
HAL Id: tel-00785897
https://theses.hal.science/tel-00785897v1

Submitted on 7 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adding Spatial Information to Software Component
Model - The Localization Effect

Ali Hassan

To cite this version:
Ali Hassan. Adding Spatial Information to Software Component Model - The Localization Effect.
Ubiquitous Computing. Télécom Bretagne, Université de Rennes 1, 2012. English. �NNT : �. �tel-
00785897�

https://theses.hal.science/tel-00785897v1
https://hal.archives-ouvertes.fr

 !""!#$%

 !"#$$%

Acknowledgements

First I would like to thank France for giving such crystal example. France is a

living example that we can be rich yet compassionate, hard-workers yet social,

modern yet deep-rooted, and finally, successful yet modest.

Dr. Antoine Beugnard is an exceptional person, researcher, and team leader.

I was lucky to have the opportunity to work under his supervision for three-

very-rich years. He made exceptional effort to explain many things to me. He

succeeded in that most of the time. One failure was ‘diplomacy’, where I think

I have no chance at all. Thank you Dr. Beugnard.

My deep thanks are to Dr. Annie Gravey. She welcomed me in the depart-

ment and she made all necessary decisions for me to have fair and professional

opportunity. Thank you Dr. Gravey.

I deeply appreciate the effort the committee members made to evaluate this

dissertation. Their comments, suggestions, and discussion are valuable and

important.

I want also to thank my dear friends Ausama and Nawar for their sincere friend-

ship.

After all of that I am surprised that majority of people do not see that we live

in a close-to-ideal world.

ali - 2012

Abstract

Highly distributed environments (HDEs) are deployment environments that
include powerful and robust machines in addition to resource-constrained and
mobile devices such as laptops, personal digital assistants (or PDAs), smart-
phones, GPS devices, sensors, etc. Developing software for HDEs is fundamen-
tally different from the software development for central systems and stable
distributed systems.

This argument is discussed deeply and in-details throughout this disserta-
tion. HDE applications are challenged by two problems: unreliable networks,
and heterogeneity of hardware and software. Both challenges need careful han-
dling, where the system must continue functioning and delivering the expected
QoS.

This dissertation is a direct response to the mentioned challenges of HDEs.
The contribution of this dissertation is the cloud component model and its
related formal language and tools. This is the general title. However, and to
make this contribution clear, we prefer to present it in the following detailed
form:

1. We propose a paradigm shift from distribution transparency to localization
acknowledgment being the first class concern.

2. To achieve the above mentioned objective, we propose a novel component
model called cloud component (CC).

3. In this dissertation we propose a new approach to assemble CCs using
systematic methodology that maintains the properties of CC model.

4. Cloud component development process and cloud component based sys-
tems development process.

5. Location modeling and advanced localization for HDEs are the pivotal key
in our contribution.

6. Formal language to model single CC, CC assembly, CC development pro-
cess, and CC based systems.

7. We finally present our fully-developed supporting tools:

the cloud component management system CCMS, and the Registry utility.

Résumé

Les Environnements Hautement Distribués (HDEs) sont des environnements
de déploiement de logiciels qui incluent des machines très diverses comme de gros
serveurs mais aussi des appareils mobiles avec des ressources limitées comme
les ordinateurs portables, les assistants numériques personnels (ou PDA), les
téléphones intelligents, les appareils GPS, des capteurs, etc. Le développement
de logiciels pour les HDEs est fondamentalement différent du développement
des systèmes centralisés ou des systèmes distribués fermés. Cet argument est
discuté en détail tout au long de cette thèse. Les HDEs posent deux problèmes
principaux : des réseaux non fiables et l’hétérogénéité des matériels et logiciels.
Ces deux défis nécessitent un traitement minutieux pour permettre aux systèmes
de continuer à fonctionner en fournissant la qualité de service (QoS) attendue
aux utilisateurs.

Cette thèse est une réponse directe aux défis mentionnés des HDEs. La
contribution de cette thèse est le modèle de composant Cloud Component (CC).
Nous présentons cette contribution en proposant 7 axes : (1) Un changement de
paradigme pour passer de la transparence de la distribution à la reconnaissance
de la localisation comme une préoccupation de première classe. (2) Un modèle
de composant nommé Cloud Component (CC) pour réaliser ce changement avec
(3) une nouvelle approche pour assembler ces composants – pas de connexions
distantes. (4) Un processus de développement des Cloud Components où (5) la
modélisation et la prise en compte de la localisation, et donc de l’hétérogénéité,
sont la clé de notre contribution. (6) Un langage formel pour décrire les com-
posants, vérifier leurs assemblages et décrire leur processus de développement.
Enfin, nous présentons (7) les outils développés : le Cloud Component Mana-
gement System (CCMS) qui déploie les variantes logicielles adaptées aux cibles
matérielles en s’appuyant sur des descriptions ontologiques des logiciels et de
leur cible, l’annuaire (Registry) et le vérificateur d’assemblage.

Pour répondre aux défis posés par HDEs et maintenir la qualité de ser-
vice prévue aux utilisateurs, nous défendons la thèse d’un � changement de
paradigme � dans la façon dont le logiciel est conçu et mis en œuvre. Pour
appliquer ce changement, notre contribution présente plusieurs aspects ; cha-
cun forme une contribution partielle qui ne peut être isolée des autres et dont
l’union forme un tout cohérent. Notre contribution couvre le processus complet
de développement logiciel pour HDEs : des spécifications au déploiement et à la
gestion de l’exécution.

Contents

1 Résumé en Français 1

1.1 Introduction . 1

1.1.1 Défis des Environnements Hautement Distribués 2

1.1.2 Problématique . 6

1.1.2.1 Remarque Une 6

1.1.2.2 Remarque Deux 7

1.2 Etat de l’Art . 7

1.2.1 L’approche Cubik . 8

1.2.2 L’approche de Sam Malek 9

1.3 Contribution . 11

1.3.1 Première contribution . 11

1.3.2 Deuxième contribution . 11

1.3.3 Troisième contribution . 12

1.3.4 Quatrième contribution 12

i

ii CONTENTS

1.3.5 Cinquième contribution 13

1.3.6 Sixième contribution . 13

1.3.7 Septième contribution . 14

1.3.8 Remarque . 14

1.4 Outils, implémentation et validation 14

1.5 Conclusion . 16

I INTRODUCTION 19

2 Introduction & Motivation 21

2.1 Quick Response Code - QR . 21

2.2 Highly Distributed Environments Challenges 22

2.3 Software Engineering . 25

2.4 Software Components . 28

2.5 Back to HDEs Challenges . 30

2.6 Problem Statement . 31

2.6.1 Remark One . 31

2.6.2 Remark Two . 32

2.7 Example - The Multimedia Application 32

3 Contribution 35

3.1 First Contribution . 35

CONTENTS iii

3.2 Second Contribution . 36

3.3 Third Contribution . 36

3.4 Fourth Contribution . 37

3.5 Fifth Contribution . 37

3.6 Sixth Contribution . 37

3.7 Seventh Contribution . 38

3.8 Remark . 38

3.9 Back to the Quick Response Code 38

II STATE OF ART 41

4 Ontologies & Logic 45

4.1 DL, OWL, and Protégé . 45

4.1.1 DL and OWL . 45

4.1.2 Protégé . 47

4.1.3 Discussion . 47

4.2 Ontology Support for Software Engineering 50

4.2.1 Review of Literature . 50

4.2.2 Discussion . 51

4.3 Automatic Question Answering & Automatic Ontology Building 52

4.3.1 Automatic Ontology Building 52

CONTENTS v

5.3.2.1 The Marija Mikic-Rakic Track 81

5.3.2.2 Discussion of Marija Mikic-Rakic Track 82

5.3.2.3 The Sam Malek Track 83

5.3.2.4 Discussion of Sam Malek Track 83

5.3.3 The Olympus Approach 86

5.4 The ‘Medium’ Approach . 88

III CONTRIBUTION 89

6 Paradigm Shift 93

6.1 Software Component Border: A New Vision 94

6.1.1 Software Components - Complexity Management 94

6.1.2 Component Border . 96

6.2 Hardware/Software Compatibility: A New Vision 99

6.3 Global View . 100

7 CC Model, Assembly, and Development Process 103

7.1 Cloud Component Model . 103

7.1.1 The definition of cloud component 105

7.1.1.1 Definition 1: Roles 106

7.1.1.2 Definition 2: Cardinality 107

7.1.1.3 Definition 3: Connection 107

vi CONTENTS

7.1.1.4 Definition 4: Multiplicity 108

7.1.1.5 Definition 5: Location 108

7.1.2 Formal definition of cloud component 109

7.1.3 Formal definition of cloud component based system 110

7.2 Cloud Component Assembly . 111

7.2.1 Assembly Constraints . 112

7.2.1.1 First constraint - one-to-one 112

7.2.1.2 Second constraint - local connections only 113

7.2.1.3 Third constraint - Connection multiplicity 114

7.2.2 Formal definition of cloud component assembly 115

7.2.3 Remark . 116

7.2.4 Assembly checking algorithm 116

7.2.4.1 CC assembly normal form A 116

7.2.4.2 Assembly reduction - phase one 118

7.2.4.3 CC assembly normal form C 119

7.2.4.4 Assembly reduction - phase two 120

7.2.4.5 Assembly reduction - phase three 121

7.2.4.6 Inclusive algorithm 121

7.2.5 Example - Banking System 124

7.2.6 The Deployment Conjecture 126

7.2.6.1 The Conjecture Statement 126

CONTENTS vii

7.2.6.2 Comments . 127

7.3 CC Development Process . 127

7.3.1 Stage One - Specifications 128

7.3.2 Stage Two - Localization Choice 130

7.3.3 Stage Three - Package View 133

7.3.4 Stage Four - BDU View 134

7.3.5 Stage Five - BDU Localization 136

7.3.6 Stage Six - Iteration . 136

7.3.7 Formal Notation for the CC Software Development Process:137

7.3.8 Software Complexity Management 139

7.4 Case Study - ΩV ideoCC Implementation 141

7.4.1 Using CC to build Multimedia Application 142

7.4.2 VideoCC Development for Desktops and Laptops 145

7.4.3 VideoCC Development for Smartphones 145

7.4.4 Formal Language Description of Multimedia Devlopment

Process . 149

7.4.5 QoS Support . 153

7.4.6 ΩV ideoCC Complexity Management 153

8 Location & Localization 155

8.1 Introduction to Ontology . 155

viii CONTENTS

8.1.1 Ontology Definition . 155

8.1.2 The Semantic of Semantic 158

8.1.3 Discussion . 162

8.2 F-Logic . 164

8.2.1 F-Logic Definition . 164

8.2.2 Implementations of F-Logic 165

8.3 Ontology Life Cycle . 166

8.3.1 Ontology Design & Creation 166

8.3.2 Ontology Population . 172

8.3.3 Ontology Query . 173

8.4 Design Considerations . 176

8.4.1 Concept or Property . 176

8.4.2 Concept or Instance . 177

8.5 Contribution . 179

8.5.1 Software/Hardware Compatibility Checker 179

8.5.2 IndividualOnto . 181

8.5.3 Used Technology . 186

8.5.4 Existing Device Ontology 187

9 Tools - Cloud Component Management System 189

9.1 Required Definitions . 191

CONTENTS ix

9.1.1 Basic Deployment Unit - BDU 191

9.1.2 Registry Utility . 192

9.1.3 Incremental Deployment 192

9.1.4 Installation of a cloud component 192

9.1.5 Deployment of a cloud component 193

9.1.6 Deployment of a BDU . 193

9.1.7 CC Deployment Plan . 193

9.1.8 Cloud Component Management System - CCMS 194

9.2 Registry Utility . 194

9.3 Deployment of a CC based system - Deployment Plan - CCMS . 199

9.3.1 Remark . 201

9.4 The Deployment of Multimedia system 202

9.5 Chapter Comments . 212

IV CONCLUSION 213

10 Conclusion 215

10.1 Limitation of the Proposed Approach 217

10.2 Future Work . 218

10.2.1 Automatic acquisition of device ontology 218

10.2.2 Easy modelling of software requirements 219

x CONTENTS

10.2.3 Study the effect of CC-model on software component reuse 219

10.2.4 Formal theory for CC state & BDU state 220

BIBLIOGRAPHY 221

List of Figures

1.1 QR code pour l’URL de la page anglaise mobile Wikipedia prin-

cipale. (Un article de Wikipédia). 3

1.2 Environnements hautement distribués (HDEs) [1]. 4

1.3 Un composant Fractale normal (de [2]). 8

1.4 L’approche Cubik (de [2]). 9

1.5 Le système proposé dans le [3]. 10

1.6 Logiciel/hardware vérificateur de compatibilité. 15

2.1 QR code for the URL of the English Wikipedia Mobile main page,

http://en.m.wikipedia.org. (From Wikipedia). 22

2.2 Highly distributed environments (HDEs) [1]. 23

2.3 Highly distributed environment over which the Multimedia appli-

cation will be deployed at runtime. 33

3.1 QR application as a cloud-component-based system. 39

4.1 Protégé with Jambalaya visualization. 48

xi

http://en.m.wikipedia.org

xii LIST OF FIGURES

4.2 Ontology learning (copy from [4]). 53

5.1 SOFA 2.0 meta-model. From [5]. 62

5.2 A normal Fractal component (from [2]). 65

5.3 Location modelling in CONON. From [6]. 76

5.4 A normal Fractal component (from [2]). 77

5.5 The Cubik approach (from [2]). 78

5.6 The optimal deployment cycle in [7]. 82

5.7 The framework proposed in [3]. 84

5.8 Ontology Usage in [8]. 87

6.1 Component assembly as realization of the divide and conquer ap-

proach. 95

6.2 A distributed application using current component model. 98

6.3 The same distributed application of figure 6.2 after applying the

proposed paradigm shift. 98

7.1 CC style with a single interface S. 106

7.2 CC with two roles, cardinality, and location. 106

7.3 Right: CC com with two roles and three hosts. 106

7.4 Two CCs are composed using roles S and Q. 111

LIST OF FIGURES xiii

7.5 Two CCs AlphaCC has two role instances A and B, and BetaCC

has two role instances C and D. A, C, and D are hosted by desktopOne,

while B is hosted by desktopTwo. Therefore, the connection be-

tween A and C is legal, whereas the connection between B and D

is not permitted. 112

7.6 The importance of the ‘connection multiplicity’. Up: No infor-

mation. Bottom: The multiplicity of the connection is defined:

[2..4]. 114

7.7 CC assembly normal form A. Ranges are always consistent (i.e.

min � max). 116

7.8 The relation between the two ranges [e..f] and [i..m] in figure 7.7.

We start with level one, and depending on the value of i we move

to level two where we inspect the value of m. The label(s) on the

arrows leading to the decision level indicate the decisions made

on the upper two levels. 117

7.9 Up: CC assembly normal form B. Multiple connections - role S

is connected to three roles Q1, Q2, and Q3. Bottom: Role S after

assembly reduction - phase one. 118

7.10 CC assembly normal form C. Other CCs can connect to Q, S, etc.

Omitted for space. 119

7.11 Connection multiplicity. 120

7.12 Listing of all cases of possible connection multiplicities in assem-

bly reduction - phase two . 122

xiv LIST OF FIGURES

7.13 The result after reduction phase two and three on figure 7.10- CC

multiplicities are completely removed. 122

7.14 Inclusive checking algorithm. The integrity checks, namely, check1()

through check5(), ensure that the input is not corrupted with re-

spect to normal form C. 123

7.15 The banking system in normal form C - Enterprise Edition. . . . 124

7.16 The output generated by the assembly checker (partial output)

for the banking system - Enterprise Edition. 125

7.17 The banking system in normal form C. Limited Edition. 125

7.18 The output generated by the assembly checker (partial output)

for the banking system - Limited Edition 125

7.19 Graphical view of the following formal localization:

Z : ΛP ↓ TAlpha, ΛS ↓ TTablet1095. 129

7.20 The cloud component ΩCom along with its expected deployment

environment L. Role ΛS has to be deployed over several different

types of devices. Location type TAlpha is part of the deployment

environment where internal BDUs are expected to be deployed

over it. 131

7.21 In this figure, the localization of border BDUs is fixed, but the

localization of internal BDUs is free. 132

7.22 Stage three of the CC development process. 134

7.23 Stage four of the CC development process. A BDU with black-

filled left side represents a role BDU (ie. on the CC border). . . . 135

LIST OF FIGURES xv

7.24 One localization option of CC ΩV ideoCC. 138

7.25 The encapsulation power of CCs. The result of software devel-

opment process can be unmanageable (up). On the other hand,

CC approach with the CC border makes this management handy

and natural (middle). In this figure we wanted to emphasize the

general case where a single CC is part of a CC-based system (bot-

tom). 140

7.26 MULTIMEDIA application. Cloud component view. 143

7.27 VideoCC with its single role VideoR. 143

7.28 The package level of VideoCC. 144

7.29 The BDU level of VideoCC for deployment environment with

desktops and laptops. A BDU with black-filled left side repre-

sents a role BDU (ie. on the CC border). 144

7.30 Experimental results for streaming several videos where the role

is deployed on a laptop. The curve with square nodes is for the

laptop with Wi-Fi connection, while the curve with triangle nodes

is for the laptop with 3G connection. 146

7.31 Experimental results show the total number of disconnected op-

eration during video streaming when the role is deployed over a

smartphone with 3G connection. Ideally, this number should be

zero. 146

xvi LIST OF FIGURES

7.32 Experimental results for streaming several videos where the role is

deployed on a smartphone. The algorithm has the resume-support

feature. The curve with square nodes is for the smartphone with

Wi-Fi connection, while the curve with triangle nodes is for the

smartphone with 3G connection. 148

7.33 The BDU level of VideoCC. In this figure, the multi-channel video

streaming architecture is presented. This architecture will allow

parallel streaming of a single video. A BDU with black-filled left

side represents a role BDU. 148

7.34 Experimental results for streaming several videos where the role

is deployed on a smartphone with a 3G connection and utilizing

the multi-channel video streaming technique. 149

8.1 Different languages according to [9]. Typically, logical languages

are eligible for the formal, explicit specification, and, thus, on-

tologies (From [10]). 156

8.2 The trade-off between expressiveness and efficiency among logical

languages [10]. 156

8.3 Ogden Semantic Triangle. Figure is copied from [11]. This idea

was first proposed by Ferdinand de Saussure, a linguist who is

considered one of the fathers of semiotics. 159

8.4 Approximation of the communication: human-to-human, human-

to-machine, or machine-to-machine (from [10]). Based on Ogden

Semantic Triangle in figure 8.3. The instable bended arrow rep-

resents the overall communication context. 160

LIST OF FIGURES xvii

8.5 The incorporation of ontologies in the communication approxi-

mated in figure 8.4 (from [10]). 161

8.6 The ontology development process. 168

8.7 A list all keywords (terms) in domain being modelled using on-

tology. Only partial list is shown in the figure. 168

8.8 The sub-concept construct is a tool to build the concept hierarchy.169

8.9 The ‘relation’ construct relates two concepts in a meaningful way. 170

8.10 The ‘attribute’ construct. 171

8.11 Ontology population. 173

8.12 A snapshot of OntoBroker screen shows how to populate an on-

tology. 174

8.13 The concept-instance choice. 178

8.14 The concept-instance choice - again. 178

8.15 Software/hardware compatibility checker. 180

8.16 A partial visualization of the concept hierarchy of IndividualOnto.183

8.17 The concept hierarchy of IndividualOnto with the concept

HardwareElement being the root. 184

9.1 The output of the CC development process is a set of BDUs along

with necessary formal description files. 190

9.2 BDU types. 191

xviii LIST OF FIGURES

9.3 The four different states at which a CC or a BDU can exist at

runtime. It can move from one state to the other by CCMS oper-

ation or administrator manual intervention. It is very important

to mention that this state is time dependent. 194

9.4 The Multimedia cloud component-based system. 198

9.5 Total deployment time for the complete multimedia system for

different values of τ(MultimediaCC) (Explained in 7.1.3). De-

ployment requests are sequential. The black column represents

time required for set1 (laptops, WiFi) to finish the experiment.

The gray column represents time required for set2 (smart-phones,

3G) to finish the experiment. 210

9.6 Total deployment time for the complete multimedia system for

different values of τ(MultimediaCC) (Explained in 7.1.3). De-

ployment requests are concurrent. The black column represents

time required for set1 (laptops, WiFi) to finish the experiment.

The gray column represents time required for set2 (smart-phones,

3G) to finish the experiment. 211

List of Tables

5.1 Technologies used to implement inventory application using SOFA

component model [12], pages 388-417. The team who designed

and implemented the application in [12] is the same team who

proposed SOFA. 70

5.2 Comparison between CC model and other well-known component

models. All non CC information are from tables 1, 2, and 3 in [13]. 72

5.3 Access point location feature for components and connectors. . . 74

7.1 The set of symbols used to construct the formal notation. 104

7.2 Empirical characteristics of common available videos for stream-

ing. The size may differ due to embedded audio, differing frame

sizes and aspect ratios, and inter-frame compression. The audio

of entry six has a higher quality than the audio of entry five. . . . 142

xix

Chapter 1

Résumé en Français

1.1 Introduction

Les codes de réponse rapide (QR code comme dans la figure 1.1) ont connu

une grande popularité ces derniers temps. Grace à l’utilisation de lecteur de

codes QR, il est possible d’accéder à un des informations pour les gammes de

produits commerciaux ou pour des projets scientifiques. Cependant, quand un

utilisateur de smartphone installe un logiciel lecteur de code QR sur son télé-

phone, il y a une probabilité que ce logiciel ne fonctionne pas correctement.

Tous les lecteurs de codes QR disponibles exigent maintenant une caméra auto-

focus, alors que de nombreux smartphones ne sont équipés actuellement que de

focale fixe. Comme résultat, le logiciel ne sera pas en mesure de scanner le code

QR. Nous pensons que ce défaut n’est ni isolé, ni superficiel. Il est profond et

fondamental. En outre, il s’étend à l’ensemble du spectre du développement de

logiciels pour environnements hautement distribués - HDEs.

1

2 1. Résumé en Français

1.1.1 Défis des Environnements Hautement Distribués

L’émergence des appareils mobiles tels que les ordinateurs portables, or-

dinateurs portables, assistants numériques personnels (PDA) et les téléphones

intelligents, ainsi que l’avènement de diverses solutions de réseaux sans fil ren-

dent des calculs possibles n’importe où. Il est maintenant possible de réaliser des

applications à la fois simples et complexes pour être déployées sur un ordinateur

et un téléphone intelligent en même temps. Ces applications comprennent des

applications multimédia, des cartes et des applications GPS, les applications de

réservation des voyages, et d’autres encore. De tels scénarios présentent plusieurs

défis techniques: la compréhension profonde et suffisante des configurations logi-

cielles existantes ou à venir; la mobilité du matériel; l’évolutivité à de grandes

quantités de données et au nombre de dispositifs; et enfin l’hétérogénéité du logi-

ciel s’exécutant sur chaque dispositif. En outre, le logiciel doit souvent s’exécuter

sur des petits appareils, caractérisés par des ressources limitées telles que la taille

de l’écran, la puissance limitée, la faible bande passante du réseau, un CPU lent,

une mémoire limitée, et une connectivité faible [7]. Nous appelons ces environ-

nements des environnements hautement distribués (HDEs) comme dans la figure

1.2. Les HDEs contiennent toujours de puissantes et robustes machines, mais

ils sont aussi composés d’appareils mobiles comme les ordinateurs portables, les

assistants numériques personnels (ou PDA), les smart-téléphones, les GPS, des

capteurs, etc. Le développement de logiciels pour HDEs est fondamentalement

différent du développement pour les systèmes centraux et distribués stables [14]

et [3] (voir section 2.5). Cet argument est discuté en profondeur et dans les

détails tout au long de cette thèse.

Des chercheurs en génie logiciel et les praticiens ont combattu avec succès la

1.1. Introduction 3

Figure 1.1: QR code pour l’URL de la page anglaise mobile Wikipedia principale.
(Un article de Wikipédia).

complexité croissante du développement des logiciels pour les systèmes centraux

et systèmes distribués stables en employant les principes de la transparence de

la distribution. Dans la transparence de la distribution, une couche middleware

est prévue pour manipuler et à cacher toutes les communications à distance (un

appel distant apparaît comme un appel local). En outre, la transparence de

la distribution masque de nombreuses distinctions entre les périphériques tels

que l’architecture du processeur et des systèmes d’exploitation en utilisant des

couches logicielles telles que la machine virtuelle Java par exemple.

Les applications HDE sont distribués à grande échelle, mobiles et déployées

sur un large éventail de matériel, et donc très dépendantes de l’environnement

de déploiement sous-jacent. Malheureusement, dans le réseau les échecs de con-

nectivité ne sont pas rares: les appareils mobiles font face à de fréquentes et

imprévisibles pertes de connectivité [15]. En conséquence, l’hypothèse d’avoir

une connectivité stable n’est plus valide.

Plus grave, l’hétérogénéité des dispositifs est masquée pour les HDEs. La

raison en est simple: les différences entre les appareils sont beaucoup plus fonda-

mentales que dans les environnements distribués stables. Les différences entre

4 1. Résumé en Français

 !"#$!%&#""'()&*$)#(
 +,

-)./%*0*)1*2)1)$3
4$*2)1)$3%5%4!&'6)$3

7#2)1!%(!$8#69:
;):&#((!&$!;%#<!6*$)#(=%8!*9%&#(:):$!(&3

>;*<$)0!%*<<1)&*$)#(:
?(!6.35*8*6!%:3:$!":

@@ @
,!($6*1)A!;%,#"<'$)(.

B

B

C):$6)2'$!;%,#"<'$)(. 7#2)1!%,#"<'$)(. +!60*:)0!%,#"<'$)(.

4"*6$%:!(:#6:%D%;!0)&!:
,#($!E$%*8*6!(!::

F($!.6*$)#(%8)$/%!(0)6#("!($B

-)./13%C):$6)2'$!;%?(0)6#("!($:

Figure 1.2: Environnements hautement distribués (HDEs) [1].

les smartphones, les tablettes et les ordinateurs portables sont claires. Toute

tentative visant à masquer ces différences conduit soit à des répercussions néga-

tives sur la qualité de service soit à l’échec de l’application. L’argument est

encore correct entre les smartphones seuls.

Pour ces deux raisons, les applications HDE sont remises en cause par deux

problèmes: les réseaux non fiables et l’hétérogénéité des matériels et logiciels.

Les deux défis nécessitent une attention minutieuse pour que le système continue

à fonctionner et garantir la QoS attendue. Fonctionnement en mode déconnecté

provoque un logiciel s’exécutant sur chaque appareil temporairement ses activ-

ités indépendamment de d’autres périphériques réseau. Cela présente un grand

défi pour les systèmes logiciels qui sont fortement tributaires de la connectiv-

ité réseau, parce que chaque sous-système local est généralement tributaire de

la disponibilité de ressources non-locales. Le manque d’accès à une ressource

distante peut mettre un terme à un sous-système particulier ou même rendre le

1.1. Introduction 5

système entier inutilisable [7]. L’autre défi est pas moins sévère. Si l’application

est déployée sur un hôte spécifique sans une évaluation adéquate de la compat-

ibilité matériel / logiciel, il y a une forte probabilité que l’application fournisse

des résultats médiocres.

Les approches actuelles de développement de logiciels partagent un objectif

commun: faire croire à la répartition transparente à la fois au programmeur

d’application et aux utilisateurs. Toutefois, en cachant la distribution, ces ap-

proches ne tiennent pas compte des aspects liée à des déconnexions et des erreurs

liées. En général, les applications distribuées sont conçues de la même manière

qu’une application centralisée [16]. réussir un développement de logiciels pour

les HDEs doit traiter les défis suivants [16]:

– Les ressources limitées: de nombreux équipements tels que les PDA et les

smartphones ont des ressources qui sont limitées, tandis que les technolo-

gies actuelles et les modèles implicitement s’attendent à des ressources que

l’on trouvent habituellement dans un bureau moyen.

– La connectivité réseau : les modèles actuels de développement de logiciels

sont compatibles avec les environnements avec une connectivité constante,

une bande passante élevée, et une faible latence pour l’acheminement des

appels distants. Les HDEs sont loin de satisfaire de telles hypothèses. Par

conséquent, des références à des appels à distance sont souvent impossibles.

– La complexité: les modèles actuels de développement de logiciels sont

basés sur une architecture client-serveur où le nombre et la localisation

des clients et les serveurs sont entièrement gérés. Dans les HDEs, la mo-

bilité des équipements et de la nature sporadique des connexions entre les

machines produit des changements complexes de la topologie du réseau.

6 1. Résumé en Français

Les systèmes distribués considérés par les technologies actuelles ne tien-

nent pas compte de telles structures.

Nous concluons cette section par deux déclarations faites par deux chercheurs

dans le domaine. Le premier, Malek et al. [3] a remarqué:

La transparence (cacher la distribution, à savoir, emplacement, et

l’interaction des objets distribués) est considérée comme un droit fon-

damental de l’ingénierie des systèmes logiciels distribués, cependant,

ce même concept, la transparence de distribution, a été démontré

souffrir de lacunes majeures lorsqu’elles sont appliquées largement

dans HDEs.

Deuxièmement, l’argument avancé par Guerraoui [14].

La transparence à la distribution est impossible à réaliser dans la

pratique. Précisément à cause de cette impossibilité, il est dangereux

de donner l’illusion de la transparence.

1.1.2 Problématique

À partir d’une spécification de l’application C avec les environnements de

déploiement attendus L. Procédez comme suit:

1. Mettre en place un système S qui est conforme à C et s’exécute sur L.

2. Déployer et exécuter S sur L�, où L� est une variation de L.

1.1.2.1 Remarque Une

L dans la définition ci-dessus est une collection d’environnements hautement

distribués.

1.2. Etat de l’Art 7

Si L n’est pas un environnement distribué (c’est à dire qu’il s’agit d’un

système centralisé) alors notre méthode proposée n’est pas applicable 1.

Si L est un environnement stable distribués alors la méthode proposée n’est

pas applicable 2.

Par la ‘collection’, nous dire qu’il est possible pour L d’inclure plusieurs

scénarios de déploiement.

1.1.2.2 Remarque Deux

L� pourrait être exactement L. Ce n’est généralement pas le cas. Le délai

entre la définition de L et la définition L� pourrait être de mois voire d’années.

Mais, les détails techniques évoluant rapidement, nous nous attendons à un

changement rapide.

1.2 Etat de l’Art

Comme mentionné dans la section d’introduction, le problème HDE est décrit

dans la littérature au cours des dernières années. Nous ne sommes ni le premier

à discuter de ce problème, ni ne sommes le premier à proposer des solutions pour

construire des applications pour ces environnements. Dans cette section, nous

allons discuter de deux projets qui ont proposé des solutions pour le développe-

ment de logiciels HDE.

1. En fait, elle est toujours applicable, cependant, le mérite principal du modèle n’est pas
utilisé efficacement.

2. même commentaire que ci-dessus.

8 1. Résumé en Français

Figure 1.3: Un composant Fractale normal (de [2]).

1.2.1 L’approche Cubik

Didier Hoareau et al. a parlé des défis de HDEs [2, 16, 17]. Toutefois, leur

solution a une portée différente de le nôtre. Tout d’abord, ils élargissent le

modèle de composant déjà existant Fractal. Deuxièmement, ils ne modélisent et

ne gérent pas la déconnexion et la connexion réseau.

L’approche Cubik utilise le concept ‘proxy’, et ajoute ce concept au mod-

èle de composant Fractal. Un composant normal Fractale est présenté dans la

figure 1.3. Dans cette figure, nous voyons un ‘composant composite’, que nous

appellerons A, avec deux sous-composants internes (p et q) à l’intérieur. C’est

une conception normale de Fractal.

Dans la figure 1.4 nous voyons le même composant conçu en utilisant l’approche

Cubik. Dans cette figure, le composant A devient trois composants qui sont dé-

ployées sur trois dispositifs différents: A1 est déployé sur m1, A2 est déployé sur

1.2. Etat de l’Art 9

Figure 1.4: L’approche Cubik (de [2]).

m2, et A3 est déployé plus de m3. Les trois composants: A1, A2, et A3 ont les

mêmes propriétés fonctionnelles (c’est-à-dire qu’ils offrent les mêmes fonctions

et exigent les mêmes fonctions les uns des autres). Cependant, ils ont une con-

ception interne différente. A1 a un proxy de q et un composant réel p. A2 a

un proxy de p et un composant réel q. A3 n’a pas de composants réels et deux

mandataires de p et q.

1.2.2 L’approche de Sam Malek

Cette équipe propose un cadre et des outils pour soutenir une ingénierie

logicielle complète du cycle de vie pour le développement d’applications HDE

[3,18,19]. Voir la figure 1.5.

Ce cadre comprend les outils suivants: XTEAM, Desi, Prism MW. En outre,

10 1. Résumé en Français

Figure 1.5: Le système proposé dans le [3].

1.3. Contribution 11

ce cadre dépend fortement de l’ingénierie dirigée par les modèles dans la mod-

élisation et la génération de code. Cela implique plusieurs modèles, des méta-

modèles, et des transformations de modèle. De plus, ce cadre adopte une anal-

yse très complexe de la mobilité qui inclut: la mobilité du logiciel, la mobilité

logique, la mobilité des composants et la mobilité du matériel.

1.3 Contribution

Cette thèse est une réponse directe aux défis mentionnés des HDEs. La

contribution de cette thèse est le modèle de composant “cloud component (CC)”.

Toutefois, nous détaillons les contributions ci-après:

1.3.1 Première contribution

Nous proposons un changement de paradigme de la transparence de distri-

bution à la reconnaissance de la localisation comme étant une préoccupation

première importance. En d’autres termes, nous ne cachons plus la localisa-

tion (pour l’abstraire), au contraire, nous reconnaissons tous les aspects liés à

l’emplacement, y compris la spécification des dispositifs, les différentes carac-

téristiques des réseaux qu’ils utilisent, les fonctions de sécurité, et toutes les

caractéristiques liées à la mise en place de l’environnement. Nous discutons les

HDEs et ce changement de paradigme dans la section 6.

1.3.2 Deuxième contribution

Pour atteindre l’objectif mentionné ci-dessus, nous proposons dans la sec-

tion 7.1 un modèle de composant intitulé cloud component (CC). Ce modèle

12 1. Résumé en Français

comprend l’environnement de déploiement prévu dans sa définition, c’est-à-dire

nous élevons l’importance de l’environnement de déploiement pour être égale à la

fonctionnalité du composant. L’autre caractéristique importante de ce nouveau

modèle est qu’il est fondamentalement distribué. Un simple CC est générale-

ment réparti sur de nombreux hôtes distants, la spécification de ces hôtes sont

considérée et fondamentalement reconnue au cours du processus de développe-

ment des CC, et tous les aspects liés à la communication, la coordination, et la

qualité de services sont déplacées à l’interieur de la frontière de la CC.

1.3.3 Troisième contribution

Un composant logiciel peut être considéré comme l’unité d’assemblage 3.

