
categories equipped with a tensorial strength and satisfying corresponding
axioms.
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There is a dual notion of tensorial strength, where T �acts� on the left. Moreover,
we could de�ne a dual strong functor.

De�nition 3.1.2. Let E be a closed symmetric monoidal category. Let A and B be
two E-categories tensored over E and a functor T : A → B.

A dual tensorial strength

σ′
A,X : TA⊗X → T (A⊗X)

is given by the following commutative diagram

TA⊗X
σ′
A,X //

aTA,X

��

T (A⊗X)

X ⊗ TA
σX,A // T (X ⊗ A)

T (aX,A)

OO

Diagram 3.4.

By composing two strong functors, we acquire another strong functor.

De�nition 3.1.3. Let E be a closed symmetric monoidal category and A, B and C
three E-categories tensored over E . Let (T1, σ1) and (T2, σ2) be two strong functors
such that T1 : A → B and T2 : B → C.

Composition of two strong functors is a strong functor (T2T1, σ2,1) where the
tensorial strength is given by the following commutative diagram

X ⊗ T2T1A
σ2,1 //

σ2 ''OOOOOOOOOOOO
T2T1 (X ⊗ A)

T2 (X ⊗ T1A)

T2(σ1)

77oooooooooooo

Diagram 3.5.

3.1.2 Strong natural transformations

Analogously, we generalize the notion of a natural transformation to the strong
context.
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De�nition 3.1.4. Let E be a closed symmetric monoidal category and A and B two
E-categories tensored over E . Let (T1, σ1),(T2, σ2) be two strong functors such that
T1, T2 : A → B.

A strong natural transformation Ψ : T1 ⇒ T2 is given by the following commuta-
tive diagram:

X ⊗ T1A
σ1 //

X⊗ΨA

��

T1 (X ⊗ A)

ΨX⊗A

��
X ⊗ T2A

σ2 // T2 (X ⊗ A)

Diagram 3.6.

Remark 17. A strong natural transformation consists in giving an ordinary natural
transformation Ψ : T1 ⇒ T2 satisfying a property of compatibility with the tensorial
strength.

3.1.3 Strong monads

Similarly, we generalize the notion of a monad.

De�nition 3.1.5. Let E be a closed symmetric monoidal category. A strong monad
(T, µ, η, σ) in a category E consists in giving:

(a) A monad (T, µ, η) in a category E ;

(b) A tensorial strength σA,B : A ⊗ TB → T (A⊗ B) natural in both variables,
such that the following four diagrams commute:

I ⊗ TA
σI,A //

lTA
''OOOOOOOOOOOOOO

T (I ⊗ A)

T (lA)
wwooooooooooooo

TA

Diagram 3.7. Unit condition for σ

(A⊗ B)⊗ TC
aA,B,C //

σA⊗B,C

��

A⊗ (B ⊗ TC)
A⊗σB,C // A⊗ T (B ⊗ C)

σA,B⊗C

��
T ((A⊗ B)⊗ C)

TaA,B,C // T (A⊗ (B ⊗ C))
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Diagram 3.8. Associativity condition for σ

A⊗ TB
σA,B // T (A⊗ B)

A⊗ B

A⊗ηB

ggOOOOOOOOOOOOO
ηA⊗B

77oooooooooooo

Diagram 3.9. Strong naturality condition for η

A⊗ T 2B
σA,TB //

A⊗µB

��

T (A⊗ TB)
T(σA,B)

// T 2 (A⊗ B)

µA⊗B

��
A⊗ TB

σA,B // T (A⊗ B)

Diagram 3.10. Strong naturality condition for µ

Remark 18.

(a) Tabareau [Tab08] de�nes left and right strong monads. Indeed, in the context
of Tabareau, De�nition 3.1.5 corresponds to the right strong monad and a left
strong monad corresponds to a monad with a dual tensorial strength σ′

A,B :
TA ⊗ B → T (A ⊗ B) and satisfying the commutativity conditions of dual
diagrams. Furthermore, when the monoidal category E is symmetric, a right
strong monad admits automatically a dual tensorial strength, which makes the
monad strong at right and left:

σ′
A,B = T (aB,A) ◦ σB,A ◦ aTA,B

(b) One can assume that the tensor is strictly associatif. Indeed, by the coherence
theorem of Maclane (cf. [Mac71]), one can replace Diagram 3.8 by the following
one:

A⊗ B ⊗ TC
A⊗σB,C //

σA⊗B,C ''OOOOOOOOOOOO
A⊗ T (B ⊗ C)

σA,B⊗Cwwoooooooooooo

T (A⊗ B ⊗ C)

Diagram 3.11.
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We will use this simpli�cation, i.e. Diagram 3.11 instead of Diagram 3.8 for
the rest of the thesis.

(c) The unit and the associativity axioms simply translate the fact that we re-
quire for T to be a strong functor. On the other hand, the strong naturality
conditions for η and µ translate the fact that we require for η and µ to be
strong natural transformations.

We can require in addition for the tensorial strength to be an isomorphism. Then
we have the following de�nition of a very strong monad.

De�nition 3.1.6. A very strong monad (T, µ, η, σ) in the category E consists in
giving a strong monad (T, µ, η, σ) such that the tensorial strength

σX,Y : X ⊗ TY
∼=
−→ T (X ⊗ Y )

is an isomorphism for X, Y in E .

Remark 19. Strong monads and morphisms of strong monads in a monoidal category
E constitute a category, written StMonads (E).

Similarly, very strong monads and morphisms of very strong monads in a monoidal
category E constitute a category, written V StMonads (E).

Remark 20. We have the following inclusion of categories:

V StMonads (E) ⊂ StMonads (E) ⊂Monads (E)

Proposition 3.1.7. (cf. [BM09], Proposition1.9) Let E be a monoidal category.
There is a correspondence between:

(a) The category of very strong monads V StMonads (E);

(b) The category of monoids Monoids (E).

More precisely, the functor which associates to a monoid its induced strong monad
is fully faithful and its essential image consists of the very strong monads.

Proof.
In the category of very strong monads V StMonads (E) the tensorial strength is an
isomorphism. In particular we have:

X ⊗ T (I) ∼= T (X ⊗ I) ∼= T (X)

Hence for every monad T, we obtain an object T (I) in E , which has a structure of
a monoid (see Proposition 4.2.4).

On the other hand, since every monoid M in E induces a monad − ⊗M in E ,
the category of monoids Monoids (E) induces the category of very strong monads
V StMonads (E).
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3.2 Strength and enrichment

In this section, we establish a correspondence between the tensorial strength and
the enrichment. This leads us naturally to study the relations between strong func-
tors and enriched functors, as well as between strong natural transformations and
enriched natural transformations.

3.2.1 Correspondence between strength and enrichment

In order to relate the tensorial strength and the enrichment, we de�ne a tensorial
strength associated to an enrichment and vice-versa.

De�nition 3.2.1. Let E be a closed symmetric monoidal category. Let A and B
be two categories tensored over E and let (T, ϕ) : A → B be a E-functor where
ϕA,B : A (A,B) → B (TA, TB) denotes the enrichment.

We de�ne a tensorial strength σX,A : X ⊗ TA → T (X ⊗ A) by the following
commutative diagram:

X ⊗ TA
σX,A //

γA⊗TA

��

T (X ⊗ A)

A (A,X ⊗ A)⊗ TA
ϕA,X⊗A⊗TA

// B (TA, T (X ⊗ A))⊗ TA

evTA

OO

Diagram 3.12.

Remark 21. By adjunction, the diagram 3.12 is equivalent to:

X
σ̂X,A //

γA

��

B (TA, T (X ⊗ A))

A (A,X ⊗ A)
ϕA,X⊗A // B (TA, T (X ⊗ A))

Diagram 3.13.

Hence, we have σ̂ = ϕ ◦ γ.

De�nition 3.2.2. Let E be a closed symmetric monoidal category. Let A and B be
two categories tensored over E and let T : A → B be a functor.
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To a tensorial strength σX,A : X⊗TA→ T (X ⊗ A) we associate an enrichment
ϕA,B : A (A,B) → B (TA, TB) by the following commutative diagram:

A (A,B)
ϕA,B //

γTA

��

B (TA, TB)

B (TA,A (A,B)⊗ TA)
B(TA,σA(A,B),A)

// B (TA, T (A (A,B)⊗ A))

B(TA,T (ev))

OO

Diagram 3.14.

Remark 22. By adjunction, the diagram 3.14 is equivalent to:

A (A,B)⊗ TA
ϕ̂A,B // TB

A (A,B)⊗ TA
σA(A,B),A // T (A (A,B)⊗ A)

T (evA)

OO

Diagram 3.15.

Hence we have ϕ̂ = T (ev) ◦ σ.

The following lemma provides a correspondence between an enrichment and a
tensorial strength.

Lemma 3.2.3. There is a canonical correspondence between:

(a) An enrichment of the functor T:

ϕA,B : A (A,B) → B (TA, TB)

(b) A tensorial strength for the functor T:

σX,A : X ⊗ TA→ T (X ⊗ A)

;

i.e. the two constructions are mutually inverse.
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Proof. First, we prove that enrichment of the functor T determins the tensorial
strength.

We need to prove the commutativity of the following diagram

X ⊗ TA
σX,A //

γA⊗1

��

T (X ⊗ A)

A (A,X ⊗ A)⊗ TA

γTA⊗1

��

B (TA, T (X ⊗ A))⊗ TA

ev

OO

B (TA,A (A,X ⊗ A)⊗ TA)⊗ TA
B(TA,σ)⊗1 // B (TA, T (A (A,X ⊗ A)⊗ A))⊗ TA

B(TA,T (ev))⊗1

OO

By adjunction, this diagram is equivalent to the following one

X
σ̂X,A //

γA

��

B (TA, T (X ⊗ A))

A (A,X ⊗ A)

γTA

��

B (TA, T (X ⊗ A))

B (TA,A (A,X ⊗ A)⊗ TA)
B(TA,σ) // B (TA, T (A (A,X ⊗ A)⊗ A))

B(TA,T (ev))

OO

Once again, by adjunction and using the fact that the adjoint of the morphism
γTA ◦ γA is γA ⊗ TA, we obtain

X ⊗ TA
σX,A //

γA⊗1

��

T (X ⊗ A)

A (A,X ⊗ A)⊗ TA
σA(A,X⊗A),A // T (A (A,X ⊗ A)⊗ A)

T (ev)

OO

Using the naturality of σ, this diagram is equivalent to

X ⊗ TA
σX,A //

σX,A

��

T (X ⊗ A)

T (X ⊗ A)
T (γA⊗A) // T (A (A,X ⊗ A)⊗ A)

T (ev)

OO
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But γ̂A = 1X⊗A, hence T (ev) ◦ T (γA ⊗ A) = T (γ̂A) = 1T (X⊗A).

Therefore, this diagram commutes and the family (a) determins (b).

It remains to prove that the tensorial strength determins the enrichment of the
functor T.

Extending de�nitions

A (A,B)
ϕA,B //

γTA

��

B (TA, TB)

B (TA,A (A,B)⊗ TA)

B(TA,γA⊗TA)

��

B (TA, T (A (A,B)⊗ A))

B(TA,T (ev))

OO

B (TA,A (A,A (A,B)⊗ A)⊗ TA)
B(TA,ϕ⊗TA)// B (TA,B (TA, T (A (A,B)⊗ A))⊗ TA)

B(TA,ev)

OO

By adjunction, this diagram is equivalent to

A (A,B)⊗ TA
ϕ̂A,B // TB

A (A,B)⊗ TA

γA⊗TA

��

T (A (A,B)⊗ A)

T (ev)

OO

A (A,A (A,B)⊗ A)⊗ TA
ϕ⊗TA // B (TA, T (A (A,B)⊗ A))⊗ TA

ev

OO

Once again, by adjunction and using the fact that the adjoint of the morphism
T (ev) ◦ ev is B (1, T (ev)), we have

A (A,B)
ϕA,B //

γA

��

B (TA, TB)

A (A,A (A,B)⊗ A)
ϕA,A(A,B)⊗A // B (TA, T (A (A,B)⊗ A))

B(1,T (ev))

OO
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By naturality of ϕ, this diagram is equivalent to

A (A,B)
ϕA,B //

γA

��

B (TA, TB)

A (A,A (A,B)⊗ A)
A(1,ev) // A (A,B)

ϕA,B

OO

But one has êv = A (A, ev) ◦ γA = 1A(A,B).
Therefore, this diagram commutes and the family (b) determins (a) i.e. the two

constructions are mutually inverse.

3.2.2 Strong and enriched functors

Once we have the correspondence between a tensorial strength and an enrichment
(Lemma 3.2.3), we can closely relate strong and enriched functors.

Proposition 3.2.4. Let E be a closed symmetric monoidal category. Given two cat-
egories A and B tensored over E and a functor T : A → B, the following conditions
are equivalent:

(a) A functor T extends to a strong functor (T, σ);

(b) A functor T extends to a E-functor (T, ϕ).

Proof. First, we prove that (a) implies (b).
More precisely, if the tensorial strength σX,A satis�es the unit and the associativ-

ity axioms, then the enrichment ϕA,B satis�es the unit and the composition axioms.
First, we prove that ϕA,B satis�es the unit axiom

I

jA ''OOOOOOOOOOOOOO
jTA // B (TA, TA)

A (A,A)

ϕAA

77oooooooooooo

By adjunction, this diagram is equivalent to the following one

I ⊗ TA
lTA //

jA⊗TA

��

TA

A (A,A)⊗ TA
ϕA,A⊗TA

// B (TA, TA)⊗ TA

ev

OO

But, we know that ev ◦ ϕ⊗ 1 = ϕ̂ = T (ev) ◦ σ.
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Hence, this diagram is equivalent to

I ⊗ TA
lTA //

jA⊗TA

��

TA

A (A,A)⊗ TA
σA(A,A),TA // T (A (A,A)⊗ A)

T (ev)

OO

By naturality of σ

I ⊗ TA
lTA //

σI,A

��

TA

T (I ⊗ A)
T (jA⊗A) // T (A (A,A)⊗ A)

T (ev)

OO

But ĵA = lA, hence T (ev) ◦ T (jA ⊗ A) = T (lA).

Therefore, we have the following diagram

I ⊗ TA
σI,A //

lTA
''OOOOOOOOOOOOOO

T (I ⊗ A)

T (lA)
wwooooooooooooo

TA

which clearly commutes by the unit axiom of σ.

