
HAL Id: tel-00785695
https://theses.hal.science/tel-00785695

Submitted on 6 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-Agent Approach for Hybrid and Dynamic
Coevolutionary Genetic Algorithms: Organizational

Model and Real-World Problems Applications
Gregoire Danoy

To cite this version:
Gregoire Danoy. A Multi-Agent Approach for Hybrid and Dynamic Coevolutionary Genetic Algo-
rithms: Organizational Model and Real-World Problems Applications. Multiagent Systems [cs.MA].
Ecole Nationale Supérieure des Mines de Saint-Etienne, 2008. English. �NNT : 2008EMSE0017�.
�tel-00785695�

https://theses.hal.science/tel-00785695
https://hal.archives-ouvertes.fr


 
 

 
 

N° d’ordre : 482 I. 
 
 

THESE 
présentée par 

 
Grégoire Danoy 

 
Pour obtenir le grade de Docteur 

de l’Ecole Nationale Supérieure des Mines de Saint-Etienne 
 

Spécialité : Informatique 
 
 
 
 

A Multi-Agent Approach for Hybrid and Dynamic Coevolutionary 
Genetic Algorithms : 

Organizational Model and Real-World Problems Applications 
 
 
 
 

Soutenue à Luxembourg le 11 Juin 2008 
 
 
 

Membres du jury : 
 

Président :  
Eric Dubois   Professeur, Université de Namur 
 
Rapporteurs :  
Enrique Alba   Professeur, Université de Malaga 
Marie-Pierre Gleizes   Professeur, Université de Toulouse 
Nikos Vlassis   Maître de conférence, Université Technique de Crète 
 
Examinateurs : 
Eric Dubois   Professeur, Université de Namur 
El-Ghazali Talbi   Professeur, Université de Lille 
 
Directeur(s) de thèse : 
Olivier Boissier   Professeur, ENSM.SE, Saint-Etienne 
Pascal Bouvry   Professeur, Université du Luxembourg 

 



◘ Spécialités doctorales :     Responsables :   
    
SCIENCES ET GENIE DES MATERIAUX J. DRIVER  Directeur de recherche – Centre SMS 
MECANIQUE ET INGENIERIE A. VAUTRIN  Professeur – Centre SMS 
GENIE DES PROCEDES G. THOMAS  Professeur – Centre SPIN 
SCIENCES DE LA TERRE     B. GUY  Maitre de recherche – Centre SPIN 
SCIENCES ET GENIE DE L’ENVIRONNEMENT J. BOURGOIS Professeur – Centre SITE  
MATHEMATIQUES APPLIQUEES E. TOUBOUL  Ingénieur – Centre G2I 
INFORMATIQUE O. BOISSIER Professeur – Centre G2I 
IMAGE, VISION, SIGNAL JC. PINOLI Professeur – Centre CIS 
GENIE INDUSTRIEL      P. BURLAT Professeur – Centre G2I  
MICROELECTRONIQUE  Ph. COLLOT Professeur – Centre CMP 
 
◘ Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat  (titulaires d’un doctorat d’Etat ou d’une HDR)  
 
AVRIL    Stéphane  MA Mécanique & Ingénierie  CIS 
BATTON-HUBERT   Mireille  MA Sciences  & Génie de l’Environnement SITE 
BENABEN   Patrick  PR 2 Sciences & Génie des Matériaux  SMS 
BERNACHE-ASSOLANT  Didier  PR 1 Génie des Procédés   CIS  
BIGOT    Jean-Pierre MR Génie des Procédés   SPIN 
BILAL    Essaïd  DR Sciences de la Terre   SPIN 
BOISSIER   Olivier  PR 2 Informatique   G2I 
BOUCHER   Xavier  MA Génie Industriel   G2I 
BOUDAREL   Marie-Reine MA Sciences de l’inform. & com.  DF  
BOURGOIS   Jacques  PR 1 Sciences  & Génie de l’Environnement SITE 
BRODHAG   Christian  MR Sciences  & Génie de l’Environnement SITE 
BURLAT    Patrick  PR 2 Génie industriel   G2I 
CARRARO   Laurent  PR 1 Mathématiques Appliquées  G2I 
COLLOT    Philippe  PR 1 Microélectronique   CMP 
COURNIL   Michel  PR 1 Génie des Procédés   SPIN 
DAUZERE-PERES   Stéphane  PR 1 Génie industriel   CMP 
DARRIEULAT   Michel  ICM Sciences & Génie des Matériaux  SMS 
DECHOMETS   Roland  PR 1 Sciences  & Génie de l’Environnement SITE 
DESRAYAUD   Christophe  MA Mécanique & Ingénierie  SMS  
DELAFOSSE   David  PR 2 Sciences & Génie des Matériaux  SMS 
DOLGUI    Alexandre  PR 1 Génie Industriel   G2I 
DRAPIER    Sylvain  PR 2 Mécanique & Ingénierie  CIS 
DRIVER    Julian  DR Sciences & Génie des Matériaux  SMS 
FOREST    Bernard  PR 1 Sciences & Génie des Matériaux  CIS 
FORMISYN   Pascal  PR 1 Sciences  & Génie de l’Environnement SITE 
FORTUNIER   Roland  PR 1 Sciences & Génie des Matériaux  CMP 
FRACZKIEWICZ   Anna  MR Sciences & Génie des Matériaux  SMS 
GARCIA    Daniel  CR Génie des Procédés   SPIN 
GIRARDOT   Jean-Jacques MR Informatique   G2I 
GOEURIOT   Dominique MR Sciences & Génie des Matériaux  SMS 
GOEURIOT   Patrice  MR Sciences & Génie des Matériaux  SMS 
GRAILLOT   Didier  DR Sciences  & Génie de l’Environnement SITE 
GROSSEAU   Philippe  MR Génie des Procédés   SPIN 
GRUY    Frédéric  MR Génie des Procédés   SPIN 
GUILHOT   Bernard  DR Génie des Procédés   CIS 
GUY    Bernard  MR Sciences de la Terre   SPIN 
GUYONNET    René  DR Génie des Procédés   SPIN 
HERRI    Jean-Michel PR 2 Génie des Procédés   SPIN 
KLÖCKER   Helmut  MR Sciences & Génie des Matériaux  SMS 
LAFOREST   Valérie  CR Sciences  & Génie de l’Environnement SITE 
LI    Jean-Michel       EC (CCI MP) Microélectronique   CMP 
LONDICHE   Henry  MR Sciences  & Génie de l’Environnement SITE 
MOLIMARD   Jérôme  MA Sciences & Génie des Matériaux  SMS 
MONTHEILLET   Frank            DR 1 CNRS Sciences & Génie des Matériaux  SMS 
PERIER-CAMBY   Laurent  PR1 Génie des Procédés   SPIN 
PIJOLAT    Christophe  PR 1 Génie des Procédés   SPIN 
PIJOLAT    Michèle  PR 1 Génie des Procédés   SPIN 
PINOLI    Jean-Charles PR 1 Image, Vision,  Signal  CIS 
STOLARZ   Jacques  CR Sciences & Génie des Matériaux  SMS 
SZAFNICKI   Konrad  CR Sciences de la Terre  SITE 
THOMAS    Gérard  PR 1 Génie des Procédés   SPIN 
VALDIVIESO   François  MA Sciences & Génie des Matériaux  SMS 
VAUTRIN   Alain  PR 1 Mécanique & Ingénierie  SMS 
VIRICELLE   Jean-Paul  MR Génie des procédés   SPIN 
WOLSKI    Krzysztof  CR Sciences & Génie des Matériaux  SMS 
XIE    Xiaolan  PR 1 Génie industriel   CIS 
 
Glossaire :      Centres : 
 
PR 1 Professeur 1ère catégorie   SMS   Sciences des Matériaux et des Structures 
PR 2 Professeur 2ème catégorie   SPIN  Sciences des Processus Industriels et Naturels 
MA(MDC)Maître assistant    SITE  Sciences Information et Technologies pour l’Environnement 
DR (DR1) Directeur de recherche   G2I    Génie Industriel et Informatique 
Ing. Ingénieur     CMP  Centre de Microélectronique de Provence 
MR(DR2) Maître de recherche   CIS     Centre Ingénierie et Santé 
CR Chargé de recherche 
EC  Enseignant-chercheur 
ICM Ingénieur en chef des mines 



Acknowledgements

First of all, I would like to express my sincere gratitude to my two advisors, Pascal Bouvry

and Olivier Boissier, whose advice and guiding hand allowed me to conduct my researches

in such a motivating and pleasant atmosphere.

I would also like to acknowledge the members of my committee, Enrique Alba, Marie-

Pierre Gleizes and Nikos Vlassis for accepting to review this manuscript, El-Ghazali Talbi

for being a member of the jury and finally Eric Dubois for being the president of this jury.

I want to congratulate my team mates Luc Hogie, Marcin Seredynski, Riad Aggoune and

all the others from Luxembourg and Saint-Etienne. I highly appreciated their considerable

advice, support, and influence in addition to their great friendship.

I want to thank the University of Luxembourg for the assistant contract it provided me

within the Evo-Business project. It not only allowed me to conduct my research in very

good conditions but also to have some teaching experience during those almost four years.

Additionally I would like to thank the staff of the University of Luxembourg and of the

CSC team for their helpful support.

During this thesis I also had the opportunity to collaborate with people from Luxembourg

and abroad whose knowledge and advice greatly influenced and improved my work:

- Enrique Alba, Professor in University of Malaga, who gave me the opportunity to work

within his research group and whose experience and help has greatly improved my knowl-

edge and my work quality. Therefore I also want to thank the team of the Department of

Computer Science, E.T.S. Ingenieŕıa Informática, for its kindness and and more specifically

Bernabe Dorronsoro with whom collaborating has been a real pleasure.

- Franciszek Seredynski, Professor in Polish Japanese Institute of Computer Science and

the Polish Academy of Sciences of Warsaw in Poland

- Luc Hogie, Phd, who additionally to being a nice team mate allowed me to improve my

knowledge on ad hoc networks and whose simulator and support has been very useful.

- Matthias R. Brust, PhD, whose research on {itshape Injection Networks

- Tommy Martins, Bojan Reljic and Christian Franck, students from the University of

Luxembourg, who found some interest in the research works I proposed and helped me

extending the DAFO framework as well as conducting some experiments.



On a more personal point of view, I want to highly thank my parents Alain and Martine

as well as my three sisters, for supporting me during all these years of studies .

I am also grateful to my family in law whose kindness and presence helped me a lot.

Last but not least, a big thank you to my future wife Stephanie, who shares my life since

more than seven years and whose presence means so much to me.



Abstract

Since the mid 1970s and the introduction of Genetic Algorithms (GAs) by John H. Holland,

the idea of mimicking the capacity of biological systems to adapt to the genetic level in

response to environmental challenges has motivated many research studies for applying

similar mechanisms to scientific problems. One recent evolution of such algorithms, namely

Coevolutionary Genetic Algorithms (CGAs), focuses on the coevolution of populations

(competing or cooperating) of individuals representing specific parts of the global solution

instead of evolving a population of similar individuals representing a global solution. This

thesis work aims at modeling and applying such CGAs as well as developing new ones in

the context of business problems optimization.

In this dissertation we assert that modeling CGAs as organizational multi-agent systems

overcomes the lack of explicitness at the level of the algorithms structure, interactions

and adaptation to existing models and platforms. We therefore introduce MAS4EVO,

Multi-Agent Systems for EVolutionary Optimization, a new agent organizational and re-

organizational model based on Moise+ and dedicated to evolutionary optimization. This

model was used to describe existing CGAs as well as to build two new variants, hybrid

and dynamic, of a competitive CGA.

This thesis also presents the design and implementation of DAFO, a Distributed Agent

Framework for Optimization, permitting the use, the manipulation and the distribution of

CGAs. Modeled using MAS4EVO and built on top of a multi-agent platform, DAFO allows

the application and comparison of various CGAs (existing and novel ones) on optimization

problems.

The CGAs experimentations were conducted on two business problems. The first one is

an existing inventory management problem for which we studied multiple static instances.

We demonstrated the added value of decomposition on small problem instances as well as

the improvement brought by the new hybrid and dynamic CGAs. The second problem

studied is a new topology control problem in wireless ad hoc networks. State-of-the-art

results were obtained while evaluating the performance of different CGAs on multiple static

instances and on one dynamic instance of this network optimization problem.



Resumé

Depuis le début des années 1970 et l’introduction des Algorithmes Génétiques (AG) par

John H. Holland, l’idée de mimer la capacité d’adaptation au niveau génétique des sys-

tèmes biologiques en réponse à des modifications environnementales a motivé de nom-

breuses recherches utilisant des mécanismes similaires pour des problèmes scientifiques.

Une évolution récente de tels algorithmes, appelés Algorithmes Génétiques Coévolution-

naires (AGCs), s’intéresse à la coévolution de populations d’individus (en coopération ou

en compétition) représentants des parties spécifiques de la solution globale au lieu d’évoluer

une population d’individus similaires représentants la solution globale. Cette thèse a pour

objectif de modéliser et d’appliquer de tels AGCs ainsi que d’en développer de nouveaux

dans le contexte de l’optimisation de problèmes métier.

Nous défendons la thèse selon laquelle la modélisation des AGCs sous forme de sys-

tèmes multi-agent organisationnels répond au manque d’expressivité en terme de struc-

ture, d’inter- actions et d’adaptation de ces algorithmes dans les modèles et plateformes

existants. Dans cette optique nous introduisons MAS4EVO, Multi-Agent Systems for EVo-

lutionary Optimization, un nouveau modèle agent organisationnel et reorganisationnel basé

sur Moise+ et dédié à l’optimisation évolutionnaire. Ce modèle a été utilisé pour décrire et

mettre en oeuvre de tels AGCs ainsi que pour construire deux nouvelles variantes, hybride

et dynamique, d’un AGC compétitif.

Cette thèse présente également la modélisation et l’implémentation de DAFO (Distributed

Agent Framework for Optimization), un framework multi-agent organisationnel permettant

l’utilisation, la manipulation et la distribution d’AGCs. Modélisé à l’aide de MAS4EVO et

construit sur base d’une plateforme agent existante, il permet d’appliquer et de comparer

différents AGCs (existants et nouveaux) sur des problèmes d’optimisation difficiles.

Les expérimentations de ces AGCs ont été conduites sur deux problèmes d’optimisation

métier. Le premier est un problème de gestion de stock pour lequel différentes instances

statiques ont été étudiées. Nous avons démontré l’apport de la décomposition sur des

instances de petite taille ainsi que l’amélioration procurée par les nouveaux AGCs hybrides

et dynamiques. Le second problème étudié est un problème de contrôle de topologie dans

les réseaux ad hoc sans fil. Des résultats de pointe ont été obtenus lors de l’évaluation des

performances de différents AGCs sur de multiples instances statiques et sur une instance

dynamique de ce problème d’optimisation de réseaux.



Contents

Resumé Etendu 1

1 Introduction 29

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

I State of the art 33

2 Coevolutionary Genetic Algorithms (CGAs) 34

2.1 Genetic Algorithms (GAs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Sequential Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1.1 Generational GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1.2 Steady-State GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1.3 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1.4 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 Parallel Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.2.1 Fine-Grain PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.2.2 Coarse Grain PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.2.3 Hierarchical PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.2.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Coevolutionary Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Competitive Architecture and Applications . . . . . . . . . . . . . . . . . . . . 47

2.2.2 Cooperative Architecture and Applications . . . . . . . . . . . . . . . . . . . . 49

2.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.4 CCGA: Cooperative Coevolutionary Genetic Algorithm . . . . . . . . . . . . . 51

2.2.4.1 Hybrid Cooperative Coevolutionary Genetic Algorithm . . . . . . . . 52

2.2.4.2 Adaptive Cooperative Coevolutionary Genetic Algorithm . . . . . . . 53

2.2.5 LCGA: Competitive Coevolutionary Genetic Algorithm . . . . . . . . . . . . . 53

v



CONTENTS

2.2.5.1 Adaptive Competitive Coevolutionary Genetic Algorithm . . . . . . 56

2.2.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Frameworks for Distributed and Parallel Evolutionary Computation . . . . . . . . . . 57

2.3.1 Object Oriented PEAs platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.2 Agent Oriented PEAs platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Multi-Agent Organizations and Adaptation 63

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Multi-Agent System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Multi-Agent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Organizations in Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.2 Organizational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2.1 AGR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2.2 MOISE+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2.3 OMNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2.4 ISLANDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Adaptation of Multi-Agent Organizations . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.2 Reorganization Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2.1 What . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2.2 When . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2.3 Who . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2.4 How . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Reorganization Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3.1 MOISE+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3.2 TAEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3.3 TEAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.3.4 Chevrier’s reorganization model . . . . . . . . . . . . . . . . . . . . . 82

3.4.3.5 MAGIQUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.3.6 DeLoach’s transitional organization model . . . . . . . . . . . . . . . 84

vi



CONTENTS

3.4.3.7 Jonker’s organization dynamics formal model . . . . . . . . . . . . . . 85

3.4.3.8 Ongoing works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

II DAFO

Distributed Agent Framework for Optimization 88

4 Multi-Agent Model for Coevolutionary Optimization 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Interaction and Environment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Interaction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Environment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Global View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Problem solving Agent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2.2 Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.3 Fabric Agent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.3.2 Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.4 Observation Agent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.4.1 Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Organization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.2 Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.2.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.2.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.2.3 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.2.4 Structural Specification Example . . . . . . . . . . . . . . . . . . . . 104

4.5.3 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.3.1 Functional Specification Example . . . . . . . . . . . . . . . . . . . . 107

4.5.4 Dialogic Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.4.1 Interaction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.4.2 Lifelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5.4.3 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5.4.4 Timing Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5.4.5 Dialogic Specification Example . . . . . . . . . . . . . . . . . . . . . 112

vii



CONTENTS

4.5.5 Normative Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.5.1 Link with the Structural Specification . . . . . . . . . . . . . . . . . . 114

4.5.5.2 Link with the Functional Specification . . . . . . . . . . . . . . . . . 115

4.5.5.3 Link with the Dialogic Specification: . . . . . . . . . . . . . . . . . . . 115

4.5.5.4 Normative Specification Example . . . . . . . . . . . . . . . . . . . . 115

4.6 CGAs Organizational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.1 CCGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.1.1 Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.1.2 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6.1.3 Dialogic Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6.1.4 Normative Specification . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6.2 LCGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.6.2.1 Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6.2.2 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.2.3 Dialogic Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.6.2.4 Normative Specification . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Hybrid and Dynamic LCGA Models 130

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 hLCGA : A new hybrid LCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.1 hLCGA Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.2 hLCGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.2.1 Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.2.2 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.2.3 Dialogic Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.2.4 Normative Specification . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 dLCGA: a new dynamic LCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 dLCGA Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.2 dLCGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.2.1 Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.2.2 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.2.3 Dialogic Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3.2.4 Normative Specification . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

viii



CONTENTS

6 Implementation 145

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 DAFO Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.1 Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.2 Agents’ Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.2.1 Problem Solving Behaviors . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.2.2 Observation Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.2.3 Fabric Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.3 Agent Organization Management Module . . . . . . . . . . . . . . . . . . . . . 153

6.2.4 Agent Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.5 Agent Perception Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Agent Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 DAFODL: DAFO Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

III Experimentations 160

7 Static Problem Case Study: Inventory Management 161

7.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Solution Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Problem Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 LCGA vs. CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5 hLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5.1.1 Validation of the hLCGA: the Rosenbrock test function optimization 169

7.5.1.2 ICP problem optimization using hLCGA . . . . . . . . . . . . . . . . 173

7.6 dLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.6.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8 Dynamic Problem Case Study: Injection Networks 179

8.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.2 Injection Networks Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.2.1 Small-Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.3 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.4 Static Injection Network Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.4.1 CCGA vs. Generational and Steady State GAs . . . . . . . . . . . . . . . . . . 186

8.4.1.1 Solution Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

ix



CONTENTS

8.4.1.2 Crossover Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.4.1.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.4.2 LCGA vs. CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.4.2.1 GA Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.4.2.2 Madhoc Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.4.3 Distributed CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.4.3.1 GA Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.4.3.2 Madhoc Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5 Dynamic Injection Network Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.5.1 Evolutionary Algorithms for Dynamic Environments . . . . . . . . . . . . . . 202

8.5.2 Performance Measures in Dynamic Environments . . . . . . . . . . . . . . . . 205

8.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.5.3.1 GA Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.5.3.2 Madhoc Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.5.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

IV Conclusion and Perspectives 212

9 Conclusion and Perspectives 213

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

9.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

V Appendix 216

A Multi-Agent Platforms 217

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A.2 Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

A.3 AgentTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

A.4 AgentBuilder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

A.5 Jack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.6 Jade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.7 Madkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

B DAFODL’s DTD 224

x



List of Figures

1 Fonctionnement d’un AG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Different Modèles d’AGP: (a) mâıtre-esclave, (b) gros grain, (c) grain fin, (d) hybride 5

3 Evaluation d’un individu d’un AG simple pour la fonction de Rosenbrock (n=3) . . . 6

4 Evaluation d’un individu d’un CCGA pour la fonction de Rosenbrock (n=3) . . . . . . 6

5 Evaluation d’un individu d’un LCGA pour la fonction de Rosenbrock (n=3) . . . . . . 7

6 Vue générale de MAS4EVO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Architecture d’agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8 Aperçu du modèle organisationnel de MAS4EVO . . . . . . . . . . . . . . . . . . . . . 10

9 Aperçu d’un SGA modélisé avec MAS4EVO . . . . . . . . . . . . . . . . . . . . . . . . 11

10 Spécification Structurelle d’un SGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

11 Spécification Fonctionnelle d’un SGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

12 Spécification Dialogique du SGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

13 Spécification Structurelle du CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

14 Spécification Structurelle du LCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

15 Spécification Structurelle du hLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

16 Spécification Fonctionnelle du dLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

17 Architecture Modulaire de DAFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

18 Modèle de gestion de stock à point de commande . . . . . . . . . . . . . . . . . . . . . 21

19 Décomposition utilisée pour LCGA, hLCGA et dLCGA . . . . . . . . . . . . . . . . . 22

20 Optimisation du problème ICP (3 types de produits et 360 transactions) avec le SGA,

CCGA, LCGA et dLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

21 Exemple d’un réseau d’injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

22 Réseaux étudiés avec 1, 3 et 5 clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

23 Optimisation du problème des réseaux d’injection avec le genGA, ssGA, CCGA et LCGA 26

24 Les six états du réseau d’injection mobile . . . . . . . . . . . . . . . . . . . . . . . . . 27

25 Optimisation du problème des réseaux d’injection dynamiques avec le genGA, le ssGA

et le CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Taxonomy of Search Techniques from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 GA Functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



LIST OF FIGURES

2.3 One Point Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Two Point Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Uniform Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Bit-flip mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Different PGA Models: (a) master-slave, (b) coarse grain, (c) fine grain, (d) hybrid

(coarse grain and fine grain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Potter and De Jong’s CCGA architecture . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.9 CCGA - LCGA comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.10 Paradiseo: A Module-Based Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.11 DREAM: Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.12 MALLBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.13 MAGMA Multi-Level Architecture Example: Memetic Algorithm (MA) . . . . . . . . 60

2.14 Evolutionary algorithms frameworks comparison . . . . . . . . . . . . . . . . . . . . . 61

3.1 Organization Models Chronology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 AGR Meta-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 AGR: (a) Concrete Organization (Cheeseboard diagram), (b) Organizational Structure 72

3.4 Moise+: (a) Structural Specification (SS), (b) Functional Specification (FS), (c) Deontic

Specification (DS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 OMNI: (a) Levels and Dimensions, (b) Concrete Level Details . . . . . . . . . . . . . . 74

3.6 ISLANDER: (a) Performative Structure (PS), (b) Scene, (c) Roles . . . . . . . . . . . 75

3.7 Individual to Social View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Self-Organizational MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9 Moise+ Reorganization group and Reorganization Scheme . . . . . . . . . . . . . . . . 82

3.10 TAEMS: high-Level architecture of the diagnostic subsystem and causal model for di-

agnosing action - and coordination - based faults . . . . . . . . . . . . . . . . . . . . . 82

3.11 TEAM member architecture for PTS domains and internals and externals behaviors

organized in an acyclic graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.12 Interaction graph describing an agent society and interaction knowledge base . . . . . 83

3.13 Dynamic organization of acquaintances in a multi-agent system. . . . . . . . . . . . . 84

3.14 Combined structural and state models using standard UML notation and organization

transition machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.15 Organization before and after the change, description of the organizational change prop-

erties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 MAS4EVO overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Agent structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 MAS4EVO overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Structural Specification formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



LIST OF FIGURES

4.5 Example of links usage (Structural Specification) . . . . . . . . . . . . . . . . . . . . . 102

4.6 Example of cardinalities usage (Structural Specification) . . . . . . . . . . . . . . . . . 102

4.7 SGA Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.8 Functional Specification formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 Example of missions usage (Functional Specification) . . . . . . . . . . . . . . . . . . . 107

4.10 SGA Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.11 Dialogic Specification formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.12 SGA Dialogic Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.13 CCGA Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.14 Functional Specification of the CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.15 CCGA Dialogic Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.16 LCGA Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.17 LCGA Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.18 Functional Specification of the LCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1 hLCGA with ring topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 hLCGA Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Functional Specification of the hLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 dLCGA dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Functional Specification of the dLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 dLCGA Dialogic Specification: the pNegotiate Protocol . . . . . . . . . . . . . . . . . 142

6.1 DAFO’s Modular Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 UML class diagram of DAFO’s agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3 UML Representation of Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 UML Representation of PSA Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 UML Representation of EvoAgents’ Genetic Algorithms . . . . . . . . . . . . . . . . . 150

6.6 UML Representation of LSAgents’ Local Search Algorithms . . . . . . . . . . . . . . . 151

6.7 UML Representation of OA Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.8 UML Representation of FA Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.9 UML class diagram of DAFO’s organization entity . . . . . . . . . . . . . . . . . . . . 153

6.10 UML class diagram of DAFO’s communication . . . . . . . . . . . . . . . . . . . . . . 154

6.11 Madkit kernels connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1 ICP Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Fitness evaluation by inventory simulation . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 ICP Solution Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4 Mapping of binary string to integer number . . . . . . . . . . . . . . . . . . . . . . . . 165

7.5 ICP Optimization using SGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.6 ICP optimization using CCGA with representation 2 . . . . . . . . . . . . . . . . . . . 166

xiii



LIST OF FIGURES

7.7 ICP optimization using LCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.8 Average results on 30 runs for 2, 10 and 100 items using the the SGA, CCGA and LCGA168

7.9 Rosenbrock Function graph for n=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.10 Rosenbrock LCGA Interaction Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.11 Rosenbrock hLCGA Interaction Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.12 Rosenbrock n = 10, LCGA vs hLCGA with population rate exchange strategy and

complete local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.13 Rosenbrock n = 10, LCGA vs hLCGA with population rate exchange strategy and

restricted local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.14 Rosenbrock n = 10, LCGA vs hLCGA with best individual exchange strategy and

complete (right)/restricted (left) local search . . . . . . . . . . . . . . . . . . . . . . . 173

7.15 LCGA vs. hLCGA on the ICP problem with population rate = 0.5 and 0.35 . . . . . 175

7.16 ICP optimization with 3 items and 360 transactions using dLCGA . . . . . . . . . . . 176

7.17 ICP optimization with 100 items and 12000 transactions using dLCGA . . . . . . . . . 178

8.1 Example of an Injection Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.2 Graph with γ = 0.67 and L = 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.3 Example of the First Solution Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.4 Example of the Second Solution Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.5 Components of the experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.6 Studied Networks with 1, 3 and 5 clusters . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.7 Average results of 30 runs on the 3 networks using the first representation . . . . . . . 191

8.8 Average results of 30 runs on the 3 networks using the second representation . . . . . 192

8.9 Computational speed per algorithm and representation for each network . . . . . . . . 194

8.10 Number of bypass links considered in best solution per generation . . . . . . . . . . . 195

8.11 Average number of elections as injection point for the 1-Cluster network . . . . . . . . 195

8.12 Best injection point candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.13 Studied Network with 3 clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.14 Average results of 30 runs using CCGA, LCGA, genGA and ssGA . . . . . . . . . . . 199

8.15 Time per experiment for LCGA and CCGA with 2, 5 and 10 subpopulations . . . . . 200

8.16 Average results of 30 runs using genGA, ssGA and CCGA . . . . . . . . . . . . . . . . 201

8.17 Optimized dynamic injection network . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.18 Average results of 30 runs using genGA, ssGA and CCGA with the first representation

on the dynamic injection network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.19 Average results of 30 runs using genGA, ssGA and CCGA with the second representa-

tion on the dynamic injection network . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.1 Components of the Zeus agent building toolkit . . . . . . . . . . . . . . . . . . . . . . 218

A.2 AgentTool implemented MaSE features, class diagram and conversation diagram . . . 219

xiv



LIST OF FIGURES

A.3 AgentBuilder: Agent construction process . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.4 Jack Intelligent Agents Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.5 Jade architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.6 Madkit architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

xv



List of Tables

1 Comparaison CCGA - LCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Concordance AEIO - AGCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Spécification Normative du SGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Exemple d’un fichier de configuration DAFODL . . . . . . . . . . . . . . . . . . . . . . 20

5 Paramètres utilisés pour le SGA, CCGA, LCGA et dLCGA . . . . . . . . . . . . . . . 22

6 Résultats pour le SGA, CCGA, LCGA and dLCGA sur le problème ICP . . . . . . . . 23

7 Paramètes utilisés pour le genGA, ssGA, CCGA and LCGA . . . . . . . . . . . . . . . 25

2.1 Comparison between Island Model and CGAs . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Competitive Architectures Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Cooperative Architectures Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Agent Architectures Classification from [2] . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Elements of a FIPA-ACL message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Organizational models comparison. A model having more (+) in a given modeling

dimension means that the model offers more concepts and elements in the given dimen-

sion. A (-) means that the model does not support modeling in the dimension. This

table is only an approximation to give the reader a feeling of the relative expression

power of each organizational model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Hübner’s and Dignum’s reorganization dimensions classification . . . . . . . . . . . . . 81

3.5 Reorganization models according to Hübner’s classification . . . . . . . . . . . . . . . 86

4.1 Possible links between roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Missions definition of the FS of the SGA . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Example of NS Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Normative Specification of the SGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Missions definition of the FS of the CCGA . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Normative Specification of the CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7 Missions definition of the FS of the LCGA . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8 Normative Specification of the LCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Missions definition of the FS of the hLCGA . . . . . . . . . . . . . . . . . . . . . . . . 136

xvi



LIST OF TABLES

5.2 Normative Specification of the hLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Missions definition of the FS of the dLCGA . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Normative Specification of the dLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.1 DAFODL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Example of DAFODL based configuration file . . . . . . . . . . . . . . . . . . . . . . . 157

7.1 Parameters used for genGA, CCGA and LCGA . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Results of SGA, CCGA and LCGA on the ICP problem with 3, 10 and 100 items and

320, 1200 and 12000 transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 Parameters used for LCGA and hLCGA on the Rosenbrock function . . . . . . . . . . 171

7.4 Results of all experiments for the Rosenbrock function . . . . . . . . . . . . . . . . . . 174

7.5 Parameters used for LCGA and hLCGA on the ICP optimization problem . . . . . . . 175

7.6 Results of all experiments for the Rosenbrock function . . . . . . . . . . . . . . . . . . 175

7.7 Parameters used for LCGA and hLCGA on the ICP optimization problem . . . . . . . 176

7.8 Results of the SGA, CCGA, LCGA and dLCGA on the ICP problem . . . . . . . . . . 177

8.1 Parameters for genGA, ssGA and CCGA . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2 Parameterization used in Madhoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.3 Results of all experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.4 Parameters used for genGA, ssGA, CCGA and LCGA . . . . . . . . . . . . . . . . . . 197

8.5 Parameterization used in Madhoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.6 Results of all experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.7 Parameters used for genGA, ssGA, and (d)CCGA . . . . . . . . . . . . . . . . . . . . 200

8.8 Results of all experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.9 Parameters used for genGA, ssGA, and (d)CCGA . . . . . . . . . . . . . . . . . . . . 207

8.10 Parameters used for genGA, ssGA, and (d)CCGA . . . . . . . . . . . . . . . . . . . . 208

8.11 Results of all experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

xvii



Resumé Etendu

Introduction

Les travaux présentés dans cete thèse s’inscrivent dans le contexte de l’automatisation de décisions

métiers à l’aide d’algorithmes évolutionnaires (AEs).

Les AEs sont des méthodes heuristiques utilisées pour résoudre des problèmes difficiles et sont

basées sur les mécanismes de sélection naturelle et la génétique. Concrètement elles appliquent

le principe d’évolution de Darwin (la survie du plus fort) parmi des solutions potentielles (dénom-

mées “individus”) à l’aide de processus stochastiques de mutation de gènes, de croisement, etc. Les

AEs présentent souvent un avantage comparé à de nombreuses méthodes traditionnelles de recherche

locale lorsque les espaces de recherches sont discontinus ou hautement contraints et ont par con-

séquent été appliqués sur de nombreux types de problèmes difficiles allant de l’optimisation statique

à l’ordonnancement.

Lorsqu’ils sont appliqués sur des problèmes d’optimisation métier, les objectifs des AEs peuvent

être soit de fournir une seule et unique “très bonne” solution (par ex. pour la création d’un réseau

routier) soit de fournir de “bonnes” solutions dans un laps de temps très court (par ex. pour la gestion

dynamique d’une flotte de véhicules). Nos travaux s’inscrivent dans ce second type de problèmes

qui sont typiquement de très haute complexité, dynamiques et décomposés en de multiples sous-

problèmes qui doivent être optimisés tout en satisfaisant le l’objectif global. Leur optimisation est

par conséquent décentralisée et requiert l’obtention de solution robustes et acceptables à tout moment

ainsi qu’en temps-réel (ou tout du moins en un minimum de temps possible). Afin d’appliquer des

AEs éfficaces sur ce type de problèmes, ces algorithmes doivent bénéficier de leur decomposabilité, car

d’une part il a été prouvé que prendre en compte la structure du problème permet une accélération

supra-linéaire et d’autre part prendre en compte ces informations supplémentaires sur le problème

peuvent mener à de meilleures solutions.

Les AEs sont une classe d’algorithmes d’optimization qui présente des capacités clés pour l’optimisation

de problèmes métier. Malheureusement, les AEs “classiques” ont tendance à obtenir des résultats

de moins bonne qualité lorsqu’ils sont appliqués sur certains problèmes, plus spécialement lorsqu’ils

présentent de vastes espaces de recherche comme dans les problèmes métier. Ces nouveaux types

de problèmes sont intrinsèquement distribués, c’est à dire qu’ils peuvent être vus comme des entités

indépendantes qui interagissent, qui possèdent leurs propres buts et dont le comportement global peut

1



LIST OF TABLES

être observé comme le résultats de ces interactions. Dans l’optique de résoudre ce type de problèmes,

des chercheurs se sont une nouvelle fois référés à un processus inspiré de la nature afin d’étendre les

algorithmes évolutionnaires: la coévolution (c-à-d la coexistence de plusieurs espèces).

Les principales différences entre les Algorithmes Coévolutionnaires (ACs) et les AEs proviennent

de la nature adaptative de l’évaluation de la fonction de coût dans les systèmes coévolutionnaires:

l’évaluation d’un individu est basée sur ses interactions avec d’autres individus provenant de différentes

sous-populations. Par conséquent, au lieu d’évaluer une population d’individus similaires représentants

une solution globale tel que dans les AEs classiques, les ACs considèrent la coévolution de sous-

population d’individus représentant des parties spécifiques de la solution globale et considèrent donc

la décomposition du problème. Intrinsèquement, en faisant coévoluer plusieurs sous-composant les

ACs présentent une opportunité pour la parallélisation (par ex. un sous-composant par processeur).

Ces systèmes ont été catégorisé en tant que compétitifs ou coopératifs et ont prouvé qu’ils sont une

extension populaire des AEs traditionnels pour les problèmes tests (fonction de test, jeux de stratégie,

jeux de robots). Cependant les ACs ont encore été peu utilisés pour des problèmes d’optimisation

métier.

Afin de faciliter l’utilisation et la comparaison de différents AEs, de nombreuses librairies et plate-

formes ont été proposées. Cependant, comme nous allons le démontrer dans cette dissertation, seule-

ment quelques unes permettent l’utilisation des ACs. Ceci motiva déjà en partie nos recherches,

visant à fournir une nouvelle plateforme dédiée à l’utilisation des ACs. Cependant ceci n’était pas

une motivation suffisante pour commencer le développement d’une toute nouvelle plateforme, sachant

qu’étendre une des plateforms existantes aurait été suffisant. La seconde raison réside dans la mod-

élisation utilisée dans les plateformes existantes, qui dans la grande majorité est orientée objet, alors

que dans la littérature décrivant les ACs leurs sous-populations sont décrites en tant qu’agents. C’est

pourquoi notre seconde motivation consiste à bénéficier du domaine multi-agent et de modéliser notre

plateforme (et donc les ACs) comme un système multi-agents (SMA). Cette modélisation permet-

tra d’expliciter la structure des ACs (par ex. les interactions entre agents), les dynamiques de cette

structure et les interactions avec l’environnement du système (c-à-d le problème d’optimization). De

plus, il devient alors possible de bénéficier des plateformes multi-agent existantes afin de faciliter le

développement et la distribution de notre framework.

Les principales contributions présentées dans cette dissertation sont les suivantes:

• MAS4EVO, Multi-Agent Systems for EVolutionary Optimization, un nouveau modèle multi-

agent dédié à l’optimization évolutionnaire. MAS4EVO apporte une nouvelle approche dans la

modélisation et l’implémentation des ACs.

• DAFO, Distributed Agent Framework for Optimization, qui est la plateforme implémentant le

modèle MAS4EVO. Basée sur une plateforme agent existante, elle permet, avec peu d’efforts

d’implémentation, d’utiliser, de distribuer et de comparer différents ACs sur des problèmes

d’optimization tels que des problèmes métiers.

2



LIST OF TABLES

• La création de deux nouvelles variantes d’un AC compétitif, une hybride et une dynamique, et

leur intégration dans notre plateforme DAFO. L’étude et la comparaison de leurs performances

face à des ACs “standards” sur des problèmes métiers décrits dans le point suivant.

• L’application des ACs (existants et nouveaux) et leur comparaison sur deux problèmes métier.

Le premier est un problème de gestion de stock pour lequel différentes instances statiques ont

été étudiées. Le second est un nouveau problème de contrôle de topologie dans les réseaux ad

hoc. La performance de différents ACs a été étudiée sur différentes instances statiques ainsi que

sur une instance dynamique de ce problème d’optimization de réseaux.

Ce résumé étendu est organisé comme suit. Dans la parie État de l’art, nous présentons en premier

lieu les algorithmes génétiques coévolutionnaires et en second lieu l’organisation et l’adaptation dans

les systèmes multi-agent. La partie MAS4EVO décrit notre nouveau modèle multi-agent dédié à

l’optimisation évolutionnaire, ainsi que son utilisation pour modéliser des algorithmes existants et les

deux nouveaux algorithmes coévolutionnaires compétitifs hybride et dynamique. Un bref aperçu de

son implémentation, DAFO, est également introduit. Dans la partie Experimentations, les résultats

obtenus sur deux problèmes d’optimisation métier (gestion de stock et contrôle de topologie dans

les réseaux ad hoc) avec les ACs fournis par DAFO sont étudiés. Finalement la section Conclusion

présente nos conclusions ainsi que nos perspectives sur les travaux présentés dans ce manuscrit.

État de l’art

Algorithmes Génétiques Coévolutionnaires

Différentes approches existent dans le domaine de l’optimisation. Ainsi, il est possible de distinguer

trois grandes classes d’algorithmes d’optimisation: les techniques énumératives (Primal Simplex,

Branch&Bound), les approches basées sur le calcul (algorithme glouton, Fibonacci) et les approches

stochastiques (recherche tabou, réseaux de neurones, algorithmes évolutionnaires). Dans le cas de

l’optimisation de problèmes métiers, la complexité est telle que les méthodes énumératives issues de

la recherche opérationnelle ne sont pas adaptées. Les algorithmes basés sur le calcul (de complexité

O(n)) procurent rapidement une solution mais généralement trop éloignée de l’optimum global. Il

reste donc la classe des algorithmes stochastiques. La plupart des algorithmes de cette classe sont

valables, tel que décrit dans le fameux théorème “no free lunch” (il n’y a pas de repas gratuit) [3].

Depuis les années 1940/1950 et l’émergence des ordinateurs modernes, l’idée de mimer certains

mécanismes présents dans la nature afin de créer l’Intelligence Artificielle (IA) a captivé de nombreux

chercheurs en informatique. De nombreux axes de recherche ont émergé dans la poursuite de ces

idées. Un de ces axes s’inscrit dans le domaine de l’informatique et de l’ingénierie et se nomme “calcul

évolutionnaire” (CE), qui consiste en l’utilisation de stratégies évolutionnistes pour la résolution de

problèmes. Parmi les algorithmes faisant partie du CE se trouvent les Algorithmes Génétiques (AG).

3



LIST OF TABLES

population
evaluation

= ?

Initial Population

Selection

Crossover
Mutation

fitness
evaluation

= ?

Termination
Condition

Offsping Population

YES

NO

STOP

For all individuals

Figure 1: Fonctionnement d’un AG

Les AG furent introduits dans les années 1970 par John H. Holland [4]. Ce dernier examina la

capacité d’adaptation au niveau génétique des systèmes biologiques en réponse à des modifications

environnementales. Il en résultat les concepts de base de la théorie des AG.

Chronologiquement, les premiers d’AG introduis et également les plus simples sont les AG séquen-

tiels qui peuvent être soit générationnel (generational) [5] soit stationnaire (steady-state) [6].

Un AG commence par générer, généralement aléatoirement, une population d’individus, un in-

dividu étant la représentation d’une solution potentielle au problème. Chaque individu est alors

évalué sur le problème. Les individus sont ensuite sélectionnés non-déterministiquement en fonction

de leur score pour ensuite leur appliquer les opérateurs génétiques de croisement et de mutation afin

de générer une nouvelle population. La sélection permet l’exploitation des solutions existantes tandis

que le croisement et la mutation permettent d’explorer de nouvelles régions de l’espace de recherche.

Cette combinaison entre exploitation et exploration permet à l’algorithme d’évoluer et de converger

vers de meilleures solutions. La Figure 1 présente le processus itératif d’un AG.

Depuis lors, les AGs sont devenus une méthode d’optimization populaire et ont été utilisés pour

de nombreux problèmes d’optimisation, allant de fonctions de test à des problèmes métiers com-

plexes. Différentes évolutions des AG ont vu le jour, parmi elles nous pouvons citer les AG parallèles

(AGP) dont l’objectif est non seulement de réduire le temps de calcul mais aussi de réduire le nombre

d’itérations de l’algorithme et d’améliorer la qualité des solutions. Il a en effet été prouvé que les AGP

se comportent mieux que la somme des sous-algorithmes les composants, on parle alors d’accélération

supra-linéaire. De nombreux modèles d’AGP ont été proposés dans la littérature et de nombreux états

de l’art tels que dans [1] [7] et [8] les ont étudié et classifié. Quatre grandes classes regroupent tous

ces différents modèles:

4

Chapter1/Chapter1Figs/EPS/GA.eps


LIST OF TABLES

Master

Slaves

(a) (b) (c) (d)

Figure 2: Different Modèles d’AGP: (a) mâıtre-esclave, (b) gros grain, (c) grain fin, (d) hybride

- Le modèle maitre-esclave à population unique (voir Figure 2(a)): représente la façon la plus

simple de paralléliser un AG a population unique. Un processeur mâıtre execute un AG réalisant les

opérations génétiques de croisement et de mutation. L’operation de l’évaluation de la fonction de coût

est parallélisée sur des processeurs esclaves.

- Gros grain (voir Figure 2(b)): les AGP à gros grain consistent en plusieurs sous-populations,

chacune executant son propre AG et échangeant périodiquement une partie de leurs individus avec

d’autres sous-populations. Cet échange d’individus est appelé migration et est contrôlé par plusieurs

paramètres (périodicité des échanges, tailles, etc.). La structure de la population est définie par la

topologie du graphe de communication qui spécifie le voisinage de chaque sous-population.

- Grain fin (voir Figure 2(c)): les AGP a grain fin (également appelés modèle cellulaire) n’ont qu’une

seule population mais structurée spatialement, cette structure permettant de limiter les interactions

entre les individus (un individu ne peut subir d’opération génétique qu’avec ses voisins). Différentes

stratégies locales pour appliquer les opérateur génétiques et différents types de voisinages peuvent être

utilisés. Ceci permet d’obtenir le même phénomène d’isolation par la distance que l’on retrouve dans

le modèle par ı̂lots.

- Hybride (voir Figure 2(d)): les AGP hybrides combinent différents AGP à deux niveaux. La

plupart des AGP hybride utilisent des algorithmes à multiples populations au niveau le plus haut.

L’exemple présenté en Figure 2 (d) en est une illustration avec un modèle par ı̂lots qui contient un

modèle cellulaire dans chacune de ses sous-populations.

Les AGPs ont donc été developpés dans le but de répondre aux limitations des AG séquentiels

lorsque appliqués sur des problèmes de grande taille. De nombreuses applications ont été réalisées (voir

[1] et [8]) et diverses plateformes permettant leur utilisation ont vu le jour. Cependant, comme pour

les AG séquentiels, les AGPs considèrent toujours l’évolution d’individus représentants une solution

globale au problème. Ils ne permettent donc pas de décomposition, ni au niveau de la représentation

de la solution, ni au niveau de la fonction de coût représentant le problème d’optimisation. La Figure

3 montre un exemple, sur la fonction de Rosenbrock [9], de la représentation d’une solution globale

par un chromosome d’un AG.

C’est pourquoi nous nous sommes interessés à une autre classe d’algorithmes évolutionnaires qui

permettent de prendre en compte cette décomposition, les algorithmes génétiques coévolutionnaires

(AGCs). Les AGCs furent introduit pour la première fois dans les années 1990 [10] et demeurent un

domaine de recherche très actif.

5

Chapter1/Chapter1Figs/EPS/PGAs.eps


LIST OF TABLES

Individu

Chromosome Fitness

)(xf1.1 ‐0.6 0.8 ‐0.1

( ) ( )( )∑
n

f
222 1100)(

x1 x2 x3 x4

( ) ( )( )∑
=

+ −+−=
i

iii xxxxf
1

2

1

2 1100)(Population

Figure 3: Evaluation d’un individu d’un AG simple pour la fonction de Rosenbrock (n=3)

Le concept de coévolution provient d’observations de la nature qui ont démontré que faire coévoluer

plusieurs espèces est plus réaliste que faire évoluer une population unique (globale ou distribuée)

contenant les représentants d’une seule espèce. Les individus d’une sous-population représentent alors

une partie spécifique de la solution globale au lieu de la représenter dans sa totalité.

Nos travaux nous ont conduit à comparer deux algorithmes génétiques coévolutionnaires, une

version coopérative, le Cooperative Coevolutionary GA (CCGA) [11], et une compétitive, le LCGA

[12].

Dans CCGA, la décomposition se situe au niveau de la représentation de la solution, en effet

chaque espèce représente une partie d’une solution potentielle. Une solution globale est donc obtenue

en assemblant un individu de chaque espèce. La nature coopérative de l’algorithme provient du fait

que le score d’un individu dépend de la qualité des solutions partielles reçues des autres espèces.

L’évolution de chaque espèce est réalisée par un AG indépendant.

La Figure 4 montre l’architecture générale du CCGA (graphe de communication complet) et la

façon dont chaque algorithme évolutionnaire calcule le score de ses individus en les combinant avec des

représentants séléctionnés parmis les autres espèces (ici avec le meilleur individu provenant de chaque

autre espèce).

Chromosome

1.1

Fusionne avec les

meilleurs indiv. reçus

Fitness

)(xf
Meilleur

indiv.

Meilleur

1.1 ‐0.6 0.8 0.1

x1 x2 x3 x4

indiv.

Meilleur
indiv.

( (       )( )∑
=

+ −+−=
n

i

iii xxxxf
1

22

1

2 1100)(

Figure 4: Evaluation d’un individu d’un CCGA pour la fonction de Rosenbrock (n=3)

LCGA est un algorithme coévolutionnaire explorant un paradigme de coévolution compétitive

provenant des modèles non-coopératif de la théorie des jeux. Un problème est tout d’abord analysé en

fonction de sa possible décomposition et des relations entre ses sous-composants, le tout exprimé par

un graphe de communication Gcom appelé graphe d’interaction. L’objectif est alors de minimiser les

6

Resume_Etendu/Images/SGA_Rosenbrock_2.eps
Resume_Etendu/Images/CCGA_Rosenbrock.eps


LIST OF TABLES

communications entre les joueurs tout en s’assurant que si tous atteignent un optimum local (étant

un équilibre de Nash), cela mènera toujours à l’optimum global pour la fonction initiale.

Dans LCGA, chacune des N variables xi du problème d’optimisation est considérée en tant

qu’espèce avec sa propre structure de chromosome, une sous-population étant créée pour chaque

variable. Afin d’évaluer la fonction de fitness d’un individu, il est nécessaire de communiquer avec les

individus sélectionnés de toutes les autres sous-populations. Le graphe d’interaction est donc dans ce

cas complet.

La Figure 5 montre la décomposition du problème utilisée par le LCGA. L’architecture générale

du LCGA (ici une liste simple) et la façon dont chaque algorithme évolutionnaire calcule le score de

ses individus en les combinant le meilleur individu provenant de l’espèce voisine, dépendent de cette

décomposition.

( ) ( )( )∑
n

f
222 1100)( ( ) ( )( )∑

=
+ −+−=

i

iii xxxxf
1

2

1

2 1100)(

( ) ( )222 1)( xxxxxf −+−= ( ) ( )222 1100)( xxxxxf −+−= ( ) ( )222 1)( xxxxxf −+−=

Decomposition

( ) ( )12121 1100),( xxxxxf += ( ) ( )23232 1),( xxxxxf += ( ) ( )34343 1),( xxxxxf −+−=

1.1 ‐0.6

fusionne

x1 x2

‐1.2 0.2

fusionne

1.5 ‐0.8

fusionne

x2 x3 x3 x4

Meilleur indiv

Chromosome

1.1

Fitness Chromosome

‐1.2

Fitness ChromosomeFitness

1.5 ‐0.8f(x1, x2) f(x2, x3) f(x3, x4)

Meilleur indiv. .

100

Figure 5: Evaluation d’un individu d’un LCGA pour la fonction de Rosenbrock (n=3)

L’étude des applications de ces AGCs, qu’ils soient compétitifs ou coopératifs, a démontré que les

problèmes métiers ont encore été peu traités [13] [14] contrairement aux problèmes tests [15] [16] [11]

[17].

Ces deux AGCs diffèrent selon les quatre critères suivants: topologie de communication, mode

d’interaction, information échangée et decomposition du problème. Le Tableau 1 présente le CCGA

et le LCGA suivant ces quatres

Afin de pouvoir appliquer ces différents AGCs sur des problèmes métier, il est nécessaire de pou-

voir spécifier ces caracteristiques à travers un modèle dédié. Ce modèle permettra de manipuler ces

paramètres afin d’adapter la structure, les interactions et les informations échangées en fonction du

problème d’optimisation.

Afin de faciliter l’utilisation des algorithmes évolutionnaires, de nombreuses plateformes ont été

developpées depuis les années 1990. Un état de l’art sur les plateformes les plus populaires telles que

ParadisEO [18], MALLBA [19], DREAM [20] ou encore ECJ [21] nous a permis d’observer qu’aucune

ne permet l’utilisation de tels algorithmes coévolutionnaires et aucune n’utilise de modèle de haut

7

Resume_Etendu/Images/LCGA_Rosenbrock.eps


LIST OF TABLES

niveau pouvant spécifier les quatre critères cités précédemment (topologie, mode d’interaction, infor-

mation echangée et décomposition). Il s’est donc révélé nécessaire de fournir une nouvelle plateforme

permettant l’utilisation des AGCs et facilitant leur application grâce à une spécification basée sur un

modèle de haut niveau.

CCGA LCGA

Topologie Graph Complet Pas de restriction

Mode d’interaction Synchrone Asynchrone

Information echangée meilleur individu ou meilleur + aléatoire Pas de restriction

Décomposition du problème Non Possible

Table 1: Comparaison CCGA - LCGA

Organisation et Adaptation dans les Systèmes Multi-Agent

Nous nous sommes donc interessés à l’utilisation du paradigme agent pour notre modèle dédié à

l’optimisation évolutionnaire, ce dernier permettant d’exprimer de façon explicite pour l’utilisateur

et/ou le système les caractéristiques des différents AGCs.

Afin de décrire notre SMA, nous utiliserons la décomposition introduite par Demazeau dans

l’approche voyelle, AEIO, pour Agent, Environment, Interaction et Organisation citeDemazeau95.

Cette décomposition procure une concordance simple entre les concepts des AGCs et agents telle que

représentée dans le Tableau 2:

AEIO AGCs

Agent Sous-populations

Environnement Problème d’optimisation

Interaction Modes d’interactions + Informations echangées

Organisation Topologie de communications

Table 2: Concordance AEIO - AGCs

Les Agents du SMA représentent les sous-populations des AGCs, l’Environnement représente le

problème d’optimisation, les Interactions représentent à la fois les types d’interactions (synchrones/asynchrones)

et leur contenu et finalement l’organisation permet entre autre de structurer ces interactions et donc

de définir une topologie de communication.

MAS4EVO

MAS4EVO, Multi-Agent System for Evolutionary Optimisation), est un nouveau modèle multi-agent

dédié à l’optimisation évolutionnaire (voir Figure 6). Cette section présente une description détaillée

de ce modèle en utilisant la décomposition AEIO telle que présenté dans la section précédente.

8



LIST OF TABLES

Solver Agents

Observation AgentFabric Agent

solutions

Paramètres

1160

1165

1170

1175

1180

1185

0 50 100 150 200 250 300

C
o

s
t 

(i
n

 $
)

Fitness Functions Evaluations (*100)

3 Items, 360 Transactions (zoom)

SGA
LCGA
CCGA

LCGA DYN = 2
LCGA DYN = 5

LCGA DYN = 10
LCGA DYN = 20
LCGA DYN = 50

Designer

Environnement

perception

Fournit

MAS4EVO

Agent Environnement Interaction Organization

Légende

Figure 6: Vue générale de MAS4EVO

Les agents utilisés dans le modèle MAS4EVO possèdent une architecture cognitive telle que présen-

tée en Figure 7. Un agent possède un ensemble de buts à atteindre, un ensemble de compétences lui

permettant de réaliser un ou plusieurs buts, ces buts étant contraints par l’Entité Organisationnelle

(OE) dans laquelle l’agent st trouve. L’OE est une instantiation d’une Structure Organisationnelle

(OS), chaque OS exprimant une stratégie différente correspondant à un AGCs. Un agent sait quels

buts sont satisfaits ou non à travers ses états. La fonction de perception permet à un agent d’observer

son environnement. La fonction de communication lui permet de dialoguer avec d’autres agents du

système, ces interactions étant limitées par l’entité organisationnelle. Finalement, cette architecture

comporte un moteur d’inférence qui permet à un agent de selectionner les compétences nécessaires

pour réaliser un but.

Le modèle MAS4EVO comprend trois types d’agents qui sont:

- les Agents Fabric: ils ont une vue globale du système et ils gèrent l’initialisation du système en

instanciant les agents optimiseurs et en gérant leur cycle de vie.

- les Agents Optimiseurs: ils sont en charge d’optimiser une fonction (mono-objectif) à l’aide d’une

métaheuristique (dans notre cas un algorithme génétique ou un algorithme de recherche locale). Ils

ont une vue partielle du système dans lequel ils sont situés.

- les Agents Observation: ils ont une vue globale des agents optimiseurs qu’ils monitorent afin

d’agreger leurs solutions partielles pour créer la solution globale au problème. Ils procurent une in-

terface avec l’utilisateur grâce aux logs des résultats et aux tracés des courbes correspondantes.

Comme cité précédemment, l’environnement du système représente le problème d’optimisation.

Ses caratéristiques sont dépendentes du domaine, le problème pouvant être statique ou dynamique.

L’environement est fourni par l’utilisateur, les agents pouvant interagir avec ce dernier grâce à une

9

Resume_Etendu/Images/MAS4EVO_General.eps


LIST OF TABLES

Moteur d’inférence

Buts Skills

Perception

Comm.

Protocoles

Etat: Fonctions:
Base de

connaissances:

S.O.

Agent

Légende

E.O.

Etat de l’env.
Etat des buts

Figure 7: Architecture d’agent

primitive unique, perception, qui leur permet d’évaluer leurs solutions sur le problème d’optimisation.

Les interactions au sein du système sont réalisées l’aide d’un langage de communication agent

(ACL) compatible FIPA 1. Ces communications sont structurées sous forme de protocoles d’interactions

et utilisent un sous-ensemble des performatifs FIPA (Perform et Agree). Le langage de communication

partagé par les agents de MAS4EVO et les termes le composant ont étés définis et spécifiés à l’aide

du langage EBNF 2.

Specification de l’ (OS)Organisation

1..1 1..1

1..1

3..3

1..1

1..1

1..1

Functional

Scheme

gCompute

gDafo

Optimization

Scheme

Observation

Scheme

Fabric

Scheme

Group

Inform(content1)

Inform(content2)

Agree(content3)

pTime(Group, Sender, Receiver, Content1, Content2, Content3, n)

{n seconds}

ReceiverSender

SS FS

NS

DiS

SS F S

n ϕ op bear er m p s

N01 — obl role1 m1 parameter1 ∧parameter2 scheme1

N02 — obl role3 m2 parameter2 scheme1

N03 — per role2, role3 m4 parameter3 scheme2

N04 — obl role4 m5 parameter4 scheme3

Table 1

Figure 8: Aperçu du modèle organisationnel de MAS4EVO

Du point de vue organisationnel, MAS4EVO introduit un nouveau modèle organisationnel dédié à

l’optimisation évolutionnaire, basé sur Moise+. Ce modèle permet de structurer le fonctionnnement

du système et de contraindre les comportements des différents agents qui le compose. Le modèle

1FIPA-SL specification: http://www.fipa.org/specs/fipa00008/SC00008I.pdf
2Extended Backus-Naur Normal Form

10

Resume_Etendu/Images/structure_agent.eps
Resume_Etendu/Images/MAS4EVO_Org_Model.eps


LIST OF TABLES

s’articule autour de quatre spécifications:

- Une Spécification Structurelle (SS) définissant les rôles joués par les agents, les relations entre

ces rôles et les groupes auxquels ces rôles appartiennent.

- Une Spécification Fonctionnelle (FS) définissant les buts devant être réalisés par l’organisation.

Ces buts peuvent être fonctionnels, organisationnels, d’interaction ou de supervision.

- Une Spécification Dialogique (DiS) définissant un ensemble de protocoles d’interactions qui

peuvent être utilisés par différents rôles afin de réaliser un ou plusieurs buts d’interaction.

- Une Spécification Normative (NS) définissant les droits et devoirs de chaque rôle ou groupe.

Ces quatre spécifications constituent la spécification organisationnelle (OS) telle que présentée sur

la Figure 8.

Nous allons maintenant détailler ces quatres spécifications composant le modèle organisationnel

de MAS4EVO et illustrer leur utilisation pour modéliser un algorithme génétique simple (SGA) dans

notre plateforme DAFO tel que représenté schématiquement sur la Figure 9.

Solver ObserverEvoBuilder
solutions

Main group

Nom du Role

Interaction

Groupe

Légende

Nom du groupe

SGA

Solver Agent

Fabric Agent

Observation Agent

Figure 9: Aperçu d’un SGA modélisé avec MAS4EVO

Spécification Structurelle (SS)

La Spécification Structurelle (SS) exprime la structure en terme de rôles, de liens entre rôles et

de groupes et peut être représentée graphiquement en respectant un formalisme tel que présenté sur

la Figure 10. Un ensemble de contraintes expriment en plus la portée des liens et la cardinalité des

rôles et des groupes. Un rôle est l’abstraction dun agent dans la SS. Il sert de point d’ancrage d’un

agent à un ensemble de contraintes qu’il doit suivre à partir du moment où il accepte de jouer ce

rôle. Un groupe est l’abstraction dun collectif d’agents. Il est constitué d’un ensemble de rôles, de

sous-groupe(s), de liens inter-groupes et intra-groupe et des cardinalités respectivement des rôles et

des sous-groupes.

Dans l’exemple de modélisation d’un SGA présenté sur la Figure 10, le groupe racine est le groupe

MainGroup qui contient un autre groupe SGA unique (cardinalité “1..1”). Le groupe MainGroup est

composé d’exactement trois agents (cardinalité “3..3”), un jouant le rôle EvoBuilder, un autre jouant

le rôle Observer et le dernier jouant le rôle EvoMember, chacun de ces rôles ne pouvant être adopté

qu’une seule fois (cardinalité “1..1”). Le groupe SGA est composé d’un seul agent (cardinalité “1..1”)

qui joue le rôle Solver, Solver héritant du rôle EvoMember. Concernant les liens, le rôle EvoBuilder

11

Resume_Etendu/Images/MAS4EVO_SGA.eps


LIST OF TABLES

Solver

Observer EvoBuilderEvoMember

MainGroup

1..1 1..1

Groupe

min..max

Rôle

Rôle abstrait

Légende

Héritage:

Composition:

Liens

acquaintance

communication

autorité

compatibilité

Intra-groupe Inter-groupe

min..max

1..1

3..3

1..1

SGA

1..1

1..1

Figure 10: Spécification Structurelle d’un SGA

possède un lien d’autorité sur le rôle EvoMember car il contrôle le cycle de vie de ce dernier. Le rôle

EvoMember possède un lien de communication avec le rôle EvoBuilder qui sera utilisé pour communi-

quer des informations concernant son cycle de vie (par ex. prêt à calculer). Le rôle Solver a un lien de

communication avec le rôle Observer afin de lui communiquer les résultats de ses calculs. Finalement

les rôles EvoMember et Solver ont un lien de compatibilité permettant à un même agent de jouer les

deux rôles dans la même instance du groupe MainGroup.

Spécification Fonctionnelle (FS)

La Spécification Fonctionnelle (FS) définit un ensemble de schémas sociaux considérés comme les

buts collectifs à atteindre par l’organisation. Un schéma social est la structure d’un objectif global

de l’organisation, décomposé en buts structurés en plans et regroupés en missions. Un schéma social

peut être représenté par un arbre dont les feuilles sont les buts pouvant être atteints par un agent seul

(niveau individuel). Un but est un état final constituant un objectif vers lequel lorganisation tend.

Un but peut être défini par un plan décomposant le but en sous-buts. Les missions regroupent, a

priori, les buts en ensembles cohérents, qui devront être accomplis par les agents.

Comparé à Moise+, qui ne permet la définition que de buts fonctionnels, la FS de MAS4EVO

permet de définir trois types de buts supplémentaires: organisationnels (impliquant une action sur

l’organisation), d’interaction (utilisant un protocole générique de la spécification dialogique) ou de

supervision (impliquant l’observation de l’organisation). Une autre extension de MAS4EVO concerne

la possibilité d’introduire une contrainte de répétition sur des buts suivant un nombre de répétitions

et/ou une contrainte temporelle.

12

Resume_Etendu/Images/SGA_Structural_Specification.eps


LIST OF TABLES

Fabric
Scheme

gOrganize

Functional 
Scheme

gCompute

gDafo

Optimization 
Scheme

pInform(best)

gOptimize

gRunGA
m7 m8

Légende

But

Choix Parallélisme

missions

gInstantiate(PSA)
m1

Optimization 
Scheme

gAdoptRole
(EvoMember, DAFO)

gAdoptRole
(Solver, SGA)

gLaunch
m4

pInform(‘start’) pTime(‘start’,’stop’,’ready’, n)

m3

m5 m6

Observation 
Scheme

gOutput

gLog gGraphAndLog
m9 m10

Observation 
Scheme

Fabric
Scheme

pInform(EvoParameters)
m4

gCreateSubGroup
(SGA, DAFO)

m2

* [ *=r | t ]

* [ *=r | t ]Répetition de but:

Séquence

Figure 11: Spécification Fonctionnelle d’un SGA

La Figure 11 présente la FS du SGA qui est basée sur quatre schémas sociaux, Functional Scheme,

Fabric Scheme, Optimization Scheme et Observation Scheme. Le Functional Scheme, considéré comme

le schéma principal de la FS, dont le but racine gDafo est d’executer le framework, est satisfait lorsque

le schéma social Fabric Scheme et le but gCompute sont séquentiellement satisfaits. Le but gCompute

est lui-même satisfait lorsque les deux schémas sociaux Optimization Scheme et Observation Scheme

sont parallèlement satisfaits.

Spécification Dialogique (DiS)

La Spécification Dialogique (DiS) est également un ajout de notre modèle organisationnel par

rapport à Moise+. La DiS est principalement basée sur les diagrammes de séquence AUML [22] et

sur les diagrammes de séquence organisationnels introduits dans AGR [23]. Elle permet de spécifier

des protocoles d’interaction génériques paramètrables indépendamment des rôles et des groupes de

la spécification structurelle (SS). La représentation graphique de la DiS a deux dimensions, une di-

mension verticale représentant le temps et une dimension horizontale représentant les rôles et groupes

génériques qui seront spécifiés en tant que paramètres.

La Figure 12 présente deux protocoles d’interaction génériques utilisés pour modéliser le SGA:

pInform et pTime. Le protocole pInform repuiert quatre paramètres pour être instancié, le nom du

groupe, le rôle sender, le rôle receiver et le contenu du message. Ce protocole est utilisé dans trois

étapes de la spécification fonctionnelle (FS) du SGA (voir Figure 12). Le protocole pTime requiert

sept paramètres, le nom du groupe, le rôle sender, le rôle receiver, trois contenus de messages et une

13

Resume_Etendu/Images/SGA_Functional_Specification.eps


LIST OF TABLES

valeur temporelle. Cette dernière valeur représente le temps en secondes entre le premier message

Inform et le second.