Cela est vrai pour tous les modèles de composants, y compris le modèle cloud

component. Dans cette thèse, nous proposons une nouvelle approche pour as-

sembler des CC en utilisant une méthodologie systématique qui maintient la

propriétés du modèle CC. Nous proposons une démarche pour construire de

grands systèmes utilisant des CC en tant que blocs de construction. En outre,

nous présentons une technique pour vérifier automatiquement la validité de cette

assemblage. Assemblage de composants et de vérification de l’assemblage sont

présentés dans le chapitre 7.2 .

1.3.4 Quatrième contribution

Nous proposons un processus de développement des CC. Dans cette contri-

bution, deux facteurs ont été considérés comme pivot. Le premier facteur est la

3. Dans cette thèse, nous préférons utiliser le mot assemblage plutôt que composition

puisque la sortie de cette opération (assemblage) n’est pas un composant logiciel.

1.3. Contribution 13

pertinence de notre processus de développement logiciel qui doit être un proces-

sus conforme aux processus bien communément acceptés. Le deuxième facteur

est la compatibilité entre ce processus de développement et les applications HDE.

Notre processus de développement est discuté dans la section 7.3.

1.3.5 Cinquième contribution

L’utilisation des lieux et de la localisation pour les HDEs sont la clé de notre

contribution. Pour y parvenir, nous proposons une ontologie de modélisation

basée sur l’environnement de déploiement. Cette ontologie sert de base à la

vérification de la compatibilité logiciels/hardware de notre approche. Voir la

figure 1.6. Ces sujets sont abordés dans la section 8.

1.3.6 Sixième contribution

Nous proposons une formalisation pour la modélisation des CC, d’un assem-

blage de CC, du processus de développement des CC et des systèmes à base

de CC. Ce langage formel est présenté dans la section 7. Le modèle de cloud

component et son assemblage sont présentés informellement avec une notation

graphique et formellement avec une notation mathématique. La notation in-

formelle permet d’accélérer la compréhension des concepts généraux alors que

le notation formelle ouvre la porte à un large éventail de la travaux théorique

sur des sujets tels que l’inférence de type de composant, les sous-types, etc,

et fournit un langage précis pour décrire les détails. En outre, les approches

formelles permettent au concepteur de produire des représentations lisibles par

la machine où des outils automatisés peuvent vérifier les propriétés spécifiques

au moment de la conception, qui à son tour, augmente le niveau de confiance

14 1. Résumé en Français

dans la justesse de la conception.

1.3.7 Septième contribution

Dans la section 9 nous présentons nos outils de soutien: le CCMS, un système

de gestion des cloud components, et l’utilitaire Registre. Ces outils facilitent

l’installation, le déploiement, les vérifications de compatibilité, et la gestion de

l’exécution. Ces outils, ainsi que le vérificateur d’assemblage et le vérificateur de

logiciel/hardware sont indispensables et ils font du développement en utilisant

le modèle CC un processus facile et puissant.

1.3.8 Remarque

La contribution de cette thèse a plusieurs faces, mais ces faces sont en co-

hérence. Chacune de ces faces forme une contribution partielle, toutefois, chaque

contribution partielle ne veut rien dire si on l’isole de la proposition globale. En

outre, le mérite de la proposition globale ne peut être saisi par la lecture d’un

apport partiel. Le mérite de la proposition n’est évident que si toutes les parties

de ce travail sont organisés ensemble.

1.4 Outils, implémentation et validation

Pour soutenir notre proposition théorique nous avons pleinement implanté

ce qui suit:

1. Le vérificateur d’assemblage de cloud components. Cet outil est utilisé

pendant la conception. Il vérifie si le système à base de CC respecte le

1.4. Outils, implémentation et validation 15

 !"#$$
%&'(#")*+

,-.!/!.+&(0-"1
21"$314+(&"#.

567)8 9+(#:$;$<+#=!#:
>::1?!&"#.$@!"A$,-.!/!.+&(0-"1

,-.!/!.+&(0-"1
314+(&"#.$@!"A
%&'(#")*+$!-:"&-?#

B#:C21

5&:#.$0-
5&:#.$0-

>44(!#.$%1

Figure 1.6: Logiciel/hardware vérificateur de compatibilité.

16 1. Résumé en Français

modèle d’assemblage CC - en particulier les cardinalités sur les interfaces.

2. Le vérificateur basé sur une ontologie logiciel / hardware. Cet outil est ap-

pelé avant le déploiement de toute partie de l’application basée sur les CC.

Cet outil vérifie si le logiciel est compatible avec le dispositif déploiement

cible. Voir la figure 1.6.

3. Le Système de gestion des cloud components (CCMS) et l’utilitaire Reg-

istre. C’est le cœur du déploiement et de la gestion de l’environnement

d’exécution. La tâche principale de CCMS est le déploiement automatique

des applications basées sur des CC.

4. L’application multimédia. Pour valider notre proposition, nous avons

complètement réalisée cette application à base de CC. En utilisant ce cas

d’étude, nous avons montré comment une application basée sur des CC

offre la QoS promise dans tous les cas et à des points de livraison divers.

En outre, nous avons montré comment déployer automatiquement et gérer

des applications basées sur CC en utilisant le CCMS et le Registre.

1.5 Conclusion

Jusqu’à présent, le développement de logiciels pour HDEs est ad-hoc. Chaque

développeur de l’application tente de mettre en œuvre des techniques et des con-

trôles pour répondre aux spécifications sur ces environnement. Cependant, il n’y

a pas de processus systématique, ni de modèle personnalisé qui peut être utilisé

systématiquement pour produire des applications de haute qualité pour HDEs.

Dans ce travail, nous proposons un modèle de composant logiciel, le modèle

de cloud component, pour combler cette lacune entre le besoins de développement

1.5. Conclusion 17

des logiciels actuels et les techniques d’ingénierie et les méthodes de développe-

ment logiciels disponibles. Le modèle de cloud component est basé sur un

changement de paradigme de la transparence de la distribution à la localisation

comme préoccupation de première classe. En d’autres termes, nous n’avons plus

à cacher les emplacements, au contraire, nous reconnaissons tous les aspects liés

à la localisation y compris la spécification des dispositifs, les caractéristiques des

réseaux qu’ils utilisent, les spécifications de réseau différents, les caractéristiques

de sécurité, et toutes les propriétés associées à l’environnement de déploiement.

En outre, nous proposons une théorie d’assemblage afin de bâtir une base pour

les CC. Une notation formelle est proposée pour les CC, les assemblages de CC,

leur processus de développement. Cette notation formelle ouvre la porte à un

large éventail de sujets théoriques, y compris l’inférence de type de composant,

sous-types, etc. Cette approche formelle permet au concepteur de produire des

représentations lisibles par la machine où les outils automatisés peuvent vérifier

les propriétés spécifiques au moment de la conception, qui à leur tour, augmente

le niveau de confiance dans la correction de la conception.

Une des principales valeurs du modèle CC est la prise en compte de la com-

patibilité entre le logiciel et matériel dans les HDEs. Il s’agit d’un défi majeur en

sachant l’hétérogénéité de ces milieux. Notre modèle est le premier à utiliser une

modélisation ontologique du matériel et des exigences des logiciels afin de véri-

fier leur comptabilité. Ce vérificateur, ainsi que le processus de développement

proposé des CC sont les fondements de notre affirmation selon laquelle textit le

modèle CC garantit la QoS attendue au point d’utilisation de l’utilisateur final.

Nous avons soutenu ce modèle avec des outils pleinement mis en œuvre: vérifi-

cateur d’assemblage de CC, l’ontologie logiciel / matériel, le système de gestion

des cloud components (CCMS) et du Registre. Enfin, nous avons pleinement

18 1. Résumé en Français

mis en œuvre un système CC avec une application multimédia, afin de valider

notre proposition.

La contribution de cette thèse a plusieurs faces, mais ces faces sont co-

hérentes. Chacune de ces faces forme une contribution partielle, toutefois,

chaque contribution ne veut rien dire si on l’isole de la proposition globale.

Le mérite de la proposition globale ne peut être saisi par la lecture d’un apport

partiel. Le mérite de la proposition n’est évident que si toutes les parties de ce

travail sont étudiées ensemble.

Il pourrait être considéré comme une des limites de ce travail que nous

n’avons pas de vérification dynamique dans notre modèle. Par exemple, nous

ne décrivons pas la dynamique (temporelle) caractéristiques d’un rôle de CC,

comme résultat, c’est la responsabilité du concepteur pour assurer le bon com-

portement dynamique des rôles lors de l’exécution. D’autre part, d’éviter de

telles méthodes formelles est destiné à maintenir le modèle facile à utiliser par

les ingénieurs logiciels moyenne.

Une autre limitation est la condition de l’existence d’une puissante machine

qui exécute le CCMS et l’utilité du Registre. En outre, nous supposons un

lien entre cette machine et tous les dispositifs de déploiement. Alors que la

dernière condition pourrait être assouplie, nous n’avons pas étudié l’effet de la

non-existence absolue d’une telle machine par rapport au modèle CC. Est-il

encore utilisable? Et comment y parvenir? La majorité des applications ne

nécessitent pas une telle condition extrême, cependant, il est encore intéressant

d’étudier le potentiel du modèle CC dans une situation grave telle.

Part I

INTRODUCTION

19

Chapter 2

Introduction & Motivation

2.1 Quick Response Code - QR

Quick response code (QR code as in figure 2.1) has enjoyed great popularity

recently. Using QR code reader, it is possible to access a large volume of informa-

tion that ranges from commercial products to scientific posters. However, when

a smartphone user installs QR code reader software on his/her phone, there is

a probability that this software will not operate properly. All QR code readers

available now require an auto-focus camera, while many smartphones currently

are equipped with fixed-focus camera. As result, the software will not be able

to scan the QR code. We think that this fault is neither isolated nor shallow. It

is deep and fundamental. Moreover, it spans to the whole spectrum of software

development for highly distributed environments - HDEs. This simple example

is used to emphasize the fact that software development for HDEs is different

from developing applications for stable distributed environments.

21

22 2. Introduction & Motivation

Figure 2.1: QR code for the URL of the English Wikipedia Mobile main page,
http://en.m.wikipedia.org. (From Wikipedia).

2.2 Highly Distributed Environments Challenges

The emergence of mobile devices such as portable notebook computers, hand-

held personal digital assistants (PDAs), and smart phones, and the advent of

various wireless networking solutions make computation possible anywhere. It

is possible now to expect both simple and complex applications to be deployed

over a cluster computer and a smart-phone at the same time. These applications

include multimedia applications, maps and GPS applications, trip reservation

applications, and more. Such scenarios present several technical challenges: deep

and sufficient understanding of existing or prospective software configurations;

mobility of hardware; scalability to large amounts of data and numbers of de-

vices; and heterogeneity of the software executing on each device and across

devices. Furthermore, software often must execute on ‘small’ devices, character-

ized by highly constrained resources such as small display size, limited power,

low network bandwidth, slow CPU speed, limited memory, and unreliable con-

nectivity [7]. We refer to such environments as highly distributed environments

(HDEs) as an figure 2.2. HDEs still include powerful and robust machines but

they are rather composed of resource-constrained and mobile devices such as

http://en.m.wikipedia.org

2.2. Highly Distributed Environments Challenges 23

 !"#$!%&#""'()&*$)#(
 +,

-)./%*0*)1*2)1)$3
4$*2)1)$3%5%4!&'6)$3

7#2)1!%(!$8#69:
;):&#((!&$!;%#<!6*$)#(=%8!*9%&#(:):$!(&3

>;*<$)0!%*<<1)&*$)#(:
?(!6.35*8*6!%:3:$!":

@@ @
,!($6*1)A!;%,#"<'$)(.

B

B

C):$6)2'$!;%,#"<'$)(. 7#2)1!%,#"<'$)(. +!60*:)0!%,#"<'$)(.

4"*6$%:!(:#6:%D%;!0)&!:
,#($!E$%*8*6!(!::

F($!.6*$)#(%8)$/%!(0)6#("!($B

-)./13%C):$6)2'$!;%?(0)6#("!($:

Figure 2.2: Highly distributed environments (HDEs) [1].

laptops, personal digital assistants (or PDAs), smart-phones, GPS devices, sen-

sors, etc. Developing software for HDEs is fundamentally different from the

software development for central systems and stable distributed systems [14]

and [3] (section 2.5). This argument is discussed deeply and in-details through-

out this dissertation.

Software engineering researchers and practitioners have successfully dealt

with the increasing complexity of software development for central systems and

stable distributed systems by employing the principles of distribution trans-

parency. In distribution transparency a middleware layer is expected to handle

and hide all remote communications (remote call appears as local call). In addi-

tion, distribution transparency masks many distinctions between devices such as

processor architecture and operating systems by utilizing other software layers

such as Java virtual machine as an example.

HDE applications are highly distributed, mobile, and deployed of a wide

24 2. Introduction & Motivation

range of hardware, and therefore highly dependent on the underlying deployment

environment. Unfortunately, network connectivity failures are not rare: mobile

devices face frequent and unpredictable connectivity losses [15]. As result, the

assumption of having stable connectivity is no more valid.

More seriously, the heterogeneity of devices is unmaskable for HDEs. The

reason is simple: the differences between devices are far more fundamental than

in stable distributed environments. The differences between smartphones, tablet

PCs, and laptops are clear. Any attempt to mask these differences will lead to

either negative impact on the QoS or to the failure of the application. If we want

to be more precise, the same argument is correct among smartphones alone.

For these two reasons, HDE applications are challenged by two problems:

unreliable networks, and heterogeneity of hardware and software. Both chal-

lenges need careful handling, where the system must continue functioning and

delivering the expected QoS. Disconnected operation forces systems executing on

each individual device to temporarily operate independently from other network

hosts. This presents a major challenge for the software systems that are highly

dependent on network connectivity, because each local subsystem is usually de-

pendent on the availability of non-local resources. Lack of access to a remote

resource can halt a particular subsystem or even make the entire system unus-

able [7]. The other challenge is not less sever. If the application is deployed on a

specific host without proper assessment of the software/hardware compatibility,

there is a high probability that the application will perform poorly.

Current software development approaches share a common goal: making as-

pects related to the distribution transparent to both the application programmer

and the users. However, hiding distribution, these approaches do not incorpo-

2.3. Software Engineering 25

rate aspects related to disconnections and related errors. In general, distributed

applications are designed to same way as a centralized application [16]. Suc-

cessful software development for HDEs must sufficiently handle the following

challenges [16]:

- Limited resources: many equipments such as PDAs and smartphones has re-

sources that are limited while the current technologies and models implicitly

expect resources that usually found in an average desktop.

- Network connectivity: current software development models are compatible

with environments with constant connectivity, high bandwidth, and low latency

for the routing of remote calls. HDEs are far from satisfying such assumptions.

Therefore, references to remote calls are often invalidated.

- Complexity: current software development models are based on a client-server

architecture where the number and location of clients and servers are fully man-

aged. In HDEs, the mobility of equipment and the sporadic nature of connec-

tions between machines result in the creation of network topology that is chang-

ing and complex. Distributed systems considered by current technologies 1 does

not consider such structures.

2.3 Software Engineering

The goal of this section is to define software engineering, describe some typ-

ical software life cycle phases, and artifacts used and produced in them. We

think this is important for two reasons. First reason is related to this disser-

tation. This dissertation involves several topics such as software components,

1. Please read section 5.1 for a list and discussion of current models and technologies.

26 2. Introduction & Motivation

formal languages, ontology design, etc. However, this is a software engineering

dissertation. Second reason is related to software engineering itself. This do-

main is relatively new domain. In spit of that, software engineering community

and computer science community have formulated a set of core knowledge in

this domain. Core knowledge include: theory, tools, programming languages,

processes, etc. Moreover, this core knowledge is well documented through insti-

tutions and societies such as the Institute of Electrical and Electronics Engineers

(IEEE) and the Association for Computing Machinery (ACM). This core soft-

ware engineering knowledge is what ranked-universities include in the computer

science curriculum. It is very important to draw a line between this software

engineering core knowledge, and other software-engineering related attempts,

activities, processes, languages, tools, etc. For example, Java is taught in all

computer science departments, while Orwell is not. There is a fundamentally

important value in being ‘close’ to the core software engineering knowledge. It

is a criteria of judging any contribution in this domain. If this contribution is

close to the core knowledge software engineering, it is positive point. If not, it

is negative point.

We will proceed in this section to provide a classical, widely accepted, defini-

tion of software engineering along with a brief definition of the phases of software

life cycle. The most commonly accepted definition of software engineering is the

one given in the IEEE Standard Glossary for Software Engineering [20], where

software engineering is defined as “the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of soft-

ware, that is, the application of engineering to software.” Based on [20, 21]

software life cycle phases are:

2.3. Software Engineering 27

– Analysis phase determines what has to be done in a software system.

After determining what kind of software is needed to be developed, the

requirements phase is the first and the most important step. In this phase,

the requirements for a software product are defined and documented. This

is usually done in collaboration with end-users and domain experts. A

complete specifications is the result of this phase.

– Design phase defines detailed designs for application domain, architecture,

software components, interfaces, and data. All the design should be ver-

ified and validated to satisfy requirements. The more formal designs are

defined, the less potential errors will be in the subsequent phases.

– Implementation phase creates a software product starting from the design

documentation and models. This phase also debugs and documents the

software product. In this phase programming languages (C, Java, etc) are

used to encode specified designs, and testing techniques are utilized to find

and correct any potential bugs. Besides eliminating software bugs, it is

also important to be able to check whether implementations are fully valid

with respect to the models.

– Integration phase (installation phase or deployment phase) The period of

time in the software life cycle during which a software product is integrated

into its operational environment and tested in this environment to ensure

that it performs as required.

– Operation and maintenance phase. The software product is employed

in its operational environment, monitored for satisfactory performance,

and modified as necessary to correct problems or to respond to changing

requirements.

– Retirement phase (optional).

28 2. Introduction & Motivation

Through out this dissertation we will use the above defined software life

cycle 2 as a standard. We will consider it a privilege to use it as it is unless there

is a genuine need for modification and customization.

2.4 Software Components

Software engineering researchers and practitioners have successfully dealt

with the increasing complexity of distributed systems by employing the prin-

ciples of software architecture. In software architecture software systems are

modeled using major components (loci 3 of computation), communication (loci

of component interaction), and their configurations (also referred to as topolo-

gies) [7, 22, 23].

We think that using software components is fundamental to counter the in-

creasing complexity of distributed systems [7,16,24]. Examples of industry com-

ponent models are EJB [25], CORBA Component Model [26], and OSGi [27].

Fractal [28] and SOFA [12, 29, 30] are software component models proposed by

academia. Unfortunately, this success in stable distributed systems is not pos-

sible in highly distributed environments HDEs. These component models were

not designed to face the challenges HDEs raise. For example, EJB and SOFA

have no support for highly restricted devices, and Fractal does not consider dis-

connected operations at all [2, 16, 17]. In other words, all component models in

academia and industry successfully faced challenges in distributed environments,

such as the complexity that results from the application size and distribution,

2. Software development process, software life cycle, and software development cycle are
used interchangeably in this dissertation.

3. loci is the plural of Latin locus for place or location. In our context it is used in the
semantic of ‘collection’.

2.4. Software Components 29

however, these component models face the exact same limitations when it comes

to highly distributed environments HDEs.

For the rest of this dissertation, when we say ‘the limitations of current ap-

proaches’ we mean both ‘current component-based approaches’ and ‘current ap-

proaches that are not based on components’. An example of the first one is

SOFA. Service oriented architectures (SOA) [31–34] and remote procedure call

(RPC) [35] are examples for the second one.

Software components have two important and strong features [13,24]:

– Software component reuse. This point is concerned by reducing the cost

of software development and minimizing time to market. These considera-

tions are always important as software engineering is a highly competitive

domain.

– Building large systems from smaller components. This point is concerned

by the feasibility of software development. Without dividing large systems

into orthogonal sub-systems, the development is rather “impossible”.

In this dissertation we concentrate on the second feature. Software component

reuse is out of the scope of this work. We think that the development of depend-

able software for HDEs that delivers the expected QoS at the user endpoint is

currently a priority. This is correct even if the development process is long and

costly. This work is not about reusing third party components, nor reducing time

of development by implementing any automatic code generation, neither partial

nor complete. This work is an attempt to reach the same success software de-

velopment for distributed environments reached in terms of dependability, QoS,

and systematic development, but now for HDEs.

30 2. Introduction & Motivation

2.5 Back to HDEs Challenges

As Malek et al. [3] have noticed “transparency (i.e. hiding distribution, loca-

tion, and interaction of distributed objects) is considered a fundamental concept

of engineering distributed software systems, as it allows for the management

of complexity associated with the development of such systems”. This is usu-

ally achieved through the utilization of a middleware layer that has as a main

function (among others) to make remote calls appear as local calls. That is

correct for stable distributed systems, however, this same concept, distribution

transparency, has been shown to suffer from major shortcomings when applied

extensively in HDEs [3].

Similar argument has been proposed by Guerraoui [14]. In this paper, a

clear distinction has been made between programming for centralized systems

and programming for distributed systems. This argument is much stronger than

our argument since we accepted distribution transparency in stable networks,

while Guerraoui does not.

“Distribution transparency is impossible to achieve in practice. Precisely

because of that impossibility, it is dangerous to provide the illusion of

transparency.”

The author continues: “One might argue that the generation of static stubs and

skeletons together with optimized serialization techniques might lead to very

good performance over a fast transmission network and indeed make a remote

invocation look like a local one. This might indeed be true in a LAN under

the very strong assumption that no process, machine, or communication failure

2.6. Problem Statement 31

occurs.” The solution from his point of view is “Distribution Awareness”.

That leaves us in the following situation: there is excessive and increas-

ing need to build complex mobile and pervasive systems for entertainment and

professional uses. And at the same time, the fundamental engineering tech-

niques available are inherited from stable distributed environments, and suffer

from several drawbacks and weaknesses when utilized in these new environments

(discussed in section 5.1). The only available answer currently is applying ad-hoc

techniques to overcome these drawbacks and weaknesses.

2.6 Problem Statement

Having application specification C along with expected deployment environ-

ments L. Do the following:

1. Develop a system S that complies with C and L.

2. Deploy and run S over L�, where L� is a variation of L.

We call (1) above: major-phase-one (or development major phase), and (2)

above: major-phase-two (or deployment major phase).

2.6.1 Remark One

L in the definition above is a collection of highly distributed environments. If

L is not a distributed environment (i.e. it is a centralized system) then our pro-

posed method is not applicable 4. If L is a stable distributed environment then

our proposed method is not applicable 5. By collection we mean it is possible

4. In fact it is still applicable, however, the main merit of the model is not effectively used.
5. Same as above comment.

32 2. Introduction & Motivation

for L to include several deployment scenarios.

2.6.2 Remark Two

L� could be exactly L. However, it is usually not. The time between the

definition of L and the definition L� could be months or even years. And since

the definitions of both are mostly technology details, then we expect fast change.

2.7 Example - The Multimedia Application

In this dissertation, we will use the Multimedia application as a case study to

explain and validate several portions of this work. The purpose of Multimedia

application is to be a single application to store, search, process, and play all

multimedia files like pictures/images, music, and video. This application is ex-

pected to be deployed over a highly distributed platform such as the deployment

environment in figure 2.3. Video streaming is one service of MULTIMEDIA ap-

plication, and it is a very popular service for most PC, laptop, and smartphone

users.

2.7. Example - The Multimedia Application 33

 !"!

 !"!
#$

#$

%&'()*(&

 !"!
+,-&.-/

01,)&23'.*(/

4(56&.-70()8()/

9/:2;'(5(2<(8=>(52,)(2&?-(5@
222222&'(2*A1B()2.C2=*5&,*>(52.C2
222222(,>'2.*(2=52,*.&'()2=55A(D

Figure 2.3: Highly distributed environment over which the Multimedia applica-
tion will be deployed at runtime.

34 2. Introduction & Motivation

Chapter 3

Contribution

This dissertation is a direct response to the mentioned challenges of HDEs. The

contribution of this dissertation is the cloud component model and its related

formal language and tools. This is the general title. However, and to make this

contribution clear, we prefer to present it in the following detailed form:

3.1 First Contribution

We propose a paradigm shift from distribution transparency to localization

acknowledgment being the first class concern. In other words, we no more hide

or abstract location, on the contrary, we acknowledge all aspects related to loca-

tion including the specification of devices, the networking paradigms they use,

the different network specifications available, security features, and all related

characteristics of the deployment environment. We discuss HDEs and paradigm

shift needed in section 6.

35

36 3. Contribution

3.2 Second Contribution

To achieve the above mentioned objective, we propose in section 7.1 a novel

component model called cloud component (CC). This model includes the ex-

pected deployment environment in its definition, i.e. we raise the importance

of deployment environment to be equal to the functionality required from the

component. The other important feature of this novel model is that it is funda-

mentally distributed. A single CC is usually distributed over many distant hosts,

the specification of these hosts are considered and fundamentally acknowledged

during the development process of this CC, and all aspects related to commu-

nication, coordination, and quality of service are migrated to be internal to the

border of the CC.

3.3 Third Contribution

A software component can be thought of as unit of assembly 1. This is true

for all component models including cloud component model. In this dissertation

we propose a new approach to assemble CCs using systematic methodology that

maintains the properties of CC model. CC assembly is a tool to build large

systems using CCs as building blocks. Moreover, we present a technique to

automatically check the validity of this assembly. Cloud component assembly

and checking are presented in chapter 7.2.

1. In this dissertation we prefer to use the word assembly rather than composition since
the output of this operation (assembly) is not a software component.

3.4. Fourth Contribution 37

3.4 Fourth Contribution

Cloud component development process and cloud component based systems

development process. In this contribution two factors have been considered

pivotal. The first factor is the relevance of our proposed software development

process to the well-accepted software development process. The second factor is

the compatibility between this development process and HDE applications. Our

novel development process is discussed in section 7.3.

3.5 Fifth Contribution

Location modeling and advanced localization for HDEs are the pivotal key

in our contribution. To achieve that we propose ontology based deployment

environment modeling, ontology based cloud component requirements modeling,

and ontology based software/hardware compatibility checker. These topics are

discussed in section 8.

3.6 Sixth Contribution

Formal language to model single CC, CC assembly, CC development pro-

cess, and CC based systems. This formal language is introduced in section 7.

The cloud component model and CC assembly are presented informally and for-

mally with a mathematical notation. The informal notation allows for faster

comprehension of the general concepts. While the formal notation opens the

door for a wide range of theoretical topics including component type inference,

subtypes, etc, and provides a precise language to describe details. In addition,

38 3. Contribution

formal methods allow the designer to produce machine readable designs where

automated tools can verify specific properties at design time, which in turn,

increases the level of confidence in the correctness of design.

3.7 Seventh Contribution

In section 9 we present our fully-developed supporting tools: the cloud com-

ponent management system CCMS, and the Registry utility. These tools make

installation, deployment, compatibility checks, and runtime management fully

automatic. These tools, along with the assembly checker and the software/hard-

ware checker are indispensable and they practically make the development using

CC model an easy and powerful development.

3.8 Remark

The contribution in this thesis has several faces, but still, these faces are

cohesive. Each of these faces form a partial contribution, however, this par-

tial contribution does not mean anything if isolated from the overall proposal.

Moreover, the merit of the overall proposal can not be grasped by reading one

partial contribution. The merit of the proposal is evident only if all parts of this

work are cohesively organized.

3.9 Back to the Quick Response Code

The challenge described in section 2.1 can be naturally handled using our

proposal: the cloud component model, as in figure 3.1. For simplification, we

3.9. Back to the Quick Response Code 39

 !""

!
! !

!

Figure 3.1: QR application as a cloud-component-based system.

show this application as a single cloud component QRCC. The role R is instanti-

ated on several devices. The role R is responsible for the user interface, scanning

the QR image, and contacting the QR-database (it is part of the QRCC that do

not appear in the figure) to provide the user with the information. Before the

instantiation (deployment) of R, the CCMS (the tool responsible of the deploy-

ment of all CC-based systems) will check the specifications of the deployment

device. In section 2.1 we mentioned the camera problem. Now, the CCMS will

check if the camera is auto-focus before deployment. If yes, the deployment of

the R instance proceeds. If no, the CCMS checks if there is implementation

variant of R for this case. If yes, the right implementation variant is deployed,

if no, the deployment stops with an explanation message. In all cases the QoS

of the application is respected at the user endpoint.

40 3. Contribution

Part II

STATE OF ART

41

43

In this part we will attempt to discuss related research and industry work.

The following considerations are adopted while organizing this part.

First we do not claim this is extensive list of related work, rather, it is the best

of our knowledge. More important, it is high-quality and up-to-date collection

of research and technology. Second, this is not a ‘survey’ part where we list and

discuss work in specific field. Such survey is out of the scope of this dissertation.

This part is a list and discussion of research tracks and technologies under the

scope of our proposed theory. That is why we have a ‘discussion’ section whenever

there is a need to compare and/or comment about related work with respect to

our proposal.

At any point where we do not provide sufficient presentation about a related

topic, such as Enterprise JavaBeans, we invite the reader to check the provided

references for comprehensive information. Also, whenever the reader finds a

comparison with our proposal, such as CC formal modeling language, we invite

him/her to check part III for detailed presentation of such feature. This approach

might not be very common, however, we think it serves our hope to provide

readable and organized manuscript.

44

Chapter 4

Ontologies & Logic

4.1 DL, OWL, and Protégé

4.1.1 DL and OWL

Description logics (DLs) [36–38] are a family of knowledge representation lan-

guages that can be used to represent the knowledge of an application domain in a

structured and formally well-understood way. The suitability of DLs as ontology

languages has been highlighted by their role as the foundation for several web

ontology languages, including “Web Ontology Language: OWL” [39–41]. OWL

has a syntax based on RDF Schema [42], but the basis for its design is the ex-

pressive DL SHIQ [43], and the developers have tried to find a good compromise

between expressiveness and the complexity of reasoning. Although reasoning in

SHIQ is decidable, it has a rather high worst-case complexity (exponential time).

Nevertheless, highly optimized SHIQ reasoners such as FaCT++ [44], Racer [45]

and Pellet [46] behave quite well in practice [10].

45

46 4. Ontologies & Logic

We would like to point out briefly some of the features of DL SHIQ that make

this version DL expressive enough to be used as an ontology language. First, DL

SHIQ provides number restrictions. Second, DL SHIQ allows the formulation of

complex terminological axioms like “humans have human parents.” Third, DL

SHIQ also allows for inverse roles, transitive roles, and subroles. It has been

argued that these features play a central role when building ontologies using

OWL [47].

To show how decidability is affected by the expressive power of the DL

variant, it is shown that SHIQ extended by symbolic number restrictions, i.e.

replacing the explicit numbers n in number restrictions by variables α that

stand for arbitrary nonnegative integers, has an undecidable satisfiability and

subsumption problems [37,48–50]. This trade-off has led to a set of requirements

that may seem incompatible: efficient reasoning support and convenience of

expression for a language as powerful as a combination of RDF Schema with a

full logic. Indeed, these requirements have prompted Web Ontology Working

Group to define OWL as three different sub-languages, each of which is geared

towards fulfilling different aspects of these incompatible full set of requirements:

– OWL Full: The entire language is called OWL Full, and uses all the OWL

languages primitives. As a disadvantage, the language has become so

powerful as to be undecidable, dashing any hope of guarantees on complete

and efficient reasoning.

– OWL DL: In order to regain computational efficiency, OWL DL (short for:

Description Logic) is a sub-language of OWL Full which restricts the way

in which the constructors from OWL and RDF can be used. The advantage

of this is that it permits efficient reasoning support. The disadvantage is

that we loose full compatibility with RDF.

4.1. DL, OWL, and Protégé 47

– OWL Lite: An even further restriction limits OWL DL to a subset of

the language constructors. For example, OWL Lite excludes enumerated

classes, disjointness statements and arbitrary cardinality (among others).

The advantage of this is a language that is both easier to grasp (for users)

and easier to implement (for tool builders). The disadvantage is of course

a restricted expressiveness.

OWL uses the XML syntax of RDF. Unfortunately, and after a fairly short use, it

will become clear that RDF/XML does not provide a very readable syntax [37].

4.1.2 Protégé

Protégé 1 [51] is an open source ontology editor. The Protégé platform sup-

ports modeling ontologies via the OWL editor 2. In Protégé, ontologies can be

exported into a variety of formats including RDF(S), OWL, and XML Schema.

Protégé is based on Java. Moreover, it is extensible and provides an open en-

vironment that supports plug-ins integration. That makes it a flexible base for

rapid prototyping and application development.

4.1.3 Discussion

In our work, and throughout this dissertation we used F-logic (section 8.2),

OntoStudio, and OntoBroker (section 8.2.2). It is outside the scope of this

dissertation to have a theoretical comparison between these two groups:

1. F-logic, OntoStudio, and OntoBroker. We will call this the first group.

2. Description logic, Web Ontology Language - OWL, and Protégé. We will

1. http://protege.stanford.edu/
2. Protégé also supports the Protégé-Frames.

http://protege.stanford.edu/

48 4. Ontologies & Logic

Figure 4.1: Protégé with Jambalaya visualization.

4.1. DL, OWL, and Protégé 49

call this the second group.

However, we will mention our experience in using both of these two groups.

1. We used the second group for six months. It was potentially the tools and

logic to build our ontology related modelling and checker.

2. Some of the points that the development team of Protégé thinks as positive

and powerful points, we think they negatively affected our experience with

this tool (and the underlying languages and syntax).

(a) First: this tool, Protégé, is an open source and open environment.

That means there are different groups of development. At some point,

using a specific plug-in will require (depend) the existence of another

plug-in or component. It happened several times that we could not

satisfy all the dependencies, and we ended up unable to use the func-

tion we need. The lack of single point installation is, sometimes, a

real barrier.

(b) Second: Protégé has a large community. This is used to advocate

that we could find help when we need. This is not as simple as

people predict. In fact, we failed to find sufficient documentation

about specific topics. Even if this documentation exists, it might

be located on the ‘web’ where we do not have enough information

how to reach it. When we arrived to the query point, we found this

group (the second group) to become excessively distributed, with no

sufficient documentation.

3. As mentioned above, the RDF syntax leads owl files to be unreadable.

This might become a real limitations, especially if the developer wants to

modify the ontology directly using a text editor.

50 4. Ontologies & Logic

4. Both groups have good graphical visualization for ontologies. Two inte-

grated visualization functions in OntoStudio: Graph View and Ontology

Visualizer. While Protégé uses OWLViz and Jambalaya.

5. As far as the underlying logic (formal language) we found both F-logic and

description logic to be sufficient for our use. Both have enough documen-

tation and advanced reasoners. However, we found the syntax of F-logic

to be more convenient and readable.

6. Ontoprise successfully documented their products. Within few manuals

and tutorials, the developer finds all necessary information locally on

his/her hard disk (or as a printed book). Moreover, there is no third

party components, nor third party documentation.

We found that the single point installation of Ontoprise products (OntoStudio

and OntoBroker) to be the wining factor for the first group.

4.2 Ontology Support for Software Engineering

4.2.1 Review of Literature

While different methodologies consider different phases for software life cycle, we

use the phases of software life cycle as defined in [20,21] (also discussed in section

2.3). These phases are: analysis phase, design phase, implementation phase,

integration phase (deployment phase), maintenance phase, and retirement phase.

Ontologies have been considered as a solution to improve the state of the art in

the area of requirement engineering (analysis phase). Breitman and Leite argue

that ontologies should be sub-products of the requirement engineering phase [52].