Secondly, we prove that ϕA,B satis�es the composition axiom

A (B,C)⊗A (A,B)
cABC //

ϕB,C⊗ϕA,B

��

A (A,C)

ϕA,C

��
B (TB, TC)⊗ B (TA, TB)

cTATBTC // B (TA, TC)
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By adjunction, this diagram is equivalent to the following one

A (B,C)⊗A (A,B)⊗ TA
c⊗TA //

ϕB,C⊗ϕA,B⊗TA

��

A (A,C)⊗ TA

ϕA,C⊗TA

��
B (TB, TC)⊗ B (TA, TB)⊗ TA

c⊗TA

��

B (TA, TC)⊗ TA

ev

��
B (TA, TC)⊗ TA

ev // TC

But ϕ̂ = T (ev) ◦ σ, hence ev ◦ ϕ⊗ 1 = T (ev) ◦ σ.
Therefore, the previous diagram is equivalent to the following one

A (B,C)⊗A (A,B)⊗ TA
c⊗TA //

ϕB,C⊗ϕA,B⊗TA

��

A (A,C)⊗ TA

σA(A,C),A

��
B (TB, TC)⊗ B (TA, TB)⊗ TA

c⊗TA

��

T (A (A,C)⊗ A)

T (ev)

��
B (TA, TC)⊗ TA

ev // TC

By naturality of σ

A (B,C)⊗A (A,B)⊗ TA
σA(B,C)⊗A(A,B),A //

ϕB,C⊗ϕA,B⊗TA

��

T (A (B,C)⊗A (A,B)⊗ A)

T (c⊗A)

��
B (TB, TC)⊗ B (TA, TB)⊗ TA

c⊗TA

��

T (A (A,C)⊗ A)

T (ev)

��
B (TA, TC)⊗ TA

ev // TC

By de�nition of composition ev ◦ c⊗ 1 = ev ◦ 1⊗ ev, we have
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A (B,C)⊗A (A,B)⊗ TA
σA(B,C)⊗A(A,B),A //

ϕB,C⊗ϕA,B⊗TA

��

T (A (B,C)⊗A (A,B)⊗ A)

T (A(B,C)⊗ev)

��
B (TB, TC)⊗ B (TA, TB)⊗ TA

B(TB,TC)⊗ev

��

T (A (B,C)⊗ B)

T (ev)

��
B (TB, TC)⊗ TB ev // TC

Once again, using the equality ϕ̂ = T (ev) ◦ σ

A (B,C)⊗A (A,B)⊗ TA
σA(B,C)⊗A(A,B),A //

ϕB,C⊗A(A,B)⊗TA

��

T (A (B,C)⊗A (A,B)⊗ A)

T (A(B,C)⊗ev)

��
B (TB, TC)⊗A (A,B)⊗ TA

B(TB,TC)⊗σ

��

T (A (B,C)⊗ B)

T (ev)

��

B (TB, TC)⊗ T (A (A,B)⊗ A)

B(TB,TC)⊗T (ev)

��
B (TB, TC)⊗ TB

ev // TC
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Then, by bifunctoriality of tensor product

A (B,C)⊗A (A,B)⊗ TA
σA(B,C)⊗A(A,B),A //

A(B,C)⊗σ

��

T (A (B,C)⊗A (A,B)⊗ A)

T (A(B,C)⊗ev)

��
A (B,C)⊗ T (A (A,B)⊗ A)

A(B,C)⊗T (ev)

��

T (A (B,C)⊗ B)

T (ev)

��

A (B,C)⊗ TB

ϕB,C⊗TB

��
B (TB, TC)⊗ TB ev // TC

Using the equality ev ◦ ϕ⊗ 1 = T (ev) ◦ σ once again

A (B,C)⊗A (A,B)⊗ TA
σA(B,C)⊗A(A,B),A //

A(B,C)⊗σ

��

T (A (B,C)⊗A (A,B)⊗ A)

T (A(B,C)⊗ev)

��
A (B,C)⊗ T (A (A,B)⊗ A)

A(B,C)⊗T (ev)

��

T (A (B,C)⊗ B)

T (ev)

��

A (B,C)⊗ TB

σA(B,C),B

��
T (A (B,C)⊗ B)

T (ev) // TC
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Finally, by naturality of σ

A (B,C)⊗A (A,B)⊗ TA
σA(B,C)⊗A(A,B),A //

A(B,C)⊗σ

��

T (A (B,C)⊗A (A,B)⊗ A)

T (A(B,C)⊗ev)

��

A (B,C)⊗ T (A (A,B)⊗ A)

σ

��
T (A (B,C)⊗A (A,B)⊗ A)

T (A(B,C)⊗ev) // T (A (B,C)⊗ B)

Therefore, we have the following diagram

A (B,C)⊗A (A,B)⊗ TA
A(B,C)⊗σ //

σ

''OOOOOOOOOOOOOOOOOO
A (B,C)⊗ T (A (A,B)⊗ A)

σ

wwoooooooooooooooooo

T (A (B,C)⊗A (A,B)⊗ A)

which clearly commutes by the associativity axiom of σ.
Hence ϕA,B satis�es the composition axiom.
It remains to prove that (b) implies (a). First, we prove that σA,B satis�es the

unit axiom

I ⊗ TA
lTA //

σI,A ''OOOOOOOOOOOO TA

T (I ⊗ A)

T (lA)

77ooooooooooooo

By de�nition of σ

I ⊗ TA

γA⊗A

��

lTA // TA

A (A, I ⊗ A)⊗ TA

ϕA,I⊗A⊗TA

��
B (TA, T (I ⊗ A))⊗ TA

ev // T (I ⊗ A)

T (lA)

OO
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By naturality of ev

I ⊗ TA

γA⊗A

��

lTA // TA

A (A, I ⊗ A)⊗ TA

ϕA,I⊗A⊗TA

��
B (TA, T (I ⊗ A))⊗ TA

B(TA,T (lA))⊗TA // B (TA, TA)⊗ TA

ev

OO

Then by adjunction

I

γA

��

jTA // B (TA, TA)

A (A, I ⊗ A)

ϕA,I⊗A

��
B (TA, T (I ⊗ A))

B(TA,T (lA)) // B (TA, TA)

By naturality of ϕ

I

γA

��

jTA // B (TA, TA)

A (A, I ⊗ A)
A(A,lA) // A (A,A)

ϕA,A

OO

Furthermore, we have ĵA = lA = ev ◦ jA ⊗ 1. Hence this diagram is equivalent to

I

γA

��

jTA // B (TA, TA)

A (A, I ⊗ A)

A(A,jA⊗A)

��
A (A,A (A,A)⊗ A)

A(A,ev) // A (A,A)

ϕA,A

OO
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Finally, by naturality of γ

I

jA

��

jTA // B (TA, TA)

A (A,A)

γA

��
A (A,A (A,A)⊗ A)

A(A,ev) // A (A,A)

ϕA,A

OO

But we have A (A, ev) ◦ γA = 1A(A,A). Hence, we have the following diagram

I

jA ''OOOOOOOOOOOOOO
jTA // B (TA, TA)

A (A,A)

ϕA,A

77oooooooooooo

which clearly commutes by the unit axiom of ϕ.

Finally, we prove that σA,B satis�es the associativity axiom

X ⊗ Y ⊗ TA
σX⊗Y,A //

1⊗σY,A ''OOOOOOOOOOOO
T (X ⊗ Y ⊗ A)

X ⊗ T (Y ⊗ A)

σX,Y ⊗A

77oooooooooooo

Extending de�nitions

X ⊗ Y ⊗ TA
σX⊗Y,A //

1⊗γA⊗1

��

T (X ⊗ Y ⊗ A)

X ⊗A (A, Y ⊗ A)⊗ TA

1⊗ϕ⊗1

��
X ⊗ B (TA, T (Y ⊗ A))⊗ TA

1⊗ev

��

B (T (Y ⊗ A) , T (X ⊗ Y ⊗ A))⊗ T (Y ⊗ A)

ev

OO

X ⊗ T (Y ⊗ A)
γY ⊗A⊗1 // A (Y ⊗ A,X ⊗ Y ⊗ A)⊗ T (Y ⊗ A)

ϕ⊗1

OO
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By bifunctoriality of tensor product

X ⊗ Y ⊗ TA
σX⊗Y,A //

γY ⊗A⊗γA⊗1

��

T (X ⊗ Y ⊗ A)

A (Y ⊗ A,X ⊗ Y ⊗ A)⊗A (A, Y ⊗ A)⊗ TA

ϕ⊗ϕ⊗1

&&MMMMMMMMMMMMMMMMMMMMMM
B (T (Y ⊗ A) , T (X ⊗ Y ⊗ A))⊗ T (Y ⊗ A)

ev

OO

B (T (Y ⊗ A), T (X ⊗ Y ⊗ A))⊗ B (TA, T (Y ⊗ A))⊗ TA

1⊗ev

88qqqqqqqqqqqqqqqqqqqqqq

Furthermore, by de�nition of composition ev ◦ 1⊗ ev = ev ◦ c⊗ 1, we have

X ⊗ Y ⊗ TA
σX⊗Y,A //

γY ⊗A⊗γA⊗1

��

T (X ⊗ Y ⊗ A)

A (Y ⊗ A,X ⊗ Y ⊗ A)⊗A (A, Y ⊗ A)⊗ TA

ϕ⊗ϕ⊗1

&&MMMMMMMMMMMMMMMMMMMMMM
B (TA, T (X ⊗ Y ⊗ A))⊗ TA

ev

OO

B (T (Y ⊗ A), T (X ⊗ Y ⊗ A))⊗ B (TA, T (Y ⊗ A))⊗ TA

c⊗1

88qqqqqqqqqqqqqqqqqqqqqq

By the composition axiom of ϕ, we have c ◦ ϕ⊗ ϕ = ϕ ◦ c

X ⊗ Y ⊗ TA
σX⊗Y,A //

γY ⊗A⊗γA⊗1

��

T (X ⊗ Y ⊗ A)

A (Y ⊗ A,X ⊗ Y ⊗ A)⊗A (A, Y ⊗ A)⊗ TA

c⊗1

&&MMMMMMMMMMMMMMMMMMMMMM
B (TA, T (X ⊗ Y ⊗ A))⊗ TA

ev

OO

A (A,X ⊗ Y ⊗ A)⊗ TA

ϕ⊗1

88qqqqqqqqqqqqqqqqqqqqqq

To conclude this proof, we need the following result

Lemma 3.2.5. Let E be a closed symmetric monoidal category. Let A and B be two
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categories tensored over E . The following diagram is commutative

A⊗ B
γC //

γB⊗C⊗γC

&&MMMMMMMMMMMMMMMMM
A (C,A⊗ B ⊗ C)

A (B ⊗ C,A⊗ B ⊗ C)⊗A (C,B ⊗ C)

c

88qqqqqqqqqqqqqqqq

Proof. By adjunction, this diagram is equivalent to

A⊗ B ⊗ C

γB⊗C⊗γC⊗1

��

A⊗ B ⊗ C

A (B ⊗ C,A⊗ B ⊗ C)⊗A (C,B ⊗ C)⊗ C
c⊗1 // A (C,A⊗ B ⊗ C)

ev

OO

By de�nition of composition ev ◦ c⊗ 1 = ev ◦ 1⊗ ev, we have

A⊗ B ⊗ C

γB⊗C⊗1⊗1

��

A (B ⊗ C,A⊗ B ⊗ C)⊗ B ⊗ C
evoo

A (B ⊗ C,A⊗ B ⊗ C)⊗ B ⊗ C
1⊗γC⊗1 // A (B ⊗ C,A⊗ B ⊗ C)⊗A (C,B ⊗ C)⊗ C

1⊗ev

OO

But we have γ̂ = ev ◦ γ ⊗ 1 = 1, hence this diagram clearly commutes.

Going back to the proof of Proposition 3.2.4. By Lemma 3.2.5, the diagram is
equivalent to

X ⊗ Y ⊗ TA
σX⊗Y,A //

γA⊗1

��

T (X ⊗ Y ⊗ A)

A (A,X ⊗ Y ⊗ A)⊗ TA
ϕ⊗1 // B (TA, T (X ⊗ Y ⊗ A))⊗ TA

ev

OO

which commutes by de�nition of σX,A.

The following lemma provides the correspondence between the composite strength
and the composite enrichment.

Lemma 3.2.6. Let E be a closed symmetric monoidal category. Given three E-
categories A, B and C tensored over E , let T1 : A → B and T2 : B → C be two
functors.

The composite strength

σ2,1 : A⊗ T2T1B
σ2−→ T2 (A⊗ T1B)

T2(σ1)
−−−→ T2T1 (A⊗ B)
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corresponds to the composite enrichment

ϕ2 ◦ ϕ1 : A (A,B)
ϕ1
−→ B (T1A, T1B)

ϕ2
−→ C (T2T1A, T2T1B)

Proof. To prove that the two composits correspond mutually, we need to see that

ϕ̂2 ◦ ϕ1 = T2T1(ev) ◦ T2(σ1) ◦ σ2

We want to prove the commutativity of the following diagram

A (A,B)⊗ T2T1A
ϕ1⊗T2T1A //

σ2

��

B (T1A, T1B)⊗ T2T1A

ϕ2⊗T2T1A

��
T2 (A (A,B)⊗ T1A)

T2(σ1)

��

C (T2T1A, T2T1B)⊗ T2T1A

ev

��
T2T1 (A (A,B)⊗ A)

T2T1(ev) // T2T1B

But we have ev ◦ ϕ2 ⊗ 1 = ϕ̂2 and ϕ̂2 = T2(ev) ◦ σ2, hence

A (A,B)⊗ T2T1A
ϕ1⊗T2T1A //

σ2

��

B (T1A, T1B)⊗ T2T1A

σ2

��
T2 (A (A,B)⊗ T1A)

T2(ϕ1⊗T2T1A) //

T2(σ1)

��

T2 (B (T1A, T1B)⊗ T1A)

T2(ev)

��
T2T1 (A (A,B)⊗ A)

T2T1(ev) // T2T1B

The upper diagram commutes by naturality of σ2. Observing the lower diagram,
on the one side we have

T2(ev) ◦ T2(ϕ1 ⊗ 1) = T2(ev ◦ ϕ1 ⊗ 1) = T2(ϕ̂1)

and on the other

T2T1(ev) ◦ T2(σ1) = T2(T1(ev) ◦ σ1) = T2(ϕ̂1)

Hence, the lower diagram also commutes.
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3.2.3 Strong and enriched natural transformations

Once we have an equivalence between strong and enriched functors (Proposition
3.2.4), the natural way is to relate strong and enriched natural transformations.

Proposition 3.2.7. Let E be a closed symmetric monoidal category. Let A and B be
two E-categories and T1, T2 : A → B two E-functors. Given a natural transformation
Ψ : T1 ⇒ T2, the following conditions are equivalent:

(a) The natural transformation Ψ extends to a strong natural transformation;

(b) The natural transformation Ψ extends to a E-natural transformation.

Proof. We need to prove that the following diagram commutes

A (A,B)
ϕ1 //

ϕ2

��

B (T1A, T1B)

B(T1A,ΨB)

��
B (T2A, T2B)

B(ΨA,T2B) // B (T1A, T2B)

By adjunction, this diagram is equivalent to

A (A,B)⊗ T1A
ϕ̂1 //

A(A,B)⊗ΨA

��

T1B

ΨB

��
A (A,B)⊗ T2A

ϕ̂2 // T2B

But we have ϕ̂ = T (ev) ◦ σ, hence

A (A,B)⊗ T1A
σ1 //

A(A,B)⊗ΨA

��

T1 (A (A,B)⊗ A)
T1(ev) // T1B

ΨB

��
A (A,B)⊗ T2A

σ2 // T2 (A (A,B)⊗ A)
T2(ev) // T2B

By naturality of Ψ

A (A,B)⊗ T1A
σ1 //

A(A,B)⊗ΨA

��

T1 (A (A,B)⊗ A) Ψ // T2 (A (A,B)⊗ A)

T2(ev)

��
A (A,B)⊗ T2A

σ2 // T2 (A (A,B)⊗ A)
T2(ev) // T2B
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But this diagram is equivalent to the following diagram

A (A,B)⊗ T1A
σ1 //

A(A,B)⊗ΨA

��

T1 (A (A,B)⊗ A)

Ψ

��
A (A,B)⊗ T2A

σ2 // T2 (A (A,B)⊗ A)

which is commutative, since Ψ is a strong natural transformation.
It remains to prove that Ψ extends to a strong natural transformation. We have

to prove that the following diagram commutes

X ⊗ T1A
σ1 //

X⊗ΨA

��

T1 (X ⊗ A)

ΨX⊗A

��
X ⊗ T2A

σ2 // T2 (X ⊗ A)

By adjunction, this diagram is equivalent to

X
σ̂1 //

σ̂2

��

B (T1A, T1 (X ⊗ A))

B(T1A,ΨX⊗A)

��
B (T2A, T2 (X ⊗ A))

B(ΨA,T2(X⊗A)) // B (T1A, T2 (X ⊗ A))

But we have σ̂ = ϕ ◦ γ, hence

X
γA //

γA

��

A (A,X ⊗ A)
ϕ1 // B (T1A, T1 (X ⊗ A))

B(T1A,ΨX⊗A)

��

A (A,X ⊗ A)

ϕ2

��
B (T2A, T2 (X ⊗ A))

B(ΨA,T2(X⊗A)) // B (T1A, T2 (X ⊗ A))

and this diagram is equivalent to the following one

A (A,X ⊗ A)
ϕ1 //

ϕ2

��

B (T1A, T1 (X ⊗ A))

B(T1A,ΨX⊗A)

��
B (T2A, T2 (X ⊗ A))

B(ΨA,T2(X⊗A)) // B (T1A, T2 (X ⊗ A))
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which is commutative, since Ψ is a E-natural transformation.