Inform(content)

Receiver

Group

Inform(content1)

Inform(content2)

Agree(content3)

pInform(Group, Sender, Receiver, content)

pTime(Group, Sender, Receiver, Content1, Content2, Content3, n)

{n seconds}

Sender

Group

ReceiverSender

Figure 12: Spécification Dialogique du SGA

Spécification Normative (NS)

Nous venons de décrire la façon dont un ensemble de contraintes pour les agents est défini à l’aide de

trois spécifications. Lors de l’exécution de l’Organisation, ils devront ainsi jouer des rôles au sein de

groupes tel que spécifié dans la SS, atteindre un ensemble de buts regroupés en missions définis dans

la FS et finalement communiquer en instanciant des protocoles d’interaction génériques définis dans

la DiS. La Specification Normative (NS) permet de lier ces spécifications (tel que représenté sur la

Figure 8) à travers la définition de règles concernant un rôle ou un groupe accomplissant une mission

composée de buts fonctionnels, organisationnels, de supervision ou d’interaction (instanciant un ou

plusieurs protocoles de la DiS). Cette spécification est inspirée de la NS introduite dans Moise-Int [24]

La Spécification Normative est composée d’un ensemble de normes mettant en relation la SS, la

FS et la DiS via un porteur, une mission, des paramètres liés à la mission et un opérateur déontique

(obligation, permission ou interdiction).

Une norme n est définie selon l’expression suivante: n = ϕ → op(bearer, m, p, s) avec:

- ϕ exprimant les conditions de validité de la norme (la norme reste valide tant que ϕ est satisfaite);

- op opérateur déontique définissant une Obligation, une Permission ou une Interdiction;

- bearer entité structurelle (un rôle ou un groupe) spécifiée dans la SS, considérée comme la porteuse

de la norme;

- m mission spécifiée dans la FS précisant l’action sur laquelle porte la norme;

- p ensemble des paramètres optionnels nécessaires à l’instanciation de la mission m;

- s schéma social de la FS auquel appartient la mission m.

Contrairement aux trois autres spécifications, il est plus difficile de donner une représentation

14

Chapter3/Chapter3Figs/EPS/Dialogic_Specification_SGA.eps


LIST OF TABLES

graphique pour la NS. La représentations utilisée consiste en un tableau contenant chacune des infor-

mations définissant une norme. Le Tableau 3 présente la spécification normative du SGA.

SS FS

n ϕ op bearer m p s

N01 true obl EvoBuilder m1 — Fabric

N02 true obl PSA m2 — Fabric

N03 true obl EvoBuilder, EvoMember, Observer m3 — Fabric

N04 true obl EvoMember m4 — Fabric

N05 term==iterations obl EvoBuilder, EvoMember m5 — Fabric

N06 term==time obl EvoBuilder, EvoMember m6 n Fabric

N07 true obl Solver m7 — Optimization

N08 true obl Solver, Observer m8 — Optimization

N09 mode==batch obl Observer m9 — Observation

N10 mode==graphical obl Observer m10 — Observation

Table 3: Spécification Normative du SGA

Nous n’allons décrire textuellement que les normes N01, N05 et N09. La première norme N01 oblige

le rôle EvoBuilder a accomplir la mission m1 du schéma social Fabric. La norme N05 n’est valide

que lorsque la condition de terminaison de l’algorithme est un nombre d’itérations. Dans ce cas elle

oblige les rôles EvoBuilder et EvoMember a réaliser la mission m5 qui contient un but d’interaction.

La norme N09 n’est valide que lorsque la plateforme fonctionne en mode console (batch mode). Dans

ce cas le rôle Observer est dans l’obligation d’accomplir la mission m9.

Application et Implémentation

MAS4EVO a donc été utilisé pour modéliser des AGCs existants, CCGA et LCGA, ainsi que deux

nouvelles variantes du LCGA que nous allons introduire par après, le LCGA hybride (hLCGA) et le

LCGA dynamique (dLCGA). Grâce à MAS4EVO, il est possible de modéliser ces différents algorithmes

en utilisant un type d’agent générique unique (Problem Solving Agent) et une librairie de modèles

organisationnels différents.

Pour des raisons de place, nous n’allons pas présenter l’ensemble des spécifications pour chacun de

ces algorithmes, mais uniquement les spécifications démontrant les simples modifications nécessaires

pour passer du modèle d’un algorithme à un autre.

CCGA: Spécification Structurelle

En terme de topologie de communication, le CCGA utilise un graphe connecté tel que présenté à

gauche de la Figure 13. Afin de modéliser cette topologie en terme de structure organisationnelle,

deux nouveaux types de rôles héritant du rôle Solver ont été ajouté comparativement à la SS du SGA,

Consumer et Producer. Le rôle Consumer joué par un seul Problem Solving Agent (cardinalité 1..1)

représente la sous-population active alors que le rôle Producer est joué par tous les autres PSA (car-

dinalité All-1). Les agents jouant le rôle de Producer peuvent envoyer des informations, généralement

15



LIST OF TABLES

Solver

ObserverEvoBuilder
solutions

Main group
CCGA

Solver

SolverSolver
Consumer

Solver

Producer

Observer EvoBuilderEvoMember

DAFO

CCGA

All - 1

1..1 1..1

1..1

1..1

All

All

Figure 13: Spécification Structurelle du CCGA

des individus, à l’agent jouant le rôle Consumer. Un agent jouant le rôle Solver peut également jouer

le rôle Consumer ou Producer (lien de compatibilité).

LCGA: Spécification Structurelle

Comparé au CCGA, afin de modéliser structurellement un LCGA utilisant une topologie de communi-

cation en anneau, un nouveau groupe, Solving Unit, contenant un seul rôle Producer (cardinalité 1..1)

et un à plusieurs rôle Consumer (cardinalité 1..n) a été ajouté (voir Figure 14). Ce groupe Solving

Unit est un sous-groupe de LCGA. Un lien de compatibilité inter-groupe entre les rôles Producer et

Consumer a également été ajouté afin d’exprimer la possibilité pour un agent de jouer ces deux rôles

dans deux groupes Solving Unit différents.

ObserverEvoBuilder
solutions

Main group
LCGA

Solving Unit

Solving Unit

S
o

lv
in

g
 U

n
it S

o
lv

in
g

 U
n

it Consumer

Solver

Producer

Observer EvoBuilderEvoMember

DAFO

Solving Unit

LCGA

All 1..n 1..1

1..1 1..1

1..1

All

All

All

All

Figure 14: Spécification Structurelle du LCGA

16

Resume_Etendu/Images/MAS4EVO_CCGA.eps
Resume_Etendu/Images/MAS4EVO_LCGA.eps


LIST OF TABLES

hLCGA: Spécification Structurelle

L’hybridisation des AG a été un domaine de recherche très actif. Cependant, l’hybridisation des AGCs

n’a pas fait l’objet d’investigation, hormis les travaux de Son et Baldwick [25] dans lesquels un CCGA

est hybridisé avec un algorithme de descente de gradient. Bien qu’il soit possible d’hybridiser les AG

de différentes façons, les travaux les plus récents [25] ont démontré que combiner les AG avec des

algorithmes de recherche locale sont une méthode efficace pour améliorer leurs résultats. Nous avons

donc testé l’hybridisation du LCGA, appelée hLCGA, avec cinq différents algorithmes de recherche

locale: Steepest Ascent Hill Climbing (SAHC), Next Ascent Hill Climbing (NAHC), Random Bit

Climbing (RBC), Dynamic Hill Climbing (DHC) et Tabu Search (TS).

Ces cinq nouveaux algorithmes ont donc été ajoutés aux compétences des PSA et du point de vue

structurel, comparé à un LCGA, un nouveau rôle LocalSearcher et un nouveau groupe LocalSearchUnit

ont été ajoutés (voir partie droite de la Figure 15). Un groupe LocalSearchUnit contient exactement

deux agents (cardinalité de groupe 2), un jouant le rôle Solver (cardinalité 1..1) et un autre le rôle

LocalSearcher (cardinalité 1..1) ces deux rôles pouvant communiquer entre eux grâce au lien de com-

munication intra-groupe. Ainsi à gauche de la Figure 15 nous pouvons voir une illustration d’un

hLCGA où quatre PSA jouent le rôle de Solver dans les groupes Solving Unit afin de former un an-

neau pour le LCGA et ils jouent le même rôle dans les groupes LocalSearch Unit où quatre autres

PSA jouent les rôles de LocalSearcher afin d’hybridiser ce LCGA.

hLCGA

Solving Unit

Solving Unit

S
o

lv
in

g
 U

n
it S

o
lv

in
g

 U
n

it

Local Search

Unit

Local Search

Unit

Local Search

Unit

Local Search

Unit

Consumer

Solver

Producer

Observer EvoBuilderEvoMember

DAFO

Solving Unit

LCGA

All

All 1..n 1..1

1..1 1..1

1..1

All

LocalSearcher

LocalSearch
Unit

2

1..1

1..1

All

All

All

All

Local
Searcher

Local
Searcher

Local
Searcher

Local
Searcher

Solver Solver

Solver Solver

Figure 15: Spécification Structurelle du hLCGA

dLCGA: Spécification Fonctionnelle

Comme pour l’hybridisation, peu de travaux ont étudié la possibilité d’adapter dynamiquement les

AGCs. Les quelques travaux relatifs à ce domaine de recherche ont investigé soit l’adaptation du nom-

bre de sous-populations [26] soit l’adaptation de paramètres propres aux AG (croisement, mutation,

etc.) [27][28]. Une autre contribution de nos travaux a consisté à créer une version dynamique du

17

Resume_Etendu/Images/MAS4EVO_hLCGA.eps


LIST OF TABLES

LCGA, denommée dLCGA, dans laquelle la topologie de communication évolue au cours de l’execution.

En effet, contrairement au CCGA où la topologie est fixe (graphe complet), le LCGA n’impose au-

cune restriction quant au graphe utilisé, sachant qu’il dépend de la décomposition de la fonction de

coût. Cette réorganisation est effectuée après un nombre prédéfini d’itérations n de l’algorithme. A la

gauche de la Figure 16 se trouve une illustration du fonctionnement de dLCGA utilisant une topologie

en anneau. Au cours de la première phase, monitoring, chaque PSA observe si le critère de réorgan-

isation est atteind, c’est à dire si le nombre d’itération n est réalisé. Une fois le critère satisfait par

tous les PSA, ces derniers quittent leurs groupes Solving Unit et commencent la deuxième phase, né-

gociation, afin de déterminer leur nouvel emplacement sur l’anneau. Vient ensuite la troisième phase,

réorganisation, dans laquelle les PSA prennent leurs rôles dans les groupes nouvellement choisis.

Comme le changement de topologie consiste à déplacer les PSA sur l’anneau, ceci n’affecte que

l’entité organisationnelle (OE) et non pas la structure organisationnelle (OS). Il n’y a donc aucune

différence du point de vue SS entre le LCGA et le dLCGA, c’est pourquoi nous présentons ici les

différences au niveau de la FS dont le schéma principal Functional Scheme est illusté à droite de la

Figure 16. Seul un nouveau schéma social Reorganization Scheme a été ajouté à la FS du LCGA,

ceci afin de gérer l’ensemble des trois phases (monitoring, negociation et réorganisation) décrites

précédemment. Un nouveau but gDynamic a été ajouté afin au shéma principal Functionnal Scheme

afin de permettre l’ajout de ce nouveau schéma social. Ce schéma est donc executé en séquence aprés

le shéma d’optimisation si le critère de monitoring (n générations) est verifié.

LCGA

Solving Unit

Solving Unit

S
o

lv
in

g
 U

n
it

S
o
lv

in
g

 U
n
it

LCGA LCGA

Solving Unit

Solving Unit

S
o

lv
in

g
 U

n
it

S
o
lv

in
g

 U
n
it

Functional

Scheme

gCompute

gDafo

gDynamic Observation

Scheme

Optimization

Scheme

Reorganization

Scheme

Fabric

Scheme

* [ *=r | t ]

Monitoring Negociation Reorganization

Figure 16: Spécification Fonctionnelle du dLCGA

Implémentation

Nous venons de présenter le modèle MAS4EVO et son utilisation pour modéliser deux AGCs existants

(CCGA et LCGA) et deux nouvelles variantes du LCGA (dynamique et hybride). Afin de pouvoir

appliquer ces algorithmes et bénéficier du modèle MAS4EVO, ce dernier à été implémenté sous forme

18

Resume_Etendu/Images/MAS4EVO_dLCGA.eps


LIST OF TABLES

Entité
(OE)

Organisationnelle

Comportement

Communication

Agent

Perception

I odules:nteractions entre m

Module:

Légende

Interactions avec l’extérieur:

Figure 17: Architecture Modulaire de DAFO

d’une plateforme denommée DAFO (Distributed Agent Framework for Optimization). Cette implé-

mentation est basée sur la plateforme agent Madkit [29] ce qui permet de simplfier le code au niveau

des agents, de la structure organisationnelle (Madkit est basé sur le modèle organisationnel AGR

pouvant être assimilé à une simplification de notre spécification structurelle), de la communication et

de la distribution. De plus Madkit présente de bonnes performances comparé à d’autres plateformes

reconnues [30].

Les agents de DAFO sont implémentés de façon modulaire tel que présenté dans la Figure 17.

- Le module Agent représente les trois différents types d’agents (PSA, OA et FA). Il gère le cycle de

vie de l’agent ainsi que l’activation des autres modules qui le compose.

- Le module Entité Organisationnelle (OE) représente l’instanciation des quatres spécifications

du modèle organisationnel de MAS4EVO (structurelle, fonctionnelle, dialogique et normative).

- Le module Communication implémente les méchanismes d’interaction et plus particulièrement les

protocoles d’interaction définis dans la spécification dialogique.

- Le module Comportements contient un ensemble de comportements, à la façon des behaviors de la

plateforme Jade [31]. En fonction des missions qu’il a à accomplir, un agent activera un ou plusieurs

comportements, un comportement mettant en oeuvre des capacités de l’agent afin de réaliser les buts

correspondants à ces missions. Ce module est lié au module OE car il est en charge d’adopter le(s)

rôle(s) dans le(s) groupe(s) de l’instance de la SS ainsi que de satisfaire les missions et les buts définis

dans l’instance de la FS. Le module comportement est aussi lié au module Communication car certaines

missions de la FS peuvent inclure des buts d’interaction. Dans ce cas les protocoles d’interaction inclus

dans le module communication seront utilisés.

- Le module Perception permet à l’agent de percevoir son environnement, c’est à dire les autres

agents du système et l’environnement du SMA (qui dans notre cas est le problème d’optimisation

fourni par l’utilisateur).

L’optimisation d’un problème à l’aide d’un des algorithmes modélisé avec MAS4EVO et implémenté

dans DAFO requiert la définition d’un fichier de configuration basé sur un langage de description dédié:

DAFODL (DAFO Description Language). L’objectif est de procurer une description suffisament simple

19

Resume_Etendu/Images/Agent_Implementation.eps


LIST OF TABLES

et complète, à la fois pour les utilisateurs et pour la plateforme elle-même. Un fichier de configuration

DAFODL utilise la syntaxe XML et doit respecter une DTD spécifiant la strucutre et le contenu

possibles. Ce fichier est divisé en deux parties principales, la première décrivant l’organisation d’agents

et la seconde décrivant les paramètres des algoritmes génétiques. Une troisième partie optionnelle

permet de décrire les paramètres des algorithmes de recherche locale dans le cas d’un algorithme

hybride. Le Tableau 4 présente un exemple de fichier de configuration DAFODL pour un hLCGA

utilisant un algorithme de recherche tabou.

<?xml version=’1.0’ encoding=’UTF-8’?>

<evoframework>

<organisation>

<topology>Ring</topology>

<numberofagents>10</numberofagents>

</organisation>

<geneticparameters>

<algorithm>hLCGA</algorithm>

<fitnessclass>MadhocFitnessCalculator</fitnessclass>

<experiments>20</experiments>

<terminationcondition>Time</terminationcondition>

<terminationconditionvalue>60000</terminationconditionvalue>

<numchroms>100</numchroms>

<numgenes>2</numgenes>

<sizegenes>16</sizegenes>

<crossRate>0.8</crossRate>

<mutrate>0.03</mutrate>

<elitenumber>1</elitenumber>

</geneticparameters>

<localsearchparameters>

<lsalgorithm>TabuSearch</lsalgorithm>

<lsexchangedinformation>PopulationRate</lsexchangedinformation>

<lspopulationrate>0.01</lspopulationrate>

<lsterminationCondition>Restricted</lsterminationCondition>

</localsearchparameters>

</evoframework>

Table 4: Exemple d’un fichier de configuration DAFODL

Cette description sera parsée par le Fabric Agent afin d’instancier l’organisation de Solver Agents

correspondante tel que présenté en Figure 6. Ensuite les paramètres liés aux algorithmes génétiques

et de recherche locale seront transmis à ces agents afin qu’ils démarrent leurs calculs.

Experimentation

Dans les sections suivantes nous présentons deux cas d’utilisation de DAFO pour l’optimisation de

problèmes métiers. Le premier consiste en l’extension de travaux existant dans lesquels un CCGA a

été utilisé pour optimiser un problème de gestion de stock utilisant un modèle à point de commande

et le second est un nouveau problème de contrôle de topologie dans les réseaux ad hoc hybrides.

L’objectif est d’une part de valider la modélisation des différents CGAs avec MAS4EVO et leur

implémentation dans MAS4EVO et d’autre part d’évaluer les performances des nouveaux LCGAs

(hybride et dynamique).

20



LIST OF TABLES

Délai d’obtention

Stock de
sécurité

Order Point

Niveau du
stock

Order
Quantity

Temps

Figure 18: Modèle de gestion de stock à point de commande

Gestion de Stock

Le problème d’optimisation de gestion de stock est décrit en détail dans [14], où Eriksson y démontre

les meilleures performances du CCGA comparé à un algorithme génétique standard (SGA). L’objectif

est de définir, pour chaque type de produit présent dans le stock, le couple considéré comme fixe Order

Point (OP)/Order Quantity (OQ) correspondant à quand et combien commander, afin de minimiser

le coût total lié à la gestion du stock. Dès que l’on atteind l’OP, qui est composé de la demande

attendue plus un stock de securité, une commande est passée pour une certaine OQ (voir Figure

18. Le coût total est la somme de différents coûts incrémentés lors de chaque transaction (lost sales

costs, transportation costs, storage space costs and order costs). Une transaction est composée d’un

numéro de transaction, d’une date, d’une référence correspondant au type d’objet demandé et d’une

quantité. Lors du traitement de chaque transaction, des actions et décisions sont prises en fonction

des paramètres de contrôle du stock (ICP, Inventory Control Parameter) et du niveau du stock. Ces

transactions sont executées une à une, dans l’ordre chronologique.

Nous avons donc étendu les travaux d’Eriksson en comparant les performances de nos différents

algorithmes, LCGA, dLCGA et hLCGA à celles du CCGA.

Pour chacun de ces algorithmes, une solution à ce problème d’optimisation est encodée sous forme

d’un chromosome binaire où chaque gène représente un paramètre du problème, c’est à dire un point

de commande (OP) ou une quantité de commande (OQ). Chaque gène est encodé sur 16 bits. Dans le

cas du SGA et du CCGA un individu représente les paramètres pour l’ensemble des types de produits

du stock. Par exemple, si le stock contient 10 types de produits, chacun nécessitant un OP et un OQ,

l’individu possède donc 10*2 = 20 gènes. Pour le LCGA et ses deux variantes (hLCGA et dLCGA),

le problème global a été décomposé de telle sorte que chaque sous-population optimise les valeurs

d’OP et d’OQ pour un type de produit en fonction d’un deuxième type de produit. Une topoogie de

communication en anneau a donc été utilisée telle que présentée en Figure 19.

Différents scénarios de ce problème d’optimisation on été traités, avec 3, 10 et 100 types de produits

et respectivement 360, 1200 et 12000 transactions. Nous présentons ici les résultats obtenus avec le

SGA, CCGA, LCGA et dLCGA sur l’instance du problème avec 3 produits et 360 transactions. Afin

de comparer les performances de ces différents algorithmes, les paramètres suivant ont été utilisés:

21

Resume_Etendu/Images/ICP.eps


LIST OF TABLES

Modèle de stock

Agent Environnement Interaction Organization

Légende

Transactions
pour produit 0

Transactions
pour produit 3

Modèle de stock

Transactions
pour produit 0

Transactions
pour produit 1

Modèle de stock

Transactions
pour produit 2

Transactions
pour produit 3

Modèle de stock

Transactions
pour produit 1

Transactions
pour produit 2

x0

x1

x3

x2

f(x )0

f(x )1
f(x )2

f(x )3

Figure 19: Décomposition utilisée pour LCGA, hLCGA et dLCGA

taille de(s) populations(s) de 100 individus, probabilité de croisement pc=0.6, probabilité de mutation

pm=1/taille du chromosome. Les résultats présentés ci-après sont des moyennes obtenues sur 25

expérimentations indépendantes.

Nombre de sous-populations 3

Taille de Population 100 individuals

Condition de terminaison 30,000 évaluations de fonction

Séléction Tournoi binaire

Opérateur de croisement Uniforme, pc=0.6

Opérateur de mutation bit flip, pm = 1/taille du chromosome

Elitisme 1 individu

Table 5: Paramètres utilisés pour le SGA, CCGA, LCGA et dLCGA

Il apparait clairement sur la Figure 20 que les AGCs ont de meilleures performances que le SGA

à la fois en terme de vitesse de convergence et de meilleur résultat obtenu (coût minimum). Comparé

au CCGA, le LCGA converge légèrement plus vite et atteind un résultat légèrement meilleur (voir

Tableau 6). Finalement, le dLCGA avec deux intervalles de réorganisation différents (réorganisation

toutes les 10 ou 50 générations) permet d’améliorer les résultats obtenus avec le LCGA, aussi bien en

terme de vitesse de convergence qu’en terme de meilleurs résultat, le meilleur résultat étant obtenu

avec une réorganisation toutes les 10 générations.

Cette première application du LCGA et de ses deux variantes sur le problème métier ICP, déjà

optimisé par Eriksson avec le CCGA, a permis de valider le modèle MAS4EVO et son implémentation

(DAFO). Nous avons également démontré experimentalement qu’en utilisant une décomposition du

problème global, le LCGA et ses deux variantes obtiennent de meilleurs résutltas que le CCGA op-

timisant le problème global, ceci sur une instance de petite taille du problème ICP. Finalement nous

avons également démontré l’amélioration des performances apportée par le hLCGA et le dLCGA sur

le LCGA “standard”.

22

Resume_Etendu/Images/LCGA_ICP.eps


LIST OF TABLES

1150

1200

1250

1300

1350

1400

1450

0 50 100 150 200 250 300

SGA
LCGA
CCGA

LCGA DYN = 2
LCGA DYN = 5

LCGA DYN = 10
LCGA DYN = 20
LCGA DYN = 50

3 types de produits, 360 transactions 3 types de produits, 360 transactions (zoom)

C
o

û
t 

(e
n

 $
)

C
o

û
t 

(e
n

 $
)

Nombre d’évaluation de fonction de coût (*100) Nombre d’évaluation de fonction de coût (*100)

Figure 20: Optimisation du problème ICP (3 types de produits et 360 transactions) avec le SGA,

CCGA, LCGA et dLCGA

ICP Parameters Algorithm Result

3 Items, 360 Transactions

SGA 1207.47

CCGA 1168.95

LCGA 1167.20

dLCGA, step = 10 1160.41

dLCGA, step = 50 1163.69

Table 6: Résultats pour le SGA, CCGA, LCGA and dLCGA sur le problème ICP

Réseaux d’Injection (Injection Networks)

Le second problème métier que nous avons optimisé à l’aide de DAFO est un problème de contrôle

de topologie dans les réseaux ad hoc hybrides appelé Réseaux d’Injection (Injection Networks). Les

réseaux ad hoc sont des réseaux constitués de noeuds capables de s’interconnecter spontanément sans

aucune infrastructure préexistante. Les noeuds situés dans leur zone de couverture respectives se

connectent en point-à-point. En raison du rayon de couverture limité des noeuds, ces réseaux rencon-

trent des problèmes de partitionnement qui pénalisent leurs performances globales. Notre problème

d’optimisation consiste à placer des liens longue distance (GSM, UMTS ou HSPDA), dénommés By-

pass Links, afin d’interconnecter ces différentes partitions. Deux noeuds connectés via un Bypass Link

sont appelés Injection Points (voir Figure 21).

Afin d’optimiser le nombre et le placement des ces liens, nous nous sommes intéressées aux pro-

priétés des réseaux petit monde (small world networks). Les réseaux petit monde sont une classe

de graphes aléatoires qui présentent une distance géodésique moyenne L (characteristic path length)

proche de celle d’un graphe aléatoire (L ≈ Lrandom) et un fort coefficient de clustering γ (clustering

coefficient) largement supérieur (γ ≫ γrandom). L’utilisation des réseaux petits monde est motivée

par le fait qu’ils combinent les avantages des réseaux aléatoires (faible distance géodésique moyenne)

et des réseaux réguliers (coefficient de clustering élevé).

L’objectif de ce nouveau problème d’optimisation est donc:

23

Resume_Etendu/Images/dLCGA_3Items.eps


LIST OF TABLES

Bypass Link

Injection Points

Figure 21: Exemple d’un réseau d’injection

- de minimiser le nombre de partitions

- de minimiser le nombre de bypass links

- de maximiser le coefficient de clustering

- de minimiser la distance géodésique moyenne.

Afin d’optimiser les propriétés petit monde de ces réseaux hybrides, nous avons utilisé un simulateur

de réseaux ad hoc: Madhoc [32]. L’emploi de ce simulateur a été motivé par la possibilité de simuler

des réseaux hybrides, ses modes de fonctionnement console ou graphique, ce dernier permettant de

faciliter la compréhension des différentes alternatives de topologies.

Pour assigner un poids aux solutions potentielles de nos algorithmes, nous avons défini une fonction

d’évaluation F modélisant ce nouveau problème de contrôle de topologie. Cette fonction est une

combinaison linéaire des deux mesures des réseaux petit monde (L et γ) et du nombre de bypass links

créés.

Algorithme 1 : Fonction d’évaluation

si Graphe connecté alors
F = α * γ - β * (L - 1) - δ * (bl - blmax )

fin

sinon
fitness = ξ * P

fin

α, β, δ et ξ sont des poids définis experimentallement, bl est le nombre de bypass links créés par

une solution dans le réseau simulé, blmax (défini a priori) est le nombre maximum de bypass links

pouvant être créés dans le réseau, P est le nombre de partitions restant dans le réseau aprés l’ajout

des bypass links et N est le nombre de noeuds dans le réseau global.

Différentes expérimentations ont été réalisées sur des instances de réseaux statiques et dynamiques.

Chaque algorithme a été utilisé avec deux types de représentations binaires et deux types de croisement

(en deux points et uniforme).

24

Resume_Etendu/Images/bypass.eps


LIST OF TABLES

Concernant les instance statiques, nous avons comparé les performances des genGA, ssGA (steady-

state GA), CCGA dCCGA (version distribuée du CCGA) et LCGA sur différents réseaux tels que

présentés en Figure 22. Pour cela nous avons défini une surface de simulation de 0.2 km2 et testé

trois différents densités de 150, 210 et 350 noeuds par kilomètre carré. Chaque noeud est équipé des

technologies Wi-Fi (802.11b) et UMTS. Le rayon de couverture de chaque noeuds est compris entre

20 et 40 mètres pour le Wi-Fi.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5
Cluster 2

Cluster 3

Cluster 1

Figure 22: Réseaux étudiés avec 1, 3 et 5 clusters

Ci-dessous nous présentons les résultats obtenus avec le genGA, CCGA et LCGA sur l’instance du

problème avec 3 clusters (centre de la Figure 22). Les performances des deux AGCs ont été étudiés

avec trois nombres de sous-populations différents (2, 5 et 10). Afin de comparer les performances de

ces différents algorithmes, les paramètres présentés dans le Tableau 7 ont été utilisés. Les résultats

présentés sont des moyennes obtenues sur 30 expérimentations indépendantes.

Nombre de sous-populations 2, 5, 10 (seulement pour LCGA et CCGA)

Taille des (sous-)populations 100 (genGA, ssGA), 50 (LCGA, CCGA)

Condition de terminaison 50,000 évaluations de fonction

Séléction Tournoi binaire

Operateur de croisement Uniforme, pc=0.8

Operateur de mutation bit flip, pm = 1/taille du chromosome

Elitisme 1 individu (sauf ssGA)

Table 7: Paramètes utilisés pour le genGA, ssGA, CCGA and LCGA

Il peut être observé graphiquement sur la Figure 23 que les AGCs obtiennent de meilleurs résultats

que les deux AG panmictiques, le ssGA procurant les moins bons résultats. En terme de vitesse de

convergence, le CCGA a de meilleures performances que les autres AG. Lorsque l’on compare le CCGA

et le LCGA, il apparait que le CCGA a de meilleures performances que le LCGA, cette différence

accroissant avec le nombre de sous-populations (le meilleur résultat est obtenu par le CCGA avec 10

sous-populations).

Les résultats obtenus sur les instances statiques de ce nouveau problème d’optimisation ont permis

de démontrer la supériorité des AGCs sur les AG panmictiques. Différentes analyses sur les perfor-

mances de algorithmes (résultats, vitesse de convergence, coût de calcul) ainsi que sur le problème

25

Chapter7/Chapter7Figs/EPS/studied_networks.eps


LIST OF TABLES

Nombre d’évaluations de fonction fitness

F
it
n

e
s
s

Nombre d’évaluations de fonction fitness

F
it
n

e
s
s

Nombre d’évaluations de fonction fitness

F
it
n

e
s
s

Figure 23: Optimisation du problème des réseaux d’injection avec le genGA, ssGA, CCGA et LCGA

lui-même (nombre de bypass links crées à chaque génération, noeuds le plus souvent élus en tant que

points d’injection) ont été réalisées.

De nombreux problèmes métiers sont intrinséquement dynamiques, le problème lui-même ou ses

contraintes peuvent changer au cours du temps, l’optimum change alors lui aussi. Dans ce cas,

l’objectif de l’algorithme évolutionnaire n’est plus seulement de localiser l’optimum, mais de le suivre

au cours du temps. Les réseaux ad hoc étant eux-mêmes intrinséquement mobiles, nous avons donc

comparé les performances des genGA, ssGA et CCGA sur une instance dynamique du problème

des réseaux d’injection. Chaque algorithme effectue 300.000 évaluations de fonction problème étant

modifié toutes les 50.000 évaluations (les noeuds se déplacant slon le modèle de mobilité random

waypoint). Les algorithmes doivent donc adapter leurs solutions en fonction du problème changeant

(c-à-d les 6 différentes états du réseau tels que présentés en Figure 24. La configuration intiale du

réseau est identique au réseau statique précédemment étudié (voir centre de la Figure 22). Le modèle

de mobilité utilisé est le random waypoint, la vitesse des noeuds étant comprise entre 10 m/s et 50

m/s.

Les résultats présentés à la Figure 25 sont des moyennes obtenues, sur 30 expérimentations in-

dépendantes, par le genGA, le ssGA et le CCGA utilisant la première des deux représentations et

les deux types de croisement (2 points et uniforme). Comme pour les instances statiques, il apparait

clairement que le CCGA obtient de meilleurs résultats que le genGA et le ssGA tant en vitesse de

convergance qu’en meilleurs résultats obtenus (à chaque changement du réseau).

26

Resume_Etendu/Images/IN_Experiments.eps


LIST OF TABLES

Figure 24: Les six états du réseau d’injection mobile

L’optimisation de ce deuxième problème métier, pour lequel nous avons développé une première

modélisation mathématique, a d’une part permis de démontrer experimentallement que les AGCs

obtiennent des résultats de référence sur des instances statiques et dynamiques et d’autre part que la

plateforme DAFO peut être interfacée avec des logiciels tiers tels que le simulateur de réseaux Madhoc.

0.6

0.65

0.7

0.75

0 50000 100000 150000 200000 250000 300000

genGA (1ère Rep.,Crois. Uniforme)
SSGA (1ère Rep., )Crois. Uniforme
CCGA (1ère Rep., )Crois. Uniforme

F
it
n

e
s
s

Evaluations de fonction fitness

0.6

0.65

0.7

0.75

0 50000 100000 150000 200000 250000 300000

Evaluations de fonction fitness

F
it
n

e
s
s

genGA (1ère Rep.,Crois.en 2 points)
SSGA (1ère Rep., )Crois. en 2 points
CCGA (1ère Rep., )Crois. en 2 Points

Figure 25: Optimisation du problème des réseaux d’injection dynamiques avec le genGA, le ssGA et

le CCGA

Conclusion

Dans cette dissertation nous avons répondu à une partie des limitations inhérentes à l’utilisation des

AGCs et plus précisement à leur application sur des problèmes métiers (statiques et dynamiques).

Notre objectif à été de construire une plateforme multi-agent permettant l’utilisation, la comparaison

et la distribution d’AGCs sur des problèmes d’optimisation.

Dans cette thèse, les contributions suivantes ont été apportées:

- Nous avons démontré que les AGCs ont actuellement été peu utilisés sur des problèmes d’optimisation

27

Chapter7/Chapter7Figs/EPS/Dynamic_IN.eps
Resume_Etendu/Images/IN_Dynamic.eps


LIST OF TABLES

métier et que très peu de plateformes actuelles dédiées à l’optimisation évolutionnaire permettent

l’utilisation d’AGCs. De plus aucune de ces plateformes n’utilise le paradigme agent pour modéliser,

implémenter et distribuer ces algorithmes.

- Nous avons développé MAS4EVO (Multi-Agent System for EVolutionary Optimisation), un nouveau

modèle multi-agent dédié à l’optimisation évolutionnaire. MAS4EVO procure une nouvelle façon de

modéliser les AGCs en tant qu’organisation d’agents, permettant d’expliciter leurs caractéristiques

en terme de topologie, d’interactions, et d’adaptation. Nous avons démontré qu’en utilisant quelques

primitives organisationnelles il est possible de définir de multiples organisations et donc de multiples

AGCs. En effet, nous avons pu modéliser deux AGC existants (CCGA et LCGA) et deux nouvelles

variantes du LCGA (hybride et dynamique).

- La plateforme DAFO (Distributed Agent Framework for Optimization) a été présentée. DAFO

est l’implémentation du modèle MAS4EVO qui permet d’appliquer, de comparer et de distribuer les

AGCs modélisés avec MAS4EVO avec un minimum de programmation nécessaire. L’utilisation du

modèle MAS4EVO permet de faciliter la compréhension et la manipulation des AGCS.

- Deux problèmes métiers ont été optimisés à l’aide de DAFO. Le premier est un problème de ges-

tion de stock existant, pour lequel nous avons experimentallement démontré le gain apporté par la

décomposition du problème, le LCGA obtenant de meilleurs résultats que le CCGA sur de petites

instances. Nous avons également démontré que les deux variantes du LCGA, dLCGA et hLCGA,

procurent de meilleurs résultats que le LCGA “standard”. Le second problème métier traité est un

nouveau problème de contrôle de topologie dans les réseaux ad hoc hybrides. Nous avons défini un

modèle mathématique de ce problème et obtenus des résultats de référence avec les AGCs, que ce soit

sur des instances statiques ou dynamiques.

Les perspectives des travaux effectués au cours de cette thèse sont les suivantes:

- L’extension de la plateforme DAFO de part l’ajout de nouveaux algorithmes dans les Problem

Solving Agents. Nous nous intéresserons à des algorithmes récents obtenant des résultats de référence

sur divers problèmes d’optimisation difficiles, comme les AG cellulaires et les AG multi-objectifs (par

ex. Mocell).

- L’appronfondissement de l’étude du problème des réseaux d’injection, en comparant nos AGCs à

d’autres AG de références, en optimisant des instances des plus grande taille et en cherchant une

décomposition efficace du problème pour le LCGA.

- L’extension du modèle MAS4EVO afin de passer d’une réorganisation du SMA actuellement gérée

par l’utilisateur à une réorganisation autonome des agents.

28



Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

In this chapter, we first describe the context in which this thesis took place. We then motivate the

development of a novel framework for coevolutionary algorithms. We finally present our contributions

to the domain and detail the general structure of this dissertation.

1.1 Context

This thesis work takes place in the context of business decisions automation using Evolutionary Al-

gorithms (EAs).

EAs are heuristic methods for solving computationally difficult problems based on the mechanisms

of natural selection and genetics. That is, they apply Darwin’s principle of evolution (survival of

the fittest) among candidate solutions (known as “individuals”) with the stochastic processes of gene

mutation, recombination, etc. EAs frequently have an advantage over many traditional local search

heuristic methods when search spaces are highly modal, discontinuous, or highly constrained and

therefore have been applied to a variety of problems, from static optimization to job-shop scheduling.

When applied to business problems optimization, the objectives of EAs can be either to provide

a single “very good” solution forever (design engineering, e.g. road network) or to provide “good”

solutions in a short time (production optimization, e.g. delivery routes). We are interested in the

second problem type which is typically of very high complexity, changing in time (dynamic) and

decomposed in multiple subproblems which have to be optimized while satisfying the global corporate

goal. Their optimization is therefore decentralized and requires to obtain robust and acceptable

29



1.2 Motivation

solutions at anytime and in real-time (or at least in a minimum of time). In order to apply efficient

EAs on this kind of problem, they have to gain from the problem decomposability, since on the one

hand it was demonstrated that considering the problem structure permits a supra-linear acceleration

and on the other hand it brings additional information to the problem which can lead to better

solutions.

1.2 Motivation

EAs are a class of optimization algorithms which shows key capabilities for business problems op-

timization. Unfortunately, “classical” EAs tend to perform poorly or are difficult to apply on some

problems especially when they have very large search spaces like many real-world problems. These

new complex problems are in their nature distributed, i.e. they can be seen as a set of independent

interacting entities with their own goals and where a global behavior can be observed as the result of

their interactions. In order to address these kinds of problems, researchers referred again to a nature

inspired process so as to extend evolutionary algorithms: coevolution (i.e. the coexistence of several

species).

The main differences between Coevolutionary algorithms (CEAs) and EAs come from the adap-

tive nature of fitness evaluation in coevolutionary systems: the fitness of an individual is based on its

interaction with other individuals from other so-called subpopulations. Thus, instead of evolving a

population of similar individuals representing a global solution like in classical EAs, CEAs consider the

coevolution of subpopulations of individuals representing specific parts of the global solution and thus

problem decomposition. Intrinsically, by evolving several coadapted subcomponents, CEAs present

an opportunity for parallelism (e.g. each subcomponent on a different processor). Such systems have

historically been categorized as competitive or cooperative and have nowadays proven to be a popular

extension of traditional EAs for test problems (test functions, strategy games, robot games). However,

CEAs have still been seldom applied to business optimization problems.

In order to facilitate the use and comparison of EAs, many different libraries and frameworks have

been proposed. However, as we will demonstrate in this dissertation, only a few of them allow the

use of CEAs. This already partially motivated our research, aiming at providing a new framework

dedicated to CEAs. However this was not a sufficient motivation to start building a new framework

from scratch, since extending one of the available frameworks would have been sufficient.

The second reason lies in the model used in the existing frameworks which is in the vast majority

object-oriented whereas in the literature describing CEAs most often subpopulations are described as

agents. Therefore our second motivation dwells in taking benefit from the multi-agent domain and

to model our framework (and thus the CEAs) as a multi-agent system (MAS). It consequently makes

explicit: the structure of the CEAs (e.g. the interactions between agents), the dynamics inside this

30



1.3 Contributions

structure and the interactions with the system’s environment (i.e. with the optimization problem).

Additionally, it is possible to profit from existing multi-agent platforms so as to ease the development

and the distribution of our framework.

1.3 Contributions

The main contributions of this dissertation are as follows:

• MAS4EVO, Multi-Agent Systems for EVolutionary Optimization, a new agent organizational

and reorganizational model based on Moise+ and dedicated to evolutionary optimization. It

provides a novel way of modeling and implementing CEAs.

• DAFO, Distributed Agent Framework for Optimization, being the implementation of the MAS4EVO

model. Built on top of a multi-agent platform, it allows us, with few coding efforts, to use, dis-

tribute and compare various CEAs (existing and novel ones) on optimization problems such as

business problems.

• The creation of two new variants of a competitive CEA, a hybrid and a dynamic one and their

integration into our DAFO framework. The study and the comparison of their performance to

“standard” CEAs on the business-problems described in the following point.

• The application of CEAs (existing and new ones) and their comparison on two business problems.

The first problem tackled is a stock management for which we studied multiple static instances.

The second problem studied is a new topology control problem in wireless ad hoc networks. The

performance of different CEAs was studied on multiple static instances and on one dynamic

instance of this network optimization problem.

1.4 Dissertation Outline

This dissertation is organized in three main parts, the first one (chapters 2 and 3) provides a state-

of-the-art respectively on CEAs and on organizational models in MAS. The second part (chapters

4, 5 and 6) describes in detail the DAFO framework, i.e. its new agent organizational model, the

new CEAs it features and its implementation. Finally the third part (chapters 7 and 8) presents two

business optimization problems tackled using DAFO and the CEAs it provides.

Chapter 2 provides a brief overview of EAs followed by an description of parallel and multi-

populations variants before introducing the different available CEAs. The latter are studied in detail

as well as their different fields of applications. An investigation follows on the usage of CEAs on

business problems and on the existence of hybrid and/or dynamic versions in the literature. Finally

EAs platforms are analyzed in terms of model (object or agent oriented) and of proposed algorithms

31



1.4 Dissertation Outline

(i.e. the availability of CEAs).

Chapter 3, after a short introduction to the agent paradigm, provides a survey on multi-agent or-

ganizations and organizations’ adaptation in multi-agent systems. This chapter provides the necessary

material to choose a model which will explicit the structure of the CEAs, their dynamics and their

interaction with the environment (i.e. with the optimization problem which itself can be dynamic).

Chapter 4 describes MAS4EVO, a new multi-agent model dedicated to evolutionary optimiza-

tion. Its agent, interaction and environment models are presented as well as its organizational model

extending Moise+. Two state-of-the art CEAs available in DAFO are then modeled using MAS4EVO.

Chapter 5 provides a description of two new competitive CEAs, a hybrid one and a dynamic one,

and their model using MAS4EVO.

Chapter 6 gives details concerning DAFO, the framework implementing the MAS4EVO model.

Its architecture, its distribution and its dedicated description language are presented.

Chapter 7 introduces the first business optimization problem tackled using DAFO, which is a stock

management problem called ICP (Inventory Control Parameter) problem. Some experimental results

obtained comparing a competitive and a cooperative CEA are presented. Next, the performances of

the new hybrid and dynamic competitive CEAs are analyzed and compared to the “standard” CEAs

on the ICP problem.

Chapter 8 describes the second business problem optimized using DAFO: a topology control

problem in hybrid wireless ad hoc networks called the injection network problem. Key related works

are presented before giving a detailed view on the injection network problem for which a fitness func-

tion was defined. Experiments using CGAs including a distributed version are conducted on several

static instances and one dynamic instance of the problem and results are discussed.

The last chapter presents our conclusions and the perspectives this thesis work offers.

32



Part I

State of the art

33



Chapter 2

Coevolutionary Genetic Algorithms

(CGAs)

Contents
2.1 Genetic Algorithms (GAs) . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Sequential Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.2 Parallel Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Coevolutionary Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Competitive Architecture and Applications . . . . . . . . . . . . . . . . . . 47

2.2.2 Cooperative Architecture and Applications . . . . . . . . . . . . . . . . . . 49

2.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.4 CCGA: Cooperative Coevolutionary Genetic Algorithm . . . . . . . . . . . 51

2.2.5 LCGA: Competitive Coevolutionary Genetic Algorithm . . . . . . . . . . . 53

2.2.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Frameworks for Distributed and Parallel Evolutionary Computation . 57

2.3.1 Object Oriented PEAs platforms . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.2 Agent Oriented PEAs platforms . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

34



2.1 Genetic Algorithms (GAs)

Since the 1940s/1950s and the emergence of modern computers, the idea of mimic some of the

nature’s mechanisms to create Artificial Intelligence (AI) has captured the imagination of many com-

puter scientists. Many fields of research have arisen in the pursuit of these ideas. One of these fields, as

found in the computer science and engineering domains, is termed “evolutionary computation” (EC),

the use of self-evolving strategies in problem solving. Among the tools available in EC, one is the

genetic algorithm (GA).

Genetic algorithms were first introduced by John H. Holland in the mid 1970s [4]. Holland and

some of his students (e.g. K. DeJong) examined the capacity of biological systems to change and

adapt at the genetic level in response to environmental problems and challenges. As a result, they

introduced the basic concepts behind the theories of genetic algorithms, which are an attempt to apply

similar mechanisms occurring in nature to scientific problems.

Since then, GAs have been extensively used for many optimization problems, from test functions

to complex business problems. Since the 1990’s, a new type of GAs called Coevolutionary GA (CGA)

has emerged and has become a very active research area.

One aspect of our research is focused on using some existing CGAs and building new hybrid and

dynamic variants in order to optimize real-world problems. For this reason, in the coming chapter

(2.2) we start by providing an introduction to genetic algorithms followed by an overview of parallel

and multi-populations variants in 2.1.2. Afterwards, in 2.2 we study in detail the different CGAs

available, their different fields of applications. We further investigate if some CGAs were used on

business problems and if hybrid and/or dynamic versions have been proposed in the literature.

A second aspect of our research consists in building a framework dedicated to CGAs. The latter

has to be easily utilizable, tunable and must provide adaptation capabilities to the user and/or to the

system itself. To this aim, in 2.3 we examine existing Evolutionary Algorithms (EAs) platforms so as

to analyze if they allow the use of such CGAs and if they use the agent paradigm.

2.1 Genetic Algorithms (GAs)

Different approaches exist in optimization and researches. As presented in Figure 2.1, we can put

those algorithms into three classes: calculus based approaches (Greedy, Fibonacci), enumerative tech-

niques (Branch&Bound, Primal Simplex) and random approaches (Tabu Search, Neural Networks,

Evolutionary Algorithms). In the case of business optimization problems, the complexity is such that

enumerative techniques from the classical operational research are not adapted. Calculus based algo-

rithms (complexity of O(n)) provide rapid solutions but too far from the global optimum. Then it

just remains the class of random based algorithms. According to the quality of the solution, most of

35



2.1 Genetic Algorithms (GAs)

the algorithms are valuable as depicted in the famous ”no free lunch theorem” [3].

SEARCH TECHNIQUES

CALCULUS BASED RANDOM ENUMERATIVES

DIRECT INDIRECT GUIDED

Simulated
Annealing

NON GUIDED GUIDED NON GUIDED

EVOLUTIONARY ALGORITHMSTabu
Search

NEURAL NETWORKS

EVOLUTIONARY
PROGRAMMING

GENETIC
ALGORITHMS

PARALLEL GAsP

EVOLUTION
STRATEGIES

SEQUENTIAL GAsP

GenerationalCOARSE-GRAIN
PGAs

GENETIC
PROGRAMMING

Sready-StateFINE-GRAIN
PGAs

HYBRID
PGAs

Branch &
Bound

Dynamic
Programming

Las Vegas Backtracking
Fibonacci Newton Greedy

Figure 2.1: Taxonomy of Search Techniques from [1]

Genetic Algorithms (GAs) are part of the Evolutionary Algorithms (EAs) which are optimization

and learning techniques based on the Darwinian evolutionary model. EAs are powerful heuristic

methods for solving many types of computationally difficult problems. The fascinating nature and

often surprising successes of EAs have drawn researchers to the field for the better part of half a

century. Additionally to GAs, EAs group Evolution Strategies (ES), Genetic Programming (GP)and

Evolutionary Programming (EP). These adaptive approaches are common in that they derive their

inspiration from the natural processes whereby biological organisms evolve. Upon a little reflection it

seems a reasonable suggestion that biological evolution, as set out by the Darwinian theory of natural

selection, is a powerful adaptive process by which organisms dynamically improve their suitability to

the surrounding environment.

2.1.1 Sequential Genetic Algorithms

Sequential genetic algorithms are chronologically the first GAs and also the simpler ones. They operate

in an iterative manner, generating new populations of individuals from the old ones. In this section

we will describe two sequential GAs, the generational GA and the steady-state GA, the representation

issue and some of the genetic operators they can use.

36

Chapter1/Chapter1Figs/EPS/Taxonomy.eps


2.1 Genetic Algorithms (GAs)

2.1.1.1 Generational GA

The use of evolutionary computation (EC) techniques to evolve solutions for both abstractions and

real-life problems has seen a dramatic increase in popularity and success over the last decade. The

most popular and widely applied EC technique is the sequential GA [33], whose computational scheme

is based on a set (population) of potential solutions (individuals) on which it applies some stochastic

operators in order to search for an optimum. It uses a single population (panmixia) of individuals and

apply operators to them as a whole.

Algorithme 2 : Generational GA

Generate initial population Pt

Evaluate population Pt

while Stopping criteria not satisfied do

for i = 1 to pop size do
Select individuals i1 and i2 from Pt

i’ = Crossover(i1, i2)

i” = Mutate(i’)

Insert individual i” in Pt+1

end

Pt = Pt+1

Evaluate population Pt

end

The generational genetic algorithm (also referred as ”Standard Genetic algorithm”) [5], see Algo-

rithm 2 and Figure 2.2, begins by initializing a population of individuals (genotypes). A random ini-

tialization is commonly used, however, for some applications knowledge may be available to enable the

population to be more intelligently initialized. Each genotype is then decoded into a problem solution

instantiation (phenotype) and its fitness evaluated. Individuals are then selected non-deterministically,

based on their fitness, to reproduce. Once a reproductive pool has been selected, recombination (also

called crossover) is applied to create offspring and the offspring are mutated. Next, the fitness of each

offspring is evaluated. Finally, old population members are, with equal likelihood, randomly replaced

with the offspring to produce a new population. This select, recombine, evaluate, and replace cycle

continues until a predefined termination condition (e.g. a number of fitness function evaluations). As

the algorithm runs, selection allows the algorithm to focus on regions of the solution space with an

above average observed fitness, this phenomenon is called exploitation. Genetic operators (crossover

and mutation) enable the algorithm to explore new regions of the solution space, it is the exploration.

The combination of exploitation and exploration makes the algorithm evolve and converge to better

solutions. Past works have shown that the underlying iterative step of the GA is very influent in some

applications [34].

37



2.1 Genetic Algorithms (GAs)

population
evaluation

= ?

Initial Population

Selection

Crossover
Mutation

fitness
evaluation

= ?

Termination
Condition

Offsping Population

YES

NO

STOP

For all individuals

Figure 2.2: GA Functioning

2.1.1.2 Steady-State GA

The incremental/steady state genetic algorithm (ssGA) [6] differs from the generational model in the

sense that only a few individuals are replaced in each generation (one single individual in our case). A

replacement/deletion strategy defines which member(s) of the population will be replaced by the new

offspring(s). This strategy can be to replace the least fit individual or the oldest one in the population

by the offspring resulting from crossover and mutation of the selected individuals (see Algorithm 3).

Algorithme 3 : Steady State GA

Generate initial population P

Evaluate population P

while Stopping criteria not satisfied do
Select individuals i1 and i2 from P

i’ = Crossover(i1, i2)

i” = Mutate(i’)

Evaluate (i”)

Insert individual i” in P
end

2.1.1.3 Representation

Before a genetic algorithm can be used to solve a problem it is necessary to define a representation

and a mapping between the representation and problem solutions. In biology, the representation (i.e.

the genetic code) of an organism is referred to as its genotype, and the instantiation of this code,

38

Chapter1/Chapter1Figs/EPS/GA.eps


2.1 Genetic Algorithms (GAs)

that is, the physical realization of the being, is referred to as the organisms phenotype. The choice

of the representation is an important step in the genetic algorithm development process since it will

influence the performance of the evolutionary process (it can affect the speed of convergence and even

the quality of the solutions evolved). The chromosomes are normally strings, but they could even be

multidimensional arrays, or trees. They can be of fixed or variable lengths. A binary notation is often

used but GA’s are not restricted to binary representations.

2.1.1.4 Genetic Operators

As described in the two previous sections (2.1.1.1 and 2.1.1.2), the evolutionary process of GAs in-

cludes three genetic operators, namely selection, crossover and mutation. This section provides a brief

description of these operators and of their different variants.

Selection

During the selection process, the individuals producing offspring are chosen. Each individual in the

selection pool receives a reproduction probability depending on the own objective value and the ob-

jective value of all other individuals in the selection pool. This fitness is used for the actual selection

step afterwards. There are many methods in selecting the chromosomes, here is a brief description of

some of them.

- Roulette wheel selection: simplest selection scheme, also called stochastic sampling with replacement.

The chance of a chromosome to get selected is proportional to its fitness (or rank). This is where the

concept of survival of the fittest comes into play.

1. Sum the total fitness values of the individuals in the population, where sum = T

2. Repeat N times for population P of size N

3. Generate a random integer r, with 0 < r < T

4. Step trough the population and sum the fitness values until the current sum is >=r. The individual

whose value shifted the sum over the limit is the one selected.

- Rank selection: rank based selection was designed to overcome the disadvantages of the roulette-

wheel method. In this scheme, individuals are sorted according to their fitness value and a rank N-1

is assigned to the best individual and a rank of 1 to the least fit individual. A selection probability is

then linearly assigned to each individual according to the rank value.

- Tournament selection: a tournament is repeatedly held in which N individuals are selected for the

current population (often N=2) and the fittest individual is copied into the intermediate population.

The process is repeated until a new population is created. A variant called soft tournament exists, in

which the winner is accepted with some predefined probability.

39



2.1 Genetic Algorithms (GAs)

Crossover

The crossover operation, also named as recombination, is a genetic operator that combines (mates)

two chromosomes (parents) with a fitness dependant probability (typically between 0.6 and 1), to

produce a new chromosome (offspring).

- One-point crossover: a crossover operator that randomly selects a crossover point within a chromo-

some then interchanges the two parent chromosomes at this point to produce two new offspring. Figure

2.3 shows an example of a one-point crossover recombining two binary chromosomes, the crossover

point being represented by the red line.

0 0 1 0 1 0 0 1 0 0

1 0 1 1 1 0 1 1 0 1

1 0 1 0 1 1 0 1

1 0 1 1 1 0 0 1 0 0

Parent 1

Parent 2

Offspring 1

Offspring 2

00

Figure 2.3: One Point Crossover

- Two-point crossover: in two-point crossover, two crossover positions are selected uniformly at random

and the values between these points are exchanged. Then two new offspring are produced. Figure 2.4

shows an example of a two-point crossover recombining two binary chromosomes, the two crossover

points being represented by the two red lines.

0 0 1 0 1 0 0 1 0 0

1 0 1 1 1 0 1 1 0 1

1 0 1 0 1 0 1 1 0 1

0 0 1 1 1 0 0 1 0 0

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 2.4: Two Point Crossover

- Uniform crossover: single and multi-point crossover define cross points as places between loci where

an individual can be split. Uniform crossover [35] however generalizes this scheme to make every locus

a potential crossover point. A crossover mask, the same length as the individual structure, is created

at random and the parity of the bits in the mask indicates which parent will supply the offspring at

every position.

Consider the following two individuals presented in Figure 2.5 with 10 binary variables each. For

each variable the parent who contributes its value to the offspring is chosen randomly with equal

probability. Here, the offspring 1 is produced by taking the bit from parent 1 if the corresponding

40

Chapter1/Chapter1Figs/EPS/One_Point_Crossover.eps
Chapter1/Chapter1Figs/EPS/Two_Point_Crossover.eps


2.1 Genetic Algorithms (GAs)

mask bit is 1 or the bit from parent 2 if the corresponding mask bit is 0. Offspring 2 is created using

the inverse of the mask, usually.

0 0 1 0 1 0 0 1 0 0

1 0 1 1 1 0 1 1 0 1

Parent 1

Parent 2

0 1 1 0 0 0 1 1 0 1

1 0 0 1 1 1 0 0 1 0

Mask 1

Mask 2

1 0 1 1 0 1 0 1 1 1

1 1 0 1 1 0 0 0 0 0

Offspring 1

Offspring 2

Figure 2.5: Uniform Crossover

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias associated with

the length of the binary representation, and the particular coding for a given parameter set.

Mutation

The mutation operator is introduced to prevent premature convergence to local optima by introducing

some randomness into the search. If a binary encoding is used, mutation is carried out by changing a

1 into a 0 and vice-versa, which is known as bit-flip mutation (as shown in Figure 2.6). Most of GAs

apply mutation with a constant low probability (typically between 0.001 and 0.01).

0 0 1 0 1 0 0 1 0 0

1 0 1 0 1 1 0 0

Parent

Offspring 00

Figure 2.6: Bit-flip mutation

2.1.2 Parallel Genetic Algorithms

PGAs are parallel stochastic algorithms based on natural evolution theory. Better individuals survive

and reproduce themselves more often than the worse ones. To speed up the processing of generations

of populations, it is possible to use a code parallelizer embedded in the compiler (for more informa-

tion see [1]), or else by the explicit parallelization (master-slave global parallelization) of the genetic

operators and/or evaluations.

Adding parallelism to GAs implies interesting features as described in [36]

• the reduction of the time to locate a solution (faster algorithms)

• the reduction of the number of function evaluations (cost of the search)

• the possibility of handling larger populations using parallel platforms for running the algorithms

41

Chapter1/Chapter1Figs/EPS/Uniform_Crossover.eps
Chapter1/Chapter1Figs/EPS/Mutation.eps


2.1 Genetic Algorithms (GAs)

• the improved quality of the solutions worked out.

Alba in [1] has shown that PGAs are also less prone to premature convergence to sub-optimal

solutions.

PGAs are not just parallel versions of sequential GAs. It has been proven that a PGA behaves

better than the sum of the separate behaviors of its component sub-algorithms (super-linear speedup)

[37]. PGAs then represents a new algorithmic class providing a different and often better search

mechanism, i.e. PGAs are a class of guided random evolutionary algorithms, as can be seen in the

taxonomy presented in Figure 2.1.

A lot of different models of PGAs have been proposed and many classification, surveys and

overviews have been published. Alba and Troya in [1] and Alba and Tomassini in [7] proposed a

survey of parallel models and implementations of EAs. Those papers stress algorithmic issues but also

tools for building PEAs. They provide a good theoretical background and many useful links. Konfrst

in [8] gives a good overview of theoretical advances (most significant works before and after 2000), of

trends in computing (architectures, OS ad topologies, libraries and programming), applications (most

significant works since 2000).

A common classification has been found where all those PGA models fit into more general classes,

where PGAs are divided into global, coarse-grained, fine-grained and hybrid models as presented in

Figure 2.7.

• Single population master-slave model (Figure 2.7 (a)): offers the easiest and simplest way of

parallelization of single population GAs. A Master-processor runs GA performing selection and

genetic operators. The operation of fitness evaluation is parallelized on slave-processors. This

model requires global synchronization and control of the GA.

• Coarse-grained (Figure 2.7 (b)): Coarse-grained GAs are known with multiple names as men-

tioned by Cantú-Paz in [38]. They are also called multiple demes GA (where a deme refers to

a sub-population), and island model. They consist on several subpopulations, each subpopu-

lation running similar GAs, that exchange individuals periodically with other subpopulation.

This exchange of individuals is called migration and is controlled by several parameters (inter-

vals, size, etc.). The structure of the population is defined by the topology of a communication

graph, which specifies a neighborhood of each subpopulation. The island model strategy elim-

inates the global synchronization that is required in the panmictic approach. However, some

synchronization is usually required for migration.

• Fine-grained parallel GA (Figure 2.7 (c)): Fine-grained parallel GAs (also called cellular model

or diffusion model) have only one population, but it is has a spatial structure that limits the

interactions between individuals. An individual can only compete and mate with its neighbors,

but while the island model has fixed boundaries between its subpopulations and a structured

42



2.1 Genetic Algorithms (GAs)

Master

Slaves

(a) (b) (c) (d)

Figure 2.7: Different PGA Models: (a) master-slave, (b) coarse grain, (c) fine grain, (d) hybrid (coarse

grain and fine grain)

mechanism for migration, the cellular model has overlapping demes and incorporates migration

to the same effect without the overhead involved (i.e. good solutions may disseminate across the

entire population). Different local mating strategies and different neighborhood sizes and shapes

can be used. It achieves the same effect of isolation found in the island model by using isolation

by distance. In this case, new species are formed at the boundaries between emergent structures.

The cellular model also avoids the problems associated with the panmictic approach, such as

global synchronization. However, cellular models require a large amount of communication.

• Hierarchical (Hybrid) Parallel GA (Figure 2.7 (d)): combine on two levels different PGAs,

producing hierarchical parallel GAs. Some of these new hybrid algorithms add a new degree

of complexity to the already complicated scene of parallel GAs, but other hybrids manage to

keep the same complexity as one of their components. When two methods of parallelizing GAs

are combined they form a hierarchy. At the upper level most of the hybrid parallel GAs are

multiple-population algorithms.

2.1.2.1 Fine-Grain PGA

Cellular GAs usually assume a synchronous (or “parallel”) update policy, in which all the individu-

als are formally updated at the same time. However, the alternative is to use an asynchronous (or

“sequential”) update method, in which the offsprings are directly placed in the current population by

following some rules instead of updating all the individuals simultaneously. The shape of the structure

in which individuals evolve has also a deep impact on the performance of the cGA.

Alba and Troya in [39] have compared the properties of steady-state, generational and cellular

GAs. The analyzed features where time complexity, selection pressure in centralized and decentralized

models, schema processing rates in panmictic and structured GAs, efficacy in finding the optimum,

efficiency, speedup and resistance to scalability. In [40], the reader can find a study of the influence

of some different asynchronous policies and grid shapes on the problem solving capabilities of cGAs.

In [41], 19 different cGAs are tested on the well-known benchmark SAT problem. Asynchronous

43

Chapter1/Chapter1Figs/EPS/PGAs.eps


2.1 Genetic Algorithms (GAs)

adaptive algorithms are in this case the most effective. Dynamic grid changes appears to favor the

exploration/exploitation capabilities of the algorithm and thus helps it to avoid getting stuck in local

optima in many cases. Future works in this field will focus on trying other criteria for the adaptation

of the shape of the population.

2.1.2.2 Coarse Grain PGA

When dealing with multiple demes, several new parameters have to be taken into account concerning

topology and migration.

Migration: In most of the multiple demes GA, the migration process is synchronous which means

that migration occurs at predetermined constant intervals. Migration can also be asynchronous, like

in Grosso’s dissertation [42] where a delayed migration scheme is introduced in which migration is

enabled until the population is close to converge.

In each case it is necessary to determine when the migration will occur and how migrants are se-

lected/incorporated from/to the source/target islands.

Topology: The topology is an important factor in the performance of the parallel GA because it

determines how fast (or how slow) a good solution disseminates to other demes. If the topology has

a dense connectivity (or a short diameter, or both) good solutions will spread fast to all the demes

and may quickly take over the population. On the other hand, if the topology is sparsely connected

(or has a long diameter), solutions will spread slower and the demes will be more isolated from each

other, permitting the appearance of different solutions. These solutions may come together at a later

time and recombine to form potentially better individuals. The general trend is to have a static topol-

ogy specified at the beginning of the run and that is not changed. Another trend is to use dynamic

topologies, where a deme is not restricted to communicate with a fixed neighborhood but migrants

are sent to demes that meet some specific criteria (i.e. measure of diversity, measure of genotypic

distance between the two populations, etc.).

Cantú-Paz has brought new principles in multiple dissertations the most famous being maybe [38].

It helped many researchers to choose a configuration (topologies, migration rates, number and size

of demes) for their PGA. In [43] Cantú-Paz has compared different migration policies (best migrants

replace worst individuals, best migrants replace random individuals, random migrants replace worst

individuals) and he showed that the choice of migrants and the replacement of individuals are im-

portant parameters that give significant improvements when chosen according to their fitness. In

[44] he showed the relation between the deme size, the migration rate and the degree of the topol-

ogy with the probability of success after two and multiple epochs. According to him, the topology

has also a significant impact on the solution quality but different topologies with the same degree

reach almost identical solutions. He also proposed a quality model that can be used as a deme sizing

44



2.1 Genetic Algorithms (GAs)

equation, which in turn can be used to find the degree and number of epochs that minimize the exe-

cution time. In [45], he additionally brought to light that isolated demes should be avoided in practice.

There are still many ongoing works on this subject, like in [46] where De Jong and Skolicki investi-

gate the influence of migration sizes and intervals on island models. They have shown that the island

model is very sensitive to small migration interval and that a migration size of 10 percent is unnec-

essarily big. In their case, the best performance is achieved with moderate migration intervals and

small migration sizes. Too frequent migrations should be avoided, because all islands start to share

the same individuals and results in a loss of diversity that negatively affects performance. One of their

current hypothesis is that migrations should occur only after the diversity in the system stabilizes.

2.1.2.3 Hierarchical PGA

In hierarchical (or hybrid) parallel GAs, two levels of parallelizing GAs are combined. At the upper-

level, most of the hybrid parallel GAs are multiple-population algorithms (coarse-grain implementa-

tion). Some hybrids have a fine-grained GA (i.e. cGA) at the lower level, as shown in figure 2.1.2.(d).