An example is the DOGMA ontology engineering framework [53]. The following

4.2. Ontology Support for Software Engineering 51

list provides an adequate source of information regarding the incorporation of

ontology in the analysis phase: [54–62].

The integration of ontologies into software design phase and activities can be

seen through the following:

– Model Driven Engineering (MDE) and Ontologies [61, 63–66].

– Inconsistencies discovery at design time using model reasoning. The main

finding of this track is that reasoning over UML class diagrams is EXPTIME-

hard [67,68].

– Enhancing model transformations through ontology support [69–71].

Ontology support to implementation phase and integration (deployment) phase

are rather minimal. Examples on ontologies support for implementation through

MDE can be found in [63,72,73]. The goal of MDE is to allow for automatically

generating as much implementation code as possible. Unfortunately, the cur-

rent state of the art indicates that many implementation details should still be

done manually [10]. The most important contribution of ontologies to software

integration is semantic web services. For example [74,75].

4.2.2 Discussion

By reading the above mentioned list of literature, we find that the contribution

of ontology to the current state of art software development life cycle is still

in its initial stages. In other words, the software development is not, even

minimally, dependent on ontologies currently. The second conclusion is that we

find that there is an increasing interest in acknowledging non-traditional aspects

in software development such as unified vocabulary and parameter semantics.

We think that ontology is a good candidate in fulfilling many such related needs.

52 4. Ontologies & Logic

To be specific, ontology allows more machine-to-machine ‘understanding’, which

leads to better automated tasks.

The most important conclusion in this section is that there is no ontology

support 3 for the following tracks in software development process:

– Deployment environment modelling 4. This is fundamental for software

design and implementation phases in our proposed model.

– Software component requirements modelling. This is fundamental in im-

plementation phase.

– Software/hardware checker. This is fundamental in deployment phase.

We think that our proposed ontology-based-localization is a contribution to the

current state of art ontology-based-applications (please read section 8.5).

4.3 Automatic Question Answering & Automatic On-

tology Building

4.3.1 Automatic Ontology Building

Automatic ontology building is divided into two fields: first is machine learning

witch is related to building the ontology itself (before population). Second is

information extraction which is concerned by populating an existing ontology

automatically using available ‘textual’ documents. For detailed presentation

of traditional (non-automatic) ontology building please read 8.3.1, and for de-

tailed presentation of traditional (non-automatic) ontology population please

read 8.3.2.

3. Based on our best knowledge.
4. Context awareness is supported by ontologies, however it is not deployment environment

modelling. It will be discussed in section 5.2.

4.3. Automatic Question Answering & Automatic Ontology Building 53

Figure 4.2: Ontology learning (copy from [4]).

Most ontology design patterns may be filled by manual work, but the use of

machine learning mechanisms as a tool for suggesting ontological constructs is

an increasingly important means.

The various tasks relevant in ontology learning have been previously organized in

a layer diagram. This ontology learning layer was introduced in [4] and is shown

in figure 4.2. It clearly focuses on learning the TBox 5 part of an ontology. The

following literature list provides rich and up-to-date information on this research

track: [76–92]. For a set of realized tools for automatic ontology learning please

refer to: [55, 93–98].

Once the ontology is built, it is ready for population. Automatic population

of an ontology has a bi-directional relationship with Information Extraction (IE).

IE can extract ontological information from documents. Conversely, ontologies

can be exploited to interpret the textual document content for IE purposes.

Among related literature we can list: [99–104].

5. TBox statements describe a set of concepts, concept hierarchy, and properties for these
concepts. TBox and ABox constitute a full ontology (populated one).

54 4. Ontologies & Logic

4.3.2 Question Answering - QA

Using ontologies means performing a query over the ontology. Queries are

written in SPARQL-like languages 6. These languages are technical. Only pro-

grammers and experts can use such formal interfaces. Most users would prefer

natural language QA. This research field attempts to propose methods for map-

ping natural-language questions into structured SPARQL queries (or similar).

For example (from [105]):

“A big US city with two airports, one named after a World War II hero, one

named after a World War II battle field.”

This natural-language question can be expressed as in listing 4.1.

Listing 4.1: SPARQL query (from [105]).

S e l e c t ? c Where

{

? c hasType City .

?a1 hasType Airport . ?a2 hasType Airport .

?a1 l o ca t ed In ? c . ?a2 l o ca t ed In ? c .

?a1 namedAfter ?p . ?p hasType WarHero .

?a2 namedAfter ?b . ?b hasType Ba t t l eF i e l d .

}

State-of-art tools include YAGO-QA [105] and Watson [106] from IBM. For

related techniques and algorithms, please read: [107–109].

6. SPARQL is a knowledge base query language. It is similar to the F-logic based query
language from Ontoprise. We use the latter throughout this dissertation (please read section
8.3.3).

4.3. Automatic Question Answering & Automatic Ontology Building 55

4.3.3 Discussion

Automatic ontology building and population, and natural language ques-

tion answering are challenging and exciting research fields at the intersection of

machine learning, data and text mining, natural language processing and knowl-

edge representation. Fully automatic techniques for these tasks are not feasible

currently and possibly will not be feasible in the future.

In our work we did all of these tasks manually. However, we felt an urging

need for the above mentioned automation. Especially in ontology query. It is

very difficult barrier to need an overall knowledge of an ontology to be able to

write a query. Unfortunately, this is the current state of art, and this is what

we did in our work as described in this dissertation. Please read chapter 8.

56 4. Ontologies & Logic

Chapter 5

Software Engineering & Highly

Distributed Environments

5.1 Component Models and Connectors

This section is organized as follows: we start with a fast discussion of the

insufficiency of current software component models to handle the challenges of

HDEs in 5.1.1. This discussion will not include any specific component model nor

specific feature of a specific model. After that we present a list of component

models in section 5.1.2. In section 5.1.3 we discuss component border, Sofa

model, and connectors. Fast comments about software/hardware compatibility

and ease of use are in sections 5.1.4 and 5.1.5. We conclude this section by

an attempt to position our model, CC model, among the other five well-known

component models in 5.1.6.

57

58 5. Software Engineering & Highly Distributed Environments

5.1.1 Current Component Models Limitations

After analyzing several component technologies, we found that they follow a

common paradigm. These component models rely on strong assumptions, and

they emulate local call on top of distributed networks, and finally they consider

any deviation from their implicit or explicit assumption as exceptions. All of

these points are considered limitations with regards to HDEs as we explain in

the following:

Rely on strong assumption A common way to distribute a component-based

application consists of installing each component instance on a host; the

distribution then refers to the fact that a component can make distant

invocations to the services implemented by another component [2, 110].

This type of architecture usually relies on rather strong assumptions [2]:

1. The stability of the execution platforms (the component server is

highly available - usually with backup recovery system).

2. All hosts have sufficient resources which include processing power,

memory, and power supply.

3. The connectivity is reliable and has good characteristics (low latency,

enough bandwidth, stable, no disconnections, etc.).

In general, an application designed using this architecture can not be in-

stalled and executed on deployment environments with hosts that are po-

tentially volatile and limited in resources, especially when disconnected

network operation and weak consistency of the characteristics of the con-

nectivity are possible or frequent, which is the case in HDEs [2, 17].

Emulation The distributed component models mentioned above share a com-

5.1. Component Models and Connectors 59

mon goal: making aspects related to the distribution transparent to both

the application programmer and the users. They hide distribution by mak-

ing remote call appears to the caller as local call, but to some ad-hoc and

limited exceptions (see next point). However, by hiding distribution, these

mechanisms do not incorporate aspects related to disconnections, mobil-

ity, and all other complexities mentioned in the previous section [31]. In

general, distributed applications are designed using the same techniques

as a centralized application [16,111].

Exceptions Most common component technologies were not originally designed

for HDE. Therefore, they consider any deviation from the strong assump-

tions mentioned above such as inaccessibility of a machine or the unavail-

ability of certain resources as exceptions. The treatment of the various

changes that may occur within the network is usually done by adding

code to adapt to these new events. This code will increase the complex-

ity of applications [16, 111] with specific and ad-hoc extensions and poor

methodological guidelines.

Typical HDE applications are highly distributed, decentralized, and mobile.

Therefore, they are highly dependent on the underlying network [7, 112, 113].

We believe that the successful paradigm ‘distribution transparency’ in stable

distributed networks and current component models is no more dependable in

highly distributed environments HDE. There is fundamental need to move from

hiding the details of the underlying network and devices into acknowledging all

of these aspects and details. It is possible to achieve that by introducing the

concept ’location’. We call this a paradigm shift from ‘distribution transparency’

to ‘localization acknowledgment’. Please read section 6.

60 5. Software Engineering & Highly Distributed Environments

5.1.2 Survey of Component Models

We would like to provide an overview of current component models and

their main characteristics. It is not possible to provide a complete list, however,

the following list gives an overview of a wide spectrum of software components

models:

– Fractal [28].

– Robocop (Robust Open Component Based Software Architecture for Con-

figurable Devices Project) [114].

– Pecos (PErvasive COmponent Systems) [115].

– BIP (Behaviour, Interaction, Priority) [116].

– OpenCOM [117].

– ProCom (PROGRESS Component Model) [118].

– CCM (CORBA Component Model) [26].

– EJB (Enterprise JavaBeans) [25].

– Koala [119].

– MS COM (Microsoft Component Object Model) [120].

– OSGi (Open Services Gateway Initiative) [27].

– BlueArX [121].

– COMDES II (COMponent-based design of software for Distributed Em-

bedded Systems, version II) [122].

– Rubus [123].

– SOFA (Software Appliances) [30].

– AUTOSAR (AUTomotive Open System ARchitecture) [124].

– KobrA (KOmponentenBasieRte Anwendungsentwicklung 1) [125].

1. In German.

5.1. Component Models and Connectors 61

For comparison we chose five component models: SOFA, CORBA Component

Model (CCM), Fractal, Enterprise JavaBeans (EJB), and OSGi. We think that

this sample of models is wide spread 2. Moreover, it honestly and accurately rep-

resents the current state-of-art and state-of-practice software component models

in both academia and industry. The information provided in this section, 5.1.2,

is merely technical details and it is collected from the references of models and

from related component survey documents. The author of this dissertation did

not add his opinion nor position in this section. It is important to mention that

domain specific software component models (such as COMDES II) are out of

the scope of this comparison. Cloud component model is not domain specific,

and can not be compared with such models.

5.1.2.1 SOFA

SOFA [5,30] is a component model developed at Charles University in Prague.

SOFA uses a hierarchical component model with connectors, which are also first

class entities like components. The component model is defined using the meta-

model presented in figure 5.1. This approach has many advantages such as the

support of MDD, the possibility of automated generation of meta-data repos-

itories with a standard interface, a standard format for data exchange among

repositories, support for automated generation of model editors, etc. As the

particular technology for defining the meta-model and generating a meta-data

repository, SOFA team has been using EMF. A brief description of main entities

of the meta-model is as follows:

The NamedEntity and VersionedEntity classes are reused multiple times in the

meta-model. All other classes featuring a name inherit from NamedEntity. The

2. based on our best knowledge.

62 5. Software Engineering & Highly Distributed Environments

NamedEntity

name : String

Feature

value : String

Interface

+addFeature(name : String,value : String) : Feature

+addFactoryAnnotation(method : String,retInstance : Frame,retIface : Interface) : void

communicationStyle : String

connectionType : ConnectionType

isCollection : boolean

0..*

communicationFeature

VersionedEntity

addInfo(name : String,value : String) : Info

locked : boolean

Version

version : String

prevVersion : String

entity

version

Property

type : String

MappedProperty

subcomponentPropertyName : String

Frame

+addProvision(name : String,iface : InterfaceType,comStyle : String,conType : ConnectionType,isCol : boolean) : Interface

+addRequirement(name : String,iface : InterfaceType,comStyle : String,conType : ConnectionType,isCol : boolean) : Interface

+addProperty(name : String,type : String) : Property

+setTopLevel(topLevel : boolean) : void

+addBehavior(name : String,value : String) : Info

0..*

requiredInterface

0..*

property

0..*

providedInterface

InterfaceType

signature : String

interfaceType

Architecture

addSubcomponentByFrame(name : String,frame : Frame) : SubcomponentInstance

addSubcomponentByArch(name : String,arch : Architecture,frame : Frame) : SubcomponentInstance

addConnection() : Connection

addProperty(name : String,type : String) : Property

addMappedProperty(name : String,type : String,subcompPropName : String,subc : SubcomponentInstance) : MappedProperty

implementation : String

1..*

implements

0..*

property

0..*

mappedProperty

SubcomponentInstance

0..1

instantiatesFrame

0..*

subcomponent

0..1

instantiatesArchitecture

instance

Connection

addComponentEndpoint(ifaceName : String) : ComponentInterfaceEndpoint

addSubcomponentEndpoint(ifaceName : String,sub : SubcomponentInstance) : SubcomponentInterfaceEndpoint

0..*

connection

SubcomponentInterfaceEndpoint

interfaceName : String

subcomponent

ComponentInterfaceEndpoint

interfaceName : String

<<enumeration>>

ConnectionType

normal

utility

Annotation

0..*

annotation

0..*

annotation

<<Singleton>>

TopLevel

<<Singleton>>

Factory

method : String

returnInterface

ConnectionEndpoint

1..*

endpoint

1..* behavior

0..*

info

Info

value : String

aa+returnInstance

Figure 5.1: SOFA 2.0 meta-model. From [5].

5.1. Component Models and Connectors 63

VersionedEntity class further extends NamedEntity by adding a version. A

black-box view of a component is defined by the Frame class (it inherits from

the VersionedEntity). The provided, resp, required, interfaces of a frame are

modeled by the provideInterface, resp. requiredInterface, association with the

Interface class, which is further associated with the InterfaceType class defining

the real type of the interface. Also, Frame is associated with the Property class,

which defines the namevalue properties used to parameterize components (these

values are specified at the deployment time). A gray-box view of a component

is defined by the Architecture class. The component’s architecture implements

at least one frame captured by the association between the Frame and Architec-

ture classes (the option of multiple frames for an architecture allow for taking

different views on the component behavior) and contains subcomponents and

connections among them. If the architecture is empty, then the component is

primitive and is directly implemented. Architectures can also add other prop-

erties (again captured via the association with the Property class), and/or can

expose subcomponents’ properties as their own (captured by the association

with the MappedProperty class). Connections among subcomponents are real-

ized via connectors. At the meta-model level, connectors are just links among

components’ interfaces and they are captured by the Connection and Endpoint

classes. The communication style of a connector and its non-functional features,

which it has to provide at runtime (like secure connection, etc.) are defined by

the Feature class, which is associated with Interface.

64 5. Software Engineering & Highly Distributed Environments

5.1.2.2 CORBA Component Model (CCM)

CCM [26] is based on Corba object model and it was introduced as a basic

model of the OMGs component specification. The specifications of CCM defines

the following

– An abstract model.

– A programming model.

– A packaging model.

– A deployment model.

– An execution model.

– A metamodel.

CORBA components communicate with outside world through ports. CCM

uses a separate language for the component specification: Interface Definition

Language (IDL). CCM provides a Component Implementation Framework which

relies on Component Implementation Definition Language and describes how

functional and nonfunctional part of a component should interact with each

other. In addition, CCM uses XML descriptors for specifying information about

packaging and deployment. Furthermore, CCM has an assembly descriptor

which contains metadata about how two or more components can be composed

together.

5.1.2.3 Fractal

Fractal [28,126] (figure 5.2) is a component model developed by France Tele-

com R&D and INRIA. It intends to cover the whole development lifecycle (de-

sign, implementation, deployment and maintenance/management) of complex

software systems. The main features of this model are:

5.1. Component Models and Connectors 65

Figure 5.2: A normal Fractal component (from [2]).

– Composite components (components that contain sub-components), in or-

der to have a uniform view of applications at various levels of abstraction.

– Shared components (sub-components of multiple enclosing composite com-

ponents), in order to model resources and resource sharing while maintain-

ing component encapsulation.

– Introspection capabilities, in order to monitor and control the execution

of a running system.

– Re-configuration capabilities, in order to deploy and dynamically configure

a system.

It includes several features, such as nesting, sharing of components and reflexiv-

ity in that sense that a component may respectively be created from other com-

ponents, be shared between components and can expose its internals to other

components. The main purpose of Fractal is to provide an extensible, open and

general component model that can be tuned to fit a large variety of applications

66 5. Software Engineering & Highly Distributed Environments

and domains. Fractal includes different instantiations and implementations: a

C-implementation called Think, which targets especially the embedded systems

and a reference implementation, called Julia and written in Java.

5.1.2.4 Enterprise JavaBeans (EJB)

EJB [25], developed by Sun MicroSystems envisions the construction of

object oriented and distributed business applications. Enterprise JavaBeans

(EJB) is currently available in version 3.0. This standard provides a reasonable

component-model and a rich set of services and facilities, e.g. for persistence

management and transaction control. Additionally, the isolated treatment of

different aspects – e.g. application logic and security – allows separation of

concerns for development, execution, and administration. It provides a set of

services, such as transactions, persistence, concurrency, interoperability. EJB

differs three different types of components (The EntityBeans the SessionBean

and the MessageDrivenBeans). Each of these beans is deployed in an EJB

Container which is in charge of their management at runtime (start, stop, passi-

vation or activation) and EFPs (such as security, reliability, performance). EJB

is heavily related to the Java programming language.

5.1.2.5 Open Services Gateway Initiative (OSGi)

OSGi [27] is a consortium of numerous industrial partners working together

to define a service-oriented framework with an open specifications for the delivery

of multiple services over wide area networks to local networks and devices. The

OSGi framework forms the core of the OSGi Service Platform Specifications. It

provides a general-purpose, secure, and managed Java framework that supports

5.1. Component Models and Connectors 67

the deployment of extensible and downloadable applications known as bundles.

Contrary to most component definitions, OSGi emphasis the distinction between

a unit of composition and a unit of deployment in calling a component respec-

tively service or bundle. It offers also, at contrary to most component models,

a flexible architecture of systems that can dynamically evolve during execution

time. This implies that in the system, any components can be added, removed

or modified at run-time. In relying on Java, OSGi is platform independent.

There exists several additions of OSGi that provides additional characteristics.

5.1.3 Encapsulation and Extra Functional Properties

We think that the most attractive point in components in general is sim-

ply encapsulation 3. That is correct for components in electronics (IC chips),

mechanics (engine, speed box, braking system, etc), and also in software com-

ponents. Lau et al. noted: “encapsulation has the potential to counter com-

plexity” page 720, [24]. “We believe that the ideal (software component) model

should have the key characteristics of encapsulation and compositionality” page

720, [24].

Traditionally software component models encapsulate functionalities. Attempts

to encapsulate extra functional properties (EFPs) such as security or reliability

are currently under research and have limited success. To support this remark

we will rely on the survey [13].

As it appears from table 4 in [13] that all industry-successful component models,

such as EJB, OSGi, MS COM and CCM, encapsulate functionality and have

no support for extra functional properties. None of them define any interface

3. This idea is discussed also in section 6.1.1.

68 5. Software Engineering & Highly Distributed Environments

with a QoS contract level as defined in [127]. Only component models from

academia, such as Sofa, try to include more inside the component border and

exhibit interfaces with QoS values.

In the following, we will try to inspect the SOFA attempt. “SOFA 2.0 uses a

hierarchical component model” [12,30]. Obviously, allowing nesting in the com-

ponent model will lead to huge encapsulation. However, since our concern now

is EFPs, let us see what is the effect of component nesting on EFPs. Basically,

a hierarchical component is composed of other components. Now let us assume

that the level of nesting is limited to one, and suppose component A has inside

components B1, B2, B3, and B4, and they are composed (assembled) together to

achieve the required functionality. To predict the EFPs of A we need to know the

EFPs of its inside components, and apply the/some EFPs composition theory.

But, this theory does not exist [13] page 17. What they (SOFA developers) do is,

for small cases, and for directly composable EFPs such as memory usage, they

apply EBP and LQN [12] page 395. Now, what about EFPs such as security? Is

it composable? No [13] page 11. What if nesting is much more deeper, and what

if some of the internal components are third party with very few information

about internals (black box)? Clearly we will get hard situation. “Clearly, the

composition of EFPs still belongs to the research challenges” [13] page 17. As

result, SOFA wishful thinking of predicting EFPs of a component by composing

EFPs of its internal components lakes the “theory of EFPs composition.” Until

this theory is developed and proven successful in industrial usage, the support

of EFPs in SOFA is an open area for research.

The other encapsulation-related claim of SOFA is “support of multiple com-

munication styles by using connectors” [30,128]. In other words, communication

5.1. Component Models and Connectors 69

is encapsulated inside sofa component by two techniques: first one is connectors,

which allows to use multiple communication mechanisms. Second is again hier-

archical model, so a large component will include the connector(s) and the com-

ponents that wants to communicate. This way, communication is encapsulated.

But, this method relies on the assumption that: “we can separate functional

aspects from communication aspects 4.” As result we place the first inside the

component and the second inside the connector. This is completely false. There

is no evidence of such possibility, on the contrary, this is considered bad design

approach that might lead to “degradation of the system performance” [13] page

10. Such separation is attractive because it makes implementation easier, but

there is ethical need to always mention that there might be (probably) a signif-

icant cost. Again, without the well development of the theory of separation of

concerns, the SOFA communication encapsulation that is based on connectors

and hierarchical components is a wishful research thinking.

5.1.4 Software/Hardware Compatibility

Based on our best knowledge all mentioned five component models do not

address the compatibility between software and hardware, neither directly, nor

indirectly. Some of them, mainly Sofa, EJB and OSGi, even restrict their deploy-

ment environment by devices that runs Java Virtual Machine. The availability

of JVM is limitation that our model does not suffer.

Of course, the design and implementation teams can make necessary arrange-

ments for the application they are developing to be compatible with the expected

deployment devices using any component model. However, this is exterior to the

4. If we do not use connectors we avoid this separation of concerns problem, but this way
we are not using SOFA.

70 5. Software Engineering & Highly Distributed Environments

model itself. In other words, this is not a feature in the model that the design

and implementation teams facilitate. Currently, all software development for

HDEs is using such ad-hoc approaches. Our proposed component model fills

this gap by a genuine integration of the expected deployment environment L

into the definition of the cloud component itself.

Technology Page of Comments

first occurrence

Meta-models 389

LTL 389 Linear Temporal Logic

Promela 389

EBP 391 Extended Behavior
Protocols

EBP2PR translator 389, 408

Spin model checker 389

Carleton LQN solver 389

MDD, EMF 390

Formal Performance 395
Models

LQN 395 Layered Queuing Networks

SPN 395 Stochastic Petri Nets

FSP 396 Finite State Process

CSP-like notation 396 Communicating and
Sequential Processes

Series of 407 “Transformations are mostly

transformations done manually with some

parts automated”

Tool chain 408

JPF 412 Java path finder

Table 5.1: Technologies used to implement inventory application using SOFA
component model [12], pages 388-417. The team who designed and implemented
the application in [12] is the same team who proposed SOFA.

5.1.5 Ease of Use

In this section we will make a brief attempt to investigate the ease of use

of CC model and tools with comparison to the other component models. All of

these models are proposed to be used by software engineers. As result, software

5.1. Component Models and Connectors 71

engineers need to be able to learn and master these models in reasonable time.

The wide usage of EJB, CCM, and OSGi in industry is a clear evidence of its

relatively close relation to commonly accepted software engineering skills as de-

scribed in section 2.3. In [12], page 390:

“Usage of SOFA 2.0 and the verification and prediction tools and approaches is

quite easy; an average computer science student takes approximately five days

to learn about SOFA 2.0 itself and another five days to write behavior speci-

fication of simple components.” In the same document, where they implement

an inventory system, they mention using technologies listed in table 5.1. In this

table we did not list technologies that are usually taught in computer science

curriculum as part of the undergraduate program, such as NFA, JAVA, intro-

duction to complexity theory, and parallel computing theory. We use [129] as an

average reference of such a program. As result, any “average computer science

graduate” needs to learn these technologies from scratch in order to “use SOFA

and the verification and prediction tools and approaches”. We are sure that the

five days estimate is anything but realistic.

On the contrary, the average computer science graduate was in mind when

designing CC model and related tools. We think with normal training that lasts

for several weeks (up to few months), a software engineer can start using CC

model and tools effectively.

5.1.6 General Comparison

Table 5.2 presents an attempt to position our model among current component

models, from both industry and academia. In this section, we will make a

comparison between these six component models.

72 5. Software Engineering & Highly Distributed Environments

Cloud Compo-

nent Model

EJB Fractal CORBA

Com-

ponent

Model

OSGi SOFA 2.0

Modelling Formal Lan-
guage for
software ar-
chitecture.
Ontology for
deployment
environment
modeling

N/A ADL-like lan-
guage (Fractal
ADL, Fractal
IDL). An-
notations.
(Fractlet).

N/A N/A Meta-
model
based spec-
ification
language

Implemen-

tation of

applications

Language Inde-
pendent

Java Java (Julia,
Aokell) C/C++
(Think) .Net
lang. (FracNet)

Language
Indepen-
dent

Java Java

Deployment At run-time At run-
time

At run-time At run-time At com-
pilation
and at
run-time

At run-time

Interface

distinctive

features

Local access
only

N/A Component in-
terface, Control
interface

Facet and
receptacle,
Event sink
and source

Dynamic
interface

Utility
interface.
Possibility
to annotate
interface
and control
evolution

Exogenous

Binding

No No Yes No No Yes

Vertical

Binding

No No Delegation No No Delegation

Table 5.2: Comparison between CC model and other well-known component
models. All non CC information are from tables 1, 2, and 3 in [13].

– All industry models in this table, namely EJB [25], CORBA Component

Model [26], and OSGi [27], have no modelling support of any kind. This is

negative in the context of medium and large scale applications where de-

sign is a key for software quality. Fractal [28], from academia, depends on

special languages to support modelling, while SOFA [12,29,30], academia

also, uses existing modeling approach. CC model uses formal language

to model the architecture and the development process, assembly of CCs.

Moreover, CC model uses ontologies (formal-language based) to model

deployment environment and the requirements of each CC in the sys-

tem. Finally these ontologies are used at deployment time to check soft-

ware/hardware compatibility.

– Only CC model and CORBA Component Model give the designer the

choice of appropriate programming language. In these two models, more

5.1. Component Models and Connectors 73

flexibility also can be achieve through a mix of programming language.

The other four models are Java dependent, except Fractal witch gives the

option of several programming languages. However, Fractal forces the

implementation programming language to be chosen and fixed. If we use

Julia (an implementation of Fractal environment) then we have no more

the choice of using C language for parts of the application 5 .

– All component models allow run-time deployment, redeployment, and

binding between components. EJB, CORBA Component Model, OSGi,

and CC model do not use connectors (Exogenous Binding) and do not sup-

port component nesting (Vertical Binding). On the other hand, Fractal

and Sofa both support nesting, and Sofa alone uses connectors.

– We think CC model falls in a new category that does not sacrifice the

powerful advantages of industry successful component models, and at the

same time adds academia-related-theoretical support. First, all industry

successful component models do no use connectors (Exogenous Binding),

and do not support component nesting (Vertical Binding), same as CC

model. We think these two features are important because they result

easy to use component models that are attractive for real-life application

development. Moreover, These two features have negative impact on the

deployment and performance of resulting applications (please read sections

5.3.1 and 5.1.3). Second, all industry successful component models lack

the support of modeling languages. While this point might be marginal in

small systems, it becomes vital for medium-scale and large-scale designs.

CC model attempts to handle this point effectively, without affecting the

ease of use of the model for average software engineers. Third, and finally,

5. This argument is based on our best knowledge. Checking [126] we found Julia and
Cecilia, however, we found no way to mix these two implementations.

74 5. Software Engineering & Highly Distributed Environments

distinctive feature of our model that it allows local access and prohibits

remote access to any interface (role). This feature is one of the core con-

tributions of this new model.

Component Connector Paradigms
Local Local Curent/embedded systems
Local Distributed Curent component approach
Distributed Local Cloud Component approach
Distributed Distributed Most general

Table 5.3: Access point location feature for components and connectors.

If we classify components and connectors as software artifacts with access

points that can either be distributed or local, we have four possibilities (please

see table 5.3). Our proposal is clearly a trade-off, avoiding the general case and

changing the perspective over components.

The difference between components and connectors is largely accepted but

this relies on the assumption that: “we can separate functional aspects from

communication aspects”. As result we place the first inside the component and

the second inside the connector. There is no evidence of such possibility, on

the contrary, this is considered bad design approach that might lead to “degra-

dation of the system performance” [13] page 10. Our proposal encapsulates all

functionalities, including communication, and avoid this separation of concerns

problem.

5.2 Context Awareness

In the literature several definitions of the term context can be found [1,130,131].

In this section we will use the following definition from [130]:

5.3. HDE Solutions 75

“Context is any information that can be used to characterise the situation of

an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and

applications themselves.”

When dealing with context information it is always a challenge to describe con-

textual facts and interrelationships in a precise and traceable manner. For this

reason ontologies seem to be well suited to store the knowledge concerning con-

text [131]. Context Ontology Language (CoOL) is an example of modeling

context information using ontologies [131]. Another example is CONON [6].

It is possible to imagine a relation between this ‘context’ and our ‘location’. One

common aspect is that both of them are part of HDEs. Another common point

is that they are both modelled to improve the QoS of HDE applications. The

third, and most clear point, is that the term ’location’ itself is used heavily in

context modelling, as in figure 5.3.

It is inviting here to mention the major difference between location, as we use

it, and location, as in context-aware software. When we use the term location

we mean a deployment device, i.e. a computing device. When they use location

they mean geographical location. In our work, Galaxy Mini is a location. In

their work Garden is a location.

5.3 HDE Solutions

As mentioned in the introduction & motivation section, HDE problem is

described in literature during the last years. We are neither the first to discuss

this problem, nor we are the first to propose solutions to build applications for

76 5. Software Engineering & Highly Distributed Environments

Figure 5.3: Location modelling in CONON. From [6].

5.3. HDE Solutions 77

Figure 5.4: A normal Fractal component (from [2]).

these environments. In this section we will discuss two project who proposed

solutions for HDE software development.

5.3.1 Cubik Approach

Didier Hoareau et al. dealt with the challenges of HDEs [2,16,17]. However,

their solution has different scope from ours. First, they expand the already

existing component model Fractal. Second, they only model and handle the

disconnection of network connection among all characteristics of HDE. In the

following we discuss that in details.

This research track uses the concept ‘proxy’ and adds this concept to the Fractal

component model. A normal Fractal component is presented in figure 5.4. In

this figure we see one ‘composite component’, let us call it A, with two internal

78 5. Software Engineering & Highly Distributed Environments

Figure 5.5: The Cubik approach (from [2]).

sub-components (p and q) inside it. This is a normal Fractal design. In figure

5.5 we see the same component designed using the Cubik approach. In this

figure, component A become three composite components that are deployed

over three different devices: A1 is deployed over m1, A2 is deployed over m2,

and A3 is deployed over m3. The three components: A1, A2, and A3 have the

same functional properties (i.e. they offer the same functions and require the

same functions as each other). However, they have different internal design. A1

has one proxy of q and one real component p. A2 has one proxy of p and one

real component q. A3 has no real components and two proxies of p and q.

The approach has two ideas:

– This approach handles restricted resources on devices. For example, if m3

is a smartphone, it is possible that A3 can be deployed over it even if p

and q are excessively-resource-consuming.

5.3. HDE Solutions 79

– If the connection between m1 and m3 is disconnected (temporarily), the

service of A3 does not stop completely. Rather, it ‘degrades’. By degrades,

the developers of Cubik mean: A3 stops the services borrowed from p

(through the proxy), and continues the services borrowed from q through

the proxy.

5.3.1.1 Discussion

The Cubik approach handles the same problem this dissertation is devoted

to, however with many differences on the handling way.

– Degradation of service is not a solution. Yes it is better than shutting of

the whole system, but their could be better attempts such as [132–135].

– Software/hardware compatibility check:

[16] proposes the language ‘Constrained Deployment Language - CDL’

for modelling the software needs, and the hardware specifications. After

that, they use third party ‘Constraint Satisfaction Problem - CSP’ tool to

generate the optimal deployment plan.

In the following we will comment on this approach:

The CDL language proposed is an XML language. And as we can see

from figure 8.1 it is an informal language. As result, this language allows

the definitions of terms only, with little or no specification of the meaning

of the term. That contrasts the logical languages that have rigorously

formalized logical theories. With formal languages, the amount of meaning

specified and the degree of formality increases (thus reducing ambiguity);

there is also increasing support for automated reasoning.

Another problem is the translation from CDL to CSP. In [16] it is men-

80 5. Software Engineering & Highly Distributed Environments

tioned that this transformation is automatic. However, we could not found

that automatic transformation. And even if this automatic translation ex-

ists, it will suffer the consequences of the informal nature of the CDL

language itself.

The main problem with this approach is the issue of composite compo-

nents. Fractal is composite component model. The problem of setting up

(modelling) the needs if a composite component is fundamentally different

from the problem of modelling the needs of primitive component:

“The definition of resource constraints on a composite component poses

some difficulties” [16] page 104.

In fact these are not ‘some difficulties’, rather it is the absence of com-

position theory of extra functional properties (discussed in section 5.1.3).

This is a direct negative consequence of nested models.

– The ‘nesting’ effects:

As a consequence of nesting component model, Cubic suffer the following

two problems: First: only one instance of each component can be instanti-

ated (two or more instances are prohibited), page 118 of [16]. Second: can

not check the software/hardware compatibility for composite components,

page 104 of [16].

As result, we think that Cubik model is an attempt to handle HDE chal-

lenges. However, we do not think this solution to be sufficient for practical use,

due to the above discussed limitations.

5.3. HDE Solutions 81

5.3.2 Prism

We will discuss the Prism approach in two tracks:

5.3.2.1 The Marija Mikic-Rakic Track

Marija Mikic-Rakic provides a sophisticated response to one challenge pro-

posed by HDEs, which is the discontinuity of services where the system needs

to continue functioning in the near absence of the network [7, 113]. This work

proposes a redeployment solution as part of a middleware called Prism-MW.

This work is purely mathematical modelling work. The problem of finding an

optimal deployment architecture is converted to an optimization problem. Math-

ematically: maximize the system availability function; subject to the following

constraints:

1. The required memory for each component.

2. The frequency of interaction between any pair of components.

3. Each host’s available memory.

4. The reliability of the link between any pair of hosts.

Since items three and four can change at runtime due to mobility and/or com-

plete absence of one or more devices, the initial optimal deployment can be

non-optimal after a short or long period of time. As result, the system need to

be re-formulated, re-solved, and possibly, components need to be redeployed as

in figure 5.6.

82 5. Software Engineering & Highly Distributed Environments

 !"#$%&'()
'*()+,+'(#

-!%.()'*()+,+'(# /(0%!,)1!#0!2(2'+

3(45!"#$%&'()
'*()+,+'(#

3(4+!%.()
'*()+,+'(#

6!.()7"(80%!,9
1!#0!2(2'+

:*;+);+)'*()
;2;';&%)/(0%!,#(2'<

<

Figure 5.6: The optimal deployment cycle in [7].