Lemma 3.2.8. Let E be a closed symmetric monoidal category and let A and B be
two tensored E-categories. Given three E-functors T1, T2, T3 : A → B, let α : T1 ⇒ T2
and β : T2 ⇒ T3 be two E-natural transformations.

Then the composite β ◦ α of two E-natural transformations coressponds to the
composite β ◦ α of two strong natural transformations.

Proof. Consider three E-functors (T1, ϕ1), (T2, ϕ2), (T1, ϕ3). Using De�nition 1.2.5,
the composite β ◦ α : T1 ⇒ T3 of two E-natural transformations is a E-natural
transformation given by the following commutative diagram

A (A,B)
ϕ1 //

ϕ3

��

B (T1A, T1B)

B(α−1
A
,αB)

��
B (T3A, T3B)

B(βA,β−1
B )

// B (T2A, T2B)

Diagram 3.16.

Similarly, consider three strong functors (T1, σ1), (T2, σ2), (T1, σ3). Using De�nition
3.1.4 the composite β ◦α : T1 ⇒ T3 of two strong natural transformations is a strong
natural transformation given by the following commutative diagram

X ⊗ T1A
σ1 //

X⊗(β◦α)A

��

T1 (X ⊗ A)

(β◦α)X⊗A

��
X ⊗ T3A

σ3 // T3 (X ⊗ A)

Diagram 3.17.

We prove that Diagram 3.17 commutes using the commutativity of Diagram
3.16.

By adjunction, Diagram 3.17 is equivalent to

X
σ̂1 //

σ̂3

��

B (T1A, T1 (X ⊗ A))

B(1,(β◦α)X⊗A)

��
B (T3A, T3 (X ⊗ A))

B((β◦α)A,1) // B (T1A, T3 (X ⊗ A))
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But we have σ̂ = ϕ ◦ γ, hence

X
γA //

γA

��

A (A,X ⊗ A)
ϕ1 // B (T1A, T1 (X ⊗ A))

B(1,(β◦α)X⊗A)

��

A (A,X ⊗ A)

ϕ3

��
B (T3A, T3 (X ⊗ A))

B((β◦α)A,1) // B (T1A, T3 (X ⊗ A))

But this diagram is equivalent to the following one

A (A,X ⊗ A)
ϕ1 //

ϕ3

��

B (T1A, T1 (X ⊗ A))

B(1,αX⊗A)

��
B (T3A, T3 (X ⊗ A))

B(βA,1)

��

B (T1A, T2 (X ⊗ A))

B(1,βX⊗A)

��
B (T2A, T3 (X ⊗ A))

B(αA,1) // B (T1A, T3 (X ⊗ A))

Since α and β are E-natural transformations, we have B (1, α) ◦ ϕ1 = B (α, 1) ◦ ϕ2

and B (β, 1) ◦ ϕ3 = B (1, β) ◦ ϕ2. Hence

A (A,X ⊗ A)
ϕ2 //

ϕ2

��

B (T2A, T2 (X ⊗ A))

B(αA,1)

��
B (T2A, T2 (X ⊗ A))

B(1,βX⊗A)

��

B (T1A, T2 (X ⊗ A))

B(1,βX⊗A)

��
B (T2A, T3 (X ⊗ A))

B(αA,1) // B (T1A, T3 (X ⊗ A))

But this diagram is equivalent to the following one

B (T2A, T2 (X ⊗ A))
B(αA,1) //

B(1,βX⊗A)

��

B (T1A, T2 (X ⊗ A))

B(1,βX⊗A)

��
B (T2A, T3 (X ⊗ A))

B(αA,1) // B (T1A, T3 (X ⊗ A))

which clearly commutes.
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3.3 The canonical 2-isomorphism between StrongCat

and E−Cat

In this section, we state the main theorem of this chapter, Theorem 3.3.5 which shows
that there is a 2-isomorphism between the 2-category of strong functors and natural
transformations and the 2-category of E-functors and E-natural transformations. It
is followed by Corollary 3.3.6 which relates strong and enriched monads.

In order to do that we will need somme background on the language of 2-
categories.

3.3.1 2-Categories

While a category has just objects and arrows, the category of categories and functors
can be provided with additional devices, namely natural transformations between
functors. This leads to the richer notion of a 2-category, where besides objects and
arrows one gives also 2-cells between the arrows. Analogously, there are correspond-
ing enrichments of the notions of functor, natural transformation, adjoint functors
and so on.

In this subsection, we give basic de�nition and examples of 2-categories [Kel82,
KS74].

De�nition 3.3.1. A 2-category C consists in giving:

(a) A class C0, whose objects are called 0-cells;

(b) For every pair of objects (X, Y ) in C, a category C (X, Y ) whose

• Objects f : X → Y are called 1-cells;

• Morphisms α : f ⇒ g are called 2-cells; their composition ◦1 is called
vertical composition.

(c) For every triple of objects (X, Y, Z) in C, a functor of horizontal composition

◦0 : C (Y, Z)× C (X, Y ) → C (X,Z) ;

(d) For every object X in C, a functor of horizontal identity

jX : I → C (X,X)

such that the following coherence diagrams commute

(C (Z, T )× C (Y, Z))× C (X, Y ) α //

◦0×1
��

C (Z, T )× (C (Y, Z)× C (X, Y ))

1×◦0
��

C (Y, T )× C (X, Y )

◦0
**UUUUUUUUUUUUUUUUU

C (Z, T )× C (X,Z)

◦0
ttiiiiiiiiiiiiiiiii

C (X, T )
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Diagram 3.18.

I × C (X, Y ) l //

jY ×1

��

C (X, Y )

Id

��

C (X, Y )× I
roo

1×jX

��
C (Y, Y )× C (X, Y )

◦0 // C (X, Y ) C (X, Y )× C (X,X)
◦0oo

Diagram 3.19.

One can see a 2-category as an enriched category over a category of categories,
called Cat.

Example 3.3.2.

• One can extend Cat to a 2-category Cat2 where 0-cells are categories, 1-cells
are functors and 2-cells are natural transformations between functors;

• One can also de�ne the 2-category E−Cat2 of E-categories, E-functors and
E-natural transformations. When E = Set the 2-category E−Cat2 coincides
with Cat2.

Remark 23. There exists a 2-functor ϕ:

ϕ : E − Cat2 → Cat2

C −→ C0

F : C → D −→ F0 : C0 → D0

α : F ⇒ G −→ α0 : F0 ⇒ G0

The functor ϕ associates to a E-category C its underlying category C0, to a E-functor
F its underlying functor F0, to a E-natural tranformation α a natural transformation
α0 between underlying functors.

We have the corresponding de�nition of a monad in a 2-category.

De�nition 3.3.3. Let E be a 2-category. A monad (T, µ, η) on an object C of E
consists in giving:

(a) 1-cell T : C → C;

(b) 2-cell η : IdC ⇒ T called the unit of a monad;

(c) 2-cell µ : TT ⇒ T called the multiplication of a monad;

such that the following diagrams commute
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T
ηT //

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

TT

µ

��

T
Tηoo

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

T

Diagram 3.20.

TTT
µT //

Tµ

��

TT

µ

��
TT

µ // T

Diagram 3.21.

Remark 24. A monad in E = Cat2 gives the usual de�nition of a monad in a
category.

3.3.2 2-Isomorphism between StrongCat and E−Cat

Lemma 3.3.4. Strong functors and strong natural transformations constitute the
1-cells and 2-cells of a 2-category of E-tensored categories, written StrongCat.

Proof. Since by composing two strong functors we acquire another strong functor
(see De�nition 3.1.3), the properties involving 1-cells have been checked. It is clear
that strong natural transformations compose. Axioms of De�nition 3.3.1 are satis�ed
by arguments similar to arguments used in the case of a 2-category of categories,
functors and natural transformations.

We state the theorem:

Theorem 3.3.5. The following 2-categories of tensored E-categories are 2-isomorphic:

(a) The 2-category of strong functors and strong natural transformations of ten-
sored E-categories, StrongCat;

(b) The 2-category of E-functors and E-natural transformations of tensored E-
categories, E−Cat.

Proof. By Proposition 3.2.4, strong functors (T, σ) are exactly E-functors (T, ϕ).
By Proposition 3.2.7, strong natural transformations are exactly E-natural trans-
formations. By Lemma 3.2.8, the composite of strong natural transformations cor-
responds to the composite of E-natural transformations. Therefore, the 2-category
StrongCat is 2-isomorphic to the 2-category E−Cat.
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Corollary 3.3.6. Given a monad (T, µ, η) in a category C, the following conditions
are equivalent:

(a) The monad (T, µ, η) extends to a strong monad (T, µ, η, σ);

(b) The monad (T, µ, η) extends to a E-monad (T, µ, η, ϕ).

Remark 25. A strong monad (T, µ, η, σ) is a monad (T, µ, η) in the 2-category
StrongCat of strong functors and strong natural transformations of tensored E-
categories.

Proof. Since by Theorem 3.3.5, the 2-category StrongCat is 2-isomorphic to the 2-
category E−Cat, strong monads (T, µ, η, σ) correspond to E-monads (T, µ, η, ϕ).

Remark 26. We give a detail on the passage from a E-monad (T, µ, η, ϕ) to a strong
monad (T, µ, η, σ).

By Theorem 3.3.5, E-functors and E-natural transformations of E-tensored cat-
egories correspond to strong functors and strong natural transformations of E-
tensored categories.

In particular, a functor T : E → E is a E-functor if and only if (T, σ) is a strong
functor i.e. T has a tensorial strength σA,B : A⊗ TB → T (A⊗ B) and the axioms
given by the commutativity of the following diagrams are satis�ed:

I ⊗ TA
σI,A //

lTA
''OOOOOOOOOOOOOO

T (I ⊗ A)

T (lA)
wwooooooooooooo

TA

Diagram 3.22. Unit condition for σ

A⊗ B ⊗ TC
A⊗σB,C //

σA⊗B,C ''OOOOOOOOOOOO
A⊗ T (B ⊗ C)

σA,B⊗Cwwoooooooooooo

T (A⊗ B ⊗ C)

Diagram 3.23. Associativity condition for σ

A natural transformation η : IdE → T is a E-natural transformation if and only if η
is a strong natural transformation, with T1 = IdE , T2 = T, σ1 = Id and σ2 = σ i.e.
η is given by the commutative diagram

A⊗ TB
σA,B // T (A⊗ B)

A⊗ B

1⊗ηB

ggOOOOOOOOOOOOO
ηA⊗B

77oooooooooooo
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Diagram 3.24. Strong naturality of η

Finally, the natural transformation µ : TT → T is a E-natural transformation if and
only if µ is a strong natural transformation, with T1 = TT, T2 = T, σ1 = T2(σ1) ◦ σ2
and σ2 = σ i.e. µ is given by the commutative diagram

A⊗ T 2B
σA,TB //

1⊗µB

��

T (A⊗ TB)
T(σA,B)

// T 2 (A⊗ B)

µA⊗B

��
A⊗ TB

σA,B // T (A⊗ B)

Diagram 3.25. Strong naturality of µ

Therefore, we obtain exactly the diagrams de�ning a strong monad (T, µ, η, σ).

There exists a notion of a monoidal monad (T, µ, η, λ) in a category E . It is a
monad in E which is equipped with a natural transformation

λA,B : TA⊗ TB → T (A⊗ B)

and satisfying some corresponding axioms. These axioms simply translate the fact
that we require for T to be a monoidal functor (to satisfy some unit and associativity
conditions) and for µ and η to be monoidal transformations.

Furthermore, one can require for a monoidal monad (T, µ, η, λ) to be symmetric.

De�nition 3.3.7. A monoidal monad (T, µ, η, λ) in a symmetric monoidal category
E is called symmetric if the following diagram

TA⊗ TB
λA,B //

aTA,TB

��

T (A⊗ B)

T(aA,B)

��
TB ⊗ TA

λB,A // T (B ⊗ A)

Diagram 3.26. Symmetry condition

commutes.

Remark 27. A symmetric monoidal monad (T, µ, η, λ) is a monad (T, µ, η) in the 2-
category SMonCat of symmetric monoidal functors and symmetric monoidal trans-
formations of tensored E-categories.
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There is a correspondence between symmetric monoidal monads and some par-
ticular strong monads. These particular strong monads are the commutative strong
monads.

De�nition 3.3.8. A strong monad (T, µ, η, σ) in a symmetric monoidal category E
is called commutative if the following diagram

TA⊗ TB
σ′
A,TB //

σTA,B

��

T (A⊗ TB)
T(σA,B)

// T 2 (A⊗ B)

µA⊗B

��
T (TA⊗ B)

T (σ′
A,B)

// T 2 (A⊗ B)
µA⊗B // T (A⊗ B)

Diagram 3.27. Commutativity condition

commutes, where the dual tensorial strength σ′
A,B : TA⊗B −→ T (A⊗ B) is induced

by the symmetry of E (see Remark following De�nition 3.1.5).

Proposition 3.3.9. ([Koc72, GLLN02]) For a symmetric monoidal category E ,
there is a canonical bijection between commutative strong monads and symmetric
monoidal monads.

3.4 Strong monads and Day convolution

In this section we use Day convolution to construct a strong monad on the category
EA of functors A → E where A and E are supposed to be symmetric monoidal.

Lemma 3.4.1. Consider categories E and A where A is supposed to be small. Let
T be a monad on E . Then T induces by postcomposition a monad on the category
EA of functors A → E. In fact, we have the following diagram

(
ET

)A

(UT )A

��?
??

??
??

??
??

ω //
(
EA

)T◦−

U

����
��

��
��

��
�

EA

Diagram 3.28.

in which the functor ω induces an isomorphism between the category of functors
A → ET and the category of (T ◦ −)-algebras on EA.

Proof. By de�nition, a (T ◦ −)-algebra on EA consists in giving:
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• A functor F : A → E ;

• A natural transformation ξF : TF ⇒ F .

satisfying the usual axioms of an algebra over a monad. This amounts to a lifting
F of the functor F to the category of T -algebras such that the following diagram

ET

UT

��?
??

??
??

??
??

?

A
F //

F

??������������
E

Diagram 3.29.

commutes.

De�nition 3.4.2. Consider two functors F : A → B and G : A → C .
The left Kan extension of G along F,

A
F //

G

��?
??

??
??

??
??

??
B

K

��
C

Diagram 3.30.

is a pair (K,α) where K : B → C is a functor and α : G ⇒ K ◦ F is a natural
transformation satisfying the universal property:

if (H, β) is another pair where H : B → C is a functor and β : G ⇒ H ◦ F is
a natural transformation, there exists a unique natural transformations γ : K ⇒ H
such that the following diagram commutes

G
β //

α

��?
??

??
??

??
??

??
HF

KF

γF

??

Diagram 3.31.