This model was first introduced by Gruau in [47] and applied on a neural network design and

training application. Many works followed based on this hierarchical model like in [48] [49] or more

recently in [50] and [51]. Another type of hierarchical parallel GA uses a master-slave on each of

the demes of a multi-population GA. This approach is useful for complex problems requiring high

computational power and was for instance used by Goldberg in [52] and later by Bianchini in [53].

The last hierarchical model is composed of coarse-grained at both levels. A high migration rate and

a high density is used inside the demes so as to force panmicitic mixing while a low migration rate is

used at the upper level. For more details the reader can refer to [7] and [38].

2.1.2.4 Synthesis

PGAs have been developed in order to overcome the drawbacks of sequential GAs when tackling non-

trivial problems of big sizes (e.g. big computational time, big memory usage, etc.). An interesting

feature of PGAs is that they are not only parallel versions of a sequential algorithm meant to speed

up the computational process. Indeed, they are a new class of meta-heuristics which structured pop-

ulation and parallel execution provides a higher efficiency and efficacy.

Those features led to an high number of applications of these algorithms (applications that we did

not listed here, the reader can refer to [1] and [8]) as well as the development of many frameworks,

some of the most prominent ones being studied in section 2.3.

However, as for sequential GAs, PGAs still consider the evolution of similar individuals representing

the global solution. They do not allow decomposition, neither at the level of the solution representation

nor at the level of the problem itself, while in some cases this decomposition can provide interesting

45



2.2 Coevolutionary Genetic Algorithms

improvements in terms of solution quality and speedup. We therefore studied another class of GAs

which takes into account these characteristics, i.e. coevolutionary GAs.

2.2 Coevolutionary Genetic Algorithms

A very natural, and increasingly popular extension when problems domains are potentially complex,

or when it is difficult or impossible to assess an objective fitness measure for the problem, is the class

of so-called coevolutionary algorithms (CEAs) [10]. This ostensibly allows the potential for evolving

greater complexity by allowing pieces of a problem to evolve in tandem, as well as the potential for

evolving solutions to problems in which such a subjective fitness may, in fact, be necessary (i.e., game

playing strategies). In a general sense, coevolution refers to a reciprocal evolutionary change between

species that interact with each other. The term “coevolution” is usually attributed to Ehrlich and

Raven who published a paper on their studies performed with butterflies and plants in the mid-1960s

[54]. However, several other researchers used the term before them. In fact, the original idea of co-

evolution was introduced by Darwin [55].

Instead of evolving a population of similar individuals representing a global solution like in classical

GAs, CGAs consider the coevolution of subpopulations of individuals representing specific parts of the

global solution. Researchers have developed several coevolutionary approaches which normally involve

two or more species, in most cases each species independently runs a genetic algorithm. Individuals

are evaluated based on their direct interactions with other individuals, these interactions can be either

positive or negative depending on the consequences that such interaction produces on the population.

If negative, the presence of each species is associated with reducing the growth of another species, this

is competitive coevolution. If positive, the presence of each species stimulates the growth of the other

species, this is cooperative coevolution. Consequently, there are two main classes of coevolutionary

algorithms in the evolutionary computation literature:

• The competitive CGAs: the fitness of an individual is the result of a series of encounters with

other individuals.

• The cooperative CGAs: the fitness of an individual is the result of a collaboration with individ-

uals of other species (or populations).

Table 2.1 summarizes the differences between the two multi-population approaches that are the

island model previously introduced in 2.1.2.2 and CGAs. The island model doesn’t support the type of

interaction between subcomponents required for them to coadapt and form competitive, exploitative or

cooperative relationships. Although the island model improves the performance of EA by maintaining

some diversity in the ecosystem and providing more explicit parallelism, it does not address any of

the other issues related to the evolution of coadapted subcomponents.

The following two sections, 2.2.1 and 2.2.2, provide a description of those two architectures of

CGAs, respectively competitive and cooperative, and of their applications.

46



2.2 Coevolutionary Genetic Algorithms

Island Model CGAs

Static number of populations No restriction on the number of subpopulation

(allow dynamic creation or destruction of subpop-

ulations)

Only migration of individuals : mixing of ge-

netic material (reinject diversity into otherwise

converging subpopulations)

Individuals do not migrate: interbreeding does

not occur.

Predetermined migration interval + migration

size

Communication between subpopulations is lim-

ited to occasional communication of representa-

tives or other information

Eliminates global synchronization but still syn-

chronization for migration

The only global control is that required to create

or eliminate unproductive subpopulations

Well adapted for linearly separable problems Coevolution is applicable to a wide range of de-

composable problems

Table 2.1: Comparison between Island Model and CGAs

2.2.1 Competitive Architecture and Applications

This section presents a (non-exhaustive) list of different competitive architectures and their appli-

cations on test and business problems. The choice of not considering only real-world applications is

motivated by historical factors (the first architectures were applied on test problems) and by numerical

factors (only few applications exist on business problems).

Competitive CEAs were first introduced by Hillis [56] in 1991. Hillis used a model of host and

parasites, also called predator-prey, coevolution for evolving sorting networks. One species (the hosts)

represents sorting networks, and the other species (the parasites) represent test cases in the form of

sequences of numbers to be sorted. An individual in the hosts population (i.e. a sorting network) is

awarded a fitness score based on how well it sorts an opponent data set from the parasites population

(i.e. a test case), and an individual in the second population represents potential data sets whose

fitness is based on how well they confuse opponent sorting networks.

The term Coevolutionary Genetic Algorithms (CGAs) was introduced in 1994 by Paredis in [57]

and [58], in which a competitive approach was used respectively for a well known Constraint Satisfac-

tion Problem (CSP), the N-queens problem, and on a classification neural network problem. Other

machine learning problems were tackled using competitive approaches like intertwined spirals in [59]

or neural networks in [60].

A two-species model has also been used to solve a number of game learning problems, including

tic-tac-toe, nim, backgammon and go, by having the species represent competing players [61] [62] [15].

In those models, the two species represent opponents in the game. Each member of one species is

matched against a sample of opponents from the previous generation of the other species. An indi-

47



2.2 Coevolutionary Genetic Algorithms

vidual is evaluated on the number of opponents from the sample it defeats. Finally, the amount of

reward resulting from each win is a function of the number of other individuals in the population who

can defeat the same opponent.

Additionally Angeline and Pollack [16] demonstrated the effectiveness of competition for evolving

better solutions in learning of backgammon strategy by developing a concept of competitive fitness to

provide a more robust training environment than independent fitness functions.

Competition was also successfully harnessed by Schlierkamp-Voosen and Mühlenbein [63] to facil-

itate strategy adaptation in their so-called breeder genetic algorithms which they used for optimizing

classical test functions (i.e. De Jong’s test suite). Competition has also played an important role in

the field of coevolution of complex agent/robots behaviors [64] [65] [66].

Finally, Seredynski in [12] introduced another competitive model called LCGA (Loosely Coupled

Genetic Algorithm) motivated by a non-cooperative model of game theory, a variant of the N-person

prisoner dilemma game called game with limited interaction. His algorithm was applied to dynamic

mapping problem and scheduling problem [13] to a distributed scheduling problem [67] and to test

functions [68]. More details on LCGA are provided in section 2.2.5.

Table 2.2 presented hereafter chronologically lists the applications of competitive coevolutionary

architectures on both test and real-world problems.

Author Date Application

Hillis 1991 Sorting networks

Angeline 1993 Game learning problem (Backgammon strategy)

Paredis 1994 CSP, N-queens problem, classification neural network problem

Schlierkamp-Voosen 1994 Test functions optimization (De Jong’s test suite)

Sims 1994 3D morphology and behavior evolution

Rosin 1995 Game learning problem (tic-tac-toe, nim and go)

Juille 1996 Machine learning problem (intertwined spirals)

Rosin 1997 Game learning problem (3D tic-tac-toe and nim)

Seredynski 1997 Dynamic mapping problem and scheduling problem

Luke 1997 Soccer softbots team coordination

Floreano 1997 Coevolutionary Predator-Prey Robots

Mayer 1998 Machine learning problem (neural networks)

Pollack 1998 Game learning problem (backgammon strategy)

Seredynski 1999 Distributed scheduling problem

Seredynski 2003 Test functions optimization

Table 2.2: Competitive Architectures Applications

These competitive-species models have demonstrated that this form of interaction helps to pre-

serve genetic diversity and results in better final solutions when compared with non-coevolutionary

approaches. However, one limitation of these approaches is the requirement of a hand-decomposition

48



2.2 Coevolutionary Genetic Algorithms

of the problem into two antagonistic subcomponents (for the two species model) or into loosely coupled

subproblems (for the LCGA).

2.2.2 Cooperative Architecture and Applications

This section presents a (non-exhaustive) list of different cooperative architectures and their appli-

cations on test and business problems. As for the competitive architectures, considering not only

real-world applications is driven by historical factors (the first architectures were applied on test prob-

lems) and by numerical factors (only few applications exist on business problems).

Other researchers have explored the use of cooperative-species models. Husband and Mills in [69]

first used cooperative coevolution for a job-shop scheduling problem. The decomposition used is to

have all species but one evolving plans for manufacturing a different component. The single remaining

species evolves an arbitrator for resolving conflicts when two or more plans required the same piece of

shop equipment at the same time.

Cooperative coevolution gained popularity with Potter and De Jong who proposed a general frame-

work for such cooperative models in [11] and applied it to test functions optimization problems (De

Jong’s test suite). In this coevolutionary approach, multiple instances of GAs are run in parallel, each

population contains individuals representing a component of a larger solution. Complete solutions

are obtained by assembling representatives from each of the species. Unlike the island model, the

individuals from the separate subpopulations do not interbreed. Credit assignment at the species level

is defined in terms of the fitness of the complete solutions in which the species members participate.

This provides evolutionary pressure for species to cooperate rather than compete. However, competi-

tion still exists among individuals within the same subpopulation.

Cooperative coevolution showed to be efficient on different problems like static function optimiza-

tion [70], rule learning [71] [72], neural network learning [73], and multiagent learning problems [17].

In 1995, Paredis applied a two-species cooperative model on Goldbergs three-bit deceptive function

in [74]. This two-species system assigns one species to the task of evolving an effective representation

in the form of a mapping between genes and subproblems, and the other species to the task of evolving

subproblem solutions. These two species had a symbiotic relationship in that the second species used

the representations coevolved by the first species.

Moriarty and Miikkulainen in [75], in the SANE (Symbiotic, Adaptive, Neuro-Evolution) system,

took a different, somewhat more adaptive approach to cooperative coevolution of neural networks.

In this case a parent population represents potential network plans, while an offspring population is

used to acquire node information. Plans are evaluated based on how well they solve a problem with

49



2.2 Coevolutionary Genetic Algorithms

their collaborating nodes, and the nodes receive a share of this fitness. Thus a node is rewarded for

participating more with successful plans, and thus receives fitness only indirectly.

Potter’s methods have also been used by Eriksson and Olsson [14] who have used a CCGA for

inventory control parameter optimization (i.e. a stock management problem).

Wiegand introduced DCCGA (Diffusable CCGA) in [76] attempts to make the algorithm more

adaptively allocate resources by allowing migrations of individuals from one population to another

in a method similar to the Schlierkamp-Voosen and Mühlenbein [63] competitive mechanisms. He

applied his DCCGA on the same test functions used by Potter in [11].

Table 2.3 presented hereafter chronologically lists the applications of cooperative coevolutionary

architectures on both test and real-world problems.

Author Date Application

Husband and Mills 1991 Job-shop scheduling problem

Potter 1994 Test functions optimization

Paredis 1995 Goldbergs three-bit deceptive function

Potter 1995-97 Rule learning

Potter 1997 Static function optimization

Eriksson and Olsson 1997 Inventory control parameter optimization

Moriarty and Miikkulainen 1997 Neural networks

Wiegand 1998 Test functions optimization

Potter 2000 Neural network learning

Potter 2001 Multiagent learning problems

Table 2.3: Cooperative Architectures Applications

2.2.3 Synthesis

Purely cooperative CEAs can behave quite differently than purely competitive ones, exhibiting dif-

ferent advantages and disadvantages. However, once a particular algorithm and problem domain are

dissected for analysis purposes, it becomes clear that there are often elements of both cooperation and

competition in many CEAs. Indeed, when one considers single-population CEAs, it is difficult to dis-

cern the difference between competition as a result of selection within the population, and competition

as a result of the relationships in the subjective fitness assessment. To conclude, the differentiation

and thus the categorization of CEAs are not always trivial.

Considering the application of CGAs, both competitive and cooperative, we can notice that most

of them are targeted to test problems. Up to now, few works tried to benefit from CGAs on real-world

problems.

50



2.2 Coevolutionary Genetic Algorithms

The last two sections have described the two types of architectures available in CGAs, competitive

and cooperative, and their respective applications. We will now analyze in detail the two CGAs we

used in our studies, one CGA in each class, namely CCGA (Cooperative Coevolutionary Genetic

Algorithm) and LCGA (Loosely Coupled Genetic Algorithm), and study the existence of hybrid and

dynamic variants of both of them.

2.2.4 CCGA: Cooperative Coevolutionary Genetic Algorithm

Cooperative (also called symbiotic) coevolutionary genetic algorithms (CCGA) involve a number of

independently evolving species which together form complex structures, well-suited to solve a prob-

lem. The fitness of an individual depends on its ability to collaborate with individuals from other

species. In this way, the evolutionary pressure stemming from the difficulty of the problem favors the

development of cooperative strategies and individuals.

Potter and De Jong [11] developed a model in which a number of populations explore different

decompositions of the problem. In Potter’s system, each species represents a subcomponent of a

potential solution. Complete solutions are obtained by assembling representative members of each

of the species (populations). The fitness of each individual depends on the quality of (some of) the

complete solutions it participated in, thus measuring how well it cooperates to solve the problem.

The evolution of each species is controlled by a separate, independent evolutionary algorithm. In the

initial generation (t=0) individuals from a given subpopulation are matched with randomly chosen

individuals from all other subpopulations. A fitness for each individual is evaluated, and the best

individual in each subpopulation is found. The process of cooperative coevolution starts form the next

generation (t=1). For this purpose, in each generation a cycle of operations is repeated in a round-

robin fashion. Only one current subpopulation is active in a cycle, while the other subpopulations

are frozen. All individuals from the active subpopulation are matched with the best values of frozen

subpopulations. When the evolutionary process is completed a composition of the best individuals

from each subpopulation represents a solution of a problem.

Potter and De Jong developed two different ways of evaluating the fitness of an individual, which

are:

• credit assignment algorithm 1 (CCGA-1), with which the best individuals of each of the other

subpopulations are used to evaluate the fitness of an individual in a subpopulation, as described

previously;

• credit assignment algorithm 2 (CCGA-2), with which each individual in a subpopulation is

evaluated by combining it both with the current best individual from each of the other sub-

populations and with a random selection of individuals from each of the other subpopulations.

The two resulting vectors are then applied to the objective function and the better of the two

function values is returned as the fitness of the individual being evaluated.

51



2.2 Coevolutionary Genetic Algorithms

EA

Representative

Population

Species 1

GA

Representative

Population

Species 2

GA

Representative

Population

Species 3

GA

Population

EA

Representative

Population

Species 4

Domain
ModelFitness

Solution
to be

evaluated

Merge
Partial

Solutions

Figure 2.8: Potter and De Jong’s CCGA architecture

Figure 2.8 shows the general architecture of Potter’s cooperative coevolutionary framework, and

the way each evolutionary algorithm computes the fitness of its individuals by combining them with

selected representatives from the other species.

Algorithme 4 : CCGA

gen = 0

foreach speciess do
Pops(gen) = randomly initialized population

evaluate fitness of each individual in Pops(gen)

end

while termination condition = false do
gen = gen + 1

foreach speciess do
select Pops(gen) from Pops(gen− 1) based on fitness

apply genetic operators to Pops(gen)

evaluate fitness of each individual in Pops(gen)

end

end

2.2.4.1 Hybrid Cooperative Coevolutionary Genetic Algorithm

Hybridization of GAs for optimization purposes has been widely studied in the last years, combining

the capacity of GAs to explore huge search spaces and find good regions of solutions with the exploita-

tion power of local search algorithms. Hybrid coevolutionary algorithms are a new and promising

alternative but contrary to hybrid GAs they are still quite unexplored.

52

Chapter1/Chapter1Figs/EPS/CCGA.eps


2.2 Coevolutionary Genetic Algorithms

Indeed, only Son and Baldwick in [25] proposed in 2004 a hybrid coevolutionary algorithm for Nash

equilibrium search in games with local optima. They have incorporated a local hill-climbing algorithm

to the basic coevolutionary algorithm, which is in fact a CCGA, so as to speed up convergence and

fine tune control variables. To this end, they introduced the concept of ”best rival matching and fine

tuning” meaning that the chosen individual of one population is matched against the best strategies

of the other populations in each generation and optimized using the hill climber. As experiment, they

applied their hybrid algorithm on a transmission-constrained electricity market problem, showing that

the hybrid version successfully avoided NE traps.

2.2.4.2 Adaptive Cooperative Coevolutionary Genetic Algorithm

In his PhD thesis [70] and later in [26], Potter studied the dynamic birth and death of subpopulations

during the algorithms execution and consequently the emergence of an optimal number of these. He

investigated this adaptive algorithm’s capabilities on a neural network case study (for solving the

two spirals problem). It provided good results on such simple problems but on more complex ones

it will require a fitness function which more specifically allow the species to converge to different niches.

Another possible technique to improve the performance of GAs is to dynamically fine-tune their

control parameters. Control parameters are fixed in classical GAs whereas self-adaptation occurs when

the control of the mutation or crossover rates are represented within the chromosome as parameters.

They consequently go through the same evolutionary processes as the problem parameters within the

chromosome. This is a mean of providing the GA with more flexibility to conduct its search effectively

and it allows the algorithm to adapt itself to the problem during the run.

For example, in [27], Ioro and Lee proposed a CCGA with self-adaptive control parameters. They

used self-adaptive population size, crossover rate and mutation rate and compared the performance

on these variations to CCGA-1 on the same test functions used by Potter (i.e. Rastrigin, Schwefel,

Rosenbrock, Ackley and Griewangk). They observed some improvements of the solution when combin-

ing the adaptive sizing of the populations with either adaptive crossover rate or adaptive mutation rate.

Finally in [28], Cai and Peng introduced CCAGA (Cooperative Coevolutionary Adaptive Genetic

Algorithm), in which the crossover rate is adapted (it is thus similar to one of Ioro’s algorithm presented

above). They used this algorithm for the optimization of a path-planning of multi-mobile robot

systems.

2.2.5 LCGA: Competitive Coevolutionary Genetic Algorithm

The Loosely Coupled Genetic Algorithm (LCGA) [68] is a medium-level parallel and distributed co-

evolutionary algorithm exploring a paradigm of competitive coevolution motivated by non-cooperative

53



2.2 Coevolutionary Genetic Algorithms

models of game theory [13].

The most widely used solution concept for non-cooperative games is the Nash equilibrium point.

A Nash point is an N -tuple of actions, one for each player, such that anyone who deviates from it

unilaterally cannot possibly improve his expected payoff uk. If sk denotes an action of the k-th player,

then a Nash equilibrium point is an N-tuple (s∗0, s
∗
1, . . . , s

∗
k, . . . , s∗N−1) such that

∀sk 6= s
∗

k, k ∈ {0, 1, . . . , N − 1} : (2.1)

uk(s∗0, s
∗

1, . . . , s
∗

k, . . . , s
∗

N−1) ≥ uk(s∗0, s
∗

1, . . . , sk, . . . , s
∗

N−1)

A Nash equilibrium point defines payoffs of all the players in the game. We are interested in some

global measure of the payoffs received by players. This measure, called price of a game s, can be, e.g.,

the average payoff u(s) received by a player as a result of the combined actions s = (s0, s1, . . . , sN−1),

i.e.,

u(s) =

(

N−1
∑

k=0

uk(s)

)

/N. (2.2)

The question which arises immediately concerns the value of the criterion (2.2) at a Nash point. Un-

fortunately, this value can be very low.

Analyzing all possible action combinations in a game and evaluating their prices, i.e., the u(s) val-

ues, we can find action combinations characterized by a maximal price and we can call them maximal

price points. Maximal price points are action combinations which maximize the global criterion (2.2),

but they can be reached by players only if they are Nash points. A maximal price point usually is not

a Nash point and the question which must be resolved is how to convert a maximal price point into

a Nash point.

To solve this problem we introduce the concept of cooperation between players, by allowing them

to share their payoffs in a game. We use two basic schemes of cooperation:

• global cooperation: sharing a payoff received by a player k with all players participating in the

game, i.e., his payoff uk is transformed into a new payoff wk as

uk −→ wk = u(s) (2.3)

• local cooperation: sharing a payoff received by a player k with his neighbors in the game, i.e.,

his payoff is transformed as

uk −→ wk =

∑

l∈Nk
ul

maxl∈N Nk + 1
, (2.4)

where ul is the payoff of a neighbor l of the player k, Nk is the number of neighbors of the player

k, and maxl∈N Nk denotes the maximal number of neighbors in a game.

54



2.2 Coevolutionary Genetic Algorithms

We are interested in a global behavior (in the sense of the criterion(2.2)) of a team of players taking

part in iterated games. To evolve such a behavior we will use an evolutionary computation technique

based on genetic algorithms (GA) [52].

For an optimization problem described by some function (a global criterion) of N variables, local

chromosome structures are defined for each variable and local subpopulations are created for each of

them. As opposed to known sequential and parallel EAs, the LCGA is assumed to work in a distributed

environment described by locally defined functions. A problem to be solved is first analyzed in terms of

possible decomposition and relations between subcomponents that are expressed by a communication

graph Gcom, aka graph of interaction. The objectives of this function decomposition and of the

definition of the interaction graph are to minimize communications while still ensuring that the fact

of reaching local optima for all different players (being a Nash equilibrium point) still leads to a global

optimum of the initial function. This process has still to be done manually by taking into account

information on the internal structure of the cost function, i.e. of the problem. The LCGA approach has

been successfully applied for various problems including optimization of hard mathematical functions,

multiprocessor mapping and scheduling. LCGA can be specified in the following way:

Algorithme 5 : LCGA

gen = 0

foreach players do
Pops(gen) = randomly initialized population

evaluate local fitness of each individual i in Pops(gen) : ui(s0, s1, . . . , si, . . . , sN−1)

end

while termination condition = false do
gen = gen + 1

foreach players do
select Pops(gen) from Pops(gen− 1) based on fitness

apply genetic operators to Pops(gen)

evaluate local fitness of each individual i in Pops(gen) : ui(s0, s1, . . . , si, . . . , sN−1)

end

end

After initializing subpopulations, corresponding sequences of operations are performed in parallel

for each subpopulation, and repeated in each generation:

- For each individual in a subpopulation a number of ni (ni-number of neighbors of subpopulations

Pi()) of random tags is assigned, and copies of individuals corresponding to these tags are sent to

neighbor subpopulations, according to the interaction graph.

- Individuals in a subpopulation are matched with ones that arrived upon request from the neighbor

subpopulations.

- Local fitness function of individuals from subpopulations is evaluated on the base of their values and

55



2.2 Coevolutionary Genetic Algorithms

values of arrived tagged copies of individuals.

- Standard GA operators are applied locally in subpopulations.

Coevolving this way subpopulations compete to maximize their local functions. The process of

local maximization is constrained by neighbor subpopulations, sharing the same variables. A final

performance of the LCGA operated in a distributed environment is evaluated by some global crite-

rion, usually as a sum of local function values in an equilibrium point. This global criterion is typically

unknown for subpopulations (except the case when Gcom is a fully connected graph), which evolve

with their local criteria.

Contrary to the CCGA of De Jong, no hybridization of the competitive coevolutionary genetic

algorithm LCGA was presented in the current literature. Consequently we will directly introduce in

the next section the existing adaptive variant of the LCGA.

2.2.5.1 Adaptive Competitive Coevolutionary Genetic Algorithm

Seredynski et al. in [67] introduced an adaptive LCGA for distributed scheduling optimization. They

proposed an approach to multiprocessor scheduling based on a multi-agent interpretation of the par-

allel program in which agents migrate in the topology of the parallel system environment, searching

for an optimal allocation of program tasks into the processors. A collection of agents is assigned to

tasks of the precedence task graph in a such way that one agent is assigned to one task. An agent

Ak, associated with task k, can perform a number of migration actions Sk on the system graph .

To evolve strategies for the migration of agents in the system graph, they use a LCGA. These local

actions change the task allocation, thus influence the global optimization criterion.

2.2.6 Synthesis

Based on these descriptions, we can observe that the differentiation between these CGAs and between

the variants of these CGAs (e.g. CCGA-1 and CCGA-2) lie in the following parameters:

- the topology of communications: complete graph for the CCGA, any topology for LCGA (depends

on the problem decomposition)

- the interaction protocols: synchronous exchange from all to one for CCGA, asynchronous exchange

for LCGA

- the exchanged information: best or best and random for CCGA, random individuals for LCGA

- their relation to the environment (i.e. to the optimization problem): in CCGA each subpopulation

evaluates its solutions on the global problem, in LCGA a subpopulation evaluates its solutions on a

subproblem (depending on the problem decomposition).

56



2.3 Frameworks for Distributed and Parallel Evolutionary Computation

CCGA LCGA

Topology Complete Graph Any

Interaction protocols Synchronous Asynchronous

Exchanged information best or best and random individuals Random individuals

Problem view Global Local or Global

Figure 2.9: CCGA - LCGA comparison

It is therefore of interest for the user and for the system itself, to be able to manipulate these

parameters so as to adapt these CGAs structure, interactions and exchanged information according

to the optimization problem.

Few works tried to build new variants of these algorithms, either hybrid or adaptive.

Finally, as for CGAs in general, the applications of both CCGA and LCGA are mostly targeted

to test problems and few works tried to benefit from CGAs on real-world problems.

According to this first state of the art, the work presented in this dissertation will investigate how

to address the three issues aforementioned:

• by providing a high-level model allowing to specify CGAs in a self-expressive manner, to both

the designer and the system, in terms of the algorithms’ topologies, interactions and exchanged

information

• by taking advantage of this model to build new hybrid and dynamic CGA variants,

• by applying those CGAs, i.e. existing and new ones, on real-world optimization problems.

2.3 Frameworks for Distributed and Parallel Evolutionary Com-

putation

In the field of parallel evolutionary algorithms (PEAs), many implementations have been realized

since the late eighties, ranging from simple libraries to complex frameworks. The existing literature

provides several surveys of these implementations, from which we can cite [7] and [77].

The objective of this section is to provide an overview of the existing frameworks dedicated to

PEAs classified according to the paradigm they use, i.e. object or agent. We will not relate the whole

history of PEAs implementations since it is well studied in the papers previously referenced. We will

only emphasize the current PEA frameworks which are commonly considered as outstanding which

are Dream, ECJ, ParadisEO, JDEAL and MALLBA for the object oriented platforms and MAGMA

and MAS-DGA for the agent oriented ones.

57



2.3 Frameworks for Distributed and Parallel Evolutionary Computation

2.3.1 Object Oriented PEAs platforms

• ParadisEO (PARAllel and DIStributed Evolving Objects) [18] allows the use of PEAs with either

an island-model or a master-slave configuration. It is not limited to EC as it can also perform

local search algorithms. The framework is coded in C++ using MPI/PVM for message passing

and the pthread library for multi-threading. Paradiseo is based on a modular architecture, as

shown in Figure 2.10, in which Paradiseo-EO allows the use of population-based metaheuristics

(like GAs), Paradiseo-MO allows the use of solution-based metaheuristics (e.g. Hill Climbing),

Paradiseo-MOEO permits multi-objective optimization (e.g. NSGA-II) and Paradiseo-PEO al-

lows to utilize parallel, hybrid and distributed metaheuristics (e.g. island model).

ParadisEO -PEO

ParadisEO
-MO

ParadisEO
-MOEO

ParadisEO-EO

Parallel and Distributed Metaheuristics

Tabu Search,
Simulated Annealing,
Hill-Climbing:
single solution based
metaheuristics

Evolutionary computation, Swarm
intelligence : population-based
metaheuristics

Multi-objective
metaheuristics :
NSGAII…, metrics…

Figure 2.10: Paradiseo: A Module-Based Architecture

• DREAM (Distributed Resource Evolutionary Algorithm Machine) [20] is a peer-to-peer software

based on the island model implemented in Java. It considers a virtual pool of distributed com-

puting resources, in which each node evolves its own population. DREAM’s architecture is split

into five modules (see Figure 2.11), GUIDE (Graphic User Interface for DREAM Experiments)

which allows to build distributed evolutionary algorithms using a fully graphical interface, EASE

(EAsy Specification of Evolutionary Algorithms) which provides a high level textural language

to program distributed evolutionary algorithms, JEO (Java Evolutionary Object) which is a

Java library for evolutionary computing, DRM (Distributed Resource Machine) API and finally

the DREAM console, primary tool for managing a computer connected to a DRM.

Each module can be used either in standalone mode or in integrated mode, which allows the

user to choose his specification level according to his skill level. DREAM is targeted toward

Wide Area Networks (WAN) where communication costs are high. It assumes an application

which is massively parallelizable, asynchronous and robust (i.e. its success does not depend on

the success of any sub-process), that requires little communication between sub-processes, and

has large resource requirements.

58

Chapter1/Chapter1Figs/EPS/Paradiseo.eps


2.3 Frameworks for Distributed and Parallel Evolutionary Computation

EA

GUIDE

EASEA

JEO

User A

User B

User C

User D

User E

Console

DRM

Figure 2.11: DREAM: Overall Architecture

• ECJ [21] is an open Java-based framework for evolutionary computation and genetic program-

ming. It uses TCP/IP and multi-threading to efficiently parallelize its algorithms. The distribu-

tion can be based either on the island model or on the master-slave strategies. Its distribution is

less sophisticated than in DREAM but it is sufficient for a deployment on a Local Area Network

(LAN). ECJ also provides some additional features like multi-objective optimization, logging

possibilities and check-pointing, etc.

• JDEAL (Java Distributed Evolutionary Algorithms Library) [78] is another portable Java frame-

work for EAs which integrates its own implementation of genetic algorithms and evolution strate-

gies. Both local and MasterSlave parallel/distributed models are available. Its ease of use is

ensured through a documentation and a tutorial. JDEAL also includes support tools such as

automatic generation of execution statistics and check-pointing.

• The MALLBA (MAlaga + La Laguna + BArcelona) [19] framework is a library of skeletons

for combinatorial optimization including exact, heuristic and hybrid methods. Skeletons are

algorithmic units that, in a template-like manner, implement generic algorithms. The skeletons

are implemented using C++. MALLBA is targeted to sequential computers, LANs and WANs

environments on which it can be transparently deployed. Communications are based on Net-

Stream, a flexible and simple OOP message passing service, upon MPI. Portability is ensured

by the utilization of the C++ language and standards such as MPI.

2.3.2 Agent Oriented PEAs platforms

Only two frameworks, MAGMA (MultiAGgent Architecture for Metaheuristics) and MAS-DGA (Multi-

Agent System for Distributed Genetic Algorithms) [79], use a multi-agent architecture for metaheuris-

tics algorithms.

• MAGMA (MultiAGgent Architecture for Metaheuristics), introduced in Roli’s Phd thesis [80]

and later in [81], consists in a multi-level architecture where each level contains one or several

59

Chapter1/Chapter1Figs/EPS/Dream.eps


2.3 Frameworks for Distributed and Parallel Evolutionary Computation

Figure 2.12: MALLBA

specialized agents implementing an algorithm. Some of these levels, and consequently agents

propose several metaheuristics, including GAs. Figure 2.13 presents an example of the usage of

MAGMA’s multi-level architecture to model a Memetic Algorithm (i.e. a GA combined with a lo-

cal search algorithm). MAGMA has been introduced as a conceptual framework to model various

metaheuristics and a partial parallel implementation has been proposed, with which experimen-

tal results on the Maximum Satisfiability Problem (MAXSAT) using Ant Colony Optimization

(ACO) and Iterated Local Search (ILS). However no implementation of GAs in MAGMA have

been referenced up to now.

Cooperation/Competition

Local Search

Generate
Population

LEVEL 1

LEVEL 0

LEVEL 2

Figure 2.13: MAGMA Multi-Level Architecture Example: Memetic Algorithm (MA)

• In MAS-DGA (Multi-Agent System for Distributed Genetic Algorithms) [79], each basic GA

is encapsulated into an agent, an autonomous entity that must keep knowledge of the search,

learning, or optimization problem it should operate on. Agents should be coordinated through a

set of rules stipulating the topological and communication (migration) aspects, and these rules

may be fixed a priori or set in run-time via a coordination entity (meta-agent). MAS-DGA

was used for experimenting and adaptive migration policy in a coarse-grain PGA (i.e. island

60

Chapter1/Chapter1Figs/MALLBA.png
Chapter1/Chapter1Figs/EPS/MAGMA.eps


2.4 Conclusion

Framework Paradigm Algorithms Parallelization Implementation

ParadisEO Object GA, SA, ES, ACO, PSO, local

search, hybrid (low and high level)

master-slave, island and cellular

models

C++ (MPI/PVM)

DREAM Object GA, ES island model Java

ECJ Object GA, PSO, DE, GP master-slave, island model JAVA (sockets)

JDEAL Object GA, ES master-slave JAVA (sockets)

MALLBA Object GA, SA, ES, ACO, PSO, local

search, hybrid

master-slave, island model C++ (MPI)

MAGMA Agent GA, ACO, PSO, local search, hy-

brid

island model —

MAS-DGA Agent GA island model —

Figure 2.14: Evolutionary algorithms frameworks comparison

model). No details concerning its multi-agent model or implementation are given in the single

paper mentioning MAS-DGA.

2.3.3 Synthesis

As can be seen in this state of the art, these frameworks allow the use of many different PEAs, but

none of these allow the use of coevolutionary GAs like CCGA or LCGA. A few of them propose some

coevolutionary algorithms, like PAradiseo or ECJ, but they are different from De Jong’s and Sere-

dynski’s algorithms. Indeed they consist in hybrid coevolutions for Paradiseo (as described in [82])

or in simple coevolution for ECJ. Additionally, most of these frameworks are implemented using the

object paradigm. They do not provide any high level modeling language describing the structure or

the interactions of the PEAs they propose.

Only two platforms use the agent paradigm, MAGMA providing a more complete framework, i.e.

a richer model and implementation possibilities. However very little information is available concern-

ing their implementation and their configuration/usage. Finally there is no available version of these

implementations.

To conclude, there is currently no framework dedicated to CGAs. Only a few PEAs platforms

allow the use of some CGAs but not the most well-known ones like CCGA.

Based on these observations, we chose to orientate our research on the development of a new

platform dedicated to CGAs. The latter will have to use a paradigm which will allow taking into

account the high-level model we first discussed in 2.2.6.

2.4 Conclusion

The aim of this chapter was to introduce coevolutionary genetic algorithms (CGAs), their different

architectures (competitive and cooperative), their available variants (hybrid and dynamic) and their

application domains. It appears that many different problems were tackled using CGAs but only few

61



2.4 Conclusion

are real-world problems. We provided some more detailed description of the two CGAs we used and

extended in our research works: CCGA and LCGA.

We observed that the differentiation between these CGAs and between the variants of these CGAs

(e.g. CCGA-1 and CCGA-2) lie in their topology of communication, in their interaction protocols, in

the type of information they exchange and in their relation to the environment (i.e. to the optimiza-

tion problem). It is therefore of interest for the user and for the system itself, to be able to manipulate

these parameters so as to adapt these CGAs structure, interactions and exchanged information ac-

cording to the optimization problem.

Based on these observations, we studied the most well known available frameworks for Parallel

and distributed Evolutionary Algorithms (PEAs) and came to the first conclusion that only a few

of these permit the use of a limited number of CGAs. They additionally do not take advantage

of high-level models, methodologies which would allow to explicitly define the algorithms structures

and interactions and consequently to make them easily manipulable by the user or by the systems

themselves.

62



Chapter 3

Multi-Agent Organizations and

Adaptation

Contents
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Multi-Agent System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Multi-Agent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Organizations in Multi-Agent Systems . . . . . . . . . . . . . . . . . . . 70

3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.2 Organizational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Adaptation of Multi-Agent Organizations . . . . . . . . . . . . . . . . . 76

3.4.1 Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.2 Reorganization Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.3 Reorganization Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

63



3.1 Definitions

In the previous chapter, we have demonstrated the following needs for building CGAs:

• make the structure (i.e. the topology) of the CGAs explicit and modifiable by the user and/or

by the system

• make the interactions between the CGAs components (i.e. communications between subpopu-

lations) explicit and modifiable by the user and/or by the system

• make explicit the interactions of the system with its environment which can change in time (i.e.

for dynamic optimization problems)

We have also shown that the most well known available frameworks for Parallel and distributed

Evolutionary Algorithms (PEAs) do not allow the use of common CGAs and mostly work on a “black

box” model, hiding the structure, the interactions or the relations of the system to the optimization

problem. We therefore investigate the use of the agent paradigm (as opposed to the object paradigm)

to model an application by taking into account those different dimensions.

In this aim, following chapter provides an introduction to the agent paradigm and multi-agent

systems. We then introduce the notion of organization in multi-agent systems and study the existing

organizational models and their limitations when facing some system modifications. Finally, we study

how reorganizational models can handle online changes in a multi-agent system, issue that we face

when developing a new dynamic CGA inside our framework.

3.1 Definitions

3.1.1 Agent

As Michael J. Wooldridge mentioned in [83], there is no universally accepted definition of the term

agent and there is a good deal of ongoing debate and controversy on this subject. One of the reasons

is that many different communities revendicate this term but having some different problematic and

thus different perspectives and techniques.

In this dissertation, we will consider the definition provided by Wooldridge and Jennings in [83],

in which an agent is “a hardware or (more usually) a software-based computer system that enjoys the

following properties:

• autonomy: agents operate without the direct intervention of humans or others, and have some

kind of control over their actions and internal state.

• reactivity: agents perceive their environment and respond in a timely fashion to changes that

occur in it.

• pro-activeness: agents do not simply act in response to their environment, they are able to

exhibit goal-directed behavior by taking initiative.

64



3.2 Multi-Agent Models

• social ability: agents interact with other agents (and possibly humans) via some communication

languages.

Multiple kinds of agent architectures exist, from very basic to very complex (see 3.2.1 for more

details). On basic ones we can find some common characteristics like autonomy (independence),

persistence (long-liveness), monitoring of the environment, communication and collaboration with

other agents and/or the user. More “intelligent” agents possess higher-level abilities, such as mobility,

decision-making, and the ability to learn.

3.1.2 Multi-Agent System

As mentioned in [84], the definition of a Multi-Agent System (MAS) is more immediate than the agent

one: “a multi-agent system is an organized collection of agents”. This means that in a multi-agent

system, one or several organizations exist which provide a structure for the cohabitation and the col-

laborative work of agents (definition of the different roles, resources sharing, dependencies between

tasks, coordination protocols, conflicts solving, etc.). In a single system, it usually exists several or-

ganizations and a single agent can belong to multiple ones. Organizations in the real-world can range

from animal organizations (e.g. ant colonies) to social or economical organizations (e.g. community

or company). Depending on the needs, the agents’ behaviors will be more or less complex and the

organization more or less adaptive.

A key concept for multi-agent systems is the balance (and complementarity) between autonomy

and organization. Agents are usually located in an environment (for instance geographical) which

contains passive entities manipulated by the agents (e.g. data, resources, concrete objects, etc.). Each

agent has only a partial view on the system (i.e. the other agents) and on its environment. Conse-

quently, a multi-agent system is intrinsically decentralized.

Multi-agent systems have been widely applied for electronic commerce, collective robots, process

control or complex phenomenon simulation. A standardization of agents and their interoperability has

been initiated by some industrial leaders in telecommunication through the Foundation for Intelligent

Physical Agents (FIPA)1[85].

3.2 Multi-Agent Models

In the following section, we describe the different models manipulated within a MAS by using the

vowel approach AEIO (Agent, Environment, Interaction, Organization) introduced by Demazeau in

[86].

1Foundation for Intelligent Physical Agents: http://www.fipa.org

65



3.2 Multi-Agent Models

Agents deal with the models (or architectures) used for the active part of the agent, from a simple

automata to a complex knowledge based system. Environments are the places where the agents are

located. Interactions concern the infrastructures, the languages and the interaction protocols between

agents, from simple physical interactions to complex communicative acts. Organizations structure the

agents in groups, hierarchies, relations, etc.

3.2.1 Agent

Many different agent architectures have been proposed in the literature. Surveys of these architec-

tures and their applications were introduced in [87] [88] [89]. Boissier1 [2] also proposed a classification

based on a two-dimensional grid.

The first dimension characterizes the internal control of the agent. Agents can be first reactive,

deliberative or hybrid. Reactive agents have a simple stimulus-response functioning loop. They react

to the environment’s evolution but have no representation of it, of the other agents, etc. They addi-

tionally have no history (reference to the past) and no planning (reference to the future). Deliberative

agents add a deliberative function in the functioning loop of an agent. Using a representation of

the environment, of the agents and using history and planning capabilities, the agent can choose the

“right” action . Hybrid agents are thus both reactive and deliberative, depending on the situation.

The second dimension classifies the agents according to their capacities or competencies in relation

with the MAS models. Agents can be individual agents, social agents or organized agents. Individual

agents reason about themselves and about the system’s environment (i.e. the common space of the

agents, see definition in 3.2.2). The environment has thus to be modeled (see 3.2.2). Social agents

also reason on themselves, on the environment, but also on the interactions with the other agents.

Interactions have thus to be modeled, usually using exchanges of messages (e.g. interaction protocols,

see 3.2.3). Finally, organized agents reason about themselves, the environment, the interactions and

the organizational structures imposing these interactions.

Table 3.1 sorts some of the existing agent architectures according to the aforementioned two di-

mensions.

Reactive Agents Deliberative Agents Hybrid Agents

Individuals Agents Subsumption Architec-

ture [90], MANTA [91]

BDI (Belief, Desire, Inten-

tion) [92]; PRS

Touring Machines [93]

Social Agents SAM [94] AOP [95] InteRRaP [96]

Organized Agents B-DOING [97]

Table 3.1: Agent Architectures Classification from [2]

1Lecture on MAS: http://www.emse.fr/∼boissier/enseignement/smacourant/index.html

66



3.2 Multi-Agent Models

3.2.2 Environment

A distinction between the environment of a MAS and the environment of an agent has to be done.

Indeed, the environment of a MAS corresponds to a common space for the agents of the system while

the environment of an agent corresponds to the environment of the MAS plus the other agents be-

longing to the system.

Depending on the MAS application domain the environment has different modelings. In simula-

tion, the environment of a MAS is composed of active and passive objects which can be manipulated

by the agents. On the contrary, in the case of collaborative systems, the environment is constituted

of information which can not be controlled by the agents (e.g. the Web). Finally, in distributed

problems solving, the MAS environment corresponds to the problem’s data and the context in which

the rules encoded in the agents, the interactions and the organizations are updated. The environment

can be coupled with the agents (reacting to their actions) or decoupled (agents do not modify the

environment).

As for the environment definition, actions on the environment depend on the application domain.

In the case of simulations, an action can be defined as the mechanism implying a modification of the

physical environment or by the reaction (modification) of the environment due to the agent’s action.

For problem solving, agents evolve according to the environment and for collaborative systems agents

do not have actions on the environment.

The same way, concerning the perception of the environment, in the case of simulation it is done

through a sensor, while for problem solving it is a selection mechanism of a point of view on the

problem and for collaborative systems it is an interpretation of external data.

The environment can be classified according to the following set of properties proposed by Russel

and Norvig [98]:

- Accessible/Inaccessible: if an agent has sensors which allow him to observe the complete state of the

environment and choose an action accordingly, then the environment is accessible.

- Deterministic/Non-deterministic: the environment is deterministic if the next state of the environ-

ment is determined by its current state and the actions selected by the agents.

- Episodic/Non-episodic: In an episodic environment, the agents experience is divided into “episodes”.

Each episode consists of the agent perceiving and then acting. The quality of its action depends just

on the episode itself, because subsequent episodes do not depend on what actions occur in previous

episodes.

- Static/Dynamic: the environment is static if it does not change while the agent is deliberating.

- Discrete/Continuous: the environment is discrete if agents have a limited number of perceptions and

67



3.2 Multi-Agent Models

actions.

- With/Without rational opponents

3.2.3 Interaction

Communications in MAS are the foundation of agents interactions and organization. We can distin-

guish two communication modes, the indirect communication which is a signal communication through

the environment and the direct communication which consists in messages exchanges between agents.

In the following we will only focus on the last issue: communication.

The inter-agent communication can be modeled by two approaches. In the first one the interaction

is emergent, a communication plan is built according to the agent knowledge and goals. In the second

approach, the interaction respects a set of messages specified in advance called interaction protocol.

In this work we will only consider interaction protocols.

The origins of multi-agent communicative languages come from the speech acts theory introduced

by Austin in [99]. He introduced three types of speech acts, the locutory act (the act of saying some-

thing), the illocutory act (realized action when saying something, e.g. request) and the perlocutory act

(the obtained effect, e.g. to convince). These works are the origins of the multi-agent communication

languages we introduce hereafter.

Communication languages allow to facilitate the exchange and interpretation of messages as well

as the agents interoperability. Finin in [100] specified a set of properties the communication languages

should comply to. They should have a declarative form, a simple and readable syntax, distinguish

between communication language (describing the speech acts) and content language (expressing the

contained information), have a formalized language semantic and have an efficient implementation.

The first language introduced is KQML (Knowledge Query and Manipulation Language) [101]

which was initially developed to exchange knowledge and information between knowledge-based sys-

tems. It was then used to describe the messages exchanged between agents.

The second language, FIPA-ACL (FIPA Agent Communication Language) [102], was proposed

in the context of a standardization effort of the FIPA (Foundation of Intelligent Physical Agents).

FIPA-ACL is an extension of KQML. FIPA-ACL is based on twenty one speech acts expressed by per-

formatives grouped by functionalities. A message can contain one part or all the elements presented

in table 3.2. Mandatory elements to transmit a message vary according to the situation. If one agent

does not recognize or can not treat one or several elements, he can reply with a Not-understood message.

68



3.2 Multi-Agent Models

Parameter Category of Parameters

performative Type of the communicative act

sender Sender of the message

receiver Receiver of the message

reply-to Participant in the communication act

content Content of message

language Language in which the content is expressed

encoding Description of the message encoding mode

ontology Name of the ontology used to give a sense to the content terms

protocol Name of the interaction protocol

conversation-id Identifier of the conversation

reply-with Identifier of the message, for a future reference

in-reply-to Reference of the message to which the agent is answering

reply-by Delay to answer the message

Table 3.2: Elements of a FIPA-ACL message

Communication languages are utilized to specify interaction protocols. Those interaction protocols

are used by agents to govern their interactions. An interaction protocol is built on four main notions.

Firstly, an interaction protocol is a pattern of interaction, independently to the application context.

Secondly, each interaction protocol has a goal. Thirdly, an interaction protocol involves two or more

agents, each of them playing a role which allow to identify it. Fourthly, an interaction protocol defines

the rules which govern an interaction. These rules define the sequence of messages and the actions

the protocol refers to.

Several interaction protocols’ specification languages have been developed. Among them we can

cite transition nets (Finite State Machines [103], Petri Nets [104], logic based specifications [105],

AUML (Agent UML) [106]. The latter is an extension of UML (Unified Modeling Language) sequence

diagrams and is used by the FIPA to specify its specific interaction protocols (e.g. fipa-request,

fipa-contract-net, etc.).

3.2.4 Organization

The definition of the organization depends on the type of MAS. However we can generally say that the

organization can be viewed as the topology of a group which allow to specialize the agents according

to their skills.

The organization in a MAS is composed of an organizational structure (OS) which describes the

organization in terms of roles, tasks, responsibilities, and an organizational entity (OE) which instan-

tiates this structure. The organizational entity represents the affectation of the agents to the roles

described in the OS.

69



3.3 Organizations in Multi-Agent Systems

An organization can be:

- Explicit (see 3.3.2): roles are defined a priori. The designer knows the organizational structure.

- Emergent (see 3.4.1): roles are observed a posteriori. No organizational structure is known by the

designer.

- Static: the structure or the organizational entities are fixed a priori and can not evolve during the

simulation.

- Dynamic: the structure or the organizational entities can evolve during the simulation.

A more detailed description of organizations in MAS is provided in the next section (3.3).

3.3 Organizations in Multi-Agent Systems

3.3.1 Definition

As for the agent concept, there are several definitions of what an organization exactly means. Indeed,

the word ”organization” is a complex word that has several meanings. In [107], Gasser proposed the

definition of organization to which we subscribe: An organization provides a framework for activ-

ity and interaction through the definition of roles, behavioral expectations and authority relationships

(e.g. control) . Horling in [108] uses a similar notion by defining the organizational structure of a

multi-agent system as the rules which define the roles agents play and the manners in which they in-

teract with other agents in the system. For Dignum in [109] the organization of a Multi-Agent System

(MAS) can be seen as a set of constraints that a group of agents adopts in order to easily achieve

their social purposes. These definitions are rather general and do not provide any clue on how to

design organizations. In [110] Jennings and Wooldridge propose a more practical definition: We view

an organization as a collection of roles, that stand in certain relationships to one another, and that

take part in systematic institutionalized patterns of interactions with other roles. However, in [23]

Ferber pointed out such a definition lacks an important feature of organization, i.e., partitioning, a

tool to partition the system. According to him, organizations are structured as aggregates of several

partitions which may overlap and each partition may itself be decomposed into sub-partitions.

In our opinion it is worth considering a general definition since there is still a lot of interpretations

of what an organization is and it would be premature to give a restrictive definition. Consequently we

will keep as reference an extended definition of the definition given in [111] where an organization is

a set of constraints (structures, norms and patterns) found in a social context that shape the actions

and interactions of agents to achieve a social goal.

There exists two possible ways of obtaining an organization in a MAS, either with a bottom-up

approach or with a top-down approach. Contrary to the top-down approach, the bottom-up one does

not manipulate any organizational model defined a priori but it utilizes some interaction capabilities to

dynamically create and adapt the MAS organizations. The following section provides details on such

70



3.3 Organizations in Multi-Agent Systems

Figure 3.1: Organization Models Chronology

top-down organizational models while the intrinsically dynamic bottom-up approach will be discussed

in section 3.4.1.

3.3.2 Organizational Models

An organizational model allows to represent the social organization within a multi-agent system.

Multiple organizational models have been proposed, chronologically we can cite TAEMS (1995) [112],

TEAMS (1998) [113], MOISE (1999) [114], AGR (1999) [23], STEAM (1999) [115], AUML (2000)

[116], ISLANDER (2002) [117], Moise+ [118], MAS-ML (2004) [119], ODML (2004) [120], AGRE

(2004) [121], Moise-Inst (2005) [24], OMNI (2005) [122] and finally AGREEN (2005) [123].

An interesting survey was proposed on some of these organizational models by Coutinho et al. in

[111], however in the coming survey we will not describe all of these model but only AGR, Moise+,

OMNI and ISLANDER are discussed in detail.

3.3.2.1 AGR

The AGR (Agent, Group, Role) organizational model [23] is an evolution of the AALAADIN model

[124]. In AGR, agents play roles in different groups. An agent is an active, communicating entity

playing (one or multiple) roles within (one or several) groups. No constraints are placed upon the

architecture of an agent or about its mental capabilities (i.e. it can be reactive like an ant or as clever

as a human). A group is a set of agents sharing some common characteristic. A group is used as a

context for a pattern of activities, and is used for partitioning organizations. Agents may communicate

if and only if they belong to the same group. A role is the abstract representation of a functional

position of an agent in a group. An agent must play a role in a group, but an agent may play several

roles. Roles are local to groups, and a role must be requested by an agent. A role may be played by

several agents.

The main characteristic of the AGR model is its minimalist structure-based view of organizations.

In an AGR model an organization is specified as a role-group structure imposed on the agents. AGR

also says that agents can have their joint behavior orchestrated by interaction protocols, but the nature

71

Chapter2/Chapter2Figs/Graphic2.eps


3.3 Organizations in Multi-Agent Systems

Figure 3.2: AGR Meta-Model

and the primitives to describe such protocols are left open. Some recent works provided extensions

to AGR: AGRE [121] takes into account the environment in the model and AGREEN [123] tries to

integrate both environment and norms within the multi-agent organizations. To conclude, AGR does

not provide any definition of the functionality of the organizational structure and consequently the

view on the organization is only partial. Additionally AGR does not allow inheritance or hierarchy

between roles. The organization description is abstract, i.e. there is no description language which

can be used by the agents, and is therefore not accessible to the agents once instantiated.

Figure 3.3: AGR: (a) Concrete Organization (Cheeseboard diagram), (b) Organizational Structure

3.3.2.2 MOISE+

MOISE+ (Model of Organization for multI-agent SystEms) [125] [126] is an organizational model

which defines constraints on agents using three specifications: the structural, the functional and the

deontic specifications. The Structural Specification (SS) is built on the concepts of roles, links between

roles, and groups. It is graphically represented as shown in Figure 3.4(a). Roles can be hierarchically

72

Chapter2/Chapter2Figs/AGR.png
Chapter2/Chapter2Figs/AGR2.png


3.3 Organizations in Multi-Agent Systems

organized and can be linked between each others using different links. The Functional Specification

(FS) is built on the concepts of social scheme, plan, goal and mission. As illustrated in Figure 3.4(b),

a social scheme is composed of goals, plans and missions and represents the function of one or several

agents within the organization. Finally, the Deontic Specification (DS) connects the two previous

specifications (one role with one mission) using some deontic operators (Obligation, Permission or

Interdiction). The specification of these three dimensions forms an Organizational Specification (OS)

while the instantiation of these three dimensions using agents playing roles and thus constrained by

the organization represent an Organizational Entity (OE). Gateau in [24] introduced an extension to

Moise+ called Moise-Inst. It keeps the structural and functional specifications unchanged, but instead

of the deontic specification, Moise-Inst provides the contextual and normative specifications (CS and

NS).

Figure 3.4: Moise+: (a) Structural Specification (SS), (b) Functional Specification (FS), (c) Deontic

Specification (DS)

If we compare MOISE+ with AGR, we can see that AGR only corresponds to the structural

dimension of MOISE+. The structural dimension of MOISE+ also extends the concepts found in

AGR by providing abstract roles, inheritance and composition between roles, and communication

and authority links. Up to now it is one of the most complete structural specification. Contrary

to AGR, Moise+ does not directly specify the interactions between agents since no protocol can be

defined but only constraints on communications through the use of links. Finally, using three different

specifications allow a high flexibility to the model.

3.3.2.3 OMNI

OMNI (Organizational Model for Normative Institutions) [122] [127] [128] is an integrated framework

for norms, structure, interaction and ontologies for modeling organizations in MAS. Its is a unification

of two other models: the OperA [129] which brings the organizational dimension and the HarmonIA

73

Chapter2/Chapter2Figs/Moise.png


3.3 Organizations in Multi-Agent Systems

framework [130] which brings a normative dimension.

As illustrated in Figure 3.5, the OMNI model can be represented as a matrix with on the one

hand a division into three dimensions (organizational, ontological, normative) and on the other hand

a division into levels (abstract, concrete, implementation).

Figure 3.5: OMNI: (a) Levels and Dimensions, (b) Concrete Level Details

The concrete organizational model is composed of a role structure and an interaction structure

which will be implemented in two models. The social model specifies the roles played by the agents

and the interaction model describes the interactions between the agents. The role structure is a de-

pendence tree of roles and each role is associated to one objective (i.e. the functional specification

is integrated in the structural specification). The interaction structure allows to define scenes linked

between each other with transitions. Finally norms are used to specify roles or scene’s scripts. They

are linked to the elements of the organizational dimension.

However, no system function, plan or execution scheme is defined with OMNI. Only some objectives

and sub-objectives can be used as functional structure. These objectives can be found in the role and

interaction structures and are consequently dependant from the specification of the other dimensions.

3.3.2.4 ISLANDER

ISLANDER is an IDL (Institution Definition Language), a declarative language for specifying elec-

tronic institutions [117]. This language is based on XML and is a syntax defining Electronic Institu-

tions represented as a dialogic system allowing messages exchange. These interactions are structured

through groups of agents called scenes which follow explicitly defined protocols. In ISLANDER, elec-

tronic institutions are composed of four basic elements: (1) a dialogic framework (DF), (2) scenes, (3)

performative structure (PS), and (4) norms (see Figure 3.6)

.

74

Chapter2/Chapter2Figs/OMNI.png


3.3 Organizations in Multi-Agent Systems

The dialogic framework contains the elements for the construction of illocutions that agents can

exchange. The goal is to allow agents sharing the same dialogic framework to exchange some knowl-

edge. It is composed of one ontology, a set of definitions of types and functions, illocutions and roles.

Each role defines a pattern of behavior within the institution and any agent within an institution is

required to adopt some of them. It is possible to specify relations between roles using hierarchical

links (i.e. inheritance) and static separation of duties (ssd) links (specifying that one agent can play

both roles). A scene is a collection of agents playing different roles in interaction with each other

in order to realize a given activity. Every scene follow a well-defined communication protocol. The

communication protocol of a scene is stated in terms of possible dialogic interaction between roles

instead of agents. The communication protocol dictates for each agent role within a scene what can

be said, by whom, to whom, and when.

Figure 3.6: ISLANDER: (a) Performative Structure (PS), (b) Scene, (c) Roles

The performative structure defines a set of scenes linked by transitions. A scene is a group of

agents which follow some specific communication protocol. Transitions between scenes determine how

agents can go from one scene to another according to the role they play given some constraints (e.g.

a conversation can start in the new scene).

Norms allow to capture the consequences of agents’ actions using obligations, commitments and

rights.

Compared to Moise+, the structural specification is minimal, indeed it is only possible to define

roles, sub-roles and compatibility links between these roles. Actually it is somehow similar to OMNI

with this role dependence tree. Norms are also expressed in a simpler way compared to Moise+ (i.e.

they can only be obligations) but Moise+ does not provide any interaction definition. Norms are only

applied on interactions while and scene transitions while they are applied on missions in Moise+ and

75

Chapter2/Chapter2Figs/ISLANDER.png


3.4 Adaptation of Multi-Agent Organizations

role interactions in OMNI.

3.3.3 Synthesis

The following table is an extension of the table proposed by Coutinho in [111].

Modeling Dimensions

Model Structural Dialogical Functional Normative

AGR ++ + - -

AGRE ++ + - -

AGREEN ++ + - +

MOISE+ +++ - ++ +

MOISE-Inst +++ - ++ ++

OMNI ++ +++ + +++

ISLANDER + +++ - ++

Table 3.3: Organizational models comparison. A model having more (+) in a given modeling dimension

means that the model offers more concepts and elements in the given dimension. A (-) means that

the model does not support modeling in the dimension. This table is only an approximation to give

the reader a feeling of the relative expression power of each organizational model

The different organizational models we studied in this section provide ways of describing static

organizations. However, as soon as the organization becomes dynamic (i.e. changing in time), such

models are unable to deal with adaptation requirements. That is why in the coming section we study

how reorganization issues can be tackled in a MAS.

3.4 Adaptation of Multi-Agent Organizations

By adaptation of Multi-Agent Organizations we mean the set of transformations to which the orga-

nization in an open multi-agent system can be submitted during the system’s functioning, due to the

mutual influence of: its functional constraints, the changes in its environment, the entrance and the

departure of agents in its structure, or the conceiver’s or the user’s intervention.

Having a statically defined organization as introduced in 3.3.2 is by default the simplest option but

it becomes intractable as soon as the system changes in time. Indeed, as Horling mentions in [108] if

elements of the multi-agent system are dynamic (environment, organizational goals, member agents)

the initial organization will become inefficient, having for instance deactivated, compromised existing

agents or not effectively used new agents.

Hübner et al. in [126] express the same problem by the tradeoff that has to be found between

collective constraints and agent autonomy. They additionally mention that in the case of a static or-

ganization, all the experience and information collected about the organization by the agents and that

76



3.4 Adaptation of Multi-Agent Organizations

could be used to adapt it is lost. In other words agents loose their autonomy regarding the organization.

For Mathieu [131] the basic problem lies in the acquaintance creation, i.e. how agents can optimally

communicate with each other in a dynamic system. Like Horling, Mathieu also cites as a problem

the skills distribution over the agents that should prevent (if possible) situations like one single agent

becoming an overloaded resource. The final drawback he refers to is the incapacity to share knowledge

that would save communications. Indeed if one agent constantly refers to another one it might save

communications and time if the customer acquires the concerned service.

The organization is thus a set of assumptions that has to be able to change so as to keep a viable

system.

As we already mentioned in 3.2.4, organizations in MAS can be obtained using a top-down or a

bottom-up approach. The bottom-up one does not manipulate any organizational model defined a

priori but it utilizes some interaction capabilities to dynamically create and adapt the MAS organiza-

tions. In the literature, this is usually refereed as self-organizing MAS or Adaptive MAS (AAMAS)

constituted of Adaptive Agents (represented in Figure 3.7). This first approach will be studied in

section 3.4.1. AMAS can also be described as using reorganization like in [132] since the organiza-

tion is clearly modified during the MAS functioning. However, since there is no universally accepted

definition of MAS reorganization, in this dissertation we chose to restrict the scope of the term reor-

ganization to top-down approaches which are those that are retained in our proposal. We prefer to

retain the term of self-organization to denote the bottom up approaches where, de facto, an adaptation

and modification of the emergent organization is installed. Concerning the top-down approach, for

which we already described static organizational models in 3.3.2 and outlined the intrinsic limitations,

adaptation is not at the level of the agents but at the level of the organization (see Figure 3.7). This

reorganization process is thus another way of tackling the possible perturbations of the environment

and to realize adaptive systems and will be discussed in sections 3.4.2 and 3.4.3.

Environment
Institutions

Adaptive Organizations

Organizations
Adaptive Agents

Agents
Tasks

Figure 3.7: Individual to Social View

77

Chapter2/Chapter2Figs/Indiv_to_social_view.eps


3.4 Adaptation of Multi-Agent Organizations

3.4.1 Self-Organization

As mentioned in 3.2.4, organizations can be either explicit or emergent. In MAS with emergent orga-

nizations, called self-organizing MAS, roles are observed a posteriori and no organizational structure

is known by the designer.

According to Di Marzo-Serugendo et al. [133], self-organization in artificial systems is the mecha-

nism or the process enabling a system to change its organization without explicit external command

during its execution time.

Self-organizing MAS were designed to overcome the disadvantages of explicit organizations when

their requirements change due to an unsteady environment. Indeed, MAS which are situated in open

and dynamic environments might face severe problems with rigid roles and static organizational struc-

tures. For instance, MAS need to manage problems like the variation of the number of agents, changes

of task profiles and drop-outs of agents, etc. [134]. Self-organizing MAS must therefore be self-building

(able to determine the most appropriate organizational structure for the system by themselves at run-

time) and adaptive (able to change this structure as their environment changes).

In order to illustrate this concept of self-organizing MAS, we use the following example taken from

[135]. Figure 3.8 represents the interacting agents Pi which constitute the system S.

fp2

fp1

fp3

fp4

fp6

fp5

fp7

fs

Figure 3.8: Self-Organizational MAS

“We consider that each part Pi of a multi-agent system S achieves a partial function fpi of the

global function fs. fs is the result of the combination of the partial functions fpi, noted by the oper-

ator “o”. The combination being determined by the current organization of the parts, we can deduce

fs=fp1 o fp2 o ... o fp3. As generally fp1 o fp2 6= fp2 o fp1, you can change the combination of

the partial functions and therefore you modify the global function fs”.

78

Chapter2/Chapter2Figs/Self-Organization.eps


3.4 Adaptation of Multi-Agent Organizations

Self-organizing MAS have been applied to a wide range of domains. They can take their inspiration

from bio-inspired mechanisms, like ant colonies, which were applied for the traveling salesman problem

[136] or mobile ad-hoc networks [137], from social and economics approaches like trust-based systems

[138] or reputation systems [139] and from fully artificial mechanisms like Self-Organized Public-Key

Management for MANETs [140] or self-configuring middleware [141].

One field of application which was of interest in the context of our research was the application

to optimization problems. Indeed, complex business optimization problems have been tackled, like in

the ATOCA project in which an aircraft design model had to be optimized [142].

This adaptive MAS development methodology using a bottom-up approach allows to deal with

distributed optimization. It can adapt to the problem’s dynamics and provide solutions at anytime,

which are two key issues we want to face in this research. It additionally was applied to business

problems. However, since there is no control of the system due to the emergence phenomenon, it is

not possible to provide convergence or stability proofs. Although, in the context of our research it is

necessary to provide a control on the agents and on their organization since we want to optimize some

predefined function(s). We therefore did not further investigated such self-organizing MAS.

3.4.2 Reorganization Dimensions

The organization comes with two aspects, a static one, associated with the organizational structure

and a dynamic one, linked to the process that leads to the organization. Attributing a structure to the

MAS at the beginning must not imply keeping it at all costs, since an optimal organization is unlikely

to be [143]. The MAS has then to be able to adapt himself to the modifications in his environment.

Consequently agents have to be able to evaluate the organizational structure in which they live, ac-

cording to their local goals and their perception of the system and its environment. Moreover, they

need special capabilities for modifying this structure. This way, the organization is no more a limit to

the autonomy of the agents, neither to the adaptation of the society to the environments’ evolutions

and contribute to the improvement of the collective performance.

As Hübner says in [125], four dimensions have to be taken into account when dealing with reorgani-

zation, What, When, Who and How. Dignum in [144] also proposed a classification of reorganization

issues in agents societies. The following draws a parallel between those two classifications.

3.4.2.1 What

According to Hübner, it depends on the organizational model used. The changes can be at the struc-

tural level, the functional level, the dialogic level, etc.