5.3.2.2 Discussion of Marija Mikic-Rakic Track

This work did not study the concept ‘software component’ at all. The word

software component is repeated in [7] over and over, but we could not find any

trace of what exactly the author of [7] meant. By further reading about the

‘Prism-MW’ (especially reading [3]) we found that they used C and Java code

only. They handled a compiled piece of C code as a software component. The

problem with this approach is that it contradicts the widely-accepted defini-

tion of software components. A C code has no clear border and clear access

points. This simply means that this work ignores the encapsulation value of

a software component completely. This has a negative impact on the software

development process (please read section 6.1 where we discuss the importance

of encapsulation).

Another limitation of this work is that it handles the system availability

5.3. HDE Solutions 83

only (more precisely, it maximizes the system availability). This work does

not handle other extra functional properties. For example, this model can not

handle details related to video playback quality, or the camera specification on

an smartphone and its compatibility with certain application.

Finally, the validation part in this work emphasized on the problem of maxi-

mizing the system availability through redeployment, where the authors provide

impressive numerical results. However, they ignored software engineering is-

sues such as: ease of use, post-deployment management and runtime support,

systematic development, etc.

5.3.2.3 The Sam Malek Track

Finally, the work of Sam Malek et. al. This team proposes a framework and

tools to support the complete software engineering life-cycle for the development

of HDE applications [3, 18, 19]. Please see figure 5.7.

This framework includes the following tools: XTEAM, DeSi, Prism-MW.

Moreover, this framework highly depends on model driven engineering in mod-

elling and code generation. This involves several models, meta-models, and

model transformation. Also, this framework adopts a very complex analysis of

mobility that includes: software mobility, logical mobility, component mobility,

hardware mobility.

5.3.2.4 Discussion of Sam Malek Track

While their tools help overcome the challenges posed by HDEs, these chal-

lenges become natural details in our novel cloud component model, where they

84 5. Software Engineering & Highly Distributed Environments

Figure 5.7: The framework proposed in [3].

5.3. HDE Solutions 85

can be handled systematically. A major disadvantage in the work described

in [3] is that they try to mix large number of objectives and technologies. Is it

necessary to support “mobile components” to be able to develop HDE software

with the required QoS? We do not see any evidence of that. Invoking Soft-

ware mobility, logical mobility, and component mobility in [3] do not seem to

contribute fundamentally to the main objective of handling problems related to

physical mobility and HDEs. In our work, the only defined mobility is the phys-

ical mobility, which is the mobility of devices. Another major difference with [3]

is the deployment optimization. We do not think this should be automated. We

think it is sufficient to build the software to be compatible with all devices that

are part of the expected deployment environment, and at deployment time, we

check the compatibility between the device and the software to be deployed over

it. This checker provides yes or no only.

To summarize, this work has two important positive points. First: it tries

to handle the complete software development life cycle for HDEs. This is more

comprehensive than tackling one aspect of this development process. Second,

it has a deep and comprehensive study of the challenges that appear in soft-

ware development for HDEs. However, we think that this framework itself is

challenging. We do not have any evidence that software development using this

framework is easier than software development without this framework. To ex-

plain the last sentence we would like to use the criteria discussed in section 2.3.

If we compare figure 5.7 with the process described in section 2.3, we will find

a very far relationship. They are not even close to each other. Even the text

in [3] is not helpful in providing any link with the widely accepted software

development approach. It is correct that ‘software development for HDEs is dif-

ferent from software development for stand-alone applications and even normal

86 5. Software Engineering & Highly Distributed Environments

distributed applications’. More over, this dissertation is based on this true fact.

However, we think, ‘optimal’ software development process for HDEs should still

be a familiar process, as much as possible.

5.3.3 The Olympus Approach

The Olympus approach [136] is based on the following ideas:

1. The developer should be unaware of the deployment environment details.

2. The development process should be rapid.

3. It is possible to predict all the needs of future development needs.

Based on these points, Ranganathan et. al. built the olympus framework. “The

developer can not be expected to know how various tasks are to be performed

in different environments. This places a bottleneck on the rapid development of

applications for these environments” [136]. This is a direct contradiction with

our approach. Further more, rapid design is not important for us at all, QoS is

important.

Also, “Thus we came to the conclusion that it is necessary to provide devel-

opers with a higher level of abstraction while programming these environments.

So that they need not to be aware of the specific resources available, context,

policies, and user preferences while developing their programs” [136]. In our

dissertation we argue this is impossible without huge price. We do not follow

this approach, rather we insist on localization acknowledgment.

Now regarding the work of Consel and Lancia [8], it is based on Olympus,

as result it is in the opposite direction of our work. “This paper proposes to

push the Olympus approach further by integrating the ontological modeling

of a pervasive computing environment into a programming language, namely

5.3. HDE Solutions 87

Figure 5.8: Ontology Usage in [8].

Java” [8]. Figure 5.8 is extracted from [8]. In this figure we see an ontological

hierarchy defining abstract services. We can see from this figure and paper that

they use ontology in different context, mainly they use it to define services,

while we use ontology to model the deployment environment, the requirements

of BDUs, and for software/hardware compatibility checks.

The main difference between our approach and this approach is that they

want the developer to do high abstract programming without any knowledge

nor responsibility regarding the execution platform, algorithms, code, etc. This

approach targets rapid development and assumes that there is a middleware

(namely Olympus) that is capable of fulfilling the gap. We do not accept that.

If the developer needs some functionality, it is his responsibility this functionality

will work as expected in the target deployment environment. There is no other

entity that will do the magic for the developer.

88 5. Software Engineering & Highly Distributed Environments

5.4 The ‘Medium’ Approach

This dissertation is part of the project: Components for Mobile and Adaptive

Architecture - CAMA 6. In the following we will show the related work in this

project. Eric Cariou in 2002 proposed the medium construct [137]. Medium is

defined as: abstraction of communication. Cariou tried to solve the following

problem: in a distributed application there is a mix of communication related

aspects and functionality related aspects at design time. During implementation,

the traceability of the communication aspects from design to implementation

are not clear. He thinks this is a major problem in distributed applications.

He proposed the medium construct, and a UML 7 based software development

process that allows:

– UML-based design of medium-based distributed applications. Cariou em-

phasizes that this is a platform independent stage.

– Several steps that transforms this PIM into a Platform Specific Model-

PSM.

After that, Kabore showed how an ordered sequence of model transformations

can be used to describe and automate the above mentioned process [138]. The

work of Kabore is dependent on model driven architecture (MDA) from object

management group (OMG).

6. CAMA is part of the computer science department in Telecom Bretagen.
7. This work is heavily dependent on UML terminology, views, and graphical notation.

Part III

CONTRIBUTION

89

91

In this part we present, in details, our proposed novel software engineering

paradigm. In organizing this part, we used several sections to cover several

aspects of this proposal. It is important to notice that when our contribution

is based on other work, we devote a section (or several sections) to discuss such

work. This is not a mix between contribution and state of art, rather, we wanted

the presentation context to be smooth with a solid foundation. An example

is section 8 where we present our novel deployment environment modeling and

related checker. In this section we clearly devote several sections for ontology and

ontology related languages and techniques. We think these sections (particularly

in this position in the manuscript) are essential to clarify our ontology-based

proposal.

92

Chapter 6

Paradigm Shift

To respond to the challenges discussed in the previous section, and to main-

tain expected software quality which also mentioned in the previous section, we

think we need to pass a “paradigm shift” from the way software is designed and

implemented currently to our new vision that this dissertation is devoted to.

This is a paradigm shift from distribution transparency to localization acknowl-

edgment being the first class concern.

The contribution in this thesis has several faces, but still, these faces are

cohesive. Each of these faces form a partial contribution, however, this par-

tial contribution does not mean anything if isolated from the overall proposal.

Moreover, the merit of the overall proposal can not be grasped by reading one

partial contribution. The merit of the proposal is evident only if all parts of this

work are cohesively organized.

93

94 6. Paradigm Shift

6.1 Software Component Border: A New Vision

6.1.1 Software Components - Complexity Management

We believe that the attractive point in components in general is simply en-

capsulation. That is correct for components in electronics (IC chips), mechanics

(engine, speed box, braking system, etc), and also in software components. Lau

et al. noted: “encapsulation has the potential to counter complexity” page

720, [24]. “We believe that the ideal (software component) model should have

the key characteristics of encapsulation and compositionality” page 720, [24].

Why encapsulation counters complexity? We think this is directly related

to the thinking paradigm of human. Human was creative enough to discover

that he/she can tackle problems that, by far, exceed his/her comprehension.

This is the divide and conquer algorithm. Divide and conquer is a very powerful

approach in handling complex and difficult problems. Moreover, this approach

was successfully utilized for hundreds of years, and proven to be effective and

attractive. In software engineering, architectural decomposition is a direct uti-

lization of divide and conquer algorithm. There are two requirements in order

to utilize the divide and conquer approach over a certain problem. First, the

problem itself needs to be breakable into sub-problems. This could be applied to

sub-problems also, until we reach a simple-to-comprehend, and a simple-to-solve

sub-problems. Second, the solutions for sub-problems need to be composable to

generate the/a solution for the original complex problem.

Starting from these two requirements, we can see the direct relationship be-

tween divide and conquer from one side and software components from the other

6.1. Software Component Border: A New Vision 95

 !"#$%&'$()
*+#&,-(.&

/$'&0

 !1$.

*%(2&

34

35

36

37

3488

3588

9

Figure 6.1: Component assembly as realization of the divide and conquer ap-
proach.

side. The first requirement is analogous to the decomposition (for example the

functional decomposition) that is carried out at the design phase of software

development. The second requirement is directly analogous to the component

assembly. The key in this analogy is encapsulation. Encapsulation allows the

programmer to look at a small sub-problem alone, without any care about the

whole system. Moreover, encapsulation makes the assembly of the partial so-

lutions (implemented components) possible through their interfaces. Otherwise

we would involve in code merging with close to impossible compatibility pro-

cess. This is the power of software components. This idea is presented in figure

6.1. From that figure we can argue that it is much easier to comprehend and

implement the component F200 than implementing the whole Multimedia

application. This is the main idea in divide and conquer approach. From the

same figure, we can see also that the assembly of those components collectively

achieve the functionality expected from the multimedia application. The last

point is the second requirement in the divide and conquer approach.

To conclude this section, encapsulation, realized through software compo-

nents, is a powerful tool to be used in software engineering for large systems.

96 6. Paradigm Shift

6.1.2 Component Border

From the previous section, we found that encapsulation is important. En-

capsulation itself involves two fundamental elements: first one is the border,

and second one is the interface(s). That is true for all encapsulation techniques

including software components. As presented in section 5.1, majority of software

component models share a common mentality which is encapsulating functional

properties inside the component border [13].

If we assume that the system in figure 6.1 is a stand alone application that

runs locally on a single machine, we see the perfect sense of this mentality. In

this context, a complex application is decomposed into several sub-problems that

are easier to comprehend and implement. Finally, the assembly of components

through their interfaces is responsible of delivering the expected functionality of

the initial multimedia system.

This perfect sense will not stay the same in figure 6.2. Let us assume that

the same application is implemented in both figures, but in 6.2 the application

is distributed (with some components not shown in the figure). In this context

we have two problems to worry about: first is the remote communication path

between F1 and F100, and second is the large difference in resources available

in sites A, B, and C.

Would the initial argument about encapsulation and assembly of solutions

to sub-problems still holds? Our answer is: definitely it will not hold. The

compatibility between component F1 and sites A, B, and C is a major problem

that was not taken into account in traditional component models. As result,

we can not depend on the fact that we have a solution for this sub-problem

6.1. Software Component Border: A New Vision 97

that will run as expected on all sites. On the other hand, the assembly between

component F1 and component F100 in figure 6.1 is far more dependable and

predictable than the same assembly in figure 6.2. The result of this point is that

we can not assume that the solutions for sub-problems are assembled to form

the solution for the original problem. As result, the benefit from encapsulation,

and consequently software components, is not possible in the case of HDEs in

figure 6.2.

Cloud component model solves these two problems, and restores the encapsu-

lation, and consequently software components, to its original powerful objectives,

even for HDEs. In figure 6.3 cloud component F100 if functionally equivalent to

the component F100 in figure 6.2, with the interface providing the same func-

tions. CC F100 provides its services S to the other CCs that need it (in this case

CC F1) locally on sites A, B, and C. Migrating remote communication to be

internal to the component border has a fundamental effect on the encapsulation

power of the software component. In this case, the component, i.e. the CC, is

aware of the communication paradigms available, along with their characteris-

tics. This will allow the CC to effectively match the underlying infrastructure,

and maintains the promised functionality at the delivery point.

This is pure authority (jurisdiction) shift. In all available component models,

the remote communication is external to the component border, as result, it is

a place of ambiguity responsibility. Any point from source to destination, along

with the whole communication path could be blamed for the errors that might

occur. In CC this is not the case. There is no source, neither destination. The

interface S is local at the point of usage, and its the responsibility of the CC to

provide the promised services with the promised QoS.

98 6. Paradigm Shift

 !"#$%&'(
 !"#$%%

&'()*+,-./

&'()*+

&'()*

&'()*0

& 1)"!()*+22)33

 !"#$

 !"#$

 !"#$

Figure 6.2: A distributed application using current component model.

 !"#$%&'()

 !"#$%

 !"#$*

 !"#$+

,-..

,-

,-

,-

Figure 6.3: The same distributed application of figure 6.2 after applying the
proposed paradigm shift.

6.2. Hardware/Software Compatibility: A New Vision 99

This new definition of software component border is a novel contribution in

our proposal, and it is fundamental to the overall proposal. The solution for the

other problem is discussed in the next section.

6.2 Hardware/Software Compatibility: A New Vision

As discussed earlier, in order for the divide and conquer approach to work,

sub-problems need to be easy to comprehend, and easy to solve. In software

engineering terms, sub-problems should be easy to implement and the imple-

mentation can run correctly to provide the promised functionality with the ex-

pected QoS. This is straight forward in stable distributed environments. In

these environments, devices are usually desktops with unlimited power supply,

stable connection, adequate processing power, etc. This is not the case in HDEs,

as in figures 6.2 and 6.3. Our proposal is based on raising the level of impor-

tance of location (the host device) to be of highest priority starting from the

very beginning of the software development process. We call this localization

acknowledgment. Moreover, this is not a recommendation. We made this factor

an indispensable part of the formal definition of the CC, please refer to section

7.1. If we look at figure 6.2 we will notice the need of compatibility between

component F1 and sites A, B, and C. There is no component model currently

that handles this problem at the component model level (please read section

5.1.4). As result, software engineer has two options, either to ignore this prob-

lem completely, or to use ad-hoc techniques to partially acknowledge this need,

hoping the software will work. For example, suppose there is a certain compo-

nent that needs 10 MBytes dedicated RAM. Also, this component is available

to download over the Internet. It is possible for the programmer of such com-

100 6. Paradigm Shift

ponent to design and implement techniques to ‘read’ the specifications of the

device before deployment (in this case the available RAM), and then make the

deployment decision. We think this is ad-hoc because it does not follow any

theoretical model, moreover it is extremely limited 1.

CC model supports localization acknowledgment through the following con-

structs:

– The expected deployment environment is fundamental and essential part

of the CC definition, at the formal level, and from the very beginning of

the software development process.

– An implementation variant that is compatible with each device in the

expected deployment environment.

– Ontology based hardware/software checker. This tool is invoked during

the deployment of any CC, and is responsible of choosing the right imple-

mentation variant for the device concerned (the device on which the CC

is being deployed).

This localization acknowledgment forms the heart contribution of our novel

model: the cloud component model.

6.3 Global View

Bad communication is taken care of by the new definition of CC border.

Compatibility of CC with device in HDEs is taken care of by the ontology

based checker. As result, we restored the divide and conquer conditions to be

valid for HDEs. As result, we have a new component model that can do for

1. Can this component query if the camera in the smartphone is fixed-focus, full-focus, or
Auto-focus?

6.3. Global View 101

HDEs exactly what EJB, OSGi, and CCM did for both centralized and stable

distributed environments.

102 6. Paradigm Shift

Chapter 7

Cloud Component Model,

Assembly, and Development

Process

7.1 Cloud Component Model

Current software component models can not cope with the challenges posed

by HDEs [139]. Based on that, we chose to propose a new component model that

fills this gap. We chose the name cloud component - CC since our component

model encompasses physical borders and hence hides the technologies, imple-

mentation variants, and architecture choices used to conform to the physical

topology of the underneath infrastructure. Also, cloud 1 is related to elasticity,

i.e. developing a software where both the number of users and the available

resources can increase or decrease. We think the CC model offers several con-

1. In the context of Cloud Computing mainstream.

103

104 7. CC Model, Assembly, and Development Process

structs to support such elasticity. As example, cardinality (will be discussed

later) is a way to introduce (and bound) elasticity starting from design, passing

through the development process, and ending in deployment and running.

Our approach in presenting cloud component model is based on two different

notations: the informal notation and the mathematical/formal notation. The

informal notation is easier to understand and is highly dependent on figures,

while the formal notation is more compact, more precise, and less ambiguous.

The formal notation allows us to communicate precise details easier, and allows

us to easily present statements and proofs.

Table 7.1: The set of symbols used to construct the formal notation.

Concept Symbol Comments

Cloud component Ω ΩA is read CC A

Roles Λ Type

Γ Instance

Cardinality K

Localized at ↓

Role Multiplicity µ

CC Multiplicity M

Location - Type T

Location - Host H Specific device

CC assembly σ A list of connections

between CCs

Connect Operator ⊗ A binding between

Continued on next page

7.1. Cloud Component Model 105

Table 7.1 – continued from previous page

Concept Symbol Comments

two roles

Package Θ

BDU Υ General

Ξ An implementation of a Role

Φ A BDU that has no

existence on the CC border

Set of symbol Ω is set of CCs

Define ≡

Design step �� This step involves

design choices

Dependency −→ A dependency between

BDUs or packages

Multiple dependency
∗

−→ BDU level only

Package assembly ω

BDU assembly ρ

7.1.1 The definition of cloud component

Definitions 1 to 5 collectively form the definition of cloud component.

106 7. CC Model, Assembly, and Development Process

 !"

Figure 7.1: CC style with a single interface S.

 !
 "#$"#

%&'"()

*+

Figure 7.2: CC with two roles, cardinality, and location.

7.1.1.1 Definition 1: Roles

Let C1 be a cloud component with single interface S as illustrated in figure

7.1. S is defined through an Interface Definition Language - IDL. We assume S

defines the signature of provided and required functions of C1. The contract of

this interface could be more sophisticated, but we restrict its definition for the

sake of simplicity.

A cloud component can have several interfaces : P, Q, R, etc. We call these

interfaces ‘roles’ because their identification (set of functions they gather) is

guided by the way the component can be used through this interface. The cloud

!

 "#$"#
%&'"()

%&'"()

!

*

+

Figure 7.3: Right: CC com with two roles and three hosts.

7.1. Cloud Component Model 107

component in figure 7.2 has two roles: S and R.

When an interface (role) is used as a user (human) interaction point only,

the above mentioned IDL becomes kind of back-end, and the user-interface is

the front end. This special case conforms to the general definition of any CC

role.

7.1.1.2 Definition 2: Cardinality

Each cloud component can have several roles. In addition, the role is allowed

to have several instances, i.e., several carbon copies of the same IDL. The total

number of instances of a role in a running version of the component is called: the

cardinality of the role. In figure 7.2 the role S has cardinality one and the role

R has cardinality two. Combined with location property (explained later), this

approach will encapsulate the communication and all its details and semantics

inside the component border.

7.1.1.3 Definition 3: Connection

Once the component border is defined, the connection rules can be defined.

In order to suppress ambiguity of 1-to-many or many-to-many connections iden-

tified in [110] we allow a role to connect to only one role of another cloud

component in a one-to-one connection.

This rule applies at the instance level, when cloud components are actually

implemented. In order to allow a 1-to-many or many-to-many connectivity, we

use ‘role cardinality’.

108 7. CC Model, Assembly, and Development Process

7.1.1.4 Definition 4: Multiplicity

Cardinality is a number k ∈ N . We can allow more complex structure by

not specifying k (at some point of the design). Instead, we put constraints on

k called multiplicity. For example a role R can have multiplicity [1..5], [1..∗], or

simply ∗.

At this level of definition, we are not bounded by decidability features but only

consider constraints definition.

7.1.1.5 Definition 5: Location

Each role is assigned a location to run on. The location in the most basic

form is a computing host/device. In figure 7.2 a cloud component has two

different roles, S and R. Role S has one instance that is located at the host

Server. The role R has two instances that are located at the host Client.

Figure 7.3 presents a cloud component that has two different roles, S and R.

Role S has one instance that is located at the host Server. The role R has two

instances one of them is located at the host Client1 and the other is located at

host Client2.

One should not mix our definition of location with the geographic location.

Our model does not define or recognize geographic location, rather, we acknowl-

edge location as a computing/electronic device that might be mobile or not. It is

fundamental to assert that location is integral part to the CC definition, in other

words, without location specification the cloud component definition will not be

complete. Finally, and at design and implementation stages, the collection of all

locations are called ‘the expected deployment environment.’

7.1. Cloud Component Model 109

7.1.2 Formal definition of cloud component

A single cloud component is defined using the following four-tuple:

1. A finite set of roles Λ.

2. A finite set of multiplicities for these roles µ.

3. A set of possible deployment environments L. Each L is either a finite set

of hosts H, or a finite set of host types T .

4. A function Z that maps roles to location types or hosts.

Ω ≡ (Λ, µ, L, Z)

The following formally defines the cloud component com in figure 7.3:

Ωcom ≡ (Λ, µ, L, Z) where:

Λ = {ΛS, ΛR}

µ = {(ΛS, 1), (ΛR, 2)}

L = {{TServer, TClient1, TClient2}}

Z : ΛS ↓ TServer, ΛR ↓ TClient1, ΛR ↓ TClient2

The formal definition is read as follows: the CC com is defined using its

four-tuple. The set of roles contains two roles: role type S and role type R.

Role type S has multiplicity 1, and role type R has multiplicity 2 2. The set of

expected deployment environments has only one set, which contains three host

types: host type Server, host type Client1, and host type Client2. Finally Z

can be read as: The role S is localized at host of type Server. Role R has

2. Generally the multiplicity of a role is defined as a range a..b. If only one integer is used
then a = b.

110 7. CC Model, Assembly, and Development Process

two instances, one is localized at host of type Client1 and the other is localized

at a host of type Client2. Symbols used to construct the formal notation are

summarized in table 7.1.

7.1.3 Formal definition of cloud component based system

Generally, a software component can be thought of as ’unit of composition’.

This is true for all component models including cloud component model. In CC

model, roles are the only access points of the component. A role can serve as

a connection port where component C1 connects to other component C2 as in

figure 7.4. We choose to assembly components in specific architecture to achieve

our desired system specifications. As result we have σ the set of assembly rules

that includes the dependency rules between CCs, and all role connections. Cloud

component assembly will be discussed in detail in section 7.2.

A system built using cloud components consists of:

1. A finite set of cloud components Ω.

2. A finite set of multiplicities for these cloud components M .

3. A set of assembly rules σ.

4. A set of possible deployment environments L.

As result, the system type is fully defined using the “four-tuple” notation:

S ≡ (Ω, M, σ, L)

Finally we define the system instance Ŝ. Let S be a CC based system that

is defined as above. Ŝ is an instance of that system and is defined using the

following five-tuple:

7.2. Cloud Component Assembly 111

 !"#$%

!"#&
'

(

Figure 7.4: Two CCs are composed using roles S and Q.

1. The system type S that we want to instantiate.

2. The function τ that takes a cloud component as a parameter and returns

the number of instances of it.

3. The function K that takes a role as a parameter and returns its cardinality,

i.e. number of instances.

4. The deployment environment L which is a finite set of hosts H.

5. The function Z that maps each instance in Γ 3 to L. In other words, the

function Z maps role instances to devices.

Ŝ ≡ (S, τ,K, L, Z)

7.2 Cloud Component Assembly

Generally, a software component can be thought of as ‘unit of composition

(i.e. assembly)’. This is true for all component models including cloud compo-

nent model. CC assembly is a tool to build large systems using CCs as building

blocks [140].

3. Γ is defined in table 7.1.

112 7. CC Model, Assembly, and Development Process

 !"#$%&'(! !"#$%&)*%

+ ,

- .

+/&01--

,!$1--

/!121/
3%((!3$4%(4//!21/5

3%((!3$4%(

Figure 7.5: Two CCs AlphaCC has two role instances A and B, and BetaCC

has two role instances C and D. A, C, and D are hosted by desktopOne, while B
is hosted by desktopTwo. Therefore, the connection between A and C is legal,
whereas the connection between B and D is not permitted.

In CC model, roles are the only access points of the component. A role can

serve as a connection port where component ComA connects to other component

ComB as in figure 7.4. The word ‘connect’ in this context has the following

semantic: ΛS connects to ΛQ means that ΛS provides the same functions ΛQ

requires and ΛS requires the same functions ΛQ provides.

7.2.1 Assembly Constraints

In this section we will present the detailed semantics of the assembly of two

cloud components. Any design need to respect these constraints in order to

comply with the CC model [139].

7.2.1.1 First constraint - one-to-one

An instance of role S can connect to one instance only of any other role at any

time instance. We raised the importance of this constraint from being a recom-

7.2. Cloud Component Assembly 113

mended design choice to be a fundamental model constraint for several reasons.

One of these reasons is to remove ambiguities in the connections. Another and

important reason is to control the design precisely, and to be able using this

control to ensure the delivery of the expected quality of service. As an example,

let us take the role S in figure 7.15 from the banking example. And suppose S

is hosted by some regular desktop. If S is expected to have 10 connections, i.e.

10 clients that want to use the video service, is completely different from S is

expected to have 106 connections at the same time. The difference exists in the

design, implementation, and the deployment host (probably a normal desktop

will not be able to serve 106 connections). This difference should be recognized

from the very early stages in the design, and this is done in CC model by setting

the multiplicity (or cardinality) constraints over roles.

7.2.1.2 Second constraint - local connections only

Two instances of two roles can connect to each other only if both of them

are instantiated at the same host as in figure 7.5. If they are instantiated at

different hosts they simply can not connect to each other. This is a direct result

of the paradigm shift discussed in chapter 6. It is fundamental in our model

to migrate all remote communications to be internal to the border of the CC

itself. This migration means that these remote communications are designed

and implemented using the special software development process 4 of the CC

model, and more important, passed all checks necessary to ensure the quality of

service expected.

4. We propose a novel software development process to build CCs and CC based systems.
The description of this process is in section 7.3.

114 7. CC Model, Assembly, and Development Process

 !"#$%

!"#&
'

(

)**+)

,**-

 !"#$%

!"#&
'

(

)**+)

,**-
,**.

Figure 7.6: The importance of the ‘connection multiplicity’. Up: No informa-
tion. Bottom: The multiplicity of the connection is defined: [2..4].

7.2.1.3 Third constraint - Connection multiplicity

When there is a connection between two roles, that does not mean that all

instances of these two roles should connect to each other. Figure 7.6 (up) is an

update of figure 7.4 by adding multiplicities to roles S and Q. To understand the

connection in this figure we need to see the uncertainty that exist at this phase

of design. During runtime, there might be one instance of S and five instance

of Q, or nine instances of S and two instance of Q. So how many connections

we have at runtime between S and Q? To answer this question we need to

remember that the final responsibility of the design is held by the designer

himself, we only provide an advanced model and accompanied tools and checkers.

To facilitate the assembly design we add the connection multiplicity, which is

a range [min..max], where min is the minimum number of connections that

must exist at runtime, and max is the maximum number of connections that

might exist at runtime, as in figure 7.6 (bottom). Usually these numbers reflect

7.2. Cloud Component Assembly 115

the need of either of the roles, or both. For example if I have a role W that

connects an ATM machine (CC ATM) to the bank system (role S of CC Agent),

I can expect W to need only one connection at runtime, i.e. [1..1]. On the other

hand I expect S to allow zero or more connections at runtime, i.e. [0..∗]. Please

see figure 7.15.

7.2.2 Formal definition of cloud component assembly

CC assembly is based on the connection operator ⊗, which is a binary op-

erator that takes two CC roles and returns true if the designer explicitly listed

those two roles to be connected (this is done in σ as described later), otherwise

it returns false. The set of assembly rules is called σ and is defined using the

following context free grammar:

E → { I }

I → IJ, | IJ | �

J → (Ωvar.Λvar ⊗ Ωvar.Λvar, int, int)

Where var and int are terminals such that: var represents any string of char-

acters and int represents a positive integer. This grammar will recognize the

following syntax:

σ = {(Ωname.Λname⊗ Ωname.Λname,min,max),

(Ωname.Λname⊗ Ωname.Λname,min,max),

..., (Ωname.Λname⊗ Ωname.Λname,min,max)}.

The following shows the assembly in figure 7.6 (bottom) using formal notation:

σ = {(ΩComA.ΛS ⊗ ΩComB.ΛQ, 2, 4)}

In general we can write:

σ = {(ΩComA.ΛS ⊗ ΩComB.ΛQ, m, n)}

116 7. CC Model, Assembly, and Development Process

!"#$% !"#&

'
(

)**+ ,**-
.**#

Figure 7.7: CC assembly normal form A. Ranges are always consistent (i.e.
min � max).

This connection has the following semantics: at least m instance of S connect

to m instance of Q, and at most n instance of S connect to n instance of Q.

This is correct for one and only one instance of each cloud component.

7.2.3 Remark

The connection operator ⊗ is symmetric:

ΩComA.ΛS ⊗ ΩComB.ΛQ ⇐⇒ ΩComB.ΛQ⊗ ΩComA.ΛS

The above statement is read as follows: role S is connected to role Q if and only

if role Q is connected to role S.

7.2.4 Assembly checking algorithm

7.2.4.1 CC assembly normal form A

Figure 7.7 presents the general case of assembly, which is defined as normal

form A assuming there is a single instance of any and all CCs. The connection

here has the following semantics (as mentioned in the definition): at least i

instance of S(Q) connect to i instance of Q(S), and at most m instance of S(Q)

connect to m instance of Q(S). This is correct for one and only one instance of

each cloud component ComA and ComB 5.

5. This is redundant since there is one and only one instance of each and all CC in normal
form A.

7.2. Cloud Component Assembly 117

 !"# #! !"$ $!

%!"# #!%!"$ $!%

&

&

'

'

(

(

)*+, -+./ /01 2..3.

&4&
&4'
'4'

&4(
'4(

(4(

5#6#713/#

5#6#71893

:#; < 3/17#6#7

Figure 7.8: The relation between the two ranges [e..f] and [i..m] in figure 7.7.
We start with level one, and depending on the value of i we move to level two
where we inspect the value of m. The label(s) on the arrows leading to the
decision level indicate the decisions made on the upper two levels.

The two ranges [e..f] and [g..h] are not related in any way since cloud com-

ponents may have been designed independently. On the other hand, the two

ranges [e..f] and [i..m] are related as in figure 7.7. Cases presented in figure 7.8

can be reduced to the following four cases:

1. i ≤ e & m ≤ e ⇒ Valid

2. i ≤ e & e ≤ m ⇒ Warning

3. e < i ≤ f ⇒ Warning

4. f < i ⇒ Error

The same argument holds for the two ranges [g..h] and [i..m] in figure 7.7. De-

pending on the numbers, we have three cases:

1. Valid: in this case we do not have a chance of connection problems at

runtime if the instantiation of roles respected the design.

2. Warning: in this case the designer need to be careful because even if the

instantiation respected the minimum requirements, we might face invalid

situations. For example, if e < i ≤ f , and at runtime we have only e

118 7. CC Model, Assembly, and Development Process

!"#$

!"#%
&%

!"#'
&'

!"#(
&(

)**+
,**-

.**/

 !"#$)0,0.1**1+0-0/

$22.#+3415.-6,78"91:1;<)2.1"9.

Figure 7.9: Up: CC assembly normal form B. Multiple connections - role S

is connected to three roles Q1, Q2, and Q3. Bottom: Role S after assembly
reduction - phase one.

instances of S (legal situation), and we need i connections to S. This situ-

ation will produce runtime error. As result, before asking for i connections

to S, the application must instantiate at least i instances of S (possible

because i ≤ f).

3. Error: here we do not have enough instances of the role to satisfy the

minimum connections need.

7.2.4.2 Assembly reduction - phase one

A role (specifically, role type) is not limited to be connected to only one other

role, rather, this number is unlimited. At runtime, this role is expected to have

several instances, where each instance is connected to one other role. This is

assembly normal form B and presented in figure 7.9 (up). To check this assembly

we need to get it back to normal form A in figure 7.7. We call this conversion

7.2. Cloud Component Assembly 119

!"#$% !"#&

'
(

)**+ ,**-
.**#/**0 1**23 3

Figure 7.10: CC assembly normal form C. Other CCs can connect to Q, S, etc.
Omitted for space.

from the form normal form B to normal form A: assembly reduction - phase one.

For role S in figure 7.9 this is accomplished as in figure 7.9 (bottom). Formally:

Let σ = {(S⊗Q1, a1, b1), (S⊗Q2, a2, b2), · · · , (S⊗Qn, an, bn)}. After assembly

reduction - phase one, we get: σ = {(S,Q, a, b)} such that: a =
�n

i=1
ai, b =

�n
i=1

bi, and Q is virtual role for checking only. This is for role S only and must

be done for all other roles that have connections to more than one role.

7.2.4.3 CC assembly normal form C

Figure 7.10 presents CC assembly normal form C. The connection here has

the following semantics: at least i instance of S(Q) connect to i instance of

Q(S), and at most m instance of S(Q) connect to m instance of Q(S). This is

correct for one and only one instance of each cloud component. Moreover, CCs

ComA and ComB have multiplicities [a..b] and [c..d] respectively.

Because of the multiplicities of the CCs, we are unable to use the checking

procedure used for normal form A directly on normal form C. To be able to

check this assembly, we will follow several assembly reductions starting from

this general model. Namely, we will apply assembly reduction phase two and

then assembly reduction phase three.

120 7. CC Model, Assembly, and Development Process

!"#$%

!"#&
'

(

)*++,-

./++01

2)++#,

2.++#1

Figure 7.11: Connection multiplicity.

7.2.4.4 Assembly reduction - phase two

Assembly reduction phase two reduces the multiplicity of the CC to be in-

corporated (inserted) into the multiplicities of its roles. Formally, let:

ΩComA ≡ ({ΛP,ΛS}, {(ΛP, 1), (ΛS, e, f)}, L, Z)

and

ΩComB ≡ ({ΛQ,ΛR}, {(ΛQ, g, h), (ΛR, 1)}, L, Z).

σ = {(ΩComA.ΛS ⊗ ΩComB.ΛQ, i,m)}.

Now let:

S ≡ ({ΩComA,ΩComB}, {(ΩComA, a, b), (ΩComB, c, d)}, σ, L).

Assembly reduction phase two produces the new multiplicities for all roles:

µComA = {(ΛP, a, b), (ΛS, ae, bf)}

and

µComB = {(ΛQ, cg, hd), (ΛR, c, d)}.

7.2. Cloud Component Assembly 121

7.2.4.5 Assembly reduction - phase three

Assembly reduction phase three is trickier. The multiplicity of the connec-

tion [i..m] is affected by both CC’s multiplicities, namely [a..b] and [c..d]. The

objective of this phase is to end up with the connection multiplicity [x..y].

