R. Benoît, G. Kloeckner, and . Kuperberg, A refinement of Günther's candle inequality, 2012.

J. Bertrand and B. R. Kloeckner, A GEOMETRIC STUDY OF WASSERSTEIN SPACES: HADAMARD SPACES, Journal of Topology and Analysis, vol.04, issue.04, 2010.
DOI : 10.1142/S1793525312500227

URL : https://hal.archives-ouvertes.fr/hal-00522941

B. Kloeckner, A geometric study of Wasserstein spaces : Euclidean spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.9, issue.52, pp.297-323, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00275067

B. Kloeckner, is stratified and simply connected, Journal of Topology, vol.81, issue.2, pp.570-588, 2009.
DOI : 10.1112/jtopol/jtp022

R. Benoît and . Kloeckner, Approximation by finitely supported measures. ESAIM : Control, Optimisation and Calculus of Variations, pp.343-359, 2012.

B. Kloeckner, Sharp quantitative isoperimetric inequalities in the $L^1$ Minkowski plane, Proceedings of the American Mathematical Society, vol.138, issue.10, pp.3671-3678, 2010.
DOI : 10.1090/S0002-9939-10-10366-9

URL : https://hal.archives-ouvertes.fr/hal-00408089

B. Kloeckner, Symmetric spaces of higher rank do not admit differentiable compactifications, Mathematische Annalen, vol.11, issue.2, pp.951-961, 2010.
DOI : 10.1007/s00208-009-0464-z

URL : https://hal.archives-ouvertes.fr/hal-00438639

B. Kloeckner, Almost homogeneous manifolds with boundary, Transactions of the American Mathematical Society, vol.361, issue.12, pp.6729-6740, 2009.
DOI : 10.1090/S0002-9947-09-04907-1

URL : https://hal.archives-ouvertes.fr/hal-00273455

B. Kloeckner and V. Minerbe, Rigidity in CR geometry: The Schoen???Webster theorem, Differential Geometry and its Applications, vol.27, issue.3, pp.399-411, 2009.
DOI : 10.1016/j.difgeo.2009.01.005

URL : https://hal.archives-ouvertes.fr/hal-00171879

B. Kloeckner, On Lipschitz compactifications of trees, Comptes Rendus Mathematique, vol.346, issue.7-8, pp.413-416, 2008.
DOI : 10.1016/j.crma.2008.02.011

URL : https://hal.archives-ouvertes.fr/hal-00273450

B. Kloeckner, On differentiable compactifications of the hyperbolic plane and algebraic actions of $${\rm SL}_2(\mathbb{R})$$ on surfaces, Geometriae Dedicata, vol.3, issue.3, pp.253-270, 2007.
DOI : 10.1007/s10711-007-9130-3

B. Kloeckner, On equivariant holomorphic fillings, Annales de l???institut Fourier, vol.57, issue.6, pp.2041-2061, 2007.
DOI : 10.5802/aif.2323

B. Kloeckner, On differentiable compactifications of the hyperbolic space. Transform . Groups, pp.185-194, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00005233

]. T. Aub76 and . Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry, vol.11, issue.4, pp.573-598, 1976.

]. W. Bal95 and . Ballmann, Lectures on spaces of nonpositive curvature, volume 25 of DMV Seminar, 1995.

R. [. Bishop and . Crittenden, Geometry of manifolds, volume XV of Pure and Applied Mathematics, 1964.

L. [. Baik and . Clavier, The space of geometric limits of one-generator closed subgroups of PSL 2 (R), 2012.

M. R. Bridson, P. De-la-harpe, and V. Kleptsyn, The Chabauty space of closed subgroups of the three-dimensional Heisenberg group, Pacific Journal of Mathematics, vol.240, issue.1, pp.1-48, 2009.
DOI : 10.2140/pjm.2009.240.1

URL : https://hal.archives-ouvertes.fr/hal-00389423

]. E. Boa73 and . Boardman, Some Hausdorff measure properties of the space of compact subsets of [0, 1]. Quart, Bor95] A. Borbély. On the spectrum of the Laplacian in negatively curved manifolds, pp.333-3413, 1973.

. D. Yu, V. A. Burago, and . Zalgaller, Geometric inequalities, of Grundlehren der Mathematischen Wissenschaften, 1988.

]. C. Cha50 and . Chabauty, Limite d'ensembles et géométrie des nombres, Bull. Soc. Math. France, vol.78, pp.143-151, 1950.

]. I. Cha84 and . Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol.115, 1984.