79



3.4 Adaptation of Multi-Agent Organizations

Dignum is more restrictive and cites two main situations, a behavioral change (a new agent enters

the MAS, an agent leaves the MAS, interaction pattern instantiation) and a structural change (orga-

nization self-design and structural adaptation).

3.4.2.2 When

For Hübner, the decision when to start the process can be either static or dynamic. In the first case

the process is started according to a predefined criterion fixed within the organizational specification.

In the second case, the reorganization process is a consequence of the system functioning, which means

that if agents do not meet one or several criteria (goal, performance etc.) the organization is changed.

Dignum defines the ”when” to reorganize as linked to the utility of the organization (interaction

success, role success and structure success) and to the utility of the agent (different for each agent,

depends on its goals, resource production and consumption).

3.4.2.3 Who

Hübner defines the ”who” takes the initiative as endogenous (one or several agents in the system or

auto-organization) or exogenous (MAS user). In the same way, Guessoum in [145] mentions that this

observation can be done, either from an external observer (the user of the system himself) or from

the system itself. However, she points out that due to their complexity, it appears to be impossible

to detect emergent phenomenons using an external observer when dealing with complex systems and

thus the system itself has to do it.

Dignum’s classification of the ”Who” is based on the C2 model (Command and Control), i.e. the

reorganization decision can be collaborative (consensus) or directive (master-driven). Each of them

can be centralized, distributed or even external (outside the organization, e.g. the designer).

3.4.2.4 How

According to Hübner, the reorganization process can be either controlled or emergent. When con-

trolled, rules of reorganization are known in advance. When emergent, an agent will take the decision

alone which can lead to the failure of the process (and maybe of the whole system) if it goes against

others agents needs.

For Dignum, reorganization is done by Communications, which is in fact the third ”C”of the model.

They guide decisions on plan and/or social change by sharing information about the environment, the

state of the organization, the state of achievement of objectives,etc. Communications then refers to

80



3.4 Adaptation of Multi-Agent Organizations

the meta-observation of the organizational behavior and not to operational communication.

Table 3.4 sums up this parallel between Hübner’s and Dignum’s reorganization dimensions classi-

fication:

Hübner Dignum

What depends on the model Behavioral (agent entrance) and

structural changes

When static (predefined) or dynamic

(consequence of the system

functioning)

Linked to the utility of the orga-

nization (structure success) and

of the agent (depends on goals,

resources)

Who endogenous (one or several

agents) or exogenous (MAS

user)

Collaborative (consensus) or di-

rective (master driven). Cen-

tralized, distributed or external

How controlled (predefined rules) or

emergent (single agent’s deci-

sion)

Communications: meta-

observation of organizational

behavior

Table 3.4: Hübner’s and Dignum’s reorganization dimensions classification

3.4.3 Reorganization Approaches

This section provides a survey of existing reorganization approaches in MAS.

3.4.3.1 MOISE+

In MOISE+ (Model of Organization for multI-agent SystEms), Hübner et al. consider the organiza-

tional structure and functioning (see Figure 3.9). They concentrate on the controlled changing process

which is composed by four phases: monitoring, design, selection, and implementation. In their view

reorganization is one cooperative process among others in an MAS and is performed in an endoge-

nous and decentralized way. The reorganization process is performed by a set of agents that play

roles inside a group called reorganization group. This group contains a hierarchy of roles that can for

example manage, monitor or maintain history of the reorganization process. To summarize, the main

contribution is a reorganization model where the agents have autonomy to change their organizations.

3.4.3.2 TAEMS

Horling in [108] uses centralized reorganization process through the TAEMS modeling language and

a diagnosis expert subsystem in charge of detecting deficiencies in the organizational model and as-

sisting in the creation of a solution. Its monitoring phase identifies those fails when the system does

not behave as expected by its functional model (see Figure 3.10).

81



3.4 Adaptation of Multi-Agent Organizations

Figure 3.9: Moise+ Reorganization group and Reorganization Scheme

Figure 3.10: TAEMS: high-Level architecture of the diagnostic subsystem and causal model for diag-

nosing action - and coordination - based faults

3.4.3.3 TEAM

Stone in [146] has a more flexible monitoring phase (see Figure 3.11). His solution is targeted to PTS

domains (periodic team synchronization), in which agents act autonomously with limited communi-

cation, but they can periodically synchronize in a full-communication setting. Any agent, a soccer

player, can identify in the environment the opportunity for reorganization. The reorganization is

composed of a change in the team formation and in the current plan (functional level).

3.4.3.4 Chevrier’s reorganization model

Chevrier in [147] proposes a model for managing the organization in a MAS restricting it to the notion

of interaction management (see Figure 3.12). Interactions are evaluated according to their quality,

delay, distance, etc. Based on this evaluation, interactions are qualified in order to choose alternative

interactions. The evolution mechanism of the interactions is based on the W-learning algorithm with

agents continuously learning so as to react to any perturbation in the interactions during the system’s

82

Chapter2/Chapter2Figs/Moise_Reorg.png
Chapter2/Chapter2Figs/TAEMS_Reorg.png


3.4 Adaptation of Multi-Agent Organizations

Figure 3.11: TEAM member architecture for PTS domains and internals and externals behaviors

organized in an acyclic graph

activity.

Figure 3.12: Interaction graph describing an agent society and interaction knowledge base

3.4.3.5 MAGIQUE

Mathieu in [131] proposes in his multi-agent platform MAGIQUE three principles that can be applied

to adapt organization: ”have a good address book”, ”share knowledge” and ”recruit new able collabo-

rators” (see Figure 3.13). The number of messages in the multi-agent system is then reduced and the

delay before a request is satisfied is improved using the creation of new specific acquaintance relations

to remove the middle-agents, the exchange of skills between agents to increase autonomy and the cre-

ation of new agents to reduce overloading. Applying those principles implies the modification of the

dependance network. Decisions are taken autonomously by the agents and are challenged sometimes

to ensure that the chosen acquaintance is still the best choice.

83

Chapter2/Chapter2Figs/TEAM_Reorg.png
Chapter2/Chapter2Figs/Chevrier.png


3.4 Adaptation of Multi-Agent Organizations

Figure 3.13: Dynamic organization of acquaintances in a multi-agent system.

3.4.3.6 DeLoach’s transitional organization model

DeLoach in [148] proposes an organizational model for designing adaptive multi-agent systems. This

model possesses three main components: a structural model that contains a set of roles, goals, ca-

pabilities and laws, a state model that defines an instance of a team’s organization (including a set

of agents, the relations between them and the structural model components) and finally a transi-

tion function that defines how to switch from one organizational state to another (see Figure 3.14).

The concept of transition function is described in detail by Matson in [149], where he also proposes

techniques borrowed from model checking as a way to overcome the problem of state explosion when

dealing with possible new organizations.

Figure 3.14: Combined structural and state models using standard UML notation and organization

transition machine

84

Chapter2/Chapter2Figs/Magique.png
Chapter2/Chapter2Figs/DeLoach.png


3.5 Conclusion

3.4.3.7 Jonker’s organization dynamics formal model

Jonker in [150] introduces a formal modeling approach for organizational dynamics. She uses a formal

description language to express the existing and the desired behaviors. The AGR model is used so

as to represent the organizational aspects (see Figure 3.15). The structure of the deliberation model

is similar to Hübner’s with monitoring, goal determination and modification action determination

phases. When a change is detected in the organization behavior, a new behavior goal is defined and

the structure is modified in consequence. The model is intrinsically complex since there is no prede-

fined reorganization structure, it is fully problem dependent.

Figure 3.15: Organization before and after the change, description of the organizational change prop-

erties

3.4.3.8 Ongoing works

As current development we can cite again Horling [151] who, as previously said, is one author of ODML

and who mentions in his thesis some first investigations on how to manage organizations’ adaptation

using ODML. The first step is to monitor problems by observing the deviation of the system compared

to the ODML model itself and this will be used as an input for searching for a new configuration. The

latter process is no more related to ODML since Horling proposes to either use a set or predefined

organization to answer to particular changes or to use various search strategies according to the crit-

icality of the failure. This model is still uncomplete and additionally it is restricted to the case of the

knowledge of the full range of possible conditions/modifications in the system.

3.4.4 Synthesis

Table 3.5 describes all the reorganization models previously mentioned according to Hübner’s classi-

fication (What, When, Who, How).

3.5 Conclusion

One of our contributions lies in using an organizational model to represent coevolutionary genetic

algorithms. To this aim, we investigated how MAS can be modeled as organizations.

85

Chapter2/Chapter2Figs/Jonker.png


3.5 Conclusion

What When Who How

Hübner Depends on the plan of

changes written by the

designer agents. It can

be the whole OS, one

group of the SS, one

group of the FS or rela-

tions of the DS

Dynamic: monitor

agents are in charge of

checking the validity of

the different specifica-

tions. If not they refer

to the OrgManager

Endogenous: coopera-

tive process performed

by a set of agents play-

ing roles in a specific

”Reorganization Group”

The Selector Agent

chooses on plan of

change that will be

performed by the

OrgManager

Horling Changes the TAEMS or-

ganization that is repre-

sented as a goal decom-

position tree

Dynamic: the obser-

vation is done by the

symptoms level in the

diagnostic subsystem.

It both monitors and

builds learning models

that can be used as a

basis of comparison.

Endogenous: central-

ized process using an ex-

pert subsystem based on

a causal model

Controlled: an expert

subsystem detects the

deficiencies as the sys-

tem does not behave as

expected by the func-

tional model

Stone Team formation and

current plan(functional

level)

Dynamic: during team

synchronization the

team sets globally

accessible metrics as

formation changing

indicators.

Endogenous and decen-

tralized: within the

so called “locker-room

agreement” every agent

takes its reorganization

decision(s) during the

synchronization

Controlled: team

structure includes pre-

planning for frequent

situations (all defined

in the locker-room

agreement), roles and

formations dynamically

change based on prede-

fined rules (set in the

behaviors)

Chevrier Modification of interac-

tions

Dynamic: depends on

each agent interaction

evaluation

Endogenous and decen-

tralized: each agent lo-

cally decide to modify

its interactions

Agents continuously

evolve interactions us-

ing a mechanism based

on W-learning

Mathieu Based on MAGIQUE or-

ganizational model. It

is possible to change the

acquaintance organiza-

tion, the skill distribu-

tion and create a pool of

apprentices.

Dynamic: each agent

takes its own decision

according to some pre-

defined criteria (e.g.

threshold) or policy.

Endogenous and decen-

tralized: Each agent can

take the decision of cre-

ating a new communi-

cation link, to acquire

some skills or to create

a pool of apprentices so

as to reduce overload.

Controlled: predefined

reorganization plan (not

explained in detail).

DeLoach State reorganization

(no structure reorgani-

zation): modification

of roles played by the

agents in the team

organization.

Dynamic: definition of

reorganization triggers:

Reorganization for ef-

ficiency (accomplishing

its goal) and effective-

ness (information qual-

ity)

Endogenous and cen-

tralized: each organiza-

tion has a global view of

the capability function

of all its agents

Controlled: organiza-

tion transition function,

computed based on the

current state, goals and

organizational rules

Jonker Organizational Struc-

ture based on AGR

Dynamic: monitoring

agents check in a formal

and automated manner

the organizational be-

havior

Endogenous and dis-

tributed: the delibera-

tion model (monitoring,

goal determination

and modification ac-

tion determination)

is embedded in the

organization model

Controlled: after mon-

itoring the goal of the

organizational behavior

is defined and the re-

quired modifications a

determined

Table 3.5: Reorganization models according to Hübner’s classification

86



3.5 Conclusion

In section 3.2, we have seen that there exist several models manipulated within a MAS, i.e. Agent,

Environment, Interaction, Organization (AEIO).

As a way to model CGAs, in section 3.3 we first focused on organizations in MAS and on the

existing models. Different organizational models have been developed since the end of the nineties

and we provided a detailed overview of those we consider as most significant in 3.3.2.

According to our needs, a detailed description of the organization’s structure is crucial so as to

represent the algorithms topologies and the relations/dependencies between its components. During

the first phase of our research we only modeled some static CGAs, therefore, at this time we chose

the AGR model. It permitted to simply model the topologies of the algorithms.

However, another issue came during our research: the development of a new dynamic CGA. Con-

sequently, modeling static organizations reaches some limitations which we enlightened in 3.4. We

have seen that adaptation in MAS can be based on self-organization (see 3.4.1) or controlled through

reorganization (see 3.4.2). A controlled reorganization is necessary to ensure the respect of the CGAs

structure, interactions, that is why in 3.4.3 we focused on reorganization approaches which allow to

specify the internal dynamics of such systems and/or their interactions with the environment.

We finally chose Moise+ because of the following reasons:

- a richer structural specification compared to AGR which was too restrictive (e.g. no inheritance)

- a functional specification

- an available reorganization extension to the model

The next chapter presents DAFO (Distributed Agent Framework for Optimization), its differ-

ent models and its implementation. However as it will be discussed in the next chapter, Moise+

still presents some limitations when modeling DAFO’s organization. We will therefore introduce

MAS4EVO (Multi-Agent Systems for EVolutionary Optimization), a new organizational and reorga-

nizational model based on Moise+ and dedicated to evolutionary optimization.

87



Part II

DAFO

Distributed Agent Framework for

Optimization

88



Chapter 4

Multi-Agent Model for

Coevolutionary Optimization

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Interaction and Environment Models . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Interaction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Environment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Global View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Problem solving Agent Model . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.3 Fabric Agent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.4 Observation Agent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Organization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.2 Structural Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.3 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.4 Dialogic Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.5 Normative Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 CGAs Organizational Model . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.1 CCGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.2 LCGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

89



4.1 Introduction

4.1 Introduction

In the coevolutionary algorithms literature, the term Agent is very redundant when referring to the

different players (subpopulations) of these metaheuristics. However, none of the available platforms

dedicated to evolutionary computation uses the agent paradigm instead of the object paradigm. Con-

sequently they cannot take benefit from the available agent methodologies and platforms which permit

a high level description and an easy development/deployment.

This has motivated the use of the agent paradigm for our DAFO framework dedicated to co-

evolutionary genetic algorithms. In order to model our framework as a multi-agent organization we

introduce MAS4EVO (Multi-Agent System for EVolutionary Optimization), a new multi-agent model

dedicated to evolutionary optimization. MAS4EVO and DAFO respectively provide a novel way of

modeling and implementing CEAs.

Figure 4.3 provides a general overview of MAS4EVO. In the following we will describe the model

structure using the decomposition introduced by the vowel approach AEIO (Agent, Environment,

Interaction, Organization) introduced by Demazeau in [86].

The coming chapter is structured as follows. Section 4.2 presents a brief overview on MAS4EVO,

section 4.3 introduces the Interaction and Environment models and section 6.2.1 provides a description

of the agent architecture used in MAS4EVO as well as details on the different agent types. Section

4.5 describes MAS4EVO’s organization model, its different specifications and section 4.6 demonstrates

how the CCGA and LCGA are modeled using MAS4EVO. Finally section 4.7 provides our conclusions

on the model.

4.2 Model Overview

- As can be seen, MAS4EVO involves different agents which can be of three different types, problem

solving agents in charge of running the optimization process (i.e. the GA, CGAs), fabric agents which

instantiate the system, and observation agents which observe the problem solving agents and provide

output interfaces to the end user(s).

- The environment represents the optimization problem which is provided by the user. The

agents are thus capable of perceiving and modifying their environment so as to evaluate their solutions.

- The interactions between the agents are achieved with protocols, either algorithm specific with

the exchange of solutions (best, random, etc.) or organization specific with the instantiation and/or

modification of the organization (i.e. organizational parameters like topology).

- The organization allows to define coevolutionary strategies in terms of their structure, func-

tionalities, communication protocols and norms. It will be detailed in section 4.5.

90



4.3 Interaction and Environment Models

Problem Solving
Agents

Observation AgentFabric Agent

instantiates solutions

Parameters

1160

1165

1170

1175

1180

1185

0 50 100 150 200 250 300

C
o
s
t 
(i
n
 $

)

Fitness Functions Evaluations (*100)

3 Items, 360 Transactions (zoom)

SGA
LCGA
CCGA

LCGA DYN = 2
LCGA DYN = 5

LCGA DYN = 10
LCGA DYN = 20
LCGA DYN = 50

Designer

Environment

perceive

provides

Figure 4.1: MAS4EVO overview

4.3 Interaction and Environment Models

4.3.1 Interaction Model

All the agents in the system must exchange information, concerning either the optimization process or

the system’s organization. This communication is achieved using interaction protocols with a FIPA-

ACL compliant agent communication language. Those communications are composed of propositions

between agents, we therefore restricted the set of usable FIPA performatives to Inform and Agree. For

the same reason, we restricted the content expression to FIPA-SL propositions since there is no need

for action or identifying reference expression as defined in the FIPA specification 1.

The following introduces the language shared by all the agents of MAS4EVO and the definition of

its terms using the EBNF2 language:

- EvoParameters: parameters set by the user concerning the interaction graph (number of agents,

topology of communication) and the algorithm (algorithm type, fitness calculator class, number of

experiments, termination condition, termination condition value, number of chromosomes, number of

genes, size of genes, crossover type, crossover rate, mutation rate, elitism).

- BestIndividual: the best individual of a genetic algorithm’s (sub)population.

1FIPA-SL specification: http://www.fipa.org/specs/fipa00008/SC00008I.pdf
2Extended Backus-Naur Normal Form

91

Chapter3/Chapter3Figs/EPS/DAFO_Overview.eps


4.3 Interaction and Environment Models

<evoparameters> ::= <interactiongraph> <geneticparameters> <localsearchparameters>?

<interactiongraph> ::= <topology> <numberofagents>

<topology> ::= <string>

<numberofagents> ::= <integer>

<geneticparameters> ::= <algorithm> <fitnessclass> <experiments> <terminationcondition>

<terminationconditionvalue> <numchroms> <numgenes>

<sizegenes> <crossover> <crossrate> <mutrate> <elitenumber>

<localsearch>?

<algorithm> ::= <string>

<fitnessclass> ::= <string>

<experiments> ::= <integer>

<terminationcondition> ::= <string>

<terminationconditionvalue> ::= <integer>

<numchroms> ::= <integer>

<numgenes> ::= <integer>

<sizegenes> ::= <integer>

<crossRate> ::= <double>

<mutrate> ::= <double>

<elitenumber> ::= <integer>

<localsearchparameters> ::= <lsalgorithm> <lsexchangedinformation> <lspopulationrate>?

<lsterminationcondition>

<lsalgorithm> ::= <string>

<lsexchangedinformation> ::= <string>

<lspopulationrate> ::= <double>

<lsterminationCondition> ::= <string>

<bestIndividual> ::= <individual>

- BestAndRandomIndividuals: the best and one random individual of a genetic algorithm’s

(sub)population.

<bestAndRandomIndividuals> ::= <bestIndividual> <randomIndividual>

<bestIndividual> ::= <individual>

<randomIndividual> ::= <individual>

- RandomIndividuals: shuffled list of all the individuals of a genetic algorithm’s (sub)population.

<randomIndividuals> ::= <randomIndividual>+

<randomIndividual> ::= <individual>

- PopulationRate: percentage of random individuals of a genetic algorithm’s (sub)population.

<populationRate> ::= <individual>+

The four terms previously defined, BestIndividual, BestAndRandomIndividuals, RandomIndividuals

and PopulationRate, all refer to the term individual which consists in a binary chromosome and its

assigned fitness value.

<individual> ::= <chromosome> <fitness>

<chromosome> ::= <gene>+

<gene> ::= <allele>+

<allele> ::= “0” | “1”

<fitness> ::= <double>

92



4.4 Agent

- Fitnesses: a list of fitness values.

<fitnesses> ::= <fitness>+

<fitness> ::= <real>

- Lifecycle: tells a problem solving agent to start or stop its computation, or informs that a problem

solving agent is ready to compute.

<lifcycle> ::= “‘Start” | “Stop” | “Ready”

4.3.2 Environment Model

In this multi-agent system dedicated to function optimization, the environment represents the prob-

lem to be optimized. This problem can be either static or dynamic and consequently influences the

behavior of the system. According to Russel and Norvig [152], the properties of such an environment

are:
- Accessible: agents have a perception of the environment. This way agents have the possibility to

evaluate their solutions on the optimization problem. The perception of the environment can be either

local or global, depending on the agent type and on the algorithm used. However agents do not act

on the environment and do not interact through it.

- Non Deterministic: the next state of the environment is not completely determined by the current

state of the environment and the actions selected by the agents.

- Episodic: the agents experience is divided into “episodes”. Each episode consists of the agent perceiv-

ing and then acting. The quality of its action depends just on the episode itself, because subsequent

episodes do not depend on what actions occur in previous episodes.

- Static or Dynamic: depends on the nature of the optimization problem. If the optimization problem

is static then the environment is also static. If the optimization problem is dynamic, the environment

is also dynamic since they is no synchronization between the agent and the environment (i.e. the

environment evolves during the agents’ computation).

- Continuous: The perception of the environment can be asked at anytime by the agent (i.e. push-pull

mechanism).

There is no dedicated language to describe this environment (i.e. the optimization problem) which

is provided by the framework user. The agents can interact with it through one primitive which is:

- Perceive: agents can observe the environment so as to evaluate the fitness of their solutions.

93



4.4 Agent

Reasoning

Goals Skills

Perceive

Comm.

Protocols

State: Functions: Knowledge Base:

O.S.

Agent

Key

O.E.

Env. State
Goal State

Figure 4.2: Agent structure

4.4 Agent

4.4.1 Global View

DAFO’s agents which manipulate goals are therefore built on a cognitive agent model (see Fig. 4.2).

An agent has a set of goals it has to achieve, a set of skills which allow him to achieve one or several

goals. The goals an agent can use are constrained by the Organizational Entity (O.E.) in which the

agent is situated. The O.E. is an instantiation of one of the available Organizational Specifications

(O.S.), each O.S. expressing strategies corresponding to a different CGA. An agent additionally knows

which goals are satisfied and which are not satisfied through its goals states.

The perceive function which permits agents to observe the environment and thus to have information

concerning the environment state.

An agent possesses communication capabilities with the other agents using a set of interaction proto-

cols. As for their goals, the agents’ communications are restricted according to the O.E.

The agent architecture comprises an inference engine, referred as reasoning function in Fig. 4.2, which

selects the goals and skills to execute so as to satisfy the agent’s goals, taking into account the O.E.

This architecture is applied on the three types of agents of the system: the Problem Solving Agents in

charge of the resolution, the Fabric Agents in charge of the system management and the Observation

94

Chapter3/Chapter3Figs/EPS/agent_structure_2.eps


4.4 Agent

Agents in charge of the observation of the Problem Solving Agents and of the interaction with the user.

In the DAFO framework, we can classify the agents in three categories:

• The Fabric Agents (FA): those agents have a global view of the organization and are respon-

sible for the management of the lifecycle of the problem solving agents.

• The Problem Solving Agents (PSA): they are in charge of optimizing a fitness function

using a metaheuristic (e.g. a genetic algorithm and/or a local search algorithm). PSA have a

partial view of the organization in which they are located.

• The Observation Agents (OA): they have a global view of the problem solving agents and

provide interfaces with the user in order to observe the executed computation.

In the following sections we provide details on the three aforementioned agent categories in terms

of their functionality, skills and different goals which can be:

- Functional goals: permit to execute specific functions

- Organizational goals: allow agents to modify the organization entity (OE)

- Interactional goals: involve the communication between agents

- Supervisorial goals: dedicated to the monitoring of the organization’s state according to some criteria

(e.g. in order to trigger a reorganization process).

The following description will provide an exhaustive list of the agents’ functionalities, skills and

goals, i.e. only a subset of these will be used depending on the instantiated CGA.

4.4.2 Problem solving Agent Model

The Problem Solving Agent uses one metaheuristic (a genetic algorithm or a local search algorithm)

to optimize a mono-objective function.

4.4.2.1 Goals

Functional Goals:

- gEvaluate(i*): evaluates one or several individual(s) i on a local or global mono-objective fitness

function.

- gReEvaluate(i*, f*): re-evaluates all the individuals i of a population according to the fitness

value f received from neighbor agent(s) concerning the same individuals.

- gRunGA( opc, pc, pm, elite): executes one generation of a generational GA. The crossover oper-

ator opc is applied with probability pc and mutation is applied with probability pm on the population

of solutions to obtain a new offspring population to be evaluated. It is possible to add some elitism

in order to keep one or several best individual(s) unchanged in the next generation.

- gRunLS(lsalg, i*, lstermination): executes several steps of one local search algorithms lsalg among

the five available ones: Steepest Ascent Hill Climbing (SAHC), Next Ascent Hill Climbing (NAHC),

95



4.4 Agent

Random Bit Climbing (RBC), Dynamic Hill Climbing (DHC) or Tabu Search (TS). It is applied on

one or several individuals i* and stops its search process once the termination condition lstermination

is met.

Organizational Goals:

- gCreateGroup(g): creates the group g.

- gCreateSubGroup(sg,g): creates the subgroup sg of the group g.

- gAdoptRole(r,g): corresponds to the adoption of a role r in the group g.

- gLeaveRole(r,g): corresponds to leaving the role r of the group g.

Interactional Goals:

Problem solving agents have the capability of using two interaction protocols (defined in 4.5.4):

- pInform(g, s, r, c): used by the PSA (sender s in the group g) to send one or several individuals

as content c to other PSA(s) and to send the best individual to the OA (receivers r in the same group

g).

- pNegociate(g, r, c): used by the PSAs, playing the role r in the group g, during the reorganization

process to negotiate their new groups submitted a content parameter c.

Supervisorial Goals:

- gMonitoring(c): monitors of the organization according to a criterion c in order to start the

reorganization process.

4.4.2.2 Skills

Problem solving agents possess skills in order to fulfill the goals aforementioned. The latter are:

- evaluate: to evaluate a solution on a given optimization problem.

- genGA: to run a generational genetic algorithm (genGA).

- LS: to run a local search algorithm (LS).

- sendToPSA: to send one or several solution(s) to other problem solving agents

- sendSolutionsToObserver: to send solutions to the observation agent.

- createComputingGroups: to create new computing groups and adopting roles in the latter.

- leaveComputingGroups: to leave their computing groups.

- findNewComputingGroups: to negotiate with other problem solving agents so as to find new

computing groups.

- joinComputingGroups: to join new computing groups.

- isReoganizationNeeded: to decide when to reorganize (in the case of a dynamic coevolutionary

genetic algorithm, dLCGA).

96



4.4 Agent

4.4.3 Fabric Agent Model

The fabric agent manages the initialization of the system by deploying the problem solving agents

within the organization which is described by the user. Moreover in some cases it is able to observe

the global computation time and to supervise the problem solving agents computation.

4.4.3.1 Goals

Organizational Goals:

-gInstantiate(a): instantiates the problem solving agents a according to the parameters set by the

user.

Interactional Goals:

- pInform(g, s, r, c): used by the FA (sender s in the group g) to send the parameters set by the

user as content c to all the other agents (PSA and OA) as receivers r in the same group g.

-pTime(g, s, r, c1, c2, c3, n): used by the FA (sender s in the group g) to send messages (with

content c1, c2 and c3) to all the other agents (PSA and OA) as receivers r in the same group g according

to some time interval n in order to ensure the respect of some computational time constraint.

4.4.3.2 Skills

The fabric agent possesses skills in order to fulfill the goals aforementioned. The latter are:

- parseEvoParameters: to parse the parameters set by the user.

- createPSAs: to create problem solving agents according to the user information.

- sendParametersToPSA: to send parameters to the problem solving agents.

- sendParametersToObservation: to send parameters to the observation agent.

- isComputationalTimeFinished: to observe the global computational time.

- sendStartToPSA: to send a start message to the problem solving agents in order to start a compu-

tation with a termination condition based on a number of generations of fitness functions evaluations.

- sendStopToPSA: to send a stop message to the problem solving agents in order to respect a com-

putational time termination condition.

4.4.4 Observation Agent Model

The observation agent monitors the problem solving agents, i.e. the results they provide and saves this

information in log files and optionally in graphics.

Functional Goals:

- gEvaluate(i*): evaluates the individuals i on a global mono-objective fitness function.

-gLog: saves the computed best fitness of all generations of a run of the algorithm in a file. It also

97



4.5 Organization Model

saves the average fitness per generation over all the runs in a separate file.

-gGraphandLog: similar to gLog but additionally draws the corresponding fitness graphs (current

run and average) during the system’s functioning.

4.4.4.1 Skills

The observation agent possesses skills in order to fulfill the goals aforementioned. The latter are:

- aggregateReceivedSolutions: to aggregate the local best solutions of each generation of the

problem solving agents.

- evaluateGlobalSolution: to compute the fitness of the global solution on the global mono-objective

fitness function.

- logBestInGeneration: to create a log file for each run of the algorithm containing the computed

best fitness per generation.

- computeAverage: to compute the averaged best fitness per generation over all the algorithm

runs.

- logAveragedBestInGeneration: to create a log file to save the average best fitness of all the

generations.

- drawBestInGeneration: to draw a graph of the best fitness per generation of the current run.

- drawAveragedBestInGeneration: to draw a graph of the averaged best fitness per generation

over the runs.

4.5 Organization Model

Within the MAS4EVO model, we proposed a new organizational model based on Moise+ and ded-

icated to evolutionary optimization. This model allows to structure the functioning of the DAFO

framework and to constrain the behavior of each agent participating in. Through the use of the

different specifications of MAS4EVO, it is possible to model different evolutionary algorithms by

constraining similar agents in terms of their functioning and behavior.

4.5.1 Overview

The MAS4EVO model is based on Moise+ and extends it. Moise+ is an organization centered model

which considers three different specifications. Indeed it allows to specify the structure of an agents’

organization in terms of roles, groups and links (structural specification), and the global organization

functioning (functional specification). Moise+ adds a deontic relation among these first two dimen-

sions (deontic specification) to better explain how a MASs organization collaborates for the social

purpose and makes the agents able to reason on the fulfilment of their obligations or not.

The first limitation encountered when modeling CGAs concerns the specification of the interac-

tions between the problem solving agents (i.e. the subpopulations). For instance, in LCGA it is a

two-way communication (a PSA sends random individuals to its neighbor(s) and then receives the

98



4.5 Organization Model

corresponding fitness values) while in CCGA it is a one way communication in which a different type

of information is exchanged (i.e. best or best and random individuals). It is consequently necessary to

specify these interactions. We therefore added the dialogic specification (DiS) which allows to specify

parameterizable generic interaction protocols involving some roles in one or several groups. According

to our needs, we also consider that expressing only functional goals in the functional specification is

too restrictive. By adding organizational goals in this specification, it is possible to express the actions

that an agent playing a role can take on the organization (e.g. to adopt a new role, to create other

agents, etc.). Using supervisorial goals, it is possible to monitor the organization so as to specify

when to start a reorganization process. We also added interactional goals, which allow to specify

when the different generic interaction protocols defined in the dialogic specification are used. Finally,

as Moise-Inst extended Moise+’s deontic specification into a normative specification, we extend the

deontic expressions into a set of norms. It is thus possible to link a role played by an agent to the

different specifications by normative expressions.

Our organizational model for evolutionary optimization is thus composed of:

- A Structural Specification (SS) defining the roles played by the agents, the relations between

these roles and the groups to which the roles belong to.

- A Functional Specification (FS) defining the goals which must be achieved by the organization.

These goals may concern functional goals, organizational goals, interactional goals and supervisorial

goals.

- A Dialogic Specification (DiS) defining a set of generic interaction protocols which can be used

by different roles to achieve interactional goals.

- A Normative Specification (NS) defining the right and duties of each role or group .

Organization Specification (OS)

1..1 1..1

1..1

3..3

1..1

1..1

1..1

Functional

Scheme

gCompute

gDafo

Optimization

Scheme

Observation

Scheme

Fabric

Scheme

Group

Inform(content1)

Inform(content2)

Agree(content3)

pTime(Group, Sender, Receiver, Content1, Content2, Content3, n)

{n seconds}

ReceiverSender

SS FS

NS

DiS

SS F S

n ϕ op bear er m p s

N01 — obl role1 m1 parameter1 ∧ parameter2 scheme1

N02 — obl role3 m2 parameter2 scheme1

N03 — per role2, role3 m4 parameter3 scheme2

N04 — obl role4 m5 parameter4 scheme3

Table 1

Figure 4.3: MAS4EVO overview

99

Chapter3/Chapter3Figs/EPS/MAS4EVO_Org_Model.eps


4.5 Organization Model

These four specifications form the Organizational Specification (OS) as presented in Figure 4.3

(representation taken from [24]). When a set of agents adopts an OS they form an Organizational

Entity (OE). Once created, the history of the O.E. starts and runs by events such as agents entering

and/or leaving the OE, group creation, role adoption, mission commitment, etc.

The following sections provide a detailed description of those four specifications. The example

of the usage of this model to represent a simple GA within MAS4EVO will be used along these

descriptions in order to illustrate the different concepts those specifications are based on.

4.5.2 Structural Specification

The Structural Specification (SS) expresses the structure in terms of roles, relations between roles and

groups. A set of constraints expresses the links scope and the cardinality of roles and groups. The SS

is graphically represented using a formalism as shown in Figure 4.4.

Group
Specification

Role
Specification

Abstract Role
Specification

SS formalim

Inheritance link:

Composition link:

Links

acquaintance link

communication link

authority link

compatibility link

Intra-group Inter-group

min..max

min..max

Figure 4.4: Structural Specification formalism

Roles: a role is a label which allows to define a set of constraints an agent has to respect as soon

as it accepts to play that role. A role is also used to define structural constraints with other roles and

groups. Finally, a role is a label which is attached in norms (see 4.5.5). For specification purposes it

is possible to define abstract roles but they cannot be played by any agent. It is also possible for one

role to inherit the properties from a parent role using an inheritance relation (an abstract role can not

inherit from a non-abstract role). If one role r’ inherits from a role r and r is different from r’, then

r’ receives the properties of r and r’ becomes a sub-role of r. A role can not inherit from himself and

can not inherit from an abstract role.

Groups: a group is defined by a composition of non-abstract roles (composition link), a set of

intra-group links, a set of inter-group links , roles and groups cardinalities and agent cardinality (i.e.

the number of agents which can play a role in the group). Any non-abstract role is obliged to belong

to a group while abstract roles do not belong to any group. An inheritance link connects two roles

together.

100

Chapter3/Chapter3Figs/EPS/SS_formalism.eps


4.5 Organization Model

Links: links are the relations which have a direct influence on the agents’ behavior (contrary to

the inheritance). They can be of four types: acquaintance (acq), communication (com), authority

(aut) and compatibility (comp).

- An acq link means that an agent playing a source role is authorized to have a representation of the

agents playing the destination role.

- In a com link the agents playing the source role can communicate with the agents playing the desti-

nation role. A communication link implies the existence of an acquaintance link (com → acq).

- In an aut link the agents playing the source role can control the agents playing the destination

role. An authority link implies the existence of a communication link that implies the existence of an

acquaintance link. An authority link implies the existence of a communication link and thus of an

acquaintance link(aut → com → acq).

- In a compatibility link agents playing the source role are authorized to play the destination role. By

default, the roles of a SS are not compatible.

Links can have two different scopes: intra-group and inter-group. An intra-group link sets the

scope of the link to the agents playing the source role to the agents playing the destination role in the

same instance of a group or its sub-group. An inter-group link sets the scope of the link to the agents

playing the source role to the agents playing the destination role independently of the instances of the

group.

Figure 4.5 shows the links usage in the SGA example. The EvoBuilder role has an intra-group

authority link on the EvoMember role since the EvoBuilder is in charge of instantiating the EvoMem-

ber roles. The EvoMember role has an intra-group communication link with the EvoBuilder role since

it will send information on its status. The Solver has an intra-group communication link with the

Observer since the Solver will send information concerning its computation. Both roles do not directly

belong to the same group, but since the SGA group is a subgroup of the DAFO group the link is

intra-group and not inter-group. Finally the EvoMember role and the Solver role have an intra-group

compatibility link which means that the same agent can play both roles in the same instance of the

DAFO group (we do not mention the SGA group since it is a subgroup of the DAFO group).

Cardinalities: cardinalities constraints specify the minimum and maximum number of roles or

group instances that a group instance accepts. Three types of cardinalities can be used within a group:

role, sub-groups and agent cardinalities.

- Role cardinality: specifies the minimum and maximum number of role instances accepted by the

group instance, i.e. the number of agents playing that role.

- Sub-group cardinality: specifies the minimum and maximum number of instances of a sub-group that

is accepted by the parent group instance.

- Agent cardinality: introduced in Moise-Inst, this cardinality specifies the minimum and maximum

number of agents capable of playing a role in the instance of a group and its sub-groups. This is of

101



4.5 Organization Model

Solver

Observer EvoBuilderEvoMember

DAFO

SGA

Figure 4.5: Example of links usage (Structural Specification)

interest when compatible roles are in the same group.

Figure 4.6 shows the cardinalities usage in the SGA example. The EvoMember, Observer and

EvoBuilder roles have role cardinalities equal to (1..1) which means that only one instance of each

role will be accepted by the DAFO group instance. The SGA group has a sub-group cardinality of

1..1 with the DAFO group, which means that a single instance of the SGA group can be contained in

one instance of the DAFO group. The SGA group has an agent cardinality of 1..1 which means that

a single agent can play the Solver role in it. The same way the DAFO group has an agent cardinality

of 3..3 which means that only three agents will play the four different roles contained in this group

(EvoMember, Observer, EvoBuilder, Solver). One agent will therefore play two different roles.

Solver

Observer EvoBuilderEvoMember

DAFO

1..1 1..1

1..1

3..3

1..1

SGA

1..1

1..1

Figure 4.6: Example of cardinalities usage (Structural Specification)

4.5.2.1 Roles

As already mentioned, one advantage of MAS4EVO is its capacity to model different algorithms by

using similar agents with different organizations. This section provides an exhaustive list of the roles

102

Chapter3/Chapter3Figs/EPS/Links_Example.eps
Chapter3/Chapter3Figs/EPS/Cardinalities_Example.eps


4.5 Organization Model

that can be played by the agents of MAS4EVO:

- Observer: role which can be played by the Observation Agent. This role is in charge of both

evaluating the global fitness in each generation of the algorithm and logging/drawing the graph of the

obtained fitness values, based on the information received from the Problem Solving Agent(s).

- EvoBuilder: role which can be played by the Fabric Agent. This role manages the organization

through the instantiation of the Evolutionary Agents , the initialization of the Evolutionary Agents

and the Observer Agent.

- EvoMember: role which can be played by Problem Solving Agent(s). Roles which skills include

running optimization algorithms will inherit from this EvoMember role.

- Solver: role which can be played by the Problem Solving Agent(s). This role can communicate

individuals (best and/or random, population ratio, etc.) with the agents playing the Observer role,

the LocalSearcher role and other agents playing the Solver role.

- Producer: role which can be played by the Problem Solving Agent(s). It is in charge of com-

municating individuals (best and/or random) to the Consumer(s).

- Consumer: role which can be played by the Problem Solving Agent(s). It is in charge of running

the SGA based on the individuals coming from the Producer(s).

- LocalSearcher: role played by the Problem Solving Agent(s). It runs one of the available local

search algorithms on the individual received from the Producer located in the same group and sends

back the possibly improved individual to the Producer after a predefined termination condition (i.e.

a number of function evaluations).

4.5.2.2 Groups

Similarly to the roles, this section provides an exhaustive list of the groups in which agents can play

the roles listed in the previous section (4.5.2.1) in the DAFO framework:

- DAFO: base group which contains all the agents and groups of the organization. The roles

played in this group are Observer, EvoBuilder and EvoMember.

- Solving Unit: group which contains exactly one Consumer and one Producer, the two roles

being played by two different Problem Solving Agents.

103



4.5 Organization Model

- LCGA: this group contains all the Solver(s), Consumer(s) and Producer(s) representing the

LCGA, dLCGA or the coevolutionary part of the hLCGA.

- CCGA: this group contains all the Solver(s), Consumer(s) and Producer(s) representing the

CCGA.

- LocalSearch Unit: this group contains exactly one Producer and one LSAgent being played by

two different Problem Solving Agents and representing the hybridization of the LCGA.

4.5.2.3 Links

The following table lists all the possible links between all the possible roles in the DAFO organization.

Destination Role

Observer EvoBuilder EvoMember Solver Producer Consumer LocalSearcher

S
o
u
r
c
e

R
o
le

Observer - - - - - - -

EvoBuilder - - aut - - - -

EvoMember - com - - - - -

Solver com - - com - - com

Producer - - - - - com -

Consumer - - - - com - -

LocalSearcher - - - com - - -

Table 4.1: Possible links between roles

In order to model different CGAs, the DAFO organization modeled using MAS4EVO brings con-

straints on the possible links between the different available agents. For instance, for the Solver role,

it has a communication link with the Observer role, it can have a communication link with one or

several other Solver roles (depending on the CGA) and a communication link with a LocalSearcher in

case of a hybrid algorithm (see 5.2).

4.5.2.4 Structural Specification Example

This section provides the example of the structural specification of a simple GA within DAFO using

MAS4EVO. This example will be used to illustrate the four different specifications of MAS4EVO.

The root group is the DAFO group which is composed of a single group SGA (cardinality “1..1”).

The DAFO group is composed of three agents (cardinality“3..3”), one playing the EvoBuilder role, an-

other one the Observer role and another one the EvoMember role. Indeed each of these roles can only be

adopted once (cardinality “1..1”). The SGA group is composed of one agent (cardinality “1..1”) which

will play the role Solver due to its “1..1”cardinality. The Solver role inherits from the EvoMember role.

The EvoBuilder role possesses an authority link on the EvoMember role since it will control the

lifecycle of the EvoMember (e.g. instantiation). The EvoMember possesses a communication link with

104



4.5 Organization Model

Solver

Observer EvoBuilderEvoMember

DAFO

1..1 1..1

Group

min..max

Role

Abstract Role

Key

Inheritance:

Composition:

Links

acq

com

aut

compat

Intra-group Inter-group

min..max

1..1

3..3

1..1

SGA

1..1

1..1

Figure 4.7: SGA Structural Specification

the EvoBuilder role which will be used to provide information concerning its lifecycle (e.g. ready to

compute). The Solver role also has a communication link but with the Observer role so as to send

results of its computation process (e.g. the best individual per generation). Finally the EvoMember

role and the Solver role have a compatibility link which means that the same agent can play both roles

in the same instance of the DAFO group (we do not mention the SGA group since it is a subgroup of

the DAFO group).

4.5.3 Functional Specification

The Functional Specification (FS) describes a set of social schemes considered as the global (collec-

tive) goals to be achieved by the organization. These goals are grouped into missions which will be

distributed to the agents. MAS4EVO extends this specification by enlarging the scope of goals which

are not only functional ones as in Moise+ but also interactional, organizational or supervisorial goals.

MAS4EVO additionally provides the possibility to associate a repetition constraint on a goal.

A social scheme can be seen as a goal decomposition tree where the root is a global goal and the

leaves are goals that can be achieved by one agent. Missions group the goals in a coherent set which

will have to be accomplished by the agents. The graphical representation of the functional specifica-

tion uses a formalism as shown in Figure 4.8.

105

Chapter3/Chapter3Figs/EPS/Structure_SGA.eps


4.5 Organization Model

FS Formalism

Goal

Sequence Choice Parallelism

missions

* [ *=r | t ]Goal repetition:

Figure 4.8: Functional Specification formalism

Social Scheme: a social scheme is a structured plan allowing to achieve a global goal of the

organization. A social scheme is decomposed in goals structured in plans and grouped in missions.

The main social scheme of a FS composed of several social schemes is called functional scheme

Goals: a goal represents a state to be reached by the organization. MAS4EVO allows to specify

different types of goals which can be:

- functional goals: as used in Moise+.

- interactional goals: use one generic interaction protocol specified in the dialogic specification. It

must mention the source and destination roles as well as the information exchanged if necessary.

- organizational goals: imply an action on the organization entity (e.g. instantiation of new agents).

Therefore they provide reorganization capabilities.

- supervisorial goals: imply a monitoring of the organization so as to start a plan once a predefined

criterion is reached. They can be used to trigger a reorganization process.

- artificial goals: goals that can not be reached, they are used only for specification purpose.

A goal can be repeated for number of iterations or until a predefined termination condition is met

(e.g. a time constraint). This repetition constraint is expressed in the graphical representation of the

FS as follows: *[*=n | t] with n representing the number of iterations, t representing a termination

condition and | being an OR operator.

A plan achieving a goal of a social scheme decomposes this goal in sub-goals using three possible

operators:

- sequence “,”: the plan “g1 = g2, g3” means that the goal g1 will be achieved if the goal g2 is

achieved and after that also the goal g3 is achieved.

- choice “|”: the plan “g1 = g2 | g3” means that the goal g1 will be achieved if one, and only one, of

the goals g2 or g3 is achieved.

- parallelism “‖”: the plan “g1 = g2 ‖ g3” means that the goal g1 will be achieved if both g2 and g3

are achieved. Those two goals (g2 and g3) can be achieved in parallel.

As introduced in Moise-Inst, we add the possibility to make a reference to a social scheme inside

a plan. This means that for instance if the plan of the goal g1 is a choice between a goal g2 or a

scheme sch1, then g1 will be accomplished if either the goal g2 is achieved or the root goal of sch1 is

achieved. It is of interest when the same set of goals is usable several times in the same FS (it avoids

106

Chapter3/Chapter3Figs/EPS/Functional_Specification_formalism.eps


4.5 Organization Model

to mention the same goals multiple times). It is also possible to use the same goal in different social

schemes which is a way to synchronize those schemes.

Compared to Moise+, MAS4EVO provides additional information concerning the satisfaction of a

parent goal if it is part of mission(s) or not. We thus consider that to satisfy a parent goal:

- if no mission is attached to the parent goal, all its sub-goals must be satisfied. This is illustrated

on the left hand side of Figure 4.9, in which the parent goal gOptimize is satisfied once gRunGA and

pInform(best) are satisfied.

- if one or several missions are attached to the goal, all its sub-goals must be satisfied and the agents

engaged on these missions must be satisfied. This is illustrated on the right hand side of Figure 4.9,

in which the parent goal gOptimize is satisfied once gRunGA and pInform(best) are satisfied and the

agents engaged on the goal gOptimize agree that it is satisfied.

pInform(best)

gOptimize

gRunGA
m7 m8

pInform(best)

gOptimize

gRunGA
m7 m8

m7, m8

Figure 4.9: Example of missions usage (Functional Specification)

Mission: a mission is a set of coherent goals belonging to the same scheme that a role can commit

to. An exception exists in the case of an interaction goal, where a mission is attached to two or more

roles. Logically, an artificial goal can not be part of a mission since no role can satisfy it.

For each mission a cardinality is defined specifying the number of roles which can be involved in the

mission at the same time. A cardinality is expressed in the following form:

- n..m: with n ∈ N, m ∈ N and n ≥ m (example: 1..1 or 2..4)

- n..*: equivalent to n or more with n ∈ N (example: 6..*)

By default the cardinality is (0..*).

4.5.3.1 Functional Specification Example

Figure 4.10 represents the functional specification of the SGA within MAS4EVO. The specification

is built on four social schemes, a functional scheme (considered as the main scheme of the FS which

root goal gDafo is to run the DAFO framework), a fabric scheme (which root goal gOrganize is to

initialize the problem solving agent), an optimization scheme (which root goal gOptimize is to optimize

a problem) and an observation scheme (which root goal gOutput is to provide an output of the results

obtained by the GA). All these root goals are artificial goals and consequently are not attached to a

mission as specified in 4.5.3.

107

Chapter3/Chapter3Figs/EPS/example_missions.eps


4.5 Organization Model

Fabric
Scheme

gOrganize

Functional 
Scheme

gCompute

gDafo

Optimization 
Scheme

pInform(best)

gOptimize

gRunGA
m7 m8

Key

Goal

Choice Parallelism

missions

gInstantiate(PSA)
m1

Optimization 
Scheme

gAdoptRole
(EvoMember, DAFO)

gAdoptRole
(Solver, SGA)

gLaunch
m4

pInform(‘start’) pTime(‘start’,’stop’,’ready’, n)

m3

m5 m6

Observation 
Scheme

gOutput

gLog gGraphAndLog
m9 m10

Observation 
Scheme

Fabric
Scheme

pInform(EvoParameters)
m4

gCreateSubGroup
(SGA, DAFO)

m2

* [ *=r | t ]

* [ *=r | t ]Goal repetition:

Sequence

Figure 4.10: SGA Functional Specification

The goal gDafo, root goal of the functional scheme, is satisfied when the Fabric Scheme and the

artificial goal gCompute are sequentially satisfied. The goal gCompute is itself satisfied once repeated

for a number n of iterations or repeated until a time termination condition of t seconds is met. An

iteration of the gCompute goal will be achieved when the Optimization Scheme and the Observation

Scheme are realized in parallel.

The artificial root goal of the Fabric Scheme (gOrganize) is satisfied when the following goals are

sequentially satisfied:

- gInstantiate(PSA) organizational goal instantiating the Problem Solving Agent

- gAdoptRole(DAFO, EvoMember) organizational goal in which the EvoMember role is taken in the

DAFO group

- pInform(EvoParameters) interactional goal in which the parameters set by the user are transmitted

- gCreateSubGroup(DAFO, SGA) organizational goal in which a SGA group is created as a subgroup

of DAFO

- gAdoptRole(SGA, Solver) organizational goal in which the Solver role is adopted in the SGA group

- gLaunch artificial goal satisfied when either the interactional goal pInform(start) or the interactional

goal pTime(start, stop, ready, n) are satisfied. pInform(start), in which a “start” message is sent, will

be satisfied in case of a termination condition based on a number of generation or a number of fitness

function evaluations. pTime(start, stop, ready, n), in which start and stop messages are sent with a

time interval, will be satisfied in case of a time termination condition.

108

Chapter3/Chapter3Figs/EPS/Functional_Specification_SGA.eps


4.5 Organization Model

Concerning the artificial root goal gOptimize of the Optimization Scheme, it is satisfied once the

functional goal gRunGA running one generation of a SGA and the interactional goal pInform(best) in

which a message containing the best individual are sequentially satisfied.

Finally the artificial root goal gOutput of the Observation Scheme is satisfied if either the func-

tional goal gLog saving the received best individual of one generation and the calculated average in

each generation in log files is fulfilled or if the functional goal gGraphAndLog saving the received best

individual of one generation and the calculated average in each generation in log files and drawing the

corresponding graphs is fulfilled.

Id. Goals of the mission Card. Description

m1 gInstantiate(PSA) 1..1 Instantiate the Problem Solving Agents

m2 gAdoptRole(EvoMember) 1..1 Adopts the EvoMember role in the EvoFramewok group

m3 pInform(EvoParameters) 3..3 Sends the Evoparameters

m4 gCreateSubGroup(DAFO,

SGA), gAdoptRole(SGA, Solver)

1..1 Creates the subgroup SGA and adopts the Solver role in it

m5 pInform(start) 2..2 Sends a start message

m6 pTime(start,stop, ready, n) 2..2 Sends start and stop messages with a time interval n

m7 gRunGA 1..1 Runs a generation of genetic algorithm

m8 pInform(best) 2..2 Sends the best indiv. of a generation of the SGA

m9 gLog 1..1 Logs the best and average fitness

m10 gGraphAndLog 1..1 Logs the best and average fitness and print the corresponding

graphs

Table 4.2: Missions definition of the FS of the SGA

The missions we define for the SGA example are reported in Table 4.2. The Fabric Scheme groups

the missions m1, m2, m3, m4, m5 and m6 concerning the instantiation of the OE and the startup

of the computation process. m1, m2 and m4 have a cardinality (1..1) since respectively only one

fabric agent and one problem solving agent can be involved in these missions. m2, m5 and m6 have a

cardinality (2..2) since they include interactional goals which require at least two agents.

The same way, the optimization scheme groups the missions related to the GA computation, the

functional goal gRunGA is set in a mission (m7) to run a generation of a GA and the interaction goal

pInform(best) is set in a mission (m8) to communicate the best individual found after this computation.

Finally, the Observation scheme groups the missions m9 and m10 related to the observation of the

computation, which either log the best fitness received and the calculated average fitness or log the

best fitness received, the calculated average fitness and prints the corresponding graphs.

4.5.4 Dialogic Specification

The main concepts of this specification are issued from AUML sequence diagrams [22] and from AGR

organizational sequence diagram introduced by Ferber in [23] of which we use the notion of groups

109



4.5 Organization Model

and roles.

The Dialogic Specification (DiS) allows to specify parameterizable generic interaction protocols

independent from the roles and groups specified in the structural specification (SS). These interaction

protocols are a variant of both AUML sequence diagram [22] and AGR organizational sequence dia-

gram [23].

The graphical representation of the DiS has two dimensions: 1) the vertical dimension represents

the time ordering and 2) the horizontal dimension represents generic groups and roles that will be

specified as parameters. Messages in sequence diagrams are ordered according to a time axis. This

time axis is usually not rendered on diagrams but it goes according to the vertical dimension from

top to bottom. Message ordering is expressed by the time axis. The graphical representation of the

dialogic specification uses a formalism as presented in Figure 4.11.

Group

Role

{time constraint}

DiS formalim

Synchronous message:

Asynchronous message:

Synchronous message,
sender will not receive

the message:

Asynchronous message,
sender will receive the

message:

Asynchronous message,
sender will not receive the

message:

Time contrained message:

protocol name (parameters)

Li
fe

lin
e

message

message

Figure 4.11: Dialogic Specification formalism

4.5.4.1 Interaction:

As for UML and AUML, an interaction protocol is encapsulated in a frame rendered as a solid-outlined

rectangle. In the upper-left corner of the frame a smaller rectangle contains the name of the protocols

and the parameters linked to it. The parameters refer to the group(s), role(s) and also to the content

(which is not specified in protocol templates in AUML) that correspond to the instantiation of one

generic protocol.

Protocol designers also need to know which ontologies, content language and agent communication

language are used in this protocol.

110

Chapter3/Chapter3Figs/EPS/Dialogic_Specification_Formalism.eps


4.5 Organization Model

Constraints:

- Protocol names must be unique in the DiS.

- To instantiate a protocol, the number of parameters specified in its definition must be respected.

4.5.4.2 Lifelines

Contrary to the specification of UML 2.0 and restricting the possibilities of AUML, a lifeline neces-

sarily represents a role played by one or more agents in a group. The lifeline in sequence diagrams

defines the time period during which a role exists for this interaction, represented by vertical dashed

lines. When a lifeline is created for a role, this role becomes active for the protocol. This lifeline is

present as long as the role remains active in the protocol.

A lifeline is composed of three elements: two labels depicted in two different boxes, one above the

other, on the top of the lifeline and a vertical dashed line anchoring to the box. The upper label is

used for the group and the lower label for the role played in this group.

It is preferable to order lifelines according to the appearance of the roles in the interaction. As a

lifeline corresponds to the appearance of the role in the interaction, it is then important to shift the

lifeline to the bottom if this role appears late in the interaction.

Constraints:

- A pair (role, group) must appear one and only one time in the sequence diagram.

4.5.4.3 Messages

As in UML and Agent UML, a message defines a particular communication between two lifelines in

the sequence diagrams. Senders and receivers of a message can be on the same lifeline or not. Two

situations have to be considered when the sender lifeline is the same than the receiver lifeline: 1)

the sender wants to receive the message as well, 2) the sender wants to be omitted from the set of

recipients. These two different situations will be distinguished on the message notation.

Agents can use either a synchronous or an asynchronous communication. An asynchronous mes-

sage means that agents send the message without yielding control. A synchronous message means

that agents send the message with yielding of the thread of control (wait semantics), i.e. the agent

role responsible of this synchronous message sending waits until an answer message is received and

nothing else can be processed. The agent other roles continue to send and receive messages for this

protocol or other protocols.

Notation:

A message is shown as a directed line from the sender role to the receiver role. Asynchronous messages

have a filled arrow head, synchronous messages have an open arrow head. When a message is sent

and received by the same lifeline, it is necessary to consider if the sender will receive the message as

well. The directed line is barred near the beginning of the line if the sender does not want to receive

111



4.5 Organization Model

the message. Barring or not the line is only for asynchronous messages. For synchronous messages,

the line is always barred to prevent deadlock.

Constraints:

- The content of the message must be specified above the arrow.

4.5.4.4 Timing Constraint

Time on sequence diagrams allows designers to represent that some messages have to be sent after a

certain delay. In MAS4EVO timing constraints are relative, i.e. they refer to a specific event in the

interaction, the last message for instance. The message to which the timing constraint is applied has

to be sent exactly after the specified amount of time represented in curly brackets like 10 s.

This time constraint is rendered as a horizontal bar on the first message, a horizontal bar on

the constrained message, a vertical line directed in both ways between the two bars and the timing

constraints time near the vertical directed line.

4.5.4.5 Dialogic Specification Example

Inform(content)

Receiver

Group

Inform(content1)

Inform(content2)

Agree(content3)

pInform(Group, Sender, Receiver, content)

pTime(Group, Sender, Receiver, Content1, Content2, Content3, n)

{n seconds}

Sender

Group

ReceiverSender

Figure 4.12: SGA Dialogic Specification

Figure 4.12 presents the two generic interaction protocols used for the SGA example: pInform and

pTime.

The protocol pInform requires four parameters to be instantiated, respectively a group name, a

sender role, a receiver role and a message content. This protocol allows to send an Inform message

from a sender role to a receiver role. This protocol is used in three different steps of the functional

specification of the SGA (see Fig. 4.10).

112

Chapter3/Chapter3Figs/EPS/Dialogic_Specification_SGA.eps


4.5 Organization Model

The pTime protocol requires seven parameters, a group name, a sender role, a receiver role, three

different message contents and a time constraint. As specified in 4.5.4.4 the n value represents the

number of seconds between the first Inform message containing the parameter content1 sent from the

sender to the receiver and the second one containing the parameter content2. Finally, the receiver

sends back an Agree message to the sender containing the parameter content3.

4.5.5 Normative Specification

In the previous sections we have described how to define a set of constraints on the agents through

three specifications. During the execution of the organization, the agents will have to play roles within

groups as specified in the structural specification (SS), satisfy a set of goals (functional, organizational,

interactional or supervisorial) grouped in missions defined in the functional specification (FS) and fi-

nally to communicate by the instantiation of generic interaction protocols depicted in the dialogic

specification (DiS). We now have to link these specifications in order to express a set of rules con-

cerning one role or one group executing one functional, organizational, supervisorial or interactional

(using one or several protocols of the DiS) goal. We therefore define a Normative Specification (NS),

as Moise-Inst introduced a normative specification to link its structural, functional and contextual

specifications.

The Normative specification is composed of a set of norms specifying relations between the SS,

FS and DiS through a bearer, a mission, parameters related to the mission and a deontic operator

(permission, obligation or interdiction).

We consider the set SESS , Mfs, Pm and Sfs, grouping respectively the structural entities, the

missions, the parameters of the missions and the schemes of the organization. NS is the set of norms

of the organization.

A norm n ∈ NS is defined as the following expression: n = ϕ → op(bearer, m, p, s) where

op ∈ {obl, per, for}

bearer ∈ SESS

m ∈ Mfs

p ∈ Pm

s ∈ Sfs

with:

- ϕ is an expression of the validity conditions of the norm;

- op is the deontic operator defining an obligation, a permission or an interdiction;

- bearer is a structural entity (role or group) specified in the SS on which the norm is applied;

- m is a functional, organizational, supervisorial or interactional mission specified in the FS specifying

113



4.5 Organization Model

on which action the norm is applied;

- p is the optional set of parameters necessary to the instantiation of the mission m;

- s is the functional scheme of the FS to which belongs the mission m.

ϕ is the condition which defines the state of the OE in which the norm may be valid. The norm

remains valid as long as ϕ is satisfied. A norm condition could be one of the following expressions:

- true which means that the norm is always valid;

- an algorithm-dependent predicate, which can be for instance the algorithm termination condition,

based either on a number of iterations expressed as term==iterations or on a time constraint expressed

as term==time.

- a predicate depending on the execution mode which can be batch or graphical and respectively

represented as mode==batch or mode==graphical.

A norm can be fulfilled only once it is valid.

Contrary to the other specifications, it is difficult to provide a graphical representation of the

normative specification. Therefore, we represent the norms as shown in Table 4.3.

SS FS

n ϕ op bearer m p s

N01 — obl role1 m1 parameter1 ∧ parameter2 scheme1

N02 — obl role3 m2 parameter2 scheme1

N03 — per role2, role3 m4 parameter3 scheme2

N04 — obl role4 m5 parameter4 scheme3

Table 4.3: Example of NS Representation

4.5.5.1 Link with the Structural Specification

The bearer of a norm is a structural entity on which this norm is applied. A norm can be applied on

a role or a group. When the bearer is a group, all the roles belonging to this group have to respect

the norm. The agent playing one of these roles on which the norm is applied has to behave in such a

way that the norm is not violated.

No matter the operator of the norm, if the bearer of a norm is a role which has inheriting roles,

then the latter will also have to respect the norm according to the operator.

The same way, no matter the operator of the norm, if the bearer of a norm is a group which has

sub-groups, then the latter will also have to respect the norm according to the operator.

114



4.5 Organization Model

4.5.5.2 Link with the Functional Specification

The functional part of the norms refers to the mission on which the norm is applied. This means that

the agent or the group of agents which respect this norm will have to get involved in the mission and

to satisfy it.

As previously mentioned in 4.5.3 MAS4EVO extends the FS of Moise+ by allowing the use of

functional missions, but also organizational, supervisorial and interactional missions. No matter the

type of mission, the expression of a norm is similar to the definition in 4.5.5.

4.5.5.3 Link with the Dialogic Specification:

MAS4EVO normative specification provides normative rules which allow to link one or several roles

of the SS to an interactional mission which corresponds to the instantiation of one protocol of the

DiS. The only difference is that the multiple bearers can be involved in a norm. The following norm

N05 is an example in which both EvoBuilder and EvoMember roles of the DAFO group have the

permission to fulfil an interaction mission of the Fabric scheme, in that case mission m5. In this

interaction mission, the EvoBuilder role in uses the pInform protocol to send a “Start”message to the

EvoMember role.

N05 = per(EvoBuilder, EvoMember, m5, FabricScheme)

4.5.5.4 Normative Specification Example

As for the three other specifications, the following presents the normative specification of the SGA

using MAS4EVO.

SS FS

n ϕ op bearer m p s

N01 true obl EvoBuilder m1 — Fabric

N02 true obl PSA m2 — Fabric

N03 true obl EvoBuilder, EvoMember, Observer m3 — Fabric

N04 true obl EvoMember m4 — Fabric

N05 term==iterations obl EvoBuilder, EvoMember m5 — Fabric

N06 term==time obl EvoBuilder, EvoMember m6 n Fabric

N07 true obl Solver m7 — Optimization

N08 true obl Solver, Observer m8 — Optimization

N09 mode==batch obl Observer m9 — Observation

N10 mode==graphical obl Observer m10 — Observation

Table 4.4: Normative Specification of the SGA

The first norm (N01) specifies that the agent playing the Evobuilder role has the obligation to

achieve the mission m1 of the Fabric scheme. This means that an agent of the type EvoAgent has to

115



4.5 Organization Model

be created.

The second norm (N02) obliges the PSA to fulfil the mission m2 of the Fabric Scheme which

consists in the organizational action adoptRole(EvoMember, DAFO). This means that the PSA has

to take the role EvoMember in the group DAFO. The EvoMember is now capable of communicating

with the other agents of the DAFO group (Observer and EvoBuilder).

The third norm (N03) obliges the EvoBuilder and the EvoMember to fulfil the mission m3 of

the Fabric Scheme which consists in the interactional goal pInform(DAFO, EvoBuilder, EvoMember,

Observer, EvoParameters). This means that in the DAFO group, the EvoBuilder has to send the

EvoParameters to the EvoMember and to the Observer. The EvoMember and the Observer have

now the necessary information concerning the optimization problem and the EvoMember additionally

knows the GA it is part of (in that case a SGA) and the parameters to run its generational GA.

The norm N04 is an obligation for the EvoMember to perform the mission m4 of the Fabric scheme

which consists in two organizational actions. The first action (createsubGroup(SGA, DAFO)) means

that the EvoMember has to create a subgroup of the DAFO group called SGA and the second action

(adoptRole(Solver, SGA)) means that the same EvoMember has to take the role Solver in this new

SGA group. This group creation and role adoption depend on the GA specified in the parameters

previously received (here a SGA).

The norms N05 and N06 are both obligations given to the EvoBuilder and the EvoMember to fulfil

an interaction mission of the Fabric scheme. The norm N05 has a validity condition term==iterations

which means that this norm will be valid if the algorithm’s termination condition is based on a number

of iterations (i.e. a number of generations or a number of fitness function evaluations). Norm N05

consists in sending a start message from the EvoBuilder to the EvoMember. The norm N06 has a

validity condition term==time which means that this norm will be valid if the algorithm’s termination

condition is based on a time constraint of value n as specified in the parameters p. Norm N06 consists

for the EvoBuilder in repetitively sending a “start” message, waiting for n seconds, sending a “stop”

message and waiting for the “ready” message of the EvoMember.

The norm N07 is an obligation for the Solver to achieve the functional mission m7 of the Opti-

mization scheme, i.e. to run its SGA.

Norm N08 is an obligation for the Solver and the Observer to fulfil the mission m8 of the Optimiza-

tion Scheme which consists in the interactional goal pInform(DAFO, Solver, Observer, BestIndividual).

This means that in the DAFO group, the Solver has to send its BestIndividual to the Observer.

116



4.6 CGAs Organizational Model

Norms N09 and N10 are obligations for the Observer to achieve the functional missions m9 and

m10 of the Observation scheme. The norm N09 has a validity condition mode==batch which means

that this norm will be valid if the algorithm is run in a batch mode while the norm N10 and its validity

condition mode==graphical will be valid if the algorithm is run is a graphical mode.