In figure 7.11 We see the effect of the multiplicity of each CC over the con-

nection multiplicity. In this figure we have two different ranges (multiplicities).

To end up with the connection multiplicity [x..y] we use the approach pre-

sented in figure 7.12. In this figure all possible cases of the two ranges in fig-

ure 7.11 are presented with arrows to show the final x and y. From this fig-

ure we can conclude this simple rule: ‘for x we choose the max of the mins,

and for y we choose the max of the maxs’. Formally: x = max{ia, ic}, and

y = max{mb, md}. By the end of this phase we will get back to normal form

A that can be checked directly as in figure 7.13.

7.2.4.6 Inclusive algorithm

To convert this assembly theory into an effective tool, we arranged the above

mentioned phases into one inclusive algorithm as in figure 7.14. This algorithm

accepts CC-based systems in normal form C as an input. And it generates a

list of notifications based on figure 7.8. This algorithm starts with integrity

checks: check_1 .. check_5. These checks ensure that the input files are

a formal CC-based system, in normal form C, and with valid parameters 6.

The algorithm in figure 7.14 is fully implemented using C programming lan-

6. For example: the same role name can not exist twice. Also, a range a..b means a � b.
If a > b the algorithm aborts.

122 7. CC Model, Assembly, and Development Process

 ! "#

$

%

 & "'

$

$

$

$

$

$

%

%

%

%

%

%

$

%

$

$

$

$

%

%

%

%

Figure 7.12: Listing of all cases of possible connection multiplicities in assembly
reduction - phase two

!"#$% !"#&

'
(

)*++,- ./++01
2++3)++, .++1

Figure 7.13: The result after reduction phase two and three on figure 7.10- CC
multiplicities are completely removed.

7.2. Cloud Component Assembly 123

 !" #$%&'()**() !" #$+&'
,!" #-./)0!")1.0"/2-03)45)0!")-.670

899":;<3$2"=7 0-4.$6!89"$0>4&')
899":;<3$2"=7 0-4.$6!89"$0!2""&')
899":;<3$2"=7 0-4.$6!89"$4."&'

?99":;<3)@"=7 0-4.9

A42:8<)B42:)?),!" #-./
 !" #&'

C2-.0)@"97<09
@"6420)C24;<":9

,,);89"=)9390":(
.42:8<)542:),

Figure 7.14: Inclusive checking algorithm. The integrity checks, namely,
check1() through check5(), ensure that the input is not corrupted with respect
to normal form C.

124 7. CC Model, Assembly, and Development Process

 !"
#$%& '(%)

*
+

,
-

.
+

/
+00+1

"
+002-

++00+1
+ +

3%)(4%()
5
+

-

+

Figure 7.15: The banking system in normal form C - Enterprise Edition.

guage along with Lex and YACC utilities. Also, it is used to check the banking

system example in the following section.

7.2.5 Example - Banking System

In this section we present a simple banking system to explain the algorithm

proposed in section 7.2. The banking example is presented in figure 7.15. The

∗ symbol can be reduced to [0..MAXINT] for computations.

In this example the system is built using four CCs. The Bank CC is responsi-

ble for all database systems, security, transactions, and accounts. It is basically

the backbone of the system. The Agent CC is the filter that any access to

Bank will pass through. In other words, nobody can directly access Bank CC.

ATM CC is installed over all ATM machines to allow customers to access their

accounts, and perform bank transactions. Similarly, Internet CC is installed

on the customers devices to allow them to access their accounts using Internet

banking.

We encoded this example using the formal language presented previously,

and used the automatic assembly checker to check the design. The assembly

checker generated the output presented in figure 7.16. The checker reports ex-

pected warnings and no errors. The two warnings in this figure are related to

7.2. Cloud Component Assembly 125

 !"#$#%&&&&
'"()*+,-./0+-123
4(##5+.$(#-.(-'2
67$8-5(##+5.$(#-$8-#(.-8!9+-)+5!:8+-$.-$8-;+0+#;+#.-(#-.7+-,!<-=!";$#!*$./2
 !"#$#%&&&&
'"()*+,-./0+-123
4(##5+.$(#-.(->2
67$8-5(##+5.$(#-$8-#(.-8!9+-)+5!:8+-$.-$8-;+0+#;+#.-(#-.7+-,!<-=!";$#!*$./2

67+-;+8$%#-7!8-0(.+#.$!*-0"()*+,82-'*+!8+-"+!;-,+88!%+82

Figure 7.16: The output generated by the assembly checker (partial output) for
the banking system - Enterprise Edition.

 !"
#$%& '(%)

*
+

,
+-

.
+

/
+00+-

"
+0011-

++00+-
2 +3%)(4%()

5
2

1-

+

Figure 7.17: The banking system in normal form C. Limited Edition.

 !"#$#%&&&&
'"()*+,-./0+-123
4(##5+.$(#-.(-'2
67$8-5(##+5.$(#-$8-#(.-8!9+-)+5!:8+-$.-$8-;+0+#;+#.-(#-.7+-,!<-=!";$#!*$./2
 !"#$#%&&&&
'"()*+,-./0+-123
4(##5+.$(#-.(->2
67$8-5(##+5.$(#-$8-#(.-8!9+-)+5!:8+-$.-$8-;+0+#;+#.-(#-.7+-,!<-=!";$#!*$./2
?""("&&&&-4(##5+.$(#-.(-@2
67$8-5(##+5.$(#-$8-$**+%!*-)+5!:8+-$.-$8-+<5++;8-.7+-,!<-=!";$#!*$./2

67+-;+8$%#-7!8-,!A("-+""("82-'*+!8+-"+!;-,+88!%+82

Figure 7.18: The output generated by the assembly checker (partial output) for
the banking system - Limited Edition

126 7. CC Model, Assembly, and Development Process

the connection Q ⊗ P . If we look at this connection we see that the initial

deployment could be one instance of ΛP , one instance of ΩAgent, and one in-

stance of ΛQ. And an assembly between ΓQ and ΓP . This is valid. Now if

the deployment plan has an order of another instantiation of ΩAgent without

second instance of ΛP , a crash might occur. CCMS (the tool responsible of the

deployment of all CC-based systems) will not complain before the crash because

it is legitimate to instantiate up to 10 instances of ΩAgent. For more discussion

about these details please refer to section 9.

We modified the banking system slightly in figure 7.17. For this system, the

checker produces the output in figure 7.18. The error reported in this figure is

due to the fact that the number of instances of ATM and Internet CCs, and

consequently, W and R roles, exceeds the multiplicity of the role S.

7.2.6 The Deployment Conjecture

7.2.6.1 The Conjecture Statement

If a cloud-component-based design (in general, the CC system is in normal

form C) passes the assembly checker (figure 7.14) without errors, then we guar-

antee there exists a deployment plan (section 9.1.7) that can deploy the whole

system without any runtime error. On the contrary, if the checker in section

7.2.4 generates error(s), then there does not exist a deployment plan for such a

system.

7.3. CC Development Process 127

7.2.6.2 Comments

1. Warnings do not affect the deployment conjecture. Warnings simply means

that the design has a potential problem at runtime if the deployment plan

does not carefully order instantiation of CCs and roles.

2. We think that the formal proof of this conjecture is out of the scope of

this dissertation. The reason is that we wanted to have a certain level of

balance between software engineering work and formal methods work.

3. As an explanatory argument we would like to state the following:

The system in figure 7.17 generates an error if passed to the assembly

checker. We can see clearly that there is no possibility to correctly deploy

this system. The initial deployment requires a deployment of 50 instances

of ΩATM and 50 instances of ΩInternet. This immediately results 150

connection to ΛS. However, we have at most 100 instances of ΛS at

runtime. Since in CC assembly model we have one-to-one connections,

this means that we have 50 roles will be unable to connect. This is a

direct violation of the model in figure 7.17.

7.3 Cloud component Development Process

While different methodologies consider different phases for software life cycle,

we use the phases of software life cycle as defined in [20, 21] to build our novel

(customized) cloud component development process. CC is a building block in

CC based systems. In this section, we concentrate on the development process

of a single CC. We propose the following six-stages, iterative, and incremental

software development process:

128 7. CC Model, Assembly, and Development Process

7.3.1 Stage One - Specifications

At this point we have:

1. The CC specification which includes the required functionality and the

required QoS.

2. The expected deployment environment(s).

The CC specification is written in English as default. If the application requires

special specification language, it could be used. On the other hand, The expected

deployment environment has a formal notation.

L = {L1, L2 ... , Ln}

Li = {TLocationName1 , TLocationName2 , ... , TLocationNamen}

This means that, in general, the expected deployment environment is not unique.

In other words, we can expect several scenarios of deploying the CC. Each ex-

pected deployment environment Li is a set of location types. Location type is

used at design time, while host name is used at deployment time. As result, we

will have the following notation at deployment time:

Li = {HDeviceName1 , HDeviceName2 , ... , HDeviceNamen}

We used the prefix T and the prefix H to denote type and device ID respectively.

The difference is not fundamental, however it is important to clarify the distinc-

tion for the designer. Any name the has the prefix T (or the prefix H) is defined

as an instance in an ontology file (.obl file). Please read section 8.5.1.

CC model moves one step forward with regard to location, and defines the func-

tion Z. The function Z maps CC roles to location types.

7.3. CC Development Process 129

 !"#$%&'()
 !"#$*)+&#",-./

0#'&12#3$%"

0#'&12#3$%"

4
516

Figure 7.19: Graphical view of the following formal localization:
Z : ΛP ↓ TAlpha, ΛS ↓ TTablet1095.

Z : ΛRolei ↓ TLocationNamek, ΛRolej ↓ TLocationNamel, ...

It is very important here to mention that we define networks in our model by

defining endpoints. In other words, in the ontology definition of a device or a

type of devices, we precisely define its networking capabilities, as in figure 7.19.

In this figure we have the following deployment function:

Z : ΛP ↓ TAlpha, ΛS ↓ TTablet1095

Where both Alpha and Tablet1095 are precisely defined in an ontology file.

Their ontology definition includes precise definition of their expected runtime

networking capabilities. Now, if there is a kind of communication between roles

ΛP and ΛS, then the designer can design and implement the software for these

two parts based on the expected runtime networking capabilities of these two

130 7. CC Model, Assembly, and Development Process

sites. This is sufficient, as long as the expected characteristics are respected at

runtime.

To summarize the relation between a CC and the expected deployment environ-

ments, the CC could be imagined to be deployed over several different deploy-

ment environments. Moreover, different parts of the CC (roles, internal BDUs 7)

can be deployed over different parts of a single deployment environment.

This stage is to ensure the completeness and the correctness of the two items

listed at the beginning of this stage. This includes all documents in English, all

related formal files, and all related ontology files 8.

7.3.2 Stage Two - Localization Choice

As we can see from stage one above, a single cloud component needs to be

designed and implemented to be compatible with large variation of deployment

environments. These deployment environments differ from each other signifi-

cantly. In figure 7.20 the cloud component ΩCom need to be deployed over

the deployment environment L. To be able to proceed, we need to eliminate

all variations. In other words, we should not have more than one target device

for any role or internal BDU. In figure 7.21 we have role ΛP to be deployed

over target of type TDesktop355. Also, role ΛS has to be deployed over target

of type TDesktop355. And we have location of type TAlpha available for the

designer to be used for internal BDUs.

It is clear that we could have chosen different option such as role ΛS has to

be deployed over target of type TTablet1095. But this is not important, since

7. Defined in section 7.3.4 and discussed also in chapter 9
8. For better comprehension with respect to these files it is important to read part III

completely.

7.3. CC Development Process 131

 !"#$%&'()

 !"#$*)+&#",-./

 0
123

 !"#$4#56"2'7//

 !"#$ 3)8"'(29#

4#'&2:#;$%"

4#'&2:#;$%"

4#'&2:#;$%"

4#'&2:#;$%"

 !"#$%&!'()*'+,-$'&!'().

Figure 7.20: The cloud component ΩCom along with its expected deployment
environment L. Role ΛS has to be deployed over several different types of
devices. Location type TAlpha is part of the deployment environment where
internal BDUs are expected to be deployed over it.

132 7. CC Model, Assembly, and Development Process

 !"#$%&'()

 *
+,-

 !"#$.#/0",'122

.#'&,3#4$%"

.#'&,3#4$%"

 !"#$%&!'()*'+,-$'&!'()./

Figure 7.21: In this figure, the localization of border BDUs is fixed, but the
localization of internal BDUs is free.

7.3. CC Development Process 133

this is an iterative process. As result, we will be back to this stage, stage two,

over and over until we had enumerated all possible options.

7.3.3 Stage Three - Package View

In this stage we use the divide and conquer approach for the second time after

we used it for the first time in decomposing the original system into assembly

of cloud components. For more information about divide and conquer approach

please read section 6.1.1. In this stage the cloud component is decomposed into

a finite set of packages. Packages generated are dependent on each other. A

package is purely conceptual (meaning that is exists only at development time),

this is the contrary to BDUs which exist at runtime (BDUs are discussed in stage

four). The decomposition in this stage is usually a functional decomposition as

in the architecture phase in usual software development process. All diagrams

and formal descriptions that result in this stage can be called the ‘package level’

or the ‘package view’ of the cloud component development process.

The merit of this stage is evident when the functionality of the cloud com-

ponent is complex and can not be comprehended and tackled as a single entity,

as in figure 7.22. Normally, this is the case. A cloud component is not simple

software that could be translated into a simple code. Rather, it is usually a

complex structure. This phase is important to tackle this complexity using di-

vide and conquer approach. In this stage the creativity of the designer controls

all decisions he/she makes. The cloud component model does not force any

guidelines in this regard.

Unlike [141] where they use ‘package’ as a basic deployment unit in free and

open source distributions, we use ‘package’ as a purely conceptual design object

134 7. CC Model, Assembly, and Development Process

 !"#$%% !"#$&'

 !"#$& &()*

+(,&%-

./00

+123#4156##

)27823#49#:#;
$6

)27823#4 !#<

Figure 7.22: Stage three of the CC development process.

(a package does not exist at runtime). This definition of package (our definition)

is widely accepted and used in software engineering communities. We illustrate

this design process in the next section.

7.3.4 Stage Four - BDU View

Each package is realized through finite set of Basic Deployment Units (BDUs).

BDUs generated are dependent on each other. Basic Deployment Unit is a tan-

gible (physical) artifact that is deployable and executable. The BDU is the

smallest architectural unit possible in a CC design. It is not nested (also CC is

not nested). It is local with respect to the deployment device (in other words

a BDU can not be distributed). All diagrams and formal descriptions that re-

sult in this stage can be called the ‘BDU level’ or the ‘BDU view’ of the cloud

component development process.

Each BDU is required to have an ontology based description of its deployment

7.3. CC Development Process 135

 !"#$% %&'(

)&*%+,

-.//

 !"#$% %&'(

)&*%+,

-.//

)012#3/$45

-6.37#8#9
$5

-6.3 !#:

Figure 7.23: Stage four of the CC development process. A BDU with black-filled
left side represents a role BDU (ie. on the CC border).

136 7. CC Model, Assembly, and Development Process

requirements. This ontology description will be used before deployment by the

software/hardware checker. In figure 7.21 we have role ΛP to be deployed at

site TDesktop355. By the end of stage four we will have a BDU (at least one)

which is an implementation of this role ΛP . This BDU is compatible with site

TDesktop355. However, the ontology that describes site TDesktop355 is not

the ontology that describes the deployment requirements of ΛP . Again, the

deployment requirements of each BDU in an otology form is the responsibility

of the software engineer who implemented the BDU.

7.3.5 Stage Five - BDU Localization

Each BDU generated in stage four is mapped to an expected host of the

expected deployment environment that was specified in stage two in the CC

development process. This step is called: localization. By the end of this step,

we should be able to have a cloud component that is compatible with the de-

ployment environment that was specified in stage two in the CC development

process.

7.3.6 Stage Six - Iteration

We choose the next expected deployment environment in stage two, and re-

peat stages three to five. We continue this loop until we have an implementation

variant for each expected deployment environment described in the definition of

the CC (stage one).

7.3. CC Development Process 137

7.3.7 Formal Notation for the CC Software Development Pro-

cess:

The six stages presented above, along with the figures are human readable.

We propose a formal notation to describe these steps. This formal notation is

accurate, compact, and most important: machine readable. This formal notation

will be read by tools (such as cloud component management system CCMS) in

order to perform required operations over the cloud component system. In

this section we will provide the formal notation that describes this development

process by presenting the formal description of each stage. Precisely, we will

formally describe figures: 7.22, 7.23, 7.24.

Figure 7.22:

ΩV ideoCC �� ΘV id = {ΘSearch, ΘV ideoR, ΘRepo, ΘBuff}

ω(ΘV id) = {ΘV ideoR −→ ΘSearch,ΘV ideoR −→ ΘBUFF,

ΘSearch −→ ΘREPO, ΘBUFF −→ ΘREPO, }

Figure 7.23:

ΘSearch �� ΥSearch = ΦSearch

ΘREPO �� ΥREPO = ΦREPO

ΘBUFF �� ΥBUFF = ΦBUFF

ΘV ideoR �� ΥV ideoR = ΞV ideoR

ΥV id = {ΥV ideoR, ΥSearch, ΥREPO, ΥBUFF}

ΥV id = {ΞV ideoR, ΦSearch, ΦREPO, ΦBUFF}

ρ(ΥV id) = {ΞV ideoR −→ Υ{ΦSearch, ΦBUFF},

Υ{ΦSearch, ΦBUFF} −→ ΦREPO}

138 7. CC Model, Assembly, and Development Process

 !"#$%&'()

 !"#$*#+,"-'.//

 !"#$%&!'()*'+,-$'&!'().0

1!2#-331!2#-45

*#'&-6#2$%"

Figure 7.24: One localization option of CC ΩV ideoCC.

Figure 7.24:

ΥV id ↓ TLx

Localization:

ΞV ideoR ↓ TDesktop355

ΦSearch ↓ TAlpha

ΦBUFF ↓ TAlpha

ΦREPO ↓ TAlpha

7.3. CC Development Process 139

Or:

Υcoms1 = {ΦREPO, ΦSearch, ΦBUFF}

Υcoms1 ↓ TAlpha

ΞV ideoR ↓ TDesktop355

7.3.8 Software Complexity Management

This kind of software development results a complexity that grows fast

enough to be unmanageable, even with such simple application, please see fig-

ure 7.25 (up). Moreover, it is possible to have several instances of each CC at

run-time. As result, the complexity of deployment and run-time management

becomes prohibitive. This is where the potential of our novel approach becomes

evident. The border of a cloud component encapsulates all implementation de-

tails as in figure 7.25 (middle) and enables to consider all variants as a single unit

of management. For large systems, the power of CC model becomes essential,

where the system requires the assembly of many cloud components as in figure

7.25 (bottom). The deployment and runtime management of such systems over

thousands of heterogeneous mobile devices, where at the same time we guarantee

software/hardware compatibility and QoS, is the merit of our proposal.

This model allows us to provide tools that ease the following activities:

– The automatic deployment of cloud component based systems using CCMS.

Please read chapter 9.

– Automatic software/hardware compatibility check at deployment time.

This check allows CCMS to choose the right implementation variant for

each deployment device. Please read chapter 8.

140 7. CC Model, Assembly, and Development Process

 !"#$%

%&'(

)&*%+,

-.// !"#$%

%&'(

)&*%+,

-.//

 !"#$%01

%&'(

)&*%+,

-.//

 !"#$%02

%&'(

)&*%+,
-.//

 !"#$%
%&'(

)&*%+,

-.//03
01

04
05

05
06

047 024

02

03

033

01

044

02

08

08

038

044

Figure 7.25: The encapsulation power of CCs. The result of software develop-
ment process can be unmanageable (up). On the other hand, CC approach with
the CC border makes this management handy and natural (middle). In this
figure we wanted to emphasize the general case where a single CC is part of a
CC-based system (bottom).

7.4. Case Study - ΩV ideoCC Implementation 141

– Run-time system management using CCMS.

7.4 Case Study - ΩV ideoCC Implementation

The purpose of MULTIMEDIA application 9 is to be a single application to

store, search, process, and play all multimedia files like pictures/images, music,

and video. This application is expected to be deployed over a highly distributed

platform. Video streaming is one service of MULTIMEDIA application, and it

is a very popular service for most PC, laptop, and smartphone users.

This service has its potential because the user does not have to wait for

a full download. He or she can start watching the video immediately after

they click the related button. This promise is possible, however, we need to

be very precise when handling details. The size of a video file is affected by

many factors including (but not limited to) resolution and frame rate. Table

7.2 presents several common streaming videos and their corresponding required

transfer rate. It is very important to maintain data transfer above the listed

minimum transfer rate, otherwise the user will suffer undesired pauses during

playback, which reduces the QoS expected. Another important factor is to notice

that the numbers presented in this table are empirical. Numbers such as ISP

theoretical bandwidth or expected data rates are completely irrelevant.

Tests in this section are performed over a deployment environment with the

following hosts 10:

– A normal server. This server uses fixed connection (Fast Ethernet).

– set1: a set of laptops with Wi-Fi connections (and possible 3G connec-

9. Also mentioned in section 9.4
10. Same environment used in section 9.4.

142 7. CC Model, Assembly, and Development Process

Resolution Frame rate Video size for Min transfer
one minute rate

(frame/sec) (MByte) (KByte/sec)

un-named 480x270 30 4.25 72.57
360p 30 6.62 113.00
480p 30 8.60 146.80
un-named 320x200 25 1.01 17.24
480p 15 1.53 26.13
480p (audio) 15 1.75 29.87
720p 15 2.78 47.47

Table 7.2: Empirical characteristics of common available videos for streaming.
The size may differ due to embedded audio, differing frame sizes and aspect
ratios, and inter-frame compression. The audio of entry six has a higher quality
than the audio of entry five.

tions).

– set2: a set of smart-phones with android operating system and 3G and

Wi-Fi connections (we choose which connection to use based on the test

wanted).

7.4.1 Using CC to build Multimedia Application

To build any application using CCs, the starting point always is to define the

expected deployment environment. The expected deployment environment for

our application consists of a server, which can be any powerful desktop, a normal

desktop, a normal laptop, and a smartphone. We can think of a deployment

environment which include any number of these devices, all together. Or simply,

one server and one laptop. We can not have a deployment environment with

one laptop and one smartphone only, a server must exists 11.

11. Formally defined in section 7.4.4 - part A.

7.4. Case Study - ΩV ideoCC Implementation 143

 !"#$%% !"#$&

'()*#%%
'()*#&

+,-!.%%+,-!.&

+
/01'+

23
'45%%

+/01'+23'45&

6

6

6

6

7

7

7

7

)

8

.

7

7

7

7

7

7

Figure 7.26: MULTIMEDIA application. Cloud component view.

 !"#$%% !"#$&'

Figure 7.27: VideoCC with its single role VideoR.

In addition, all servers and desktops have Fast Ethernet while laptops and smart-

phones connect using Wi-Fi and 3G.

As an architecture choice the following cloud components will be used, as ex-

plained in figure 7.26:

1. Image cloud component - ImageCC

2. Music cloud component - MusicCC

3. Video cloud component - VideoCC

4. General CC that is used to access the functionality of the whole applica-

tion: MULTIMEDIACC

ImageCC, MusicCC, and VideoCC are responsible for the functionalities related

144 7. CC Model, Assembly, and Development Process

 !"#$% %&'(

)&*%+,

-.//

Figure 7.28: The package level of VideoCC.

 !"#$% %&'(

)&*%+,

-.//

Figure 7.29: The BDU level of VideoCC for deployment environment with desk-
tops and laptops. A BDU with black-filled left side represents a role BDU (ie.
on the CC border).

7.4. Case Study - ΩV ideoCC Implementation 145

to images, music, and videos respectively 12. We will present the development of

V ideoCC only 13, please see figure 7.27. The other CCs are developed similarly.

7.4.2 VideoCC Development for Desktops and Laptops

We start with a simple design and implementation where the user is using a lap-

top and/or a desktop. Package decomposition of V ideoCC is presented graphi-

cally in figure 7.28. In this figure we can see that this cloud component can be

accessed through its only role V ideoR. There is a package called REPO which

is responsible of archiving all videos. Another two packages are for searching

and buffering 14.

BDU level of V ideoCC is presented graphically in figure 7.29. Here we can see a

direct implementation of each package as a single BDU. Also, REPO is a simple

and localized (not distributed) archive 15.

Timing results are presented in figure 7.30. From this figure we see that the

throughput is 646.0 KBytes/second and 454.7 KBytes/second for Wi-Fi and 3G

respectively. Using table 7.2 we can see that this throughput is safe for streaming

all videos presented in that table.

7.4.3 VideoCC Development for Smartphones

We move on to allow the role to be deployed on a smartphone. We port

the same previous design, the only difference is that we need to change the

programming language from C to Java for V ideoR only. Unfortunately, we faced

12. Formally defined in section 7.4.4 - part B.
13. Formally defined in section 7.4.4 - part C.
14. Formally defined in section 7.4.4 - part D.
15. Formally defined in section 7.4.4 - part E.

146 7. CC Model, Assembly, and Development Process

0

5

10

15

20

25

Video Size in MBytes

T
im

e
in

S
ec
o
n
d
s

0.05 0.25 0.54 1.1 3.1 6.2 9.4
0

5

10

15

20

25

Figure 7.30: Experimental results for streaming several videos where the role
is deployed on a laptop. The curve with square nodes is for the laptop with
Wi-Fi connection, while the curve with triangle nodes is for the laptop with 3G
connection.

0

50

100

150

200

Video Size in MBytes

N
u
m
b
er

o
f
D
is
co
n
n
ec
ti
o
n
s

0.05 0.25 0.54 1.1 3.1 6.2 9.4
0

50

100

150

200

Figure 7.31: Experimental results show the total number of disconnected oper-
ation during video streaming when the role is deployed over a smartphone with
3G connection. Ideally, this number should be zero.

7.4. Case Study - ΩV ideoCC Implementation 147

an unexpected problem during runtime. The software operates as expected if

the smartphone is connected via Wi-Fi, and crashes if it is connected via 3G.

This is clear disconnected operation fault as in figure 7.31. We decided that we

need to modify the design to allow resume after crash. In other words, if the

connection between the smartphone and the video provider is broken, the system

re-establishes the connection peacefully, from the last saved state. Timing results

are presented in figure 7.32. From this figure we see that the throughput is 568.2

KBytes/second and 15.21 KBytes/second for Wi-Fi and 3G respectively. Using

table 7.2 we can see that the throughput of Wi-Fi on smartphone is safe for

streaming all videos presented in that table. On the contrary, the throughput

of 3G on smartphone is not sufficient for streaming any video presented in that

table. To solve this problem, we moved one step ahead and changed the design

to allow the user to connect to multiple video-source at the same time 16. We

call this: multi-channel video streaming. The graphical representation of this

new architecture is presented in figure 7.33.

Timing results are presented in figure 7.34. From this figure we see that the

throughput is 19.57 KBytes/second. Using this throughput, we succeeded to

stream one video from table 7.2 on the smartphone that is connected using 3G

without any pauses. This result was not possible using the previous designs and

implementations.

16. Formally defined in section 7.4.4 - part F.

148 7. CC Model, Assembly, and Development Process

0

100

200

300

400

500

600

700

Video Size in MBytes

T
im

e
in

S
ec
o
n
d
s

0.05 0.25 0.54 1.1 3.1 6.2 9.4
0

100

200

300

400

500

600

700

Figure 7.32: Experimental results for streaming several videos where the role is
deployed on a smartphone. The algorithm has the resume-support feature. The
curve with square nodes is for the smartphone with Wi-Fi connection, while the
curve with triangle nodes is for the smartphone with 3G connection.

 !"#$%& &' (

)'*&+,

 -.// &' (

 -.//

Figure 7.33: The BDU level of VideoCC. In this figure, the multi-channel video
streaming architecture is presented. This architecture will allow parallel stream-
ing of a single video. A BDU with black-filled left side represents a role BDU.

7.4. Case Study - ΩV ideoCC Implementation 149

0

100

200

300

400

500

Video Size in MBytes

T
im

e
in

S
ec
o
n
d
s

0.05 0.25 0.54 1.1 3.1 6.2 9.4
0

100

200

300

400

500

Figure 7.34: Experimental results for streaming several videos where the role is
deployed on a smartphone with a 3G connection and utilizing the multi-channel
video streaming technique.

7.4.4 Formal Language Description of Multimedia Devlopment

Process

In this section we provide the formal description of the development process

described in section 7.4.1. Again, this formal description is important for many

reasons, one of them is that it is machine readable, and allows CCMS 17 to exe-

cute the deployment plan.

We will present this formal description divided into parts, in correspondence to

section 7.4.1.

Part A:

L1 = {Tserver, Tdesktop}

17. Chapter 9.

150 7. CC Model, Assembly, and Development Process

L2 = {Tserver, T laptop}

L3 = {Tserver, Tsmartphone}

L = {L1, L2, L3}

Part B:

The formal definition of the MULTIMEDIA application is presented as follows:

MULTIMEDIA ≡ (Ω, M σ, L)

where:

– Set of roles:

Ω ≡ {ΩImageCC, ΩMusicCC, ΩV ideoCC, ΩMULTIMEDIACC}

– Multiplicities:

M = {(ΩMULTIMEDIACC, ∗), (ΩV ideoCC, 1),

(ΩMusicCC, 1), (ΩImageCC, 1)}

– Assembly:

σ = {(ΩV ideoCC.ΛV ideoR⊗ ΩMULTIMEDIACC.Λa, 1, 1),

(ΩMusicCC.ΛMusicR⊗ ΩMULTIMEDIACC.Λb, 1, 1),

(ΩImageCC.ΛImageR⊗ ΩMULTIMEDIACC.Λc, 1, 1)}

Part C:

ΩV ideoCC ≡ (ΛV ideoCC , µV ideoCC , L, ZV ideoCC)

ΛV ideoCC = {ΛV ideoR}

µV ideoCC = {(ΛV ideoR, ∗)}

Part D:

ΩV ideoCC �� Θ{ΘSearch, ΘV ideoR,

7.4. Case Study - ΩV ideoCC Implementation 151

ΘRepo, ΘBuffer}

Package dependencies ω(Θ) are:

ΘV ideoR −→ ΘSearch and

ΘV ideoR −→ ΘBUFF and

ΘSearch −→ ΘREPO and

ΘBUFF −→ ΘREPO.

Part E:

ΘSearch �� ΦSearch and

ΘREPO �� ΦREPO and

ΘBUFF �� ΦBUFF and

ΘV ideoR �� ΞV ideoR.

BDU dependencies ρ(Υ) are:

ΞV ideoR −→ Φ{ΦSearch,ΦBUFF} and

ΦSearch −→ ΦREPO and

ΦBUFF −→ ΦREPO.

Localization for L1 are

ΞV ideoR ↓ Hdesktop,

ΦSearch ↓ Hserver,

ΦREPO ↓ Hserver,

ΦBUFF ↓ Hserver

152 7. CC Model, Assembly, and Development Process

Localization for L2 are

ΞV ideoR ↓ Hlaptop,

ΦSearch ↓ Hserver,

ΦREPO ↓ Hserver,

ΦBUFF ↓ Hserver

Part F:

ΘSearch �� ΦSearch

ΘREPO �� ΦREPO

ΘBUFF �� ΦPBUFF

ΘV ideoR �� ΞPV ideoR

BDU dependencies ρ(Υ) for multi-channel video streaming architecture:

ΞPV ideoR −→ ΦSearch

ΞPV ideoR
∗

−→ [ΦPBUFF]∗

ΦSearch −→ ΦREPO

ΦPBUFF −→ ΦREPO

One localization scenario for L3 and multi-channel video streaming architecture:

ΞPV ideoR ↓ Hsmartphone

ΦSearch ↓ Hserver1

ΦREPO ↓ Hserver1

ΦPBUFF ↓ Hserver1

ΦPBUFF ↓ Hserver2

ΦREPO ↓ Hserver2

7.4. Case Study - ΩV ideoCC Implementation 153

7.4.5 QoS Support

Our claim that CC model guarantee QoS at the user endpoint is based on

the following two points:

1. The CC software development process. This development process is cus-

tomized to consider different expected deployment environments as a fun-

damental concern. As we have seen for the development of ΩV ideoCC,

we have four implementation variants for the different deployment scenar-

ios. These implementation variants do not offer any changed functionality,

rather, they target maintaining the level of end-user-QoS above the thresh-

old mentioned in table 7.2.

2. Software/Hardware checker (please read section 8.5.1). At deployment

time, the cloud component management system - CCMS (Please read

chapter 9) will invoke an ontology-based-checker to identify the target

device (i.e. the device on which CCMS will deploy the BDU at). After

that, CCMS will run an ontology query to find the implementation variant

(among the installed list of variants) that is compatible with that device.

This compatibility check includes the device characteristics, along with the

networking available, etc.

7.4.6 ΩV ideoCC Complexity Management

Back to section 7.3.8, we will see how CC model reduces complexity related

to software deployment and management. We can still do more optimization to

154 7. CC Model, Assembly, and Development Process

ΩV ideoCC implementation. However, and if we stop here, we have four different

implementation variants, some with completely different designs. Moreover, each

implementation variant is composed of several basic deployment units - BDUs,

and these BDUs are deployed over different machines at runtime. This kind of

software development has a complexity that grows fast enough to be unmanage-

able, even with such simple application, please see figure 7.25 (up). Moreover,

ΛV ideoR is expected to have thousands of instances at runtime, where these

instances are deployed over a large set of heterogeneous devices. As result, the

complexity of deployment and run-time management becomes prohibitive. This

is where the potential of our novel approach becomes evident. The border of

ΩV ideoCC encapsulates all implementation details (BDUs and formal descrip-

tion) as in figure 7.25 (middle) and enables to consider all variants as a single

unit of management. All operations after this point (i.e. deployment, compati-

bility check, runtime management) are automatic and they are the responsibility

of CCMS

Chapter 8

Location & Localization

The heart of the cloud component model and of the proposal of this disser-

tation in general is the location and the localization concepts. If we can abstract

all deployment devices with an average host, and all network operations with

send/receive operations, and still, this abstraction does not negatively affect nei-

ther the software development nor the runtime QoS, our proposal will lose its

merit. That is exactly why this dissertation is related to the challenges of the

HDEs and not related to the challenges of stable distributed environments.

8.1 Introduction to Ontology

8.1.1 Ontology Definition

The word ‘ontology’ is used with different semantics in different communi-

ties [10]. In this dissertation, we are restricting our attention to the ontology

in Computer Science, where we refer to an ontology as a special kind of com-

155

156 8. Location & Localization

 !"#$%&' "#$%&'

('#))&$ *)+,+
- ./ #!&$ *)

0&1#!#% *) 2*/&-&/& 3#4 .&'+3&!45&4*)

0*$%)

6789#.+: *$&.; *) </$5./5$*7+('#))&$ *)

=#'>)#!#% *) ?23

@23+<.9*%&

3#4 .+A$#4$&%% !4

= $)/+B$7*$+3#4 .

-*).$ C/ #!+3#4 .

Figure 8.1: Different languages according to [9]. Typically, logical languages are
eligible for the formal, explicit specification, and, thus, ontologies (From [10]).