We write LanFG for the left Kan extension. There is a dual notion of right Kan
extension, written RanFG.
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De�nition 3.4.3. For symmetric monoidal categories A and E , with A small,
the functor category EA carries a symmetric monoidal structure EA × EA → EA :
(F,G) → F ⊗ G, where F ⊗ G is de�ned by Day convolution, i.e. by the following
diagram

A×A
F×G //

⊗A

��

⇓
F ⊗̂G

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT E × E

⊗E

��
A

F⊗G // E

Diagram 3.32.

in which F ⊗G is the left Kan extension of F ⊗̂G along ⊗A.

Proposition 3.4.4. Let A and E be symmetric monoidal categories with A small.
Then any strong monad T on E induces by postcomposition a strong monad T ◦−
on EA with respect to the symmetric monoidal structure given by Day convolution.

Proof. In order to prove the existence of a tensorial strength for the induced monad
T ◦− on EA we use the canonical natural transformation F ⊗̂TG⇒ T (F ⊗̂G) which
is induced by the tensorial strength of T . Indeed, the following diagram

A×A
F×G //

F×TG

$$JJJJJJJJJJJJJJJJJJJJJJJJJJ

F ⊗̂TG

77

F ⊗̂G

$$
E × E

Id×T

��

⇑

⊗E // E

T

��
E × E

⊗E // E

Diagram 3.33.

yields the required natural transformation F ⊗ TG ⇒ T (F ⊗ G) by functoriality
and unversality of left Kan extensions.

The following corollary is a direct consequence of Proposition 3.4.4.
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Corollary 3.4.5. Let E be a symmetric monoidal category and A a small symmetric
monoidal category. If T is a strong monad on E , then the category of (T ◦ −)-
algebras on EA is enriched over EA.

Proof. By Proposition 3.4.4, the strong monad T induces a strong monad (T ◦ −)
on EA. By Corollary 3.3.6, there is an equivalence between strong and enriched
monads. Therefore, by Proposition 4.2.1, the category

(
EA

)T◦−
is enriched over

EA.



Chapter 4

Morita theory in enriched context

This chapter is devoted to homotopical Morita theorem which provides, in the con-
text of a strong monad T on a monoidal model category E , a Quillen equivalence
between the category of T -algebras and the category of modules over a monoid in E .
It is organized as follows: in Section 4.1, we give some classical results in Morita the-
ory. In Section 4.2, we discover that in the context of a strong monad, the category
of T -algebras is enriched, tensored and cotensored over E . Moreover, the enrich-
ment of AlgT , provides T (I) with the structure of a monoid in E . In Section 4.3,
we state homotopical Morita theorem, Theorem 4.3.1. In Section 4.4, we provide
basic de�nitions and results of the category of Γ-spaces. In Section 4.5, we prove
that the Bous�led-Friedlander's stable model structure of Γ-spaces is a monoidal
model category. Finally, in Section 4.6 we apply our homotopical Morita theorem
for E = Γ-spaces and we recover a theorem of Stefan Schwede [Sch01].

4.1 A glimpse at classical Morita theory

In 1958, Morita [Mor58] established a result on the equivalences between module cat-
egories via the functor Hom (P,−), with P a projective generator. Gabriel [Gab62]
proved that there is an equivalence between an abelian category and a module cat-
egory over a ring via the functor Hom (P,−). Few years later, Gabriel and Popescu
[PG64] studied the localization of module categories over a ring.

The term Morita theory is now used for results concerning equivalences of various
kinds of module categories. In particular, Morita theory was studied for categories
of regular algebras, for derived categories, for stable model categories.

In this section, we provide some results of classical Morita theory in the most
general direction.

The following result, known as Gabriel's theorem gives a characterization of
module categories among abelian categories.

Theorem 4.1.1. (Gabriel,[Gab62]) Let Ab be an abelian category and P an object
in Ab with a morphism of rings: ϕ : R → Hom (P, P ). The following are equivalent:

(a) The functor

F : Ab → ModR

X → HomAb (P,X)

71
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is an equivalence between categories;

(b) The object P is a projective generator in Ab and ϕ is an isomorphism i.e.
R ∼= Hom (P, P ).

Furthermore, all equivalences between Ab and ModR are of this form up to isomor-
phism.

The following corollary is a direct consequence of Gabriel's theorem.

Corollary 4.1.2. Let R and S be two rings and PS an object in ModS with the
morphism of rings: ϕ : R → HomS (PS, PS). The following are equivalent:

(a) The functor

F :ModS → ModR

X → HomS (PS, X)

is an equivalence between categories;

(b) The object P is a projective generator in ModS and ϕ is an isomorphism i.e.
R ∼= HomS (PS, PS).

Furthermore, all equivalences between ModS and ModR are of this form up to iso-
morphism.

4.2 Algebras over strong monads

4.2.1 Enrichment

Using the concept of enriched monad T , we prove that the category of T -algebras is
enriched (cf. [Bun69, Lin69b]).

Proposition 4.2.1. Let E be a closed symmetric monoidal category with equalizers
and (T, µ, η, ϕ) an enriched monad over E . Then the category AlgT of T -algebras
is canonically enriched over E . Moreover, the E-object Alg

T
(X, Y ) is given by the

equalizer

E (TX, TY )
E(TX,ξY )

''OOOOOOOOOOOO

Alg
T
(X, Y ) �

� i // E (X, Y )

ϕT

77ppppppppppp

E(ξX ,Y )
// E (TX, Y )

I

∃!ψ

eeJ
J

J
J

J
J

f

;;wwwwwwwwww

Diagram 4.1.
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Proof. From the morphism of T -algebras, given by the following commutative dia-
gram

TX
T (f) //

ξX

��

TY

ξY

��
X

f // Y

we obtain the equalizer

E (TX, TY )

E(TX,ξY )

##FFFFFFFFFFFFFFFF

Alg
T
(X, Y ) �

� i // E (X, Y )

ϕT

;;xxxxxxxxxxxxxxxx

E(ξX ,Y )
// E (TX, Y )

I

∃!ψ

ccF
F

F
F

F
F

F
F

F

f

;;xxxxxxxxxxxxxxxxxx

So, we de�ne the E-object Alg
T
(X, Y ) to be the equalizer of the above diagram

and we will note UT : Alg
T
(X, Y ) → E (X, Y ) to be the E-morphism canonically

associated with this equalizer.

First, we prove that there exists a unit morphism i.e. we prove that there are
two morphisms which equalize the unit morphism jX : I → E (X,X) in order to
obtain the universal property of the equalizer.

We need to prove that the following diagram commutes

E (X,X)
ϕT // E (TX, TX)

E(TX,ξY )

��

I

jX

''OOOOOOOOOOOOOOOOOOOOO

jX

77ooooooooooooooooooooo

E (X,X)
E(ξX ,X) // E (TX,X)

Since (T, µ, η, ϕ) is an enriched monad, T is a E-functor, so ϕT ◦ jX = jTX . Hence
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we have

I
jTX //

jX

��

E (TX, TX)

E(TX,ξY )

��
E (X,X)

E(ξX ,X) // E (TX,X)

But E (I, E (TX,X)) ∼= E (I ⊗ TX,X) ∼= E (TX,X) = ξX and we have that E (TX, ξX)◦
jTX = ξX and E (ξX , X)◦jX = ξX . Therefore, by the universal property of the equal-
izer there exists one unique morphism

jAlgTX : I → Alg
T
(X,X)

such that jX = UT ◦ jAlgTX .

Second, we prove the existence of the composition morphism i.e. we prove that
there are two morphisms which equalize

Alg
T
(Y, Z)⊗Alg

T
(X, Y )

UT⊗UT−−−−→ E (Y, Z)⊗ E (X, Y )
cE−→ E (X,Z)

in order to obtain the universal property of the equalizer

E (TX, TZ)

E(TX,ξZ)

%%JJJJJJJJJJJJJJJ

Alg
T
(Y, Z)⊗Alg

T
(X,Y )

∃!cAlgT

))RRRRRRRRRRR

UT⊗UT // E (Y, Z)⊗ E (X,Y )
cE // E (X,Z)

ϕT

::uuuuuuuuuuuuuuu

E(ξX ,Z)
// E (TX,Z)

Alg
T
(X,Z)

UT

88qqqqqqqqqqqqqqqqq

Diagram 4.2.
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We need to prove that the following diagram commutes

Alg
T
(Y, Z)⊗Alg

T
(X,Y )

UT⊗UT //

UT⊗UT

��

E (Y, Z)⊗ E (X,Y )

c

��
E (Y, Z)⊗ E (X,Y )

c

��

E (X,Z)

E(ξX ,Z)

��

E (X,Z)

ϕT

��
E (TX, TZ)

E(TX,ξZ) // E (TX,Z)

Since T is a E-functor, by the composition axiom c ◦ ϕT ⊗ ϕT = ϕT ◦ c we have

Alg
T
(Y, Z)⊗Alg

T
(X,Y )

UT⊗UT //

UT⊗UT

��

E (Y, Z)⊗ E (X,Y )

c

��
E (Y, Z)⊗ E (X,Y )

ϕT⊗ϕT

��

E (X,Z)

E(ξX ,Z)

��

E (TY, TZ)⊗ E (TX, TY )

c

��
E (TX, TZ)

E(TX,ξZ) // E (TX,Z)

By naturality of the composition

Alg
T
(Y, Z)⊗Alg

T
(X,Y )

UT⊗UT //

UT⊗UT

��

E (Y, Z)⊗ E (X,Y )

1⊗E(ξX ,Y )

��
E (Y, Z)⊗ E (X,Y )

ϕT⊗ϕT

��

E (Y, Z)⊗ E (TX, Y )

c

��

E (TY, TZ)⊗ E (TX, TY )

E(TY,ξZ)⊗1

��
E (TY, Z)⊗ E (TX, TY )

c // E (TX,Z)
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Since Alg
T
(X,Y ) is the equalizer of (E (TX, ξY ) ◦ ϕT , E (ξX , Y )), we have

E (TX, ξY ) ◦ ϕT ◦ UT = E (ξX , Y ) ◦ UT

Tensoring with UT : Alg
T
(Y, Z) → E (Y, Z), we have

Id⊗ E (TX, ξY ) ◦ Id⊗ ϕT ◦ UT ⊗ UT = Id⊗ E (ξX , Y ) ◦ UT ⊗ UT

Hence, the previous diagram is equivalent to the following one

Alg
T
(Y, Z)⊗Alg

T
(X,Y )

UT⊗UT //

UT⊗UT

��

E (Y, Z)⊗ E (X,Y )

1⊗ϕT

��
E (Y, Z)⊗ E (X,Y )

ϕT⊗ϕT

��

E (Y, Z)⊗ E (TX, TY )

1⊗E(TX,ξY )

��
E (TY, TZ)⊗ E (TX, TY )

E(TY,ξZ)⊗1

��

E (Y, Z)⊗ E (TX, Y )

c

��
E (TY, Z)⊗ E (TX, TY )

c // E (TX,Z)

Similarly, tensoring the equalizer Alg
T
(Y, Z) with

Alg
T
(X,Y )

UT−−→ E (X,Y )
ϕT−−→ E (TX, TY )

we have

E (TY, ξZ)⊗ Id ◦ ϕT ⊗ ϕT ◦ UT ⊗ UT = E (ξY , Z)⊗ ϕT ◦ UT ⊗ UT

Hence, this diagram is equivalent to the following one

Alg
T
(Y, Z)⊗Alg

T
(X,Y )

UT⊗UT //

UT⊗UT

��

E (Y, Z)⊗ E (X,Y )

1⊗ϕT

��
E (Y, Z)⊗ E (X,Y )

E(ξY ,Z)⊗ϕT

��

E (Y, Z)⊗ E (TX, TY )

1⊗E(TX,ξY )

��
E (Y, Z)⊗ E (TX, Y )

c

��
E (TY, Z)⊗ E (TX, TY )

c // E (TX,Z)

But we have c ◦ Id⊗ E (TX, ξY ) = c ◦ E (ξY , Z)⊗ Id.
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Therefore, we obtain the following diagram

Alg
T
(Y, Z)⊗Alg

T
(X,Y )

UT⊗UT //

UT⊗UT

��

E (Y, Z)⊗ E (X,Y )

1⊗ϕT

��
E (Y, Z)⊗ E (X,Y )

E(ξY ,Z)⊗ϕT

��

E (Y, Z)⊗ E (TX, TY )

E(ξY ,Z)⊗1

��
E (TY, Z)⊗ E (TX, TY )

c

��
E (TY, Z)⊗ E (TX, TY )

c // E (TX,Z)

which is clearly commutative.

Therefore, by the universal property of the equalizer, there exists one unique morphism

cAlgT : Alg
T
(Y, Z)⊗Alg

T
(X,Y ) → Alg

T
(X,Z)

such that cE ◦ UT ⊗ UT = UT ◦ cAlgT .

It remains to prove that the coherence axioms are satis�ed. Since the category E is

enriched over itself, the coherence axioms are satis�ed for E . Using the fact that each

U
(X,Y )
T : Alg

T
(X,Y ) → E (X,Y ) is a monomorphism, commutativity of the diagrams for

E extends by UT to the commutativity of the external diagrams, providing the coherence

axioms for AlgT .

Thus, the internal objectAlg
T
(X,Y ), the unit and the composition morphism together

with their coherence axioms provide the category AlgT with the E-category structure.

It follows then naturally that the adjunction between T -algebras and the corre-
sponding monoidal category will be enriched as well (cf. [Bun69, Lin69b]).

Proposition 4.2.2. Let E be a closed symmetric monoidal category with equalizers
and (T, µ, η, ϕ) a E-monad. Then:

(a) The forgetful functor UT : AlgT → E is a E-functor;

(b) The free functor FT : E → AlgT is a E-functor;

(c) The pair (FT , UT ) forms a E-adjunction i.e. there is an isomorphism in E

Alg
T
(FTX, Y ) ∼= E (X,UTY )

which is E-natural in X and Y;

(d) AlgT is canonically E-cotensored (compatibly with UT ).

Proof.
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(a) Since (T, µ, η, ϕ) is a E-monad, by Proposition 4.2.1, the category AlgT is
enriched over E . It is obvious that for every pair of objects (X, Y ) of E there
exists a morphism ϕUT

: Alg
T
(X, Y ) → E (UTX,UTY ) in E . We saw in the

proof of Proposition 4.2.1, that the unit morpism in AlgT is given by the
universal property of the equalizer i.e. there is an unique morphism jAlgTX :
I → Alg

T
(X,X) such that the following diagram

Alg
T
(X,X)

ϕUT // E (UTX,UTX)

I

jX

ddJJJJJJJJJJJJJJJJ

jUTX

::tttttttttttttttt

commutes. But this diagram corresponds exactly to the unit axiom of the
functor UT .

Similarly, the composition morphism inAlgT is given by the universal property
of the equalizer i.e. there is an unique morphism

cAlgT : Alg
T
(Y, Z)⊗Alg

T
(X, Y ) → Alg

T
(X,Z)

such that the following diagram

Alg
T
(Y, Z)⊗Alg

T
(X, Y )

cAlgT

��

ϕUT
⊗ϕUT // E (UTY, UTZ)⊗ E (UTX,UTY )

cE

��
Alg

T
(X,Z)

ϕUT // E (UTX,UTZ)

Diagram 4.3.

commutes. But this diagram corresponds exactly to the composition axiom of
the functor UT .

(b) We need to prove that there exists the enrichment morphism of the functor
FT

ϕFT
: E (X, Y ) → Alg

T
(FTX,FTY )
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We prove that the following diagram commutes

E (X, Y )

ϕT

��

ϕT // E (TX, TY )

E(µX ,TY )

��

E (TX, TY )

ϕT

��
E (TTX, TTY )

E(TTX,µY ) // E (TTX, TY )

Since (T, µ, η, ϕ) is a E-monad, µ is a E-natural transformation. It is given
by a family of morphisms µX : TTX → TX indexed by the objects of E such
that the following diagram commutes

E (X, Y )

ϕTT

��

ϕT // E (TX, TY )

E(µX ,TY )

��
E (TTX, TTY )

E(TTX,µY ) // E (TTX, TY )

Diagram 4.4.