4.6 CGAs Organizational Model

In the preceding section we have described the different specifications provided by MAS4EVO and we

illustrated their use to model a simple GA within DAFO. In the coming section, we will demonstrate

that through a few changes in these specifications (structural, functional, dialogic and normative) it

is possible to model existing CGAs, in our case CCGA and LCGA respectively introduced in 2.8 and

2.2.5.

4.6.1 CCGA Model

This section provides the model of the CCGA in DAFO using MAS4EVO. CCGA is a cooperative

CGA using a complete graph as topology of communication between the different subpopulations. It

will therefore be necessary to have several EvoAgents (at least 3) to represent these subpopulations.

Since all PSAs will communicate with each other, they will all play roles in the same group (i.e. CCGA

group) as described in section 4.13.

Two variants of CCGA exist, CCGA-1 in which only the best individual is exchanged between the

subpopulations and CCGA-2 in which the best and one random individual are exchanged between the

subpopulations. This will be tackled in the functional specification as new possible parameters in the

pInform interaction protocol as described in 4.6.1.2.

A specific feature of CCGA is the round-robin process realized in each generation of the algorithm.

In this process only one subpopulation after the other is active at one time receiving the individual(s)

from all the other subpopulations to evaluate its own individuals. This will be tackled at the structural

level by adding two new roles, Consumer and Producer (see 4.13), and at the functional level by

introducing a supervisorial goal with which PSAs can monitor if it is their turn to become active

(i.e. Consumer) and organizational goals which will allow the PSAs to change role (i.e. switch from

Producer to Consumer and the opposite) 4.6.1.2.

4.6.1.1 Structural Specification

Figure 4.13 represents the graphical representation of the structural specification of the CCGA using

MAS4EVO. The root group is the DAFO group which is composed of a single group CCGA (cardi-

nality “1..1”). The DAFO group contains one EvoBuilder role (cardinality “1..1”), one Observer role

(cardinality “1..1”) and all the EvoMember roles (cardinality “All”). The CCGA group is composed

of all the Solver roles (cardinality “All”) which inherit from the EvoMember role. The same way, the

117



4.6 CGAs Organizational Model

Consumer

Solver

Producer

Observer EvoBuilderEvoMember

DAFO

CCGA

All - 1

1..1 1..1

1..1

1..1

All

All

Figure 4.13: CCGA Structural Specification

CCGA group is composed of one Consumer role (cardinality “1..1”) and Producer roles (cardinality

“All - 1”), which both inherit from the Solver role. This means that all the agents playing the Solver

role except one will play the Producer role, the last agent playing the Consumer role (i.e. being the

“active” subpopulation).

The EvoBuilder role possesses an authority link on the EvoMember role since it will control the

lifecycle of the EvoMember (e.g. instantiation). The EvoMember possesses a communication link with

the EvoBuilder role which will be used to provide information concerning its lifecycle (e.g. ready to

compute). The Solver role also has a communication link with the Observer role so as to send results

of its computation process (e.g. the best individual per generation). The EvoMember role and the

Solver role have an intra-group compatibility link which means that the same agent can play both

roles in the same instance of the DAFO group (we do not mention the CCGA group since it is a

subgroup of the DAFO group). The Producer role has a communication link with the Consumer role

which permits to transmit individuals (i.e. best or best and random for either CCGA-1 or CCGA-2).

Finally the Consumer and Producer roles have an intra-group compatibility link with the Solver role

which means that the same agent can play both Consumer and Solver roles or both Producer and

Solver roles in the same instance of the CCGA group.

4.6.1.2 Functional Specification

Figure 4.14 represents the functional specification of the CCGA using MAS4EVO. As for the SGA,

the specification is built on four social schemes with the same root goals. A functional scheme (consid-

ered as the main scheme of the FS) which root goal is to run the DAFO framework (gDafo), a fabric

scheme which root goal is to initialize the problem solving agent (gOrganize), an optimization scheme

118

Chapter3/Chapter3Figs/EPS/Structure_CCGA.eps


4.6 CGAs Organizational Model

Functional 
Scheme

gCompute

gDafo

Observation 
Scheme
gObserve

gGlobalFitness gOutput

gLog gGraphAndLog

m11

m12 m13

Fabric
 Scheme

Optimization 
Scheme

Observation 
Scheme

Fabric
Scheme

gOrganize

m1
gLaunch

m4

pInform(‘start’) pTime(‘start’,’stop’,’ready’, n)

m3

m5 m6

pInform
(EvoParameters)

m4m2 m4

gEvaluate gRunGA

gOptimize

m8

m9

Optimization 
Scheme(alpha)

pInform(alpha)

pInform
(BestIndividual)

m10

gMonitoring gParticipate

gConsume

m7

m9
gAdoptRole

(Consumer, CCGA)

m9
gLeaveRole

(Producer, CCGA)

m9 m9 m9

gInstantiate(PSA) gAdoptRole
(EvoMember, DAFO)

gAdoptRole
(Solver, CCGA)

gCreateSubGroup
(CCGA, DAFO)

gAdoptRole
(Producer, CCGA)

gAdoptRole
(Producer, CCGA)

gLeaveRole
(Consumer , CCGA)

* [ *=r | t ]

Key

Goal

Choice Parallelism

missions

* [ *=r | t ]Goal repetition:

Sequence

Figure 4.14: Functional Specification of the CCGA

which root goal is to optimize a problem (gOptimize) and an observation scheme which root goal is

to provide an output of the results obtained by the GA (gOutput). All these root goals are artificial

goals and consequently are not attached to a mission.

The functional scheme is similar to the SGA’s one (see 4.10).

The Fabric Scheme is also similar to the SGA’s one except that a CCGA group is created instead

of a SGA group and the Producer role is adopted in the CCGA group addition to the Solver one.

The Optimization Scheme has more modifications due to the exchange of information between

subpopulations and mostly to the round-robin process in which one PSA after the other takes the

Consumer role instead of its Producer role. The artificial root goal gOptimize is therefore satisfied

once the supervisorial goal gMonitoring and the artificial goal gParticipate are sequentially satisfied.

gMonitoring checks if the agent has to keep its Producer role or if it has to take a Consumer role. This

will respectively involve to fulfil the interactional goal pInform(alpha) in which a message containing

119

Chapter3/Chapter3Figs/EPS/Functional_Specification_CCGA.eps


4.6 CGAs Organizational Model

alpha is sent, which is can be the best individual or the best and a random individual, or to fulfill the

artificial goal gConsume. This goal is satisfied once the following goals are sequentially satisfied:

- gLeaveRole(CCGA, Producer) organizational goal in which the Producer role played in the CCGA

group is quit,

- gAdoptRole(CCGA, Consumer) organizational goal in which the Consumer role is taken in the CCGA

group,

- gEvaluate the functional goal in which all individuals of a population are evaluated,

- gRunGA functional goal running one generation of a SGA,

- pInform(BestIndividual interactional goal in which a message containing the best individual is sent,

- gLeaveRole(CCGA, Consumer) organizational goal in which the Consumer role played in the CCGA

group is quit,

- gAdoptRole(CCGA, Producer) organizational goal in which the Producer role is taken in the CCGA

group.

Finally Observation Scheme differs from the SGA one only by the addition of the functional goal

gGlobalFitness. This goal is executed before the artificial goal gOutput and allows to calculate the

global fitness based on the received individuals. The remaining goals are thus similar to the SGA’s

(see 4.10).

Id. Goals of the mission Card. Description

m1 gInstantiate(PSA) 1..1 Instantiate the Problem Solving Agents

m2 gAdoptRole(EvoMember) 3..n Adopts the EvoMember role in the EvoFramewok group

m3 pInform(EvoParameters) 5..n Sends the parameters

m4 gCreateSubGroup(CCGA), gAdop-

tRole(CCGA,Solver), gAdopt-

Role(CCGA,Producer)

3..n Creates CCGA group and adopts the Solver and Producer roles

in it

m5 pInform(start) 4..n Sends a start message

m6 pTime(start, stop, ready, n) 4..n Sends start and stop messages with a time interval n

m7 gMonitoring 3..n Monitors if keeps Producer role or switch to Consumer

m8 pInform(alpha) 4..n Sends individuals alpha (best or best and random)

m9 gLeaveRole(CCGA,Producer),

gAdoptRole(CCGA,Consumer),

gEvaluate, gRunGA, gLeave-

Role(CCGA,Consumer), gAdopt-

Role(CCGA,Producer)

3..n Takes the Producer role instead of the Consumer, evaluates the

indiv. of a population, runs a generation of a SGA and takes

back the Consumer role instead of the producer

m10 pInform(BestIndividual) 4..n Sends the best indiv. of a generation of the SGA

m11 gGlobalFitness 1..n Calculates the global fitness

m12 gLog 1..1 Logs the best and average fitness

m13 gGraphAndLog 1..1 Logs the best and average fitness and print the corresponding

graphs

Table 4.5: Missions definition of the FS of the CCGA

The missions defined for the CCGA are reported in Table 4.5. The Fabric Scheme groups the

missions m1, m2, m3, m4, m5 and m6 concerning the instantiation of the OE and the startup of the

computation process.

120



4.6 CGAs Organizational Model

m1 has a cardinality (1..1) since respectively only one fabric agent can be involved in this mission.

m2 and m4 have a cardinality (3..n) since at least three problem solving agents (PSAs) will achieve

these missions. m3, m5 and m6 have a cardinality (4..n) since they include an interactional goal which

will involve the fabric agent and at least three problem solving agents.

The same way, the optimization scheme groups the missions of the related to the CCGA computa-

tion. The supervisorial goal gMonitoring is set in a mission (m7), the interactional goal pInform(alpha)

is set in a mission m8, the organizational goals gLeaveRole(CCGA, Producer),gAdoptRole(CCGA, Con-

sumer), gLeaveRole(CCGA, Consumer), gAdoptRole(CCGA, Producer), the functional goal gEvalu-

ate in which all individuals of a population are evaluated and the functional goal gRunGA run-

ning one generation of a SGA are all grouped in the same mission m9. The interactional goal pIn-

form(BestIndividual) is set in a mission (m10).

Finally, the Observation scheme groups the missions related to the observation of the computation,

m11 which contains the functional goal gGlobalFitness and m12, m13, which either log the best fitness

received and the calculated average fitness or log the best fitness received, the calculated average

fitness and print the corresponding graphs.

4.6.1.3 Dialogic Specification

Inform(content)

Receiver

Group

Inform(content1)

Inform(content2)

Agree(content3)

pInform(Group, Sender, Receiver, content)

pTime(Group, Sender, Receiver, Content1, Content2, Content3, n)

{n seconds}

Sender

Group

ReceiverSender

Figure 4.15: CCGA Dialogic Specification

As can be seen, the dialogic specification of the CCGA is similar to SGA’s (see 4.12). Indeed, only

the pInform and the pTime generic interaction protocols are required as shown in the FS (see Fig.

4.14).

121

Chapter3/Chapter3Figs/EPS/Dialogic_Specification_SGA.eps


4.6 CGAs Organizational Model

4.6.1.4 Normative Specification

The following table presents the normative description of the CCGA using MAS4EVO. We will pro-

vide a textual description for the norms which differ from the ones defined for the SGA (see 4.5.5.4),

which are N04 , N07 , N08 and N11. N1, N2, N3, N5 and N6 are similar to the same norms of SGA.

N09 for the CCGA is similar to N07 for the SGA, and the same applies for norms N10 similar to N08,

N12 similar to N09 and finally N13 similar to N10.

SS FS

n ϕ op bearer m p s

N01 true obl EvoBuilder m1 — Fabric

N02 true obl EvoAgent m2 — Fabric

N03 true obl EvoBuilder, EvoMember, Observer m3 — Fabric

N04 true obl EvoMember m4 — Fabric

N05 term==iterations obl EvoBuilder, EvoMember m5 — Fabric

N06 term==time obl EvoBuilder, EvoMember m6 n Fabric

N07 true obl Solver m7 is true ? (switch to Consumer) Optimization

N08 true obl Producer, Consumer m8 alpha Optimization

N09 true obl Solver m9 — Fabric

N10 true obl Producer, Observer m10 — Optimization

N11 true obl Observer m11 — Observation

N12 mode==batch obl Observer m12 — Observation

N13 mode==graphical obl Observer m13 — Observation

Table 4.6: Normative Specification of the CCGA

The norm N04 is an obligation for the EvoMember to perform the mission m4 of the Fabric scheme

which consists in two organizational actions. The first action (createsubGroup(SGA, DAFO)) means

that the EvoMember has to create a subgroup of the DAFO group called CCGA and the second action

(adoptRole(Solver, CCGA)) means that the same EvoMember has to take the role Solver in this new

CCGA group.

The norm N07 is an obligation for the Solver to monitor if it is its turn to play the Producer role

or not.

Norm N08 is an obligation for the Producer and the Consumer to fulfil the mission m8 of the

Optimization Scheme which consists in the interactional goal pInform(CCGA, Producer, Consumer,

alpha). This means that in the CCGA group, the Producer has to send its alpha individuals (best or

best and random) to the Consumer.

The norm N09 is an obligation for the Solver to achieve the mission m9 of the Optimization scheme.

Norm N11 is an obligation for the Observer to fulfil the functional mission m11.

122



4.6 CGAs Organizational Model

4.6.2 LCGA Model

This section provides a model of the LCGA with a ring topology using MAS4EVO. LCGA is a com-

petitive CGA with no restriction concerning the topology of communication between the different

subpopulations. Due to the optimization problems we tackled in chapter 7 and chapter 8, we modeled

a LCGAs using ring or complete graph topologies. We therefore chose to use topologies based on a

ring, in which it is possible to augment the number of neighbors, from 1 to n-1 (n being the number

of PSAs) as illustrated in the following figure.

Numberofneighbors = 1 Numberofneighbors = 2

Figure 4.16: LCGA Topologies

As for the CCGA, it will be necessary to have several EvoAgents (at least 3) to represent the

subpopulations. Since in these possible topologies one PSA will communicate with one or several

neighbors, a new type of group is introduced, Solving Unit, which will contain one Producer role and

one to several Consumer roles. In order to create a ring, the same PSA will play the Consumer role in

one Solving Unit group and the Producer role in the next Solving Unit group. These new group and

cardinalities are described in 4.17.

Contrary to CCGA, in LCGA there is no synchronous exchange of individuals between the subpop-

ulations and thus no monitoring of the organization and no modification of the OE (i.e. no switching

from Producer to Consumer roles and vice versa). The individuals exchanged between subpopulations

are also different since in LCGA random individuals are sent contrary to the best or best and random

of the CCGA. This will be taken into consideration with a new parameter in the pInform interaction

protocol (i.e. random).

Another difference is the collaborative process introduced in LCGA. Once one subpopulation has

calculated the fitness values of its individuals, based on the individuals of its neighbor, these fitness

values are sent to the same neighbor population which will use these fitness values to reevaluate its

own individuals (typically the average between the fitness it calculated and the fitness it received).

This will be tackled in the functional specification as a new functional goal (gReEvaluate) and new

possible parameters in the pInform interaction protocol (i.e. fitnesses) as described in 4.6.2.2.

123

Chapter5/Chapter5Figs/EPS/Ring_to_Complete.eps


4.6 CGAs Organizational Model

4.6.2.1 Structural Specification

Consumer

Solver

Producer

Observer EvoBuilderEvoMember

DAFO

Solving Unit

LCGA

All 1..n 1..1

1..1 1..1

1..1

All

All

All

All

Figure 4.17: LCGA Structural Specification

Figure 4.17 represents the graphical representation of the structural specification of the CCGA

using MAS4EVO. The root group is the DAFO group which is composed of a single group LCGA

(cardinality “1..1”). The DAFO contains one EvoBuilder role (cardinality “1..1”), one Observer role

(cardinality “1..1”) and all the EvoMember roles (cardinality “All”). The LCGA group is composed of

all the Solver roles (cardinality “All”) which inherits from the EvoMember role. The difference with

the CCGA in terms of group lies in the addition of the Solving Unit groups which are all contained

in the LCGA group. Each Solving Unit group contains one Producer role (cardinality “1..1”) and one

to several Consumer roles (cardinality “1..n”) which inherits from the Solver role. The Consumer and

Producer roles are also all contained in the LCGA group (cardinality “All”).

The EvoBuilder role possesses an authority link on the EvoMember role since it will control the

lifecycle of the EvoMember (e.g. instantiation). The EvoMember possesses a communication link with

the EvoBuilder role which will be used to provide information concerning its lifecycle (e.g. ready to

compute). The Solver role also has a communication link but with the Observer role so as to send

results of its computation process (e.g. the best individual per generation).

The first difference with the CCGA concerns the intra-group communication link between the

Consumer and the Producer roles which is in both directions for the LCGA (due to the feedback of

the Consumer concerning the fitness values obtained) while in CCGA this link was only from the

124

Chapter3/Chapter3Figs/EPS/Structure_LCGA.eps


4.6 CGAs Organizational Model

Producer to the Consumer.

Another difference is the inter-group compatibility link between the Producer and the Consumer

roles which means that one agent can not play both roles in the same instance of the Solving Unit

group but it can in different instances.

4.6.2.2 Functional Specification

Functional 
Scheme

gCompute

gDafo

gEvaluate gRunGA

gOptimize

m8 m8

Observation 
Scheme
gObserve

gGlobalFitness gOutput

gLog gGraphAndLog

m11

m12 m13

Optimization 
Scheme

Fabric
 Scheme

Optimization 
Scheme

Observation 
Scheme

pInform(random)
m7

pInform(BestIndividual)
m10

pInform(fitnesses)
m9

gReEvaluate
m8

Fabric
Scheme

gOrganize

m1 gLaunch

pInform(‘start’) pTime(‘start’,’stop’,’ready’, n)

m3

m5 m6

pInform(EvoParameters)

m4

gCreateGroups
m2

gAdoptRoles

m4

m4

m4 m4
gAdoptRole
(Consumer,
SolvingUnit)

gInstantiate(PSA) gAdoptRole
(EvoMember, DAFO)

gAdoptRole
(Solver, LCGA)

gCreateSubGroup
(LCGA, DAFO)

gCreateSubGroup
(SolvingUnit, LCGA)

gAdoptRole
(Producer, 

SolvingUnit)

* [ *=r | t ]

Key

Goal

Choice Parallelism

missions

* [ *=r | t ]Goal repetition:

Sequence

Figure 4.18: Functional Specification of the LCGA

Figure 4.18 represents the functional specification of the LCGA using MAS4EVO. As for the SGA

and the CCGA, the specification is built on four social schemes, a functional scheme (considered as

the main scheme of the FS) which root goal is to run the DAFO framework (gDafo), a fabric scheme

which root goal is to initialize the problem solving agent (gOrganize), an optimization scheme which

root goal is to optimize a problem (gOptimize) and an observation scheme which root goal is to provide

an output of the results obtained by the GA (gOutput). All these root goals are artificial goals and

consequently are not attached to a mission.

125

Chapter3/Chapter3Figs/EPS/Functional_Specification_LCGA.eps


4.6 CGAs Organizational Model

The functional scheme is similar to the SGA’s and the CCGA’s ones (see 4.10).

The Fabric Scheme of the LCGA is based on the CCGA’s one in which a LCGA group is created

instead of a CCGA group. It also adds the creation of the new SolvingUnit groups (gCreateSub-

Group(SolvingUnit, LCGA)) and the adoption of the Producer and Consumer roles in these new

groups (gAdoptRole(Consumer, SolvingUnit) and gAdoptRole(Producer, SolvingUnit)).

The Optimization Scheme is more different from the CCGA’s since in LCGA there is no need to

monitor the organization and no modification of the OE (i.e. no switching from Producer to Consumer

roles and vice versa). The artificial root goal gOptimize is thus satisfied once the following goals are

sequentially achieved:

- pInform(random) interactional goal in which a message containing random individuals is sent,

- gEvaluate functional goal in which all individuals of a population are evaluated on the optimization

problem,

- pInform(fitnesses) interactional goal in which a message containing the fitness values obtained with

the received individuals are sent. This is due to the collaborative process introduced in LCGA in

which the fitness values obtained by one subpopulation on the individuals it received are sent to the

neighbor,

- gReEvaluate functional goal calculating the new fitness value according to the fitness values received.

This allows to reevaluate the individuals sent based on the fitness values received,

- gRunGA functional goal running one generation of a SGA,

- pInform(BestIndividual) interactional goal in which a message containing the best individual is sent.

Finally Observation Scheme is similar to the CCGA’s (see 4.6.1.2).

The missions defined for the LCGA are reported in Table 4.7. The Fabric Scheme groups the

missions m1, m2, m3, m4, m5 and m6 concerning the instantiation of the OE and the startup of the

computation process.

m1 has a cardinality (1..1) since only one fabric agent can be involved in this mission. m2 and m4

have a cardinality (3..n) since at least three problem solving agents (PSAs) will achieve these missions.

m3, m5 and m6 have a cardinality (4..n) since they include an interactional goal which will involve

the fabric agent and at least three problem solving agents.

The same way, the optimization scheme groups the missions related to the LCGA computation.

The interactional goal pInform(random) is set in a mission (m7), the functional goals gEvaluate,

gReEvaluate and gRunGA are set in a mission (m8), and the interaction goals pInform(fitnesses) and

pInform(bestIndividual) are set in missions m9 and m10.

126



4.6 CGAs Organizational Model

Id. Goals of the mission Card. Description

m1 gInstantiate(PSA) 1..1 Instantiate the Problem Solving Agents

m2 gAdoptRole(EvoMember) 3..n Adopts the EvoMember role in the EvoFramewok group

m3 pInform(EvoParameters) 4..n Sends the parameters

m4 gCreateSubGroup(LCGA, DAFO), gCre-

ateSubGroup(SolvingUnit, LCGA),

gAdoptRole(Solver, LCGA), gAdopt-

Role(Consumer,SolvingUnit), gAdopt-

Role(Producer,SolvingUnit)

3..n Creates the LCGA and the Solving Unit groups and adopts

the Solver, Consumer and Producer roles

m5 pInform(start) 4..n Sends a start message

m6 pTime(start, stop, ready, n) 4..n Sends start and stop messages to the with a time interval

n

m7 pInform(random) 4..n Sends random individuals

m8 gEvaluate, gReEvaluate, gRunGA 3..n Evaluates the indiv. of a population, re-evaluates according

to the fitness received and runs a generation of a SGA

m9 pInform(fitnesses) 3..n Sends fitness values

m10 pInform(bestIndividual) 2..2 Sends the best indiv. of a generation of a SGA

m11 gGlobalFitness 1..1 Calculates the global fitness

m12 gLog 1..1 Logs the best and average fitness

m13 gGraphAndLog 1..1 Logs the best and average fitness and print the correspond-

ing graphs

Table 4.7: Missions definition of the FS of the LCGA

Finally, the Observation scheme groups the missions related to the observation of the computation.

m11 contains the functional goal gGlobalFitness and m12, m13, respectively log the best fitness re-

ceived and the calculated average fitness or log the best fitness received, the calculated average fitness

and prints the corresponding graphs.

4.6.2.3 Dialogic Specification

As for the CCGA, the dialogic specification is similar to the SGA’s (see 4.12). Indeed, only the

pInform and the pTime generic interaction protocols are required as shown in the FS (see Fig. 4.18).

4.6.2.4 Normative Specification

The following table presents the normative description of the LCGA using MAS4EVO. We will provide

a textual description for the norms which differ from the ones defined for the CCGA (see 4.6.1.4),

which are N04 , N07 , N08 and N09.

The norm N04 is an obligation for the EvoMember to perform the mission m4 of the Fabric

scheme which consists in two organizational actions. The first two organizational actions createsub-

Group(LCGA, DAFO) and createsubGroup(SolvingUnit, LCGA) mean that the EvoMember has to

create a subgroup of the DAFO group called LCGA and subgroups of the LCGA group called Solvin-

gUnit. The next three organizational actions oblige the EvoMember to take the role Solver in the

LCGA group and the roles Consumer and Producer in two consecutive SolvingUnit groups.

Norm N07 is an obligation for the Producer and the Consumer to fulfil the mission m8 of the Opti-

mization Scheme which consists in the interactional goal pInform(SolvingUnit, Producer, Consumer,

127



4.7 Conclusion

SS FS

n ϕ op bearer m p s

N01 true obl EvoBuilder m1 — Fabric

N02 true obl EvoAgent m2 — Fabric

N03 true obl EvoBuilder, EvoMember, Observer m3 — Fabric

N04 true obl EvoMember m4 — Fabric

N05 term==iterations obl EvoBuilder, EvoMember m5 — Fabric

N06 term==time obl EvoBuilder, EvoMember m6 n Fabric

N07 true obl Producer, Consumer m7 — Optimization

N08 true obl Consumer m8 — Optimization

N09 true obl Consumer, Producer m9 — Optimization

N10 true obl Producer, Observer m10 — Optimization

N11 true obl Observer m11 — Observation

N12 mode==batch obl Observer m12 — Observation

N13 mode==graphical obl Observer m13 — Observation

Table 4.8: Normative Specification of the LCGA

random). This means that in the SolvingUnit group, the Producer has to send its random individuals

to the Consumer.

The norm N08 is an obligation for the Consumer to achieve the mission m9 of the Optimization

scheme.

Norm N09 is an obligation for the Producer and the Consumer to fulfil the mission m9 of the Opti-

mization Scheme which consists in the interactional goal pInform(SolvingUnit, Consumer, Producer,

fitnesses). This means that in the SolvingUnit group, the Consumer has to send its fitness values to

the Producer.

4.7 Conclusion

This chapter introduced the MAS4EVO of the DAFO framework. This description has been done

using the vowel approach (AEIO), from the BDI-like agent architecture in 6.2.1, to the environment

and the interactions described in 4.3 and finally the organization in 4.5.

In order to meet our requirements, we proposed a new organizational model dedicated to evolution-

ary optimization and based on Moise+, MAS4EVO. Its structural, functional specifications extending

Moise+ were described respectively in 4.5.2 and in 4.5.3 and two new specifications were introduced,

a dialogic specification (see 4.5.4) and a normative specification (see 4.5.5). The use of these four

specifications was illustrated by the modeling example of a SGA.

128



4.7 Conclusion

Finally, MAS4EVO was used to model two existing CGAs which are available in DAFO, the

CCGA and the LCGA. Through these two examples it was demonstrated that with few changes in

these specifications it is possible to switch from one CGA to the other.

129



Chapter 5

Hybrid and Dynamic LCGA

Models

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 hLCGA : A new hybrid LCGA . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.1 hLCGA Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.2 hLCGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 dLCGA: a new dynamic LCGA . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 dLCGA Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.2 dLCGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

130



5.1 Introduction

5.1 Introduction

The previous chapter introduced a new organizational model dedicated to evolutionary optimization

and its use for modeling two existing coevolutionary genetic algorithms, a cooperative (CCGA) and

a competitive (LCGA).

This chapter introduces two new CGAs based on LCGA which have been developed in DAFO, a

hybrid one and a dynamic one, respectively called hLCGA (see section 5.2) and dLCGA (see section

5.3). For each of those two algorithms, a general description of their functioning is provided and then

their complete organizational model using the four specifications of MAS4EVO (structural, functional,

dialogic and normative) is detailed.

5.2 hLCGA : A new hybrid LCGA

As previously mentioned in chapter 2.2.4.1, hybridization of GAs has been a very active research

area. However, hybrid coevolutionary genetic algorithms have been rarely tackled, except in [25], in

which Son and Bladwick hybridized a CCGA with a hill-climbing algorithm. Due to the few existing

researches in this area, we decided to investigate the hybridization of the LCGA with different local

search algorithms.

Section 5.2.1 presents a detailed description of hLCGA, the new hybrid LCGA. In section 5.2.2 we

describe hLCGA’s organizational model using MAS4EVO’s organizational specifications.

5.2.1 hLCGA Description

Although it is possible to make a genetic algorithm hybrid in different ways, latest published articles

[25] have shown that combining genetic algorithms with local search algorithms are one of the best

approaches for improving the results.

For this reason we chose to hybridize LCGA with various local search algorithms that are described

below:

• Steepest Ascent Hill Climbing (SAHC): systematically flips each single bit of the chromosome

and records all the obtained fitness values. The resulting chromosome with the highest fitness is

kept if its fitness value is better than the fitness value of the initial chromosome. If no modified

chromosome gives a better result, the algorithm stops.

• Next Ascent Hill Climbing (NAHC): systematically flips each bit from left to right until the

resulting fitness increases. If the fitness increased then the flipped bit is kept otherwise it is

flipped back. If there is no improvement once at the end of the chromosome, the algorithms

stops.

131



5.2 hLCGA : A new hybrid LCGA

• Random Bit Climbing (RBC) [153][154]: similar to NAHC, except that there is no left to right

iteration. Instead a random permutation is generated to determine the order in which bits flips

are tested. After flipping every bit in the initial solution string, a new random sequence is chosen

for testing the bits and the bit climber again checks every bit for an improvement. If the bit

climber has tested every bit and no improvement is found, a local optimum has been reached.

• Dynamic Hill Climbing (DHC): introduced by Yuret in [155], it is based on the following main

key heuristics: adjusting the size of probing steps to suit the local nature of the terrain, shrinking

when probes do poorly and growing when probes do well and keeping track of the directions of

recent successes, so as to probe preferentially in the direction of most rapid ascent.

• Tabu Search (TS) [156]: The tabu search algorithm is built around two important aspects, the

tabu list that memorizes the last forbidden moves and the aspiration criteria that allows a tabu

status of a tabu move to be overwritten. In case tabu is combined with GA, every individual

in the population maintains a tabu list. The tabu list is kept from one generation to the other

until the individual is replaced by offspring.

Below is the hybrid LCGA algorithm showing where the local search has been incorporated:

Algorithme 6 : hLCGA

gen = 0

foreach players do
Pops(gen) = randomly initialized population

evaluate local fitness of each individual i in Pops(gen) : ui(s0, s1, . . . , si, . . . , sN−1)

end

while termination condition = false do
gen = gen + 1

foreach players do
select Pops(gen) from Pops(gen− 1) based on fitness

apply genetic operators to Pops(gen)

evaluate local fitness of each individual i in Pops(gen) : ui(s0, s1, . . . , si, . . . , sN−1)

apply local search on a percentage of Pops(gen)

end

end

Coming with the local search addition, some new parameters can be fine-tuned: the exchange rate

fixing the proportion of the population that will be optimized by the local search (it is also possible

to apply local search only on the current best individual) and the choice between a restricted or a

complete search. If restricted, the local search algorithm will stop after the first improvement and if

complete the local search algorithm will be fully executed.

5.2.2 hLCGA Model

This section provides a model of the hLCGA with a ring topology using MAS4EVO.

132



5.2 hLCGA : A new hybrid LCGA

The model of this hybrid LCGA is therefore based on the LCGA’s presented in 4.6.2. To make

the LCGA hybrid, each PSA running a SGA and representing one subpopulations of the LCGA will

communicate with another new PSA running one local search algorithm (i.e. the gRunLS functional

goal as described in 4.4.2). This topology is represented in Figure 5.1.

PSA
GA

PSA
GA

PSA
GA

PSA
GA

PSA
GA

PSA
GA

PSA
GA

PSA
LS

PSA
LS

PSA
LS

PSA
LS

PSA
LS

PSA
LS

Figure 5.1: hLCGA with ring topology

As for the LCGA, it will be necessary to have several PSA (at least 3) to represent the subpopu-

lations and consequently three additional PSA to run the local search algorithm. In order to allow a

communication between these PSAs, a new type of group was added in the SS , LocalSearchUnit, in

which the PSA running a SGA will play the Solver role and the PSA running the LS algorithm will

play a new LocalSearcher role (see 5.2).

These new LocalSearchUnit groups will have to be created and these new LocalSearcher roles will

have to be adopted by the additional PSAs. This will be tackled in the FS with the addition of

the organizational goals gCreateSubGroup(LocalSerach, DAFO) and the gAdoptRole(LocalSearcher,

SolvingUnit).

Once the OE instantiated, it is necessary to run the LS algorithm. This is also achieved in the FS

by adding the exchange of individual(s) (best individual or population rate defined by the parameter

alpha) from the Solver role to the LocalSearcher with the interactional goal pInform(alpha). Then the

LS algorithm is run with the functional goal gRunLS and finally the optimized individual(s) are sent

back using the same interactional goal pInform(alpha).

These new goals will be part of new missions which will be attached to roles in new norms of the

NS (see 5.2.2.4).

133

Chapter4/Chapter4Figs/EPS/hLCGA_Model.eps


5.2 hLCGA : A new hybrid LCGA

5.2.2.1 Structural Specification

Consumer

Solver

Producer

Observer EvoBuilderEvoMember

DAFO

Solving Unit

LCGA

All

All 1..n 1..1

1..1 1..1

1..1

All

LocalSearcher

LocalSearch
Unit

2

1..1

1..1

All

All

All

All

Figure 5.2: hLCGA Structural Specification

The SS of the hLCGA presented in Figure 5.2 is thus similar to the LCGA’s SS plus the addi-

tion of the new group LocalSearchUnit which is a subgroup of the DAFO group and of the new role

LocalSearcher. All the instances of the LocalSearchUnit subgroup are contained in the DAFO group

(cardinality “All”).

The LocalSearch Unit group contains exactly one Solver role and one LocalSearcher role (cardinal-

ity “1..1”) which both inherit from the EvoMember role. Those two roles have to be played by two

different agents due to the cardinality “2” on the group.

The LocalSearcher role and the EvoMember role have a new compatibility link which means that

the same agent can play both roles in the same instance of the DAFO group (we do not mention the

LCGA group since it is a subgroup of the DAFO group).

Finally, a new intra-group communication link between the LocalSearcher and the Solver roles and

vice versa is added. This will allow the exchange of individual(s) necessary for the LS algorithm.

134

Chapter4/Chapter4Figs/EPS/Structure_hLCGA.eps


5.2 hLCGA : A new hybrid LCGA

Functional 
Scheme

gCompute

gDafo

Observation 
Scheme
gObserve

gGlobalFitness gOutput

gLog gGraphAndLog

m15

m16 m17

Fabric
 Scheme

Optimization 
Scheme

Observation 
Scheme

gEvaluate gRunGA

gOptimize

m9 m9

Optimization 
Scheme 
(alpha)

m8 m14m13
gReEvaluate

m9
gRunHybrid

gRunLS
m11

pInform(alpha)
m10 m12

pInform(random) pInform(bestIndividual)pInform(fitnesses)

Fabric
Scheme

gOrganize

m1 gLaunch

pInform(‘start’) pTime(‘start’,’stop’,’ready’, n)

m3

m6 m7

pInform(EvoParameters)

m4

gCreateGroupsm2 gAdoptRoles

m4

m4

gAdoptRole
(Consumer,
SolvingUnit)

m4 m4

pInform(alpha)

m5

m5

gInstantiate(PSA) gAdoptRole
(EvoMember, DAFO)

gAdoptRole
(Solver, LCGA)

gCreateSubGroup
(LocalSerach, DAFO)

gCreateSubGroup
(LCGA, DAFO)

gCreateSubGroup
(SolvingUnit, LCGA)

gAdoptRole
(Producer, 

SolvingUnit)

gAdoptRole
(LocalSearcher, 

SolvingUnit)

* [ *=r | t ]

Key

Goal

Choice Parallelism

missions

* [ *=r | t ]Goal repetition:

Sequence

Figure 5.3: Functional Specification of the hLCGA

5.2.2.2 Functional Specification

The FS of the hLCGA represented in Figure 5.3 is also similar to the FS of the LCGA (see 4.6.2.2)

plus the addition of the two goals in the Fabric Scheme and three goals in theOptimization Scheme.

The two additional goals of the Fabric Scheme are :

- gCreateSubGroup(LocalSerach, DAFO) organizational goal creating the LocalSearch group as a sub-

group of the DAFO group,

- gAdoptRole(LocalSearcher, SolvingUnit) organizational goal in which the LocalSearcher role is taken

in the SolvingUnit group,

The three goals added to the Optimization Scheme are:

- gRunHybrid artificial goal used to group the sequence of goals related to the hybridization,

- pInform(alpha) interactional goal sending the alpha individual(s) (alpha = best individual or popu-

135

Chapter4/Chapter4Figs/EPS/Functional_Specification_hLCGA.eps


5.2 hLCGA : A new hybrid LCGA

lation rate),

- gRunLS functional goal running a local search algorithm.

Id. Goals of the mission Card. Description

m1 gInstantiate(PSA) 1..1 Instantiate the Problem Solving Agents

m2 gAdoptRole(EvoMember) 6..n Adopts the EvoMember role in the EvoFramewok group

m3 pInform(EvoParameters) 7..n Sends the parameters

m4 gCreateSubGroup(LCGA, DAFO), gCre-

ateSubGroup(SolvingUnit, LCGA),

gAdoptRole(Solver, LCGA), gAdopt-

Role(Consumer,SolvingUnit), gAdopt-

Role(Producer,SolvingUnit)

3..n Creates the LCGA and the Solving Unit groups and

adopts the Solver, Consumer and Producer roles

m5 gCreateSubGroup(LocalSerach, DAFO),

gAdoptRole(LocalSearcher, SolvingUnit)

3..n Creates the LocalSearch group and adopts the LocalSolver

role in it

m6 pInform(start) 4..n Sends a start message

m7 pTime(start, stop, ready, n) 4..n Sends start and stop messages with a time interval n

m8 pInform(random) 4..n Sends random individuals

m9 gEvaluate, gReEvaluate, gRunGA 3..n Evaluates the indiv. of a population, re-evaluates accord-

ing to the fitness received and runs a generation of a SGA

m10 pInform(alpha) 3..n Sends individual(s) (best or population rate)

m11 gRunLS 3..n Runs one of the available local search alrgorithm

m12 pInform(alpha) 3..n Sends possibly improved individual(s) (best or population

rate)

m13 pInform(fitnesses) 3..n Sends fitness values

m14 pInform(bestIndividual) 3..n Sends the best indiv. of a generation of a SGA

m15 gGlobalFitness 1..1 Calculates the global fitness

m16 gLog 1..1 Logs the best and average fitness

m17 gGraphAndLog 1..1 Logs the best and average fitness and print the corre-

sponding graphs

Table 5.1: Missions definition of the FS of the hLCGA

The missions defined for the hLCGA are reported in Table 5.1.

The Fabric Scheme groups the missions m1, m2, m3, m4, m5, m6 and m7 concerning the instantiation

of the OE and the startup of the computation process. m1 has a cardinality (1..1) since only one

Fabric Agent can be involved in this mission. m2 has a cardinality (6..n) since all Problem Solving

Agents (genetic and local search) can achieve this mission. m3 has a cardinality (7..n) since all Prob-

lem Solving Agents (genetic and local search) have to receive the EvoParameters. m4 and m5 have a

cardinality (3..n) since at least three problem solving agents will achieve these missions. m6 and m7

have a cardinality (4..n) since they include an interactional goal which will involve the Fabric Agent

and at least three Problem Solving Agents.

The same way, the optimization scheme groups the missions related to the LCGA and to the lo-

cal search algorithm computation. The interactional goal pInform(random) is set in a mission (m8),

the functional goals gEvaluate, gReEvaluate and gRunGA are set in a mission (m9), the interaction

goals pInform(alpha) are set in missions m10, m12, pInform(fitnesses) in mission m13 and finally

pInform(bestIndividual) in mission m14.

136



5.2 hLCGA : A new hybrid LCGA

Finally, the Observation scheme groups the missions related to the observation of the computation.

m15 contains the functional goal gEvaluate and m16, m17, either log the best fitness received and the

calculated average fitness or log the best fitness received, the calculated average fitness and prints the

corresponding graphs.

5.2.2.3 Dialogic Specification

As for the CCGA and the LCGA, the dialogic specification is similar to the SGA’s (see 4.12). Indeed,

only the pInform and the pTime generic interaction protocols are required as shown in the FS (see

Fig. 5.3).

5.2.2.4 Normative Specification

SS FS

n ϕ op bearer m p s

N01 true obl EvoBuilder m1 — Fabric

N02 true obl EvoAgent m2 — Fabric

N03 true obl EvoBuilder, EvoMember, Observer m3 — Fabric

N04 true obl EvoMember m4 — Fabric

N05 true obl EvoMember m5 — Fabric

N06 term==iterations obl EvoBuilder, EvoMember m6 — Fabric

N07 term==time obl EvoBuilder, EvoMember m7 n Fabric

N08 true obl Producer, Consumer m8 — Optimization

N09 true obl Consumer m9 — Optimization

N10 true obl Solver, LocalSearcher m10 alpha Optimization

N11 true obl LocalSearcher m11 — Optimization

N12 true obl LocalSearcher, Solver m12 alpha Optimization

N13 true obl Consumer, Producer m13 — Optimization

N14 true obl Producer, Observer m14 — Optimization

N15 true obl Observer m15 — Observation

N16 mode==batch obl Observer m16 — Observation

N17 mode==graphical obl Observer m17 — Observation

Table 5.2: Normative Specification of the hLCGA

The following table presents the normative description of the hLCGA using MAS4EVO. We will

provide a textual description for the norms which differ from the ones defined for the LCGA (see

4.6.2.4), which are N05 , N10 , N11 and N12.

N01, N02, N03, N04 and are similar to the same norms of LCGA. N06 for the hLCGA is similar

to N05 for the LCGA, and the same applies for norms N07 similar to N06, N08 similar to N07, N09

similar to N08, and finally N13, N14, N15, N16, N17 in hLCGA are similar to N09, N10, N11, N12,

N13 in LCGA.

137



5.3 dLCGA: a new dynamic LCGA

The norm N05 obliges the EvoMember to fulfil two organizational actions, which are to create a

LocalSearchUnit subgroup (createsubGroup(LocalSearchUnit, EvoFramework)) and to take the Lo-

calSearcher in it (roleadoptRole(LocalSearcher, LocalSearchUnit)).

N10 is a obligation for the Solver and the LocalSearcher to fulfil the mission m10 of the Optimiza-

tion Scheme which consists in the interactional goal pInform(LocalSearchUnit, Solver, LocalSearcher,

alpha)), Optimization Scheme). This means that in the LocalSearchUnit group, the Solver has to

send its alpha individuals (best or population rate) to the LocalSearcher. The norm N12 obliges the

same process but the opposite way (LocalSolver to Solver).

N11 is an obligation for the LocalSolver to fulfil mission m11.

5.3 dLCGA: a new dynamic LCGA

As mentioned in chapter 2.2.4.2, a few previous researches have tackled the adaptive CGAs, also

known as dynamic CGAs. We have seen that these related works focused either on the adaptation of

the number of populations (see [26]) or on the adaptation of the parameters (see [27] and [28]).

Our contribution consists in building a dynamic LCGA, in which the topology of communication

between the population evolves during runtime. Indeed, contrary to CCGA where the topology is

fixed (i.e. fully connected graph), using LCGA makes no restriction on the communication graph,

since it fully depends on the decomposition of the optimized problem.

Section 5.3.1 presents a detailed description dLCGA, the new dynamic LCGA. In section 5.3.2 we

describe dLCGA’s organizational model using MAS4EVO’s organizational specifications.

5.3.1 dLCGA Description

dLCGA is a new dynamic version of LCGA, which graph of interaction is modified each n generations

of the algorithm. The modification is achieved through a cooperative process starting with the first

player who randomly chooses a new position in the graph of interaction and informs all the other

players of his local decision. The next player in the graph will then randomly choose a new position

among the remaining available ones and inform the other players. This process is iteratively executed

by all players. Once finished, each player goes to its new position and the algorithm runs again for n

generations.

Through this random process, each population exchanges information with different populations

during runtime, and thus has to evaluate its individuals using different parts of the solution.

Figure 5.4 shows an example of a dLCGA using a ring topology using a simplified view of an

organizational entity (OE). After n generations of the algorithm, all Evolutionary Agents leave the roles

138



5.3 dLCGA: a new dynamic LCGA

A0 A3

A1 A2

A0 A3

A1 A2

Evo0

Evo1

Evo2

Evo3
A3

A1

A2

Evo0

Evo1

Evo2

Evo3

A0
EvoFramework

Figure 5.4: dLCGA dynamics

they play in the Evo groups. Consequently, they only play a role in the “base” group EvoFramework

and this way they communicate all together in order to define the groups in which each of them will

play a role. Once they all know their new location, they take their roles in the newly defined groups.

5.3.2 dLCGA Model

This section provides a model of the dLCGA with a ring topology using MAS4EVO. As for the

hLCGA, the dLCGA’s model is based on the LCGA’s presented in 4.6.2.

Since the topology changes consist in moving the PSAs on the ring, this only affects the organiza-

tional entity (OE) and not the organizational specification (OS). Therefore, the structural specification

of the dLCGA is similar to the LCGA’s.

The reorganization process is started after a predefined number of generation in each subpopula-

tion. This means that each PSA will have to monitor its computation in order to verify if the condition

is met or not, this will be achieved by a new supervisorial goal gMonitoring. Once this condition met,

each PSA will leave its Consumer and Producer roles in its SolvingUnit groups, which will be done with

two new organizational goals gLeaveRole(Producer, SolvingUnit) and gLeaveRole(Producer, SolvingU-

nit). Then the PSAs will have to negotiate with each other to find their new groups. This will be

achieved with a new interactional goal pNegotiate, which implies the definition of a new interaction

protocol in the dialogic specification (see 5.3.2.3). Finally the PSAs will adopt their Consumer and

Producer roles in their newly defined SolvingUnit groups using the gAdoptRole(Producer, SolvingUnit)

and gAdoptRole(Producer, SolvingUnit) organizational goals. All these new goals will be grouped in

a new social scheme called Reorganization Scheme.

These new goals will be part of new missions which will be attached to roles in new norms of the

NS (see 5.3.2.4).

139

Chapter4/Chapter4Figs/EPS/dLCGA.eps


5.3 dLCGA: a new dynamic LCGA

5.3.2.1 Structural Specification

As already mentioned, the SS of the dLCGA is similar to the SS of the LCGA (see 4.17).

5.3.2.2 Functional Specification

Functional 
Scheme

gCompute

gDafo

Observation 
Scheme
gObserve

gGlobalFitness gOutput

gLog gGraphAndLog

m13

m14 m15

gDynamic

Reorganization 
Scheme

gLeaveGroups pNegotiate
(groupnumber)

gJoinNewGroups

gReorganize

m12

Observation 
Scheme

Optimization 
Scheme

Reorganization 
Scheme

gMonitoring

Fabric
 Scheme

m11

m11

gEvaluate gRunGA

gOptimize

m8 m8

Optimization 
Scheme

pInform(random)
m7

pInform(BestIndividual)
m10

pInform(fitnesses)
m9

gReEvaluate
m8

Fabric
Scheme

gOrganize

m1 gLaunch

pInform(‘start’) pTime(‘start’,’stop’,’ready’, n)

m3

m5 m6

pInform(EvoParameters)

m4

gCreateGroups
m2

gAdoptRoles

m4

m4

m4 m4
gAdoptRole
(Consumer,
SolvingUnit)

gInstantiate(PSA)
gAdoptRole

(EvoMember, DAFO)

gAdoptRole
(Solver, LCGA)

gCreateSubGroup
(LCGA, DAFO)

gCreateSubGroup
(SolvingUnit, LCGA)

gAdoptRole
(Producer, 

SolvingUnit)

gLeaveRole
(Producer, 

SolvingUnit)

m11
gLeaveRole
(Consumer, 
SolvingUnit)

m11
gAdoptRole
(Producer, 

SolvingUnit)

m11
gAdoptRole
(Consumer, 
SolvingUnit)

* [ *=r | t ]

Key

Goal

Choice Parallelism

missions

* [ *=r | t ]Goal repetition:

Sequence

Figure 5.5: Functional Specification of the dLCGA

Figure 5.5 represents the functional specification of the dLCGA within DAFO. As stated before,

the specification is no more built on four social schemes but one five, due to the introduction of a new

reorganization scheme.

140

Chapter4/Chapter4Figs/EPS/Functional_Specification_dLCGA.eps


5.3 dLCGA: a new dynamic LCGA

The functional scheme is modified to take into account this additional social scheme. The opti-

mization scheme has been replaced by a new artificial goal gDynamic. gDynamic is fulfilled when the

Optimization Scheme and the Reorganization Scheme are sequentially realized.

The artificial root goal gReorganize of the new Reorganization Scheme is satisfied when the supervi-

sorial goal gMonitoring observing if the condition activating the scheme is fulfilled, the organizational

role gLeaveGroups in which the Producer and Consumer roles of the Solving Unit groups are left, the

pNegotiate interaction protocol in which the negotiation is conducted to find the new Solving Unit

groups and the gJoinNewGroups organizational goal in which the the Producer and Consumer are

adopted in the newly assigned Solving Unit groups, are sequentially satisfied.

Id. Goals of the mission Card. Description

m1 gInstantiate(PSA) 1..1 Instantiate the Problem Solving Agents

m2 gAdoptRole(EvoMember) 3..n Adopts the EvoMember role in the EvoFramewok group

m3 pInform(EvoParameters) 4..n EvoBuilder ends the parameters to the EvoMember

m4 gCreateSubGroup(LCGA, DAFO), gCre-

ateSubGroup(SolvingUnit, LCGA),

gAdoptRole(Solver, LCGA), gAdopt-

Role(Consumer,SolvingUnit), gAdopt-

Role(Producer,SolvingUnit)

3..n Creates the LCGA and the Solving Unit groups and

adopts the Solver, Consumer and Producer roles

m5 pInform(start) 4..n EvoBuilder sends a start message to the EvoMember

m6 pTime(start, stop, ready, n) 4..n EvoBuilder sends start and stop messages to the EvoMem-

ber

m7 pInform(random) 4..n Producer send individual(s) to Consumer

m8 gEvaluate, gReEvaluate, gRunGA 3..n Evaluates the indiv. of a population, re-evaluates accord-

ing to the fitness received and runs a generation of a SGA

m9 pInform(fitnesses) 3..n Consumer sends fitness values to the Producer

m10 pInform(bestIndividual) 4..n Consumer sends the best indiv. of a generation to the

Observer

m11 gMonitoring, gLeaveRole(Producer, Solvin-

gUnit), gLeaveRole(Producer, SolvingUnit),

gAdoptRole(Producer, SolvingUnit), gAdop-

tRole(Producer, SolvingUnit)

3..n Monitors and waits until the reorganization criterion is

reached, leaves the Solving Unit groups, joins the new

Solving Unit Groups

m12 pNegociate 3..n Negotiate their new Solving Unit groups

m13 gGlobalFitness 1..1 Calculates the global fitness

m14 gLog 1..1 Logs the best and average fitness

m15 gGraphAndLog 1..1 Logs the best and average fitness and print the corre-

sponding graphs

Table 5.3: Missions definition of the FS of the dLCGA

The missions defined for the dLCGA are reported in Table 5.3. The Fabric Scheme groups the

missions m1, m2, m3, m4, m5 and m6 concerning the instantiation of the OE and the startup of

the computation process. m1 has a cardinality (1..1) since respectively only one fabric agent can be

involved in this mission. m2 and m4 have a cardinality (3..n) since at least three problem solving

agents can achieve these missions. m3, m5 and m6 have a cardinality (4..n) since they include an

interactional goal which will involve the the Fabric Agent and at least three Problem Solving Agents.

141



5.3 dLCGA: a new dynamic LCGA

The same way, the optimization scheme groups the missions of the optimization process of the

related to the LCGA. The interactional goal pInform(random) is set in a mission (m7), the func-

tional goals gEvaluate, gReEvaluate and gRunGA are set in a mission (m8), and the interaction

goalspInform(fitnesses) and pInform(bestIndividual) are set in missions m9 and m10.

The reorganization scheme groups the missions of the reorganization process of the Problem Solv-

ing Agents. The mission m11 groups the supervisorial goal gMonitoring and the organizational goals

gLeaveGroups and gJoinNewGroups, while the mission m12 contains the interactional goal pNegotiate.

Finally, the Observation scheme groups the missions related to the observation of the computation.

m13 contains the functional goal gGlobalFitness and m14, m15, either log the best fitness received

and the calculated average fitness or log the best fitness received, the calculated average fitness and

prints the corresponding graphs.

5.3.2.3 Dialogic Specification

Contrary to the other algorithms specified, a new interaction protocol has been necessary in the reor-

ganization scheme: pNegotiate. pNegotiate is represented in Figure 5.6. This protocol requires three

parameters to be instantiated, respectively a group name, a sender/receiver role and a message con-

tent. As mentioned in the dialogic specification description (see 4.12), this protocol allows to send an

Inform message to the other agents playing the same role as the sender, the sender itself being excluded.

Inform(content)

pNegotiate(Group, Role, content)

Sender

Group

Figure 5.6: dLCGA Dialogic Specification: the pNegotiate Protocol

5.3.2.4 Normative Specification

Table 5.4 presents the normative description of the dLCGA using MAS4EVO. We will provide a tex-

tual description for the norms which differ from the ones defined for the LCGA (see 4.6.2.4), which

are N11 and N12.

142

Chapter4/Chapter4Figs/EPS/Dialogic_Specification_dLCGA.eps


5.4 Conclusion

N01, N02, N03, N04, N05, N06, N07, N08, N09 and N10 are similar to the same norms of LCGA.

N13 for the dLCGA is similar to N11 for the LCGA, and the same applies for norms N14 similar to

N12 and N15 similar to N13.

SS FS

n ϕ op bearer m p s

N01 true obl EvoBuilder m1 — Fabric

N02 true obl EvoAgent m2 — Fabric

N03 true obl EvoBuilder, EvoMember, Observer m3 — Fabric

N04 true obl EvoMember m4 — Fabric

N05 term==iterations obl EvoBuilder, EvoMember m5 — Fabric

N06 term==time obl EvoBuilder, EvoMember m6 n Fabric

N07 true obl Producer, Consumer m7 — Optimization

N08 true obl Consumer m8 — Optimization

N09 true obl Consumer, Producer m9 — Optimization

N10 true obl Producer, Observer m10 — Optimization

N11 true obl Solver m11 is true ? (Reorganize) Reorganization

N12 true obl Solver m12 — Reorganization

N13 true obl Observer m11 — Observation

N14 mode==batch obl Observer m12 — Observation

N15 mode==graphical obl Observer m13 — Observation

Table 5.4: Normative Specification of the dLCGA

The norm N11 is an obligation for the Solver to monitor if the condition for the reorganization is

met.

The norm N12 is an obligation for the Solvers to fulfil the mission m12 which consists in the

interactional goal pNegotiate(LCGA, Solver, groupNumber)), Optimization Scheme). This means

that the Solvers have to negotiate their new SolvingUnit group number.

5.4 Conclusion

This chapter has presented two new competitive coevolutionary genetic algorithms which have been

developed in DAFO, hLCGA and dLCGA, respectively hybrid and dynamic variants of the LCGA.

Their detailed model using MAS4EVO has been introduced, demonstrating the capacity of this

new organizational model to describe such new coevolutionary genetic algorithms.

Indeed, for the hLCGA it was shown that by adding a new group and a new role in the SS and a

a few new goals in the FS to the LCGA’s (and adapting the NS accordingly) it is possible to create a

new hybrid variant.

143



5.4 Conclusion

Similarly, by keeping the same SS as the LCGA and adding a reorganization scheme in its FS it is

possible to create a new dynamic variant of LCGA.

144



Chapter 6

Implementation

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 DAFO Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.1 Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.2 Agents’ Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.3 Agent Organization Management Module . . . . . . . . . . . . . . . . . . . 153

6.2.4 Agent Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.5 Agent Perception Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Agent Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 DAFODL: DAFO Description Language . . . . . . . . . . . . . . . . . . 155

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

145



6.1 Introduction

6.1 Introduction

We have presented in Chapter 4 the MAS4EVO model and its utilization for modeling two existing

CGAs, i.e. CCGA and LCGA. In chapter 5 we have introduced two new CGAs, a hybrid one (hLCGA)

and a dynamic one (dLCGA), and their respective models using MAS4EVO.

After presenting those models, we now provide a description of the implementation of MAS4EVO

that we call DAFO, Distributed Agent Framework for Optimization.

In this chapter, we first provide in section 6.2 an overview of DAFO’s modular architecture. Then

in the next sections, from 6.2.1 to 6.3, a detailed description of each component of DAFO is given,

based on UML class diagrams. Finally section 6.1 presents DAFODL, the description language which

allows the DAFO user to specify parameters concerning the agents organization and the algorithm’s

parameters.

6.2 DAFO Agent Architecture

Organization Entity (OE)

Behaviors

Communication

Agent

Perception

Modules interactions:
Module:

Key

External interactions:

Figure 6.1: DAFO’s Modular Architecture

Figure 6.1 provides a modular view of the DAFO agents architecture. These modules are the

implementation of the conceptual model of the MAS4EVO agent presented in Figure 4.2. The imple-

mentation of the DAFO agents is based on the Madkit API provided by the Madkit platform.

The Agents module represents the three different agents, i.e. the Problem Solving Agent (PSA),

the Observation Agent (OA) and the Fabric Agent (FA). This module embeds an internal engine which

manages the lifecycle of the agent and the activation of its different internal modules.

146

Chapter5/Chapter5Figs/EPS/DAFO_Architecture.eps


6.2 DAFO Agent Architecture

The Organization Entity (OE) module represents the instantiation of the four MAS4EVO or-

ganization specifications (structural, functional, dialogic and normative). This module benefits from

the agent API (Madkit) by using the available structural primitives, i.e. groups and roles.

The Communication module implements the interaction mechanisms and more particularly the

interaction protocols defined in the MAS4EVO’s Dialogic Specification. This module also benefits

from the Madkit API since by using its message primitives.

The Behaviors module contains the set of behaviors, in a Jade-like way [157], available to the

agents. Depending on the missions it has to fulfil, an agent will activate one or several behaviors. A

behavior uses some skills to realize the goals corresponding to the mission.

The behaviors module is linked to the OE module since, it will be in charge of adopting role(s) in

group(s) in the instantiation of the Structural Specification (SS) as well as satisfying the missions and

goals defined in the instantiation of the Functional Specification (FS) which is part of the OE.

The behaviors module is also linked to the Communication module since some missions can imply

interactional goals. In that case, interaction protocols embedded in the Communication module will

have to be used.

The Perception allows the agent to perceive its environment, i.e. the other agents of the system

and the MAS environment (which is the optimization problem provided by the user). The perception

of the other agents is a functionality provided by the Madkit API.

The DAFO framework has thus been built on top of Madkit, which is implemented in JAVA. We

consequently used the same programming language. In order to describe the object oriented imple-

mentation of DAFO, we make use of the Unified Modeling Language (UML). The following sections

provide a detailed description of each of the aforementioned modules.

6.2.1 Agent Architecture

madkit.kernel.Agent

ObservationAgentFabricAgent ProblemSolvingAgent

Figure 6.2: UML class diagram of DAFO’s agents

147

Chapter5/Chapter5Figs/EPS/Agent_Class_Diagram.eps


6.2 DAFO Agent Architecture

Since DAFO is implemented on top of the Madkit API, all the agents of the system inherit from the

Madkit Agent class, as represented in Figure 6.2. The three different agent types defined in MAS4EVO

in 6.2.1, Observation Agent, Fabric Agent and Problem Solving Agent, are therefore modeled as three

classes inheriting from the madkit.kernel.Agent class.

6.2.2 Agents’ Behaviors

Behaviors are used by the agents, depending on the parameters set by the user, to ensure the satis-

faction of the norms defined in the NS. Behaviors will therefore be in charge of realizing the missions

defined in the Functional Specification and consequently the goals of these missions.

This is represented in the UML class diagram of Figure 6.3 in which the Behavior class has a link

with the Norm. The Norm class has a link with the Mission class to express on what the norm is

applied. A Mission contains one or several Goals (composition link). The Plan class represents the

subgoals specifying another goal. This class is composed of the Goal class representing the subgoals.

It has also a link with the same Goal class to define the root goal of the plan.

Goal

Norm Mission

Plan

-End231
-End24*

1..1

1..*
-End27

1

-End28

*
1..1 1..*

-End29

*

-End30

*

-End31

*

-End32

*

1..1 1..1
head

subGoals

1..1 1..1

Behavior -End33

*

-End34

*
1..*1..1

missionnorm

Figure 6.3: UML Representation of Norms

6.2.2.1 Problem Solving Behaviors

The Problem Solving Agent has the possibility to activate one or two behaviors among the SGABehav-

ior, CCGABehavior,LCGABehavior, DynamicBehavior, HybridBehavior and LocalSearchBehavior.

The corresponding UML class diagram is presented in Figure 6.4.

The possible combinations of two behaviors are:

- LCGABehavior + HybridBehavior: to model a dLCGA algorithm

- LCGABehavior + DynamicBehavior: to model a hLCGA algorithm

The SGABehavior class embeds the skills allowing a PSA to run a SGA. These are create-

ComputingGroups and joinComputingGroups to fulfill the gCreateSubGroup(SGA,DAFO), gAdop-

tRole(EvoMember,DAFO) and gAdoptRole(Solver,SGA) organizational goals. It also possesses the

evaluate, genGA and sendSolutionsToObserver skills to fulfil the gRunGA and pInform(best) goals of

148

Chapter5/Chapter5Figs/EPS/Norms_Class_Diagram.eps


6.2 DAFO Agent Architecture

ProblemSolvingAgent

CCGABehaviorSGABehavior LCGABehavior DynamicBehavior

Behavior

1..2

1..*

HybridBehavior

plays

LocalSearchBehavior

GA

-End211

-End22*

-End231

-End24*

-End251

-End26*

LocalSearch

-End231

-End24*

1..1

1..1

1..11..1 1..1

1..1

Figure 6.4: UML Representation of PSA Behaviors

the Optimization scheme (see SGA Functional Specification in Figure 4.10).

The CCGABehavior class embeds the skills allowing PSAs to run a CCGA. These are create-

ComputingGroups and joinComputingGroups to fulfill the gCreateSubGroup(CCGA,DAFO), gAdopt-

Role(EvoMember,DAFO) and gAdoptRole(Producer,CCGA) organizational goals of the Fabric Scheme.

It also possesses the isReoganizationNeeded, joinComputingGroups, evaluate, genGA, sendToPSA,

sendSolutionsToObserver skills to fulfil the goals of the Optimization scheme (see CCGA Functional

Specification in Figure 4.14).

The LCGABehavior class embeds the skills allowing PSAs to run a LCGA. These are createCom-

putingGroups and joinComputingGroups to fulfill the gCreateSubGroup(LCGA,DAFO), gCreateSub-

Group(SolvingUnit,LCGA), gAdoptRole(EvoMember,DAFO), gAdoptRole(Solver,LCGA), gAdopt-

Role(Consumer,SolvingUnit) and gAdoptRole(Producer,SolvingUnit) organizational goals of the Fab-

ric Scheme (see LCGA FS in Figure 4.18). It also possesses the evaluate, genGA and sendSolution-

sToObserver skills to fulfil the goals of the Optimization scheme.

The DynamicBehavior has to be combined with the LCGABehavior to provide the necessary skills

to the PSA to build a dLCGA. Those additional skills are isReoganizationNeeded, leaveComputing-

Groups and findNewComputingGroups which allow to fulfil the goals of the Reorganization Scheme

(see dLCGA Functional Specification in Figure 5.5).

149

Chapter5/Chapter5Figs/EPS/PSA_Behaviors.eps


6.2 DAFO Agent Architecture

The HybridBehavior must be combined with the LCGABehavior to fulfil the additional goals nec-

essary to the PSA playing the Solver role to communicate with the PSA playing the LocalSolver role

in case of a hLCGA (see hLCGA Structural Specification in Figure 5.2). These additional goals are

pInform interactional goals.

The LocalSearchBehavior embeds the skills necessary to the PSAs playing the LocalSearcher role

in case of a hLCGA. These skills are LS and sendToPSA which allow them to fulfill the functional

goal gRunLS and the two interactional goals pInform(alpha) (see hLCGA Functional Specification in

Figure 5.2.2.2).

FitnessCalculator

GA

Chromosome

Gene

Crossover SelectionMutation Population

Individual

1..*

1

1..*

1..*
2..2

1

11::*

1

1 1

1

1

1

1

1..1

11

1

1

11

1..*

1

1

evaluates

recombines mutates

selects

1

*

Figure 6.5: UML Representation of EvoAgents’ Genetic Algorithms

The three behaviors SGABehavior, CCGABehavior and LCGABehavior possess a GA (see com-

position link in the UML class diagram of Figure 6.5). A GA has a Population of Individuals which

contain one Chromosome composed of at least one Gene. The GA has access to different selections

through abstract methods in the Selection class. The same way, the GA can apply different recombi-

nation and mutation operators through abstract methods in the Crossover and Mutation classes. The

GA evaluates its individuals using a FitnessFunction class which is provided by the framework user.

The LocalSearchBehavior behavior possesses a local search algorithm as shown in the UML class

diagram in Figure 6.6. This local search algorithm can be a Steepest Ascent Hill Climbing (SAHC),

a Nearest Ascent Bit Climbing (NAHC), a Random Bit Climbing (RBC), a Dynamic Hill Climbing

(DHC) or a Tabu Search. A local search algorithm is applied to one or several Individuals. To evaluate

the individuals, the LocalSearch uses the FitnessCalculator class provided by the framework user.

150

Chapter5/Chapter5Figs/EPS/GA_Class_Diagram.eps


6.2 DAFO Agent Architecture

FitnessCalculatorLocalSearch

SAHC DHCNAHC RBC

Individual

1

1

1

1..*

TabouSearch

11

1

1..*

evaluatesmodifies

1 *

Figure 6.6: UML Representation of LSAgents’ Local Search Algorithms

6.2.2.2 Observation Behaviors

ObservationAgent

Behavior

1..3

1..*

plays

UIBehaviorLogBehavior ComputeBehavior

FitnessCalculator

-End231
-End24*

1..1

1..1

Figure 6.7: UML Representation of OA Behaviors

The Observation Agent has the possibility to use from one to three behaviors which are LogBehav-

ior, ComputeBehavior and UIBehavior. The corresponding UML class diagram is presented in Figure

6.7.