 !"#$%%&'$($%%

)*&$(*+

,&-,$#./#0$#12/-&*

342215#%6./#0$#12/-&*

7/08212/-&*

0$%*#&"6&/(12/-&*%19:;< =>;.:;

2/-&*1"#/-#877&(-19;?< @.;/-&*

Figure 8.2: The trade-off between expressiveness and efficiency among logical
languages [10].

8.1. Introduction to Ontology 157

putational artifact [10]. In 1993, Gruber provided the following definition of

ontology: “explicit specification of a conceptualization” [142]. This definition is

widespread in widely cited [10]. Other definitions of an ontology have appeared

literature, examples of these definitions could be found in [54, 143]. In 1997,

Borst provided the following definition of ontology: “formal specification of a

shared conceptualization” [144]. This definition explicitly asserts that concep-

tualization should be expressed in a formal (machine readable) format. In 1998,

Studer et al. [145] merged these two definitions stating that: “An ontology is a

formal, explicit specification of a shared conceptualization.”

As mentioned above, an ontology is a computational artifact. To build and

use this artifact, it is necessary to use a ‘language’. This language is independent

from the domain of witch the ontology is expected to model. Figure 8.1 lists

several languages and language categories in a continuum shape [9, 10]. As we

move along the continuum to the right, we can notice the following [10]:

– The amount of meaning specified by the language increases.

– The degree of formality increases.

– The ambiguity decreases.

– The support for automated reasoning increases.

It is difficult to draw a strict line in figure 8.1 of where the criterion of

formal starts on this continuum. In practice, the rightmost category (i.e. logical

languages) is usually considered as formal. Moreover, inside logical languages

category, there is a trade-off between expressiveness and efficiency as shown

in figure 8.2. On the one end, we find higher-order logic, full first-order logic,

or modal logic. They are very expressive, but do often not allow for sound and

complete reasoning and if they do, reasoning sometimes remains untractable [10].

158 8. Location & Localization

At the other end, we find subsets of first-order logic. These subsets feature

decidable and more efficient reasoners [10]. At this end we find the following:

– First, languages from the family of description logics (DL). OWL-DL is

an example of a member in the family of description logics. All members

of DL languages are strict subsets of first-order logic.

– Second, the major paradigm that comes from logic programming (LP)

[146]. F-Logic is one highly recognized representor of LP. Though logic

programming often uses a syntax comparable to first-order logics, it as-

sumes a different interpretation of formulae.

In this dissertation, F-Logic is used for all ontology related modeling.

8.1.2 The Semantic of Semantic

Ontologies are about semantics (i.e. meaning or understanding). More pre-

cisely, communicating semantics. For the ontology to achieve its objective, it

needs to fulfill the fundamental requirement which is facilitating the communica-

tion: human-to-human 1 , human-to-machine, or machine-to-machine [10]. This

communication can be approximated using the Semantic Triangle 2 proposed by

Ogden and Richard in 1923 [11]. Please see figure 8.3. The idea in this figure

is further explained in figure 8.4. When the sender wants to communicate the

concept ‘Thing’, he/she uses a word (or a sign). When the receiver receives this

‘sign’, it (the sign) invokes a concept on his/her mind. The receiver uses this

concept to identify the individual the sign was intended to refer to. Hopefully

the receiver succeeds to point out to the same ‘thing’ the sender meant. Un-

1. Please read section 8.1.3 where the author of the dissertation presents his position re-
garding this point.

2. Ferdinand de Saussure (1857 - 1913) is one of the linguists who laid the foundations of
semiotics. He proposed the concept of the sign/signifier/signified/referent. This concept forms
the core of the field.

8.1. Introduction to Ontology 159

Figure 8.3: Ogden Semantic Triangle. Figure is copied from [11]. This idea was
first proposed by Ferdinand de Saussure, a linguist who is considered one of the
fathers of semiotics.

fortunately, the sign can erroneously invoke the wrong concept and finally lead

to different ‘thing’ than intended to. Unavoidably, different agents will arrive

at different conclusions about the semantics and the intention of the same mes-

sage (sign) [10]. Here comes the role of ontologies. When agents commit to a

common ontology they can limit the conclusions associated with the communi-

cations of specific sign, and ideally, removing ambiguity completely. “Thereby,

not only the act of reference becomes clearer, but also the connection between

sign and concept changes from a weakly defined relationship of ‘invokes’ into a

logically precise meaning of ‘denotes’ 3. Likewise, the meaning of a concept is

now determined by a precise logical theory.” [10].

3. Please read section 8.1.3 where the author of the dissertation presents his position re-
garding this point.

160 8. Location & Localization

 !"# $%!#"

&'#()*+

&'#+),+

-).)-/0+'

!#1'2)/ !3)#+!4)/

)#3)-

5)()!1)-

67/+-8(+0'-0('#(-)+)09+%!#":
&';<307)0*%=/!(8<0'-0#'#>*%=/!(8<

Figure 8.4: Approximation of the communication: human-to-human, human-to-
machine, or machine-to-machine (from [10]). Based on Ogden Semantic Triangle
in figure 8.3. The instable bended arrow represents the overall communication
context.

8.1. Introduction to Ontology 161

 !"# $%!#"

&'#()*(
+

'#(','"-./'00!(0)#(

1)2)13.('

!4)#(!5)3

)#4)1

6)/)!7)1

893(1:/(.'1./'#/1)().;(%!#"<
&'=,4.9).>%-3!/:,.'1.#'#?>%-3!/:,

4)#'()3

&'#/)>(

Figure 8.5: The incorporation of ontologies in the communication approximated
in figure 8.4 (from [10]).

162 8. Location & Localization

8.1.3 Discussion

The ideas presented in section 8.1.2 are found in almost all ontology re-

lated literature, such as [147–150]. The author of this dissertation has several

comments on these ideas.

First we need to distinguish between computational artifacts from one side

and human intellectual power from the other side. Mixing these two concepts

is not useful, moreover, there need to be proper illustration to the reader about

which context is implicitly meant. We strongly agree on the importance of ontol-

ogy as a computational artifact. Moreover, we strongly agree on the importance

of increasing the ability of computational devices to process semantics. For these

purposes, figures 8.3, 8.4, and 8.5 in additions to the ideas in section 8.1.2 are

highly useful.

On the other hand, we strongly disagree that figure 8.3 is a model of hu-

man thinking or communication. It is a useful model to build computational

artifacts, however, we should be very clear for scientific and ethical reasons,

that we do not advocate simplifications of human intellectual power just to pro-

vide scientific modeling. In the following we will present two attributes of the

inter-human communication that disagree with the simplified model presented

in section 8.1.2.

First, there are concepts (terms) that are cultural dependent or even personal

dependent where it is impossible to build a shared ontology for, such as ‘freedom’.

Yet, these concepts, including ‘freedom’, are shared and used among people

everyday. Human uses his ‘magical power’ to live with such ambiguity. More

surprisingly, people from different cultures, where they have completely different

8.1. Introduction to Ontology 163

semantics of such terms, they communicate these terms comfortably.

Second, in the modern intellectual trend, led by Abu Tammam 4 and Abo

Nuwas 5, “It is fundamental that the name (term) is not equal to the named

object (or abstraction), the relationship between the two is sign or symbol. It is

neither accordance nor identity. In other words, it is a probability relationship,

not a certainty relationship” [151]. Moreover, “The creative text (or speech or

poem) in this modern trend is a vast horizon of semantics or ‘realities’. It is

not an idea or collection of ideas that we can clearly see and understand, one by

one” 6 This trend arrived to the conclusion: “Eloquence does not exists without

getting far from the clear and precise semantics of the used words” [151]. This

intellectual trend opposed the ‘traditional trend’ that believes in the ‘certainty

relationship’ between the ‘word used’ and the ‘semantic intended’.

In this dissertation, we use the term ‘semantic’ in a restricted context of com-

putational sciences. If we mean another context, such as human linguistics, it

will be appropriately and explicitly mentioned.

4. His name is Habib Ibn Aws. He was born in 788 AD in Syria and died in 845 AD in Iraq.
Many studies about his work, along with references to his own work can be found in [151,152].

5. His name is al-Hasan ben Hani. He was born in 756 AD and died in 810 AD in Iraq. He
was one of the greatest of classical Arabic poets and intellectual figures. Many studies about
his work, along with references to his work can be found in [151,153,154].

6. Adunis or Adonis. His name is Ali Ahmad Said Isbar. He is a Syrian intellectual figure.
He has written more than twenty books. One of these books was ‘Le fixe et le mouvant’ [151],
a four volumes book that had a special attention.

164 8. Location & Localization

8.2 F-Logic

8.2.1 F-Logic Definition

F-logic a frame-based logic language that is used for representing ontologies

and building intelligent applications on top. A number of implementations of F-

logic exist, both commercial and open source academic systems. OntoBroker 7, a

commercial implementation of F-logic, will be used throughout this dissertation

as the main formal language for building ontologies.

F-logic based ontology starts with class (concept) hierarchies, then defines

relations and attributes of the concepts, defines the relationships among classes

and objects (instances) using rules, and finally populates the concepts with

concrete instances.

Listing 8.1: F-logic constructs.

01− /∗ concept h i e r a r c h i e s ∗/

02− man : : person .

03− /∗ r e l a t i o n s ∗/

04− person [hasFather {0 :1} ∗=> man] .

05− person [hasSon ∗=> man] .

06− /∗ r u l e s ∗/

07− ?X[hasSon −> ?Y] :− ?Y:man [hasFather −> ?X] .

08− /∗ populat ion ∗/

09− Jack :man .

10− Michel :man .

11− Michel :man [hasFather −> Jack] .

7. Registered Trade Mark.

8.2. F-Logic 165

12− /∗ query ∗/

13− ?− X:man [hasSon −> Michel] .

In listing 8.1 we can find all constructs used in F-logic. Line 02 shows the

concept hierarchy. Lines 04 and 05 show how to add a relation to a concept.

Rules are explained in line 07. Ontology populations is shown in lines 09 to 11.

A query is presented in line 13. In section 8.3 we will explain how to practically

and effectively use these constructs to build an ontology. For further information

on the F-logic please read [10,155,156].

8.2.2 Implementations of F-Logic

There are several major implementations of F-logic, including FLORID [157],

OntoBroker [158], and FLORA-2 [159]. Each implementation introduces a num-

ber of extensions to F-logic as well as restrictions to make their particular im-

plementation methods more effective. Ontoprise, the company produced On-

toBroker, started using the term ‘Objectlogic’ instead of F-logic since 2010 to

acknowledge these modifications. FLORID and FLORA-2 were developed in the

academia. Their main goal is to provide free platforms for experimenting with

innovative features in the design of an F-logic based rule language. OntoBro-

ker is a commercial system. Its main emphasis is on efficiency and integration

with external tools and systems. This dissertation takes a view of F-logic as an

ontology modeling language as well as a language for building applications that

use these ontologies. The ability to cover both sides of the engineering process,

ontologies and applications, is a particularly strong aspect of F-logic [10].

FLORID implements F-logic using a dedicated bottom-up deductive engine,

166 8. Location & Localization

which handles objects directly through an object manager. In that sense, it is

similar to object-oriented databases. In contrast, FLORA-2 and OntoBroker use

relational engines, which do not support objects directly. Instead, both systems

translate F-logic formulas into statements that use predicates (relations) instead

of F-logic molecules, and then execute them using relational deductive engines.

The target engine of FLORA-2 is XSB. XSB is a Prolog-like inference engine with

numerous enhancements, which make XSB into a more declarative and logically

complete system than the usual Prolog implementations. The inference mode

of XSB is top-down with a number of bottom-up- like extensions. OntoBroker

uses its own relational deductive engine. Its main inference mode is bottom-up,

but it includes several enhancements inspired by top-down inference, such as

dynamic filtering [160] and Magic Sets [161].

8.3 Ontology Life Cycle

Many books and papers are devoted for the construction of an ontology in-

cluding [162,163]. In this section we will use OntoBroker and F-logic to show how

to build an ontology. This is fundamental to understand the software/hardware

compatibility check that our dissertation is based on. The ontology development

process consists of three major phases as explained in figure 8.6.

8.3.1 Ontology Design & Creation

The starting point of the ontology life cycle is designing the ontology. In

this stage, the designer usually has a global understanding of the domain he/she

wants to model using ontology. Details are accumulated gradually, however,

8.3. Ontology Life Cycle 167

the designer need to be able answer questions such as if a specific concept is

in or out of the scope of the domain he/she is creating the ontology for. After

having global idea of the domain being modeled, the designer can go a step

further and list all keywords (terms) in that domain. These concepts can be

thought of as keywords that are used in that domain. It is the responsibility of

the designer to list all important keywords, otherwise, the ontology will lack the

power of acknowledging the semantics of some entities in that domain. For the

device ontology, the list of terms in figure 8.7 represents a subset of the overall

concepts in this domain.

After choosing the list of terms, complete or incomplete, we need to under-

stand the relationships between these terms (concepts). Here is the power of

ontologies, and at the same time, the most difficult task in ontology design. The

term ‘Windows’ in figure 8.7 is related to the term ‘OperatingSystem’, and the

term ‘ThreeG’ is related to the term ‘Connectivity’. These relations collectively

creates the semantics in the ontology. The more rich and precise these relations

are, the more meaningful semantics the ontology provides. Ontology languages

such as F-Logic and Web Ontology Language (OWL) provide several constructs

to express these semantics. These constructs include: concepts, concept hier-

archy, relations, attributes, and instances. The designer has the freedom to

utilize these constructs to encode data and semantics of the objective domain of

knowledge. This is a creative operation.

As we can see from figure 8.8, the concept LCD is a subconcept of the concept

Screen. Also, the concept Touch is a subconcept of the concept Screen.

Using this concept hierarchy we are encoding semantics. If any object is an

instance of the concept Touch that means this object is a display screen which

168 8. Location & Localization

 !"#$#%&'()*+%!','-.)/"+#!

 !"#$#%&'0#12$/"+#!

 !"#$#%&'32).&

Figure 8.6: The ontology development process.

 !"##$
%&"#'#((
)#"*#"
+,(-
)%./0
1#(2-,3
453-,3
)65"-/!,7#
8#''3!,7#
 ,9:!
481
;33'#

%&<#):"##7
+1
=7-#>"5-#<
%#?:56
+5"<@5"#0'#6#7-
A#5<%"&-#
81B1C1BADE
195'B45F#"
)-,"5>#
):"##7
C&<#,E#6,"F
E#6,"F
C&<#,85"<
1&(3'5F

8,77#:-&*&-F
+5"<@5"#0'#6#7-
;":!&-#:-9"#
A#(,'9-&,7+
4&79G
D3#"5-&7>)F(-#6
%&7<,@(
;9<&,H,"65-
A#(,'9-&,7
),I-@5"#0'#6#7-(
;7<",&<
C&<#,H,"65-
)F6?&57
A#(,'9-&,7%

Figure 8.7: A list all keywords (terms) in domain being modelled using ontology.
Only partial list is shown in the figure.

has touching capabilities (i.e. we can interact with it by direct touch). We still

do not have any information about the technology of this object. If this object

is an instance of the concept LCD in addition, then it is an LCD touch screen

(otherwise it could be CRT touch screen). Until now we used two techniques to

encode semantics: first is the concept name, and second is the concept hierarchy.

F-logics provides us with another tool to encode semantics: Relations. Each

relation has domain and range. Domain and range are concepts. Relations

bind concepts, or in other words, clarify the relationship between these con-

8.3. Ontology Life Cycle 169

Figure 8.8: The sub-concept construct is a tool to build the concept hierarchy.

170 8. Location & Localization

Figure 8.9: The ‘relation’ construct relates two concepts in a meaningful way.

cepts. In figure 8.9 we can see the relation hasResolution relates the concept

Resolution to the concept Screen. In F-logic this is written as:

Screen[hasResolution {0:*} *=> Resolution].

The semantics in this relation are encoded in two different places: first by

attaching the range concept to the domain concept, and second, in the rela-

tion name. We have to choose meaningful names for relations that reflect the

semantics we want to encode. The name of the relation clarifies the kind of

relationship between the domain concept and the range concept. To make this

more clear, we go back to the second step in the design where the designer lists

all keywords (terms) in that domain he/she wants to model, as in figure 8.7.

After the relation above, the two terms Screen and Resolution are no more

8.3. Ontology Life Cycle 171

Figure 8.10: The ‘attribute’ construct.

isolated. Because of this relation, we know that each screen has a resolution,

and the reasoner is able to analyze this in addition.

The attribute construct allows us to model semantics, and at the same time,

save data. As we can see in figure 8.10, we did not model the keyword ‘SWYPE’

as a concept. Rather, we modeled it as an attribute, where the semantics is

encoded in the attribute name, and the attribute data can be filled with true or

false. The construct attribute is similar to the construct relation. The only dif-

ference is that attribute has a range of basic types such as integer or string, while

relation has a range of type concept. Back to figure 8.10, we can see that we

172 8. Location & Localization

have another attribute of the concept Screen, which is hasNumberofColors.

This attribute has a range of integer. In F-logic, the above two attributes are

written as follows:

Screen[hasSWYPE {0:*} *=> _boolean].

Screen[hasNumberofColors {0:*} *=> _int].

Finally, it is important to point out to the following two facts. First: the

group of relations and attributes are called properties. Second: ontology devel-

opment is an iterative process. During later phases, such as population or query

phases, it is possible to discover errors, or important features that are miss-

ing. This will require going back to the design phase and make the necessary

modifications.

8.3.2 Ontology Population

In this phase we add instances to the ontology we designed in the previ-

ous phase. Each instance is an object of a specific concept, i.e. this instance is

‘instance of’ this concept. Also, an instance can be ‘instance of’ two or more con-

cepts. In figure 8.11, GalaxyMini is an instance of the concept SmartPhone.

And as it appears in that figure, there are several relations and two attributes

attached to the concept SmartPhone. In order for the operation of adding

GalaxyMini to the ontology to be complete, we need ’to fill all of these blanks’.

All of the relations and attributes have one side bound to GalaxyMini, and

the other side is bound to null. We need to bind the other side of each relation

to some instance, and the other side of each attribute to some value. In figure

8.3. Ontology Life Cycle 173

Figure 8.11: Ontology population.

8.12 we can see how this stage is done for GalaxyMini.

8.3.3 Ontology Query

This is the phase where the ontology-based application can benefit from

this advance tool: the ontology. The application needs certain information to

make some decision, it formulates its requirement as an ontology query, and

then it passes this query to the ontology reasoner, where the reasoner applies its

algorithms over the populated ontology. The reasoner finally passes the query

results back to the application.

Ontobroker from Ontoprise provides an ontology query language which is

174 8. Location & Localization

Figure 8.12: A snapshot of OntoBroker screen shows how to populate an ontol-
ogy.

8.3. Ontology Life Cycle 175

based on F-logic. As an example, suppose the application needs to handle the

following request:

“Give me all hosts that has High Definition playback.”

The F-logic query will be as follows in listing 8.2.

Listing 8.2: An ontology query using F-logic language.

?−

?Host1 : Host

and

? host1 [hasScreen−>?Screen1]

and

? Screen1 : Screen [hasReso lut ion−>?Reso lut ion1]

and

? Reso lut ion1 [r e so lu t i onUn i t−> ? Reso lut ion1_reso lut ionUni t]

and

? Reso lut ion1 [hasResolutionW−>?Resolution1_hasResolutionW]

and

? Reso lut ion1 [hasResolutionH−>?Resolut ion1_hasResolut ionH]

and

_greaterThan (? Resolution1_hasResolutionW ,1280)

and

_greaterThan (? Resolution1_hasResolutionH ,720)

and

_unify (? Reso lut ion1_reso lut ionUnit ," px ") .

For further information on the F-logic and F-logic query language please read

[10,155,156].

176 8. Location & Localization

8.4 Design Considerations

8.4.1 Concept or Property

When modelling a domain, we might face the decision on whether we model

a specific distinction as a property (relation or attribute) or as a set of concepts

[162]. Apart from our ontology, if we want to model the domain of wine using

ontology, we might face the following choice: do we model white wine, red wine,

and rose wine as three different concepts or we model them as one concept,

wine, with a color attribute which can be assigned the value of color? Both

options are correct, however, they reflect a design choice that might lead to

a good or bad design at the overall scope. This is the case for all modeling

and programming techniques because they provide the designer with several

and different constructs that might be used interchangeably. Back to our main

question, do we use a concept or a property in situations where both of them look

valid? To answer this question for the general case we need to know that concepts

have higher modeling power than properties. In other words, the difference

between two objects who belong to two different concepts is more important than

the difference between two objects who belong to the same concept but have two

different property values. This is the key. If the importance of the distinction

we want to model is marginal, we can use properties. On the other hand, if

this distinction is important in the domain we are modelling, then we should

encode the semantic of this distinction in the concept hierarchy, with expressive

concept names [162]. The decision about the importance of the distinction we

are modeling is the responsibility of the designer. He/she should have an overall

view of the domain, and should be able to answer questions of this kind. Back

8.4. Design Considerations 177

to the wine example, it is clear that the issue of red wine and white wine is

not simply a color issue. That is because they are paired with different food,

has different properties, etc. As result, they should be modeled as two different

concepts in the concept hierarchy.

8.4.2 Concept or Instance

Deciding whether a particular distinction in the domain is modeled as a

concept in the ontology or an instance in that ontology depends on the granu-

larity of the design. This granularity is decided by the designer who is aware

of the potential applications, and also, can expect the level of details queries

will include. In any ontology, instances are the most specific detail that can be

modeled. In other words, instances are the finest granularity possible. There is

always more details to model, however, the designer can choose the finest level

of details he/she believes will be sufficient for all the expected applications.

In figure 8.13 we model all computing devices in a concept hierarchy. From

that figure we can see that we have two levels of concepts, the Host level, and

the SmartPhone, Laptop, ..., Server level. We could have only one

level: Host, and model all devices as instances of it. Or, we could have more

levels, for example, the concept SmartPhone could have more classification

based on operating system, price, brand, etc. In figure 8.14 we can see that

GalaxyMini device is modeled as instance of SmartPhone concept. This is a

design choice. Back to the discussion above, we could have Galaxy as a concept,

which is subconcept of Samsung, and then have Galaxy Mini as instance of the

concept Galaxy. But we chose to ignore these semantic details in the concept

hierarchy because we do not expect any valuable applications that will depend

178 8. Location & Localization

Figure 8.13: The concept-instance choice.

Figure 8.14: The concept-instance choice - again.

8.5. Contribution 179

on these details significantly.

8.5 Contribution

8.5.1 Software/Hardware Compatibility Checker

The heart of our model is the ability to ‘match’ software and hardware.

Match here means ‘compatibility’. At design time, we explained in section 7.3

how to build compatible implementation variant for different deployment de-

vices. This is major-phase-one in problem statement defined in section 2.6. In

figure 8.15 we show how to ensure this compatibility at deployment time, i.e.

major-phase-two. It is very important in figure 8.15 to notice the following:

– First, and for easiness, we will call the blue ontology: IndividualOnto-A

and the green ontology: IndividualOnto-B.

– IndividualOnto-B is an extended version of IndividualOnto-A. This exten-

sion is population only. No other modification, addition, or deletion is

allowed.

– The software requirement modeling is done during major-phase-one. Using

IndividualOnto-A, designer/programmer of a BDU (BDU-X in figure 8.15)

list all requirements of the BDU as F-logic rules and queries. During this,

there is no information regarding IndividualOnto-B.

– If rules and queries generated (manually by the designer/programmer) in

the above step, when applied over IndividualOnto-B, return Tablet-Ju,

then we can deploy BDU-X over Tablet-Ju. Otherwise, we can not

proceed with this deployment over this device.

To capture the contribution in this checker, it is fundamental to notice:

180 8. Location & Localization

 !"#$$
%&'(#")*+

,-.!/!.+&(0-"1
21"$314+(&"#.

567)8 9+(#:$;$<+#=!#:
>::1?!&"#.$@!"A$,-.!/!.+&(0-"1

,-.!/!.+&(0-"1
314+(&"#.$@!"A
%&'(#")*+$!-:"&-?#

B#:C21

5&:#.$0-
5&:#.$0-

>44(!#.$%1

Figure 8.15: Software/hardware compatibility checker.

8.5. Contribution 181

– The time difference: it could be more than months, and may be years that

separate the implementation of IndividualOnto-A, IndividualOnto-B, and

rules and queries in figure 8.15.

– The personnel difference: different teams implement IndividualOnto-A,

IndividualOnto-B, and rules and queries in figure 8.15. These teams might

belong to different companies in different countries.

– The required automation: at deployment, there need to be automatic

(machine based) BDU/device checker.

Based on figures 8.4 and 8.5 we can see that ontology provides the required

knowledge sharing approach to facilitate unification of knowledge (terms and

semantics) between all of the mentioned personnel, over the above mentioned

long period of time, and in machine comprehensible way (for the automatic

checker).

8.5.2 IndividualOnto

In this work, we provide the base ontology: IndividualOnto. That means we

finished phase one of the ontology life cycle presented in section 8.3. Individu-

alOnto is designed to serve the purpose presented in this thesis. In figure 8.16 we

see a partial visualization of the concept hierarchy. Moreover, these concepts are

related by ‘relations’, however, these relations do not appear in this figure. In

figure 8.17 we see the concept hierarchy with the concept HardwareElement

being the root. We want to emphasis that this ontology (IndividualOnto) is

constant. Neither the concept hierarchy, nor the relation/attribute parts can

be modified. If they are modified, the concepts, along with their semantics, are

no more shared by all parties in figure 8.15. We think that IndividualOnto is

182 8. Location & Localization

sufficient to model all deployment environment details including all current net-

working technologies 8. In listing 8.3 we show how to populate IndividualOnto

by adding the full description of the smartphone ‘Galaxy Mini’ from Samsung

(we did not show the full description in the listing). Assuming that the devel-

opment team is designing and implementing BDU-X in figure 8.15. Moreover,

this BDU needs a high definition display in order to perform properly. The

implementation team model this requirement as in listing 8.2. More complex

requirements of BDUs can be modeled using a combination of rules and queries.

This is decided by the implementation team.

If this query (in listing 8.2) is passed to IndividualOnto populated by ‘Galaxy

Mini’ (listing 8.3), then the result of the query will be empty set (the important

point is that GalaxyMini instance of concept Host will not be a member of

the returned set of instances). This is because GalaxyMini has a screen of

320x240 as shown in its modeling, and this is not HD display. As result, the

deployment of BDU-X can not proceed on GalaxyMini.

Listing 8.3: GalaxyMini Instance in IndividualOnto.

GalaxyMini : SmartPhone .

GalaxyMini [audioSupport−>a01] .

GalaxyMini [company−>"SAMSUNG"] .

GalaxyMini [hasConnect iv i ty−>WiFi57] .

GalaxyMini [hasConnect iv i ty−>bl57] .

GalaxyMini [hasConnect iv i ty−>threeG57] .

GalaxyMini [hasMemory−>m01] .

8. Many readers will think that this statement is strong. Usually computer scientists prefer
constructs to be modifiable which is contrary to our statement that IndividualOnto is constant.
It is out of the scope of this work to study the possibility of modifying IndividualOnto. It is
easy to add a new concept to IndividualOnto, however, does the whole model stays consistent?
What about backwards compatibility?

8.5. Contribution 183

Figure 8.16: A partial visualization of the concept hierarchy of
IndividualOnto.

184 8. Location & Localization

Figure 8.17: The concept hierarchy of IndividualOnto with the concept
HardwareElement being the root.

8.5. Contribution 185

GalaxyMini [hasMemory−>m02] .

GalaxyMini [hasOS−>os01] .

GalaxyMini [hasProcessor−>p01] .

GalaxyMini [hasProcessor−>p02] .

GalaxyMini [hasScreen−>scr57] .

GalaxyMini [name−>"Galaxy Mini "] .

GalaxyMini [videoSupport−>v01] .

a01 : AudioFormat .

WiFi57 : Wif i .

a01 [supportsFormat−>"AAC"] .

a01 [supportsFormat−>"AAC+"] .HDQuery

a01 [supportsFormat−>"DNSe "] .

a01 [supportsFormat−>"MP3"] .

a01 [supportsFormat−>"eAAC+"] .

WiFi57 [hasStandard−>"IEEE802 . 1 1 "] .

WiFi57 [hasVersion−>"b "] .

WiFi57 [hasVersion−>"g "] .

WiFi57 [hasVersion−>"n "] .

b l57 :EDR.

bl57 [hasVersion −>"2.1"].

threeG57 : ThreeG .

threeG57 [hasMaxSpeed−>s57] .

threeG57 [hasStandard−>"HSDPA"] .

s57 : Speed .

s57 [speed −>7.2].

s57 [speedUnit−>"Mbps "] .

186 8. Location & Localization

s c r57 : MutiTouch .

s c r57 :TFT.

sc r57 [hasNumberofColors −>16000000].

s c r57 [hasReso lut ion−>QVGA] .

s c r57 [hasSWYPE] .

s c r57 [hasSize−>normal_size] .

s c r57 [r e so lu t i onUn i t −>"px "] .

normal_size : S i z e .

normal_size [s i z e −>3.14].

normal_size [s i z eUni t−>"inche "] .

QVGA: Reso lut ion .

QVGA[hasResolutionH −>320].

QVGA[hasResolutionW −>240].

QVGA[r e so lu t i onUn i t −>"px "] .

Reso lut ion [hasResolutionH {0:∗} ∗=> _int] .

Reso lut ion [hasResolutionW {0:∗} ∗=> _int] .

Reso lut ion [hasTota lReso lut ion {0 :∗} ∗=> _int] .

Reso lut ion [r e s o l u t i onUn i t {0 :∗} ∗=> _str ing] .

8.5.3 Used Technology

To build IndividualOnto we used OntoStudio 9 version 3.0.2 from Ontoprise.

For the query engine, we used OntoBroker 10 Enterprise Edition version 6.0.3

from Ontoprise. Population of IndividualOnto is done using OntoStudio. The

query in listing 8.2 is written using an editor and stored appropriately in the

9. Registered trade mark.
10. Registered trade mark.

8.5. Contribution 187

formal description of BDU-X. At deployment time, cloud component manage-

ment system (CCMS, please read chapter 9) extracts the query from the formal

description, and incorporates it into the Java code designed to access populated

IndividualOnto through OntoBroker.

OntoBroker has a web service interface to submit queries and commands. The

OntoBroker web service provides four operations 11:

– “query” - used to run F-Logic or SPARQL queries.

– “command” - used to send commands to the OntoBroker server.

– “queryBatch” - special operation to send multiple queries in a single mes-

sage to OntoBroker.

– “executePreparedQuery” - used to run a prepared query.

8.5.4 Existing Device Ontology

The Foundation for Intelligent Physical Agents (FIPA) is an IEEE Computer

Society standards organization that promotes agent-based technology and the

interoperability of its standards with other technologies [164].

FIPA proposed a device ontology in 2001 and this ontology was revised and

updated until version E in December 2002 [165]. FIPA ontology is very flat and

the concept hierarchy is poor. As result, most knowledge are saved as data (text

and numerical values) without semantics.

As an example connection-description is the only existing concept to

model communication/networking. Moreover, connection-description

has no relations. Using this ontology, Bluetooth, Wifi, and high speed fixed

Ethernet are modelled as instances of this concept. This is extremely limited

11. The manual provided by Ontoprise with OntoBroker version 6.0.3 Enterprise Edition.

188 8. Location & Localization

because the reasoner is unable to answer simple queries such as: which of these

technologies is wireless, let alone more complex and semantic-based queries.

It is expected that other proposals appear while preparing this manuscript.

This is natural because ontology is gaining wide acceptance in computer science

community. Moreover, it is a close to perfect tool for such modelling as discussed

in previous sections.

Chapter 9

Tools - Cloud Component

Management System

In this chapter we will present two important and indispensable tools: the

cloud component management system CCMS, and the registry. The benefits of

these tools clearly appear during the post-implementation phases of the devel-

opment process of CC based systems. This includes: installation, deployment,

several types of checking, CC binding, running, and post-running management.

As mentioned earlier, this research project aims at proposing a solution that

supports the complete software engineering life-cycle for the development of

HDE applications. This development process starts with the specifications of

the applications, and ends when the full application runs and delivers the ex-

pected functionality along with the expected QoS. Our proposed development

process of a single CC is is presented in section 7.3. This process results a set of

Basic Deployment Units (BDUs) along with the formal mapping of these BDUs

to the original CC, as in figure 9.1. These BDUs collaboratively, achieve the

189

190 9. Tools - Cloud Component Management System

 !"#$

%%#%&'(&)*#+, (&)*# ,

 !"#-

 !"#-

 !"#. !"#/

 !"#0

 !"#1

%)&234%&'5&6*674
!*8*)&5'*6749:&;*<<

 !"#$%&
'()*"+,-+!.

 +%()

 !"#=

 !"#> !"#?

Figure 9.1: The output of the CC development process is a set of BDUs along
with necessary formal description files.

9.1. Required Definitions 191

 !"#$!%&'()*

(+$,#$'()*'
+$

-+&#'()*

Figure 9.2: BDU types.

functionality of the CC.

9.1 Required Definitions

The following are brief definitions. More details will be provided in the following

sections. Please notice that there might be an unclear detail inside a definition,

or simply a new vocabulary that is not previously defined. This detail and

vocabulary will be defined and clarified later. Otherwise, each definition will

span several pages if we include all related details inside the definition. Again

these are not exhaustive, precise, and formal definitions. Rather, they are short

and expressive to help the reader proceed easily with general idea about these

terms.

9.1.1 Basic Deployment Unit - BDU

Basic Deployment Unit is a tangible (physical) artifact that is deployable

and executable. The BDU is the smallest architectural unit possible in a CC

design. It is not nested (also CC is not nested). It is local with respect to the

deployment device (in other words a BDU can not be distributed). There are

two types of basic deployment units. The first type is realization of a role, and

the second type is the realization of an internal functionality. In the formal

192 9. Tools - Cloud Component Management System

language we proposed, we use the symbol Ξ to prefix the first type and the

symbol Φ to prefix the second type. In the graphical form, the first type will

have solid (black filled) left side while the second type has none-filled left side

as in figure 9.2. For information about the relationship between BDUs and the

ontology-based-checker please read section 8.5.

9.1.2 Registry Utility

Is a utility that saves the state of a CC based system, including all of its

installed CCs, deployed CCs, deployed BDUs, etc. This utility can be accessed

directly by an administrator (interactive mode) or remotely through the network

(network mode).

9.1.3 Incremental Deployment

Incremental deployment tackles the deployment operation of a CC based

system gradually. In other words we do not deploy a CC based system in one

operation, rather, this deployment involves several (many) operations (stages)

that are usually separated in time. The time interval between two deployment

stages might be milliseconds, minutes, days, or even more.

9.1.4 Installation of a cloud component

CC at the implementation level is a set of BDUs along with a set of formal

description files. To install a single CC, it is required to place (copy) these BDUs

and files to the directory CAB, and to register this CC to be installed.

9.1. Required Definitions 193

9.1.5 Deployment of a cloud component

A complex operation that is done by CCMS. Includes reading formal defi-

nition of the CC, moving appropriate archives from CAB to their appropriate

destination devices, extracting archives, checking dependencies, ..., and finally

registering the new state of the CC 1. It is not necessary to perform these oper-

ations together (transaction semantics).