But ϕTT = ϕT ◦ ϕT , and the previous diagram commutes. Thus, by the
universal property of the equalizer

E (TTX, TTY )

E(TTX,µY )

##FFFFFFFFFFFFFFFF

Alg
T
(FTX,FTY )

UT // E (TX, TY )

ϕT

;;xxxxxxxxxxxxxxxx

E(µX ,TY )
// E (TTX, TY )

E (X, Y )

∃!ϕFT

ccF
F

F
F

F
F

F
F

ϕT

;;xxxxxxxxxxxxxxxx
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Diagram 4.5.

there exists an unique morphism ϕFT
such that ϕUT

◦ ϕFT
= ϕT .

(c) Since functors (FT , UT ) form a classical adjunction, we need to prove that the
unit and the counit of the adjunction are E-natural transformations. The unit
of the adjunction η : IdE → UTFT is exactly the unit of a E-monad (T, µ, η, ϕ).
It remains to verify that the counit of the adjunction ǫ : FTUT → IdAlgT is a E-
natural transformation. We have to prove the commutativity of the following
diagram

Alg
T
(X, Y )

FTUT

''OOOOOOOOOOOOOOOOO

Alg
T
(ǫ,1)

// Alg
T
(TX, Y )

Alg
T
(TX, TY )

Alg
T
(1,ǫ)

77ooooooooooooooooo

Since UT is an equalizer, it is equivalent to prove that the following diagram

Alg
T
(X, Y )

UT

��

Alg
T
(ǫ,1)

// Alg
T
(TX, Y )

UT // E (TX, Y )

E (X, Y )
FT // Alg

T
(TX, TY )

Alg
T
(1,ǫ)

// Alg
T
(TX, Y )

UT

OO

commutes, which is equivalent to

Alg
T
(X, Y )

UT

��

Alg
T
(ǫ,1)

// Alg
T
(TX, Y )

UT // E (TX, Y )

E (X, Y )
FT // Alg

T
(TX, TY )

UT // E (TX, TY )

E(1,ǫ)

OO

Since UT ◦ FT = T , we have

Alg
T
(X, Y )

UT

��

Alg
T
(ǫ,1)

// Alg
T
(TX, Y )

UT // E (TX, Y )

E (X, Y ) T // E (TX, TY )

E(1,ǫ)

OO
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Since UT equalizes

E (X, Y )
E(ǫ,1)
−−−→ E (TX, Y )

and
E (X, Y )

T
−→ E (TX, TY )

E(1,ǫ)
−−−→ E (TX, Y )

we have the following diagram

Alg
T
(X, Y )

UT

��

Alg
T
(ǫ,1)

// Alg
T
(TX, Y )

UT

��
E (X, Y )

E(ǫ,1) // E (TX, Y )

which clearly commutes.

(d) In order to prove that the category AlgT is cotensored over E we will use the
dual tensorial strength. More precisely, by the dual tensorial strength we have

T (Y A)⊗ A
σ′

Y A,A

−−−→ T (Y A ⊗ A)
T (ev)
−−−→ T (Y )

which corresponds by adjunction to T (Y A) → T (Y )A, which is natural in Y
and A. If Y is a T -algebra, then this provides Y A with a structure of T -algebra,
for every object A in E . This gives us exactly the cotensor.

4.2.2 Tensors

Using the concept of strong monad we prove that the category AlgT is E-tensored
as well.

Proposition 4.2.3. Let E be a closed symmetric monoidal category with equalizers
and (T, µ, η, σ) a strong monad on E . If the category AlgT of T -algebras has re�exive
coequalizers, then the category AlgT is enriched, tensored and cotensored over E . The
tensors are given by the following re�exive coequalizer diagrams in AlgT

T (Z ⊗ TX)
T (Z⊗ξX) //

Tσ
%%LLLLLLLLLLLLL

T (Z ⊗X)
ξ // Z ⊗X

TT (Z ⊗X)

µ

99rrrrrrrrrrrrr

Diagram 4.6.

with X an object in AlgT and Z an object in E .
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Proof. By Propositions 4.2.1 and 4.2.2, the only thing that remains to be shown is
the existence of tensors. We begin by giving a heuristic argument how to construct
these tensors inAlgT . Indeed, by Lemma 1.4.11, for every T -algebraX, the following
diagram is a coequalizer in AlgT

TTX
µX //

T (ξX)
// TX

ξX // X

It is transformed by the forgetful functor UT : AlgT −→ E into a split coequalizer
in E (which is preserved as a coequalizer by any functor).

Applying the functor Z ⊗−, we obtain a coequalizer in E

Z ⊗ TTX
Z⊗µX //

Z⊗T (ξX)
// Z ⊗ TX

ξX // Z ⊗X

We have the following diagram

Z ⊗ TTX
Z⊗µX //

Z⊗T (ξX)
//

σZ,TX

��

Z ⊗ TX

ξX

$$JJJJJJJJJJJJJJJ

σZ,X

��
T (Z ⊗ TX)

T (Z⊗ξX) //

TσZ,X

$$JJJJJJJJJJJJJJ
T (Z ⊗X)

ξZ⊗X // Z ⊗X

TT (Z ⊗ TX)

µZ⊗X

::tttttttttttttt

where the internal diagram

Z ⊗ TTX
Z⊗T (ξX) //

σZ,TX

��

Z ⊗ TX

σZ,X

��
T (Z ⊗ TX)

T (Z⊗ξX) // T (Z ⊗X)

commutes by naturality of the tensorial strength σ.
The other internal diagram

Z ⊗ TTX
Z⊗µX //

σZ,TX

��

Z ⊗ TX

σZ,X

��
T (Z ⊗ TX)

TσZ,X // TT (Z ⊗X)
µZ⊗X // T (Z ⊗X)

commutes, since µ is a strong natural transformation. Therefore, it is natural to
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de�ne the tensor Z ⊗X in AlgT by the following diagram

T (Z ⊗ TX)
T (Z⊗ξX) //

Tσ
%%LLLLLLLLLLLLL

T (Z ⊗X)
ξ // Z ⊗X

TT (Z ⊗X)

µ

99rrrrrrrrrrrrr

which is a re�exive coequalizer inAlgT . If the monad T happens to preserve re�exive
coequalizers, the latter can be calculated in E and the argument above shows that
we get indeed the correct tensor. In general, in order to validate our de�nition, we
have to verify that our tensors ful�ll the following adjunction relation

Alg
T
(Z ⊗X, Y ) ∼= E

(
Z,Alg

T
(X, Y )

)

We have Alg
T
(Z ⊗X, Y ) ∼= Alg

T
(Coeq {T (Z ⊗ TX) ⇉ T (Z ⊗X)} , Y )

∼= Eq
(
Alg

T
(T (Z ⊗X), Y ) ⇉ Alg

T
(T (Z ⊗ TX), Y )

)

By Proposition 4.2.2 (c), functors (FT , UT ) form a E-adjunction

Alg
T
(FTX, Y ) ∼= E (X,UTY )

Therefore,

Eq
{
Alg

T
(T (Z ⊗X), Y ) ⇉ Alg

T
(T (Z ⊗ TX), Y )

}

∼= Eq {E (Z ⊗X, Y ) ⇉ E (Z ⊗ TX, Y )}

∼= E (Z,Eq {E (X, Y ) ⇉ E (TX, Y )})

Since, Alg
T
(X, Y ) is the equalizer of E (X, Y ) ⇉ E (TX, Y ), we have

E (Z,Eq {E (X, Y ) ⇉ E (TX, Y )}) ∼= E
(
Z,Alg

T
(X, Y )

)
.

4.2.3 The endomorphism monoid

We study the object T (I) in closed symmetric monoidal category E , which in general
does not have the structure of monoid in E . We prove here that if (T, µ, η, ϕ) is a
E-monad, this will be the case.

Proposition 4.2.4. Let (T, µ, η, ϕ) be a E-monad. Then the object T (I) has a
structure of a monoid, namely it may be identi�ed with Alg

T
(T (I) , T (I)).
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Proof. In fact, we have

T (I) ∼= E (I, T (I)) ∼= Alg
T
(T (I) , T (I))

where the second isomorphism is obtained by adjunction.
Since (T, µ, η, ϕ) is a E-monad, by Proposition 4.2.1 the category AlgT is a E-

category. The enriched endomorphism object Alg
T
(T (I) , T (I)) ∼= T (I) of E has

indeed a structure of monoid in E .
The unit morphism I → Alg

T
(T (I) , T (I)) is given by the unit morphism in

the category AlgT . The multiplication morphism

Alg
T
(T (I) , T (I))⊗Alg

T
(T (I) , T (I)) → Alg

T
(T (I) , T (I))

is given by the composition in the E-category AlgT .

Lemma 4.2.5. The multiplication of the endomorphism monoid T (I) of a E-monad
may be deduced from its tensorial strength through the formula

T (I)⊗ T (I)
σT (I),I
−−−−→ T (T (I)⊗ I)

T (r)
−−→ T (T (I))

µ
−→ T (I)

Proof. The composed arrow corresponds to the structure of a right T (I)-module
T (I). Obviously, this corrsponds to the multiplication.

Before proving that λ : −⊗ T (I) → T is a morphism of strong monads (Propo-
sition 4.2.7), we will need the following result.

Lemma 4.2.6. Let E be a monoidal category and suppose that M is a monoid in E .
Then the endofunctor − ⊗ M : E → E has a canonical structure of a strong

monad and the tensorial strength is given by the associativity isomorphism in E .

Proof. For every monoidM , we know that (−⊗M,µ, η) has a structure of a monad.
In order to prove that S = −⊗M is a strong monad, we need to prove the existence
of a tensorial strength together with the corresponding axioms. For every pair of
objects (X, Y ) in E , the tensorial strength σX,Y : X ⊗ SY → S (X ⊗ Y ) is given by

X ⊗ (Y ⊗M) → (X ⊗ Y )⊗M

which corresponds exactly to the associativity isomorphism in E .
Indeed, by de�nition the tensorial strength is given by the following commutative

diagram

X ⊗ (Y ⊗M)
σX,Y //

γY ⊗(Y⊗M)

��

(X ⊗ Y )⊗M

E (Y,X ⊗ Y )⊗ (Y ⊗M)
ϕ⊗(Y⊗M)// E (Y ⊗M, (X ⊗ Y )⊗M)⊗ (Y ⊗M)

evY ⊗M

OO
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which is equivalent to

X ⊗ (Y ⊗M)
σX,Y //

γY ⊗(Y⊗M)

��

(X ⊗ Y )⊗M

E (Y,X ⊗ Y )⊗ (Y ⊗M) a // (E (Y, (X ⊗ Y ))⊗ Y )⊗M

evY ⊗M

OO

By naturality of the associativity isomorphism

X ⊗ (Y ⊗M)
σX,Y //

a

��

(X ⊗ Y )⊗M

(X ⊗ Y )⊗M
γY ⊗(Y )⊗M // E (Y, (X ⊗ Y ))⊗ Y ⊗M

evY ⊗M

OO

But we have evY ◦ γY = IdX⊗Y , thus σX,Y = aXYM .
Since the tensorial strength is given by the associativity isomorphism, the unit

and the associativty axiom and the strong naturality conditions for η and µ are
obtained automatically.

Remark 28. Another way to prove that the endofunctor − ⊗M has a structure of
a strong monad is to use the correspondance between the tensorial strength and
the enrichment. More precisely, by Lemma 1.4.7, the monad (−⊗M,µ, η) has a
structure of a E-monad and by Corollary 3.3.6 (−⊗M,µ, η) is a strong monad.

Proposition 4.2.7. Let E be a monoidal category and suppose that (T, µ, η, σ) is a
strong monad in E .

There is a canonical map of strong monads λ : − ⊗ T (I) → T given by the
tensorial strength

X ⊗ T (I)
λX //

σX,I

""DD
DD

DD
DD

DD
DD

DD
DD

D
TX

T (X ⊗ I)

T (r)

<<zzzzzzzzzzzzzzzzzz

Diagram 4.7.

This map is an isomorphism if and only if the monad T is induced by a monoid.

Proof. By Lemma 4.2.6, the endofunctor S = −⊗ T (I) has a structure of a strong
monad. Given monads (T, µ, η, σT ) and (S, µ̃, η̃, σS), we have to prove that λ : S → T
is a morphism of monads.
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First, we have to verify that λ is a strong natural transformation i.e. that the
following diagram

X ⊗ (Y ⊗ T (I))
σS //

X⊗λY

��

(X ⊗ Y )⊗ T (I)

λX⊗Y

��
X ⊗ TY

σT // T (X ⊗ Y )

is commutative. Extending de�nitions:

X ⊗ (Y ⊗ T (I))
aXY I //

X⊗σ

��

(X ⊗ Y )⊗ T (I)

σ

��
X ⊗ T (Y ⊗ I)

σX,Y ⊗I //

X⊗T (r)

��

T (X ⊗ Y ⊗ I)

T (r)

��
X ⊗ TY

σT // T (X ⊗ Y )

The upper diagram commutes by the associativity axiom of a strong functor T. The
lower diagram commutes by naturality of σ.

It remains to prove that the two axioms which de�ne a morphism of monads are
satis�ed. First, we need to prove the commutativity of the following diagram

X ⊗ T (I) λ // TX

X

η

??�������������

η̃

__????????????

Extending de�nitions:

X ⊗ T (I) σ // T (X ⊗ I)
T (r) // TX

X ⊗ I

ηX⊗I

OO

X⊗ηI

jjTTTTTTTTTTTTTTTTTTTTTTTTTTT

r

��
X

ηX

::ttttttttttttttttttttttttttttttttttttt

η̃

ddJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
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The left upper diagram commutes by strong naturality of η. The left lower diagram
commutes since r is the right unit isomorphism. The right diagram commutes by
naturality of η.

Finally, one has to prove that the following diagram commutes

(X ⊗ T (I))⊗ T (I) λ◦λ //

µ̃

��

TTX

µ

��
X ⊗ T (I) λ // TX

Extending de�nitions

(X ⊗ T (I))⊗ T (I) λ◦λ //

µ̃

��

TTX

µ

��
X ⊗ T (I) σ // T (X ⊗ I)

T (r) // TX

and

(X ⊗ T (I))⊗ T (I)

I

σ //

µ̃

��

T (X ⊗ T (I)⊗ I)

T (r)

��
X ⊗ T (I)

IIσ

��

X ⊗ TT (I)
X⊗µIoo σ // T (X ⊗ T (I))

Tσ

��
T (X ⊗ I)

T (r)

��

III

TT (X ⊗ I)

TTr

��

µX⊗Ioo

TX TTX
µXoo

Diagram II commutes by strong naturality of µ (see Diagram 3.1.5). Diagram III
commutes by naturality of µ. We look more carefully Diagram I

(X ⊗ T (I))⊗ T (I)

X⊗λ

))RRRRRRRRRRRRRRRRRRRRRR

IV

σ //

µ̃

��

T (X ⊗ T (I)⊗ I)

T (r)

��
X ⊗ T (I) X ⊗ TT (I)

X⊗µIoo σ // T (X ⊗ T (I))

Diagram IV commutes by the naturality of σ.

The following corollary is a consequence of Proposition 4.2.1.
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Corollary 4.2.8. Let E be a closed symmetric monoidal category with equalizers and
− ⊗ T (I) be a E-monad, induced by the monoid T (I). Then the category ModT (I)
of modules over T (I) is canonically enriched over E .