The LogBehavior class embeds the skills allowing to log the results of the computation, logBestIn-

Generations, computeAverage and logAveragedBestInGeneration. These skills will be used to fulfil the

functional goal gLog.

151

Chapter5/Chapter5Figs/EPS/LocalSearch_Class_Diagram.eps
Chapter5/Chapter5Figs/EPS/OA_Behaviors.eps


6.2 DAFO Agent Architecture

The UIBehavior will be used by the Observation Agent in addition to the LogBehavior if DAFO is

used in graphical mode. It contains the skills to draw the graphs corresponding to the logged results,

drawBestInGeneration and drawAveragedBestInGeneration. These skills will be used so as to fulfill

the gGraphAndLog functional goal.

The ComputeBehavior class embeds the skills allowing to compute the global solution (if required

by the optimization algorithm), aggregateReceivedSolutions and evaluateGlobalSolution. In order to

evaluate the solution on the optimization problem, the ComputeBehavior class possesses a Fitness-

Calculator (composition link) provided by the user. These skills will be used to fulfil the functional

goal gGlobalFitness.

6.2.2.3 Fabric Behaviors

FabricAgent

Behavior

1..1

1..*
plays

FabricBehavior

Figure 6.8: UML Representation of FA Behaviors

The Fabric Agent has only one behavior which is the FabricBehavior. The corresponding UML

class diagram is presented in Figure 6.8.

This behavior thus possesses all the Fabric Agent skills, the first one being parseEvoParameters

to parse the parameters set by the user (details of these parameters in section 6.4). It also embeds

the createPSAs skill used to fulfill the gInstantiate(a) organizational goal(s).

It finally has the sendParametersToPSA, sendParametersToObservation, isComputationalTimeFin-

ished, sendStartToPSA and sendStopToPSA skills which will use either the pInform or the pTime

protocols (presented in section 6.2.4) to fulfill the corresponding interactional goals.

152

Chapter5/Chapter5Figs/EPS/FA_Behaviors.eps


6.2 DAFO Agent Architecture

madkit.kernel.Agent

madkit.kernel.Group madkit.kernel.Role

plays
1..*

1..*

1..*1

*

1creates

DAFO SGA CCGA LCGA SlovingUnit LocalSearchUnit

1

0..*

EvoBuilder

EvoMember

Observer

Solver

Consumer

Producer

LocalSearcher

ObservationAgentFabricAgent ProblemSolvingAgent

-End27

1

-End28*

Figure 6.9: UML class diagram of DAFO’s organization entity

6.2.3 Agent Organization Management Module

As previously mentioned, the implementation of the OE benefits from the available structural specifi-

cation of the Madkit API. As represented in Figure 6.9, Madkit agents can play one or several roles,

a role being played in one group. A group can contain other group(s) in order to have subgroups and

a Madkit Agent can create groups.

The set of roles defined in MAS4EVO is therefore implemented in DAFO as classes inheriting from

the madkit.kernel.Role class. These are the EvoBuilder, EvoMember, Observer, Solver, Consumer,

Producer and LocalSearcher classes.

The same way, the different groups, DAFO, SGA, CCGA, LCGA, SolvingUnit and LocalSearchUnit

inherit from the madkit.kernel.Group class of the Madkit API.

6.2.4 Agent Communication Module

The communication between agents is based on the message API of Madkit. The three different

interaction protocols specified in MAS4EVO are modeled as three different classes, pTime, pInform

and pNegociate, which inherit from a Protocol class (see Figure 6.10.

A Protocol class is composed of at least one message, it thus has a composition link with the

153

Chapter5/Chapter5Figs/EPS/Organization_Class_Diagram.eps


6.3 Agent Platform

Behavior

EvoParameters

MessageContainer

madkit.kernel.ObjectMessage

java.lang.String ga.Individual

1

1

1..*

1..*1

1
2..*

uses Protocol

pNegociatepTime pInform

1 1..*

**

1..*

Figure 6.10: UML class diagram of DAFO’s communication

ObjectMessage class provided by Madkit. The content of a message is encapsulated in a MessageCon-

tainer (composition link) which can contain one instance of EvoParameters, on instance of a String

or one to several instances of Individuals.

A protocol is used by at least two roles, that is why a link exists between the Protocol and the

Behavior classes.

6.2.5 Agent Perception Module

The perception of the agent’s environment is partially provided by the Madkit API. Indeed, Madkit

permits to its agents to have a perception of the other agents. The perception module thus adds

the possibility to the agents to perceive the other component of the environment: the optimization

problem. Agents have a perception of the optimization problem provided by the user through the

FitnessCalculator class. This class can be used by the ProblemSolvingAgent in the SGABehavior,

CCGABehavior and LCGABehavior through the GA, by the LocalSearchBehavior through the Lo-

calSearch (see Figure 6.4) and finally by the ObservationAgent in the ComputeBehavior.

6.3 Agent Platform

In the previous section we already mentioned how DAFO takes benefit from the Madkit API in con-

cerning the implementation of the agents, organization structure and communication.

We consequently used the Madkit platform [29] on which those agents are executed. The choice of

Madkit was additionally motivated by its distribution capabilities and its performance compared to

other agent platforms. For more details, a survey of multi-agent platforms is provided in Appendix

A.

154

Chapter5/Chapter5Figs/EPS/Communication_Class_Diagram.eps


6.4 DAFODL: DAFO Description Language

DAFO’s distribution therefore relies on Madkit. Indeed, the MadKit platform provides a specific

agent, called Communicator Agent, which brings distribution capabilities and allows different Madkit

kernels to form a network from which agents may communicate transparently. This Communicator

Agent provides distributed message passing through socket connections. These connections are estab-

lished by using the host name and optionally the port on which the distant communicator is listening.

It also handles organizational information synchronization on multiple distant agent kernel. Groups

and roles created on a platform in distributed mode are seen from the other connected platforms. Once

the connection is made between two kernels, all organization tables are synchronized, thus groups (and

their respective roles and agents) which have been created in distributed mode are automatically seen

by both kernels, assuming that the two kernels are connected to the communities where these groups

belong to. When one kernel wants to connect to an already formed network, i.e. several kernels

connected together, it is just necessary to connect to one of them since all subsequent connections

between this kernel and the other ones will be done automatically (as illustrated in Figure 6.11.

Con
nec

t

Kernel A

Kernel B

Kernel C

Kernel D

Kernel A

Kernel B

Kernel C

Kernel D

Figure 6.11: Madkit kernels connection

6.4 DAFODL: DAFO Description Language

The objective of DAFODL (DAFO Descritpion Language) is to provide a language which is simple

enough to be understood by the framework user but also sufficiently structured to be interpreted

by the program. The optimization of a problem using one algorithm modeled with MAS4EVO and

implemented in DAFO requires the definition of a configuration file based on DAFODL which will

specify on the one hand the organization of agents as presented in chapters 4 and 5 and on the other

hand parameters related to CGAs.

DAFODL is an XML configuration file based on a DTD provided in Appendix B. This file is struc-

tured in two main parts, the first one describing the agents organization and the second one describing

the genetic algorithm parameters. And optional third part describes the local search parameters in

case of a hybrid algorithm.

155

Chapter5/Chapter5Figs/EPS/Distribution.eps


6.4 DAFODL: DAFO Description Language

Table 6.1 presents all the usable tags in DAFODL and the possible values which can be used for

each of them.

Tag Possible Values Description

O
r
g
.

topology completegraph, ring, simplelist

numberofneighbors 1 6 integer 6 numberofagents-1 Only valid in case of a ring topology

numberofagents 1 6 integer 6 n Number of evolutionary agents

reorgstep 1 6 integer 6 n Number of generations between two reor-

ganizations

G
A

P
a
r
a
m

s

algorithm SGA, CCGA-1, CCGA-2, LCGA, dL-

CGA, hLCGA

Algorithm type

optimization maximize, minimize Minimization or maximization problem

fitnessclass String Name of the fitness evaluation Java class

experiments 1 6 integer 6 n Number of experiments

terminationcondition generation, functionevaluation, time Type of termination condition

terminationconditionvalue 1 6 integer 6 t Value of the termination condition

numchroms 1 6 integer 6 n Number of chromosomes in the popula-

tion

numgenes 1 6 integer 6 n Number of genes in a chromosome

sizegenes 1 6 integer 6 n Number of bits in a gene

crossover 1Point, 2Point, Uniform Crossover operator

crossrate 0 6 float 6 n Crossover rate

mutrate 0 6 float 6 1 Mutation rate

elitenumber 0 6 float 6 numberofagents Number of best indiv. kept unchanged in

next generation

L
S

P
a
r
a
m

s

lsalgorithm NAHC, SAHC, DHC, RBC, TS Local search algorithm

lsexchangedinformation best, poprate Information sent from EvoAgent to

LSAgent

lspopulationrate 0 6 float 6 1 Used if poprate exchangedinformation

lsterminationcondition restricted, complete Local search termination condition

Table 6.1: DAFODL Structure

The following provides a description of those tags available in DAFODL.

Organization Parameters:

The topology has to be completegraph for the CCGA while it can also be a simple list or a ring

with the LCGA. When using the ring topology, it is possible to augment the number of neighbors of

all the nodes in the ring using the numberofneighbors parameter as represented in Figure 4.16. The

numberofagents parameter sets the number of evolutionary agents that will be instantiated and at the

same time the number of local search agents if a hybrid algorithm is set. The reorgstep represents the

number of generations each evolutionary agent will execute between two reorganizations.

GA Parameters:

The algorithm parameter specifies the GA that has to be instantiated. optimization specifies if the

optimization problem is a maximization or minimization one. The fitnessclass provides the name of

the Java class implementing the FitnessCalculator class of DAFO and implemented by the user to

156



6.4 DAFODL: DAFO Description Language

evaluate the individuals on its optimization problem. experiments specifies the number of runs to exe-

cute, terminationcondition allows to choose between three stopping criterion which can be a number of

generations, a number of fitness function evaluation or a computational time. The value of the chosen

termination condition is provided in terminationconditionvalue (given in milliseconds for the time).

numchroms gives the population size in each evolutionary agent, numgenes gives the number of genes

in a chromosome and sizegenes gives the number of bits in a gene (i.e. only a binary representation is

available). The operators are set with crossover to choose between a 1-point, a 2-point or a uniform

crossover, crossrate to specify the crossover rate (between 0 and 1), mutrate to set the mutation rate

(between 0 and 1) and elitenumber which specifies the number of best individuals which are kept

unchanged for the next generation.

<?xml version=’1.0’ encoding=’UTF-8’?>

<evoframework>

<organisation>

<topology>Ring</topology>

<numberofagents>10</numberofagents>

</organisation>

<geneticparameters>

<algorithm>hLCGA</algorithm>

<fitnessclass>MadhocFitnessCalculator</fitnessclass>

<experiments>20</experiments>

<terminationcondition>Time</terminationcondition>

<terminationconditionvalue>60000</terminationconditionvalue>

<numchroms>100</numchroms>

<numgenes>2</numgenes>

<sizegenes>16</sizegenes>

<crossRate>0.8</crossRate>

<mutrate>0.03</mutrate>

<elitenumber>1</elitenumber>

</geneticparameters>

<localsearchparameters>

<lsalgorithm>TabuSearch</lsalgorithm>

<lsexchangedinformation>PopulationRate</lsexchangedinformation>

<lspopulationrate>0.01</lspopulationrate>

<lsterminationCondition>Restricted</lsterminationCondition>

</localsearchparameters>

</evoframework>

Table 6.2: Example of DAFODL based configuration file

Local Search Parameters:

Those parameters are optional since they are required only in case of a hLCGA. lsalgorithm allow

to choose between five different local search algorithms (described in 5.2). Two different individuals

exchange strategies between the evolutionary agent and the local search agent can be selected in

lsexchangedinformation, either the current best individual of the evolutionary agent or a population

rate. In case of a population rate, its value has to be set in lspopulationrate (between 0 and 1).

Finally it is possible to choose between two termination conditions for the local search algorithm in

157



6.5 Conclusion

lsterminationcondition, restricted (stops as soon as an improved individual is found) or complete (fully

executed).

Table 6.2 provides an example of a configuration file based on DAFODL for a hLCGA with a tabu

search algorithm.

This description will be parsed by the Fabric Agent in order to instantiate the corresponding

Evolutionary Agents and Local Search Agents organization as presented in Figure 4.3. Afterwards, the

different parameters related to the genetic and local search algorithms will be transmitted to these

agents so that they can start their computation.

6.5 Conclusion

After the presentation of the MAS4EVO model and its usage to model different CGAs in chapters 4

and 5, this chapter has provided details concerning the implementation of these MAS4EVO models

in the DAFO framework.

This chapter first brought in section 6.2 a general view of DAFO’s agent architecture based on five

components which are:

- an agent component,

- an organization entity component,

- a communication component,

- a behavior component,

- a perception component.

Afterwards, a detailed description of each of these components has been given, based on UML class

diagrams. The agent module possesses an inference engine which manages the lifecycle of the agent

and the activation of its different internal modules (see section 6.2.1. The organization entity provides

structural specifications as defined in the SS (see section 6.2.3). The communication component pro-

vides the interaction protocols defined in the Dialogic Specification of MAS4EVO (see section 6.2.4).

The behavior component provides the skills necessary to fulfill the goals and missions defined in the FS

while ensuring the respect of the norms defined in the NS (see section 6.2.2). Finally the perception

module adds the possibility to the agents to perceive the other agents and the other component of the

environment, i.e. the optimization problem (see section 6.2.5).

In section 6.3 we detailed how the usage of the Madkit platform facilitates the distribution of the

agents and therefore of the CGAs.

Finally, in section 6.4, we introduced an xml-based language called DAFODL (DAFO Description

language) which allows the user to define the algorithm he wants to use on his optimization problem.

158



6.5 Conclusion

To this end, DAFODL allows to describe the necessary organizational, genetic and local search pa-

rameters. An example of DAFODL usage for a hLCGA was shown.

In the following two chapters we now introduce two application scenarios of the DAFO framework

on business optimization problems. On the one hand this will allow to validate the DAFO framework

and its organizational representation of CGAs and on the other hand this will permit to evaluate the

new LCGAs (hybrid and dynamic) we introduced in Chapter 5.

159



Part III

Experimentations

160



Chapter 7

Static Problem Case Study:

Inventory Management

Contents
7.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Solution Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Problem Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 LCGA vs. CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5 hLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.6 dLCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.6.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

161



7.1 Problem Description

In the previous chapter, we have introduced the organizational and reorganizational multi-agent

model and the implementation of our framework dedicated to distributed coevolutionary optimization,

DAFO.

In the coming chapter, we present the first business optimization problem we have tackled using

DAFO which is a stock management problem called ICP (Inventory Control Parameter) problem.

This problem was previously studied by Ericksson and Olsson in [14] who compared the performance

of different CCGA variants (CCGA-1 and CCGA-2) to a generational GA. We have extended their

analysis by comparing the CCGA to the LCGA (which induced some decomposition issues) and two

new variants we have created, a hybrid LCGA (hLCGA) and a dynamic LCGA (dLCGA).

We start by describing the ICP problem, then we provide some experimental results obtained

comparing LCGA, including the problem decomposition we chose, and CCGA. In section 7.5 we

give a detailed description of the hybridization of LCGA, we validate it on a classical test function

(Rosenbrock) and we analyze its results on the ICP problem. Finally section 7.6 introduces the

dynamic variant of LCGA, dLCGA, and its experimental results on the ICP problem are studied.

7.1 Problem Description

Inventory control is defined by the activities, techniques, and methods for maintaining an accurate

stock of items at a desired level. It may concern finished goods, parts, work in progress, or raw ma-

terials. Inventory control has to deal with conflicting goals of finance, production and marketing. It

seeks to find the best balance between these goals with the objective of minimizing the total cost.

As a real case study, we tested and compared our different algorithms, LCGA, hLCGA and dL-

CGA, on the ICP (Inventory Control Parameter) problem. A complete description of this problem

can be found in [14], where a classical Genetic Algorithm is compared to four variants of CCGA

(Cooperative Coevolutionary Genetic Algorithm) approaches (CCGA-1 and CCGA-2 both used with

two different representations). ICP objective consists in defining the couple OP/OQ, order point -

order quantity (when and how much to order) for each stock item. Whenever it reaches the order

point, which is composed of an expected demand during lead time plus a safety stock, an order is

released for a fixed order quantity (see fig. 7.1). The parameters OP/OQ are considered as fixed.

The OP-OQ model is used for controlling warehouses of independent demand items (as opposed to

dependent ones), which means that external factors induces variation in demand for this kind of items.

These external factors induce random variations in the demand for such items, therefore independent

demand must be forecasted.

162



7.1 Problem Description

Lead time

Safety Stock

Order Point

Inventory
level

Order
Quantity

Time

Figure 7.1: ICP Optimization Problem

The fitness evaluation is achieved through the run of a simulation where a set of customer purchase

transactions are processed to calculate the total cost resulting from inventory decisions (see Figure 7.2).

This total cost is the sum of different costs :

• lost sales costs : depending on customer delivery delay (time that a customer has to wait due

to inventory shortage)

• transportation costs : depending on the number of replenishment and their size

• order costs : depending on the number of orders

• storage space costs : depending on the size of the warehouse (belongs to the carrying costs)

• order costs : depending on the number of orders

In our experiments we have added some interdependencies between the items by adding a benefit

for joint orders and joint replenishment. In other words, whenever multiple orders and/or replenish-

ment occur at the same time (i.e. at the same timestamp), there is a proportional benefit.

To summarize the simulation, it is first initialized by collecting the order point and order quantity

values for all items from the solution under evaluation. This is done by initializing the above costs

to zero and by initializing the stock levels. During the simulation, the transaction file containing

a number of customer orders is read incrementally and each customer order is handled in turn. A

transaction is composed of a transaction number, a timestamp (that can be interpreted as a day),

an item number and a quantity. Deliveries are made, stock levels updated and replenishment orders

placed when stock levels fall below order points. For each customer order, replenishment order or

delivery, the different cost sums are updated. The final step is to sum the different costs to obtain a

total inventory cost from which a fitness value can be computed.

163

Chapter6/Chapter6Figs/ICP.eps


7.2 Solution Encoding

Process customer

purchase transactions to

calculate total cost

Transform total cost

into fitness value

fitnessfitness

Total cost

=
Lost sales costs

+
Transportation costs

+
Order costs

+
Storage space costs

+
Inventory capital costs

Inventory

Model

1  1  0  5

2  1  1  5

3  2  0  5

4  2  1  5

...

Customer purchase

transactions

1  1  0  5

2  1  1  5

3  2  0  5

4  2  1  5

...

Customer purchase

transactions

1    1  0  5

2    1  1  5

3    2  0  5

4    2  1  5

..
.

Customer purchase

transactions

parameters

Initialize control

20 50

O.P. O.Q.

Complete set of
Inventory Parameters

....

....

..
.

Figure 7.2: Fitness evaluation by inventory simulation

The following section presents a first extension to Ericksson’s work by adding a comparison to

another coevolutionary GA, the LCGA.

7.2 Solution Encoding

For each evolutionary methods studied here, a chromosome is represented as a binary string (16 bits

per parameter/gene), as can be seen in Figure 7.3.

Each gene represents a single inventory control parameter. Each parameter is an integer within

an interval for which the minimum and maximum value can be configured for every item individually.

For instance, it is possible to have an order quantity ranging from 1 to 100 for one item and from

50 to 500 for another item. However, in the experiments of this dissertation, order point quantities

always range from 4 to 99 and order quantities always range from 1 to 100.

Chromosome

0000000000000111
Binary

Encoding

Order Point
for Item 1

Order Quantity
for Item 1

24 22 9 17 ...

Order Point
for Item 2

Order Quantity
for Item 2

Figure 7.3: ICP Solution Encoding

164

Chapter6/Chapter6Figs/ICP_FitnessEval.eps
Chapter6/Chapter6Figs/Representation.eps


7.3 Problem Decomposition

Thus substrings of 7 bits would be sufficient to encode these intervals (27 = 128), but if these were

mapped directly to integers some combinations would represent integers which do not belong to the

interval. In order to avoid those illegal parameter values, the binary string is mapped to an integer

number belonging to the interval of the parameter.

Like Eriksson we used 16 bits which is more than enough for coding the interval of integers and the

unnecessary extra bits increase the search space with redundant solutions. However, one advantage

of this “over-representation”is that it permits to change the interval of a parameter without changing

the number of bits encoding it.

16-bit binary String [0 - 65535]

32-bit unsigned Integer [min - max]

Figure 7.4: Mapping of binary string to integer number

7.3 Problem Decomposition

The representation used for the SGA is one individual representing all the parameters for all the items.

For instance there are 10 items in the warehouse, for each item we have both order point and order

quantity parameters, the chromosome will have 2*10 = 20 genes.

GA

Best individual

Population

Evolutionary Agent

Inventory

Model

f(x) x

Figure 7.5: ICP Optimization using SGA

When using a coevolutionary GA like CCGA and LCGA, each subpopulation is in charge of opti-

mizing one subset of the global solution.

In his work, Eriksson compared four different versions of CCGA. We have selected the one that

provided the best results : CCGA-1R2 (CCGA with credit assignment 1 and representation 2). Credit

assignment 1 means that the fitness of an individual is obtained by combining it with the current best

165

Chapter6/Chapter6Figs/Mapping.eps
Chapter6/Chapter6Figs/SGA.eps


7.3 Problem Decomposition

individual from each of the other (temporarily frozen) subpopulation. Contrary to representation 1,

that fits the suggestions of Potter and De Jong, where an individual represents one parameter (order

point or order quantity), in representation 2 (see Figure 7.6) an individual represents all parameters

for an item (order point and order quantity). Representation 2 provided better results and thus con-

firmed the hypothesis that CCGA provides better results when there are weak dependencies among

the parameters and equivalent results to the standard GA when strong dependencies occur. It is easily

understandable that order point and order quantity are strongly dependent parameters.

EA

Representative

Population

Species 1

GA

Representative

Population

Species 2

GA

Representative

Population

Species 3

GA

Population

EA

Representative

Population

Species 4

Merge
Product

Parameters

Inventory
Modelf(x)

Complete
set of

parameters

x

Figure 7.6: ICP optimization using CCGA with representation 2

The representation we used in LCGA and the new dynamic and hybrid variants (hLCGA and

dLCGA) we introduce in this chapter is different from the one used for CCGA. Indeed, the version

of LCGA we have implemented uses a ring topology (contrary to the fully connected topology of the

CCGA) where each agent optimizes the order point and order quantity for one item but under the

constraint of a single neighbor. To illustrate our solution, let us use a simple example with four agents

and thus four different items in the stock (see fig. 7.7). Agent A0 will evaluate its individuals using

the individuals received from its neighbor A3 by processing the transactions concerning its item (item

0) and its neighbors item (item 3) and the process is the same for the other agents in the ring. This

way, evaluating an individual in each subpopulation in LCGA requires less transactions processing as

opposed to CCGA in which each subpopulation has to process the whole transaction stream.

When all the agents have run once their subpopulation, the global solution (consisting of the best

individuals of each agent) is evaluated on the whole transaction stream.

166

Chapter6/Chapter6Figs/CCGA_ICP.eps


7.4 LCGA vs. CCGA

Inventory
Model

f(x)

Transactions
for item 0

Transactions
for item 3

Inventory
Model

Transactions
for item 1

Transactions
for item 0

Inventory
Model

Transactions
for item 2

Transactions
for item 1

Inventory
Model

Transactions
for item 3

Transactions
for item 2

Individuals

Individuals

Individuals Individuals

Agent 0

Agent 1 Agent 2

Agent 3

f(x)

f(x)

f(x)

x

x

x

x

Figure 7.7: ICP optimization using LCGA

7.4 LCGA vs. CCGA

Fixing some constraints such as initial level, maximum level, lead time, we have compared the perfor-

mance of a Simple GA (see fig. 7.5), a CCGA and LCGA on this ICP optimization problem.

7.4.1 Experimental Results

The following parameters were set for all the algorithms : population(s) size was equal to 100, pk =

0.6 (crossover probability) and pm = 0.05 (mutation probability). Each result presented hereafter is

the average obtained on 30 independent runs.

Number of Subpopulations 3, 10, 100

(Sub)Population size 100 individuals

Termination Condition 10,000 (100,000 for 100 items) function evaluations

Selection Binary Tournament

Crossover operator Uniform, pc=0.6

Mutation operator bit flip, pm = 1/chrom length

Elitism 1 individual

Table 7.1: Parameters used for genGA, CCGA and LCGA

Fig. 7.8 shows the results obtained with the three algorithms for 3, 10 and 100 stock items and

respectively 360, 1200 and 12000 transactions. It is clear that LCGA outperforms the SGA both in

terms of speed of convergence and in the minimum cost found in the three problem instances.

Comparing LCGA to the CCGA on the smallest problem instance (3 items and 360 transactions),

LCGA converges faster and reaches almost the same minimum cost (1292.49$ for LCGA and 1290.27$

for CCGA ). We also have to take into account that the computation time for required by the LCGA is

lower than for running the CCGA, given that local fitness function evaluations for LCGA are cheaper

and require less agent interactions. Indeed, one subpopulation in LCGA only requires to process the

167

Chapter6/Chapter6Figs/LCGA_3.eps


7.4 LCGA vs. CCGA

transactions of the item it optimizes the parameters and its neighbor’s (thus 2 items) while in CCGA

each subpopulation has to process the whole transaction stream.

ICP Parameters GA Result

genGA 1334.90

3 Items, 360 Transactions CCGA 1290.27

LCGA 1292.49

genGA 4671.77

10 Items, 1200 Transactions CCGA 3896.02

LCGA 4211.16

genGA 49453.70

100 Items, 12000 Transactions CCGA 42671.61

LCGA 48537.69

Table 7.2: Results of SGA, CCGA and LCGA on the ICP problem with 3, 10 and 100 items and 320,

1200 and 12000 transactions

45000

50000

55000

60000

65000

70000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
o
s
t 
(i
n
 $

)

Function Evaluations (*100)

100 Items, 12000 Transactions

Generational GA
CCGA
LCGA

1250

1300

1350

1400

1450

1500

1550

1600

0 2000 4000 6000 8000 10000

C
o
s
t 
(i
n
 $

)

Function Evaluations

3 Items, 360 Transactions

Generational GA
CCGA
LCGA

3800

4000

4200

4400

4600

4800

5000

5200

5400

0 2000 4000 6000 8000 10000

C
o
s
t 
(i
n
 $

)

Function Evaluations

10 Items, 1200 Transactions

Generational GA
CCGA
LCGA

Figure 7.8: Average results on 30 runs for 2, 10 and 100 items using the the SGA, CCGA and LCGA

When dealing with bigger problem instances, i.e. 10 and 100 items, CCGA achieves better perfor-

mance than LCGA, this difference increases with the problem complexity (see Figure 7.8). The LCGA

168

Chapter6/Chapter6Figs/Results_ICP_CCGA_LCGA.eps


7.5 hLCGA

gets stuck in some local optimum after 1000 function evaluations in the 10 items instance and after

2000 in the 100 items instance. One reason for this loss of quality comes from the problem decompo-

sition used for LCGA which implies a loss of information compared to CCGA. However, concerning

the processing time, the difference has increased the opposite way, since the LCGA reaches a lower

quality solution than CCGA but in a much shorter time. Indeed, each subpopulation in LCGA still

processes the transactions of 2 items while in CCGA subpopulations have to process the transactions

for respectively 10 and 100 items (i.e. 5 and 50 more transactions to process).

7.5 hLCGA

hLCGA, a new hybrid LCGA, has been described in chapter 5.2. In the following section we provide

some experimental results, first on a classical test function (i.e. the Rosenbrock test function) and

then on the ICP optimization problem.

7.5.1 Experimental Results

7.5.1.1 Validation of the hLCGA: the Rosenbrock test function optimization

We have experimented the different hLCGA variants and compared them to the ”basic” LCGA on a

classical function optimization problem known to be very hard: the Rosenbrock function that is part

of De Jong’s five function test suite [9] (see Figure 7.9). The Rosenbrock’s function is a continuous

and unimodal function :

f2(x) =

n
∑

i=1

(

100
(

x2
i − xi+1

)2
+ (1 − xi)

2
)

; x ∈ Rn, (7.1)

with −2.12 ≤ xi ≤ 2.12, a global minimum f2(x
∗) = 0 at x∗ = (1, 1, . . . , 1). This global optimum is

inside a long, narrow, parabolic shaped flat valley. Finding the valley is trivial, however converging

to the global optimum is difficult.

Rosenbrock Function

Rosenbrock

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

x
-0.5

 0

 0.5

 1

 1.5

y

 0.01
 0.1

 1
 10

 100
 1000

Figure 7.9: Rosenbrock Function graph for n=2

169

Chapter6/Chapter6Figs/Rosenbrock.eps


7.5 hLCGA

Using (h)LCGA, we consider the problem of minimizing the Rosenbrock’s function as a problem of

seeking a minimum in a distributed fashion. We use a multi-agent system, within our framework, with

a game-theoretic model of interaction among agents as shown in the interaction graph represented in

Figure 7.10.

For LCGA, each Problem Solving Agent (PSA), optimizes its locally defined function which depends

...PSA
GA1

f (x ,x )
1

1 2 f (x ,x )
2

2 3 f (x ,x )
n-1

n-1 n f (x ,x )
n

n n+1

PSA
GA2

PSA
GAn-1

PSA
GAn

Figure 7.10: Rosenbrock LCGA Interaction Graph

only on its xi and the xi + 1 of its neighbor using a Simple GA (SGA). These agents are therefore

referenced as “PSA GA” in Figure 7.10.

f i
2(xi,xi+1) = 100

(

x2
i − xi+1

)2
+ (1 − xi)

2
); (7.2)

This way, each PSA GA runs one subpopulation and individuals in one subpopulation code so-

lution for a variable xi. For hLCGA a PSAs running one of the previously mentioned local search

algorithms, referenced as PSA LS, are added as illustrated in Fig. 7.11. In each generation the PSA

GA will send a predefined percentage of its population to the PSA LS that will run one chosen local

search algorithm and sends back the optimized individuals.

The performances of the LCGA and the five versions of hLCGA have been evaluated on one

instance of the Rosenbrock problem of size n = 10. The following parameters were set for all the

algorithms : sub-populations size was equal to 100, 16 bits binary representation, two-point crossover

with pk = 0.8 (crossover probability) and bit flip mutation with pm = 0.03 (mutation probability).

Experiments have been conducted with the following local search parameters: exchange rate =

0.35 for hLCGA with SAHC, NAHC, RBC, DHC and 0.03 for Tabu Search. Another strategy ex-

changing only the best individual has also been tested. Each exchanged strategy (best individual and

population rate) was experimented with both restricted and complete local search. All the results

...PSA
GA1

PSA
GA2

PSA
GAn-1

PSA
GAn

PSA
LS1

PSA
LS2

PSA
LSn-1

PSA
LSn

Figure 7.11: Rosenbrock hLCGA Interaction Graph

170

Chapter6/Chapter6Figs/Rosenbrock_interaction.eps
Chapter6/Chapter6Figs/Rosenbrock_hlcga.eps


7.5 hLCGA

obtained are presented in Table 7.4.

Number of Subpopulations 10

SubPopulation size 100 individuals

Termination Condition 100 generations

Representation 16 bits binary

Selection Binary Tournament

Crossover operator Uniform, pc=0.8

Mutation operator bit flip, pm = 1/chrom length

Elitism 1 individual

Local search algorithms SAHC, NAHC, RBC, DHC and TS

Local search termination condition Complete search, Restricted search

Local search exchange strategy best individual, population rate=0.35 (except 0.03 for TS)

Table 7.3: Parameters used for LCGA and hLCGA on the Rosenbrock function

The results presented in fig. 7.12 represent the averaged best of generation over 30 experiments

for LCGA and hLCGA using populations rate exchange strategy combined with complete local search

(with and without zoom).

-5e-005

0

5e-005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 10 20 30 40 50 60 70 80 90 100

fi
tn

e
s
s
 v

a
lu

e

generations

LCGA
LCGA-DHC

LCGA-NAHC
LCGA-RBC

LCGA-SAHC
LCGA-TabuSearch

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60 70 80 90 100

fi
tn

e
s
s
 v

a
lu

e

generations

LCGA
LCGA-DHC

LCGA-NAHC
LCGA-RBC

LCGA-SAHC
LCGA-TabuSearch

Figure 7.12: Rosenbrock n = 10, LCGA vs hLCGA with population rate exchange strategy and

complete local search

It clearly appears that for such a continuous and unimodal problem all hLCGAs using popula-

tions rate exchange strategy combined with complete local search outperform LCGA both in terms of

convergence speed and best result found, the overall best being LCGA-TS that converges the fastest

to the global optimum (i.e. f(x)=0). LCGA-SAHC and LCGA-RBC are the only ones that do not

converge to this global optimum. As expected, the drawback is the additional computational time

required for the local search algorithms execution. Indeed, when it takes 3 seconds for LCGA to

perform one experiment, it increases up to 27 seconds in the worst case for LCGA-TS. Taking this

parameter into consideration, LCGA-RBC is the fastest with 4 seconds but as previously mentioned

171

Chapter6/Chapter6Figs/Rosenbrock_LCGA_PopRate_Comp_2.eps


7.5 hLCGA

it gets stuck in a local optimum, consequently LCGA-NAHC becomes the best choice since it also

reaches the global optimum and takes 5 seconds for one experiment.

The results presented in fig. 7.13 represent the averaged best of generation over 30 experiments for

LCGA and hLCGA using populations rate exchange strategy combined with restricted local search

(with and without zoom).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 10 20 30 40 50 60 70 80 90 100

fi
tn

e
s
s
 v

a
lu

e

generations

LCGA
LCGA-DHC

LCGA-NAHC
LCGA-RBC

LCGA-SAHC
LCGA-TabuSearch

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60 70 80 90 100

fi
tn

e
s
s
 v

a
lu

e

generations

LCGA
LCGA-DHC

LCGA-NAHC
LCGA-RBC

LCGA-SAHC
LCGA-TabuSearch

Figure 7.13: Rosenbrock n = 10, LCGA vs hLCGA with population rate exchange strategy and

restricted local search

We can graphically observe that using hLCGAs with populations rate exchange strategy combined

with restricted local search provides less good results than with complete local search. However all the

hLCGA variants still outperform the LCGA but none of them reaches the global optimum. The best

result is reached but LCGA-NAHC which is also the fastest one it terms of computational speed, with

an average of 6 seconds per experiment (like for the LCGA-RBC which shows the worst result among

the hybrid LCGAs). The most computational time demanding is the LCGA-SAHC which shows the

fastest convergence speed and the second best solution after the LCGA-NAHC.

The results presented in fig. 7.14 represent the averaged best of generation over 30 experiments for

LCGA and hLCGA using the best individual exchange strategy combined with restricted local search

(left side) and complete local (right side).

The main difference which appears in both cases compared to the hLCGA with population rate

exchange strategy is that one hybrid variant does not perform better than LCGA (LCGA-SAHC when

using the restricted local search) or converges slower than LCGA (LCGA-RBC when using complete

local search).

172

Chapter6/Chapter6Figs/Rosenbrock_LCGA_PopRate_Restricted.eps


7.5 hLCGA

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60 70 80 90 100

fi
tn

e
s
s
 v

a
lu

e

generations

LCGA
LCGA-DHC

LCGA-NAHC
LCGA-RBC

LCGA-SAHC
LCGA-TabuSearch

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60 70 80 90 100

fi
tn

e
s
s
 v

a
lu

e

generations

LCGA
LCGA-DHC

LCGA-NAHC
LCGA-RBC

LCGA-SAHC
LCGA-TabuSearch

Figure 7.14: Rosenbrock n = 10, LCGA vs hLCGA with best individual exchange strategy and

complete (right)/restricted (left) local search

The best result is obtained by the LCGA-TS for the complete local search case and by the LCGA-

DHC for the restricted local search case (LCGA-TS shows the best convergence speed in that case).

Concerning the computational speed, using the best individual exchange strategy involves less eval-

uations for the local search algorithm and thus requires less time. Indeed the difference is minimum

with the LCGA except when using the LCGA-TS which is again slower.

As a conclusion, we can deduce that using hLCGA with population rate exchange strategy com-

bined with complete local search provides the best results. For this reason we decided to use this

combination on the ICP problem optimization which we present in the following section.

7.5.1.2 ICP problem optimization using hLCGA

Based on the results obtained on the Rosenbrock function optimization problem, we compared the

performance of the LCGA to the hLCGA using population rate exchange strategy and complete local

search on the ICP optimization problem.

In order to evaluate the influence of the rate of the population which is sent to the local search

algorithm, we decided to compare two different rates which are 0.35 (as for the Rosenbrock function)

and 0.5.

In order to conduct these experiment the following parameters were used:

Contrary to the ICP instance which has been optimized in 7.4.1, the instance which has been

optimized in order to compare the LCGA to the hLCGAs does not include any transportation cost.

Therefore the best costs found and presented in table 7.6 and in fig. 7.15 are significantly lower than

173

Chapter6/Chapter6Figs/Rosenbrock_LCGA_Best_CompAndRestricted.eps


7.5 hLCGA

Algorithm Avg. Time per Exp. Result

LCGA 3s 0.0456

B
es

t
In

d
iv

id
u
a
l
Im

p
ro

v
em

en
t

C
o
m

p
le

te
L
S LCGA-SAHC 2s 0.0091

LCGA-NAHC 2s 0.0269

LCGA-RBC 2s 0.0446

LCGA-DHC 3s 0.0065

LCGA-TS 8s 0.0185

R
es

tr
ic

te
d

L
S LCGA-SAHC 2s 0.0473

LCGA-NAHC 2s 0.0237

LCGA-RBC 2s 0.0163

LCGA-DHC 2s 0.0030

LCGA-TS 8s 0.025

P
o
p
u
la

ti
o
n

R
a
te

Im
p
ro

v
em

en
t

C
o
m

p
le

te
L
S LCGA-SAHC 11s 6.3623E-5

LCGA-NAHC 5s 0.0

LCGA-RBC 4s 1.2813E-5

LCGA-DHC 20s 0.0

LCGA-TS 27s 0.0

R
es

tr
ic

te
d

L
S LCGA-SAHC 9s 0.0016

LCGA-NAHC 6s 0.0013

LCGA-RBC 6s 0.0137

LCGA-DHC 7s 0.0030

LCGA-TS 7s 0.0086

Table 7.4: Results of all experiments for the Rosenbrock function

in 7.4.1.

As shown in table 7.6 and in fig. 7.15, all hLCGAs outperform the standard LCGA in terms of

best result found. The same drawback, as for the Rosenbrock function optimization, concerning the

computational time can be noticed. Additionally, due to the higher complexity of the problem, the

difference between the standard LCGA and the hLCGAs is even more noticeable (an average of 7

times more time required).

When comparing the results obtained with the two different population exchange rates, it clearly

appears that all the results are improved using a higher rate (i.e. the results are better using 0.5

compared to 0.35). As a consequence, since the local search algorithms have more evaluations to

execute when using a higher population rate, the time required is also higher (approx. 25% more).

As for the Rosenbrock function optimization using population rate exchange strategy and complete

local search, the LCGA-NAHC provides the overall best results with 1148.63$ with a population rate

set to 0.35 and 1147.46$ with a population rate set to 0.5. The same conclusion can be drawn for the

174



7.5 hLCGA

Number of Subpopulations 3

SubPopulation size 100 individuals

Termination Condition 100 generations

Representation 16 bits binary

Selection Binary Tournament

Crossover operator Uniform, pc=0.8

Mutation operator bit flip, pm = 1/chrom length

Elitism 1 individual

Local search algorithms SAHC, NAHC, RBC, DHC and TS

Local search termination condition Complete Search, Restricted Search

Local search exchange strategy population rate = 0.35 and 0.5

Table 7.5: Parameters used for LCGA and hLCGA on the ICP optimization problem

1150

1160

1170

1180

1190

1200

0 10 20 30 40 50 60 70 80 90 100

c
o
s
t 
($

)

generations

LCGA
LCGA-DHC

LCGA-NAHC
LCGA-RBC

LCGA-SAHC

1150

1160

1170

1180

1190

1200

0 10 20 30 40 50 60 70 80 90 100

c
o
s
t 
($

)

generations

LCGA
LCGA-DHC

LCGA-NAHC
LCGA-RBC

LCGA-SAHC

LCGA and hLCGA with population rate = 0.5 LCGA and hLCGA with population rate = 0.35

Figure 7.15: LCGA vs. hLCGA on the ICP problem with population rate = 0.5 and 0.35

Algorithm Avg. Time per Exp. Result

LCGA 25s 1156.46

P
o
p
u
la

ti
o
n

R
a
te

,
C

o
m

p
le

te
L
S

0
.3

5

LCGA-SAHC 4min26s 1150.39

LCGA-NAHC 2min42s 1148.63

LCGA-RBC 2min20s 1152.38

LCGA-DHC 2min34s 1152.52

0
.5

LCGA-SAHC 3min51s 1150.04

LCGA-NAHC 3min24s 1147.46

LCGA-RBC 3min4s 1150.20

LCGA-DHC 3min13s 1152.27

Table 7.6: Results of all experiments for the Rosenbrock function

least performing algorithms which again are the LCGA-RBC and the LCGA-SAHC. Indeed, not only

they provide the worst results among the hLCGAs but their convergence speed is very close to the

LCGA one.

175

Chapter6/Chapter6Figs/ICP_hLCGA.eps


7.6 dLCGA

1150

1200

1250

1300

1350

1400

1450

0 50 100 150 200 250 300

C
o
s
t 
(i
n
 $

)

Fitness Functions Evaluations (*100)

3 Items, 360 Transactions

SGA
LCGA
CCGA

LCGA DYN = 2
LCGA DYN = 5

LCGA DYN = 10
LCGA DYN = 20
LCGA DYN = 50

1160

1165

1170

1175

1180

1185

0 50 100 150 200 250 300

C
o
s
t 
(i
n
 $

)

Fitness Functions Evaluations (*100)

3 Items, 360 Transactions (zoom)

SGA
LCGA
CCGA

LCGA DYN = 2
LCGA DYN = 5

LCGA DYN = 10
LCGA DYN = 20
LCGA DYN = 50

Figure 7.16: ICP optimization with 3 items and 360 transactions using dLCGA

7.6 dLCGA

dLCGA, a new dynamic LCGA, has been described in chapter 5.3. In the following section we provide

some experimental results on the ICP optimization problem, in which we compare the performance of

dLCGA using several reorganization steps to the “standard” LCGA and CCGA.

7.6.1 Experimental Results

In order to compare the performance of the CCGA, the LCGA and the dLCGA on the ICP problem,

the following parameters were set for all the algorithms: population(s) size was equal to 100, pk = 0.6

(crossover probability) and pm = 1/chromosome length 0.05 (mutation probability).

Number of Subpopulations 3, 100

SubPopulation size 100 individuals

Termination Condition 30000 (3 items), 500000 (100 items) function evaluations

Representation 16 bits binary

Selection Binary Tournament

Crossover operator Uniform, pc=0.6

Mutation operator bit flip, pm = 1/chromosome length

Elitism 1 individual

Reorganization steps each 2, 5, 10, 20, 50 generations

Table 7.7: Parameters used for LCGA and hLCGA on the ICP optimization problem

Figure 7.16 shows the results averaged on 25 runs with the four algorithms for 360 transactions

and 3 types of stock items. dLCGA has been tested using various reorganization steps (e.g. n=5

means that the ring is modified each 5 generations).

It is clear that all CGAs outperform the SGA both in terms of speed of convergence and in the

minimum cost found. Compared to CCGA, LCGA converges a bit faster but gets stuck in a local

176

Chapter6/Chapter6Figs/dLCGA_3Items.eps


7.7 Conclusion

optimum. Comparing the dLCGAs to the standard LCGA, both results and convergence speed are im-

proved when using n=10 and n=50 but degraded with the other reorganization steps (i.e. 2, 5, and 20).

ICP Parameters Algorithm Result

3 Items, 360 Transactions

SGA 1207.47

CCGA 1168.95

LCGA 1167.20

dLCGA, step = 2 1171.23

dLCGA, step = 5 1167.61

dLCGA, step = 10 1160.41

dLCGA, step = 20 1168.98

dLCGA, step = 50 1163.69

100 Items, 12000 Transactions

CCGA 43509.21

LCGA 54186.26

dLCGA, step = 2 53862.77

dLCGA, step = 5 53921.60

dLCGA, step = 10 53962.09

Table 7.8: Results of the SGA, CCGA, LCGA and dLCGA on the ICP problem

Figure 7.17 presents the results obtained on a bigger instance of the problem (i.e. 100 items and

12000 transactions). It confirms that the dLCGA performs better than LCGA, for which one expla-

nation can be that exchanging different information after each reorganization permits to improve the

global result. One noticeable difference is that the convergence speed and the best result found are

improved using all the reorganization steps (2, 5 and 10). Finally, dLCGA is clearly beaten by CCGA.

This difference comes from the problem size and the decomposition used for the LCGA and dLCGAs.

Indeed, when optimizing the ICP problem for 100 items and 12000 transactions, each population

needs to process 240 transactions for the (d)LCGA as opposed to the 12000 transactions processed

by each population in the CCGA. On the one hand, the drawback for the (d)LCGA is thus a loss of

information on the problem which leads to a local optimum but on the other hand the computational

time required is much lower.

Additionally, in [68], it has been demonstrated that LCGA and CCGA have different properties

that made them fit for different classes of problems. CCGA seems therefore to be more adapted on

big instances of the ICP problem.

7.7 Conclusion

This chapter allowed to illustrate the application of the LCGA and two new variants we have developed,

a hybrid one (hLCGA) and a dynamic one (dLCGA), on a stock management problem called Inventory

177



7.7 Conclusion

44000

46000

48000

50000

52000

54000

56000

58000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

s
t 

(i
n

 $
)

Fitness Function Evaluations (*100)

100 Items, 12000 Transactions

CCGA
LCGA

LCGA DYN = 2
LCGA DYN = 5
LCGA DYN =10

54000

54500

55000

55500

56000

56500

57000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

s
t 

(i
n

 $
)

Fitness Function Evaluations (*100)

100 Items, 12000 Transactions (zoom)

LCGA
LCGA DYN = 2
LCGA DYN = 5
LCGA DYN =10

Figure 7.17: ICP optimization with 100 items and 12000 transactions using dLCGA

Control Parameter (ICP) problem. Using LCGA implies decomposing the optimization problem,

therefore we chose that, like for the CCGA, one population optimizes the parameters for one item,

but contrary to CCGA in which the communication graph is a complete graph, we used a ring topology

(as explained in section 7.3. We experimentally showed in section 7.4 that using this decomposition in

LCGA provides better results than the CCGA on small instances of the ICP problem (i.e. 2 items and

240 transactions) but its performance degrades as the problem size increases (i.e. with 10/100 items

and 1200/12000 transactions). In sections 5.2 and 5.3 we demonstrated that the two new variants of

LCGA we have created, respectively hybrid (hLCGA) and dynamic (dLCGA) allow to improve the

“standard” LCGA’s performances on this business problem.

178

Chapter6/Chapter6Figs/dLCGA_100Items.eps


Chapter 8

Dynamic Problem Case Study:

Injection Networks

Contents
8.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.2 Injection Networks Problem Description . . . . . . . . . . . . . . . . . . 182

8.2.1 Small-Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.3 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.4 Static Injection Network Optimization . . . . . . . . . . . . . . . . . . . 186

8.4.1 CCGA vs. Generational and Steady State GAs . . . . . . . . . . . . . . . . 186

8.4.2 LCGA vs. CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.4.3 Distributed CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.5 Dynamic Injection Network Optimization . . . . . . . . . . . . . . . . . . 202

8.5.1 Evolutionary Algorithms for Dynamic Environments . . . . . . . . . . . . . 202

8.5.2 Performance Measures in Dynamic Environments . . . . . . . . . . . . . . 205

8.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

179



8.1 Related Works

Multi-hop ad hoc networks are networks composed of communicating devices capable of sponta-

neously interconnecting without any pre-existing infrastructure. Among the possibilities of utilization,

we can cite: positioning in cities, gaming, tourism, art galleries, etc. The most popular wireless net-

working technologies available nowadays for building such networks are Bluetooth and IEEE802.11

(Wi-Fi). Devices in range to one another communicate in a point-to-point fashion. Such ad hoc

networks are intrinsically dynamic. Due to their limited transmission range, these networks face

partitioning problems that penalize their global efficiency. In real scenarios, one or more additional

remote links have to be created to keep connected the different clusters of locally interacting users

that dynamically move.

In this chapter we consider the problem of optimizing the addition of such long-range links (e.g.

GSM, UMTS or HSDPA), are also called bypass links, to inter-link network partitions. To tackle

this topology control problem, we use small-world properties as indicators for the good set of rules

to maximize inter-link efficiency. Small-world networks [158] feature a high clustering coefficient (γ)

while still retaining a small characteristic path length (L). A small path length corresponds to fewer

hops, which is of importance for effective routing mechanisms as well as for the overall communica-

tion performance of the entire network. The clustering coefficient represents the connectivity in the

neighborhood of each node and thus reflects the degree of information dissemination each single node

can achieve. This finally motivates the objective of evoking small-world properties in such settings.

In order to optimize those parameters (maximizing γ, minimizing L) and to minimize the number

of required bypass links in the network, we here rely on Evolutionary Algorithms (EAs) [159] and

more specifically on Genetic Algorithms (GAs) [33].

The remainder of this chapter is organized as follows. In the next section we introduce the latest

key related works. In Section 8.2 we give a detailed view on the injection network problem. Section 8.4

provides details on our three algorithms, considering two representations and two crossover operators.

The section is concluded by a detailed description of the fitness function we defined. Then, in Section

V, we present the experiments and discuss the results. The last section contains our conclusions and

perspectives.

8.1 Related Works

Mobile multi-hop ad hoc networks have brought several difficult (and practical) challenges. Among

them, we will focus on network partitioning which is of importance for communication performance

as well as routing mechanisms. Some past works advise the utilization of hybrid wireless networks,

where a fixed infrastructure supports a higher connectivity among several clusters of ad hoc networks

and avoids network partitioning [160] [161] [162]. However, such hybrid wireless networks are often

180



8.1 Related Works

not feasible, because of economical and implementation issues.

In order to tackle the same problem, some recent researches started investigating the advantages

of bringing small-world properties to such networks. Let us highlight the following ones. Dousse in

[163] introduces base stations, connected through a fixed wired infrastructures, in order to increase

connectivity in ad hoc networks, thus realizing global reachability. Helmy [164] considers using the

uniform distribution (of random links) with which the objective is to reduce the number of queries

during the search for a given target node. In a similar way, Reznik et al. study the effet of randomly

adding point-to-point wired links in a square grid ad hoc network in [165]. They provide an elaborate

framework with a specific parameterized distribution for choosing long links. This helps to reduce the

path length to a small power of the initial diameter. In his PhD dissertation [166], Nguyen investi-

gates the use of small-world graphs for network design. To this end, he extends Reznik’s framework

by adding a cost (weight of long links) and congestion but he still studies square grid networks and

his long-links construction scheme implies a high number of them. In [167], Sharma also investigates

the use of small-world properties for the addition of wired links in hybrid wireless sensor networks.

His objective is to reduce the energy dissipation per node.

Alternatively, an infrastructureless setting is of interest where problems of restricted geographical

regions are avoided. Watts [158] introduces a spatially defined link, called global edge, with length-

scaling properties to include spatial models in his investigations. Some approaches extend standard ad

hoc network models, by considering two different transmission ranges [168] [169], e.g. small distance

Bluetooth links along with higher distance Wi-Fi links.

Some other researches focus on the optimization of this topology control problem using evolution-

ary algorithms, including genetic algorithms. In [170], Lee uses a multi-objective genetic algorithm,

named GA-OTC, for topology control in wireless sensor networks. The algorithm searches for the

optimal clustering set of sensor nodes so as to fulfil the objectives which are to balance and minimize

energy consumption. In [171], Pandey uses a genetic algorithm to optimize the placement of special

multi-interface devices called drones in an ad hoc heterogeneous network comprising of several under-

lying homogeneous networks. p drones have to be placed to improve the network connectivity while

minimizing the network partitions and the number of interfaces on each drone.

However, in the current literature there is no research merging both the optimization of such hybrid

ad hoc networks with the small-world properties of such networks. This has motivated the definition

of the problem we introduce in the following section.

181



8.2 Injection Networks Problem Description

8.2 Injection Networks Problem Description

The problem we study in this chapter, consists in overcoming partitioning in ad hoc networks by

optimizing the placement of long range links that we call bypass links.

Our initial motivation for the current investigation is based on the assumption that technologies like

Bluetooth and Wi-Fi can be used to create ad hoc communication links within the transmission range

at no charge. Additional cellular network links such as GSM/UMTS/HSDPA might be employed by

appropriately equipped devices to establish supplementary communication links, that we call bypass

links, between two arbitrary devices. These links will induce additional costs. Let us formalize the

notion of bypass links.

Definition 1 (Watts) The spatial neighborhood Γtr(v) of a node v is the set of nodes within trans-

mission range tr of v.

Definition 2 A bypass link is a link (u,v) between nodes u and v with u /∈ Γtr(v).

Bypass Link

Injection Points

Figure 8.1: Example of an Injection Network

That is, a bypass link is a link which connects two nodes that are not in the same spatial neigh-

borhood. Please note that elements of Γtr(v) do not necessarily have to be connected to v in real

settings. Practically, a bypass link can be built by using a cellular network as well as by using access

points. Nevertheless, in our model a bypass link is counted as a single hop, thus simplifying the real

topology behind that bypass link.

182

Chapter7/Chapter7Figs/EPS/bypass.eps


8.2 Injection Networks Problem Description

The injection communication paradigm is based on establishing bypass links between carefully

selected devices. Herrmann et al. [172] called these dedicated communication points hub nodes. We

call these dedicated devices used for establishing bypass links injection points.

Definition 3 Two nodes u and v are called injection points if a bypass link (u,v) exists between nodes

u and v.

Injection points serve two different purposes: a point where information dissemination starts and

where services are being placed (service placement, Herrmann et al. [172]). In the first case, the

injection point is of essential importance at the moment of receiving information and passing this

information to the neighborhood. The injection point might represent a bottleneck, depending on

the amount of data passing through. In addition, injection points become particularly attractive

when offering a service. In fact, information dissemination can be seen as such a service that is us-

able by devices in the injection points surroundings. Different criteria for determining the injection

point can be of importance. Supposing that, for instance, the device is highly clustered and thus

one of the central members of a group, epidemic behavior for information spreading will take effect

faster. Therefore, the current environment and the device’s relationship to its neighbors are important.

For self-organizing communication networks based on bypass links and injections points as de-

scribed before we use the term injection networks.

8.2.1 Small-Worlds

In this optimization problem, we consider small-world properties as indicators for the good set of rules

to maximize the bypass links efficiency. Small-World networks [158] are a class of random graphs that

exhibit a small characteristic path length (L), indicating the degree of separation between the nodes

in the graph, and a high clustering coefficient (γ), defining the extent to which nodes in the graph

tend to form closely-knit groups that have many edges connecting each other in the group, but very

few edges leading out of the group. The challenging aspect in using small-world properties is that

small-world networks combine the advantages of regular networks (high clustering coefficient) with

the advantages of random networks (low characteristic path length).

Small-world networks [158] are a class of random graphs that exhibit two main characteristics: a

small characteristic path length (L) and a high clustering coefficient (γ). A formal definition of these

two graph measures is given below:

Definition 4 (Watts) The local clustering coefficient γ of one node v with kv neighbors is

183



8.2 Injection Networks Problem Description

γv =
|E(Γr

v
)|

(kv

2
)

where |E(Γr
v)| is the number of links in the relational neighborhood of v and

(

kv

2

)

is the number

of possible links. The clustering coefficient is the average local clustering coefficient for all nodes of a

network.

For example, in Figure 8.2, node a is connected to three nodes b, d and e. The maximum number

of possible edges among these three nodes is three. The graph shows that only two out of those three

possible edges exist (between b-e and d-e). The edge b-d is missing. So the clustering coefficient for

node a is 2/3 or about 0.67. For Figure 8.2, this value is 0.67. In a physical sense, the clustering

coefficient defines the extent to which nodes in the graph tend to form closely-knit groups that have

many edges connecting each other in the group, but very few edges leading out of the group.

Definition 5 (Watts) The shortest path length dv connecting each node v ∈ V(N) of a network N to

all other nodes is d(v,j) ∀ j ∈ V(N). The characteristic path length L is the median of all shortest paths.

The characteristic path length is a measure of the number of hops necessary to reach any node

in the network from any other node. This indicates the degree of separation or connectivity between

nodes in the graph. In Figure 8.2, node a can reach three of the nodes (b, d and e) through just one

hop and the fourth node (c) via two hops. So the characteristic path length for this node is:

(a) = HopsToReachAllNodes
NumberOfNodes

= (3×1)+(1×2)
4 = 1.25

The characteristic path length (L) for the entire graph, which is the mean of the characteristic

path length of all nodes, is equal to 1.2. The challenging aspect in using small-world properties is that

a

b

e

c

d

Figure 8.2: Graph with γ = 0.67 and L = 1.2

small-world networks combine the advantages of regular networks (high clustering coefficient) with

184

Chapter7/Chapter7Figs/EPS/SmallWorld.eps


8.3 Fitness Function

the advantages of random networks (low characteristic path length).

In order to study the small-world properties of such hybrid networks, we had to rely on some

ad hoc network simulator. In our case we used Madhoc [32], an application-level network simulator

dedicated to the simulation of mobile ad hoc networks. The main motivation for using Madhoc is its

ability to simulate hybrid networks, i.e., mixing different technologies (e.g., bluetooth/Wi-Fi for local

connections and UMTS for long distance calls), and its graphical and batch modes of visualization,

which greatly help in understanding the network design alternatives.

8.3 Fitness Function

As stated before, we relied on small-world networks properties so as to optimize the placement of the

bypass links. We have conducted our experiments using the Madhoc simulator which to simulate and

to visualize hybrid ad hoc networks (using Wi-Fi, bluetooth, GSM, UMTS). We extended Madhoc in

order to make it support bypass links and to measure small world properties.

In order to assign a fitness to the candidate solutions (i.e. sets of possible bypass links) of our

algorithms, we use a unique cost function F which combines the two small world measures (L and γ)

and the number of created bypass links.

When computing the fitness function, we first test if the global network is connected. Indeed, since

we use small-world properties as indicators, the network has to be connected in order to compute the

characteristic path length (L) on the global network. If the optimized network is not connected, due

to too few or not efficiently placed bypass links, the fitness value is a weighted term of the number of

partitions in the network. On the contrary, if the network is connected, the fitness value is a linear

combination of the small world measures (clustering coefficient and characteristic path length) and of

the difference between the number of bypass links and the maximum number allowed. We look for

maximizing the clustering coefficient and minimizing both characteristic path length and number of

bypass links. Using this fitness function we consequently have a maximization problem as defined in

Algorithm 7.

Algorithme 7 : Fitness Function

if Graph connected then
F = α * γ - β * (L - 1) - δ * (bl - blmax )

else
fitness = ξ * P

end

185



8.4 Static Injection Network Optimization

With weights experimentally defined:

α = 1

β = 1 /(N -1)

δ = 2 / (N * (N-1))

ξ = 0.1

bl is the number of bypass links created in the simulated network by one solution, blmax (defined

a priori) is the maximum number of bypass links that can be created in the network, P is the number

of remaining partitions in the whole network after the addition of bypass links and N is the number

of stations in the global network.

8.4 Static Injection Network Optimization

8.4.1 CCGA vs. Generational and Steady State GAs

In this section we first introduce the three genetic algorithms we used. Next we provide details on the

two solution encodings and on the two crossover operators we applied. Finally we present the fitness

function we have defined.

The use of evolutionary computation (EC) techniques to evolve solutions for both abstractions and

real-life problems has seen a dramatic increase in popularity and success over the last decade. The

most popular and widely applied EC technique is the sequential GA [33], whose computational scheme

is based on a set (population) of potential solutions (individuals) on which it applies some stochastic

operators in order to search for an optimum. It uses a single population (panmixia) of individuals and

apply operators to them as a whole.

Past works have shown that the underlying iterative step of the GA is very influent in some ap-

plications [34]. Therefore in this work we focus on a generational, a steady-state and a cooperative

coevolutionary GA.

Since this problem is new to the metaheuristic community, we start by investigating the kind of

evolution step more amenable to our problem by analyzing three proposals: a generational GA [52],

a steady-state GA [6], and a cooperative coevolutionary GA [11] on three different instances of a

partitioned ad hoc network. We further will investigate the influence of the solution representations

and of the crossover operators on the final quality of the results, as an important methodological step

in applying GAs to complex problems.

186



8.4 Static Injection Network Optimization

8.4.1.1 Solution Encodings

Solution encoding is a major issue in this kind of algorithms since it will determine the choice of the

genetic operators applied for exploring the search space.

First Encoding

We have used a binary encoding of the solution in which each gene encodes an integer on 15 bits,

that corresponds to one possible bypass link in the half-matrix of all possible links. For instance, if

the maximum number of bypass links fixed a priori for the network that is optimized is 10, then a

chromosome will have 10 genes of 15 bits. Figure 8.3 shows the example of a chromosome composed

of 2 genes (thus the maximum number of created bypass links is 2) on a network of 5 stations. The

5×5 half-matrix represents all the possible links in the network including the already existing local

links in the network (i.e. the existing Wi-Fi connections). In the example showed in Figure 8.3, the

first gene (circled) with the integer value 2 stands for the connection between station 1 and station 3

in the corresponding half-matrix (also circled).

Chromosome 2 7 9 16

000000000000011
Binary

Encoding

1

3

2

4

5

Network

Bypass Link1

1

2 3 4 5

2

3

4

5

2 3 4

6 7

8

First Station

S
e

c
o

n
d

 S
ta

ti
o

n

9

1

5

10

Figure 8.3: Example of the First Solution Encoding

Second Encoding

The second encoding is also binary. Each bit represents one possible bypass link in the network.

If the bit value is 1 then the corresponding bypass link is created and if it is 0 it is not created. Let

us take as example the same network as in Figure 8.3, in which the network is composed of 5 stations

and 3 existing wireless links. The number of possible links in this network is

(N) ∗ (N − 1)

2
=

5 ∗ 4

2
= 10 (8.1)

with N = numberOfNodes. The number of possible bypass links is finally 10 - 3 = 7. The resulting

number of bits in the chromosome is 7, as shown in Figure 8.4. The half-matrix represents the possible

187

Chapter7/Chapter7Figs/EPS/Matrix_2.eps


8.4 Static Injection Network Optimization

links in the network and the light gray shaded cells represent the already existing wireless links that

are not considered (i.e. links between stations 1-2, 2-3 and 4-5). In our example, the first bit in the

chromosome thus stands for the possible bypass link between station 1 and station 3, which is created

since its value is 1, the second bit stands for the link between station 1 and station 4, this one is not

created since its bit value is 0, and so on. Contrary to the first encoding, this second encoding depends

on the network size and on the number of existing links. Consequently, the bigger the network, the

bigger the chromosome.

Chromosome

1

3

2

4

5

Network

Bypass Link

1 0 0 0 1 0 0

1

1

2 3 4 5

2

3

4

5

1 0 0

0 1

0

First Station

S
e

c
o

n
d

 S
ta

ti
o

n

0

Figure 8.4: Example of the Second Solution Encoding

8.4.1.2 Crossover Operators

The crossover operation, also named as recombination, produces new individuals by combining the in-

formation contained in two or more parents. This is done by combining the values of the two parents.

Our experimentations have been conducted using both two-point crossover and uniform crossover

to further investigate the interest and the influence of each operators using our two representations

for the injection network problem. A description of these two genetic operators can be found in 2.1.1.4.

8.4.1.3 Experimentation

This section presents the results obtained on the injection network optimization problem using the

three GAs, generational, steady state and cooperative coevolutionary. We first describe the parameters

used for the genetic algorithms. Next, the configuration of the network simulator is introduced and,

finally the results obtained using the three GAs, using the two representations and the two crossover

operators (2-point and uniform), are analyzed and compared.

The algorithms have been implemented in Java and tested on a 3.2 GHz Xeon processor with 4

GB of RAM, running Debian Linux (with kernel 2.6.9-22) and Java version 1.5.0 05.

188

Chapter7/Chapter7Figs/EPS/Representation_2.eps


8.4 Static Injection Network Optimization

GA Parameterization

Population size 100 indiv. (10x10 for CCGA)

Termination Condition 50,000 function evaluations

Selection Binary Tournament

Crossover operators 2-point and uniform, pc=0.8

Mutation operator bit flip, pm = 1/chrom length

Elitism 1 individual (not for ssGA)

Table 8.1: Parameters for genGA, ssGA and CCGA

In table 8.4, we show the parameters used for genGA, ssGA and CCGA.

We used a randomly generated population composed of 100 individuals for genGA and ssGA and

10 subpopulations of 10 individuals for CCGA. The selection operator for genGA and CCGA is a bi-

nary tournament selection (two individuals are selected and the fittest is copied into the intermediate

population). For ssGA we have used a replace-worst strategy. As stated before, the two crossover

operators (separately) analyzed are 2-point and uniform crossover used with probability pc=0.8. The

mutation operator is bit flip mutation in which each allele of the chromosome is flipped with probabil-

ity pm= 1/chromosome length. Concerning the generational GA and CCGA we have added elitism:

the best individual found in one generation is thus kept for the next generation.