9.1.6 Deployment of a BDU

Could be part of CC deployment, or standalone operation. Deployment of a

single BDU includes moving appropriate archive from CAB to the appropriate

destination device, extracting this archive, checking dependencies, binding to the

required BDUs, and finally, adding this BDU to the deployed list and update

related states in the registry.

9.1.7 CC Deployment Plan

The deployment plan is a series of BDU deployment operations, dependency

checking, assembly operations, registry query, and registry updates. The de-

ployment plan is written manually by the system designer and carried out au-

tomatically by the CCMS. The deployment plan existence is determined by the

deployment conjecture (please read section 7.2.6).

1. Please note that the intention of this definition is to give general idea and to make the
reading of the following sections easier.

194 9. Tools - Cloud Component Management System

installedstart deployed running

problem

Figure 9.3: The four different states at which a CC or a BDU can exist at
runtime. It can move from one state to the other by CCMS operation or admin-
istrator manual intervention. It is very important to mention that this state is
time dependent.

9.1.8 Cloud Component Management System - CCMS

Is a tool that is responsible of installation, deployment, assembly, and post-

running management of a CC based system. This whole section, i.e. section 9,

is devoted for this tool.

9.2 Registry Utility

Registry is a large and complex data structure that saves the dynamic state of

a CC based systems. This state is dynamic because it changes by time, and is

complex because it includes the states of each and every BDU of the system.

Please see figure 9.3.

To make more accurate estimation of the size of the registry database, we

need to imagine a cloud component based system as in figure 9.4 at run time.

From that figure we can see that we have only one instance of ΩV ideoCC at

9.2. Registry Utility 195

any time. However, how many instances of ΩMultimediaCC exists at some

point of time? The answer could be 0, 100, 1000, or more than 10 millions. In

the last case, these instances are deployed over millions of devices. Also, these

instances require the instantiation of roles ΛV ideoR, ΛMusicR, and ΛImageR

over specific devices. How many BDUs are involved in this scenario? This

depends on the design and implementation, however it is a large number in any

case. All of these details must be kept accurately in the registry. Otherwise,

important decisions during deployment can not be decidable. The size of the

registry database in some of our tests was more than 12 GBytes.

In our tests, we run the registry utility on a powerful server that has 12

processors and 24 GBytes of RAM. Registry keeps the data structure in RAM,

however, and for many reasons, it is capable of saving this information to storage.

Accessing registry is done using one of two methods. First: the interactive mode.

Usually this is used by administrators to register newly installed CCs, or to fix

errors. Second: the network mode. This mode is the normal way that CCMS

performs registry access. That is natural since registry runs on a dedicated

server, as result, any access need to be network access. Registry utility provides

two sets of API functions:

– Modify Set.

– Query Set.

Listing 9.1: Registry utility modify set.

Ava i l ab l e Options :

0 − de l e t e deployed BDU.

1 − de l e t e deployed CC.

2 − de l e t e i n s t a l l e d CC.

3 − ed i t deployed BDU.

196 9. Tools - Cloud Component Management System

4 − ed i t i n s t a l l e d CC.

5 − ed i t deployed CC.

6 − add deployed BDU.

7 − add deployed CC.

8 − add i n s t a l l e d CC.

9 − l i s t a l l deployed CC.

10− l i s t a l l i n s t a l l e d CC.

11− e x i t .

The modify set is presented in listing 9.1. The query set is similar, but more

detailed, read only, and provides access to each and every piece of date in the

database. Listing 9.2 gives an overview of our implementation choice on im-

plementing the registry utility database. The operations in listing 9.1 work on

the data structure presented in listing 9.2. For example the operation edit

deployed CC allows the user (or CCMS) to modify the name of any wanted

deployed CC. If we need to make more changes we can choose edit deployed

BDU or delete deployed BDU, etc.

Listing 9.2: The base foundation of the data structure of the registry utility

database.

#de f i n e STRING_SIZE 100

enum status_opt ions

{

UNKNOWN,

INSTALLED,

DEPLOYED,

RUNNING,

9.2. Registry Utility 197

PROBLEM

} ;

enum BDU_type

{

Unknown ,

Phi ,

Xi

} ;

s t r u c t BDU

{

char bdu_name [STRING_SIZE] ;

enum BDU_type bdu_type ;

char bdu_version [STRING_SIZE] ;

enum status_opt ions bdu_status ;

char bdu_location [STRING_SIZE] ;

char bdu_remarks [10∗STRING_SIZE] ;

} ;

s t r u c t cloud_component

{

char CC_name [STRING_SIZE] ;

i n t BDU_number ;

s t r u c t BDU∗ bdu_l ist ;

} ;

s t r u c t s imp l e_ l i s t

{

char CC_name [STRING_SIZE] ;

198 9. Tools - Cloud Component Management System

 !"#$%% !"#$&

'()*#%%
'()*#&

+,-!.%%+,-!.&

+
/01'+

23
'45%%

+/01'+23'45&

6

6

6

6

7

7

7

7

)

8

.

7

7

7

7

7

7

Figure 9.4: The Multimedia cloud component-based system.

char CC_remarks [10∗STRING_SIZE] ;

} ;

s t r u c t i n s t a l l e d_ l i s t_ s

{

i n t number_of_installed_CC ;

s t r u c t s imp l e_ l i s t ∗ CC_list ;

} ;

s t r u c t deployed_l i s t_s

{

i n t number_of_deployed_CC ;

s t r u c t cloud_component∗ CC_list ;

} ;

9.3. Deployment of a CC based system - Deployment Plan - CCMS 199

9.3 Deployment of a CC based system - Deployment

Plan - CCMS

For effectively understanding the deployment problem of cloud component based

systems, we need to consider the following factors:

– CC is a distributed component in nature.

– Each CC can have zero or more instances at runtime (depending on the

multiplicity of the CC itself).

– Each role of a CC can have zero or more instances at runtime (depending

on the multiplicity of the role itself).

– The deployment environment of a CC based systems ranges from several

devices to hundreds or more of heterogeneous machines and networks.

– The existence of multiple implementation variants to support the above

mentioned heterogeneity.

That directly leads to the conclusion that deploying CC based systems over

such deployment environments is not a trivial task. Fortunately we succeeded to

automate this difficult task 100% using the important tool: the cloud component

management system - CCMS. It is important not to confuse the deployment plan

with the deployment as a phase in the life-cycle of any software. The deployment

plan is part of the development of the CC based system. Moreover, it is an

artifact (not an operation). Finally it is written manually by the development

team. On the other hand, the deployment of the CC based system is not an

artifact, rather, it is an operation. This operation is usually manual for most

software up till now (with some exceptions). This operation is fully automated

in our proposal. The real power of this contribution is that we do not propose an

200 9. Tools - Cloud Component Management System

automatic deployment of a specific application, rather, we propose the automatic

deployment of a class of applications, which is the CC-based-applications. Any

application that is written using CC model can be automatically deployed with

zero price. All required tools are already provided 2.

CCMS performs what we call ‘incremental deployment’ to tackle this problem

gradually by executing the deployment plan provided by the design/implemen-

tation teams as part of the formal description of the cloud component based

system. Before deployment the first step for any CC-based-system is to run a

certain utility called ccPack, which creates archive files (tar files and apk files)

that contains the required BDUs. The ccPack utility depends on the formal

description of the system to pack the correct BDUs together, along with the

appropriate meta-data. These archives are the installation artifacts. Archives

are placed inside a special directory called CAB. Up till now we did not start

the deployment phase. We can call these operations pre-deployment. CCMS

can access CAB to do the required operations.

To complete the installation 3 we need to register the cloud components and

all of the installed BDUs. The administrator can perform this step manually

through appropriate access to the registry utility using interactive mode. The

installation action is summarized as follows:

– Pack developed BDUs using ccPack utility. This step generates tar and

apk archives.

– Put archives in CAB directory.

– Register installed CCs and their BDUs using registry utility.

2. Mainly CCMS, the Registry utility, and the ontology-based checker.
3. Please recall that installation precedes deployment. They are completely different oper-

ations. The first is manual (semi-automated via ccPack utility). The later is 100% automatic.

9.3. Deployment of a CC based system - Deployment Plan - CCMS 201

In section 7.2 we proposed a CC assembly model along with an automatic

assembly checker. If a CC based design passes this checker without errors,

then we guarantee there exists a deployment plan that can deploy the whole

system without any runtime error. On the contrary, if the checker in section

7.2.4 generates error(s), then there does not exist a deployment plan for such a

system.

The deployment plan is a series of BDU deployment operations (section 9.1),

dependency checking, assembly operations, registry query, and registry updates.

The deployment plan is carried out automatically by the CCMS. CCMS, while

performing the deployment plan, faces the deployment of a role (more precisely,

its BDU), of which there is a binding (assembly) to another role such as Λb and

ΛMusicR in figure 9.4. These two roles need to connect at runtime. This is

the responsibility of CCMS. Based on the constraint discussed in section 7.2.1.2,

this connection can not be remote, it is local with respect to the deployment

device. We facilitate this constraint by realizing this connection using shared

memory. CCMS allocates a local block of RAM. This block of memory serves as

a common channels between the two BDUs. They can perform function request,

pass parameters, and receive results.

9.3.1 Remark

CCMS itself is a HDE application. The deployment of CCMS is manual and

is not related to the deployment of CC-based-systems that is described in this

section.

202 9. Tools - Cloud Component Management System

9.4 The Deployment of Multimedia system

The purpose of MULTIMEDIA application 4 is to be a single application to

store, search, process, and play all multimedia files like pictures/images, music,

and video. This application is expected to be deployed over a highly distributed

platform, please see figure 9.4.

Passing the design in figure 9.4 to the assembly checker described in section

7.2.4 will result six warnings and no errors. These warnings are related to the

multiplicity ∗ of roles ΛV ideoR, ΛMusicR, and ΛImageR and the multiplicity

∗ of the CC ΩMultimediaCC. Since ∗ means zero or more, then there is a need

to ensure the existence of the role instance before an attempt to bind to it. This

should be reflected in the deployment plan. However, since the assembly checker

did not generate any errors, there exists a deployment plan for this system (this

is explained in the previous section).

The deployment of a single instance of ΩMultimediaCC over an end-user device

contains the following operations:

– Checking the states of ΩV ideoCC, ΩMusicCC, and ΩImageCC to ensure

they are all running.

– Deploy an instance of ΛV ideoR, ΛMusicR, and ΛImageR on that device,

and register these instances.

– Deploy ΩMultimediaCC on that device and register it as deployed (not

running).

– Deploy an instance of Λa, Λb, Λc, and ΛMultimediaR on that device, and

register these instances.

4. Also mentioned in section 7.4

9.4. The Deployment of Multimedia system 203

– Bind ΩMultimediaCC to the rest of CCs through binding role instances as

in figure 9.4. This binding is done by the CCMS which creates three shared

memory channels. Each channel is used by one of the three bindings:

(Γa,ΓV ideoR), (Γb,ΓMusicR), and (Γc,ΓImageR).

– Register this instance of ΩMultimediaCC as running.

The above steps reflect the deployment plan of the MULTIMEDIA application 5.

Of course, this is partial snapshot of the complete deployment plan.

For validation purposes, we conducted actual automatic deployment of the mul-

timedia system using the full implementation of:

– The cloud component management system - CCMS.

– The registry utility.

– The multimedia application.

The deployment experiments are performed over a deployment environment with

the following hosts:

– A powerful server (12 processors and 24 GBytes RAM) to run the registry

utility. This server uses fixed connection (Fast Ethernet).

– A normal server to run CCMS tool. This server also uses fixed connection

(Fast Ethernet).

– set1: a set of laptops with Wi-Fi connections.

– set2: a set of smart-phones with android operating system and 3G con-

nections.

Listing 9.3: A snapshot of the output log of the registry before the deployment

of the first MultimediaCC instance. This is partial snapshot.

number_of_deployed_CC : 3

5. Please note that there is no cyclic dependency in this deployment plan. Cyclic depen-
dency should always be avoided.

204 9. Tools - Cloud Component Management System

>>>>>>>>>>>>>>>>> order = 0 >>>>>>>>>>>>>

CC name : ImageCC

RUNNING

Number o f BDUs: 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 0 :

BDU name : Image_BUFF

Phi

ve r s i on : v50 .02

RUNNING

l o c a t i o n : V i r tua l Machine

remarks : Test ing Deployment

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 0 :

>>>>>>>>>>>>>>>>> order = 1 >>>>>>>>>>>>>

CC name : MusicCC

RUNNING

Number o f BDUs: 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 0 :

BDU name : Music_BUFF

Phi

ve r s i on : v12 .00

RUNNING

l o c a t i o n : V i r tua l Machine

remarks : Test ing Deployment

9.4. The Deployment of Multimedia system 205

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 0 :

>>>>>>>>>>>>>>>>> order = 2 >>>>>>>>>>>>>

CC name : VideoCC

RUNNING

Number o f BDUs: 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 0 :

BDU name : Video_BUFF

Phi

ve r s i on : v118 .09

RUNNING

l o c a t i o n : V i r tua l Machine

remarks : Test ing Deployment

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 0#

Listing 9.4: A snapshot of the output log of the registry after the deployment

of the first MultimediaCC instance. This is partial snapshot.

number_of_deployed_CC : 4

>>>>>>>>>>>>>>>>> order = 0 >>>>>>>>>>>>>

CC name : ImageCC

RUNNING

Number o f BDUs: 2

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 0 :

206 9. Tools - Cloud Component Management System

BDU name : Image_BUFF

Phi

ve r s i on : v50 .02

RUNNING

l o c a t i o n : V i r tua l Machine

remarks : Test ing Deployment

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 0 :

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 1 :

BDU name : ImageR

Xi

ve r s i on : vXXX

RUNNING

l o c a t i o n : Laptop

remarks : Automatic t e s t i n g .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 1 :

>>>>>>>>>>>>>>>>> order = 1 >>>>>>>>>>>>>

CC name : MusicCC

RUNNING

Number o f BDUs: 2

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 0 :

(omitted)

9.4. The Deployment of Multimedia system 207

>>>>>>>>>>>>>>>>> order = 3 >>>>>>>>>>>>>

CC name : MultimediaCC

RUNNING

Number o f BDUs: 4

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 0 :

BDU name : a

Xi

ve r s i on : vXXX

RUNNING

l o c a t i o n : Laptop

remarks : Automatic t e s t i n g .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 0 :

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 1 :

BDU name : b

Xi

ve r s i on : vXXX

RUNNING

l o c a t i o n : Laptop

remarks : Automatic t e s t i n g .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 1 :

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

208 9. Tools - Cloud Component Management System

Star t BDU number 2 :

BDU name : c

Xi

ve r s i on : vXXX

RUNNING

l o c a t i o n : Laptop

remarks : Automatic t e s t i n g .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 2 :

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Star t BDU number 3 :

BDU name : MultimediaR

Xi

ve r s i on : vXXX

RUNNING

l o c a t i o n : Laptop

remarks : Automatic t e s t i n g .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

End BDU number 3

In listings 9.3 and 9.4, a snapshot of the registry is presented before and af-

ter the deployment of the first instance of ΩMultimediaCC. In figure 9.5

we show the timing results when no concurrent requests are made. The to-

tal τ(MultimediaCC) (please review 7.1.3) is equally distributed between set1

and set2 for all cases. While in figure 9.6, set1 and set2 made their request

concurrently. In this experiment also, the total τ(MultimediaCC) is equally

9.4. The Deployment of Multimedia system 209

distributed between set1 and set2 for all cases.

The QoS of the Multimedia application itself over the different devices is dis-

cussed in section 7.4.5. The most important result from these experiments was

that there were no runtime errors, neither at deployment stage, nor at running

stages. This validates our proposal as follows:

– Following CC model will allow us to build systems that can scale up to

many users, in this case 1000 user, or more, easily.

– The deployment conjecture is validated in this case study.

– These experiments practically show the automatic deployment of a CC-

based-system over a HDE. Again, this automatic deployment is achieved

without errors and without incompatibilities between software and hard-

ware.

The main reason for these positive results is that all related details were taken

care of during design and implementation with the support of the CC model,

formal notation and checkers, CCMS/Registry tools, and ontology modeling

and checking support (discussed in section 8.5). That is a direct consequence of

Localization Acknowledgment.

Figures 9.5 and 9.6 show that concurrent deployment requests has no effect on

the deployment time. A laptop with Wi-Fi connection needs between 340 mil-

liseconds and 520 milliseconds to deploy a Multimedia instance, while a smart-

phone with 3G needs between 8.8 seconds and 9.5 seconds for the same deploy-

ment. We think this is the effect of the network latency. It is worth noting also

that the registry size in these experiments was 19 GBytes. For larger systems,

and/or many-same-size systems the registry size will grow linearly. At the same

time, we think the registry is efficient enough for all query and update opera-

210 9. Tools - Cloud Component Management System

0

1000

2000

3000

4000

5000

τ(MultimediaCC)

T
im

e
in

S
e
c
o
n
d
s

20 200 1000

0

1000

2000

3000

4000

5000

Figure 9.5: Total deployment time for the complete multimedia system for dif-
ferent values of τ(MultimediaCC) (Explained in 7.1.3). Deployment requests
are sequential. The black column represents time required for set1 (laptops,
WiFi) to finish the experiment. The gray column represents time required for
set2 (smart-phones, 3G) to finish the experiment.

9.4. The Deployment of Multimedia system 211

0

1000

2000

3000

4000

5000

τ(MultimediaCC)

T
im

e
in

S
e
c
o
n
d
s

20 200 1000

0

1000

2000

3000

4000

5000

Figure 9.6: Total deployment time for the complete multimedia system for dif-
ferent values of τ(MultimediaCC) (Explained in 7.1.3). Deployment requests
are concurrent. The black column represents time required for set1 (laptops,
WiFi) to finish the experiment. The gray column represents time required for
set2 (smart-phones, 3G) to finish the experiment.

212 9. Tools - Cloud Component Management System

tions. If needed, many optimizations could be applied to this utility to reduce

the size needed, and/or to speedup query/update operations.

9.5 Chapter Comments

The deployment of a HDE application is not a simple task as discussed in

section 9.3. Using the theory proposed in this dissertation, along with CCMS

tool and Registry utility, we think this task became affordable (technical wise)

for software developers immediately. The real merit of the tools proposed in this

chapter is evident when we see the application domain of these tools. It is not

the MULTIMEDIA application only, but rather, any CC-based application a

programmer (or a software development company) develops in the future. This

chapter is not intended to provide a detailed description of the usage of the

tools. Rather, it is designed to introduce these tools, the operation they accom-

plish, and the automation they provide. Our hope is that the computer science

community and the software development community will find this approach

useful.

Part IV

CONCLUSION

213

Chapter 10

Conclusion

Highly distributed environments are a newcomer to the computing world.

HDEs are deployment environments that include normal stable devices and net-

works such as servers, workstations, and fixed Ethernet. However, HDEs include

in addition laptops, smartphones, sensor networks, along with WIFI, 3G, and

radio frequency (RF) connections. This set of heterogeneous hardware and the

collection of reliable and unreliable networks constitute the newcomer: HDEs.

These environments have created several challenges to software development

such as: disconnected operations, unreliable networks, low resources in user

devices, small display, etc. And yet, software is still expected to be reliable and

show the expected QoS.

There is no doubt that current software development process, along with current

software development skills in general can not meet these objectives sufficiently.

Until now, software development for HDEs is ad-hoc. Each application developer

tries to implement some techniques and checks for his/her application to meet

the specifications over these environment. However, there is no standard process,

215

216 10. Conclusion

nor customized model that can be used systematically to produce high quality

applications for HDEs.

In this work we propose a software component model, the cloud component

model, to fill this gap between current software development needs, and the

available software engineering theory and methods. Cloud component model

is based on a paradigm shift from distribution transparency to localization ac-

knowledgment being the first class concern. In other words, we no more hide or

abstract location, on the contrary, we acknowledge all aspects related to loca-

tion including the specification of devices, the networking paradigms they use,

the different network specifications available, security features, and all related

characteristics of the deployment environment. Also, we propose a theory to

assemble CCs in order to build a CC-based applications. Formal notation is

proposed for CC, CC assembly, CC development process, and CC based sys-

tems. This formal notation opens the door for a wide range of theoretical topics

including component type inference, subtypes, etc, and provides a precise lan-

guage to describe details. In addition, formal methods allow the designer to

produce machine readable designs where automated tools can verify specific

properties at design time, which in turn, increases the level of confidence in the

correctness of design.

One of the main values of the CC model is its support for a full compatibility

between software and hardware in HDEs. This is a major challenge knowing the

heterogeneity of these environments. Our model uses the first proposed ontology

based hardware modeling and software requirement modeling and the ontology

based software/hardware checker. This checker, along with the proposed CC

development process are the foundations of our claim that CC model guaran-

10.1. Limitation of the Proposed Approach 217

tee the expected QoS at the user end point. We supported this model with

fully implemented tools including: CC assembly checker, CC ontology based

software/hardware checker, cloud component management system (CCMS) and

registry utility. Finally, we fully implemented a CC-based system, the multime-

dia application, to validate our proposal.

The contribution in this dissertation has several faces, but still, these faces

are cohesive. Each of these faces form a partial contribution, however, this

partial contribution does not mean anything if isolated from the overall proposal.

Moreover, the merit of the overall proposal can not be grasped by reading one

partial contribution. The merit of the proposal is evident only if all parts of

this work are cohesively organized. The limitations of this model and the future

work are discussed in the following sections.

10.1 Limitation of the Proposed Approach

It is an old dream of computer science to verify the correctness of software

systems by fully automatic means. Despite of well-known fundamental limits

uncovered by the theory of computability, there has been great progress in the

study of automatic methods for semantic analysis of software in the last decades.

In particular it has been studied how to apply model checking to software. Model

checking verifies temporal-logic specifications by exhaustive state-space explo-

ration. It is an automated technique promising to ensure (limited) correctness

of software and to find certain classes of bugs automatically. The work of Javier

Esparza, Wan Fokkink, Marta Kwiatkowska, and Markus Muller-Olm can be

reviewed for more information over this topic.

218 10. Conclusion

It could be considered as a limitations in this work that we do not have such

dynamic checking in our model. For example, we do not describe the dynamic

(temporal) characteristics of a CC role, as result, it is the responsibility of the

designer to ensure the correct dynamic behavior of roles at runtime. On the

other hand, avoiding such formal methods is intended to keep the model easy

to use by average software engineers.

Another limitation is the requirement of the existence of a powerful machine

that runs the CCMS and the Registry utility. Moreover, we assume a connection

between this machine and all deployment devices. While the last condition could

be relaxed, we did not study the effect of the absolute non-existence of such a

machine over the CC model. Is it still usable? And how to achieve that?

Majority of applications does not require such extreme condition, however, it is

still interesting to study the potential of the CC model in such severe situation.

10.2 Future Work

10.2.1 Automatic acquisition of device ontology

As described in figure 8.15 section 8.5.1, the IndividualOnto is populated

by Tablet-Ju instance. This population process is done manually. A human

reads the specifications in the device, and populate the ontology accordingly.

Using ‘information extraction’ discussed in section 4.3.1, it is possible to achieve

this automatically. This will allow for fast construction of an up-to-date com-

prehensive knowledge base for almost all devices available. This knowledge base

is automatically updated upon the arrival of a new device.

10.2. Future Work 219

10.2.2 Easy modelling of software requirements

Back to figure figure 8.15. When the designer/programmer needs to model

the runtime requirements of BDU-X he/she needs to model it as an ontology

query, or a mix of rules and queries. This should be done using a formal lan-

guage such as F-logic. A simple High Definition (HD) display requirement in

F-logic is presented in listing listing 8.2. It is inviting to automate this part.

The automation could use IndividualOnto and the software requirement in

English language. The output of the automated tool will be the equivalent F-

logic rules and queries. In section 4.3.2 we discussed such approach: ‘question

answering’.

Adding this feature to our model will make it extremely effective and easy

to use. Moreover, if we succeeded in the two features (i.e. this section and

sections 10.2.1), we will succeed in hiding ontology to a great extend. Ontology

will be completely a back-end support in our model, while the front-end is a

simple and easy to use interface. Our model is easy to use, and adding these

two features will make the difference between our model and the normal software

development process negligible (please read section 2.3).

10.2.3 Study the effect of CC-model on software component

reuse

Through out this dissertation we emphasized on the encapsulation attribute

of the software component in general. Also, we were interested by the encapsu-

lation power of the CC model. That was one of the major contributions of this

work.

220 10. Conclusion

However, there is a another value of software components that many litera-

ture acknowledge, which is ‘software reuse’. We think that software components

in general succeeded in its first attribute which is encapsulation, and based on

that, allowed building large applications using the assembly of ‘parts’ which are

software components. On the other hand, software components as a tool to

facilitate software reuse were less successful. We think there are several reasons

behind that. One of these reasons could be that current component models

describe their functionality on the source side not on the destination side. It

could be fruitful to study the effect on our proposed paradigm shift over software

component reuse. Moreover, the effect on the cloud component model on the

component contract in general.

10.2.4 Formal theory for CC state & BDU state

In figure 9.3 section 9.1.7 we discussed the four states that a CC could be in

at any any given time. Also, these are the four states that any BDU could be

in at any any given time. All of these states are saved in the registry utility at

runtime. Since a CC is composed of BDUs, there is a direct effect of the state of

a BDU over the state of the CC which this BDU is a compound of. Currently,

we leave this issue to the designer of each individual application. In other words,

inside the deployment plan, we have explicit instructions to check the state of a

BDU (or a CC) before certain actions such as deployment of a new role.

We think it could be useful, for theoretical reasons at least, to further study

this relationship. A formal theory could describe this relationship. This theory

could be useful for better runtime management of CC based systems. It also

could allow us to better understand the reliability of such systems.

BIBLIOGRAPHY

221

Bibliography

[1] T. Strang and C. Linnhoff-Popien, “A context modelling survey,” in Pro-

ceedings of First International Workshop on Advanced Context Modelling,

Reasoning And Management, 2004. xi, 4, 23, 74

[2] D. Hoareau and Y. Maheo, “Distribution of a hierarchical component

in a non-connected environment,” in Proceedings of the 31st EUROMI-

CRO Conference on Software Engineering and Advanced Applications, EU-

ROMICRO ’05, (Washington, DC, USA), pp. 143–151, IEEE Computer

Society, 2005. xi, xii, 8, 9, 28, 58, 65, 77, 78

[3] S. Malek, G. Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka, N. Med-

vidovic, M. Mikic-Rakic, and S. G. S., “An architecture-driven software

mobility framework,” Journal of Systems and Software, vol. 83, pp. 972–

989, June 2010. xi, xii, 2, 6, 9, 10, 23, 30, 82, 83, 84, 85

[4] P. Cimiano, Ontology Learning and Population from Text: Algorithms,

Evaluation and Applications. Springer, 2006. xii, 53

[5] T. Bureš, M. Děcký, P. Hnětynka, J. Kofroň, P. Parízek, F. Plášil, T. Poch,

O. Šerý, and P. Tůma, “The common component modeling example,”

ch. CoCoME in SOFA, pp. 388–417, Berlin, Heidelberg: Springer-Verlag,

2008. xii, 61, 62

223

224 BIBLIOGRAPHY

[6] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology based con-

text modeling and reasoning using owl,” in Proceedings of the Second IEEE

Annual Conference on Pervasive Computing and Communications Work-

shops, PERCOMW ’04, (Washington, DC, USA), pp. 18–, IEEE Computer

Society, 2004. xii, 75, 76

[7] M. Mikic-Rakic, Software architectural support for disconnected operation

in distributed environments. PhD thesis, University of Southern California,

Los Angeles, CA, USA, December 2004. xii, 2, 5, 22, 24, 28, 59, 81, 82

[8] C. Consel, W. Jouve, J. Lancia, and N. Palix, “Ontology-directed genera-

tion of frameworks for pervasive service development,” Pervasive Comput-

ing and Communications Workshops, IEEE International Conference on,

vol. 0, pp. 501–508, 2007. xii, 86, 87

[9] M. Uschold and M. Gruninger, “Ontologies and semantics for seamless

connectivity,” SIGMOD Rec., vol. 33, pp. 58–64, Dec. 2004. xvi, 156, 157

[10] S. Staab and R. Studer, Handbook on Ontologies. Springer Berlin Hei-

delberg, 2009. xvi, xvii, 45, 51, 155, 156, 157, 158, 159, 160, 161, 165,

175

[11] C. K. Ogden and I. A. Richards, The Meaning of Meaning: A Study of

the Influence of Language upon Thought and of the Science of Symbolism.

Routledge & Kegan Paul, 1923. xvi, 158, 159

[12] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, eds., The Common

Component Modeling Example: Comparing Software Component Mod-

els. No. 5153 in Lecture Notes in Computer Science, Berlin, Heidelberg:

Springer-Verlag, 2008. xix, 28, 68, 70, 71, 72

BIBLIOGRAPHY 225

[13] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classifi-

cation framework for software component models,” IEEE Transactions on

Software Engineering, vol. 37, pp. 593–615, 2011. xix, 29, 67, 68, 69, 72,

74, 96

[14] R. Guerraoui and M. E. Fayad, “Oo distributed programming is not dis-

tributed oo programming,” Commun. ACM, vol. 42, pp. 101–104, Apr.

1999. 2, 6, 23, 30

[15] Y. Zhang, V. Paxson, and S. Shenker, “The Stationarity of Internet Path

Properties: Routing, Loss, and Throughput,” tech. rep., AT&T Center for

Internet Research at ICSI, 2000. 3, 24

[16] D. Hoareau, Composants ubiquitaires pour reseaux dynamiques. PhD Dis-

sertation, Universite de Bretagne Sud, Decembre 2007. 5, 8, 25, 28, 59,

77, 79, 80

[17] D. Hoareau and Y. Mahéo, “Middleware support for the deployment of

ubiquitous software components,” Personal and Ubiquitous Computing,

vol. 12, pp. 167–178, January 2008. 8, 28, 58, 77

[18] G. Edwards and N. Medvidovic, “A methodology and framework for creat-

ing domain-specific development infrastructures,” in Automated Software

Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Conference

on, pp. 168 –177, sept. 2008. 9, 83

[19] G. Edwards, S. Malek, and N. Medvidovic, “Scenario-driven dynamic anal-

ysis of distributed architectures,” in Proceedings of the 10th international

conference on Fundamental approaches to software engineering, FASE’07,

(Berlin, Heidelberg), pp. 125–139, Springer-Verlag, 2007. 9, 83

226 BIBLIOGRAPHY

[20] “IEEE Standard Glossary of Software Engineering Terminology.” Stan-

dards Coordinating Committee of the Computer Society of the IEEE.

http://ieeexplore.ieee.org/servlet/opac?punumber=

2238, last visit April 28th, 2012. 26, 50, 127

[21] S. R. Schach, Object-Oriented and Classical Software Engineering.

McGraw-Hill, 2006. 26, 50, 127

[22] D. E. Perry and A. L. Wolf, “Foundations for the study of software ar-

chitecture,” SIGSOFT Softw. Eng. Notes, vol. 17, pp. 40–52, Oct. 1992.

28

[23] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerg-

ing Discipline, vol. 123. Prentice Hall, 1996. 28

[24] K.-K. Lau and Z. Wang, “Software component models,” IEEE Transaction

on Software Engineering, vol. 33, pp. 709–724, October 2007. 28, 29, 67,

94

[25] E. E. Group, “JSR 220: Enterprise JavaBeansTM,Version 3.0 EJB Core

Contracts and Requirements Version 3.0, Final Release,” May 2006. 28,

60, 66, 72

[26] “OMG CORBA Component Model v4.0.” http://www.omg.org/

spec/CCM/4.0/, last visit February 6th, 2012. 28, 60, 64, 72

[27] OSGi Alliance, “OSGi Service Plaform Core Specification, V4.1,” 2007.

28, 60, 66, 72

[28] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The

fractal component model and its support in java,” Software: Practice and

Experience, vol. 36, no. 11-12, pp. 1257–1284, 2006. 28, 60, 64, 72

http://ieeexplore.ieee.org/servlet/opac?punumber=2238
http://ieeexplore.ieee.org/servlet/opac?punumber=2238
http://www.omg.org/spec/CCM/4.0/
http://www.omg.org/spec/CCM/4.0/

BIBLIOGRAPHY 227

[29] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced fea-

tures in a hierarchical component model,” in Proceedings of the Fourth

International Conference on Software Engineering Research, Management

and Applications, (Washington, DC, USA), pp. 40–48, IEEE Computer

Society, 2006. 28, 72

[30] “http://sofa.ow2.org/.” last visit February 6th, 2012. 28, 60, 61,

68, 72

[31] V. Hourdin, J.-Y. Tigli, S. Lavirotte, G. Rey, and M. Riveill, “Slca, com-

posite services for ubiquitous computing,” in Proceedings of the Interna-

tional Conference on Mobile Technology, Applications, and Systems, Mo-

bility ’08, (New York, NY, USA), pp. 11:1–11:8, ACM, 2008. 29, 59

[32] N. Bussiere, D. Cheung-Foo-Wo, V. Hourdin, S. Lavirotte, M. Riveill, and

J.-Y. Tigli, “Optimized contextual discovery of web services for devices,”

2007. 29

[33] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini, “Reliable, secure,

and transacted web service compositions with ao4bpel,” in Proceedings of

the European Conference on Web Services, ECOWS ’06, (Washington, DC,

USA), pp. 23–34, IEEE Computer Society, 2006. 29

[34] M. Vallee, F. Ramparany, and L. Vercouter, “Flexible composition of smart

device services,” 2005. 29

[35] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”

ACM Trans. Comput. Syst., vol. 2, pp. 39–59, Feb. 1984. 29

[36] F. Baader and U. Sattler, “An overview of tableau algorithms for descrip-

tion logics,” Studia Logica, pp. 5–40, 2001. 45

http://sofa.ow2.org/

228 BIBLIOGRAPHY

[37] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-

Schneider, The Description Logic Handbook: Theory, Implementation and

Applications. Cambridge University Press, 2003. 45, 46, 47

[38] D. Calvanese, G. D. Giacomo, M. Lenzerini, and D. Nardi, Reasoning

in expressive description logics. In Alan Robinson and Andrei Voronkov,

editors, Handbook of Automated Reasoning, chapter 23, pages 1581-1634.