Proof. We haveModT (I) = Alg−⊗T (I). Since −⊗T (I) is a E-monad, by Proposition
4.2.1, the category Alg−⊗T (I) is canonically enriched over E .

4.3 Homotopical Morita theorem

In this section, we state the homotopical Morita theorem, Theorem 4.3.1 which says
that, under suitable conditions on T and E , there is a Quillen equivalence between
the category of T -algebras and the category of modules over the monoid T (I).

Theorem 4.3.1. (Homotopical Morita theorem) Let E be a co�brantly generated
monoidal model category with co�brant unit I and with generating co�brations having
co�brant domain. Assume given a strong monad (T, µ, η, σ) on E such that

(a) The category of T-algebras AlgT admits a transferred model structure;

(b) The unit ηX : X → T (X) is a co�bration at each co�brant object X in E ;

(c) The tensorial strength

σX,Y : X ⊗ TY
∼
−→ T (X ⊗ Y )

is a weak equivalence for all co�brant objects X,Y in E ;

(d) The forgetful functor takes free cell attachments in AlgT to homotopical cell
attachments in E (cf. De�nition 2.2.7).

Then the monad morphism λ : − ⊗ T (I) → T induces a Quillen equivalence
between the category of T (I)-modules and the category of T-algebras:

Ho
(
ModT (I)

)
≃ Ho (AlgT )

Remark 29.

(a) Since by Proposition 4.2.2, the category of T -algebras AlgT is cotensored over
E (and AlgT ful�lls the adjoint of Hovey's pushout-product axiom rel. to E),
each �brant T -algebra possesses a path object. Indeed, it su�ces to factor
the folding map of the unit I ⊔ I → I into a co�bration followed by a weak
equivalence I ⊔ I → H → I. For each �brant T -algebra X, the induced maps
of T -algebras X = XI → XH → XI⊔I = X ×X then de�ne a path-object for
X. Therefore, by Theorem 2.2.4 (b), hypothesis (a) essentially amounts to the
existence of a �brant replacement functor for T -algebras.

(b) Hypothesis (c) of the theorem is slightly redundant under assumption (b).
Namely if all σY,I for co�brant objects Y are weak equivalences, then it follows
from (b) and from Brown's Lemma 2.3.3 that X ⊗ σY,I is a weak equivalence
for co�brant objects X. Consequently, Diagram 3.9 in the de�nition of strong
monad implies that σX,Y is a weak equivalence for co�brant objects X,Y .
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(c) Hypothesis (d) is admittedly of a technical nature. It is likely that slightly
di�erent conditions also su�ce to ensure the validity of the theorem. We
chose this hypothesis because on one side it allows a quite direct application
of Reedy's patching lemma and on the other side it is satis�ed in the main
example we study, cf. Sections 4.6 and 2.5, especially Proposition 2.5.5.

Proof. By Corollary 3.3.6, (T, µ, η) extends to a strong monad if and only if it
extends to a E-monad. Therefore, by Proposition 4.2.1, 4.2.2 and 4.2.3, the category
of T -algebras is enriched, tensored and cotensored over E . By Proposition 4.2.4, the
object T (I) has the structure of a monoid in E . We can give a look at the category
ModT (I) of modules over a monoid T (I). Since by hypothesis, I is co�brant, the
unit ηI : I → T (I) is a co�bration by hypothesis (b), i.e. the monoid T (I) is well-
pointed. Therefore, by Proposition 2.4.3, the categoryModT (I) admits a transferred
model structure.

We know that ModT (I) = Alg−⊗T (I).
By Proposition 4.2.7, there is a canonical map λ : − ⊗ T (I) → T of strong

monads.
There exists a functor

G : AlgT → Alg−⊗T (I)

which takes the T -algebra (X, ξX : TX → X) to the T (I)-module (X, ξXλX :
X ⊗ T (I) → X). Observe in particular that G preserves the underlying objects.
The category AlgT is cocomplete and therefore AlgT admits re�exive coequalizers.
Hence, by Proposition 1.4.14, the functor G has a left adjoint

F : Alg−⊗T (I) → AlgT

and we thus have a commutative diagram of right adjoint functors

AlgT
G //

UT

%%LLLLLLLLLLLLLLLL
ModT (I)

V

yyrrrrrrrrrrrrrrr

E

It follows that we have an analogous commutative diagram of left adjoint functors,
i.e. the left adjoint functor F takes free T (I)-modules to free T -algebras.

Fibrations and weak equivalences inModT (I) are exactly the �brations and weak
equivalences in E , and �brations and weak equivalences in AlgT are exactly the
�brations and weak equivalences in E .

Therefore, the right adjoint G preserves and even re�ects �brations and weak
equivalences. In order to be a right Quillen functor, G needs to preserve �brations
and acyclic �brations. Hence, G is a right Quillen functor and (F,G) forms a Quillen
adjunction.

It remains to prove that (F,G) is a Quillen equivalence.
Since the functor G preserves and re�ects �brations and weak equivalences,

(F,G) is a Quillen equivalence if and only if for every co�brant module M the
unit of the adjunction ηM :M → GFM is a weak equivalence.
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Since the left adjoint F takes free T (I)-modules to free T -algebras, the unit of
the adjunction at a free module X ⊗ T (I) is given by

ηX⊗T (I) : X ⊗ T (I) → TX

and coincides with the tensorial strength σX,I . It is therefore a weak equivalence if X
is co�brant in E , since I is co�brant by hypothesis. Using the patching and telescope
lemmas of Reedy (Lemma 2.2.6 and 2.2.9) we shall now extend this property to all
co�brant T (I)-modules.

We �rst show that the property �ηZ : Z → GF (Z) is a weak equivalence be-
tween co�brant objects� is closed under cobase change of Z along free T (I)-maps
on co�brations beween co�brant objects in E . Indeed, let us consider the following
cube

T (X) //

��

GF (Z ′)

��

X ⊗ T (I)

∼
99rrrrrrrrrr

//

��

Z ′

∼
;;wwwwwwwww

��

T (Y ) // GF (Z)

Y ⊗ T (I)

∼
99rrrrrrrrrr

// Z

∼
;;wwwwwwwwww

in which we suppose (inductively) that ηZ′ : Z ′ → GF (Z ′) is a weak equivalence
between co�brant objects in E . Since X, Y, T (I) and Z ′ are co�brant, it follows from
the pushout-product axiom that the front square is a (homotopical) cell attachment
in the sense of De�nition 2.2.7. It su�ces thus to prove that the back square is a
homotopical cell attachment as well. But this follows from hypothesis (d) since the
back square is the image under G of a free cell attachment in AlgT and hence, using
that V G = UT , a homotopical cell attachment in E .

Therefore, by the generalized Reedy patching Lemma 2.2.8, ηZ : Z → GF (Z)
is a weak equivalence between co�brant objects as required for the inductive step.
Any cellular T (I)-module is obtained from the initial T (I)-module by (possibly
trans�nite) composition of cobase changes of the aforementioned kind. It is here that
we need that the generating co�brations of E have co�brant domains. Therefore,
Reedy's telescope Lemma 2.2.9 implies that ηZ is a weak equivalence for all cellular
T (I)-modules. Finally, any co�brant T (I)-module is retract of a cellular one, so
that ηZ is a weak equivalence for all co�brant T (I)-modules Z as required.

4.4 Γ-spaces, Γ-rings and Γ-theories

The category of Γ-spaces was introduced by Segal [Seg74], who showed that it has a
homotopy category equivalent to the stable homotopy category of connective spec-
tra. Bous�eld and Friedlander [BF78] considered a bigger category of Γ-spaces in
which the ones introduced by Segal appeared as the special Γ-spaces. Their cat-
egory admits a closed simplicial model category structure with a notion of stable
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equivalences giving rise again to the homotopy category of connective spectra. Then
Lydakis [Lyd99] showed that Γ-spaces admit internal function objects and a sym-
metric monoidal smash product with good homotopical properties.

In this section we give some basic de�nitions and results of the category of Γ-
spaces GS.

Consider the simplicial category ∆ with objects [n] = {0, 1, ..., n}, for n ≥ 0, and
morphisms the maps f : [n] → [k] such that x ≤ y implies f(x) ≤ f(y).

A simplicial set is a functor X : ∆op → Set.
Simplicial sets and morphisms of simplicial sets, which are simply natural trans-

formations of functors, constitute the category of simplicial sets, written SSet.
Consider the category Γop where the objects are �nite sets n = {0, 1, ..., n}, for

n ≥ 0, and morphisms are the maps of sets which send 0 to 0. The category Γop is
the opposite of Segal's category Γ ([Seg74]), cf. the proof of Proposition 4.5.3.

A Γ-space is a functor A : Γop → E such that A (0) = ∗. The category E is
either Top or SSet. Γ-spaces and morphisms of Γ-spaces, which are simply natural
transformations of functors, constitute the category of Γ-spaces, written GS. We
have been careful to keep our arguments general enough so as to be independent
of the particular choice of monoidal model category E for the homotopy theory
of spaces. The formal properties we need are those appearing in the notion of
solid monoidal model category E in ([BM11], Chapter 7). In particular the latter
imply that the category of all functors Γop → E is again a monoidal model category
with pointwise weak equivalences, and co�brations as well as �brations of Reedy
type, and with symmetric monoidal structure induced by Day convolution. This
monoidal model structure restricts in a straighforward way to the full subcategory
of those functors A : Γop → E such that A(0) = ∗. If E = SSet or E = Top the
resulting model structure is precisely Bous�eld-Friedlander's strict model structure
on Γ-spaces, equipped with the smash-product of Lydakis [Lyd99].

Since 0 is a zero object in Γ, a Γ-space actually takes values in E∗, the pointed
category of based objects in E . Moreover, the category of Γ-spaces is itself pointed
by the representable Γ-space Γ0 = Γ(−, 0).

We assume here (as is the case for SSet and Top) that the monoidal structure
of E is given by the cartesian product. A based space is then an object X of E
together with a map ∗ → X where ∗ denotes a terminal object of E (which serves at
the same time as unit for the monoidal structure of E). In particular, the category
E∗ of based spaces is again a monoidal model category with monoidal structure given
by the smash-product (X, ∗)∧ (Y, ∗) = X×Y/(X×∗)∪ (∗×Y ). The category E∗ is
pointed by ∗. The category of sets embeds into E by the functor which takes a set
X to the coproduct

∐
X I of X copies of the unit I. For E = SSet (resp. E = Top)

this identi�es sets with discrete simplicial sets (resp. discrete topological spaces).
In particular, any representable Γ-set Γk = Γ(−, k) may be considered as a discrete
Γ-space.

A Γ-space A : Γop → E∗ can be prolonged to an endofunctor A : E∗ → E∗ by
enriched left Kan extension along the canonical inclusion Γop → E∗. This enriched
Kan extension can be expressed as a coend, which was the way Segal [Seg74] orig-
inally proceeded (cf. also Berger [Ber07], Section 2.6). More precisely, each based
space (X, ∗) induces a functor X− : Γ → E which takes n to the n-fold cartesian
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product Xn (observe the variance!). The based space A(X) is then given by the
coend A⊗Γ X

−, i.e. as a canonical quotient of
∐

n≥0A(n)×Xn in E .
It is now of fundamental importance that the endofunctor A of E∗, associated to

any Γ-space A, is a strong endofunctor of E∗, i.e. it comes equipped with a strength
X ∧A(Y ) → A(X ∧Y ). The latter is induced by the aforementioned coend formula
together with a canonical trinatural transformation X ∧ (Y −) → (X ∧ Y )−.

It follows that there are two monoidal structures on Γ-spaces. A symmetric
monoidal smash-product A ∧ B, induced from the smash-product on Γop by Day
convolution, cf. Section 3.4, and a non-symmetric circle-product A ◦ B induced
by the composition of the associated endofunctors of E∗. Both monoidal structures
share the same unit, namely the representable Γ-space Γ1 = Γ(−, 1).

More precisely, the smash-product A ∧ B is characterized by the property that
maps A∧B → C correspond one-to-one to binatural families of based maps A(m)∧
B(n) → C(m∧n). The circle product A ◦B is characterized by a binatural isomor-
phism A ◦B ∼= A ◦B, in particular A ◦B(n) = A(B(n)).

This leads to the following two de�nitions:

De�nition 4.4.1. A Γ-ring is a monoid in Γ-spaces for the ∧-product.

De�nition 4.4.2. A Γ-theory is a monoid in Γ-spaces for the ◦-product.

Lemma 4.4.3. There is a binatural map (the so called assembly map)

A ∧ B → A ◦B

from the smash product of Γ-spaces to the circle product of Γ-spaces which is in a
suitable sense associative and unital. Formally, the identity functor is a lax monoidal
functor from (GS,∧,Γ1) to (GS, ◦,Γ1).

Proof. The costrength of A and the strength of B induce maps

A(n) ∧ B(m) → A(n ∧ B(m)) → A(B(n ∧m))

The characterizations of the smash and circle products then give the desired assem-
bly map.

Consequently, every Γ-theory A gives rise to a Γ-ring AS (with same underlying
Γ-space) by pulling back the multiplication of the theory along the assembly map. Γ-
theories correspond precisely to strong monads on based spaces which are determined
(through enriched left Kan extension) by their values on �nite based sets. Schwede
[Sch01] shows actually that Γ-theories can be considered as pointed algebraic theories
in E . By Proposition 3.4.4 the strong monad A on E∗ induces a strong monad (A◦−)
on Γ-spaces and hence, by Proposition 4.2.4, an endomorphism monoid A = A ◦ Γ1

in Γ-spaces. This construction is consistent with the aforementioned construction
of the Γ-ring AS as follows from:

Proposition 4.4.4. For each Γ-theory A, the endomorphism monoid of the associ-
ated strong monad (A◦−) on Γ-spaces may be identi�ed with the Γ-ring AS induced
by the assembly map.
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Proof. The underlying Γ-space is A in both cases. It remains to be shown that the
multiplication coincides as well. This follows from Lemma 4.2.5 since the latter says
that the multiplication of the endomorphism monoid A = A ◦ Γ1 is given by

A ∧ A→ A ◦ A→ A

where the �rst map is induced by the strength of the monad (A ◦−) and the second
by the theory multiplication. This is precisely the multiplication AS ∧ AS → AS

induced by the assembly map, cf. the proof of Lemma 4.4.3.

4.5 The stable model structure on Γ-spaces

The category of Γ-spaces has a strict model structure of Bous�eld and Friedlander,
where the weak equivalences are pointwise, co�brations and �brations are Reedy-
like (cf. [BF78, Lyd99, BM11]). In particular, the category of Γ-spaces for the strict
structure is a monoidal model category by a result of Berger-Moerdijk on generalized
Reedy categories (cf. [BM11], Theorem 7.6 and Example 7.7b).

Nevertheless, the strict model structure does not permit an application of our
homotopical Morita theorem since the assembly map is in general not a weak equiv-
alence in the strict model structure. Nevertheless, it was one of the insights of
Lydakis [Lyd99] that the assembly map is a stable equivalence in quite generality.
So, only in the stable world, the category of models for a Γ-theory can possibly
become Quillen equivalent to the category of modules over the associated Γ-ring.
That this is indeed the case has been shown by Schwede [Sch01]. We get Schwede's
theorem as a formal consequence of our homotopical Morita theorem.

In order to render our thesis as self-contained as possible we include here a new
proof of Lydakis' theorem on the assembly map. Our proof has the advantage of
being independent of the choice of the cartesian model E for the homotopy theory
of spaces. It is also interesting to observe that Lydakis' theorem implies that the
stable model category of Γ-spaces is a monoidal model category, which is the other
hypothesis for our homotopical Morita theorem to be applicable. In course of proving
Lydakis' theorem on the assembly map, we relate in an interesting way the "Γ-
spheres" Γn/∂Γn to the Γ-sets which represent the n-fold smash product of based
spaces, cf. Proposition 4.5.3.