Madhoc Configuration

As stated before, the Madhoc simulator was used for managing the complex scenarios posed by

this injection network problem. Figure 8.5 shows how the genetic algorithms interact with Madhoc.

Algorithm

CCGA

ssGA

genGA

Madhoc

Cluster 2
Cluster 3

Cluster 1

x

f(x)

Figure 8.5: Components of the experimental study

We have defined a squared simulation area of 0.2 km2 and tested three different densities of 150,

210 and 350 devices per squared kilometer. Each device is equipped with both Wi-Fi (802.11b) and

189

Chapter7/Chapter7Figs/EPS/Algorithms.eps


8.4 Static Injection Network Optimization

UMTS technologies. The coverage radius of all mobile devices ranges between 20 and 40 meters in

case of Wi-Fi.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5
Cluster 2

Cluster 3

Cluster 1

Figure 8.6: Studied Networks with 1, 3 and 5 clusters

The studied networks, as presented in Figure 8.13, here represent a snapshot of mobile networks

in the moment in which a single set of users moved away from each other creating the clusters of

terminals, that were obtained using the graphical mode of Madhoc. As an example, the network with

3 clusters (center of Fig. 8.13) consists in 42 stations located in three partitions, the first partition

has 38 stations, the second one 3, and the third one has a single station. The number of possible

connections in this 3-clusters network is N∗(N−1)
2 = 861. The number of existing Wi-Fi connections

in this network is 116, thus the number of possible bypass links is 861-116 = 745. The clusters are

selected purposely to be different and thus challenging.

1 Cluster 3 Clusters 5 Clusters

Surface 0.2 km2 0.2 km2 0.2 km2

Node Density 350/km2 210/km2 150/km2

Number of Nodes 70 42 30

Partitions 1 3 5

Possible Links 2189 745 400

Table 8.2: Parameterization used in Madhoc

Results

Each result presented hereafter is the average obtained on 30 independent runs. In order to estab-

lish the statistical significance of the means, we first have checked that the data is normally distributed

using the Kolmogorov-Smirnov test. If so, we then perform an ANOVA test so as to compare the

means otherwise we use a Kruskal-Wallis test [41].

190

Chapter7/Chapter7Figs/EPS/studied_networks.eps


8.4 Static Injection Network Optimization

1-Cluster Network 3-Clusters Network

5-Clusters Network

0.6

0.65

0.7

0.75

0.8

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n
e
s
s
 V

a
lu

e

Function Evaluations

CCGA/UX

ssGA/UX

genGA/DPX
ssGA/DPX

genGA/UX

CCGA/DPX

genGA (1st Rep., 2 Point Cross.)
genGA (1st Rep., Uniform Cross.)

ssGA (1stRep., 2 Point Cross.)
ssGA (1st Rep., Uniform Cross.)
CCGA (1st Rep., 2 Point Cross.)

CCGA (1st Rep., Uniform Cross.)

0.6

0.65

0.7

0.75

0.8

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n
e
s
s
 V

a
lu

e

Function Evaluations

ssGA/UX

genGA/DPXCCGA/UX

ssGA/DPX

genGA/UX

CCGA/DPX

genGA (1st Rep., 2 Point Cross.)
genGA (1st Rep., Uniform Cross.)

ssGA (1stRep., 2 Point Cross.)
ssGA (1st Rep., Uniform Cross.)
CCGA (1st Rep., 2 Point Cross.)

CCGA (1st Rep., Uniform Cross.)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n
e
s
s
 V

a
lu

e

Function Evaluations

ssGA/UX

CCGA/DPX

genGA/UX

CCGA/UX

genGA (1st Rep., 2 Point Cross.)
genGA (1st Rep., Uniform Cross.)

ssGA (1stRep., 2 Point Cross.)
ssGA (1st Rep., Uniform Cross.)
CCGA (1st Rep., 2 Point Cross.)

CCGA (1st Rep., Uniform Cross.)

Figure 8.7: Average results of 30 runs on the 3 networks using the first representation

In Table 8.3 we show the averaged results and the total computational time for all 30 runs for each

algorithm, representation and crossover operator.

Comparison of the Algorithms

Comparing the three algorithms in terms of best results found, it clearly appears that CCGA

outperforms the two panmictic algorithms by reaching the highest fitness for the three network sce-

narios (see Table 8.3). We can also see that ssGA always performs better than genGA. Another

interesting property is that the difference between the genGA and the ssGA increases as the number

of simulated stations decreases (see 8.7 and 8.8). Between ssGA and CCGA, the behavior is opposite,

i.e. the difference decreases as the number of simulated stations decreases. Regarding the execution

time required, we see that CCGA requires from two to four times more computational time than the

genGA and the ssGA, the bigger difference being observed on the 5-clusters network. The highest

computational time is reached on the biggest network (i.e. 1-cluster network) by the CCGA using the

second representation and 2-point crossover.

191

Chapter7/Chapter7Figs/EPS/Networks_old_representation_color_2.eps


8.4 Static Injection Network Optimization

-1000

-800

-600

-400

-200

0

200

400

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n
e
s
s
 V

a
lu

e

Function Evaluations

CCGA/UX

CCGA/DPX ssGA/DPX

ssGA/UX

genGA/DPX

genGA/UX

genGA (2nd Rep., 2 Point Cross.)
genGA (2nd Rep., Uniform Cross.)

ssGA (2nd Rep., 2 Point Cross.)
ssGA (2nd Rep., Uniform Cross.)
CCGA (2nd Rep., 2 Point Cross.)

CCGA (2nd Rep., Uniform Cross.)

1-Cluster Network 3-Clusters Network

5-Clusters Network

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n
e
s
s
 V

a
lu

e

Function Evaluations

ssGA/DPX

ssGA/UX

genGA/DPX

genGA/UX

CCGA/UX

CCGA/DPX

genGA (2nd Rep., 2 Point Cross.)
genGA (2nd Rep., Uniform Cross.)

ssGA (2nd Rep., 2 Point Cross.)
ssGA (2nd Rep., Uniform Cross.)
CCGA (2nd Rep., 2 Point Cross.)

CCGA (2nd Rep., Uniform Cross.)

0.58

0.6

0.62

0.64

0.66

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n
e
s
s
 V

a
lu

e

Function Evaluations

ssGA/DPX

ssGA/UX

genGA/DPX

genGA/UX

CCGA/UX

CCGA/DPX

genGA (2nd Rep., 2 Point Cross.)
genGA (2nd Rep., Uniform Cross.)

ssGA (2nd Rep., 2 Point Cross.)
ssGA (2nd Rep., Uniform Cross.)
CCGA (2nd Rep., 2 Point Cross.)

CCGA (2nd Rep., Uniform Cross.)

Figure 8.8: Average results of 30 runs on the 3 networks using the second representation

Comparison of the Representation

As can be seen in Table 8.3, using the first representation allows all the algorithms to find a so-

lution in each experiment. Using the second representation highly deteriorates the results when the

number of stations in the simulated network is high. Indeed only the ssGA algorithm with uniform

crossover manages to find a solution that does not overpass the constraint of 10 bypass links on the

1-cluster network (see top-left corner of Figure 8.8. This difference does not exist when the number of

stations decreases, since both genGA and ssGA obtain better results using the second representation

on the 3-clusters network (except for the genGA with 2-Point crossover). On the 5-clusters network,

the results a slightly deteriorated except for the CCGA with 2-point crossover that obtains the overall

best result. One drawback of the second representation is a slower convergence speed than with the

first representation. Another disadvantage of the second representation concerns the execution time

that is in average twice longer than with the first representation. This is due to the high number of

bypass links that are created using this representation.

192

Chapter7/Chapter7Figs/EPS/Networks_new_representation_color_2.eps


8.4 Static Injection Network Optimization

Network GA Repres. Cross. Time (s) Result

1 Cluster

genGA

1st Rep.
DPX 8256 0.6833

UX 8052 0.6727

2nd Rep.
DPX 27468 –

UX 24371 –

ssGA

1st Rep.
DPX 8395 0.6736

UX 8950 0.6708

2nd Rep.
DPX 19151 –

UX 15273 0.6686

CCGA

1st Rep.
DPX 17784 0.6911

UX 17741 0.6917

2nd Rep.
DPX 42579 –

UX 27280 –

3 Clusters

genGA

1st Rep.
DPX 4486 0.6685

UX 3483 0.6555

2nd Rep.
DPX 8937 0.6412

UX 7354 0.6700

ssGA

1st Rep.
DPX 3289 0.6489

UX 4282 0.6500

2nd Rep.
DPX 4192 0.6612

UX 5204 0.6669

CCGA

1st Rep.
DPX 6793 0.6739

UX 10102 0.6723

2nd Rep.
DPX 16635 0.6570

UX 13927 0.6685

5 Clusters

genGA

1st Rep.
DPX 1672 0.5634

UX 1654 0.5539

2nd Rep.
DPX 3144 0.6168

UX 2689 0.6318

ssGA

1st Rep.
DPX 1717 0.5527

UX 1756 0.5412

2nd Rep.
DPX 2027 0.6263

UX 2045 0.6303

CCGA

1st Rep.
DPX 8674 0.5652

UX 7206 0.5628

2nd Rep.
DPX 8799 0.6329

UX 8531 0.5628

Table 8.3: Results of all experiments

Comparison of the Crossover Operators

As it can be seen in Table 8.3, using the uniform crossover provides worse results than 2-point

crossover when using the first representation. The contrary is true only when using the first repre-

sentation for the CCGA on the 1-cluster instance and for the ssGA on the 3-clusters instance. The

situation is opposite when using the second representation, since results are better than with the

2-point crossover. The single exception is for the CCGA on the 5-clusters instance which obtain the

overall best result applying a 2-point crossover on the second representation. Concerning the influ-

ence of the crossover operators on the execution time, we can see that ssGA behaves the opposite way

from genGA and CCGA. Indeed ssGA requires more time when using uniform crossover (except on

the 1-cluster network with the second representation) contrary to genGA and CCGA (except on the

3-clusters network with the first representation) that are faster with a uniform crossover.

Comparison of the Computational Speed

193



8.4 Static Injection Network Optimization

0

5000

10000

15000

20000

25000

30000

35000

40000

1 Cluster 3 Clusters 5 Clusters

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

genGA/1stRep
genGA/2ndRep

ssGA/1stRep
ssGA/2ndRep
CCGA/1stRep
CCGA/2ndRep

Figure 8.9: Computational speed per algorithm and representation for each network

Figure 8.9 shows the computational speed of each combination of algorithm and representation

for the three network scenarios. Each column is thus the average of the computational time obtained

using both two-point and uniform crossover. We can clearly observe that the bigger the network the

bigger the calculation time. As previously mentioned, we can graphically see that using the second

representation always increases the amount of time required. CCGA is always slower than genGA and

ssGA. The two panmicitic algorithms perform best using the first representation, the genGA being

the overall best algorithm for the 1-cluster and 5-clusters networks and the ssGA for the 3-clusters

network. Finally we can notice that in terms of computational time the ssGA is less sensible to the

representation than the other two algorithms.

Analysis of the Problem

In this subsection we analyze the most complex problem among the three we have used, i.e. the

1-cluster network. We have studied the evolution of the number of bypass links created by each al-

gorithm according to the number of function evaluations (see Figure 8.10). It is interesting to notice

the difference of behavior between the two panmictic GAs and the coevolutionary GA. Indeed both

generational and steady state GAs first start by decreasing the number of bypass links (the first 2500

evaluations for the ssGA and between 7500 and 12500 for the genGA) before raising as opposed to

the CCGA that directly increases this value. Another noticeable difference is the perturbation that

feature the two genGA curves contrary to the ssGA and the CCGA ones. The ssGA with two-point

crossover reaches a lower number of bypass links than the genGA with two-point crossover, and ad-

ditionally provides a better final result. We can also observe that only CCGA reaches the limit of

10 bypass links, which could be considered as a worse behavior than the other two algorithms, but it

allows much better final results.

194

Chapter7/Chapter7Figs/EPS/histogramme2.eps


8.4 Static Injection Network Optimization

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
u
m

b
e
r 

o
f 
B

y
p
a
s
s
 L

in
k
s

Function Evaluations

genGA (1st Rep., 2 Point Cross.)
genGA (1st Rep., Uniform Cross.)

ssGA (1st Rep., 2 Point Cross.)
ssGA (1st Rep., Uniform Cross.)
CCGA (1st Rep., 2 Point Cross.)

CCGA (1st Rep., Uniform Cross.)

genGA/UX

genGA/DPX

ssGAs

CCGAs

Figure 8.10: Number of bypass links considered in best solution per generation

Our second investigation focused on the stations in the network that are the most often elected

as injection points. Figure 8.11 shows the number of times each station has been chosen as injection

point in one experiment. This value is the average of all the algorithms that managed to obtain a

non-partitioned network (see Table 8.3). The 20 stations that were chosen as best injection point

candidate are represented using filled rectangles.

0

100

200

300

400

500

0 10 20 30 40 50 60 70

N
u

m
b

e
r 

o
f 

E
le

c
ti
o

n
s
 a

s
 I

n
je

c
ti
o

n
 P

o
in

t

Node Number

Average number of elections for all algorithms

5

13

22

40 44

48

51

62

58

66

19

10 best Injection Point candidates

Node Ids

Figure 8.11: Average number of elections as injection point for the 1-Cluster network

Figure 8.12 permits to locate in the network the same 20 stations which were the most often elected

as injection point. It is interesting to notice that not only stations that are located inside high density

areas are good injection point candidates (e.g. station 41 or 47), but also stations that interconnect

high density areas, like station 46 and 61.

195

Chapter7/Chapter7Figs/EPS/Number_of_Bypass_Links.eps
Chapter7/Chapter7Figs/EPS/Injection_Points_average.eps


8.4 Static Injection Network Optimization

5

13

21

22

19

46

51

47

40

61

65

62

48

66

41

44

58

63

6

36

Figure 8.12: Best injection point candidates

8.4.2 LCGA vs. CCGA

This section presents the results obtained on the injection network optimization problem using the

the two CGAs (LCGA and CCGA) with different numbers of subpopulations (2, 5 and 10 subpop-

ulations). We also include the results obtained with a generational GA (genGA) and a steady state

GA (ssGA) that we use as basis of comparison. We first describe the parameters used for the three

genetic algorithms. Next, the configuration of the network simulator is introduced and, finally the

results obtained using the CCGA, genGA and ssGA are analyzed and compared.

The algorithms have been implemented in Java and tested on a server with a 3.7 GHz Xeon

processor, 16 GB of RAM, running Debian Linux (with kernel 2.6.9-22) and Java version 1.6.0.

8.4.2.1 GA Parameterization

In table 8.4, we show the parameters used for LCGA, CCGA, genGA and ssGA.

Both LCGA and CCGA were tested with 2, 5 and 10 subpopulations. For all algorithms we

used a randomly generated population composed of 100 individuals for genGA and ssGA and of 50

individuals for LCGA and CCGA. A solution is encoded as a binary string chromosome, in which each

gene encodes an integer on 15 bits (see section 8.4.1.1 for a detailed description). Each gene corresponds

to one possible bypass link in the half-matrix of all possible links. The selection operator is a binary

tournament selection (two individuals are selected and the fittest is copied into the intermediate

population). The crossover operator is uniform. It is used with a probability pc=0.8. The mutation

196

Chapter7/Chapter7Figs/EPS/network_1_Cluster_Injection_Points.eps


8.4 Static Injection Network Optimization

operator is bit flip mutation in which each allele of the chromosome is flipped with probability pm =

1/chromosome length. Elitism has been added for genGA, LCGA and CCGA: the best individual

found in one generation is thus kept for the next generation.

Number of Subpopulations 2, 5, 10 (only for LCGA and CCGA)

(Sub)Population size 100 (genGA, ssGA), 50 (LCGA, CCGA)

Termination Condition 50,000 function evaluations

Selection Binary Tournament

Crossover operator Uniform, pc=0.8

Mutation operator bit flip, pm = 1/chrom length

Elitism 1 individual (not for ssGA)

Table 8.4: Parameters used for genGA, ssGA, CCGA and LCGA

8.4.2.2 Madhoc Configuration

In order to compare the performance of the CCGA and the LCGA, we used the same 3-clusters net-

work as presented in section 8.4.1.3. This network, as presented in Figure 8.13, represents a snapshot

of a mobile network in a squared simulation area of 0.2 km2 with a density of 210 devices per square

kilometer. Each node is equipped with both IEEE802.11b and UMTS technologies. The coverage

radius of all mobile devices is set to a random value between 20 and 40 meters.

Surface 0.2 km2

Node Density 210 / km2

Number of Nodes 42

Partitions 3

Possible Links 745

Table 8.5: Parameterization used in Madhoc

This network is consists in 42 stations located in three partitions: the first partition consists of 38

nodes, the second one 3, and the third one is made of one single node. The number of possible connec-

tions in this 3-clusters network is N∗(N−1)
2 = 861. The number of existing IEEE802.11b connections

in this network is 116, thus the number of possible bypass links is 861-116 = 745. This clusters are

selected because of their difference in terms of the number of node they host.

8.4.2.3 Results

The results presented hereafter are average out of 30 independent runs. In order to establish the

statistical significance of the means, we first have checked that the data is normally distributed using

the Kolmogorov-Smirnov test. If so, we then perform an ANOVA test so as to compare the means

otherwise we use a Kruskal-Wallis test [41].

197



8.4 Static Injection Network Optimization

Cluster 2
Cluster 3

Cluster 1

Figure 8.13: Studied Network with 3 clusters

In Table 8.6 we show the averaged results for all 30 runs for each algorithm.

(Sub-)Population GA Crossover Time (s) Result

1 Pop.
genGA Uniform 119 0.6555

ssGA Uniform 138 0.6500

2 Pop.
LCGA Uniform 175.62 0.6598

CCGA Uniform 217.37 0.6597

5 Pop.
LCGA Uniform 212.67 0.6634

CCGA Uniform 273.54 0.6706

10 Pop.
LCGA Uniform 268.6 0.6599

CCGA Uniform 361.77 0.6723

Table 8.6: Results of all experiments

As it can be seen in Table 8.6, using coevolutionary genetic algorithms always provides better

results than both genGA and ssGA, ssGA being the least performing one (with statistical confidence).

This can be graphically observed in Figure 8.14, as well as the better convergence speed of the coop-

erative coevolutionary genetic algorithm compared to the other GAs.

When comparing CCGA and LCGA, it appears that CCGA provides better results than LCGA,

both in terms of best solution found and convergence speed. This difference increases as the number

of subpopulations increases too (see Figure 8.14), the overall best result being obtained by the CCGA

with 10 subpopulations.

198

Chapter7/Chapter7Figs/EPS/studied_network.eps


8.4 Static Injection Network Optimization

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n

e
s
s
 V

a
lu

e

Function Evaluations

genGA

CCGA

LCGA

ssGA

CCGA - 5 Agents
LCGA - 5 Agents

genGA
ssGA

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n

e
s
s
 V

a
lu

e

Function Evaluations

ssGA

genGACCGA
LCGA

CCGA - 2 Agents
LCGA - 2 Agents

genGA
ssGA

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n

e
s
s
 V

a
lu

e

Function Evaluations

ssGA

genGA

CCGA

LCGA

CCGA - 10 Agents
LCGA - 10 Agents

genGA
ssGA

Figure 8.14: Average results of 30 runs using CCGA, LCGA, genGA and ssGA

Regarding the average execution time required per run of the algorithms (see Figure 8.15), we

clearly see that CCGA takes more time than LCGA and this difference increases with the number

of subpopulations. This is due to the fact that CCGA requires more synchronization than LCGA,

indeed in CCGA only one subpopulation is active at one time, which is not the case with LCGA.

8.4.3 Distributed CCGA

This section presents the results obtained on the injection network optimization problem using the

distributed CCGA compared to the results given by the generational GA (genGA) and the steady

state GA (ssGA). We first describe the parameters used for the three genetic algorithm. Next, the

configuration of the network simulator is introduced and, finally the results obtained using the CCGA,

genGA and ssGA are analyzed and compared.

The algorithms have been implemented in Java and tested on a single node for genGA, ssGA and

CCGA and on 11 cluster-nodes for dCCGA (distributed CCGA) all nodes having a 3.7 GHz Xeon

processor with 16 GB of RAM, running Debian Linux (with kernel 2.6.9-22) and Java version 1.5.0 05.

199

Chapter7/Chapter7Figs/EPS/2_5_10_Agents.eps


8.4 Static Injection Network Optimization

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 Agents 5 Agents 10 Agents

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
(s

ec
)

CCGA
LCGA

Figure 8.15: Time per experiment for LCGA and CCGA with 2, 5 and 10 subpopulations

8.4.3.1 GA Parameterization

In table 8.10, we show the parameters used for genGA, ssGA, CCGA and dCCGA.

(d)CCGA was tested with 10 subpopulations. For all algorithms we used a randomly generated

population composed of 50 individuals. A solution is encoded as a binary string chromosome, in which

each gene encodes an integer on 15 bits (see section 8.4.1.1 for a detailed description). Each gene cor-

responds to one possible bypass link in the half-matrix of all possible links. The selection operator is a

binary tournament selection (two individuals are selected and the fittest is copied into the intermediate

population). The crossover operator is uniform crossover used with probability pc=0.8. The mutation

operator is bit flip mutation in which each allele of the chromosome is flipped with probability pm=

1/chromosome length. Concerning the generational GA and (d)CCGA we have added elitism: the

best individual found in one generation is thus kept for the next generation.

Number of Subpopulations 10 (only for (d)CCGA)

(Sub)Population size 50 individuals

Termination Condition 50,000 function evaluations

Selection Binary Tournament

Crossover operator Uniform, pc=0.8

Mutation operator bit flip, pm = 1/chrom length

Elitism 1 individual (not for ssGA)

Table 8.7: Parameters used for genGA, ssGA, and (d)CCGA

200

Chapter7/Chapter7Figs/EPS/histogramme.eps


8.4 Static Injection Network Optimization

8.4.3.2 Madhoc Configuration

As for the previous experiments, the Madhoc simulator was used. We chose to analyze and compare

the performance of the dCCGA on the same network as presented in 8.4.2.2 (i.e. the 3-clusters network

with 42 stations).

8.4.3.3 Results

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it
n

e
s
s
 V

a
lu

e

Function Evaluations

ssGA

genGA

CCGA

CCGA - 10 Agents
genGA

ssGA

Figure 8.16: Average results of 30 runs using genGA, ssGA and CCGA

Each result presented hereafter is the average obtained on 30 independent runs. In order to estab-

lish the statistical significance of the means, we first have checked that the data is normally distributed

using the Kolmogorov-Smirnov test. If so, we then perform an ANOVA test so as to compare the

means otherwise we use a Kruskal-Wallis test [41].

In Table 8.8 we show the averaged results for all 30 runs for each algorithm.

As it can be seen in Table 8.8, using a CCGA provides better results than both genGA and ssGA,

Network GA Crossover Time Result

3 Clusters

genGA Uniform 54min 28s 0.6555

ssGA Uniform 58min 24s 0.6500

CCGA Uniform 154min 36s 0.6723

dCCGA Uniform 98min 55s 0.6723

Table 8.8: Results of all experiments

genGA being the least performing one in terms of convergence speed and ssGA the least one in terms

of best result found (with statistical confidence). This can be graphically observed in Figure 8.16,

201

Chapter7/Chapter7Figs/EPS/DCCGA.eps


8.5 Dynamic Injection Network Optimization

as well as the better convergence speed of CCGA compared to the other two GAs. As expected

the computational time required for dCCGA is lower than for CCGA thanks to the distribution of

the subpopulations, however it is still higher than panmictic GAs like genGA and ssGA due to the

synchronization between subpopulation induced by the CCGA algorithm.

8.5 Dynamic Injection Network Optimization

Many real-world optimization problems are dynamic, indeed the objective function, the problem in-

stance or constraints may change over time and thus the optimum of the problem might change as

well. If any of these uncertain events have to be taken into account in the optimization process, the

problem is called dynamic.

Since EAs are inspired from natural evolution, which is a continuous adaptation process, they ap-

pear to be good candidates for dynamic optimization. In these situations, EAs need not only to search

for a global optimum, but also to track that optimum over time. This may be trivial if the change

in the solution landscape only involves a slight migration of the location of the optimum through the

solution space, but if the landscape changes radically the task of the EA becomes much harder. In

particular, the problem that EAs face is that, as the population simulated converges on a solution,

the diversity within the population diminishes. The population therefore loses its effectiveness at

exploring the landscape, and thus the ability to find new, emerging solutions.

Some surveys on EAs applied to dynamic problem can be found in the following three books, [173]

from Branke, [174] from Weicker and [175] from Morrison.

In this section, we investigate the use of a CGA on a dynamic optimization problem, i.e. the

dynamic injection network.

In section 8.5.1, we first start by presenting the different EAs and some other metaheuristics

which have been used to handle dynamic optimization problems. Then in section 8.5.2 we investigate

an important new issue which comes with applying EAs for dynamic optimization: performance

measurements. Finally, in section 8.5.3, we analyze and compare the performance of a CCGA to

two panmictic GAs (generational and steady-state) on a dynamic instance of the injection network

problem.

8.5.1 Evolutionary Algorithms for Dynamic Environments

EA is still the largest optimization technique used in dynamic environments. Usually information

from the previous search space is simply transferred by keeping individuals in the population. How-

ever when dealing with generational EA for dynamic problems, having outdated fitness information

202



8.5 Dynamic Injection Network Optimization

is not an issue.

Branke in [176] proposed a classification in three categories of the main approaches that address

this issue of convergence:

• Diversity control

This category can be divided into two sub-categories since it is possible to increase diversity

after a change like with the hypermutation method, or to maintain a high diversity throughout

the evolutionary run as in random immigrants or thermodynamical genetic algorithm (TDGA).

Hypermutation consists in increasing drastically the mutation rate for a number of generations

as soon as a change in the environments is detected. The problem is that increasing diversity

is basically equivalent to replacing ”good” individuals by random ones and it is difficult to

determine the useful amount of diversity (too much makes random walk and too little will not

solve the convergence problem). In random immigrants, random individuals are inserted into the

population in every generation. The concept behind TDGA is to control explicitly the diversity

in the population by controlling its ”free energy” (for more information see [177]).

• Memory-based approaches

Memory-based techniques use an extra memory to store implicitly or explicitly useful information

to guide future search. This appears to be very useful when the optimum repeatedly returns

to previous locations. Implicit memory simply consists in using a redundant representation and

let the EA make a proper use of it. With explicit memory, specific information (that can be

solutions) are stored and retrieved by the evolutionary mechanism.

• Multi-populations approaches

The population is divided into several subpopulations that become specialized in some parts

of the search space which allows to track multiple peaks. Those subpopulations maintain in-

formation about some promising regions of the search space and thus facilitates the process of

tracking the optima as they move. Some examples are the self-organizing scouts (SOS) proposed

by Branke in [173] or the multinational GA proposed by Ursem in [178].

Those techniques come with several drawbacks. Indeed, when using hypermutation we destroy one

part of the information because of randomization, with random immigrants and TDGA the optimiza-

tion process gets disturbed and using memory-enhanced EAs appears to be useful only when optimum

reappears at old locations and the problem of convergence remains. Due to these restrictions, the use

of multi-population approaches appears to be well adapted for dynamic problems while being able to

maintain a useful diversity.

Other EAs and other metaheuristics have been applied to dynamic optimization problems, therefore

we propose to extend this list with the following algorithms also applied in the literature:

203



8.5 Dynamic Injection Network Optimization

• Cellular Genetic Algorithm

Alba and Saucedo in [179] demonstrated the good performance of a structured GA (i.e. cellular

GA) compared to two panmictic GAs (generational and steady-state) on the dynamic knapsack

problem. They have studied the suitability of such algorithms for non-stationary problems, with

different severities of changes, using Weicker’s metrics (as presented in section 8.5.2).

• Evolution Strategies

A first rigorous analysis of the performance of a (1 + 1)-strategy on a discrete, dynamic objective

function has been presented by [180]. Since then, many other research works focused on dy-

namic optimization problems. The tracking behavior of a (1 + λ)-strategy is subject of a recent

paper by [181] in which a one-max like dynamic problem is considered on a two-dimensional

lattice. Another recent application is presented in [182], in which a multiparent evolution strat-

egy ((µ/µ, λ)-ES) employs cumulative step length adaptation for a tracking problem with linear

dynamics of the target.

• Ant Colonies

Ant Colonies Optimization (ACO) has also been used for dynamic problems optimization.

Chronologically, we can cite the works of Guntsch and Middendorf [183], in which a population

based ACO (P-ACO) is used for optimizing a dynamic TSP (Traveling Salesperson Problem)

and a dynamic QAP (Quadratic Assignment Problem. Then Montemanni et al. studied the

performance of an ACS (Ant Colony System) on a dynamic vehicle routing problem (DVRP) in

[184]. ACS is an element of the family of the ACO family of algorithms (see [185]). Xiao et al.

in [186] optimize a dynamic real-world industrial problem (curing of polymer coating) using a

Ant Colony System (ACS). Finally, Fernandes et al. in [187] introduce a so-called Binary Ant

Algorithm (BAA) which they test on two test problems (Oscillatory Royal Road and Dynamic

Schaeffer’s function).

• Particle Swarm

Particle Swarm Optimization (PSO) has already been extensively applied to dynamic problems.

Like for other EAs which have to be applied to dynamic environments, PSO must be modified in

order to provide optimal results. One critical issue is diversity loss, due to convergence. There-

fore, re-diversification mechanisms were introduced using several solutions: randomization [188],

repulsion [189], dynamic networks [190] [191], multi-populations [192] [193]. Some other vari-

ants were also introduced, like the Unified PSO (UPSO) from Parsopoulos [194] or collaborative

models like Lung’s Collaborative Evolutionary-Swarm Optimization (CESO) [195].

• Differential evolution

In [196], Mendes and Mohais introduced a new approach to dynamic optimization problem,

using differential evolution (DE). Their algorithm, DynDE, is a multi-population DE that can

use dynamic F and CR control parameters and a different scheme for each individual. It is

204



8.5 Dynamic Injection Network Optimization

specifically designed for dynamic environments that only make minor changes - good solutions

tend to remain relatively good. They have tested and fine-tuned their DynDE on a well-known

benchmark called Moving Peaks, introduced at the same time by Branke in [197] and Morrisson

and De Jong in [177].

• Coevolutionary Genetic Algorithm

In [198], the authors examine the behavior of their Coevolutionary Genetic Algorithm on dy-

namic environments. This CGA consists of two populations: solution-level one and schema-level

one. The solution-level population searches for the good solution in a given problem. The

schema-level population searches for the good schemata in the former population. The CGA

performs effectively by exchanging genetic information between these populations. They provide

some experimental results on the Dynamic Constraint Satisfaction Problems.

• Artificial Immune System

An Artificial Immune System (AIS) was used by Hart and Ross in [199] on a dynamic scheduling

problem.

Through this state of the art, we can conclude that many different EAs and metaheuristics have been

used to tackle dynamic optimization problems. However, when focusing on the use of coevolutionary

GAs on dynamic problems, we noticed that it is very limited up to now, since only one article studied

the utilization of a CGA on a dynamic constraint satisfaction problem (see section 8.5.1).

For this reason, and due to the fact that multi-population approaches appeared to be well adapted

maintain a useful diversity, we decided to investigate the use of a CCGA on a dynamic version of the

injection network problem.

8.5.2 Performance Measures in Dynamic Environments

An important issue that comes with dynamic optimization problems is the performance measurement.

Indeed, a single and time invariant optimum solution does not exist and thus traditional measures of

EA performance (best-so-far curves, offline performance, online performance) are inappropriate. Some

new measurements have been proposed in order to address this problem :

• Modified offline performance measure, introduced by Branke in [173], where the best-so-far value

is reset after each change in the fitness landscape. The problem is that it requires the knowledge

of when the fitness landscape changes.

• Difference between the optimum value and the value of the best individual in the environment

before a change in the environment. It has the same drawback as the modified offline performance

measure.

• Average Euclidean distance to the optimum at each generation. The global optimum in the

search space has to be known, which is feasible only in test problems.

205



8.5 Dynamic Injection Network Optimization

• Best-of-generation averages, at each generation, for many EA runs of the same specific problem.

This method allows to compare performances at each specific generation but not on the entire

range of landscape dynamics. Consequently, it is very difficult to compare experimental results.

• Best-of-generation minus the worst within a small window of recent generations, compared to

the best within the window minus the worst within the window. This measurement relies on

the strong assumption that the best fitness value will not change much over a small number of

generations, which might be not true.

• Collective Mean Fitness [200] consists in the average best-of-generation values averaged over a

sufficient number of generations, G’, required to expose the EA to a representative sample of all

possible landscape dynamics, further averaged over multiple runs. To use this metric it is then

necessary to determine the number of generations to use for a representative sample, and this

is not straightforward when the landscape dynamics are not known. It has to be established

experimentally.

• Weicker introduced three characteristics as performance measures in non-stationary environ-

ments in [201]. These are accuracy at time t, stability (an adaptive algorithm is said to be stable

if the accuracy is not severely affected by a change in the environment) and reactivity (the ability

of the adaptive algorithm to react quickly to changes, i.e. to reach again a certain approximation

level).

As can be seen, many different performance measures have been developed in order to accurately

evaluate and compare EAs performances in dynamic environments. However, when taking a deeper

look in the already substantial literature of the domain (cf. the repository of Branke in [202], we can

notice that most of the researches have been evaluated with “standard” performance measures. One

possible explanation is that the majority of these measures require the knowledge of the optimum and

are consequently more targeted to test/benchmark problems than to real-world ones.

8.5.3 Experimental Results

8.5.3.1 GA Parameterization

In table 8.9, we show the parameters used for genGA, ssGA and CCGA.

CCGA was tested with 5 subpopulations. For all algorithms we used a randomly generated popu-

lation composed of 100 individuals. Both solution encodings as presented in section 8.4.1.1 were used

compared. The selection operator is a binary tournament selection (two individuals are selected and

the fittest is copied into the intermediate population). Both 2-point and uniform crossover operators

were used with probability pc=1.0. The mutation operator is bit flip mutation in which each allele of

the chromosome is flipped with probability pm= 1/chromosome length. Concerning the generational

GA and CCGA we have added elitism: the best individual found in one generation is thus kept for

206



8.5 Dynamic Injection Network Optimization

the next generation.

Each algorithm was run for 300.000 function evaluations and the problem (i.e. the injection net-

work) was changing after each 50.000 function evaluations. Therefore the different algorithms had to

adapt their solutions to the changing problem (i.e. to 6 different snapshots of the mobile injection

network as shown in Fig. 8.17).

Number of Subpopulations 5 (only for CCGA)

(Sub)Population size 100 individuals

Termination Condition 300,000 function evaluations

Selection Binary Tournament

Crossover operator 2-Point and Uniform, pc=1.0

Mutation operator bit flip, pm = 1/chrom length

Elitism 1 individual (not for ssGA)

Table 8.9: Parameters used for genGA, ssGA, and (d)CCGA

8.5.3.2 Madhoc Configuration

Figure 8.17: Optimized dynamic injection network

207

Chapter7/Chapter7Figs/EPS/Dynamic_IN.eps


8.5 Dynamic Injection Network Optimization

As for the previous experiments, the Madhoc simulator was used to simulate the same network as

presented in 8.4.2.2 (i.e. the 3-clusters network with 42 stations). In order to conduct our experiments

on a dynamic injection network, we used one mobility model provided by Madhoc: the random way-

point mobility model. Random waypoint is the most popular mobility model. In the random waypoint

mobility model, as described in [203], each node randomly chooses a destination location (in terms

of its x, y coordinates) in the simulation area and moves towards this destination with a randomly

chosen velocity. When the destination is reached, the station remains at the same place for a while.

Once this time expires, the node chooses a random destination in the simulation area and a speed that

is uniformly distributed in [minspeed, maxspeed]. The node then travels toward the newly chosen des-

tination at the selected speed. This process is repeated by each station until the end of the simulation.

The velocity of the devices was set between 10 and 50 meters per second and the genetic algorithms

were applied on six consecutive snapshots of the mobile network. Each snapshot represents the mobile

ad hoc network’s state after 15 iterations of the simulator, one iteration representing 0.25 seconds,

thus 3.75 seconds. The six different snapshots of the studied mobile injection network are shown in

Figure 8.17.

Madhoc parameter Value

Simulation resolution 0.25 s

Simulation steps 6 times 15 steps

Mobility model Random waypoint

Velocity 10 m/s < v < 50 m/s

Table 8.10: Parameters used for genGA, ssGA, and (d)CCGA

8.5.3.3 Experimental Results

The results presented hereafter are average out of 30 independent runs. In order to establish the

statistical significance of the means, we first have checked that the data is normally distributed using

the Kolmogorov-Smirnov test. If so, we then perform an ANOVA test so as to compare the means

otherwise we use a Kruskal-Wallis test [41].

Table 8.11 shows the average best results obtained by all the algorithms on each snapshot of the

mobile injection network (i.e. after 50.000, 100.000, 150.000, 200.000, 250.000 and 300.000 function

evaluations). We can observe that all the best results are obtained by the CCGA, either using the

first or the second representation.

When using the first representation, the worst results are always reached by the SGA and the

ssGA is always between the SGA and the CCGA, as can be seen in Figure 8.18. With the second

208



8.6 Conclusion

representation the results are significantly changed since the ssGA becomes the least performing al-

gorithm, since its performance is degraded while the SGA’s is improved (see Figure 8.19).

Concerning the crossover operators, their influence is the same for the three algorithms. When

using the first representation, the results are better with the 2-point crossover, and conversely when

using the second representation the best results a obtained with the uniform crossover.

Comparing the computational times. it clearly appears that the multi-population algorithm (i.e.

the CCGA) requires much more time than the two panmictic algorithms. In average, using the first

representation implies a lower computational time for the SGA and the CCGA. The behavior of the

ssGA on this criterion is opposite. The same way, using the 2-point crossover implies a lower compu-

tational time for the SGA and the CCGA and the opposite for the ssGA (i.e. a lower computational

time with the uniform crossover).

Finally, another important advantage of the CCGA compared to the panmictic GAs is that it

shows a better stability (cf. Weicker’s performance measures) since the average fitness of the best

individual is less degraded by a problem change as shown in Figures 8.18 and 8.19. Referring again to

Weicker’s performance measurement, the CCGA provides the best reactivity, i.e. the CCGA manages

to react the fastest the problem changes, in all cases except with the second representation with the

2-point crossover (see Fig 8.19) with which the panmictic GAs provide a better reactivity.

0.6

0.65

0.7

0.75

0 50000 100000 150000 200000 250000 300000

F
it
n

e
s
s
 V

a
lu

e

Function Evaluations

SGA (1st Rep., Uniform Cross.)
SSGA (1st Rep., Uniform Cross.)
CCGA (1st Rep., Uniform Cross.)

0.6

0.65

0.7

0.75

0 50000 100000 150000 200000 250000 300000

F
it
n

e
s
s
 V

a
lu

e

Function Evaluations

SGA (1st Rep., 2 point Cross.)
SSGA (1st Rep., 2 point Cross.)
CCGA (1st Rep., 2 point Cross.)

Figure 8.18: Average results of 30 runs using genGA, ssGA and CCGA with the first representation

on the dynamic injection network

8.6 Conclusion

Through this chapter we have illustrated the use of our framework and of the CGAs it provides on

static and dynamic instances of a new topology control problem dedicated to mobile ad hoc networks

called injection network problem.

209

Chapter7/Chapter7Figs/EPS/Dynamic_First_Rep.eps


8.6 Conclusion

0.6

0.65

0.7

0.75

0 50000 100000 150000 200000 250000 300000

F
it
n

e
s
s
 V

a
lu

e

Function Evaluations

SGA (2nd Rep., 2 point Cross.)
SSGA (2nd Rep., 2 point Cross.)
CCGA (2nd Rep., 2 Point Cross.)

0.6

0.65

0.7

0.75

0 50000 100000 150000 200000 250000 300000

F
it
n

e
s
s
 V

a
lu

e

Function Evaluations

SGA ((2nd Rep., Uniform Cross.)
SSGA (2nd Rep., Uniform Cross.)
CCGA (2nd Rep., Uniform Cross.)

Figure 8.19: Average results of 30 runs using genGA, ssGA and CCGA with the second representation

on the dynamic injection network

GA Repres. Crossover Time Average Best Result After

50.000 100.000 150.000 200.000 250.000 300.000

SGA

1st Rep.
DPX 495min 40sec 0.652 0.640 0.695 0.696 0.661 0.686

UX 385min 31sec 0.651 0.637 0.695 0.697 0.661 0.685

2nd Rep.
DPX 631min 36sec 0.662 0.659 0.710 0.709 0.692 -0.139

UX 599min 6sec 0.682 0.667 0.711 0.711 0.692 -0.138

ssGA

1st Rep.
DPX 405min 24sec 0.676 0.660 0.710 0.713 0.697 0.720

UX 573min 33sec 0.672 0.658 0.709 0.713 0.695 0.720

2nd Rep.
DPX 418min 44sec 0.661 0.644 0.700 0.702 0.671 -0.200

UX 445min 40sec 0.668 0.651 0.695 0.704 0.674 -0.110

CCGA

1st Rep.
DPX 1548min 42sec 0.718 0.694 0.749 0.735 0.696 0.727

UX 791min 59sec 0.721 0.694 0.748 0.736 0.699 0.726

2nd Rep.
DPX 4260min 25sec -20.767 0.684 0.716 0.728 0.687 -0.084

UX 3845min 37sec 0.730 0.699 0.731 0.737 0.696 -0.111

Table 8.11: Results of all experiments

We demonstrated that the use of CGAs is suitable for such a problem, both static and dynamic.

Indeed, CCGA and LCGA performed well compared to panmictic algorithms (generational and steady-

state GAs) and the best combinations in terms of solution representation and crossover operators were

experimentally found.

In order to conduct these experiments, we showed that the DAFO framework can be interfaced

with other third-party softwares like the Madhoc simulator we used for simulating our injection net-

works. We also had the opportunity to make a first evaluation of the distributed version of DAFO

(see section 8.4.3).

As current investigations, we work on an efficient decomposition of the problem that can be used by

the LCGA. On the one hand this would allow to speed up the calculation process since subpopulations

would only evaluate local functions instead of a single global one and on the other hand this would

permit a first distribution of the algorithm since no global communication between subpopulations

210

Chapter7/Chapter7Figs/EPS/Dynamic_Second_Rep.eps


8.6 Conclusion

will be necessary. In order to extend the evaluation the CGAs performances on the static instances,

we also started to conduct experiments using a cellular GA.

Concerning the dynamic injection network problem, we planned to evaluate our new LCGAs (dL-

CGA and hLCGA) on the same problem and on other scenarios.

Another current work consists in defining a multi-objective version of the problem (minimizing

the CPL and the number of bypass links, maximizing the clustering coefficient) and to evaluate the

results of some state-of-the-art multi-objective GAs such as NSGA-II [204], SPEA2 [205] and MOCell

[206].

211



Part IV

Conclusion and Perspectives

212



Chapter 9

Conclusion and Perspectives

9.1 Summary

This dissertation has addressed some limitations inherent to the utilization of CGAs and more partic-

ulary when applied to static or dynamic real-world problems. Our goal has been to build a multi-agent

framework permitting the use, the comparison and the distribution of CGAs on optimization problems

with few coding requirements.

To this end, the following issues were tackled:

- Although coevolutionary genetic algorithms (CGAs) are one recent evolution of genetic algorithms

(GAs), many different architectures (competitive and cooperative) and applications to function opti-

mization problems have been issued. We brought to the fore that few hybrid and dynamic architectures

were proposed as well as few real-world problems were tackled. We additionally demonstrated that

CGAs are still rarely usable within the existing platforms/frameworks and that none of them use the

agent paradigm to model, implement and distribute their algorithms.

- Therefore we investigated organizational models in multi-agent systems (MAS) as a way to ex-

plicitly define the CGAs topologies and the relations/dependencies between their components (i.e.

their subpopulations). Due to the development of a new dynamic CGA, we additionally examined

reorganizational models to specify the internal dynamics of such a new algorithm and/or its interac-

tions with the environment (i.e. with the optimization problem).

- A new multi-agent model dedicated to evolutionary optimization MAS4EVO (Multi-Agent Sys-

tem for EVolutionary Optimization) was introduced. MAS4EVO provides a novel way of modeling

CGAs as organizational and reorganizational multi-agent systems. We demonstrated that based on

some organizational primitives, it is possible to define multiple organizations and thus multiple CGAs.

Indeed, we modeled two existing CGAs (i.e. CCGA and LCGA) and two new variants of the LCGA,

213



9.2 Future Research

a hybrid one (hLCGA) and a dynaminc one (dLCGA).

- DAFO (Distributed Agent Framework for Optimization), a multi-agent framework for function

optimization using coevolutionary genetic algorithms was presented. DAFO is the implementation of

the MAS4EVO model, based on one existing multi-agent platform (i.e. Madkit), which permits to ap-

ply, compare and distribute CGAs on optimization problems with a minimum of coding effort. Thanks

to the MAS4EVO model, it facilitates the understanding and the manipulation of CGAs structures.

- A stock management problem called Inventory Control Parameter (ICP) problem was chosen as

first application scenario of DAFO. We experimentally demonstrated that decomposing the problem

in terms of stock items with LCGA provides better results than the CCGA on small instances of this

problem but its performance degrades as the problem size increases. We additionally applied the two

new variants of LCGA, respectively hybrid (hLCGA) and dynamic (dLCGA), with which we improved

the “standard” LCGA’s performances on this business problem.

- As second application scenario, we tackled an emergent business problem related to topology

control in mobile hybrid ad hoc networks called injection network problem. The objective is to

optimize the placement and the number of long-range links, using small-world properties as indicator

of a good solution, so as to unpartition ad hoc networks. We demonstrated that the use of our

framework and of the CGAs it provides is suitable for both static and dynamic instances of this new

problem. Indeed, CCGA and LCGA performed well compared to panmictic algorithms (generational

and steady-state GAs) and the best combinations in terms of solution representation and crossover

operators were experimentally found. In order to conduct these experiments, we showed that the

DAFO framework can be interfaced with other third-party softwares like the Madhoc simulator we

used for simulating our injection networks. We also had the opportunity to make a first evaluation of

the distributed version of DAFO.

9.2 Future Research

Throughout this dissertation, a number of possible directions for future research have been suggested.

In the following, we expand these ideas and provide some additional ones.

Concerning the DAFO framework, thanks to its organizational model and its agents’ architecture,

it is rather easy to add new solvers, in addition to the generational GAs and the local search algo-

rithms. Therefore, we plan in our future works to provide the possibility to use steady-state and

cellular GAs so as to build new CGAs variants.

214



9.2 Future Research

We also project to have a multiobjective (MO) version of these evolutionary solvers, since multi-

objective CGAs are a recent and promising evolution of CGAs [207].

Another extension concerns the interaction protocols that we plan to extend with asynchronous

communication between the solvers. This will prevent the solvers to wait for some missing solution

pieces from other solver(s), and thus reduce the computational time.

Some other current and future works focus on the injection network optimization problem.

First of all, in order to evaluate the CGAs performances on the static instances to state-of-the art

algorithms, we started conducting experiments with an adaptive cellular GA.

Another current work consists in defining a multi-objective version of the problem (minimizing

the CPL and the number of bypass links, maximizing the clustering coefficient) and to evaluate the

results of some state-of-the-art multiobjective GAs such as NSGA-II [204], SPEA2 [205] and MOCell

[206]. Once these first results obtained, as previously mentioned we will integrate this MO algorithm

as a new agent solver in DAFO and evaluate this new MO-CGA. These two research works are done

in collaboration with the university of Malaga.

In the near future we plan to work on an efficient decomposition of the problem that can be used

by the LCGA. Indeed, contrary to the first problem tackled in this dissertation (the ICP problem),

no efficient problem decomposition has been found yet. The objective is to speed up the calculation

process since subpopulations will only evaluate local functions instead of a single global one and on

to permit a first distribution of the algorithm since no global communication between subpopulations

will be necessary.

Concerning the dynamic instance of this injection network problem, we planned to evaluate our new

LCGAs (dLCGA and hLCGA) on the same problem and on other scenarios. At the same time, some

more investigations will have to be done on performance measurements dynamic environments, since

as depicted in this dissertation, at the present time they are still targeted to test problems/benchmarks

and not to real-world problems.

215



Part V

Appendix

216



Appendix A

Multi-Agent Platforms

A.1 Introduction

In this section we present different multi-agent platforms, the advantages/disadvantages they have in

the context of function optimization problems and finally in the conclusion we present the one we

choose.

In order to find a multi-agent platform which fits best to our needs, we thus investigated several

multi-agent platforms amongst the many platforms available.

The emergence of the agent paradigm came with several architectures and methodologies to model

multi-agent systems. Here are some of them: MaSE (multi-agents software engineering) [208], AGR

(agent group role) [124], Gaia [209] and many others. Based on this modeling theory, many platforms

are currently available on the market but only a few appear to be relevant and popular, that’s why

we only focused on the following: JADE [31], Zeus [210], AgentTool [211], AgentBuilder, Jack [212]

and Madkit [213].

With more than sixty different multi-agent platforms available, finding the adapted platform is

quite a complex task. In order to compare them, it is important to notice that most of those platforms

are based on a particular agent model (e.g. Zeus) or targeted to a specific domain, such as simulation

(Swarm) or mobile agents (Aglets). It is then clear that simulation tools won’t be adapted to our

requirements as well as platforms which use agent models that are not organizational models.

Additionally, the current literature provides only a few papers targeted to agent platforms evalu-

ation and comparison among which the following ones appeared to be relevant: , [214], [215], the last

one being from Leszczyna in [216] in 2004.

217



A.2 Zeus

According to the information related in these papers, we decided to investigate the following

toolkits:

A.2 Zeus

Zeus is a well-known open source multi-agent toolkit developed in Java by the British Telecommunica-

tions Laboratory (BT). Zeus is a complete environment using a methodology named ”role modeling”

for the development of collaborative systems. Each ZEUS agent consists of a definition layer, an

organizational layer and a coordination layer. The definition layer comprises the agent’s reasoning

(and learning) abilities, its goals, resources, skills, beliefs, preferences, etc. The organization layer

describes the agent’s relationships with other agents, and at the coordination layer the agent is mod-

eled as a social entity, i.e. in terms of the coordination and negotiation techniques it possesses. Zeus

has three main functional components: the agent component library, agent building tools and visu-

alization tools. The agent component library is a collection of software components that implement

the functionality necessary for multi-agent systems. It provides a set of pre-written and pre-tested

agent components. The agent building tools provide an environment for developing agents (including

Java code generator) and the visualization tools is a run-time environment for running, testing and

debugging agents. The Problem with Zeus is that it seems to be well adapted to developers who lack

a strong Java background, however it is quite complex and using it requires a lot of time. Additionally

there has been no update since version 1.2.1 of May 2001.

Figure A.1: Components of the Zeus agent building toolkit

A.3 AgentTool

AgentTool is based on the MaSE methodology. Multiagent Systems Engineering (MaSE) is an agent-

oriented software engineering methodology which is an extension of the object-oriented approach.

MaSE does not view agents as being necessarily autonomous, proactive, etc.; rather agents are ”sim-

ple software processes that interact with each other to meet an overall system goal”. MaSE fully

218

Chapter3/Chapter3Figs/Zeus.png


A.4 AgentBuilder

describes the process which guides a system developer from an initial system specification to system

implementation. This process consists of seven steps, divided into two phases. The Analysis phase

consists of three steps: Capturing Goals, Applying Use Cases, and Refining Roles. The remaining four

process steps, Creating Agent Classes, Constructing Conversations, Assembling Agent Classes, and

System Design, form the Design phase. MaSE has extensive tool support in the form of AgentTool.

Since version 2.03, it implements all seven steps of MaSE. It also provides automated support for

transforming analysis models into design constructs. This tool is interesting to carry out the first

steps in the development of a MAS which can be interesting but it’s not the main objective in this

project.

Figure A.2: AgentTool implemented MaSE features, class diagram and conversation diagram

A.4 AgentBuilder

AgentBuilder is an integrated commercial tool suite for constructing intelligent software agents. It is

developed by Reticular Systems Inc., and is grounded on the Agent0 (Shoham 93) and Placa (Thomas

93) BDI models. It is available in two versions: AgentBuilder Lite and AgentBuilder Pro. Academic

versions are also available. Currently, license fees ranges from 100to5000 depending on the version.

AgentBuilder provides a powerful mental model for its agents, allowing developers to easily specify such

things as beliefs, intentions, commitments, and behavioral rules. In addition, use is made of popularly

accepted standards like KQML for the agent communication language along with use of UML-like

object modeling facilities to model domain knowledge of an agent. This tool is remarkable both by

the high quality of its software and the well-known academic background model used. However it is a

very complex tool which requires many learning efforts and a good knowledge in the MAS domain to

be used extensively. It is also quite limited in terms of extensibility, deployment and reusability. And

last but not least, it is not a free or open-source tool which is not suitable for the project.

219

Chapter3/Chapter3Figs/AgentTool.png


A.5 Jack

Figure A.3: AgentBuilder: Agent construction process

A.5 Jack

Jack Intelligent Agents is a development environment that is built on top of Java and acts as an

extension of Java that offers classes for implementing agent behavior. It is developed by Agent

Oriented Software Group, an Australian commercial company. Although it is a commercial tool, a

60-days evaluation license is available. Jack defines its agents as being ’intelligent’. These types

of agents model reasoning behavior according to the theoretical Belief-Desire-Intention (BDI) model.

The toolkit consists of the JDE (Jack Development Environment), a graphical tool to manage projects,

the Jack Agent Language (JAL) compiler, that translates JAL programs to pure Java programs, and

a library of supporting classes, called the Jack Agent Kernel. The JAL is an extension of Java. Jack

proposes no methodology and focuses mainly on the development stage. Analysis and design are only

mentioned in a few and very technical documentations what makes reuse difficult. Jack seems quite

hard to use since it is necessary to learn the Jack Agent Language (JAL) and to know the BDI model.

Moreover the lack of graphical tools (there is no editor for the development or the deployment) makes

the development and deployment of systems difficult. Like AgentBuilder it is a commercial tool and

thus it is not appropriate.

A.6 Jade

Jade has been conceived and developed by Tilab, the Telecom Italia R&D center. It is a free and

open source software implemented in Java. It provides a container paradigm for associating JVM’s, an

agent foundation class for writing customized agents, a library of protocol skeletons and an interface

220

Chapter3/Chapter3Figs/AgentBuilder.png


A.6 Jade

Figure A.4: Jack Intelligent Agents Components

for using the JESS rule-based system for the behavior of the agents. Jade can be distributed over

several hosts, each host runs a container connected to the main container of the platform. Distributed

agents can then transparently communicate and can even clone or migrate on different containers

Since JADE version 3.0b1 LEAP libraries (Lightweight Extensible Agent Platform) are completely

integrated, providing a runtime environment that can be deployed on a wide range of devices varying

from servers to Java enabled cell phones with J2ME MIDP. There is no methodology specified for the

development but it comes with tools that support the debugging and the deployment phases. However

there is no interface for the development or the implementation, and consequently the implementation

phase requires a lot of efforts. This tool has already been used in another small project and this

experience plus the other preceding remarks show that Jade won’t suit to such a project.

Figure A.5: Jade architecture

221

Chapter3/Chapter3Figs/Jack.png
Chapter3/Chapter3Figs/Jade.png


A.7 Madkit

A.7 Madkit

MadKit is a Java multi-agent platform built upon the Agent/Group/Role (AGR) organizational model.

It is developed by Gutknecht and Ferber at the LIRMM (Laboratoire d’Informatique, de Robotique

et de Microélectronique de Montpellier), a public research laboratory. Madkit is a free software which

comes with a mix of GPL/LPGL licenses (LGPL for the basic libraries, and GPL for development

tools). Madkit does not enforce any consideration about the internal structure of agents and thus

allows the developer to freely implement its own agent architectures. MadKit is also a distributed

platform which allows the development of efficient distributed applications thanks to its micro-kernel

architecture. All considerations about basic distributed components such as ”sockets”and ”ports”, are

totally transparent and contrary to many other frameworks the MadKit distribution mechanisms do

not use the quite rather slow techniques of RMI or CORBA remote access. The main disadvantage

of Madkit is that building complex agents requires a lot of code since there is no pre-defined agent

model, however this adds flexibility.

Figure A.6: Madkit architecture

Based on this state of the art, only two platforms still match our requirements: Jade and Madkit.

Indeed, they both are open source softwares, they allow the use of an organizational model and they

can be distributed. Madkit has been our final choice, because of the possibility of using the group and

roles already implemented for AGR model.

A.8 Performance Evaluation

Those few papers related to the topic only compare the platforms in a qualitative point of view. How-

ever, since our multi-agent system is targeted to function optimization, its performance and thus the

performance of the multi-agent platform is also a key issue. However, until 2004 there was no pa-

per providing such a performance comparison between agent platforms, this lack was outlined in [217].

Only three recent papers propose a performance comparison of the message transport systems of

some agent toolkits. Jun in [218] compares Jade, Zeus and Jack, Burbeck in [219] compares Jade,

Tryllian and SAP and finally Mulet [30] compares Jade, Madkit and AgentScape. Mulet also extends

222

Chapter3/Chapter3Figs/Madkit.png


A.8 Performance Evaluation

the comparison to Directory Services.

According to Mulet, implementing basic services, like messaging, by means of agents as opposed to

a kernel implementation allows a high modularity but degrades performance. This is why Madkit is

slightly slower than Jade but still much more performant than AgentScape. The situtation is reversed

concerning the service directory service, which is offered directly by Madkit and by means of agent

by Jade. Additionally, Madkit distributes and duplicates its directories among all the kernels, which

make service discovery in a distributed mode even faster.

Madkit is thus close to Jade in terms of performance, which appears to be a good point since Jade

also provides good performances compared to other platforms (Zeus, Jack, Tryllian and SAP).

223



Appendix B

DAFODL’s DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT evoframework (interactiongraph,geneticparameters, localsearchparameters*)>

<!ELEMENT interactiongraph (topology, numberofagents, exchangedinformation)>

<!ELEMENT topology (#PCDATA)>

<!ELEMENT numberofagents (#PCDATA)>

<!ELEMENT exchangedinformation (#PCDATA)>

<!ELEMENT geneticparameters (algorithm, fitnessclass, experiments, terminationcondi-

tion, terminationconditionvalue, numchroms, numgenes, sizegenes, crossover, crossrate,

mutrate, elitenumber, localsearch*)>

<!ELEMENT algorithm (#PCDATA)>

<!ELEMENT fitnessclass (#PCDATA)>

<!ELEMENT experiments (#PCDATA)>

<!ELEMENT terminationconditionvalue (#PCDATA)>

<!ELEMENT numchroms (#PCDATA)>

<!ELEMENT numgenes (#PCDATA)>

<!ELEMENT sizegenes (#PCDATA)>

<!ELEMENT crossover (#PCDATA)>

<!ELEMENT crossrate (#PCDATA)>

<!ELEMENT mutrate (#PCDATA)>

<!ELEMENT elitenumber (#PCDATA)>

<!ELEMENT localsearch (#PCDATA)>

<!ELEMENT localsearchparameters (lsalgorithm, lsexchangedinformation, lspopulationrate*,

224



lsterminationcondiation)>

<!ELEMENT lsalgorithm (#PCDATA)>

<!ELEMENT lsexchangedinformation (#PCDATA)>

<!ELEMENT lspopulationrate (#PCDATA)>

<!ELEMENT lsterminationcondition (#PCDATA)>

225



Bibliography

[1] E. Alba and J. M. Troya, “A survey of parallel distributed genetic algorithms,” Complexity

(USA), vol. 4, no. 4, pp. 31–52, 1999. xi, 4, 5, 36, 41, 42, 45

[2] O. Boissier, Principes et architecture des systèmes multi-agents. Paris, France: Hermès Science

Publications, 2001, ch. Modèles et architectures d’agents. xvi, 66

[3] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” Evolutionary

Computation, IEEE Transactions on, vol. 1, no. 1, pp. 67–82, 1997. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=585893 3, 36

[4] J. H. Holland, Adaptation in natural and artificial systems: An in-

troductory analysis with applications to biology, control, and artifi-

cial intelligence. University of Michigan Press, 1975. [Online]. Available:

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{\&}path=ASIN/0472084607

4, 35

[5] H. Cobb and J. Grefenstette, “GA for Tracking Changing Environments,” in PPSN, 1993, pp.

532–530. 4, 37

[6] D. Whitley and J. Kauth, “GENITOR: A Different Genetic Algorithm,” in Proceedings of the

Rocky Mountain Colorado, on Artificial Intelligence, 1988, pp. 118–130. 4, 38, 186

[7] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms.”IEEE Trans. Evolutionary

Computation, vol. 6, no. 5, pp. 443–462, 2002. 4, 42, 45, 57

[8] Z. Konfrst, “Parallel genetic algorithms: Advances, computing trends, applications and perspec-

tives,” in IPDPS. IEEE Computer Society, 2004. 4, 5, 42, 45

[9] K. A. DeJong, “An analysis of the behaviour of a class of genetic adaptive systems,” Ph.D.

dissertation, University of Michigan, Ann Arbor, Michigan, 1975. 5, 169

[10] J. Paredis, “Coevolutionary life-time learning,” in Parallel Problem Solving from Nature – PPSN

IV. Berlin: Springer, 1996, pp. 72–80. 5, 46

226

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=585893
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{\&}path=ASIN/0472084607


BIBLIOGRAPHY

[11] M. A. Potter and K. De Jong,“A cooperative coevolutionary approach to function optimization,”

in Parallel Problem Solving from Nature – PPSN III. Berlin: Springer, 1994, pp. 249–257. 6,

7, 49, 50, 51, 186

[12] F. Seredynski, “Loosely coupled distributed genetic algorithms,” in PPSN III: Proceedings of

the International Conference on Evolutionary Computation. The Third Conference on Parallel

Problem Solving from Nature. London, UK: Springer-Verlag, 1994, pp. 514–523. 6, 48

[13] ——,“Competitive coevolutionary multi-agent systems: the application to mapping and schedul-

ing problems,” J. Parallel Distrib. Comput., vol. 47, no. 1, pp. 39–57, 1997. 7, 48, 54

[14] R. Eriksson and B. Olsson, “Cooperative coevolution in inventory control optimisation,” in Proc.

of the Third International Conference on Artificial Neural Networks and Genetic Algorithms.

University of East Anglia, Norwich, UK: Springer-Verlag, 1997. 7, 21, 50, 162

[15] J. B. Pollack and A. D. Blair, “Coevolution in the successful learning of backgammon strategy,”

Machine Learning, vol. 32, pp. 225–240, 1998. 7, 47

[16] P. J. Angeline and J. B. Pollack, “Competitive environments evolve better solutions for complex

tasks,” in Proceedings of the 5th International Conference on Genetic Algorithms. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 1993, pp. 264–270. 7, 48

[17] M. A. Potter, L. Meeden, and A. C. Schultz, “Heterogeneity in the coevolved behaviors

of mobile robots: The emergence of specialists,” in IJCAI, 2001, pp. 1337–1343. [Online].

Available: citeseer.ist.psu.edu/article/potter01heterogeneity.html 7, 49

[18] S. Cahon, N. Melab, and E.-G. Talbi, “ParadisEO: A framework for the reusable design of

parallel and distributed metaheuristics,” Journal of Heuristics, vol. 10, no. 3, pp. 357–380, 2004.

7, 58

[19] E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró, J. González, C. León,

L. Moreno, J. Petit, J. Roda, A. Rojas, and F. Xhafa, “MALLBA: A library of skeletons

for combinatorial optimisation,” in Euro-Par 2002 Parallel Processing, ser. Lecture Notes in

Computer Science, B. Monien and R. Feldman, Eds. Berlin Heidelberg: Springer-Verlag, 2002,

vol. 2400, pp. 927–932. [Online]. Available: citeseer.ist.psu.edu/678882.html 7, 59

[20] M. G. Arenas, P. Collet, A. E. Eiben, M. Jelasity, J. J. Merelo, B. Paechter,

M. Preuß, and M. Schoenauer, “A framework for distributed evolutionary algorithms,”

in Parallel Problem Solving from Nature - PPSN VII, ser. Lecture Notes in Computer

Science, J. J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas, and

H.-P. Schwefel, Eds., vol. 2439. Springer-Verlag, 2002, pp. 665–675. [Online]. Available:

citeseer.ist.psu.edu/arenas02framework.html 7, 58

227

citeseer.ist.psu.edu/article/potter01heterogeneity.html
citeseer.ist.psu.edu/678882.html
citeseer.ist.psu.edu/arenas02framework.html


BIBLIOGRAPHY

[21] S. Luke, “Ecj: A java evolutionary computation library,” 2006. [Online]. Available:

http://cs.gmu.edu/$\sim$eclab/projects/ecj/ 7, 59

[22] B. Bauer, J. Muller, and J. Odell, “Agent UML: A formalism for specifying multiagent interac-

tion,” Berlin, Germany, pp. 91–103, 2001. [Online]. Available: citeseer.ist.psu.edu/448042.html

13, 109, 110

[23] J. Ferber, O. Gutknecht, and F. Michel, “From agents to organizations: An organizational view

of multi-agent systems.” in AOSE, ser. Lecture Notes in Computer Science, P. Giorgini, J. P.

Müller, and J. Odell, Eds., vol. 2935. Springer, 2003, pp. 214–230. 13, 70, 71, 109, 110

[24] B. Gateau, O. Boissier, D. Khadraoui, and E. Dubois, “MOISEInst: An organizational model

for specifying rights and duties of autonomous agents.” in EUMAS, M. P. Gleizes, G. A.