]. J. Cho06 and . Choe, The double cover relative to a convex domain and the relative isoperimetric inequality, J. Aust. Math. Soc, vol.80, issue.3, pp.375-382, 2006.

M. [. Choe and . Ritoré, The relative isoperimetric inequality in Cartan-Hadamard 3-manifolds, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2007, issue.605, pp.179-191, 2007.
DOI : 10.1515/CRELLE.2007.031

]. C. Bibliographie-[-cro84 and . Croke, A sharp four-dimensional isoperimetric inequality, Comment . Math. Helv, vol.59, issue.2, pp.187-192, 1984.

]. E. Din71 and . Dinaburg, A connection between various entropy characterizations of dynamical systems Spaces of closed subgroups of locally compact groups, Izv. Akad. Nauk SSSR Ser. Mat, vol.35, pp.324-366, 1971.

]. O. Dru02 and . Druet, Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Amer. Math. Soc, vol.130, issue.8, pp.2351-2361, 2002.

S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry. Universitext, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00002870

]. N. Gig11 and . Gigli, On the inverse implication of Brenier-McCann theorems and the structure of, Methods Appl. Anal, vol.18, issue.2 22, pp.127-158, 2011.

]. P. Goo77 and . Goodey, Hausdorff measure functions in the space of compact subsets of the unit interval, Trans. Amer. Math. Soc, vol.226, pp.203-208, 1977.

B. [. Guivarc-'h and . Rémy, Group-theoretic compactification of Bruhat- Tits buildings, Ann. Sci. École Norm. Sup, issue.46, pp.39871-920, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00004700

]. M. Gro81 and . Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques. CEDIC, vol.1, 1981.

]. T. Hae10a and . Haettel, Compactification de Chabauty des espaces symétriques de type non compact, J. Lie Theory, vol.20, issue.3, pp.437-468, 2010.

]. T. Hae10b and . Haettel, L'espace des sous-groupes fermés de R × Z, Algebr. Geom. Topol, vol.10, issue.3, pp.1395-1415, 2010.

]. T. Hae12 and . Haettel, Compactification de Chabauty de l'espace des sous-groupes de Cartan de SL n (R), 2012.

]. B. Kle92 and . Kleiner, An isoperimetric comparison theorem, Invent. Math, vol.108, issue.1, pp.37-47, 1992.

]. J. Loh94 and . Lohkamp, Metrics of negative Ricci curvature, Ann. of Math, vol.140, issue.23, pp.655-683, 1994.

]. A. Man79 and . Manning, Topological entropy for geodesic flows, Ann. of Math, vol.110, issue.23, pp.567-573, 1979.

]. P. Mat95 and . Mattila, Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Stud, Adv. Math, 1995.

]. M. Mcc97 and . Mcclure, The Hausdorff dimension of the hyperspace of compact sets. Real Anal, Exchange, vol.22, issue.2, pp.611-62597, 1996.

]. H. Mck70 and . Mckean, An upper bound to the spectrum of ? on a manifold of negative curvature, J. Differential Geometry, vol.4, pp.359-366, 1970.

D. [. Morgan and . Johnson, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana University Mathematics Journal, vol.49, issue.3, pp.1017-1041, 2000.
DOI : 10.1512/iumj.2000.49.1929

P. [. Osserman and . Sarnak, A new curvature invariant and entropy of geodesic flows, Inventiones Mathematicae, vol.30, issue.4, pp.455-462, 1984.
DOI : 10.1007/BF01388833

]. R. Oss78 and . Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc, vol.84, issue.6, pp.1182-1238, 1978.

]. F. Ott01 and . Otto, The geometry of dissipative evolution equations : the porous medium equation, Comm. Partial Differential Equations, vol.26, issue.12, pp.101-174, 2001.

J. [. Pourezza and . Hubbard, The space of closed subgroups of R2, Topology, vol.18, issue.2, pp.143-146, 1979.
DOI : 10.1016/0040-9383(79)90032-6

]. C. Rog70 and . Rogers, Hausdorff measures, 1970.

]. A. Set91 and . Setti, A lower bound for the spectrum of the Laplacian in terms of sectional and Ricci curvature, Proc. Amer, pp.277-282, 1991.

]. C. Vil09 and . Villani, Optimal transport, old and new, volume 338 of Grundlehren der Mathematischen Wissenschaften, 2009.

]. A. Wei26 and . Weil, Sur les surfaces à courbure négative, C.R. Acad. Sci. Paris, vol.182, pp.1069-1071, 1926.

]. Yau75 and . Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup, vol.8, issue.442, pp.487-507, 1975.