The stable model structure of Bous�eld and Friedlander is obtained by left Bous-
�eld localization of the strict model structure. More precisely, while co�brations are
�xed, one extends weak equivalences. Bous�eld and Friedlander [BF78] proved that
such a localization exists by taking as new weak equivalences precisely the stable
equivalences. Schwede [Sch99] considered slightly di�erent strict and stable model
structures on Γ-spaces, the so called Q-model structures with less co�brations and
more �brations, but the same classes of weak equivalences.

We recall here the stable model structure on Γ-spaces (as de�ned by Bous�eld
and Friedlander) by specifying its co�brations and weak equivalences. Since Γop is
a generalized Reedy category in the sense of Berger and Moerdijk, each Γ-space A
has a skeletal �ltration

...→ skn−1(A) → skn(A) → skn+1(A) → ...



94 CHAPTER 4. MORITA THEORY IN ENRICHED CONTEXT

where skn(A) denotes the sub-Γ-object ofA generated by the based spacesA(0), . . . , A(n).
The n-th latching object Ln(A) is then de�ned to be the based space (skn−1(A))(n).
The latter comes equipped with a Σn-equivariant map Ln(A) → A(n), where Σn

denotes the automorphism-group of n in Γop.
A map of Γ-spaces A→ B is then called a co�bration if the induced comparison

map A(n) ∪Ln(A) Ln(B) → B(n) is a Σn-co�bration in E (which means that it has
the left lifting property with respect to Σn-equivariant acyclic �brations) for each
n ≥ 1. A discrete Γ-space A is co�brant if and only if for all n ≥ 1, Σn acts freely
on A(n)− Ln(A). In particular, all subobjects of the representable Γ-spaces Γn are
co�brant. This property fails for Schwede's strict and stable Q-model structure,
which is the main reason for which we are forced to use Bous�eld and Friedlander's
strict and stable model structures instead.

A map of Γ-spaces A → B is called a stable equivalence if its spectri�cation
ΦA→ ΦB is a stable equivalence of spectra. We recall that a spectrum in E consists
of a sequence (Xn) of objects in E∗ equipped with structural maps S1 ∧Xn → Xn+1

(n ≥ 0). Any strong endofunctor A takes spectra to spectra. Indeed, (A(Xn)) comes
equipped with structural maps

S1 ∧ A(Xn) → A(S1 ∧Xn) → A(Xn+1)

Since E∗ is a pointed model category, there is a canonical suspension functor
for E∗. In particular, E∗ possesses a sphere-spectrum S such that Sn is a model for
the n-sphere Sn. The spectri�cation functor of Segal [Seg74] is then de�ned by
ΦA = A(S).

Recall also that a stable equivalence of spectra (Xn) → (Yn) is de�ned to be a
map of spectra that induces an isomorphism on stable homotopy groups.

Bous�eld and Friedlander show that the category of Γ-spaces equipped with
these co�brations and weak equivalences (i.e. stable equivalences) forms a model
category. We shall call a map of Γ-spaces, which is at once a co�bration and a stable
equivalence, a stably acyclic co�bration. We de�ne the stable homotopy groups of a
Γ-space through its spectri�cation: πstn (A) = πstn (ΦA).

Lemma 4.5.1. Every co�bration of Γ-spaces A B induces a long exact sequence
of stable homotopy groups

....→ πstn (A) → πstn (B) → πstn (B/A) → ...

In particular,

(a) The co�bration is a stably acyclic co�bration if and only if its co�ber is stably
acyclic (i.e. the stable homotopy groups of B/A are trivial);

(b) For every natural transformation of co�ber sequences

A
f //

α

��

B
g //

β

��

B/A

γ

��

A′
f ′ // B′

g′ // B′/A′
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Diagram 4.8.

if two among (α, β, γ) are stable equivalences then so is the third.

Proof. The main statement follows from the analogous statement for co�ber se-
quences of spectra because Segal's spectri�cation functor Φ : (GS) → (Spectra) is
a left Quillen functor with respect to a suitable stable model structure on spectra
(cf. [BF78] and [Sch99], Lemma 1.3.). Then (a) and (b) are immediate corollaries of
well known results in homological algebra (for example (b) is a consequence of the
Five Lemma).

For any Γ-space A and any based space X there is a Γ-space X ∧ A de�ned
by (X ∧ A)(n) = X ∧ A(n). In other words, the category of Γ-spaces is tensored
over the category E∗ of based spaces. This structure is compatible with Segal's
spectri�cation functor in the following sense: there is a canonical map of spectra
X ∧ Φ(A) → Φ(X ∧ A) which is a stable equivalence for any co�brant Γ-space A
and any co�brant based space X, cf. Lemma 4.1 of Bous�eld-Friedlander [BF78].

The following lemma is a fundamental tool (also used by Lydakis [Lyd99], 3.11).

Lemma 4.5.2. For any co�brant Γ-space A and any n > 0, there is a co�brant
based space Ã(n) such that the quotient skn(A)/skn−1(A) is isomorphic (as Γ-space)
to Ã(n) ∧ Γn/∂Γn, where the boundary ∂Γn is given by skn−1(Γ

n).

Proof. It follows from the de�nition of the skeletal �ltration of a Γ-space (cf. [BF78],
[Lyd99], [BM11]) that skn(A) is obtained from skn−1(A) by attaching the co�bration

(Ln(A) ∧ Γn) ∪ (A(n) ∧ ∂Γn) → A(n) ∧ Γn

along a canonical attaching map to skn−1(A). Taking co�bers, we get an isomor-
phism (confer the proof of Corollary 4.5.7)

(A(n)/Ln(A)) ∧ (Γn/∂Γn) ∼= skn(A)/skn−1(A).

Since A is a co�brant Γ-space the inclusion Ln(A) → A(n) is a co�bration of Σn-
spaces; therefore we can take the co�brant quotient A(n)/Ln(A) for Ã(n).

Proposition 4.5.3. For each n > 0 one has:

(a) The endofunctor Γn takes a based space X to the n-fold cartesian product Xn;

(b) The boundary ∂Γn = skn−1(Γ
n) contains a uniquely determined Γ-subset ∂outΓ

n

("outer" boundary) with the property that the endofunctor associated to the
quotient Γn/∂outΓ

n takes a based space X to the n-fold smash product X∧n;

(c) The poset of monogenic subobjects of Γn not contained in ∂outΓ
n is anti-

isomorphic to the partition lattice Πn of an n-element set;

(d) The quotient map Γn → Γn/∂outΓ
n takes the lattice of monogenic subobjects of

Γn to an isomorphic lattice of subobjects of Γn/∂outΓ
n. Each of these image-

subobjects is isomorphic to a Γk/∂outΓ
k where k is the number of pieces of the

corresponding partition;
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(e) There is a co�ber sequence of (discrete) Γ-spaces

∂Γn/∂outΓ
n → Γn/∂outΓ

n → Γn/∂Γn

where the �rst term is canonical colimit (over Π∗
n) of Γ-spaces of the form

Γk/∂outΓ
k.

Proof.

(a) n is the n-fold coproduct of 1 in Γop so that Γn is the n-fold cartesian product of
Γ1 in the category of (discrete) Γ-spaces. The coend formula for the associated
endofunctors commutes with these �nite products.

(b) We shall use Segal's original description of the operators of Γ, i.e. an operator
φ : k → n is given by a k-tuple (φ1, . . . , φk) of pairwise disjoint subsets of
{1, . . . , n}. Then the Reedy-boundary of Γn = Γ(−, n) is given by

∂Γn(k) = {φ : k → n non-invertible}

We de�ne a second smaller boundary by

∂outΓ
n(k) = {φ : k → n non-covering}

where an operator φ = (φ1, . . . φk) : k → n is non-covering if φ1 ∪ · · · ∪ φk 6=
{1, . . . , n}. ∂outΓ

n is a union of n copies of Γn−1 where the inclusions are
induced by the n outer face operators

({1}, . . . , {i− 1}, {i+ 1}, . . . , {n}) : n− 1 → n

in Γ. By (a), each inclusion induces, on the level of associated endofunctors, a
speci�c inclusion of the (n−1)-fold cartesian product into the n-fold cartesian
product, namely by specifying which of the n factors in the image is at the
base point. It follows that the quotient Γn/∂outΓ

n de�nes the endofunctor
X 7→ X∧n.

(c) We call a Γ-set monogenic if it can be generated by a single element. The
monogenic subobjects of Γn not contained in ∂outΓn correspond thus to non-
degenerate elements of Γn which do not belong to ∂outΓ

n. The latter are
precisely the partitions of {1, . . . , n} where the number of pieces is given by
the domain of the operator φ = (φ1, . . . , φk) : k → n. A partition φ into k
pieces is re�ned by a partition ψ into l pieces if and only if there is a Γ-operator
ρ : k → l such that φ = ψρ; this means that the subobject generated by φ is
contained in the subobject generated by ψ if and only if the partition ψ re�nes
the partition φ.

(d) The �rst assertion follows from the fact that the generator of each of these
subobjects does not belong to the outer boundary. The second assertion follows
from the identi�cation ∂outΓ

n ∩ (φ) = ∂outΓ
k for each covering Γ-operator

φ : k → n.
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(e) It is clear that the boundary ∂Γn contains the outer boundary ∂outΓn so that
the left arrow is well de�ned and monic. Since its quotient is co�brant the
left arrow is a co�bration. The second assertion follows then from (d) and the
fact that the boundary ∂Γn is the union of proper, monogenic subobjects as
considered in (c).

Remark 30. For n = 2, the outer boundary ∂outΓ2 represents the endofunctor which
sends X to the wedge X ∨X. It is the union of two copies of Γ1 (representing the
identity functor) along the two face operators ({1}) : 1 → 2 and ({2}) : 1 → 2.
The whole boundary ∂Γ2 contains a third copy of Γ1 glued in by the covering face
operator ({1, 2}) : 1 → 2. We therefore get ∂Γ2/∂outΓ

2 = Γ1/∂outΓ
1 = Γ1. The

co�ber sequence above reads then as follows:

Γ1 → Γ2/∂outΓ
2 → Γ2/∂Γ2

This shows (in virtue of Proposition 4.5.3(b) and Lemma 4.5.1(b)) that the endo-
functor de�ned by the Γ-sphere Γ2/∂Γ2 preserves stable equivalences between con-
nective spectra. The same is true for the higher Γ-spheres Γn/∂Γn and indeed for
any co�brant Γ-space A, more precisely:

Proposition 4.5.4. For each co�brant Γ-space A, the left circle-product A◦− takes
stable equivalences between co�brant Γ-spaces to stable equivalences.

Proof. By the telescope lemma of Reedy, cf. Lemma 2.2.9, it su�ces to establish
the property for each skn(A), n ≥ 0. For n = 0 it holds. By Lemma 4.5.1 (b) above
and an induction on n, it then su�ces to show the property for skn(A)/skn−1(A) =
Ãn∧Γ

n/∂Γn (by Lemma 4.5.2 above). Smashing by a co�brant based space preserves
stable equivalences between co�brant spectra so that it is �nally su�cient to prove
that Γn/∂Γn ◦ − has the required property.

In other words, we have to show that for any stable equivalence of co�brant
Γ-spaces B → C, the map of spectra

Γn/∂Γn(B(S)) → Γn/∂Γn(C(S))

is a stable equivalence knowing that B(S) → C(S) is a stable equivalence of connec-
tive co�brant spectra. By Proposition 4.5.3(e) we know that Γ/∂Γn is a quotient
of Γn/∂outΓn and that ∂Γn/∂outΓn itself is a "nice" colimit of Γ-spaces of the form
Γk/∂outΓ

k. Applying Lemma 4.5.1(b) and the fact that the circle-product preserves
colimits in the �rst variable, it is thus su�cient to show that the strong endofunc-
tors Γk/∂outΓ

k preserve stable equivalences between connective co�brant spectra.
According to Proposition 4.5.3 (b) these endofunctors are given by k-fold smash
product. For k = 1 the 1-fold smash product (i.e. the identity functor) certainly
has the required property. For k ≥ 2, the levelwise k-fold smash product of a con-
nective spectrum X = (Xn) has the property that X∧k

n is (nk − 1)-connected, and
hence, the connectivity of X∧k

n minus n goes to in�nity when n goes to ∞. Thus,
for k ≥ 2 and any connective spectrum X, Γk/∂outΓk(X) is stably trivial. It follows
that for k ≥ 2, the endofunctors Γk/∂outΓk also have the required property.
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Beside the preceding proposition there is one other ingredient for our proof of
Lydakis's theorem on the assembly map. It concerns a homotopical property of
reduced bifunctors F : Γop × Γop → E which we call bi-Γ-spaces. A bifunctor F is
called reduced if F (0, n) = F (m, 0) = ∗ where ∗ is the terminal object of E . The
following property is reminiscent of the well-known property of the diagonal of a
bisimplicial set (or space). It di�ers insofar as we are not using the diagonal, but
left Kan extension along the smash-product s : Γop × Γop → Γop : (m,n) 7→ mn.

Observe that the product of two generalized Reedy-categories is again a gener-
alized Reedy category in the sense of Berger-Moerdijk [BM11]. Therefore, it makes
sense to speak of co�brant bi-Γ-spaces.

Proposition 4.5.5. Let φ : F (·, ·) → G(·, ·) be a map of co�brant bi-Γ-spaces and
assume that either, for each m, φ(m, ·) : F (m, ·) → G(m, ·) is a stable equivalence of
Γ-spaces or, for each n, φ(·, n) : F (·, n) → G(·, n) is a stable equivalence of Γ-spaces.

Then, the left Kan extension s!φ : s!F → s!G is again a stable equivalence of
Γ-spaces.

Proof. The idea is quite simple: we endow the category EΓop×Γop

red with a Quillen
model structure such that

(i) The weak equivalences are precisely the pointwise stable equivalences (with
respect to one of the two variables);

(ii) The adjoint pair (s!, s
∗) is a Quillen pair between this model structure on

EΓop×Γop

red and the stable model structure on EΓop

red .

The proposition follows then from Brown's Lemma 2.3.3(a).
Point (i) is immediate since EΓop×Γop

red can be identi�ed (in two ways, depending
on the ordering of the variables) with (EΓop

red )
Γop

red . The model structure, we are inter-
ested in, is the "Reedy" model structure on (reduced) Γ-objects in the stable model
category of (reduced) Γ-spaces. It is thus a mixture between the stable (inside)
and the strict (outside) model structure. Nevertheless, its existence follows from
Bous�eld-Friedlander [BF78] and Berger-Moerdijk [BM11].

Point (ii) is more subtle since, a priori, we only know that s∗ takes stable equiva-
lences (resp. stable �brations) to pointwise stable equivalences (resp. pointwise sta-
ble �brations). Therefore, s∗ preserves the respective notions of weak equivalence,
but it has to be shown that s∗ also preserves the respective notions of �bration, i.e.
that s∗ takes stable �brations to Reedy �brations for the "mixed" model structure
on (EΓop

red )
Γop

red .
In order to establish the latter property we shall use an idea of Barwick, cf.

Lemma 3.21 of [Bar10]. The latter is formulated for a functor f : R → S of
strict Reedy categories and implies that f! : ER ⇆ ES : f ∗ is a Quillen adjunction
between the respective Reedy model structures provided that for each object σ of
S the inverse part of the comma category f/σ is a coproduct of categories with
terminal object. There is an analogous statement for a functor of generalized Reedy
categories, replacing terminal by weakly terminal object. The proof idea consists
roughly in showing that certain relevant matching maps in ER derive from the
matching maps in ES by taking products.
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It is now straightforward to show that the smash product functor s : Γop×Γop →
Γop has this property. Indeed, one shows that for each object m ∧ n → p in s/p
there is an object m′ ∧ n′ → p, weakly terminal in the inverse part of s/p, such that
former map factors through the latter map by a pair of surjections m → m′ and
n→ n′ in Γop.