Kaminka, A. Nowé, S. Ossowski, K. Tuyls, and K. Verbeeck, Eds. Koninklijke Vlaamse

Academie van Belie voor Wetenschappen en Kunsten, 2005, pp. 484–485. [Online]. Available:

http://dblp.uni-trier.de/db/conf/eumas/eumas2005.html#GateauBKD05 14, 71, 73, 100

[25] Y. S. Son and R. Baldick, “Hybrid coevolutionary programming for nash equilibrium search in

games with local optima.” IEEE Trans. Evolutionary Computation, vol. 8, no. 4, pp. 305–315,

2004. 17, 53, 131

[26] M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An architecture for evolving

coadapted subcomponents,” Evolutionary Computation, vol. 8, no. 1, pp. 1–29, 2000. [Online].

Available: citeseer.ist.psu.edu/article/potter00cooperative.html 17, 53, 138

[27] A. Iorio and X. Li, “Parameter control within a co-operative co-evolutionary genetic algorithm,”

in PPSN VII: Proceedings of the 7th International Conference on Parallel Problem Solving from

Nature. London, UK: Springer-Verlag, 2002, pp. 247–256. 17, 53, 138

[28] Z. Cai and Z. Peng, “Cooperative coevolutionary adaptive genetic algorithm in path planning

of cooperative multi-mobile robot systems,” J. Intell. Robotics Syst., vol. 33, no. 1, pp. 61–71,

2002. 17, 53, 138

[29] O. Gutknecht and J. Ferber, “Madkit: a generic multi-agent platform,” in Proc. of the fourth

international conference on Autonomous agents. ACM Press, 2000, pp. 78–79. 19, 154

[30] L. Mulet, J. M. Such, and J. M. Alberola, “Performance evaluation of open-source multia-

gent platforms,” in AAMAS ’06: Proceedings of the fifth international joint conference on Au-

tonomous agents and multiagent systems. New York, NY, USA: ACM Press, 2006, pp. 1107–

1109. 19, 222

[31] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent systems with JADE,” in

ATAL ’00: Proceedings of the 7th International Workshop on Intelligent Agents VII. Agent

Theories Architectures and Languages. London, UK: Springer-Verlag, 2001, pp. 89–103. 19,

217

228

http://cs.gmu.edu/$\sim $eclab/projects/ecj/
citeseer.ist.psu.edu/448042.html
http://dblp.uni-trier.de/db/conf/eumas/eumas2005.html#GateauBKD05
citeseer.ist.psu.edu/article/potter00cooperative.html


BIBLIOGRAPHY

[32] L. Hogie, P. Bouvry, F. Guinand, G. Danoy, and E. Alba, “Simulating Realistic Mobility Models

for Large Heterogeneous MANETS,” in Demo proceeding of the 9th ACM/IEEE International

Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM’06).

IEEE, October 2006. 24, 185

[33] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (2nd, extended

ed.). New York, NY, USA: Springer-Verlag New York, Inc., 1994. 37, 180, 186

[34] E. Alba, A. J. Nebro, and J. M. Troya, “Heterogeneous computing and parallel genetic algo-

rithms,” J. Parallel Distrib. Comput., vol. 62, no. 9, pp. 1362–1385, 2002. 37, 186

[35] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” in Proceedings of the third interna-

tional conference on Genetic algorithms. San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc., 1989, pp. 2–9. 40

[36] W. E. Hart, S. B. Baden, R. K. Belew, and S. R. Kohn, “Analysis of the numerical effects of

parallelism on a parallel genetic algorithm,” in IPPS ’96: Proceedings of the 10th International

Parallel Processing Symposium. Washington, DC, USA: IEEE Computer Society, 1996, pp.

606–612. 41

[37] E. Alba, “Parallel evolutionary algorithms can achieve super-linear performance,” Inf. Process.

Lett., vol. 82, no. 1, pp. 7–13, 2002. 42

[38] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Illinois Genetic Algorithms Laboratory,

University of Illinois at Urbana-Champaign, Tech. Rep. 97003, 1997. 42, 44, 45

[39] E. Alba and J. M. Troya, “Improving flexibility and efficiency by adding parallelism to genetic

algorithms,” Statistics and Computing, vol. 12, no. 2, pp. 91–114, 2002. 43

[40] B. Dorronsoro, E. Alba, M. Giacobini, and M. Tomassini, “The influence of grid shape

and asynchronicity on cellular evolutionary algorithms,” in IEEE International Conference on

Evolutionary Computation, Y. Shi, Ed. Portland, Oregon: IEEE Press, June 20–23 2004, pp.

2152–2158. [Online]. Available: citeseer.ist.psu.edu/dorronsoro04influence.html 43

[41] E. Alba, Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, 2005. 43,

190, 197, 201, 208

[42] P. B. Grosso, “Computer simulations of genetic adaptation: parallel subcomponent interaction

in a multilocus model,” Ph.D. dissertation, Ann Arbor, MI, USA, 1985. 44

[43] E. Cantú-Paz, “Migration policies, selection pressure, and parallel evolutionary algorithms,”

Journal of Heuristics, vol. 7, no. 4, pp. 311–334, 2001. 44

[44] E. Cantú-Paz, “Topologies, migration rates, and multi-population parallel genetic algorithms,”

in GECCO, W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela,

and R. E. Smith, Eds. Morgan Kaufmann, 1999, pp. 91–98. 44

229

citeseer.ist.psu.edu/dorronsoro04influence.html


BIBLIOGRAPHY

[45] E. Cantú-Paz and D. E. Goldberg, “Efficient parallel genetic algorithms:

theory and practice,” Computer Methods in Applied Mechanics and En-

gineering, vol. 186, no. 2-4, pp. 221–238, June 2000. [Online]. Available:

http://www.sciencedirect.com/science/article/B6V29-40CRYKF-6/2/9ec1963003d8d255648b3d7878df6272

45

[46] Z. Skolicki and K. D. Jong, “The influence of migration sizes and intervals on island models,”

in GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary computation.

New York, NY, USA: ACM Press, 2005, pp. 1295–1302. 45

[47] F. Gruau, “Neural network synthesis using cellular encoding and the genetic algorithm.” Ph.D.

dissertation, France, 1994. [Online]. Available: citeseer.ist.psu.edu/frederic94neural.html 45

[48] M. Gorges-Schleuter, “Asparagos96 and the traveling salesman problem,” in Proceedings of 1997

IEEE International Conference on Evolutionary Computation, 1997, pp. 171–174. 45

[49] S.-C. Lin, E. D. Goodman, and I. William F. Punch, “Investigating parallel genetic algorithms

on job shop scheduling problems,” in EP ’97: Proceedings of the 6th International Conference

on Evolutionary Programming VI. London, UK: Springer-Verlag, 1997, pp. 383–393. 45

[50] E. Alba and J. M. Troya, “Influence of the migration policy in parallel distributedgas with

structured and panmictic populations,” Applied Intelligence, vol. 12, no. 3, pp. 163–181, 2000.

45

[51] ——, “Analyzing synchronous and asynchronous parallel distributed genetic algorithms,”Future

Gener. Comput. Syst., vol. 17, no. 4, pp. 451–465, 2001. 45

[52] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. 45, 55, 186

[53] R. Bianchini and C. Brown, “Parallel genetic algorithms on distributed-memory architectures,”

in NATUG-6: Proceedings of the sixth conference of the North American Transputer Users Group

on Transputer research and applications 6. Amsterdam, The Netherlands, The Netherlands:

IOS Press, 1993, pp. 67–82. 45

[54] P. R. Ehrlich and P. H. Raven, “Butterflies and plants: A study in coevolution,” Evolution,

vol. 18, no. 4, pp. 586–608, 1964. 46

[55] C. Darwin, The Origin of Species by Means of Natural Selection. NY: Mentor Reprint, 1958,

1859. 46

[56] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an optimization procedure,”

pp. 228–234, 1991. 47

230

http://www.sciencedirect.com/science/article/B6V29-40CRYKF-6/2/9ec1963003d8d255648b3d7878df6272
citeseer.ist.psu.edu/frederic94neural.html


BIBLIOGRAPHY

[57] J. Paredis, “Co-evolutionary constraint satisfaction.” in PPSN, ser. Lecture Notes in Computer

Science, Y. Davidor, H.-P. Schwefel, and R. Männer, Eds., vol. 866. Springer, 1994, pp. 46–55.

47

[58] ——,“Steps towards co-evolutionary classification neural networks,” in Proceedings of the Fourth

International Workshop on the Synthesis and Simulation of Living Systems, 1994, pp. 102–108.

47

[59] H. Juille and J. B. Pollack, “Co-evolving intertwined spirals,” in Evolutionary Programming

V: Proceedings of the Fifth Annual Conference on Evolutionary Programming, L. J. Fogel,

P. J. Angeline, and T. Baeck, Eds. MIT Press, 1996, pp. 461–467. [Online]. Available:

citeseer.ist.psu.edu/juille96coevolving.html 47

[60] H. A. Mayer, “Symbiotic coevolution of artificial neural networks and training data sets,”

Lecture Notes in Computer Science, vol. 1498, pp. 511–520, 1998. [Online]. Available:

citeseer.ist.psu.edu/mayer98symbiotic.html 47

[61] C. D. Rosin and R. K. Belew, “Methods for competitive co-evolution: Finding opponents

worth beating,” in Proceedings of the Sixth International Conference on Genetic Algorithms,

L. Eshelman, Ed. San Francisco, CA: Morgan Kaufmann, 1995, pp. 373–380. [Online].

Available: citeseer.ist.psu.edu/rosin95methods.html 47

[62] ——, “New methods for competitive coevolution,” Evolutionary Computation, vol. 5, no. 1, pp.

1–29, 1997. [Online]. Available: citeseer.ist.psu.edu/rosin96new.html 47

[63] D. Schlierkamp-Voosen and H. Mühlenbein, “Strategy adaptation by competing subpopulations,”

in Parallel Problem Solving from Nature – PPSN III, Y. Davidor, H.-P. Schwefel,

and R. Männer, Eds. Berlin: Springer, 1994, pp. 199–208. [Online]. Available:

citeseer.ist.psu.edu/schlierkamp-voosen94strategy.html 48, 50

[64] K. Sims, “Evolving 3d morphology and behavior by competition,” Artif. Life, vol. 1, no. 4, pp.

353–372, 1994. 48

[65] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-evolving soccer softbot team

coordination with genetic programming,” in Proceedings of the First International Workshop on

RoboCup, at the International Joint Conference on Artificial Intelligence, Nagoya, Japan, 1997.

[Online]. Available: citeseer.ist.psu.edu/luke97coevolving.html 48

[66] D. Floreano and S. Nolfi, “Adaptive behavior in competing co-evolving species,” in Fourth

European Conference on Artificial Life, P. Husbands and I. Harvey, Eds. Cambridge, MA: The

MIT Press, 1997, pp. 378–387. [Online]. Available: citeseer.ist.psu.edu/floreano97adaptive.html

48

231

citeseer.ist.psu.edu/juille96coevolving.html
citeseer.ist.psu.edu/mayer98symbiotic.html
citeseer.ist.psu.edu/rosin95methods.html
citeseer.ist.psu.edu/rosin96new.html
citeseer.ist.psu.edu/schlierkamp-voosen94strategy.html
citeseer.ist.psu.edu/luke97coevolving.html
citeseer.ist.psu.edu/floreano97adaptive.html


BIBLIOGRAPHY

[67] F. Seredynski, J. Koronacki, and C. Z. Janikow, “Distributed scheduling with decomposed op-

timization criterion: Genetic programming approach,” in Proceedings of the 11 IPPS/SPDP’99

Workshops Held in Conjunction with the 13th International Parallel Processing Symposium and

10th Symposium on Parallel and Distributed Processing. London, UK: Springer-Verlag, 1999,

pp. 192–200. 48, 56

[68] F. Seredynski, A. Y. Zomaya, and P. Bouvry, “Function optimization with coevolutionary al-

gorithms,” in Proc. of the International Intelligent Information Processing and Web Mining

Conference. Poland: Springer, 2003. 48, 53, 177

[69] P. Husbands and F. Mill, “Simulated co-evolution as the mechanism for emergent planning

and scheduling,” in Proceedings of the Fourth International Conference on Genetic Algorithms,

R. Belew and L. Booker, Eds. San Mateo, CA: Morgan Kaufman, 1991, pp. 264–270. 49

[70] M. A. Potter, “The design and analysis of a computational model of cooperative coevolution,”

Ph.D. dissertation, 1997. 49, 53

[71] M. A. Potter and K. A. D. Jong, “The coevolution of antibodies for concept learning,” in PPSN

V: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature.

London, UK: Springer-Verlag, 1998, pp. 530–539. 49

[72] M. A. Potter, K. A. D. Jong, and J. J. Grefenstette, “A coevolutionary approach to learning

sequential decision rules,” in Proceedings of the 6th International Conference on Genetic Al-

gorithms. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp. 366–372.

49

[73] M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An architecture for evolving coad-

apted subcomponents,” Evol. Comput., vol. 8, no. 1, pp. 1–29, 2000. 49

[74] J. Paredis, “The symbiotic evolution of solutions and their representations,” in Proceedings of

the 6th International Conference on Genetic Algorithms. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1995, pp. 359–365. 49

[75] D. E. Moriarty and R. Miikkulainen, “Forming neural networks through efficient and adaptive

coevolution,” Evolutionary Computation, vol. 5, no. 4, pp. 373–399, 1997. [Online]. Available:

citeseer.ist.psu.edu/moriarty98forming.html 49

[76] R. P. Wiegand, “Applying diffusion to a cooperative coevolutionary model,” in PPSN V: Pro-

ceedings of the 5th International Conference on Parallel Problem Solving from Nature. London,

UK: Springer-Verlag, 1998, pp. 560–572. 50

[77] S. Cahon, N. Melab, and E.-G. Talbi, “Building with paradisEO reusable parallel and distributed

evolutionary algorithms,” Parallel Comput., vol. 30, no. 5-6, pp. 677–697, 2004. 57

232

citeseer.ist.psu.edu/moriarty98forming.html


BIBLIOGRAPHY

[78] N. L. Costa, J. and P. Silva, “Jdeal: The java distributed evolutionary algorithms library,”

2008. [Online]. Available: http://www.laseeb.org/sw/JDEAL/ 59

[79] E. Noda, A. L. V. Coelho, I. L. M. Ricarte, A. Yamakami, and A. A. Freitas, “Devising

adaptive migration policies for cooperative distributed genetic algorithms,” in Proc. 2002

IEEE Int. Conf. on Systems, Man and Cybernetics. IEEE Press, 2002. [Online]. Available:

http://www.cs.kent.ac.uk/people/staff/aaf/my-publications-ukc.html 59, 60

[80] A. Roli, “Metaheuristics and structure in satisfiability problems,” University of Bologna (Italy),

Tech. Rep. DEIS-LIA-03-005, May 2003, phD Thesis - LIA Series no. 66. 59

[81] M. Milano and A. Roli, “Magma: A multiagent architecture for metaheuristics,” IEEE Trans.

on Systems, Man and Cybernetics – Part B, vol. 34, no. 2, pp. 925–941, April 2004. 59

[82] S. Cahon, “ParadisEO : Une plate-forme pour la conception et le déploiement de métaheuris-

tiques parallèles hybrides sur clusters et grilles,” Ph.D. dissertation, University of Sciences and

Technology of Lille, France, July 2005. 61

[83] M. J. Wooldridge and N. R. Jennings, “Agent theories, architectures, and languages: A survey,”

in Workshop on Agent Theories, Architectures and Languages (ECAI’94), M. J. Wooldridge and

N. R. Jennings, Eds., vol. 890. Springer-Verlag, 1995, pp. 1–22. 64

[84] J.-P. Briot and Y. Demazeau, Principes et architectures des systèmes multi-agents. Paris,

France: Hermès Science Publications, 2001, ch. Introduction aux agents, pp. 17–25. 65

[85] P. D. O’Brien and R. C. Nicol, “FIPA towards a standard for software agents,” BT Technology

Journal, vol. 16, no. 3, pp. 51–59, 1998. 65

[86] Y. Demazeau, “From interactions to collective behaviour in agent-based systems,” 1995.

[Online]. Available: citeseer.ist.psu.edu/demazeau95from.html 65, 90

[87] J. Ferber, Les Systèmes multi-agents: Vers une intel-

ligence collective. Dunod, January 2007. [Online]. Available:

http://www.amazon.fr/exec/obidos/redirect?tag=citeulike06-21\&amp;path=ASIN/2729606653

66

[88] M. Wooldridge, Intelligent agents. Cambridge, MA, USA: MIT Press, 1999, pp. 27–77. 66

[89] J. Bryson,“Cross-paradigm analysis of autonomous agent architecture,”Journal of Experimental

and Theoretical Artificial Intelligence, vol. 12, no. 2, pp. 165–190, 2000. [Online]. Available:

citeseer.ist.psu.edu/bryson00crossparadigm.html 66

[90] R. A. Brooks and J. H. Connell, “Asynchronous distributed control system for a mobile robot,”

in SPIE’s Cambridge Symposium on Optical and Optoelecronic Engineering, Cambridge, MA,

1986, pp. 77–84. 66

233

http://www.laseeb.org/sw/JDEAL/
http://www.cs.kent.ac.uk/people/staff/aaf/my-publications-ukc.html
citeseer.ist.psu.edu/demazeau95from.html
http://www.amazon.fr/exec/obidos/redirect?tag=citeulike06-21\&amp;path=ASIN/2729606653
citeseer.ist.psu.edu/bryson00crossparadigm.html


BIBLIOGRAPHY

[91] A. Drogoul, B. Corbara, and S. Lalande, “MANTA: New experimental results on the emergence

of (artificial) ant societies,” in Artificial Societies: The Computer Simulation of Social Life,

N. Gilbert and R. Conte, Eds. UCL Press: London, 1995, pp. 190–211. [Online]. Available:

citeseer.ist.psu.edu/drogoul95manta.html 66

[92] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning.” in AAAI, 1987, pp.

677–682. [Online]. Available: http://dblp.uni-trier.de/db/conf/aaai/aaai87.html#GeorgeffL87

66

[93] I. A. Ferguson, “Integrating models and behaviors in autonomous agents,” in Proceedings of

the AAAI Spring Symposium on Lessons Learned from Implemented Software Architectures for

Physical Agents, Stanford University, 1995, pp. 78–91. 66

[94] T. Bouron and A. Collinot, “SAM: a model to design computational social agents,” in ECAI ’92:

Proceedings of the 10th European conference on Artificial intelligence. New York, NY, USA:

John Wiley & Sons, Inc., 1992, pp. 239–243. 66

[95] Y. Shoham, “Agent oriented programming,”Artificial Intelligence, vol. 60, pp. 51–92, 1993. 66

[96] J. P. Muller, The Design of Intelligent Agents: A Layered Approach. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 1997. 66

[97] F. Dignum, D. Kinny, and L. Sonenberg, “Motivational attitudes of agents: On desires, obliga-

tions, and norms,” in CEEMAS ’01: Revised Papers from the Second International Workshop

of Central and Eastern Europe on Multi-Agent Systems. London, UK: Springer-Verlag, 2002,

pp. 83–92. 66

[98] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-

proach (2nd Edition). Prentice Hall, December 2002. [Online]. Available:

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&amp;path=ASIN/0137903952

67

[99] J. L. Austin, How to do Things with Words. New York: Oxford University Press, 1962. 68

[100] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an Agent Communication

Language,” in Proceedings of the 3rd International Conference on Information and Knowledge

Management (CIKM’94), N. Adam, B. Bhargava, and Y. Yesha, Eds. Gaithersburg, MD, USA:

ACM Press, 1994, pp. 456–463. [Online]. Available: citeseer.ist.psu.edu/article/finin95kqml.html

68

[101] Y. Labrou, “Semantics for an agent communication language,” Ph.D. dissertation, Catonsville,

MD, USA, 1996, director-Timothy Finin. 68

[102] P. D. O’Brien and R. C. Nicol, “FIPA towards a standard for software agents,” BT Technology

Journal, vol. 16, no. 3, pp. 51–59, 1998. 68

234

citeseer.ist.psu.edu/drogoul95manta.html
http://dblp.uni-trier.de/db/conf/aaai/aaai87.html##GeorgeffL87
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&amp;path=ASIN/0137903952
citeseer.ist.psu.edu/article/finin95kqml.html


BIBLIOGRAPHY

[103] M. Barbuceanu and M. S. Fox, “Cool: A language for describing coordination in multiagent

systems,” in Proceedings of the First International Conference oil Multi-Agent Systems

(ICMAS-95), V. Lesser and L. Gasser, Eds. San Francisco, CA, USA: AAAI Press, 1995, pp.

17–24. [Online]. Available: citeseer.ist.psu.edu/barbuceanu95cool.html 69

[104] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng, “Using colored petri nets for

conversation modeling,” in Issues in Agent Communication, F. Dignum and M. Greaves,

Eds. Springer-Verlag: Heidelberg, Germany, 2000, pp. 178–192. [Online]. Available:

citeseer.ist.psu.edu/article/cost99using.html 69

[105] M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and P. Torroni, “A logic based

approach to interaction design in open multi-agent systems,” Washington, DC, USA, pp.

387–392, Sept. 2004. [Online]. Available: citeseer.ist.psu.edu/alberti04logic.html 69

[106] M.-P. Huget and J. Odell, “Representing agent interaction protocols with agent UML,” in AA-

MAS ’04: Proceedings of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems. Washington, DC, USA: IEEE Computer Society, 2004, pp. 1244–1245. 69

[107] L. Gasser, “An overview of DAI,” in Distributed Artificial Intelligence: Theory and Praxis, N. M.

Avouris and L. Gasser, Eds. Dordrecht: Kluwer, 1992, pp. 9–30. 70

[108] B. Horling, B. Benyo, and V. Lesser, “Using self-diagnosis to adapt organizational structures,”

in AGENTS ’01: Proceedings of the fifth international conference on Autonomous agents. New

York, NY, USA: ACM Press, 2001, pp. 529–536. 70, 76, 81

[109] V. Dignum and F. Dignum, “Modelling agent societies: Co-ordination frameworks and institu-

tions.” in EPIA, ser. Lecture Notes in Computer Science, P. Brazdil and A. Jorge, Eds., vol.

2258. Springer, 2001, pp. 191–204. 70

[110] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia methodology for agent-oriented anal-

ysis and design,”Autonomous Agents and Multi-Agent Systems, vol. 3, no. 3, pp. 285–312, 2000.

70

[111] J. S. S. Luciano dos Reis Coutinho and O. Boissier,“Modeling organization in MAS: a comparison

of models,” in SEAS’05 : 1st. Workshop on Software Engineering for Agent-Oriented Systems,

2005. 70, 71, 76

[112] M. V. N. Prasad, K. Decker, A. Garvey, and V. Lesser, “Exploring organizational designs with

TAEMS: A case study of distributed data processing,” in Proceedings of the First International

Conference on Multi–Agent Systems, V. Lesser, Ed. MIT Press, 1995. [Online]. Available:

citeseer.ist.psu.edu/prasad96exploring.html 71

[113] M. Tambe and W. Zhang, “Towards flexible teamwork in persistent teams,” in ICMAS ’98:

Proceedings of the 3rd International Conference on Multi Agent Systems. Washington, DC,

USA: IEEE Computer Society, 1998, p. 277. 71

235

citeseer.ist.psu.edu/barbuceanu95cool.html
citeseer.ist.psu.edu/article/cost99using.html
citeseer.ist.psu.edu/alberti04logic.html
citeseer.ist.psu.edu/prasad96exploring.html


BIBLIOGRAPHY

[114] J. S. S. Mahdi Hannoun, Olivier Boissier and C. Sayettat, “MOISE : un modèle organisationnel

pour la conception de SMA,” in Proceedings of the 7th Journées Francophones D’Intelligence

Artificielle Distribuée et Systèmes Multi-Agents - Ingénierie des Systèmes Multi-Agents Appli-

cations. Reunion Island: Hermès, 1999, pp. 105–118. 71

[115] M. Tambe and W. Zhang, “Towards flexible teamwork in persistent teams: Extended report,”

Autonomous Agents and Multi-Agent Systems, vol. 3, no. 2, pp. 159–183, 2000. 71

[116] H. V. D. Parunak and J. Odell, “Representing social structures in UML,” in AGENTS ’01:

Proceedings of the fifth international conference on Autonomous agents. New York, NY, USA:

ACM Press, 2001, pp. 100–101. 71

[117] M. Esteva, J. A. Padget, and C. Sierra, “Formalizing a language for institutions and norms,”

in ATAL ’01: Revised Papers from the 8th International Workshop on Intelligent Agents VIII.

London, UK: Springer-Verlag, 2002, pp. 348–366. 71, 74

[118] J. F. Hübner, a. S. Jaime Sim and O. Boissier, “MOISE+: towards a structural, functional,

and deontic model for MAS organization,” in AAMAS ’02: Proceedings of the first international

joint conference on Autonomous agents and multiagent systems. New York, NY, USA: ACM,

2002, pp. 501–502. 71

[119] V. T. da Silva, R. Choren, and C. J. P. de Lucena, “A UML based approach for

modeling and implementing multi-agent systems,” in AAMAS ’04: Proceedings of the

Third International Joint Conference on Autonomous Agents and Multiagent Systems.

Washington, DC, USA: IEEE Computer Society, 2004, pp. 914–921. [Online]. Available:

http://dx.doi.org/10.1109/AAMAS.2004.36 71

[120] B. Horling and V. Lesser, “A Survey of Multi-Agent Organizational Paradigms,” University

of Massachusetts, Computer Science Technical Report 04-45, May 2004. [Online]. Available:

http://mas.cs.umass.edu/paper/366 71

[121] J. Ferber, F. Michel, and J. Báez Barranco, “Agre : Integrating environments with organiza-

tions,” in Environments for Multi-Agent Systems, First International Workshop. New York,

NY, USA: Springer, jul 2004, pp. 48–56. 71, 72

[122] V.-S. J. Dignum V. and D. F., “OMNI: Introducing social structure, norms and ontologies into

agent organizations,” in Programming Multi-Agent Systems: Second International Workshop

ProMAS 2004. Berlin Heidelberg: Springer, 2004, pp. 181–198. 71, 73

[123] T. S. José Báez and J. Ferber, “Un modèle institutionnel pour sma organisationnel,” in Journées

Francophones sur les Systèmes Multi-Agents (JFSMA05). Calais, France: Hermès-Lavoisier,

November 2005. 71, 72

236

http://dx.doi.org/10.1109/AAMAS.2004.36
http://mas.cs.umass.edu/paper/366


BIBLIOGRAPHY

[124] J. Ferber and O. Gutknecht, “Aalaadin: a meta-model for the analysis and design of organi-

zations in multi-agent systems,” in Proc. of the Third International Conference on Multi-Agent

Systems (ICMAS’98), 1998. 71, 217

[125] J. F. Hübner, “Um modelo de reorganização de sistemas multiagentes,”Ph.D. dissertation, Uni-

versidade de São Paulo, Escola Politćnica, Brazil, 2003. 72, 79

[126] J. F. Hübner, J. S. Sichman, and O. Boissier, “Using the MOISE+ for a cooperative framework

of MAS reorganisation.” in SBIA, ser. Lecture Notes in Computer Science, A. L. C. Bazzan and

S. Labidi, Eds., vol. 3171. Springer, 2004, pp. 506–515. 72, 76

[127] V. Dignum, J. Vazquez-Salceda, and F. Dignum, “A model of almost everything: Norms, struc-

ture and ontologies in agent organizations,” in AAMAS ’04: Proceedings of the Third Interna-

tional Joint Conference on Autonomous Agents and Multiagent Systems. Washington, DC,

USA: IEEE Computer Society, 2004, pp. 1498–1499. 73

[128] V. Dignum, J. Vázquez-Salceda, and F. Dignum, “OMNI: Introducing social structure, norms

and ontologies into agent organizations,” in PROMAS, ser. Lecture Notes in Computer Science,

R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, Eds., vol. 3346. Springer,

2004, pp. 181–198. 73

[129] V. Dignum, “A model for organizational interaction: based on agents, founded in logic,” Ph.D.

dissertation, Universiteit Utrecht, 2004. 73

[130] J. Vázquez-Salceda and F. Dignum, “Modelling electronic organizations.” in CEEMAS,

ser. Lecture Notes in Computer Science, V. Maŕık, J. P. Müller, and M. Pe-

choucek, Eds., vol. 2691. Springer, 2003, pp. 584–593. [Online]. Available:

http://dblp.uni-trier.de/db/conf/ceemas/ceemas2003.html#Vazquez-SalcedaD03 74

[131] P. Mathieu, J. Routier, and Y. Secq, “Principles for dynamic multi-agent organizations,” in 5th

Pacific Rim International Workshop on Multi Agents, ser. Lecture Notes in Computer Science,

K. Kuwabara and J. Lee, Eds., vol. 2413. Springer, 2002. 77, 83

[132] D. Capera, J.-P. Georgé, M. P. Gleizes, and P. Glize, “The AMAS theory for complex problem

solving based on self-organizing cooperative agents,” in WETICE, 2003, pp. 383–388. 77

[133] G. D. M. Serugendo, “On the use of formal specifications as part of running programs.” in

SELMAS, ser. Lecture Notes in Computer Science, A. F. Garcia, R. Choren, C. J. P. de Lucena,

P. Giorgini, T. Holvoet, and A. B. Romanovsky, Eds., vol. 3914. Springer, 2005, pp. 224–237.

[Online]. Available: http://dblp.uni-trier.de/db/conf/selmas/selmas2005.html#Serugendo05

78

[134] M. Schillo, H.-J. Bürckert, K. Fischer, and M. Klusch, “Towards a definition of robustness for

market-style open multi-agent systems,” in AGENTS ’01: Proceedings of the fifth international

conference on Autonomous agents. New York, NY, USA: ACM, 2001, pp. 75–76. 78

237

http://dblp.uni-trier.de/db/conf/ceemas/ceemas2003.html#Vazquez-SalcedaD03
http://dblp.uni-trier.de/db/conf/selmas/selmas2005.html##Serugendo05


BIBLIOGRAPHY

[135] D. Capera, J.-P. Georgé, M.-P. Gleizes, and P. Glize, “The AMAS theory for complex problem

solving based on self-organizing cooperative agents,” in WETICE ’03: Proceedings of the Twelfth

International Workshop on Enabling Technologies. Washington, DC, USA: IEEE Computer

Society, 2003, p. 383. 78

[136] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimization by a colony of

cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics,

vol. 26, no. 1, pp. 29–41, 1996. [Online]. Available: citeseer.ist.psu.edu/dorigo96ant.html 79

[137] S. Brueckner and H. V. D. Parunak, “Self-organizing MANET management.” in Engineering

Self-Organising Systems, ser. Lecture Notes in Computer Science, G. D. M. Serugendo,

A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds., vol. 2977. Springer, 2003, pp. 20–35.

[Online]. Available: http://dblp.uni-trier.de/db/conf/atal/esoa2003.html#BruecknerP03b 79

[138] V. Cahill, E. Gray, J. Seigneur, C. D. Jensen, Y. Chen, B. Shand, N. Dimmock, A. Twigg,

J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon, G. di Marzo Serugendo, C. Bryce,

M. Carbone, K. Krukow, and M. Nielsen, “Using trust for secure collaboration in uncertain

environments,” IEEE Pervasive Computing, vol. 2, no. 3, pp. 52–61, jul 2003. [Online].

Available: http://www2.imm.dtu.dk/pubdb/p.php?2553 79

[139] A. Grizard, L. Vercouter, T. Stratulat, and G. Muller, “A peer-to-peer normative system to

achieve social order,” in AAMAS06 Workshop on Coordination, Organization, Institutions and

Norms in agent systems (COIN’06), Hakodate, Japan, May 2006. 79

[140] S. Čapkun, L. Buttyán, and J.-P. Hubaux, “Self-organized public-key management for mobile

ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 2, no. 1, pp. 52–64, 2003. 79

[141] U. Bellur and N. C. Narendra, “Towards a programming model and middleware

architecture for self-configuring systems.” in COMSWARE. IEEE, 2006. [Online]. Available:

http://dblp.uni-trier.de/db/conf/comsware/comsware2006.html#BellurN06 79

[142] J.-B. Welcomme, M.-P. Gleizes, and R. Redon, “A Self-Organising Multi-Agent System Man-

aging Complex System Design Application to Conceptual Aircraft Design,” in International

Conference on Complex Open Distributed Systems (CODS), Chengdu, 22/07/2007-24/07/2007,

2007. 79

[143] V. Chevrier, “Etude et mise en oeuvre du paradigme multi-agents : De ATOME à GTMAS,”

Ph.D. dissertation, Université Henri Poincaré, Nancy I, 1993. 79

[144] V. Dignum, F. Dignum, and L. Sonenberg, “Towards dynamic reorganization of agent societies,”

in Proceedings of the workshop on Coordination in Emergent Agent Societies, Valencia, Spain,

August 22-27, 2004, 2004. 79

238

citeseer.ist.psu.edu/dorigo96ant.html
http://dblp.uni-trier.de/db/conf/atal/esoa2003.html##BruecknerP03b
http://www2.imm.dtu.dk/pubdb/p.php?2553
http://dblp.uni-trier.de/db/conf/comsware/comsware2006.html##BellurN06


BIBLIOGRAPHY

[145] Z. Guessoum, “Modèles et architectures d’agents et de systèmes multi-agents adaptatifs,” Uni-

versité Pierre Marie Curie, Paris, December 2003. 80

[146] P. Stone and M. Veloso, “Task decomposition and dynamic role assignment for real-time

strategic teamwork,” in Proceedings of the 5th International Workshop on Intelligent Agents V :

Agent Theories, Architectures, and Languages (ATAL-98), J. Müller, M. P. Singh, and A. S.

Rao, Eds., vol. 1555. Springer-Verlag: Heidelberg, Germany, 1999, pp. 293–308. [Online].

Available: citeseer.ist.psu.edu/article/stone98task.html 82

[147] R. Foisel, V. Chevrier, and J.-P. Haton, “Un modèle pour la réorganisation de systèmes multi-

agents,” in Proceedings of the 5ème Journes francophones Intelligence Artificielle Distribuée et

Systèmes Multi-Agents(JFIADSMA’97), 1997. 82

[148] S. A. DeLoach and E. Matson, “An organizational model for designing adaptive multiagent

systems,” in Proceedings of the The AAAI-04 Workshop on Agent Organizations: Theory and

Practice, San Jose, USA, July 25, 2004, 2004. 84

[149] E. Matson, “Abstraction of transition properties in multiagent organizations,” in IAT ’05: Pro-

ceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology.

Washington, DC, USA: IEEE Computer Society, 2005, pp. 169–172. 84

[150] C. M. Jonker, M. C. Schut, and J. Treur, “Organisational change: Deliberation and modifica-

tion.” in CIA, ser. Lecture Notes in Computer Science, M. Klusch, S. Ossowski, A. Omicini, and

H. Laamanen, Eds., vol. 2782. Springer, 2003, pp. 336–344. 85

[151] B. Horling, “Quantitative Organizational Modeling and Design for Multi-Agent Systems,”

Ph.D. dissertation, University of Massachusetts at Amherst, February 2006. [Online]. Available:

http://mas.cs.umass.edu/paper/409 85

[152] S. Russel and P. Norvig, “Artificial intelligence,” 1995. [Online]. Available:

citeseer.ist.psu.edu/russel96artificial.html 93

[153] L. Davis, “Bit-climbing, representational bias, and test suite design.” in ICGA, R. K. Belew and

L. B. Booker, Eds. Morgan Kaufmann, 1991, pp. 18–23. 132

[154] S. B. Rana and L. D. Whitley, “Bit representations with a twist.” in ICGA, T. Bäck, Ed. Morgan

Kaufmann, 1997, pp. 188–195. 132

[155] D. Yuret and M. Maza, “Dynamic hillclimbing: Overcoming the limitations of optimization

techniques,” 1993. [Online]. Available: citeseer.ist.psu.edu/yuret93dynamic.html 132

[156] F. Glover, “Future paths for integer programming and links to artificial intelligence,” Comput.

Oper. Res., vol. 13, no. 5, pp. 533–549, 1986. 132

239

citeseer.ist.psu.edu/article/stone98task.html
http://mas.cs.umass.edu/paper/409
citeseer.ist.psu.edu/russel96artificial.html
citeseer.ist.psu.edu/yuret93dynamic.html


BIBLIOGRAPHY

[157] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent systems with JADE,”in Proc.

of the 7th International Workshop on Intelligent Agents VII. Agent Theories Architectures and

Languages. Springer-Verlag, 2001, pp. 89–103. 147

[158] D. J. Watts, Small Worlds – The Dynamics of Networks between Order and Randomness.

Princeton, New Jersey: Princeton University Press, 1999. 180, 181, 183

[159] T. Back, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evolutionary Computation. Bristol,

UK, UK: IOP Publishing Ltd., 1997. 180

[160] P. Ratanchandani and R. Kravets, “A Hybrid Approach to Internet Connectivity for Mobile Ad

Hoc Networks,” in Proceedings of IEEE WCNC, 2003. 180

[161] A. Andronache, M. R. Brust, and S. Rothkugel, “Multimedia Content Distribution in Hybrid

Wireless Networks Using Weighted Clustering,” in WMuNeP ’06: Proceedings of the 2nd ACM

international workshop on Wireless Multimedia Networking and Performance Modeling. New

York, NY, USA: ACM Press, 2006, pp. 1–10. 180

[162] N. I. T. Fujiwara and T. Watanabe, “A Hybrid Wireless Network Enhanced with Multihopping

for Emergency Communications,” in ICC ’04: Proceedings of the IEEE International Conference

on Communications, 2004, pp. 4177–4181. 180

[163] O. Dousse, P. Thiran, and M. Hasler, “Connectivity in Ad-Hoc and Hybrid Networks,” in IN-

FOCOM, 2002. 181

[164] A. Helmy, “Small worlds in wireless networks,” 2003. [Online]. Available:

citeseer.ist.psu.edu/helmy03small.html 181

[165] S. R. K. Alex Reznik and S. Verdu, “A ”small world” approach to heterogeneous networks,”

Journal of Communications in Informations and Systems (CIS), 2003. 181

[166] V. K. Nguyen, “Small-world graphs: Models, analysis and applications in network designs,”

Ph.D. dissertation, University of California, 2006. 181

[167] G. Sharma and R. Mazumdar, “Hybrid sensor networks: a small world,” in MobiHoc ’05: Pro-

ceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing.

New York, NY, USA: ACM Press, 2005, pp. 366–377. 181

[168] D. Cavalcanti, D. Agrawal, J. Kelner, and D. F. H. Sadok, “Exploiting the Small-World Effect

to Increase Connectivity in Wireless Ad Hoc Networks,” in ICT, ser. Lecture Notes in Computer

Science, J. N. de Souza, P. Dini, and P. Lorenz, Eds., vol. 3124. Springer, 2004, pp. 388–393.

181

[169] J. Li, C. Blake, D. S. D. Couto, H. I. Lee, and R. Morris, “Capacity of Ad Hoc Wireless

Networks,” in MobiCom ’01: Proceedings of the 7th annual international conference on Mobile

Computing and Networking. New York, NY, USA: ACM Press, 2001, pp. 61–69. 181

240

citeseer.ist.psu.edu/helmy03small.html


BIBLIOGRAPHY

[170] W. L. D. Lee and J. Kim, “Genetic algorithmic topology control for two-tiered wireless sensor

networks,” in Proceedings of the 7th International Conference on Computational Science (ICCS).

181

[171] S. Pandey and P. Agrawal, “A unifying architecture for maximal connectivity in heterogeneous

ad hoc networks,” in GLOBECOM ’06: Proceedings of the IEEE Global Telecommunications

Conference, 2006. 181

[172] K. Herrmann and K. Geihs, “Self-Organization in Mobile Ad hoc Networks based on the

Dynamics of Interaction,”Erlangen, Germany, 2003, frühjahrstreffen der GI-Fachgruppe Betrieb-

ssysteme. [Online]. Available: http://www.kbs.cs.tu-berlin.de/publications/fulltext/gi0403.pdf

183

[173] J. Branke, Evolutionary Optimization in Dynamic Environments, ser. Genetic Algorithms and

Evolutionary Computation. Kluwer, 2002, vol. 3. 202, 203, 205

[174] K. Weicker, Evolutionary Algorithms and Dynamic Optimization Problems. Osnabrück, Ger-

many: Der andere Verlag, 2003. 202

[175] R. W. Morrison, Designing evolutionary algorithms for dynamic environments. Springer, 2004.

202

[176] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments: A survey,” IEEE

Transactions on Evolutionary Computation, vol. 9, no. 3, pp. 303–317, June 2005. 203

[177] N. Mori, H. Kita, and Y. Nishikawa, “Adaptation to a changing environment by means of the

feedback thermodynamical genetic algorithm.”in PPSN, ser. Lecture Notes in Computer Science,

A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, Eds., vol. 1498. Springer, 1998, pp.

149–158. 203, 205

[178] R. K. Ursem, “Multinational gas: Multimodal optimization techniques in dynamic environ-

ments.” in GECCO, L. D. Whitley, D. E. Goldberg, E. Cantú-Paz, L. Spector, I. C. Parmee,

and H.-G. Beyer, Eds. Morgan Kaufmann, 2000, pp. 19–26. 203

[179] E. Alba, J. Saucedo, and G. Luque, “A study of canonical gas for nsops. panmictic versus

decentralized genetic algorithms for non-stationary problems,” in Selected Papers from MIC-

2005, ser. Lecture Notes in Computer Science. Springer, 2007. 204

[180] S. Droste, “Analysis of the (1+1) ea for a dynamically changing onemax-variant,” in Proceedings

of the 2002 Congress on Evolutionary Computation CEC2002, D. B. Fogel, M. A. El-Sharkawi,

X. Yao, G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, Eds. IEEE Press, 2002, pp.

55–60. 204

241

http://www.kbs.cs.tu-berlin.de/publications/fulltext/gi0403.pdf


BIBLIOGRAPHY

[181] T. Jansen and U. Schellbach, “Theoretical analysis of a mutation-based evolutionary algorithm

for a tracking problem in the lattice,” in GECCO ’05: Proceedings of the 2005 conference on

Genetic and evolutionary computation. New York, NY, USA: ACM, 2005, pp. 841–848. 204

[182] D. Arnold and H. Beyer,“Optimum tracking with evolution strategies,”Evolutionary Computing,

vol. 14, no. 3, pp. 291–308, 2006. 204

[183] M. Guntsch and M. Middendorf, “Applying population based aco to dynamic optimization prob-

lems,” in ANTS ’02: Proceedings of the Third International Workshop on Ant Algorithms. Lon-

don, UK: Springer-Verlag, 2002, pp. 111–122. 204

[184] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati, “Ant

colony system for a dynamic vehicle routing problem.” Journal of Combina-

torial Optimization, vol. 10, no. 4, pp. 327–343, 2005. [Online]. Available:

http://dblp.uni-trier.de/db/journals/jco/jco10.html#MontemanniGRD05 204

[185] L. M. Gambardella and M. Dorigo, “Solving symmetric and asymmetric TSPs by ant colonies,”

in International Conference on Evolutionary Computation, 1996, pp. 622–627. [Online].

Available: citeseer.ist.psu.edu/gambardella96solving.html 204

[186] X. Q. H. W. L. H. Xiao J., Li J., “Acs-based dynamic optimization for curing of polymeric

coating,” AIChE Journal, vol. 52, no. 4, pp. 1410–1422, 2005. 204

[187] C. M. Fernandes, A. C. Rosa, and V. Ramos,“Binary ant algorithm,”in GECCO ’07: Proceedings

of the 9th annual conference on Genetic and evolutionary computation. New York, NY, USA:

ACM, 2007, pp. 41–48. 204

[188] X. Hu and R. Eberhart, “Adaptive particle swarm optimisation: detection and response to

dynamic systems,” in Proc Congress on Evolutionary Computation, 2002, pp. 1666–1670. 204

[189] T. Blackwell and P. Bentley, “Don’t push me! collision-avoiding swarms,” cec, vol. 02, pp.

1691–1696, 2002. 204

[190] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer for dynamic optimization

problems.” in EvoWorkshops, ser. Lecture Notes in Computer Science, G. R. Raidl, S. Cagnoni,

J. Branke, D. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori,

F. Rothlauf, G. D. Smith, and G. Squillero, Eds., vol. 3005. Springer, 2004, pp. 513–524.

[Online]. Available: http://dblp.uni-trier.de/db/conf/evoW/evoW2004.html#JansonM04 204

[191] X. Li and K. Dam, “Comparing particle swarms for tracking extrema in dynamic environments,”

in Congress on Evolutionary Computation. IEEE, 2003, pp. 1772–1779. 204

[192] D. Parrott and X. Li, “A particle swarm model for tracking multiple peaks in a dynamic environ-

ment using speciation,” in Proceedings of the 2004 IEEE Congress on Evolutionary Computation.

Portland, Oregon: IEEE Press, 20-23 June 2004, pp. 98–103. 204

242

http://dblp.uni-trier.de/db/journals/jco/jco10.html#MontemanniGRD05
citeseer.ist.psu.edu/gambardella96solving.html
http://dblp.uni-trier.de/db/conf/evoW/evoW2004.html#JansonM04


BIBLIOGRAPHY

[193] J. Branke and T. Blackwell, “Multi-swarm optimization in dynamic environments,” in Applica-

tions of Evolutionary Computing, ser. LNCS, vol. 3005. Springer, 2004, pp. 489–500. 204

[194] K. E. Parsopoulos and M. N. Vrahatis, “Unified particle swarm optimization in dynamic envi-

ronments,” in EvoWorkshops, ser. Lecture Notes in Computer Science, F. Rothlauf, J. Branke,

S. Cagnoni, D. W. Corne, R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero, G. D.

Smith, and G. Squillero, Eds., vol. 3449. Springer, 2005, pp. 590–599. 204

[195] R. I. Lung and D. Dumitrescu, “A collaborative model for tracking optima in dynamic environ-

ments,” in Congress on Evolutionary Computation. Singapore: IEEE, 25-28 September 2007,

pp. 564–567. 204

[196] R. Mendes and A. Mohais,“Dynde: Differential evolution for dynamic optimization problems,” in

Congress on Evolutionary Computation. Edinburgh, UK: IEEE Computer Society, September

2005, pp. 583–590. 204

[197] J. Branke, “Memory enhanced evolutionary algorithms for changing optimization problems,” in

Proceedings of Congress on Evolutionary Computation CEC99. IEEE, 1999, pp. 1875–1882.

205

[198] K. T. Handa Hisashi, Katai Osamu and B. Mitsuru, “Solving dynamic csps by coevolutionary

ga,” Chino Shisutemu Shinpojiumu Shiryo, vol. 26, pp. 63–68, 1999. 205

[199] E. Hart and P. Ross, “An immune system approach to scheduling in changing environments,” in

GECCO, W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela, and

R. E. Smith, Eds. Morgan Kaufmann, 1999, pp. 1559–1566. 205

[200] R. W. Morrison, “Performance measurement in dynamic environments,” in GECCO 2003: Pro-

ceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference,

A. M. Barry, Ed., July 2003, pp. 99–102. 206

[201] K. Weicker, “Performance measures for dynamic environments,” in PPSN VII: Proceedings of the

7th International Conference on Parallel Problem Solving from Nature. London, UK: Springer-

Verlag, 2002, pp. 64–76. 206

[202] “Internet repository on evolutionary algorithms for dynamic optimizaion problems.” [Online].

Available: http://www.aifb.uni-karlsruhe.de/˜jbr/EvoDOP/references.html 206

[203] C. Bettstetter, G. Resta, and P. Santi, “The node distribution of the random waypoint mobility

model for wireless ad hoc networks,” IEEE Trans. Mobile Computing, vol. 2, no. 3, pp. 257–269,

July–September 2003. [Online]. Available: citeseer.ist.psu.edu/bettstetter03node.html 208

[204] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: Nsga-ii,” IEEE Trans. Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

211, 215

243

http://www.aifb.uni-karlsruhe.de/~jbr/EvoDOP/references.html
citeseer.ist.psu.edu/bettstetter03node.html


BIBLIOGRAPHY

[205] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolution-

ary Algorithm,” Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich,

Switzerland, Tech. Rep. 103, 2001. 211, 215

[206] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “A cellular genetic algorithm

for multiobjective optimization,” in Proceedings of the Workshop on Nature Inspired Cooperative

Strategies for Optimization (NICSO 2006), 2006, pp. 25 – 36. 211, 215

[207] C. A. C. Coello and M. R. Sierra, “A study of the parallelization of a coevolutionary multi-

objective evolutionary algorithm,” in MICAI, ser. Lecture Notes in Computer Science, R. Mon-

roy, G. Arroyo-Figueroa, L. E. Sucar, and J. H. S. Azuela, Eds., vol. 2972. Springer, 2004, pp.

688–697. 215

[208] S. A. Deloach, “Analysis and design using MaSE and AgentTool,” in Proc. of the 12th Mid-

west Artificial Intelligence and Cognitive Science Conference (MAICS 2001), Miami University,

Oxford, Ohio, 2001. 217

[209] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia methodology for agent-oriented anal-

ysis and design,”Autonomous Agents and Multi-Agent Systems, vol. 3, no. 3, pp. 285–312, 2000.

217

[210] J. C. Collis, D. T. Ndumu, H. S. Nwana, and L. C. Lee, “The ZEUS agent building tool-kit,”

BT Technology Journal, vol. 16, no. 3, pp. 60–68, 1998. 217

[211] S. DeLoach and M. F. Wood, “Developing multiagent systems with AgentTool,” in ATAL ’00:

Proceedings of the 7th International Workshop on Intelligent Agents VII. Agent Theories Archi-

tectures and Languages. London, UK: Springer-Verlag, 2001, pp. 46–60. 217

[212] E. Norling and F. E. Ritter, “Embodying the JACK agent architecture,” in AI ’01: Proceedings

of the 14th Australian Joint Conference on Artificial Intelligence. London, UK: Springer-Verlag,

2001, pp. 368–377. 217

[213] O. Gutknecht and J. Ferber, “The Madkit agent platform architecture,” in Revised Papers from

the International Workshop on Infrastructure for Multi-Agent Systems. London, UK: Springer-

Verlag, 2001, pp. 48–55. 217

[214] P.-M. Ricordel and Y. Demazeau,“From analysis to deployment: A multi-agent platform survey,”

in ESAW ’00: Proceedings of the First International Workshop on Engineering Societies in the

Agent World. London, UK: Springer-Verlag, 2000, pp. 93–105. 217

[215] T. G. Nguyen and T. T. Dang, “Agent platform evaluation and comparison,” Institute of Infor-

matics, Slovak Academy of Sciences, Tech. Rep., june 2002. 217

[216] R. Leszczyna, “Evaluation of agent platforms,” European Commission, Joint Research Centre,

Institute for the Protection and security of the Citizen, Tech. Rep., june 2004. 217

244



BIBLIOGRAPHY

[217] G. Danoy, “An agent framework for optimization using coevolutionary genetic algorithms,”Mas-

ter’s thesis, Ecole Nationale Superieure des Mines de Saint-Etienne (ENMSE), 2004. 222

[218] Y. Jun and E. Shakshuki, “Performance evaluation of agent toolkits.” in Canadian

Conference on AI, ser. Lecture Notes in Computer Science, A. Y. Tawfik and

S. D. Goodwin, Eds., vol. 3060. Springer, 2004, pp. 556–558. [Online]. Available:

http://dblp.uni-trier.de/db/conf/ai/ai2004.html#JunS04 222

[219] D. Burbeck, K. Garpe and S. Nadjm-Tehrani, “Scale-up and performance studies of three agent

platforms,” in IPCCC ’04: Proceedings of the International Performance, Computing, and Com-

munications Conference, 2004, pp. 857–863. 222

[220] W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela, and R. E.

Smith, Eds., Proceedings of the Genetic and Evolutionary Computation Conference (GECCO

1999), 13-17 July 1999, Orlando, Florida, USA. Morgan Kaufmann, 1999.

245

http://dblp.uni-trier.de/db/conf/ai/ai2004.html#JunS04


Ecole Nationale Supérieure des Mines 
de Saint-Etienne 

 
N° d’ordre : 482 I 
 
 
 

Grégoire Danoy 
 

 
Title:  A Multi-Agent Approach for Hybrid and Dynamic Coevolutionary Genetic Algorithms : 
Organizational Model and Real-World Problems Applications 
 
Speciality : Computer Science 
 
Keywords : Multi-Agent System, Optimization, Genetic Algorithms, Real-World Applications 
 
 
Abstract : 
 
Since the mid 1970s and the introduction of Genetic Algorithms (GAs) by John H. Holland, the idea of 
mimicking the capacity of biological systems to adapt to the genetic level in response to environmental 
challenges has motivated many research studies for applying similar mechanisms to scientific problems. 
One recent evolution of such algorithms, namely Coevolutionary Genetic Algorithms (CGAs), focuses 
on the coevolution of populations (competing or cooperating) of individuals representing specific parts 
of the global solution instead of evolving a population of similar individuals representing a global 
solution. This thesis work aims at modeling and applying such CGAs as well as developing new ones in 
the context of business problems optimization. 
 
In this dissertation we assert that modeling CGAs as organizational multi-agent systems overcomes the 
lack of explicitness at the level of the algorithms structure, interactions and adaptation to existing 
models and platforms. We therefore introduce MAS4EVO, Multi-Agent Systems for EVolutionary 
Optimization, a new agent organizational and reorganizational model based on Moise+ and dedicated to 
evolutionary optimization. This model was used to describe existing CGAs as well as to build two new 
variants, hybrid and dynamic, of a competitive CGA. 
 
This thesis also presents the design and implementation of DAFO, a Distributed Agent Framework for 
Optimization, permitting the use, the manipulation and the distribution of CGAs. Modeled using 
MAS4EVO and built on top of a multi-agent platform, DAFO allows the application and comparison of 
various CGAs (existing and novel ones) on optimization problems. 
 
The CGAs experimentations were conducted on two business problems. The first one is an existing 
inventory management problem for which we studied multiple static instances. We demonstrated the 
added value of decomposition on small problem instances as well as the improvement brought by the 
new hybrid and dynamic CGAs. The second problem studied is a new topology control problem in 
wireless ad hoc networks for which a first mathematical model has been created. State-of-the-art results 
were obtained while evaluating the performance of different CGAs on multiple static instances and on 
one dynamic instance of this network optimization problem. 



Ecole Nationale Supérieure des Mines 
de Saint-Etienne 

 
N° d’ordre : 482 I 
 
 
 

Grégoire Danoy 
 

 
Titre de la thèse : Une approche multi agent pour les algorithmes génétiques coévolutionnaires 
hybrides et dynamiques: modèle d'organisation multi-agent et mise en œuvre sur des problèmes métiers 
 
Spécialité : Informatique 
 
Mots clefs : Système Multi-Agent, Optimisation, Algorithmes Génétiques, Problèmes métier 
 
 
Résumé : 
 
Depuis le début des années 1970 et l’introduction des Algorithmes Génétiques (AG) par John H. 
Holland, l’idée de mimer la capacité d’adaptation au niveau génétique des systèmes biologiques en 
réponse à des modifications environnementales a motivé de nombreuses recherches utilisant des 
mécanismes similaires pour des problèmes scientifiques. Une évolution récente de tels algorithmes, 
appelés Algorithmes Génétiques Coévolutionnaires (AGCs), s’intéresse à la coévolution de populations 
d’individus (en coopération ou en compétition) représentants des parties spécifiques de la solution 
globale au lieu d’évoluer une population d’individus similaires représentants la solution globale. Cette 
thèse a pour objectif de modéliser et d’appliquer de tels AGCs ainsi que d’en développer de nouveaux 
dans le contexte de l’optimisation de problèmes métier.  
 
Nous défendons la thèse selon laquelle la modélisation des AGCs sous forme de systèmes multi-agent 
organisationnels répond au manque d’expressivité en terme de structure, d’interactions et d’adaptation 
de ces algorithmes dans les modèles et plateformes existants. Dans cette optique nous introduisons 
MAS4EVO, Multi-Agent Systems for EVolutionary Optimization, un nouveau modèle agent 
organisationnel et réorganisationnel basé sur Moise+ et dédié à l’optimisation évolutionnaire. Ce 
modèle a été utilisé pour décrire et mettre en oeuvre de tels AGCs ainsi que pour construire deux 
nouvelles variantes, hybride et dynamique, d’un AGC compétitif.  
 
Cette thèse présente également la modélisation et l’implémentation de DAFO (Distributed Agent 
Framework for Optimization), un framework multi-agent organisationnel permettant l’utilisation, la 
manipulation et la distribution d’AGCs. Modélisé à l’aide de MAS4EVO et construit sur base d’une 
plateforme agent existante, il permet d’appliquer et de comparer différents AGCs (existants et 
nouveaux) sur des problèmes d’optimisation difficiles.  
 
Les expérimentations de ces AGCs ont été conduites sur deux problèmes d’optimisation métier. Le 
premier est un problème de gestion de stock pour lequel différentes instances statiques ont été étudiées. 
Nous avons démontré l’apport de la décomposition sur des instances de petite taille ainsi que 
l’amélioration procurée par les nouveaux AGCs hybrides et dynamiques. Le second problème étudié est 
un problème de contrôle de topologie dans les réseaux ad hoc sans fil pour lequel une première 
modélisation mathématique a été réalisée. Des résultats de pointe ont été obtenus lors de l’évaluation 
des performances de différents AGCs sur de multiples instances statiques et sur une instance dynamique 
de ce problème d’optimisation de réseaux. 


	Resumé Etendu
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Contributions
	1.4 Dissertation Outline

	I State of the art
	2 Coevolutionary Genetic Algorithms (CGAs)
	2.1 Genetic Algorithms (GAs) 
	2.1.1 Sequential Genetic Algorithms
	2.1.1.1 Generational GA 
	2.1.1.2 Steady-State GA 
	2.1.1.3 Representation 
	2.1.1.4 Genetic Operators 

	2.1.2 Parallel Genetic Algorithms 
	2.1.2.1 Fine-Grain PGA
	2.1.2.2 Coarse Grain PGA 
	2.1.2.3 Hierarchical PGA
	2.1.2.4 Synthesis


	2.2 Coevolutionary Genetic Algorithms 
	2.2.1 Competitive Architecture and Applications 
	2.2.2 Cooperative Architecture and Applications 
	2.2.3 Synthesis
	2.2.4 CCGA: Cooperative Coevolutionary Genetic Algorithm 
	2.2.4.1 Hybrid Cooperative Coevolutionary Genetic Algorithm 
	2.2.4.2 Adaptive Cooperative Coevolutionary Genetic Algorithm

	2.2.5 LCGA: Competitive Coevolutionary Genetic Algorithm 
	2.2.5.1 Adaptive Competitive Coevolutionary Genetic Algorithm 

	2.2.6 Synthesis 

	2.3 Frameworks for Distributed and Parallel Evolutionary Computation 
	2.3.1 Object Oriented PEAs platforms
	2.3.2 Agent Oriented PEAs platforms
	2.3.3 Synthesis

	2.4 Conclusion

	3 Multi-Agent Organizations and Adaptation
	3.1 Definitions
	3.1.1 Agent
	3.1.2 Multi-Agent System

	3.2 Multi-Agent Models 
	3.2.1 Agent 
	3.2.2 Environment 
	3.2.3 Interaction 
	3.2.4 Organization 

	3.3 Organizations in Multi-Agent Systems 
	3.3.1 Definition
	3.3.2 Organizational Models 
	3.3.2.1 AGR
	3.3.2.2 MOISE+
	3.3.2.3 OMNI
	3.3.2.4 ISLANDER

	3.3.3 Synthesis

	3.4 Adaptation of Multi-Agent Organizations 
	3.4.1 Self-Organization
	3.4.2 Reorganization Dimensions 
	3.4.2.1 What
	3.4.2.2 When
	3.4.2.3 Who
	3.4.2.4 How

	3.4.3 Reorganization Approaches 
	3.4.3.1 MOISE+
	3.4.3.2 TAEMS
	3.4.3.3 TEAM
	3.4.3.4 Chevrier's reorganization model
	3.4.3.5 MAGIQUE
	3.4.3.6 DeLoach's transitional organization model
	3.4.3.7 Jonker's organization dynamics formal model
	3.4.3.8 Ongoing works

	3.4.4 Synthesis

	3.5 Conclusion


	II DAFO Distributed Agent Framework for Optimization
	4 Multi-Agent Model for Coevolutionary Optimization 
	4.1 Introduction
	4.2 Model Overview 
	4.3 Interaction and Environment Models 
	4.3.1 Interaction Model
	4.3.2 Environment Model

	4.4 Agent 
	4.4.1 Global View
	4.4.2 Problem solving Agent Model 
	4.4.2.1 Goals
	4.4.2.2 Skills

	4.4.3 Fabric Agent Model
	4.4.3.1 Goals
	4.4.3.2 Skills

	4.4.4 Observation Agent Model
	4.4.4.1 Skills


	4.5 Organization Model 
	4.5.1 Overview
	4.5.2 Structural Specification 
	4.5.2.1 Roles 
	4.5.2.2 Groups 
	4.5.2.3 Links
	4.5.2.4 Structural Specification Example 

	4.5.3 Functional Specification 
	4.5.3.1 Functional Specification Example 

	4.5.4 Dialogic Specification 
	4.5.4.1 Interaction:
	4.5.4.2 Lifelines
	4.5.4.3 Messages
	4.5.4.4 Timing Constraint 
	4.5.4.5 Dialogic Specification Example 

	4.5.5 Normative Specification 
	4.5.5.1 Link with the Structural Specification
	4.5.5.2 Link with the Functional Specification 
	4.5.5.3 Link with the Dialogic Specification:
	4.5.5.4 Normative Specification Example 


	4.6 CGAs Organizational Model 
	4.6.1 CCGA Model 
	4.6.1.1 Structural Specification 
	4.6.1.2 Functional Specification 
	4.6.1.3 Dialogic Specification 
	4.6.1.4 Normative Specification 

	4.6.2 LCGA Model 
	4.6.2.1 Structural Specification 
	4.6.2.2 Functional Specification 
	4.6.2.3 Dialogic Specification 
	4.6.2.4 Normative Specification 


	4.7 Conclusion 

	5 Hybrid and Dynamic LCGA Models 
	5.1 Introduction
	5.2 hLCGA : A new hybrid LCGA
	5.2.1 hLCGA Description 
	5.2.2 hLCGA Model 
	5.2.2.1 Structural Specification 
	5.2.2.2 Functional Specification 
	5.2.2.3 Dialogic Specification 
	5.2.2.4 Normative Specification 


	5.3 dLCGA: a new dynamic LCGA 
	5.3.1 dLCGA Description 
	5.3.2 dLCGA Model 
	5.3.2.1 Structural Specification 
	5.3.2.2 Functional Specification 
	5.3.2.3 Dialogic Specification 
	5.3.2.4 Normative Specification 


	5.4 Conclusion

	6 Implementation
	6.1 Introduction
	6.2 DAFO Agent Architecture 
	6.2.1 Agent Architecture 
	6.2.2 Agents' Behaviors 
	6.2.2.1 Problem Solving Behaviors
	6.2.2.2 Observation Behaviors
	6.2.2.3 Fabric Behaviors

	6.2.3 Agent Organization Management Module
	6.2.4 Agent Communication Module 
	6.2.5 Agent Perception Module 

	6.3 Agent Platform 
	6.4 DAFODL: DAFO Description Language 
	6.5 Conclusion


	III Experimentations
	7 Static Problem Case Study: Inventory Management 
	7.1 Problem Description
	7.2 Solution Encoding
	7.3 Problem Decomposition 
	7.4 LCGA vs. CCGA 
	7.4.1 Experimental Results

	7.5 hLCGA 
	7.5.1 Experimental Results 
	7.5.1.1 Validation of the hLCGA: the Rosenbrock test function optimization
	7.5.1.2 ICP problem optimization using hLCGA


	7.6 dLCGA 
	7.6.1 Experimental Results 

	7.7 Conclusion

	8 Dynamic Problem Case Study: Injection Networks 
	8.1 Related Works
	8.2 Injection Networks Problem Description
	8.2.1 Small-Worlds

	8.3 Fitness Function
	8.4 Static Injection Network Optimization 
	8.4.1 CCGA vs. Generational and Steady State GAs
	8.4.1.1 Solution Encodings 
	8.4.1.2 Crossover Operators
	8.4.1.3 Experimentation 

	8.4.2 LCGA vs. CCGA 
	8.4.2.1 GA Parameterization
	8.4.2.2 Madhoc Configuration 
	8.4.2.3 Results

	8.4.3 Distributed CCGA 
	8.4.3.1 GA Parameterization
	8.4.3.2 Madhoc Configuration
	8.4.3.3 Results


	8.5 Dynamic Injection Network Optimization
	8.5.1 Evolutionary Algorithms for Dynamic Environments 
	8.5.2 Performance Measures in Dynamic Environments 
	8.5.3 Experimental Results 
	8.5.3.1 GA Parameterization
	8.5.3.2 Madhoc Configuration
	8.5.3.3 Experimental Results


	8.6 Conclusion


	IV Conclusion and Perspectives
	9 Conclusion and Perspectives
	9.1 Summary
	9.2 Future Research


	V Appendix
	A Multi-Agent Platforms 
	A.1 Introduction
	A.2 Zeus
	A.3 AgentTool
	A.4 AgentBuilder
	A.5 Jack
	A.6 Jade
	A.7 Madkit
	A.8 Performance Evaluation 

	B DAFODL's DTD 

	Fin.pdf
	3eme de couverture.pdf
	4eme de couverture.pdf