Elsevier, 2001. 45

[39] D. L. McGuinness and F. van Harmelen, “OWL Web Ontol-

ogy Language Overview.” http://www.w3.org/TR/2003/

WD-owl-features-20030331/, last visit April 26th, 2012. 45

[40] F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-

Schneider, and L. A. Stein, “OWL Web Ontology Language Reference.”

http://www.w3.org/TR/2003/WD-owl-ref-20030331/, last visit

April 26th, 2012. 45

[41] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, “OWL Web Ontology

Language Semantics and Abstract Syntax.” http://www.w3.org/TR/

2003/WD-owl-semantics-20030331/, last visit April 26th, 2012. 45

[42] P. Hayes and B. McBride, “RDF Semantics.” http://www.w3.org/

TR/rdf-mt/, last visit April 26th, 2012. 45

[43] I. Horrocks, U. Sattler, and S. Tobies, “Practical reasoning for very expres-

sive description logics,” Journal of the Interest Group in Pure and Applied

Logic, vol. 8(3), pp. 239–264, 2000. 45

[44] D. Tsarkov and I. Horrocks, “FaCT++ description logic reasoner: sys-

tem description,” in Proc. of the Int. Joint Conf. on Automated Reason-

http://www.w3.org/TR/2003/WD-owl-features-20030331/
http://www.w3.org/TR/2003/WD-owl-features-20030331/
http://www.w3.org/TR/2003/WD-owl-ref-20030331/
http://www.w3.org/TR/2003/WD-owl-semantics-20030331/
http://www.w3.org/TR/2003/WD-owl-semantics-20030331/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/

BIBLIOGRAPHY 229

ing (IJCAR 2006), vol. 4130 of Lecture Notes in Artificial Intelligence,

pp. 292–297, Springer, 2006. 45

[45] V. Haarslev and R. Möller, “Racer system description,” in Proceedings of

the First International Joint Conference on Automated Reasoning, IJCAR

’01, (London, UK, UK), pp. 701–706, Springer-Verlag, 2001. 45

[46] E. Sirin and B. Parsia, “Pellet: An OWL DL Reasoner,” in In Proceedings

of the 2004 Description Logic Workshop (DL 2004), 2004. 45

[47] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen, “From SHIQ and

RDF to OWL: The Making of a Web Ontology Language,” Journal of Web

Semantics, vol. 1(1), pp. 7–26, 2003. 46

[48] F. Baader and U. Sattler, “Description logics with symbolic number re-

strictions,” in In Proceedings of the 12th European Conference on Artificial

Intelligence (ECAI 96), pp. 283–287, John Wiley & Sons, 1996. 46

[49] F. Baader and U. Sattler, “Number restrictions on complex roles in De-

scription Logics: A preliminary report,” in In Proceedings of the 5th Inter-

national Conference on the Principles of Knowledge Representation and

Reasoning(KR 96), pp. 328–338, 1996. 46

[50] F. Baader and U. Sattler, “Expressive number restrictions in Description

Logics,” Journal of Logic and Computation, vol. 9(3), pp. 319–350, 1999.

46

[51] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy,

H. Eriksson, N. F. Noy, and S. W. Tu, “The evolution of protégé: an

environment for knowledge-based systems development,” Int. J. Hum.-

Comput. Stud., vol. 58, pp. 89–123, Jan. 2003. 47

230 BIBLIOGRAPHY

[52] Breitman, Karen Koogan and Leite, Julio Cesar Sampaio do Prado, “On-

tology as a requirements engineering product,” in Proceedings of the 11th

IEEE International Conference on Requirements Engineering, RE ’03,

(Washington, DC, USA), pp. 309–319, IEEE Computer Society, 2003. 50

[53] P. Spyns, Y. Tang, and R. Meersman, “An ontology engineering method-

ology for DOGMA,” Appl. Ontol., vol. 3, pp. 13–39, Jan. 2008. 50

[54] J. Hendler, “Agents and the semantic web,” IEEE Intelligent Systems,

vol. 16(2), pp. 30–37, Mar. 2001. 51, 157

[55] A. Maedche and S. Staab, “Ontology learning for the semantic web,” IEEE

Intelligent Systems, vol. 16, pp. 72–79, Mar. 2001. 51, 53

[56] T. Burger, “Putting business intelligence into documents.,” in In Proc. of

the WSh. on Semantic Business Process and Product Lifecycle Manage-

ment, 2007. 51

[57] S. W. Lee and R. A. Gandhi, “Ontology-based active requirements engi-

neering framework,” in Proceedings of the 12th Asia-Pacific Software En-

gineering Conference, APSEC ’05, (Washington, DC, USA), pp. 481–490,

IEEE Computer Society, 2005. 51

[58] D. Damian, “Stakeholders in global requirements engineering: Lessons

learned from practice,” Software, IEEE, vol. 24, pp. 21 –27, march-april

2007. 51

[59] K. Siorpaes and M. Hepp, “myontology: The marriage of ontology engi-

neering and collective intelligence,” in In Proc. of the Wsh. on Bridging

the Gep between Semantic Web and Web 2.0, pp. 127–138, 2007. 51

[60] K. C. Desouza, Y. Awazu, and P. Baloh, “Managing knowledge in global

software development efforts: Issues and practices,” IEEE Softw., vol. 23,

BIBLIOGRAPHY 231

pp. 30–37, Sept. 2006. 51

[61] S. B. Marc, M. Ehrig, A. Koschmider, A. Oberweis, and R. Studer, “Se-

mantic alignment of business processes,” in In Proc. of the 8th Interna-

tional Conference on Enterprise Info. Sys., pp. 191–196, 2006. 51

[62] F. Lautenbacher and B. Bauer, “A survey on workflow annotation & com-

position approaches.,” in In Proc. of the Wsh. on Semantic Business Pro-

cess and Product Lifecycle Management - SBPM, 2007. 51

[63] S. Cranefield, “Uml and the semantic web,” in In Proceedings of the Se-

mantic Web Working Symposium, pp. 113–130, 2001. 51

[64] D. Gaaevic, D. Djuric, V. Devedzic, and B. Selic, Model Driven Architec-

ture and Ontology Development. Secaucus, NJ, USA: Springer-Verlag New

York, Inc., 2006. 51

[65] Y. Pan, G. Xie, L. Ma, Y. Yang, Z. Qiu, and J. Lee, “Model-driven ontology

engineering,” vol. 4244, pp. 57–78, 2006. 51

[66] R. Gronmo, M. Jaeger, and H. Hoff, “Transformations between uml and

owl-s,” in In Proc. of the 1st European Conference of Model Driven Ar-

chitecture – Foundations and Applications (A. Hartman and D. Kreis-

che, eds.), vol. 3748 of Lecture Notes in Computer Science, pp. 269–283,

Springer Berlin / Heidelberg, 2005. 51

[67] D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on UML class

diagrams,” Artif. Intell., vol. 168, pp. 70–118, Oct. 2005. 51

[68] R. France and B. Rumpe, “Model-driven development of complex software:

A research roadmap,” in 2007 Future of Software Engineering, FOSE ’07,

(Washington, DC, USA), pp. 37–54, IEEE Computer Society, 2007. 51

232 BIBLIOGRAPHY

[69] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Rets-

chitzegger, W. Schwinger, and M. Wimmer, “Lifting metamodels to on-

tologies: a step to the semantic integration of modeling languages,” in Pro-

ceedings of the 9th international conference on Model Driven Engineering

Languages and Systems, MoDELS’06, (Berlin, Heidelberg), pp. 528–542,

Springer-Verlag, 2006. 51

[70] S. Roser and B. Bauer, “An approach to automatically generated model

transformations using ontology engineering space,” in In Proceedings of the

2nd international WSh. on Semantic Web Enabled Software Eng., 2006. 51

[71] F. Jouault, J. Bézivin, and I. Kurtev, “Tcs:: a dsl for the specification

of textual concrete syntaxes in model engineering,” in Proceedings of the

5th international conference on Generative programming and component

engineering, GPCE ’06, (New York, NY, USA), pp. 249–254, ACM, 2006.

51

[72] A. Kalyanpur, D. J. Pastor, S. Battle, and J. Padget, “Automatic map-

ping of owl ontologies into java,” in Proceedings of Sixteenth International

Conference on Software Engineering and Knowledge Engineering (SEKE)

(G. R. F. Maurer, ed.), pp. 98–103, June 2004. 51

[73] M. Voelkel and Y. Sure, “Rdfreactor - from ontologies to programmatic

data access,” in In Poster Proceedings of the 4th International Semantic

Web Conference, 2005. 51

[74] S. Dietze, A. Gugliotta, , and J. Domingue, “A semantic web services-

based infrastructure for context-adaptive process support,” in Web Ser-

vices, 2007. ICWS 2007. IEEE International Conference on, pp. 537 –543,

july 2007. 51

BIBLIOGRAPHY 233

[75] D. Oberle, The Semantic management of middleware. Springer, 2006. 51

[76] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.

Addison-Wesley, 1999. 53

[77] K. Frantzi, S. Ananiadou, and H. Mima, “Automatic recognition of multi-

word terms:. the C-value/NC-value method,” International Journal on

Digital Libraries, vol. 3, pp. 115–130, 2000. 53

[78] K. Frantzi and S. Ananiadou, “The C-Value/NC-Value domain indepen-

dent method for multi-word term extraction,” Journal of Natural Language

Processing, vol. 6(3), pp. 145–179, 1999. 53

[79] Z. S. Harris, Mathematical Structures of Language. Wiley, 1968. 53

[80] G. Grefenstette, “SEXTANT: exploring unexplored contexts for seman-

tic extraction from syntactic analysis,” in Proceedings of the 30th annual

meeting on Association for Computational Linguistics, ACL ’92, (Strouds-

burg, PA, USA), pp. 324–326, Association for Computational Linguistics,

1992. 53

[81] D. Lin, “Automatic retrieval and clustering of similar words,” in Proceed-

ings of the 17th international conference on Computational linguistics -

Volume 2, COLING ’98, (Stroudsburg, PA, USA), pp. 768–774, Associa-

tion for Computational Linguistics, 1998. 53

[82] J. R. Curran, “Ensemble methods for automatic thesaurus extraction,” in

Proceedings of the ACL-02 conference on Empirical methods in natural

language processing - Volume 10, EMNLP ’02, (Stroudsburg, PA, USA),

pp. 222–229, Association for Computational Linguistics, 2002. 53

[83] M. Baroni and S. Bisi, “Using cooccurrence statistics and the web to dis-

cover synonyms in technical language,” in In Proceedings of the 4th In-

234 BIBLIOGRAPHY

ternational Conference on Language Resources and Evaluation (LREC),

pp. 1725–1728, 2004. 53

[84] P. D. Turney, “Mining the Web for Synonyms: PMI-IR versus LSA on

TOEFL,” in Proceedings of the 12th European Conference on Machine

Learning, EMCL ’01, (London, UK, UK), pp. 491–502, Springer-Verlag,

2001. 53

[85] P. Resnik, “Semantic similarity in a taxonomy: An information-based mea-

sure and its application to problems of ambiguity in natural language,”

Journal of Artificial Intelligence Research (JAIR), vol. 11, pp. 95–130,

1999. 53

[86] M. Strube and S. P. Ponzetto, “Wikirelate! computing semantic related-

ness using wikipedia,” in proceedings of the 21st national conference on

Artificial intelligence - Volume 2, AAAI’06, pp. 1419–1424, AAAI Press,

2006. 53

[87] C. Fellbaum, WordNet, an electronic lexical database. MIT Press, 1998.

53

[88] D. Widdows, “Unsupervised methods for developing taxonomies by com-

bining syntactic and statistical information,” in Proceedings of the 2003

Conference of the North American Chapter of the Association for Compu-

tational Linguistics on Human Language Technology - Volume 1, NAACL

’03, (Stroudsburg, PA, USA), pp. 197–204, Association for Computational

Linguistics, 2003. 53

[89] F. A. Lisi and F. Esposito, “Two orthogonal biases for choosing the inten-

sions of emerging concepts in ontology refinement,” in Proceedings of the

2006 conference on ECAI 2006: 17th European Conference on Artificial

BIBLIOGRAPHY 235

Intelligence August 29 – September 1, 2006, Riva del Garda, Italy, (Am-

sterdam, The Netherlands, The Netherlands), pp. 765–766, IOS Press,

2006. 53

[90] G. Bisson, C. Ndellec, and L. Caamero, “Designing clustering methods for

ontology building –the mo’k workbench,” in Proceedings of the Ontology

Learning Workshop at ECAI, pp. 13–19, 2000. 53

[91] P. Cimiano, A. Hotho, and S. Staab, “Learning concept hierarchies from

text corpora using formal concept analysis,” J. Artif. Int. Res., vol. 24,

pp. 305–339, Aug. 2005. 53

[92] D. Faure and C. Nedellec, “A corpus-based conceptual clustering method

for verb frames and ontology acquisition,” in Proceedings of the LREC

Workshop on Adapting lexical and corpus resources to sublanguages and

applications, pp. 5–12, 1998. 53

[93] P. Buitelaar, P. Cimiano, and B. Magnini, Ontology Learning from Text:

Methods, Applications and Evaluation. IOS Press, 2005. 53, 235

[94] P. VELARDI, R. NAVIGLI, A. CUCHIARELLI, and F. NERI, “Evalu-

ation of OntoLearn, a methodology for automatic population of domain

ontologies,” in [93], pp. 92–106, 2005. 53

[95] P. Buitelaar, D. Olejnik, and M. Sintek, “A protege plug-in for ontology

extraction from text based on linguistic analysis,” in In Proceedings of the

1st European Semantic Web Symposium (ESWS), pp. 31–44, 2004. 53

[96] N. Aussenac-Gilles, S. Despres, and S. Szulman, “The TERMINAE

Method and Platform for Ontology Engineering from Texts,” in Proceed-

ings of the 2008 conference on Ontology Learning and Population: Bridg-

236 BIBLIOGRAPHY

ing the Gap between Text and Knowledge, (Amsterdam, The Netherlands,

The Netherlands), pp. 199–223, IOS Press, 2008. 53

[97] P. Cimiano and J. Volker, “Text2Onto - A Framework for Ontology Learn-

ing and Data-driven Change Discovery,” in Proceedings of the 10th Inter-

national Conference on Applications of Natural Language to Information

Systems (NLDB), pp. 227–238, 2005. 53

[98] A. Maedche and S. Staab, “Discovering conceptual relations from text.,” in

In Proceedings of the 14th European Conference on Artificial Intelligence

(ECAI), pp. 321–325, 2000. 53

[99] P. Buitelaar, M. Sintek, and M. Kiesel, “A multilingual/multimedia lexi-

con model for ontologies,” in Proceedings of the 3rd European conference

on The Semantic Web: research and applications, ESWC’06, (Berlin, Hei-

delberg), pp. 502–513, Springer-Verlag, 2006. 53

[100] S. Nirenburg and V. Raskin, Ontological semantics. MIT Press, 2004. 53

[101] K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham, “Evolving

gate to meet new challenges in language engineering,” Nat. Lang. Eng.,

vol. 10, pp. 349–373, Sept. 2004. 53

[102] B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov, “Kim -

a semantic platform for information extraction and retrieval,” Nat. Lang.

Eng., vol. 10, pp. 375–392, Sept. 2004. 53

[103] D. Ferrucci and A. Lally, “Uima: an architectural approach to unstructured

information processing in the corporate research environment,” Nat. Lang.

Eng., vol. 10, pp. 327–348, Sept. 2004. 53

[104] T. Hamon, A. Nazarenko, T. Poibeau, S. Aubin, and J. Derivière, “A

robust linguistic platform for efficient and domain specific web content

BIBLIOGRAPHY 237

analysis,” in Large Scale Semantic Access to Content (Text, Image, Video,

and Sound), RIAO ’07, pp. 226–240, 2007. 53

[105] P. Adolphs, M. Theobald, U. Schafer, H. Uszkoreit, and G. Weikum,

“Yago-qa: Answering questions by structured knowledge queries,” in Se-

mantic Computing (ICSC), 2011 Fifth IEEE International Conference on,

pp. 158 –161, sept. 2011. 54

[106] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek,

A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. M. Prager,

N. Schlaefer, and C. A. Welty, “Building watson: An overview of the

deepqa project.,” pp. 59–79, 2010. 54

[107] L. Hirschman and R. Gaizauskas, “Natural language question answering:

the view from here,” Natural Language Engineering, vol. 7, pp. 275–300,

Dec. 2001. 54

[108] C. Kwok, O. Etzioni, and D. S. Weld, “Scaling question answering to the

web,” ACM Trans. Inf. Syst., vol. 19, pp. 242–262, July 2001. 54

[109] Z. Zheng, “Answerbus question answering system,” in Proceedings of the

second international conference on Human Language Technology Research,

HLT ’02, (San Francisco, CA, USA), pp. 399–404, Morgan Kaufmann

Publishers Inc., 2002. 54

[110] S. Matougui and A. Beugnard, “Two ways of implementing software

connections among distributed components,” in OTM Conferences (2),

pp. 997–1014, 2005. 58, 107

[111] C. Tibermacine, D. Hoareau, and R. Kadri, “Enforcing architecture and

deployment constraints of distributed component-based software,” Funda-

mental Approaches to Software Engineering, pp. 140–154, 2007. 59

238 BIBLIOGRAPHY

[112] M. Mikic-Rakic and N. Medvidovic, “Software architectural sup-

port for disconnected operation in highly distributed environments,”

in Component-Based Software Engineering (I. Crnkovic, J. Stafford,

H. Schmidt, and K. Wallnau, eds.), vol. 3054 of Lecture Notes in Computer

Science, pp. 23–39, Springer Berlin / Heidelberg, 2004. 59

[113] M. Mikic-Rakic and N. Medvidovic, “Architecture-level support for soft-

ware component deployment in resource constrained environments,” in

Component Deployment, pp. 31–50, 2002. 59, 81

[114] H. Maaskant, “A Robust Component Model for Consumer Electronic

Products,” in Dynamic and Robust Streaming in and between Connected

Consumer-Electronic Devices (P. Stok, ed.), vol. 3 of Philips Research Book

Series, pp. 167–192, Springer Netherlands, 2005. 60

[115] T. Genbler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R. Wuyts,

G. Arévalo, B. Schönhage, P. Müller, and C. Stich, “Components for em-

bedded software: the PECOS approach,” in Proceedings of the 2002 inter-

national conference on Compilers, architecture, and synthesis for embedded

systems, CASES ’02, (New York, NY, USA), pp. 19–26, ACM, 2002. 60

[116] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time com-

ponents in bip,” in Proceedings of the Fourth IEEE International Confer-

ence on Software Engineering and Formal Methods, SEFM ’06, (Washing-

ton, DC, USA), pp. 3–12, IEEE Computer Society, 2006. 60

[117] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas, “An Efficient

Component Model for the Construction of Adaptive Middleware,” in Pro-

ceedings of the IFIP/ACM International Conference on Distributed Sys-

tems Platforms Heidelberg, Middleware ’01, (London, UK, UK), pp. 160–

BIBLIOGRAPHY 239

178, Springer-Verlag, 2001. 60

[118] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnković, “A Com-

ponent Model for Control-Intensive Distributed Embedded Systems,” in

Proceedings of the 11th International Symposium on Component-Based

Software Engineering, CBSE ’08, (Berlin, Heidelberg), pp. 310–317,

Springer-Verlag, 2008. 60

[119] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The

Koala component model for consumer electronics software,” Computer,

vol. 33, pp. 78 –85, mar 2000. 60

[120] D. Box, Essential COM. Addison-Wesley, 1997. 60

[121] J. E. Kim, O. Rogalla, S. Kramer, and A. Hamann, “Extracting, specifying

and predicting software system properties in component based real-time

embedded software development,” in Software Engineering - Companion

Volume, 2009. ICSE-Companion 2009. 31st International Conference on,

pp. 28 –38, may 2009. 60

[122] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A Component-Based

Framework for Generative Development of Distributed Real-Time Control

Systems,” in Proceedings of the 13th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications, RTCSA

’07, (Washington, DC, USA), pp. 199–208, IEEE Computer Society, 2007.

60

[123] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback, and

K.-L. Lundback, “The Rubus component model for resource constrained

real-time systems,” in Industrial Embedded Systems, 2008. SIES 2008. In-

ternational Symposium on, pp. 177 –183, june 2008. 60

240 BIBLIOGRAPHY

[124] AUTOSAR Development Partnership, “AUTOSAR – Technical Overview

V2.0.1,,” June 2006. www.autosar.org, last visit April 28th, 2012. 60

[125] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua,

D. Muthig, B. Paech, J. Wust, , and J. Zettel, Component Based Product

Line Engineering with UML. Addison-Wesley Longman Publishing Co.,

Inc., 2002. 60

[126] “The Fractal Project.” http://fractal.ow2.org/, last visit June

18th, 2012. 64, 73

[127] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Making com-

ponents contract aware,” Computer, vol. 32, pp. 38–45, July 1999. 68

[128] J. Feljan, L. Lednicki, J. Maras, A. Petricic, and I. Crnkovic, “Classifica-

tion and survey of component models,” tech. rep., December 2009. 68

[129] “Course Description - Computer Science Department. Oklahoma Stage

University.” http://cs.okstate.edu/courses.html, last visit

May 4th, 2012. 71

[130] A. K. Dey, “Understanding and using context,” Personal Ubiquitous Com-

put., vol. 5, pp. 4–7, Jan. 2001. 74

[131] T. Strang, C. Linnhoff-Popien, and K. Frank, “Cool: A context ontology

language to enable contextual interoperability,” in Distributed Applica-

tions and Interoperable Systems (J.-B. Stefani, I. Demeure, and D. Hagi-

mont, eds.), vol. 2893 of Lecture Notes in Computer Science, pp. 236–247,

Springer Berlin / Heidelberg, 2003. 74, 75

[132] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda

file system,” ACM Trans. Comput. Syst., vol. 10, pp. 3–25, Feb. 1992. 79

www.autosar.org
http://fractal.ow2.org/
http://cs.okstate.edu/courses.html

BIBLIOGRAPHY 241

[133] G. H. Kuenning and G. J. Popek, “Automated hoarding for mobile com-

puters,” in Proceedings of the sixteenth ACM symposium on Operating

systems principles, SOSP ’97, (New York, NY, USA), pp. 264–275, ACM,

1997. 79

[134] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K. Gifford, and M. F.

Kaashoek, “Rover: a toolkit for mobile information access,” in Proceedings

of the fifteenth ACM symposium on Operating systems principles, SOSP

’95, (New York, NY, USA), pp. 156–171, ACM, 1995. 79

[135] A. Fuggetta, G. Picco, and G. Vigna, “Understanding code mobility,” Soft-

ware Engineering, IEEE Transactions on, vol. 24, pp. 342 –361, may 1998.

79

[136] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, and M. D.

Mickunas, “Olympus: A high-level programming model for pervasive com-

puting environments,” in Proceedings of the Third IEEE International

Conference on Pervasive Computing and Communications, PERCOM ’05,

(Washington, DC, USA), pp. 7–16, IEEE Computer Society, 2005. 86

[137] E. Cariou, A. Beugnard, and J. M. Jézéquel, “An architecture and a

process for implementing distributed collaborations,” in Proceedings of

the Sixth International ENTERPRISE DISTRIBUTED OBJECT COM-

PUTING Conference (EDOC’02), EDOC ’02, (Washington, DC, USA),

pp. 132–, IEEE Computer Society, 2002. 88

[138] E. C. Kabore, Contribution a l’automatisation d’un processus de construc-

tion d’abstractions de communication par transformations successives de

modeles. PhD Dissertation, Telecom Bretagne/Universite de Rennes 1,

Decembre 2008. 88

242 BIBLIOGRAPHY

[139] A. Beugnard and A. Hassan, “A Calculus for a New Component Model

in Highly Distributed Environments,” in 5th International Workshop on

Harnessing Theories for Tool Support in Software, pp. 106–124, 2011.

http://urn.nb.no/URN:NBN:no-29716. 103, 112

[140] A. Beugnard and A. Hassan, “A New Component Model for Highly

Distributed Environements,” in 8th International Symposium on For-

mal Aspects of Component Software - FACS, 2011. Download-

able at: http://departements.telecom-bretagne.eu/info/

publications. 111

[141] P. Abate and R. Di Cosmo, “Predicting upgrade failures using dependency

analysis,” in Proceedings of the 2011 IEEE 27th International Conference

on Data Engineering Workshops, ICDEW ’11, (Washington, DC, USA),

pp. 145–150, IEEE Computer Society, 2011. 133

[142] T. R. Gruber, “A Translation Approach to Portable Ontology Specifica-

tions,” Journal of Knowledge Acquisition, vol. 5(2), pp. 199–220, June

1993. 157

[143] W. Swartout and A. Tate, “Guest editors’ introduction: Ontologies,” IEEE

Intelligent Systems, vol. 14, pp. 18–19, 1999. 157

[144] W. N. Borst, Construction of Engineering Ontologies. PhD Disserta-

tion, Institute for Telematica and Information Technology, University of

Twente, Enschede, The Netherlands, 1997. 157

[145] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge engineering: prin-

ciples and methods,” Data Knowl. Eng., vol. 25, pp. 161–197, Mar. 1998.

157

http://urn.nb.no/URN:NBN:no-29716
http://departements.telecom-bretagne.eu/info/publications
http://departements.telecom-bretagne.eu/info/publications

BIBLIOGRAPHY 243

[146] S. K. Das, Deductive Databases and Logic Programming. Addison Wesley,

1992. 158

[147] J. C. Arpírez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez, “We-

bode: a scalable workbench for ontological engineering,” in Proceedings of

the 1st international conference on Knowledge capture, K-CAP ’01, pp. 6–

13, ACM, 2001. 162

[148] C. Tempich, E. Simperl, M. Luczak, R. Studer, and H. S. Pinto,

“Argumentation-based ontology engineering,” IEEE Intelligent Systems,

vol. 22, pp. 52–59, Nov. 2007. 162

[149] P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure, “A

framework for handling inconsistency in changing ontologies,” in Proceed-

ings of the 4th international conference on The Semantic Web, ISWC’05,

(Berlin, Heidelberg), pp. 353–367, Springer-Verlag, 2005. 162

[150] P. Haase, J. Volker, and Y. Sure, “Management of dynamic knowledge,”

Journal of Knowledge Management, vol. 9(5), pp. 97–107, 2005. 162

[151] A. A. S. Esber, Le fixe et le mouvant. PhD Dissertation, Universite Saint-

Joseph de Beyrouth - Lebanon, 1975. 163

[152] J. Meisami and P. Starkey, Encyclopedia of Arabic Literature. Routledge,

1998. 163

[153] P. F. Kennedy, The Wine Song in Classical Arabic Poetry: Abu Nuwas

and the Literary Tradition. Open University Press, 1997. 163

[154] P. F. Kennedy, Abu Nuwas: A Genius of Poetry. OneWorld Press, 2005.

163

244 BIBLIOGRAPHY

[155] M. Kifer, G. Lausen, and J. Wu, “Logical foundations of object-oriented

and frame-based languages,” Journal of the ACM, vol. 42, pp. 741–843,

July 1995. 165, 175

[156] G. Yang and M. Kifer, “Reasoning about anonymous resources and meta

statements on the semantic web,” Journal on Data Semantics, vol. LNCS

2800, pp. 69–97, 2003. 165, 175

[157] B. Ludäscher, R. Himmeröder, G. Lausen, W. May, and C. Schlepphorst,

“Managing semistructured data with FLORID: a deductive object-oriented

perspective,” Information Systems, vol. 23, pp. 589–613, Dec. 1998. 165

[158] S. Decker, M. Erdmann, D. Fensel, and R. Studer, “Ontobroker: Ontology

based access to distributed and semi-structured information,” in Proceed-

ings of the IFIP TC2/WG2.6 Eighth Working Conference on Database

Semantics- Semantic Issues in Multimedia Systems, DS-8, (Deventer, The

Netherlands, The Netherlands), pp. 351–369, Kluwer, B.V., 1998. 165

[159] G. Yang, M. Kifer, and C. Zhao, “Flora-2: A rule-based knowledge repre-

sentation and inference infrastructure for the semantic web,” in Proceedings

of International Conference on Ontologies, Databases and Applications of

Semantics (ODBASE), pp. 671–688, 2003. 165

[160] M. Kifer and E. L. Lozinskii, “A framework for an efficient implementa-

tion of deductive database systems,” in Proceedings of the 6th Advanced

Database Symposium, (Tokyo Japan), pp. 109–116, 1986. 166

[161] C. Beeri and R. Ramakrishnan, “On the power of magic,” The Journal of

Logic Programming, vol. 10, pp. 255–300, 1991. 166

[162] N. F. Noy and D. L. McGuinness, “Ontology development 101: A guide

to creating your first ontology,” tech. rep., Stanford Knowledge Systems

BIBLIOGRAPHY 245

Laboratory and Stanford Medical Informatics, 2001. 166, 176

[163] A. M. Hoss, Ontology-based methodology for error detection in software

design. PhD Dissertation, Louisiana State University, August 2006. 166

[164] “The Foundation for Intelligent Physical Agents,” 12 2002. http://www.

fipa.org/, last visit June 18th, 2012. 187

[165] “FIPA Device Ontology Specification,” 12 2002. http://www.fipa.

org/specs/fipa00091/, last visit June 18th, 2012. 187

http://www.fipa.org/
http://www.fipa.org/
http://www.fipa.org/specs/fipa00091/
http://www.fipa.org/specs/fipa00091/

246 BIBLIOGRAPHY

	1 Résumé en Français
	1.1 Introduction
	1.1.1 Défis des Environnements Hautement Distribués
	1.1.2 Problématique
	1.1.2.1 Remarque Une
	1.1.2.2 Remarque Deux

	1.2 Etat de l'Art
	1.2.1 L'approche Cubik
	1.2.2 L'approche de Sam Malek

	1.3 Contribution
	1.3.1 Première contribution
	1.3.2 Deuxième contribution
	1.3.3 Troisième contribution
	1.3.4 Quatrième contribution
	1.3.5 Cinquième contribution
	1.3.6 Sixième contribution
	1.3.7 Septième contribution
	1.3.8 Remarque

	1.4 Outils, implémentation et validation
	1.5 Conclusion

	I INTRODUCTION
	2 Introduction & Motivation
	2.1 Quick Response Code - QR
	2.2 Highly Distributed Environments Challenges
	2.3 Software Engineering
	2.4 Software Components
	2.5 Back to HDEs Challenges
	2.6 Problem Statement
	2.6.1 Remark One
	2.6.2 Remark Two

	2.7 Example - The Multimedia Application

	3 Contribution
	3.1 First Contribution
	3.2 Second Contribution
	3.3 Third Contribution
	3.4 Fourth Contribution
	3.5 Fifth Contribution
	3.6 Sixth Contribution
	3.7 Seventh Contribution
	3.8 Remark
	3.9 Back to the Quick Response Code

	II STATE OF ART
	4 Ontologies & Logic
	4.1 DL, OWL, and Protégé
	4.1.1 DL and OWL
	4.1.2 Protégé
	4.1.3 Discussion

	4.2 Ontology Support for Software Engineering
	4.2.1 Review of Literature
	4.2.2 Discussion

	4.3 Automatic Question Answering & Automatic Ontology Building
	4.3.1 Automatic Ontology Building
	4.3.2 Question Answering - QA
	4.3.3 Discussion

	5 Software Engineering & Highly Distributed Environments
	5.1 Component Models and Connectors
	5.1.1 Current Component Models Limitations
	5.1.2 Survey of Component Models
	5.1.2.1 SOFA
	5.1.2.2 CORBA Component Model (CCM)
	5.1.2.3 Fractal
	5.1.2.4 Enterprise JavaBeans (EJB)
	5.1.2.5 Open Services Gateway Initiative (OSGi)

	5.1.3 Encapsulation and Extra Functional Properties
	5.1.4 Software/Hardware Compatibility
	5.1.5 Ease of Use
	5.1.6 General Comparison

	5.2 Context Awareness
	5.3 HDE Solutions
	5.3.1 Cubik Approach
	5.3.1.1 Discussion

	5.3.2 Prism
	5.3.2.1 The Marija Mikic-Rakic Track
	5.3.2.2 Discussion of Marija Mikic-Rakic Track
	5.3.2.3 The Sam Malek Track
	5.3.2.4 Discussion of Sam Malek Track

	5.3.3 The Olympus Approach

	5.4 The `Medium' Approach

	III CONTRIBUTION
	6 Paradigm Shift
	6.1 Software Component Border: A New Vision
	6.1.1 Software Components - Complexity Management
	6.1.2 Component Border

	6.2 Hardware/Software Compatibility: A New Vision
	6.3 Global View

	7 CC Model, Assembly, and Development Process
	7.1 Cloud Component Model
	7.1.1 The definition of cloud component
	7.1.1.1 Definition 1: Roles
	7.1.1.2 Definition 2: Cardinality
	7.1.1.3 Definition 3: Connection
	7.1.1.4 Definition 4: Multiplicity
	7.1.1.5 Definition 5: Location

	7.1.2 Formal definition of cloud component
	7.1.3 Formal definition of cloud component based system

	7.2 Cloud Component Assembly
	7.2.1 Assembly Constraints
	7.2.1.1 First constraint - one-to-one
	7.2.1.2 Second constraint - local connections only
	7.2.1.3 Third constraint - Connection multiplicity

	7.2.2 Formal definition of cloud component assembly
	7.2.3 Remark
	7.2.4 Assembly checking algorithm
	7.2.4.1 CC assembly normal form A
	7.2.4.2 Assembly reduction - phase one
	7.2.4.3 CC assembly normal form C
	7.2.4.4 Assembly reduction - phase two
	7.2.4.5 Assembly reduction - phase three
	7.2.4.6 Inclusive algorithm

	7.2.5 Example - Banking System
	7.2.6 The Deployment Conjecture
	7.2.6.1 The Conjecture Statement
	7.2.6.2 Comments

	7.3 CC Development Process
	7.3.1 Stage One - Specifications
	7.3.2 Stage Two - Localization Choice
	7.3.3 Stage Three - Package View
	7.3.4 Stage Four - BDU View
	7.3.5 Stage Five - BDU Localization
	7.3.6 Stage Six - Iteration
	7.3.7 Formal Notation for the CC Software Development Process:
	7.3.8 Software Complexity Management

	7.4 Case Study - VideoCC Implementation
	7.4.1 Using CC to build Multimedia Application
	7.4.2 VideoCC Development for Desktops and Laptops
	7.4.3 VideoCC Development for Smartphones
	7.4.4 Formal Language Description of Multimedia Devlopment Process
	7.4.5 QoS Support
	7.4.6 VideoCC Complexity Management

	8 Location & Localization
	8.1 Introduction to Ontology
	8.1.1 Ontology Definition
	8.1.2 The Semantic of Semantic
	8.1.3 Discussion

	8.2 F-Logic
	8.2.1 F-Logic Definition
	8.2.2 Implementations of F-Logic

	8.3 Ontology Life Cycle
	8.3.1 Ontology Design & Creation
	8.3.2 Ontology Population
	8.3.3 Ontology Query

	8.4 Design Considerations
	8.4.1 Concept or Property
	8.4.2 Concept or Instance

	8.5 Contribution
	8.5.1 Software/Hardware Compatibility Checker
	8.5.2 IndividualOnto
	8.5.3 Used Technology
	8.5.4 Existing Device Ontology

	9 Tools - Cloud Component Management System
	9.1 Required Definitions
	9.1.1 Basic Deployment Unit - BDU
	9.1.2 Registry Utility
	9.1.3 Incremental Deployment
	9.1.4 Installation of a cloud component
	9.1.5 Deployment of a cloud component
	9.1.6 Deployment of a BDU
	9.1.7 CC Deployment Plan
	9.1.8 Cloud Component Management System - CCMS

	9.2 Registry Utility
	9.3 Deployment of a CC based system - Deployment Plan - CCMS
	9.3.1 Remark

	9.4 The Deployment of Multimedia system
	9.5 Chapter Comments

	IV CONCLUSION
	10 Conclusion
	10.1 Limitation of the Proposed Approach
	10.2 Future Work
	10.2.1 Automatic acquisition of device ontology
	10.2.2 Easy modelling of software requirements
	10.2.3 Study the effect of CC-model on software component reuse
	10.2.4 Formal theory for CC state & BDU state

	BIBLIOGRAPHY