This shows that (s!, s∗) is a Quillen adjunction for the Reedy model structures on
EΓop×Γop

red and EΓop

red . It also gives a Quillen adjunction for the mixed model structure
on EΓop×Γop

red and the stable model structure on EΓop

red since a product of stable �brations
is again a stable �bration.

Theorem 4.5.6. (Lydakis [Lyd99]) For any pair A,B of co�brant Γ-spaces the as-
sembly map A ∧ B → A ◦B is a stable equivalence.

Proof. We de�ne three di�erent co�brant bi-Γ-spaces, A21B, A22B and A23B by
the formulas:

(A21B)(m,n) = A(m) ∧ B(n) (A22B)(m,n) = A(m ∧ B(n))

(A23B)(m,n) = (A ◦B)(mn) = A(B(mn))

There are canonical maps of co�brant bi-Γ-spaces

A21B → A22B → A23B

The �rst is a stable equivalence (for �xed n) with respect to the �rst variable by
Lemma 4.1 of Bous�eld- Friedlander [BF78], the second is a stable equivalence (for
�xed m) with respect to the second variable by Lemma 4.1 of Bous�eld-Friedlander
[BF78] together with our Proposition 4.5.4. It follows then from Proposition 4.5.5
that left Kan extension along the smash-product gives a stable equivalence:

s!(A21B) → s!(A23B)

The 21-product is the external smash-product of Γ-spaces so that s!(A21B) is the in-
ternal smash-product of Γ-spaces (obtained by Day convolution, cf. De�nition3.4.3).
The 23-product is just s∗(A ◦B) so that s!(A23B) = s!s

∗(A ◦B) = A ◦B, since s∗

is fully faithful. The constructed stable equivalence A ∧ B → A ◦ B coincides with
the assembly map, cf. the proof of Lemma 4.4.3.

Corollary 4.5.7. Bous�eld and Friedlander's stable model category of Γ-spaces is
a monoidal model category with co�brant unit.

Proof. The only axiom to be checked is Hovey's pushout-product axiom. For this
consider Diagram 2.6 of De�nition 2.4.1. Since the non-localized category is monoidal,
f2g is a co�bration and it is su�cient to prove that f2g is a stable equivalence if
either f or g is. By Lemma 4.5.1 (a) this amounts to proving that the co�ber of
(f2g) is stably acyclic if either the co�ber of f or the co�ber of g is stably acyclic.
But the co�ber of f2g is the smash product of the co�bers of f and of g. Therefore
it su�ces to prove that the smash product of two co�brant Γ-spaces is stably acyclic
as soon as one of the factors is. This follows from Lydakis' theorem 4.5.6 together
with Proposition 4.5.4.
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Corollary 4.5.8. For each co�bration X → Y between co�brant Γ-spaces and each
co�brant Γ-space A, the canonical map (A ◦ Y )/(A ◦ X) → A ◦ (Y/X) is a stable
equivalence.

Proof. The assembly map induces a natural transformation of co�ber sequences

A ∧X //

α

��

A ∧ Y //

β

��

A ∧ (Y/X)

γ

��

A ◦X // A ◦ Y // (A ◦ Y )/(A ◦X)

By Theorem 4.5.6 and Lemma 4.5.1 (b) the induced map on the quotients γ is a
stable equivalence. On the other hand, Theorem 4.5.6 also gives a stable equivalence
δ : A ∧ (Y/X) → A ◦ (Y/X). The canonical map (A ◦ Y )/(A ◦ X) → A ◦ (Y/X)
precomposed by γ yields δ. The 2 out of 3 property of stable equivalences thus
yields the asserted result.

4.6 Recovering a theorem of Stefan Schwede

For the following theorem of Schwede we restrict ourselves to the case where E is
the category of simplicial sets. Therefore, from now on, Γ-spaces are understood to
take values in the category of simplicial sets. A Γ-theory is said to be well-pointed if
its unit is a co�bration of Γ-spaces; this implies in particular that the Γ-theory has
an underlying co�brant Γ-space. We begin by showing that the category of Γ-spaces
has the required properties for an application of our homotopical Morita Theorem
4.3.1 and our simplifying assumptions made in Section 2.5.

Proposition 4.6.1. For every co�brant Γ-space A and every pair X,Y of co�brant
Γ-spaces there is a stable equivalence

(A ◦X) ∧ Y → A ◦ (X ∧ Y )

Proof. For two co�brant Γ-spaces X and Y , consider the following:

A ∧X ∧ Y → (A ◦X) ∧ Y → A ◦ (X ∧ Y )

Since by the pushout-product axiom (De�nition 2.4.1), the smash product X ∧ Y is
a co�brant Γ-space, the composed arrow

A ∧X ∧ Y → A ◦ (X ∧ Y )

is a stable equivalence by Theorem 4.5.6.
But A∧X → A◦X is a stable equivalence of co�brant Γ-spaces by Theorem 4.5.6

(it can be checked that the circle product of two co�brant Γ-spaces is again co�-
brant). Then Brown's Lemma 2.3.3 (a), the pushout-product axiom and Corollary
4.5.7 imply that smashing with a co�brant Γ-space yields

A ∧X ∧ Y → (A ◦X) ∧ Y
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also a stable equivalence. Using the two out of three rule, we obtain that the right
arrow

(A ◦X) ∧ Y → A ◦ (X ∧ Y )

is a stable equivalence.

Lemma 4.6.2. The stable model category GS of Γ-spaces (with space=simplicial
set) has the following properties:

(a) GS is endowed with a standard system of simplices whose associated realisation
functor is good (cf. De�nition 2.5.2);

(b) GS satis�es excision (cf. De�nition 2.5.4);

(c) For any well-pointed Γ-theory A, free cell extensions in GSA◦ (cf. proof of
Proposition 2.5.5) have as underlying map a co�bration of Γ-spaces.

Proof.

(a) The Yoneda-embedding ∆ → SSet de�nes a standard system of simplices for
simplicial sets. There are strong symmetric monoidal left Quillen functors
SSet→ SSet∗ (adjunction of base point) and SSet∗ → GS (left adjoint of the
underlying space functor A 7→ A(1)). According to Berger-Moerdijk [BM06]
Cor. A.14, this provides GS with a standard system of simplices.

The associated realisation functor is good, since the Bous�eld-Friedlander co�-
brations in GS can be characterised as those monomorphisms X → Y for
which the quotient Y/X has the property that the non-degenerate simplices
in Γ-degree n > 0 have no isotropy for the canonical Σn-action. In particular,
for any "intermediate" Γ-space Z such that X ⊂ Z ⊂ Y the two inclusions
X → Z and Z → Y are also co�brations. This implies that good simplicial
objects in the sense of De�nition 2.5.2 are actually Reedy-co�brant (for the
Reedy model structure on simplicial objects in GS). Therefore, the realisation
functor (which is a left Quillen functor with respect to this Reedy model struc-
ture, cf. [BM06] Lemma A.8 ) takes weak equivalence between good simplicial
objects to weak equivalences by Corollary 2.3.4 (a).

(b) Excision follows directly from Lemma 4.5.1 (b) by taking α to be the identity.

(c) We have to show that in any pushout diagram

A ◦X //

��

W

��
A ◦ Y // W ′

in GSA◦ the underlying map ofW → W ′ is a co�bration of Γ-spaces as soon as
X → Y is so. It follows from Lemma 3.4.1 that the category of algebras GSA◦ is
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isomorphic (over GS) to the category of reduced Γ-objects in SSetA∗ . Moreover,
a co�bration of GS-spaces is (as already mentioned above) a monomorphism
X → Y such that the quotient Y/X is co�brant. It therefore su�ces to
show that free A-extensions of A-algebras in SSet∗ are monic, and that A ◦−
preserves co�brant Γ-spaces. The circle product of two co�brant Γ-spaces is
co�brant so that the second assertion follows from the well-pointedness of A.
For the �rst assertion we use that the strong endofunctor A may be computed
in each simplicial degree seperately. More precisely, the Γ-theory A de�nes in
each simplicial degree n a discrete Γ-theory An so that for an arbitrary pointed
simplicial set X the value A(X) in simplicial degree n is given by An(Xn).

Consider now a pushout square like above for a monomorphism of pointed
simplicial sets X → Y . Since any monomorphism of pointed sets Xn → Yn is
a split monomorphism (i.e. admits a retraction) the induced map An(Xn) →

An(Yn) is a split monomorphism in Set
An

∗ . Split monomorphisms are sta-
ble under pushout in any category. Thus, the pushout Wn → W ′

n is a split
monomorphism in Set

An

∗ and hence the pushout W → W ′ is a monomorphism
(not anymore split) in SSetA∗ .

Theorem 4.6.3. (Schwede [Sch01]) Each well-pointed Γ-theory A induces a Quillen
equivalence between the category of (A◦)-algebras in Γ-spaces and the category of AS-
modules in Γ-spaces for a functorially associated Γ-ring AS.

Proof. Consider the category of Γ-spaces GS with the symmetric monoidal structure
of Lydakis. By Corollary 4.5.7, Γ-spaces admit a stable monoidal model structure
of Bous�eld-Friedlander with co�brant unit Γ1. Moreover, the category of Γ-spaces
has generating co�brations with co�brant domain, since they are of the form

Y+ ∧ ∂Γn ∪X+ ∧ Γn → Y+ ∧ Γn

where X → Y is a generating co�bration of SSet.
In order to prove the existence of a transferred model structure for (A◦)-algebras,

we will use the remark (a) after Theorem 4.3.1. Since the monad A◦ preserves re�ex-
ive coequalizers (indeed, the functor X 7→ (− 7→ X−) preserves re�exive coequal-
izers) Proposition 1.4.13 shows that GS(A◦) is cocomplete. Moreover, the forgetful
functor preserves �ltered colimits and GS is locally �nitely presentable; it there-
fore su�ces by Theorem 2.2.4 (b) to construct a �brant replacement functor for
(A◦)-algebras. Since the forgetful functor commutes with �nite products it su�ces
to construct a �nite product preserving �brant replacement functor for the stable
model structure on GS. Bous�eld-Friedlander construct such �brant replacement
functor in [BF78].

The hypothesis that a Γ-theory A is well-pointed implies the hypothesis (b) of
Theorem 4.3.1, since (Γ1 → A)◦B gives a co�bration B → A◦B if A is well-pointed
and B co�brant.

By Proposition 4.6.1, we have a stable equivalence:

(A ◦X) ∧ Y → A ◦ (X ∧ Y )
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for X and Y co�brant Γ-spaces.
By symmetry of the assembly map, we can do the following switch:

Y ∧ (A ◦X) → A ◦ (Y ∧X)

This coincides with the tensorial strength σY,X of the endofunctor (A◦), which yields
hypothesis (c).

It remains to verify that for a well-pointed Γ-theory A, the monad (A ◦ −) on
Γ-spaces satis�es hypothesis (d) of our homotopical Morita theorem. Since this
monad preserves strong co�brations (by well-pointedness of A), Lemma 4.6.2 and
Proposition 2.5.5 of Section 2.5 show that hypothesis (d) reduces to Corollary 4.5.8.

X → Y is a co�bration and X, Y, Z are co�brant.
By Proposition 3.4.4, where we suppose that E = SSet∗ and A = Γop, the

strong monad A ◦− on E∗ induces a strong monad A ◦− on Γ-spaces and hence, by
Proposition 4.2.4, an endomorphism monoid A ◦ Γ1 in Γ-spaces. Furthermore, by
Proposition 4.4.4 the endomorphism monoid of the associated strong monad A ◦ −
on Γ-spaces may be identi�ed with the Gamma-ring AS induced by the assembly
map.

Therefore our homotopical Morita theorem shows that the monad morphism

λ : − ∧ AS → A ◦ −

induces a Quillen equivalence between the category of AS-modules and the category
of (A◦)-algebras:

Ho (ModAS) ≃ Ho
(
Alg(A◦)

)

Remark 31. Schwede's original statement is slightly more general than ours insofar
as he imposes no restriction at all on the Γ-theory A. He is able to do so by
cleverly using the monoid axiom (cf. De�nition 2.4.4) at all places where we use
the co�brancy of the underlying Γ-space A. It should however be noticed that
our co�brancy condition is not as restrictive as that since we are using Bous�eld-
Friedlander's co�brations.

Remark 32. Theorem 4.6.3 has its intrinsic limitation in the fact that Γ-spaces
solely model connective spectra. Lydakis [Lyd98] proves that we can embed the
category of Γ-spaces (E = SSet) into the category of strong endofunctors of E∗ which
are determined (by enriched left Kan extension) by their values on the simplicial
sets of �nite presentation (i.e. having only a �nite number of non-degenerated
simplices or, equivalently, having a compact geometric realization). This actually
is a category (the hom-sets are small) and we can de�ne a model structure which
extends in a certain sense the one on Γ-spaces (one more time there is a strict
version and a stable version). Lydakis [Lyd98] (cf. also [MMSS01]) proves that
the stable version provides a model for all spectra. Moreover, this category admits
two monoidal structures: one (non-symmetric) corresponding to the composition
of endofunctors and the other (symmetric) corresponding to the smash-product.
The monoids for this smash-product are precisely the FSP's (Functor with Smash
Product) of Bökstedt.
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The homotopical Morita theorem then allows (if one veri�es that the category of
strong endofunctors �with compact support� is stable monoidal model category and
further that the axioms of the theorem are satis�ed, essentially the veri�cations done
in Section 4.5, but now in the case of strong endofunctors �with compact support�)
to associate to a strong monad �with compact support� a FSP of Bökstedt such
that the category of algebras of the monad is Quillen equivalent to the category of
modules for the corresponding FSP.
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Résumé

Nous développons une version homotopique de la théorie de Morita classique
en utilisant la notion de monade forte. C'était Anders Kock qui a montré qu'une
monade T dans une catégorie monoidale E est forte si et seulement si la monade T
est enrichie. Nous montrons que cette correspondance entre force et enrichissement
se traduit par un 2-isomorphisme de 2-catégories. Sous certaines conditions sur la
monade T , nous montrons que la catégorie homotopique des T -algèbres est équiv-
alente au sens de Quillen à la catégorie homotopique des modules sur le monoïde
d'endomorphismes de la T -algèbre T (I) librement engendré par l'unité I de E . Dans
le cas particulier où E est la catégorie des Γ-espaces de Segal munie de la structure
de modèle stable de Bous�eld-Friedlander et T est la monade forte associée à une
Γ-théorie bien pointée, nous retrouvons un théorème de Stefan Schwede, comme
corollaire du théorème homotopique de Morita.

Mots-clés: Equivalence de Morita, Monade forte, Monade enrichie, Catégorie
de modèles, Homotopie stable, Gamma espaces.

Abstract

We develop a homotopy theoretical version of classical Morita theory using the
notion of a strong monad. It was Anders Kock who proved that a monad T in
a monoidal category E is strong if and only if T is enriched in E . We prove that
this correspondence between strength and enrichment follows from a 2-isomorphism
of 2-categories. Under certain conditions on T , we prove that the category of T -
algebras is Quillen equivalent to the category of modules over the endomorphism
monoid of the T -algebra T (I) freely generated by the unit I of E . In the special
case where E is the category of Γ-spaces equipped with Bous�eld-Friedlander's stable
model structure and T is the strong monad associated to a well-pointed Γ-theory,
we recover a theorem of Stefan Schwede, as an instance of a general homotopical
Morita theorem.

Key-words: Morita equivalence, Strong monad, Enriched monad, Model cate-
gory, Stable homotopy theory, Gamma spaces.


